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Introduction 
 

Human beings need a regular supply of food and water and essentially continuous 

supply of air. The requirements for air and water are relatively constant (10–20 m3 and 1–2 

litres per day, respectively). That all people should have free access to air and water of 

acceptable quality should be a fundamental human right. The atmosphere we live in contains 

numerous chemicals, natural and artificial, some of which are vital to life while many others 

are more or less harmful. Recognizing our need for clean air, in 1987 the WHO Regional 

Office [1] for Europe published Air quality guidelines for Europe (1), containing health risk 

assessments for 28 chemical air contaminants. 

Various chemicals are emitted into the air from both natural and man-made 

(anthropogenic) sources. The quantities may range from hundreds to millions of tonnes 

annually. Natural air pollution stems from various biotic and abiotic sources such as plants, 

radiological decomposition, forest fires, volcanoes and other sources such as geothermal, as 

well as emissions from land and water. These result in a natural background concentration 

that varies according to local sources or specific weather conditions. Anthropogenic air 

pollution has existed since people learned to use fire, at least. However, it has increased 

rapidly since the beginning of industrialization. The augmentation of air pollution resulting 

from the ever expanding use of fossil fuels, growth in the manufacture sector and widespread 

use of chemicals has been accompanied by mounting public awareness of its detrimental 

effects on health and the environment. Moreover, basic research on the nature, quantity, 

physicochemical behaviour and effects of air pollutants has greatly increased our knowledge 

in recent years. Nevertheless, there is a great deal more that needs to be understood. Several 

aspects concerning air pollutants effects on public health require further assessment; these 

include newer scientific areas such as reproductive or developmental toxicity. The proposed 

guidelines will undoubtedly be changed as future studies lead to new information. 

The task of reducing levels of exposure to air pollutants is complex . It begins with an 

analysis to determine which chemicals are present in the air, where, at what levels, and 

whether the likely levels of exposure are hazardous to humans and the environment. Then, it 

must be decided whether an unacceptable risk is present. When a hazard is identified, 

mitigation strategies should be developed and implemented so as to prevent excessive risk to 

public health in the most efficient and cost-effective way. 

Analyses of air pollution problems are exceedingly complicated but are an important 

issue for the 21st century. 
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There is a great variety of techniques to monitor the atmosphere pollutants: absorption 

spectrometry either in infrared or ultraviolet range, or chemical methods (flame spectroscopy, 

chemiluminescence and gas chromatography). Table 1-1 illustrates the variety of target 

compounds as well as the large number of analytical methods used for their measurement. All 

these techniques, often very precise, require a sampling. Besides the problems of homogeneity 

and accurate representation of samples, there are long, often costly techniques of analysis to 

be implemented, and which can be difficult or even impossible to use for continuous 

applications. One example that comes to mind is as part of detector of ambient pollution or for 

industrial site. 

 

 Gas Concentration (ppm) range Common analysis method 
  Air Rejections  

 SO2 10-3 - 10 10 - 2000 Flame spectroscopy 
UV Fluorescence 
IR Absorption 
UV Absorption 
potentiostatic electrolysis 

 NOx 10-3 - 10 1 - 2000 Chemical Luminescence  
IR Absorption 
potentiostatic electrolysis 

Table 1-1 :Main 
pollutant gas , 
Concentration range  

CO2 300 - 1000 104 - 2*105 IR Absorption 
Ion selective electrode (ISE) 
Thermal conductivity 

And  common analysis 
method [ 2 ]  

O3 10-3 - 1 _ Chemical Luminescence  
UV Absorption 

 
NH3 _ 100 - 104 

(local) 
iso-phénolique method  
ISE (NH3) 
Gas Chromatography  

 H2S _ 1 - 1000 
(local) 

ISE (S2-) 
methylene Blue Dosage  

 

Therefore new gas sensors, able of discriminating, but also to measure these different 

pollutants in real-time are required. 

Several gas sensors have been developed so far. Some, such as electrolyte solution 

based electrochemical or catalytic combustion sensors, were developed a long time ago for 

professionals. There are many different sensors based, in general, on a simple law of physics. 

Figure 1-1 summarizes a selection of gas sensors commonly used at present.  
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Figure 1-1 : An illustrated selection of gas sensor types  

 

The era of sensors started in the 1970s during which semiconductor combustible gas, 

solid electrolyte oxygen and humidity sensors were commercialized for non-professional uses.  

Metal oxides sensors (MOX sensors) in general and SnO2, in particular, have attracted 

the attention of many users and scientists interested in gas sensing in changeable atmospheric 

conditions. This interest has been generated due to their low cost fabrication, simplicity of use 

and finally the large number of detectable gases possible.  

With the advent of pollution and performance concerns in the automotive industries, 

intelligent homes & appliances market (Figure 1-2) and in general any industry working with 

gas these devices have come into demand. 

 

Figure 1-2 : application of sensor in the home automation (domotics) field 
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The principle of how the SnO2 based-sensor works is quite simple and based on the 

change of electrical resistance when exposed to a certain gas or gasses. SnO2 is the best 

understood oxide-based gas sensors. Nevertheless, there are highly specific and sensitive 

SnO2 sensors not yet available or feasible. In real working conditions, SnO2 sensors are 

confronted with the problem of high cross-sensitivity for other gasses, which strongly limits 

their application.  

In order to be used in practice, a gas sensor should fulfil many requirements which 

depend on the purposes, locations and conditions of their operation. Among the sensor’s 

prerequisites, first would be their effectiveness: sensitivity, selectivity and response time. 

Second level criterions would be: reliability: drift, stability. 

Efficiency [3] and reliability are interconnected with each element [4-5] of the sensor - 

sensitive layers, substrates, heaters and electrodes.  These function together in device so the 

sensor should be studied as a whole. The verification and optimization of each parameter have 

key roles to play in the research and development of gas sensors  

The Laboratory M.I.C.C. (Microsystemes Intrusmentation et Capteurs Chimiques) 

managed by C. Pijolat located in St Etienne is interested in the development of gas sensor for 

industrial applications. Few years ago, they considered the fact that the electrodes which 

collect the output signal can have an influence on the overall performance of gas sensors. In 

fact, changing the nature of the electrode metal can greatly modify the results. They tried to 

explain this behaviour inside a physical-chemical model [6] (cf., chapter 1) which takes into 

account the role of the electrodes. The model stresses the main role of the three boundary 

points (interface of gas-electrode-Sensitive layer). 

At the same time, at the University of Tübingen in Germany, the IPC (Institute for 

physical chemistry) group of Udo Weimar also tried to understand more about the electrodes 

influence. They developed new techniques to observe and understand gas sensors under actual 

working conditions: DRIFT (Diffuse Reflectance Infrared Fourier Transform), Kelvin probe, 

impedance spectroscopy [7]. 

 

Focus of the work 

The focus of this work is primarily devoted to clarify the role of the electrode material 

on the properties of detection for gas sensor. Some earlier hypothesis have been suggested and 

summarized in the model of MICC but there is a lack of experimental proof. The objective of 

this is complete their promising work and hopefully improve our understanding of this crucial 

parameter by collaborating with both MICC in France and IPC in Germany. 
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This collaboration between the research centres takes place under the auspices of 

GOSPEL "General Olfaction and Sensing Projects on a European Level". This organization is 

a Network of Excellence funded by the European Community under the Sixth Framework 

Programme (IST-2002-507610) from 2002 to 2006. It is coordinated by the University of 

Tübingen and integrates the expertise of 25 research groups across Europe (the GOSPEL 

'Members'). It also works with over 100 Associate Members from industry and academia 

worldwide.  

The chosen approach is the combination of physico-chemical phenomena and 

spectroscopic techniques.  For simplicity sake the target gas for detection is carbon monoxide 

CO. 

This report is structured as following:  

 

Chapter 1 is dedicated to the bibliography on SnO2 based sensor, theoretical understanding 

of the tin dioxide gas sensor, as well a brief state of the art on the work of other authors 

concerned with the electrode’s influence is summarized 

 

Chapter 2 of this thesis deals with the preparation of the sensor, its electrical performance, 

and different powders used  

 

Chapter 3 is related to the investigation of carbon monoxide interaction with tin oxide 

sensors, with metal, in air by means simultaneous DRIFT and DC resistance studies. 

Thermodesorption experiments complete the spectroscopy investigations on the oxygen 

chemisorption and the influence of the metal.  

 

Chapter 4 reviews the principal outcomes of the thesis, focusing on the link between the 

results and on their originality. In addition, some major perspectives are proposed.  
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CHAPTER 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Theoretical Basis and survey 
 
De part son utilisation dans un grand nombre de domaines, le dioxyde d’étain fait 

l’objet de nombreuses publications. Ce chapitre est dédié à l’état de l’art sur SnO2 en 
tant que matériau pour capteur de gaz. L’étude bibliographique du dioxyde d’étain se 
divise en quatre parties. Nous évoquerons dans un premier temps les caractéristiques du 
matériau SnO2, et dans une seconde partie, comment il peut être utilisé comme capteur de 
gaz. Le troisième point concernera l’interaction de SnO2 avec les principaux gaz. La 
modélisation de la conduction dans les couches de SnO2 sera quant à elle traitée dans la 
dernière partie. L’accent sera mis sur le rôle des électrodes, objet de cette étude. 
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1.1 Introduction bibliographies 

 

Conductometric chemical gas sensors based on semiconductor metal oxides are actually 

the most investigated. Although semiconductor gas sensors have been so far developed mostly 

by empirical research , further development and innovation seem to be impossible without a 

fundamental understanding of the gas-sensing mechanism and sensor design principles 

involved. This first chapter tries to sum up the particularity of the SnO2 as material for gas 

sensor. Moreover, due to the fact that a large part of this study consists in spectroscopic 

investigations it is important to introduce the interaction of the gas and SnO2. As you will see 

in this chapter many parameters affect the performance of the semiconductor which is 

complex and difficult to completely take all the factors into consideration. Each parameter has 

been almost totally investigated beginning with the history of metal oxide gas sensors with 

Tagushi in 1962 [8]. Despite these aforementioned numerous studies, the actual detection 

mechanisms of tin oxide sensors and especially the role of the electrodes are not fully 

understood. The motivation of our work is to explore the influence of the electrodes in the 

system of SnO2 based gas sensors. A survey of pertinent publications on the influence of the 

metal is included. Special attention has been paid to the previous thesis of P Montmeat [6]. A 

model taking into account the role of the metal (gold electrodes) which enhances the creation 

of a space charge area at the three boundary points “gas–metal–oxide” was proposed and that 

is the starting point of our work.  

 

1.2 Material Properties of Tin Dioxide 

 

SnO2 has various specific and unique properties, which makes this material very 

useful for many applications. Polycrystalline thin films and ceramics of SnO2 have been 

extensively used in the production of resistors. Conducting SnO2 films are well known as 

transparent electrode. When deposited on glass it is known as Nesa glass [9] [1]. SnO2 films 

are also used as transparent heating elements, for the production of transistors, for transparent 

antistatic coatings and other parts in electric equipment where transparency is required. 
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1.2.1 Crystalline structure of SnO 2 

20 40 60 80

Tin oxide, SnO
2

Stock number: 5010FY
JCPDS card number: 21-1250
Radiation: Cu Kα
Crystallographic system: tetragonal
Space group: P4

2
/mnm (136)
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Figure 1-1 : SnO2 X ray diffraction pattern diagram 

 

SnO2 is an anisotropic polar crystal, which crystallises in tetragonal rutile structure with space 

group D4h [P42/mm][10] [2]. The unit cell contains 6 atoms, 2 tins and 4 oxygen. Each tin atom 

is at the centre of six oxygen atoms placed approximately at the corners of a regular slightly 

deformed octahedron, and three tin atoms approximately at the corners of an equilateral 

triangle surround every oxygen atom (see Figure 1-2). 

 

 

Figure 1-2 : Unit cell of SnO2 with four O 2- anions and two Sn4+ cations. The crystalline structure of SnO2 
is rutile: Each tin atom is at the centre of six oxygen atoms placed approximately at the corners of a 

regular slightly deformed octahedron and three tin atoms approximately at the corners of an equilateral 
triangle surround every oxygen atom. 
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Thus, crystalline structure of tin dioxide is 6:3 coordination. The lattice parameters are a = b 

=4.737Å and c = 3.185Å. The 
a

c
 ratio is 0.673. The ionic radii for O2

- and Sn4+ are 1.40 and 

0.71Å, respectively. The metal atoms (cations) are located at positions (0,0,0) and (½,½,½) in 

the unit cell, and the oxygen atoms (anions) at ± (u,u,0) and ± (½+u,½-u,½), where the 

internal parameter, u, takes the value 0.307. Each cation has two anions at a distance of 2ua 

(2.053Å) and four anions. Each cation has two anions at a distance of 2 u·a (2.053Å) and four 

anions at [2(½-u)2+(c/2a)2]½a (2.597Å). 

 

1.2.2 Electronic properties 
 

SnO2 is a n-type, wide-band gap semiconductor. The origin of the n-type behaviour is 

the native non-stoichiometry caused by oxygen vacancies. The conduction band has its 

minimum at the Γ point in the Brillouin zone and is a 90% tin s-like state. The valence band 

consists of a set of three bands (2+, 3+ and 5+). The valence band maximum is a Γ3
+ state. In 

this way, SnO2 has a direct band gap, with energy Edir(Γ3v
+-Γ1c

+) = 3.596eV for E┴ and 

3.99eV for E//,measured at 4K. Figure 1-3 shows the band diagram for SnO2 and the 

projection of the density of states (DOS) for the 1-states of Sn and O. According to results of 

Barbarat et al. a large contribution of Sn(s)-states is found at the bottom of the valence band 

between –7 and –5eV [11]. From –5eV to the top of the valence band, the Sn (p)-states 

contribution is decreasing, as the Sn(d)-states are occupying the top of the valence band. A 

large and extended contribution of the O (p)-states is found in the valence band. Clearly, 

bonding between Sn and O is dominated by the p-states of the latter. Each anion in the unit 

cell is found to be bonded to the cations in a planar-trigonal configuration in such a way that 

the oxygen p orbitals contained in the four-atom plane, i.e., px and py orbitals, define the 

bonding plane. Consequently, the oxygen p orbitals perpendicular to the bonding plane, i.e., pz 

orbitals, have a non-bonding character and are expected to form the upper valence levels [10] 

[4]. The conduction band shows a predominant contribution of Sn(s) states up to 9eV. For 

energies larger than 9eV an equal contribution of Sn- and O-states is found in the conduction 

band. More information, mainly about the valence band, can be found in [12,13,14] and 

references therein. 
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Figure 1-3: Band diagram of SnO2 (left) and projection of the density of states (DOS) for the 1s states of SnO2, Sn 
and O (right) [15]  

 

When discussing the atomistic and electronic behaviour of a surface there are two 

dominant models in literature: the atomistic model [16], [17] or surface molecule model, 

generally preferred by chemists, and the band model [18], [19], generally preferred by 

physicists. The atomistic model is more appropriate for chemical processes at a solid surface. 

It describes the solid surface in terms of surface sites or atoms, ignoring the band structure of 

the solid. The band model is preferable for electron exchanges between (semiconductors) 

solids and surface groups that include a conductivity change for the solid. It describes the 

surface in terms of surface states, i.e. localised electronic energy levels available at the 

surface, ignoring the microscopic details of atom-atom interaction between surface species 

and its neighbouring atoms. 

Both models have their merits, but to understand the surface reactions of semiconductors with 

gases both chemical and physical perspectives have to be considered [20]. 

From a chemical standpoint, a surface can be divided into surface sites of varying reactivity. 

Usually, more reactive sites can be associated with heterogeneous surface regions or surface 

imperfections. Examples of reactive sites are surface atoms with unoccupied or unsaturated 

orbitals (“dangling bonds”), surface atoms with unsaturated coordination sphere, 

crystallographic steps, intersections, interstitial defects or superstructures. 

From a physical point of view the interruption of the crystal periodicity at the surface results 

in localised energy levels. These can function as acceptor or donor states, exchanging or 

sharing electrons with the non-localised energy bands in the bulk of the solid. Those energy 

levels in the band gap have an effect on the electronic properties of the solid, especially for 
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semiconductors. Surface states can result from non-ideal stoichiometry or bulk defects 

(intrinsic) or arise from (intentional) impurities, as for doping (extrinsic). 

 

 

 

Figure 1-4: Ideal and reduced (compact) SnO2 (110) surfaces; the schema on the right is obtained by removing the 
bridging oxygen layers 

 

1.3 Sensor resistance /conductivity of tin oxide based gas sensors 

 

The final objective of the R&D activities is the design and fabrication of quality gas 

sensors id est. suited for solving a certain application. It is important to keep in mind that the 

quality of a sensor is almost impossible to be defined without understanding the application 

needs, which besides the target gas/gases, possible cross-interferences and environmental 

conditions also relate to the cost/price restrictions of the instrument using the sensors. 

A significant factor is–suitability – that is increasingly considered in addition to the 3 

standard means of judging sensors (Sensitivity, Selectivity, Stability).  

In order to understand the challenges in this field, we should have a look at the way in which 

the sensor signal is generated.  

A sensor element (Figure 1-5) normally is comprised of the following parts:  

 • Sensitive layer deposited over the  

 • Substrate provided with  

 • Electrodes for the measurement of the electrical characteristics. The device is 

generally heated by its own  

 • Heater; this one is separated from the sensitive layer and the electrodes by an 

electrical insulating layer.  
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Such a device is normally operated in air, with the presence of humidity and residual gases 

(e.g. carbon dioxide).   

In Figure 1-5 a typical gas sensor is presented. Note that the SnO2 layer is printed on top of 

the interdigitated electrodes. The heater on the back keeps the sensor at the operation 

temperature 

 

 

Figure 1-5 : Layout of the planar alumina substrate with Pt electrodes and Pt heater.  

1.3.1 Receptor and transducer functions 
 

An oxide semiconductor gas sensor detects a gas from the change in electric resistance of 

a polycrystalline element. It is commonly agreed that the resistance change from the exposure 

to a gas arises through a surface phenomenon of the semi conductor used [21] [22]. Generally, 

a chemical sensor has two functions: 

- Receptor which recognizes or identifies a chemical substance 

- Transducer which converts the chemical signal into an output signal. 

Therefore, for the basic understanding of the semiconductor gas sensor, one needs to 

differentiate these two functions. Figure 1-6 shows schematically how a semiconductor sensor 

generates sensing signals upon contact with a gas. 

 

Figure 1-6: Receptor and transducer functions of semiconductor gas sensor [23]. 



Basic and survey 

 19 

Apparently, the receptor function is provided with the surface of each semiconductor particle. 

The obtained chemical signal is then converted through the microstructure of coagulating 

particles into the resistance of polycrystalline element.  

 

1.3.2 Bulk properties 
 

The conductivity σtot of a semiconductor crystal can be described as the sum of 

electronic (σe and σp) and ionic conductivity (σion) if the conduction processes are considered 

independent. SnO2 gas sensors are typically operated at temperatures between 200°C and 

400°C. In this range the ionic contribution can be neglected and the conductivity of SnO2 can 

be calculated according to: 

peiionpeTot σσσσσσ +≈++= ∑ ≈,    Eq 1-1 

The resistance of homogeneous bulk material with bulk conductivity σb, mobility µ, length l 

and cross section A=b (width) x d (high) can be calculated according to 

Eq 1-2 

where the charge carrier concentrations n(electron) and p(holes) for an intrinsic 

semiconductor can be calculated according to: 

Eq 1-3 

With the Fermi-Dirac distribution f(E) and the density of states D(E), Ec: the energy level of 

the conduction and Ev energy level of the valence band: 

Eq 1-4 

For EC – EF> 4 kT, the charge carrier concentrations n and p can be approximated by 
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Eq 1-5 

Where NC and NV are the effective density of states in the conduction and valence bands, 

respectively. 

When the semiconductor is undoped, n=p=ni and EF = Ei which leads to the following 

equations for n and p: 

  

( )






 −= KT

EEnn dF
i exp     Eq 1-6 

( )






 −= KT

EEnp Fd
i exp  

 

Intrinsic carrier concentration n i, Intrinsic Fermi energy level and the np product 

If the semiconductor is not doped, then the concentration of electrons in the conduction band 

n is equal to the concentration of holes in the valence band p, hence n=p=ni where ni is 

defined as the intrinsic carrier concentration. Using the equations above, it is easy to show 

that the product np is: 

  

  Eq 1-7 

Where Egap=EC-EV. Thus we have an equation for the intrinsic carrier concentration: 
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   Eq 1-8 

Besides the product np, we can equate n and p to obtain the intrinsic Fermi energy level: 

 

  

  Eq 1-9 

  

   Eq 1-10 

The n-type behaviour of SnO2 is associated with oxygen deficiency in the bulk (see Figure 

1-7).  

 

Figure 1-7 : Schematic band diagram of the SnO2 bulk. Two vacancy donor levels ED1 and ED2 are 
located 0.03 and 0.15eV below the conduction band (EC = 0eV). The band gap (Eg) is 3.6eV. 

 

The donors are singly and doubly ionised oxygen vacancies with donor levels ED1 and 

ED2 located around 0.03 and 0.15eV below the conduction band edge[24],[25]. In the case 
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of SnO2 the extrinsic donors are multi-step donors. Therefore, donor and acceptor energy 

levels, concentrations, and the operation temperature determine the bulk conductivity of 

SnO2. Experiments performed on various SnO2 samples to determine the charge carrier 

density have resulted in values in the range of 2·1015 to 6.8·1020cm-3 for operation at 300K. 

Hall measurement results indicate that the shallow donor levels (0.03eV) are completely 

ionised above 100K, the deep donor levels (0.15eV) are almost completely ionised around 

400K. Hence, in the typical temperature range for sensor operation (200 - 400°C, i.e. 473 - 

673K) the donors can be considered completely ionised. 

 

1.4 Gas interactions  

 

The surface, by definition, is the result of breaking the lattice periodicity. Its properties 

differ strongly from the bulk. The ’thickness’ of the surface is determined by the depth of the 

space charge region, which is the distance, measured from the surface, at which the effects of 

the surface induced perturbation are no longer “felt” by the material. 

 

1.4.1 Physisorption and Chemisorption  
 

The fundamental phase for all surface processes is the adsorption of foreign atoms or 

molecules that causes essential rearrangements of surface chemical bonds and, consequently, 

the variation of the surface states density and surface potentials. When discussing the 

interaction of gaseous molecules with the surfaces of solids it is of interest to differentiate 

between physisorption and chemisorption[26] .  

Table 1-1: Bond energies for different types of interaction [27]. 

Interaction type  
Energy 

[kJ/mol]  
Comment  

covalent  120 - 800  chemical reaction  

ion - ion  250  only between ions  

coordination, complexion  8 - 200  weak chemical interaction  

ion - dipole  15  between ions and polar molecules  

hydrogen bond  20  hydrogen bond A-H
δ+

…B
δ-
 

dipole - dipole  0.3 - 30  between polar molecules  
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London  

(induced dipole to induced 

dipole)  

0.1 - 2  
physical interaction between all 

molecules  

 

Physisorption takes place at a relatively large distance r from the surface (adsorbant). A 

gaseous molecule (adsorbate) approaching the surface is slightly polarised and induces an 

equivalent dipole in the adsorbant. This dipole - dipole bond between gas and surface results 

in an interaction energy ∆E = 0-30kJ/mol with ∆E ~ r-6
 
(see Table 1-1).  

Physisorption is the first step in the interaction between a gas and the surface of a solid. 

Physisorbed molecules may thereafter become chemisorbed if they exchange electrons with 

the surface of the semiconductor. Physisorption is characterised by a high surface coverage 

with gaseous molecules at low temperatures and a low coverage at high temperatures. For the 

adsorption of up to one monolayer, this coverage θ is defined as follows:  

tN

N=θ  

With the number of molecules adsorbed per surface unit N and the total number of surface 

adsorption sites Nt.  

Chemisorption introduces higher bonding energies and consequently stronger interactions 

between adsorbate and adsorbant. It results from a profound modification of the charge 

distribution of the adsorbed molecule: the bonding energies are of similar strength as for 

chemical bonds. One can distinguish between neutral chemisorption and ionosorption. Figure 

1-8 details the potential energies in case of physisoption (Ephys) and chemisorption (Echem) as a 

function of the distance r from the surface where; A is the curve for physisorption of a 

molecule; b is the curve for chemisorption of a molecule. Activation.  energy Ea, dissociation 

energy Ediss, desorption energy Edes 
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Figure 1-8 : Lennard-Jones model of physisorption and chemisorption: 

 

If a gaseous molecule approaches the surface it will first be physisorbed, gaining ∆E 

equal to Ephys. Upon further movement towards the surface the molecule encounters a growing 

energy barrier, tending towards an infinite energy for a finite distance r. By spending the 

activation energy Ea the gaseous molecule can dissociate, thereby allowing a further advance 

to the surface. This stronger interaction with the surface (chemisorption) results in a higher 

energy gain ∆E equal to Echem
 
than during physisorption. This energy gain ∆Echem. depends 

strongly on the individual surface sites available and their reactivity. The most reactive sites 

will therefore be occupied with gaseous molecules during thermodynamic equilibration. 

However, the chemisorption energy not only depends on the number of reactive sites (high 

potential gain in ∆Echem) but also on the ambient gas concentration pgas and temperature T 

(probability of molecules overcoming the energy barrier EA).  

As for chemisorption, desorption also requires the molecule to overcome an energy barrier 

Edes
 
= Echem

 
+ Ea. Therefore chemisorption and desorption are both activated processes 

requiring an activation energy supplied either thermally or by photoexcitation, contrary to 

physisorption which is a slightly exothermic process. The adsorption rate of gaseous 

molecules is proportional to the gas pressure and to the number of unoccupied adsorption sites 

according to  

( ) gasads pk
dt

d θθ −= 1    Eq 1-11 

With the adsorption constant kads
 
= A·exp(-EA/kT).  

The desorption rate is proportional to the number of occupied sites according to  
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θθ
desk

dt

d =     Eq 1-12 

With the desorption constant kdes
 
= B·exp(-Ediss/kT).  

The net adsorption rate can therefore be described through Eq 1-11and Eq 1-12 by  

 

( ) θθθ
desgasads kpk

dt

d −−= 1   Eq 1-13 

 

With a resulting equilibrium coverage θ for dθ/dt=0 of  

ads

des
gas

gas

K

K
P

P

+
=θ   θ = f (pgas, T)   Eq 1-14 

Equation (2.11) represents the Langmuir isotherm. It shows that all adsorption and desorption 

processes not only depend on the nature of the adsorbate and adsorbant but also on the 

availability of absorbates (partial pressure) and on the temperature. The above observations 

are correct only for adsorption and desorption of gaseous monolayers on surfaces of solids. 

Taking also multi-layer adsorption and desorption processes into consideration results in the 

Brunauer-Emmet-Teller (BET) isotherm with related rate constant equations .  

 

1.4.2 Space Charge Effects  
 

If we move from discussing the bulk properties of ideal crystals to surfaces in realistic 

environments, we have to accept a state of constant adsorption and desorption in 

thermodynamic equilibriums. It is of interest to analyse the effect the adsorption of oxygen 

has on the electrical properties of a semiconductor. Due to the high electronegativity of 

oxygen its adsorption leads to an oxidation of the semiconductor surface and a reduction of 

the gas, i.e. a transition of electrons from the conduction band EC to surface acceptor states. A 

negative charge is created at the surface. This negative surface layer has to be compensated by 

a positive countercharge in the solid. If the adsorption took place on the surface of a metal, 

this would simply result in a planar countercharge: a double layer situation as for a capacitor. 

However, unlike a metal, a semiconductor does not have a large amount of mobile free charge 

carriers available at the surface. The countercharge will therefore be formed in the bulk 

(donor ions), resulting in a space charge region. According to the Schottky approximation, 
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this region is characterised by a total exhaustion of mobile charge carriers (all moved to the 

surface) and therefore called the depletion layer. Between these two space charge layers (the 

planar at the surface and a region in the bulk), an electric field develops. A measure 

characterizing this electrical field is the Debye-Length LD: 

 

)V(
2

0r
D Ne

kT
L

εε
=     Eq 1-15 

 

Equation Eq 1-15 gives a relation between the Debye-Length LD (the extension of the space 

charge region into the bulk) and the concentration of free charge carriers N(V): assuming a 

high enough temperature to allow mobility to all potentially free charge carriers, LD is high 

for a low density of free charge carriers in the volume and vice-versa. Hereby, the 

concentration of free charge carriers N(V) can be set as equivalent to the concentration of free 

electrons Ne(V), as the concentration of other charge carriers is negligible for standard 

operating temperatures (200-400°C) for SnO2. 

The space charge region corresponds to a band bending in the electronic band model of the 

semiconductor. The potential energy of an electron near the surface is increased by the 

electrostatic repulsion of the negative surface layer. This negative surface charge creates a 

surface barrier qVS. 

These considerations lead to an adaptation of the semiconductor band model for surface 

situations as detailed in Figure 1-9.  In this illustration the flat band situation for an n-type 

semiconductor (SnO2) in the bulk is on the left and the surface with oxygen adsorption is 

depicted on the right.. Note also the axis perpendicular to the surface z, the depletion region 

z0, work function Φ, electron affinity χ and electrochemical potential µ. 
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Figure 1-9: Typical schema for an n-type semiconductor (SnO2) 

 

The chemical and electrical characteristics of the semiconductor solid are strongly influenced 

by the development of double layers at the surface and can even be dominated. 

From an electrical standpoint, the formation of a double layer represents injection or 

withdrawal of charge to or from the bands of the semiconductor. They represent a change in 

the density of current carriers. Additionally, through the relocation of the Fermi level EF in 

relation to the vacuum energy EVac, the work function Φ of the solid changes. 

The chemical properties of the solid surface are also governed in many cases by double 

layers. The newly introduced surface barrier translates to an activation energy increase ∆EA= 

qVS for an electron transfer between the semiconductor and a gaseous molecule (necessary for 

a chemical reaction).  The availability of electrons and thereby the probability of a reaction is 

decreased. Or, differently put, the formation of the double layer will, by electrostatic 

repulsion, decrease the density of charge carriers near the surface, which, in turn, will 

decrease the rate and energy of further adsorptions. 
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1.4.3 From Charge Transfer to Sensor Signal 
 

The band bending (i.e. surface energy barrier for electrons trying to travel from the bulk to the 

surface) induced by interaction of the tin dioxide solid with oxygen is the initial electronic 

situation a gaseous species encounters if converging to the sensor surface. Depending on the 

reactivity of the remaining surface sites as well as the adsorption of gaseous species on the 

metal oxide one of the following will result: 

 

• Molecular (non-dissociative) adsorption, in which the interaction is mainly by σ-

donation and/or π-bonding interaction  

• Dissociative adsorption, in which a molecule dissociates homolytically or 

heterolytically upon adsorption. Usually an anion-cation coordinatively unsaturated 

pair site is required. Dissociation of H2O into H+ and OH- is an example of heterolytic 

dissociative adsorption into charged species. 

• Abstractive adsorption, in which the adsorbate abstracts a species from the surface or a 

previously adsorbed species from the surface. The former is often a proton and 

commonly occurs on acidic oxides. The latter could be previously adsorbed oxygen.  

• Reductive (oxidative) adsorption, in which an adsorbed molecule is oxidised while the 

surface is reduced, or vice-versa. 

• Catalysis, in which the surface acts as catalyst and lowers the activation energy for a 

reaction between adsorbed species and a previously adsorbed molecule. The surface 

remains chemically unchanged by the interaction. 

 

As the sensor measures a change in the surface conductivity of SnO2, only a change of its 

electronic properties, i.e. a free charge transfer from or to an adsorbed species will result in a 

sensor signal. Other surface reactions may occur that do not influence the surface band 

bending. Examples include surface reactions that do not involve the solid and dipole-dipole-

interactions with adsorbed hydroxyl groups. Thereby the electron affinity χ or work function 

Φ of the sensor surface may be changed without a resulting sensor signal. Therefore, only the 

reductive/oxidative and abstractive adsorption will result in a sensor signal as defined in this 

work, i.e. a change of the metal oxide sensors conductivity. Figure 1-10 gives an overview of 

the possible effects such an adsorption with charge transfer has on the electronic properties of 

the semiconductor.  
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Figure 1-10: Adsorption of gaseous species and their effect on the electronic properties of an n-type 
semiconductor (SnO2). 

 

A brief guide to Figure 1-10 is in order: a) Gaseous species acts as donor: (left) surface band 

model, (right) changes to the electronic properties induced by the charge transfer from the 

adsorbate to the conduction band EC: decrease of the surface potential barrier qVS, depth of 

the depletion region z0 and work function Φ and increase of free charge carrier concentration. 

b) Gaseous species acts as acceptor: (left) surface band model, (right) changes to the 

electronic properties induced by the charge transfer from the conduction band EC to the 

adsorbate: increase of the surface potential barrier qVS, depth of the depletion region z0 and 

work function Φ and decrease of free charge carrier concentration. 
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Gases with low electronegativity can act as donors, transferring electrons to the 

semiconductor. The increase in charge density will reduce the surface potential barrier, depth 

of the depletion region and work function resulting in an increased conductivity. However, 

reducing gases utilised in this work, such as carbon monoxide or hydrocarbons, do not 

directly interact with the semiconductor. Instead, they react with adsorbed oxygen as 

mentioned for the abstractive adsorption. The electron previously trapped by the adsorbed 

oxygen species is released into the conduction band of the metal oxide upon desorption of the 

reaction product. In this way the electronic properties of the semiconductor are affected 

indirectly by a surface reaction with the same results as for a donor interaction: increasing in 

charge density and thereby increasing the conductivity. 

Conversely, oxidising gases, such as nitrogen dioxide or ozone, will act as acceptors, trapping 

electrons from the semiconductor at surface states. The decrease in charge concentration will 

increase the surface potential barrier, depth of the depletion region and work function 

resulting in a decreased conductivity just as for the adsorption of oxygen discussed  

 

 

Adsorption, interaction and reaction of selected adsorbents with SnO2 Surface  
 

Gas sensors are usually operated under atmospheric conditions which means in a background 

of oxygen and humidity. The basics properties and characteristics of oxygen and water will be 

presented in the next two sections. Carbon monoxide will also be detailed as this is our target 

gas in a third section. 

 

1.4.4 Adsorption of Oxygen (O 2) 
 

Ionosorption of oxygen is of particular importance for gas sensors due to its effect on the 

charge carrier concentration. However, at present, there is no unambiguous experimental 

evidence on the forms of oxygen adsorption, at ambient pressure and elevated temperatures, 

on real sensors/sensor materials.  

The following surface oxygen species have been reported, (see Figure 1-11) mainly 

observed with spectroscopic techniques (TPD [28],[29]and ESR [30],IR [31]) on the surface 

of tin dioxide: at lower temperatures (<150-200°C) oxygen adsorbs on SnO2 non-

dissociatively in a molecular form (either neutral O2 (ads) or charged: 
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Figure 1-11: Oxygen species detected at different temperature on tin oxide surfaces with IR (infrared 
analysis), TPD (temperature programmed desorption), EPR (electron paramagnetic resonance). 

 

1.4.5 Water (H 2O) 
 

In nearly every application water vapor is present as an interfering gas. For this reason the 

interaction of the semiconductor surface with water is of great interest. TPD and IR studies 

showed, as summarised in Figure 1-12, that the interaction with water vapour results in 

molecular water adsorbed by physisorption or hydrogen bonding, and hydroxyl groups. 

Above 200°C molecular water is no longer present, whereby OH groups are continue to exist 

above 400°C. IR investigations prove the presence of hydroxyl groups. However, the way in 

which and where the hydroxyl groups are fixed on the tin dioxide is still under discussion. 

There are publications claiming that the hydroxyl groups are based on an acid/base reaction of 

the OH- sharing its electronic pair with the Lewis acid site (Sn) and leaving the weakly 

bonded proton, H+, ready for reactions with lattice oxygen (Lewis base) or with adsorbed 

oxygen [38]. Others assume a homolytic dissociation of water resulting in two hydroxyl 

groups, an ‘isolated’ hydroxyl bond to Sn and a ‘rooted’ hydroxyl group including lattice 

oxygen [26][39] 

 

[32] 

[33] 

[34] 

[35] 

[36] 

[37] 
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Figure 1-12: Literature survey of water-related species [48 ] formed at different temperatures at SnO2 
surfaces. Results via IR (InfraRed analysis) and TPD (Temperature Programmed Desorption). 

 

All experiments reported a reversible decrease in the surface resistance in the presence of 

water. The lessened resistance does not vanish with the molecular water but with the 

disappearance of hydroxyl groups and could therefore be related to the presence of these 

hydroxyl groups [49]. Various types of mechanisms have been suggested to explain this 

finding. Two direct mechanisms have been proposed by Heiland and Kohl [37]. The first 

mechanism attributes the role of electron donors to the 'rooted' OH group, which includes 

lattice oxygen according to:  

H2O+SnSn
X+Oo

X -HO-SnSn+ OHO
•+ e- 

 
−++ latlat OSnOH 2   −+ ++− eHOSnHO latlat )()(  Eq 1-16 

whereby Snlat and Olat are tin and oxygen atoms in the lattice.  

The reaction would imply the homolytic dissociation of water and the reaction of the neutral 

H atom with the lattice oxygen: 

H++OO
X  OHO

•+ (Eq 1-17) 

The second mechanism takes into account the reaction between the proton and the lattice 

oxygen and the binding of the resulting hydroxyl group to the Sn atom. The resulting oxygen 

vacancy produces additional electrons by ionisation according to:  

[40] 

[41] 

[42] 

[43] 

[44] 

 
[45] 

[46[ 

[47] 
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H2O + 2 SnSn
X + OO

X  2(HO-SnSn)+ OHO
•+ e- Eq 1-18 

 

Others  [50], [51] assumed that instead of a reaction with the surface lattice, a reaction with 

chemisorbed oxygen, which results in two hydroxyl groups linked to Sn occurs.  

Morrison [52] as well as Henrich and Cox [53] consider an indirect effect, i.e. the interaction 

between either OH- or H+ with an acidic or basic group, which are also acceptor surface 

states. The co-adsorption of water with another adsorbate, which could be an electron 

acceptor, may change the electron affinity of the latter. Henrich and Cox suggested that pre-

adsorbed oxygen could be displaced by water adsorption. In addition, others have found hints 

for the influence of water vapour on oxygen chemisorption. Caldararu and others [54 55,56] 

assume a blocking of the adsorption sites for oxygen by water. For all these mechanisms, the 

particular state of the surface plays a major role. Surface doping can also influence these 

phenomena. Egashira et al [57] showed by TPD and isotopic tracer studies that the 

rearrangement of oxygen adsorbates due to the presence of water vapour depends on surface 

doping. Williams and Morris et al. also reported that H2O displaces chemisorbed oxygen by 

H2Oads and OHads producing on SnO2 a surface electronic state such as a surface hydroxyl 

species, which has a higher energy state than an oxygen species alone, which is displaced 

[58]. 

Clifford and Tuma [59] approximated the influence of water vapour in synthetic air 

empirically by: 

( ) β−⋅+= OHOH pkRR
22

10   Eq 1-19 

with the water-independent constants R0, kH2O and β and the water concentration in 

volumetric ppm pH2O. 

 

1.4.6 Carbon monoxide (CO) 
 

Carbon monoxide is one of the main gases of interest in the field of gas sensor 

applications. It is the target in case of fire detection, incomplete burning, etc. as well as an 

interfering gas because of its high reactivity with semiconductor gas sensors. Because of this, 

CO is often chosen – even more than H2 – to typify the performance of sensors. In addition, 

the physical and chemical properties of CO facilitate investigations, monitoring CO and its 
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typical reaction product CO2; with the help of IR one can trace the production of CO2 by 

looking at its adsorption wavelength. 

In the following a distinction is made between CO interaction with SnO2 surfaces in the 

presence of oxygen, which is well characterised and in its absence (no UHV conditions), 

where not much data is available. 

• In the presence of O2 
Carbon monoxide is considered to react with pre-adsorbed or lattice oxygen [60]. IR 

studies identified CO-related species i.e. unidentate and bidentate carbonate between 150°C 

and 400°C and carboxylate between 250°C and 400°C. A summary of the IR results is 

presented in Figure 1-13. Moreover, the formation of CO2 as a reaction product between 

200°C and 400°C was identified by FTIR.  
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Figure 1-13: Literature survey of CO-related species found by means of IR (infrared analysis) at different 

temperatures on a (O2) preconditioned SnO2 surface. For details, see listed references. 

All experimental studies in air at temperatures between 150°C and 450°C report an increase in 

the surface conduction in the presence of CO. It is generally accepted that the CO reacts with 

ionosorbed oxygen species and thus releases electrons in the conduction band.  
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Morrison derived – using a simplified model – the dependence of the resistance on the partial 

pressure of CO [67]. He assumed that oxygen is present as O2
- and O- at the sensor surface 

according to:  

2Oe +−   −−− + 22 ; OeO  →  −O2  Eq 1-20 

Hereby the reaction on the left (Eq 1-20) is neglected due to the small probability of such a 

reaction, which is of a second order in −O  concentration. In addition, he assumed that due to 

the high reactivity of −O , the reaction of −
2O  with CO could be neglected. The reaction is:  

−+ OCO  →  −+ eCO2  Eq 1-21 

The detailed description of how the resulting steady state equation  can be solved is given in 

[68]. An overview of the various conductance dependencies found is presented in Table 1-2.  

Table 1-2: Equations describing the dependence of conductance on CO concentration as derived 

empirically or from theoretical calculations. 

Equation Comments / Assumptions Literature 

G ~ nS ~ pCO
2β/(α+1) 

 

G ~ nS ~ pCO
β/(α+1) 

LD>r: reactive oxygen species: Oβ
α-; 

β=1, 2; α=1, 2, i.e. O2
-, O-, O2- 

LD<r: reactive oxygen species: Oβ
α-; 

β=1, 2; α=1, 2, i.e. O2
-, O-, O2- 

[69] 

 

G ~ pCO
0.5 empirical [70] 

G = G0 + A1pCO
1/2 rate equations + SC1 physics [71] 

G = Gair + A1pCO
n empirical [72] 

G ~ (A0 + A1pCO
m)0.92 SC physic [70] 

G² - Gair² ~ pCO rate equation and SC physic [73] 

Gβ - Gair
β ~ pCO, β ≥ 2 rate equations and SC physics [74] 

G ~ 1/A ~ ln(pCO) 

nS ~ nbexp(-eVS
eff / kT) 

open neck 

closed neck 
 

 

                                                 
1 semiconductor  
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It is well known that the presence of water in the ambient atmosphere has a strong influence 

on CO detection. The fact [75, 76]  that water enhances the interaction of CO has been 

observed. Three models have been proposed which may account for this observation. On one 

hand, it is assumed that water enhances the reaction with oxygen [77]. On the other hand, a 

reaction of CO with hydroxyl groups [78] , [79], [80] is proposed. Various equations have 

been derived for the sensor conductance in the presence of CO and water vapour. Kappler et 

al. reported that an increase in humidity leads to an increase in the number of oxygen 

vacancies (equation 12) [78]. The oxygen vacancies enhance the chemisorption of oxygen and 

form specific oxygen sites [81], [82]. The increase in the number of available oxygen reaction 

partners for CO leads to an enhancement of the sensor signal 

A summary is given in Table 1-3. Moreover, in some cases a correlation between ageing and 

the irreproducibility of sensors and the presence of water-related species could be found [83], 

[84]. 

Table 1-3: Equations describing the dependence of conductance on the CO concentration and the water 

vapour pressure as derived empirically or from theoretical calculations. 

Equation Comments / Assumptions Literature 

G ~ (1+kCO pH2O pCO)β Empirical [85] 

G ~ (pCO pH2O)1/3 rate equations and SC physics [86] 

G ~ 

pCO/p0,CO)
βCO(pH2O/pH2O,0)

βH2O 
rate equations and SC physics [87],[88] 

 

• CO interaction in the absence of oxygen 
 

There are only a few papers dealing with gas interaction of semiconductor SnO2 gas sensors 

in the absence of oxygen. The few relevant for this thesis are listed below. 

Safonava at al. studied the mechanism of CO sensing in nitrogen for nanocrystalline undoped 

and Pd doped SnO2 by Mössbauer spectroscopy and conductance measurement [89]. The 

conductance measurements were coupled with Mössbauer spectroscopy [90] and carried out 

at different temperatures (50 – 380°C) and at a constant CO concentration of 1% in nitrogen. 

With the help of the Mössbauer spectroscopy the reduction of Sn(IV) to Sn(II) in the presence 

of CO was studied. They found that the electrical response of 1% w.t. Pd doped and undoped 

SnO2 at temperatures between 125°C and 380°C is associated with the process announcing 
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the beginning of Sn (IV) to Sn(II) transition. Accordingly, CO reacted with lattice oxygen, 

but, as no metallic tin was detected in the spectra, Sn is not completely reduced. 

In situ Electron Paramagnetic Resonance spectroscopy (EPR) confirmed the change of 

chemisorbed oxygen −
SO2  and single ionized oxygen vacancy •OV  concentration in SnO2 

during the interaction with CO/N2 gas mixtures [91] 

 

1.5 Conduction model in the sensitive layer 

 

The sensitive layer of thick film sensors is very porous and consists of numerous 

interconnected metal oxide grains. They can be either single crystals or polycrystalline 

agglomerates. The high porosity enables the ambient gases to access these intergranular 

connections. Because of this, a depletion layer is created around the grains, the extension of 

which is determined by the partial gas concentrations and the bulk characteristics of SnO2. 

Therefore, grain boundaries, as bottlenecks for electronic grain-grain transfer, play an 

important role in the sensing layer conduction and therefore, in the detection mechanism.  

If the grains are punctually connected and the depletion layer depth λD is much smaller than 

the grain radius r, a grain bulk area unaffected by the gas will still exists. In order to 

contribute to electronic conduction, the electrons originating from the “bulk” must overcome 

these depletion layers and the related potential barriers with the barrier heights eVS at the 

intergranular contacts. This is equivalent to a significant resistance increase of the sensitive 

layer. 

As discussed before, the overall resistance R is a function of the contributions of the bulk and 

the surface of SnO2 grains, the electrode contacts and the intergranular contacts. The 

properties of the bulk, i.e. the part of the grain, which is not depleted, are not influenced by 

surface phenomena due to the rather low operation temperatures (≤ 400°C). The resistance 

contribution of the electrode contacts, which is related to Schottky barriers between the 

sensing layer and electrodes, depends on the contact material. Electrodes might also show a 

gas dependent catalytic effect. The resistance contribution of intergranular contacts is related 

to the gas dependent barriers, which have to be overcome for the numerous intergranular 

contacts between the electrodes. In most cases, the resistance contribution of the numerous 

intergranular contacts dominates the other contributions.  

Then the conduction of thick film sensors can be approximated with the help of the Schottky 

model by: 
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  Eq 1-22 

where G0 and G0’ depend on the temperature and geometric properties of the layer. 

 

1.5.1 Compact and porous layers 
 

The differences in compact and porous layers are schematically sketched in Figure 

1-14. In compact layers, the interaction with gases takes place only at the geometric surface. 

In porous layers, the volume of the layer is also accessible to the gases and in this case, the 

active surface is much higher than the geometric one. Porous layers are characteristic for thick 

film preparation techniques and RGTO (RHeotaxial Growth and Thermal Oxidation, [92]). 

 

Figure 1-14: Schematic layout of typical resistive SnO2 sensor. The sensitive metal oxide layer is deposited 
over the metal electrodes onto the substrate. In case of compact layers, the gas cannot penetrate into the 
sensitive layer and the gas interaction is only taking place at the geometric surface. In the case of porous 
layers, the gas penetrates into the sensitive layer down to the substrate. The gas interaction can therefore 
take place at the surface of individual grains, at grain-grain boundaries and at the interface between 
grains and electrodes and grains and substrates [Bâr01]. 

 

The type of layer determines the conduction mechanism of the sensor. Here, only a 

small summary is given; for detailed information see [93]. 

For compact layers, there are at least two possibilities: completely or partly depleted layers2, 

depending on the ratio between layer thickness and Debye length λD of the electron. For 

partly depleted layers, when surface reactions do not influence the conduction in the entire 
                                                 

2 The depletion layer is formed due to gas adsorption like O2. 
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layer the conduction process takes place in the bulk region. Formally, two resistances occur in 

parallel, one influenced by surface reactions and the other not; the conduction is parallel to the 

surface, and this explains the limited sensitivity of compact layers (see also Figure 1-15) For 

porous layers the situation can be further complicated by the presence of necks between 

grains. It may be possible to have all three types of contribution in a porous layer: 

surface/bulk (for large enough necks, layer thickness > thickness of depletion layer), grain 

boundary (for large grains not sintered together), and flat bands (for small grains and small 

necks). For small grains and narrow necks, when the mean free path of free charge carriers 

becomes comparable with the dimension of the grains, a surface influence on mobility should 

be taken into consideration. This happens because the number of collisions experienced by the 

free charge carriers in the bulk of the grain becomes comparable with the number of surface 

collisions; the latter may be influenced by adsorbed species acting as additional scattering 

centres [94]. 

Figure 1-15 illustrates the way in which the metal-semiconductor junction, built at electrode-

sensitive layer interfaces, influences the overall conduction process. For compact layers they 

appear as a contact resistance (RC) in series with the resistance of the SnO2 layer. For partly 

depleted layers RC could be dominant, and the reactions taking place at the three-phase 

boundary, electrode-SnO2-atmosphere, control the sensing properties.  

In porous layers, the influence of RC may be minimized due to the fact that it will be 

connected in series with a large number of resistances, typically thousands, which may have 

comparable values (Rgi in figure). Transmission Line Measurements (TLM) performed with 

thick SnO2 layers exposed to CO and NO2 did not result in values of RC clearly 

distinguishable from the noise [95], 96], while in the case of thin films the existence of RC 

was proved [97].  
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Figure 1-15: Schematic representation of compact and porous sensing layers with geometry and energetic 
bands, which shows the possible influence of electrode sensing layers contacts. RC resistance of the 
electrode-SnO2 contact, Rl1 resistance of the depleted region of the compact layer, Rl2 resistance of the 
bulk region of the compact layer, R1 equivalent series resistance of Rl1 and RC, R2 equivalent series 
resistance of R2 and RC, Rgi average intergrain resistance in the case of porous layer, Eb minimum of the 
conduction band in the bulk, eVS band bending associated with surface phenomena on the layer, and eVC 
also contains the band bending induced at the electrode-SnO2 contact. 

 

1.5.2 Effect of the electrodes  
 

In the different part of the sensor, it is important to consider the role played by the 

electrodes, whose impact on the response of sensing layer is generally neglected. However, 

most often used electrode materials in gas sensors, such Au and Pt, are also used in the 

sensitive layer as catalyst (in particular Pt [98]). It is possible that the electrodes which form 

the electrode-semiconductor interface can play also a catalyst and has a contribution to the 

overall resistance of the sensor. This part of the first chapter is dedicated to a review of the 

work already done about this topic.  

As already seen, the contacts between semiconductor sensing material and metal 

electrodes also have some impact on the sensor resistance and sensing performance. If a metal 

and a semiconductor are brought into contact, electrons are transferred until the Fermi levels 

of both materials are equilibrated. If the Fermi level of the metal is above the Fermi level of 

the semiconductor, electrons are transferred from the metal to the semiconductor. A positive 
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charge layer at the metal surface and a negative one near the semiconductor surface are 

created. Band bending and an electric field result. The electrical contact is quasi-ohmic for n-

type semiconductors. If the Fermi level of the semiconductor is above the Fermi level of the 

metal, electrons are transferred from the sensing material to the metal. A depletion layer is 

created in the n-type semiconductor, an electric field appears and the bands are bent upwards. 

The resulting potential barrier which electrons have to overcome to contribute to the 

electronic conduction is determined from the difference in Fermi energies EF. In this case the 

resulting Schottky contact shows diode-like behaviour and the resistance is increased. Both 

situations are sketched in Figure 1-16.  
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Figure 1-16 : Metal-semiconductor contact. a) Band structure of metal and semiconductor (ΦΦΦΦm>ΦΦΦΦs) before 
contact. b) Metal–semiconductor contact (ΦΦΦΦm>ΦΦΦΦs). Electrons are transferred from semiconductor into the 
metal until the Fermi levels are equilibrated. A depletion layer and an energy barrier result. The 
resistance behaviour of such a contact is diode-like. c) Metal–semiconductor contact (ΦΦΦΦm<ΦΦΦΦs). Electrons 
are transferred from the metal into the semiconductor. A small enrichment layer at the interface inside 
the semiconductor results. The resistance behaviour is quasi-ohmic.  

 

In the case of porous metal oxide films, the gas may also reach the metal electrodes. Hence 

the contacts can additionally have a catalytic effect and may support the interaction for a 

particular gas. 

 

1.5.2.1 Effect of the metal inside the sensitive layer in semiconductor 

Sensitization with noble or alkali metals is often used to improve the performance of 

the dioxide sensors: it enhances the stability, response and recovery times, and it decreases the 

cross sensitivity to water vapor (Pd) and the operating temperature. Although the expression 

‘doping‘ is in common use, it is, in most of the cases, not doping in the classical 

semiconductor physics sense but rather a loading of metallic clusters onto the surface of metal 

oxide grains (Figure 1-17). 
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In general, upon exposure of as-prepared sensors to target gas the metal clusters at the surface 

of metal oxide can: 

• react directly with the target gas, catalyzing its conversion without interaction with the 

supporting metal oxide; 

• react directly with the target gas, where the target gas removes electrons from the metal. 

The metal, in turn, compensates the lose of electrons by withdrawing them from the 

semiconductor which leads to the formation of the depletion layer and band bending - 

Fermi level control mechanism;  

• increase the concentration of reaction partners at the reaction site. The metal can 

dissociate the reactant i.e. O2 [99, 100] ,H2 [101] and spillover the resulting species at 

the surface of the metal oxide; 

More detail can be told about the spill over effect. The O2 molecule can dissociated in 

contact with a catalyst metal. After the dissociation of the O2 molecule, the oxygen atom can 

migrate to the surface of oxide and take one electron from the oxide to be stabilized one the 

oxide site. This effect changes the depletion layer of the oxide. The following equation 

summarize the spill over effect     

 

O2 (gas) + 2 sM�2 O-sM    

O-sM + eox + s�O--s + sM  

 

sM adsorption site of the metal  

s adsorption site of oxide 

The presence of catalytic metal makes easier the regeneration of O-s species  

 

In presence of a gas(R) two possibilities can be mentioned: 

The first one is the Dissociation of R on the catalytic metal and then a reaction with O-

s. The typical example is H2: 

H2 (gaz) +2 sM�2 H-sM   

H-sM + s � H-s +  sM 

2 H-s + O--s �H2O (gaz) + eox + 3 s 
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In this case, the consummation of the oxygen species gives the evolution the electrical 

properties [102] 

In this first mechanism, the oxidation of the gas R doesn’t take place directly on the 

surface of the catalyst. Here the catalyst favours simply the dissociation of the different gas. 

This effect is called “chemical sensibilization” and a good dispersion is necessary to get the 

better effect.   

The second mechanism is simply catalysis on the metal.  

• locally increase the temperature in the vicinity of the metal center leading to an 

enhanced catalytic activity [103]. 

Within this study the Pd additive was used. Pd additive in SnO2 is foremost known for 

enhancing sensitivity to CO in the presence of water vapor.  

 
Figure 1-17 : Effect of loading of the metal cluster at the surface of the metal oxide. 

 
There is no common agreement on which of the two mostly accepted models (spillover or 

Fermi level control) is responsible for Pd activity. The early investigation on well defined 

Pd clusters on SnO2 suggests the Fermi level control mechanism [104]. Having also in mind 

that Pd clusters under atmospheric conditions are fully oxidized this suggestion seems 

sound: PdO has much large work function and thus causes an electron depletion zone in the 

SnO2. 

 

1.5.2.2 Effect of the nature of the electrode 
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In 1986, C. Pijolat & Al [105] revealed an influence of the electrodes on SnO2 based sensor 

for the detection of Benzene. Figure 1-18 the main results are illustrated; depending of the 

nature of the electrodes (gold or platinum), the conductance as a function of the temperature 

under Benzene is plotted. The maximum of the peak is shifted. The performance of the sensor 

against this gas could be governed by the nature of the electrode and the operating temperature. 

This author introduced the importance of the metal-semi-conductor interface and the band-

bending where the height is managed by the nature of the metal.  

 

 

Figure 1-18: Influence of the type of metal wires on the temperature-conductivity curve [78]. 

 

Few years after, Schweizer-Berberich [106] tested the impact of the electrodes on gas sensing 

properties of nanocrystalline SnO2 gas sensors. A clear trend, in Figure 1-19 was found 

showing an enhancement of the sensor response with Pt electrodes and all the differently 

materials (undoped and doped SnO2). In fact for undoped SnO2 or Pt doped SnO2, the effect of 

the electrodes is observed. This sensitization effect occurs in addition to the effect of the 

doping. 
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Figure 1-19 : (a)-Calibration curves at several operation temperatures of 450°C annealed Pt doped SnO2 
powder on substrates with platinum electrodes (right) and gold electrodes (left).  

(b)-Calibration curves for CO at several operation temperatures of pure SnO2 powder (112 nm) on 
substrates with platinum electrodes (right) and gold electrodes (left) 

 

S.M.A Durrani [107] used four different natures of electrodes Ag, Al, Au, and Pt. A big 

difference appears between Ag and Al which are less sensitive whereas Au and Pt are more 

sensitive. 

 

Lantto [108], in Figure 1-20 shows the conductance of three similar SnO2 thick Film sensors 

(doped with 100 ppm of Sb), having Au, Pt and Au/Pt (one Au and the other Pt) electrodes, as 

a function of inverse temperature between 200 and 450°C in air with a humidity concentration 

of 1000 ppm. In the case of the sensor with Au/Pt electrodes, conductance values are given 

for both the polarization directions Au+/Pt- and Au-/Pt+. It is possible to conclude from these 

results that a contact resistance with some rectification characteristics is present at the 

Au/SnO, contact. The positive voltage at the Au electrode corresponds to the forward 

direction of an Au/SnO2, Schottky diode. Many peculiarities, however, relate to the 

rectification property of the contact; 

 

 

Figure 1-20 : Conductance of three similar Sb-doped (100 ppm) SnO2, thick-film sensors with Au, Pt and 
Au/Pt electrodes as a function of inverse temperature in air containing 1000 ppm of H2O. In the case of 
the Au/Pt sensor, results are given for both polarization directions of voltage (Au+/Pt- and Au-/Pt+). 

 

SAukko [109] also studied the impact of the electrodes materials on the performance of sensor 

provided by Pt or Au electrodes. He shows that in some case the energy barrier between 

electrode and the sensing semiconductor could be significant compared to the energy between 
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the semiconductor grains. Sample with Pt electrode was more sensitive to H2 whereas Au 

seems to give a better response to CO. 

 

1.5.2.3 Effect of the geometry of the electrodes 
 

1.5.2.3.1 Position 
 

In addition to the type of metal used as contact, several authors note the significant 

effect of the position of the electrodes. S.M.A Durrani [110] and X.Vilanova [111] show an 

unexpected result that the electrodes placed on the top or side give a higher sensitivity, but 

electrodes placed on the bottom are the most interesting in terms of selective U.Jain[112] 

found the same conclusion using a numerical model with a slight difference: the relativity 

reactivity of the gas. The back contact sensor will be more selective for moderately reactive 

gases compared to less or more reactive ones, which is in general agreement with the 

observations made on Figaro gas sensors.  

 

 

Figure 1-21: position study by Jain [84] 

  

Figure 1-22; Structure simulated: A SnO2 active 
layer on a SiO2 substrate. Zero thickness ideal 
electrodes have been considered (Duranni) […] 

 

1.5.2.3.2 The width between the electrodes 
 

S. Capone [113] made some investigations about the influence of the spacing between 

the two electrodes; see Figure 1-23 and the nature of the electrodes (Au and Pt).The author 
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showed that the sensor with the shorter finger separation show a higher response to CO with Pt 

electrodes. The sensor provided with gold electrodes suffer from diffusion of metal into the the 

sensitive layer. The reason could be a higher collection efficiency of the electrical signal, due 

to the fact that the current, crossing short path is no too much influenced by charge trapping or 

barrier limited conduction. Sensors prepared with Pt electrodes have shown a higher resistance 

compared to sensors equipped with Au electrodes. Finally, she shows that the humidity 

enhances the response of CO greater in the case of gold than platinum. In other paper114 […] 

she also demonstrates that the ageing of the contact is a major cause of the drift of the sensor. 

 

Figure 1-23: Calibration results for all types of electrodes configurations both in dry and wet air (50%) 

 

 

U. Hoefer[115] uses the TLM, “Transmission line model”, to characterise the contribution of 

the electrodes in the overall resistance of the sensor. In Figure 1-24, under gas, this author 

shows that mainly the resistance near the electrodes is affected where in the same time the 

others are not. 
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Figure 1-24 : NO2 effect on the contact Rc, sheet resistance Rs and modified sheet resistanceRms of non 
catalysed TLM sensors Vs measurement time, T=300°C, 50 %RH. 

 

1.5.3 Model of conduction  
- Various approach 

Various authors have tried to explain the role of the electrodes. Udo Weimar [116] 

showed by impedance spectroscopy that the essential of the phenomena seems to be localized 

near the electrodes. This author introduced the notion of the three boundary point 

(semiconductor/the metal/the gas) which seems to play an important role. The extraction of 

electrons from the depleted region causes a larger effect as compared to the changes in the 

“bulk” material between the contacts. K. Varghese[117] attributes the occurrence of the 

capacitance to the accumulation of adsorbed oxygen ion species at the sample-electrode 

contact region, Figure 1-25. This result confirms the main role played by the three boundary 

point. 

 

 

Figure 1-25: Schematic diagram showing accumulation of (Oads
-) ions at the electrode-sample contact 

region and its effect on depletion layer width [...]. 
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- Model of P Montmeat, basis of this study 

 

In M.I.C.C. department in St Etienne, during the previous thesis of P Monmeat, the 

role of metal (gold) on the electrical response on tin oxide sensor was investigated thanks to 

the development of a particular test bench (Figure 1-27): it allowed separating the atmosphere 

surrounding SnO2 region in contact with gold electrodes from the atmosphere in the area 

between electrodes. 

 

Figure 1-26 : Schematics of the test bench to generate different atmospheres: exterior gas (E) in contact 
with gold electrode areas, interior gas (I) in contact with only tin oxide for standard sensors and with tin 

oxide and the centered metallic area for modified sensors. 

 

The action of oxygen and thus of a reducing gas such as CO, Figure 1-27, was under 

focus and is greatly enhanced in the region containing gold. This result associated with 

calorimetric tests, Figure 1-28, indicates the creation of specific oxygen species at the metal–

oxide interface. 
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Figure 1-27: Electrical response of a sensor to CO (300 ppm) at 450 ◦C in a test bench with separate 
atmospheres (E: SnO2/electrode area; I: SnO2 area). 

 

Figure 1-28 : Calorimetric signal obtained at 400 ◦C for an increase of oxygen pressure from 0.1 to 50 
mbar for a pure SnO2 material and on SnO2+gold material. 

 

A qualitative physico-chemical model, in Figure 1-29, based on the electronic effect of 

different oxygen adsorbed species, resulting in the increase of space charge area was proposed, 

more detail in [118]. 
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.  

Figure 1-29: Proposed mechanism based on space charge area at the three boundary point (gas-metal-
oxide) to explain metal effect on tin oxide electrical conduction, from [116]. 

 

Taking into account the previous physico-chemical mechanism, a geometrical model 

based on space charge area is proposed in order to quantify the influence of the sensor 

thickness. In agreement with the schematic representation of the model in Figure 1-29, it was 

considered that sensor is constituted of depleted areas located at the sensor surface and under 

the electrodes (three-boundary point) due to oxygen chemisorptions at these particular points, 

and of non-depleted area. At the moment, no experimental results bring information 

concerning the shape of the depleted area at the three boundary point. In order to simplify 

further calculations, it was considered a rectangular shape centered under the three boundary 

point Figure 1-30(a)). Then, it was supposed that the resistivity ρM of the not depleted area is 

constant and independent on the atmosphere. This hypothesis is supported by the experiments 

with separate atmosphere (Figure 1-26), as the gas has a negligible action in the inner area 

which only contains SnO2 and is not under the influence of the three boundary point. 

Concerning resistivity ρS under air of the depleted area under the surface, it was assumed that 

it is constant within a weak thickness Figure 1-30 (a). 

The result and the different parameters used are shown Figure 1-30 for SnO2 based 

sensor in the presence of carbon monoxide and ethanol, for thickness varying from 10 to 80 

µm.  
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Figure 1-30: (a) Geometrical model of conductance with depleted area under the comparison between 
experimental measurements and simulated curves for conductance under air (b) , CO ( c) and for the 

sensitivity (d). […].  

 
Summary of the bibliography 
 
 The aim of this first chapter was to remind the general properties of the tin dioxide and 

especially which can be useful to understand our results. 

 In the SnO2 used as sensor different contributions from the grain, the grain boundary 

can be clearly identified. Most of authors suggest an important role of the electrodes but a few 

of them have an explanation. The possibility of a particular zone called three point boundary 

that could play an important role on the detection is one of the justifications. 

Due to its localization and the difficulties to get rid of the other contributions, it is 

difficult to have some proofs about the real possible existence of this region.  

This study will try to add a contribution to understand the role play by the electrodes 

 
 

(d) 
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CHAPTER 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 Material, sensors preparation and electrical 
measurements 
 

Les méthodes de préparation relatives à la réalisation de nos échantillons seront 
présentées dans ce chapitre. Les différents montages électriques utilisés dans cette étude 
seront également décrits. Quant aux résultats obtenus sur l’influence de la nature des 
électrodes, nous les présenterons dans une dernière partie 

.
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The influence of electrode material on the properties of oxide semiconductor gas sensor 

was not often studied. Contact resistance or depletion layer that is formed in the electrode–

semiconductor interface can in some cases have significant contribution on the response of the 

sensors, as reported by P Montmeat (cf. previous chapter). It is extremely difficult to 

characterize this region because it is generally “hidden” by the resistance of the sensitive layer 

(like SnO2). By increasing the contacts between electrodes and SnO2 grains, the energy 

barriers in the electrode–semiconductor interfaces would have a greater significance in the 

sensor response. In this work, the influence of the electrodes on the properties of SnO2-based 

gas sensors was studied by comparing samples with different electrodes materials, namely Au 

and Pt. To enhance the electrodes influence, metal particles were dispersed in the sensitive 

layer in order to increase the metal/SnO2 contact. Electrodes are mainly obtained from screen 

printing technology. 

This chapter contains two parts: firstly, the preparation of the different samples used and 

the sensor fabrication are described; secondly, the electrical characterization of the influence 

of the electrodes nature is presented. 

 

2.1 Material and sensors preparation 

 

2.1.1 Powder and ink preparation. 
 

2.1.1.1 Pure SnO2 powder 

20 40 60 80

Tin oxide, SnO
2

Stock number: 5010FY
JCPDS card number: 21-1250
Radiation: Cu Kα
Crystallographic system: tetragonal
Space group: P4
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Figure 2-1: XRay diffraction pattern of the SnO2 nanoamor powder 
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All sensors investigated have been obtained by using a commercial powder of SnO2 

from Nanoamor®. As shown in Figure 2-1, the SnO2 powder is perfectly crystallised and has 

a high specific area around 30m²/g corresponding to a grain size of approximately 30nm. 

Nevertheless, SEM picture (Figure 2-2) reveals that this SnO2 powder can agglomerate with 

agglomerates of few micrometers (1-5µm). The sensor sensitive layer results from a paste 

obtained from this powder. The paste is obtained by mixing an organic binder and an organic 

vehicle from ESL® with SnO2 powder. The details of the proportion are summarized in Table 

2-1. 

 

 

Figure 2-2 : SEM Picture of the particle of SnO2 Nanoamor®. Particles have a tendency to agglomerate 

 

Table 2-1 : composition of the SnO2 paste 

Component Quantity 
SnO2 (Nanoamor®) 4 g 
Organic binder(ESL) 1.7 g 

Organic solvent (ESL) 20 drops 
 

This composition has been determined [119] in the laboratory of St Etienne to have an 

adequate Rheological characteristic for the screen printing technique. 

 

 

 



Material, sensors preparation and electrical measurements 

 56 

2.1.1.2 "Mixed SnO 2" preparation. 
 

To amplify phenomena which can occur at the metallic electrode-SnO2 interface, 

"mixed powders" have been prepared from the SnO2 nanoamor® powder mixed with 

commercial metal (Au or Pt) powders. The size of the metallic particles is bigger than the one 

of SnO2 powder, around 1 µm. The aim is to disperse the metal into the sensitive layer to 

increase the metal/semiconductor contact and try to keep the massive metal proprieties. Figure 

2-3 exhibits the SEM pictures of metal particles. The morphology is different between gold 

and platinum powders. In fact, a homogenous round grain is observed for the gold whereas 

some cavities and porosity are observed for the platinum particles. 

 

    
Figure 2-3 : SEM pictures of the metal particles included in the SnO2 layer; (left) gold particle (right), 

platinum particles 

 
The preparation process is quite simple (Figure 2-4). The SnO2 powder and 1% wt (weight) 

metal powder have been mixed and finely grinded by using mortar and pestle. Secondly, a 

paste has been obtained by adding the same solvent and the binder as before. 

 
Figure 2-4 : Schematic of “mixed” tin dioxide powders preparation techniques. 
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The metal particles are visible to the naked eye. The XRD analysis confirms the presence of 

the metal into the paste. The example for platinum is shown in Figure 2-5. 
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Figure 2-5 : XRD of SnO2 mixed with platinum particle. The Band marks with a blue line prove the 

presence of the platinum into the sensitive layer.  

2.1.2 Sensors fabrication 

2.1.2.1 Deposition on the substrate. 
 

All devices have been mainly obtained by using screen printing technique.  

 

  
Figure 2-6 : Principle of screen printing. A rubber squeegee presses the viscous paste through. the 

undeveloped part of the screen onto the substrate. 

 

For the transfer of the paste onto ceramic substrates, screen-printing is used. Hereby, a rubber 

squeegee presses the paste through the undeveloped part of the screen, which works as some 

kind of mask for the paste transfer, onto the substrate (see Figure 2-6). By this method, SnO2 

layers can be adjusted with a thickness of a few micrometers to around 100µm. The thickness 

value depends on the chosen screen, the paste viscosity and the screen-substrate distance. For 

the herein discussed sensors, a semi-automatic screen printer (Aurel Model C890, Figure 2-7) 

was used. The screen is made from stainless steel and has a mesh count of 300. 
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Figure 2-7 : Screen printing machine Aurel Model C890 

 

After screen printing, the substrate stays some minutes at room temperature to allow the paste 

to settle. Afterwards, the substrate is put into a drying oven (MEMMERT UM/SM 100) to dry 

the paste at 80°C. Finally, the substrate is inserted into an oven. During the final annealing, 

the so-called “firing”, the organic binders of the film are removed. The layer gets 

mechanically stable and is firmly bond to the substrate. The used oven (Thermolyne Type 

F48000 Models) has the possibility to control the ramp and the dwell (delay). 

 

 

Figure 2-8 : Typical firing profile for a thick fil m paste. The temperature is raised slowly to the maximum 
temperature, where it is kept for 10 minutes, afterwards a controlled cooling takes place. 

 

The firing profile was adjusted in such a way, that a gradual heating from room temperature to 

the maximum firing temperature (700°C) and a gradual cooling back to room temperature was 

achieved (see Figure 2-8). The operation takes place in air for the firing step. The thickness of 

the finally resulting SnO2 layer for the discussed sensor types was around 20µm. 
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2.1.2.2 Geometry designs for substrates, heaters and electrodes for DC 
measurement and DRIFT analysis 

 

The planar substrates are tiles made out of alumina (Al2O3, purity of 96%) with a 

lateral dimension of 2inch x 2inch and a thickness of 700µm. These tiles are predicted and 

provided with Pt or Au interdigited electrodes on the front side for measuring the sensor 

resistance and Pt heaters on the back for keeping the sensors at the operating temperature 

(Figure 2-9). The measuring electrodes have the typical shape used for conductivity sensors, 

namely 2 combs opposed one to the other, the so-called interdigital structure. The width of the 

fingers of the electrodes is 0.2mm and the gap between the fingers is also 0.2mm. The 

electrodes material is additive free gold or platinum which required e.g. a firing of the 

substrates with screen printed Pt electrodes and heater structures at 1600°C (constructor 

information) and 980°C for gold. Each substrate holds twenty sensors. Due to predicing they 

can easily be separated at the end of preparation. 

 

 
Figure 2-9 (same as Figure 1-15): Layout of the planar alumina substrate with Pt electrodes and Pt heater. 
The SnO2 layer is printed on top of the interdigitated electrodes. The heater on the back keeps the sensor 

at the operation temperature. 

 
The sensors obtained by such technique will be used for DC characterisation and DRFIT 
analysis. 
 

2.1.2.3 Specification for the TPD samples 
 

Temperature programmed desorption (TPD) technique was used in order to investigate 

the desorbed species from the different SnO2 powders. Due to some limitation of the DRIFT 

technique (mainly, the impossibility to observe the oxygen at the surface), it was interesting to 

associate TPD investigation with DRIFT analysis. The aim of this study, developed in the 

chapter 3, is still to understand how the electrodes can disturb the surface species. Due to the 

experiment set up, it was not possible to work directly on sensors but on powders. The 
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powders were obtained by following the same procedure to obtain the sensitive layer for the 

gas sensors. Starting from the paste of pure SnO2 and mixed metal SnO2, they were screen 

printing on Teflon substrate. After 10 min drying, the layer is removed from the Teflon 

substrate and grinded again to obtain a powder. These powders were annealed in the same 

condition as gas sensors device. Finally 3 types of powders were obtained: 

 

- Pure SnO2 

- Mixed SnO2 + 1%wt Pt 

- Mixed SnO2 + 1% wt Au 

2.1.2.4 SnO2 sensitive layer characterization on sensors 
 

� Pure SnO2 layer  
 

   
    Au    Pt 

Figure 2-10 : SEM picture of the sensor with gold electrodes and platinum electrodes prepared by screen-
printing 

Figure 2-10 shows the SEM of the deposition of pure SnO2 on the top of Au or Pt 

electrodes. The SEM pictures indicate a thickness of 20µm and a good adhesion with the 

substrate. No crack has been observed. The layer can be considered equal regard to the 

electrodes nature. 

 

� Mixed sensitive layer  
 
The metal particles are naked eye visible. The optical microscopy images (Figure 2-11) prove 

the presence of well dispersed metal particle in the layer 
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“ Mixed Au”=SnO 2+Au   “Mixed Pt”=SnO 2+Pt 

Figure 2-11 : Optical microscope picture of the sensor with gold electrodes and platinum electrodes 
prepared by screen-printing 

2.1.2.5 Calibration of the heating of the sensor  
 

Tin dioxide sensors are operated at elevated temperatures in the range 200°C and 

400°C. To keep the sensor at the operation temperature, a power supply is used to ensure a 

constant voltage drop over the platinum meander on the rear side of the alumina substrate. In 

order to calibrate the platinum heater, i.e. to obtain the relationship between the applied 

voltage and the thereby adjusted temperature, an infrared pyrometer (Maurer KTR 2300-1) 

was used. The measurement set-up is sketched in Figure 2-12. The pyrometer detects the 

infrared emission from a measurement spot of 3mm² (the area of the sensitive layer is 7mm x 

3.5mm) and calculates, using the specific emission coefficient ε of the material (εSnO2 = 0,75), 

the temperature of the sensitive layer. The pyrometer is kept at room temperature and can be 

used for detecting temperatures from 200°C to 500°C. The resulting calibration curve of the 

platinum heater for temperatures from 200°C to 400°C is given in Figure 2-12. 
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Figure 2-12 : Calibration of the Pt heater. In a) the measurement set-up is sketched. The resulting 
calibration curve b) can be nicely approximated by a linear fit. 
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2.2 Electrical measurements 

2.2.1 Test Bench presentation 
 

The sensors were mounted on a Teflon chamber and heated by a power supply. The 

resistance was measured with a scanner multimeter (Keithley DMM 199 or DMM 2000, 

Germany). The gas mixtures were adjusted by a gas mixing system. In order to be absolutely 

sure that thermodynamic equilibrium was reached for the various surface complexes 

associated with water adsorption, the sensors were kept in an atmosphere of constant humidity 

for 10h after every variation in humidity, and before the test gas was introduced. The sensor 

signal was investigated for CO and CH4 exposure. The sensor was purged with a flow of 

synthetic air for 1h between every two successive gas concentrations. 

 

Figure 2-13 : Experimental set-up which was used for DC characterisation of gas sensors. A computer is used to 
adjust the ambient gas atmosphere of the sensors by means of a gas mixing bench and to acquire the sensor resistance 

data via a digital multimeter and IEEE card. A power supply keeps the sensors at operation temperature 

 

- Mixing and monitoring of gases 

 

In order to provide the desired gas atmospheres, gas mixing systems are used. A typical 

gas mixing system consists of PC controlled mass flow controllers (MFC) and valves. The gas 

mixing, Figure 2-14, system is operated by home made software called POSEIDON. The 

software via A/D card not only controls the actual gas flow through the mass flow controllers 

but it can also (at the same time) record the resistance of the sensors and other parameters like 

humidity or oxygen concentration 
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Figure 2-14 : Schematic picture of a four-channel gas mixing bench. Test gas is introduced either from gas 
cylinders or added by flowing synthetic air through vaporisers. The latter is used to adjust the relative 

humidity . 

 

2.2.2 Results and discussion 

2.2.2.1 Metal Nature influence 
 

In humid or dry condition, three types of SnO2 sensor have been studied under 

different concentration of CO (90, 160, 230, 300 ppm). 2 sensors were obtained from the 

same SnO2 ink but the nature of electrodes is different: 

SAu: pure SnO2 + gold electrodes 

SPt: pure SnO2 +platinum electrodes 

Moreover a third sensor is studied,  

S (Au) Pt: mixed SnO2 + %1 Au particles and screen printing to 

substrate provided with platinum electrodes.  

S (Pt) Pt: mixed SnO2 + 1% Pt particles and screen printing to substrate 

provided with platinum electrodes. Due to the lack of time, only few 

experiments was done with this sample. 

The main results obtained are shown in the following. 

2.2.2.1.1 In dry air 
 

For 3 different temperatures 200°C, 300°C and 400°C, the responses and the sensor 

signals are shown in Figure 2-15. As expected, with the rise of the temperatures, the values of 

the baselines resistances decrease. For example for SPt, the value is 135M at 200°C and goes 

to 1.8M at 400°C. It is well-known that the reaction at the surface with the gas phase and the 

semi-conductor is fundamental for the value of the resistance. With the temperature, the 
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chemistry of the SnO2 surface is different, especially the chemisorption of oxygen species, 

water and hydroxyl groups which can be bond in several ways as a function of temperature 

(see chapter 1). Samples SPt and S(Au)Pt provided with platinum electrodes always show 

higher values of resistance than gold ones. At elevated temperature, the differences between 

the resistances of each sample become more pronounced. At 200°C, the resistances of each 

sample are in the same range of MΩ. Focusing on pure SnO2 based sensors provided with 

gold and platinum electrodes, only 15MΩ separates these two types of sensors. At 400°C, the 

difference becomes larger, around one order of magnitude. These results clearly confirm the 

role played by the electrodes nature, even under air. Sample provided with platinum 

electrodes but with a different sensitive layer, SPt and S (Au)pt, exhibit also interesting 

results. S(Au)Pt which is loaded by 1% wt Au shows the highest resistance for each working 

temperature. The behaviour of S(Au)Pt is very close to the behaviour of SPt . The density of 

Gold particle/SnO2 contacts is more important than platinum electrodes/SnO2 contacts. 

Results of pure SnO2 provided with gold electrodes show the lowest resistance. So, by adding 

gold particle inside the sensitive layer, S(Au)Pt , we could expect that the resistance of such 

example would be lower compared to the one of SPt sample. However, experiments show 

opposite results which mean that the platinum electrodes have the dominant effect. 
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(a)      (b) 

Figure 2-15 : Response (a) and sensor signal of SnO2 sensor provided with gold electrodes(SAu)  or 

platinum electrodes (SPt) and SnO2+1%Au sensor based provided with platinum electrodes (S(Au)Pt) to 

CO (90,160,230, 300 ppm)in dry air at 200°C, 300°C and 400°C 

 

6 8 10 12

1M

10M

100M

1G
Dry air

240M
135M
120M

Response at 200°C

 

 
R

e
s

is
ta

n
c

e
 (Ω
)

T im e (sec)

 SP t
 SAu
 S(Au)P t

6 8 10 12

10k

100k

1M

10M

100M

1G

42.0M

7.45M

20.8M

Dry air Response at 300°C

 

 

R
e

s
is

ta
n

c
e

 (Ω
)

T im e (sec)

 SPt
 SAu
 S(Au)Pt

6 8 10 12

10k

100k

1M

10M

100M

1G
Dry air

3.23M

1.8M

345K

Response at 400°C

 

 

R
e

s
is

ta
n

c
e

 (Ω
)

T im e (sec)

 SP t
 SAu
 S(Au)Pt

50 100 150 200 250 300

1

10

100
Dry a ir200°C

 

S
e

n
s

o
r 

S
ig

n
a

l 
(R

a
ir/R

g
a

s)

C O  concentra tion [ppm ]

 SP t
 SAu
 S (Au)P t

50 100 150 200 250 300

1

10

100
400°C Dry a ir

 

S
e

n
s

o
r 

S
ig

n
a

l 
(R

a
ir/R

g
a

s)

CO  concentra tion [ppm ]

 SP t
 SAu
 S (Au)P t

50 100 150 200 250 300

1

10

100
Dry a ir300°C

 

S
e

n
s

o
r 

S
ig

n
a

l 
(R a
ir/R

g
a

s)

CO  concentration [ppm ]

 SPt
 SAu
 S(Au)Pt



Material, sensors preparation and electrical measurements 

 66 

When sensors are exposed to CO gas, as expected to n-type semiconductor, the resistance 

decreases due to the interaction with the reducing gas CO. The sensor signals (Rair/Rgas) are 

shown in Figure 2-15(b). For all sensors, with the increase of CO concentration, the sensor 

signals increase. As expected, for undoped SnO2, the sensor signal is low, around 10 (doped 

with Palladium for which the value can go to more than 100[…]).Gold particles inside the 

sensitive layer S(Au)Pt increases a little bit the sensitivity, but only at high temperature (300-

400°C). The value of the sensitivity is still low with gold particle inside the layer, which 

proves that the material is not doped. The metal is just dispersed in SnO2 layer as required. 

At 200°C, the sensor signal is much higher for sensor with gold electrodes than the 

one with platinum electrodes. The sensor signal of S(Au)Pt is close to SPt. With gold 

electrodes the sensor signal is the best, but with gold particles included in the sensitive layer 

(which means more gold/SnO2 contact) the sensor signal is the same as SPt. This result 

matches with the observation already mentioned in air. Predominant effect of the electrodes in 

opposition with the effect of a metal dispersed in the sensitive layer is revealed. By increasing 

the temperature to 300°C or 400°C, SPt and S(Au)Pt, become the most sensitive sensors to C 

Oand SAu the lowest. The difference between the SPt and S(Au)Pt is difficult to explain by 

only electrical measurements but these result confirm that the presence of electrodes modified 

the sensitivity of the gas sensor. 

2.2.2.1.2 Humidity effect 
 

For the present study, the influence of humidity has been investigated at 10 % relative 

humidity (RH) and 50% RH. The sensor is exposed to different CO concentrations from 90 

ppm to 300 ppm. The temperature of the sensor varies from 200°C to 400°C. The results 

obtained in dry air are inserting for comparison with humid air. The results for 200°C, 300°C 

and 400°C are shown in Figure 2-16, Figure 2-17 and Figure 2-18 respectively. 
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Figure 2-16 : Response and sensor signals of the sensors for SPt, SAu, S(Au)Pt ,at 200°C, at different level of 

humidity (dry air, 10 or 50 %RH) .  

In dry air, at 200°C, the sensor with gold electrodes is the most sensitive to CO. Both 

sensors with platinum electrodes are the less sensitive. The performance of the gold electrodes 

sensor is still the best in humid conditions. For all sensors the sensors signals are twice lower 

than in dry condition. For SPt and S(Au)pt, it clearly appears that CO detection is blocked by 

the presence of humidity. In presence of humidity, the performances in terms of sensor signal 

are slightly decreased with the increase of humidity level from 10 to 50%RH. They are not 

too much sensitive to the humidity level at this temperature. The baseline resistances at 

10%RH and 50%RH are quite similar.  
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Figure 2-17 : Response and sensor signal of the sensor for SPt, SAu, S(Au)Pt at 300°C at different level of humidity 

(fry air, 10 or 50 %RH) . 

At 300°C, it was already mentioned that the sensors provided with platinum electrodes 

are the most sensitive in dry air. The presence of humidity affects the performance of all 

sensors but in particular sensor provided with platinum electrodes. Sensors with platinum 

electrodes are the most altered, see Figure 2-17. The sensors are 4 times less sensitive in 10% 

RH than in dry air. In fact, at 300°C, in humidity, the sensor with gold electrodes is the most 

sensitive which means that the sensor is less disturbed by humidity. Here, the interesting facet 

is the reverse effect in function of the electrode nature. At 300°C, in dry air, sensors provided 

with platinum electrodes are the most sensitive whereas in humid condition the gold one 

exhibits the higher sensor signal.  
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Figure 2-18: Response and sensor signal of the sensor for SPt, SAu, S(Au)Pt at 400°C at different level of humidity 

(10 or 50 % RH) . 

At 400°C, Figure 2-18, the performance in dry air is very low for all sensors. In this 

range, the platinum electrodes are the most sensitive. In presence of humidity, at 400°C, the 

performance increases to a factor 2.5 in 10% RH but less than 2 in 50% RH. On opposite to 

200°C and 300°C, the presence of humidity enhances the CO detection for all sensors. 

Sensors provided with platinum electrodes are the most sensitive.   
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Figure 2-19 : Sensor signal for the sensor SPt, SAu, S(Au)Pt in dry air, 10%RH and 50%RH as a function 

of the operating temperature in 300ppm CO. 

 
Figure 2-19 shows the results of the CO detection obtained at a fixed concentration (300ppm) 

in dry and humid conditions as a function of the working temperature. In dry air, the curve 

shows a maximum detection for 300°C. With humidity, the shape of the curve depends on the 

type of used electrodes. With the gold electrodes sample, the shape is conserved, but the 

sensor signal decreases slowly with the increase of the humidity level. At 300°C, with 

platinum electrodes, the CO detection is blocked by the presence of water. In fact, the sensor 

signal is extremely altered. The CO sensitivity increases linearly with the temperature without 

any maximum at 300°C. At elevated temperature (400°C) and for a high level of humidity, all 

sensors can be considered equal. 
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2.2.2.1.3 Comparison between S (Au) Pt and S (Pt) Pt 
 
Due to the lack of time, only few experiments were done with the sample S (Pt) Pt. 

Figure 2-20 illustrates the comparison between S (Au) Pt and S (Pt) Pt. The resistance and the 

sensor signal for both types of sensors, SnO2 mixed either gold or with platinum are relatively 

close. 
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Figure 2-20 : Resistance and sensor signal dependence on the CO concentration in dry air at 350°C 
sensors working temperature. “gold or platinum mixed sensor” provided with platinum (Pt) electrodes  

 
As follow, the characteristic are: 

• Identical performance is observed for both types of mixed SnO2 based sensors. 

• The baseline resistance for sensor contain Platinum mixed sensitive layer is 

little higher than mixed Gold device. 
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2.3 Conclusion 

 

The role of the electrode could be expected to only collect the output signal resulting 

from the transduction of chemical reaction at the surface of the sensitive layer. As mentioned 

by many authors, we check that the electrode nature plays an important role on sensors 

performance.  For the detection of CO, it is pointed out that sensors provided by platinum 

electrodes are the best in dry air however water alters the sensor with platinum electrodes. 

The performances are driven by the electrodes. For different types of mixed sensitive layers 

but with the same type of platinum electrodes, the performances are quite close. The role of 

metal dispersed in SnO2 layer is not clearly explained.  
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Chapter 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 Investigation of the surface reactions by 

DRIFT analysis and TPD 
 
Les mesures électriques ont certes permis de mettre en évidence les effets des électrodes 

sur les réponses électriques des capteurs SnO2. Cependant, les causes n’ont pu être 
clairement identifiées. Afin de comprendre les effets des électrodes sur la détection des 
capteurs de gaz, une approche originale a été utilisée. L’implication de l’électrode dans les 
réactions de surface a été étudiée à l’aide du DRIFT (réflexion diffuse en Infrarouge en 
transformée de Fourrier), simultanément avec la mesure de la réponse électrique. Cette 
méthode permet d’analyser la surface tout en considérant les changements électriques. Afin 
de mieux comprendre les réactions à la surface, une étude par thermodésorption (TPD) a été 
élaborée. En effet, il s’est avéré que la chimisorption de l’oxygène à la surface du SnO2 est 
primordiale. Le dispositif mis en place avec le DRIFT ne nous permet pas de suivre l’oxygène 
et donc la TPD s’est révélée complémentaire pour cette étude. 

.
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3.1 Introduction 

 

The influence of the nature of the electrodes over the detection performances of semi-

conducting metal oxide based gas sensors was recognized and experimentally proven in the 

previous chapter. This one is divided in two parts with a spectroscopic approach for the 

investigation of the electrodes role: 

The first one deals with DRIFT (Diffuse Reflectance Infrared Fourier Transform) 

performed simultaneously with DC measurement on CO sensing. In fact, the electrical 

measurements input are insufficient when one aims to understand the electrodes role. Many 

approaches can be used. In situ DRIFT analysis is a powerful method to study the adsorbed 

species at the surface of the sensing element and thus to understand the implication of the 

electrodes on the CO sensing mechanisms. Infrared spectroscopic technique is a standard 

method for analysis adsorbed species and surface reactions. The common transmission 

infrared spectroscopy is not applicable for gas sensors because of the opaque substrates 

(Al 2O3…). The first spectroscopic investigations on sensors under operating conditions were 

conducted only recently by Benitez and Pohle [120; 121]. In case of Benitez studies, DRIFT 

analysis of the reversibility of CdGeON sensors towards oxygen exposure was performed. 

Their interest was directed more towards the bulk material changes as a result of O2 reaction. 

Pohle et al. studied adsorption of water vapour and oxygen on different metal oxides (Ga2O3 

[122], WO3, AlVO4, and Co3O4 [123]) thick film gas sensors in various operating conditions 

using IRES (Infrared Emission Spectroscopy). Among others, they found from the 

spectroscopic and electrical measurements a correlation between water adsorption and the 

evolution of the surface hydroxyl group concentration, and in this way, it was proved that IR 

spectroscopy is applicable for the study of surface reactions on sensors. Since Benitez, the 

SnO2 were intensively explored by this technique […] to understand the sensing mechanism 

of gas sensor.  

In the second part, a powerful method to analyse the surface reaction in combination with 

DRIFT analysis is the Temperature Programmed Desorption (TPD). With DRIFT analysis, it 

is not possible to observe directly oxygen because the vibration of the bond between the 

surface and the oxygen physisorbed/chimisorbed are in low wave number close to the limit of 

the detection of our system. The role of metal on the ionosorption of oxygen is ambiguous. 

TPD studies of oxygen adsorption-desorption behaviour at SnO2 surfaces have been reported 

earlier by several authors [124,125,126,127]. Based on these studies, it is interesting to 
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observe how the metal modifies the adsorption and desorption of oxygen. This part reports the 

study of the oxygen adsorption on our powder and the interaction of oxygen with others 

interfering gas. The implication of gold and platinum on the chemisorptions is also pointed 

out.  
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3.2 DRIFT 

 

3.2.1 Theory of Diffuse Reflectance [ 128] 

3.2.1.1 The ideal case  

The phenomenon of Diffuse Reflectance from mat surfaces is observed in everyday life. 

It  was, for the first time, mathematical described by Lambert [129]. The intensity of 

radiation reflected (re-emitted) from a completely mat surface is everywhere of the same 

intensity, independent on angle of observation ϑ  and incident α (Figure 3-1). The flux of the 

remitted radiation Ir in area df and solid angle dω is a function of the cosine of the angle of 

incident and the angle of observation: 

 

ϑβα coscoscos0 B
CS

dw

df
dIr

=×
Π

=  

Where S0 is irradiation intensity, B is the radiation intensity of surface brightness, and the 

C is a constant smaller than 1. 

 

 

Figure 3-1: Diagram showing the variables used in the Lambert cosine law. 

According to Kortüm [130], the model is rigorously valid only for black body radiator 

acting as an ideal diffuse reflector. However, an ideal diffuse reflector has never been found 
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and numerous experimental investigations suggest that the law is true only when both the 

angle of incident and the angle of observation are small. 

 

3.2.1.2 The real case  
 

In the real case, an incident radiation can be absorbed, directly reflected, internally 

reflected or finally diffused in all directions (see Figure 3-2). The light directly reflected 

(externally) by the surface, or multi-reflected at the surface of particles (internally, also 

named volume specular reflectance) give rise to specular reflection. Both specular 

components are functions of refractive index and absorbtivity of the material and 

considered being unwanted effects in Diffuse Reflectance Spectroscopy. The later one, 

diffusion in all direction, is a consequence of IR light penetration into one or more particles 

and its diffusion in the sample. The light which travels though the particles contain 

information about the absorption properties of the material and, in this way, the measured 

spectra is similar to transmission spectra. This is the component of interest in Diffuse 

Reflectance Spectroscopy. 

 

Figure 3-2 : Mechanism of generating the Diffuse Reflected spectrum of sensor. 

 

There are two ways in order to diminish external specular reflectance:  

• The first one is to use one of commercial available optics: Praying Mantis 

(Harrick Scientific Products, Inc.), Collector (Spectra Tech) or Selector 

(Specac Ltd.) - which minimizes the flux of specular reflectance.  

• The second deals with sample preparation: particle size should be smaller 

than the wavelength of the incident radiation. In this work both approaches 

have been realized practically: (a) in-situ chamber for sensors measurements 
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was built in Praying Mantis Optics (Figure 3-5), (b) the grain size of SnO2 was 

in 50 nm range which is several orders of magnitude smaller than the 

wavelength in MIR range. 

The internal specular reflectance exists at any angle of observation and therefore it cannot be 

optically separated from diffuse reflection. But in general specular reflectance is relatively 

small in the material with low absorptivity [131]. The qualitative analyzes have been of 

interest within this work. However, for the sake of completeness a brief description of the 

quantitative approach wil l  follow. There are two approaches in the qualitative treatment of 

diffuse reflection: the continuum and discontinuum theories. The former one is expressed in 

terms of continuous sample having certain absorption and scattering coefficients, whereas the 

last one is expressed in terms of absorption, reflection (re-emission), and transmission of 

certain layer of sample. 

 

3.2.1.3 The continuum theory  
 

The theories which describe the diffuse reflectance are in general based on solving of the 

radiation transfer equations [132]. 

dsIpdI ...κ=−    (3.1) 

It describes the changes of the light intensity dI of a given wavelength on the path length ds in 

a sample whose density is ρ and κ. is an attenuation coefficient (due to scattering or 

absorption). Schuster [133] solved the problem by simplifying the assumptions of using two 

oppositely directed radiation fluxes. The flux I directed in the direction of the incident beam 

and the flux J in the opposite direction. Accordingly, Schuster derived the following 

differential equations: 

SJISk
d

dI −+=−
)(

τ
   (3.2) 

SIJSk
d

dJ −+=−
)(

τ
   (3.3) 

By setting the boundary conditions 
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I = I0 and τ=0 

I=Iτ=0�∞; J=0 at τ= τ τ�∞ 

 

The differential Eq. 3.2 and Eq. 3.3 can be solved to give reflectance at infinite depth: 

( )
σ
α2

2

²1
==

−

∞

∞

S

k

R

R
  (3.4) 

The constant terms k and S are defined by Schuster as adsorption and scattering coefficient 

for single scattering.  

However, the most widely accepted and commonly used model is the one proposed by 

Kubelka and Munk [134] where k and S are defined as absorption and scattering coefficient 

for densely(thickly) packed sample as whole and made the following assumptions: 

• the radiation fluxes (I and J) travel in two opposite directions (perpendicular to 

surface plane); 

• the sample is illuminated with monochromatic radiation (I0); 

• all regular (specular) reflection is ignored; 

• the particles are randomly distributed through the layer; 

• The particle size is smaller than the wavelength of the incident radiation which 

ensures that the scattering coefficient wi l l  be independent of wavelength. However, 

this is relevant only for non monochromatic light; 

• The scattering particles are distributed homogeneously throughout the entire sample. 

On their bases Kubelka and Munk developed two fundamental simultaneous differential 

equations: 

-dI= - (K+S) I.dx – S.J.dx  (3.5) 

dJ= - (K+S).J.dx - S.I.dx  (3.6) 

Where K = 2k (k - the absorption coefficient of material) and S = 2s (s - the scattering 

coefficient of material) and dx the deepness. By setting several simplifications one 

obtains: 
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( ) SIdxdrIarrI =+− −12²  (3.7) 

Where 
S

K
a += 1  and 

I

J
r =  

Eq. 3.7 integrated in the given boundaries: 

For x=d=∞:
dxI

J

=








=Rg=0 reflectance of the background 

For x=0: 
0=










xI

J
=R  reflectance of the sample 

The solution can be found  
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   (3.8) 

Absorption (α) and scattering (σ) coefficients per unit path length and c is the concentration of 

absorbance particle in the defined section. 

Which is similar to the one first derived by Schuster. Accordingly the reflectance which is 

measurable is a function of the ration of constants, K and S, and not their absolute values. 

 

3.2.1.4 The discontinuum theory  
 

The discontinuum theory models the sample as a series of parallel layers with 

assumption that radiation moves: in two directions, the direction of the incident beam and in 

the opposite direction (two flux model) or in three directions, forward, backward and 

perpendicular to the incident beam (three flux model) [135]. In the plane parallel layer 

model sample consisting of particles of different size and compositions is described as a 

collection of identical layers, each representative of the sample as whole. Thus it is possible 

to assign measurable spectroscopic properties to the composition of complex system. The in-

cident radiation may be absorbed, may be transmitted forward into the next layer, or may 

change the direction and be re-emitted (diffuse and specular reflection) into the previous 

layer: Ad + Rd + Td = 1. The absorption/re-emission function A (Rd, Td) based on this model 
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wi l l  be valid for sample of any thickness d. In theory for d∞ where there is no transmission, 

the Dahm[112] equations become equivalent to the Kubelka Munk equations: 

( ) ( ) ( )
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R

TR
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d

dd 2
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,
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=
−
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=
∞
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∞   (3.9) 

K and B are the linear absorption and reemission coefficient. However, the practical 

application of this model requires the transmission and reflection measurements performed on 

the same sample on an absolute scale. Although, the model fits in principle better to the 

sensors geometry (see chapter 2,) it cannot be used in practice because the reliable 

transmission measurements are impossible. 

 

3.2.1.5 Free carriers’ absorption - theory and application in sensing 
 

Absorption on free carriers (α )  is characterized by a monotonic function proportional to 

wavelength (λ p) .  An absorption process for a photon of energy hυ  must involve intravalley 

transition of an electron to a higher energy level [136,]. Such a transition requires additional 

interactions in order to fulfil the conservation of the momentum. The change in carrier 

momentum must be larger than the photon momentum itself and may be achieved by an 

interaction with the lattice (phonons) or scattering on ionized impurities. The dependence of 

the absorption coefficient (α) on wavelength (λ) differs for various kinds of electron scattering 

5,35,25,1 λλλλα CBAP ++=≈     (3.10) 

Where A, B, C are constants. 

The solution of the acceleration of free carriers in a semiconductor by the oscillating electrical 

field, within the framework of classical electrodynamics, derives [137] the following 

dependence between the absorbance coefficient (α) and free carriers concentration (n) 

)1(' 22
0

0

τωε
σα

+
=

Cn
    (3.11) 

where: ε0 is permittivity of free space, ω - frequency, τ - relaxation time (factor sensitive to 

the temperature and purity in any substance), c - light velocity in free space, n’ - real part of 

the complex index of refraction. 

Limiting the consideration to IR wavelength range, where ω τ>>1 Eq. 3.11 can be reduced 
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Where: µ is the mobility, m* is the effective mass of the free carriers, λ0 is the wavelength in 

free space, ne - concentration of the electrons per unit volume. According to the Eq. 3.12 the 

absorbance of a material at a given wavelength is directly related to its electrical 

conductivity. 

This property was used to determine the type of conduction (n or p) in the case of gas 

sensors (SnO2, n-CuO/BaTiO3) under oxidizing or reducing gases [138, 139]. A gas adsorbing 

on to the sensors surface modulate the free carrier density which leads to a variation of the 

infrared energy transmitted by nanoparticles. The transmitted energy plotted versus gas 

concentration was directly related to the electrical response of the real sensor. 

The influence of the change of free carrier density was also studied by means of IR 

reflectance spectroscopy [140]. In general, the reflectance (R) is related to absorptivity (see 

Eq. 3.12) by the Fresnel equation 

2

2

)1(

)1(

κ
κ

++
++=

n

n
R    (3.13) 

Where κ  is the index of absorption. 

Infrared reflectance spectra of solid oxides depend critically upon the electronic properties 

of the material. For non-metallic oxides the reflectivity is: low above the frequency of 

phonon modes and high between longitudes optical (LO) and transverse optical (TO) phonon 

frequencies (Reststrahlen spectra). The carriers in metallic materials screen out the coupling 

between lattice vibrations and external fields. However, the screening is not perfect due to 

the non-zero screening length, allowing a weak structure to appear close to the LO phonon 

frequency in IR reflectance. The formation of the carrier free surface layers (depletion layer), 

associated with chemisorption influences the infrared reflectance spectra of metallic oxides by 

allowing the coupling of IR radiation to phonons within the ’unscreened’ layer. 

The influence of the surface depletion layer on infrared reflectance spectra of Sb:SnO2 and 

NaxWO3 has been explored using model calculations on a two layer system and compared 

with IR reflectance experimental data [141]. For Sb:SnO2 it was shown that with increasing 

doping levels (increase conductivity) changes in reflectivity at phonon frequency are 

superimposed on a background reflectivity that becomes stronger and flatter. Other authors 

[142] attempt to correlate increases of Sb concentration in SnO2 with four points sheet 

resistance measurements with reflectivity in MIR range. It was shown that the optical 
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properties do not fully support the results of the resistance measurements. However, both 

studies show the potential of IR reflectance studies in this area. 

Within this study, the main interest is in diffuse reflectance, which, by itself, is not directly 

depending on the absorptivity of the material. However, as it was discussed above, the 

specular components of radiation cannot be fully eliminated and therefore it is necessary to 

point out how they will influence the diffuse reflectance spectra. 

The radiation internally reflected is just directionally scrambled (diffuse) specular reflection 

and it can be also described by the Fresnel equation (Eq. 3.13). For bands with high 

absorptivity the reflectance is high. Only light that was not specularly reflected from the 

sample can enter the sample and hence be adsorbed by it. An increased level of specular 

reflectance counteracts the absorption by the sample and as a result, strong absorption peaks 

degenerate into spurious doublets (Reststrahlen bands) [143]. 

As it was discussed above the increases of the conductivity of Sb:SnO2 increase the 

background absorbance. This fact has to be taken into consideration when discussing the 

changes of the conductivity and optical properties of tin dioxide base sensors upon exposure 

to reducing/oxidising gases. In the relatively high resistance range (>MΩ) this effect can be 

neglected. But for the sensors with relatively low baseline resistance (<kΩ) the strong 

changes of baseline reflectance mask the absorption bands and the total reflectance become 

uninterpretable  

3.2.2 DRIFT on sensor- set up and measurement proto col 

The quantitative theories of diffuse reflectance assume either 100% reflecting reference 

material or the layer of infinite depth (continuum theory) or require the transmission and 

reflection measurements performed on the same sample on an absolute scale (discontinuum 

theory). In practice, none of them is applicable to sensors. 

The IR penetration depth is larger than the thickness of the layer, which makes that the 

absolute diffuse reflectance spectrum (single channel), contains information from the SnO2 

layer and the alumina substrate. The optical properties of the SnO2 based sensors (as a 

whole) change with the temperature. Therefore in order to separate changes at the SnO2 

surface, the reference other than the usual absolute one (i.e. mirror, KBr) has to be used. 

Within this work, the differential (relative) approach with the reference spectra recorded 

directly before gas exposure, also on sensors, is applied. The determined absorbance wil l  be 
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named the apparent absorbance in order to distinguish between the absolute absorbance 

measured in transmission mode and relative absorbance measured in diffuse reflectance 

mode. In the same way, the single channel spectra recorded directly before gas exposure is 

used as a reference for the transformation to the Kubelka and Munk units. The as-obtained 

KM relative spectra contain only information on the surface species actively taking part into 

the sensing: the ones which appear or change their concentration during exposure to gases. 

Recently, a similar sampling (referencing) technique was applied for obtaining spectra of 

unknown samples [144]. There, a relatively IR inactive abrasive is used. However, both cases 

do not fulfil to the KM prescription of qualitative diffuse reflection spectroscopy. 

3.2.2.1 Setup of the DRIFT and electrical measurement (Tubinguen) 
 

- Mixing and monitoring of gases 

 

 

In order to provide the desired gas atmospheres, gas mixing systems are used. A 

typical gas mixing system consists of PC controlled mass flow controllers (MFC) and valves. 

The gas mixing(Figure 2-14), system is operated by home made software called POSEIDON. 

The software via A/D card not only controls the actual gas flow through the mass flow 

controllers but it can also (at the same time) record the resistance of the sensors and other 

parameters like humidity or oxygen concentration. Our aim is to observe the surface, mainly 

in dry air. To do that, the control of the humidity level is crucial.  In order to keep the 

humidity background constant while mixing carrier and target gases a humidity trap was used. 

It was built out of a folded stainless steel pipe (5 m long) placed in a stainless steel dewar 

partly filled with liquid nitrogen. The pipe was cooled down by vapour of liquid nitrogen and 

not directly liquid nitrogen itself, in order to freeze only water and prevent the condensation 

of oxygen. The trap allows keeping the humidity level constant at 3 ppm ± 1 ppm. To control 

such level of humidity, a dew point (DS 100 Alpha Moisture System) meter was used. The 

measured humidity is displayed on the instrument indicator in Celsius degree (°C) and is 

recorded as output current  

 

Dew point meter Humidity was measured by using a dew point meter (DS 100 Alpha 

Moisture System) based on capacitance changes measurements. The sensor is a variable 

capacitor, which capacitance is directly affected by changes of partial pressure of water 
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vapor and that are proportional to the dew/frost point temperature. The measured humidity 

is displayed on the instrument indicator in Celsius degree (~C) and is recorded as output 

current. 

Dp (°C) =-105.12399+6.26044*1000* I 

 

I is the output current from the dew point meter. 
 

 
Figure 3-3 : Correspondence Table for the dew point sensor 

 
FTIR Spectrometer. Figure 3-4 shows the complete experimental set up that has been 

used to simultaneously perform Diffuse Reflectance Infrared Fourier Transformed 

Spectroscopy (Bruker 66v FTIR spectrometer) and resistance measurements. For measuring 

resistances digital multimeters (Keithley DMM 199 or 2000) are used. In the case of highly 

resistive sensors (>200 MW) an digital electrometer (Keithley EMM 617) is needed. The 

multimeter measures the voltage drop over a reference resistance and sensor resistance and 

based on the voltages ratio, the sensor resistance is determined. An electrometer is a highly 

sensitive electronic voltmeter which input impedance is so high that the current flowing into it 

can be practically considered to be zero. Additionally to the instrumentation used in the 

characterisation of sensors performance the system is equipped with the Bruker 66v FTIR 

spectrometer. The diffuse reflectance is collected with the Praying Mantis (fig. 3-5) optics 

(Harrick Scientific Products, Inc.). The measurement chamber (fig. 3-6) is equipped with: 
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two NaCl mirrors (which allows the access and afterwards the collection (already diffusely 

reflected) IR radiation); the sensor holder with 4 electrical outputs (for supplying voltage on 

the Pt heater and the read out the sensor resistance). The chamber is placed on x, y, z position 

stage and the whole is built in the optical unit. Around the Drift cell where the sample is 

positioned, the vacuum is done in order to prevent any interaction with the surrounding 

atmosphere of the cell. 

 

Figure 3-4°: The experimental setup for simultaneous DRIFT, resistance and combustions measurements 

 

  

Figure 3-5 : (left) DRIFT-unit “Praying Mantis” wit h sensor chamber. Two ellipsoidal mirrors collect 
diffuse reflection. These two ellipsoidal mirrors are positioned on the principle of “off axis” which 

minimizes direct reflection. (right) Sensor chamber. 
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To avoid misunderstanding, the single channels are presented. The reason for this is the 

difficulty to find a common reference like KBr. For a good comparison, we have to know the 

characteristic of the spectra in dry air of our different sample. 

 

 

 

3.2.2.2 DRIFT on powders (St Etienne) 
 

The spectrometer at St Etienne. DRIFTS spectra were recorded with a Fourier 

transform Nicolet 510P spectrometer with a DTGS detector operated at 4-cm-1resolution. The 

spectrometer was equipped with commercial diffuse reflectance optics (Spectra-Tech 0030-

103). 1024 scans were accumulated in each run. Spectra were presented in the Absorbance 

mode. 

 

The DRIFTS Chamber. Our DRIFTS chamber (Figure 3-6) is equipped with High 

Temperature/High Pressure Chamber (HPHTC) Model 0030-103, provided by Spectra-Tech. 

The powder is placed in the cup of the HPHCTC. A ceramic spacer (T) places the sample (S) 

at the focal point of the diffuse reflectance accessory. Two pieces of sealed ceramic 

feedthroughs (E) are employed to establish the electrical connections with the power supply. 

Pair of Vl6-in. stainless steel tubes (I and O) is available for gas supply. The dome of the 

DRIFTS chamber is equipped with a pair of 13-ram x 3-mm circular KBr windows (W). 

Before the DRIFTS analysis, the sample was kept under air overnight at 500°C in order to 

desorb atmospheric impurities and impurities from the serigraphic deposition.. The sensor was 

then heated up to the working temperature. In this case, it was not possible to put the vaccum 

around the cell. An constant pure nitrogen atmosphere were maintained   
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Figure 3-6 : Description of the DRIFT chamber for powder analysis 

 

The gas mixing system. A similar device as the use previously was utilized. In this 

case, it was not possible to check the level of humidity but we assume that the level is inferior 

to 10 ppm (air bottle specification) 

3.2.3 Band Analysis 
 

The bands in the IR spectra can be fitted by Lorenz, Gauss or Voigts functions. The 

latter one consist of a Gauss and Lorenz part and is the most suitable function for the bands 

obtained in an IR spectrum, since the curve form of the IR bands are influenced by 

homogeneous and heterogeneous band broadening. Homogeneous broadening (broadening 

through the Experimental Section impulse) correspond to a Lorenz profile, heterogeneous 

broadening corresponds to a Gauss profile. 

In this work, the best results were obtained by applying Lorenz and Voigt functions. For most 

of the bands, a Lorenz function was used. 

For the curve fitting, a small spectral range was selected and on this spectral range a baseline 

correction was performed. Through the baseline correction, the wings of the Lorenz curve are 

cut. The error is calculated and can be found in the literature. The error is between 10 and 

20%. In this work the error bars are calculated for 10%. 

 

3.2.4 Specific bibliographies on adsorbed species f rom CO gas.  
 

3.2.4.1 Description of the CO reaction pathways 
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The person who reads this section has to have some knowledge about the CO reaction 

pathways in addition of the bibliography offer in chapter 1. One generally agrees that the 

ionosorbed oxygen species are CO reaction partners and final gaseous reaction product is 

CO2. Different carbonates and carboxylates which are often leave out are reaction 

intermediates. There are different reaction mechanisms leading to such conversion and 

depending on the temperature. The general reaction can be denoted as follow: 

 

nCO+ σ-On
β- � nCO2 + σ + βe- 

σ represents absorption sites (various possible sites) 

 

When oxygen is adsorbed on SnO2 based sensor, the oxygen ionosorption will be formed and 

one electron becomes localized. The form of the reactive species has to be considered as 

dependant on the temperature (chapter1, oxygen adsorption). In our range of studies 200°C-

400°C, we can consider the form of reactive oxygen according to the following schema:  

 

  

 

This schematic is also based on TPD measurement (see the section 3.3.2) and helps us to 

know the major species at the surface of SnO2. Tm represents the maximum temperature 

desorption of the species. The maximum desorption for O2
- is 150°C which not means that 

above this temperature this species doesn’t exist, but it just means that this one is not the 

major species above 150°C. 

The change of the baseline resistance in any SnO2 based sensor in dry air as a function of the 

temperature can be related to different oxygen species formed at the surface of the SnO2. So, 

in presence of CO, the oxygen species influence the pathways. 

 

The CO conversion in CO2 is not a direct reaction and some intermediates can be formed at 

the surface of SnO2. These species are even not mentioned because they are only stable at the 

surface of the material and people are usually observed educts and products of the system. In 

our case which is the study of the surface of SnO2, these “intermediate” species are crucial the 

CO sensing.  

O-
2(ads) > O- > O- -

RT 150°C 550°C

Oxygen species

Tm
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On Figure 3-7, a sketch of CO reaction pathway is summarized. It describes the formation of 

the main species observed during the reaction of CO with the surface oxygen species. In the 

following, possible reaction mechanisms are established on the basis of the correlations 

described in our own experiments and in the literature [145]. Cartoon presentations are given 

for a better description of the possible reaction mechanisms. The first aim was not to study the 

CO mechanism at the SnO2 surface but to understand how the presence of the metal 

electrodes can altered the surface reaction.  

The sketch in Figure 3-7 demonstrates that the product of CO reacting with the surface 

is always CO2.  It is assumed that CO2 which will be observed by DRIFT analysis will be 

localized in the pore of the SnO2 matrix. In fact, it was shown that the distance between the 

two branches of CO2 bands can change in function of the support. It was observing [146] 

compared to the free CO2 (gas phase), the CO2 present in the pores presented a shorter 

distance between the branches. One can imagine that the rotation of the molecules is hindered 

like in viscous media. Moreover, the amount generated at the surface of the SnO2 is too low 

in such small chamber. 

 The starting point of this sketch is CO which reacts with “O- “. For simplicity on the 

sketch, only “O-“ is considered to be formed at the surface of SnO2 during the oxygen 

ionosorption which is not valid. More details will be brought during the explanation of each 

species in the following. 
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Figure 3-7 : Schematic of CO possible pathways on the surface of tin dioxide 

3.2.4.2 Formation of the main intermediates  
 

• Formation of the carboxylate (CO2
-): 

The first intermediate species easy to form is the carboxylate. As regards to the oxygen 

species considered, two possibilities are offered to form the carboxylate (CO2
-) with reactions 

with O-(1) or O2
-(2) It desorbs to CO2 in final by the equation (3). Only in the last step (eq. 3), 

an electron is released to the bulk, which causes change of the conductivity. 

 

CO+ O-↔ CO2
-   (1) 

 

2CO + O2
- ↔ 2CO2

-   (2) 

 

CO2
- ↔ CO2 + 1e-   (3) 

 

Reaction (1) and (3) pathways are presented in Figure 3-8. First, CO reacts with O- 

and form the carboxylate which is not stable at the surface. An electron is released to form 
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CO2. Reaction with O2
- (reaction (2) ), at least two molecules of CO are needed with one O2

- 

to create two carboxylates. The carboxylate species is easiest to create but is relatively not 

stable at the surface because of the weakest of the bond between the molecule and the surface. 

It desorbs rapidly CO2 and release one electron.  

 

   

(a) Two steps reactions      (b) one step reaction 

Figure 3-8 : Cartoon of the formation of CO2
- 

 

In IR, the domain of vibration depends on the coordination of the molecules at the surface of 

the tin dioxide surface. Table 3-1 shows the frequencies depending on the structure of the 

molecules at the surface.  

Table 3-1 : Structure of differently bound carbonate carboxylate species and their characteristic 
frequencies in the IR spectra 

 

 

 

• Formation of the free carbonate(CO3
2-): 

Another possible intermediate species is CO3
2-. Three reactions can give the free 

carbonate: 

CO + O- ↔ CO2
-    

...Sn-O-Sn-O-Sn-O-Sn-O...

O

OO

C

C O

(3) 
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CO2
- + O-↔ CO3

2-  (4) 

 

CO + 2O-↔ CO3
2-  (5) 

 

CO+ O2
- + 1e-↔ CO3

2- (6) 

 

This species can result from CO2
- itself which reacts a second time with “O-“according to 

reaction (4) and shown in Figure 3-9. It is possible to make a distinction between reaction (4) 

and (5) where for the reaction (5) CO reacts directly with 2O- without the formation of the 

carboxylate. Reaction (6) is also theoretically possible but, in this case, a second electron 

should be extract from the material. Reaction (6), due to the need of a second electron is not 

favoured, the electron is mainly localized on oxygen species and to catch another one, the 

required energy would be important. Furthermore, such reaction will have a bad influence on 

the sensor by reducing the sensor signal. It is assumed that this reaction can be neglected. 

One can imagine a possible reaction with O2-.For this, we have to consider that CO 

reacts with O2- and in the same time with OL (lattice oxygen). 

 

CO + O2- + OL � CO3
2- 

 

In this case, CO3
2 –do not give vibrations of free carbonate as oxygen is linked to the 

lattice but the vibration of monodentate carbonate CO3
-. It is not possible to obtained free 

carbonate with O2-. 

The reaction with a second CO molecule should be considered to be the easiest 

way to give the final CO2 product. 

 

CO3
2- + CO ↔ 2CO2 + 2e-  (7) 

 

 

 

It assumes that the stability of the free carbonate is not too much important and the free 

carbonate can react itself as follow: 

            O2- 

CO3
2- ↔ CO2  +        O-+1e-   (8) 
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         1/2O2 + 2e- + s 

 

 

Figure 3-9 : Formation of CO3
2- 

 

• Formation of the monodentate carbonate (CO3
-): 

In this work, CO3
- ions can be also identified as intermediate products. CO2

- can react 

on a specific site on SnO2 and give one of the most stable intermediate at the surface; the 

stability is due to the delocalization of the electron, the cloud of electron is deformed and 

stabilizes this entity. The formation could be:  

 

CO2
- + OL ↔ CO3

-(9) 

 

Another possibility to form CO3
- is the possibility to free carbonate CO3

2- to lose one electron 

and move to a free site at the surface of the SnO2:  

 

CO + O2
- ↔ CO3

2-
(free) 

CO3
2-

(free) � CO3
-
(surface) + 1e- 

 

CO can react with O2
- to give CO3

- free at the surface of the SnO2 and then this species has to 

found a place to be stable, rather while it become directly CO2 

The desorption process is as follow: 

CO3
- ↔ CO2 +1e- + OL 

 

A cartoon presentation is given in Figure 3-10. Experiments made with CO2 as educts give 

mainly this intermediate species.  
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Figure 3-10 Formation of the monodentate carbonate 

 

• Formation of the bidentate (chelate and brigde): 

 

It is assumed that the formation of the bidentate (chelate and brigde) is only possible in 

the pathway of the formation of the monodentate or the free carbonate. These species are 

more stable at lower temperature and should not be considered at elevated temperature. There 

are mainly coming from a recombination of CO3
- or CO3

2- for the chelate bidentate. For the 

bridge a direct reaction of CO wit 2O- can be also possible. 

 

Figure 3-11 : Schematic of the formation of the bidentate chelate and bridge resulting from a 
rearrangement of CO2

- and CO3
2- 
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3.2.5 RESULTS 
 
The aim of this work is to follow the changes of the properties of SnO2 sensors surface 

induced by the change of the electrodes material (Au or Pt). How the electrodes can handle 

the modification of sensitivity towards CO and the modification of the reaction mechanisms? 

Electrical DC measurements conducted in parallel to the DRIFT measurements will be 

presented in this section.  

3.2.5.1 Remind of DC measurement with CO on SnO2 based sensors 
with different electrodes (Au and Pt). Position of the problem. 

 

In Figure 3-12, the time dependence of the SnO2 based sensors resistance provided with 

two different nature of electrodes (Au or Pt), placed in the DRIFT measurement cell and 

heated at 350°C, is shown; three CO pulses were applied (50, 100 and 250ppm).  

The differences associated to the different nature of electrodes can be summarized as follows:  

1. The baseline resistance is higher for platinum (24 MΩ) than gold ( 1MΩ); 

2. The sensor with platinum electrodes presents higher sensor signals toward CO; 

3. The shape of the response indicates different kinetics  
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Figure 3-12 : Resistance and sensor signal dependence on the CO concentration in dry air at 350°C 
sensors working temperature. Sensor provided with platinum (Pt) electrodes and gold electrodes (Au) 

 

At 350°C, the performance and in particular the sensor signals are the most significant 

in term of the influence of the nature of the electrodes. Figure 3-12 (On the right), the sensor 

signal for 3 sensors provided with Pt electrodes and 3 other ones with gold electrodes are 

shown. At this temperature, statistically the platinum presents the higher response to CO in 



Investigation of the surface reaction by DRIFT analysis and TPD 

 97 

dry air. The role of the electrodes on the performance of the sensor is difficult to explain 

looking only the DC measurement  

Along the operating temperature of our sensors range, 200- 400°C, the same outcome 

is found. DC sensing performance is presented in Figure 3-13. According to the results, the 

most marked difference between the sensors provided with Au and Pt electrodes is observed 

for both baseline resistance and sensor signal. Along the working temperature, the baseline of 

the platinum sensor is always higher than that of the gold one. It is nearly 1 order of 

magnitude at temperature superior than 200°C. At 200°C, for both sensors, the resistances are 

similar. For all working temperatures, the sensor signal is higher for platinum than for gold. 

Besides that, at this temperature, both the electrical and spectroscopic results were quite stable 

and reproducible. 
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Figure 3-13: Resistance and sensor signal dependence on the 300 ppm CO concentration in dry air for 
different working temperature. Sensor provided with platinum (Pt) electrodes and gold electrodes (Au) 

This behaviour matches with other studies [147]where the authors found also better 

performances using Pt electrodes. The interpretation of the electrical data is complicated by 

the fact that the adsorption of both reaction partners, oxygen ions and CO, depends on the 

temperatures. The reason for such behaviour of the sensors is investigated by simultaneously 

performed electrical measurement and DRIFT spectroscopy, and will be presented in the 

following section. 

NB: The dependence of resistance and sensor signal on temperature is not exactly similar to 

the one observed in previous test (cf Figure 2-19, p68): the presence of a maximum is not 

always observed. The main hypothesis to explain such difference is the presence of residual 

water, depending on various experiments 



Investigation of the surface reaction by DRIFT analysis and TPD 

 98 

3.2.5.2 CO sensing-Impact on the sample’ surface 
 

To characterize the impact of the nature of the electrodes during the CO sensing 4 types of 

sensors have been used; the preparation of each sample was explained in the chapter 2: 

 

a. Conventional SnO2 sensors: with 2 different natures of electrodes Au, Pt and without 

any electrodes 

 

b. Powders: Pure SnO2 and Mixed SnO2 + metal particles (Au or Pt) 

 

c. Mixed sensors: mixed SnO2+ metal particles (Au or Pt) as the sensitive layer on 

alumina substrate provided with heater but where the electrodes were removed. 

 

d. Mixed sensor with platinum electrodes: same sensors in c but with platinum electrodes 

3.2.5.2.1 Conventional SnO2 based sensors 

3.2.5.2.1.1 Important ranges of DRIFT 

Before any descriptions of the results, it is important to define some important range 

of DRIFT spectra which will be studied in this work. Figure 3-14 shows a typical DRIFT 

spectra in single channel (raw data), in the IR middle range between 900 and 4000 cm-1 for 

the sensor with platinum electrodes and pure SnO2 as a sensitive layer. Here, two spectra in 

single channel are shown in fig3-13(a): one in dry air and the other one where 250 ppm CO 

was introduced in dry air. To analyse the data is necessary to convert them in Absorbance 

(fig. 3-13(b)) because it is easier to identify the modification due to the presence of the gas.  

 

Figure 3-14 : Illustration of the conversion of the single channel spectra (raw data) into the absorbance 
spectra 
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In the range of the study, three main regions are affected by the presence of CO: 

� 4000 to 3000 cm-1: is the OH region where the vibration of surface OH group and 

water stretching vibration can be identified. 

� 2500 to 2000 cm-1: corresponds to the position of the band of CO2 and CO. 

� 1800 to 900cm-1: Several adsorption bands could be present. These bands are assigned 

to surface carbonate and carboxylate species, deformation mode hydroxyl group and 

metal-oxygen. This is the region of all bands corresponding to the different 

intermediates of “CO2 reaction” between surface oxygen species and CO.  

 

Limitation and important remark: 

Due to the set up of our system, the oxygen study is not possible. In other word, follow 

the metal-oxygen bond during the gas exposure, its evolution and possible shift are not 

feasible. 

An important remark has to be mentioned. In this study, the carboxylate and carbonate 

will be mainly study to understand the effect of the electrodes on the surface species. In 

this region, it is important to note that in our case no new bands appear during the CO 

exposure. Only a variation of the intensity (increase or decrease) of bands already 

presented in air is observed. Due to the presence of CO2 in atmosphere, the carbonate and 

carboxylate species can be formed during the fabrication process of the sensors or during 

the time past in atmosphere. Davydov [148] shows that with a CO2 exposure on SnO2, the 

same intermediates species observed with a CO exposure can be present. In this study, the 

creation of new band in single channel (which means new species) has never been 

observed. 

 

3.2.5.2.1.2 SnO2 conventional sensor: DRIFT analysis of devices with Au and Pt or without 
electrodes under air 

 

Figure 3-15 shows the single channel of pure SnO2 for gold, platinum and without 

electrodes in dry air at 200°C. Several adsorption bands can be seen in the spectra range 

between 4000-3000 cm-1 and 1800-900 cm-1. The entire study is a comparison of the different 

samples used. Here, we illustrate that in single channel, in dry air and without any gas 

exposure, the surface of sensor is different from one type of sensor to another. The sensors 

with gold, platinum and no electrodes present some similarities. 
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Figure 3-15 : Single channel spectra for pure SnO2 for gold, platinum and without electrodes recorded at 

200°C in the full spectre range (4000-850cm-1) 

 
The general shape of single channels spectra is very similar for the three samples. 

Nevertheless, some difference appears: 

- The general absorbance is higher for the gold type whereas for the others they are 

nearly the same. This effect could be explained by the phenomena of the free carrier 

charge already mentioned; As mentioned before, the influence of the free carrier 

charge depend on the resistance of the sensor. The gold resistance is lower so the 

effect of the free charge carrier can be more important. 

- In the region of the intermediate species (1800-900cm-1) the level of pseudo 

absorbance in single channel (SC) is different. We don’t have any convenient 

explanations. 
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- A small band is present at 2345 cm-1 corresponding to CO2, resulting from trace of 

CO2 in the air flow. 

- Three bands are easily identified at 2960, 2922 and 2850 cm-1 corresponding to C-H 

vibration. In fact, in the past, an oil pump was used for the vacuum around the cell. 

Some traces are still present. However, the level is always constant. 

- The main difference between the three samples appears in the range of 4000-3000 cm-

1. If we make a zoom, Figure 3-15, at high wave number (4000-3000 cm-1) different 

characteristic bands are present. Bands at 3712, 3672, 3647 cm-1 are assigned to 

terminal hydroxyl groups and bands at 3522, 3479 cm-1 are assigned to rooted OH 

groups. The band at 3712 cm-1 appears only for sensor provided by electrodes. 

Between 3400 and 3000 cm-1 weak broad is present corresponding to molecular water 

H2O 

� Effect of the temperature on OH/H2O species 

 

In order to determine the influence of the temperature on the surface species in dry air, 

heating was applied between 200°C and 400°C on conventional SnO2 sensor provided with 

electrodes (Au or Pt).  

Figure 3-16 shows the single channel spectra recorded at different temperatures in dry 

synthetic air. With increasing temperature a dramatically change of the spectra is observed 

over the complete spectral range. Looking over the total spectral range, general changes in the 

band structure and intensities are observable for both sensors. 
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Figure 3-16 : Single channels IR spectra at different temperatures for Pt electrodes and Au electrodes. 

 



Investigation of the surface reaction by DRIFT analysis and TPD 

 102 

The main changes are seen in the region between 4000-3000cm-1. The main affected 

OH bands are the rooted OH group at 3522, 3479 cm-1, they disappear with the rise of the 

temperatures. Figure 3-17, focuses on the OH region and compares the influence of the 

temperature on the visible OH bands between gold and platinum. They are nearly similar with 

the temperature even if at 350°C the sensors with platinum shown more bands (3710, 3666, 

3614 cm-1) whereas only one band is observed with the gold at 3648 cm-1. 
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Figure 3-17 : OH/H2O spectral range recorded at different temperature in single channels spectra for Pt 

electrodes (black) and Au electrodes (red) SnO2 sensors. 

 
� Conclusion of results under air  

Results obtained with the three conventional sensors in dry air as a function of the 

temperature give us the following information: 

• First, no significant difference has been observed to one sample to another in 

the region of intermediate species (carbonate and carboxylate). It is assumed 

that region is the same for all the type of conventional sensor in dry air. 

• The terminal OH groups, in a certain extent, are different between each sensor 

at low temperature. With the increase of the temperature, the difference 

disappears. This result could explain the difference observed in the baseline 

resistance where platinum exhibit a higher resistance. Along the range of 
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temperature, the OH group are more stable at the surface of the sensor 

provided with platinum electrodes. 

 

 

 

3.2.5.2.1.3 Interaction of CO on the surface of conventional sensors. 

 

• Global analysis of total spectra 4000-1000cm-1: 
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Figure 3-18 : The whole DRIFT spectra of the tin dioxide sensors after exposure during 30min, at 350°C, 
to 250 ppm CO in dry air with different types of electrodes (-Au,-Pt, -No electrodes).The spectrum 

recorded before CO exposure was used as a reference for each type of sensors. 

 

The DC measurement was described in Figure 3-12. At 350°C, the effect was found to 

be meaningful. This temperature will be considered for all the type of samples the 

temperature of the study. DRIFT spectra in absorbance were recorded in the same time of 

electrical measurement. The results for the type of sensors (Au and Pt electrodes and without 

electrodes) are shown in the Figure 3-18. Spectral features are different depending on the 

electrode nature used: 

 

• Formation of CO2 (band at 2343 cm-1) is observed for each sensor. 

In the Figure 3-19. The peak area of the CO2 bands is shown in function of the CO 

concentration for gold and platinum. The CO conversion seems to be slightly 

higher with gold. No enough concentration was done with the sample without 

electrodes to compare with the others. 
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Figure 3-19 : Change of the area of the CO2 band as a function of CO concentration. 

 
• General overview of the spectra in Figure 3-18 indicates that OH bands are less 

affected with gold electrodes devices. On the contrary intermediates species 

between 1800 and 900 cm-1 are more present on such devices. Details analysis 

is exposed hereafter. 

 

• For SnO2 sensor with Pt electrodes and without electrodes, in the OH-group 

region, the positive band at 3666cm-1 and 3644cm-1 prove the increase of 

isolated group. Negative bands at 3611cm-1 has been observed and corresponds 

to the decrease of isolated OH.  

 
• OH region analysis during the CO exposure for Au and Pt electrodes. 

 

OH region (4000-3000cm-1) is affected during the CO exposure and as a function of the 

working temperature. 

In order to have a clear understanding, the study of this region is developed in this section.  

Figure 3-20 shows the spectra in the range of 4000 and 3000 cm-1 for the conventional sensor 

provided by gold or platinum electrodes. 
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Figure 3-20 : Spectra in absorbance between 4000 and 3000 cm-1 of the pt and au electrodes sensors 
exposed to 250ppm of CO at 2different temperatures. As a reference spectrum in air directly before CO 

exposure has been used. 

 
• At low temperature, (200°C): for both sensors, the bands at 3666, 3514 and 

3480 cm-1 decrease which means isolated OH-group (the two first) and rooted 

group are eliminated or consumed.  

 

• At intermediate temperature elevated (300°C-350°C): the OH bands at 3666 

and 3644 cm-1 increase whereas the bands at 3611cm-1 decreases. This increase 

of the OH groups is observed for both sensors (Au and Pt electrodes) even if at 

350°C for the gold the bands are not very intense.  

 

• At temperature above 400°C: no band appears or disappears; OH groups are 

not modified in this range of temperature.  
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Amount of absorbed species dependending on the electrodes nature 

Carbonate and carboxylate species analysis: 
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Figure 3-21 : Low wave number analysis DRIFT spectra of SnO2 sensors recorded at 350°C under 
250 ppm of CO. on top: (a) sensor without any electrodes, at the bottom (b) sensor with platinum  

electrodes (c) sensor with gold electrodes. The spectrum recorded before CO exposure was used as a 
reference. 

 

It is assumed that the amount of intermediate species decrease with the increase of the 

temperature. In fact, the stability of the intermediate species is function of the kinetic of the 

CO conversion which depends also of the operating temperature. On Figure 3-21, for pure 

SnO2 sensors without any electrodes, no intermediate species is observed. On the platinum 

electrodes devices some weak bands is observed at 1562, 1330cm-1 and 1439cm-1 

corresponding to the carboxylate and the monodentate carbonate. The intensity of this bands 

suggest that the amount of intermediate at the surface of this sample is low and should be 

consider as traces. On gold electrodes devices, the intensive bands at 1534 and 1314 cm-1 

attest a large amount of carboxylate present on the surface. 
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• Kinetic of intermediates species (range 1800-900cm-1) during CO exposure  

 

DRIFT spectra at 300°C in absorbance during 250ppm CO exposure in dry air and link 

to DC measurement are shown in Figure 3-22 for gold and platinum electrodes.  

In DC measurement, it is shown that: 

• Baseline resistance is higher for Platinum than gold 

• Sensor signal is higher for Platinum than gold 

• The response time (95%)is quite similar around the minute  

• The recovery time is shorter for Platinum electrodes. 

In correlation with the resistance, a special attention has to be taken to the formation of 

the intermediate species at low waves number (1800 to 900cm-1). The absorbance spectra at 

300°C is shown because the formation of band is emphasized and phenomena easy to follow. 

 

With gold electrodes during Figure 3-22 (a): 

• The presence of CO2 is observed immediately in the first spectra (15min), band 

at 2345 cm-1. 

• Formation of bands at 15439 and 1324 cm-1 corresponding to the carboxylate 

are the first intermediate created on the surface (15min).  

• With the time (30 min), the formation of the carboxylate is in equilibrium 

• During this time, a new band at 1449 cm-1 corresponding to the carbonate 

which was not clearly present before on the spectra at 15min is present. 

when CO exposure is stopped, Figure 3-22 (b):: 

• Trace of CO2 is still visible after 15min but disappear after. 

• Bands corresponding to caboxylate (1549-1324cm-1) disappear quickly and are 

not detectable after 15 min. 

• The band at 1449 cm-1 (monodentate carbonate) takes time to disappear. After 

2 hours, it is possible to identify it. 

 

With platinum electrodes during the CO exposure Figure 3-19 (a): 

• The presence of CO2 is observed immediately in the first spectra (15min) 

• The intensity of the bands is quite weak is comparison with the sensor 

provided with gold electrodes 
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• After 15 min, three bands are identified. They are assigned to carboxylate 

(1550-1350 cm-1) and carbonate (1449 cm-1). This means that these species 

appear at the same time. 

• The intensity of all the bands increases with time. 

 

When CO exposure is stopped Figure 3-22 (b): 

• After 15 min, only carbonate are still present, prove is the band still present. 

• After 30min, all bands disappear. 
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Figure 3-22 : Resistance and DRIFT spectra versus time, measured at 300°C for Au and Pt electrodes 
sensors: (a) the spectra under CO. (b) spectra recorded after the CO exposure. 
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3.2.5.2.1.4 Humidity effect on CO sensing 

It was important for us to complete the studies by applying water in our system. If we 

want to talk of real working condition we have to take account of the humidity.  

At 300°C, the response of pure SnO2 sensor provided with gold electrodes and 

platinum electrodes under CO in 10%RH is shown in Figure 3-23. The simultaneously DRIFT 

spectra experiment are shown in Figure 3-24 for Platinum and Figure 3-25 for Gold. The 

performance for each type of sensors, in humidity, is quite closer in term of electrical 

response. At 300°C the signal (R0/R) is higher for Pt (26) than for gold (20) device. 
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Figure 3-23 : Response of sensors provided with gold electrodes (left) and platinum (right) at 300°C. 

 

DRIFT experiments were also performed in the presence of humidity. The results are 

presented hereafter. 

� With platinum electrodes: 
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Figure 3-24 : Spectra in absorbance for Pt electrodes sensor exposed to CO at different temperature in 
10% of humidity. As a reference, spectrum in air directly before CO exposure has been used. 
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Figure 3-24 shows the spectra for different temperatures of the Pt electrodes sensors exposed 

to 250 ppm CO in 10% RH. For all operating temperatures, no band has been observed 

excepted for the band of CO2 and CO. No modification of the OH group has been observed in 

this condition.  

 

� With gold electrodes: 
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Figure 3-25 : Spectra in absorbance for Au electrodes sensor exposed of CO at different temperatures in 
10% RH. As a reference spectrum in air directly before CO exposure is used. 

 

Figure 3-25 shows the spectra for different temperatures of the Au electrodes sensors exposed 

to 250 ppm CO in 10% RH.  

• The intermediate bands are present at elevated temperature but not at 200°C 

• The OH groups are modified during the CO exposure. 

• No bands can be assigned at 200°C but when the temperature becomes superior 

the bands can clearly be identified. At 300°C, the band at 1466 cm-1 has been 

observed which proves the formation of monodentate carbonate. The band at 

1248 cm-1 could be related to the water bending vibration well-pronounced in 

this particular experiment. At 350°C the band at 1466cm-1 (broader than 

normally) is still present. 
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Not enough experiments have been complete, in humidity, to conclude on the influence 

of the humidity. Nevertheless, these experiments confirm the difference of the surface 

reactions on Pt sensors and Au sensors. Like in dry air, the sensor with gold electrodes shows 

more bands, in humidity, than the platinum one. 

 

3.2.5.2.2 Summary of results with Conventional sensors 
 

CO sensing investigated by DRIFT and DC measurements for sensors provided with two 

types of electrodes: Au or Pt.  

The higher sensitivity of the sensor provided with Pt electrodes is explained by the 

different manner in which the conversion of CO to CO2 takes place. The differences are 

illustrated by the different role of the reaction intermediates that indicates. In the case of Au 

electrodes, the intermediate species block the charge, previously trapped on the O-, on the 

ionic CO2
- and CO3

-. On the opposite, for Pt electrodes one cannot observe an increase of the 

ionic intermediates, which suggest a very fast conversion from CO to desorbed CO2 with the 

freeing of the charge 
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3.2.5.2.3 Powders  
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Figure 3-26 : The whole DRIFT spectra of mixed powder of  SnO2+metal particles exposed at 350°C to 250 ppm CO in dry air (-
Au particles,-Pt particles, -pure).The spectrum recorded before CO exposure was used as a reference for each 

type of sensors. 

As we are not using a conventional method in DRIFT, it was important for us to 

complete the studies of DRIFT on sensors by some experiments performed directly on 

powders. Three types of powders were used as described in the chapter 2 § 2.1.1: Pure SnO2 

and mixed SnO2 either with gold and platinum particles. For an easiest understanding, and due 

to fact that the effect is manifest, only the results at 350°C under 250ppm CO are shown in 

Figure 3-26:  

• The three type of powders exhibit the CO2 formation. This formation is 

favoured on pure SnO2 powder. 

 

• In OH region, different results can be pointed out. On pure powder, this region 

is still “insensitive” to the presence of CO. For the mixed Pt an increase of the 

peak at 3666cm-1 has been observed, whereas a decrease of OH group has been 

observed for the mixed Au powders. Results for this region are quite similar 

the ones observed with sensors. 
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• Some difference on carboxylate carbonate is present: 

 

Carbonate and carboxylate species analysis. 
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Figure 3-27 : Low wave number analysis DRIFT spectra of SnO2 sensors recorded at 350°C under 
250 ppm of CO. on top: (a) pure powder, at the bottom (b) sensor with platinum particles and (c) gold 

particles. The spectrum recorded before CO exposure was used as a reference. 

 

Figure 3-27 shows the spectra analysis obtained for powders at 350°C. The amount of 

intermediate species for all powders is in the same range in term of intensity. Numerous 

species are present at the surface. The band of the monodentate carbonate (1439 cm-1) is the 

most intensive for all powders. The presence of metal (Au or Pt) enhances the formation of 

the monodentate carbonate. In addition to the monodentate, the formation of free carbonate 

and carboxylate (ionic species) are present for all samples. Free carbonate was not present on 

sensors. Here, the morphology could explain the formation of new species at the surface of 

powders. Gold particles inside SnO2 powder enhance the formations of intermediate species. 

With the presence of Pt particles, carboxylate and free carbonate species are formed but they 

are not stable, prove is the weak peaks at 1537, 1337 cm-1 (CO2
-) 1585 cm-1(CO3

2-). In 

comparison with the conventional sensors, only the sensor provided with gold electrodes 

exhibits strong bands for the carboxylate and the others only trace was observed for the 

(c) (b) 

(a) 



Investigation of the surface reaction by DRIFT analysis and TPD 

 114 

others. The platinum reduces the presence at the surface of the more ionic species 

(carboxylate and free carbonate) which are not satble. 

 

3.2.5.2.4 Summary of powder  
It is important to note that on powders, besides the intermediates species identified on 

sensors, new ones are present like free carbonate. This may indicate the fact that the mixtures 

between the tin oxide and the metal powders are not perfectly mimicking the situation of the 

electrode/metal oxide contacts. This fact can be related to the different morphology (grain 

size, agglomeration, etc) of the metal powders when compared to the thick film electrodes. 

One should also note that the concentrations of common (sensor/powders) intermediates are 

higher because of the larger samples. 

The most important finding, however, is that, similarly to the sensor situation; the presence of 

Pt reduces the amount of intermediate species especially for the ionic ones. 
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3.2.5.2.5 Mixed Sensor 
 

The perturbation of the surrounding atmosphere of the DRIFT unit. 

Due to a technical problem the mixed sample were studied with a new spectrometer where it 

was not possible to have the vacuum around the DRIFT unit (see section 3.2.2.1). So, the 

atmosphere around the cell is composed of a flow of pure Nitrogen. Due to this atmosphere, 

small amounts of water are present around the cell. Thus, Bands of the surface water 

stretching mode and bending are present on the recorded single channel spectra. These bands 

hide the variation in the OH region. Figure 3-28 illustrate typical DRIFT spectra in single 

channel in this condition.  
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Figure 3-28: Single channel spectra of mixed gold (red) SnO2 sensor and mixed platinum (black) SnO2 

sensor where water around the vibration of the surrounding water are present.  
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3.2.5.2.5.1 Without electrodes  

 

Results under 250ppm CO at 350°C. 
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Figure 3-29 : The whole DRIFT spectra of mixed powder of  SnO2+metal particles deposited on Alumina 
substrate exposed at 350°C to 250 ppm CO in dry air (-Au particles,-Pt particles, -pure). The spectrum 

recorded before CO exposure was used as a reference for each type of sensors 

 

The results for the mixed sensors without electrodes but with heater are shown in 

Figure 3-29. No bands can be assigned at low wave number. Only the bands of CO2 and CO 

are assigned for all sensors. The CO conversion takes place but without any intermediate. For 

all, modification in the OH regions has been observed. The increase of the band at 3666, 

3640cm-1 and the decrease at 3611cm-1 compared to the reference without CO are visible. 

 

3.2.5.2.5.2 With platinum electrodes  

 
DC measurements 

 
Figure 3-30 shows the resistance and the sensor signal for the both types of sensor, 

SnO2 mixed either gold or with platinum. The mixed powder was screen printing on the top of 

alumina substrate provide with platinum electrodes and heater in the backside. 
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Figure 3-30 : Resistance and sensor signal dependence on the CO concentration in dry air at 350°C 
sensors working temperature. Sensor provided with platinum (Pt) electrodes and gold electrodes (Au) 

 

As follow, the characteristic are: 

• Identical performance is observed for both types of mixed SnO2 based sensors. 

• The baseline resistance for sensor contain Platinum mixed sensitive layer is 

little higher than mixed Gold sensor. 

• The sensor signal (R0/R) is nearly the same. Platinum device is slightly higher 

than gold. 

Figure 3-31 shows the spectra of the mixed gold and mixed platinum in absorbance 

representation recorded in the same time of the electrical measurement. 
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Figure 3-31 : The whole DRIFT spectra of mixed powder of  SnO2+metal particles deposited on Alumina 

substrate provided with Pt electrodes exposed at 350°C to 250 ppm CO in dry air (-Au particles,-Pt 
particles, -pure). The spectrum recorded before CO exposure was used as a reference for each type of 

sensors 
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• The band of CO2 is present for each sensor. In Figure 3-32, the peak area of the CO2 

bands is plotted as a function of CO concentration. At low CO concentration, the 

amount of CO in the pores of the layer is the same for both types of sensors. At higher 

CO concentration, a higher CO2 concentration is observed for mixed Pt sensor. 
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Figure 3-32: CO2 bands area analysis. 

 
• At low wave number, the same shape of the curve is observed for the both type of 

sensors; only the band corresponding to the carbonate species can be easily assigned. 

The spectra of metal mixed sensors provided with platinum electrodes is quite similar to 

the spectra obtained with pure SnO2 sensor provided with Pt electrodes. The effect of 

the nature of the electrode is dominant in regard to the influence of metal inside 

sensitive layer. 

• In the OH group region, the increase of the band at 3666cm-1 and 3641cm-1 is observed.  

 

3.2.5.2.6 Summary of the mixed powder on alumina substrate 
 

With the mixed powders layer on alumina substrate with the heater and without 

electrodes, the idea was to increase the electrodes/sensitive layer contact and enhance the 

phenomena.  

The experiments reveal that the behaviour of each type of sensor (Pure, mixed gold 

and mixed platinum) is the same (Figure 3-29.) without electrodes. At low wave number, no 

bands appeared but CO2 band was present and proved that reaction took place on the surface. 

The non-existence of intermediate bands prove that the morphology or/and the specific area of 

the sensitive layer are important for the “stability of the intermediate species” on the surface 

of the sensor. The catalytic role played by the metal is perhaps more active.  
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The same sensitive layer (mixed gold and mixed platinum) was used and deposited on 

alumina substrate provide with platinum electrodes to recorded the resistance. In this 

configuration, intermediate species appears at the surface of sensors. In fact, at low wave 

number, the band of the monodentate carbonate appears. The result proves that the electrodes 

are important for the presence of intermediate species. DRIFT spectra of mixed powders 

deposited on platinum electrodes is close to the DRIFT spectra of pure SnO2 deposited on 

platinum electrodes. It is interesting to point out that electrodes manage the surface species. 

The influence of the electrodes is predominant to the role of metal dispersed in SnO2. When 

platinum electrodes are present, similar resistance has been observed by DC measurement for 

both mixed sensors. The species at the surface are also the same, which explain why the 

resistance is equivalent.  
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3.2.6 DRIFT summary 
 

 The experimental spectroscopic studies of the influence of the electrodes on the CO 

sensing provide many useful outcomes that allow for a better understanding of the electrical 

findings.  

By using DC measurements, it was found that the baseline, the sensor signal and its 

kinetic are affected by the nature of the electrodes. 

 In the DRIFT studies, 4 types of samples (conventional, powders, mixed without 

electrodes, mixed with electrodes) have been studied and most of our experiments were 

performed at 350°C; the reason is this temperature the difference were the most pronounced. 

The results from the DRIFT spectroscopy confirm the importance of the nature of the 

electrodes in gas detection. It was demonstrated that the chemistry of the CO pathways to 

form CO2 is modified by the nature of the electrodes/metal used. In dry air or humid, the 

selection of the nature of the metal was shown to modified the surface species. The electrodes 

share to the gas detection is manifest. 

CO reacts with ionosorbed oxygen (literature and following TPD experiments) and 

forms mainly two kind of intermediate species carboxylate and free carbonate (more ionic 

and non stable) and carbonate ( less ionic and more stable) on its way to conversion to CO2. 

The higher sensitivity of sensor provided by platinum electrodes can be explained by an 

increase of the CO to CO2 conversion rate. This is demonstrated by the lower amount of 

intermediate species visible on absorbance spectra for all samples in which platinum was 

present as electrodes, due to the capability of platinum to speed up the reaction. The low 

sensitivity of the gold electrode sample is due to the fact that during the conversion to CO2, 

the intermediates are playing a more important role, this means that especially the ionic 

species like carboxylate and non-coordinated carbonates-previously localised on the oxygen 

ion- will be allowed to block the charge longer. The charge will still be blocked at the surface, 

no more as O- but as e.g. CO3
-. Consequently, the sensor effect-change or resistance – is 

blocked even if the reaction between CO and O- already took place.  

The contrast between gold and platinum is also observed in the reaction kinetics. For 

gold, carboxylate are formed first and, after some time, the peak of the carbonates appears. On 

the opposite, for platinum the bands of carbonate and carboxylate are simultaneously 

appearing. In fact platinum presence helps to eliminate the carboxylate, so free sites are 

becoming available and can be easily occupied by the carbonates. This effect was even clearer 

for powders where the platinum helps to eliminate carboxylate and non-coordinated 
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carbonates which are more ionic but preserve a band for carbonate which is not ionic. Gold 

enhances the formation of the carboxylate and the non-coordinated carbonates. The 

consequence on the performance of the sensor is evident. The stability of ionic intermediate 

species at the surface demonstrated by their higher concentration on sensors with gold 

electrodes keeps the charge at the surface. With platinum the system converts quickly CO into 

CO2 and desorbs it. So, the charge is released into the conduction bands. 

Every time platinum is employed, the amount of surface species is quite low and the 

response is high. The background absorption level of the spectrum increases due to the 

increase of the free carrier density. This effect is more also important in the case of platinum. 

To understand the complete story of the effect of the electrode another technique has to 

be used in order to get more information. The next part is devoted to the thermodesorption 

experiments 
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3.3  Thermodesorption (TPD) 

3.3.1 Generalities 
 

There are a range of techniques for studying surface reactions and molecular adsorption 

on surfaces which utilise temperature-programming to discriminate between processes with 

different activation parameters. Among these ones, the most useful for powders studies is 

Temperature Programmed Desorption (TPD).  

When the technique is applied to a system in which the adsorption process is, at least in part, 

irreversible, and when T-programming leads to surface reactions, then this technique is often 

known as Temperature Programmed Reaction Spectroscopy (TPRS)  

However, there is no substantive difference between TPRS and TPD. TPD is a powerful 

method to study the species absorption on solid. These species are characterised by their 

chemical nature and the binding energy with the adsorbent material. Ed is the energy required 

to break the bond between the species and the surface. By heating the sample, the energy Ed 

is supplied. The species are removed from the surface and analysed by a mass spectrometer. 

 

3.3.1.1 The Desorption Process  

An adsorbed species present on a surface at low temperatures may stay almost indefinitely in 

that state. As the temperature of the substrate (or adsorbent) is increased, however, there will 

come a point at which the thermal energy of the adsorbed species is such that one of several 

things may occur:  

1. A molecular species may decompose to yield either gaseous products or other surface 

species.  

2. An atomic adsorbate may react with the substrate to yield a specific surface 

compound, or diffuse into the bulk of the underlying solid.  

3. The species may desorb from the surface and return into the gas phase.  

The last of these options is the desorption process. In the absence of decomposition, the 

desorbing species will generally be the same as the ones originally adsorbed , but this is not 

necessarily always the case.  
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(An example is found in the adsorption of some alkali metals on metallic substrates exhibiting 

a high work function where, at low coverages, the desorbing species is the alkali metal ion as 

opposed to the neutral atom. Other examples would include certain isomerisation reactions.)  

3.3.1.2 Desorption Kinetics  

The rate of desorption, Rdes , of an adsorbate from a surface can be expressed in the general 
form :  

  Rdes = k N x  where x - kinetic order of desorption  

k - rate constant for the desorption process 

N - surface concentration of adsorbed species  

The order of desorption can usually be predicted because it concerns an elementary step of a 
"reaction“. Here are few examples  

I. Atomic or Simple Molecular Desorption: 

  A(ads)  →  A(g)  

  M(ads)  →  M(g)  

- Usually is a first order process ( i.e. x = 1 ). 

Examples  
  W / Cu (ads)  →  W (s) + Cu (g)  (  desorption of Cu atoms from a W surface ) 

  Cu / CO (ads)  →  Cu (s) + CO (g)   ( desorption of CO molecules from a Cu surface)  

II. Recombinative Molecular Desorption  

  2 A (ads)  →  A2 (g)  
- Will usually be a second order process (i.e. x = 2).  

Examples  
  Pt / O (ads)  →  Pt (s) + O2 (g)  ;  desorption of O atoms as O2 from a Pt surface  

  Ni / H (ads)  →  Ni (s) + H2 (g)  ;  desorption of H atoms as H2 from a Ni surface  

The rate constant for the desorption process may be expressed in an ArRHenius form,  

  kdes = A exp ( -Ea
des / RT )  

Where Ea
des is the activation energy for desorption ,  

  
A is the pre-exponential factor; this can also be considered to be the "attempt 
frequency", ν , to overcome the barrier to desorption.  

Then, the following general expression for the rate of desorption is obtained: 
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In the particular case of simple molecular adsorption, the pre-exponential/frequency factor (ν) 

may also be equated with the frequency of vibration of the bond between the molecule and 

substrate; this is because every time this bond is stretched during the course of a vibrational 

cycle can be considered as an attempt to break the bond and hence an attempt of desorption.  

 

The rate of desorption of a surface species will in general be given by an expression of the 

form:  

)exp(.
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E
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Where 

Rdes - desorption rate   (= -dN/dt ) 

x   -   Kinetic order of desorption (typically 0, 1 or 2) 

Ea
des - activation energy for desorption 

 

In a temperature programmed desorption experiment in which the temperature is increased 

linearly with time from some initial temperature To, then:  

T = To + ββββ.t   and   dT = ββββ.dt        (2) 

The intensity of the desorption signal, I (T), is proportional to the rate at which the surface 

concentration of adsorbed species is decreasing. This is obtained by combining (1) and (2) to 

give  








 −=−∞
RT

EN

dT

dN
TI

des
aexp)(

β
ν χ

   (3) 

This problem may also be considered in a rather simplistic graphical way -the key to this is to 

recognise that the expression for the desorption signal given in the above equation is basically 

a product of a coverage term (N x - where N depends on T) and an exponential term (involving 

both Ea and T ).  
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Initially, at low temperatures Ea >> RT and the exponential term is vanishingly small. 

However, as the temperature is increased this term begins to increase very rapidly when the 

value of RT approaches that of the activation energy, Ea .  

 

Figure 3-33: Illustration of the evolution desorption signal  

By contrast, the pre-exponential term is dependent upon the coverage, N(T), at the concerned 

temperature - this term will remain at the initial value until the desorption rate becomes of 

significance, as a result of the increasing exponential term. Thereafter, it will decrease ever 

more rapidly until the coverage is reduced to zero. The shaded area is an approximate 

representation of the product of these two functions, and hence also an approximate 

representation for the desorption signal itself - whilst this illustration may be overly 

simplistic, it does clearly show why the desorption process gives rise to a well-defined 

desorption peak. 

3.3.1.3 Case of Molecular adsorption 

In this case the desorption kinetics will usually be first order (i.e. x = 1)  

The maximum desorption signal in the I(T) trace will occur when (dI / dT) = 0,  

i.e. when  

0exp =
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β
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,  (4) 

Hence, remembering that the surface coverage changes with temperature i.e. N = N(T),  

0.expexp..
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,  (5) 
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We have substituted Ea for Ea
des purely for clarity of presentation and defined the temperature 

at which the desorption maximum occurs to be T = Tp (the peak temperature).  

Substituting for dN/dT from eqn. (5) then gives  

0expexp.
2

=
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RT
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β
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,   (6) 

The solution is given by setting the expression in square brackets to be equal to zero, i.e.  

0exp
2

=












 −=−
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p
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RT

E

RT

E

β
ν

,  (7) 

Unfortunately, this equation cannot be re-arranged to give a simple expression of Tp but we 

can note that:  

• As Ea
des (the activation energy for desorption) increases, then so Tp (the peak 

temperature) increases.  

• The peak temperature is not dependent upon, and consequently does not change 

with, the initial coverage, Nt=0 .  

• The shape of the peak desorption will tend to be asymmetric, with the signal 

decreasing rapidly after the desorption maximum.  

3.3.1.4 Experimental method to calculate Ea and υ  

For the first order desorption kinetics (most of the case), it is possible to determine υ and Ea 

from the shift of the temperature ∆T from T1 and T2 when the temperature rate β change from 

β2 and β1. 
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T2= T1+∆T, one obtains expression (11) 
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If we consider that T1>>∆T, we have the expression of Ea 

1

2

2

1 log
β
β

T

RT
Ea ∆

=    (12) 

Then the value of υ is derived from equation (8) 








 −=
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1

1 exp
RT

E

RT

E aaβυ   (13) 

Hence, by performing two experiments with different heating rate β2 and β1 and measuring 

the maximum desorption temperature T1 and T2, it is possible to calculate Ea and υ 

 

3.3.2 Experimental set up of TPD 
 

For TPD measurements, both pure SnO2 and SnO2 mixed with Au and Pt particles were 

used in the form of powder. They were prepared like a paste for a sensor and annealed at 

700°C. Tin dioxide powder used in the experiments was the same commercial powder used 

for sensors. Adsorption gases, oxygen (99,99%) and CO, were supplied by Air Liquide 

(France). For the TPD measurements, 30mg of SnO2 powder was packed in a quartz chamber. 



Investigation of the surface reaction by DRIFT analysis and TPD 

 128 

Figure 3-34 shows the set up of the TPD experiment. Each TPD run consisted in the following 

process (called “regular process”): 

 

-Sample pre-treatment at 900°C under vacuum to clean up the surface of the powder. 

-gas adsorption is done at the required temperature Tx during a certain time t. 

   Example: O2 adsorbed at 500°C during 30 min 

-The vacuum is done at the temperature Tx and immediately the sample is quenched to 

the room temperature (RT). 

-Finally TPD run is launched at a heating rate of 20°C/min from room temperature (RT) 

to 900°C and the desorption is monitored by a BALZERS QMG 112 quadrupole mass 

spectrometer (Figure 3-34)  

 

 

 

Figure 3-34: set up of Temperature Programmed Desorption 
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Figure 3-35 : A schematic of a quadrupole analyser of the mass spectrometer 
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3.3.3 Results and discussion 
 

3.3.3.1 Adsorption of oxygen  

3.3.3.1.1  On pure SnO2 
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Figure 3-36 : TPD thermogram(mass 32) after 100 mbar O2 exposure at different temperature. The scale for the 
dash curve (at RT) is in the right side. 

 

For most application, the aim of sensor is to detect some traces of pollution in ambient 

atmosphere or at least in the presence of oxygen. It is convenient to describe first the thermal 

desorption of oxygen from pure SnO2 powder. In Figure 3-36, the TPD thermogram after 

oxygen exposure is reported. SnO2 powder was exposed to 100mBar of O2 at different 

temperature from RT to 500°C during 30min. Depending on the exposure temperature, 5 

kinds of adsorbed oxygen species can be characterized from TPD experiments. Each oxygen 

species have a specific behaviour. Oxygen from the bulk Lattice (OL) is always present and 

independent on the temperature exposure. Its desorpion start around 880°C. We note it δ in 

our notation. The α1 and α2 species which desorbs in the range 80-200°C are only present for 

exposure at room temperature. β and γ species are formed if the exposure temperature is 

above 100°Cduring a long period. Time exposure and temperature control the intensity of the 

peaks. For species, β and γ, an exposure at 500°C, peak intensity is maximal. According to the 

literature (in chapter 1) on TPD [149], EPR, DRIFT and to the relation between the 

temperature and the Activation energy of desorption (Eq 12), the bond between the oxygen 
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species and the SnO2 should be weak at low temperature. It is possible to assign the different 

peak to a specific oxygen species as follow: α1 (80°C, O2) and α2 (150°C, O2
-) β (450-600°C, 

often centred at 550°C, O-), γ (around 730°C, OLsurface) and δ (above 800°C, OLbulk), where 

the temperature and species noted in parentheses indicate the approximate maximum 

desorption temperature (Tm) and the corresponding adsorbed oxygen species. The following 

table summarized the oxygen species at the surface of pure SnO2. 

Table 3-2 : Oxygen species at the surface of SnO2 

Name 
Oxygen 

form Temperature range (°C)  Tm(°C) 
α σ-O2 80   
α σ-O2- 120-200 150 
β σ-O- 450-600 550 
γ O0

x(OL)+ σ   730 
δ OL(bulk)   880 

 

A simply mechanism can explained the formation of the oxygen species. Our starting point is 

the oxygen in the gas phase the process can be as follow:  

    physisorption 

O2 (gas) + σ    σ-O2   α1 

 

σ-O2 + e-    σ-O2
-    α2 

 

O2 + 2e-+ 2σ    2σ-O-   β 

Or  σ-O2
- +e- + σ    2σ-O 

 

σ-O- + e-+Vo
..
    O0

x+ σ  γ 

Where σ is an adsorption site.  

Vo
.. and O0

x represents respectively an oxygen vacancy and a lattice oxygen using Kroger 

Vink notation (O0
x=OL) 

More the adsorption temperature increase, more oxygen species become ionic and thus 

strongly bond. Depending on the working temperature, each species can be also more or less 

present at the surface of SnO2. For example, closer the temperature is to 200°C and more the 

O2
- is dominant but O- is also present  

At elevated temperature, i.e. at temperature superior to 100°C but inferior to 600°C, only β 

and γ desorption peak are observable. Figure 3-37 (a) and (b) shows the dependencies of the 
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Oβ peak and Oγ as a function of the temperature exposure and the pressure. For an exposure 

over 600°C the Oβ desorption peak does not appear which confirms that O- is not stable over 

this temperature whereas γ is stable. Secondly, at fixed temperature (500°C), in the Figure 

3-38(b), by increasing the adsorption pressure (P) from 1mbar to 500mbar the intensity of the 

Oβ peak increases. Figure 3-38(c) shows that the increase of Oβ species versus pressure 

follows a logarithmic law. For the Oγ peak, the intensity is constant with the rise of pressure.  

These results prove that the Oγ come from the oxygen lattice of the surface because 

the level is independent to pressure but the quantity of Oγ is definite. It is why a maximum 

can be observed. For Oβ, The influence of oxygen pressure proves that we have a 

chemisorption of oxygen at the surface. This chemisorption, in this condition, form the Oβ 
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Figure 3-37: TPD thermogram (m/z= 32) after exposure at different temperature (a), at different pressure 
(b), and the relation between the height of the Oβ peak and the pressure (c). 
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Comment about the ionisation fragment of O2:  

In the experiments, O2 masses 32 and 16 were followed. Mass 16 is the main fragment 

of mass 32. The prove is shown in the Figure 3-38, for 100 mbar exposure at 500°C the shape 

between the mass 32 and the mass 16 is the same but intensity is less for the mass 16. It is 

why we prefer to show the mass 32 
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Figure 3-38 : TPD thermogramfor the mass 16 and 32, after 100mbar O2 exposure at 500°C. 

 

3.3.3.1.1.1 Energy of desorption and frequency factor 

 
A way to confirm the nature of oxygen species is to calculate the desorption energy 

Ea
(des). According to the experimental method (detailed in 3.3.1.4) and considering that 

desorption process is a first order, we can estimate Ea
(des) and υ. Figure 3-39 shows the results 

obtain with three different heating rate 10, 20,30 °C/min. It can be seen that according to the 

desorption theory almost all peaks are shifted towards high temperature if the heating rate 

increase (table 3-1)  
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Figure 3-39 : TPD thermogram (mass 32) after 100mbar O2 exposure at 500°C during 15min,for different heating 

rate. 

 
One problem is observed for the peak corresponding to Oβ at 10°C/min. the temperature of 

this peak is higher than expected. So the calculation are made with experiments at 20 and 

30°C/min. measured value are reported in the Table 3-3  

Table 3-3 : Temperature of the maximum desorption for each type of oxygen species Oβ and Oγ 

β (heating rate) TOβ(°C) Toγ(°C) 
β1 10°C/min 598  759  
β2 20°C/min 587 771 
β3 30°C/min 625 792 
∆T=T2-T1 38 21 

The value of Ea and υ calculated thanks to expression (12) and (13) reported hereafter are 
indicate in the Table 3-4. 
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• The values 25kJ/mol for Oβ species and 75kJ/mol for Oγ species are in the range of 

chemisorption energies which means that there are strongly bonded to the surface. 
 

• The weaker value of Ea
des (Oβ) indicates the relative facility of these species to 

react with other compounds. 

Table 3-4 : value of Ea and υυυυ for Oβ and Oγ oxygen species 

  T2(°K) E a
des(j/mol) υ(s-1) 

TOβ 860 28495 54 

Toγ 1044 75985 41243 
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3.3.3.1.1.2 Relation between water, hydroxyl and oxygen on pure SnO2  

 
With the aim of going deeper in the relation of oxygen with SnO2, using the TPD 

technique, the influence of the oxygen with water and/or the hydroxyl groups was followed. 

Most metal oxides are covered with hydroxyl groups under normal condition which means in 

ambiant atmosphere. Since surface hydroxyl groups seems to have a great influence on the 

physical and chemical properties of metal oxide surface, it is important to have informations 

on the adsorbed state of water on the surface. In the previous section, the formation of the 

oxygen species at the surface of the SnO2 has been described. It was found that the creation of 

oxygen species depends on temperature. In this section, no water vapour has been introduced 

but there is a certain amount of water and hydroxyl group at the surface of SnO2 coming from 

time where the sample was in atmosphere. It is very difficult to remove water because a small 

amount is introduced during the oxygen exposure coming from the bottle and pipes. We have 

found a strong relation between the oxygen species Oβ and the formation of a new OH group. 

Figure 3-40 shows the TPD thermogramfor the mass 17, 18 and 32 assigned to OH, H2O and 

O2 after adsorption of 100mBar oxygen at 500°C and 600°C.  

 

0 200 400 600 800 1000

0.0

1.0x10-10

2.0x10-10

3.0x10-10
0.0

1.0x10-10

2.0x10-10

3.0x10-10

Oγ

500°C

5

 

 

4

3

2

1

U
.A

Tempeature(°C)

Oγ

Oβ

600°C

 

 

 

4
3

2
1

U
.A

 Mass 17
 Mass 18
 Mass 32

 

Figure 3-40 : TPD thermogram of water (mass 18), hydroxyl (mass 17) and oxygen (mass 32) after 
adsorption of oxygen at  500°C and 600°C 

 

After adsorption of oxygen at 600°C, four water desorption peak appeared: (1) 150°C-

175°C; (2) 200°C, (3) 286-305°C, (4) 375-385°C. Many authors [Y, Hand T, Eg,] studied the 

adsorption of water vapour and found two broad peaks: the first one centred at 150°C, and the 

second one centred at 400°C. They attributed the first peak to the water molecular desorption 
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and the second to hydroxyl groups. In our case, it was already mentioned that the amount of 

water is quite low. Based on the results of these authors, the four desorption peak in the 

present case can be also divided in two groups: the first group contains only the peak 1 

corresponding to water molecule which is entirely desorbed at 175°C and the others peaks 2, 

3, 4 which correspond to three different sites of hydroxyl group adsorbed. Usually these peaks 

cannot be identified when water vapour is exposed because of the highest level of water; in 

such condition, only the presence of broad peak is observed. One should remind that water 

observed here results only from water pre-adsorbed in atmosphere before using our sample. It 

puts in light that molecular water (weak peak n°1) can be considered as almost completely 

removed after the cleaning process whereas hydroxyl groups are still present and strongly 

bonded to the surface. The maximum temperature to remove the entire hydroxyl group is 

around 450°C-500°C. It is assumed that hydroxyl groups can affect the conductivity of SnO2, 

but water molecule is considered to have a small influence on it. Temperatures of the 

maximum (Tm) desorption are given in a range roughly important due to the fact that Tm can 

shift in function of the molecule surrounding and the possibility to form hydrogen bond.  

 

In the second experiment where oxygen has been pre-adsorbed to 500°C, a new band 

centred at 550°C appears. This new hydroxyl specie is correlated to the presence of oxygen 

Oβ specie. Effectively, at 600°C, the peak Oβ wasn’t present as well as the OH peak at 550°C. 

A direct reaction between O- (β) and H2O can be suggested to explain this relation: 

 

H2O + σ-O- + σ ↔ 2 σ-OH+ 1 e- 

Thus, desorption of σ-OH species will lead to simultaneous emission pf water vapour 

(n/e=18) and Oβ (σ-O
-) 

By DRIFT, D. Koziej [150] have demonstrated the relation between oxygen 

concentration and the increase of a hydroxyl band, as shown in Figure 3-41. The band at 

3640cm-1 suggests an increase of the hydroxyl group when the O2 concentration is increased. 

TPD measurements complete this observation and also prove direct link between oxygen and 

hydroxyl group formation. The relation between the formations of OH group in the presence 

of O- (Oβ) is also important and should be taken in account to explain some detection 

mechanism of SnO2 with a reducing gas. If a reducing gas (CO) is present, a possible 

competition can take place between the reaction of the formation of Hydroxyl group and the 

reaction with the reducing gas. 
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(a)     (b) 

Figure 3-41 :Changes of the band bending (a) and the respective single channel DRIFT spectra (b) of 
the tin dioxide sensor (U500Y) exposed to oxygen: a- 7 0  ppm, b - 2 0 0 0  ppm, c - 5 0 0 0  ppm, d - 10000 

ppm, e - 50000 ppm at 400°C and at constant humidity level (3 ppm)[150]. 

 

3.3.3.1.1.3 Isotope exchange investigation 
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Figure 3-42 : TPD thermogram after exposure To O18

2 at 500°C. TPD thermogram with O16
2 exposure is 

used as reference. a) m/e=32 b) m/e=34 c) m/e=36 
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O2
18 exchange isotope was conducted in order to validate the ionosorption of the Oβ 

specie. During the isotope exchange the signals m/z= 34 (O16O18), m/z= 36 (O18
2) was 

followed in addition to m/z= 32 (O16
2). Figure 3-42 illustrated the results obtained for an O18

2 

exposure at 500°C. In the same figure the O2
16

, exposure at 500°C is plotted to compare both 

effects. As already mentioned, when O16
2 is adsorbed at elevated temperature and especially 

at 500°C, two main bands appear: Oβ (550°C) and Oγ (760°C). No bands appears for m/z=34 

and m/z=36 which is logic as no O2
18 was present.  

When, the sample is exposed to O2
18, the Oβ and Oγ peaks are observed for all signals m/z=32, 

34, 36. For m/z=32 (Figure 3-42 (a)), the comparison of signals measured after exposure to 

O2
18 and O16

2 shows that the intensity of Oβ (O-) peak is strongly decreased in the case of O2
18 

exposure, whereas Oγ (OL) peaks, intensity is only slightly decreased. 

For m/z=34 (Figure 3-42 (b)) and (Figure 3-42 (c), it can be seen that the relative intensity of 

Oβ (O-) peak increases comparably to the one of Oγ (OL) peaks. 

These results indicate that: 

o O16
2 is still present in our experiment, even in the case of O2

18 exposure because 

m/z=32 signal remains significant in this condition. 

o Oβ (O-) species mainly issued from previous absorption from gas surrounding the 

sample during exposure treatment according to reaction previously written: 

 

O2
18 + 2e- + 2σ  � 2σ-O18-   (formation Oβ) 

 

o  On the contrary, Oγ (OL) species which are desorbed are mainly constituted from the 

oxygen of SnO2 lattice, thus of isotope O16 

 

2O0
x
� 2VO

” + O2 +2e-   (formation Oγ) 

 

o But, O2
18 can be incorporated in the lattice Oγ as peak m/z=34 and m/z=36 are 

significant. This incorporation during exposure step can occur from reaction 

previously reported, but from Oβ  

σ-O18- + VO
” + e- � Oo

X18 + σ 
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3.3.3.1.2 Adsorption of oxygen on SnO2 With metal addition  
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Figure 3-43 : TPD thermograms of oxygen for Pure SnO2 powder, Au+ SnO2 powder and Pt+ SnO2 
powder after the adsorption of 100mbar oxygen at 500°C. 

 
The TPD thermograms of Oxygen desorption with the SnO2 mixed with noble metal 

are shown in Figure 3-43. In comparison with pure SnO2, the desorption of oxygen with Au 

mixed SnO2 exhibits almost the same peak at 550°C (Oβ), 760°C (Oγ), and a gradual 

desorption of oxygen after 800°C. The interaction of oxygen with the powder Pt mixed SnO2 

is quite different from pure and gold mixed powders. In fact, desorption of the first oxygen 

species (Oβ) for gold mixed or pure SnO2 starts at 460°C while starts at 510°C for the Pt 

mixed powder. Two peaks are present for both Au mixed and pure SnO2 powders whereas 

only one peak in the neighbourhood of 705 °C is present for Pt mixed SnO2 powder. a gradual 

desorption is observed in all cases corresponding of the Oδ desorption.  

From the point of view of the adsorption and desorption processes of oxygen, in 

regards to the nature of the metal, it is obvious that platinum affects the process. The 

desorption temperature and the shape of the peak suggest a stronger bonds between platinum 

and oxygen species.  

The catalytic role of the platinum is known for a long time even if the mechanism is 

not obvious. Two mechanisms are known: “the spill over effect” and “the “electronic effect”. 

The absence of visible desorption suggest that the oxygen prefers adsorbed directly on the 

platinum. 
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3.3.3.1.2.1 Effect of the adsorption temperature  

 

To have a clear overview of the effect of the metal dispersed in SnO2 on the oxygen 

desorption, TPD measurements were done from different temperatures of gas exposure from 

room temperature (RT) to 600°C. The process was the same as the one used with pure SnO2. 

After cleaning the surface, 100mBar of pure oxygen was exposed to the sample (mixed gold 

or mixed platinum) at the required temperature during 30min. Then, the sample is quenched 

to RT and the TPD program is running. The results are shown in Figure 3-44 
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Figure 3-44 : Thermogram of the desorption of O2 (m/z=32) after 100mBar exposure at different 
temperature for gold and platinum 

 

• .Oβ and O γ species. 

With gold particles inside the SnO2, the result is quite comparable to pure tin dioxide. 

At 300°C, the peak corresponding to Oβ and Oγ desorption appear. With the increase of 

the temperature the intensity of the peaks increases. At 600°C the formation of the Oβ is 

not possible, as already discovered with pure SnO2. In case of platinum particles added to 

the SnO2, the behaviour is not the same. The formation of Oβ started at 400°C and the 

maximum desorption temperature (Tm) is shifted. The presence of the peak of Oγ is not 

real clear. It seems that only one species is present.  
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Figure 3-45 : Thermogramm of the desorption of O2 after 100mBar exposure at different temperature for 
gold and platinum 

Put in together the thermogram from gold and platinum samples reveals that the 

intensity is quite different. For platinum, on one hand the signal intensities are weaker and 

other hand the temperature of the maximum desorption is 40°C higher than that of gold 

sample. The difference of the maximum desorption temperature means simply that oxygen is 

better bond in the case of platinum than gold.  

 

• α species 

.  

Figure 3-46 : Fit of the oxygen thermogram for an adsorption at RT for (a) pure, (b) SnO2+Au and (c) 
SnO2+Pt 

The presence of the metal has an important effect on the adsorption of the oxygen species at 

room temperature (RT). On Figure 3-46, the thermograms are focused on the range from RT 
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to 300°C, when 100mBar of oxygen is adsorbed at RT during 30min, for the three types of 

powders. If the pure SnO2 is considered as the reference the presence of the metal modified 

the adsorption of the oxygen. In presence of gold, the weak bond species α1 is favoured 

whereas the platinum favours high bond species α2. As a function of the nature of the metal, a 

predominance of oxygen species exist.   

3.3.3.1.2.2 Influence of adsorption oxygen partial pressure 

 

At an exposure temperature of 500°C, the influence of the adsorption oxygen partial 

pressure of oxygen exposed to the sample was checked. Figure 3-47 shows the result. Gold 

samples seem to be less affected by the pressure and desorbed usually the same quantity 

whereas for the platinum ones the intensity of the Oβ species s increases with pressure. 
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Figure 3-47 : Thermogram of the desorption of O2 after oxygen exposure at 500°C at different pressure 
for  gold and platinum 

 

3.3.3.1.3 Summary of oxygen adsorption results 
 

TPD thermograms of oxygen desorption from pure SnO2 consist of 5 peaks: Oα1 

(80°C, O2) and Oα2 (150°C, O2
-) Oβ (450-600°C, often centred at 550°C, O-), Oγ (around 

730°C, OL and δ (above 800°C, OLbulk).. With platinum, the Oβ (O
-) species is less significant 

its maximum desorption temperature is at a higher temperature. With Au, the situation is 

unchanged compared to pure SnO2 
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3.3.3.2 Variation of oxygen desorption with coadsorption of reducing 
gas. 

3.3.3.2.1 With pure SnO2 
 
Direct reaction. 
 

Indeed, what happen for our system if a reducing gas is introduced? To observe the 

relation between oxygen and a reducing gas the following process was done. The sample was 

kept under 100mbar oxygen atmosphere at 400°C during 30min and a reducing gas, carbon 

monoxide or methane, has been introduced during short period. Then, the “regular process” 

has been used. As reference the TPD thermogram without any reducing gas adsorption has 

been taken, which exhibit a peak at 550°C (Oβ). If a reducing gas is adsorbed, the Oβ peak 

disappears totally, see Figure 3-48. With CO (300ppm) the effect is faster than CH4 

(1000ppm), after 5 min the peak (which means the species) disappears. Most people [151] 

have suggested a direct reaction with reducing gas and chemisorbed oxygen but it was never 

really proved until now, using TPD measurements. To avoid any other effect (desorption of 

these species due to the temperature in vacuum for example) a neutral gas (Argon) has been 

also introduced after the oxygen. The result with Argon is also shown in figure 6. The Oβ 

peak is still present after the argon exposure. This last result proves a real reaction between 

reducing gas (CO or CH4) and ionosorbed oxygen. The reaction can be written : 

CO + σ-O- � CO2 + σ + e- 
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Figure 3-48 : TPD chromatograms of oxygen desorption (m/ z=32)  
in function of the gas co-adsorbed at 500°C after 100mbar oxygen adsorption On pure SnO2. 

 

 



Investigation of the surface reaction by DRIFT analysis and TPD 

 144 

Consequences and product. 
 

In the previous section, a relation between Oβ species and the formation of new 

hydroxyl species has been proved. It is interesting to inquire the consequence of the reaction 

of a reducing gas with Oβ specie on the water desorption thermogram. Moreover, it is known 

that the product of the reaction of CO with the oxygen of the surface is CO2. Figure 3-49  

shows the thermogram of CO2 (mass 44) and oxygen and Figure 3-50 shows the thermogram 

of water and oxygen. These two graphs illustrate the consequence the disappearance of the Oβ 

on the hydroxyl group and CO2. Only the case of CO is shown here. Two consequences of the 

reducing gas co-adsorbed after the oxygen pre-treatment are visible:  

 

• Figure 3-49 reveals an increasing of the CO2 peak desorption after CO 

adsorption. It confirms that the product of the reaction is mainly CO2. 
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Figure 3-49 : TPD thermogram of oxygen desorption (m/z=32) and CO2 (m/z=44)  with or without CO co-
adsorption. 
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Figure 3-50 : TPD thermogram of oxygen desorption (m/z=32) and water (m/z=18) with or without CO co-
adsorption. 

 

• The OH550 peak is linked to the Oβ peak decrease. These means that the 

reaction between CO and “O-“is dominant in comparison with the formation of 

the OH group.  

A simple sketch explains this dominance in the Figure 3-51 The Starting point is the 

dissociation of water at the surface of the SnO2 which as already known to be as follow. 

 

H2O+σ+Oo
x �(OH— σ) + (OH)o

*  + e- 
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Figure 3-51: Sketch of the relation between Oβ (O
-) and the formation of OH group and the influence of 

the presence of a reducing gas CO 

 

3.3.3.2.2 With the presence of the metal 
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Figure 3-52 : TPD thermogramfor mixed SnO2 powder: (a) Oxygen (m/e= 32) and (b) CO2 (m/e=44) 

 

Similar test were performed with samples mixed with gold or platinum particles. The 

consequence of CO adsorption on the oxygen thermogram when the Oβ is present is 

illustrated in Figure 3-52(a). The CO2 desorption is measured at the same time, Figure 

3-52(b). After the adsorption of oxygen at 400°C, two desorption peaks appear for gold and 

only one for the platinum sample as described previously. The adsorption of CO after the 

oxygen exposure reduce the peak of oxygen desorption for both mixed powder. In the case of 

gold, mainly the Oβ peak is reduced which is the same behaviour as observed on pure powder. 

With platinum, the oxygen desorption declines strongly but keep the same shape. In Figure 

3-52 (b), the CO2 desorption is quite different for each type of metal. For gold, a gradual 

desorption of CO2 is observed started at 400°C whereas a well pronounced CO2 peak 

desorption is observed centred at 250°C in the case of Pt.  

With platinum, The CO2 peak desorption at 250°C where no oxygen site is present. 

This result suggests an easiest formation of CO2 in the case of platinum and confirms the 

catalytic role played. Secondly, with gold, a gradual desorption suggest possible intermediate 

like CO3, CO3
2-and CO2

- which can desorbed as CO2 at different temperatures. 

3.3.3.3 Summary of the interaction with a reducing gas 
 

When a reducing gas (CO or CH4) is exposed to SnO2 powder after the oxygen 

exposure, the desorption of the Oβ species is no more visible in the TPD oxygen thermogram 

and in the same time, the CO2 desorption increases, which proves a direct reaction between O- 

and the reducing gas. 

CO + σ-O- � CO2 + σ + e- 
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When metal is present, the effect of Au and Pt are, as in the case of oxygen, quite 

different. For the Au sample the same results, as for the case of metal absence, are recorded. 

For the Pt sample, the CO2 desorption is quite different, very sharp and at lower temperature 

(250°C). 

3.3.3.4 Discussion on TPD  
 

Observations of the oxygen state at the surface of a material are a big challenge. It was 

not possible to use DRIFT due to the set up of our experiment. Thermodesorption (TPD) was 

a good choice to follow oxygen species. In the DRIFT experiments, some questions remained 

unsolved. The main one was: how the platinum can activate the CO conversion to CO2? Are 

the speeds up of the reaction at the surface and the low amount of intermediate species at the 

surface sufficient to explain the sensibility to CO? 

Pure SnO2 was studied before to study the influence of metal. We found 5 different 

oxygen species which can desorbed. The Oβ species was found to be the most reactive to the 

reducing gas. The presence of gold doesn’t change the mechanism. In other hand, 5 oxygen 

species desorbed were also found. With platinum, the behaviour of the oxygen desorption is 

different. In fact, only one species from the material (usually: Oγ surface and Oδ bulk) was 

found to desorb. Another result is the higher temperature of the Oβ species desorption.  

With the results found, it is obvious that the nature of the metal can modify the oxygen 

species at the surface. For gold, we can affirm that the surface is not modified.  The effects of 

platinum on the oxygen species are related to the oxygen desorption. The higher temperature 

indicates a better bond between oxygen and the surface of the SnO2.The fact that the oxygen 

bulk desorption is also modified can indicate that the surface sites are modified. The presence 

of platinum modifies the surrounding of the oxygen.  

In addition to this result, the formation of CO2 in the presence of metal was found to 

be favour by platinum. The oxygen is better bound at the surface of the SnO2 + Pt, which 

means that the electron are delocalized to form this bond is a higher state. It means that in 

presence of CO, the reaction with O- and the release of the electron will be more significant. 

This result correlates with the high sensitivity of sensor with platinum electrodes. 
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3.3.4 TPD Conclusion  
 

Temperature-programmed desorption experiments for different as were performed in 

order to helps the understanding of the electrode material induced effects. For oxygen, based 

on the literature data, it was possible to assign the different peaks to specific oxygen species, 

as follow: α1 (80°C) belongs to the molecular physisorbed oxygen O2 and α2 (around 150°C) 

to singly ionised molecular oxygen O2
- . The β peak is currently attributed to the singly 

ionised atomic oxygen (450-600°C, often centred at 550°C, O-). The 2 last ones can be 

assigned to oxygen form the lattice: first the γ (around 730°C) to surface OL and δ (above 

800°C), the lattice oxygen from the bulk OL (bulk). It is important to observe that, depending on 

the electrodes material, the maximum of the peak corresponding to O- appears at different 

temperatures. Due to the fact that for Pt the maximum desorption is higher, one can consider 

that the bonding of O- at the SnO2 is stronger. 

A little bit surprising is the funding that in the case of Pt, where the O- is probably strongly 

bond to the surface, the CO2 desorption after the simultaneous exposure of the powders to O2 

and CO, takes place much stronger and at lower temperatures if compared to the gold case. In 

the same experiment we can see that for all cases- SnO2 and SnO2 mixed with Pt and Au- the 

reaction between O- and CO takes place. The adsorption of O2 is practically eliminated. 

However, for SnO2 and SnO2 mixed with Au the elimination of the final reaction product 

(CO2) is taking place with difficulty. These results are confirming the finding provided by 

DRIFT analysis about the blocking of CO/O/electrons at the surface in the form of ionic 

intermediates in absence of Pt.   
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Chapter 4  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Conclusion  
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The reason for starting this work was the fact that there was a lack of knowledge about 

the influence of the electrodes into the sensing process of gas sensor. Previous study of O. 

Montmeat in MICC department proposed a macroscopic approach of the electrodes 

considering mainly electrical phenomena. So, the aim at the present work was to investigate 

deeper the implication of electrodes, at the microscopic scale.. To achieve that, the followed 

strategy was to have, in addition to the usual DC resistance measurement, phenomenological 

and spectroscopic (DRIFT and TPD) studies in order to investigate the influence of the 

electrodes.  

 

• Electrical measurement  

 

The first part of this work was devoted to the study of the influence of the geometry 

and of the nature of the electrode. It was proved that the nature of electrodes has an effect on 

the overall resistance on the gas sensor and on its performance. Different approaches were 

used to understand this problem with more or less success: 

- Using SnO2 mixed with big metal particles as sensitive layer for gas sensor in order to 

increase the metal-semiconductor interface. We discovered that the overall resistance is more 

influenced by the nature of electrodes rather than metal particles inside the layer.   

- It was supposed that the one can increase the electrical effect by narrowing the gap. This 

effect was, in our case, just a geometrical one. By reducing the space between the electrodes, 

we just changed the resistance of the sensitive material placed between the two electrodes. No 

real qualitative effect of the electrode was identified.  

 

 

• Spectroscopic information 

Another method to investigate the role of the electrodes is to observe surface reactions during 

CO sensing with gas sensors. DRIFT was used simultaneously to the DC measurement of 

electrical resistance. One observes that, depending of the nature of the electrodes, the reaction 

pathway from CO to CO2 is modified. On the basis of such studies a first finding is the 

identification of the commonly observed intermediate surface species being monodentate 

carbonates and carboxylates. Besides that, it was shown that platinum electrodes decrease the 

concentration of intermediate species and favour the formation of CO2.The decrease is not 

uniform for all intermediate species: the monodentate carbonate decrease less because it is the 
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most stable species. On the opposite, with gold electrodes, many intermediates are present at 

the surface. The intermediates concentration can be correlated with the electrical performance 

of the sensor. Namely their presence indicates the fact that the charge transfer from the 

surface species to the conduction band is blocked. The system can “get rid of” the 

intermediates faster and simultaneous response is increased: 

The formation of carboxylates and monodentates is a consequence of the direct reaction of 

CO with oxygen species. Unfortunately, up to date there is no adequate technique for a direct 

monitoring of oxygen ions in operando conditions.. To get more insights, TPD measurements 

were performed, mainly focused on observing the oxygen desorption from the powder. It was 

found that the pure and mixed gold SnO2 powders show the same trend for oxygen 

desorption. With mixed platinum powders, it was found that oxygen is stronger bonded to the 

surface. Thus, the weak concentration of intermediate species observed by DRIFT is a 

consequence of the quantity of oxygen present at the surface, but the important sensitivity is 

mainly due to the quality of the bond of oxygen species when platinum is present. 

 

 

Outlook 

This thesis was a step ahead to understand the effect of the electrodes on sensors 

performances. The success was due to the approach of using different techniques to 

investigate a selected problem Many improvements can be done and especially on the 

electrical part: our main problem was the size of our system and by using micro technologies 

for building a new device on silicon substrate this withdraw could be eliminated. With this 

new device, impedance spectroscopy measurement technique could be done to complete the 

understanding. They could clarify the contribution of electrodes to the electrical transduction. 

The influence of the geometry (size of the electrode and gap between them) could also be 

clarified. Concerning the spectroscopic technique, one could improve the quality of the 

spectra recorded at higher sensor operating temperatures by using an optical filter. Thus, the 

saturation of the MCT detector should diminish.  

In future research, Flash TPD, directly on sensor could be use to mach with the 

powder results. 
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