N

N
N

HAL

open science

Geometric operators for motion planning

Jesse Himmelstein

» To cite this version:

Jesse Himmelstein. Geometric operators for motion planning. Computer Science [cs]. INSA de
Toulouse, 2008. English. NNT: . tel-00348010

HAL Id: tel-00348010
https://theses.hal.science/tel-00348010
Submitted on 17 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00348010
https://hal.archives-ouvertes.fr

These

Préparée au Laboratoire d’Analyse de d’Architecture des Systemes du CNRS

En vue de I'obtention du Doctorat de
I'Institut National des Sciences Appliquées de Toulouse

Ecole Doctorale Systemes
Spécialité : Systemes Informatiques

par Jesse Cooper HIMMELSTEIN

Geometric Operators for Motion Planning

Soutenue le 19 septembre 2008 devant le jury :

Président Thierry Siméon
Directeur de these Jean-Paul LAUMOND
Rapporteurs Emmanuel MAZER

Dinesh MANOCHA

Examinateurs Etienne FERRE

Abstract

Keywords: geometric reasoning, assembly sequence planning, motion planning, collision
detection, swept volume calculation

Motion planning is building a considerable momentum within industrial settings. Whether for
programming factory robots or calculating mechanical assembly sequences, motion planning
through probabilistic algorithms has proved to be particularly efficient for solving complex
problems that are difficult for human operators.

This doctoral thesis, a collaborative work between the research laboratory LAAS-CNRS and
the startup company Kineo CAM, is aimed confronting motion planning problems encountered
in the virtual factory. We have identified three domains that are of interest to industrial partners
and we contribute to each: collision detection, swept volumes, and motion planning in collision.

Collision detection is a critical operator for analyzing digital models within their
environment. Motion planning algorithms rely so heavily on collision detection that it has
become a performance bottleneck. This explains why such a large variety of collision detection
algorithms exist, each specialized for a particular type of geometry, such as polyhedra or voxels.
Such a diverse solution space is a barrier for integrating multiple geometry types into the same
architecture.

We propose a framework for performing proximity queries between heterogeneous
geometries. While factoring out the algorithmic core common to spatial-division and bounding-
volume schemes, the framework allows specialized collision tests between a pair of geometric
primitives. New geometry types can thus be added easily and without hurting performance. We
validate our approach on a humanoid robot that navigates an unknown environment using
vision.

Swept volumes are a useful tool for visualizing the extent of a movement, such as the
vibrations of an engine or the reaching of a digital human actor. The state-of-the-art approach
exploits graphics hardware to quickly approximate swept volumes with a high accuracy, but only
applies to a single watertight object. To adapt this algorithm to handle computer-aided design
input, we modify its behavior to treat polygon soup models and discontinuous paths. We
demonstrate its effectiveness on disassembly movements of mechanical pieces with a large
number of triangles.

It can be challenging to manipulate the volume described by a polygon soup. Starting with
the swept volume algorithm, we introduce operators to change the size of discrete objects. At a
basic level, we calculate the Minkowski sum of the object and a sphere in order to inflate the
object, and the Minkowski difference to deflate it. We test these operators on both static and
moving objects.

i J Geometric Operators for Motion Planning

Finally, we take on the problem of motion planning in collision. Although it may appear as
a contradiction in terms, the ability to authorize a limited penetration during the planning
process can be a powerful tool for certain difficult motion planning problems. For example,
when calculating disassembly sequences, we can allow obstacles such as screws to move during
the planning. In addition, by allowing collision we are able to solve forced passage problems.
This is a difficult problem encountered in virtual mockups, where certain parts are slightly
deformable or where we may be asked to find the “least-worst path” when no non-colliding
path exists.

In this doctoral work we develop several contributions that apply to industrial robotics
and automation. By focusing on the strict functional and usability requirements of the domain,
we hope that our algorithms are directly applicable as well as scientifically valuable. We try to
expose the advantages as well as the disadvantages of our approach throughout the thesis.

Thesis prepared at LAAS-CNRS: 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, FRANCE

Résumé

Mots-clés: raisonnement géométrique, planification de taches d'assemblage, planification de
mouvement, détection de collision, calcul du volume balayé

La planification du mouvement connait une utilisation croissante dans le contexte industriel.
Qu’elle soit destinée a la programmation des robots dans |'usine ou au calcul de I'assemblage
d’une piece mécanique, la planification au travers des algorithmes probabilistes est
particulierement efficace pour résoudre des problémes complexes et difficiles pour I'opérateur
humain.

Cette thése CIFRE, effectuée en collaboration entre le laboratoire de recherche LAAS-
CNRS et la jeune entreprise Kineo CAM, s’attache a résoudre la problématique de planification
de mouvement dans l'usine numérique. Nous avons identifié trois domaines auxquels
s’intéressent les partenaires industriels et nous apportons des contributions dans chacun d’eux:
la détection de collision, le volume balayé et le mouvement en collision.

La détection de collision est un opérateur critique pour analyser des maquettes
numériques. Les algorithmes de planification de mouvement font si souvent appel a cet
opérateur qu'’il représente un point critique pour les performances. C’'est pourquoi, il existe une
grande variété d’algorithmes spécialisés pour chaque type de géométries possibles. Cette
diversité de solutions induit une difficulté pour I'intégration de plusieurs types de géométries
dans la méme architecture.

Nous proposons une structure algorithmique rassemblant des types géométriques
hétérogenes pour effectuer les tests de proximité entre eux. Cette architecture distingue un
noyau algorithmique commun entre des approches de division de l'espace, et des tests
spécialisés pour un couple de primitives géométriques donné. Nous offrons ainsi la possibilité de
facilement ajouter des types de données nouveaux sans pénaliser la performance. Notre
approche est validée sur un cas de robot humanoide qui navigue dans un environnement
inconnu grace a la vision.

Concernant le volume balayé, il est utilisé pour visualiser I'étendue d’un mouvement, qu’il
soit la vibration d’un moteur ou le geste d‘un mannequin virtuel. L'approche la plus innovante
de la littérature repose sur la puissance du matériel graphique pour calculer une approximation
du volume balayé trés rapidement. Elle est toutefois limitée en entrée a un seul objet, qui lui-
méme doit décrire un volume fermé. Afin d’adapter cet algorithme au contexte de la conception
numérique, nous modifions son comportement pour traiter des « soupes de polygones » ainsi
que des trajectoires discontinues. Nous montrons son efficacité sur les mouvements de
désassemblage pour des pieces avec un grand nombre de polygones.

Il est difficile de manipuler le volume décrit par une soupe de polygones. A partir du calcul
du volume balayé, nous introduisons des opérateurs qui changent la taille de I'objet discret. Ces

iv J Geometric Operators for Motion Planning

operateurs calculent la somme de Minkowski entre I'objet et une sphere afin d’agrandir I'objet,
et la différence de Minkowski pour le rétrécir. Nous obtenons les résultats sur les objets
statiques ainsi que dynamiques.

Enfin, nous abordons le probleme de la planification de mouvement en collision. Cette
antilogie exprime la capacité d’autoriser une collision bornée pendant la recherche de
trajectoire. Ceci permet de résoudre certains problemes d’assemblage tres difficiles. Par
exemple, lors du calcul des séquences de désassemblage, il peut étre utile de permettre a des
« pieces obstacles » telles que les vis de se déplacer pendant la planification. De plus, en
autorisant la collision, nous sommes capables de résoudre des problémes de passage en force.
Cette problématique se pose souvent dans la maquette numérique ou certaines piéces sont
« souples » ou si le probleme consiste a identifier la trajectoire « la moins pire » quand aucun
chemin sans collision n’existe.

Nous apportons dans ce travail plusieurs contributions qui s’appliquent a la conception
numeérique pour la robotique industrielle. Nous essayons de marier une approche scientifique
avec des critéres de fonctionnalités strictes pour mieux s’adapter aux utilisateurs de la
conception numérique. Nous cherchons a exposer les avantages et les inconvénients de nos
approches tout au long du manuscrit.

These préparée au LAAS-CNRS : 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, FRANCE

Acknowledgments

| knew that writing a PhD would be challenging, and | knew that | would learn a lot in the
process. But | hadn’t suspected how downright fascinating it could be. As | dug deeper into the
theory and technology, seemingly dry subjects revealed themselves to be full of wonder. In
addition to the intellectual eye-opening, this PhD has been, at least up until the last month or so,
a lot of fun. This is in no small measure thanks to a small number of people who have guided,
supported, and pushed me along.

It is hard to know where to begin, but | must single out my incredible wife, Bénédicte
Meillon, for helping me through this. Having done her own thesis may have made it easier for
her to understand, but there is no explaining her endless patience, reassurance, and
proofreading other than love.

When it comes to the work itself, Jean-Paul Laumond has been a fantastic advisor to me.
Not only am | honored that he agreed to direct my thesis, but | appreciate how he has always
put aside the time out of his overcharged schedule to deal with the most minute of my
problems. Without his vision and perspective on both robotics and the world of research, |
would not have known where to begin, let alone what direction to follow.

In the same breath, | must thank Etienne Ferré for his complementary perspective on
industry and business. He is in a unique position to appreciate where the needs of our customers
meet our technological capabilities, and his advice has invariably proved to be measured and
just. | am also grateful for the liberty he has allowed me to pursue my ideas as well as his, for
even when | have missed the mark completely, | believe that | am a stronger researcher for it.

On a day-to-day basis, Kineo CAM has been a wonderful place to work and learn. | would
like to thank Laurent Maniscalco for providing me the opportunity to develop this thesis. As |
was finishing my Master’s degree, | found myself at a crossroads, unsure whether to explore
new theories as an academic researcher or create useful products as a commercial developer. It
has been rewarding to play both roles at Kineo CAM.

Also at Kineo, I’'m grateful to Emilie for her assistance on administrative tasks and anything
else that has come up in the past few years. The development team there—Guillaume,
Ambroise, Nicholas and Antoine—have helped me track down the most annoying of bugs and
think hard about software design. Although it is humbling to be around programmers smarter
than myself, | am proud of the work we have done together and learned a lot from them.

Even if | have not gone to the LAAS on a daily basis, | have been fortunate to work with
two other PhD students there, Alireza and Sébastien, and have enjoyed it immensely. | would
also like to thank the director of the LAAS, Raja Chatila, for graciously allowing me to participate
in the laboratory.

On a personal note, | can never thank my parents, Jay and Ellen, enough for their
(seemingly endless) faith in me, which has been comforting and given me quite a high mark to

Vi J Geometric Operators for Motion Planning

shoot for. Though far away, | feel their love always. Along with my sister Julia, | am truly lucky to
know such people, to say nothing of having them as a family.

Here in France, | also consider myself lucky to have some wonderful beaux-parents. Since
the first time | was invited to their dinner table, André and Daniéle have taken me in as their
own and introduced me to the wonderful French life of wine, duck, and conversation. Hanging
out at Club Meillon on hot summer days with Brigitte has given me the relaxation | needed to
finish this PhD.

Lastly, thanks to my little Zo€, whose beautiful smile and flailing arms give me a feeling |
cannot describe.

1

vii

Contents

Introduction 1
1.1 Brief History of Industrial RODOTtICS.......ccuvviiiiiiieieiee e, 2
1.2 Role of Motion Planningccuieiiiciiie ittt e 3
1.3 Challenges in Industrial Motion PIanning........ccccoeveeiiiiieii et 4
1.4 Presentation of this WOrKooueiiiiiiiiiiee e 5

141 CONTrBULIONS ...ttt e s e e s 5
O A © T =Y .2 | o o NS 6
1.4.3 PUDBLCAtIONS .ottt e 6

Motion Planning 9
2.1 ConfiBUration SPACE .eeeiiiieeiieeeee et e e e e e e e e e rr e e e e e e e e nnraaaeaaeean 9
2.2 Probabilistic ROadmMap PIannercccuuiiiieeii et e e e e 12
2.3 Rapidly-Exploring RaNdom Treeccceeiiieeeei ettt 13

2.3.1 Iterative Path Planner.. ..o iiiiiiiiiieeece e 15
2.3.2 Manhattan-Like RRTc.coiiiiiiiiicet e 16
2.4 Remarks for this WOrK........oceeieiiiinienieneseeee e 17

Wrapped Volumes 19
3.1 Swept Volumes and Wrapping ..o ccuiieeeee et e eeecrrre e e e scvrrre e e e s s e nannrneee s 19
3.2 RelAted WOIK ... eeeieeieieee ettt 21

3.2.1 Implicit Surfaces and Distance Fieldsccccceeeeieieiiiieiecceee e, 22
3.2.2 GPU-Based Directed DiStanCes.......ccoceerruirerieeniieeeiiteenieesieesieeesieeesveessieeenes 23
3.3 Wrapping PoOlYZON SOUPS.....ciiiciiiiiiiiieeeccitiee ettt e e esiree e st e e e sire e e esbeee s ssareeessnreeaeenns 25
3.3.1 Trajectory SAMPIING ..o it 25
3.3.2 Distance Field Creation........cccoeeeiieiiiieeiiiesieesiee ettt 26
3.3.3 SUMace EXEraction..c.c.ciciieiieeeiec ettt st 27
R N 4 T=Y V= (U1 = oY o WU URPt 29
3.3.5 EFTOr BOUNGS...ciiiiieiieeiie ettt ettt ettt st et e s b e e ne e e saneeens 30
3.4 Wrapping With Offsets....cccoi i e 31

341 WhY OffSEt? ..ot et st b s 32

viii

Geometric Operators for Motion Planning
3.4.2 INFIAtION ceeeeiieeeee e 33
343 DflatioN..cceeeieiecee e 36
3.5 EXperimental RESUILS.......ccooiiiiiiiiiie ettt s et e e e ebne e e 38
3.5.1 SWEPE VOIUME ..ttt et e e e e e saa e e e raba e e e e naaaaean 38
3.5.2 OffSOE .t 42
K I S] o Tl [o [SRR 44
Generalized Collision Detection 47
4.1 IMOTIVATION....ciiiiiiiiiiiic e e 48
4.2 Relat@d WOIK ..ttt sttt e e s st e e st e e e senraeaen 48
4.3 Collision Detection FrameWOrK..........cooveeiieeiiiieniieniee et 49
4.4 TeStTree DEeSCENT.....ccciiiiiiiiiiiii e 52
4.4.1 Dispatch and Detection.........eeeeeiiiiciiiiiiie et e 52
4.4.2 Tree TraVerSal. e ittt ettt et st e re e snee e sareesree e 53
4.5 TeStTree STrUCLUIEccoiiiiiiiiiii e 53
4.5.1 Generic Traversal ..o ee it 53
452 Memory Optimization. ... 54
4.6 Application INtegrationc.uuveiiii i 55
4.6.1 SCENE GraPh e e e e e e e e e e e e nnnaane 55
4.6.2 ColliSiON ENTItI@S ..eeiiueieiiieiiieeieeetee st 55
4.6.3 Test Tree CONStrUCTIONccooviiiiiiiiiiiiiiiccc e 56
4.6.4 ABEIregate Test TrEeS. i 57
4.7 Dynamic Voxel Map for Robotic Vision Systemccccceeecvieriiiiieeeccieee e, 58
4.7.1 3D ReCONSEIUCTION...cciiiiiiiiiiiiiiiiiic ittt 58
4.7.2 DYNAamMIC VOXEI MAP coooiiiiiiiiee ettt e 59
4.7.3 EXperimental DESIZNc.ueiiieiiie ittt 60
R (T U PP 61
4.8 FULUIE WOKK ettt st e e st e e s eba e e e seabaeeesneaeaens 62
Motion Planning in Collision 65
5.1 ReIGLEA WOTK ..vveiiiiiie ettt et e e e e e e bee e e e ate e e e s abaee e enees 65
5.2 Implicitly Controlling Penetration DiStanCecccceeeeeciiiieeeee e, 66
5.3 Teleportation-Based Plannerccuveeiiei ittt e e e snnraeee e 68
5.3.1 UNfOrm ShOOt....ccuiiiiiieeiie ettt e 69
5.3.2 DiStance MeTriCueiiiiiieiiiiire et 70

LT . T =1 1=T o] o =) (o] o SR 71

5.3.4 Manhattan-Like RRTcccoiiiiiiiiiiieiieee ettt s s s 72
5.4 Superposition ColliSion OPEratorcceeeeccieeeeiiiee et cetee et e e eree e e e e e eveeas 74
5.4.1 Comparison with the Teleportation-Based Planner...........ccccccevvviveeencineenns 76
5.5 Distance MeasuremMeNtcccccovviiiiiiiiiiiiiiiiciii it 77
5.5.1 Separation DiStanCe.........uuuuiiiiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeseseeeeeseseeeeeeeseeeeeseseeeeeees 78
5.5.2 Penetration DiStanCecccciiiiiiiiiiiiiiiiiecte e 78
5.6 DYNAMIC PIAY coiieiiieecieee ettt e et aa e e e aaeee s 80
5.6.1 Draft PathS ..ot 80
5.6.2 Play Optimization ...cccoociieiiiiiie e 80
5.7 EXPerimental RESUILScciii ittt e e et e e e e e e e 81
5.8 CONCIUSION ettt ettt e s e e sae e e s s e e sareesneeesneeenns 85
Future Directions 87
6.1 ReSUItS and FULUIE WOTKcooviiiiiiiiiieiee ettt ettt 87

6.2 Working with Industrial RODOLICSuvviiieiiiiieiee e, 89

Xi

Table of Figures

Figure 1.1: Historical landmarks in industrial robotics. 2
Figure 1.2: Polygon soup models. 5
Figure 1.3: Contributions. 6
Figure 2.1: Shakey the robot. 10
Figure 2.2: Configuration space for translations. 11
Figure 2.3: Motion planning in configuration space. 11
Figure 2.4: Probabilistic Roadmap Planner (PRM). 13
Figure 2.5: Rapidly-exploring Random Tree (RRT). 15
Figure 2.6: Iterative Path Planner (IPP). 16
Figure 2.7: Manhattan-Like RRT (ML-RTT). 17
Figure 3.1: Swept Volume (SV). 19
Figure 3.2: Wrapping. 20
Figure 3.3: Voxels used for wrapping. 22
Figure 3.4: Implicit distance calculation using Schroeder’s inverse. 22
Figure 3.5: Offsets for implicit surfaces. 23
Figure 3.6: Directed distance fields. 24
Figure 3.7: Problems with regular path sampling. 26
Figure 3.8: Directed distance field gathering. 27
Figure 3.9: Grid division. 27
Figure 3.10: Surface extraction. 28
Figure 3.11: Walking along the grid. 30
Figure 3.12: Graph building. When the box on the left is placed in the grid, 30
Figure 3.13: Distance field sampling error. 31
Figure 3.14: Naive manipulation of directed distance fields. 34
Figure 3.15: Positive offset using spheres. 35
Figure 3.16: Positive offset error. 35
Figure 3.17: Positive offset integrated into surface extraction. 36
Figure 3.18: Negative offset using spheres. 37

Figure 3.19: Negative offset surface extraction. 38

xii

J Geometric Operators for Motion Planning

Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:
Figure 3.27:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4.10
Figure 4.11

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15

Exhaust test case.
Seat test case.
Human test case.

Flat surface example.
Offset dragons.
Offset motors.
Compressor test case.

Offset compressors.

Testing polyhedrons.

Framework architecture.

Proximity test dispatch mechanism.
Element relations and traversal methods.
Compressed storage scheme for OBBs.
Scene trees.

Aggregate test tree.

HRP-2, a humanoid robot.

Occupancy grid.

: Voxel hierarchy.

: Environment discovery in three steps.

Penetration Distance.

Movement equivalent to upper bound of PD.
Example disassembly problem with active obstacles.
Active obstacle movement.

Taking active obstacles into account.

Ignoring active obstacle distances.

Discontinuous interpolations give better performance.

Classic ML-RRT.

ML-RRT with discontinuous interpolation.

: Collision test with superposition operator.

: Handling multiple obstacles.

: Incompleteness of the superposition operator.
: Generalized separation distance.

: Dynamic play.

: Windshield wiper test case.

40
40
41
41
42
43
44
44

50
51
52
53
54
56
57
58
59
60
61

67
67
68
69
70
71
72
73
74
75
75
77
78
81
82

Figure 5.16: Exhaust test case.
Figure 5.17: Starter test case.

Figure 5.18: Shocks test case.

xiii

82
83
83

XV

Table of Algorithms

Algorithm 3.1: Fast Marching Method adapted to recognize surface points. 28
Algorithm 4.1: Simple polyhedron-polyhedron collision procedure.................cccoceennee. 50
Algorithm 4.2: Generic tree descent............coeviviiiiiiiiiiii e 63
Algorithm 5.1: ML-RRT for active obstacles.cccccceviiiiiiiniiiie e 73
Algorithm 5.2: Modified ML-RRT for discontinuous interpolations.ccccccceevnnenn. 74
Algorithm 5.3: Boolean soft collision detection routine.................c.cccoeeiiiiiiicciieeecee. 76
Algorithm 5.4: Routine for finding the maximum PD estimate for a path....................... 79

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:

Table 4.1:

Table 5.1:
Table 5.2:

List of Tables

Swept Volume Test Models.ccooiiiiiiiiiiiiie e 39
Swept Volume Experimental Results...............ccccoeiviiieeiiiiiec e 39
Offset Test MOdEIS.cooriiiiiiiiie e 42
Offset Experimental Results................cccoooiiiiiiiiiii i 43
Time and Memory Performance.c.cceovciieeiiiiiie e 61

Active Obstacle TeSt MOdelS.............uueeeiiiiiiiiiiieeeee ettt eeeeeees 84

Active Obstacle Experimental Results.ccccccccovvviiiiiiiiiiinciec e 84

Introduction . 1

“Intelligence is whatever machines haven't
done yet.”

Larry Tesler

Introduction

To many people, the word “robot” conjures up images of space exploration, relentless killing
machines, or human-shaped automatons with synthesized voices. From its very beginnings,
however, the field of robotics has been driven as much by the desire to efficiently manufacture
products as to create artificial beings. Such robots may never need to explore unknown
environments, ponder human emotion, or endure mutilation without flinching. They may not
even resemble any natural creature. Instead, they are simply asked to manipulate cumbersome
objects, over and over again, with exacting precision and speed. What industrial robotics lacks in
drama, it makes up in utility.

This PhD research was performed under a French grant entitled “Conventions Industrielles
de Formation par la Recherche" (CIFRE). It is a joint initiative between a company, a student,
and a laboratory, in which the student shares work time between the company and the lab,
exploring a subject that is of interest to both. Through subsidizing a three-year contract, the
government hopes to strengthen links between industry and academics along with stimulating
applied research.

The company for which | have been working for is called Kineo Computer-Aided Motion
(Kineo CAM), a startup specializing in path planning for industrial robotics. The researchers who
founded it wanted to bridge the technological gap between what was considered “state-of-the-
art” in industry and in motion planning research. In keeping with its legacy, Kineo CAM actively
strives to deliver sophisticated algorithms as commercial products. In this manuscript, | will
attempt to present my doctoral work in this same context— as applied research meant to
answer practical and pressing needs of industrial production.

" "Industrial Agreement for Training through Research"

2 . Geometric Operators for Motion Planning

1.1 Brief History of Industrial Robotics

Whereas a general definition of “robot” is difficult to pin down', an industrial robot can be
reasonably considered as an “automatically controlled, reprogrammable, multipurpose
manipulator programmable in three or more axes” [ISO 1994]. The key concepts here, those that
separate robots from most other machines, are manipulation and programmability.

In this spirit, the first well-known industrial robot may be the automated loom conceived
in the early 19™ century. Joseph Jacquard designed the machine to read and follow instructions
encoded on punch cards, enabling the same machine to produce an infinity of different weaves
without constant human guidance.

Jumping forward to the 1940s, John Parson pioneered the field of Numerically Controlled
(NC) machining, in which an automatic device handles tools such as lathes or drills in order to
reliably manufacture large quantities of parts. The input to the robot (early versions used punch
cards once again) is a series of positions between which to maneuver the tool. One of the most
interested clients in the technology was the US Air Force, who needed to mass-produce freeform
surfaces.

A foundation of modern industrial robotics, the robotic arm wasn’t invented until the
1950s. The first version was called the Unimate, and was put into use at a General Motors plant,
where it extracted hot die castings and performed spot welding. The Unimate was succeeded by
the Stanford Arm, which replaced its predecessor’s hydraulics with electric motors, and added
both optical and contact sensors. In both of these manipulators, the joints were connected by
chains to motors installed in the base. In the 1980s, Takeo Kanade pioneered direct drive
mechanics, in which the motors are put directly in the joints themselves, reducing friction and
achieving higher accuracy and speed.

Industrial robotics has continued to evolve along these lines, encompassing such
applications as painting, ironing, packaging, and testing. In “pick and place”, a robot selects an
object from a pick-up location and transports it to a destination, possibly changing its orientation
along the way. An assembly task involves fitting parts together, and disassembly refers to
extracting parts out.

(a) (b) {c} (d)

Figure 1.1: Historical landmarks in industrial robotics. From left to right, Jacquard’s loom (a), an example
of NC machining (b), the UNIMATE in a General Motors plant (c), and a patent drawing for a modern
industrial robotic arm (d).

! Joseph Engelberger, founder of Unimation, Inc., the world's first industrial robot manufacturer,
once said "l can't define a robot, but | know one when | see one."

Introduction . 3

1.2 Role of Motion Planning

Motion planning fits into a larger concept called computer planning [LaValle 2006]. Roughly put,
computer planning is concerned with fulfilling a high-level request through a series of lower-
level steps. In motion planning, this translates to finding a path for an object between two given
positions while respecting a certain set of constraints. The most common constraint is avoiding
collisions with other objects, but other possibilities include respecting robotic joint limits and
moving along curved paths, as wheeled vehicles often do.

Initially, it was thought that all of computer planning could be fit under the same tent,
based purely on a limited set of logical principles. Encouraged by successes in proving logical
theorems, solving geometry and algebra puzzles, and interpreting instructions written in English,
Artificial Intelligence (Al) researches in the 1960s predicated that within a generation computers
and the robots that they controlled would have the intelligence and physical capacity of humans.

These rosy visions began to dissolve in the 1970s, as it became clear that Al wasn’t going
to fulfill its promises so easily. After several large setbacks in both financing and respect, the
problem became known as Moravec’s Paradox:

It is comparatively easy to make computers exhibit adult level performance on
intelligence tests or playing checkers, and difficult or impossible to give them the
skills of a one-year-old when it comes to perception and mobility...

Encoded in the large, highly evolved sensory and motor portions of the human brain
is a billion years of experience about the nature of the world and how to survive in it.
The deliberate process we call reasoning is, | believe, the thinnest veneer of human
thought, effective only because it is supported by this much older and much
powerful, though usually unconscious, sensorimotor knowledge. We are all
prodigious olympians in perceptual and motor areas, so good that we make the
difficult look easy. Abstract thought, though, is a new trick, perhaps less than 100
thousand years old. We have not yet mastered it. It is not all that intrinsically
difficult; it just seems so when we do it. [Moravec 1988]

If the field of Al has regained some of the ground it had lost in those days, it has definitely
changed its approach as well. Researchers now consider each problem in its own right, and rely
on the unyielding advancement of computational power where pure mathematical analysis has
proved insufficient. Computers are now capable of beating chess masters, recognizing human
speech, and finding a needle in the haystack of the World Wide Web. On the robotics front,
great progress has been made in autonomous cars and planes, and humanoid robots can
navigate cluttered environments on their own two legs.

Likewise, motion planning has split off into its own field. Rather than reasoning “logically”
about a posed problem, recent success derives from probabilistic approaches, in which the
computer basically tries random plans until it finds one that works. This is made possible by the
sheer number of motions that a modern computer can test in a single second”.

* As of this writing, typical collision detection speed for a multiple axis robot in a complex
environment is around 1 ms per test.

4 J Geometric Operators for Motion Planning

Motion planners are so successful that they can serve as building blocks in larger
computer planning systems. When an industrial robot wants to find convenient places to put
objects down, maneuver through changing environments, or find sequences in which to
disassemble a complex part, it can turn to a motion planner to solve part of the problem, and
use the results to plan larger actions.

Where motion planners cannot succeed on their own, they can work in cooperation with
humans. In these systems, a human operator can suggest ideas to the computer, often through
force-feedback devices, and the planner plays off those ideas as well as its own. Motion planning
can also be applied to human movement. By taking ergonomics into account, motion planners
can determine efficient ways for factory workers to carry out their tasks without causing long-
term pain or disability.

1.3 Challenges in Industrial Motion Planning

Advancements in robotics technology benefit industry as much as any other section of the field,
and fortunately there is significant cross-fertilization of ideas between researchers working in
different application areas. Nevertheless, the demands, constraints, and assumptions of
industrial robotics developers are not systematically shared by their counterparts elsewhere. For
example, an industrial arm that manipulates identical parts all day long probably does not need
vision, whereas a space-exploring robot would. But while the space-exploring robot could take
its time deciding how to act, the arm cannot afford to be patient. The tradeoffs for design
criteria such as performance, safety, energy consumption and weight are naturally shaped by
the application in question. In turn, the problems posed to industrial motion planners embody
the choices made.

Nowadays, most parts to be manufactured are designed directly on the computer. High-
resolution models are therefore available. While guaranteeing accuracy, the use of these models
quickly leads to an explosion in the amount of geometry data to be treated. A second side-effect
of these models comes from their most common format— “polygon soups”. Polygon soups are
simply a set of unorganized surfaces, commonly triangles. In contrast, most geometry data in
other robotics domains describe volumes. The distinction may appear trivial, but volumes
provide extra information that can be, and often is, exploited by computational geometry
algorithms. Using polygon soups limits the choice and design of algorithms for motion planning
(Figure 1.2).

As a general rule, an important design criterion for industrial motion planning is
practicality. Practical can mean fast, because impossibly slow programs are unusable, but
performance does not need to be real-time. Indeed, most motion planning is done off-line,
meaning that the actual programming of the robot will be done after the motion has been found
and analyzed. More often, practicality refers to ease of use. Algorithms with many critical
parameters, in which setting these parameters incorrectly either finds a poor plan or fails to find
one altogether, are by definition difficult to use. Given that users of industrial motion planning
are rarely roboticists themselves, designers of these planners should not expect the users to be
expert enough to set such parameters, unless they are fundamental properties of the robot or
its environment.

Introduction . 5

@ ®) © @

Figure 1.2: Polygon soup models. For performance reasons, three-dimensional objects are often treated
as polygon soups, basically an organized collection of triangles. These models are called well-formed if
they follow certain rules that make their interpretation straightforward (a). Since almost “anything goes”
in polygon soups, deficiencies can arise that inhibit computational geometry algorithms. For example,
triangles must share vertices and edges, and cannot cross each other anywhere else (b). Also, shapes must
be volumes, and can’t be missing any triangles (c). Finally, two shapes cannot meet each other at a single
point or edge (d).

In short, industrial robotics has its own requirements and constraints that set it apart from
other disciplines. The challenges of working in this field played an important role in determining
how our work developed throughout this PhD.

1.4 Presentation of this Work

In this doctoral thesis, we develop geometric operators for motion planning within an industrial
context. The operators in question are collision detection, volume wrapping, forced passages,
and shrinking. For each of these operators, there is a fundamental interest for industrial
applications. In some cases, equivalent operators already exist, but do not satisfy industrial
constraints.

1.4.1 Contributions

Our first contribution is an operator for finding a volume that completely surrounds one or more
geometric objects as tightly as possible. Imagine rolling plastic wrap around a spiky object such
as a pineapple. The result preserves all the detail of the exterior, while ignoring the complex
inner workings. Since it can be equally applied to motions, this operator can generate swept
volumes. We then develop extensions to the wrapping operator that modify the size of the final
produced volumes, either inflating or deflating them much like a balloon.

Probabilistic motion planning relies heavily on a fast, accurate, and robust collision
detection operator. As the number of uses for motion planning multiplies, it is applied to a
variety of different geometry types. Our second contribution is developing a framework upon
which these geometry types can be seamlessly integrated. The result is an improved
development process, reusing the fundamental logic behind collision detection while allowing
for the many optimizations that may be asked of a collision detector.

Our third contribution is a process and an operator for motion planning in collision.
Usually, collisions between the robot and its environment are to be strictly avoided during
motion planning. But in several cases, such collisions are unavoidable. The solution may involve
forcing an object through a narrow passage, or simulating slightly deformable objects. Even in
the absence of such cases, it serves as a useful tool for analyzing why collision-free path planning
failed. We propose two methods and demonstrate their complementary properties.

Geometric Operators for Motion Planning

()}
.

el b <
_ o - T F s -
A S - -y A =L
» = . [N . [2%
. — —— EE — [8 =, nw e
F i a———— mw w mw L1}
F e] nE |- — mE . TR E.
e R L L IWT . - | § = =]
- F e W | J T T
A -
ol
- .
- == - -
Wl i E . FE _ = Fo , N
8 | & EEA 44 F S F.)
LAY B o v O - L9y
Mg . B .. BT .
[L e [1 e . A emaati " 1 e
W W mEw |
mE mw |-
[11 5 U AT 4 ARFYT 0.

- -

] [H
Figure 1.3: Contributions. In this doctoral work, we develop a wrapping operator that works on polygon
soup models (a), and introduce inflation and deflation effects that change the size of the wrapping (b).
Next, we develop a collision detection framework that handles heterogeneous geometry types such as
polyhedrons and voxels (c). Finally, we develop methods to perform motion planning in collision to handle
difficult forced passage problems (d).

1.4.2 Organization

Since motion planning represents an important thread running throughout our work, we
found it important to introduce it in a technical context. Chapter 2 discusses its origins and
briefly touches on the state-of-the-art in the field. Particular attention is paid to those

algorithms that are directly used or built upon in our work.

Chapters 3 through 5 present the four major contributions of this doctoral thesis:
wrapping, extensions for size manipulation, a generalized collision detection operator, and path
planning in collision. Necessary background concepts are presented at the beginning for each

chapter.

Finally, we conclude this thesis in Chapter 6 by discussing possibilities for future
development of these operators as well as others in the context of industrial motion planning.

1.4.3 Publications

The following publications are associated with this work:

J. C. HIMMELSTEIN, E. FERRE, and J.-P. LAUMOND, "Swept Volume approximation of polygon soups," in
Proceedings of IEEE International Conference on Robotics and Automation, 2007, pp. 4854-

4860.

Introduction . 7

J.C HIMMELSTEIN, A. NAKHAEI, G. GINIOUX, F. LAMIRAUX, E. FERRE, AND J.-P. LAuUMOND, "Efficient
Architecture for Collision Detection between Heterogeneous Data Structures,” to appear
at the 10th International Conference on Control, Automation, Robotics and Vision
(ICARCV), Hanoi, Vietnam, 17-20 December, 2008.

J.C. HIMMELSTEIN, E. FERRE, AND J.P. LAUMOND, "Swept Volume approximation of polygon soups,"
accepted by IEEE Transactions on Automation Science and Engineering (T-ASE).

J.C. HIMMELSTEIN, E. FERRE, AND J.P. LAUMOND, "‘Teleportation’-Based Motion Planner for Design
Error Analysis,” submitted to 2009 IEEE International Conference on Robotics and
Automation (ICRA), Kobe, Japan, May 12 - 17, 2009.

Motion Planning o 9

“Randomization is, evidently, a euphemism
whose real meaning is: deliberately throwing
away relevant information when it becomes
too complicated for us to handle.”

Edwin Thompson Jayne

Motion Planning

As explained in the introduction, motion planning plays a critical role in robotics. It can be used
by itself (e.g. to help a robot navigate its environment), but also as a primitive for more complex
planners (e.g. finding a disassembly sequence for a mechanical system). As the entirety of this
doctoral work relates to motion planning in one way or another, we have devoted this chapter
to presenting its development, paying special attention to material that is used directly by our
work. For a more in-depth discussion and survey of the field, we refer readers to Lavalle’s book
[LaValle 2006].

The goal of motion planning is to find a movement that brings a robot from one
configuration to another, while respecting certain constraints. Here we use the term robot
loosely— it can consist of one or more objects, moving together or separately. A configuration is
a complete description of the position of the robot. Since one of the most common constraints is
that the robot must avoid colliding with its environment, we will consider that the environment
is full of obstacles that the robot is not allowed to touch. Motion planning is also referred to as
path planning, because the goal is to find a path in space for the robot to follow.

2.1 Configuration Space

Shakey, developed from 1966 through 1972, was one of the first robots to successfully navigate
a room and accomplish simple tasks such as moving objects [Nilsson 1984]. It relied on laser
range finders, bump sensors, and a TV camera to detect its environment (Figure 2.1). A general
planner handled motion along with task sequences through logical reasoning about its
environment. This was made possible through simplistic assumptions about environment
geometry; all objects were represented as rectangles or circles on a 2D grid. In spite of being a
very impressive accomplishment, researchers soon found that this approach to motion planning
did not scale.

10 o Geometric Operators for Motion Planning

ON- B0ARD
LOGIC

CAMERA -
CONMTROL

BUMP
DETECTOR

Figure 2.1: Shakey the robot. Shakey, developed by the Stanford Research Institute, was a milestone in
robotics and computer planning research. It was capable of modeling a simple environment made out of
blocks (left). Given a high-level task, it could reason spatially and logically about how to manipulate the
environment to achieve its goal. It used a number of different sensors and motors to carry out the task
(right).

Indeed, calculating collision-free paths with even slightly more complex geometry proved
to be a difficult issue. Mathematically, this puzzle is referred to as the piano movers’ problem,
introduced by Schwartz and Sharir [Schwartz, et al. 1986]. A major insight, that of using
configuration space, was advanced by Lozano-Pérez, originally for robot grasping tasks [Lozano-
Pérez 1976]. It turned out to have a more general formulation, one that applies equally well to
all types of robot geometry, including articulated manipulator arms and multiple robots [Lozano-
Pérez 1983].

The idea is to shrink the robot to a point, while growing the obstacles by the same
amount. Now we can plan for the movement of a point rather than a body. Since the relative
sizes of the objects have stayed the same, the two problems are equivalent. This concept is easy
to visualize in two dimensions, but becomes more difficult once rotations are considered. To
generalize it, we define the configuration space C as the set of all possible configurations that
the robot can attain. Each point in C defines a configuration, which is composed of a set of
values— one for each degree-of-freedom (DOF) of the robot. The configuration space therefore
has as many dimensions as the robot has DOFs. For example, a freely-rotating object in 3D has
six translation DOFs, and three rotation DOFs. Depending on the robot under consideration,
certain DOFs may be bounded, causing C to be bounded in those dimensions as well.

Motion Planning o 11

VI

Figure 2.2: Configuration space for translations. Here the “robot” is the circle, and the other objects are
obstacles (left). If only translations are taken into account, then we can picture configuration space by
enlarging the obstacles by the size (or radius, in this case) of the robot, while simultaneously shrinking the
robot to a point (right). The two situations are equivalent, but the second is both simpler to solve and
generalizable to a large class of motion planning problems.

Placing the robot in some of these configurations will lead to a collision with the
environment, while for others it will not. To distinguish between the two cases, we can split C
into two regions: C,ps contains colliding configurations, and Cfr.. the rest. Formally, given a
robot A so that A(q) places it in a configuration g, as well as a set of obstacles O, then

Cops ={g€C:AQNO + @} (2.1)
Cfree = C\ Cops (2.2)

Now we can reformulate the motion planning problem as finding a continuous curve or
path in Crr, that connects the starting configuration g;,;; to the goal configuration g.pq. Such a
path can be thought of as a function 7: [0,1] = g which translates a number on the unit
interval to a configuration for the robot. We can call a path valid if it stays within Crye,

valid(t) = At(t € [0,1] At(t) € Cops) (2.3)

q init Gree

qend
[

[

Figure 2.3: Motion planning in configuration space. Obstacles are part of C,,s, meaning that placing the
robot in a configuration within that region would lead to collision. The remaining space represents Cryc,,
the collision-free region. The goal of the path planning is to connect the initial configuration g;,;; to the
ending configuration g,,4 With a continuous curve, called a path.

Unfortunately, since each additional DOF represents a whole dimension in C, the fastest
complete algorithm that applies to general polyhedral objects has time-complexity exponential
in the number of DOFs [Canny 1988]. In practice, solving the motion planning problem for

12 J Geometric Operators for Motion Planning

arbitrary environments and robots is prohibitively time-consuming [Svestka and Overmars
1998].

To escape what appears to be an analytical dead-end, algorithms have been developed
that take a different tack. Using heuristics, they search through C, looking for paths that link
Qinit t0 qeng- Such searches are not formally complete, meaning that they are not guaranteed to
solve a given path planning problem or even determine if a solution exists. Nevertheless, certain
algorithms can be proven to be probabilistically complete, signifying that they are guaranteed to
find a solution in finite time if one exists. In other terms, the probability of finding a solution
converges to 1 as time approaches infinity. Such approaches include genetic algorithms,
simulated annealing, and dynamic-graph search methods. The two most successful algorithms of
this type, however, are the Probabilistic Roadmap Planner (PRM)* and the Rapidly-exploring
Random Tree (RRT). Although our work draws almost exclusively upon the latter, understanding
the PRM is nevertheless useful for understanding how such algorithms function. For brevity, we
present only a simplified version of each, meant to help the reader understand the general
techniques without burdening him with excessive detail.

2.2 Probabilistic Roadmap Planner

The principal data structure in the PRM is a roadmap, a graph in which the nodes represent
configurations in Csee and the edges are simple paths (also called direct paths) between them,
resting in Crree. Algorithmically, the PRM is split into two phases. In the roadmap construction
phase, a random configuration q,.4,,4 is generated and tested for collision with the environment.
If no collision is found, then the configuration is added to the roadmap. In order to link the new
node with others in the roadmap, the planner picks a node g, that is close to q,.4nq4, and uses
a local planner to connect the two if possiblef. The simplest local planner is one that connects
the two using a straight line segment, which in configuration space corresponds to a linear
interpolation between the two configurations*. In any case, the planner must verify that the
direct path is collision-free before adding it to the roadmap. The planner may consider multiple
close nodes before generating another random configuration and repeating the process. Since
the goal of the construction phase is to generate a good sampling of C, this process generally
continues until a certain number of nodes have been generated.

The actual path planning problem is solved during the query phase. Given q;,i+ and qeng,
the planner attempts to link them to roadmap nodes q;,;; and q,,4, Which themselves are
connected through edges in the roadmap. The output path is simply the sequence of edges
connecting {Ginit) Ginitr - Qend» dena) (Figure 2.4). Given that it may be possible to connect ;¢

" The PRM is referred to elsewhere as the Probabilistic Path Planner (PPP).

" The notion of “close” is defined by a distance metric between two configurations. The simplest
such metric is Euclidian distance in configuration space (i.e. d = |q; — q,|). Depending on the robot, this
may not correspond to a realistic measurement of movement from configuration to another. Additionally,
rotations may require extra attention, as the distance that a point on the robot moves is likely larger than
a simple difference in radians would indicate.

* Some robots are non-holonomic, meaning that they cannot move freely from one configuration to
any other, and thus admit only certain paths (e.g. car-like vehicles). Such robots require a special local
planner.

Motion Planning o 13

to multiple roadmap nodes, and that roadmap nodes might be connected through more than
one edge sequence, multiple paths may be possible, in which case the planner chooses the
shortest. If the PRM is unable to find a solution, it may be that the problem is impossible, but it
may also be that it has not added enough random configurations to the roadmap. With only
probabilistic completeness as a guide, it is practically impossible to tell the difference without
outside analysis.

©)

Figure 2.4: Probabilistic Roadmap Planner (PRM). The PRM is split into two phases. In the roadmap
construction phase (top), random configurations in C,. are added to the roadmap and linked to existing
nodes. In the query phase (bottom), q;n;: and q.nq are linked to nearby roadmap nodes g;,,;; and q,,4 and
a graph search is performed to link the two using existing roadmap edges.

Since the PRM requires a pre-computation step, it is more suited to solving a sequence of
problems in the same environment. This is called the multiple-query model. The RRT takes a
different approach, generating the roadmap anew for each path planning problem. This single-
query model has proven to be particularly efficient, in part by restricting its focus on only the
regions of C that interest the user.

2.3 Rapidly-Exploring Random Tree

The RRT was originally developed by Lavalle in 1998 for robots with non-holonomic constraints
[LaValle 1998]. He cites the difficulty designing a local planner for connecting the PRM roadmap
nodes in an efficient manner as a reason for experimenting with a diffusion technique. In
diffusion, the roadmap is rooted at g;;;; and the local planner is called upon to generate new
nodes that branch of the existing roadmap. The roadmap is therefore is therefore connected by
definition, and all direct paths are acceptable. Eventually, the roadmap should grow to approach
nearly all configurations in Cryee, including q.pq4, at which point the solution path is simply the

14 Geometric Operators for Motion Planning

roadmap edges connecting qinir t0 qeng. Typically, diffusion does contain a pre-computation
step as with the PRM.

The RRT is not the first example of a diffusion approach in probabilistic path planning. The
Ariadne’s Clew algorithm separated out a global exploration phase that grows the roadmap
without bias towards the goal from a local planning method that attempts to reach the goal
from a roadmap node [Mazer, et al. 1998]. The Expansive-space planner takes another tack,
generating new configurations in the local neighborhoods of existing roadmap nodes. The
planner both picks nodes and adds new configurations with a probability inversely proportional
to the number of neighbors [Hsu 2000].

But although it was created for non-holonomic robots, the RRT has demonstrated a high
level of efficiency and robustness for many types of path planning problems. The secret to its
effectiveness derives from the way that it efficiently explores the configuration space. The
algorithm can be broken down into the following steps:

1) Shoot — Choose q;-4nq through randomly sampling in C.

2) Pick —Find the closet node g,0q, in the roadmap to g,qnq, Using some distance metric.

3) Extend — Starting at gyeq-, Move a distance x in the direction of g,4nq to find q;4ng- If
the direct path from gyeqr t0 Gyqnq is collision-free, add it and q,.;,,4 to the roadmap.

Starting with only g;,i+ in the roadmap, the RRT repeats this process until it reaches qgpng4
(Figure 2.5). Not only has the RRT been shown to be probabilistically complete, but it converges
very quickly to a solution. An important difference from previous techniques such as random
walks is the way in which g4y is chosen to best suit q,-4q, and not the other way around®. This
subtle change in tactic gives rise to a tendency to explore unknown areas of C, while scattering
nodes in a way that approaches the sampling distribution.

Subsequent work on this algorithm lead to RRT-Connect, which introduced several
enhancements [Kuffner and LaValle 2000]. First, instead of waiting for the roadmap to approach
Qeng by itself, a planner attempts to link g.,4 to the tree after each iteration. In addition, the
extend step does not stop moving towards q,.4,ng Until an obstacle is hit. Finally, two trees are
grown in parallel: one rooted at q;,;;, and the other at g.,4. This last enhancement works
especially well if both g, and g.,4 are in tight spaces.

The rest of this chapter is devoted to discussing two variants of the RRT that are used in
our work: the Iterative Path Planner, and the Manhattan-Like Path Planner. The first is targeted
at industrial problems, where it produces especially good results. The second is intended for
molecular path planning, and allows for obstacle movement.

S A more intuitive order calls for for the new node Grana to be chosen in a small neighborhood of
the existing node q,.4r- Even in the presence of heuristics favoring little-chosen nodes for q,,¢q4, this leads
to an over-sampling of the “known” portions of Cf.... The RRT elegantly side-steps this problem by
choosing the nodes in the opposite order.

Motion Planning o 15

Figure 2.5: Rapidly-exploring Random Tree (RRT). The roadmap is rooted at q;,;;, and is grown through
three-step iterations. In the Shoot step, a configuration q,4,q is chosen randomly in the configuration
space. Proceeding to the Pick step, the closest node in the roadmap to q,.4,4 is selected, and is designated
Qnear (top left). Finally, a new configuration q;.,,,4 is generated by moving along the vector from geqr to
Qrana in the Extend step. If q;4nq iS in Crree, it is added to the roadmap (top right). With this scheme, the
tree expands to explore all of Crc,, until reaching ggnq. The final path is the sequence of links between
the roadmap node linking q;n;t t0 @eng (in bold on bottom).

2.3.1 Iterative Path Planner

Product Lifecycle Management (PLM) tracks design information about a mechanical component,
from cradle to grave. Designers are interested in studying the feasibility of assembling
mechanical systems as well as disassembling them for maintenance. Path planning can be used
to validate and suggest assembling motions for both human and robot operators.

The Iterative Path Planner (IPP) was created to handle such PLM cases [Ferré and
Laumond 2004] without requiring parameter tuning. Based on the RRT, it introduces an
additional variable, called dynamic penetration. The dynamic penetration value refers to
potential overlaps in C,js that may occur when adding an edge in the roadmap. By starting with
a high dynamic penetration, and lowering it over a number of iterations, IPP can find draft paths
that are colliding but nonetheless provide some guidance to where later refined paths might try
to pass (Figure 2.6).

16 o Geometric Operators for Motion Planning

[) qend () qend) qend
A ! 3 »
Seem " ’) . ___ ______
\‘\\ X
inie qinis qinis

Figure 2.6: Iterative Path Planner (IPP). With an additional variable called dynamic penetration, IPP breaks
down difficult problems into several steps. Starting with a high dynamic penetration, it finds a path that,
while in collision, serves as a guide for further refinement (left). In subsequent steps, the dynamic
penetration is lowered, forcing the planner to discover paths that collide less (center). Finally, when the
dynamic penetration has been lowered to the user-defined level, the output path will be collision-free
(right).

Dynamic penetration derives from the method used to validate direct paths in the
roadmap. Instead of uniformly sampling the direct path and checking each configuration for
collision, IPP assures that no point on the robot sweeps out a movement longer than a certain
distance. Given a dynamic penetration value of &, IPP finds the first configuration along the
direct path where a point on the robot has moved up to 2e. If this point is in Cfyee, then IPP
advances along the direct path another 2¢, and so on until either a collision is found or the path
is validated.

Although collisions may still occur between tested configurations, it can now be bounded.
In the worst case, the robot entered in collision up to a distance € and then returned to Crye,-
IPP adjusts this dynamic penetration value through an iterative process. In the first iteration, a
very high dynamic penetration is chosen, one that allows the planner to quickly find a path to
Gend- Once this is done, the penetration is drastically reduced, and the existing roadmap is
reevaluated. Any segments that do not pass the stricter collision test are rejected, and the
others become part of the new roadmap. This process is repeated until the penetration reaches
a user-defined value.

Another modification to the classic RRT is the handling of the Shoot stage. PLM assembly
cases often involve free-flyers, i.e. objects that are allowed to move freely in space. In contrast
with rooted manipulator arms, the DOFs that correspond with free-flyer translation are
unbounded, meaning that they can take any value in R. This implies in turn that C is infinitely
large. Practically speaking, it is difficult to choose a random configuration uniformly in an infinite
space.

To work around this problem, IPP shoots around a local neighborhood of existing roadmap
nodes. The neighborhood, consisting of one or more nodes, forms a finite subspace C,4,,, € C.
IPP chooses a configuration with a Gaussian distribution around C,g4,, in order to allow
configurations that are outside of, but not infinitely far from, the given neighborhood.

2.3.2 Manhattan-Like RRT

Certain molecular systems can be studied using path planning techniques. One important
problem in this domain is determining if and how ligands (typically small substances that bind to
biomolecules), can access target sites deep within large proteins. In particular, this

Motion Planning o 17

understanding can guide the development new of drugs that bond to protein receptor sites
[Latombe 1999]. As the protein and ligand can be modeled as highly-articulated mechanical
objects, ligand access can be posed as a motion planning problem.

In order to model molecules as mechanical systems, they are analyzed for the structure of
their molecular bonds. Groups that are rigidly bonded to each other can be considered as rigid
bodies. These rigids are linked by articulations that correspond to bond torsions. Collision
detection is performed by considering only the van der Waals force, so that atoms are
represented as spheres.

The Manhattan-Like RRT (ML-RRT) is destined for studying these kinds of problems
[Cortés, et al. 2007]. The protein backbone is represented as a large rigid body, from which the
ligand must escape. In doing so, it might push on the side-chains, which open up like barn doors
before it. The number of DOFs in this scenario is very large, considerably slowing down even an
optimized RRT.

In order to conquer the complexity, the ML-RRT divides the DOFs into two groups: active
DOFs which include the ligand, and passive DOFs which include the side-chains. Each RRT
iteration is split into two steps. First, only the active DOFs are planned for. If the extend step
fails, however, the offending direct path is analyzed to see which objects were found in collision
with the ligand. If the side-chains are the only objects in collision, then new configurations for
them are chosen by sampling in a local neighborhood around their current positions (Figure 2.7).

~ 7/ . \}‘w\

Figure 2.7: Manhattan-Like RRT (ML-RTT). A ligand can be modeled as an articulated object (here the
joints are represented as circles). The protein within which it finds itself is composed of rigid objects (the
grey areas) as well articulated side-chains. The ML-RTT considers the ligand DOFs as active, meaning that it
plans for them first (the object shaped like an H on the left). If a collision occurs with one or more side-
chains, however, these side-chain positions are perturbed. If the new position avoids collision, then it is
added to the roadmap (the dashed line on the right).

2.4 Remarks for this Work

Having presented motion planning in general, it is important to understand where this doctoral
work is situated within the field. Generally, we consider only static environments, in which there
are no moving obstacles, other than those that the planner might move for its own purposes.
Furthermore, we do not consider sensing, which typically introduces in unknowns and stochastic
methods. By limiting our focus in this way, we are able to bring greater attention to the
industrial problems that motivate this work.

18 o Geometric Operators for Motion Planning

This chapter is meant as an introduction to the field of motion planning, which provides the
context for this doctoral work. In this next chapter, we discuss a tool for analyzing the output of

the motion planning algorithms.

Wrapped Volumes o 19

“Perfection is achieved, not when there is
nothing left to add, but when there is
nothing left to take away.”

Antoine de Saint-Exupery

3 Wrapped Volumes

Motion planning is not an end unto itself. The larger goal may indeed be to program a robot to
perform the movement, but a great number of systems wish to analyze the found path. Part of
this analysis may require visualizing the motion. A natural way to view paths is to “play” them, in
the form of an animation, in which the robot carries out the prescribed movement. However
useful this form may be for analyzing the dynamics of the movement, we would yet sometimes
like to visualize the extent of the movement.

3.1 Swept Volumes and Wrapping

As a matter of fact, the Swept Volume (SV) lets us do exactly that. It describes the totality of
space touched by an object (or robot) as it is pulled along its trajectory (Figure 3.1). In a sense,
the SV “flattens” the robot motion, removing the time dimension. That is, if a path is considered
a function of time 7 : [0,1] - g, so that at each instant t, it generates a configuration that can
be applied to the robot A, then the SV is the set of all points a € R3 touched by the robot along
the entire time interval.

SV(A,7) ={aeA(z(t)) : t € [0,1] } (3.1)

Figure 3.1: Swept Volume (SV). The SV of a path is the shape formed by adding together all the points in
space touched by the object as it follows the movement. Here, the object on the left translates along the
path shown by the arrow, resulting in the SV on the right. Often it suffices to consider the boundary of the
SV, shown as a dashed line on the right.

20 o Geometric Operators for Motion Planning

Since their introduction in the 1960’s, SVs have proved useful in many different areas,
including numerically controlled machining verification [Abdel-Malek, et al. 2000], robot
workspace analysis [Abrams, et al. 1999], geometric modeling [Conkey and Joy 2000], collision
detection [Foisy and Hayward 1994], mechanical assembly [Law, et al. 1998], and ergonomic
studies [Abdel-Malek, et al. 2004]. Ergonomics is concerned with designing comfortable
workspaces that do not cause long-term discomfort for their human users. Through analysis of
kinematic modeling of the human limbs (otherwise known as “reach envelopes”) engineers can
test the feasibility of an operational task and create one or more corresponding reaching paths
[Abdel-Malek, et al. 2004].

Not only is the SV an excellent way to visually capture robot motion, but they have
practical purposes beyond visualization. Once a path has been generated, engineers often desire
to guarantee that it will stay collision-free despite the ongoing design, easing
disassembly/maintenance tasks. The SV can represent the volume of one or more paths, and
further placement of parts can be efficiently checked for collisions against it.

As its name implies, the SV describes a volume. In many cases, however, it suffices to
consider the boundary of this volume. For the purposes of collision detection, for example, any
obstacle entering the SV would have to cross its boundary. Most visualization tools would simply
draw the boundary as well. If the boundary entraps parts of the object on the inside, then this
detail can be discarded. We call this process wrapping.

The wrapping process can be thought of as submerging an object in colored paint. When
the object is removed from the paint, all the colored surfaces are the boundary of the wrapped
region (Figure 3.2). To put this idea in formal terms, we first consider that the 3D Euclidian space
can be divided into a number of connected spaces by the object geometry. Assuming that the
object being wrapped is finite (having a finite diameter), then only one of these spaces has
infinite volume. We call this open set S,ytsige, @and its complement S;,5iqe is @ closed set
containing one or more connected spaces. The wrapping operator approximates Si,side, Of,
more precisely, its border.

Figure 3.2: Wrapping. The object on the left is closed to the outside, meaning that even if the object was
completely submerged in liquid, the inside would stay dry. The wrapping operator effectively removes this
detail, rendering the volume in the middle. The object on the right, however, has a hole in it so that the
liquid would touch the interior detail. Wrapping it would therefore have no effect.

Wrapping can be performed on a robot undergoing transformation. Instead of considering
a continuous path, however, it takes as input a set of configurations Q, and generates directly
the boundary of the interior region S;;side-

Wrap(A,Q) =0{a € A(q) : q € Q,a & Soutside } (3.2)

Wrapped Volumes o 21

Wrapping has uses independent of the SV. For example, we can consider the reach
envelope of a robot as the wrapping of all its obtainable configurations. Or it could be drawn on
as a Constructive Solid Geometry operator which finds the union of an object in several
configurations. If, as in most cases, we are content with ignoring detail that is closed off within
an SV, then we can reformulate the SV in terms of the wrapping operator.

SV(A, 1) = Wrap(A,{t(t) : t €[0,1] }) (3.3)

In this chapter, we will deal with SV calculation through this formulation. Though we focus on SV
calculation, most of the development applies to the general wrapping operator as well.

PLM designs are based around CAD data, and these models are infamously malformed. By
malformed, we mean that they contain degeneracies such as cracks, intersections, or wrongly
oriented polygons [Murali and Funkhouser 1997]. Many geometric algorithms require closed 2-
manifold volumes (also called “watertight” models) to give meaningful results. Although
malformed models can theoretically be transformed into proper volumes, in practice this is both
a difficult and time-consuming pre-processing step. In addition, certain models contain flat
surfaces surrounding no volume whatsoever. Such models may be dealt with more
straightforwardly as polygon soups— unordered sets of triangles with no enforced connectivity
constraints.

For this reason, we chose to adapt a state-of-the-art SV approximation algorithm to
handle pure polygon soups. Our algorithm stays true to the original volume, and is even capable
of generating both volumes and flat surfaces where appropriate.

3.2 Related Work

SV calculation dates back to the 1960s, originally in a 2D context. The problem of calculating the
volume is often simplified to finding the boundary of the volume. Even so, the mathematics can
be very complex, including self-intersections of the SV. Due to the sheer volume of the work on
the subject, we refer the interested reader to the survey by Abdel-Malek et al. [Abdel-Malek, et
al. 2002].

Modern analytical approaches include envelope theory [Martin and Stephenson 1990],
singularity theory (a.k.a. Manifold Stratification or Jacobian rank deficiency method) [Abdel-
Malek and Othman 1999, Abdel-Malek, et al. 2000, Abdel-Malek and Yeh 1997], and Sweep
Differential Equations [Blackmore and Leu 1990, Martin and Stephenson 1990]. However, the
type of data that we are treating does not lend itself easily to mathematical analysis.

If approximations can suffice, then voxels provide a simpler and more practical approach.
In the voxelization process, the workspace is divided up into small cubes of a fixed size, called
voxels [Kaufman, et al. 1993]. A voxel is active if the space within it contains object geometry,
and inactive if it does not. Although we have not found a method for generating SVs from voxels
described in the literature, it appears straightforward enough to sample a path, and activate all
voxels touched by a robot in those sampled configurations. The final SV is simply composed of
the set of all active voxels. An advantage of this approach lies in that voxels can be easily
activated by polygon soup models. The disadvantage is that the accuracy is limited by the voxel
size. The resulting wrapping will definitely contain the robot, but will generally overestimate the
wrapped size (Figure 2.1).

22 J Geometric Operators for Motion Planning

Figure 3.3: Voxels used for wrapping. A voxel is a cube in the workspace that is either active or inactive.
By marking all voxels that intersect the object as active, it is easy to calculate the wrapping, or SV. The
precision is limited to the size of the voxel.

3.2.1 Implicit Surfaces and Distance Fields

Schroeder et al [Schroeder, et al. 1994] introduced another type of method- manipulating
numerical approximations of implicit surfaces. They begin with a model from which the SV will
be generated. They impose a grid on the model space and assign each grid point p,, a value
f(p) equal to its distance from the model surface. The workspace (a volume bounding the
entire sweep) is imposed a grid as well, with initial distance values f(p,,) of infinity. As the
object is swept along its trajectory, the inverse transform of each workspace point is calculated,
to find the nearest neighbor points in model space. A new distance value f'(p,,) is evaluated as
the trilinear interpolation of the model space distance values. The workspace distance value is
then taken as the minimum of the old and new values (Figure 3.4). Such grids of distance values
are called distance fields.

[
- ta
SRR
™ LD t
» A RA
]
}‘L
\ NP
i
tn ti+l

Figure 3.4: Implicit distance calculation using Schroeder’s inverse. The geometry of the robot on the left
is specified in its own reference frame called model space. A grid is imposed upon it, and a value is
assigned to each grid point, equal to the distance from the object surface. On the right, the workspace is
created so that it is large enough to contain the final SV. It is assigned a grid as well, with all values equal
to infinity. As the object is swept through the workspace, a transformation is applied at each step in order
to transform from model space coordinates to workspace coordinates. Once the nearest model space
points have been found, trilinear interpolation is used to derive a new distance value. If this distance value
is less than the current one for the workspace point, it is substituted for the old one.

It is important to note that the distance values for grid points lying inside the volume are
given negative values. Thus, the boundary of the SV can be approximated as an isosurface where
the distance value equals zero. To this end, the Marching Cubes algorithm interpolates f(p)
between two grid points [Lorensen and Cline 1987]. Where f(p) equals zero, the algorithm will
output a vertex, and connect it to neighboring vertices to create a watertight manifold.

Wrapped Volumes o 23

A consequence of this approach is that a volume must cover at least one grid point in
order for it to be detected. This is due to the fact that interpolating f(p) between two grid
points that are considered “outside” the swept volume (i.e. f(p) > 0) will never produce a value
equal to zero. Therefore, this algorithm can neither detect nor generate flat surfaces.

Nevertheless, it appears that the work of Schroeder et al [Schroeder, et al. 1994] has been
used in commercial products to generate swept volumes of polygon soup models [Law, et al.
1998]. Although not explicitly discussed in the literature, we can hypothesize that this feat is
accomplished by tessellating at a positive distance value (i.e. f(p) =d, d > 0). This is
equivalent to adding an offset d around all surfaces, essentially “growing” the volumes. In this
case, surfaces become volumes. If d is high enough, any point on the polygon soup will grow into
a volume sufficiently large to cover at least one grid point, making these points detectable, at
the cost of deforming the resulting volume. For our work, we insisted on the capability of
generating surfaces without offsetting.

N
W
\ V1
\ W\
\ \

\
— \) =)

| ~

]

|

I
AN
-/
1)
[
A,

L

Figure 3.5: Offsets for implicit surfaces. On the left, we show 3 different types of geometry: a closed
volume, a volume with a hole, and a flat surface. Without an offset, only the closed geometry would be
correctly wrapped. On the right, the effect of adding a sufficient offset is shown. The line segment would
be dilated into an object large enough to be wrapped by the algorithm, and the hole would be closed.
However, all objects would be affected by the offset, including what normally could be wrapped without
it.

The distance fields used in this algorithm can be generated through regular sampling of a
bounding volume [Bloomenthal 1988]. Such sampling lends itself naturally to the powerful
parallel processing capabilities of a graphics card, now commonly referred to as a Graphics
Processing Unit (GPU) [Kenneth E. Hoff, et al. 1999].

3.2.2 GPU-Based Directed Distances

Kim et al. [Kim, et al. 2003] combine and extend the implicit surface approach to quickly find the
SV boundary using the GPU. The essential concept behind their approach is to transform the
implicit function evaluation into a ray-casting problem. Large number of parallel rays can be
evaluated by the depth buffer of the GPU, intended to ensure that objects closer to the viewer
obscure those behind them.

The algorithm takes a triangulated mesh and a trajectory composed of rigid motions as
input. The edges and faces of the mesh are treated as ruled and developable surfaces, and
triangulated along the trajectory within a certain error threshold. The new object includes the SV
boundary, but contains surfaces on the interior of SV as well.

24 . Geometric Operators for Motion Planning

To remove the interior surfaces, the object is split into slices, and a 2D grid is imposed
onto each slice (Figure 3.6). Using the GPU, distance fields are found along the edges between
neighboring grid points. The distance fields are directed (along the 3 major axes), rather than the
scalar values as in Schroeder et al2 They are also unsigned, as there is not yet a notion of interior
and exterior.

Figure 3.6: Directed distance fields. In order to efficiently calculate distance fields using the GPU, directed
distance fields replace omni-directional ones. The workspace is represented by a bounding box (left)
surrounding the robot within it (here, the dragon model). A regular grid then is imposed upon the
workspace. This grid divides the workspace in slices, and depth measurements are performed for each
slice. The depth measurements are attached to each edge of each grid cell, in all 6 directions. A portion of
edges are illustrated as arrows (right), stopping where they hit the surface or when they reach the next
grid cell.

The grid points are then classified as outside or inside the SV using a propagating front
level set method. To produce the volume, the surface of the SV is extracted using the Extended
Marching Cubes (EMC) algorithm [Kobbelt, et al. 2001], which exploits the directed distance
fields and triangle normals to provide a more faithful triangulation than traditional Marching
Cubes. The final step is a topological check. If the surface is not evaluated as closed and
watertight, the spatial grid is refined and the algorithm executed again.

Their algorithm represents an advance from that of Schroeder et al. both in performance
(thanks to the GPU distance-fields) and quality (through EMC and the absence of interpolation).
However, the range of acceptable input is limited; only a single watertight 2-manifold is allowed.
This restriction is imposed by the tessellation method and the final topological check. To handle
difficult cases in PLM, critical modifications need to be made. Such modifications constitute the
main contributions of our work on wrapped volumes.

Wrapped Volumes o 25

3.3 Wrapping Polygon Soups

We have devised a fast SV approximation algorithm to accept arbitrary polygon soups as input,
and generate watertight volumes or flat surfaces as output, depending on the result. Given a
robot A, and a trajectory t, our algorithm generates W, a triangulation of the boundary of
Wrap (A, t). To do so, it follows these steps:

1) Trajectory sampling — Convert T to a set of configurations Q.

2) Workspace creation — Create an bounding box that contains all Q.

3) Distance-field gathering — From each side of the box, slice the box along the grid. For
each slice, obtain the distance field values from the GPU depth-buffer.

4) Surface extraction — Using an advancing front method, determine which grid edges
cross the surface of the wrapped volume. Discard the others.

5) Triangulation — Triangulate the surface points associated with the remaining grid edges
to produce W.

The remainder of this section is devoted to explaining these steps in more detail. Only Step 2 is
omitted since it is fairly straightforward.

3.3.1 Trajectory Sampling

Rather than creating a swept mesh through ruled and developable surfaces as with Kim et al
[Kim, et al. 2003], we decided to sample the surface at a certain number of intervals. A
motivating factor behind this choice is our desire to focus on the more generalized wrapping in
addition to SV calculation. Decomposing the trajectory into a set of configurations allows for a
convenient way to pose the SV problem in terms of wrapping.

A sampling function y converts from a trajectory 7 to a set of configurations reached by
that trajectory, y : T - {t(t) : t € [0,1] }. The simplest such function naively samples along
along regular intervals of t, producing n + 1 samples including the endpoints.

i n

Vreguiar(m) = {7 (=) }i=o (3.4)

However, arbitrary motions can lead to situations where certain points sweep large paths
while others barely move. To limit error in this case, it would be necessary to impose a large
number of intervals, many of which would be wasted on more constant movements.
Additionally, determining the error bound implied by a given number of samples is not trivial
(Figure 3.7). Another approach, used by continuous collision detection methods, would be to
consider the movements between each pair of samples rather than the samples themselves
[Redon, et al. 2004]. However, this approach boils down to calculating a kind of swept volume
for each interval. Given the malformed geometry that we expect as input, calculating each of
these shorter swept volumes would be just as demanding, if not more, as calculating one volume
for the whole.

A response to this problem lies in [Ferré and Laumond 2004], where the authors define a
bounded distance operator on robot paths. Given the robot A, we can examine the distance of
the longest path swept out by a point between two instants along the trajectory.

26 o Geometric Operators for Motion Planning

d; »
v d2) N/
@) (b) (c)

Figure 3.7: Problems with regular path sampling. In (a) and (b), a simple straight arm is rotated about one
end. Sampling this trajectory uniformly would result in the very different error bounds d; in (a) and d, in
(b). This problem is only further aggravated when kinematic chains, such as (c), are introduced. The
bounded distance operator aims at controlling the maximum error.

d(r(t))
dt

t1
maxSweep (T, ty, t;) = max f H ’dt (3.5)
aeA
to

We note that two configurations 7(t,) and 7(t;) are bounded by distance A if no point on the
robot sweeps out a path longer than A between them.

bounded(z, ty, t;,A) = maxSweep(t,ty, t;) < A (3.6)

In practice, it suffices to examine the trajectories swept by vertices lying on a bounding volume
(such as a convex hull) of each robot body [Schwarzer, et al. 2004].

To generate a sequence of configurations along a trajectory using this notion, we assume
a function 6(t,ty,A) such that maxSweep(T, to, 0(1, tO,A)) = A. Then we can create our
trajectory sampling function on §.

Yboundea (T, A) = { T(S(T: 0, iA)) }: 120,6(r,0,id) <1 (3.7)

3.3.2 Distance Field Creation

By using directed distance fields instead of omni-directional distance fields, Kim et al. are able to
use basic GPU functionality to calculate them [Kim, et al. 2003]. In a nutshell, a transformation
matrix is put into place so that the “camera” points down an axis of the workspace. In addition,
orthogonal projection is used so that perspective does not come into play. The front plane of the
view frustrum is set right before the camera position, and the back of plane is set to the slice
depth. The remaining planes are similarly aligned to fit the workspace box nicely (Figure 3.8).

One minor innovation that we bring to this step is the way in which we slice up the
workspace box. Instead of using a fixed number of grid cells in each direction, as in [Kim, et al.
2003], we let the number of grid cells fluctuate so that the size of each grid cell is identical along
each axe. In other words, our grid cells are cubes instead of cuboids. By doing so, we drastically
reduce the number of total grid cells that need to be taken into account (Figure 3.9). This
impacts the performance of the rendering as well as the surface extraction and triangulation
steps.

Wrapped Volumes o 27

AN

<i front back <j b

>

hvd
bottom

Figure 3.8: Directed distance field gathering. To obtain distance fields, the virtual “camera” is positioned
so that it sees only one slice at a time, in orthogonal projection (one such view frustum is outlined in
dashed lines). Then the robot geometry is rendered on the GPU. The depth buffer stores the distance to
the geometry that was closest to the camera, and so by reading back the buffer we obtain the entire
distance field. This process is repeated for each slice of the view, and then for each of the 6 sides of the
workspace box.

S, S

—

Sol SI

Figure 3.9: Grid division. In the original algorithm, the workspace was divided into an equal number of
grid cells for each axis. Since the size of the grid cell plays a role in the final error bound, the size must be
reduced along the longest axis. For environments that are not cubic, this logic leads to distortion effects,
in which the shorter axes are “squished” and contain grid cells that do not contribute to lowering the error
bound. On the left, S; is the desired grid cell length, and S, < S; is a side-effect. By fixing the grid cell
length in all directions, and letting the number of grid cells vary per axis, we can drastically reduce the
number of total grid cells, while keeping the same error bound (right). Here the grid on the left has
8 - 8 = 64 cells, whereas the one on the right only has 5 - 8 = 40.

3.3.3 Surface Extraction

In implicit modeling, a field function f(p) defines a value for each point p in space. Surfaces are
therefore equivalent to contours sharing a field value. In our case, f(p) returns the distance to
one of the polygons drawn by the GPU. However, f(p) will be zero for surfaces lying within the
SV as well as along the boundary.

When dealing with volumes, it suffices to negate f(p) for all p within the SV. As long as at
least one grid point falls within the volume, it creates a difference that can be detected by the
discrete surface extraction procedure. However, when dealing with surfaces that do not contain
any volume this method fails to find the contour.

To properly detect these surfaces, we have modified the fast marching level-set method
presented by [Kim, et al. 2003], which itself was based upon [Sethian 1996]. Whereas they use it
to simply classify grid points as inside or outside, we employ it to tag grid edges that cross the
surface. These edges can later be used by our specialized triangulation algorithm (Figure 3.10).

28 o Geometric Operators for Motion Planning

' ||
|r \\ %%r 'r \‘\
\ l\\‘\ || ‘A ||
jZasltEl {1/
4 L;Il
| |
(a) ®) d

Figure 3.10: Surface extraction. The advancing front can enters holes in non-watertight objects, and thus
fail to produce a usable iso-surface. The front, represented by grey circles, starts at the upper left corner
in (a), moving down and to the right. In (b), the front has advanced up to the hole in the volume. By the
time the front is exhausted, in (c), it has completely filled the space. Since no grid points lie inside the
object, it is impossible to recover the correct surface. Although the hole is exaggerated here for the
purposes of example, the same phenomenon is manifested by the smallest of imperfections in common
PLM models. Our modified surface extractor gets around this problem by marking grid edges that cross
the surface, such as the highlighted edges in (d). This modification requires a custom triangulation method
in the place of the Marching Cubes algorithm.

The method is based on an advancing front that starts from the extremities of the grid and
slowly moves inwards until it hits the wrapping, at which point it stops. In order to calculate the
front advancement in a sequential manner, a queue is used that contains all grid points currently
participating in the front. So as to avoid adding the same grid point to the queue multiple times,
all grid points are tagged with a state of 3 possible values. The state is initially Far, meaning that
the grid point has not been reached by the advancing front. A point in the front is in the Trial
state, and once a point has been analyzed it is Known.

In addition, grid edges are associated with a color, initially white. Once a grid edge is
reached by the front, it is colored black if it crosses the wrapping surface (Algorithm 3.1). Once
the queue is exhausted, these black edges are precisely those that cross the wrapping boundary.

Note that this surface detection algorithm refuses to enter closed volumes, but also
recognizes non-volumetric surfaces, and is therefore appropriate for any kind of geometrical
model, polygon soup or otherwise.

1 while front # @:

2 p < pop (front)

3. state (p) « Known

4. for each neighbor q of p:

5 if crosses surface(pq) then

6 color (pq) — Black

7 else if state(q) = Unknown then
8. state(q) < Trial

9 push (front, q)

10. end if
11. end for each

12. end while

Algorithm 3.1: Fast Marching Method adapted to recognize surface points. The algorithm works upon a
queue of grid points called front. At each iteration, it takes a new grid point from the queue, and
examines the edges with its neighbors. If the wrapped surface crosses an edge then this edge is colored
black (all edges start in white). If the edge does not cross the surface, then the neighbor grid point is
placed in the queue. The algorithm terminates when the queue is empty, by which time all edges on the
wrapping surface have been colored black. Only these edges need to be taken into account for the
following triangulation step.

Wrapped Volumes o 29

3.3.4 Triangulation

From the distance fields gathered earlier, we know where each grid edge crosses the wrapping
surface. We are interested in the 3D coordinates of these crossings, which we will call detected
surface points, since they form the wrapping surface. Once the detected surface points are
identified (i.e. those edges colored black by Algorithm 3.1), the next step is to triangulate them.

A large number of published tessellation algorithms could be used for this task. In
particular, algorithms that tessellate point clouds would be appropriate [Boissonnat and Yvinec
1998, Sack and Urrutia 2000]. However, rather than dealing with the detected surface points as
an unorganized set of points, we can exploit the known structure of the data returned by the
level-set method to achieve linear-time triangulation.

Intuitively, we link each detected surface point with its neighbors, and then triangulate
the result. In order to find a neighbor for a detected surface point, we start at the grid edge in
guestion and proceed to walk along the grid in a closed curve until we cross the surface again. A
small number of these walks will yield enough neighbors to triangulate with.

In order to keep track of this information, we transpose the detected surface points onto
an undirected graph. Each node of the graph represents a detected surface point, and the edges
between nodes provide adjacency information. Intuitively, each point should be linked with its
neighbors in the final triangulation. In terms of the graph, this means that each point
participates in an elementary cycle with its neighbors.

In order to link a node of the graph with its neighbors in the point cloud, we follow the
underlying grid structure. Starting from the detected surface point of the node, we engage on
four pre-determined walks along the edges of the grid, identical except for their starting
directions (Figure 3.11). We continue each walk until we cross the surface again. The node
corresponding to this detected surface point is our neighbor, and an edge is added to the graph
between these two nodes. Since the final edge brings us back to the grid point from which the
surface was initially detected (i.e. the walk traces a closed curve), we are guaranteed to hit the
surface at some point during the walk.

From here it is fairly easy to tessellate the graph. By following those cycles that do not
contain any others, we construct a simple loop that can be easily triangulated. For example, in

— e s s s

there are no cycles left. By choosing a circular direction (clockwise or counter-clockwise) when
enumerating the cycles, all triangles can be oriented to face out of the volume.

The graph representation defines a valid topological relationship between points in the
cloud. It is important to note that the graph always represents a closed 2-manifold volume,
rather than a polygon soup. In other words, this algorithm tessellates all objects (including those
detected to have strictly planar sections) as closed polyhedra (although duplicate polygons could
be filtered to preserve single-sided planar geometry). Certain degeneracies may still arise, such
as non-manifold edges or isolated line segments. These degeneracies can be detected and
removed before the triangulation process is launched.

30 o Geometric Operators for Motion Planning

d d
c c
S b J f b J
e a i e a i
h h
8 8

Figure 3.11: Walking along the grid. In order to triangulate the detected surface points, we first need to
determine which pairs of surface points are “neighbors”. To do so, we start at a single detected surface
point and take 4 pre-determined walks along the grid. Along each walk, we check if certain grid edges
cross the surface, and stop if that is the case. Each walk touches 4 edges maximum and is guaranteed to

reach a neighboring surface point. In the example on the left, the surface was detected along the edge ab.
The first walk leaves upwards from a along edge ac, then forwards along a downwards along % and
finally back again along ba. Similarly the walk moving left from a involves the sequence of edges
{@,?,]Tb,ﬁ}, the one moving down {@, ﬁ, hb, E}, and the one moving right {ﬂ, ﬁ,ﬁ, E} On the
right, we include neighboring detected surface points. The upwards walk would therefore touch and stop
on db, the leftwards walk would touch @, the rightwards one 1J, and finally the downwards walk would
loop around to touch the opposing surface point on ba.

h i J
4| /1 |
I | 3
P (\//'
g T b d k
e a c |
k) m J

Figure 3.12: Graph building. When the box on the left is placed in the grid, 11 surface points are detected
at the intersections. They are transposed onto the graph on the right, by connecting each detected surface
point (described by the corresponding grid edge) to its neighbors. Note that the letters on the left
designate the grid points, whereas the nodes on the right reference grid edges by a pair of grid points. For
simplicity, the grid in this example is smaller than the box. In practice, however, the grid always contains
the object to wrap, and thus its graph would completely surround the volume and not betray boundary
edges as in this example.

3.3.5 Error Bounds

Both the distance field generation and trajectory sampling steps are potential sources of
sampling error in our approximation algorithm. Each one is controlled by a single parameter, and
their combination defines the error bound as well as the time and memory complexity of the

Wrapped Volumes e 31

algorithm (there is an additional error related to hardware, since the GPU depth buffer is used to
calculate the distance fields, and so precision is limited by the width of the buffer).

Instead of dividing the workspace into an equal number of grid points on each axis, which
leads to cuboid workspace cells, our algorithm takes the slice depth S as an input parameter,
and divides the workspace so that the cells are cubes of this size. This has the advantage of
reducing the number of grid points under consideration, without reducing the error bound.

Consider sampling an object that does not move. Between the grid lines, no
measurements are taken. Therefore the error is limited to the possible distance the surface

could move within the grid cell, which is equal to its diagonal length v/3S (Figure 3.13).

Figure 3.13: Distance field sampling error. Since the SV boundary is detected where it crosses the edges
of a grid cell, fluctuations of the boundary within a cell go unnoticed. The inaccuracy of the resulting
approximation (the grey triangle) is therefore limited by the size of the grid cell, S. The worst case error is

the diagonal length of the grid cell, V3S.

Now consider the movement of the object along its path. As described in Section 3.3.1, we
can guarantee that no point on the object traces a path longer than A between two sampled
configurations. Assuming that the point is detected at both configurations, the farthest it could

move from the detected surface is A/Z'

It is now possible to take both sources of error into account. In the worst case, the surface
will be sampled at a distance S from its real location. In addition, between the two sampled

configurations, the surface will have moved A/Z' The resulting effect is the sum of the two:
e<V3S + A/Z'

The error bound ¢ is a useful measurement, for it is independent of the size of the object
or the length of its path. With this simple relation, the user has the possibility to adjust the
speed and memory use of the algorithm while staying within a global error bound.

3.4 Wrapping with Offsets

In previous sections, we have described how a polygon soup can be turned into a wrapped
volume. The key steps are sampling the geometry along a regular lattice, removing those points
“inaccessible” from the exterior, and then connect the remaining sampled points in order to
reconstruct the surface of the wrapped volume. The lattice serves as the central data structure
underlying the operation, providing a stable scaffolding to which both the input and output

32 J Geometric Operators for Motion Planning

geometry is linked. It is important to note that once the interior points are removed, the lattice
is guaranteed to describe a closed volume, regardless of whether the input was one itself. The
lattice offers a chance to operate on a well-behaved volume before it is once again reduced into
a collection of triangles.

In this section, we propose to manipulate the volume present on the lattice during a
wrapping operation in order to modify the size of the resulting object. Since the final object
surface is displaced or offset from the original, we call this operation wrapping with an offset. A
positive offset corresponds to an inflation (or growing) of the volume, whereas a negative offset
leads to deflation (or shrinking).

3.4.1 Why Offset?

In Section 3.2.1, we discussed how our approach to generating wrapped volumes is
distinguished by its ability to handle polygon soup input without offsets. The algorithm wraps as
closely as possible to the input in order to produce the highest fidelity approximation that it is
capable of. Nevertheless, there are times where an offset is desirable.

Geometric tolerances are used in manufacturing processes to designate bounds of
acceptable production error [Jayaraman and Srinivasan 1989]. Given that all final products differ
slightly from their design, tolerancing specifies the allowed variation in forms and dimensions of
geometric features, as well as the distances between them. Offsetting is one way to visualize an
object that includes tolerances by inflating the object to include all possible variations.

In robotics, users of motion planning techniques often wish for their planned path to
avoid obstacles as much as possible in order to minimize the risk of collision. Certain algorithms
expressly seek the path that stays in the middle of open spaces, but sampling-based planners
mostly content themselves with finding collision-free paths. In order to force such planners to
avoid close brushes, tolerances can be added to the robot. For each configuration, the collision
detector measures the distance to the nearest obstacle along with the tolerance, and declares a
collision if the former is less than the latter. If swept volumes are used to reserve space for
future path planning, then a swept volume of a path can be inflated by the tolerance so that it
will be implicitly included in the volume.

There are reasons to deflate volumes as well. Where a path planner is unable to find a
solution, it can try to reduce the size of the robot or the obstacles. The resulting path could give
indications regarding the obstacles that are causing the problem. Such a technique can also be
used to solve forced passage problems, in which the robot is allowed to collide with obstacles up
to a certain point. Another approach for forced passage problems is discussed in Chapter 5.

The simplest method for modifying the size of a geometric object is to apply a uniform
scaling. In uniform scaling, relative distances between points are preserved. At first, this would
seem to be a useful attribute, but in fact it makes it unfit for path planning applications. For
example, one could expect that shrinking obstacles would enlarge a narrow passage between
them. And yet reducing obstacle sizes through uniform scaling has the opposite effect.

Instead of scaling, we would like our offset operator to perform “fattening” or “thinning”
on objects. Inflating obstacles should not create collisions that did not previously exist, nor
should deflating them avoid collisions that did. One mathematical tool that allows this capability

Wrapped Volumes e 33

is the Minkowski sum, which provides a way to add one object to another. The Minkowski sum is
defined as

A®B={a+b: a€AbeB} (3.8)
and the Minkowski difference A © B is simply equivalentto A @ (—B).

Minkowski sums involving spheres are especially useful. Adding an object to a sphere of
radius r effectively enlarges the object by r. Similarly, subtracting the sphere shrinks it by the
same amount. This technique corresponds nicely to the positive and negative offset operations
[Rossignac and Requicha 1986]. Unfortunately, calculating Minkowski sums of arbitrary 3D
polyhedrons is a difficult problem in and of itself [Varadhan and Manocha 2006].

Using volumetric structures instead of surfaces opens up other possibilities. For example,
researchers have defined a thinning operator for tetrahedral models. Surface vertices are
pushed inward, but only to the extent that the result is contained within the original volume.
This approach has been used for path planning, but requires well-formed models that can be
tetrahedralized [Hsu, et al. 2006].

Rather than trying to deform a triangle-soup model, a voxelization, or a volumetric mesh,
we would like to work directly on the intermediate grid structure created by our wrapping
operator. We have devised algorithms that both inflate and deflate the wrapped structure.

3.4.2 Inflation

In their original work on SV approximation, Schroeder et al. treat the distance to the SV surface
as an implicit function, evaluated at each grid point. They then extract the implicit surface
formed where the distance is zero [Schroeder, et al. 1994]. This formulation allows for elegant
thinning and fattening of the volume, simply by adding a scalar offset value to the distance. That
is, if the distance from a grid point p to the object surface is given by d(p), then accounting for
an offset § is as simple as extracting the surface where d(p) — § = 0. This works equally well
with positive and negative values of §, although no skeleton is preserved for negative offsets.

It is tempting to perform the same trick for the directed distance fields that we gather
with the GPU, but a quick check shows that this intuition is misleading. By “pulling” the points
towards the six sides of the workspace, the directed distance fields no longer agree on the
position of the object to be wrapped. One possible way around this problem is to consider
multiple instantiations of the object, each transposed from the original position, and wrapping
the entire set, but it is not clear how to control the error that would arise, nor how performance
would be impacted (Figure 3.14).

To address this problem, we need a method that acts on all the directed distance fields
equally and simultaneously. Inspired by the use of Minkowski sums to perform dilation, we
propose replacing the object with a union of spheres, each having a radius equal to the desired
offset. Given a simple definition of a sphere,

sphere(c,r) ={a €R3: |la—c| <7} (3.9)
we can define the inflation operator as,

inflation(Ay, §) = U sphere(a, §) (3.10)

a €Ay

34 e Geometric Operators for Motion Planning

// d-ﬁ‘P \‘\ ﬂ

dﬁeft’ e - \\/~< RES ><<—\; 1~ ~ :‘1fil‘ight df"'ight
L, -

S N S
~ = Z, — 4—
Vi —,—-—
\ \
) 1 \ \
1 1 N N
v v gy
N ;"—\l S~ /,
S 2k > ,
~ ,\ o SO ~ - dﬁ
F—f— k- — ~__T—‘ ‘v
' 1
! 1
A)
A Y
.
\\\ ‘Vdown i
Sype— ———— d
down

Figure 3.14: Naive manipulation of directed distance fields. If each directed distance field were to be
simply offset by a scalar value as is done for undirected distance fields, they would no longer agree on the
position of the object to be wrapped. Here, the ellipse in grey has been offset twice along each axis,
corresponding to the 4 directed distance fields dfi.f¢, dfrigne, Afup, and dfgown. The positive offset leads
dfiere to consider the object as to the left of its original one, but the other fields each have a different
conception, condemning the surface extraction and tessellation methods to failure.

Since we use the lattice of directed distance fields to store our points, only the
intersections between the spheres and the lattice are of importance. As with the original
distance fields, some of these points will lie on the surface and others will not. We can use the
advancing front method to separate the two. For this reason, there is no need to consider
spheres based around points on the interior of the wrapped object, since they will not
contribute to the offset surface (Figure 3.15).

The volume produced by our inflation operator is guaranteed to contain the original
volume. Since each point in the wrapping is surrounded by a sphere of radius §, each vertex p,,
on the original detected surface will be encircled by multiple vertices ps where ||[ps — pw |l = 6.
Therefore, p,, will never be reached by the surface extraction method. In general, if {(Ay) is
the subset of Ay, that is extracted as surface points along the grid, then

VDwPs(Pw € ((A) A ps € {(inflation(4,6)) — llpw —psll 2 6) (3.11)

Between extracted surface points, the surface is linearly interpolated and then
triangulated. Therefore the distance between the inflated surface and the wrapped surface may
be less than §. The worst case occurs if a vertex is found at the exact center of a lattice edge (of
length S) and if § < 5/2, leading to an error of up to . An obvious workaround to this problem

is to decrease S with small values of § (Figure 3.16).

In practice, it would be inefficient to explicitly mark every intersection between the grid
and the offset balls, since many of the newly marked surface points will not lie on the surface
and therefore will not contribute to the final volume. Instead, the offset operation can be
integrated into a surface extraction procedure. Just as for the normal surface extraction scheme
(Section 3.3.3), this is an advancing front method. In place of checking if the depth fields contain
the surface along the edge between two grid points, we check for intersections with balls from
neighboring edges, and mark the minimum.

Wrapped Volumes e 35

& & A 8.2 NN

-
~

-
’
7
’
=k
~-/F
s

1+

Figure 3.15: Positive offset using spheres. The original wrapped object (filled in dark grey and bordered
with a thick line), is offset by considering a sphere around each detected surface point on the lattice
(shown as a dotted circle). Each intersection between the spheres and the lattice is marked in the lattice
as if geometry had been detected there. By running the surface extraction scheme a second time, the
offset surface will be obtained (filled in light grey and bordered with a thinner line). The offset volume is
guaranteed to contain the original. Certain detail may be masked by the rounding out operation, as can be
seen in the lower-left part of the object, but reducing the grid cell size can refine the shape.

52

S

S

Figure 3.16: Positive offset error. In the worst case, a vertex will be located at the center of an edge (the
grey circle). If the offset § is less than half the length S of the edge, then only two vertices will be created
on that same edge (the white circles), since the sphere surrounding the original vertex does not touch

other edges. The resulting triangulation could carry an error of up to 5/2 in this case.

Given a function describing a line segment

segment(po, p1) = {po +u(p1 —po) : 0su<1} (3.12)

and the minimum distance between two subsets

distance(P,Q) =) EIIIJILHE Q||P —qll (3.13)

the distance to the surface is simply the distance to the intersection of the current edge with a
sphere.

distToSurface(py, p1) = ;neicr}lllpo — distance(segment(py, p1), Sphere(a, 5))|| (3.14)

36 o Geometric Operators for Motion Planning

Line-sphere intersection tests may be trivial to perform, but they remain many times
slower than the single depth field lookup used by the classic surface extraction procedure. For
an extreme case, imagine testing each edge against all the spheres associated with any surface
point on the grid. This would obviously be unnecessary, since some spheres would be too far,
and others too close, to possibly intersect with the given edge.

Since the edge length and sphere radius (i.e. offset) remains constant for all line-sphere
intersection tests, we pre-calculate the set of neighboring edges that run the chance of
intersecting with a given edge. This set describes the relative positions of neighboring edges that
can be applied to any edge under consideration. Additional filtering can be performed for each
edge, based on the direction of the edge and the positions of the neighboring spheres. Finally,
only the remaining spheres are given the complete intersection test (Figure 3.17).

e—
N |/
\,
. \I \\L_’/
4 7
// \\5_‘/

Figure 3.17: Positive offset integrated into surface extraction. Instead of checking for intersections with
the object surface, the offset surface extraction method checks for intersection with spheres placed
around previously detected surface points (left). As before, some edges contain no such intersections (the
up and down arrows here) whereas some others do (the left arrow here). Since the sphere radii and the
grid cell size are known a priori, a subset of edges can be calculated before the offset process begins
(right). Here, the thick left arrow indicates the edge under consideration. Regardless of its location on the
grid, only certain edges (thinner arrows) need be checked for sphere intersections. The sphere shown here
can be culled, as it lies on an edge that is too far from the one under consideration.

3.4.3 Deflation

The principle behind the thinning operator follows the same lines of the inflation method. The
idea is to place spheres around the wrapped surface points and then remove those spheres from
the wrapping (this is similar to the Minkowski subtraction of a sphere from the wrapped object).
For the time being, we will not concern ourselves with saving the skeleton of the object,
meaning that the surface can disappear if the offset is large enough. For certain applications this
is unacceptable, and so in the next section we address topology preservation (Figure 3.18).

For this thinning method to work, only spheres around the surface points should be taken
into account. Their union is removed from the original volume. Formally, if d-Ay, indicates the
boundary of Ay, then

deflation(Ay, 8) = Ay \ U sphere(a, §) (3.15)

a€ oAy

Wrapped Volumes o 37

[4 > —4~
d * N < <
/ 7\ - ~
- [| //“\ N4 A
S ! o -

’ il Mg \ \ s . . V4 [
4 [P PPN W (Y4 S \

7)

Figure 3.18: Negative offset using spheres. The technique is the contrary of the positive offset method, in
that the spheres around detected surface points are removed from instead of added to the original
wrapping. Notice that if the skeleton is not preserved, then portions of the object can disappear, such as
the upper-right part of this volume.

Although the theory for this fattening method is not much more sophisticated than for the
thinning one, the implementation is significantly more complex. For positive offsets, the surface
extraction algorithm stops advancing where it detects an intersection with any single sphere. For
negative offsets, on the other hand, the surface extraction method must detect where it leaves
the union of spheres. This means that the advancing front method must keep track of what
spheres the front is lying within.

Our technique works by examining the intersections between the edge and each sphere
under consideration. Since portions of the intersection that lie outside the original volume A are
necessarily outside the shrunken one, we ignore them.

edgelntersection(Ay, g, p1) = Aw N segment(py, p1) N U sphere(a, 6) (3.16)
ae 6:/1W

This intersection may contain several disconnected intervals, each of which we would like to
examine separately.

In order to split the intersection into disconnected intervals, let a subset of a region be
called full if it does not contain any point outside of that region. Furthermore, a maximal full
subset is both full and is not contained within any other full subset of the region. The set of
maximum full subsets represents the disconnected intervals.

Given this set of intervals, we would like to decide which one is closest to the starting
point of an edge. Generally, the closest interval to a subset P is the one having the smallest
minimum distance from P.

closest(P,Q) =q: (q € Q,distance(P,q) = mElrQl distance(P, r)) (3.17)
T

Let the set of maximal intervals of edgelntersection(A, py, p1) be called o (A, py, p1)- Then
the farthest point of the closest member of o (A, py, p1) to by is at the frontier of the union of
spheres.

O-C(‘AJ Do, pl) = ClOS'eSt({po},O'(cﬂw, Po, pl)) (318)

38 o Geometric Operators for Motion Planning

The distance to the offset surface is therefore equal to the distance to the farthest point in o,
(Figure 3.19).

distToSurface(p,, = max -
face(po,p1) peol ﬂ,po,p1>||p° pli (3.19)
A /’—_~s\ A ,’—-N\\
’ \ 4 \
! s ~ U
Iv— —\cA \' ,/ \\ |‘ Ca ‘l
P e o) ! .)2 *.rapf(l
\ Cp] AN =% \ Cp !
\ , N — - \\ 1]
S e . L
7777777777 Ices=[po,p:] * 4 - Ies=[pospi] * ¢4
********** ICB: [po,pj] *CB Tt IcB: [p09p1] *CB
7777777777777 Ie=Ic,+ Ic; - Iec=[po,pi] *cs
7777777 IcA=Ic*A seme mmeemeeee- Ie= eyt Iep t e
O ,,,,, pf= max(pa’IcA) ”””” ICA=IC *A
————— IcA’ = closest(p,, IcA)
@ pr=max(p,, IcA)

Figure 3.19: Negative offset surface extraction. To demonstrate how the negative offset operator is
implemented within a surface extraction method, we give two examples here. The first (left) contains two
spheres, ¢, and cg, the original volume 4, and a line segment between points p, and p;. Intersections are
performed between each sphere and the line segment, yielding Ic, and Icg (shown as dashed lines). Their
union Ic is then intersected with the volume A to obtain the single interval IcA. Finally, the farthest point
along IcA from p, is shown as ps. The second example (right) is slightly more complex. Since c¢ is
disconnected from the two other spheres, IcA contains two separated intervals as well. Only the closest
one, IcA' is taken for the final distance operation. This guarantees that the advancing front does not
“jump” from one sphere to another.

3.5 Experimental Results

We have implemented the wrapping algorithm in C++, with graphic routines in OpenGL. It is
designed as a module for Kineo Path Planner™, and benefits from its stable implementation of
the bounded move operator. Since it relies only very basic graphic card functionality, any 2"
generation GPU supporting z-buffer and frame-buffer readback suffices.

All tests have been conducted on an Intel Core 2 Duo running at 2.66 GHz with 4GB RAM
(the work is only done on one core, however). The GPU is an nVidia Quadro FX 4600 with 768
MB dedicated memory. The operating system is 64-bit Windows Vista.

3.5.1 Swept Volume

We have used 3 models for testing the swept volume: a car exhaust (Figure 3.20), a car seat
(Figure 3.21), and a virtual human actor (Figure 3.22). All have come from actual PLM cases
encountered by Kineo CAM™. The path being swept is the result of a path planning process.

Table 3.1 lists the number of triangles for each model, as well as the size of the Oriented
Bounding Box (OBB) surrounding the swept path, which serves as the workspace for our
algorithm. The performance results are shown in Table 3.2. Each model was calculated at two
different error levels.

Wrapped Volumes e 39

The visual quality of the SV mesh is quite high, and suitable for PLM. However, the triangle
count of the SV is also important, and so in our application we pass the generated SVs directly
through a simplification procedure, such as the vertex decimation algorithm presented in
[Schroeder, et al. 1992].

Despite their appearance, none of the test models are watertight 2-manifold meshes. To
further demonstrate the applicability of our algorithm to non- volumetric geometry, we sweep a
simple flat surface in Figure 3.23.

Model # Triangles OBB Size (mm)
Seat 30765 2027 x 1578 x 1193

Exhaust 32641 1940 x 597 x 666

Human 55632 1667 x 1102 x 805

Table 3.1: Swept Volume Test Models.

Parameters Statistics Performance
Model ¢ € # # Drawn o #Grid Time Memory # Produced
(mm) A (mm) (mm) Samples Triangles Grid Size Points (s) (MB) Triangles
Exhaust 15 10 31 582 15.1G 130x47x25 275k 10.5 20 99.8k
Exhaust 7 6 15.1 970 48.1G 228x100x96 2.2M 52.8 146.3 181.9k
Seat 15 10 31 195 7.3G 136x106x80 1.2M 18.2 56.4 91.7k
Seat 10 6 20.3 325 18.3G 203x158x120 3.8M 52.7 201.5 451.7k
Human 15 10 31 693 24.1G 139x92x67 857k 26.4 28.5 55k
Human 10 6 20.3 1155 48.6G 167x111x81 1.5M 65.9 85.1 124.9k

Table 3.2: Swept Volume Experimental Results. Swept volumes for each of the three models are
generated with two different pairs of parameters: the slice depth S and the bounding distance A. The
error € is directly determined by these two parameters. The chosen bounding distance A leads to a certain
number of samples along the path. To gather distance fields, the object is drawn at each of these samples
for each slice of the workspace, leading to a large number of drawn triangles. The grid size relates the
number of grid point along each of the workspace axes, a result of the chosen slice depth S and the size of
the workspace. The number of grid points is simply the product of the grid size. In terms of performance,
the calculation time is listed along with the peak memory consumption and the number of triangles in the
final model.

40 e Geometric Operators for Motion Planning

Figure 3.20: Exhaust test case. The Exhaust scenario is shown in the top and results in the SV shown as a
blue transparent mesh in the lower left, or as a solid green object in the lower right.

Figure 3.21: Seat test case. The Seat scenario is shown in the top and results in the SV shown as a blue
transparent mesh in the lower left, or as a solid green object in the lower right.

Wrapped Volumes e 41

Figure 3.22: Human test case. The Human scenario is shown in the top and results in the SV shown as a
blue transparent mesh in the lower left, or as a solid gold object in the lower right.

Figure 3.23: Flat surface example. The surface with two holes (first) is swept along an S-shaped curve.
(second). The resulting SV (viewed from an angle in third, side in fourth) displays the flat surface in the
middle as well as the volumes on the ends.

42 o Geometric Operators for Motion Planning

3.5.2 Offset

As the offsetting procedure can intervene in any wrapping context, we could simply test it on the
swept volume examples just presented. But since it is a bit harder to observe the effects on large
swept surfaces, we have chosen instead to present two simpler wrapping models followed by a
single swept volume.

The first example is the well-known Dragon model (Figure 3.24), and the second is a
mechanical piece from an automotive Motor (Figure 3.25). Finally, we introduce a mechanical
disassembly problem involving a Compressor (Figure 3.26) for which we calculate the swept
volume and offsets around it (Figure 3.27). More information on the models is given in Table
3.3, and experimental results in Table 3.4.

Model # Triangles OBB Size (mm)
Dragon 871k 209 x 165 x 91
Engine 437k 394 x 284 x 110
Compressor 120k 691 x 286 x 247

Table 3.3: Offset Test Models.

4

-5mm -7mm -9mm

+3mm +9mm

Figure 3.24: Offset dragons. The original model (left center) was deflated by four different amounts (top
row) and inflated by the same amounts (bottom row). In this example, the grid cell size S is 2mm.

Wrapped Volumes o 43

Parameters Statistics Performance

Model S A) #Drawn # Grid # Offset Wrapping Memory Prodiced

(mm) (mm) (mm) Triangles Points Spheres Time(s) Time (s) (MB) Triangles
Dragon 2 N/A 3 871k 401k 26.5k 69.51 22.7 134.6 62k
Dragon 2 N/A 5 871k 401k 26.5k 131.27 22.79 135.7 67k
Dragon 2 N/A -3 871k 401k 26.5k 175.16 19.15 152 40k
Dragon 2 N/A -5 871k 401k 26.5k 448.38 18.78 238.8 29k
Engine 2 N/A 3 438k 155G 72.7k 267.03 23.57 325.8 154k
Engine 2 N/A 5 438k 1.55G 72.7k 503.23 23.56 336.7 162k
Engine 2 N/A -3 438k 1.55G 72.7k 723.02 22.54 692.3 118k
Engine 2 N/A -5 438k 1.55G 72.7k 1797.06 21.73 807 87k
Compressor 5 1 3 100M 48.8M 22.1k 9.47 73.96 86.1 44k
Compressor 5 1 6 100M 48.8M 22.1k 39.79 73.89 97.2 45k
Compressor 5 1 -3 100M 48.8M 22.1k 27.17 74.15 152.3 61k
Compressor 5 1 6 100M 48.8M 22.1k 106.08 73.74 170.3 42k

Table 3.4: Offset Experimental Results. Offset wrappings for each of the models are generated with
different combinations of three parameters: the slice depth S, the bounding distance 4 (only applicable to
the swept volume Seat case), and the offset distance §. The number of drawn triangles for non-swept
wrappings is fairly low, but the number of grid points roughly determines the number of detected surface
points, and therefore the number of spheres that must be taken into account to perform the offset.
Finally, we give some performance results regarding time, memory consumption, and the triangle count of
the final model. The offset time is separated out from the rest of the wrapping algorithm.

-Gmm -9mm

+3mm +Hmm +9mm

Figure 3.25: Offset motors. The original model (left center) was deflated three times (top row) and then
inflated by the same amounts (bottom row). In this example, the grid cell size S is 2mm.

44 . Geometric Operators for Motion Planning

Figure 3.26: Compressor test case. In this example, the compressor must be removed from the assembly
along the path (left). On the right, a close-up on the compressor, with the plate in front of it rendered with
transparency.

+3mm +6mm

Figure 3.27: Offset compressors. The swept volume of the compressor (left center) was deflated three
times (top row) and then inflated by the same amounts (bottom row). In this example, the grid cell size S
is 5mm and the bounding distance A is 1mm.

3.6 Conclusion

Our wrapping approximation algorithm successfully deals with real challenges posed by PLM,
including disassembly and ergonomic studies. Its fast execution allows for a rapid analysis of the
given paths and for subsequent collision detection and path-planning requirements. By relaxing
the requirements of watertight 2-manifold geometry, no pre-processing is needed to handle
arbitrary CAD models without offsetting. If offsetting is desired, we can incorporate both
inflation and deflation operators into the wrapping process.

Wrapped Volumes e 45

There are several areas for future work. We have shown how the intermediate graph data
structure, representing a volumetric mesh, has potential for manipulating the object before it
takes on polygon soup form. Other algorithms that require closed watertight geometry could be
run at this point. In particular, mesh simplification is a common second step to reduce the
triangle count of the wrapped output, and it could be easier to run it on the graph then on the
triangulated result. In addition, we would like to consider introducing sub-sampled points when
feature geometry is detected, as is done by algorithms such as EMC.

Finally, our use of the GPU is quite limited (drawing polygons and reading from the z-
buffer). It would be interesting to explore how applying modern GPGPU (General-Purpose GPU)
techniques could both accelerate the performance and add new capabilities. For example,
massive number of line-sphere intersection tests could be performed in parallel on the GPU.

One common use of swept volumes is to reserve space in mechanical designs for maintenance
or reachability tasks. When someone changes the design, they can use a collision detector to
verify that they have not encroached on the reserved space. In the next chapter, we discuss a
general framework for collision detection that can handle not only the input and output to the
wrapping operator, but a large variety of different geometry types.

Generalized Collision Detection . 47

“If it ain’t broke, don’t fix it!”

Bert Lance

Generalized Collision Detection

If probabilistic methods have enjoyed such success with complex path planning problemes, it is in
large part thanks to the collision detection procedures on which they stand. Since configuration
space is so difficult to analyze in practice, probabilistic methods rely for a large part on trial-and-
error. This is said not to deny that planning methods employ effective strategies in searching
through the configuration space. But such strategy can only point the way to interesting areas to
explore, and depend on the brute force of collision detection to clear the path.

Collision detection is a (if not the) limiting factor when it comes to path planning
performance. It is therefore a sensitive subject, for which the implementation may prove to be
just as important as the theory behind it. Once a collision detection library has been exhaustively
poked, prodded, and tweaked to squeeze every last ounce of performance out of it, it is saner to
leave it undisturbed.

Which explains why, when faced with a new collision detection matchup—voxels vs.
polygons—we hesitated to simply create a new collision detector. And yet, in the name of
science, we chose instead to open up the black box and extract the innards. The reason was
simply enough— we realized that most of logic behind the routines was indifferent to the kind of
geometry being tested. Why should we have to rewrite the entire engine for voxels when the
difference appeared trivial?

Furthermore, collision detection is not only a limiting factor for path planning
performance, but also for path planning generality. The methods that we reviewed in Section 2
deal strictly with configuration space. They are blissfully unaware of what the robot is composed
of, or the mechanics of testing the validity of a configuration. As long as its collision detector can
supply a response to its queries, the path planner is ready to set out exploring. If new geometry
types can be seamlessly integrated into a single collision detector, then path planning for them is
essentially free.

48 e Geometric Operators for Motion Planning

It is important to understand that the problem dealt with in this chapter is more
concerned with software design then computational geometry. Nevertheless, we feel that its
relevance for path planning warrants its presence here.

4.1 Motivation

Collision detection plays a critical role in many domains such as robotics, Product Lifecycle
Management (PLM), computer graphics, and virtual environments. It touches on many active
areas of research, including mobile robotics, robotic surgery, and humanoid robots. Performance
is only second to robustness in the list of requirements for most collision detectors.

Such performance optimization may be achieved through specialization of the collision
detection routines for the specific problem at hand. As a result, the number and variety of
geometric data representations taken in account is usually quite restricted. Through intimate
knowledge of the limitations, assumptions, and implications of both a given geometry type and
its implementation, the collision detection code can avoid extraneous tests and optimize the
remaining ones. If necessary, extra data structures may be built upon the geometry data to
accelerate the process even more.

As a side-effect of allowing for the desired optimization, this process tightly binds the
collision detection algorithm to the data representation. The tight coupling represents a barrier
to algorithm reuse, a roadblock that becomes most apparent once a new geometry type must be
added to the mix. In this situation, developers of a dedicated collision detector are faced with
two imperfect choices: create a second collision detection algorithm specialized for the new
collision tests (which must be independently tested and maintained), or convert the new data
type to the old one before handing it off to the collision detector.

The second approach may seem appealing, but could in fact sacrifice many of the
advantages of the “natural” model representation. There is such a variety of attributes for
different geometry types that it is difficult to convert from one to another without losing some
functionality. For example, we could convert from a voxel map into a polygon soup and its
bounding volume hierarchy, which is quite capable of representing voxels as 3D boxes. But since
this bounding volume hierarchy must be rebuilt each time the model changes, frequent updates
of the voxel map would impose a significant performance penalty.

We decided upon a third approach, to create a software architecture that supports any
number of geometry types as well as all the optimizations necessary to achieve high
performance. Applications for this architecture include PLM, bioinformatics, as well as robotics.
In this work, we present an example in the last domain. Section 4.7 presents an example of how
dynamic voxel maps can be tested against static polygon soup models for a humanoid robot
exploration scenario.

4.2 Related Work

The collision detection problem has been extensively studied in many different contexts. The
tight performance constraints placed on a collision checker (both in terms of time and space
complexity) have lead to specialized collision detection structures and algorithms for many

Generalized Collision Detection . 49

different geometry representations. For a presentation on the state of the art, we refer the
reader to [Lin and Manocha 2004].

To handle the kind of Product Lifecycle Management (PLM) path planning problems
discussed in [Laumond 2006], high performance Oriented Bounding Box (OBB) trees that deal
with unstructured polygon soup models are ideal [Gottschalk 1998, Gottschalk, et al. 1996, Lin,
et al. 1996]. Other bounding volumes that would work well include AABB trees [Bergen 1997,
Larsson and Akenine-Moller 2005] and k-DOPs [Klosowski, et al. 1998]. Such structures can play
a role even in a mobile robotics context. Since high-fidelity polygon soup models are often
available for the mobile robot as well as certain obstacles in the robot’s environment, they are a
natural choice for the “static” portion of the robot’s collision detection solution.

Our autonomous humanoid robot uses stereo vision and occupancy grids to construct a
unified 3D environment [Braillon, et al. 2008, Elfes 1989]. For dynamic environments, voxel
maps provide very fast collision detection [Gibson 1995]. By organizing them hierarchically, voxel
maps can be dynamically updated in a memory and time efficient manner while the robot
explores its environment [McNeely, et al. 1999].

Despite the impressive amount of collision detection research, we have been unable to
find published literature on generalized frameworks for collision detection. Such a framework
constitutes our contribution. In specific, we define a generic algorithm that descends a pair of
bounding-volume trees in tandem while dispatching all concrete proximity tests to specialized
handlers. Our architecture is designed to allow for customized data structures in order to
achieve the same level of performance as a dedicated collision detector. Finally, we demonstrate
how the framework can be integrated into a larger application around the common “scene
graph” structure.

4.3 Collision Detection Framework

In order to illustrate how collision detection typically functions, we begin with the simple
example of testing two polyhedrons against each other. Consider two polygon soup models A
and B, composed of unordered sets of triangles. We would like to know if they collide or not.

As described in [LaValle 2006, Lin, et al. 1996, Quinlan 1994], to avoid testing each triangle
from A against each from B, bounding volumes can be placed around each set of triangles. In this
example, OBBs are used. Only if the OBBs of A and B overlap do we need to test each triangle
against the others. Algorithm 4.1 describes such a function, and Figure 4.1 lays out the tests
needed if A has 3 triangles and B only 2.

An example execution is the following: A’s OBB is tested against B’s, and they are found to
overlap. A’s OBB is then checked against B’s first triangle. No overlap is detected, so the second
triangle is tried. This time, they are found to overlap, so A’s triangles are checked one-by-one
against B’s second triangle. At A’s third triangle an overlap is detected, and the algorithm
terminates.

It is easy to see that in this reduced example we need three kinds of tests: OBB-OBB, OBB-
triangle, and triangle-triangle. The overlaps () function in Algorithm 4.1 would need to
distinguish between them in order to carry out the correct calculation.

50 o Geometric Operators for Motion Planning

1. function test(a, b) : Boolean

2. Boolean collides — false

3. if overlaps(a, b)

4. if isOBB (b)

5. foreach c In children (b)

6. collides « collides Or test(a, C)
7. end foreach

8. else 1f isOBB(a)

9. foreach c¢ in children (a)

10. collides — collides Or test(c, b)
11. end foreach

12. else

13. // both a and b are triangles

14. collides ~ true

15. end if

16. end if

17. return collides

18. end function

Algorithm 4.1: Simple polyhedron-polyhedron collision procedure. The types of a and b could be OBBs
or triangles.

A

EA AR
<>

< &>

Figure 4.1: Testing polyhedrons. Take two sets of triangles, A and B, the first containing 3 triangles and
the second only 2. Given a bounding volume around each set, it is possible to reduce the number of tests
that must be executed in order to test for collision. First, the bounding volumes are tested against each
other. If they overlap, then one of them (e.g. A) is tested against each triangle of the other. Only if an
overlap is detected again are the triangles from A tested against the triangle of B. The execution can be
represented by the bottom flow diagram.

Although the example just given applies only to polygon soups, many different geometry
types employ hierarchical structures to carry out collision detection. In general, all bounding-
volume and spatial partitioning techniques use a divide and conquer strategy [Lin and Manocha
2004]. Both bottom-up and top-down approaches result in the same type of hierarchical
structure. In our framework, this hierarchical structure is termed a test tree, and is composed of
elements, which can be leaves (triangles, in the previous example) or branches (OBBs). In order
to support a wide range of geometries, a branch can have any number of children. Test trees are
discussed further in Section 4.5.

Generalized Collision Detection . 51

Given the generic tree structure, it is possible to generalize the procedure presented in
Algorithm 4.1. First, two elements are tested against each other. If no overlap is detected, then
the function returns false. If the elements do overlap and they are both leaves (e.g. collision
between two triangles), then the procedure simply returns true. Otherwise, it is necessary to
explore further in the tree to determine if a collision exists. One of the two elements is chosen
for expansion, and the procedure is called recursively for each of its children, or until a collision
is found. We call this algorithm test tree descent and it forms the core of our framework. Section
4.4 presents it in greater detail.

In the previous example, we have only checked if A and B collide. Other common tasks
include listing all of the collisions between A and B (i.e. a list of pairs of overlapping triangles),
and finding the distance between A and B if they do not collide. Each of these tasks is an
example of a proximity query, and modifies not only the test tree descent but also the kind of
information returned by proximity tests between the elements. In the previous example, only a
simple overlap test was required between elements, which might be faster than calculating the
distance between them.

As a whole, the architecture of the framework can be decomposed into three parts
(Figure 4.2). The core is the test tree descent algorithm, which is immutable and applies equally
to test trees of any geometry. It uses the test tree element interface to traverse the test trees.

“TestTreeA N7 TestTreeB

|] |

| A—%A] ﬂ |

. _ _‘_/ ___\\'_ -
\“__—’—

Figure 4.2: Framework architecture. The tree descent algorithm always references two elements at a
time, one from each test tree. To test for collision and distances between elements, it calls on one of a
number of proximity tests, organized into a bank. Each proximity test is specialized to analyze the
interaction between two types of geometric objects. In the diagram, the dashed borders around the test
trees and the proximity tests are used to indicate that the user can extend those portions of the
architecture.

For all tests between test tree elements, the tree descent algorithm refers to a bank of
proximity tests. A proximity test generally takes two elements as input and outputs the distance
between them. The result of the test depends on the proximity query posed. The proximity tests
are organized by the type of geometrical elements that they take as input (e.g. OBB-triangle, or
triangle-triangle).

52 J Geometric Operators for Motion Planning

4.4 Test Tree Descent

Through a defined test tree element interface and a bank of user-defined proximity tests, the
test tree descent algorithm can be cleanly separated from the data upon which it functions. It
consists only of generic logic, and requires no direct modification from the user.

4.4.1 Dispatch and Detection

Given two test tree elements, we must be able to analyze their interaction for collision and
distance results. Since the test tree elements do not necessarily have knowledge of each other,
this is an example of a multiple dispatch problem. Approaches to resolve this problem vary by
programming language. For C++, [Pescio 1998] discusses it and offers several new solutions.

In addition to the classic definition, however, we have the requirement that the proximity
tests (program logic) should be separated from test tree elements (data structures) in order to
define multiple tests between elements. If multiple proximity tests exist for the same pair of
elements, then the user should be able to decide, at runtime, which ones are used. Such
dynamism facilitates the implementation of custom collision detection logic, but prevents us
from implementing the multiple dispatch using methods based on C++ templates, which would
hardcode the dispatch logic during compilation.

Our solution is based on a simple function table, indexed by element type (Figure 4.3),
that dispatches proximity tests at runtime. The user can register and unregister proximity test
objects with the dispatcher at runtime. For any pair of test tree elements, a single lookup
retrieves the address of the object whose virtual function handles the given pair. Since C++
provides only weak support for reflection, a virtual method was added to the test tree element
interface that receives a unique identifier, assigned by the dispatcher upon registration.

ProximityTest
BVoxelOBBProximityTest OBBTriangleProximityTest
OBB | [| Triangle/ | B Voxel Voxel
OBB / / I
Triangle [
B Voxel I
Voxel

Figure 4.3: Proximity test dispatch mechanism. Each proximity test is a C++ class that inherits from a base
class ProximityTest who defines a virtual method for performing the test. In the class diagram above,
two example proximity test «classes are defined: OBBTriangleProximityTest, and
BVoxelOBBProximityTest. The dispatcher (bottom) has a table of pointers to the proximity test
classes, organized by the type of test tree elements that the test can handle. To compare two elements,
the dispatcher looks up the two types in the table and calls the corresponding virtual function on the
selected proximity test. In this example, the OBBTriangleProximityTest handles an OBB as the left
element and a polyhedron triangle as the right. The BVoxelOBBProximityTest does the same for
bounding voxels and OBBs.

Generalized Collision Detection . 53

4.4.2 Tree Traversal

Tree descent follows a simple recursive pattern, addressing two elements at a time, one from
each test tree. First, the proper detector executes a proximity test on a pair of elements. Based
on the result of the test, and the proximity query chosen, the tree descent algorithm may
choose to stop, back up, or proceed further down the test trees.

The generality of our framework derives from the fact that the tree descent algorithm is
wholly ignorant of the type of data it is dealing with. All special knowledge of the geometry
concerned is handled by the proximity tests, which can themselves be dynamically substituted
for each other at run time. For a more complete description, Algorithm 4.2 lists pseudo-code for
the procedure.

4.5 Test Tree Structure

Test tree elements are two-faced. They must implement a common interface to allow the
descent algorithm to traverse the tree in a generic fashion. They also must provide specialized
information to the proximity tests that handle them. Along with the proximity tests, they allow
the developer to include as little or as much optimization as needed for the application.

4.5.1 Generic Traversal

Examination of the pseudo-code in Algorithm 4.2 reveals that only one element from each test
tree is referenced by the tree descent algorithm at one time. Additionally, the test trees are not
traversed in a random fashion. Instead, the algorithm starts at the root nodes and then either
references the first child of an element or its next sibling. We can exploit this restricted access
pattern to allow for time and memory optimizations.

We define a simple element interface that only allows three methods for tree traversal to
access other elements: firstChild (), nextSibling (), and parent (). Their meanings are
illustrated in Figure 4.4. Each method returns a reference to another element, which is used
from then on. The methods hasChildren() and hasNextSibling() simply provide
information about the existence of related elements.

= A
parent ()

Al

A2 A3

Figure 4.4: Element relations and traversal methods. In the restricted tree traversal pattern used, the
highlighted element, A.1, is linked to other elements in the tree only through three relations: parent (),
firstChild (), and nextSibling /().

54 o Geometric Operators for Motion Planning

To illustrate these methods, let us take the example of an OBB tree. In order to open the
custom data structure up to the tree descent procedure, we define a test tree that contains two
types of elements: OBBs and triangles. An OBB element always responds true to
hasChildren (), and may return references to triangles or to other OBBs when
firstChild() is called. A triangle element, on the other hand, always replies false to
hasChildren (). Both elements may or may not have siblings, and respond accordingly.

4.5.2 Memory Optimization

Since only one element from a test tree is used at any one time, the entire tree of element
objects need never be constructed in its entirety. Therefore, it is possible to design tree
structures that are constructed on the fly, or that change dynamically.

Another advantage of the thin tree element interface is its proxy support. With this
approach, the data associated with a test tree is not stored as individual element objects.
Instead, the geometry data is stored separately, often in some optimized fashion. The element
objects themselves simply point to sections of this data store. Not only does this allow the
designer to optimize the data storage as needed, but the element objects themselves can be
reused.

To illustrate, consider once again the OBB tree example. Upon construction, the triangles
are sorted by a space-partitioning algorithm to build a binary tree of OBBs. To optimize memory,
the OBBs are stored in a large array, with compressed descriptions of their positions and indexes
of their children. Triangles are stored in a similar fashion. With this setup, the OBB and triangle
elements can simply store the indices relative to their respective arrays. When a traversal
method is called, the element can look up the data at that index, unpacking it if necessary, and
then answer the request (Figure 4.5).

OBB 1 OBB 2 OBB 3 OBB Tree Element
(Compressed) (Compressed) (Compressed) ‘ ‘
OBB Table Index
?Bb? ‘ Position Size ‘ ‘ Position Size ‘ ‘ Position Size ‘
able ‘ Unpacked Position ‘

‘ Child 1 H Child 2 ‘ ‘ Child 1 H Child 2 ‘ ‘ Child 1 H Child 2 ‘
‘ Unpacked Size ‘

Figure 4.5: Compressed storage scheme for OBBs. In order to save space, a designer may wish to specify a
custom storage scheme for their data. Here, all OBBs are stored in a packed format in a single table (left).
Each OBB in the table has two indices or pointers to child OBBs within the same table. The collision
detection architecture has no knowledge of this custom format. Instead, a tree element is defined which is
capable of providing the uncompressed version to the proximity tests designed for OBBs (right). The tree
element simply contains an index to the element in the table that it points to, thus avoiding duplicating
the geometry data.

In order to save memory, the test tree used in our example constructs only one OBB
element and one triangle element. Instead of always returning a reference to another element
object in response to a traversal method call, these “singleton” elements only return references
to themselves or to each other. Consider what happens when firstChild () is called on an
OBB element. If the child is also an OBB, then the element only needs to update its own internal
reference and simply return a reference to itself. If the child is a triangle, then it retrieves the
triangle element of the test tree and updates the internal data of the triangle before returning a

Generalized Collision Detection . 55

reference to it. The other two tree traversal methods, nextSibling () and parent (), are
implemented in a similar fashion.

In this way, only two element objects (one for OBBs and one for triangles) are needed to
act as the entire test tree, and they can be allocated before the tree descent begins, saving both
time and memory.

4.6 Application Integration

Collision detectors are rarely used in isolation. Instead, they are integrated into larger
applications for computer graphics, robotics, PLM, etc. A common denominator of these
applications is a hierarchical organization of objects, called a scene graph. In this section we
discuss the scene graph, its relation to test trees, and the use of aggregate test trees.

4.6.1 Scene Graph

A scene graph is a hierarchal organization of objects related to 3D rendering. Leaves are
generally geometric objects. Branch nodes in the tree are called assemblies, and by manipulating
them, the user implicitly manipulates the child elements as well. As far as geometry elements
are concerned, this means that each is assigned a position relative to its parent. To find the
absolute position of an object, it is necessary to compose the relative positions of its lineage, up
to the root of the hierarchy. Such an organization lends itself easily to kinematic chains.

A scene graph is both logical and dynamic. These two properties make it well adapted to
user manipulation but also less suitable for collision detection. Since the scene graph is a logical
rather than spatial organization, adjacent elements in the tree are not necessarily next to each
other. Being able to add and remove elements within a scene graph makes it difficult to keep
structures specific for collision detection (such as an OBB tree) up to date.

Take the example of a single polyhedron A that we would like to test repeatedly against a
static scene composed of two other polyhedrons: B and C. It would be faster to group B and C
together before collision detection begins, rather than testing A against B and then A against C
at each step. By grouping, we mean building an OBB tree upon the union of both polyhedrons
(by considering the triangles of both during OBB construction). To this end, we introduce the
notion of a collision entity.

4.6.2 Collision Entities

When the user wishes to run collision detection in our framework, he creates test trees that
integrate one or more geometric objects in the scene graph. The test tree is thus a separate and
parallel construct to the scene graph, containing a reference to an element (geometry or
assembly) in the scene graph, which then becomes a collision entity (Figure 4.6). In order to
enforce consistency between the test trees and scene graphs, it is illegal to modify geometries
on or beneath a collision entity, and our framework blocks this action when detected.

56 o Geometric Operators for Motion Planning

Poly B
Root oly BV
Tree

I
I [
Assembly 1 OBB OBB
(b)
Voxel
Tree
I
Assembly 2 : :
B Voxel B Voxel
(a) (©)

Figure 4.6: Scene trees. The scene graph (a) contains three geometric objects shown as hexagons. They
are grouped in logical assemblies, shown as rounded rectangles, which allow the user to manipulate them
as a whole. This structure is not necessarily optimal for collision detection, and so our framework builds a
test tree based on the geometric types of the object. In this case, Poly 1 and Poly 2 could be put into one
or more “Poly BV Trees” (b) and the voxel map in a “Voxel Tree” (c). In this simple example, both test trees
have the scene root as their collision entity, although this is not a necessary condition.

It is during test tree construction that any expensive pre-computation operations are
performed (such as recursive partitioning). The user may remove and rebuild collision entities as
he sees fit, in order to balance performance (putting multiple geometries in a single test tree to
boost query execution) and flexibility (geometries integrated in a test tree are immutable).

4.6.3 Test Tree Construction

As described above, collision tests are run on test trees instead of directly upon geometric
elements in the scene graph. It was necessary to devise a simple and generic method to build a
test tree from a collision entity (an object in the scene graph that serves as the base for the test
tree). The central idea is that a test tree built upon a single geometry object contains only that
object, and a test tree built upon an assembly contains all the geometry objects beneath that
assembly.

The construction procedure begins with an empty test tree. Beginning at the given
collision entity, it traverses the scene graph in a depth— or breadth—first manner. At each
geometrical object, it asks the test tree to integrate it if possible. The procedure sends two
additional messages before and after the traversal to provide the test tree opportunities to
initialize and finalize its internal data structures.

For example, consider a test tree that assembles polyhedrons in an OBB tree. It would
decline to accept objects other than polyhedrons, and contain a set of triangles which is initially
empty. When the construction procedure asks the test tree to integrate a polyhedron, the test
tree simply adds all the given triangles to the set. Upon receiving the finalization message, the
test tree constructs an OBB tree around the set of triangles.

In certain scene graphs, an assembly may be the parent of objects of heterogeneous
types. To allow such an assembly to be made into a collision entity, we use a mixed test tree. A

Generalized Collision Detection . 57

mixed test tree contains multiple test trees, each of which accepts complementary types of
geometry objects. When an object is put up for integration, the mixed test tree proposes it to
each enclosed test tree in turn, and integrates it into the first that accepts it. Finally, empty trees
are trimmed once the construction is complete. During the collision detection process, the
mixed test tree element will reference the root elements of its enclosed test trees.

4.6.4 Aggregate Test Trees

A geometry object in the scene graph may only be integrated into a single test tree, and only
two test trees may be tested against each other at once. We would nonetheless like to group
objects together into sets, in order to test one set against another. An aggregate test tree allows
us to accomplish just that.

An aggregate test tree is created upon collision entity construction (and so should not be
confused with the mixed test tree discussed above). Instead, they are created at test time and
are meant to be disposed of once the test is complete, so as to avoid inconsistencies resulting
from construction or removal of the referenced collision entities.

There are two aggregate test trees built into our framework. The first emulates the
traversal of the scene graph starting from a given element. It contains a reference to the scene
graph element, initially set to its “root” element, which is under examination. When its traversal
methods are called, it inspects the referenced element and traverses the scene graph in a similar
manner, until it encounters a collision entity. If firstChild () is called upon it at that point, it
returns the root element of the test tree anchored at the referenced object (Figure 4.7).

@ ----------------- Anchored af--====------5

Assembly 1

&

Assembly

Assembly 2

1 OBB
Poly 1 Voxel Assembly
Root Map Root 2 OBB
Voxel
Poly.2

Figure 4.7: Aggregate test tree. In the scene graph on the left, there are 3 collision entities, shaded in
gray. To assemble them all temporarily, they are collected in an aggregate tree on the right. Those
elements in the scene test tree that are collision entities are represented by the root of their test tree.

The second aggregate represents a list, with a reference initially pointing to the head of
the list. The nextSibling() method advances the reference. Just as for the previous
aggregate, the firstChild () method returns the root element of the referenced test tree.
Such a structure is especially useful for grouping collision entities that are separated from each
other hierarchically but not spatially.

58 o Geometric Operators for Motion Planning

Between these two aggregate test trees, objects can be tested together, sacrificing some
performance for the flexibility derived from not combining them in the same tree. At the same
time, the tree descent algorithm need not have any knowledge of these structures, since they
transparently act as any other test tree.

4.7 Dynamic Voxel Map for Robotic Vision System

A critical issue in autonomous robotics is to provide perception-based geometric models for
automated motion planning and control. In such a context the system may consider various
types of geometric models (occupancy grids, closed polyedra, polygons soups, voxels, etc.)
according to the choice of sensors. Nevertheless, an accurate CAD model of the robot itself is
often available to the system designers. In such a case, an astute collision detector could address
heterogeneous data structures in order to minimize sensing error while optimizing performance.

We conducted an experiment involving HRP-2 (Figure 4.8), a humanoid robot [Inamura, et
al. 2006, Yokoi, et al. 2008]. The goal is to allow the robot to autonomously explore unknown
environments using stereo vision and probabilistic path planning techniques. By testing a hybrid
collision detection scheme against a homogenous polyhedral one, we can demonstrate the

effectiveness of our approach.

Figure 4.8: HRP-2, a humanoid robot. HRP-2 is 154 cm tall, and weights 58 kg with batteries. It has over 30
DOFs and is equipped for both stereo vision and force sensing.

4.7.1 3D Reconstruction

To represent the environment, we use a 3D-occupancy grid which is frequently refreshed with
information from HPR-2’s cameras [Braillon, et al. 2008, Elfes 1989]. Each grid cell is assigned a
triplet representing the probabilities that it contains an obstacle, free space, or is indeterminate.
Originally, all cells are considered indeterminate. Based on these values, the grid cells are
classified into one of three discrete categories: OBSTACLE, UNKNOWN or FREE (Figure 4.9). The
UNKNOWN category may refer to a cell that the robot has not yet observed (e.g. it is behind an
obstacle) or is unsure about (e.g. not enough 3D points have been gathered in that volume).

As the robot moves, it gradually discovers more of the environment around it.
Additionally, the environment itself may change. In both cases, the robot takes the new

Generalized Collision Detection o 59

information into account in the 3D model. Apart from its own position and that of its goal, all
information about the environment is derived from its stereo vision. To carry out the task, it
proceeds as follows:

First, it examines the environment through taking hundreds of images. Next, it uses the
vision data to classify the 3D grid cells, creating two occupancy grids: one for OBSTACLE cells,
and the other for UNKNOWN (free space is defined as the absence of grid cells). The robot then
searches for a path delivering it to the goal, without considering the UNKNOWN grid. Assuming
that a path is found, it is examined to determine if it enters into the UNKNOWN area. If the path
does not touch UNKNOWN, the problem is solved and the robot can reach the goal. Otherwise,
it walks up to the border of the UNKNOWN area and stops to take more photos. This
information is used to update the occupancy grids, and the process continues iteratively.

Figure 4.9: Occupancy grid. Data from several stereo images are combined to calculate the probabilities
that a grid cell contains an obstacle. Here, the calculated grid cells are superimposed upon an acquired
image. The red cells represent obstacles, and the green cells are unknown. The absence of cells indicates
that the space is considered free.

4.7.2 Dynamic Voxel Map

A natural representation of the 3D occupancy grid is a voxel map. Such a space-partitioning
method can benefit from a hierarchical organization, with larger voxels bounding a
predetermined set of smaller ones [McNeely, et al. 1999].

One advantage of voxel maps is the efficient manner in which they can be updated.
Removing or adding a voxel at the lowest level sends a message to the parent voxel informing of
a change. In this way, bounding voxels can be created and removed on the fly in order to assure
consistency (Figure 4.10).

60 o Geometric Operators for Motion Planning

Figure 4.10: Voxel hierarchy. The left is a 3D view of 3 different levels of voxel sizes, one inside the other.
In the center, we switch to 2D to show two primitive voxels (a and b) were detected by the vision system.
Each level of the hierarchy (here there are three) contains a larger voxel bounding those below it— ¢
contains both primitives on the second level and d contains ¢ on the third. On the right, a third primitive
voxel e is detected. Automatically, the bounding voxel f is created around it on the second level. No
modification on the third level of the hierarchy is needed in this case.

Just as polyhedron objects in the scene graph may be transformed into an OBB tree for
collision detection, so can voxel map objects be transformed into a voxel map test tree.
However, unlike the OBB tree construction process, the voxel map test tree requires no pre-
computation. Since it merely references the included voxel maps, it does not need to be rebuilt
each time a change occurs.

Indeed, removing or adding a voxel to the map immediately affects the structure of the
corresponding test tree as it is gradually exposed during tree descent. Such ability exploits the
flexibility of this architecture in supporting both static and dynamic structures.

4.7.3 Experimental Design

Since an accurate and precise polygon soup model of HPR-2 is available we would like to use it
for collision detection. The occupancy grid, however, could have multiple representations. By
tessellating the boxes formed by the grid cells, the grid can be converted into a polygon soup
model for use by a dedicated polygon soup collision detector. Using a dynamic voxel map,
however, requires a hybrid voxel-polygon collision detector. In our experiment, we tested the
performance of the two collision detectors.

The robot was placed in a typical exploration scenario, in which it maneuvers around an
obstacle in order to reach its goal position (the environment measures 6x6x1m). Since the
obstacle partially blocks the robot’s view of the scene, it takes three iterations of the exploration
process in order for the robot to complete its task (Figure 4.11).

In order to get consistent results for the collision detection performance, we pre-
converted the image data into occupancy grid cells (20cm?) for each of the three iterations. We
measured the time and memory taken for each collision detector to process and initialize the
occupancy grid data. Finally, we measured the time taken per collision test during the path
planning process.

Generalized Collision Detection . 61

(c)
Figure 4.11: Environment discovery in three steps. When HPR-2 is placed at its initial position, it has no
prior information of the environment. It builds a tentative representation of the environment from the
acquired image data (a), and moves towards the boundary of the UNKNOWN area (green), while avoiding
obstacles (red). Once there, it refines its estimation of the environment (b), and proceeds with the second
iteration of its exploration algorithm. After this movement, it can perceive a clear path reaching the goal
(c). By moving there (d), it completes the task.

4.7.4 Results

(d)

As explained in the last section, the experiment is divided into three iterations, each having a
different number of grid cells for each category. Table 4.1 presents the time needed to create
the collision detection structures as well as the mean time per proximity test during the path

planning process and the associated memory consumption.

Grid Cells Setup
Iteration Type Time
Obstacle Unknown (ms)
Voxel 20
1 147 2332
Poly 65 761
Voxel 10
2 202 1012
Poly 17 626
Voxel 7
3 284 306
Poly 5304

Time per
. Memory
Collision
(kB)
Test (ms)
0.924 74
1.083 111
0.779 73
1.292 92
0.547 73
1.712 83

Table 4.1: Time and Memory Performance.

62 J Geometric Operators for Motion Planning

Although our results show modest differences in memory consumption and collision test
time, they might not convincingly argue for the use of a hybrid collision detector. The setup
time, however, tells a more dramatic story. The voxel map is able to incorporate the changes in
the occupancy grid hundreds, if not thousands, of times faster than the OBB tree. Simply put, an
OBB tree derives its speed from pre-calculation step, while voxel maps are almost purely
dynamic in nature.

4.8 Future Work

Our framework allows for high-performance collision detection between heterogeneous
geometry types. By generalizing the collision detection problem and identifying its components,
we have extracted a generic algorithm that descends a pair of hierarchical structures, using the
results of dynamically-dispatched proximity tests to guide the search.

To satisfy the performance constraints placed on collision detection, elements in the
hierarchical structures are only required to implement a thin interface that allows the
implementation of a number of time and memory optimization schemes.

Finally, we validate our work on an autonomous humanoid robot exploring an unknown
environment using stereo vision and an occupancy grid. Using our framework, we created a
hybrid collision detector that tests voxels and polygons in order to dramatically decrease refresh
times.

In the future, it would be interesting to explore the compatibility of this approach with
geometric data structures that do not use bounding-volume or space-partitioning methods.
Another question raised by this research is the feasibility of generalizing the proximity queries
and the results that they return.

The major motivation for the development of a collision detection framework is to extend the
capabilities of motion planning algorithms. In the next chapter, we leave collision detection
behind in order to deal with a pure path-planning problem— permitting and controlling
collisions during path planning.

Generalized Collision Detection . 63

1. function startTest(treeA : TestTree, treeB : TestTree) : void
2. test (root (treeA), root (treeB))

3. end function

4.

5. function test(a : Element, b : Element) : void

6. detect (a, b)

7.

8. Boolean childrenExist « hasChildren(a) Or hasChildren (b)
9. if childrenExist and shouldContinue () and shouldDescend ()
10. if shouldDescendLeft (element (a), element (b))

11. c « firstChild (a)

12. test (c, b)

13. while shouldContinue () and hasNextSibling(c)

14. c « nextSibling(c)

15. test (c, b)

16. end while

17. parent (c)

18. else

19. c « firstChild (b)

20. test (a, c)

21. whille shouldContinue () and hasNextSibling (c)

22. c « nextSibling(c)

23. test(a, <)

24, end while

25. parent (c)

26. end if

27. end if

28. end function

29.

30. TFfunction shouldContinue() : Boolean

31. return result () IS not COLLISION Or query().continueOnCollision ()
32. end function

33.

34. Tfunction shouldDescend() : Boolean

35. return result() §S OVERLAP Or query () .continueOnDistance ()
36. end function

37.

38. function shouldDescendLeft(a : Element, b : Element) : Boolean
39. if not hasChildren (a)

40. return false

41. else if not hasChildren (b)

42, return true

43, else

44 . return heuristic(a) > heuristic(b)

45. end if

46. end function

Algorithm 4.2: Generic tree descent. The function test () is recursive, and is originally called the root
elements of the two test trees. The detect () function dispatches the proximity test to the proper
handler. Finally, query () returns the current proximity query and result () the last proximity test
result.

Motion Planning in Collision e 65

“Nature does not consist entirely, or even
largely, of problems designed by a Grand
Examiner to come out neatly in finite terms,
and whatever subject we tackle the first need
is to overcome timidity about
approximating.”

Harold B. Jeffreys

Motion Planning in Collision

By convention, if not by definition, motion planning is concerned with finding collision-free
paths. When penetrations are allowed, as by IPP (presented in Chapter 2.3.1), they are likely
temporary side-products of the planning process, meant to be dealt away with before the final
result is presented to the user . There are at least two cases, however, in which it is useful to
expressly seek out colliding paths:

1) Forced passage — Take the example of a seat that must be mounted though the metal
skeleton of a car. The path planner may be unable to find a collision-free path, although
a human operator could quickly recognize that the cushioned seat could be “pushed”
through the opening.

2) Identifying design errors — If no solution exists for a path planning case, it remains
unclear how to analyze the problem. Should the part itself be moved or redesigned, or is
there another part of the assembly that should be examined? In the labyrinthine models
that PLM designers often work with, the answer may be all but obvious.

Informally, we would like a motion planner that finds collision-free paths if they exist, and
if not, finds paths that collide “the least possible.” This problem is neither well-posed nor well-
addressed in the literature. In order to give it a more concrete form, we need a method for
measuring the “amount of collision” for a path.

5.1 Related Work

As far as we know, design error analysis has not been studied to a great degree by the scientific
community. The closest related fields are probably assembly sequencing and geometric
tolerancing, which are briefly introduced here.

"ltis not always possible to guarantee complete lack of collisions. In many cases, it suffices to limit
penetration to a very small amount.

66 o Geometric Operators for Motion Planning

Assembly sequencing addresses the problem of constructing a product out of its parts.
Typically, a sequence specifies a series of assembly tasks for the parts, and possibly indicates
which tasks can be carried out in parallel. This problem was most actively studied in the 1980s
and early 1990s [Cao and Sanderson 1992, Delchambre 1990, Latombe and Wilson 1995, Milner,
et al. 1994, Seow and Devanathan 1994, Wilson and Latombe 1995], although recent work also
exists which uses probabilistic path planning in order to find sequences [Sundaram, et al. 2001].

Geometric tolerancing attempts to account for inevitable production errors by assigning
acceptable margins of error to features of mechanical parts in the design stage. Tolerances can
be assigned for feature placement, size, as well as shape [Inui, et al. 1995, Jayaraman and
Srinivasan 1989, Joskowicz, et al. 1997, Srinivasan and Jayaraman 1989, Yap and Chang 1997].

However, the problem we are trying to address deals more with correcting design errors
than production ones. We draw on path planning strategies where obstacles are allowed to
move within the scene [Dacre-Wright, et al. 1992, Wilfong 1988]. In particular, the ML-RTT
described in Chapter 2.3.2 is aimed at molecular disassembly problems [Cortés, et al. 2007]. In
the molecular model, parts of the protein, called side-chains, can be pivoted around an axis by
the moving ligand. The ML-RTT decouples the movement of the ligand and the side-chains. At
each iteration, the planner first attempts to move the ligand. If the ligand motion is blocked by
one or more side chains, then these side-chain positions are resampled and the planner tries to
reconnect the new position to the current one. Paths resulting from the ML-RTT appear to show
the side-chain “pushing open” the side-chains blocking its path like barn doors.

5.2 Implicitly Controlling Penetration Distance

One way to analyze collisions is to quantify the penetration between overlapping objects. The
most common measure is called Penetration Distance (PD) and relates the minimum translation
distance needed to move one object out of collision with another [Cameron and Culley 1986]. In
other words, it is the length of the smallest vector (in translation space) required to shift an
object out of collision (Figure 5.1). Recently, PD has been generalized to include rotations
[Zhang, et al. 2007], but we stick with the classic definition in this work.

To express PD mathematically, we will introduce an operator that translates an object A
by a vector t.

A+t={a+t:a €A} (5.1)
Then the PD between two objects A and B can be defined as

PD(4,B) = min{]|t|][: (A+t) UB = 0} (5.2)

PD has several nice properties that make it appropriate for a generalized motion planner:
it applies to any type of geometry, requires no parameterization, and is commutative (i.e.
PD(A,B) = PD(B, A)). A reasonable approach for motion planning could be to simply measure
the PD at each collision, and allow configurations that have a PD inferior to a certain value.

However, even with the fastest methods available to us today [Fisher and Lin 2001, Kim,
et al. 2002, Zhang, et al. 2007], explicitly calculating PD would overly burden the collision
detection routines, which already take over 80% of computation time in typical examples. From

Motion Planning in Collision e 67

our practical experience with PLM cases, collision detection times must be on the order of 1 ms
per test, and PD calculations are currently far from able to achieve this level of performance.

—

Figure 5.1: Penetration Distance. The PD is equal to the translation distance needed to separate two
objects. For the case on the left, the arrow indicates a vector that the ellipse could follow to get out of
collision. Since PD is a symmetric measurement, it would be equivalent to move the box to the left by the
same amount. The case on the right demonstrates how PD does not always correspond to an intuitive
notion of measuring collision. Rather than trying to shrink the sides of the ellipse or turn it, the shortest
vector out of collision is to move it vertically out of the other object.

We propose a different approach. Instead of trying to measure the PD directly, why not let
one of the two objects move out of collision? If such a movement is possible, and the distance of
the movement can be calculated, then we can deduce an upper bound on the PD of the collision.

[(A+t) uB=0 A |itll <pl= [PD(4,B) <p] (5.3)

N<
N

Figure 5.2: Movement equivalent to upper bound of PD. Instead of calculating the PD exactly, we only
know that the movement t brings it out of collision. This implies that that PD < ||t||, even if the
minimum vector t,,;,,, remains unknown.

tmin

t

With this in mind, it is easy to see that given a colliding position and a distance p, if we are
able to find a non-colliding position so that the distance between the two is less than p, the
penetration distance must be less than or equal to p. Although the exact penetration distance is
still unknown, it is at least bounded (Figure 5.2).

The central idea of our approach is to fix p from the outset, and search for non-colliding
positions that respect this distance in order to control the penetration. We call this “allowed
penetration” the play, in reference to loose mechanical parts.

To use our algorithm, the user specifies certain parts as active obstacles and assigns each
a play value. During the path planning process, these parts are allowed to move within the
boundaries specified by their play. Such movement can open up passages that may have been
inadvertently closed during the design process, or allow an object to force its way through a
narrow opening. By analyzing the extent and direction of movement needed to find a solution,
the user can gain valuable knowledge about the design issues as well as possible ways to address
them.

68 o Geometric Operators for Motion Planning

Our algorithmic problem statement is the following: given a starting and ending
configuration for a robot, and a list of active as well as passive obstacles, to find a path that
brings the robot from one configuration to the other without collision with any obstacles, but
letting the passive obstacles move up to their given limits (Figure 5.3).

B

v

A

Figure 5.3: Example disassembly problem with active obstacles. Extracting the pentagon from the
assembly involves passing by two screws, A and B. There is no solution to this problem if the obstacles are
not allowed to move. In order to apply our algorithm, we assign starting and ending positions to the
pentagon, and specify that the two screws are active obstacles. The rest of the scene is considered as
passive obstacles. Through our algorithm, we can determine that it is necessary to move screw B in order
to extract the pentagon, but not screw A. Additionally, we can estimate the necessary movement of screw
B.

In this chapter, we put forward two algorithms capable of solving this problem. The first,
called the Teleportation-Based Planner, integrates the obstacles directly in the configuration
space of the robot. The second, called the superposition operator, works on the collision
detection layer, and can be integrated into any path planner.

5.3 Teleportation-Based Plannert

Our first approach is based around encoding the positions of the obstacles directly into C
alongside the robot. Since we are only interested in translational PD, the position of each active
obstacle is dictated by three translation DOFs that, taken together, represent an offset from the
initial position of the obstacle.

The magnitude of this offset is limited to be less than or equal to its play. That is, if the
three DOF values for a configuration g are labeled qy, q,,, and q;:

vq < valid(q) = /q,% +q;+q2 < p) (5.4)

In other words, the movement of the center of an active obstacle is constrained to translation
within a sphere of radius p around its initial position (Figure 5.4).

Once DOFs are added for each active obstacle, a RRT will be able to move the obstacles
just by assigning values to these DOFs. The only modification necessary in order for this

" An original contribution of this work in the context of probabilistic path planning is the use of a
discontinuous interpolation between roadmap nodes, which explains the reference to “teleportation” in
the title.

Motion Planning in Collision e 69

approach to work is to add the distance constraint specified in (5.4). This can be done in the
Shoot stage of the RRT (see Section 2.3 for details).

(@) (b) ©

() ()

Figure 5.4: Active obstacle movement. The movement of the center of an active obstacle (the grey object)
is limited to a sphere of size p around its initial position, c. The object and the sphere are shown in (a),
and (b) through (e) outline several possible positions that the obstacle might move to.

As shown in [Kuffner and LaValle 2000], if a solution to a path planning problem exists, the
probability that the RRT will find it in a finite amount of time equals 1. Furthermore, the
distribution of RRT vertices converges to the sampling distribution as the algorithm progresses.
Since the non-colliding active obstacle positions—and therefore the minimum penetration
vectors—are chosen through the same process, this planner is probabilistically complete.

Theoretically, the changes just discussed are enough for an RRT to solve path planning
problems with active obstacles. Its performance, however, leaves much to be desired. By
analyzing its behavior, we have developed several enhancements to overcome difficulties
associated with our approach.

Our method essentially involves adding all active obstacles to the robot. With three DOFs
per obstacle, this can quickly multiply the dimensionality of the configuration space, invoking the
“curse of dimensionality” that haunts high-dimension problems. Thus, adding these DOFs
simultaneously allows for a solution to be found, and makes that solution take longer to find.

In general, we have found that the best way to combat the curse of dimensionality
brought on by the active obstacle DOFs is to treat them in a different and more efficient manner,
better adapted to their particularities.

5.3.1 Uniform Shoot

The first step of the RRT iteration, Shoot, involves choosing a configuration randomly within the
configuration space. Since our implementation is based upon IPP, an enlarged local
neighborhood around the existing roadmap is used to approximate the known configuration
space for non-limited DOFs (see Chapter 2.3.1).

This approach is valid for limited DOFs as well, as long as the enlarged local neighborhood
is allowed to grow quickly enough. In such a case, the neighborhood has soon expanded to

70 o Geometric Operators for Motion Planning

include both limits, assuming that no constraints prevented it from finding valid configurations
near those points.

For active obstacle DOFs, however, there is no advantage in restricting the configuration
choice to a local neighborhood around previous nodes. Additionally, since they cannot collide
with the rest of the scene, there is no reason to prevent them from exploring all possible
positions. In fact, a typical situation involves pushing an active obstacle DOF to its extreme value,
a position more easily attainable through uniform sampling then local.

5.3.2 Distance Metric

The second technique that we propose is to modify the distance metric used by the Pick step of
the RRT. The distance metric plays an important role, since the choice of which node will be
extended towards the shot configuration can seriously impact performance. Any interpolation
between a picked node and a shot configuration can lead to a collision, and by picking nodes
that are “closer” to the shot configurations, this possibility can be minimized.

Although many distance metrics can be used, a common choice for robotic systems is a
scaled DOF difference. With this metric, each DOF d is associated with a weight w. The distance
between two configurations g and q' is thus:

Z (wd(q,; - qd))2 (5.5)

d

One advantage of this technique is that DOFs can be given higher or lower weight in
accordance with their “importance,” whether geometrical, mechanical, or otherwise defined by
the application.

By default, active obstacle DOFs have the same weight as other translation DOFs in the
robot. But when the number of active obstacle DOFs becomes larger than that of the robot, this
leads to the planner taking more account of the obstacles than of the object we are trying to
plan for. In such a case, the planner will pick nodes for which the robot is arbitrarily far away
from the shot configuration, only because the obstacles are closer (Figure 5.5).

A0

@

Figure 5.5: Taking active obstacles into account. In this example, we are trying to extract the pentagon. It
must follow a torturous narrow passage in order to escape, in which the active obstacle (the black screw)
plays no role. When picking nodes to extend from, it would be inefficient to choose based on the position
of the active obstacle in this situation.

The previous scenario suggests that active obstacle DOF weights should be reduced as
much as possible. Nevertheless, setting them to zero, while an improvement over equal

Motion Planning in Collision o 71

weighting, is actually counterproductive (Figure 5.6). Since active obstacle positions are shot
randomly, it is worthwhile to save those that lead to roadmap growth. In typical examples, the
obstacles are “pushed” out of the way by the robot. Once out of the way, they can be left there
to allow further maneuvering.

v

Active Obstacle DOF

Robot Active Obstacle

/

Robot DOF

Figure 5.6: Ignoring active obstacle distances. In this simple example, the active obstacle must move up
for the path target to escape. In configuration space (right) this corresponds to a narrow passage in Csr-
Given a shot configuration q,4,4, the planner may have to choose between two configurations from which
to extend: q, and gq,,. If only the path target DOF is taken into account, the latter is closer, although the
former is a better choice for expansion. In general, active obstacle DOFs should be taken into account in
order to exploit such passages.

Therefore a balance must be struck. In practice, we have found that very low but positive
weights work best, i.e. several orders of magnitude less than the normal robot DOF weights.

5.3.3 Teleportation

The third enhancement that we can bring to the RRT algorithm relates to the interpolation
between successive configurations, also called the direct paths. As the output of an RRT is only a

sequence of configurations, the interpolation provides all information about object positions
between configurations.

The interpolation used for robot movement depends on the context, but it is safe to
assume almost all are continuous, in that there are no sudden “jumps” from one position to
another. By default, the active obstacle movement inherits this behavior, smoothly going from
one configuration to the next. For example, a simple linear interpolation from g to q' with the
variable t € [0, 1] can be expressed as follows:

hlinear(Q: q,: t) =q + t(q, - Q) (5-6)

Since we are not attempting to simulate physical movement of the active obstacles,
continuous interpolation leads to overly conservative behavior. As previously described, only a
single active obstacle position is necessary to validate the PD constraint. Therefore, interpolating
the active obstacle positions, although giving valid results, provides no more information than
simply choosing a single position (e.g. the position being interpolated to). As Figure 5.7
illustrates, interpolating the active obstacle DOFs linearly often creates more possibilities for
collision rather than reducing them.

72 J Geometric Operators for Motion Planning

g [TTTTTTTTTTTTTmmmmmmmmmmss peeeseeeeeggpo-o--oeoo
3 ”
[2
k= o
5 | g Z - i
: | 2l The
- o i
: 1
| 3 | ~
2 v 9s| o~
Q R ® b q rand
Robot Movement Robot DOF

Figure 5.7: Discontinuous interpolations give better performance. Translating the light-grey object to the
right along a single axis leads to a collision with the darker-grey obstacle, even if the obstacle is itself
linearly interpolated towards the bottom (left). The same situation can be illustrated in configuration
space (r) in which a linear interpolation from g, to q,.4,4 leads to collision with the obstacle. By adapting a
hybrid interpolation in which the active obstacle instantaneously jumps to g, while the robot is
interpolated smoothly, this collision can be avoided.

Taking this analysis into account, we’ve adapted a hybrid interpolation, in which the robot
DOFs are interpolated normally (e.g. with hjj,eq:-) but the active obstacle DOFs are interpolated
with the following function:

, q t=0

)

Through its discontinuity, the hj,,, interpolation method leads to much faster exploration, as
well as introducing certain maneuvers that could not arise in a continuous method, such as the
active obstacle “jumping over” the robot. Such behavior is counterintuitive if obstacle
movement is considered as physical motion, but is allowed by our PD constraint.

5.3.4 Manhattan-Like RRT

The ML-RRT uses a Manhattan-like method to connect a node to a shot configuration in the
Extend step of an RRT iteration [Cortés, et al. 2007]. The step is broken up into two parts: first
the robot motion is dealt with, followed by the obstacle motion. With a few adjustments, we’ve
adopted the ML-RRT to the active obstacle context.

In the first part, the motion of the robot is tested progressively along the interpolation
between the node and the shot configuration. If no collision was detected, then a path segment
from the node and the shot is added to the roadmap. If a collision was found, then the added
segment only reaches until the last non-colliding configuration tested.

If no collision occurred in the first part, then the second part is skipped. Otherwise, if the
collision occurred only with active obstacles, then the planner attempts to add a path segment
connecting the previously added node to a new configuration in which only those active
obstacles are in movement (Figure 5.8).

Motion Planning in Collision e 73

(59

2

g an}q_b I

(=} i qrand
2 @ e

<

\ 4

Robot DOF
Figure 5.8: Classic ML-RRT. The extension of q, to q,qnq is broken up into two components. First, the
robot DOF is interpolated until a collision is detected, and a node posed at that point, q,. Next, the
movement of all colliding active obstacles is interpolated, leading to the segment from g, to gq..

The algorithm can be succinctly described using a function m that combines two
configurations into one, based on the membership of a DOF. If a DOF belongs to an object
provided in the set L, then its value is that of the second configuration. Otherwise, it takes on the
value from the first configuration.

qi, d€L

m(‘Lq 1L) = (do, '"'dn)l di - {qu d E L

(5.8)

Let the function expand(from, to) progressively test an interpolation for collision, and
return the last non-colliding configuration found as well and the set of colliding obstacles (L).
Let the set SO contain all the active obstacles, and PT the robot. Now the Manhattan extend
step can be written as follows:

1. procedure extend(node, shot)
2 c"™ « m(node, shot, PT)

3 (cP*, Lc) <« expand(node, c™)
4. if c # node then

5. addEdge (node, cP)

6 node « cP*

7 end if

8 if L. # U and L. < SO then
9. c™ « m(node, shot, L¢)
10. (c®°, Lc) « expand(node, c™)
11. if c°° # node then

12. addEdge (node, c®°)

13. end if

14. end if

Algorithm 5.1: ML-RRT for active obstacles.

By decoupling the movement of the robot from the active obstacles, the active obstacle
positions are not modified as long as they do not collide with the robot. When they do, they
tend to move only to allow the robot to pass, giving the impression that the robot is physically
pushing them. Once an active obstacle is moved out of the way, it tends to stay in that position,
which is advantageous to the planner.

Since the ML-RRT extension step breaks up the interpolation into two parts, it reduces the
effect of a discontinuous interpolation. As the active obstacle DOFs are not touched by the first
segment, the “jump” has no effect on it. The second segment will have the discontinuity, but will
not use it to further explore the space.

74 e Geometric Operators for Motion Planning

We can improve efficiency by having the two work in concert. It is necessary to modify the
second edge that the ML-RRT attempts to add so that the robot DOFs vary along with those of
the colliding active obstacles. The only adjustment to the previous algorithm is on line 9.

9. c™ « m(node, shot, L. U PT)

Algorithm 5.2: Modified ML-RRT for discontinuous interpolations.

The combination of the ML-RRT and the discontinuous interpolation then retains the
interests of both, as only the active obstacles in collision are moved, but the space is explored
rapidly without enforcing a “physically realistic” maneuver (Figure 5.9).

&

2

R

o) E ran
S LO o
2 q.

2

RobotDOF

Figure 5.9: ML-RRT with discontinuous interpolation. By including the robot in the objects interpolated
for the second segment that the ML-RRT attempts to add, the configuration g, stays much tighter to the
obstacle. In this example, with only one active obstacle, the second segment tested by the planner is from
qp 10 qrana, leading to the node g, where it collides with the obstacle.

5.4 Superposition Collision Operator

Instead of integrating the obstacles into the configuration space of the robot, an alternative
approach is to handle the active obstacles strictly on the level of collision detection. In this view,
it is up to the collision detector to validate positions where the robot collides with active
obstacles. It can do so by searching for a non-colliding position for the obstacle that is less than
the allowed PD away from its origin.

The intuition behind the soft collision operator is simply to check a certain number of
“likely” non-colliding positions during the collision test. If any of the tested positions do not
collide, then the configuration can be considered valid. For succinctness, we will call these tested
positions superpositions, a pun on quantum superposition, in which particles can exist in
multiple states simultaneously (Figure 5.10).

Let the expression f;4;q be true if that an object A translated by t is free of collision with

fSOlid(A'Bl t) = (A + t) NB=20 (59)

The expression f,q determines if two objects can be separated by a translation of less than the

distance p.

foa(4,B,p) = 3t (IItll < p A frigia(A, B, ©)) (5.10)

Motion Planning in Collision e 75

(a) (b)
Figure 5.10: Collision test with superposition operator. In (a), the square has an allowed penetration of p.
Its center can therefore “move” within a circle of radius p. If we consider all the possible positions that the
square can move to, we obtain the grey cloud shown in (b). In (c), the square collides with the dark-grey
obstacle. By translating the square to the upper right, we can find the dashed position, which does not
collide with the obstacle. For the purposes of the superposition operator, this position is therefore non-
colliding.

The goal of the superposition operator is to approximate f,,4. It does so by testing a set of
translation vectors that are representative of the space. Given that traditional collision tests (and
proximity tests in general) are deterministic, we decided to forgo a random sampling of vectors.
In its place, we choose positions on the surface of a scaled sphere of radius p. The translations
are applied in the current rotational frame of the robot, and thus its rotations are implicitly
taken into account.

A B

FETEEEREEEREEEy

(a) (b) ©

Figure 5.11: Handling multiple obstacles. In (a), the square is moving through a narrow tunnel created by
two active obstacles, A and B. The superposition operator considers collisions with each obstacle
separately. In (b), only the obstacle A is taken into account, and so the dashed position is found that
avoids collision. In (c), the same calculation is performed for B. The superposition operator therefore
concludes that the square is not in collision with the obstacles, even though there is no single position that
avoids contact with all obstacles. This explains the choice of name superposition operator.

When multiple obstacles are involved, only a single non-colliding active obstacle position
is required for each, and not necessarily the same one (Figure 5.11). The following expression
tests A against a set B’ composed of pairs (obstacle, penetration).

fra(4,B") = VBYp ((B,p) € B' = foa(4,B,p)) (5.11)

76 o Geometric Operators for Motion Planning

Algorithmically, the test isFree can be described as follows, given the robot A, a set of
rigid obstacles R, and the pairs of active obstacles B’ (Algorithm 5.3).

1. function isFree(A, R, B’): Boolean
2. for each r in R

3. if f....4(2, r, 0) return False
4. end for each

5. for each (obs, pd) in B’

6. if not £, (A, obs, pd) return False
7. end for each

8. return True

9. end function

10.

11. function f_ (A, obs, pd): Boolean
12. if f,.1:.4 (A, obs, 0) return True
13. for each t In SampleVectors

14. if £..;4 (A, obs, t * pd) then
15. return True

16. end if

17. end for each

18. return False

19. end function

Algorithm 5.3: Boolean soft collision detection routine.

The test relies on the constant set SampleVectors, which must be initialized with
translational vectors (of unit length, if only the surface of the sphere is desired). The size of the
set is itself a performance factor. Larger (denser) sets increase the probability of a given test
passing, but also increase the time per test before concluding failure.

5.4.1 Comparison with the Teleportation-Based Planner

The Teleportation-based planner and the superposition collision operator can be used to solve
the same kind of forced-passage problems and design-error studies. However, they have
different theoretical and practical characteristics. In this section, we will contrast and compare
them.

The teleportation-based planner is a fundamentally probabilistic approach to finding
active obstacle positions. The positions are generated by the same RRT path planning procedure
(Shoot, Pick, Extent, etc.) that handles the robot. Conversely, the superposition operator is
deterministic, which means that given the same situation, it will always return the same result.
Unfortunately, this repeatability comes at the cost of its algorithmic completeness.

Simply put, since the superposition operator only tests a small sample from the infinite
number of possible offsets that fulfill the PD constraint, it cannot guarantee the correct result.
Since it is deterministic, it will always test the same samples, in contrast to the “random”
sampling performed by the Teleportation planner. One such example which can occur is when
obstacles overlap in space, and the robot must pass through an active obstacle at a lesser
penetration (Figure 5.12).

Motion Planning in Collision o 77

Figure 5.12: Incompleteness of the superposition operator. On the left, the transparent box collides with
an active obstacle (both black regions are part of the active obstacle). The active obstacle has a play equal
to the radius of the circle. Although a solution exists, whether or not the superposition operator finds it
depends on which offset vectors are considered. This situation does not lead to probabalistic
incompleteness, however, as the path planner could always test the configuration where the box is within
the corridor, active obstacle or not. In the case on the right, an additional rigid obstacle prevents such a
movement, rendering the operator incapable of finding a valid solution.

That said, the superposition operator works very well in practice, where the user generally

IM

allows only “small” penetrations. This concept is characterized by both the robot and the active
obstacles having widths that are much larger than the play, even at their thinnest portions®. In
such cases, the superposition operator will find solutions where the robot only grazes the
surface of an obstacle, without moving to the other side of it, entering inside it, nor moving into

a hole large enough for it.

For small penetrations, the superposition operator acts as a heuristic, testing offsets that
are most likely to escape collision. Longer offsets are more likely to do so. By testing offsets of
length play, not only is the superposition operator faster than the teleportation planner in most
cases, but it scales much better to a large number of active obstacles.

An additional advantage of the superposition operator over the Teleportation planner is
its ability to consider multiple positions for each active obstacle along the same direct path. To
validate a direct path before adding it to the roadmap, the collision checker usually tests
multiple configurations along the path. Since each collision detection involving an active obstacle
will invoke the superposition operator, this process effectively allows for different active
obstacle positions to be considered at each configuration. Such a process is beyond the
capabilities of the Teleportation planner, where the active obstacle offsets are encoded directly
in the configurations.

5.5 Distance Measurement

Up until now, we have been considering only Boolean collision tests for the active obstacles.
There are cases, however, in which a numerical measure of distance provides valuable
information. In this section, we present approximations of two distance measurements for
active obstacles: separation distance and penetration distance.

Fltis challenging to discuss the size of 3D objects in a general way. Informally, we can imagine that
the objects represent volumes that can be roughly separated into portions with different “widths.” The
smallest such width can be considered the “minimum width” of the object.

78 o Geometric Operators for Motion Planning

5.5.1 Separation Distance

Some path planners, such as IPP, progressively test a path segment for collision by estimating
the distance between the robot and the obstacles around it [Ferré and Laumond 2004, Saha and
Isto 2006]. The distance metric needed for this operation is a lower bound on separation
distance. But when objects collide, even if one is an active obstacle, this distance becomes null,
and path planners must resort to an arbitrary epsilon value, reducing performance in the
process.

To work around this problem, we can define a separation distance for active obstacles.
Following intuition, if two objects avoid collision because one is an active obstacle, then the
separation distance between them is equal to the amount that the play of the active obstacle
can be reduced without introducing a collision (Figure 5.13).

Figure 5.13: Generalized separation distance. The square collides with the active obstacle (left), but an
offset position (dashed square) has been found that does not collide (right). The distance d,, separates
the active obstacle position from the obstacle, and so the play can be reduced by at least this value before
a new collision would be created.

We define the function d,;;4 that measures the distance separating two rigid objects
[Cameron and Culley 1986].

dsoria(4,B) = {gggr;{lltll :(A+t)nB * ¢} (5.12)

The teleportation planner will only test a single offset for each active obstacle, but the
superposition operator will test the entire set SampleVectors. In either case, we would like to
know the maximum separation distance between the tested positions and the rigid object. Given
that the set T contains either the single offset or the contents of SampleVectors, we can define
the separation distance for active obstacles.

dso(A,B,p) = max dso1ia(A+t,B) (5.13)

Therefore, p can be reduced by dyo without causing a collision. For the purposes of path
planning, we can define a function that returns the correct separation distance depending on
whether the objects collide or not.

dsolid (A,B), ANB=0

.14
dao(4,B,p), otherwise (5.14)

dsep(A: B, p) = {

5.5.2 Penetration Distance

Another case for a distance metric arises when the path planning is complete. Although we are
sure that the output path respects the penetration constraints, we do not have a grip on the

Motion Planning in Collision e 79

actual penetration values. For evaluation purposes, it is useful to reduce the upper PD bound as
much as possible while neither recalculating a path nor explicitly calculating the PD.

In this context, an upper PD bound can be arrived at indirectly, by reducing the allowed PD
by the maximum distance found between the tested soft object positions and the rigid object. As
the allowed PD could be reduced by d,o without causing a collision, we can simply adjust the
allowed PD by this amount.

This measurement only applies to a given position and active obstacle. When multiple active
obstacles are present, the PD of a rigid object becomes the maximum PD calculated.

1A !
<
pd'(4,B") < (Brg?ég,pd(A, B,p) (5.16)

Finding the maximum penetration distance along a path can be most easily done by
testing a series of sampled configurations. However, such a method does not guarantee that a
larger, undetected, penetration is not hiding between the samples. Intuitively, more samples are
needed when pd approaches p (dyo tends toward zero), and less when pd is large (d4o tends
toward p).

Inspired by the dynamic collision checker developed in IPP, we can use the value returned
by the pd function for one configuration to decide where along the path to choose the next. We
assume that the function b(4, ¢, 4) provides a subsequent configuration to g along a path A so
that no point on the robot 4;) has moved more than a distance 4.

[b(4,q,8) = ') = [maxllq’ x a— a x all < 4 (5.17)
t

Here the cross operator x transforms a point by a configuration. We can now establish a
function that returns a subsequent configuration respecting the bounds provided by b. For
completeness, we include a minimum advancement variable € so that the collision test advances
even when the PD approaches zero.

Gnext (4, q,€) = b(4, g, max {pd’(/lt: B, CO); e}) (5.18)

Finally, we can establish a simple iterative algorithm that finds the maximum PD estimate

along a path.
1. function maxPD(A, B’, ¢): Number
2 q « start(A)
3 dmax ~ 0
4 repeat
5 d « pd’ (A:y, B’, q)
6. dmax — max(dmax/ d)
7 if g = end() return d,.,
8 q « b(A, g, max(d, €))
9 end repeat
10. end function

Algorithm 5.4: Routine for finding the maximum PD estimate for a path.

80 o Geometric Operators for Motion Planning

5.6 Dynamic Play

The previous sections describe how to solve a path planning problem with static play values.
Letting the play vary, however, opens up two new possibilities: searching for the smallest
acceptable play, and using high play values to suggest draft paths that can be refined when the
play is lowered.

Both these ideas are based on the assumption that higher play values make a path
planning problem easier to solve. Although this is not strictly true in every case (see Section
5.4.1), it has shown to be correct in the large majority of cases. A problem with higher play
admits a larger number variety in active obstacle positions, opening up new solutions. It can be
compared to the strategy called free space dilation, which is known for accelerating the path
planning process for rigid environments [Hsu, et al. 1998].

5.6.1 Draft Paths

Just as IPP uses “draft paths” in order to discover in-collision paths that are refined in successive
iterations, we would like to allow large amounts of penetration with active obstacles and then
iteratively refine the solutions by gradually reducing the play until a solution is found at the
desired value [Ferré and Laumond 2004]. The succession of play values used forms a sequence
that we call dp.

The initial play value should be very high and yet still provide some information useful for
subsequent draft paths (i.e. an allowed PD of infinity would quickly find a solution, but be
useless as a basis for the following iterations). The ideal value is difficult to find a priori, and so
we chose to simply raise the user-specified play several orders of magnitude. This method
creates sufficiently large values and is model independent, at the expense of over-estimating the

IM

“ideal” value.

Once the initial problem has been solved, we would like to evaluate the play required by
the solution path, which is likely to be much lower than the initial value. This task can be easily
accomplished with the maxPD algorithm described in Section 5.5.2, and fixes an upper bound
Phign ONn dp. The lower bound py,,, is the play assigned by the user.

Logically, the problem becomes more difficult to solve as p approaches p;,,,. It makes
sense then to gradually approach p;,,, by smaller and smaller steps. One approach is to decide
on the number of steps n in advance, and scale the intermediate values appropriately.

Phrigh _ plow} (5.19)

dp(n,s) = {po, vy Pn-2Plow * Pi = Plow + S
The scaling factor s in this equation determines the rate of convergence towards the

lower bound (Figure 5.14).

5.6.2 Play Optimization

Given a scenario with a soft obstacle, what is the minimum allowed PD for which we are able to
find a solution? Although we cannot solve this problem for an exact solution, we can use an
iterative process to find increasingly better estimates (i.e. tighter bounds).

In contrast with the draft path case, the “target” play that we are approaching is also the
unknown that we are solving for, and the so the sequence of dynamic play values cannot be

Motion Planning in Collision o 81

predetermined. Complicating the matter further, we only have probabilistic guarantees of
finding a solution if one exists, and no practical way to establish the absence of one. Simple
methods such as timeouts are problematic due to the high variance in running times [Isto, et al.
20003].

=2 —# ° dp .

s=3 pMin

Play
@
.

Play
.

X}

0.8

04r

0.2

7 Iteration Iteration

Figure 5.14: Dynamic play. On the left, the play ranges from 10mm to 2mm over 8 steps. The graph
compares the effects of two different values of the scaling factor s. The larger the scale, the faster the play
decays. On the right, we look for the minimum value for which we can still find a solution. Starting at a
play value of 2mm, and with a scale factor s of 2, we quickly approach the unknown minimum play p,;,;,, of
0.1mm. The first 5 iterations can complete, but the 6" will never succeed, since it is solving for a value
below the minimum. The conclusion of our algorithm is that p,,,;, lies somewhere between those two play
values.

For this reason, although it would be ideal to perform some kind of binary search for the
minimum play value, we stick with a strictly decreasing sequence of values, and let the user
determine when to stop the optimization process. To reduce the chance that we overshoot the
minimum play pnin, We can adopt a geometric progression with a low scaling factor (Figure
5.14).

ap'(s) = (P32 i =0} (5.20)

This sequence functions well if the unknown p,,,;,, is non-zero. But in the exceptional case
where no penetration is needed, the infinite sequence dp’ will never reach zero. To work around
this problem, we can call the maxPD function on the intermediate paths in order to detect if the
play can be reduced to zero.

5.7 Experimental Results

We have tested our approach on four real industrial assembly cases. The first involves a car
windshield wiper, for which there is no solution for extracting a wiper from its holder. Through
specifying a suspect part as an active obstacle and running our algorithm, a disassembly path is
found (Figure 5.15). The second case considers an automobile exhaust system. The design flaw
in this case is the placement of a bracket that closes the already narrow passage (Figure 5.16). In
both these cases, once the offending part has been identified, we can move on to characterizing
the design error and suggest ways to correct it.

82 e Geometric Operators for Motion Planning

Figure 5.15: Windshield wiper test case. The goal is to assemble the wiper into its holder (left). The close-
up (right) reveals the yellow plate that prevents this task from being carried out. This design error can be
fixed with the help of our algorithm, once the yellow part is made into an active obstacle.

Figure 5.16: Exhaust test case. Extracting the blue exhaust system (left) is prevented by the yellow part,
shown in the close-up (right). By declaring the yellow part an active obstacle, we can evaluate the
necessary movement to correct the design error.

To do so, we start with a high play for the active obstacle, solve for a path, and then
reduce the play and solve again. This results in a series of increasingly difficult path planning
problems. For example, we were unable to find a solution for the wiper at less than 4.2mm.
Therefore, we can presume that this is close to the minimum play necessary to let the wiper
pass.

The third case and forth cases uses a different methodology. Rather than identifying a
specific part and trying to find its minimum play, we are simply searching for the path that is in
least collision. The third case is a disassembly task in which a starter must be removed from a
complex car motor but cannot fit between the obstacles (Figure 5.17). To solve this forced
passage problem, we designate all the parts surrounding the target object as active obstacles,
and let the planner find a solution path.

Motion Planning in Collision e 83

Figure 5.17: Starter test case. The goal is to extract the automobile starter in purple from the engine block
(left). Since there is no non-colliding solution, we use our algorithm to find a “forced passage” or “least-
worse” path. To this end, we designate several candidate parts as active obstacles, in yellow.

The fourth and final case is part of a shock absorbing system. This is another example of a
forced passage, but a more subtle one, with a required penetration of less than a millimeter. The
difficulty involves a mirrored setup of screws that must be evaded while simultaneously avoiding
a large block (Figure 5.18). Because the screws are positioned at an awkward angle, the object
must be forced out.

W
(a) ()

-, Emm— _—
‘_‘F—'—ﬁ—
(b) d)

Figure 5.18: Shocks test case. The part in blue, although it appears disconnected, must move as one to
both avoid the green block and the yellow screw setup in order to escape. Shown from the top (a), the
bottom (b), and with close-ups on both the screws (c) and the locking mechanism (d), this is a difficult
problem with no known collision-free solution. By designating both sections in yellow as separate active
obstacles, we can solve for a path quickly.

To obtain performance results, we ran our algorithm 10 times at different play values.
Information on the models is provided in Table 5.1 and experimental results in Table 5.2.

84 o Geometric Operators for Motion Planning

Approximate Minimum

Model # Triangles Play (mm)
Wiper 26486 4.2
Exhaust 32641 10
Starter 1936667 14
Shock 53132 0.9

Table 5.1: Active Obstacle Test Models. For each model, we give the geometrical complexity and the
minimum play for which we have found a solution.

Performance (s)

Model Play Algorithm

(mm) Mean Std. 1st' Median 3rd'

Dev. Quartile Quartile

Wiper 10 Teleportation 55.57 27.03 39.73 47.75 60.24
Wiper 10 Superposition 18.8 31.15 7.25 9.5 11.7
Wiper 7 Teleportation 544.38 328.59 262.4 600.6 645.13
Wiper 7 Superposition 74.1 192.02 9.6 11.54 15.75
Exhaust 15 Teleportation 975.17 735.84 700.66 935.26 1090.66
Exhaust 15 Superposition 1198.8 1612.67 194.5 799.5 1351.75
Exhaust 10 Teleportation 1973.71 2272.31 354.49 634.95 2852.99
Exhaust 10 Superposition 912.9 901.03 355.25 522 1234.75
Starter 20 Teleportation 193.4 98.62 149 187.5 212
Starter 20 Superposition 1120.7 1035.08 481 736 1082.25
Starter 15 Teleportation 931.4 1080.84 278.25 477.5 951
Starter 15 Superposition 2293.4 244231 550 856 3920
Shocks 2 Teleportation 98 58.484 71.75 82.5 96
Shocks 2 Superposition 39 24.71 16 35.5 54.74
Shocks 1 Teleportation 1711.3 898.95 1008.75 1271 489.5
Shocks 1 Superposition 916.1 1001.59 142.5 544 2497

Table 5.2: Active Obstacle Experimental Results. Each of the four models is tested at two different play
values and for each of the two algorithms. Since probabilistic path planning tends to produce long-tailed
performance distributions with large variances, we provide the quartiles as well. The results show that, in
general, the Superposition operator gives significantly better results than the Teleportation-based
Planner. A notable exception to this trend is found in the Starter model. Also we can observe that the
lower the play, more difficult the problem becomes. An interesting contradicting example is the Exhaust
case, for which a play of 10mm is found faster than one at 15mm.

Motion Planning in Collision e 85

5.8 Conclusion

We have attempted to tackle the poorly-posed problem of finding paths that are in collision. We
introduce a formulation of the problem in which a set of obstacles (called active obstacles) are
allowed a certain amount of penetration (called play) into the robot. The novelty of our
approach to solving these cases is the implicit bounding of penetration distance through the
path planning process rather than after—the-fact measurement. The advantage of pre— rather
than post-PD measurement lies in performance and generality vis-a-vis the geometry in
guestion, making it an ideal candidate for inclusion in industrial analysis software.

Our approach can assist mechanical designers in identifying and treating flaws in complex
CAD assemblies. We present two algorithms to solve the problem. The first, the Teleportation-
based planner, integrates the active obstacles directly into the configuration space, and lets an
RRT solve for their positions along with that of the robot. The second, the superposition collision
operator, builds only upon the collision-detection routines.

Comparing the two approaches, we observe the collision-detection approach is much
faster in practice, but is not probabilistically complete as is the Teleportation planner. It would
be advantageous to combine the two methods in order to benefit from the advantages of both.
One simple way to do so would be to integrate the active obstacles into the robot as for the
Teleportation planner, but include the superposition collision detection as well. If the
superposition operator tested the planner-given position as well as the predefined offsets, the
combined approach would be rendered probabilistically complete.

A useful capability currently missing from our approach is the ability to restrict the
directions of movement of the active obstacles. In the disassembly case described by Figure 5.3,
for example, one could limit the screws to only move within a given axis. This would be fairly
easy to accomplish with either the Teleportation-based planner or the superposition operator.

Another interesting topic for future work concerns how best to handle multiple active
obstacles that are very close to one another. Such a case multiplies the difficulty of the problem
by forcing the planner to deal with several moving obstacles at once instead of in series. It would
be interesting to have the planner intelligently group the active obstacles based on their relative
positions in order to manipulate several at once.

Finally, in order to converge closer to the minimum allowed play, it would be ideal to
allow the play to rise as well as fall. This raises difficult questions involving the detection of path-
planning failure.

Future Directions . 87

“The more technology becomes complicated
inside, the more it has to be simple outside.”

Derrick de Kerckhove

Future Directions

This doctoral work has not been focused on a single problem, but rather on several different
aspects of robotic motion planning. As a cooperative work between a scientific laboratory and a
technology start-up, we have focused on concrete issues of importance to the industrial
community. We have nonetheless endeavored to place these projects in their larger scientific
context.

6.1 Results and Future Work

In Chapter 3, we introduce a wrapping operator that encloses a collection of still or moving
objects. It is designed to be both fast and general enough to handle the large polygon soup
models and discontinuous paths that are often found in computer-aided design. By manipulating
the intermediate grid data structure, we have been able to add an additional offset operator to
inflate or deflate the volumes. We can foresee three major improvements:

First, In terms of efficiency, this offset operator is based on the calculation of many
sphere-line intersections. Since these operations could be carried out in parallel, the intersection
test appears to be ideal for porting over to the GPU. In terms of applicability, the deflation
operator is inappropriate for non-volumetric geometry, as it removes all flat surfaces. Second,
when used for swept volumes, an additional bounding distance parameter is needed to define
the sampling density. For the time being, it is unclear which combination of these two
parameters for a given error bound would produce the fastest execution.

Third, if an additional operator could be defined that uses the grid structure to calculate
an object skeleton, then this skeleton could be preserved during the deflation process in order
to produce a combination of flat surfaces and volumes where appropriate. This could also open
the possibility of using the offset operator for path planning applications, since the skeleton
could preserve topological equivalence.

88 o Geometric Operators for Motion Planning

We next turned our attention to motion planning. Through the abstract notion of
configuration space, sampling-based motion planners can treat both the kinematic chain of the
robot and the geometrical form of the objects (robot and obstacles) as black boxes. Provided
that a collision detector can reply to proximity queries for the space in question, the same
motion planning algorithm can apply to a large number of situations. But in order to obtain
excellent performance, collision detection algorithms are highly specialized and “close to the
data,” making it difficult to substitute one type of geometry for another in practice.

In Chapter 4, we have attempted to resolve this contradiction by identifying common
threads between collision detectors. Reasoning through a common hierarchical structure, we
put in place an algorithm that descends two such hierarchies in parallel. Proximity tests for each
pair of elements is efficiently dispatched to specialized code, and the results are returned in a
general form for use by the path planner. With such a project, it is necessary to strike a balance
between generality and performance. Such a decision should be up to the developer of each
geometry type. We have attempted to allow a range of possibilities by defining a unifying
iterator interface that can be adapted to a variety of data compression techniques.

One part of the architecture that is not currently extendable is the proximity query itself.
In future work, it would be useful to factor out this as well, allowing easy redefinition of new
proximity queries such as n-nearest points, penetration distance, etc. Another interesting area
for exploration is the inclusion of new techniques using the GPU, if common algorithms and
structures could be identified, as well as maximizing performance on multi-core processors.

Finally, Chapter 5 addresses the problem of motion planning in the presence of collision.
We have defined an allowed penetration distance with certain obstacles and have augmented
the classic IPP algorithm to handle them. We present two approaches to this problem. The first
adds DOFs for the active obstacles to the configuration space and then modifies certain aspects
of the planner in order to explore that space more appropriately. The second deals with the
active obstacles solely on the collision test level and in a deterministic fashion. For the majority
of examples that we have tested, the first approach is slower than the second, but has an
important property of probabilistic completeness which the second does not. A direction for
future work might be to fuse the two algorithms together, drawing on the efficiency of the first
approach and the random explorations of the second.

Additionally, this approach depends on the explicit designation of active obstacles. In
some situations, it may be appropriate to divide a large obstacle into multiple active obstacles
(e.g. a tunnel can be divided into its wall components). The issue may be complicated further
when multiple active obstacles are concerned. In the forced passage problem, for example, it is
unclear how best to distribute a given allowed penetration among the active obstacles, nor how
to reduce and balance the different play values when dynamic play is used. The importance of
user intervention and semantics is a fundamental property of our approach, and could be seen a
drawback in some circumstances. In order to mitigate the issue, it could be interesting to
develop a strong interface that helps the user decide what obstacles should be active, and how
to determine the play.

Future Directions . 89

6.2 Working with Industrial Robotics

From working with clients of Kineo CAM, we have seen how motion planning is both an
enormous help and cause of great confusion for them. Specifically, it is very difficult for users to
understand how best to parameterize an algorithm or notice potential failure points. It is for this
reason that IPP, which automatically tunes the RRT extend-step parameter, has made such
inroads with the industrial community. We believe that there is even more untapped potential in
simplifying the algorithms so that users can accomplish more while the system handles any
unknowns in the system without their intervention. Doing so also eases the reuse of motion
planners for larger problems such as robot placement and sequence planning.

On another note, motion planning stands to benefit greatly from increasing parallelization
in computer processing. Roadmap-based algorithms such as the PRM and the RRT could easily
be performed in parallel. Interesting work could be done in designing mechanisms to
synchronize updates to the roadmap, which is the only necessary shared structure. Improved
processing power also opens the door up to simulating more complex deformable objects, such
as flexible tubes and bendable plastics, both common elements of industrial designs.

An industrial robot might not have the flair of its cousins in space-exploration or human
interaction, but it has become a mainstay of the manufacturing and maintenance industries. As
almost all of product design and prototyping is now done on the computer, we believe that
industrial robotics will look even more to motion planning techniques in the future to help it
accomplish tasks as quickly, and as simply, as possible.

Bibliography e 91

Bibliography

K. ABDEL-MALEK, D. BLACKMORE, and K. Joy, "Swept Volumes: Foundations, Perspectives, and
Applications," International Journal of Shape Modeling, 2002.

K. ABDEL-MALEK and S. OTHMAN, "Multiple Sweeping Using the Denavit-Hartenber Representation
Method," Computer-Aided Design and Applications, vol. 31, pp. 567-583, 1999.

K. ABDEL-MALEK, W. SEAMAN, and H.-J. YEH, "Nc Verification of up to 5 Axis Machining Processes
Using Manifold Stratification," ASME Journal of Manufacturing Science and Engineering,
vol. 122, pp. 1-11, 2000.

K. ABDEL-MALEK, J. YANG, R. BRAND, and E. TANBOUR, "Towards Understanding the Workspace of
Human Limbs," Ergonomics, vol. 47, pp. 1386-1406, 2004.

K. ABDEL-MALEK and H.-J. YEH, "On the Determination of Starting Points for Parametric Surface
Intersections," Computer Aided Design, vol. 29, pp. 21-35, 1997.

S. ABRAMS, P. K. ALLEN, and K. TARABANIS, "Computing Camera Viewpoints in an Active Robot Work
Cell," International Journal of Robotics Research, vol. 18, pp. 267-285, 1999.

G. v. D. BERGEN, "Efficient Collision Detection of Complex Deformable Models Using AABB Trees,"
Journal of Graphics Tools, vol. 2, pp. 1-13, 1997.

D. BLACKMORE and M. C. Leu, "A Differential Equation Approach to Swept Volumes," in
Proceedings of Rensselaer's 2nd International Conference on Computer Integrated
Manufacturing (1990), Troy, New York, USA, May 1990, pp. 143-149.

J. BLOOMENTHAL, "Polygonization of Implicit Surfaces," Computer Aided Geometric Design, vol. 5,
pp. 34 -355, 1988.

J.-D. BOISSONNAT and M. YVINEC, Algorithmic Geometry: Cambridge University Press, 1998.

C. BRAILLON, C. PRADALIER, K. USHER, J. CROWLEY, and C. LAUGIER, "Occupancy Grids from Stereo and
Optical flow Data," in Experimental Robotics, vol. 39, Springer Tracts in Advanced
Robotics. Berlin: Springer, 2008, pp. 367-376.

S. A. CAMERON and B. CuLLEY, "Determining the Minimum Translational Distance between Two
Convex Polyhedra," in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA) (1986), March, pp. 591-596.

J. CANNY, The Complexity of Robot Motion Planning, PhD thesis. MIT, Cambridge, MA, USA, 1988.

T. CA0 and A. C. SANDERSON, "Task Decomposition and Analysis of Assembly Sequence Plans Using
Petri Nets," in Proceedings of Computer Integrated Manufacturing (1992), May 20-22,
pp. 138-147.

J. Conkey and K. I. Joy, "Using Isosurface Methods for Visualizing the Envelope of a Swept
Trivariate Solid," in Proceedings of Pacific Graphics (2000), Hong Kong, October 3-5,
2000, pp. 272--280.

92 J Geometric Operators for Motion Planning

J. CoRTES, L. JAILLET, and T. SIMEON, "Molecular Disassembly with RRT-Like Algorithms," in
Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2007),
Rome, Italy, pp. 3301-3306.

B. DACRE-WRIGHT, J.-P. LAUMOND, and R. ALAMI, "Motion Planning for a Robot and a Movable
Object Amidst Polygonal Obstacles," in Proceedings of IEEE International Conference on
Robotics and Automation (1992), Nice, France, May 10-15, pp. 2474-2480.

A. DELCHAMBRE, "A Pragmatic Approach to Computer-Aided Assembly Planning," in Proceedings
of IEEE International Conference on Robotics and Automation (ICRA) (1990), pp. 1600-
1605.

A. ELFES, "Using Occupancy Grids for Mobile Robot Perception and Navigation," in Computer, vol.
22, 1989, pp. 46-57.

E. FERRE and J.-P. LAUMOND, "An Iterative Diffusion Algorithm for Part Disassembly," in
Proceedings of International Conference on Robotics and Automation (2004), New
Orleans (USA), pp. 3149-3154.

S. FISHER and M. C. LIN, "Deformed Distance Fields for Simulation of Non-Penetrating Flexible
Bodies," in Proceedings of Eurographic Workshop on Computer Animation and
Simulation (2001), Manchester, UK, pp. 99-111.

A. Foisy and V. HAYWARD, "A Safe Swept Volume Method for Robust Collision Detection," in
Proceedings of Robotics Research, Sixth International Symposium (1994).

S. F. GIBSON, "Beyond Volume Rendering: Visualization, Haptic Exploration, and Physical
Modeling of Voxel-Based Objects," in Visualization in Scientific Computing ‘95, R.
Scanteni, J. v. Wijk, and P. Zanarini, Eds.: Springer-Verlag Wien, 1995, pp. 9-24.

S. GOTTSCHALK, Collision Queries Using Oriented Bounding Boxesthesis. University of North
Carolina, 1998.

S. GOTTSCHALK, M. C. LIN, and D. MANOCHA, "Obbtree: A Hierarchical Structure for Rapid
Interference Detection," in Proceedings of Computer Graphics and Interactive
Techniques (1996), pp. 171-180.

D. Hsu, Randomized Single-Query Motion Planning in Expansive Spaces, PhD thesis. Stanford
University, Stanford, CA, USA, 2000.

D. Hsu, L. E. KAVRAKI, J.-C. LABOMBE, R. MOTWANI, and S. SORKIN, "On Finding Narrow Passages with
Probabilistic Roadmap Planners," in Proceedings of Robotics: The algorithmic perspective
(1998), Houston, Texas, USA, pp. 141-153.

D. Hsu, G. SANCHEZ-ANTE, H.-L. CHENG, and J.-C. LATOMBE, "Multi-Level Free-Space Dilation for
Sampling Narrow Passages in PRM Planning," in Proceedings of IEEE International
Conference on Robotics and Automation (2006), Orlando, Florida, USA, pp. 1255- 1260.

T. INAMURA, K. OKADA, M. INABA, and H. INOUE, "Hrp-2w: A Humanoid Platform for Research on
Support Behavior in Daily Life Environments," in Proceedings of International Conference
on Intelligent Autonomous Systems (2006), pp. 732-739.

M. INUI, M. MIURA, and F. KIMURA, "Analysis of Position Uncertainties of larts in an Assembly Using
Configuration Space in Octree Representation," in Proceedings of ACM Symposium on
Solid and Physical Modeling (1995), Salt Lake City, Utah, USA, pp. 73-82.

ISO, "Manipulating Industrial Robots - Vocabulary," International Organization for
Standardization, Report 8373:1994, 1994.

Bibliography e 93

P. IsTo, M. MANTYLA, and J. TUOMINEN, "On Addressing the Run-Cost Variance in Randomized
Motion Planners," in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA) (20003), pp. 2934-2939.

R. JAYARAMAN and V. SRINIVASAN, "Geometric Tolerancing: I. Virtual Boundary Requirements," IBM
Journal of Research and Development, vol. 33, pp. 90-104, 1989.

L. Joskowicz, E. SACKS, and V. SRINIVASAN, "Kinematic Tolerance Analysis," Computer-Aided Design,
vol. 29, pp. 147-157, 1997.

A. KAUFMAN, D. COHEN, and R. YAGEL, "Volume Graphics," in IEEE Computer, vol. 26, 1993, pp. 51-
64.

I. KENNETH E. HOFF, T. CULVER, J. KEYSER, M. LIN, and D. MANOCHA, "Fast Computation of Generalized
Voronoi Diagrams Using Graphics Hardware," in Proceedings of SIGGRAPH (1999), pp.
277-286.

Y. J. Kim, M. C. LIN, and D. MANOCHA, "Fast Penetration Depth Estimation Using Rasterization
Hardware and Hierarchical Refinement," in Proceedings of Workshop on Algorithmic
Foundations of Robotics (WAFR) (2002).

Y. J. KiM, G. VARADHAN, M. C. LIN, and D. MANOCHA, "Fast Swept Volume Approximation of
Complex Polyhedral Models," ACM Symposium on Solid and Physical Modeling, pp. 11-
22, 2003.

J. T. KLosowskl, M. HELD, J. S. B. MITCHELL, H. SowizrAL, and K. ZIKAN, "Efficient Collision Detection
Using Bounding Volume Hierarchies of K-Dops," in Proceedings of Visualization and
Computer Graphics (1998), pp. 21-36.

L. P. KOBBELT, M. BOTscH, U. SCHWANECKE, and H.-P. SEIDEL, "Feature Sensitive Surface Extraction
from Volume Data," in Proceedings of SIGGRAPH (2001), pp. 57-66.

J. J. KUFFNER and S. M. LAVALLE, "RRT-Connect: An Efficient Approach to Single-Query Path
Planning," in Proceedings of IEEE International Conference on Robotics and Automation
(ICRA) (2000), San Francisco, CA, USA, pp. 995-1001.

T. LARSSON and T. AKENINE-MOLLER, "A Dynamic Bounding Volume Hierarchy for Generalized
Collision Detection," in Proceedings of Workshop On Virtual Reality Interaction and
Physical Simulation (2005).

J.-C. LATOMBE, "Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other
Artifacts," International Journal of Robotics Research, vol. 18, pp. 1119-1128, 1999.

J.-C. LATOMBE and R. H. WILSON, "Assembly Sequencing with Toleranced Parts," in Proceedings of
ACM Symposium on Solid and Physical Modeling (1995), pp. 83-94.

J.-P. LAUMOND, "Motion Planning for PIm: State of the Art and Perspectives," International
Journal of Product Lifecycle Management, vol. 1, pp. 129-142, 2006.

S. M. LAVALLE, "Rapidly-Exploring Random Trees: A New Tool for Path Planning," Computer
Science Dept., lowa State University TR 98-11, 1998.

S. M. LAVALLE, Planning Algorithms: Cambridge University Press, 2006.

C. C. LAw, LisA S AviLA, and W. J. SCHROEDER, "Application of Path Planning and Visualization for
Industrial Design and Maintainability Analysis," in Proceedings of Reliability and
Maintainability Symposium (1998).

M. LIN, D. MANOCHA, J. COHEN, and S. GOTTSCHALK, "Collision Detection: Algorithms and
Applications," in Algorithms for Robotics Motion and Manipulation: 1996 Workshop on

94 e Geometric Operators for Motion Planning

the Algorithmic Foundations of Robotics, J.-P. Laumond and M. Overmars, Eds.: A K
Peters, Ltd., 1996, pp. 129-142.

M. C. LIN and D. MANOCHA, "Collision and Proximity Queries," in Handbook of Discrete and
Computational Geometry, J. E. Goodman and J. O'Rourke, Eds. Boca Raton, FL, USA: CRC
Press, 2004, pp. 787-808.

W. E. LORENSEN and H. E. CLINE, "Marching Cubes: A High Resolution 3D Surface Construction
Algorithm," in Proceedings of SIGGRAPH (1987), pp. 163-169.

T. LOZANO-PEREZ, The Design of a Mechanical Assembly System, Master's thesis. MIT, Cambridge,
MA, USA, 1976.

T. LOzANO-PEREZ, "Spatial Planning: A Configuration Space Approach," IEEE Transactions on
Computers, vol. 32, pp. 108-120, 1983.

R. R. MARTIN and P. C. STEPHENSON, "Sweeping of Three-Dimensional Objects," Computer Aided
Design, vol. 22, pp. 223-234, 1990.

E. MAZER, J. M. AHUACTZIN, and P. BESSIERE, "The Ariadne's Clew Algorithm," Journal of Artificial
Intelligence Research (JAIR), vol. 9, pp. 295-316, 1998.

W. A. McNEELY, K. D. PUTERBAUGH, and J. J. TRoy, "Six Degree-of-Freedom Haptic Rendering Using
Voxel Sampling," in Proceedings of Computer Graphics and Interactive Techniques
(1999), pp. 401-408.

J. M. MILNER, S. C. GRAVES, and D. E. WHITNEY, "Using Simulated Annealing to Select Least-Cost
Assembly Sequences," in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA) (1994), pp. 2058-2063.

H. MORAVEC, Mind Children: The Future of Robot and Human Intelligence. Cambridge, MA, USA:
Harvard University Press, 1988.

T. M. MuURALI and T. A. FUNKHOUSER, "Consistent Solid and Boundary Representations from
Arbitrary Polygonal Data," in Proceedings of SIGGRAPH Symposium on Interactive 3D
Graphics (1997).

N. J. NILSSON, "Shakey the Robot," SRI International 323, 1984.
C. Pescio, "Multiple Dispatch: A New Approach Using Templates and RTTI," C++ Report, 1998.

S. QUINLAN, "Efficient Distance Computation between Non-Convex Objects," in Proceedings of
International Conference on Robotics and Automation (1994).

S. REDON, Y. J. Kim, M. C. LIN, and D. MANOCHA, "Fast Continuous Collision Detection for
Articulated Models," in Proceedings of ACM Symposium on Solid Modeling and
Applications (2004), Genoa, Italy, pp. 145-156.

J. R. RossIGNAC and A. A. G. REQUICHA, "Offsetting Operations in Solid Modelling," Computer Aided
Geometric Design, vol. 3, pp. 129-148, 1986.

J. R. SAcK and J. URRUTIA, Handbook of Computational Geometry. North Holland: Elsevier, 2000.

M. SAHA and P. IsTO, "Motion Planning for Robotic Manipulation of Deformable Linear Objects,"
in Proceedings of IEEE International Conference on Robotics and Automation (2006), pp.
2478-2484.

W. J. SCHROEDER, W. E. LORENSEN, and S. LINTHICUM, "Implicit Modeling of Swept Surfaces and
Volumes," in Proceedings of IEEE Visualization (1994), pp. 40-45.

Bibliography e 95

W. J. SCHROEDER, J. A. ZARGE, and W. E. LORENSEN, "Decimation of Triangle Meshes," in Proceedings
of International Conference on Computer Graphics and Interactive Techniques (1992), pp.
65-70.

J. T. SCHWARTZ, M. SHARIR, and J. E. HOPCROFT, Planning, Geometry, and Complexity of Robot
Motion, vol. 4. Norwood, New Jersey, USA: Ablex Publishing Corporation, 1986.

F. SCHWARZER, M. SAHA, and J.-C. LATOMBE, "Exact Collision Checking of Robot Paths," in
Algorithmic Foundations of Robotics, J. D. Boissonnat, J. Burdick, K. Goldberg, and S.
Hutchinson, Eds.: Springer 2004, pp. 25-41.

K. T. SEow and R. DEVANATHAN, "A Temporal Framework for Assembly Sequence Representation
and Analysis," IEEE Transactions on Robotics and Automation, vol. 10, pp. 220-229, 1994.

—

. A. SETHIAN, "A Fast Marching Level Set Method for Monotonically Advancing Fronts,"
Proceedings of the National Academy of Sciences (USA), vol. 93, pp. 1591-1595, 1996.

<

. SRINIVASAN and R. JAYARAMAN, "Geometric Tolerancing: li. Conditional Tolerances," IBM Journal
of Research and Development, vol. 33, pp. 105-124, 1989.

wm

. SUNDARAM, |. REMMLER, and N. M. AMATO, "Disassembly Sequencing Using a Motion Planning
Approach," in Proceedings of IEEE International Conference on Robotics and Automation
(ICRA) (2001), pp. 1475-1480.

-

. SVESTKA and M. H. OVERMARS, "Probabilistic Path Planning," in Robot Motion Planning and
Control. Secaucus, NJ, USA: Springer-Verlag, 1998.

G. VARADHAN and D. MANOCHA, "Accurate Minkowski Sum Approximation of Polyhedral Models,"
Graphical Models, vol. 68, pp. 343-355, 2006.

G. WILFONG, "Motion Planning in the Presence of Movable Obstacles," in Proceedings of
Symposium on Computational Geometry (1988), Urbana-Champaign, lllinois, United
States, pp. 279-288.

R. H. WiLsoN and J.-C. LATOMBE, "Geometric Reasoning About Mechanical Assembly," Artificial
Intelligence, vol. 71, pp. 371-396, 1995.

C. K. YAP and E.-C. CHANG, "Issues in the Metrology of Geometric Tolerancing," in Algorithms for
Robot Motion Planning and Manipulation, J.-P. L. a. M. Overmars, Ed. Wellesley,
Massachusetts, USA: A.K. Peters, 1997, pp. 393-400.

K. Yokol, N. E. SIAN, T. SAKAGUCHI, O. STASSE, Y. KAWAI, and K.-I. MARUYAMA, "Humanoid Robot HRP-
2 with Human Supervision," in Experimental Robotics, vol. 39, Springer Tracts in
Advanced Robotics. Berlin: Springer, 2008, pp. 513-522.

L. ZHANG, Y. J. KiM, and D. MANOCHA, "A Fast and Practical Algorithm for Generalized Penetration
Depth Computation," in Proceedings of Robotics: Science and Systems Conference (RSS)
(2007).

