Résonance Magnétique Nucléaire du Solide Des matériaux du nucléaire sous tous les spins

Habilitation à Diriger les Recherches

Thibault Charpentier

Laboratoire de Structure et Dynamique par Résonance Magnétique LSDRM CEA Saclay

25 janvier 2008

Démarche scientifique

Méthodologie RMN

Dynamique de spin Simulation / Traitement RMN Premiers Principes

Matériaux

Déchets Nucléaires

Hydrogène Verres et amorphes Nouveaux Systèmes Matériaux Paramagnétiques Matériaux Radioactifs

Les Matériaux de stockage des déchets nucléaires

Les matériaux de stockage : les problématiques

Effets d'Irradiation.

Durabilité chimique. Lixiviation.

Le verre R7T7

oxyde SiO $_2$ Al $_2O_3$ B $_2O_3$ Li $_2O$ Na $_2O$ CaO ZrO $_2$ ZnO Fe $_2O_3$ P $_2O_5$ NiO Cr $_2O_3$ Prod. de Fission Actinides Platinoides	% 45.12 4.87 13.92 1.97 9.78 4.01 0.99 2.48 2.89 0.28 0.41 0.50 10.35 0.89 1.54	Four les études RMN : Compositions simplifiées (CJx) 3-8 oxydes. Noyaux Quadrupolaires ($I > 1/2$) ²⁹ Si $I = 1/2$, ⁷ Li, ²³ Na, ¹¹ B $I = 3/2$ ²⁷ AI, ¹⁷ O $I = 5/2$, ⁴³ Ca $I = 7/2$
--	--	---

Développement de méthodes d'analyses des spectres RMN des matériaux amorphes.

La RMN \Rightarrow Un outil pour l'*exploration* de la structure vitreuse.

Modélisation, Quantitativité et Interprétation.

RMN MAS 11 B

Magic Angle Spinning NMR

 $B_0 = 7.05T$

 $B_0 = 11.75T$

RMN MAS *Haut-Champ* du ¹¹B \Rightarrow Résolution de la spéciation (3/4) du bore.

RMN MQMAS

Multiple Quantum MAS NMR

 \Rightarrow La *Haute-Résolution* des noyaux quadrupolaires.

RMN MQMAS ¹¹B

Modèle de structure des borosilicates d'alcalins.

After F. Angeli, PhD, 2000.

Application du modèle de Bray (%B_{IV}) \Rightarrow Compensation préférentielle de AlO₄⁻ et ZrO₆²⁻

Etude de l'environnement de l'aluminium

⇒ Effet du mécanisme de compensation de charge de l'aluminium.
⇒ Analyse de la distribution d'environnement de l'aluminium.

Modélisation et Inversion des spectres MQMAS

$$S_{Exp}(\nu_{1},\nu_{2}) = \int dC_{Q}d\eta_{Q}d\delta_{iso} \Pi(C_{Q},\eta_{Q},\delta_{iso})$$

$$\times S_{Sim}(\nu_{1},\nu_{2};C_{Q},\eta_{Q},\delta_{iso})$$

- C_Q constante de couplage quadrupolaire (EFG)
- η_Q paramètre d'asymétrie. (EFG)
- δ_{iso} déplacement chimique isotrope.

Modélisation \Rightarrow Expression analytique $\Pi(C_Q, \eta_Q, \delta_{iso})$ sur une grille Π_{ijk} .

Inversion \Rightarrow Reconstruction de $\Pi(C_Q, \eta_Q, \delta_{iso})$ sur une grille Π_{ijk} . Inversion : problème mal posé \Rightarrow Résolution $Min_{\Pi>0} \{\chi^2 + \lambda R(\Pi)\}$ χ^2 : fit des données et $R(\Pi)$: Distribution douce.

Simulation des spectres MQMAS

 \Rightarrow Implémentation dans une bibliothèque (C++). YANSiT : Yet Another Nmr Simulation Tools

Analyse de l'environnement de l'aluminium

Analyse de la distribution $\Pi(\delta_{iso}, C_Q, \eta_Q)$ par méthode d'inversion.

Analyse de l'environnement de l'aluminium

Expression Analytique de la distribution $\Pi(\delta_{iso}, C_Q, \eta_Q)$. Distribution de Czjzeck (Gaussian Isotropic Model).

Analyse de l'environnement de l'aluminium

Méthodes efficaces d'extraction des paramètre RMN Variation des paramètres RMN :

 \Rightarrow Mécanisme de compensation de l'Aluminium.

MAS / MQMAS : données consistantes \Rightarrow Fit des spectres MAS.

Analyse de l'environnement du calcium

 $\Rightarrow \mathsf{Modèle \ GIM \ applicable \ aux \ alcalins \ / \ alcalino-terrreux.} \\\Rightarrow \mathsf{Analyse \ des \ relations \ RMN \ / \ Structure.}$

Analyse de l'environnement du calcium

MQMAS \Rightarrow Très Haut Champ nécessaire (750 MHz). 60SiO₂-10Na₂O-20CaO-10Al₂O₃ \Rightarrow 1 seul environnement Ca.

Coll. P. Florian D. Massiot, CRMHT

Le réseau vitreux : Quantification ¹⁷O

 $\Rightarrow MQMAS \ ^{17}O: essentiel pour l'analyse de verre complexe.$ $\Rightarrow Pas d'outils d'analyse quantitative existant.$

Réseau vitreux : RMN MQMAS ¹⁷O

 \Rightarrow Analyse quantitative de verre complexes.

Un nouvel outil : GIPAW

 \Rightarrow Vers Ia RMN premiers principes des verres

Relations Structure / RMN.

 \Rightarrow Extraction de distributions de paramètres structuraux. Besoin d'outils quantitatifs d'analyse des relations RMN/structure.

La méthode GIPAW : un exemple

La cristobalite SiO₂

$GIPAW \Rightarrow Une méthode précise$

Coll. F. Mauri, M. Profeta (PhD) Jussieu

440

450

Le verre tétrasilicate de sodium 4SiO₂-Na₂O (NS4)

\Rightarrow Couplage DM / RMN Premiers Principes

Modélisation par DM mixte classique / ab initio.

Coll. S. Ispas, Montpellier; F. Mauri, Jussieu.

NS4 ¹⁷O: comparaison GIPAW / Expérience.

NS4 : DM Classique / ab initio

 \Rightarrow Meilleure sensibilité de la RMN à la structure

NS4 ²³Na : Analyse des distributions.

$$f(C_Q,\eta)(GIM) = \frac{C_Q^4 \eta}{\sqrt{2\pi\sigma^5}} \exp\left\{-\frac{C_Q^2}{2\sigma^2} \left(1 + \frac{\eta^2}{3}\right)\right\} \Rightarrow \sqrt{\langle C_Q^2 \rangle} = 4.8 \text{MHz}$$
(1)

Le système SiO_2 .

Interprétation structurale des paramètres ¹⁷O

- ⇒ Gammes de paramètres structuraux des systèmes cristallins limités par rapport aux verres.
 - \Rightarrow Transférabilité cristallin \rightarrow amorphe ?

SiO₂ : analyse multivariée.

\Rightarrow Effet de distribution fortement corrélée

Coll. F. Mauri, Jussieu; P. Kroll, Aachen

Analyses à une variable - (Si-O-Si) - 17 O RMN

$$\eta_q = B\left(\frac{1}{2} - \frac{\cos\theta}{\cos\theta - 1}\right)^{\beta} C_q = A\left(\frac{1}{2} + \frac{\cos\theta}{\cos\theta - 1}\right)^{\alpha}$$

Analyses à deux variables : (Si-O-Si,Si-O)

SiO₂ :analyse multivariée non paramétrique.

 $C_Q(\theta,r) \qquad \eta_Q(\theta,r)$ Utilisation de méthodes d'analyses avancées des relations RMN=f(structure).

SiO₂ : analyse multivariée non paramétrique.

Utilisation de méthodes d'analyses avancées des relations RMN=f(structure).

B_2O_3 : un autre exemple

Extension à d'autres compositions. Coll. G. Ferlat, F. Mauri, A. Seitsonen, Jussieu.

Perspectives

 $\begin{array}{l} \mathsf{RMN} + \mathsf{Dynamique} \ \mathsf{Mol}\acute{\mathsf{culaire}} + \mathsf{GIPAW} \\ \Rightarrow \mathsf{Un} \ \mathsf{nouvel} \ \mathsf{outil} \ \mathsf{pour} \ \mathsf{sonder} \ \mathsf{la} \ \mathsf{structure} \ \mathsf{du} \ \mathsf{verre} \end{array}$

 $\begin{array}{l} \Rightarrow \mbox{Modélisation des spectres RMN de verres.} \\ \Rightarrow \mbox{Compréhension fine des relations RMN=f(structure).} \\ \Rightarrow \mbox{Obtention de distribution de paramètres structuraux.} \\ \Rightarrow \mbox{Correction de structure de verre} \end{array}$

 $\Rightarrow NMR \ driven \ Reverse \ Monte \ Carlo.$ $\Rightarrow Modélisation \ d'expériences \ plus \ complexes \ (^{17}O-^{29}Si)$

ANR HR-HC-RMNSOLIDE, Post-Doc L. Truflandier

Etude des matériaux du nucléaire.

Compréhension de la structure l'échelle atomique.

Altération de la structure sous irradiation et lixiviation.

Composition complexe : synergies entre les éléments.

Analyse d'une composition complexe à sept oxydes. R=NaO/(NaO+CaO) \Rightarrow Effet d'interaction Na/Ca sur la compensation de charge de l'aluminium

Coll. A. Quintas(PhD), D. Caurant, O. Majérus (ENSCP).

Analyse quantitative MQMAS \Rightarrow Cohérence MAS / MQMAS

Coll. A. Quintas(PhD), D. Caurant, O. Majérus (ENSCP).

Coll. A. Quintas(PhD), D. Caurant, O. Majérus (ENSCP).

Mise en évidence de la compensation préférentielle par Na pour R=0.3

Coll. A. Quintas(PhD), D. Caurant, O. Majérus (ENSCP).

Effet Alcalin mixte / Irradiation β

⇒ Effet alcalins mixtes sur la structure de réseau vitreux et la migration des alcalins. ⇒ Na/K : blocage sélectif des compensateurs de BO4, ⇒ Na/Li : blocage sélectif des modificateurs

Coll. N. Ollier, B. Boizot (CEA/LSI).

Coll. S. Peuget, JM Delaye (CEA Valrhô).

RMN d'échantillon radioactif ?

Simulation par irradiation externe.

Mise en place d'un protocole spécifique pour la RMN.

RMN : information locale des modifications macroscopiques observées.

Gel d'altération des verres nucléaires.

Formation d'une pellicule silicatée protectrice à la surface du verre. Modification Cinétique de dissolution / Prop. de rétention des terres rares.

Coll. F. Angeli, P. Jollivet, C. Cailleteau (PhD), CEA Valrhô

Gel d'altération des verres nucléaires.

Caractérisation de la structure du gel en fonction de la composition initiale et des conditions d'altération \Rightarrow Réseau, \Rightarrow Porosité Surface , \Rightarrow Diffusion DMN - Dennées nouveriendation de Mante Carlo

RMN : Données pour simulation de Monte Carlo

Techniques RMN avancées.

Spectroscopie de corrélation homo/hétéronucléaire via le dipolaire.

Coll. A. Nonat, X. Lin (PhD) (Dijon).

Techniques RMN avancées.

Spectroscopie de corrélation homo/hétéronucléaire via la liaison chimique. \Rightarrow Caractérisation de l'ordre à moyenne distance.

Solubilité des terres rares.

Etude de la solubilité des terres rares. Paramagnétisme \Rightarrow Perte de résolution

Etude des matériaux du nucléaire réels.

Paramagnétisme. Radioactivité.

Approche *brute force* \Rightarrow rotation très rapide.

Coll. F. Audubert, D. Brégiroux, CEA Cadarache

Modulation des bandes de rotations.

Modulation des bandes de rotation \Rightarrow Séparation.

Applicable à toute les fréquences de rotation.

Coll. F. Audubert, L. Campayo, CEA Cadarache

Technique puissante pour le résolution des spectres.

(Q)PASS applicable au noyau quadrupolaire (23 Na).

RMN d'échantillons radioactifs.

Magic Angle Spinning

RMN d'échantillons radioactifs.

Farnan et al, Rev. Sci. Instrum. 75 (2004)

Perte de résolution à basse vitesse

Alternative MAT : approche à deux dimensions

(Q)PASS applicable au noyau quadrupolaire (^{11}B).

RMN d'échantillons radioactifs.

Données : C. Berthon , CEA Marcoule

Conclusion

⇒ Maturité de l'outil RMN
Méthologie RMN : Du spin au matériau
RMN Premiers Principes : de l'électron au spin

Outils performant pour explorer la structure des matériaux

Des solutions existent pour les matériaux paramagnétiques !

Approches pour les matériaux radioactifs Projet ANR - RMN MAS ³H. Projet Spectromètre RMN Solide dans Atalante.

