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Foreword

Light has fascinated mankind throughout the ages, by virtue of being a source of Life and the means

by which we actually see the world. Our current understanding of its nature may be attributed to

James Clark Maxwell, who unified electricity and magnetism into a consistent theory, in which light

is described as an electromagnetic radiation [1], and Albert Einstein, who explained the photoelectric

effect by the fact that light should be quantized in particles called photons [2], a finding that yielded the

concept of wave-particle duality and set up the basis of Quantum Theory. The 20th century has been

characterized by a wealth of major scientific and technological advances, especially on the apprehension

of matter and its interaction with light. The development of the first lasers in the 1960s [3] marked the

beginning of a new era full of hopes and challenges on the control of photons. Concurrently, the study

of semiconductors to control the propagation of electrons and the development of reliable techniques

to miniaturize electronic circuits were in full swing. In the early 1980s, the world was experiencing a

profound transformation under the lead of semiconductors and opto-electronic devices.

In 1987, Yablonovitch and John set forth the idea that in theory, 3D artificial dielectric structures

could be designed to exhibit an electromagnetic, or photonic band gap, by analogy with the electronic

band gap of semiconductors [4, 5]. While the absence of electromagnetic modes could suppress sponta-

neous emission of light, structural defects could enhance it and lead to light localization effects. The

advent of these structures, dubbed photonic crystals, generated a real burst of excitement in the scien-

tific community, for they could allow a control over both the emission and propagation of light on the

wavelength scale, the design of “nanocircuits for light”. The existence of a photonic band gap has been

verified experimentally shortly later and the number of studies on photonic crystals grew dramatically in

the following years. Since that time, photonic crystals have demonstrated a myriad of novel optical ef-

fects and applications, such as low-loss photonic crystal fibers [6], low-threshold lasers [7], structures with

enhanced non-linearities [8] and even some slowing down light [9]. Their unique dispersion properties

have been shown to yield extremely anomalous behaviors [10], taking the examples of ultra-refraction,

supercollimation and negative refraction effects, and as many additional ways to mold the flow of light.

While theorists and experimentalists paved the route toward sophisticated all-optical microchips,

another original idea pushed Photonics to a higher level. It is well-known that natural materials are

deprived of any magnetic activity at optical frequencies [11]. In 1999, Pendry showed that periodic arrays

of metallic resonators could imitate a homogeneous medium with a dispersive effective permeability

[12], demonstrating here again that artificial structures could exhibit optical properties unattainable

in nature. This achievement brought out of the dark a previous study of Veselago [13] on abstract

materials with negative permittivity and negative permeability that would reverse the normal behavior

of electromagnetic waves. The actual fabrication of such a “double-negative” material one year later [14]

set out intense investigations of these new artificial structures, called metamaterials. Within a few

years, metamaterials have been shown to manipulate electromagnetic fields in a quite remarkable and
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unprecedented way. They have, for example, the ability to reproduce the image of any light distribution

with a subwavelength resolution [15,16] or alternatively to guide light in a way to by-pass any obstacle,

acting as an invisibility cloak [17]. Such realizations would have been absolutely unthinkable only a few

years ago and they are now at reach.

All in all, the past twenty years have been exceptionally rich on the study and fabrication of nanos-

tructured materials to control light. Photonic crystals and metamaterials have been shown to exceed

by far the classical limits of conventional optical structures. Many researchers predict that the 21st

century will to be to photons what the 20th century has been to electrons. And indeed, it seems a right

time for it. The 21st century started on a worldwide telecommunication revolution but electronics is

now approaching its limits in terms of speed and compactness. Biology (by extension, BioPhotonics) is

also an expanding field, more and more using of the interaction between biological species and light for

various applications in Medecine and Life Sciences. Solar power is finally at the heart of current efforts

on renewable energy. In these areas and many others, photonic crystals and metamaterials could play a

significant role.

This thesis is in line with this constant flow of new solutions for Photonics, covering a wide panel

of different concepts from photonic crystals to metamaterials. We will focus exclusively on dielectric

nanostructures, which, by contrast to metallic ones, are lossless at optical frequencies, while taking the

most of the progress made on the fabrication level in the past decades (e.g. silicon technology). Our work

is also theoretical. The increasing power of computers and the uninterrupted development of reliable

modelling tools make it possible to study a large number of complex problems.

The thesis is articulated around the four following chapters:

• Chapter 1 presents a brief overview of the basic concepts and principles of photonic crystals

and metamaterials, necessary to approach each of the following ones with sufficient knowledge

on the subject. We will highlight the main scientific concepts and technological achievements in

the field, from the origin of the optical properties of photonic crystals to the latest challenges of

metamaterials and will present the various modelling tools that have been used in this thesis.

• Chapter 2 deals with the confinement of light in 3D opal-based photonic crystals, which, by

reference to natural opals, consist of periodic arrangements of dielectric spheres. Such structures

are particularly interesting on a technological point of view because they can be made by simple

self-assembly techniques and thus, be fabricated with a high quality on large scales and at low

cost. Handling the confinement of light in opals by the insertion of proper defects could yield many

opportunities in Photonics. However, for a number of reasons that will be developed in the body

of the thesis, this has been proved to be difficult. In this chapter, we will present various possible

designs of waveguides and cavities in monolayers of spheres, two- and three-dimensional opal-based

heterostructures and purely three-dimensional inverse opals (the latter consisting of air spheres in

dielectric), thereby allowing a full control of light emission and propagation in 3D space.

• Chapter 3 is devoted to the study of dispersion-based waveguiding in extended, i.e. defectless,

photonic crystals. This much more recent concept of using the dispersion properties of photonic

crystals to manipulate light has stimulated a great interest in the photonics community and has

led within a few years to the development of a multitude of new technologies. The question of

manipulating light beams has however been rarely addressed, although it is of a crucial importance.

In this chapter, we will propose some possible ways to enhance the functionality and reliability of

extended photonic crystals. We will show that graded photonic crystals, i.e. structures with a

gradient in their lattice parameter, have the great ability to bend light on the wavelength scale,
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and will closely investigate the effects related to the spatial dispersion and gradient strength of the

structure on the propagating beam. We will then propose a practical and efficient solution to one

of the main issues in the integration of extended photonic crystals on all-optical platforms, namely

their poor coupling to external waveguides.

• Chapter 4 finally provides some theoretical insight onto the optical properties of all-dielectric rod-

type structures. Most of the major achievements in the field of metamaterials have been realized

in the microwave regime using metallic resonators. Recent studies now try to scale these structures

to the optical frequencies but progress is being slowed down by the losses and saturation effects

inherent to the metal in this frequency range. In this chapter, we will show that dielectric rods can

replace metallic resonators in their role of electric and magnetic atoms. We will propose a theory

on this new type of metamaterials, show that they can exhibit overlapping negative permittivity

and negative permeability and further that they can be scaled to the optical frequencies in a very

simple manner. We will also discuss the effect of structural disorder on light propagation, which

will finally lead us to the first-time observation of 2D microscopic necklace states.
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Chapter 1

Introduction to photonic crystals

and metamaterials

Manipulating light is one of the greatest and most exciting challenges of the 21st century. The emergence

of photonic crystals (PhCs) and metamaterials (MMs) has largely contributed to this quest. Both

of them have already led to remarkable achievements and still allow us to envision further scientific

and technological advances. This introductory chapter is intended to review the basics, applications

and challenges of PhCs and MMs. In Sec. 1.1, we will introduce the principles underlying the optical

properties of PhCs and the main fabrication techniques developed to date. In Sec. 1.2, we will show how

the photonic band gaps (PBGs) of PhCs can be used to control the emission and propagation of light

on the wavelength scale and in Sec. 1.3, how their dispersion properties can provide additional ways to

enhance this control. MMs will be introduced in Sec. 1.4. We will see which are the motivations and

objectives of current researches on the subject. In Sec. 1.5, we will finally give a brief overview of the

different modelling techniques that have been used in this thesis.

In each of these sections, we will pay particular attention to the works the most related to our purposes

and will voluntarily omit certain aspects of PhCs and MMs. These expanding fields have however the

advantage of being presented by a consequent number of reviews and textbooks, which the reader can

refer to if necessary (on PhCs, see e.g. [18–22]; on MMs, see e.g. [23–27]).

1.1 Basics of photonic crystals

Once again, Nature has demonstrated its ingeniousness much before scientists realized it. Iridescences

of different colors can be observed in natural opals [28], on the wings of certain butterflies [29], on the

cuticles of certain beetles [30] and in a variety of many other animal species. These optical effects are due

to their microstructuring, which create multiple Bragg scattering effects. When the wavelength of light

becomes comparable to the periodicity of the structure, the waves scattered by the various diffraction

planes interfere constructively and destructively in a way to produce a diffraction pattern specific to the

structure, notably prohibiting light propagation along certain directions. PhCs are artificial structures

with a periodic modulation of the refractive index on the scale of the wavelength. Their purpose is

precisely to mold the flow of light in a similar yet well-controlled manner. The existence of a complete

PBG in particular can provide a full control over light emission and propagation in all 3D space. Reaching

this objective however requires, at the lowest level, to have some understanding of how light behaves in
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such media and to develop fabrication techniques capable of building wavelength scale nanostructures

with a high quality.

1.1.1 Light propagation in periodic dielectric structures

Broadly speaking, electromagnetic fields in the optical range have a wavelength of the order of the

micrometer. On this scale, the atomic structure of matter averages out to give a homogeneous, continuous

medium with an electric permittivity ε and a magnetic permeability µ. PhCs rely on a spatial variation

of these parameters on the micrometer scale. Light propagation in continuous media is described by

the macroscopic Maxwell’s equations, which, in the absence of free charges and currents and considering

harmonic fields, reduce to a vector wave equation for the magnetic field H of the form:

Θ̂H(r) =
ω2

c2
H(r) (1.1)

with Θ̂ = ∇× 1
ε(r)∇×. It has been assumed here that the medium is isotropic, linear and nonmagnetic.1

Equation (1.1) is the master equation of harmonic propagation of light in mixed dielectric media, written

in the form of an eigenvalue problem for the magnetic field H(r). Noting that the operator Θ̂ acting on

the field is self-adjoint, the eigenvalue problem turns out to be ordinary, involving that its eigenvalues

are necessarily real and that the associated eigenvectors are orthogonal to each other. A similar equation

can be derived for the electric field E(r) but the operator in this case in not self-adjoint and consequently

leads to a generalized eigenvalue problem. One usually prefers to solve the problem for the magnetic

field and retrieve the electric field at a subsequent stage from Maxwell’s equations.

Two remarks may be given at this point. First, it can be shown from Eq. (1.1) that the optical

properties of dielectric media, assuming that they are nondispersive and macroscopic, do not rely on a

fundamental length scale. They can be scaled to different frequencies only by expanding or contracting

all distances. For this reason, the frequencies ω can be normalized by the lattice parameter a of the

structure and given in units of ωa
2πc = a

λ , where c is the velocity of light in free space and λ the wavelength

of light. This fact has also been proved to be quite useful, for it makes it possible for experiments to be

realized in the microwave range. Second, it is interesting to note that Eq. (1.1) can be well assimilated

to Shrödinger’s equation of Quantum Mechanics [31], which describes the behavior of non-interacting

electrons in a potential function. In this sense, the permittivity ε(r) of the dielectric composite plays the

role of the potential V (r) of a crystal. The steps to follow to solve the eigenvalue problem in a periodic

structure are consequently very similar.

The permittivity of a periodic photonic crystal with lattice vectors R obeys the relation ε(r + R) =

ε(r). The Floquet-Bloch theorem states that the solution of the eigenvalue problem has to have the form

of a planewave times a vectorial function with the periodicity of the structure lattice as:

H(r) = hk(r)eik·r (1.2)

where hk(r+R) = hk(r) and k is the wavevector defined in reciprocal space. By inserting Eq. (1.2) into

Eq. (1.1), a new ordinary eigenvalue equation is obtained for the field hk. The problem is now reduced

to a single unit cell, where the periodicity is taken into account via the extra parameter k. Similarly

as for electrons in a potential well, to each value of k is attributed an infinite set of eigenvalues defined

at discrete frequencies ωn(k), where n is the order of the mode. When k is continuously varied, the

1The relative permeability µ(r) can be taken equal to unity everywhere because the magnetic response of natural
materials fades out in the optical frequencies [11].

10



Figure 1.1: Sketch views of 1D (a), 2D (b) and 3D (c) PhCs.

continuous dispersion relation of ωn(k) defines the photonic band structure of the PhC, which describes

exactly the behavior of light in infinite, periodic structures. Due to the discrete translational symmetry

of the lattice, the wavevectors k labeling the solutions can be restricted to the first Brillouin zone of the

lattice. Moreover, ωn(k) can be shown to possess the point group symmetry of the lattice, comprising

inversion, rotation and reflection symmetries. It is therefore sufficient to describe the photonic band

structure on the irreducible Brillouin zone. The actual computation of the photonic band structure can

be made using the planewave expansion method, which we will briefly describe in Sec. 1.5.

1.1.2 Properties and fabrication

At the time when PhCs were introduced, the primary goal of the majority of researchers was to design and

fabricate structures that would exhibit a preferably large and complete PBG to prohibit light propagation

along all directions of space. These studies have quite naturally tried to scale PhCs to the near-infrared

range (λ = 1.55 µm) to anticipate their use in telecommunications technologies. Of course, they have

been confronted to many technological problems, eventually discovered new optical effects, which resulted

in new designs and routes to follow. At the present time, a broad range of PhCs are available, as well

as a variety of fabrication techniques. PhCs are generally organized in different categories, according to

their dimensionality.

One-dimensional photonic crystals

One-dimensional (1D) PhCs have been known for a long time as Bragg mirrors. They consist of a

periodic stack of dielectric layers of different refractive indices (Fig. 1.1(a)) and present the interesting

capability to filter out (or in) certain wavelengths of a light signal. They have been used, for example, in

distributed feedback lasers, anti-reflection coatings and high-reflectivity mirrors. Purely 1D PhCs extend

to infinity in the two directions normal to the periodic direction and thus, do not exhibit a complete

PBG. Light is therefore allowed to escape along the non-periodic directions. Still, they can make use of

the refractive index contrast between the ambient medium and the dielectric stack to reflect incident light

at all angles [32]. On a similar basis, micropillars have a finite size in the plane normal to the periodic

direction and make use of the refractive index contrast between the stack and the ambient medium to

reduce the amount of light escaping in the lateral directions.

Bragg mirrors can be fabricated by conventional thin-film depositions techniques, which have been

proved to be extremely reliable throughout the years. An interesting alternative is the use of porous

silicon, in which the local porosity defines an “average” refractive index that can be modulated with the

depth of the penetration in the sample.

11



Two-dimensional photonic crystals

Strictly speaking, 2D PhCs are periodic in two dimensions of space and extend to infinity in the third

one. They can consist either of a periodic set of high refractive index cylinders of arbitrary shape

in a low refractive index medium (rod-type) or structures with an inverted dielectric contrast (hole-

type, see Fig. 1.1(b)). Owing to the bi-dimensionality of the structure, electromagnetic modes can be

treated separately according to their polarization. The E-polarization (s- or TM-polarization) and the

H-polarization (p- or TE-polarization) correspond to the cases where the electric and magnetic fields are

normal to the propagation plane, respectively.

In practice, 2D PhCs have to have a finite thickness. The modes may then be decoupled into their

even or odd parity with respect to the mirror symmetry plane of the slab. From a technological point of

view, integrating PhCs on all-optical chips encourage the use of thin layers. Here again, the refractive

index contrast between the ambient medium and the PhC layer can be to our advantage. The ambient

medium is described by the light cone, whose lower boundary (the light line) is given by ω = k c
na

, where

k is the wavevector (or propagation constant) in the PhC, c the speed of light in free space and na the

ambient refractive index. Light can therefore be confined to the PhC slab by index guiding while the

PhC can offer lateral confinement if a PBG is found below the light line [33]. Early calculations and

experiments have shown that 2D PBGs could be easily found in both rod-type and hole-type structures

for both polarizations of light [34]. The first successful experimental demonstrations of the existence

of PBGs in the near-infrared wavelengths [35, 36] have rapidly placed 2D structures at a preeminent

position in PhCs research.

The fabrication of 2D PhCs has been inherited from micro and opto-electronic techniques. Typically,

layers of semiconductors are grown in a stack and the pattering of the PhC is made by conventional

lithography techniques, mainly photo- and electron-beam lithography. Most of the 2D PhCs studied

up to now are hole-type structures, consisting of a high-refractive index slab, perforated by holes and

deposited on a thick low refractive index substrate. At the present time, high quality structures can

be made on a variety of different platforms, including multilayers, free-standing layers and silicon-on-

insulator substrates.

Three-dimensional photonic crystals

If 2D PhCs seem to be a good compromise between ease of fabrication and radiation losses, three-

dimensional (3D) PhCs remain the only structures really capable of exhibiting a complete PBG and

thus, of truly controlling light in all 3D space. Unfortunately, they are also the most challenging ones

to fabricate. Pushed by a constant flow of new designs, scientists have made use of their originality to

develop entirely new fabrication techniques. It is fair to say that two classes of structures stood out of

3D PhCs: self-assembled and layered structures.

Self-assembled opals consist of dielectric spheres stacked in a compact face-centered cubic lattice.

They have received a great deal of attention over the years because they can be reproduced artificially

on large scales and at low cost. Opals with an inverted dielectric contrast, namely inverse opals, can

exhibit a complete PBG provided that the index contrast is sufficiently large. This possibility has

continuously motivated experimentalists to develop always more efficient self-assembly and inversion

techniques [37–39]. Layered structures have been more rapidly disposed to meet the urging need of

developing high-quality functional 3D PhCs. Woodpile structures, which consist of simple stacks of rods

(see Fig. 1.1(c)), are probably the most popular ones in this family, for they exhibit large and complete

PBGs and are relatively easy to fabricate [40,41]. Other structures consisting of stacks of 2D PhC layers
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have also been proposed [42]. They can be made using the so-called layer-by-layer technique, which

consists of depositing and patterning successive dielectric layers to form the whole 3D structure. This

approach is quite time and energy consuming compared to opal-based PhCs. As a matter of fact, layered

structures have been perduring over the years owing to the simplicity with which suitable defects can be

designed. This will be discussed in the next section.

From a broader point of view, the past twenty years have been relatively rich on the design and

fabrication of 3D PhCs, taking into account other 3D structures (e.g. slanted-pore PhCs [43]) and

techniques (e.g. robot-assisted micromanipulation [44]). There has been some interest recently on

interference lithography [45] and direct laser writing techniques [46], which allow the patterning of large-

scale 3D PhC templates of complex shapes. As a matter of fact, there seems to be a trend toward a

more extensive use of 3D PhCs in Photonics. Nonetheless, it is important to bear in mind that 2D PhCs

remain much easier to fabricate than 3D PhCs, while exhibiting most of the optical properties one could

be interested in. The determining factor is therefore not so much about the ability of one structure or

an other to exhibit PBGs, but rather to which extend we can use them to control light.

1.2 Band gap effects in photonic crystals

The advent of PhCs in the late 1980s naturally came with a great number of possible applications.

The existence of PBGs offers the capability to confine light in wavelength scale areas and control its

propagation in space, thereby opening the route toward all-optical technologies with enhanced function-

alities [47].

To illustrate this point, we consider a 2D PhC consisting of a square array of air holes in dielectric.

The choice of this structure is totally arbitrary and we do not loose any sense of generality by taking

this example. Its photonic band structure is shown in Fig. 1.2. For the sake of clarity, only the three

lowest frequency bands have been plotted. The dispersion curves (in blue) are represented along the

high-symmetry directions of the irreducible Brillouin zone, which usually are sufficient to have a good

picture of the optical properties of a PhC. The light line (dark gray) defines the limit frequency above

which the PhC modes are leaky and the PBGs, highlighted in light gray areas, define the frequency

ranges in which light propagation is prohibited.

Lattice imperfections in a PhC that exhibits such complete PBGs can give rise to fully localized

electromagnetic modes. In fact, it is easy to conceive that light can be trapped in structural defects,

surrounded by a structure in which it cannot propagate. To understand the physical origin of this

phenomenon, it is very common to make the analogy with impurity modes in semiconductors [48]. The

insertion of donors or acceptors in a semiconductor crystal supplies additional electrons or holes to the

conduction or valence bands, respectively, which forms bound impurity levels in the electronic band gap.

In the photonic case, creating a local increase (resp. decrease) of the refractive index in the PhC creates

some impurity modes at lower (resp. higher) frequencies and eventually pulls them out within the PBG.

The resulting modes are no longer extended in the PhC but become localized. The insertion of a point

defect in a PhC (Fig. 1.3(a)) breaks the whole translational symmetry of the structure. Light cannot

escape from the defect, which therefore becomes an optical cavity. When a linear defect is inserted in

the PhC (Fig. 1.3(b)), a discrete translational symmetry is preserved along one direction. Light is then

allowed to propagate along the defect only, which becomes an optical waveguide.
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Figure 1.2: Photonic band structure of 2D PhC made of a square array of air holes of radius 0.45a,
where a is the lattice periodicity, in a dielectric medium of permittivity ε = 12. Representation along
the high-symmetry directions of the first Brillouin zone (shown in the inset). The dispersion curves are
in blue, the light line of air is in dark gray and the PBGs are enlighted in light gray shaded areas.

Figure 1.3: Sketch views of point (a) and linear (b) defects in a 2D PhC.
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1.2.1 Cavities

The confinement of light in resonant optical cavities mainly centers on two purposes. The first one is the

enhancement of light-matter interactions. Indeed, while spontaneous emission of light can be inhibited

by creating an environment where no electromagnetic modes exist, it can also be greatly enhanced if

matched in frequency with a resonant cavity. The rate of spontaneous emission is determined by the

Purcell factor [49], which is proportional to the ratio Q/V , where Q is the quality factor of the cavity

and V the modal volume. The quality factor of a cavity is then proportional to the lifetime of light in

the cavity and is given by Q = ω0/∆ω, where ω0 is the resonant frequency of the cavity mode and ∆ω

its spectral width. Physically, the more photons spend time in the cavity, the more they interact with

matter. Identically, a smaller modal volume enhances the local field intensity and increases interaction.

Having large Q/V ratios find interest in lasing processes, nonlinear effects, environmental sensing and

quantum information processing (e.g. quantum cryptography [50]), among others. PBGs in PhCs are

expected to provide control over the losses of cavities (i.e. their quality factor) while keeping a hand

on the spatial extension of the cavity mode. The compactness of PhC cavities is also suitable to their

integration on all-optical platforms. Reaching high Q/V values to enhance light-matter interactions is

therefore the first, and primary reason why scientists are interested in PhC cavities. The second one

is the narrowness of the cavity spectral response. In this case, the cavity is not intended to interact

with matter but to provide a very high frequency-selectivity to all-optical devices. Resonant cavities can

be used for example in the telecommunications to filter out certain wavelengths of a light signal. The

selectivity of the cavity corresponds to the spectral width ∆ω of the mode, which implies that high-

quality factor cavities are more selective. In sum, both purposes are demanding for high quality factors,

and this has been, indeed, the main objective of studies on PhC cavities. Since the resonant modes of

a cavity are inherent to the nature and the size of the defect, their quality factor is mainly a matter of

design and thus, may be optimized accordingly.

1.2.2 Waveguides

Optical waveguides have played a major role in Photonics ever since the first opto-electronic devices

appeared. The transport of light in conventional dielectric waveguides is ensured by total internal

reflection, implying that losses appear at waveguide bends. The amount of lost light increases with

the bending radius, which usually needs to be large to sustain a good transmission and consequently,

seriously limits the possible degree of miniaturization of optical components. PhC waveguides rely

on PBG effects so that if a bend is created, light cannot be radiated out of it precisely because no

propagating mode exist in its surrounding. They are therefore expected to overcome conventional index-

guided waveguides in terms of both efficiency and compactness. In view of using PhC waveguides in

data transmission integrated systems, it is also desired that they be single-mode and broadband.2 Both

of these parameters rely on the nature of the defect and thus, may be tuned according to one’s need.

Alternatively, PhC waveguides can be considered for more evoluted purposes, for example by making

them interact with neighboring cavities or waveguides [51] to create various PhC-based devices for the

telecommunications, such as channel-drop filters, waveguide couplers and beam splitters.

2Single-mode operation is necessary to avoid losses due to inter-modal coupling, while broadband operation yields larger
digital data rates.
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1.2.3 1D/2D versus 3D photonic crystals

The great majority of studies on PhC cavities and waveguides have focused on 1D and 2D structures,

which, in spite of being subject to radiation losses, are much more accessible experimentally than 3D

ones. 1D micropillar cavities [52] and patterned strip waveguides such as air-bridge [53] and ladder-

type PhC cavities [54] have demonstrated very high quality factors and small modal volumes, which,

owing to the resulting strong coupling to light emitters, makes them particularly attractive for quantum

information processing applications (e.g. on-demand single photon sources). 2D PhCs now benefit from

an additional dimension to confine light. The literature is actually packed with an abundant number of

design and fabrication studies on 2D PhC cavity/waveguide devices. 2D PhC cavities have demonstrated

remarkably high quality factors [55,56], strong coupling with single quantum dots [57,58] and have been

used to realize optically and electrically-pumped lasers [59–61]. 2D PhC waveguides have been shown

to yield high transmission and bending efficiencies [62] and could be efficiently coupled to external

waveguides [63, 64]. Over the years, 2D PhCs have demonstrated their ability to control light and have

consequently been used primarily as testbeds for the study of newly discovered optical phenomena and

as platforms for enhanced light-matter interactions and compact interconnection networks [65].

Confining light in 3D PhCs remains a live topic. In principle, 3D PhCs can provide an even greater

control over light. In practice however, the challenge is twofold, being to fabricate high-quality 3D PhCs

exhibiting stable and complete PBGs, and point or linear defects with suitable single-modes within the

PBG frequency range. The difficulty in addressing both points depends on the complexity of the struc-

ture, which implies different amounts of computational efforts and more or less complicated fabrication

processes. Theorists and experimentalists have naturally turned toward layered PhCs (e.g. woodpile),

which are without doubt the most accessible ones from both points of view. Various experiments on

cavity/waveguide structures indeed turned out to be quite successful [66–70]. Now, as we have seen in

the previous section, there exists a reasonably broad panel of 3D structures, which, for most of them,

can be fabricated with a high quality. Large attention has particularly been paid to opal structures be-

cause they present a great potential for low-cost integrated all-optical devices. Numerous experimental

studies have also been carried out to embed controlled defects in inverse opals and at the present time,

a variety of different techniques are available (see e.g. Ref. [71] and references therein). Progress is

yet hardly made and theory seems to be the reason for this slow pace. Therefore, it seems worthwhile

spending consequent efforts on the design of waveguides and cavities in opals. This will be our objective

in Chapter 2.

1.3 Dispersion effects in photonic crystals

Although PBGs have drawn the attention of researchers for many years, they constitute only one par-

ticular case among the numerous complex optical effects that can occur in PhCs. As a matter of fact,

light propagation in allowed frequency bands can exhibit very atypical behaviors, revealing new optical

effects which can provide even mode control over electromagnetic fields [10, 72].

1.3.1 Principles

Fig. 1.4 shows the photonic band structure ω(k) of the 2D PhC considered above, displayed as dispersion

surfaces over its entire first Brillouin zone. The iso-frequency curves (IFCs), or equi-frequency contours,

of its first and second bands describe the PhC modes at given frequencies (ω(k) =const.). It is clear from

this figure that PhCs can be strongly dispersive in both the frequency domain and the reciprocal space.
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Figure 1.4: Photonic band structure of 2D PhC made of a square array of air holes of radius 0.45a,
where a is the lattice periodicity, in a dielectric medium of permittivity ε = 12. (a) Representation over
the entire first Brillouin zone of the PhC reciprocal lattice. The dispersion surfaces are in color and the
light cone in gray. Iso-frequency curves of the first (c) and second (b) bands, given in ascending order in
reduced frequency a/λ following the rainbow colors from violet to red.

In a PhC, the average energy propagation velocity coincides with group velocity of light vg,
3 defined as:

vg = ∇kω(k) (1.3)

This relation pulls out two interesting effects that can occur in PhCs: First, light can be slowed down

to very low speeds. The norm of the group velocity being proportional to the slope of the dispersion

surfaces, this effect occurs in regions where the dispersion curves flatten. Slow-light in PhCs has recently

attracted a great deal of attention [9], providing the ability to process optical signals by using optical

buffers and enhance light-matter interactions for linear and nonlinear effects (e.g. lasing [60]). Second,

light can be refracted in very unusual ways. Here, the direction of the group velocity is given by the

steepest ascent of the dispersion surfaces and is normal to the IFCs. As we will see now, the spatial

dispersion of PhCs can be a very powerful handle on the flow of light.

Spatial dispersion evidences the fact that light does not behave in a same way along all directions of

space. For example, the permittivity of a spatially dispersive dielectric medium is written as a function of

the wavevector k as ε(ω,k), while the dependence in the frequency ω is the spectral dispersion. In PhCs,

this dependence in k is included in the dispersion relation ω(k). Since light follows the group velocity

direction, the phenomenon of spatial dispersion is particularly interesting when considering structures of

finite-size, for those can exhibit anomalous refraction properties depending on the polarization of light

and its angle of incidence. It is also worth noting that these effects do not require the insertion of any

structural defect. This constitutes a new way to mold the flow of light, yielding many novel optical

effects that we can use according to our needs.

1.3.2 Anomalous refraction

The refraction of light at the interface between two media is given by the conservation of the tangential

component of the wavevector with respect to the coupling interface. This condition is due to the fact

3This supposes that the electromagnetic field be averaged over a unit cell and a period of time.
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Figure 1.5: (a,b) Supercollimation (c,d) ultra-refraction and (e,f) negative refraction effects in extended
PhCs. In reciprocal space (top), the wavevector components of the incident light are represented by blue
arrows, defined by the IFC of the light cone (blue dashed curve). The light gray lines are the construction
lines, which represent the conservation of the tangential component of the wavevectors at the coupling
interface. The direction of the group velocity in the PhC is given by the black arrows normal to the IFC
of the PhC (black solid curve). The flow of light in real space (bottom) is indicated by the black arrows.

that the spatial variation of the incident and refracted fields (their phase) have to be the same at the

boundary. The refraction of monochromatic light in PhCs can be understood from the study of their

IFCs.4 Figure 1.5 sketches some of the typical effects of anomalous refraction in PhCs.

Supercollimation, also called self-collimation or self-guiding, occurs when the IFCs of the PhC exhibit

a near-zero curvature on a certain reciprocal area [73–75]. This type of dispersion can be found, for

example, at the inflection points of the IFCs on the first and second bands of 2D PhCs with square

lattices (see e.g. Fig. 1.4). Straight IFCs imply that neighboring wavevector components of some incident

light couple to PhC modes with parallel group velocities. Light beams, which are composed by a set

of different wavevectors, therefore propagate in straight lines through the PhC without being dispersed.

Propagation of near-infrared light on centimeter-scale distances has recently been demonstrated in a 2D

PhC [76]. Another consequence of straight IFCs is that the different propagating modes are in phase with

each other along the direction of propagation, thereby allowing us to control light in a similar way as in

4It is worthy of notice though, that photonic band structures calculated from the Floquet-Bloch theorem only make sense
in infinite, periodic structures. They have been shown, however, to predict refraction effects with a very good accuracy in
most cases.
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PhC waveguides. By inserting structural defects in the PhC, it is possible to create optical routers [77],

polarization beam splitters [78] and other devices [79]. Owing to this phase coherence, it is also very

likely that supercollimated modes could be used for lasing.

Ultra-refraction, or superprism effect, takes place when the curvature of the IFCs is large. In this

case, neighboring wavevector components couple to PhC modes with radically different directions of

propagation, so that only slight variations of the angle of incidence can yield enormous variations of the

angle of refraction. Typically, such large-curvature IFCs are found at the band edges of PBGs in PhCs

of all dimensionalities [80–84]. Such IFCs also make the PhCs particularly sensitive to wavelength varia-

tions, finding use, for example, in wavelength division multiplexers [85]. The most important limitation

of ultra-refractive structures is that light can be strongly dispersed in space. Taking the example illus-

trated in Fig. 1.5, the light beam that is collimated in the supercollimating PhC would spread over more

than 120 degrees in the ultra-refractive PhC. Decreasing the incident beam width to make the structure

more compact necessarily creates more dispersion, which is detrimental to the angular selectivity of the

PhC.

Finally, negative refraction occurs when the group velocity of the incident beam is directed toward

opposite directions with respect to the normal to the coupling interface [86,87]. It can be found on convex

IFCs (e.g. in the vicinity of the M-point in Fig. 1.4(c)), or on dispersion surfaces where the direction of

steepest ascent points inward, as illustrated in Fig. 1.5(e). This very counter-intuitive effect has set off a

large interest in the scientific community, especially ever since Pendry proposed that negative refraction

structures could be used to reconstruct a nearly perfect image of a point source [15]. The concept of

negative refraction has been verified experimentally a few years ago [88–90], opening a route toward

compact integrated subwavelength imaging systems.

From a general point of view, anomalous refraction in PhCs has triggered a burst of studies intended

to discover new optical effects and complement the means offered by cavities and waveguides to control

light. As a matter of fact, the propagation of light is not contrained by any structural defects in the

PhC, in addition to which spatial dispersion allows us, in certain cases, to handle the spatial extension of

light beams. Therefore it seems that extended PhCs could surpass many limitations of PhC waveguides.

Each of these effects have been demonstrated experimentally and now would be the time to explore new

possibilities for the manipulation of light beams in extended PhCs. In order for these structures to be

truly operational, the coupling of light with external waveguides also needs to be improved. These points

will be considered in Chapter 3.

1.4 Metamaterials

We have seen in the previous sections that light could be controlled on the wavelength scale by a

periodic modulation of the permittivity ε(r), resulting in complex Bragg reflections. A nice alternative

to this approach could be to have direct control over the spectral dispersion of the permittivity ε(ω)

and permeability µ(ω). As briefly discussed in Sec. 1.1, these two parameters provide a homogeneous

description of the collection of atoms and molecules of a material, much smaller than the wavelength

of light. At optical frequencies, the permeability of natural materials tends to that of free space, which

restricts their optical properties to a dielectric response. A way to overcome this limit is to reproduce

this scheme on an intermediate scale by designing “artificial atoms”, sufficiently small compared to the

wavelength of light to be averaged out in a homogeneous medium and sufficiently large to be fabricable.

It is particularly hoped in this way that by tuning the microscopic response of the atoms, one could

create some artificial magnetism and thus, no longer be limited by a classical dielectric behavior but
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Figure 1.6: Homogenization of a set of polarizable elements with electric and magnetic dipole moments
p and m, on the microscopic scale into a homogeneous medium with effective permittivity ε and perme-
ability µ, on the macroscopic scale.

have a simultaneous control over the effective permittivity and permeability of matter. Metamaterials

(MMs) are such artificial structures, composed of a set of microscopic resonators acting collectively to

imitate a homogeneous medium with optical properties that exceed those found in nature.

1.4.1 Principles and applications

According to the definition of MMs above, two different scales are in play: (i) the microscopic scale, on

which the artificial atoms resonate individually upon incident light and couple, in some way, to each other;

and (ii) the macroscopic scale, on which the structure is considered as a whole and only characterized

by an effective behavior. Since the optical properties of MMs are inherent to the collective response of

their elements, their study necessarily starts on the microscopic scale and follows a bottom-up approach,

as depicted in Fig. 1.6.

The very purpose of MMs being to exhibit anomalous optical properties, one has to look for strong

spectral resonances of the permittivity ε and permeability µ. These two macroscopic quantities are

respectively function of the electric and magnetic polarizabilities of the microscopic elements, which create

electric and magnetic dipoles, p and m when immersed in an electromagnetic field. It is therefore desired

that these elements exhibit strong microscopic resonances. Basically, reproducing an artificial dielectric

behavior from any material is not so much of a problem. Already in the 1940s, Kock showed that a

composite material made of metal spheres could mimic a homogeneous dielectric material [91]. Similarly,

arrays of thin metallic wires are known to exhibit a cut-off frequency below which ε is negative [92].

It is however much more complicated to create artificial magnetism from nonmagnetic materials. In

this regard, conducting elements have been thought as the most likely to exhibit strong magnetic dipole

resonances since electromagnetic fields can generate large circulating currents that in turn, induce strong

magnetic moments. This was the original idea of Pendry, who showed that arrays of so-called split-ring

resonators could behave as a magnetic material [12]. These particular resonators have been intensively

studied in the following years and inspired the design of a few other magnetic atoms.

Strongly dispersive ε(ω) and µ(ω) can result in different optical effects. In 1968, Veselago studied

theoretically a medium in which both ε and µ are simultaneously negative. He suggested that such

a medium would be characterized by a negative index of refraction n = −√
εµ and support backward

propagating waves [13]. In other words, the energy flow, represented by the Poynting vector S, would

be opposite to the wavevector k. He called this type of medium a left-handed material, which we may
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call double-negative material. Some interesting properties of such materials are reversed Doppler shifts

and C̆erenkov radiations as well as negative refraction of light. In 2000, Smith et al. fabricated the

first double-negative MM in the microwave frequencies by interleaving arrays of thin metallic wires and

split-ring resonators [14] and the negative refraction effect has been confirmed experimentally shortly

later [93]. Concurrently, Pendry launched the concept of perfect lensing, the capability of double-negative

materials to reproduce the image of a point source to the perfection [15]. Balanced between extended

debates on this new concept and fervent hopes of subwavelength imaging, MMs attracted a great deal

of attention in the scientific community and took an important role on the international scene.

The use of MMs is also not restricted to double-negative frequency ranges. The permittivity ε and

permeability µ of MMs may be varied independently and take positive or negative values. It has been

imagined then that by changing these properties in space, one could bring even more flexibility to the

control over electromagnetic fields. Based on transformation optics principles, MMs can be made for

light rays to follow totally arbitrary paths and, for instance, circumvent an object, thereby acting as

an invisibility cloak [94]. This concept has been verified recently with the experimental demonstration

of electromagnetic cloaking in the microwave frequencies [17]. Now, only looking at these impressive

achievements, it seems that MMs have no bounds on the control over light. But this is not entirely true.

As a matter of fact, the majority of experiments on MMs have been carried out in the microwave regime,

for the sake of simplicity. Clearly, the use of MMs in the optical range would have a far-reaching impact

on the technological level.

1.4.2 Toward the optical frequencies

Operating in the optical range obviously finds some interest in the telecommunications. MMs could

be used to guide light in all-optical circuits or be the building block of various sophisticated optical

components. But since PhCs have been proved to be extremely reliable on this level, there is naturally

a trend toward more exotic effects. Subwavelength imaging in the optical frequencies could be put to

good use in Medicine and Biology, while transformation optics-based devices could allow the realization

of coatings capable to hide objects in visible light or, for example, light concentrators to generate high

optical intensities and thus, increase the efficiency of solar energy conversion.

Scaling metamaterials to the optical frequencies is however a challenge of considerable magnitude. The

first reason for this is that metals strongly deviate from being ideal conductors with increasing frequency,

toward the optical range. They exhibit strong Ohmic losses, which significantly reduce the functionality

of metallic resonators, taking the example of the saturation effects in split-ring resonators [95]. The

second issue is that the resonators become increasingly difficult to fabricate as the operating wavelength

is decreased, keeping in mind that ideally, the wavelength of light has to remain much larger than the

size of the resonators and the average distance separating them. Scaling the magnetic resonances to the

optical frequencies has become one of the major preoccupations of researchers in the past few years [96].

Numerous design and fabrication studies have been conducted, coming out with different designs of

elements for optical magnetism (e.g. U-shaped resonators, paired metal strips) and negative indices

of refraction (e.g. fishnet structures) [97]. A proof that much progress has been made is the recent

demonstrations of negative refraction in the visible range [98,99]. But in spite of these promising results,

the effective index of refraction of MMs are still given with an imaginary part, which unavoidably impairs

their functionality.5

5The refractive index n is defined as n = n′ + in′′, where n′ and n′′ are its real and imaginary parts. The efficiency of

a MM may be evaluated from the figure of merit F =
|n′|
|n′′|

, which usually lies between 0 and 3 [96].
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To address this problem of losses, it has been proposed that high-permittivity dielectric spheres

or rods could replace the metallic resonators. As a matter of fact, it is well-known that dielectric

objects can support different resonant modes, the so-called Mie resonances [100]. Various studies have

shown that dielectric spheres and rods could produce electric and/or magnetic dipole resonances [101–

103]. Interestingly, it has been suggested that arrays of dielectric rods in E-polarization could exhibit

overlapping resonances of the permittivity and permeability, resulting in left-handed behavior [104,105].

The first experiments realized in the microwave range have confirmed this hypothesis. Now, since this is

a very new and unexplored topic, especially on the theoretical level, and because all-dielectric structures

present a great potential for lossless optical magnetism and double-negative materials, gaining some

insight onto the optical properties of all-dielectric rod-type structures will be the objective of Chapter 4.

1.5 Modelling tools

In the previous sections, we have briefly introduced the main principles of PhCs and MMs, and exposed

a number of possible ways they offer to control electromagnetic fields. As for all branches of Science,

experiments have often been supported by theoretical analyses, whether they be to predict or confirm the

obtained results. The complexity of the problem often does not yield closed form solutions, and in this

case, it requires the help of modelling techniques. The macroscopic Maxwell’s equations describe exactly

the behavior of electromagnetic fields in continuous media. In this sense, supposing that the structure

and the materials involved are properly defined, the problem can, in principle, be solved quantitatively.

Since, however, such an electromagnetic problem involves continuous quantities, a numerical treatement

requires some discretization to reduce the problem to a finite number of degrees of freedom. This

discretization is implemented in different ways according to the nature of the problem. It is also clear

that a single method is not able to solve all kinds of problems related to electromagnetic structures and

in practice, we are often inclined to use many of them.

1.5.1 Planewave expansion method

The introduction of the concept of PhCs and their PBGs came along with the need to calculate their

dispersion properties. The planewave expansion (PWE) method has been developed within the first

years of PhCs to answer this necessity. Its basic principles have been largely exploited for ab-initio

calculations of electronic structures [48], explaining its early and rapid arrival in Photonics. The PWE

method is a frequency-domain technique (k, ω), intended to find the eigenfrequency and eigenfield of the

natural modes of a structure. This requires to solve the eigenvalue problem of Eq. (1.1). The periodic

part of the magnetic field in Eq. (1.2) can be written as a sum of planewaves as:

hk(r) =
∑

G

hGeiG·r (1.4)

where G is a vector of the reciprocal lattice. This relation is exact when the number of basis functions

goes to infinity, yet to make the problem solvable numerically, the basis is truncated to N planewaves.

Because of the transversality of the magnetic field (∇ ·H = 0), we can write hG =
∑2

λ=1 hG,λêλ, where

ê1 and ê2 are unit vectors perpendicular to k + G. By using Eq. (1.4) with Eq. (1.2) and Eq. (1.1), the

problem is formulated in terms of a matrix eigenvalue equation as:

∑

G′,λ′

Θλ,λ′

G,G′hG′,λ′ =
ω2

c2
hG,λ (1.5)
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where Θλ,λ′

G,G′ is a 2N × 2N Hermitian matrix, given by:

Θλ,λ′

G,G′ = |k + G||k + G′|ηG,G′

(

ê2 · ê2′ −ê2 · ê1′

−ê1 · ê2′ ê1 · ê1′

)

ηG,G′ is the inverse of the Fourier transform of the dielectric function ε(r) and needs to be discretized

in order to be solvable numerically. The calculation of ηG,G′ can be made either by the direct (or

“slow”) method, which consists of inverting the dielectric function ε(r), calculating its Fourier transform

and finally truncating it, or by the Ho-Chan-Soukoulis method, where the dielectric function is first

Fourier transformed, then truncated and finally inverted [106]. These two approaches are obviously not

equivalent on a truncated basis but both give the rigorous solution to the Maxwell’s equations on a

complete basis. Once ηG,G′ has been evaluated, Θλ,λ′

G,G′ can be computed explicitly and the eigenvalue

problem in Eq. (1.5) can be solved by standard matrix diagonalization techniques. This way of solving the

original eigenvalue problem has unfortunately demonstrated a poor planewave convergence, in addition to

which the diagonalization and storage of the entire matrix are extremely expensive in time and memory.

To avoid an explicit storage of the matrix, it has been proposed to follow an iterative scheme [107]. In

particular, when the number of planewaves matches that of spatial grid points, both representations take

the form of a discrete Fourier transform. Since the curls ∇× in reciprocal space are cross-products with

k+G and the multiplication by the inverse dielectric function is diagonal in direct space, applying Θ̂ to

a vector can be computed by taking its curl in reciprocal space, computing the fast-Fourier transform,

dividing by the dielectric function in direct space, computing the inverse fast-Fourier transform, and

taking the curl again in reciprocal space. The first cycle of operation is made on a trial eigenvector and

iterative eigensolvers then minimize the energy functional of the eigenmode, progressively converging to

a solution. The convergence rate in this case is mainly limited by the discontinuities at the interfaces

between different dielectric structures. This problem can be solved by smoothing the dielectric function

with a kind of weighted average over the neighboring grid points. Although this yields a modified

dielectric function, it allows rapidly converging and reliable results. This approach is implemented in the

freely available software “MIT Photonic Bands” (MPB) [108], which we have used in this thesis.

Within a few years, the PWE method has become a standard for computing the dispersion properties

of PhCs and the field pattern of their modes, which, as we have seen in the previous sections, are a basis

for the understanding of most optical effects. Since it is based on the Floquet-Bloch theorem, the PWE

method requires the structure to be strictly periodic. The calculation of defects modes is possible by

using the supercell approach, which consists of reproducing the unit-cell of the structure on a number of

periods sufficiently large to avoid interactions between neighboring defects. From these possibilities we

may also draw out several limitations of this method. First, the time and memory required to calculate,

for instance, defects modes in large 3D structures can be enormous. Supercells can involve a very large

number of grid points and thus, a similar amount of planewaves. Second, this method cannot deal with

radiation losses, as in slab-type structures for modes above the light cone, since it computes the resonant

modes of the background, which are spurious. Third, owing to its periodicity requirement, it is not

adapted to the study of finite-size or aperiodic structures and thus, is inadapted to any “real-world”

system. More generally, it excludes all spatial and temporal specificities of the problems, which therefore

require the use of different approaches.
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1.5.2 Finite-difference time-domain method

The finite-difference time-domain (FDTD) method has been introduced by Yee in 1966 [109] originally to

solve complex engineering problems of functional systems interacting with matter (e.g. lasers, quantum-

optical systems). Since then, it has spread among many different areas [110], and is currently used

intensively in the field of PhCs and MMs. The FDTD method is a space-grid time-domain technique

(r, t), which discretizes the electromagnetic fields in both time and space and thus, does not involve any

Fourier transform. The keystone of this method is precisely the way electromagnetic fields are related

to each other in time and space. The Maxwell’s curl equations relate the time variation of one field as a

function of the spatial variation of the other. To illustrate this point, let us consider a linear, isotropic,

non-dispersive and source-free medium.6 Maxwell’s curl equations read:

∂H

∂t
= − 1

µ0µ
∇× E

∂E

∂t
=

1

ε0ε
∇× H

The electric and magnetic fields can be written in Cartesian coordinates of the system (x, y, z), which

yields a set of six coupled scalar equations, from which the Ex-field component is:

∂Ex

∂t
=

1

ε0ε

(

∂Hz

∂y
− ∂Hy

∂z

)

(1.6)

Figure 1.7: Yee lattice.

The original idea of Yee was to solve this set of equations,

which includes both the electric and magnetic fields, in-

stead of a vector wave equation such as Eq. (1.1), for only

one of the two. The procedure to follow is pictured by the

so-called Yee lattice, shown in Fig. 1.7, which consists of

interleaved arrays of electric and magnetic components,

disposed in such a way that every component of the elec-

tric field is surrounded by four components of the mag-

netic field and inversely. Every node of the spatial grid

is defined by the coordinates (i, j, k) = (i∆x, j∆y, k∆z),

where ∆x, ∆y and ∆z are the space increments along

the x, y and z directions, respectively. Similarly, the

time-stepping is defined by the index n = n∆t, where

∆t is the time increment. Equation (1.6) can then be

written in terms of central differences as:

Ex

∣

∣

n+1/2

i,j+1/2,k+1/2
− Ex

∣

∣

n−1/2

i,j+1/2,k+1/2

∆t
=

1

ε0εi,j+1/2,k+1/2

(

Hz

∣

∣

n

i,j+1,k+1/2
− Hz

∣

∣

n

i,j,k+1/2

∆y
−

Hy

∣

∣

n

i,j+1/2,k+1
− Hy

∣

∣

n

i,j+1/2,k

∆z

)

and similarly for the five other field components.

Yee’s algorithm can be formulated in words as follows: given a certain distribution of electromagnetic

fields, the electric field at a time n+1/2 is computed from the stored value of the electric field at n−1/2

and the curl of the local magnetic fields at n. The magnetic field at n + 1 is then evaluated from the

stored value of the magnetic field at n and the curl of the local electric field at n + 1/2, and so on,

6The insertion of a source term absolutely causes no trouble. It has only been avoided for the sake of simplicity.
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following a so-called “leapfrog” scheme.

The FDTD method presents many advantages that explain its success. It is flexible, in the sense

that it can handle structures of arbitrary shapes, arrangement and made of any type of material (e.g.

dispersive, nonlinear, metallic) as long as its parameters are properly defined. The excitation source can

also be made as wanted (e.g. point source, Gaussian beam). Moreover, it provides a way to actually

observe the propagation of light in real space and real time, which may have some interest, for instance, to

study the propagation of light pulses in a PhC waveguide, the temporal decay of light in PhC cavities, or

the coupling processes between neighboring resonators in MMs. The transmission and reflections spectra

of a structure can be computed by integrating the energy flux passing through a defined area. Periodic

boundary conditions can be imposed such that an harmonic inversion of the time signal can retrieve the

natural modes of a periodic structure [111]. This presents a clear interest especially for the study of

modes lying above the light line. In this sense, the FDTD method complements the PWE method on

many points. In this thesis, we have used the freely available software “MIT Electromagnetic Equation

Propagation” (MEEP) [112].

It is also important to point out the limitations of the FDTD method. First, the space-domain needs

to be discretized on a finite computational area to be solvable numerically and special care has to be

taken on its boundaries. It is common to use the so-called perfectly matched layers, which simulate an

absorbing material to reduce (but not suppress) undesirable reflections [113]. Second, structures where

the fields rapidly vary in space require a fine mesh to be accurately described. This implies that the

calculation can be extremely memory consuming. Another consequence of this is due to the fact that

the time increment ∆t needs to be bounded to ensure the numerical stability of the computations. ∆t

is related to the space increments ∆x, ∆y and ∆z by the so-called Courant stability bound, given by

c∆t ≤ 1
√

1
(∆x)2 + 1

(∆y)2 + 1
(∆z)2

Fine spatial meshes therefore impose small time increments, which increases the computational time

required to reach a desired state. This is obviously even more problematic for the study of slow-light

structures. In this case, space-grid frequency-domain techniques (r, t) are prefered.

1.5.3 Finite-element method

The finite-element (FE) method is a numerical technique developed many decades ago to solve complex

mathematical problems, originally in structural analysis. The principle of this method is basically to find

an approximate solution to a complex equation by fractioning it into a system of simpler equations. This

is particularly well adapted to our case as describing the behavior of light in electromagnetic structures is

made by solving the Maxwell’s equations in a system with more or less complex boundary conditions [114].

To illustrate this method, let us consider a spatial domain Ω enclosing a harmonic current distribution J

oscillating at a frequency ω in a continuous medium of relative permittivity ε and permeability µ. This

system is voluntarily made more general to emphasize the importance of the excitation source on the

problem. From the Maxwell’s equations, we can write the inhomogeneous vector wave equation for the

magnetic field:

∇×
(

1

ε
∇× H

)

− ω2

c2
µH = ∇×

(

1

ε
J

)
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which can be written as a differential equation:

L φ = f (1.7)

where L = ∇× 1
ε∇×−ω2

c2 µ is the differential operator, φ = H the unknown quantity and f = ∇×
(

1
εJ
)

the

excitation function. Considering the boundary conditions in Ω, Eq. (1.7) takes the form of a boundary-

value problem, which may not be solvable analytically.

To deal with this problem, we introduce a trial function φ̃ (i.e. H̃ in our case), which we expand as

φ̃ =
∑N

i=1 civi, where vi are the expansion functions and ci are unknown coefficients. The problem is

now a system of N equations, from which we seek to find the coefficients that make φ̃ fit the best to φ.

There exists two popular ways to solve the problem.

First, the Rayleigh-Ritz method, which relies on the well-known variational principle, formulating

the problem in terms of a functional. In the case of a self-adjoint and positive-definite operator L ,7 the

functional F can be written in the form:

F (φ̃) =
1

2

∫

Ω

φ̃L φ̃dΩ −
∫

Ω

fφ̃dΩ

The functional is then written explicitely as a function of the boundary conditions in the domain Ω. The

following step is then to find the coefficients ci that minimize the functional (i.e. ∂F
∂ci

= 0), from which

the trial function φ̃ is the closest to the solution.

The second way to find these coefficients is to use the Galerkin method, which is defined as a weighted

residual method. The weighted residual integrals Ri are defined as :

Ri =

∫

Ω

ωi(L φ̃ − f)dΩ i = 1, 2, 3, · · · , N

The term L φ̃ − f is nonzero if φ̃ does not equal φ. The procedure of this method is then to find the

correct weighting functions ωi that set the integrals Ri to zero and thus, optimize φ̃.

At this point, it is important to remark that the determination of the trial function φ̃ is the funda-

mental step that determines the quality of the approximation, in the sense that a totally wrong guess

yields a poor approximation. In complex systems, such as PhCs and MMs, it is obviously difficult to

have a good guess for the trial function. To simplify the problem, the domain Ω is divided into small

subdomains, called “elements”. Supposing that these subdomains are small compared to the variation of

φ implies that the trial functions over each element can be relatively simple. This is the basic principle

of the FE method. The procedure to solve a complete problem is therefore the following: (i) the domain

Ω is discretized into smaller subdomains (generally tetrahedra in 3D problems), whose size depend on

the expected local variation of φ; (ii) the interpolation functions over each subdomains are defined (first

or second order polynomials are generally good enough); (iii) the system of equations is formulated by

the Rayleigh-Ritz or the Galerkin method and (iv) it is finally solved.

According to this brief description, it is not surprising that the FE method has met such a perdurable

success over the years and in such a large number of different disciplines. One of the strengths of the FE

method is without doubt its adaptative meshes, which concentrate on the regions of interest, thereby

avoiding useless computational efforts, and match quasi-perfectly the different interfaces in the structure.

The latter notably prevents numerical discrepencies to occur. Moreover, the materials involved in the

computational domain can be arbitrary, as long as they are properly defined. By comparison with the

7These properties mainly depend on the boundary conditions of the system.
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FDTD method, harmonic propagation does not require time to reach a steady-state, which is a clear

advantage in many cases. The calculation of transmission and reflection efficiency of a structure is one of

the many possible post-processing operations. Modal analysis can also be conducted by imposing periodic

boundary conditions on the border of the computational area and by setting the excitation function f

in Eq. (1.7) to zero. Finally, since the FE method is also applicable to many different fields of Physics,

it allows the study of electro-, thermo- or piezo-optical effects, which is quite unique in computational

electromagnetics.

All these advantages naturally come with a price to pay. Depending on the number of elements

and the complexity of the boundaries, FE computations can be extremely expensive in memory. This

is particularly true in 3D structures, where several millions of degrees of freedom can rapidly be in-

volved. Although iterative solvers can generally handle large 3D electromagnetic problems, the FE

method may then not be advantageous compared to other techniques in terms of computational time.

Another weakness of the FE method is its complexity of implementation, which makes it quite inacces-

sible to newcomers. Hopefully recent years have seen the development of many reliable softwares with

user-friendly interfaces, which greatly simplifies the setting of the problem. The commercial software

“COMSOL Multiphysics”, which we have used in this thesis, is one of them [115].

1.5.4 Scattering matrix method

Figure 1.8: Collection of cylinders Cj of arbi-

trary shape, index and position.

The scattering of light by obstacles has been a long-

standing topic, taking the example of Rayleigh scattering

which explains the blue color of the sky by the scattering

of sunlight by the molecules in the atmosphere [116]. The

scattering matrix (SM) method has received increasing

attention in years following the advent of PhCs, for it

is a very reliable and intuitive approach to describe the

scattering of light by large finite sets of objects. Broadly

speaking, scattering matrices relate the initial and fi-

nal states of interacting particles. In our context, the

objective of the SM method is to make the connection

between an arbitrary incident field on an assembly of

objects and the field scattered by it. This method has

been developed for 2D arrangements of cylinders [117]

and 3D arrangements of spheres [118]. For the sake of

simplicity, we will focus on the 2D case, keeping in mind

that the underlying principles in the 3D case are similar,

though not the formalism. Light is also assumed to be E-polarized, noting that similar steps could be

carried out the H-polarization, and a time dependence in e−iωt is implicitely used.

We consider a 2D arrangement of N parallel cylinders denoted Cj (j = 1, 2, · · ·N) of arbitrary shape,

index and position, included in circles Dj of center Oj , embedded in air (see Fig. 1.8). Supposing that

some light is incident on such a collection of cylinders, the total field (outside the cylinders) can then

be decomposed into three different contributions with respect to the cylinder Cj : (i) the actual incident

field, (ii) the field scattered by all cylinders but Cj , and (iii) the field scattered by Cj . The local incident

field on the cylinder Cj is therefore composed of (i) and (ii). After some mathematical development

(see the details in Ref. [117]), the total field can be expanded in a Fourier-Bessel series and written in
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the local coordinate system (Oj , xj , yj) at any point P between Dj and the circle of center Oj passing

through the closest point of the surrounding cylinders as:

E(P ) =

+∞
∑

m=−∞

aj,mJm[krj(P )]eimθj(P ) +

+∞
∑

m=−∞

bj,mH(1)
m [krj(P )]eimθj(P )

where aj,m and bj,m respectively represent the total incident (i+ii) and scattered (iii) fields with respect

to Cj , rj(P ) and θj(P ) are the polar coordinates of point P in the local coordinate system, and Jm and

H
(1)
m the mth-order Bessel and Hankel functions of the first kind.

The field scattered by all cylinders but Cj should then be the sum of the scattered field of individual

cylinders, translated to their respective local coordinate system. This is transcribed mathematically

using Graf’s addition formula for Bessel functions [119], which yields the matrix equation:

âj = Qj +
∑

k 6=j

Tj,kb̂k

where âj and b̂k are the infinite column matrices of aj,m and bk,m, respectively, Qj is the column matrix

corresponding to the actual incident field and Tj,k a square matrix relating the cylinders Cj and Ck.

In addition, it is well-known that the coefficients of the scattered field and locally incident field on a

single cylinder are linked by the scattering matrix Sj , which depend on the parameters of Cj only. This

relation reads b̂j = Sj âj , which yields the final equation:

b̂j −
∑

k 6=j

SjTj,kb̂k = SjQj

This matrix equation is a linear system of equations relating the fields diffracted by all cylinders (on

the left-hand side) to the actual incident field (on the right-hand side). The matrices are made finite

by truncating the Fourier-Bessel expansions involved. The resolution of this equation starts with the

determination of the scattering matrix Sj of each cylinders. A closed form expression of the scattering

matrix can be found for circular cylinders from Mie scattering theory [100], and supposing that all

cylinders are alike implies that their scattering matrix are the same, which further simplifies the problem.

In all cases, the matrix equation is solved to find the b̂j column matrix, which allows us to compute the

total field outside the cylinders and gives access to other quantities such as its Poynting vector.

The SM method has been proved to be a very reliable and rapid technique to study the scattering

of light by a large collection of objects. The required computational effort is actually a function of the

number of objects and the truncation of the expansion but not of the spatial extension of the structure.

There is no predefined computational area, the fields can be computed at all points of space, which

also avoids any trouble related to undesirable reflections from free-space boundaries. In this regard, the

SM method is particularly well adapted to harmonic propagation problems and can deal with arbitrary

light sources, including planewaves, light beams or point sources. In the context of PhCs, it finds great

use in the study of anomalous refraction effects, light localization by structural defects or disordered

structures [120]. The computation of the far field is also possible.

The main weakness of the SM method is without doubt that assemblies of arbitrarily shaped objects

cannot be easily treated, for they require the use of an external numerical technique such as the FDTD

or FE methods. In addition, the problem is also not solvable in the case where neighboring circles Dj

intersect each other, which impairs its range of applicability. In the case where the cylinders are circular,

the latter condition is reduced to non-intersecting cylinders, which in the field of 2D PhCs is often met.
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The code that we have used in this thesis has been developed by Centeno and Felbacq [121] and applied

specifically to circular cylinders.

Summary

In this chapter, we have presented an overview of the main principles and applications of PhCs and

MMs in the broad and expanding field of Photonics. We have seen different possible ways to manipulate

electromagnetic fields and have identified some challenges to be addressed, more precisely on the con-

finement of light to structural defects in opal-based PhCs, on the use of spatial dispersion to control the

propagation of light beams, and on the scaling of MMs to the optical range. These will be the objectives

in this work. The modelling tools that we have just presented will help us solve this large panel of

different problems.
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Chapter 2

Confining light in opal-based

photonic crystals

Confining light to structural defects has been the primary goal of photonic crystals (PhCs), on account of

the potential they represent for all-optical telecommunication technologies, sensing devices and so on. In

this context, opals have met quite a great success, for they can be reproduced artificially on large scales,

at low cost and with a high-quality, thereby overcoming some of the technical limitations experienced

by other 3D PhCs. Numerous studies have been carried out to apprehend their ability to control light

at optical wavelengths, yet it has been rapidly found that structural defects with modes suitable to

subsequent use are not trivial to design. This apparent difficulty has not discouraged experimentalists to

develop sophisticated techniques to embed defects in them and at the present time, they strongly incite

theorists to guide them toward reliable and realizable solutions.

This chapter is intended to provide different ways to confine light in opal-based PhCs. In Sec. 2.1,

we will present the optical properties of 3D direct and inverse opals and review some of the current

technologies used to fabricate and embed defects in them. In Sec. 2.2, we will show that patterned

monolayers of spheres can exhibit PBGs below the light cone, making them reliable platforms for the

design of single-mode waveguides and resonant cavities. In Sec. 2.3, we will study the confinement of

light in two- and three-dimensional (2D-3D) heterostructures based on inverse opals and will present the

design of a broadband single-mode waveguide. Finally, in Sec. 2.4, we will provide some novel insight

onto the processes of light confinement in 3D inverse opals. This will make it possible to come out with

simple designs of single-mode cavities and broadband single-mode waveguides, fabricable with current

means and operating in the near-infrared range. This work has been part of a collaboration between

different partners under the european PHAT project [122].

2.1 Fabrication and optical properties of opals

Modelling studies intended to find realizable designs for a given problem always start with the deter-

mination of the optical properties of the host structures and the technical limitations inherent to the

fabrication processes. In this section, we review some of the main experimental aspects and basic optical

properties of 3D opals, noting that more extensive descriptions of the subject can be found in recent

review papers by López [123,124].

31



2.1.1 Direct opals

Natural opals are composed of silica (SiO2) spheres, stacked in a close-packed face-centered cubic (FCC)

lattice along the < 111 > direction, as shown on Fig. 2.1(a). This configuration is naturally favored over

hexagonal-close-packed structures because it maximizes the total entropy of the stacking [125]. Artificial

opals are usually made of silica, polystyrene (PS) or polymethylmetacrylate (PMMA) spheres. They can

be used directly as PhCs or can serve as templates for subsequent processes, such as the fabrication of

inverse opals.

Various techniques of fabrication are known. Probably the most common one is the vertical deposition

technique [126]. A flat substrate is submerged in a colloidal suspension of monodispersed spherical

particles and then drawn out at a slow and constant velocity. As the solvent evaporates, the spheres

located at the meniscus are deposited on the substrate in a periodic arrangement. This technique has

been shown to make up high-quality opals. A recent work has shown that this quality could be further

improved by applying acoustic noise vibrations to the sample during the deposition process [127]. Another

popular approach to fabricate opals is the spin-coating technique [128], which is usually applied to thin

film deposition on flat substrates. Here, the solution of particles is dropped on the rotating substrate

and spreads uniformly over the whole surface. Again, the solvent evaporates, leaving the spheres stacked

in periodic arrangement. In this process, the number of layers can be accurately controlled with the

spinning velocity. This technique allows the fabrication of opals on large scales in a short amount of time

but with a reduced quality. Both of the above techniques are complemented by a sintering or heating

process, which has the effect of creating small necks between the spheres, providing a certain mechanical

stability to the structure.

The photonic band structure of a direct opal made of spheres of refractive index 1.45 is shown on

Fig. 2.1(b). The photonic bands have been calculated along the high-symmetry directions of the first

Brillouin zone of the FCC lattice, with the planewave expansion (PWE) method. We define the lattice

parameter a as the distance between two neighboring spheres. This definition does not follow the usual

convention in the literature [48, 129], where a is the edge-length of the cubic structure. In our case, the

radius R of the spheres equals a/2, instead of the usual a/2
√

2. This convention will be used in the

remainder of this chapter.

The photonic band structure exhibits no complete PBG, meaning that there always exists a direction

where light can propagate, regardless of the wavelength. The use of higher refractive index spheres does

not help in the opening of a complete PBG. Direct opals therefore do not make it possible to confine light

in point or linear defects. The partial PBGs on the contrary, which are responsible for the iridescence of

natural opals, prohibit light propagation along certain directions at certain wavelengths. Light can then

be confined to planar defects normal to these directions, provided that they are designed to resonate in

the forbidden range of frequency. The ΓL Bragg gap, found at reduced frequencies a/λ between 0.449

and 0.473, is particularly convenient to use because the corresponding planar defect can be placed in the

plane normal to the natural growth direction.

2.1.2 Inverse opals

Compact FCC arrangements of spheres have a filling ratio of about 74 %. The air voids between the

spheres are connected to each other so that a fluid can possibly fill the entire structure. The porous

character of opals therefore provides an extra parameter to tune their optical properties. Infiltrating

direct opals with materials of different refractive indices makes it possible to change their dielectric

constrast and eventually invert it, yielding the so-called inverse or inverted opals. Early photonic band
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Figure 2.1: (a) 3D view of a direct opal. The layers of spheres are stacked along the < 111 > direction
of a FCC lattice. (b) Photonic band structure of a direct opal made of spheres of refractive index 1.45 in
air. The inset shows the first Brillouin zone of the FCC lattice. The lattice parameter a is the distance
between two neighboring spheres.

calculations showed that they could exhibit a complete PBG, provided that the refractive index contrast

between the spheres and the surrounding medium would exceed 2.8 [130]. This finding encouraged

experimentalists to develop techniques capable of fabricating high dielectric contrast structures and

theorists to envision their use as potential 3D PBG materials.

Many techniques are known to infiltrate direct opals with some other material. Atomic layer deposi-

tion, sol-gel and electrochemical methods are some of them. The most common process is the Chemical

Vapor Deposition technique [131]. The bare opal is exposed to a specific vapor phase reactant, which

undergoes chemical reactions with the opal material to form thin films of the desired material on the

surface of the spheres. Layers of different thicknesses can be obtained by varying the gas flow rate, the

temperature and the time of exposure in the reaction chamber. This technique preserves the quality

of the opal and it can be used for a multitude of different materials, including silicon (Si), germanium

(Ge), titania (TiO2) and zinc-oxide (ZnO). Among those, silicon is probably the most interesting, for it

exhibits a large refractive index (close to 3.5) and a low absorption at near-infrared wavelengths, while

being the most fundamental constituent of current photonic and electronic technologies. To increase the

dielectric contrast of the structure after infiltration, the spheres are removed either by chemical reaction

with diluted hydrofluoric acid (HF) for silica opals or by calcination for polymer opals. The proper

removal of the spheres over the entire structure is ensured by the necks formed during the sintering

process of the direct opal. In this way, silicon inverse opals can reach a dielectric contrast of about 3.5,

which is sufficient for them to exhibit a complete PBG [38].

Figure 2.2(c) shows the photonic band structure of a partially-infiltrated inverse opal, as calculated

with the PWE method. The structure (see Figs. 2.2(a,b)) consists of a FCC lattice of air spheres,

connected to each other by air cylinders of radius 0.2a (standing for the small necks between the spheres),

surrounded by a silicon shell of thickness 0.125a and refractive index 3.45. Theoretical studies have shown

that partially-infiltrated inverse opals could exhibit larger PBGs than fully-infiltrated structures, while

reproducing a closer picture of experimental templates [132]. This configuration, which has been used

by Chutinan et al. in their modelling studies [133], is the one that will be considered here.
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Figure 2.2: Vertical (a) and lateral (b) cross-sectional views of the partially-infiltrated inverse opal
described in the text. (c) Photonic band structure of an inverse opal with a backbone material (black
shaded area) of refractive index 3.45. The inset shows the first Brillouin zone of the FCC lattice.

The photonic band structure exhibits a complete PBG between the eighth and ninth bands at reduced

frequencies a/λ between about 0.58 and 0.66. The relative width, or gap-to-mid-gap ratio, of the PBG

is then slightly higher than to 12 % (fully-infiltrated inverse opals exhibit a PBG about 5 % wide). This

complete PBG implies that the insertion of defects in the structure can create defect modes lying within

the PBG, inferring a full 3D light confinement. The fact that the PBG is found in the higher-order bands

of the photonic band structure also suggests that it is very fragile to disorder [134]. Small defects can

therefore easily fill the PBG region with modes, making its use impossible. As we will see below, this

weakness partly explains the difficulties theorists have to design proper cavities and waveguides.

At the present time, two challenges in particular have to be addressed. First, opal-based PhCs need

to be efficiently integrated on photonic chips. Integration is necessary to be able to use these structures

in future technologies. Recent studies, which succeeded to grow opals in confined areas, made a step

toward this objective [135]. Second, the design and fabrication of proper defects is required to control light

emission and propagation in all 3D space. Such defects may find use in low-threshold lasers, waveguides

for data transmission systems, optical filters, sensors and so on. Here, we focus on the latter challenge,

which, in view of the actual interest for all-optical technologies, is an essential step to be made. It is

interesting to note though that it is also possible to use the dispersion bands of opals to control light,

with the examples of ultra-refraction [84], supercollimation [136] and negative refraction effects [137].

2.1.3 Defects in opals

There exists numerous different ways to embed defects in opal structures (see e.g. Refs. [71, 138] and

references therein). One of them is electron-beam lithography, which has been shown to be an efficient

way of structuring opal-based PhCs [139]. The opal growth and insertion of the defects are made in

a step-by-step process. A certain number of layers is first grown on a substrate. The top layer of the

opal is then exposed to a low-dose electron beam focused on delimited areas and the growth of the

opal is resumed to add some additional layers on top of the defect. The opal is finally developed in

a solvent to remove the exposed regions. The resulting structure is a direct opal with an embedded

defect. Superlattices of defects have recently been realized using this technique [140]. Laser induced

34



breakdown, which uses femtosecond lasers to damage the material, is another way of patterning sphere

monolayers [141]. Once the defects are created, one can eventually proceed to the opal inversion, i.e. the

high refractive index material infiltration and sphere removal, which would result in an inverse opal with

an embedded defect. It should however be noted that the defect would have the same refractive index

as the inverse opal backbone material, e.g. silicon. This may be problematic, as discussed above, since

such defects would push far too many modes in the PBG frequency range. Alternative techniques can

overcome this issue. For example, it is possible to grow an overlayer of photoresist on top of the lower

opal using a spin-coating technique and then pattern it using photolithography or nanoimprint. This

approach can be used to fabricate air-core defects in inverse opals. Planar defects have also been created

by embedding silica layers in silica-air inverse opals, monolayers of spheres with different diameters, and

polyelectrolyte multilayers with active functionalities.

A few years ago, direct laser writing by two-photon polymerization appeared as a very flexible tech-

nique, enabling the design of high-quality templates for 3D PhCs [69]. This approach can also be used to

insert high-resolution defects into bulk opal structures. A two-photon polymerizable resin is infiltrated

in the direct opal and the defect is designed in all 3D space by a laser beam. The unexposed resin is

removed by development and annealing of the structure, leaving the 3D embedded defect within the

direct opal. The inversion process (material infiltration and removal of oxides and polymers) then results

in an inverse opal with a point, linear or planar air-core defect. Rinne et al. have recently demonstrated

the fabrication of planar cavities and bend waveguides in a silicon inverse opals [142]. This approach

makes it possible to create defects that can be much smaller in size than the diameter of the spheres

(typically about 1 µm), which is a great advantage regarding our concerns in inverse opals.

However, in spite of these conclusive experimental results, the design of proper defects has been weakly

addressed by theorists. Planar defects in direct opals have shown to create defect states in the forbidden

range of frequency. Concurrently, the design of point and linear defects in inverse opals has been slowed

down by the higher-order character of the complete PBG, making small defects capable of pushing many

modes into the PBG. It is known that the electric displacement of electromagnetic fields minimizes its

energy by being localized in high refractive index materials, meaning that low refractive index defects can

be controlled more easily. Chutinan et al. have introduced the concept of 2D-3D heterostructure to create

broadband single-mode air-core waveguides [133] and Lousse et al. have conducted an optimization study

of simple linear defects in inverse opals [143]. Point defects, finally, have been investigated by Chan et al.,

who proposed to substitute an air sphere of the inverse opal by a SiO2 sphere of reduced diameter [144].

At the present time, these results have not been confirmed experimentally, for the fabrication of the

proposed designs is truly challenging. Theory is basically lacking of efficient solutions for confining light

in ways suitable to all-optical technologies. The particularly small number of theoretical papers on

defects in opal-based PhCs shows that many points still remain to be investigated.

2.2 Patterned monolayers of spheres

Direct opals have not the ability to confine light to point or linear defects, at least not in stricly 3D

structures. As discussed in Sec. 1.1 however, PhC slabs can sustain defect modes by combining the effects

of index guiding for out-of-plane confinement and of PBGs below the light line for in-plane confinement.

In spite of the radiation losses which occur when the translational symmetry of the structure is broken

(e.g. in cavities or waveguide bends), slab-type structures remain interesting candidates for creating

ultra-compact and efficient photonic components. In our context, it would be particularly useful to

transpose this concept to direct opals. Monolayers of dielectric spheres have received some attention
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in recent years [145]. Such structures could be used for example as planar defects in 3D structures, as

building blocks for the creation of 2D-3D hybrid architectures or simply as optical filters, waveguides,

or other 2D photonic components. Confining light in monolayers of spheres requires us to consider two

points:

First, out-of-plane confinement results from the index contrast between the PhC slab and the sur-

rounding medium. Clearly in our case, the use of higher refractive index materials to constitute opals

would yield a stronger confinement of light within the structure, which is of course, a benefit. Recent

studies report the synthesis of titania spheres with diameters of a few hundreds nanometers with co-

efficients of variations in size ranging from 5 to 20 % and refractive indices as high as 2.9 [146]. The

double inversion technique may also be an alternative for the fabrication of high refractive index direct

opals (e.g. silicon) [147]. Second, in-plane confinement and subsequent processes such as the design of

waveguides or cavities may require the insertion of defects in the structure. As we have just seen above,

specific patterns of defects can be engineered in opals, for example by using electron beam lithography

or laser-induced breakdown. These techniques are currently adapted to PMMA and silica spheres in

particular but we may expect the development of similar ones for higher-refractive index materials in a

near future.

Considering these recent technological advances in synthesizing high refractive index spheres and in

creating defects in opal structures, it seems reasonable to study various configurations of monolayers of

spheres, looking for a structure that exhibits a PBG below the light line. The presence of a PBG would

prohibit the propagation of light in the monolayer and eventually make it possible to confine light to

point and linear defects.

2.2.1 Opening of photonic band gaps

Following a natural growth process, monolayers of spheres form a compact hexagonal lattice with the

high-symmetry directions being the ΓM and ΓK directions. We consider dielectric spheres of refractive

index 2.9, which corresponds to rutile titania material. This choice is of course totally arbitrary. In the

following, we also assume that the structure is suspended in air. In practice of course, a substrate would

be necessary to hold the structure in place. This would create in a vertical asymmetry of the structure,

which would destroy the even and odd parity of the modes and consequently result in mode-mixing issues.

This effect can however be relatively weak depending on the strength of localization of the field in the

monolayer and on the perturbative polarization [148]. Alternatively, symmetry could be re-established

by adding a superstrate on top of the monolayer or by filling it entirely by a low-index material.

Compact monolayers of spheres do not exhibit a significant PBG below the light line either in the

even or in the odd modes, because of symmetry and accidental degeneracies. Those cannot be lifted

up by increasing the dielectric contrast of the structure but it has been demonstrated that changes in

the unit cell of a 2D hexagonal lattice of cylinders can yield the opening of new PBGs [149]. Changing

the lattice of a structure actually results in multiple foldings of the Brillouin zone and in the lifting of

degeneracies at its edges. We propose a configuration that can be obtained by removing dielectric spheres

in a hexagonal pattern, as shown on Fig. 2.3(a). Figure 2.3(b) sketches the photonic band structure of

the even modes of the patterned monolayer of spheres. It exhibits a PBG between the first and second

bands, centered on a reduced frequency a/λ = 0.214 and of a relative width of 12.4 %. The PBG can

be tuned to the wavelength λ = 1.55 µm by using titania spheres of diameter 0.33 µm. As shown on

Fig. 2.3(c,d), the creation of a superlattice of air defects in the monolayer of spheres forces the higher-

order mode to enter the air region, resulting in a large energy shift and thus, in the opening of a PBG.
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Figure 2.3: (a) 3D view of a monolayer of spheres with a hexagonal superlattice of defects (b) Photonic
band structure of the patterned monolayer of spheres in the even modes. (c,d) Hz field in the lateral
cross-section of the monolayer for the first and second modes at the M- and K-points of the reciprocal
lattice, respectively.

To generalize this result to spheres of different materials, we map the position and width of the

PBG as a function of the refractive index of the spheres. A gap map of the patterned monolayer of

spheres is given in Fig. 2.4 for the even modes. The PBG that we consider here exists for spheres of

refractive indices greater than about 1.9. Since the higher the refractive index of a material, the lower

the frequency of its modes, the PBG becomes wider (up to about 15 % with spheres of refractive index

3.5, corresponding to silicon) and is pushed down in frequency with the increase of the refractive index.

Consequently, the PBG spans a larger reciprocal area, lessening the out-of-plane radiation. Smaller

PBGs that appear at higher frequencies have not been reported here because we considered them to be

too small to our concerns. To demonstrate the functionality of the hexagonal superlattice monolayer, let

us now investigate the possibility of creating waveguides and cavities in them.

2.2.2 Waveguides and cavities

The design of waveguides and cavities in PBG structures is usually not straightforward. Intense modelling

efforts may be required to obtain the desired effects. Small variations of the size, shape and refractive

index of the defects can yield large changes of the optical properties of the resulting waveguides or

cavities. In our case, since the patterned structure was made by removing specific spheres in a hexagonal

pattern, the simplest way of creating defects is simply to leave some of them intact.
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Figure 2.4: Map of the PBG appearing between the first and second even modes of the patterned
monolayer of spheres. The position in reduced frequency (blue shaded area) and relative width (green
solid curve) of the PBG are given as a function of the refractive index of the spheres.

W1-like waveguide

We propose to create a waveguide by leaving one row of spheres along the ΓK direction of the hexagonal

superlattice structure defined above (see Fig. 2.5(a)). Since the dielectric spheres are removed from a

close-packed monolayer in a triangular pattern, we may define this kind of linear defect as a W1-like

waveguide. Figure 2.5(b) sketches the photonic band structure of the even modes along the ΓK’ direction.

The dark gray shaded areas defines the continuous region corresponding to all the possible frequencies

of the sphere monolayer, i.e. where light can propagate laterally. The insertion of the linear defect gives

rise to two non-degenerate modes within the PBG with reduced frequencies a/λ = 0.204 and 0.214 at the

K’-point. The corresponding field patterns in Figs. 2.5(c,d) show that light is indeed well confined to the

monolayer by the light cone and to the linear defect by the PBG. Following our remark above, we also

note that the field patterns are very close to the ones obtained in dielectric slab W1-waveguides [150].

L3-like cavity

Resonant cavities can be created in a similar manner. We consider a closed linear defect, consisting of

three spheres, aligned along the ΓK direction of the lattice (see Fig. 2.6(a)). By analogy with triangular

lattices of holes in PhC slabs, this kind of defect may be defined as a L3-like cavity [55]. The resonant

frequencies of the structure have been extracted by harmonic inversion of the temporal signal in the 3D

FDTD method. The opal-based cavity exhibits a single resonant mode, shown on Fig. 2.6(b), with the

even parity within the PBG frequency range. It resonates at the wavelength λ = 1.553 µm, for spheres of

refractive index 2.9 and diameter 0.33 µm. The out-of-plane component of the quality factor is Q = 265,

which is particularly low compared to the quality factors obtained in PhC slabs (Q ≃ 45000). Although

resonant cavities with low quality factors are not be adapted to frequency-selective devices, they could

find use in applications where coupled radiation and interaction is important, such as the enhancement

of fluorescent emission from quantum dots [151]. They are also known to improve the bending efficiency

of waveguides in 2D PhCs [152], so that this cavity could eventually enhance the functionality of the

opal-based waveguide studied above.
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Figure 2.5: (a) 3D view of a W1-like waveguide in a patterned monolayer of spheres directed along the
ΓK direction of the lattice. (b) Photonic band structure of the waveguide. The blue solid curves are
the waveguide modes. The black and gray shaded areas define the light cone of air and the projected
bands of the monolayer, respectively. (c,d) Hz field of the lower- and higher-order waveguide modes at
the K’-point of the reciprocal lattice, respectively.

Figure 2.6: (a) 3D view of a L3-like cavity in a patterned monolayer of spheres. (b) Hz field of the cavity
mode at the wavelength λ = 1.553 µm.
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In summary, patterned monolayers of spheres can exhibit a PBG below the light line and support

waveguides and cavities. To our knowledge, this is the first demonstration of light confinement to cavities

and waveguides in direct arrangements of spheres (apart from planar cavities). Different applications

may be envisaged. For example, by mixing patterned monolayers with compact defectless monolayer

of spheres, it may be possible to confine light in certain specific regions of space in order to obtain the

functionalities that we expect from 2D PBGs, e.g. mirrors. Alternatively, the waveguides may be used to

insert or collect light from a 3D structure in a 2D-3D hybrid architecture. Such an approach is however

unavoidably limited in terms of efficiency by the “imperfect” index guiding confinement of light. A full

confinement requires to use a 3D PhC that exhibits a complete PBG. Inverse opals meet the necessary

requirements for this task. This is the subject of the next sections.

2.3 Two- and three-dimensional heterostructures based on in-

verse opals

As discussed in Sec. 2.1, a large panel of different experimental techniques have been developed to

design various kinds of planar, linear and point defects in opal-based PhCs, but very little has been

made on the theoretical level. The design of proper defects, i.e. broadband single-mode waveguides

and high quality factor cavities, remains a real challenge due to the high-order character of the PBG.

To address this problem, it has been proposed to use 2D-3D heterostructures, which consist of a 2D

PhC layer sandwiched between two 3D PBG structures. The extra parameters of the structure can be

used to enhance the tunability of their optical properties. Obviously, the fabrication of such structures is

expected to be particularly difficult, requiring a very accurate alignment of the 2D and 3D PhCs. It seems

also that the description of the physics underlying the confinement processes in 2D-3D heterostructures

has not been brought to an end. This should therefore be our starting point.

2.3.1 Principles and design

The concept of 2D-3D heterostructures has been introduced by Chutinan et al. a few years ago [153].

A 2D PhC layer of finite thickness is intercalated between two 3D PhCs that exhibit a complete PBG.

In the PBG range of frequency, the 3D claddings confine the light to the planar PhC, which can then

be designed in a more conventional way according to one’s need. Single-mode waveguiding has been

demonstrated in silicon inverse opal-based heterostructures with a maximal waveguiding bandwidth of

74 nm centered on 1.55 µm, which seems rather small as compared to the bandwidths obtained with

other 3D PBG structures (up to about 180 nm) [154]. In this study, the bandwidth of the single-mode

seemed to be limited by the photonic bands of the 2D PhC layer. Changing the lattice parameters

and/or the position of this layer with respect to the inverse opal claddings is therefore expected to have

a strong influence on the waveguiding properties of the 2D-3D heterostructure.

The 3D PhC cladding that we consider here is the inverse opal structure that has been considered by

Chutinan et al. and by us in Sec. 2.1. It consists of a close-packed FCC lattice of air spheres of radius

0.5a, where a is the distance between the center of two adjacent spheres, surrounded by silicon spherical

shells of thickness 0.125a and refractive index 3.45. The spheres are connected by cylindrical windows of

radius 0.2a. The photonic band structure of this inverse opal is given in Fig. 2.2(b). The complete PBG

of the inverse opal is centered on a reduced frequency a/λ = 0.62 and has a relative width of about 12

%.
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Figure 2.7: (a) Sketch view of an opal structure. Lateral cross-sectional views of the partially-infiltrated
inverse opal halfway between two layers of spheres (b) and in the middle of a layer of spheres (c).
The black shaded areas correspond to the high refractive index material. (d) 3D view of the 2D-3D
heterostructure. The dielectric rods (in red) constituting the 2D PhC layer are sandwiched between two
3D inverse opal claddings (in blue).

The 2D layer proposed by Chutinan et al. consists of a triangular arrangement of silicon rods in

air. For the sake of experimental feasibility, the rods of the 2D layer have to be placed on the dielectric

regions of the 3D inverse opals, requiring the periodicity of both PhCs to be similar. Moreover, in order

to stay close to the experiment, the 2D layer lies on the (111) plane of the FCC lattice, on which opals

naturally stack. Figures 2.7(a-c) show cross-sectional views of the inverse opal structure at different

heights along its growing direction. The inclusion of a 2D triangular lattice of rods has been made at

the position shown on Fig. 2.7(b), which corresponds to a cut halfway between two layers of spheres.

For periodic arrangements of dielectric rods in lower refractive index backgrounds, it is known that

the graphite lattice can exhibit larger PBGs than the triangular one [149]. The 2D-3D heterostructure

could then exhibit a larger PBG, offering a larger spectral range for the single-mode to spread on. The

position on Fig. 2.7(c), which corresponds to a cut in the middle of a layer of spheres, exhibits a graphite

pattern of dielectric material, making it possible to insert a graphite lattice of rods. A 3D view of the

heterostructure obtained is shown on Fig. 2.7(d).

Figure 2.8 shows the photonic band structure of a 2D-3D heterostructure with rods of radius r = 0.1a

and a 2D layer thickness t = 0.2a. The insertion of the 2D PhC layer introduces some modes within the

complete PBG of the 3D inverse opal. These 2D PhC bands are the dispersion curves of the graphite

lattice of rods, superimposed over the projected bands of the 3D inverse opal. In the frequency range

where they do not overlap, light is allowed to propagate in the 2D PhC layer only. The remaining

PBG, called on-chip PBG, is the frequency range where light cannot propagate at all through the 2D-3D

heterostructure, corresponding to the frequency range where a full 3D confinement of light is possible.

According to the photonic band structure on Fig. 2.8, the width of the on-chip PBG is limited by the

2D PhC bands. In view of designing broadband waveguides, one should maximize the on-chip PBG by

tuning the 2D layer parameters. Since the periodicity of the 2D layer and the refractive index of the rods

are fixed by the inverse opal parameters, this optimization can only be made by tuning the rod radius

r and the layer thickness t as parameters of the heterostructure. Figures 2.9(a,b) sketch the on-chip

PBG position in reduced frequency as a function of t (with fixed r = 0.1a) and r (with fixed t = 0.2a),

respectively. As we would expect, in the limit of null thickness of the 2D layer (t = 0), the on-chip PBG

corresponds to the PBG of the 3D inverse opal. When the layer thickness is increased, the 2D bands are

pushed down to lower frequencies, entering the 3D PBG. Thicker PhC slabs can indeed support more

confined modes. The variation of the on-chip PBG at fixed thickness t = 0.2a with the radius is now
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Figure 2.8: Photonic band structure of the 2D-3D inverse opal heterostructure. The on-chip PBG is
the frequency range that is neither covered by the projected bands of the 3D inverse opal (black shaded
area), nor by the 2D PhC bands (gray solid curves).

slightly different. In the limit where no rods are present (r = 0), the 3D PBG is completely filled by the

2D bands. This is normal since light propagates freely in air. The 2D PBG opens for rod radii above

about 0.03a, and is continuously pushed down to lower frequencies with the increase of r, following an

increase of the high refractive index material filling ratio. The optimal overlap of the 2D and 3D PBGs

is found for rod radii close to 0.10a. This brief optimization study of the on-chip PBG of the 2D-3D

heterostructure can now be used to design a broadband single-mode waveguide.

2.3.2 Broadband single-mode waveguide

An air waveguide can be realized by removing rods along the ΓK direction of the structure (see Fig. 2.10(a)).

The radius of the rods is set to r = 0.1a and the thickness of the layer to t = 0.2a. The dispersion relation

of the corresponding waveguide are shown on Fig. 2.10(b). The upper single-mode ranges from 0.586

to 0.637 in units of reduced frequency (a/λ), corresponding to a bandwidth of 129 nm centered on 1.55

µm. This bandwidth is 74 % larger than the maximal bandwidth reported in the triangular case (74

nm). The single-mode extends over almost the whole on-chip PBG, which itself occupies a large part of

the inverse opal 3D PBG. This significant improvement of the bandwidth is therefore truly due to the

widening of the on-chip PBG by the graphite lattice.

This is further verified by studying the dependence of the single-mode waveguiding bandwidth with

the 2D PhC layer parameters. As shown on Fig. 2.11, the bandwidth remains larger than the optimal one

obtained in the triangular case (74 nm) on almost the whole range of study, emphasizing the significant

advantage of graphite lattices of rods over triangular ones. The single-mode waveguiding bandwidth is

maximized for rod radii close to r ≃ 0.1a and naturally decreases for larger radii, as a consequence of the

closing of the on-chip PBG by the 2D bands. The thickness dependence of the bandwidth is moderate.

For a rod radius close to r ≃ 0.1a, it remains above 100 nm on the whole range of study. Increasing the

thickness of the 2D layer increases the intrinsic bandwidth of the waveguide mode. For layer thicknesses

above t = 0.2a, the on-chip PBG becomes smaller than the single-mode and thus, reduces its waveguiding

bandwidth.

The single-mode waveguiding bandwidth therefore relies on an interplay between the intrinsic band-
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Figure 2.9: Map of the on-chip PBG of the 2D-3D heterostructure with respect to (a) the layer thickness
t with r = 0.1a and (b) the rod radius r with t = 0.2a. The black and gray shaded areas are the frequency
regions filled by the 2D and 3D PhC bands, respectively.

Figure 2.10: (a) 3D view of the single-mode waveguide in the 2D-3D heterostructure.(b) Photonic band
structure of the waveguide. The blue solid curves are the waveguide modes. The gray and black shaded
areas correspond to the projected bands of the 2D and 3D PhCs, respectively.
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Figure 2.11: Single-mode waveguiding bandwidth of the 2D-3D heterostructure waveguide as a function
of the layer thickness t and rod radius r of the 2D PhC layer. The white lines drawn on the bandwidth
surface are contours delimiting bandwidths from 40 to 120 nm in steps of 10 nm.

width of the single-mode and the width of the on-chip PBG. By using a graphite lattice of rod, which

is known to exhibit larger PBGs than triangular ones, we could widen the on-chip PBG of the 2D-3D

heterostructure and thus, create a larger available spectral range. Some points however remain to be

clarified here. In particular, it is worth noting that the rod radius that optimizes the on-chip PBG width

and the single-mode waveguiding bandwidth makes the rods match perfectly to the dielectric pattern of

the inverse opal. Similarly, Chutinan et al. remarked that the structural match between the cross-section

of the 2D and 3D structures plays an important role in the design of heterostructures [155]. The optimal

design for the 2D layer is actually found to be the extruded cross-section of the 3D structure. Further-

more, as we have seen above, the thinner the 2D layer, the larger the on-chip PBG. In this work, as well

as in the initial study of Chutinan et al, the defect contituting the linear waveguide has been assumed

to have the same height as the thickness of the 2D PhC layer. Such a condition ensures that the defect

mode behaves in the intercalated layer in a similar way as in the 2D finite-thickness PhC. Based on our

understanding of light confinement processes in 2D-3D heterostructures, it is very tempting to suggest

that similar effects, i.e. similar waveguide modes, can be observed in purely 3D structures, provided

that the cross-section of the structure in the propagation plane locally resemble a 2D PhC layer of finite

thickness.

2.4 Purely three-dimensional inverse opals

One of the major requirements that has been pointed out at the beginning of this chapter is the necessity

to design defects attainable experimentally. In this regard, creating defects in purely 3D structures should

be our first option. This approach has been limited up to now by the accuracy in the size and shape of the

defects suitable to the design of broadband single-mode waveguides and cavities [143,144]. Now, it is true

that waveguides in 2D-3D heterostructures have been shown to exhibit stable broadband single-modes

and certainly, such structures would demonstrate remarkable features for telecommunication purposes.

Unfortunately, as noted above, they are expected to be quite challenging to realize, in addition to which

they would require a many-step fabrication process including an accurate alignment between the different

stacked structures, thereby loosing any benefit of rapid self-assembly techniques. Nonetheless, they have

provided us with a non-negligeable hint on the formation of defect modes in inverse opals. As a matter
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of fact, the idea briefly exposed above has some connections with previous studies.

In 2000, Johnson and Joannopoulos proposed the design of a 3D layered PhC with a large complete

PBG [42]. This structure consists of alternating layers of triangular lattices of dielectric rods in air

and of air holes in dielectric, stacked in a FCC lattice. The concept underlying this design is that the

dispersion properties of the 3D PhC in the plane normal to the stacking direction closely look like those

of the corresponding 2D PhCs, and in this sense, greatly simplify the understanding of defect modes.

Waveguides and cavities could indeed be engineered in the 3D PhC according to their 2D counterpart

[156]. The resulting defect modes have been shown to be mostly E- or H-polarized, depending on

whether the defect was located in a rod-type or in the hole-type layer.

Now, the connection with inverse opals is quite straightforward. Considering that the cross-sections

of the 3D structure are 2D PhCs with complete PBGs, waveguides and cavities may be designed in a

very simple manner from their 2D counterpart. The defects are created in the (111) plane of the opal

structure, in the middle of a layer of spheres to benefit from the large PBGs of graphite lattices of

rods. The rods constituting the 2D PhC have a radius r = 0.1a, where a is the lattice parameter, which

corresponds very well to the dielectric pattern of the inverse opal cross-section. Since rod-type structures

are more likely to exhibit PBGs when the electric field is parallel to the axis of the rods, light in the 2D

calculations is assumed to be E-polarized.

2.4.1 Waveguides

Figure 2.12(a) sketches the photonic band structure of a linear waveguide in the 2D PhC, made by

removing one row of rods along the ΓK direction of the hexagonal lattice. It exhibits a defect mode

ranging from a/λ = 0.585 to 0.618 within its PBG. We create the same kind of defect in the 3D inverse

opal by removing some dielectric in the structure on a thickness t = 0.3a. The corresponding photonic

band structure is shown on Fig. 2.12(b). As expected, a very similar mode appears within the 3D PBG

at reduced frequencies between a/λ = 0.62 and 0.628. Comparing the field patterns of the 2D and 3D

waveguide modes at the K-point in the insets of Figs. 2.12(a,b) also demonstrates the similarity of the

confinement processes in the 2D and 3D structures. The overlap of the horizontal cross-section of the

3D and 2D modes shows that the 3D mode is mostly E-polarized, as expected.

This approach is obviously not limited to one particular kind of defect. We reproduce the above

photonic band calculations on a linear waveguide made by removing two rows of rods along the ΓK

direction of the hexagonal lattice. This defect is the same as the one defined in the 2D-3D heterostructures

in the previous section, so that similar waveguide modes are expected to appear. The photonic band

structures of the 2D and 3D PhCs are shown on Figs. 2.13(a,b). Here again, the dispersion of the

waveguide modes match remarkably well. The PBG is entirely covered by two single-modes, degenerate

at the K’-point of the hexagonal lattice Brillouin zone. The waveguide actually remains single-mode

accross its entire spectral range. The defect mode can be tuned to lower (resp. higher) frequencies by

decreasing (resp. increasing) the thickness of the air defect. The dispersion relations of the waveguide

modes in the case where dielectric has been removed from the inverse opal on a thickness t = 0.1a is

shown in dashed curves. Since a larger part of the waveguide mode enters the high refractive index

region, the bands are shifted to lower frequencies. The upper mode spans a relatively large spectral

range, from a/λ = 0.597 to 0.641, corresponding to a bandwidth of 110 nm centered on the wavelength

λ = 1.55 µm. As expected, this defect mode is almost the same as the one that was found in 2D-3D

heterostructures. Although its bandwidth is slightly smaller than previously (128 nm), it remains largely

sufficient for many applications in the telecommunications and far more accessible from an experimental
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Figure 2.12: Photonic band structures of a single-mode waveguide in a 2D graphite lattice of rods (a)
and a 3D inverse opal (b). The rods have a refractive index 3.45. The waveguide has been made by
removing one row of rods along the ΓK direction of the structure, on a thickness t = 0.3a for (b). The
gray and black shaded areas are the projected bands of the 2D and 3D PhCs. The insets show the Ez

field of the modes at the K-point of the reciprocal lattice.

point of view. Figure 2.13(d) shows the field pattern of the upper waveguide mode at the K-point of the

lattice for t = 0.1a. The 3D mode is mostly localized in the air regions of the structure, which suggests

that coupling from the ambient medium may be efficient.

Typically, such defects could be created by direct laser writing (see description in Sec. 2.1). For

operation at a wavelength λ = 1.55 µm, the spheres need to be of the order of a = 0.96 µm, which

can be easily obtained with current opal growth techniques. The typical size of the defects should then

range from about 100 to 300 nm in thickness, which is attainable experimentally according to recent

papers [142]. Figure 2.13(c) shows the linear defect that has to be inserted in the direct opal before

inversion. It is also worth noting that the formation of small necks between the spheres and the degree

of infiltration of the opal by silicon are both parameters that have to be carefully considered. As a

matter of fact, fully-infiltrated structures exhibit much smaller PBGs. Our study provides some insight

onto this phenomenon in a simple way, remarking that the dielectric pattern of the cross-section of fully-

infiltrated inverse opals by itself is not favorable to the existence of large PBGs. The design of broadband

single-mode waveguides is also more complicated in this case.

2.4.2 Cavities

A similar approach can now be used to create resonant cavities. To our knowledge, the only design of

a cavity in a 3D inverse opal is the one proposed by Chan et al. [144], consisting of replacing an air

sphere by a sphere of slightly higher refractive index (close to 1.5, corresponding to silica, PS or PMMA)

and reduced size. In practice, supposing that spheres of different types could be mixed before the opal

growth, one could fabricate opal structures with randomly-placed point defects, probably yielding some

anomalous transport properties, which would surely be interesting to study. This approach is however

not adapted to the fabrication of photonic technologies with well-controlled features.

We consider a simple defect consisting of one missing rod in the 2D graphite lattice of rods considered

above. The corresponding photonic band structure is shown in Fig. 2.14(a). A single defect mode is
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Figure 2.13: Photonic band structures of a single-mode waveguide in a 2D graphite lattice of rods (a)
and a 3D inverse opal (b). The waveguide has been made by removing two rows of rods along the ΓK
direction of the structure, on a thickness t = 0.3a (blue solid curves) and t = 0.1a (blue dashed curves)
for (b). The gray and black shaded areas are the projected bands of the 2D and 3D PhCs. (c) Design of
the linear defect in the direct opal before inversion. (d) Ez field of the upper waveguide mode of the 3D
inverse opal with t = 0.3a at the K-point of the reciprocal lattice.

47



Figure 2.14: (a) Photonic band structure of a cavity in a 2D graphite lattice of rods. The inset shows
the Ez field of the cavity mode. (b) Ez field of the cavity mode in the 3D inverse opal. The defect has
a thickness t = 0.3a. (c) Design of the point defect in the direct opal before inversion.

found within the PBG at a reduced frequency a/λ = 0.612. Its field pattern is shown on the inset of the

figure. The same defect is now created in the 3D bulk inverse opal on a thickness t = 0.3a. Since the

computation of the photonic bands using the PWE method is far too memory and time-consuming, this

calculation has been made using the 3D FDTD method. A single defect mode is found within the PBG,

resonating at a reduced frequency a/λ = 0.625. The field pattern of the mode, shown on Fig. 2.14(b),

also closely resemble that of its 2D counterpart and it remains mostly localized in the air region. As for

waveguides, the resonant frequency of the cavity can be changed by varying the thickness of the defect.

This last step further validates our initial guess on the processes of light confinement in 3D inverse

opals. We have proposed here a simple technique to design resonant cavities and broadband single-mode

waveguides in 3D inverse opals. Both types of defects can possibly be fabricated by direct laser writing

on a single 3D inverse opal, requiring no step-by-step growth process, and may be combined to create

highly efficient and large-scale photonic components for the telecommunications, quantum information

processing, and so on, at low cost. It is finally worth noting that this approach may be extended to a

larger variety of defects, including some designed in different propagation planes to make full use of the

three-dimensionality of the PhC. This is, after all, one of the many advantages of 3D PhCs.

Summary

In this chapter, we have presented various solutions to the confinement of light in opal-based PhCs. We

have started by reviewing some of the main techniques known to date to fabricate opals and engineer

defects in them, in order to have a broad view of the actual state-of-the-art on the experimental level.
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First, we have shown that monolayers of spheres with a superlattice of defects can exhibit a PBG

below the light line, so that waveguides and cavities could be designed. Then, we have optimized a

2D-3D heterostructure based on inverse opals and have demonstrated single-mode waveguiding over a

bandwidth of 128 nm centered on 1.55 µm. This constitutes an increase of the bandwidth of more than

70 % compared to previous results. Finally, we have proposed a novel approach to design waveguides

and cavities in 3D inverse opals based on a study of their 2D cross-section. In this way, we could design

a single-mode cavity and air-core single-mode waveguides, the optimal one having a maximal bandwidth

of about 110 nm centered on 1.55 µm. The designs of structural defects proposed in this chapter (in

patterned monolayers of spheres and 3D inverse opals) are simple in shape and can possibly be fabricated

with current techniques.
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Chapter 3

Enhanced dispersion-based

waveguiding in photonic crystals

Broadly speaking, photonic crystals (PhCs) owe their original optical properties from their strong dis-

persion, leading to a local modification of the group velocity of light or even the prohibition of its

propagation. In the early years of PhCs, researchers have mainly focused on the photonic band gap

(PBG) properties of PhCs and consequently on their ability to confine light to structural defects such as

waveguides and cavities. A more recent approach of manipulating light is based on the spatial dispersion

of PhCs. Here, the dispersion curves of an extended, i.e. defectless, PhC are used to control the direction

of propagation of light. The extremely strong anisotropy of the bands can provide a multitude of very

exotic effects, such as supercollimation [73], ultra-refraction [80] or negative refraction [88] and thus,

bring up new functionalities to PhCs. These effects have been intensively studied in the past few years

and are now well understood.

The purpose of this chapter is to enhance the features of extended PhCs, i.e. make them more

flexible and reliable on the manipulation of electromagnetic fields, and in particular on the propagation

of light beams. Although important efforts have been made recently on three-dimensional (3D) PhCs

(see Chapter 2), we will focus on two-dimensional (2D) PhCs, for the simple reason that they can be

more easily integrated on conventional platforms (e.g. silicon-on-insulator (SOI) substrates), and thus

can provide a faster way of conciliating our theoretical predictions with potential future experiments.

In Sec. 3.1, we will show that PhCs with a gradient in their lattice parameter, namely graded PhCs,

can manipulate light beams in an original way. This concept will be verified by comparison with an

experiment made by E. Akmansoy and J.-M. Lourtioz at the Institut d’Electronique Fondamentale,

demonstrating a mirage effect in the microwave range. In Sec. 3.2, we will propose an efficient and

practical way to improve the coupling of light from integrated SOI-based waveguides to supercollimating

PhCs. This will give some insight onto the light coupling mechanisms to extended PhCs in general.

3.1 Beam propagation in graded photonic crystals

Extended PhCs exhibit spatially homogeneous optical properties. Modifying the direction of propagation

of light therefore requires to insert defects in the structure. There exists, however, an alternative to such

an approach. In continuous media, light rays passing between two points in space follow the well-known

Fermat’s principle of least time, which states that light takes the path that requires the shortest time

51



to go from one point to the other. The optical path length, defined in terms of the medium refractive

index, is then minimized. Now, supposing that the refractive index of the medium varies in space

implies that the shortest optical path is curved. This fact is nicely pictured by a few naturally occuring

phenomena, such as atmospheric mirages and ionospheric refraction, where the refractive index gradient

results from gradients of the temperature and of the electron density with height, respectively [157]. In

fact, this concept is also the underlying principle of transformation optics-based metamaterials, which

we have described in Sec. 1.4. In the context of PhCs, inhomogeneity can provide an additional handle

to manipulate light, making it possible to curve the path of light, and eventually combine different

anomalous refraction effects. The progressive modification of the optical properties of an extended PhC

can be realized by creating a gradient of refractive index, lattice periodicity or shape of the unit cell, hence

their name graded PhCs [158]. Such structures can be integrated on conventional platforms such as SOI

substrates in the same way as classical PhCs and thus could be used to enhance the functionality of all-

optical components [159,160]. Toward this objective, it is first necessary to acquire some understanding

of the propagation of light beams in graded PhCs, which requires to study the effects resulting from the

finite spatial extension of the beams and the anisotropy of the dispersion curves. This section is intended

to explore some of the properties of 2D graded PhCs to control the propagation of light beams in space.

We start by introducing the principles of graded PhCs.

3.1.1 Principles of graded photonic crystals

The idea of modifying the parameters of a PhC to progressively change its optical properties has previ-

ously been applied in PhC waveguide tapers to make a transition between the propagating modes of two

different structures [161], or to localize light [162]. In such structures, the direction of propagation of light

is settled by the linear defect constituting the waveguide, which is no longer the case in extended PhCs,

where light follows the dispersion curves of the defectless structures. The refraction and path of light in

a continuous inhomogeneous medium is described by the generalized Snell’s law, n(y) sinθ(y) = ni sinθi,

where n is the refractive index of the inhomogeneous medium with a gradient along the y-direction, θ the

angle formed by the tangent of the light ray at the depth y, ni the refractive index of the homogeneous

medium and θi the angle of incidence.

Graded PhCs relies on similar principles. Light propagates according to the local optical properties

of the PhC layers. The dispersion properties of each PhC layer can be found by calculating the photonic

band structure of the corresponding infinite PhC. Photonic band structures only make sense in periodic

structures and a proper determination of the properties of a finite-size aperiodic structure would require

to take into account the exact multiple scattering nature of the problem. The concept of local photonic

band structure yet remains a very good approximation, provided that the variation of the structural

parameters remains small.

The principles of light bending in graded PhCs is illustrated in Fig. 3.1. Light is incident from a

continuous homogeneous medium on an arbitrary graded PhC. The spatial dispersion properties of the

homogeneous medium and of the PhC layers at specific wavelengths are given by their corresponding

iso-frequency curves (IFCs), shown on Fig. 3.1(a). The incidence of light at the interface between two

structures imposes the conservation of the tangential component of the wavevector with respect to the

coupling interface, kx in our case, represented by a construction line of constant wavevector kx. We

assume that the PhC layers are isotropic to make the approach to the problem simpler. For the sake of

consistency with the examples to follow, the photonic band of interest is negatively curved so that the

group and phase velocities are in opposite directions. Since the energy transport velocity corresponds
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Figure 3.1: (a) IFCs (black curves) of the different PhC layers, indexed in green lower-case letters
a-e, of an arbitrary graded PhC. The light gray solid line is the construction line, representing the
conserved wavevector kx, and the light gray dashed lines delimit the extension of the incident beam in
reciprocal space. The various steps in the light bending process are denoted as blue numbers 1-5, and
the corresponding group velocity directions as blue arrows. (b) Ray curve of the central wavevector
component in the corresponding graded PhC.

to the group velocity, light is negatively refracted when it enters the graded PhC (step 1, layer a). It is

smoothly bent as it penetrates the successive layers of the structure (step 2, layer b), down to the depth

where its group velocity becomes parallel to the coupling interface (step 3, layer c). The PhC layers

below this depth (layers d and e) have no intersection points with the construction line and thus prohibit

the propagation of light. Light then naturally follows its course back to the coupling interface (steps 4

and 5, layers b and a) and finally exits in the homogeneous medium at the normal angle of reflection.

The light path described here is only valid for one specific wavelength and one specific wavevector,

i.e. for a planewave incident at a specific angle. By this observation we mean that the optical effects

obtained from one graded PhC would be different for other wavelengths and other angles of incidence.

Considering the facts that PhCs usually exhibit a strong spectral and spatial dispersion and that the

structural parameters of the graded PhCs can be molded in many different ways demonstrates the almost

infinite number of possibilities that we have to manipulate light. Previous studies have used graded PhCs

to realize frequency-selective tunable bends [158], or enhanced focusing and guiding devices [160]. Here,

we do not look for the design of a specific device but concentrate on more elementary issues related to

the propagation of light beams in strongly anisotropic structures.

3.1.2 Propagation of light beams

Light beams are composed by a finite set of wavevector components. The full-width at half-maximum

(FWHM) 2∆x of a Gaussian beam in direct space is related to the FWHM 2∆k of the corresponding

Gaussian beam in reciprocal space via the relation ∆x∆k = 1/2. In the context of graded PhCs, the

wavevector components of the incident beam projected on the axis parallel to the coupling interface

(x-axis in our case) lie on a reciprocal area 2∆k, delimited on Fig. 3.1(a) by two light gray dashed lines.

This dispersion has two direct consequences. First, the exit points of the rays can be different, as it is

naturally the case in atmospheric mirages. It is not necessarily detrimental to graded PhCs since this
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angular sensitivity could be put to good use in frequency-selective devices. Assuming however that the

wavevector dispersion ∆k is small implies that the light path of the beam is relatively well preserved.

Second, the group velocities of each wavevector component are parallel to the coupling interface in

different PhC layers, i.e. at different depths in the graded PhC (in Fig. 3.1(a), the outer wavevector

components reach the PhC layers b and d). This observation is particularly interesting, for it implies

that the width of the beam in the graded PhC is not only inherent to the FWHM of the incident beam

but also to the structural parameters of the graded PhC.

To give an account of these effects, we study the propagation of light in a 2D graded PhC, consisting

of a rectangular array of air holes in a dielectric medium of refractive index 3.25, with lattice parameters

along the x and y directions, denoted as dx and dy , respectively. The gradient is made by changing the

lattice parameter dy of the structure and is defined by the aspect ratio ρ = dy/dx. The radius of the

holes is kept constant to 0.3dx. Figure 3.2(a) shows the IFCs of PhCs with aspect ratios ρ ranging from

0.90 to 1.18 in steps of 0.04 at the reduced frequency a/λ = 0.27 in the H-polarization, calculated with

the planewave expansion (PWE) method. This structure can be tuned to the wavelength λ = 1.55 µm

by setting the lattice periodicity dx = 418.5 nm. The light beam is incident from a homogeneous medium

of refractive index 3.25 on the graded PhC at an angle of 19.3 ◦ with respect to the y-axis, corresponding

to a conserved wavevector kx = 0.29 (2π/a), which lies outside the light cone of air and thus prevents

out-of-plane losses to occur in finite-thickness planar structures. Due to the curvature of the first layer

IFC, the beam is positively refracted and progressively turns back toward the negative x-direction. The

group velocity finally becomes parallel to the coupling interface in the PhC layer of aspect ratio ρ = 1.06.

In our simulations, the graded PhC is made of 40 columns of holes and the gradient linearly goes from

ρ = 0.90 to 1.20, which places the region of horizontal propagation at the level of the central PhC layer.

Figures 3.2(b-d) show the modulii of the Poynting vector, computed with the 2D multiple scattering

matrix method [117, 121], in different situations. In Figs. 3.2(b,c), the graded PhC is composed by 30

rows of holes with an increment in the aspect ratio ∆ρ = 0.01 between successive layers, and the incident

beam has a Gaussian distribution with a FWHM of 4 and 6 µm, respectively. As expected, we observe a

decrease of the beam width in the graded PhC (i.e. along the y-axis) with the increase of the FWHM of

the incident beam (along the x-axis). Larger incident beams indeed excite a smaller reciprocal area in the

graded PhC and consequently, are localized in a fewer number of PhC layers. This effect is also obtained

when the gradient strength is increased, as shown on Fig. 3.2(d). Here, the incident beam FWHM is 4

µm and the graded PhC is only made of 15 layers of holes, resulting in an increment in the aspect ratio

∆ρ = 0.02 between successive layers. In this case, the incident light beam excites the same PhC modes

but the horizontal propagation area now corresponds to a smaller number of layers, thereby reducing the

PhC beam width. Before going any further, it is important to note that in all of the above structures,

the maximal output intensity is found at the level of the central PhC layer, which thus agrees well with

our IFCs study. The graded PhC have also been made shorter than required for a 180 ◦ bending. The

output angle of the beam depends on the vertical component of the wavevector in the graded PhC. The

fact that the output light beam is directed toward the positive y-direction means that the beam is still

propagating downward in the graded PhC (i.e. between steps 2 and 3 in Fig. 3.1(a)).

The effect of beam shaping observed here is quite original and should absolutely be differentiated

from conventional optical effects in extended PhCs. The lateral width of light beams in graded PhCs

is no longer exclusively related to their characteristic localization width ∆k in reciprocal space but

also to the structural parameters of the PhC in direct space. The curvature of the beam now relies a

different mechanism. In an isotropic inhomogeneous medium, the curvature of the light path increases
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Figure 3.2: (a) IFCs of the graded PhC described in the text at the reduced frequency a/λ = 0.27. A
Gaussian beam is incident on the structure at an angle of 19.3 ◦ with respect to the y-axis, represented by
the construction line (gray solid line). The aspect ratio ρ of the PhC layers are indexed on their respective
IFCs. The corresponding group velocity directions are indicated by blue arrows. (b-d) Modulus of the
Poynting vector in different situations. In (b) and (c), the graded PhC is made of 40 columns by 30 rows
of holes and the FWHM of the incident beam is 4 and 6 µm, respectively. In (d), the graded PhC is
made of 40 columns by 15 rows of holes and the FWHM of the incident beam is 4 µm.
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Figure 3.3: Modulus of the Poynting vector in a graded PhC, made of 80 columns by 30 rows of holes.
The FWHM of the incident Gaussian beam is 4 µm.

with the rate of change of the refractive index. The strong anisotropy of graded PhCs therefore provides

an additional tunable parameter to manipulate light beams. Straight IFCs, such as those used in the

graded PhCs studied here, correspond to an extremely low rate of change of the group velocity. As soon

as light penetrates a PhC layer with a quasi-horizontal group velocity, it starts requiring much longer

distances to penetrate the lower PhC layers. Consequently, the light beam exhibits a very large radius of

curvature and thus propagates almost linearly in the structure. The distance of propagation is naturally

a function of the gradient strength and of the thickness of the structure. To illustrate this point, we

consider the same graded PhC as previously studied, using 80 (instead of 40) columns by 30 rows of holes

and an incident beam with a FWHM of 4 µm. As shown on Fig. 3.3, the beam propagates quasi-linearly

in the graded PhC, as expected. The output beam is directed toward the negative y-direction, which

means that the beam in the graded PhC has started its way up to the interface (between steps 3 and 4

in Fig. 3.1(a)).

At this point, we have introduced some of the effects related to the propagation of light beams

in graded PhCs and have outlined their versatility, originating from their complex spatial dispersion

properties. In view of the integration of graded PhCs on all-optical platforms such as SOI substrates, we

have tuned the above structures to the near-infrared wavelengths. The dimensions and refractive indices

used are typical of conventional silicon-based PhCs. Before designing graded PhCs for specific purposes,

it is necessary to first demonstrate experimentally their capability of bending light on short distances.

3.1.3 The mirage effect: comparison with experiments

PhCs are inherently scalable to different frequencies. The concept of graded PhC in particular can be

extended to structures of different materials and is expected to work also for all polarizations of light.

For the sake of ease of fabrication and characterization, the graded PhC that is proposed here is tuned

to the microwave range and composed of copper rods. The region of interest is the first dispersion curve

of the structure in the E-polarization, which lies at relatively high frequencies, due to the existence of a

cut-off [92]. Figure 3.4(a) shows the IFCs of metallic PhCs with copper rods of radius 0.075dx calculated

for different aspect ratios ρ = 1.00, 0.85 and 0.75 at the reduced frequency a/λ = 0.426, using the 2D
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Figure 3.4: (a) IFCs calculated at 9.6 GHz for PhCs with aspect ratios ρ =1.00 (blue curve), 0.85
(red curve) and 0.75 (black curve). The construction line (black solid line) corresponding to a angle of
incidence of 30 ◦. The group velocities directions are indicated by arrows. (b) Modulus of the Poynting
vector in the metallic graded PhC at 9.6 GHz. The FWHM of the incident Gaussian beam is 10 cm. The
dashed arrows indicate the reflected and transmitted beams. (Adapted from Ref. [163] with permission
from E. Akmansoy).

finite-element method. The structure is scaled to a frequency of 9.6 GHz by using a lattice periodicity

dx = 1.33 cm. For an angle of incidence of 30 ◦, light is positively refracted in the structure and is bent

continuously from about 45 ◦ (ρ = 1.00) to 90 ◦ (ρ = 0.75) with respect to the y-axis. This is verified

in Fig. 3.4(b) by calculating the modulus of the Poynting vector in a graded PhC made of 49 columns

by 20 rows of copper rods and an aspect ratio linearly going from ρ = 1.00 (dy = 1.33 cm) to ρ = 0.50

(dy = 0.67 cm). The incident E-polarized beam has a Gaussian distribution with a FWHM of 10 cm.

As expected, the beam is bent within the structure and emerges from the upper interface (beam 2).

Some part of the original beam is also reflected at the upper interface of the graded PhC (beam 1) and

propagates in a secondary beam, that exits from the lateral interface (beam 3). We also note that the

curvature of the beam within this graded PhC is much smaller than that observed in our previous designs

(see Fig. 3.3). This effect is attributed to the quasi-isotropy of the IFCs, which makes the rate of change

of the group velocity direction much larger in the vicinity of the PhC layer of horizontal group velocity.

The experimental part of this work has been made by E. Akmansoy and J.-M. Lourtioz at the Institut

d’Electronique Fondamentale in Orsay, France. Figure 3.5(a) shows a picture of the fabricated graded

PhC, composed of copper rods with radius 1 mm and height 20 cm. Its characterization has been carried

out using a microwave goniometer, which consists of two horns connected to an 8722ES Agilent network

analyzer (Fig. 3.5(b)). The emitting horn illuminates the device at a distance of 50 cm and an angle of

30 ◦. The receiving horn is placed at a distance of 90 cm from the device and can be rotated up to an

angle of 180 ◦.

Figure 3.6(a) shows the scattering patterns of the metallic graded PhC obtained from the measure-

ments and from the simulations. The two signals are in good agreement, especially considering that the

finite thickness of the graded PhC has not been taken into account in the simulations. The strongly

modulated signal observed at angles close to 30 ◦ corresponds to the interfering reflected and curved

beams (beams 1 and 2 respectively), while the signal at angles close to 100 ◦ corresponds to the beam

that exits from the lateral interface (beam 3). In order to map the trajectory of the beam within the
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Figure 3.5: (a) Picture of the fabricated graded PhC, which consists of an array of copper rods. (b) Top
view of the measurement setup. The emitting microwave horn is orientated at an oblique incidence of
30 ◦ and the receiving horn can be rotated around the graded PhC at angles from 0 ◦ to 180 ◦. (Adapted
from Ref. [163] with permission from E. Akmansoy).

graded PhC, a microwave absorbing sheet with a 30 dB attenuation and weak residual reflection has been

gradually inserted along the y-direction of the graded PhC from its lower interface up to the position

where the scattering pattern was modified, denoting an interaction between the absorbing sheet and the

beam. The measured positions of the lower edge of the beam within the graded PhC shown on Fig. 3.6(b)

are in excellent agreement with the simulation, confirming the curved trajectory of the light beam in the

structure. Additional experiments reported in Ref. [163] have led to a similar conclusion.

The experimental demonstration of this mirage effect validates the concept of graded PhC and the

capability of such structures to mold the path of light. This allows us to envisage the realization of

integrated graded PhCs operating in the near-infrared range that may be an integral part of future

all-optical technologies. Taking some hindsight onto this concept of inhomogeneous PhC, light rays

corresponding to different wavevector components follow different paths in the structure. In the cases

shown above, this causes the beam to slightly spread as it propagates. Without doubt, this issue may

be solved by appropriate designs. Of course, such an approach would be quite tedious, for it would rely

on a try-and-see basis. In this regard, it would be interesting to make the connection between graded

PhCs and geodesics, which introduce the concept of curved spaces naturally arising from the Fermat’s

principle of least time and with the principles of transformation optics. Although this may prove to be a

difficult task due to the complexity of the dispersion properties of PhCs, it could be worth the effort, for

the graded PhC would be conceptually replaced by a virtual curved electromagnetic space [164], making

it possible to define all possible ray curves in the structure. In a way, graded PhCs would stand on the

same level as metamaterials, which, as briefly discussed in Chapter 1, have inspired a great number of

fascinating technologies, including electromagnetic cloaks [94].

Before reaching this point however, a couple of issues will need to be addressed. First, some scattering

losses can occur within the graded PhC because of its discrete character (graded PhCs are not continuous

media) and of the phase mismatch between consecutive PhC layers. A theoretical study on the adiabatic
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Figure 3.6: (a) Measured and calculated scattering patterns of the graded PhC at 9.6 GHz. (b) Vertical
position of the lower edge of the beam in the graded PhC, measured with the absorbing sheet technique
(see the text). Measurements data (white dots) are superimposed onto the numerical simulations. The
size of the dots accounts for the measurement uncertainties (±3 mm). (Adapted from Ref. [163] with
permission from E. Akmansoy).
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process in graded PhCs, in a similar way as for slow-light tapers [165], would probably help to define

certain practical conditions on the design of the gradient, particularly on a minimal rate of change.

Second, the scattering losses that occur at the interfaces of the graded PhC can be relatively strong,

depending on the wavelength of light and on the shape and angle of incidence of the beam. In view of

integrating extended PhCs on all-optical platforms, we need to study the coupling of light from external

waveguides. A first step to approach the problem is to restrict our study to one particular type of

extended PhCs. The next section is intended to find an efficient and experimentally feasible solution to

the coupling of light from conventional waveguides to supercollimating PhCs on SOI platforms.

3.2 Light coupling to supercollimating photonic crystals

Supercollimation, as discussed in Sec. 1.3, gives the possibility to propagate light in straight lines over

large distances without using structural waveguides [76]. Recent studies report the possibility to realize

devices such as optical routers, multiplexers or polarization splitters, by incorporating linear defects in

periodic structures [79, 166]. In the general context of extended PhCs, supercollimating PhCs appear

by themselves as a possible building block for many interesting applications and it seems very likely

that they will play a key role in Photonics in the years to come. The integration of PhCs implies that

they should be efficiently coupled to integrated single-mode waveguides. The integrated aspect of the

external waveguides is important if all photonic components are to be fabricated on a single chip, while

the single-mode condition is required to ensure proper light signal transmission between each component.

The coupling of light to supercollimating PhCs however remains a real technological challenge. As we will

see below, the incident beam has to excite very specific Bloch modes in the PhC [167,168], imposing some

requirements on the design of the excitation waveguide, while the impedance mismatch that occurs at the

interfaces between different components is responsible for back-reflections that may be inconvenient in

practical applications. In this sense, the different structures and their interfaces have to be appropriately

designed to overcome the mode-profile mismatch and the impedance mismatch between the propagating

modes. The coupling techniques [76, 169–172] that have been employed up to now do not meet all

conditions (single-mode propagation, efficient coupling and practical feasibility) simultaneously. More

generally, we are not aware of any extensive work on the coupling of light from integrated waveguides to

supercollimating PhCs, and although it has been shown that PhC boundaries were of crucial importance

for improving the coupling of light to extended PhCs [173–175], such an approach has not been applied

to supercollimating PhCs in particular. In the following, we proceed in different steps, first focusing

on the matching of the profile of the waveguide mode and of supercollimated beam, and then on the

improvement of the impedance matching at the interface between the two photonic components.

3.2.1 Mode matching

An efficient coupling of light to extended PhCs requires the incident beam to excite very specific Bloch

modes in the PhC. This is the concept that we have used in the study of graded PhCs, where the beam is

composed by a set of wavevectors which excite different modes in the structure. Here, the modal coupling

efficiency between the two photonic components depends on the overlap of their mode profiles [176]. In

the present case, the dispersion properties of the supercollimating PhC imposes some conditions on the

incident beam that in turn yield certain requirements on the design of the excitation waveguide. The

determination of the dispersion properties of the supercollimating PhC is therefore the starting point of

our study.
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Figure 3.7: (a) 3D view of the SOI-based supercollimating PhC, consisting of a patterned Si layer,
deposited on a SiO2 layer that lies on a thick Si substrate. (b) IFCs of a PhC consisting of a square lattice
of holes with radius r=94 nm and a lattice period a=310 nm, calculated in 3D with the FDTD method.
The reduced frequencies are indexed on their respective IFC in units of a/λ. The dark gray-shaded area
corresponds to the reciprocal full-width (2∆k) on which the IFCs exhibit a near-zero curvature.

Supercollimating photonic crystals

Due to the wide use of silicon (Si) in present electronic devices, the pre-eminent solution for integrating

photonics to future technologies is to use SOI platforms. The high index contrast between Si and

the substrate (typically silica (SiO2)) makes it possible to design efficient planar PhCs and low-loss

waveguides. On an experimental point of view, both components (waveguide and PhC) can be fabricated

on a single SOI wafer, which therefore makes the whole device easy to integrate on current photonic

platforms.

The supercollimating PhC under consideration consists of a 2D square arrangement of air holes in

a Si layer of refractive index 3.5 and thickness t=340 nm, deposited on a SiO2 layer of refractive index

1.45 and thickness 700 nm that lies on a thick Si substrate. A 3D view of this structure is given on

Fig. 3.7(a). A thickness of 700 nm is sufficient for the SiO2 layer below the guiding Si layer to prevent

light from leaking down to the Si substrate [177]. The period a of the lattice is 310 nm and the radius

r of the holes is 94 nm. These parameters have been chosen to collimate light at wavelengths λ close to

1.55 µm and ensure its vertical confinement to the PhC slab by index guiding. The dispersion properties

of PhCs are obtained from the PhC IFCs in reciprocal space, where the group velocity of a propagating

mode is defined by vg = ∇kω(k) and its direction by the normal to the IFC. The PhC dispersion curves

have been computed with the 3D finite-difference time-domain (FDTD) method.

Figure 3.7(b) sketches the IFCs corresponding to the first H-like mode of the PhC. Straight IFCs,

which are composed by modes with nearly similar group velocity directions, appear along the ΓM di-

rection for reduced frequencies a/λ between 0.19 and 0.21. The near-zero IFC curvature observed in

this region lies on a reciprocal half-width ∆k = 0.05 (2π/a), which corresponds to the characteristic

localization width of the supercollimated beam in reciprocal space. The lateral extension ∆x of the

beam in direct space can then be retrieved from the well-known uncertainty relation ∆x∆k ≥ 1/2. In

our case, we find ∆x ≥ 1.6a = 0.50 µm, which implies that the lateral width of the incident beam in the

excitation waveguide should be greater than or equal to 1.0 µm to prevent some of the incident modes to
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Figure 3.8: (a) 3D view of the strip waveguide-PhC interface on a SOI platform. (b) Cross-sectional
view of a SOI-based strip waveguide with height H and width W . (c) Transmission spectra of the
supercollimating structure using strip waveguides of height H=340 nm and respective width W=0.5 µm
(gray dashed line), 1.5 µm (gray solid line) and 2.5 µm (black solid line), calculated in 3D with the
FDTD method.

lie outside the IFC straight area and thus to be dispersed in the PhC. This minimal value corresponds to

a Gaussian beam with a FWHM of 2∆x = 1/∆k. In the next step of our analysis, we will therefore aim

at designing a SOI-based waveguide sustaining a single-mode that fulfills the minimal width condition

and deviates as less as possible from a Gaussian distribution.

Coupling to strip waveguides

Strip waveguides consist of a waveguide core surrounded by a fully etched Si layer (see Figs. 3.8(a,b)).

Due to their ease of fabrication, SOI-based strip waveguides have been intensively studied and used in

particular to couple light into PhC waveguides [178]. Here, we consider a strip waveguide of height H ,

determined by the thickness of the guiding Si layer (t=340 nm), and width W . In the present case, it

is worth noting that regardless of their width, waveguides of this thickness are multimode and therefore

are not adapted to data-transmission systems. Nevertheless, strip waveguides can be fabricated with

existing techniques and with an excellent quality, which makes them potentially useable at least for

characterization experiments. It is therefore important to study how efficient the coupling of light from

strip waveguides to supercollimating PhCs could be.

The coupling efficiency of the supercollimating structure at the waveguide-PhC interface is obtained

by calculating the transmission of light between two waveguides (input and output) placed on each side

of an 8 µm-long supercollimating PhC directed along the ΓM direction of the PhC square lattice. The

boundary of the supercollimating PhC is placed half-a-period away from the first column of holes.1

Simulations have been performed in 3D with the FDTD method. Figure 3.8(c) sketches the transmission

spectra of these structures using strip waveguides of different widths W=0.5, 1.5 and 2.5 µm. The

strong Fabry-Pérot (FP) oscillations, resulting from important back-reflections at both waveguide-PhC

interfaces, indicate a large impedance mismatch between the two structures. This point will be considered

below. Now, according to the minimal lateral width condition, the larger waveguides sustain modes that

1This position will further refer to the termination τ = 0.
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Figure 3.9: (a) Amplitude of the magnetic field Hz of the fundamental mode of a strip waveguide of
width W = 1.5 µm. The profile is taken in the middle of the guiding Si layer. The black dashed lines
delimit the lateral boundaries of the waveguide. The inset shows the mode in a vertical cross-sectional
view of the strip waveguide. (b) Fourier transform of the mode profile. The black-dashed lines delimit
the reciprocal area where the IFC is straight.

excite, for a larger part, the Bloch modes lying on the IFC straight area, thereby limiting the light

dispersion within the PhC. As expected, we observe an improvement of the overall transmission with

the widening of the excitation waveguide. The larger waveguides however still yield some serious losses

and the transmission hardly reaches 80 %. There are mainly two reasons for this discrepency : first, the

waveguide is multimode and therefore propagates higher-order modes with different mode profiles and

symmetries that do not necessarily meet the minimal width condition. Second, the fundamental mode

of the waveguide is not smooth enough in the lateral direction to avoid the excitation of Bloch modes

outside the reciprocal area where the IFC is straight. This is shown in Fig. 3.9, where we sketch the

lateral profile of the fundamental mode of the strip waveguide of width W = 1.5 µm, taken in the middle

of the guiding Si layer, and the corresponding Fourier transform of the mode profile in reciprocal space.

The abrupt lateral interfaces of the waveguide are indeed responsible for the excitation of higher-order

terms, which contain a non-negligible part of the incident beam energy, outside the supercollimation

reciprocal area. An efficient coupling of light to supercollimating PhCs requires the use of waveguides

capable of sustaining large and smooth single-modes.

Coupling to rib waveguides

Rib waveguides consist of a waveguide core surrounded by a partially etched Si layer, contrary to strip

waveguides, where the surrounding Si layer if etched down to the SiO2 layer. Rib waveguides have the

capability of sustaining E and H-like single-modes that exhibit a larger spatial extension than other

SOI-based waveguides [179]. As explained above, these spatially extended propagating modes may be

the key for a selective and efficient coupling of light to the PhC supercollimated modes. As a proof of

concept, we consider a rib waveguide with a total height H = 340 nm (fixed by the planar PhC thickness

t), an etch depth d = 40 nm and a width W = 700 nm (see Fig. 3.10(a)). Figure 3.10(b) shows the

corresponding H-like single-mode propagating at a wavelength of 1.55 µm (a/λ = 0.200 in the PhC),

as calculated with the finite-element method. The FWHM of the mode at the depth where it spreads
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Figure 3.10: (a) 3D view of the rib waveguide-PhC interface on a SOI platform. (b) Amplitude of the
magnetic field Hz at a wavelength of 1.55 µm in a cross-sectional view of the rib waveguide, calculated
with the finite-element method. The Si waveguide of height H=340 nm, etch depth d=40 nm and width
W=700 nm is deposited on a SiO2 layer that lies on a thick Si substrate. (c) Transmission (blue solid
line), reflection (green solid line) and losses (red dashed line) spectra of the supercollimating structure,
calculated with the FDTD method in 3D.

the most is about 1.2 µm, which is slightly larger than the minimal lateral width of the supercollimated

beam considered here (1.0 µm). We also note that the mode smoothly spreads within the guiding Si

layer.

We calculate the transmission of light through a supercollimating device, consisting of two rib waveg-

uides placed on each side of the supercollimating PhC. The spectra shown on Fig. 3.10(c) exhibit trans-

mission efficiencies up to about 94 % and reflections down to almost 0 % at wavelengths close to 1.55 µm

(a/λ= 0.200). The losses, which quantify the amount of light that is dispersed at the waveguide-PhC

interfaces and within the PhC, go down to about 6 %, which infers an excellent mode-profile matching

between the rib waveguide and the supercollimating PhC. At wavelengths where the IFC curvature is

larger, light is more dispersed within the PhC, yielding an increase of the losses. Figure 3.11 sketches

the lateral profile of the rib waveguide single-mode, taken in the middle of the guiding Si layer, and the

corresponding Fourier transform of the mode profile in reciprocal space. Owing to the very smooth and

largely extended lateral profile of the mode in direct space, the amplitude of the mode in reciprocal space

rapidly decreases down to very low values, while exhibiting no higher-order bumps. A very large part

of the incident energy therefore belongs to the reciprocal area where the corresponding IFC is straight,

inferring a proper excitation of the supercollimated beam.

At this point, we have shown that rib waveguides ensure an excellent mode-profile matching between

their fundamental mode and the supercollimated beam in the PhC. The second point to consider in

the improvement of the impedance mismatch between the rib waveguide and the supercollimating PhC,

causing the large FP oscillations observed in Fig. 3.10(c). They remain particularly strong with an

amplitude ranging between 10 and 20 % over the whole range of study. Such oscillations yield detrimental

resonances that hide the main features of the structure and could be very troublesome if supercollimating

PhCs were to be used in all-optical technologies.
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Figure 3.11: (a) Amplitude of the magnetic field Hz of the fundamental mode of the rib waveguide
described in the text. The profile is taken in the middle of the guiding Si layer. The black dashed lines
delimit the lateral boundaries of the waveguide of width W = 700 nm. (b) Fourier transform of the
mode profile. The black-dashed lines delimit the reciprocal area where the IFC is straight.

3.2.2 Impedance matching

At an interface between two homogeneous media, the amplitude of reflected and refracted planewaves

is given by the Fresnel formulae [180]. These relations describe the coupling efficiency of the planewave

from one medium to the other. The reflection and transmission coefficients can be written as a function

of the transverse impedance, defined as the ratio of the transverse electric field to the transverse magnetic

field with respect to the direction of propagation.2 The impedance in a PhC is spatially-dependent, since

the structure is a inhomogeneous medium. It has been shown that an equivalent impedance could still

be defined by averaging the fields over a period of the PhC, provided that the incident and transmitted

regions would support a dominant mode [181,182]. This means that by changing the interface of the PhC,

we actually can modify the impedance of the PhC and thus, improve (resp. diminish) the impedance

matching between the two media in a way to increase (resp. decrease) the coupling efficiency [183].

Here, we propose to minimize the reflectivity of the interfaces between the rib waveguides and the

supercollimating PhC simply by truncating the PhC at its boundary. Let τ be the termination parameter,

defined as the distance between the original boundary of the PhC and the position where the PhC

is effectively truncated. By commodity with the calculations above, the boundary corresponding to

the termination parameter τ = 0 lies half-a-period away, i.e. at a distance a/
√

2, from the first row

of holes (see Fig. 3.12(a)). We realize a series of 3D calculations, partly shown on Fig. 3.12(b), on

the transmission between two rib waveguides placed on each side of different supercollimating PhCs

with termination parameters τ=0.8a
√

2, 0.9a
√

2 and 1.0a
√

2. We find that the amplitude of the FP

oscillations is minimized when the supercollimating PhC is truncated in the middle of a column of holes,

corresponding to the termination parameter τ = na/
√

2, where n is a strictly positive integer. This

dramatic change of the FP oscillations amplitude emphasizes the particular importance of the PhC

termination on the coupling efficiency.

Figure 3.13(a) shows the transmission, reflection and losses spectra of the optimized supercollimating

2In the case of H-polarized light incident on an interface parallel to the y-axis, the transverse impedance is of the form
ηy = Ey/Hz .
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Figure 3.12: (a) Top view of the rib waveguide-PhC interface of the supercollimating structure. The rib
waveguide has a width W and is coupled to the supercollimating PhC, which is truncated at a distance
τ from the original PhC boundary. (b) Transmission spectra of the supercollimating structure with rib
waveguides for different PhC terminations τ=0.8a

√
2 (gray dashed line), 0.9a

√
2 (gray solid line) and

1.0a
√

2 (black solid line), calculated in 3D with the FDTD method.

device with the rib waveguides considered above. It exhibits transmission efficiencies up to about 96 %

and quasi-null reflections (below 0.2 %) at wavelengths close to 1.55 µm (a/λ= 0.200). The losses are

very similar to those found for the non-optimized structure, which is normal since they are primarily

related to the quality of the mode-profile matching between the waveguide mode and the supercollimated

beam. On the other hand, the FP oscillations have been significantly reduced, which demonstrates the

excellent impedance matching obtained at the waveguide-PhC interfaces from the truncation of the

PhC. The reflections remain particularly low over the whole wavelength range of study, which shows

that the coupling efficiency at the waveguide-PhC interface is excellent on a rather broad wavelength

range. The use of longer supercollimating PhCs would reduce the operating bandwidth of the structure

but not the maximal transmission efficiency. The steady-state amplitude of the magnetic field Hz at

a wavelength of 1.55 µm shown on Fig. 3.13(b) confirms the low reflections and dispersion experienced

at the waveguide-PhC interfaces and within the PhC. We believe that these results are truly valuable,

especially considering that all calculations have been made in 3D to take into account the out-of-plane

losses experienced by the whole device.

The results obtained here in the particular case of supercollimating PhCs can be generalized to

extended PhCs. As a matter of fact, dispersion-based effects generally require the excitation of specific

Bloch modes and here again, SOI-based rib waveguides, which support large and smooth single-modes, are

suitable. This is particularly true for graded and ultra-refractive PhCs. Most of the studies on negative

refraction PhCs have focused on lensing effects, in which case no excitation waveguide is needed. The

impedance mismatch problem is necessarily present at all interfaces between different structures and it

can be improved by structuring the interface. It is also worth noting that a single truncation may not

be adapted to all incident wavevectors. Here again, the use of large incident single-modes is a benefit

since they exhibit a smaller dispersion in reciprocal space.
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Figure 3.13: Transmission (blue solid line), reflection (green solid line) and losses (red dashed line)
spectra of the supercollimating structure with rib waveguides, calculated with the FDTD method in 3D.
The inset shows the steady-state amplitude of the magnetic field Hz at a wavelength of 1.55 µm in a top
view of a cut in the middle of the device.

Summary

This chapter has been devoted to the enhancement of the features of extended PhCs in order to have a

more flexible and efficient control over light propagation in space. We have shown that graded PhCs have

the great ability to bend light beams on the wavelength scale. We have provided a deeper understanding

on the curvature and shaping of the beam by relating these effects to the anisotropy of IFCs and strength

of the gradient. The richness of the PhCs dispersion properties provides a wealth of possibilities to control

light propagation. In a second part, we have addressed the problem of light coupling from integrated

waveguides to supercollimating PhCs by successively showing that rib waveguides can provide an excellent

mode-profile matching between the two structures, and that a truncation of the PhC boundary can

significantly improve impedance matching. Transmission efficiencies as high as 96 % and reflections

lower than 0.2 % have been obtained in this way at wavelengths close to 1.55 µm. This approach may be

applied to extended PhCs in general. The structures presented here can be fabricated on conventional

SOI platforms and operate in the near-infrared range.
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Chapter 4

An all-dielectric route to

metamaterials

Together with photonic crystals (PhCs), metamaterials (MMs) contribute to the ultimate goal of a

full control of light. Perfect lensing and electromagnetic cloaking are some of the tremendous effects

that have motivated their study. Great efforts are now being made to scale MMs down to the optical

frequencies [96,97]. Such an accomplishment would indeed make possible the development of versatile and

highly efficient technologies in various areas, including the telecommunications, medical imaging and solar

energy. Recent works [101,103–105,184–187] made a step toward this objective using high-permittivity

dielectric objects instead of metallic ones to avoid the losses and saturation effects inherent to the metal

in the optical regime [188]. Interestingly, it has been suggested recently that high-permittivity rods in

E-polarized light could exhibit both electric and magnetic resonances, possibly leading simultaneously

to a negative permittivity and a negative permeability [104, 105]. Such an achievement could have a

strong impact on the scientific community, for it would allow to design integrated lossless MMs, e.g.

double-negative structures, with only one type of simple-shaped element (a dielectric rod) instead of the

more complex metallic structures (e.g. a mix of split-ring resonators and thin wires). To our knowledge

however, no rigorous study on the electric and magnetic activities of dielectric rods has been given in the

context of MMs, preventing any deep understanding of the optical properties of rod-type structures and

thus, ruling out the possibility of using them in future technologies, especially at the optical frequencies.

This chapter is intended to gain more insight onto the optical properties of all-dielectric rod-type

structures. We will follow a bottom-up approach by giving a microscopic description of the behavior of

the individual rods to capture the electrodynamics of arrays of rods on the macroscopic scale. In Sec. 4.1,

we will show that the dielectric rods can be conceptually replaced by radiating electric and magnetic

dipoles whose explicit expressions will be derived in terms of the scattering matrix. In Sec. 4.2, we will

use these new microscopic expressions and a homogenization model to compute the effective dispersion

curves of a macroscopic square array of rods. Based on these results, we will be able to explain the

origin of photonic band gaps (PBGs) and left-handed bands in their dispersion properties. We will pay

particular attention to the scaling of these effects and the spatial dispersion of these structures. In a last

part, we will discuss some possible issues related to structural disorder and will report the observation

of 2D microscopic optical necklace states.
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4.1 Electric and magnetic dipole activities of dielectric rods

It has been known for a long time that dielectric objects under illumination can resonate in different

modes [100]. Dielectric cylinder resonators have been of great interest from the 1960’s, because they

provide a way to create compact microwave bandpass filters, transmission antennas and many other

technologies [189]. It is well-known that, for instance, the first Mie resonances of dielectric rods in E

and H-polarizations give rise to electric and magnetic dipoles, respectively. Following the introduction

of MMs, where the most challenging issue was to design resonators with a magnetic dipole activity in

the optical frequencies, O’Brien and Pendry suggested that the dielectric rods in H-polarized light could

be used to create a resonance of the effective medium permeability [101]. This artificial magnetism has

been explained on a rigorous theoretical basis some years later by Felbacq and Bouchitté [102] and has

been used recently to design invisibility cloaks in the microwave regime [190, 191]. The recent papers

by Peng et al. and Schuller et al. have now carried this idea a little further by proposing to use the

higher-order resonances of dielectric rods to create resonances of both the permittivity and permeability

of the effective medium [104,105]. It is interesting to note also that it has been suggested previously that

the magnetic dipole term of resonant objects provide the first dynamic correction to the static effective

refractive index of arrays of them [192].

In classical electromagnetism, an arbitrary distribution of oscillating currents can be expanded in

a multipole series, introducing the electric and magnetic dipoles, quadrupoles and so on. In order to

use dielectric rods as a constituent of MMs, it is necessary to consider them on the microscopic scale

as multipole resonators. In other words, the rods should be described in terms of their electric and

magnetic polarizabilities to depict their capability of producing electric and magnetic dipole moments

under external electromagnetic excitation. Although previous expressions of the electric polarizability

of dielectric rods in E-polarized fields have been given [193], the existence of a magnetic polarizability

is a novel concept that requires a deeper investigation. The scattering of light by circular cylinders can

be rigorously described by Mie theory, thereby constituting an excellent starting point to approach the

problem.

4.1.1 Scattering of light by circular dielectric rods

Let us consider a dielectric, non-magnetic rod of circular cross section C, radius R and refractive index

n =
√

ε, where ε is the relative permittivity of the rods, surrounded by air, in a cartesian coordinate

system (xyz) of origin O, where the z-axis defines the axis of the rod (see Fig. 4.1). The rod is illuminated

by a homogeneous planewave with wavevector k (k = |k| = 2π/λ), where λ is the wavelength of light

in free space. The problem is harmonic, using an implicit time dependence in e−iωt, and reduced to

two dimensions by assuming that the fields are invariant in translation along the z-axis. For the sake of

comparison with recent experimental results [104], the field is E-polarized, although a similar analysis

could perfectly be carried out for the H-polarization.

The scattered electric field Es (Es = |Es|) is defined at any point of space outside the rod as the

difference between the total and the incident fields E (E = |E|) and Ei (Ei = |Ei|), respectively. The

total electric field satisfies the homogeneous Helmholtz equation, in the sense of distributions:

∇2E + k2ε̃E = 0
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Figure 4.1: Schematic of the system under study and description of the notation used in the text.

where

ε̃ =







ε, inside the rod;

1, otherwise.

Since the incident field Ei also satisfies the homogeneous Helmholtz equation, the scattered field Es

meets the inhomogeneous Helmholtz equation

∇2Es + k2Es = k2(1 − ε̃)E

Its solution is found by using Green’s theorem [194], making it possible to describe the scattered field

(here in a vectorial form) at any point of space r outside the rod as [117]:

Es(r) =
ik2

4

∫

C

H
(1)
0 (k|r− r′|)(ε − 1) E(r′) d2r′ (4.1)

with r and r′ the observation and source points, respectively, and H
(1)
0 the zeroth-order Hankel function

of the first kind, to fulfill the radiation condition of outgoing waves. The integral is made on C only,

since (1 − ε̃) = 0 outside the rod.

The scattered field can be expanded into a Bessel-Fourier series as:

Es(r) =
∞
∑

m=−∞

bmH(1)
m (kr)eimθuz (4.2)

where θ is the angle formed by r with respect to the x-axis, bm the mth-order coefficient describing

the scattered field and uz the unit vector pointing toward the positive z-direction. Supposing that the

incident planewave propagates along the positive x-direction, the incident electric field Ei can be written

in a Bessel-Fourier series as:

Ei(r) = eikxuz = eikr cos θuz =

∞
∑

m=−∞

(i)mJm(kr)eimθuz
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where Jm is the mth-order Bessel function of the first kind.

As discussed in Sec. 1.5, the scattering matrix S relates the incident and scattered fields of a system.

In the case of circular dielectric cylinders, exact expressions of its coefficients sm = bm/(i)m (the Mie

scattering coefficients) can be found by imposing the continuity of the tangential fields on the boundary

of the rod [100]. It is found that:

sm =
Jm(knR)J ′

m(kR) − nJm(kR)J ′
m(knR)

Jm(knR)Hm(kR) − nH ′
m(kR)J ′

m(knR)
(4.3)

where primes denote derivatives. The superscript (1) of the Hankel functions has been omitted for the

sake of readability. This expression describes exactly the scattering of light by a dielectric rod in terms

of different scattering modes. These are precisely the different multipoles we are interested in. The next

step of our approach is to relate these coefficients to classical formulae of radiating dipoles.

4.1.2 Far-field matching to radiating dipoles

The electric and magnetic dipoles can be found by expanding the scattered electric field into a series of

multipoles. Since the exact charge displacements and displacement currents taking place in the rod can

complicate the approach to the problem, some approximations need to be taken. Three different length

scales can be considered: the wavelength of light λ, the spatial extension of the source, i.e. the spatial

distribution of displacement currents, and the distance from the source to the observation point. Typical

radiation problems are usually simplified by studying the radiated fields at either small or large distances

compared to the wavelength of light and the spatial extension of the source. These are respectively the

so-called near and far-field approximations. In our case, we would like to replace a rod of finite radius

by a radiating point dipole. The correct approach is therefore to take the far-field approximation, i.e. to

look at the field scattered by the rod in the far zone and find out what dipole would radiate a similar

field pattern. By doing so for the first two scattering orders, we expect to retrieve analytic expressions

of the electric and magnetic polarizabilities of the rods.

Scattered field in the far zone

First, we need to find an expression of the scattered electric field in the far zone in terms of scattering

matrix components in Eq. (4.3). The Hankel function H
(1)
m (kr) can be written using its asymptotic form

as [119]:

H(1)
m (kr) ≈

√

2

π

eikr

√
kr

e−iπ/4(−i)m

which yields

Es(r) ≈
√

2

π

eikr

√
kr

e−iπ/4

(

s0 + 2

∞
∑

m=1

sm cos(mθ)

)

uz (4.4)

where we have used the fact that s−m = sm. Let us note that this expression explicitely exhibits the

angular dependence of the different modes.

Second, the different scattering orders of (4.4) are found by developing the far-field expression of (4.1)

into a series of multipoles. It is worth noting that this technique differs from the familiar 3D multipole

expansion of the magnetic vector-potential [116] because the bidimensionality of our problem implies a

strong effect of the light polarization on the scattered field. We start by writing the Hankel function

72



H
(1)
0 (k|r − r′|) in the far zone using its asymptotic form:

H
(1)
0 (k|r − r′|) ≈

√

2

π

eik|r−r
′|

√

k|r − r′|
e−iπ/4

Further simplification is then obtained by keeping only the dominant terms of this expression for large

values of r in comparison to the wavelength λ. k|r− r′| is written in powers of 1/r and developed to the

first order via the binomial theorem:

k|r− r′| = kr

√

1 − 2
r · r′
r2

+
r′2

r2
≈ k(r − ur · r′)

where r = rur. The dependence of the scattered electric field in k|r − r′| takes place in the phase

(eik|r−r
′|) and in the amplitude (1/

√

k|r− r′|) of the Hankel function. Since slight changes of k|r − r′|
are expected to have a much stronger impact on the phase than on the amplitude, it is sufficient to keep

the zeroth-order term of the development for the amplitude term, such that
√

k|r − r′| ≈
√

kr. The

scattered electric field in Eq. (4.1) therefore becomes:

Es(r) =

√

2

π

eikr

√
kr

e−i π
4

ik2

4

∫

C

e−ikur ·r
′

(ε − 1) E(r′) d2r′ (4.5)

The multipole expansion is then introduced by writing the exponential e−ikur·r
′

in powers of the source

extension versus the wavelength:

e−ikur ·r
′

=

∞
∑

m=0

(−ikur · r′)m

m!

By inserting this expression in (4.5), we obtain the polarized multipole expansion of the electric field

scattered by a rod in the far zone:

Es(r) =

√

2

π

eikr

√
kr

e−i π
4

ik2

4

∞
∑

m=0

(−ik)m

m!

∫

C

(ur · r′)m (ε − 1)E(r′)d2r′ (4.6)

The successive terms of Eq. (4.6) can now be identified with the classical dipole radiation fields at large

distances, and related to the different orders of the scattering matrix in Eq. (4.4).

Electric dipole

The electric dipole is the first term appearing in a multipole expansion of radiating fields, corresponding

to the order m = 0 in Eqs. (4.4) and (4.6). The latter equation becomes:

Es
0(r) =

√

2

π

eikr

√
kr

e−i π
4

ik2

4

∫

C

(ε − 1)E(r′)d2r′ (4.7)

By definition, the electric dipole moment (per unit length) is given by [116]:

p =

∫

C

P(r′)d2r′
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with P = ε0(ε − 1) E, the polarization density and ε0 the free space permittivity. Equation (4.7) can

therefore be written as:

Es
0(r) =

√

2

π

eikr

√
kr

e−i π
4

ik2

4

p

ε0

which yields, by equating this expression with the zeroth-order term of Eq. (4.4):

p

ε0
=

4s0

ik2
uz (4.8)

The electric polarizability tensor ¯̄αe is defined by p = ε0 ¯̄αeEi. Since the incident electric field has

been normalized to unity, the electric polarizability of the dielectric rod in the case of E-polarization is:

αe
zz =

4s0

ik2
(4.9)

It can be shown that the electric polarizability obtained from this formula compares remarkably well

with that using Eq. (11) of Ref. [193] (a time dependence in eiωt was used, so that the complex conjugates

of the scattering coefficients have to be taken). Naturally, Eq. (4.9) can also be applied to rods with

a complex permittivity ε = ε′ + iε′′, a negative permittivity ε < 0 as well as to metallic rods when ε

tends toward −∞. The strong point of this relation is its simplicity and reliability, noting also that all

resonances of the electric dipole are taken into account, not only the lowest one. As we will see in the

next section, this property has a particular importance for the calculation of higher-order bands in the

photonic band structure of periodic arrays of rods.

Magnetic dipole

Similar steps can now be carried out to derive the magnetic polarizability of dielectric rods. The first-

order term of Eq. (4.6) can be written as:

Es
1(r) =

√

2

π

eikr

√
kr

e−i π
4

ik2

4
(−ik)

∫

C

(ur · r′) (ε − 1)E(r′)d2r′ (4.10)

The magnetic dipole moment per unit length is given by [116]:

m =
1

2

∫

C

r′ × J(r′)d2r′

with J = ∂P/∂t the current density, which, considering a time dependence in e−iωt, becomes J =

−iωε0(ε − 1)E = −ik
Z0

(ε − 1)E, where Z0 =
√

µ0/ε0 is the free space impedance and µ0 the free space

permeability. Equation (4.10) can therefore be written as:

Es
1(r) =

√

2

π

eikr

√
kr

e−i π
4

ik2

4
Z0

∫

C

(ur · r′) J(r′)d2r′

This expression can be simplified by using the triple product rule, (ur · r′) J(r′) = r′(ur · J(r′)) − ur ×
(r′ × J(r′)). We note in particular that ur and J(r′) are orthogonal to each other, so that their scalar

product equals zero. Because of the translational invariance of the fields imposed along the z-axis, the

electric quadrupole and magnetic dipole contributions to the scattered electric field cannot be separated

74



as in 3D. After this simplification, and placing ur out of the integral, we obtain:

Es
1(r) =

√

2

π

eikr

√
kr

e−i π
4

ik2

4
Z0

(
∫

C

r′ × J(r′)d2r′
)

× ur

=

√

2

π

eikr

√
kr

e−i π
4

ik2

4
2Z0m × ur

which, by equalization with the first-order term of Eq. (4.4), yields:

Z0m × ur =
4s1

ik2
cos θuz (4.11)

In the case of E-polarized light propagating along the positive x-direction and for a magnetic dipole on

the y-axis, Eq. (4.11) becomes:

Z0m =
−4s1

ik2
uy (4.12)

The corresponding magnetic polarizability tensor ¯̄αm, defined by m = ¯̄αmHi, where Hi = Ei/Z0 is the

amplitude of the incident magnetic field, therefore equals:

αm
yy =

4s1

ik2
(4.13)

This expression shows that dielectric rods in E-polarized fields exhibit a true magnetic dipole moment,

due to the field-induced response of the rods and not to their magnetization (the relative permeability µ

of the rods has been set to unity). This rigorous theoretical demonstration constitutes a solid basis for

the investigation of the capability of arrays of dielectric rods to produce a dispersive permeability. Before

moving on to the macroscopic scale, we have to check that the electric and magnetic dipole coefficients

are sufficient to describe the optical properties of arrays of rods.

4.1.3 Resonances of high refractive index rods

Describing the optical properties of a collection of rods with only their first two Mie scattering coefficients,

s0 and s1, supposes that these are significantly more important than the higher-order coefficients. High

refractive indices have the advantage of placing the working frequency range in the long wavelength limit

(typically close to the lower-frequency magnetic dipole resonance), but also they increase the quality

factor of the rods, sharpening their resonance peaks and thus reducing their probability to overlap.

Figure 4.2 shows the complex moduli of the s0, s1 and s2 coefficients of rods of permittivity ε = 600 as

a function of the normalized frequency R/λ and the amplitude of the scattered electric field at different

resonance wavelengths. Except at the resonance frequencies of the s2 (and higher-order) coefficients, the

s0 and s1 coefficients dominate the optical response of the individual rods. The s0 coefficient remains

particularly large between consecutive resonances, exhibiting a rather weak electric field localization.

This suggests that it plays the key role in the optical properties of the structure. The s1 coefficient on

the other hand is much more spectrally localized, also strongly confining the light to the rod, and thus is

expected to yield dramatic modifications of light propagation in very narrowband frequency ranges. The

existence of the magnetic dipole along the y-direction can be explained by the two electric field lobes of

opposite signs at the resonance of the s1 coefficient, which create strong counter-propagative currents in

the dielectric rod. The resonance of the s2 coefficient is also very sharp and occurs at frequencies close to

the second resonance of the s0 coefficient, which will probably slightly perturb the propagation of light

in a small frequency range. Based on these observations, we can confidently say that considering the
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Figure 4.2: (a) Complex moduli of the s0 (blue solid line), s1 (green solid line) and s2 (red solid line) Mie
scattering coefficients of a circular rod of radius R and permittivity ε = 600, in logarithmic scale versus
the normalized frequency R/λ. (b) Amplitude of the electric field scattered by the high-permittivity rod
Es at the normalized frequencies R/λ = 4.65 10−3 (1), 25.8 10−3 (2), 15.6 10−3 (3) and 24.9 10−3 (4).

electric and magnetic dipole activities of rods is sufficient to describe the main features of the optical

properties of arrays of such rods.

4.2 All-dielectric rod-type metamaterials operating at optical

properties

Describing the macroscopic properties of arrangements of microscopic resonators involves one of the most

fundamental aspect of MMs, which is their homogeneity. Although composed by a set of microscopic

elements, a MM is said to be homogeneous when it can be described by some effective macroscopic

parameters, a permittivity and a permeability. The homogeneous regime commonly refers to the long

wavelength limit, where the wavelength of light λ is much larger than the characteristic length of the

MM, e.g. the lattice periodicity in the case of periodic structures. In this way, light in the MM only

“sees” a spatially averaged medium and not a discretized set of scatterers. Following this definition, it

has been well accepted among the scientific community that PhCs do not belong to the class of MMs

because their lattice periodicity is precisely of the order of the wavelength of light (the inhomogeneous

regime) [24, 195, 196]. In Chapter 1, we made a distinction on the definitions of PhCs and MMs, being

that the former rely on periodicity effects and the latter on a collective response of coupled resonators.

Dielectric rods have been a building block of early (rod-type) PhCs, yet they exhibit both electric and

magnetic dipole resonances, just like the most typical resonators in metallic MMs. This leads us naturally

to the question: can arrays of dielectric rods be defined as MMs in the strict sense of the term?

In order to be able to treat them as homogeneous media, previous studies on all-dielectric MMs

have used high refractive indices to place the Mie resonances in the long wavelength limit [103–105,187].

Various facts can however cast doubt upon this necessity. The first one is the simple remark that even

metallic MMs are more and more being used in the region λ/a ≈ 2, where a is the lattice periodicity [197].

This is the actual range of operation of PhCs, which actually denotes the greater importance of coupled

76



resonances over homogeneity. Moreover, previous studies on spheres and rods of moderate refractive

indices (e.g. silicon) have observed a correlation between the Mie resonances of their individual elements

and the opening of photonic band gaps (PBGs) in arrays of them [198–200]. Some of these PBGs have

also been shown to be only weakly perturbed when structural disorder was introduced [201]. These

phenomena, typical of MMs, occur in the inhomogeneous regime. They are not inherent to the lattice

periodicity but precisely to coupled resonances. Based on these observations and our previous conclusions,

it is tempting to suggest that all-dielectric rod-type structures, even in the inhomogeneous (PhCs) range,

may be defined as MMs in the strict sense of the term. We can already predict that this would be subject

to the condition that the electric and magnetic dipole activities of the rods would be predominant over

periodicity effects. To verify this idea, we will follow the classical bottom-up approach of MMs, which

consists of homogenizing a set of microscopic resonators (the dielectric rods in our case) to retrieve the

macroscopic parameters of the effective medium.

4.2.1 Optical properties of square arrays of rods

The arrival of MMs in the common scientific knowledge came along with a few intuitive methods of

homogenization capable of retrieving effective material parameters quite accurately. The S-parameter

retrieval technique [202] consists of matching the reflection and/or transmission coefficients of a finite-size

or semi-infinite structure to a homogeneous medium of the same dimension. Although this technique

has been proved to be reliable in many cases, it fully relies on the existence of a boundary between

the MM and free-space. The electric permittivity and magnetic permeability of a continuous medium

are, by definition, macroscopic parameters related to the bulk structure and in this sense, it should

not involve boundary effects. It becomes very useful, however, when comparison to or prediction of

experimental results on real-world structures is needed. On the same level, the field averaging technique

has also met a great success [203]. The local field is spatially averaged to yield a set of macroscopic fields,

which, using the constitutive relations of electromagnetic fields, make it possible to retrieve the effective

parameters of the medium. This approach can be simply implemented on planewave expansion (PWE),

finite-difference time-domain (FDTD) or finite-element (FE) methods. O’Brien and Pendry also adapted

it to Mie scattering theory to find an approximate analytical expression of the effective permeability of

arrays of dielectric rods in H-polarization [101].

The S-parameter retrieval and the field averaging techniques are both very well adapted to design

and optimization studies since they do not focus on the properties of the invidual resonators but on the

array of resonators as a whole, and thus make it possible to study very complex structures. In our case,

however, we know about the properties of the individual resonators and we would like to study how they

interact and collectively behave. The more classical homogenization techniques therefore seem to better

fit these requirements. The concept of homogenization has first seen the light in the nineteenth century

with the works of Lorenz, Lorentz, Clausius, Mossotti and Lord Rayleigh and later with those of Maxwell-

Garnett and Bruggeman [204]. Their common objective was to describe the macroscopic properties of

a medium from those of its constituents and their relative fractions. The Clausius-Mossotti (Lorenz-

Lorentz) formula relates the polarizability of the individual microscopic elements to the permittivity

of the medium and the Maxwell-Garnett mixing rule defines an effective permittivity directly from the

permittivity of its constituents. These formulae have been adapted, for example, to retrieve the effective

permittivity and permeabillity of arrays of high-permittivity spheres with and without a polaritonic

dispersion [103,185,186]. Recently, various papers [205,206] adopted an approach based on the Lorentz

theory [207]. It basically relies on a multiple-scattering scheme similar to that described in Sec. 1.5,

77



describing the interactions of neighboring scatterers on an individual scatterer via the introduction

of interaction fields. This approach is particularly appealing because it captures the electrodynamics

of composite media in a very intuitive way. This approach has been used to study electromagnetic

interaction with 2D arrays of conducting disks and 3D arrays of arbitrary resonators (e.g. split-ring

resonators) among other types of structures. Here, we will use a nonlocal homogenization model recently

proposed by Silveirinha [193], which applies specifically to square arrays of rods. The term “nonlocal”

points out some spatial dispersion, or anisotropy effects, which can be taken into account.

Homogenization model

Let us first draw the main lines of this method. We consider a 2D square array of identical microscopic

scatterers (the rods) with electric and magnetic polarizabilities ¯̄αe and ¯̄αm, respectively. Since this tech-

nique relies on the use of dipole terms only, the cross-section of the scatterers should be small compared

to the lattice periodicity and the wavelength should be large compared to these two dimensions. In this

limit, the external electric and magnetic macroscopic fields, E and H, applied on the dielectric medium

can be approximated as uniformly distributed in space and thus, represented as spatially averaged fields.

The homogenization process means to replace the array of scatterers by a continuous medium with rela-

tive permittivity ¯̄ε and permeability ¯̄µ. The corresponding average electric displacement D and magnetic

induction B are given by:

D = ε0E + P = ε0 ¯̄εE (4.14a)

B = µ0(H + M) = µ0 ¯̄µH (4.14b)

where P = Np and M = Nm are the average polarization density and magnetization of the medium,

N the density of dipoles and p and m the electric and magnetic dipole moments of the individual

microscopic scatterers embedded in the composite medium. The net field that effectively polarizes a

single scatterer, located at the origin of the coordinate system, is the sum of the average applied field

plus the fields radiated by all the neighboring scatterers. These interaction fields, denoted Eint and Hint,

are proportional to the dipole moments and may be expressed via some interaction constants ¯̄Ce and
¯̄Cm as Eint = ¯̄Cep/ε0 and Hint = ¯̄Cmm. The electric and magnetic dipole moments of the scatterer

located at the origin can then be written as:

p = ¯̄αeε0(E + Eint) =
ε0 ¯̄αe

1 − ¯̄Ce ¯̄αe
E (4.15a)

m = ¯̄αm(H + Hint) =
¯̄αm

1 − ¯̄Cm ¯̄αm
H (4.15b)

Using Eq. (4.15) and Eq. (4.14), we find an expression for the effective permittivity and permeability of

the composite medium:

¯̄ε = 1 + N
¯̄αe

1 − ¯̄Ce ¯̄αe
(4.16a)

¯̄µ = 1 + N
¯̄αm

1 − ¯̄Cm ¯̄αm
(4.16b)

We understand at this point that once the polarizability of the scattering elements of a composite

medium is known, the remaining step is to derive the interaction constant. This derivation has been

clearly described by Silveirinha in the case of square array of rods (assuming a time dependence in eiωt)
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in Ref. [193]. In what follows, we use the following expression for the interaction constant:

C = k2

(

i

4
+

1

2π
ln

(

ka

4π

)

+
γ

2π
+

1

12
+

∞
∑

n=1

1

π|n|
1

e2π|n| − 1

)

where γ is the Euler constant. This expression of the interaction constant is an approximation taken in

the long-wavelength limit and under the condition that the cross-section of the rods is much smaller than

the lattice constant. It also does not take into account the full interaction of dipoles out of the normal

to the propagation plane (i.e. out of the z-axis), this would require further investigation. Note however

that our purpose here is not to reconstruct accurately the dispersion curves of an array of dielectric rods

but to show that arrays of dielectric rods can be treated as metallic MMs and that similar effects can be

obtained. This expression of the interaction constant is sufficient for the sake of the demonstration.

Before moving on, it is also worth noting that the expressions of ¯̄ε and ¯̄µ in Eqs. (4.16) neglect the

existence of cross-polarized coupling between magnetic and electric dipoles. Since this coupling originates

from the interaction fields only, it is intrinsically small and thus should not influence significantly our

results. Examples of the derivation of cross-coupling interaction constants can be found in Refs. [207,208].

Effective dispersion curves

We are now equipped to calculate the effective parameters of square arrays of dielectric rods using the

electric and magnetic polarizabilities found in Sec. 4.1. We apply the nonlocal homogenization technique

described above in the approximation of wavevectors close to the Γ-point and in the long-wavelength

limit on a square array of rods of permittivity ε = 600 and radius R = 0.68a/3, where a is the lattice

periodicity. For the sake of comparison, this structure is similar to the one studied by Peng et al. [104].

In the case of light propagating along the x-direction (this is, of course, an arbitrary direction), only

the εzz and µyy components are required to define the effective index of the material neff =
√

εzzµyy.

The calculated effective permittivity and permeability, plotted in Fig. 4.3(a), exhibit strong resonances,

owing to the electric and magnetic dipole resonances of the individual rods. This shows especially that

arrays of rods in E-polarized light indeed exhibit a magnetic activity. It should also be remarked that

the effective permittivity matches exactly its static limit obtained from the classical mixing formula in

nondispersive media [204], εzz = fε + (1 − f) ≈ 98, where f is the filling fraction of the rods.

The photonic band structure of the effective material can now be calculated by using the dispersion

relation kx = neffω/c and compared with that of the corresponding array of high-permittivity rods

calculated in 2D with the PWE method. The dispersion curves shown in Fig. 4.3(b) are in excellent

agreement, especially at wavevectors close to the Γ-point, which was an approximation that we initially

took. The noticeable differences are the degeneracy of the second band at the Γ-point, which is due

to the symmetry of the magnetic dipole, and the extremely flat dispersion curve at a/λ ≈ 0.11, which

results from the resonance of the s2 Mie scattering coefficient. Similarly, a study of higher-order bands

shows that the dispersion curves that appear in the photonic band structure can be attributed to the

resonances of the rods.

Thus, apart from symmetry degeneracies and higher-order resonances, which have not been taken

into account here, the main features of the photonic band structure of the square array of rods are well

reproduced. The first and second PBGs both originate from the first electric dipole resonance of the

rods, corresponding to a frequency region of negative permittivity. The magnetic dipole resonance of the

rods creates a resonance of the effective permeability, which takes negative values at reduced frequencies

a/λ ≈ 0.07 and result in the creation of a left-handed dispersion curve that intersects the original PBG.
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Figure 4.3: (a) Real parts of the effective permittivity εzz (blue solid line) and permeability µyy (green
solid line) of a square array of rods (R = 0.68a/3, ε = 600) versus the reduced frequency a/λ. (b)
Dispersion curves of the PhC along the ΓX direction of the square array of rods, calculated with the
PWE method (blue dashed lines) and using the effective material parameters (black solid lines). The
right-handed (RH) and left-handed (LH) nature of the curves is indicated on the photonic band structure.

When occuring in the frequency range of a right-handed dispersion curve (ε > 0), a resonance of the

permeability (µ < 0) would yield the opening of a PBG. This is actually what happens in arrays of high-

permittivity rods in H-polarization [101]. Our results make it clear that the optical properties of periodic

arrays of rods result from the collective response of the resonant rods, which rigorously demonstrates the

ability of arrays of dielectric rods to control light in a similar way as metallic MMs.

4.2.2 Scaling to the optical frequencies

Due to the increasing interest in developing MMs for the optical frequencies, it is now important to

investigate the scaling properties of these structures. Previous studies have limited their work to high-

permittivity rods to place their resonances in the homogeneous regime (λ ≫ a, R) and prevent them from

exhibiting a strong spatial dispersion [104,105,184]. Our theory provides additional information on this

subject. As shown above, the electric and magnetic dipole activities of dielectric rods are intrinsically

related to their Mie scattering coefficients. The scaling properties of rod-type structures may therefore

be understood from the dependence of these coefficients with the permittivity ε of the rods and the free

space wavelength λ. Figure 4.4 shows the complex moduli of the electric (s0) and magnetic (s1) dipole

coefficients of the rods with respect to their refractive index n =
√

ε and to the wavelength-to-radius

ratio λ/R. In the range of study, the resonance wavelengths exhibit a quasi-linear dependence with

the refractive index of the rods. For relatively large refractive indices, the resonances indeed scale with

the optical size of the rods (nR being their optical radius). The magnetic dipole resonance observed in

rods of permittivity ε = 600 (n ≈ 24.5) at reduced frequencies a/λ ≈ 0.07 (λ/R ≈ 63) can be shifted to

a/λ ≈ 0.5 (λ/R ≈ 8.8) by using rods of permittivity ε = 12 (n ≈ 3.5). By calculating the complex moduli

of the higher-order Mie scattering coefficients, we can show that this permittivity is sufficiently high for

the s0 and s1 coefficients to remain dominant over the higher-order coefficients up to the first resonance

frequency of the s2 coefficient at R/λ ≈ 0.17. The left-handed behavior in particular is expected to hold.
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Figure 4.4: Complex moduli of the s0 (a) and s1 (b) Mie scattering coefficients of dielectric rods with
radius R as a function of their refractive index n =

√
ε and the wavelength-to-radius ratio λ/R.

Photonic band structures

This is verified by comparing the photonic band structures of the two structures with rods of permittivity

ε = 600 and ε = 12, calculated in 2D with the PWE method. Results are shown in Fig. 4.5. The optical

properties of the lowest bands of both structures clearly exhibit the same features. The left-handed

curves (in green) lying at reduced frequencies a/λ ≈ 0.07 are pushed up to a/λ ≈ 0.5, as expected.

Its broadening is due to the lower quality factor of the rods and a stronger interaction between them,

naturally following the decrease of their refractive index [198]. This is an advantage for practical reasons

since it broadens the operating bandwidth of the structure in the left-handed frequency range and

increases the coupling efficiency. It is commonly believed that the second PBG comes from the s1 Mie

resonance of the rods [201]. Our analysis shows that it is actually the continuation of the PBG created

by the electric dipole resonance. This “second” PBG is much smaller than before, reduced by the higher-

order band, which corresponds to the permittivity of the effective medium going back to positive values.

It is found at lower frequencies precisely because the resonances of the rods are much weaker, resulting

in a resonance of the permittivity of a smaller amplitude and thus, in a narrower PBG (more discussion

is given below). At higher frequencies, this right-handed band is Bragg diffracted and strongly perturbed

by the s2 resonance of the rods at a/λ ≈ 0.75.

Iso-frequency curves

To go further with our scaling analysis, we plot the iso-frequency curves (IFCs) of the high and low

permittivity structures for both the right- and left-handed dispersion curves. We concentrate on the

central region of the Brillouin zones, where periodicity effects are avoided. The IFCs of the two structures

shown in Fig. 4.6 are very similar to each other. The right-handed bands, which delimit the negative

permittivity PBG, have a very isotropic response. They only rely on the electric dipole activity of the

rods and do not seem significantly influenced by the structure of the lattice. On the contrary, the left-

handed band, which depends on both the electric and magnetic dipole activities of the rods, exhibits a

strong spatial dispersion even at wavevectors close to the Γ-point. This observation notably supports

previous studies, affirming that large wavelength-to-period ratios do not necessarily result in an isotropic
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Figure 4.5: Photonic band structures of a square lattice of rods with radius R = 0.68a/3 and permittivity
ε = 600 (a) and ε = 12 (b). The left-handed curve, resulting from the magnetic dipole resonance of the
rods within the negative permittivity PBG, is highlighted is green solid lines.

MM [209–211]. In the electrodynamics of continuous media, it is known that the first-order spatial

dispersion is inferred by the magnetic dipole activity of the medium [11]. In fact, spatial dispersion

naturally arises as soon as higher-order terms in the multipole expansion of the electric field in powers

of a/λ are considered (the magnetic dipole is quadratic in the wavevector k). The symmetry of the

structure plays a central role in the spatial dispersion of the MM in the left-handed frequency range

precisely because nonlocal effects are very sensitive to structural changes. Being in the long-wavelength

limit, and thus, using high refractive index objects, is absolutely not a sufficient condition to ensure the

isotropic response of a MM.

Going back to our initial hypothesis, we have shown that arrays of high-permittivity rods are indeed

MMs in the strict sense of the term, exhibiting resonances of both the effective permittivity and per-

meability, and further that these effects are not a matter of large wavelength-to-period ratio but simply

of interacting resonances. Therefore, we suggest that collections of dielectric rods may be defined and

used as MMs as long as the effects of microscopic resonances predominate over periodicity effects. These

results constitute an original point of view on the optical properties of rod-type PhCs. The different steps

described above may be carried out for the dielectric rods in H-polarized fields but may also be applied

to metallic rods, thereby opening many perspectives for future works.

True left-handed behavior at near-infrared wavelengths

To illustrate the capability of the all-dielectric MM to exhibit a true left-handed effect at the optical

frequencies, we perform a 2D fullwave calculation of an E-polarized field at the reduced frequency

a/λ = 0.45 incident on the structure at an angle of 20◦, with the 2D FDTD method. The steady-state

amplitude of the electric field is shown in Fig. 4.7, together with the corresponding IFC. The phase of

the field propagating in the MM is found to be in an opposite direction compared to that of the field in

free space, which indicates, as expected, a left-handed behavior. It is quite remarkable to see the field

propagate as in a homogeneous medium. The magnetic dipole resonances of the rods are also clearly

visible, which supports the idea that the left-handed effect is due to a collective response of coupled

dipoles. This effect can be tuned to the telecommunication wavelengths (λ ≈ 1.55 µm) by using rods

of refractive index n ≈ 3.5 (e.g. silicon), radius R ≈ 160 nm and a lattice of periodicity a ≈ 700
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Figure 4.6: IFCs of a square lattice of rods with radius R = 0.68a/3 and permittivity ε = 600 (a-c)
and ε = 12 (d-f), on the first Brillouin zone of the reciprocal lattice (wavevectors from −0.5 (2π/a) to
0.5 (2π/a), not displayed for better readibility). The reduced frequencies a/λ, given in ascending order
following the rainbow colors from violet to red, range from (a) 0.005 to 0.035 in steps of 0.005, (b) 0.065
to 0.073 in steps of 0.001, (c) 0.111 to 0.117 in steps of 0.001, (d) 0.05 to 0.25 in steps of 0.05, (e) 0.39
to 0.49 in steps of 0.01, and (f) 0.56 to 0.68 in steps of 0.01.

nm. Since the experimental techniques to fabricate and characterize silicon rod-type PhCs have already

been developed [212, 213], we believe that silicon could be a constituent of the early all-dielectric MMs

operating in the optical range. From a general point-of-view, the resonances of dielectric rods offer a

control over the electric and magnetic response of rod-type structures, but it is worth noting that they

cannot be tuned independently. In order to use rod-type MMs in applications such as electromagnetic

cloaks, one may think of changing the shape of the cylinders in different regions of the structure in a

way to generate different resonances.

In view of future experiments on all-dielectric MMs, it is finally important to discuss the effect of

disorder on their optical properties. It is often said that MMs are insensitive to structural disorder, owing

to the large wavelength-to-period ratio usually employed and the fact that the optical properties of these

structures rely on the resonances of their individual elements and not to their periodicity. Peng et al.

have made the prism experiment with a disordered rod-type structure and indeed observed a left-handed

behavior [104]. Recent studies have however shown that the left-handed properties of metallic MMs

could be significantly reduced and eventually suppressed with disorder [214, 215]. Clearly, it would be

interesting to know if such effects also occur in all-dielectric rod-type MMs. The propagation of light is

disordered structures is, by itself, a complex problem, yielding a vast range of optical phenomena [216]

such as strong or weak localization of light, and should therefore be handled with care. Based on our

understanding of the principles of light propagation in periodic structures, we can still make a number

of hypotheses to explain certain experiments and predict various phenomena qualitatively.
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Figure 4.7: (a) Steady-state amplitude of the electric field of an E-polarized field at a reduced frequency
a/λ = 0.45 incident at an angle of 20◦ on the low-permittivity MM, scaled to a wavelength λ = 1.55 µm.
The white arrows indicate the phase velocity directions of the incident planewave and of the propagating
mode in the MM. (b) IFCs of the light cone (blue dashed line) and of the rod-type MM (black solid line)
in the first Brillouin zone of the square lattice. The blue and black arrows define the wavevectors of the
incident planewave and of the propagating mode in the MM, respectively. The gray solid line represents
the conservation of the tangential component of the wavevector at the coupling interface (along the
y-direction in this case).

4.2.3 From periodicity to randomness

Disordered arrangements of rods have been studied many years ago in the context of PhCs especially

to know how sensitive their PBGs are to disorder [217, 218]. These studies have been motivated on

an experimental point of view by the fact that fabrication processes always involve some imperfections.

Very rapidly, it has been shown that PBGs in arrangements of dielectric rods were not significantly

sensitive to structural disorder because they rely on the Mie resonances of the rods and not on Bragg

scattering effects. On the other hand, changing the refractive index of the rods or their size modifies

their resonance wavelengths and thus ruins the initial optical properties of the structure. In the context

of MMs, this observation has been made by Felbacq and Bouchitté [219] on high-permittivity rods in the

H-polarization and by Zharov et al. [215] on 3D arrays of split-ring resonators. To approach the problem

on the macroscopic scale, let us bring out two main factors that may come into play when structural

disorder is introduced: the density of rods and their position.

Disorder in rod-type structures

The effect of the rod density on the macroscopic properties of rod-type structures can be captured directly

from the definition of the permittivity and permeability of the effective medium in Eqs. (4.16), via the

dipole density N and the interaction constant C (a higher density increases the interaction between the

rods). Decreasing (and inversely increasing) the density of rods results in a weaker collective response

and resonances of the permittivity and permeability of a smaller amplitude. As a consequence, the edges

of the negative permittivity PBG (i.e. the lower edge of the first PBG and the upper edge of the second

PBG) are slightly pushed down to lower frequencies and the bandwidth of the left-handed dispersion

curve becomes narrower.

Disordered structures are made by regions of different densities, where the coupling between the rods

and thus the local behavior of light varies in space. Locally changing the density of a structure can be

advantageous for various purposes. For example, arbitrary-shaped waveguides have been designed in
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disordered PhCs by creating linear defects of lower density compared to the surrounding structure [220].

Most of the applications now try to minimize disorder. The nearest-neighbor distance is defined with a

certain dispersion, which partly depicts the amount of disorder in the structure. The acceptable limit

depends on the desired effect. When the disorder is too important, PBGs can be entirely closed, filled

by “defect” modes that result from different coupling strengths in different parts of the structure. This

effect is expected to be reduced in quasi-periodic structures because their density dispersion is small

(see e.g. Ref. [201], where it is suggested that PBGs are sustained as long as a certain filling ratio is

exceeded). The effect of disorder on the dispersion curves may be interpreted in a similar way. In their

experiment, Peng et al. [104] have supposed a uniform distribution of the distance between neighboring

rods from about 0.6a to 1.2a, where a is the lattice parameter of the initial periodic structure. All of

these densities are sufficiently large for the resonance of the permeability to hold so that light is actually

free to propagate through all parts of the MM. We will see below that this simplified picture of disordered

structures is actually not as simple as it appears here.

Remaining on the macroscopic level of description, the position of the rods is now another factor that

needs to be considered. As we have seen above, the spatial dispersion in periodic structures is inherent

to the magnetic dipole activity of the rods. The electric dipole is directed along the normal to the

propagation plane and thus, exhibits no preferential direction in this plane. The right-handed dispersion

curves, which only rely on the electric dipole activity of the rods, are consequently quite insensitive to

positional disorder. This effect is also observed in arrangements of metallic rods where it has been shown

that the cut-off frequency is not related to the periodicity of the structure but to the average distance

between the rods (i.e. to their density) [221]. The magnetic dipole of a rod, on the other hand, lies in the

propagation plane of the structure and thus is locally more sensitive to the position of the neighboring

rods. Disorder is however known to make disappear preferential directions, so that the absolute lack of

symmetry would actually make the spatial response of the structure more isotropic on average.

Altogether, we expect the left-handed behavior observed in all-dielectric rod-type structures to be

sustained up to a relatively high amount of disorder, with the general remark though that heterogene-

ity should be avoided as much as possible. In this regard, quasi-periodic structures are interesting, for

they preserve a relatively low dispersion of the nearest-neighbor distance and lack of rotational and

translational symmetry. In fact, negative refraction has been observed experimentally in quasi-periodic

structures [222]. More recent studies have also noted the importance of short-range interactions associ-

ated with local order and symmetry [223]. Our theoretical analysis above may provide some insight onto

these effects. The question of how light behaves on the microscopic scale is indeed much more subtle.

Owing to the directionality of the magnetic dipoles and the existence of a negative permittivity PBG,

disordered structures can possibly yield quite atypical optical effects. It is therefore worth looking at the

microscopic behavior of light in disordered rod-type structures into more details.

2D microscopic optical necklace states

To investigate this point, we consider a set of 135 high-permittivity (ε = 600), non-overlapping rods

randomly disposed in space. Light is emitted at a wavelength close to the magnetic dipole resonance

of the rods (λ/R ≈ 63) from a point source placed above the disordered structure. The norm of the

electric field, calculated with the 2D FE method is shown on Fig. 4.8. Light is found to extend over

the entire structure in the form of a complex network of coupled resonances. The nodes of the electric

field let us distinguish clusters of aligned magnetic dipoles connecting different regions of the structure.

Thus, in spite of the disorder, light can easily be transported from one end of the structure to the other.

Because of the negative permittivity PBG of the effective medium, the only way light can propagate
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Figure 4.8: Norm of the electric field emitted by a point source placed above a disordered all-dielectric
rod-type structure. The clusters of aligned magnetic dipoles, such as that shown on the magnified view
in the inset, may be assimilated to 2D microscopic necklace states.

is by using the inner magnetic dipole resonances of the rods. This observation emphasizes the role of

these resonances in the electrodynamics of rod-type structures in the left-handed frequency range. These

“chains” of resonances also bring to light a theoretically predicted but still unobserved (in 2D) optical

effect.

In 1987, Pendry described some counter-intuitive transport properties of electrons in strongly disor-

dered systems where the conduction is no longer dominated by single localized states but by hybrid, delo-

calized states, which he called necklace states, because they were formed by chains of energy-degenerate

resonances [224]. A few years ago, Bertolotti et al. showed that similar effects exist for photons by

reporting the observation of optical necklace states in 1D disordered structures [225]. To our knowledge,

however, there has been no evidence of optical necklace states in 2D and 3D structures up to now.

We believe that the modes shown above in 2D disordered rod-type structures can be assimilated to 2D

microscopic optical necklace states. The high-quality factor rods resonate at the same frequency and

hybridize to create extended modes, making it possible for the light to propagate. This effect also occurs

at nearby frequencies since the random disposition of the rods results in different coupling strengths and

consequently in necklace modes of different frequencies.

This finding actually provides a great opportunity to study 2D optical necklace states experimentally

and perhaps make progress on the understanding of the electrodynamics of disordered photonic struc-

tures. Moreover, it may be worth investigating the role of optical necklace states in random lasers [226],

as it has been shown that extended modes can provide high-efficiency and spectrally narrow lasing

modes [227,228]. Random lasing has recently been demonstrated experimentally in disordered 3D opals
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that exploit the Mie resonances of the spheres to transport light [229]. This original result, together with

our recent theory on rod-type structures, shows that the idea of using collections of resonant objects to

transport light extends far beyond the exciting field of MMs.

Summary

In this chapter, we have provided some novel theoretical insight onto the propagation of light in collections

of dielectric rods. We have given a rigorous proof that dielectric rods in E-polarized fields in the

long-wavelength limit could be conceptually replaced by radiating electric and magnetic dipoles. The

optical properties of square arrays of such rods have been shown to rely intrinsically of these resonances

and be described on the macroscopic scale by dispersive permittivity and permeability. In this way,

we have demonstrated the fact that collections of rods could be considered exactly as metallic MMs.

Interestingly, they have been found to exhibit a true left-handed behavior, resulting for simultaneously

negative permittivity and negative permeability. By changing the refractive index of the rods, we have

shown that it is possible to scale these effects to the optical frequencies. We have also noted that spatial

dispersion is inherent to the magnetic dipole activity of the rods and thus, cannot be reduced by placing

the resonances of the rods in the long-wavelength limit. The effect of disorder has been qualitatively

analyzed. On the macroscopic scale, the optical properties of rod-type structures are expected to hold

as long as the density of rods has a low dispersion. On the microscopic scale, we have seen that light

in the magnetic response frequency range is transported by the formation of chains of resonances, which

have been identified as 2D microscopic necklace states, opening some perspectives for future studies.
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Conclusion

This thesis has been concerned with the study of the optical properties of photonic crystals and metama-

terials to provide reliable solutions for an advanced control over light, while aiming at realistic designs

from a technological point of view. Nanostructured materials offer a broad panel of different ways to

manipulate electromagnetic fields. The work presented here considers several of them.

One particularly interesting aspect of photonic crystals is their ability to confine light to structural

defects. In Chapter 2, we have focused on the design of cavities and waveguides in opal-based photonic

crystals, motivated by the fact that they can be reproduced on large scales, at low cost and with a high

quality. Various ways to reach this objective have been envisaged. First, we have shown that monolayers

of spheres with a superlattice of defects could exhibit a photonic band gap below the light line and have

proposed the designs of a L3-like cavity and of a W1-like waveguide. These effects require a refractive

index higher than 1.9, which may be obtained with titania spheres, or higher-refractive index materials,

e.g. silicon, after a double inversion process. In the case of a complete PBG, as in silicon inverse

opals, the whole difficulty lies in the design of defects with suitable modes. This can be addressed by

using 2D-3D heterostructures, which provide more tunability on the optical properties of the structure.

By optimizing the parameters of the 2D layer, we could design a waveguide in an inverse opal-based

heterostructure with a single-mode waveguiding bandwidth of 128 nm centered on 1.55 µm, which is an

improvement of better than 70 % compared to previous studies. In a last part, we have put forward the

idea that the confinement of light in purely 3D inverse opals could be understood from the study of their

2D cross-sections, which is a clear advantage since such an approach requires much less computational

efforts than full 3D calculations. By applying this concept, we have designed a single-mode resonant

cavity and different single-mode waveguides, including one with a single-mode waveguiding bandwidth of

110 nm centered on 1.55 µm. Both types of defects may be fabricated by direct laser writing on a single

inverse opal, which is a first in the literature. Our approach may also be extended to different directions

to make full use of the three-dimensionality of the structure. On the whole, the different designs of

cavities and waveguides presented in this chapter allow us to envisage the realization of sophisticated

hybrid 2D and 3D opal-based architectures.

The dispersion properties of photonic crystals have concurrently attracted a great deal of attention,

owing to the anomalous refraction effects they can yield. In Chapter 3, our objective has been to

enhance the control over the propagation of light beams in such structures. Our study has been made

on 2D photonic crystals in order to corroborate our conclusions with experiments in a near future.

We have started by studying the optical properties of graded photonic crystals, which are known to

allow the bending of light on the wavelength scale. Light beams are composed by a set of different

wavevectors, which may propagate differently in the structure. We have shown that the extension, shape

and curvature of the propagating beam are inherent to the local spatial dispersion of the successive

layers and to the strength of the gradient in the structure. Straight iso-frequency curves can yield large
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radii of curvature and thus, collimate light beams on large distances, while strong lattice gradients have

the tendency to reduce the lateral extension of the beam. The richness of the dispersion properties of

photonic crystals actually yields a countless number of possible ways to mold the flow of light. A first

step in the integration of graded photonic crystals on all-optical platforms has been made by successfully

comparing our modelling with an experiment demonstrating a mirage effect in the microwave range in

a metallic structure. In the second part of this chapter, we have studied the coupling of light from

integrated waveguides to supercollimating photonic crystals on silicon-on-insulator substrates. We have

shown that rib waveguides, which sustain spatially extended and smooth single-modes, are a clear benefit

in regard of the mode-profile matching to supercollimated beams. The impedance matching has been

improved by truncating the PhC at its boundary. In this way, we have demonstrated transmission

efficiencies as high as 96 % and reflections lower than 0.2 % at wavelengths close to 1.55 µm in finite-size

supercollimating structure. The calculation has been made in full 3D to take all possible losses into

account. The proposed solution combines coupling efficiency, single-mode operation and practicability.

It may be applied to extended photonic crystals in general and thus, may open the route toward the

development of high-level all-optical integrated technologies.

Metamaterials are another type of nanostructured material, relying on the resonances of their elements

to modify the normal propagation of light in space. In Chapter 4, we have been concerned with gaining

some theoretical insight onto the optical properties of all-dielectric rod-type structures, which present

the interest of being lossless at optical frequencies, by contrast to metallic ones. We have first shown

that individual dielectric rods in E-polarization can be assimilated to radiating electric and magnetic

dipoles in the long-wavelength limit, by deriving rigorous expressions of their electric and magnetic

polarizabilities in terms of their scattering matrix. By using a homogenization model, we have then shown

that periodic arrays of such rods imitate a homogeneous medium with dispersive effective permittivity

and permeability. We have found in this way that the two lowest photonic band gaps are due to a negative

permittivity and that the dispersion curves separating them originate from a negative permeability and

thus, exhibit a left-handed behavior. We have shown that these effects hold at optical frequencies and

can be obtained by using, for example, silicon rods, suggesting that arrays of dielectric rods can truly

manipulate electromagnetic fields like metallic metamaterials without experiencing losses. We have also

noted that the spatial dispersion is not a matter of large wavelength-to-period ratio but is inherent to the

magnetic dipole activity of the rods. When disorder is introduced, the optical properties of the structure

(photonic band gaps and dispersion curves) are expected to be maintained, provided that the density

of rods exhibits a low dispersion over the structure. On the microscopic scale, the propagation of light

in the magnetic resonance frequency region is ensured by the creation of chains of resonances, which

we have assimilated to microscopic necklace states. To our knowledge, this is the first observation of

such hybrid modes in 2D, leaving many open questions and motivations for future studies on anomalous

transport in disordered media.

In this thesis, we have presented several ways to manipulate electromagnetic fields, using photonic

crystals and metamaterials. The great majority of the designs presented here may be fabricated with

current techniques and find use in telecommunications, quantum information processing, medical and

biological imaging, environmental sensing and solar power, to mention only a few. Yet this is only the tip

of the iceberg. A multitude of other optical effects are currently under deep investigation. The different

works presented in this thesis show that nanostructured dielectric materials may still be full of surprises.
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