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agréables et intéressantes pour moi, tant scientifiquement que humainement, et
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Chapter 1

Introduction et présentation
des résultats

Ce document rassemble les résultats obtenus pendant trois années de thèse
sous la direction de Jean Bertoin et Amaury Lambert. Il se décompose en deux
parties.

La première partie traite d’un modèle stochastique de stockage de données en
temps continu, dont la théorie a été développée principalement pour ses applica-
tions à l’informatique [29, 81]. Elle est principalement constituée des deux articles
suivants :

• (2007). On a model for the storage of files on a hardware I : Statistics at a
fixed time and asymptotics. Prépublication. Soumis.

• (2007). On a model for the storage of files on a hardware II : Evolution of a
typical data bloc. J. Appl. Prob. Vol 44, no 4, 901-927.

Dans ce modèle, le disque dur est représenté par la droite réelle. Les temps
d’arrivée des fichiers, les emplacements où l’on cherche à les stocker et leur taille
sont aléatoires. Les hypothèses naturelles d’indépendance et de stationnarité pour
ces quantités conduisent à modéliser ces arrivées de fichiers par un processus
ponctuel de Poisson [62, 73, 84]. Chaque fichier est dirigé sur un emplacement du
disque et stocké le plus près possible à droite de celui-ci : Si cet emplacement est
déjà occupé, on cherche le premier emplacement de libre à droite et lorsque un
fichier est plus gros que l’espace libre rencontré, il est fragmenté pour être stocké
en plusieurs morceaux.

Figure 1. Arrivée et stockage d’un fichier (en clair) sur le disque où les parties
occupées sont en noir.
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CHAPTER 1. INTRODUCTION ET PRÉSENTATION DES RÉSULTATS

Ce modèle est une version continue du problème de parking de Knuth, qui
décrit le stockage de fichiers de taille unité qui arrivent successivement sur un
disque possédant n emplacements [29, 37, 41]. Knuth était initialement intéressé
par le décalage que subit un fichier pour trouver un espace libre, de manière à
contrôler le temps qu’il faut pour le retouver. Pour ce modèle, P. Chassaing et G.
Louchard [28] ont établi une transition de phase pour la taille du plus gros bloc de
données du disque lorsque n → ∞, qui est décrite par le coalescent additif. Puis
J. Bertoin et G. Miermont [23] ont généralisé ces résultats pour des fichiers de
taille aléatoire. On considère donc ici une version continue de ce dernier modèle
avec un disque de taille infinie.
Ce modèle a de nombreux liens avec les files d’attentes M/G/1 (voir par exemple
[30, 81, 82]). En effet, si l’on voit les emplacements où l’on veut stocker les fichiers
comme les instants d’arrivées de clients d’une file d’attente et la taille du fichier
comme le temps de service du client, l’espace occupé par les données à temps fixe
devient la période de service d’une file d’attente M/G/1.

Tout d’abord, nous avons caractérisé géométriquement et analytiquement
l’espace occupé par les données à un temps fixe et considéré certains exemples.
Nous pouvons alors donner la loi du décalage subi par un fichier pour commencer
son stockage, ainsi que le dernier point utilisé pour l’enregister.
En utilisant ces résultats et en s’inspirant de [28], nous avons décrit le com-
portement asymptotique de l’espace occupé par les données près du temps de
saturation du disque ainsi que la taille du plus gros bloc de données. On retrouve
la transition de phase observée par P. Chassaing et G. Louchard et les théorèmes
limites dépendent de la queue de distribution de la taille des fichiers, comme dans
l’article de J. Bertoin et G. Miermont.
Nous avons ensuite réalisé une étude dynamique du processus de stockage, en
caractérisant l’évolution en temps d’un bloc de données typique. Pour cela, nous
nous appuyons à nouveau sur les caractérisations géométriques et analytiques à
temps fixe. On démontre ainsi que les instants de sauts de l’extrémité gauche
du bloc de donnée typique s’accumulent suivant la ’stick breaking sequence’ de
Pitman [80]. De plus les quantités successives de données arrivées à gauche du
bloc et stockées à sa droite forment une suite iid. Enfin, la longueur du bloc suit
un processus de branchement en temps continu avec immigration inhomogène.
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Le fait de modéliser par un processus ponctuel de Poisson les arrivées de
fichiers permet d’utiliser abondamment la théorie des processus de Lévy et de
ses fluctuations [19, 86] ainsi que les ensembles régénératifs [71, 89, 90], tant
pour la construction du modèle que les comportements asymptotiques et l’étude
dynamique.

La seconde partie concerne des questions liées à la biologie, pour lesquelles on
utilise des processus de branchement (voir e.g. [48, 60, 65]). Plus précisément,
nous nous sommes intéressé à la prolifération de parasites dans des cellules en
division et au processus de branchement en environnement aléatoire. Cette partie
est principalement formée de 3 articles :

• (2007). Proliferating parasites in dividing cells : Kimmel’s branching model
revisited. Ann. Appl. Probab., Vol 18, no 3, 967-996.

• (2008). Surviving particles for subcritical branching processes in random
environment. Révisé pour Stoch. Proc. Appl.

• (2008). Cell contamination and branching processes in random environment
with immigration. Prépublication. Soumis.

M. de Paepe, G. Paul and F. Taddei du Laboratoire TaMaRa (Hôpital Necker,
Paris) [88] ont observé pour la bacterie E-Coli une répartition très inégale des
parasites de la bactérie dans ses deux cellules filles au moment de la division.
Cette asymétrie est surprenante puisqu’on s’attend à un partage équitable du
contenu biologique d’une cellule. Nous avons considéré un modèle en temps
discret pour rendre compte de la multiplication aléatoire d’un parasite avec une
répartition aléatoire (éventuellement très inéquitable) des parasites au moment
de la division. Pour cela nous nous sommes inspirés du modèle de M. Kimmel
[59] en temps continu avec répartition symétrique de parasites au moment de la
division. Ainsi, pour des raisons pratiques, nous distinguons une première cellule
fille notée 0 et une deuxième notée 1 et nous condensons multiplication d’un
parasite et répartition de sa descendance en une multiplication à deux types.
Chaque parasite se comporte alors indépendamment et donne naissance à chaque
génération à Z(0) +Z(1) parasites, parmi lesquels Z(0) vont dans la première cellule
fille et Z(1) dans la deuxième au moment de la division. On autorise dissymétrie
et dépendance pour le couple de variable aléatoire (Z(0), Z(1)).
A.D. Barbour, M. Kafetzaki, C.J. Luchsinger et M.J. Luczak [16, 17, 67, 68] ont
une approche différente pour modéliser l’infection des cellules. Ils considèrent
un processus de branchement à une infinité de types où le type donne le nombre
de parasites de la cellule. Ils démontrent que la limite en grande population de
cellules infectées est décrite par une équation différentielle déterministe.
Par ailleurs, Julien Guyon [47] a modélisé les asymétries au moment de la division

Page 11



CHAPTER 1. INTRODUCTION ET PRÉSENTATION DES RÉSULTATS

pour le problème du vieillissement cellulaire et obtenu des résultats généraux
pour des cellules en division en considérant des arbres markoviens dissymétriques.
Mais ses résultats ne s’appliquent pas à notre problème, puisque dans notre cas
le nombre de parasites dans une lignée cellulaire typique a un comportement
asymptotique dégéneré (i.e. il tend vers 0 ou ∞ p.s.).

Tout d’abord, nous avons déterminé sous quelles conditions l’organisme guérit,
au sens où la proportion de cellules infectées tend vers zéro. Ceci met en évidence
l’intérêt d’une répartition inéquitable des parasites pour la cellule. Nous avons
ensuite établi le comportement asymptotique du nombre de cellules infectées et des
proportions de cellules infectées par un nombre donné de parasite. Les résultats
dépendent du couple de valeurs (E(Z(0)),E(Z(1))) et donnent des asymptotiques
déterministes.

Pour obtenir ces résultats, nous utilisons deux processus de branchement
classiques associés à ce modèle.
Premièrement, le nombre total de parasites d’une génération suit un processus de
Galton-Watson, c’est-à- dire que chaque parasite se reproduit indépendamment
et avec la même loi à chaque génération. Ce processus a été beaucoup étudié
[5, 8, 70] et nous utilisons un certain nombre de résultats classiques tels que le
critère d’extinction, le théorème de Kesten-Stigum et la limite quasi-stationaire
de Yaglom.
Deuxièmement, nous utilisons le nombre de parasites dans une lignée cellulaire
aléatoire, qui suit un processus de branchement en environnement aléatoire
(BPRE) [6, 7, 8, 87]. L’environnement aléatoire vient du choix de la cellule fille
au moment de la division pour construire la lignée aléatoire, car il détermine
les lois de reproduction successives dans la lignée. On utilise également le
critère d’extinction et la limite de Yaglom. Mais un BPRE (processus de
branchement en environnement aléatoire) sous-critique (i.e. qui s’éteint p.s.) peut
avoir des comportements très différents. Par exemple, sa moyenne peut tendre
géométriquement vers 0, être constante ou tendre géométriquement vers l’infini.
De plus, l’équivalent de la probabilité de survie au temps n dépend du fait que le
processus est fortement sous critique, moyennement sous critique ou faiblement
sous critique [43, 46].
De manière informelle, les BPRE fortement sous critiques ont les propriétés
attendues, i.e. les analogues de ceux d’un processus de Galton Watson. Tandis
que les BPRE faiblement sous critiques présentent de nombreuses différences,
par exemple pour le processus réduit [38]. De plus, ils vérifient des ’propriétés
surcritiques’, tels que l’analogue du théorème de Kesten-Stigum, comme l’on mis
en évidence V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin [2]. Ceci
explique que les théorèmes limites pour notre modèle diffèrent en fonction des
sous domaines déterminant si la lignée typique est faiblement, moyennement ou
fortement sous critique.
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Le domaine où les résultats établis sont partiels est naturellement le domaine
correspondant au BPRE faiblement sous critique. En fait, obtenir les conver-
gences en probabilité des proportions de cellules infectées par un nombre donné
de parasites nécessite de savoir si la limite quasistationaire d’un BPRE dépend
ou non du nombre de particules initiales. Cette question semble difficile dans le
cas faiblement sous critique, alors qu’il est facile de prouver qu’il n’y a pas de
dépendance pour un processus de Galton Watson et plus généralement pour un
BPRE fortemenent sous critique. Cette question conduit plus généralement à se
demander comment les théorèmes limites d’un BPRE sous critique dépendent du
nombre de particules initiales.

Nous avons alors considéré un BPRE quelconque. C’est à dire que pour
chaque génération, on tire de manière iid une loi de reproduction et toutes les
particules de cette génération se reproduisent de manière indépendante suivant
cette loi. On peut par exemple se représenter une population de fleur qui est
soumis à chaque génération à un climat aléatoire. Ce climat détermine la loi de
reproduction des fleurs, qui se reproduisent alors indépendamment. Nous avons
prouvé que pour un BPRE faiblement sous critique, la probabilité de survie
d’une population n’était pas asymptotiquement proportionnelle à la taille de la
population initiale, contrairement au cas d’un BPRE fortement ou moyennement
sous critique, et établi d’autres asymptotiques. De plus nous démontrons que, dans
le cas faiblement sous critique, conditionnellement à la survie de la population,
plusieurs particules initiales voient leur descendance survivre avec probabilité
positive, ce qui ne se produit pas pour un processus de Galton Watson sous
critique. Nous donnons également une interprétation au sens des environnements
de ces résultats. De manière informelle, nous prouvons que la survie d’une
particule en environnement fortement ou moyennement sous critique est due à
l’aléa de la reproduction (la particule survit malgré l’environnement). Tandis
que pour un environnement faiblement sous critique, la survie de la particule
est due à l’aléa environemental (environnement particulièrement favorable pour
la particule). Enfin, nous montrons que dans le cas fortement sous critique, le
nombre d’individu en vie sachant que la population survit dans le futur (qui est
donné par le Q-processus) converge en distribution, tandis qu’il diverge dans les
deux autres cas.

Nous avons ensuite pris en compte une contamination aléatoire des cellules
par des parasites extérieurs à la population. Dans ce modèle, pour des raisons
biologiques et techniques, la loi du nombre de parasites qui contaminent une cellule
donnée dépend (uniquement) du fait que cette cellule est déjà infectée ou non.

Le nombre de parasites dans une lignée cellulaire est alors un processus
de branchement en environnement aléatoire avec immigration, où l’immigration
dépend de l’état à travers le fait que celui-ci est nul ou non. Les processus de
Galton Watson avec immigration sont bien connus [5, 8, 70] : si le processus est
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CHAPTER 1. INTRODUCTION ET PRÉSENTATION DES RÉSULTATS

sous critique et que l’espérance du logarithme de l’immigration est finie, le nombre
de particules tend en distribution vers une variable aléatoire finie. Sinon il tend
en probabilité vers l’infini. E.S. Key [58] a obtenu la convergence en distribution
pour les BPRE avec immigration sous l’hypothèse d’existence de l’espérance du
logarithme de l’immigration. Il considère le cadre plus général des BPRE multi-
types avec immigration et donne également une estimation de la queue du temps
de retour en zéro. A. Roitershtein [83] a complété ces résultats par une loi forte
des grands nombres et un théorème central limite pour la somme partielle associée
à ce processus.
Nous établissons les convergences pour le cas d’une immigration dépendant de l’état
(zéro ou strictement positive), et traitons le cas où le logarithme de l’espérance de
l’immigration est infinie. Nous fournissons également une estimation de la vitesse
de convergence dépendant du nombre de particules initiales. Pour cela, nous util-
isons des arguments de couplage pour nous ramener à un BPRE avec immigration
et appliquer [58], ainsi que le théorème de renouvellement et sa vitesse de conver-
gence.

Ces résultats donnent le comportement du processus comptant le nombre de
parasites dans une lignée cellulaire en présence d’une contamination extérieure.
En utilisant [47], on obtient alors une loi des grands nombres sur les proportions
asymptotiques de cellules infectées par un nombre donné de parasites. En effet,
l’immigration empêche l’absorption (le processus ne tend pas vers zéro p.s.), ce
qui permet d’appliquer les théorèmes généraux sur les chaines de Markov indexées
par un arbre. A nouveau, nous constatons l’interêt d’une division assymétrique
pour l’organisme.
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Résultats principaux de la partie I

Les fichiers sont étiquetés par i ∈ N et l’on note ti ≥ 0 le temps d’arrivée du
fichier i, xi ∈ R l’emplacement où l’on souhaite stocker son extrémité gauche et
li ≥ 0 sa taille.
L’ensemble {(ti, xi, li) : i ∈ N} est un Processus Ponctuel de Poisson (PPP)
d’intensité dt⊗ dx⊗ ν et l’on note

m :=
∫ ∞

0
lν(dl) <∞

la quantité moyenne de données qui arrivent dans un intervalle de temps unité sur
une unité du disque. On commence par construire ce modèle et remarquer que le
disque est plein au temps 1/m.

On utilise pour cela le processus (Y (t)
x )x∈R défini par

Y
(t)
0 := 0 ; Y

(t)
b − Y (t)

a = −(b− a) +
∑
ti≤t

xi∈]a,b]

li si a < b.

Ce processus est un processus à accroissement indépendants et stationnaires
(processus de Lévy) à variation bornée et dérive égale à un, dont les sauts donnent
les emplacements d’arrivée et les tailles des fichiers. On introduit également le
processus infimum :

I(t)
x := inf{Y (t)

y : y ≤ x}.
Comme on le devine sur la figure suivante, la partie du disque dur occupée au
temps t forme un ensemble aléatoire C(t) égal à l’ensemble des points où Y (t) est
au-dessus de son infimum passé :
Figure 2. Stockage des fichiers et processus de Lévy associé.
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Le résultat peut s’énoncer ainsi

Propriété. Pour tout t < 1/m, C(t) = {x ∈ R : Y
(t)
x > I

(t)
x } 6= R p.s.

Pour tout t ≥ 1/m, C(t) = R p.s.

Nous pouvons alors établir quelques propriétés géométriques de l’ensemble oc-
cupé au temps t, en décrivant son complémentaire R(t) qui est égal à l’espace libre
au temps t.

Propriété. Pour tout t ≥ 0, R(t) est stationnaire, sa fermeture est symétrique
par rapport 0 en distribution et forme un ensemble régénératif.
De plus, pour tout x ∈ R, P(x ∈ C(t)) = min(1,mt).

Nous donnons ensuite une description analytique de l’espace libre en distin-
guant le bloc de données au temps t qui contient le point zéro, que l’on note B0(t).
On introduit également l’extrémité de gauche (resp. droite ) g(t) (resp. d(t)) de
ce bloc :

g(t) = sup{y ≤ 0 : y ∈ R(t)}, d(t) = inf{y > 0 : y ∈ R(t)}.

B0(t) = [g(t), d(t)].

Les parties libres à gauche et à doite de B0(t) sont deux ensembles régénératifs
de [0,∞) indépendants identiquements distribués, qui sont indépendants de
B0(t). De plus, ces deux ensembles régénératifs sont les images de subordinateurs
indépendants dont l’exposant de Laplace est la fonction réciproque de l’exposant
de Laplace de (Y (t)

x )x∈R. Pour achever la description à temps fixe, nous donnons
la loi de B0(t).

Régimes asymptotiques.
Nous établissons ici le comportement asymptotique du disque près de l’instant

de saturation. Nous donnons tout d’abord quelques définitions utiles pour énoncer
les résulats. Reprenant les notations de [23], nous notons ν ∈ D2+ si le moment
d’ordre 2 de ν est fini et m2 :=

∫∞
0 l2ν(dl). Pour tout α ∈]1, 2], nous notons ν ∈ Dα

si
∃C > 0 tel que ν[x,∞) x→∞∼ Cx−α.

Nous posons alors, pour tout α ∈]1, 2[ :

Cα :=
(
CΓ(2− α)
m2(α− 1)

)1/α

.

Nous introduisons également le mouvement brownien indexé par R noté (Bz)z∈R,
i.e. (Bx)x≥0 et (B−x)x≥0 sont deux mouvements browniens indépendants. Pour
tout α ∈]1, 2[, nous définissons (σ(α)

z )z∈R le processus càdlàg à accroissements
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indépendants et stationnaires tel que (σ(α)
x )x≥0 est un processus de Lévy stable

d’index α sans sauts négatifs :

∀ x ≥ 0, λ ≥ 0, E
(
exp(−λσ(α)

x )
)

= exp(xλα).

Enfin, nous introduisons les processus suivants indéxés par R pour tout λ ≥ 0 et
α ∈]1, 2[,

Y 2+,λ
z = −λz+

√
m2/mBz, Y 2,λ

z = −λz+
√
C/mBz, Y α,λ

z = −λz+Cασ
(α)
z ,

et le processus infimum associé défini pour x ∈ R par Iα,λ
x := inf{Y α,λ

y : y ≤ x}.

En utilisant les fonctions suivantes définies pour tout t ∈ [0, 1/m[ et α ∈]1, 2[ par

ε2+(t) = (1−mt)2, ε2(t) = 2
(1−mt)2

− log((1−mt))
, εα(t) = (1−mt)

α
α−1 ,

nous obtenons

Théorème. Si ν ∈ Dα (α ∈]1, 2] ∪ {2+}), alors εα(t).R(t)cl converge en distribu-
tion pour la distance de Hausdorff vers {x ∈ R : Y α,1

x = Iα,1
x }cl quand t→ 1/m.

Ce qui implique

Corollaire. Si ν ∈ Dα (α ∈]1, 2] ∪ {2+}), alors εα(t).(g(t), d(t)) converge en
distribution quand t → 1/m vers (sup{x ≤ 0 : Y α,1

x = Iα,1
0 }, inf{x ≥ 0 : Y α,1

x =
Iα,1
0 }). Si ν ∈ D2+ (resp. D2), εα(t).(d(t)− g(t)) converge en distribution vers une

loi gamma de paramètre (1/2,m/(4m2)) (resp. (1/2,m/4)).

Nous considérons maintenant le disque restreint à un segment [0, x] et intro-
duisons les fonctions définies pour x ≥ 1 et α ∈]1, 2[ par

f2+(x) = 1/
√
x, f2(x) =

√
log(x)/x, fα(x) = x1/α−1.

Théorème. Si ν ∈ Dα (α ∈]1, 2]∪{2+}), x→∞ et t→ 1/m avec 1−mt ∼ λfα(x)
et λ > 0, alors x−1(R(t)cl∩[0, x]) converge faiblement pour la distance de Hausdorff
vers {z ∈ [0, 1] : Y α,λ

z = Iα,λ
z }cl.

Comme P. Chassaing et G. Louchard [28], on observe ainsi une transition de phase
pour la taille du plus gros bloc de données sur [0, x] au temps t, noté B1(x, t) quand
x→∞ suivant le taux de remplissage du disque.
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Corollaire. Soit ν ∈ Dα (α ∈]1, 2] ∪ {2+}), x→∞ et t→ 1/m:
- Si 1−mt ∼ λfα(x) avec λ > 0, alors B1(x, t)/x converge en distribution vers la
plus grande excursion de (Y α,λ

x − Iα,λ
x )x∈[0,1].

- Si fα(x) = o(1−mt), alors B1(x, t)/x
P−→ 0 .

- Si 1−mt = o(fα(x)), alors B1(x, t)/x
P−→ 1.

Evolution d’un bloc de données typique. Nous réalisons maintenant une étude
dynamique du disque en caractérisant l’évolution en temps du bloc de données en
0, B0. Ce bloc peut croitre pour deux types d’événements différents

• Un fichier i ∈ N arrive à gauche de B0 au temps Ti et il ne peut être
entièrement stocké à sa gauche. Il provoque alors un accroissement Gi de
l’extrémité gauche du bloc. Les données du fichier Ri qui ne peuvent être
stockées à gauche sont appelées données restantes. Elles provoquent un ac-
croissement Di de l’extrémité droite.

• Un fichier i ∈ N arrive sur B0 et provoque alors (uniquement) un saut de de
l’extremité droite.
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En premier lieu, nous nous intéressons à l’extremité gauche et l’on peut noter
que

g(t) := −
∑
Ti≤t

Gi.

Théorème. Les temps de saut de (g(t))t∈[0,1/m] forment une suite croissante
(Ti)i∈N qui s’accumule en 1/m, dont la distribution ne dépend pas de ν. Plus
précisement, en posant T0 = 0, pour tout i ≥ 1, conditionnellement à Ti−1 = t, Ti

est indépendant de (Tj)0≤j≤i−1 et uniformément sur [t, 1/m].
De plus, {(Ti, Gi) : i ∈ N} est un PPP sur [0, 1/m[×R+ d’intensité

dtdx
∫ ∞

0
P(Y (t)

x ∈ −dl)ν̄(l).

En d’autre termes, (g(t))t∈[0,1/m] est un processus additif dont le triplet
générateur est égal à (

0,
∫ t

0
ds

∫ ∞
0

P(Y (s)
x ∈ −dl)ν̄(l), 0

)
.

Nous prouvons que {(Ti, Gi, Ri) : i ∈ N} et {(Ti, Gi, Di) : i ∈ N} forment des
PPP dont nous donnons l’intensité. Ceci permet de donner les taux de transitions
de B0. Nous obtenons en particulier une description des processus donnant les
extrémités de B0 (g(t))t≥0 et (d(t))t≥0, ainsi que de la longueur de B0 (d(t) −
g(t))t≥0.
Pour ne pas présenter ici des résultats trop techniques, nous ne donnons pas la
description précise de (B0(t))t≥0 et renvoyons aux Sections 5.3 et 5.4. En revanche,
il est intéressant de noter que la suite formée des quantités de données restantes
est iid :

Proposition. {(Ti, Ri) : i ∈ N} est un PPP sur [0, 1/m[×R+ d’intensité

dtdz
ν̄(z)

1−mt
.

En d’autres termes, (Ri)i∈N est une suite iid indépendante de (Ti)i∈N dont la dis-
tribution est donnée par

P(Ri ∈ dz) = m−1ν̄(z)dz, z ≥ 0.
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Résultats principaux de la partie II

Processus de branchement en environnement aléatoire (BPRE) sous-critique.
Le processus de branchement en environnement aléatoire est spécifié par une suite
iid de fonctions génératrices (fn)n∈N distribuées comme une fonction génératrice
aléatoire f . C’est à dire que pour tout n ∈ N,

E
(
sZn+1 |Z0, . . . , Zn; f0, . . . , fn

)
= fn(s)Zn (0 ≤ s ≤ 1).

Le processus est sous critique si

E(log(f ′(1)) < 0.

Dans ce cas, il s’éteint p.s. en temps fini. On distingue les BPRE fortement,
moyennement et faiblement sous critique suivant que

E(f ′(1) log(f ′(1)))

est négative, nulle ou positive. Le processus de Galton Watson sous-critique
est fortement sous-critique. Dans le chapitre 7, nous déterminons comment les
théorèmes limites dépendent du nombre initial de particules. Pour cela on intro-
duit

αk := lim
n→∞

Pk(Zn > 0)/P1(Zn > 0).

et le réel α ∈ [0, 1] caractérisé par

γ := inf
θ∈[0,1]

{
E

(
f ′(1)θ

)}
= E

(
f ′(1)α

)
.

On peut noter que α ∈]0, 1[ dans le cas faiblement sous critique et

Théorème. Dans les cas fortement et moyennement sous critiques, pour tout
k ∈ N, αk = k.

Dans le cas faiblement sous critique, αk →∞ quand k →∞ et il existe M+ > 0
tel que

αk ≤M+ log(k)kα, (k ≥ 2).

Si l’on suppose de plus que E(f ′(1)1/2 log(f ′(1))) > 0 (i.e. α < 1/2) et que
f ′′(1)/f ′(1) est borné, il existe M > 0 tel que

αk ≥M log(k)kα, (k ∈ N).

Ensuite nous regardons si plusieurs particules initiales peuvent survivre condi-
tionnellement à la survie de la population. En notant Z(i)

n le nombre de descendants
à la génération n de la particule initiale i, nous prouvons que conditionnelement
à la survie de la population en temps long, plusieurs particules initiales peuvent
survivent dans le cas faiblement sous-critique.
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Proposition. Dans les cas fortement et moyennement sous critiques, pour tout
k ≥ 1,

lim
n→∞

Pk(∃i 6= j, 1 ≤ i, j ≤ k, Z(i)
n > 0, Z(j)

n > 0 |Zn > 0) = 0.

Dans le cas faiblement sous critique, pour tout k ≥ 1,

lim
n→∞

Pk(∀i, 1 ≤ i ≤ k, Z(i)
n > 0 |Zn > 0) > 0.

Nous donnons alors le comportement asymptotique du nombre de particules
initiales qui survivent au temps n, Nn, conditionnellement à la survie de la popu-
lation, pour certains BPRE faiblement sous critiques :

Théorème. Si E(f ′(1)1/2 log(f ′(1))) > 0 (i.e. α < 1/2) et f ′′(1)/f ′(1) borné, il
existe Al ↓l→∞ 0 tel que pour tous k ≥ l ≥ 0,

lim sup
n→∞

Pk(Nn ≥ l | Zn > 0) ≤ Al.

De plus, pour tout l ∈ N∗,

lim inf
k→∞

lim inf
n→∞

Pk(Nn = l | Zn > 0) > 0.

Ces résultats s’expliquent en étudiant les environements selectionnés par la
survie de la population. Pour cela, on introduit

fn := (f0, f1, . . . , fn−1),

la suite des environements jusqu’au temps n et p(fn) la probabilité de survie sous
cette suite d’environements

p(fn) := P(Zn > 0 | fn).

Théorème. Dans les cas fortement et moyennement sous critiques, pour tous
k ∈ N∗ et ε > 0,

lim
n→∞

Pk(p(fn) ≥ ε | Zn > 0) = 0.

Dans le cas faiblement sous critique, pour tous k ≥ 1 et ε > 0,

lim inf
n→∞

Pk(p(fn) ≥ ε | Zn > 0) ε→0+−→ 1.

Processus de branchement en environement aléatoire avec immigration Nous
ajoutons maintenant une contamination aléatoire au BPRE. La loi de reproduction
du BPRE est toujours la fonction génératrice aléatoire f . L’immigration dépend
de l’état seulement à travers le fait qu’il soit nul ou non. L’immigration pour un
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état nul est distribuée comme une v.a. Y0. Pour un état non nul, elle est distribuée
comme une v.a. Y1. Plus précisement, pour tout n ∈ N, conditionnellement à
Zn = x,

Zn+1 = Y (n)
x +

x∑
i=1

X
(n)
i ,

avec

• (X(n)
i )i∈N et Y (n)

x sont indépendants.

• Conditionnellement à fn = g, (X(n)
i )i∈N est une suite iid dont la fonction

génératrice est égale à g.

• Pour tout x ≥ 1 et n ∈ N, Y (n)
x

d= Y1 et Y (n)
0

d= Y0.

• Y
(n)
x est indépendant de (Y (n)

x : 0 ≤ i ≤ n− 1).

L’étude de ce processus était initialement motivée par le modèle de division
cellulaire avec contamination aléatoire de parasites décrit ensuite. Le résultat
obtenu est le suivant

Théorème. (i) Si E
(
log(f ′(1))

)
< 0 et max(E(log+(Yi)) : i = 0, 1) < ∞, alors

il existe une variable aléatoire Z∞ telle que pour tout k ∈ N, Zn partant de k
converge en distribution vers Z∞ quand n→∞.

Si de plus, il existe q > 0 tel que max(E(Y q
i ) : i = 0, 1) < ∞, alors pour tout

ε > 0, il existe 0 < r < 1 et C > 0 tels que,

∞∑
l=0

|Pk(Zn = l)− P(Z∞ = l)| ≤ Ckεrn, (n, k ∈ N).

(ii) Si E
(
log(f ′(1))

)
≥ 0 ou max(E(log+(Yi)) : i = 0, 1) = ∞, alors Zn tend

en probabilité vers l’infini quand n→∞.

Prolifération de parasites dans une cellule en division Les cellules en division
forment un arbre binaire T = ∪n

i=0{0, 1}n. On note Gn (resp. G∗n) l’ensemble des
cellules (resp. cellules infectées) à la génération n et par Zi le nombre de parasites
contenus dans la cellule i ∈ T.

Conditionnellement au fait que la cellule i contient x parasites, le nombre de
parasites (Zi0, Zi1) de ses deux cellules filles est donné par

x∑
k=1

(Z(0)
k (i), Z(1)

k (i)),

Page 22



avec (Z(0)
k (i), Z(1)

k (i))i∈T,k≥1 suite iid distribuée comme un couple de v.a.
(Z(0), Z(1)). On note

0 < m0 := E(Z(0)), 0 < m1 := E(Z(1)).

Les comportements asymptotiques (pour la guérison, le nombre de cellules con-
taminées et les proportions) dépendent des domaines suivants :

D1 = {(m0,m1) : m0 +m1 < 1}

D2 = {(m0,m1) : m0 +m1 = 1}

D3 = {(m0,m1) : m0 +m1 > 1,
m0 log(m0) +m1 log(m1) < 0}

D4 = {(m0,m1) : m0m1 ≤ 1,
m0 log(m0) +m1 log(m1) ≥ 0}

D5 = {(m0,m1) : m0m1 > 1}

La guerison de l’organisme a lieu p.s. quand (m0,m1) se situe sous l’hyperbole.

Théorème. Si m0m1 ≤ 1, alors #G∗n/#Gn → 0 quand n→∞.
Sinon, #G∗n/#Gn → 0 ssi les parasites s’éteignent, ce qui se produit avec une
probabilité inférieure à 1.

L’équivalent asymptotique du nombre de cellules infectées dépend des différents
domaines. Nous séparons les résultats en deux parties, suivant que les parasites
s’éteignent p.s. ou non.

Théorème. Si (m0,m1) appartient à D1, alors conditionnellement à la survie
des parasites au temps n, #G∗n converge en distribution vers une variable aléatoire
finie positive.
Si (m0,m1) appartient à D2, alors conditionnellement à la survie des parasites au
temps n, #G∗n/n converge en distribution vers une variable aléatoire exponentielle.

De plus, en notant que le nombre total de parasites suit un processus de Galton
Watson de moyenne m0 +m1 :
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Théorème. Conditionnellement à la survie des parasites,
Si (m0,m1) appartient à D3, alors #G∗n/(m0 + m1)n converge en probabilité

vers une variable aléatoire finie positive quand n→∞.
Si (m0,m1) appartient à la frontière entre D3 et D4, alors E[#G∗n]/(n−1/2(m0+

m1)n) tends vers un nombre positif quand n→∞.
Si (m0,m1) appartient à D4, alors E[#G∗n]/(n−3/2γn) converge vers un nombre

positif quand n→∞, avec 0 < γ < m0 +m1.
Si (m0,m1) appartient à la frontière de D5, alors E[G∗n]/(2nn−1/2) converge

vers un nombre positif.
Si (m0,m1) appartient à l’intérieur de D5, alors G∗n/2n converge p.s. vers une

variable aléatoire finie positive.

Nous pouvons ensuite donner le comportement asymptotique des proportions
de cellules infectées par un nombre donné de parasites,

Fk(n) =
#{i ∈ G∗n : Zi = k}

#G∗n
, (n, k ≥ 1).

Théorème. Si (m0,m1) appartient à D3, alors pour tout k ≥ 1, Fk(n) → P(Υ =
k) en probabilité quand n→∞, où Υ est la limite quasi-stationaire du nombre de
parasites dans une lignée cellulaire aléatoire.

Si (m0,m1) appartient à D3, alors pour tout k ≥ 1, Fk(n) → 0 en probabilité
quand n→∞.

Contamination de cellules en division Nous ajoutons au modèle précédent
une contamination des cellules par un nombre aléatoire de parasites, qui dépend
(uniquement) du fait que la cellule est déjà infectée ou non. On note Y0 (resp.
Y1) la v.a. donnant la loi du nombre de parasites qui contamine une cellule non
infectée (resp infectée) au cours d’une génération.

Nous considérons ici le comportement asymptotique des proportions de cellules
contenant un nombre donné de parasites,

Fk(n) =
#{i ∈ Gn : Zi = k}

2n
, (n, k ≥ 1).

Théorème. Si m0m1 < 1 et max(E(log+(Yi)) : i = 0, 1) < ∞, alors pour tout
k ∈ N, Fk(n) → fk quand n→∞, avec fk ≥ 0 tels que

∑∞
k=0 fk = 1.

Sinon, pour tout k ∈ N, Fk(n) → 0 en probabilité quand n→∞.

En fait, nous démontrons ce résultat pour un modèle plus général de
multiplication-répartition des parasites, où ce mécanisme est tiré de manière iid
pour chaque cellule (voir Section 9.1). Voici un exemple.
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Exemple : Répartition binomiale aléatoire des parasites. Nous considérons ici
le cas où les parasites se reproduisent en suivant un processus de Galton Watson
de loi de reproduction Z. La répartition des parasites est binomiale de paramètre
P ∈ [0, 1] p.s. C’est-à-dire que pour chaque cellule on tire un réel p ∈ [0, 1]
suivant la loi P , puis chaque parasite est envoyé dans la première cellule fille avec
probabilité p, et dans la seconde cellule fille sinon. En l’absence de contamination,
le critère de guérison p.s. de l’organisme est

log(E(Z)) ≤ E(log(1/P )).

Dans le cas où il y a contamination par des parasites extérieures à la population
de cellules, les proportions asympotiques de cellules avec un nombre donné de
parasites sont non dégénérées (i.e. de somme égale à 1) ssi

log(E(Z)) < E(log(1/P )), max(E(log+(Yi)) : i = 0, 1) <∞.

Sinon, toutes les proportions asymptotiques sont nulles.
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Part I

Recouvrement aléatoire pour le
stockage de données
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Chapter 2

Preliminaries

In this chapter, we give some results about the main two notions we will use
to study the model of data storage introduced in the next section. First, we focus
on regenerative sets on the half line, then on Lévy processes.

Throughout the first part, we use the classical notation δx for the Dirac mass
at x and N = {1, 2, . . .}. If R is a measurable subset of R, we denote by | R | its
Lebesgue measure and by Rcl its closure. For every x ∈ R, we denote by R − x
the set {y − x : y ∈ R} and

gx(R) = sup{y ≤ x : y ∈ R}, dx(R) = inf{y > x : y ∈ R}. (2.1)

By convention, sup ∅ = −∞ and inf ∅ = +∞.

If I is a closed interval of R, we denote by H(I) the space of closed subsets of
I. For every x ∈ R and A ⊂ R we define

d(x,A) = inf{1− e−|x−y| : y ∈ A},

and we endow H(I) with the Hausdorff distance dH defined for all A,B ∈ H(I)
by:

dH(A,B) = max
(
sup
x∈A

d(x,B), sup
x∈B

d(x,A)
)
.

The topology induced by this distance is the topology of Matheron [72] : a sequence
Rn in H(I) converges to R iff for each open set G and each compact set K,

R∩G 6= ∅ implies Rn ∩G 6= ∅ for n large enough,
R∩K = ∅ implies Rn ∩K = ∅ for n large enough.

It is also the topology induced by the Hausdorff metric on a compact set using
arctan(R ∪ {−∞,∞}) or the Skorokhod metric using the class of ’descending
saw-tooth functions’ (see [72] and [40] for details).
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2.1 Regenerative sets on the half line

In this section, we define regenerative sets, state their strong Markov property
and a representation theorem.

Let Ω0 be the space of closed subset of [0,∞] containing 0, which we endow with

G0 := σ(ds, s ≥ 0).

Let R be a random closed set of [0,∞) containing 0 a.s :

R : (Ω,G) −→ (Ω0,G0) is measurable,

with G = σ(ds(R), s ≥ 0).

Following Maisonneuve [71], we call a random closed set R ⊂ [0,∞) regenera-
tive if it contains 0 and for every x ≥ 0, conditionally on {dx(R) <∞}, the random
set (R− dx(R)) ∩ [0,∞) is distributed as R and is independent of [0, dx(R)] ∩R,
i.e.

∀x ≥ 0, P((R−D(R, x)) ∩ [0,∞) ∈ . | [0, dx(R)] ∩R) = P(R ∈ .) (2.2)

on {dx(R) <∞}.

We introduce the following filtration

Gx := σ(dt(R), t ≤ x).

In this section, we always work on [0,∞) and, for any set R ⊂ [0,∞), we will write
R instead of R∩(0,∞). We immediately have a strong regeneration property [71] :

Proposition 2.1.1. For every (G+
x )x≥0 stopping time T , we have :

P(R− dT (R) ∈ . | G+
T ) = P(R ∈ .) (2.3)

on {dT (R) <∞}.

proof. If T is a simple stopping time, (2.2) implies that for every measurable func-
tion f :

E(f(R− dT (R)))|GT ) = E(f(R))

We can now prove (2.3) for f = g(dx1 , dx2 , .., dxk
) with g continuous.

Let Tn ↓ T with Tn > T on {T <∞} and Tn simple stopping time, then :

E(f(R− dTn(R)) | GTn) −→ E(f(R− dT (R)) | G+
T )

since x 7→ dx1(R− dx(R)) = ddx(R)+x1
(R) is cad and g continuous.

The result follows by an argument of monotone class.
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Here is the fundamental result [71]. We give here an elementary new proof,
which is in the same vein as [44].

Theorem 2.1.2. The closed range R of a subordinator (Sx)x≥0 is a regenerative
random subset of [0,∞). Moreover, every regenerative random subset of [0,∞)
has the same distribution as the closed range of some subordinator, whose Laplace
exponent (or Lévy data) is uniquely determined up to a multiplicative constant.

In the proof, we will note νA instead of ν(A) when ν is a measure on R+ and A is
a subset of R+.

proof. First we prove that the closed range R of a subordinator (Sx)x≥0 is regen-
erative. Let

Lx = inf{u : Su > x} (x ≥ 0).

As dx(R) = SLx , R − dx(R) is the closed range of the subordinator
(SLx+u − SLx)u≥0 (∞ − ∞ = ∞) and the result follows from indepen-
dence and stationarity of increments of a subordinator.

Second, we prove that every regenerative set R is the closed range of some
subordinator. Let us construct this subordinator. It is easy if its Lebesgue measure
is not zero (see forthcoming case 1). Define

Sx := inf{u : |R ∩ [0, u]| > x}, (x ≥ 0).

Note that (Sx)x≥0 is (GSx)x≥0 measurable and for every x ≥ 0, Sx (G+
x )x≥0

stopping time. Moreover, (Sx)x≥0 is cadlag and nondecreasing.
For every x ≥ 0, if Sx < ∞ then dSx(R) = Sx, so Sx+y − Sx = inf{u :
|(R− dSx(R))| ∩ [0, u] > y}. Using the strong regeneration property in Sx, we get
that Sx+y − Sx has the same distribution as Sy and is independent of G+

Sx
.

By independence and stationarity of increments, either S0 = 0 a.s (case 1)
or S0 = ∞ a.s (case 2).

CASE 1 : We assume S0 = 0 a.s. Then (Sx)x≥0 is a subordinator. We shall
prove that its range is equal to R− := {x : dx(R) = x}

The range of the subordinator is included in R−, since dSx(R) = Sx.
Using again the strong regeneration property in T stopping time taking values in
R−, we get that inf {u > T : |R ∩ [T, u]| > 0} = 0 a.s, then T = S|R∩[0,T ]|, which
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gives the other inclusion.

CASE 2 : We assume here S0 = ∞ a.s. Then |R| = 0 and we search a
subordinator whose drift is equal to 0. It remains to characterize the Lévy
measure ν of this subordinator.

In that purpose, we consider the successive jumps of R of size strictly larger than
x > 0. Let

τx
1 := inf{u : du(R)−u > x} and τx

i+1 := inf{u ≥ dτ t
i
(R) : du(R)−u > x} (i ≥ 1).

Note that for every x ≥ 0, (τx
i )i≥1 are (G0

u)u≥0 stopping times and define

rx
i := dτx

i
(R)− τx

i (∞−∞ = ∞).

As |R|, we have the following identities :

τx
1 = lim

ε→0

∑
k<inf{i : rε

i >x}

rε
k (2.4)

dx(R) = lim
ε→0

∑
i∈N

rε
i 1Pi−1

k=0 rε
k≤x (2.5)

Moreover, by the strong regeneration property in τx
i , (rx

i : i ∈ N) are iid.

Let x0 such that P(τx0
1 < ∞) > 0, then for every x < x0, P(rx

1 ≥ x0) > 0 and
we introduce the measure ν on [0,∞) defined by ν(x0,∞) = 1 and :

ν(x,∞) =
1

P(rx
1 > x0)

if 0 < x < x0 and ν(x,∞) = P(rx0
1 > x) if x > x0.

(2.6)

For all x1 ≤ x2 < x3 then

P(rx2
1 > x3) =

∑
k≥1

P(rx1
1 ≤ x2, .., r

x1
k−1 ≤ x2, r

x1
k > x3)

=
∑
k≥1

P(rx1
1 ≤ x2)k−1P(rx1

1 > x3)

=
P(rx1

1 > x3)
1− P(rx1

1 ≤ x2)

=
P(rx1

1 > x3)
P(rx1

1 > x2)
.

Applying this identity to x0 ≤ x < x̃, x ≤ x̃ < x0 and x ≤ x0 < x̃ ensures that for
all x, x̃ ≥ 0,

P(rx
1 > x̃) =

ν(x̃,∞)
ν(x,∞)

.
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To introduce a subordinator of Lévy measure ν, we must check an integrability
assumption. In that purpose, let (Tn, r̃n) be a PPP with intensity measure |.| × ν.
We call r̃x

n its successive jumps strictly larger than x > 0 and define τ̃x
1 by (2.4).

Then (r̃x
n : n ∈ N) are iid and and distributed as (rx

n : n ∈ N).
So τ̃x

1 is distributed as τx
1 and E

[
exp(−τ̃x0

1 )
]
> 0 .

Let T = inf{Tk : r̃k > x0} be the instant of the first jump of the PPP strictly
larger than x0, then

E
[
exp(−τ̃x0

1 )
]

= E
[
exp(−

∑
n∈N

r̃n1{Tn<T})
]

=
∫

P(T ∈ dt)E
[
exp(−

∑
n∈N

r̃n1{Tn<T})|T = t

]
=

∫ ∞
0

ν(x0,∞)e−tν(x0,∞)e−t
R x0
0 (1−e−y)ν(dy)dt

So
∫ ∞

0
(1− e−y)ν(dy) <∞ which implies

∫ ∞
0

min(1, z)ν(dz) <∞.

We can then introduce a subordinator of Lévy data (0,ν), denoted by (S̃x)x≥0,
and its closed range R̃. As |R̃|=0 and for every x ≥ 0, (r̃x

n : n ∈ N) is distributed
as (rx

n : n ∈ N), then by 2.5, (dx(R) : x ≥ 0) is distributed as (dx(R̃) : x ≥ 0).
Thus R̃ is distributed as R. This ensures that R is distributed as the closed range
of a subordinator of Lévy data (0,ν).

Finally we prove the uniqueness. Let R and R̃ be the closed ranges of two
subordinators (Sx)x≥0 and (S̃x)x≥0 whose Lévy data are resp. (d,ν) and (d̃, ν̃).
Assume that R and R̃ are identically distributed and let us prove that (d,ν) and
(d̃, ν̃) are equal to constant multiples. Note that for every x, |R∩ [0, x]| = dL̃x and
|R̃ ∩ [0, x]| = d̃Lx (see Proposition 1.8 in [20]) have the same distribution. Then,
Either d=d̃ = 0, as for every x > 0, (r̃x

n : n ∈ N) is distributed as (rx
n : n ∈ N) by

definition, then ν and ν̃ are equal to a positive factor (use 2.6).
Or d= d̃ > 0, using Notations of case 2, (2.6) ensures again that ν and ν̃ are equal
to a positive factor. Moreover, thanks to [20] :

P(|R ∩ [0, τx0
1 ]| ≤ 1) = P(dT ≤ 1) = 1− e−

ν(x0,∞)
d

and using that this term just depends on the law of R, we can conclude.
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We say that a regenerative set is self-similar if it has the self-similarity property:

∀c > 0 cR d= R

We know that R is the closed range of a subordinator of Lévy data (d,ν).
If R has some points in ]0,∞[, the self-similarity property implies that 0 is not
isolated on the right and ν(0,∞) = ∞. Moreover this property implies that either
|R| = ∞ and R = R+ a.s, or |R|=0 a.s and d =0 (see [20]). In the last case, we
can also describe ν and we have :

Theorem 2.1.3. A regenerative set is self-similar iff it is the closed range of some
stable subordinator or the trivial set R+.

proof. ⇒ We use the discussion above and consider the case d=0.
The self-similarity property implies that for every x ≥ 0, P(rx

1 > x̃) = P(rxc
1 > x̃c)

so, for c > 0 we have :
ν(cx,∞)
ν(x,∞)

= cst = ν(cx0,∞)

Putting h(x) = log(ν(x0e
x,∞)) for x ∈ R, we have h(x + x′) = h(x) + h(x′).

Moreover ν(x,∞) is cad, so:

ν(dx) =
c

x1+α
dx

for some α ∈ R. Using that ν verifies∫ ∞
0

min(1, z)ν(dz) <∞,

and ν(0,∞) = ∞, we get that 0 < α < 1.

⇐ If (Sx)x≥0 is a stable subordinator, then for every r > 0,
(Srx)x≥0

d= (c/r1+αSx)x≥0 which implies that ∀c > 0, cR d= R.

2.2 Background on Lévy processes

The results given in this section can be found in the Chapters VI and VII in
[19] (there, statements are made in terms of the dual process −Y ). We recall
that a Lévy process is càdlàg process starting from 0 which has iid increments. A
subordinator is an increasing Lévy process.
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We consider a Lévy process (Xx)x≥0 which has no negative jumps (spectrally
positive Lévy process). We denote by Ψ its Laplace exponent which verifies for
every ρ ≥ 0 :

E(exp(−ρXx)) = exp(−xΨ(ρ)). (2.7)

We stress that this is not the classical choice for the sign of the Laplace exponent
of Lévy processes with no negative jumps and a negative drift. However it is the
classical choice for subordinators, which we will need. It is then convenient to use
this same definition for all Lévy processes which appear in this text.

First, we consider the case when (Xx)x≥0 has bounded variation. That is,

Xx := dx+
∑
xi≤x

li,

where {(xi, li) : i ∈ N} is a PPP on [0,∞[×[0,∞[ with intensity measure dx ⊗ ν
such that

∫∞
0 xν(dx) <∞. We call ν the Lévy measure and d ∈ R the drift. Note

that (Xx)x≥0 is a subordinator iff d ≥ 0.

Writing ν̄ for the tail of the measure ν, the Lévy-Khintchine formula gives

Ψ(ρ) = dρ+
∫ ∞

0
(1− e−ρx)ν(dx), (2.8)

Ψ(ρ)
ρ

= d+
∫ ∞

0
e−ρxν̄(x)dx, (2.9)

Ψ′(0) = d+
∫ ∞

0
xν(dx), (2.10)

lim
ρ→∞

Ψ(ρ)
ρ

= d and lim
ρ→∞

(Ψ(ρ)− dρ) = ν̄(0). (2.11)

Second, we consider the case when Ψ has a right derivative at 0 with

Ψ′(0) < 0, (2.12)

meaning that E(X1) < 0. And we consider the infimum process which has contin-
uous path and the first passage time defined for x ≥ 0 by

Ix = inf{Xy : 0 ≤ y ≤ x} ; τx = inf{z ≥ 0 : Xz < −x}.

As −Ψ is strictly convex and −Ψ′(0) > 0, −Ψ is strictly increasing from [0,∞[ to
[0,∞[ and so is strictly positive on ]0,∞]. We write κ : [0,∞[→ R for the inverse
function of −Ψ and we have (see [19] Theorem 1 on page 189 and Corollary 3 on
page 190) :
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Theorem 2.2.1. (τx)x≥0 is a subordinator with Laplace exponent κ.

Moreover the following identity holds between measures on [0,∞[×[0,∞[ :

xP(τl ∈ dx)dl = lP(−Xx ∈ dl)dx. (2.13)

Note that if (Xx)x≥0 has bounded variations, using (2.11), we can write

∀ ρ ≥ 0, κ(ρ) = −ρ
d

+
∫ ∞

0
(1− e−ρz)Π(dz), (2.14)

where Π is a measure on R+ verifying (use (2.11) and Wald’s identity or (2.10)) :

Π̄(0) = − ν̄(0)
d
,

∫ ∞
0

xΠ(dx) =
1
d
− 1
d+

∫∞
0 xν(dx)

. (2.15)

Now we introduce the supremum process defined for x ≥ 0 by

Sx := sup{Xy : 0 ≤ y ≤ x},

and the a.s. unique instant at which X reaches this supremum on [0, x] :

γx := inf{y ∈ [0, x] : Xy = Sx}.

By duality, we have (Sx, γx) d= (Xx − Ix, x − gx) where gx denotes the a.s unique
instant at which (Xx−)x≥0 reaches its overall infimum on [0, x] (see Proposition 3
in [19] or [21] on page 25). If T is an exponentially distributed random time with
parameter q > 0 which is independent of X and λ, µ > 0, then we have (use [19]
Theorem 5 on page 160 and Theorem 4 on page 191) :

E
(
exp(−µST − λγT )

)
=

q(κ(λ+ q)− µ)
κ(q)(q + λ+ Ψ(µ))

= exp
( ∫ ∞

0
dx

∫ ∞
0

P(Yx ∈ dy)(e−λx−µy − 1)x−1e−qx
)
,

which gives

E
(
exp(−µS∞ − λγ∞)

)
=

1
κ′(0)

κ(λ)− µ

λ+ Ψ(µ)
= −Ψ′(0)

κ(λ)− µ

λ+ Ψ(µ)
, (2.16)

E
(
exp(−µS∞)

)
= µ

Ψ′(0)
Ψ(µ)

, (2.17)

E
(
exp(−λγ∞)

)
= exp

( ∫ ∞
0

(e−λx − 1)x−1P(Xx > 0)dx
)
. (2.18)
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Chapter 3

Poissonian model for data
storage in continuous time

3.1 Introduction

We consider a generalized version in continuous time of the original parking
problem of Knuth. Knuth was interested in the storage of data on a hardware
represented by a circle with n spots. Files arrive successively at locations chosen
uniformly at random and independently among these n spots. They are stored in
the first free spot at the right of their arrival point (at their arrival point if it is
free). Initially Knuth worked on the hashing of data (see e.g. [29, 37, 41]) : he
studied the distance between the spots where the files arrive and the spots where
they are stored. Later Chassaing and Louchard [28] have described the evolution
of the largest block of data in such coverings when n tends to infinity. They
observed a phase transition at the stage where the hardware is almost full, which
is related to the additive coalescent. Bertoin and Miermont [23] have extended
these results to files of random sizes which arrive uniformly on the circle.

We consider here a continuous time version of this model where the hardware
is large and now identified with the real line. A file labeled i of length (or size)
li arrives at time ti ≥ 0 at location xi ∈ R. The storage of this file uses the free
portion of size li of the real line at the right of xi as close to xi as possible (see
Figure 3). That is, it covers [xi, xi + li[ if this interval is free at time ti. Otherwise
this file can be splited into several parts which are then stored in the closest free
portions at the right of the arrival location. We require uniformity of the location
where they arrive and identical distribution of the sizes and we model the arrival
of files by a Poisson point process (PPP) : {(ti, xi, li) : i ∈ N} is a PPP with
intensity dt⊗ dx⊗ ν(dl) on R+ ×R×R+. We denote m :=

∫∞
0 lν(dl) and assume

m < ∞. So m is the mean of the sum of sizes of files which arrive during a unit
interval time on some interval with unit length.
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We begin by constructing this random covering (Section 3.2). The first
questions which arise and are treated here concern statistics at a fixed time for
the set of occupied locations. What is the distribution of the covering at a fixed
time ? At what time the hardware becomes full ? What are the asymptotics of
the covering at this saturation time ? What is the length of the largest block on a
part of the hardware ?

It is quite easy to see that the hardware becomes full at a deterministic time
equal to 1/m. In Section 3.3.1, we give some geometric properties of the covering
and characterize the distribution of the covering C(t) at a fixed time t by giving
the joint distribution of the block of data straddling 0 and the free spaces on
both sides of this block. Results are stated in Section 3.3 and proved in Section
3.4. These results will be useful for the problem of the dynamic of the covering
considered in Chapter 5, where we investigate the evolution in time of a typical
data block. Moreover, using this characterization, we determine the asymptotic
regimes at the saturation time, which depend on the tail of ν, as in [23, 27, 28] .
More precisely, we can give in the next Chapter the asymptotic of set of occupied
locations C(t) when t tends to 1/m (Theorem 4.1.1) and the asymptotic of C(t)
restricted to [0, x] when x tends to infinity and t tends to 1/m (Theorem 4.2.1).
We derive then the asymptotic of the largest block of the hardware restricted to
[0, x] when x tends to infinity and t tends to 1/m. As expected, we recover the
phase transition observed by Chassaing and Louchard in [28].

It is easy to check that for each fixed time t, C(t) does not depend on the order
of arrival of files before time t. Thus, if ν is finite, we can view the files which
arrive before time t as customers : the size of the file l becomes the service time
of the customer and the location x where the file arrives becomes the arrival time
of the customer. We are then in the framework of the M/G/1 queue model in the
stationary regime and the covering C(t) becomes the union of busy periods (see
e.g. Chap 3 in [30] or [81]). Thus, several results for finite ν follow easily from
known results on M/G/1. When ν is infinite, results are similar though busy cycle
is not defined. Thus the approach is different and proving asymptotics on random
sets requires results about Lévy processes and regenerative sets. Moreover, as far
as we know, the longest busy period and more generally asymptotic regimes on
[0, x] when x tends to infinity and t tends to the saturation time (Section 4.2)
have not been considered in queuing model.

3.2 Construction

First, we present a deterministic construction of the covering C associated with
a given sequence of files labelled by i ∈ N. The file labelled by i ∈ N has size li
and arrives after the files labelled by j ≤ i−1, at location xi on the real line. Files
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are stored following the process described in the Introduction and C is the portion
of line which is used for the storage. We begin by constructing the covering C(n)

obtained by considering only the first n files, so that C is obtained as the increasing
union of these coverings. A short thought (see Remark 1 p 5) enables us to see that
the covering C does not depend on the order of arrival of the files. This construc-
tion of C will then be applied to the construction of our random covering at a fixed
time C(t) by considering files arrived before time t. This construction and results
for finite ν are classical in queuing theory (see e.g. [30]) and storage systems (see
e.g. [81]). Thus we do not give details here and we refer to [11] for complete proof.

We define C(n) by induction. We set C(0) := ∅, and introduce the complemen-
tary set R(n) of C(n) (i.e. the free space of the real line). Let yn+1 = inf{y ≥ 0, |
R(n) ∩ [xn+1, y[|= ln+1}, so yn+1 is the right-most point which is used for storing
the (n+ 1)-th file. Define then

C(n+1) := C(n) ∪ [xn+1, yn+1[.

Now we consider the quantity of data over x, R(n)
x , as the quantity of data

which we have tried to store at the location x (successfully or not) when n files are
stored. These data are the data fallen in [gx(R(n)), x] which could not be stored
in [gx(R(n)), x], so R(n)

x is defined by

R(n)
x := −(x− gx(R(n))) +

∑
i≤n

xi∈[gx(R(n)),x]

li.

Note that in queuing systems, R(n) is the workload. This quantity can be expressed
using the function Y (n), which sums the sizes of the files arrived at the left of a
point x minus the drift term x. It is defined by Y (n)

0 = 0 and

Y
(n)
b − Y (n)

a = −(b− a) +
∑
i≤n

xi∈]a,b]

li for a < b. (3.1)

Figure 3. Arrival and storage of the 5-file and representation of Y (5). The first four
files have been stored without splitting and are represented by the black rectangles.
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Introducing also its infimum function defined for x ∈ R by I
(n)
x := inf{Y (n)

y :
y ≤ x}, we get the following expression.

Lemma 3.2.1. For every n ≥ 1, we have R(n) = Y (n) − I(n).

Proof. Let x ∈ R. For every y ≤ x, the quantity of data over x is at least the
quantity of data fallen in [y, x] minus y − x, i.e.

R(n)
x ≥

∑
i≤n

xi∈[y,x]

li − (x− y)

and by definition of R(n)
x , we get :

R(n)
x = sup{

∑
i≤n

xi∈[y,x]

li − (x− y) : y ≤ x} = sup{Y (n)
x − Y (n)

y : y ≤ x}.

Then R(n)
x = Y

(n)
x − I

(n)
x .

As a consequence, the covered set when the first n files are stored is given by

C(n) = {x ∈ R : Y (n) − I(n) > 0}. (3.2)

We are now able to investigate the situation when n tends to infinity under the
following mild condition

∀ L ≥ 0,
∑

xi∈[−L,L]

li <∞, (3.3)
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which means that the quantity of data arriving on a compact set is finite. Introduce
the function Y defined on R by Y0 = 0 and

Yb − Ya = −(b− a) +
∑

xi∈]a,b]

li for a < b,

and its infimum I defined for x ∈ R by Ix := inf{Yy : y ≤ x}.

As expected, letting n→∞ in (3.1) and (3.2), the covering

C := ∪n∈NC(n)

is given by :

Proposition 3.2.2. - If limx→−∞ Yx = +∞, then C = {x ∈ R : Yx−Ix > 0} 6= R.

- If lim infx→−∞ Yx = −∞, then C = {x ∈ R : Yx − Ix > 0} = R.

Remark 1. This result ensures that the covering at time t just depend on (Yx −
Ix)x∈R. Thus it does not depend on the order of arrival of files.

Proof. Condition (3.3) ensures that Y (n) converges to Y uniformly on every
compact set of R.

• If limx→−∞ Yx = +∞, then for every L ≥ 0, there exists L′ ≥ L such
that I−L′ = Y−L′ . Moreover Yx ≤ Y

(n)
x if x ≤ 0. So :

Y
(n)
−L′

n→∞−→ Y−L′ = I−L′ and I−L′ ≤ I
(n)
−L′ ≤ Y

(n)
−L′

Then I
(n)
−L′

n→∞−→ I−L′ . As Y (n) converges to Y uniformly on [−L′, L′], this entails

that for every x in [−L,L], inf{Y (n)
y ,−L′ ≤ y ≤ x} n→∞−→ inf{Yy,−L′ ≤ y ≤ x}.

Then,

I(n)
x = I

(n)
−L′ ∧ inf{Y (n)

y ,−L′ ≤ y ≤ x} n→∞−→ I−L′ ∧ inf{Yy,−L′ ≤ y ≤ x} = Ix.

So Y (n)
x − I

(n)
x

n→∞−→ Yx − Ix and Y
(n)
x − I

(n)
x increases when n increases since it is

equal to R(n)
x , the quantity of data over x (see Lemma 3.2.1). We conclude that

there is the identity

{x ∈ R, Yx − Ix > 0} = ∪n∈N{x ∈ R, Y (n)
x − I(n)

x > 0} = C.
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Moreover −L′ /∈ {x ∈ R : Yx − Ix > 0}, so C = {x ∈ R, Yx − Ix > 0} 6= R.

• If lim infx→−∞ Yx = −∞, then for every x ∈ R,

Ix = −∞ and I(n)
x

n→∞−→ −∞

The first identity entails that {x ∈ R, Yx−Ix > 0} = R. As (Y (n)
x )n∈N is bounded,

the second one implies that there exists n in N such that Y (n)
x − I

(n)
x > 0. Then

we have also ∪n∈N{x ∈ R : Y (n) − I(n) > 0} = R, which gives the result.

Finally, we can construct the random covering associated with a PPP. As the
order of arrival of files has no importance, the random covering C(t) at time t
described in Introduction is obtained by the deterministic construction above by
taking the subfamily of files i which verifies ti ≤ t.

When files arrive according to a PPP, (Yx)x≥0 is a Lévy process and we can
use results of Section 2.2.

3.3 Properties at a fixed time.

3.3.1 Statistics at a fixed time

Our purpose in this section is to specify the distribution of the covering C(t)
using the characterization of Section 3.2 and results of Section 2.2. This character-
ization will be useful to prove asymptotics results (Theorem 4.1.1, Theorem 4.2.1
and Corollary 4.2.2) and for the dynamic results given in Chapter 5. In that view,
following the previous section, we consider the process (Y (t)

x )x∈R associated to the
PPP {(ti, li, xi), i ∈ N} defined by

Y
(t)
0 := 0 ; Y

(t)
b − Y (t)

a = −(b− a) +
∑
ti≤t

xi∈]a,b]

li for a < b,

which has independent and stationary increments, no negative jumps and bounded
variation. Introducing also its infimum process defined for x ∈ R by

I(t)
x := inf{Y (t)

y : y ≤ x},

we can give now a handy expression for the covering at a fixed time and obtain
that the hardware becomes full at a deterministic time equal to 1/m (see Section
3.4 for the proof).

Page 42



3.3. PROPERTIES AT A FIXED TIME.

Proposition 3.3.1. For every t < 1/m, we have C(t) = {x ∈ R : Y (t)
x > I

(t)
x } 6= R

a.s.
For every t ≥ 1/m, we have C(t) = R a.s.

Indeed, in queuing system, tm is the charge and C(t) 6= R ⇔ tm < 1 is
the standard claim of stability for tm < 1. The complete argument is deferred to
Section 3.4.

To specify the distribution of C(t), it is equivalent and more convenient to
describe its complementary set, denoted by R(t), which corresponds to the free
space of the hardware. By the previous proposition, there is the identity :

R(t) = {x ∈ R : Y (t)
x = I(t)

x }. (3.4)

We begin by giving some geometric properties of this set. These properties are
classical (see [56] for storage systems and [62] for queuing theory).

Proposition 3.3.2. For every t ≥ 0, R(t) is stationary, its closure is symmetric
in distribution and it enjoys the regeneration property :
For every x ∈ R, (R(t)− dx(R(t))) ∩ [0,∞[ is independent of R(t)∩]−∞, x] and
is distributed as (R(t)− d0(R(t))) ∩ [0,∞[.
Moreover for every x ∈ R, P(x ∈ C(t)) = min(1,mt).

Stationarity is plain from the construction of the covering and regeneration
property is a direct consequence of Lemma 3.4.1. Symmetry is then a consequence
of Lemma 6.5 in [89] or Corollary (7.19) in [90]. Computation of P(x ∈ C(t)) is
then derived from Theorem 1 in [89]. See the next section for details.

Even though for each fixed t the distribution of R(t)cl is symmetric, the
processes (R(t)cl : t ∈ [0, 1/m]) and (−R(t)cl : t ∈ [0, 1/m]) are quite different.
For example, we shall observe in [12] that the left extremity of the data block
straddling 0 is a Markov process but the right extremity is not.

We want now to characterize the distribution of the free space R(t). For this
purpose, we need some notation. The drift of the Lévy process (Y (t)

x )x≥0 is equal
to −1, its Lévy measure is equal to tν and its Laplace exponent Ψ(t) is then given
by (see (2.8))

Ψ(t)(ρ) := −ρ+
∫ ∞

0

(
1− e−ρx

)
tν(dx). (3.5)

For sake of simplicity, we write, recalling (2.1),

g(t) := g0(R(t)), d(t) = d0(R(t)), l(t) = d(t)− g(t),

which are respectively the left extremity, the right extremity and the length of the
data block straddling 0, B0(t). Note that g(t) = d(t) = 0 if B0(t) = ∅.
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We work with R subset of R of the form tn∈N[an, bn[ and we denote by R̃ :=
tn∈N[−bn,−an[ the symmetrical of R with respect to 0 closed at the left, open at
the right. We consider the positive part (resp. negative part) of R defined by

→
R := (R− d0(R)) ∩ [0,∞] =

⊔
n∈N: an≥d0(R)

[an − d0(R), bn − d0(R)[,

←
R :=

→
R̃ =

⊔
n∈N: bn≤g0(R)

[g0(R)− bn, g0(R)− an[.

Example 1. For a given R represented by the dotted lines, we give below
→
R and

←
R, which are also represented by dotted lines. Moreover the endpoints of the data
blocks containing 0 are denoted by g0 and d0.

Thus
−→
R(t) (resp.

←−
R(t)) is the free space at the right of B0(t) (resp. at the left

of B0(t), turned over, closed at the left and open at the right). We have then the
identity

R(t) = (d(t) +
−→
R(t)) t (

˜−g(t) +
←−
R(t)). (3.6)

Introducing also the processes (→τ (t)
x )x≥0 and (←τ (t)

x )x≥0 defined by

→
τ

(t)
x := inf{y ≥ 0 : |

−→
R(t) ∩ [0, y]| > x}, ←

τ
(t)
x := inf{y ≥ 0 : |

←−
R(t) ∩ [0, y]| > x},

enables us to describe R(t) in the following way (see Section 3.4 for the proof).

Proposition 3.3.3. (i) The random sets
−→
R(t) and

←−
R(t) are independent, identically

distributed and independent of (g(t), d(t)).
(ii)

−→
R(t) and

←−
R(t) are the range of the subordinators →τ (t) and ←τ (t) respectively whose

Laplace exponent κ(t) is the inverse function of −Ψ(t).
(iii) The distribution of (g(t), d(t)) is specified by :

(g(t), d(t)) = (−Ul(t), (1− U)l(t)),

P(l(t) ∈ dx) = (1−mt)
(
δ0(dx) + 1l{x>0}xΠ

(t)(dx)
)
,

where U is an uniform random variable on [0, 1] independent of l(t) and Π(t) is the
Lévy measure of κ(t).
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Remark 2. Such results are classical for regenerative sets (see e.g. [56, 71, 79]).
But we need this particular characterization and expressions given in the proof
below for forthcoming results.

We can then estimate the number of data blocks on the hardware. If ν has a
finite mass, we write N (t)

x the number of data blocks of the hardware restricted
to [−x, x] at time t. This quantity has a deterministic asymptotic as x tends
to infinity which is maximum at time 1/(2m). And the number of blocks of the
hardware reaches a.s. its maximal at time 1/(2m). More precisely,

Corollary 3.3.4. If ν̄(0) <∞, then for every t ∈ [0, 1/m[,

lim
x→∞

N
(t)
x

2x
= ν̄(0)t(1−mt) a.s.

Moreover, we can describe here the hashing of data. We recall that a file
labeled by i is stored at location xi. In the hashing problem, one is interested by
the location where the file i is stored knowing xi. By stationarity, we can take
xi = 0 and consider a file of size l which we store at time t at location 0 on the
hardware whose free space is equal to R(t). The first point (resp. the last point)
of the hardware occupied for the storage of this file is equal to d(t) (resp. to
d(t) + →τ (t)

l ). This gives the distribution of the extremities of the portion of the
hardware used for the storage of a file.

3.3.2 Observations and examples

First, we have for every ρ ≥ 0 (use (2.14)),

κ(t)(ρ) = ρ+
∫ ∞

0
(1− e−ρx)Π(t)(dx), (3.7)

and using (2.15)

Π̄(t)(0) = tν̄(0),
∫ ∞

0
xΠ(t)(dx) =

mt
1−mt

. (3.8)

Using (2.13), we have also the following identity of measures on [0,∞[×[0,∞[

xP(→τ (t)
l ∈ dx)dl = lP(−Y (t)

x ∈ dl)dx. (3.9)

Finally, we give the distribution of the extremities of B0 :

P(−g(t) ∈ dx) = P(d(t) ∈ dx) = (1−mt)
(
δ0(dx) + 1l{x>0}Π̄

(t)(x)dx
)
. (3.10)
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Let us consider three explicit examples

Example 2. (1) The basic example is when ν = δ1 (all files have the same unit size
as in the original parking problem in [28]). Then for all x ∈ R+ and n ∈ N,

P(Y (t)
x + x = n) = e−tx (tx)n

n!
,

P(→τ (t)
x = x+ n) =

x

x+ n
e−t(x+n) (t(n+ x))n

n!
, (3.11)

where the second identity follows from integrating (3.9) on {(x, l) : l ∈ [z, z+h], x−
z = n} and letting h tend to 0. Then,

Π(t)(n) =
(tn)n

n.n!
e−tn,

and l(t) follows a size biased Borel law :

P(l(t) = n) = (1− t)
(tn)n

n!
e−tn.

(2) An other example where calculus can be made explicitly is the gamma case
when ν(dl) = 1l{l≥0}l

−1e−ldl. Note that ν̄(0) = ∞ and m = 1. Then, for every
x ∈ R+,

P(Y (t)
x ∈ dz) = 1l[−x,∞[(z)Γ(tx)−1e−(z+x)(z + x)tx−1dz,

P(→τ (t)
x ∈ dz) = 1l[x,∞[(z)x(zΓ(tz))−1e−(z−x)(z − x)tz−1dz. (3.12)

Further
Π(t)(dz) = (zΓ(tz))−1e−zztz−1dz,

and
P(l(t) ∈ dx) = (1− t)

(
δ0(dx) + Γ(tz)−1e−xxtx−1dx).

(3) For the exponential distribution ν(dl) = 1l{l≥0}e
−ldl, we can get :

Ψ(t)(λ) = λ(−1 +
t

λ+ 1
), κ(t)(λ) = (λ+ t− 1 +

√
(λ+ t− 1)2 + 4λ)/2.

Finally, we specify two distributions involved in the storage of the data.
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Writing −g(t) = γ(t) (see (3.15) and (3.16)) and using the identity of fluc-
tuation (2.18) gives an other expression for the Laplace transform of g(t) : For all
t ∈ [0, 1/m[ and λ ≥ 0, we have

E
(
exp

(
λg(t)

))
= exp

( ∫ ∞
0

(e−λx − 1)x−1P(Y (t)
x > 0)dx

)
. (3.13)

As a consequence, we see that the law of g(t) is infinitively divisible. Moreover
this expression will give the generating triplet of the additive process (g(t))t∈[0,1/m[

(see Theorem 2 in Section 3.4 in [12]).

The quantity of data over 0, R(t)
0 (see Section 3.2), is an increasing process

equal to (−I(t)
0 )t≥0. By (3.15) and (2.17), its Laplace transform is then equal to

λ −→ (1−mt)λ
Ψ(t)(λ)

.

3.4 Proofs

In this section, we provide rigorous arguments for the original results which
have been stated in Section 3.3.

Proof of Proposition 3.3.1. First m < ∞ entails that ∀L ≥ 0,
∑

ti≤t,xi∈[−L,L] li <
∞ a.s. and condition (2.12) is satisfied a.s.

• If t < 1/m, then E(Y (t)
−1 ) = 1−mt > 0 and the càdlàg version of (Y (t)

(−x)−)x≥0 is
a Lévy process. So we have (see [19] Corollary 2 on page 190) :

Y (t)
x

x→−∞−→ ∞ a.s.

Then Proposition 3.2.2 ensures that for every t < 1/m, C(t) = {x ∈ R : Y
(t)
x >

I
(t)
x } 6= R a.s.

• If t ≥ 1/m, then E(Y (t)
−1 ) ≤ 0 ensures (see [19] Corollary 2 on page 190)

:
Y (t)

x
x→−∞−→ −∞ a.s or (Y (t)

x )x≤0 oscillates a.s in−∞.

Similarly, we get that for every t ≥ 1/m, C(t) = R a.s.

For the forthcoming proofs, we fix t ∈ [0, 1/m[, which is omitted from the
notation of processes for the sake of simplicity.
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To prove the regeneration property and characterize the Laplace exponent of
→
τ , we need to establish first a regeneration property at the right extremities of
the data blocks. In that view, we consider for every x ≥ 0, the files arrived at the
left/at the right of x before time t :

Px := {(ti, xi, li) : ti ≤ t, xi ≤ x}, Px := {(ti, xi − x, li) : ti ≤ t, xi > x}.

Lemma 3.4.1. For all x ≥ 0, Pdx(R(t)) is independent of Pdx(R(t)) and distributed
as P0.

Proof. The simple Markov property for PPP states that for every x ∈ R, Px is
independent of Px and distributed as P0. Clearly this extends to simple stopping
times in the filtration σ

(
Px

)
x∈R and further to any stopping time in this filtration

using the classical argument of approximation of stopping times by a decreasing
sequence of simple stopping times (see also [73]). As dx(R(t)) is a stopping time
in this filtration, Pdx(R(t)) is independent of Pdx(R(t)) and distributed as P0.

Proof of Proposition 3.3.2. • The free space at the right of dx(R(t)) at time t is
given by the point process of files arrived at the right of dx(R(t)) before time t.
That is, there exists a measurable functional F such that for all x ∈ R,

(R(t)− dx(R(t))) ∩ [0,∞[= F
(
Pdx(R(t))

)
.

Similarly R(t)∩] − ∞, x] is Pdx(R(t)) measurable. The previous lemma ensures
then that (R(t) − dx(R(t))) ∩ [0,∞[ is independent of R(t)∩] − ∞, x] and is
distributed as (R− d0(R(t))) ∩ [0,∞[.

• The stationarity of C(t) should be plain from the construction of the
covering and the fact that the law of a PPP with intensity dx ⊗ ν is invariant
by translation of the first coordinate. Stationarity can also be viewed as a
consequence of regeneration and inf R(t) = −∞ (see Remark (4.11) in [71]).

• The symmetry of R(t)cl is a consequence of the regeneration property
and stationarity (see Lemma 6.5 in [89] or Corollary (7.19) in [90]).

• As a consequence of stationarity, P(x ∈ C(t)) does not depend on x and
is equal to P(0 ∈ C(t)). Following Section 2.1, we write Rx := Yx− Ix the quantity
of data over x so that the quantity of data stored in [−L,L] is given for every
L > 0 by

| C(t) ∩ [−L,L] |= R−L +
( ∑

ti≤t, xi∈]−L,L]

li
)
−RL.
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By invariance of the PPP {(ti, xi, li) : i ∈ N} by translation of the second coordi-
nate,

P
(
(2L)−1RL ≥ ε

)
= P

(
(2L)−1R−L ≥ ε

)
= P

(
(2L)−1R0 ≥ ε

) L→∞−→ 0.

Moreover using (2.8), (2L)−1
∑

ti≤t, xi∈]−L,L[

li
L→∞−→ mt in probability. So

E
(
(2L)−1 | C(t) ∩ [−L,L] |

) L→∞−→ mt

and we conclude with

E
(
| C(t)∩ [−L,L] |

)
= E

( ∫ L

−L
1l{x∈C(t)}dx

)
=

∫ L

−L
P(x ∈ C(t))dx = 2LP(0 ∈ C(t)).

One can also give a formal argument using Theorem 1 in [89] or P(0 ∈ C(t)) =
P(l(t) > 0) and Theorem 3.3.3.

Proof of Proposition 3.3.3. (i) By symmetry of R(t)cl,
−→
R(t) and

←−
R(t) are identically

distributed. The regeneration property ensures that
−→
R(t) is independent of

(
←−
R(t), g(t), d(t)). By symmetry,

←−
R(t) is independent of (g(t), d(t),

−→
R(t)). So

−→
R(t),

←−
R(t)

and (g(t), d(t)) are independent.

(ii) As
→
R(t) is a.s. the union of intervals of the form [a, b[, then x→ |R(t)∩[0, x]|

increases at x ∈
→
R(t). So, for every x ≥ 0,

→
τ |R(t)∩[0,x]| = dx(R(t)), →

τ x = d→
τ x

(R(t)) a.s.

So the range of →τ is equal to
−→
R(t). The fact →τ is a subordinator will be proved

below but could be also derived directly from the regeneration property of
→
R(t)

(see [71]). Similarly the range of ←τ is equal to
←−
R(t).

Moreover, dY = −1 on R(t) and Ya− = Yb if [a, b[ is an interval component of
C(t). By integrating on [d(t), d(t) + y], we have a.s for every y ≥ 0 such that
d(t) + y ∈ R(t),

Yy+d(t) − Yy = −|R(t) ∩ [d(t), d(t) + y]|.

Then using again the definition of →τ given in Section 3.3.1 and that
−→
R(t) is the

range of →τ ,

→
τ x = inf{y ≥ 0 : y ∈

−→
R(t), |

−→
R(t) ∩ [0, y]| > x}

= inf{y ≥ 0 : d(t) + y ∈ R(t), |R(t) ∩ [d(t), d(t) + y]| > x}
= inf{y ≥ 0 : Yy+d(t) − Yd(t) < −x}. (3.14)
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Moreover
Yy+d(t) − Yd(t) = −y +

∑
(ti,xi,li)∈Pd(t)

0≤xi≤y

li,

and Lemma 3.4.1 entails that Pd(t) is distributed as a PPP on [0, t] × R+ × R+

with intensity ds ⊗ dx ⊗ ν(dl). So (Yy+d(t) − Yd(t))y≥0 is a Lévy process with
bounded variation and drift −1 which verifies condition (2.12) (use (2.10) and
−1+mt < 0). Then Theorem 2.2.1 entails that →τ is a subordinator whose Laplace
exponent is the inverse function of −Ψ(t).

As
←−
R(t) is distributed as

−→
R(t), ←τ is distributed as →τ by definition.

(iii) We determine now the distribution of (g(t), d(t)) using fluctuation theory,
which enables us to get identities useful for the rest of the work. We write (Ỹx)x≥0

for the càdlàg version of (−Y−x)x≥0 and

S(t) := sup{Ỹx, x ≥ 0} = −I0, γ(t) = inf{x ≥ 0 : Ỹx = S(t)}. (3.15)

Using (3.4) and the fact that Y has no negative jumps, we have

g(t) = g0(R(t)) = sup{x ≤ 0 : Yx = Ix}
= sup{x ≤ 0 : Yx− = I0} = −inf{x ≥ 0 : Ỹx = −I0}
= −γ(t). (3.16)

Using again (3.4) and the fact that (Yx)x≥0 is regular for ]−∞, 0[ (see [19] Propo-
sition 8 on page 84), we have also a.s.

d(t) = inf{x > 0 : Yx = Ix} = inf{x > 0 : Yx = I0}
= inf{x > 0 : Yx < I0} = inf{x > 0 : Yx < −S(t)} = TS(t),

where (Tx)x≥0 is distributed as (→τ x)x≥0 by (3.14) and (Tx)x≥0 is independent of
(S(t), γ(t)) since (Yx)x≥0 is independent of (Yx)x≤0. Then for all λ, µ ≥ 0 with
λ 6= µ :

E
(
exp(λg(t)− µd(t))

)
= E

(
exp(−λγ(t))E(exp(−µTS(t)))

)
= E

(
exp(−λγ(t)− κ(t)(µ)S(t))

)
= −[Ψ(t)]′(0)

κ(t)(λ)− κ(t)(µ)
λ− µ

using (2.16) (3.17)

= (1−mt)
κ(t)(λ)− κ(t)(µ)

λ− µ
using (2.10), (3.18)

which gives the distributions of d(t), g(t) and l(t) letting respectively λ = 0, µ = 0
and λ→ µ. Computing then the Laplace transform of (−Ul(t), (1−U)l(t)) where
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U is a uniform random variable on [0, 1] independent of l(t) gives the right hand
side of (3.18). So (g(t), d(t)) = (−U ′l(t), (1−U ′)l(t)), where U ′ is a uniform random
variable on [0, 1] independent of l(t) .

Remark 3. We have proved above that
←−
R(t) is distributed as

−→
R(t), which entails that

the last passage-time-process of the post-infimum process of (−Yx)x≥0 is distributed
as the first-passage-time process of (−Yx)x≥0.
This result is also a consequence of the fact that the post-infimum process of
(−Yx)x≥0 is distributed as the Lévy process (−Yx)x≥0 conditioned to stay positive
[74], whose last-passage-time process is a subordinator with Laplace exponent κ
(see Exercise 3 on page 213 in [19]).

Proof of Corollary 3.3.4. As ν̄(0) < ∞, then Π̄(0) = tν̄(0) < ∞ (see (3.8)). So
→
τ is the sum of a drift and a compound Poisson process. That is, there exists a
Poisson process (Nx)x≥0 of intensity tν̄(0) and a sequence (Xi)i∈N of iid variables
of law ν/ν̄(0) independent of (Nx)x≥0 such that

→
τ x = x+

Nx∑
i=1

Xi, x ≥ 0.

As
−→
R(t) is the range of →τ , the number of data blocks of C(t) between d(t) and

d(t) +→τ x is equal to the number of jumps of →τ before x, that is Nx. Thus,

number of data blocks in [d(t), d(t) +→τ x]
→
τ x

=
Nx
→
τ x

x→∞−→ E(N1)
E(→τ 1)

= tν̄(0)(1−mt) a.s.

by the law of large numbers (see [19] on page 92). This completes the proof.
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Chapter 4

Asymptotic regimes

In this Chapter, we determine the asymptotic behavior of C(t) (the set of
occupied locations at time t) at saturation of the hardware, i.e as t → 1/m
(Section 4.1). Recall that C(t) tends to R as t → 1/m and it is more convenient
to consider R(t), the complementary set of C(t). We also give in Section 4.2 the
asymptotic behavior of C(t) ∩ [0, x] when x tends to infinity and t tends to 1/m.
As expected, we recover the phase transition of the largest block of the hardware
observed by Chassaing and Louchard in [28].

We first give several definitions which will be useful for the study of the asymp-
totic regimes. Following the notation in [23], we say that ν ∈ D2+ if ν has a finite
second moment m2 :=

∫∞
0 l2ν(dl). For α ∈]1, 2], we say that ν ∈ Dα whenever

∃C > 0 such that ν̄(x) x→∞∼ Cx−α.

Then, for α ∈]1, 2[, we put :

Cα :=
(
CΓ(2− α)
m(α− 1)

)1/α

.

We denote by (Bz)z∈R a two-sided Brownian motion, i.e. (Bx)x≥0 and (B−x)x≥0

are independent standard Brownian motions. For α ∈]1, 2[ , we denote by (σ(α)
z )z∈R

a càdlàg process with independent and stationary increments such that (σ(α)
x )x≥0

is a standard spectrally positive stable Lévy process with index α :

∀ x ≥ 0, λ ≥ 0, E
(
exp(−λσ(α)

x )
)

= exp(xλα).

Finally, for all λ ≥ 0 and α ∈]1, 2[, we introduce the following processes indexed
by z ∈ R

Y 2+,λ
z = −λz+

√
m2/mBz, Y 2,λ

z = −λz+
√
C/mBz, Y α,λ

z = −λz+Cασ
(α)
z ,

and their infimum process defined Iα,λ
x := inf{Y α,λ

y : y ≤ x} for x ∈ R.

Page 53



CHAPTER 4. ASYMPTOTIC REGIMES

Topology of Matheron. If I is a closed interval of R, we denote by H(I) the
space of closed subsets of I. For all x, y ∈ R and A ⊂ R we define

d(x, y) = 1− e−|x−y|, d(x,A) = inf{d(x, y) : y ∈ A},

and we endow H(I) with the Hausdorff distance dH defined for all A,B ∈ H(I) by
:

dH(A,B) = max
(
sup
x∈A

d(x,B), sup
x∈B

d(x,A)
)
.

The topology induced by this distance is the topology of Matheron [72] : a sequence
Rn in H(I) converges to R iff for each open set G and each compact K,

R∩G 6= ∅ implies Rn ∩G 6= ∅ for n large enough,
R∩K = ∅ implies Rn ∩K = ∅ for n large enough.

It is also the topology induced by the Hausdorff metric on a compact set using
arctan(R ∪ {−∞,∞}) or the Skorokhod metric using the class of ’descending
saw-tooth functions’ (see [72] and [40] for details).

4.1 Asymptotics at saturation of the hardware

We focus now on the asymptotic behavior of R(t) when t tends to 1/m, that
is when the hardware is becoming full. First, note that if ν has a finite second
moment, then

E
(
l(t)

)
=

∫∞
0 l2ν(dl)
(1−mt)2

.

Thus we may expect that if ν has a finite second moment, then (1 − mt)2l(t)
should converge in distribution as t tends to 1/m. Indeed, in the particular case
ν = δ1 or in the conditions of Corollary 2.4 in [21], we have an expression of
Π(t)(dx) and we can prove that (1 − mt)2l(t) does converge in distribution to a
gamma variable.

More generally, we shall prove that the rescaled free space (1 − mt)2R(t)
converges in distribution as t tends to 1/m. In that view, we need to prove
that the process (Y (t)

(1−mt)−2x
)x∈R converges after suitable rescaling to a random

process. Thanks to (3.4), (1 − mt)2R(t) should then converge to the set of
points where this limiting process coincides with its infimum process. We
shall also handle the case where ν has an infinite second moment and find the
correct normalization, which depends on the tail of ν. Proofs are close to proofs of
the next section and they are made simultaneously in the last section of this paper.

In queuing systems, asymptotics at saturation are known as heavy traffic
approximation (ρ = tm → 1), which depend similarly on the tail of ν. And for ν
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finite, results given here could be directly derived from results in queuing theory
(See III.7.2 in [30] or [62] if ν has a second moment order and [27] for heavy tail
of ν). The main difference is that ν can be infinite in this paper. Then the busy
cycle is not defined and we consider the whole random set of occupied locations.
Moreover, as explained below, asymptotics of R(t) can not be directly derived
from asymptotics of Y or the workload R.

We introduce now the following functions defined for every t ∈ [0, 1/m[ and
α ∈ (1, 2) by

ε2+(t) = (1−mt)2, ε2(t) = 2
(1−mt)2

−log((1−mt))
, εα(t) = (1−mt)

α
α−1 .

We have then the following weak convergence result for the Hausdorff metric
defined above (see Section 3.4 for the proof).

Theorem 4.1.1. If ν ∈ Dα (α ∈ (1, 2]∪{2+}), then εα(t).R(t)cl converges weakly
in H(R) as t tends to 1/m to {x ∈ R : Y α,1

x = Iα,1
x }cl .

First we prove the convergence of the Laplace exponent Ψ(t) after suitable
rescaling as t tends to 1/m, which ensures the convergence of the Lévy process
Y (t) after suitable rescaling (see Lemma 4.3.1). These convergences will not a
priori entail the convergence of the random set εα(t).Rcl(t) since they do not entail
the convergence of excursions. Nevertheless, they will entail the convergence of
κ(t) since κ(t) ◦ (−Ψ(t)) = Id (Lemma 4.3.2). Then we get the convergence of τ (t)

as t tends to infinity and thus of its range εα(t).Rcl(t).

Remark 4. More generally, as in queuing theory and [23], we can generalize these
results for regularly varying functions ν̄. If ν̄ is regularly varying at infinity with
index −α ∈ (−1,−2), then we have the following weak convergence in H(R) :

z−1R((1− zν̄(z))/m)cl z→∞=⇒ {x ∈ R : Y α,1
x = Iα,1

x }cl with C = 1.

For instance, the case ν̄(x) x→∞∼ cx−αlog(x)β with (α, β, c) ∈]1, 2[×R × R∗+ leads
to (

(1−mt)log(1/(1−mt))−β
) 1

α−1R(t)cl t→1/m
=⇒ {x ∈ R : Y α,1

x = Iα,1
x }cl,

with C = c/(α− 1)β. If ν̄ is regularly varying at infinity with index −2, there are
many cases to consider.

We get then the asymptotic of (g(t), d(t)) :

Corollary 4.1.2. If ν ∈ Dα (α ∈ (1, 2] ∪ {2+}), then εα(t).(g(t), d(t)) converges
weakly as t tends to 1/m to (sup{x ≤ 0 : Y α,1

x = Iα,1
0 }, inf{x ≥ 0 : Y α,1

x = Iα,1
0 }).

If ν ∈ D2+ (resp. D2), εα(t).l(t) converges weakly to a gamma variable with
parameter (1/2,m/(4m2)) (resp. (1/2,m/4)).
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Remark 5. The density of data blocks of size dx in εα(t).R(t)cl is equal to
mt

1−mtΠ
(t)(dx). By the previous theorem or corollary, this density converges weakly

as t tends to 1/m to the density of data block of size dx of the limit covering
{x ∈ R : Y α,1

x = Iα,1
x }cl. This limit density, denoted by Πα,1(dx), can be computed

explicitly in the cases ν ∈ Dα (α ∈ {2, 2+}), thanks to the last corollary :

Π2+,1(dx) =
√

m
4πm2x3

exp
(
− m

4m2
x
)
, Π2,1(dx) =

√
m

4πx3
exp

(
− m

4
x
)
.

Note that is also the Lévy measure of the limit covering {x ∈ R : Y α,1
x = Iα,1

x }cl.

4.2 Asymptotic regime on a large part of the hardware

Here we look at the set of occupied locations C(t) in a window of size
x. We consider the asymptotics of C(t) ∩ [0, x] when x tends to infinity at
saturation time. As far as we know, results given here are new even when ν is
finite. We introduce the following functions defined for all x ∈ R∗+ and α ∈ (1, 2) by

f2+(x) = 1/
√
x, f2(x) =

√
log(x)/x, fα(x) = x1/α−1.

And we have the following asymptotic regime (see Section 3.4 for the proof).

Theorem 4.2.1. If ν ∈ Dα (α ∈ (1, 2] ∪ {2+}), x tends to infinity and t to 1/m
such that 1 −mt ∼ λfα(x) with λ > 0, then x−1(R(t)cl ∩ [0, x]) converges weakly
in H([0, 1]) to {z ∈ [0, 1] : Y α,λ

z = Iα,λ
z }cl.

Thus as in [28], we observe a phase transition of the size of largest block of data
in [0, x] as x→∞ according to the rate of filling of the hardware. More precisely,
denoting B1(x, t) =| I1(x, t) | where (Ij(x, t))j≥1 is the sequence of component
intervals of C(t) ∩ [0, x] ranked by decreasing order of size, we have :

Corollary 4.2.2. Let ν ∈ Dα (α ∈ (1, 2]∪{2+}), x tend to infinity and t to 1/m:
- If 1−mt ∼ λfα(x) with λ > 0, then B1(x, t)/x converges in distribution to the
largest length of excursion of (Y α,λ

z − Iα,λ
z )z∈[0,1].

- If fα(x) = o(1−mt), then B1(x, t)/x
P−→ 0 .

- If 1−mt = o(fα(x)), then B1(x, t)/x
P−→ 1.

The phase transition occurs at time t such that 1 −mt ∼ λfα(x) with λ > 0.
The more data arrive in small files (i.e. the faster ν̄(x) tends to zero as x tends
to infinity), the later the phase transition occurs. In [28, 23], the hardware is a
circle and processes required for asymptotics are the bridges of the processes used
here. A consequence is that in our model, B1(t, x)/x tends to one with a positive
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probability at phase transition, which is not the case for the parking problem in
[28, 23]. More precisely, denoting by Bα,λ the law of the largest length of excursion
of (Y α,λ

x − Iα,λ
x )x∈[0,1], we have :

∀ (λ, α) ∈ R∗+×]1, 2[∪{2+}, P(Bα,λ = 1) > 0.

4.3 Proofs

Proofs of Theorem 4.1.1 and Theorem 4.2.1 are close and made simultaneously.
For that purpose, we introduce now Ψα,λ the Laplace exponent (see (2.7)) of Y α,λ

given for y ≥ 0, λ ≥ 0 and α ∈ (1, 2) by

Ψ2+,λ(y) = −λy−m2

m
y2

2
, Ψ2,λ(y) = −λy−C

m
y2

2
, Ψα,λ(y) = −λy−(Cαy)α.

We denote by D the space of càdlàg function from R+ to R which we endow
with the Skorokhod topology (see [54] on page 292). First, we prove the weak
convergence of Y (t) after suitable rescaling.

Lemma 4.3.1. If ν ∈ Dα (α ∈ (1, 2] ∪ {2+}), then for all y ≥ 0 and λ > 0 :

εα(t)−1Ψ(t)(εα(t)(1−mt)−1y)
t→1/m−→ Ψα,1(y),

xΨ((1−λfα(x))/m)((xfα(x))−1y) x→∞−→ Ψα,λ(y),

which entail the following weak convergences of processes in D :(
εα(t)(1−mt)−1Y

(t)
εα(t)−1y

)
y≥0

t→1/m
=⇒ (Y α,1

y )y≥0,(
(xfα(x))−1Y ((1−λfα(x))/m)

xy

)
y≥0

x→∞=⇒ (Y α,λ
y )y≥0.

Remark 6. If ν̄ is regularly varying at infinity with index −α ∈ (−1,−2), then
ν̄(x)−1Ψ((1−λxν̄(x))/m)(x−1y) converges to Ψα,λ(y) as x tends to infinity.

Proof of Lemma 4.3.1. Using (2.9), we have

xΨ(t)(y) = xy(mt− 1− t

∫ ∞
0

(1− e−yu)ν̄(u)du). (4.1)

We handle now the different cases :
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• Case ν ∈ D2+. Using |1 − e−yu|/y ≤ u (u ≥ 0) and dominated conver-
gence theorem gives :∫ ∞

0
(1− e−yu)ν̄(u)du

y→0∼ y

∫ ∞
0

uν̄(u)du =
ym2

2
,

which proves the first part of the lemma using (4.1).

• Case ν ∈ Dα with α ∈ (1, 2). Using that (u/y)αν̄(u/y) is bounded, we
apply dominated convergence theorem and get∫ ∞

0
(1− e−yu)ν̄(u)du = y−1

∫ ∞
0

(1− e−u)ν̄(u/y)du (4.2)

y→0∼ y−1C(y−1)−α

∫ ∞
0

(1− e−u)u−αdu

y→0∼ C
Γ(2− α)
α− 1

yα−1,

which proves the first part of the lemma using (4.1).

• Case ν is regularly varying at infinity with index −α ∈]− 1,−2[. First,∫ 1/
√

y

0
(1− e−yu)ν̄(u)du ≤ y

∫ 1/
√

y

0
uν̄(u)du

y→0∼ y(1/
√
y)2−α = yα/2.

Moreover for every u > 0, ν̄(u/y)
y→0∼ ν̄(y)u−α. Let δ > 0 such that −2 < −α−δ <

−α + δ < −1. By Potter’s theorem (page 25 in [26]) ensures that for all y small
enough and u large enough,

ν̄(u/y)
ν̄(1/y)

≤ 2max(u−α+δ, u−α−δ).

So we can apply the dominated convergence theorem to get∫ 1/
√

y

0
(1− e−yu)ν̄(u)du = y−1

∫ ∞
√

y
(1− e−u)ν̄(u/y)du

y→0∼ Γ(2− α)
α− 1

y−1ν̄(1/y).

As yα/2 = o(y−1ν̄(1/y)) (y → 0), we can complete the proof with∫ ∞
0

(1− e−yu)ν̄(u)du
y→0∼ Γ(2− α)

α− 1
y−1ν̄(1/y).

• Case ν ∈ D2. We split the integral. First, we have∫ 1/
√

y

0
(1− e−yu)ν̄(u)du

y→0∼ y

∫ 1/
√

y

0
uν̄(u)du

y→0∼ Cylog(1/y)/2.
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since
∫ 1/
√

y
0 (1− e−yu + yu)ν̄(u)du = o(y

∫ 1/
√

y
0 uν̄(u)du). Moreover,∫ ∞

1/
√

y
(1− e−yu)ν̄(u)du = y−1

∫ ∞
√

y
(1− e−u)ν̄(u/y)du

y→0∼ Cy

∫ ∞
√

y
(1− e−u)u−2du using ν ∈ D2

y→0∼ Cy

∫ 1

√
y
u−1du = Cylog(1/y)/2

Then ∫ ∞
0

(1− e−yu)ν̄(u)du
y→∞∼ Cylog(1/y),

which proves the first part of the lemma using (4.1).

These convergences ensure the convergence of the finite-dimensional distribu-
tions of the processes. The weak convergence in D, which is the second part of the
lemma, follows from Theorem 13.17 in [55].

In the spirit of Section 3.3.1, we introduce the expected limit set, that is the
free space of the covering associated with Y α,λ, and the extremities of the block
containing 0.

R(α, λ) := {x ∈ R : Y α,λ
x = Iα,λ

x },

g(α, λ) := g0(R(α, λ)), d(α, λ) := d0(R(α, λ)).

We have the following analog of Proposition 3.3.3.
−→
R(α,λ) and

←−
R(α,λ) are inde-

pendent, identically distributed and independent of (g(α, λ), d(α, λ)). Moreover
−→
R(α,λ) and

←−
R(α,λ) are respectively the range of the subordinators →τ α,λ and ←τ α,λ,

whose Laplace exponent κα,λ is the inverse function of −Ψα,λ. Finally, using[
Ψα,λ

]′(0) = −λ, the counterpart of (3.17) gives for ρ, µ ≥ 0 and ρ 6= µ :

E
(
exp(ρg(α, λ)− µd(α, λ))

)
= λ

κα,λ(ρ)− κα,λ(µ)
ρ− µ

. (4.3)

The proof of these results follow the proof of Proposition 3.3.3, except for two
points :

1) We cannot use the point process of files to prove the stationarity and
regeneration property of R(α, λ) and we must use the process Y α,λ instead. The
stationarity is a direct consequence of the stationarity of

(
Y α,λ

x − Iα,λ
x

)
x∈R. The
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regeneration property is a consequence of the counterpart of Lemma 3.4.1 which
can be stated as follows. For all x ∈ R,(
Y α,λ

dx(R(α,λ))+y − Y
α,λ
dx(R(α,λ))

)
y≥0

is independent of
(
Y α,λ

dx(R(α,λ))−y − Y
α,λ
dx(R(α,λ))

)
y≥0

and distributed as
(
Y α,λ

y

)
y≥0

. As Lemma 3.4.1, this property is an extension to

the stopping time dx(R(α, λ)) of the following obvious result :
(
Y α,λ

x+y − Y α,λ
x

)
y≥0

is independent of
(
Y α,λ

x−y − Y α,λ
x

)
y≥0

and distributed as
(
Y α,λ

y

)
y≥0

.

2) It is convenient to define directly (→τ α,λ
x )x≥0 by

→
τ

α,λ
x := inf{y ≥ 0 : Y α,λ

d(α,λ)+y − Y α,λ
d(α,λ) < −x}.

For λ > 0, [Ψα,λ]′(0) = −λ < 0 so we can apply Theorem 2.2.1 and →τ α,λ is a
subordinator whose Laplace κα,λ is the inverse function of −Ψα,λ. Moreover its
range is a.s. equal to

−→
R(α,λ), since the Lévy process (Y α,λ

d(α,λ)+y − Y α,λ
d(α,λ))y≥0 is

regular for ]−∞, 0[ (Proposition 8 on page 84 in [19]).

To prove Theorem 4.1.1 and Theorem 4.2.1, we need a final lemma, which
states the convergence of the Laplace exponent of

−→
R(t).

Lemma 4.3.2. If ν ∈ Dα (α ∈ (1, 2] ∪ {2+}), then for all z ≥ 0 and λ > 0,

(1−mt)εα(t)−1κ(t)(εα(t)z)
t→1/m−→ κα,1(z),

xfα(x)κ((1−λfα(x))/m)(x−1z) x→∞−→ κα,λ(z).

Remark 7. If ν̄ is regularly varying at infinity of index −α ∈ (−1,−2), we have
similarly

ν̄(x)−1κ((1−λxν̄(x))/m)(x−1z) x→∞−→ κα,λ(z).

Proof. First we prove that

α(t)
t→1/m∼ β(t) ⇒ κ(t)(α(t))

t→1/m∼ κ(t)(β(t)). (4.4)

Indeed the function u ∈ R∗+ 7→ 1−e−u

u decreases so for all x ≥ 0 and u, v > 0, we
have :

min(
u

v
, 1) ≤ 1− e−ux

1− e−vx
≤ max(

u

v
, 1).

This gives

min(
α(t)
β(t)

, 1) ≤
∫∞
0 (1− e−α(t)x)Π(t)(dx)∫∞
0 (1− e−β(t)x)Π(t)(dx)

≤ max(
α(t)
β(t)

, 1),

and proves (4.4) recalling (3.7).
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Then the first part of Lemma 4.3.1 and the identity κ(t) ◦ (−Ψ(t)) = Id give the

first part of Lemma 4.3.2. Indeed for every y ≥ 0, Ψ(t)(εα(t)(1 −mt)−1y)
t→1/m∼

εα(t)Ψα,1(y). So (8.14) entails

εα(t)(1−mt)−1y
t→1/m∼ κ(t)(−εα(t)Ψα,1(y)).

Put y = κα,1(z) to get the first limit of the lemma and follow the same way to get
the second one.

Proof of Theorem 4.1.1. First, by (3.18), we have

E
(
exp(ρεα(t)g(t)− µεα(t)d(t))

)
= (1−mt)

κ(t)(εα(t)ρ)− κ(t)(εα(t)µ)
εα(t)(ρ− µ)

.

Letting t→ 1/m using Lemma 4.3.2 gives the right hand side of (4.3). Then that
εα(t).(g(t), d(t)) converges weakly as t tends to 1/m to (g(α, 1), d(α, 1)).

Moreover εα(t)
−→
R(t)

cl
(resp. εα(t)

←−
R(t)

cl
) converges weakly in H(R+) as t tends

to 1/m to
−→
R(α,1)

cl
(resp.

←−
R(α,1)

cl
). Indeed, by Proposition (3.9) in [40], this is

a consequence of the convergence of the Laplace exponent of εα(t)
−→
R(t) given by

Lemma 4.3.2. Informally, εα(t)
−→
R(t)

cl
is the range of

(
εα(t)→τ (t)

(1−mt)εα(t)−1z

)
z≥0

whose convergence in D follows from Lemma 4.3.2.

We can now prove the theorem. We know from (3.6) that

εα(t)R(t) = εα(t).(d(t) +
−→
R(t)) t (

˜
εα(t).(−g(t) +

←−
R(t)))

where εα(t)
←−
R(t), εα(t)(−g(t), d(t)) and εα(t)

−→
R(t) are independent by Proposition

3.3.3. Similarly

R(α, 1) = (d(α, 1) +
−→
R(α,1)) t (

˜−g(α, 1) +
←−
R(α,1))

where
←−
R(α,1), (−g(α, 1), d(α, 1)) and

−→
R(α,1) are independent. As remarked above,

we have also the following weak convergences as t tends to 1/m :

εα(t)
←−
R(t)

cl
⇒

←−
R(α,1)

cl
, εα(t)

−→
R(t)

cl
⇒

−→
R(α,1)

cl
,

εα(t)(−g(t), d(t)) ⇒ (−g(α, 1), d(α, 1)).

So εα(t)R(t)cl converges weakly to R(α, 1)cl in H(R) as t tends to 1/m.
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Proof of Corollary 4.1.2. The first result is a direct consequence of Theorem 4.1.1.
We have then

εα(t)l(t)
t→1/m
=⇒ d(α, 1)− g(α, 1).

Moreover, as κ2+,1 ◦ (−Ψ2+,1) = Id, we can compute κ2+,1 and (4.3) gives

E
(
exp(−µ(d(2+, 1))− g(2+, 1))

)
= (κ2+,1)′(µ)

=
(1 +

√
1 + 2m2

m µ
m2
m

)′(µ)

=
1√

−1 + 2m2
m µ

.

So, by identification of Laplace transform, d(α, 1)− g(α, 1) is a gamma variable of
parameter (1/2,m/(4m2)) and we get the result. The argument is similar in the
case α = 2.

Proof of Theorem 4.2.1. The argument is similar to that of the proof of Theorem
4.1.1 using the others limits of Lemma 4.3.2. We get that if x→∞ and 1−mt ∼
λfα(x) with λ > 0, then x−1R(t) converges weakly in H(R) to {x ∈ R : Y α,λ

x =
Iα,λ
x }cl. The theorem follows by restriction to [0, 1].

To prove the corollary of Theorem 4.2.1, we need the following result.

Lemma 4.3.3. The largest length of excursion of (Y α,λ
x − Iα,λ

x )x∈[0,1], denoted by
Bα,λ, converges in probability to 0 as λ tends to infinity and to 1 as λ tends to 0.

Proof. • Let 0 ≤ a < b ≤ 1. Note that for all λ′ ≥ 1 and x ≥ 0, Y α,λ′
x − Y α,1

x =
(1− λ′)x ensures that Iα,λ′

x − Iα,1
x ≥ (1− λ′)x. Then,

Y α,λ′

a+2 b−a
3

− Iα,λ′

a+ b−a
3

≤ Y α,1

a+2 b−a
3

− Iα,1

a+ b−a
3

+ (1− λ′)
b− a

3
.

So a.s there exists λ′ such that

Y α,λ′

a+2 b−a
3

< Iα,λ′

a+ b−a
3

.

As Y α,λ′ has no negative jumps, it reaches its infimum on ]−∞, 2(b−a)/3] in a point
c ∈ [a+(b−a)/3, a+2(b−a)/3]. Then a.s there exists c ∈ [a+(b−a)/3, a+2(b−a)/3]
and λ′ > 0 such that c ∈ R(α, λ′), which entails that c does not belong to the
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interior of Bα,λ′ . Adding that Bα,λ decreases as λ increases, this property ensures
that Bα,λ converges in probability to 0 as λ tends to infinity.

• As (Y α,0
x )x∈R oscillates when x tends to −∞ (see [19] Corollary 2 on page

190), then
Iα,λ
0

λ→0−→ −∞,

which ensures that Bα,λ converges in probability to 1 as λ tends to 0.

Proof of Corollary 4.2.2. The first result is a direct consequence of Theorem 4.2.1.

If o(1 − mt) = fα(x) (x → ∞), then for every λ > 0 and x large enough,
t ≤ (1− λfα(x))/m and

B1(x, t)/x ≤ B1(x,
1− λfα(x)

m
)/x.

The right hand side converges weakly to Bα,λ as x tends to infinity. Letting λ

tend to infinity, the lemma above entails that B1(x, t)/x
x→∞−→ 0 in P.

Similarly if 1 − mt = o(fα(x)) (x → ∞) , then for every λ > 0 and x large
enough,

B1(x, t)/x ≥ B1(x,
1− λfα(x)

m
)/x.

Letting λ tend to 0, Lemma 4.3.3 entails that B1(x, t)/x
x→∞−→ 1 in P.
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Chapter 5

Evolution of a typical data
block

In this chapter, we focus on the dynamics of the covering and we shall study
the block of data straddling a typical point, say 0 for simplicity, which is denoted
by B0. Thus B0(t) is the block of data of the hardware containing 0 at time t.
We will show that its end-points and its length are pure jump Markov processes.
Specifically, if a file arrives at time t at the left of B0(t−) and cannot be stored
entirely at its left, it yields a jump of the left end-point of B0. The data of this
file which cannot be stored at the left of B0(t−) are called remaining data. These
remaining data yield a jump of the right end-point of B0 (see Figure 4). We
shall prove that these events happen at instants which accumulate at 1/m and
induce a random partition of the time interval [0, 1/m] with the Poisson-Dirichlet
distribution (Theorem 5.2.1) and that the jumps of the end-points at these
instants form a PPP on [0, 1/m] × R+ × R+ (Proposition 5.4.1). Moreover the
successive quantities of remaining data form an iid sequence (Corollary 5.3.2).
If a file arrives on B0, it yields a jump of the right end-point only (see Figure 5).
The other files do not induce immediately a jump of B0 and we get the evolution
of (B0(t))t≥0 (Theorem 5.4.2). Finally, we prove that the process describing the
length of (B0(t))t≥0 is a branching process with immigration (Corollary 5.5.2).

Figure 4. Jumps of the end-points of B0 (∆g(t) and ∆d(t)) and remaining data in-
duced by the arrival of a file at time t at the left of B0(t−).

Page 65



CHAPTER 5. EVOLUTION OF A TYPICAL DATA BLOCK

Figure 5. Jump of the right end-point of B0 (∆d(t)) induced by the arrival of a file
at time t on B0(t−).

We use the same Notations as in the previous chapter and recall that (Y (t)
x )x≥0

Y
(t)
0 := 0 ; Y

(t)
b − Y (t)

a =
∑
ti≤t

xi∈]a,b]

li − (b− a) for a < b, (5.1)
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is a Levy process with drift −1 and Lévy measure tν(dx).

In the previous chapter, we proved that the time when the hardware becomes
full is equal to 1/m, that is a.s C(t) = R iff t ≥ 1/m. Thus we already know that
B0(0) = ∅ and B0(1/m) = R and we shall study (B0(t))t∈[0,1/m]. In that view,
we recall that g(t) (resp. d(t), resp. l(t)) is the left end-point (resp. the right
end-point, resp. the length) of the data block containing 0 :

d(t) := d0(R(t)), g(t) := −d0(−R(t)), B0(t) := [g(t), d(t)[, l(t) := d(t)−g(t).

We will also need the free space at the right of B0(t) denoted by
−→
R(t) and at the

left of B0(t), turned over, closed at the left and open at the right, denoted by
←−
R(t),

which were introduced in Section 3.3.1.

First, we prove some properties of absence of memory (Section 5.1) : the
evolution of B0 after time t depends from the past of this block only through
l(t) (Markov property). Then we focus on the left end-point : it is an additive
process and we give its Lévy measure. As a consequence, we get the distribution
of the instants at which the left end-point jumps (Section 5.2) : these instants
form a stick breaking sequence which does not depend on ν. We then derive the
distribution of the remaining data (Section 5.3), which completes the description
of the process of storage at the left end-point. By taking also into account the
data fallen on B0, we get then the evolution of (g(t), d(t)) (Section 5.4). The
latter characterizes the evolution of the right end-point and the length (Section
5.5).

5.1 Markov property of B0

We have already proved that R(t) enjoys a ’spatial’ regeneration property (see
Proposition 3.3.2). To study the evolution of B0, we need ’time’ regeneration
property. Here we prove that the evolution of the block containing 0 up to time t
is independent of the covering outside [g(t), d(t)] up to time t. In Section 5.4, this
property will ensure that the evolution of B0 after time t depends from the past
of this block only through l(t) (Markov property).

Proposition 5.1.1. For every t ∈ [0, 1/m[, the following three processes with
values in the space of subsets of R
. (g(t)−R(s)) ∩ [0,∞[, 0 ≤ s ≤ t,
. (R(s)− d(t)) ∩ [0,∞[, 0 ≤ s ≤ t,
. R(s) ∩ [g(t), d(t)], 0 ≤ s ≤ t,
are independent.

Remark 8. Actually, we have the following regeneration property : ∀t ∈ [0, 1/m[,
∀x ∈ R,

(
(R(s) − dx(R(t))) ∩ [0,∞[: s ∈ [0, t]

)
is independent of

(
(R(s) −
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CHAPTER 5. EVOLUTION OF A TYPICAL DATA BLOCK

dx(R(t)))∩] −∞, 0] : s ∈ [0, t]
)

and is distributed as
(
(R(s) − d0(R(t))) ∩ [0,∞[:

s ∈ [0, t]
)
.

This result is a direct consequence of the following lemma where we consider
the point processes of files until time t at the left of/at the right of/inside [g, d] :

Pg(t) := {(ti, g−xi, li) : ti ≤ t, xi < g}, P d(t) := {(ti, xi−d, li) : ti ≤ t, d < xi},

P d
g (t) := {(ti, xi, li) : ti ≤ t, g ≤ xi ≤ d}.

Lemma 5.1.2. For every t ∈ [0, 1/m[, the point processes Pg(t)(t), P
d(t)
g(t) (t) and

Pd(t)(t) are independent.

Proof. First we prove a weaker result, where times (ti)i∈N are not taken into ac-
count. Denote by (Ỹ (t)

x )x≥0 the càdlàg version of (Y (t)
−x)x≥0. This is a spectrally

negative Lévy process with bounded variation, which drifts to ∞. Note that,

g(t) = g0(R(t)) = sup{x ≤ 0 : Y (t)
x = I(t)

x }
= sup{x ≤ 0 : Y (t)

x− = I
(t)
0 } = −inf{x ≥ 0 : Ỹ (t)

x = inf{Ỹ (t)
z : z ≥ 0}}.

Then (Ỹ (t)
−g(t)+x − Ỹ

(t)
−g(t))x≥0 is independent of (Ỹ (t)

x )0≤x≤−g(t) (decomposition of a
Lévy process at its infimum [74]). Considering the locations and sizes of the jumps
of these two processes yields

{(g(t)−xi, li) : ti ≤ t, xi < g(t)} is independent of {(xi, li) : ti ≤ t, g(t) ≤ xi ≤ 0}.

Adding that {(xi, li) : ti ≤ t, xi > 0} is independent of {(xi, li) : ti ≤ t, xi ≤ 0}
and g(t) is {(xi, li) : ti ≤ t, xi ≤ 0} measurable, we get

{(g(t)−xi, li) : ti ≤ t, xi < g(t)} is independent of {(xi, li) : ti ≤ t, xi ≥ g(t)}.

We now extend the preceding by incorporating the times (ti)i∈N. In this direc-
tion, we recall that if (x̃i, l̃i)i∈N is a PPP on R×R+ with intensity tdx⊗ ν(dl) and
(t̃i)i∈N is an iid sequence distributed uniformly on [0, t], then {(t̃i, x̃i, l̃i) : i ∈ N} is
distributed as {(ti, xi, li) : i ∈ N, ti ≤ t}. Adding that g(t) is {(xi, li) : i ∈ N, ti ≤ t}
measurable, we get

{(ti, g(t)−xi, li) : ti ≤ t, xi < g(t)} is independent of {(ti, xi, li) : ti ≤ t, xi ≥ g(t)}.

This ensures that Pg(t)(t) is independent of (P d(t)
g(t) (t), P d(t)(t)).

One can prove similarly that P d(t)(t) is independent of (Pg(t)(t), P
d(t)
g(t) (t)) using

that (Y (t)
d(t)+x − Y

(t)
d(t))x≥0 is independent of (Y (t)

x )x≤d(t) or Lemma 2 in [13].
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This guarantees the absence of memory at the left of B0(t). First we have :

Corollary 5.1.3. (g(t))t∈[0,1/m] has decreasing càdlàg paths with independent in-
crements.

Proof. Let 0 ≤ t < t+ s ≤ 1/m. The increment g(t+ s)− g(t) just depends on
←−
R(t)

and the point process of files which arrive after time t at the left of B0(t)
{
(ti, xi−

g(t), li) : ti > t, xi < g(t)
}
. By the Poissonian property, these two quantities

are independent and (g(u) : u ∈ [0, t]) is independent of this point process of
files. Moreover (g(u) : u ∈ [0, t]) is also independent of (g(t) − R(t)) ∩ [0,∞[ by
Proposition 5.1.1. So (g(u) : u ∈ [0, t]) is independent of g(t+ s)− g(t).

This explains the observation made in Section 3.3 that the distribution of g(t)
is infinitively divisible (see [36] on page 174 or [86] on page 47 for details).

5.2 Evolution of the left end-point

Now we describe the process (g(t))t∈[0,1/m[. We know that its increments
are independent and (3.13) specifies its marginals. We shall determine its Lévy
measure and prove that its mass is finite (see [86] for terminology). This means
that the instants when a file arrives at the left of B0 and joins this data block
during its storage do not accumulate before time 1/m, even if ν̄(0) = ∞ (files
arrive densely near the data block). Proposition 3 in [13] ensures that the first
time T1 when 0 is covered, which is also the first jump time of (g(t))t∈[0,1/m], is
uniformly distributed on [0, 1/m]. Actually the second jump time is uniformly
distributed in [T1, 1/m] and so on ... More precisely, we have :

Theorem 5.2.1. The jump times of (g(t))t∈[0,1/m] are given by an increasing se-
quence (Ti)i∈N which accumulate at 1/m. More precisely, using the convention
T0 = 0, it holds that for every i ≥ 1, conditionally on Ti−1 = t, Ti is independent
of (Tj)0≤j≤i−1 and is uniformly distributed on [t, 1/m].

Then, denoting by −Gi the jump of (g(t))t∈[0,1/m] at time Ti for every i ∈ N,
we have

g(t) := −
∑
Ti≤t

Gi

where {(Ti, Gi) : i ∈ N} is a PPP on [0, 1/m[×R+ with intensity

dtdx
∫ ∞

0
P(Y (t)

x ∈ −dl)ν̄(l).
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In other words, (g(t))t∈[0,1/m] is an additive process and its generating triplet is(
0,

∫ t

0
ds

∫ ∞
0

P(Y (s)
x ∈ −dl)ν̄(l), 0

)
.

In particular, the interarrival times of {Ti : i ∈ N} form a ’continuous uniform stick
breaking sequence’ (see the residual allocation model in [80] on pages 63-64) : the
distribution of

(
(Ti+1 − Ti)/m

)
i∈N is the Griffiths-Engen-McCloskey distribution

with parameter (0, 1) (i.e. rearranging these increments in the decreasing order
yields the Poisson-Dirichlet distribution of parameter (0, 1)).

Further, for every i ∈ N, conditionally on Ti = t, the law of Gi is given
by

P(Gi ∈ dx) = dx
1−mt

m

∫ ∞
0

P(Y (t)
x ∈ −dl)ν̄(l), (5.2)

and as a consequence,

E(Gi) =
( 1
(1−mt)2

+
1
2

m
1−mt

) ∫ ∞
0

l2ν(dl).

Example 3. For the basic example (ν = δ1), conditionally on Ti = t, we have,

P(Gi ∈ dx) = (1− t)e−tx (tx)[x]

[x]!
dx,

writing [x] = sup{n ∈ N : n ≤ x} and using (3.11).

For the proof, we need the following identity

Lemma 5.2.2. Let (St)t≥0 be a subordinator with no drift and Lévy tail µ̄. Then
for all (t, x) ∈ R2

+, we have

P(St > x) =
∫ t

0
ds

∫ x

0
P(Ss ∈ db)µ̄(x− b).

Proof. As S has no drift, we have for all t > 0 and x > 0,

St > x ⇔ ∃! s ∈]0, t] : Ss− ≤ x, ∆Ss > x− Ss− a.s.

We get then, using also the compensation formula (see [19] on page 7),

P(St > x) = E(
∑

0<s≤t

1l{Ss−≤x}1l{∆Ss>x−Ss−}) = E(
∫ t

0
ds1l{Ss≤x}µ̄(x− Ss))
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which completes the proof. One can also give an analytic proof by computing the
Laplace transform of the right hand side for q > 0. Using Fubini and denoting by
φ the Laplace transform of (St)t≥0 :∫ ∞

0
dxe−qx

∫ t

0
ds

∫ x

0
P(Ss ∈ db)µ̄(x− b)

=
∫ t

0
ds

∫ ∞
0

µ(dy)
∫ ∞

0
P(Ss ∈ db)

e−qb − e−q(b+y)

q

=
∫ t

0
dse−φ(q)s

∫ ∞
0

µ(dy)
1− e−qy

q

=
1− e−φ(q)t

φ(q)
× φ(q)

q
=

∫ ∞
0

dxe−qxP(St > x)

which proves the lemma.

We are now able to establish Theorem 5.2.1.

Proof. We know from Corollary 5.1.3 that (g(t))t∈[0,1/m] is an additive process.

Moreover for every x ≥ 0, (Y (t)
x + x)t≥0 is a subordinator with no drift and Lévy

measure xν (see (5.1)). So Lemma 5.2.2 ensures that

P(Y (t)
x > 0) = P(Y (t)

x + x > x)

=
∫ t

0
ds

∫ x

0
P(Y (s)

x + x ∈ db)xν̄(x− b)

=
∫ t

0
ds

∫ ∞
0

P(Y (s)
x ∈ −dl)xν̄(l).

Using (3.13), we get

E
(
exp

(
λg(t)

))
= exp

( ∫ ∞
0

dx(e−λx − 1)
∫ t

0
ds

∫ ∞
0

P(Y (s)
x ∈ −dl)ν̄(l)

)
.

So (g(t))t∈[0,1/m] is an additive process with generating triplet(
0,

∫ t

0
ds

∫ ∞
0

P(Y (s)
x ∈ −dl)ν̄(l), 0

)
using Definition 8.2 and Theorem 9.8 in [86]. This characterizes the distribution
of (g(t))t∈[0,1/m] (by Theorem 9.8 in [86]) and proves that {(Ti, Gi) : i ∈ N} is

a PPP on [0, 1/m[×R+ with intensity dtdx
∫∞
0 P(Y (t)

x ∈ −dl)ν̄(l). One can also
compute the distribution of g(t + s) − g(t) using the independence of increments
and (3.13) : this proves that g(.) is the sum of jumps given by a PPP.
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By projection, {Ti : i ∈ N} is a PPP on [0, 1/m[ with intensity m(1−mt)−1dt.
Indeed, for every t ∈ [0, 1/m[,

∫ ∞
0

dx
∫ ∞

0
P(Y (t)

x ∈ −dl)ν̄(l) =
∫ ∞

0
P(→τ (t)

l ∈ dx)
∫ ∞

0
dl
x

l
ν̄(l) using (3.9)

=
∫ ∞

0
dl

E(→τ (t)
l )ν̄(l)
l

= E(→τ (t)
1 )

∫ ∞
0

ν̄(l)dl

=
m

1−mt
using (2.15).

Thus, writing N t′
t := card{i ∈ N : Ti ∈]t, t′]}, we have N t

0 < ∞ a.s. for every
t ∈ [0, 1/m[. We we can then sort the times Ti and we have

P(Ti+1 > t′ | Ti = t) = P(N t′
t = 0) = exp

(
−

∫ t′

t
ds

m
1−ms

)
=

1−mt′

1−mt
,

meaning that Ti+1 is uniformly distributed in [Ti, 1/m]. The independence is a
consequence of the Poissonian property of {Ti : i ∈ N} and we get the theorem.

Finally, this proves (5.2) and for every i ∈ N, conditionally on Ti = t, we get

E(Gi) =
1−mt

m

∫ ∞
0

dl
E([→τ (t)

l ]2)ν̄(l)
l

using again (3.9)

=
1−mt

m

∫ ∞
0

dlν̄(l)
(
l
( m
1−mt

)2 +

∫∞
0 l2ν(dl)
(1−mt)3

)
since [κ(t)]′(0) is given by (2.15) and [κ(t)]′′(0) is given by Proposition 4 in [13].

5.3 The process of remaining data

We still consider the files which arrive at the left of B0, the block containing 0,
and cannot be entirely stored at the left of this block (see Figure 4). Such events
occur at the jump times of (g(t))t∈[0,1/m], that is at time Ti. We focus here on
the portions of these files which cannot be stored at the left of B0 and are shifted
to the right of B0(Ti−) to find a free space. They are called remaining data and
denoted by Ri. Thus Ri is the quantity of data which arrives at the left of B0 at
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time Ti and is stored at the right of B0. Then it is also the quantity of data over
g(Ti−1−) at time Ti (see Section 3.2 for details) and it is given by

∀i ≥ 1, Ri := Y
(Ti)
g(Ti−1−) − I

(Ti)
g(Ti−1−).

We aim at determining the distribution of {(Ti, Gi, Ri) : i ∈ N} which is the key
to the characterization of the jumps of (g(t), d(t))t∈[0,1/m]. In that view, we need
to describe the arrival of files which induce the jumps (Gi, Ri). So we consider the
half hardware at the left of g(t), which we turn over, so that it is now identified
with R+ and its free space is given by

←−
R(t) (see Section 3.3). The size of free space

and the first free plots of this half hardware are given by the processes (L(t)
x )x≥0

and (D(t)
x )x≥0 defined by

∀t ∈ [0, 1/m[, ∀x ≥ 0, L(t)
x =|

←−
R(t) ∩ [0, x] |, D(t)

x = inf{y > x : y ∈
←−
R(t)}.

When at time t, a file of length l arrives at location −x + g(t−) on the hardware
(i.e. at location x on the half hardware), it yields a jump of g(.) if the free space
L

(t−)
x between −x+g(t−) and g(t−) is less than l. Then the quantity of remaining

data is l − L
(t−)
x and the jump of the left end-point is D(t−)

x (see Figure 4). So we
naturally introduce the measure ρ(t) on R2

+ defined by

ρ(t)(dydz) :=
∫ ∞

0
dx

∫ ∞
0

ν(dl)P(D(t)
x ∈ dy, l − L(t)

x ∈ dz).

In forthcoming Lemma 5.3.3, we give a useful alternative expression of ρ(t). This
measure gives the intensity of the point process {(Ti, Gi, Ri) : i ∈ N}, as stated by
the following result.

Theorem 5.3.1. {(Ti, Gi, Ri) : i ∈ N} is a PPP on [0, 1/m[×R2
+ with intensity

dtρ(t)(dydz).

A remarkable consequence is that (Ri)i∈N is an iid sequence : whereas the
rate at which jumps occur increases as time gets closer to 1/m, the quantity of
remaining data keeps the same distribution.

Corollary 5.3.2. {(Ti, Ri) : i ∈ N} is a PPP on [0, 1/m[×R+ with intensity
dtdz ν̄(z)

1−mt .
In other words, (Ri)i∈N is iid, independent of (Ti)i∈N and its distribution is given
by :

P(Ri ∈ dz) = m−1ν̄(z)dz, z ≥ 0.
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Example 4. Using the expression of ρ(t) given by Lemma 5.3.3 below, the expres-
sions (23) and (24) in [13] yield an expression of ρ(t) for the basic example and
the gamma distribution which is quite heavy and not mentioned here. Nonetheless
the quantity of remaining data can be often calculated explicitly. For the basic
example (ν = δ1), the remaining data are uniform random variables on [0, 1]. For
the exponential distribution (ν(dl) = 1l{l≥0}e

−ldl), the remaining data are also
exponentially distributed.

The proofs of these results are organized as follows.
First, in Lemma 5.3.3, we give a more explicit expression of ρ(t) which will be useful
for the proofs and will enable us to derive Corollary 5.3.2 from Theorem 5.3.1.
Second, we prove that ρ(t) gives the intensity of the point process {(Ti, Gi, Ri) : i ∈
N} (Lemma 5.3.4). That is for every t ∈ [0, 1/m[ and A =]a1, b1]×]a2, b2] ⊂ R2

+,
we have :

lim
h→0

P(∃i ∈ N : Ti ∈]t, t+ h], (Gi, Ri) ∈ A)
h

= ρ(t)(A).

The lower bound appears naturally by considering the arrival of one single file
independently of the past which induces a jump of the left end-point, as described
at the beginning of this section (see also Figure 4). However, in the case ν̄(0) = ∞,
some jumps of the left end-point could be due to the successive arrival of many
files during a short time interval ]t, t + h]. Thanks to Theorem 5.2.1, we already
know the rate at which jumps occur (i.e. the total intensity). This will give us
the upper bound.
Finally, we prove that the point process {(Ti, Gi, Ri) : i ∈ N} enjoys a memoryless
property (Lemma 5.3.5), which is a direct consequence of results of Section 5.1.
We get then the complete description of this point process, which enables us to
prove Theorem 5.3.1. Corollary 5.3.2 follows by integrating ρ(t) with respect to
the first coordinate.

Recall the notation in Proposition 3.3.3 and (3.7).

Lemma 5.3.3. For every t ∈ [0, 1/m[, the measure ρ(t)(dydz) can also be expressed
as

dz
∫ ∞

z
ν(dl)

(
P(←τ (t)

l−z ∈ dy) +
∫ y

0
P(←τ (t)

l−z ∈ dx)(y − x)Π(t)(dy − x)
)

=
∫ ∞

z
ν(dl)(l − z)

(
y−1dyP(Y (t)

y + l ∈ dz) +
∫ y

0
P(Y (t)

x + l ∈ dz)(yx−1 − 1)Π(t)(dy − x)
)

Proof. By Lemma 1.11 in Chapter 1 of [21] applied to (←τ (t)
x )x≥0, we have for all

a, b ≥ 0 and q > 0 (t is fixed and omitted in the notation),∫ ∞
0

dxe−qxE(exp(−bLx − aDx)) =
κ(a+ q)− κ(a)
q(κ(a+ q) + b)

.
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Letting q → 0, we get∫ ∞
0

dxE(exp(−bLx − aDx)) =
κ′(a)

κ(a) + b
=

∫ ∞
0

dze−bzκ′(a)e−κ(a)z.

From κ′(a) =
∫∞
0 e−ay(δ0(dy) + yΠ(dy)) and e−κ(a)z =

∫∞
0 e−ayP(←τ z ∈ dy), we

deduce ∫ ∞
0

dxE(exp(−bLx − aDx)) =
∫ ∞

0
dz

∫ ∞
0

γz(dy)e−bz−ay, (5.3)

where γz is the convolution of δ0(dy) + yΠ(dy) and P(←τ z ∈ dy). Thus,

γz(dy) =
∫ y

0
P(←τ z ∈ dx)(δ0(dy − x) + (y − x)Π(dy − x))

= P(←τ z ∈ dy) +
∫ y

0
P(←τ z ∈ dx)(y − x)Π(dy − x).

And the identification of Laplace transforms in (5.3) entails that∫ ∞
0

dxP(Lx ∈ dz,Dx ∈ dy) = dz
(
P(←τ z ∈ dy) +

∫ y

0
P(←τ z ∈ dx)(y − x)Π(dy − x)

)
,

(5.4)
which proves the first identity of the lemma integrating with respect to l. Using
(3.9) gives the second one.

Remark 9. A recent work of Winkel (Theorem 1 in [92]) enables us to calculate
differently the law of P(Lx ∈ dz,Dx ∈ dy) (Lx corresponds to Tx in [92] and Dx

to X(Tx−) + ∆x) :∫ ∞
0

dxP(Lx ∈ dz,Dx ∈ dy) = dyP(Hy ∈ dz)+dz
∫ ∞

0
P(←τ x ∈ dx)(y−x)Π(dy−x),

where Hx = inf{a ≥ 0,←τ a = x}. Then observe that the measures on R2
+ dyP(Hy ∈

dz) and dzP(←τ z ∈ dy) coincide by computing their Laplace transform using (4) in
[92]. This proves (5.4).

Second, for every Borel set B of [0, 1/m[×R2
+, we define NB := card{i ∈ N :

(Ti, Gi, Ri) ∈ B} and we say that A is a rectangle of D ⊂ Rd if A is a subset of D
of the form

{x = (x1, x2, .., xd), a1 < x1 ≤ b1, .., ad < xd ≤ bd}.

Then, we have

Lemma 5.3.4. For all t ∈ [0, 1/m[ and A rectangle of R2
+, we have :

lim
h→0

P(N]t,t+h]×A ≥ 1)
h

= ρ(t)(A).
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Proof. First we prove the lower bound. Second, we check that the convergence
holds for A = R2

+.

• Let ε > 0, A =]a, b]×]c, d] and work conditionally on
←−
R(t). We consider a

file labelled i which arrives at time ti ∈]t, t + h] at location xi < g(t). We put
x̃i := g(t)− xi ≥ 0 the arrival point on the half line at the left of g(t) and require
that

li − L
(t)
exi
∈]c, d− ε], D(t)

exi
∈]a, b− ε], |L(ti−)

exi
− L

(t)
exi
| ≤ ε, |D(ti−)

b −D
(t)
b | ≤ ε.

Then file i verifies
li − L

(ti−)
exi

∈]c, d], D(ti−)
exi

∈]a, b].

So this file induces a jump of the left end-point and N]t,t+h]×A ≥ 1 (see the begin-
ning of this section or Figure 4 for details) and we get the lower bound :

P
(
N]t,t+h]×A ≥ 1 |

←−
R(t)

)
≥ P

(
∃i ∈ N : ti ∈]t, t+ h], li − L

(t)
exi
∈]c, d− ε], D(t)

exi
∈]a, b− ε],

|L(ti−)
exi

− L
(t)
exi
| ≤ ε, |D(ti−)

b −D
(t)
b | ≤ ε |

←−
R(t)

)
≥ At(h).Bt(h) (5.5)

where

At(h) := P
(
∃i ∈ N : ti ∈]t, t+ h], li − L

(t)
exi
∈]c, d− ε], D(t)

exi
∈]a, b− ε] |

←−
R(t)

)
,

Bt(h) := P
(

sup
t′∈[t,t+h]

{|L(t′)
b − L

(t)
b |} ≤ ε, sup

t′∈[t,t+h]
{|D(t′)

b −D
(t)
b |} ≤ ε |

←−
R(t)

)
.

1) By Theorem 5.2.1, P(N t+h
t 6= 0) h→0−→ 0 so a.s for h small enough, g(t+h) = g(t).

Then, using the Hausdorff metric on R+ (denoted by H(R+) in Chapter 2), we
have ←−

R(t+h)
h→0−→

←−
R(t) a.s.

Then Bt(h) converges a.s. to 1 as h tends to 0.

2) As {(ti, x̃i, li) : i ∈ N, ti ∈]t, t + h], xi < g(t)} is a PPP on ]t, t + h] × R2
+ with

intensity dt⊗dx⊗ ν(dl) independent of
←−
R(t),

At(h) = 1− exp
(
− h

∫ ∞
0

dx
∫ ∞

0
ν(dl)1l{l−L

(t)
x ∈]c,d−ε],D

(t)
x ∈]a,b−ε]}

)
a.s.

This term is a.s. equivalent when h tends to 0 to

h

∫ ∞
0

dx
∫ ∞

0
ν(dl)1l{l−L

(t)
x ∈]c,d−ε],D

(t)
x ∈]a,b−ε]}.
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Then, letting h→ 0 in (5.5), 1) and 2) give

lim inf
h→0

P
(
N]t,t+h]×A ≥ 1 |

←−
R(t)

)
h

≥
∫ ∞

0
dx

∫ ∞
0

ν(dl)1l{l−L
(t)
x ∈]c,d−ε],D

(t)
x ∈]a,b−ε]} a.s.

Integrating this inequality and using Fatou’s lemma yield

lim inf
h→0

P
(
N]t,t+h]×A ≥ 1

)
h

≥E
( ∫ ∞

0
dx

∫ ∞
0

ν(dl)1l{l−L
(t)
x ∈]c,d−ε],D

(t)
x ∈]a,b−ε]}

)
≥ρ(t)(]a, b− ε]×]c, d− ε]).

As ρ(t)(]a, b] × {d} ∪ {b}×]c, d]) = 0 (use the two equalities of Lemma 5.3.3), we
get letting ε tend to 0 :

lim inf
h→0

P
(
N]t,t+h]×A ≥ 1

)
h

≥ ρ(t)(A).

• We derive the upper bound from Theorem 5.2.1. First,

P
(
N]t,t+h]×R2

+
≥ 1

)
h

=
P(∃i ∈ N : Ti ∈]t, t+ h])

h

h→0−→ m
1−mt

.

and identity (5.7) below gives

ρ(t)(R2
+) =

m
1−mt

.

So we just need to prove the following result : Let (µn)n∈N and µ be finite measures
on R2

+ such that for every A rectangle of R2
+ : lim infn→∞ µn(A) ≥ µ(A) and

limn→∞ µn(R2
+) = µ(R2

+). Then for every A rectangle of R2
+, limn→∞ µn(A) =

µ(A).
In that view, suppose there exist a rectangle A, ε > 0 and a sequence of integers
kn such that µkn(A) ≥ µ(A) + ε. Choose B union of disjoint rectangles all disjoint
from A such that µ(B ∪A) ≥ µ(R2

+)− ε/2. Then,

lim inf
n→∞

µkn(R2
+) ≥ lim inf

n→∞
µkn(A ∪B) ≥ µ(A) + ε+ µ(B) ≥ µ(R2

+) + ε/2,

which is a contradiction with limn→∞ µn(R2
+) = µ(R2

+).

To prove the theorem, it remains to prove the absence of memory.

Lemma 5.3.5. Let t ∈ [0, 1/m[, then
{
(Ti, Gi, Ri) : i ∈ N, Ti ≤ t

}
is independent

of
{
(Ti, Gi, Ri) : i ∈ N, Ti > t

}
.

Page 77



CHAPTER 5. EVOLUTION OF A TYPICAL DATA BLOCK

Proof. First
{
(Ti, Gi, Ri) : Ti ≤ t

}
is given by

{
(ti, li, xi) : ti ≤ t, xi ∈ [g(t), d(t)]

}
.

Moreover
{
(Ti, Gi, Ri) : Ti > t

}
depends on (R(t)− g(t))∩]−∞, 0] and

{
(ti, xi−

g(t), li) : ti > t, xi < g(t)
}

which are independent. Moreover (R(t) − g(t))∩] −
∞, 0] is independent of

{
(ti, li, xi) : ti ≤ t, xi ∈ [g(t), d(t)]

}
by Lemma 5.1.2 and so

is
{
(ti, xi − g(t), li) : ti > t, xi < g(t)

}
by Poissonian property. This proves the

result.

We can now prove the theorem and its corollary.

Proof of Theorem 5.3.1. We prove now that for every B finite union of disjoint
rectangles of [0, 1/m[×R2

+:

P(NB = 0) = e−γ(B), where γ(dtdydz) = dtρ(t)(dydz). (5.6)

As γ is non atomic (use Lemma 5.3.3), this will ensure that {(Ti, Gi, Ri) : i ∈ N}
is a PPP with intensity γ (use Rényi’s Theorem [62]).

Let t ∈ [0, 1/m[ and A a finite union of rectangles of R2
+. We consider H(s) :=

P(N]t,t+s]×A = 0) for s ∈ [0, 1/m− t[. Lemma 5.3.5 entails that

H(s+ h) = P(N]t,t+s]×A = 0)P(N]t+s,t+s+h]×A = 0) = H(s)P(N]t+s,t+s+h]×A = 0).

We write A = tN
i=1Ai where Ai rectangle of R2

+. Theorem 5.2.1 and Lemma 5.3.4
ensure respectively that for all 1 ≤ i, j ≤ N such that i 6= j:

lim
h→0

P(N]t,t+h]×Ai
≥ 1, N]t,t+h]×Aj

≥ 1)
h

= 0 ; lim
h→0

P(N]t,t+h]×Ai
≥ 1)

h
= ρ(t)(Ai).

Then

lim
h→0

P(N]t,t+h]×A ≥ 1)
h

=
N∑

i=1

lim
h→0

P(N]t,t+h]×Ai
≥ 1)

h
= ρ(t)(A),

and the derivative of H is given by

lim
h→0

H(s+ h)−H(s)
h

= H(s) lim
h→0

1− P(N]t+s,t+s+h]×A = 0)
h

= H(s)ρ(t+s)(A).

Thus H(s) satisfies a differential equation of order 1 and we get (5.6) for B =
]t, t+ s]×A.

H(s) = exp
(
−

∫ s

0
duρ(t+u)(A)

)
= exp

(
−

∫ t+s

t
duρ(u)(A)

)
= e−γ(]t,t+s]×A)

Using again Lemma 5.3.5 and additivity of measures proves (5.6) for every B finite
union of rectangles of [0, 1/m[×R+ × R+.
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Proof of Corollary 5.3.2. As projection of the PPP {(Ti, Gi, Ri) : i ∈ N},
{(Ti, Ri) : i ∈ N} is a PPP with intensity dt

∫
y∈[0,∞] ρ

(t)(dydz). By Lemma 5.3.3,
we have : ∫

y∈[0,∞]
ρ(t)(dydz)

= dz
(
ν̄(z) +

∫ ∞
z

ν(dl)
∫ ∞

0
P(←τ (t)

l−z ∈ dx)
∫ ∞

x
Π(t)(dy − x)(y − x)

)
= dzν̄(z)(1 +

∫ ∞
0

Π(dy)y)

= dz
ν̄(z)

1−mt
by (2.15) (5.7)

which gives the intensity of {(Ti, Ri) : i ∈ N}. In other words, (Ri)i∈N is an iid
sequence independent of (Ti)i∈N such that P(Ri ∈ dz) = m−1ν̄(z)dz, (z ≥ 0).

5.4 Evolution of B0

The processes (g(t))t∈[0,1/m] and (d(t))t∈[0,1/m] of the left and the right end-points
of B0 have a quite different evolution, even though their one-dimensional distrib-
utions coincide. The process (d(t))t∈[0,1/m] jumps each time (g(t))t∈[0,1/m] jumps
and each time a file arrives on B0. More precisely, there are two kinds of jumps
of (B0(t))t∈[0,1/m] corresponding respectively to :
- files which arrive at the left of B0 and cannot be entirely stored at its left (recall
the previous section). These files induce the jumps (−Gi, Di) of the end-points of
B0 at time Ti independently of the past (see Figure 4).
- files which arrive on B0. These files induce jumps of the right end-point d(.)
only, with total rate equal to l(t)ν̄(0) (see Figure 5). This rate is infinite when
ν̄(0) = ∞. Observe also that the jumps depend from the past of B0 through the
value of the length l(t).
Note that a file which arrives at the left of B0(t−) at time t with remaining data
of size R induces the same jump of the right end-point as a file of size R which
arrives on B0(t−) at time t. Obviously, the other files (files which are entirely
stored at the left of B0 or which arrive at the right of B0) do not yield a jump of B0.

Thus, we define
Di := d(Ti)− d(T−i )

and we decompose the process (g(t), d(t))t∈[0,1/m[ into two processes (C1(t))t∈[0,1/m[

and (C2(t))t∈[0,1/m[, which give the variation of the end-points of B0 respectively at
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times (Ti)i∈N (due to the arrival of a file at the left of g(t)) and between successive
times (Ti)i∈N (due to the arrival of files on B0(t)). That is, for every t ∈ [0, 1/m[,

C1(t) :=
∑
Ti≤t

(−Gi, Di), C2(t) :=
(
0,

∑
0≤s≤t

s/∈{Ti:i∈N}

∆d(s)
)
,

(g(t), d(t)) = C1(t) + C2(t).

First, we specify the distribution of (C1(t))t∈[0,1/m] (see below for the proofs).

Proposition 5.4.1. The point process
{
(Ti, Gi, Di) : i ∈ N

}
is a PPP on [0, 1/m]×

R2
+ with intensity dtµ(t)(dydx), where

µ(t)(dydx) =
∫ ∞

0
ρ(t)(dydz)P(→τ (t)

z ∈ dx).

We can now specify the distribution of the process (g(t), d(t))t∈[0,1/m[ as follows.

Theorem 5.4.2. (g(t), d(t))t∈[0,1/m[ is a pure jump Markov process equal to
(C1(t) + C2(t))t∈[0,1/m] such that for all 0 ≤ t ≤ t+ s ≤ 1/m,

(i) C1(t+ s)− C1(t) is independent of (g(u), d(u))u∈[0,t] .

(ii) Conditionally on l(t) = l, C2(t+s)−C2(t) is independent of (g(u), d(u))u∈[0,t].
Conditionally also on Ti ≤ t ≤ t+ s < Ti+1 for some i ∈ N :

C2(t+ s)− C2(t) d= (0,→τ (t+s)
Ssl

),

where (Sx)x≥0 is a subordinator with no drift and Lévy measure ν, which is inde-
pendent of (→τ (t+s)

x )x≥0.

Recalling that vague convergence of measures on A is the convergence of the
integrals of measure against continuous functions with compact support in A, the
jump rate of (g(t), d(t))t∈[0,1/m[ is then given by :

Corollary 5.4.3. If t ∈ [0, 1/m[, we have the following vague convergence of
measures on [0,∞[×]0,∞[ when h tends to 0 :

h−1P(g(t)− g(t+ h) ∈ dy, d(t+ h)− d(t) ∈ dx | l(t) = l) v=⇒

µ(t)(dydx) + lδ0(dy)
∫ ∞

0
ν(dz)P(→τ (t)

z ∈ dx).
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We begin with two lemmas which state the independences needed for the proofs.

Lemma 5.4.4. {(Ti, Gi, Di) : i ∈ N, Ti > t} is independent of (g(u), d(u))u∈[0,t].

Proof. Using (5.8) below, we see that {(Ti, Gi, Di) : i ∈ N, Ti > t} is given by

{(Ti, Gi, Ri) : i ∈ N, Ti > t} and (
→
R(s))s>t.

These quantities depend from the past through (
←−
R(t),

−→
R(t)) which is independent of

(g(u), d(u))u∈[0,t] by Proposition 5.1.1.

Lemma 5.4.5. Let i ∈ N and 0 ≤ t′ < t ≤ 1/m. Conditionally on Ti−1 = t′ and
Ti = t, (

−→
R(u))u∈[t′,t[ is independent of the point process Pg(t′)(t).

Proof. Conditioning by Ti−1 = t′ and Ti = t ensures that all the data arrived at
the left of g(t′) during the time interval [t′, t[ are stored at the left of g(t′). So
(
−→
R(u))u∈[t′,t[ depdns only on the point process P d(t′)

g(t′) (t)∪P d(t′)(t) which is indepen-
dent of Pg(t′)(t) by Lemma 5.1.2.

Proof of Proposition 5.4.1. At time Ti, the quantity of remaining data Ri is stored
at the right of B0(Ti−). It induces a jump Di = d(Ti) − d(Ti−) of the right end-
point which is equal to Ri plus the sum of the lengths of blocks at the right of
B0(Ti−) which are reached during the storage of these data (see Figure 2). More
precisely :

Di = inf{x ≥ 0, | R(Ti−) ∩ [d(t), d(t) + x[| = Ri}

= inf{x ≥ 0, |
−→
R(Ti−) ∩ [0, x] |= Ri}

= →
τ

(Ti−)
Ri

, (5.8)

by definition of →τ (see Section 3.3.1). Lemma 5.4.5 ensures that conditionally on
Ti = t, (→τ (Ti−)

x )x≥0 is independent of (Gi, Ri) and distributed as (→τ (t)
x )x≥0. Then

denoting by µt the law of (Gi, Di) conditioned by Ti = t, we have

µt(dydx) = P(Gt ∈ dy, →τ (t)
Rt
∈ dx), (5.9)

where (Gt, Rt) is a random variable independent of (→τ (t)
x )x≥0 and distributed as

(Gi, Ri) conditioned on Ti = t.
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By Lemma 5.4.4,
{
(Ti, Gi, Di) : i ∈ N, Ti > t

}
is independent of

{
(Ti, Gi, Di) :

i ∈ N, Ti ≤ t
}
. Then conditionally on (Ti)i∈N, (Gi, Di)i∈N are independent. Adding

that {Ti : i ∈ N} is a PPP on [0, 1/m] with intensity dtm/(1 − mt) ensures that{
(Ti, Gi, Di) : i ∈ N

}
is a (marked) PPP with intensity

m
1−mt

dtµt(dydx).

Further, by (5.9), this intensity is eqaul to

dt
∫ ∞

0
P(→τ (t)

z ∈ dx)
m

1−mt
P(Gt ∈ dy, Rt ∈ dz) = dt

∫ ∞
0

P(→τ (t)
z ∈ dx)ρ(t)(dydz)

using Theorem 5.3.1. This completes the proof.

Proof of Theorem 5.4.2.
(i) Thanks to Lemma 5.4.4, C1(t+ s)−C1(t) is independent of (g(u), d(u))u∈[0,t].

(ii) We condition by Ti ≤ t ≤ t + s < Ti+1 for some i ∈ N and l(t) = l.
Then g(t + s) − g(t) = 0 and no data arrived at the left of B0(t) during the time
interval ]t, t+s] is stored at the right of this block. So the increment d(t+s)−d(t)
is caused by files arriving on B0(t) : they are stored at the right on B0(t) and
may join data already stored. Note that we can change the order of arrival of
files between t and t + s (use identity (3.4)). Thus, we first store the files which
arrive at the right of d(t) between times t and t+ s, then the files which arrive on
B0(t) between times t and t+s and we forget the files which arrive at the left of g(t).

STEP 1 : At time t, we consider the half hardware at the right of d(t) which we
identify with [0,∞[. Its free space is equal to

−→
R(t). We store the files i ∈ {i ∈ N :

ti ∈]t, t+ s], xi > d(t)} on this half hardware [0,∞[ at location xi − d(t) following
the process described in Introduction (the size of the file i is still li). Following
Section 3.2, we get the counterpart of the characterization of the free space (3.4).
That is, the new free space of the half hardware is equal to {x ≥ 0 : Ỹx = Ĩx} ,
where for every x ≥ 0,

Ỹx = −x+
∑

0≤ti≤t+s
d(t)≤xi≤d(t)+x

li, Ĩx := inf{Ỹy : 0 ≤ y ≤ x}.

Using Lemma 5.1.2, we see that {(ti, xi − d(t), li) : xi ≥ d(t)} is a PPP on R+3

with intensity dt⊗ dx⊗ ν(dl). Then,(
Ỹx

)
x≥0

d=
(
Y (t+s)

x

)
x≥0
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is a Lévy process with Laplace exponent Ψ(t+s). As [Ψ(t+s)]′(0) < 0,
(
Ỹx

)
x≥0

is
regular for ]−∞, 0[, in the sense that it takes negative values for some arbitrarily
small x (Proposition 8 on page 84 in [19]). So for every stopping time T such that
ỸT = ĨT , there is the identity T = inf{z ≥ 0 : Ỹz < ỸT }. This ensures that the free
space {x ≥ 0 : Ỹx = Ĩx} of the half hardware is the range of (τ̃x)x≥0 defined by

τ̃x := inf{z ≥ 0 : Ỹz < −x}.

By Theorem 1 on page 189 in [19], (τ̃x)x≥0 is a subordinator with Laplace
exponent κ(t+s), which is the inverse function of −Ψ(t+s). So (τ̃x)x≥0 is distributed
as (→τ (t+s)

x )x≥0. By Lemma 1 again, {(ti, xi − d(t), li) : xi > d(t)} is independent
of (g(u), d(u))u∈[0,t]. So (τ̃x)x≥0 is independent of (g(u), d(u))u∈[0,t].

STEP 2 : To obtain the covering C(t + s), we now store the files {i : ti ∈
]t, t+s], xi ∈ [g(t), d(t)[}. It amounts to store these files in the first free spaces (i.e.
as much on the left as possible) of the half hardware considered above, whose free
space is the range of (τ̃x)x≥0. The variation of the right end-point is equal to the
sum of the sizes of these files, say St+s

t , plus the sizes of the lengths of the blocks
of the half hardware joined during their storage. That is, as for (5.8),

C2(t+ s)− C2(t) = (0, τ̃St+s
t

), where St+s
t :=

∑
t<ti≤t+s

xi∈[g(t),d(t)[

li.

Conditionally on l(t) = l, by Poissonian property, St+s
t

d= Ssl, where (Sx)x≥0 is a
subordinator with no drift and Lévy measure ν. Adding that St+s

t is independent
of (τ̃x)x≥0 gives the law of C2(t+ s)−C2(t). As (τ̃x)x≥0 and St+s

t are independent
of (g(u), d(u))u∈[0,t], so is C2(t+ s)− C2(t).

These properties ensure that (g(t), d(t))t∈[0,1/m[ is a Markov process.

To prove Corollary 5.4.3, we need the following result which uses notation of
Theorem 5.4.2.

Lemma 5.4.6. We have the following vague convergence of measure on ]0,∞[ :

h−1P
(→

τ
(t)
Shl

∈ dx
) v=⇒ l

∫ ∞
0

ν(dz)P(→τ (t)
z ∈ dx).

Proof. Denoting by φ the Laplace exponent of (Sx)x≥0,
(→

τ
(t)
Sxl

)
x≥0

is a subordinator
of Laplace exponent lφ ◦ κ(t) (see (??)). Moreover for every λ ≥ 0, φ(λ) =

∫∞
0 (1−

e−λy)ν(dy), which entails that

φ ◦ κ(t)(λ) =
∫ ∞

0

(
1− e−zκ(t)(λ)

)
ν(dz)
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=
∫ ∞

0
E

(
1− e−λ

→
τ

(t)

z
)
ν(dz)

=
∫ ∞

0
(1− e−λx)

∫ ∞
0

ν(dz)P(→τ (t)
z ∈ dx).

Then
(→

τ
(t)
Sxl

)
x≥0

is a subordinator with no drift and Lévy measure

l

∫ ∞
0

ν(dz)P(→τ (t)
z ∈ dx).

Using Exercise 1 Chapter I in [19] or [20] on page 8 completes the proof.

Proof of Corollary 5.4.3. We consider first the case when the increment of the left
end-point is zero.

• Using Theorem 5.4.2 and recalling that N t+h
t = N]t+t+h]×R2

+
= card{i ∈

N : Ti ∈]t, t+ h]}, we have for all c > 0 such that
∫∞
0 ν(dz)P(→τ (t)

z = c) = 0,

P (g(t+ h)− g(t) = 0, d(t+ h)− d(t) ≥ c | l(t) = l) = P(N t+h
t = 0)P(→τ (t)

Shl
≥ c).
(5.10)

Adding that P(N t+h
t = 0) h→0−→ 1 and using Lemma 5.4.6 give

h−1P (g(t+h)−g(t) = 0, d(t+h)−d(t) ≥ c | l(t) = l) h→0−→ l

∫ ∞
0

ν(dz)P(→τ (t)
z ≥ c).

(5.11)
• Let a, b > 0 and write

P (t, t+ h) = P(g(t)− g(t+ h) ≥ a, d(t+ h)− d(t) ≥ b | l(t) = l).

By Proposition 5.4.1,
{
(Ti, Gi, Di) : i ∈ N

}
is a PPP on [0, 1/m]×R2

+ with intensity
dtµ(t)(dydx). The latter verifies P(N t+h

t > 1) = o(h) (h→ 0), so we have

h−1P(C1(t+ h)− C1(t) ∈]−∞,−a]× [b,∞]) h→0−→ µ(t)([a,∞[×[b,∞]). (5.12)

We can prove now that

lim
h→0

h−1P (t, t+ h) = µ(t)([a,∞[×[b,∞[). (5.13)

- First we give the lower bound.

P (t, t+ h) ≥ P(C1(t+ h)− C1(t) ∈]−∞,−a]× [b,∞] | l(t) = l)

Using that C1(t+ h)− C1(t) is independent of l(t) and (5.12), we get

lim inf
h→0

h−1P (t, t+ h) ≥ µ(t)([a,∞[×[b,∞]). (5.14)
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- For the upper bound, observe that

P (t, t+ h) ≤ P(C1(t+ h)− C1(t) ∈]−∞,−a]× [b− ε,∞] | l(t) = l)
+ P(N t+h

t ≥ 1, C2(t+ h)− C2(t) ∈ {0} × [ε,∞[ | l(t) = l).

Using again C1(t+h)−C1(t) is independent of l(t) with (5.12) and Theorem 5.4.2
gives

lim sup
h→0

h−1P (t, t+ h) ≤ µ(t)([a,∞[×[b− ε,∞]).

Letting ε tend to 0 gives the upper bound :

lim sup
h→0

h−1P (t, t+ h) ≤ µ(t)([a,∞[×[b,∞[).

The two limits (5.11) and (5.13) ensure the convergence of measures for sets of
the form {0} × [c, d[ (with c > 0) and [a, b[×[c, d[ (with a > 0), which completes
the proof.

5.5 Evolution of the right end-point and of the length

Proposition 5.4.1, Theorem 5.4.2 and Corollary 5.4.3 give by projection :

Corollary 5.5.1. (d(t))t∈[0,1/m[ is a jump process satisfying

(i)
{
(Ti, Di) : i ∈ N

}
is a PPP on [0, 1/m[×R+ with intensity

dt
∫
z∈[0,∞] dzν̄(z)P(→τ (t)

z ∈ dx)

1−mt
,

and
{
(Ti, Di) : i ∈ N, Ti > t

}
is independent of (d(u))u∈[0,t].

(ii) For all 0 ≤ t ≤ t+ s < 1/m :
Conditionally on l(t) = l, d(t+ s)− d(t) is independent of (d(u))u∈[0,t].
Conditionally also on Ti ≤ t ≤ t+ s < Ti+1 for some i ∈ N :

d(t+ s)− d(t) d= →
τ

(t+s)
Ssl

,

where (Sx)x≥0 is a subordinator with no drift and Lévy measure ν, that is
independent of (→τ (t+s)

x )x≥0.

The jump rate of (d(t))t∈[0,1/m[ is given by the following vague convergence
of measures on ]0,∞[ for h tending to 0 :

P(d(t+ h)− d(t) ∈ dx | l(t) = l)
h

v=⇒
∫∞
0 dzν̄(z)P(→τ (t)

z ∈ dx)
1−mt

+l
∫ ∞

0
ν(dz)P(→τ (t)

z ∈ dx).
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We stress that (d(t))t∈[0,1/m[ is not a Markov process since the jumps Di before
time t give informations about l(t) and thus about the future of the process.
Note also that we can derive the law of d(t) conditionally on l(t) using Proposition
3.3.3. More precisely,

∀d > 0, P(l(t) ∈ dl | d(t) = d) = 1l≥d
Π(t)(dl)
Π̄(t)(d)

.

Finally we turn our interest to the process of the length (l(t))t∈[0,1/m]. Its
increments which are due to files arrived at the left of g(t) which are not stored
entirely at the left g(t), are denoted by Li :

Li := l(Ti)− l(T−i ) = Gi +Di.

The other increments of (l(t))t∈[0,1/m] are due to files which arrive on B0. We can
view (l(t))t∈[0,1/m] as a branching process in continuous time with immigration
Li at time Ti (with no death, inhomogeneous branching and inhomogeneous
immigration) :

Corollary 5.5.2. (l(t))t∈[0,1/m[ is an inhomogeneous pure jump Markov process
satisfying

(i) {(Ti, Li) : i ∈ N} is a PPP on [0, 1/m[×R+ with intensity

dt
∫

z∈[0,∞]
ν(dz)P(→τ (t)

z ∈ dx)x,

and {(Ti, Li) : i ∈ N, Ti > t} is independent of (l(s))s∈[0,t]

(ii) Conditionally on Ti ≤ t ≤ t + s < Ti+1 for some i ∈ N, (l(t + u))u∈[0,t−s]

satisfies the branching property : the law of (l(t + u))u∈[0,t−s] conditioned on
l(t) = x + y is equal to the law of the sum of two independent processes whose
laws are respectively equal to (l(t + u))u∈[0,t−s] conditioned on l(t) = x and
(l(t+ u))u∈[0,t−s] conditioned on l(t) = y.

The jump rate of (l(t))t∈[0,1/m[ is given by the following vague convergence
of measures on ]0,∞[ for h tending to 0 :

P(l(t+ h)− l(t) ∈ dx | l(t) = l)
h

v=⇒ (x+ l)
∫ ∞

0
ν(dz)P(→τ (t)

z ∈ dx).

Page 86
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Example 5. For the basic example ν = δ1, the jump rate of the length is equal to

∞∑
n=1

n+ l

n
e−tn (tn)n−1

(n− 1)!
δn(dx).

This is a consequence of the last displayed limit and (3.11).

Proof of Corollary 5.5.1. Using (5.7), we get :

∫
z∈[0,∞]

P(→τ (t)
z ∈ dx)

∫
y∈[0,∞]

ρ(t)(dydz) =

∫
z∈[0,∞] dzν̄(z)P(→τ (t)

z ∈ dx)

1−mt
,

which gives the intensity of
{
(Ti, Di) : i ∈ N

}
by Proposition 5.4.1.

Proof of Corollary 5.5.2. (i) Writing Li = Gi +Di, Proposition 5.4.1 entails that{
(Ti, Li) : i ∈ N

}
is a PPP on [0, 1/m]× R+ with intensity dtµ̃t(dx) where µ̃t is a

measure on R+ defined for a Borel set A of R+ by

µ̃t(A) =
∫

R2
+

1l{y+y′∈A}

∫ ∞
0

P(→τ (t)
z ∈ dy′)ρ(t)(dydz).

To determine µ̃t, we compute its Laplace transform using Lemma 5.3.3 :

∫ ∞
0

e−λxµ̃t(dx) =
∫

R+3

e−λ(y+y′)ρ(t)(dydz)P(→τ (t)
z ∈ dy′)

=
∫

R+3

e−λy′P(→τ (t)
z ∈ dy′)dz

∫ ∞
z

ν(dl)
[
e−λyP(→τ (t)

l−z ∈ dy)

+
∫ y

0
e−λxP(→τ (t)

l−z ∈ dx)(y − x)e−λ(y−x)Π(t)(dy − x)
]

=
∫ ∞

0
dze−zκ(t)(λ)

∫ ∞
z

ν(dl)e−(l−z)κ(t)(λ)
[
1 +

∫ ∞
0

e−λuuΠ(t)(du)
]

=
∫ ∞

0
ν(dl)le−lκ(t)(λ)[κ(t)]′(λ)

=− ∂

∂y

[ ∫ ∞
0

ν(dl)e−lκ(t)(y)

]
(λ)

=− ∂

∂y

[ ∫ ∞
0

e−yx

∫ ∞
0

ν(dl)P(→τ (t)
l ∈ dx)

]
(λ)

=
∫ ∞

0
e−λxx

∫ ∞
0

ν(dl)P(→τ (t)
l ∈ dx).
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Then µ̃t(dx) = x
∫∞
0 ν(dz)P(→τ (t)

z ∈ dx), which gives the intensity of{
(Ti, Li) : i ∈ N

}
.

(ii) The branching property can be seen as a consequence of the determi-
nation of the jump rate. We give here a more intuitive approach : We condition
by l(t) = x + y and by Ti ≤ t ≤ t + s < Ti+1 and we make the decomposition
effective by splitting B0(t) in two segments of length x and y. First we store
the files {i : ti ∈]t, t + s], xi > d(t)}. The free space of the half line at the right
of B0(t) is now the closed range a subordinator distributed like (→τ (t+s)

x )x≥0 (see
STEP1 in the proof of Corollary 5.5.1). Then we store successively the files
{i : ti ∈]t, t + s], xi ∈ [g(t), g(t) + x]} and {i : ti ∈]t, t + s], xi ∈]g(t) + x, d(t)]}
which induce two successive increments of the length. The free space at the right
of 0 after the first storage keeps the same distribution and is independent of the
first increment by strong regeneration. So the two increments are independent
and distributed respectively like l(t + s) − l(t) conditioned by l(t) = x and by
l(t) = y. This gives the result since l(t) is Markovian. Formally l(t + s) − l(t) is
equal to →τ (t+s)

Ss(x+y)
(see proof of Proposition 5.4.1) and

→
τ

(t+s)
Ss(x+y)

= →
τ

(t+s)
Ssx

+ →
τ

(t+s)
Ss(x+y)

−→τ (t+s)
Ssx

gives the decomposition expected since →τ (t+s)
Ss(x+y)

−→τ (t+s)
Ssx

d= →
τ

(t+s)
Ssy

.

Using Corollary 5.4.3 and recalling the definition of µ̃t given at the beginning
of the proof ensures that h−1P(l(t+ h)− l(t) ∈ dx | l(t) = l) converges to

µ̃t(dx) + l

∫ ∞
0

ν(dz)P(→τ (t)
z ∈ dx).

The completes the proof, since µ̃ has been determined above.

5.6 Complements

5.6.1 Distribution of {(Ti, Gi) : i ∈ N} derived from Theorem 5.3.1

In Section 5.4, we used the total intensity of the PPP {(Ti, Gi) : i ∈ N} to
prove that the intensity of the PPP {(Ti, Gi, Ri) : i ∈ N} is equal to dtρ(t)(dydz)
(Theorem 5.3.1). Here we check that integrating this intensity with respect to the
third coordinate enables us to recover the intensity of {(Ti, Gi) : i ∈ N} given in
Theorem 5.2.1.
For that purpose, use Lemma 5.3.3 to rewrite ρ(t) as

ρ(t)(dydz) = dz
∫ ∞

0
ν(dl+ z)

(
P(←τ (t)

l ∈ dy) +
∫ y

0
P(←τ (t)

l ∈ dx)(y − x)Π(t)(dy − x)
)
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and calculate the Laplace transform of
∫
z∈[0,∞] ρ

(t)(dydz).∫
y∈[0,∞]

e−λy

∫
z∈[0,∞]

ρ(t)(dydz)

=
∫ ∞

0

∫ ∞
0

dzν(dl + z)
∫ ∞

0
e−λy

[
P(←τ (t)

l ∈ dy) +
∫ y

0
P(←τ (t)

l ∈ dx)(y − x)Π(t)(dy − x)
]

=
∫ ∞

0
dlν̄(l)

[
e−lκ(λ) +

∫ ∞
0

P(←τ (t)
l ∈ dx)e−λx

∫ ∞
x

e−λ(y−x)(y − x)Π(t)(dy − x)
]

=
∫ ∞

0
dlν̄(l)e−lκ(λ)[κ(t)]′(λ)

=
∫ ∞

0
dl
ν̄(l)
l

∂

∂λ
E(−e−lκ(t)(λ))

=
∫ ∞

0
dl
ν̄(l)
l

∂

∂λ
E(−e−λ

←
τ

(t)

l )

=
∫ ∞

0
dl
ν̄(l)
l

∫ ∞
0

e−λyyP(←τ (t)
l ∈ dy)

=
∫ ∞

0
dye−λy

∫ ∞
0

P(Y (t)
y ∈ −dl)ν̄(l) using (3.9).

Thus, we conclude with

dt
∫

z∈[0,∞]
ρ(t)(dydz) = dtdx

∫ ∞
0

P(Y (t)
x ∈ −dl)ν̄(l).

5.6.2 Direct proof of Corollary 5.3.2 using fluctuation theory

Here we determine the distribution of the remaining data using fluctuation
theory : we get laws at fixed times and do not need Theorem 5.2.1, as for the
proof of Section 5.4.

We fix t,h and x ≥ 0 . We add the lengths of files fallen in [g(t)−x, g(t)] during
the time interval ]t, t+h]. Then we remove the free space in [g(t)−x, g(t)] at time
t which is equal to L(t)

x . The sum of data arrived at the left of B0(t) not stored
at the left of B0(t) between time t and t+ h is equal to the maximum in x ≥ 0 of
this difference. It is also the quantity of data which has tried to occupy the loca-
tion g(t) (successfully or not) between time t and t+h : Y (t+h)

g(t) −I(t+h)
g(t) . So, we have

Lemma 5.6.1. Let 0 ≤ t < 1/m and h ≥ 0, then

Y
(t+h)
g(t) − I

(t+h)
g(t) = sup{Shx − L(t)

x , x ≥ 0} = sup{S
h
←
τ

(t)

x

− x, x ≥ 0} a.s,

where (Sx)x≥0 is a subordinator with drift d = 0 and Lévy measure ν(dx), which
is independent of (L(t)

x )x≥0 and (←τ (t)
x )x≥0.
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Denoting S(t,h) := sup{S
h
←
τ

(t)

x

− x, x ≥ 0}, we have for all 0 < a ≤ b,

lim
h→0

h−1P(S(t,h) ∈ [a, b]) = lim
h→0

h−1P(∃i ∈ N : (Ti, Ri) ∈]t, t+ h]× [a, b])

and we find the law given in Corollary 5.3.2 :

Proposition 5.6.2. We have the following weak convergence of bounded measures
on ]0,∞[ when h tends to 0 :

P(S(t,h) ∈ dx)
h

w=⇒ ν̄(x)dx
1−mt

.

Proof. (S
h
←
τ

(t)

x

− x)x≥0 is a lévy process with negative drift −1, no negative jumps

and bounded variation. Its Laplace exponent is κ(t) ◦ (hφ) − id, where φ is the
Laplace exponent of S and is defined by

∀λ ≥ 0, φ(λ) =
∫ ∞

0
(1− e−λx)ν(dx).

Note also that using (2.15), we have[
κ(t) ◦ (hφ)− id

]′(0) = [κ(t)]′(0).h.φ′(0)− 1 =
1

1−mt
mh− 1, (5.15)

which is negative since 0 ≤ t+ h < 1/m. Then identity (14) in [13] or Theorem 5
in [19] ensure that ∀λ > 0, ∀h ∈ [0, 1/m− t[,

E
(
exp(−λS(t,h))

)
=

(
1

1−mt
mh− 1

)
λ

(κ(t) ◦ (hφ)− id)(λ)

Moreover,

(κ(t) ◦ (hφ)− id)(λ)
λ

=
κ(t)(hφ(λ))
hφ(λ)

hφ(λ)
λ

− 1 = −1 +
1

1−mt
hφ(λ)
λ

+ ◦h→0(h).

So
E

(
exp(−λS(t,h))

)
= 1 +

1
1−mt

(φ(λ)
λ

−m
)
h+ ◦h→0(h).

We can now prove the convergence of h−1P(S(t,h) > x) when h tends to 0.

lim
h→0

∫ ∞
0

e−λx P(S(t,h) > x)
h

dx = lim
h→0

1− E
(
exp(−λS(t,h))

)
hλ

=
1

1−mt
(m
λ
− φ(λ)

λ2

)
.
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Moreover Fubini gives∫ ∞
0

dxe−λx

∫ ∞
x

ν̄(a)da =
∫ ∞

0
ν(dy)

∫ y

0
da

1− e−λa

λ
=

m
λ
− φ(λ)

λ2
.

Then for every λ > 0,

lim
h→0

∫ ∞
0

e−λx P(S(t,h) > x)
h

dx =
∫ ∞

0
e−λx

∫∞
x ν̄(a)da
1−mt

dx,

which proves the convergence of P(S(t,h) ∈ dx)/h to ν̄(x)dx/(1 − mt). Indeed,
introduce the measures µh(dx) and µ(dx) on R+ whose tails are given by

µh(]x,∞]) = e−xP(S(t,h) > x)/h, µ(]x,∞]) = e−x

∫ ∞
x

ν̄(a)da/(1−mt).

The last displayed limit entails the weak convergence of µh(dx) to µ(dx) when h
tends to 0, by convergence of Laplace transforms. As µ is non atomic, for every
x ≥ 0, µh(]x,∞]) tends to µ(]x,∞]), which proves that P(S(t,h) > x)/h tends to∫∞
x ν̄(a)da/(1−mt).

Remark 10. Denote γ(t,h) the a.s instant at which the supremum S(t,h) is reached.
To obtain the distribution of {(Ti, Gi, Ri) : i ∈ N} by this way, we need to know
the joint law of (S(t,h),

←
τ

(t)

γ(t,h)) which we cannot derive directly from fluctuation
theory.
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Part II

Processus de branchement pour
l’infection de parasites
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Chapter 6

Background on Branching
Processes in Random
Environment

We gather here some important results about Branching Process in Random
Environment (BPRE). We consider a BPRE (Zn)n∈N specified by a sequence of iid
generating functions (fn)n∈N distributed as f [6, 7, 43]. More precisely, condition-
ally on the environment (fn)n∈N, particles at generation n reproduce independently
of each other and their offspring sizes have generating function fn. Then Zn is the
number of particles at generation n and Zn+1 is the sum of Zn independent random
variables with generating function fn. That is, for every n ∈ N,

E
(
sZn+1 |Z0, . . . , Zn; f0, . . . , fn

)
= fn(s)Zn (0 ≤ s ≤ 1).

Thus, denoting by Fn := f0 ◦ · · · ◦ fn−1, we have for every k ∈ N,

Ek(sZn+1 | f0, ..., fn) = E(sZn+1 | Z0 = k, f0, ..., fn) = Fn(s)k (0 ≤ s ≤ 1).

When the environments are deterministic (i.e. f is a deterministic generating
function), this process is the Galton Watson process (GW) with reproduction law
Z, where f is the generating function of Z.

The process is called subcritical, critical or supercritical respectively if

E
(
log(f ′(1))

)
is negative, zero or positive. This process becomes extinct a.s. :

P(∃n ∈ N : Zn = 0) = 1

iff it is subcritical or critical [6, 8].
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6.1 Subcritical BPRE

For a subcritical GW process, if E(Z1 log+(Z1)) < ∞, recall that there exists
c > 0 such that P(Zn > 0) ∼ cf ′(1)n when n tends to infinity (see [8]). In
random environments, this asymptotic behavior depends on whether the BPRE is
strongly subcritical (SS), intermediate subcritical (IS) or weakly subcritical (WS),
as stated below. Moreover a subcritical GW process is strongly subcritical (SS).

Note that s ∈ R+ 7→ E(f ′(1)s) is a convex function and define γ and α in [0, 1]
such that

γ := inf
θ∈[0,1]

{
E

(
f ′(1)θ

)}
= E

(
f ′(1)α

)
. (6.1)

From now on, we assume E(f ′(1)| log(f ′(1))|) <∞. Note also that 0 < γ < 1,
γ ≤ E(f ′(1)) and

γ = E(f ′(1)) ⇔ E
(
f ′(1)log(f ′(1))

)
≤ 0.

There are three subcases (see [43]).

? The strongly subcritical case (SS), where E(f ′(1)log(f ′(1))) < 0. In this case,
assuming further

E(Z1 log+(Z1)) <∞,

then there exist c, αk > 0 such that, as n→∞ :

Pk(Zn > 0) ∼ cαkE(f ′(1))n, α1 = 1. (6.2)

? The intermediate subcritical case (IS), where E(f ′(1)log(f ′(1))) = 0. In this
case, assuming further

E
(
f ′(1) log2(f ′(1))

)
<∞, E

(
[1 + log−(f ′(1))]f ′′(1)

)
<∞,

then there exist c, αk > 0 such that as n→∞ :

Pk(Zn > 0) ∼ cαkn
−1/2E(f ′(1))n, α1 = 1. (6.3)

? The weakly subcritical case (WS), where 0 < E(f ′(1)log(f ′(1))) < ∞. In
this case, assuming further

E(f ′′(1)/f ′(1)1−α) <∞, E(f ′′(1)/f ′(1)2−α) <∞,

then there exist c, αk > 0 such that as n→∞ :

Pk(Zn > 0) ∼ cαkn
−3/2γn, α1 = 1. (6.4)
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In the next chapter, for each case, we take the integrability assumptions above for
granted. See [91] for asymptotics with weaker hypothesis in the (IS) case.

It is also known that the process Zn starting from k particles and conditioned
to be non zero converges to a finite positive random variable Υk, called the Yaglom
quasistationary distribution (see [43]) :

Ek

(
sZn | Zn > 0) n→∞−→ E

(
sΥk

)
.

See Section 3.3 for discussions about (Υk)k∈N.

Actually, in [43], the result and the proof of these convergences are given for
k = 1. They can be generalized to k ≥ 1 with the following modifications. Set

Sn := log(k)+log(f ′0(1))+ ...+log(f ′n−1(1)), g0(s) :=
1

1− f0(s)k
− 1
kf ′0(1)(1− s)

,

and recalling Notations of [43]

fk,l :=


fk ◦ fk+1 ◦ · · · ◦ fl−1, k < l
fk−1 ◦ fk−2 ◦ · · · ◦ fl, k > l
id, k = l.

Then 1−Ek(sZn |Zn > 0) = E(1−fk
0,n(s))/Pk(Zn > 0). Lemma 2.1 of [43] still holds

replacing f0,n by fk
0,n and P(Zn > 0) by Pk(Zn > 0). Lemma 2.2 also still holds and

results of Lemma 2.3. can now be stated as follows. By convexity of x ∈ [0, 1] → xk

and (fn)n∈N, for every n ≥ 0, we have a.s exp(−Si)(1 − fi,0(s)) ≤ 1 (0 ≤ s ≤ 1).
Moreover exp(−Sn))(1 − fn,0(s)k) converges a.s. as n → ∞ , which is a direct
consequence of the convergence for k = 1 given in Lemma 2.3. in [43] (noting also
that this implies fn,0(s) → 0 a.s. as n→∞).

Finally, let us label by i ∈ N the initial particles and denote by Z
(i)
n the

number of descendants of particle i at generation n.

We consider the case where reproduction laws are a.s. linear fractional,
since in that case survival probabilities can be computed explicitly. Thus, there
are two random variables A ∈ [0,∞[ and B ∈ [0, 1[ with A+B ≤ 1 such that

f(s) = 1− A

1−B
+

As

1−Bs
a.s. (0 ≤ s ≤ 1). (6.5)

In this case, setting for every i ∈ N,

Pi := f ′n−i(1)...f ′n−1(1), (P0 = 1),
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we have (see [4], [46] or [63])

P(Zn > 0|Z0 = 1, f0, ..., fn−1) = 1−Fn(0) =
(

1+
n−1∑
i=0

f ′′n−i−1(1)
2f ′n−i−1(1)

Pi

)−1

Pn. (6.6)

Considering ((Z(i)
n )n∈N, i ≥ 1) such that conditionally on (f0, ..., fn−1), (Z(i)

n , i ≥
1) is an iid sequence with common p.g.f Fn, we get

P(Z(1)
n > 0, ..., Z(k)

n > 0| f0, ..., fn−1) =
(

1 +
n−1∑
i=0

f ′′n−i−1(1)
2f ′n−i−1(1)

Pi

)−k

P k
n . (6.7)

For a general BPRE, we use now that for every probability generating function fi,
we can find f̃i linear fractional probability generating function such that for every
s ∈ [0, 1], f̃i(s) ≥ fi(s), f̃ ′i(1) = f ′i(1), f̃ ′′i (1) = 2f ′′i (1) (see [46] or [63]). Then,
F̃n(0) ≥ Fn(0) a.s. ensures that

P(Zn > 0 | f0, ..., fn−1) ≥ P(Z̃n > 0 | f0, ..., fn−1) a.s. (6.8)

More generally, for every k ≥ 1,

P(Z(1)
n > 0, Z(2)

n > 0, ..., Z(k)
n > 0 | f0, ..., fn−1)

= (1− Fn(0))k

≥ (1− F̃n(0))k

= P(Z̃(1)
n > 0, Z̃(2)

n > 0, ..., Z̃(k)
n > 0 | f0, ..., fn−1) a.s. (6.9)

6.2 Critical BPRE

In the critical case, for a GW process, there exists d > 0 such that (see [8])

P(Zn > 0) ∼ d/
√
n (n→∞).

For a critical BPRE, under the following moment assumption

0 < E(log(f ′0(1))2) <∞, E
(
[1 + log(f ′0(1))]f ′′0 (1)/2f ′0(1)

)
<∞,

there exist 0 < c1 < c2 <∞ such that for every n ∈ N (see [63])

c1/
√
n ≤ P(Zn > 0) ≤ c2/

√
n.

Kozlov [63] has also proved that, in the linear fractional case, there exists d > 0
such that

P(Zn > 0) ∼ d/
√
n (n→∞).
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See also [3] for the existence of slowing varying function l such that

P1(Zn > 0) ∼ l(n)/
√
n, (n→∞),

in a more general context.

6.3 Supercritical BPRE

First we have the following expected result in the supercritical case [7, 8].

Proposition 6.3.1. If E(log(f ′(1))) > 0, P(Zn
n→∞−→ ∞ | ∀n ∈ N : Zn > 0) = 1.

Moreover, we have the following analogue of Kesten-Stigum theorem. Assuming
that

E
(
f ′(1)

∞∑
k=0

k log(k)f (k)(0)/k!
)
<∞,

we have
Wn = Zn/(Πn−1

i=0 f
′
i(1)) n→∞−→ W, P(W > 0) = p

where p > 0 is the survival probability of the BPRE.

Tail of W at 0. In the case P(f(0) = 0) = 0 and f is not a.s. the identity, we
have the following results (see [51]). Define

α = −E[log(f ′(0))]
E[log(f ′(1))]

, γ =
E[log(inf{k ∈ N∗ : f (k)(0) > 0})]

E[log(f ′(1))]
.

In the Böttcher case (P(Z1 ≤ 1) = 0), for all ε > 0, there exist a, b, c, d > 0 such
that

a exp
(
− bδ(γ+ε)/(γ−1−ε)

)
≤ P(W < δ) ≤ c exp

(
− dδ(γ+ε)/(γ−1−ε)

)
, (δ > 0).

In the Schröder case(P(Z1 = 1) > 0 and P(Z1 = 0) = 0), for every ε > 0, there
exist a, b > 0 such that

aδα+ε ≤ P(W < δ) ≤ bδα+ε, (δ > 0).

Moments By Theorem 3 in [46], we have

Proposition 6.3.2. For every s > 1, Wn converges to W in Ls iff

E(f ′(1)1−s) < 1, E
(
(Z1/f

′(1))s
)
<∞.
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As a consequence, Wn converges to W for all s > 1 and all moments of W are
finite iff

f ′(1) ≥ 1 a.s.; P(f ′(1) > 1) > 0, ∀s > 1, E
(
(Z1/f

′(1))s
)
<∞.

That is, the environments are a.s. critical or supercritical and they are supercriti-
cal with a positive probability.

Tail of W in ∞. If

P(f ′(1) < 1) > 0, P(f ′(1) > 1) > 0, ∀k ∈ N,E(f ′(1)−k) <∞,

then there exists ξ > 1 such that

E(f ′(1)1−ξ) = 1,

and, by Theorem 2.2 in [66],

0 < lim inf
x→∞

xξP(W > x) ≤ lim inf
x→∞

xξP(W > x) <∞.
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Chapter 7

Limit theorems for subcritical
Branching Processes in
Random environment

7.1 Introduction

We consider a Branching Process in Random Environment (BPRE) (Zn)n∈N
specified by a sequence of iid generating functions (fn)n∈N distributed as f [2, 6,
7, 43]. That is, for every n ∈ N,

E
(
sZn+1 |Z0, . . . , Zn; f0, . . . , fn

)
= fn(s)Zn (0 ≤ s ≤ 1).

Recall also that, denoting by Fn := f0 ◦ · · · ◦ fn−1, we have for every k ∈ N,

Ek(sZn+1 | f0, ..., fn) = E(sZn+1 | Z0 = k, f0, ..., fn) = Fn(s)k (0 ≤ s ≤ 1).

In this paper, we consider the subcritical case :

E
(
log(f ′(1))

)
< 0.

This is the case where extinction occurs a.s., that is

P(∃n ∈ N : Zn = 0) = 1.

Recall that a subcritical BPRE can be strongly subcritical (SS), intermediate
subcritical (IS) or weakly subcritical (WS) (see [43] or the previous Section for
details) (see the previous chapter).

We study the role of the initial number of particles in the limit theorems. For a
GW process, particles are independent. As a consequence, limit theorems starting
with several particles can be directly derived from the case with one single initial
particle.
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In random environment, particles do not reproduce independently; more
precisely independence holds only conditionally on the environments. This
explains why asymptotics for (WS) BPRE starting with several particles are
different from the analogous results for a GW process.
When the BPRE is (SS) or (IS), conditioning on the survival of the population at
generation n, only one initial particle survives in generation n when n → ∞, just
as for a GW process. But this does not hold in the (WS) case (see forthcoming
Proposition 7.2.3). Thus, (WS) BPRE conditioned to survive have a supercritical
behavior, as previously observed in [2].
We give an interpretation of these results in terms of environments (see Section
7.2.3 for details). Particles die out a.s. and we want to explain what happened
when the population survives a long time. Roughly speaking, we prove that in
the (SS+IS) case, survival of the population is due to exceptional multiplication
of particles in ’bad environments’, whereas in the (WS) case, survival of particles
is due to exceptionally ’nice environments’ (and normal multiplication in these
environments). More precisely, conditioning on non-extinction induces a selection
of environments with high reproduction law. In the (SS+IS) case, we prove that
the survival probability of the branching process in the environments selected is
still zero. This is obvious if environments are a.s. subcritical, i.e. f ′(1) < 1 a.s.
But in the (WS) case, conditioning by the survival of the population select only
supercritical environments. That is, the sequence of environments selected has
a.s. a positive survival probability (Theorem 7.2.5). Finally we make the initial
number of particles tend to infinity and the sequence of environments becomes
subcritical again.

We determine how the asymptotic survival probability depends on the initial
number of particles. In that view, we define

αk := lim
n→∞

Pk(Zn > 0)/P1(Zn > 0).

For a GW process, αk = k. That is, the asymptotic survival probability is
proportional to the initial number of particles. This equality still holds in the
(SS+IS) case for BPRE, but not in the (WS) case where a different asymptotic
as k → tends to infinity is established (see forthcoming Theorem 7.2.2). For the
proof, we need an asymptotic result on random walks with negative drift (Section
7.4), which gives the product of the means of the successive environments.
In the supercritical case, see [45] for asymptotics of the extinction probability
when the number of initial particles tends to infinity.

In Section 7.2.4, we are interested in the characterization of the Yaglom qua-
sistationary distribution, that is the limit as n→∞ of the number of particles at
generation n, conditioned to be nonzero, starting with k particles.

Finally, in Section 7.2.5, we focus on the Q-process associated to the subcritical
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BPRE, which is defined for all l1, l2, ..., ln ∈ N, by

Pk(Y1 = l1, ..., Yn = ln) = lim
p→∞

Pk(Z1 = l1, ..., Zn = ln|Zn+p > 0).

See [8] for details on the Q-process associated to GW.

Recalling results given in the previous Chapter, we can define γ and α in [0, 1]
such that

γ := inf
θ∈[0,1]

{
E

(
f ′(1)θ

)}
= E

(
f ′(1)α

)
. (7.1)

Finally, we recall asymptotics in the different cases, which will be used several
times (see Section 6.1 for technical assumptions).

? In the strongly subcritical case (SS) (E(f ′(1)log(f ′(1))) < 0), there exist
c, αk > 0 such that

Pk(Zn > 0) ∼ cαkE(f ′(1))n, α1 = 1, (n→∞). (7.2)

? In the intermediate subcritical case (IS) (E(f ′(1)log(f ′(1))) = 0), there exist
c, αk > 0 such that

Pk(Zn > 0) ∼ cαkn
−1/2E(f ′(1))n, α1 = 1, (n→∞). (7.3)

? In the weakly subcritical case (WS) (0 < E(f ′(1)log(f ′(1)))), there exist
c, αk > 0 such that

Pk(Zn > 0) ∼ cαkn
−3/2γn, α1 = 1, (n→∞). (7.4)

7.2 Subcriticality starting from several particles

We give here the asymptotic of survival probabilities starting with k particles.
Then we determine how many initial particles survive conditionally on non
extinction of particles and we characterize the sequence of environments which
are selected by this conditioning. Finally we consider the Yaglom quasistationary
distributions of (Zn)n∈N and the associated Q-process. In the (SS) case, results
are those expected, i.e. they are analogous to those of a GW process. In the
(IS) case, results are different for the Yaglom quasistationary distribution and the
Q-process. In the (WS) case, all results are different.

We label by i ∈ N each particle of the initial population and denote by Z(i)
n the

number of descendants of particle i at generation n.
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Thus (Z(i)
n )n∈N are identically distributed BPRE (i ∈ N), with common distribu-

tion (Zn)n∈N starting with one particle. Conditionally on the environments, these
processes are independent. In other words, for all n, k, li ∈ N,

P(Z(i)
n = li, 1 ≤ i ≤ k | f0, ..., fn−1) = Πk

i=1P(Z(1)
n = li |f0, ..., fn−1).

We denote by Pk the probability associated with k initial particles. Then, under
Pk, (Zn)n∈N is a.s. equal to ( k∑

i=1

Z(i)
n

)
n∈N.

7.2.1 Survival probabilities starting with several particles

Note that x 7→ E
(
f ′(1)xlog(f ′(1))

)
increases with x.

Proposition 7.2.1. For every k ∈ N∗,

(i) If E
(
f ′(1)klog(f ′(1))

)
< 0, then there exists ck > 0 such that

P(Z(1)
n > 0, Z(2)

n > 0, ..., Z(k)
n > 0) n→∞∼ ckE(f ′(1)k)n

and E(f ′(1)k) < E(f ′(1)k−1) < ... < E(f ′(1)).

(ii) If E
(
f ′(1)klog(f ′(1))

)
= 0, then there exists ck > 0 such that

P(Z(1)
n > 0, Z(2)

n > 0, ..., Z(k)
n > 0) n→∞∼ ckn

−1/2E(f ′(1)k)n.

(iii) If E
(
f ′(1)klog(f ′(1))

)
> 0, then there exists ck > 0 such that

P(Z(1)
n > 0, Z(2)

n > 0, ..., Z(k)
n > 0) n→∞∼ ckn

−3/2γ̃n,

with γ̃ = infs∈R+{E(f ′(1)s)} ∈ ]0, 1[ and c = c1 ≥ c2 ≥ ... ≥ ck.

Moreover, in the (IS+WS) case, γ̃ = γ. In the (SS) case, γ̃ < γ = E(f ′(1)).

The proof is given in Section 7.3.1 and uses the case where the probability
generating function f is a.s. linear fractional. Indeed in this case the survival
probability in a given environment can then be computed explicitly since linear
fractional generating functions are stable by composition (see Preliminaries Sec-
tion).

In the (SS+IS) case, the asymptotic probability of survival of particles is pro-
portional to the number of initial particles, as stated below. This is not surprising
and well known for subcritical GW process. But this does not hold in the (WS)
case. Recall that αk is defined as limn→∞ Pk(Zn > 0)/P1(Zn > 0).
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Theorem 7.2.2. In the (SS+IS) case, for every k ∈ N, αk = k.

In the (WS) case, αk →∞ as k →∞ and there exists M+ > 0 such that

αk ≤M+ log(k)kα, (k ≥ 2),

where α ∈]0, 1[ is given by (7.1).
Assuming further E(f ′(1)1/2 log(f ′(1))) > 0 (i.e. α < 1/2) and f ′′(1)/f ′(1) is
bounded, there exists M > 0 such that

αk ≥M log(k)kα, (k ∈ N).

One can naturally conjecture that the last result still holds for 1/2 ≤ α < 1.
The proof also uses the linear fractional case where, conditionally given the
environments, the survival probability is related to a random walk whose jumps
are the log of means of the reproduction law of the environments. That’s why we
first need to prove a result about random walk with negative drift conditioned to
be larger than −x < 0 (see Appendix). One way to generalize the last result of
the theorem above to the case E(f ′(1)1/2 log(f ′(1))) > 0 (i.e. α < 1/2) would be
to improve Lemma 7.4.1.

7.2.2 Survival of initial particles conditionally on non-extinction

We wonder now how many initial particles survive when we condition by the
survival of the whole population of particles. We have the following elementary
consequence of Proposition 7.2.1.

Proposition 7.2.3. In the (SS+IS) case, for every k ≥ 1,

lim
n→∞

Pk(∃i 6= j, 1 ≤ i, j ≤ k, Z(i)
n > 0, Z(j)

n > 0 |Zn > 0) = 0.

In the (WS) case, for every k ≥ 1,

lim
n→∞

Pk(∀i, 1 ≤ i ≤ k, Z(i)
n > 0 |Zn > 0) > 0.

Thus, for (SS+IS) BPRE, conditionally on the survival of the population,
only one initial particle survives, as for GW. But for (WS) BPRE, several initial
particles survive with positive probability. Forthcoming Theorem 7.2.5 gives an
interpretation of this property in terms of selection of favorable environments by
conditioning on non-extinction. See Section 6.3 in [13] for an application of this
result to a branching model for cell division with parasite infection, where we need
to determine if several parasites survive in contaminated cells. In the same vein,
see [38] for results on the reduced process associated with subcritical BPRE in the
linear fractional case. In the (WS) case, the number of particles of the reduced
process is not a.s. equal to 1 in the first generations.
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What happens when the number of initial particles tends to infinity in the
(WS) case ? As stated below, conditionally on non-extinction, the number of initial
particles which survive is finite a.s. but not bounded, when the initial number of
particles tend to infinity. More precisely, denote by Nn the number of particles in
generation 0 whose descendance is alive in generation n. That is, starting with k
initial particles :

Nn := #{1 ≤ i ≤ k : Z(i)
n > 0}.

Theorem 7.2.4. In the (WS) case, assuming E(f ′(1)1/2 log(f ′(1))) > 0 (i.e. α <
1/2) and f ′′(1)/f ′(1) is bounded, there exist Al ↓l→∞ 0 such that for all k ≥ l ≥ 0,

lim sup
n→∞

Pk(Nn ≥ l | Zn > 0) ≤ Al.

Moreover, for every l ∈ N∗,

lim inf
k→∞

lim inf
n→∞

Pk(Nn = l | Zn > 0) > 0.

Thus, in the conditions of the theorem,

lim sup
k→∞

lim sup
n→∞

Pk(Nn ≥ l | Zn > 0) ≤ Al, with Al ↓l→∞ 0.

7.2.3 Selection of environments conditionally on non-extinction

We characterize here the sequence of environments which are selected by
conditioning on the survival of particles.

We denote by F the set of generating functions and for every gn =
(g0, . . . , gn−1) ∈ Fn, we denote by Zgn the value at generation n of the time
inhomogeneous branching process whose reproduction law at generation l ≤ n− 1
has generating function gl. Thus, for every k ≥ 1,

Ek(sZgn ) = g0 ◦ g1 ◦ · · · ◦ gn−1(s)k (0 ≤ s ≤ 1). (7.5)

And we denote by p(gn) the survival probability of a particle in environment gn.
That is,

p(gn) := P1(Zgn > 0). (7.6)

Denote by fn the sequence of environments until time n, i.e.

fn := (f0, f1, . . . , fn−1).

In the subcritical case, p(fn) = 0 a.s. since (Zn)n∈N becomes extinct a.s. Roughly
speaking, the sequences of environments have a.s. zero survival probability. In the
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(SS+IS) case, conditioning on the survival of particles does not change this fact,
but it does in the (WS) case, as we can guess using Proposition 7.2.3. Actually,
we prove that in the (WS) case, the sequence of environments which are selected
by conditioning by Zn > 0 have a.s. a positive survival probability. Thus, they are
’supercritical’. In [2], authors had already remarked this supercritical behavior of
the BPRE (Zn)n∈N in the (WS) case by giving an analogy of the Kesten-Stigum
theorem, i.e. the convergence of Zn/m

n.

Theorem 7.2.5. In the (SS+IS) case, for all k ∈ N∗, ε > 0,

lim
n→∞

Pk(p(fn) ≥ ε | Zn > 0) = 0.

In the (WS) case, for every k ∈ N∗,

lim inf
n→∞

Pk(p(fn) ≥ ε | Zn > 0) ε→0+−→ 1.

This supercritical behavior in the (WS) case disappears as k tends to infinity.
That is, the survival probability of selected sequences of environments tends to 0
as the number of particles grows to infinity.

Proposition 7.2.6. In the (WS) case, for every ε > 0,

lim sup
n→∞

Pk(p(fn) ≥ ε | Zn > 0) k→∞−→ 0.

In other words, conditionally on the survival of Zn, the more initial particles
there are, the less environments need to be favorable to allow the survival of
particles, and the less likely it is for a given particle to survive. That’s why,
letting the number of initial particles tend to infinity does not make the number
of survival initial particles tend to infinity, as stated in Theorem 7.2.4.

7.2.4 Yaglom quasistationary distributions

We focus now on the Yaglom quasistationary distribution of (Zn)n∈N (see Pre-
liminaries for existence and references). For the GW process, this distribution does
not depend on the initial number of particles and is characterized by a functional
equation. This result still holds for (SS) BPRE. Indeed, starting with several par-
ticles, conditionally on the survival of one given particle, the others become extinct
(see Proposition 7.2.3).

Theorem 7.2.7. In the (SS+IS) case, for every k ≥ 1, the BPRE Zn starting
from k and conditioned to be nonzero converges in distribution as n→∞ to a r.v.
Υ which does not depend on k. Moreover, the generating function G of Υ verifies

E(G(f(s))) = E(f ′(1))G(s) + 1− E(f ′(1)), G(0) = 0.
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In the (SS) case, G is the unique generating function which satisfies the functional
equation above and G′(1) <∞.

In the (WS) case, for every k ≥ 1, the BPRE Zn starting from k and con-
ditioned to be nonzero converges in distribution as n → ∞ to a r.v. Υk, whose
generating function Gk verifies

E(Gk(f(s))) = γGk(s) + 1− γ, Gk(0) = 0.

In the (WS) case, an open question is to determine if the quasistationary
distribution Υk depends on the initial number k of particles. We know that for
every k ≥ 1, Gk verifies the same functional equation given above but we do not
know if the solution is unique.
Moreover, we can prove the equality of the quasistationary distributions starting
with two different numbers of particles in the following case. If Z1 ∈ {0, 1, N}
for some N ∈ N∗, then Υ1

d= ΥN . (see Section 7.2.4 for the proof). Other
observations also lead us to believe that quasistationary distributions Υk might
not depend on k.

7.2.5 Q-process associated with a BPRE

The Q-process (Yn)n∈N starting from k particles associated to the BPRE
(Zn)n∈N is defined for all l1, l2, ..., ln ∈ N, by

Pk(Y1 = l1, ..., Yn = ln) = lim
p→∞

Pk(Z1 = l1, ..., Zn = ln|Zn+p > 0).

This is the BPRE (Zn)n∈N conditioned to survive in the distant future. See [8]
for details in the case of GW processes. In the (SS) case, the Q-process converges
in distribution to the size biased Yaglom distribution, as for GW process. Finer
results have been obtained in [1]. In the (IS+WS) case, the Q-process is transient.
That is, the population needs to grow largely in the first generations so that it
can survive.

Proposition 7.2.8. ? In the (SS) case, for every k ∈ N∗, for all l1, l2, ..., ln ∈ N,

Pk(Y1 = l1, ..., Yn = ln) = E(f ′(1))−n ln
k

Pk(Z1 = l1, ..., Zn = ln).

Moreover (Yn)n∈N converges in distribution to the size biased Yaglom distribution.

∀ l ≥ 0, Pk(Yn = l) n→∞−→ lP(Υ = l)
E(Υ)

.
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? In the (IS) case, for every k ∈ N∗, for all l1, l2, ..., ln ∈ N,

Pk(Y1 = l1, ..., Yn = ln) = E(f ′(1))−n ln
k

Pk(Z1 = l1, ..., Zn = ln).

Moreover Yn →∞ in probability as n→∞.
? In the (WS) case, for every k ∈ N∗, for all l1, l2, ..., ln ∈ N,

Pk(Y1 = l1, ..., Yn = ln) = γ−nαln

αk
Pk(Z1 = l1, ..., Zn = ln).

Moreover Yn tends to infinity a.s.

We focus now on the environments of the Q-process. We endow F with distance
d given by the infinity norm

d(f, g) =‖ f − g ‖∞
and we denote by B0(F) the Borel σ-field.

We introduce the probability νk on (FN,B0(F)⊗N) which gives the distrib-
ution of the environments when the BPRE (Zn)n∈N starting from k particles is
conditioned to survive. Using Kolomogorov Theorem, it can be specified by its
projection on (Fp,B0(F)⊗p) for every p ∈ N, denoted by νk |Fp ,

νk |Fp(dgp) := lim
n→∞

Pk

(
fp ∈ dgp|Zn+p > 0

)
(7.7)

= γ−pP
(
fp ∈ dgp

) ∞∑
l=1

Pk(Zgp = l)
αl

αk
,

with fp = (f0, . . . , fp−1) and γ = E(f ′(1)) in the (SS+IS) case. The limit is the
weak limit of probabilities on (Fp,B0(F)⊗p) (see [24] for definition and Section
7.3.5 for the proof), which we endow with the distance dp given by

dp

(
(g0, . . . , gp−1), (h0, . . . , hp−1)

)
= sup{‖ gi − hi ‖∞: 0 ≤ i ≤ p− 1}. (7.8)

For every g ∈ FN, we denote by g|n the first n coordinates of g ∈ FN and we
introduce the survival probability in environment g ∈ FN :

p(g) = lim
n→∞

↓ P(Zg|n > 0).

One can naturally conjecture an analogous of Theorem 7.2.5 and Proposition 7.2.6.
That is, for every k ∈ N∗,

In the (SS+IS) case, νk({g ∈ FN : p(g) = 0}) = 1.
In the (WS) case, νk({g ∈ FN : p(g) > 0}) = 1 and νk(p(f) ∈ dx) n→∞=⇒ δ0(dx).

A perspective is to characterize the tree of particles when we condition by the
survival of particles, i.e. the tree of particles of the Q-process. Informally, for GW
process, this gives a spine with finite iid subtrees (see [42, 69]). This fact still
holds in the (SS+IS) case but we will observe a ’multispine tree’ in the (WS) case.
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7.3 Proofs

First we give the main Notations and results for the proofs. We use the
particular case when generating functions are a.s. linear fractional. In that case,
the survival probability for a given environment is a functional of the random walk
which sums the log of the successive means of environments (see (6.6)). Using
results the random walk with negative drift proved in Appendix (Section 7.4), this
enables us to control the survival probability conditionally on the environments, in
the linear fractional case and then for general BPRE (Lemma 7.3.1 below). Using
that conditionally on the sequence of environments, particles are independent, we
get survival probabilities starting with several particles and then integrate with
respect to environments.

Set for every n ∈ N,

Xn := log(f ′n(1)), Sn =
n−1∑
i=0

Xi (S0 = 0),

and
Ln = min{Si : 1 ≤ i ≤ n}.

Recall that F is the set of generating functions and

fn = (f0, f1, ..., fn−1).

For every gn = (g0, . . . , gn−1) ∈ Fn, we denote by Zgn the value at generation p of
the time inhomogeneous branching process whose reproduction law at generation
l has generating function gl. And we denote by p(gn) the survival probability of a
particle in environment gn. That is,

p(gn) := P1(Zgn > 0) = P1(Zn > 0 | fn = gn). (7.9)

Roughly speaking, we prove now that

p(fn) ≈ eLn a.s..

Lemma 7.3.1. For every n ∈ N, we have

p(fn) ≤ eLn a.s.

Moreover if E(f ′(1)1/2 log(f ′(1))) > 0 (i.e. 0 < α < 1/2) and f ′′(1)/f ′(1) is
bounded, then there exists µ ≥ 1 such that for all n ∈ N and x ∈]0, 1],

P(p(fn) ≥ x) ≥ P(Ln ≥ log(µx))/4.
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Proof. For the upper bound, note that for every gn ∈ Fn, we have,

p(gn) = P1(Zgn > 0) ≤ E1(Zgn) = Πn−1
i=0 g

′
i(1).

Thus p(fn) ≤ eSn a.s. As is usual, adding that p(fn) decreases a.s. ensures that

p(fn) ≤ eLn a.s.

For the lower bound, recall that

Pi := f ′n−i(1)...f ′n−1(1), (P0 = 1),

and use (6.9) and (6.6) to get

p(fn) = P(Zn > 0 | fn) ≥ P̃n

1 +
∑n−1

i=0

ef ′′n−i−1(1)

2 ef ′n−i−1(1)
P̃i

=
Pn

1 +
∑n−1

i=0

f ′′n−i−1(1)

f ′n−i−1(1)
Pi

a.s..

We assume now that C =
(
1 + ess sup(f ′′(1)

f ′(1) )
)−1

> 0. Denote by

S′i := log(f ′n−i(1)) + ...+ log(f ′n−1(1)) i ≥ 1, S′0 = 0,

so that Pi = exp(S′i). We then have

p(fn) ≥ C
eS
′
n

2
∑n−1

i=0 e
S′i
≥ C

2
eS
′
n−max{S′j :0≤j≤n}∑n

i=0 e
S′i−max{S′j :0≤j≤n} a.s.

Thus,

p(fn) ≥ C

2
eLn∑n

i=0 e
Ln−Si

. (7.10)

As α < 1/2, forthcoming Corollary 7.4.2 in Appendix (Section 7.4) ensures that
there exists β > 0 such that for all n ∈ N and x > 0,

P(p(fn) ≥ x) ≥ P(Ln ≥ log(2βx/C))P
( n∑

i=0

eLn−Si ≤ β | Ln ≥ log(2βx/C)
)

≥ P(Ln ≥ log(µx))/4,

writing µ = min(1, 2β/C).

Moreover, using independence of particles conditionally on environments, we
have

Pk(Zn > 0) =
∫
Fn

Pk(Zgn > 0)P(fn ∈ dgn)
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=
∫
Fn

(1− (1− P1(Zgn > 0))k)P(fn ∈ dgn)

=
∫
Fn

P(p(fn) ∈ dx)(1− (1− x)k), (7.11)

and

αk = lim
n→∞

Pk(Zn > 0)/P1(Zn > 0)

= lim
n→∞

∫ 1

0
(1− (1− x)k)

P(p(fn) ∈ dx)
P1(Zn > 0)

. (7.12)

7.3.1 Proofs of Section 7.2.1

We split the proof of Proposition 7.2.1 into three parts.

Proof of Proposition 7.2.1 (i). We follow the proof of Theorem 1.2 (a) in [46] and
introduce the probability P̃ such that under P̃, the environments still are iid and
their law is given by

P̃(f ∈ dg) = E(f ′(1)k)−1g′(1)kP(f ∈ dg).

Then, writing Pn = f ′0(1)...f ′n−1(1) (P0 = 1), we have

P(Z(1)
n > 0, ..., Z(k)

n > 0) = E((1− Fn(0))k) = E(f ′(1)k)nẼ((1− Fn(0))/Pn)k).

As E(f ′(1)klog(f ′(1))) < 0, then Ẽ(log(f ′(1))) < 0 and Theorem 5 in [6] ensures
that

C = lim
n→∞

1− Fn(0)
Pn

exists P̃ a.s. and belongs to ]0, 1]. Thus, as n→∞,

P(Z(1)
n > 0, ..., Z(k)

n > 0) ∼ E(f ′(1)k)nẼ(Ck).

Add that s 7→ E(f ′(1)s) decreases for s ∈ [0, α] and k < α to complete the proof.

Proof of Proposition 7.2.1 (iii). We follow the proof of Theorem 1.2 (c) in [46].
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STEP 1. First we consider the linear fractional case and use results of the
previous chapter (see (6.5)). In that case, by (6.7),

P(Z(1)
n > 0, ..., Z(k)

n > 0| f0, ..., fn−1) =
(

1 +
n−1∑
i=0

f ′′n−i−1(1)
2f ′n−i−1(1)

Pi

)−k

P k
n .

Define γ̃ by
γ̃ = inf

s∈R+

{
E

(
f ′(1)s

)}
= E

(
f ′(1)eα

)
,

where 0 < α̃ < k since E(f ′(1)klog(f ′(1))) > 0. Let Peα be the probability given by

Peα(f ∈ dg) = γ̃−1g′(1)eαP(f ∈ dg).

Then

P(Z(1)
n > 0, ..., Z(k)

n > 0) = γ̃nEeα
[(

1 +
n−1∑
i=0

f ′′i (1)
2f ′i(1)

Pi

)−k

P k−eα
n

]
.

As Eeα(log(f ′(1))) = 0, we apply Theorem 2.1 in [46] with

φ(x) = xk−eα, ψ(x) = (1 + x)−k, 0 < k − α̃ < k,

so there exists ck > 0 such that, as n→∞,

P(Z(1)
n > 0, ..., Z(k)

n > 0) ∼ ckγ̃
nn−3/2.

STEP 2. For the general case, we can use STEP 1. Indeed, by (6.9), there
exists a BPRE (Z̃n)n∈N such that f̃ is a.s. linear fractional, f̃ ′(1) = f ′(1) and

P(Z(1)
n > 0, Z(2)

n > 0, ..., Z(k)
n > 0) ≥ P(Z̃(1)

n > 0, Z̃(2)
n > 0, ..., Z̃(k)

n > 0).

By STEP 1, this leads to the existence of ck(1) > 0 such that

P(Z(1)
n > 0, Z(2)

n > 0, ..., Z(k)
n > 0) ≥ ck(1)γnn−3/2. (7.13)

Note that by inclusion-exclusion principle, we have

Pk(Zn > 0) =
k∑

i=1

(−1)i+1

(
k

i

)
P(Z(1)

n > 0, ..., Z(i)
n > 0). (7.14)

Moreover, (7.4) ensure the convergence of

γ−nn3/2P1(Zn > 0)

to cα1. By induction, it gives the convergence of

γ−nn3/2P(Z(1)
n > 0, Z(2)

n > 0, ..., Z(k)
n > 0).

to a constant ck, which is positive by (7.13).

To complete the proof note that γ = γ̃ iff E(f ′(1)s)]′(1) ≥ 0, i.e. in the (IS+WS)
case.
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Proof of Proposition 7.2.1 (ii). The proof is close to the previous one. First, we
consider the linear fractional case and Introducing again the probability P̃ defined
by

P̃(f ∈ dg) = E(f ′(1)k)−1g′(1)kP(f ∈ dg).

Using again (6.7), we get then

P(Z(1)
n > 0, ..., Z(k)

n > 0) = E(f ′(1)k)nẼ
[(

1 +
n−1∑
i=0

f ′′n−i−1(1)
2f ′i−i−1(1)

Pi

)−k]
.

As Ẽ(log(f ′(1)) = 0, we can use again Theorem 2.1 in [46] and conclude in the
linear fractional case.

The general case can be proved following STEP 2 in the previous proof.

Proof of Theorem 7.2.2. Computation of αk in the (SS+IS) case. In the (SS+IS)
case, Proposition 7.2.3 and (7.14) ensure that for every k ∈ N,

Pk(Zn > 0) ∼ kP(Zn > 0), (n→∞).

Then,
αk = k.

This gives the first result.

Limit of αk in the (WS) case. Note that P1(Zp+n > 0) =
∑∞

k=1 P1(Zp =
k)Pk(Zn > 0). Then,

P1(Zp+n > 0)
P1(Zn > 0)

=
∞∑

k=1

P1(Zp = k)
Pk(Zn > 0)
P1(Zn > 0)

. (7.15)

First, P(∪k
i=1{Z

(i)
n > 0}) ≤

∑k
i=1 P(Z(i)

n > 0), which gives

Pk(Zn > 0)/P1(Zn > 0) ≤ k.

Moreover
∑∞

k=1 P1(Zp = k)k = E(Zp) <∞ and

Pk(Zn > 0)/P1(Zn > 0) n→∞−→ αk,
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then, by bounded convergence, we get

∞∑
k=1

P1(Zp = k)
Pk(Zn > 0)
P1(Zn > 0)

n→∞−→
∞∑

k=1

P1(Zp = k)αk.

Then, using again (7.4), letting n→∞ in (7.15) yields

γp =
∞∑

k=1

P1(Zp = k)αk.

Assuming that (αk)k∈N is bounded by A leads to

γp ≤ AP1(Zp > 0).

Letting p → ∞ leads to a contradiction with (7.4). Adding that αk increases
ensures that αk →∞ as k →∞.

Upper bound of αk in the (WS) case. Recall (7.12),

αk = lim
n→∞

∫ 1

0
(1− (1− x)k)

P(p(fn) ∈ dx)
P1(Zn > 0)

.

Using the first inequality of Lemma 7.3.1 and x 7→ 1 − (1 − x)k grows with x on
[0, 1], we have

αk ≤ lim sup
n→∞

∫ 1

0
(1− (1− x)k)

P(exp(Ln) ∈ dx)
P1(Zn > 0)

.

By (7.21), we can use Fatou’s Lemma and (7.22) gives

αk ≤
∫ 1

0
(1− (1− x)k)ν+(dx) lim sup

n→∞

n−3/2γn

P1(Zn > 0)
.

Thus, by (7.4) and definition of ν+,

αk ≤ c−1c+[1 +
∫ 1

0
(1− (1− x)k) log(1/x)x−α−1dx].

Finally, using 1− (1− x)k ≤ kx and integration by parts,∫ 1

0
(1− (1− x)k) log(1/x)x−α−1dx

=
∫ 1/k

0
(1− (1− x)k) log(1/x)x−α−1dx+

∫ 1

1/k
(1− (1− x)k) log(1/x)x−α−1dx

≤ k

∫ 1/k

0
log(1/x)x−αdx+ log(k)

∫ 1

1/k
x−α−1dx
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≤ k(1− α)−1
[
log(k)kα−1 +

∫ 1/k

0
x−αdx

]
+ α−1 log(k)(kα − 1)

≤ M(1 + log(k))kα,

for some M > 0. This ensures that αk ≤ c−1c+[1 +M(1 + log(k))kα] and ends the
proof.

Lower bound of αk in the (WS) case assuming further E(f ′1/2(1) log(f ′(1))) >
0 (i.e. α < 1/2) and f ′′(1)/f ′(1) is bounded.

By (7.4), Lemma 7.3.1 and (7.22), for every x > 0,

lim inf
n→∞

P(p(fn) ≥ x)
P1(Zn > 0)

= lim inf
n→∞

γnn−3/2

P1(Zn > 0)
P(p(fn) ≥ x)
γnn−3/2

≥ c−1 P(Ln ≥ log(µx))
γnn−3/2

≥ (4c)−1ν−([µx, 1]).

Using (7.12), Fatou’s Lemma ensures that,

αk ≥ (4c)−1

∫ µ−1

0
(1− (1− x)k)ν−(d(µx))

≥ (4c)−1c µα

∫ 1/k

0
(1− (1− x)k)[log(1/x)− log(µ)]x−α−1dx.

For all k ≥ µ2 and x ∈]0, 1/k], log(1/x) ≥ 2 log(µ). So for every k ≥ µ2,

αk ≥ 2−1

∫ 1/k

0
(1− (1− x)k) log(1/x)x−α−1dx

≥ 2−1k inf
x∈]0,1/k]

{
1− (1− x)k

kx

} ∫ 1/k

0
log(1/x)x−αdx

≥ 2−1k(1− (1− 1/k)k)
∫ 1/k

0
log(1/x)x−αdx

≥ 2−1k(1− (1− 1/k)k) log(k)
∫ 1/k

0
x−αdx

≥ 2−1 log(k)kα/(1− α).

This completes the proof.

Page 116



7.3. PROOFS

7.3.2 Proofs of Section 7.2.2

Proof of Proposition 7.2.3. The first part (i.e. the (SS+IS) case) follows from

Pk(∃i 6= j, 1 ≤ i, j ≤ k, Z(i)
n > 0, Z(j)

n > 0 |Zn > 0) ≤
(
k

2

)
P(Z(1)

n > 0, Z(2)
n > 0)

Pk(Zn > 0)
,

asymptotics given by Proposition 7.2.1 (i-ii-iii) and equations (6.2) and (7.3).
The second part (i.e. the (WS) case) is directly derived from Proposition 7.2.1

(iii) and (7.4).

Proof of Theorem 7.2.4. Denote by N(gn) the number of initial particles which
survive until generation n where successive reproduction laws are given by gn (i.e.
conditionally on fn = gn). Then, for all 1 ≤ l ≤ k,

Pk(Nn = l) =
∫
Fn

P(fn ∈ dgn)Pk(N(gn) = l)

=
∫ 1

0
P(p(fn) ∈ dx)

(
k

l

)
xl(1− x)k−l.

Note that x ∈ [0, 1] 7→ xl(1 − x)k−l is positive, increases on [0, l/k] and decreases
on [l/k, 1].

First, we prove the upper bound. Recalling Lemma 7.3.1,

p(fn) ≤ exp(Ln),

we get ∫ 1

0
P(p(fn) ∈ dx)xl(1− x)k−l

=
∫ 1

0
P(p(fn) ∈ dx, exp(Ln) ≤ l/k)xl(1− x)k−l

+
∫ 1

0
P(p(fn) ∈ dx, exp(Ln) > l/k)xl(1− x)k−l

≤
∫ 1

0
P(exp(Ln) ∈ dx)xl(1− x)k−l + P(exp(Ln) ∈]l/k, 1])(l/k)l(1− l/k)k−l.

Moreover, by (7.20),

lim sup
n→∞

P(exp(Ln) ∈]l/k, 1])
γnn−3/2

≤ u(log(k/l))(k/l)α.
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Second, using again the variations of x ∈ [0, 1] 7→ xl(1 − x)k−l and (7.21), we
get

lim
n→∞

∫ 1

0

P(exp(Ln) ∈ dx)
n−3/2γn

xl(1− x)k−l

≤
∫ l/k

0
ν+(dx)xl(1− x)k−l + ν+([l/k, 1])(l/k)l(1− l/k)k−l

≤ c+

∫ 1

0
log(1/x)x−α−1xl(1− x)k−ldx

+c+(1 +
∫ 1

l/k
log(1/x)x−α−1dx)(l/k)l(1− l/k)k−l

≤ c+

∫ 1

0
log(1/x)x−α−1xl(1− x)k−ldx

+c+
(
1 + log(k/l)

(k/l)α − 1
α

)
(l/k)l(1− l/k)k−l.

Putting the three last inequalities together and using u(log(k/l)) ≤ C(1 +
log(k/l)) for some C > 0 ensures that there exists D > 0 such that

lim sup
n→∞

∫ 1

0

P(p(fn) ∈ dx)
n−3/2γn

xl(1− x)k−l

≤ c+

∫ 1

0
log(1/x)x−α−1xl(1− x)k−ldx+D(1 + log(k/l)(k/l)α)(l/k)l(1− l/k)k−l.

Moreover, denoting by B is the Beta function, we have∫ 1

0
log(x)x−α−1xl(1− x)k−ldx

=
∫ 1/k

0
log(1/x)xl−α−1(1− x)k−ldx+

∫ 1

1/k
log(1/x)xl−α−1(1− x)k−ldx

≤
∫ 1/k

0
log(1/x)xl−α−1dx+ log(k)

∫ 1

1/k
xl−α−1(1− x)k−ldx

≤ (l − α)−1
[
log(k)kα−l + (l − α)−1kα−l

]
+ log(k)B(l − α, k − l + 1),

by integration by parts. By Stirling formula, there exists C > 0, and then C ′, C ′′ >
0 such that for all 1 ≤ l ≤ k,(
k

l

)
k−αB(l − α, k − l + 1) ≤ C

kk−α+1/2

ll+1/2(k − l)k−l+1/2

(l − α)l−α−1/2(k − l + 1)k−l+1/2

(k − α+ 1)k−α+1/2

≤ C ′
(l − α)l−α−1/2(k − l + 1)k−l+1/2

ll+1/2(k − l)k−l+1/2

≤ C ′′
1

l1+α
, (7.16)
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where the last inequality comes from the fact that (1/x+1/2) log(1+x) is bounded
for x ∈ [0, 1], so that (k − l + 1/2) log(1 + 1/(k − l)) is bounded for 1 ≤ l < k.

Then, combining the three last inequalities gives

lim sup
n→∞

Pk(Nn = l)
kα log(k)n−3/2γn

= lim sup
n→∞

(
k
l

)
kα log(k)

∫ 1

0

P(exp(Ln) ∈ dx)
n−3/2γn

xl(1− x)k−l

≤ (l − α)−1
[(k
l

)
k−l + (l − α)−1k−l/ log(k) + C ′′

1
l1+α

]
+D

(
k

l

)
(log(k)k−α + l−α)(l/k)l(1− l/k)k−l.

Again Stirling formula ensures that there exists C ′′′ > 0 such that(
k

l

)
k−l ≤ C ′′′

kk−l

(k − l)k−lell!
= C ′′′

e−(k−l) log(1−l/k)

ell!
.

As for every x ∈ [0, 1[, − log(1− x) ≤ x/(1− x), then −(k− l) log(1− l/k) ≤ l. As
a consequence (

k

l

)
k−l ≤ C ′′′

1
l!
. (7.17)

Then, there exists D′ > 0 such that

lim sup
n→∞

Pk(Nn = l)
kα log(k)n−3/2γn

≤ D′
[ 1
l1+α

+
1
l!

+
(
k

l

)
l−α(l/k)l(1− l/k)k−l

]
.

Then,

lim sup
n→∞

Pk(Nn = l)
kα log(k)n−3/2γn

= lim sup
n→∞

k∑
l′=l

Pk(Nn = l′)
kα log(k)n−3/2γn

=
k∑

l′=l

lim sup
n→∞

Pk(Nn = l′)
kα log(k)n−3/2γn

≤ D
k∑

l′=l

[ 1
l′1+α

+
1
l′!

+
(
k

l′

)
l′−α(l′/k)l′(1− l′/k)k−l′

]
≤ D

[ k∑
l′=l

[ 1
l′1+α

+
1
l′!

]
+ l′−α

]

Recalling that Pk(Zn > 0) ∼ cαkn
−3/2γn, (n → ∞) and αk ≥ M log(k)kα, (k ∈

N) (see Theorem 7.2.2), we have

lim sup
n→∞

Pk(Nn ≥ l | Zn > 0)

= lim sup
n→∞

Pk(Nn ≥ l)
cαkn−3/2γn
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≤ (cM )−1D

[ k∑
l′=l

[ 1
l1+α

+
1
l!

]
+ l−α

]
.

This gives the first inequality of the proposition with

Al = (cM )−1D
[ ∞∑

l′=l

[ 1
l1+α

+
1
l!

]
+ l−α

]
.

We can prove similarly the lower bound. By Lemma 7.3.1, for every x > 0,

P(p(fn) ≥ x) ≥ P(Ln ≥ log(xµ))/4.

Then, using also (7.3.1), for all 0 ≤ l < k and N > 0,

P(p(fn) ∈ [l/k,Nl/k[) = P(p(fn) ≥ l/k)− P(p(fn) ≥ Nl/k)
≥ P(Ln ≥ log(µl/k))/4− P(exp(Ln) ≥ Nl/k).

By (7.20) , we get

lim inf
n→∞

P(p(fn) ∈ [l/k,Nl/k[)
n−3/2γn

≥ (k/l)α[µ−αu(log(k)−log(µl))/4−N−αu(log(k)−log(Nl))].

Then, as u is linearly growing, we can fix N ≥ 1 so that there exists C > 0 such
that

lim inf
k→∞

lim inf
n→∞

P(p(fn) ∈ [l/k,Nl/k[)
kα log(k)n−3/2γn

≥ l−αC. (7.18)

Using that

Pk(Nn = l) =
∫ 1

0
P(p(fn) ∈ dx)

(
k

l

)
xl(1− x)k−l,

and x→ xl(1− x)k−l decreases on [l/k, 1], we have, for every k ≥ Nl,

Pk(Nn = l) ≥ P(p(fn) ∈ [l/k,Nl/k[)
(
k

l

)
(Nl/k)l(1−Nl/k)k−l.

Then (7.18) and limk→∞
(
k
l

)
(Nl/k)l(1−Nl/k)k−l > 0 ensures that

lim inf
k→∞

lim inf
n→∞

Pk(Nn = l)
kα log(k)n−3/2γn

> 0.

Use Pk(Zn > 0) ∼ cαkn
−3/2γn and the upperbound of αk given in Theorem 7.2.2

to conclude.
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7.3.3 Proofs of Section 7.2.3

Proof of Theorem 7.2.5. In the (WS+IS) case, recall that (see Section 3.1),

Pk(Z(1)
n > 0, Z(2)

n > 0) = E(p(fn)2).

Thus, for every ε > 0,

Pk(Z(1)
n > 0, Z(2)

n > 0 | Zn > 0) ≥ ε2Pk(p(fn) ≥ ε | Zn > 0).

By Proposition 7.2.3, we get

Pk(p(fn) ≥ ε | Zn > 0) n→∞−→ 0.

In the (WS) case, by (7.11), for every ε ∈]0, 1] :

Pk(Zn > 0) ≥
∫ ε

0
P(p(fn) ∈ dx)(1− (1− x)k).

Moreover ∣∣ ∫ ε

0
P(p(fn) ∈ dx)(1− (1− x)k)−

∫ ε

0
P(p(fn) ∈ dx)kx

∣∣
≤ k sup

x∈[0,ε[

{∣∣1− (1− x)k

kx
− 1

∣∣} ∫ ε

0
P(p(fn) ∈ dx)x

≤ k sup
x∈[0,ε[

{∣∣1− (1− x)k

kx
− 1

∣∣}P1(Zn > 0).

Putting these two inequalities together yields

Pk(Zn > 0) ≥ k

∫ ε

0
P(p(fn) ∈ dx)x− k sup

x∈[0,ε[

{∣∣1− (1− x)k

kx
− 1

∣∣}P1(Zn > 0).

Then

P1(p(fn) ∈ [0, ε[), Zn > 0) =
∫ ε

0
P(p(fn) ∈ dx)x

≤ Pk(Zn > 0)/k + sup
x∈[0,ε[

{∣∣1− (1− x)k

kx
− 1

∣∣}P1(Zn > 0).

Dividing by P1(Zn > 0) and letting n→∞ ensure that

lim sup
n→∞

P1(p(fn) ∈ [0, ε[) | Zn > 0)

≤ lim sup
n→∞

Pk(Zn > 0)
kP1(Zn > 0)

+ sup
x∈[0,ε[

{∣∣1− (1− x)k

kx
− 1

∣∣}
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≤ αk

k
+ sup

x∈[0,ε[

{∣∣1− (1− x)k

kx
− 1

∣∣}.
Finally recall Theorem 7.2.2 and use

αk/k
k→∞−→ 0, ∀k ∈ N∗, sup

x∈[0,ε[

{∣∣1− (1− x)k

kx
− 1

∣∣} ε→0−→ 0,

to get limε→0+ lim supn→∞ Pk(p(fn) ≤ ε | Zn > 0) = 0.

Proof of Proposition 7.2.6. Recall that for every gn ∈ Fn, Pk(Zgn > 0) = 1− (1−
p(gn))k. Thus,

Pk(p(fn) ∈ dx | Zn > 0) =
P(p(fn) ∈ dx)(1− (1− x)k)

Pk(Zn > 0)

= P1(p(fn) ∈ dx | Zn > 0)
P1(Zn > 0)
Pk(Zn > 0)

(1− (1− x)k)
x

.

Then, for every ε > 0,

lim sup
n→∞

Pk(p(fn) ≥ ε | Zn > 0)

=
1
αk

lim sup
n→∞

∫ 1

ε
P1(p(fn) ∈ dx | Zn > 0)

(1− (1− x)k)
x

≤ 1
εαk

,

and the left hand part tends to zero as k tends to infinity by Theorem 7.2.2. This
ends up the proof.

7.3.4 Proofs of section 7.2.4

To prove Theorem 7.2.7, we first prove that the probability generating function
Gk of the quasistationary distributions Υk verify the same functional equation.
And we prove that in the (SS+IS) case, the quasistationary distributions do not
depend on k. Then we prove a lemma which ensures the uniqueness of the solution
of this functional equation in the (SS) case.

Lemma 7.3.2. In the subcritical case, the generating function Gk of Υk verifies

E(Gk(f(s))) = γGk(s) + 1− γ, Gk(0) = 0.

In the (IS+SS) case, for every k ≥ 1, Υk = Υ1. In the (SS) case, G′1(1) <∞.
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Proof. Let f0 be distributed as f and independent of (Zn)n∈N. For every n ∈ N,

1− Ek(sZn+1 | Zn+1 > 0) =
Ek(1− sZn+1)
Pk(Zn+1 > 0)

=
1

Pk(Zn+1 > 0)

∞∑
i=1

Pk(Zn = i)Ek(1− sZn+1 | Zn = i)

=
Pk(Zn > 0)

Pk(Zn+1 > 0)

∞∑
i=1

Pk(Zn = i | Zn > 0)E(1− f0(s)i)

=
Pk(Zn > 0)

Pk(Zn+1 > 0)
Ek(1− fZn

0 (s) | Zn > 0).

Then letting n tend to infinity and using asymptotics given in Preliminaries gives

1−Gk(s) = γ−1E(1−Gk(f0(s)),

where γ = E(f ′(1)) in the (SS+IS) case. This gives the equation of the lemma.

In the (SS) case, the fact that G′k(1) <∞ is proved in [43] for k = 1.
The proof can be generalized to k ≥ 1. And we can then use the uniqueness of
the solution of the functional equation given below to prove that for every k ≥ 1,
Gk = G1.

But in the (SS+IS) case, we can also directly prove uniqueness of all quasista-
tionary distributions. Indeed, for every i ≥ 1, P2(Zn = i) is equal to

P(Z(1)
n = i, Z(2)

n = 0) + P(Z(1)
n = 0, Z(2)

n = i) + P2(Zn = i, Z(1)
n > 0, Z(2)

n > 0).

Moreover |P(Z(1)
n = i, Z

(2)
n = 0)− P1(Zn = i)| ≤ P(Z(1)

n > 0, Z(2)
n > 0), then

|P2(Zn = i)− 2P1(Zn = i)| ≤ 3P(Z(1)
n > 0, Z(2)

n > 0).

Thus, using Proposition 7.2.3,

lim
n→∞

P2(Zn = i)
P2(Zn > 0)

= lim
n→∞

2P1(Zn = i)
P2(Zn > 0)

.

As α2 = limn→∞ P2(Zn > 0)/P1(Zn > 0) = 2, we have

P(Υ2 = i) = lim
n→∞

P2(Zn = i | Zn > 0)

= lim
n→∞

2P1(Zn = i | Zn > 0)P1(Zn > 0)
P2(Zn > 0)

= P(Υ1 = i).

Then Υ1
d= Υ2 and the same argument ensures that for every k ≥ 1, Υk = Υ1.
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To prove the uniqueness of the functional equation in the (SS) case, we need
the following result.

Lemma 7.3.3. If H : [0, 1] → R is a power series continuous on [0, 1], H(1) = 0
and

H(s) =
E(H(f(s))f ′(s))

E(f ′(1))
, (0 ≤ s ≤ 1), (7.19)

then H ≡ 0.

Proof. FIRST CASE : There exists s0 ∈ [0, 1[ such that E(f ′(s0)) = E(f ′(1)).

The monotonicity of f ′ implies

f ′(s0) = f ′(1) a.s.,

and f ′ is a.s. constant on [s0, 1]. As it is a power series, f ′ is a.s. constant.
Thus

f(s) = f ′(1)s+ (1− f ′(1)) (0 ≤ s ≤ 1), f ′(1) ≤ 1 a.s.

Moreover, let |H(α)| = sup{|H(s)|, s ∈ [0, 1]} with α ∈ [0, 1[, and note that

E
(
f ′(1)(H(α)−H(f(α)))

)
= 0.

Thus H(f(α)) = H(α) a.s. and by induction, recalling that Fn = f0 ◦ f1 · · · ◦ fn−1,
we have

H(Fn(α)) = H(α) a.s.

The orbit of (Fn(α))n∈N has a point of accumulation at 1, since α < 1 and Zn is
subcritical. As H is a power series, then H is constant and equals to zero since
H(1) = 0.

SECOND CASE : For every s0 ∈ [0, 1[, E(f ′(s0)) < E(f ′(1)).
If H 6= 0 then there exists α ∈ [0, 1[ such that

sup{| H(s)) |: s ∈ [0, α]} > 0

Let αn ∈ [α, 1[ such that αn
n→∞−→ 1. Then, for every n ∈ N, there exists βn ∈ [0, αn]

such that :

sup{| H(s) |: s ∈ [0, αn]} = | H(βn) |

≤ E(f ′(βn))
E(f ′(1))

sup{|H(s)|, 0 ≤ s ≤ 1}

< sup{| H(s) |, 0 ≤ s ≤ 1},

since sup{| H(s) |, 0 ≤ s ≤ 1} > 0 and E(f ′(βn)) < E(f ′(1)). As I ∩ J = ∅,
sup I < sup(I ∪ J) ⇒ sup I < supJ , we get

sup{| H(s) |: s ∈ [0, αn]} < sup{| H(s) |: s ∈]αn, 1]}.

And H(s) s→1−→ 0 leads to a contradiction letting n→∞. So H = 0.
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We can now easily prove the uniqueness in the (SS) case in Theorem 7.2.7.

Lemma 7.3.4. There exists at most one probability generating function G satis-
fying

E(G(f(s))) = E(f ′(1))G(s)+1−E(f ′(1)) (0 ≤ s ≤ 1), G(0) = 0, G′(1) <∞.

Proof. Assume that G1 and G2 are two probability generating functions which
verify the equation above. By differentiation, G′1 and G′2 satisfy

E(G′(f(s))f ′(s)) = E(f ′(1))G′(s).

Then H := G′2(1)G′1 − G′1(1)G′2 verifies the conditions of Lemma 7.3.3. As a
consequence,

G′2(1)G′1 = G′1(1)G′2.

And G1(0) = G2(0) = 0, G2(1) = G1(1) = 1 ensure that G1 = G2, which give the
uniqueness.

Finally, we prove that if Z1 ∈ {0, 1, N} for some N ≥ 1, then Υ1
d= ΥN .

Proof. For every s ∈ [0, 1], we have

E1(sZn+1 | Zn+1 > 0) =
E1

(
1l(Z1 = 1, Zn+1 > 0)sZn+1 + 1l(Z1 = N, Zn+1 > 0)sZn+1

)
P1(Zn+1 > 0)

=
P1(Z1 = 1)P1(Zn > 0)

P1(Zn+1 > 0)
E1(sZn | Zn > 0)

+
P1(Z1 = N)PN (Zn > 0)

P1(Zn+1 > 0)
EN (sZn | Zn > 0).

For every k ∈ N, letting n→∞ using (7.1) yields

E(sΥ1) =
P1(Z1 = 1)

γ
E(sΥ1) +

P1(Z1 = N)αN

γ
E(sΥN ),

which proves Υ1
d= ΥN .
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7.3.5 Proof of Section 7.2.5

Proof of Proposition 7.2.8. First, we have

Pk(Z1 = l1, ..., Zn = ln|Zn+p > 0) = Pk(Z1 = l1, ..., Zn = ln)
Pln(Zp > 0)

Pk(Zn+p > 0)
.

Then, using (6.2), (7.3), (7.4), we get

lim
p→∞

Pk(Z1 = l1, ..., Zn = ln|Zn+p > 0) = γ−nαln

αk
Pk(Z1 = l1, ..., Zn = ln).

and recall αl = l in the (SS+IS) case to get the distribution of (Yn)n∈N.

To get the limit distribution of (Yn)n∈N, note that, for every l ∈ N∗,

Pk(Yn = l) = γ−n αl

αk
Pk(Zn = l) = γ−nPk(Zn > 0)

αl

αk
Pk(Zn = l | Zn > 0).

Use respectively (6.2) and (7.3) to get the limit in distribution in the (SS) case
and the (IS).

Finally, in the (WS) case, by (7.4), there exists C > 0 such that

Pk(Yn ≤ l) ≤ Cn−3/2 αl

αk
Pk(Zn ≤ l | Zn > 0)

≤ Cn−3/2 αl

αk
.

Then Borel-Cantelli Lemma ensures that Yn tends a.s. to infinity as n→∞.

Proof of (7.7). To prove the convergence and the equality, note that

Pk

(
fp ∈ dgp|Zn+p > 0

)
=

P
(
fp ∈ dgp

)
Ek(PZgp

(Zn > 0))
Pk(Zn+p > 0)

=
P1(Zn > 0)

Pk(Zn+p > 0)

∞∑
l=1

Pk(Zgp = l)
Pl(Zn > 0)
P1(Zn > 0)

.

Asymptotics given in Introduction ensure that

P1(Zn > 0)
Pk(Zn+p > 0)

n→∞−→ 1
γpαk

,

and using the bounded convergence Theorem with

Pl(Zn > 0)
P1(Zn > 0)

n→∞−→ αl,
Pl(Zn > 0)
P1(Zn > 0)

≤ l, E(Zgp) <∞.
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ensures that

lim
n→∞

Pk

(
fp ∈ dgp|Zn+p > 0

)
= γ−pP

(
fp ∈ dgp

) ∞∑
l=1

Pk(Zgp = l)
αl

αk
.

This completes the proof.

7.4 Appendix : Random walk with negative drift

We study here the random walk (Sn)n∈N with negative drift. Indeed, in the
linear fractional case, the survival probability is a functional of the random walk
obtained by summing the successive means of environments (see (6.6). In the
general case, the random walk appears in the lowerbound of the survival probability
(see (7.10)). More precisely, we need to control the successive values of the random
walk with negative drift conditioned to stay above −x < 0.

More specifically, let (Xi)i∈N iid random variables distributed as X with

E(X) < 0.

We assume that for every z ∈ [0, 1], E(exp(zX)) < ∞ and E(X exp(αX)) = 0 for
some 0 < α < 1. Set γ := E(exp(αX)),

Sn :=
n−1∑
i=0

Xi, (S0 = 0),

and for all n ∈ N, k ∈ N,

Ln = min{Si, 0 ≤ i ≤ n}.

Its asymptotic is given in Lemma 4.1 in [43] or Lemma 7 in [50]. There exists a
linearly increasing positive function u such that, as n→∞

P(Ln ≥ −x) ∼ eαxu(x)n−3/2γn, (7.20)

for x ≥ 0 if the distribution X is non-lattice, and for x ∈ λZ if the distribution of
X is supported by a centered lattice λZ.
Moreover for each θ > α, there exists cθ > 0 such that

P(Ln ≥ −x) ≤ cθe
θxn−3/2γn, (x ≥ 0, n ∈ N). (7.21)

Finally, using (7.20) and the fact that u grows linearly, there exist c−, c+ > 0 such
that the two following positive measures on [0, 1],

ν−(dx) = c log(1/x)x−α−1dx, ν+(dx) = c+(δ1(dx) + log(1/x)x−α−1dx),
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verify for every x ∈]0, 1]

ν−([x, 1]) ≤ lim
n→∞

P(eLn ≥ x)
n−3/2γn

≤ ν+([x, 1]). (7.22)

We need to control the successive values of the random walk conditioned to
stay above −x (x ≥ 0). Under integrability conditions, it is known that the
process (S[nt]/n

1/2|Ln ≥ 0) converges weakly to Brownian meander as n → ∞
(see [53]). Moreover Durrett [34] has proved that if there exists q > 2 such that
P {X1 > x} ∼ x−qL(x) as x→∞, where L is slowly varying, then (S[nt]/n|Ln ≥ 0)
converges weakly to a non degenerate limit with a single jump.
We prove here that the random walk conditioned to stay above −x (x ≥ 0) spends
very few time close to its minimum, by giving an upperbound of the number of
visits of a level of the random walk reflected on its minimum. To be more specific,
define

Nn(k) = card{i ∈ N, i ≤ n, k ≤ Si − Ln < k + 1}.

Lemma 7.4.1. For every θ > α, there exists d > 0 such that

lim sup
n→∞

P(Nn(k) ≥ l | Ln ≥ −x) ≤ deθk/
√
l, (k, l ∈ N, x ≥ 0).

Moreover for all θ > α and x ≥ 0, there exists C > 0 such that

P(Nn(k) ≥ l | Ln ≥ −x) ≤ Ceθk/
√
l, (k, n, l ∈ N). (7.23)

Moreover, we will use the following consequence of the preceding lemma.

Corollary 7.4.2. If α < 1/2, there exists β > 0 such that for all x ≥ 0 and n ∈ N,

P
( n∑

i=0

exp(Ln − Si) ≤ β | Ln ≥ −x
)
≥ 1/4.

For the sake of simplicity, we assume that X ∈ Z a.s. for the proof of Lemma
7.4.1. Thus

∀k, n ∈ N2, Nn(k) = card{i ∈ N, i ≤ n, Si − Ln = k},

and we denote by (Tj : 1 ≤ j ≤ Nn(k)) the successive times before n when
(Si − Ln)i∈N visits k. That is

T1 = inf{0 ≤ i ≤ n : Si − Ln = k}, Tj+1 = inf{Tj < i ≤ n : Si − Ln = k}.

First, cutting the path of the random walk between two of these passage times
enables us to prove the following result.
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Lemma 7.4.3. If X ∈ Z a.s., then for all n, k, l, i and 0 ≤ h ≤ n, we have

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h) ≤ (k+ 1)P(Ln−h ≥ −k)P(Lh ≥ −i),

and

P(Ln ≥ −i, Nn(k) ≥ 2l, T1 + n− Tl = h) ≤ (k + 1)P(Ln−h ≥ −k)P(Lh ≥ −i).

Proof. We introduce Mn the first reaching time of the minimum Ln before time n
and Rn(l) the last passage time of l before time n

Mn = inf{j ∈ [1, n] : Sj = Ln}, Rn(l) := sup{j ∈ [1, n] : Sj = l}.

First, we consider the case where Mn ∈ [0, Tl] ∪ [TNn(k), n] and split the path
of the random walk between times Tl and TNn(k). For all j ≤ 0, k ≥ 0 and
0 ≤ n1 < n2 ≤ n, introduce then

A(j, n1, n2) = {Ln = j, Nn(k) ≥ 2l, Tl = n1, TNn(k) = n2, Mn ∈ [0, n1] ∪ [n2, n]},
B(j, n1, n2) = {∀m ∈ [1, n1] : Sm ≥ j, Sn1 = Sn2 = j + k,

∀m ∈ [n2 + 1, n] : Sm ≥ j, Sm 6= j + k,

∃a ∈ [0, n1] ∪ [n2, n], Sa = j},
C(j, n1, n2) = {∀m ∈ [n1, n2] : Sm ≥ j, Sn1 = Sn2 = j + k}.

Note that conditionally on D(n1, n2) := {Sn1 = Sn2 = j + k}, B(j, n1, n2) and
C(j, n1, n2) are independent,

P(C(j, n1, n2) | Sn1 = j + k) ≤ P(Ln2−n1 ≥ −k),

and
A(j, n1, n2) ⊂ B(j, n1, n2) ∩ C(j, n1, n2).

Then, noting also that

P(C(j, n1, n2) |D(n1, n2)) = P(C(j, n1, n2) | Sn1 = j+k)P(Sn1 = j+k)/P(D(n1, n2)),

we have

P(A(j, n1, n2))
≤ P(D(n1, n2))P(B(j, n1, n2) | D(n1, n2))P(C(j, n1, n2) | D(n1, n2))
= P(Sn1 = j + k)P(B(j, n1, n2) | D(n1, n2))P(C(j, n1, n2) | Sn1 = j + k)
≤ P(Ln2−n1 ≥ −k)P(Sn1 = j + k)P(B(j, n1, n2) | D(n1, n2)). (7.24)

Moreover,

{Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h, Mn ∈ [0, Tl] ∪ [TNk(n), n]}

=
⊔

j≥−i,
1≤n1<n2≤n, n1+n−n2=h

A(j, n1, n2).
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Then, using the last two relations,

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h, Mn ∈ [0, Tl] ∪ [TNk(n), n])

=
∑

j≥−i,
1≤n1<n2≤n, n2−n1=n−h

P(A(j, n1, n2))

≤ P(Ln−h ≥ −k)
∑

j≥−i,
1≤n1<n2≤n, n1+n−n2=h

P(Sn1 = j + k)P(B(j, n1, n2) | D(n1, n2)).

Concatenating the path of the random walk before time n1 and after time n2 gives

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h, Mn ∈ [0, Tl] ∪ [TNk(n), n])

≤ P(Ln−h ≥ −k)
∑

j≥−i,
1≤n1<n2≤n, n1+n−n2=h

P(Ln1+n−n2 = j, Rn1+n−n2(j + k) = n1)

≤ P(Ln−h ≥ −k)
∑
j≥−i

P(Lh = j)

= P(Ln−h ≥ −k)P(Lh ≥ −i). (7.25)

Second, we consider the case where Mn ∈ [Tl, TNn(k)] and split the path of the
random walk between times T1 and Tl; For all j, j′ ≤ 0, k ≥ 0 and 0 ≤ n1 < n2 ≤ n,
introduce then

A′(j, n1, n2) = {Ln = −j, Nn(k) ≥ 2l, Tl = n1, TNn(k) = n2, Mn ∈ [n1, n2]},
B′(j, j′, n1, n2) = {∀m ∈ [1, n1] : Sm ≥ j′, Sn1 = Sn2 = j + k,

∀m ∈]n2, n] : Sm ≥ j′, Sm 6= j + k,

∃a ∈ [0, n1] ∪ [n2, n] : Sa = j′},
C ′(j, n1, n2) = {∀m ∈ [n1, n2] : Sm ≥ j, Sn1 = Sn2 = k + j,

∃a ∈ [n1, n2] : Sa = j}.

Note that conditionally on D(n1, n2) = {Sn1 = Sn2 = j + k}, B′(j, j′, n1, n2) and
C ′(j, n1, n2) are independent,

A′(j, n1, n2) ⊂
j+k⊔
j′=j

B′(j, j′, n1, n2) ∩ C ′(j, n1, n2).

and we get the analogue of (7.24),

P(A′(j, n1, n2)) ≤
j+k∑
j′=j

P(Ln2−n1 ≥ −k)P(Sn1 = j+k)P(B′(j, j′, n1, n2) |D(n1, n2)).

Moreover

{Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h, M ∈ [Tl, TNk(n)]}
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=
⊔

j≥−i,
1≤n1<n2≤n, n1+n−n2=h

A′(j, n1, n2).

Then, following the proof of (9.11), we get

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h, Mn ∈ [Tl, TNk(n)])

≤ P(Ln−h ≥ −k)
∑

j′≥−i,
j∈[j′−k,j′]

∑
1≤n1<n2≤n,
n1+n−n2=h

P(Sn1 = j + k)P(B′(j, j′, n1, n2) | D(n1, n2))

≤ P(Ln−h ≥ −k)
∑

j′≥−i

k max
j∈[j′−k,j′]

∑
1≤n1<n2≤n,
n1+n−n2=h

P(Sn1 = j + k)× (7.26)

P(B′(j, j′, n1, n2) | D(n1, n2))

≤ P(Ln−h ≥ −k)
∑

j′≥−i

kP(Lh = j′)

≤ kP(Ln−h ≥ −k)P(Lh ≥ −i). (7.27)

Combining the inequalities (9.11) and (9.12), we get

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h) ≤ (k+ 1)P(Ln−h ≥ −k)P(Lh ≥ −i),

which proves the first inequality of the lemma. The second one can be proved
similarly concatenating the random walk between [0, T1] and [TNn(k), n].

Proof of Lemma 7.4.1. Let h ∈ N such that h ≥ n/2. The first inequality of
Lemma 7.4.3 above ensures that

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h) ≤ (k+ 1)P(Lh ≥ −i)P(Ln−h ≥ −k).

Using (7.21),

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl+n−TNn(k) = h) ≤ cθ(k+1)P(Lh ≥ −i)eθk(n−h)−3/2γn−h.

Moreover, using (7.20), for every i ∈ N, there exists n0 ∈ N such that for all
n0/2 ≤ n/2 ≤ h,

P(Lh ≥ −i) ≤ 2eiαu(i)h−3/2γ−h ≤ 2.23/2eiαu(i)n−3/2γh. (7.28)

Then, writing c′θ = 2.23/2.cθ,

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl+n−TNn(k) = h) ≤ c′θe
αiu(i)(k+1)eθkγnn−3/2(n−h)−3/2.

(7.29)
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Similarly, for every h such that n0/2 ≤ n/2 ≤ h, the second inequality of
Lemma 7.4.3 above ensures that

P(Ln ≥ −i, Nn(k) ≥ 2l, T1 +n−Tl = h) ≤ c′θe
αiu(i)(k+1)eθkγnn−3/2(n−h)−3/2.

(7.30)
Noting that a.s. {Nn(k) ≥ 2l} is equal to

n−l⋃
h=n/2

{Nn(k) ≥ 2l, Tl + n− TNn(k) = h}
n−l⋃

h=n/2

{Nn(k) ≥ 2l, T1 + n− Tl = h},

we can combine the last two inequalities (7.29) and (7.30), which give for every
n ≥ n0,

P(Ln ≥ −i, Nn(k) ≥ 2l) ≤
∑

n/2≤h≤n−l

P(Ln ≥ −i, Nn(k) ≥ 2l, Tl + n− TNn(k) = h)

+
∑

n/2≤h≤n−l

P(Ln ≥ −i, Nn(k) ≥ 2l T1 + n− Tl = h)

≤ 2c′θe
αiu(i)γnn−3/2(k + 1)eθk

∑
n/2≤h≤n−l

(n− h)−3/2

≤ 2c′θe
αiu(i)γnn−3/2(k + 1)eθk

∑
h≥l

h−3/2

≤ 2.2c′θe
αiu(i)γnn−3/2(k + 1)eθk/

√
l, (n ≥ n0).

Then, using again (7.20),

lim sup
n→∞

P(Ln ≥ −i, Nn(k) ≥ 2l)/P(Ln ≥ −i) ≤ 4c′θc
−1
0 (k + 1)eθk/

√
l.

Using that (k + 1)eθk = o(eθ
′k) if θ′ > θ, this completes the proof of the first

inequality of the lemma for X ∈ Z. The general case can be proved similarly.

Note that, for every θ > α, when h ≥ n/2, we can replace (7.28) by

P(Lh ≥ −i) ≤ 23/2.cθe
θin−3/2γh, (i, h, n ∈ N).

Following the proof above ensures that there exists c′′θ > 0 such for all i, n, l ∈ N,

P(Ln ≥ −i, Nn(k) ≥ 2l) ≤ c′′θe
θiγnn−3/2eθk/

√
l.

Thus, by (7.20), for every x ≥ 0, there exists Cx > 0 such that

P(Nn(k) ≥ l | Ln ≥ −x) ≤ 2c′′θCx(k + 1)eθk/
√
l, (k, n, l ∈ N),

which gives the second inequality of the lemma.
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Proof of Corollary 7.4.2. Let α < 1/2 and d > 0 given by Theorem 7.2.2. Fix
α < θ < µ/2 < 1/2. Choose also k0 ∈ N such that

d
∑
k≥k0

e(θ−µ/2)k < 1/2.

By (8.6.5), for every x ≥ 0, there exists D > 0 such that for every n ∈ N,

P(Nn(k) ≥ eµk | Ln ≥ −x) ≤ De(θ−µ/2)k

which is summable with respect to k. Thus, by Fatou’s lemma,

lim sup
n→∞

∑
k≥k0

P(Nn(k) ≥ eµk | Ln ≥ −x) ≤
∑
k≥k0

lim sup
n→∞

P(Nn(k) ≥ eµk | Ln ≥ −x).

By Lemma 7.4.1, this gives, for every x > 0,

lim sup
n→∞

∑
k≥k0

P(Nn(k) ≥ eµk | Ln ≥ −x) ≤ d
∑
k≥k0

e(θ−µ/2)k.

Then,
lim sup

n→∞
P
( ⋃

k≥k0

{Nn(k) ≥ eµk} | Ln ≥ −x
)
< 1/2.

By Lemma 7.4.1 again, fix N ∈ N such that

lim sup
n→∞

P
( ⋃

0≤k<k0

{Nn(k) ≥ N} | Ln ≥ −x
)
≤ 1/4.

Then

lim sup
n→∞

P
( ⋃

0≤k<k0

{Nn(k) ≥ N}
⋃

k≥k0

{Nk(k) ≥ eµk} | Ln ≥ −x
)
< 3/4.

Noting that
n∑

i=0

exp(Ln − Si) ≤
∞∑

k=0

Nn(k)e−k,

this ensures that for every x ≥ 0,

lim inf
n→∞

P
( n∑

i=0

exp(Ln − Si) ≤ β | Ln ≥ −x
)
> 1/4,

with β :=
∑

0≤k<k0
Ne−k+1 +

∑
k≥k0

eµke−k+1. This gives the result.
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Chapter 8

Kimmel’s branching model for
cell division with parasite
infection

8.1 Introduction

We consider the following model for cell division with parasite infection. Unless
otherwise specified, we start with a single cell infected with a single parasite. At
each generation, each parasite multiplies independently, each cell divides into two
daughter cells and the offspring of each parasite is shared independently into the
two daughter cells. It is convenient to distinguish a first daughter cell called 0
and a second one called 1 and to write Z(0) + Z(1) the number of offspring of a
parasite, Z(0) of which go into the first daughter cell and Z(1) of which into the
second one. The symmetric sharing is the case when (Z(0), Z(1)) d= (Z(1), Z(0)).
Even in that case, the sharing of parasites can be unequal (for example when
P(Z(0)Z(1) = 0) = 1).

We denote by T the binary genealogical tree of the cell population, by Gn

(resp. G∗n) the set of cells at generation n (resp. the set of contaminated cells at
generation n) and by Zi the number of parasites of cell i ∈ T, i.e.

Gn := {0, 1}n, G∗n := {i ∈ Gn : Zi > 0}, T := ∪n∈NGn.

For every cell i ∈ T, conditionally on Zi = x, the numbers of parasites (Zi0, Zi1) of
its two daughter cells is given by

x∑
k=1

(Z(0)
k (i), Z(1)

k (i)),

where (Z(0)
k (i), Z(1)

k (i))i∈T,k≥1 is an iid sequence distributed as (Z(0), Z(1)).
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This is a discrete version of the model introduced by M. Kimmel in [59]. In
particular, it contains the following model with binomial repartition of parasites.
Let Z be a random variable in N and p ∈ [0, 1]. At each generation, every
parasite multiplies independently with the same reproduction law Z. When the
cells divides, every parasite chooses independently the first daughter cell with
probability p (and the second one with probability 1− p). It contains also the case
when every parasite gives birth to a random cluster of parasites of size Z which
goes to the first cell with probability p (and to the second one with probability
1− p).

We introduce for a ∈ {0, 1}

ma := E(Z(a)), ∀ s ≥ 0, fa(s) := E(sZ(a)
). (8.1)

We assume 0 < m0 <∞, 0 < m1 <∞ and to avoid trivial cases, we require

P((Z(0), Z(1)) = (1, 1)) < 1, P((Z(0), Z(1)) ∈ {(1, 0), (0, 1)}) < 1. (8.2)

This model is a Markov chain indexed by a tree. This subject has been studied
in the literature (see e.g. [9, 18]) in the symmetric independent case. In this case,
for every (i, k) ∈ T× N, we have

P((Zi0, Zi1) = (k0, k1) | Zi = k) = P(Zi0 = k0 | Zi = k)P(Zi0 = k1 | Zi = k)

which require that Z(0) and Z(1) are iid in this model. Guyon [47] studies a
Markov chain indexed by a binary tree where asymmetry and dependence are
allowed and limit theorems are proved. But the case where his results apply is
degenerate (this is the case m0m1 ≤ 1 and the limit of the number of parasites
in a random cell line is zero). Moreover adapting his arguments for the theorems
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stated here appears to be cumbersome (see the remark in Section 5.2 for details).
In the same vein, we refer to [35, 88] (cellular aging).

The total population of parasites at generation n, which we denote by Zn, is a
Bienaymé Galton Watson process (BGW) with reproduction law Z(0) + Z(1). We
call Ext (resp Extc) the event Extinction of the parasites (resp Non extinction of
the parasites),

Zn =
∑
i∈Gn

Zi, Ext = {∃n ∈ N : Zn = 0}, Extc = {∀n ∈ N : Zn > 0}. (8.3)

Another process that appears naturally is the number of parasites in a random
cell line. More precisely, let (ai)i∈N be an iid sequence independent of (Zi)i∈T such
that

P(a1 = 0) = P(a1 = 1) = 1/2. (8.4)

Then (Zn)n∈N = (Z(a1,a2,..an))n∈N is a Branching Process in Random Environment
(BPRE).

The first question we answer here arose from observations made by M. de
Paepe, G. Paul and F. Taddei at TaMaRa’s Laboratory (Hôpital Necker, Paris).
They have infected the bacteria E. Coli with a parasite (lysogen bacteriophage
M13). A fluorescent marker allows them to see the level of contamination of
cells. They observed that a very contaminated cell often gives birth to a very
contaminated cell which dies fast and to a much less contaminated cell whose
descendance may survive. So cells tend to share unequally their parasites when
they divide so that there are lots of healthy cells. This is a little surprising since
one could think that cells share equally all their biological content (including
parasites). In Section 3, we prove that if m0m1 ≤ 1, the organism recovers a.s.
(meaning that the number of infected cells becomes negligible compared to the
number of cells when n → ∞). Otherwise the organism recovers iff parasites die
out (and the probability is less than 1).

In Section 4, we consider the tree of contaminated cells. We denote by ∂T the
boundary of the cell tree T and by ∂T∗ the infinite lines of contaminated cells, that
is,

∂T = {0, 1}N, ∂T∗ = {i ∈ ∂T : ∀n ∈ N, Zi|n 6= 0}.

We shall prove that the contaminated cells are not concentrated in a cell line.
Note that if m0+m1 > 1, conditionally on Extc, ∂T∗ 6= ∅ since at each generation,
one can choose a daughter cell whose parasite descendance does not become extinct.

The rest of the work is devoted to the convergence of the number of contam-
inated cells in generation n and the convergence of proportions of contaminated
cells with a given number of parasites (Section 5). These asymptotics depend on
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(m0,m1) and we distinguish five different cases which come from the behavior of
the BGW process Zn and the BPRE Zn (Section 2).

D1 = {(m0,m1) : m0 +m1 < 1}

D2 = {(m0,m1) : m0 +m1 = 1}

D3 = {(m0,m1) : m0 +m1 > 1,
m0log(m0) +m1log(m1) < 0}

D4 = {(m0,m1) : m0m1 ≤ 1,
m0log(m0) +m1log(m1) ≥ 0}

D5 = {(m0,m1) : m0m1 > 1}

If (m0,m1) ∈ D5, the contaminated cells become largely infected (Theorem 8.5.1).
The main two results correspond to cases (m0,m1) ∈ D3 and (m0,m1) ∈ D1 and
are given by the following two theorems.

Theorem 5.2. If (m0,m1) ∈ D3, conditionally on Extc, the following convergence
holds in probability for every k ∈ N,

#{i ∈ G∗n : Zi = k}/#G∗n
n→∞−→ P(Υ = k),

where Υ is the Yaglom quasistationary distribution of the BPRE (Zn)n∈N (see
[8, 43]). Note that the limit is deterministic and depends solely on the marginal
laws of (Z(0), Z(1)) (see Proposition 8.2.2). This gives then a way to compute
Υ as a deterministic limit, although it is defined by conditioning on a vanishing
event. Kimmel [59] considers the symmetric case ((Z(0), Z(1)) d= (Z(1), Z(0))) with
m0 = m1 < 1 < m0 +m1 in a continuous analogue of this model (cells divide after
an exponential time). The counterpart of his result in the discrete case is easy to
prove (see (8.20)) and makes a first link with Υ.

lim
n→∞

E(#{i ∈ Gn : Zi = k})/E(#G∗n) = P(Υ = k).

Moreover the proportions of contaminated cells on the boundary of the tree whose
ancestors at generation n have a given number of parasites converge to the size-
biased distribution of Υ letting n → ∞ (Corollary 8.5.4). This gives a pathwise
interpretation that the limit of the Q-process associated to Zn (see [1, 8]) is the
size-biased quasistationary distribution.
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Theorem 5.7. If (m0,m1) ∈ D1, (#{i ∈ G∗n : Zi = k})k∈N conditioned on Zn > 0
converges in distribution as n→∞ to a finite random sequence (Nk)k∈N.

We obtain a similar result in the case (m0,m1) ∈ D2 (Theorem 8.5.5) and we
get the following asymptotics (Theorem 8.3.1 and Corollaries 8.5.3, 8.5.6, 8.5.8).

? If (m0,m1) ∈ D3 (resp. D5), then conditionally on Extc, #G∗n/(m0 +m1)n

(resp #G∗n/2n) converges in probability to a finite positive r.v.

? If (m0,m1) ∈ D1 (resp. D2), then #G∗n (resp #G∗n/n) conditioned by #G∗n >
0 converges in distribution to a finite positive r.v.

In the case (m0,m1) ∈ D4, we get only some estimates of the asymptotic
of #G∗n which are different from those which hold in the other domains. Our
conjecture is that #G∗n has also a deterministic asymptotic, which depends on
three subdomains (the interior of D4 and its boundaries). As a perspective, we
are also interested in determining which types of convergences hold in D4 for the
proportions of contaminated cells with a given number of parasites (see Section
5.5).

Moreover we wonder if the convergences stated above hold a.s. and if they
extend to the continuous case and complement the results of Kimmel. Finally, in
a work in progress with Julien Beresticky and Amaury Lambert, we aim at deter-
mining the localizations of contaminated cells and the presence of cells filled-in
by parasites on the boundary of the tree (branching measure and multifractal
analysis).

8.2 Preliminaries

In this section, we give some useful results about the two processes introduced
above. First define :

m :=
1
2
(m0 +m1). (8.5)

We use the classical notation, where for every i = (α1, .., αn) ∈ Gn,

|i| = n, i|k = (α1, .., αk) for every k ≤ n, j < i if ∃k < n : i|k = j.

8.2.1 Results on the BGW process (Zn)n∈N

The results stated hereafter are well known and can be found in [8]. First the
probability of extinction of the parasites satisfies

P(Ext) = inf{s ∈ [0, 1] : E
(
sZ(0)+Z(1))

= s} ; P(Ext) = 1 iff m0 +m1 ≤ 1/2.
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From now, we assume

m̌ := E((Z(0) + Z(1))log+(Z(0) + Z(1))) <∞.

Then there exists a random variable W such that

Zn

(m0 +m1)n

n→∞−→ W, P(W = 0) = P(Ext), E(W ) = 1. (8.6)

In the case m0 + m1 < 1, there exists b > 0 such that P(Zn > 0) n→∞∼
b(m0 +m1)n. Then, there exists U > 0 such that

P(Zn > 0) ≥ U(m0 +m1)n. (8.7)

Moreover (Zn)n∈N conditioned to be non zero converges to a variable called the
Yaglom quasistationary distribution and we set

B(s) := lim
n→∞

E(sZn | Zn > 0). (8.8)

We consider then Bn,k(s) := E(sZn | Zn+k > 0) which satisfies

lim
n→∞

Bn,k(s) =
B(s)− B(sfk(0))

1− B(fk(0))
. (8.9)

Moreover B is differentiable at 1 (Lemma 1 on page 44 in [8]) and we get

lim
k→∞

lim
n→∞

Bn,k(s) =
sB′(s)
B′0(1)

. (8.10)

This is the probability generating function of the size-biased Yaglom quasistation-
ary distribution, which is also the stationary distribution of the Q-process.

Finally if m̂ := E((Z(0) + Z(1))((Z(0) + Z(1))− 1)) <∞ and 2m 6= 1, then

E(Zn(Zn − 1)) = m̂(2m)n (2m)n − 1
(2m)2 − 2m

. (8.11)

8.2.2 Properties of the BPRE (Zn)n∈N

Recall that (Zn)n∈N is the population of parasites in a uniform random cell line.
Then (Zn)n∈N is a BPRE with two equiprobable environments. More precisely, for
each n ∈ N, conditionally on an = a with a ∈ {0, 1} (see (9.2)), all parasites behave
independently of one another and each of them gives birth to Z(a) children. The
size of the population at generation 0 is denoted by k and we note
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Pk the associated probability. Unless otherwise mentioned, the initial state is
equal to 1. For the general theory, see e.g. [31, 43, 46, 87]. In the case Z(0) d= Z(1),
(Zn)n∈N is a BGW with reproduction law Z(0).

For i = (α1, .., αn) ∈ Gn, we define

fi := fα1 ◦ .. ◦ fαn , mi =
n∏

i=1

mαi ,

and for all (n, k) ∈ N× N∗ and i ∈ Gn,

Ek

(
sZn | (a1, .., an) = i

)
= fi(s)k.

Then for all (n, k) ∈ N× N∗ and s ∈ [0, 1],

Ek

(
sZn

)
= 2−n

∑
i∈Gn

fi(s)k. (8.12)

First, for every n ∈ N, E(Zn+1 | Zn) = mZn and E(Zn) = mn.

Moreover, as (P(Zn = 0))n∈N is an increasing sequence, it converges to the
probability of extinction p of the process. Recalling (8.1), we have the following
result (see [87] or [6] or Chapter 6).

Proposition 8.2.1. If m0m1 ≤ 1, then p = 1.Otherwise p < 1.

In the subcritical case (m0m1 < 1), the process Zn conditioned to be non zero
which is denoted by Z∗n converges weakly to the Yaglom quasistationary distribu-
tion which is denoted by Υ (see Theorem 1.1 in [43] or Chapter 6). That is,

∀s ∈ [0, 1], E
(
sZn |Zn > 0

) n→∞−→ E(sΥ) = G(s).

In the subcritical case, the asymptotics of (P(Zn > 0))n∈N when n is large depends
on the sign of m0log(m0) +m1log(m1) (see [43] or Chapter 6). Now, we introduce
the following condition

m0log(m0) +m1log(m1) < 0 ; E(Zalog+(Za)) <∞. (8.13)

Recall that in this case, we say that Zn is strongly subcritical and there exists
c > 0 such that as n tends to ∞ (by 7.2 or Theorem 1.1 in [43]),

P(Zn > 0) ∼ cmn. (8.14)

Moreover, in that case, Theorem 7.2.7 in the previous chapter ensures that Υ is
characterized by

Proposition 8.2.2. G is the unique probability generating function which satisfies

G(0) = 0, G′(1) <∞,
G(f0(s)) +G(f1(s))

2
= mG(s) + (1−m). (8.15)
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In the subcritical case (m0m1 ≤ 1), if m0log(m0) +m1log(m1) > 0 (resp.
m0log(m0) + m1log(m1) = 0)), recall that we say that Zn is weakly subcritical
(resp. intermediate subcritical) and we have P(Zn > 0) ∼ c′n−3/2γn (resp.
P(Zn > 0) ∼ c′′n−1/2mn) for some γ < m, c′ > 0, c′′ > 0 (see [43] for details or
Chapter 6).

8.3 Probability of recovery

We say that the organism recovers if the number of contaminated cells becomes
negligible compared to the number of cells when n → ∞. We determine here the
probability of this event. Actually if this probability is not equal to 1, then the
parasites must die out for the organism to recover.

Theorem 8.3.1. There exists a random variable L ∈ [0, 1] such that

#G∗n/2n n→∞−→ L.

If m0m1 ≤ 1 then P(L = 0) = 1.
Otherwise P(L = 0) < 1 and {L = 0} = Ext.

Remark 11. In the case m0 +m1 > 1 and m0m1 ≤ 1, the population of parasites
may explode although the organism recovers.
This theorem states how unequal the sharing of parasites must be for the organism
to recover. More precisely, let m0 = αM, m1 = (1 − α)M where M > 0 is the
parasite growth rate. Then the organism recovers a.s. iff

M ≤ 2 or α /∈ ](1−
√

1− 4/M2)/2, (1 +
√

1− 4/M2)/2[ (M > 2).

Note that for all n ∈ N,

E
(#G∗n

2n

)
=

E(
∑

i∈Gn
1lZi>0)

2n
= P(Zn > 0).

Recalling that p is the probability of extinction of (Zn)n∈N,

∀n ∈ N, E
(#G∗n

2n

)
= P(Zn > 0) n→∞−→ 1− p. (8.16)

The last equality gives also the asymptotic of E(#G∗n) as n→∞ in the case
m0m1 < 1 (see Section 2.2 for the asymptotic of P(Zn > 0), which depends on
the sign of m0log(m0) +m1log(m1)) and in the case m0m1 = 1 (see [?, 63]).

Proof of Theorem 8.3.1. As #G∗n/2n decreases as n increases, it converges as n→
∞.
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Monotone convergence of #G∗n/2n to L as n → ∞ and (8.16) ensure that
E(L) = 1− p. Using Proposition 8.2.1, we get P(L = 0) = 1 iff m0m1 ≤ 1.

Obviously {L = 0} ⊃ Ext. Denote by P(n) the set of parasites at generation n
and for every p ∈ P(n), denote by Nk(p) the number of cells at generation n+ k
which contain at least a parasite whose ancestor is p. Then, for every n ∈ N,

{L = 0} =
⋂

p∈P(n)

{Nk(p)
2k

k→∞−→ 0
}
.

As Tn := inf{k ≥ 0 : Zk ≥ n} is a stopping time with respect to the natural
filtration of (Zi)|i|≤n, strong Markov property gives

P(L = 0) ≤ P(Tn <∞)P(L = 0)n + P(Tn = ∞)

If P(L = 0) < 1, letting n→∞ gives

P(L = 0) ≤ lim
n→∞

P(Tn = ∞) = P(Zn is bounded) = P(Ext)

since Zn is a BGW. This completes the proof. One can also use a coupling argument
: the number of contaminated cells starting with one single cell with n parasites
is less than the number of contaminated cells starting from n cells with one single
parasite.

8.4 Tree of contaminated cells

Here, we prove that contaminated cells are not concentrated in a cell line. If
m0 + m1 ≤ 1, contaminated cells die out but conditionally on the survival of
parasites at generation n, the number of leaves of the tree of contaminated cells
tends to∞ as n→∞. The proof of this result will also ensure that, if m0+m1 > 1,
the number of contaminated cells tends to ∞ provided that they do not die out.

Theorem 8.4.1. If m0 +m1 ≤ 1, #{i ∈ T : Zi 6= 0, Zi0 = 0, Zi1 = 0} conditioned
by #G∗n > 0 converges in probability as n→∞ to ∞.
If m0 +m1 > 1, conditionally on Extc, #G∗n

n→∞−→ ∞ a.s.

Remark 12. In the conditions of the theorem, #G∗n (resp. the number of leaves)
grows at least linearly with respect to n (see Section 5 for further results). In the
case m0 +m1 ≤ 1, conditionally on #G∗n > 0, the tree of contaminated cells is a
spine with finite subtrees, as for BGW conditioned to survive (see [42, 69]).

We need two lemmas for the proof. First we prove that the ancestor of a
contaminated cell has given birth to two contaminated cells with a probability
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bounded from below. We have to distinguish the case where P(Z(0)Z(1) = 0) = 1,
since in that case a cell must contain at least two parasites so that it can give birth
to two contaminated cells.

Lemma 8.4.2. There exists α > 0 such that for all N ∈ N, i ∈ GN , n < N and
k ≥ 2,

P(Zj0 6= 0, Zj1 6= 0 | Zj = k, Zi > 0) ≥ α

denoting j = i | n. If P(Z(0)Z(1) = 0) 6= 1, this result also holds for k = 1.

Proof. We consider first the case P(Z(0)Z(1) = 0) 6= 1 and we choose (k0, k1) ∈ N∗2
such that P((Z(0), Z(1)) = (k0, k1)) > 0. For every k ∈ N∗, we have

P(Zj0 6= 0, Zj1 6= 0 | Zj = k, Zi > 0) ≥ P(Zj0 6= 0, Zj1 6= 0 | Zj = 1, Zi > 0)

Moreover, as the function R∗+ 3 u 7→ 1−e−u

u decreases, we have for all y, x > 0 and
p ∈ [0, 1[,

1− px

1− py
≥ x

max{y, x}
. (8.17)

Let a ∈ {0, 1} and k such that i = jak. Then for all (k′0, k
′
1) ∈ N2 − (0, 0),

P(Zj0 = k0, Zj1 = k1 | Zj = 1, Zi > 0)
P(Zj0 = k′0, Zj1 = k′1 | Zj = 1, Zi > 0)

=
P(Z(0) = k0, Z

(1) = k1 | Zak > 0)
P(Z(0) = k′0, Z

(1) = k′1 | Zak > 0)

=
P(Zak > 0 | Z(0) = k0, Z

(1) = k1)
P(Zak > 0 | Z(0) = k′0, Z

(1) = k′1)
P(Z(0) = k0, Z

(1) = k1)
P(Z(0) = k′0, Z

(1) = k′1)

=
1− P(Zk = 0)ka

1− P(Zk = 0)k′a

P((Z(0), Z(1)) = (k0, k1))
P((Z(0), Z(1)) = (k′0, k

′
1))

≥ min{k0, k1}
k0 + k1 + k′0 + k′1

P((Z(0), Z(1)) = (k0, k1))
P((Z(0), Z(1)) = (k′0, k

′
1))

using (8.17)

Cross product and sum over (k′0, k
′
1) give[

E(Z(0) + Z(1)) + k0 + k1

]
P(Zj0 = k0, Zj1 = k1 | Zj = 1, Zi > 0)

≥ min{k0, k1}P((Z(0), Z(1)) = (k0, k1)).

This gives the result since P(Zj0 = k0, Zj1 = k1 | Zj = 1, Zi > 0) ≥ α with

α =
min{k0, k1}P((Z(0), Z(1)) = (k0, k1))

E(Z(0) + Z(1)) + k0 + k1
> 0.

In the case P(Z(0)Z(1) = 0) = 1, we choose (k0, k1) ∈ N∗2 such that
P2((Z0, Z1) = (k0, k1)) > 0 (using (8.2)). We make then the same proof as above
with Zj = 2 and

α =
min{k0, k1}P2((Z0, Z1) = (k0, k1))

E2(Z0 + Z1) + k0 + k1
,

so that the result follows as previously.
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Thus if P(Z(0)Z(1) = 0) = 1, we need to prove that there are many cells with
more than two parasites in a contaminated cell line.

Lemma 8.4.3. If β := P(Z(0) ≥ 2 or Z(1) ≥ 2) > 0 then

inf
i∈Gn

P(#{j < i : Zj0 ≥ 2 or Zj1 ≥ 2} ≥ βn/2 | Zi > 0) n→∞−→ 1.

Proof. For all i ∈ Gn and j < i, let k such that i = jk, then for every α > 0,

P(Zj0 ≥ 2 or Zj1 ≥ 2 | Zj = α, Zi > 0) ≥ P(Z0 ≥ 2 or Z1 ≥ 2 | Zk > 0) ≥ β

Then conditionally on Zi > 0, #{j < i : Zj0 ≥ 2 or Zj1 ≥ 2} ≥
∑n

k=0 βk, where
(βk)1≤k≤n are iid and distributed as a Bernoulli(β). Conclude with the law of large
numbers.

Proof of Theorem 8.4.1. We consider first the case when m0 +m1 > 1, work con-
ditionally on Extc and choose i ∈ δT∗.

If P(Z(0)Z(1) = 0) 6= 1, Lemma 8.4.2 (with k = 1) entails that a.s. under
P(.|Zi > 0),

#{j < i : Zj0 > 0, Zj1 > 0} = ∞.

Using the branching property and the fact that the probability of non-extinction
of parasites is positive ensures that #G∗n

n→∞−→ ∞ a.s.

If P(Z(0)Z(1) = 0) = 1 then P(Z(0) ≥ 2 or Z(1) ≥ 2) > 0 and by Lemma 8.4.3, we
have a.s. on P(.|Zi > 0),

#{j < i : Zj0 ≥ 2 or Zj1 ≥ 2} = ∞.

Using as above Lemma 8.4.2 (with k = 2) and the fact that the probability of
non-extinction of parasites is positive ensures that #G∗n

n→∞−→ ∞ a.s.

We consider now the case when m0 + m1 ≤ 1 and work conditionally on i =
(α1, .., αn) ∈ G∗n. We denote ij := (α1, .., αj−1, 1− αj) for 1 ≤ j ≤ n.

If P(Z(0)Z(1) = 0) 6= 1, Lemma 8.4.2 entails that

∀1 ≤ j ≤ n, k ≥ 1, P(Zij > 0 | Zi|j−1 = k, Zi > 0) ≥ α. (8.18)

Moreover if Zij > 0, then the tree of contaminated cells rooted in ij dies out and so
has at least one leaf. So by the branching property, the number of leaves converges
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in probability to infinity as n tends to infinity.

If P(Z(0)Z(1) = 0) = 1, (8.18) holds for k ≥ 2 and Lemma 8.4.3 allows to conclude
similarly in this case.

8.5 Proportion of contaminated cells with a given
number of parasites

We determine here the asymptotics of the number of contaminated cells and
the proportion Fk of cells with k parasites, defined as

Fk(n) :=
#{i ∈ G∗n : Zi = k}

#G∗n
(k ∈ N∗).

In that view, we introduce the Banach space l1(N) and the subset of frequencies
S1(N) which we endow with the norm ‖ . ‖1 defined by :

l1(N) := {(xi)i∈N :
∞∑
i=0

|xi| <∞}, ‖ (xi)i∈N ‖1=
∞∑
i=0

|xi|,

S1(N) := {(fi)i∈N : ∀ i ∈ N, fi ∈ R+,
∞∑
i=0

fi = 1}.

We shall work conditionally on Extc or Zn > 0 and introduce

P∗ := P( . | Extc), Pn := P( . | Zn > 0). (8.19)

The asymptotics of the proportions depend naturally on the distribution of
(Z(0),Z(1)) and we determine five different behaviors according to the bivariate
value of (m0,m1).
The proofs of the convergences use the asymptotic distribution of the number of
parasites of a typical contaminated cell at generation n, which is equal to Pn(ZUn ∈
.), where Un is a uniform random variable in G∗n independent of (Zi)i∈T∗ . This
distribution is different from the distribution of Z∗n, that is the number of parasites
of a random cell line conditioned to be contaminated at generation n. The following
example even proves that Pn(ZUn ∈ .) and P(Z∗n ∈ .) could be a priori very
different.
Example 6. Suppose that generation n (fixed) contains 100 cells with 1 parasite
(and no other contaminated cells) with probability 1/2 and it contains 1 cell with
100 parasites with probability 1/2 (and no other contaminated cells). Compare
then

Pn(ZUn = 1) = 1/2, Pn(ZUn = 100) = 1/2;

P(Z∗n = 1) = 100/101, P(Z∗n = 100) = 1/101.
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Actually the convergence of (Z∗n)n∈N leads to the result obtained by Kimmel
[59] in the continuous analogue of this model. That is,

P(Zn = k)
P(Zn > 0)

=

∑
i∈Gn

E(1lZi=k)∑
i∈Gn

E(1lZi>0)
=

E(#{i ∈ Gn : Zi = k})
E(#G∗n)

(8.20)

tends to P(Υ = k) whereas we are here interested in the expectation of Fk(n).

A sufficient condition to get the equality of the two distributions is that #G∗n
is deterministic, which does not hold here. But in the case when (m0,m1) ∈ D3,
we shall prove that #G∗n is asymptotically proportional to (m0 +m1)n as n→∞
(forthcoming Proposition 8.6.3). This enables us to control Pn(ZUn ∈ .) by the
distribution of P(Z∗n ∈ .). More precisely, it is sufficient to prove the separation
of descendances of parasites (Proposition 8.6.4) and the control of filled-in cells
(Lemma 8.6.5) using the results about the BPRE Z∗n. These two results are
the keys for Theorems 8.5.2, 8.5.5 and 8.5.7. Similarly, when (m0,m1) ∈ D5,
we already know that #G∗n is approximatively equivalent to 2n. Then the fact
that Z∗n explodes as n → ∞ (by Proposition 6.3.1) will ensure that the propor-
tion of filled-in cells among contaminated cells tends to one (Theorem 8.5.1 below).

8.5.1 Case (m0, m1) ∈ D5 (m > 1)

In that case, recall that conditionally on Extc, #G∗n is asymptotically propor-
tional to 2n (by Theorem 8.3.1). Moreover the contaminated cells become largely
infected, as stated below.

Theorem 8.5.1. Conditionally on Extc, for every k ∈ N, Fk(n) converges in
probability to 0 as n→∞. i.e.

∀K, ε > 0, P∗
(#{i ∈ Gn : Zi ≥ K}

#G∗n
≥ 1− ε

) n→∞−→ 1.

If m0 = m1, the number of parasites in a contaminated cell is of the same order
as mn

0 . More precisely, for every ε > 0,

sup
n∈N

{
P∗

(#{i ∈ G∗n : Zi ≤ αmn
0}

#G∗n
≥ ε

)} α→0−→ 0.

Proof. In that case, use Theorem 8.3.1 and (8.19) to get that there exists a non
negative random variable L̃ such that

#G∗n ≥ 2nL̃, P∗(L̃ = 0) = 0. (8.21)
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Let K, η and ε > 0 and put Bn(K, η) :=
{#{i∈G∗n : Zi≤K}

#G∗n
≥ η

}
∩ Extc, then∑

i∈G∗n

1l{Zi≤K} ≥ η2nL̃1lBn(K,η)

which gives, taking expectations,

E(L̃1lBn(K,η)) ≤
E(

∑
i∈G∗n 2−n1l{Zi≤K})

η
=

P(0 < Zn ≤ K)
η

.

Use then Proposition 6.3.1 in Chapter 6 and (8.21) to choose n large enough so
that

P(Bn(K, η)) ≤ ε,

which completes the proof of the theorem. In the case m0 = m1 = m, follow the
proof above and use that Zn/m

n converges to a positive limit on Extc (see [7]) to
get the finer result given after the theorem.

8.5.2 Case (m0, m1) ∈ D3 (m ≤ 1) and simulations

We assume here E(Z(a)2) < ∞ and prove that (Fk(n))k∈N converges to a de-
terministic limit. We prove the convergence thanks to the Cauchy criterion (using
completeness of l1(N)). The fact that the limit is deterministic is a consequence
of the separation of the descendances of parasites and the law of large numbers.
Once we know this limit is deterministic, we identify it with the Yaglom limit Υ
(see Section 6.1 for proofs).

Theorem 8.5.2. Conditionally on Extc, as n → ∞, (Fk(n))k∈N converges in
probability in S1(N) to (P(Υ = k))k∈N.

Remark 13. We get here a realization of the Yaglom distribution Υ.
The limit just depends on the one-dimensional distributions of (Z(0), Z(1)).

More precisely, recall that the probability generating function G of Υ is character-
ized by (8.15).

This theorem still holds starting from k parasites. We get also easily a similar
result in the case when a cell gives birth to N cells (N ∈ N).

As an application, we can obtain numerically the Yaglom quasistationary dis-
tribution of any BGW. Let Z be the reproduction law of a BGW with mean m < 1
and choose N such that Nm > 1. Consider Kimmel’s model where each cell di-
vides into N daughter cells and Z(0) d= Z(1) d= ..

d= Z(N) d= Z. Computing then
the asymptotic of the proportions of contaminated cells with k parasites gives the
Yaglom quasistationary distribution associated to Z. If P(Ext) 6= 0, one can start
from many parasites ’to avoid’ extinction.
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More generally, we can obtain similarly the Yaglom quasistationary distribution of
any BPRE with finite number k of environments such that

∑k
1 m

2
i <

∑k
1 mi.

This theorem is in the same vein as Theorem 11 in [47]. But we can not
follow the same approach as Guyon for the proof. Indeed we have to consider
here the proportions among the contaminated cells in generation n whereas Guyon
considers proportions among all cells in generation n. Unfortunately, the subtree
of contaminated cells is itself random and induces long-range dependences between
cells lines, so that Guyon’s arguments do not hold here. Moreover Theorem 11 in
[47] relies on an ergodicity hypothesis which cannot be circumvented.
Example 7. We give two examples when the limit can be calculated.

? Trivial case : P(Z(0) ∈ {0, 1}, Z(1) ∈ {0, 1}) = 1 leads to P(Υ = 1) = 1.

? Symmetric linear fractional case : p ∈]0, 1[, b ∈]0, (1− p)2[ and

P(Z(0) = k) = P(Z(1) = k) = bpk−1 if k ≥ 1

and P(Z(0) = 0) = P(Z(1) = 0) = (1 − b − p)/(1 − p). Then m0 = m1 =
b/(1− p)2 < 1 and letting s0 be the root of f0(s) = s larger than 1,

∀k ≥ 1, P(Υ = k) = (s0 − 1)/sk
0.

Figure 6. Simulations for asymptotic behavour of Fk(n) (with 0 ≤ Z(0), Z(1) ≤ 3
a.s).
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As asymptotically we know the number of parasites and the proportion of cells
with k parasites, we get the number of contaminated cells (recall that W is given
by (8.6)).

Corollary 8.5.3. Conditionally on Extc, the following convergences hold in prob-
ability

#G∗n
Zn

n→∞−→ 1
E(Υ)

,
#G∗n

(m0 +m1)n

n→∞−→ W

E(Υ)
.

Figure 7. Simulation for the asymptotic behavior of #G∗n+1/#G∗n (with 0 ≤
Z(0), Z(1) ≤ 3 a.s.).

We can also consider the ancestors at generation n of the cells of ∂T∗, which
amounts to considering

Fk(n, p) =
#{i ∈ G∗n+p : Zi|n = k}

#G∗n+p

and let p → ∞. Letting then n → ∞ yields the biased Yaglom quasistationary
distribution, thanks to the separation of descendances of parasites.

Corollary 8.5.4. Conditionally on Extc, for every k ∈ N, Fk(n, p) converges in
probability in S1(N) as p tends to infinity. This limit converges in probability in
S1(N) as n→∞.

∀k ∈ N, lim
n→∞

lim
p→∞

Fk(n, p)
P=
kP(Υ = k)

E(Υ)
.

We get here an interpretation of the fact that the stationary distribution of
the Q-process associated to the BPRE (Zn)n∈N is the size-biased Yaglom limit
(see [1]).
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8.5.3 Case (m0, m1) ∈ D2

In that case, the parasites die out. So we condition by Zn > 0, we still assume
E(Z(a) 2) <∞ and we get a similar result.

Theorem 8.5.5. As n → ∞, (Fk(n))k∈N conditioned by Zn > 0 converges in
distribution on S1(N) to (P(Υ = k))k∈N.

The proof follows that of the previous theorem. Indeed (8.13) is still satis-
fied and we can use the same results on the BPRE (Zn)n∈N. There are only two
differences. First, we work under Pn instead of P∗. Moreover Zn satisfies now
P(Zn > 0) n→∞∼ 2/(Var(Z(0) + Z(1))n) and Zn/n conditioned to be non zero con-
verges in distribution as n→∞ to an exponential variable E of parameter 2/(m̂+1)
(see section 2.1). As above, we can derive the following result.

Corollary 8.5.6. As n → ∞, #G∗n/n conditioned by #G∗n > 0 converges in
distribution to E/E(Υ).

8.5.4 Case (m0, m1) ∈ D1

In this case, the number of contaminated cells does not explode and the number
of cells of type k at generation n conditioned by the survival of parasites in this
generation converges weakly to a non deterministic limit (see Section 7 for proofs).

Theorem 8.5.7. As n → ∞, (#{i ∈ G∗n : Zi = k})k∈N conditioned on Zn > 0
converges in distribution on l1(N) to a random sequence (Nk)k∈N which satisfies
E(

∑
k∈N kNk) <∞.

As above, we get

Corollary 8.5.8. #G∗n conditioned by #G∗n > 0 converges in distribution to a
positive finite random variable.

Picking a cell uniformly on ∂T∗ leads again to the size-biased distribution.

Corollary 8.5.9. For every n ∈ N, (#{i ∈ G∗n+p : Zi|n = k})k∈N conditioned on
Zn+p > 0 converges weakly in l1(N) to a random sequence as p tends to infinity.
This limit converges weakly as n→∞.

∀k ∈ N, lim
n→∞

lim
p→∞

#{i ∈ G∗n+p : Zi|n = k} |Zn+p > 0 =
kNk∑

k′∈N k
′Nk′

.
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8.5.5 Remaining domain : (m0, m1) ∈ D4

In this domain, the asymptotic of the mean of the number of contaminated
cells, that is E(#G∗n) = 2nP(Zn > 0), is different from the previous ones.
Recalling Section 2.2, this asymptotic depends on three subdomains, the interior
of D4 and the two connex components of its boundary. More precisely, it depends
on m0m1 = 1 or m0m1 < 1 and m0log(m0) +m1log(m1) is positive or zero.

If (m0,m1) ∈ D4 and m0 < 1 < m1, using (8.16) and a coupling argument with
Corollary 8.5.3, one can prove that

sup
n∈N

{
P
( #G∗n
2nP(Zn > 0)

≥ A,
#G∗n

(m0 + m̃0)n
≤ 1/A

)} A→0−→ 0,

where m̃0 =
(
1 +

√
1 + 4(m0 −m2

0)
)
/2 > 1. Thus #G∗n grows geometrically and

one can naturally conjecture that #G∗n is asymptotically proportional to E(#G∗n) =
2nP(Zn > 0).

Moreover separation of descendances of parasites, control of filled-in cells and
Corollary 8.5.4 do not hold in this case. Thus determining the limit behaviors here
requires a different approach.

Finally, note that in the subdomain m0m1 = 1 (boundary of D5), (Z∗n)n∈N
explodes (see [?]) so the asymptotic proportion of contaminated cells which are
arbitrarily largely contaminated should be equal to 1 as in Theorem 8.5.1.

8.6 Proofs in the case (m0, m1) ∈ D3

We assume in this section that E(Z(a)2) <∞ (i.e. m̃ <∞) and we start with
giving some technical results.

8.6.1 Preliminaries

First, note that for all u, v ∈ l1(N∗), we have,

‖ u

‖u‖1
− v

‖v‖1
‖1 = ‖u− v

‖u‖1
+

v

‖v‖1

‖v‖1 − ‖u‖1

‖u‖1
‖1 ≤ 2

‖u− v‖1

‖u‖1
. (8.22)

Moreover by (8.6), there exist two random variables C and D a.s finite such
that

∀n ∈ N, C ≤ Zn

(2m)n
≤ D a.s, P∗(C = 0) = P∗(D = 0) = 0 (8.23)

and as ∩n∈N{Zn > 0} = {∀n ∈ N : Zn > 0}, we have,

sup
A
{
∣∣Pn(A)− P∗(A)

∣∣} n→∞−→ 0. (8.24)
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We focus now on the BPRE (Zn)n∈N. First, by induction and convexity of fa,
we have for every i ∈ Gn, (see Section 2.2 for the Notation)

P(Zi > 0) = 1− fi(0) ≤ mi. (8.25)

Then identities (8.25) and (8.14) entail that there exists M > 0 such that

M ≤ P(Zn > 0)
mn

≤ 1. (8.26)

Moreover, by Corollary 2.3 in [1], we have

lim
K→∞

sup
n∈N

{E(Zn1lZn≥K | Zn > 0)} = 0. (8.27)

Finally, Proposition 7.2.1 in Chapter 7 ensures that, if (Z(1)
n )n∈N and (Z(2)

n )n∈N
are two independent BPRE distributed as (Zn)n∈N, we have

P(Z(1)
n > 0, Z(2)

n > 0) = o(P(Zn > 0)) = o(mn) (n→∞).

Then, we have
2−n

∑
i∈Gn

P(Zi > 0)2 = o(mn) (n→∞). (8.28)

8.6.2 Estimation of #G∗n
We prove here that the number of parasites which belong to filled-in cells is

negligible compared to the total number of parasites (see also Lemma 8.6.5 for a
result of the same kind). To prove this result, we use its counterpart for BPRE
(Zn)n∈N conditioned to be non zero.

Lemma 8.6.1. For every η > 0,

sup
n∈N

{
P∗

(∑
i∈G∗n Zi1l{Zi>K}

Zn
≥ η

)}
K→∞−→ 0.

Proof. Let η > 0 and write An(K, η) :=
{P

i∈G∗n
Zi1l{Zi>K}
Zn

≥ η

}
∩ Extc. Then

1lAn(K,η)

∑
i∈G∗n

Zi1l{Zi>K} ≥ 1lAn(K,η)Znη.

Using (8.23), we have,

1lAn(K,η)(2m)−n
∑
i∈G∗n

Zi1l{Zi>K} ≥ η1lAn(K,η)C
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so that taking expectations,

m−nE(2−n
∑
i∈G∗n

Zi1l{Zi>K}) ≥ E(1lAn(K,η)C)η

m−nE(Zn1l{Zn>K})/η ≥ E(1lAn(K,η)C).

Then, by (8.27), we have

lim
K→∞

sup
n∈N

{E(1lAn(K,η)C)} = 0.

Then observe that ∀α > 0, infP∗(A)≥α{E(C1lA)} > 0. So ∃K0 ≥ 0 such that
∀K ≥ K0, ∀n ∈ N,

P∗(An(K, η)) < α,

which completes the proof.

First, for any ε > 0, choose K using the previous lemma such that

P∗
(∑

i∈G∗n Zi1l{Zi≤K}

Zn
≥ 1/2

)
= 1− P∗

(∑
i∈G∗n Zi1l{Zi>K}

Zn
< 1/2

)
≥ 1− ε/2.

Adding that conditionally on Extc, Zn
n→∞−→ ∞ a.s, gives the following result.

Proposition 8.6.2. Let ε > 0, there exists K ∈ N such that ∀N ∈ N, ∃n0 ∈ N
such that ∀n ≥ n0,

P∗(
∑
i∈G∗n

Zi1l{Zi≤K} ≥ N) ≥ 1− ε.

Second, we derive an estimation of #G∗n. By Lemma 8.6.1, the cells are not very
contaminated so the number of contaminated cells is asymptotically proportional
to the number of parasites, which is a a Bienaymé Galton Watson process.

Proposition 8.6.3. For every ε > 0, there exist A,B > 0 such that for every
n ∈ N,

P∗
(

#G∗n
(2m)n

∈ [A,B]
)
≥ 1− ε.

Proof. First use (8.23) to get

#G∗n
(2m)n

≤ Zn

(2m)n
≤ D.

Moreover using again (8.23), we have

#G∗n
(2m)n

≥
∑

i∈G∗n Zi1l{Zi≤K}

K(2m)n
≥ C

K

∑
i∈G∗n Zi1l{Zi≤K}

Zn

and Lemma 8.6.1 gives the result.
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8.6.3 Separation of the descendances of parasites

Start with two parasites and consider the BPRE (Zn)n∈N. Even when condi-
tioning on the survival of their descendance, the descendance of one of them dies
out. This ensures that two distinct parasites in generation n do not have descen-
dants which belong to the same cell in generation n+ q if q is large enough. More
precisely, we define Nn(i) as the number of parasites of cell i|n whose descendance
is still alive in cell i and we prove the following result.

Proposition 8.6.4. ∀K ∈ N, ∀ ε, η > 0, ∃q ∈ N such that ∀n ∈ N, we have

P∗
(

#{i ∈ G∗n+q : Zi|n ≤ K, Nn(i) ≥ 2}
#G∗n+q

≥ η

)
≤ ε.

Proof. Let K ∈ N, η > 0 and consider for A > 0,

Eq
n(η) =

{
#{i ∈ G∗n+q : Zi|n ≤ K, Nn(i) ≥ 2}

#G∗n+q

≥ η

}
∩

{
#G∗n+q

(2m)n+q
≥ A

}
.

Then
1lEq

n(η)#{i ∈ G∗n+q : Zi|n ≤ K, Nn(i) ≥ 2} ≥ 1lEq
n(η)ηA(2m)n+q

so that taking expectations,

P(Eq
n(η)) ≤

2−(n+q)E(
∑

i∈Gn+q
1l{Zi|n≤K, Nn(i)≥2})

ηAmn+q

≤
2−n

∑
j∈Gn

P(0 < Zj ≤ K)2−q
∑

i∈Gq
PK(N0(i) ≥ 2)

ηAmn+q

≤
P(Zn > 0)2−q

∑
i∈Gq

PK(N0(i) ≥ 2)

ηAmn+q

As we have
(
K
2

)
ways to choose two parasites among K and they both survive

along i with probability P(Zi > 0)2, we have

PK(N0(i) ≥ 2) ≤
(
K

2

)
P(Zi > 0)2.

Then

P(Eq
n(η)) ≤

(
K
2

)
2−q

∑
i∈Gq

P(Zi > 0)2

ηAmq
.

Conclude choosing A in agreement with Proposition 8.6.3 and q with (8.28).
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8.6.4 Control of filled-in cells

Here we prove that filled-in cells have asymptotically no impact on the propor-
tions of cells with a given number of parasites.

Lemma 8.6.5. ∀ ε, η > 0, ∃K ∈ N such that ∀ n, q ∈ N, we have

P∗
(#{i ∈ G∗n+q : Zi|n > K}

#G∗n+q

≥ η
)
≤ ε.

Proof. Let η > 0, A > 0 and consider

F q
n(η) =

{
#{i ∈ G∗n+q : Zi|n > K}

#G∗n+q

≥ η

}
∩

{
#G∗n+q

(2m)n+q
≥ A

}
.

then
1lF q

n(η)#{i ∈ G∗n+q : Zi|n > K} ≥ 1lF q
n(η)ηA(2m)n+q.

Taking expectations leads to

P(F q
n(η)) ≤

2−(n+q)E(
∑

i∈Gn+q
1l{Zi|n>K,Zi>0})

ηAmn+q

≤
2−(n+q)

∑
i∈Gn+q

P(Zi|n > K,Zi > 0)

ηAmn+q

≤
∑

k>K 2−n
∑

j∈Gn
P(Zj = k)2−q

∑
i∈Gq

Pk(Zi > 0)

ηAmn+q

Moreover Pk(Zi > 0) = 1− (1− P(Zi > 0))k ≤ kP(Zi > 0) and we have

P(F q
n(η)) ≤

∑
k>K 2−n

∑
j∈Gn

kP(Zj = k)P(Zq > 0)
ηAmn+q

≤
E(Zn1l{Zn>K})

ηAmn
using (8.26).

By (8.28), we get
lim

K→∞
sup
n∈N

{P(F q
n(η))} = 0.

Complete the proof choosing A in agreement with Proposition 8.6.3.

Proof of Theorem 8.5.2
Consider the contaminated cells in generation n+ q. Their ancestors in gener-

ation n are cells which are not very contaminated (by Lemma 8.6.5). Then taking
q large, the parasites of a contaminated cell in generation n+ q come from a same
parasite in generation n (separation of the descendances of parasites, Proposition
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8.6.4). Thus at generation n+ q, everything occurs as if all parasites from genera-
tion n belonged to different cells. As the number of parasites at generation n tends
to infinity (n → ∞, m0 +m1 > 1), we have a law of large numbers phenomenon
and get a deterministic limit.

STEP 1 : We prove that for all ε, η > 0, there exist n0 ∈ N and ~f ∈ S1(N) such
that for every n ≥ n0,

P∗(‖(Fk(n))k∈N − ~f‖1 ≥ η) ≤ ε.

• For every k ∈ N∗ and every parasite p in generation n, we denote by Y q
k (p)

the number of cells in generation n+ q which contain at least k parasites, exactly
k of which have p as an ancestor. By convention, Y q

0 (p) = 0. That is, writing for
p parasite, p ↪→ i when p belongs to the cell i and p|n its ancestor (parasite) in
generation n,

Y q
k (p) =

∑
i∈Gn+q

1l#{r : r↪→i, r|n=p}=k, k ∈ N∗.

By the branching property,
(
Y q

k (p))k∈N (p ∈ P(n)) are iid and we denote by
(Y q

k )k∈N a random variable with this common distribution. Denoting by PK(n)
the set of parasites in generation n which belong to a cell containing at most K
parasites, we have∑

k∈N∗

∣∣#{i ∈ G∗n+q : Zi = k} −
∑

p∈PK(n)

Y q
k (p)

∣∣ (8.29)

≤ (K + 1)#{i ∈ G∗n+q : Zi|n ≤ K, Nn(i) ≥ 2}+ #{i ∈ G∗n+q : Zi|n > K}

Indeed, the left hand side of (8.29) is less than∑
k∈N∗

∣∣#{i ∈ G∗n+q : Zi = k, Zi|n ≤ K} −
∑

p∈PK(n)

Y q
k (p)

∣∣ + #{i ∈ G∗n+q : Zi|n > K}

And recalling that Nn(i) is the number of parasites of cell i|n whose descendance
is still alive in cell i, we get the following equalities∑

p∈PK(n)

Y q
k (p) =

∑
i∈Gn+q

∑
p∈PK(n)

1l#{r : r↪→i, r|n=p}=k

1lZi=k, Zi|n≤K, Nn(i)=1 = 1lNn(i)=1

∑
p∈PK(n)

1l#{r : r↪→i, r|n=p}=k

which ensure∑
k∈N∗

∣∣#{i ∈ G∗n+q : Zi = k, Zi|n ≤ K} −
∑

p∈PK(n)

Y q
k (p)

∣∣
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≤
∑
k∈N∗

∑
i∈Gn+q ,Nn(i)≥2

∣∣1lZi=k, Zi|n≤K −
∑

p∈PK(n)

1l#{r : r↪→i, r|n=p}=k

∣∣
≤ #{i ∈ G∗n+q : Zi|n ≤ K, Nn(i) ≥ 2}+

∑
i∈Gn+q ,Nn(i)≥2

p∈PK(n)

1l#{r : r↪→i, r|n=p}>0

≤ #{i ∈ G∗n+q : Zi|n ≤ K, Nn(i) ≥ 2}+
∑

i∈Gn+q ,Nn(i)≥2

K1lZi|n≤K

= (K + 1)#{i ∈ G∗n+q : Zi|n ≤ K, Nn(i) ≥ 2}

We shall now prove that the quantities on the right hand side of (8.29) are
small when n and q are large enough and that

∑
p∈PK(n) Y

q
k (p) follow a law of lage

number. To that purpose, let ε, η > 0 and for all K, k, n, q ≥ 0 define

GK
k (n, q) :=

∑
p∈PK(n) Y

q
k (p)∑

k∈N
∑

p∈PK(n) Y
q
k (p)

.

• First, by Proposition 8.6.2 and (8.24), ∃K1 ∈ N such that ∀N ∈ N, ∃n1 ∈ N
such that ∀K ≥ K1, ∀n ≥ n1,

Pn(|PK(n)| ≥ N) ≥ 1− ε. (8.30)

Moreover by Lemma 8.6.5, ∃ K2 ≥ K1 such that ∀n, q ∈ N,

P∗
(#{i ∈ G∗n+q : Zi|n > K2}

#G∗n+q

≥ η
)
≤ ε. (8.31)

And by Proposition 8.6.4, ∃q0 ∈ N such that ∀n ∈ N

P∗(
#{i ∈ G∗n+q0

: Zi|n ≤ K2, Nn(i) ≥ 2}
#G∗n+q0

≥ η/(K2 + 1)
)
≤ ε. (8.32)

Use then (8.29), (8.31) and (8.32) to get

P∗
(∑

k∈N∗
∣∣#{i ∈ Gn+q0 : Zi = k} −

∑
p∈PK2

(n) Y
q0

k (p)
)∣∣

#G∗n+q0

≥ 2η
)
≤ 2ε.

Then by (8.22), for every n ∈ N, we have

P∗
(
‖(Fk(n+ q0))k∈N − (GK2

k (n, q0))k∈N‖1 ≥ 4η
)
≤ 2ε. (8.33)

• Second, conditionally on Zn > 0, Y q0

k (p) (p ∈ PK2(n)) are iid. Then the law
of large numbers (LLN) ensures that ∀k ∈ N, as n and so PK2(n) becomes large :

GK2
k (n, q0) −→ fk(q0) where fk(q0) :=

E(Y q0

k )∑
k′∈N E(Y q0

k′ )
.
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To see that, divide the numerator and denominator of GK2
k (n, q0) by #PK2(n).

More precisely, by the LLN, there exists N > 0 such that for all n ∈ N,

Pn
(
‖(GK2

k (n, q0))k∈N∗ − ~f(q0)‖1 ≥ η, PK2(n) ≥ N
)
≤ ε.

So using (8.30), there exists n1 ∈ N such that for every ∀ n ≥ n1,

Pn
(
‖(GK2

k (n, q0))k∈N∗ − ~f(q0)‖1 ≥ η
)
≤ 2ε.

Finally by (8.24), there exists n2 ≥ n1 such that for every n ≥ n2,

P∗
(
‖(GK2

k (n, q0))k∈N∗ − ~f(q0)‖1 ≥ η
)
≤ 3ε. (8.34)

As a conclusion, using (8.33) and (8.34), we have proved that for all ε, η > 0,
anf for every n ≥ n2 + q0,

P∗(‖(Fk(n))k∈N∗ − ~f(q0)‖1 ≥ 5η) ≤ 3ε.

STEP 2 : Existence of the limit.

For every l ∈ N, there exist n0(l) ∈ N and ~f(l) ∈ S1(N) such that for every
n ≥ n0(l)

P(‖F (n)− ~f(l)‖1 ≥ 1/2l+1) ≤ 1/2l.

Then for all l, l′ such that 2 ≤ l ≤ l′ : ‖~f(l′) − ~f(l)‖1 ≤ 1/2l and completeness of
l1(N) ensures that (~f(l))l∈N converges in S1(N) to a limit ~f . Moreover ‖~f(l)− ~f‖1 ≤
1/2l so for every n ≥ n0(l),

P(‖F (n)− ~f‖1 ≥ 1/2l) ≤ 1/2l

which ensures the convergence in probability of (Fk(n))n∈N to ~f as n→∞.

STEP 3 : Characterization of the limit as fk = P(Υ = k).

By Proposition 8.2.2, we have

∀k ∈ N P(Zn = k | Zn 6= 0) n→∞−→ P(Υ = k) (8.35)

Moreover for every k ∈ N∗, using (8.20),

P(Zn = k | Zn 6= 0) =
E(#{i ∈ Gn : Zi = k})

E(#G∗n)
=

E(Fk(n)#G∗n)
E(#G∗n)

.

As Fk(n) converges in probability to a deterministic limit fk, we get

∀k ∈ N, P(Zn = k | Zn 6= 0) n→∞−→ fk. (8.36)
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Indeed, by Proposition 8.6.3, there exists A > 0 such that

E(#G∗n)
(2m)n

≥ A.

Then for every η > 0, using | Fk(n)− fk |≤ 1, we have∣∣E(Fk(n)#G∗n)
E(#G∗n)

− fk

∣∣ ≤
E(#G∗n | Fk(n)− fk | 1l{|Fk(n)−fk|<η})

E(#G∗n)

+
E(#G∗n1l{|Fk(n)−fk|≥η})

E(#G∗n)

≤ η +
E(Zn1l{|Fk(n)−fk|≥η})

A(2m)n

By (8.11), Zn/(2m)n is bounded in L2and it is uniformly integrable. Then, thanks
to the previous steps, the second term in the last displayed equation vanishes
as n grows and we get (8.36). Putting (8.35) and (8.36) together proves that
fk = P(Υ = k).

Proof of corollaries

Proof of Corollary 8.5.3. Recall that E(Υ) <∞ (Proposition 8.2.2) and note also
that for every K ∈ N∗,

#G∗n =

∑
i∈G∗n Zi1l{Zi≤K}∑K

k=1 kFk(n)
.

Then using
∑

i∈G∗n Zi1l{Zi≤K} ≤ Zn gives

∣∣#G∗n
Zn

− 1
E(Υ)

∣∣ =
∣∣ 1∑K

k=1 kFk(n)

∑
i∈G∗n Zi1l{Zi≤K}

Zn
− 1

E(Υ)

∣∣
≤

∣∣ 1∑K
k=1 kFk(n)

− 1
E(Υ)

∣∣ +
1

E(Υ)

∣∣∑i∈G∗n Zi1l{Zi≤K}

Zn
− 1

∣∣
Let η, ε > 0. We use Lemma 8.6.1 to choose K ∈ N∗ such that

∀n ∈ N, P∗
(∑

i∈G∗n Zi1l{Zi≤K}

Zn
≥ 1− η

)
≥ 1− ε ;

∣∣ 1
E(Υ1lΥ≤K)

− 1
E(Υ)

∣∣ ≤ η.

Choose n0 ∈ N using Theorem 8.5.2 so that for every n ≥ n0,

P∗
(∣∣ 1∑K

k=1 kFk(n)
− 1

E(Υ1lΥ≤K)

∣∣ ≤ η

)
≥ 1− ε.

Then for every n ≥ n0,

P∗
(∣∣#G∗n

Zn
− 1

E(Υ)

∣∣ ≥ 2η +
1

E(Υ)
η

)
≤ 2ε,

which proves the convergence in probability of #G∗n/Zn to 1/E(Υ). The second
convergence follows from (8.6).
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Proof of Corollary 8.5.4. We write for n, p, k ∈ N,

#{i ∈ G∗n+p : Zi|n = k}
#G∗n+p

=
(2m)p

#G∗n+p

∑
j∈G∗n:Zj=k

#{i ∈ G∗n+p : i|n = j}
(2m)p

.

Conditionally on Zj = k, by Corollary 8.5.3 and separation of descendances of
parasites, we have the following convergence in probability

#{i ∈ G∗n+p : i|n = j}
(2m)p

p→∞−→ Wk(j),

where Wk(j) is the sum of k iid variables distributed as W/E(Υ). Then, using also
(8.6),

E(Wk(j)) =
kE(W )
E(Υ)

=
k

E(Υ)
. (8.37)

Using again Corollary 8.5.3, we get the first limit of the Corollary

lim
p→∞

#{i ∈ G∗n+p : Zi|n = k}
#G∗n+p

P=
E(Υ)
W

∑
j∈G∗n:Zj=k Wk(j)

(2m)n
.

Moreover, Theorem 8.5.2 ensures that

#{j ∈ G∗n : Zj = k}
(2m)n

= Fk(n)
Zn

(2m)n

n→∞−→ W

E(Υ)
fk.

And conditionally on #G∗n > 0, Wk(j) (j ∈ G∗n) is idd by the branching property
and #G∗n tends to infinity. So the law of large numbers and (8.37) ensure that

lim
n→∞

E(Υ)
W

∑
j∈G∗n:Zj=k Wk(j)

(2m)n

= lim
n→∞

E(Υ)
W

#{j ∈ G∗n : Zj = k}
(2m)n

∑
j∈G∗n:Zj=k Wk(j)

#{j ∈ G∗n : Zj = k}
P∗=

kfk

E(Υ)
,

which ends the proof.

8.7 Proofs in the case (m0, m1) ∈ D1

We still assume E
(
Z(a)2

)
< ∞, the proof is in the same vein as the proof in

the previous section and use the separation of the descendances of the parasites.
The main difference is that Zn does not explode so the limit is not deterministic
and the convergence holds in distribution.
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Lemma 8.7.1. For every K > 0, there exists q0 ∈ N such that for all q ≥ q0 and
n ∈ N,

Pn+q
(
{i ∈ G∗n+q : Nn(i) ≥ 2} 6= ∅, Zn ≤ K

)
≤ ε.

Proof. Denotng by Eq
n the event

{{i ∈ G∗n+q : Nn(i) ≥ 2} 6= ∅, Zn ≤ K},

we have 1lEq
n
≤

∑
i∈Gn+q

1l{Nn(i)≥2, Zn≤K}.

Thus we can follow the proof of Lemma 8.6.4.

Pn+q(Eq
n) ≤

∑
i∈Gn+q

P(Nn(i) ≥ 2, Zn ≤ K)
P(Zn+q > 0)

≤
∑

i∈Gn+q
P(Nn(i) ≥ 2 , Zi|n ≤ K)

U(2m)n+q
using (8.7)

≤
P(0 < Zn ≤ K)2−q

∑
i∈Gq

PK(N0(i) ≥ 2)

Umn+q

≤
(
K
2

)
2−q

∑
i∈Gq

P(Zi > 0)2

Umq
using (8.26).

Conclude with (8.28).

Proof of Theorem 8.5.7. STEP 1 : We recall that Pn is the set of parasites in
generation n, follow STEP 1 in the proof of Theorem 8.5.2 and use its Notation.
Thus, we begin with proving that for every ε > 0, there exists n0 ∈ N such that
for every n ≥ n0,

Pn+q
(
‖ (#{i ∈ G∗n+q : Zi = k})k∈N − (Nk(n, q))k∈N ‖1 6= 0

)
≤ ε,

where for all n, q, k ≥ 0, Nk(n, q) :=
∑

p∈P(n)

Y q
k (p).

First, by (8.10), there exist K, q0 ∈ N such that for every q ≥ q0,

lim
n→∞

Pn+q(Zn > K) ≤ ε. (8.38)

By Lemma 8.7.1, there exists q1 ≥ q0 such that for every n ∈ N, we have

Pn+q1
(
{i ∈ G∗n+q1

: Nn(i) ≥ 2} 6= ∅, Zn ≤ K
)
≤ ε. (8.39)

And by (8.38), there exists n0 ≥ 0 such that for every n ≥ n0,

Pn+q1(Zn ≥ K) ≤ 2ε.
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Then
Pn+q1

(
#{i ∈ G∗n+q1

: Nn(i) ≥ 2} 6= 0
)
≤ 3ε.

Moreover

#{i ∈ G∗n+q1
: Nn(i) ≥ 2} = 0 ⇒ (#{i ∈ G∗n+q1

: Zi = k})k∈N = (Nk(n, q1))k∈ N

Then for every n ≥ n0,

Pn+q1
(
‖ (#{i ∈ G∗n+q1

: Zi = k})k∈N − (Nk(n, q1))k∈ N ‖1 6= 0
)
≤ 3ε.

STEP 2 : As l1(N) is separable, we can consider the distance d associated with
the weak convergence of probabilities on l1(N). It is defined for any P1 and P2

probabilities by (see Theorem 6.2 chapter II in [78])

d(P1,P2) = sup
{∣∣ ∫

f(w)P1(dw)−
∫
f(w)P2(dw)

∣∣ : ‖f‖∞ ≤ 1, ‖f‖Lips ≤ 1
}

where
‖f‖Lips = sup

{‖f(x)− f(y)‖1

‖x− y‖1
: x, y ∈ S1(N), x 6= y

}
.

We prove now that for every l ≥ 1, there exist n0(l) ∈ N and a measure µ(l) on N∗
such that for every n ≥ n0(l),

d
(
Pn

(
(#{i ∈ G∗n : Zi = k})k∈N ∈ .

)
, µ(l)

)
≤ 1/2l. (8.40)

For that purpose, let l ∈ N. By STEP 1, choose q, n0 ∈ N such that

∀n ≥ n0, (8.41)
d
(
Pn+q

(
(#{i ∈ G∗n+q : Zi = k})k∈N ∈ .

)
, Pn+q

(
(Nk(n, q))k∈N ∈ .

))
≤ 1/2l+1.

Recall that (Y q
k (p))k∈N(p ∈ P(n)) is an iid sequence distributed as (Y q

k )k∈N and
#P(n) = Zn. Thus, under Pn+q, Nk(n, q) is the sum of Zn variables which are iid,
distributed as Y q

k and independent of Zn, conditionally on
∑

k∈N
∑

p∈P(n) Y
q
k (p) >

0.
Moreover Pn+q(Zn ∈ .) converges weakly as n → ∞ to a probability ν (see (8.9))
and we denote by N a random variable with distribution ν and by (Y q

k (i))k∈N(i ∈
N) an iid sequence independent of N and distributed as (Y q

k )k∈N . Then we have
for n large enough,

d
(
Pn+q

(
(Nk(n, q))k∈ N ∈ .

)
, µ(l)

)
≤ 1/2l, (8.42)

where µ(l) is the distribution of
( ∑

1≤i≤N Y
q
k (i)

)
k∈ N conditionally on∑

k∈N
∑

1≤i≤N Y
q
k (i) > 0. Combining (8.41) and (8.42) gives (8.40).
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CONCLUSION : As l1(N) is complete, the space of probabilities on l1(N) en-
dowed with d is complete (see Theorem 6.5 chapter II in [78]), (µ(l))l∈N converges
and we get the convergence of Theorem 8.5.7.
We now prove that E(

∑
k∈N∗ kNk) <∞. For all n,K > 0, we have

E(
∑
k≥K

k#{i ∈ G∗n : Zi = k}|Zn > 0) ≤ E(Zn1l{Zn≥K}|Zn > 0) ≤ E(Z2
n)

P(Zn > 0)K

which converges uniformly to 0 as K →∞ using (8.11). Moreover Theorem 8.5.7
and k#{i ∈ G∗n : Zi = k} ≤ Zn ensure that

lim
n→∞

E(
∑

1≤k≤K

k#{i ∈ G∗n : Zi = k} | Zn > 0) = E(
∑

1≤k≤K

kNk).

Thus we get the expected limit

E(
∑
k∈N

k#{i ∈ G∗n : Zi = k} | Zn > 0) n→∞−→ E(
∑
k∈N∗

kNk)

and recalling Section 2.1, we have also

E(
∑
k∈N∗

k#{i ∈ G∗n : Zi = k} | Zn > 0) = E(Zn | Zn > 0) n→∞−→ B′(1) <∞.

This completes the proof.

The proofs of the corollaries follow those of the previous section.

8.8 Fractal properties for (m0, m1) ∈ D3

We want to study the fractal property of the boundary ∂T of the tree of cells,
which we endow with usual metric

d(u,v) = e−u∧v (u,v ∈ ∂T)

where u ∧ v = max{n ∈ N : i|n = j|n}. It is then a compact set and the topology
induced by d is the topology spanned by balls (B(i) : i ∈ T) defined by

B(i) = {u ∈ ∂T : u|n = i}.

For every i ∈ T, we define the random variablesW (i) andW (i)∗ as the following
limit

W (i) P= lim
n→∞

#{j ∈ Gn : Zij > 0}
(m0 +m1)n

, W (i)∗ = lim
n→∞

∑
j∈Gn

Zij

(m0 +m1)n
a.s. (8.43)
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The first limit which holds in probability is a consequence of separation of de-
scendances of parasites (see Section 8.6.3).The second limit holds a.s. and is a
consequence of the Kesten-Stigum Theorem applied to the number of parasites
which is a BGW process. Moreover

W (i) =
Zi∑

k=1

Wk, W (i)∗ =
Zi∑

k=1

W ∗k a.s. (8.44)

where (Wk)k∈N and (W ∗k )k∈N are iid sequences which are independent of
(Zj)j∈T:|j|≤|i| and distributed resp. as W := W (∅) and W ∗ := W ∗(∅).

We introduce now the branching measure on ∂T : µ(br). For each i ∈ Gn, we
let

µ(br)(B(i)) = (m0 +m1)−nW (i). (8.45)

Recall also that Corollary 8.5.3 ensures the following identities :

Extc = {∂T∗ 6= ∅} = {µ(br)(∂T) 6= 0} a.s..

Let us check that µ(br) given by (8.45) gives a.s. a measure on ∂T. Indeed, we
have a.s.

∀i ∈ T : µ(br)(B(i0))) + µ(br)(B(i1)) = µ(br)(B(i))

and the result follows from Caratheodory’s Theorem applied to the π system (B(i) :
i ∈ T). Recalling that (m0,m1) ∈ D3, we have the following result.

Proposition 8.8.1. We have a.s. the following limit which holds for µ(br) almost
every u ∈ ∂T∗,

lim
n→∞

−log
(
µ(br)(B(u|n)

)
/n = log(m0 +m1).

We can then give the Hausdorff dimension of the boundary of the tree of con-
taminated cells :

Corollary 8.8.2. Conditionally on Extc, we have a.s.

dim
(
∂T∗

)
= log(m0 +m1).

One perspective is now to give the untypical values for the branching measures
given by largely contaminated lines. This is related with the number of cells
contaminated by an untypical number of parasites. This is a work in progress
with Julien Berestycki and Amaury Lambert and requires to determine first the
large deviations of Branching Processes in Random Environment.
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Before the proofs, we need some technical results. Note that W is stochastically
dominated by W ∗, since the number of cells contaminated at generation n+ q by
a parasite at genration n is less than the number of parasites at generation n+ q
whose ancestor is this parasite. Moreover as Z(0) and Z(1) have finite second
moment, we have (use [8] or (8.11))

sup
n∈N

{
E

(
(Zn/m

n)2
)}

<∞.

This entails that for every α ∈ [0, 2[,

E(Wα) ≤ E(W ∗α) <∞.

Lemma 8.8.3. There exists a constant M > 0 such that for all n, q ∈ N,

E
(
#{i ∈ G∗n+q : Zi|n > K}

)
≤M

(m0 +m1)n+q

K
.

Proof. Fubini ensures that

E
(
#{i ∈ G∗n+q : Zi|n > K}

)
≤

∑
i∈Gn+q

P(Zi|n > K,Zi > 0)

≤
∑
k>K

∑
j∈Gn

P(Zj = k)
∑
i∈Gq

Pk(Zi > 0)

Moreover Pk(Zi > 0) = 1− (1− P(Zi > 0))k ≤ kP(Zi > 0) and we have

E
(
#{i ∈ G∗n+q : Zi|n > K}

)
≤ 2qP(Zq > 0)

∑
k>K

∑
j∈Gn

kP(Zj = k)

≤ (2m)q2nE(Zn1l{Zn>K})

≤ (2m)q2nK−1E(Zn(Zn − 1))

≤ (2m)q2nK−1 m̃(mn − m̄n)
(m− m̄)

using (8.11)

≤ (2m)n+q m̃

K(m− m̄)
since m̄ < m

which completes the proof.

Proof of Proposition 8.8.1. The proof is close from the proof of the analogous
result for BGW tree (see e.g. [52]). Complications come from the fact that the
number of contaminated daughters of a cell is strongly linked to the number of
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parasites of this cell. So the numbers of contaminated daughters of cells i ∈ T∗
(or i ∈ G∗n) are neither independent nor identically distributed.

1) First note that for every n ∈ N, a.s. for every u ∈ ∂T∗, we have
µ(br)(B(u|n)) > 0 and∫

∂T∗

1
(m0 +m1)nµ(br)(B(u|n))

µ(br)(du)

=
∑
i∈Gn

∃u∈∂T∗, u|n=i

1
(m0 +m1)nµ(br)(B(i))

µ(br)(B(i))

=
#{i ∈ Gn : ∃u ∈ ∂T∗, u|n = i}

(m0 +m1)n

≤ #G∗n
(m0 +m1)n

By Fubini E(#G∗n/(m0 +m1)n) = 2nP(Zn > 0)/(m0 +m1)n, which is less than 1
since (m0,m1) ∈ D3. Then,

M ′ = sup
n∈N

E
( ∫

∂T∗

1
(m0 +m1)nµ(br)(B(u|n))

µ(br)(du)
)
<∞

Note also that

µ(br)
(
u : (m0 +m1)nµ(br)(B(u|n)) < n−4

)
= µ(br)

(
u :

1
(m0 +m1)nµ(br)(B(u|n))

> n4
)

≤ n−4

∫
∂T∗

1
(m0 +m1)nµ(br)(B(u|n))

µ(br)(du)

so that taking expectations

E
[
µ(br)

(
u : (m0 +m1)nµ(br)(B(u|n)) < n−4

)]
≤M ′n−4.

Markov inequality yields

P
[
µ(br)

(
u : (m0 +m1)nµ(br)(B(u|n)) < n−4

)
≥ n−2

]
≤M ′n−2,

and Borel-Cantelli lemma ensures that a.s. for n large enough,

µ(br)
(
u : (m0 +m1)nµ(br)(B(u|n)) < n−4

)
< n−2.

Then Borel-Cantelli entails that a.s., for µ(br) every u ∈ ∂T, we have for n large
enough

(m0 +m1)nµ(br)(B(u|n)) ≥ n−4.
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Thus a.s., for µ(br) every u ∈ ∂T,

lim inf
n→∞

log(µ(br)(B(u|n)))/n ≥ −log(m0 +m1).

2) Let’s prove that −log(m0 +m1) is also the upperbound.

E
[
µ(br)

(
u : µ(br)(B(u|n)) ≥ x/(m0 +m1)n

)]
=

∑
i∈Gn

E
[
µ(br)(B(i))1lW (i)≥x

]
=

∑
i∈Gn

E
[
µ(br)(B(i))1l0<Zi≤K, W (i)≥x

]
+ E

[
µ(br)(B(i))1lZi>K, W (i)≥x

]
Using (8.45) and (8.44), we get for every Kn > 0

≤ (m0 +m1)−n

[ ∑
i∈Gn

E
[
1lZi>0

]
E

[
1lPK

k=1 Wk≥x

K∑
k=1

Wk

]
+

∑
i∈Gn

E
[
1lZi>KW (i)

]]
Using (8.43), Fatou lemma give and Minkowski inequality :

E
( K∑

k=1

WK
k

)1/K ≤
K∑

k=1

E
(
WK

k

)1/K
,

we get

≤
E

[
#G∗n

]
(m0 +m1)n

E
[
(
∑K

k=1Wk)3/2)
]

√
x

+ lim sup
q→∞

E
[
#{i ∈ G∗n+q : Zi|n > K}

]
(m0 +m1)n+q

≤ M ′′
K3/2

√
x

+
M

K

for some constantsM ′′, M using E(W 3/2) <∞ and Lemma 8.8.3. MakingKn = n2

in this inequality ensures that for every ε > 0,

E
[
µ(br)

(
u : µ(br)(B(u|n)) ≥ (1 + ε)n/(m0 +m1)n

)]
is summable. Then a.s.

µ(br)
(
u : µ(br)(B(u|n)) ≥ (1 + ε)n/(m0 +m1)n

)
is summable and Borel-Cantelli entails that for µ(br) every u ∈ ∂T, we have for n
large enough

µ(br)(B(u|n)) ≤ (1 + ε)n/(m0 +m1)n.

Thus a.s., for µ(br) every u ∈ ∂T,

lim sup
n→∞

log(µ(br)(B(u|n)))/n ≤ −log(m0 +m1) + log(1 + ε).

which completes the proof letting ε→ 0.
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Proof of Corollary 8.8.2. This is a classical consequence of Proposition 8.8.1 (see
e.g. [52]). We work conditionally on Extc.

First let 0 < α < log(m0+m1). As µ(br)(∂T) 6= 0 a.s., Proposition 8.8.1 enables
us to find a.s. a compact K ⊂ ∂T∗ and N ≥ 0 such that µ(br)(K) 6= 0 and

∀u ∈ K, ∀n ≥ N : −log
(
µ(br)(B(u|n)

)
≥ nα. (8.46)

For any open cover (Aj)j∈N of K, we denote by ij the most recent common ancestor
of Aj ∩K. This latter satisfies

e−|ij | = diam(Aj ∩K).

Assume now that for every j ∈ N, diam(Aj) ≤ e−N , then |ij | ≥ N and by (8.46),

µ(br)(Aj ∩K) ≤ µ(br)(B(ij) ∩K) ≤ e−|ij |α = diam(Aj ∩K)α.

So ∑
j∈N

diam(Aj)α ≥
∑
j∈N

µ(br)(Aj ∩K) ≥ µ(br)(K) > 0

which ensures dim(∂T∗) ≥ dim(K) ≥ α. Letting α→ log(m0 +m1) gives

dim(∂T∗) ≥ log(m0 +m1).

Conversely, ∂T∗ can be covered by the balls (B(i))i∈G∗n of radius e−n. As

#G∗n(e−n)log(m0+m1) = (m0 +m1)−n#G∗n

converges in probability as n tends to infinity to a finite random variable W , we
get for every α > log(m0 +m1),

lim
δ→0

inf{
∑
j∈N

diam(Aj)α : ∪j∈NAj ⊃ ∂T∗, diam(Aj) ≤ δ} = 0.

Letting α→ log(m0 +m1) gives

dim(∂T∗) ≤ log(m0 +m1),

which completes the proof.
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Chapter 9

Cell contamination and
branching process in random
environment with immigration

9.1 Introduction

We consider the following model for cell division with parasite infection and
state dependent contamination. We start with one cell which divides into two
daughter cells at every generation. Each cell behaves independently and at each
generation,
(i) parasites multiply randomly inside the cell,
(ii) a random number of parasites contaminate any cell from outside the cell
population,
(iii) each cell divides into two daughter cells and the offspring of each parasite is
shared randomly into the two daughter cells.

It is convenient to distinguish a first daughter cell called 0 and a second one
called 1. We denote by T = ∪n∈N{0, 1}n the binary genealogical tree of the
cell population, by Gn the set of cells at generation n and by Zi the number of
parasites of cell i ∈ T.

First, we describe by a branching process the random multiplication and
sharing of parasites in the cell, i.e. this branching process combines (i) and (iii).
Second, we describe the random contamination (ii) by immigration. Finally, we
consider both to fully describe the model.

I Parasite infection and cell division
For every cell, we choose randomly a mechanism for multiplication of the par-

asites inside and sharing of their offspring when the cell divides. This mechanism
is independent and identically distributed for every cell.
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In that purpose, let f be a random bivariate probability generating function
(p.g.f) , i.e. f is a.s. the p.g.f of a pair of random variables taking values in N. Let
(fi)i∈T be a sequence of iid couple p.g.f distributed as f , which gives for every cell
i the reproduction law and sharing of the offspring of its parasites.
More precisely, for every i ∈ T, let (Z(0)

k (i), Z(1)
k (i))k∈N be a sequence of r.v. such

that conditionally on fi = g, (Z(0)
k (i), Z(1)

k (i))k∈N are iid with common couple p.g.f
g :

∀i ∈ T, ∀k ∈ N, ∀s, t ∈ [0, 1], E(sZ
(0)
k (i)tZ

(1)
k (i) | fi = g) = g(s, t).

In each generation, each parasite k of cell i gives birth to Z(0)
k (i)+Z

(1)
k (i) children,

Z
(0)
k (i) of which go into the first daughter cell and Z(1)

k (i) of which into the second
one, when the cell divides. This is a more general model for parasite infection and
cell division than the model studied in Chapter 8, where there was no random
environment (f was deterministic) and the the total number of parasites was a
Galton Watson process. See [59] for the original model in continuous time.

Our model includes also the two following natural models, with random
binomial repartition of parasites. Let Z be a random variable in N and (Pi)i∈T
be iid random variable in [0, 1]. At each generation, every parasite multiplies
independently with the same reproduction law Z. Thus parasites follow a Galton
Watson process. Moreover Pi gives the mean fraction of parasites of the cell
i which goes into the first daughter cell when the cell divides. More precisely,
conditionally on Pi = p, every parasite chooses independently the first daughter
cell with probability p (and the second one with probability 1− p).
It contains also the following model. Every parasite gives birth independently to
a random cluster of parasites of size Z and conditionally on Pi = p, every cluster
of parasite goes independently into the first cell with probability p (and into the
second one with probability 1− p).

We want to take into account unequal sharing of parasites and do not make
any assumption about f , since these unequal sharing have been observed experi-
mentally (M. de Paepe, G. Paul and F. Taddei at TaMaRa’s Laboratory (Hôpital
Necker, Paris) have infected the bacteria E. Coli with a lysogen bacteriophage
M13, see [88]) . In Section 9.6.1, we consider this model (i.e. there is no
contamination) and we determine when the organism recovers, in the sense that
the number of infected cells becomes negligible compared to the number of cells
when the generation tends to infinity. Actually, in this case, for any reproduction
rate of parasites, we can find a necessary and sufficient condition on sharing of
their offspring so that the organism recovers a.s., which generalizes results of
Section 8.3 to random environment.

II State dependent contamination At each generation, each cell is contami-
nated by a random number of parasites which multiply randomly and are shared
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randomly between the two daughter cells. This contamination depends only on
whether the cell is already infected or not.

That is, conditionally given the number of parasites in the cells, the numbers
of parasites which contaminate the cells are independent. This contamination is
identically distributed for infected cells, idem for non-infected cells. Formally, if
a cell i contains x parasites, the contamination brings Y (0)

x parasites to the first
daughter cell of i and Y (1)

x to the second one, where

∀x ≥ 1, Y1 : d= Y (0)
x

d= Y (1)
x , Y0 : d= Y

(0)
0

d= Y
(1)
0 .

Moreover we assume that contamination satisfies

0 < P(Y0 = 0) < 1, 0 < P(Y1 = 0), (9.1)

which means that a given cell is not contaminated a.s., and every non-infected cell
may be contaminated with a positive probability.

This model contains the case when the contamination is independent of the
number of parasites in the cell (Y0 and Y1 are identically distributed). It also takes
into account the case when only non infected cells can be contaminated (Y1 = 0
a.s.) and the case when infected cells are ’weaker’ and parasites contaminate them
easier (Y1 ≥ Y0 a.s.). For biological and technical reasons, we dot make Yx depend
on x ≥ 1.

III Cell division with parasite infection and contamination We describe now
the whole model. We start with a single cell with k parasites and denote by Pk

the associated probability. Unless otherwise specified, we assume k = 0.

For every cell i ∈ T, conditionally on Zi = x and fi = g, the numbers of
parasites (Zi0, Zi1) of its two daughter cells is distributed as

x∑
k=1

(Z(0)
k (i), Z(1)

k (i)) + (Y (0)
x (i), Y (1)

x (i)),

where

(i) (Z(0)
k (i), Z(1)

k (i))k≥1 is an iid sequence with common couple probability
generating function g.

(ii) (Y (0)
x (i), Y (1)

x (i)) is independent of (Z(0)
k (i), Z(1)

k (i))k≥1.

Moreover,
(
(Z(0)

k (i), Z(1)
k (i))k≥1, (Y (0)

x (i), Y (1)
x (i))x≥0

)
are iid for i ∈ T.

Figure 8. Cell division with multiplication of parasites, random sharing and con-
tamination. Each parasite gives bith to a random number of light parasites and
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dark parasites. Light parasites go into the first daughter cell, dark parasites go
into the second daughter cell and square parasites contaminate the cell. But light/
dark/ square parasites then behave in the same way.

This model is a Markov chain indexed by a tree. This subject has been studied
in the literature (see e.g. [9, 10, 18]) in the symmetric independent case. That is,
∀(i, k) ∈ T× N,

P((Zi0, Zi1) = (k0, k1) | Zi = k) = P(Zi0 = k0 | Zi = k)P(Zi0 = k1 | Zi = k),

which would require that Z(0) and Z(1) are iid in this model. Guyon [47] proves
limit theorems for a Markov chain indexed by a binary tree where asymmetry
and dependence are allowed. His theorem is the key argument to prove conver-
gence of asymptotic proportions of cells with a given number of parasites here.
Indeed, contamination ensures that the random walk on the tree is ergodic and
non trivial (see Section 9.5), which is the fundamental assumption to use his results.

Thus, a key role is played by the random walk on the binary tree, that is the
number of parasites in a random cell line. More precisely, let (ai)i∈N be an iid
sequence independent of (Zi)i∈T such that

P(a1 = 0) = P(a1 = 1) = 1/2. (9.2)

Denote by f (0) (resp f (1)) the random p.g.f which gives the law of the size of the
offspring of a parasite which goes in the first daughter cell (resp. in the second
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daughter cell). That is,

f (0)(s) = f(s, 1) a.s., f (1)(t) = f(1, t) a.s., (s, t ∈ [0, 1]).

Let f be the mixed generating function of f (0) and f (1), i.e.

P(f ∈ dg) =
P(f (0) ∈ dg) + P(f (1) ∈ dg)

2
.

Then (Zn)n∈N = (Z(a1,a2,..an))n∈N is a Branching Process in Random Environment
with immigration depending on the state is zero or not : the reproduction law
is given by its p.g.f f , the immigration law in zero is distributed as Y0, and the
immigration law in k ≥ 1 as Y1.

9.2 Main results

Galton Watson processes with immigration are well known (see e.g. [5, 70]). If
the process is subcritical and the expectation of the logarithm of the immigration
is finite, then it converges in distribution to a finite random variable. Otherwise
it tends to infinity in probability. Key [58] has obtained the analogue result for
Branching Processes in Random Environment with Immigration (IBPRE), in the
subcritical case, with finite expectation of the logarithm. Actually he states results
for multitype IBPRE, which have been complemented by Roitershtein who ob-
tains a strong law of large numbers and a central limit theorem for the partial sum.

In Section 9.4, we give the asymptotic behavior of IBPRE in the general case,
that is limit theorems for (Zn)n∈N in the case when Y0 and Y1 are identically
distributed. To get this result, we begin with proving some results on Markov
processes (Section 9.3.2), use classical arguments for Galton Watson process with
immigration (see [70]) and the tail of the time when IBPRE returns to 0 in the
subcritical case, which is proved in [58].

We can then state results about branching processes in random environment
with immigration depending on the state is zero or not (Section 9.5) using coupling
arguments and Section 9.3.2. This process gives the number of parasites along a
random cell line. Recall that immigration in state zero is distributed as Y0 and
immigration in state k ≥ 1 is distributed as Y1. As expected, we prove that if
E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then this process con-
verges in distribution. Otherwise, it tends to infinity in probability. More precisely

Theorem. (i) If E
(
log(f ′(1))

)
< 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then

there exists a finite r.v. Z∞ such that for every k ∈ N, Zn starting from k converges
in distribution to Z∞ as n→∞.

(ii) If E
(
log(f ′(1))

)
≥ 0 or max(E(log+(Yi)) : i = 0, 1) = ∞, Zn converges in

probability to ∞ as n→∞.
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With additional assumptions, we provide in Section 9.5 an estimate of the rate
of convergence of (Zn)n∈N.

Then we prove asymptotics results on the population of cells in generation n as
n→∞. First, we consider the case where there is no contamination : Y0 = Y1 = 0
a.s. and and we determine when the organism recovers, meaning that the number
of contaminated cells Nn becomes negligible compared to the total number of cells
(Section 9.6.1).

Proposition. Nn/2n decreases as n grows.
If E(log(f ′(1))) ≤ 0, then Nn/2n → 0 a.s. as n→∞.
Otherwise, Nn/2n → 0 as n → ∞ iff all parasites die out, which happens with a
probability less than 1.

In the case of the random binomial repartition of parasites with reproduction
of parasites given by the r.v. Z and random sharing of parasites given by the r.v.
P ∈ [0, 1] (see Introduction I), the organism recovers a.s. iff

log(E(Z)) ≤ E(log(1/P )).

Then, we focus on proportions of cells in generation n with a given number of
parasites in the general case (Section 9.6) :

Fk(n) :=
#{i ∈ Gn : Zi = k}

2n
(k ∈ N).

Using [47] and the theorem above, we prove that if E(log(f ′(1))) < 0 and
max(E(log+(Yi)) : i = 0, 1) < ∞, then proportions follow a law of large numbers.
Otherwise, cells become largely infected. More precisely :

Theorem. If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then for
every k ∈ N, Fk(n) converges in probability to a deterministic number fk as n→∞,
such that f0 > 0 and

∑∞
k=0 fk = 1.

Otherwise, for every k ∈ N, Fk(n) converges in probability to 0 as n→∞.

Finally, we give the asymptotic behavior of the total number of parasites in
generation n in the case when the growth of parasites follows a Galton Watson
process and the contamination does not depend on the state of cell.

9.3 Preliminaries

We recall first some results about Branching Processes in Random Environ-
ment (BPRE) and then about Markov chains, which will be both useful to study
BPRE with immigration (Zn)n∈N. We denote by k the initial number of parasites
and by Pk the probability associated with.

Page 176



9.3. PRELIMINARIES

9.3.1 Branching Processes in Random Environment (BPRE)

We consider here a BPRE (Zn)n∈N specified by a sequence of iid generating
functions (fn)n∈N distributed as f [6, 7, 87]. More precisely, conditionally on the
environment (fn)n∈N, particles at generation n reproduce independently of each
other and their offspring has generating function fn. Then Zn is the number of
particles at generation n and Zn+1 is the sum of Zn independent random variables
with generating function fn. That is, for every n ∈ N,

E
(
sZn+1 |Z0, . . . , Zn; f0, . . . , fn

)
= fn(s)Zn (0 ≤ s ≤ 1).

Thus, denoting by Fn := f0 ◦ · · · ◦ fn−1, we have for every k ∈ N,

Ek(sZn+1 | f0, ..., fn) = E(sZn+1 | Z0 = k, f0, ..., fn) = Fn(s)k (0 ≤ s ≤ 1).

When the environments are deterministic (i.e. f is a deterministic generating
function), this process is the Galton Watson process with reproduction law Z,
where f is the generating function of Z .

The process (Zn)n∈N is called subcritical, critical or supercritical if

E
(
log(f ′(1))

)
is negative, zero or positive respectively. This process becomes extinct a.s. :

P(∃n ∈ N : Zn = 0) = 1

iff it is subcritical or critical [6] (see [43] for finer results).

In the critical case, we make the following integrability assumption :

0 < E(log(f ′0(1))2) <∞, E
(
[1 + log(f ′0(1))]f ′′0 (1)/2f ′0(1)

)
<∞,

so that there exists 0 < c1 < c2 <∞ such that for ever n ∈ N (see [63])

c1/
√
n ≤ P(Zn > 0) ≤ c2/

√
n. (9.3)

See [3] for more general result in the critical case.

9.3.2 Markov chains

We consider now a Markov chain (Zn)n∈N taking values in N and introduce T0

the first time when (Zn)n∈N visits 0 after time 0 :

T0 := inf{i > 0 : Zi = 0}.

Denote by

un := P0(Zn = 0), u∞ := 1/E0(T0) (1/∞ = 0).
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By now, we assume P0(Z1 = 0) > 0 and we need and prove the following result
which gives the asymptotic behavior of (Zn)n∈N. The first part of (i) is the
classical ergodicity of an aperiodic positive recurrent Markov chain and we provide
an estimate of the convergence rate depending on the initial state. (ii) is the null
recurrent case, which is also a classical result.

Lemma 9.3.1. (i) If for every k ∈ N, Ek(T0) < ∞, then Zn starting from k
converges in distribution to a finite random variable Z∞, which does not depend
on k and verifies

P(Z∞ = 0) > 0.

Moreover there exists A > 0 such that for all n, k ∈ N,∑
l∈N

|Pk(Zn = l)− P(Z∞ = l)|

≤ A
[

sup
n/2≤l≤n

{|ul − u∞|}+ E0(T01lT0>n/4) + Ek(T01lT0>n/4)
]
. (9.4)

(ii) If E0(T0) = ∞ and for every l ∈ N, Pl(T0 <∞) > 0, then for every k ∈ N,
Zn →∞ in Pk-probability as n→∞.

Proof of (i). As P0(Z1 = 0) > 0, the renewal theorem [36] ensures that

un
n→∞−→ u∞.

First, note that by the Markov property,

|Pk(Zn = 0)− u∞|

= |
n∑

j=0

Pk(T0 = j)P0(Zn−j = 0)− u∞|

≤
n∑

j=0

Pk(T0 = j)|un−j − u∞|+ u∞Pk(T0 > n). (9.5)

On the event {T0 ≤ n}, define Rn as the last passage time of (Zn)n∈N by 0 before
time n:

Rn := sup{i ≤ n : Zi = 0}.

For all 0 ≤ i ≤ n and l ∈ N, by the Markov property,

Pk(Zn = l) = Pk(T0 > n, Zn = l) +
n∑

i=0

Pk(T0 ≤ n, Rn = n− i, Zn = l)
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= Pk(T0 > n, Zn = l) +
n∑

i=0

Pk(Zn−i = 0)P0(Zi = l, T0 > i).(9.6)

Define now

αl := u∞

∞∑
i=0

P0(Zi = l, T0 > i).

We then have

|Pk(Zn = l)− αl| ≤ Pk(T0 > n, Zn = l) + u∞

∞∑
i=n+1

P(Zi = l, T0 > i)

+
n∑

i=0

P(Zi = l, T0 > i)
∣∣u∞ − Pk(Zn−i = 0)

∣∣.
Summing over l leads to∑

l∈N
|Pk(Zn = l)− αl| ≤ Pk(T0 > n) + u∞E0(T01lT0>n+1)

+
n∑

i=0

P(T0 > i)
∣∣u∞ − Pk(Zn−i = 0)

∣∣.
Moreover using (9.6), we have for all 0 ≤ n0 ≤ n,

n∑
i=0

P(T0 > i)
∣∣u∞ − Pk(Zn−i = 0)

∣∣
≤

n∑
i=0

P0(T0 > i)[
n−i∑
j=0

Pk(T0 = j)|un−i−j − u∞|+ u∞Pk(T0 > n− i)]

≤
n∑

i=0

P0(T0 > i)
n−i∑
j=0

Pk(T0 = j)|un−i−j − u∞|+ u∞

n∑
i=0

P0(T0 > i)Pk(T0 > n− i).

Finally, denoting by M := supn∈N{|un − u∞|},

n∑
i=0

P0(T0 > i)
n−i∑
j=0

Pk(T0 = j)|un−i−j − u∞|

≤ sup
n0≤l≤n

{|ul − u∞|}
n∑

i=0

P0(T0 > i)
n−i∑
j=0

Pk(T0 = j)1n−i−j≥n0

+M
n∑

i=0

P0(T0 > i)
n−i∑
j=0

Pk(T0 = j)1n−i−j<n0

≤ sup
n0≤l≤n

{|ul − u∞|}
n∑

i=0

P0(T0 > i)
n−i∑
j=0

Pk(T0 = j)
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+M
n−n0∑
i=0

P0(T0 > i)Pk(T0 > n− n0 − i).

Combining the three last inequalities and using that

n∑
i=0

P0(T0 > i)Pk(T0 > n− i) ≤ E0(T01lT0>n/2) + Ek(T01lT0>n/2),

n−n0∑
i=0

P0(T0 > i)Pk(T0 ≥ n− n0 − i) ≤ E0(T01lT0>(n−n0)/2) + Ek(T01lT0>n−n0)/2),

we get, for all 0 ≤ n0 ≤ n,∑
l∈N

|Pk(Zn = l)− αl| ≤ Pk(T0 > n) + u∞E0(T01lT0>n+1) + sup
n0≤l≤n

{|ul − u∞|}E0(T0)

+[u∞ +M ][E0(T01lT0>(n−n0)/2) + Ek(T01lT0>(n−n0)/2)].

By renewal theorem un
n→∞−→ u∞. Adding that Ek(T0) < ∞ and E0(T0) < ∞

ensures that ∑
l∈N

|Pk(Zn = l)− αl|
n→∞−→ 0,

which proves that Zn starting from k converges in distribution to a r.v. Z∞ which
does not depend on k.

The inequality of the lemma is obtained by letting n0 = n/2.

Proof of (ii). If E0(T0) = ∞, then by the renewal theorem again [?],

un = P(∃k ∈ N : Tk = n) n→∞−→ 0.

So
Dn = inf{Tk − n : k ∈ N, Tk ≥ n} n→∞−→ ∞, in probability.

Assume that there exists l ∈ N, ε > 0 and an increasing sequence of integers
(un)n∈N such that

Pk(Zun = l) ≥ ε.

As Pl(T0 <∞) > 0 by hypothesis, there exists N > 0 such that

Pl(T0 = N) > 0.

Thus, by the Markov property,

Pk(Zun+K = 0) ≥ Pk(Zun = l)Pl(T0 = N) ≥ εPl(T0 = N).
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Then, for all n ∈ N,

Pk(Dun ≤ N) ≥ εPl(T0 = N) > 0,

which is in contradiction with Dn tends to ∞ in Pk as n → ∞. Then, Pk(Zn =
l) → 0 as n→∞.

9.4 Branching processes in random environment with
immigration (IBPRE)

We consider here a BPRE (Zn)n∈N whose reproduction law is given by the
random p.g.f f and we add at each generation n a random number of immigrants
Yn independent and identically distributed as a r.v Y such that

P(Y = 0) > 0.

More precisely, for every n ∈ N,

Zn+1 = Yn +
Zn∑
i=1

Xi, (9.7)

where (Xi)i∈N, Yn and Zn are independent and conditionally on fn = g, the
(Xi)i∈N are iid with common probability generating function g.

Note that if the contamination does not dependent on the fact that this cell
is already contaminated or not (i.e. Y0

d= Y1), then the number of parasites in a
random cell line defined in Introduction is a IBPRE whose reproduction law given
by f and immigration by Y d= Y0

d= Y1.

We give now the asymptotic behavior of this process. These results are classical
for the Galton Watson process with immigration [70]. We follow the same method
in the case of random environment for the subcritical and supercritical cases, give
in (ii) the tail of the time when the process returns to 0 in the subcritical case,
which is proved in [58] and we use Section 9.3.2 for the critical case.

Proposition 9.4.1. (i) If E
(
log(f ′(1))

)
< 0 and E(log+(Y )) < ∞, then

Zn converges in distribution to a finite random variable as n → ∞ and
limn→∞ P(Zn = 0) > 0.
Otherwise Zn →∞ as n→∞.
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(ii) Recall that T0 := inf{n > 0 : Zn = 0}. If E
(
log(f ′(1))

)
< 0 and there exists

q > 0 such that E(Y q) <∞, then there exist c, d > 0 such that for every n ∈ N

P(T0 > n) ≤ ce−dn.

(iii) Assume E(f ′(1)−1) < 1 and E(log+(Y )) < ∞, then there exists a finite
r.v. W such that

[Πn−1
i=0 f

′
i(1)]−1Zn

n→∞−→ W, in P.

Note that by the Borel-Cantelli lemma, if E(log+(Y1)) = ∞, then for every
c > 1,

lim sup
n→∞

c−nZn = ∞ a.s.

since Zn ≥ Yn a.s. Moreover the proof of Section 9.5 provides an other approach
to prove that (Zn)n∈N tends to ∞ if E(log+(Y )) = ∞.

Proof of (i) and (ii) in the subcritical case : E
(
log(f ′(1))

)
< 0. The subcritical

case with assumption E(log+(Y )) < ∞ is handled in [58] : First part of (i) is
Theorem 3.3 and (ii) is a consequence of Theorem 4.2 of [58].

Assume that E
(
log(f ′(1))

)
< 0 and E(log+(Y )) = ∞. We prove now that Zn

converges in probability to ∞. The proof is close to the Galton Watson case (see
[70]). First, by Borel-Cantelli lemma,

lim sup
k→∞

log+(Yk)/k = ∞ a.s.

Then, for every c ∈]0, 1[,

lim sup
k→∞

ckYk = ∞ a.s. (9.8)

Note that

Zn =
n−1∑
k=0

Zk,n,

where Zk,n is the number of descendants in generation n of immigrants in gen-
eration n − k. Thus, denoting by Yk,n the number of immigrants in generation
n − k and Xi(k, n) the number of descendants in generation n of immigrant i in
generation n− k, we have

Zn =
n−1∑
k=0

Yk,n∑
i=1

Xi(k, n).
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This sum increases stochastically as n tends to infinity and tends in distribution
to

Z∞ =
∞∑

k=0

Yk∑
i=1

Xi(k),

where conditionally on (fi : i ∈ N), (Xi(k) : i ∈ N, k ∈ N) are independent and
the probability generating function of Xi(k) is equal to fk−1 ◦ ... ◦ f0. Roughly
speaking, Xi(k) is the contribution of immigrant i which arrives k generations
before ’final time’ ∞. The integer Xi(k) is the population in generation k of a
BPRE without immigration starting from 1.

Assume now that Z∞ <∞ with a positive probability. As (Xi(k) : k ∈ N, 1 ≤
i ≤ Yk) are integers, then conditionally on Z∞ <∞, only a finite number of them
are positive. Thus, by Borel-Cantelli lemma, conditionally on (Z∞ <∞, Yk : k ∈
N, fi : i ∈ N),

∞∑
k=0

YkP(X1(k) > 0) <∞ a.s.

Moreover, by convexity, for all g p.g.f and s ∈ [0, 1],

1− g(s)
1− s

=
g(1)− g(s)

1− s
≥ g(1)− g(0)

1− 0
= 1− g(0), (0 ≤ s ≤ 1).

Then 1− g(s) ≥ (1− g(0))(1− s) and by induction, we have for every k ∈ N,

P(X1(k) > 0 | fi : i ∈ N) = 1− fk−1 ◦ ... ◦ f0(0)
≥ Πk−1

i=0 (1− fi(0))
= exp(Sk),

where Sk :=
∑k−1

i=0 log(1 − fi(0)). Thus, conditionally on (Z∞ < ∞, Yk : k ∈
N, fi : i ∈ N),

∞∑
k=0

Yk exp(Sk) <∞ a.s.

Thus, on the event {Z∞ <∞} which has a positive probability, we get
∞∑

k=0

Yk exp(Sk) <∞ a.s.

Moreover Sn is a random walk with negative drift E(log(1−f0(0))). So letting α <
E(log(1− f0(1))), P(Sn < αn) decreases exponentially by classical large deviation
results. Then by Borel-Cantelli lemma, Sn is less than αn for a finite number of
n, and

L := inf
n∈N

{Sn − αn} > −∞ a.s.

Using that for every k ∈ N, Sk ≥ αk + L a.s., we get
∞∑

k=0

exp(αk)Yk <∞,
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with positive probability. This is in contradiction with (9.8). Then Z∞ = ∞ a.s.
and Zn converges in probability to ∞ as n→∞.

Proof of (i) in the critical and supercritical case : E
(
log(f ′(1))

)
≥ 0. First, we fo-

cus on the critical case. Recall that T0 = inf{i > 0 : Zi = 0} and consider (Z̄n)n∈N
the BPRE associated with (Zn)n∈N, that is the critical BPRE with reproduction
law f and no immigration. Thanks to (9.3), there exists c1 > 0 such that for ever
n ∈ N,

P1(Z̄n > 0) ≥ c1/
√
n.

Adding that
P1(T0 > n) = P1(Zn > 0) ≥ P1(Z̄n > 0),

ensures that
E1(T0) = ∞.

Then E0(T0) = ∞ since IBPRE (Zn)n∈N starting from 1 is stochastically larger
than (Zn)n∈N starting from 0. Moreover ∀k ∈ N, Pk(T0 < ∞) > 0, since
Pk(T̄0 <∞) = 1 and P(Y = 0) > 0. Then Lemma 9.3.1 (ii) ensures that Zn →∞
in P as n→∞.

For the supercrtical case, follow the proof in the critical case (or use the result
with a coupling argument) to get that Zn →∞ in probability as n→∞

Proof of (iii). We follow [70] again. If E(log+(Y )) <∞ , by Borel-Cantelli Lemma

lim sup
k→∞

log+(Yk)/k = 0.

Then for every c > 1,
∞∑

k=0

c−kYk <∞ a.s. (9.9)

Define
Pn := [Πn−1

i=0 f
′
i(1)]−1,

and denote by Fn the σ-field generated by (Zi : 0 ≤ i ≤ n), (Pi : 0 ≤ i ≤ n) and
(Yk : k ∈ N). Then using (9.7), we have

E(Pn+1Zn+1 | Fn) = E(Pn+1[
Zn∑
i=1

Xi + Yn] | Fn)
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= PnE(f ′n(1)−1
Zn∑
i=1

Xi | Fn) + PnE(f ′(1)−1)Yn

= PnE(f ′n(1)−1ZnE(X1 | fn) | Fn) + PnE(f ′(1)−1)Yn

= PnZn + PnE(f ′(1)−1)Yn.

So PnZn is a submartingale. Moreover

E(PnZn | F0) = Z0 +
n−1∑
i=0

E(f ′(1)−1)i+1Yi.

By (9.9), if E(f ′(1)−1) < 1, PnZn has bounded expectations and then converges
a.s. to a finite r.v.

9.5 Ergodicity and convergence for a random cell line

Recall that (Zn)n∈N defined in Introduction is the number of parasites in a
random cell line. The Markov chain (Zn)n∈N is a BPRE with state dependent
immigration. The reproduction law is given by the p.g.f f , immigration in state
0 is distributed as Y0 and immigration in state k ≥ 1 is distributed as Y1. More
precisely, for every n ∈ N, conditionally on Zn = x,

Zn+1 = Y (n)
x +

x∑
i=1

X
(n)
i ,

where (X(n)
i )i∈N and Y (n)

x are independent. Moreover conditionally on fn = g, the
(X(n)

i )i∈N are iid with common probability generating function g. Recall also that

for all x ≥ 1 and n ∈ N, Y (n)
x

d= Y1.

We have the following results, which generalize those of the previous section
to the case when immigration depends on whether the state is zero or not.

Theorem 9.5.1. (i) If E
(
log(f ′(1))

)
< 0 and max(E(log+(Yi)) : i = 0, 1) < ∞,

then there exists a finite random variable Z∞ such that for every k ∈ N, Zn starting
from k converges in distribution to Z∞ as n→∞.

Moreover, if there exists q > 0 such that max(E(Y q
i ) : i = 0, 1) < ∞, then for

every ε > 0, there exist 0 < r < 1 and C > 0 such that for all n ∈ N and k ∈ N,

∞∑
l=0

|Pk(Zn = l)− P(Z∞ = l)| ≤ Ckεrn
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(ii) If E
(
log(f ′(1))

)
≥ 0 or max(E(log+(Yi)) : i = 0, 1) = ∞, Zn converges in

probability to infinity as n→∞.

Note again that by Borel-Cantelli lemma, if E(log+(Y1)) = ∞, then for every c > 1,

lim sup
n→∞

c−nZn = ∞ a.s.,

since Zn ≥ Yn a.s.

The proof of (ii) in the critical or supercritical case (E
(
log(f ′(1))

)
≥ 0) is

directly derived from Proposition 9.4.1 and we focus now on the subcritical case :

E
(
log(f ′(1))

)
< 0.

Recall that T0 is the first time after 0 when (Zn)n∈N visits 0. Using IBPRE (see
Section 9.4), we prove the following result in the subcritical case.

Lemma 9.5.2. If max(E(log+(Yi)) : i = 0, 1) <∞, then for all k, i ∈ N, Pk(Ti <
∞) = 1 and (Zn)n∈N is bounded in distribution :

sup
n∈N

{Pk(Zn ≥ l)} l→∞−→ 0.

Moreover if there exists q > 0 such that max(E(Y q
i ) : i = 0, 1) <∞, then for every

ε > 0, there exist r > 0 and C > 0 such that for all n ∈ N, k ∈ N :

Pk(T0 ≥ n) ≤ Ckεrn,

P0(T0 ≥ n) ≤ Crn.

Proof. We couple (Zn)n∈N with an IBPRE (Z̃n)n∈N with reproduction law given
by the random p.g.f f (such as (Zn)n∈N) and immigration Y defined by

Y := max(Y0, Y1, Ỹ ),

where Y0, Y1, and Ỹ are independent and

P(Ỹ = 0) = 1/2; ∀n ∈ N∗, P(Ỹ = n) = αn−1−ε, α := [2
∞∑
i=1

i−1−ε]−1.

Thus immigration Y for Z̃n is stochastically larger than immigration for Zn

(whereas reproduction law is the same), so that coupling gives

∀n ∈ N, Zn ≤ Z̃n a.s.
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Moreover, Z̃n is still subcritical. Recalling that min(P(Yi = 0) : i = 0, 1) > 0,
P(Ỹ = 0) = 1/2, and that the expectation of the logarithm of every r.v. is finite,
we have

E(log+(Y )) <∞, P(Y = 0) > 0.

Then Proposition 9.4.1 (i) ensures that Z̃n converges in distribution to a finite
random variable, so that

sup
n∈N

{Pk(Zn ≥ l)} ≤ sup
n∈N

{Pk(Z̃n ≥ l)} l→∞−→ 0.

Proposition 9.4.1 (i) ensures also that limn→∞ P(Zn = 0) > 0. Thus, for all
k, i ∈ N, Pk(T̃i <∞) = 1, and then Pk(Ti <∞) = 1. This completes the first part
of the lemma.

We assume now that there exists q > 0 such that max(E(Y q
i ) : i = 0, 1) < ∞.

Moreover E(Ỹ ε/2) <∞, so letting q′ = min(ε/2, q), we have

E(Y q′) <∞.

We can then apply Proposition 9.4.1 (ii) to IBPRE (Z̃n)n∈N, so that there exist
c, d > 0 such that for every n ∈ N,

P0(T̃0 > n) ≤ ce−dn.

Note that for every k ∈ N,

P0(T̃0 > n) ≥ P(Y ≥ k)Pk(T̃0 ≥ n).

By definition of Y , there exists β > 0 such that for every n ∈ N,

P(Y ≥ n) ≥ βn−ε,

Using the last three inequalities, we get

Pk(T0 ≥ n) ≤ Pk(T̃0 ≥ n)

≤ β−1kεP0(T̃0 > n)
≤ β−1ckεe−dn.

This gives the first inequality of the lemma. Similarly

Pk(T1 − T0 ≥ n) ≤ Pk(T̃1 − T̃0 ≥ n) = P0(T̃0 ≥ n) ≤ ce−d(n−1).

This completes the proof of the lemma.
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Proof of Theorem 9.5.1 (i) and (ii) in the subcritical case : E
(
log(f ′(1))

)
< 0.

We split the proof into 4 cases :

CASE 1 : max(E(log+(Yi)) : i = 0, 1) <∞.

CASE 2 : There exists q > 0 such that max(E(Y q
i ) : i = 0, 1) <∞.

CASE 3 : E(log+(Y1)) = ∞.

CASE 4 : E(log+(Y0)) = ∞.

First, note that P(Y0 = 0) > 0 ensures that P0(Z1 = 0) > 0 and we can use
results of Section 9.3.2.

CASE 1. In this case, by Lemma 9.5.2, (Zn)n∈N is bounded in distribution :

sup
n∈N

{Pk(Zn ≥ l)} l→∞−→ 0.

If E0(T0) = ∞, then Zn tends to ∞ in P0 by Lemma 9.3.1 (ii), which is in contra-
diction with the previous limit.
Then E0(T0) < ∞. We prove now that ∀k ≥ 1, Ek(T0) < ∞ by a coupling argu-
ment. Let k ≥ 1 and change only immigration to get a Markov process (Z̃n)n∈N
which is larger than (Zn)n∈N :

∀n ∈ N, Z̃n ≥ Zn a.s.

Its immigrations Ỹ0 and Ỹ1 satisfy

Ỹ1
d= Y1, ∀n ∈ N, P(Ỹ0 ≥ n) ≥ P(Y0 ≥ n),

P(Ỹ0 ≥ k) > 0, max(E(log(Ỹi) : i = 0, 1) <∞.

Then, we have again E0(T̃0) < ∞, which entails that Ek(T̃0) < ∞ since P(Ỹ0 ≥
k) > 0. As for every n ∈ N, Z̃n ≥ Zn a.s., we have

Ek(T0) ≤ Ek(T̃0) <∞.

Then Lemma 9.3.1 (i) ensures that for every k ∈ N, (Zn)n∈N converges in
distribution to a finite random variable Z∞, which does not depend on k and
verifies P(Z∞ = 0) > 0.

CASE 2 : Recall that

T0 := inf{i > 0 : Zi = 0}, Tn+1 = inf{i > Tn : Zi = 0}.
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and
un = P(∃k ∈ N : Tk − T0 = n), u∞ := 1/E0(T0).

By Lemma 9.3.1 (i), we have∑
l∈N

|Pk(Zn = l)−P(Z∞ = l)| ≤ A
[

sup
n/2≤l≤n

{|ul−u∞|}+E0(T01lT0>n/4)+Ek(T01lT0>n/4)
]
.

(9.10)
Moreover by Lemma 9.5.2, for every ε > 0, there exists C > 0 such that

Pk(T0 ≥ n) ≤ Ckεrn, (9.11)
P0(T0 ≥ n) ≤ Crn. (9.12)

So for every r′ ∈]r, 1[, E0(exp(− log(r)T0)) <∞. Then, by Kendall renewal theo-
rem [57], there exists ρ ∈]0, 1[ and c > 0 such that for every n ∈ N,

|un − u∞| ≤ cρn. (9.13)

Finally, (9.11) and (9.12) ensure that there exists D > 0 such that for every n ∈ N,

E0(T01lT0>n/4) ≤ Dnrn/4,

Ek(T01lT0>n/4) ≤ Dnkεrn/4.

Combining these two inequalities with (9.10) and (9.13), we get∑
l∈N

|Pk(Zn = l)− P(Z∞ = l)| ≤ A
[
cρn +Dnrn/4 +Dnkεrn/4

]
,

which ends the proof in CASE 2.

CASE 3. Change immigration of (Zn)n∈N to get an IBPRE (Z̃)n∈N whose
immigration is distributed as Y1 and whose reproduction law is still given by f .
Then Proposition 9.4.1 (i) and E(log+(Y1)) = ∞ ensures that (Z̃n)n∈N starting
from 0 tends in distribution to ∞.
Then Lemma 9.3.1 (i) entails that E0(T̃0) = ∞, so that for every k ≥ 1,

Ek(T̃0) ≥ E0(T̃0) = ∞,

since the IBPRE (Z̃)n∈N starting from k ≥ 1 is stochastically larger than (Z̃)n∈N
starting from 0.

Moreover, under Pk, (Zn)n∈N is equal to (Z̃n)n∈N until time T0 = T̃0.
So Ek(T0) = ∞. Let k ≥ 1 such that P0(Z1 = k) > 0, then
E0(T0) ≥ P0(Z1 = k)Ek(T0 − 1). This entails that

E0(T0) = ∞.
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By Lemma 9.3.1 (ii), (Zn)n∈N starting from any k ∈ N tends to ∞ in probability.

CASE 4. Denote by

Xi := P(Zi > 0 | Zi−1 = 1, fi−1), (i ≥ 1),

the survival probability in environment fi−1 and introduce the following random
walk

Sn =
n∑

i=1

log(Xi).

Then
P1(Zn > 0 | (f0, f1, ..., fn−1)) ≥ Πn

1Xi = exp(Sn) a.s.,

so that

Pk(Zn > 0 | (f0, f1, ..., fn−1)) = 1− Pk(Zn = 0 | (f0, f1, ..., fn−1))
= 1− [1− P1(Zn > 0 | (f0, f1, ..., fn−1))]k

≥ 1− [1− exp(Sn)]k a.s.

Thus
Pk(Zn > 0) ≥ E(1− [1− exp(Sn)]k).

Using the Markov property we have

E0(T0 + 1) ≥
∞∑

k=1

P(Y0 = k)Ek(T0)

=
∞∑

k=1

P(Y0 = k)
∞∑

n=1

Pk(T0 ≥ n)

≥
∞∑

k=1

P(Y0 = k)
∞∑

n=1

Pk(Zn > 0)

≥
∞∑

k=1

P(Y0 = k)
∞∑

n=1

E(1− [1− exp(Sn)]k).

Moreover for all x ∈ [0, 1[ and k ≥ 0, exp(k log(1 − x)) ≤ exp(−kx), and by the
law of large numbers, Sn/n tends a.s. to E(X1) < 0 so that there exists n0 ≥ 1
such that for every n ≥ n0,

P(Sn/n ≥ 3E(X1)/2) ≥ 1/2.

We get then

E0(T0 + 1) ≥
∞∑

k=1

P(Y0 = k)
∞∑

n=1

E(1− exp(−k exp(Sn)))

Page 190



9.6. ASYMPOTICS FOR PROPORTIONS OF CELLS WITH A GIVEN NUMBER OF PARASITES

≥ [1− e−1]
∞∑

n=1

∞∑
k=1

P(k exp(Sn) ≥ 1)P(Y0 = k)

≥ [1− e−1]
∞∑

n=n0

P(Sn/n ≥ 3E(X1)/2)
∞∑

k≥exp(−3nE(X1)/2)

P(Y0 = k)

≥ 2−1[1− e−1]
∞∑

n=n0

P(Y0 ≥ exp(−3nE(X1)/2))

≥ 2−1[1− e−1]
∞∑

n=n0

P(β log(Y0) ≥ n),

where β := [−3E(X1)/2]−1 > 0. Then E(log(Y0)) = ∞ ensures that E0(T0 + 1) =
∞, so

E0(T0) = ∞.

Conclude that (Zn)n∈N tends to ∞ in Pk using Lemma 9.3.1 (ii).

9.6 Asympotics for proportions of cells with a given
number of parasites

9.6.1 Asymptotics without contamination

Here there is no contamination, i.e. Y0 = Y1 = 0 a.s. and we determine when
the organism recovers, meaning that the number of contaminated cells becomes
negligible compared to the total number of cells. We get the same result as Theorem
8.3.1 for the more general model considered here. Denote by Nn the number of
contaminated cells.

Proposition 9.6.1. Nn/2n decreases as n grows.
If E(log(f ′(1))) ≤ 0, then Nn/2n → 0 a.s. as n→∞.
Otherwise, Nn/2n → 0 as n → ∞ iff all parasites die out, which happens with a
probability less than 1.

Example 8. Consider the case of the random binomial repartition of parasites (see
Introduction). Let Z ∈ N be a r.v and (Pi)i∈T be an iid sequence distributed as a
r.v. P ∈ [0, 1], such that P d= 1−P . In every generation, each parasite gives birth
independently to a random number of parasites distributed as Z. When the cell i
divides, conditionally on Pi = p, each parasite of the cell i goes independently in
the first daughter cell with probability p (or it goes in the second daughter cell,
which happens with probability 1− p). Then,

P(f ′(1) ∈ dx) = P(E(Z)P ∈ dx).
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Thus, the organism recovers a.s. (i.e. Nn/2n tends a.s. to 0) iff

log(E(Z)) ≤ E(log(1/P )).

This is the same criteria in the case when the offspring of each parasite goes a.s.
is the same daughter cell (there, p is the probability that this offspring goes in the
first daughter cell.)

In the case of non random environment for the cell (i.e. f is deterministic),
which is the Kimmel branching model studied in [13], denoting by

m0 := ∂f(s, t)/∂s(1, 0) = E(Z(0)), m1 := ∂f(s, t)/∂t(0, 1) = E(Z(1)),

E(log(f ′(1))) < 0 becomes
m0m1 < 1.

Proof. Note that Nn/2n decreases to L as n→∞, since one contaminated cell has
at most two daughter cells which are contaminated. Moreover, for every n ∈ N,

E
(
Nn

2n

)
=

E(
∑

i∈Gn
1lZi>0)

2n

=
∑
i∈Gn

1
2n

E(1lZi>0)

=
∑
i∈Gn

P((a0, ..., an−1) = i)P(Zi > 0)

= P(Zn > 0).

If E(log(f ′(1))) ≤ 0 (subcritical or critical case for BPRE Zn), then P(Zn > 0)
tends to 0 as n → ∞ (see Section 9.3.1). Thus, E(L) = 0 and Nn/2n tends to 0
a.s. as n→∞.

If E(log(f ′(1))) > 0 (supercritical case for Zn), then P(Zn > 0) tends to a
positive value p and P(L > 0) > 0.

Let us prove that in the supercritical case, conditionally on non-extinction of
parasites, the organism a.s. does recovers.

First, we prove that conditionally on non-extinction of parasites, for
every K ∈ N, there exists a generation n such that Nn ≥ K. Let
K ∈ N, there exists p ∈ N such that q := P(Np ≥ K)q > 0 since
P(Z(0) > 0, Z(1) > 0) = P(N1 = 2) > 0.
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Either the number of contaminated cells in generation p is more than K (which
happens with probability q), or we can choose in generation p a contaminated
cell. Then, with probability larger than q , the number of contaminated cells in
generation p of the subtree rooted in this cell contains more than K parasites.
Note that this probability is equal to q if the contaminated cell which we have
chosen contains one single parasite, as the first cell. Reasoning recursively, we find
a generation with more than K contaminated cells.

Second, recalling that we still work conditionally on non-extinction of parasites,
we can set T = inf{n ∈ N : Nn ≥ K} < ∞ and work now conditionally on T = n
and NT = k. Choose one parasite in every infected cell in generation n, which
you label by 1 ≤ i ≤ k. Denote then by N

(i)
p the number of cells in generation

n + p infected by parasites whose ancestor in generation n is the parasite i. By
branching property, The integers (Np(i) : 1 ≤ i ≤ k) are iid and N (i)

p /2p → L(i) as
p→∞, where (L(i) : 1 ≤ i ≤ k) are independent and P(L(i) > 0) ≥ P(L > 0) > 0.
Using that

Nn+p =
k∑

i=1

N (i)
p a.s.,

we have, conditionally on T = n.

lim
p→∞

Nn+p/2p ≥ max(L(i) : 1 ≤ i ≤ K) a.s.

As sup(L(i) : i ∈ N) = ∞ a.s., letting K → ∞ ensures that a.s. Np/2p does not
tend to 0.

9.6.2 Asymptotics with contamination in the case E(log(f ′(1))) < 0
and max(E(log+(Yi)) : i = 0, 1) < ∞.

Define Fk(n) the proportion of cells with k parasites in generation n :

Fk(n) :=
#{i ∈ Gn : Zi = k}

2n
(k ∈ N).

We introduce the Banach space l1(N) and the subset of frequencies S1(N) which
we endow with the norm ‖ . ‖1 defined by :

l1(N) := {(xi)i∈N :
∞∑
i=0

|xi| <∞}, ‖ (xi)i∈N ‖1=
∞∑
i=0

|xi|,

S1(N) := {(fi)i∈N : ∀ i ∈ N, fi ∈ R+,
∞∑
i=0

fi = 1}.

Page 193



CHAPTER 9. CELL CONTAMINATION AND BRANCHING PROCESS IN RANDOM
ENVIRONMENT WITH IMMIGRATION

The main argument here is the law of large number proved by Guyon [47] for
asymmetric Markov chains indexed by a tree.

Theorem 9.6.2. If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1) < ∞, then
(Fk(n))k∈N converges in probability in S1(N) to a deterministic sequence (fk)k∈N
as n → ∞, such that f0 > 0 and

∑∞
k=0 fk = 1. Moreover, for every k ∈ N,

fk = P(Z∞ = k).

Proof. Recall that (Zi)i∈T is a Markov chain indexed by a tree and we are in the
framework of bifurcating Markov chain studied in [47]. Thanks to the ergodicity
of the number of parasites in a random cell line proved in the previous section
(Theorem 9.5.1 (i)), we can apply Theorem 8 in [47] to get the convergence of
proportions of cells with a given number of parasites.

But it seems that we can’t apply Theorem 14 or Corollary 15 in [47] to get a.s.
convergence of proportions, because of the term kε in estimation of Theorem 9.5.1.

In the case of the random binomial repartition of parasites given by (Pi)i∈T and
mutliplication of parasites given by Z ∈ N, recall that criteria E(log(f ′(1))) < 0
becomes

log(E(Z)) < E(log(1/P )).

Using again [47], we can prove also a law of large numbers and a central limit
theorem for the proportions of cells with given number of parasites before genera-
tion n. Define, for every n ∈ N,

Pk(n) :=
#{i ∈ ∪0≤i≤nGi : Zi = k}

2n+1
(k ∈ N).

Theorem 9.6.3. If E(log(f ′(1))) < 0 and max(E(log+(Yi)) : i = 0, 1), then
(Pk(n))k∈N converges in probability in S1(N) to the deterministic sequence (fk)k∈N
as n→∞.
Moreover for every k ∈ N,

√
n(Pk(n)− fk) converges in distribution to a centered

normal law as n→∞, with a non explicit variance.

Proof. Use again Theorem 9.5.1 (i) and Theorem 8 in [47] to prove the law of large
numbers. For the central limit theorem, use Theorem 19 in [47] by letting F be
the set of measurable functions taking values in [0, 1].
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9.6.3 Asymptotics with contamination in the case E(log(f ′(1))) ≥ 0
or max(E(log+(Yi)) : i = 0, 1) = ∞.

In this case, cells become infinitely infected as the generation tends to infinity.

Theorem 9.6.4. If E(log(f ′(1))) ≥ 0 or max(E(log+(Yi)) : i = 0, 1) = ∞, for
every k ∈ N, Fk(n) tends to zero as n→∞. That is, for very K ∈ N, then

lim
n→∞

#{i ∈ Gn : Zi ≥ K}/2n P= 1.

Proof. By Fubini’s theorem, we have

E
[
#{i ∈ Gn : Zi ≥ K}/2n

]
=

∑
i∈Gn

P(Zi ≥ K)/2n

=
∑
i∈Gn

P((a0, ...an−1) = i)P(Zi ≥ K)

= P(Zn ≥ K).

By Theorem 9.5.1, P(Zn ≥ K) tends to 1, then 1 − #{i ∈ Gn : Zi ≥ K}/2n

converges to 0 in L1, which gives the result.

9.7 Asymptotics for the number of parasites

We assume here that parasites multiply following a Galton Watson process
with deterministic mean m, independently of the cell they belong to. That is,
s 7→ f(s, s) is deterministic and every parasite multiply independently with the
reproduction law whose probability generating function is equal to g : s 7→ f(s, s).
Moreover we assume that contamination of a cell does not depend on the number
of enclosed parasites. That is

Y
d= Y0

d= Y1.

Set Pn the number of parasites in generation n. Without contamination, in the
supercritical case m > 1, it is well know that either Pn becomes extinct or Pn/m

n

converges to a positive finite random variable. In the precence of contamination,
we have the following result.

Proposition 9.7.1. If E(Y ) < ∞ and P(Y0 > 0) > 0, then log(Pn)/n converges
in P to log(max(2,m)).

Proof. First, we prove the lower bound. This is a direct consequence of the fact
that Pn is larger than
(i) the number of parasites P 1

n which contaminate one of the 2n cells in generation
n,
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(ii) the number of parasites Pn(p) in generation n with the same given ancestor in
generation p.

First P 1
n is the sum of 2n iid random variables with mean E(Y ), so law of large

numbers ensures that
P 1

n/2
n n→∞−→ E(Y ), a.s.

Moreover for every p ∈ N,

Pn(p)/mn+p n→∞−→ W, a.s.,

with P(W > 0) > 0. Letting p→∞, the number of parasites in generation p tends
to infinity a.s. (use P 1

p ), so that for every ε > 0, we can choose p such that the
number P 2

n of descendants of these parasites in generation n satisfies

P 2
n/m

n+p n→∞−→ W ′, a.s.

with P(W ′ > 0) ≥ 1− ε. Using that Nn is larger than P 1
n and P 2

n ensures that for
every ε > 0,

P(log(Pn)/n ≥ log(max(2,m))− ε) n→∞−→ 1.

Second, we prove the upper bound. Note that the total number of parasites in
generation n can be written as

Pn =
n∑

i=1

2i∑
j=1

Y i,j∑
k=1

Zi,j
k ,

where Y i,j is the number of parasites which contaminate the jth cell of generation
i, and labeling by 1 ≤ k ≤ Y i,j these parasites, Zi,j

k is the number of descendants
in generation n of the kth parasites.
Moreover (Y i,j : i ∈ N, j ∈ N) are identically distributed and independent of
(Zi,j

p (k), i ∈ N, j ∈ N, k ∈ N), (Zi,j
k , i ∈ N, j ∈ N, k ∈ N) are independent and

Zi,j
p (k) is the population of a Galton Watson process in generation n − i with

offspring probability generation function equal to g. Thus

E(Pn) =
n∑

i=1

2i∑
j=1

E(
Y i,j∑
k=1

Zi,j
k )

=
n∑

i=1

2i∑
j=1

E(Y i,j)E(Zi,j
k )

= E(Y )
n∑

i=1

2i∑
j=1

mn−i

= 2E(Y )
mn − 2n

m− 2
if m 6= 2.
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If m = 2, then E(Pn) = E(Y )nmn. This gives the upper bound by Markov
inequality and completes the proof.
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de Probabilités V. Lectures Notes in Mathematics 191, Springer-Verlag, berlin,
209-210.

[74] P. W. Millar (1977). Zero-one laws and the minimum of a Markov process.
Trans. Am. Math. Soc. Vol. 226, 365-391.

[75] P. Mörters, N.R. Shieh (2002). Thin and thick points for branching measure
on a Galton Watson tree. Stat. Prob. Letters 58,13-22.

[76] P. Mörters, and M. Ortgiese (2008). Small value probabilities via the branching
tree heuristic Bernoulli, Vol. 14, No 1, 277-299.

[77] P. E. Ney; A. N. Vidyashankar (2004). Local limit theory and large deviations
for supercritical branching processes. Ann. Appl. Probab. 14, no. 3, 1135-1166.

[78] K. R. Parthasarathy (1967). Probability measures on metric spaces. Proba-
bility and Mathematical Statistics, No. 3 Academic Press, Inc., New York-
London.

[79] J. Pitman (1986). Stationary excursions. In Séminaire de Probabilités XXI,
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