
HAL Id: tel-00338594
https://theses.hal.science/tel-00338594

Submitted on 13 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Call by need computations in orthogonal term rewriting
systems

Irène A. Durand

To cite this version:
Irène A. Durand. Call by need computations in orthogonal term rewriting systems. Computer Science
[cs]. Université Sciences et Technologies - Bordeaux I, 2005. �tel-00338594�

https://theses.hal.science/tel-00338594
https://hal.archives-ouvertes.fr

No d’ordre:

HABILITATION À DIRIGER LES RECHERCHES

présentée à

L’UNIVERSITÉ BORDEAUX 1

École doctorale de mathématiques et d’informatique

Par Irène Durand

Call by need computations in orthogonal

term rewriting systems

À soutenir le : 01 juillet 2005
Après avis de : MM. Hubert Comon Rapporteurs

Jan Willem Klop
Sophie Tison

Devant la commission d’examen formée de :

MM. Robert Strandh Professeur Président
Pascal Weil Directeur de Recherche Rapporteur
Hubert Comon Professeur Examinateurs
Aart Middeldorp Professeur
Sophie Tison Professeur

– 2005 –

2

Call by need computations in orthogonal term

rewriting systems

Irène Durand

October 25, 2005

2

Preamble

After my PHD thesis [Dur86] at the university of Toulouse on parallel implemen-
tation of logic programs, I deepened my knowledge on that domain by working
on the PRISM system (parallel inference system for problem solving) developed
at that time by the Professor Jack Minker research group at the university of
Maryland (USA)[GKMD90].

After getting a research and teaching position at the university of Bordeaux
(1989) and meeting Professor Robert Strandh [Str88] (former PHD student of
Professor Mike O’Donnell [O’D77]), my interests moved to term rewriting sys-
tems (1990).

This document describes my research and programming work in computer
science between 1990 and 2005. All this work takes place in the framework
of term rewriting systems and call by need strategies for these systems. It is
both theoretical and practical; most of the theoretical notions and algorithms
discussed have been implemented in a software tool call Autowrite.

This document is an opportunity to present all our work related to call-by-
need (published or unpublished) in a unified framework. Thanks to no severe
limits on available space, the presentation may contain more details and exam-
ples than what can be given in a usual publication where space is always scarce.
In some cases, the presentation given in this document departs significantly from
the one previously given in our publications. It is for instance the case for the
description of the algorithm for deciding whether a system is forward-branching.
Also in more than ten years our writing has evolved; consequently older work
has sometimes been rewritten with improved style.

We have tried to make this document as self-contained as possible so that
a reader with some background in theoretical computer science could read it
without looking for definitions elsewhere. All the given proofs are ours (with
or without co-authors). An index of notation together with a general index can
be found at the end of this document. Also Appendix A contains examples of
systems that are used all along the document.

3

4

Acknowledgements

I would like to thank Aart Middeldorp for his collaboration over the years,
in particular for his suggestions for improvements and ways to move forward.
Thanks to Robert Strandh who introduced me to the domain of term rewriting
and always encouraged my work.

I would like to thank the university of Bordeaux 1 for providing me with
the conditions which made the conduct of that work possible. Thanks also to
the universities of Warwick and Stuttgart for hosting me during one year and
giving me good conditions to continue my research.

Thanks to the referees who have accepted to review this work.

5

6

Contents

1 Introduction 11

2 Terminology 13
2.1 Terms . 13

2.1.1 Signature . 13
2.1.2 Variables . 13
2.1.3 Terms . 13
2.1.4 Contexts . 16

2.2 Term Rewriting Systems . 16
2.2.1 Term rewriting rules . 16
2.2.2 Term rewriting systems 16
2.2.3 Redexes and Normal forms 16
2.2.4 Reduction (Rewriting) . 17
2.2.5 Properties of term rewriting systems 18

2.3 Prefixes of Terms: Ω-Terms . 19
2.4 Term Automata and Ground Term Transducers 20

I Beyond strong sequentiality 23

3 Call by need Strategies 25
3.1 Strategies . 26
3.2 Decidable Approximations of Neededness 29
3.3 Approximations . 31
3.4 Call-by-Need Computations to Normal Form 35

4 Signature extension and Modularity 39
4.1 Signature Extension . 40
4.2 Modularity . 45

5 Complexity of CBN classes 49
5.1 Basic constructions . 50

5.1.1 Step 1 . 50
5.1.2 Step 2 . 50

7

8 CONTENTS

5.2 Recognizability of (→∗
R)[T] . 51

5.2.1 Linear-growing case . 51
5.2.2 (left-linear) Growing case 54

5.3 Recognizability of the set of R-free terms 55
5.3.1 Linear-growing case . 55
5.3.2 (left-linear)-Growing case 58

5.4 Complexity Analysis . 59
5.4.1 Linear-growing case . 59
5.4.2 (left-linear) Growing case 61
5.4.3 Summary of the complexity results 62

6 Computations to root-stable forms 63
6.1 Decidable approximations of root-neededness 64
6.2 Call-by-need computations to root-stable forms 67

7 Complexity of CBN-RS classes 71
7.1 Construction of ARSS◦

. 71
7.2 Automaton (→∗

R)[RSS◦] . 72
7.2.1 Linear-growing case . 72
7.2.2 (Left-linear) Growing case 72

7.3 Call-by-need computation to root-stable forms 72
7.3.1 Linear-growing case . 72
7.3.2 (left-linear) Growing case 73

7.4 Complexity . 73
7.4.1 Linear-growing case . 74
7.4.2 (left-linear) Growing case 74

II Strong sequentiality 75

8 Strong sequentiality 79
8.1 Strongly Sequential Systems . 79
8.2 matching DAGs . 83
8.3 Simple Systems . 84

9 CBN versus Sequentiality 87
9.1 α-sequentiality versus CBNα . 87
9.2 s-sequentiality (SS) versus CBNs 88
9.3 α-sequentiality versus CBNα (continued) 89

III Below strong sequentiality 93

10 Forward-branching systems 97
10.1 Definition of an index tree . 97
10.2 Equivalence between index trees and matching DAGs 99
10.3 Forward-Branching systems (FB) 100

CONTENTS 9

10.3.1 Definition of FB . 100
10.3.2 Characterization of FB . 100
10.3.3 Correctness of the characterization 101

10.4 An algorithm to build a forward-branching index tree 109
10.4.1 General description of the algorithm 109
10.4.2 Variables and data structures 110
10.4.3 Algorithm . 111
10.4.4 Time complexity of the algorithm 115

10.5 Modularity of FB . 118

11 Constructor Equivalent systems 121
11.1 Simulating SS with C . 121

11.1.1 Thatte’s Transformation 121
11.1.2 Constructor-equivalent Systems (CE) 123

11.2 CE ⊂ SS: a direct proof . 125
11.3 Conclusion . 130

12 Back to forward-branching systems 131
12.1 Transformation from FB to SS ∩ C 131
12.2 Relations between FB and subclasses of SS 133

12.2.1 Comparison with strongly sequential systems 133
12.2.2 Comparison with Simple systems 135
12.2.3 Comparison with Transitive systems 135

12.3 Comparison between subclasses of SS 136

13 Complexity of SS 139
13.1 Work on the co-NP-conjecture (13.0.2) 140
13.2 Work on the NP-conjecture (13.0.1) 140

14 Compilation of Call-by-need Strategies 145

IV Autowrite: a tool for handling systems and term
automata 147

15 Autowrite 149
15.1 What is Autowrite? . 149
15.2 Real Problems solved by Autowrite 150

15.2.1 Convince someone that R ∈ CBN for a given R 150
15.2.2 Properties related to signature extension 151
15.2.3 Forward-branching systems 154

15.3 The Inside of Autowrite . 154
15.4 The Outside of Autowrite . 154

15.4.1 Autowrite specifications 154
15.4.2 Automata operations performed by Autowrite 155
15.4.3 Building automata related to left-linear esystems 156

10 CONTENTS

15.4.4 General properties of esystem 159
15.4.5 Properties of left-linear esystems 159

15.5 Experimental Results . 160
15.6 Comparison with other Systems 162
15.7 Practical Information and Perspectives 162

16 Conclusion 165

A Examples 167

B Proofs for Sections 4.1 and 4.2 169
B.1 Proof of Theorem 4.1.9 . 170
B.2 Proof of Theorem 4.2.4 . 174

C Indexes 183
Notation index . 184
General index . 186

Chapter 1

Introduction

The foundation of term rewriting is equational logic but for the sake of effi-
ciency, the equations are oriented and become the rules of a term rewriting
system. Term rewriting form a model of computation on algebraic data struc-
tures (terms).

Term rewriting systems play an important role in various domains of com-
puter science such as automated theorem proving, functional programming, code
generation, problem formalization (security of cryptographic protocols).

Rewriting starts with a ground term, and consists of repeatedly replacing
a redex (an instance of a left-hand side) by its contractum (the corresponding
right-handside after applying the substitution). Rewriting may eventually yield
a term in normal form which is a term containing no redex.

Natural questions in term rewriting are:

• is the system terminating” (i.e. there are no infinite rewrite sequences)?

• ”is the system confluent” (if a term rewrites independently to two terms
t1 and t2, there exists a term s such that both t1 and t2 rewrite to s)?

We are interested in systems which can be used as programs so we want to
allow non-terminating computations.

Confluence implies unicity of normal forms but does not imply termination.
Confluent systems form a good framework for deterministic programming. They
have the power of Turing machines. However confluence is not a decidable
property for term rewriting systems. Orthogonal systems (i.e. linear and non-
overlapping left-hand sides) which are always confluent form the framework of
all this work, although some results may apply to the more general class of
left-linear systems (linear left-hand sides).

The first point we want to address is ”how to compute the normal form?”
and not end up in an infinite computation when the normal form exists. The
second is ”how to do that efficiently?”.

The following theorem of Huet and Lévy [HL91] forms the basis of all results
on optimal normalizing rewrite strategies for orthogonal term rewrite systems:

”Every reducible term contains a needed redex, i.e., a redex which is con-
tracted in every rewrite sequence to normal form, and repeated contraction of

11

12 CHAPTER 1. INTRODUCTION

needed redexes results in a normal form, if the term under consideration has a
normal form”.

Unfortunately, needed redexes are not computable in general. Hence, in
order to obtain a computable optimal rewrite strategy, we are left to find (1) de-
cidable approximations of neededness and (2) decidable properties of rewrite
systems which ensure that every reducible term has a needed redex identi-
fied by (1). Starting with the seminal work of Huet and Lévy [HL91] on
strong sequentiality, these issues have been extensively investigated in the liter-
ature [Com00, Jac96b, JS95, KM91, NST95, Oya93, Toy92]. In all these works
Huet and Lévy’s notions of index, ω-reduction, and sequentiality figure promi-
nently. We present here our contributions to this domain.

The first part of the work is about extensions of the strongly sequential
class. In a unified framework we define classes that admit call-by-need strategies
(Chapter 3). Our framework is parameterized by the concept of approximation
mapping and we show that recognizability preservation is the key to decidability,
which is obtained by applying simple term automata techniques. Because of
the high complexity of these classes (from EXPTIME to 3-EXPTIME) it was
natural to investigate the question of modularity. In Chapter 4, we perform a
detailed study of the modularity aspects of our framework. Root-stability has
been shown to be the right notion when dealing with infinite normal forms but
there is very little published work in that field. In Chapters 6 and 7, we extend
our work to the problem of computing root-stable forms.

In second part, we go back to the original notion of strong sequentiality
and compare it with our CBN classes. We show that our framework provides a
better approximation to neededness than the sequentiality notions originating
from the seminal paper of Huet and Lévy [HL79].

The strongly sequential class (SS) is known to be in EXPTIME but the
problems whether it is in NP, co-NP, NP-complete, co-NP-complete remain
open. The only known polynomial classes are subclasses of SS. In the third
part, we present our work concerning such subclasses. This guideline for this
work was the quest of finding classes that transform into the strongly sequential
constructor class for which efficient stragegies exist.

The last part presents the Autowrite software. It was initially started as a
tool to help us verify properties (in particular CBN properties) of systems. It has
been really of help for the study of modularity helping us verify or find examples
and counter-examples for our theories. First this software implemented mainly
call-by-need theory to normal forms. To our knowledge, it is the only software
to do so. For implementing call-by-need algorithms, it was necessary to also
implement many tools concerning term automata and term rewriting systems.
Now graphical interface gives the possibility to manipulate easily systems and
term(tree) automata broadening the initial targets of Autowrite.

This work occurs in a rather restricted domain. However we have addressed
many theoretical aspects (definition of new classes, decidability, complexity) as
well as practical aspects through the development of the software Autowrite.

Chapter 2

Terminology

Here we give terminology, notation and well-known results that are useful all
along this document. Additional specific terminology will be given locally when
needed. Recall that an index of notation can be found at the end of the docu-
ment.

2.1 Terms

2.1.1 Signature

A signature is a set of function symbols, each associated with an arity (a natural
integer), which is the number of arguments accepted by the function. By arity(f)
we denote the arity of a function symbol f . Given a signature F we denote by
Fn be the subset of function symbols of F of arity n, F =

⋃
{Fn|n ≥ 0}. Our

signatures will often be denoted by the letters F or G. A function symbol in F0

is called a constant symbol .

Example. Let us take for instance the signature induced by the system of Ex-
ample A.0.1 F = {a(0), b(0), f(2), g(2)}. The arity of the symbols is indicated by
the number between parentheses. We have arity(f) = 2.

2.1.2 Variables

Let V be a denumerable set of variables .

Example. The system of A.0.1 uses a single variable x. Variables will com-
monly be named, x, y, z,

2.1.3 Terms

Our expression language is the set T (F ,V) of first order terms formed from F
and V defined as follows:

V ⊆ T (F ,V),

13

14 CHAPTER 2. TERMINOLOGY

f ∈ Fn and ∀i, 1 ≤ i ≤ n, Mi ∈ T (F ,V) ⇒ f(M1, . . . , Mn) ∈ T (F ,V).
We will use the usual equality symbol = to denote the syntactic equality of
terms.

Example. M = g(f(a, b), x) ∈ T (F ,V).

Let us denote the empty sequence by ε.
For any term M we define its set of positions Pos(M) as a finite subset of

the set of finite sequences of positive integers as follows:
ε ∈ Pos(M),
u ∈ Pos(Mi) ⇒ iu ∈ Pos(f(M1, . . . , ...Mn)) for 1 ≤ i ≤ n.

In the literature positions are also called occurrences or paths . Intuitively, a
position of M names a subterm of M by its access path.

We write Pos+(M) for Pos(M) \ {ε}. This notation extends to any set of
positions P : P+ = P \ {ε}.

Example. Pos(M) = {ε, 1, 1.1, 1.2, 2} Pos+(M) = {1, 1.1, 1.2, 2}

If u ∈ Pos(M), we define the subterm of M at u as the term M/u defined
inductively by

M/ε = M ,
f(M1, . . . , Mn)/iu = Mi/u,

and we define the root symbol of M as the symbol root(M) defined by
root(M) = M if M ∈ V ∪ F0,
root(M) = f if M = f(M1, . . . , Mn).

Example.

M/ε = M M/1 = f(a, b) M/1.2 = b M/2 = x
root(M) = g root(f(a, b)) = f root(b) = b root(x) = x

A term M such that root(M) ∈ V is called a variable term or simply a
variable. A term M such that root(M) ∈ F0 is called a constant term or simply
a constant.

Finally, if u ∈ Pos(M), we define for every term N the replacement in M at
u by N as the term M [N]u defined by

M [N]ε = N ,
f(M1, . . . , Mn)[N]iu = f(M1, . . . , Mi[N]u, . . . , Mn).

Example. M [g(a, a)]2 = g(f(a, b), g(a, a)) M [a]1 = g(a, x)

The set of positions is partially ordered by the prefix order ≤ given by: u ≤ v
iff ∃w such that uw = v. In this case we define v/u as w. We write u < v if
u ≤ v and u 6= v. We write u ⊥ v (and call u and v disjoint) when u 6≤ v and
v 6≤ u.

Example. 1 < 1.2, 2 6≤ 1, 1 6≤ 2, 1 ⊥ 2, 1.1.2.2/1.1 = 2.2.

Given a term M , a set of pairwise disjoint positions {u1, . . . , un} of M and
a set of terms N1, . . . , Nn, we can extend the concept of replacement to parallel
replacement :

M [N1, . . . , Nn]u1,...,un
= M [N1]u1 . . . [Nn]un

.

2.1. TERMS 15

Example. f(a, b)[b, g(a, a)]1,2 = f(b, g(a, a))

Given a term M and a symbol f , Posf (M) denotes the set of positions
labelled f in M .

Posf (M) = {u ∈ Pos(M)|root(M/u) = f}.

Example. Posf (M) = {1.1}.

Given a term M , Var(M) denotes the set of variables of M . We also use
the notation PosV(M) (resp. PosV(M)) to denote the set of variable (resp.
nonvariable) positions in M .

PosV(M) = {u ∈ Pos(M)|M/u ∈ V}.
PosV(M) = {u ∈ Pos(M)|M/u 6∈ V}.

Example.

Var(M) = {x}
PosV(M) = {2} PosV(M) = {ε, 1, 1.1, 1.2}

We denote by Sub(M) the set of subterms of a term M :
Sub(M) = {M/u | u ∈ Pos(M)}.

This notation extends to a set of terms S: Sub(S) =
⋃

M∈S Sub(M).

A subterm M/u of M with u > ε is called a proper subterm of M .

Example. Sub(M) = {a, b, f(a, b), x, M} and f(a, b) is a proper subterm of M .

A substitution σ is a mapping from T (F ,V) to T (F ,V) satisfying
σ(f(M1, . . . , Mn)) = f(σ(M1), . . . , σ(Mn)). So, σ is determined by its re-

striction to the set of variables V . For convenience, σ(M) is often written Mσ.

We say that the term M is an instance of the term N if there exists a
substitution σ such that M = σ(N).

Example. g(f(a, b), a) is an instance of g(f(x, y), x) as g(f(a, b), a) = g(f(x, y), x)σ
with the substitution σ such that xσ = a and yσ = b.

We say that two terms M and N unify (or are unifiable) if there exists a
substitution σ such that Mσ = Nσ. Note that to check whether two terms are
unifiable their variables should be first renamed in order that the two terms do
not share any variable.

Example. g(f(a, x), b) and g(f(a, a), y) are unifiable with the substitution σ such
that xσ = a and yσ = b.

A ground term does not contain variables. The set of ground terms is written
T (F) often abbreviated T whenever F is understood.

A linear term does not contain multiple occurrences of the same variable.

Example. g(f(a, b), a) is ground hence linear. g(f(a, b), x) is linear, not ground.
g(f(x, b), x) is not linear, not ground.

16 CHAPTER 2. TERMINOLOGY

2.1.4 Contexts

Let 2 be a special constant symbol which cannot appear in any signature. 2

denotes an empty position (a hole) in a term. A context is a term of T (F ∪
{2},V). A context with one hole at position u is often denoted by C[]u or
C[] when u is not relevant. If 2 is replaced by a term M of T (F ,V), we
obtain the term C[M]u or C[M] in T (F ,V). A context can also have several
holes at positions u1, . . . , un often denoted by C[, . . . ,]u1,...,un

or C[, . . . ,]. If
all the 2 are replaced by terms M1, . . . , Mn of T (F ,V) we obtain the term
C[M1, . . . , Mn]u1,...,un

or C[M1, . . . , Mn] in T (F ,V).

2.2 Term Rewriting Systems

2.2.1 Term rewriting rules

A rewrite rule is a pair L → R of terms in T (F ,V) that satisfy L /∈ V and
Var(R) ⊆ Var(L). If the second condition is not imposed we find it useful to
speak of extended rewrite rule. L (resp. R) is called the left-hand side (resp.
right-handside) of the rule. A rule is linear (resp. ground) when both sides are
linear (resp. ground). A rule is left-linear (resp. left-ground) when its left-hand
side is linear (resp. ground). A rule is right-linear (resp. right-ground) when
its right-handside is linear (resp. ground).

2.2.2 Term rewriting systems

A term rewrite system (system for short) is a pair (R,F) where F is a signa-
ture and R a set of rewrite rules built upon the signature F . When R contains
extended rewrite rules we will call it an extended system (esystem). Such esys-
tems arise naturally when we approximate systems, as explained in Section 3.3.
When F contains exactly the function symbols appearing in R or when F is un-
derstood, we may write R instead of (R,F). We write LHSR (or LHS whenever
R is understood) to denote the set of the left-hand sides of R.

2.2.3 Redexes and Normal forms

We consider the system of Example A.0.1 to illustrate most of our definitions.

A redex is a term which is an instance of the left-hand side of a rewrite rule.
A position u in a term t such that M/u is a redex is called a redex position.
The set of redex positions of a term M with regard to a system R is denoted
by REDEXR(M) or REDEX(M) whenever R is understood.

When REDEX(M) 6= ∅ we say that M is reducible. A term M is a normal
form (or in normal form, or irreducible) if REDEXR(M) = ∅.

The set of all ground normal forms of a system (R,F) is denoted by NF(R,F).
We may write also NF(R), NF(F), NF whenever F , R or both F and R are
understood.

2.2. TERM REWRITING SYSTEMS 17

Example. f(g(a, a), a) is a redex. g(f(g(a, a), a), a) is reducible.
REDEX(g(f(g(a, a), a), a)) = {1}. f(a, a) ∈ NF(R).

A redex in a term is innermost if it does not contain smaller redexes. A
redex in a term is outermost if it is not a proper subterm of another redex in
the same term.

A normal form is external if it is not an instance of a proper non-variable
subterm of a left-hand side of a rewrite rule in R. The set of all ground external
normal forms of a system R is denoted by ENF(R).

Example. The term g(a, a) is not an external normal form as it is an instance
of g(x, a) but g(g(a, a), g(a, a)) is one.

2.2.4 Reduction (Rewriting)

We say that a term M reduces (or rewrites) to N at position u using rule L → R
iff there exists a substitution σ such that M/u = Lσ and N = M [Rσ]u. We

write M → N when M reduces to N . We use
∗
→ to denote the reflexive and

transitive closure of →. Rσ is called the contractum of the redex Lσ.
When applying an extended rewrite rule L → R of an esystem, the variables

in Var(R) \ Var(L) may be instantiated by arbitrary ground terms.
In all this work, we are dealing with finite systems only. Moreover, we con-

sider rewriting on ground terms only, except in Chapter 9 for reasons explained
there.

We write N→‖ M if M can be obtained from N by contracting a set (pos-
sibly empty) of redexes at pairwise disjoint positions in N . In other words,
N = C[N1, . . . , Nn] and M = C[M1, . . . , Mn] for some context C and terms
N1, . . . , Nn, M1, . . . , Mn with Ni → Mi for all 1 6 i 6 n. The relation →‖ is
called parallel rewriting.

A binary relation R on ground terms is called parallel relation if C[s1, . . . , sn] R
C[t1, . . . , tn] whenever s1 R t1, . . . , sn R tn, for all contexts C and terms
s1, . . . , sn, t1, . . . , tn. Note that relation →‖ defined above is parallel. Actually,
→‖ is the smallest parallel relation that contains →, i.e., the parallel closure of
→.

A term is R-root-stable or simply root-stable (whenever R is understood) if
it cannot be rewritten to a redex. The set of root-stable terms with regards to
a system R is denoted by RSR.

Example. The term g(f(g(b, a), a), g(b, b)) is not root-stable as it reduces to the
redex g(b, b):

g(f(g(b, a), a), g(b, b)) → g(b, g(b, b)) → g(b, b)

but the term g(f(g(a, a), a), g(b, b)) is root-stable.

We denote by WN(R,F) the set of all ground terms in T (F) that rewrite
in R to a normal form in NF(R,F). If no confusion can arise, we just write
WN(R).

18 CHAPTER 2. TERMINOLOGY

Example. Just for this example let us take R = {f(x, a) → f(a, x), f(x, b) → b}.
We have f(b, a) ∈ WN(R,F) and f(a, b) 6∈ WN(R,F).

Let F ⊆ G. We denote by WN(R,G,F) the set of terms in T (F) that have a
normal form with respect to (R,G). This useful only when we consider esystems
and when a free variable of a right-handside unifies with a term containing a
symbol in G \ F .

Example. Just for this example let us take the esytem R = {f(x, a) → f(a, y)}
with its implicit signature F = {a(0), f(2)}. We have f(a, a) 6∈ WN(R,F). Con-
sider now the extended signature G = F ∪ {b(0)}. This time, we have f(a, a) ∈
WN(R,F) because f(a, a) → f(a, b) ∈ NF(R,G). So WN(R,F) 6= WN(R,G,F).
Note that f(b, a) 6∈ WN(R,G,F) because WN(R,G,F) contains only terms in
T (F) by definition.

2.2.5 Properties of term rewriting systems

A system is linear (resp. ground, left-linear, left-ground, right-linear, right-
ground) if all its rules are linear (resp. ground, left-linear, left-ground, right-
linear, right-ground).

A system R is overlapping if there exists two distinct rules L → R and
L′ → R′ such that L and L′ are unifiable or if there exists two rules L → R and
L′ → R′ and u ∈ PosV(L) such that L/u and L′ are unifiable.

A left-linear system which is non-overlapping is called orthogonal .

Example.
R = {f(g(x, a)) → x, g(a, x) → b} is overlapping hence not orthogonal.
R = {g(x, x) → a} is not left-linear hence not orthogonal.
R = {f(g(x, a)) → g(x, x), g(a, b) → b} is left-linear and non-overlapping hence
orthogonal.

A system R is confluent if forall terms M, N1, N2 such that M →∗ N1 and
M →∗ N2 ther exists a term N such that N1 →∗ N and N2 →∗ N .

[Ros73] showed that for orthogonal systems the relation → is confluent (has
the Church-Rosser property). Orthogonal systems have the property that every
term has at most one normal form.

A rewrite rule is collapsing if its right-handside is a variable. A redex with
respect to a collapsing rewrite rule is also called collapsing and so is called an
esystem that contains a collapsing rewrite rule.

Let (R,F) be a system. A function symbol in F is called a defined symbol
if it is the root symbol of a left-hand side of a rewrite rule in R. The function
symbols in F that are not defined are called constructor symbols. We use FD

and FC to denote the set of defined and constructor symbols. A term is said
constructor if all its inner symbols are constructors. A system R such that
all terms of LHSR are constructor is called a constructor system. The class of
constructor systems is denoted by C.

Given a term M , we denote by SubD(M) the set of subterms of M having
a defined symbol at their root:

2.3. PREFIXES OF TERMS: Ω-TERMS 19

SubD(M) = {T ∈ Sub(M) | root(T) ∈ FD}. We also write Sub+
D(M) =

SubD(M) \ {M}.
These notations extend to a set of terms S: SubD(S) =

⋃

M∈S SubD(M) and

Sub+
D(S) = SubD(S) \ S. Note that if S is orthogonal (S the set of left-hand

sides of an orthogonal system) Sub+
D(S) = SubD(S) \ S =

⋃

M∈S Sub+
D(M).

2.3 Prefixes of Terms: Ω-Terms

We represent prefixes of terms by Ω-term, i.e, by terms where the new constant
Ω can occur. Let FΩ = F ∪ {Ω} and let T (FΩ,V) be the set of these Ω-terms.
Most of the time we will deal with ground Ω-terms (members of T (FΩ)).
Let us consider the prefix order � on T (FΩ,V) defined by

Ω � M for all M ∈ T (FΩ,V),
f(M1, . . . , Mn) � f(N1, . . . , Nn) iff Mi � Ni for 1 ≤ i ≤ n,
x � x for each variable.

Given a set of Ω-terms S we write Max(S) (resp. Min(S)) for the maximal
(resp. minimal) elements of S. We also write S∗ for the set S \ {Ω}.

All the previously defined operations on terms extend obiously to Ω-terms.
One just adds the following notions:

A position u ∈ Pos(M) such that root(M/u) = Ω is called an Ω-position.
We write PosΩ (resp. PosΩ) to denote the set of Ω-positions (resp. non-Ω-
positions) of M :

PosΩ(M) = {u ∈ Pos(M)|M/u = Ω},
PosΩ(M) = {u ∈ Pos(M)|M/u 6= Ω}.

If M � T and N � T for some T , then M and N are said to be compatible
which is written M ↑ N . If S is a set of terms, we also write M ↑ S (resp.
M ≻ S, M ≺ S) when there exists N ∈ S such that M ↑ N (resp. M ≻ N ,
M ≺ N).

We will write MΩ for σ(M) where σ is the substitution such that σ(x) = Ω
for all variables x. We extend this notation to a set of terms S: SΩ = {MΩ |
M ∈ S}.

Let M be an Ω-term. By M≺ we denote the set of strict (6= Ω) and proper
prefixes of M . Similarly, if S is a set of Ω-terms S≺ = ∪M∈SM≺.

An Ω-term N such that REDEX(N) = ∅ will be said in Ω-normal form. We
reserve the phrase normal form for terms containing neither redexes nor Ω’s.

An element of LHSΩ is called a redex scheme or simply scheme.

Example. For the system of Example A.0.1, we obtain the set of redex schemes:
LHSΩ = {f(g(a, Ω), a), f(g(Ω, a), b), g(b, b)}.

Lemma 2.3.1. If R ∈ C then SubD(LHSΩ) = LHSΩ.

An Ω-term M is redex compatible if it can be refined to a redex (i.e. M ↑
LHSΩ).

We call an Ω-term M a preredex if M ≺ LHSΩ. A strict preredex is a
preredex not equal to Ω. The set of strict preredexes is then LHS≺

Ω , An element

20 CHAPTER 2. TERMINOLOGY

of Sub+
D(LHSΩ) = SubD(LHSΩ) \ LHSΩ is called a subscheme. Note that from

the definition of SubD(LHSΩ), LHSΩ ⊆ SubD(LHSΩ).

Example. f(g(Ω, b), a) is redex compatible. f(Ω, b) is a proper preredex. g(a, Ω)
is a subscheme.

The notation f(
→

Ω) denotes the term f(Ω, . . . , Ω). Given an Ω-term M and
u ∈ PosΩ(M), we define the extension of M at u by f , written ext(M, u, f) as

the Ω-term M [f(
→

Ω)]u.

Example. ext(f(Ω, Ω), 1, g) = f(g(Ω, Ω), Ω).

2.4 Term Automata and Ground Term Trans-
ducers

We now recall some basic definitions and results concerning finite term au-
tomata1. Much more information can be found in [CDG+02]. Term automata
are also called tree automata but as all this work is based on terms we pre-
fer to call them term automata. A (finite bottom-up) term automaton is a
quadruple A = (F , Q, Qf , Γ) consisting of a finite signature F , a finite set Q of
states , disjoint from F , a subset Qf ⊆ Q of final states, and a set of transition
rules Γ. Every transition rule is of the form f(q1, . . . , qn) → q with f ∈ F
and q1, . . . , qn, q ∈ Q or q → q′ with q, q′ ∈ Q. The latter rules are called
ǫ-transitions. So a term automaton A = (F , Q, Qf , Γ) is simply a finite ground
term rewriting system Γ over the signature F ∪ Q whose rewrite rules have a
special shape, together with a subset Qf of Q. The induced rewrite relation
on T (F ∪ Q) is denoted by →A. A ground term M ∈ T (F) is accepted by A
if M →+

A q for some q ∈ Qf . The set of all such terms is denoted by L(A).
A subset L ⊆ T (F) is called recognizable if there exists a term automaton
A = (F , Q, Qf , Γ) such that L = L(A).

Given a term t and a deterministic automaton A = (F , Q, Qf , Γ), let t↓A
denote the states of A accessible from t using Γ. This notation extends to terms
in T (G, Q).
The same notation is used when A is non-deterministic: in that case t↓A de-
notes the set of all the states of A accessible from t using the rules of A. This
notation can be generalized to terms in T (F , 2Q): let S1, . . . , Sn be subsets
of Q, f(S1, . . . , Sn)↓A = {q ∈ Q, f(q1, . . . , qn) →Γ q, for some q1, . . . , qn ∈
S1, . . . , Sn}.

It is well-known that the set T (F) of all ground terms is recognizable. Other
well-known properties are stated in the following two lemmata.

Lemma 2.4.1.

1. Recognizable languages are effectively closed under Boolean operations.

1To avoid using the two equivalent words, terms and trees to refer to terms we talk about
term automata and ground term transducers instead of tree automata and ground tree trans-

ducers instead. The word tree will be used for the notion of index tree

2.4. TERM AUTOMATA AND GROUND TERM TRANSDUCERS 21

2. Membership and emptiness are decidable for recognizable languages.

Lemma 2.4.2. If R is a finite left-linear system then REDEX(R) and NF(R)
are recognizable.

Ground term transducers are defined in [DHLT90]. A ground term trans-
ducer (GTT for short) is a pair G = (A,B) of term automata over the same
signature F . Let N, M ∈ T (F). We say that the pair (N, M) is accepted by
G if N →∗

A u and M →∗
B U for some term U ∈ T (F ∪ Q) where Q is the set

of common states of A and B. The set of all such pairs is denoted by L(G).
Observe that L(G) is a binary relation on T (F). A binary relation on ground
terms is called gtt-recognizable if there exists a ground term transducer that
accepts it. Every gtt-recognizable relation R is parallel.

Ground term transducers were introduced by Dauchet and Tison [DT85] in
order to prove that confluence is a decidable property of ground systems. In
this work we make use of the following closure properties. They can be proved
by adding appropriate ǫ-transitions. Part (2) originates from [CG90].

Lemma 2.4.3. Let R be a gtt-recognizable relation on T (F).

1. The inverse relation R−1 of R is gtt-recognizable.

2. The transitive closure R+ of R is gtt-recognizable.

3. If L ⊆ T (F) is recognizable then R[L]2 = {N | N R M for some M ∈ L}
is recognizable.

We would like to emphasize that there are other notions of recognizability for
binary relations in the literature. The gtt-recognizability defined above suffices
for our purposes.

Weak Second-Order Monadic Logic

The material in this subsection is only used in Chapter 6. We assume famil-
iarity with WSkS, the weak second-order monadic logic with k successors. See
Thomas [Tho90, Section 11] for a discussion of WS2S.

Let F be a finite signature. Let k be the maximal arity of function symbols
in F and let n be the cardinality of F . A term t ∈ T (F) is represented in WSkS
using n + 1 set variables X and Xf for every f ∈ F . In the following we write
~X for the sequence X , Xf for f ∈ F . The WSkS formula term(~X):

X =
⋃

f∈F

Xf ∧
∧

f∈F

∀x ∈ Xf

arity(f)
∧

i=1

x·i ∈ X ∧
k∧

i=arity(f)+1

x·i /∈ X

∧

∧

f 6=g∈F

Xf ∩ Xg = ∅ ∧ ∀x ∈ X ∀y < x [y ∈ X]

2In the literature R[L] often denotes the different set {M | N R M for some N ∈ L}. We
find our choice more convenient.

22 CHAPTER 2. TERMINOLOGY

expresses that ~X encodes a term in T (F). If term(~T) holds for the sequence ~T of
sets of positions then we define t~T to be the term in T (F) uniquely determined
by Pos(t) = T and root(t|p) = f if p ∈ Tf , for all p ∈ T . A subset L of T (F) is

called WSkS definable if there exists a WSkS formula φ with free variables ~X
such that L = {t~T | term(~T) ∧ φ(~T)}.

Theorem 2.4.4 ((Doner [Don70], Thatcher and Wright [TW68])). A set L ⊆
T (F) is WSkS definable if and only if it is recognizable.

Part I

Beyond strong sequentiality

23

Chapter 3

Call by need Strategies

Definition 3.0.5. Given a term rewriting system and a reducible term t, a redex
in t is needed if it is contracted in every rewrite sequence from t to normal form.

The following theorem of Huet and Lévy [HL91] forms the basis of all results
on optimal normalizing rewrite strategies for orthogonal term rewrite systems:

Theorem 3.0.6. Given an orthogonal term rewriting system,

1. every reducible term contains a needed redex,

2. repeated contraction of needed redexes results in a normal form, if the term
under consideration has a normal form.

Unfortunately, needed redexes are not computable in general. In order to
obtain a computable optimal rewrite strategy, we are left to find (1) decidable
approximations of neededness and (2) decidable properties of systems which
ensure that every reducible term has a needed redex identified by (1). Starting
with the seminal work of Huet and Lévy [HL79] on strong sequentiality, these
issues have been extensively investigated in the literature [Com00, Jac96b, JS95,
KM91, NST95, Oya93, Toy92]. In all these works Huet and Lévy’s concepts of
index, ω-reduction, and sequentiality figure prominently.

In this chapter we present an approach to decidable call-by-need computa-
tions in which issues (1) and (2) above are addressed directly. Besides facili-
tating understanding this enables us to cover larger classes of rewrite systems
than the ones based on the sequentiality approach. For instance, a trivial conse-
quence of our work is that every orthogonal right-ground rewrite system admits
a computable call-by-need strategy whereas none of the sequentiality-based ap-
proaches cover all such systems. Our approach is based on the easy but fun-
damental observation that needed redexes are uniform but not independent of
other redexes in the same term. Uniformity means that only the position of a
redex in a term counts for determining neededness.

From [HL79, Oya93, Com00] we extract the important concept of approxi-
mation mapping, which is used to parameterize our framework.

25

26 CHAPTER 3. CALL BY NEED STRATEGIES

An approximation mapping transforms a rewrite system into a simpler one
such that every rewrite step in the former can be simulated in the latter. We
identify recognizability preservation as the key property that an approximation
mapping α must have in order to obtain a decidable class CBNα consisting
of all rewrite systems that have the property that at least one of the needed
redexes in every reducible term can be computed by α. Consequently, every
rewrite system in CBNα admits a computable call-by-need strategy. Inspired by
Comon [Com00], our decidability results heavily rely on term automata tech-
niques. However, by assigning a greater role to ground term transducers (GTT)
we do not need to rely on weak second-order monadic logic.

The remainder of this chapter is organized as follows. In Section 3.1 we give a
brief introduction to call-by-need strategies. In Section 3.2 we present sufficient
conditions for neededness in terms of approximations. Several approximations
are defined in Section 3.3. In Section 3.4 we present our framework for decidable
call-by-need computations to normal form.

The results presented in this chapter are also published in [DM05].

3.1 Strategies

Given a system and a term, a rewrite strategy specifies which part(s) of the term
to evaluate. If a system admits infinite computations, certain rewrite strategies
may fail to reduce terms to their normal forms.

Example 3.1.1. Consider the system R consisting of the rewrite rules

0 + y → y fib → f(0, s(0))

s(x) + y → s(x + y) f(x, y) → x : f(y, x + y)

nth(0, y : z) → y nth(s(x), y : z) → nth(x, z)

for computing Fibonacci numbers. The term t = nth(s(s(s(0))), fib) admits the
normal form s(s(0)): 1

t → nth(3, f(0, 1)) → nth(3, 0 : f(1, 0 + 1)) → nth(2, f(1, 0 + 1))

→ nth(2, f(1, 1)) → nth(2, 1 : f(1, 1 + 1)) → nth(1, f(1, 1 + 1))

→ nth(1, f(1, s(0 + 1))) → nth(1, f(1, 2)) → nth(1, 1 : f(2, 1 + 2))

→ nth(0, f(2, 1 + 2)) → nth(0, f(2, s(0 + 2))) → nth(0, f(2, 3))

→ nth(0, 2 : f(3, 2 + 3)) → 2

1In the rewrite sequences we denote sn(0) by n for n = 1, 2, 3, 5.

3.1. STRATEGIES 27

but an eager (innermost) strategy will produce an infinite rewrite sequence:

t → nth(3, f(0, 1)) → nth(3, 0 : f(1, 0 + 1)) → nth(3, 0 : f(1, 1))

→ nth(3, 0 : (1 : f(1, 1 + 1))) →2 nth(3, 0 : (1 : f(1, 2)))

→ nth(3, 0 : (1 : (1 : f(2, 1 + 2)))) →2 nth(3, 0 : (1 : (1 : f(2, 3))))

→ nth(3, 0 : (1 : (1 : (2 : f(3, 2 + 3))))) →3 nth(3, 0 : (1 : (1 : (2 : f(3, 5)))))

→ · · ·

If a term t has a normal form then we can always compute a normal form of
t by computing the reducts of t in a breadth-first manner until we encounter a
normal form. However, this is a highly inefficient way to compute normal forms.
In practice, normal forms are computed by adopting a suitable strategy for
selecting the redexes which are to be contracted in each step. A strategy is called
normalizing if it succeeds in computing normal forms for all terms that admit a
normal form. For the class of orthogonal systems several normalization results
are known (see e.g. Klop [Klo92]). For instance, O’Donnell [O’D77] proved that
the parallel-outermost strategy (which contracts in a single step all outermost
redexes in parallel) is normalizing for all orthogonal systems. However, parallel-
outermost is not an optimal2 strategy as it may perform useless steps.

Example 3.1.2. Consider the system R consisting of the rewrite rules

0 + y → y 0 × y → 0

s(x) + y → s(x + y) s(x) × y → (x × y) + y

Faced with the term t = (0 × s(0)) × (0 + s(0)), the parallel-outermost strategy
computes its normal form 0 by contracting three redexes in two steps:

(0 × s(0)) × (0 + s(0)) →‖ 0 × s(0) → 0

The normal form 0 can also be reached by contracting just two redexes:

(0 × s(0)) × (0 + s(0)) → 0 × (0 + s(0)) → 0

So redex 0 + s(0) in t is not needed to reach the normal form.

An optimal strategy selects only needed redexes. Formally, a redex ∆ in a
term t is needed if in every rewrite sequence from t to normal form a descendant
of ∆ is contracted. The latter concept is defined as follows. Let A : s = s[lσ]p →
s[rσ]p = t be a rewrite step in an system and let q ∈ Pos(s). The set q\A of
descendants of q in t is defined as follows:

q\A =

{q} if q < p or q ⊥ p,

{pp3p2 | r|p3 = l|p1} if q = pp1p2 with p1 ∈ PosV(l),

∅ otherwise.

2An optimal strategy uses the least number of redex contractions to normalize terms.

28 CHAPTER 3. CALL BY NEED STRATEGIES

The concept of descendant extends naturally to rewrite sequences. Orthogonal
esystems have the property that descendants of redex positions are again redex
positions.

Example 3.1.3. In the displayed rewrite sequence nth(3, fib) →∗ 2 in Exam-
ple 3.1.1 non-needed redexes are contracted. For instance, redex 1 + 2 in the
term nth(0, f(2, 1 + 2)) is non-needed:

nth(0, f(2, 1 + 2)) → nth(0, 2 : f(1 + 2, 2 + (1 + 2))) → 2

The following theorem of Huet and Lévy [HL91] forms the basis of all results
on optimal normalizing reduction strategies for orthogonal systems.

Theorem 3.1.4. Let R be an orthogonal system.

1. Every reducible term contains a needed redex.

2. Repeated contraction of needed redexes results in a normal form, whenever
the term under consideration has a normal form.

So, for orthogonal systems, the strategy that always selects a needed redex
for contraction is normalizing and optimal.3 Unfortunately, needed redexes are
not computable in general. Hence, in order to obtain a computable optimal
strategy, we need to find (1) decidable approximations of neededness and (2)
(decidable) classes of rewrite systems which ensure that every reducible term
has a needed redex identified by (1).

In the sequentiality-based approach (see Chapter 9) issue (1) is addressed
as follows. Basically, to determine whether an outermost redex ∆ in a term
t = C[∆] is needed, ∆ is replaced by a fresh symbol • and all other outermost
redexes in t are replaced by Ω which represents an unknown term. It is then
investigated whether • can disappear from the resulting Ω-term t′ by using
some computable notion of partial reduction. If this is not the case, then we
may conclude that redex ∆ in t is needed. Since neededness of redex ∆ in t is
solely determined by its position in t (cf. Lemma 3.2.1), replacing redex ∆ in
t by • induces no loss of generality. However, by replacing all other outermost
redexes by Ω, essential information may be lost for determining the neededness
of ∆. This is illustrated in the following example, which shows that needed
redexes are not independent of other redexes.

Example 3.1.5. Consider again the system of Example 3.1.2. An arbitrary
redex ∆ is needed in the term (0 + s(0))×∆ but not in the term (0× s(0))×∆:

(0 × s(0)) × ∆ → 0 × ∆ → 0

In the next section we present a new approach to the problem of determining
neededness of a given redex in a term which does not abstract from the other
redexes in the term.

3We ignore here the problem of duplication of (needed) redexes, which can be solved if
common subterms are shared.

3.2. DECIDABLE APPROXIMATIONS OF NEEDEDNESS 29

3.2 Decidable Approximations of Neededness

We assume that the set of ground terms is non-empty. It is undecidable whether
a redex in a term is needed with respect to a given (orthogonal) esystem. In
this section we present decidable sufficient conditions for a redex to be needed.

We start with an easy lemma that provides an alternative definition of need-
edness, not depending on the concept of descendant. Consider a system (R,F).
We assume the existence of a constant • not appearing in F . We consider
the extended signature F• = F ∪ {•} and the extended set of redex rules
R• = R ∪ {• → •} and the resulting system (R•,F•) that we will call R•

whenever F is understood.
Note that NF(R•,F•) = NF(R,F)

Lemma 3.2.1. Let (R,F) be an orthogonal esystem. Redex ∆ in term C[∆] ∈
T (F) is needed if and only if there is no term t ∈ NF(R•) such that C[•] →∗

R t.

Proof. Let A : s →∗ t be a rewrite sequence and ∆ a redex in s. We write ∆ ⊥ A
if no descendant of ∆ is contracted in A. So a redex ∆ in a term s is needed if
and only if A : s →∗ t with ∆ ⊥ A implies that t is not a normal form.

For the “only if” direction we suppose there is a term t ∈ NF(R•) such that
C[•] →∗

R t. Replacing every position of • by ∆ yields a sequence A : C[∆] →∗
R t

with ∆ ⊥ A. Hence ∆ is not needed.
For the “if” direction we suppose that ∆ is not needed. So there exists

a rewrite sequence A : C[∆] →∗
R t with t ∈ NF(R•) and ∆ ⊥ A. Replacing

every descendant of ∆ in A by • yields a sequence C[•] →∗
R t. (Here we use

orthogonality. Note that because t is a normal form there are no descendants
of ∆ in t left.)

An immediate consequence of this lemma is the folklore result that only the
position of a redex in a term is important for determining neededness. So if
redex ∆ in term C[∆] is needed then so is redex ∆′ in C[∆′].

Using the notation introduced p21, the preceding lemma can be rephrased as
follows: redex ∆ in C[∆] ∈ T (F) is needed if and only if C[•] /∈ (→∗

R)[NF(R•)].
Since membership for recognizable languages is decidable but neededness unde-
cidable, it follows that (→∗

R)[NF(R•)] is not recognizable in general. The key
to decidability is to extend →∗

R to →∗
S for some suitable esystem S such that

(→∗
S)[NF(R)] becomes recognizable.

Definition 3.2.2. Let R and S be esystems over the same signature. We say
that S approximates R if →R ⊆ →∗

S and LHS(R) = LHS(S).

Definition 3.2.3. An approximation mapping is a mapping α from esystems
to esystems with the property that α(R) approximates R for all esystems R. We
write Rα for α(R). We define a partial order 6 on approximation mappings as
follows: α 6 β if and only if Rβ approximates Rα, for every esystem R. Note
that the identity mapping is the minimum element of this partial order.

Definition 3.2.4. We say that an approximation mapping α is recognizability
preserving if (→∗

Rα
)[L] is recognizable for all esystems R and recognizable L.

30 CHAPTER 3. CALL BY NEED STRATEGIES

Needless to say, we are only interested in computable approximation map-
pings that are effectively recognizability preserving. This means that there is an
algorithm which, given a term automaton for L, constructs a term automaton
for (→∗

Rα
)[L]. The recognizability preserving approximation mappings that we

introduce in the next section have this property.

Definition 3.2.5. Let (R,F) be a system and α an approximation mapping.
We say that redex ∆ in C[∆] ∈ T (F) is α-needed if C[•] /∈ (→∗

Rα
)[NF(R•)].

The set of all such terms C[•] is denoted by NEED(Rα).

In the following we abbreviate →Rα
to →α when the R can be inferred from

the context.

Lemma 3.2.6. Let R be an orthogonal system and α an approximation map-
ping. Every α-needed redex is needed.

Proof. Let ∆ be an α-needed redex in C[∆]. So C[•] /∈ (→∗
Rα

)[NF(R•)]. Since
Rα approximates R, we have →R ⊆ →∗

Rα
by definition and thus also →∗

R ⊆
→∗

Rα
. Hence C[•] /∈ (→∗

R)[NF(R•)]. Because R is orthogonal, we obtain the
neededness of ∆ from Lemma 3.2.1.

Only in Lemma 3.2.6 do we require orthogonality. For decidability issues,
left-linearity suffices. The following example shows that both left-linearity and
non-overlappingness are required for Lemmata 3.2.1 and 3.2.6.

Example 3.2.7. First of all, consider the left-linear overlapping system con-
sisting of the single rewrite rule

f(f(x)) → a

and the term f(f(f(a))). Since contracting either of the two redexes immediately
gives a normal form, neither of the two redexes is needed. On the other hand, for
any approximation mapping α, including the identity mapping, redex f(f(f(a)))
is α-needed since • is an Rα-normal form which does not belong to NF(R•).

Next consider the non-left-linear non-overlapping system consisting of the
three rewrite rules

f(x, x) → a b → c c → b

and the term f(b, c). Again, it is easy to see that neither of the two redexes is
needed. Replacing either of them by • yields a term which, for two of the three
approximation mappings α defined in the next section as well as for the identity
mapping, does not Rα-rewrite to a normal form in NF(R•).

Lemma 3.2.8. Let R be a left-linear system and α an approximation mapping.
If α is recognizability preserving then NEED(Rα) is recognizable.

Proof. We have
NEED(Rα) = (→∗

Rα
)[NF(R•)]

c ∩ M•
4

4Here (→∗

Rα
)[NF(R•)]c denotes the complement of (→∗

Rα
)[NF(R•)] (with respect to

T (F•)).

3.3. APPROXIMATIONS 31

where M• is the subset of T (F•) consisting of all terms that contain exactly one
position of •. The recognizability of M• is easily shown. Hence the recogniz-
ability of NEED(Rα) is a consequence of Lemmata 2.4.1 and 2.4.2.

Since membership for recognizable term languages is decidable, we obtain
the following result.

Corollary 3.2.9. Let R be a left-linear system and α a recognizability pre-
serving approximation mapping. It is decidable whether a redex in a term is
α-needed.

Naturally, a better approximation can identify more needed redexes.

Lemma 3.2.10. Let α and β be approximation mappings. If α 6 β then
NEED(Rβ) ⊆ NEED(Rα), for every system R.

3.3 Approximations

In this section we define four approximation mappings that are known to be
recognizability preserving. We give new proofs for two of these results. The
approximations differ in the way they treat the right-handsides of the rewrite
rules of the original system. The left-hand sides are not affected, and hence the
second requirement in the definition of approximation is trivially satisfied.

Definition 3.3.1. Let R be a system. The strong approximation Rs is obtained
from R by replacing the right-handside of every rewrite rule by a fresh variable.

Example 3.3.2. For the system R of Example 3.1.2, the esystem Rs consists
of the following rules:

0 + y → z 0 × y → z

s(x) + y → z s(x) × y → z

The idea of approximating a system by ignoring the right-handsides of its
rewrite rules is due to Huet and Lévy [HL91]. Reduction with the strong ap-
proximation of a system replaces redexes by arbitrary terms and is sometimes
called arbitrary reduction. A better approximation is obtained by preserving
the non-variable parts of the right-handsides of the rewrite rules.

Definition 3.3.3. Let R be a system. The nv approximation Rnv is obtained
from R by replacing all positions of variables in the right-hand side of every
rewrite rule by distinct fresh variables.

Example 3.3.4. For the system R of Example 3.1.2, the esystem Rnv consists
of the following rules:

0 + y → y′ 0 × y → 0

s(x) + y → s(x′ + y′) s(x) × y → (x′ × y′) + y′′

32 CHAPTER 3. CALL BY NEED STRATEGIES

The idea of approximating a system by ignoring the variables in the right-
handsides of the rewrite rules is due to Oyamaguchi [Oya93]. Note that Rnv = R
whenever R is right-ground. Hence for every orthogonal right-ground system
R, a redex is needed if and only if it is nv-needed.

Definition 3.3.5. An esystem is called growing if for every rewrite rule l → r
the variables in Var(l) ∩ Var(r) occur at depth 1 in l. Let R be a system. The
growing approximation Rg is defined as the growing esystem that is obtained
from R by renaming the variables in the right-handsides that occur at a depth
greater than 1 in the corresponding left-hand sides.

Example 3.3.6. For the system R of Example 3.1.2, the esystem Rg consists
of the following rules:

0 + y → y 0 × y → 0

s(x) + y → s(x′ + y) s(x) × y → (x′ × y) + y

Note that the positions of y in the right-handsides of the rules of R are not
renamed since they occur at depth 1 in the corresponding left-hand sides.

The growing approximation defined above stems from Nagaya and Toyama [NT02].
It extends Jacquemard’s linear-growing approximation [Jac96b] which imposes
a right-linearity requirement.

Definition 3.3.7. An esystem is called linear-growing if it is growing and lin-
ear. The linear-growing approximation Rlg can be obtained from Rg by renam-
ing in the right-handsides the variables causing non-linearity in a left to right
manner. Note that other convention could be taken in order to define uniquely
Rlg.

Linear-growing systems introduced by Jacquemard [Jac96b], are a proper
extension of the shallow systems considered by Comon [Com00].

Example 3.3.8. For the system R of Example 3.1.2, the esystem Rlg consists
of the following rules:

0 + y → y 0 × y → 0

s(x) + y → s(x′ + y) s(x) × y → (x′ × y) + y′

Note that the second occurrence of y in the right-handside of the fourth rule has
been renamed to achieve linearity.

The mapping s that assigns to every esystem R the esystem Rs is an approx-
imation mapping. In the same fashion, Definitions 3.3.3, 3.3.7 and 3.3.5 define
approximation mappings nv, lg and g. We clearly have id 6 g 6 lg 6 nv 6 s

where id is the identity mapping.

Example 3.3.9. Consider again the system R of Example 3.1.2. Let ∆1 and
∆2 be arbitrary redexes and consider the term

t = (0 + s(∆1)
︸ ︷︷ ︸

∆3

) + ∆2

3.3. APPROXIMATIONS 33

All three redexes are needed (since the rules of R involved are non-erasing). The
following rewrite sequences show that ∆1 and ∆2 are not s-needed:

(0 + s(•)) + ∆2 →s 0 + ∆2 →s 0

(0 + s(∆1)) + • →s 0 + • →s 0

Redex ∆3 is s-needed since all s-reducts of • + ∆2 are of the form • + t′. For
the nv approximation the situation is the same. Redexes ∆1 and ∆2 are not
nv-needed—the above s-rewrite sequences are also nv-rewrite sequences—but ∆3

is. With respect to the growing approximation, ∆1 is not g-needed:

(0 + s(•)) + ∆2 →g s(•) + ∆2 →g s(0 + ∆2) →g s(∆2) →
∗
g t′

for some normal form t′ (which depends on redex ∆2). However, ∆2 is g-needed.
The reason is that we cannot get rid of • in the term (0 + s(∆1)) + • since the
second argument of + is never erased by the rules in Rg.

Theorem 3.3.10. The approximation mappings s, nv, lg and g are recogniz-
ability preserving.

Nagaya and Toyama [NT02] proved the above result for the growing approx-
imation; the term automaton that recognizes (→∗

g)[L] is defined as the limit of a
finite saturation process(see Section 5.2.2. This saturation process is similar to
the ones defined in Comon [Com00] and Jacquemard [Jac96b] (see Section 5.2.1).
However, by working exclusively with deterministic term automata, Nagaya and
Toyama can handle non-right-linear rewrite rules. The construction of these au-
tomata is detailed in Chapter 5 as they are useful for the complexity study.

Below we give a very simple proof of Theorem 3.3.10 for the s and nv ap-
proximations, using ground term transducers.

Lemma 3.3.11. Let R be a left-linear system. The relations →∗
s and →∗

nv are
gtt-recognizable.

Proof. According to Lemma 2.4.3(1) gtt-recognizable relations are closed under
transitive closure. Since →‖ + = →∗ it therefore suffices to show that →‖ s and
→‖ nv are gtt-recognizable. First we show the gtt-recognizability of →‖ nv. Let
Rnv = {li → ri | 1 6 i 6 n}. Define the ground term transducer Gnv as the
pair of term automata A and B that accept in state i all instances of li and ri,
respectively. Moreover, we may assume that the two term automata share no
other states. Hence L(Gnv) = →‖ nv. The gtt-recognizability of →‖ s is obtained by
replacing B by the term automaton C that accepts in state i all terms.

We illustrate the construction of Gnv and Gs in the proof of the above lemma
on a small example.

Example 3.3.12. Table 3.1 shows the term automata A, B, and C used in the
proof of the above lemma for the following system R:

1: f(g(x), a) → f(h(h(x)), x)
2 : h(a) → h(b)
3 : h(f(x, b)) → x

34 CHAPTER 3. CALL BY NEED STRATEGIES

Table 3.1: The term automata A, B, and C in the proof of Lemma 3.3.11.
a → [x] a → {x} a → {x}
b → [x] b → {x} b → {x}

f([x], [x]) → [x] f({x}, {x}) → {x} f({x}, {x}) → {x}
g([x]) → [x] g({x}) → {x} g({x}) → {x}
h([x]) → [x] h({x}) → {x} h({x}) → {x}

• → [x] • → {x} • → {x}

a → [a] b → {b}
b → [b] h({x}) → {h(x)}

g([x]) → [g(x)] h({h(x)}) → {h(h(x))}
f([x], [b]) → [f(x, b)]

f([g(x)], [a]) → {1} f({h(h(x))}, {x}) → {1} {x} → {1}
h([a]) → {2} h({b}) → {2} {x} → {2}

h([f(x, b)]) → {3} {x} → {3} {x} → {3}

Note that only states {1}, {2}, and {3} are shared by A and B and by A and C.
Consider the term automaton A. Its states are [x], [a], [b], [g(x)], and [f(x, b)].
In state [x] all ground terms are accepted. The purpose of the second group
of transition rules is to recognize all ground instances of proper non-variable
subterms of the left-hand sides of R. So in state [a] only the term a is accepted,
whereas in state [f(x, b)] all ground terms of the form f(t, b) are accepted. The
third group of transition rules corresponds to the left-hand sides of R.

The recognizability preservation of s and nv is an immediate consequence of
Lemmata 3.3.11 and 2.4.3(2). (Since →∗

g need not be a gtt-recognizable rela-
tion,5 ground term transducers are not useful for obtaining the recognizability
preservation of g.)

It is easy to see that s-needed redexes in a term are always outermost. The
same is true for nv-needed redexes in terms that have a normal form. However,
g-needed redexes in normalizing terms need not be outermost. For instance, the
system R:

f(x) → g(x) a → b

is growing and hence Rg = R. Innermost redex a in the term f(a) is g-needed
because there is no term t ∈ NF(R•) such that f(•) →∗

R t. Note that a is not
nv-needed as f(•) →nv g(b) with g(b) ∈ NF(R•).

Takai et al. [TKS00] introduced the class of left-linear inverse finite path
overlapping rewrite systems and showed that Theorem 3.3.10 is true for the
corresponding approximation mapping. Growing rewrite systems constitute a
proper subclass of the class of inverse finite path overlapping rewrite systems.

5It is not difficult to show that →∗
g is not gtt-recognizable for the system R = {f(x) → x}

over the signature consisting of unary function symbols f and g, and a constant a.

3.4. CALL-BY-NEED COMPUTATIONS TO NORMAL FORM 35

Since the definition of this class is rather difficult, we do not consider the inverse
finite path overlapping approximation here. We note however that our results
easily extend. Another complicated recognizability preserving approximation
mapping can be extracted from the paper by Seki et al. [STFK02].

3.4 Call-by-Need Computations to Normal Form

A system R admits decidable call-by-need computations to normal form if there
exists an approximation mapping α such that α-needed redexes are computable
and, moreover, every reducible term has an α-needed redex. In Section 3.2
we addressed the first issue. This section is devoted to the second issue. The
following definition is readily understood.

Definition 3.4.1. Let α be an approximation mapping. The class of systems
(R,F) such that every reducible term in T (F) has an α-needed redex is denoted
by CBNα.

Lemma 3.4.2. Let R be an orthogonal system.

1. If R is right-ground then R ∈ CBNnv.

2. If R is linear-growing then R ∈ CBNlg.

3. If R is growing then R ∈ CBNg.

Proof. According to Theorem 3.1.4(1) every reducible term contains a needed
redex. If R is right-ground then R = Rnv and thus all needed redexes are nv-
needed. Hence R ∈ CBNnv. If R is linear-growing then R = Rlg and thus all
needed redexes are lg-needed. Hence R ∈ CBNlg. The same argument applies
to g.

The next lemma is an easy consequence of Lemma 3.2.10.

Lemma 3.4.3. Let α and β be approximation mappings. If α 6 β then CBNβ ⊆
CBNα.

Proof. Let R be a system over a signature F that belongs to CBNβ. So every
reducible term t in T (F) has a β-needed redex. So t = C[∆] with ∆ a β-needed
redex. By definition C[•] ∈ NEED(Rβ). Lemma 3.2.10 yields C[•] ∈ NEED(Rα).
Hence redex ∆ is α-needed in t. It follows that R belongs to CBNα.

Below we show that membership of a left-linear system in CBNα is decidable
for any recognizability preserving approximation mapping α. The proof is a
straightforward consequence of the following result.

Theorem 3.4.4. Let R be a left-linear system and let α be a recognizability
preserving approximation mapping. The set of terms that have an α-needed
redex is recognizable.

36 CHAPTER 3. CALL BY NEED STRATEGIES

Proof. Let F be the signature of R. Define the relation mark•R on T (F•) as the
parallel closure of {(∆, •) | ∆ ∈ T (F) is a redex}. The set of terms that have
an α-needed redex coincides with

mark•R[NEED(Rα)] ∩ T (F)

If we can show that the relation mark•R is gtt-recognizable then the result follows
from Lemmata 2.4.1, 2.4.3(2), and 3.2.8. Let A be a term automaton with a
unique final state ! that accepts REDEX(R) ∩ T (F) and let • → ! be the single
transition rule of the term automaton B. It is not difficult to see that the ground
term transducer (A,B) accepts mark•R.

Theorem 3.4.5. Let R be a left-linear system and let α be a recognizability
preserving approximation mapping. It is decidable whether R ∈ CBNα.

Proof. Let F be the signature of R. The system R belongs to CBNα if and only
if the set

A = NF(R)c \ {t ∈ T (F) | t has an α-needed redex}

is empty. According to Lemmata 2.4.1, 2.4.2 and Theorem 3.4.4, A is recogniz-
able. Hence the emptiness of A is decidable by Lemma 2.4.1.

Because Rα-needed redexes need not be needed for a left-linear system R
(Example 3.2.7), membership in CBNα does not guarantee that R admits a com-
putable call-by-need strategy; orthogonality is needed to draw that conclusion.

It should not come as a surprise that a better approximation covers a larger
class of systems. This is expressed formally in the next lemma.

Lemma 3.4.6. We have CBNs (CBNnv (CBNlg (CBNg, even when these
classes are restricted to orthogonal systems.

Proof. From Lemma 3.4.3 we obtain CBNs ⊆ CBNnv ⊆ CBNlg ⊆ CBNg. Consider
the orthogonal systems

Ra : f(a, b, x) → a f(b, x, a) → b f(x, a, b) → c

Rb : f(a, b, x) → a f(b, x, a) → b f(x, a, b) → x

Rc : f(a, b, x) → a f(b, x, a) → a f(x, a, b) → a

f(b, b, b) → b h(x) → f(x, x, x)

According to Lemma 3.4.2 Ra ∈ CBNnv, Rb ∈ CBNlg and Rc ∈ CBNg. So it
remains to show that Ra /∈ CBNs, Rb /∈ CBNnv and Rc /∈ CBNlg . We have

(Ra)s : f(a, b, x) → y f(b, x, a) → y f(x, a, b) → y

(Rb)nv : f(a, b, x) → a f(b, x, a) → b f(x, a, b) → y

(Rc)lg : f(a, b, x) → a f(b, x, a) → a f(x, a, b) → a

f(b, b, b) → b h(x) → f(x, y, z)

3.4. CALL-BY-NEED COMPUTATIONS TO NORMAL FORM 37

Let ∆ be the redex f(a, a, b). In (Ra)s and (Rb)nv we have ∆ → t for every term
t. The following rewrite sequences in (Ra)s show that none of the redexes in
f(∆, ∆, ∆) is s-needed:

f(•, ∆, ∆) → f(•, a, ∆) → f(•, a, b) → a

f(∆, •, ∆) → f(b, •, ∆) → f(b, •, a) → a

f(∆, ∆, •) → f(a, ∆, •) → f(a, b, •) → a

Hence Ra /∈ CBNs. The following rewrite sequences in (Rb)nv show that none
of the redexes in f(∆, ∆, ∆) is nv-needed:

f(•, ∆, ∆) → f(•, a, ∆) → f(•, a, b) → a

f(∆, •, ∆) → f(b, •, ∆) → f(b, •, a) → b

f(∆, ∆, •) → f(a, ∆, •) → f(a, b, •) → a

Consequently, Rb /∈ CBNnv. Now let ∆ be the redex f(h(b), h(b), h(b)). ∆ can
lg-reduce do both a and b. Note that would not be the case if we used g. The
following rewrite sequences in (Rc)lg show that none of the redexes in f(∆, ∆, ∆)
is lg-needed:

f(•, ∆, ∆) →∗ f(•, a, b) → a

f(∆, •, ∆) →∗ f(b, •, a) → b

f(∆, ∆, •) →∗ f(a, b, •) → a

Consequently, Rc /∈ CBNlg.

A reducible term without (Rα,F)-needed redexes is called (Rα,F)-free. A
minimal free term has the property that none of its proper subterms is free.

38 CHAPTER 3. CALL BY NEED STRATEGIES

Chapter 4

Signature extension and
Modularity

Comon [Com00] showed that strong sequentiality of a left-linear rewrite sys-
tem can be decided in exponential time. That result also applies to CBNs.
For classes higher in the hierarchy the known upper bounds range from double
(CBNnv, CBNlg) to triple exponential (CBNg) (see Chapter 5, [DM98]). Conse-
quently, it is of obvious importance to have results available that enable to split
a rewrite system into smaller components such that membership in CBNα of the
components implies membership of the original system in CBNα.

Such modularity results have been extensively studied for basic properties
like confluence and termination, see [Ohl02] for a recent overview. The simplest
kind of modularity results are concerned with enriching the signature. Most
properties of rewrite systems are preserved under signature extension. Two
notable exceptions are the normal form property and the unique normal form
property (with respect to reduction), see Kennaway et al. [KKSdV96]. Also
some properties dealing with ground terms are not preserved under signature
extension. Consider for instance the property that every ground term is in-
nermost terminating, the rewrite system consisting of the two rewrite rules
f(f(x)) → f(f(x)) and f(a) → a, and add a new constant b. It turns out that
for no α, membership in CBNα is preserved under signature extension. We
present several sufficient conditions which guarantee preservation under signa-
ture extension. The study of preservation of membership to CBNα under sig-
nature extension was a necessary step towards modularity. We next consider
modularity for systems over disjoint signatures and finally constructor-sharing
combinations.

The remainder of this chapter is organized as follows. In Section 4.1 we
present our signature extension results and in Section 4.2 these results are ex-
tended to modularity. The proofs of most of the results in these two sections are
given in Appendix B. The results presented in this chapter are also published
in [DM05].

39

40 CHAPTER 4. SIGNATURE EXTENSION AND MODULARITY

4.1 Signature Extension

In this section we study the question whether membership in CBNα is preserved
after adding new function symbols. This entails that we need to be a bit more
precise about the underlying signature in our notation. From now on we write
NF(R,F) for the set of ground normal forms of an esystem R over a signature F .
Furthermore, an α-needed redex with respect to a system R over the signature
F will often be called (Rα,F)-needed in the sequel.

Many of the examples presented in this and the next section have been
verified by Autowrite. This tool, described in Chapter 15, checks membership
in CBNα for α ∈ {s, nv, g} by using the direct term automata constructions
described in Chapter 5 as opposed to the ground term transducer constructions
of Sections 3.3 and 3.4 which work only up to the nv-case.

Definition 4.1.1. We say that a class C of systems is preserved under signature
extension if (R,G) ∈ C for all (R,F) ∈ C and F ⊆ G.

Our first example shows that CBNs is not preserved under signature exten-
sion.

Example 4.1.2. Consider the system R = R5 of Example A.0.5 over the
signature F consisting of all the symbols appearing in the rewrite rules. Let
G = F ∪ {@} with @ a fresh constant. We have (R,G) /∈ CBNs as the term
f(a, a, a) has no (Rs,G)-needed redex:

f(•, a, a) →s f(•, g(a), a) →s f(•, g(a), h(a)) →s @

f(a, •, a) →s f(h(a), •, a) →s f(h(a), •, g(a)) →s @

f(a, a, •) →s f(g(a), a, •) →s f(g(a), h(a), •) →s @

One may wonder whether there are any nontrivial counterexamples, where
nontrivial means that the set of ground normal forms is non-empty. Surprisingly,
the answer is yes, provided we consider an approximation mapping α that is at
least as good as nv.

Example 4.1.3. Consider the system R

f(x, a, b) → g(x) f(a, a, a) → g(a) g(a) → g(a)

f(b, x, a) → g(x) f(b, b, b) → g(a) g(b) → g(b)

f(a, b, x) → g(x) e(x) → x

over the signature F consisting of all symbols appearing in the rewrite rules.
First we show that (R,F) ∈ CBNnv. It is not difficult to show that the only
(Rnv,F)-normalizable terms are a, b, and e(t) for every t ∈ T (F). Since a

and b are normal forms, we only have to show that every e(t) contains an
(Rnv,F)-needed redex, which is easy since e(t) itself is an (Rnv,F)-needed redex.
Let G = F ∪ {@} with @ a constant. We have (R,G) /∈ CBNnv as the term

4.1. SIGNATURE EXTENSION 41

f(e(a), e(a), e(a)) has no (Rnv,G)-needed redex:

f(•, e(a), e(a)) →nv f(•, a, e(a)) →nv f(•, a, b) →nv g(@)

f(e(a), •, e(a)) →nv f(b, •, e(a)) →nv f(b, •, a) →nv g(@)

f(e(a), e(a), •) →nv f(a, e(a), •) →nv f(a, b, •) →nv g(@)

For α = s there is no nontrivial counterexample.

Theorem 4.1.4. The subclass of CBNs consisting of all orthogonal systems
(R,F) such that NF(R,F) 6= ∅ is preserved under signature extension.

We refrain from giving the proof at this point since the statement easily
follows from Theorem 4.1.9 below, whose proof is presented in detail in the
Appendix B (see also the discussion following Corollary 4.2.5). We just show
the necessity of the orthogonality condition.

Example 4.1.5. Consider the left-linear (overlapping) system R

f(x, a) → a g(f(a, x), y) → a

g(x, a) → a g(x, f(y, z)) → a

g(x, g(y, z)) → a

over the signature F = {a, f, g}.
Autowrite is able to verify that (R,F) ∈ CBNs. Let G = F ∪ {@} with
@ a constant. The system (R,G) does not belong to CBNs because the term
g(f(f(a, a), f(a, a)), @) lacks (Rs,G)-needed redexes:

g(f(•, f(a, a)), @) →s g(f(•, a), @) →s g(a, @)

g(f(f(a, a), •), @) →s g(f(a, •), @) →s a

Note that here only the rewrite rules f(x, a) → a and g(f(a, x), y) → a are used.
The remaining rules of R are needed to ensure that (R,F) ∈ CBNs.

Our second result states that for any approximation mapping α the subclass
of CBNα consisting of all left-linear systems R with the property defined below
is preserved under signature extension.

Definition 4.1.6. We say that a system R has an external normal form if there
exists a ground normal form which is not an instance of a proper non-variable
subterm of a left-hand sides of a rewrite rule in R.

Note that the system of Example 4.1.3 lacks external normal forms as both
ground normal forms a and b appear in the left-hand sides of the rewrite rules.
Further note that it is decidable whether a left-linear system has external nor-
mal forms by straightforward term automata techniques. Finally note that the
external normal form property is satisfied whenever there exists a constant not
occurring in the left-hand sides of the rewrite rules.

42 CHAPTER 4. SIGNATURE EXTENSION AND MODULARITY

Theorem 4.1.7. Let α be an approximation mapping. The subclass of CBNα

consisting of all left-linear systems with external normal forms is preserved un-
der signature extension.

The proof is given in Appendix B. Note that for α = s the above theorem is
a special case of Theorem 4.1.4 since the existence of an external normal form
implies the existence of a ground normal form.

Our final signature extension result is about systems without external normal
form. Such systems are quite common.

Example 4.1.8. Consider the system R of Example 3.1.2 (p27) over the sig-
nature F consisting of all symbols appearing in the rewrite rules. Since every
ground normal form is of the form sn(0) for some n > 0, it follows that R lacks
external normal forms.

The condition WN(Rα,F) = WN(Rα,G,F) in Theorem 4.1.9 expresses that
the set of Rα-normalizable terms in T (F) is not enlarged by allowing terms in
T (G) to be substituted for the variables in the rewrite rules. We stress that
this condition is decidable for left-linear R and recognizability preserving α by
standard term automata techniques.

Theorem 4.1.9. Let (R,F), α ∈ {s, nv}, and G ⊇ F such that WN(Rα,F) =
WN(Rα,G,F). If (R,F) ∈ CBNα and Rα is collapsing then (R,G) ∈ CBNα.

The necessity of the WN(Rα,F) = WN(Rα,G,F) condition for collaps-
ing Rα is a consequence of Example 4.1.3. The system R in that example
is a collapsing orthogonal system with (R,F) ∈ CBNnv, (R,G) /∈ CBNnv, and
WN(Rnv,F) 6= WN(Rnv,G,F) as witnessed by the term f(a, a, b). The following
example shows the necessity of the collapsing condition.

Example 4.1.10. Consider system R

f(x, a, b(y, z)) → c(∞) g(x) → b(x,∞)

f(x, a, c(y)) → ∞ h(a) → ∞

f(a, a, a) → ∞ h(b(a, x)) → a

f(a, b(x, y), z) → a h(b(b(x, y), z)) → b(∞,∞)

f(a, c(x), y) → ∞ h(b(c(x), y)) → ∞

f(b(x, y), z, a) → a h(c(x)) → ∞

f(b(x, y), b(z, u), b(v, w)) → ∞ i(a, a) → ∞

f(b(x, y), b(z, u), c(v)) → ∞ i(a, b(x, y)) → ∞

f(b(x, y), c(z), b(u, v)) → ∞ i(a, c(x)) → ∞

f(b(x, y), c(z), c(u)) → ∞ i(b(x, y), z) → ∞

f(c(x), a, a) → ∞ i(c(x), y) → a

f(c(x), b(y, z), a) → ∞ ∞ → ∞

f(c(x), b(y, z), c(u)) → ∞

4.1. SIGNATURE EXTENSION 43

f(c(x), b(y, z), b(u, v)) → ∞

f(c(x), c(y), z) → ∞

over the signature F consisting of all symbols appearing in the rewrite rules
and let G = F ∪ {@} with @ a constant. One easily checks that the term
i(f(∆, ∆, ∆), @) with ∆ = h(g(@)) lacks (Rnv,G)-needed redexes and hence
(R,G) /∈ CBNnv. Autowrite is able to verify (R,F) ∈ CBNnv and WN(Rnv,F)
= WN(Rnv,G,F).

The next example shows the necessity of the restriction to α ∈ {s, nv}.

Example 4.1.11. Consider the orthogonal system R

f(x, a, b(y), z) → g(z) g(a) → ∞

f(b(x), y, a, z) → g(z) g(b(x)) → ∞

f(a, b(x), y, z) → g(z) h(b(x)) → j(∞, x)

f(a, a, a, z) → ∞ h(a) → ∞

f(b(x), b(y), b(z), u) → ∞ j(x, a) → a

∞ → ∞ j(x, b(y)) → b(a)

over the signature F consisting of all symbols appearing in the rewrite rules.
Note that the growing approximation only modifies the rule h(b(x)) → j(∞, x)
into h(b(x)) → j(∞, y). Let G = F ∪ {@} with @ a constant. As the term
f(h(b(@)), h(b(@)), h(b(@))), @) lacks (Rg,G)-needed redexes, (R,G) /∈ CBNg.
Autowrite is able to verify (R,F) ∈ CBNg and WN(Rg,F) = WN(Rg,G,F).
Note that R is not collapsing. This is not essential, since adding the single
collapsing rule k(x) → x to R does not affect any of the above properties.

We show that Theorem 4.1.4 is a special case of Theorem 4.1.9 by proving
that for α = s the condition WN(Rα,F) = WN(Rα,G,F) is a consequence of
NF(R,F) 6= ∅.

Lemma 4.1.12. Let (R,F) be a system. If NF(R,F) 6= ∅ then WN(Rs,F) =
T (F).

Proof. If NF(R,F) 6= ∅ then there must be a constant c ∈ NF(R,F). Define
the system R′ = {l → c | l → r ∈ R} over the signature F . Clearly →R′ ⊆ →s.
The system R′ is terminating since every rewrite step reduces the number of
function symbols in F \ {c}. Since Rs and R′ have the same normal forms, it
follows that Rs is weakly normalizing.

Proof. of Theorem 4.1.4. Let R be an orthogonal system over a signature F
such that (R,F) ∈ CBNs. Let F ⊆ G. We have to show that (R,G) ∈ CBNs.
If R = ∅, this is trivial. Otherwise Rs is collapsing and the result follows from
Theorem 4.1.9 provided that WN(Rs,F) = WN(Rs,G,F). From Lemma 4.1.12
we obtain WN(Rs,F) = T (F) and WN(Rs,G,F) = WN(Rs,G)∩T (F) = T (G)∩
T (F) = T (F).

44 CHAPTER 4. SIGNATURE EXTENSION AND MODULARITY

Remark that we have to use Theorem 4.1.9 only once. After adding a single
new function symbol we obtain an external normal form and hence we can apply
Theorem 4.1.7 for the remaining new function symbols.

The following picture summarizes the results concerning signature extension.

Var(r) ⊆ Var(l), ∀l → r
Y //

N

��

Th 3.0.6

ENF(R) 6= ∅
Y //

N

��

Th 4.1.7

WN(Rα,F) = WN(Rα,G,F)
Y //

N

��

α = nv
Y //

N

��

collapsing
Y //

N

��

Th 4.1.9

CEX4.1.3 CEX 4.1.11 CEX 4.1.10

To conclude this section, Proposition 4.1.15 gives an unpublished folklore
result whose main consequence is that, in order to check whether signature
extension holds one just has to add a single constant symbol. We have taken
advantage of this property in Autowrite (see Chapter 15) where we consider
signature extension with just the constant symbol @. Two additional lemmata
are needed for the proof of Proposition 4.1.15.

Lemma 4.1.13. Let (R,F) be a left-linear esystem, G ⊇ F , t, s ∈ T (G) and
c ∈ T (F). Let tc and sc be t and s where every outermost symbol in G \F have
been replaced by c.
If t →∗

R,G s then tc →∗
R,F sc.

Proof. Obvious as the symbols in G \F do not participate to the left-hand side
of any redex.

Lemma 4.1.14. Let (R,F) be an esystem. Let G ⊇ F . Let @ be a fresh
constant symbol. Let F@ = F ∪ {@}. Let t ∈ T (G). Let t@ obtained from t by
replacing every outermost subterm with root in G \ F by @.
(1) If t ∈ NF(R,G) then t@ ∈ NF(R,F@).
(2) If t ∈ WN(R,G) then t@ ∈ WN(R,F@).

Proof. (1) t ∈ NF(R,G). If root(t) ∈ G \F then t@ = @ ∈ NF(R,F@) otherwise
t@ cannot contain a redex otherwise t would also contain a redex. So (1) holds.
(2) t ∈ WN(R,G). Then t →∗

R,G s for some s ∈ NF(R,G). Trivially, t →∗
R,G@

s

and s ∈ NF(R,G@). As @ ∈ F@, Lemma 4.1.13 yields t@ →∗
R,F@

s@. (1) yields

s@ ∈ NF(R,F@). It follows that t@ ∈ WN(R,F@).

Proposition 4.1.15. Let α be an arbitrary approximation mapping. Let (R,F)
a system such that R ∈ CBNα. Let G ⊇ F . Let @ be fresh constant symbol (not
in G). Let F@ = F ∪ {@}. If (R,G) 6∈ CBNα then (R,F@) 6∈ CBNα.

4.2. MODULARITY 45

Proof. Let t be a minimal (Rα,G)-free term. By Lemma B.0.6, t is not (Rα,G)-
root-stable. Let t@ obtained from t by replacing every outermost subterm with
root in G \ F by @. t@ is necessarily reducible otherwise t would be (Rα,G)-
root-stable. Let p be a redex in t@. p is also a redex in t and as t is free we get
t[•]p ∈ WN(Rα•,G•). By Lemma 4.1.14, we get t@[•]p ∈ WN(Rα•,F@•). We
conclude that t@ is a (Rα,F@)-free term so that (R,F@) 6∈ CBNα.

4.2 Modularity

The results obtained in the previous section form the basis for the modularity
results presented in this section. We first consider disjoint combinations.

Definition 4.2.1. We say that a class C of systems is modular (for disjoint
combinations) if (R1 ∪R2,F1∪F2) ∈ C for all (R1,F1), (R2,F2) ∈ C such that
F1 ∩ F2 = ∅.

To simplify notation, in the remainder of this section we write S for R1∪R2

and G for F1 ∪ F2.
The condition in Theorem 4.1.7 is insufficient for modularity as shown by

the following example.

Example 4.2.2. Consider the system R1

f(x, a, b) → a f(b, x, a) → a f(a, b, x) → a

over the signature F1 consisting of all symbols appearing in the rewrite rules
and the system R2 = {g(x) → x} over the signature F2 consisting of a constant
c in addition to g. Both systems have external normal forms and belong to
CBNnv, as one easily shows. Their union does not belong to CBNnv as the term
f(g(a), g(a), g(a)) has no (Snv,G)-needed redex:

f(•, g(a), g(a)) →nv f(•, a, g(a)) →nv f(•, a, b) →nv a

f(g(a), •, g(a)) →nv f(b, •, g(a)) →nv f(b, •, a) →nv a

f(g(a), g(a), •) →nv f(a, g(a), •) →nv f(a, b, •) →nv a

If we forbid collapsing rules like g(x) → x, modularity holds. The following
theorem is proved along the lines of the proof of Theorem 4.1.7; because there
are no collapsing rules and the esystems are left-linear, aliens (see Appendix B)
cannot influence the possibility to perform a rewrite step in the non-alien part
of a term.

Theorem 4.2.3. Let α be an arbitrary approximation mapping. The subclass
of CBNα consisting of all left-linear systems R with external normal forms such
that Rα is non-collapsing is modular.

The following result is the modularity counterpart of Theorem 4.1.9. The
proof is given in the appendix.

46 CHAPTER 4. SIGNATURE EXTENSION AND MODULARITY

Theorem 4.2.4. Let (R1,F1) and (R2,F2) be disjoint orthogonal systems and
α ∈ {s, nv} such that both WN(R1α,G,F1) = WN(R1α,F1) and WN(R2α,G,F2) =
WN(R2α,F2). If (R1,F1), (R2,F2) ∈ CBNα and both R1α and R2α are col-
lapsing then (S,G) ∈ CBNα.

It is rather surprising that the presence of collapsing rules helps to achieve
modularity; for most properties of systems collapsing rules are an obstacle for
modularity (see e.g. Middeldorp [Mid90]).

The necessity of the collapsing condition is shown already for signature ex-
tension so a counterexample showing the necessity of the collapsing condition
could be (R1,F1) = (R,F) of Example 4.1.11 and (R2,F2) = (∅, {@}).

The next result is the modularity counterpart of Theorem 4.1.4. It is an
easy corollary of the preceding theorem.

Corollary 4.2.5. The subclass of CBNs consisting of all orthogonal systems
(R,F) such that NF(R,F) 6= ∅ is modular.

Using Huet and Lévy’s characterization of strong sequentiality by means of
increasing indexes, Klop and Middeldorp [KM91] showed that strong sequen-
tiality is a modular property of orthogonal systems. Since membership in CBNs

coincides with strong sequentiality for orthogonal systems with ground normal
forms (Lemma 9.2.1), this provides another proof of Corollary 4.2.5. Actually,
in [KM91] it is remarked that it is sufficient that the left-hand sides of the two
strongly sequential rewrite systems do not share function symbols. One easily
verifies that for our modularity results it is sufficient that R1α and R2α do not
share function symbols. Actually, we can go a step further by considering so-
called constructor-sharing combinations. In such combinations the participating
systems may share constructors but not defined symbols.

Definition 4.2.6. Two systems (R1,F1) and (R2,F2) share constructors if
F1D ∩ F2 = F2D ∩ F1 = ∅. We say that a class C of systems is constructor-
sharing modular if (R1∪R2,F1∪F2) ∈ C for all systems (R1,F1), (R2,F2) ∈ C
that share constructors.

It can be shown that the results obtained in this section extend to constructor-
sharing combinations, provided we strengthen the requirements in Theorems 4.2.3
and 4.2.4 by forbidding the presence of constructor-lifting rules. A rewrite rule
l → r is called constructor-lifting if root(r) is a shared constructor. In the ap-
pendix we give a detailed proof of the extension of Theorem 4.2.3. The proof of
Theorem 4.2.4 is easily extended to constructor-sharing combinations and hence
omitted.

Theorem 4.2.7. Let (R1,F1) and (R2,F2) be left-linear constructor-sharing
systems with external normal forms and without constructor-lifting rules and let
α be an approximation mapping such that R1α and R2α are non-collapsing. If
(R1,F1), (R2,F2) ∈ CBNα then (S,G) ∈ CBNα.

The reason for excluding constructor-lifting rules in Theorem 4.2.7 is shown
in the following example.

4.2. MODULARITY 47

Example 4.2.8. Consider the system R1

f(x, c(a), c(b)) → a f(c(b), x, c(a)) → a f(c(a), c(b), x) → a

over the signature F1 consisting of all symbols appearing in the rewrite rules and
the system R2 = {g(x) → c(x)} over the signature F2 consisting of a constant d

in addition to g and c. Both systems have external normal forms, lack collapsing
rules, and belong to CBNnv. Their union does not belong to CBNnv as the term
f(g(a), g(a), g(a)) has no (Snv,G)-needed redex. Note that R1 and R2 share the
constructor c and hence g(x) → c(x) is constructor-lifting.

Theorem 4.2.9. Let (R1,F1) and (R2,F2) be orthogonal constructor-sharing
systems without constructor-lifting rules and α ∈ {s, nv} such that WN(R1α,G,F1) =
WN(R1α,F1) and WN(R2α,G,F2) = WN(R2α,F2). If (R1,F1), (R2,F2) ∈
CBNα and both R1α and R2α are collapsing then (S,G) ∈ CBNα.

Again, it is essential that constructor-lifting rules are excluded.

Example 4.2.10. Consider the systems R1

f(x, a, b) → c(g(x)) g(x) → g(a)

f(b, x, a) → c(g(x)) h(x) → x

f(a, b, x) → c(g(x))

and R2 = {i(a) → a, i(c(x)) → x} over the signatures F1 and F2 consisting of
function symbols that appear in their respective rewrite rules. The two systems
are obviously collapsing and share the constructors a and c. One easily verifies
that both systems belong to CBNnv and that WN(R1nv,G,F1) = WN(R1nv,F1)
and WN(R1nv,G,F2) = T (F2) = WN(R2nv,F2). However, the union of the
two systems does not belong to CBNnv as the term i(f(h(a), h(a), h(a))) has no
(Snv,G)-needed redex.

For the strong approximation we need of course not exclude constructor-
sharing rules. Moreover, the two conditions WN(R1s,G,F1) = WN(R1α,F1)
and WN(R2s,G,F2) = WN(R2α,F2) are always satisfied (cf. the proof of The-
orem 4.1.4). Hence we can state the final result of the chapter.

Corollary 4.2.11. Let (R1,F1) and (R2,F2) be orthogonal constructor-sharing
systems with ground normal forms. If (R1,F1), (R2,F2) ∈ CBNs then (S,G) ∈
CBNs.

48 CHAPTER 4. SIGNATURE EXTENSION AND MODULARITY

The following picture summarizes the results concerning modularity.

Var(r) ⊆ Var(l), ∀l → r
Y //

N

��

Th 3.0.6

∀i, Ri noncollapsing
Y //

N

��

ENF 6= ∅
Y //

N

��

Th 4.2.3

��

CEX 4.2.2

∀i, WN(R,G,Fi) = WN(Ri,Fi)
Y //

N

��

nv
Y //

N

��

∀i, Ri collapsing
Y //

N

��

Th 4.2.4

CEX 4.1.2 CEX 4.1.11 CEX 4.1.10

Chapter 5

Complexity of CBN classes

The results of this chapter are unpublished although some preliminary results
can be found in the technical report [DM98]. The ultimate aim of this chapter
is to analyze the complexity of deciding membership to CBNg which contain all
the CBNα classes that we have defined. The case α = s will be discussed again
in Chapter 13. The intermediate case α = nv has not been studied yet.

To study the complexity of deciding membership to CBNg, we need to de-
tail all the constructions of the automata used to decide membership to CBNg.
Thoughout the whole chapter, we will illustrate these constructions on the fol-
lowing example taken from [NT02]. Consider the orthogonal growing system R
consisting of the rewrite rules

g(x) → f(x, x, x)
f(x, a, b) → a

f(b, x, a) → a

f(a, b, x) → b

We have Rg = R and

Rlg =

g(x) → f(x, y, z)
f(x, a, b) → a

f(b, x, a) → a

f(a, b, x) → b

The first section gives basic easy constructions. The second section shows
the construction of automata CT (R) and DT (R) regognizing (→∗

R)[T] given a
recognizable term language T and a growing esystem R. The third section gives
constructions of automata E(R) recognizing the set of R-free terms (having no
R-needed redex). With such automata one can decide whether a system R is in
CBNα by checking whether E(Rα) recognizes the empty language. The fourth
section contains the complexity analysis. Different constructions are given for
α = lg and α = g which lead to different complexities for CBNlg and CBNg.

49

50 CHAPTER 5. COMPLEXITY OF CBN CLASSES

5.1 Basic constructions

We consider finite bottom-up term automata without ǫ-transitions. Let (R,F)
be a (left-linear) growing esystem. Let G ⊇ F . Let T ⊆ T (G) be a recognizable
set of terms and AT = (G, QA, Qf , ΓA) a term automaton recognizing T . We
assume without loss of generality that all states of AT are accessible.

5.1.1 Step 1

Let SR be the set of all subterms of the arguments of the left-hand sides of
R. Construct the term automaton B(R) = (G, QB, ∅, ΓB) with QB = {[t] | t ∈
SR} ∪ {[x]} and ΓB consisting of the matching rules f([t1], . . . , [tn]) → [t] for
every term t = f(t1, . . . , tn) in SR and propagation rules f([x], . . . , [x]) → [x] for
every f ∈ G. Here [t] denotes the equivalence class of the term t with respect to
literal similarity. (So we identify [s] and [t] whenever s and t differ by variable
renaming.) Note that all states of B(R) are accessible. From now on in this
chapter, we write B for B(R) when R is understood. The set of ground instances
of a term t is denoted by Σ(t). Clearly, for t ∈ SR ∪ {x}, we have s ∈ Σ(t) if
and only if s →∗

ΓB
[t].

For G = F ∪ {•}, the automaton B(R) has states QB = {[x], [a], [b]} and
transition rules ΓB:

propagation rules a → [x] g([x]) → [x]
b → [x] f([x], [x], [x]) → [x]
• → [x]

matching rules a → [a] b → [b]

5.1.2 Step 2

We assume that {t | t →+
ΓA

q} = {t | t →+
ΓB

q} for every state q ∈ QA∩QB. This
can always be achieved by a renaming of states. Note that the automata A and B
obtained for our example R share states [a] and [b]. Let UT (R) = (G, Q, Qf , ΓU)

be the union of AT and B, so Q = QA ∪ QB, Qf = Qf
A and ΓU = ΓA ∪ ΓB.

Lemma 5.1.1.

1. Let t ∈ SR ∪ {x}. We have s ∈ Σ(t) if and only if s →∗
ΓU

[t].

2. L(UT (R)) = T .

For our example, the set T = NF is accepted by the automaton ANF with
states QA = Qf

A = {[X], [a], [b]} and transition rules ΓA: consisting of a → [a],
b → [b] and rules f(q, q′, q′′) → [X] for all triple (q, q′, q′′) ∈ QA × QA × QA

except the ones of the form (q, [a], [b]), ([b], q′, [a]) and ([a], [b], q′′).

5.2. RECOGNIZABILITY OF (→∗
R)[T] 51

a → [a] b → [b] f([X], [X], [X]) → [X]

f([X], [X], [a]) → [X] f([X], [X], [b]) → [X] f([X], [a], [X]) → [X]

f([X], [a], [a]) → [X] f([X], [b], [X]) → [X] f([X], [b], [a]) → [X]

f([X], [b], [b]) → [X] f([a], [X], [X]) → [X] f([a], [X], [a]) → [X]

f([a], [X], [b]) → [X] f([a], [a], [X]) → [X] f([a], [a], [a]) → [X]

f([b], [X], [X]) → [X] f([b], [X], [b]) → [X] f([b], [a], [X]) → [X]

f([b], [b], [X]) → [X] f([b], [b], [b]) → [X]

Note that ANF and B share states [a] and [b], which may be allowed since both
automata accept the same set of terms in those states ({a} and {b} respectively).
Let Q = QA ∪ QB and ΓU = ΓA ∪ ΓB.

5.2 Recognizability of (→∗
R)[T]

The goal of this section is to construct an automaton that recognizes the set
(→∗

R)[T] of ground terms that rewrite to a term in T . The construction of a non-
deterministic such automaton CT (R) was first given by Jacquemard [Jac96b] for
linear-growing R and T = NF(R,F) and by Comon [Com00] for arbitrary T
and shallow R. Nagaya and Toyama [NT02] give the construction of a deter-
ministic automaton DT (R) for arbitrary T and growing R. The set of states
of Jacquemard’s non-deterministic automaton is Q whereas the set of states of
Nagaya and Toyama’s deterministic automaton is a subset of 2Q.

5.2.1 Linear-growing case

We extend (and simplifiy) the construction given by Jacquemard in [Jac96b]
for NFR to any regognizable term language T . The construction starts with
CT (R) = (G, Q, Qf , ΓC) = UT (R) (constructed in Section 5.1.2). We saturate
the transition rules ΓC of CT (R) under the following inference rule:

f(l1, . . . , ln) → r ∈ R rθ →∗
ΓC

q

ΓC = ΓC ∪ {f(q1, . . . , qn) → q}
(∗)

with θ mapping the variables in r to states in Q and

qi =

{

liθ if li ∈ Var(r),

[li] otherwise.

Because Q is finite and no new state is added by (∗), the saturation process
terminates. We now show that L(CT (R)) = (→∗

R)[T] upon termination.

Lemma 5.2.1. (→∗
R)[T] ⊆ L(CT (R)).

52 CHAPTER 5. COMPLEXITY OF CBN CLASSES

Proof. Let s ∈ (→∗
R)[T]. So there exists a term t ∈ T such that s →∗

R t.
We show that s ∈ L(CT (R)) by induction on the length of s →∗

R t. If s = t
then s ∈ T ⊆ L(CT (R)) according to Lemma 5.1.1(2). Let s = C[lσ] →R

C[rσ] →∗
R t with l = f(l1, . . . , ln). The induction hypothesis yields C[rσ] ∈

L(CT (R)). Hence there exists a final state qf , a mapping θ from Var(r) to Q,
and a state q such that C[rσ] →∗

ΓC
C[rθ] →∗

ΓC
C[q] →∗

ΓC
qf . By construction

there exists a transition rule f(q1, . . . , qn) → q ∈ ΓC such that qi = liθ if
li ∈ Var(r) and qi = [li] otherwise. We claim that lσ →∗

ΓC
f(q1, . . . , qn). Let

i ∈ {1, . . . , n}. If li ∈ Var(r) then liσ →∗
ΓC

liθ = qi, otherwise liσ →∗
ΓC

[li] = qi

by Lemma 5.1.1(1). Consequently s →∗
ΓC

C[f(q1, . . . , qn)] →ΓC C[q] →∗
ΓC

qf

and hence s ∈ L(CT (R)).

Note that we don’t use the growing assumption in the above proof; right-
linearity of R is sufficient.

Lemma 5.2.2. Let s ∈ T (G) with s →+
ΓC

q.

1. If q = [t] with t ∈ SR ∪ {x} then s ∈ (→∗
R)[Σ(t)].

2. If q ∈ Qf then s ∈ (→∗
R)[T].

Proof. Let Γk
C denote the value of ΓC after the k-th transition rule has been

added by (∗). We have s →+
Γk
C

q for some k > 0. We prove statements (1)

and (2) by induction on k. If k = 0 then the result follows from Lemma 5.1.1.
Let s →+

Γk+1
C

q. We use a second induction on the number of steps that use

the (unique) transition rule f(q1, . . . , qn) → q′ ∈ Γk+1
C \ Γk

C . Suppose this rule
is created from l = f(l1, . . . , ln) → r ∈ R and rθ →∗

Γk
C

q′. If this number is

zero then the result follows from the first induction hypothesis. Otherwise we
may write s = C[f(s1, . . . , sn)] →∗

Γk
C

C[f(q1, . . . , qn)] → C[q′] →∗
Γk+1
C

q. We will

define a substitution τ such that s →∗
R C[lτ] →R C[rτ] →+

Γk
C

C[q′]. The second

induction hypothesis applied to C[rτ] →+

Γk+1
C

q then yields the desired result.

We define τ as the (disjoint) union of τ1, . . . , τn, τ ′ such that Dom(τi) = Var(li)
for i = 1, . . . , n and Dom(τ ′) = Var(r)\Var(l). Note that since l is a linear term,
the union of τ1, . . . , τn is well-defined. Fix i ∈ {1, . . . , n}. If li ∈ Var(r) then we
let τi = {li 7→ si}. Otherwise qi = [li] and thus si →

+
Γk
C

[li]. Part (1) of the first

induction hypothesis yields si ∈ (→∗
R)[Σ(li)]. Hence there exists a substitution

τi such that si →∗
R liτi. We assume without loss of generality that Dom(τi) =

Var(li). The substitution τ ′ is defined as {x 7→ ux | x ∈ Var(r) \ Var(l)} where
ux is an arbitrary but fixed ground term such that ux →+

Γ0
C

xθ. (This is possible

because all states of Q are accessible.) It remains to show that s →∗
R C[lτ] and

C[rτ] →+
Γk
C

C[q′]. The former is an immediate consequence of the definitions

of τ1, . . . , τn. For the latter it is sufficient to show that C[rτ] →∗
Γk
C

C[rθ]. Let

x ∈ Var(r). If x ∈ Var(l) then, because R is growing and left-linear, there is a
unique i ∈ {1, . . . , n} such that x = li. We have xτ = liτi = si by construction
of τi and qi = liθ = xθ by definition. Hence xτ = si →

+
Γk
C

qi = xθ by assumption.

5.2. RECOGNIZABILITY OF (→∗
R)[T] 53

If x /∈ Var(l) then xτ = xτ ′ →+
Γ0
C

xθ by construction of τ ′. This completes the

proof. The induction step is summarized in the following diagram:

s
Γk
C

∗ //

R ∗

��

C[f(q1, . . . , qn)]
Γk+1
C

// C[q′]
Γk+1
C

∗ // q

C[lτ]
R

// C[rτ]
Γk
C

∗ // C[rθ]

Γk
C

∗

OO

Corollary 5.2.3. L(CT (R)) = (→∗
R)[T].

Note that the previous construction can be refined in order to build an
automaton with accessible states only. This later construction is implemented
in the Autowrite tool (see Chapter 15).

For our example R and T = NF(R), we obtain the (reduced) set of non-
deterministic rules for CNF(Rlg) shown in Figure 5.1.

g([a]) → [b] f([b], [a], [b]) → [x] f([a], [a], [a]) → [X]
g([x]) → [a] f([b], [a], [b]) → [a] f([a], [a], [X]) → [X]
g([a]) → [x] f([a], [a], [b]) → [x] f([a], [X], [b]) → [X]
g([a]) → [a] f([a], [a], [b]) → [a] f([a], [X], [a]) → [X]
g([b]) → [x] g([a]) → [X] f([a], [X], [X]) → [X]
g([b]) → [a] g([b]) → [X] f([X], [b], [b]) → [X]

g([X]) → [x] g([X]) → [X] f([X], [b], [a]) → [X]
g([X]) → [a] f([b], [X], [a]) → [x] f([X], [b], [X]) → [X]

f([a], [b], [X]) → [x] f([b], [X], [a]) → [a] f([X], [a], [a]) → [X]
f([a], [b], [X]) → [b] f([b], [x], [a]) → [x] f([X], [a], [X]) → [X]
f([a], [b], [x]) → [x] f([b], [x], [a]) → [a] f([X], [X], [b]) → [X]
f([a], [b], [x]) → [b] f([b], [b], [a]) → [x] f([X], [X], [a]) → [X]
f([a], [b], [b]) → [x] f([b], [b], [a]) → [a] f([X], [X], [X]) → [X]
f([a], [b], [b]) → [b] f([b], [a], [a]) → [x] g([x]) → [x]
f([a], [b], [a]) → [x] f([b], [a], [a]) → [a] f([x], [x], [x]) → [x]
f([a], [b], [a]) → [b] f([b], [b], [b]) → [X] b → [x]

f([X], [a], [b]) → [x] f([b], [b], [X]) → [X] a → [x]
f([X], [a], [b]) → [a] f([b], [a], [X]) → [X] • → [x]
f([x], [a], [b]) → [x] f([b], [X], [b]) → [X] b → [b]
f([x], [a], [b]) → [a] f([b], [X], [X]) → [X] a → [a]

Figure 5.1: Rules of CNF(Rlg)

We consider the term t = f(∆, ∆, ∆) with ∆ = g(a) and the following
computation of CNF(Rlg) on the term t[•]1.

f(•, g(a), g(a)) →+ f([x], g([a]), g([a])) → f([x], [a], [b]) → [a]

As [a] ∈ Qf , we have t[•]1 ∈ L(CNF(Rlg)). By Corollary 5.2.3, we get t[•]1 ∈
(→∗

Rlg
)[NF]. We conclude that redex ∆ at position 1 in t is not Rlg-needed.

54 CHAPTER 5. COMPLEXITY OF CBN CLASSES

Similarly, we can check that the redexes at positions 2 and 3 are not Rlg-needed,
so that t is a Rlg-free term.

5.2.2 (left-linear) Growing case

The construction (and proof of correctness) was first given by Nagaya and
Toyama in [NT02]. We recall it here as we need the details of it for further
analysis in subsequent sections.

The following construction is directly taken from [NT02]. It starts with

DT (R) = (G, QD, Qf
D, ΓD) the determinized version of UT (R) (constructed in

Section 5.1.2):
QD = 2Q, Qf = {S ∈ QD | S ∩ Qf 6= ∅} and
ΓD = {f(S1, . . . , Sn) → S | ∃q1, . . . , qn, q ∈ S1, . . . Sn, S, f(q1, . . . qn) →ΓU q}.
We saturate the transition rules ΓD of DT (R) under the following inference rule:

f(S1, . . . , Sn) → S, f(l1, . . . , ln) → r ∈ R, rθ →∗
ΓD

S′, S (S ∪ S′

ΓD = ΓD \ {f(S1, . . . , Sn) → S} ∪ {f(S1, . . . , Sn) → S ∪ S′}
(∗)

with θ mapping the variables in r to states in QD and such that ∀x ∈ Var(r),
if x = lj for some j then xθ = Sj

otherwise t →∗
ΓD

xθ for some t ∈ T (G).
Because QD is finite and no new state is added by (∗), the saturation process

terminates.
Upon termination, one has L(DT (R)) = (→∗

R)[T] as shown in [NT02].
Note that the previous construction can be refined in order to build an

automaton with accessible states only. This later construction is implemented
in the Autowrite tool (see Chapter 15).

In our example R = Rg. Let us construct DNF(R).

QD = {{[X][x]}, {[x]}, {[a][x]}, {[b][x]}} Qf
D = QD \ {{[x]}}.

ΓD contains 71 deterministic rules which we will not present in detail (but
which can be obtained using Autowrite, see Chapter 15). Rather we show the
computation of DNF(R) on the term t[•]1 = f(•, ∆, ∆).

g(a) → g({[a][x]}) → {[X][x]}
f(•, g(a), g(a)) → f({[x]}, {[X][x]}, {[X][x]}) → {[x]}

We do not reach a final state which means that t[•]1 6∈ (→∗
R)[NF] so that redex

∆ = g(a) at position 1 in t is not R-needed.
As a side remark we mention that the result described above remains true if

we drop the restriction that the left-hand side of a rewrite rule is a non-variable
term; just add the following saturation rule:

f(S1, . . . , Sn) → S, x → r ∈ R, rθ →∗
ΓD

S′, S (S ∪ S′

ΓD = ΓD \ {f(S1, . . . , Sn) → S} ∪ {f(S1, . . . , Sn) → S ∪ S′}
(∗)

with x ∈ V and θ mapping the variables in r to states in QD and such that
xθ = S and ∀y 6= x ∈ Var(r), t →∗

ΓD
xθ for some t ∈ T (G).

5.3. RECOGNIZABILITY OF THE SET OF R-FREE TERMS 55

Although this extension is useless when it comes to call-by-need (because no
system that has a rewrite rule whose left-hand side is a single variable has normal
forms), it is interesting to note that it generalizes Theorem 5.1 of Coquidé et al.
[CDGV94]—the preservation of recognizability for linear semi-monadic rewrite
systems.

5.3 Recognizability of the set of R-free terms

In this section we assume that G = F ∪ {•} and T = NF(R,F), the set of
ground normal forms of the growing esystem R. Based on an automaton rec-
ognizing (→∗

R)[NF(R,F)] (either the non-deterministic CT (R) [or simply C] of
Subsection 5.2.1 or the deterministic automaton DT (R) [or simply D] of Sub-
section 5.2.2), we construct an automaton E(R) that accepts all reducible terms
in T (F) that do not have an R-needed redex i.e. the set of R-free terms.

First we take the automaton B(R) (or simply B) of Subsection 5.1.1 but
with signature F (instead of FΩ) and extended in such a way that it can be
used to identify redexes and reducible terms with respect to R. More precisely,
we add the states [r] (r for reducible) and [l] (l for left-hand side) and the
transition rules f([l1], . . . , [ln]) → [l] and f([l1], . . . , [ln]) → [r] for every left-
hand side f(l1, . . . , ln) of a rewrite rule in R and all transition rules of the
form f([x], . . . , [r], . . . , [x]) → [r] and f([x], . . . , [l] . . . , [x]) → [r]. In state [l],
all redexes of T (F) are accepted. In state [r] all reducible terms of T (F) are
accepted.

So we can obtain this version of automaton B from the one given p50 by
removing the rule • → [x] and adding the following ones:

g([x]) → [l] f([b], [x], [a]) → [r]
f([x], [a], [b]) → [l] f([a], [b], [x]) → [r]
f([b], [x], [a]) → [l] f([x], [x], [r]) → [r]
f([a], [b], [x]) → [l] f([x], [r], [x]) → [r]

g([x]) → [r] f([r], [x], [x]) → [r]
f([x], [a], [b]) → [r] g([r]) → [r]

The signature of E(R) is F . The construction of E(R) is related to the one
in Comon [Com00, Lemma 31]. The main difference is that our constructions
apply to the most general classes of linear-growing and growing esystems while
Comon’s only deals with strong esystems.

We have two slightly different constructions for the two cases, linear-growing
and (left-linear) growing.

5.3.1 Linear-growing case

The set QE of states of E(R) consists of all triples 〈S : B : P 〉 where S ⊆
Q, P ⊆ Q, B ⊆ QB. The final states are the states 〈S : B : P 〉 such that
[r] ∈ B and P ⊆ Qf . Intuitively, the S component records the behaviour of
automaton C, the B component records the behaviour of the automaton B and

56 CHAPTER 5. COMPLEXITY OF CBN CLASSES

the P component is a subset of S containing for every redex, at least one state
reachable with C when the redex is replaced by •. This will be made precise in
Lemmata 5.3.2 and 5.3.3 below. The set ΓE consists of all transition rules of
the form

f(〈S1 :B1 :P1〉, . . . , 〈Sn :Bn :Pn〉) → 〈S :B :P 〉

where f is an n-ary function symbol in F ,
S = f(S1, . . . , Sn)↓C , B = f(B1, . . . , Bn)↓B, and P = P ′ ∪ P ′′ where P ′ is a
subset of

n⋃

i=1

f(S1, . . . , Pi, . . . , Sn)↓C

with the property that for all i ∈ {1, . . . , n} and qi ∈ Pi

P ′ ∩ f(S1, . . . , {qi}, . . . , Sn)↓C 6= ∅

and

P ′′ =

{
•↓C = {[x]} if [l] ∈ B,
∅ otherwise.

Note that the resulting automaton is non-deterministic due to the freedom
of choosing P ′. This is essential to obtain a double exponential complexity.

Lemma 5.3.1. Let s ∈ T (F). If s →+
ΓE

〈S :B :P 〉 then S = s↓C and B = s↓B.

Proof. Straightforward.

Lemma 5.3.2. Let s ∈ T (F) such that s →+
ΓE

〈S :B :P 〉. Let p ∈ REDEX(s).
We have s[•]p↓C ∩ P 6= ∅.

Proof. By induction on the depth of the position p.
If p = ε then according to Lemma 5.3.1 [l] ∈ B. By construction P = P ′ ∪ P ′′

with P ′′ = •↓C = {[x]}. As •↓C = s[•]ε↓C it follows that s[•]p↓C∩P = {[x]} 6= ∅.
For the induction step we suppose that s = f(s1, . . . , sn) and p = i·pi for some
i ∈ {1, . . . , n}. We may write

s →∗
ΓE

f(〈S1 :B1 :P1〉, . . . , 〈Si :Bi :Pi〉, . . .) →ΓE 〈S :B :P 〉
with P = P ′ ∪ P ′′ as defined in the construction.
The induction hypothesis yields some qi ∈ si[•]pi

↓C ∩ Pi.
By construction f(S1, . . . , {qi}, . . . , Sn)↓C ∩ P ′ 6= ∅.
It follows that f(S1, . . . , si[•]pi

↓C, . . . , Sn)↓C ∩ P ′ 6= ∅.
But s[•]p↓C = f(S1, . . . , si[•]pi

↓C , . . . , Sn)↓C so s[•]p↓C ∩ P ′ 6= ∅.

Lemma 5.3.3. Let s ∈ T (F). If P ⊆
⋃

p∈REDEX(s) s[•]p↓C and ∀p ∈ REDEX(s),

P ∩ s[•]p↓C 6= ∅ then s →+
ΓE

〈S :B :P 〉 with S = s↓C and B = s↓B.

Proof. By induction on the structure of s.
Base case: s is a constant
The construction gives P ′ = ∅. If s is a normal form then ∪p∈REDEX(s)s[•]p↓C =
∅ so P = ∅. The construction gives P ′′ = ∅. So P ′ ∪ P ′′ = ∅ = P .
If s is a redex then P ⊆ •↓C = {[x]} and P ∩ •↓C 6= ∅ implies P = •↓C = {[x]}.

5.3. RECOGNIZABILITY OF THE SET OF R-FREE TERMS 57

As s is a redex, we have [l] ∈ B. The construction gives P ′′ = •↓C = {[x]}. So
P ′ ∪ P ′′ = {[x]} = P . In both cases the contruction yields a rule s →ΓE 〈S :B :
P 〉.
Induction step: s = f(s1, . . . , sn) for some n > 0. Let Si = si↓C and Bi = s↓B,
for all i ∈ {1, . . . , n}. Define P 6=ε = P ∩

⋃

p6=ε∈REDEX(s) s[•]p↓C . P=ε = P ∩ •↓C
if ε ∈ REDEX(s) and P=ε = ∅ otherwise. Define
Pi =

⋃

pi∈REDEX(si)
{qi ∈ si[•]pi

↓C s.t f(S1, . . . , {qi}, . . . , Sn)↓C ∩ P 6=ε 6= ∅}.

Clearly Pi ⊆
⋃

pi∈REDEX(si)
si[•]pi

↓C .

We claim that ∀pi ∈ REDEX(si), Pi ∩ si[•]pi
↓C 6= ∅.

Let p = i·pi. We have s[•]p↓C = f(S1, . . . , si[•]pi
↓C , . . . , Sn)↓C . By assumption,

s[•]p↓C ∩ P 6= ∅ so s[•]p↓C ∩ P 6=ε 6= ∅. Hence there exists qi ∈ si[•]pi
↓C such

that f(S1, . . . , {qi}, . . . , Sn)↓C ∩P 6=ε 6= ∅. By definition, qi ∈ Pi which ends the
proof of the claim.
The induction hypothesis yields si →

+
ΓE

〈Si :Bi :Pi〉. Since this holds for every
i ∈ {1, . . . , n} we obtain f(s1, . . . , sn) →∗

ΓE
f(〈S1 : B1 : P1〉, . . . , 〈Sn : Bn : Pn〉).

It suffices to show that f(〈S1 : B1 : P1〉, . . . , 〈Sn : Bn : Pn〉) → 〈S : B : P 〉 is a
transition rule of ΓE .
We claim that P 6=ε ⊆

⋃n
i=1 f(S1, . . . , Pi, . . . , Sn)↓C .

Let q ∈ P 6=ε. By definition, q ∈ s[•]p↓C for some p = i·pi with pi ∈ REDEX(si).
So q ∈ f(S1, . . . , si[•]pi

↓C, . . . , Sn)↓C . Then ∃qi ∈ si[•]pi
such that

q ∈ f(S1, . . . , {qi}, . . . , Sn)↓C . So f(S1, . . . , {qi}, . . . , Sn)↓C ∩ P 6=ε 6= ∅. This
implies by definition that qi ∈ Pi so that q ∈ f(S1, . . . , Pi, . . . , Sn)↓C which ends
the proof of the claim.
Take P ′ = P 6=ε and P ′′ = P=ε. We have P = P ′ ∪ P ′′. From the previous
claim we get P ′ ⊆

⋃n
i=1 f(S1, . . . , Pi, . . . , Sn)↓C . By assumption, ∀i, ∀qi ∈ Pi,

f(S1, . . . , {qi}, . . . , Sn)∩P ′ 6= ∅. P ′′ = •↓C when s is a redex and = ∅ otherwise.
So all the condition are fulfilled to have a rule f(〈S1 : B1 : P1〉, . . . , 〈Sn : Bn :
Pn〉) → 〈S :B :P 〉. It follows that s →+

ΓE
〈S :B :P 〉.

Corollary 5.3.4. Let s ∈ T (F). ∀p ∈ REDEX(s), s[•]p↓C ∈ (→∗
R)[NF] iff

s →+
ΓE

〈S :B :P 〉 for some P ⊆
⋃

p∈REDEX(s) s[•]p↓C such that P ∩ Qf 6= ∅.

Proposition 5.3.5. Let s ∈ T (F). The term s ∈ L(E(R)) iff s is reducible
and ∀p ∈ REDEX(s), s[•]p↓C ∈ (→∗

R)[NF].

Proof. By Lemma 5.3.1, Corollary 5.3.4 and the observation that s is reducible
if and only if [r] ∈ s↓B.

Theorem 5.3.6. Let R be a left-linear system. We have R ∈ CBNlg if and
only if L(E(Rlg)) = ∅.

Proof. Note that Rlg is a linear-growing esystem. By definition of CBNlg, R /∈
CBNlg if and only if there exists a reducible term s in T (F) without Rlg-needed
redexes. The latter is equivalent to ∀p ∈ REDEX(s), s[•]p ∈ (→∗

Rlg
)[NF]. Ac-

cording to Corollary 5.3.4 this is equivalent to s ∈ L(E(Rlg)). Hence R ∈ CBNlg

if and only if L(E(Rlg)) = ∅.

58 CHAPTER 5. COMPLEXITY OF CBN CLASSES

Decidability of membership to CBNlg follows.

For our example, we will not attempt to present the corresponding automaton
E(Rlg) which has 25 states and 506 rules (but which can be obtained using
Autowrite, see Chapter 15). Rather, we show a computation of E(Rlg) on the
term t = f(∆, ∆, ∆) with ∆ = g(a).

g(a) → g(〈[a][x] : [a][x] :∅〉) → 〈[X][a][b][x] : [x][r][l] : [x]〉

f(g(a), g(a), g(a)) →
f(〈[X][a][b][x] : [x][r][l] : [x]〉, 〈[X][a][b][x] : [x][r][l] : [x]〉, 〈[X][a][b][x] : [x][r][l] : [x]〉)
→ 〈[X][a][b][x] : [x][r] : [a][b]〉

We obtain a final state; this means that t has no Rlg-needed redex which is
indeed the case and that R 6∈ CBNlg.

5.3.2 (left-linear)-Growing case

The construction being almost the same as in the linear-growing case, we will
only outline the differences. First we use the deterministic automaton D instead
of the non-deterministic one C. The set QE of states consists of all triples
〈S : B : P 〉 where S ∈ QD ⊆ 2Q, P ⊆ QD, B ⊆ QB. The final states are

such that [r] ∈ B and P ⊆ Qf
D. Intuitively, the component P is a subset of

QD containing for every redex, the state reachable with D when the redex is
replaced by •. This will be made precise in Lemma 5.3.7 below. The only
change in the description of ΓE (except that D is used instead of C) is that

P ′ = {f(S1, . . . , Ki, . . . , Sn)↓D, i ∈ {1, . . . , n}, Ki ∈ Pi}

Note that the resulting automaton is deterministic.
Similar proofs as in Subsection 5.3.1 (but simpler due to determinism) yield

the following lemma.

Lemma 5.3.7. Let s ∈ T (F). s↓E = 〈S : B : P 〉 iff S = s↓D, B = s↓B and
P = {s[•]p↓D, p ∈ REDEX(s)}.

We obtain the same proposition as Proposition 5.3.5.

Proposition 5.3.8. Let s ∈ T (F). s ∈ L(E(R)) if and only if s is reducible
and ∀p ∈ REDEX(s), s[•]p ∈ (→∗

R)[NF].

Proof. By Lemma 5.3.1, Lemma 5.3.7 and the observation that s is reducible if
and only if [r] ∈ s↓B.

Theorem 5.3.9. Let R be a left-linear system. We have R ∈ CBNg if and only
if L(E(Rg)) = ∅.

The proof is the same as for Theorem 5.3.6 but using Proposition 5.3.8
instead of Proposition 5.3.5. Decidability of membership to CBNg follows.

In our example (Rg = R), the corresponding reduced automaton E(R) has 15

5.4. COMPLEXITY ANALYSIS 59

states and 3392 rules. It has no final state which means that R ∈ CBNg. We
show the computation of E(R) on the term t.

a → 〈{[a][x]} : [x][a] :∅〉
g(a) → 〈{[X][x]} : [x][r][l] :{[x]}〉
f(g(a), g(a), g(a)) → 〈{[X][x]} : [x][r] :{[x]}〉

In the linear-growing case, although we do not have a proof that DT (R)
coincides with the determinized version of CT (R), we were able to check with
Autowrite(see Chapter 15) that the deterministic automaton DT (R) has the
same number of states and rules than the determinize version of the non-
deterministic automaton CT (R).

5.4 Complexity Analysis

In this section, we analyze the complexity of the decision procedures of the
previous section. Given a term t, we denote its size (i.e., its total number of
symbols) by |t|. Given a(n) (e)system R, we denote its size (the sum of the sizes
of the left and right-handsides) by |R| and its number of rules by ♯R. Let m be
the maximum arity of a function symbol in F .

Given an automaton A = (F , QA, Qf
A, ΓA), its number of transition rules

♯ΓA is less than |QA|
m+1

so less than |QA|
|R|

.
It is well-known that the minimal number of states of an automaton A

recognizing T = NF is less than 2|R|. |QB| is neglectable with regard to QA. So
|Q| ≤ |QA| + |QB| is in O(2|R|).

Next we analyze the complexity of the saturation processes of Section 5.2.
(A similar analysis is reported in [Jac96a, chapitre IV] for the linear-growing
case.)

5.4.1 Linear-growing case

Lemma 5.4.1. Let R be a linear-growing esystem. The new rules obtained by

saturation of CT (R) can be computed in O(|R|2 |Q|4|R|) time.

Proof. Let Ξ be the set of transition rules that may potentially appear in the
automaton CT (R): Ξ = {f(q1, . . . , qn) → q | f ∈ F and q1, . . . , qn, q ∈ Q}. Let

K be the number of rules in Ξ. We have K ≤ |Q|m+1
. The saturation process

may be described by the following algorithm:

Ξ0 := Ξ \ ΓC
0;

k := 1;
while

∃ f(q1, . . . , qn) → q ∈ Ξk−1

∃ f(l1, . . . , ln) → r ∈ R such that
∃ θ : Var(r) → Q

rθ →∗

ΓC
k−1 q and, for all 1 6 i 6 n,

qi = liθ if li ∈ Var(r) and qi = [li]
otherwise

do

Ξk := Ξk−1 \ {f(q1, . . . , qn) → q};

60 CHAPTER 5. COMPLEXITY OF CBN CLASSES

ΓC
k := ΓC

k−1 ∪ {f(q1, . . . , qn) → q};
k := k + 1

Let us estimate the time to evaluate the condition of the while-loop. There are
K − ♯ΓC

k−1 choices for f(q1, . . . , qn) → q, ♯R choices for f(l1, . . . , ln) → r, and

|Q|Var(r)
choices for θ. For every choice we have to test whether rθ →∗

ΓC
k−1 q

is true. (The other requirements are neglectable.) This can be done in O(|r| ·
♯ΓC

k−1) · |Q| time by simulating a computation of the determinized version of
ΓC

k−1: at every position non-variable position u of r, we may consider every
transition f(q1, . . . , qn) in Γk−1, and for each considered transition, we must
check for every i, 1 ≤ i ≤ n, whether qi is a member of the set of states
computed so far for the position ui.

So one iteration of the while-loop takes

O((K − ♯ΓC
k−1) · ♯R · |Q|Var(r) · |r| · ♯ΓC

k−1 · |Q|)

time. To obtain the time complexity of the algorithm we have to multiply this by
the maximum number of iterations, which is K − ♯ΓC

0. Removing the negative
terms and estimating ♯ΓC

k−1 by K and Var(r) by |r| yields

O(K3 · ♯R · |Q||r|+1 · |r|)

Estimating ♯R and |r| + 1 by |R| and K by |Q||R| yields the complexity class

O(|R|2 |Q|4|R|
) in the statement of the lemma.

As |Q| is in O(2|R|) and from Lemma 5.4.1 the time to compute the satura-

tion rules is in O(2O(|R|2)). For Rs and Rnv we get a polynomial time complexity,
but the space and time complexity of the automaton CNF(R) is still exponential
in |R| due to the normal form automaton.

Lemma 5.4.2. The automaton CNF(R) can be computed in 2O(|R|2).

Proof. The time to compute CNF(R) is the sum of the times to compute the

automaton ANF 2O(|R|2), the automaton B(R) (neglectable) and the saturation

rules 2O(|R|2). This yields an 2O(|R|2) time complexity.

Finally, let us consider the construction of E(R).

Lemma 5.4.3. ♯ΓE is in 22O(|R|)

.

Proof. |QE | ≤ 2|Q| so |QE | is in O(22|R|

). ♯ΓE ≤ |QE |
|R| so ♯ΓE is in O(2|Q||R|

)

where |Q| is in O(2|R|). We conclude that ♯ΓE is in 22O(|R|)

.

Lemma 5.4.4. Let R be a linear-growing esystem. Using the automata CT (R)

and B(R), the rules of ΓE can be computed in 22O(|R|)

time.

5.4. COMPLEXITY ANALYSIS 61

Proof. Consider a rule f(〈S1 :B1 :P1〉, . . . , 〈Sn :Bn :Pn〉) → 〈S :B :P 〉. To check
whether it is a rule of ΓE we have to check whether f(S1, . . . , Sn) = S↓C [takes
time O(|Q|n · ♯ΓC)], f(B1, . . . , Bn) = S↓B [neglectable] and that P satisfies the
conditions of the construction. We need to compute

⋃n
i=1 f(S1, . . . , Pi, . . . , Sn)↓C

[takes time O(|Q|n·♯ΓC)] and to check that P ⊆ S′ =
⋃n

i=1 f(S1, . . . , Pi, . . . , Sn)↓C
[takes time O(|Q|2)]. If [l] ∈ B, we have to check that •↓C = {[x]} ⊆ P [ne-
glectable].

We are left to check that ∀i ∈ {1, . . . , n} and qi ∈ Pi, we have
f(S1, . . . , {qi}, . . . , Sn)↓C ∩ P 6= ∅.

We claim this can be done in |Q|O(|R|).
There are at most n |Q| of these checks and each one takes the time to

compute f(S1, . . . , {qi}, . . . , Sn)↓C O(|Q|n · ♯ΓC) plus the time to compute the

intersection O(|Q|2). So we get O(n |Q| (|Q|n ♯ΓC + |Q|2)) (estimating ♯ΓC by

|Q||R| as at the end of Lemma 5.4.1). Now, estimating n by |R| we obtain the
claim.

To get the total time we multiply by the number of rules of ΓE [22O(|R|)

by

Lemma 5.4.3] which gives 22O(|R|)

.

Lemma 5.4.5. Given a linear-growing esystem R, E(R) can be computed in

22O(|R|)

.

Proof. The time to build E is the time to build CNF(R) plus the time to compute
ΓE . The former is neglectable with respect to the latter, which can be done in

22O(|R|)

time by Lemma 5.4.4.

As emptiness can be decided in polynomial time with respect to the size of
the automaton, we conclude with the following theorem.

Theorem 5.4.6. It can be decided in double exponential time whether a linear-
growing system belongs to CBNlg.

Although the saturation process for Rs and Rnv is much simpler, our con-
struction does not give better complexity results for deciding membership to
CBNs or CBNnv. Nevertheless, for CBNs (which almost coincides with the class
of strongly sequential systems, see Chapter 9), a smaller complexity bound is
known: Comon [Com00] showed that it can be decided in exponential time
whether a left-linear system is strongly sequential. He uses an automaton for ω-
reduction which plays the same role as our CNF(R) automaton. Since there is no
satisfactory notion of ω-reduction corresponding to the approximation mapping
nv, it remains to be seen whether the result of Theorem 5.4.7 can be improved;
a possible track could be to analyze whether the gtt-construction of page 33
gives a better complexity.

5.4.2 (left-linear) Growing case

A similar analysis yields a construction of DR(NF) in 22O(|R|)

and a construction

of E(R) in 222O(|R|)

. The extra exponential does not come from C components

62 CHAPTER 5. COMPLEXITY OF CBN CLASSES

of the states (which have the same size as in the linear case) but from the P
components which are subsets of QD (compared to subsets of Q in the linear
case).

Theorem 5.4.7. It can be decided in triple exponential time whether a left-
linear growing system belongs to CBNg.

Unfortunately, this result does not give a better upperbound than the one
that could be obtained by expressing membership to CBNg by a weak second-
order monadic formula similarly as done for CBN-RSg in the proof of Proposi-
tion 6.2.2. However, the construction which has been implemented in Autowrite [Dur02]
shows that in practice the complexity is often significantly less than the worst
case.

5.4.3 Summary of the complexity results

The following arrays recapitulate the complexity results used or obtained in this
section.

Size Time

ANF(R) O(2|R|) O(2|R|)
B(R) O(R) O(R)

Linear-growing Growing
Size Time Size Time

CNF(R) 2O(|R|2) 2O(|R|2)

DNF(R) 22O(|R|)

22O(|R|)

E(R) 22O(|R|)

22O(|R|)

222O(|R|)

222O(|R|)

Chapter 6

Computations to
root-stable forms

In this chapter, we consider call-by-need computations to root-stable forms. In
[Mid97] it is shown that root-neededness is more fundamental than neededness
when it comes to infinitary normalization. However, root-stability is undecidable
and, unlike neededness, root-neededness of a redex is not determined by its
position. This considerably complicates the quest for a computable call-by-need
strategy to root-stable forms. Preliminary results were given in [DM97].

The following example is entirely taken from [Mid97].

Example 6.0.8. By definition every redex in a term that has no normal form
is needed. Hence the theory of needed reduction is not useful for terms that
have an infinite normal form. Consider for instance the following rewrite rules
implementing the Sieve of Erathostenes for generating the infinite list of all
prime numbers:

primes → sieve(from(2))
from(x) → x : from(x + 1)
sieve(x : y) → x : sieve(filter(x, y))
filter(x, y : z) → if(x|y, filter(x, z), y : filter(x, z))
if(true, x, y) → x
if(false, x, y) → y

Assuming, that the addition x+y and x|y (is x a divisor of y?) are built-
in operations which return respectively an integer and a boolean value (true or
false), the evaluation of primes starts as follows:

primes → sieve(from(2))
→ sieve(2 : from(3))

At this point, there are two ways to proceed. Either we contract sieve(2 : from(3))
using the third rule resulting in 2 : sieve(filter(2, from(3))), or we contract the

63

64 CHAPTER 6. COMPUTATIONS TO ROOT-STABLE FORMS

redex from(3) using the secong rule, resulting in sieve(2 : 3 : from(4)). Because
the term sieve(2 : from(3)) doesn’t have a (finite) normal form, both redexes
are trivially needed. Consequently, the theory of needed computation cannot
distinghuish between the meaningless computation

primes →∗ sieve(2 : from(3))
→ sieve(2 : 3 : from(4))
→ sieve(2 : 3 : 4 : from(5))
→ . . .

from the infinite computation

primes →∗ sieve(2 : from(3))
→ 2 : sieve(filter(2, from(3)))
→∗ 2 : 3 : sieve(. . .))
→ . . .

whose limit is the infinite list 2 : 3 : 5 : 7 : . . . of primes numbers.

The concept of needed redex for computing normal forms extends naturally
to the concept of root-needed redex for computing root-stable forms.

Definition 6.0.9. Given a term rewriting system and a non-root-stable term
t, a redex in t is root-needed if it is contracted in every rewrite sequence from
t to root-stable form.

6.1 Decidable approximations of root-neededness

In the remainder of this chapter we generalize the results concerning call-by-
need computations to normal form to call-by-need computations to root-stable
forms. The first problem we face is to find a characterization of root-needed
redex that doesn’t depend on the notion of descendant. This is less trivial than
it seems, because the obvious adaptation

redex ∆ in term C[∆] ∈ T (F) is root-needed if and only if there is
no term t ∈ RSR• such that C[•] →∗

R t

of Lemma 3.2.1 doesn’t work.

Example 6.1.1. For instance, redex a in the term f(a) is root-needed with
respect to the system R = {a → b, f(b) → c} but f(•) is root-stable with respect
to R•. On the other hand, redex f(b) in the term f(f(b)) is not root-needed as
f(f(b)) is root-stable.

This shows that root-needed redexes, unlike needed redexes, are not uniform:
root-neededness of a redex doesn’t depend only on its position in a term. Hence
when trying to determine whether a redex ∆ is root-needed we cannot simply
replace it by •. Instead, we mark the root symbol of ∆.

6.1. DECIDABLE APPROXIMATIONS OF ROOT-NEEDEDNESS 65

Definition 6.1.2. Let F be a signature. Let F◦ = F ∪ {f◦ | f ∈ F} with every
f◦ having the same arity as f . Let (R,F) be a system. Let ∆ ∈ T (F) be a redex.
We write ∆◦ for the term that is obtained from ∆ by marking its root symbol, i.e.,
if ∆ = f(t1, . . . , tn) then ∆◦ = f◦(t1, . . . , tn). We call ∆◦ a marked redex. The
mapping from T (F◦) to T (F) that simply erases all marks is denoted by erase,
so erase(f(t1, . . . , tn)) = erase(f◦(t1, . . . , tn)) = f(erase(t1), . . . , erase(tn)).

The marking of redexes serves a double purpose. On one hand, it tells us
which redex we want to test for root-neededness. On the other hand, marked
redexes are not redexes—simply because there are no marks in the (left-hand
sides of the) rewrite rules—so if we rewrite a term that contains a marked redex,
the marked redex is never contracted.

Lemma 6.1.3. Let R be an orthogonal system over a signature F . Redex ∆
in term C[∆] ∈ T (F) is root-needed if and only if there is no term t such that
C[∆◦] →∗

R t and erase(t) ∈ RSR.

Proof.

⇒ Suppose there is a term t such that C[∆◦] →∗
R t and erase(t) ∈ RSR.

Erasing all marks yields a sequence A : C[∆] = erase(C[∆◦]) →∗
R erase(t)

with ∆ ⊥ A. Hence ∆ is not root-needed.
⇐ Suppose ∆ is not root-needed.

Then there exists a rewrite sequence A : C[∆] →∗
R t with t root-stable and

∆ ⊥ A. Marking every descendant of ∆ in A yields a sequence C[∆◦] →∗
R t′

with erase(t′) = t ∈ RSR.

Let us check that this characterization of root-stable redexes behaves ade-
qualetly with Example 6.1.1.

• f(a◦) cannot be rewritten and erase(f(a◦)) = f(a) 6∈ RSR so redex a is
root-needed.

• f(f◦(b)) cannot be rewritten and erase(f(f◦(b))) = f(f(b)) ∈ RSR so redex
f(b) is not root-needed.

Definition 6.1.4. Given a system (R,F), R◦ denotes the system R ∪ {l◦ →
r | l → r ∈ R} over the signature F◦.

Actually, we can do without the relation erase because for orthogonal systems
R it is not difficult to prove that {t ∈ T (F◦) | erase(t) ∈ RSR} coincides with
RSR◦ . Hence redex ∆ in term C[∆] ∈ T (F) is root-needed if and only if there
is no term t ∈ RSR◦ such that C[∆◦] →∗

R t.
Besides the problem that root-stability is in general not computable, we

face the problem of the non-computability of →∗
R as in the case of computa-

tions to normal form. So in order to arrive at decidable approximations of
root-neededness, we approximate R by two esystems S1 and S2 such that it is
decidable whether a term has an S1-reduct in RS(S2)◦ .

66 CHAPTER 6. COMPUTATIONS TO ROOT-STABLE FORMS

Definition 6.1.5. Let (S1,F) and (S2,F) be left-linear esystems. We say that
redex ∆ in C[∆] ∈ T (F) is (S1,S2)-root-needed if there is no term t ∈ RS(S2)◦

such that C[∆◦] →∗
S1

t. We abbreviate (S,S)-root-needed to S-root-needed.

Our Rs-root-needed redexes coincide with the strongly root-needed redexes
of Kennaway [Ken95].

Lemma 6.1.6. Let R1 and R2 be left-linear systems over the same signature
with approximations S1 and S2. Every (S1,R2)-root-needed redex is (R1,S2)-
root-needed.

Proof. First we show that RS(S2)◦ ⊆ RS(R2)◦ . If t /∈ RS(R2)◦ then there exists
an (R2)◦-redex ∆ such that t →∗

(R2)◦
∆. Because S2 approximates R2 we have

→∗
R2

⊆ →∗
S2

and NFR2 = NFS2 . The latter implies NF(R2)◦ = NF(S2)◦ and thus
(R2)◦ and (S2)◦ have the same redexes. Hence t →∗

(S2)◦
∆ with ∆ an (S2)◦-

redex and therefore t /∈ RS(S2)◦ . Combining the inclusion RS(S2)◦ ⊆ RS(R2)◦

with →∗
R1

⊆ →∗
S1

immediately yields the desired result.

It should be noted that, for an approximation S of R, S-root-needed redexes
need not be R-root-needed. Consider for instance the orthogonal system R =
{a → b, f(c) → c} and its strong approximation R = {a → x, f(c) → x}.

The term f(a) is root-stable, hence its redex a is not root-needed. Neverthe-
less, redex a is Rs-root-needed because the only term t such that f(a◦) →∗

Rs
t

is f(a◦) itself and f(a◦) /∈ RS(Rs)◦ because we have f(a◦) → f(c) in the sys-
tem (Rs)◦ = {a → x, a◦ → x, f(c) → x, f◦(c) → x}. So not every strongly
root-needed redex is root-needed, contradicting Theorem 16 in [Ken95].

Definition 6.1.7. Let (R,F) and (S,F) be left-linear esystems. Let M◦
R =

{C[∆◦] | C[∆] ∈ T (F) and ∆ is an R-redex}, the set of all terms that contain
exactly one marked redex.
The set of all terms C[∆◦] ∈ M◦

R such that there is no term t ∈ RSS◦ with
C[∆◦] →∗

R t is denoted by (R,S)-ROOT-NEEDED.

Theorem 6.1.8. Let (R,F) and (S,F) be left-linear esystems. If (→∗
R)[RSS◦]

is recognizable then (R,S)-ROOT-NEEDED is recognizable.

Proof. We have (R,S)-ROOT-NEEDED = (→∗
R)[RSS◦]

c ∩ M◦
R. We show that

M◦
R is recognizable. Let A be a term automaton that accepts REDEXR ∩ T (F)

such that A has a unique final state [!], a state [x] in which all terms in T (F)
are accepted, and for every left-hand side f(l1, . . . , ln) of a rewrite rule in R a
single transition rule of the form f(q1, . . . , qn) → [!]. We transform A into a term
automaton B by changing the latter transition rules to f◦(q1, . . . , qn) → [!] and
adding all transition rules of the form f([x], . . . , [!], . . . , [x]) → [!] with f ∈ F . It
is not difficult to see that B accepts M◦

R. Hence the desired result follows from
Lemma 2.4.1.

For the example system R on page 33 a term automaton that accepts M◦
R

is presented in Table 6.1. In the remainder of this subsection we show that the
first premise of Theorem 6.1.8 is satisfied for the four approximations defined
in chapter 3.

6.2. CALL-BY-NEED COMPUTATIONS TO ROOT-STABLE FORMS 67

a → [x] a → [a]
b → [x] b → [b]

f([x], [x]) → [x] g([x]) → [g(x)]
g([x]) → [x] f([x], [b]) → [f(x, b)]
h([x]) → [x]

g([!]) → [!]
f◦([g(x)], [a]) → [!] h([!]) → [!]

h◦([a]) → [!] f([!], [x]) → [!]
h◦([f(x, b)]) → [!] f([x], [!]) → [!]

Table 6.1: A term automaton that accepts M◦
R.

Lemma 6.1.9. Let R be a left-linear system and α be a recognizability preserv-
ing approximation mapping. The set RS(Rα) is recognizable.

Proof. We have RS(Rα) = (→∗
(Rα))[REDEX(Rα)]

c. Because (Rα) is left-linear,
REDEX(Rα) is recognizable according to Lemma 2.4.2. As α is regularity pre-
serving, we get that (→∗

(Rα))[REDEX(Rα)]
c is recognizable.

Lemma 6.1.10. Let R be a left-linear system and α,β be two recognizability
preserving approximation mappings. The set (→∗

Rα
)[RS(Rβ)◦] is recognizable.

Proof. As β is recognizability preserving, lemma 6.1.9 yields that RS(R◦)β
is

recognizable. As α is recognizability preserving, we get that (→∗
Rα

)[RS(R◦)β
]

is recognizable. It is easy to see that (R◦)β = (Rβ)◦. We conclude that
(→∗

Rα
)[RS(Rβ)◦] is recognizable.

Corollary 6.1.11. Let (R,F) be a left-linear system and α,β be two recogniz-
ability preserving approximation mappings. It is decidable whether a redex in a
term in T (F) is (Rα,Rβ)-root-needed.

Corollary 6.1.12. Let (R,F) be a left-linear system. It is decidable whether a
redex in a term in T (F) is (Rα,Rβ)-root-needed for α, β ∈ {s, nv, lg, g}.

6.2 Call-by-need computations to root-stable forms

Definition 6.2.1. Let α and β be approximation mappings. The class of sys-
tems (R,F) such that every non-Rβ-root-stable term in T (F) has an (Rα,Rβ)-
root-needed redex is denoted by CBN-RSα,β.

It can be shown that CBN-RSs,s coincides with the class of strongly root-
sequential systems introduced by Kennaway [Ken95].

The following Theorem is the counterpart of Theorem 3.4.4. The proof, how-
ever, is more difficult because the parallel closure of {(∆, ∆◦) | ∆ ∈ T (F) is a redex}
is not gtt-recognizable since the size of redexes is unbounded and in GTTs one
can only transfer a finite amount of information between the two sides. We
overcome this problem by resorting to weak second-order monadic logic.

68 CHAPTER 6. COMPUTATIONS TO ROOT-STABLE FORMS

Proposition 6.2.2. Let R and S be left-linear esystems such that (R,S)-
ROOT-NEEDED is recognizable. The set of terms that have an (R,S)-root-
needed redex is recognizable.

Proof. Let φ(~X) be the definition of (R,S)-ROOT-NEEDED in WSkS, whose
existence is guaranteed by Theorem 2.4.4. The set of terms that have an (R,S)-
root-needed redex is defined by the following WSkS formula:

(1)
︷ ︸︸ ︷

∧

f∈F◦\F

Xf = ∅ ∧ ∃~Y

[
(2)

︷ ︸︸ ︷

X = Y ∧
∧

f∈F

Xf = Yf ∪ Yf◦ ∧

(3)
︷ ︸︸ ︷

φ(~Y)

]

.

Part (1) ensures that the term t encoded by ~X contains no marks, part (2)

ensures that erase(t′) = t for the term t′ encoded by ~Y , and part (3) ensures
that t′ ∈ (R,S)-ROOT-NEEDED. Hence the result follows from Theorem 2.4.4.

Lemma 6.2.3. Let (R,F) be a left-linear system and α,β be two recognizability
preserving approximation mappings. The set of terms that have an (Rα,Rβ)-
root-needed redex is recognizable.

Proof. From Lemma 6.1.10, (→∗
Rα

)[RS(Rβ)◦]. From Lemma 6.1.8, (Rα,Rβ)-
ROOT-NEEDED is recognizable. The results follows from Proposition 6.2.2.

Theorem 6.2.4. Let R be a left-linear system and α, β be two recognizability
preserving approximation mappings. It is decidable whether R ∈ CBN-RSα,β.

Proof. Let F be the signature of R. The system R belongs to CBN-RSα,β if
and only if the set

A = (T (F) \ RSRβ
) \ {t ∈ T (F) | t has an (Rα,Rβ)-root-needed redex}

is empty.
From Lemma 6.1.9, RSRβ

is recognizable. From Lemma 6.2.3), {t ∈ T (F) |
t has an (Rα,Rβ)-root-needed redex} is recognizable. T (F) is known to be
recognizable. So A is a boolean combination of recognizable sets of terms.
From Lemma 2.4.1(1), A is recognizable. Emptiness of A is decidable by the
second part of Lemma 2.4.1(2).

In the remainder of this section we show that for the approximation map-
pings s and nv we don’t need weak second-order monadic logic to conclude the
decidability of membership to CBN-RSα,β for orthogonal systems. The reason is
that (Rα,Rβ)-root-needed redexes for α, β ∈ {s, nv} and orthogonal R satisfy
the partial uniformity result expressed in Proposition 6.2.6 below.

Definition 6.2.5. Let R be a system over a signature F . Two redexes ∆1, ∆2 ∈
T (F) are called pattern equal, denoted by ∆1 ≈ ∆2, if they have the same redex
pattern, i.e., they are redexes with respect to the same rewrite rule. The relation
mark◦R on T (F◦) is defined as the parallel closure of

{(∆1, ∆
◦
2) | ∆1, ∆2 ∈ T (F) are pattern equal redexes}.

6.2. CALL-BY-NEED COMPUTATIONS TO ROOT-STABLE FORMS 69

Proposition 6.2.6. Let R be an orthogonal system. If redex ∆1 in C[∆1] is
(Rα,Rβ)-root-needed with α, β ∈ {s, nv} then so is redex ∆2 in C[∆2], for any
∆2 ≈ ∆1.

Orthogonality is essential in Proposition 6.2.6. Consider for instance the
pattern equal redexes f(g(a)) and f(g(b)) with respect to the left-linear system
R:

f(g(x)) → f(a)
g(b) → a

Redex f(g(a)) is (Rα,Rβ)-root-needed for all α, β ∈ {s, nv} because f◦(g(a)) is
an Rα-normal form that is not (Rβ)◦-root-stable. However, redex f(g(b)) is not
(Rα,Rβ)-root-needed since f◦(g(b)) →Rα

f◦(a) and f◦(a) is (Rβ)◦-root-stable.

Lemma 6.2.7. Let R be a left-linear system. The relation mark◦R is gtt-
recognizable.

Proof. Let F be the signature of R = {li → ri | 1 6 i 6 n}. Define the
GTT G as (A,B) where A is a term automaton without ǫ-rules that accepts in
state [i] all instances in T (F) of li and B is obtained from A by changing every
transition rule of the form f(q1, . . . , qn) → [i] to f◦(q1, . . . , qn) → [i], followed
by a renaming of all states different from [1], . . . , [n]. It is not difficult to see
that G accepts mark◦R.

a → [x] a → [x]

b → [x] b → [x]

f([x], [x]) → [x] f([x], [x]) → [x]

g([x]) → [x] g([x]) → [x]

h[x]) → [x] h[x]) → [x]

a → [a] a → [a]

b → [b] b → [b]

g([x]) → [g(x)] g([x]) → [g(x)]

f([x], [b]) → [f(x, b)] f([x], [b]) → [f(x, b)]

f([g(x)], [a]) → [1] f◦([g(x)], [a]) → [1]

h[a]) → [2] h◦([a]) → [2]

h[f(x, b)]) → [3] h◦([f(x, b)]) → [3]

Table 6.2: A GTT that accepts mark◦R.

For the example system R on page 33 a GTT that accepts mark◦R is pre-
sented in Table 6.2. Let R be an orthogonal system over a signature F . Using
the preceding results we give a proof of the recognizability of {t ∈ T (F) |
t has an (Rα,Rβ)-root-needed redex} for α, β ∈ {s, nv} which does not rely on

70 CHAPTER 6. COMPUTATIONS TO ROOT-STABLE FORMS

weak second-order monadic logic. Because of Proposition 6.2.6 the above set
coincides with mark◦R[(Rα,Rβ)-ROOT-NEEDED] ∩ T (F) and this latter set is
recognizable due to Lemmata 6.2.7, 2.4.3(3), and 2.4.1.

Chapter 7

Complexity of CBN-RS
classes

The aim of this chapter is to analyze the complexity of deciding membership to
CBN-RSα,β classes. The results of this chapter are new and unpublished. For
the linear-growing approximation, we obtain a double exponential upperbound,
which is a significant improvement over the non-elementary upperbound of the
complexity of the decision procedure presented in Chapter 6 and [DM97].

In this section we assume that R and S are orthogonal growing esystems
over the same signature F and that G = F ∪ {f◦ | f ∈ F}.

7.1 Construction of ARSS◦

Our first goal is to construct a term automaton recognizing the set RSS◦ of root-
stable ground terms with respect to the system S◦ = S ∪ {l◦ → r | l → r ∈ S}.

Consider the automaton B(S◦) as defined in Section 5.1.1. To this automa-
ton we add a single final state qf and transition rules f([l1], . . . , [ln]) → qf

and f◦([l1], . . . , [ln]) → qf for every left-hand side f(l1, . . . , ln) of a rewrite rule
in S. One easily verifies that the resulting automaton, which we denote by
AREDEXS◦

, accepts the set of ground redexes of S◦. Applying the construc-
tion in Section 5.2.2 to AREDEXS◦

and B(S◦) results in deterministic automaton
DREDEXS◦

(S◦) that accepts all ground terms in T (G) that rewrite in S◦ to a term
in REDEXS◦ , in other words, all non-S◦-root-stable terms. This deterministic
automaton may be completed, then complemented easily (by changing the set
of final states into its complement set in the set of states) to obtain the desired
term automaton ARSS◦

. Note that the final states are those that do not contain
qf (the unique final state of B(S◦).

The previous construction works for the most general (left-linear) growing
case. For the linear-growing case, we could have obtained the desired automa-
ton by a subset construction of the non-deterministic automaton CREDEXS◦

(S◦)

71

72 CHAPTER 7. COMPLEXITY OF CBN-RS CLASSES

(Section 5.2.1), but the size of the final automaton would have been similar to
the one obtained from the DREDEXS◦

(S◦) automaton.

7.2 Automaton (→∗
R)[RSS◦

]

Next we apply the constructions in Section 5.2 with T = RSS◦ and R.

7.2.1 Linear-growing case

The construction of Section 5.2.1 yields a non-deterministic automaton CRSS◦
(R)

that accepts all ground terms that rewrite in R to a term in RSS◦ .

7.2.2 (Left-linear) Growing case

The construction of Section 5.2.2 yields a deterministic automaton DRSS◦
(R)

that accepts all ground terms that rewrite in R to a term in RSS◦ .

7.3 Call-by-need computation to root-stable forms

Based on an automaton recognizing (→∗
R)[RSS◦] (either the non-deterministic

CRSS◦
(R) or the deterministic automaton DRSS◦

(R)), we construct an automa-
ton E(R,S) that accepts all non-S-root-stable terms in T (F) that do not have
an (R,S)-root-needed redex.

7.3.1 Linear-growing case

The construction of E(R,S) is related to the construction of E(R) in Sec-
tion 5.3.1 but there are two main differences.

First the states have now an additional component H to record the behaviour
of the automaton H = CREDEX(S)(S) in order to detect whether the recognized

term is S-root-stable. The final states are such that H ∩Qf
H 6= ∅ (which implies

that [r] ∈ B) and P ⊆ Qf .
Second, instead of P ′′ = •↓C = {[x]} (in the case where [l] ∈ B), we define

P ′′ as a non-empty subset of f◦(S1, . . . , Sn)↓C ; this corresponds to the marking
of the root symbol of a redex by ◦.

The proofs of the following statements are extensions of the corresponding
ones in Section 5.3.

Lemma 7.3.1. Let s ∈ T (F). If s →+
ΓE

〈S :B :H :P 〉 then S = s↓C, B = s↓B
and H = s↓H.

Proof. Straightforward.

Lemma 7.3.2. Let s ∈ T (F) such that s →+
ΓE

〈S :B :H :P 〉. Let p ∈ REDEX(s).
We have s[(s/p)◦]p↓C ∩ P 6= ∅.

7.4. COMPLEXITY 73

Proof. Similar to the proof of Lemma 5.3.2 by induction on the depth of p.

Lemma 7.3.3. Let s ∈ T (F). If P ⊆
⋃

p∈REDEX(s) s[(s/p)◦]p↓C and ∀p ∈

REDEX(s), P ∩ s[(s/p)◦]p↓C 6= ∅ then s →+
ΓE

〈S : B : H : P 〉 with S = s↓C,
B = s↓B and H = s↓H.

Proof. Similar to the proof of Lemma 5.3.3 by induction on the structure of s
and taking P ′ = P ∩ s◦↓C in the case where s is a redex.

Corollary 7.3.4. Let s ∈ T (F). ∀p ∈ REDEX(s), s[(s/p)◦]p ∈ (→+
R)[RSS◦]

iff s →+
ΓE

〈S : B : H : P 〉 for some P ⊆
⋃

p∈REDEX(s) s[(s/p)◦]p↓C such that

P ∩ s[(s/p)◦]p↓C ∩ Qf 6= ∅.

Proposition 7.3.5. Let s ∈ T (F). The term s ∈ L(E(R,S)) iff s is non
S-root-stable and ∀p ∈ REDEX(s), s[(s/p)◦]p ∈ (→+

R)[RSS◦].

Proof. By Lemma 7.3.1, Corollary 7.3.4 and the observation that s is non S-
root-stable if and only if s↓H ∩ Qf

H 6= ∅.

Theorem 7.3.6. Let R be a left-linear system and α, β ∈ {s, nv, lg}. We have
R ∈ CBN-RSα,β iff L(E(Rα,Rβ)) = ∅.

Proof. By definition of CBN-RSα,β, R /∈ CBN-RSα,β if and only if there exists a
non Rβ-root-stable term in T (F) without (Rα,Rβ)-root-needed redex. The lat-
ter is equivalent to ∀p ∈ REDEX(s), s[(s/p)◦]p ∈ (→+

R)[RS(Rβ)
◦
]. According to

Corollary 7.3.4, this is equivalent to s ∈ L(E(Rα,Rβ)). Hence R ∈ CBN-RSα,β

iff L(E(Rα,Rβ)) = ∅.

Decidability of membership to CBN-RSα,β follows.

7.3.2 (left-linear) Growing case

With the same modifications as in Section 7.3.1 but applied to the automaton
of Section 5.3.2, we obtain from the deterministic DRSS◦

(R), a deterministic
automaton E(R,S) which recognizes all non-S-root-stable terms of T (F) with
no (R,S)-root-needed redex. Decidability of membership to the class CBN-RSg

follows.

Theorem 7.3.7. Let R be a left-linear system and α, β ∈ {s, nv, lg, g}. We
have R ∈ CBN-RSα,β iff L(E(Rα,Rβ)) = ∅.

7.4 Complexity

The following complexity results are obtained by a similar analysis to the one
in Section 5.4. Note that the nested saturation process does not give rise to
an extra exponential since saturation increases only the time but not the space
complexity by an exponential. Also the additional component H having a lower
complexity than the S component is not a problem.

74 CHAPTER 7. COMPLEXITY OF CBN-RS CLASSES

7.4.1 Linear-growing case

Theorem 7.4.1. It can be decided in double exponential time whether a left-
linear system belongs to CBN-RSα,β for all α, β ∈ {s, nv, lg}.

7.4.2 (left-linear) Growing case

Theorem 7.4.2. It can be decided in triple exponential time whether a left-
linear system belongs to CBN-RSα,β for all α, β ∈ {s, nv, lg, g}.

Part II

Strong sequentiality

75

77

This part recalls the framework for sequentiality and strong sequentiality
given in [HL91] (see Chapter 8). This remainder is necessary for Part III which
deals exclusively with subclasses of the strongly sequential class. In Chapter 9
we compare our call-by-need approach with the sequentiality-based approach.

78

Chapter 8

Strong sequentiality

8.1 Strongly Sequential Systems

In this section we recall the definition of strong sequentiality given by Huet and
Lévy in their landmark paper of 1979 now published in [HL91].

The notion of sequentiality for a monotonic predicate was first introduced
by [KP78].

Definition 8.1.1. Let P be a monotonic predicate on T (FΩ). Let M ∈ T (FΩ)
and u ∈ PosΩ(M). u is an index of M with respect to P if N/u 6= Ω for all
terms N � M such that P (N). The predicate P is called sequential if every
Ω-normal form has an index.

Definition 8.1.2. Let (R,F) be a system. The predicate nf is defined on
T (FΩ,V) as follows: nf(M) if M →∗

R N for some normal form N ∈ T (F ,V).
We say that R is sequential if nf is a sequential predicate.

It is easily checked that nf is a monotonic predicate. The explanation for
not restricting the above definitions to ground terms will be given after Exam-
ple 9.2.2.

Huet and Lévy remarked that sequentiality is undecidable and that indexes
(plural of index) with respect to nf are not computable in general. They identi-
fied a decidable subclass, the class of strongly sequential systems, in which every
Ω-normal form admits at least one computable index. This subclass, as well as
several later extensions, is defined below using the concept of approximation
mapping defined in Section 3.2.

Definition 8.1.3. Let (R,F) be a system and α be an approximation mapping.
The predicate nfα is defined on T (FΩ,V) as follows: nfα(M) if and only if
M →∗

α N for some normal form N ∈ T (F ,V). We say that R is α-sequential
if nfα is a sequential predicate.

The class of s-sequential systems coincides with the class of strongly sequen-
tial systems (SS) of Huet and Lévy (s being the arbitrary approximation map-
ping as defined in Section 3.3). The class of nv-sequential systems coincides with

79

80 CHAPTER 8. STRONG SEQUENTIALITY

the class of NVNF-sequential systems of Nagaya et al. [NST95], which is an ex-
tension of the class of NV-sequential systems of Oyamaguchi [Oya93]. The latter
class is defined using the nv approximation mapping but with a different pred-
icate termnv: termnv(M) if and only if M →∗

nv N for some term N ∈ T (F ,V).
The class of lg-sequential systems coincides with the class of linear-growing se-
quential systems of Jacquemard [Jac96b] and the class of g-sequential with the
class of growing sequential systems of Nagaya and Toyama [NT02].

In Chapter 9, we will compare the classes defined in Definition 8.1.3 with
our CBNα classes.

We now give more definitions and properties (most of them due to Huet
and Lévy) that will be useful in Part III which deals with subclasses of the
s-sequential class (SS).

The set of indexes of an Ω-term M is denoted by I(M). Intuitively, a position
u ∈ I(M) cannot disappear via s-reduction if the Ω-term M is not refined at u.
From now on, an index with respect to nfs will be simply called an index . It is
easy to decide whether an Ω-position of an Ω-term is an index [HL91]. However
deciding whether a system is strongly sequential is not a trivial matter; the
first proof was given by [HL91]; other proofs can be found in [KM91], [Com00].
The first proof avoiding the concept of index was given in [DM97] and is the
one given in Chapter 3. In [Com00], Comon showed that the problem is in
EXPTIME. In [KM91], Klop and Middeldorp conjecture that deciding strong
sequentiality is NP-Complete. This is still an open problem (listed as number
9, in the RTA list of (open) problems in rewriting, see Chapter 13).

Definition 8.1.4. The reduction relation −→Ω (Ω-reduction) is defined as fol-
lows: Let M ∈ T (FΩ) and u ∈ PosΩ(M), M −→Ω M [Ω]u if M/u is redex
compatible.

All examples in this section will be related to the system R1 of Exam-
ple A.0.1.

Example. f(a, f(g(Ω, Ω), g(b, Ω))) →Ω f(a, f(Ω, g(b, Ω))) →Ω f(a, f(Ω, Ω)) →Ω

f(a, Ω).

Proposition 8.1.5. [KM91] Ω-reduction is confluent and terminating.

The next proposition relates Ω-reduction to arbitrary reduction.

Proposition 8.1.6. [KM91] Let M, N ∈ T (FΩ)
If M →∗

Ω N then M ′ →∗
s N for some M ′ � M .

If M →∗
s N then M →∗

Ω N ′ for some N ′ � N .

The next two lemmata relate Ω-reduction to arbitrary reduction in the case
of reductions to Ω.

Lemma 8.1.7. Let M ∈ T (FΩ). If M →+
s Ω then ∀N ∈ T (FΩ), M →∗

Ω N .

Proof. The sequence of rewrite steps M →+
s Ω is necessarily of the form M →∗

s

∆ →s Ω for some redex ∆. From the definition of →s, it follows that M →∗
s

∆ →s N , ∀N ∈ T (FΩ).

8.1. STRONGLY SEQUENTIAL SYSTEMS 81

Lemma 8.1.8. Let M ∈ T (FΩ). If M →+
Ω Ω then there exists M ′ � M such

that ∀N ∈ T (FΩ), M ′ →∗
s N .

Proof. By induction on the length of M →+
Ω Ω. If the length is 1 then M � ∆

for some redex ∆. We have ∆ →s N , ∀N ∈ T (FΩ). Otherwise, we may write
M = C[M1, . . . , Mn]u1,...,un

→∗
Ω C[Ω, . . . , Ω]u1,...,un

→Ω Ω. By definition of
Ω-reduction C[Ω, . . . , Ω]u1,...,un

� ∆ for some redex ∆. We have ∀i, 1 ≤ i ≤ n,
Mi →

+
Ω Ω. ∀i, 1 ≤ i ≤ n, let Ni = ∆/ui. The induction hypothesis yields ∀i, 1 ≤

i ≤ n, Mi →∗
s Ni. It follows that ∀N ∈ T (FΩ), M = C[M1, . . . , Mn]u1,...,un

→∗
s

C[N1, . . . , Nn]u1,...,un
= ∆ →s N . for any N ∈ T (FΩ).

Definition 8.1.9. [HL91] The direct approximant ω(M) of an Ω-term M is the
normal form of M with respect to Ω-reduction. ω(M) is well defined according
to Proposition 8.1.5.

Example. ω(f(a, f(g(Ω, Ω), g(b, Ω)))) = f(a, Ω).

We recall some simple but very useful properties related to Ω-reduction.

Proposition 8.1.10. [HL91] Let M ∈ T (FΩ).
1) ω(M) � M .
2) Let u ∈ Pos(M). ω(M) = ω(M [ω(M/u)]u).
3) Let N ∈ T (FΩ) such that N � M . ω(N) � ω(M).
4) ω(ω(M)) = ω(M).
5) If M is redex compatible then ω(M) = Ω.

Lemma 8.1.11. Let M ∈ T (FΩ). ω(M) can be computed in O(|LHSΩ| + |t|3)

Proof. Let M = M0 −→Ω M1 . . . −→Ω Mk = ω(M) be any sequence of Ω-
reductions from M to ω(M). ∀i, 0 < i ≤ k, Mi−1 ≺ Mi, so ∀i, 0 < i ≤ k,
|Mi−1| < |Mi|, so k ≤ |M |. In O(|LHSΩ|), we can build a pattern matching
automaton to search for a redex compatible subterm in a term. At each step i
of Ω-reduction, using the automaton, the search of a redex compatible subterm
in Mi can be done in O(|Mi|

2
). We conclude that the global computation of

ω(M) can be done in O(|LHSΩ| + |M |3).

The concept of soft term comes from [KM91]. Soft terms are also called po-
tential redexes in O’Donnell’s terminology [O’D85]. Soft terms ”melt” through
Ω-reduction.

Definition 8.1.12. An Ω-term M is called soft if ω(M) = Ω.

Example. The Ω-term f(Ω, f(g(Ω, Ω), g(b, Ω))) is soft.
The Ω-term f(a, f(g(Ω, Ω), g(b, Ω))) is not soft.

Definition 8.1.13. An Ω-term M such that ω(M) 6= Ω is called strongly root-
stable. Similarly, an Ω-position u of an Ω-term M is strongly root-stable if
M/u is strongly root-stable.

82 CHAPTER 8. STRONG SEQUENTIALITY

Strongly root-stable Ω-terms are also called strong head normal forms in [Str88].
The following lemma and corollary relate strong root-stability and Rs-root-

stability.

Lemma 8.1.14. Let M ∈ T (FΩ). M is not strongly root-stable iff there exists
M ′ � M such that M ′ is not Rs-root-stable.

Proof. We first get rid of the trivial case where M = Ω and any redex is greater
than or equal to M and not Rs-root-stable. Now we assume that M 6= Ω.

=⇒ By definition of stronlgy root-stability we have M →∗
Ω Ω. Proposition 8.1.6

(first item) yields some M ′ � M such that M ′ →∗
s Ω which gives M ′ →+

s Ω
as M 6= Ω. Lemma 8.1.8 yields that M ′ can arbitrarily reduce to any term,
in particular to a redex so M ′ is not Rs-root-stable.

⇐= By definition of Rs-root-stability, M ′ arbitrarily reduces to a redex which
arbitrarily reduces to Ω. So M ′ →∗

s Ω. Proposition 8.1.6 (second item)
yields M ′ →∗

Ω Ωso ω(M ′) = Ω. As M � M ′, the third item of Propo-
sition 8.1.10 yields ω(M) = Ω which means by definition that M is not
strongly root-stable.

Corollary 8.1.15. Let M ∈ T (FΩ). M is strongly root-stable iff ∀M ′ � M ,
M ′ is Rs-root-stable.

Definition 8.1.16. [HL91] Let M = f(M1, . . . , Mn) ∈ T (FΩ). The internal
direct approximant of M is defined by ω(M) = f(ω(M1), . . . , ω(Mn)).

Example. ω(f(Ω, f(g(Ω, Ω), g(b, Ω)))) = f(Ω, Ω).

Let • be a fresh constant symbol. The next lemma shows that with Ω-
reduction it is simple to decide whether an Ω-position of an Ω-term is an index.

Lemma 8.1.17. [HL91] Let M ∈ T (FΩ) and u ∈ PosΩ(M). u ∈ I(M) iff
ω(M [•]u) 6= ω(M).

Example. ω(f(g(•, Ω), Ω)) = Ω so 1.1 6∈ I(f(g(Ω, Ω), Ω)).
ω(f(g(Ω, Ω), •)) = f(Ω, •) so 2 ∈ I(f(g(Ω, Ω), Ω)).

The following lemma from [HL91] holds for orthogonal systems.

Lemma 8.1.18. [HL91] Let R be an orthogonal system. If uv ∈ I(M), then
v ∈ I(M/u).

The set Dir(M, S) of directions from M to a set of Ω-terms S is defined in
[HL91]. We will use the characterization given by the following lemma as an
alternative definition.

Lemma 8.1.19. [HL91] Let S be a subset of T (FΩ). Let M ∈ T (FΩ) and u ∈
PosΩ(M). u ∈ Dir(M, S) iff ∀N ∈ S such that N ↑ M , one has u ∈ PosΩ(N).

Dir(M, LHSΩ) is abbreviated Dir(M).

Example. Dir(f(g(Ω, a), Ω)) = {2}.

8.2. MATCHING DAGS 83

8.2 matching DAGs

We now give Huet & Lévy’s construction of a matching DAG. This construction
is directly taken from [HL91]. We need the concept of matching DAG in order
to compare it with the concept of index tree in Chapter 10.
Hypothesis: Huet and Lévy assume the existence of a function Q mapping
every preredex M into a nonempty subset of its directions, ∅ 6= Q(M) ⊆ Dir(M)
and such that ∀u ∈ Q(M), for all preredexes N , if M [N]u is a preredex then

∃v, uv ∈ Q(M [N]u) (Q1).
∀v, uv ∈ Q(M [N]u) ⇒ v ∈ Q(N) (Q2).

Intuitively, a position in Q(M) is a direction for matching redexes and is also a
direction for internal matches (by condition Q2). Furthermore, it is possible
to find some (strongly needed) redex without any dangling partial matches
(condition Q1).

Construction: To construct a matching DAG associated with Q and satisfying
Q1 and Q2, let LHSΩ = {L1, L2, . . . , Ln}. Consider Occ =

⋃
{PosΩ(Li)|i ≤ n}

and a set Succ = {S1, S2, . . . , Sn} of success tokens disjoint from Occ. The
nodes of the graph are all
a) pairs (M, v) such that M is a preredex, v ∈ Q(M), and ∀u, M/u 6= Ω and
M/u ↑ L for some L ∈ LHSΩ ⇒ u < v,
or
b) pairs (Li, Si), with 1 ≤ i ≤ n (the success nodes).

Let (M, v) be a node, f a function symbol in F , and M ′ = ext(M, v, f). If
(M ′, ∗) is a node where ∗ denotes any element of Occ ∪ Succ, an arc is drawn:

(M, v)
f

−→ (M ′, ∗). It is clear that such graphs are directed and acyclic.
A node (M, ∗) is accessible iff either it is the origin node (Ω, ε) or there is

some accessible node (M1, v1) and f ∈ F such that (M1, v1)
f

−→ (M ′, ∗).
To end the construction, inaccessible nodes are removed. Then the terminal

nodes are exactly all the success nodes and in all nonterminal nodes (M, v), M
is a preredex. The failure function is defined for every nonterminal (accessible)
node (M, v) different from the initial node (Ω, ε) in the following way:

Fail((M, v)) = (M/u, v/u) where u is the smallest non-null prefix of v
such that M/u ↑ L for some L ∈ LHSΩ.

As Fail((M, v)) can be proven to be accessible, Fail can also be characterized
by:

Fail((M, v)) = (M/u, v/u) where u is the minimun non-null prefix of v
such that M/u is a preredex.
With the following theorem, Huet and Lévy prove that Strong Sequentiality

is a decidable property of orthogonal systems.

Theorem 8.2.1. (Huet & Lévy, 1979) Let R be an orthogonal system. R is
strongly sequential iff there exists a matching DAG for LHSΩ.

A matching DAG for R1 of Example A.0.1 is shown in Figure 8.1. Note that
as matching DAGs are essentialy the same as index trees (see Chapter 10), we

84 CHAPTER 8. STRONG SEQUENTIALITY

adopt the same legend for index trees and matching DAGs (see p 99).

ba

a a

g

f

Ω, ε

g

f(Ω, a), 1

f(g(Ω.a), a), S1 f(g(a, Ω), b), S2

f(Ω, b), 1

f(g(Ω, Ω), b), 1.1f(g(Ω, Ω), a), 1.2

f(Ω, Ω), 2 g(Ω, Ω), 2

g(Ω, b), 1

b

g g

b

b

b

g(b, b), S3

g(Ω, Ω), 1

g(b, Ω), 2

Figure 8.1: A matching DAG for R1 of Example A.0.1

The next proposition first proved by Huet and Lévy shows that deciding
Strong Sequentiality becomes easier with the restriction to constructor systems.

Proposition 8.2.2. [HL91] [KM91] [Klo92] A constructor system is strongly
sequential iff every strict preredex has an index.

In a matching DAG for a constructor system every failure transition goes
to the initial node. Such a matching DAG can be constructed in linear time
in a single top-down pass. If the system is not strongly sequential a preredex
without index will be found during the construction. Consequently, it can be
decided in linear time whether a constructor system is strongly sequential.

8.3 Simple Systems

The notion of sequential set of Ω-terms is defined in [HL91]. We will use the
characterization given by the following lemma as an alternative definition.

Lemma 8.3.1. Let S be a set of Ω-terms. S is sequential iff ∀M ∈ T (FΩ)
such that M ↑ S but M 6� S, Dir(M) 6= ∅.

8.3. SIMPLE SYSTEMS 85

Definition 8.3.2. [HL91] A system is simple if every subset of Sub(LHSΩ)∗ is
a sequential set.

By SP we denote the set of simple systems. The class of simple systems will
be compared with the class of forward-branching systems in Chapter 12.

86 CHAPTER 8. STRONG SEQUENTIALITY

Chapter 9

CBN versus Sequentiality

In this chapter, we compare the α-sequential classes defined in Definition 8.1.3
with our CBNα classes of Section 3.4.

9.1 α-sequentiality versus CBNα

The following lemma connects nfα-indexes with α-needed redexes.

Lemma 9.1.1. Let (R,F) be a left-linear system and let α be an approximation
mapping. If a position p in a term t ∈ T (FΩ) is an nfα-index then redex ∆ in
the term s[∆]p is α-needed, for all terms s > t and redexes ∆.

Proof. Suppose ∆ is not an α-needed redex in the term s[∆]p. Then there exists
a normal form u ∈ T (F) such that s[•]p →∗

α u. Since Rα is left-linear and •
does not appear in its rewrite rules, we obtain s[Ω]p →∗

α u from s[•]p →∗
α u

by replacing all positions of • by Ω. It follows that nfα(s[Ω]p) holds. We have
s[Ω]p > t as t|p = Ω. Hence p is not an nfα-index position.

Corollary 9.1.2. Let α be an approximation mapping. Every left-linear α-se-
quential system belongs to CBNα.

Proof. Let R be a left-linear α-sequential system. We show that every reducible
term s has an α-needed redex. Let t be the Ω-normal form obtained from s by
replacing all outermost redexes by Ω. Because R is α-sequential, t has an
nfα-index, say at Ω-position p. We obviously have s > t. According to the
previous lemma the redex at position p in s is α-needed. We conclude that
R ∈ CBNα.

The reverse directions do not hold in general. For the strong approximation
this is kind of surprising since redexes carry the same information as Ω because
the former can reduce to any term.

87

88 CHAPTER 9. CBN VERSUS SEQUENTIALITY

Example 9.1.3. Consider the system R = R5 of Example A.0.5 over the sig-
nature F consisting of all symbols appearing in the rewrite rules.
As NF(R) = ∅, R trivially belongs to CBNs. However, R is not strongly se-
quential since the Ω-normal form f(Ω, Ω, Ω) does not have an nfs-index:

f(Ω, g(a), h(a)) →s x f(h(a), Ω, g(a)) →s x f(g(a), h(a), Ω) →s x

9.2 s-sequentiality (SS) versus CBNs

The following lemma states that for orthogonal systems the discrepancy between
strong sequentiality and CBNs can only occur if there are no ground normal
forms.

Lemma 9.2.1. Let (R,F) be an orthogonal system such that NF(R,F) 6= ∅.
If (R,F) ∈ CBNs then (R,F) is strongly sequential.

Proof. Suppose that (R,F) is not strongly sequential. So there exists an Ω-
normal form t ∈ T (FΩ,V) without nfs-indexes. Let u ∈ T (F) be the term
obtained from t by replacing all positions of Ω by a ground redex. (Since the
empty system is trivially strongly sequential, R contains at least one rule.) We
claim that u has no s-needed redexes. Let P be the set of Ω-positions in t,
which coincides with the set of redex positions in u because of orthogonality.
Let p ∈ P . We show that the redex in u at position p is not s-needed. Since p is
not an nfs-index position in t, we have nfs(s) for some term s ∈ T (FΩ,V) with
s > t and s/p = Ω. Without loss of generality we assume that p is the only
Ω-position in s. There exists a rewrite sequence A : s →∗

s s′ with s′ ∈ T (F ,V)
a normal form. Since there is no Ω in s′, A must contain a rewrite step at a
position q < p. Let s1 →s s2 be the first such step. By simply replacing every
position of Ω by a variable, we may assume that the remainder s2 →∗

s s′ of A
does not contain any positions of Ω. We will now transform A into a sequence
B : u[•]p →∗

s u′ with u′ ∈ NF(R•), which implies that redex u|p is not s-needed.
By replacing every variable in A by some constant we obtain the sequence
Â : ŝ →∗

s ŝ1 →s ŝ2 →∗
s ŝ′, where ŝ′ need not be in normal form. Next we replace

all positions of Ω in ŝ →∗
s ŝ1 by •, yielding û →∗

s û1. Because redexes s-rewrite
to all possible terms and û/p = •, we clearly have u[•]p →∗

s û. Note that û1

contains a single position of •, at position p, and a redex at position q. We
obtain û1 →s ŝ2 by contracting this redex. Combining the various parts yields
u[•]p →∗

s ŝ′. If we can s-rewrite ŝ′ to a ground normal form then we obtain the
desired rewrite sequence B. It is easy to see that repeatedly replacing redexes
by any ground normal form, whose existence is guaranteed by the assumption
NF(R) 6= ∅, will terminate in a ground normal form.

The following example shows that Lemma 9.2.1 need not be true for left-
linear systems.

9.3. α-SEQUENTIALITY VERSUS CBNα (CONTINUED) 89

Example 9.2.2. Consider the left-linear system R

g(f(x, a)) → a f(g(x), g(y)) → a f(g(x), f(y, z)) → a

g(f(a, x)) → a f(f(x, y), f(z, u)) → a f(f(x, y), g(z)) → a

The Ω-normal form g(f(Ω, Ω)) has no nfs-indexes:

g(f(Ω, a)) →s a g(f(a, Ω)) →s a

and hence R is not strongly sequential. Membership in CBNs is not hard to
prove.1

The reader may wonder why definitions 8.1.2 and 8.1.3 in section 8.1 are not
restricted to ground terms. The reason is that the standard decision procedure
for nfs-indexes requires the existence of variables. To see this, let us recall the
details of this procedure [HL91, KM91].

A term t ∈ T (FΩ,V) is redex-compatible if t 6 u for some redex u. The
relation →Ω is defined as follows: C[t] →Ω C[Ω] for every context C and redex-
compatible term t 6= Ω. The relation →Ω is confluent and terminating, and
hence every term t admits a unique normal form with respect to →Ω, which
is denoted by ω(t). Now, an Ω-position p in t is an nfs-index if and only if
p ∈ Pos(ω(t[•]p)). The proof of this equivalence (see [KM91, Lemma 4.8]) relies
on the existence of variables.

Returning to Example 9.1.3, we have

ω(f(•, Ω, Ω)) = ω(f(Ω, •, Ω)) = ω(f(Ω, Ω, •)) = Ω,

confirming that the term f(Ω, Ω, Ω) indeed lacks nfs-indexes. If we would restrict
the above sequentiality definitions to ground terms, then all Ω-positions would
become nfs-indexes; because of the rewrite rule a → a there are no ground
normal forms without Ω and hence nfs(t) fails as soon as t contains a position
of Ω.2

After this digression we return to the comparison between CBNα and α-
sequentiality.

9.3 α-sequentiality versus CBNα (continued)

It is easy to show that CBNnv properly includes the class of nv-sequential sys-
tems (and hence also the class of NV-sequential systems introduced by Oyam-
aguchi [Oya93]).

Example 9.3.1. Consider the system Ra defined in the proof of Lemma 3.4.6
(p36). The following rewrite steps show that the Ω-normal form f(Ω, Ω, Ω) does
not have an index with respect to nfnv:

f(Ω, a, b) →nv c f(b, Ω, a) →nv b f(a, b, Ω) →nv a

1Membership can also be verified by the Autowrite tool; see Chapter 15.
2It follows that the suggestion made in the footnote 2 in [Com00] to simulate variables by

enriching the signature is mandatory rather than optional.

90 CHAPTER 9. CBN VERSUS SEQUENTIALITY

strong

sequentiality

NV−sequentiality

NVNF−sequentiality

linear−growing sequentiality

growing sequentiality

CBNs

CBNnv

CBNlg

CBNg

Figure 9.1: Comparison.

Since Ra ∈ CBNnv, it follows that the class of nv-sequential systems is a proper
subclass of CBNnv.

It is interesting to note that the same example illustrates that Huet and
Lévy’s sequentiality concept does not capture the class of (orthogonal) systems
that admit a (computable or otherwise) call-by-need strategy. Since Ra is right-
ground, we have →nv = →Ra

and thus nfnv = nf. Hence Ra is not sequential.
Because Ra is orthogonal and belongs to CBNnv, it obviously admits a com-
putable call-by-need strategy.

Figure 9.3 summarizes the findings of this section. Concerning the placement
of CBNs, the system R in Example 9.1.3 is not nv-sequential. To show that
CBNs contains systems that are not g-sequential, we need to slightly modify the
example.

Example 9.3.2. Consider the system R

f(x, g(y), h(z)) → i(g(x)) i(g(x)) → x

f(h(z), x, g(y)) → i(g(x)) a → a

f(g(y), h(z), x) → i(g(x))

over the signature F consisting of all symbols appearing in the rewrite rules. We
have R ∈ CBNs because NF(R) = ∅. The system R is not g-sequential since

9.3. α-SEQUENTIALITY VERSUS CBNα (CONTINUED) 91

the Ω-normal form f(Ω, Ω, Ω) does not have an nfg-index:

f(Ω, g(a), h(a)) →g i(g(Ω)) →g x

f(h(a), Ω, g(a)) →g i(g(Ω)) →g x

f(g(a), h(a), Ω) →g i(g(Ω)) →g x

92 CHAPTER 9. CBN VERSUS SEQUENTIALITY

Part III

Below strong sequentiality

93

95

In this part we will discuss only subclasses of the strongly sequential class
(SS). The reason for studying such classes was that they seem to be the only
hope for perfoming efficiently sequences of rewriting steps (see our discussion in
Chapter 14).

From [HL91], we know that deciding strong sequentiality for constructor
systems is linear. A natural idea was to look for classes of strongly sequential
systems that could be transformed into constructor strongly sequential systems.
We will see in Section 12.1, that the forward-branching class is the greatest
known such class. But this result came years after the definition of the forward-
branching was given. In the meantime, we had defined the class of constructor
equivalent systems discussed in Chapter 11 and many interesting results con-
cerning the forward-branching class were obtained.

In this part we deal with orthogonal systems only.

96

Chapter 10

Forward-branching systems

Forward-branching systems where first defined by Strandh in [Str88, Str89]. A
system is forward-branching if it admits a forward-branching index tree. This is
why we recall below some of Strandh’s terminology and his definition of index
tree. We show that although defined in a completely different way, an index
tree and a matching DAG (see Section 8.2) are quite similar.

The forward-branching class is a proper extension of the class of simple sys-
tems defined by [HL91]. We give a simple algebraic characterization of forward-
branching systems from which it easy to deduce that the forward-branching
class is the same as the class of transitive systems defined by [TSvEP93b].

Most of the work presented in this chapter has been published in [Dur94a] but
Section 10.4 has been improved before being included in the present document.

10.1 Definition of an index tree

We now give some of Strandh’s terminology and the definition of index tree.
Strandh’s terminology is mostly inspired by O’Donnell’s [O’D85]. In all this
section definition and lemmata are related to some system R. The examples
used to illustrate the definitions presented in this section are based on the system
R = R1 of example A.0.1.

Definition 10.1.1. An Ω-term M is firm if ∃u ∈ PosΩ(M) such that ∀v ∈
PosΩ(M), either v is strongly root-stable or v < u. We call such a position u
a firm extension position of M . By ep(M) we denote the set of firm extension
positions of a firm Ω-term M .

Example. f(g(Ω, Ω), g(a, Ω)) is a firm Ω-term for R1:
1.1 (resp. 1.2) is a firm extension position.
2.2 is not a firm extension position because 1 is not strongly root-stable.

Example. f(g(Ω, Ω), g(b, Ω)) is not a firm Ω-term for R1: none of the positions
1.1, 1.2 or 2.2 is a firm extension position.

97

98 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

Definition 10.1.2. An index point is a pair [M, u] where M is a firm preredex
and u ∈ ep(M) ∩ I(M).

The index point [Ω, ε] is called the initial index point .

Example. [f(g(Ω, Ω), a), 1.2] is an index point for R1: 1.2 is both a firm exten-
sion position and an index.
No index point can be obtained with the firm preredex f(g(Ω, Ω), Ω) because 2 is
not a firm extension position and 1.1 and 1.2 are not indexes.

Definition 10.1.3. Given a non initial index point s = [M, w], an index point
t = [N, v] is a failure point of [M, w] if ∃u ∈ Pos+(M) such that w = uv and
N = M/u. A failure point t of s is the immediate failure point of s iff every
failure point of s other than t is a failure point of t.

The following lemma shows that the failure points of a non initial index
point [M, w] are exactly the pairs [M/u, w/u] where ε < u < w and M/u is a
preredex (there is no need to check whether they are index points).

Lemma 10.1.4. Let [M, w] be a non initial index point. If ∃u, ε < u ≤ w,
such that M/u is a preredex then [M/u, w/u] is a failure point of [M, w].

Proof. As w ∈ I(M) and from Lemma 8.1.18, we get w/u ∈ I(M/u). As w is
a firm extension position of M it is clear that w/u is a firm extension position
of M/u. So, [M/u, w/u] is an index point.

Example. [g(Ω, Ω), 2] is the immediate failure point of [f(g(Ω, Ω), a), 1.2].
[Ω, ε] is a failure point of [f(g(Ω, Ω), a), 1.2].
[Ω, ε] is the immediate failure point of [g(Ω, Ω), 2].

Definition 10.1.5. An index tree I, for a set of redex schemes LHSΩ, is a finite
state automaton which, in addition to the usual transfer function, also has a
failure function as explained below. The set of final states is LHSΩ. Nonfinal
states are index points. The initial state is [Ω, ε]. The transfer function of
I, written δ(s, f), gives a new state of the automaton, given a state s and a
symbol f . The transfer function is constructed so that δ([M, u], f) = [M ′, u′]
(or δ([M, u], f) = M ′ if M ′ ∈ LHSΩ) only if M ′ = ext(M, u, f). As mentioned
above, we define, in addition to the transfer function, a failure function φ,
designed so that φ(s) = t if and only if t is the immediate failure point of s.
For the initial state the failure function is undefined. For a final state both the
transition function and the failure function are undefined.

Remark: In an index tree some states may not be reachable from the initial
state [Ω, ε] via transfer transitions only.

In the figures representing index trees, we show failure transitions only if they
lead to a state which is not the initial state; the legend given in Figure 10.1 is
valid for all the figures representing index trees (and also matching DAGs in
sections 8.2 and 13.2.
The system R1 of Example A.0.1 admits an index tree. Such index tree is given
in Figure 10.2.

10.2. EQUIVALENCE BETWEEN INDEX TREES AND MATCHING DAGS99

final state

failure transition

transfer transition

nonfinal state

f

Figure 10.1: Legend for the representation of index trees

b

b

ba

a a

g

gf

Ω, ε

b

b

g

g(b, b)

f(Ω, a), 1g(Ω, b), 1

f(g(a, Ω), b)

f(Ω, b), 1

f(g(Ω, Ω), b), 1.1f(g(Ω, Ω), a), 1.2

g(Ω, Ω), 2 f(Ω, Ω), 2 g(Ω, Ω), 1

g(b, Ω), 2

f(g(Ω, a), a)

Figure 10.2: An index tree for R1 of Example A.0.1

10.2 Equivalence between index trees and match-
ing DAGs

In this section we informally check that index trees are equivalent to matching
DAGs. This section is not as important as the next but is needed to relate
clearly Strandh’s work to Huet & Lévy’s work.

In his thesis Strandh just claimed that every strongly sequential system
admits an index tree without giving a proof. The definition of an index tree
differs from the construction of a matching DAG and there was a need to relate
both notions.

We just check that a matching DAG is equivalent to an index tree. Then we
have

R admits an index tree ⇔ R admits a matching DAG
Th 8.2.1
⇐⇒ R ∈ SS.

The following lemma is useful to relate matching DAGs and index trees.

Lemma 10.2.1. [HL91] Let [M, v] be an accessible node in a matching DAG.

100 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

Then, v ∈ I(M).

It is clear that an index tree and a matching DAG have a similar structure:
nonterminal accessible nodes correspond to nonfinal states and success nodes to
final states. The main difference is that an index tree is deterministic while a
matching DAG is not. Requirement a) for the construction of a matching DAG
and Lemma 10.2.1 ensures that nonterminal nodes are index points. From
Lemma 10.1.4, the failure function φ is identical to the Fail function.

To obtain an index tree from a matching DAG:
for each nonterminal node [M, v], for each function symbol f labeling more than
one arc issued from [M, v], we remove all arcs labeled f except one.

To obtain a matching DAG from an index tree:
for each pair of states ([M, v], [M ′, v′]) (resp. each pair ([M, v], M ′) if M’ is a
final state) such that M ′ = ext(M, v, f) and such that there is no transition from

[M, v] to [M ′, v′] (resp. from [M, v] to M ′) we add an arc [M, v]
f

−→ [M ′, v′]

(resp. an arc [M, v]
f

−→ M ′).

Example 10.2.2. An equivalent matching DAG for the system R1 of Exam-
ple A.0.1 is obtained by adding a transition labeled g from [Ω, ε] to [g(Ω, Ω), 2]
to the index tree shown in Figure 10.2 and success tokens in the final states.
The resulting matching DAG is given in Figure 8.1.

It seems that Strandh’s main motivation for defining index trees was to
define the forward-branching class that we are going to introduce now.

10.3 Forward-Branching systems (FB)

10.3.1 Definition of FB

Definition 10.3.1. An index tree is said to be a forward-branching index tree
if every state of the index tree can be reached via transfer transitions from the
initial state.

Note that a forward-branching index tree is the same as a deterministic
matching DAG (with no two transitions issued from the same state labeled
with the same symbol).

Definition 10.3.2. An orthogonal system R is forward-branching if there exists
a forward-branching index tree for R.

The class of forward-branching systems is denoted by FB.

10.3.2 Characterization of FB

This sections presents a nice characterization of forward-branching systems that
could be used as an alternative definition for the class when one wants to avoid
the tedious definition of index tree. We first give an auxiliary lemma.

10.3. FORWARD-BRANCHING SYSTEMS (FB) 101

Lemma 10.3.3. Let M ∈ LHS≺
Ω and u ∈ Pos+

Ω
(M). M/u 6∈ LHSΩ.

Proof. As M ∈ LHS≺
Ω , ∃N ∈ LHSΩ such that M ≺ N . Suppose that M/u ∈

LHSΩ. Let LN be the left-hand side associated with N and LM/u be the left-
hand side associated with M/u. LN matches LM/u which contradicts the non-
ambiguity hypothesis.

Property 10.3.4. ∀M ∈ LHS≺
Ω , ∃u ∈ PosΩ(M), s.t. ∀N ′ ∈ SubD(LHSΩ) s.t.

M ≺ N ′, N ′/u 6= Ω.

This property states that every preredex M contains an Ω-position which is
not an Ω-position in any scheme or subscheme greater than M .

The class characterized by Property 10.3.4 is denoted by K. We now show
that K = FB.

Proposition 10.3.5. K = FB.

Proof. In the next two subsections, we prove that K ⊆ FB and FB ⊆ K. So,
FB = K.

Before the formal proof, we give examples that illustrate Proposition 10.3.5.

Example 10.3.6. Example of a forward-branching system.
R3 of Example A.0.3 is forward-branching as a forward-branching index tree
exists for R3. We have LHSΩ = {f(g(Ω, a), a), f(g(Ω, a), b), g(b, b)} and
SubD(LHSΩ) = LHSΩ ∪ {g(Ω, a)}.
A forward-branching index tree for R3 is given in Figure 10.3.
It is easy to check that R3 satisfies Property 10.3.4.

Example 10.3.7. Example of a non-forward-branching system.
Recall system R1 of Example A.0.1. We have SubD(LHSΩ) = LHSΩ∪{g(Ω, a), g(a, Ω)}.
R1 does not satisfy Property 10.3.4: let M = g(Ω, Ω); M ≺ g(b, b) ∈ LHSΩ;
PosΩ(M) = { 1, 2 };
M ≺ g(Ω, a) ∈ SubD(LHSΩ) and g(Ω, a)/1 = Ω;
M ≺ g(a, Ω) ∈ SubD(LHSΩ) and g(a, Ω)/2 = Ω.
No forward-branching index tree exists for R1.

10.3.3 Correctness of the characterization

Lemma 10.3.8. In a forward-branching index tree, two index points [M, u] and
[M, v] where u 6= v cannot exist.

Proof. See in [Str89] Lemma 4.3.

Lemma 10.3.9. Let Mk, M , N be Ω-terms such that Mk � M ≺ N . Let
Mk+1 = ext(Mk, uk, fk) (with uk ∈ PosΩ(Mk) and fk = root(N/uk)). If
Mk+1 6� M , then uk ∈ PosΩ(M).

The next lemma will be the main lemma for the proof of FB ⊆ K. First we
add one more definition.

102 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

b

f(Ω, a), 1 g(Ω, b), 1

g(Ω, Ω), 2

g(b, b)f(g(Ω, Ω), A), 1.2

f(g(Ω, a), a)

f(Ω, Ω), 2

Ω, ε

f(g(Ω, Ω), b), 1.2

f(Ω, b), 1

f(g(Ω, a), b)

b

b

gf

a

gg

a a

Figure 10.3: A forward-branching index tree for LHSΩ(R3)

Definition 10.3.10. A sequence of index points S = ([M0, u0], . . . , [Mn−1, un−1])
is a sequence of index points from M0 to Mn iff ∀i, 0 ≤ i < n, Mi+1 =
ext(Mi, ui, fi) where fi = root(Mn/ui).

Remark: A sequence of index points corresponds to a path in an index tree.
An illustration of the following lemma is given in Figure 10.4.

Lemma 10.3.11. (Failure points Lemma)
In an index tree, let

([M0, u0], [M1, u1], . . . , [Mk, uk])

be a sequence of index points from M0 = Ω to Mk+1. In the same index tree, let

([Uj , lj], [Uj+1, lj+1], . . . , [Um−1, lm−1])

be a sequence of index points from Uj to Um such that Mk ≺ Um/lj. Then ∀h,
0 ≤ h ≤ k, [Mh, uh] is a failure point of [Uj+h, lj+h] and lj+h = ljuh.

Proof. This lemma is proven by induction on h.
if h = 0 : [M0, u0] = [Ω, ε] is trivially a failure point of [Uj, lj] and lj = ljε.
Induction step : h < k
By definition Mh+1 = ext(Mh, uh, fh)] where fh = root(Mk+1/uh).
So, root(Mh+1/uh) = fh. As h < k, we have Mh+1 � Mk. From Mh+1 � Mk

and the fact that Mk ≺ Um/lj, we get Mh+1 ≺ Um/lj . From root(Mh+1/uh) =
fh and Mh+1 ≺ Um/lj, we get root(Um/ljuh) = fh. From the induction hypoth-
esis, [Mh, uh] is a failure point of [Uj+h, lj+h] and lj+h = ljuh, so Uj+h/lj = Mh.

10.3. FORWARD-BRANCHING SYSTEMS (FB) 103

(1)
From root(Um/ljuh) = fh and lj+h = ljuh, we get Uj+h+1 = ext(Uj+h, ljuh, fh)
which gives Uj+h+1/lj = Uj+h/ext(lj , uh, fh). (2)
From (1) and (2), Uj+h+1/lj = ext(Mh, uh, fh) = Mh+1. Using Lemma 10.1.4,
we obtain that [Mh+1, lj+h+1/lj] is a failure point of [Uj+h+1, lj+h+1].
Using Lemma 10.3.8, we get lj+h+1/lj = uh+1 which gives, lj+h+1 = ljuh+1.

. . .

. . .

. . .

. . .

f0

f1

Un

Uj, lj

Uj+1, lj+1

Mk, uk

Ω, ε

M1, u1

fk−1

f1

f0

fk−1

Uj+k, lj+k

Figure 10.4: Illustration of the Failure points Lemma

Lemma 10.3.12. FB ⊆ K.

Proof. Let R be a forward-branching system. Then, there exists a forward-
branching index tree I for R. Let us suppose that R does not satisfy Prop-
erty 10.3.4. Then ∃N ∈ LHSΩ, ∃M ≺ N , ∀u ∈ PosΩ(M), ∃N ′ ∈ LHS′

Ω such
that M ≺ N ′ and N ′/u = Ω. (1)
Let us consider in I,

([M0, u0], [M1, u1], . . . , [Mn−1, un−1])

the sequence of index points from M0 = Ω to Mn = N . Consider the first
integer k, 0 ≤ k < n such that Mk � M and Mk+1 6� M . From Lemma 10.3.9,
uk ∈ PosΩ(M). For u = uk in (1), ∃N ′ ∈ LHS′

Ω, such that M ≺ N ′ and
N ′/uk = Ω. As Mk � M and M ≺ N ′, we have Mk ≺ N ′.

104 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

Case 1: N ′ ∈ LHSΩ.
Then nfs(N) = true. From N ′/uk = Ω, Mk/uk = Ω, nfs(N) holds and Mk ≺
N ′, we get that uk 6∈ I(Mk) which contradicts the hypothesis that [Mk, uk] is
an index point.
Case 2: N ′ 6∈ LHSΩ.
By definition of LHS′

Ω, ∃R ∈ LHSΩ, ∃v ∈ Pos(R), v 6= ε, such that N ′ = R/v.
As R ∈ LHSΩ, nfs(R) holds. Let us consider in I,

([U0, l0], [U1, l1], . . . [Um−1, lm−1])

the sequence of index points from U0 = Ω to Um = R. As v ∈ Pos(R) and
v 6= ε, ∃j, 0 < j < m with Uj/v = Ω and lj = v. As Mk ≺ N ′ = Um/lj, we
have m − j > k. So, we can apply Lemma 10.3.11and we get ∀h, 0 ≤ h ≤ k,
[Mh, uh] is a failure point of [Uj+h, lj+h] and lj+h = ljuh. For h = k, we have
lj+k = ljuk. From R/ljuk = N ′/uk and N ′/uk = Ω, R/ljuk = Ω. From
R/lj+k = Ω, Uj+k/lj+k = Ω, nfs(R) holds and Uj+k ≺ R, lj+k 6∈ I(Uj+k) which
contradicts the hypothesis that [Uj+k, lj+k] is an index point.

Now we show the reverse implication i.e if a system satisfies the characteri-
zation, we can build an automaton which is a forward-branching index tree.

In the automaton, we denote by nofinaln the set of nonfinal states reachable
from the initial state [Ω, ε] via n transfer transitions. We call these states, states
of level n. Let max be the maximum number of positions not labeled Ω in a
scheme of LHSΩ.

⋃max−1
n=0 nofinaln is the set of nonfinal states reachable from the

initial state [Ω, ε] via transfer transitions only.
The construction is done by induction on n. During the construction, we

carry along three induction hypotheses:
- hypothesis H0 corresponds to the forward-branching property of the automa-
ton;
- hypothesis H1 corresponds to the characterization; it is trivially true when the
choice of u for a nonfinal state [M, u] is done using Property 10.3.4 but it has
to be proved when the choice of u depends on a choice previously made for a
preredex which is also a subterm of M ;
- hypothesis H2 will be used to show that nonfinal states are index points.

Lemma 10.3.17 shows how to build the automaton. First we give the tech-
nical lemmata needed to verify that the automaton built in Lemma 10.3.17 is
indeed a forward-branching index tree.

Lemma 10.3.13. Let Mn be an Ω-term. Let un be a firm extension position of

Mn. Let Mn+1 = Mn[f(
→

Ω)]un
with f a symbol. If un+1/w is a firm extension

position of Mn+1/w, then un+1 is a firm extension position of Mn+1.

Proof. Consider u 6< un+1.
Case 1: un+1/w < u
As u 6< un+1, u/w 6< un+1/w. As un+1/w is a firm extension position of
Mn+1/w, we get un+1 is a firm extension position of Mn+1.
Case 2: un+1/w 6< u.

10.3. FORWARD-BRANCHING SYSTEMS (FB) 105

As Mn and Mn+1 differ only at position un, we have Mn+1/u = Mn/u 6= Ω.
We also have u 6< un (otherwise we would have u < un+1). So, u is a strongly
stable position of Mn+1.

So all u 6< un+1 are strongly stable; this means that un+1 is a firm extension
position of Mn+1.

The idea of the next lemma is that for a nonfinal state [M, u], if the failure
function goes to the root then all nonΩ-positions of M are strongly stable except
the root. This means that any Ω-position of M is a firm extension position.
Hypotheses H1 and H2 are the same as the ones in Lemma 10.3.17.

Lemma 10.3.14. Let R be an orthogonal system satisfying Property 10.3.4.
Consider that the automaton has been built up to level n, 0 < n < max, and that
all nonfinal states [M, u] of level ≤ n verify

H1) ∀N ∈ SubD(LHSΩ) such that M ≺ N , N/u 6= Ω,
H2) u is a firm extension position of M .

Let [Mn, un] ∈ nofinaln. Let Mn+1 = Mn[f(
→

Ω)]un
(with f a symbol).

If all nonfinal states t reachable from [Mn, un] via failure transitions are such
that δ(t, f) is undefined, then ∀w ∈ PosΩ(Mn+1) s.t. w 6= ε, w is a strongly
stable position of Mn+1.

Proof. Mn+1 and Mn differ only at position un (Mn+1/un = f(
→

Ω) and Mn/un =
Ω). Using H2 we get that ∀w ∈ PosΩ(Mn+1) such that w 6≤ un, w is strongly
stable.

As [Ω, ε] is trivially a failure point of [Mn, un] and δ([Ω, ε], f) is undefined
we know that f is a constructor symbol so un is strongly stable.

We now show that ∀w ∈ PosΩ(Mn+1) such that w 6= ε and w < un, w is
strongly stable. Suppose that this is not true and consider the greatest position
w ≤ un such that ω(Mn+1/w) is a potential redex. As we consider the greatest
position all nonΩ-positions of Mn+1/w (except the root) are strongly stable. As
Mn+1/w is a potential redex, we get that Mn+1/w ↑ N for some N ∈ LHSΩ.
As Mn < Mn+1, we get also Mn/w ↑ N . Using Lemma 10.3.15, this gives
Mn/w ≺ N . So [Mn/w, un/w] is a failure point of [Mn, un]. By hypothesis
H1, N/un/w 6= Ω so root(N/w) = f . So Mn+1/w ≺ N and δ([Mn/w, un/w], f)
should be defined, contradiction.

The next Lemma shows that in the automaton the notion redex compatibility
and the notion of preredex become equivalent.

Lemma 10.3.15. Let R be an orthogonal system satisfying Property 10.3.4.
Consider the automaton built with the construction described in Lemma 10.3.17.
If [M, u] is a nonfinal state, then ∀w < u, ∀N ∈ LHSΩ s.t. M/w ↑ N , M/w ≺
N .

Proof. Let w < u and N ∈ LHSΩ s.t. M/w ↑ N . Suppose by contradiction that
M/w 6≺ N . In the sequence of states ([M0, u0], [M1, u1], . . . , [Mk−1, uk−1]) from
M0 = Ω to Mk = M consider the first i such that Mi/w ≺ N and Mi+1/w 6≺ N .

106 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

Mi+1 = Mi[root(M/ui)(
→

Ω)]ui
. As Mi+1/w 6≺ N , we get N/ui 6= Mi+1/ui. Now,

as M/w ↑ N , we get N/ui = Ω which contradicts H1 applied to [Mi, ui].

Lemma 10.3.16. Let R be an orthogonal system satisfying Property 10.3.4.
Consider the automaton built with the construction described in Lemma 10.3.17.
If [M, u] is a nonfinal state, then u ∈ I(M).

Proof. As M is a preredex ω(M) = Ω. Suppose that u 6∈ I(M). Then, by
Proposition 8.1.17 we have ω(M [•]u) = ω(M) = Ω. As the symbol • does not
appear in LHSΩ, all nonfinal states t reachable from [M, u] via failure transitions
are such that δ(t, •) is undefined. From Lemma 10.3.14, we get that ∀w ∈
PosΩ(M) s.t. w 6= ε, w is a strongly stable position of M [•]u. So, the only
possibility for having ω(M [•]u) = Ω is to have M [•]u ↑ N with some redex
scheme N . It follows that M ↑ N . Using Lemma 10.3.15 and H1, we get
M ≺ N (1). It follows that u ∈ Pos(N). As the symbol • cannot appear in N
we must have N/u = Ω (2). (1) and (2) contradict hypothesis H1.

The next lemma gives the construction of the automaton.

Lemma 10.3.17. (Construction Lemma)
Let R be an orthogonal system satisfying Property 10.3.4. We can build an
automaton such that ∀n, 0 < n < max, ∀[M, u] ∈ nofinaln,

H0) φ([M, u]) ∈
⋃n−1

k=0 nofinalk (forward-branching property),
H1) ∀N ∈ SubD(LHSΩ) such that M ≺ N , N/u 6= Ω,
H2) u is a firm extension position of M .

Proof. In the initialization, we create the initial state and the states of level 1.
If all states of level ≤ n have been created, the induction step creates the states
of level n + 1.

Initialization:

let nofinal0 = {[Ω, ε]}; for all i, 0 < i < max, let nofinali = ∅;
if n = 1: Construction of nofinal1

for all f ∈ F s.t. ∃N ∈ LHSΩ with root(N) = f ,

let M1 = f(
→

Ω);
if M1 ∈ LHSΩ then let s1 = M1

else let s1 = [M1, u1] with u1 chosen as follows;
add s1 to nofinal1;

let δ([Ω, ε], f) = s1;

Choice of u1: We choose u1 so that ∀N ∈ SubD(LHSo) such that M1 ≺ N ,
N/u1 6= Ω. This is possible because R satisfies Property 10.3.4. Then, H1 is
true for s1.
Trivially, φ(s1) = (Ω, ε) so H0 is true for s1. H2 is trivially true.

Induction step: Construction of nofinaln+1 (n < max)

10.3. FORWARD-BRANCHING SYSTEMS (FB) 107

for all sn = [Mn, un] ∈ nofinaln,
for all f ∈ F s.t. ∃N ∈ LHSΩ s.t. Mn ≺ N and root(N/un) = f ,

let Mn+1 = Mn[f(
→

Ω)]un
;

if Mn+1 ∈ LHSΩ then let sn+1 = Mn+1

else
let sn+1 = [Mn+1, un+1] with un+1 chosen as follows;
add sn+1 to nofinaln+1;

let δ(sn, f) = sn+1;

Choice of un+1. Let us consider the sequence of index points reachable from
sn following failure transitions only.

Case 1: none of these index points t is such that δ(t, f) is defined. This case is
illustrated by Figure 10.5.
We choose un+1 so that ∀N ∈ SubD(LHSo) such that Mn+1 ≺ N , N/un+1 6=
Ω, which is possible because R satisfies Property 10.3.4. Then, H1 is true for
sn+1.
Trivially, φ([Mn+1, un+1]) = [Ω, ε] and H0 is true for sn+1.
From Lemma 10.3.14, we get that the only potential redex position of Mn+1 is
ε.
This means that any Ω-position (in particular un+1) is a firm extension position
of Mn+1, then H2 is true. It also means that φ([Mn+1, un+1]) = [Ω, ε], then H0
is true.

Case 2: there exists a state t = [U, v] reachable from sn via failure transitions
only such that δ(t, f) is defined. This case is illustrated by Figure 10.6.
Let t′ = δ(t, f).
As t is a failure point of sn = [Mn, un], ∃u such that U = Mn/u and un = uv.
From the induction hypothesis H0, as we follow at least one failure transition,

t ∈
⋃n−1

k=0 nofinalk.
The prefix appearing in t′ is

Mn/u[f(
→

Ω)]v = Mn[f(
→

Ω)]uv/u = Mn[f(
→

Ω)]un
/u = Mn+1/u.

From Lemma 10.3.3, Mn+1/u is not a redex scheme. So, t′ is a nonfinal state
of the form [Mn+1/u, v′].
As t′ is reachable via one transfer transition from t, t′ ∈

⋃n
k=1 nofinalk.

We choose un+1 = uv′.
Then we have φ(sn+1) = t′, so H0 is true for sn+1.
Fact: H1 is true for sn+1.

Proof: ∀N ∈ SubD(LHSΩ), as Mn+1 ≺ N , Mn+1/u ≺ N/u. (1)
As [Mn+1/u, v′] ∈

⋃n
k=1 nofinalk, root(Mn+1/u) 6∈ C. (2)

From (1) and (2), N/u ∈ SubD(LHSΩ). As [Mn+1/u, v′] ∈
⋃n

k=1 nofinalk
and N/u ∈ SubD(LHSΩ) and Mn+1/u ≺ N/u, the induction hypothesis H1
applies and N/u/v′ 6= Ω. This implies that N/uv′ 6= Ω. So H1 is true for
sn+1.

H2 is true in case 2 by Lemma 10.3.13.

To prove the next lemma, we show that the automaton built in Lemma 10.3.17

108 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

...

Ω, ε

Mn, un

Mn+1, un+1

f

Figure 10.5: Illustration the proof of the Construction Lemma, case 1

is an index tree.

Lemma 10.3.18. K ⊆ FB.

Proof. Let R be a system in K; by definition it satisfies Property 10.3.4. By
Lemma 10.3.17 we can build an automaton for such that:
∀n, 0 < n < max, ∀[M, u] ∈ nofinaln,

H0) φ([M, u]) ∈
⋃n−1

k=0 nofinalk (forward-branching property),
H1) ∀N ∈ SubD(LHSΩ) such that M ≺ N , N/u 6= Ω.
H2) u is a firm extension position of M .

We now prove that nonfinal states of the automaton are index points:
Proof: Let [M, u] be a nonfinal state. By H2, u is a firm extension position.
Using Lemma 10.3.16, we get that u ∈ I(M). We conclude that [M, u] is
an index point.

So, the automaton is an index tree. H0 ensures that the index tree is forward-
branching. We conclude that R ∈ FB.

We conclude that forward-branching systems are characterized by Prop-
erty 10.3.4.

Theorem 10.3.19. R ∈ FB if and only if ∀M ∈ LHS≺
Ω , ∃u ∈ PosΩ(M), s.t.

∀N ′ ∈ SubD(LHSΩ) s.t. M ≺ N ′, N ′/u 6= Ω.

Sometimes, when index trees are not relevant, it is convenient to use this
characterization as an alternative definition for FB.

10.4. AN ALGORITHM TO BUILD A FORWARD-BRANCHING INDEX TREE109

...
f

f

Mn, un

Mn+1, uv′

Mn+1/u, v′

Figure 10.6: Illustration the proof of the Construction Lemma, case 2

10.4 An algorithm to build a forward-branching

index tree

The constructive proof of Lemma 10.3.17 can be transformed into an algorithm.

10.4.1 General description of the algorithm

The input of the algorithm is a set of (pointers to) schemes LHSΩ = {N1, . . . Nn}.
The output is a (pointer to) the initial index point of a forward-branching in-
dex tree if the system is forward-branching. Otherwise the output is an error
message (“not Strongly Sequential” or “not Forward-branching”). First, the
algorithm computes the set of (pointers to) subschemes {Nn+1, . . . , Nn+n′}.
Then it builds the index tree breadth-first starting from the initial index point
s0 = (Ω, ε). Consequently, index points of level i are built before index points of
level i+1. For all non-final index points [M, u] and for all symbols f found at po-
sition u in the schemes greater than M , we refine M to obtain M ′ = ext(M, u, f).
If M ′ is a scheme, we have reached a final index point. Otherwise, we have a
non-final index point. We choose u′ as described in the constructive proof of
Lemma 10.3.17.

110 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

10.4.2 Variables and data structures

To avoid overloading the text of the algorithm, we first give a description of the
variables used in the algorithm.

- i always represents a level in the index tree.
- j always corresponds to the number of a scheme (or subscheme) Nj.
- u always represents (a pointer to) a position in an Ω-term.
- o always represent (a pointer to) an Ω-position of the prefix M in a given

index point.
- f always represents a symbol.
- k, 1 ≤ k ≤ arity(f), represents the number of a child of a position labeled

f .
- s (index point), cs (child index point), fs (failure index point) always

represent (pointers to) index points.
- s0 represents the initial index point of the index tree.

Representation of symbols: a symbol f is represented by a structure containing
the following fields: f.name, the name of the symbol and f.arity, the arity the
symbol.

Representation of terms: a term N is represented by a structure containing the
following fields: N.symbol , the root symbol f and N.subterms, an array of size
p = f.arity containing the subterms N/1, . . . , N/p.

Representation of the transfer and failure functions: φ(s) gives (a pointer to) the
failure index point of s and δ(s, f) gives (a pointer to) the index point accessible
from s with a transition labeled f . The representation of δ is distributed among
the index points: each index point s contains the list of pairs (f, cs) such that
δ(s, f) = cs .

Representation of an index point: an index point s = [M, u] is represented by a
structure containing the following fields (the representation of an Ω-position is
given further):

- s.index : will contain the chosen index position u in case of a non-final
index point;

- s.schemes : linked list of the numbers of the schemes greater than M .
- s.subschemes : linked list of the numbers of the subschemes greater than

M .
- s.omegas : linked list of the Ω-positions of M .
- s.match: in case of a final index point, number of the matching scheme;

otherwise -1.
- s.symbol : symbol f of the incoming transition.
- s.parent : parent index point.

Note that we do not need to explicitly represent the prefix M ; it is implicitly
represented by the transitions from s0 to s and the list of its Ω-positions.

Representation of a position u: an Ω-position u of a prefix M is represented by
a structure containing two fields:

- u.path: the sequence of positive integers corresponding to the position,

10.4. AN ALGORITHM TO BUILD A FORWARD-BRANCHING INDEX TREE111

- u.pointers : for each position u of M we maintain an array which contains
at entry j a pointer to Nj/u for each scheme or subscheme Nj greater than
M ; this field enables us to replace operations of the type f := root(Nj/u) by a
constant time operation: f := root(u.pointers [j]).

Representation of an Ω-position o: an Ω-position o of a prefix M of an index
point is represented by a structure containing two fields: o.position is a pointer
to a position and o.possible is a boolean value indicating whether that Ω-position
can be chosen as an index; this value depends on the presence of Ωs at that same
position in schemes or subschemes greater than M .

10.4.3 Algorithm

The main algorithm is given by the forward-branching-index-tree procedure
given in Figure 10.11. We first present the procedures and functions called
by the forward-branching-index-tree procedure. When the time complexity of a
function or a procedure is obvious we indicate it by a comment.

Computation of the failure function

This procedure is shown in Figure 10.7. Note that as the automaton is computed
in a breadth-first manner, any state reachable via failure transitions from the
parent state of s has already been computed.

procedure compute-failure-transition(s); /* O(level(s)) */
begin
φ(s) := s0; /* default value */
fs := φ(s.parent)
while fs is defined do

ts := δ(s.symbol , fs);
if ts is defined then

φ(s) := ts;
return;

fs := φ(fs);
end

Figure 10.7: The compute-failure-transition algorithm

Choice of an index position u for a nonfinal state s = [M, u]

We have seen in the proof of Lemma 10.3.17 that there are two cases for the
choice of an index position u of a nonfinal state s = [M, u]. They are material-
ized by two functions.

112 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

The first case is when the failure function gives the initial state (φ(s) = s0).
In that case, we can choose any Ω-position such that no scheme or subscheme
greater than M has an Ω at position u. As that information is saved in the
field v.possible of all Ω-positions of s.omegas , we choose the first marked pos-
sible position of s.omegas . All this is done by the function any-index. In
the worst case, we choose the last one of the list, so the time complexity is in
O(|s.omegas |).

function any-index(s.omegas):position; /* O(|s.omegas |) */
extracts and returns from the list s.omegas the first “possible” position.

The second case is when φ(s) = (U, v) 6= s0. In that case, there is a w
such that U = M/w and we need to choose u = wv in s.omegas . For this,
we remark that if fs .omegas = {v1, v2, . . . , vk}, then necessarily s.omegas =
{wv1, wv2, . . . , wvk, . . .}. So v has the same rank r in fs .omegas as wv in
s.omegas . So we follow both lists in parallel and when we find the index of
s in s.omegas we have found the right index in fs .omegas . This is done by the
function given-index. In the worst case, we pick up the last one of the list;
this happens when s.omegas = {wv1, wv2, . . . , wvk} and r = k. So the time
complexity is the same as in the first case.

function given-index(s):position; /* O(|φ(s).omegas |) */
gets from s.omegas the position which is at the same rank
than φ(s).index in φ(s).omegas .

The match-scheme function

The match-scheme function is given in Figure 10.8. Applied to an index point
and a scheme number j, it returns true if the implicit prefix of s matches Nj .

function match-scheme(s,j):boolean; /* O(|s.omegas |) */
begin
for each u ∈ s.omegas do

if root(u.pointers [j]) 6= Ω then return false;
return true;
end

Figure 10.8: The match-scheme algorithm

10.4. AN ALGORITHM TO BUILD A FORWARD-BRANCHING INDEX TREE113

The check-directions function

The check-directions function given in Figure 10.9 returns true if no j in numbers
is such that Nj/u = Ω and returns false otherwise.

function check-directions(u, numbers):boolean; /* O(|numbers|) */
begin
for each j ∈ numbers do

if u.pointers [j] = Ω then return false;
return true;
end

Figure 10.9: The check-directions

The possible-omegas algorithm

The possible-omegas algorithm given in Figure 10.10 updates the possible flags
of the Ω-positions according to a given set of (sub)schemes numbers.

function possible-omegas(omegas,numbers):integer;
/* O(|omegas | × |numbers|) */
begin
npossible := 0;
for each u ∈ s.omegas do

if u.possible then
if check-directions(u, numbers) then

npossible := npossible + 1;
else u.possible := false;

return npossible;
end

Figure 10.10: The possible-omegas algorithm

The forward-branching-index-tree algorithm

Finally, the forward-branching-index-tree procedure is presented in Figure 10.11.
After some initializations, the main while loop takes care of an index point s
of the todo list at a time. It checks whether s is a final index point; if not it
computes its index and creates its children index points. The algorithm clearly
terminates as each time we remove from the todo list an index point of level i
and if nonfinal replace it by index points of level i + 1. So we will necessarily
reach the final index points.

114 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

procedure forward-branching-index-tree({N1, . . . , Nn});
begin
{Nn+1, . . . , Nn+n′} := extract-subschemes({N1, . . . , Nn});
u := make-position(ε);
for i := 1 to n+n’ do u.pointers[i] := Nj ;
s0 := make-index point(); s0.omegas := { make-omega(u) };
s0.schemes := {1, . . . , n}; s0.subschemes := {n + 1, . . . , n + n′};
todo := {s0};
while todo 6= ∅ do

begin
s := pop(todo);

I1: for each j ∈ s.schemes do
if match-scheme(s, j) and s.match > 0 then

return ”Overlapp between schemes”
else s.match := j;

if s.match > 0 then
if length(s.subschemes) > 0 then

return ”Overlapp beween scheme and subschemes”
else break;

begin
I2: compute-failure-transition(s);
I3: if possible-omegas(s.omegas, s.schemes) = 0 then

return ”not Strongly Sequential”;
I4: if φ(s) = s0 and possible-omegas(s.omegas, s.subschemes) = 0

then
return ”not Forward-Branching”;

I5: if φ(s) = s0 then s.index := any-index(s.omegas);
else s.index := given-index(s);

u := s.index ;
for each f ∈ {root(u.pointers [j]) | j ∈ s.schemes} do

begin
cs := make-index-point(); cs .parent := s; cs .symbol := f ;
cs .omegas := duplicate-omegas-except-index(s.omegas,u));
/* cs .schemes and cs .subschemes contain the j s.t. root(Nj/u) = f . */
cs .schemes := eject(s.schemes , u, f);
cs .subschemes := eject(s.subschemes , u, f);
for k := f.arity downto 1 do

begin
v := make-position(extend-position(u.position,k));
for each j ∈ cs .schemes ∪ cs .subschemes do

v.pointers [j] := u.pointers [j].subterms[k];
push(v, cs .omegas);
end

add-to-end(cs,todo)
end

return s0;
end

Figure 10.11: The forward-branching-index-tree algorithm

10.4. AN ALGORITHM TO BUILD A FORWARD-BRANCHING INDEX TREE115

10.4.4 Time complexity of the algorithm

The size of an Ω-term N is the number of its positions: size(N) = |Pos(N)|.
The size of a set of Ω-terms {N1, . . . , Nn} is the sum of the sizes of all Ω-terms.

size({N1, . . . , Nn}) =

n∑

j=1

size(Nj)

We define also sizeΩ(N) as the number of nonΩ-positions of N : sizeΩ(N) =
|PosΩ(N)| and for a set {N1, . . . , Nn},

sizeΩ({N1, . . . , Nn}) =

n∑

j=1

sizeΩ(Nj)

If LHSΩ is the input set of schemes, we will denote size(LHSΩ) by S and
sizeΩ(LHSΩ) by S. We also denote by lmax the maximal number of non-Ω-
positions in a scheme of LHSΩ: lmax = max({sizeΩ(N1), . . . , sizeΩ(Nn)}). lmax is
also the maximal level of index points in the index tree.

The time complexity of the algorithm will be given in function of S.
The next lemma gives a few trivial relations. We recall that n′ is the number

of (proper) subschemes.

Lemma 10.4.1.
n ≤ n + n′ ≤ S ≤ S.
∑n

j=1 size(Nj)
2 ≤ (

∑n
j=1 size(Nj))

2.

The number of index points is ≤ S + 1.
The number of final index points is n.
The number of nonfinal index points is ≤ S + 1 − n ≤ S.
lmax ≤ S.

We now evaluate the time complexity of the algorithm.
We have numbered the instructions which do not contribute to the creation

(allocation) and initialization of the data structure of the index tree. The total
time complexity will be the time taken by the numbered instructions plus the
time to build and initialize the data structure which is proportional to the size
of the data structure (space complexity).

We start with the space complexity as the time taken by the numbered
instructions depends on the size of the structure.

Space complexity

The maximal number of non initial index points is S, For every N ∈ LHSΩ

and every non-Ω-position u in N , u is allocated at most once. Each position
u uses an array u.pointers of size n + n′ so the space used by the positions all
the positions is at most proportional to (n + n′)S ≤ SS. The total space to
represent the transfer function δ is proportional to S.

116 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

In an index point s, the fields that are not of fixed length are s.schemes ,
s.subschemes and s.omegas . We shall sum up the sizes of these fields for all the
index points.

Given a level l in the index tree, the lists s.schemes (resp. subschemes) of all
index points sl of level l form a partition of {N1, . . . , Nn} (resp. {Nn+1, . . . , Nn+n′}).
For all levels we obtain a maximum size occupied by the s.schemes and s.subschemes
of all index points of

(n + n′)lmax ≤ S
2

For a scheme N , we consider the sequence of transitions and index points from
the initial index point s0 to the index point matching N :

(sl = (Ml, ul)
Fl+1
−→)l=0,...,sizeΩ(N)−1

Only one such sequence leads to N . Before we go one with the space complexity
we give two easy lemmata.

Lemma 10.4.2.

|sl.omegas | = size(Ml) − l ≤ size(N)

Lemma 10.4.3.

sizeΩ(N)
∑

l=1

|sl.omegas | ≤ size(N)2

Proof. From Lemma 10.4.2, |sl.omegas | ≤ size(N). So,

sizeΩ(N)
∑

l=1

|sl.omegas | ≤

sizeΩ(N)
∑

l=1

size(N) = sizeΩ(N) ∗ size(N) ≤ size(N)2

If we sum up the length of the s.omegas lists for all the schemes we obtain a
majorant of the length of all the s.omegas for all index points s (as some index
points concern several schemes). So we obtain an upper bound of

n∑

j=1

size(Nj)
2 ≤ S2

Lemma 10.4.4. The space complexity is in O(S2).

Proof. The space is proportional to the number of index points (O(S)) plus the
space to represent the lists omegas , schemes and subschemes (O(S2)). Then we
obtain a total space in O(S2).

10.4. AN ALGORITHM TO BUILD A FORWARD-BRANCHING INDEX TREE117

Time complexity

Lemma 10.4.5. The global time of instruction I2 is in O(S
2
).

Proof. For an index point s of level l, the time taken by the call to compute-
failure-transition(s) is proportional to l. Let C be the global time. We have

C ≤ K
∑n

j=1

∑sizeΩ(Nj)−1
i=1 i = K

∑n
j=1[sizeΩ(Nj) − 1] ∗ sizeΩ(Nj)/2

≤ K
∑n

j=1 sizeΩ(Nj)
2/2 ≤ KS

2
/2

with K a constant.

In fact, it is possible to show that the global time for computing failures
transitions is in O(S). As this does not change the global complexity of the
forward-branching-index tree algorithm, we do not give the proof but just the
intuitive idea.

In [AC75], Aho and Corasick give an efficient algorithm which finds occur-
rences of words belonging to a finite set of words W = {W1, . . . , Wn} in a text.
The algorithm uses a finite state automaton where states are prefixes of words
of W. The initial state is the empty word. The final states are the words of W .
The transfer function δ is defined for a nonfinal state M and a symbol F as
follows:
if MA is a prefix of a word of W then δ(M, F) = MA otherwise δ(M, F) is
undefined. The failure function φ is defined for each nonfinal state M which is
not the initial state as φ(M) is the longest suffix which is prefix of a word of W
(note that φ(M) can be the empty word).

Now we remark that our automaton has exactly the same structure (in terms
of transfer and failure transitions) as an automaton which would recognizes
the set of words W = {W1, . . . , Wn} with each Wj = F1 . . . FsizeΩ(Nj) where
(Fl)i=1,...sizeΩ(Nj) are the symbols of Nj which label the transfer transitions
going from (Ω, ε) to the index point matching Nj .

For Example A.0.3 for which a forward-branching automaton is given in
Figure 10.3, the corresponding set of words would be {faga, fbga, gbb}.

In [AC75], the authors show that the time for computing failure transitions
requires a time proportional to the sum of the length of the words of W .

As we compute failure transitions exactly in the same way as [AC75], we can
conclude that the global time for computing failure transitions is proportional
to

n∑

j=1

length(Wj) =

n∑

j=1

sizeΩ(Nj) = S.

Lemma 10.4.6. The global time of instructions I1 and I3 is in O(S2).

Proof. The time taken by instructions I1 and I3 is proportional to the number
of comparisions o.position .pointers [j] = Ω they perform for all o ∈ s.omegas and
j ∈ s.schemes . At each level l, the sets of the o.position .pointers [j] examined
in each index point form a partition of the set of o.position .pointers [j] for all

118 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

j, 1 ≤ j ≤ n and o.position ∈ PosΩ(Nj). The total number of comparisons is
≤ Slmax which using Lemma 10.4.1 is ≤ S2.

Lemma 10.4.7. The global time of instruction I5 is in O(S2).

Proof. Each nonfinal index point of level l induces one call to the instruction
either any-index(sl) or extract-index(sl). Both take O(|sl.omegas |). With the
same arguments as for the space complexity, we obtain a global cost in O(S2).

We now evaluate the time taken by instruction I4 more precisely the time
taken by possible-omegas(s.omegas, s.subschemes) as the check φ(s) = s0 is
done in constant time so takes a global time in O(S).

Lemma 10.4.8. The global time of instruction I4 is in O(S2).

Proof. It is fundamental to note that there is a call to possible-omegas(N ,s)
only if φ(s) = s0. The time taken by possible-omegas(s.omegas, s.subschemes)
is proportional to the number of comparisons o.position .pointers [j] = Ω they
perform for all o ∈ s.omegas and j ∈ s.subschemes . But we do no more of
these comparisons that the ones done for schemes in instruction I3: for each s
such that φ(s) = (Ω, ε), each time we do a comparison v.pointers [j] = Ω with
j ∈ s.subschemes we do a corresponding comparison u.v.pointers [j′] = Ω in an
index point s′ such that φ−1(s′) = ∅, j′ ∈ s′.schemes and Nj = Nj′/u. So
the number of comparisons with subschemes positions is less that the number
of comparisons with the schemes. We conclude that the global time taken by
instruction I4 is in O(S2).

Theorem 10.4.9. The time complexity of the forward-branching-index tree al-
gorithm is quadratic.

Proof. From Lemma 10.4.4 the time to allocate and initialize the data structure
corresponding to the forward-branching index tree is in O(S2). From Lem-
mata 10.4.5, 10.4.6, 10.4.7, 10.4.8, the time spent in examining the structure
is also in O(S2).

10.5 Modularity of FB

From Theorem 10.3.19, it is easy to prove that the forward-branching prop-
erty is a modular property of orthogonal systems even for constructor sharing
combinations. This is an unpublished result.

Theorem 10.5.1. Let R1 and R2 be orthogonal constructor-sharing systems.
If R1,R2 ∈ FB then R1 ∪R2 ∈ FB.

Proof. We will show that R1∪R2 verfy the characterization. Let M ∈ LHS≺
Ω(R1∪

R2). As R1 and R2 do not share defined symbols we have necessarily either
R1 ∈ LHS≺

Ω(R1) or R2 ∈ LHS≺
Ω(R2). W.l.o.g, we assume that R1 ∈ LHS≺

Ω(R1).

10.5. MODULARITY OF FB 119

From Theorem 10.3.19, ∃u ∈ PosΩ(M), s.t. ∀N ′ ∈ SubD(LHSΩ(R1)) s.t.
M ≺ N ′, N ′/u 6= Ω. Using again the hypothesis that R1 and R2 do not share
defined symbols, we get that {N ′ ∈ SubD(LHSΩ(R1))s.t.M ≺ N ′} = {N ′ ∈
SubD(LHSΩ(R1 ∪ R2))s.t.M ≺ N ′}. It follows that ∀N ′ ∈ SubD(LHSΩ(R1 ∪
R2)) s.t. M ≺ N ′, N ′/u 6= Ω.

120 CHAPTER 10. FORWARD-BRANCHING SYSTEMS

Chapter 11

Constructor Equivalent
systems

11.1 Simulating SS with C

In [Tha85], Thatte demonstrated the possibility of simulating an orthogonal
system with a left-linear constructor system obtained from the original system
via a simple transformation. With examples, we point out that Thatte’s trans-
formation does not always preserve orthogonality and that if it does, it does not
always preserve strong sequentiality. This leads us to define a new subclass of
SS: the class of constructor-equivalent systems (CE) for which Thatte’s trans-
formation preserves strong sequentiality. We give a simple characterization of
CE and show that it is a subclass of FB. Most of the work presented in this
chapter is published in [DS93] and [DS94].

11.1.1 Thatte’s Transformation

This subsection is almost directly taken from [Tha85].
Let R be an orthogonal system. With each f ∈ FD associate a new (con-

structor) symbol cf . Let F# = F∪{ cf | f ∈ FD}. Let t′(T) denote the term
T with every inner occurrence of f ∈ FD replaced by cf and t′′(T) the term
with all occurrences so replaced. R# is the smallest system which satisfies the
following two assertions:
(1) If L → R ∈ R then t′(L) → R ∈ R#.
(2) Whenever U ∈ SubD(LHS) \ LHS, t′(U) → t′′(U) ∈ R#.

We now give several simple lemmata (most of them involving the transfor-
mation t′). They will be used in Section 11.2.

Lemma 11.1.1. Let T be an Ω-term. The following equalities hold:
Pos(T) = Pos(t′(T)), PosΩ(T) = PosΩ(t′(T)), PosΩ(T) = PosΩ(t′(T)).

Lemma 11.1.2. Let T be an Ω-term. Let u ∈ Pos(T). t′(T [•]u) = t′(T)[•]u.

121

122 CHAPTER 11. CONSTRUCTOR EQUIVALENT SYSTEMS

Lemma 11.1.3. Let T and S be two Ω-terms such that T < S. t′(T) < t′(S).

Lemma 11.1.4. If P is a strict preredex of R then t′(P) is a strict preredex of
R#.

Lemma 11.1.5. If an Ω-term T matches L, then t′(T) matches t′(L).

Lemma 11.1.6. Let T be an Ω-term, L be a term. If T matches L and u ∈
Pos(L), then u ∈ Pos(T) and T/u matches L/u.

Example 11.1.7. Take system R = R4 of Example A.0.4. We obtain

R# =

f(cg(a, b, x), a) → x
f(cg(a, x, a), b) → g(x, x, x)
g(b, b, b) → b

g(a, b, x) → cg(a, b, x)
g(a, x, a) → cg(a, x, a)

We note that R# is not orthogonal because it is ambiguous.

Example 11.1.8. Consider

R =

f(g(a, b, x)) → r1
f(g(b, x, a)) → r2
h(g(x, a, b)) → r3
g(b, b, b) → r4

We obtain

R# =

f(cg(a, b, x)) → r1
f(cg(b, x, a)) → r2
h(cg(x, a, b)) → r3
g(b, b, b) → r4
g(a, b, x) → cg(a, b, x)
g(b, x, a) → cg(b, x, a)
g(x, a, b) → cg(x, a, b)

We note that R# is orthogonal but not strongly sequential as g(Ω, Ω, Ω) does
not have an index for nfs. However R is strongly sequential.

The following definition expresses the most comprehensive meaning of a
function in a system. Let P(S) denote the powerset of S.

Definition 11.1.9. Let (R,F) be a system. The meaning function µR maps
each symbol f ∈ F to a function µR(f) : (T (F))k → P(T (F)) such that

µR(f)(T1, . . . , Tk) = {U | f(T1, . . . , Tk)
∗
→ U in R }.

R# is expected to deal with terms in T (F#) which contains T (F) as a subset.
The map h : T (F#) → T (F) is defined as h(E) = D where D is obtained from
E by replacing every occurrence of cf in E by f , for every f ∈ FD. Clearly,
h(t′(T)) = h(t′′(T)) = T .

We now give Thatte’s theorem. It shows the possibility of simulating an
orthogonal system with a constructor system.

11.1. SIMULATING SS WITH C 123

Theorem 11.1.10. [Tha85] For all f ∈ F , µR(f) ⊆ h × µR#
(f) in the sense

that, for each (T 1, . . . , Tk) ∈ (T (F))k, µR(f)(T 1, . . . , Tk) = h(µR#
(f)(T 1, . . . , Tk))

where k is the arity of f .

11.1.2 Constructor-equivalent Systems (CE)

Remark 1: If a system R is not orthogonal then R# is not orthogonal.
Remark 2: Example 11.1.8 shows that given a strongly sequential system R,
R# is not necessarily strongly sequential.

Definition of constructor-equivalent systems (CE)

Thatte’s transformation and the previous remarks incite us to define a new
subclass of SS.

Definition 11.1.11. Let R be an orthogonal system. R is constructor-equivalent
if R# is strongly sequential.

We denote the class of constructor-equivalent systems by CE.

Simple Characterization of CE

We shall prove that the following property is a characterization of constructor-
equivalent systems.

Property 11.1.12. ∀N ∈ SubD(LHSΩ), ∀M ≺ N , ∃u ∈ PosΩ(M), ∀N ′ ∈
SubD(LHSΩ) s.t. M ≺ N ′, N ′/u 6= Ω.

We now give a few lemmata used to prove the characterization theorem.

Lemma 11.1.13. The transformation t′ (defined in subsection 11.1.1) is a
bijection between SubD(LHSΩ(R)) and LHSΩ(R#).

Lemma 11.1.14. Let T1 and T2 be two Ω-terms. T1 � T2 if and only if
t′(T1) � t′(T2).

Lemma 11.1.15. Let R be an orthogonal system. The following are equivalent:
i) ∀N ∈ LHSΩ(R#), ∀M ≺ N , ∃u ∈ PosΩ(M), ∀N ′ ∈ LHSΩ(R#) s.t. M ≺ N ′,
N ′/u 6= Ω
ii) ∀N ∈ SubD(LHSΩ(R)), ∀M ≺ N , ∃u ∈ PosΩ(M), ∀N ′ ∈ SubD(LHSΩ(R))
s.t. M ≺ N ′, N ′/u 6= Ω.

Proof. From Lemma 11.1.13, t′ is a bijection between SubD(LHSΩ(R)) and
LHSΩ(R#). From Lemma 11.1.14, t′ preserves the partial order on Ω-terms.
From Lemma 11.1.1, t′ preserves Ω positions. Then it is clear that i) and ii)
are equivalent.

Theorem 11.1.16. Characterization Theorem.
An orthogonal system R is constructor-equivalent if and only if Property 11.1.12
holds.

124 CHAPTER 11. CONSTRUCTOR EQUIVALENT SYSTEMS

Proof. Let R be an orthogonal system. R ∈ CE
def 11.1.11

⇐⇒ R# ∈ SS ∩ C
prop 12.2.4

⇐⇒ R# ∈ FB ∩ C
th 10.3.19
⇐⇒ ∀N ∈ LHSΩ(R#), ∀M ≺ N , ∃u ∈ PosΩ(M), ∀N ′ ∈ SubD(LHSΩ)R#

s.t. M ≺ N ′, N ′/u 6= Ω and R# ∈ C
lemma 2.3.1

⇐⇒ ∀N ∈ LHSΩ(R#), ∀M ≺ N , ∃u ∈ PosΩ(M), ∀N ′ ∈ LHSΩ(R#) s.t.
M ≺ N ′, N ′/u 6= Ω
lemma 11.1.15

⇐⇒ Property 11.1.12 holds.

Properties of constructor-equivalent Systems

Proposition 11.1.17. CE ⊂ FB.

Proof. It follows directly from the characterization of CE and from Theorem 10.3.19
that CE ⊆ FB. Example A.0.4 is forward-branching but not constructor-
equivalent then we get CE 6= FB. So CE ⊂ FB.

Proposition 11.1.18. CE ⊂ SS.

Proof. From Proposition 11.1.17 and Proposition 12.2.1, CE ⊂ FB ⊂ SS.

To make our work independent from [DS93], we have written a direct proof
of the previous Proposition, (i.e. a proof which does not involves the forward-
branching class). The proof which is neither short nor trivial; it is given in
Section 11.2;

A proposition similar to Proposition 12.2.4 holds for CE:

Proposition 11.1.19. CE ∩ C = SS ∩ C.

Proof. By Proposition 11.1.18 we have CE ∩ C ⊆ SS ∩ C.
Let R ∈ SS ∩ C. As R ∈ C we have R# = R. So, R# ∈ SS and by definition of
CE, R ∈ CE. So SS ∩ C ⊆ CE ∩ C. We conclude that CE ∩ C = SS ∩ C.

Constructor-equivalent and simple systems

Many people have noticed that Thatte’s tranformation preserves strong sequen-
tiality for simple systems (see Section 8.3) [HL91]). We just want to point out
with an example that the simple systems form a strict subclass of CE.

Example 11.1.20. Consider the following system R = R1 of Example A.0.1:
We have Sub(LHSΩ)∗ = {f(g(Ω, a), a), f(g(a, Ω), b)g(Ω, a), g(a, Ω), a, b} We know
from Section 10.2 that R is strongly sequential; as it also constructor it is triv-
ially in CE. But according to Huet & Lévy’s definition, R is not a simple system
because the set {g(Ω, a), g(a, Ω)} ⊂ Sub(LHSΩ)∗ is not sequential because M =
g(Ω, Ω) ↑ g(Ω, a), M 6≥ Sub(LHSΩ)∗ but Dir(M,Sub(LHSΩ)∗) = ∅: PosΩ(M) =
{1, 2}; 2 6∈ Dir(M,Sub(LHSΩ)∗) because g(a, Ω)/2 = Ω 1 6∈ Dir(M,Sub(LHSΩ)∗)
because g(Ω, a)/1 = Ω.

11.2. CE ⊂ SS: A DIRECT PROOF 125

11.2 CE ⊂ SS: a direct proof

In Section 11.1.2, we defined the class of constructor equivalent systems (CE) for
which Thatte’s transformation preserves strong sequentiality. We proved that
CE ⊂ SS by showing that CE is a strict subset of the forward-branching class
[Str89] which is itself a strict subset of SS. We now give a direct proof (i.e. a
proof which does not involve the forward-branching class) of the inclusion CE ⊂
SS. It uses parts of the proof given in [KM91] for deciding strong sequentiality.
This proof is also published in [DS94].

From now on, we will always deal with two systems: an orthogonal system
R and the system R# obtained from R by Thatte’s transformation as described
in Section 11.1.1. When using notions related to R we omit the reference to R;
when using notions related to R#, we explicitly specify R#.

P
1

P
2

P
3

P
4

P
7

P
5

P
6

u
2

u
1

M

P
0

Figure 11.1: Decomposition of an Ω-term M

Definition 11.2.1. An Ω-term M is decomposable if it is built with strict
preredexes only.
A set D(M) = {< ui, Pi >| 0 ≤ i < n} is a decomposition of M into strict
preredexes if every Pi is a strict preredex and M is the nth term of the sequence
defined by

{
M0 = Ω,
Mi+1 = Mi[Pi]ui

.

In this case, we say that M is given by the decomposition D(M).

Figure 11.1 shows a representation of a decomposition of an Ω-term M .
The following two propositions are essential for our proof of Section 11.2.

Proposition 11.2.2. [KM91] Let R be an orthogonal system. If R is not
strongly sequential then there exists a minimal free Ω-term M which is built
with strict preredexes only.

Proposition 11.2.3. [KM91] If M is a minimal free Ω-term then I(M [Ω]u) =
{u} for all u ∈ PosΩ(M).

Example 11.2.4. Let R be the system of Example 11.1.8.
Let M = g(f(g(Ω, Ω, Ω)), Ω, g(Ω, Ω, Ω)).
D1 = {< ε, g(Ω, Ω, Ω) >, < 1, f(g(Ω, Ω, Ω)) >, < 3, g(Ω, Ω, Ω) >} and
D2 = {< ε, g(Ω, Ω, Ω) >, < 1, f(Ω) >, < 1.1, g(Ω, Ω, Ω) >, < 3, g(Ω, Ω, Ω) >}
are two decompositions of M for R.

126 CHAPTER 11. CONSTRUCTOR EQUIVALENT SYSTEMS

Lemma 11.2.5. Let M be a decomposable Ω-term. There exists a unique de-
composition of M into strict preredexes D(M) = {< ui, Pi >| 0 ≤ i < n} such
that no strict subterm of a Pi is a strict preredex.

Definition 11.2.6. Let M be a decomposable Ω-term. Let D(M) = {<
ui, Pi >| 0 ≤ i < n} be a decomposition of M into strict preredexes. D(M)
is the finest decomposition of M into strict preredexes if no strict subterm of a
Pi is a strict preredex. Note that the finest decomposition is well-defined accord-
ing to the previous lemma.

Example 11.2.7. D2 given in Example 11.2.4 is the finest decomposition of
M for R.

Definition 11.2.8. Let M be a decomposable Ω-term given by the decomposition
D(M) = {< ui, Pi >| 0 ≤ i < n}. By M#, we denote the Ω-term of TΩ(F#)
given by the decomposition D(M#) = {< ui, t

′(Pi) >| 0 ≤ i < n}. (M# is
obtained from M by replacing all strict preredexes Pi by t′(Pi)).

M#

t’[P]

t’[P]

t’[P]

t’[P]

t’[P]

t’[P] t’[P]

t’[P]

1

2

3 7

6

4

5

0

Figure 11.2: Decomposition of the Ω-term M#

Figure 11.2 shows the Ω-term M# for the decomposition of M given in
Figure 11.1.

Lemma 11.2.9. Let M be a decomposable Ω-term given by the decomposition
D(M) = {< ui, Pi >| 0 ≤ i < n}. If R# is not ambiguous and M is in
Ω-normal form, then M# is in R#-Ω-normal form.

Proof. Suppose that M# is not in R#-Ω-normal form. Then it contains a R#-
redex. This redex appears necessarily at an position ui (0 ≤ i < n) because no
function symbol appears inside t′(Pi) for all i.

Let L# be the redex scheme of R# associated with the left-hand side which
matches the R#-redex M#/ui.

As R# is a constructor system, L# does not contain any function symbol
except at the root. So, L# � t′(Pi). From Lemma 11.1.4, t′(Pi) is a strict
preredex of R#. We conclude that R# is ambiguous. Contradiction.

Lemma 11.2.10. Let M be a decomposable Ω-term given by the decomposi-
tion D(M) = {< ui, Pi >| 0 ≤ i < n}. Then, PosΩ(M) = PosΩ(M#) and
PosΩ(M) = PosΩ(M#).

11.2. CE ⊂ SS: A DIRECT PROOF 127

P
0

P
1

1
u

u
m−1

N

...

P
n−1

Figure 11.3: A tower of strict preredexes

Definition 11.2.11. Let N be a decomposable Ω-term. N is a tower of strict
preredexes if it has a decomposition into strict preredexes D(N) = {< ui, Pi >|
0 ≤ i < n} such that uj < uk for j < k.

Example 11.2.12 and Figure 11.3 illustrate Definition 11.2.11.

Example 11.2.12. Let R be the system of Example 11.1.8.
Let N = g(f(g(Ω, Ω, Ω)), Ω, Ω). N is a tower of preredexes given by the decom-
position
D(N) = {< ε, g(Ω, Ω, Ω) >, < 1, f(Ω) >, < 1.1, g(Ω, Ω, Ω) >}

u
m

u
m

u
m

m
t’[P]

P

0

P

v

T

P

P

P

v

L

P

y

P

P

x

v

y

m

P

1

0 0

m m

t’[P] t’[P]

N[v]

t’[T]/u

m m

1 1

t’[L]/u
m m

...

m
t’[P [v/u]]

m

Figure 11.4: Illustration of Lemma 11.2.13

Lemma 11.2.13. Let N be a tower of preredexes given by the decomposition
D(N) = {< ui, Pi >| 0 ≤ i < m + 1}. Let v ∈ PosΩ(N) such that v > um.
Let T be an Ω-term and L a left-hand side such that N [•]v < T , T matches L
and um ∈ PosΩ(LΩ), then, t′(Pm[•]v/um

) is R#-redex compatible.

128 CHAPTER 11. CONSTRUCTOR EQUIVALENT SYSTEMS

u
k

u
k

u
k

u
k

*

Ω

*

Ω

P
0

P
0

N [v]#

M[v]

#M [v]

v

v

v

v

t’[P]

P
k

t’[P]

... ...

... ...

......

...

t’[P] t’[P]

t’[P] t’[P]

0
0

kk

Ω

Ω

Ω

Ω

ΩΩ

Ω Ω

P

P
k

...

P

Ω

Ω

u u

u u
m

m

m

m

m

m

m

m

Σ #

N[v]

L

...
u /u

m k
u /u

m k

N[v]/

P
k

...

P

ΩΩ

m

u
k

Ω

Figure 11.5: Illustration of Lemma 11.2.14

Lemma 11.2.13 is illustrated by Figure 11.4.

Proof. As T matches L and um ∈ Pos(L), using Lemma 11.1.6, we get T/um

matches L/um. Now using Lemma 11.1.5, we get t′(T/um] matches t′[L/um).
(1)
From T > N [•]v, we get T/um > N [•]v/um. (2)
N [•]v/um = Pm[•]v/um

. (3)
From (2) and (3), we get T/um > Pm[•]v/um

. (4)
From (4) and Lemma 11.1.3, we get t′(T/um] > t′[Pm[•]v/um

). (5)
As root(LΩ/um) 6= Ω, root(L/um) is a function symbol so by Thatte’s transfor-
mation
t′(L/um) is a left-hand side of R#. (6)
From (1), (5) and (6), t′(Pm[•]v/um

) is R#-redex compatible.

Lemma 11.2.14. Let M be a minimal free Ω-term given by its finest decom-
position D(M) = {< ui, Pi >| 0 ≤ i < n}. Then, IR#(M#) = ∅.

11.2. CE ⊂ SS: A DIRECT PROOF 129

Lemma 11.2.14 is illustrated by Figure 11.5.

Proof. Let v ∈ PosΩ(M#). From Lemma 11.2.10, v ∈ PosΩ(M). As M is a
free Ω-term, we have v 6∈ I(M) and by Lemma 8.1.17, v 6∈ Pos(ω(M [•]v)).

In an Ω-reduction from M [•]v to its Ω-normal form ω(M [•]v) reductions
occur at uis only (because we consider the finest decomposition). As every Pi

is a preredex, every Pi such that ui 6< v Ω-reduces to Ω.
So M [•]v

∗
−→Ω N [•]v with N being the tower given by the decomposition:

D(N) = {< uj, Pj >∈ D(M) | uj < v}.
In the same way, as from Lemma 11.1.4 each t′(Pi) is a preredex of R#, we have

M#[•]v
∗

−→Ω,R# N#[•]v with N# being the tower given by the decomposition:
D(N#) = {< uj , t

′(Pj) >∈ D(M#) | uj < v}.

By confluence of Ω-reduction, N [•]v
∗

−→Ω ω(M [•]v).
But as v 6∈ Pos(ω(M [•]v)), this Ω-reduction contains at least one step. So,

∃k such that < uk, Pk >∈ D(N) and N [•]v/uk is redex compatible. This means
that N [•]v/uk can be refined to a redex R. Let us consider L the left-hand side
matching R and LΩ the corresponding redex scheme. Let us consider m s.t.
< um, Pm >∈ D(N) and s.t. ∀j 6= m s.t. < uj , Pj >∈ D(N), uj < um.

FACT: um/uk ∈ PosΩ(LΩ).

Proof. Suppose that um/uk 6∈ PosΩ(LΩ). Then N [•]um
/uk is redex compatible.

So, ω(N [•]um
) = ω(N [Ω]uk

).
Now, ω(M [•]um

) = ω(N [•]um
) = ω(N [Ω]uk

).
We have also ω(M [Ω]um

) = ω(N [Ω]um
) = ω(N [Ω]uk

).
So we have ω(N [•]um

) = ω(M [Ω]um
) which means by Lemma 8.1.17 that um 6∈

I(M [Ω]um
). This contradicts Proposition 11.2.3 which says that if M is a

minimal free term I(M [Ω]um
) = {um}.

The hypothesis of Lemma 11.2.13 are satisfied so t′(Pm[•]v/um
) is R#-redex

compatible.
But t′(Pm[•]v/um

) = t′(Pm)[•]v/um
= N#[•]v/um.

So, N#[•]v/um is R#-redex compatible and we have the following step of Ω-
reduction: N#[•]v −→Ω,R# N#[Ω]um

.

By confluence of Ω-reduction, N#[•]v
∗

−→Ω,R# ωR#(M#[•]v). As v 6∈ Pos(N#[Ω]um
),

we have also v 6∈ Pos(ωR#(M#[•]v)). So by Lemma 8.1.17, v 6∈ IR#(M#).

Proposition 11.2.15. Let R be an orthogonal system. R# ∈ SS ⇒ R ∈ SS.

Proof. Suppose that R 6∈ SS. Then, from Proposition 11.2.2, there exists a
minimal free Ω-term M ∈ TΩ(R) which is built with strict preredexes only. Let
D(M) = {< ui, Pi >| 0 ≤ i < n} be the finest decomposition of M into prere-
dexes.
As R# ∈ SS, it is not ambiguous. From Lemma 11.2.9, M# is in R#-Ω-normal
form. (1).
From Lemma 11.2.14, IR#(M#) = ∅. (2).
From (1), (2) and the definition of SS, we conclude that R# 6∈ SS. Contradic-
tion.

130 CHAPTER 11. CONSTRUCTOR EQUIVALENT SYSTEMS

Corollary 11.2.16. CE ⊂ SS.

11.3 Conclusion

Owing to Thatte’s transformation, a constructor-equivalent system can be sim-
ulated by a strongly sequential constructor system. As constructor systems
are easier to handle this last restriction (C ∩ SS) has often been considered
[BMS81]. However, the transformation doesn’t preserve strong sequentiality in
general. This has led us to define the class of constructor-equivalent systems for
which strong sequentiality is preserved. We have given a simple characterization
for this class.

At that point of the work, arose the question ”is there a bigger class than
CE whose systems can be transformed into an equivalent constructor strongly
sequential system”?

The proposition “CE ⊂ FB” showed that considering forward-branching sys-
tems was even less restrictive and enhanced the interest of working on this class.
Section 12.1 showed that this choice was right as in the end a transformation
from FB to C ∩ SS was found.

Chapter 12

Back to forward-branching
systems

12.1 Transformation from FB to SS ∩ C

We will describe here an algorithm to transform any forward-branching sys-
tem into an equivalent constructor forward-branching system (so a constructor
strongly sequential system according to Lemma 12.2.4). The correctness proofs
and examples can be found in [SS96, SS97].

Although, we are not one of the authors of the published version of the
algorithm [SS96, SS97], we have participated in its design as co-supervisor of
Bruno Salinier’s PHD thesis [Sal95]. To finalize that work, we have implemented
the two versions of the algorithm in Autowrite.

The tranformation is based upon three procedures. The first one is the
forward-branching-index-tree procedure described in Section 10.4.3.

The second shown in Figure 12.1 is the find-differentiating-term procedure
which finds a differentiating term using the forward-branching index-tree built
by the forward-branching-index-tree function.

The third procedure shown in Figure 12.2 is the transform-forward-branching
procedure which recursively performs one step of the transformation using a
differentiating term. The recursion stops when the system is constructor.

In the worst case the number of added rules is equal to the number of strict
non-variable subterms in the left-hand sides. This we think cannot be improved.
However, the size of rules can be improved. This first version of the transform-
forward-branching algorithm duplicates a lot of subterms.

This is clearly shown by the following family of examples (Rn)n≥2 due to
Rebelsky [Reb93]. These systems are based upon the signature F = {a(0), f(1)}.
Each system Rn consists of a single rule:

f(f(. . . f(a))) → a

131

132 CHAPTER 12. BACK TO FORWARD-BRANCHING SYSTEMS

function find-differentiating-term(s0:index-point):term;
begin
s := s0; M := Ω; u := s.index ;
f := root(N) with N a constructor subscheme;
while δ(s, f) is defined do

begin
s := δ(s, f);

M := M [f(
→

Ω)]u; u := s.index ;
f := root(M/u);
end

return M [f(
→

Ω)]u;
end

Figure 12.1: The find-differentiating-term algorithm

with n occurrences of f. For instance, for n = 5, we obtain

R5 =
{

f(f(f(f(f(a))))) → a
}

The system produced by the first version of transform-forward-branching is

f(a) → c1
f (a)

f(c1
f (x)) → c2

f (c
1
f (x))

f(c2
f (x)) → c3

f (c
2
f (x))

f(c3
f (x)) → cf

4(c
3
f (x))

f(cf
4(c

3
f (c

2
f (c

1
f (a))))) → a

In the worst case, the size of the resulting system is quadratic with regard to
the size of the initial system. The transform-forward-branching algorithm can
be improved in order that the size of the resulting system increases only linearly
with respect to the size of the input system. The main idea is that we do not
need to know the details of the differenciating term f(T1, . . . , Tk); we just need
to know about its Ω-positions. So the symbols at non-Ω-positions are irrelevant
and do not need to appear in the constructed rules.

The improved version of the algorithm is given Figure 12.3.
The system produced by the first version of transform-forward-branching is

f(c3
f) → cf

4

f(c2
f) → c3

f

f(c1
f) → c2

f

f(a) → c1
f

f(cf
4) → a

We consider that this algorithm is a very interesting contribution to the do-
main: the forward-branching class is the biggest easily specified class defined so

12.2. RELATIONS BETWEEN FB AND SUBCLASSES OF SS 133

procedure transform-forward-branching(R):system;
begin
s0 := forward-branching-index-tree(LHSΩ);
Let Φ := {s | φ−1(s) 6= ∅};
if Φ = {s0} then

return R; /* the system is already constructor */
f(T1, . . . , Tk) := find-differentiating-term(s0);
Let cf be a new symbol of arity k;
for each L ∈ LHS do

for each u ∈ PosΩ(L) such that f(T1, . . . , Tk) ≤ L/u do
begin
L/u := f(L1, . . . , Lk);
L := L[cf (L1, . . . , Lk)]u;
end

R := R∪ {f(T1, . . . , Tk) → cf (T1, . . . , Tk)};
return transform-forward-branching(R);
end

Figure 12.2: The transform-forward-branching algorithm

far in which systems transform to constructor while preserving strong sequen-
tiality. In addition the size of the system increases only linearly with regard to
the original system.

The forward-branching class is the biggest defined subclass of the strongly
sequential class for which a polynomial rewrite strategy exists.

12.2 Relations between FB and subclasses of SS

12.2.1 Comparison with strongly sequential systems

Proposition 12.2.1. FB ⊂ SS.

Proof. This follows from the definition of FB in terms of the existence of a
forward-branching index tree. In Section 10.2, we have shown that every system
admitting an index tree is strongly sequential. As a forward index tree is a
special case of an index tree, the inclusion follows.

Lemma 12.2.2. FB ∩ C ⊆ SS ∩ C.

Proof. #1 This lemma follows directly from Proposition 12.2.1.

To make our work independent from index trees, we give a second proof that
uses Proposition 8.2.2.

134 CHAPTER 12. BACK TO FORWARD-BRANCHING SYSTEMS

procedure transform-forward-branching(R):system;
begin
s0 := forward-branching-index-tree(LHSΩ);
Let Φ := {s | φ−1(s) 6= ∅};
if Φ = {s0} then

return R; /* the system is already constructor */
f(T1, . . . , Tk) := find-differentiating-term(s0);
{v1, . . . , vk} := PosΩ(f(T1, . . . , Tk));
Let cf be a new symbol of arity k;
for each L ∈ LHS do

for each u ∈ PosΩ(L) such that f(T1, . . . , Tk) ≤ L/u do
begin
let L/u := f(L1, . . . , Lk)[L1, . . . , Lk]v1,...vk

;
L := L[cf(L1, . . . , Lk)]u;
end

R := R∪ {f(T1, . . . , Tk) → cf (
→

Ω)};
return transform-forward-branching(R);
end

Figure 12.3: The transform-forward-branching algorithm with symbol elimina-
tion

Proof. #2 Let R ∈ FB ∩ C. As R ∈ C and from Lemma 2.3.1, we get
SubD(LHSΩ) = LHSΩ. Then, according to Theorem 10.3.19, ∀M strict pre-
redex, ∃u ∈ PosΩ(M) s.t. ∀N ∈ LHSΩ, M ≺ N , N/u 6= Ω. As N ∈ LHSΩ,
nfs(N) holds then u is an index of M . From Proposition 8.2.2, it follows that
R ∈ SS.

Lemma 12.2.3. SS ∩ C ⊆ FB ∩ C.

Proof. Let R ∈ SS ∩ C. Suppose that R 6∈ FB. Then,
∃N ∈ LHSΩ, ∃M ≺ N , ∀u ∈ PosΩ(M), ∃N ′ ∈ SubD(LHSΩ) s.t. M ≺ N ′ and
N ′/u = Ω (1)
As R ∈ C, then (1) becomes by lemma 2.3.1 :
∃N ∈ LHSΩ, ∃M ≺ N , ∀u ∈ PosΩ(M), ∃N ′ ∈ LHSΩ s.t. M ≺ N ′ and
N ′/u = Ω (2)

We now show that I(M) = ∅. (3)
Let u ∈ PosΩ(M). From (2), there exists N ′ ∈ LHSΩ s.t. M ≺ N ′ and
N ′/u = Ω. As N ′ ∈ LHSΩ, N ′ arbitrarily reduces in one step to any normal
form so nfs(N

′) holds. It follows that u 6∈ I(M).

By nonambiguity of our systems and as M ≺ N ∈ LHSΩ, we know that M
is in Ω-normal form. (4)

From (3), (4) and the definition of SS, R 6∈ SS, contradiction.

12.2. RELATIONS BETWEEN FB AND SUBCLASSES OF SS 135

The next proposition similar to Proposition 11.1.19 holds for FB. It is inter-
esting in itself and also used in Section 11.1 for the characterization of CE.

Proposition 12.2.4. FB ∩ C = SS ∩ C.

Proof. From Lemma 12.2.2 and Lemma 12.2.3

It’s interesting to note that a similar result holds for Thatte’s left-sequential
class LS which is a superset of SS: LS ∩ C = SS ∩ C as proved by Thatte in
[Tha87].

The forward-branching class is a strict subset of the strongly sequential class
and contains systems which are nonconstructor systems. This is also true for
simple systems (SP) [HL91], constructor equivalent systems (CE) [DS93] and
Transitive systems (TR) [TSvEP93b]. In this section, we examine how these
classes compare with FB.

Lemma 12.2.5. LHS≺
Ω ∩ Sub(LHSΩ)∗ = ∅.

Proof. This is an easy consequence of the nonambiguity hypothesis.

Note that Sub(LHSΩ)∗ is denoted by Red∗
Ω in [HL91].

12.2.2 Comparison with Simple systems

In Chapter 11(and [DS93]), we introduced the class of constructor equivalent
systems (CE) and we showed that SP ⊂ CE ⊂ FB. So, clearly SP is a strict
subclass of FB. The algorithm that we have presented in this article for FB

happens to be identical to the one given by Huet and Lévy for SP. This shows
that the definition of simple systems was just unnecessarily restrictive. Here is
an example of a system which is forward-branching but not simple:

Example 12.2.6. Let LHSΩ = {f(g(a, Ω, a)), h(g(Ω, a, a)), g(b, b, b)}.
We can easily check that the system is forward-branching. According to Huet
and Lévy’s definition, this system is not simple because {g(a, Ω, a), g(Ω, a, a)} ⊂
Sub(LHSΩ)∗ is not a sequential set.

12.2.3 Comparison with Transitive systems

The simple characterization that we have given for FB helps us verify that the
class of Transitive systems (TR) defined by [TSvEP93b] is the same as the class
FB first defined in [Str88]. We define two properties on LHS≺

Ω and show that
they are equivalent.

Definition 12.2.7. Let M ∈ LHS≺
Ω .

P1(M) holds if ∃u ∈ PosΩ(M), ∀N ∈ Sub(LHSΩ)∗ with M ≺ N, u ∈ PosΩ(N).
P2(M) holds if ∃u ∈ PosΩ(M), ∀N ∈ Sub(LHSΩ)∗ with M ↑ N, u ∈ PosΩ(N).

Lemma 12.2.8. Let M ∈ LHS≺
Ω . P2(M) implies P1(M).

Proof. Obvious as M ≺ N implies M ↑ N .

136 CHAPTER 12. BACK TO FORWARD-BRANCHING SYSTEMS

Lemma 12.2.9. If ∀M ∈ LHS≺
Ω , P1(M) then ∀M ∈ LHS≺

Ω , P2(M).

Proof. Suppose that ∀M ∈ LHS≺
Ω , P1(M) holds and that there exists a strict

preredex M such that P2(M) does not hold. So for every u ∈ PosΩ(M) there
exists a term Nu ∈ Sub(LHSΩ)∗ such that M ↑ Nu and u 6∈ PosΩ(M). Let
PosΩ(M) = {u1, . . . un}. Consider the strict preredex M ′ defined as the greatest
lower bound (w.r.t prefix ordering on Ω-terms) of {Nu1 , . . . , Nun

}. We claim
that P1(M ′) does not hold. Let u ∈ PosΩ(M ′). Either (1) u ∈ PosΩ(M) or
(2) u ∈ PosΩ(Nv) for some v ∈ PosΩ(M). In case (1) we obtain M ′ ≺ Nv

(M ′ 6= Nv by Lemma 12.2.5) and u ∈ PosΩ(Nu). In case (2) we have M ′ ≺ Nv

with u ∈ PosΩ(Nv). So P1(M ′) cannot hold, contradicting our assumption.

Corollary 12.2.10. ∀M ∈ LHS≺
Ω , P1(M) iff ∀M ∈ LHS≺

Ω , P2(M).

Proof. From Lemma 12.2.8 and Lemma 12.2.9.

Lemma 12.2.11. Let M ∈ LHS≺
Ω .

{N ∈ SubD(LHSΩ) | M ≺ N} = {N ∈ Sub(LHSΩ)∗ | M ≺ N}.

Proof. Obvious as a strict preredex M cannot be prefix of a term N if N has a
constructor symbol at the root.

Lemma 12.2.12. Property 10.3.4 holds iff ∀M ∈ LHS≺
Ω , P1(M).

Proof. By definition Property 10.3.4 holds iff
∀M ∈ LHS≺

Ω , ∃u ∈ PosΩ(M), ∀N ∈ SubD(LHSΩ) with M ≺ N, N/u 6= Ω which
is equivalent to
∀M ∈ LHS≺

Ω , ∃u ∈ PosΩ(M), ∀N ∈ SubD(LHSΩ) with M ≺ N, u ∈ PosΩ(N).
Using Lemma 12.2.11, this is equivalent to ∀M ∈ LHS≺

Ω , P1(M).

The following lemma characterizes the Transitive systems:

Lemma 12.2.13. [TSvEP93b]
A system is transitive iff ∀M ∈ LHS≺

Ω , P2(M) holds.

Proposition 12.2.14. TR = FB.

Proof. Consider an orthogonal system. From Lemma 12.2.13, the system is
transitive iff ∀M ∈ LHS≺

Ω , P2(M). From Corollary 12.2.10, this is equivalent
to ∀M ∈ LHS≺

Ω , P1(M). From Lemma 12.2.12, this is equivalent to Prop-
erty 10.3.4. From Theorem 10.3.19, this is equivalent to say that the system is
forward-branching.

12.3 Comparison between subclasses of SS

Figure 12.4 shows the inclusion relations between all the subclasses of SS dis-
cussed earlier.

12.3. COMPARISON BETWEEN SUBCLASSES OF SS 137

CE SS

C

FB=TR

Simple

Figure 12.4: Inclusion relations between subclasses of SS

138 CHAPTER 12. BACK TO FORWARD-BRANCHING SYSTEMS

Chapter 13

Complexity of SS

Not much is published about the complexity of the problem of deciding mem-
bership in one of the classes that guarantees a computable call-by-need strategy
to normal form. The class of forward-branching systems (Strandh [Str89]), a
proper subclass of the class of orthogonal strongly sequential systems, coincides
with the class of transitive systems (Toyama et al. [TSvEP93a]) and can be
decided in quadratic time (see Section 10.4, [Dur94b]). For classes higher in
the hierarchy the known upper bounds range from double to triple exponential
(see Chapter 5, [DM98]). Comon [Com00] showed that strong sequentiality of a
left-linear rewrite system can be decided in exponential time. In [KM91], Klop
and Middeldorp conjectured that the same problem but for orthogonal systems
is NP-complete. This is still an open problem (listed as number 9, in the RTA
list of problems in rewriting).

Our interest in this conjecture was one of the reasons we first invited Aart
Middeldorp as an invited professor in Bordeaux in 1995. That visit ended up in
a very fruitful collaboration in the domain of call-by-need classes! But no result
was obtained concerning the conjecture.

We have been working on this conjecture since 1992, full or part-time but
without reaching the ultimate goal after 13 years.

We have our own sub-conjectures which are that the problem is both in NP

and co-NP which would reduce its chances to be NP-complete. But they are
still nothing more than conjectures.

Conjecture 13.0.1. The problem of deciding whether an orthogonal system is
in SS is in NP.

Conjecture 13.0.2. The problem of deciding whether an orthogonal system is
in SS is in co-NP.

We have often felt really close to showing either one of theses conjectures
but was always stopped at some critical point. After working for so many years
on these conjectures, we feel that we know the problem quite well but that there
are intrinsic difficulties that we have not been able to overcome. The total time

139

140 CHAPTER 13. COMPLEXITY OF SS

spent in the search of a solution has become so significant that it does not seem
reasonnable to keep on working on the problem.

We shall here report some intermediate work and notions that could be useful
for people willing to attack these problems. Please note that both sections 13.1
and 13.2 contain unfinished work.

Section 13.2 gives interesting examples of systems having index-trees of expo-
nential size which cannot be trivially transformed into index-trees of polynomial
size (every non-deterministic index point being the target of a failure-transition).
To our knowledge, such examples have never been published.

13.1 Work on the co-NP-conjecture (13.0.2)

We would like first to refer to Klop and Middeldorp’s decidability proof for
strong sequentiality which is based on the search of a minimal free term [KM91].
By definition, the problem of deciding whether a system is not strongly sequen-
tial is the same as the problem of the existence of a free term (see p37).

In [KM91], they show examples of systems with very deep minimal free
terms; but although they are very deep, their size is linear. So, our first hope
was to show that if there exists a free term then there exists at least one of
polynomial size. Given a term of polynomial size, it is possible to check in
polynomial time that the term is free by applying the index decision procedure
to each one of its Ω-positions. Then we would have concluded that the problem
is in co-NP.

In fact, we hope not to prove that a minimal free term has necessarily a
polynomial size. However we would like to prove that if the system is not
strongly sequential there exists a free term which can be folded into a DAG
of polynomial size. In addition, we would like that the DAG satisfies certain
conditions which allow checking whether the corresponding term is free without
unfolding the DAG, so in polynomial time.

13.2 Work on the NP-conjecture (13.0.1)

A system is strongly sequential if and only if it admits an index-tree (see Sec-
tion 10.2). We are convinced that every strongly sequential system admits
an index-tree with a polynomial number of index points (even that a minimal
index-tree has no more branches than its number of defined subterms (proper
or not)). Given a set containing a polynomial number of index points, it is pos-
sible to check in polynomial time whether this set corresponds to an index-tree
(check that induced tranfer and failure transitions are correct). Then we would
conclude that the problem is in NP.

Given a strongly sequential system R, we assimilate an index-tree S for
R with its set of index points (the non-final states) (from which one can easily
derive the transfer and failure fonctions), the final states being always LHSΩ(R).

13.2. WORK ON THE NP-CONJECTURE (13.0.1) 141

Definition 13.2.1. Let s ∈ S. s is non-deterministic if ∃t ∈ S and a symbol f
such that s ∈ δ(t, f) and s′ ∈ S such that s′ 6= s and s′ ∈ δ(t, f). By ND(S) we
denote the set of non-deterministic index points of S.

Example. In the index-tree of Figure 13.1, [g(Ω, Ω), 2] and [g(Ω, Ω), 1] are non-
deterministic index points.

In a minimal index-tree every non-deterministic index point s must also be
a failure point (reached by a failure transition). Otherwise we could obtain
another index-tree by removing s and all index points that become unaccessible
after removing s.

Definition 13.2.2. An index-tree such that every non-deterministic index point
is also a failure point is called strict.

For instance, for R = R3 of Example A.0.3, the index-tree presented in Fig-
ure 13.1 can be simplified into the forward-branching and minimal one presented
in Figure 10.3 (p102).

b

f(Ω, a), 1

g(b, b)f(g(Ω, Ω), A), 1.2

f(g(Ω, a), a)

f(Ω, Ω), 2

Ω, ε

f(g(Ω, Ω), b), 1.2

f(Ω, b), 1

f(g(Ω, a), b)

f

a

gg

a a

g(Ω, Ω), 1

b

g(Ω, b), 1

g(Ω, Ω), 2

b

b

g

g(b, Ω), 2

b

Figure 13.1: A non minimal index-tree for LHSΩ(R3)

To give an idea of the difficulty of the problem, we now show with examples
that even strict index-trees may be of exponential size. However for all these
examples a polynomial index-tree can be found which supports our conjecture.

We will construct a family of sets of redex schemes Πn over the signature
{a0, fn}.

First for i, j ∈ [0, n[, we denote by o(i, j) the position k1 . . . kj where each
kl = ((i+ l)mod n)+1. Consider the family of set of redex schemes Πn over the

142 CHAPTER 13. COMPLEXITY OF SS

f

f

a

f(f(Ω, Ω), Ω), 1.2

f

f

a

a a

f

a

a

a

a a

a

a

f

Ω, ε

f(a, f(a, a)) f(f(a, a), a)

f(Ω, f(Ω, Ω)), 2.1

f(Ω, f(a, Ω)), 2.2f(f(Ω, a), Ω), 1.1

f(Ω, f(a, a)), 1f(f(a, a), Ω), 2

a

f(Ω, Ω), 1 f(Ω, Ω), 2

f(a, Ω), 2

f(a, f(Ω, Ω)), 2.1

f(a, f(a, Ω)), 2.2

f(Ω, a), 1

f(f(Ω, Ω), a), 1.2

f(f(Ω, a), a), 1.1

Figure 13.2: An index-tree for Π2

signature {a0, fn} defined by Πn = {π0, . . . , πn−1} where each πj is such that

Pf(πi) = {o(i, j) | j ∈ [0, n[}
Pa(πj) = P(πj) \ Pf(πj)

For instance, Π2 = {π1, π2} with

π0 = f(a, f(a, a))
π1 = f(f(a, a), a)

and Π3 = {π1, π2, π3} with

π0 = f(a, f(a, a, f(a, a, a)), a)
π1 = f(a, a, f(f(a, a, a), a, a))
π2 = f(f(a, f(a, a, a), a), a, a)

Clearly |Πn| = n(n2 + 1).
Figure 13.2 gives a strict index-tree for the set of redex schemes Π1.
However it is not minimal. Figure 13.3 gives a minimal index-tree for Π1.
In the index tree of Figure 13.2, non-deterministic index points appear at

level 1 roughly multiplying the number of branches of the index-tree by 2.
For Π3 an index tree might start as in Figure 13.4 (to save space we do not

represent the implicit prefixes inside the index points). However the minimal
index tree shown in Figure 13.5 has a linear number of index points.

More generally we can show that for Πn we can build a strict index-tree with
nn−1 +n(n−1)n−1 branches which is exponential with regard to the size of Πn.
However, for every n, a minimal index tree with n branches exists.

13.2. WORK ON THE NP-CONJECTURE (13.0.1) 143

a f

f(a, f(a, a)) f(f(a, a), a)

a

f

a a

a

a

f

Ω, ε

f(Ω, Ω), 1

f(a, Ω), 2 f(f(Ω, Ω), Ω), 1.1

f(f(a, Ω), Ω), 1.2

f(f(a, a), Ω), 2

f(a, f(Ω, Ω)), 2.1

f(a, f(a, Ω)), 2.2

Figure 13.3: A minimal index-tree for Π2

\mA

A

AA

3.3 3.1

3.3 3.1.2

a

3.2

f(a, a, f(f(a, a, a), a, a))

1.1 1.3 1.2 2 3 2.2 2.1 2.3 3 1 1 2

1.1 1.2.3 3 2.1 2 2.2 2.3.1 1 3.2 3 2 1.3 1

3.1 2.3 2.3 1.2 3.1 2.3 1.2 1.2

3.1.1 2.3.2 1.2.2 3.1.3 2.3.3 1.2.1

a

321

f

f

fa

f

a

f

f

f

f

f f

f

f

f

f(f(a, f(a, a, a), a), a, a)

a

a

a

a

aa

a

a

a

a

a

a

a a

a

a a

af

f

f

f

a a

f

f

f

f

f(a, f(a, a, f(a, a, a)), a)

3.1

a ff

a a

af

a

f

ε

Figure 13.4: An exponential index-tree for Π3

144 CHAPTER 13. COMPLEXITY OF SS

f(a, a, f(f(a, a, a), a, a))

3.1.1

3.1.2

3.1

a

1.2

f

1.2.1

2

3

a

f

f

a

a

a

a

a

a

a

a

a

a

a

f

fa

f(a, f(a, a, f(a, a, a)), a) f(f(a, f(a, a, a), a), a, a)

f

a

f a

a

a

a

a

2 1.1

3.1

1

3 3.2

2.3.3

2.3.2

2.3.1

2.3

2.2

2.1 3

1.2.2

1.2.3

1.33.1.3

ε

Figure 13.5: A minimal index-tree for Π3

Chapter 14

Compilation of Call-by-need
Strategies

In Part I, we have given a framework for the study of call-by-need computations.

What we did not address in that part is the important issue of compiling
call-by-need strategies. The knowledge that every reducible term has at least
one computable needed redex is clearly insufficient to obtain an efficient call-
by-need strategy. Testing the redexes in a reducible term one by one until a
needed redex is encountered is unattractive.

The theory of strongly sequential systems from Huet and Lévy solves the
problem of finding a needed redex in time polynomial with respect to the size
of the input term using a matching DAG or index tree. Since in our framework
neededness of a redex may depend on other redexes in a term, it is highly unlikely
that a similar data structure exists for the efficient compilation of call-by-need
strategies for the systems in CBNα, α ∈ {nv, lg, g}.

The second problem to address in order to implement an efficient call-by-
need strategy is the problem of optimizing sequences of rewrite steps: after a
needed redex is identified and contracted, the search for a needed redex in the
obtained term has to start from scratch.

Huet and Lévy do not address this problem. The forward-branching class is
the greatest subclass of the strongly sequential class which brings a solution to
this problem.

Forward-branching systems(FB) presented in Chapter 10 have the nice prop-
erty that an index-position in a term can be recursively root-stabilized before
inspecting it, without changing the output behaviour of the computation. When
a redex is found, it is replaced by its contractum and the root-stabilization pro-
cess continues without restarting at the root of the term. Such algorithm will
examine at most twice every symbol created along the sequence of rewrite steps
(including the symbols of the initial term). In other words, outermost evalua-
tion can be preserved while doing innermost root-stabilization. This means that
every part of the subject term that we need to inspect can be reduced to strong

145

146 CHAPTER 14. COMPILATION OF CALL-BY-NEED STRATEGIES

root-stable form before being inspected. This surprising property means that we
can do ordinary recursive descent using the stack architecture of a traditional
machine instead of keeping track of complicated state transitions. This gives us
the advantage of high execution speed in combination with the advantages of
the semantics of outermost evaluation.

The third possibility for optimizing sequences of rewrite steps is to try to
avoid building intermediate contracta (instances of right-handsides) that will
not be part of the final normal form). Is is argued in [Str88] that most of the
time is spent in building right-handsides. That problem is present with all types
of rewriting stategies, even for classes where the redex search is trivial. This
problem can be classified into the domain of partial evaluation. The forward-
branching class is well suited to perform this type of optimization. Work in that
direction can be found in [Str88], [SSD91].

Much of the right-handside structure created in the course of execution is
used solely to drive further pattern-matching, and does not appear in the final
output. An approach is needed that avoids creating this strictly intermediate
structure. Wadler addressed this need for the case of linear terms in so-called
treeless form in[Wad88]; in this work, he exhibited a program transformation
that avoided construction of tree structures for functions that could be computed
with bounded internal storage.

In forward-branching systems, a further important advantage of innermost
root-stabilization is that we can easily predict pattern-matching moves immedi-
ately following replacement by a right-handside: we simply run the new right-
handside through the positive arcs to predict the automaton moves. Predicting
these moves at compile-time means that we don’t have to perform them at
run-time. Doing so can often save us the trouble of actually constructing the
right-handside.

From the forward-branching index tree, we generate code in an intermediate
language called EM code [SS90]. That code is then further processed to create
code for the physical machine. It is showed in [Str88] how to transform the
intermediate code before generating machine code from it using a technique re-
lated to partial evaluation [BAOE76] [Har77] [JSS85]. An algorithm was given
in [Str88] to perform the partial evaluation, but it used complicated program
and data structures. Work by Bondorf[Bon89] used similar techniques to im-
prove constructor-based term-rewriting systems, with the specific application of
producing good compilers from interpretive language specifications.

[SS90] presents an improved intermediate language with more precise def-
inition and stricter formal properties. These formal properties enable us to
show that our transformations preserve the semantics of the program, as well
as to perform more general optimizations. In [SSD91], we give an overview
of optimizations that are needed in order to achieve an efficient treatment of
right-handsides. Then we translate the optimizations to transformations on
the intermediate language; these transformations are implemented with local
rewrite rules on the intermediate code. We finally discuss the effectiveness of
the method, and discuss methods to prove its correctness and its termination.

Part IV

Autowrite: a tool for
handling systems and term

automata

147

Chapter 15

Autowrite

15.1 What is Autowrite?

Autowrite is an experimental software tool written in Common Lisp for han-
dling term rewrite systems and bottom-up tree automata. A graphical inter-
face has been written using McCLIM, (the free implementation of the CLIM
specification) in order to free the user of any Lisp knowledge. Software and
documentation can be found at

http://dept-info.labri.u-bordeaux.fr/~idurand/autowrite

Autowritewas initially designed to check call-by-need properties of term rewrite
systems. For this purpose, it implements the tree automata constructions used
in [Jac96b, DM97, DM98, NT02] and many useful operations on terms, term
rewrite systems and tree automata. In the first version of Autowrite [Dur02],
only the call-by-need properties and a few other simple properties were avail-
able from the graphical interface. This new version of Autowrite [Dur04, Dur05]
includes many new functionalities. There are new functionalities related to sys-
tems, but the most interesting new feature is the possibility to directly handle
(load, save, combine with boolean operations) bottom-up tree automata. In
addition, we have added on-line timing information. Since the first version the
run-times have been considerably improved due to better choices of data struc-
tures. The first version of Autowrite was used to check call-by-need for most
of the examples presented in [DM01]. Most of the time no alternative proofs
exists. The new features allowed testing many properties of examples presented
in [DM05] for which no easy proof can be written.

The following example is taken from [KM91].

Example 15.1.1.

R1 =

f(g(a, x), b) → x
f(g(x, a), c) → x
f(d, x) → x
g(e, e) → e

149

150 CHAPTER 15. AUTOWRITE

For R1, we obtain the following approximated systems:

s(R1) =

f(g(a, x), b) → y
f(g(x, a), c) → y
f(d, x) → y
g(e, e) → y

nv(R1) =

f(g(x, a), b) → y
f(g(a, x), c) → y
f(d, x) → y
g(e, e) → e

g(R1) =

f(g(x, a), b) → y
f(g(a, x), c) → y
f(d, x) → x
g(e, e) → e

Example 15.1.2. Example R2 comes from [Oya93].

nv(R2) =

f(g(a, x), a) → c

f(g(x, a), b) → c

f(k(a), x) → c

g(b, b) → h(b)
h(x) → k(y)

g(R2) = R2

Example 15.1.3. Example R3 is an extension of Berry’s example [Ber78].

R3 =

f(x, a, b) → h(x)
f(b, x, a) → h(x)
f(a, b, x) → h(x)
h(k(x)) → g(x, x)
g(a, a) → g(a, a)
g(a, b) → a

g(b, a) → b

g(R3) =

f(x, a, b) → h(x)
f(b, x, a) → h(x)
f(a, b, x) → h(x)
h(k(x)) → g(y, y)
g(a, a) → g(a, a)
g(a, b) → a

g(b, a) → b

Autowrite computes α(R) for any approximation α in {s, nv, g}.

Theorem 15.1.4. The approximation mappings s, nv, and g are regularity
preserving.

Nagaya and Toyama [NT02] proved the above result for the growing approx-
imation; the tree automaton that recognizes (→∗

g)[L] is defined as the limit of a
finite saturation process. This saturation process is similar to the ones defined
in Comon [Com00] and Jacquemard [Jac96b], but by working exclusively with
deterministic tree automata, non-right-linear rewrite rules can be handled.

15.2 Real Problems solved by Autowrite

15.2.1 Convince someone that R ∈ CBN for a given R

It is quite easy to convince someone that a system is not in CBN by exhibiting
a term with no R-needed redex. However convincing someone that a system

15.2. REAL PROBLEMS SOLVED BY AUTOWRITE 151

is in CBN is not an easy matter; any attempt generally ends up in a long
and tedious proof which in addition will work only for the particular system
considered. Often, in papers about Call-By-Need (or Sequentiality) the authors
always prove that some R 6∈ CBN but never that some R ∈ CBN. Usually, they
just conjecture or say they think that the system is in CBN.

For systems of reasonable size, we can use Autowrite to convince the reader
that a systems is in CBN. Also, when looking for a system in CBN and having
particular properties, we were often surprised to learn from Autowrite that the
systems was not in CBN contrary to our intuition. With the term with no R-
needed redex exposed by Autowrite we would be right away convinced of our
mistake.

Take for instance the example of Oyamaguchi who in [Oya93] conjectured
that the system R2 is nv-sequential. With Autowrite one can easily check that
R2 ∈ CBNnv. This does not imply that it is nv-sequential but shows that there
exists an optimal and computable strategy for R2.

15.2.2 Properties related to signature extension

Let R be a left-linear growing esystem. In Chapter 4, [DM01, DM05] we have
studied the question whether the property that R ∈ CBN is preserved after
adding new function symbols. For that problem, we need to specify the under-
lying signature in our notation. We write (R,G) instead of just R to indicate
which signature is used. We write NF(R,F) for the set of ground normal forms
of an esystem R over a signatureF . We write WN•(R,G,F) for WN(R•,G•,F•).

Proposition 4.1.15 states that for (R,F) ∈ CBN, if (R, {F ∪@}) ∈ CBN (for
some fresh constant @) then (R,G) ∈ CBN for any G such that F ⊆ G.

This why Autowrite provides the possibility of testing whether (R,G) ∈
CBN with G = F ∪ {@}.

ENF(R) 6= ∅ is a sufficient condition for R ∈ CBN being preserved CBN

under signature extension.

When ENF(R) = ∅, orthogonality is needed in all the sufficient conditions
that we have obtained.

For orthogonal nv esystems, the condition that R is collapsing and WN(R,G,F) =
WN(R,F) is sufficient. Autowrite helped us find examples showing that both
restrictions where essential.

The following example shows the necessity of the collapsing condition:

152 CHAPTER 15. AUTOWRITE

Example 15.2.1. Let R4 be the following orthogonal system:

f(x, a, b(y, z)) → c(i) f(c(x), c(y), z) → i

f(x, a, c(y)) → i g(x) → b(x, i)

f(a, a, a) → i h(a) → i

f(a, b(x, y), z) → a h(b(a, x)) → a

f(a, c(x), y) → i h(b(b(x, y), z)) → b(i, i)

f(b(x, y), z, a) → a h(b(c(x), y)) → i

f(b(x, y), b(z, u), b(v, w)) → i h(c(x)) → i

f(b(x, y), b(z, u), c(v)) → i j(a, a) → i

f(b(x, y), c(z), b(u, v)) → i j(a, b(x, y)) → i

f(b(x, y), c(z), c(u)) → i j(a, c(x)) → i

f(c(x), a, a) → i j(b(x, y), z) → i

f(c(x), b(y, z), a) → i j(c(x), y) → a

f(c(x), b(y, z), c(u)) → i i → i

f(c(x), b(y, z), b(u, v)) → i

over the signature F consisting of all symbols appearing in the rewrite rules and
let G = F ∪ {@}.

Autowrite is able to check that

• ENF(R4) = ∅,

• (R4,F) ∈ CBNnv,

• (R4,G) 6∈ CBNnv as shown by the term with no (nv(R4),G)-needed redex
j(f(∆, ∆, ∆), @) with ∆ = h(g(@)),

• WN(nv(R4),G,F) = WN(nv(R4),F).

One can verify easily that j(f(∆, ∆, ∆), @) has no nv(R4),G)-needed redex:

∆ = h(g(@)) →nv h(b(a, i)) →nv a ∆ = h(g(@)) →nv h(b(b(a, a), i)) →nv

b(i, i)

j(f(•, ∆, ∆), @) →nv j(f(•, a, b(i, i)), @) →nv j(c(i), @) →nv a ∈ NF(R,G)
j(f(∆, •, ∆), @) →nv j(f(b(i, i), •, a), @) →nv j(a, @) ∈ NF(R,G)
j(f(∆, ∆, •), @) →nv j(f(a, b(i, i), •), @) →nv j(a, @) ∈ NF(R,G)

The next example in this section shows the necessity of the restriction to
α ∈ {s, nv}.

15.2. REAL PROBLEMS SOLVED BY AUTOWRITE 153

Example 15.2.2. Let R5 be the following orthogonal esystem:

f(x, a, b(y), z) → g(z) g(a) → i

f(b(x), y, a, z) → g(z) g(b(x)) → i

f(a, b(x), y, z) → g(z) h(a) → i

f(a, a, a, x) → i h(b(x)) → j(i, x)

f(b(x), b(y), b(z), u) → i j(x, a) → a

i → i j(x, b(y)) → b(a)

over the signature F consisting of all symbols appearing in the rewrite rules.
Note that the growing approximation only modifies the rule h(b(x)) → j(i, x)
into h(b(x)) → j(i, y). Let G = F ∪ {@}.

Autowrite is able to check that

• ENF(R5) = ∅,

• (R5,F) ∈ CBNg,

• (R5,G) /∈ CBNg as shown by the term with no g(R5)-needed redex f(∆, ∆, ∆, @),
with ∆ = h(j(@)),

• WN(g(R5),F) = WN(g(R5),G,F).

Note that R is not collapsing. This is not essential, since adding the single
collapsing rule k(x) → x to R does not affect any of the above properties.

For an nv esystem R, we have the nice property that WN(R,G,F) = WN(R,F) ⇒
WN•(R,G,F) = WN•(R,F). Autowrite helped us show that the restriction to
nv is essential for this implication.

Example 15.2.3. Let R6 be the following orthogonal system:

f(x, a) → a h(x, a, a) → i

f(a, b(x)) → i h(x, a, b(y)) → i

f(b(x), b(y)) → i h(x, b(y), a) → i

g(a, a) → i h(x, b(y), b(z)) → b(g(y, f(x, z)))

g(b(x), a) → i i → b(i)

g(x, b(y)) → a

over the signature F consisting of all symbols appearing in the rewrite rules and
let G = F ∪ {@}.

Autowrite is able to check

• ENF(R6) = ∅,

• WN(g(R6),G,F) = WN(g(R6),F),

• WN•(g(R6),G,F) 6= WN•(g(R6),F) as shown by the term t = h(•, i, i).

154 CHAPTER 15. AUTOWRITE

15.2.3 Forward-branching systems

Let R be an orthogonal system. Autowrite provides the possibility of test-
ing whether R is forward-branching using either the characterization of Theo-
rem 10.3.19 (cubic time complexity) or by attempting to construct of forward-
branching index-tree (quadratic time complexity) (see Section 10.4.3). It also
implements the transformation from forward-branching systems to constructor
strongly sequential systems described in Section 11.1.1.

15.3 The Inside of Autowrite

The most important object in Autowrite is the tree automaton. Since the
first version of Autowrite [Dur02], much care has been devoted to improve
the representation of automata. Consequently, the performances have improved
significantly.

Each state of an automaton is represented by a unique Common Lisp ob-
ject. Comparing two states is then very cheap: we just need to compare the
references of the states. An automaton is represented by its signature (a list of
symbols), a list of references to its states and its rules. A system is represented
by its signature and its rules. The set of rules (of an automaton or a systems)
is represented by a hash-table which given a key associated with a left-hand
side of a rule gives the corresponding right-handside (or a list of corresponding
right-handsides if the automaton is not deterministic). Given a left-hand side
f(q1, . . . , qn), the corresponding key consists of a list containing the root symbol
f followed by the references of the states q1, . . . , qn.

During the construction of an automaton (for instance during the construc-
tion of the CR,A) the rules of an automaton may be represented as a simple
list of rules. But as soon as the construction is completed, the list of rules is
converted into a hash-table as described above.

In general we use as much as possible ‘”sharing” versus ”copying” data
structures and use hashtables instead of lists. When possible we use memoizing
techniques to avoid recomputing several times identical calls. The later may
explain differences of timing when the same operations are performed in different
order.

15.4 The Outside of Autowrite

15.4.1 Autowrite specifications

Autowrite handles a set of specifications that can be loaded interactively. A
specification consists of a signature, possibly a set of variables, followed by a list
of Autowrite objects. Autowrite objects are systems, automata, sets of terms
and single terms. Figure 15.4.1 shows an example of such a specification. That
specification defines a signature in which integers and arithmetic expressions
using + and * may be represented, a system named R that may be used to

15.4. THE OUTSIDE OF AUTOWRITE 155

simplify arithmetic expressions, an automaton named EVEN which recognizes
the set of even integers, two sets of terms named RS (for root-stable) and T(F),
and four ground terms.

Ops 0:0 s:1 +:2 *:2

Vars x y

TRS R

; addition

+(0,x) -> x

+(s(x),y) -> s(+(x,y))

; product

*(0,x) -> 0

(s(x),y) -> +((x,y),y)

Automaton EVEN

States odd even

Final States even

Transitions

0 -> even

s(even) -> odd

s(odd) -> even

Termset RS 0 s(x)

Termset "T(F)" x

Term *(*(0,s(0)),+(0,s(0)))

Term *(o,+(0,s(0)))

Term *(*(0,s(0)),o)

Term s(s(s(0)))

Figure 15.1: Example of an Autowrite specification

15.4.2 Automata operations performed by Autowrite

Checking properties of an automaton

Here are the different decision problems about an automaton that can be solved
with Autowrite.

• Given an automaton A: decide whether L(A) is empty.

• Given two automata A and B: decide whether L(A) ⊆ L(B).

• Given two automata A and B: decide whether L(A) = L(B).

156 CHAPTER 15. AUTOWRITE

• Given two automata A and B: decide whether L(A) ∩ L(B) is empty.
For this latter operation the intersection automaton is not computed,
rather we incrementally compute its accessible states and stop as soon
as a final state is found.

When a property is not satisfied Autowrite exhibits a ground term exposing
the failure.

The screenshot of Figure 15.4.2 shows operations concerning the current term
and the current automaton performed after loading the specification shown in
Figure 15.4.1. The automaton recognizing NF(R) is first computed. Then we
check that the current term is not recognized by the current automaton (as it
is not a normal form). Next we compute the complement of the current au-
tomaton (which recognizes reducible terms) and check that the current term is
recognized by the complement automaton. Finally, we check that the comple-
ment automaton does not recognize the empty language.

Building new automata

Here are the different automata transformations or constructions handled by
Autowrite.

• Given an automaton A: compute Det(A), the determinized version of A.

• Given an automaton A: compute Ac recognizing L(A)c the complement
of L(A) in the whole set of ground terms.

• Given an automaton A: compute Red(A), the reduced version of A i.e.
such that every state is accessible.

• Given two automata A and B: compute A ∩ B.

• Given two automata A and B: compute A ∪ B.

• Given a set of linear terms L: compute an automaton AL such that
L(AL) = {σ(t) | t ∈ L and σ is a ground substitution }.

The screenshot of Figure 15.4.2 shows how to perform boolean operations
using Autowrite. We compute the intersection of the automaton recognizing
normal forms and its complement. We check that the resulting automaton
recognizes the empty language.

15.4.3 Building automata related to left-linear esystems

Let R be a left-linear esystem. Autowrite can build the following automata:

• Build an automaton ANF(R) such that L(ANF(R)) = NF(R).

• Build an automaton AENF(R) such that L(AENF(R)) = ENF(R).

The two following automata can be constructed only if R also growing:

15.4. THE OUTSIDE OF AUTOWRITE 157

Figure 15.2: Operations on the current term and the current automaton

158 CHAPTER 15. AUTOWRITE

Figure 15.3: Boolean operations on automata

15.4. THE OUTSIDE OF AUTOWRITE 159

• Given a tree automaton A: build a deterministic (Toyama and Nagaya’s
algorithm) or non-deterministic (Jaquemard’s algorithm) automaton CR,A

(as described in [NT02]) such that L(CR,A) = (
∗
→)[L(A)].

• Build an automaton DR such that L(DR) = ∅ is equivalent to R ∈ CBN

[DM98].

For CR,A, both Jacquemard’s algorithm for linear-growing systems and Toyama
and Nagaya’s for left-linear-growing systems have been implemented. For DR,
we have implemented the algorithm presented in [DM98]. In fact these three
algorithms have been adapted in order to directly compute automata with only
accessible states. This complicates the code but reduces considerably the size
of the construction.

The main idea is to compute the automaton incrementally. We start start
building the rules having a constant left-hand side. This gives the first set of
accessible states. Then we compute the rules whose left-hand sides contain the
current accessible states which may give new accessible states. We stop when
no new accessible state is created.

15.4.4 General properties of esystem

These are easy properties but may be useful for checking big systems.

• Check whether a system is left-linear

• Check whether a system is overlapping

• Check whether a system is orthogonal

• Check whether a system is collapsing

15.4.5 Properties of left-linear esystems

Let R be a left-linear esystem. The first set of properties concern only the
left-hand sides of R.

• Decide whether the set of normal forms is empty.

• Decide whether the set of external normal forms is empty.
We will see in section 15.2.2 that non-emptiness of ENF(R) is a sufficient
condition for preserving the property that R ∈ CBN when the signature
is extended.

Much more interesting problems can be solved when we consider left-linear
growing esystems:

160 CHAPTER 15. AUTOWRITE

• Given a tree automaton A and a term t, decide whether t ∈ (→∗
R)[L(A)].

This is done by computing CR,A (see section 15.4.3) and check whether t
is recognized by CR,A.
Note that this solves the accessibility problem (given two terms t, s, does
t →∗

R s) as a single term s forms a regular language recognizable by a tree
automaton.

• Decide whether R ∈ CBN.
The method consists of building the automaton DR (see section 15.4.3)
and then check whether L(DR) = ∅. If so Autowrite concludes that R ∈
CBN, otherwise it exhibits a ground term of L(DR) which is a term with
no R-needed redex. Note that to build DR, Autowrite must previously
compute CR,ANF(R)

.

• Decide whether R is arbitrary i.e. whether there exists a ground term
t ∈ T (F) such that t →∗

R,F • (this means that there exists a term that
may reduce to any other term).
That latter property is relevant for the problem of signature extension (see
section 15.2.2).

Concerning checking that R ∈ CBN, one cannot hope to use Autowrite for big

systems because the size of the constructed automaton DR is in O(22‖R‖

) as
shown in [DM98].

The screenshot of Figure 15.4.5 shows the use of Autowrite to decide mem-
bership to CBNα classes. We show that the current system (R,F) does not
belong to CBNs, that it belongs to CBNnv but that its extension (R,F@) does
not belong to CBNnv.

15.5 Experimental Results

In Table 15.1 (page 162), we present results obtained when testing membership
of the above systems to CBNα classes with various approximations α. We present
the number of states (st) and rules (rl) of the automata Cα(R•) and Dα(R) built
to decide whether R ∈ CBNα. If the system is not in CBNα, we give the witness
term with no Rα-needed redex found by Autowrite.

Table 15.2 (page 163) shows the results obtained for the computation of
the non-deterministic automaton Cα(R•) with Jacquemard’s algorithm which
is applicable only in the linear case. The three last columns show the results
given by the determinization of this automaton in order to obtain an automaton
similar to the deterministic one given by Toyama and Nagaya’s algorithm. ”NA”
means that the method is not applicable (as Jacquemard’s construction is only
applicable to linear systems).

In Table 15.3 (page 163), we report the results of tests of the type WN(R,G,F)
= WN(R,F) and WN•(R,G,F) = WN•(R,F). The time needed for these
computations may vary depending on the fact the automaton Cα(R) has been
computed or not by previous computations.

15.5. EXPERIMENTAL RESULTS 161

Figure 15.4: Call by need queries

162 CHAPTER 15. AUTOWRITE

Table 15.1: Call by need results

R α Cα(R•) Toyama Dα(R) (R,F) ∈ CBNα

st rl Time st rl Time
R1,F s 17 584 21s 32 727 0.12s f(g(f(d, a), f(d, a)), f(d, a))

nv 21 888 41s 45 4055 0s76 Yes
g 29 1688 3m10 174 60557 48s Yes

R2,F s 16 548 13s 31 687 13s f(g(g(b, b), g(b, b)), g(b, b))
nv 11 268 4s 17 615 0.08s Yes

R3,F s 7 409 13s 11 162 0.03s f(f(a, a, b), f(a, a, b), f(a, a, b))
nv 9 831 50s 20 594 0.09 f(f(a, a, b), f(a, a, b), f(a, a, b))
g 6 267 4s 17 5238 0.7s Yes

R4,F s 14 3181 4m35s 12 24 0.11s f(i, i, i)
nv 18 6537 31m36s 85 628832 7m46s Yes

R4,G nv 26 19010 4h59m 115 353013 5m27s j(f(h(g(@)), h(g(@)), h(g(i))), @)
R5,F s 5 668 12s 8 28 0.04s f(i, i, i, a)

nv 5 668 30s 19 130741 32s Yes
R5,G nv 6 1354 2m41s 25 160463 3m24s f(h(b(@)), h(b(@)), h(b(@)), @)
R6,F s 5 183 1s 8 650 0.15 Yes

15.6 Comparison with other Systems

We are aware of two other distributed tools implementing tree automata: Tim-
buk [GT01] and RX [Wal98]. Timbuk requires the installation of ocaml and RX

requires the installation of ghc while Autowrite comes self-contained. We were
able able to use Timbuk (easier to install than RX). Timbuk was initially de-
signed for computing over-approximations of the set of descendants (→∗

R)[L] for
a regular language L and a system R and then, use it to prove unreachability.
Autowrite can be used to check reachability (whether some term t ∈ (→∗

R)[L])
but only for left-linear growing systems. Timbuk can handle some non-growing
or non-linear cases. However, concerning efficiency of tree automata operations,
Autowrite seems much faster: we have tried the determinization of the au-
tomaton Cnv(R5) computed by Jacquemard’s algorithm which runs in 2 seconds
with Autowriteand took about 3 hours with Timbuk. The lattest version of
Autowrite is able to load Timbuk specifications defining systems, sets of terms
and automata.

15.7 Practical Information and Perspectives

The Autowrite project has a web page:
http://dept-info.labri.u-bordeaux.fr/~idurand/autowrite

From that page one can download the graphical version of Autowrite. The file
is rather big because it contains a big part of Common Lisp and McCLIM. But
the advantage is that Autowrite is self-contained and requires no other software.
The Autowrite sources contain about 7500 lines of Common Lisp (including the

15.7. PRACTICAL INFORMATION AND PERSPECTIVES 163

Table 15.2: Comparison between Jacquemard’s and Toyama-Nagaya’s automata

R α Cα(R•) Jacquemard Det(Cα(R•))
st rl Time st rl Time

R1,F s 12 343 20.84s 17 584 0.36s
nv 12 333 19.09s 21 888 0.54s
g 12 201 5.14s 29 1688 1.14s

R2,F s 11 381 11.44s 16 548 0.27s
nv 11 180 2.26s 11 268 0.76s

R3,F s 6 214 0.22s 7 409 1.34s
nv 6 163 3.69s 9 831 0.32s
g NA NA NA NA NA NA

R4,F s 11 1330 1m51s 14 3181 4.26s
nv 11 250 5.93s 18 6537 34m35s

R5,F s 4 287 12.95s 5 668 0.33s
nv 4 95 1.0s 5 668 0.19s

R6,F s 4 126 1.52s 5 183 0.67s

Table 15.3: Preservation of normalizable terms by signature extension

R α WN(R,G,F) = WN(R,F) WN•(R,G,F) = WN•(R,F) Time
R5 g Yes Yes 2m33
R6 nv Yes Yes 21.7s

g Yes h(•, i, i) 6.6s

graphical interface). On the Web page one can find installation directives, an
on-line User’s Guide and useful links. The example of an Autowrite session
should be useful for a new user. The code can still be improved for better
performances. We plan to add the possibility of minimizing a tree automaton
and extend the system to other classes of automata.

Autowrite could be used to help students with learning about term rewrit-
ing.

164 CHAPTER 15. AUTOWRITE

Chapter 16

Conclusion

The works presented in this document were both theoretical (decidability, mod-
ularity, complexity results, algorithms) and practical (Autowrite).

However they were all rather technical and entirely inside the domain of term
rewrite systems and call-by-need. This domain has been extensively studied and
the remaining open problems seem to be extremely difficult. In particular, the
problem of the complexity of deciding whether a system is in SS remains open
despite our numerous efforts and attempts to solve it.

This document corresponds to a will to uniformize more than ten years of
work published or unpublished in the domain. A big effort was made in order to
homogenize definition and notation in order to obtain a coherent presentation.

Over the years we have appreciated the usefulness of working in parallel from
a theoretical and a practical point of vue. Often, programming an algorithm
helped us correct it or complete it with forgotten cases. Conversely, making the
effort of describing an algorithm on a high level and in a more understandable
way has often led to improvements and sometimes to a complete rewrite of the
program implementing the algorithm.

In the practical perspective of effectively realizing an efficient software im-
plementing term rewriting, the ideas presented in this work like call-by-need,
modularity would be useful. However, to really obtain an interesting result one
should also take into account other ideas and techniques that have been investi-
gated in orthogonal but connected directions like partial evaluation, congruence
closure, parallelism (when no sequential strategy can be used).

On a theorical perspective, we are convinced that one of the most impor-
tant concept underlying this work is the notion of preservation of recognizability
through rewriting. Each identification of a more general class of systems pre-
serving recognizability, yields almost directly a new decidable call-by-need class,
decidability results for confluence, accessibility, joinability. Also, recently, rec-
ognizability preservingness has been used to prove termination of systems for
which none of the already known termination techniques work [?]. Consequently,
the seek of new decidable classes of systems that preserve recognizability is well
motivated. The classes that we have presented are the easily defined ones.

165

166 CHAPTER 16. CONCLUSION

However, more complicated such classes like Finite-path Overlapping systems
[TKS00], Layered Tranducing systems [STFK02] have already been defined. We
have ideas to extend these classes into a simplified and more general framework.

When recognizability is not preserved, we may however obtain an more gen-
eral but interesting well-known structure. In that case, some results could also
be derived easily. In all cases, it is interesting to study the structure of the set
of descendants (or ancestors) of a set of terms with a particular structure.

Finally, with our knowledge in term rewriting and our interest in computa-
tional linguistics, our hope is to succeed in applying some rewriting techniques
to that particular domain. We are also convinced that our programming expe-
rience will be of use.

Appendix A

Examples

Example A.0.1.

R1 =

f(g(x, a), a) → x
f(g(a, x), b) → g(x, x)

g(b, b) → b

LHSΩ = {f(g(Ω, a), a), f(g(a, Ω), b), g(b, b)} Sub+
D(LHSΩ) = {g(Ω, a), g(a, Ω)}

Example A.0.2.

R2 =

f(a, g(x, a)) → b

f(x, a) → x
f(b, g(a, x)) → b

g(b, b) → a

Example A.0.3.

R3 =

f(g(x, a), a) → x,
f(g(x, a), b) → g(x, x),
g(b, b) → b

Example A.0.4.

R4 =

f(g(a, b, x), a) → x,
f(g(a, x, a), b) → g(x, x, x),
g(b, b, b) → b

Example A.0.5.

R5 =

f(x, g(y), h(z)) → x
f(h(z), x, g(y)) → x
f(g(y), h(z), x) → x

a → a

167

168 APPENDIX A. EXAMPLES

Appendix B

Proofs for Sections 4.1 and
4.2

The proofs of our signature extension results follow the same strategy. We
consider a system R over a signature F such that (R,F) ∈ CBNα. Let G be an
extension of F . Assuming that (R,G) /∈ CBNα, we consider a minimal (Rα,G)-
free term t in T (G). By replacing the maximal subterms of t that start with a
function symbol in G\F—such subterms will be called aliensor more precisely
G\F-aliens in the sequel—by a suitable term in T (F), we obtain an (Rα,F)-free
term t′ in T (F). Hence (R,F) /∈ CBNα, contradicting the assumption.

We start with a useful lemma which is used repeatedly in the sequel.

The subset of WN(R,G,F) consisting of those terms that admit a normal-
izing rewrite sequence in (R,G) containing a root rewrite step is denoted by
WNR(R,G,F). If F = G then we just write WNR(R,F) or even WNR(R) if
the signature is clear from the context. We also find it convenient to write
WN•(R,G,F) for WN(R•,G•,F•) and WNR•(R,G,F) for WNR(R•,G•,F•).

Lemma B.0.6. Let R be a left-linear system and α an approximation mapping.
Every minimal Rα-free term belongs to WNR(Rα).

Proof. p Let F be the signature of R and let t ∈ T (F) be a minimal free term.
For every redex position p in t we have t[•]p ∈ WN•(Rα). Let p′ be the minimum
position above p at which a contraction takes place in any rewrite sequence from
t[•]p to a normal form in T (F) and define P = {p′ | p is a redex position in t}.
Let p∗ be a minimal position in P . We show that p∗ = ε. If p∗ > ε then we
consider the term t/p∗. Let q be a redex position in t/p∗. There exists a redex
position p in t such that p = p∗q. We have t/p∗[•]q = (t[•]p)/p∗ ∈ WN•(Rα) by
the definition of p∗. Since t/p∗ has at least one redex, it follows that t/p∗ is free.
As t/p∗ is a proper subterm of t we obtain a contradiction to the minimality of
t. Hence p∗ = ε. So there exists a redex position p in t and a rewrite sequence
A : t[•]p →+

Rα,F•
u ∈ NF(R,F) that contains a root rewrite step. Because Rα is

left-linear and • does not occur in the rewrite rules of Rα, • cannot contribute

169

170 APPENDIX B. PROOFS FOR SECTIONS 4.1 AND 4.2

to this sequence. It follows that if we replace in A every position of • by t/p we
obtain an (Rα,F)-rewrite sequence from t to u with a root rewrite step.

In particular, minimal free terms are not root-stable.

Proof. PROOF of Theorem 4.1.7. Let (R,F) ∈ CBNα and let c ∈ NF(R,F) be
an external normal form. Let F ⊆ G. We have to show that (R,G) ∈ CBNα.
Suppose to the contrary that (R,G) /∈ CBNα. According to Lemma B.0.6 there
exists a term t ∈ WNR(Rα,G) without (Rα,G)-needed redex. Let t′ be the term
in T (F) obtained from t by replacing every G\F-alien by c. Because t is not
root-stable, we have t →∗

Rα,G Lσ for some left-hand side L. Replacing in this
sequence every G \ F-alien by c, yields a sequence t′ →∗

Rα,F lσ′. So t′ cannot
be a normal form. Since (R,F) ∈ CBNα, t′ contains an (Rα,F)-needed redex
∆, say at position p. Because c is an external normal form, ∆ is also a redex
in t. Since t has no (Rα,G)-needed redexes, there exists a rewrite sequence
t[•]p →+

Rα,G•
u with u ∈ NF(R•,G). If we replace in this rewrite sequence every

G\F-alien by c, we obtain a rewrite sequence t′[•]p →+
Rα,F•

u′. Because c does
not unify with a proper non-variable subterm of a left-hand side of a rewrite
rule, it follows that u′ ∈ NF(R•,F). Hence ∆ is not an (Rα,F)-needed redex
in t′, yielding the desired contradiction.

B.1 Proof of Theorem 4.1.9

Before we can prove Theorem 4.1.9, we need a few preliminary results.

Definition B.1.1. Let R be a system. Two redexes ∆1, ∆2 are called pattern
equal, denoted by ∆1 ≈ ∆2, if they have the same redex pattern, i.e., they are
redexes with respect to the same rewrite rule.

Lemma B.1.2. Let R be an orthogonal system, α ∈ {s, nv}, and suppose that
∆ ≈ ∆′. If C[∆] ∈ WN(Rα) then C[∆′] ∈ WN(Rα).

Proof. Let C[∆] →∗ t be a normalizing rewrite sequence in Rα. If we replace
every descendant of ∆ by ∆′ then we obtain a (possibly shorter) normalizing
rewrite sequence C[∆′] →∗ t. The reason is that every descendant ∆′′ of ∆
satisfies ∆′′ ≈ ∆ due to orthogonality and hence if ∆′′ is contracted to some
term then ∆ rewrites to the same term because the variables in the right-
handsides of the rewrite rules in Rα are fresh, due to the assumption α ∈ {s, nv}.
Moreover, as t is a normal form, there are no descendants of ∆ left. Note that
the resulting sequence can be shorter since rewrite steps below a descendant of
∆ are not mimicked.

The above lemma does not hold for the growing approximation, as shown
by the following example.

Example B.1.3. Consider the system R

f(x) → x a → b c → c

B.1. PROOF OF THEOREM 4.1.9 171

We have Rg = R. Consider the redexes ∆ = f(a) and ∆′ = f(c). Clearly
∆ ≈ ∆′. Redex ∆ admits the normal form b, but ∆′ has no normal form.

Orthogonality is also necessary for Lemma B.1.2.

Example B.1.4. Consider the system R

f(a) → b f(g(a)) → a g(x) → a b → b

We have Rnv = R. Consider the context C = f(2) and the pattern equivalent
redexes ∆ = g(a) and ∆′ = g(b). The term C[∆] admits the normal form a, but
C[∆′] has no normal form.

Lemma B.1.5. Let R be an orthogonal system over a signature F , α ∈ {s, nv},
and F ⊆ G. If WN(Rα,F) = WN(Rα,G,F) then WN•(Rα,F) =
WN•(Rα,G,F).

Proof. The inclusion WN•(Rα,F) ⊆ WN•(Rα,G,F) is obvious. For the reverse
inclusion we reason as follows. Let t ∈ WN•(Rα,G,F) and consider a rewrite
sequence A in (Rα,G•) that normalizes t. We may write t = C[t1, . . . , tn] such
that t1, . . . , tn are the maximal subterms of t that are rewritten in A at their
root positions. Hence A can be rearranged into A′:

t →∗
Rα,G•

C[∆1, . . . , ∆n] →∗
Rα,G•

C[u1, . . . , un]

for some redexes ∆1, . . . , ∆n and normal form C[u1, . . . , un] ∈ T (G). Since the
context C cannot contain •, all positions of • are in the substitution parts of the
redexes ∆1, . . . , ∆n. If we replace in C[∆1, . . . , ∆n] every G•\F -alien by some
ground term c ∈ T (F), we obtain a term t′ = C[∆′

1, . . . , ∆
′
n] with ∆′

i ∈ T (F)
and ∆i ≈ ∆′

i for every i. Repeated application of Lemma B.1.2 yields t′ ∈
WN•(Rα,G). Because • cannot contribute to the creation of a normal form, we
actually have t′ ∈ WN(Rα,G) and thus t′ ∈ WN(Rα,G,F) as t′ ∈ T (F). The
assumption yields t′ ∈ WN(Rα,F). Since WN(Rα,F) ⊆ WN•(Rα,F) clearly
holds, we obtain t′ ∈ WN•(Rα,F). Now, if we replace in the first part of A′ every
G\F-alien by c then we obtain a (possibly shorter) rewrite sequence t →∗

Rα,F•

C[∆′′
1 , . . . , ∆′′

n] ∈ T (F•) with ∆i ≈ ∆′′
i and thus also ∆′

i ≈ ∆′′
i for every i.

Repeated application of Lemma B.1.2 yields C[∆′′
1 , . . . , ∆′′

n] ∈ WN•(Rα,F) and
therefore t ∈ WN•(Rα,F) as desired.

We note that for α = s the preceding lemma is a simple consequence of
Lemma 4.1.12 below. The following example shows that the restriction to α ∈
{s, nv} is essential.

Example B.1.6. Consider system R

f(x, a) → a h(x, a, a) → i

f(a, b(x)) → i h(x, a, b(y)) → i

f(b(x), b(y)) → i h(x, b(y), a) → i

g(a, a) → i h(x, b(y), b(z)) → b(g(y, f(x, z)))

g(b(x), a) → i i → b(i)

g(x, b(y)) → a

172 APPENDIX B. PROOFS FOR SECTIONS 4.1 AND 4.2

over the signature F consisting of all symbols appearing in the rewrite rules
and let G = F ∪ {c} with c a constant. The term t = h(•, i, i) belongs to
WN•(Rg,G,F):

t →+
Rg,G•

h(•, b(i), b(i)) →Rg,G• b(g(c, f(•, a))) →Rg,G• b(g(c, a))

However, one easily verifies that there is no normal form u ∈ NF(Rg,F) such
that t →∗

Rg,F•
u. Hence WN•(Rg,F) 6= WN•(Rg,G,F). Using the observations

that (i) every term t ∈ T (F) rewrites to a or a term of the form b(u) and
(ii) the only rewrite rule of Rg where c can be introduced is h(x, b(y), b(z)) →
b(g(y′, f(x, z′))) but every redex in T (F) of the form h(s, b(t), b(u)) rewrites to
b(a) without using c:

h(s, b(t), b(u)) →Rg,F b(g(a, f(s, b(a))))

→+
Rg,F

b(g(a, i)) because s →∗ a or s →∗ b(s′)

→Rg,F b(g(a, b(i))) →Rg,F b(a)

it can be readily checked that WN(Rg,F) = WN(Rg,G,F). (Autowrite is able
to check this equality automatically.)

A redex is called flat if it does not contain smaller redexes.

Lemma B.1.7. Let (R,F) and (S,G) be orthogonal systems and α ∈ {s, nv}
such that (R,F) ⊆ (S,G) and WN(Sα,G,F) = WN(Rα,F). If t ∈
WNR(Sα,G) and root(t) ∈ F then there exists a flat R-redex Θ in T (F). More-
over, if Rα is collapsing then we may assume that Θ is Rα-collapsing.

Proof. From t ∈ WNR(Sα,G) we infer that t →∗
Sα,G ∆ for some redex ∆ ∈

WN(Sα,G). By considering the first such redex it follows that ∆ is a redex
with respect to (Rα,G). If we replace in ∆ the subterms below the redex
pattern by an arbitrary ground term in T (F) then we obtain a redex ∆′ ∈
T (F) with ∆ ≈ ∆′. Lemma B.1.2 yields ∆′ ∈ WN(Sα,G) and thus ∆′ ∈
WN(Sα,G,F) = WN(Rα,F). Hence NF(R,F) = NF(Rα,F) 6= ∅. Therefore,
using orthogonality, we obtain a flat redex Θ ∈ T (F) by replacing the variables
in the left-hand side of any rewrite rule in R by terms in NF(R,F). If Rα is
collapsing then we take any Rα-collapsing rewrite rule.

Proof. PROOF of Theorem 4.1.9 If (R,F) has external normal forms then the
result follows from Theorem 4.1.7. So we assume that (R,F) lacks external
normal forms. We also assume that R 6= ∅ for otherwise the result is trivial.
Suppose to the contrary that (R,G) /∈ CBNα. According to Lemma B.0.6 there
exists a term t ∈ WNR(Rα,G) without (Rα,G)-needed redex. Lemma B.1.7
(with S = R) yields a flat redex Θ ∈ T (F). Since Rα is collapsing, we may
assume that Θ is Rα-collapsing. Let t′ be the term in T (F) obtained from t by
replacing every G\F-alien by Θ. Let P be the set of positions of those aliens.
Since t′ is reducible, it contains an (Rα,F)-needed redex, say at position q. We
show that t′[•]q ∈ WN•(Rα,G). We consider two cases.

B.1. PROOF OF THEOREM 4.1.9 173

1. Suppose that q ∈ P . Since t ∈ WNR(Rα,G), t →∗
Rα,G ∆ for some redex

∆ ∈ WN(Rα,G) ⊆ WN•(Rα,G). Since the root symbol of every alien
belongs to G\F , aliens cannot contribute to the creation of ∆ and hence
we may replace them by arbitrary terms in T (G•) and still obtain a redex
that is pattern equal to ∆. We replace in t the alien at position q by • and
every alien at position p ∈ P \{q} by t′/p = Θ. This gives t′[•]q →∗

Rα,G•
∆′

with ∆′ ≈ ∆. Lemma B.1.2 yields ∆′ ∈ WN•(Rα,G) and hence t′[•]q ∈
WN•(Rα,G).

2. Suppose that q /∈ P . Since Θ is flat, it follows by orthogonality that
q is also a redex position in t. Since t is an (Rα,G)-free term, t[•]q ∈
WN•(Rα,G). Because Θ is a collapsing redex and α ∈ {s, nv}, we have
Θ →Rα,G t/p for all p ∈ P . Hence t′[•]q →∗

Rα,G•
t[•]q and thus t′[•]q ∈

WN•(Rα,G).

As t′ ∈ T (F), we have t′[•]q ∈ WN•(Rα,G,F) and thus t′[•]q /∈ WN•(Rα,F)
by Lemma B.1.5, contradicting the assumption that q is the position of an
(Rα,F)-needed redex in t′.

For the proof of Theorem 4.2.4, the counterpart of Theorem 4.1.9, we need
the following preliminary lemma. In the remainder of the appendix we have
S = R∪R′ and G = F ∪ F ′.

Lemma B.1.8. Let (R,F) and (R′,F ′) be disjoint systems. If α ∈ {s, nv} then
WN(Sα,G,F) ⊆ WN(Rα,G,F).

Proof. We consider here the more complicated case α = nv. Let s ∈ WN(Snv,G,F),
so s →∗

Snv,G
t for some normal form t ∈ NF(Snv,G). By induction on the length

n of s →∗
Snv,G

t we show that s →∗
Rnv,G

t. In order to make the induction work
we prove this statement for all s ∈ T (G) such that in s →∗

Snv,G
t no redex inside

an G\F-alien of s is contracted. If n = 0 then the statement is trivial. If n > 0
then there exists a term s′ ∈ T (G) such that s →Rnv,G s′ →∗

Snv,G
t. Note that

the rewrite rule L → R applied in the step from s to s′ must come from Rnv

because redexes inside G\F-aliens of s are not contracted. We have s = C[Lσ]
and s′ = C[Rσ] for some context C and substitution σ. If σ(x) ∈ T (F) for all
x ∈ Var(R) then we can apply the induction hypothesis to s′ →∗

Snv,G
t. This

yields s′ →∗
Rnv,G

t and thus s →∗
Rnv,G

t as desired. If σ(x) ∈ T (G)\T (F) for
some x ∈ Var(R) then s′ contains new G\F-aliens. If no redexes are contracted
in these aliens in the (Snv,G)-rewrite sequence to t then we can again apply
the induction hypothesis. Otherwise we have to modify s′ →∗

Snv,G
t first. Let p

be the position of a G\F-alien in s′ such that a redex in s′/p is contracted in
s′ →∗

Snv,G
t. We distinguish two cases. If in s′ →∗

Snv,G
t no step takes place at a

position strictly above p, then we replace s′/p by t/p. Otherwise, let u →Snv,G u′

be the first step in s′ →∗
Snv,G

t in which a redex is contracted at a position strictly
above p. In this case we replace s′/p by u/p. It is easy to see that we end up
with a rewrite sequence s′′ →∗

Snv,G
t whose length is less than n−1 and with the

property that redexes inside G\F-aliens of s′′ are not contracted. Hence we can
apply the induction hypothesis, which yields s′′ →∗

Rnv,G
t. Because R is a linear

174 APPENDIX B. PROOFS FOR SECTIONS 4.1 AND 4.2

term, we may write s′′ = C[Rσ′] for some substitution σ′. Since we are dealing
with the nv approximation, s →Rnv,G s′′ and therefore s →∗

Rnv,G
t as desired.

Let us illustrate the construction in the above proof on a small example.

Example B.1.9. Consider the systems R

f(x) → g(x, x) g(a, a) → g(a, a)

g(a, b) → c g(b, b) → g(b, b)

and R′ = {h(x) → x} over the signatures F and F ′ consisting of function sym-
bols that appear in their respective rewrite rules. The (Snv,G)-rewrite sequence

f(a) →Rnv
g(h(a), h(a)) →R′

nv
g(a, h(a)) →R′

nv
g(a, b) →Rnv

c

is transformed into
f(a) →Rnv

g(a, b) →Rnv
c

Note that simply replacing all G\F-aliens by some constant in F does not work.

The reverse inclusion does not hold in general.

Example B.1.10. Consider the systems R = {f(a) → f(a), g(x) → f(x)} and
R′ = {b → b} over the signatures F and F ′ consisting of function symbols that
appear in their respective rewrite rules. The term f(b) is a normal form with
respect to (Rnv,G) and hence g(a) ∈ WN(Rnv,G,F). One easily verifies that
g(a) /∈ WN(Snv,G,F).

B.2 Proof of Theorem 4.2.4

Proof. PROOF of Theorem 4.2.4. We assume that both R and R′ are non-
empty, for otherwise the result follows from Theorem 4.1.9. Suppose to the
contrary that (S,G) /∈ CBNα. According to Lemma B.0.6 there exists a term t ∈
WNR(Sα,G) without (Sα,G)-needed redex. Assume without loss of generality
that root(t) ∈ F ′. Lemma B.1.7 yields a flat R′

α-collapsing redex Θ ∈ T (F ′).
Let t′ be the term in T (F ′) obtained from t by replacing every G\F ′-alien by
Θ. Let P be the set of positions of those aliens. Since t′ is reducible, it contains
an (R′

α,F ′)-needed redex, say at position q. We show that t′[•]q ∈ WN•(Sα,G).
Because Θ is a collapsing redex, we have Θ →Rα,G t/p for all p ∈ P . Hence
t′ →∗

Rα,G•
t and thus, by orthogonality, t′[•]q →∗

Rα,G•
t[•]q. Hence it suffices to

show that t[•]q ∈ WN•(Sα,G). We distinguish two cases.

1. Suppose that q ∈ P . Since t ∈ WNR(Sα,G), t →∗
Sα,G ∆ for some redex

∆ ∈ WN(Sα,G) ⊆ WN•(Sα,G). We distinguish two further cases.

(a) If t/q is a normal form then it cannot contribute to the creation of ∆
and hence by replacing it by • we obtain t[•]q →∗

Sα,G ∆′ with ∆ ≈ ∆′.
Lemma B.1.2 yields ∆′ ∈ WN•(Sα,G) and thus t[•]q ∈ WN•(Sα,G).

B.2. PROOF OF THEOREM 4.2.4 175

(b) Suppose t/q is reducible. Because t is a minimal free term, t/q
contains an (Sα,G)-needed redex, say at position q′. So t/q[•]q′ /∈
WN•(Sα,G). In particular, t/q[•]q′ does not (Sα,G)-rewrite to a col-
lapsing redex, for otherwise it would rewrite to a normal form in
one extra step. Hence the root symbol of every reduct of t/q[•]q′

belongs to F . Since qq′ is not the position of an (Sα,G)-needed re-
dex in t, t[•]qq′ ∈ WN•(Sα,G). Since any normalizing (Sα,G)-rewrite
sequence must contain a rewrite step at a position above q, we may
write t[•]qq′ →∗

Sα,G C[∆′] ∈ WN•(Sα,G) such that ∆′ is the first redex
above position q. Since root(∆′) ∈ F ′, the subterm t/q[•]q′ of t[•]qq′

does not contribute to the creation of ∆′ and hence t[•]q →∗
Sα,G C[∆′′]

with ∆′′ ≈ ∆′. Lemma B.1.2 yields C[∆′′] ∈ WN•(Sα,G) and thus
t[•]q ∈ WN•(Sα,G).

2. Suppose that q /∈ P . Since Θ is flat, q cannot be below a position in P .
It follows by orthogonality that q is also a redex position in t. Since t is
an (Sα,G)-free term, t[•]q ∈ WN•(Sα,G).

As t′ ∈ T (F ′), we have t′[•]q ∈ WN•(Sα,G,F ′). Since WN•(Sα,G,F ′) ⊆
WN•(R′

α,G,F ′) = WN•(R′
α,F ′) by Lemmata B.1.8 and B.1.5, we obtain t′[•]q ∈

WN•(R′
α,F ′), contradicting the assumption that q is the position of an

(R′
α,F ′)-needed redex in t′.

Proof. PROOF of Theorem 4.2.7. Let C = FC ∩ F ′
C be the set of common

constructors. Let H = F ∪ C and H′ = F ′ ∪ C. According to Theorem 4.1.7
the systems (R,H) and (R′,H′) belong to CBNα. Suppose to the contrary
that (S,G) /∈ CBNα. (As before, S = R ∪ R′ and G = F ∪ F ′.) According to
Lemma B.0.6 there exists a term t ∈ WNR(Sα,G) without (Sα,G)-needed redex.
We assume without loss of generality that root(t) ∈ FD. Let s be an external
normal form of (R,F). Let t′ be the term obtained from t by replacing every
G \ H-alien by s. Note that t′ ∈ T (H). Because Rα is left-linear and R′

α lacks
both collapsing and constructor-lifting rules, contractions in the G \H-aliens of
t cannot create a redex in the non-alien part of t. Since t is not root-stable,
the latter exists and thus t′ contains a redex as well. Because (R,H) ∈ CBNα,
t′ must contain an (Rα,H)-needed redex ∆, say at position p. Because s is an
external normal form, ∆ is also a redex in t and hence there exists a rewrite
sequence t[•]p →+

Sα,G•
U with U ∈ NF(R•,G). If we replace in this rewrite

sequence every G \H-alien by s, we obtain a rewrite sequence t′[•]p →+
Rα,H•

U ′.
Because s does not unify with a proper non-variable subterm of a left-hand side
of a rewrite rule, it follows that U ′ ∈ NF(R•,H). Hence ∆ is not an (Rα,H)-
needed redex in t′, yielding the desired contradiction.

176 APPENDIX B. PROOFS FOR SECTIONS 4.1 AND 4.2

Bibliography

[AC75] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18(6):333–340,
1975.

[BAOE76] L. Beckman, Haraldsson A., Oskarsson Ö., and Sandewall E. A
partial evaluator, and its use as a programming tool. Artificial
Intelligence, 7(4):319–357, 1976.

[Ber78] G. Berry. Stable models of typed lambda-calculii. In Proc. 5 th
ICALP, 1978.

[BMS81] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An
experimental applicative language. Technical Report CSR-62-80,
Computer Science Dept, Univ. of Edinburgh, 1981.

[Bon89] A. Bondorf. A self-applicable partial evaluator for term-rewriting
systems. In International Joint Conference on the Theory
and Practice of Software Development (TAPSOFT), volume 2.
Springer-Verlag, 1989.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications, 2002. Draft, available from
www.grappa.univ-lille3.fr/tata/.

[CDGV94] J.L. Coquidé, M. Dauchet, R. Gilleron, and S. Vágvölgyi. Bottom-
up tree pushdown automata: Classification and connection with
rewrite systems. Theoretical Computer Science, 127:69–98, 1994.

[CG90] J.L. Coquidé and R. Gilleron. Proofs and reachability problem
for ground rewrite systems. In Proceedings of the 6th Interna-
tional Meeting of Young Computer Scientists, volume 464 of Lec-
ture Notes in Computer Science, pages 120–129, 1990.

[Com00] H. Comon. Sequentiality, monadic second-order logic and tree
automata. Information and Computation, 157:25–51, 2000.

177

178 BIBLIOGRAPHY

[DHLT90] M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability
of the confluence of finite ground term rewriting systems and of
other related term rewriting systems. Information and Computa-
tion, 88:187–201, 1990.

[DM97] I. Durand and A. Middeldorp. Decidable call by need computations
in term rewriting (extended abstract). In Proceedings of the 14th
International Conference on Automated Deduction, volume 1249
of Lecture Notes in Artificial Intelligence, pages 4–18, 1997.

[DM98] I. Durand and A. Middeldorp. On the complexity of deciding call-
by-need. Technical Report 1194-98, LaBRI, Université de Bor-
deaux I, 1998.

[DM01] I. Durand and A. Middeldorp. On the modularity of deciding call-
by-need. In Proceedings of the Internation Conference on Foun-
dations of Software Science and Computation Structures, volume
2030 of Lecture Notes in Computer Science, pages 199–213, 2001.

[DM05] I. Durand and Aart Middeldorp. Decidable call-by-need computa-
tions in term rewriting. Information and Computation, 196:95–126,
2005.

[Don70] J. Doner. Tree acceptors and some of their applications. Journal
of Computer and System Sciences, 4:406–451, 1970.

[DS93] I. Durand and B. Salinier. Constructor equivalent term rewriting
systems. Information Processing Letters, 47:131–137, 1993. Also
Technical Report LaBRI 92–58.

[DS94] I. Durand and B. Salinier. Constructor equivalent term rewriting
systems are strongly sequential: a direct proof. Information Pro-
cessing Letters, 52:137–145, 1994. Also Technical Report LaBRI
93–20.

[DT85] M. Dauchet and S. Tison. Decidability of confluence for ground
term rewriting systems. In Proceedings of the 1st International
Conference on Fundamentals of Computation Theory, volume 199
of Lecture Notes in Computer Science, pages 80–89, 1985.

[Dur86] Irène Durand. Un modèle d’interprétation réparti pour une ar-
chitecture multiprocesseur Prolog. PhD thesis, Université Paul
Sabatier, Toulouse, France, October 1986. Doctorat d’Université
(in French).

[Dur94a] I. Durand. Bounded, strongly sequential and forward-branching
term rewriting systems. Journal of Symbolic Computation, 18:319–
352, 1994.

BIBLIOGRAPHY 179

[Dur94b] I. Durand. Bounded, strongly sequential and forward-branching
term rewriting systems. Journal of Symbolic Computation, 18:319–
352, 1994.

[Dur02] I. Durand. Autowrite: A tool for checking properties of term
rewriting systems. In Proceedings of the 13th International Con-
ference on Rewriting Techniques and Applications, volume 2378 of
Lecture Notes in Computer Science, pages 371–375, 2002.

[Dur04] I. Durand. Autowrite: A tool for term rewrite systems and tree
automata. In Proceedings of the Workshop on Rewriting Strategies,
pages 5–14, Aachen, June 2004.

[Dur05] I. Durand. Autowrite: A tool for term rewrite systems and tree au-
tomata. Electronics Notes in Theorical Computer Science, 124:29–
49, 2005.

[GKMD90] Mark E. Giuliano, Madhur Kohli, Jack Minker, and Irène Durand.
Prism: A testbed for parallel control. In V. Kumar, P.S. Gopalakr-
ishnan, and L.N. Kanal, editors, Parallel Algorithms for Machine
Intelligence and Vision. Springer Verlag, 1990.

[GT01] T. Genêt and V. Viet Triem Tong. Reachability analysis of term
rewriting systems with timbuk. In Proc. 8th LPAI, volume 2250 of
Lecture Notes in Artificial Intelligence, pages 691–702. Springer-
Verlag, 2001.

[Har77] A. Haraldsson. A Program Manipulation System Based on Partial
Evaluation. PhD thesis, Department of Mathematics, Linköping
University, Linköping, 1977.

[HL79] G. Huet and J.-J. Lévy. Computations in non-ambiguous linear
term rewriting systems. Technical Report 359, INRIA, 1979.

[HL91] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting
systems, I and II. In Computational Logic, Essays in Honor of
Alan Robinson, pages 396–443. The MIT Press, 1991.

[Jac96a] F. Jacquemard. Automates d’Arbres et Réécriture de Termes. PhD
thesis, Université Paris-Sud, 1996.

[Jac96b] F. Jacquemard. Decidable approximations of term rewriting sys-
tems. In Proceedings of the 7th International Conference on
Rewriting Techniques and Applications, volume 1103 of Lecture
Notes in Computer Science, pages 362–376, 1996.

[JS95] J.-P. Jouannaud and W. Sadfi. Strong sequentiality of left-linear
overlapping rewrite systems. In Proceedings of the 4th Interna-
tional Workshop on Conditional Term Rewriting Systems, volume
968 of Lecture Notes in Computer Science, pages 235–246, 1995.

180 BIBLIOGRAPHY

[JSS85] N. D. Jones, P. Sestoft, and H. Sóndergaard. An experiment in par-
tial evaluation: The generation of a compiler generator. Technical
report, Institute of Datalogy, University of Copenhagen, Copen-
hagen, 1985.

[Ken95] R. Kennaway. A conflict between call-by-need computation and
parallelism. In Proceedings of the 4th International Workshop on
Conditional Term Rewriting Systems, volume 968 of Lecture Notes
in Computer Science, pages 247–261, 1995.

[KKSdV96] R. Kennaway, J.W. Klop, R. Sleep, and F.-J. de Vries. Comparing
curried and uncurried rewriting. Journal of Symbolic Computation,
21(1):15–39, 1996.

[Klo92] J.W. Klop. Term rewriting systems. In Handbook of Logic in
Computer Science, Vol. 2, pages 1–116. Oxford University Press,
1992.

[KM91] J.W. Klop and A. Middeldorp. Sequentiality in orthogonal term
rewriting systems. Journal of Symbolic Computation, 12:161–195,
1991.

[KP78] G. Kahn and G. Plotkin. Domaines concrets. Technical Report
336, IRIA, 1978.

[Mid90] A. Middeldorp. Modular Properties of Term Rewriting Systems.
PhD thesis, Vrije Universiteit, Amsterdam, 1990.

[Mid97] A. Middeldorp. Call by need computations to root-stable form.
In Proceedings of the 24th Annual Symposium on Principles of
Programming Languages, pages 94–105. ACM Press, 1997.

[NST95] T. Nagaya, M. Sakai, and Y. Toyama. NVNF-sequentiality of left-
linear term rewriting systems. In Proceedings of the Workshop on
Theory of Rewriting Systems and its Applications, RIMS Technical
Report 918, University of Kyoto, pages 109–117, 1995.

[NT02] T. Nagaya and Y. Toyama. Decidability for left-linear grow-
ing term rewriting systems. Information and Computation,
178(2):499–514, 2002.

[O’D77] M.J. O’Donnell. Computing in Systems Described by Equations,
volume 58 of Lecture Notes in Computer Science. Springer-Verlag,
1977.

[O’D85] M.J. O’Donnell. Equational Logic as a Programming Language.
Fondations of Computing. MIT Press, 1985.

[Ohl02] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-
Verlag, 2002.

BIBLIOGRAPHY 181

[Oya93] M. Oyamaguchi. NV-sequentiality: A decidable condition for call-
by-need computations in term rewriting systems. SIAM Journal
on Computation, 22:114–135, 1993.

[Reb93] S. A. Rebelsky. Lazy Term-based Communication: Issues, Ob-
servations, and Applications. PhD thesis, University of Chicago,
Chicago, Illinois, 1993.

[Ros73] B. K. Rosen. Tree-manipulating systems and church-rosser theo-
rems. Journal of the ACM, 20:160–187, 1973.

[Sal95] B. Salinier. Simulation de systèmes de réécriture de termes par des
systèmes constructeurs. PhD thesis, Université Bordeaux I, 1995.

[SS90] David J. Sherman and Robert I. Strandh. Partial evaluation of
intermediate code from equational programs. Technical Report
R.G. 06.90, Greco de Programmation du CNRS, 1990. Also Tech-
nical Report 90-029, University of Chicago Department of Com-
puter Science.

[SS96] B. Salinier and R. Strandh. Efficient simulation of forward-
branching systems. Journal of Symbolic Computation, 1996.

[SS97] B. Salinier and R. Strandh. Simulating forward-branching sys-
tems with constructor systems. In Proceedings of the Colloquium
on Trees in Algebra and Programming (CAAP) of the 7th Interna-
tional Joint Conference on Theory and Practice of Software Devel-
opment (TAPSOFT), volume 1214 of Lecture Notes in Computer
Science, pages 153–164, April 1997.

[SSD91] David J. Sherman, Robert I. Strandh, and Irène Durand. Opti-
mization of equational programs using partial evaluation. In Pro-
ceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 72–82, 1991.

[STFK02] H. Seki, T. Takai, Y. Fujinaka, and Y. Kaji. Layered transducing
term rewriting system and its recognizability preserving property.
In Proceedings of the 13th International Conference on Rewrit-
ing Techniques and Applications, volume 2378 of Lecture Notes in
Computer Science, pages 98–113, 2002.

[Str88] R. I. Strandh. Compiling Equational Programs into Efficient Ma-
chine Code. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, 1988.

[Str89] R. Strandh. Classes of equational programs that compile into effi-
cient machine code. In Proceedings of the 3rd International Con-
ference on Rewriting Techniques and Applications, volume 355 of
Lecture Notes in Computer Science, pages 449–461, 1989.

182 BIBLIOGRAPHY

[Tha85] S. Thatte. On the correspondence between two classes of reduction
systems. Information Processing Letters, 20:83–85, 1985.

[Tha87] S. Thatte. A refinement of strong sequentiality for term rewriting
with constructor. ic, 72:46–65, 1987.

[Tho90] W. Thomas. Automata on infinite objects. In Handbook of Theo-
retical Computer Science, Vol. B, pages 133–191. North-Holland,
1990.

[TKS00] T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping
term rewriting systems effectively preserve recognizability. In Pro-
ceedings of the 11th International Conference on Rewriting Tech-
niques and Applications, volume 1833 of Lecture Notes in Com-
puter Science, pages 246–260, 2000.

[Toy92] Y. Toyama. Strong sequentiality of left-linear overlapping term
rewriting systems. In Proceedings of the 7th Annual Symposium
on Logic in Computer Science, pages 274–284, 1992.

[TSvEP93a] Y. Toyama, S. Smetsers, M. van Eekelen, and R. Plasmeijer. The
functional strategy and transitive term rewriting systems. In Term
Graph Rewriting: Theory and Practice, pages 61–75. Wiley, 1993.

[TSvEP93b] Yoshihito Toyama, Sjaak Smetsers, Marko van Eekelen, and Rinus
Plasmeijer. The functional strategy and transitive term rewriting
systems. In M.J. Plasmeijer M.R. Sleep and M.C.J.D. van Eekelen,
editors, Term Graph Rewriting: Theory and Practice, pages 61–75.
Wiley Professional Computing, 1993.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata the-
ory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2:57–81, 1968.

[Wad88] P. Wadler. Deforestation: Transforming programs to eliminate
trees. In Second European Symposium on Programming. Springer-
Verlag, 1988.

[Wal98] J. Waldmann. Rx: an interpreter for rational tree languages.
http://www.informatik.uni-leipzig.de/~joe/rx/, 1998.

Appendix C

Indexes

183

184 APPENDIX C. INDEXES

Notation index

arity, 13
2, 16
Ω, 19
•, 28
@, 44
F , 13
F◦, 65
FC , 18
FD, 18
F•, 29
FΩ, 19
G, 13
V , 13
ε, 14
u < v, 14
u ⊥ v, 14
u ≤ v, 14
v/u, 14
Pos, 14
Posf , 15
PosΩ, 19
PosV , 15
PosΩ, 19
Pos+, 14
PosV , 15
M , 14
T (F), 15
T (F ,V), 13
T , 15
Var(M), 15
root, 14
SubD, 18
Sub+

D, 19
Sub, 15
M/u, 14
M [N]u, 14
T (FΩ,V), 19
T (FΩ), 19
M ≺ S, 19
M � N , 19
M ≻ S, 19
M ↑ N , 19
M ↑ S, 19

S∗, 19
Max(S), 19
ext(M, u, f), 20
→

Ω, 20
Max(S), 19
C[], 16
C[]u, 16
R, 16
Rα, 29
R◦, 65
R•, 29
→‖ , 17
∗
→, 17
→, 16
→α, 30
g, 32
lg, 32
nv, 31
s, 31
ENF, 17
LHS, 16
LHSΩ, 19
LHS≺

Ω , 19
NF, 16
REDEX, 16
RS, 17
WN, 17
CBNα class, 35
CE class, 123
C class, 18
FB class, 100
SP class, 85
SS class, 79
Dir(M), 82
Dir(M, S), 82
ep(M), 97
I(M), 80
mark, 36
NEED, 30
R[L], 21

ND, 141
δ, 117

NOTATION INDEX 185

φ, 117
A automaton, 50
B automaton, 50
C automaton, 51, 55, 58
D automaton, 51, 54
E automaton, 55
t↓A, 20

186 APPENDIX C. INDEXES

General index

Ω-normal form, 19
Ω-position, 19
Ω-reduction, 80
Ω-term, 19

decomposable, 125, 126
decomposition of, 125
firm, 97
ground, 19

R-root-stable
term, 17

α-needed
redex, 30

approximation, 29
growing, 32
linear-growing, 32
nv, 31
strong, 31

approximation mapping, 29
computable, 30

arbitrary
reduction, 31

arity, 13
automaton

state, 20
term, 20

Church-Rosser
system, 18

class
modular, 45

closure
parallel, 17

collapsing
esystem, 18
redex, 18
rule, 18

compatible, 19
redex, 19

computable
approximation mapping, 30
strategy, 25, 28

confluent

system, 18
constant

symbol, 13
term, 14

constructor
symbol, 18
system, 18
term, 18

constructor equivalent
system, 135

constructor-equivalent
system, 123

constructor-lifting
rule, 46

constructor-sharing
system, 46

context, 16
contractum, 17

decomposable
Ω-term, 125, 126

decomposition of
Ω-term, 125

defined
symbol, 18

descendant, 27
direct approximant, 81
direction, 82
disjoint

position, 14

esystem, 16
collapsing, 18
growing, 32
linear-growing, 32

extended
rewrite rule, 16
system, 16

extension, 20
signature, 39

external
normal form, 17, 41

external normal form

GENERAL INDEX 187

property, 41

failure
function, 98
point, 98

failure point
immediate, 98

firm
Ω-term, 97

firm extension
position, 97

forward-branching
index tree, 97, 100
system, 97, 100

free
term, 37

function
failure, 98
meaning, 122
symbol, 13

ground
Ω-term, 19
rule, 16
system, 18
term, 15

ground term
transducer, 21

growing
approximation, 32
esystem, 32

GTT, 21, 26
gtt-recognizable

relation, 21

head normal form
strong, 82

hole, 16

immediate
failure point, 98

independent
redex, 25

index, 79, 80
point, 98

index point

initial, 98
index tree, 97, 98

forward-branching, 97, 100
index-tree

strict, 141
initial

index point, 98
innermost

redex, 17
instance, 15
internal direct approximant, 82
irreducible

term, 16

left-ground
rule, 16
system, 18

left-hand side, 16
left-linear

rule, 16
system, 18

left-sequential
system, 135

linear
rule, 16
system, 18
term, 15

linear-growing
approximation, 32
esystem, 32

meaning
function, 122

minimal
free term, 37

modular
class, 45

modularity, 39

needed
redex, 25

normal form, 16
external, 17, 41

normalizing
strategy, 27

nv

188 APPENDIX C. INDEXES

approximation, 31

occurrences, 14
optimal

strategy, 27, 28
order

prefix, 14, 19
orthogonal

system, 18
outermost

redex, 17
overlapping

system, 18

parallel
closure, 17
relation, 17
replacement, 14
rewriting, 17

parallel-outermost
strategy, 27

partial evaluation, 146
paths, 14
point

failure, 98
index, 98

position, 14
disjoint, 14
firm extension, 97
redex, 16

potential
redex, 81

predicate
sequential, 79

prefix, 19
order, 14, 19

preredex, 19
strict, 19

preserving
recognizability, 29

proper
subterm, 15

recognizability
preserving, 29

recognizable

set, 20
redex, 16

collapsing, 18
compatible, 19
independent, 25
innermost, 17
needed, 25
outermost, 17
position, 16
potential, 81
root-needed, 64
scheme, 19
uniform, 25

reducible
term, 16

reduction, 17
arbitrary, 31

relation
gtt-recognizable, 21
parallel, 17

replacement
parallel, 14

rewrite
rule, 16

rewrite rule
extended, 16

rewrite system
term, 16

rewriting
parallel, 17

right-ground
rule, 16
system, 18

right-handside, 16
right-linear

rule, 16
system, 18

root
symbol, 14

root-needed
redex, 64

root-stable
strongly, 81
term, 17

rule
collapsing, 18

GENERAL INDEX 189

constructor-lifting, 46
ground, 16
left-ground, 16
left-linear, 16
linear, 16
rewrite, 16
right-ground, 16
right-linear, 16

scheme, 19
redex, 19

sequential
predicate, 79
set, 84
system, 79

set
recognizable, 20
sequential, 84

signature, 13
extension, 39

simple
system, 85

soft
term, 81

state, 20
strategy

computable, 25, 28
normalizing, 27
optimal, 27
parallel-outermost, 27

strict
index-tree, 141
preredex, 19

strong
approximation, 31
head normal form, 82

strongly
root-stable, 81

strongly sequential
system, 79

subscheme, 20
substitution, 15
subterm

proper, 15
symbol

constant, 13

constructor, 18
defined, 18
function, 13
root, 14

system, 16
Church-Rosser, 18
confluent, 18
constructor, 18
constructor equivalent, 135
constructor-equivalent, 123
constructor-sharing, 46
extended, 16
forward-branching, 97, 100
ground, 18
left-ground, 18
left-linear, 18
left-sequential, 135
linear, 18
orthogonal, 18
overlapping, 18
right-ground, 18
right-linear, 18
sequential, 79
simple, 85
strongly sequential, 79
transitive, 97

term, 13
R-root-stable, 17
automaton, 20
constant, 14
constructor, 18
ground, 15
irreducible, 16
linear, 15
reducible, 16
rewrite system, 16
root-stable, 17
soft, 81
variable, 14

tower of strict preredexes, 127
transducer

ground term, 21
transitive

system, 97

190 APPENDIX C. INDEXES

unifiable, 15
uniform

redex, 25
unify, 15

variable, 13
term, 14

