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Term Rewriting System (TRS) R

signature F = {0, s,+,×} 0 constant s unary + × binary

variables x , y , . . . terms s(s(0)), +(s(0), y)

rewrite rules R =















+(0, x) → x
+(s(x), y) → s(+(x , y))

×(0, x) → 0
×(s(x), y) → +(×(x , y), y)

rewriting

s(×(s(0), s(s(0)))) ground term
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redex
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×(0, x) → 0
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Term Rewriting System (TRS) R

signature F = {0, s,+,×} 0 constant s unary + × binary

variables x , y , . . . terms s(s(0)), +(s(0), y)

rewrite rules R =
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+(s(x), y) → s(+(x , y))

×(0, x) → 0
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rewriting

s(×(s(0), s(s(0)))) → s(+(×(0, s(s(0))), s(s(0))))
→ s(+(0, s(s(0))))
→ s(s(s(0))) normal form

s(×(s(0), s(s(0)))) →∗ s(s(s(0)))∈ NF(R)
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Questions in Rewriting

Is the TRS terminating? (no infinite rewrite sequences)

Is the TRS confluent? (implies unicity of normal form)

∗

t

∗

t2

∗

s

t1

∗

How to compute normal forms?
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Orthogonal Systems

Definition

An orthogonal TRS is left-linear and non-overlapping (lacks critical
pairs)

f(g(x , a)) → x g(x , x) → a
g(a, x) → b not left-linear

overlapping

f(g(x , a)) → g(x , x)
g(a, b) → b orthogonal

Lemma

orthogonality ⇒ confluence ⇒ unicity of normal form

6/37
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signature 0, fib constants s unary :, nth, f, + binary

rewrite rules

+(0, y) → y nth(0, y : z) → y
+(s(x), y) → s(+(x , y)) nth(s(x), y : z) → nth(x , z)

f(x , y) → x : f(y , +(x , y)) fib → f(s(0), s(0))

rewriting

nth(s(0), fib) → nth(s(0), f(s(0), s(0))) →
nth(s(0), s(0) : f(s(0), +(s(0), s(0)))) → nth(0, f(s(0), +(s(0), s(0)))) →
nth(0, f(s(0), s(+(0, s(0))))) → nth(0, f(s(0), s(s(0)))) →
nth(0, s(0) : f(s(s(0)), +(s(0), s(s(0))))) → s(0)

nth(s(0), fib) → nth(s(0), f(s(0), s(0))) → s(0) : f(s(0), +(s(0), s(0))) → · · ·
→ω nth(s(0), s(0) : s(0) : s2(0) : s3(0) : s5(0) : · · · : · · ·)
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Definition

strategy selects redexes

strategy is normalizing if it computes the normal form for all
terms that have one

strategy is sequential if it selects a single redex

Examples of strategies

leftmost outermost sequential

parallel outermost not sequential

8/37
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Theorem ([O’Donnell 77])

for orthogonal TRSs

parallel-outermost strategy is normalizing

leftmost-outermost strategy is not normalizing

R =

{

a → b
c → c
f(x , b) → b

f(c, a) → f(c, a) → · · · leftmost-outermost
f(c, a) →∗ f(c, b) → b parallel-outermost

9/37
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The parallel-outermost strategy is normalizing but not optimal
because it performs useless contractions

R =















+(0, x) → x
+(s(x), y) → s(+(x , y))

×(0, x) → 0
×(s(x), y) → +(×(x , y), y)

×(×(0, s(0)),+(0, s(0))) →∗ ×(0, s(0)) → 0

redex +(0, s(0)) is not needed

×(×(0, s(0)),+(0, s(0))) → ×(0,+(0, s(0))) → 0

10/37
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Definition ([Huet & Lévy 79])

A redex ∆ in a term is needed if a descendant of ∆ is contracted
in every rewrite sequence from this term to normal form

Theorem ([Huet & Lévy 79])

for orthogonal TRSs (⊥)

every reducible term has a needed redex

needed rewriting gives an optimal normalizing strategy

Definition

A strategy which contracts only needed redexes is called a
Call-By-Need (CBN) strategy

11/37



Theorical framework Theorical contribution Practical contribution Other works Conclusion Perspectives

Strong Sequentiality [HL 79]

Unfortunately: it is undecidable whether a redex is needed

find decidable approximation of needed redex

Definition

strongly needed redex: contracted in any rewrite sequence to
normal form using arbitrary right-hand sides.

complicated definition

notion of index, sequentiality of predicate on term prefixes

In orthogonal systems not every reducible term has a
strongly-needed redex

Definition

strongly sequential systems: every reducible term has a strongly
needed redex

12/37
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Theorem ([Huet & Lévy 79])

It is decidable whether a redex in a term is strongly needed

Theorem ([Huet & Lévy 79])

It is decidable whether an orthogonal TRS is strongly sequential.

Proof.

proof is quite difficult (uses the notion of matching dag)

other proofs

[Klop & Middeldorp 91] (deltasets)

[Comon 95,00] (WSkS)

Huet and Lévy’s theorem gave rise to several generalizations

13/37



Generalization of strong sequentiality

NV sequentiality

NVNF sequentiality

Linear−growing sequentiality

Strong sequentiality

⊥
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Theorical contribution

One of our main contribution to the domain has been to give a
uniform and simplified framework to define classes which admit
decidable call-by-need stragegies (joint work with Aart
Middeldorp).

The benefits are

simpler definitions

simpler proofs

bigger classes

15/37
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Notation: (
∗
−→
R

)[L] = {t | t
∗
−→
R

s ∈ L}

Lemma

for an orthogonal TRS R
redex ∆ in C [∆] needed ⇐⇒ C [•] 6∈ (

∗
−→
R

)[NF] •-free nf

Key idea: approximate R by TRS Rα such that C [•] 6∈ (
∗
−→
R

)[NF]

is decidable.

Definition

TRS Rα approximates R if
∗
−→
R

⊆
∗

−−→
Rα

and LHSR = LHSRα
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Approximations

strong (s) [Huet & Lévy 79]
replace right-hand sides by fresh variables

non-variable (nv) [Oyamaguchi 93]
replace variables in right-hand sides by fresh variables

linear-growing (lg) [Jacquemard 96]
growing (g) [Nagaya & Toyama 99]
replace variables in right-hand sides that occur at depth > 1
in left-hand sides by fresh variables

∗
−→
R

⊆
∗

−−→
Rg

⊆
∗

−−→
Rlg

⊆
∗

−−→
Rnv

⊆
∗

−→
Rs
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Lemma

if Rα approximates an orthogonal TRS R then Rα-needed redexes
are R-needed (= needed)

Observation: If every reducible term has an Rα-needed redex, R
admits an optimal and computable sequential call-by-need strategy.

Definition ([Durand-Middeldorp 97])

The class of orthogonal TRSs R such that every reducible term
has an Rα-needed redex is called CBNα.

CBNs ( CBNnv ( CBNlg ( CBNg ( CBN =⊥
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Definition

TRS R is recognizability preserving if for every recognizable set L
(

∗
−→
R

)[L] is recognizable.

Theorem ([Jaquemard 96], [Dur-Mid 97], [Nagaya-Toyama 99])

For left-linear R and α ∈ {s, nv, lg, g}, Rα is recognizability
preserving.

⇒ (
∗

−−→
Rα

)[NF] is recognizable

⇒ It is decidable whether C [•] 6∈ (
∗

−−→
Rα

)[NF]

⇒ It is decidable whether a redex is Rα-needed

∗
−→
R

⊆
∗

−−→
Rg

⊆
∗

−−→
Rlg

⊆
∗

−−→
Rnv

⊆
∗

−−→
Rs
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Theorem ([Comon 95])

The set of reducible terms without Rs-needed redex is
recognizable.

Theorem ([Durand-Middeldorp 97])

If Rα is recognizability preserving then the set of reducible terms
without Rα-needed redex is recognizable.

Corollary

If is decidable whether a left-linear TRS belongs to CBNα for
α ∈ {s, nv, lg, g}.

21/37
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Results

For the CBNα classes, we have obtained

decidability results

complexity results

modularity results

22/37
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Complexity

�

�

�

�
R ∈ CBNs ? exponential [Comon 95,00]

�

�

�

�
R ∈ CBNnv ? [Durand-Middeldorp 98]

�

�

�

�
R ∈ CBNlg ? double exponential

�

�

�

�
R ∈ CBNg ? triple exponential [Durand 05]

�

�

�

�R ∈ FB? quadratic [Durand 94]
FB ( CBNs [Strandh 89]
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Modularity

Motivation: Since deciding membership in CBNα is complex
modularity results are important

Modularity

(R1,F1) ∈ CBNα

(R2,F2) ∈ CBNα

?
=⇒ (R1 ∪R2,F1 ∪ F2) ∈ CBNα

First step towards modularity: Signature extension

(R,F) ∈ CBNα

F ( G
?

=⇒ (R,G) ∈ CBNα

Neither one of these two implications hold in general.

24/37
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Signature extension

Results concerning signature extension [Durand-Middeldorp 01]:

Var(r) ⊆ Var(l), ∀l → r
Y

N

Th HL

ENF(R) 6= ∅
Y

N

Th DM1

WN(Rα,F) = WN(Rα,G,F)
Y

N

α = nv
Y

N

collapsing
Y

N

Th DM2

CEX 1 CEX 2 CEX 3
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Modularity

Results concerning modularity [Durand-Middeldorp 05]:

Var(r) ⊆ Var(l), ∀l → r
Y

N

Th HL

∀i ,Ri noncollapsing
Y

N

ENF 6= ∅
Y

N

Th DM3

CEX 4

∀i ,WN(R,G,Fi ) = WN(Ri ,Fi )
Y

N

nv
Y

N

∀i ,Ri collapsing
Y

N

Th DM4

CEX 5 CEX 6 CEX 7

Also results for constructor sharing combinations
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The need for Autowrite

useful properties for obtaining sufficient conditions:

NF(R,F) 6= ∅

ENF(R,F) 6= ∅

WN(Rα,G,F) = WN(Rα,F)

is Rα collapsing? arbitrary?

restriction ⇒ counterexample
For each counterexample, we needed to check that
(R,F) ∈ CBNα, (R,G) 6∈ CBNα and some of the above
conditions.
⇒ many tedious proofs
⇒ Autowrite instead

27/37
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Autowrite

Main algorithms implemented in Autowrite
Automata

boolean operations

emptiness problem

emptiness of intersection

Term Rewriting Systems
For left-linear R, α ∈ {s, nv, lg, g} and automaton A,

Build an automaton CRα,A such that

L(CRα,A) = (
∗

−−→
Rα

)[L(A)],

Build an automaton DRα
recognizing the set of reducible

terms without Rα-needed redexes.

Most of the other operations are combinations of the above.

28/37
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The outside Autowrite

Autowrite handles a set of specifications
each specification contains

a signature,

possibly a set of variables,

a list of Autowrite objects built upon the signature and
variables

The Autowrite objects are:

Term

Termset [a set of terms] (named)

TRS (named)

Automaton (named)

29/37
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Example of a specification

Ops 0:0 s:1 +:2 *:2

Vars x y

TRS R

; addition

+(0,x) -> x

+(s(x),y) -> s(+(x,y))

; product

*(0,x) -> 0

*(s(x),y) -> +(*(x,y),y)

Automaton EVEN

States odd even

Final States even

Transitions

0 -> even

s(even) -> odd

s(odd) -> even

Termset RS

0 s(x)

Term *(*(0,s(0)),+(0,s(0)))

Term *(o,+(0,s(0)))

Term *(*(0,s(0)),o)

Term s(s(s(0)))

30/37
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The inside Autowrite

core of the system written in CLOS (Common Lisp Oriented
System)

the graphical interface is written using McCLIM the free
implementation of the CLIM specification

alltogether about 7500 lines of code

Choices for better performance:

use sharing rather than copying (especially for automata
states)

compare references not the contents of the objects

use hash tables

use memoization

31/37
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Autowrite has been used to check many of our examples

Autowrite has helped us finding counterexamples

Easy to install (self-contained) and use (no Lisp knowlegde
required)

Autowrite runs faster than other systems implementing tree
automata like Timbuk or RX

Available from my Web page:
http://dept-info.u-bordeaux.fr/∼idurand

Perspectives

improve performance

apply to termination

extend to other types of automata

32/37
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Computation to root-stable forms

Definition

a term is root-stable if it does not rewrite to a redex
(the useful notion for dealing with infinite normal forms)

[Middeldorp 97] shows that needed redexes are not adequate
for computing root-stable forms and proposes the notion
root-needed redex
difficulties for extending our framework to compute
root-stable forms

undecidability of root-stability
root-neededness depends not only the position but also on the
redex itself

Results:

definition of CBN-RSα,β classes with decidable call-by-need
strategy to compute α-root-stable forms

decidability and complexity results
33/37
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Below strong sequentiality

Simple

Sequential

Constructor

Constructor Equivalent

Strongly

Forward−
Branching

quadratic decision algorithm for Forward-Branching
systems [Durand 94]
Bruno Salinier PHD’s thesis

definition of the class of Constructor Equivalent
TRSs [Durand-Salinier 93,94]
transformation from forward-branching to strong sequential
constructor [Salinier-Strandh 96,97]

implementation of the transformation in
Autowrite [Durand 04]

34/37
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Strong sequentiality

Conjecture ([Middeldorp and Klop 91])

Deciding strong sequentiality is NP-complete
(problem #9 in the list of RTA open problems)

. . .
more than 12 years of research

. . .

Conjecture ([Durand 05])

the problem is both in NP and co-NP

35/37



Theorical framework Theorical contribution Practical contribution Other works Conclusion Perspectives

Conclusion

−

Results on computations to root-stable forms
still unpublished
No result on Klop and Middeldorp’s conjecture

+

Theorical and practical contribution
Bruno Salinier PHD’s thesis
Journal articles: [IPL 93],[IPL 94], [JSC 94]
[ENTCS 05] [IC 05]
Conferences communications: [PEPM 91],
[CADE 97], [FOSSACS 01], [RTA 02], [WRS 04]
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Perspectives

generalize systems that preserve recognizability

apply automata techniques to termination

computational linguistics

?
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