Call-by-need computations in orthogonal TRSs

Irène Durand

Université Bordeaux 1
Habilitation à diriger les recherches

01/07/2005

When		Where	Programming
83-84	DEA	LSI, UPS Toulouse	Functional
$84-86$	PHD	LSI, UPS Toulouse	Logic
$86-88$	Post-Doc	PRISM, Univ Maryland	
$89-91$	MdC	LaBRI, Univ Bordeaux 1	Equational
$91-92$	Vacataire	Warwick Univ	
$92-04$	MdC	LaBRI, Univ Bordeaux 1	
$04-05$	CRCT	FMI, Univ Stuttgart	

(1) Theorical framework

- Term rewriting systems
- Rewriting strategies
- Neededness
- Strong Sequentiality
(2) Theorical contribution
- Call-By-Need classes
- Complexity
- Modularity
(3) Practical contribution
- Autowrite

4 Other works

- Computation to root-stable forms
- Below strong sequentiality
(5) Conclusion
(6) Perspectives

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables x, y, \ldots terms $\mathrm{s}(\mathrm{s}(0)), \quad+(\mathrm{s}(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned}+(0, x) & \rightarrow x \\ +(s(x), y) & \rightarrow s(+(x, y)) \\ \times(0, x) & \rightarrow 0 \\ \times(s(x), y) & \rightarrow+(x(x, y), y)\end{aligned}\right.$
rewriting
$s(\times(s(0), s(s(0)))) \quad$ ground term

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary
variables x, y, \ldots
terms $\mathrm{s}(\mathrm{s}(0)), \quad+(\mathrm{s}(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned}+(0, x) & \rightarrow x \\ +(s(x), y) & \rightarrow s(+(x, y)) \\ \times(0, x) & \rightarrow 0 \\ \times(s(x), y) & \rightarrow+(x(x, y), y)\end{aligned}\right.$
rewriting
$s(\times(s(0), s(s(0)))) \quad$ reducible term redex

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary
variables x, y, \ldots
terms $\mathrm{s}(\mathrm{s}(0)), \quad+(\mathrm{s}(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned}+(0, x) & \rightarrow x \\ +(s(x), y) & \rightarrow s(+(x, y)) \\ \times(0, x) & \rightarrow 0 \\ \times(s(x), y) & \rightarrow+(x(x, y), y)\end{aligned}\right.$
rewriting

$$
s(\times(s(0), s(s(0)))) \rightarrow s(+(\times(0, s(s(0))), s(s(0))))
$$ redex

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables x, y, \ldots terms $\mathrm{s}(\mathrm{s}(0)), \quad+(\mathrm{s}(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned} &+(0, x) \rightarrow x \\ &+(s(x), y) \rightarrow s(+(x, y)) \\ & \times(0, x) \rightarrow 0 \\ & \times(s(x), y) \rightarrow \\ &+(x(x, y), y)\end{aligned}\right.$
rewriting
$s(\times(s(0), s(s(0)))) \rightarrow s(+(\times(0, s(s(0))), s(s(0))))$

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables x, y, \ldots terms $\mathrm{s}(\mathrm{s}(0)), \quad+(\mathrm{s}(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned} &+(0, x) \rightarrow x \\ &+(s(x), y) \rightarrow s(+(x, y)) \\ & \times(0, x) \rightarrow 0 \\ & \times(s(x), y) \rightarrow \\ &+(x(x, y), y)\end{aligned}\right.$
rewriting
$s(\times(s(0), s(s(0)))) \rightarrow s(+(\times(0, s(s(0))), s(s(0))))$

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables $\quad x, y, \ldots$ terms $s(s(0)), \quad+(s(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned} &+(0, x) \rightarrow x \\ &+(s(x), y) \rightarrow s(+(x, y)) \\ & \times(0, x) \rightarrow 0 \\ & \times(s(x), y) \rightarrow \\ &+(x(x, y), y)\end{aligned}\right.$
rewriting

$$
\begin{aligned}
\mathrm{s}(\times(\mathrm{s}(0), \mathrm{s}(\mathrm{~s}(0)))) & \rightarrow \mathrm{s}(+(\times(0, \mathrm{~s}(\mathrm{~s}(0))), \mathrm{s}(\mathrm{~s}(0)))) \\
& \rightarrow \mathrm{s}(+(0, \mathrm{~s}(\mathrm{~s}(0))))
\end{aligned}
$$

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables $\quad x, y, \ldots$ terms $s(s(0)), \quad+(s(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned} &+(0, x) \rightarrow x \\ &+(s(x), y) \rightarrow s(+(x, y)) \\ & \times(0, x) \rightarrow 0 \\ & \times(s(x), y) \rightarrow \\ &+(x(x, y), y)\end{aligned}\right.$
rewriting

$$
\begin{aligned}
\mathrm{s}(\times(\mathrm{s}(0), \mathrm{s}(\mathrm{~s}(0)))) & \rightarrow \mathrm{s}(+(\times(0, \mathrm{~s}(\mathrm{~s}(0))), \mathrm{s}(\mathrm{~s}(0)))) \\
& \rightarrow \mathrm{s}(+(0, \mathrm{~s}(\mathrm{~s}(0))))
\end{aligned}
$$

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables $\quad x, y, \ldots$ terms $s(s(0)), \quad+(s(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned} &+(0, x) \rightarrow x \\ &+(s(x), y) \rightarrow s(+(x, y)) \\ & \times(0, x) \rightarrow 0 \\ & \times(s(x), y) \rightarrow \\ &+(x(x, y), y)\end{aligned}\right.$
rewriting

$$
\begin{aligned}
\mathrm{s}(\times(\mathrm{s}(0), \mathrm{s}(\mathrm{~s}(0)))) & \rightarrow \mathrm{s}(+(\times(0, \mathrm{~s}(\mathrm{~s}(0))), \mathrm{s}(\mathrm{~s}(0)))) \\
& \rightarrow \mathrm{s}(+(0, \mathrm{~s}(\mathrm{~s}(0))))
\end{aligned}
$$

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables $\quad x, y, \ldots$ terms $s(s(0)), \quad+(s(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned} &+(0, x) \rightarrow x \\ &+(s(x), y) \rightarrow s(+(x, y)) \\ & \times(0, x) \rightarrow 0 \\ & \times(s(x), y) \rightarrow \\ &+(x(x, y), y)\end{aligned}\right.$
rewriting

$$
\begin{aligned}
\mathrm{s}(\times(\mathrm{s}(0), \mathrm{s}(\mathrm{~s}(0)))) & \rightarrow \mathrm{s}(+(\times(0, \mathrm{~s}(\mathrm{~s}(0))), \mathrm{s}(\mathrm{~s}(0)))) \\
& \rightarrow \mathrm{s}(+(0, \mathrm{~s}(\mathrm{~s}(0)))) \\
& \rightarrow \mathrm{s}(\mathrm{~s}(\mathrm{~s}(0)))
\end{aligned}
$$

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables $\quad x, y, \ldots$ terms $s(s(0)), \quad+(s(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned} &+(0, x) \rightarrow x \\ &+(s(x), y) \rightarrow s(+(x, y)) \\ & \times(0, x) \rightarrow 0 \\ & \times(s(x), y) \rightarrow \\ &+(x(x, y), y)\end{aligned}\right.$
rewriting

$$
\begin{aligned}
\mathrm{s}(\times(\mathrm{s}(0), \mathrm{s}(\mathrm{~s}(0)))) & \rightarrow \mathrm{s}(+(\times(0, \mathrm{~s}(\mathrm{~s}(0))), \mathrm{s}(\mathrm{~s}(0)))) \\
& \rightarrow \mathrm{s}(+(0, \mathrm{~s}(\mathrm{~s}(0)))) \\
& \rightarrow \mathrm{s}(\mathrm{~s}(\mathrm{~s}(0))) \text { normal form }
\end{aligned}
$$

Term Rewriting System (TRS) \mathcal{R}

signature $\mathcal{F}=\{0, \mathrm{~s},+, \times\} \quad 0$ constant \quad s unary $+\times$ binary variables x, y, \ldots terms $s(s(0)), \quad+(s(0), y)$
rewrite rules $\mathcal{R}=\left\{\begin{aligned}+(0, x) & \rightarrow x \\ +(s(x), y) & \rightarrow s(+(x, y)) \\ \times(0, x) & \rightarrow 0 \\ \times(s(x), y) & \rightarrow+(x(x, y), y)\end{aligned}\right.$
rewriting
$s(\times(s(0), s(s(0)))) \rightarrow s(+(\times(0, s(s(0))), s(s(0))))$
$\rightarrow \mathrm{s}(+(0, \mathrm{~s}(\mathrm{~s}(0))))$
$\rightarrow \mathrm{s}(\mathrm{s}(\mathrm{s}(0)))$ normal form
$s(\times(s(0), s(s(0)))) \rightarrow^{*} s(s(s(0))) \in N F(\mathcal{R})$

Questions in Rewriting

- Is the TRS terminating? (no infinite rewrite sequences)
- Is the TRS confluent? (implies unicity of normal form)

- How to compute normal forms?

Orthogonal Systems

Definition

An orthogonal TRS is left-linear and non-overlapping (lacks critical pairs)

$$
\begin{array}{ll}
f(\mathrm{~g}(x, \mathrm{a})) \rightarrow x & \mathrm{~g}(x, x) \rightarrow \mathrm{a} \\
\mathrm{~g}(\mathrm{a}, x) \rightarrow \mathrm{b} & \text { not left-linear } \\
\text { overlapping } & \\
\quad \mathrm{f}(\mathrm{~g}(x, \mathrm{a})) \rightarrow \mathrm{g}(x, x) \\
\mathrm{g}(\mathrm{a}, \mathrm{~b}) \rightarrow \mathrm{b} & \\
\end{array}
$$

Lemma
orthogonality $\quad \Rightarrow$ confluence $\quad \Rightarrow$ unicity of normal form
signature 0 , fib constants s unary \quad, nth, $\mathrm{f},+$ binary
rewrite rules

$$
\begin{aligned}
+(0, y) & \rightarrow y \\
+(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(+(x, y)) \\
\mathrm{f}(x, y) & \rightarrow x: \mathrm{f}(y,+(x, y))
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{nth}(0, y: z) & \rightarrow y \\
\operatorname{nth}(\mathrm{~s}(x), y: z) & \rightarrow \mathrm{nth}(x, z) \\
\mathrm{fib} & \rightarrow \mathrm{f}(\mathrm{~s}(0), \mathrm{s}(0))
\end{aligned}
$$

rewriting

$$
\begin{aligned}
& n t h(s(0), \text { fib }) \\
& \rightarrow \quad n t h(s(0), f(s(0), s(0))) \\
& n t h(s(0), s(0): f(s(0),+(s(0), s(0)))) \quad \rightarrow \quad n t h(0, f(s(0),+(s(0), s(0)))) \\
& \text { nth }(0, f(\mathrm{~s}(0), \mathrm{s}(+(0, \mathrm{~s}(0))))) \quad \rightarrow \quad \text { nth }(0, f(\mathrm{~s}(0), \mathrm{s}(\mathrm{~s}(0)))) \\
& n t h(0, s(0): f(s(s(0)),+(s(0), s(s(0))))) \rightarrow s(0) \\
& n t h(s(0), \text { fib }) \rightarrow n t h(s(0), f(s(0), s(0))) \rightarrow s(0): f(s(0),+(s(0), s(0))) \rightarrow \cdots \\
& \rightarrow{ }^{\omega} \text { nth }\left(s(0), s(0): s(0): s^{2}(0): s^{3}(0): s^{5}(0): \cdots: \cdots\right)
\end{aligned}
$$

Definition

- strategy selects redexes
- strategy is normalizing if it computes the normal form for all terms that have one
- strategy is sequential if it selects a single redex

Examples of strategies

- leftmost outermost
- parallel outermost
sequential
not sequential

Theorem ([O'Donnell 77])

for orthogonal TRSs

- parallel-outermost strategy is normalizing
- leftmost-outermost strategy is not normalizing

$$
\begin{aligned}
\mathcal{R} & =\left\{\begin{array}{lll}
a & \rightarrow & b \\
c & \rightarrow & c \\
f(x, b) & \rightarrow & b
\end{array}\right. \\
f(c, a) \rightarrow f(c, a) \rightarrow \cdots & \text { leftmost-outermost } \\
f(c, a) \rightarrow^{*} \mathrm{f}(\mathrm{c}, \mathrm{~b}) \rightarrow \mathrm{b} & \text { parallel-outermost }
\end{aligned}
$$

The parallel-outermost strategy is normalizing but not optimal because it performs useless contractions

$$
\begin{gathered}
\mathcal{R}=\left\{\begin{aligned}
+(0, x) & \rightarrow x \\
+(\mathrm{s}(x), y) & \rightarrow \mathrm{s}(+(x, y)) \\
\times(0, x) & \rightarrow 0 \\
\times(\mathrm{s}(x), y) & \rightarrow+(\times(x, y), y)
\end{aligned}\right. \\
\times(\times(0, \mathrm{~s}(0)),+(0, \mathrm{~s}(0)))
\end{gathered} \rightarrow^{*} \underline{\times(0, \mathrm{~s}(0))} \rightarrow 0 .
$$

redex $+(0, s(0))$ is not needed

$$
\times \underline{(\times(0, s(0))},+(0, s(0))) \rightarrow \underline{\times(0,+(0, s(0)))} \rightarrow 0
$$

Definition ([Huet \& Lévy 79])

A redex Δ in a term is needed if a descendant of Δ is contracted in every rewrite sequence from this term to normal form

Theorem ([Huet \& Lévy 79]) for orthogonal TRSs (\perp)

- every reducible term has a needed redex
- needed rewriting gives an optimal normalizing strategy

Definition

A strategy which contracts only needed redexes is called a Call-By-Need (CBN) strategy

Strong Sequentiality [HL 79]

- Unfortunately: it is undecidable whether a redex is needed
- find decidable approximation of needed redex

Definition

strongly needed redex: contracted in any rewrite sequence to normal form using arbitrary right-hand sides.

- complicated definition
- notion of index, sequentiality of predicate on term prefixes

In orthogonal systems not every reducible term has a strongly-needed redex

Definition

strongly sequential systems: every reducible term has a strongly needed redex

Theorem ([Huet \& Lévy 79])

It is decidable whether a redex in a term is strongly needed

Theorem ([Huet \& Lévy 79])

It is decidable whether an orthogonal TRS is strongly sequential.

Proof.

proof is quite difficult (uses the notion of matching dag)
other proofs

- [Klop \& Middeldorp 91] (deltasets)
- [Comon 95,00] (WSkS)

Huet and Lévy's theorem gave rise to several generalizations

Generalization of strong sequentiality

Theorical contribution

One of our main contribution to the domain has been to give a uniform and simplified framework to define classes which admit decidable call-by-need stragegies (joint work with Aart Middeldorp).

The benefits are

- simpler definitions
- simpler proofs
- bigger classes

$\perp=\mathrm{CBN}$

Notation: $(\underset{\mathcal{R}}{*})[\mathcal{L}]=\{t \mid t \underset{\mathcal{R}}{*} s \in \mathcal{L}\}$
Lemma
for an orthogonal TRS \mathcal{R} redex Δ in $C[\Delta]$ needed $\Longleftrightarrow C[\bullet] \notin(\underset{\mathcal{R}}{*})[\mathrm{NF}] \quad \bullet$-free $n f$

Key idea: approximate \mathcal{R} by $\operatorname{TRS} \mathcal{R}_{\alpha}$ such that $C[\bullet] \notin(\underset{\mathcal{R}}{*})[\mathrm{NF}]$ is decidable.

Definition
TRS \mathcal{R}_{α} approximates \mathcal{R} if $\underset{\mathcal{R}}{\stackrel{*}{\longrightarrow}} \subseteq \underset{\mathcal{R}_{\alpha}}{*}$ and $\mathrm{LHS}_{\mathcal{R}}=\mathrm{LHS}_{\mathcal{R}_{\alpha}}$

Approximations

- strong (s)
replace right-hand sides by fresh variables
- non-variable (nv) replace variables in right-hand sides by fresh variables
- linear-growing (lg)
[Jacquemard 96]
growing (g)
[Nagaya \& Toyama 99]
replace variables in right-hand sides that occur at depth >1 in left-hand sides by fresh variables

$$
\underset{\mathcal{R}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{g}}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{lg}}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{nv}}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{s}}}{*}
$$

Lemma
if \mathcal{R}_{α} approximates an orthogonal $\operatorname{TRS} \mathcal{R}$ then \mathcal{R}_{α}-needed redexes are \mathcal{R}-needed ($=$ needed)

Observation: If every reducible term has an \mathcal{R}_{α}-needed redex, \mathcal{R} admits an optimal and computable sequential call-by-need strategy.

Definition ([Durand-Middeldorp 97])

The class of orthogonal TRSs \mathcal{R} such that every reducible term has an \mathcal{R}_{α}-needed redex is called CBN_{α}.

$$
\mathrm{CBN}_{\mathrm{s}} \subsetneq \mathrm{CBN}_{\mathrm{nv}} \subsetneq \mathrm{CBN}_{\mathrm{lg}} \subsetneq \mathrm{CBN}_{\mathrm{g}} \subsetneq \mathrm{CBN}=\perp
$$

Definition

TRS \mathcal{R} is recognizability preserving if for every recognizable set \mathcal{L} $(\stackrel{*}{\mathcal{R}})[\mathcal{L}]$ is recognizable.

Theorem ([Jaquemard 96], [Dur-Mid 97], [Nagaya-Toyama 99])

For left-linear \mathcal{R} and $\alpha \in\{\mathrm{s}, \mathrm{nv}, \mathrm{lg}, \mathrm{g}\}, \mathcal{R}_{\alpha}$ is recognizability preserving.
$\Rightarrow\left(\underset{\mathcal{R}_{\alpha}}{\stackrel{*}{\longrightarrow}}\right)[\mathrm{NF}]$ is recognizable
\Rightarrow It is decidable whether $C[\bullet] \notin\left(\underset{\mathcal{R}_{\alpha}}{*}\right)[\mathrm{NF}]$
\Rightarrow It is decidable whether a redex is \mathcal{R}_{α}-needed

$$
\underset{\mathcal{R}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{g}}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{lg}}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{nv}}}{*} \subseteq \underset{\mathcal{R}_{\mathrm{s}}}{*}
$$

Theorem ([Comon 95])

The set of reducible terms without \mathcal{R}_{s}-needed redex is recognizable.

Theorem ([Durand-Middeldorp 97])

If \mathcal{R}_{α} is recognizability preserving then the set of reducible terms without \mathcal{R}_{α}-needed redex is recognizable.

Corollary
If is decidable whether a left-linear TRS belongs to CBN_{α} for $\alpha \in\{\mathrm{s}, \mathrm{nv}, \mathrm{lg}, \mathrm{g}\}$.

Results

For the CBN_{α} classes, we have obtained

- decidability results
- complexity results
- modularity results

Complexity

- $\mathcal{R} \in \mathrm{CBN}_{\mathrm{nv}}$?
$\mathcal{R} \in \mathrm{CBN}_{\mathrm{Ig}}$? double exponential

- $\mathcal{R} \in \mathrm{FB}$? quadratic $\mathrm{FB} \subsetneq \mathrm{CBN}_{\mathrm{s}}$

Modularity

Motivation: Since deciding membership in CBN_{α} is complex modularity results are important

- Modularity

$$
\begin{aligned}
& \left(\mathcal{R}_{1}, \mathcal{F}_{1}\right) \in \mathrm{CBN}_{\alpha} \\
& \left(\mathcal{R}_{2}, \mathcal{F}_{2}\right) \in \mathrm{CBN}_{\alpha}
\end{aligned} \stackrel{?}{\Longrightarrow}\left(\mathcal{R}_{1} \cup \mathcal{R}_{2}, \mathcal{F}_{1} \cup \mathcal{F}_{2}\right) \in \mathrm{CBN}_{\alpha}
$$

- First step towards modularity: Signature extension

- Neither one of these two implications hold in general.

Modularity

Motivation: Since deciding membership in CBN_{α} is complex modularity results are important

- Modularity

$$
\begin{aligned}
& \left(\mathcal{R}_{1}, \mathcal{F}_{1}\right) \in \mathrm{CBN}_{\alpha} \\
& \left(\mathcal{R}_{2}, \mathcal{F}_{2}\right) \in \mathrm{CBN}_{\alpha}
\end{aligned} \stackrel{?}{\Longrightarrow}\left(\mathcal{R}_{1} \cup \mathcal{R}_{2}, \mathcal{F}_{1} \cup \mathcal{F}_{2}\right) \in \mathrm{CBN}_{\alpha}
$$

- First step towards modularity: Signature extension

$$
\begin{aligned}
(\mathcal{R}, \mathcal{F}) \in \mathrm{CBN}_{\alpha} \\
\mathcal{F} \subsetneq \mathcal{G}
\end{aligned} \quad \stackrel{?}{\Longrightarrow}(\mathcal{R}, \mathcal{G}) \in \mathrm{CBN}_{\alpha}
$$

- Neither one of these two implications hold in general.

Signature extension

Results concerning signature extension [Durand-Middeldorp 01]:

$$
\operatorname{Var}(r) \subseteq \operatorname{Var}(I), \forall I \rightarrow r \xrightarrow{r} \text { Th } H L
$$

$\operatorname{ENF}(\mathcal{R}) \neq \varnothing \longrightarrow$ Th DM1
${ }^{N} \downarrow$

Modularity

Results concerning modularity [Durand-Middeldorp 05]:

Also results for constructor sharing combinations

The need for Autowrite

useful properties for obtaining sufficient conditions:

- $\operatorname{NF}(\mathcal{R}, \mathcal{F}) \neq \emptyset$
- $\operatorname{ENF}(\mathcal{R}, \mathcal{F}) \neq \emptyset$
- $\operatorname{WN}\left(\mathcal{R}_{\alpha}, \mathcal{G}, \mathcal{F}\right)=\mathrm{WN}\left(\mathcal{R}_{\alpha}, \mathcal{F}\right)$
- is \mathcal{R}_{α} collapsing? arbitrary?
restriction \Rightarrow counterexample
For each counterexample, we needed to check that $(\mathcal{R}, \mathcal{F}) \in \mathrm{CBN}_{\alpha},(\mathcal{R}, \mathcal{G}) \notin \mathrm{CBN}_{\alpha}$ and some of the above conditions.
\Rightarrow many tedious proofs
\Rightarrow Autowrite instead

Autowrite

Main algorithms implemented in Autowrite

Automata

- boolean operations
- emptiness problem
- emptiness of intersection

Term Rewriting Systems

For left-linear $\mathcal{R}, \alpha \in\{\mathrm{s}, \mathrm{nv}, \lg , \mathrm{g}\}$ and automaton \mathcal{A},

- Build an automaton $\mathcal{C}_{\mathcal{R}_{\alpha}, \mathcal{A}}$ such that $L\left(\mathcal{C}_{\mathcal{R}_{\alpha}, \mathcal{A}}\right)=\left(\underset{\mathcal{R}_{\alpha}}{*}\right)[L(\mathcal{A})]$,
- Build an automaton $\mathcal{D}_{\mathcal{R}_{\alpha}}$ recognizing the set of reducible terms without \mathcal{R}_{α}-needed redexes.

Most of the other operations are combinations of the above.

The outside Autowrite

Autowrite handles a set of specifications each specification contains

- a signature,
- possibly a set of variables,
- a list of Autowrite objects built upon the signature and variables

The Autowrite objects are:

- Term
- Termset [a set of terms] (named)
- TRS (named)
- Automaton (named)

Example of a specification

Ops 0:0 s:1 +:2 *:2
Vars x y
TRS R
; addition
$+(0, x)->x$
$+(s(x), y)->s(+(x, y))$
; product

* ($0, x$) -> 0
* $(\mathrm{s}(\mathrm{x}), \mathrm{y}) \rightarrow+(*(\mathrm{x}, \mathrm{y}), \mathrm{y})$

Automaton EVEN
States odd even
Final States even

Transitions
0 -> even
s(even) -> odd
s(odd) -> even

Termset RS
0 s (x)

Term *(* (0,s(0)),+(0,s(0)))
Term * $(0,+(0, \mathrm{~s}(0)))$
Term * $(*(0, s(0)), o)$
Term s(s(s(0)))

The inside Autowrite

- core of the system written in CLOS (Common Lisp Oriented System)
- the graphical interface is written using McCLIM the free implementation of the CLIM specification
- alltogether about 7500 lines of code

Choices for better performance:

- use sharing rather than copying (especially for automata states)
- compare references not the contents of the objects
- use hash tables
- use memoization
- Autowrite has been used to check many of our examples
- Autowrite has helped us finding counterexamples
- Easy to install (self-contained) and use (no Lisp knowlegde required)
- Autowrite runs faster than other systems implementing tree automata like Timbuk or RX
- Available from my Web page: http://dept-info.u-bordeaux.fr/~idurand

Perspectives

- improve performance
- apply to termination
- extend to other types of automata

Computation to root-stable forms

Definition

a term is root-stable if it does not rewrite to a redex (the useful notion for dealing with infinite normal forms)

- [Middeldorp 97] shows that needed redexes are not adequate for computing root-stable forms and proposes the notion root-needed redex
- difficulties for extending our framework to compute root-stable forms
- undecidability of root-stability
- root-neededness depends not only the position but also on the redex itself

Results:

- definition of $\mathrm{CBN}-\mathrm{RS}_{\alpha, \beta}$ classes with decidable call-by-need strategy to compute α-root-stable forms
- decidability and complexity results

Below strong sequentiality

- quadratic decision algorithm for Forward-Branching systems [Durand 94]
- Bruno Salinier PHD's thesis
- definition of the class of Constructor Equivalent TRSs [Durand-Salinier 93,94]
- transformation from forward-branching to strong sequential constructor [Salinier-Strandh 96,97]
- implementation of the transformation in

Autowrite [Durand 04]

Strong sequentiality

Conjecture ([Middeldorp and Klop 91])

Deciding strong sequentiality is NP-complete (problem \#9 in the list of RTA open problems)
more than 12 years of research

Conjecture ([Durand 05])
the problem is both in NP and co-NP

Conclusion

- Results on computations to root-stable forms still unpublished
- No result on Klop and Middeldorp's conjecture
- Theorical and practical contribution
- Bruno Salinier PHD's thesis
- Journal articles:
- Conferences communications:

Conclusion

- Results on computations to root-stable forms still unpublished
- No result on Klop and Middeldorp's conjecture
- Theorical and practical contribution
- Bruno Salinier PHD's thesis
- Journal articles: [IPL 93],[IPL 94], [JSC 94] [ENTCS 05] [IC 05]
- Conferences communications: [PEPM 91], [CADE 97], [FOSSACS 01], [RTA 02], [WRS 04]

Perspectives

- generalize systems that preserve recognizability
- apply automata techniques to termination
- computational linguistics
- ?

