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Preface

This manuscript has been written to document my researck agoa doctoral candidate in
the DEMAR team at the Laboratory of Computer Science, Mieaeonics and Control in
Montpellier (LIRMM), during the period from October 2005 @xtober 2008.

DEMAR (Démbulation et Mouvement Artificiel) is a joint pegjt between the French
National Institute in Computer Science and Control (INRI&)e French National Cen-
ter for Scientific Research (CNRS), and Universities of Npefiter | and Il. The team’s
research activities are modeling and controlling the husgrsory motor system, and im-
planted neuroprosthetic devices.

International collaboration between DEMAR and the CenterSensory-Motor Inter-
action (SMI) at the University of Aalborg in Denmark exisisce 2003, and the research
proposal for this thesis is the result of this collaborati®he proposal concerns the reha-
bilitation of movement of paralyzed limbs through functbelectrical stimulation (FES),
an interdisciplinary field that requires joint efforts ofesatists with backgrounds in neuro-
physiology, robotics, and microelectronics. The objexty the project is to explore the
possibility of using information from sensory nerve fibefsruscle receptors as feedback
in closed-loop FES systems. Challenges involve theolesperimental, and technical
aspects.

Financial support for the duration of the thesis was insurgdNRIA on the basis
of funding provided by the European Aeronautic Defense goac& (EADS) corporate
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Abstract

The topic of this thesis was the rehabilitation of movemdnparalyzed limbs through
functional electrical stimulation (FES). The objectivetbke project was to explore the
possibility of using information from sensory nerve fibefsruscle receptors as feedback
of the closed-loop control of FES systems using intrafadargeripheral nerve electrodes.

Acute animal experiments were performed to record affarargcle spindle responses
to passive stretch. The recordings were performed usingehethin-film Longitudinal
Intra-Fascicular Electrode (tfLIFE), developed by Dr. Kérshida at Aalborg University
in Denmark. A first-order model of muscle spindle respongeasssive muscle stretch was
proposed that manages to capture the non-linear propeftteg afferent neural activity.
Moreover, estimation of muscle state from the recordedirshinnel ENG provided more
robust results compared to using single-channel recosding

For the abovementioned model to be usable in a estimator stlestate, the rate of
change of muscle length during movement must have negdigfiect on model param-
eters. A neural spike detection and classification schensedswaeloped for the purpose
of isolating sensory neural activity of muscle receptorgifg minimal sensitivity to the
velocity of muscle motion. The algorithm was based on thetirsghle continuous wavelet
transform using complex wavelets. The detection schenpedormes the commonly used
simple threshold detection, especially with recordingsilow SNR. Results of classifi-
cation of units indicate that the developed classifier ig ablisolate activity having linear
relationship with muscle length, which is a step towarddioamodel-based estimation of
muscle length that can be used in a closed-loop FES systdmatitiral sensory feedback.

One of the main issues limiting the interpretation of ENGadatthe low level of the
neural signal compared to the level of noise in the recoslinQur hypothesis was that
shielding the implant site would help improve signal-taseolevel. Experimental results
from a preliminary study we had performed indicate thatiplig@ standard cuff electrode
around the tfLIFE active sites increases the level of EN@aig the recordings.

Key words: Neural Engineering, Neural Prostheses, Biomedical Signatessing,
Functional Electrical Stimulation, Natural Sensory Fesxky Control Strategies.
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Chapter 1

Introduction

Injuries to both central and peripheral nervous system eanussly disrupt normal move-
ments. Stroke can destroy neurons in cortical and subabdreas. Multiple sclerosis or
spinal cord injury can block transmission of signals to mateurons. Clearly, a “cure”
in the form of complete repair of the damaged neural strestwith restoration of normal
bodily functions would be the ideal, but it is not achievasi¢his time.

Much interest and optimism was generated in the 1980s wheasishown that portions
of peripheral nerves could be used as tissue grafts withdtenpal to “bridge the gap” of
a complete spinal transection [Richardson et al., 1980¢&mStells transplant therapy is
another approach [Zigova et al., 2002]. In the last decaeletihave been several reports of
successful regeneration of certain spinal pathways inaggarently resulting in improve-
ments of motor function after partial or even complete spi@msections [Bregman et al.,
1995], [Cheng et al., 1996], [Olson, 1997], [Kim et al., 19fBrosamle et al., 2000],
[Ramon-Cueto et al., 2000]. However, though neural regeiwer using tissue bridges can
certainly be achieved, it is far from clear whether funcéibconnections are made between
descending axons and neurones below the level of lesiortoiResfunction, when it oc-
curs, may result from a facilitated recovery of local nealanrcuits rather than a restored
flow of commands in descending pathways [Jones et al., 2{Pd4rson, 2001].

Taking the optimistic view that some combination of tissudding, stem-cell implants
[Ribotta et al., 2000], [Slawinska et al., 2000] and grovatbtbrs and molecules that block
factors inhibitory to regeneration [Marcoux and Rossigr26l00] will become a clinical
reality in the future, it remains almost certain that thections of daily life will only
be partially restored. In the light of this, there is cleaalyontinuing need for assisting
technologies [Prochazka et al., 2001], which should be asemomplementary rather than
concurrent research areas.



2 Restoring Movement with Functional Electrical Stimulatio

Reference Error Closed-loop Stimulation Musculoskeletal Actual
trajectory controller system trajectory

Sensors

Figure 1.1: Organization of a classical closed-loop cdrftnactional electrical stimulation
system. From Popovic and Sinkjaer [2000].

1.1 Restoring Movement with Functional Electrical Stim-
ulation

The 1960s saw the birth of functional electrical stimulat{&ES) for the restoration of
movement in partially paralyzed people [Vodovnik et al.68p [Vodovnik et al., 1967].

FES is a technique for restoring function of paralyzed nesdy applying electrical

stimulation pulses to sensory-motor systems via electredgch are placed on the skin,
or implanted. Forces generated in muscles activated by FESbe graded by vary-
ing parameters of stimulation pulses in order to restoretfan. Typical FES applica-

tions include correction of drop-foot [Haugland and Sinkja95], [Lyons et al., 2002],

[Hansen et al., 2003], [Hansen et al., 2004], hand grasp roketand paraplegic pa-
tients [Haugland et al., 1999], [Popovit and Sinkjeer, 30@0mann and Haugland, 2004],
standing and walking in paraplegic patients [Guiraud ¢t24l06], and bladder and bowel
voiding [Jezernik and Sinkjaer, 1998], [Johnston et al.,.5200

1.2 Closed-Loop FES using Natural Sensory Feedback

When FES is used for restoration of movement, closed-loorabis desirable, in order
to correct for disturbances and unavoidable musculosMdatebdeling errors. Joint angle
and force transducers provide signals from which the custate of the system can be
estimated and fed back to the controller (Fig./ 1.1). Cldseq-controllers are classically
error driven, i.e. they respond to the trajectory error \Wwhgcdetermined by comparing the
actual and the reference trajectory.

In order to provide complex motor actions such as walkingrasging, closed-loop
FES systems require feedback from many sensors. Artifioraefand joint angle trans-
ducers are difficult to embbed and are insufficiently biocatiigle and reliable for imple-
mentation [Zou et al., 2003], [Roetenberg et al., 2007]. yTten be used as a source of
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information during the stimulation of the neuromusculastsyn but they present problems
such as the need for frequent calibration, difficulties tsifp@n, and cosmetic unaccept-
ability due to sensor dimensions and appearance. The tatebe solved by making the
sensors fully implanted [Loeb et al., 2000], [Loeb et alQ2]) [Guiraud et al., 2006]. This
is particularly suitable when the stimulator and electsode implanted.

With the advent of advanced implanted prosthetic intedanatural sensors are being
explored as an alternative source for feedback informatiBy directly interfacing the
peripheral nerves, itis possible to record signals frommatsensors distributed throughout
the body [Haugland and Hoffer, 1994], [Hoffer et al., 199dtrange and Hoffer, 1999],
[Sinkjeer, 2000]. Muscle spindles are one type of naturasgenTheir main function is to
signal changes in the length of the muscle within which thesyde [Kandel et al., 2000].
Changes in the muscle length are associated with changhs anfyles of the joints that
the muscles cross. Therefore, their activity could be usgutdvide feedback information
about muscle state in a closed-loop FES system [Yoshida anchiH1996].

1.3 Problem Statement

One of the main challenges in systems using natural sensedpéck is the lack of a fully

reliable and sufficiently selective neural interface faxaieling of natural sensors activity.
The neuroelectric activity recorded with state-of-theragural interfaces is a mixture of
signals from several adjacent neurons and noise. To im@meleetivity, electrode active

sites size must be reduced, which unfortunately impliesnbeease of background noise
in the recordings. Consequently, the nerve signal level ike order of a magnitude of the
background noise, leading to low signal-to-noise ratio RpNT his, in turn, impedes the

performance of closed-loop FES systems where muscle spiredive activity is used as
feedback. Due to the lack of recording selectivity and lowRSkttate of the art systems are
still unable to access information from individual sensfipgrs, but only their aggregate
activity [Yoshida and Horch, 1996]. This leads to limitedp&pability of such systems

(limited motion speed and range).

Moreover, state of the art closed-loop systems using muscéptor neural activity for
feedback, such as the system of Yoshida and Horch [1996hased on PID controllers.
PID gains are especially difficult to tune when dealing withstie and do not allow for
coping with complex muscle behaviour and properties, idiclg fatigue. Model-based
closed-loop control would allow for having more advancextoal laws designed that could
eventually provide more robust control to face perturbvetiand fatigue.



4 Contribution

1.4 Contribution

In this thesis we use a promising new multi-electrode stmector FES: the microfabricated
multi-site thin-film Longitudinal Intra-Fascicular Eleode (tfLIFE) array that is realized
as a patterned thin film on polyimide structure [Yoshida et24l00]. The electrode had not
yet been fully tested in experimental conditions and it viresfirst objective of our work to
test the new electrode in vivo, in recordings of multi-cheliENG in acute animal prepara-
tions. Throughout the thesis more than 20 acute animal erpats have been performed,
where in almost all the tfLIFE was successfully implanted BNG data acquired.

The second objective was to improve the state of the art seddoop control of FES
using muscle spindle activity as feedback. A model of muspiadle neural response to
passive muscle stretch was developed which, in combinatitna developed novel spike
sorting algorithm, provides a basis for an on-line estimatenuscle state in a closed-loop
FES system, where the estimator would feed back to the dtarttbe information about
the length of the muscle in which the spindles reside in. Tdwhmethod for classification
based on spike signatures in wavelet space performs eguellyas the best state of the
art methods, but, unlike other methods, requires no additioomputation time because
it uses data obtained directly from the detection step ofaligerithm. Classification of
muscle receptor action potentials manages to produceesldss/ing firing rates that are
less dependant on muscle motion velocity compared to the whgre aggregate firing
of all fibers is used. This should provide a larger range ofateusotion in which the
developed model could be used as a basis for a future ondilmaator of muscle state in
a closed-loop FES system. We have also shown that usingpteutthannels of ENG, now
available with the tfLIFE, provides a more robust estimatd muscle length compared to
estimation based on a single channel of ENG.

A novel shielding technique was also proposed for impro@Ngr in signal acquisition.
Several recording configurations were experimentallyetad and the results indicate that
placing a cuff electrode around the tfLIFE implant site imyes the SNR in recordings
made using intraneural longitudinally placed electrodes.

During the course of the work, three papers have been actaptepresented at inter-
national conferences, and one journal paper has been satimiork on two more journal
papers is underway and will be submitted as soon as possible.

1.5 Thesis Outline

Chapter 2 starts with a brief overview of the neuroanatohhesis and sensory-motor
systems relevant for natural control of movement. Pathptdghese systems is given for
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the most common injuries of the central nervous system. toedly, the chapter concludes
with an introduction to neuroprostheses for the restonatfanovement and an overview of
principles and instrumentation for recording of activitgrh the peripheral nervous system.

Chapter 3 introduces the FES control scheme adopted inhbsst and reports the
work on modeling the muscle spindle nerve response to passiscle stretch, required for
eventually building the a model-based estimator of mudele sAcute animal experiments
are described first, followed by the modeling part. Modell@a#on and discussion of
results are presented last.

Chapter 4 reports the work on an algorithm for decomposiegntiixture of signals
from multiple nerve fibers into separate sources. The dlguoris divided into two parts:
1) neural spike detection and 2) classification of detectéidmmpotentials. The developed
method was evaluated on synthesized data and its perfoentantpared to existing meth-
ods. Eventually, the algorithm was evaluated on experialgnecorded data. The chapter
concludes with the discussion of results.

Chapter 5 reports the work on a shielding technique for impigpthe signal-to-noise
ratio in recording neural activity using intra-neural lalaginal electrodes. The method is
described and evaluated in experimental conditions. Rearg discussed and the chapter
concludes with suggestions of how the shielding structatédcbe improved.

Chapter 6 gives the global final remarks and suggests pesditdctions for future
work. The final chapter gives the summary of the thesis in¢hen






Chapter 2

Control of Movement

2.1 Neuroanatomical Basis for Control of Movement

In this section we recall the principles and mechanisms afidumotor control that are
necessary for understanding the following chapters. Tiesis is on the border between
engineering and biology worlds and some readers may notrbéida with physiology.
Most of the background presented in this chapter are extfemtn Popovic and Sinkjaer
[2000] and Kandel et al. [2000].

2.1.1 The Central Nervous System

The central nervous system consists of the brain and thalspind. The spinal cord
receives information from receptors in the skin, joints andscles from the trunk and
limbs, and it is the final station of issuing commands for nmogat. In the spinal cord
there is an orderly arrangement of motor and sensory nudbatrolling the limbs and
trunk. In addition to nuclei, the spinal cord is connectethi® peripheral nervous system
throughafferentpathways for sensory information to flow from the body to thait and
efferentpathways for commands necessary for motor control to desitem the brain to
the body. Thus, afferent nerve fibers carry information @ dhkntral nervous system and
efferent nerve fibers carry command out of the central nexrgystem.

A transverse section of the spinal cord shows that it is aegahin a butterfly-shaped
centralized gray area, where the cell bodies of the ceméiélneurons are located, and a
surrounding region of the white matter that contains affeemd efferent axons (Fig. 2.1).
The gray matter is divided into the dorsal horn and the véhien. This is where the
cell bodies of motor neurons that innervate the skeletakteasare located. Sensory fibers
carrying information about perception enter the spinablcatr the dorsal side. The cell

7
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Lateral columns

/

\
Ventral columns

Figure 2.1: Major anatomical features of the spinal corde THit side depicts a cell stain
of the gray matter and the right side a fiber stained sectibe.vEntral horn contains motor
neurons whereas the dorsal horn contains sensory neunams.Kandel et al. [2000].

bodies of these fibers are in the dorsal root ganglia, logatdoutside the spinal cord.
The information from these fibers is projected into the cealetortex, where it is used for
the perception of limb position.

Large regions of the cerebral cortex are committed to mowmtrmed sensation (Fig.
2.2). The primary motor cortex has neurons that projectdiréo the spinal cord. The pri-
mary sensory cortex receive information from peripheregptors with only a few synapses
interposed. Surrounding the primary areas are the higltar @ensory and motor areas.
These areas process more complex aspects of a sensory mnodatfiotor function. The
purpose of the higher order sensory areas is to achieveegraaalysis and integration
of information coming from the primary sensory areas. Intcst, the flow of informa-
tion from the motor areas is in the opposite direction. Higbkeler motor areas distill
complex information about a potential motor action andyrél&o the primary motor cor-
tex, which is the site from which voluntary movement is iamtiéd [Kandel et al., 2000],
[Popovit and Sinkjeer, 2000]. Damage to any of these areadeeal to sensory-motor
deficiencies and disruption of the normal control of movetnen

2.1.2 The Neuron

The nervous system is composed of two major types of cellstoms and glia. Neurons
integrate and convey information and glia provide suppmrttie neurons. A generic neu-
ral cell or neuron consists of four morphologically and pbiagically distinct parts: a
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Primary
mator Primary eSOy
cortex : Sensory
Premotor | Sensory unimodal
cortex | cortex association
cortex

Anterior
association
area

Seriny Posterior
A b association

visual
cortex

Visual unimodal
Primary auditory cortex Auditory unimodal association
association cortex cortex

Figure 2.2: The lateral surface of the human brain showsaijiens of the primary sensory
and motor cortices, and the higher-order motor and senswtices. From Kandel et al.
[2000].

receiving pole, a terminal transmitting pole, an intermgntonducting segment, and a cell
body or soma (Fig. 2.3). The neuron possess two types of glesimic processes extend-
ing outward from the soma: dentrites and axons. The prosessg in length and in the
amount and extent of their branching. The dendrites arellysualtiple, short and highly
branched. They constitute the receiving pole of the celé &ons are usually single, long,
and although one or more collateral branches may occutjwalaunbranched except at
their ends. The axon is responsible for both conduction oftatton and its transmission
to other cells.

An axon generates action potentials (nerve impulses) andums them from the re-
ceiving part of the cell to the transmitting region. It is dic&te cylinder of neural cy-
toplasm with a limitting membrane, the axolemma. It variedength and in diameter
in different types of neurons. Axons are enclosed in a callaheath of lipid material,
the myelin sheath, which serves to electrically insulatgvidual axons from one another.
Small axons, which are invested by only a single layer of #heall process, are called
“unmyelinated” fibers. Large axons are enclosed with mom@enous sheathing layers
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Figure 2.3: Structure of a neuron. From Martini [2005].

formed by one or more windings of the sheath cell process niyedin sheath of larger ax-
ons is segmented, rather than continuous, and a singlenstelaencloses each segment.
The length of the segments and the thickness of the myeliguaite consistent for neu-
rons of a given diameter. Large axons have longer segmetts2inm long) and thicker
sheaths. The segments are separated by short unmyeliregisdaalled Ranvier nodes.
Neurons can have axon diameters ranging frompihdin small unmyelinated fibers to
about 20um in the largest myelinated fibers.

The cell body of the neuron is the metabolic center of the tielevered from the cell
body, a neuronal axon soon degenerates because these lingied®sses are interrupted.

Neurons can be classified as either receptor neurons ortsynaprons, based on the
type of input they receive. Receptor neurons are specthtzeeact to specific types of
stimuli, and their dendritic parts are appropriately addph structure. Synaptic neurons
receive information from other neurons by means of syndgpitsmission.

A number of different kinds of stimuli may excite neurons. eTinormal stimulus for
synaptic neurons is the action upon their membranes of datnansmitters released by
other neurons. Stimulation of receptor neurons is nornmalthyided by chemical, thermal,
mechanical, and electromagnetic stimuli.

2.1.3 Membrane Excitation and the Action Potential

Inside the cell membrane of a neuron, there is a slight negyatiarge with respect to the
outside. The cause is a slight excess of positive ions autsid cell membrane and a
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Figure 2.4: Phases of the action potential: depolarizatigpolarization and hyperpolar-
ization. From Matrtini [2005].

slight excess of negative ions inside the cell membranes tihequal charge distribution
is created by differences in the permeability of the memétarnvarious ions as well as by
active mechanisms that transport ions accross the membraaeesulting potential across
the cell membrane is referred as the transmembrane pdtentesting potential when the
cell is undisturbed.

All neural activity begins with a change in the resting ponA stimulus produces a
localized temporary change in the transmembrane potewtiadh decreases with distance.
It is called a graded potential. If the graded potential figently large it produces an
action potential in the membrane of the axon. An action paikis an electrical impulse
that is propagated across the surface of the membrane andaés not diminish as it
moves away from its source.

When a biological cell or patch of membrane undergoes aoragtential, or elec-
trical excitation, the polarity of the transmembrane wgpitawings rapidly from negative
to positive and back. An action potential involves a depnédion, a re-polarization and
finally a hyperpolarization (or "undershoot”). The periddneembrane hyperpolarization
is called the refractory period of the nerve fiber (to be ex@d in the next section). The
different phases of the action potential can be seen on Hg. 2

The action potential spreads actively across the neurdh,ami”all-or-none” response.
In this response, the action potential is activated to depation, or not at all.
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The transmembrane voltage changes that take place duriagt@m potential result
from changes in the permeability of the membrane to spedifis,ithe internal and exter-
nal concentrations of which cells maintain in an imbalancethe axon fibers of nerves,
depolarization results from the inward rush of sodium iomile repolarization and hy-
perpolarization arise from an outward rush of potassiurs.i@alcium ions make up most
or all of the depolarizing currents at an axon’s presynaptiminus, in muscle cells and in
some dendrites.

Changes in membrane permeability and the onset and cessétanic currents reflect
the opening and closing of voltage-gated ion channels, whiovide portals through the
membrane for ions. Residing in and spanning the membraese throteins sense and
respond to changes in transmembrane potential.

The depolarization phase of an action potential is due t@g®ning of voltage-gated
ion channels, either sodium channels or calcium channedscmmbination of both, de-
pending on the particular membrane. Sodium ions and calmuamare positively charged.
Cells use chemical energy to pump sodium and calcium iongwotss the cell surface
membrane. When a voltage-gated sodium channel or calciamneh opens, positively
charged ions move into the cell. Voltage-gated sodium chlgnautomatically gate shut
after about a millisecond. Calcium-mediated action padésitan be much longer in dura-
tion. The re-polarization phase of an action potential is tiuthe opening of voltage-gated
potassium channels. Cells normally keep the concentrafigotassium ions high inside
cells. When voltage-gated potassium channels open, yagittharged potassium ions
move out of the cell, causing the membrane potential to metua negative inside poten-
tial.

In myelinated fibers the action potential travels from oreaten in the cell to another,
but ion flow occurs only at the nodes of Ranvier. As a resu#t,abtion potential signal
jumps along the axon, from node to node, rather than propagsinoothly, as they do in
unmyelinated axons. The clustering of voltage-gated sodind potassium ion channels
at the nodes permit this behavior, called saltatory conduact

2.1.4 Some Characteristics of Nerve Conduction
Refractory Periods

As the action potential travels along the fiber surface, iitststs of a wave of negativity

followed by an area of gradually recovering positivity. Wéhan area is in its reverse
(active) state, it is absolutely refractory and cannot Istimaulated. During recovery, the

membrane is relatively refractory. During this periodeimée or sustained stimuli can re-
stimulate the original site.
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Frequency of Impulses

Neurons normally carry trains of impulses. In general, radtatimuli are of sufficient
duration to reactivate the membrane after the absolutaatefry period. A single electric
shock may produce a single action potential, but only bex@ssluration does not outlast
the absolute refractory period of the fiber. The strongesthmsulus, the the earlier will it
re-excite, the shorter will be the time between impulseschgethe greater the frequency.

Velocity of Conduction

Velocity of conduction depends not only on the myelinatian &lso on the diameter of
the fiber. It can be fairly accurately said that the condurctielocity is proportional to
the diameter of the axon. The largest motor and sensory fieess, with diameters near
20 um, have conduction velocities up to 120 m/s. In small unnmgtéd fibers, the ve-
locities range from 0.7 to 2 m/s. Large fibers not only conduote rapidly than small
fibers, but characteristically have lower stimulus thrédfi@and larger spikes with shorter
duration.

Classification of Nerve Fibers

Efferent nerve fibers are classified into three major gro&pB, and C, on the basis of their
conduction velocity. Group C contains the unmyelinatedgensglionic fibers and group
B the small myelinated fibers. Group A includes the largeidiggconducting myelinated
fibers. Group A has been further divided into four subgroahsha ¢), beta 3), gamma
(y), and delta §), based on the velocity and diameter. Sensory nerve fibess baen
separately classified according to diameter into groupslli),land 1V, with corresponding
velocities. In order to avoid confusion, use of alphabétiEsignations is restricted to
efferent fibers and the numerical designations to afferbatdi

Neural Adaptation

Neural adaptation, or sensory adaptation, is a change onerih the responsiveness of
the sensory system to a constant stimulus. It results in @edse of neural firing rate over
time.
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2.2 Skeletal Muscles as Actuators of Movement

The human motor system comprises three interrelated amabsystems: the muscle
system, which supplies the power to move the skeleton; theuas system, which directs
and regulates the activity of the muscles. Muscle pairs @wated across joints, being
attached at two or more points to bones via tendons. Movermm@nbduced by shortening
of the muscle, which brings the muscle ends closer to eadr,ailiimately changing the
joint across which it acts.

The most distinguishing characteristic of muscle is cantility. By contractility, refer-
ence is made to the capacity of the muscle to produce foreesketits ends. Relaxation is
the opposite of contraction. It is entirely passive. Botlaxation and contraction progress
from zero to maximal values over a finite time. Neither isamsaneous.

2.2.1 Muscle Length and Force

The most obvious property of the muscle is its capacity tetig/force against resistance.
The length of the muscle at the time of activation markedfgdas its ability to develop
force and to perform external work. When a muscle contrwesgontractile material itself
shortens, but whether the muscle shortens or not dependsearlation of the internal
force developed by the muscle to the external force exestetidresistance or load.

Two general types of muscle contractions are distinguistaabrding to the length
change, induced by the relationship between internal atetred forces: isometric and
isotonic. If the internal force generated by the contractibmponents does not exceed
the external force of the resistance and if no change of rausalgth occurs during the
contraction, the contraction isometric If the constant internal force produced by the
muscle is maintained during the movement, the contracticgotonic

The initial length of the muscle, i.e. its length at the tinfesbmulation, influences
the magnitude of its contractile response to a given stisiustretched muscle contracts
more forcefully than when it is unstretched at the time oivation. The force produced by
skeletal muscle can be differentiated into 2 types, actidbassive, their sum comprising
the muscle total force. The relationship of force to lengih be presented graphically in
a form of a force-length curve, in which a force in an isolategscle is plotted against a
series of muscle lengths from less that to greater than #tmgdength. (Fig. 2.5).

Within physiological limits, the greater the initial lefigthe greater the passive elastic
force of the muscle will be. Maximal active force is producddhe so called optimal
length of the muscle. In general, optimal length is closd&rhaximal body length of the
muscle, i.e. the greatest length the muscle can attain indheal living body. It is about
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Force

Figure 2.5: lllustration of what the force vs. length curgeitolated muscle looks like: 1)
passive elastic tension; 2) total force. The dashed linksndre muscle length at which
contraction force is maximal.

1.2 to 1.3 times the rest length of the muscle. Force capalsliess at shorter and longer
lengths.

2.2.2 Muscle Function

Motor skill and all forms of movement result from the intefan of muscular force, grav-
ity and any other external forces that act upon skeletatéeviehe muscles rarely act alone.
Rather, groups of muscles interact in many ways so that thieedemovement is accom-
plished. This interaction may take many different forms Isat ta muscle may serve in
a number of different capacities, depending on the movenWwhenever a muscle causes
movement by shortening, it is functioning as a mover or agjoilihe muscles whose action
oppose that of the agonists, are called antagonists.

2.3 Sensory Systems for Control of Movement

Sensory receptors are highly specialized neural strugtina receive information about
the external world. Various external stimuli that impingeun our bodies are transformed
into neural signals at these neural structures. Sensamynnation is coming from the en-
vironment and from within our bodies (e.g. blood vessels attions of skeletal muscles).
To distinguish the systems that convey signals from thefereint sources, the sensory
systems are divided into three categories: exterocegrog@rioceptive, and interoceptive.
Exteroceptive sensors are sensitive to external stimadiiaolude vision, audition, skin
sensation, and some chemical senses. Proprioceptiversgrsoide information about
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the relative position of the body in space. Interoceptivesses are concerned with internal
bodily events such as blood pressure and the concentrdtginapse in the blood. In the
following we will limit ourselves to proprioceptive sensoiMuscle receptors in particular.

Muscles and joints contain a variety of receptors. Somerifthe central nervous
system about the length of the muscle, others detect itsotgrend still other respond to
pressure and noxious stimuli. Among these receptors, twe Ibeen most thoroughly stud-
ied: muscle spindles and Golgi tendon organs. Although bbthese receptors discharge
when the muscle is stretched, differences in their anat@mitangement within the mus-
cle are reflected in the differences in information they eyto the central nervous system.
Muscle spindles, arranged in parallel to the muscle fibexsvige information about the
length of the muscle. Golgi tendon organs are arranged iesseith the muscle fibers and
inform the nervous system of the tension exerted by the raustlits tendon insertion to
the bone.

2.3.1 Muscle Spindles

Mammalian muscle spindles are receptors that are distéaghiliroughout the fleshy parts
of skeletal muscles. Each spindle, which consists of anp=utated group of specialized
muscle fibers, is tapered at each end and expanded at its cematdluid-filled capsule.
Within this capsule the terminal branches of afferent ndilvers entwine the muscular
elements (Fig. 2.6).

The small muscle fibers within the spindle are called insafdibers. They do not
contribute to the overall tension of the muscle, but reguthe excitability of the spin-
dle afferents by mechanically deforming the receptorsafosal fibers are innervated by
small motor cells of the ventral horn called gamma motoraoesir The large skeletal mus-
cle fibers that do develop substantial muscle tension atedcaktrafusal fibers and are
innervated by large alpha motorneurons of the ventral hbtheospinal cord.

Muscle spindles contain two types of intrafusal muscle §lsailed nuclear bag fibers
and nuclear chain fibers after the arrangement of nucleieir #guatorial region. The
bag fibers have nuclei clustered in groups of two and three.rlitlear chain fibers have
nuclei in a single row. The bag and chain fibers also diffehmkind of contraction they
exhibit. Bag fibers produce slow contractions, whereasncfilbérs produce fast (twitch)
contractions.

There are two types of afferent terminals in muscles spsmglemary and secondary.
Primary endings innervate every single intrafusal fibehinita spindle, while secondary
endings lie almost exclusively on nuclear chain fibers.
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Figure 2.6: The main components of the muscle spindle arafusal muscle fibers, af-
ferent sensory fiber endings, and efferent motor fiber ersdifitne sensory fiber endings
spiral around the the central regions of the intrafusal §ilaerd are responsive to stretch of
these fibers. From Kandel et al. [2000].

2.3.2 Golgi Tendon Organs

The Golgi tendon organ is a slender capsule approximatelyrilomg and 0.1 mm in
diameter. Each organ is in series with about 15-20 extraflsdetal muscle fibers that
enter the capsule through a tight fitting collar. The musdleré terminate in musculo-
tendonious junctions after entering the capsule and geeetd collagen fiber bundles that
become braided and run the length of the capsule (Fig. 27 afferent nerve fiber enters
the capsule in the middle and branches many times so thaktres &f the afferent fiber
become twisted within the braids of the collagen fiber bundi&hen the skeletal muscle
fibers contract, they cause the collagen fibers to contrastlting in compression of the
afferent nerve fibers and, thereby, their firing. Thus, tlgaoization of the collagen fiber
bundles makes them sensitive to small changes of muscletens

2.3.3 Muscle Receptors Information Encoding

Muscle stretch receptors encode information about musalgth, tension and velocity of
stretch. Loading the muscle activates both the tendon agdrihe muscle spindle recep-
tors. Contraction further stretches the tendon organs h@®wother hand, contraction of the
extrafusal muscle fibers makes the intrafusal fibers go sladkading the spindle so it is
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Figure 2.7: When a Golgi tendon organ is stretched, theaftesxon is compressed by
collagen fibers and its rate of firing increases. From Kantal. ¢2000].

no longer stretched. As a result, when the muscle is pagstatched, the afferent fibers
from either the tendon organ or the spindle would increase thte of discharge. In con-
trast, when the muscle actively contracts, the tendon digréimer increases its discharge,
but the spindle decreases or ceases altogether.

The primary and secondary afferents in the muscle spindgsond quite differently
to passive muscle stretch [Matthews and Stein, 1969a]. B¢ types respond to static
(steady-state) stretch, but they respond differently éalynamic phase of stretch. Primary
endings are very sensitive to the dynamic phase of streticbreas the secondary endings
are not. The secondary endings mainly encode informationtahe length of the muscle,
whereas the primary endings encode mainly information eth@urate of change in length.
The dynamic sensitivity of the primary endings is largely do the mechanical properties
of the nuclear bag fibers.

There are two type of gamma motorneurons. One type innexvatelear bag fibers
(gamma dynamic oyy) and the other type innervates nuclear chain fibers (gamatia st
or ys). The reason for the names dynamic and static is that thesengamotorneurons
regulate the sensitivity of spindle afferents either toaiyic or static phases of stretch. An
important role of the gamma system is to allow the spindle gntain a high sensitivity
over a wide range of muscle lengths during reflex and volyrdantractions [Barker et al.,
1970].

Golgi tendon organs have a relatively high activation thodds which is why it is
believed that they, together with their inhibitory spinahoections, function as a safety
device to prevent muscle damage during excessive strainildod Simon, 1967]. For
this reason muscle spindles are thought to have a more iengadie in proprioception, as
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they are continuously operating transducers.

Muscle receptors show sensory adaptation. Afferent fibieigfirates drop to the value
which is 40-70% of the initial firing rate. Moreover, the rattadaptation seems to be
indipendent from stimulus intensity [Adrian and Zotterma826].

2.4 Injury to Sensory-Motor Systems

Injury to any part of the organs and tissues responsible torament may have many, very
different consequences. In the following we give a very shoeerview.

2.4.1 Cerebro-Vascular Infarction (Stroke)

The term stroke, or cerebro-vascular accident, refers @onturological symptoms and
signs, usually focal and acute, which result from diseasesving blood vessels. Strokes
are either occlusive (due to closure of a blood vessel) odndragic (due to bleeding from
avessel). Insufficiency of blood supply is called ischerffid.is temporary, symptoms and
signs may clear with little or no pathological evidence sftie damage. Ischemia reduces
blood supply, thereby deprives tissue from oxygen, glucasd prevents the removal of
potentially toxic metabolites such as lactic acid. Wheihésuia is sufficiently severe and
prolonged, neurons and other cellular elements die. Depgiah which region of the cen-
tral nervous system is affected, the consequences canfeeedif contralateral weakness,
sensory loss, impaired spacial perception, and other netttlf related to movement.

2.4.2 Spinal Cord Injuries

Spinal cord injuries or diseases are a frequent reason abitity and result in total and
partial obstruction of flow of both sensory and motor infotima being instrumental for
normal life. Spinal cord injuries are most often caused lyrma, especially following
motor vehicle or sport accidents. The resulting syndronpedds on the extent of direct
injury of the cord or compression of the cord by displacedelmae or blood clots. In
extreme cases trauma may lead to complete or partial tretims®f the spinal cord. Le-
sions of the spinal cord give rise to motor and sensory symgthat are often related to a
particular sensory or motor segmental level of the spined ¢Big. 2.8).

Tetraplegia refers to impairment or loss or motor and/ossgnfunction in the cervical
segments of the spinal cord due to damage of neural eleméthig the spinal canal. It
results in the impairment of function in the arms as well ahetrunk, legs and pelvic or-
gans. Paraplegia is the impairment or loss of motor andfwag function in the thoracic,
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Figure 2.8: The spinal cord at different levels. It is divdde 4 major regions: cervical,

thoracic, lumbar, and sacral. Spinal nerves at the ceriggals innervate the head, neck,
and arms. Nerves at the thoracic level innervate the uppektwhile lumbar and sacral

spinal nerves innervate the lower trunk, back and legs. fFF(andeI et aI.‘[ZOOO].
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lumbar or sacral (but not cervical) segments of the spinal.c@/ith paraplegia arm func-

tioning is spared, but, depending on the level of injury, ik, legs, and pelvic organs
may be involved. Terms quadriparesis and paraparesisibestcomplete lessions, where
many functions are preserved.

2.4.3 Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune condition in whible immune system attacks
the central nervous system, leading to demyelination.féices the areas of the brain and
spinal cord known as the white matter. More specifically, MSttbys oligodendrocytes
which are the cells responsible for creating and maintgimirfatty layer, known as the
myelin sheath, which helps the neurons carry electricaladggy MS results in a thinning
or complete loss of myelin and, less frequently, the cut{ingnsection) of the neuron’s
extensions or axons. When the myelin is lost, the neuronaa#nger effectively conduct
their electrical signals. The name multiple sclerosisreefe the scars (scleroses - better
known as plagues or lesions) in the white matter. Loss of myelthese lesions causes
some of the symptoms, which vary widely depending upon whkighals are interrupted.
Almost any neurological symptom can accompany the disddsese related to movement
include changes in sensation (hypoesthesia), muscle wsskabnormal muscle spasms,
and difficulties with coordination and balance.

2.5 Neuroprostheses for Restoration of Movement

A neuroprosthesis is a system for replacing or augmentimgpetion that is lost or dimin-
ished because of injury or disease of the nervous systembddie principle for operation
of a neuroprosthesis is the stimulation of neuro-muscidaug, i.e. activation of sensory
and/or motor system. Advanced neuroprosthesis are biiinad, also capable of sensing
neuroelectric activity either in the central either in thexipheral nervous system. Func-
tional electrical stimulation (FES) is at this time the esseof neuroprosthesis. FES elicits
controlled neural activation by delivering low level elecal currents.

Fig.[2.9 shows the principle of operation of a neuroprosthésfter an injury or disease
of the central nervous system, parts of the body remainimcig normally, but other parts
of the body will be paralyzed. Many muscles will remain cocted to the CNS below the
level of injury. They are innervated, but not under voligbrontrol. These muscles can
be used for movement restoration. At the same time many sepathways remain intact
below the level of injury. Neuroprostheses can be consitlasea bypass of the damaged
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Figure 2.9: Principle of operation of neuroprostheses. @mments of the system are the
control system, stimulator, sensory feedback (not showd)edectrodes.

sensory-motor structure. Basically, the FES system ctangisan interface to the sensory
and motor systems of the body and a controlable stimulator.

2.5.1 Instrumentation for FES Systems

A functional diagram of the FES system (Fig. 2.10) shows taéhmomponents required
for restoring motor function after injury of the central weus system. The stimulator
receives control signals, generates trains of pulses ofredal charge, and delivers those
to the the excitable tissue via electrodes.

Each of the components has to be selected or built based @mp#u#ic application,
e.g. lower extremities upper extremities, single-channellti-channel, transcutaneous,
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Figure 2.10: Instrumentation for FES: command interfaoefrol system, electronic stim-
ulator, electrodes and sensors. Decision to move is at thtesy level of the user.

Reference Open-loop . . Musculoskeletal Actual
trajectory controller Stimulation system trajectory

Figure 2.11: Organization of an open-loop control systemontPopovit and Sinkjaer
[2000].

percutaneous, and fully implanted systems.

2.5.2 Control Systems for Movement

Open-loop controllers can be designed to function withawdvidedge of the actual plant
trajectory as shown in Fig. 2.11. The open-loop control&ivérs command signals based
on precomputed sequences. If there is any perturbatioritndjectory, an error will occur,
to which the system will not react. The precomputed sequeacepatterns of stimulation
for the appropriate muscles. Regardless of design methddnaplementation, the per-
formance of any open-loop control system will probably kediequate, since disturbances
will cause performance to deviate significantly and leadndasired behavior.

To correct for disturbances, a closed-loop controller wvatigoing knowledge of the
effects of the disturbance, or modification of muscle penfance due to fatigue, must
be designed. Joint angle and force transducers providalsigrom which the current
state of the system can be estimated and fed back to the Ben{feg. 2.12). Closed-
loop controllers are classically error driven — they resptmthe trajectory error which is
determined by comparing the actual and the desired trajestdID controllers are not an
entirely appropriate solution and it is difficult to tune thein factors.

Model-based closed-loop controllers would be more roblisey require sensors and
a dynamic model of the system to continuously recalculatedtfsired trajectory in order
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Figure 2.12: Organization of a closed-loop control systdrmom Popovic and Sinkjaer
[2000].
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Figure 2.13: Organization of a model-based control systéEnem Popovic and Sinkjaer
[2000].

to accomplish the task (Fig. 2.13). For example, during walkif the body is following

a desired path, the model-based controller uses the san@enstisnulation pattern as an
open-loop controller. If the body deviates from the degpath, the model-based controller
generates a new stimulation pattern which, according tartbdel, should maintain or

restore stable walking. Accounting for change of musclgertes and fatigue would also
be desirable.

2.5.3 Recording Nerve Activity

Advanced implanted neuroprostheses aim to take advantdagtorecording and activat-
ing properties of the neural interface to restore sensastenfunctions. Measurement of
nerve signals implies a recording chain that can be brokiertimee subsystems: biology,
interface, and signal conditioning system. The biologytesyscomprises the peripheral
nervous system, responsible for driving information frtmrthe central nervous system
to/from the periphery. The interface, i.e. the electrodesises and translates chemoelec-
tric potentials, which result from electrical activity cflés. The signal conditioning system
is the electronic apparatus that allows recording nervesdsgps potentials. A classical sig-
nal conditioning scheme can be seen on [Fig. 2.14.



Control of Movement 25
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Figure 2.14: Basic configuration of a biopotential recogdsystem. From Bronzino
[2000].

The measurements involve voltages at very low levels, wgh Bource impedances and
superimposed high level interference signals and noise. sidnals need to be amplified
to be compatible with devices such as displays, recordesdconverters for computer-
ized equipment. Amplifiers adequate to measure these sigagé to satisfy very specific
requirements. They have to provide amplification seledtvine physiological signal, re-
ject superimposed noise and interference signals, ancugigg protection from damages
through voltage and current surges for both patient andrel@c equipment. Visual rep-
resentation of recorded neuroelectric activity is callegl¢lectroneurogram (ENG).

2.5.4 Interfacing the Peripheral Nerve

A transverse section of a nerve is illustrated on Fig. [2.16rvl axons travel in bundles
through the body. These bundles are encapsulated in fibnective tissue. Entire nerve
bundles are surrounded by the epineurium, which bears nideeanechanical tension
applied to the nerve. Branching from the epineurium anddiing the nerve bundle into
fascicles is the perineurium, which bears the elongatiad.l¢-inally each individual axon
is surrounded by the endoneurium. Each axon, or nerve fiaerbe seen as an individual
information channel.

There are two basic designs of peripheral nerve recordegjreldes: extraneural and
intraneural electrodes. Extraneural electrodes are giyevrapped around the circum-
ference of the nerve and commonly named cuff electrodess ingasive than intraneural
electrodes, they permit recording from a whole nerve andat@rovide access to infor-
mation from a small group of neurons. Cuff electrodes coneevariety of configurations,
but they all have a longitudinal opening to allow instathation the nerve without dam-
aging it [Andreasen and Struijk, 2002], [Yoo and Durand, Z0QNavarro et al., 2005].
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Figure 2.15: The structure of a peripheral nerve. ﬁrom Harah Dhilloﬁ ‘[ZOOh].

silicon tube

Figure 2.16: Cuff electrode. It is wrapped around the cirffl@rence of the nerve. The
closed cuff is shown on the left, and the open on the right.nﬁHJoffer and KaIIesée
[1999].

They can also be in a form of a spirbl [Naples et‘al., 1988] aankmultiple contacts
ﬂGriII and Mortimek 1996], [Stieglitz et él., 2063]. Theastdard cuff is made out a poly-
mer and the electrodes within the cuff are made out of mesaklly being circumferential
around the inner surface of the cuff (Fig. 2.16).

Cuff electrodes are a proved method for chronic recordiamfthe peripheral nervous
system. The first chronic studies were done in the 197d)s bfeHbf97$] andl Stein et él.
1978]. For more than a decade now it has been used in maniestwtiere information
from whole-nerve recordings were extracted to provide edetection. A recent review
has been published H)y Struijk eﬂ él. [1@99]. One example gsrdBng from cutaneous
sensors for the detection of object slippage while beingd figoffer et aIH 199‘1] and ob-
taining skin contact force informatioh [Hoffer et él.. 1@89-Iuman trials have also also
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Figure 2.17: Longitudinal intrafascicular electrode. Ehectrode invades the epineurium
and perineurium, and placed longitudinally inside a nemsaeitcle. Courtesy of Dr. Ken
Yoshida.

been conducted [Sinkjeer et al., 1991]. Muscle spindle aefffieactivity was recorded to
provide natural sensory feedback in studies by [Haugland-offer, 1994], [Jensen et al.,
2002b], [Micera et al., 2001], [Riso et al., 2000], [Straragel Hoffer, 1999]. Due to its
poor selectivity and low signal-to-noise ratio, the diggignal processing algorithms used
to decode afferent nerve activity fail to provide reliabiéormation to be used for feedback
[Upshaw and Sinkjeer, 1998].

An alternative to the cuff is the longitudinal intrafasdemuelectrode (LIFE). It is de-
signed to be implanted within the body of the peripheral agowltimately serve as a neu-
ral interface for use in applications such as FES. They aeepl in intimate contact with
the nerve fibres to form a highly selective implanted neurtdrface (Fig. 2.17). When
used for stimulation, they demonstrate topological seligtin axonal recruitment, and
when used for recording, they pick up neural activity fronektively small population of
fibres to enable the resolution of single fibres [Goodall andcH, 1992], [Goodall et al.,
1993], [Malmstorm et al., 1998], [Yoshida and Stein, 199Ghemineau et al., 2004].

The first LIFE was produced by Ken Horch and Andy Schoenbetgetniversity of
Utah [Schoenberg et al., 1987]. Malagodi et al. [1989] dalfirst stimulation and record-
ings. Nannini and Horch [1991] did the first major work on éleal stimulation using
LIFEs. The first work with recording in chronic animals wasddy Lefurge et al. [1991]
and Goodall et al. [1991]. Results from their six-month gtadowed that intrafascicular

electrodes can be used on a chronic basis to acquire netivatlyac
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Figure 2.18: (A) Schematic of the tf-LIFE. Each half of theusture has a ground electrode
(GND), an indifferent electrode (LO, RO) and four recordsitgs (L1-4, R1-4). (B) The
tfLIFE is folded by the central line, so both branches canlbsaty apposed. (C) View of
the proximal part of the electrode. (D) Higher magnicatieewshowing the four active
sites made by Pt sputtering. (E) Photograph of the wholesysThe tf-LIFE is attached at
the ending part to a ceramic connector for nerve recordingiation. The loop between
the two branches of the tfLIFE is connected to a Kevlar lantleat in turn is glued to a
tungsten needle for insertion in the nerve. F%om Lago dﬂﬁb [l
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McNaughton and Horch [1992] developed the first dual charewrding with LIFES.
Yoshida and Horch [1993] did the first work with multichaniséimulation. It has been
shown that stimulation through them can be used to seléggtenulate nerve fascicles as
well as subfascicular regions within the nerve in the catr@himodel. Yoshida and Horch
[1996] followed up this work by closing the control loop.

In an effort to create LIFEs with smaller, more precise, araareproducible active
sites, a flexible micromachined polymer structure was aesigo replace the key com-
ponent of the electrode, the fine wire in contact with the eedioal tissue that forms the
neural interface of the electrode. Yoshida et al. [2000}ettgyed the first thin-film multi-
channel LIFE structure. The thin-film LIFE was later develdghrough work with the
Fraunhofer IMBT in Ingbert, Germany. The latest versiontd electrode is the micro-
fabricated multi-site thin-film Longitudinal Intra-Fasaiar Electrode (tfLIFE) array that
is realized as a patterned thin film on polyimide structureffdann and Koch, 2005]. It
allows recording up to 8 channels of ENG (Fig. 2.18).

In the meantime, the polyLIFE was being developed by Laweerial. [2003] and
Lawrence et al. [2004], who did a series of experiments tavstheir acute and chronic
feasibility in rabbits. Based on this work, Dhillon et al.Of24] and Dhillon and Horch
[2005] implanted an advanced version of the polyLIFE in atepthuman subjects for a
short term trial. They showed the proof of concept of usingHsg to elicit sensations
and record volition from electrodes implanted semi-chealty in nerve stumps of human
upper extremity amputee volunteers.






Chapter 3

Modeling the Afferent Nerve Activity to
Estimate Muscle State

3.1 Introduction

Changes in muscle length are associated with changes imdtle af the joint that the
muscle crosses. Thus, activity from muscle spindles carsbed to sense relative positions
of body segments. These sensors remain intact and actioe ke level of lesion in
spinal cord injured patients. Therefore, their activitylcbbe used to provide feedback
information about muscle state in a closed-loop control BZSem, if on-line extraction
of reliable information from neural activity in a form usalidy the controller is possible.

Recently, Stein et al. [2004] have shown how populationseoery receptors could
encode limb position and how the firing of a small number ofrors can be used to decode
the position of the limb. In their study, microelectrodeags have been used to record
impulses simultaneously from individual nerve cells indogsal root ganglia (DRG) of the
cat. They showed that a small number of informative neur68% ¢ould account for over
80% of the variance. The drawback of this technique is tHeassociated to the surgery
needed to place the electrodes at the DRG. Recording gclieitn peripheral nerves is
less invasive; it is classically done using cuff electrodgch sense the aggregate activity
of the whole nerve fibers. We propose to use intrafasciclgatredes which allow solving
the lack of selectivity of the cuff electrodes.

Closed-loop control of joint movement using neuromuscsti@anulation adopted in this
thesis is based on the approach developed by Yoshida and H#86], where a pair of
single-channel LIFE’s was implanted in the nerves innénggthe joint agonist/antagonist
muscle pair. The idea is to have the two electrodes workirgpposite modes, e.g. while
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Figure 3.1: Scheme of FES closed-loop control of joint mogetwhere a pair of tfLIFE
electrodes is implanted in nerves innervating the the mgunist/antagonist muscle pair.

one electrode is stimulating the agonist, the other is tingrmuscle spindle activity from
the antagonist, and vice versa (Fig. 3.1). This way the dhogrelectrode is always sensing
neural activity from a passively stretched muscle.

For estimating muscle length from this activity the authased a look-up table. Esti-
mation of muscle length was fed back to the controller and tsenodulate the stimulation
pulse train parameters to minimize ankle position errorthWuch a control scheme, the
need for simoultaneous recording and electrical stimutatif the same muscle is avoided.
Electrical stimulation in close proximity of the recordietectrode produce large stimu-
lation artifacts which corrupt the recorded signals. Thetias scheme also allows using
passive mechanical muscle models for estimating musdie, statead of complex model-
ing of active muscle.

This approach proved to be applicable as feedback in onelimged-loop control in
restrictive conditions (limited motion speed and rangepstrprobably due to the unac-
counted variation of dynamic sensitivity of the sensoryiegs. The purpose of the study
was to assess the feasibility of using muscle spindles assms@ a closed-loop FES sys-
tem, rather than to build an optimized controller, per semgke Pl (proportional-integral)
controller was implemented to modulate the pulse width obastant amplitude, fixed
frequency stimulus pulse train.

If a valid analytical model, linking muscle spindle affetererve activity and muscle
length, could be found for the locomotor range of ankle mofia terms of both range of
motion and motion speed), it would allow for having an orelmodel-based estimator of
muscle length and advanced control laws can be designedai@us to develop a model,
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as simple as possible, which can be implemented in a on4itiator of muscle state in a
closed-loop contol system.

In a recent study a simple linear model was adopted to exgireselationship between
length and neural firing rate [Azevedo and Yoshida, 2005]e preliminary results from
the study had indicated that a linear relationship betwkemeural firing rate and muscle
length can be found for a limited range of motion. In the pnésieesis the first objective
was to complete this study by verifying if the linear moded igood fit to experimental data
on a sufficiently large statistical sample.

Just before beginning the work on this thesis, a new gewoerati the intrafascicu-
lar neural interface, the tfLIFE, had been fabricated [H@hn and Koch, 2005], but not
yet fully tested in experimental conditions. The acute rabkperiments, needed to be
performed in order to acquire data for completeling thedmeodel study, were also a
opportunity to test the new electrode in vivo. Implantatednntrafascicular electrodes is
not a trivial task and requires surgical training. Evenrasigccessful implantation of the
electrode, executing the experiments is difficult to achiéwe to other issues, one of them
being noise.

3.2 Acute Animal Experiments

Acute animal experiments were conducted to acquire exgertiah data with which pro-
posed models of muscle spindle afferent nerve activityspoase to passive muscle stretch
would be validated. In this section of the report the procesauring animal preparation
are given first, followed by the necessary steps in the patjoarof the electrodes used in
the experiments. The equipment used for data acquisitiaist given, followed by the
description of the experimental protocol.

3.2.1 Animal Preparation

Acute rabbit experiments were conducted on 10 New Zealariig wadbbits, median weight
4 kg and standard deviation 0.24 kg. Anesthesia was indutgdnaintained throughout
the experiments with periodic intramuscular doses of at@losf 0.15 mg/kg Midazolam
(Dormicum, Alpharma A/S), 0.03 mg/kg Fetanyl and 1 mg/kgr&hison (combined in
Hypnorn®, Janssen Pharmaceutica). In order to immobilize the Igfofethe rabbit, it
was anchored at knee and ankle joints to a fixed mechanicakftesing bone pins placed
through the distal epiphyses of the femur and tibia. The comoalceneon tendon was
attached to the arm of a motorized lever system (Dual-moskesy310B Aurora Scientific
Inc.) using a yarn of polyaramid fibres (Kevlar 49, GoodfellGambridge Ltd). Skeleton
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Figure 3.2: Skeleton of the rabbit’s pelvic limb (on the Jefhd the medial muscles of the
rabbit’s thigh; superficial layer (on the right). Adaptedrfr Popesko et al. [2002].

of the rabbit’s leg and the medial muscles of rabbit’s thighilustrated on Fig. 3.2 and
a photograph of the setup is shown of Fig. [3.3. The motoriegdrlsystem provided
both the actuation and measuring. Pulling the Kevlar fibeosipced ankle extension and
releasing tension on the Kevlar fibers resulted in ankledlexstretched muscle returning
to its resting state due to its intrinsic elasticity). Firatto the mechanical frame insured
the elimination of mechanical vibration that might haveutesd from a free swinging foot.

A tripolar cuff electrode was implanted around the sciagcve (Fig. | 3.4, left). It
was used to find the length-tension curve for the MG muscleti(se 2.2.1). Electrical
charge was delivered using a stimulation unit (Grass Tdolgies SD9), coupled with a
photoelectric isolation unit (Grass Technologies PSIUB)e nerve was stimulated with
300 us twitches and a pulse repetition frequency of 2 Hz. Stintaintensity was set
to the level that produced maximal nerve twitch respose {mabamplitude of compound
action potential). Keeping the stimulation level constamiscle length was varied in small
incremental steps. Isometric force produced by the stitadlemmuscle was simultaneously
monitored.

A tfLIFE structure was implanted in the tibial branch of theagic nerve innervating
the MG muscle of the rabbits left hind limb (Fig. 3.4, right).was located 3 cm proxi-
mal to the tfLIFE implantation site. The electrode enablezlrhonitoring of multi-channel
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Kevlar

Figure 3.3: Experimental setup. The left leg of the rabbis wachored at knee and ankle
joints to a fixed mechanical frame using bone pins placedutiitrdhe distal epiphyses of
the femur and tibia. The common calceneon tendon was attdotiee arm of a motorized
lever system using a yarn of Kevlar fibres

ENG from the fascicle in which the structure was implanteg.hBving the electrode im-
planted very close to the muscle, chances of having any#hiogpt muscle spindle activity
recorded are minimized. Moreover, in order to have purelgcteiafferent activity in the
recordings, the sciatic nerve was crushed proximally ofcinfé and tfLIFE implantation
sites using a pair of forceps. It should also be mentionetdittia increasing levels of anes-
thesia, the effects of reflex mechanisms diminish, and dsecttonic stiffness of muscles
is observed [Sherrington and Heﬂiﬁg, 1897-18@8], [PagélsPaoskH, 1970]. As for Golgi
tendon organ activity that encodes muscle force informrmatioaccounts for only a small
part of the muscle afferent signal under passive conditidrigstological study reports that
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Figure 3.4: Electrodes used in the experimentsft: tripolar cuff electrode implanted
around the sciatic nerveRight: tflLIFE implanted inside the fascicle of the sciatic nerve
innervating the MG muscle. The thin-film structure is too #rmabe seen, only the elec-
trode connector is visible. The scale for both images is #émees It is shown in the bottom
right corner of the right image.

they account for less than 5% of the total number of recepiotibialis anterior muscle
ﬂWei et aIL 198%].

Animals were euthanized at the end of the experiments. Altgdures used in experi-
ments were approved by the Danish Committee for the EthambfiAnimals in Research.

3.2.2 Electrode Preparation

The tripolar cuff electrode used in the experiments had f@emncated by using platinum
foil electrodes fixed by rubber bands on a Teflon coated mrtte¢ was then dip-coated
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Figure 3.5: Schematic of the electrolytic cell used for etgaating the tfLIFE with Plat-
inum in the process of electrode preparation. The whiteocktlon the left is the tfLIFE
and the grey anode on the right is the Pt wire. The variablstoess used to limit the
current flowing throught the solution.

with silicone. The detailed procedure is described by Hangl[1996]. The electrode
had an inner diameter of 2 mm and a 10 mm distance betweentis wogs. We had
fabricated the electrode ourselves in the clean room figsliat the Center for Sensory-
Motor Interaction at Aalborg university, in Aalborg, Denrka

The tfLIFE’s were implanted into the target nerve fascideng a 50um electrosharp-
ened tungsten needle [Yoshida et al., 2007]. The needle tiashad to the electrodes
using 2 to 3 Kevlar threads (Fig. 2.18, panel E). In order thuoe the impedance of the
electrode, its recording sites were electroplated withimlan in an electrolytic cell con-
siting of the tfLIFE, as the cathode, and a platinum wire,lesdounter-electrode (VWR
International). The working solution was made by mixing ldleudeionized water and
Dihydrogen hexachloroplatinate (V) hexahydrate (VWRemational). Details about the
procedure can be found in literature [Whalen Il et al., 200Ehe electrodeposition was
performed under ultrasonic aggitation, which offers a lefeontrol of the electrochem-
ical deposition mechanism at the cathode. It insures firachthent of platinum onto the
electrodes and minimizes the deposition of platinum hydi®xnown as “burning” of the
deposit [Jensen et al., 2002a]. The schematic of the elgtitroell for tiLIFE preparation
is illustrated on Fig 3.5. The white cathode on the left istthé-E and the grey anode on
the right is the Pt wire. The variable resistor is used totlitn¢ current flowing throught
the solution.
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3.2.3 Data Acquisition System

The amplification system consisted of a low-noise preanepl{fA\l402, Axon Instruments),
followed by a gain-filter amplifier (Cyberamp 380, Axon Instrents). Signals were
recorded using a custom modified multi-channel digital tegperder (ADAT-XT, Alesis).
ENG data were low-pass filtered (corner at 0.1 Hz), amplifgen( 5000) and acquired
with a sampling rate of 48 kHz per channel. Out of the eighilaloke electrode sites on the
tfLIFE, only the four having the lowest background noiseslavere selected to be recorded
from, due to the limited number of available channels on eaording system.

Signals for driving the motorized lever system were gemerain a portable computer
using Mathworks LabVIEW. Before feeding the analog sign&b ithe lever system input,
the signal passed through a low-pass filtering stage (c@atn&d0 Hz) in order to remove
any quantization noise resulting from the D/A conversionaftization noise would trans-
late into vibration of the lever arm which could have indueetivity of muscle spindles
[Jansen and Matthews, 1962], [Goodwin et al., 1972]. Messlength and force were at-
tenuated by a factor of 10 to have the signals’ amplitude oyo@aanges compatible with
the input range of the recording system. Length and forceassgwere digitized using a
sampling rate of 10 kHz.

3.2.4 Muscle Stretch Protocol

The recorded nerve activity is supposed to be a mixture a@figctrom two sensory fiber
types. Activity from type | fibers should primarily encodéarmation about muscle stretch
velocity, and the activity from type llb fibers should encddérmation about muscle
length. A convenient and common way for studying muscledpiafferent response is
applying sinusoidal extensions to a muscle and simultasigoecording the muscle recep-
tor afferent ENG [Jansen and Matthews, 1962], [MatthewsSteth, 1969a]. With record-
ings made with such a protocol, it is later possible to aratje contributions of the two
components to the aggregate recorded activity. In our @xeats the MG muscle was pas-
sively stretched by rotating the ankle in the extensionileplane using the lever arm. The
initial muscle length_g was set to the muscle length at which the produced isometice f
was maximal. Ankle position was set so it was flexed 80d then finely adjusted by ex-
perimentally finding the maximum of the length/tension @ur¥he muscle was presented
with sinusoidal stretches of 2 frequencies: 10 mHz and 25G mBbth stretch profiles
had a peak-to-peak amplitude of 4 mm. The durations of therdatgs were 2 minutes
for the slower stretch (to allow for one full cycle of the sittecomplete), and just over 1
minute for the faster stretch (4 cycles of the sine). The X260 mHz frequencies were
chosen to be able to evaluate models for different motiordpeSimultaneous recordings
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Figure 3.6: Recorded nerve response from the cuff elec{togerace) and from the tfLIFE
(middle trace) for a sinusiodal muscle stretch (bottomayac

were made from the four intrafascicular electrode sitegetioer with force and position
recordings from the muscle lever system.

An example of recorded ENG signals using the cuff and tfLIFE€®odes are shown
on Fig. [3.6. The figure clearly illustrates the better sigoahoise ratio obtained when
recording with the intra-fascicular electrode.

3.3 Modeling the Nerve Response

3.3.1 Noise Processing

Noise artifacts from the recorded ENG were removed from élmerecorded signals using
a 8th order high-pass Butterworth filter with a corner fregryeat 500 Hz. The corner fre-
guency is sufficiently high for removing low-frequency refsom the recording. Spectral
peak power of the muscle artifact is around 250 Hz and sgecnaponents of motion arti-
fact are lower than muscle artifact. Spectral componentseoheural signal are preserved
as they fall above the corner frequency of the filter [Yostadd Stein, 1999]. Powerline
noise in the signal is a combination of the dominant (basgbe@mponent of the noise and
its harmonics. Spectral analysis of the recorded data sthpe&aks in the spectrum up to
the seventh harmonic, which also puts them under the loweecdrequency of the filter.
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Figure 3.7: Normal distribution fit on the histogram of expentally recorded background
noise in the ENG. The histogram is the bar plot and the digiob fit is the full curve. The
figure shows that a zero-mean normal distribution is a goodehior the data. The noise
signal was normalized to have a maximal absolute amplitfide o

3.3.2 Quantifying Neural Activity

For many neurons, the most prominent feature of the actioenpial is its amplitude, or
the height of the spike. One of the simplest ways to meas@eadhvity of a neuron is
with a voltage threshold trigger. This method is by far thestmmommon for measuring
neural activity [Lewicki, 1998]. The obvious advantagestoeshold detection are that it
requires minimal computing power for signal processinge @ilsadvantage is that it is not
always possible to achieve acceptable isolation betweese r@d noise spikes. Because
of this simplicity, this method was used in quantifying treural activity in our recorded
data. Analysis of the baseline (where the muscle was sladkoaly background noise
was recorded) showed that the noise amplitude distribusiaa good fit onto a normal
distribution (spectral analysis of the noise showed thatrthise can not be considered
white, but the amplitude distribution is zero-mean Gaugsid his was true for baseline
recordings of all experiments. An example of the noise histm and the Gaussian zero-
mean distribution fit to the data is shown on Fig. 3.7. Coneatly, a threshold value was
chosen to be equal to 3 standard deviations of the backgmisd. This value statistically
accounts for 99.7% of the noise spikes, which in practicemmedmost all noise spikes are
below the threshold.

After noise removal, the post-processed ENG signals weitdieel and the aggregate
afferent firing rates were computed by counting the numbgeaks above threshold in a
100 ms moving time window with a 10% overlap between adjaiderations. The choice of
sliding window duration is a trade off between having a sergdercentage of noise peaksin
the computation of firing rate (longer window duration regd) and capability of tracking
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Figure 3.8:Top left: Three periods of a normalized sine wave used as the musd@de/@as
stretch profile with amplitude 4 mm peak-to-peak and fregye260 mHz. Bottom left:
Aggregate firing rate computed using a 100 ms moving windowrenchannel of the post-
processed ENCRight: Relationship between firing rate and normalized musclettefay
the 3 periods of the sine plotted superimposed. The musbkrg stretched during ankle
flexion and shortened during ankle extension.

faster muscle motion (shorter duration required). Febtsilaif implementation of closed-
loop FES system also needs to be taken into account. Mussilenfirequency is always
above around 20 Hz so there is no need to perform control withpalate of controller
parameters with a clock period under 40 ms (including feekilmelay). For relatively
slow movements the frequency used to discretize the commsaatzbut 100 ms, which is
the value we chose for the window duration. Values largem tha are not appropriate for
accurate closed-loop control (such as trajectory contbol) if the aim of the feedback if
simple event detection (e.g. foot drop, detection of tho&shankle angle) or rough posture
estimation, then larger values could be acceptable [Gdieaal., 2006].

An example illustrating the zero-mean normalized musabgtle and the simultane-
ously recorded ENG from one channel of the tfLIFE is shown ign/8.8, on the left. The
corresponding neural firing rate plotted against the namadimuscle length is shown on
the same figure, on the right.

3.3.3 Linear Model Approximation

With the adopted FES control scheme (section 3.1), it istef@st to find a model between
afferent nerve activity and muscle length only for the pasiof ankle plantar flexion (mus-
cle stretching), because muscle spindle afferents anet sll@ing the dorsiflexion period
(muscle spindles are unloaded when the muscle is slack)ofjeetive was to find a model
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that would be valid for the locomotor range of ankle joint rootand, at the same time,
have the model as simple as possible, so an on-line musgthlestimator based on this
model could be feasible. Being the simplest case, a lineatemapproximation was a
logical starting point. It is formulated with the followirgguation:

S:Kp'|+Kr

wheresis the aggregate neural firing rates the muscle length variatioK,, is the propor-
tional gain, andK; is the coefficient modeling the residual activity origimgtieither from
other (non-proprioceptive) nerve fibers in the fascicle aoge. Golgi tendon organ ac-
tivity is considered to take a very small part in the aggrediaing rate (section 3.2.1), but
even if picked up in the recordings, firing of Golgi tendonam@fferent fibers can roughly
be considered to have a linear relation to length [Renkin\étitho, 1964]. Therefore, it is
expected that their activity is also modeled by the coefliicig,.

The muscle was stretched with a sine wave profile

| = Ag-sin(wt) + Lo

whereAy is the sine amplitudd,o is the muscle initial length set during animal prepara-
tion (section 3.2.1), ana is the sine angle frequency. From the above two equations the
following can be derived:

After writing the length in its zero-mean normalized forndasubstituting it in the above
equation, we get:

s=P-Ih+Rs
wherel, is the zero-mean normalized length, @adandR; are new coefficients:

In = | _AOLO; PL=Kp-As;, Ri=Kp-Lo+K;

Linear regression analysis was performed using data fratm $lower and faster sine
wave stretch profiles. Results showed that the model is a fjbeal the experimental
data only in a limited number of cases where the muscle ischted using the slower sine
wave. Stretching the muscle with the faster sine producesmbnear relationship between
firing rate and muscle length due to the increased sengit¥ithe primary muscle spindle
afferents. The simple linear approximation is not a good ehaglthis case, although it
remains applicable in the linear part of the curves.
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3.3.4 First-Order Model Approximation

In order to improve the model, it was necessary to introduecelmearity into the relation-
ship between afferent activity and length:

dl

wheres, | andK; are the same as in the linear model, &dandK, are now coefficients
corresponding to the activity of different sensory fiberdyK, models activity of position-
sensitive (type Il) fibers, ani, models the activity of velocity-sensitive (type la) fibers.
Following the same mathematical operations as above, wiagébllowing:

s:K,O-l+|<V-A0-w-,/1—(1;0L°)2+Kr (3.2)

where the link between length and its derivative is founanfieuler’s formula:

e = cogwt) +i - sin(wt) (3.3)

This way we avoid direct numerical computation of the demeaof the length variation
measured by motorized lever system, which would introdwltht@nal noise to the vari-
able. After writing the length in its zero-mean normalizedni and substituting it in the
above equation, we get:

S=Py-In+ Q2 /1124 R (3.4)
wherel,, is the zero-mean normalized length, &dQ», R, are new coefficients:

| — Lo

Ih = 3.5

A (3.5)
P = Kpho (3.6)
Q = Ky-Ag-w (3.7)
R = Kp-Lo+K; (3.8)

3.4 Results

Regression analysis for first-order model are summariz&dlate 3.1. The parameters are
derived using one sine cycle for the 10 mHz stretch and 4 siokes for the 250 mHz
stretch. Only results for the channel with the best fit outfthe are given. An illustration
from one of the experiments is shown on Fig./ 3.9.
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Table 3.1: Fit coefficient®, Q,, R, and their corresponding RMS fit errors (RMSE) for
the channel with the best fit, for both sine wave muscle girptofiles. The rows show the
results for the 10 experiments.

10 mHz sine stretch 250 mHz sine stretch
Rabbit P> Q2 R, RMSE P Q R, RMSE
1| 311 -77 514 55 320 57 471 16
2| 593 -176 798 63 780 20 926 45
3 93 -25 204 40 182 -11 558 18
4| 143 -66 190 23 175 -50 211 11
511835 268 4967 1662176 383 4889 57
6| 370 -130 566 44 721 -68 764 27
7| 471 5 1076 68 658 253 791 35
8| 148 -31 303 34 233 48 315 17
9| 818 -228 924 79 728 -9 1121 84
10| 559 159 777 66 613 406 773 36
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Figure 3.9: Single channel fit for stretch frequencies of Herfleft) and 250 mHz (right).
The abscissa shows the normalized muscle length and theatedshows the neural firing
rate. The full lines are the fitted curves.
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The RMS fit errors are larger for the slower sine wave due tddbethat for slower
motion the variance of the computed firing rate is alwaysdargsing the same length of
the moving window. The difference is illustrated on Fig.|@®ere the on the left plot the
data set is noisier than the one on the right.

The relationship between firing rate and normalized lengih i all cases more con-
vex for the faster sine stretch profile. As the rate of charfgauscle length increases, so
does the contribution of the velocity-sensitive fibers ® &iggregate firing rate. This is re-
flected in the increase in the fit coefficie@s which quantifies the contribution of dynamic
(velocity) sensitivity. The increase can be generalizedvben rabbits, as it appears in all
10 experiments. On the average the absolute increase ifcta@fQ- is 124, with a stan-
dard deviation of 90 action potentials per milimeter of mestretch. Fit coefficients show
large variability between rabbits, due to the fact that ealeletrode site picks up activity
from a different number of units.

In a few cases with faster sine stretching the model failapgure the non-linearity of
the firing rate at the end of the muscle extension periodnibere the normalized sine value
is +1 and movement speed is around zero (Fig. 3.10, left panehese cases the relative
change in sensitivity from the beginning to the end of strésdarge enough to cause the
failure of the model to properly capture the firing rate fa whole range of muscle stretch.
In these cases the variation of fit coefficients is too largbe@ble to approximate them
with constants. Piecewise fitting, i.e. separate curvadttor normalized muscle length in
the range from -1 to 0 and in the range from O to 1, produces rhattbr fits with smaller
errors (Fig. 3.10, right panel).

If the fit coefficients are known for a particular muscle, ifpigssible to estimate the
muscle length in any given moment from the recorded ENG. Wherestimation is per-
formed on all 4 channels of the tfLIFE structure individyadind then averaged, the esti-
mated length shows a decrease of variation by about 50% ceshpathe estimation when
only a single channel is used. An illustration is shown on Bgll. The estimation of
muscle length from firing rate during the muscle stretch phashown on the left panel.
The gray curves are the estimations from individual chaaed the thick curve is the
average of the single-channel estimations. The correspgmrdtimation errors are shown
on the right panel, where the gray curves are the singleraiastimation errors and the
thick curve is the multi-channel estimation error.
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Figure 3.10: Piecewise fitting in the two regions of the ndrnead length separately gives
better results than when fitting is performed on the wholgeaof motion. On the left: an

example of a fit on the whole range. It fails to capture the dnojring rate at the end of

muscle extension where there is a cessation in velocityoresp On the right: the same
data set, but piecewise fitted using two sets of constantédificents, one for each half of
the normalized length range of muscle extension (from -1 &m@ from O to +1). The two

fit curves are joined at their intersection (at normalizedsohellength of 0.253, indicated
on the plot with the vertical dashed line).
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Figure 3.11: The estimations of muscle length from neuridirate during the extension
phase of the muscle. On the left panel the gray thin curvegharestimations from indi-
vidual channels and the thick curve is the average of thdesicigannel estimations. The
corresponding estimation errors are shown on the rightlpdihe gray thin curves are the
single-channel estimation errors and the thick curve igrib#i-channel estimation error.
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3.5 Discussion

3.5.1 Model Parameters

Fitting the neural firing to the recorded length using the-firsler model approximation
shows better results compared to using a linear model. Naohadcle spindles within
the muscle they reside have the same threshold of activaiiach spindle starts firing at
a different muscle length. Larger afferents start firing @snsas the muscle is stretched
by a small length, while smaller ones have a higher threshpottistart firing only after
the muscle has been more extensively stretched [Yoshiddlarah, 1996]. Therefore,
the recorded aggregate afferent firing at any given musolgtteis a mixture of spindles’
activities, each firing at different frequencies. Furtherej the sine amplitudes used in
this study by far exceed the level under which the muscledépsncan be considered to be
working in their linear region [Matthews and Stein, 1969a].

Although the fit coefficients cannot be used to directly gifprnhe activities of the
two fiber types (a number of them is negative in sign), they dnage to capture the non-
linear nature of the relationship between afferent firintg @nd muscle length. For faster
motion, the activity of velocity-sensitive fibers incregsehich in all experiments resulted
in an increase of coefficiel@,. Whether the curve is going to be conca@ k 0), linear
(Q2=0) or convex Q» > 0) depends on the interplay of two factors: the spindle iigoent
curve (distribution of spindle activation thresholds asilaction of muscle length) and the
ratio between dynamic and static sensitivities of fiberselleetrode is picking up activity
from. Most of the fits for the slow sine wave tend to be eithagtgly concave or close to
linear. On the other hand, most of the fits for the faster s#mel to be close to linear or
convex.

A larger fit error with both sine frequencies can be noticethatbeginning of muscle
extension (at the sine wave minimum). In the region wherstifgtch begins the movement
velocity is around zero and the muscle is stretched the, lssmilting in minimal afferent
activity. As a consequence, at this point the largest péagenof neural spikes is buried
under the noise gate. By removing the noise below the chdsenltold we also remove
neural spikes that have their peak amplitudes below theryzte. This is why the fit error
is higher in this region.

With the faster sine wave, a considerable drop occurs irgfrate at the end of the ankle
extension period. Again, like in the case before, the dtreétocity in this region is around
zero and the firing rate drops rapidly. In other words, thihésregion of the curve where
there is a cessation of velocity response from the fibers.nmnaber of cases this effect is
captured well only after piece-wise fitting is performedisi$hows that approximating the
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fit coefficients as constants throughout the entire rangeadifom no longer holds in these
cases. Only when two sets of fit constants are adopted, thelmiveés satisfactory results.

3.5.2 Application in Closed-Loop FES

It is important to note that interpretation of neural firirgfe from muscle spindles in a
closed-loop FES system would be valid only during periodsafeasing firing rate. Using
only one sensor in a agonist/antagonist pair would makeetecton of muscle shortening
ambigous — decline of firing rate could not only be to musclartsning, but also due to
holding a fixed length, where sensory adaptation would caulserease in the neural firing
rate.

With a real-time estimator embedded in a closed-loop cORES system it would be
ideal to adapt the length of the moving window (used to comphe firing rate) to the
changing stimulation parameters. With increasing stitnutalevels, faster limb move-
ments are anticipated and a smaller window length is neeBatas the window length
decreases, the computed firing rate becomes more suseefatitthe presence of noise
spikes. In this study the same window length was used in thgatation of neural firing
rate for both sine wave frequencies. The results show tleattige of firing rates does not
vary with sine frequency. An illustration is shown on Fig93vhere, in both cases, the
firing rate is within the range from about 200 to 1600 impulsessecond. But the shape
of the curve does change with changing motion speed.

Not only can the CNS parallel-process signals from manydiesof one muscle to
improve estimation of joint position, but it also has infamon available from multiple
muscle that articulate a particular joint. Hense, infoiioratrom a subset of units from one
muscle (our case) cannot be expected to provide the samleofegstimation accuracy.
However, the tfLIFE brings with it the benefit of multi-chasirrecording. Estimating
muscle length using more than one channel provides a moustrebtimation, reducing the
variance of the estimation error. Moreover, multi-charestimation would allow having a
smaller moving window than in the case of single-channainegton, since using multiple
channels provides a smaller estimation variance.

The changing of aggregate firing sensitivities to velocftgnascle stretch introduces an
ambiguity in muscle length estimation from instantaneouisgirate, i.e. the relationship
between muscle length and firing rate is not a one-to-one mgpn its simplest form,
an estimator based on the model described could be used isy=ESns with cyclic limb
movements (e.g. walking) where the estimator would esernaib position using the same
muscle stretch profiles that would be used for training. k& evould like the estimator
to be able to track slow and fast walking speeds, it woulderaigquestion how would
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the estimator know which curve to choose from, the one fowstoor the one for faster
movements. One way to deal with this issue would be to havegstimator keep a short
history of previous length estimates. That way it would ble &btrack the change in length
and choose the appropriate control curve based on the rdite ofiange in length. This way
the estimator could know when the muscle is in extensiongffamg rate increasing).

Eventually, one would like to have a model-based estimdite lae track any random
limb movement with varying load. To accomplish this it woblel necessary to distinguish
between the afferent activities of the two fiber types andhaes even single units. By
doing so, one would be able to isolate the activity of onlyipas-sensitive fibers and use
them exclusively as input for the estimator. That way the ehadefficients would be the
same for all movement speeds. Separation between forcdemagith-sensitive fibers could
also be possible by training the classifier using isomeiwziis. That way the estimator
would be insensitive to externally applied disturbancesndulimb movement. The first
step towards accomplishing this task is to develop a nepikd €lassifier.

3.6 Summary

In the study presented in this chapter we explored the féigid using the new thin-film
longitudinal Intra-fascicular electrode (tfLIFE) as a ipberal nerve interface. The long-
term goal is to use the electrode as the neural interface@gedtoop control FES systems.
Acute animal experiments were performed in which the affeneuscle spindle response
to passive sinusoidal stretch was recorded with the tfLR&sults obtained with recorded
ENG data are consistent with the results from previous stihere older generations of
the LIFE were used. With its advantage of being a multi-cledmhectrode, the tfLIFE
shows promise as a neural interface.

The proposed first-order model of muscle spindle respongagsive muscle stretch
manages to capture the non-linear properties of the rakttip between afferent neu-
ral firing rate and muscle length. We have shown that estonadf muscle state from
the recorded multi-channel ENG provides more robust resudinpared to using single-
channel recordings.

In order for the model to be able to track muscle length viamatwith an a priori un-
known stretch profile, classification of action potenti@sieeded to separate the neural
activities of different fiber types. There is also room fopimvement in the neural spike
detection phase. Spikes detected using the simple thaiagahethod can also originate
from noise and not from neural activity. Moreover, neuraksp with sub-threshold ampli-
tudes are also missed. These issues are the topic of thelragiec of this report.






Chapter 4

Detection and Classification of Neural
Action Potentials

4.1 Introduction

As we have seen in the previous chapter, the model of aggréigag activity can be used
to track muscle state only under the condition that the neustcétch velocity is sufficiently
low to have constant coefficients in the equation linkinght nerve firing rate and mus-
cle length. The ideal case would be to have a linear reldtipn®r the whole range of
motion of interest. Unfortunately, type la sensory fibengat oredominately encode infor-
mation about the rate of change of muscle length, introdwmargonent in nerve response
that makes the relationship non-linear and velocity-ddpah

The neuroelectric activity recorded with the tfLIFE is a maibe of signals from several
adjacent neurons and noise. The experimental protocol irapimal experiments was
designed in such a way to have activity from only afferent creispindle nerve fibers,
these being type la and type Il sensory nerve fibers. If thigurne could be decomposed
into activities of these different sources, isolation of #ctivity of type Il sensory fibers
would allow for the developed model, described in the presichapter, to be used to track
muscle length variations with an a priori unknown stretabfije.

The topic of this chapter is a novel approach to neural spgteddion and classification
based on the continuous wavelet transform using compleels: We aim at having an
algorithm that would, when applied on the ENG signals reedrdith the tfLIFE, have
improved performance compared to the state of the art mstfowdeal-time neural spike
detection and classification, and that would be able totsa@#erent neural activity from
muscle receptors having minimal dependence on musclelsietocity.

51
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4.2 State of the Art in Neural Spike Sorting

Detection and classification of neural spikes are commairred to as spike sorting. The
first step in spike sorting is the detection of neural actioteptials, followed by the clas-
sification of the detected neural spike waveforms. The ¥alg is a brief overview of the
state of the art in the field, with special emphasis on febisiloif using these methods with
recording and interpretation of signals made using lomlyial intrafascicular electrodes
in real-time conditions.

4.2.1 Neural Spike Detection

For many neurons, the most prominent feature of the actioenpial is its amplitude, or
the height of the spike. One of the simplest ways to detecugaahspike is with a voltage
threshold trigger. This method is by far the most common feasuring neural activity
[Lewicki, 1998]. It is the method we used to process the datection 3.3.2. The obvious
advantage of threshold detection is that it requires mihcoanputing power for signal
processing. Itis also easy to implement with analog cirguithe disadvantage is that it is
not always possible to achieve acceptable isolation betweese and noise spikes.

Until recently, other methods for spike detection have resrbreported. In the last
decade we have witnessed rapid progress in the field of nptoathesis. Microproces-
sors with large computing power also became readily aviaiJalggering a larger interest
in the interpretation of multi-unit ENG using more soplaated and power-hungry signal
processing methods. In order to detect action potentiaiedin noise and increase the
"contrast” between noise and neural spikes, a method ukadiscrete wavelet transform
(DWT) for signal denoising was developed by Donoho [1996inVolves thresholding of
the detail coefficients in the wavelet decomposition. Aftenoising, spikes are detected
by the simple voltage thresholding method. The proceduseapalied on ENG signals by
Diedrich et al. [2003] and recently on intraneural signatsorded using tfLIFE [Citi et al.,
2008]. In both studies the Symlet 7 wavelet was used becdutsesanilarity to the typical
action potential waveform they found in their recording®. diantitative analysis is given
to justify the choice of wavelet, and the choice of denoigmgshold was chosen empiri-
cally. In the latter study the authors applied the same nte#isoin the former mentioned
study, with the difference that in the latter the authorgdusgcle spinning”, a method de-
veloped by Coifman and Donoho [1995] to reduce the effecBWIT translation variance.

Signal detection can also be performed in wavelet spacépuiitthe need for recon-
structing the signal using the inverse DWT. That way the iregucomputing power is
reduced, possibly an important issue if one eventually ssamhave a real-time implemen-
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tation of the algorithm. Only being interested in analysid aot synthesis also relaxes the
constrains on wavelet choice, since not all wavelets atalslei for signal reconstruction.
Kim and Kim [2003] have suggested using multi-scale wavatetlysis as an equivalent
to multiple approximations of matched filters. Their methuidizes the point-wise prod-
uct of wavelet transform coefficients over several selestades. The detection method
proposed does not require "quantitative” a priori inforroaton either the target signal or
background noise, and only involves qualitative informatihat is common to the neural
signal recordings, i.e. spike waveform shapes that are coosmon.

Unlike the discrete wavelet transform, the continuous Jetveansform (CWT) can
operate at every scale, from that of the original signal usdme maximum scale that
one determines by trading off the need for detailed analygls available computational
horsepower. The CWT is also continuous in terms of shiftiBgwing computation, the
analyzing wavelet is shifted smoothly over the full domainhe analyzed function. This
eliminates the problem of translation variance when udegDWT. The stationary DWT
and its equivalent methods reduce but not completely eéteithis problem [Misiti et al.,
2007].

The complex wavelet transform is a complex-valued two-disignal extension of the
standard wavelet transform. It provides a suitable franmkw® incorporate two wavelets
into one transformation, one wavelet being the real pad,tha other the imaginary part
of the transform. In a recent study it was demonstrated thiaguan approach based on the
continuous complex wavelet transform for action poterdetkction in the auditory nerve
outperforms a matched filter approach [Bourien et al., 2007]

4.2.2 Classification of Units

Neural action potentials from different neurons can beimisished by their waveform
shape in the recorded signals. These shapes depend on tha tyge, electrode construc-
tion and placement, and the tissue surrounding the elexti®nal shapes from separate
neurons can be quite similar, and high noise levels on wealersggnals make rapid and
accurate classification of spikes challenging.

If classification is to be used on-line in a closed-loop coligd FES system, it should
be fast and require as little operator attention as possililes limits the number of clas-
sification methods that can be used. In the following we gibeief overvies of the most
common methods and compare their performance by lookingsalts reported by differ-
ent authors. Performances of the different spike classifitanethods between different
researchers are hard to compare because different dateasetbeen used by the various
authors.
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Fourier Transform

The method that shows the worst performance is based on tienigourier Transform,
as it produced the highest classification error rates. kbluas computing a number of
Fourier coefficients of a spike waveform and using theseficoaits as features to discrim-
inate between spikes. A number of studies report this mepheidrming the worst when
compared to other methods [Schmidt, 1984]. A study usind-cdannel intrafascicular
electrodes had also shown that using the FFT is inferiorasstlication using time domain
features [Goodall and Horch, 1992], confirming that the luransform coefficients are
obviously not good features for classification. As time deas$ the authors used the mini-
mum, the maximum, the peak-to-peak amplitude, and the riddadl times of the action
potential. A more appropriate signal basis should be uss&téaal of the decomposition of
the spike transients into a linear combination of pure sines

Template Matching

Temporal shapes of spike waveforms can be compared to amegetemplate and classified
into different classes based on their degree of similatigwficki, 1998]. This approach
is called template matching. The degree of similarity camentified either by comput-
ing the cross-correlation coefficient, either by computimg weighted mean square error
of its samples, either by comparing amplitude histogramwafeforms samples, or by
using some other distance metric. This method is also deifabreal-time applications,
where the spike references are defined in a calibration prasg¢hen subsequently used
for on-line classification. Each detected spike is comp#yed references and eventually
classified. Then the reference for that class is updatedtta gew reference.

Using a reduced feature set and not the whole spike wavefalso a possibility. In-
stead of using samples of the whole spike waveform, it isiptesto simply use spike peak
amplitudes as classification features. In cases where ike tevel is not a critical issue,
using this method could be sufficient for classification. he gtudy intrafascicular record-
ing were made and units classified using 4 features: spikenmuew, spike minimum, and
timing of zero crossing in the waveform [Goodall and Horcf88]. In a later study by
the same authors templates were constructed using the armithe maximum, the peak-
to-peak amplitude, and the rise and fall times of the actiatemtial [Goodall and Horch,
1992]. In their study, however, the authors only comparepgrdormance of this method
to the method using Fourier transform coefficients.
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Principal Components Analysis

Using other feature sets is also possible: delay betweésspdeaflection slopes, number of
peaks, etc. However, choosing features based on an irtiok®a of what might be useful
is an ad hoc approach and it often yields poor cluster separa®ne method for choos-
ing features automatically is with principal componentlgsia [Glaser and Marks, 1968],
[Glaser, 1971]. The idea behind principal component amay&CA) is to find an ordered

set of orthogonal basis vectors that capture the directiotise data of largest variation.
The data are the original spikes from the recorded wavef&w®eal-time implementation of

PCA is also possible using transversal filter structurebf@dt, 1984]. To the best of our
knowledge, there is are no results published about the uBEAfon intrafascicular ENG

recordings.

Artificial Neural Networks

An artificial neural network (ANN) is a network of simple pessing elements (neurons),
which can exhibit complex global behavior, determined by tonnections between the
processing elements and element parameters. Its pragteatlomes with algorithms de-
signed to alter the strength (weights) of the connectiotiseémetwork to produce a desired
signal flow. Using these algorithms the network is “trainéal’recognize patterns which
are presented at its input. After this training phase istilds the network is ready to be
used on-line to detect and classify these patterns.

McNaughton and Horch [1994] used this method for classiboabf spikes in record-
ings made with intrafascicular electrodes. They report ithaas the best of all methods
used in their study. Template matching came in second, artdotie based on FFT and
peak amplitude discrimination performed the worst. In heostudy the neural network
approach managed to classify 6 out of a total of 10 units pteisethe signals. With
more than 10 units present, the number of separable unppddiMirfakhraei and Horch,
1994]. In these studies a three-layer feedforward ANN waslus

The main drawbacks of using ANNSs is that the results of d@ssion are very sensitive
to the data set used to train these networks, and obtainigg@d” training set is difficult,
especially in the case with low SNR [Kim and Kim, 2003]. Moveq there is no criteria
for defining the appropriate structure nor size of the ANN.nM#ials are necessary to
obtain good results. At the end, whether acceptable resrdtebtained or not is uncertain
and depends on luck.

Amplitude and shape of neural spikes change over time, detetirode drift and fi-
brous encapsulation of the electrode recording sitesu@issaction to implantation). Clas-
sifiers based on artificial neural networks would requirediesiand supervised relearning
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procedures which are conducted in laboratory conditionsffiihraei and Horch, 1997].
This would not be very practical in real-life conditions.

4.2.3 Multiple Channels

Independent component analysis is a method that can impmuee separation by taking
advantage of multiple channels available. However, onticége assumption of this ap-
proach is that the minimum number of channels must equalthmber of sources [Lewicki,
1998]. It will be shown later that the number of units picke@day one channel of the tfLIFE
is greater than the number of available recording sites erléctrode.

Methods for source separation based on the relative difteréetween spike features
recorded by different channels [McNaughton et al., 1988]rant applicable in the case of
the tfLIFE either. Analysis of recorded multi-channel dageorded using tfLIFE show that
the different channels need not pick up activity from the samits.

A common method for differentiating action potentials araging from different fiber
type is the measurements of action potential conductioocitgl It is known that nerve
fiber conduction velocity and the action potential generaeproportional to the square
of fiber diameter [Burke, 1997]. In the case of muscle spindieve afferents, the di-
ameters of the primary and secondary fibers is 12 apang respectively [Boyd, 1962].
Many researchers have exploited this property to diffeagmtsensory fiber types us-
ing single-unit microelectrode recordings. Among othdansen and Matthews [1962],
Renkin and Vallbo [1964], Matthews and Stein [1969b], angg&te and Bowman [1970].
Unfortunately, since the tfLIFE electrode sites need nok pip activity from the same
units, using this method is not an option for us.

4.3 Neural Spike Detection

The methodology for spike detection we develop is an expansiidea of using complex
wavelets, so it covers a range of temporal scales. As oppmst#te matched filtering
approach, where a priori information is necessary aboutragbtential shapes, using the
multi-scale complex wavelet approach provides multipleragimations of matched filters,
which makes it a more generic approach and probably morestatdoen addressing the
issue of changes in the spike waveforms. A training set abagiotentials waveforms is
therefore not necessary, which is an advantage of the viaagproach over using artificial
neural networks.
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Figure 4.1: Waveforms of 5 distinctive spike shapes extxhdrom experimentally

recorded data. The waveforms are normalized by the maxinalme of the rectified wave-
forms. Length of each trace is 1 ms.

4.3.1 Choice of Complex Wavelet Family and Scale Factors

The following equation defines the wavelet transform:

400

W(a,1) = /x(t)%w (t%) dt (4.1)

where the real numbers and 1 denote scale and translation, respectively. The wavelet
transform essentially performs a correlation analysig/benh the input signal(t) and the
translated and dilated version of a reference signal ctiednother wavele¥(t). Hence,

it would be expected that the output would have local maxirhare the input signal most
closely resembles the analysis template, i.e., the watetetion. Some wavelet basis
functions are similar in shape to neural action potentialaddition, the basis function is
dilated over a range of scales. If the scales are well chakerwavelet transform can act
as a number of effective approximations of the matched,fiétezn though the exact action
potential waveform are not known. In the case of complex Veagdghe mother wavelet
function®(t) is complex and the wavelet transform is also complex.

In order to find the optimal complex wavelet, around 30 acgiotentials with different
waveforms were visually identified and extracted from theegsmentally recorded for the
modeling study (section 3.2). Five action potentials witstidctly different shapes are
shown on Fig. 4.1.

The CWT was computed for all extracted waveforms using &seficomplex wavelet
families available in the Matlab wavelets toolbox. The comagions were done using a
range of scales to find the optimal scales, which producewéwvelet coefficient with the
maximal magnitude. Optimal scales were selected to be the thrat produced at least
one coefficient with a magnitude larger that 95% of the maki@G\WT response among
all scales. An example of time-scale representations ofation potentials with different
shapes are shown on Fig. 4.2. In this example, the CWT was w@tusing the cgaul
wavelet using scales from 1 to 16. The top left plot showsfaeht magnitudes for the
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Figure 4.2: Top left: time-scale representation of oneoaqgbiotential waveform. Top right:
the same plot but only showing wavelet coefficients largant®5% of the maximal coeffi-
cient. Bottom: corresponding plots for another action pbét with a different waveform.
In both cases the CWT was computed using the cgaul wavelet.

first action potential waveform. The top right plot is the sarout only showing the coef-
ficients above the 95% threshold. The bottom left and rigbtspshow the corresponding
time-scale representations for another action potemizaing a different shape.

The complex Gaussian family and the complex Morlet familywaivelets both pro-
duced well localized peaks in CWT space, i.e. peaks in CWTespppeared with a small
or zero sample delay relative to the position of the peakiertime time domain. In terms
of the magnitude of the output coefficients, the complex Eoidmily produced wavelet
coefficients with a 50% lower magnitude compared to the cemn@aussian family. This
was consistent for all extracted action potentials. Withdbmplex Shannon family both
the peak localization and the magnitude of the output coeffis were poor. Therefore,
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Figure 4.3: Real and imaginary parts of tfidunction for the cgaul wavelet.

the complex Gaussian family of wavelet was the only one camsd in the process of se-
lecting the optimal wavelet to be used for spike detectiod,the rest were discarded. The
rabge of optimal scales for the cgaul wavelet is from 1 to 6.

Within the complex Gaussian family, as a general rule, highger wavelets produced
wavelet coefficients with lower magnitudes, e.g. cgaul pced a larger response than
cgau2, cgau2 produced a larger response than cgau3 and Simopsequently, the cgaul
wavelet was chosen as optimal for neural spike detectioa.réal part, imaginary part and
modulus of thap function for the cgaul wavelet are shown on Fig/ 4.3.

For comparison, the above analysis was also performed msingcomplex wavelets
that support CWT, from which the db2 wavelet produced wawaefficients with maxi-
mal magnitudes. Compared to the cgaul wavelet, the rangeatessfor the db2 wavelet
was larger more than two times. Looking only at the interrtjieerange of the scale factors,
the cgaul wavelet requires 3 times less scale factors i twdmver all action potential
waveforms (Fig. 4.7, right panel). This is important whetetdooking into the implemen-
tation of the algorithm. In the worst case, for the same nurobecale factors, the cgaul
wavelet would require double processing time comparedittgube db2 wavelet. As the
number of scale factors for the db2 wavelet is more than dpitvheans that implementing
the algorithm using the cgaul wavelet would require lessgssing time.

Another benefit of having a smaller range for scale factatsdd$act that it should result
in better detector specificity. Using the analogy that loalasdactors correspond to low
frequencies in the signal spectrum and higher scale fatdnigher frequency components
in the signal spectrum, then a wider range of scale factorddvoorrespond to a wider
frequency bandwidth of the transforms and thus there woaldhbre noise influence on
detection performance. This will be shown to be correctlatein the report.
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Figure 4.4: Block diagram of the proposed detection methdéhvelet coefficients for
multiple scales are computed and their magnitudes compartbe a preset thresholé.
If any of the values cross the threshold, an event is detected

4.3.2 Algorithm Implementation

Prior to detection, signals are first band-pass filtered nooke noise and artifacts (filter-
ing parameters are described in section 3.3.1). The detealjorithm consists of finding
peaks in the signal transformed into wavelet space andtsagror peaks crossing a preset
threshold. Only the range of optimal scales, determinedkpaimed earlier, are used in
the computation of the multi-scale transform. In order toehthe scales independent of
length of the signal being processed, a windowed continuawelet transformed was im-
plemented. The transform was computed using a 20 ms movimgomi. A block diagram
of the proposed detection method is shown on Fig. 4.4

Implementing a matched filter to remove powerline noise ai-tiene is also a possi-
bility. The algorithm needs to be robust enough to adapteéattanging parameters of the
powerline noise. Not only does the amplitude of the harnm®nitange, due to multipath
propagation, but so does the frequency [Olguin et al., ROBiting a sinewave of 50 Hz
and a number of its harmonics on the raw data and subtra¢tefittseems to give good
results. Fitting and substraction of noise harmonics ug the 5th or 6th harmonic of
the noise appears to be sufficient to remove slow baselindabens. Doing the fit on
20-ms windows (corresponding to 50 Hz) insures that thedjtélgorithm locks onto the
phase of the noise. This value is also suitable for real-impementation since it is below
the delay that can be tolerated in closed-loop FES contea ¢&ction 3.3/2). The sliding
window length in the computation of the CWT was chosen to m#its length.

Depending on the shape of an action potential, computatfiots evavelet transform
can result in multiple peaks from different scales to appeatifferent time instants — if
more than one wavelet coefficient has a magnitude largeatpegset detection threshold,
multiple detections of the same neural spike would occure @&ffiect of multiple peaks
in wavelet space is illustrated on Fig. 4.2, where for oneagbotential the maxima are
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localized at one sample (one vertical bar on the bottom nubit), while for the other
waveform (top plots) the maxima appear in 2 clusters (2 e&lrbars on top right plot). In
the latter case there would be two events detected abovarigghbld for only one action
potential. In order to avoid this, a refractory pe@dd introduced into the algorithm:
when a spike is detected, another event can be registergdftal the expiration of the
preset time interval. Exploratory data analysis on allaoted action potentials showed
that the scattering of these peaks is never larger tharu$4G samples). Introducing the
refractory period in the algorithm thus does not take intcoaat any overlapping spikes
(coming from different active units) that may occur durihgstperiod.

4.4 Classification of Action Potentials

It is important to note that our objective is not to classifytlae action potentials to eventu-
ally have accurate information about single-unit actiMiyt rather to isolate activity from
subsets of fibers that would be usable for closed-loop FEStHar words, we are inter-
ested in classes that would provide a linear relationship muscle length and that would
not change when varying the velocity of muscle motion.

In principle, there are two approaches when wavelets are imspattern recognition
problems. The first is to use one wavelet to represent alksglilape variations, and the
other is to use different wavelets for each of the spike tategl In the former case one
wavelet may not be sufficient if there is a large variationssn the action potentials
waveforms. This is very probable if a larger number of units@esent in the recording.
In the latter case, the best representation of differerkespaveforms would be achieved
by designing new wavelets for continuous wavelet transfdrhe procedure consists of ap-
proximating a given pattern using least squares optingrathder constraints leading to an
admissible wavelet. We have tried this on spike wavefornmisaeted from experimentally
recorded ENG, and good fit could not be found for all wavefobmsause of the imposed
constraints. Only certain biphasic action potentials poedl good fits. Even if a set of
wavelets could be found that represents all spike wavefotimescomputational power re-
quired for real-time parallel computation of CWT coeffidi®and processing exceeds the
available computing power available today. A compromisevben the two approaches
could be the representation of the full set of action pos¢mtaveforms by a reduced set of
wavelets. For example, using two wavelets, i.e. using cermphvelets.

INot to be confused with the nerve fiber refractory period. sTieifractory period implemented in the
algorithm is a period during which any other peaks crosdiegdetector threshold will be ignored. In other
words, it is the refractory period of the detector.
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The multi-scale complex CWT has an advantage that it alseroth framework for
classifying the detected neural spikes. Action potentdfer in their shape and amplitude
and it was necessary to choose a feature set and a distarmee \wtt which they would
be distinguishable. Exploratory data analysis on the etd¢thneural spike waveforms
indicated that the CWT coefficients computed using the samge of scale factors as in
the detection algorithm could be suitable as classificafatures. Visual inspection of
time-scale plots, like those shown on Fig. 4.2, indicatg #re different for different spike
waveforms. Classification could therefore be performedrbgting feature vectors for the
detected spikes and then clustering the data using thedeadlidistance metric. Feature
vectors are created by concatenating rows of the time-ptatie for the real and imaginary
part of the complex CWT transform. Each row consists of theTC8defficients for a
particular scale.

Being short transients (lasting no more than 1 ms) it is irtgurto properly detect
the onset of each detected spike. This problem is known ashegetection. In order to
compare spikes, the features vectors needed to be prealggigd. In template matching
methods spike presence is detected with thresholding amthumber of samples around
that point are taken to form a spike waveform [Schmidt, 1984 our case, the time
reference is the instant of the wavelet coefficient with tteximal magnitude.

In our context, there are two steps in the classification ¢éated action potentials.
The first is the calibration phase, where the classificasgmerformed off-line. The pur-
pose of the calibration is to identify action potentialstteacode relevant information for
closed-loop control. In other words, we look for classesatiba potentials having a linear
relationship between firing rate and muscle length. Once #ne identified, the second
step of the classification is to recognize these particutom@ potentials on-line in order to
estimate muscle state.

4.4.1 Calibration Procedure

One possible way for implementing the calibration is théofwing. Acquisition of ENG
and ankle joint position are simultaneously recorded itiahsignal acquisition. Action
potentials are detected in the ENG and subsequently cksi@ne method for classify-
ing the spike is the k-means algorithm. It is a method thatésegored over hierarchical
classification methods when dealing with large data sets.Kfimeans method treats each
wavelet signature as an object having a location in featpeges It finds a partition in
which objects within each cluster are as close to each otheoasible, and as far from
objects in other clusters as possible. Each cluster in théipa is defined by its member
objects and by its centroid, or center. The centroid for edakter is the point to which
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the sum of distances from all objects in that cluster is mingd. K-means uses an itera-
tive algorithm that minimizes the sum of distances from ealgjlect to its cluster centroid,

over all clusters. This algorithm moves objects betweestehs until the sum cannot be
decreased further. Like in other types of numerical minatian methods, the solution that
k-means reaches often depends on the starting points. disslge for k-means to reach
a local minimum, where reassigning any one point to a newelwgould increase the to-

tal sum of point-to-centroid distances, but where a betttrt®n does exist. In order to

avoid local minima, clustering was repeated 50 times (capdis), each time using different
starting points. Clustering using less replicates sonegiproduced different clustering re-
sults using the same input, indicating the number of ref@g®vas not sufficient for finding

global minima in the optimization process. After the clésation is complete, firing rates

of each class are computed. Eventually, the linearity of¢tationship between firing rates
against muscle length is checked for each class.

One requirement for using k-means algorithm is to know inaade the total number
of classes. In order to estimate the number of units eaclbfsite tfLIFE picks up activity
from, aggregate afferent firing rates of the post-proceE$@ signals were computed by
counting the number of peaks above threshold in a 1-ms madinmg window with no
overlap between adjacent iterations. This moving windovation matches approximately
the absolute refractory period of mammalian sensory ndoeesijvon Briicke et al., 1941].
Since there cannot be two spikes originating from the sano@ awthin this period, an
estimation of the minimal number of axons can be made by aogitite number of spikes
in the window. Miscount can occur in cases where two or moileesgrom different fibers
overlap. This analysis was performed on the experimental @equired for the modeling
study, described previously (section 3.2.4). By extendliegabove analysis onto a number
of periods of the faster sine wave, the probability of spikertap becomes smaller, as it
is unlikely that the same subset of spikes will overlap inhgaeriod at the same phase. In
the analysis the highest unit count per bin that appearezhat in 3 out of 5 periods of the
sine wave was taken as the estimation of the number of units.

Analysis performed on experimental data where the musckepaasively stretched,
showed that the number of units being picked up by the rengrdiectrode changes, de-
pending on how much the muscle is stretched. The more thelenssstretched, the more
units are firing. Values in the Table 4.1 are estimates of timaber of units at the time
the muscle is maximally stretched. No significant diffeleim the numbers are found be-
tween the slower and faster sine wave data. The differeno®st cases is zero or one unit.
On the other hand there is a large variation when comparihgess rabbits and in some
cases even between different channels of one electrodestistdly, the median number of
units picked up at maximal stretch is 8, with a standard dernaf 2.7. To account for the
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Table 4.1: Estimates of the number of units from which thetetele picks up activity at
the point when the muscle is maximally stretched. Resuéishown for each channel for
both sine frequencies and for all 10 experiments.

10 mHz sine stretch | 250 mHz sine stretch
Rabbit| Chl Ch2 Ch3 Ch4 Chl Ch2 Ch3 Ch4
1| 10 9 10 8 9 9 9 6
2 13 13 10 12 12 12 9 12
3 7 8 6 6 7 7 6 7
4 7 8 5 6 7 7 4 6
5 15 15 5 3 14 14 4 3
6 8 9 8 8 7 7 8 8
7 6 4 7 10 6 3 6 8
8 5 11 8 12 6 10 10 11
9 11 9 8 8| 10 9 8 8
10 9 7 7 9 8 8 7 9

changing number of classes, the total number of classeéfftine k-means clustering was
set to 10, allowing the algorithm to create empty classesderao produce best results in
the optimization process.

4.4.2 On-Line Clustering

Real-time operation is not evaluated in our study. We focig on the feasibility of finding
linear classes using the wavelet-based spike sortingiligodescribed in the calibration
step. Nevertheless, we give here a few pointers for futuakzagion of real-time classifi-
cation.

All classes demonstrating a linear relationship are slgtéi be used in the on-line
clustering for estimating muscle length. Real-time operatequires a different imple-
mentation of the classification. Information about clustentroids from the calibration
step are used here as initial values for the classifier. Eeshdetected spike during real-
time operation would be assigned to one of these initiabelgsand the cluster centroid for
that class updated, taking into account the signature aféheclass member. The updating
insures the algorithm can adapt to any slow changes in theesbfaaction potentials, re-
sulting either from electrode drift or fibrous encapsulatod the electrode recording sites.
Eventually, not all classes need to be used. Only classesrlfor feedback purposes are
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tracked.

To give an idea of the computational requirements, off-oenputation of complex
wavelet coefficients at 16 scales using the cgaul wavelktapproximately 4 seconds for
100 ms of data (update time in closed-loop control, see@e&i3.2). The computation
was done using MATLAB on a desktop PC equipped with a Pentiu@PW running at
2.4 GHz and with 2 GB of RAM. It is expected that the processimg would be reduced
approximatelly ten-fold when the algorithm is implementisthg a low-level programming
language, and even more if implemented using an applicapegific intergrated circuit
(ASIC). Therefore, it is expected that real-time implenagion is possible.

4.5 Generating Synthetic ENG Data

In order to be able to evaluate the performance of the spikengalgorithm, knowledge
of the exact timing and class of each action potential in tN&Eignal is needed. Because
of uncertainty about this information in experimental datdificial signals based upon
recorded action potentials were synthesized.

Around 30 action potentials with different waveforms wergually identified and ex-
tracted from the experimental data recorded for the mogsalindy (section 3/2). From the
set of extracted waveforms, 5 action potentials with dettydifferent shapes were chosen
to represent 5 neural spikes originating from differentresxa.e. different spike classes.
These are shown on Fig. 4.1. The waveforms were normalizédsed to synthesize spike
trains.

Spike train firing rates were randomly chosen from within thege found in litera-
ture [Matthews and Stein, 1969a]. With the exception of bfinmg, muscle spindle af-
ferents can fire with a rate up to about 75 Hz. Burst mode firiag @xcluded because
the amplitude of an action potential firing in burst mode carywften as much as 50%
[McNaughton et al., 1983]. This variation is due to shiftsnembrane conductances dur-
ing the relative refractive period of the neuron cell [Smided Bonds, 1998] and it is only
present in initial movement in primary spindle response$Re and Gregory, 1977].

Spike amplitudes were scaled by integer values ranging &¢or6 standard deviations
of the background noise level, which corresponds to thegafigalues found by visually
inspecting the data recorded using tfLIFE. These 4 scakotpfs represented different
SNR levels for which the analysis was performed. TheretheeSNR is defined here as the
ratio of the peak amplitude of the noise-free action po&mind the standard deviation of
background noise. Signals were synthesized by adding tke pins onto experimentally
recorded background noise.
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Figure 4.5: Steps in the creation of a synthetic signal wthau3 units firing. Top 3 traces
are the generated action potential trains for the 3 unite driset of the first spike train is
att = 1 ms, the second train &= 2 ms, and so on. The fourth trace is the superposition
of traces 1-3. Eventually, background noise is added to ¢eerfree signal, resulting in a
signal shown on the bottom trace.

Signals with up to 10 units firing simultaneously were systhed. Spikes having the
same waveform and amplitude were considered to be from the a&on (belonging to the
same class). A total of 900 signals were generated: 100Isigith 2 units active, another
100 with 3 units, and so on until having 100 signals with 10tsufiring simultaneously.
Steps in the creation of one synthetic signal with up to 3suadtive are shown on Fig.

4.5.
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4.6 Results

Wavelet-based detection performance on the synthetialsighhcompared to the amplitude
thresholding method, being the most common used todaycbeas evaluated on a range
of thresholds, starting from background noise level up erttaximal magnitude found in
the transformed signal.

Classification performance is evaluated on both the syictB®NG by comparing the
wavelet-based classification to methods based on tempktighing and principle compo-
nents analysis. These two methods, used as references conigarison, are the most
commonly used because of their relative simplicity whiclaldas fast, real-time imple-
mentation.

Performances of the wavelet-based detector and the detesity simple amplitude
thresholding are shown on Fig. 4.6 in the form of a receivarapons characteristics, or
ROC curves. These curves are graphical representationst@étdr sensitivity vs speci-
ficity using a range of detection thresholds. On the wholgeaof SNR levels the wavelet-
based detector outperforms the detector based on ampiiiteholding, i.e. for any given
specificity, the corresponding sensitivity is greater far tvavelet-based detector. The per-
formance gap becomes especially prominent with low SNR.

Compared to detection using the non-complex db2 wavel&tcten using the cgaul
wavelet shows better specificity in ROC space (Fig. 4.7).18fhis is most probably due
to the wider range of wavelet transform scale factors reguior the db2 wavelet (Fig.
4.7, right). A wider scales range translates into a widegdency bandwidth, as explained
earlier. For the cgaul wavelet the scales range was from Jlaodsfor the db2 wavelet it
was from 2 to 14.

Classification results are shown in the form of classificaioror rates which are ratios
of the number of misclassified spikes to the total number ddespbeing classified. The
wavelet-based classification is compared to two other naistiod classification: principal
components analysis (PCA) and template matching. Reselshawn on Fig. 4.8 starting
from the case when only two different spike classes are ptasethe signal up to the
case where 10 units are simultaneously firing. Classifindtemsed on template matching
produced the highest classification error rates, while Vedtvand PCA-based approaches
showed similar results.

The spike sorting technique was eventually applied on exytally recorded muscle
spindle afferent nerve activity. Only flexion periods of Enjoint motion (stretch periods
of the MG muscle) were analyzed.

The detection threshold was chosen to be seven times tha@asthdeviations of the
background noise level (in wavelet space). Throughouthallttials, this threshold value
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Figure 4.6: ROC curves for four SNR levels defined by the rafithe peak amplitude
of the noise-free action potentials to the standard denadf background noise. Perfor-

mances of a simple threshold detector (empty-circle lime) the wavelet-based detector
(full-triangle line) are compared.

corresponded to the point on the ROC curves where the spictiarts to rapidly deteri-
orate while at the same time there is little improvement imsgevity.

The detected units were classified into 10 clusters. Thicineat approximately the
number of units being picked up by one recording site of th&& when the muscle is
maximally stretched. The analysis was performed on data &iball rabbits. Results from
the clustering shows that up to 2 or 3 spike classes per rahbw a linear relationship
between their computed neural firing rate and instantan@ossle length. Since this rela-
tionship is not linear when using the aggregate afferemigfirate, the result is an indication
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Figure 4.7: Range of detection scale factors required ®ctaul and db2 wavelets. The
increment between successive scales used was 0.25. The wgaelet has a range of
optimal scales that is more than two times smaller comparéutdb2 wavelet.
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Figure 4.8: Classification error rates depending on the murob units simultaneously
active. Groups of three bars represent the different ¢leason approaches: template
matching (black), principal components analysis (gragdl wavelet-based (white).

that the algorithm is capable of isolating activity of urlgss sensitive to muscle stretch
velocity. Results from one rabbit are shown on Fig. 4.9. H®fedlot shows the relation-
ship between the aggregate firing rate of all detected spikes relationship is clearly not
linear in the region where the muscle stretch velocity sldawn rapidly (region where
normalized muscle length is close to 1). The right plot shtvessame relationship, but
this time using only the activity of the fibers insensitivetihe velocity of muscle stretch.
A linear regression analysis performed on both shows tledfittion the right plot is better.
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Figure 4.9: Afferent neural firing rate vs muscle length. Téfeplot shows the aggregate
activity of all detected spikes. On the right, only activitpm 2 clusters, having a good
linear fit to the data, are used to compute the firing rate. drimegression analysis was
performed on both (full lines). On both plots muscle lengddswormalized by 4 mm.

4.7 Discussion

Results show that the continuous wavelet transform usingpéex wavelets is the preferred
method for neural spike detection. Even though wavele¢dhakassification does not show
improvement in error rates compared to the PCA-based #hgoyithe advantage of using
the wavelet-based approach is in the fact it is it providesigue framework for both
spike detection and classification, i.e. after computirggabmplex wavelet coefficients in
the detection phase, no additional computation is requiréde subsequent classification
phase.

4.7.1 Cluster Centroid Comparison for Different Stretch Rates

It would be of interest to compare activities of the sameaifut the slow and fast muscle
stretch rates in order to see if there is a change in theircitgleensitivity. However, it is

difficult to identify same units in the 2 stretching condit®& Even if units have a similar
shape, itis not a guarantee they are in fact from the samermwito As we have seen from
the extracted waveforms from the experimental data, theréeaver distinctive shapes than
there are units in a recording. Nevertheless, a comparitoluster centroids from the 2

data sets can be done. In order to be able to graphicallymrelssster inter-distance, PCA
was used to reduce the dimensionality of the time-scaleasiges of cluster centroids. A
comparison between cluster centroids for the slower artérfasretch rate for one rabbit
are shown on Fig. 4.10, using the first two principal comptseRull circles are cluster

centroids from the slow muscle stretch and the empty tresgle from the faster stretch
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Figure 4.10: Comparison of cluster centroids for the slavll (fircles) and fast (triangles)
muscle stretch rates.

rate. Pairs of centroids are easily identifiable, which ig@ang indication that they in fact
represent the same units (or group of units having a sintiaps).

All action potential classes obtained when sorting neucéividy from slow muscle
motion exhibit linear or very close to linear relationshiptween firing rate and length.
On the other hand, when the same muscle is stretched withagster fspeed, a number
of classes obtained from those faster stretches show abwion-linear behavior and the
rest remain linear. Under the assumption that the classestfie two cases contain action
potentials from the same fibers (Fig. 4.10), one could calechhat the same class show
different behaviour at different motion speeds. Howeveeré is not enough evidence
to conclude that the units that keep their linear behavioinduhe faster stretch rate are
velocity insensitive. Even the 250 Hz muscle stretching v@y slow rate. If a definite
conclusion is to be made, the behavior of there units need &iudied using faster stretch
rates.

4.7.2 Aggregate Compared to Single-Cluster Activity

A difference between the aggregate firing rate and the iddaliclass firing rates is evident.
The aggregate firing rate has non-linearities where mosteofihits are being recruited or
saturate. Single-class activity shows these distincthaets and saturation points. A few
distinctive cases encountered in clustered data are showigo4.11.
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Figure 4.11: Typical profiles of firing rates vs muscle lenfythsingle clusters. On each
plot the abscissa is the normalized muscle length and theaiedis the firing rate in spikes
per second.

Class 1 shows the typical behavior of a class with a low atttizahreshold and satura-
tion point before the maximal muscle extension. Activityagistered even at the minimal
muscle extension and saturation occurs even before thefrtaé muscle extension range.

The second class illustrates the difference between s$@miuirand velocity sensitivity.
Instead of maintaining a constant firing rate after satanatvith further increase in muscle
length the rate starts dropping at the maximal extensioerethe velocity of the stretch
slows down rapidly.

The third plot is an example of a class with a linear firing rdwe@ughout the whole
range of motion. These are class behaviors we are interested

The fourth plot is an example of one class containing 2 unitls similar shapes. The
first unit starts firing with a low length threshold and quicklturates. As the muscle is
stretched further, the threshold of activation of anothatsuis reached and it fires until
maximal muscle extension. These classes can also be useftritrol purposes as the
activity can be modeled as a piece-wise linear function.

4.7.3 Application in Closed-Loop FES

Results show that the spike sorting algorithm could be useftiosed-loop FES systems
with proprioceptive feedback from natural sensors, e.gsaleuspindles. The spike sorting
scheme seems to be capable of isolating the activity of slxgrsensory endings from the
aggregate neural activity of muscle spindle afferents,intpik possible to establish a linear
relationship between muscle length and neural firing rates fiesult is a step towards an
on-line model-based estimator of muscle length. The moweali classes are found, the
more robust the estimation of muscle state will eventuadly b

The off-line calibration using sine stretch profiles, asf@®ned in this study, can also
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be done using other stretch profiles, as long as they covartibke range of muscle motion
to be tracked on-line. The criteria for finding the classemtdrest is the linearity of the

relationship between class firing rate and muscle lengtle guantitavive criterium could

be a threshold for the fit error in the linear regression aislyOnly classes having a fit
error under the threshold would be selected for subsequehhe estimation of muscle

state. Whatever the stretch profile used, only the periodscoéasing neural firing should
be taken into account in order to avoid periods of nerve fidaptation, as explained earlier
(first paragraph of section 3.5.2).

One of the biggest obstacles in both detecting and claagifygural spikes proves to be
the low SNR of the ENG recordings. In parallel to working oe ttnprovement of signal
processing methods to minimize the effects of noise, n@azgnding techniques could also
be used to improve signal quality [Djilas et al., 2007]. lteipected that, when signals
are acquired using such techniques, the overall perforenahthe spike sorting algorithm
should improve.

4.8 Summary

The continuous complex wavelet transform offers a converfimmework for both de-
tection and classification of action potentials using ifasaicular electrodes. The neural
spike detection outperforms the simple threshold detecespecially with signals with
low SNR.

Results of classification of units into classes based omgotential waveform sig-
natures in wavelet space indicate that the classifier istalikolate activity having linear
relationship with muscle length. This is a step towards afir@model-based estimator of
muscle length that can be used in a closed-loop FES systdmatitiral sensory feedback.

In the case of wavelets, and all other methods for spikergpftir that matter, the ma-
jor limiting factor is not in any of the processing methodst im the recording selectivity
and the signal-to-noise level in the multi-unit ENG. One wiagt could help improve the
performance of spike sorting is to try to the improve the tyalf the signal in the acquisi-
tion step of the data, even before any processing takes. plaoe such method, involving
shielding of the implant site, will be the topic of the nexagplter of this report.






Chapter 5

Improving SNR in Longitudinal
Intraneural Recordings

5.1 Introduction

In FES systems simultaneous stimulation and recording aexassity. The neural inter-
face is located in the proximity of the neuromuscular strtes of interest, leading to prob-
lems with relatively large levels of artifacts. The musahe astimulus artifacts in tfLIFE
recordings arise from the extra-neural potential gradiesitdrops longitudinally along the
nerve. The level of muscle artifact limits the maximal gdiattcan be set in signal ac-
quisition, which in turn limits the maximal signal-to-neisatio (SNR) in the recordings.
Stimulation artifact additionally corrupts the recordéghsls. As we have seen in the pre-
vious chapter, the low SNR is a major issue when it comes tectlagy and classifying
neural action potentials. If the signal-to-noise level tenimproved, the spike sorting
performance would also improve.

Observations during previous work suggested that packiagmplant site with car-
bon fiber [Yoshida and Horch, 1996] or wrapping the implate g a small conductive
wrap of metalized Teflon thin film [Yoshida et al., 1998] mima@s stimulation and EMG
artifact pick-up. The conductive shield makes the extraralespace around the implant
site equipotential, which leads to the reduction of exttaaknoise in the recorded signals
(Fig. '5.1). On the other hand, the conductive shield alsogesl ENG signal level. A
possible explanation is that the conductive material ofsthield provides a low-resistive
pathway for the axon membrane ionic currents that gendnatadtion potential, resulting
in a lower voltage drop between the measuring electrodesedder, the metallic foil can
also touch the exposed indifferent site on the recordingfielde, resulting in large artifacts
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shield

?
nerve e,

Figure 5.1: lllustration of a shield wrapped around a recwctlectrode implant site. If
made of conductive material, the shield helps reduce sétiau artifact, but also reduces
the level of ENG in the recordings.

in the recorded signal. An improvement in SNR can possiblgdigeved by modifying the
shield structure.

We have conducted a study with the objective to test the ngsid that a double-layer
shield improves SNR in ENG recording made using longituldim@a-neural electrodes.
Methodology for experimentally validating this hypothes the topic of this chapter of
the report.

5.2 Shielding the Implant Site with a Double Layer

Our hypothesis was that placing a dielectric layer betwbeméerve and the conductive foll
would prevent both the shunting effect of the action po&#miurrents and the conductive
foil touching the recording sites of the electrode. A pilaidy has been conducted to
experimentally evaluate this hypothesis. Instead of &albimg a double-layer foil, which
would have a dielectric surface on one side and a conduaiivace on the other, we opted
for an ordinary cuff electrode. When placed around the nexes the tfLIFE recording
sites, with the cuff leads left unconnected, the cuff etershould effectively act as an
insulating shield. Assuming the volume inside the cuff isnegeneous and of constant
resistivity, and the cuff electrode diameter is much smahlan its length, the insulating
cylindrical body of the cuff electrode can be consideredtedrise the external fields inside
the cuff [Struijk and Thomsen, 1995]. An illustration of theld distribution inside the cuff
electrode, generated by an extra-neural source, is shoWwigob.2, on the right. When its
its leads are left unconnected, the field distribution istems by the full line (OC). With
its leads shorted, the field gradient becomes smallertritited by the dashed line (SC).
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Figure 5.2: Effect of external field linearization due to theulating cuff wall (full line
OC). Shortening the outer cuff rings equalizes their paaéand reduces the gradient of
the artifact field distribution inside the cuff (dashed IB€). The abscissa is the electrical
potential and the ordinate is the distance along the cuff.

Recording sites positioned longitudinally inside the @léfctrode should therefore register
a smaller electrical potential difference in a differehtecording scheme. The reduction
of the slope of the artifact field distribution inside thefeelectrode when the cuff rings are

connected, compared to the case when the electrode ledé$ areconnected is explained

in the following text.

5.2.1 Artifact Field Gradient Inside the Shield

The equivalent circuit of the recording scheme is shown gn(bi2, on the leftZg » are
electrode-tissue impedancey, is the tissue impedance outside the cdff,is the tissue
impedance inside the cuff, amghyg models the artifact source. In the case the cuff leads
are left unconnected, the current flowing through the tisssile the cuffi;oc) can be
expressed by the following equation:

. L
l1oc) = Zot 71 IEMG (5.1)

Let Z¢ be the equivalent series resistanc&gfandZs. When the cuff leads are shorted,
the current flowing through the tissue inside the ¢y can be calculated as follows:
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Assuming thaZg is much smaller thaid;, the following approximation is obtained:
, 1 .
l1(sq) = 1720 “11(00) (5.2)
" Ze

Coefficients linking the currents on the left and right siflequations 5.1 and 5.2 determine
the slopes of the field gradients on Fig|5.2. From equationn&Zee that the current
flowing through the tissue inside the cuff should never bgdawith the cuff leads shorted
compared to the case when the leads are left unconnectedn ihbéeads are shorted a
part of the total artifact curremgy g is shunted through the cuff rings and prevented to flow
through the tissue inside the cuff. The percentage of theentithat is shunted depends on
the electrode-tissue impedangg In the theoretical case where it is zero, no current flows
though the tissue inside the electrode and the field insieletlff electrode on Fig. 5.2 is
flat. On the other hand, if the impedance is large, compar2g|{d;, theni; is determined
only by the equivalent parallel impedanceffandZ;, in which case there is no difference
betweeri o) andiysg)-

5.2.2 Experimental Evaluation

Additional experiments needed to be run in order to expartally evaluate the effect of
shielding on the levels of recorded ENG and on the levelsioiidation and EMG artifact.
Acute animal experiments were conducted on 5 anesthetieedA¢aland white rabbits.
Animal preparation was similar to that used in the modeling) spike sorting studies (sec-
tion'3.2.1), except for the differences described in thiofaihg text. The motorized lever
system in this study was used merely to insure the muscléleamains constant through-
out the experiment. Muscle stretching was not required. ifrfpanted tfLIFE was used
to record compound nerve action potential response torigakcstimulation. The sciatic
nerve was not crushed, as single-unit activity was of na@stdo us in this study. Stimula-
tion and recording were conducted using the same equipmergetup as in the modeling
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study, except for the fact that here the simulation trigges wlso also recorded on one
additional channel on the digital tape recorder. It was Uatst in data analysis for trigger
averaging the nerve twitch response.

Nerve activity was elicited by electrical stimulation deied through a bipolar circum-
ferential cuff electrode implanted around the tibial nenvefurther text this electrode will
be referred to as thstimulation cuff The resulting ENG, EMG, and stimulus artifacts
were recorded through the 4 channels of the tfLIFE. Anothgolar cuff electrode was
used as the shield. In further text this electrode will bemed to as thehielding cuff
Both cuff electrodes were 10 mm long with a 2 mm inner diametégasurements con-
sisted of recording the neural response to electrical $&tian using pulse trains (pulse
duration 100us and pulse repetition frequency 1 Hz). With increasing gkation inten-
sity the number of activated motor units increases leadirantincrease in recorded nerve
and muscle response. The recruitment curve was experiltyssitéained by starting with
stimulation intensities below nerve threshold and indreathe stimulation intensity in in-
crements until there was no more change in the response rfrabreural response and
maximal EMG artifact). The motor unit recruitment curverfrone experiment is shown
on Fig./5.3. It can be seen that with stimulation below thoédiinormalized intensity 0.2
in this example) there is no nerve response. The nerve respgben appears and grows
with increasing stimulation intensity until it reacheswsation (at normalized stimulation
intensity 0.5). At this point all motor units are recruitetighere is no effect of any further
increase in stimulation intensity.

Four shielding configurations were tested:

1. no shield (baseline recording);
2. conductive shield only (aluminum foil wrapped around LtiEeE implant site);

3. open-circuit shielding cuff (shielding cuff electrodeged around the LIFE implant
site with its leads left unconnected);

4. short-circuited shielding cuff (shielding cuff eledmplaced around the LIFE im-
plant site with the leads from the end rings shorted).

After the signals for the first configuration were recordéé,metallic foil was carefully
placed around the nerve. Care was taken not to move the regaictrode or injure the
nerve. The same goes for the case when the metallic foil wasved and the shielding
cuff subsequently implanted around the tfLIFE. Betweenttin@ configurations with the
shielding cuff no animal handling was necessary since erelde leads were left outside
the animal which enabled their easy connection.
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Figure 5.3: Levels of stimulation artifact, nerve respoase muscle artifact from one
experiment. The stimulation artifact increase linearltfmgtimulation intensity. Nerve and
muscle response becomes visible above the activatioriice8.2. After all motor units
are recruited at stimulus intensity 0.5, there is no furiherease and nerve and muscle
response. Values on the abscissa are normalized by the @lartensity used.

Minimal electrode movement can result in moving one or mee®rding sites com-
pletely outside the target fascicle. Even if an electrodessbnly slightly, remaining in
the fascicle of interest, the recording sites may pick uiégtrom a completely different
subset of units within the same fascicle. Moreover, theagugssibility of the tfLIFE being
displaced during electrical stimulation, due to mechdrima&es produced by the contract-
ing muscles. In all cases where there was evidence of etkctrmvement, recorded data
were excluded from the analysis. Even with precautionstaketwo rabbits we could not
register a nerve response to electrical stimulation, lonLgation and muscle artifact were
still present in these rabbits. Eventually, artifact daanT all recordings was processed
from all 5 rabbits, while ENG data only from 3 rabbits was &alalie.

5.2.3 Nerve and Artifact Signal Components

Electronic noise was removed by stimulation triggered ayerg. Duration of recordings
for each incrementing step of the stimulation intensity Wsseconds. This provided a
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Figure 5.4: Trigger-averaged response to electrical séitimn with twitches. Three dis-
tinctive components can be identified, appearing one afteth@r: 1) stimulation artifact,
synchronous with stimulus pulse, activity from 0 to aboud 1&; 2) compound nerve ac-
tion potential, the biphasic waveform just after the stinsudrtifact; and 3) muscle artifact,
activity starting from around 1 ms post stimulus until thel @fithe trace.

sufficient number of one-second bins to be used in the avagadiree signal components
can be distinguished on the averaged traces: the stimuifactappears first, immediately
followed by the compound action potential, and eventu&le/EMG artifact appears (Fig.

5.4).

Levels of each signal component in the twitch response weaatified in the follow-
ing way. The level of the stimulation artifact was taken totlhe peak-to-peak amplitude
of the averaged signal in a time range from the beginning efstimulation pulse (t=0)
until approximately 20Qus post stimulus. The estimate of the nerve response componen
was the peak-to-peak amplitude of the averaged trace appaiedy between 0.2 ms and
1 ms. Finally, the EMG artifact level was the peak-to-pealpltonde of the averaged trace
starting approximately from 1 ms post stimulus until thepmsse settled back to baseline.
Time intervals were visually identified and manually setelctor each rabbit because of
the slight variability between experiments — nerve and teusdifacts had different on-
sets because of the different distances between the stinguénd recording electrodes in
each preparation. Signal component levels as a functionrmiigtion intensity from one
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Figure 5.5: Percent differences for the 3 recording condijons: C — conductive foil
wrapped around the implant site, OC — cuff electrode arobadmplant site with its leads
left unconnected, and OS — cuff electrode around tfLIFE anpkite with its end rings
shorted. The box plots show levels for stimulus artifadt)|@eural response (center) and
EMG artifact (right), relative to the case where no shigidsused.

experiment is shown on Fig. 5.3.

5.3 Results

The shielding strategies (no shielding, conductive shiefen-circuit shielding cuff, and
shorted shielding cuff) were compared in terms of three ipatars: level of nerve re-
sponse, level of stimulus artifact, and level of EMG artifathe results in form of sta-
tistical box plots are shown in Fig. 5.5. Each box has linehatiower quartile, median
(thick horizontal line), and upper quartile values. Whiskextend from each end of the
box to the adjacent values in the data. Outliers are disglayith a + sign. The results
compare shielding performances using data from all ral§®itabbits for ENG data, and 5
for artifacts data).

The recording configuration with no shielding was the refeesin the evaluation of the
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Table 5.1: Percent differences of nerve signal levels fer3mecording configurations: C
— conductive foil wrapped around the implant site, OC — clg€&ode around the implant
site with its leads left unconnected, and OS — cuff electradeind tfLIFE implant site
with its end rings shorted. Values in bold text are medians.

Rabbit 1 Rabbit2 Rabbit 3 Mean| Std

C -10 -24 -53 -29 | 22

ocC 94 43 48 62 | 28
SC 57 42 48 49 8

three cases where shields were used, i.e. neural and tlefats from the recordings with
different shields were compared relatively to the levadsrfithe recording with no shield.

Results for the levels of neural response are summed in GableRecording with the
open cuff shield produced the highest ENG levels. Compardiaget no shielding case, the
ENG level was higher in the worst case by 43% and in the best lop®4%. Using the
shorted shielding cuff gave slightly lower ENG levels thamhvihe open shielding cuff.
In the worst case the improvement was by 42% and in the bestlyas87%. Using the
conductive shield reduced the ENG level for all three rahlit the worst case by 53% and
in the best case by 10%.

Results for stimulation artifact levels are summed in T&b2 The results for shielding
configurations with cuffs (OC and SC) compared between taldtiow no trend when
compared between rabbits. In 2 rabbits there is a reduati@mtifact, in another 2 there
is an increase in artifact. When compared between the tweldshg configurations for
the same rabbit, the results are the same for the OC and S@u@ifons. In the case
of the recording configuration with the conductive shieldrthis a trend of decrease in
stimulation artifact, the average drop being 24%.

Results for EMG artifact levels are summed in Table 5.3. Hoahbits the conductive
shield decreased muscle artifact. Results for the cufidghigre mixed as in the case with
stimulus artifact, but to a lesser extent. A drop in EMG adifis present in 4 rabbits (in 3
the drop is above 10%) and in one case an increase of artefadti registered. As in the
case with both stimulus artifact and ENG signal level, nmgigant difference is observed
between the OC and CS recording configurations.
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Table 5.2: Percent differences of stimulus artifact le¥@ithe 3 recording configurations:
C —conductive foil wrapped around the implant site, OC —el#€trode around the implant
site with its leads left unconnected, and OS — cuff electevdand tfLIFE implant site with
its end rings shorted. Values in bold text are medians.

Rabbit1 Rabbit2 Rabbit3 Rabbit4 Rabbit®ean| Std

C -87 -16 3 -8 -14 -24 | 36
ocC -79 35 46 2 -28 -5 51
SC -73 24 53 -7 -26 -6 48

Table 5.3: Percent differences of muscle artifact levaiife 3 recording configurations: C
— conductive foil wrapped around the implant site, OC — clg€&ode around the implant
site with its leads left unconnected, and OS — cuff electradeind tfLIFE implant site
with its end rings shorted. Values in bold text are medians.

Rabbit1 Rabbit2 Rabbit3 Rabbit4 Rabbit®ean| Std

C -3 -37 -75 -9 -8 -26 | 30
oC 49 -30 -50 -12 -1 -9 37
SC 26 -41 -57 -16 -6 -19 | 32

5.4 Discussion

The conductive shield (Aluminum foil) around the nerve reelliboth the ENG levels and
artifacts, most probably due to the shunting effect desdrigarlier. These observations
confirm the results from previous work by Yoshida and Horc®9d] and Yoshida et al.
[1998]. We will focus our discussion here on the effect oksiting using cuff electrodes.

5.4.1 Increased Neural Signal Level with an Insulating Shie

As predicted, an insulating shield between the nerve andndumive shield prevented

the shunting effect of the action potential ionic curreritgat only has it not reduced the

ENG level in the recordings, but increased it, in all threabits (Table 5.1). One possible
explanation is that this is due to the fact that the ionicents were confounded in a smaller
extra-cellular volume around the nerve, producing a lavgiage drop along the increased
resistance of its path.
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Figure 5.6: On the left, an illustration of a electric dipafside a cuff electrode. The
cuff electrode is the cylinder. The dipole is placed congeally with the y-axis, inside
the cylinder. On the right, integration of the electric figldover the transverse plane
x0z produces the current intensity through the plane. Theetharea is the infinitesimal
surfaced Sof the integration domain.

This phenomenon can be explained using an electric dipoke msdel of a neural
action potential generator. Each pole of the dipole cathiessame electrical chargg but
of opposite polarity. The distance between the poles is ipelel lengthd. The dipole is
placed inside the cuff electrode which is modeled as an tefiniong cylindrical body with
specific conductivityo, permittivity €, and radiuR. The surface of the cylinder bounds
the current from the dipole inside the volume of the cylingfég. 5.6). The potentia¥ at
any point in space created by the dipole is given by:

a . 9 _4d (1—1) (5.3)

- Amea,  Ame,  Ame\ry 1o

wherer; andr; are the distances from point with coordinatesy, z) to each of the electric
charges:

rn = \/xz-i—(y—d/Z)Z-i—z2 (5.4)

r, = \/xz-i—(y-i—d/Z)Z-i—z2 (5.5)

whered is the distance between the two opposite electric chargdeedafipole. Since the
dipole is used as a model of the generator of the nerve acttenpal, the distancd is
the spacing between the nodes of Ranvier of the axon gemgtae action potential. The
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components of the electric fiel,, Ey andE; are equal to the components of the negative
gradient of the potentia:

dv gx (1 1
B = ‘&——rm(a‘g) 5.9)
. dv g (y-d/2 y+d/2
By = dy 4ns( r$ r3 57
dv gz /1 1
& = _E__Rs<§_§) (5:8)

In our particular case we are interested in calculating tiveeat| flowing through the
transverse cross-section of the cuff electrode. Thergtoy the y-axis component of the
electrical field vector is of interest. Knowing that the @t densityJy is proportional to
the electric fieldEy, we can obtain the current intensity To simplify calculus we will
calculate the current through the cross section-av:

| = [JdS=o0 [ EdS (5.9)
[pee=e]®
_ _90 (d/2)ds
| = ans/(X2+(d/2)2)3/2 (5.10)
R
_qo (d/2)xdx

wheredS= 2mxdxis the infinitesimal surface of the integration dom&jrandR is inner
radius of the cuff electrode (see illustration on the rightFag. [5.6). Solving the upper
integral leads to the following equation for the total catrBowing through the transverse
section of the cuff electrode gt= 0:

9o (., d/2
== (1 —\/m> (5.12)

If we letR— o, which is the case when there is no boundary around the dith@éraction
in the above equation becomes zero. The ratio between tsifi@R = 1 mm (radius
of our cuff electrode in experiments) and fBr— c gives us the effective increase in
resistance between the cases with and without the isolajilngdrical shield around the
dipole, respectively. The graph on Fig. 5.7 shows the dependof this ratio on the
spacing between the nodes of Ranvier.
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Figure 5.7: Resistance increase when the cuff electrodat isrpund the dipole.

From the experimental data in Table 5.1 we see that the méadiegase in resistance of
medium would be around 50%. The corresponding resistarcedse in that case is 1.5,
estimating the dipole length to be a just a little over 1 mmis™Malue matches very well
with the spacing between the nodes of Ranvier for real axbims literature reports that the
spacing between the nodes are between 1 and 2 mm [Kandel20@0]. The presented
model can therefore be used to explain the phenomenon thdtsen a larger ENG level
pickup when putting the cuff electrode around the recordilegtrode implant site.

The same shielding cuff electrode was used in all experisadntsome preparations
it fitted around the nerve better and in other preparatioastirve diameter was smaller
and the cuff didn't provide a good fit around the nerve, leguime electrode loose. Using
a shielding cuff electrode with a diameter that would prevadbetter fit to the nerve would
have probably resulted in a smaller standard deviationsaflte between rabbits.

5.4.2 Electrode-Tissue Impedance and Level of Muscle Artict

An interesting observation in the case of EMG is that wheneoisignificant difference
between the OC and SC recording configurations, indicahat)the impedancg. was
much higher compared to the impedage(see Fig.  5.2). Nevertheless, some shunting
of the artifact current can be noticed in all rabbits, sifeedrtifact is always lower for the
SC configuration. Percent differences of the peak-to-pagiitudes of artifact for the SC
and OC recording configurations are shown in Fig! 5.8 in tine fof statistical box plots.
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Figure 5.8: Percent difference of peak-to-peak amplitwd#se artifact signal components
between the SC and OC recording configurations.

Triantis et al. [2003] report that the typical values Hf » are 1 K2, for Zg it is 200Q,
and forZ; it is 5 kQ. Substituting these values in equation 5.2, we get a restuctf
10% in artifact level when the cuff rings are shorted. Thituga correlates well with
the experimental results for both stimulus and muscleaaitif Only in the case of the
first rabbit the stimulus artifact is greater for the OC comepato SC case. The value
of +28% here suggests this is an outlier, as it is clearly nahe order of magnitude of
the other data. One also has to note that the authors in the aiady did not report at
which frequency were the above values measured impedaneas Imost probably for the
frequency band between 1 and 2 kHz, matching the spectrgbaoemts of interest when
analyzing the ENG. For lower frequencies (EMG signal spégieak power is around
250 Hz), the impedance magnitudes are probably even higher.

To reach any final conclusion about effect of shielding ondifierent signal compo-
nents additional experiments need to be carried out. Repudisented here can only be
considered preliminary, as this is still an ongoing studys#éming that the electrode-tissue
impedance between the cuff rings and their surroundingeiggays a crucial role is the
effectiveness of artifact reduction, the standard cufttetele can be modified so that its
metallic rings are made wider. This way the contact area &tvthe electrode and tissue
would be increased, leading to a reduction in contact impeela An illustration of the
modified cuff is shown on Fig. 5.9. On top is a standard cufhwitis rings of widthL’,
and below is the modified cuff with its cuff rings made widef,> L. Fabrication of the
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Standard cuff geometry

Modified cuff with longer contacts

Figure 5.9: The cuff electrode on the top has the standarchgg. Typical electrode
length, including the metallic contact widths is around 1thnwith each ring having a
width up to 1 mm (shown to scale). The bottom electrode hagased contact ring width
to provide lower electrode-tissue impedance.

modified cuff would not be any more complex compared to makirsgandard cuff. The
same fabrication procedure, described in section 3.2rPheaised to make a cuff electrode
with wider rings.

5.5 Summary

In the study presented in this chapter we looked into theipitisgof shielding the implant
site of a recording LIFE electrode as a means to improve tpeaito-noise ratio in our
recordings with the tfLIFE. A cuff electrode was used fosthurpose. Three shields were
compared to the case where no shielding was used: 1) condwsttield, 2) open circuit
shielding cuff and 3) shorted shielding cuff electrode. yWiere compared in terms of
their effect on the levels of nerve response, stimulatitifeat and EMG artifact.

Preliminary results show that the conductive shield plaamexind the recording site
reduces the recorded ENG signal level. A cuff electrodeqalaround the tfLIFE implan-
tation site increases the recorded ENG levels in both the whegre the cuff leads are left
unconnected and in the case where the leads are shorted.o®siblp explanation is that
the boost in ENG signal is a result of an increase in resistariche path along which
the ionic currents, generating the nerve action poterdral flowing. The increase can be
predicted by a simple model using an electric dipole as theceoof axonal membrane cur-
rents. The amount of increase predicted by the model coeseleell with the experimental
data.

A conductive foil placed around the tfLIFE implant site degsed both the stimulus
and muscle artifact levels in the recorded signals. In gleexnents but one, the two cuff
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shielding configurations helped reduce the muscle artgadtup. An equivalent circuit
model of the artifact source and its interaction with thecelde and surrounding tissues
predicted a 10% difference between the open and shortedskigiding configurations,
which is in agreement with the experimental data. For stis@artifact, results show no
trend. This is still an ongoing study and more experimengésreaeded to draw definite
conclusions.



Chapter 6

Conclusion and Final Remarks

6.1 Conclusion

There are several outcomes from the work on this thesis.tlithe new tfLIFE was
experimentally tested and it appears to be usable as a neterdice for recording muscle
receptors activity from afferent sensory fibers. Secoritly,developed model of muscle
spindle neural response to passive muscle stretch, in o with the developed spike
sorting algorithm, provides a basis for an on-line estimafomuscle state in a closed-
loop FES system, where the estimator would feed back to theater the information
about the length of the muscle in which the spindles residaNB have also shown that
using multiple channels of ENG, now available with the tfE|forovides a more robust
estimation of muscle length compared to estimation basexdsingle channel of ENG.

The novel neural spike detection scheme, based on the swale continuous wavelet
transform using complex wavelets shows better performaangared to the classical de-
tection based on thresholding; the novel method for classifin based on spike signatures
in wavelet space performs equally well as the best stateeaditimethods, but, unlike other
methods, requires no additional computation time becadusses data obtained directly
from the detection step of the algorithm. Classification aigle receptor action potentials
manages to produce classes having firing rates that aredpgndiant on muscle motion
velocity compared to the aggregate firing of all fibers, whicbvides a larger range of
muscle motion in which the developed model could be used asia for a future on-line
estimator of muscle state in a closed-loop FES system.

Finally, the novel shielding technique, where a cuff eled# is placed around the
tfLIFE implant site, shows improvement of the signal-taseolevel in recordings made
using intraneural longitudinally placed electrodes. \gdims shielding technique in signal
acquisition would therefore also result in the overall immment of a model-based muscle

91
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state estimator, since the performance of the spike soatgmyithm depends on the level
of SNR in the recordings.

6.2 Remaining Challenges

The next logical step, following this study, is to designplement and experimentally
validate an on-line estimator of muscle state. It would bsigleed on the basis of the
model defined is chapter 3 using only clusters of data olbdaiseng the methods presented
in chapter 4. It is expected that using the shielding tealmigresented in chapter 5 would
improve the performance of the system. Eventually, thenedtr is to be integrated inside
a closed-loop control system. Work on the model on which gigmator would be based
will also complement the muscle model that is currently gedeveloped in the DEMAR
laboratory [Makssoud et al., 2004], [Guiraud et al., 2008].

6.2.1 Reflex Regulation of Muscle Spindle Sensitivity

In real situations, however, the neural activity recordethuhe tfLIFE is not purely af-
ferent sensory activity from muscle spindles. Muscle sigimdlso have descending neural
pathways that regulate the sensitivity of these sensorghidrthesis we have focused on
de-efferented animal preparations, where the sciaticen@as crushed proximal to the im-
plant site and where there was only afferent nerve activigsgnt in the recordings. It
was a starting point for the experimental validation of tee/iLIFE and for exploring the
possibilities of interpreting the recording with the efede. It is now a question whether
or not the developed spike sorting scheme would be ableferédiftiate the accenting from
the descending nerve activity. This is also the case with ®8¢re spinal reflex pathways
are still present.

Once the spike sorting algorithm is able to separate afférem efferent information
flow, further work on the model should be directed toward nliadehe effect of gamma
motor neuron activity on afferent nerve response. Only therFES system based on the
methodology developed would be applicable in real-lifeations. The developed model
can be used as a starting point in further studies. It hassiemmn by Jansen and Matthews
[1962] that the difference in firing rate vs length responsgegondary ending, before and
after removing reflex control of spindle sensitivity, is yal shift in the curve, i.e. its shape
remains the same. On the other hand, the firing rate of theapyiendings also increase
with the drive intact, but its not a simple shift, the curveamthanges shape. Moreover, the
change of shape was different between different primarydibghis behavior, also taking
into account the known differences in distinctive patteshstatic and dynamic gamma
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fibers [Taylor et al., 2000], could be the exploited in theniglecation of different sources
in the signal decomposition. Work on these issues requimadifging the experimental
protocol to include intact instead of de-efferented anipralparations. The approach we
propose could lead to a solution to monitor reflexes and mapérol spasticity which
remains an issue in some patients.

6.2.2 Muscle Fatigue

Another topic of interest is muscle fatigue. With artificedectrical stimulation, muscle
fibers are not recruited in a natural way [Gandevia et al.51.98 natural control of move-
ment small muscle fibers are activated first and larger fibersetivated with increased
contraction intensity. Moreover, with high contractiondés, not all muscle fibers are ac-
tive at one time; while a subset of muscle fibers within a maigctontracting, the rest are
inactive and resting. During prolonged contraction, sétawuscle fibers switch on and off
asynchronously, producing a smooth whole muscle contracti

During artificial electrical stimulation the order of retraent of muscle fibers is re-
versed and always the same, contrary to natural recruitmesatge fibers are activated
first. More importantly, during high stimulation levels| aluscle fibers are recruited and
the muscle fatigues more quickly compared to the case weretlscles are activated by
the central nervous system. The problem is even more praeaolin the muscles below the
injury level in paraplegic individuals who will utilize FES/stems, who’s muscles atrophy
due to disuse.

It is presently largely unknown what is the effect of fatigofeafferent muscle spin-
dle nerve activity. If there is any affect, it would be of grémportance to be able to
decode information about the level of muscle fatigue in a BESem. With the devel-
oped spike sorting algorithm it is possible to investigateeffects of fatigue on individual
classes and not only on the aggregate neural firing. Howavényestigate the effect of
fatigue of different sensory fiber types requires precisenkadge of the type of sensory
fibers. As explained earlier, there is not sufficient evidetiat the classes obtained with
the spike sorting algorithm truly correspond to differebefis. A proved method for ac-
curately classifying fiber types is by the used of microetste recordings from individual
fibers and classification by fiber conduction velocity, sushnastudies during the 1960s
by Jansen and Matthews [1962], Renkin and Vallbo [1964],tMats and Stein [1969b],
Poppele and Bowman [1970] and others. In either case, empetal evaluation would
require designing specific experimental protocols.

Another way to monitor the level of muscle fatigue is tragkshifts in the power spec-
trum of the electrical activity of the muscle fibers [Gandeet al., 1995], i.e. by recording
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the electromyogram (EMG) of the muscle using an EMG eleetrddhis would, of course,
require using an additional electode and an EMG signal gsiog unit in the FES system.

6.3 Perspectives

Eventually, when the technology advances sufficiently imaafor the separation of activi-
ties from different sensory modalities, such as activiyrirskin stretch receptors, one can
envisage implanting more distally to the muscle. Activityrh these natural sensors could
also be useful for feedback in FES, since they also play arptré sensing of limb position
in the CNS, called cutaneous proprioception [Kandel eRaI00]. Moreover, recording of
afferent activity from these and other sensors in awake aondmg animals is unavoid-
able. Therefore, separation of these sources is a necéssRES system is to be useful in
practice.

The experimental work during animal experiments had reteabme issues regarding
the fixation of the LIFE connector close to the implantatida.sin acute experiments it
is sufficient to suture the connector to any surroundingiéssr simply letting it lie loose
during the experiment. However, for chronic preparatidw, ¢lectrode contact must be
firmly fixed. One solution for this problem would be the red@sof the connector in form
of a cuff electrode. This way the electrode could be easigdfi@nto the peripheral nerve
and it would at the same time allow for having the shieldingature around the LIFE
active sites. This could also reduce electrode migratiahsiippage during movement.
Furthermore, the area on the shield could be used to hostfaratbn electronic circuitry.
The active electronics could receive power by connectitg & nearly implanted device,
such as the BION, a microstimulator device that has alreashnlevaluated in clinical
trials [Baker et al., 2005]. When in recording mode this dewould acquire ENG from
the LIFE; and when in stimulation mode it could act as an ed&it stimulator. That way
the LIFE would act as a bidirectional neural interface.

The knowledge acquired from monitoring muscle receptompaases could be
integrated into the muscle model developed by DEMAR [Maksset al., 2004],
[Guiraud et al., 2008], together with the information oneldmobtain about muscle fatigue
and reflexes.



Chapter 7

Resune en Francais

7.1 Introduction

Les fuseaux neuro-musculaires sont de petits réceptemsosels encapsulés qui se
présentent sous une forme apparentée a un fuseau oorfasif Leur principale fonction
consiste a signaler les modifications de la longueur du lautms lequel ils se trouvent.
Les modifications de la longueur d’un muscle sont assoa&es modifications des angles
des articulations que le muscle croise, de sorte que ligeties fuseaux neuro-musculaires
puisse étre utilisée par le systeme nerveux central gétacter les positions relatives de
segments corporels. Ces capteurs demeurent intactsfeteaactiessous du niveau de Iésion
de patients souffrant d'une lésion de la moelle épinigkeec I'apparition des interfaces
neuroprothétiques, I'activité nerveuse afférente fsgaux neuro-musculaires peut étre
envisagée comme une source potentielle d’informatidroaetive dans les systemes de
Stimulation Electrique Fonctionnelle en boucle fermé&egk:

Dans une étude antérieure, un dispositif de commande eclddermée simple
a été mis en oeuvre pour effectuer le suivi d'une trajeetaiésirée pour I'angle de
I'articulation en présence de perturbations appliqudssuis I'environnement extérieur
[Yoshida and Horch, 1996]. Les auteurs ont adopté un salftencommande dans lequel ils
ont implanté une paire d’électrodes intrafasciculaioegitudinales a canal unique (LIFE)
dans les nerfs innervant la paire de muscles agonistetamttg de l'articulation. Le
but était de faire fonctionner les deux électrodes en mag®osés, par exemple, une
électrode stimulant I'agoniste, I'autre enregistramactivité du fuseau neuro-musculaire
de l'antagoniste, et vice versa. De cette maniere, ltedele d’enregistrement détecte tou-
jours l'activité neurale d’'un muscle étiré passivemelnés auteurs ont montré que cette
approche était applicable dans des conditions resggf{jvitesse et plage de mouvements
limitées) en raison de la non prise en compte de la varia#da sensibilité dynamique des
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terminaisons sensorielles des fuseaux neuro-musculaires

7.2 Modele d’'Activité Nerveuse Aférente Pour Estimer
I'Etat d’'un Muscle

Si I'on pouvait développer un modele permettant de réletivité nerveuse afférente des
fuseaux neuro-musculaires a la longueur d’'un muscle poptdge du mouvement de la
cheville lors de la locomotion, cela représenterait ur@na@e pour obtenir un systeme
d’estimation en ligne, basé sur le modele, de la longuaundscle. Définir un tel modele
a été le premier objectif de la présente thése.

Peu avant de commencer le travail de cette these, une h@gezlération d’interface
neurale intrafasciculaire, I'electrode intrafascidda film mince (tfLIFE), a été congue et
fabriquée, mais n’a pas encore été testée completadaas des conditions expérimentales.
Des expériences pratiquées d’emblée sur des lapinspgtinécessaires pour acqueérir les
données de validation de tout modele proposé, se safgrdgnt avérées une occasion de
tester la nouvelle électrode in vivo. L'électrode ell&me a été congue pour étre implantée
de maniere longitudinale dans le nerf périphérique Jletpermet d’enregistrer jusqu’a 8
canaux d’'un ENG provenant de sous-ensembles d’axones rad’'sei fascicule nerveux
(Figi7.1).

Un modele prenant en compte les difféerentes sensibiligs fibres afféerentes des fuse-
aux neuro-musculaires a été proposeé et validé expatiatement. Des expériences ont été
réalisées sur dix lapins blancs de Nouvelle Zélandendsthésie est induite et maintenue
tout au long des expériences. Une €électrode tripolaimaachon (gouttiere) est implantée
autour du nerf sciatique (Fig.7.2, partie gauche). Elleuéifisée pour obtenir la courbe
force-longueur pour le muscle gastrocnémien. Une stitimuleelectrique est appliquée
en utilisant une unité de stimulation couplée a uneeudiisSolation photoélectrique. Une
structure de type tfLIFE est implantée dans la ramificatibrale du nerf sciatique in-
nervant le muscle gastrocnémien de la patte postérieauehg du lapin (Fig. 7.2, partie
droite). Celui-ci se situe a 3 cm du site d'implantation defLIFE. L'électrode permet
de mesurer l'activité électroneurographique (ENG) prant du fascicule dans lequel la
structure a été implantée. Pour obtenir une activiférafite purement musculaire dans
les enregistrements, le nerf sciatique a été écras@xinpité du manchon et des sites
d’'implantation de la tflLIFE a I'aide d’une paire de forceps

Pour immobiliser la patte gauche du lapin, on fixe celle-ailes articulations du genou
et de la cheville a un chassis mécanique immobilisé #isarit des broches pour os placées
a travers les épiphyses distales du femur et du tibiaehddn calcanéen commun est at-
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Figure 7.1: (A) Schéma de la tfLIFE. Chaque moitié de lacttire dispose d’'une électrode
de terre (GND), d’'une électrode indifféerente (LO, RO) etquatre sites d’enregistrement
(L1-4, R1-4). (B) La tfLIFE est pliée via la ligne centralie sorte que les deux branches
puissent &étre étroitement apposées. (C) Vue de la pamdiemale de I'€lectrode. (D)
Vue agrandie, représentant les quatre sites actifs, obtpar pulvérisation de Pt. (E)
Photographie de I'ensemble du systeme. La tfLIFE est fixée partie d’extrémité a un
connecteur en céramique pour permettre les opératiamgatjistrement/stimulation du
nerf. La boucle située entre les deux branches de la tfLtEE@nnectée a un filament
en Kevlar, qui est lui-méme collé a une aiguille en tuagstpour l'insertion dans le nerf.
Adaptation dé Lago et M [20b7].




98 Modele d’Activié Nerveuse Adfente Pour Estimer I'Etat d’'un Muscle

Figure 7.2: Electrodes utilisées dans les expériereadie gauche électrode tripolaire a
manchon implantée autour du nerf sciatig®artie droite tfLIFE implantée a I'intérieur
du fascicule du nerf sciatique innervant le muscle MG. Lacitire a film mince est trop
petite pour étre vue, on ne distingue que le connecteugtkrtrode. L'échelle est la méme
pour les deux images. Elle est indiquée dans 'angle iededroit de 'image de droite.

taché au bras d’'un systeme a levier motorisé en utiligarfil composé de fibres de Kevlar.
Le systeme a levier motorisé sert a la fois de mécanbaeionnement et de mesure. Le
fait de tirer les fibres de Kevlar produit une extension dehlevdle, et le relachement des
fibres de Kevlar provoque une flexion de la cheville (le muétik® retournant a I'état de
repos en raison de son élasticité intrinseque). La fixatiu chassis mécanique garantit
I'eélimination de vibrations mécaniques, que pourragdyaguer un pied oscillant librement
(Figl7.3).

On soumet le muscle a des étirements de type sinuso@ddtéguences: 10 mHz et
250 mHz. Les deux profils d’étirement présentent une aogeide pic a pic de 4 mm. Des
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Figure 7.3: Montage expérimental. La patte gauche du lagirfixée au niveau des ar-
ticulations du genou et de la cheville a un chassis mgcanimmobilisé en utilisant des
broches pour os placées a travers les épiphyses distalissnur et du tibia. Le tendon
calcanéen commun est attaché au bras d’'un systemee faatorisé en utilisant un fil

constitué de fibres de Kevlar.

enregistrements simultanés sont réalisés a partiud&@ sites de I'electrodes intrafascic-
ulaire. Les durées des enregistrements sont de 2 minuted @trement le plus lent (de
maniere a permettre 'achevement d’'un cycle completadsinusoide) et d’a peine plus
d’'une minute pour I'étirement plus rapide (4 cycles de fausbide). Un exemple de rela-
tion entre la vitesse de réaction du nerf afferant de fuseauro-musculaires et la longueur
du muscle est donné sur la Fig.7.4.

Nous avons proposé un modele du premier ordre pour explamelation entre le taux
de décharge neurale et la longueur musculaire. Seuleétieglps de flexion de la cheville
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Figure 7.4:Partie sugerieure gauche Trois périodes d’'une onde sinusoidale normalisée,
utilisees comme profil d’étirement passif du muscle avee amplitude de 4 mm de pic a
pic et une frequence de 250 mHRartie inferieure gauche Vitesse de réaction cumulée
calculée en utilisant une fenétre mobile a 100 ms sur nalade 'ENG post-traitéPartie
droite: Relation entre la vitesse de réaction et la longueur maseunormalisée pour les

3 périodes de la sinusoide représentées sous formgsgge dans le tracé. Le muscle est
étiré pendant la flexion de la cheville et contracté paebhtdextension de la cheville.

sont modeélisées car le muscle n’est étiré passivemgaticcours de ces périodes, selon
le schema de commande de FES adopté. Les résultats sfausalidation expérimentale
du modele ont montré que le modele parvient a captusepiepriétés non linéaires de la
relation entre la taux de décharge neurale afférente lenigueur du muscle. Un exem-
ple d’analyse de I'ajustement des sonnées expérimarnpaleun modele de régression est
représenté sur la Fig.7.5. En outre, I'estimation deat'@u muscle effectuée a partir de
'ENG multi-canaux enregistré donne des résultats phésip et plus solides en comparai-
son de l'utilisation d’enregistrements d’'ENG a canal weiq

7.3 Deétection et Classification des Potentiels d’Action
Neurale

L'activité neuroélectrique enregistrée avec la tfLIE& un mélange de sighaux provenant
de plusieurs neurones adjacents et de bruit. Si I'on pow&bmposer ce mélange
en activités de ces differentes sources, les activit@sités individuelles pourraient étre
analysées pour interpréter le codage d’informationspiere, qui n’est pas évident dans
le cadre d’'une activité d’'unités multiples cumulées. nBaotre cas particulier, lorsque
I'on enregistre I'activité de fibres de fuseaux neuro-nuleices, I'objectif est de parvenir
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Figure 7.5: Réglage a un seul canal pour des frequenééisatihent de 10 mHz (& gauche)
et de 250 mHz (a droite). L'abscisse représente la longoeisculaire normalisée et
'ordonnée représente la vitesse de réaction neuraés lignes en trait continu sont les
courbes modeélisées.

a classer les potentiels d’action détectés en fonctiotyde de fibre nerveuse sensorielle.
Si I'on pouvait isoler l'activité de fibres sensorielles@msibles a la vitesse d’étirement
(fibres sensorielles de type II), le modele développé&detion afferente de fuseaux neuro-
musculaires pourrait étre utilisé pour suivre les vasisd de longueur musculaire avec un
profil d’étirement a priori inconnu.

On propose une approche pour détecter et classer une iopuksurale basée sur la
transformée en ondelettes continues (CWT) a partir détettes complexes. Les coeffi-
cients d’ondelettes complexes sont utilisés comme mekudegré de similarité de profils
dans le signal a la forme d’onde de type ondelettes. Lactdéted’ impulsions consiste a
établir une valeur de seuil pour 'amplitude de ces coeffits, et on utilise les “signatures”
de CWT complexes, a échelles multiples, des impulsi@tsailées pour la classification.

La performance de détection basée sur les ondelettegphesig synthétiques est com-
parée au procédé d’établissement d’une valeur de deuimplitude. La détection est
évaluée sur une plage de valeurs de seuil, en commenganohmiveau de bruit de fond
jusqu’a 'amplitude maximale observée dans le signaldfarmé. La performance de clas-
sification est évaluée a la fois sur TENG synthétiquecemparant la classification basée
sur les ondelettes a des procédés basés sur la cordzspmenentre matrices et sur I'analyse
en composantes principales. Ces deux procédés, stdm@me réeferences dans la com-
paraison, sont les plus couramment utilisés en raisonuledéative simplicité, qui permet
une mise en oeuvre rapide en temps réel.

Les performances du détecteur basées sur les ondeldttatiligant le simple
établissement d’'une valeur de seuil d’'amplitude sontésgmtées sur la Fig.7.6 sous la
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Figure 7.6: Courbes ROC pour quatre niveaux de SNR défimie papport de I'amplitude
du pic des potentiels d’action exempts de bruit a I'écgretdu bruit de fond. Les perfor-
mances d’un simple détecteur de seuil (courbe forméeggardrcles vides) et du détecteur
basé sur les ondelettes (courbe formée par les trianfgaspsont comparées.

forme de courbes de caractéristiques d’opérations deptéur ou courbes ROC. Ces
courbes sont des représentations graphiques de la de@sibidétecteur en fonction de la
spécificité utilisant une plage de valeurs de seuils deatien. Sur la plage compléte des
niveaux de SNR, le détecteur basé sur les ondelettesmieede meilleures performances
gue le détecteur basé sur I'établissement de valeursudied® I'amplitude, c’est-a-dire que
pour une spécificité donnée quelconque, la sensilmitittespondante est supérieure pour

le détecteur basé sur les ondelettes. Lintervalle deopmances devient particulierement
important avec un SNR faible.
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Figure 7.7: Taux d’erreurs de classification dépendantatalbe d’unités actives simul-
tanément. Des groupes de trois barres (histogrammes@sement les differentes ap-
proches de classification: la correspondance entre maffgcenoir), 'analyse des com-
posantes principales (en gris) et 'analyse basée sunkslettes (en blanc).

5 6 7 8 9 10
Number of classes

Les résultats de classification sont représentés suigld.F sous la forme de taux
d’erreurs de classification qui représentent des rapmhut;miombre d’impulsions mal
classées au nombre total d’impulsions classées. Lafitas®on basée sur les ondelettes est
comparée a deux autres procédés de classificatioralyse des composantes principales
(PCA) et la correspondance entre matrices. Les résultatsysprésentés en commencant
par le cas dans lequel seulement deux classes d’'impulsiff@a®edtes sont présentes dans
le signal jusqu’au cas dans lequel 10 unités réagissenilsinément. La classification
basée sur la correspondance entre matrices donne les &uweuds de classification les
plus élevés, tandis que les approches basées sur ldeteslet sur la PCA présentent des
résultats similaires.

La technique de tri d'impulsions est éventuellement apyd@e a l'activité nerveuse
afferente de fuseaux neuro-musculaires enregistrée@riexpntalement. Seules des
périodes de flexion de I'articulation de la cheville (p&kes d’étirement du muscle MG)
sont analysées. La valeur de seuil de détection est etiésinaniere a représenter sept fois
les écarts types du niveau de bruit de fond (dans I'espaxemnigelettes). Sur 'ensemble
des essais, cette valeur de seuil correspond, sur les @ROE, au point auquel la
spécificité commence a se détériorer rapidement,igameke I'on observe, dans le méme
temps, une légere amélioration de la sensibilité.

Les unités détectées sont classées en 10 groupes. @sssmond a peu pres au nom-
bre d’'unités prises par un site d’enregistrement de |aFf_lorsque le muscle est étiré
au maximum. L'analyse est effectuée sur des données maavele tous les lapins. Les
résultats du regroupement des données montrent queguaaqu 3 classes d'impulsions
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Figure 7.8: Vitesse de réaction neurale afféerente pgyadm la longueur musculaire. Le
tracé de gauche montre I'activité cumulée de toutesngmilsions détectées. Sur la partie
droite, seule l'activité de 2 groupes, présentant un pasteament linéaire avec les données,
est utilisée pour calculer la vitesse de réaction. Oncaffe une analyse de régression
linéaire sur les deux tracés (lignes pleines). Sur les tiagés, la longueur musculaire est
normalisée par 4 mm.

par lapin on obtient une relation linéaire entre leur taaxdécharge neurale calculée et la
longueur musculaire instantanée. Les résultats pouapin kont présentés sur la Fig.7.8.
Le tracé de gauche représente la relation entre la lomguiéaitaux de décharge cumulé de
toutes les impulsions détectées. A I'évidence, la i@ta’est pas linéaire dans la région o
la vitesse d’étirement du muscle ralentit rapidemerdgi(mé o la longueur musculaire nor-
malisée est proche de 1). Le tracé de droite montre la mmélagon, mais en utilisant cette
fois uniquement I'activité des fibres insensibles a l@sse d’étirement musculaire. Une
analyse de régression linéaire effectuée sur les daggdrmontre que la modélisation est
meilleure sur le tracé droit.

Les résultats de la classification d’unités en classeédsasur les signatures de la
forme d’onde de potentiel d’action dans un espace d’ongsl@idiquent que le systeme de
classement est capable d’isoler une activité préseuntantelation linéaire avec la longueur
musculaire. Ceci représente une avancée pour un digptegtimation en ligne de la
longueur musculaire, basé sur un modele, que I'on peut@mpdans un systeme de FES
en boucle fermé avec rétroaction sensorielle naturelle.

L'un des principaux facteurs limitatifs d’un procédé tpoaque de tri d'impulsions est
le faible niveau de signal-au-bruit (SNR) dans 'ENG erns&@. Une maniéere qui pourrait
permettre d’améliorer la qualité de I'acquisition dursdy méme avant que ne s’effectue
un quelconque traitement, implique de protéger le sitéingplant.
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7.4 Améelioration du SNR Dans des Enregistrements
Intra-Neuraux

Parallelement au travail sur la modélisation et le trivgulsions de I'activité neurale,
Nnous avons proposé un nouveau schéma d’enregistrensaddible d’améliorer le SNR
dans des enregistrements intra-neuraux, que lI'on a validglan expérimental. Dans
les systemes de FES, la stimulation et I'enregistremenulsanés sont nécessaires et
l'interface neurale se situe habituellement & proxingiés structures neuro-musculaires
intéressantes, ce qui se traduit par des problemes earmdg niveaux relativement impor-
tants d’artéfacts dans I'ENG. Les artéfacts de muscleeattidnulation dans 'ENG provi-
ennent du gradient de potentiel extra-neural qui chuteifodigralement le long du nerf.
Le niveau d’artéfact du muscle limite le gain maximal quilpétre réglé dans I'acquisition
du signal, ce qui limite, en retour, le rapport signal-audtmaximal (SNR) dans les enreg-
istrements. L'artéfact de stimulation corrompt, en oules signaux enregistrés. Le faible
SNR est un probleme majeur lorsqu’il s’agit de détecteleatlasser des potentiels d’action
neurale. Sile SNR peut &tre amélioré, les performaneds d’impulsions s’amélioreront
également.

Les observations faites au cours de travaux antérieuggeseqt que le fait d’enrouler le
site d'implant dans une petite enveloppe conductrice dogstd’'un film mince de Téflon
métallisé ou de remplir le site d’implant avec des fibresadone, minimisait la stimula-
tion et la prise d’artéfact d’EMG. La protection conferéespace extra-neural environnant
le site d’implant un caractere equipotentiel, ce qui &mie la diminution du bruit extra-
neural dans les signaux enregistrés. Malheureusemenptptaction conductrice réduit
egalement le niveau de signal de 'ENG. Une explicatiorsfiade est que le matériau con-
ducteur de la protection fournit une voie de faible régit&ipour les courants ioniques de
potentiels d’action; ce qui provogue une chute de tensios falible entre les €lectrodes de
mesure. De plus, la feuille métallique peut égalementeer@n contact avec I'électrode
de réféerence, ce qui produit d'importants artéfactssdi@nsignal enregistré, avant que
I'Electrode ne soit finalement encapsulée par le tissyooatif formant une gaine. Notre
hypothése est que la mise en place d’une couche diéleeteintre le nerf et la feuille con-
ductrice empéchera a la fois I'effet de court-circuit lmsrcourants de potentiels d’action et
le contact de la feuille conductrice avec les sites d’esteginent de I'électrode (Fig.7.9).

Une étude pilote a été réalisée pour évaluer exp@artalement cette hypothese. Au
lieu de fabriquer une feuille a deux couches, qui présaittane surface diélectrique sur
un cté et une surface conductrice sur l'autre, nous avotes pgur une électrode ordi-
naire a manchon (gouttiere). Une fois placée autour dhisug les sites d’enregistrement
de la LIFE avec ses fils conducteurs non connectés, lteldeta manchon agit effective-
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Figure 7.9: lllustration d’'une protection enveloppéecamtd’un site d'implant d’électrode
d’enregistrement. Si celle-ci se est constituée d’ureniat” conducteur, la protection con-
tribue a diminuer l'artéfact de stimulation, mais ré&degalement le niveau d’'ENG dans
les enregistrements. Avec une protection du type doubletmua couche conductrice ex-
terne est censée diminuer la prise de champ électriquanexiral (artéfacts de stimulation
et I’'EMG) et la couche diélectrique interne sert a éudarontact entre le nerf et la couche
conductrice.

ment comme une protection isolante. En connectant ses fiduoteurs, le potentiel des
bagues du manchon devrait représenter la moyenne dediplstebservés entre les bagues
lorsque les conducteurs du manchon sont laissés ouvestie €nfiguration devrait avoir
a peu pres le méme effet sur la distribution du champtiépe (artéfact) extra-neural a
l'intérieur du manchon gu’une protection de type doubleate (une couche conductrice
sur une couche isolante) enveloppée autour de I'éleetddehregistrement.

D’autres expériences doivent étre effectuées, afinadiEr expérimentalement I'effet
de la protection. Des expériences ont été pratiquaeslapins blancs de Nouvelle Zélande
anesthésiés. La préparation des animaux est simdasedlé pratiquée pour les études de
modélisation et de tri d'impulsions, excepté les difeces décrites dans le texte ci-apres.
Le systeme a levier motorisé est utilisé dans cetteeefpour garantir que la longueur
du muscle reste constante sur I'ensemble de I'expériencetfLIFE implantée a été
utilisée pour enregistrer le potentiel d’action nervewmposé en réponse a une stimu-
lation €électrique. Le nerf sciatique n'a pas été éerakins la mesure o 'activité d’'une
unité unigue ne présente pas d’intérét dans cettesétiua stimulation et I'enregistrement
sont effectués en utilisant le méme équipement et le engontage que dans I'étude de
modélisation, excepté que I'on a également enregigtrgle déclenchement de la sim-
ulation sur un canal supplémentaire sur I'enregistreba@ade numérique. On I'a utilisé
ultérieurement dans une analyse de données comme sigmanthronisation en vue
de calculer la moyenne, synchronisée avec la stimulatierla réponse twitch du nerf.
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Figure 7.10: Réaction moyenne, synchronisée sur la &tion, en réponse a une stimula-
tion €lectrique par secousses nerveuses. Trois com@ssadistinctes apparaissant succes-
sivement peuvent &tre identifiees: 1)I'artéfact de station, synchrone avec I'impulsion
de stimulation, dont I'activité s’étend de 0 a enviror01@s; 2)le potentiel d’action com-
posé du nerf, soit la forme d’onde biphasique située japtés l'artéfact de stimulation
et 3)I'artéfact du muscle, dont I'activité demarre eovi 1 ms apres la stimulation et se
poursuit jusqu’a la fin du tracé.

L'activité nerveuse est déclenchée par le biais d'umaidation électrique délivrée via
une électrode circonférentielle tripolaire a manchmplantée autour du nerf tibial. Les
signaux sont enregistrés via les 4 canaux de la tfLIFE. Urieeglectrode tripolaire a
manchon est utilisée comme protection. Les manchons melstiion et de protection ont
les mémes dimensions. Les mesures consistent a eneed¢psteaction neurale repondant a
une stimulation électrique utilisant des trains d’'imparts (durée d'impulsion de 100 ms et
frequence de répétition des impulsions de 1 Hz). Leshmside recrutement sont obtenues
en commencant avec des intensités de stimulation evées a la valeur de seuil du nerf,
puis en augmentant I'intensité de stimulation par in@ate jusqu’a ce qu'il n’y ait plus
de variation de la réaction (réaction neurale maximaler&fact dEMG maximal). Une
illustration des composantes du signal dans la réponsemmay synchronisée avec la stim-
ulation, de la réaction de secousses du nerf est repéessat la Fig.7.10.

Trois stratégies de protection (protection conductrim@nchon protecteur en circuit
ouvert et manchon de protection en court-circuit) ont@&@mparées en termes de trois
parametres: le niveau de réaction du nerf, le niveaué&fart de la stimulation et le niveau
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Figure 7.11: Pourcentage des differences pour les 3 coafigns d’enregistrement: C —
feuille conductrice enveloppée autour du site d'impl@€ — électrode a manchon dis-
posée autour du site d’'implant, ses conducteurs étag#daien mode non connecté et OS
— électrode a manchon située autour du site d'implanadiIFE, ses bagues d’extrémité
étant en mode court-circuit. Les tracés en boite (a machgs) montrent les niveaux pour
un artéfact de stimulation (a gauche), pour la réactieurale (au centre) et pour I'artéfact
d’EMG (& droite) en comparaison du cas dans lequel aucwotegion n’est utilisée.

d’'artéfact de TEMG. Les résultats représentés sotigriae de diagrammes statistiques en
boite a moustaches sont représentés sur la Fig.7.1lco@pare les niveaux de signaux
au cas réalisé en I'absence de protection lors de I'esiregnent. Chaque boite présente
des lignes au niveau des quartiles inférieur, médian€ligorizontale épaisse) et au niveau
du quartile supérieur. Des moustaches s’étendent & garthaque extrémité de la boite
aux valeurs adjacentes dans les données. Les points adgpsgnt affichés avec un signe
+. Les résultats comparent les performances de protegtiailisant les données tirées de
tous les lapins (3 lapins pour les données d’ENG et 5 pouddesées d’artéfacts).

Les résultats préliminaires montrent que la protectiondtictrice disposée autour du
site d’enregistrement diminue le niveau de signal d’ENGegistré. Une électrode a man-
chon placée autour du site d’implantation de la tfLIFE aegta les niveaux d’ENG enreg-
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istrés a la fois dans le cas o les conducteurs du manchoauwtent non connectés et dans
le cas o les conducteurs sont en court-circuit. Une exphicgtossible est que la poussée
de tension dans le signal d’ENG résulte d’'une augmentateta résistance du trajet le
long duquel circulent les courants ioniques qui géndeepotentiel d’action du nerf. Cette
augmentation peut étre prédite par un modele simpleiksamt un diple électrique comme
source de courants membranaires axonaux. Le taux d’augtieenprédit par le modele
est en bonne corrélation avec les données expérimsntale

Une feuille conductrice placée autour du site d'implantdéLIFE diminue les niveaux
d’artéfacts issus tant de la stimulation que du muscle tensignaux enregistrés. Dans
toutes les expériences, a I'exception d’'une, les deuigarations de protection a manchon
contribuent a réduire la prise d’'artéfact du muscle. Wsdele de circuit équivalent de la
source d'artéfact et de son interaction avec I'électretdes tissus environnants prédit une
difference de 10% entre les configurations de protectiomachon en circuit ouvert et
fermé, ce qui corrobore les données expérimentalesr Rotéfact de stimulation, les
résultats ne présentent pas de tendance. Cette étuelecese en cours et il est nécessaire
d’effectuer davantage d’expériences pour tirer des cmnwhs définitives.

7.5 Conclusions

Les résultats des études effectuées au cours de cefte font: 1)un modele de réaction
neurale de fuseaux neuro-musculaires en réponse an@metit passif des muscles; ce
modele pourra &tre mis en oeuvre dans un dispositif dredion en ligne de I'état du
muscle au sein d'un systeme de FES en boucle fermée, ledili$p’estimation restitu-
ant de maniere rétroactive au dispositif de commandéofimation concernant I'état du
muscle o se trouvent les fuseaux neuro-musculaires; 2gariime pour décomposer le
mélange de signaux provenant de multiples fibres nerveursssurces séparées. Cela per-
met d'utiliser le modele défini pour suivre I'état du mlesavec, a priori, un mouvement
musculaire inconnu; 3)une technique d’isolation pour léorér le niveau signal-au-bruit
dans des enregistrements effectués en utilisant desdges intraneurales disposées lon-
gitudinalement. Le renforcement du niveau de signal nqaeahettra 'amélioration des
performances de 'algorithme pour la séparation des gsurc

Ce travail étant achevé, il est a présent possible deéder au développement d’'un
dispositif d’estimation de la longueur musculaire en lighasé sur un modele, qui peut
étre utilisé dans un systeme de stimulation électriguetionnelle commandé en boucle
fermeé.
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Appendix A

Biopotential Amplifier

During the course of this thesis, the DEMAR team was in the@ss of setting up its
own animal lab for conducting future animal experimentserBhwas a need for having a
neural signal amplifer that would be used for multi-chartBlelG signal acquisition, using
the tfLIFE and possibly also cuff nerve electrodes. Thisptliadescribes the process of
building such an amplifier.

A.1 Amplifier Design

The amplification circuitry configuration is based on an afapldesigned by Dr. Ken
Yoshida at Bioectronics laboratory at the Center for Sgnstwotor Interaction at Aalborg
University in Denmark. The amplifier configuration has atlge®een tested and used in
a number of animal experiments where it provided satisfgdENG recordings. Hence,
there was no need to design an amplifier from scratch.

Schematic capture was done using the CadSoft EAGLE softwaokage. The
schematic circuit diagram of one channel of the ampliferhisven on Fig.| A.1. Com-
ponent values for the parts on the schematic are listed iteFak.

The power supply circuitry was designed to proviti&0 V output according to the
recommendations from the LM317 and LM337 voltage regutaamplication notes, given
in the component data sheets provided by the manufactuners@hematic circuit diagram
of the power supply is shown on Fig. A.2. Component valuegifeparts on the schematic
are also listed in the above table.

A double-sided printed circuit board (PCB), dimensions b8 mm, was designed
to hold 8 amplification channels and the power supply cirguiffwo 3 mm vias were
included to provide later fixation of the board in an enclesuie final artwork of top and
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Amplifier Design

Table A.1: Components listing for one channel of the ampldied for the power supply.

Part
C1
C2
C3
C25
C26
Cc27
C28
C29
C30
D1
D2
IC1
IC2
IC17
IC18
JP1
JP2
JP3

Value
10n
10n
4.7u
10u
10u
1lu
1u
100n
100n
1N4004
1N4004
INA118P

AD797N

10M
10M
10M
10M
1K
10k
10R
190R
100R
240E
1K68
240E
1K68

Device Package Library Layer
C-EU050-050X075 C050-050X075 rcl Top
C-EU050-050X075 C050-050X075 rcl Top
C-EU150-084X183 (C150-084X183 rcl Top
CPOL-EUE5-5 E5-5 rcl Top
CPOL-EUE5-5 E5-5 rcl Top
CPOL-EUES5-5 E5-5 rcl Top
CPOL-EUE5-5 E5-5 rcl Top
C-EU050-025X075 C050-025X075 rcl Top
C-EU050-025X075 C050-025X075 rcl Top
1N4004 DO41-10 diode Top
1N4004 DO41-10 diode Top
INA118P DILO8 burr-brown  Top
AD797N DILO8 linear Top
LM317L 317L v-reg Top
LM337L 337L v-reg Top
JP1E JP1 jumper Bottom
JP1E JP1 jumper Bottom
JP1E JP1 jumper Bottom
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top

R-EU-0207/10 0207/10 rcl Bottom
R-EU-0207/10 0207/10 rcl Bottom
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top
R-EU-0207/10 0207/10 rcl Top

SLR-2-012 SLR-2-012 con-LIFE  Bottom

22-23-2031 22-23-2031 con-molex Top

22-23-2031 22-23-2031 con-molex Top
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Figure A.1: Schematic circuit diagram of one channel of timplfer.
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Figure A.2: Schematic circuit diagram of the power supply.

bottom layers of the PCB are shown on Figure A.3land A.4, wi@dy. The parts layout

is shown on Fig. A.5.

Resistors that set the gain (R5) and high-pass filter coraguéncies (R6) are mounted

on the bottom side of the PCB so they can be easily accessathanded if needed.
Jumpers near the input tflLIFE connector are there to prosélection of the tfLIFE

sites to be used as the differential input: pin J-1 (Fig. | Ad) be connected either to
ground or indifferent tfLIFE sites either to the signal gnou Independent setting of the

reference for the left and right side of the tfLIFE loop isgtsovided. Pin V-1 is connected
directly to the corresponding site of the tfLIFE input cootws, i.e. to tfLIFE sites R1-4
and L1-4 (Fig.| 2.18, panel A). The tfLIFE connector used wdsgh-density two-row

SLR-2-050 connector from Fischer Elektronik. Only 12 pimstbe connector are used.
Connector device definition (symbol, gates and package)cwesed separatelly, since it

was not available in the standard libraries.
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Figure A.3: Printed circuit board. Top layer artwork.

PP IIOIOIOYY
A -

o TTTTTrIIRRRR e

Figure A.4: Printed circuit board. Bottom layer artwork.
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IC15

1G

Figure A.5: Printed circuit board. On-board component layo

tfLIFE input

19

Ground input
BNC output

Figure A.6: Photograph of assembled amplifier. Power supphnectors (obscured) are
on the opposite side of the ground connector.
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A.2 Fabrication and Assembly

After manufacturing the printed circuit board and mountimgboard components, the PCB
was placed into its housing and off-board connectors weranteal. A metal box was
chosen as an enclosure. Properly grounding such an enelasts as a Faraday cage,
protecting the PCB from capacitively coupled noise sourd&ging together the power,
signal and hardware ground at only one point close to the pswwply provided a practical
grounding system at low frequencies [Ott, 1988]. The signaiind provides the reference
potential for the circuitry, set with the reference inpwgatode connected using a 2 mm
connector on the side of the box. The enclosure also holds@ 8Mput connectors and
2 standard power connectors. Separate connectors for ther mupply (one for each
polarity) were chosen to facilitate easy use of externalolapatteries for powering the
amplifier. On top of the box there an exposure provides adcei®e area of the bottom
side of the PCB where the on-board tfLIFE input is located (fAi.6).
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RESUME en francais: Le sujet de cette thése se situe dans le cadre général de la restauration du mouvement de
membres paralysés a travers la stimulation électrique fonctionnelle (FES) implantée. L’objectif du projet était
d’explorer la faisabilité d’utiliser les informations issues des fibres nerveuses sensorielles des récepteurs
musculaires comme information de retour d’une commande en boucle fermée d’un systeme FES a travers des
électrodes nerveuses périphériques intra fasciculaires. Des expérimentations animales aigues ont été réalisées pour
mesurer les réponses afférentes des fuseaux neuromusculaires a des étirements passifs du muscle. Les
enregistrements ont été réalisés en utilisant une nouvelle électrode Intra-fasciculaire (tfLIFE), développées par le
Dr. Ken Yoshida a I’université d’Aalborg au Danemark. Un modele du premier ordre de la réponse des fuseaux
neuromusculaires a des étirements passifs a été proposé. Ce modele prend en compte les propriétés non linéaires des
activités neurales afférentes. De plus, I’estimation de I’état du muscle a partir d’un enregistrement ENG
multicanaux a fourni des résultats plus robustes comparés a un enregistrement monocanal.

Pour que le modele ci-dessus puisse étre utilisé pour I’estimation de I'état du muscle, le taux de variation de la
longueur du muscle pendant le mouvement doit avoir un effet négligeable sur les parametres du modéle. Nous
avons proposé dans cette thése une approche pour la détection et la classification de pics dans I’enregisrement
neural dans I’objectif d’isoler les activités neurales sensorielles des récepteurs musculaires ayant une sensibilité
minimale a la vitesse de I’élongation musculaire. L’algorithme est basé sur la transformée en ondelettes continue
multi-échelle utilisant des ondelettes complexes. Le systeme de détection utilise une simple détection par seuillage,
couramment utilisée, particulierement avec les enregistrements ayant un faible rapport signal sur bruit. Les résultats
de classification des unités montrent que la classification développée est capable d’isoler I’activité ayant une
relation linéaire avec la longueur du muscle. Ceci constitue une étape vers une estimation, en ligne basée modele, de
la longueur du muscle qui pourra étre utilisée dans un systtme FES en boucle fermée utilisant des informations
sensorielles naturelles.

Un des principaux problemes limitant I’interprétation des données ENG est le faible niveau du signal neural par
rapport a celui du bruit dans I’enregistrement. Nos hypothéses ont été que le blindage de I’'implant aiderait a
améliorer le rapport signal sur bruit. Des résultats expérimentaux, issus d'une étude préliminaire que nous avons
réalisée, montrent que le placement d’électrodes standards & manchon placées autour du site d’implantation de la
tfLIFE augmentait le niveau du signal ENG dans les enregistrements.

RESUME en anglais: The topic of this thesis was the rehabilitation of movement of paralyzed limbs through
functional electrical stimulation (FES). The objective of the project was to explore the possibility of using
information from sensory nerve fibers of muscle receptors as feedback of the closed-loop control of FES systems
using intrafascicular peripheral nerve electrodes.

Acute animal experiments were performed to record afferent muscle spindle responses to passive stretch. The
recordings were performed using the new thin-film Longitudinal Intra-Fascicular Electrode (tfLIFE), developed by
Dr. Ken Yoshida at Aalborg University in Denmark. A first-order model of muscle spindle response to passive
muscle stretch was proposed that manages to capture the non-linear properties of the afferent neural activity.
Moreover, estimation of muscle state from the recorded multi-channel ENG provided more robust results compared
to using single-channel recordings.

For the abovementioned model to be usable in a estimator of muscle state, the rate of change of muscle length
during movement must have negligible effect on model parameters. A neural spike detection and classification
scheme was developed for the purpose of isolating sensory neural activity of muscle receptors having minimal
sensitivity to the velocity of muscle motion. The algorithm was based on the multi-scale continuous wavelet
transform using complex wavelets. The detection scheme outperforms the commonly used simple threshold
detection, especially with recordings having low SNR. Results of classification of units indicate that the developed
classifier is able to isolate activity having linear relationship with muscle length, which is a step towards on-line
model-based estimation of muscle length that can be used in a closed-loop FES system with natural sensory
feedback.

One of the main issues limiting the interpretation of ENG data is the low level of the neural signal compared to the
level of noise in the recordings. Our hypothesis was that shielding the implant site would help improve signal-to-
noise level. Experimental results from a preliminary study indicate that placing a standard cuff electrode around the
tfLIFE active sites increases the level of ENG signal in the recordings.

DISCIPLINE: Physiologie, Traitement du signal, Automatique et Electronique

MOTS-CLES : Bioingénierie, prothéses neurales, traitement du signal biologique, stimulation électrique
fonctionnelle, boucle rétroactive sensorielle naturelle, stratégies de commande

INTITULE ET ADRESSE DE L'U.F.R. OU DU LABORATOIRE: Le Laboratoire d'Informatique, de
Robotique et de Microélectronique de Montpellier (LIRMM), 161 rue Ada, 34392 Montpellier Cedex 5 — France
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