

### Etude du polymorphisme associé aux répétitions en tandem pour le typage de bactéries pathogènes: Pseudomonas aeruginosa et Staphylococcus aureus

Lucie Onteniente

#### ► To cite this version:

Lucie Onteniente. Etude du polymorphisme associé aux répétitions en tandem pour le typage de bactéries pathogènes : Pseudomonas aeruginosa et Staphylococcus aureus. Sciences du Vivant [q-bio]. Université d'Evry-Val d'Essonne, 2004. Français. NNT : . tel-00333101

#### HAL Id: tel-00333101 https://theses.hal.science/tel-00333101

Submitted on 22 Oct 2008

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

#### UNIVERSITÉ D'EVRY VAL D'ESSONNE

### THÈSE

Pour obtenir le grade de

#### DOCTEUR EN SCIENCES DE L'UNIVERSITÉ D'EVRY VAL D'ESSONNE

Spécialité : Biologie cellulaire et moléculaire

### Présentée par Lucie ONTENIENTE

### Etude du polymorphisme associé aux répétitions en tandem pour le typage de bactéries pathogènes : *Pseudomonas aeruginosa* et *Staphylococcus aureus*

Soutenue le 13 février 2004 devant la commission d'examen :

Mr Jean-Didier CavalloFMme Véronique VincentFMr Sylvain BrisseFMr Philip SupplyFMr Francis QuétierFMr Gilles VergnaudF

Rapporteur Rapporteur Examinateur Examinateur Président du jury Directeur de thèse Cette thèse a été réalisée dans le laboratoire « Génomes, Polymorphisme et Minisatellites » à l'Institut de Génétique et Microbiologie (IGM) à Orsay sous la direction de Gilles Vergnaud, que je tiens à remercier pour les moyens matériels mis à ma disposition pendant ces trois ans de travail.

Je suis très honorée d'avoir pu compter six éminents chercheurs et enseignants-chercheurs dans mon jury de thèse. Leur disponibilité et leurs remarques pertinentes m'ont permis de passer dans de bonnes conditions les dernières étapes de la thèse.

Jadresse en outre mes remerciements à tous ceux qui ont collaboré de près ou de loin à ce travail : Sylvain Brisse du laboratoire des Bactéries Pathogènes Emergentes de l'Institut Pasteur, pour sa disponibilité et les échanges fructueux sur le projet Pseudomonas, Névine El Solh et Anne Morvan du Centre National de Référence des Staphylocoques de l'Institut Pasteur pour leur expertise et leur accueil, Jean Louis Koeck du HIA Val de Grâce pour m'avoir fourni des souches de Staphylococcus aureus, Philippe Bouloc et Justine Collier de l'IGM pour leur précieux conseils en microbiologie ainsi que Christine Pourcel pour les corrections du manuscrit.

Une mention plus particulière pour celles et ceux qui ont contribué par leur présence, leur soutien, leurs humeurs (bonnes ou mauvaises), leurs conseils et leur aide (technique ou morale) à rendre agréable le séjour quotidien au laboratoire et presque supportables les moments difficiles que j'ai pu y traverser. Pêle-mêle et sans ordre de préférence : Philippe, Yolande, Sophie, Justine, Sylvie, et plus récemment Olivier. Évidemment, un grand merci à France, qui a toujours été d'un soutien sans faille et avec qui j'ai particulièrement apprécié de travailler tout au long de ces trois années de thèse.

*Que soient remerciées également Marie-Claude, Marie-Christine et Murielle, les secrétaires ; ainsi que Suzie la gestionnaire du bâtiment 400.* 

Merci à Bernard Mignotte et Gilles Waksmann de l'école doctorale « Des Génomes aux Organismes » sans qui cette thèse n'aurait pas été possible dans ce laboratoire. Une pensée émue pour Edmond et Francine Puvion de l'Institut de Recherche sur le Cancer à Villejuif pour leur accueil exceptionnel lors de mon premier stage en laboratoire en 1997, et les nombreux conseils qu'ils m'ont donnés tout au long de mes études universitaires.

Jassocie également à ces remerciements les personnes extérieures au laboratoire dont je vais tenter de faire la liste (là encore sans ordre de préférence) : Anastasia et Adrien, Fred et Dom, Steph, Fatou et Sébastien, Jerôme et Juliette, Simon, Blandine ; mes amis de l'IGR : Laurence et Hervé, Valérie, Virginie, Benoit ; mes amis des Maternelles d'été : Manu, Djoul, Etienne, Youri et Valérie ; mes amies d'Evry : Laetitia et Valérie ; et bien sur les BioDocsciens : Latif, Frank, Christophe, Etienne, François, Marc, Nicolas L et Nicolas B, et les BioDocsciennes : Estelle, Véronique, Rosa, Carine, Virginie et Christine avec qui j'ai partagé de bons moments de débat et de franche rigolade. Je suis pleinement convaincue que le temps que j'ai consacré, parallèlement à mon travail de thèse, à la vie associative m'a apporté et m'apportera encore bien plus qu'il ne m'a coûté.

Le termine en remerciant ma famille, en particulier ma mère, mon père et Yoyo mon petit frère, de m'avoir donné tous les moyens nécessaires pour en arriver là et pour leur soutien constant. Avec une pensée pour mes grandsparents qui, je pense, auraient été fiers de leur petite-fille.

Et enfin merci à Bertrand qui a vécu une deuxième fin de thèse... Merci pour la préparation à la soutenance et la recherche de coquilles dans le manuscrit, et surtout pour sa patience, son soutien et son humour en toute circonstance.

Jallais oublier, mais je remercie aussi le Stade de France et Roland Garros pour tous ces grands moments de sport que j'y ai vécu et que j'y vivrai; les efforts, les peines et les joies des sportifs en ces lieux me renvoient à ceux que j'ai éprouvés durant cette thèse.

Et merci à Pétillon qui chaque semaine me fait rire avec ses dessins.

## Table des matières

| 1 | INTROD   | DUCTION                                                                   | 6            |
|---|----------|---------------------------------------------------------------------------|--------------|
|   | 1.1 Le g | énotypage des bactéries pathogènes                                        | 7            |
|   | 1.1.1    | Pourquoi s'intéresse-t-on au génotypage des bactéries pathogènes ?        | 7            |
|   | 1.1.2    | Le concept de clonalité                                                   | 9            |
|   | 1.1.2.1  | Différentes structures de population                                      | . 10         |
|   | 1.1.2.2  | Vitesse de mutation des marqueurs                                         | . 12         |
|   | 1.2 Glos | saire des principales techniques d'épidémiologie                          | 13           |
|   | 1.2.1    | Techniques de microbiologie classiques : phénotypage                      | . 14         |
|   | 1.2.1.1  | Les tests de résistance aux antibiotiques                                 | . 14         |
|   | 1.2.1.2  | Le sérotypage                                                             | . 14         |
|   | 1.2.1.3  | Le lysotypage (ou phage typing)                                           | . 15         |
|   | 1.2.1.4  | MLEE (MultiLocus Enzymes Electrophoresis)                                 | . 15         |
|   | 1.2.1.5  | Tests biochimiques                                                        | 15           |
|   | 1.2.2    | Les techniques de génotypage                                              | . 16         |
|   | 1.2.2.1  | PFGE (Pulse Field Gel Electrophoresis)                                    | . 16         |
|   | 1.2.2.2  | RAPD (Random Amplified Polymorphic DNA) ou AP-PCR (Arbitrarily Primed PCF | <b>R</b> )17 |
|   | 1.2.2.3  | AFLP (Amplified Fragment Length Polymorphism)                             | . 18         |
|   | 1.2.2.4  | RFLP (Restriction Fragment Length Polymorphism)                           | . 18         |
|   | 1.2.2.5  | MLST (Multi Locus Sequence Typing)                                        | . 19         |
|   | 1.2.2.6  | SNPs (Single Nucleotide Polymorphism)                                     | 20           |
|   | 1.2.2.7  | Amplification par PCR de séquences répétées en tandem                     | 20           |
|   | 1.2.3    | Bilan des avantages/inconvénients des différentes méthodes de typage      | 21           |
|   | 1.3 Séqu | ences répétées dans les génomes bactériens                                | 23           |
|   | 1.3.1    | Séquences répétées dispersées sur le génome                               | 24           |
|   | 1.3.1.1  | Les séquences d'insertion (IS)                                            | 24           |
|   | 1.3.1.2  | Les séquences REP (Repetitive Extragenic Palindromic sequences)           | 24           |
|   | 1.3.1.3  | Les séquences ERIC (Enterobacterial Repetition Intergenic Consensus)      | 25           |
|   | 1.3.1.4  | Les séquences BOX                                                         | 25           |
|   | 1.3.1.5  | Les CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats)   | 26           |

| 1.3.2          | Les séquences STAR (Staphylococcus Aureus Repeats)                                      | . 28 |
|----------------|-----------------------------------------------------------------------------------------|------|
| 1.3.3          | Séquences répétées à un seul locus du génome : les répétitions en tandem                | . 28 |
| 1.3.3.1        | Définition d'une répétition en tandem                                                   | . 28 |
| 1.3.3.2        | Méthode de recherche des répétitions en tandem avant le séquençage des génomes complets | s 29 |
| 1.3.3.3        | Utilisation en épidémiologie                                                            | . 30 |
| 1.3.3.4        | Exemples de répétitions en tandem étudiées dans les génomes bactériens.                 | . 30 |
| 1.3.3.5        | Evolution de ces séquences répétées en tandem                                           | . 32 |
| 1.3.3.6        | Rôles de ces séquences dans l'adaptation et la virulence des bactéries                  | . 34 |
| 1.4 Le se      | équençage des génomes bactériens                                                        | . 37 |
| 1.4.1          | Différentes stratégies de séquençage des génomes                                        | . 38 |
| 1.4.1.1        | Stratégie des clones ordonnés                                                           | . 39 |
| 1.4.1.2        | Whole Genome Shotgun                                                                    | . 39 |
| 1.4.2          | Génomes bactériens entièrement séquencés à ce jour                                      | . 40 |
| 1.4.3          | Application du séquençage des génomes bactériens à l'étude de la variabilité génomique  | 47   |
| 1.5 Appl       | lication du génotypage par les minisatellites à deux espèces bactérien                  | nes  |
| importantes    | en santé publique : Pseudomonas aeruginosa et Staphylococcus aureus                     | . 49 |
| 1.5.1          | Les infections nosocomiales                                                             | . 49 |
| 1.5.2          | Pseudomonas aeruginosa                                                                  | . 51 |
| 1.5.2.1        | Description                                                                             | . 51 |
| 1.5.2.2        | La mucoviscidose                                                                        | . 52 |
| 1.5.2.3        | Résistances aux antibiotiques                                                           | . 53 |
| 1.5.2.4        | Méthodes d'identification de P. aeruginosa : phénotypage/génotypage                     | . 54 |
| 1.5.3          | Staphylococcus aureus                                                                   | . 55 |
| 1.5.3.1        | Description                                                                             | . 55 |
| 1.5.3.2        | Infections liées à S. aureus                                                            | . 56 |
| 1.5.3.3        | Apparition de souches résistantes à la méthicilline en milieu hospitalier               | . 56 |
| 1.5.3.4        | Emergence des souches C-MRSA acquises dans la communauté                                | . 57 |
| 1.5.3.5        | Evolution des souches MRSA                                                              | . 57 |
| 1.5.3.6        | Résistance à la vancomycine                                                             | . 58 |
| 1.5.3.7        | Six souches de S. aureus entièrement séquencées                                         | . 58 |
| 1.5.3.8        | Techniques de typage mises en œuvre pour Staphylococcus aureus                          | . 60 |
| 1.6 Appl       | ication du génotypage par les minisatellites à une espèce pathogène d'émerge            | ence |
| récente : Yers | inia pestis                                                                             | . 65 |

| 2 | MATER         | RIEL ET METHODES                                                                               | . 67 |
|---|---------------|------------------------------------------------------------------------------------------------|------|
|   | 2.1 Iden      | ntification des répétitions en tandem                                                          | . 68 |
|   | 2.1.1         | La base de données développée au laboratoire                                                   | . 68 |
|   | 2.1.2         | Critères de recherche des répétitions en tandem chez Y. pestis et P. aeruginosa                | . 70 |
|   | 2.1.3         | Comparaison de plusieurs génomes de même espèce : exemple de S. aureus                         | . 71 |
|   | 2.2 Gér       | otypage                                                                                        | . 75 |
|   | 2.2.1         | Culture des souches et extraction d'ADN                                                        | . 75 |
|   | 2.2.2         | Amplification des répétitions en tandem par PCR                                                | . 76 |
|   | 2.2.3         | Séparation des produits de PCR sur gel d'agarose standard                                      | . 78 |
|   | 2.2.4         | Traitement des données                                                                         | . 78 |
|   | 2.3 Test      | t de stabilité des répétitions en tandem polymorphes chez P. aeruginosa                        | . 79 |
|   | 2.3.1         | Courbe de croissance des 6 souches testées                                                     | . 79 |
|   | 2.3.2         | Dilutions en série des cultures bactériennes                                                   | . 79 |
|   | 2.3.3         | Typage des souches                                                                             | . 80 |
|   | 2.4 Séq       | uençage d'allèles chez P. aeruginosa et S. aureus                                              | . 80 |
|   | 2.4.1.1       | Précipitation au PEG (Poly Ethylène Glycol) des produits de PCR (de plus de 300pb)             | 80   |
|   | 2.4.1.2       | 2 Traitement à l'ExoSAP-IT <sup>™</sup> des produits de PCR (de moins de 300pb)                | . 80 |
|   | 2.4.2         | Traitement des données                                                                         | . 81 |
| 3 | RESUL         | ΓΑΤS                                                                                           | . 82 |
|   | 3.1 Dév       | eloppement de marqueurs polymorphes chez des espèces pathogènes d'émerge                       | ence |
|   | récente : Yer | sinia pestis et Bacillus anthracis                                                             | . 83 |
|   | 3.2 Dév       | veloppement de marqueurs polymorphes chez Pseudomonas aeruginosa                               | . 85 |
|   | 3.2.1         | Etude MLVA                                                                                     | . 85 |
|   | 3.2.1.1       | Caractéristiques des répétitions en tandem chez <i>P. aeruginosa</i>                           | . 85 |
|   | 3.2.1.2       | 2 Résultats de l'étude MLVA                                                                    | . 88 |
|   | 3.2.1.3       | Caractéristiques des répétitions en tandem polymorphes                                         | . 92 |
|   | 3.2.2         | Stabilité des 8 répétitions en tandem polymorphes chez P. aeruginosa                           | . 95 |
|   | 3.2.3 S       | équençage de deux répétitions en tandem : ms77 et ms194                                        | . 96 |
|   | 3.2.3.1       | Séquençage de la répétition ms77                                                               | . 96 |
|   | 3.2.3.2       | 2 Séquençage de la répétition ms194                                                            | 101  |
|   | 3.2.4         | Conclusions                                                                                    | 103  |
|   | 3.3 Utilis    | sation de la comparaison de génomes pour l'identification de répétitions en tandem polymorphes | 103  |
|   | 3.3.1         | Etude MLVA chez Staphylococcus aureus                                                          | 103  |
|   | 3.3.1.1       | Résultats des comparaisons de génomes                                                          | 103  |

|   | 3.3.1.2        | Les séquences STARs                                                    |               |
|---|----------------|------------------------------------------------------------------------|---------------|
|   | 3.3.1.3        | Résultats de l'étude MLVA                                              |               |
|   | 3.3.2          | Séquençage des locus spa et Mu50_1132                                  |               |
|   | 3.3.2.1        | Spa                                                                    |               |
|   | 3.3.2.2        | Mu50_1132                                                              |               |
|   | 3.3.2.3        | Comparaison de la résolution des typages par séquençage spa/n          | ns1132 et par |
|   | l'analys       | e MLVA (14 locus) :                                                    |               |
|   | 3.3.3          | Conclusions de l'étude sur S. aureus                                   |               |
| 4 | DISCUSSI       | ON ET PERSPECTIVES                                                     |               |
|   | 4.1 Intér      | êts du typage des répétitions en tandem pour les bactéries pathogèr    | nes 133       |
|   | 4.2 Rôle       | fonctionnel de certaines répétitions en tandem                         |               |
|   | 4.3 Rech       | erche de critères prédictifs du polymorphisme des répétitions en ta    | ndem 136      |
|   | 4.4 Etud       | e de population dans les espèces bactériennes étudiées au cours de cet | te thèse 137  |
|   | 4.5 Quel       | le méthode pour reconstruire l'histoire évolutive des répétitions      | en tandem à   |
|   | partir de la s | équence ?                                                              |               |
|   | 4.6 Déve       | eloppements futurs                                                     |               |
|   | 4.6.1          | Etudier le lien entre génotype et pathogénicité                        |               |
|   | 4.6.2 Et       | endre les études MLVA à d'autres bactéries pathogènes                  | 141           |
| 5 | BIBLIO         | GRAPHIE                                                                |               |
| 6 | ANNEXI         | ES                                                                     | 163           |
|   |                |                                                                        |               |

## Liste des abréviations

ADN : acide désoxyribonucléique

AFLP : amplified fragment length polymorphism

ARN : acide ribonucléique

ARNm : ARN messager

BLAST: basic local alignment search tool

CRISPR : clustered regularly interspaced short palindromic repeat

DR: direct repeat

ETR: exact tandem repeat

GISA: glycopeptide intermediate *Staphylococcus aureus* 

GOLD : genomes online database

IS : insertion sequence

kb : kilobase

LPS : lipopolysaccharide

Mb : mégabase

MIRUs: mycobacterial interspersed repetitive units

MLST : multilocus sequence typing

MLVA : multilocus VNTR analysis

MMR : mismatch repair

MRSA : methicilline resistant *Staphylococcus aureus* 

MSSA : methicilline sensible *Staphylococcus aureus* 

MSCRAMM: microbial surface components recognizing adhesive matrix molecules

NCBI : national center for biotechnology information

ORF : open reading frame

PEG : polyéthylène glycol

pb : paire de bases

PCR : polymerase chain reaction

PIC : polymorphism information content

RAPD : random amplified polymorphic DNA

RFLP : restriction fragment length polymorphism

SNP : single nucleotide polymorphism

SPE: serial-passage experiments

SSM : slipped-strand mispairing

SSR : short sequence repeat

STAR: Staphylococcus aureus repeat

STR : short tandem repeat

TIGR : the institute for genomic research

TRDB : tandem repeats database

TRF : tandem repeats finder

VNTR : variable number of tandem repeats

VRSA : vancomycine resistant *Staphylococcus aureus* 

WGS : whole genome shotgun

## 1 INTRODUCTION

### 1.1 Le génotypage des bactéries pathogènes

# 1.1.1 Pourquoi s'intéresse-t-on au génotypage des bactéries pathogènes?

Face à une infection, l'identification de l'agent microbiologique en cause, bactérien ou viral, est le premier objectif. Cette étape est de loin la plus urgente et la plus importante à court terme puisque elle intervient directement dans la prise en charge appropriée du patient. Elle est réalisée sur site clinique, voire, si la pathologie en laisse le temps, en laboratoire d'analyse. Les hôpitaux disposent pour cette raison de services de microbiologie clinique importants. L'identification bactérienne constitue donc un champ majeur de l'activité clinique, et la majorité des espèces bactériennes pathogènes pour l'homme (quelques centaines) est maintenant bien connue.

Dans un deuxième temps cependant, il est également essentiel de rechercher l'origine de l'agent infectieux, afin si possible de « tarir » l'éventuelle source. Les sources peuvent être l'environnement médical (matériel médical et personnel soignant), l'environnement urbain (canalisations d'eau, tour de refroidissement dans le cas de la légionellose par exemple), ou même des pays aux conditions sanitaires mal contrôlées (épidémie dite du SRAS, Syndrome Respiratoire Aigu Sévère, ou en fin d'année 2002, souches de *Mycobacterium tuberculosis* très résistantes aux antibiotiques venant de Chine). Cette enquête *a posteriori* requiert le typage des souches.

Avant d'entrer dans ces notions de typage de souches, il peut être utile de revenir brièvement sur la notion même d'espèce bactérienne. Bien qu'elle puisse sembler claire à première vue, puisque l'on considère comme naturel qu'une bactérie fasse partie d'une espèce, il apparaît rapidement dès que l'on se confronte à la question d'identification bactérienne que la situation n'est pas si simple. Ceci d'ailleurs est bien reflété par les nombreuses controverses de nomenclature qui agitent les taxonomistes, et les réassignations bactériennes fréquentes. Nous tâcherons dans les quelques paragraphes qui suivent d'expliciter sans entrer dans les détails les raisons de ces difficultés.

La notion d'espèce n'est pas sans ambiguïtés même pour des espèces à reproduction sexuée pour lesquelles pourtant le critère d'interfécondité aurait pu sembler devoir être définitif et absolu. Il n'est donc pas surprenant que chez des êtres vivants qui se reproduisent par simple division cellulaire la situation soit plus délicate. Ce qui est le plus étonnant en définitive est que la notion d'espèce bactérienne a une certaine utilité pratique. Ceci est probablement lié au fait qu'une infime fraction des bactéries existant sur notre planète est pathogène pour l'homme. Ces rares bactéries ont trouvé une niche écologique. A partir d'ancêtres précurseurs,

des populations essentiellement clonales se sont développées. Dans un contexte médical, les représentants de ces populations donnent une image d'homogénéité phénotypique et par conséquent une valeur pratique à la notion d'espèce. Dans un contexte plus large, prenant en compte l'environnement, il s'avère souvent que ces bactéries pathogènes ont des voisines non pathogènes génétiquement très proches. Alors que nos connaissances des bactéries de l'environnement s'accroissent, le nombre de telles situations s'accroît également. Ceux qui voudraient définir de façon très formaliste la notion d'espèce, sur des critères de distance génétique en particulier, souhaitent ainsi imposer de rebaptiser par exemple Yersinia pestis, l'agent causal de la peste, en Yersinia pseudotuberculosis, l'espèce d'où est issue Yersinia pestis il y a quelques milliers d'années. Dans ce cas pourtant, la niche écologique particulière (la puce et le rat), et évidemment les conséquences en pathologie humaine, justifient de conserver la nomenclature traditionnelle. De même, chez Brucella, six espèces sont définies, chacune se caractérisant par un tropisme d'hôte particulier, alors que les distances génétiques entre espèces sont minimes (Moreno 2002). Il faudra donc probablement s'accommoder pendant encore longtemps de situations contradictoires, et accepter que chaque espèce bactérienne soit un cas particulier, lié à un écosystème.

Le travail qui va être présenté dans cette thèse ne porte pas sur l'identification bactérienne, mais sur le typage de souches. Pour cette raison, même si, comme nous l'avons rappelé très brièvement, les considérations sur les notions d'espèce sont très intéressantes, elles ne seront pas abordées plus avant. La question du typage de souches ne se pose que pour une population bactérienne relativement proche, ce qui est le cas dans un contexte clinique. En l'occurrence, nous avons dans ce travail abordé la question du typage pour trois agents infectieux, *Y. pestis*, *P. aeruginosa* et *S. aureus*. La première bactérie citée est l'agent causal de la peste, qui demeure associé à plusieurs milliers de cas chaque année dans le monde, les deux autres sont responsables de nombreuses infections acquises en milieu hospitalier. Comme nous l'avons rappelé, alors que la prise en charge médicale immédiate se satisfait largement de l'identification bactérienne complétée par la connaissance du profil de résistance aux antibiotiques de la bactérie incriminée, le contrôle des maladies infectieuses requiert une caractérisation plus fine des souches.

Pour une surveillance épidémiologique efficace, il est nécessaire de pouvoir identifier avec le plus de précision possible les souches bactériennes responsables d'épidémies à l'échelle planétaire ou locale. Dans le premier cas, la connaissance de l'origine de souches responsables de maladies telles que la tuberculose peut permettre de mettre en place des mesures sanitaires appropriées dans les pays concernés, voire même d'exercer une pression internationale sur ces pays pour qu'ils améliorent leur prise en charge des maladies infectieuses. Dans le second cas, le typage de souches permet de prendre des mesures très locales (mesures sanitaires dans les hôpitaux, identification de porteurs, identification de foyers d'accueil à risque, identification de systèmes de canalisations contaminés). Pour ces

deux types d'études, épidémiologie locale et épidémiologie globale, l'identification de marqueurs polymorphes est une étape préalable. De façon plus anecdotique, mais qui peut mériter d'être rappelée dans le contexte actuel, le typage des bactéries pathogènes potentiellement utilisables comme armes biologiques s'est avéré nécessaire pour identifier le plus précisément possible l'origine de la souche de *Bacillus anthracis* envoyée dans des enveloppes à l'automne 2001 aux Etats-Unis.

#### 1.1.2 Le concept de clonalité

Les épidémies observées dans les cas de maladies infectieuses ont souvent pour origine un même agent étiologique. Généralement, l'agent étiologique responsable d'une épidémie dérive d'une cellule unique, toutes les cellules issues de cette cellule seront génétiquement identiques ou très proches. Les organismes impliqués dans une épidémie ont donc une relation de clonalité. Ils appartiennent à la même espèce et présentent des caractéristiques communes comme par exemple des facteurs de virulence, des propriétés biochimiques et des caractéristiques génomiques. Cependant on observe une diversité suffisante pour distinguer des isolats de même espèce provenant de différents lieux et prélevés à différents moments, ce qui permet de les classer en souches. On peut ainsi obtenir un typage plus approfondi qu'une simple détermination de l'espèce impliquée dans une épidémie. Ceci correspond à une démarche de sous-typage nécessaire pour reconnaître une situation d'épidémie, détecter les contaminations croisées de pathogènes responsables d'infections nosocomiales, déterminer la source de l'infection et enfin participer au développement de vaccins (Olive 1999).

Par ailleurs, pour le typage dans un contexte d'étude épidémiologique, les génotypes sont déterminés à partir de plusieurs locus suffisamment stables. Si la recombinaison est fréquente dans l'espèce considérée, on trouve les caractéristiques d'une population panmictique (association aléatoire des allèles) comme c'est le cas pour *Neisseria gonorrhoeae*. L'étude de marqueurs génétiques permet différentes applications en microbiologie (Tibayrenc 1998) :

- Le typage de souches.

- L'enrichissement des données de taxonomie, pour mieux définir les concepts d'espèce et de sous-espèce, pour vérifier la taxonomie actuelle et pour comprendre le rôle évolutif de la recombinaison.

- L'analyse des liens entre variabilité génétique et diversité biologique, pour mieux comprendre la pathogénicité, les interactions hôtes/parasite, la résistance aux antibiotiques, la perte d'efficacité des vaccins.

#### 1.1.2.1 Différentes structures de population

Le déséquilibre de liaison correspond au réassortiment non aléatoire des allèles à différents locus, en fonction de leur position physique sur le chromosome. En absence de recombinaison, on observe un déséquilibre de liaison entre les marqueurs. Ce déséquilibre est très important dans les populations clonales. Les données MLEE montrent que beaucoup d'espèces présentent un fort déséquilibre de liaison (Smith 1993). Superficiellement, ceci suggère que la structure de nombreuses populations bactériennes est clonale, le taux de recombinaison du chromosome bactérien est donc trop faible pour permettre une distribution aléatoire des allèles. Pour vérifier ceci, des données d'études MLEE réalisées sur plusieurs populations bactériennes ont été analysées avec un test statistique afin de déterminer s'il y a effectivement des associations entre différents locus dans ces populations (Orskov 1983).

Il existe des populations dans lesquelles un déséquilibre de liaison est observé et pourtant la recombinaison est fréquente. Ceci a été observé par exemple lorsque l'échantillon étudié est constitué d'un mélange de populations dans lesquelles est observée de la recombinaison dans chaque population mais pas entre les populations. L'absence de recombinaison entre ces populations peut être due au fait qu'elles sont isolées géographiquement ou écologiquement, ou bien que des barrières biologiques empêchent tout échange génétique entre elles. Autre situation dans laquelle on conclut à une population particulière, un génotype donné va se développer et se disséminer très vite, conduisant à observer un déséquilibre de liaison temporaire. Lorsque l'on supprime de l'analyse les types électrophorétiques récemment disséminés, on voit que la population n'a pas une structure clonale. Il peut y avoir maintien d'un déséquilibre de liaison entre locus qui ont une interaction épistatique. Enfin la dérive génétique peut aussi conduire à un déséquilibre. L'analyse de plusieurs jeux de données MLEE a conduit à conclure à l'existence de quatre types de populations :

- population panmictique (index d'association entre les marqueurs proche de 0), il n'y a pas de déséquilibre de liaison, les allèles sont distribués aléatoirement. Ex : *Neisseria gonorrhoeae*
- population épidémique : elle est panmictique mais apparaît clonale en situation d'épidémie puisque le génotype responsable de l'épidémie est très fortement surreprésenté dans la population étudiée au moment précis de l'étude. Ex : Neisseria meningitidis
- population clonale : fort déséquilibre de liaison, population clonale à tous les niveaux d'analyse. Ex : le genre *Salmonella*
- déséquilibre de liaison observé dans une population constituée de sous-populations dans lesquelles il y a de la recombinaison interne à chaque sous-population mais pas entres elles. Ex : *Rhizobium meliloti*

Pour conclure, les populations ne sont pas invariablement clonales, elles peuvent occuper un large spectre de structures possibles allant d'une population strictement clonale à une population panmictique. C'est pourquoi on peut parler de clones uniquement pour un jeu donné de marqueurs génétiques. La Figure 1 illustre trois structures de populations bactériennes.



Figure 1: Structure des populations bactériennes (d'après (Smith 1993)).

Reste la question de savoir si les populations clonales sont strictement clonales. Des événements de transfert horizontal ont été mis en évidence par analyse de séquences chez *E. coli* (Smith 1991) et *Salmonella* (Smith 1990). Cependant, la fréquence de ces événements ne permet pas de supprimer le déséquilibre de liaison.

Un exemple récent d'étude de déséquilibre de liaison a été réalisé chez *Mycobacterium tuberculosis,* un des pathogènes humains les plus répandus dans le monde, afin de mieux connaître la structure de la population (Supply 2003). Pour pouvoir faire cette étude statistique, il faut disposer de marqueurs polymorphes, or la plupart des gènes de structure chez *M. tuberculosis* est peu polymorphe. Les marqueurs utilisés pour cette étude sont 12 locus VNTRs (Variable Number of Tandem Repeats) (Supply 2001). La population de souches étudiée vient d'une région où la tuberculose a une forte incidence. Les résultats montrent un fort déséquilibre de liaison entre ces marqueurs, ce qui conduit à conclure que *M. tuberculosis* a une évolution clonale.

Chez *Helicobacter pylori*, les échanges génétiques sont si fréquents que les locus sont tous à l'équilibre de liaison, *H. pylori* est donc une espèce panmictique. La recombinaison est beaucoup plus fréquente chez *H. pylori* que chez *Escherichia coli* ou *Neisseria meningitidis*. (Suerbaum 1998). Chez *N. meningitidis*, la recombinaison a été estimée à une fréquence 80 fois plus élevée que la mutation ponctuelle d'un nucléotide. L'estimation pour *E. coli* est de 10 à 50 fois supérieure et pour *S. pneumoniae*, 50 fois supérieure (Feil 1999), (Feil 2000).

Nous reviendrons dans la discussion sur la structure des populations des deux espèces qui nous intéressent dans ce travail.

#### 1.1.2.2 Vitesse de mutation des marqueurs

La vitesse de mutation des marqueurs est à prendre en considération pour utiliser les marqueurs adaptés au type de questions posées. Comme le montre la Figure 2, plus le marqueur évolue vite, plus on observe de génotypes différents dans une population donnée. Les marqueurs qui ont une vitesse d'évolution rapide sont utiles pour des études épidémiologiques à court terme et au niveau local (un hôpital, une ville), par exemple dans des situations épidémiques. Les marqueurs qui évoluent lentement sont utiles pour des études épidémiologiques sur des mois ou des années, ainsi qu'au niveau mondial, pour les études de phylogénie.



**Figure 2:** Arbre phylogénétique hypothétique décrivant la divergence évolutive parmi des génotypes de pathogènes (d'après (Tibayrenc 1998)).

Lorsque de nouveaux marqueurs sont décrits, le plus souvent, une étude de leur stabilité au cours du temps est réalisée. Une méthode simple est le SPE (pour Serial Passage Experiments) qui consiste à faire des dilutions en série d'une culture bactérienne pendant plusieurs semaines pour suivre les changements génotypiques et phénotypiques au cours du temps. On peut par exemple comparer les génotypes des cultures prélevées en début

d'expérience et après des centaines de générations. Ceci a été fait pour la répétition localisée dans le gène *spa* chez *S. aureus* (Frenay 1996). Lenski a également réalisé une étude sur *E. coli* après 20000 générations (Lenski 2003).

Des techniques de typage de souches ont été mises en œuvre dès les débuts de la microbiologie. Parmi les principales on peut citer le sérotypage, le typage de résistance aux phages, les tests biochimiques. La découverte du rôle de l'ADN comme support du patrimoine génétique a ouvert la voie au développement de techniques dites de génotypage. On peut noter que ces techniques vont souvent tirer parti des connaissances antérieures avec des méthodes plus simples à mettre en œuvre : la connaissance des génomes bactériens permet maintenant d'identifier l'origine d'une caractéristique biochimique, et de développer une méthode de typage par PCR (Polymerase Chain Reaction), par exemple, plus simple que le typage biochimique original. Dans les prochaines pages, ces aspects seront abordés plus en détail. Puis nous présenterons les espèces bactériennes, *Y. pestis*, et surtout *P. aeruginosa* et *S. aureus*, dont l'étude et le typage constituent l'essentiel du travail effectué dans le cadre de cette thèse.

### 1.2 Glossaire des principales techniques d'épidémiologie

L'identification bactérienne consiste à déterminer l'espèce de la bactérie étudiée, le typage consiste à distinguer des souches au sein d'une même espèce.

Le typage des souches peut se faire à différents niveaux. Des méthodes de phénotypage sont utilisées classiquement, comme par exemple les antibiogrammes et le sérotypage, mais pour cela, les marqueurs sérologiques doivent être présents sur toutes les souches, ce qui n'est pas systématiquement le cas. Il existe aussi des tests de phénotypage propres à chaque bactérie selon une activité enzymatique spécifique de l'espèce considérée. Les principales techniques de phénotypage seront exposées dans le paragraphe 1.2.1.

Les méthodes de génotypage, souvent associées à des sigles (RFLP, VNTR, RAPD, AFLP, PFGE etc.) permettent l'étude du polymorphisme au niveau de l'ADN. Elles seront décrites dans le paragraphe 1.2.2. Au cours de cette thèse, des marqueurs polymorphes ont été développés pour le génotypage de souches de *Y. pestis*, *P. aeruginosa* et *S. aureus*.

Ainsi, parmi les critères à prendre en considération pour le choix d'une technique de typage de souches, il faut que celles-ci soient toutes typables par la méthode choisie et que cette dernière soit suffisamment discriminante. Elle doit permettre de distinguer des souches qui ne sont pas épidémiologiquement reliées, c'est à dire par exemple de provenances géographiques différentes. Une technique sera aussi retenue sur un critère de reproductibilité. Ceci est très

important pour la comparaison des résultats entre laboratoires et pour la mise en place de bases de données qui doivent reposer sur des données solides. Le délai d'obtention des résultats et le coût sont également des critères à considérer pour évaluer le développement possible de la technique dans des laboratoires d'analyses hospitaliers et pas uniquement dans un contexte de laboratoires de recherche. Ces critères de choix d'une technique de typage seront résumés dans le paragraphe 1.2.3.

Les techniques d'épidémiologie moléculaire regroupent les techniques biochimiques et les techniques de biologie moléculaire. Il faut faire la distinction entre des approches généralistes (exemples : RAPD, isoenzyme electrophoresis) qui permettent une comparaison directe entre différentes espèces et permettent aussi de typer des souches d'une même espèce, et des approches spécialisées qui elles sont spécifiques d'une espèce donnée (exemple : le spoligotypage développé pour *M. tuberculosis*).

#### 1.2.1 Techniques de microbiologie classiques : phénotypage

Les différentes techniques décrites ci-dessous sont utilisées pour identifier ou typer des souches en systématique bactérienne et en épidémiologie. Elles détectent des variations phénotypiques et il n'est pas toujours possible de relier une variation allélique à un gène spécifique, d'où parfois la difficulté de réaliser une analyse génétique de la structure des populations étudiées.

#### 1.2.1.1 Les tests de résistance aux antibiotiques

Cette méthode est utilisée en routine dans les laboratoires de microbiologie, pour des raisons évidentes de prise en charge médicale. Il s'agit de déterminer le profil de résistance d'une souche vis à vis de plusieurs antibiotiques. Pour cela, des disques correspondant chacun à un antibiotique à tester sont déposés sur un étalement de bactéries. Après 24 heures, le diamètre de la zone d'inhibition autour de chaque disque imprégné d'antibiotique est mesuré et, selon sa taille, on peut déterminer par comparaison avec des données de référence si la souche est résistante ou sensible à l'antibiotique testé. L'antibiogramme de la souche analysée va permettre d'orienter le choix des antibiotiques à utiliser pour traiter le malade.

#### 1.2.1.2 Le sérotypage

Le sérotypage des souches consiste à comparer le comportement de la surface membranaire de différentes souches par des tests d'agglutination sur lames avec des mélanges de sérums correspondant aux différents types antigéniques connus. Il y a par exemple 16 sérogroupes O chez *Pseudomonas aeruginosa*. Une difficulté importante dans le cas de *P. aeruginosa* est que

dans certaines souches, dites mucoïdes, une sorte de mucus rend la surface inaccessible et le test inefficace (Young 1974).

#### 1.2.1.3 Le lysotypage (ou phage typing)

Cette technique permet de tester la sensibilité des souches à l'infection par des phages. C'est une technique utilisée depuis les années 1960. Elle permet de classer les souches testées en différents lysotypes (Sutter 1965). Chez *Staphylococcus aureus*, le lysotypage est une technique toujours utilisée et, récemment, de nouveaux phages ont été identifiés pour le typage (de Gialluly 2003).

#### 1.2.1.4 MLEE (MultiLocus Enzymes Electrophoresis)

La tehnique dite MLEE a longtemps été la méthode standard d'étude de génétique de populations eucaryotes et de systématique. A partir des années 1980, des études MLEE de populations bactériennes ont été réalisées pour plusieurs espèces (*Escherichia coli, Bordetella* spp., *Haemophilus influenzae, Neisseria meningitidis, Legionella* spp., *Pseudomonas aeruginosa, Staphylococcus aureus*, etc...) (Selander 1986). Les isolats sont caractérisés par la mobilité électrophorétique d'un grand nombre d'enzymes cellulaires solubles. La charge nette et la distance de migration de la protéine sont directement liées à sa séquence en acides aminés. Les variants de mobilité d'une enzyme peuvent être associés aux allèles correspondant au locus du gène, plus facilement que pour d'autres caractères phénotypiques étudiés. L'électrophorèse permet de détecter un grand nombre de substitutions d'acide aminés (80 à 90%), ceci a été vérifié pour des enzymes de séquences nucléiques connues (Ramshaw 1979). Un certain nombre de substitutions sont sans effet sur la migration électrophorétique.

#### 1.2.1.5 Tests biochimiques

Certains tests biochimiques sont développés à partir d'une activité enzymatique, ou d'une production de pigments spécifiques d'une espèce bactérienne. Ces tests sont essentiels en identification bactérienne médicale et peuvent permettre dans ce contexte relativement simple de faire en première intention une identification d'espèce et parfois aussi un typage succinct des souches. Ces tests sont automatisés. En effet, dans un contexte médical, comme il n'existe que quelques centaines de bactéries pathogènes pour l'homme, il est possible de constituer une base de données de profils relativement complète, et bien adaptée à l'identification bactérienne (plutôt qu'au typage proprement dit). L'utilisation de galeries API permet l'identification de l'espèce bactérienne en testant un certain nombre d'activités métaboliques, comme par exemple l'utilisation des sucres. D'autres tests sont orientés vers une espèce bactérienne en particulier. Pour *S.aureus*, on peut tester la production de staphylocoagulase.

Ce test biochimique est utilisé depuis les années 1960. Des tests rapides pour l'identification de *S. aureus* par la staphylocoagulase sont développés (Holliday 1999).

La production de pyocines, agents anti-bactériens, est utilisée comme méthode de phénotypage (pyocin typing) de *P. aeruginosa* chez qui différents « pyocin types » sont connus (Bruun 1976).

#### 1.2.2 Les techniques de génotypage

Les techniques de génotypage (analyse de l'ADN) prennent une part croissante par rapport aux techniques de phénotypage, du fait d'une part des problèmes de « typabilité » de certaines souches et d'autre part des problèmes de reproductibilité rencontrés avec certaines techniques. L'arrivée de la PCR en 1985 (Saiki 1985) a encore accéléré cette tendance. En outre, le génotypage peut être « délocalisé » (c'est à dire se faire dans un autre laboratoire que le laboratoire de microbiologie) ce qui permet un partage efficace du travail. Cependant, comme nous le verrons dans le paragraphe 1.2.3, les techniques de génotypage ne sont pas toutes satisfaisantes pour le critère de reproductibilité.

L'accélération du développement du génotypage a aussi pour origine la disponibilité des données de séquençage des génomes complets qui ouvre la voie à l'étude plus exhaustive de marqueurs polymorphes tels que les répétitions en tandem et les SNPs (Single Nucleotide Polymorphism).

Les techniques courantes de génotypage mettent en œuvre l'électrophorèse de fragments d'ADN et l'analyse d'un profil de bandes.

#### 1.2.2.1 PFGE (Pulse Field Gel Electrophoresis)

Avec cette technique, il n'y a pas d'amplification d'ADN par PCR. L'électrophorèse en champ pulsé de l'ADN chromosomique bactérien digéré par des enzymes de restriction est considérée comme la méthode de choix pour le typage moléculaire de nombreux pathogènes. Il s'agit d'une technique de RFLP (Restriction Fragment Length Polymorphism)-PFGE (électrophorèse en champ pulsé des fragments chromosomiques digérés).

Le champ pulsé permet de séparer des fragments d'ADN de très grande taille, de 30 à 2000kb. (Schwartz 1984). Les bactéries sont enrobées dans de l'agarose avant de subir une étape de lyse *in situ* afin de préserver l'intégrité physique de l'ADN. L'ADN est ensuite digéré par une enzyme de restriction à sites rares. Le morceau d'agarose contenant l'ADN bactérien digéré est placé en haut d'un gel d'agarose et l'électrophorèse en champ pulsé est réalisée. La polarité du courant est modifiée à intervalles réguliers ce qui permet de séparer des fragments

de grande taille. Le gel est coloré au Bromure d'Ethidium puis exposé sur une lampe UV pour visualiser les fragments d'ADN. Les photos des gels sont analysées à l'aide de logiciels. Les profils de restriction des différents isolats sont comparés entre eux pour déterminer leur proximité.

En 1995, Tenover a proposé un système de standardisation et d'interprétation des profils obtenus par champ pulsé pour déterminer la relation entre les isolats étudiés (Tenover 1995). Il faut d'abord déterminer quelle est la souche responsable de l'épidémie. Ensuite les « règles » suivantes d'interprétation des profils sont suivies :

- si deux isolats ont le même profil PFGE, on considère qu'il s'agit de la même souche.
- des souches sont considérées comme proches lorsqu'elles ont un seul événement génétique de différence, ce qui se traduit par une différence dans le profil au niveau de 2 à 3 bandes (addition ou délétion d'un site de restriction).
- des souches liées ont 4 à 6 bandes différentes, cela est dû à deux événements génétiques.
- des souches qui ont plus de 6 bandes de différence sont considérées sans lien épidémiologique.

Ces critères de Tenover ne sont pas vraiment reconnus (par Tenover lui-même), il semblerait qu'ils ne soient pas valables pour toutes les situations épidémiques.

De nombreuses études ont été menées pour déterminer quelle enzyme de restriction est la plus discriminante pour une espèce bactérienne donnée. Dans de nombreuses publications, l'enzyme utilisée pour les études PFGE de *S. aureus* est *SmaI* (Linhardt 1992) et pour *P. aeruginosa*, il s'agit de *SpeI* (Holloway 1992).

## 1.2.2.2 RAPD (Random Amplified Polymorphic DNA) ou AP-PCR (Arbitrarily Primed PCR)

Cette technique a été décrite pour la première fois en 1990 par Williams (Williams 1990) et simultanément par Welsh (Welsh 1990). Elle présentait l'intérêt de pouvoir amplifier par PCR différentes portions du génome sans connaître sa séquence. Le principe est basé sur l'utilisation d'amorces aléatoires courtes (9 à 10 pb) qui s'hybrident avec l'ADN chromosomique à faible température d'hybridation et vont permettre d'initier l'amplification d'un certain nombre de régions du génome. Les amorces utilisées sont déterminées de façon empirique. Le nombre et la localisation des sites d'hybridation des amorces varient d'une souche à l'autre dans une même espèce. Là aussi, les fragments amplifiés seront séparés par électrophorèse sur gel d'agarose. Les profils obtenus sont analysés et comparés. Le reproche majeur fait à cette technique est le manque de reproductibilité et de standardisation. De

nombreuses hybridations partielles ont lieu et une très légère variation des conditions de PCR (température, tampon, enzyme) conduit à des variations du profil de bandes obtenu. La reproductibilité est possible à l'intérieur d'un laboratoire, mais beaucoup moins entre laboratoires. Des variations ont été observées d'une machine PCR à l'autre (Meunier 1993).

#### 1.2.2.3 AFLP (Amplified Fragment Length Polymorphism)

Cette technique implique trois étapes : tout d'abord la digestion de l'ADN génomique par une enzyme de restriction et la ligation d'adaptateurs aux fragments générés, puis l'amplification sélective de fragments de restriction et enfin une séparation électrophorétique des fragments amplifiés. L'amplification des fragments de restriction est réalisée à l'aide d'amorces qui s'hybrident au niveau des adaptateurs du site de restriction. On amplifie en général de 50 à 100 fragments qui seront ensuite détectés sur gels de polyacrylamide en conditions dénaturantes (Vos 1995) ou séquenceur à capillaires. Cette technique est très puissante, beaucoup plus robuste et reproductible que la précédente, et, comme cette dernière, ne requiert pas la connaissance de données de séquence génomique. Elle exige cependant de l'ADN de bonne qualité, et le respect de procédures rigoureuses.

#### 1.2.2.4 RFLP (Restriction Fragment Length Polymorphism)

#### 1.2.2.4.1 Typage par transfert et hybridation (Southern blot)

L'ADN génomique est digéré par une enzyme de restriction puis les fragments d'ADN sont séparés sur gel d'agarose et transférés sur membrane. Ensuite, l'hybridation est réalisée avec une sonde correspondant à un fragment du génome, un gène (par exemple ToxA pour P. aeruginosa (Grundmann 1995), ou des éléments mobiles : séquences IS). Cette approche a été largement développée au cours des années 1980, et reste encore parfois utilisée, par exemple pour le typage de polymorphisme associé à des éléments mobiles chez Y. pestis et M. tuberculosis. Le ribotypage est également une application de cette approche, dans laquelle la sonde utilisée correspond au locus de l'ADNr 16S-23S (Scieux 1992; Bingen 1994). L'ADN génomique est hydrolysé par deux enzymes de restriction au cours de réactions indépendantes. Les fragments sont ensuite séparés par électrophorèse puis transférés sur une membrane de nylon. Une sonde ribosomique 16S-23S d'Escherichia coli marquée est mise en contact avec la membrane pour révéler les fragments d'ADN homologues. Une à plusieurs bandes d'hybridation sont observées en fonction du nombre de sites de restriction présents dans l'opéron ribosomique des souches testées. Ces différentes étapes ont été automatisées et sont réalisées avec un « RiboPrinter » qui permet une reproductibilité satisfaisante entre laboratoires.

#### 1.2.2.4.2 PCR-RFLP

Une PCR est réalisée en utilisant des amorces spécifiques d'un locus donné. Ensuite le produit de PCR est digéré par une enzyme de restriction. Les fragments obtenus sont séparés par électrophorèse. Les profils de bandes sont alors comparés. Par exemple chez *S. aureus*, les gènes de la coagulase, de la protéine A et de la région hypervariable proche de mecA ont été amplifiés puis digérés par *HaeII*, puis les profils comparés (Wichelhaus 2001).

L'amplification de l'ADNr 16S puis la digestion du fragment PCR et la séparation des produits de digestion sur gel constituent une variante du ribotypage, de moindre résolution. Cette méthode est appelée ARDRA (Amplified Ribosomal DNA Restriction Analysis) (Vaneechoutte 1992). Elle ne permet pas en général de distinguer des souches au sein d'une même espèce, mais permet de classer grossièrement des bactéries. L'avantage de cette approche par rapport au Southern blot est qu'elle ne nécessite que de faibles quantités d'ADN, de qualité moyenne et qu'elle est simple et rapide.

#### 1.2.2.5 MLST (Multi Locus Sequence Typing)

Il s'agit du séquençage d'environ 500 pb de fragments internes de gènes de ménage. En général 7 gènes sont séquencés par isolat. Ensuite les séquences sont comparées aux séquences déjà rencontrées et les isolats classés en types de séquences (ST pour « sequence types »). Cette technique est utile pour des études épidémiologiques, mais peut ne pas être assez discriminante pour des analyses en situation d'épidémie. Ces locus évoluent lentement du fait de leur présence dans des gènes de ménage. Ceci explique que cette technique MLST est valable pour des études de phylogénie (dépend des espèces) plutôt que pour du typage de routine. Le MLST n'est pas valable pour des espèces d'émergence récente comme par exemple Y. pestis ou M. tuberculosis, en revanche elle a été validée pour un certain nombre d'espèces comme H. pylori et N. meningitidis. Dans cette dernière espèce, l'approche est en passe de devenir la méthode de référence. Par ailleurs, cette technique est encore coûteuse (2 fois 7 séquences à effectuer) pour des analyses de routine dans des laboratoires d'analyse hospitaliers (Maiden 1998). L'énorme avantage de cette approche est qu'elle est parfaitement reproductible quel que soit le laboratoire puisqu'il s'agit de séquencer et de classer les séquences. Il n'y a pas d'ambiguïté d'interprétation des résultats comme avec des profils de migration multibandes. Le typage MLST a été initialement développé pour l'étude de Neisseria meningitidis du fait de la difficulté de comparer des résultats de MLEE (MultiLocus Enzyme Electrophoresis) entre laboratoires. Il existe des bases de données en ligne pour le typage MLST (Chan 2001). Il est possible de soumettre des séquences sur le site www.mlst.net. Des données sont accessibles pour les bactéries pathogènes suivantes : Neisseria meningitidis, Streptococcus pneumoniae, Staphylococcus aureus, Campylobacter jejuni, Streptococcus pyogenes, Haemophilus influenzae, Burkholderia pseudomallei, Candida albicans, Enterococcus faecium, Escherichia coli, Streptococcus agalactiae et Helicobacter pylori.

Des puces à ADN ont également été développées pour mener des études MLST. Les données obtenues sont reproductibles et concordantes avec les données épidémiologiques disponibles pour les souches testées (van Leeuwen 2003). Il s'agit encore pour le moment d'approches « recherches » trop coûteuses pour un usage clinique.

#### 1.2.2.6 SNPs (Single Nucleotide Polymorphism)

Le terme SNP désigne un changement de nucléotide à une position du génome, les insertions, délétions ou inversions ne sont pas considérées comme des SNPs (Brookes 1999). L'étude des SNPs s'est beaucoup développée avec le séquençage des génomes complets, permettant ainsi la comparaison de séquences de plusieurs génomes d'une même espèce pour rechercher les SNPs. Les SNPs identifiés par comparaison de génomes doivent être validés expérimentalement pour s'assurer qu'il ne s'agit pas d'erreurs de séquençage. Par exemple de nombreux SNPs ont été découverts chez *M. tuberculosis* par comparaison des séquences des souches H37Rv et CDC1551. Cette variabilité génétique peut avoir un rôle important pour la pathogénicité de l'espèce, par exemple lorsqu'un SNP est localisé dans un gène impliqué dans la virulence ou bien dans la réponse immunitaire de l'hôte (Fleischmann 2002).

Des SNPs ont également été étudiés chez *P. aeruginosa*. En effet, les genes exoS, exoT, exoU et exoY codant des toxines, présentent un SNP. Un test par PCR multiplexe a été développé pour étudier ces SNPs (Ajayi 2003).

La recherche de SNPs comme outil de génotypage pour des espèces très homogènes a aussi été réalisée comme par exemple pour *Bacillus anthracis*, une espèce d'émergence récente. Ainsi quelques SNPs ont été validés et constituent un outil complémentaire de typage de *B. anthracis*, en plus d'un certain nombre de VNTRs déjà décrits (Read 2002).

## 1.2.2.7 Amplification par PCR de séquences répétées en tandem

L'analyse MLVA ou Multi-Locus VNTR (Variable Number of Tandem Repeats) Analysis, est l'étude par PCR de plusieurs VNTRs. Il s'agit de répétitions en tandem qui présentent un polymorphisme de longueur. Le nombre de motifs répétés est variable d'une souche à l'autre. Ce type d'analyse a été développé dans ce travail pour *Pseudomonas aeruginosa* et *Staphylococcus aureus* (voir le chapitre 1.5) et pour *Yersinia pestis* (voir le chapitre 1.6).

# 1.2.3 Bilan des avantages *i*nconvénients des différentes méthodes de typage

Plusieurs paramètres sont importants pour évaluer une technique de typage (Tenover 1994). Tout d'abord la « typabilité », c'est à dire la possibilité d'obtenir un résultat pour chaque isolat analysé. Les isolats non typables ne sont pas interprétables. Ensuite, la reproductibilité, c'est à dire le fait d'obtenir le même résultat pour un isolat typé plusieurs fois. Une fois que ces deux exigences sont satisfaites, il faut aussi prendre en compte le pouvoir discriminant de la technique. Idéalement, chaque isolat non relié aux autres devrait être identifié comme unique. La facilité d'interprétation est également importante. En effet, l'épidémiologie à l'échelle mondiale nécessite de pouvoir comparer les données de typages réalisées dans des laboratoires différents. Une technique difficile à interpréter sera très difficilement mise à profit hors du laboratoire.

La faisabilité d'une technique repose sur plusieurs critères : l'accessibilité à la technique, les délais d'obtention des résultats, l'expertise technique nécessaire, le coût du matériel, les réactifs nécessaires, et enfin l'utilité de la technique pour un grand nombre de microorganismes (van Belkum 2001). Le Tableau 1 fait le bilan des avantages et inconvénients des différentes techniques de typage présentées dans le paragraphe précédent.

Les techniques de phénotypage sont dans l'ensemble moins faciles à interpréter que les techniques de génotypage, elles sont basées sur la présence ou l'absence d'activités métaboliques ou biologiques exprimées par le génome complet. Les résultats de génotypage sont le plus souvent des profils de bandes. Il faut tout de même insister sur le fait que les différentes techniques de génotypage ne fournissent pas toutes la même complexité de profil à analyser. Il y a également des différences au niveau de la reproductibilité selon la spécificité de la technique choisie. Par exemple la technique de RAPD est par définition moins stringente qu'une PCR réalisée pour amplifier un locus donné (conditions stringentes d'hybridation des amorces). La RAPD est satisfaisante en interne dans un laboratoire, mais les résutlats ne sont pas comparable entre laboratoires du fait des problèmes de reproductibilité.

D'une manière générale, les techniques de génotypage, basées sur la détection d'acides nucléiques, présentent l'avantage majeur que toutes les souches sont typables, c'est à dire même celles qui ne le sont pas par des techniques de phénotypage habituellement utilisées, celles qui sont difficilement cultivables, les non cultivables, et également les bactéries mortes.

|              | méthode de typage                          | "typabilité" | reproductibilité | pouvoir      | facilité de mise | facilité         | accessibilité | coût   |
|--------------|--------------------------------------------|--------------|------------------|--------------|------------------|------------------|---------------|--------|
|              |                                            |              |                  | discriminant | en œuvre         | d'interprétation | de la méthode |        |
|              | Profils de résistance<br>aux antibiotiques | bonne        | bonne            | faible       | excellente       | excellente       | excellente    | faible |
| -            | Serotypage                                 | variable     | bonne            | variable     | bonne            | bonne            | variable      | moyen  |
| HENO         | Lysotypage                                 | variable     | passable         | variable     | faible           | faible           | excellente    | moyen  |
| TYPAG        | MLEE                                       | excellente   | excellente       | bon          | bonne            | excellente       | variable      | élevé  |
| m            | Tests biochimiques<br>manuels              | bonne        | faible           | faible       | excellente       | excellente       | excellente    | faible |
|              | Tests biochimiques<br>automatisés          | bonne        | bonne            | faible       | bonne            | bonne            | variable      | moyen  |
|              | PFGE                                       | excellente   | bonne            | excellent    | bonne            | bonne            | variable      | élevé  |
|              | RAPD / AP-PCR                              | excellente   | faible           | faible       | bonne            | faible           | bonne         | moyen  |
|              | AFLP                                       | excellente   | bonne            | excellent    | bonne            | passable         | faible        | élevé  |
| GENOT        | RFLP                                       | excellente   | variable         | variable     | bonne            | passable         | variable      | moyen  |
| <b>YPAGE</b> | Ribotypage<br>automatisé                   | excellente   | excellente       | bon          | bonne            | bonne            | variable      | élevé  |
|              | MLST (séquençage)                          | optimale     | excellente       | excellent    | bonne            | excellente       | faible        | élevé  |
|              | SNPs (séquençage)                          | excellente   | excellente       | faible       | bonne            | excellente       | faible        | élevé  |
|              | MLVA                                       | excellente   | excellente       | excellent    | excellente       | excellente       | bonne         | faible |

**Tableau 1:** Avantages et inconvénients des différentes techniques de typage(adapté de van Belkum 2001)

Pour les techniques de génotypage faisant appel à la PCR, un autre avantage est la très grande sensibilité et la spécificité de la technique permettant de travailler à partir de petites quantités de bactéries et ainsi d'éviter l'étape de mise en culture préalable pour des analyses nécessitant beaucoup de matériel, comme par exemple pour faire une analyse de type Southern blot. Cet aspect est particulièrement important pour des bactéries qui poussent très lentement comme *M. tuberculosis* (nécessite 2 à 3 semaines de culture). Un autre avantage de la PCR est la possibilité d'amplifier de l'ADN dégradé ou ancien. Cet avantage semble assez anecdotique mais permet par exemple de génotyper des souches très anciennes et ainsi de mieux connaître l'évolution des pathogènes d'intérêt (Fletcher 2003).

La seule technique permettant d'être absolument sûr que deux souches sont identiques reste le séquençage du génome complet.

Le développement d'une méthode de typage est largement guidé par des considérations pratiques. Le besoin doit être bien identifié. Dans le domaine de l'épidémiologie à échelle planétaire, il est clair qu'aucun laboratoire ou même pays ne peut espérer développer une approche mondiale sans étroite collaboration avec d'autres. Lorsque, comme c'est souvent le cas, par exemple pour la tuberculose, les foyers infectieux majeurs sont dans des pays relativement pauvres, il importe que les méthodes à mettre en œuvre soient peu coûteuses en terme de matériel et de consommables. Inversement, dans les pays les plus riches, les méthodes doivent être le plus automatisables possible en raison du coût élevé de la main d'œuvre. Enfin, les données qui en découlent doivent pouvoir être assemblées assez simplement et de façon fiable. Rares sont les méthodes qui répondent à ses critères, aucune n'est totalement satisfaisante, et actuellement ce domaine connaît une évolution très rapide.

La voie que nous explorons est celle des séquences répétées en tandem, pour un certain nombre de raisons que nous expliciterons dans le reste de ce travail.

### 1.3 Séquences répétées dans les génomes bactériens

Malgré leur petite taille, les génomes bactériens possèdent une grande variété de séquences répétées. Ils sont très compacts et présentent une grande densité de gènes par rapport aux génomes eucaryotes dans lesquels existe une forte proportion d'ADN extragénique (95% dans le génome humain). C'est pourquoi, à part les opérons ribosomiques connus depuis longtemps dans les génomes bactériens (souvent en plusieurs copies, 4 dans le génome de *P. aeruginosa* et 5 chez *S. aureus*), on pensait que les génomes bactériens étaient dépourvus de séquences répétées, puisque l'ADN est « cher » dans une bactérie qui doit assurer une réplication rapide de son génome, et que l'utilité de ces séquences répétées reste hypothétique. Ces dernières années cependant, différents types de séquences répétées ont été découvertes dans les génomes bactériens.

La variabilité, la complexité et la spécificité taxonomique des répétitions des génomes microbiens est similaire à celle trouvée dans les répétitions chez les plantes et les animaux. L'élément répété de base a une taille de 1 paire de bases à plusieurs kilobases. Les répétitions peuvent être dispersées dans le génome ou répétées en tandem à un seul locus. Les données de séquençage des génomes bactériens complets sont de plus en plus nombreuses et ouvrent la voie à l'étude exhaustive des répétitions dans ces génomes afin de comprendre leurs rôles.

#### 1.3.1 Séquences répétées dispersées sur le génome

#### 1.3.1.1 Les séquences d'insertion (IS)

Elles jouent un rôle majeur dans la plasticité des génomes procaryotes. Ces séquences, de moins de 2.5kb en général, codent des fonctions impliquées dans leur translocation dans le même génome et entre différents génomes. L'insertion d'une séquence IS dans un gène peut provoquer une inactivation de celui-ci. Ces éléments génétiques mobiles peuvent donc être à l'origine de réarrangements du génome tel que des délétions, des inversions. Ceci peut conduire à rassembler des gènes en clusters liés à une fonction spécialisée comme par exemple la virulence (Mahillon 1999). Chez *Yersinia pestis*, une espèce très riche en séquences IS, il a été montré que ces séquences participent à la plasticité du génome et qu'il existe une relation évolutive entre les souches caractéristiques des 3 grandes épidémies de peste (Antiqua, Medievalis et Orientalis) (Radnedge 2002).

Les séquences IS peuvent être utilisées comme sonde pour le typage de souches par Southern blot, comme par exemple IS256 chez *S. aureus* (Wei 1992) et aussi pour des analyses RFLP, comme par exemple les séquences IS6110 très étudiées chez *M. tuberculosis* (van Embden 1993).

## 1.3.1.2 Les séquences REP (Repetitive Extragenic Palindromic sequences)

Les régions intergéniques des génomes bactériens, et de la plupart des organismes, contiennent des séquences nécessaires pour le contrôle de la transcription et de la traduction. Ces séquences incluent les promoteurs et terminateurs de la transcription, les signaux de démarrage et d'arrêt de la traduction et des sites de fixations pour des protéines régulatrices.

Les séquences REP découvertes en 1984 (Stern 1984) sont aussi appelées PU pour Palindromic Units (Gilson 1984). La séquence REP a une longueur d'environ 35pb et possède une répétition inversée, elle peut être unique ou en copies multiples adjacentes. On trouve entre 500 et 1000 copies de séquences REP dans les génomes de *E. coli* et *S. typhimurium*, ce qui correspond à environ 1% de leur génome. Elles sont toujours situées dans des séquences transcrites ainsi que dans les régions intergéniques d'un opéron ou de la partie 3' non traduite du transcrit (Higgins 1982 ; Gilson 1987). Ces séquences auraient plusieurs rôles possibles : un rôle dans la terminaison de la transcription, un rôle de stabilisation du messager (les séquences REP pourraient constituer une barrière contre l'exonucléase 3'-5', et la stabilisation du messager qui en résulterait pourrait augmenter l'expression du gène) (Higgins 1988). Chez *E. coli*, les séquences PU présentent une grande similarité avec le consensus, et pourraient

constituer des sites de fixation pour des protéines. Ceci a été montré *in vitro* pour la gyrase par exemple (Yang 1988).

Les séquences PU, associées à d'autres séquences répétées, constituent les élements BIME (pour Bacterial Interspersed Mosaic Element). L'étude des BIME chez *E. coli* a conduit à définir deux familles de BIME (BIME-1 et BIME-2) selon les séquences PU qu'elles contiennent. Des expériences de retard sur gel ont montré que les différentes séquences PU ont des affinités différentes pour la gyrase, suggérant que ces deux familles de BIME sont fonctionnellement distinctes (Gilson 1991 ; Bachellier 1994).

## 1.3.1.3 Les séquences ERIC (Enterobacterial Repetition Intergenic Consensus)

Les séquences ERIC (Hulton 1991) sont aussi appelées IRUs pour Intergenic Repeats Units (Sharples 1990). Elles ont été décrites pour la première fois dans les génomes d'*E. coli* et de *S. typhimurium,* des bactéries à gram négatif. Ce sont des éléments de 126 pb qui possèdent dans la région centrale une répétition inversée fortement conservée. Les séquences ERIC permettent la formation de structures secondaires stables de type tige-boucles. Certaines séquences ERIC sont transcrites.

Les séquences consensus des éléments REP et ERIC sont totalement différentes (Hulton 1991). Versalovic a étudié la distribution de ces deux types de séquences répétées, ERIC et REP, dans différents génomes bactériens (Versalovic 1991). Les séquences REP et ERIC sont suffisamment conservées pour pouvoir y choisir des amorces consensus afin d'amplifier les régions situées entre les REP et les ERIC. Par PCR puis électrophorèse sur gel d'agarose, on obtient des profils de bandes. Les amorces ERIC et REP s'hybrident préférentiellement à l'ADN des bactéries à gram négatif. Les séquences REP et ERIC trouvées initialement dans des bactéries à gram négatif sont en fait conservées chez les eubactéries depuis des centaines de millions d'années. Leur répartition tout le long du génome constitue des sites de fixation pour des amorces consensus, permettant une identification rapide des espèces et souches bactériennes.

#### 1.3.1.4 Les séquences BOX

Les séquences BOX ont été découvertes chez *Streptococcus pneumoniae* (Martin 1992). Elles sont au nombre de 25 environ dans le génome de *S. pneumoniae* et sont constituées de différentes combinaisons de 3 sous-unités : boxA (59pb), boxB (45pb) et boxC (50pb). Elles peuvent former des structures secondaires et pourraient avoir un rôle dans l'expression de ces gènes, elles seraient donc des séquences régulatrices.

Il a été montré que la sous-unité boxA est conservée dans de nombreuses espèces bactériennes, elle peut donc servir de cible pour des analyses de type rep-PCR (repetitive element PCR) afin de typer de nombreux microorganismes (Koeuth 1995). Ceci a été fait par exemple pour l'étude de souches de *Bacillus anthracis* et de *Bacillus cereus* (Kim 2002).

L'amplification des éléments BOX a montré un excellent pouvoir résolutif pour *S. pneumoniae* (van Belkum 1996). Auparavant, c'était la combinaison de 5 techniques de génotypage qui permettait de discriminer des souches de *S. pneumoniae* non reliées épidémiologiquement (Hermans 1995) ce qui n'était pas réalisable en routine pour un laboratoire d'analyses microbiologiques.

#### 1.3.1.5 Les CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats)

Une famille de répétitions présente dans de nombreux génomes procaryotes (bactéries et archaés) a été mise en évidence (Mojica 2000). Ces éléments ont été appelés CRISPR (« clustered regularly interspaced short palindromic repeats »). Il s'agit de répétitions d'un motif bien conservé (de taille variant entre les génomes considérés : de 21 pb dans S. typhimurium à 37 pb dans S. pyogenes), espacées par des séquences non conservées, mais de longueur constante (du même ordre de taille que le motif conservé) (Jansen 2002): elles correspondent donc à une répétition en tandem avant un motif répété comprenant une région bien conservée et une région variable (espaceurs). Dans un génome bactérien, les CRISPRs peuvent se retrouver en plusieurs localisations, avec un motif répété très conservé d'un locus à l'autre (même si le nombre de répétitions peut varier) (van Embden 2000). Dans certains cas, on trouve plusieurs types de CRISPRs, dont les motifs conservés sont différents, dans un même génome. Le nombre de répétitions peut également varier, en un même locus, d'une souche à l'autre : certains CRISPRs ont donc été exploités pour l'épidémiologie (Kamerbeek 1997). En revanche, d'une espèce bactérienne à l'autre (sauf espèces proches), les motifs conservés constituant les CRISPRs ont peu d'homologie : une exception est à noter entre N. meningitidis et P. multocida. Certaines caractéristiques de séquence sont cependant communes aux CRISPRs de toutes les espèces : le motif répété conservé contient une symétrie dyade (souvent GTT à une extrémité et AAC à l'autre extrémité). En général, une séquence flanquante de quelques centaines de pb est conservée entre tous les locus CRISPRs d'un génome donné, qui n'a pas d'homologie avec les flanquantes des CRISPRs d'autres génomes. Enfin, tous les génomes bactériens ne contiennent pas de CRISPRs, c'est le cas par exemple pour deux bactéries étudiées dans cette thèse, P. aeruginosa et S. aureus. La présence de ces CRISPRs est strictement associée à des gènes appelés cas (pour « CRISPR associated genes »), qui pourraient correspondre à des protéines se liant à l'ADN (Jansen 2002). Les mécanismes de création et de dispersion dans les génomes, ainsi que la fonction biologique des CRISPRs, sont encore inconnus. Le Tableau 2 montre les caractéristiques des CRISPRs trouvés dans différents génomes bactériens (Mojica 2000).

| Bactérie        | Taille du<br>motif<br>conservé<br>répété (a) | Taille de<br>l'espaceur<br>(b) | Taille de<br>l'unité<br>répétée en<br>tandem (a+b) | Nombre de<br>locus dans le<br>génome | Nombre de<br>répétitions en<br>tandem /<br>locus | Référence       |
|-----------------|----------------------------------------------|--------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------------------|-----------------|
| T . maritima    | 30                                           | 39-40                          | 69-70                                              | 8                                    | 2-40                                             | (Nelson 1999)   |
| A. aeolicus     | 29                                           | 36-38                          | 65-67                                              | 1                                    | 6                                                | (Mojica 2000)   |
| E. coli         | 29                                           | 32-33                          | 61-62                                              | 3                                    | 2/7/13                                           | (Nakata 1989)   |
| S. typhi        | 29                                           | 32                             | 61                                                 | = 1                                  | 6                                                | (Mojica 2000)   |
| C. jejuni       | 36                                           | 30                             | 66                                                 | 1                                    | 5                                                | (Mojica 2000)   |
| Y. pestis       | 28                                           | 32-33                          | 60-61                                              | 3                                    | 6/9                                              | (Mojica 2000)   |
| C. difficile    | 29                                           | 36-38                          | 65-67                                              | 4 <sup>A</sup> + 2 <sup>B</sup>      | 5-17                                             | (Mojica 2000)   |
| M. tuberculosis | 36                                           | 38-40                          | 74-76                                              | 1                                    | Variable                                         | (Hermans 1991)  |
| Calothrix sp.   | 37                                           | 35-41                          | 72-78                                              | >1                                   | 5                                                | (Masepohl 1996) |
| Anabaena sp.    | 37                                           | 32-43                          | 69-80                                              | >1                                   | 17                                               | (Masepohl 1996) |

**Tableau 2 :** Caractéristiques des CRISPRs trouvés dans différents génomes bactériens,(d'après (Mojica 2000))

\* A, B : CRISPRs de différents types (plus de 3 pb de différence dans le motif conservé) dans un même organisme.

Une méthode de typage du CRISPR localisé dans le génome de *M. tuberculosis*, ou DR pour Direct Repeat (Groenen 1993 ; van Embden 2000) est le « spoligotyping » (pour spacer oligonucleotide typing) (Goguet de la Salmonière 1997). Le spolygotypage permet de détecter la présence ou l'absence d'espaceurs dans ce locus. Les espaceurs de la répétition sont amplifiés par PCR et détectés par hybridation d'une membrane sur laquelle sont fixés les oligonucléotides correspondant aux différentes séquences des espaceurs connus (Kamerbeek 1997). C'est une méthode très reproductible mais lègèrement moins discriminante que la méthode de choix pour le typage de *M. tuberculosis*, la technique de RFLP au niveau des séquences IS6110 (Kremer 1999). Cependant, cette technique combinée avec une étude par PCR de locus VNTRs (Frothingham 1998) permet d'obtenir une très bonne résolution (Filliol 2000). Une étude de la distribution globale des spoligotypes de *M. tuberculosis* a été réalisée récemment. Une base de données de spoligotypes permet de rassembler des données à l'échelle internationale (Filliol 2002; Sola 2003).

Dans une autre étude récente réalisée chez *Campylobacter jejuni*, le séquençage du CRISPR unique dans son génome ainsi que les techniques de RFLP et de MLST ont été comparées. Les trois méthodes se sont montrées tout autant discriminantes. Cependant, les nombreux remaniements observés dans les séquences analysées par MLST (recombinaison 50 fois plus importante que les mutations ponctuelles), et la présence fréquente de plusieurs souches différentes dans un même prélèvement suggèrent que le typage des souches de *C. jejuni* n'est utile que pour des situations épidémiques et pas pour des études épidémiologiques plus globales (Schouls 2003).

#### 1.3.2 Les séquences STAR (Staphylococcus Aureus Repeats)

On trouve ces séquences, identifiées dans le génome de *S. aureus*, en plusieurs exemplaires. Elles contiennent un élément répété en tandem (comme d'ailleurs les BOX de *S. pneumoniae*). Elles ont été identifiées par RFLP et Southern blot dans d'autres génomes du genre *Staphylococcus* (Cramton 2000). Elles sont localisées dans des régions intergéniques. On peut parler d'une famille de séquences répétées puisque la séquence consensus du motif répété est la même pour les différentes séquences STAR. Les flanquantes sont assez bien conservées également. Cette famille de répétitions en tandem sera détaillée au paragraphe 1.5.3.8.2.2.1 décrivant les répétitions en tandem chez *S. aureus*.

# 1.3.3 Séquences répétées à un seul locus du génome : les répétitions en tandem

#### 1.3.3.1 Définition d'une répétition en tandem

Une répétition en tandem est une succession de motifs d'ADN répétés les uns derrière les autres, par opposition aux répétitions « dispersées » dont les unités répétées sont dispersées dans le génome. Les différentes unités formant la répétition en tandem ne sont pas nécessairement identiques entre elles : le degré d'homologie au sein d'une répétition en tandem est très variable. Les répétitions en tandem ont été en premier lieu étudiées chez les mammifères, où trois catégories ont été distinguées : les satellites, les minisatellites, et les microsatellites. Cette distinction correspond à différentes plages de taille (pour la longueur totale et la taille du motif) et a été faite de façon plus ou moins arbitraire : l'ADN « satellite » a tout d'abord été isolé par centrifugations sur gradient de densité (Britten 1968). Ensuite, des répétitions en tandem de taille inférieure, pouvant être analysés grâce à la technique de Southern Blot, ont été caractérisées (Wyman 1980) puis appelées « minisatellites » (Jeffreys 1985). Enfin, les répétitions en tandem de taille encore inférieure ont été nommées « microsatellites » lorsque l'avènement de la technique de PCR (« polymerase chain reaction ») en a fait des outils courants de génétique moléculaire. Les répétitions en tandem sont présentes, dans des proportions variables, chez tous les organismes : eucaryotes, procaryotes, et même virus. Dans ces deux derniers groupes, les mécanismes sous-jacents n'ont quasiment pas été étudiés, et la distinction entre microsatellites et minisatellites est rarement faite. D'autres termes sont couramment employés, chez les procaryotes, mais également parfois chez les eucaryotes, pour désigner les répétitions en tandem : les SSR (« simple sequence repeat ») et STR (« short tandem repeat ») désignent des répétitions en tandem « simples » : elles correspondent aux microsatellites et aux minisatellites de petite taille (quelques centaines de paires de bases). Les VNTRs («variable number of tandem repeats ») désignent les répétitions en tandem polymorphes, qui peuvent appartenir à la classe des microsatellites ou des minisatellites.

Dans la suite, nous ne distinguerons pas les différentes catégories de répétitions en tandem.

En raison de leur polymorphisme de longueur résultant de la variation du nombre de motifs, les répétitions en tandem ont conduit au développement des empreintes génétiques permettant l'identification humaine (Jeffreys 1985). L'intérêt des répétitions en tandem dans le domaine du typage est lié en bonne partie au fait que de nombreux allèles peuvent être observés en un locus, et que ces différents allèles peuvent être identifiés par la mesure de la taille d'un fragment d'ADN, opération très simple à réaliser. Les répétitions en tandem ont rendu possibles les études de liaison génétique et de cartographie du génome humain. On trouve des répétitions en tandem dans des séquences intergéniques et intragéniques. Les conséquences de la variation du nombre de motifs ne sont pas les mêmes selon la position de la répétition. Lorsque le minisatellite est situé dans la région 5' d'un gène, il peut réguler la transcription de celui-ci en éloignant plus ou moins le site d'initiation de la transcription. Lorsqu'il est localisé dans une phase ouverte de lecture, la protéine peut être plus ou moins longue, voire plus courte s'il y a introduction d'un codon stop. Il existe assez fréquemment une hétérogénéité des motifs constituant la répétition en tandem. Cette variation interne a été utilisée dans certains cas pour comprendre le mode de mutation de ces structures.

Les répétitions en tandem peuvent constituer des familles : des répétitions en tandem (ayant des motifs répétés similaires) peuvent se retrouver en plusieurs localisations sur les génomes bactériens, avec leurs flanquantes (Cramton 2000) ou sans leurs flanquantes (Supply 1997).

## 1.3.3.2 Méthode de recherche des répétitions en tandem avant le séquençage des génomes complets

Les répétitions en tandem qui ont été identifiées, essentiellement dans des génomes eucaryotes avant la généralisation du séquençage des génomes complets, l'étaient par Southern blot (on parlait alors de minisatellites) soit au hasard de la recherche de séquences polymorphes du génome humain, soit par exemple en utilisant comme sonde une séquence répétée en tandem (dans (Vergnaud 1989), les sondes utilisées sont totalement synthétiques). Le séquençage d'un nombre croissant de génomes bactériens va faciliter grandement l'identification de ce type de séquences, et va permettre leur étude exhaustive. Des outils de recherche de séquences répétées ont été développés au laboratoire et seront présentés dans la partie 2.1 du chapitre matériel et méthodes.

#### 1.3.3.3 Utilisation en épidémiologie

Les répétitions en tandem sont souvent polymorphes et leurs allèles, de tailles différentes, sont alors facilement identifiables par PCR (à partir d'amorces spécifiques des flanquantes) suivie d'une simple migration sur gel. Ces structures, dont l'analyse est simple et rapide, ont donc une utilité en tant que marqueurs épidémiologiques. En effet, afin de comprendre le mode de dissémination des infections dans les communautés et les hôpitaux, mais également d'appréhender les changements évolutifs qui ont donné lieu à des avantages sélectifs, la distinction précise entre différents isolats d'une même espèce bactérienne est indispensable, ce qui peut être fait grâce aux répétitions en tandem polymorphes.

Quelques précautions doivent cependant être observées quant à l'utilisation des répétitions en tandem pour l'épidémiologie bactérienne (van Belkum 1999). D'une part, certaines répétitions ne sont pas neutres du point de vue évolutif (c'est-à-dire que certains allèles peuvent conférer un avantage sélectif à certains isolats). Cela pourrait donc conduire à des conclusions erronées sur la proximité des souches, qui peuvent avoir le même allèle car elles ont été confrontées au même hôte et non pas parce qu'elles sont génétiquement proches. Cela dit, de nombreuses répétitions en tandem non neutres sont utilisées de façon efficace en épidémiologie : par exemple, celle de la coagulase de *Staphylococcus aureus* (Shopsin 2000).

Par ailleurs, les locus de contingence, subissant la variation de phase, n'ont aucune valeur épidémiologique et doivent par conséquent être évités. Ces locus sont toutefois rares : dans l'ensemble, les répétitions en tandem ne subissent pas d'altérations au cours de leur manipulation en laboratoire (van Belkum 1997 ; Stothard 1998).

## 1.3.3.4 Exemples de répétitions en tandem étudiées dans les génomes bactériens

Les répétitions en tandem sont étudiées chez les bactéries depuis plus de dix ans. Elles ont été validées en tant que marqueurs épidémiologiques dans différentes espèces bactériennes. L'un de leurs avantages majeurs est que la mise en œuvre du typage de répétitions en tandem polymorphes est relativement facile et peu coûteuse par rapport aux autres techniques communément utilisées (voir paragraphe 1.2.3).

Les premières illustrations de la « méthodologie MLVA» chez les bactéries ont été réalisées en 1997 chez *Haemophilus influenzae* (van Belkum 1997) et *Bacillus anthracis* (Jackson 1997, Keim 2000). Ce dernier exemple est particulièrement intéressant du fait de la faible diversité au sein des souches de *B. anthracis*, une espèce d'émergence récente. Ces séquences répétées constituent une source majeure de polymorphisme dans ce génome. De même, l'étude des répétitions en tandem dans le génome de *Yersinia pestis*, une autre espèce

d'émergence récente (Achtman 1999), a été initiée à cette période (Adair 2000). Depuis, de nombreux autres marqueurs ont été développés chez *B. anthracis* et *Y. pestis*, dont un certain nombre au laboratoire, répondant ainsi à des préoccupations de la défense nationale face à une menace bioterroriste (Le Flèche 2001).

Une des bactéries pathogènes majeures en santé humaine est *Mycobacterium tuberculosis*. Le typage de répétitions en tandem est récemment apparu comme une alternative potentielle aux techniques courantes. La description des premiers VNTRs chez *M. tuberculosis* a été publiée en 1998 (Frothingham 1998). Depuis, l'étude des VNTRs chez cette espèce a fait l'objet de plusieurs publications (Supply 2000; Mazars 2001; Skuce 2002). Au laboratoire huit nouveaux minisatellites ont été identifiés et validés chez *M. tuberculosis* (Le Flèche 2002). Un outil d'identification en ligne a été mis en place et est accessible à la communauté. C'est pour cette espèce bactérienne que l'on trouve le plus de références concernant des études de génotypage par VNTRs et par spoligotypage. Plusieurs nomenclatures ont été employées pour désigner les répétitions en tandem chez *M. tuberculosis* dont les ETRs (Exact Tandem Repeats) et les MIRUs (Mycobacterial Interspersed Repeats Units). L'article de Le Flèche présente une synthèse des données existantes de typage de répétitions en tandem chez *M. tuberculosis*, ainsi que la présentation d'un service internet gratuit, rapide, et facile d'utilisation permettant l'identification de souches (Le Flèche 2002).

En ce qui concerne d'autres bactéries pathogènes pour l'homme, souvent tout reste à faire dans le domaine de la recherche de répétitions en tandem en tant qu'outil épidémiologique : très peu d'espèces ont été étudiées jusqu'à présent par rapport au nombre de génomes bactériens entièrement séquencés et publiés (voir Tableau 4 du paragraphe 1.4.2 sur le séquençage des génomes bactériens).

En 2001, une étude de type MLVA (Multi-Locus VNTR Analysis) a été réalisée chez *Francisella tularensis* (Farlow 2001). En 2002, la même équipe s'est intéressée à *Borrelia burgdorferi*, *Borrelia afzelii* et *Borrelia garinii* (Farlow 2002).

En 2003, les espèces suivantes ont été étudiées:

*Salmonella enterica* (Lindstedt 2003; Liu 2003); *Staphylococcus aureus* (Sabat 2003) et *Legionella pneumophila* étudiée au laboratoire (Pourcel 2003). Tout récemment, des études sont parues pour trois espèces du genre *Brucella* (Bricker 2003), les streptocoques de groupe B (Dore 2003) et *Neisseria spp* (Jordon 2003).

Dans la suite, je présenterai l'identification de marqueurs polymorphes pour le génotypage de *Yersinia pestis* (Le Flèche 2001) puis de *Pseudomonas aeruginosa* (Onteniente 2003) et enfin de *Staphylococcus aureus*, ainsi que les outils de bioinformatique développés au laboratoire (Denoeud 2004) pour faciliter ce type d'études.

#### 1.3.3.5 Evolution de ces séquences répétées en tandem

Les séquences répétées en tandem sont largement distribuées à travers les génomes eucaryotes. Elles subissent parfois une instabilité génétique détectable dont on pense qu'elle est provoquée par des mécanismes de glissement, de recombinaison génétique inégale, de conversion génique (Charlesworth 1994). L'instabilité des répétitions en tandem a été observée dans des régions d'ADN non codantes (Jeffreys 1994), comme dans des gènes codant des protéines (Sharp 1987). Une conséquence de certains de ces mécanismes, en particulier le glissage à la réplication, est qu'il ne peut y avoir événement de mutation que dans une série de motifs parfaitement identiques. Cette homogénéité nécessaire est parfois appelée évolution concertée, ce qui peut être trompeur. Certaines répétitions en tandem, telle CEB1 chez l'homme, concilient parfaitement extrême instabilité méiotique et hétérogénéité interne des motifs (Buard 1994).

Les séquences répétées en tandem ont été observées dans tous les génomes procaryotes. Peu d'études sur les mécanismes d'évolution de ces séquences ont été entreprises. Les grandes répétitions sont les plus étudiées dans les génomes bactériens, en particulier chez *E. coli* (Rocha 1999). Néanmoins, le seul mécanisme connu chez les bactéries est le glissement lors de la réplication aussi appelé en anglais SSM (Slipped Strand Mispairing). Il concerne les répétitions en tandem à courts motifs (jusqu'à 10 pb), et qui sont parfaitement conservées (Levinson 1987).

Dans les génomes bactériens, il y a surtout des répétitions à motifs courts (de type microsatellites), aussi appelés SSRs (Short Sequence Repeats). Le mécanisme SSM intervient lors de la réplication et ne fait pas intervenir de cassure double brin comme c'est le cas pour des mécanismes plus complexes qui concernent surtout la catégorie des minisatellites (motifs de 10 pb et plus). Ces courtes séquences évoluent relativement vite, à une fréquence d'une insertion ou délétion pour 1000 replications (Levinson 1987). Ces mécanismes, décrits chez l'homme, sont encore peu étudiés dans les génomes bactériens, c'est pourquoi, à part le glissement lors de la réplication, on ne peut pas expliquer clairement les mécanismes impliqués dans l'expansion/réduction des répétitions. Le phénomène SSM conduit à l'augmentation ou à la réduction du nombre de copies selon le brin subissant le mésappariement, comme illustré par la Figure 3.


Figure 3 : Modèle de mutation des répétitions en tandem par glissement lors de la réplication.

Certaines de ces erreurs de réplication sont corrigées par l'activité de relecture de l'exonucléase et par le système de réparation des mésappariements, mais d'autres échappent à ces réparations et deviennent des mutations. Par exemple, chez la levure, les structures CTG/CAG ou CGG/CCG forment des structures secondaires qui échappent au système de réparation de l'ADN (Moore 1999). L'instabilité des répétitions en tandem à motifs courts correspondrait donc à un équilibre entre la génération d'erreurs de réplication par glissement et la correction de certaines de ces erreurs par les systèmes de réparation, comme le système de réparation des mésappariements et, à un degré moindre, l'activité de relecture de l'exonucléase (Kruglyak 1998). Des mutations dans des gènes du système de réparation des mésappariements (MMR) sont à l'origine d'une instabilité des microsatellites chez *Escherichia coli* (Levinson 1987).

Shields et McDevitt se sont intéressés plus particulièrement à la séquence répétée présente dans le gène clfA (clumping factor) chez *Staphylococcus aureus* (Shields 1995). Ils ont étudié la séquence de la souche Newman (GenBank Z18852). Le motif protéique répété est Serine-Aspartate, et il y a 308 résidus. Au niveau de l'ADN, la répétition a une taille de 18 pb, avec pour motif consensus GAY TCN GAY TCN GAY AGY (N : les 4 bases possibles, Y : T ou C). Les motifs les plus conservés par rapport au consensus sont observés au centre de la séquence. Aux extrémités, les motifs sont très différents par rapport au consensus. La comparaison de l'usage des codons dans la séquence répétée et dans le reste de la séquence du gène clfA, ainsi que dans d'autres gènes similaires, a montré un usage des codons un peu différent dans la séquence répétée par rapport aux autres séquences comparées. Ce

phénomène pourrait correspondre à un avantage sélectif plus qu'à de l'évolution concertée. Par ailleurs, le peu d'homogénéité de l'ensemble des motifs de la répétition ne va pas en faveur de l'évolution concertée. Cela peut refléter une stratégie utilisée par de nombreuses bactéries qui possèdent des répétitions instables qui leur confèrent un avantage sélectif en leur permettant par exemple des phénomènes de variation de phase, comme cela a été bien décrit chez *Neisseria meningitidis* (voir paragraphe suivant).

# 1.3.3.6 Rôles de ces séquences dans l'adaptation et la virulence des bactéries

Dans un certain nombre de pathogènes, des répétitions en tandem à courts motifs (ou SSRs), présentes en amont ou dans les séquences codantes de protéines de surface, sont polymorphes et permettent l'adaptation de la bactérie aux changements de conditions survenant au cours de l'infection de l'hôte. Ce phénomène est appelé variation de phase (revue : (Henderson 1999)). Les mécanismes de variation de phase sont multiples. Ils peuvent se produire pour des séquences répétées situées en amont du gène donc dans la partie régulatrice de la transcription, ou bien dans la séquence codante elle-même et, dans ce cas, c'est le produit du gène qui peut être affecté lors de la traduction par un changement de cadre de lecture.

La variation de phase peut conduire à une variation antigénique lorsque différents phénotypes de surface peuvent être exprimés. La variation de phase a été observée en particulier chez les bactéries à gram négatif, et concerne les structures de surface telles que les fimbriaes, les flagelles, les protéines de la membrane externe ainsi que les Lipopolysaccharides (LPS), ce qui permet de penser que ces mécanismes permettent à la bactérie de s'adapter à différents types de milieux, et d'échapper au système immunitaire en modifiant les protéines de surface, sans perte irréversible de patrimoine génétique.

Les locus à fort taux de mutation sont appelés locus de contingence (Moxon 1994). Par exemple, chez la bactérie *Haemophilus influenzae*, qui colonise les voies respiratoires et peut causer des pneumonies et des méningites, le rôle des répétitions en tandem dans la modulation de la virulence a été beaucoup étudié. Tout d'abord, la variabilité des répétitions a été associée expérimentalement à la modulation des gènes impliqués dans la synthèse des pili et des LPS (Weiser 1989). Une répétition de dinucléotides dans un promoteur de gènes codant des sous-unités de pili est un facteur régulateur majeur de leur expression : selon le nombre d'unités répétées, l'espacement entre les boîtes -35 et -10 est soit favorable soit défavorable à la reconnaissance de ce site par l'ARN polymérase (van Ham 1993). Les SSRs peuvent aussi moduler l'expression génique en étant à l'origine de blocages de la réplication (Krasilnikova 1998).

D'autres répétitions en tandem ont un effet au niveau de la traduction. Chez *H. influenzae*, différents gènes codant pour des enzymes de synthèse du LPS contiennent des répétitions de tétranucléotides, localisées dans les séquences codantes, ce qui est à l'origine de décalages du cadre de lecture (Weiser 1990). Un tétranucléotide, situé dans un gène homologue à une méthyltransférase de type III, est tellement instable qu'il génère même du mosaïcisme dans les cultures bactériennes (De Bolle 2000). Chez *Neisseria meningitidis*, une répétition en tandem de 7 pb dans la phase codante du gène PilQ affecte la biosynthèse des pili de façon quantitative (Tonjum 1998). Les SSRs peuvent également agir directement comme des terminateurs de transcription (Guerin 1998).

L'implication des SSRs dans la modulation de l'expression de gènes a été mise en évidence dans une grande variété d'autres bactéries [revue : (van Belkum 1999)] dont Escherichia coli (Foster 1994), Neisseria meningitidis (van der Ende 1995), ou Mycoplasma gallisepticum (Glew 1998), et devrait profiter du séquençage des génomes bactériens. En effet, ce séquençage a ouvert la voie à une analyse plus systématique des gènes potentiellement impliqués dans la variation de phase. Lorsque la séquence complète du génome de H. influenzae a été connue, un catalogue de toutes les répétitions en tandem a pu être établi (Fleischmann 1995) : la plupart de ces répétitions sont associées avec des gènes potentiellement impliqués dans la virulence (molécules d'adhésion, enzymes de synthèse du LPS...) (Hood 1996). De la même façon, le séquençage du pathogène Helicobacter pylori (Tomb 1997) a permis de mettre en évidence une trentaine de gènes associés à des SSRs, c'est à dire potentiellement impliqués dans la variation de phase (Saunders 1998). Ces gènes codent pour des enzymes de biosynthèse du LPS, des protéines de surface et des enzymes de restriction. Le séquencage d'une seconde souche de cette bactérie (Alm 1999) a rendu possible l'identification de SSRs polymorphes (entre les deux souches considérées) : la plupart de ces candidats se sont avérés subir une variation d'expression selon le nombre de répétitions.

Par ailleurs, des répétitions en tandem appartenant à des phases ouvertes de lecture et dont le motif est multiple de 3 génèrent des polymorphismes au niveau des protéines, ce qui peut être à l'origine d'une variation antigénique :

- Chez *Staphylococcus aureus*, des protéines de surface impliquées dans la reconnaissance des molécules d'adhésion de la matrice extracellulaire de l'hôte contiennent de nombreuses répétitions en tandem, dont le nombre de répétitions influe sur l'accessibilité du domaine actif (voir Tableau 3).

- Chez *Bacillus anthracis*, une répétition en tandem dans le gène de l'exosporium est à l'origine de variations de la longueur des filaments de la surface des spores (Sylvestre 2003).

- Chez les streptocoques du groupe A, la protéine M, protéine de surface et facteur de virulence, est soumise à une grande variabilité antigénique causée vraisemblablement par des événements de recombinaison homologue (Hollingshead 1987).

- Chez les streptocoques du groupe B, la protéine alpha C, antigène de surface, contient une répétition en tandem polymorphe qui, lorsqu'elle est délétée, permet d'échapper à la réponse immunitaire de l'hôte (Madoff 1996 ; Gravekamp 1998).

- Chez le mycoplasme *Mycoplasma hyorhinis*, les protéines de surface du système VIp confèrent aux bactéries, par leur variation de taille, une résistance contre les anticorps produits par l'hôte (porc) (Citti 1997).

Le Tableau 3 liste des répétitions en tandem associées à des gènes de fonction connue chez différentes bactéries (van Belkum 1998) : selon la taille de leurs motifs répétés, certaines appartiennent à la classe des microsatellites et d'autres à la classe des minisatellites.

|                     | Niveau de régulation du gè |                | Ilation du gène |                                          |                                                                |                                       |  |
|---------------------|----------------------------|----------------|-----------------|------------------------------------------|----------------------------------------------------------------|---------------------------------------|--|
| Espèce              | Motif répété               | Gène           | transcription   | Traduction / protéine                    | Fonction du gène                                               | Références                            |  |
|                     | CAAT                       | lic1-lic3      | -               | +                                        | biosynthèse du<br>lipopolysaccharide                           | (Hood 1996) ;<br>(Weiser 1990)        |  |
|                     | GCAA                       | yadA           | -               | +                                        | adhésine                                                       | (Hood 1996)                           |  |
|                     | GACA                       | lgtC           | -               | +                                        | glycosyltransférase                                            | (Hood 1996)                           |  |
| H influenzae        | TTGG                       | ND             | -               | +                                        | protéines liant le fer                                         | (Hood 1996)                           |  |
|                     | AGTC                       | ND             | -               | +                                        | méthyltransférase                                              | (Hood 1996)                           |  |
|                     | TTTA                       | ND             | -               | - + homologue d'une protéine de Bacillus |                                                                | (Hood 1996)                           |  |
|                     | ТА                         | HifA/B         | +               | -                                        | synthèse des fimbriae (pili)                                   | (van Ham<br>1993)                     |  |
|                     | G                          | lsi2           | +               | -                                        | biosynthèse du<br>lipopolysaccharide                           | (Burch 1997)                          |  |
| N meninaitidis      | CTCTT                      | ора            | -               | +                                        | protéines d'opacité                                            | (Meyer 1990)                          |  |
|                     | A                          | ора            | +               | -                                        | protéines d'opacité                                            | (Meyer 1990)                          |  |
|                     | G                          | porA           | +               | -                                        | protéine de la membrane externe                                | (van der Ende<br>1995)                |  |
|                     | 93 pb                      | fnb            | -               | +                                        | protéine se liant à la fibronectine                            | (Patti 1994)                          |  |
|                     | 561 pb                     | cna            | -               | +                                        | adhésine du collagène                                          | (Patti 1992)                          |  |
| S. aureus           | 81 pb                      | coa            | -               | +                                        | coagulase                                                      | (Goh 1992);<br>(Schwarzkopf<br>1994)  |  |
|                     | 24 pb                      | spa            | -               | +                                        | protéine A                                                     | (Shopsin 1999)                        |  |
|                     | 18 pb                      | clf            | -               | +                                        | récepteur du fibrinogène                                       | (McDevitt 1995)                       |  |
|                     | 60 pb                      | pspA           | -               | +                                        | protéine de surface des<br>pneumocoques                        | (Yother 1992)                         |  |
| Streptococcus spp.  | 69 pb                      | emm            | -               | +                                        | protéine de résistance à la<br>phagocytose                     | (Bessen 1989)                         |  |
|                     | 246 pb                     | aC             | -               | +                                        | protéine aC                                                    | (Gravekamp<br>1997)                   |  |
| E. faecalis         | TAGTARR                    | rep1et<br>rep2 | +               | -                                        | itéron: régule la réplication et le<br>transfert des plasmides | (Heath 1995)                          |  |
| M hvorhinus         | 36 et 39 pb                | vlp            | -               | +                                        | protéine membranaire variante                                  | (Yogev 1991)                          |  |
| w. nyoninas         | A                          | vlp            | +               | -                                        | protéine membranaire variante                                  | (Yogev 1991)                          |  |
| M. bovis            | 24 pb                      | vspA           | -               | +                                        | lipoprotéine de la surface<br>membranaire                      | (Lysnyansky<br>1996)                  |  |
| M. fermentans       | A                          | P78            | -               | +                                        | lipoprotéine de transporteur ABC                               | (Theiss 1997)                         |  |
| U. urealyticum      | 18 pb                      | MB             | -               | +                                        | antigène spécifique de MB                                      | (Zheng 1995)                          |  |
| B. anthracis        | 12 pb                      | vvrA           | -               | +                                        | homologue de la protéine de la<br>gaine microfilaire           | (Jackson 1997)                        |  |
| L.<br>monocytogenes | 66 pb                      | prfA           | -               | +                                        | homologue à l'internaline riche<br>en leucine                  | (Domann 1997)                         |  |
| E. coli             | A et C                     | lac            | +               | -                                        | ß-galactosidase                                                | (Foster 1994);<br>(Rosenberg<br>1994) |  |
| A. marginale        | 87 pb                      | Msp1a          |                 | +                                        | protéine majeure de la surface                                 | (Allred 1990)                         |  |

Tableau 3 : Description de gènes bactériens associés à des répétitions en tandem, d'après (van Belkum 1998)

## 1.4 Le séquençage des génomes bactériens

Depuis la publication de la première séquence complète d'un génome bactérien, celui d'*Haemophilus influenzae*, en 1995 (Fleischmann 1995), qui a démontré l'efficacité de l'approche « WGS » (whole genome shotgun) pour le séquençage de génomes complets (voir Figure 5), des progrès spectaculaires ont été faits au niveau des techniques de séquençage, des

stratégies d'assemblage et de finition, et des méthodes d'annotation. La microbiologie est certainement parmi les premiers bénéficiaires de cette évolution : à l'heure actuelle, plus de 100 génomes bactériens ont été entièrement séquencés et trois fois plus sont en cours de séquençage (au 15 novembre 2003, d'après le site GOLD : « Genome Online Database » [http://ergo.integratedgenomics.com/GOLD/] (Bernal 2001), 128 génomes bactériens étaient achevés et 391 en cours). La Figure 4 montre l'évolution du nombre de génomes procaryotes séquencés chaque année depuis 1995, ce qui témoigne des progrès effectués ces dernières années pour le séquençage systématique des génomes.



**Figure 4 :** Evolution du nombre de génomes bactériens séquencés chaque année depuis 1995.

En 2002 le séquençage complet d'un génome bactérien pouvait être achevé en quelques mois, avec un taux d'erreur de l'ordre de 1/100000 seulement, et au coût de 8 à 9 centimes de dollar par paire de bases (Fraser 2002), ce qui correspond, pour un génome de quelques Mégabases à un coût de quelques centaines de milliers d'euros.

### 1.4.1 Différentes stratégies de séquençage des génomes

Deux stratégies de séquençage des génomes sont fréquemment employées (Frangeul 1999) : la première, celle des clones ordonnés, utilise une banque de grands inserts pour construire une carte de chevauchement couvrant le génome entier ; les clones choisis sont alors séquencés un par un pour obtenir la séquence du génome entier. La deuxième stratégie, dite du « Shotgun complet », n'exige pas de carte avant le séquençage.

### 1.4.1.1 Stratégie des clones ordonnés

Dans cette stratégie, différentes méthodes sont employées pour construire une carte : « restriction fingerprinting » ou bien «hybridization mapping ». Le fingerprint est une méthode de comparaison de clones, basée sur la correspondance de profils de fragments de restriction caractéristiques entre différents clones. Si deux clones partagent un nombre significatif de fragments de restriction, il peut être supposé que ces deux clones se chevauchent et forment une région appelée « contig ». Cette méthode a été appliquée avec succès pour le séquençage de *Caenorhabditis elegans* et de *Mycobacterium tuberculosis*, et c'est la méthode qui a permis le séquençage du génome humain par le consortium public Human Genome Project (Lander 1987).



### 1.4.1.2 Whole Genome Shotgun

Figure 5 : Projet WGS (d'après (Fraser 2000)).

C'est actuellement la stratégie la plus largement employée pour le séquençage d'un génome microbien. Le génome est d'abord fragmenté de manière physique (nébulisation, sonication) et/ou chimique (enzyme de restriction) puis les fragments générés sont utilisés pour créer différentes banques. Un grand nombre de clones, issus de ces banques, sont séquencés

aléatoirement et assemblés. L'utilisation de fragments issus de plusieurs méthodes de fragmentation permettra d'obtenir l'ordre des contigs par rapport au génome complet, puis les séquences manquantes entre chaque contig seront déterminées par un séquençage ciblé, afin d'obtenir la séquence complète du génome (voir Figure 5). Environ 90 à 95% de la séquence d'un génome sera déterminée pendant la phase aléatoire et représentée sous la forme d'un ensemble de plusieurs centaines de contigs. La détermination de l'ordre de ces contigs et l'obtention des séquences manquantes représente la partie la plus complexe d'un projet génome complet, c'est la phase de finition (ou finishing). Cette phase utilise différentes stratégies *in silico* et expérimentales pour ordonner les contigs par rapport à la séquence finale, et sa durée dépend essentiellement de la qualité des banques utilisées lors de la phase aléatoire, du nombre de clones séquencés et de la richesse du génome en éléments répétés. La couverture minimun pour ne pas avoir de trou dans l'assemblage final est d'au moins 10X.

### 1.4.2 Génomes bactériens entièrement séquencés à ce jour

La Figure 6 décrit les propriétés des différentes bactéries séquencées. On peut les classer dans trois grandes catégories, correspondant aux motivations de leur séquençage :

- Les bactéries d'intérêt médical : pathogènes humains (par exemple *Yersinia pestis :* peste, deux souches ; *Mycobacterium tuberculosis* : tuberculose, 3 souches ; *Staphylococcus aureus* : infections nosocomiales et communautaires, 6 souches) et bactéries présentant un intérêt pharmaceutique (par exemple *Streptomyces coelicolor :* production d'antibiotiques).

- Les bactéries d'intérêt économique : pathogènes de végétaux (par exemple *Xylella fastidiosa* : phytopathogène), bactéries présentant un intérêt pour l'industrie agroalimentaire (*Lactococcus lactis*), bactéries utilisées pour la synthèse d'acides aminés (*Corynebacterium efficiens*) ou de solvants (*Clostridium acetobutylicum*), ou encore pour la dépollution (*Pseudomonas putida, Shewanella oneidensis*).

- Les bactéries d'intérêt pour la recherche en microbiologie : organismes modèles (*Escherichia coli, Bacillus subtilis*) ou ayant des propriétés biologiques intéressantes (résistance à des conditions de vie en milieux « extrêmes » : par exemple, *Deinococcus radiodurans* qui survit dans des milieux fortement irradiés, ou *Thermotoga maritima*, organisme thermophile...)



Figure 6 : Motivations du séquençage de génomes bactériens.

La grande majorité des bactéries séquencées à ce jour est d'intérêt médical : entre 1995 et 2000, les organismes séquencés étaient essentiellement des bactéries pathogènes pour l'homme auxquelles s'ajoutaient quelques organismes d'intérêt plus fondamental (organismes modèles). Depuis 2001, de plus en plus de projets de séquençage impliquent des bactéries d'intérêt économique (Nelson 2000). Ce biais en faveur des bactéries d'intérêt médical devrait donc s'atténuer dans les prochaines années.

Le règne bactérien est d'une grande hétérogénéité, du point de vue du pourcentage en GC (de 22% pour *Wigglesworthia glossinidia* à 72% pour *Streptomyces coelicolor*) comme de la taille du génome (de 580 kb pour *Mycoplasma genitalium*, pathogène intracellulaire obligatoire, à 9105 kb pour *Bradyrhizobium japonicum*) ou du nombre de gènes. La Figure 7 représente le nombre de gènes en fonction de la taille du génome pour les 128 bactéries séquencées au 15 novembre 2003 : la densité en gènes des bactéries est relativement constante et voisine d'un gène par kilobase (elle varie entre 0,49 pour *Mycobacterium leprae*, particulièrement peu dense : cette espèce présente une fraction importante d'ADN non codant et de pseudogènes -non transcrits ou non traduits- (Cole 2001), et 1,29 pour *Escherichia coli* 0157:H7 EDL933). La fraction codante est généralement aux alentours de 90%. Près de la moitié des ORFs (pour « Open Reading Frames », ou phases ouvertes de lecture) de chaque espèce est de fonction inconnue. De plus, environ un quart des ORFs n'a aucune homologie avec des protéines existantes dans les bases de données de séquences. Ce pourcentage devrait diminuer avec le séquençage de plus en plus de génomes bactériens, mais il témoigne de la grande diversité biologique au sein des organismes procaryotes (Fraser 2000).



Figure 7 : Densité d'ORFs dans les génomes bactériens.

Le Tableau 4 est un récapitulatif des génomes des 66 bactéries pathogènes pour l'homme entièrement séquencées et publiées à la date du 15 novembre 2003. Parmi ces génomes, très peu ont fait l'objet d'une étude de VNTRs. Parmi ces 66 bactéries séquencées, certaines sont de même espèce, il y a au total 48 espèces bactériennes représentées dans ce tableau dont 11 ont fait l'objet d'une étude MLVA.

| Espèce                                | Souche              | Propriétés de la bactérie                                      | Numéro(s)<br>d'accession* | Publication*              | Date de<br>publication* | Taille du<br>génome<br>(kb)* | Nombre<br>d'ORFs<br>(phases<br>ouvertes<br>de lecture)* | Densité<br>en<br>ORFs<br>par kb | Souches comparées<br>pour la recherche<br>de répétitions en<br>tandem<br>polymorphes <sup>a</sup> |  |
|---------------------------------------|---------------------|----------------------------------------------------------------|---------------------------|---------------------------|-------------------------|------------------------------|---------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|--|
| Bacillus anthracis <sup>b</sup>       | Ames                | responsable de la maladie<br>du charbon                        | NC_003997                 | Nature 423, 81-86         | 01/05/03                | 5227                         | 5738                                                    | 1,10                            |                                                                                                   |  |
| Bacillus cereus <sup>b</sup>          | ATCC 14579          | intoxications alimentaires                                     | NC_004722                 | Nature 423, 87-91         | 01/05/03                | 5411                         | 5477                                                    | 1,01                            |                                                                                                   |  |
| Bordetella parapertussis              | 12822 NCTC-13253    | coqueluche                                                     | NC_002928                 | Nature Genetics 35, 32-40 | 10/08/03                | 4773                         | 4404                                                    | 0,92                            |                                                                                                   |  |
| Bordetella pertussis                  | Tohama I NCTC-13251 | coqueluche                                                     | NC_002929                 | Nature Genetics 35, 32-40 | 10/08/03                | 4086                         | 3816                                                    | 0,93                            |                                                                                                   |  |
| Borrelia burgdorferi                  | B31                 | maladie de Lyme                                                | NC_001318                 | Nature 390,580-586        | 11/12/97                | 1230                         | 1256                                                    | 1,02                            |                                                                                                   |  |
| Brucella melitensis<br>biovar suis    | 1330                | brucellose (zoonose,<br>infection chronique,<br>avortement)    | NC_004310,<br>NC_004311   | PNAS 99, 13148-13153      | 01/10/02                | 3310                         | 3388                                                    | 1,02                            | 1330/16M                                                                                          |  |
| Brucella melitensis                   | 16M                 | fièvre de Malte                                                | AE008917,<br>AE008918     | PNAS 99, 443-448          | 08/01/02                | 3294                         | 3197                                                    | 0,97                            |                                                                                                   |  |
| Campylobacter jejuni                  | NCTC 11168          | syndrome de Guillain-Barré                                     | AL111168                  | Nature 403,665-668        | 10/02/00                | 1641                         | 1654                                                    | 1,01                            |                                                                                                   |  |
| Chlamydia trachomatis                 | serovar D           | infections génitales,<br>pulmonaires, oculaires                | AE001273                  | Science 282,754-759       | 23/10/98                | 1042                         | 896                                                     | 0,86                            |                                                                                                   |  |
| Chlamydia pneumoniae                  | AR39                | pneumonies et bronchites                                       | AE002161                  | NAR 28, 1397-1406         | 15/03/00                | 1229                         | 1052                                                    | 0,86                            | CWI 029/ J138:                                                                                    |  |
| Chlamydophila<br>pneumoniae           | J138                | pneumonies et bronchites                                       | BA000008                  | NAR 28, 2311-2314         | 15/06/00                | 1228                         | 1070                                                    | 0,87                            | CWL029/ AR39 + comparaison 3                                                                      |  |
| Chlamydophila<br>pneumoniae           | CWL029              | pneumonies et bronchites                                       | AE001363                  | Nat Genet, 21,385-389     | 10/04/99                | 1230                         | 1052                                                    | 0,86                            | génomes                                                                                           |  |
| Chlamydophila caviae                  | GPIC                | pathogène                                                      | NC 003361                 | NAR, 31, 2134-2147        | 15/04/03                | 1173                         | 1012                                                    | 0,86                            |                                                                                                   |  |
| Chromobacterium<br>violaceum          | ATCC 12472          | parfois pathogène pour<br>l'homme                              | NC_005085                 | PNAS 100, 11660-11665     | 18/09/03                | 4751                         | 4431                                                    | 0,93                            |                                                                                                   |  |
| Clostridium tetani                    | Massachusetts E88   | tétanos                                                        | NC_004557                 | PNAS 100, 1316-21         | 05/02/03                | 2799                         | 2640                                                    | 0,94                            |                                                                                                   |  |
| Clostridium perfringens               | 13                  | gangrène                                                       | BA000016,<br>NC 003042    | PNAS 99, 996-1001         | 22/01/02                | 3031                         | 2660                                                    | 0,88                            |                                                                                                   |  |
| Corynebacterium<br>diphtheriae gravis | NCTC13129           | diphtérie                                                      | NC 002935                 | NAR 31, 6516-6523         | 15/11/03                | 2488                         | 2320                                                    | 0,93                            |                                                                                                   |  |
| Coxiella burnetii                     | RSA 493             | fièvre Q                                                       | NC 002971                 | PNAS 100, 5455-60         | 29/04/03                | 2100                         | 2095                                                    | 1,00                            |                                                                                                   |  |
| Enterococcus faecalis                 | V583                | infections des voies<br>urinaires, bactériémie,<br>endocardite | NC 004668                 | Science 299, 2071-4       | 28/03/03                | 3209                         | 3337                                                    | 1,04                            |                                                                                                   |  |

**Tableau 4 :** Génomes des bactéries pathogènes pour l'homme entièrement séquencés et publiés (à la date du 15 novembre 2003)

| Espèce                                     | Souche                  | Propriétés de la bactérie                                             | Numéro(s)<br>d'accession* | Publication*               | Date de<br>publication* | Taille du<br>génome<br>(kb)* | Nombre<br>d'ORFs<br>(phases<br>ouvertes<br>de lecture)* | Densité<br>en<br>ORFs<br>par kb | Souches comparées<br>pour la recherche<br>de répétitions en<br>tandem<br>polymorphes <sup>a</sup> |  |
|--------------------------------------------|-------------------------|-----------------------------------------------------------------------|---------------------------|----------------------------|-------------------------|------------------------------|---------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|--|
| Escherichia coli                           | O157:H7 Sakai           | diarrhées, colites<br>hémorragiques, syndrome<br>d'urémie hémolytique | BA000007                  | DNA Research 8, 11-22      | 27/02/01                | 5594                         | 5448                                                    | 0,97                            | 0157:H7 Sakai/                                                                                    |  |
| Escherichia coli                           | UPEC-CFT073             | souche uropathogénique                                                | NC 004431                 | PNAS 99, 17020-4           | 09/12/02                | 5231                         | 5533                                                    | 1,06                            | UPEC-CFT073;<br>0157 <sup>·</sup> H7 Sakai/                                                       |  |
| Escherichia coli                           | O157:H7 EDL933          | colites hémorragiques,<br>syndrome d'urémie<br>hémolytique            | AE005174                  | Nature, 409, 529-533       | 25/01/01                | 4100                         | 5283                                                    | 1,29                            | EDL933                                                                                            |  |
| Fusobacterium<br>nucleatum                 | ATCC 25586              | pathogène dentaire                                                    | AE009951                  | J Bacteriol 184, 2005-2018 | 10/04/02                | 2170                         | 2067                                                    | 0,95                            |                                                                                                   |  |
| Haemophilus<br>influenzae                  | KW20                    | bronchites, otites                                                    | L42023                    | Science 269,496-512        | 28/07/95                | 1830                         | 1850                                                    | 1,01                            |                                                                                                   |  |
| Helicobacter pylori                        | 26695                   | ulcères                                                               | AE000511                  | Nature 388,539-547         | 07/08/97                | 1667                         | 1590                                                    | 0,95                            | 00005/ 100                                                                                        |  |
| Helicobacter pylori                        | J99                     | ulcères                                                               | AE001439                  | Nature 397,176-180         | 14/01/99                | 1643                         | 1495                                                    | 0,91                            | 26695/ J99                                                                                        |  |
| Leptospira interrogans<br>serovar lai      | 56601                   | leptospirose                                                          | NC 004342,<br>NC 004343   | Nature 422, 888-93         | 24/04/03                | 4691                         | 4728                                                    | 1,01                            |                                                                                                   |  |
| Listeria monocytogenes                     | EGD-e                   | pathogène alimentaire                                                 | AL591824                  | Science 294, 849-852       | 26/10/01                | 2944                         | 2855                                                    | 0,97                            |                                                                                                   |  |
| Mycobacterium bovis <sup>b</sup>           | AF2122/97(spoligotype9) | tuberculose                                                           | NC 002945                 | PNAS 100, 7877-7882        | 24/06/03                | 4345                         | 3955                                                    | 0,91                            |                                                                                                   |  |
| Mycobacterium<br>tuberculosis <sup>b</sup> | CDC1551                 | tuberculose                                                           | AE000516                  | J Bacteriol 184, 5479-90   | 02/10/01                | 4403                         | 4187                                                    | 0,95                            |                                                                                                   |  |
| Mycobacterium<br>tuberculosis⁵             | H37Rv                   | tuberculose                                                           | AL123456                  | Nature 393,537-544         | 11/06/98                | 4411                         | 4402                                                    | 1                               | H37Rv/ CDC1551                                                                                    |  |
| Mycobacterium leprae                       | TN                      | lèpre                                                                 | AL450380                  | Nature 409, 1007-1011      | 11/06/98                | 3268                         | 1604                                                    | 0,49                            |                                                                                                   |  |
| Mycoplasma genitalium                      | G-37                    | pathogène du tractus génital                                          | L43967                    | Science 270,397-403        | 20/10/95                | 580                          | 468                                                     | 0,81                            |                                                                                                   |  |
| Mycoplasma penetrans                       | HF-2                    | infections urogénitales et<br>respiratoires                           | NC 004432                 | NAR, 30, 5293-5300         | 01/12/02                | 1358                         | 1038                                                    | 0,76                            |                                                                                                   |  |
| Mycoplasma<br>pneumoniae                   | M129                    | pneumonie                                                             | U00089                    | NAR 24,4420-4449           | 15/11/96                | 816                          | 677                                                     | 0,83                            |                                                                                                   |  |
| Neisseria meningitidis <sup>b</sup>        | MC58 (serogroup B)      | méningite                                                             | AE002098                  | Science 287,1809-1815      | 10/03/00                | 2272                         | 2158                                                    | 0,95                            | MOE0/ 70404                                                                                       |  |
| Neisseria meningitidis <sup>b</sup>        | Z2491 (serogroup A)     | méningite                                                             | AL 162759                 | Nature, 404, 502-506       | 30/03/00                | 2184                         | 2121                                                    | 0,971                           | 1 1/1058/ 22491                                                                                   |  |
| Porphyromonas<br>gingivalis                | W83                     | pathogène oral: infecte les gencives                                  | NC_002950                 | J.Bacteriol 185, 5591-5601 | 09/09/03                | 2343                         | 2227                                                    | 0,95                            |                                                                                                   |  |

| Espèce                                 | Souche             | Propriétés de la bactérie                                                                                     | Numéro(s)<br>d'accession* | Publication*                     | Date de<br>publication* | Taille du<br>génome<br>(kb)* | Nombre<br>d'ORFs<br>(phases<br>ouvertes<br>de lecture)* | Densité<br>en<br>ORFs<br>par kb | Souches comparées<br>pour la recherche<br>de répétitions en<br>tandem<br>polymorphes <sup>a</sup> |  |
|----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|-------------------------|------------------------------|---------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|--|
| Pseudomonas<br>aeruginosa <sup>b</sup> | PAO1               | infecte les poumons des<br>individus atteints de<br>mucoviscidose ou<br>immunodéprimés + autres<br>infections | AE004091                  | Nature 406,959-964               | 30/09/00                | 6264                         | 5570                                                    | 0,89                            |                                                                                                   |  |
| Rickettsia conorii                     | Malish 7           | fièvre éruptive<br>méditerranéenne                                                                            | AE006914                  | Science 293, 2093-2098           | 14/09/01                | 1268                         | 1374                                                    | 1,08                            | Malish 7/ Madrid F                                                                                |  |
| Rickettsia prowazekii                  | Madrid E           | typhus                                                                                                        | AJ235269                  | Nature 396,133-140               | 12/11/98                | 1111                         | 834                                                     | 0,75                            |                                                                                                   |  |
| Salmonella typhimurium                 | LT2SGSC1412        | gastro-entérite, fièvre<br>thyphoïde                                                                          | NC_003197                 | Nature 413, 852-856              | 25/10/01                | 4857                         | 4597                                                    | 0,946                           | S. typhimurium/ S.<br>enterica Typhi Ty2; S.                                                      |  |
| Salmonella enterica                    | Typhi Ty2          | fièvre thyphoïde                                                                                              | NC_004631                 | J. Bacteriol 185, 2330-7         | 21/03/03                | 4791                         | 4646                                                    | 0,970                           | enterica Typhi CT18/                                                                              |  |
| Salmonella enterica                    | serovar Typhi CT18 | fièvre thyphoïde                                                                                              | AL513382                  | Nature, 413, 848-852             | 25/10/01                | 4809                         | 4600                                                    | 0,957                           | S. typhimurium/ S.<br>enterica Typhi CT18<br>+ comparaison des 3<br>génomes Salmonella            |  |
| Shigella flexneri                      | 2a 301             | dysenterie et réaction<br>inflammatoire                                                                       | NC_004337                 | NAR 30, 4432-4441                | 16/10/02                | 4607                         | 4434                                                    | 0,96                            | Salmonella<br>typhimurium/ Shigella<br>flexneri                                                   |  |
| Shigella flexneri                      | serotype 2a 2457T  | dysenterie                                                                                                    | NC_004741                 | Infect. Immun. 71, 2775-<br>2786 | 23/04/03                | 4599                         | 4706                                                    | 1,02                            |                                                                                                   |  |
| Staphylococcus<br>aureus <sup>b</sup>  | MW2                | infontions componentions                                                                                      | BA000033                  | Lancet 359, 1819-1827            | 25/05/02                | 2820                         | 2632                                                    | 0,93                            |                                                                                                   |  |
| Staphylococcus<br>aureus <sup>b</sup>  | Mu50 (VRSA)        | cutanées, sous cutanées et                                                                                    | BA000017                  | The Lancet 357, 1225-<br>1240    | 21/04/01                | 2878                         | 2697                                                    | 0,94                            | Mu50/ MW2; Mu50/<br>N315                                                                          |  |
| Staphylococcus<br>aureus <sup>b</sup>  | N315 (MRSA)        |                                                                                                               | BA000018                  | The Lancet 357, 1225-<br>1240    | 21/04/01                | 2813                         | 2594                                                    | 0,92                            |                                                                                                   |  |
| Streptococcus pyogenes                 | M1 GAS SF370       | pharyngite, scarlatine,<br>septicémies, syndrome de<br>choc toxique                                           | AE004092                  | PNAS, 98, 4658-4663              | 10/04/01                | 1852                         | 1696                                                    | 0,92                            | M1 GAS/ M3 SSI1;<br>M1 GAS/ M3                                                                    |  |
| Streptococcus pyogenes                 | M3 (SSI-1)         | infections suppuratives                                                                                       | NC 004606                 | Genome Res 13, 1042-55           | 10/06/03                | 1894                         | 1861                                                    | 0,98                            | MGAS315; M1 GAS/<br>M18 MGAS8232 +<br>comparaison des 4                                           |  |
| Streptococcus pyogenes                 | M3 MGAS315         | infections invasives                                                                                          | NC_004070                 | PNAS 99, 10078-10083             | 16/07/02                | 1900                         | 1865                                                    | 0,98                            |                                                                                                   |  |
| Streptococcus pyogenes                 | M18 MGAS8232       | infections néonatales<br>(maladies cardiaques)                                                                | AE009949                  | PNAS 99, 4648-4673               | 02/04/02                | 1895                         | 1889                                                    | 1,00                            | génomes                                                                                           |  |
| Streptococcus mutans                   | UA159              | caries dentaires                                                                                              | NC_004350                 | PNAS 99, 14434-14439             | 29/10/02                | 2030                         | 1963                                                    | 0,97                            |                                                                                                   |  |
| Streptococcus agalactiae               | NEM316             | infections néonatales<br>(septicémie, méningite,<br>pneumonie)                                                | AL732656                  | Mol Microbiol 45, 1499-513       | 30/09/02                | 2211                         | 2118                                                    | 0,96                            | NEM316/ 2603                                                                                      |  |

| Espèce                       | Souche                           | Propriétés de la bactérie                                      | Numéro(s)<br>d'accession*                           | Publication*                    | Date de publication* | Taille du<br>génome<br>(kb)* | Nombre<br>d'ORFs<br>(phases<br>ouvertes<br>de lecture)* | Densité<br>en<br>ORFs<br>par kb | Souches comparées<br>pour la recherche<br>de répétitions en<br>tandem<br>polymorphes <sup>a</sup> |
|------------------------------|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------|----------------------|------------------------------|---------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|
| Streptococcus agalactiae     | 2603V/R                          | infections néonatales<br>(septicémie, méningite,<br>pneumonie) | NC_004116                                           | PNAS 99, 12391-12396            | 28/08/02             | 2160                         | 2175                                                    | 1,01                            |                                                                                                   |
| Streptococcus<br>pneumoniae  | TIGR4 ATCC-BAA-334               | pneumonie, septicémie,<br>méningite                            | AE005672                                            | Science 293,498-506             | 20/07/01             | 2160                         | 2094                                                    | 0,97                            |                                                                                                   |
| Streptococcus<br>pneumoniae  | R6                               | pneumonie, septicémie,<br>méningite                            | AE007317                                            | J Bacteriol. 183, 5709-<br>5717 | 10/10/01             | 2038                         | 2043                                                    | 1,00                            | HGR4/ R6                                                                                          |
| Treponema pallidum           | Nichols                          | syphilis                                                       | AE000520                                            | Science 281,375-388             | 17/07/98             | 1138                         | 1041                                                    | 0,91                            |                                                                                                   |
| Tropheryma whipplei          | TW08/27                          | infection chronique<br>intestinale + autres organes            | NC_004551                                           | Lancet 361, 637-644             | 24/02/03             | 925                          | 817                                                     | 0,88                            | T\0/08/27 / Twiet                                                                                 |
| Tropheryma whipplei          | Twist                            | maladie intestinale                                            | NC_004572                                           | Genome Res 13, 1800-<br>1809    | 01/08/03             | 927                          | 808                                                     | 0,87                            | 1 W00/27 / TWISt                                                                                  |
| Ureaplasma urealyticum       | serovar 3                        | pathogène urogénital                                           | AF222894                                            | Nature 407, 757-762             | 12/10/00             | 751                          | 650                                                     | 0,87                            |                                                                                                   |
| Vibrio cholerae              | Biotype El Tor, strain<br>N16961 | choléra                                                        | AE003852<br>AE003853                                | Nature 406,477-483              | 03/08/00             | 4000                         | 3885                                                    | 0,97                            |                                                                                                   |
| Vibrio parahaemolyticus      | RIMD 2210633                     | gastroentérite                                                 | NC 004603,<br>NC 004605                             | Lancet 361, 743-9               | 01/03/03             | 5165                         | 4832                                                    | 0,94                            |                                                                                                   |
| Yersinia pestis⁵             | CO-92 (Biovar Orientalis)        | peste                                                          | NC_003143,<br>NC_003131,<br>NC_003132,<br>NC_003134 | Nature 413,523-527              | 04/10/01             | 4653                         | 4012                                                    | 0,86                            | CO-92/ KIM5 P12                                                                                   |
| Yersinia pestis <sup>b</sup> | KIM5 P12 (Biovar<br>Mediaevalis) | peste                                                          | NC_004088                                           | J. Bacteriol 184, 4601-<br>4611 | 29/07/02             | 4600                         | 4198                                                    | 0,91                            | ]                                                                                                 |

\* :D'après le site « GOLD » [http://ergo.integratedgenomics.com/GOLD/]

• espèces bactériennes ayant fait l'objet d'une étude de VNTRs

• <sup>a</sup> : résultats des comparaisons disponibles dans la base de données du laboratoire GPMS (Génomes, Polymorphisme et Minisatellites)

• <sup>b</sup> : espèces bactériennes étudiées au laboratoire GPMS

Des comparaisons de génomes de même espèce bactérienne ou d'espèces voisines ont été réalisées au laboratoire afin d'identifier *in silico* des répétitions en tandem polymorphes. Les résultats de ces comparaisons sont accessibles sur la page web du laboratoire http://minisatellites.u-psud.fr/comparison.

La Figure 8 représente l'arbre phylogénetique des procaryotes séquencés, basé sur les séquences 16S.



Figure 8 : Arbre phylogénétique 16S des procaryotes séquencés (d'après (Nelson 2000)).

# 1.4.3 Application du séquençage des génomes bactériens à l'étude de la variabilité génomique

### 1.4.3.1.1 Comparaison de plusieurs génomes au sein d'une même espèce

Le séquençage de génomes est l'approche la plus puissante pour identifier une variabilité génomique au sein d'espèces bactériennes, jusqu'au niveau de la souche ou même de l'isolat. Par exemple, et à la suite de l'attaque bioterroriste d'octobre 2001 qui a disséminé par voie postale une poudre de Bacille du charbon (*Bacillus anthracis*), une étude comparative menée par le TIGR (The Institute for Genomic Research : http://www.tigr.org/) sur les séquences de

deux isolats de *Bacillus anthracis* Ames a mis en évidence des locus polymorphes entre ces souches (Read 2002). De telles comparaisons de génomes sont grandement facilitées lorsqu'au moins l'un des génomes est entièrement séquencé (et non pas sous forme de fragments), ce qui est le cas pour un nombre croissant de bactéries d'intérêt médical ou économique : par exemple, 6 souches de *Staphylococcus aureus* sont actuellement disponibles. L'intérêt de la comparaison de ces 6 génomes pour la recherche de répétitions en tandem polymorphes chez *S.aureus* sera illustré dans cette thèse.

La comparaison d'isolats très proches montre que la diversité au sein d'une espèce peut varier considérablement. Alors que *Mycobacterium tuberculosis* (Sreevatsan 1997) et *Yersinia pestis* (Achtman 1999) ont une très faible diversité, il a été montré par MLST que *Neisseria meningitidis* (Feil 1999) et *Helicobacter Pylori* (Achtman 1999) présentent une grande diversité génétique. La comparaison entre deux souches d'*Helicobacter pylori* a également permis de mettre en évidence des régions variables dans leur génomes (Alm 1999). De même, la comparaison de *Listeria monocytogenes* (pathogène) et *Listeria innocua* (non pathogène) a permis d'identifier des facteurs putatifs de virulence chez Listeria (Glaser 2001). Les génomes de *Bordetella pertussis, Bordetella parapertussis* et *Bordetella bronchiseptica* ont été séquencés récemment et comparés. *B. pertussis* et *B. parapertussis* ont une plus grande spécificité d'hôte que *B. bronchiseptica*, elles infectent l'homme, tandis que *B. bronchiseptica* peut infecter de nombreux mammifères. *B. pertussis* et *B. parapertussis* ont dérivé de manière indépendante à partir d'ancêtres communs proches de *B. bronchiseptica*. Cette spécificité d'hôte semble être la conséquence de pertes de fonction plutôt que de gains, les différences de virulence sont probablement dues à des pertes de fonctions régulatrices (Parkhill 2003).

En utilisant des membranes à haute densité ou des lames de verre portant tous les gènes d'un génome complet (whole genome arrays), des comparaisons peuvent être effectuées expérimentalement et non plus seulement *in silico*, au sein d'un groupe de souches ou d'espèces très proches. Cette approche a été utilisée avec succès pour comparer *Mycobacterium tuberculosis* et *Mycobacterium bovis* BCG (Behr 1999), ainsi que pour différents isolats d'*Helicobacter pylori* (Salama 2000) et d'*E*. coli (Ochman 2000).

Enfin la comparaison d'espèces éloignées permet aussi d'identifier les fonctions importantes dans la pathogénicité des microorganismes. Ainsi, il a été démontré par comparaison des génomes complets d'*Haemophilus influenzae*, *Helicobacter pylori* et *E. coli*, que 70% des gènes communs aux bactéries pathogènes, mais absents d' *E. coli* sont des gènes impliqués dans l'interaction avec l'hôte (Snel 1999).

La comparaison de génomes d'espèces proches mais causant des maladies très différentes, telles que *M. leprae* et *M. tuberculosis*, ou *N. meningitidis* et *N. gonorrhoeae*, devrait permettre également d'identifier les gènes responsables de tel ou tel effet pathogène.

### 1.4.3.1.2 L'étude des SNPs et de leur rôle dans des espèces pathogènes

Dans le génome humain, les SNPs peuvent être associés à des sensibilités à des maladies et à des microorganismes pathogènes. Le remplacement d'un acide aminé du fait de la présence d'un SNP peut représenter un avantage adaptatif qui, s'il est fixé, peut aboutir à une nouvelle espèce (Perutz 1983).

Un certain nombre de SNPs ont été découverts chez les bactéries pathogènes. Ils peuvent participer à l'adaptation du pathogène. Par exemple des altérations localisées dans des gènes de régulation ou des gènes de structure peuvent conférer à la bactérie un avantage sélectif lors de l'infection, la propagation de l'épidémie ou bien même influer sur l'évolution à long terme de la virulence (Sokurenko 1999). Alors que beaucoup de mutations « pathoadaptatives » ont pour conséquence l'inactivation de gènes, pour les SNPs « adaptatifs », le plus souvent il en résulte une modification minime de la structure de la protéine. Par exemple il a été montré récemment que des variations alléliques des adhésines des fimbriaes chez *E. coli* et *S. thyphimurium* sont liées à des SNPs situés dans des gènes impliqués dans la spécificité d'hôte, le tropisme et peuvent servir de lien entre un mode de vie commensal et celui de pathogène (Weissman 2003).

# 1.5 Application du génotypage par les minisatellites à deux espèces bactériennes importantes en santé publique : *Pseudomonas aeruginosa* et *Staphylococcus aureus*

### 1.5.1 Les infections nosocomiales

Les infections nosocomiales sont contractées dans un établissement de soins. Une infection est considérée comme telle lorsqu'elle était absente à l'admission. Lorsque l'état infectieux du patient à l'admission est inconnu, l'infection est habituellement considérée comme nosocomiale si elle apparaît après un délai de 48 heures d'hospitalisation. Ces infections peuvent être directement liées aux soins (par exemple l'infection d'un cathéter) ou simplement survenir lors de l'hospitalisation indépendamment de tout acte médical (par exemple en période d'épidémie de grippe).

On distingue plusieurs types d'infections nosocomiales qui relèvent de modes de transmission différents :

- les infections d'origine "endogène" : le malade s'infecte avec ses propres germes, à la faveur d'un acte invasif et/ou en raison d'une fragilité particulière ;

- les infections d'origine "exogène" : il peut s'agir soit :

1) d'infections croisées, transmises d'un malade à l'autre par les mains ou les instruments de travail du personnel médical ou paramédical ;

2) d'infections provoquées par les germes du personnel porteur ;

3) d'infections liées à la contamination de l'environnement hospitalier (eau, air, matériel, alimentation...).

Quel que soit son mode de transmission, la survenue d'une infection nosocomiale est favorisée par la situation médicale du patient qui dépend de :

- son âge et sa pathologie : sont particulièrement réceptifs les personnes âgées, les immunodéprimés, les nouveaux-nés, en particulier les prématurés, les polytraumatisés et les grands brûlés ;

- certains traitements (antibiotiques qui déséquilibrent la flore des patients et sélectionnent les bactéries résistantes; traitements immunosuppresseurs) ;

- la réalisation d'actes invasifs, nécessaires au traitement du patient : sondage urinaire, cathétérisme, ventilation artificielle et intervention chirurgicale.

Les progrès médicaux permettent de prendre en charge des patients de plus en plus fragiles qui cumulent souvent de nombreux facteurs de risque. Ceci explique le caractère "inévitable" de certaines infections nosocomiales et la nécessité de prendre en compte ces facteurs de risque lors de l'interprétation des taux d'infections nosocomiales. *(Informations du ministère de la santé)* 

En Europe, la prévalence des infections nosocomiales varie de 6,1% à 12,1%. Depuis 1990, plusieurs études de prévalence ont été réalisées en France, donnant des estimations de prévalence de 5,4% à 9,9%. Le taux d'incidence est deux fois plus élevé dans les grands hôpitaux universitaires. Les services les plus à risque sont dans l'ordre la réanimation (34,9%), la chirurgie (9,8%), la médecine (2,1%). Les sites anatomiques les plus fréquemment en cause sont dans l'ordre décroissant l'appareil urinaire, les poumons, le site opératoire. Les germes les plus fréquemment isolés sont *Staphylococcus aureus* (15,4%), *Pseudomonas aeruginosa* (14%), Staphylocoques coagulase négative (13,1%), *Escherichia coli* (10,2%), et *Acinetobacter sp.* (9,7%). En réanimation, l'incidence des infections nosocomiales est beaucoup plus élevée. Elle peut atteindre ou dépasser 50% des admissions. En moyenne, 30% des malades en réanimation ont au moins une infection nosocomiale. En réanimation chirurgicale, il s'agit essentiellement d'infections urinaires, les infections des plaies opératoires représentant 8% des infections.

La létalité par infection nosocomiale dans les hôpitaux de plus de 500 lits est de 3,3%, comprenant 0,5% causant directement la mort. Les pneumopathies représentent la première cause de mortalité par infections nosocomiales, suivies des septicémies. La mortalité par pneumopathie nosocomiale est élevée (10 à 60%). La survenue d'une pneumopathie chez un malade en réanimation multiplie par 4 le risque de décès. La létalité des infections sur cathéters varie de 8 à 40% selon les études. La gravité des infections urinaires est moindre que celle des infections sur cathéters, la létalité globale étant de 0,1 %.

L'émergence épidémique de bactéries multi-résistantes en France et dans le monde est devenue depuis le début des années 90 un phénomène sur lequel des efforts de prévention particuliers ont été mis en oeuvre. Parmi ces bactéries, les staphylocoques dorés résistants à la méthicilline (MRSA) sont particulièrement préoccupants tant par leur incidence élevée que par leur fort pouvoir de dissémination interhumaine. Le risque de dissémination des souches MRSA est favorisé par les flux de malades non seulement à l'intérieur d'un hôpital, mais aussi entre les hôpitaux. De plus, cette espèce bactérienne commensale représente un exemple de résistance acquise exposant au risque de diffusion de la résistance à d'autres espèces pathogènes strictes. Les prévalences des MRSA varient de 39,6% en Italie à 0,1% au Danemark, la France se situant dans le haut de l'échelle avec 33,8%. La transmission est quasi exclusivement manuportée, le réservoir de germes étant le plus souvent un portage nasal par les malades ou le personnel soignant (Astagneau 1998) (CLIN Paris Nord).

Au cours de ma thèse, je me suis particulièrement intéressée à deux espèces bactériennes qui, comme nous venons de le voir dans ce paragraphe, posent des problèmes majeurs en santé humaine, il s'agit de *Pseudomonas aeruginosa* et de *Staphylococcus aureus*. Leurs caractéristiques et un tour d'horizon des méthodes de typage utilisées pour ces deux bactéries seront présentés dans le paragraphe suivant.

### 1.5.2 Pseudomonas aeruginosa

### 1.5.2.1 Description

*Pseudomonas aeruginosa* (ou bacille pyocyanique) est une bactérie à gram négatif, aérobie stricte qui appartient à la famille des Pseudomonadaceae. On trouve *P. aeruginosa* un peu partout dans l'environnement, dans le sol, l'eau, à la surface des plantes et parfois des animaux. *Pseudomonas* sécrète des pigments : la pyocyanine et la pyoverdine.

Cette bactérie, pathogène opportuniste de l'homme, est à l'origine d'infections du système urinaire, du système respiratoire (surtout chez les malades atteints de mucoviscidose) et de

septicémies, celles-ci concernant surtout les grands brûlés, les patients immunodéprimés atteints d'un cancer ou du sida.

*P. aeruginosa* est mobile grâce à une ciliature polaire et pousse facilement dans des milieux humides. Elle se multiplie à une température optimale de 37°C sur milieu ordinaire. Dans les hôpitaux, on trouve parfois *P. aeruginosa* dans les solutions antiseptiques. Une autre caractéristique importante est qu'elle peut vivre sous forme libre ou sous forme de biofilm. Sous cette forme « d'organisme pluricellulaire » les propriétés physiologiques de *P. aeruginosa* changent, elle devient par exemple particulièrement résistante aux antibiotiques (Costerton 1999). Des biofilms peuvent ainsi se former sur les sondes, les cathéters, les canalisations, les lavabos. Par ailleurs, *P. aeruginosa* est la première cause de décès chez les patients atteints de mucoviscidose.

### 1.5.2.2 La mucoviscidose

La mucoviscidose ou Cystic Fibrosis (CF) en anglais est une maladie génétique autosomale récessive. Le gène CFTR (Cystic Fibrosis Transmembrane conductance Regulator) code une protéine de la famille des transporteurs ABC (ATP- binding cassette) qui transporte de nombreux substrats ainsi que du chlore (Schwiebert 1999). Ce gène est porté par le chromosome 7. L'inactivation de CFTR par mutation provoque une absence ou une diminution des sécrétions chlorées et une augmentation de l'absorption du sodium dans l'air. On observe une production anormale de mucus broncho pulmonaire et une obstruction des poumons. En France une personne sur 30 est porteuse d'un allèle muté. Cette maladie se traduit par une insuffisance respiratoire grave et des troubles digestifs permanents. La mucoviscidose affecte la qualité du mucus, principalement dans les bronches et dans le tube digestif. Son épaississement anormal empêche son écoulement. Des lésions pulmonaires irréversibles apparaissent et conduisent à une insuffisance respiratoire chronique grave et évolutive. Aucun traitement curatif n'existe à l'heure actuelle.

Les patients atteints de mucoviscidose souffrent d'infections bactériennes chroniques (Renders 2001). Le plus souvent ils sont infectés par *Pseudomonas aeruginosa*, *Staphylococcus aureus* (Branger 1994) et *Haemophilus influenzae* mais aussi *Streptococcus pneumoniae*, *Escherichia coli*, *Burkholderia cepacia*, *Klebsiella* spp., *Proteus* spp., *Serratia* spp., *Enterobacter* spp., *Citrobacter* spp et les streptocoques de groupe A. La plupart des malades meurent des complications associées à ces infections chroniques du tissu pulmonaire.

Les souches de *P. aeruginosa* qui poussent préférentiellement dans les poumons des patients atteints de mucoviscidose sont de phénotype « mucoïde » (Oliver 2000), c'est-à-dire qu'elles sont « collantes ». Elles sont entourées d'un gel d'alginate impliqué dans la virulence et ne peuvent plus être éliminées par les cellules cilliées des muqueuses pulmonaires. De plus, ces

souches ne sont pas toujours sérotypables, ce qui rend leur surveillance particulièrement difficile.

La cause majeure de la persistance de *P. aeruginosa* dans les poumons des patients est l'apparition chez ces souches du phénotype mucoïde (Govan 1996). Ce phénomène illustre l'adaptation d'un pathogène opportuniste à une infection pulmonaire. Un lien a été proposé entre la formation d'un biofilm dans les poumons et la résistance aux antibiotiques, pour expliquer la variation phénotypique (Drenkard 2002). Le phénotype mucoïde est complexe, il ne résulte pas de l'expression d'un seul gène, mais de plusieurs gènes impliqués dans la voie de biosynthèse de l'alginate. Une étude récente d'analyse par puce à ADN de l'expression globale des gènes de souches mucoïdes a été réalisée, pour tenter de mieux caractériser l'ensemble des gènes dont l'expression est modifiée lorsque le phénotype est mucoïde (Firoved 2003).

Les travaux de Kresse et al. ont montré que les souches persistantes dans les poumons de patients CF présentent toutes une grande inversion chromosomique (Large Chromosomal Inversion ou LCI). Il s'agit d'un nouveau mécanisme d'adaptation de la bactérie. La séquence IS6100 induit le couplage d'un insertion-délétion. L'insertion dans les gènes *wbpM*, *pilB* et *mutS* conduit au phénotype habituellement observé dans les souches de patients CF, c'est à dire le défaut et l'hypermutabilité de l'antigène O et des pili de type IV. Cette adaptation de la bactérie par LCI dans une nouvelle niche écologique est un modèle pour l'étude de l'évolution des génomes bactériens (Kresse 2003). Le génotypage de *P. aeruginosa* est à développer davantage pour en améliorer la résolution afin de pouvoir caractériser et suivre toutes les souches persistantes dans les poumons.

### 1.5.2.3 Résistances aux antibiotiques

Les souches responsables d'infections nosocomiales sont le plus souvent multirésistantes aux antibiotiques. *P. aeruginosa* est particulièrement source de problèmes car cette espèce possède naturellement des résistances à de nombreux antibiotiques (amoxicilline, céfotaxime, tétracyclines, cotrimoxazole), et qu'elle peut acquérir de nouvelles résistances via des mutations. Ceci a pour conséquence l'apparition de souches résistantes à tous les antibiotiques utilisés (Livermore 2002). Des études épidémiologiques ont montré qu'un nombre limité de clones de *P. aeruginosa* est retrouvé régulièrement dans les hôpitaux européens. Les types antigéniques les plus souvent en cause lors d'épidémies sont représentés par le sérotype O:11 et le sérotype O:12. Ce dernier a pour origine la dissémination clonale d'une souche unique à travers toute l'Europe (Pitt 1989; Mifsud 1997). De plus en plus de souches multirésistantes de sérotype O:11 sont observées (Tassios 1998).

# 1.5.2.4 Méthodes d'identification de *P. aeruginosa* : phénotypage/génotypage

Les méthodes de phénotypage les plus utilisées pour *P. aeruginosa* sont le sérotypage et le lysotypage (Renders 2001). Cependant, toutes les souches ne sont pas sérotypables, et lorsqu'elles le sont, le pouvoir discriminant observé est faible, certains sérotypes étant très fréquents. *P. aeruginosa* synthétise différentes pyocines (des substances anti-bactériennes). Les différents profils de pyocines synthétisées ont été utilisés comme moyen de phénotypage des souches. Le problème majeur est que les profils de synthèse des pyocines sont instables puisqu'ils changent avec le métabolisme de la bactérie. Les conditions de culture pour effectuer les tests peuvent être contrôlées, en revanche la durée de l'antibio-thérapie utilisée pour le traitement des patients est un paramètre non contrôlable. Ceci peut conduire à l'apparition de fausses « nouvelles » souches.

Dans le cas de souches provenant de poumons de patients atteints de mucoviscidose, des conversions phénotypiques sont observées (phénotype mucoïde). Cette instabilité du phénotype entraîne des problèmes de typabilité et de reproductibilité. Des souches de génotype différent développent un phénotype commun (Romling 1994).

Les techniques de génotypage permettent de pallier le problème des variations de phénotypes non liées à de réelles modification des gènes. Les techniques de génotypage disponibles actuellement pour *P. aeruginosa* sont le RFLP et l'analyse par PFGE, le ribotypage et l'AP-PCR (Bennekov 1996) (Grundmann 1995) (Renders 1996). Plusieurs études ont été menées pour comparer les différentes techniques de typage. Par exemple en 1996 une étude a été réalisée pour comparer deux méthodes de phénotypage (lysotypage, production de pyocines) et deux de génotypage (AP-PCR,PFGE) d'une même collection de souches provenant de patients atteints de mucoviscidose. Les techniques d'AP-PCR et PFGE ont montré une meilleure résolution comparée à celles obtenue par sérotypage et par production de pyocines. Les deux techniques de génotypage ont donné des résultats concordants, bien que de résolution différente. L'AP-PCR est une technique rapide et facile à mettre en œuvre (par rapport au RFLP-PFGE) et permet de déterminer la clonalité parmi les souches de patients chroniquement infectés par *P. aeruginosa* (Renders 1996). Les techniques de génotypage sont donc préférables pour typer ces souches particulières. De très nombreuses études de comparaison des techniques de génotypage ont été réalisées.

PFGE et AP-PCR manquent de reproductibilité entre laboratoires (Dabrowski 2003), (Foissaud 1999). Cependant, le PFGE est considéré comme la méthode de choix pour le génotypage de *P. aeruginosa*, car c'est la plus discriminante qui soit actuellement disponible. Les inconvénients majeurs de cette technique sont qu'elle est couteûse et difficile à mettre en œuvre pour des analyses cliniques de routine.

Par ailleurs, il a été montré que le ribotypage automatisé avec le RiboPrinter (Qualicon) constitue une technique reproductible entre laboratoires (Brisse 2002) mais la limite majeure de cette technique chez *P. aeruginosa* est le faible pouvoir discriminant pour les souches des ribogroupes majoritaires (Brisse 2000).

Dans l'objectif de répondre aux problèmes de typabilité, de faisabilité, de reproductibilité et de résolution de l'analyse pour le typage de souches de P. aeruginosa, j'ai développé au cours de ma thèse une série de marqueurs de type VNTR (Variable Number of Tandem Repeats) (Onteniente 2003). Ce travail a été facilité grâce aux données de séquençage du génome complet de la souche PAO1 publié en août 2000 (Stover 2000). Jusqu'à présent, aucune étude de VNTRs n'avait été réalisée pour P. aeruginosa. Une seule séquence répétée en tandem a été décrite dans le passé, la répétition présente dans le gène *algP* impliqué dans la régulation de la mucoïdie chez P. aeruginosa (Deretic 1990). AlgP est une protéine qui possède un domaine C-terminal ressemblant à l'extrémité de l'histone H1 chez les eucaryotes. AlgP participe à l'activation transcriptionnelle du gène *algD*. Celui-ci correspond à une étape clé dans l'établissement du phénotype mucoïde chez P. aeruginosa (Deretic 1992). La séquence répétée en tandem dans le gène algP est constituée de 6 motifs de 75 pb très conservés. On observe une répétition de moindre conservation interne de 45 motifs de 12 pb qui va au delà de la répétition des motifs de 75 pb, comme si la répétition en tandem avait évolué en plusieurs étapes. Les variations du nombre de motifs ne semblent pas avoir d'effet sur le phénotype mucoïde des souches (Deretic 1990).

### 1.5.3 Staphylococcus aureus

### 1.5.3.1 Description

Le staphylocoque doré est une bactérie à gram positif de forme sphérique, non sporulante et immobile, qui forme de petites grappes. Sur la base d'une analyse du gène de l'ARN16S, le genre *Staphylococcus* est proche du groupe des Bacillus-Lactobacillus-Streptococcus (Voir Figure 8)

Chez l'homme cette bactérie est présente sur la peau et dans les fosses nasales, mais aussi dans la flore normale de l'intestin. *S. aureus* se multiplie à des températures allant de 15°C à 45°C, forme des colonies jaunes sur milieu riche et est hémolytique sur du milieu sang-agar. Ces bactéries peuvent pousser en condition d'aérobie ou bien par fermentation. Sur 19 espèces de *Staphylococcus*, deux sont des commensales de l'homme : *Staphylococcus aureus* qui nous intéresse plus particulièrement ici, et *Staphylococcus epidermidis* présente sur la peau. *S. aureus* est une bactérie pathogène, en revanche, la plupart des souches de *S.* 

*epidermidis* ne le sont pas, et jouent un rôle protecteur de la flore normale de leur hôte. Cependant, dans l'environnement hospitalier, *S. epidermidis* peut être pathogène.

### 1.5.3.2 Infections liées à S. aureus

*S. aureus* peut infecter de nombreux tissus. Le plus souvent, il s'agit d'infections suppuratives, cutanées, sous-cutanées et des muqueuses : abcès divers dont des furoncles, des panaris, infections des plaies, de la sphère ORL (sinusites, otites, angines), infections oculaires, infections urinaires et rénales, infections ostéoarticulaires (ostéomyélites et arthrites), septicémies (sur cathéter, thrombophlébites, endocardites infectieuses), infections pulmonaires, infections neuro-méningées, infections intestinales, toxi-infections alimentaires. *S. aureus* exprime un certain nombre de facteurs de virulence (Kuroda 2001). :

- des protéines de surface qui favorisent la colonisation des tissus hôtes ;

- des invasines qui favorisent la diffusion de la bactérie dans les tissus (ex : leukocidine, kinases, hyaluronidase) ;

- des facteurs de surface qui inhibent la phagocytose (ex : proteine A) ;

- des facteurs biochimiques qui augmentent la survie de la bactérie dans les phagocytes (ex : catalase) ;

- des leurres immunologiques (ex : protéine A, coagulase) ;

- des toxines qui lysent les membranes des cellules eucaryotes (ex : hémolysines, leukotoxine, leukocidine);

- des exotoxines qui causent des dommages aux tissus hôtes et provoquent les symptômes (ex : TSST, ET).

# 1.5.3.3 Apparition de souches résistantes à la méthicilline en milieu hospitalier

*Staphylococcus aureus* pose un véritable problème de santé publique. L'adaptation de *S. aureus* à l'environnement hospitalier a été marquée par l'acquisition de résistances aux antibiotiques souvent peu de temps après leur introduction (Enright 2003). Peu après le début de l'utilisation de la pénicilline en 1944, les premières souches résistantes étaient isolées (Barber 1948). De même, l'utilisation d'une pénicilline semi-synthétique, la méthicilline, en 1959 a rapidement été suivie de l'apparition en 1961 des premières souches dites MRSA (Methicilline Resistant *Staphylococcus aureus*) observées au Royaume Uni (Jevons 1961). Ces souches MRSA ont ensuite été observées dans les autres pays européens puis au Japon, en Australie et aux Etats Unis. Ainsi depuis les années 70, les souches MRSA sont devenues la cause majeure d'infections nosocomiales à travers le monde.

Le gène *mecA* est responsable de la résistance à la méthicilline. Il code la protéine PBP2', protéine de fixation à la pénicilline. Ce gène est situé dans un élément génétique mobile, la cassette SCCmec (Staphylococcal Chromosomal Cassette mec) qui proviendrait d'une espèce voisine. La cassette mec contient le gène mecA ainsi que les gènes ccrA et ccrB (cassette chromosome recombinase genes) qui codent les recombinases nécessaires pour sa mobilité (Katayama 2000 ; Hiramatsu 2001). L'intégration de cette cassette dans le chromosome d'une souche sensible à la méthicilline convertit celle-ci en souche résistante. Les souches résistantes à la méthicilline sont la cause majeure d'infections nosocomiales et il devient de plus en plus difficile de les combattre du fait de l'apparition de résistances à toutes les classes d'antibiotiques utilisés actuellement. Différents clones MRSA ont été distingués en fonction des différents types de cassettes mec intégrées dans leur génome (Hiramatsu 2002). Quatre types de régions mec ont été décrits (types I - IV) en fonction du type de complexe du gène ccr (types 1-3) et de la classe du complexe mec (A et B) (Okuma 2002). Les premières souches MRSA isolées dans les années 1960 (clone archaïque) ont une cassette mec de type I. Les cassettes de types II et III sont typiques des clones MRSA modernes, enfin le type IV (classé en deux sous-types : IV a et IV b) est associé aux nouvelles souches MRSA émergentes dans la communauté (Daum 2002).

# 1.5.3.4 Emergence des souches C-MRSA acquises dans la communauté

Il a été montré récemment que la résistance à la méthicilline s'observe aussi dans des souches de la flore intestinale normale humaine. Elles ont été converties en souches MRSA par une nouvelle cassette mec (Ma 2002). Ceci indique que le problème s'étend à l'extérieur du milieu hospitalier puisque des individus sains sont colonisés par des souches MRSA. On parle de community-acquired MRSA (C-MRSA).

### 1.5.3.5 Evolution des souches MRSA

Deux théories s'affrontent : la première est celle d'un clone unique qui a acquis une fois le gène *mecA* et qui s'est ensuite disséminé à travers le monde (Kreiswirth 1993). Cette hypothèse a été appuyée par une étude RFLP et hybridation avec des sondes mecA et Tn554 sur des souches collectées dans le monde entier.

La seconde théorie propose que les souches MRSA aient évolué en plusieurs fois par transfert horizontal de *mecA* dans des souches MSSA phylogénétiquement distinctes.

Cette seconde théorie a été confirmée par au moins quatre types d'études épidémiologiques. Dans la première, la technique de MLEE a été mise en œuvre et les résultats ne vont pas du tout dans le sens d'une origine clonale des souches MRSA puisque le gène *mecA* a été retrouvé dans des souches de lignées phylogénétiques différentes (Musser 1992). Dans une seconde étude, une analyse utilisant la technologie des puces à ADN a également montré que le gène *mecA* a été observé dans des souches provenant de 5 lignées non reliées, et appuie l'hypothèse du transfert horizontal, fondamental dans l'évolution des souches MRSA (Fitzgerald 2001). La troisième étude par RFLP-PFGE et ribotypage d'un millier de souches MSSA et MRSA provenant d'Amérique du nord et d'Europe, collectées depuis les années 60, a confirmé que le transfert horizontal joue un rôle important dans la dissémination du gène *mecA* dans la population de *S. aureus* (Wielders 2002). Enfin, une étude MLST va également dans ce sens (Enright 2002).

Ainsi, il est maintenant accepté que les souches MRSA modernes sont la conséquence de l'acquisition indépendante de la cassette SCC*mec* par différentes lignées de *S. aureus*.

### 1.5.3.6 Résistance à la vancomycine

La vancomycine était, jusqu'en 1997, l'antibiotique de dernier recours, le seul efficace contre les souches MRSA. En 1997 sont apparues des souches de résistance intermédiaire à la vancomycine (VISA : Vancomycine-Intermediately-susceptible *S.aureus*) (Hiramatsu 1997) puis à partir de 2002, des souches VRSA (Vancomycine-Resistant *S.aureus*). Des souches VISA qui sont également résistantes à la teicoplanine sont appelées GISA (pour Glycopeptide intermediate *S.aureus*) (Linares 2001). Des souches totalement résistantes aux glycopeptides (GRSA) ont été décrites récemment. Une explication pourrait être le transfert des gènes impliqués dans la résistance au glycopeptide depuis des souches de streptocoques résistantes aux glycopeptides vers des souches de *S. aureus*. En effet, ces deux espèces étaient à chaque fois présentes sur les sites où des souches GRSA ont été décrites (8 cas aux USA en 2002) et il est difficile de prédire si ces souches vont connaître une expansion importante ou rester des évènements sporadiques (comme c'est le cas pour les souches GISA) (Johnson 2002).

### 1.5.3.7 Six souches de S. aureus entièrement séquencées

Pour tous les génomes de *S. aureus* séquencés, la méthode du WGS (whole genome shotgun) a été utilisée. Les différents projets de séquençage ont montré que les génomes du genre *Staphylococcus* sont composés d'un mélange complexe de gènes dont un certain nombre est issu de transfert horizontal. La plupart des gènes de résistance aux antibiotiques est portée par des plasmides ou des éléments génétiques mobiles (Kuroda 2001). L'analyse des génomes séquencés a aussi permis de montrer qu'environ la moitié du génome de *S. aureus* a été transmis verticalement depuis un ancêtre commun au groupe de bactéries *Bacillus/Staphylococcus*.

Le génome d'une taille de 2.81Mb de la souche N315, résistante à la méthicilline, a été entièrement séquencé. Cette souche isolée en 1982 est à l'origine d'infections nosocomiales et aussi d'infections acquises dans la communauté.

Le génome de la souche Mu50, très proche de N315, a été séquencé par le même groupe. Elle présente, en plus de la résistance à la méthicilline, une résistance à la vancomycine ; c'est donc une souche MRSA et VRSA.

MW2 est une souche MRSA très virulente, acquise dans la communauté et non dans l'environnement hospitalier comme ce fut le cas pour Mu50 et N315. Son génome a été séquencé un an après Mu50 et N315, dans le but de pouvoir comparer les 3 génomes MRSA et tenter de comprendre les bases génétiques à l'origine de cette forte virulence (Baba 2002). Le Tableau 5 décrit les 6 souches de *S. aureus* dont le génome séquencé a été utilisé pour rechercher des répétitions en tandem polymorphes par comparaison des séquences.

| Souches séquencées                      | N315                                | Mu50                                          | MW2                                                           | NCTC8325                            | MRSA252                              | MSSA476                                                        |
|-----------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------------------------------|
| Taille du génome                        | 2.8Mb                               | 2.9Mb                                         | 2.8Mb                                                         | 2.9Mb                               | 2.9Mb                                | 2.8Mb                                                          |
| Résistance vis à vis de la méthicilline | MRSA<br>(SCC <i>mec</i> type<br>II) | MRSA<br>(SCC <i>mec</i> type<br>II)<br>+ VRSA | MRSA<br>(SCC <i>mec</i> type<br>IVa)                          | MSSA                                | MRSA                                 | MSSA                                                           |
| Institution                             | NITE                                | NITE                                          | NITE                                                          | Oklahoma<br>university              | Sanger Center                        | Sanger Center                                                  |
| Caractéristiques                        | souche<br>hospitalière              | souche<br>hospitalière                        | souche hyper<br>virulente<br>acquise dans<br>la<br>communauté | vieille<br>souche de<br>laboratoire | souche<br>hospitalière<br>épidémique | souche hyper-<br>virulente<br>acquise dans<br>la<br>communauté |
| Publication                             | (Kuroda 2001)                       | (Kuroda 2001)                                 | (Baba 2002)                                                   | Non publié                          | Non publié                           | Non publié                                                     |

Tableau 5 : Six génomes S. aureus utilisés pour la comparaison

D'autres souches de *S. aureus* sont en cours de séquençage ou non publiées à la date du 15 novembre 2003 d'après le site GOLD : « Genome Online Database » [http://ergo.integratedgenomics.com/GOLD/] :

- Les souches *S. aureus* 930131 (2,56Mb), *S. aureus* ATCC 29213 (2,62Mb), ont été complètement séquencées par Integrated Genomics Inc. et non publiées.
- Une souche *S. aureus* sans aucune précision sur la souche, a été séquencée par Genomes Therapeutics et non publiée.
- Le séquençage de la souche COL (2,80Mb), souche MRSA hospitalière, n'est pas encore terminé par le TIGR.

### 1.5.3.8 Techniques de typage mises en œuvre pour *Staphylococcus aureus*

### 1.5.3.8.1 Phénotypage et génotypage

Les principales techniques de phénotypage et génotypage présentées dans le chapitre 1.2 ont été utilisées pour le typage de *S. aureus*. La littérérature est très riche en références concernant des études de typage de *S. aureus* et d'études de comparaison de techniques, nous nous limiterons à quelques unes (van Belkum 2000).

Les profils de résistance aux antibiotiques ont constitué le premier outil épidémiologique pour le typage des souches. En effet, dans un premier temps il faut identifier les souches résistantes à la méthicilline. Pour une confirmation, le test (latex agglutination) de détection de la protéine PBP2 qui confère la résistance à la méthicilline peut être mis en œuvre facilement (van Leeuwen 1999). Par ailleurs, le lysotypage a été pendant longtemps la méthode de phénotypage de référence pour *S. aureus* (van Belkum 1993).

Pour ce qui est des techniques de génotypage, une PCR pour amplifier *mecA* permet de savoir rapidement si la souche possède le gène qui confère la résistante à la méthicilline. Ce gain de temps par rapport à un test de résistance à la méthicilline peut être très important pour commencer un traitement (Murakami 1991). Les autres techniques de génotypage évoquées dans le paragraphe 1.2.2 ont toutes été utilisées pour *S. aureus*.

Il a été montré que les techniques de génotypage pour *S. aureus* sont plus efficaces que les techniques de phénotypage (Tenover 1994). Dans cette étude, douze techniques de typage ont été comparées : antibiogramme, lysotypage (Khalifa 1989), tests biochimiques (Hebert 1988), immunodétection (Tsang 1983), typage des séquences IS257/431, FIGE (Field Inversion Gel Electrophoresis) (Goering 1992), MLEE, restriction de l'ADN plasmidique, PFGE, analyse de restriction du produit de PCR du gène de la coagulase, RFLP et ribotypage.

Parmi les techniques de détection récemment développées chez *S. aureus* on peut citer quelques exemples (van Belkum 2003) : la PCR en temps réel a été adaptée à l'analyse de souches MRSA (Grisold 2002) ; la détection combinée des souches MRSA par test d'agglutination de PBP2 et par PCR en temps réel du gène *mecA* constitue un outil de typage satisfaisant pour du diagnostic de routine (Rohrer 2001).

Des efforts sont faits aussi dans l'objectif de pouvoir analyser directement les échantillons prélevés sur les patients, et ce dans un temps réduit le plus possible, par exemple via la mise au point d'un test de détection rapide par PCR quantitative de souches MRSA à partir de

prélèvements sans passer par une étape de culture ; le résultat est obtenu en moins de 6 heures (2 à 3 jours avec la procédure habituelle) (Francois 2003).

Le typage binaire est une technique de génotypage récente développée pour l'étude de S. aureus. Elle a été développée à partir des études RAPD réalisées précédemment. Van Leeuwen a identifié par RAPD des régions uniques dans le génome de S. aureus qui pourront servir de cibles pour le typage binaire. Il s'agit de fragments qui ne sont pas communs à toutes les souches. Cette technique a été développée parce que les profils obtenus en RAPD étaient trop complexes à reproduire et à interpréter, il était souhaitable d'obtenir des résultats analysables sans ambiguïté et donc avec moins de bandes à analyser. Les 15 sondes utilisées dans l'article de Van Leeuwen (van Leeuwen 1999) ont été obtenues en sélectionnant des fragments uniques en RAPD, puis ces fragments ont été extraits sur gels et séquencés, puis testés comme sondes pour hybrider une membrane sur laquelle sont fixés les ADN hydrolysés de 14 souches qui ne sont pas reliées épidémiologiquement entre elles. La détection des fragments hybridés se fait par révélation ECL (Enhanced Chemical Luminescence). Le résultat est codé de façon binaire : 1 si la sonde est hybridée et 0 si elle ne l'est pas. On obtient un code binaire pour chaque souche, composé d'autant de chiffres que de sondes testées. Plusieurs laboratoires ont typé la même collection de souches. Les laboratoires qui ont suivi le protocole à la lettre ont obtenu des résultats comparables. Le typage binaire semble constituer selon les auteurs une méthode de typage simple et robuste permettant une bonne reproductibilité des résultats entre laboratoires différents (van Leeuwen 2002).

#### 1.5.3.8.2 Les répétitions en tandem

Les techniques traditionnelles de phénotypage ont progressivement été remplacées par des techniques basées sur l'étude de l'ADN. La stratégie courante pour le génotypage des souches de *S. aureus* est l'amplification de séquences répétées en tandem, souvent localisées dans des séquences de protéines associées à la surface membranaire. Ces séquences de type VNTR (Variable Number of Tandem Repeat) permettent de distinguer les souches entre elles mais il faut en général étudier plusieurs locus pour discriminer les souches. Le séquençage d'un locus, s'il est suffisamment polymorphe, pourrait permettre de n'étudier qu'un locus, au lieu d'une étude MLVA pour le typage des souches. Ceci a été développé pour le gène *spa* (Proteine A), et pour *coa*, le gène codant la coagulase.

#### 1.5.3.8.2.1 Répétitions en tandem localisées dans des séquences intragéniques

Parmi les gènes impliqués dans la virulence de *S. aureus*, un certain nombre possède des répétitions en tandem, dont certaines ont déjà été analysées lors d'études épidémiologiques. Il est particulièrement intéressant de tenter de faire un lien entre la virulence et l'expression de certain gènes qui pourrait être modulée par la variation du nombre de motifs dans une

séquence répétée en tandem. Le Tableau 6 présente les gènes possédant une répétition en tandem et dont le polymorphisme a déjà été étudié.

| nom du<br>gène :       | produit:                                                     | fonction:                               | taille du<br>motif :                   | méthodes de génotypage: | références:                                          |
|------------------------|--------------------------------------------------------------|-----------------------------------------|----------------------------------------|-------------------------|------------------------------------------------------|
| coa                    | Staphylocoagulase<br>(exoenzyme)                             | coagulation des tissus<br>hôtes         | 81pb                                   | VNTR,<br>séquençage     | (Goh 1992); (Shopsin 2000)                           |
| sspA                   | Serine protéase, V8<br>protéase (exoenzyme)                  | protéolyse des tissus<br>hôtes          | 9pb                                    | VNTR                    | (Rice 2001), (Sabat 2003)                            |
| clfA, clfB             | protéines de liaison au<br>fibrinogène, riches en<br>Ser-Asp | adhésion cellulaire aux<br>tissus hôtes | 18pb                                   | VNTR                    | (McDevitt 1994),<br>(McDevitt 1995),<br>(Sabat 2003) |
| sdrC,<br>sdrD,<br>sdrE | protéines de liaison au<br>fibrinogène, riches en<br>Ser-Asp | adhésion cellulaire aux<br>tissus hôtes | 18pb                                   | VNTR                    | (Josefsson 1998), (Sabat 2003)                       |
| fnbB,<br>fnbA          | protéines de liaison à la fibronectine                       | adhésion cellulaire aux<br>tissus hôtes | 42pb<br>(d'après<br>TRF <sup>a</sup> ) | VNTR                    | (Patti 1994)                                         |
| spa                    | proteine A (liaison aux immunoglobulines G)                  | désordre immunitaire<br>chez l'hôte     | 24pb                                   | VNTR,<br>séquençage     | (Frenay 1996),<br>(Shopsin 1999),<br>(Sabat 2003)    |

Tableau 6 : Répétitions en tandem intragéniques déjà étudiées chez S. aureus

<sup>a</sup>: d'après le logiciel Tandem Repeats Finder

La coagulase est un facteur de virulence important chez *S. aureus*. La séquence répétée en tandem a été découverte lors du séquençage du gène *coa* (Kaida 1987). Cette répétition en tandem présente un polymorphisme pour le nombre de motifs présents d'une souche à l'autre et aussi au niveau de la séquence des motifs (Goh 1992), (Hookey 1998). La répétition en tandem présente dans le gène *coa* a été séquencée pour évaluer son apport pour des études épidémiologiques en comparaison avec les résultats obtenus avec le séquençage du gène *spa* (Shopsin 1999). Des souches MRSA d'origines géographiques différentes et collectées à différentes périodes ont été analysées. Les résultats montrent que ce marqueur a un faible index de polymorphisme, donc il serait utile plutôt pour des études épidémiologiques à long terme ou en complément du séquençage du gène *spa*. Le gène *coa* n'évolue pas à la même vitesse que *spa*, il est beaucoup plus stable (Shopsin 2000). Le séquençage du locus *spa* sera présenté dans la suite de ce travail.

*S. aureus* exprime à sa surface des protéines qui jouent un rôle important dans la virulence (Foster 1994). Il s'agit d'une famille des protéines à motif serine-aspartate répété, les protéines sdr (**sd-r**epeats). Ces protéines de surface participent à la fixation à la matrice extracellulaire de la cellule hôte ainsi qu'à la formation de biofilms. Les protéines associées à la paroi extracellulaire ont un certain nombre de caractéristiques communes, notamment elles possèdent un peptide signal et N-terminal nécessaire pour la sécrétion ainsi qu'un signal C-

terminal conservé nécessaire pour l'attachement de la protéine à la paroi cellulaire. Ce signal de sortie de la protéine possède un motif conservé LPXTG. La Sortase est l'enzyme membranaire qui clive les protéines à motifs LPXTG entre la glycine et la thréonine. Les protéines LPXTG et la Sortase existent aussi chez beaucoup d'autres bactéries à gram positif.

*S. aureus* exprime 11 protéines LPXTG (proteine A (Spa), ClfA et ClfB (clumping factor), sdrC, sdrD, sdrE: proteines sdr (serine aspartate repeats), Cna (collagen binding protein), FnbpA et FnbpB (Fibronectine binding proteins), Pls (Plasmin sensitive protein) et FmtB. Parmi ces protéines de liaison à la membrane et qui ont un motif LPXTG, certaines font partie des MSCRAMM (pour Microbial Surface Components Recognizing Adhesive Matrix Molecules) (Patti 1994). Ces protéines reconnaissent des ligands dans la matrice extracellulaire de la cellule hôte. Il existe notamment des MSCRAMM chez *S. aureus* spécifiques de la fibronectine , du collagène, de la laminine, de la vitronectine, de la thrombospondine, de l'elastine, de la sialoproteine et du fibrinogène.

Dans un article récent est présentée une analyse MLVA par PCR multiplexe. Les gènes *spa*, *sdr* (un seul couple d'amorce pour amplifier les 3 locus : sdrC, sdrD sdrE), *ClfA*, *ClfB* et *sspA* sont amplifiés dans une même réaction de PCR (Sabat 2003). Ce sont alors des profils multibandes qui sont analysés, comme pour d'autres techniques de génotypage.

#### 1.5.3.8.2.2 Répétitions en tandem localisées dans des régions intergéniques

#### 1.5.3.8.2.2.1 Les séquences STARs: (StaPhylococcal Aureus Repeat sequences)

Dans l'article sur le séquençage de Mu50 et N315 (Kuroda 2001), des séquences répétées spécifiques des Staphylococcus ont été observées : les séquences STAR, déjà décrites en 2000 par Cramton (Cramton 2000). Il s'agit d'une séquence d'ADN hautement variable parmi les souches de S.aureus et qui est trouvée en plusieurs copies dans le génome. Ces séquences répétées sont pour la plupart intergéniques. Initialement, elles ont été étudiées à deux locus précis, le premier situé entre les gènes *uvrA* et *hprK*, et le second entre les gènes *icaC* et *geh*. Ensuite, les données de Southern blot d'une part, et de séquençage des génomes complets d'autres part, ont montré la présence d'environ 70 séquences STARs dans les génomes de S. aureus. Ces séquences ont été détectées par Southern blot chez d'autres espèces du genre Staphylococcus (S. haemolyticus, S. lentus, S. warneri, S. sciuri). La fonction de ces séquences riches en GC n'est pas connue. La présence ubiquitaire de ces séquences dans le génome suggère une importance (présente ou passée) dans la vie de la bactérie. Les auteurs ont testés par Southern blot le nombre de séquences STARs dans différentes souches S. aureus. Ils ont observé pour plusieurs souches qui dérivent de la souche de référence NCTC8325 que les éléments STARs sont stables sur plusieurs années en ce qui concerne leur nombre et leur position dans le génome. La plupart des séquences STARs ont le profil suivant: B-(C)n-A. Une à six séquences C sont répétées en tandem entre les motifs A et B (Kuroda 2001) :

séquence A : 97 pb

### TGACTAGAATTGAAAAAAGCTTGTTACAAGCGCATTTTCGTTCAGTCAACTACTGCCAAATATAAC TTTGTAGAGCATTGAACATTGATTTTATGTC

séquence B :46 pb

#### GGGAGTGGGACAGAAATGATATTTTCGCAAAATTTATTTCGTTGTC

séquence C: 57 pb

 ${\tt CCCCAACTTGCACATTATTGTAAGCTGACTTTTCGTCAGCTTCTGTGTTGGGGGCCCC}$ 

La séquence C a un pourcentage en GC de 51% donc plus important que celui observé pour le reste du génome de *S. aureus* (32.8% pour N315 et 32.9% pour Mu50). La diversité de séquences à un même locus parmi les souches de *S. aureus* suggère que les séquences STARs évoluent rapidement et permettent donc une étude pour l'identification et l'analyse d'isolats cliniques.

Une étude de souches MRSA par typage de séquences STARs amplifiées par PCR a été réalisée. Le pouvoir discriminant obtenu est comparable à celui observé en champ pulsé. La bonne reproductibilité des amplifications par PCR des séquences STAR en fait donc un outil de typage de *S. aureus* tout à fait satisfaisant (Quelle 2003). Nous avons étudié un certain nombre de séquences STARs pour l'étude MLVA qui a été développée au cours de cette thèse.

#### 1.5.3.8.2.2.2 Séquence dru (direct repeat unit)

La résistance à la méthicilline résulte de l'expression du gène *mecA*. Le gène *mecA* est localisé dans une grande région, la région mec qui possède une séquence répétée, la séquence intergénique dru. L'origine des répétitions dru chez *S.aureus* n'est pas connue (Nahvi 2001). La cassette SCC*mec* étant absente dans les souches sensibles à la méthicilline, le marqueur dru a une utilisation réservée à l'étude épidémiologique des souches MRSA. Les allèles de 6 à 11 répétitions de 40 pb ont été séquencés dans cette étude. Il semblerait que les répétitions centrales soient délétées et les premières répétitions dupliquées (Senna 2002).

# 1.6 Application du génotypage par les minisatellites à une espèce pathogène d'émergence récente : *Yersinia pestis*

Le genre Yersinia appartient à la famille des Enterobacteriaceae qui comprends 11 espèces dont 3 sont pathogènes pour l'homme : *Y. pestis*, *Y. pseudotuberculosis* et *Y. enterocolitica*.

*Y. pestis* est une bactérie à gram négatif, immobile et non sporulante. C'est une espèce d'émergence récente issue de *Y. pseudotuberculosis* (Achtman 1999).

La peste est une zoonose qui atteint en premier les rongeurs, l'homme n'a aucun rôle dans la survie à long terme de *Y. pestis :* voir (Perry 1997). La transmission entre rongeurs a lieu à travers leurs puces. La contamination peut avoir lieu par contact ou par ingestion mais ces deux voies ne permettent pas le maintien de *Y. pestis* dans des réservoirs animaux. La puce acquiert *Y. pestis* à partir d'un repas avec du sang contaminé. La bactérie se dissémine depuis la piqûre de la puce par le réseau lymphatique et les ganglions infectées forment les bubons. Ensuite elle passe dans le sang. La puce Xenopsylla cheopis est considérée comme le vecteur classique.

Trois biovars (antiqua, medievalis, orientalis) sont décrits dans l'espèce *Y. pestis*. Chacun correspondrait à une des trois grandes pandémies de peste survenues au cours de l'histoire. La première pandémie établie a eu lieu au VIème siècle, la peste Justinienne, qui démarra en Egypte. La deuxième pandémie a été décrite dans les steppes d'Asie centrale à partir de 1330. Elle a tué entre 17 et 28 millions de personnes de 1361 jusqu'à 1480. Elle a été appelée la « Grande Peste ». La troisième pandémie a pour origine la province de Yunnan, en Chine en 1855. Cette fois-ci la pandémie arriva jusqu'en Amérique et en Australie. Les 3 biovars sont distingués selon des critères biochimiques basés sur la fermentation du glycérol et la conversion du nitrate en nitrite. Antiqua a un biotype positif pour ces deux critères, Orientalis peut convertir le nitrate mais ne réalise pas la fermentation du glycérol, enfin Medievalis fermente le glyceérol mais ne peut pas convertir le nitrate. Les génomes (4,8Mb) de *Y. pestis* et *Y. pseudotuberculosis* sont très proches, celui de *Y. enterolitica* est plus éloigné des deux autres.

L'épidémie humaine démarre généralement par la forme bubonique à partir des piqûres de puces qui ont abandonné les rongeurs morts ou mourants. Il y a plusieurs forme de peste :

- la forme bubonique est la manifestation classique de la maladie. Deux à six jours après une piqure de puce ou contamination avec du matériel infecté par des blessures ouvertes, des ganglions grossissent et forment les bubons. Une bactériémie ou septicémie secondaire est courante chez les malades avec des bubons.

- la forme septicémique : des patients ayant le sang contaminé mais pas de bubons peuvent développer une septicémie. La forme septicémique ressemble aux septicémies causées par d'autres bactéries à gram négatif. La mortalité de cette forme est très élevée probablement parce que les antibiotiques utilisés contre les septicémies indéfinies ne sont pas efficaces contre *Y. pestis.* 

- la forme pneumonique est rare mais elle est très contagieuse parce que la dissémination par voie respiratoire à partir d'un individu infecté est très rapide. Le taux de mortalité des patients qui développent une pneumonie secondaire est très élevé.

Lorsque une victime de la forme bubonique développe ensuite une pneumonie, les gouttelettes de l'air expiré deviennent contaminantes et une épidémie de la forme pneumonique se développe. En raison de la complexité du cycle biologique du parasite et du nombre et de la variété des animaux vecteurs, l'éradication de *Y. pestis* semble peu probable.

Les techniques utilisées actuellement sont le génotypage des séquences IS par PCR (Motin 2002) et depuis 2000, l'amplification par PCR de répétitions en tandem de type VNTRs (Adair 2000), (Le Flèche 2001), (Klevytska 2001).

Cette partie concernant *Y. pestis* a été volontairement moins développée que celles traitant de *P. aeruginosa* et *S. aureus*. En effet, elle correspond à un mini-projet de développement de marqueurs chez *Y. pestis* (collection de 5 souches) que j'ai mené à bien en début de thèse. Ce travail a été publié conjointement à une étude chez *B. anthracis* réalisée au laboratoire (Le Flèche 2001). Cet article est présenté dans la partie Résultats en tant que validation de l'approche MLVA et des fonctionnalités de la base de données développée au laboratoire. Cette approche a ensuite été développée plus largement chez *P. aeruginosa* et *S. aureus* dont les résultats constituent le cœur même de ce travail de thèse.

# 2 MATERIEL ET METHODES

### 2.1 Identification des répétitions en tandem

### 2.1.1 La base de données développée au laboratoire





Une base de données d'identification des répétitions en tandem a été développée au laboratoire par France Denoeud en utilisant le logiciel Tandem Repeats Finder (TRF) développé par Gary Benson (Benson 1999). Le TRF permet de détecter des séquences répétées en tandem même lorsque les motifs ne sont pas parfaitement conservés par rapport au consensus, et permet de trouver sans requête particulière, notamment sur la taille du motif
recherché, toutes les répétitions dans la séquence soumise, détectables par l'approche heuristique utilisée, ce qui représente un progrès considérable pour la recherche de minisatellites.

La base de données utilise le TRF pour rechercher des séquences répétées en tandem dans les génomes entièrement séquencés et accessibles à la communauté scientifique. Des requêtes peuvent être faites dans des séquences de génomes bactériens, de virus, d'archae, d'eucaryotes et enfin de plasmides et organelles. La Figure 9 montre la page d'accueil de la base.

La base de données développée au laboratoire permet à l'utilisateur de choisir un certain nombre de critères de recherche des séquences répétées (voir Figure 10) :

L : longueur du minisatellite

U : taille de l'unité répétée

N : nombre de répétition

V : conservation des motifs par rapport au motif consensus

Pos : position sur le génome (en kb)

%GC : pourcentage G+C

B : biais entre les brins

| <ul> <li>total length</li> <li>unit length</li> <li>copy number</li> <li>percent matc</li> </ul> | Pos = physic<br>%GC = perc<br>B = bias bet | al position: kb<br>ænt G+C<br>ween strands |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |
|--------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| L.                                                                                               | U                                          | N                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %GC     | В       |
| ain 0                                                                                            | min : 0                                    | min : 0                                    | min : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | min : 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | min : 0 | min : 0 |
| In a line way and a line way way and                                                             |                                            |                                            | and a second sec | physical and the second s |         |         |

Figure 10 : Critères de recherche de répétitions en tandem dans la base de données.

La base de données fournit les résultats d'une requête sous forme de tableau avec les caractéristiques détaillées de chaque répétition en tandem ou bien sous forme d'histogramme représentant la distribution des répétitions dans le génome selon au choix : la position sur le génome, la longueur totale de la séquence répétée, la taille du motif, le nombre de répétitions ou encore le pourcentage en GC.

Le TRF fournit dans son fichier de sortie toutes les répétitions possibles identifiées dans la séquence soumise. En revanche, lorsqu'à un même locus, plusieurs tailles de motifs sont possibles, la base de données ne sélectionne qu'un seul résultat, celui correspondant à la répétition la plus longue (critère prioritaire) et ensuite selon le critère de conservation des

motifs. Pour chaque groupe de répétitions redondantes, deux valeurs sont mesurées : Lmax, la longueur maximum de la répétition (parmi les répétitions redondantes), et Mmax, le pourcentage maximum de conservation des motifs parmi les répétitions redondantes ayant une longueur totale supérieure à 80% de Lmax. Ensuite, parmi les répétitions ayant une longueur supérieure à 80% du Lmax et une conservation au moins égale à Mmax-0.1, la répétition avec le plus petit motif sera retenue (explication sur le lien suivant : http://iech5.igmors.u-psud.fr/ALIGNEMENTS/base\_ms/overlapping.html).

Dans de rares cas, il faut soumettre la séquence au TRF pour voir toutes les répétitions possibles au locus étudié. En effet, il peut arriver que les variations de tailles d'allèles observées ne correspondent pas à la taille du motif proposé par la base. La base fournit, pour les génomes récemment importés, un lien vers les autres répétitions en tandem redondantes.

Les différentes fonctionnalités de la base seront décrites au fur et à mesure de leur utilisation au cours de mon travail de thèse.

## 2.1.2 Critères de recherche des répétitions en tandem chez Y. pestis et P. aeruginosa

Pour l'étude du génome de *Yersinia pestis*, (Parkhill 2001) nous avons recherché des répétitions en tandem uniquement dans le chromosome bactérien. Les critères de recherche sont  $U \ge 9pb$  et  $N \ge 7$ .

Ces critères ont été choisis de manière à ne pas sélectionner des motifs de moins de 9pb pour éviter des locus de type microsatellite souvent instables (Bayliss 2001) et donc sans valeur épidémiologique pour des études à plus long terme qu'une épidémie. Par ailleurs, la technique utilisée ici pour la séparation des produits PCR sur gel d'agarose imposait aussi une sélection de tailles de motifs qui puissent être résolues sur gel. Avec ces critères, on obtient 64 répétitions en tandem candidates. Dans un deuxième temps, un nouveau choix de répétitions a été fait selon les critères « U≥9pb, N= 6 et V≥80% ». Douze répétitions correspondent à ces critères, ce qui fait au total 76 locus étudiés chez *Y. pestis*. En effet, l'étude de la première série de répétitions a montré une corrélation entre le nombre d'allèles et le pourcentage de conservation des motifs, il s'agit donc pour cette espèce bactérienne d'un critère prédictif du polymorphisme des répétitions en tandem.

Pour l'étude des répétitions en tandem chez *Pseudomonas aeruginosa*, les mêmes critères ont été utilisés : U $\ge$  9pb et N $\ge$  7.

Les séquences des oligonucléotides ont été choisies dans les régions flanquantes des minisatellites avec le logiciel Primer3 (http://www.broad.mit.edu/cgi-bin/primer/primer3\_www.cgi).

# 2.1.3 Comparaison de plusieurs génomes de même espèce : exemple de *S. aureus*

Pour les deux espèces bactériennes précédemment étudiées, nous ne disposions que d'un seul génome entièrement séquencé, ce qui a nécessité d'analyser expérimentalement un grand nombre de locus pour identifier des marqueurs polymorphes. Pour *Staphylococcus aureus* ce n'est pas le cas puisque 6 génomes complets sont disponibles (voir Tableau 5 du paragraphe 1.5.3.7) : Mu50, N315, MW2, NCTC8325, MRSA252 et MSSA476 (4 disponibles au début du projet). Actuellement 4 autres génomes sont en cours de séquençage, 3 par des entreprises privées et une par le TIGR (http://wit.integratedgenomics.com/GOLD/).

Une nouvelle fonctionnalité dans la base de données a été développée au laboratoire : la comparaison de plusieurs souches d'une même espèce bactérienne [http://minisatellites.u-psud.fr/comparison]. Cette page permet de sélectionner les répétitions en tandem polymorphes dans les souches comparées.

La Figure 11 présente la méthode utilisée pour comparer deux souches : la recherche par BLAST (Altschul 1997) des flanquantes des répétitions en tandem d'une souche dans le génome complet de l'autre souche, et réciproquement. La comparaison est faite de manière à identifier avec le TRF des répétitions en tandem d'un génome A puis de rechercher par BLAST dans le génome B les séquences homologues aux séquences des régions flanquantes des répétitions identifiées dans le premier génome. Bien entendu, lorsque dans le génome A il n'y a qu'un seul motif à un locus donné alors que plusieurs motifs ont été détectés dans le génome B, cette séquence n'est pas reconnue comme une séquence répétée.

Les raisons principales de la recherche par BLAST sont, d'une part, qu'il n'est pas possible d'utiliser la répétition elle-même pour trouver le locus homologue dans la deuxième souche avec un outil tel que BLAST : certains motifs répétés peuvent avoir des similitudes suffisantes pour générer des « matchs » entre des répétitions en tandem non apparentées. En effet, par exemple, l'hybridation d'une sonde synthétique constituée d'un motif élémentaire aléatoire répété en tandem sur des Southern Blots du génome humain (démarche qui peut s'apparenter au BLAST) identifie plusieurs locus polymorphes indépendants (Vergnaud 1989). D'autre part les BLAST doivent être effectués de façon réciproque afin d'éviter de manquer des répétitions en tandem qui n'auraient été détectées (avec les seuils utilisés lors du traitement par le TRF) que dans une des deux souches, l'autre contenant une répétition trop courte ou insuffisamment

conservée. Enfin, les positions des répétitions données par le TRF ne peuvent pas être utilisées pour calculer la taille totale de la répétition, sachant que le TRF ne trouve pas toujours le même démarrage du 1<sup>er</sup> motif répété d'un génome à l'autre.



Figure 11 : Méthode de comparaison de souches bactériennes, basée sur le Blast des flanquantes des répétitions en tandem.

Lorsqu'il y a plus de 2 génomes à comparer, les comparaisons sont également faites de façon réciproque deux à deux (AB, BA, AC, CA, etc...) puis la synthèse est effectuée en utilisant comme référence les positions sur la souche A, commune à toutes les comparaisons de deux souches. Ensuite, la taille de la répétition en tandem, ainsi que le nombre d'allèles distincts sont calculés dans les différents génomes comparés. Les résultats des différentes comparaisons sont disponibles dans la base de données qui peut être interrogée via la page de comparaison de souches, accessible à l'adresse [http://minisatellites.u-psud.fr/comparison], et permet entre autre d'identifier les répétitions en tandem polymorphes, c'est à dire de longueur variable entre les souches comparées (Denoeud 2004). La Figure 12 présente la page d'accueil de la base pour les comparaisons de plus de deux génomes de même espèce.

| Strain Comparison Page: more than 2 strains                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select the 'strains' you want to be compared:                                                                                                                                                                                                                                                |
| C Chlamydia pneumoniae : CWL029 / J138 / AR39                                                                                                                                                                                                                                                |
| ← Escherichia coli: 0157.H7 Sakaf / 0157.H7 EDL933 / K12 / UPEC CFT073                                                                                                                                                                                                                       |
| © Salmonella typhimurium / Salmonella enterica typhi CT18/ Salmonella enterica typhi Ty2                                                                                                                                                                                                     |
| 🗅 Salmonella byphimurium / Salmonella enterica typhi CT18 / Salmonella enterica typhi Ty2 / Shigella flexneri                                                                                                                                                                                |
| Staphylococcus aureus: Mu50 / N315 / MW2 / MRSA252 / NCTC8325 / MSSA476                                                                                                                                                                                                                      |
| © Streptococcus pyogenes: M1 GAS / M3 GAS315 / M18 MGAS2832 / M3 SSI1                                                                                                                                                                                                                        |
| • Orthopox viruses: variola / vaccinia / camelpox / cowpox                                                                                                                                                                                                                                   |
| Select only tandem repeats with known lengths in all the strains                                                                                                                                                                                                                             |
| submit                                                                                                                                                                                                                                                                                       |
| Optional: Criteria below will be applied to the first strain listed<br>(caution: TRs will be listed ONLY if they were detected in the first strain)         Total Length<br>min : 0       Unit Length<br>min : 0       Copy Number<br>min : 0       %matches<br>min : 0       %GC<br>min : 0 |
| max :         50000         max :         6000         max :         100         max :         100                                                                                                                                                                                           |
| submit                                                                                                                                                                                                                                                                                       |

Figure 12 : Page de comparaison de plusieurs génomes de même espèce.

Un autre outil a été développé dans la base de données, il s'agit de la possibilité de faire des BLAST avec les séquences des amorces dans les génomes disponibles dans la base, et obtenir la taille du produit PCR attendu (voir Figure13).



Figure 13 : Exemple de résultat de Blast des séquences des amorces.

# 2.2 Génotypage

La démarche globale du typage des répétitions en tandem est illustrée par la Figure 14.



**Figure 14 :** Utilisation des répétitions en tandem polymorphe pour le génotypage de souches bactériennes.

## 2.2.1 Culture des souches et extraction d'ADN

Les 102 souches de *Pseudomonas aeruginosa* ont été fournies par le Dr Sylvain Brisse qui a étudié cette collection par ribotypage (Brisse 2000). Ces souches ont été collectées dans différents hôpitaux européens.

Les souches ont été réisolées sur boites LBA (Luria-Bertani Agar) (voir Annexe 1). Puis, une colonie de chaque souche a été mise en culture liquide en milieu LB (voir Annexe 1) à 37°C en aérobie pendant une nuit. Un millilitre de cette culture de nuit est centrifugé à 7500rpm pendant 10 minutes puis l'ADN est extrait à l'aide du kit QIAamp DNA Mini Kit selon le protocole recommandé par QIAgen (Qiagen, Hilden, Allemagne) sauf l'étape de lyse qui est plus longue, 5h à 55°C.

Pour le projet *Staphylococcus aureus*, nous disposions de 107 souches de la collection du centre National de Référence des Staphylocoques de l'Institut Pasteur Paris et de 30 souches de l'Hôpital d'Instruction des Armées du Val de Grâce. La liste des 137 souches et de leurs caractéristiques est détaillée en Annexe 2. Les souches de l'Institut Pasteur proviennent de différents hôpitaux français essentiellement, et aussi d'Espagne, de Tunisie et de Belgique. Elles ont fait l'objet d'analyse PFGE, mais les résultats ne sont pas comparables d'une série à l'autre puisque les génotypes n'ont pas été assignés selon la même nomenclature (des études indépendantes en PFGE sont difficile à comparer entre elles).

Les souches ont été cultivées à l'Institut Pasteur dans du milieu BHI (brain heart infusion). Un millilitre de culture de nuit a été prélevé pour l'extraction d'ADN. Avant d'utiliser le kit QIAamp DNA Mini kit, le culot bactérien est incubé pendant 30 minutes à 37°C avec 180µl d'un tampon de lyse (voir Annexe 1) et 20µl de lysostaphine à 1mg/ml. Une deuxième incubation a été réalisée avec 25µl de proteinase K (20mg/ml) et 200µl de tampon de lyse du kit. La préparation étant souvent très visqueuse, l'échantillon est ensuite chauffé 15 minutes à 95°C. Le protocole est ensuite suivi comme indiqué par le fournisseur. Puis, la mesure de concentration des ADN est réalisée avec le fluorimètre DyNA Quant<sup>™</sup>200 (Hoefer).

### 2.2.2 Amplification des répétitions en tandem par PCR

Pour le projet *P. aeruginosa*, un sous-groupe de 12 souches (voir Tableau 7) représentant 12 ribogroupes différents a été choisi pour tester les 201 répétitions en tandem.

Les répétitions en tandem identifiées comme polymorphes dans ce sous-groupe ont alors été testées sur la totalité de la collection de souches.

Pour le projet *S. aureus*, toutes les souches (137 au total) ont été testées pour les 33 répétitions en tandem polymorphes choisies parmi les 122 polymorphes dans au moins deux des six génomes comparés (Voir paragraphe 3.3.1.3). Cinq souches n'ont pas été amplifiées pour plusieurs des locus étudiés, c'est pourquoi elles ont été éliminées de l'analyse MLVA finale. Il s'agit des souches Saur025, Saur027 et Saur111 de l'Institut Pasteur et de Saur150 et Saur 154 du Val de Grâce.

| Souche: | RiboGroupe: | Ribotype: | Origine:       |
|---------|-------------|-----------|----------------|
| 03D021  | 88-S-5      | A         | France         |
| 03D009  | 99-S-2      | nd        | France         |
| 04A036  | 99-S-4      | O:16      | France         |
| 05A400  | 87-S-3      | O:12      | France         |
| 15A178  | 147-S-3     | O:7       | Portugal       |
| 35C022  | 148-S-5     | A6        | Afrique du Sud |
| 19A211  | 148-S-7     | C10       | Suisse         |
| 08D005  | 169-S-1     | A3        | Allemagne      |
| 03C001  | 169-S-4     | A1        | France         |
| 09A068  | 172-S-1     | E15       | Grèce          |
| 08A461  | 88-S-4      | A8        | Allemagne      |
| 01A105  | 88-S-6      | O:4       | Autriche       |

 Tableau 7 : Sous collection de 12 souches P. aeruginosa.

#### Protocole PCR :

Les réactions PCR sont réalisées dans un volume final de 15µl :

- 1ng d'ADN
- 1X de Tampon PCR 10X (Qbiogen)
- 1Unité de taq DNA polymerase (Qbiogen)
- 200µM de chaque dNTP
- $0.3\mu M$  de chaque primer

Le programme suivant a été utilisé pour tous les couples d'amorces :

- 96°C 5 minutes de dénaturation

suivi de 30 cycles :

- 96°C 30 sec de dénaturation
- 60°C 30 sec pour l'hybridation des primers
- 65°C 1minute pour la synthèse d'ADN

- extension finale 5 minutes à 65°C

Des mises au point ont été effectuées pour certains marqueurs en faisant des PCR avec un gradient de température de 55°Cà 65°C (12 températures testées) réalisé sur deux souches selon le programme suivant :

- 96°C 5 minutes de dénaturation

suivi de 30 cycles :

- 96°C 30 sec de dénaturation

- 12 températures testées, de 55°C à 65°C, 30 sec pour l'hybridation des amorces

- 65°C 1minute pour la synthèse d'ADN

- extension finale 70°C 5 minutes

Pour l'amplification des répétitions en tandem chez *P. aeruginosa*, les conditions de PCR spécifiques pour certains locus sont détaillées dans l'article (Onteniente 2003).

# 2.2.3 Séparation des produits de PCR sur gel d'agarose standard

Deux microlitres de bleu de dépôt sont ajoutés aux réactions de PCR (voir Annexe 1). Ensuite les échantillons sont déposés sur gel d'agarose à 1%, 2% ou 3% selon les tailles des produits à séparer. La migration est réalisée en TBE 0.5X (voir Annexe 1). Les conditions de migration des marqueurs chez *P. aeruginosa* sont décrites dans l'article (Onteniente 2003).

Les dépôts sont organisés de la manière suivante :

- 1 dépôt de marqueur de taille (DNA ladder BioRad 100pb ou 20pb)
- une souche de référence
- 5 échantillons à analyser

Ceci permet une analyse satisfaisante des gels à l'aide du logiciel BioNumerics (Applied Math). Le dépôt tous les 6 puits d'un marqueur de taille permet au logiciel BioNumerics de corriger correctement la courbure de l'image en cas de migration courbée des échantillons.

Ne disposant pas de la souche de référence PAO1, nous avons choisi une des 102 souches de la collection comme référence (05A400) et nous avons séquencé les allèles de cette souche pour 7 des 8 locus polymorphes.

L'Institut Pasteur nous a fourni les souches Mu50 et NTCT8325, qui ont servi d'ADN de référence.

### 2.2.4 Traitement des données

Les images de gels sont analysées avec le logiciel BioNumerics. Un script permet de convertir les tailles d'allèles en nombre de motifs. Elles sont alors importées dans une nouvelle base BioNumerics, pour faire une analyse « MLVA. » Les arbres sont faits avec les paramètres « categorical » et UPGMA.

Pour le calcul de l'index de polymorphisme, l'indice de Nei est utilisé :

Soit i l'indice sur les génotypes (ou classes distinguées),  $f_i$  la fréquence du génotype i,  $n_i$  le nombre de souches (individus) de génotype i, N le nombre total de souches

 $f_i = n_i/N$ 

PIC (polymorphism information content) =  $1 - \sum (f_i)^2$ 

Cet indice correspond à la probabilité de tomber sur deux souches de génotype différent dans une population décrite par l'échantillon testé. Ceci suppose que l'échantillon testé soit représentatif de la population globale.

# 2.3 Test de stabilité des répétitions en tandem polymorphes chez *P. aeruginosa*

Pour évaluer l'intérêt épidémiologique des marqueurs polymorphes identifiés chez *Pseudomonas aeruginosa*, une étude de la stabilité (à court terme) de ces marqueurs a été réalisée. Plusieurs souches ont été mises en culture et diluées quotidiennement dans un nouveau milieu pendant 3 semaines et les marqueurs polymorphes ont été étudiés après un certain nombre de générations. Ce même type d'étude a été réalisé par exemple pour des marqueurs chez *Staphylococcus aureus* (Shopsin 2000).

### 2.3.1 Courbe de croissance des 6 souches testées

Le temps de génération des 6 souches étudiées (12A241, 18E049, 22D032, 03D021, 04A036 et 05A400 la souche de référence) a été déterminé en faisant une courbe de croissance. A partir d'un ré-isolement sur boite, les 6 souches sont mises en culture dans du milieu LB à 37°C sous agitation, puis la densité optique à 600nm (DO600) est lue toutes les 30 minutes sur une durée totale de 10 heures.

### 2.3.2 Dilutions en série des cultures bactériennes

A partir des 6 cultures de nuit ayant servi à faire les courbes de croissance, des dilutions en série sont réalisées. La Densité Optique à 600nm (DO600) est lue toutes les 12 heures et à chaque fois, un ensemencement réalisé à une dilution de 1/1000<sup>ème</sup>. Un tube de milieu de culture témoin est fait à chaque dilution pour contrôler d'éventuelles contaminations. Le milieu est utilisé sans aucun antibiotique. Après les 10 premiers jours de dilutions, un étalement contrôle est réalisé sur boite LBA pour vérifier que la culture correspond bien à une culture homogène de *Pseudomonas aeruginosa*. Ceci est répété à la fin des 3 semaines. Des

aliquotes des 6 cultures initiales ont été gardés à -80°C, ainsi que tous les prélèvements quotidiens.

### 2.3.3 Typage des souches

Le protocole d'extraction d'ADN utilisé est celui décrit dans la partie 2.2.1. On a extrait les ADN des 6 souches correspondant au début de la série de dilution (T0) et les ADN de ces 6 souches après 23 dilutions (réalisées sur 21 jours). Les PCR sont réalisées pour les 8 minisatellites polymorphes chez *P. aeruginosa* selon les conditions décrites dans l'article (Onteniente 2003).

# 2.4 Séquençage d'allèles chez *P. aeruginosa* et *S. aureus*

Pour ces projets, certaines répétitions en tandem ont été séquencées dans l'objectif de trouver un locus qui, séquencé, serait aussi résolutif qu'une étude MLVA. Les produits de PCR ont été purifiés par les deux méthodes suivantes :

# 2.4.1.1 Précipitation au PEG (Poly Ethylène Glycol) des produits de PCR (de plus de 300pb)

Les produits de PCR sont précipités de la façon suivante (Embley 1991) :

Les PCR sont réalisées dans un volume final de 60  $\mu$ l. On ajoute 0,6 volume de PEG8000 20% (p/v) NaCl2,5M. Les produits sont incubés 10 minutes à 37°C (Thermomixer comfort Eppendorf) puis centrifugés 10 minutes à 13000rpm. Le surnageant est éliminé. On ajoute ensuite 500 $\mu$ l d'éthanol 80% puis on centrifuge 10 minutes à 13000rpm. On vide le surnageant et on sèche les culots. Ceux-ci sont ensuite repris dans 20 $\mu$ l d'eau, et 2 $\mu$ l sont déposés sur gel d'agarose 1% pour évaluer la quantité de produit PCR purifié. On laisse évaporer le volume nécessaire pour avoir 20ng d'ADN/ 100pb à séquencer. Les produits PCR d'une taille inférieure à 300pb ne sont pas bien précipités au PEG, c'est pourquoi une autre technique est utilisée pour les petits fragments.

# 2.4.1.2 Traitement à l'ExoSAP-IT<sup>™</sup> des produits de PCR (de moins de 300pb)

L'ExoSAP-IT<sup>™</sup> contient deux enzymes thermolabiles : l'Exonucléase I qui dégrade les ADN simples brins et la phosphatase alcaline de crevette (SAP) qui hydrolyse les dNTPs libres.

Les produits PCR sont préalablement précipités à l'éthanol. On ajoute aux 60µl de réaction de PCR, 2.5µl de NaCl 5M puis 120 µl d'éthanol 100%. Les tubes sont placés deux heures à -20°C puis centrifugés à 12000rpm pendant 20 minutes à 4°C. Le surnageant est éliminé et le culot séché. Celui-ci est repris dans 5µl d'eau. On ajoute 2µl d'ExoSAP-IT (USB, Cleveland, Ohio). Puis on incube les échantillons 10 minutes à 37°C suivies de 10 minutes à 80°C pour inactiver les deux enzymes. On laisse évaporer les échantillons. Les produits de PCR purifiés sont ensuite envoyés à séquencer (MWG-Biotech).

### 2.4.2 Traitement des données

Les séquences sont récupérées au format .scf puis soumise au logiciel Phred qui analyse la qualité de chaque trace pour nommer les bases. Ensuite, le logiciel Phrap permet l'assemblage des différentes lectures et fournit les indices de qualité du contig obtenu.

Les séquences de même longueur sont ensuite alignées avec ClustalW et sont soumises au TRF. Un script perl a été écrit pour automatiser le codage des allèles en lettres. Un fichier dictionnaire.txt contient tous les motifs différents rencontrés pour un locus donné dans la souche de référence, avec pour chaque motif une lettre qui lui est assignée. Ensuite, on soumet le fichier contenant les séquences des allèles au script qui va assigner pour chaque motif reconnu une lettre. Les nouveaux motifs par rapport à ceux présents dans le dictionnaire initial sont signalés par une étoile (\*) et il est alors possible d'enrichir le dictionnaire de ces nouveaux motifs. Ceci constitue l'étape préliminaire d'analyse des motifs des répétitions en tandem séquencés. Notre système de codage nous permet de déterminer dans la séquence à traiter le point de démarrage du premier motif.

La TRDB (Tandem Repeats Data Base, http://tandem.bu.edu/cgi-bin/trdb/trdb.exe) est la base de données de répétitions en tandem développée par Gary Benson. Une de ses fonctionnalités permet le codage des allèles en lettres. Cependant, le problème majeur vient du fait que le TRF ne démarre pas toutes les répétitions d'un locus à la même position, ce qui a pour conséquence d'observer plusieurs consensus différents (d'une souche à l'autre) pour le même locus. Le codage multiplie le nombre de motifs différents par rapport à la réalité.

Une autre fonctionnalité intéressante est la possibilité de visualiser les motifs alignés par rapport au consensus. Les mutations par rapport au consensus sont en couleur et permettent de comparer « à l'œil » assez facilement les allèles (une illustration sera présentée dans la suite).

# 3 RESULTATS

# 3.1 Développement de marqueurs polymorphes chez des espèces pathogènes d'émergence récente : *Yersinia pestis* et *Bacillus anthracis*

Ce premier article (Le Flèche 2001) est intitulé " A tandem repeats database for bacterial genomes : application to the genotyping of *Yersinia pestis* and *Bacillus anthracis* " (une base de données des répétitions en tandem des génomes bactériens : application au génotypage de *Yersinia pestis* et *Bacillus anthracis*). Le travail est orienté sur l'étude des bactéries considérées comme étant des menaces " bioterroristes " et entre dans le cadre plus large de la lutte contre le risque biologique provoqué. D'ailleurs, quelques mois après la parution de l'article, aux Etats-Unis, des enveloppes contenant des spores de *Bacillus anthracis* ont été envoyées par courrier (Jernigan 2002). L'enquête qui a suivi a eu pour but de trouver l'origine des spores utilisées : les différentes enveloppes contenaient-elles la même souche, et quelle souche? L'approche utilisée est identique à celle décrite ici, c'est à dire le typage de répétitions en tandem, et elle a fourni l'essentiel des réponses attendues en quelques jours. Le laboratoire qui a réalisé le travail aux Etats-Unis a comparé le génotype obtenu à un fichier préalablement constitué grâce à l'analyse de souches provenant du monde entier.

#### Résumé :

*Contexte* : Certaines espèces de bactéries pathogènes sont génétiquement très homogènes, ce qui rend difficile la distinction entre les souches. Ces dernières années, les répétitions en tandem se sont révélées être des marqueurs de choix pour le génotypage d'un certain nombre de pathogènes. La variabilité de ces structures semble contribuer à la flexibilité phénotypique de certaines bactéries pathogènes. La disponibilité de séquences de génomes entiers a ouvert la voie à l'évaluation systématique de la diversité des répétitions en tandem et à leur utilisation pour des études épidémiologiques.

*Résultats* : Cet article présente une base de données (http://minisatellites.u-psud.fr) des répétitions en tandem de génomes bactériens d'accès public, qui facilite l'identification et la sélection des répétitions en tandem. Nous illustrons son utilisation par la caractérisation de minisatellites de deux pathogènes humains importants, *Yersinia pestis* et *Bacillus anthracis*. Afin d'éviter les locus de contingence, qui sont probablement de faible valeur en tant que marqueurs épidémiologiques, et de proposer des outils de génotypage exploitables par électrophorèse sur des gels d'agarose classiques, seules les répétitions en tandem d'unité répétée d'au moins 9 pb ont été évaluées. *Yersinia pestis* contient 64 minisatellites de ce type,

dans lesquels l'unité est répétée au moins 7 fois. Un lot de 12 locus supplémentaires, contenant 6 unités répétées et ayant une forte conservation interne a également été testé. Quarante-neuf locus sont polymorphes parmi les 5 souches de Yersinia utilisées (dont 25 parmi les 3 souches de *Yersinia pestis*). *Bacillus anthracis* contient 30 structures comparables, dans lesquelles l'unité est répétée au moins 10 fois. La moitié de ces répétitions en tandem est polymorphe parmi les souches testées.

*Conclusions*: L'analyse des séquences des génomes bactériens actuellement disponibles montre que *Bacillus anthracis* et *Yersinia pestis* ont une densité intermédiaire en répétitions en tandem de plus de 100 pb (environ 30 par Mb) par rapport aux autres génomes bactériens analysés jusqu'à présent. Dans les deux cas, tester le polymorphisme d'une fraction seulement de ces séquences a suffi pour développer rapidement un lot de plus de 15 marqueurs informatifs, certains montrant un très fort degré de polymorphisme. Par exemple, pour le marqueur BAMS7 de *Bacillus anthracis*, l'indice de polymorphisme (PIC) atteint 0,82, avec des allèles couvrant une large plage de tailles (600 à 1950 pb), et 9 allèles sont distingués parmi le nombre restreint de souches typées dans cette étude.

L'analyse MLVA est la technique adoptée pour identifier les souches de *Y. pestis* et de *B. anthracis*. Cette technique a été validée depuis le premier article sur un plus grand nombre de souches.

#### Research article

### A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis Philippe Le Flèche<sup>1,2</sup>, Yolande Hauck<sup>2</sup>, Lucie Onteniente<sup>2</sup>, Agnès Prieur<sup>1,2</sup>,

France Denoeud<sup>2</sup>, Vincent Ramisse<sup>1</sup>, Patricia Sylvestre<sup>1</sup>, Gary Benson<sup>3</sup>, Françoise Ramisse<sup>1</sup> and Gilles Vergnaud<sup>\*1,2</sup>

Address: <sup>1</sup>Centre d'Etudes du Bouchet, BP3, 91710 Vert le Petit, France, <sup>2</sup>Génomes et Minisatellites, Institut de Génétique et Microbiologie, Bat 400, Université Paris XI, 91405 Orsay cedex, France and <sup>3</sup>Department of Biomathematical Sciences, Box 1023, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, USA

> Received: 19 February 2001 Accepted: 30 March 2001

E-mail: Philippe Le Flèche - lefleche@igmors.u-psud.fr; Yolande Hauck - Yolande.Hauck@igmors.u-psud.fr; Lucie Onteniente - Lucie.Onteniente@igmors.u-psud.fr; Agnès Prieur - Agnes.Prieur@igmors.u-psud.fr; France Denoeud - France.Denoeud@igmors.u-psud.fr; Vincent Ramisse - Vincent.Ramisse@ceb.etca.fr; Patricia Sylvestre - psylvest@pasteur.fr; Gary Benson - benson@ecology.biomath.mssm.edu; Françoise Ramisse - f.ramisse@freesurf.fr; Gilles Vergnaud\* - Gilles.Vergnaud@igmors.u-psud.fr \*Corresponding author

Published: 30 March 2001

BMC Microbiology 2001, 1:2

This article is available from: http://www.biomedcentral.com/1471-2180/1/2

(c) 2001 Le Flèche et al, licensee BioMed Central Ltd.

#### Abstract

**Background:** Some pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies.

**Results:** This report presents a database ( [http://minisatellites.u-psud.fr] ) of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains). Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested.

**Conclusions:** Analysis of the currently available bacterial genome sequences classifies *Bacillus anthracis* and *Yersinia pestis* as having an average (approximately 30 per Mb) density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for polymorphism was sufficient to quickly develop a set of more than fifteen informative markers, some of which show a very high degree of polymorphism. In one instance, the polymorphism information content index reaches 0.82 with allele length covering a wide size range (600-1950 bp), and nine alleles resolved in the small number of independent *Bacillus anthracis* strains typed here.

#### Background

The polymorphism associated with tandem repeats has been instrumental in mammalian genetics for the construction of genetic maps and still is the basis of DNA fingerprinting in forensic applications. Tandem repeats are usually classified among satellites (spanning megabases of DNA, associated with heterochromatin), minisatellites (repeat units in the range 6-100 bp, spanning hundreds of base-pairs) and microsatellites (repeat units in the range 1-5 bp, spanning a few tens of nucleotides).

More recently, a number of studies have supported the notion that tandem repeats reminiscent of mini and microsatellites are likely to be a highly significant source of very informative markers for the identification of pathogenic bacteria even when these pathogens are recently emerged, highly monomorphic species [1–5]. This probably reflects the important contribution of tandem repeats to the adaptation of the pathogen to its host. Tandem repeats appear to contribute to phenotypic variation in bacteria in at least two ways. Tandem repeats located within the regulatory region of a gene can constitute an on/off switch of gene expression at the transcriptional level [6,7]. Similarly, tandem repeats within coding regions with repeat units length not a multiple of three can induce a reversible premature end of translation when a mutation changes the number of repeats (reviewed in [8-10]). In other instances, the repeated unit length is a multiple of three, and the tandem repeat contributes to a coding region. In such cases, variations in the number of copies modify the gene product itself [11].

Mutation mechanisms of micro and minisatellites have been studied in some detail in eukaryotes, essentially human and yeast (reviewed in [12]). In brief, the data obtained so far suggest that microsatellites mutate by replication slippage processes; mutation rates depend upon the efficiency of mismatch repair mechanisms and an internal heterogeneity within the array strongly stabilizes the tandem repeat. In contrast, minisatellites mutate predominantly as the result of the repair of a double strand break initiated within, or very close to, the tandem repeat. In eukaryotes at least, these events can be of replicative origin [13], or can be genetically controlled, and specifically induced, during meiosis, at double strand breaks hot-spots. Minisatellite mutation rate in eukaryotes appears to be insensitive to mismatch repair efficiency, and internal heterogeneity is compatible with a high mutation rate [12, 14].

In bacteria, loci containing a tandem repeat from the microsatellite class (repeat unit sizes of 1-8 bp) have been called simple sequence contingency loci [8]. Altered number of repeats allows for reversible on and off states of expression for the corresponding gene. The mutation rate of a tetranucleotide (microsatellite) tract in Haemophilus influenzae is higher than 10<sup>-4</sup> and contributes to the adaptation of the pathogen to its hosts as the infection progresses [15]. In such an extreme situation, the microsatellite is of limited value for strain identification, epidemiological and phylogenetic studies. The tandem repeat array is composed of perfect copies of the elementary unit, and different alleles are observed in a single culture. In contrast, the phylogenetic identity of minisatellite alleles of identical size can usually be further checked by DNA sequencing, since the repeated units are often not perfect [16]. The pattern of variants along the array provides an additional level of allele identification and phylogenetic information. In addition, tandem repeats with longer repeat unit length can be relatively easily typed in the size range of a few hundred base-pairs using ordinary horizontal gel electrophoresis.

In this report, we will first describe the use of a tandem repeats database for bacterial genomes ( [http://minis-atellites.u-psud.fr] ) and briefly compare the general characteristics of tandem repeats in a number of bacterial genomes for which the sequence has been determined and made publicly available. We will then show how this tool can easily be applied to the rapid characterization of new highly polymorphic markers in two pathogens, *Y. pestis* and *B. anthracis*.

Both *Y. pestis* (causative agent of plague) and *B. anthracis* (causative agent of anthrax) are recently emerged clones of respectively Y. pseudotuberculosis [17] and *B. cereus* [18]. In the case of *Y. pestis*, a high resolution typing tool based on RFLP (Restriction Fragment Length Polymorphism) analysis of IS100 locations has already been developed [17]. However this technology is more demanding than PCR typing, which justifies the development of such an assay. In the case of *B. anthracis*, polymorphisms were initially identified essentially using AFLP (Amplified Fragment Length Polymorphism) typing [19]. Subsequent analyses demonstrated that the most informative fragments in AFLP patterns resulted from tandem repeat array length variations (five minisatellite loci were characterized in this way [2]).

#### Results and discussion Use of the tandem repeats database

To date, 36 bacterial genome sequences from 32 species have been released in the public domain and are included in the database (Figure 1A; the nine archaebacteria genomes sequenced to date are presented in an other page, which can be accessed from [http://minisatellites.u-psud.fr/] ). As many other sequencing projects are under way ( [http://www.ncbi.nlm.nih.gov/PMGifs/ Genomes/bact.html] ; [http://www.tigr.org/tdb/mdb/



#### Figure I

Querying the tandem repeats database IA: bacterial tandem repeats main page Bacteria species are listed in alphabetical order. The name of the strain used for sequencing is indicated after the species name and before the genome size (expressed in megabase). The rightmost figure indicates the density (per Mb) of tandem repeat arrays longer than 100 bp. The search for tandem repeats can be restricted according to a combination of criteria, including total array length (L), repeat unit length (U), number of repeats (N), internal conservation of the repeats (V), position (expressed in kilobase) on the genome (Pos), GC content of the array (%GC), strand bias (B). Three different biases can be evaluated, GC bias, AT bias and Purine-Pyrimidine bias. The bias reflects strand asymmetry of the repeat sequence. The search output can either present a list of characteristics of the tandem repeats fulfilling criteria, ordered according to their position on the genome, or classify the tandem repeats according to a selected structural parameter. IB: examples of queries in three genomes All tandem repeat arrays spanning more than 100 base-pairs are classified according to repeat unit length. The query was run on *Buchnera sp.* (left panel), *Yersinia pestis* (middle panel) and *Pseudomonas aeruginosa* (right panel).

mdbinprogress.html]; [http://www.sanger.ac.uk/ Projects/Microbes/]), the database will be regularly updated. The collection of tandem repeats present in a given genome can be queried according to a combination of criteria, total tandem repeat array length (L), repeat unit length (U), number of repeats (N), percentage of conservation of the repeats along the array (V), position on the genome (Pos), average GC percent of the repeats (%GC), strand bias in nucleotide composition (B) (these values have been precomputed using the Tandem Repeats Finder software described in [20]). The results shown on Figure 1B use the "Tandem Repeats Distribution according to repeat unit length" option (Figure 1A). Three genomes were searched for tandem repeat arrays longer than 100 base-pairs (L  $\geq$  100). The genomes selected illustrate three different behaviors. On the right panel, Pseudomonas aeruginosa shows a very striking bias towards minisatellites with a motif length multiple of three. On the left and middle panels of Figure 1B, Buchnera sp and Y. pestis, show no such bias. The overall density of tandem repeat arrays longer than 100 base-pairs varies in the different genomes. Buchnera sp. contains 103 such loci, for a total genome size of 641 kb, which corresponds to a density per megabase of 161. Pseudomonas aeruginosa, with a total genome length of 6.3 Mb, has a density of 48. Y. pestis has an intermediate value of 30. Figure 2 summarizes the values observed in the 32 species. Ten non pathogenic species are presented in the upper part, 22 pathogenic species on the lower part. The species are ordered from top to bottom according to increasing genome size. The dark bars indicate for each genome the density per megabase of tandem repeat arrays longer than 100 bp. The clear bars reflect the excess of tandem repeats with unit length a multiple of three. A wide range of situations is observed, with a remarkable excess of tandem repeats multiples of three in Mycobacterium tuberculosis and Pseudomonas aeruginosa, presumably reflecting a significant contribution of tandem repeats to coding regions in these two bacteria.

As a quick illustration of the use of this database to facilitate the development of genotyping tools for bacterial genomes, we have evaluated the polymorphism associated with tandem repeats from *Y. pestis* on one hand and *B. anthracis* on the other (in this second instance, the genome sequence has not been completed yet and does not appear on the publicly accessible Tandem Repeats Database page, Figure 1A).

#### Application to Y. pestis

Figure 3A presents the result of a query run on *Y. pestis*, to identify tandem repeats with repeat units longer than 9 base-pairs repeated at least 7 times in the strain which has been sequenced (CO-92 biovar Orientalis).Sixty-four tandem repeats fulfill these criteria (an additional group



#### Figure 2

Relative frequency of tandem repeats within bacterial genomes The ten non-pathogen species are listed on top. Within each category, species are ordered according to genome size (smallest genome on top). The density of tandem repeat arrays longer than 100 bp is plotted for each species (dark bars). The clear bars reflect the excess ( $\chi^2$  values) of tandem repeats with a repeat unit length multiple of three.

of forty-nine have 6 copies of the motif; the twelve loci with the highest internal conservation were also included in this study). The output includes links to individual alignment files, as produced by the Tandem Repeat Finder software [20]. The alignment file also includes 200 base-pairs of flanking sequence from each side of the tandem repeat, from which primers can be selected for PCR amplification. Figure 3B shows an annotated extract of one alignment file. The positions of the primers selected for subsequent PCR amplification are underlined. Three Y. pestis (representing the Antiqua, Medievalis, and Orientalis biovars [17]) and two Y. pseudotuberculosis strains were used for the initial identification of minisatellites sufficiently polymorphic to be of interest for further studies. Table 1 summarizes the PCR conditions used for each polymorphic locus and the results obtained. A total of 76 tandem repeats were tested. PCR amplification failed in 6 cases. Twenty one loci are monomorphic in the five Yersinia strains typed here. Forty-nine of the loci are polymorphic (Table 1). Twentyfive of these are polymorphic among the Y. pestis strains.

|                                     |                                                                                                |         | В | 305                                               |
|-------------------------------------|------------------------------------------------------------------------------------------------|---------|---|---------------------------------------------------|
|                                     |                                                                                                |         |   | 305                                               |
| Α                                   |                                                                                                |         |   | 305                                               |
| Yersinia p<br>Tandem r<br>to U with | pestis CO-92<br>repeats distribution accor<br>following criteria :<br>length between 9 and 500 | ding    |   | 305                                               |
| 2. Cop                              | y number between 7 and 60                                                                      | 000     |   | 305                                               |
| Unit length                         | Histogram                                                                                      | Seq nbr |   |                                                   |
| 1 -> 1                              |                                                                                                | 0       |   | 305                                               |
| 2 -> 2                              |                                                                                                | 0       |   |                                                   |
| 3 -> 3                              |                                                                                                | 0       |   | 205                                               |
| 4 -> 4                              |                                                                                                | 0       |   | 305                                               |
| 5 -> 5                              |                                                                                                | 0       |   |                                                   |
| 6 -> 6                              |                                                                                                | 0       |   | 305                                               |
| 7 -> 7                              |                                                                                                | 0       |   |                                                   |
| 0 < 0                               |                                                                                                | 0       |   |                                                   |
| 0-20                                |                                                                                                | 0       |   | 305                                               |
| 9-29                                | <u></u>                                                                                        | 4       |   |                                                   |
| 10 - 10<br>11 > 11                  | <u>u</u>                                                                                       | 1       |   |                                                   |
| 12 -> 12                            | <u>u</u><br>nnnn                                                                               | 1       |   | 305                                               |
| 13 -> 13                            |                                                                                                | 1       |   |                                                   |
| 14 -> 14                            | ñnnn                                                                                           | 4       |   | Tata Constant Association                         |
| 15 -> 15                            | 0000000                                                                                        | 7       |   | (type g                                           |
| 16 -> 16                            | 000000                                                                                         | 6       |   |                                                   |
| 17 -> 17                            | 000000000000000000000000000000000000000                                                        | 14      |   | 305                                               |
| 18 -> 18                            | aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa                                                        | 11      |   |                                                   |
| 19 -> 20                            | 00 🛣                                                                                           | 2       |   | 305                                               |
| 21 -> 21                            | <u>[]</u>                                                                                      | 1       |   | 505                                               |
| 22 -> 23                            | 00                                                                                             | 2       |   |                                                   |
| 24 -> 24                            | <u><u> </u></u>                                                                                | 2       |   | 305                                               |
| 25 -> 29                            | <u>U</u> .                                                                                     | 1       |   |                                                   |
| 30 -> 39                            |                                                                                                | U       |   |                                                   |
| 40 -> 49                            | <u>n</u>                                                                                       | 1       |   | 305                                               |
| 50 -> 69                            | 00                                                                                             | 2       |   |                                                   |
| 70 -> 99                            |                                                                                                | U       |   |                                                   |
| 100 -> 199                          |                                                                                                | 0       |   | 305                                               |
| 200 -> 299                          |                                                                                                | 0       |   |                                                   |
| 300 -> 399                          |                                                                                                | 0       |   | 205                                               |
| 400 -> 500                          |                                                                                                | 0       |   | 305                                               |
| 64 seque                            | nces correspond to criter                                                                      | ia      |   |                                                   |
|                                     |                                                                                                |         |   | Consens                                           |
|                                     |                                                                                                |         |   | Left fl<br>TTGTTGG<br>GGTCGTA<br>GCTGGCG<br>CATCG |

| 3057961<br>1                                                            | * ** **<br>CCACCGGATCCAACAGTG<br>CCGCCGGAAACAACGGCA                                            | (observed unit: type a)<br>(consensus)                                                                                                      |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 3057979<br>1                                                            | * ** * ****<br>CCACCGGATCCGACATTG<br>CCGCCGGAAACAACGGCA                                        | (type b)                                                                                                                                    |
| 3057997<br>1                                                            | * * ** **<br>CCACCAGATCCAACGTTG<br>CCGCCGGAAACAACGGCA                                          | (type c)                                                                                                                                    |
| 3058015<br>1                                                            | * * ** **<br>CCACCAGATCCAACGTTA<br>CCGCCGGAAACAACGGCA                                          | (type d)                                                                                                                                    |
| 3058033<br>1                                                            | *<br>CCGCCGGAAACCACGGCA<br>CCGCCGGAAACAACGGCA                                                  | (type e)                                                                                                                                    |
| 3058051<br>1                                                            | *<br>CCGCCGGAAACCACGGCA<br>CCGCCGGAAACAACGGCA                                                  | (type e)                                                                                                                                    |
| 3058069<br>1                                                            | *<br>CCGCCAGAAACAACGGCA<br>CCGCCGGAAACAACGGCA                                                  | (type f)                                                                                                                                    |
| 3058087<br>1                                                            | * *<br>CCGCCAGAGACAACGGCA<br>CCGCCGGAAACAACGGCA                                                | (type g)                                                                                                                                    |
| 3058105<br>1                                                            | *<br>CCGCCGGAAACCACGGCA<br>CCGCCGGAAACAACGGCA                                                  | (type h)                                                                                                                                    |
| 3058123<br>1                                                            | CCGCCGGAAACAACGGCA<br>CCGCCGGAAACAACGGCA                                                       | (type i)                                                                                                                                    |
| (type g-g-f-                                                            | i-i-i-h-g-g-i-f-i-:                                                                            | i-i-f-i-f)                                                                                                                                  |
| 3058465<br>1                                                            | CCGCCGGAAACAACGGCA<br>CCGCCGGAAACAACGGCA                                                       | (type i)                                                                                                                                    |
| 3058483<br>1                                                            | *<br>CCGCCAGAAACAACGGCA<br>CCGCCGGAAACAACGGCA                                                  | (type f)                                                                                                                                    |
| 3058501<br>1                                                            | *<br>CCGCCAGAAACAACGGCA<br>CCGCCGGAAACAACGGCA                                                  | (type f)                                                                                                                                    |
| 3058519<br>1                                                            | * *<br>CCGCCGGAACCGACGCGAA<br>CCGCCGGAAACAACG-G                                                | ACA (type j)<br>-CA                                                                                                                         |
| 3058540<br>1                                                            | **<br>CCGCCAGGGACGCAGACGC<br>CCGCCGGAAACA-ACGC                                                 | *<br>CCA (type k)<br>SCA                                                                                                                    |
| 3058561<br>1                                                            | CCGCC                                                                                          |                                                                                                                                             |
| Consensus pa                                                            | ttern (18 bp):<br>ACGGCA                                                                       |                                                                                                                                             |
| Left flankin<br>TTGTTGGTAAAACG<br>GGTCGTAAAACG<br>GCTGGCGGGTGC<br>CATCG | g sequence: Indice:<br>STAAGGTATTATTCAGGG<br>GGCAATGGCGGCGCGCAT<br>TATTGCCTTACCGCTAC <u>CG</u> | s 3057761 3057960<br>CGGTGAAGTTCACATTAACTCTGATGATTGTTGT<br>TCGGTGCCTTTGCGAGCCTGGCAGGTTTATTGCC<br><u>TTACCCTTGTTGCCAATAGT</u> GGTGCCACCAGTGA |
| Right flanki<br>TTGATTTTATAGA<br>GATTTTTCGAACO<br>TGACCAGCGATGO         | ng sequence: Indice<br>TAAAAGGTAAGCATGTTCT<br>GGTTAGAATTTAATTGAGGT<br>GTGGTGCGATATGTACCGGT     | 28 3058566 3058765<br><u>GCGT</u> GGGAAACACACGTAGAGCATGCGGTCTCT<br>FGACGTATGTTCACTGCGGCAAAAATGGCCGATG<br>FTCATGCGATGTTCATTAACAATATTCCGGCC   |

#### Figure 3

Selection procedure of minisatellites for Y. pestis 3A: Sixty-four tandem repeats have at least 7 units longer than 9 basepairs. Panel A presents the distribution of these 64 loci according to repeat unit length. Each rectangle is an hyperlink to an alignment file. The rectangle indicated by the arrow is linked to the file illustrated in panel B. 3B: This is an annotated alignment file. The file corresponds to Yp3057ms09 (Table I and Figure 4; Yp : Yersinia pestis; 3057 : position on the genome, expressed in kilobases; MS09 : MiniSatellite index). The consensus pattern of 18 base-pairs is aligned to each motif. Annotations of the file are inserted within brackets. Although this minisatellite is very polymorphic, eleven different motifs (labeled a-k) are observed in the sequenced allele. The first four and last two copies are most diverged and rare. Four types of motifs (f, g, h, i) constitute most of the array. For convenience, 18 motifs have been removed from the alignment file and replaced by their letter code. The last two copies are 21 base-pair long instead of 18. The end of the alignment file (panel B, bottom) provides sequence data flanking the tandem repeat array. The positions of the primers chosen for PCR amplification of this locus (Table I) are shown underlined.

TCTAA

Seven present a different allele in each of the five *Yersin-ia* strains, thirteen have a different allele in each of the three *Y. pestis* strains. Gel images for the 25 loci polymorphic among *Y. pestis* are shown in Figure 4. As can be seen, the repeat unit size and the overall length of the PCR products are such that tandem repeats differing by a single repeat unit can be distinguished by simple agarose gel electrophoresis.

#### Application to B. anthracis

Given the relatively low overall size of most bacterial tandem repeats, tandem repeat search can be run even on unfinished sequences. Tandem Repeats Finder was applied to B. anthracis sequence obtained from The Institute for Genomic Research through the website at [http://www.tigr.org]. The sequence was recovered as approximately 1000 contigs, for a total amount of slightly more than 5 Mb. Thirty tandem repeats have at least 10 copies of a repeat unit longer than 9 base-pairs. Fourteen of them are polymorphic among the 31 B. anthracis strains typed here (Table 2). Twenty-seven different genotypes are identified. Polymorphism information content (PIC) indexes based on the 27 genotypes vary from 0.07 to 0.82. Nine PIC values are above 0.5. Eight alleles are identified for CEB-Bams30, in a size range 270-900 base-pairs (Figure 5). In this case, the resolution of the largest alleles would probably be improved by using an automated DNA sequencer, and more alleles might be resolved. There are clear gaps in the size range coverage shown in Figure 5, and it is likely that the typing of additional strains would uncover new alleles. The genotyping data obtained was used to construct a phylogenetic tree based upon the Neighbor-Joining method ( [http:// www.infobiogen.fr] ). In order to be able to correlate the tree obtained here with earlier studies [2], 5 minisatellites and one microsatellite reported previously were also typed. Figure 6 presents the data obtained and the resulting tree, using the nomenclature previously proposed [2]. Six Bacillus cereus strains have also been included and used as an outgroup in the analysis. Occasionally B. cereus strains will not amplify (scored as 0 in Figure 6) or will give weak amplification signals (Figure 5, last six lanes on the right). The proposed tree is in good agreement with earlier results. In particular, the A and B clusters are well defined. We have apparently no representatives for the A1b and A3a group, whereas strains 9533 and 9502 to 9505 appear to define a new branch. The correspondence between allele numbering and allele size is indicated in Table 3.

#### Correlations between polymorphism and structural characteristics of minisatellites

We have looked for correlations between on one hand the number of alleles and polymorphism of the minisatellites, and on the other, simple structural characteristics of the tandem repeats in the sequenced strain : motif size, number of motifs, total length, conservation of the motifs along the array (percent identity), GC content, strand bias. In the case of *B. anthracis*, a highly significant correlation (0.01 level) is observed between polymorphism and both total length and GC content. This is not true for *Y. pestis* in which a strong correlation is seen between the number of alleles and the conservation of the motifs (Figure 7).

#### Conclusions

We limited here our investigation of tandem repeats to minisatellites, i.e. repeat units longer than 9 base-pairs, so as to avoid simple sequence contingency loci [8] of limited epidemiological value, and to facilitate the typing of alleles with agarose gel electrophoresis. However, simple sequence contingency loci are also represented in the database and are of great interest for molecular pathogenicity studies [6-8]. The use of the tandem repeats database was demonstrated here on two of the most genetically homogeneous human pathogenes, Y. pestis and B. anthracis. There is consequently a possibility that a common database format for identification and epidemiological analyses of pathogens amenable to minisatellite typing be developed. As more data becomes available on polymorphism associated with tandem repeats, it will be added to the database presented here in order to avoid duplication of work and nomenclature.

Bacterial species differ very significantly in the density of tandem repeats within their genome, and also in their use of tandem repeats. Some species have a very strong excess of tandem repeats with repeat units length which are multiple of three, the most striking examples being *M. tuberculosis* and *P. aeruginosa*. Polymorphism in such tandem repeats is likely to modulate the protein structure rather than gene activity. In *M. tuberculosis*, all tandem repeats with total length (L) higher than 100 bp and 9 or 15 base-pairs long units are located with ORFs [21]. An important proportion of these tandem repeats correspond to the so-called PE and PPE multigene families [21].

In the two species studied here, tandem repeat polymorphism is strongly correlated with one or more of the sequenced allele characteristics, as illustrated in Figure 7. In *Yersinia pestis* a strong correlation is observed between number of alleles observed and homogeneity of the tandem array. In *Bacillus anthracis*, the strongest correlations are with total array length and GC content. It appears that the correlations are not the same in the two species, so that at present at least, the polymorphism associated with a tandem repeat cannot be inferred from its primary sequence. In particular, and in contrast to what is known for microsatellites (1-5 bp repeat units),



#### Figure 4

**Images of PCR amplification of the twenty-five minisatellites polymorphic in the Y. pestis strains** DNA from three reference Y. *pestis* strains representing each of the main biovars, antiqua (lane 1), medievalis (lane 2) and orientalis (lane 3) and two Y. *pseudotuberculosis* strains (lanes 4 and 5) have been PCR amplified and an aliquot of the products has been run on 2% horizontal agarose gels as described. The length of the minisatellite motifs (U) and the size range is indicated on each panel. Yp2916ms07 has one of the shortest (10 bp) unit. Four alleles are clearly distinguished between the 150 and 200 bp marker fragments.

some of the minisatellites are highly polymorphic in spite of a poor internal homogeneity of the sequenced allele, as is also the case for minisatellites in the human genome [12]. However, more systematic allele sequencing will be required to demonstrate that polymorphism is not associated with a subclass of alleles showing a higher internal homogeneity. Similarly, allele sequencing will be required to formally establish that the allele size variations observed are indeed (as is likely) the consequence of variations in the number of repeats.

Five among the B. anthracis markers described here (Ceb-Bams1, 3, 7, 13 and 30) are highly polymorphic with PIC values (or Nei's index) above 0.7. In this respect, it is important to observe that the length of the allele observed for Ceb-Bams1 in the Ames strain is not of the size expected from the sequence data (Table 2). This may result either from a high mutation rate at Ceb-Bams1 or from a sequencing error. The expected allele size corresponds to allele 4 (Table 3), which is unlikely for the Ames strain because Ceb-Bams1 allele 4 is observed only in cluster B strains (Figure 6) and Ames is well apart of cluster B [2]. A similar situation is observed for Ceb-Bams28, for which the expected product does not correspond to any existing allele in the collection of strains typed. In this case however, the locus is moderately polymorphic, with a PIC value of 0.26 and only three alleles observed (Table 2), so that a sequencing error is the most likely interpretation. This issue could be easily solved by typing with Ceb-Bams1 and Ceb-Bams28 the very strain which has been used for the sequencing project.

It is interesting to observe that, although the magnitude of allele size difference has not been taken into account when building the distance matrix, the resulting phylogenetic tree proposed in Figure 6 tends to group together strains with alleles of similar size at these most variable loci. This is reminiscent of observations made in *H. influenzae* [1] and suggest that mutation events are predominantly small size changes. Here again, more detailed studies involving full allele sequencing should now help understand the succession of events producing a population of alleles.

#### Materials and methods Bacterial genomes DNA sequences

Finished sequences in the public domain were recovered by ftp from the NCBI or the Sanger center sites ([http:// www.ncbi.nlm.nih.gov/PMGifs/Genomes/bact.html] ; [http://www.sanger.ac.uk/Projects/Microbes/] ). Preliminary sequence data for *B. anthracis* was obtained from The Institute for Genomic Research through the website at [http://www.tigr.org].



#### Figure 5

**PČR amplification of B.** anthracis minisatellite CEB-Bams30 DNA from B. anthracis and B. cereus (six rightmost lanes) was amplified using primers for CEB-Bams30 (Table 2). The PCR products were run on a 40 cm long 2% ordinary agarose gel.

#### DNA preparation

All strains used here are part of the collection maintained by the Centre d'Etudes du Bouchet (CEB). They originate either from the CIP (Collection Institut Pasteur, [http:// www.pasteur.fr/]) or from AFSSA (Agence Française de Sécurité Sanitaire des Aliments, [http://www.afssa.fr/] , Dr Josée Vaissaire). DNA from each isolate was obtained by large-batch procedures or by the simplified procedure as described in [2]. In addition, 15  $\mu$ g of DNA from the *B. anthracis* Ames strain were kindly provided by Dr Mats Forsman, FOA, Sweden.

#### Minisatellite PCR amplification and genotyping

PCR reactions were performed in 15  $\mu$ l containing 1 ng of DNA, 1x Long Range Reaction Buffer 3 (Roche-Boehringer), 1 unit of Taq DNA polymerase, 200  $\mu$ M of each dNTP, 0.3  $\mu$ M of each flanking primer. The Taq DNA polymerase was either prepared essentially as described in [22] or purchased from Qbiogen or Roche-Boehringer. The 1x LongRange Buffer 3 is 1.75 mM MgCl<sub>2</sub>, 50 mM Tris-HCl pH9.2, 16 mM (NH<sub>4</sub>)2SO<sub>4</sub>.

PCR reactions were run on a Perkin-Elmer 9600 or a MJResearch PTC200 thermocycler. An initial denaturation at 96°C for five minutes was followed by 34 cycles of denaturation at 96°C for 20 seconds, annealing at 60°C for 30 seconds, elongation at 65°C for 1 minute, followed by a final extension step of 5 minutes at 65°C. In few cases, other annealing temperatures and/or elongation times were used (see tables 1 and 2). Five microliters of



#### Figure 6

**Bacillus anthracis phylogenetic tree** The genotype of each strain for the polymorphic minisatellites is given (size estimates for each allele are given in Table 3). "0" indicates a failure of the PCR amplification. This is most often associated with *B. cereus* strains, and probably reflects in these cases sequence divergence in the flanking sequence. The phylogenetic tree was produced using the Neighbor-Joining method as available on-line at [http://www.infobiogen.fr.]



#### Figure 7

Significant correlation between number of alleles and minisatellites structural characteristics The number of alleles is plotted as a function of Total length and %GC for *Bacillus anthracis*, and %matches for Yersinia pestis (the correlations are highly significant at the 0.01 level). Number of alleles for each locus is the total number detected (i.e. *Bacillus anthracis* and *B. cereus*; Yersinia pestis and Y. pseudotuberculosis). the PCR products where run on standard 1% or 2% agarose gel (Qbiogen) in 0.5 x TBE buffer at a voltage of 10 V/ cm as indicated in Tables 1 and 2. Gel length of 10 to 40 cm were used according to PCR product size and motif length. Gels were stained with ethidium bromide and visualized under UV light. Allele sizes were estimated using as size markers the 1 kb ladder plus (Gibco-BRL which also includes a 100 bp ladder between 100 bp and 500 bp, plus 650, 850 and 1000 bp bands) or the 50 bp ladder (Euromedex) which provides a 50 bp ladder between 50 and 300 bp and a 100 bp ladder from 300 bp to 1000 bp.

#### Data analysis

#### Tandem Repeats Finder analysis:

Sequences were processed using the Tandem Repeats Finder software ( [http://c3.biomath.mssm.edu/ trf.html]). The output was processed to eliminate duplicates before being imported in a database (running under Access2000, Microsoft Corp.) as described previously [12]. The *B. anthracis* preliminary sequence data file uses FASTA type of headers (i.e. >sequenceId) to separate the independent contigs. The headers were replaced by runs of 10 Ns before running Tandem Repeats Finder.

#### Blast queries against the M. tuberculosis genome:

The identifications of the open reading frames containing a given tandem repeat from M. tuberculosis were done by running a BLAST search on the dedicated web page at [http://www.sanger.ac.uk/Projects/ M\_tuberculosis/blast\_server.shtml].

## Estimation of the excess of tandem repeats with motif length multiple of three:

A  $\chi^2$  test was calculated for the difference between the observed number of tandem repeats with motif length multiple of 3 and the expected number of tandem repeats with motif length multiple of 3 (expected value in the absence of bias being the total number of tandem repeats divided by 3). The  $\chi^2$  values vary from 0.01 to 253.5. There is a significant excess ( $\chi^2 > 3.841$ ) for all species but 6 (*Buchnera sp, T. maritima, H. influenzae, M. genitalium, R. prowazekii, Y. pestis*).

#### Polymorphism index:

Polymorphism Information Index (PIC) or Nei's diversity index is calculated as  $1 - \Sigma$  (allele frequency)<sup>2</sup> based upon the unique genotypes.

#### Phylogenetic reconstruction:

A phenetic approach, based on a distance matrix was used. Distance matrix between strains was obtained by counting the number of differences between the corresponding genotypes. Then, Neighbor Joining cluster analysis was performed with Phylip [23] accessed at [ht-tp://www.infobiogen.fr/] . An outgroup was arbitrary chose among *Bacillus cereus* strains (9785) and input order of species was randomised.

Data (genotypes, distance matrix, phylogenetic tree) are available at [http://minisatellites.u-psud.fr/ASPSamp/ Phylogenie/data.htm]

| Table I: | <b>Description</b> o | f Yersinia p | olymorphic | markers |
|----------|----------------------|--------------|------------|---------|
|----------|----------------------|--------------|------------|---------|

#### **Correlation analysis**

Correlations were calculated with the statistical program SPSS: Pearson correlation, and non-parametric correlations (Kendall's tau and Spearman's rho) show similar results.

| Marker      | U     | N      | % GC       | v      | Primer sequences                                              | PCR  | Expected<br>product<br>length (bp) | Estimated<br>size range<br>(bp) | Number<br>of Alleles<br>in<br>Y.pestis | Total<br>number<br>of<br>alleles |
|-------------|-------|--------|------------|--------|---------------------------------------------------------------|------|------------------------------------|---------------------------------|----------------------------------------|----------------------------------|
| Markers pol | ymorp | hic in | Yersinia ( | þestis | strains                                                       |      |                                    |                                 |                                        |                                  |
| yp0120ms01  | 18    | 8      | 34         | 86     |                                                               |      | 228                                | 180 - 280                       | 3                                      | 4                                |
| yp1290ms04  | 17    | 8      | 27         | 96     |                                                               |      | 230                                | 160 - 240                       | 3                                      | 5                                |
| yp1935ms05  | 17    | П      | 36         | 87     |                                                               |      | 291                                | 190 - 300                       | 2                                      | 4                                |
| yp2769ms06  | 60    | 9      | 48         | 64     |                                                               | 90 s | 606                                | 370 - 2500                      | 3                                      | 5                                |
| yp2916ms07  | 10    | 9      | 44         | 85     |                                                               |      | 184                                | 150 - 200                       | 2                                      | 4                                |
| yp3057ms09  | 18    | 33     | 65         | 91     |                                                               | 90 s | 682                                | 500 - 820                       | 3                                      | 5                                |
| yp0559ms15  | 15    | 10     | 30         | 62     |                                                               |      | 237                                | 225 - 250                       | 2                                      | 2                                |
| yp1814ms20  | 15    | 9      | 47         | 74     |                                                               |      | 253                                | 230 - 250                       | 2                                      | 2                                |
| yp1895ms21  | 18    | 9      | 51         | 76     |                                                               |      | 278                                | 220 - 350                       | 3                                      | 5                                |
| yp4042ms35  | 15    | 8      | 41         | 59     |                                                               |      | 204                                | 195 - 225                       | 2                                      | 3                                |
| yp4425ms38  | 16    | 8      | 41         | 86     |                                                               |      | 233                                | 200 - 380                       | 3                                      | 5                                |
| yp0581ms40  | 17    | 7      | 28         | 76     | L: GCAATCATTCACCTAACCATATCTC<br>B: GTGCAATAGGCGTTGTTGTGTA     |      | 214                                | 220 - 240                       | 2                                      | 2                                |
| yp0718ms41  | 17    | 7      | 41         | 75     |                                                               |      | 217                                | 180 - 220                       | 2                                      | 2                                |
| yp1018ms44  | 17    | 7      | 38         | 61     | L: CAATTCCAACAGCTATTAATGCAA<br>R: GAATTTCATAACACGTTCTTCCTG    |      | 233                                | 220 - 260                       | 2                                      | 3                                |
| yp1108ms45  | 12    | 7      | 65         | 79     | L: GCATCGGAGACTGGGTAAAC<br>R: TTTCTGAGGATTTATCGGTGTGAT        |      | 161                                | 120 - 170                       | 3                                      | 4                                |
| yp1335ms46  | 17    | 7      | 33         | 73     | L: CAGGTTTTACGTTATTTTCTGAAGG<br>R: CAGCATGAAGTATGACGGGTATATTA |      | 252                                | 230 - 310                       | 3                                      | 4                                |
| yp2058ms51  | 18    | 7      | 37         | 65     | L: GGTTTTTACCGATATAAATCCTGAG<br>R: GACCAAGAAGTTAAGTTGCTTATCG  |      | 207                                | 190 - 210                       | 2                                      | 2                                |
| yp2612ms54  | 22    | 7      | 28         | 82     | L: GTCCACCATTTTCATACTGTCACTT<br>R: GCTCTTTGTTCGATTTTATTGAATG  |      | 281                                | 250 - 300                       | 2                                      | 3                                |
| yp3060ms56  | 16    | 7      | 21         | 81     | L: AACCGACTGACTCACTTTATATTGG<br>R: TTCTTTTCCATTACTCAGCCTGTT   |      | 220                                | 180 - 250                       | 2                                      | 4                                |
| yp4280ms62  | 9     | 7      | 33         | 60     | L: TTTAGTCTTGATTAAGCTGCGTTTT<br>R: ACGGAAGACAACCTTATTATTGATG  |      | 240                                | 220 - 310                       | 3                                      | 5                                |
| yp1118ms69  | 16    | 6      | 39         | 82     | L: GACGTTGCAACTGCAAAAATAAG<br>R: ACTTGTTGTGAAGACCATCACTCT     |      | 179                                | 165 - 180                       | 2                                      | 2                                |
| yp1580ms70  | 9     | 6      | 32         | 97     | L: AAACCAACGGTTCATATTGAATAAA<br>R: CTTCTTCCGCTATTTTCCTACAGA   |      | 146                                | 140 - 170                       | 3                                      | 5                                |
| yp1925ms71  | 14    | 6      | 45         | 91     | L: GCTACTCGAATATGAGTTAGCCAAA<br>R: ATTGCCATATTGGATGCTAAAATAA  |      | 171                                | 145 - 210                       | 2                                      | 4                                |
| yp3236ms73  | 18    | 6      | 40         | 89     | L: AATACCCTGTGGGTGATAATGAAC<br>R: ATCGATTTAGGTACCACCAATTCA    |      | 225                                | 175 - 230                       | 2                                      | 3                                |
| yp3245ms74  | 15    | 6      | 44         | 83     | L: CCCCGACTTATATCAAGCACTG                                     |      | 195                                | 180 - 225                       | 3                                      | 3                                |

#### Table I: Description of Yersinia polymorphic markers

#### R: AACTGACGATCTTTTTCACTGAGTT

Markers polymorphic in 5 Yersinia strains (monomorphic in pestis)

| vn0802ms02   | 18 | 12 | 49 | 86         |                               | 53°C  | 314 | 240 - 315  |   | 2 |
|--------------|----|----|----|------------|-------------------------------|-------|-----|------------|---|---|
| ,p0002111302 |    | 12 |    |            |                               | L min | 514 | 240 - 515  | • | - |
| vn2925ms08   | 15 | 12 | 39 | 63         |                               |       | 270 | 270 - 290  |   | 2 |
| //           |    |    |    | •••        | R: CGATAATAATACTGAATTACCGGATG |       | 2.0 | 2.0 2.0    | - | - |
| vp4411ms10   | 14 | 8  | 32 | 69         | L: ATCATGCTTTTGCCTCAATATAATC  |       | 191 | 190 - 210  | 1 | 2 |
| /            |    | -  |    |            | R: GAAACGCAGTCCCTGTTGTAG      |       |     |            | - | _ |
| vp0813ms16   | 17 | 8  | 39 | 64         | L: GTTGGTTATCCGACAGTCTTCAATA  |       | 235 | 230 - 270  | 1 | 2 |
|              |    |    |    |            | R: GCAATTCGTTATGGCTTAGTAAAAA  |       |     |            |   |   |
| yp1269ms18   | 27 | 9  | 54 | 55         | L: GCAAAAGCTGAAGCAGATAAAATAG  |       | 303 | 220 - 250  | 1 | 2 |
|              |    |    |    |            | R: AAACCACCAAACAAATCATCAAC    |       |     |            |   |   |
| yp2196ms22   | 20 | 8  | 12 | 55         | L: AAACCAACAAGAAAACTGTAACCAC  | 90 s  | 265 | 270 - 1500 | 1 | 2 |
|              |    |    |    |            | R: CATTCACCATTGATGTCCTTAGAC   |       |     |            |   |   |
| yp2324ms24   | 19 | 8  | 34 | 65         | L: TTCACCGGGTTACCTTAATTACATA  |       | 255 | 215 - 255  | 1 | 2 |
|              |    |    |    |            | R: CTACCTTGCTGTCAACACTCGAC    |       |     |            |   |   |
| yp2331ms25   | 17 | 9  | 36 | 76         | L: AACGCGTTAATAAAACAATAAAGTG  |       | 181 | 190 - 230  | 1 | 3 |
|              |    |    |    |            | R: CAATATCCTTTTACTCAGCCGATG   |       |     |            |   |   |
| yp2679ms27   | 16 | 8  | 20 | 76         | L: ATGATTACTGGCAAGAGCACTATGT  |       | 217 | 200 - 220  | 1 | 2 |
|              |    |    |    |            | R: AACAAGATCACCTGGTCGTTAAA    |       |     |            |   |   |
| yp2908ms28   | 18 | 8  | 40 | 69         | L: GCAGAAATAATCTTCAGGAGAAACA  |       | 242 | 190 - 290  | I | 2 |
|              |    |    |    |            | R: AGATCGTCGTTAGTCCATGTCAG    |       |     |            |   |   |
| yp2958ms29   | 16 | 8  | 23 | 61         | L: AAAATAGTCTGTGTTTCAGCAAAGC  |       | 215 | 215 - 245  | I | 2 |
|              |    |    |    |            | R: CCTTAAAAACCCTAAGTGGGTAAAA  |       |     |            |   |   |
| yp3225ms30   | 54 | 11 | 51 | 52         | L: CAATAATACCATCGTGCGTGATAC   |       | 683 | 680 - 900  | I | 2 |
|              |    |    |    |            | R: TATTAATGGTGGTGTTAGTCGCTGT  |       |     |            |   |   |
| yp3532ms31   | 14 | 8  | 30 | 67         |                               |       | 217 | 215-245    | I | 2 |
|              |    |    |    | <i>.</i> - | R: ITAGCCIGITIGITCITCAAATAGC  |       |     | 100 0/0    |   | - |
| yp3787ms32   | 18 | 8  | 49 | 65         |                               |       | 218 | 190 - 240  | I | 3 |
|              |    | •  | 42 | /7         |                               |       | 210 | 210 225    |   | 2 |
| yp3795ms33   | 15 | 8  | 43 | 0/         |                               |       | 210 | 210 - 225  |   | 2 |
| vn4271mc27   | 10 | 0  | 25 | 07         |                               |       | 225 | 225 255    |   | 2 |
| yp4371111537 | 10 | 0  | 33 | 02         |                               |       | 235 | 233 - 235  |   | 2 |
| vn0000mc43   | 17 | 7  | 28 | 80         |                               |       | 211 | 220 - 300  |   | 2 |
| yp0777111345 | ., | '  | 50 | 00         |                               |       | 211 | 220 - 300  |   | 5 |
| vn1962ms50   | 18 | 7  | 34 | 71         |                               |       | 225 | 225 - 240  |   | 2 |
| )p1)02111350 |    | •  | 51 | ••         | R: AGTIGACTCCCAGTCACTTTTCC    |       | 115 | 115 110    | • | - |
| vp3734ms59   | 16 | 7  | 36 | 69         | L: ATTATCATGACCCTTCCAGTGCTAT  |       | 218 | 200 - 220  | 1 | 2 |
| //           |    |    |    |            | R: CATCAAAATGCCAGGAGAGTAAC    |       |     |            |   |   |
| vp4338ms63   | 17 | 7  | 38 | 72         | L: ATTAACGATTTCTTGTCGCTCAGT   |       | 194 | 190 - 275  | 1 | 3 |
|              |    |    |    |            | R: AATCAGTAACGGCATGTGTCAGTA   |       |     |            |   |   |
| yp0549ms66   | 18 | 6  | 41 | 83         | L: TAAAAGCGTCAACAAAGTAGGTCAT  |       | 212 | 200 - 220  | 1 | 2 |
|              |    |    |    |            | R: GTTCCTGTTGTTGAAAATGCTG     |       |     |            |   |   |
| yp0782ms67   | 18 | 6  | 40 | 90         | L: TTCCAGGCTAAAGATATTGACTTTG  |       | 248 | 250 - 270  | 1 | 2 |
|              |    |    |    |            | R: CTCGGCTTGTTCTACGTTTAATG    |       |     |            |   |   |
| yp1053ms68   | 18 | 6  | 32 | 82         | L: CCGTTATCTGGTGAAAGTGAACAG   |       | 182 | 175 - 205  | 1 | 3 |
|              |    |    |    |            | R: GTCCGGTAGCCTGATTGTTTATT    |       |     |            |   |   |
| yp3634ms75   | 15 | 6  | 36 | 80         | L: ATGTGAGCTTGATTGCTGAGTAGT   |       | 210 | 180 - 210  | 1 | 3 |
|              |    |    |    |            | R: TCATATTTTAGGTGTTTTGCCTTTG  |       |     |            |   |   |
|              |    |    |    |            |                               |       |     |            |   |   |

Some structural characteristics of the tandem repeats are presented : U (unit length), N (number of repeats), %GC, V (% of conservation). PCR and electrophoresis conditions are as described in the material and methods section : annealing temperature is 60°C, elongation time is 60 seconds and gels are 2% agarose except when indicated otherwise. Total number of alleles means number of alleles in 3 Y. *pestis* and 2 Y. *pseudotuberculosis* strains.

| I able 2: Description of Bacillus anthracis polymorphic markers | Table 2: Description | of Bacillus anthracis | polymorphic markers |
|-----------------------------------------------------------------|----------------------|-----------------------|---------------------|
|-----------------------------------------------------------------|----------------------|-----------------------|---------------------|

| Marker      | U  | N  | %<br>GC | v  | Primer sequences                  | PCR  | Expected<br>product<br>length in<br>bp<br>(observed) | Estimated<br>size<br>range<br>(bp) | Number<br>of<br>alleles<br>in B.<br>anthracis | Total<br>number<br>of<br>alleles | PIC<br>index |
|-------------|----|----|---------|----|-----------------------------------|------|------------------------------------------------------|------------------------------------|-----------------------------------------------|----------------------------------|--------------|
| Ceb-Bams I  | 21 | 16 | 44      | 88 | L: GTTGAGCATGAGAGGTACCTTGTCCTTTT  |      | 485                                                  | 410-520                            | 5                                             | 5                                | 0.72         |
|             |    |    |         |    | R: AGTTCAAGCGCCAGAAGGTTATGAGTTATC |      | (520)                                                |                                    |                                               |                                  |              |
| Ceb-Bams 3  | 15 | 25 | 59      | 73 | L: GCAGCAACAGAAAACTTCTCTCCAATAACA |      | 544                                                  | 480-860                            | 6                                             | 9                                | 0.75         |
|             |    |    |         |    | R: TCCTCCCTGAGAACTGCTATCACCTTTAAC | 1%   |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 5  | 39 | 10 | 49      | 92 | L: GCAGGAAGAACAAAAGAAACTAGAAGAGCA | 53°C | 307                                                  | 305-385                            | 3                                             | 3                                | 0.56         |
|             |    |    |         |    | R:ATTATTAGCAGGGGCCTCTCCTGCATTACC  | 60s  |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 7  | 18 | 49 | 55      | 69 | L: GAATATTCGTGCCACCTAACAAAACAGAAA | 65°C | 1017                                                 | 600-1950                           | 9                                             | 9                                | 0.82         |
|             |    |    |         |    | R: TGTCAGATCTAGTTGGCCCTACTTTTCCTC | 1%   |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 13 | 9  | 70 | 60      | 79 | L: AATTGAGAAATTGCTGTACCAAACT      | 120s | 814                                                  | 330-850                            | 8                                             | 11                               | 0.79         |
|             |    |    |         |    | R: CTAGTGCATTTGACCCTAATCTTGT      | 1%   |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 15 | 18 | 12 | 57      | 77 | L: GTATTTCCCCCAGATACAGTAATCC      |      | 409                                                  | 410-610                            | 5                                             | 5                                | 0.59         |
|             |    |    |         |    | R: GTGTACATGTTGATTCATGCTGTTT      |      |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 21 | 45 | 11 | 43      | 75 | L: TGTAGTGCCAGATTTGTCTTCTGTA      |      | 676                                                  | 540-680                            | 3                                             | 3                                | 0.14         |
|             |    |    |         |    | R: CAAATTTTGAGATGGGAGTTTTACT      |      |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 22 | 36 | 15 | 39      | 81 | L: ATCAAAAATTCTTGGCAGACTGA        |      | 735                                                  | 590-950                            | 4                                             | 6                                | 0.51         |
|             |    |    |         |    | R: ACCGTTAATTCACGTTTAGCAGA        |      |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 23 | 42 | 11 | 37      | 85 | L: CGGTCTGTCTCTATTATTCAGTGGT      |      | 653                                                  | 570-820                            | 3                                             | 4                                | 0.49         |
|             |    |    |         |    | R: CCTGTTGCTCCTAGTGATTTCTTAC      |      |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 24 | 42 | 11 | 44      | 80 | L: CTTCTACTTCCGTACTTGAAATTGG      |      | 630                                                  | 335-670                            | 3                                             | 6                                | 0.2          |
|             |    |    |         |    | R: CGTCACGTACCATTTAATGTTGTTA      |      |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 25 | 15 | 14 | 45      | 60 | L: CCGAATACGTAAGAAATAAATCCAC      |      | 391                                                  | 375-390                            | 2                                             | 2                                | 0.07         |
|             |    |    |         |    | R: TGAAAGATCTTGAAAAACAAGCATT      |      |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 28 | 24 | 14 | 36      | 70 | L: CTCTGTTGTAACAAAATTTCCGTCT      |      | 493                                                  | 300-400                            | 3                                             | 3                                | 0.26         |
|             |    |    |         |    | R: TATTAAACCAGGCGTTACTTACAGC      |      | (400)                                                |                                    |                                               |                                  |              |
| Ceb-Bams 30 | 27 | 16 | 58      | 78 | L: AGCTAATCACCTACAACACCTGGTA      | 120s | • •                                                  | 200-890                            | 11                                            | 11                               | 0.77         |
|             |    |    |         |    | R: CAGAAAATATTGGACCTACCTTCC       | 1%   |                                                      |                                    |                                               |                                  |              |
| Ceb-Bams 31 | 9  | 64 | 58      | 57 | L: GCTGTATTTATCGAGCTTCAAAATCT     |      | 772                                                  | 300-850                            | 4                                             | 4                                | 0.32         |
|             |    |    |         |    | R: GGAGTACTGTTTGTTGAATGTTGTTT     | 1%   |                                                      |                                    |                                               |                                  |              |

Some structural characteristics of the tandem repeats are presented : U (unit length), N (number of repeats), %GC, V (% of conservation). PCR and electrophoresis conditions are as described in the material and methods section : annealing temperature is  $60^{\circ}$ C, elongation time is 60 seconds and gels are 2% agarose except when indicated otherwise. The expected product length is deduced from the sequencing data corresponding to the Ames strain. When the Ames strains typing does not fit with the expected value, the observed value is indicated between (). Only one side of the Ceb-Bams30 minisatellite can be identified in the available Ames sequence. The other side was identified in the course of the independent, partial sequencing of *B. anthracis* strains (Vergnaud and col., unpublished data). Total number of alleles includes alleles observed in the *B. cereus* strains. Polymorphism Information Index (PIC) or Nei's diversity index is calculated as  $1 - \Sigma$  (allele frequency)<sup>2</sup>.

| Table 3. Corres | nondence hetween | R anthracis allele siz | as and allele numbering |
|-----------------|------------------|------------------------|-------------------------|
| Table J. Corres | pondence between | D. unumucis ancie siz  | es and anele numbering  |

| allele nb    |       |       |       |       |       |       |      |        |      |     |
|--------------|-------|-------|-------|-------|-------|-------|------|--------|------|-----|
| marker name  | I     | 2     | 3     | 4     | 5     | 6     | 7    | 8      | 9    | 10  |
|              |       |       |       |       |       |       |      |        |      |     |
| Ceb-Bams1    | ~ 410 | ~ 430 | ~ 450 | ~ 480 | ~ 520 |       |      |        |      |     |
| Ceb-Bams3    | 484   | 514   | 544   | 559   | 574   | 589   | 704  | 734    | 857  |     |
| Ceb-Bams5    | 307   | 346   | 385   |       |       |       |      |        |      |     |
| Ceb-Bams7    | 603   | 1017  | 1305  | 1503  | 1557  | 1647  | 1809 | 1899   | 1953 |     |
| Ceb-Bams13   | 328   | 382   | 454   | 481   | 490   | 652   | 742  | 787    | 814  | 850 |
| Ceb-Bams   5 | 409   | 535   | 571   | 589   | 607   |       |      |        |      |     |
| Ceb-Bams21   | 541   | 63 I  | 676   |       |       |       |      |        |      |     |
| Ceb-Bams22   | 591   | 627   | 699   | 735   | ~ 900 | ~ 950 |      |        |      |     |
| Ceb-Bams23   | 569   | 611   | 653   | 821   |       |       |      |        |      |     |
| Ceb-Bams24   | 336   | 420   | 462   | 504   | 630   | 672   |      |        |      |     |
| Ceb-Bams25   | 376   | 391   |       |       |       |       |      |        |      |     |
| Ceb-Bams28   | ~ 300 | ~ 375 | ~ 400 |       |       |       |      |        |      |     |
| Ceb-Bams30   | 266   | 375   | 500   | 660   | 695   | 730   | 760  | 850 to |      |     |
|              |       |       |       |       |       |       |      |        |      |     |

| Ceb-Bams31 | 304   | 700 | 772 | 853 |       |       |       |
|------------|-------|-----|-----|-----|-------|-------|-------|
| vrrA       | 289   | 301 | 313 | 325 | 337   |       |       |
| vrrBl      | 184   | 193 | 220 | 229 | 256   | ~ 280 | ~ 290 |
| vrrB2      | ~ 135 | 153 | 162 | 171 | ~ 180 |       |       |
| vrrCl      | 400   | 502 | 520 | 538 | 583   | 613   | 685   |
| vrrC2      | 532   | 568 | 607 | 660 |       |       |       |
| CG3        | 153   | 158 |     |     |       |       |       |

Alleles have been numbered in increasing size order. When the allele size (in base-pairs) observed in the Ames strain was in agreement with the size expected according to Ames sequence data, the values indicated in the table assume that alleles differ in size by a multiple of the motif length. These likely values will have to be confirmed by more accurate size estimation tools and allele sequencing. When the allele size in Ames is not as expected (Ceb-Bams I and Ceb-Bams28), the estimated values are preceded by a ~. The Vrr and CG3 allele sizes were described in [2]; new alleles are indicated by a ~.

#### Acknowledgements

Minisatellite investigations in the laboratory are supported by grants from Délégation Générale de l'Armement (DGA/DSA/STTC and DGA/DSA/SP-Nuc). Preliminary sequence data for *B. anthracis* was obtained from The Institute for Genomic Research through the website at [http://www.tigr.org] . Sequencing of *B. anthracis* was accomplished with support from Office of Naval Research, Department of Energy, and National Institute of Allergy and Infectious diseases. We wish to thank the referees for the significant improvements they have suggested.

#### References

- van Belkum A, Scherer S, van Leeuwen W, Willemse D, van Alphen L, Verbrugh H: Variable number of tandem repeats in clinical strains of Haemophilus influenzae. Infect Immun 1997, 65:5017-27
- Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, Jackson PJ, Hugh-Jones ME: Multiple-Locus Variable-Number Tandem Repeat Analysis Reveals Genetic Relationships within Bacillus anthracis. J Bacteriol 2000, 182:2928-2936
- Frothingham R, Meeker-O'Connell WA: Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. *Microbiology* 1998, 144:1189-96
- Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C: Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. *Mol Microbiol* 2000, 36:762-71
- Adair DM, Worsham PL, Hill KK, Klevytska AM, Jackson PJ, Friedlander AM, Keim P: Diversity in a variable-number tandem repeat from Yersinia pestis. J Clin Microbiol 2000, 38:1516-9
- van Ham SM, van Alphen L, Mooi FR, van Putten JP: Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. Cell 1993, 73:1187-96
- Weiser JN, Love JM, Moxon ER: The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 1989, 59:657-65
- Bayliss CD, Field D, Moxon ER: The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. | Clin Invest 2001, 107:657-66
- Henderson IR, Owen P, Nataro JP: Molecular switches the ON and OFF of bacterial phase variation. Mol Microbiol 1999, 33:919-32
- Wang G, Ge Z, Rasko DA, Taylor DE: Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol Microbiol 2000, 36:1187-96
- Wilton JL, Scarman AL, Walker MJ, Djordjevic SP: Reiterated repeat region variability in the ciliary adhesin gene of Mycoplasma hyopneumoniae. *Microbiology* 1998, 144:1931-43
- 12. Vergnaud G, Denoeud F: Minisatellites: Mutability and Genome Architecture. Genome Res 2000, 10:899-907
- Kokoska RJ, Stefanovic L, Tran HT, Resnick MA, Gordenin DA, Petes TD: Destabilization of yeast micro- and minisatellite DNA

sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). *Mol Cell Biol* 1998, 18:2779-88

- Debrauwère H, Buard J, Tessier J, Aubert D, Vergnaud G, Nicolas A: Meiotic instability of human minisatellite CEBI in yeast requires DNA double-strand breaks. Nat Genet 1999, 23:367-71
- 15. De Bolle X, Bayliss CD, Field D, van de Ven T, Saunders NJ, Hood DW, Moxon ER: The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases. *Mol Microbiol* 2000, 35:211-22
- van Belkum A, Scherer S, van Alphen L, Verbrugh H: Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 1998, 62:275-93
- Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E: Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis [published erratum appears in Proc Natl Acad Sci U S A 2000 Jul 5;97(14):8192]. Proc Natl Acad Sci U S A 1999, 96:14043-8
- Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto : Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl Environ Microbiol 2000, 66:2627-30
- Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K, Adair DM, Hugh-Jones M, Kuske CR, Jackson P: Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 1997, 179:818-24
- 20. Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27:573-80
- Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG, et al: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393:537-44
- Engelke DR, Krikos A, Bruck ME, Ginsburg D: Purification of Thermus aquaticus DNA polymerase expressed in Escherichia coli. Anal. Biochem. 1990, 191:396-400
- Felsenstein J: PHYLIP Phylogeny Inference Package (Version 3.2). Cladistics 1989, 5:164-166

# 3.2 Développement de marqueurs polymorphes chez *Pseudomonas aeruginosa*

### 3.2.1 Etude MLVA

# 3.2.1.1 Caractéristiques des répétitions en tandem chez *P. aeruginosa*

Le séquençage du génome complet de la souche PAO1 publié en septembre 2000 (Stover 2000) a ouvert la voie à une étude plus exhaustive des répétitions en tandem chez *P. aeruginosa*. Dans l'article décrit dans le paragraphe précédent (Le Flèche 2001), nous avions montré que le génome de la souche PAO1 comportait un excès de répétitions en tandem dont le motif avait une taille multiple de 3 donc potentiellement localisées dans des régions codantes.

Le génome de *P. aeruginosa* est très riche en répétitions en tandem, il y en a 3225 au total, et la densité de répétitions d'une longueur de plus de 100 pb par Mb est de 48. Nous avons limité l'étude des répétitions à celles ayant :

- un motif d'une taille minimum de 9 paires de bases, d'une part pour éviter les locus de type microsatellites qui peuvent être des locus de contingence (Bayliss 2001), donc potentiellement instables et par conséquent de moindre intérêt pour une étude épidémiologique, et d'autre part, en raison des limites de la technique de séparation des produits de PCR sur gel d'agarose (méthode par ailleurs la moins coûteuse et la plus facilement accessible à tous les laboratoires) ;

- un nombre de répétitions minimum de 7, en raison de l'abondance de répétitions en tandem dans le génome de *P. aeruginosa*. En effet, nous avions constaté pour les répétitions tandem du génome de *B. anthracis* que la longueur totale de la répétition semblait être corrélée au polymorphisme.

Deux cent une répétitions en tandem satisfont la requête « U $\ge$  9pb et N $\ge$  7 ». La Figure 15 présente la distribution des 201 répétitions en fonction de la taille du motif. On voit très clairement la forte proportion de motifs d'une taille multiple de 3pb.



#### Figure 15

Nous avons comparé la distribution des 3325 répétitions en tandem du génome de PAO1 et des 201 répétitions testées pour cette étude MLVA, pour les critères de conservation du motif et de longueur totale de la répétition (ces deux critères ont été corrélés au polymorphisme chez certaines espèces bactériennes précédemment étudiées au laboratoire (Le Flèche 2001)).

La Figure 16 illustre la distribution des 3325 répétitions et des 201 répétitions en fonction de la conservation des motifs. La distribution des 201 répétitions en tandem étudiées ici présente un décalage de la conservation des motifs par rapport à la population totale, dans le sens d'une plus faible conservation.

La Figure 17 illustre la distribution des 3325 répétitions et des 201 répétitions en fonction de la longueur totale de la répétition. La majorité des répétitions chez *P. aeruginosa* est de petite taille (souvent avec seulement 2 motifs répétés). Les 201 répétitions ne constituent pas un échantillon représentatif des 3225 répétitions totales étant donné le biais introduit en faisant une requête sur le nombre de copies minimum de 7, sélectionnant ainsi les plus grandes répétitions. La Figure 17 montre le décalage de distribution des tailles dans les deux populations de répétitions en tandem considérées.



Figure 16



Figure 17

Nous avons ensuite mesuré expérimentalement dans une population de souches d'origine clinique le polymorphisme associé aux 201 répétitions en tandem candidates. La collection de 102 souches a été analysée par ribotypage dans une étude antérieure (Brisse 2000). Dans un premier temps nous avons sélectionné une sous-collection de 12 souches parmi les 102 totales, pour tester le polymorphisme des 201 répétitions. Les souches choisies pour cette étude préliminaire sont toutes de ribogroupe différent.

### 3.2.1.2 Résultats de l'étude MLVA

Vingt-trois parmi les 201 répétitions en tandem testées n'ont pu être amplifiées par PCR, malgré des tentatives de mise au point de PCR à gradient de température (voir Annexe 3). Cent soixante dix locus sont monomorphes pour la sous-collection des 12 souches. Les séquences des amorces utilisées ainsi que les conditions de PCR sont disponibles en Annexe 3 et sont également consultables dans la base de données du laboratoire.

Enfin, pour 8 minisatellites possédant au moins deux allèles, nous avons étendu l'analyse à toute la collection de souches (Onteniente 2003).

La Figure 18 représente la distribution des 201 répétitions le long du génome de PAO1 et indique la position des 8 répétitions polymorphes (A) ainsi que la distribution des répétitions monomorphes et polymorphes selon la taille du motif (B).

Un autre type d'arbre proposé par le logiciel BioNumerics positionne les souches de façon à minimiser la distance totale de l'ensemble des branches. L'analyse permet également de créer des génotypes « hypothétiques » dont l'existence réduit la taille totale. Cette représentation utilise le critère « categorical » c'est à dire que chaque marqueur est considéré comme un caractère indépendant et le même poids est donné à chaque allèle. La Figure 19 illustre la représentation « minimum spanning tree » des 87 souches *P. aeruginosa* étudiées par l'approche MLVA en utilisant les 7 marqueurs.



Figure 18 : Distribution des 201 répétitions en tandem sur le génome PAO1 et distribution des répétitions polymorphes/monomorphes



**Figure 19 :** Représentation « minimun spanning tree » de l'arbre MLVA des 90 souches *P. aeruginosa*.

L'éloignement des deux ribogroupes majoritaires est illustré par cette représentation des résultats de l'analyse MLVA. Si les sérotypes avaient été représentés sur cette figure, nous aurions observé également une répartition très claire des souches de sérotype O11 d'un côté et O12 de l'autre, se superposant aux deux ribogroupes majoritaires respectivement 87S-3 et 88S-2.

Nous avons vérifié la robustesse du typage MLVA par typage en aveugle de 10 souches de la collection déjà analysées. Ce type de contrôle montre qu'il sera possible de standardiser les analyses entre laboratoires. La standardisation était essentiellement possible, jusque là, pour la technique de MLST, dont les résultats sont comparables sans ambiguïté quel que soit le laboratoire ayant réalisé les analyses (en cas de désaccord, les chromatogrammes de séquençage peuvent être échangés pour évaluation). L'analyse MLVA est reproductible et d'une grande robustesse, elle se développera probablement dans les années à venir soit dans les laboratoires hospitaliers d'analyses biologiques, soit dans des laboratoires dédiés au typage (ce pourrait être par exemple en France le rôle des CNR, Centre Nationaux de Référence, ou de sociétés privées). La page web prototype développée au laboratoire permet à tout autre laboratoire de soumettre ses analyses afin de les comparer avec celles que nous avons réalisées et d'identifier les souches les plus proches d'une souche nouvelle.

Ce deuxième article (Onteniente 2003), intitulé " Evaluation of the Polymorphisms Associated with Tandem Repeats for *Pseudomonas aeruginosa* Strain Typing " (Evaluation du polymorphisme associé aux répétitions en tandem pour le typage de souches de *Pseudomonas aeruginosa*) a constitué la première étude MLVA réalisée chez *P. aeruginosa*.
Jusqu'à présent ce sont les techniques classiques de génotypage qui étaient utilisées pour le typage de cette bactérie, comme par exemple l'électrophorèse en champ pulsé, la technique « RAPD », le ribotypage, le typage des séquences IS (voir paragraphe 1.2.1.1.3).

#### Résumé de l'article:

Nous présentons le développement d'un outil de typage de Pseudomonas aeruginosa, l'analyse MLVA, (Multiple-Locus VNTR (Variable Number of Tandem Repeats) Analysis). Nous avons d'abord évalué le polymorphisme de 201 répétitions en tandem, sélectionnées parmi plus de 3000 présentes dans la souche PAO1, avec une collection test de 12 souches cliniques de génotypes distincts. Sept locus VNTR, facilement interprétables avec la technologie utilisée ici, ont été identifiés et ont servi au génotypage de 89 souches cliniques qui avaient été classées, dans une étude préalable, dans 46 ribotypes dont 2 très répandus. Soixante et onze génotypes MLVA différents ont été observés. A deux exceptions près, les souches de même ribotype ont été regroupées ensemble après l'analyse des données MLVA. Les 27 isolats appartenant au ribotype le plus fréquent ont été séparés en 14 génotypes MLVA, et les 18 souches du deuxième ribotype le plus fréquent ont quant à elles été séparées en 15 génotypes MLVA. L'analyse par électrophorèse en champ pulsé d'un sous-groupe de 17 souches du ribotype majoritaire avec l'enzyme SpeI permet de distinguer 7 types, identiques au nombre de génotypes MLVA observés dans ce sous-groupe. Nos données montrent que le typage MLVA de P. aeruginosa basé sur un jeu de 7 locus a un fort pouvoir discriminant. Du fait de sa grande reproductibilité et de sa facilité de transfert entre laboratoires, le typage MLVA représente un outil de surveillance épidémiologique de *P. aeruginosa* très prometteur. Par ailleurs, un service gratuit en ligne d'identification de souches par genotypage a été développé au laboratoire. En pratique cependant, les données MLVA peuvent être très simplement conservées et analysées localement à partir d'un tableau. Les lectures des résultats peuvent être manuelles (comparaison des tailles d'allèles avec une ou deux souches de référence) et ne requièrent pas les outils plus sophistiqués et coûteux tels que BioNumerics, qui ne se justifient que pour de grands projets en phase de développement et validation.

### Evaluation of the Polymorphisms Associated with Tandem Repeats for *Pseudomonas aeruginosa* Strain Typing

Lucie Onteniente,<sup>1</sup> Sylvain Brisse,<sup>2</sup><sup>†</sup> Panayotis T. Tassios,<sup>3</sup> and Gilles Vergnaud<sup>1,4</sup>\*

Institut de Génétique et Microbiologie, Université Paris Sud, 91405 Orsay cedex,<sup>1</sup> and Centre d'Etudes du Bouchet, BP3, 91710 Vert le Petit,<sup>4</sup> France; Eijkman-Winkler Institute, Utrecht University, 3584 CX Utrecht, The Netherlands<sup>2</sup>; and Department of Microbiology, Medical School, National and Kapodestrian University of Athens, M. Asias 75, 115 27 Athens, Greece<sup>3</sup>

Received 24 April 2003/Returned for modification 23 June 2003/Accepted 19 August 2003

We report on the development of a scheme for the typing of *Pseudomonas aeruginosa*, multiple-locus variable number of tandem repeat (VNTR) analysis (MLVA). We first evaluated the polymorphisms of 201 tandem repeat loci selected from more than 3,000 such sequences present in strain PAO1 with a test collection of 12 genotypically distinct clinical strains. Seven VNTR loci which can be easily scored with the technology used here were identified and used to genotype a collection of 89 clinical isolates that had previously been classified into 46 ribotypes, including 2 widespread ribotypes. Seventy-one different MLVA genotypes could be distinguished. With only two exceptions, strains with identical ribotypes were grouped together upon cluster analysis of the MLVA data. The 27 isolates with the most frequent ribotype were divided into 14 MLVA types, and the 18 isolates with the second most frequent ribotype were divided into 15 MLVA types. Analysis of a subset of 17 strains belonging to the major ribotype by pulsed-field gel electrophoresis with the enzyme *SpeI* distinguished seven types, identical to the number of MLVA types in this subset. Our data show that MLVA typing of *P. aeruginosa* based on the first set of loci has a high discriminatory power. Because MLVA is highly reproducible and easily portable among laboratories, it represents a very promising tool for the molecular surveillance of *P. aeruginosa*. A free, online strain identification service based on the genotyping data produced herein has been developed.

Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium and a common opportunistic pathogen in hospitals. It is the most important cause of lung colonization in patients with cystic fibrosis and has high rates of multidrug resistance (for a review, see reference 14). Accurate typing and characterization of isolates are essential to understanding the epidemiology of this pathogen. Serotyping is traditionally used for strain typing, but it cannot be easily applied to the mucoid strains found in a significant proportion of cystic fibrosis patients. The development of DNA-based typing methods has circumvented this difficulty, as well as the problem of the limited discriminatory power of serotyping. To be useful, a molecular surveillance tool should be highly discriminatory and reproducible. It should also be easy to standardize. Furthermore, the resulting data should be able to be easily stored, retrieved, and compared by use of databases that can be shared between laboratories. Finally, the overall cost (including that of labor) of the methodology should be as low as possible (23). The methods available at this time for the genotyping of P. aeruginosa include pulsed-field gel electrophoresis (PFGE), arbitrarily primed PCR, and ribotyping (1, 10, 19). The first two methods suffer from a lack of interlaboratory reproducibility (5, 9); and furthermore, the present "gold standard" with the greatest discriminatory power, PFGE, is generally too costly and laborintensive for routine clinical strain typing. On the other hand, automated ribotyping with the RiboPrinter (Qualicon, Wilmington, Del.) showed very high interlaboratory reproducibility (3) but suffered from a lack of discriminatory power when clinical *P. aeruginosa* strains were investigated (4).

Genetic markers called minisatellites or variable number of tandem repeats (VNTRs) were initially developed as the basis for fingerprinting the DNA of humans (11). More recently, minisatellites have been shown to exist in bacterial genomes as well, and the availability of whole-genome sequence data has opened the way to the systematic evaluation of tandem repeat polymorphisms (13, 24). When applicable, this method has been shown to fulfill most of the criteria required for an "ideal" typing system, including ease of use, speed, high discriminatory power, and reproducibility. The number of repeat units at each locus is usually estimated by measuring the sizes of the PCR products amplified with locus-specific primers flanking the repeat region. One kind of VNTR typing assay, often called multiple-locus VNTR analysis (MLVA), is based on a set of polymorphic tandem repeat loci. Approximately 20 loci are used for MLVA with Bacillus anthracis (13), Yersinia pestis (13), or the Mycobacterium tuberculosis complex (12).

In order to develop an MLVA scheme, one needs to identify polymorphic minisatellite loci, which must then be individually checked for variations of the repeat number among strains. The genome of *P. aeruginosa* strain PAO1 (20) is relatively rich in tandem repeats (13). We report on the identification of seven polymorphic loci and validation of their applicability in the MLVA scheme. Evaluation of these seven polymorphic

<sup>\*</sup> Corresponding author. Mailing address: Institut de Génétique et Microbiologie, Université Paris Sud, 91405 Orsay cedex, France. Phone: 33 1 69 15 62 08. Fax: 33 1 69 15 66 78. E-mail: gilles.vergnaud@igmors.u-psud.fr.

<sup>†</sup> Present address: Biodiversity of Emerging Bacterial Pathogens Unit, Institut Pasteur, 75724 Paris Cedex 15, France.

loci allows a high degree of discrimination among strains with a high degree of reproducibility and easy scoring.

#### MATERIALS AND METHODS

Tandem repeat locus identification. The sequence data (20) for *P. aeruginosa* PAO1 were obtained from the World Wide Web (http://www.genome .pseudomonas.com) and were processed by using the Tandem Repeats Finder (TRF) software (http://c3.biomath.mssm.edu/trf.html). The output was then imported into a database accessible via the Internet (http://minisatellites.upsud.fr), as described previously (13, 24). Tandem repeat loci are designated by using the nomenclature described previously (12); for instance, ms173-5186\_243bp\_14U is the tandem repeat locus named ms173, which appears at position 5186 kb in the PAO1 genome with a 243-bp repeat unit and 14 units in PAO1 (Table 1).

Isolates and DNA preparation. A total of 102 isolates were included in the present investigation as representatives of (i) all 53 ribogroups previously identified (one isolate per ribogroup) (4) and (ii) the geographic distribution of the two most frequent ribogroups found (87-S-3 [30 additional isolates] and 88-S-2 [19 additional isolates]) (4). The 203 isolates previously studied were clinical isolates collected from 20 European hospitals between 1997 and 1999 and had been analyzed by automated ribotyping (4). Fifty-three ribogroups (a ribogroup being defined as a set of strains showing the same ribotype; i.e., not a single band difference was detected among their profiles obtained by automated ribotyping with PvuII) were initially identified among 203 isolates. Four ribogroups comprised approximately half of the isolates, with the two most frequent ones being ribotype 87-S-3, with 43 isolates, and ribotype 88-S-2, with 28 isolates.

The polymorphisms of candidate VNTR loci were initially evaluated by using a subset of 12 isolates from different ribogroups (see Fig. 2).

Isolates were grown at  $37^{\circ}$ C in Luria-Bertani broth. One milliliter of an overnight culture was centrifuged at  $5,000 \times g$  for 10 min. A QIAamp DNA mini kit (Qiagen, Hilden, Germany) was used for DNA extraction, as recommended by the manufacturer, with an extended lysis step (5 h at 55°C).

Minisatellite PCR amplification and genotyping. The PCR mixtures (15 µl) contained 1 ng of DNA, 1× Taq Reaction Buffer (Qbiogen, Illkirch, France), 1 U of Taq DNA polymerase (Qbiogen), 200 µM each deoxynucleoside triphosphate, and 0.3  $\mu$ M each flanking primer (for primer sequences, see Table 1). PCRs were performed in an MJ Research PTC200 thermocycler. Initial denaturation at 96°C for 5 min was followed by 30 cycles of denaturation at 96°C for 20 s, annealing at 60°C for 30 s, and elongation at 65°C for 90 s. The final extension step was 5 min at 65°C. Different annealing temperatures and/or elongation times were used for ms173-5186 243bp and ms194-5915 12bp (for ms173, the annealing temperature was 64°C and the extension time was 5 min at 70°C; for ms194, the annealing temperature was 65°C and the extension time was 1 min at 70°C). Five microliters of each of the PCR products was run on standard 1% (ms173), 2% (ms142, ms172, ms194) or 3% (ms010, ms061, ms077, ms127) agarose gels (Qbiogen or ICN, Aurora, Ohio) in 0.5× TBE (Tris-borate-EDTA) buffer at a voltage of 10 V/cm. Gel runs (bromophenol blue position) of 20 cm (ms127, ms142), 30 cm (ms010, ms061, ms077, ms172), or 40 cm (ms173) were used according to the PCR product size and motif length. Gels were stained with ethidium bromide, visualized under UV light, and photographed (Vilber Lourmat, Marne la Vallée, France). The size markers used were a 100- or 20-bp ladder (Bio-Rad, Hercules, Calif.) or a 1-kb ladder plus (Gibco-BRL, Cergy Pontoise, France). Gel images were analyzed with the Bionumerics software package (version 3.0; Applied Maths, Sint-Martens-Latem, Belgium).

**PFGE typing and analysis.** DNA for PFGE was prepared as described previously (21) and digested with *SpeI* (New England Biolabs, Beverly, Mass.). Electrophoresis in a CHEF DRIII apparatus (Bio-Rad, Milano, Italy) was at 6 V/cm and 14°C for 21 h, with switching times linearly ramped from 5 to 23 s. The gels were stained with ethidium bromide and visualized under UV illumination with the E.A.S.Y. Win32 system (Herolab, Wiesloch, Germany).

**Data analysis.** Band size estimates were exported from the Bionumerics software and converted to numbers of units. The resulting data were imported back into Bionumerics software for use for clustering analysis with the categorical coefficient and Ward clustering parameter. Use of the categorical coefficient implies that the character states are considered unordered. The same weight is given to a large or a small number of differences in the number of repeats at any locus. The website used for identification (http://bacterial-genotyping.igmors.upsud.fr/) was developed by using the BNserver application (version 3.0; Applied Maths).

#### RESULTS

Screening for informative and reliable VNTR loci in the P. aeruginosa genome. The TRF software (2) identified more than 3,000 tandem repeats within the P. aeruginosa PAO1 genome. Because no general rule has been described to predict tandem repeat polymorphisms directly from the sequence of a single allele (7, 13), present approaches rely upon systematic testing, especially for species in which only one genome has been sequenced (12). Since distinct alleles of VNTR loci with longer repeat units are generally easier to score on agarose gels, we decided to evaluate loci with repeat units more than 9 bp long. A total of 201 such tandem repeats with at least seven units each in the PAO1 sequence were identified with TRF software and were evaluated. Of these, 23 gave weak amplification signals with the set of primers used and were not considered further. One hundred seventy loci within the screening strain collection were monomorphic and were considered of very limited value for P. aeruginosa strain typing. Finally, only eight loci were polymorphic, defined here as showing at least two alleles among the screening strain collection (Table 1). Figure 1 shows examples of the PCR products obtained for the different loci. The number of alleles per locus ranged from 2 to 16. The two most polymorphic loci, at positions 0098 kb (ms010) and 1844 kb (ms061), varied by multiples of 6-bp units instead of the 12-bp repeat unit initially suggested by the database. The locus at position 5915 (ms194) varied by multiples of 12-bp units. Although the alleles at this locus were highly polymorphic, they could not be easily and reproducibly scored with the technology used here (ordinary agarose gel electrophoresis), given the range of allele sizes (600 to 700 bp), and this locus was therefore not characterized further.

MLVA of clinical P. aeruginosa isolates. MLVA analysis with the seven loci selected was then performed with the extended representative collection of 102 strains (Fig. 1 illustrates the setup of the MLVA assay for the seven loci). One or two loci of 13 strains (12%) could not be amplified (total number of missing PCR products, 17; data not shown). The PCR products could therefore be scored for all seven loci in 89 strains. The quality of the data produced was evaluated by retyping 10 coded samples. The correct MLVA genotype (Fig. 2) could be assigned to each coded sample. Figure 2 shows the results of clustering analysis for the 89 strains. PAO1 was included, based on the genome sequence data available and the estimated repeat numbers indicated in Table 1. MLVA discriminated 72 genotypes. This was higher than the number of ribotypes (46 in this set of strains) and serotypes (12 among the 68 typeable strains). Isolates with different ribotypes were all distinguished by MLVA, with only two exceptions: isolate 18A218 (ribotype 171-S-2) and isolate 18A403 (ribotype 172-S-8) from Spain (the ribotype patterns were very similar) (4). All isolates with identical ribotypes were clustered together, with only two exceptions: isolate 09A318 (ribotype 87-S-3) and isolate 12A241 (88-S-2). However, although strain 09A318 clustered in a distinct branch, at five of seven loci its MLVA genotype showed alleles that are generally encountered in the other strains of ribotype 87-S-3. On the contrary, strain 12A241 also had a discrepant serotype (serotype O1) compared to those of all other strains of ribotype 88-S-2 (serotype O11), so one can suspect a strain mix-up in this case. Ribotypes 87-S-3

| Locus name <sup>a</sup>      | Associated open<br>reading frame | Motif<br>length<br>(bp) | No. of<br>units<br>in<br>PAO1 | % G+C content | %<br>Conservation | Primer sequence <sup>b</sup>                        | Expected<br>PCR<br>product<br>length in<br>PAO1 (bp) | Estimated size<br>range (bp) | No. of alleles | Polymorphism<br>index |
|------------------------------|----------------------------------|-------------------------|-------------------------------|---------------|-------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------|----------------|-----------------------|
| ms010-0098_6bp <sup>c</sup>  | PA0081                           | 6                       | 11                            | 65            | 100               | L: GCAGGAACGCTTGCAGCAGGT<br>R: CTTCGCCGACCCAGGGATCA | 167                                                  | 143–233                      | 16             | 0.91                  |
| ms061-1844_6bp <sup>a</sup>  | pscP                             | 6                       | 12                            | 65            | 98                | L: CTTGCCGTGCTACCGATCC<br>R: CCCCCATGCCAGTTGC       | 127                                                  | 85–139                       | 10             | 0.87                  |
| ms077-2263_39bp <sup>c</sup> | pcoA                             | 39                      | 5                             | 57            | 93                | L: GCGTCATGGTCTGCATGTC<br>R: TATACCCTCTTCGCCCAGTC   | 442                                                  | 349–520                      | 7              | 0.61                  |
| ms127-3496_15bp              | PA3115                           | 15                      | 8                             | 72            | 52                | L: CTCGGAGTCTCTGCCAACTC<br>R: GGCAGGACAGGATCTCGAC   | 210                                                  | 210-225                      | 2              | 0.45                  |
| ms142-3873_115bp             | PA3463                           | 115                     | 7                             | 66            | 94                | L: AGCAGTGCCAGTTGATGTTG<br>R: GTGGGGCGAAGGAGTGAG    | 890                                                  | 200–775                      | 7              | 0.68                  |
| ms172-5083_54bp              | PA4541                           | 54                      | 12                            | 64            | 72                | L: GGATTCTCTCGCACGAGGT<br>R: TACGTGACCTGACGTTGGTG   | 789                                                  | 573-843                      | 8              | 0.75                  |
| ms173-5186_243bp             | PA4625                           | 243                     | 14                            | 61            | 81                | L: CTGCAGTTCGCGCAAGTC<br>R: ATTTCAGCCAGCGTTACCAA    | 3,503                                                | 1,073–4,718                  | 10             | 0.82                  |
| ms194-5915_12bp <sup>c</sup> | algP                             | 12                      | 45                            | 70            | 64                | L: CCTTAGGAGGCGCTGGTC<br>R: AGCTGCTGGCAAGGCTCT      | 690                                                  | 600-700                      | 8              | 0.78                  |

TABLE 1. Characteristics of tandem repeat loci

<sup>a</sup> Loci are listed according to their positions in the PAO1 genome. The proposed reference name includes the size of the repeat unit.

<sup>b</sup> L, left; R, right. <sup>c</sup> The observed length variations do not fit with the repeat unit proposed in the minisatellite database but, rather, suggest a smaller (ms010, ms061, ms194) or a larger (ms077) unit for tandem repeat variation. This is due to the emergence of a new tandem repeat unit within a larger tandem repeat. The new unit sequence is derived from the preexisting repeat but has a different length. This was checked in particular for ms077 by sequencing the different alleles (data not shown; the data are available on request).

4994



FIG. 1. MLVA setup on agarose gels. The usual setup for the running of MLVA on agarose gels is shown. Six DNA samples (including one reference DNA control lane on the left [with isolate 05A400; see Fig. 2]) are flanked by size markers (a 20-bp, 100-bp, or 1-kb ladder, according to the locus being typed). The experiment whose results are shown was part of the reproducibility test. Five blind-coded samples are numbered from 1 to 5 (strains 03D021, 04A036, 11C010, 22D032, and 18E049, respectively). The sizes (in base pairs) (indicated on the left of each gel) can be deduced by visual inspection of the patterns observed by taking into account the MLVA type for the reference strain (Ref) used here (isolate 05A400, genotype 12-6-3.5-8-3-11-11).





FIG. 2. Dendrogram deduced from the clustering analysis of the 90 strains (including strain PAO1). The first column on the left identifies the isolates (the screening set comprised strains 03D021, 15A178, 03D009, 09A068, 08A461, 08D005, 01A105, 04A036, 05A400, 35C022, 03C001, 19A211). The second column indicates the DNA batch, and the third column indicates the country of origin of each isolate. The fourth column indicates the ribotype, as reported previously (4). The fifth column contains the serogroup for isolates which could be typed by serotyping. The sixth column indicates the PFGE type and subtype of isolates tested by PFGE, while the last seven columns indicate the MLVA types (repeat copy number) at loci ms010, ms061, ms077, ms127, ms142, ms172, and ms173, respectively. The number of units is deduced from the sizes of the PCR products and was formally checked by sequencing only for the ms077 locus (data not shown).

(27 isolates) and 88-S-2 (18 isolates) were subdivided into 14 and 15 MLVA types, respectively. The subtyping results were in good agreement with the geographic origins of the strains, as isolates with the same MLVA genotype most often originated from the same center (indicated by the two first numbers of the isolate code in Fig. 2).

In order to compare the discriminatory power of MLVA with that of the present gold standard, 17 ribotype 87-S-3 isolates were also typed by PFGE. PFGE resulted in seven distinct types, which were further distinguished into 12 subtypes (indicated in Fig. 2 by Arabic numbers and lowercase letters), according to published criteria (22); among the isolates in this set, seven types were also distinguished by MLVA.

The results of a comparison of the MLVA genotypes with the serotyping data were in agreement with the single origin of serotype O12 postulated earlier (18) as well as with the greater genotypic diversity of serotype O11 isolates (21).

The MLVA genotypes of the strains studied here were loaded onto our web server. They can be accessed and compared with the MLVA genotypes of new, unknown strains. Identification queries can be run from the strain identification page (http://bacterial-genotyping.igmors.u-psud.fr/), as described elsewhere (12).

#### DISCUSSION

Although the P. aeruginosa genome is relatively rich in tandem repeats, only 8 of the 201 tandem repeats tested by the protocol described here proved to be polymorphic. This is in contrast to the polymorphism found in other bacterial species, including some with low levels of genetic polymorphism at housekeeping loci, such as B. anthracis, Y. pestis, and M. tuber*culosis* (12, 13). It is very unlikely that the low levels of diversity of VNTR loci found in the present sample are due to the screening strain collection chosen, since these 12 strains could all be distinguished by ribotyping and had originated from seven different countries. Our results show that minisatellite loci are more stable in *P. aeruginosa* than in other species with lower overall population genetic diversity. This suggests distinct evolutionary mechanisms for tandem repeats, such as various levels of slipped strand mispairing and repair during replication (15). The present investigation evaluated all tandem repeats with a repeat unit of 9 bp or more and at least 7 units. Additional polymorphic markers could be identified by using different queries. For instance, querying of the P. aeruginosa tandem repeat database (http://minisatellites.u-psud.fr) for tandem repeats with an internal conservation of at least 90% identifies 50 such loci, none of which was investigated here. It is likely that more polymorphic loci may be obtained if loci with unit lengths smaller than 9 bp (the threshold used in our screening procedure) are chosen, since in the present study the smallest units were the most polymorphic (Table 1).

One of the eight polymorphic markers identified, ms194 (position 5915), was not used in the final analysis because of the difficulty of scoring the alleles by simple agarose gel electrophoresis. Preliminary sequencing results showed that the level of sequence diversity at this locus is very high and that alleles containing an identical number of repeat units can have distinct sequences (data not shown). This tandem repeat is located within algP, a gene implicated in the regulation of

mucoidy in *P. aeruginosa*, and its associated polymorphism was first described by Deretic and Konyecsni (8). The use of another approach, such as polyacrylamide gel or capillary electrophoresis, which offer higher degrees of resolution, would probably solve this issue, albeit at a higher overall cost.

One (and sometimes two) of the seven loci of 12% of the strains typed failed to be amplified, despite multiple amplification attempts. This may reflect the fact either that the corresponding locus is missing or that sequence divergence results in mispriming. Further investigations will be required (including tests with new primer pairs) before this lack of amplification can be used as additional data. In the course of this preliminary investigation, the corresponding strains were not included in the final analysis (Fig. 2).

The collection of isolates tested here was originally assembled with two distinct but complementary aims: first, to be representative of European clinical P. aeruginosa isolates, and second, to include geographically diverse strains from among the two most frequent ribotypes in order to check if MLVA could subdivide these two groups of isolates. The validity of MLVA for clustering analysis and evaluation of the phylogenetic relationships among strains is not yet formally established. In a recent work, Le Flèche et al. (12) empirically selected clustering parameters to analyze strains from the M. tuberculosis complex. This was made possible by the extensive knowledge of the evolutionary relationships and the underlying epidemiology independently generated with other markers to distinguish M. tuberculosis complex strains. The same parameters have been applied in the present study. The clustering proposed here (Fig. 2) shows similarities with the clustering reported previously, which was based on ribotyping: isolates not distinguished by ribotyping are also generally clustered by MLVA (Fig. 2). This suggests that MLVA does retain some amount of phylogenetic information which can be used to trace the evolutionary histories and relationships of genotypes, as has also been found for other organisms (12). Exceptions to this general rule are easily explained by the fact that cluster analysis is based on only a few informative characters, and therefore, a difference at a single locus can alter the positioning of strains in the dendrogram. Conversely, alleles of different origins may be of identical size (homoplasy), which will also alter the clustering analysis. Allele sequencing, at least with a representative strain collection, may eventually help correct some of these inconsistencies. In any case, for more distantly related genotypes, the relationships depicted by clustering analysis may become increasingly less meaningful, especially in light of the relatively frequent occurrence of horizontal transfer among P. aeruginosa strains (6, 16, 17), which can obscure the evidence of a common ancestral lineage among strains.

#### ACKNOWLEDGMENTS

Work on human bacterial pathogen identification is supported by grants from the Délégation Générale de l'Armement to L.O. and G.V. PFGE typing was performed in the framework of the Genetic Epidemiology Network for Europe (GENE) project (contract QLK2-2000-01404) of the Fifth Framework Program of the European Union.

P.T.T. is grateful to Georgia Diamantopoulou for excellent technical assistance with PFGE. S.B. thanks Jan Verhoef (Utrecht University) for continuous support.

#### REFERENCES

- Bennekov, T., H. Colding, B. Ojeniyi, M. W. Bentzon, and N. Hoiby. 1996. Comparison of ribotyping and genome fingerprinting of *Pseudomonas aeruginosa* isolates from cystic fibrosis patients. J. Clin. Microbiol. 34:202–204.
- Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:573–580.
- Brisse, S., V. Fussing, B. Ridwan, J. Verhoef, and R. J. Willems. 2002. Automated ribotyping of vancomycin-resistant *Enterococcus faecium* isolates. J. Clin. Microbiol. 40:1977–1984.
- Brisse, S., D. Milatovic, A. C. Fluit, K. Kusters, A. Toelstra, J. Verhoef, and F. J. Schmitz. 2000. Molecular surveillance of European quinolone-resistant clinical isolates of *Pseudomonas aeruginosa* and *Acinetobacter* spp. using automated ribotyping. J. Clin. Microbiol. 38:3636–3645.
- Dabrowski, W., U. Czekajlo-Kolodziej, D. Medrala, and S. Giedrys-Kalemba. 2003. Optimisation of AP-PCR fingerprinting discriminatory power for clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 218:51–57.
- Denamur, E., B. Picard, G. Decoux, J. B. Denis, and J. Elion. 1993. The absence of correlation between allozyme and rrn RFLP analysis indicates a high gene flow rate within human clinical *Pseudomonas aeruginosa* isolates. FEMS Microbiol. Lett. 110:275–280.
- Denoeud, F., G. Vergnaud, and G. Benson. 2003. Predicting human minisatellite polymorphism. Genome Res. 13:856–867.
- Deretic, V., and W. M. Konyecsni. 1990. A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in *Pseudomonas aeruginosa*. J. Bacteriol. 172:5544–5554.
- Foissaud, V., J. M. Puyhardy, J. C. Chapalain, H. Salord, J. J. Depina, M. Morillon, P. Nicolas, and J. D. Perrier-Gros-Claude. 1999. Inter-laboratory reproducibility of pulsed-field electrophoresis for the study of 12 types of *Pseudomonas aeruginosa*. Pathol Biol (Paris) 47:1053–1059. (In French.)
- Grundmann, H., C. Schneider, D. Hartung, F. D. Daschner, and T. L. Pitt. 1995. Discriminatory power of three DNA-based typing techniques for *Pseudomonas aeruginosa*. J. Clin. Microbiol. 33:528–534.
- Jeffreys, A. J., V. Wilson, and S. L. Thein. 1985. Individual-specific 'fingerprints' of human DNA. Nature 316:76–79.
- Le Flèche, P., M. Fabre, F. Denoeud, J. L. Koeck, and G. Vergnaud. 2002. High resolution, on-line identification of strains from the *Mycobacterium tuberculosis* complex based on tandem repeat typing. BMC Microbiol. 2:37.
- Le Flèche, P., Y. Hauck, L. Onteniente, A. Prieur, F. Denoeud, V. Ramisse, P. Sylvestre, G. Benson, F. Ramisse, and G. Vergnaud. 2001. A tandem

repeats database for bacterial genomes: application to the genotyping of *Yersinia pestis* and *Bacillus anthracis*. BMC Microbiol. **1**:2.

- Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34:634–640.
- Lopes, J., H. Debrauwere, J. Buard, and A. Nicolas. 2002. Instability of the human minisatellite CEB1 in rad27Delta and dna2–1 replication-deficient yeast cells. EMBO J. 21:3201–3211.
- 16. Picard, B., E. Denamur, A. Barakat, J. Elion, and P. Goullet. 1994. Genetic heterogeneity of *Pseudomonas aeruginosa* clinical isolates revealed by esterase electrophoretic polymorphism and restriction fragment length polymorphism of the ribosomal RNA gene region. J. Med. Microbiol. 40:313–322.
- Pirnay, J. P., D. De Vos, C. Cochez, F. Bilocq, A. Vanderkelen, M. Zizi, B. Ghysels, and P. Cornelis. 2002. *Pseudomonas aeruginosa* displays an epidemic population structure. Environ. Microbiol. 4:898–911.
- Pitt, T. L., D. M. Livermore, D. Pitcher, A. C. Vatopoulos, and N. J. Legakis. 1989. Multiresistant serotype O 12 *Pseudomonas aeruginosa*: evidence for a common strain in Europe. Epidemiol. Infect. **103**:565–576.
- Renders, N., Y. Romling, H. Verbrugh, and A. van Belkum. 1996. Comparative typing of *Pseudomonas aeruginosa* by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. J. Clin. Microbiol. 34:3190–3195.
- 20. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. Nature 406:959–964.
- Tassios, P. T., V. Gennimata, A. N. Maniatis, C. Fock, N. J. Legakis, and the Greek *Pseudomonas aeruginosa* Study Group. 1998. Emergence of multidrug resistance in ubiquitous and dominant *Pseudomonas aeruginosa* serogroup O:11. J. Clin. Microbiol. 36:897–901.
- Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233–2239.
- van Belkum, A., M. Struelens, A. de Visser, H. Verbrugh, and M. Tibayrenc. 2001. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin. Microbiol. Rev. 14:547–560.
- Vergnaud, G., and F. Denoeud. 2000. Minisatellites: mutability and genome architecture. Genome Res. 10:899–907.

#### 3.2.1.3 Caractéristiques des répétitions en tandem polymorphes

#### 3.2.1.3.1 Longueur des motifs répétés

Pour la moitié des 8 locus polymorphes, les différences de taille entre les allèles observés expérimentalement ne correspondent pas à la taille du motif sélectionné dans la base de données (critères de choix de la base : longueur totale de la répétition puis conservation du motif). En soumettant ces séquences au logiciel TRF, nous avons constaté qu'il y avait plusieurs répétitions possibles pour ces locus, comme le résume le Tableau 8.

|            |                 | U : taille du | N : nombre de    | V : conservation par |       |
|------------|-----------------|---------------|------------------|----------------------|-------|
| Répétition | s en tandem ::  | motif (nh)    | répétitions dans | rapport au consensus | % G+C |
|            |                 | mour (po)     | PAO1             | (%)                  |       |
|            | base de données | 12            | 14               | 67                   | 71    |
| ms010_0098 | observation     | (             | 11               | 100                  | (5    |
|            | expérimentale   | 0             | 11               | 100                  | 05    |
| ms061_1844 | base de données | 12            | 16               | 64                   | 73    |
|            | observation     | (             | 10               | 0.0                  |       |
|            | expérimentale   | 6             | 12               | 98                   | 65    |
|            | base de données | 15            | 18               | 50                   | 63    |
| ms077_2263 | observation     | 20            | 4                | 02                   | 57    |
|            | expérimentale   | 39            | 4                | 93                   | 57    |
|            | base de données | 75            | 8                | 88                   | 71    |
| ms194_5915 | observation     | 12            | 45               | 64                   | 70    |
|            | expérimentale   | 12            | 40               | 04                   | /0    |

Tableau 8 : Caractéristiques des répétitions redondantes pour 4 locus chez P. aeruginosa

Nous avons constaté pour trois de ces locus (ms010, ms061 et ms077) que les variations de taille observées correspondaient au motif répété le mieux conservé. Or la conservation moyenne des motifs dans les 201 répétitions en tandem est faible (56%) et elle ne reflète pas la conservation moyenne de 70% observée pour les 3225 répétitions totales du génome PAO1 à partir des données de séquençage. Nous n'avions pas fait de requête selon le critère de conservation des motifs.



Figure 20 : Exemple de répétitions redondantes détectées par le TRF au locus ms010.

La Figure 20 illustre deux représentations de la répétition en tandem détectée par « TRF » dans la séquence de ms010, avec les deux tailles de motifs possibles, et des conservations très

différentes. En regardant plus en détail les séquences répétées proposées par le logiciel TRF, nous avons constaté par exemple pour ms010 que la répétition de 14 fois 12 pb est constituée d'une première série de motifs de 6 pb parfaitement conservés puis, dans la deuxième moitié, d'une série de motifs moins bien conservés (Figure 20). Un microsatellite semble donc avoir émergé à l'intérieur d'une répétition en tandem plus ancienne. Nous avons sélectionné une autre amorce droite dans la partie peu conservée de la séquence pour obtenir des produits de PCR relativement petits et ainsi pouvoir observer sur gel d'agarose les variations de taille de 6 pb.

En ce qui concerne ms194, deux tailles de motif sont détectées par le logiciel TRF, l'une de 75 pb et l'autre de 12 pb, moins bien conservée. Les différences de taille des allèles observées sur gel ne correspondaient pas à des tailles multiples de 75 pb, mais à une différence beaucoup plus petite. Pour confirmer cette observation et écarter l'hypothèse d'anomalies de migration, nous avons séquencé quelques allèles de ms194 (voir paragraphe 3.2.4).

#### 3.2.1.3.2 Polymorphisme

Le nombre de répétitions en tandem polymorphes est faible, avec seulement 8 répétitions polymorphes pour la collection de souches testées (soit 4.5% des 178 répétitions en tandem).

Une étude récente des critères prédictifs du polymorphisme des répétitions en tandem chez l'homme a montré une corrélation entre le pourcentage en GC et le polymorphisme (Denoeud 2003). Par ailleurs, l'étude des répétitions en tandem dans le génome de *Yersinia pestis* a montré une corrélation entre la conservation des motifs et le polymorphisme. Chez *Bacillus anthracis*, les deux critères prédictifs du polymorphisme observés sont la longueur totale de la répétition et le pourcentage en bases G et C (GC%) (Le Flèche 2001).

Il n'apparaît pas de corrélation entre le nombre d'allèles observés et la longueur totale de la répétition, ou le pourcentage en GC. Ces deux paramètres ne semblent pas être des critères prédictifs du polymorphisme des répétitions en tandem chez *P. aeruginosa*.

En revanche, la Figure 21 montre *a posteriori* que le critère de conservation de la répétition aurait pu être un critère (imparfaitement) prédictif du polymorphisme des répétitions en tandem de *P. aeruginosa*.



**Figure 21 :** Indice de polymorphisme en fonction du pourcentage de conservation des motifs chez *P. aeruginosa* 

## 3.2.2 Stabilité des 8 répétitions en tandem polymorphes chez *P. aeruginosa*

La stabilité des répétitions en tandem polymorphes identifiées chez *P. aeruginosa* a été testée au cours de la croissance bactérienne sur une période de 3 semaines. En effet, il est important de savoir si les marqueurs proposés dans cette étude ont une valeur épidémiologique au moins à court terme, ou s'ils présentent une instabilité, en particulier en ce qui concerne les petits motifs de 6 pb qui pourraient être des locus de contingence.

Pour cela, six souches de *P. aeruginosa* ont été mise en culture liquide (LB) et diluées quotidiennement. Des mesures de densité optique à 600nm ont été prises à chaque nouvelle dilution pour pouvoir calculer le nombre total de générations qu'ont subi les cultures après 3 semaines. Les cultures atteignent la phase stationnaire au bout de 500 minutes environ, et restent en phase stationnaire pendant plusieurs heures jusqu'à la dilution suivante. Pendant la phase stationnaire, des remaniements chromosomiques peuvent se produire. Le nombre de générations n'est donc pas le seul critère à considérer. Des courbes de croissance des différentes souches ont également été réalisées pour vérifier si celles-ci présentent des différences de temps de génération. Les 6 souches ont des courbes de croissance très semblables (temps de génération de 30 minutes environ). Le nombre de générations a donc été calculé à partir des données d'une seule des six souches.

Des PCR ont été réalisées sur les échantillons prélevés au début de l'expérience et après les 3 semaines de dilutions. Les tailles des allèles observés pour les 8 répétitions en tandem de l'étude MLVA sont identiques avant et après les 3 semaines de culture. On peut simplement conclure à une stabilité de ces marqueurs à court terme. Pour pouvoir utiliser ces marqueurs pour des études épidémiologiques plus globales, il faudrait faire l'expérience sur un plus grand nombre de générations et séquencer les allèles.

Le nombre de générations est de 200 environ, ce qui est peu. Les cellules ont passé l'essentiel de la durée de l'expérience en phase stationnaire. Pour tester un plus grand nombre de générations, il serait préférable d'utiliser un chemostat dans lequel le milieu est renouvelé de façon régulière et permet d'entretenir sur un grand nombre de générations une culture bactérienne.

# 3.2.3 Séquençage de deux répétitions en tandem : ms77 et ms194

## 3.2.3.1 Séquençage de la répétition ms77

La Figure 2 de l'article sur le typage par polymorphisme de répétitions en tandem appliqué à *P. aeruginosa* illustre à quel point différentes répétitions en tandem peuvent avoir des comportements différents. Les deux marqueurs ms10 et ms61 à motif de 6 paires de bases s'apparentent plus à des microsatellites qu'à des minisatellites. Leur degré de polymorphisme est très élevé, et on observe que des souches ayant des allèles de même taille peuvent être placées en des positions très éloignées de l'arbre, et réciproquement. Ces marqueurs sont très utiles en épidémiologie locale (étude d'une épidémie) mais leur valeur phylogénétique pour des études plus globales est sans doute limitée. La Figure 22 présente une analyse des données faite en ne tenant pas compte de ms10 et ms61. Seulement 40 génotypes sont distingués.

|          |                                         | Souche<br>014129<br>22019<br>054345<br>350022<br>01451<br>154178<br>104441<br>184020<br>030009<br>094068<br>155070<br>064340<br>030001<br>030021<br>© 094318<br>© 054430<br>030001<br>© 054430<br>© 054430<br>© 054430<br>© 054430<br>© 054430<br>© 054450<br>© 054500<br>© 0545000<br>© 054500<br>© 0545000<br>© 05450000<br>© 05450000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n°ADN<br>Paeru#0119<br>Paeru#015<br>Paeru#015<br>Paeru#005<br>Paeru#012<br>Paeru#014<br>Paeru#018<br>Paeru#018<br>Paeru#038<br>Paeru#038<br>Paeru#038<br>Paeru#037<br>Paeru#037<br>Paeru#037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | °° 9<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>11<br>12<br>13<br>13 | Origine<br>Austria<br>Turkey<br>France<br>South Afri<br>Austria<br>Portugal<br>Italy<br>Spain<br>France<br>Greece<br>Greece<br>Portugal<br>France | AF<br>AF<br>EK | <b>ib09</b><br>87-S-1<br>149-S-3<br>161-S-5<br>148-S-5<br>169-S-2<br>147-S-3<br>162-S-6<br>170-S-6<br>169-S-3<br>99-S-2 | 011<br>06<br>07       | owpe<br>PFG | F (ms <sup>1</sup> )<br>9<br>10<br>8<br>15<br>10<br>18<br>13 | 0, ms61<br>8<br>9<br>10<br>5<br>11<br>12<br>10 | 3<br>3<br>2.5<br>3.5<br>3.5<br>3.5<br>3.5 | ms121<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | ms1<br>3<br>3<br>5<br>6<br>4 | A2 mst1<br>10<br>10<br>10<br>10<br>8<br>8 | 2 ms 17<br>10<br>10<br>14<br>14<br>15<br>13 |
|----------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|--------------------------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------|-------------------------------------------|---------------------------------------------|
|          |                                         | SULCHE<br>0 1A129<br>2 2A019<br>0 5A345<br>3 50022<br>0 1A159<br>1 5A178<br>1 04441<br>1 84020<br>0 30009<br>0 94068<br>1 55070<br>0 6A340<br>0 30001<br>0 06A340<br>0 30001<br>0 09A318<br>0 05A400<br>0 30021<br>0 0 5A400<br>0 30021<br>0 0 5A400<br>0 30020<br>0 0 0 00000<br>0 0 0 00000<br>0 0 0 0 0000<br>0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | II ALDIN           Paen#011           Paen#011           Paen#015           Paen#015           Paen#006           Paen#006           Paen#007           Paen#008           Paen#008           Paen#008           Paen#012           Paen#023           Paen#0402           Paen#0402           Paen#0402           Paen#0403           Paen#0404           Paen#0405           Paen#0405 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>11<br>12<br>13                    | Austria<br>Turkey<br>France<br>South Afri<br>Austria<br>Portugal<br>Italy<br>Spain<br>France<br>France<br>Greece<br>Portugal<br>France            | AF<br>AF<br>EK | 87-S-1<br>149-S-3<br>161-S-5<br>148-S-5<br>169-S-2<br>147-S-3<br>162-S-6<br>170-S-6<br>169-S-3<br>99-S-2                | 03<br>011<br>06<br>07 | <b>,</b> -  | 9<br>10<br>8<br>15<br>10<br>18<br>13                         | 8<br>9<br>10<br>5<br>11<br>12<br>10            | 3<br>3<br>2.5<br>3.5<br>3.5<br>3.5        | 8<br>8<br>9<br>8<br>8                              | 3<br>3<br>3<br>5<br>6<br>4   | 10<br>10<br>10<br>10<br>8<br>8            | 10<br>10<br>14<br>14<br>15<br>13            |
|          |                                         | 224019<br>224019<br>05A345<br>35C022<br>014150<br>15A178<br>104411<br>184020<br>03A081<br>03D009<br>03A081<br>03D009<br>04A40<br>03D001<br>06A340<br>030201<br>0 09A318<br>0 05A400<br>030202<br>0 05A400<br>0 05A200<br>0 05A200 | Pacru#1019<br>Paeru#1015<br>Paeru#1015<br>Paeru#1005<br>Paeru#1005<br>Paeru#1012<br>Paeru#1012<br>Paeru#1012<br>Paeru#1018<br>Paeru#1018<br>Paeru#1018<br>Paeru#1018<br>Paeru#1018<br>Paeru#1018<br>Paeru#1018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>11<br>12<br>13                    | Turkey<br>France<br>South Afri<br>Austria<br>Portugal<br>Italy<br>Spain<br>France<br>France<br>Greece<br>Portugal<br>France                       | AF<br>EK       | 149-S-3<br>161-S-5<br>148-S-5<br>169-S-2<br>147-S-3<br>162-S-6<br>170-S-6<br>169-S-3<br>99-S-2                          | 011<br>06<br>07       |             | 10<br>8<br>15<br>10<br>18<br>13                              | 9<br>10<br>5<br>11<br>12<br>10                 | 3<br>2.5<br>3.5<br>3.5<br>3.5             | 8<br>8<br>9<br>8<br>8                              | 3<br>3<br>5<br>6<br>4        | 10<br>10<br>10<br>8<br>8                  | 10<br>14<br>14<br>15<br>13                  |
|          |                                         | 05A345<br>36C022<br>014150<br>15A178<br>104441<br>030009<br>09A068<br>156270<br>06A340<br>030001<br>030001<br>030001<br>030001<br>030001<br>030001<br>030001<br>030001<br>030003<br>0 05A400<br>0 05A400<br>0 05A400<br>0 05A400<br>0 05A400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Paeru#015<br>Paeru#005<br>Paeru#005<br>Paeru#012<br>Paeru#014<br>Paeru#014<br>Paeru#007<br>Paeru#023<br>Paeru#023<br>Paeru#023<br>Paeru#028<br>Paeru#028<br>Paeru#047<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>11<br>12<br>13                         | France<br>South Afri<br>Austria<br>Portugal<br>Italy<br>Spain<br>France<br>France<br>Greece<br>Portugal<br>France                                 | EK             | 161-S-5<br>148-S-5<br>169-S-2<br>147-S-3<br>162-S-6<br>170-S-6<br>169-S-3<br>99-S-2                                     | 011<br>06<br>07       |             | 8<br>15<br>10<br>18<br>13                                    | 10<br>5<br>11<br>12<br>10                      | 2.5<br>3.5<br>3.5<br>3.5                  | 8<br>9<br>8<br>8                                   | 3<br>5<br>6<br>4             | 10<br>10<br>8<br>8                        | 14<br>14<br>15<br>13                        |
|          |                                         | 350022<br>0 1A150<br>15A178<br>10A441<br>1 8A020<br>0 3A081<br>0 3D009<br>0 9A068<br>1 55070<br>0 6A340<br>0 300021<br>0 09A318<br>0 05A378<br>0 05A378<br>0 05A378<br>0 05A300<br>0 300023<br>0 030032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Paeru#091<br>Paeru#005<br>Paeru#005<br>Paeru#012<br>Paeru#014<br>Paeru#014<br>Paeru#023<br>Paeru#023<br>Paeru#028<br>Paeru#028<br>Paeru#088<br>Paeru#097<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>11<br>12<br>13                              | South Afri<br>Austria<br>Portugal<br>Italy<br>Spain<br>France<br>France<br>Greece<br>Portugal<br>France                                           |                | 148-S-5<br>169-S-2<br>147-S-3<br>162-S-6<br>170-S-6<br>169-S-3<br>99-S-2                                                | 06<br>07              |             | 15<br>10<br>18<br>13                                         | 5<br>11<br>12<br>10                            | 3.5<br>3.5<br>3.5                         | 9<br>8<br>8                                        | 5<br>6<br>4                  | 10<br>8<br>8                              | 14<br>15<br>13                              |
|          |                                         | 0 1A1 50<br>1 541 78<br>1 044 41<br>1 840 20<br>0 340 81<br>0 3D009<br>0 940 68<br>1 550 70<br>0 643 40<br>0 3D021<br>0 3D021<br>0 304 318<br>0 0 543 78<br>0 554 30<br>0 3C033<br>0 3C032<br>0 3C032<br>0 3C032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Paeru#005<br>Paeru#006<br>Paeru#012<br>Paeru#014<br>Paeru#014<br>Paeru#023<br>Paeru#023<br>Paeru#023<br>Paeru#028<br>Paeru#028<br>Paeru#088<br>Paeru#097<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>11<br>12<br>13                                   | Austna<br>Portugal<br>Italy<br>Spain<br>France<br>France<br>Greece<br>Portugal<br>France                                                          |                | 169-S-2<br>147-S-3<br>162-S-6<br>170-S-6<br>169-S-3<br>99-S-2                                                           | 07                    |             | 10<br>18<br>13                                               | 11<br>12<br>10                                 | 3.5<br>3.5                                | 8                                                  | 6<br>4                       | 8                                         | 15<br>13                                    |
|          |                                         | 104441<br>184020<br>034081<br>03D009<br>094068<br>15E070<br>064340<br>03C001<br>03D021<br>© 094318<br>054378<br>© 054400<br>© 03C023<br>© 03C023<br>© 03C030<br>© 04C020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#012<br>Paeru#014<br>Paeru#007<br>Paeru#098<br>Paeru#023<br>Paeru#028<br>Paeru#028<br>Paeru#088<br>Paeru#097<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6<br>7<br>8<br>9<br>10<br>10<br>11<br>12<br>13                                             | Italy<br>Spain<br>France<br>France<br>Greece<br>Portugal<br>France                                                                                |                | 162-S-6<br>170-S-6<br>169-S-3<br>99-S-2                                                                                 | 0.                    |             | 13                                                           | 10                                             | 0.0                                       |                                                    |                              | ÷                                         | .0                                          |
|          |                                         | 184020<br>034081<br>030009<br>094068<br>155070<br>064340<br>03001<br>030021<br>0 094318<br>054378<br>0 054400<br>0 054400<br>0 05023<br>0 030023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Paeru#014<br>Paeru#007<br>Paeru#098<br>Paeru#023<br>Paeru#028<br>Paeru#088<br>Paeru#097<br>Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>8<br>9<br>10<br>10<br>11<br>12<br>13                                                  | Spain<br>France<br>France<br>Greece<br>Portugal<br>France                                                                                         |                | 170-S-6<br>169-S-3<br>99-S-2                                                                                            |                       |             |                                                              | 10                                             | 3.5                                       | 8                                                  | 3                            | 8.7                                       | 13                                          |
|          |                                         | 034081<br>03D009<br>094068<br>15E070<br>06A340<br>03C001<br>03D021<br>© 09A318<br>© 05A378<br>© 05A400<br>© 03C023<br>© 03C023<br>© 03C030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paeru#007<br>Paeru#098<br>Paeru#023<br>Paeru#028<br>Paeru#028<br>Paeru#088<br>Paeru#097<br>Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8<br>9<br>10<br>10<br>11<br>12<br>13                                                       | France<br>France<br>Greece<br>Portugal<br>France                                                                                                  |                | 169-S-3<br>99-S-2                                                                                                       |                       |             | 11                                                           | 10                                             | 3.5                                       | 8                                                  | 3                            | 10                                        | 13                                          |
|          |                                         | 03D009<br>09A068<br>15E070<br>06A340<br>03C001<br>03D021<br>© 09A318<br>© 05A378<br>© 05A378<br>© 05A400<br>© 03C023<br>© 03C030<br>© 03C030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Paeru#098<br>Paeru#023<br>Paeru#028<br>Paeru#132<br>Paeru#088<br>Paeru#097<br>Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>10<br>10<br>11<br>12<br>13                                                            | France<br>Greece<br>Portugal<br>France                                                                                                            |                | 99-S-2                                                                                                                  |                       |             | 8                                                            | 9                                              | 3.5                                       | 8                                                  | 4                            | 8.7                                       | 15                                          |
|          |                                         | 094068<br>15E070<br>06A340<br>03C001<br>03D021<br>© 09A318<br>© 05A378<br>© 05A400<br>© 03C023<br>© 03C023<br>© 03C030<br>© 044000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paeru#023<br>Paeru#028<br>Paeru#132<br>Paeru#088<br>Paeru#097<br>Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>11<br>12<br>13                                                                 | Greece<br>Portugal<br>France                                                                                                                      |                | 470.04                                                                                                                  | 03<br>015             |             | 14                                                           | 8                                              | 3.5                                       | 8                                                  | 3                            | 8.7                                       | 15                                          |
|          |                                         | 06A340<br>03C001<br>03D021<br>0 09A318<br>0 05A378<br>0 05A400<br>0 03C023<br>0 03C023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#132<br>Paeru#088<br>Paeru#097<br>Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11<br>12<br>13                                                                             | France                                                                                                                                            |                | 172-S-1<br>169-S-8                                                                                                      | 06                    |             | 11                                                           | 11<br>6                                        | 3.5                                       | 8                                                  | 1                            | 11                                        | 15                                          |
|          |                                         | 03C001<br>03D021<br>0 09A318<br>0 05A378<br>0 05A400<br>0 03C023<br>0 03C023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Paeru#088<br>Paeru#097<br>Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12<br>13                                                                                   |                                                                                                                                                   |                | 145-S-3                                                                                                                 | 00                    |             | 13                                                           | 9                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 15                                          |
|          |                                         | 03D021<br>0 09A318<br>0 05A378<br>0 05A400<br>0 03C023<br>0 03C030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paeru#097<br>Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                         | France                                                                                                                                            |                | 169-S-4                                                                                                                 | 01                    |             | 11                                                           | 10                                             | 3.5                                       | 9                                                  | 4                            | 11                                        | 15                                          |
|          |                                         | <ul> <li>09A318</li> <li>05A378</li> <li>05A400</li> <li>03C023</li> <li>03C030</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paeru#072<br>Paeru#064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            | France                                                                                                                                            |                | 88-S-5                                                                                                                  |                       |             | 15                                                           | 7                                              | 3.5                                       | 8                                                  | 4                            | 10                                        | 10                                          |
|          |                                         | <ul> <li>○ 05A400</li> <li>○ 03C023</li> <li>○ 03C030</li> <li>○ 044023</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14<br>15                                                                                   | Greece                                                                                                                                            | EFL            | 87-S-3<br>87-S-3                                                                                                        | 012                   |             | 15<br>12                                                     | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 10<br>11                                    |
|          |                                         | <ul> <li>● 03C023</li> <li>● 03C030</li> <li>● 044060</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Paeru#101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                         | France                                                                                                                                            | EFL            | 87-S-3                                                                                                                  | 012                   |             | 12                                                           | 6                                              | 3.5                                       | 8                                                  | 3                            | 11                                        | 11                                          |
|          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paeru#055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  | O12                   | 1a          | 11                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | A 0440.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Paeru#056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            | EFL            | 87-S-3                                                                                                                  | O12                   | 1a          | 11                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | 044060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  | 012                   |             | 13                                                           | 7                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | © 054058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            |                | 87-5-3                                                                                                                  | 012                   | 20          | 10                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | © 05A296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paen#144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  | 012                   | 28          | 12                                                           | 5                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | ⊙ 05A341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  | 012                   | 3b          | 12                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | ⊙ 05A362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  |                       |             | 8                                                            | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | © 05A491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  | 012                   | 6b          | 12                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paeru#066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16<br>16                                                                                   | France                                                                                                                                            |                | 87-S-3<br>87-S-3                                                                                                        | 012                   | 9c<br>25    | 11<br>11                                                     | 5                                              | 3.5<br>3.5                                | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | <ul> <li>05C024</li> <li>05C052</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paeru#067<br>Paeru#068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  | 012                   | 20<br>2b    | 12                                                           | 5                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paeru#069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            |                | 87-S-3                                                                                                                  | 012                   | 3a          | 12                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paeru#071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | France                                                                                                                                            | EFL            | 87-S-3                                                                                                                  | O12                   | 1e          | 10                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paeru#073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | Italy                                                                                                                                             | EFL            | 87-S-3                                                                                                                  | 012                   | 7b          | 11                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | ⊙ 12A283 ○ 14E030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Paeru#074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16<br>16                                                                                   | Netherland                                                                                                                                        |                | 87-S-3                                                                                                                  | 04                    |             | 18                                                           | 9                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | © 14E030<br>⊙ 15A125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Paen#075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                         | Portugal                                                                                                                                          |                | 87-S-3                                                                                                                  | 012                   | 7a          | 12                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | ⊙ 15A285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | Portugal                                                                                                                                          |                | 87-S-3                                                                                                                  | 012                   | 7a          | 12                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | ⊙ 15A292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | Portugal                                                                                                                                          |                | 87-S-3                                                                                                                  | O12                   | 7a          | 12                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | ⊙ 15A302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | Portugal                                                                                                                                          |                | 87-S-3                                                                                                                  | 012                   | 7a          | 13                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | O 15A379     O 19D006     O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Paeru#080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | Portugal                                                                                                                                          |                | 87-S-3                                                                                                                  | 012                   | 4-          | 14                                                           | 6                                              | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | © 18D006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                         | Spain                                                                                                                                             | EEI            | 87-5-3                                                                                                                  | 012                   | 4a<br>6a    | 8                                                            | 12                                             | 3.5                                       | 8                                                  | 4                            | 11                                        | 11                                          |
|          |                                         | 0 1A1 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                         | Austria                                                                                                                                           |                | 141-S-6                                                                                                                 | 0.2                   | 04          | 16                                                           | 13                                             | 3.5                                       | 8                                                  | 6                            | 11                                        | 14                                          |
|          |                                         | 05A347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                         | France                                                                                                                                            |                | 355-S-3                                                                                                                 | 01                    |             | 11                                                           | 9                                              | 3.5                                       | 8                                                  | 6                            | 11                                        | 14                                          |
|          |                                         | 20C090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                         | U.K                                                                                                                                               |                | 149-S-1                                                                                                                 | <b>C</b> 6            |             | 22                                                           | 9                                              | 3.5                                       | 8                                                  | 6                            | 11                                        | 16                                          |
|          |                                         | 084461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                                                         | Germany                                                                                                                                           |                | 88-S-4                                                                                                                  | 08                    |             | 19                                                           | 11                                             | 3.5                                       | 8                                                  | 5                            | 11                                        | 16                                          |
|          |                                         | 044030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                         | France                                                                                                                                            |                | 99-3-4<br>95-S-3                                                                                                        | 016                   |             | 9                                                            | 7<br>10                                        | 3.5                                       | 8                                                  | 2                            | 12                                        | 11                                          |
|          | r I I I I I I I I I I I I I I I I I I I | 0 1A1 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                         | Austria                                                                                                                                           |                | 88-S-6                                                                                                                  | 09                    |             | 13                                                           | 9                                              | 3.5                                       | 8                                                  | 4                            | 12                                        | 14                                          |
|          |                                         | 08D005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                         | Germany                                                                                                                                           |                | 169-S-1                                                                                                                 | CB                    |             | 9                                                            | 8                                              | 3.5                                       | 8                                                  | 4                            | 12                                        | 14                                          |
|          |                                         | 17A152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                         | Spain                                                                                                                                             |                | 170-S-4                                                                                                                 | O16                   |             | 9                                                            | 7                                              | 3.5                                       | 8                                                  | 4                            | 12                                        | 14                                          |
|          |                                         | 22A147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                         | Turkey                                                                                                                                            |                | 1/0-5-7                                                                                                                 | 06                    |             | 12                                                           | 11                                             | 3.5                                       | 8                                                  | 1                            | 12                                        | 14                                          |
|          |                                         | 20009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Paeru#142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24<br>25                                                                                   | LIK                                                                                                                                               |                | 90-3-1<br>149-S-2                                                                                                       | 06                    |             | 13                                                           | 12                                             | 3.5                                       | 9                                                  | 4                            | 12<br>87                                  | 14                                          |
|          | r                                       | → 10A353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Italy                                                                                                                                             | ALM            | 88-S-2                                                                                                                  | 011                   |             | 17                                                           | 8                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 11A113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Italy                                                                                                                                             |                | 88-S-2                                                                                                                  | O11                   |             | 14                                                           | 8                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | ➔ 11A172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Italy                                                                                                                                             |                | 88-S-2                                                                                                                  | O11                   |             | 21                                                           | 8                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 11A192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26<br>26                                                                                   | Italy                                                                                                                                             |                | 88-S-2                                                                                                                  |                       |             | 14<br>20                                                     | 8                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 11A240 → 11A265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Paeru#039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∠o<br>26                                                                                   | Italy                                                                                                                                             |                | 00-3-2<br>88-S-2                                                                                                        | 011                   |             | 20<br>21                                                     | o<br>12                                        | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 11C007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Italy                                                                                                                                             |                | 88-S-2                                                                                                                  |                       |             | 13                                                           | 9                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 11C010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Italy                                                                                                                                             | ALM            | 88-S-2                                                                                                                  | 011                   |             | 16                                                           | 9                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 11C026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Italy                                                                                                                                             |                | 88-S-2                                                                                                                  | 011                   |             | 17                                                           | 9                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 13A010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26<br>26                                                                                   | Poland                                                                                                                                            |                | 88-S-2                                                                                                                  | ~                     |             | 11<br>22                                                     | 10                                             | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 18E049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r-aeru#048<br>Paeru#049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>26                                                                                   | Spain<br>Albania                                                                                                                                  |                | 68-5-2<br>88-5-2                                                                                                        | 011                   |             | 22<br>15                                                     | 9<br>10                                        | 4<br>4                                    | 9<br>9                                             | 1<br>1                       | 13                                        | 4                                           |
|          |                                         | → 21D098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Albania                                                                                                                                           |                | 88-S-2                                                                                                                  | 011                   |             | 15                                                           | 10                                             | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | → 22E042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                         | Turkey                                                                                                                                            | ALM            | 88-S-2                                                                                                                  | 011                   |             | 17                                                           | 8                                              | 4                                         | 9                                                  | 1                            | 13                                        | 4                                           |
|          |                                         | 03A061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                         | France                                                                                                                                            |                | 87-S-8                                                                                                                  | 011                   |             | 15                                                           | 13                                             | 4                                         | 9                                                  | 1                            | 13                                        | 14                                          |
|          |                                         | → 06A075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                         | France                                                                                                                                            |                | 88-S-2                                                                                                                  |                       |             | 16                                                           | 14                                             | 4                                         | 9                                                  | 1                            | 13                                        | 14                                          |
|          |                                         | → 09A296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paeru#034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27<br>27                                                                                   | Greece                                                                                                                                            |                | 88-S-2                                                                                                                  | 011                   |             | 7<br>11                                                      | 12<br>12                                       | 4                                         | 9                                                  | 1                            | 13<br>13                                  | 14<br>14                                    |
|          |                                         | 01A308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                         | Austria                                                                                                                                           |                | 141-S-7                                                                                                                 | 011                   |             | 14                                                           | 5                                              | 4                                         | 9                                                  | 1                            | 10                                        | 15                                          |
| П        | 4                                       | 17C055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                         | Spain                                                                                                                                             |                | 98-S-6                                                                                                                  | 011                   |             | 16                                                           | 7                                              | 4                                         | 9                                                  | 1                            | 10                                        | 15                                          |
|          |                                         | 05A398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                                                                                         | France                                                                                                                                            | ALG.           | 98-S-8                                                                                                                  |                       |             | 10                                                           | 9                                              | 6                                         | 9                                                  | 1                            | 10                                        | 17                                          |
| $\dashv$ |                                         | 05A593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                         | France                                                                                                                                            | BLFG           | N355-S-7                                                                                                                | O16                   |             | 10                                                           | 5                                              | 6                                         | 9                                                  | 1                            | 9                                         | 17                                          |
|          | ł                                       | 07C038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                         | Germany                                                                                                                                           | СМ             | 145-S-5                                                                                                                 | ~                     |             | 10                                                           | 12                                             | 3                                         | 9                                                  | 1                            | 12                                        | 15                                          |
|          |                                         | 18A218<br>18A402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Paeru#053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31<br>31                                                                                   | Spain                                                                                                                                             | CM             | 1/1-S-2<br>172-S-8                                                                                                      | 010                   |             | 12<br>12                                                     | 10<br>10                                       | 3<br>3                                    | 9                                                  | 1<br>1                       | 12<br>12                                  | 15<br>15                                    |
|          | `                                       | 04C010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                                                                         | France                                                                                                                                            | AFGN           | 1 161-S-4                                                                                                               | O11                   |             | 16                                                           | 8                                              | 5                                         | 9                                                  | 2                            | 12                                        | 15                                          |
|          | 1                                       | 08D038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                         | Germany                                                                                                                                           | AHM            | 96-S-3                                                                                                                  | 011                   |             | 9                                                            | 12                                             | 4                                         | 8                                                  | 1                            | 12.7                                      | 14                                          |
|          |                                         | 09A086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                         | Greece                                                                                                                                            | AHM            | 162-S-4                                                                                                                 | O11                   |             | 14                                                           | 11                                             | 4                                         | 8                                                  | 1                            | 12.7                                      | 14                                          |
|          |                                         | 05A117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                         | France                                                                                                                                            |                | 354-S-3                                                                                                                 |                       |             | 21                                                           | 5                                              | 4                                         | 8                                                  | 1                            | 12                                        | 13                                          |
| [        |                                         | 05A249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paeru#093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34<br>35                                                                                   | France                                                                                                                                            | ACCC           | 354-S-5<br>87. 9 7                                                                                                      | CB                    |             | 21<br>16                                                     | 5                                              | 4                                         | 8                                                  | 1                            | 12                                        | 13<br>14                                    |
| 1        |                                         | U5CU20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paen#027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35<br>36                                                                                   | r rance<br>Snain                                                                                                                                  | AFFE           | 01-5-7<br>170-9-2                                                                                                       |                       |             | 10<br>10                                                     | 13                                             | ,<br>5                                    | б<br>8                                             | 1                            | 13                                        | 14<br>10                                    |
|          |                                         | PA01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 ad u#027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                                                                         | opani                                                                                                                                             | AFGI           | 110-0-2                                                                                                                 |                       |             | 14                                                           | 14                                             | -                                         | 5                                                  | -                            | 12                                        | 14                                          |
|          |                                         | 220022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paen #00F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                                                                                         |                                                                                                                                                   |                |                                                                                                                         |                       |             | - 11                                                         | 12                                             | 5                                         | 8                                                  |                              |                                           |                                             |
|          |                                         | 220002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 actu#000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            | Turkey                                                                                                                                            | ALKK           | L 149-S-5                                                                                                               | O11                   |             | 11<br>21                                                     | 12<br>10                                       | 5<br>6                                    | 8<br>8                                             | 1                            | 12                                        | 16                                          |

Figure 22 : Arbre MLVA (ms77, ms127, ms142, ms172, ms173) des 90 souches *P. aeruginosa* 

En comparaison avec ms10 et ms61, ms127 est un marqueur qui sépare très clairement les deux groupes majeurs qui ont été identifiés, le groupe contenant le ribotype 88-S-2 d'une part (allèle à 9 motifs) et le groupe contenant le ribotype 87-S-3 d'autre part (allèle à 8 motifs).

Les autres marqueurs ont un comportement intermédiaire, et montrent quelques anomalies apparentes. Par exemple pour ms077 un allèle à six unités est observé dans 4 souches, positionnées en différentes parties de l'arbre par l'analyse MLVA. Ce genre d'observation peut refléter des événements d'homoplasie (deux allèles paraissent identiques sans être de même origine phylogénétique, par coïncidence fortuite de taille en l'occurrence) ou bien trahir l'existence d'évènements plus complexes tels que du transfert horizontal entre différentes souches (ce qui réduirait fortement la valeur phylogénétique de l'approche MLVA, mais sans diminuer pour autant la valeur « identification de souche »).

Afin d'aborder ces points, j'ai réalisé le séquençage de certains allèles ms077. Ce locus qui correspond au gène *pcoA* présente l'avantage de varier dans une plage de taille bien adaptée au séquençage. La séquence nucléique de vingt-sept allèles différents a été établie : l'allèle codé 7 unités dans l'article, les 4 allèles codés 6, 2 allèles codés 5, 6 allèles codés 4, 8 allèles codés 3,5, 5 allèles codés 3, et un allèle codé 2,5. Le séquençage permet en réalité de distinguer 15 allèles (au lieu de 7 par la seule mesure de taille). Des allèles de taille égale mais placés à différents endroits de l'arbre sont effectivement différents ; l'égalité de taille est une coïncidence (homoplasie). Dans le Tableau 9 de codage des allèles, le dernier motif, invariant, est omis, il y a donc une lettre de moins que de motifs annoncés.

| allèles ms77     | codage des motifs |
|------------------|-------------------|
| 05C020_520bp_7U  | AFFFGM            |
| 22D032_481bp_6U  | ALKKL             |
| 12A241_481bp_6U  | AFGMN             |
| 05A398_481bp_6U  | ALGMN             |
| 05A593_481bp_6U  | BLFGN             |
| 04C010_442bp_5U  | AFGM              |
| PAO1_77_442bp_5U | AFGJ              |
| 19A211_403bp_4U  | ALF               |
| 10A353_403bp_4U  | ALM               |
| 22E042_403bp_4U  | ALM               |
| 11C010_403bp_4U  | ALM               |
| 08D038_403bp_4U  | AHM               |
| 09A086_403bp_4U  | AHM               |

Tableau 9 : Codage des allèles ms77

| allèles ms77      | codage des motifs |
|-------------------|-------------------|
| 04A163_388bp_3.5U | EIM               |
| 05A400_388bp_3.5U | EFL               |
| 03C030_388bp_3.5U | EFL               |
| 05A378_388bp_3.5U | EFL               |
| 11A003_388bp_3.5U | EFL               |
| 22A023_388bp_3.5U | EFL               |
| 09A318_388bp_3.5U | EFL               |
| 05C088_388bp_3.5U | EFL               |
| 01A129_364bp_3U   | AF                |
| 22A019_364bp_3U   | AF                |
| 18A403_364bp_3U   | СМ                |
| 07C038_364bp_3U   | CM                |
| 20C099_364bp_3U   | DL                |
| 05A345_349bp_2.5U | EK                |

La Figure 23 présente le dictionnaire des motifs du minisatellite ms77.

|        |        | 10         |        | 20     |      | 30          |
|--------|--------|------------|--------|--------|------|-------------|
|        |        |            |        |        | ]    |             |
| A      | GCCCA  | TCCTGGA    | ATGGTC | CATGCC | GTTC | ATGTCCATGCC |
| в      | T      |            |        |        |      |             |
| С      |        |            |        |        | С    |             |
| D      |        |            | G      |        |      |             |
| E      |        |            | G      |        |      |             |
| F      | G      | Т          | G      |        |      |             |
| G      | G      | Т          | G      |        | С    |             |
| н      | G      | т          | GG     |        | С    |             |
| I      | G      | T          | G      | T      | C    |             |
| J      | G      | T          | G      |        |      | С           |
| K      | G      | T          | G      |        | A    |             |
| L      | G      | тс         |        |        | A    |             |
| м      | G      | TC         | G      |        |      |             |
| N      | G      | TC         | G      |        | A    |             |
| n<br>N | G<br>G | T C<br>T C | G      |        | A    |             |

Figure 23 : Motifs pour le codage de ms77

On observe un motif exceptionnel, le motif E, à qui il manque 15 paires de bases. Ce motif est le premier de certains allèles tels que EFL, EIM et EK, qui sont présents dans la partie gauche du « minimum spanning tree » présenté Figure 24 et qui sont notés avec une taille intermédiaire (1,5 ou 2,5).



**Figure 24 :** Représentation « minimum spanning tree » de l'analyse MLVA des souches *P. aeruginosa* et du codage de l'allèle ms77

Certains motifs, rares, peuvent se déduire d'un autre par une mutation ponctuelle, c'est le cas de H, I, (issus de G) et J (issu de F), de B (issu de A). D'autres peuvent résulter d'un événement de recombinaison. Par exemple, il est tentant de suggérer que D, rencontré dans l'allèle DL de la souche 20C099, résulte de la perte d'un motif dans la séquence EF. D commence comme E et termine comme F, et sa position dans l'arbre de la Figure 24 suggère cette phylogénie. De même l'allèle AFGM de la souche 04C010 peut conduire à l'allèle CM des souches voisines 18A403 et 07C038 par un événement de délétion, AFG->C, C commence comme A et termine comme G. Cette étude limitée montre que, dans certains cas au moins, il sera possible de compléter le typage MLVA de mesure de tailles par le séquençage d'allèles. Dans le cas de *P. aeruginosa*, outre ms077, les locus ms142, ms172 et ms194 sont de bons candidats pour constituer une association MLVA-MLST (mesure de tailles, combinée si nécessaire au séquençage des allèles). On constate au niveau de la séquence protéique que la variation du nombre de motifs n'introduit pas de codon stop au niveau de la séquence répétée. La protéine pcoA sera plus ou moins longue selon les souches. La Figure 25 représente l'alignement des séquences protéiques au niveau de la répétition en tandem ms77 localisée dans le gène pcoA.

| $>\!05C02.0\_52$ Gep_kd dischoold hoan gegaa, tep ase nd hynny gedeing in der knaged in cond hynny gedeing in som gedeing in som gedeing in the second | RANGADARA GADARA GADARA GADARA GADARA GADARA GADARA GADARA G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDURIGSDES ENGEGAN     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| >22D032_40Dp_RDDNGNGGRDDGANGRGAATEPASENDHSENSGNDRNGRDBSENAGRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROGNDESKLAGEDRINGED ISKRAGEDROGNDESKRAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND HINGHOLDS RINGINGAR |
| >D51593_48 dbp_kddmgmggmdbggaltepasend hsemsgrdmdgdmdebknagedhsond hse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EMAGEDRINGED HER NA GEDENIOND ESEMAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RACE CREEDED NO.       |
| >12A241_481bp_KDDRCMCCHDRCARCHCAATEPASENDRSKMBCKDREADRSKMBRACHDRSKMBK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REACED IN CADES CADES AND AN CADES AND A CADES | ВЭРИСИСАН              |
| >05A396_463bp_RDDBGRGGEDBGARGEGAATEPASEEDHSEEDGRDEBGRDEBSERAGEDESKRAGEDERGEDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | REAGED IS GEDESKE AGED ENGED HIS KILA GED EDGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| >PAO1_7_942bp_HDDNOHOONDHSANGHOAATEPASENDHSKN3GHDANDHDHSKNAGNDHSONDHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KULGHDNDHDHDHDHDAGNDOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| >04C010_442bp_hddbcxggmdbgangegaatepasend rsensgrdringndbsenlagedbsgrd hse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RMAGNDMONDHIGHNAGNDMINGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| >11C010_403bp_kddncngchdHcanghcaatrpasendHsunsgrdndchdHsknagnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | вэрисисан              |
| >10A353_403bp_RDDBSNGGRDBSANGRGAATEPASENDHSENSGRDRBSNDR5ENAGRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| >22E042_403bp_EDDEGRGEDHGANGEGLATEPASEEDHSKESGEDENGEDHSKEAGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NUGRDESKRAGEDENGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REFRGEGAN              |
| >194211_403bp_KDDMCMCCKDHCANGHCAATRPASEKDHSKMSGKDMDCHDHSKMAGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BERNGBGAN              |
| >DEDOJ D_403bp_KUDNGNGGUDBGANGNGAA TREASEND HSKESGNDRINGHDES KNAGNDRISGEDRSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KELGEDENGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| >09A086_403bp_KDDMGNGGKDHGAMGNGAATAPASEMDHSCHDMNGNDHSKNAGADMSGMDRSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EMBGND NDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRANGBGAN              |
| > 09 AB 18_38 Ebp_EDDNORGENEROANGECAATEPASE ND HSEMBORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| >054376_388bp_KDDMCMCCMDHCAMCHCAATDDASEMDHSRMBGNDMNCHDHSKMAGMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOCKDHSEKAGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RSPNCEDTN              |
| >03C030_38Ebp_KDPNGNGGKDEGANGEGAATRPASEKDESKNAKNGNDESKNAGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B3RNG2DTN              |
| > 11 LOOZ_ 38 EDD_ HUD NGRGGND HGANGEGAA TEPASE NU ESEMSGEDENGED HEERIAGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| >221025_38Ebp_KDDMCMGCMDBCANGKCAATEPASEMDHSGM9GHDMDCMDBSKHAGMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RSENGEDIN              |
| >DSCORE_BREDP_HDDRSHOONDHOANGHOAA TEPASENE HSKNSCHDRDSHDHSHNACHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| >05A400_388bp_KDDMGOKDHGANGKGAATADASEKDHSKMDKDKDHSKMAGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BRAGEDTA               |
| >04A163_38ebp_hddngnggedhgangegaatepasend rsenschdnighdegenagedhsdnid hse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KMAGHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HGRNGEDTN              |
| >221019_364bp_KDDNGKOGKDHOANGKOLLTHPASEKDHSKM30KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROONDESERAGEDENOED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | НЭРМОЙОАН              |
| >01Å129_364bp_KDDMGMGGKDHGAMGHGAÅTRPASEMDHSRMSGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndgndeiskkagndningnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BRANGBGAN              |
| >20C099_354bp_RDDNGNGGMDHGANGEGAATEPASEMDHSKMSGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NNGRDHEKKAGNDENGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HGRINGEDTH             |
| >15A403_354bp_HDDBSRGGEDBSANGHSAATEFASENDESKESGED_NSEDESKESGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESENGEGAN              |
| >07CO3 B_3 64bp_HD DNOHOOKD HOANGHGAA TRPASEND HSKNSCHD MDONDHSKNACHD KSOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REFNGEGAN              |
| >D51345_349bp_RDDMCHGCMDHCAMCHGAATRPARENDHSRM9GHDMNGHDHSRM3GHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |

**Figure 25 :** Alignement des séquences protéiques ms77 de différentes souches *P. aeruginosa* 

## 3.2.3.2 Séquençage de la répétition ms194

Cette répétition en tandem a déjà été décrite dans la littérature (Deretic 1990). Elle est constituée de répétitions de motifs de 75pb bien conservés, ou de motifs de 12pb moins conservés. Les migrations des produits de PCR sur gel d'agarose laissaient penser que la variation de taille entre les allèles était de 12pb et non de 75pb. Les allèles étant de grandes tailles (600 à 700pb) et le motif de petite taille, il était difficile d'assigner les tailles observées sur gel avec certitude. J'ai donc séquencé quelques allèles pour déterminer leur taille exacte.

L'allèle du génome PAO1 a une taille de 690pb d'après la séquence publiée. La gamme de taille des allèles va de 603 pb à 702 pb. En regardant les séquences dans le détail, on voit une succession de 5 motifs de 12 pb et d'un motif de 15 pb (ou 12 pb + 3 pb) se répéter plusieurs fois, c'est à dire plusieurs gros motifs de 75 pb. Un codage est possible en prenant par exemple un dictionnaire de motifs de 12pb et un autre de 15pb, ce qui nécessite un découpage « manuel » de la séquence en motifs des deux tailles. Le codage a été fait pour quelques allèles ms194. Les différents motifs de 12 pb et 15 pb sont présentés dans la Figure 26.



Figure 26 : Motifs de 12 pb et 15 pb pour le codage de ms77.

En noir sont indiqués les motifs de 12pb et en rouge les motifs de 15pb :

>ms194\_PAO\_45U\_690pb\_ABYKAACADEBFCAGHCIJKLMCACFNHCICOPHDACODQERSTU
>Pa90\_194L\_45U\_690pb\_ABYGAACADEHFCAGHCIJKNMCAI2FNJ2CICOPHDACODQERSTU
>Pa88\_194L\_43U\_666pb\_ABYGAACADEHFCAGHCIJKNMCAI2FNJ2CICOPHDACO--ERSTU
>ref\_ms194\_46U\_702pb\_ABYFAACZA2DHCICFNHCICFB2HCICFNHCICC2D2HCACODQEE2STU
>Pa21\_194L\_38U\_603pb\_ABO2GAAF2A2DEHFCFNHCICFNHCICFNHDAG2DQERSTU
>Pa85\_194L\_42U\_654pb\_ABYGAAH2ADEHFNHCICFNHCICFNHCICFNHDAG2DQEE2STU
>Pa89\_194L\_44U\_678pb\_ABYGAACA2DEHFCK2NHCICK2NHCACK2NHCIL2ONHDACDQEE2STU
>Pa96\_194L\_44U\_678pb\_M2BYIAACA2DEHFCFNHJICFNHDACFNHCN2L2ONHDACDQERSTU

Les deux allèles « 45U » se distinguent par cinq mutations ponctuelles, qui transforment un G en K, un H en B, un C en I<sub>2</sub> et un H en J<sub>2</sub>. Ce locus montre bien comment différentes évolutions de répétitions en tandem peuvent se conjuguer, avec ici amplification en un même locus de modules de 12, 15 ou 75 paires de bases. Certains allèles comptent, par exemple, 6 motifs de 12bp au lieu de 5 entre 2 motifs de 15 pb (cf la souche de référence 05A400 qui a un allèle de 702 pb).

#### 3.2.4 Conclusions

Ce travail constitue la première étude MLVA réalisée chez P. aeruginosa, et a montré un pouvoir discriminant supérieur à celui observé par ribotypage de la même collection de souches, et équivalent à celui observé par analyse en champ pulsé pour les souches d'un des ribogroupes majoritaires. Par rapport au grand nombre de répétitions en tandem étudiées chez P. aeruginosa, peu se sont montrées polymorphes. L'échantillon des 201 répétitions testées n'était pas représentatif de la population générale des répétitions en tandem dans ce génome du fait des choix qui ont été faits sur les caractéristiques des répétitions à étudier. Le critère de conservation du motif s'est avéré être assez satisfaisant. Une autre étude des répétitions en tandem pourrait être envisagée chez P. aeruginosa pour identifier d'autres marqueurs polymorphes, en choisissant une requête uniquement sur le critère de conservation. Ainsi, avec une sélection des répétitions à plus de 90% de conservation interne, on obtient 51 répétitions candidates (dont une seule déjà testée et polymorphe, ms142). Le séquençage d'allèles du locus ms077 a permis de montrer que des allèles de même taille retrouvés dans différentes branches de l'arbre MLVA ont une histoire évolutive différente. Le séquençage de ms77 a aussi montré un motif d'une taille différente de tous les autres motifs de la répétition, qui explique les tailles intermédiaires observées sur gel d'agarose (2,5U et 3,5U). Pour ms194, le codage n'est pas simple, et donc difficile à généraliser pour toutes les souches.

## 3.3 Utilisation de la comparaison de génomes pour l'identification de répétitions en tandem polymorphes

### 3.3.1 Etude MLVA chez Staphylococcus aureus

#### 3.3.1.1 Résultats des comparaisons de génomes

La comparaison de plusieurs génomes d'une même espèce bactérienne permet d'identifier directement des répétitions en tandem polymorphes.

Au début du projet de génotypage de *S. aureus*, les génomes des deux souches Mu50 et N315 ont pu être comparés. Ces deux souches sont des souches MRSA hospitalières, Mu50 étant en outre résistante à la vancomycine (VRSA). Ce sont les deux souches *S. aureus* les plus proches parmi toutes celles séquencées (99.95% d'homologie entre les flanquantes des répétitions de ces deux génomes). Onze répétitions en tandem polymorphes ont été identifiées dans ces deux souches. A titre de comparaison, 115 répétitions en tandem sont polymorphes

entre les souches de *Y. pestis* CO92 et KIM5 P12 qui présentent 99,66% d'homologie entre leurs flanquantes. Cette étude préliminaire sur Mu50 et N315 a permis de faire les premiers essais de marqueurs. La comparaison a été étendue à 4 génomes entièrement séquençés (Mu50, N315, NCTC8325, et MSSA476), puis 6 (Mu50, N315, NCTC8325, MW2, MSSA476 et MRSA252). Le bilan de cette comparaison est illustré par le Tableau 10. Dans le génome de Mu50, 828 répétitions en tandem ont été détectées par le TRF. Cent vingt deux d'entre elles ont plus d'un allèle parmi les 6 souches comparées, donc un tri important des répétitions est réalisé.

| génomes comparés: | % homologie entre les | nombres de répétitions en |
|-------------------|-----------------------|---------------------------|
|                   | flanquantes:          | tandem polymorphes:       |
| Mu50/N315         | 99.95%                | 11                        |
| Mu50/MW2          | 98.68%                | 58                        |
| Mu50/NCTC8325     | 98.75%                | 57                        |
| Mu50/MRSA252      | 98.68%                | 63                        |
| Mu50/MSSA476      | 98.71%                | 54                        |
| Les 6 génomes     |                       | 122 polymorphes dans au   |
| Les o genomes     |                       | moins 2 des 6 génomes     |

Tableau 10 : Bilan des comparaisons des 6 génomes S. aureus.



Figure 27 : Distribution du nombre d'allèles parmi les 6 génomes S. aureus comparés.

Curieusement, les 11 répétitions polymorphes dans les deux génomes les plus proches génétiquement ne font le plus souvent pas partie des répétitions les plus polymorphes parmi les 6 génomes comparés. La Figure 27 montre la distribution du nombre d'allèles parmi les 6 génomes *S. aureus* pour les 122 répétitions et les 11 répétitions polymorphes entre Mu50 et N315. Les 11 minisatellites polymorphes entre les souches Mu50 et N315 le sont pour la plupart uniquement dans ces deux souches et pas dans toutes les autres comme on aurait pu s'y attendre, puisqu'elles sont plus éloignées génétiquement de Mu50 que ne l'est N315. Sur 11 répétitions polymorphes entre Mu50 et N315, 7 le sont uniquement dans ces deux souches. L'allèle observé dans les autres souches pour ces 7 locus est dans 4 cas identique à l'allèle de N315, dans un cas identique à Mu50 et dans 2 cas la répétition n'a pas été détectée dans les autres souches.

La liste des 122 répétitions en tandem, telle qu'elle est fournie par la base de données, est présentée en Annexe 4. La base de données indique le nombre d'allèles observés parmi les souches comparées, puis les caractéristiques suivantes pour chaque génome : localisation de la répétition, taille (L) de la répétition, taille (U) du motif, nombre (N) de motifs et enfin détection ou non par TRF de la répétition dans le génome considéré.

Par ailleurs, nous avons regardé la localisation intra ou intergénique des 122 répétitions, les produits des gènes dans lesquels sont localisées ces répétitions, la taille du motif protéique et enfin sont indiquées les 33 répétitions qui ont été étudiées au cours de cette thèse. La Figure 28 montre la répartition des 122 répétitions selon leur localisation intra ou intergénique et la proportion des motifs multiples de 3 dans ces deux groupes de répétitions. La définition de région intragénique considérée ici est la partie codante du gène ainsi que son promoteur.





Cette figure illustre deux points évoqués précédemment. Le premier est que 60% des répétitions en tandem polymorphes de *S. aureus* sont localisées dans des séquences codantes. Les 40 % restants sont dans les régions intergéniques, alors que par ailleurs celles-ci ne représentent que 15% de l'ensemble du génome de *S. aureus*. Le second point est que 90 % des répétitions en tandem intragéniques sont à motif multiple de 3 paires de bases. Dans les régions intergéniques, la proportion de motifs multiples de 3 est d'environ un tiers comme on peut s'y attendre. La pression de sélection est plus faible dans les régions intergéniques.

#### 3.3.1.2 Les séquences STARs

Une autre observation intéressante parmi les 122 répétitions en tandem polymorphes est la présence de 12 répétitions correspondant à des éléments STARs (décrits dans le paragraphe 1.3.2). Je me suis intéressée plus en détail à ces séquences. Dans l'article de Cramton et al (Cramton 2000), une analyse de type Southern blot suggère la présence d'un nombre d'éléments STAR qui varie (13 à 21) en fonction de la souche testée, mais les auteurs supposent qu'il y en a probablement plus, ce qui est confirmé (environ 70) dans l'article sur le séquençage de N315 et Mu50 (Kuroda 2001). La structure d'une séquence STAR est schématiquement décrite par la formule B-(C)n-A.

J'ai recherché par BLAST (Altschul 1997) dans la base de données de répétitions en tandem, les séquences STARs dans les 6 génomes de *S. aureus*, à partir de la séquence consensus du motif central C (57pb :CCCCAACTTGCACATTATTGTAAGCTGACTTTTCGTCAGCTTCTGTGTGGGGGCCCC), qui est répété dans les éléments STARs. Certaines séquences STARs n'ont pas été identifiées par BLAST, les motifs centraux C étant probablement trop divergés par rapport au consensus pour être identifiés. Par ailleurs, on dispose des comparaisons de génomes qui permettent l'identification des répétitions dont les flanquantes sont homologues dans les autres génomes. On peut donc savoir quelles sont les séquences STARs «homologues » dans les génomes comparés par rapport à celles détectées dans Mu50.

Sur les 13 séquences STARs identifiées par BLAST chez Mu50, une seule n'est pas polymorphe parmi les 6 génomes. Cette séquence STAR n'a été retrouvée que dans MRSA252, et elle y est de même taille que dans Mu50. On obtient donc au total 12 séquences STARs polymorphes dans la comparaison des 6 souches. Les résultats de la recherche de séquences STARs dans la base de données de répétitions en tandem sont résumés dans le Tableau 11.

Les répétitions identifiées par TRF ont des motifs de 54 à 59pb (ou aussi 113bp). En effet, selon la conservation des séquences, le TRF ne trouve pas toujours la même taille de consensus, ni exactement le même démarrage pour le 1<sup>er</sup> motif.

Voici le bilan des séquences STARs identifiées par BLAST dans la base des répétitions en tandem :

Mu50 : 13 séquences STARs

N315 : 13 séquences STARs

MRSA252 : 11 séquences STARs

NCTC8325 : 14 séquences STARs

MW2: 17 séquences STARs

MSSA476 : 19 séquences STARs

Sur les 12 séquences STARs identifiées dans Mu50 par la comparaison des 6 génomes, 7 ont été étudiées ici.

| position<br>(kb) | souche | taille<br>unité<br>(pb) | nombre<br>de<br>copies | position<br>(kb) | souche | taille<br>unité<br>(pb) | nombre<br>de<br>copies | position<br>(kb) | souche | taille<br>unité<br>(pb) | nombre<br>de copies | position<br>(kb) | souche  | taille<br>unité<br>(pb) | nombre<br>de<br>copies | position<br>(kb) | souche   | taille<br>unité<br>(pb) | nombre<br>de copies | position<br>(kb) | souche  | taille<br>unité<br>(pb) | nombre<br>de<br>copies |
|------------------|--------|-------------------------|------------------------|------------------|--------|-------------------------|------------------------|------------------|--------|-------------------------|---------------------|------------------|---------|-------------------------|------------------------|------------------|----------|-------------------------|---------------------|------------------|---------|-------------------------|------------------------|
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        | 115              | NCTC8325 | 58                      | 2,6                 |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 140              | MSSA476 | 58                      | 2,6                    |
|                  |        |                         |                        |                  |        |                         |                        | 141              | MW2    | 58                      | 2,6                 |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 165              | MSSA476 | 58                      | 2                      |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 273              | MSSA476 | 58                      | 2,9                    |
|                  |        |                         |                        |                  |        |                         |                        | 274              | MW2    | 58                      | 2,9                 |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
| 311*             | Mu50   | 55                      | 3,1                    | 311              | N315   | 55                      | 3,1                    | 290              | MW2    | 56                      | 4,1                 | 309              | MRSA252 | 56                      | 3,1                    | 258              | NCTC8325 | 54                      | 3                   | 288              | MSSA476 | 56                      | 3,1                    |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        | 730              | NCTC8325 | 56                      | 3,6                 |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 782              | MW2    | 56                      | 3,6                 |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
| 842*             | Mu50   | 55                      | 2,5                    | 818              | N315   | 55                      | 2,5                    |                  |        |                         |                     |                  |         |                         |                        | 762              | NCTC8325 | 55                      | 2,5                 |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 780              | MSSA476 | 56                      | 3,6                    |
| 847*             | Mu50   | 59                      | 6                      | 823              | N315   | 59                      | 6                      | 819              | MW2    | 58                      | 3,1                 | 862              | MRSA252 | 58                      | 3,1                    | 768              | NCTC8325 | 58                      | 7                   | 817              | MSSA476 | 58                      | 3,1                    |
| 855*             | Mu50   | 56                      | 5,2                    | 830              | N315   | 56                      | 5,2                    |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 824              | MSSA476 | 56                      | 2                      |
| 906*             | Mu50   | 56                      | 2,3                    | 874              | N315   | 56                      | 2,3                    |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     | 907              | MRSA252 | 56                      | 2,3                    |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     | 911              | MRSA252 | 112                     | 2,59                   |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 924              | MW2    | 58                      | 2,6                 | 956              | MRSA252 | 56                      | 2,3                    | 860              | NCTC8325 | 56                      | 4                   | 908              | MSSA476 | 58                      | 2,6                    |
| 1213*            | Mu50   | 56                      | 5,1                    | 1137             | N315   | 56                      | 5,1                    | 1138             | MW2    | 56                      | 5                   |                  |         |                         |                        | 1074             | NCTC8325 | 113                     | 3                   | 1167             | MSSA476 | 56                      | 5                      |
|                  |        |                         |                        |                  |        |                         |                        | 1041             | MW2    | 58                      | 3,3                 | 1082             | MRSA252 | 58                      | 4,3                    |                  |          |                         |                     | 1070             | MSSA476 | 58                      | 3,3                    |
| 1219             | Mu50   | 55                      | 3                      | 1142             | N315   | 55                      | 3                      |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 1226             | MW2    | 56                      | 4,5                 |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 1254             | MSSA476 | 56                      | 2                      |

## Tableau 11 : Séquences STARs identifiées dans la base de données de répétitions en tandem.

| position<br>(kb) | souche | taille<br>unité<br>(pb) | nombre<br>de<br>copies | position<br>(kb) | souche | taille<br>unité<br>(pb) | nombre<br>de<br>copies | position<br>(kb) | souche | taille<br>unité<br>(pb) | nombre<br>de copies | position<br>(kb) | souche  | taille<br>unité<br>(pb) | nombre<br>de<br>copies | position<br>(kb) | souche   | taille<br>unité<br>(pb) | nombre<br>de copies | position<br>(kb) | souche  | taille<br>unité<br>(pb) | nombre<br>de<br>copies |
|------------------|--------|-------------------------|------------------------|------------------|--------|-------------------------|------------------------|------------------|--------|-------------------------|---------------------|------------------|---------|-------------------------|------------------------|------------------|----------|-------------------------|---------------------|------------------|---------|-------------------------|------------------------|
| 1425*            | Mu50   | 58                      | 4,1                    | 1348             | N315   | 58                      | 4,1                    |                  |        |                         |                     |                  |         |                         |                        | 1286             | NCTC8325 | 58                      | 4                   | 1379             | MSSA476 | 58                      | 3,63                   |
|                  |        |                         |                        |                  |        |                         |                        | 1440             | MW2    | 58                      | 3,1                 |                  |         |                         |                        | 1375             | NCTC8325 | 58                      | 3,1                 | 1469             | MSSA476 | 58                      | 3,1                    |
|                  |        |                         |                        |                  |        |                         |                        | 1483             | MW2    | 58                      | 3                   |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 1509             | MSSA476 | 58                      | 2                      |
| 1729             | Mu50   | 56                      | 5,1                    | 1652             | N315   | 56                      | 5,1                    | 1698             | MW2    | 59                      | 3                   | 1763             | MRSA252 | 54                      | 5,1                    |                  |          |                         |                     | 1678             | MSSA476 | 59                      | 3                      |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     | 1764             | MSSA476 | 57                      | 3                      |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        | 1776             | NCTC8325 | 59                      | 4,5                 |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 1784             | MW2    | 57                      | 3                   |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 1949             | MW2    | 60                      | 2,61                | 2026             | MRSA252 | 58                      | 2,2                    | 1890             | NCTC8325 | 117                     | 3,1                 |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 1992             | MW2    | 59                      | 3                   |                  |         |                         |                        |                  |          |                         |                     | 1971             | MSSA476 | 59                      | 3                      |
| 2028*            | Mu50   | 59                      | 2,3                    | 1950             | N315   | 59                      | 2,3                    |                  |        |                         |                     | 2068             | MRSA252 | 56                      | 6                      | 1976             | NCTC8325 | 56                      | 3                   |                  |         |                         |                        |
| 2039*            | Mu50   | 56                      | 2,3                    | 1961             | N315   | 56                      | 2,3                    |                  |        |                         |                     |                  |         |                         |                        | 1987             | NCTC8325 | 58                      | 2,3                 |                  |         |                         |                        |
|                  |        |                         |                        | 2054             | N315   | 58                      | 2,8                    |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
| 2131             | Mu50   | 58                      | 2,8                    |                  |        |                         |                        |                  |        |                         |                     | 2173             | MRSA252 | 55                      | 2,5                    |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 2337             | MW2    | 56                      | 2,1                 |                  |         |                         |                        |                  |          |                         |                     | 2316             | MSSA476 | 56                      | 2,1                    |
| 2561*            | Mu50   | 56                      | 2,4                    | 2490             | N315   | 56                      | 2,4                    |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        |                  |        |                         |                     |                  |         |                         |                        |                  |          |                         |                     |                  |         |                         |                        |
|                  |        |                         |                        |                  |        |                         |                        | 2776             | MW2    | 56                      | 3,1                 | 2855             | MRSA252 | 56                      | 2,1                    | 2779             | NCTC8325 | 56                      | 3,1                 | 2756             | MSSA476 | 56                      | 3,1                    |

| séquences STARs polymorphes obtenues par comparaison avec Mu50   |
|------------------------------------------------------------------|
| (* : celles étudiées dans la thèse)                              |
| séquences STARs polymorphes pour au moins 2 des 5 autres souches |
| séquences STARs sans homologue dans la base de données           |

séquence STAR de même taille dans Mu50 et MRSA

#### 3.3.1.3 Résultats de l'étude MLVA

Une partie des 122 répétitions en tandem polymorphes a été étudiée. Des choix ont été faits en fonction du nombre d'allèles observés parmi 4 génomes séquencés (au début du projet), en fonction de la taille du motif (pour faciliter les assignations de taille des produits PCR après migration sur gel d'agarose), et en fonction de la possibilité de trouver des amorces qui s'hybrident parfaitement avec les flanquantes des répétitions dans les 4 génomes, pour limiter les éventuels problèmes d'amplification. Deux autres génomes ont été ajoutés à la comparaison en cours de projet. Le Tableau 12 présente la liste des 33 répétitions en tandem étudiées au cours de la thèse.

| nombre<br>d'allèles<br>dans les 6 | taille du<br>motif (pb) | position<br>Mu50   | gène à cette<br>position dans | produit protéique                                          | position du gène | taille<br>motif / 3 | motif protéique<br>répété                                             | répétitions en tandem<br>étudiées  |
|-----------------------------------|-------------------------|--------------------|-------------------------------|------------------------------------------------------------|------------------|---------------------|-----------------------------------------------------------------------|------------------------------------|
| souches                           |                         |                    | Muso                          |                                                            |                  |                     |                                                                       |                                    |
| 5                                 | 9 ou 18                 | 1098012<br>1098170 | sspA                          | protéase V8,<br>glutamyl<br>endopeptidase                  | 10990311098003   | 3 ou 6              | PNNPDN                                                                | Mu50_1098_18bp_9U                  |
| 5                                 | 159                     | 1866118<br>1866562 | SAV1738                       | protéine<br>hypothétique                                   | 18654901866848   | 53                  | ALKAQQAAIKEE<br>ASANNLSDTSQ<br>EAQEIQEAKREA<br>QAEADKSVAVS<br>NEESKAS | Mu50_1866_159bp_3U                 |
| 5                                 | 18                      | 636061<br>636666   | sdrD                          | proteine sdr de<br>liaison au<br>fibrinogène               | 632692636849     | 6                   | SD                                                                    | Mu50_0636_18bp_33,3U               |
| 5                                 | 67 ou 133               | 704561<br>704796   | intergénique                  |                                                            |                  | 22,33 ou<br>44,33   |                                                                       | Mu50_0704_67bp_4U                  |
| 5                                 | 18                      | 888858<br>889722   | clfA                          | clumping factor A                                          | 887186889993     | 6                   | SD                                                                    | Mu50_0888_18bp_48U                 |
| 4                                 | 20 ou 64                | 1291998<br>1292219 | intergénique                  |                                                            |                  | 6,67 ou<br>21,33    |                                                                       | Mu50_1291_64bp_3,5U                |
| 4                                 | 56                      | 1729388<br>1729679 | intergénique                  |                                                            |                  | 18,67               |                                                                       | séquence STAR<br>Mu50_1729_56bp_5U |
| 4                                 | 24                      | 2351355<br>2351474 | SAV2208                       | protéine<br>hypothétique                                   | 23513932351563   | 8                   |                                                                       | Mu50_2351_24bp_5U                  |
| 4                                 | 42                      | 2642053<br>2642330 | fnb                           | homologue à la<br>protéine de liaison<br>à la fibronectine | 26418242644940   | 14                  | PETPTPPTPEVP<br>SE                                                    | Mu50_2642_42bp_7U                  |
| 4                                 | 18                      | 631615<br>632142   | sdrC                          | protéine sdr de<br>liaison au<br>fibrinogène               | 629464632325     | 6                   | SD                                                                    | Mu50_0631_18bp_30,3U               |
| 4                                 | 43                      | 965164<br>965428   | intergénique                  |                                                            |                  | 14,33               |                                                                       | Mu50_0965_43bp_6U                  |
| 3                                 | 9 ou 18                 | 1105143<br>1105186 | atl                           | autolysine                                                 | 11036241106455   | 3 ou 6              |                                                                       | Mu50_1105_18bp_2,5U                |
| 3                                 | 63                      | 1132682<br>1133067 | SAV1078                       | protéine<br>hypothétique                                   | 11326221133071   | 21                  | LQLLVVRGFYAC<br>ARRMYPSFT                                             | Mu50_1132_63bp_6,1U                |
| 3                                 | 134                     | 1194184<br>1194530 | intergénique                  |                                                            |                  | 44,67               |                                                                       | Mu50_1194_67bp_7U                  |

Tableau 12 : Liste des 33 répétitions en tandem testées par PCR.

| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif (pb) | position<br>Mu50   | gène à cette<br>position dans<br>Mu50 | produit protéique                                                            | position du gène | taille<br>motif / 3 | motif protéique<br>répété                                                                             | répétitions en tandem<br>étudiées  |
|----------------------------------------------|-------------------------|--------------------|---------------------------------------|------------------------------------------------------------------------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|
| 3                                            | 24                      | 122905<br>123156   | spa                                   | précurseur de la<br>protéine A de<br>liaison aux IgG                         | 122614123966     | 8                   | PGKEDNNK                                                                                              | Mu50_0122_24bp_10U                 |
| 3                                            | 174                     | 123159<br>123840   | spa                                   | précurseur de la protéine A de liaison aux IgG                               | 122614123966     | 58                  | QQNAFYEILNMP<br>NLNEEQRNGFIQ<br>SLKDDPSQSANL<br>LSEAKKLNESQA<br>PKADNKFNKE                            | Mu50_0123_174bp_3,9U               |
| 3                                            | 58                      | 1425109<br>1425340 | intergénique                          |                                                                              |                  | 19,33               |                                                                                                       | séquence STAR<br>Mu50_1425_58bp_4U |
| 3                                            | 56                      | 2039328<br>2039458 | intergénique                          |                                                                              |                  | 18,67               |                                                                                                       | séquence STAR<br>Mu50_2039_56bp_3U |
| 3                                            | 9                       | 2294935<br>2295172 | fmtB(mrp)                             | FmtB protein                                                                 | 22879352295380   | 3                   |                                                                                                       | Mu50_2294_9bp_29U                  |
| 3                                            | 42                      | 2638502<br>2638675 | fnbB                                  | homologue à la<br>protéine de liaison<br>à la fibronectine                   | 26382582641143   | 14                  | PEVPSEPETPVP<br>PT                                                                                    | Mu50_2638_42bp_4,1U                |
| 3                                            | 81                      | 266128<br>266583   | соа                                   | précurseur de la staphylocoagulase                                           | 264640266616     | 27                  | KKPSKTNAYNVT<br>THANGQVSYGA<br>RPTQ                                                                   | Mu50_0266_81bp_5,6U                |
| 3                                            | 18                      | 2781740<br>2782399 | clfB                                  | clumping factor B                                                            | 27815182784151   | 6                   | SD                                                                                                    | Mu50_2781_18bp_36,7U               |
| 3                                            | 56                      | 311490<br>311657   | intergénique                          |                                                                              |                  | 18,67               |                                                                                                       | séquence STAR<br>Mu50_0311_55bp_3U |
| 3                                            | 40                      | 43142<br>43471     | intergénique                          |                                                                              |                  | 13,33               |                                                                                                       | mec HVR region (ou dru)            |
| 3                                            | 18                      | 640048<br>640484   | sdrE                                  | protéine sdr de<br>liaison au<br>fibrinogène                                 | 637243640668     | 6                   | SD                                                                                                    | Mu50_0640_18bp_24,3U               |
| 2                                            | 56                      | 1213418<br>1213706 | intergénique                          |                                                                              |                  | 18,67               |                                                                                                       | séquence STAR<br>Mu50_1213_56bp_5U |
| 2                                            | 231                     | 1516384<br>1517097 | ebhA                                  | protéine<br>hypothétique<br>similaire à<br>l'adhésine emb de<br>streptocoque | 15144101534551   | 77                  | Kekqalkdrinq<br>Ilqqghnginna<br>Mtkeeieqakaq<br>Laqalkeikdlv<br>Kakenakqdvd<br>Kqvqalideidq<br>NPNLTD | Mu50_1516_231bp_3U                 |
| 2                                            | 90                      | 1994271<br>1994532 | tRNA-Gly                              |                                                                              |                  | 30                  |                                                                                                       | Mu50_1994_90bp_3U                  |
| 2                                            | 100                     | 2221867<br>2222183 | intergénique                          |                                                                              |                  | 33,33               |                                                                                                       | Mu50_2221_100bp_3,2U               |
| 2                                            | 15 ou 30                | 2547600<br>2547676 | sbi                                   | protéine de liaison<br>aux IgG                                               | 25467922548078   | 5 ou 10             | PKVEA                                                                                                 | Mu50_2547_15bp_5U                  |
| 2                                            | 55                      | 842266<br>842402   | intergénique                          |                                                                              |                  | 18,33               |                                                                                                       | séquence STAR<br>Mu50_0842_55bp_3U |
| 2                                            | 24                      | 899533<br>899596   | SAV0825                               | protéine<br>hypothétique<br>conservée                                        | 899565900182     | 8                   |                                                                                                       | Mu50_0899_24bp_2,7U                |
| 2                                            | 56                      | 906124<br>906248   | intergénique                          |                                                                              |                  | 18,67               |                                                                                                       | séquence STAR<br>Mu50_0906_56bp_3U |

\* D'après le site « gib », http://gib.genes.nig.ac.jp

Les répétitions sont nommées selon la nomenclature suivante :

Nom du génome\_position de la répétition sur le génome (kb)\_taille du motif\_ nombre de motifs

Nous avons étudié quatre catégories de marqueurs :

- Des marqueurs à localisation intragénique dont certains ont déjà montré leur utilité pour des études épidémiologiques (gènes *spa* et *coa*). Ces marqueurs permettent d'établir un lien avec les données de la littérature.

- Des séquences STARs, qui le plus souvent sont localisées dans des régions intergéniques.

- Des répétitions présentes dans des séquences de protéines hypothétiques.

- Et enfin des répétitions localisées dans des régions intergéniques.

Bilan du typage :

Sur 107 souches fournies par l'institut Pasteur (Dr Névine El Sohl) et 30 souches fournies par le Val de Grâce (Dr Jean-Louis Koeck), 5 souches (respectivement 3 et 2) ont été éliminées de l'analyse du fait de problèmes d'amplification par PCR rencontrés pour la plupart des marqueurs testés.

Parmi les 33 répétitions en tandem testées pour le génotypage des 137 souches de *S. aureus*, nous avons retenu 14 répétitions pour l'analyse MLVA. Elles sont décrites dans le Tableau 13. Ces marqueurs ont été amplifiés par PCR sans difficulté, la bonne résolution des allèles sur gel d'agarose ainsi que la facilité d'analyse des gels par le logiciel BioNumerics ont conduit à sélectionner ce sous-groupe de 14 répétitions.

Un certain nombre de marqueurs a été éliminé du fait de la difficulté d'assignation de tailles des allèles lorsque le motif est petit et les allèles grands. D'autres ont été analysés avec des amorces choisies lorsque 4 des 6 génomes *S. aureus* étaient disponibles et des mésappariements des amorces avec les nouveaux génomes séquençés pourraient expliquer certains problèmes d'amplification. Les différentes raisons sont détaillées dans le Tableau 14.

Parmi les 14 répétitions en tandem pour l'analyse MLVA, nous avons retenu deux marqueurs étudiés ces dernières années, *spa* (Shopsin 1999) et *coa* (Shopsin 2000), qui possèdent des répétitions utiles pour des études épidémiologiques sur du long terme (*coa*) et pour des études épidémiologiques à court terme et en situation d'épidémie (*spa*). Le séquençage des allèles du locus *spa* sera décrit dans le paragraphe suivant.

| répétitions en tandem<br>étudiées | ORF<br>associée | % de<br>conservation<br>(Mu50) | % GC<br>(Mu50) | typage                             | gamme de<br>tailles des<br>allèles (pb) | U:<br>nombre<br>de motifs | nombre<br>d'allèles<br>(collection de<br>souches +<br>génomes<br>séquencés) | PIC (index de<br>polymorphisme) | amorce gauche (5'=>3')         | amorce droite<br>(5'=>3')      |
|-----------------------------------|-----------------|--------------------------------|----------------|------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------------------------------------------|---------------------------------|--------------------------------|--------------------------------|
| Mu50_0122_24bp_10U                | spa             | 88                             | 45             | VNTR +<br>analyses de<br>séquences | 224 - 464                               | 3U - 13U                  | 11                                                                          | 0,68                            | AGCAGTAGTGCCGTTTGCTT           | AAGACGATCCTTCAGTGAG<br>CA      |
| Mu50_0266_81bp_6U                 | соа             | 91                             | 41             | VNTR                               | 468 - 873                               | 4U - 9U                   | 5                                                                           | 0,35                            | TTGGATATGAAGCGAGACCA           | CTTCCGATTGTTCGATGCTT           |
| Mu50_0311_55bp_3U*                | intergénique    | 94                             | 45             | VNTR                               | 162 - 405                               | 1U-5,5U                   | 7                                                                           | 0,43                            | AGGGTTAGAGCCCGAGACAT           | CACGGGATTGGAACAGAAA<br>T       |
| Mu50_0906_56bp_3U                 | intergénique    | 92                             | 54             | VNTR                               | 216 - 328                               | 1U - 3U                   | 3                                                                           | 0,46                            | CCCAGCCTGTTTTCATAAGC           | ССААААGAAAATACACCTA<br>ТААСААА |
| Mu50_1213_56bp_5U                 | intergénique    | 77                             | 47             | VNTR                               | 255 - 591                               | 1U - 7U                   | 6                                                                           | 0,71                            | TTCCAGTTCTAGTGCTATATTG<br>GTAG | TGTAGTGGTTCTTTATCATT<br>AGCTGT |
| Mu50_1425_58bp_4U                 | intergénique    | 65                             | 47             | VNTR                               | 357 - 763                               | 1U - 8U                   | 6                                                                           | 0,49                            | GGTTTGACAAAGCTAAAGTGA<br>AGT   | AAACGTATTATTTCATTGAG<br>CAGAA  |
| Mu50_1729_56bp_5U                 | intergénique    | 71                             | 48             | VNTR                               | 207 - 496                               | 1U - 6U                   | 6                                                                           | 0,50                            | GCATAGGGAGTGGGACAGAA           | TCAACGTCGAAAATGACGA<br>A       |
| Mu50_2039_56bp_3U                 | intergénique    | 93                             | 48             | VNTR                               | 170 - 338                               | 3U - 6U                   | 4                                                                           | 0,49                            | TTCGTTCTACCCCAACTTGC           | GAGCCTGGGTCATAAATTC<br>AA      |
| Mu50_0704_67bp_4U                 | intergénique    | 71                             | 31             | VNTR                               | 246 - 779                               | 2U - 10U                  | 7                                                                           | 0,53                            | CGCGCGTGAATCTCTTTTAT           | AGTCCCATATCGTGCGTTA<br>AA      |
| Mu50_1132_63bp_6U                 | SAV1078         | 93                             | 42             | VNTR +<br>analyses de<br>séquences | 217- 783                                | 1U - 9U                   | 8                                                                           | 0,64                            | CGTGCATAATGGCTTACGAA           | AAGCAGCAGAAAAAGCTAA<br>AGAA    |
| Mu50_1194_67bp_7U*                | intergénique    | 84                             | 34             | VNTR                               | 256 - 591                               | 3U - 8U                   | 7                                                                           | 0,50                            | AGTGCAAGCGGAAATTGAAG           | ATCGTGAAAAAGCCCAAAA<br>A       |
| Mu50_1291_64bp_4U*                | intergénique    | 87                             | 34             | VNTR                               | 177 - 473                               | 1U-5,5U                   | 6                                                                           | 0,29                            | GGGGGAAATTCTAAGCAACC           | CGAAATTTTCCACGTCGATT           |
| Mu50_1866_159bp_3U                | SAV1738         | 91                             | 37             | VNTR                               | 289 - 766                               | 1U - 4U                   | 4                                                                           | 0,55                            | CTGTTTTGCAGCGTTTGCTA           | GCAACTTGAAGAAACGGTT<br>G       |
| Mu50_2547_15bp_5U                 | sbi             | 63                             | 36             | VNTR                               | 257 - 722                               | 5U - 36U                  | 6                                                                           | 0,21                            | AAAGATGCTGAAAAGAAAGTG<br>G     | TGATCAATCGCACCTTTGTA           |

## **Tableau 13 :** Caractéristiques des 14 répétitions en tandem de l'analyse MLVA.

\* : tailles intermédiaires observées

| nombre<br>d'allèles dans<br>les 6<br>souches : | répétitions en tandem<br>étudiées : | ORF associée: | motif d'abandon du locus:                                                          |  |  |  |  |  |  |  |
|------------------------------------------------|-------------------------------------|---------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 4                                              | Mu50_0631_18bp_30,3U                | sdrC          | Pas d'amorces « monolocus »                                                        |  |  |  |  |  |  |  |
| 5                                              | Mu50_0636_18bp_33,3U                | sdrD          | Pas d'amorces « monolocus »                                                        |  |  |  |  |  |  |  |
| 3                                              | Mu50_0640_18bp_24,3U                | sdrE          | Pas d'amorces « monolocus »                                                        |  |  |  |  |  |  |  |
| 5                                              | Mu50_0888_18bp_48U                  | clfA          | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 5                                              | Mu50_1098_18bp_9U                   | sspA          | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 3                                              | Mu50_2781_18bp_36,7U                | clfB          | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 2                                              | séquence STAR<br>Mu50_0842_55bp_3U  | intergénique  | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 3                                              | mec région HVR (ou dru)             | intergénique  | Problème de PCR                                                                    |  |  |  |  |  |  |  |
| 3                                              | Mu50_0123_174bp_3,9U                | spa           | Tailles intermédiaires à séquencer                                                 |  |  |  |  |  |  |  |
| 2                                              | Mu50_0899_24bp_2,7U                 | SAV0825       | Monomorphe dans la collection de souches<br>(2 allèles dans les génomes séquençés) |  |  |  |  |  |  |  |
| 4                                              | Mu50_0965_43bp_6U                   | intergénique  | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 3                                              | Mu50_1105_18bp_2,5U                 | atl           | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 2                                              | Mu50_1516_231bp_3U                  | ebhA          | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 2                                              | Mu50_1994_90bp_3U                   | tRNA-Gly      | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 2                                              | Mu50_2221_100bp_3,2U                | intergénique  | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 3                                              | Mu50_2294_9bp_29U                   | fmtB(mrp)     | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 4                                              | Mu50_2351_24bp_5U                   | SAV2208       | Problème d'analyse BioNumerics                                                     |  |  |  |  |  |  |  |
| 3                                              | Mu50_2638_42bp_4,1U                 | fnbB          | Echecs d'amplification                                                             |  |  |  |  |  |  |  |
| 4                                              | Mu50_2642_42bp_7U                   | fnb           | Délétions dans certains allèles                                                    |  |  |  |  |  |  |  |

Tableau 14: Liste des 19 répétitions en tandem éliminées de l'analyse MLVA.

Les souches analysées pour cette étude MLVA ont été caractérisées lors d'études préalables par PFGE, mais les génotypes obtenus ne sont pas comparables d'une étude à l'autre, la nomenclature utilisée pour les génotypes n'étant pas la même. Il est donc difficile de comparer les résultats entre les différentes séries de souches, en revanche, à l'intérieur d'une série, on pourra comparer le pouvoir discriminant de l'analyse MLVA par rapport à celui du PFGE (ceci illustre une faiblesse de l'approche PFGE : la difficulté de comparer des résultats d'un gel à l'autre).

La plupart des souches sont résistantes à la méthicilline. La série de 15 souches GISA (Glycopeptide Intermediaire *Staphylococcus aureus*) provient de différents hôpitaux français. La collection du Val de Grâce comporte aussi quelques souches GISA.

Pour l'analyse des génotypes, les tailles des allèles ont été exportées de la base de données Bionumerics et converties en nombre de motifs (U). Ensuite, ces données en nombre de motifs ont été importées dans BioNumerics et le « clustering » ou analyse de similarité réalisé en utilisant les coefficients « categorical » et « Ward ». Le coefficient categorical considère les caractères (ici chaque VNTR) comme indépendants, et le même poids est donné aux différentes tailles d'allèles, c'est-à-dire qu'un allèle de 9 motifs ne sera pas considéré comme phylogénétiquement plus proche d'un allèle de 10 motifs que d'un allèle de 3 motifs. Pour les 6 séquences STARs de l'analyse MLVA, nous avons considéré qu'une absence (confirmée par 2 tentatives) de produit d'amplification par PCR correspondait à une absence du locus dans la souche étudiée, et ceci a été exploité comme une donnée.

Nous avons utilisé deux types de représentation des arbres : arbre « classique » et arbre « minimum spanning tree ». Au total, les 137 souches se répartissent en 68 génotypes MLVA différents. Trois génotypes majoritaires sont observés :

- 20 souches de génotype 11-5-2-6-2-2-3-4-1-3-1-4-3-7 (génotype n° 5 dans l'arbre)
- 25 souches de génotype 10-5-2-6-2-1-3-3-1-3-3-7 (génotype n° 21 dans l'arbre)
- 8 souches de génotype 10-5-2-6-2-2-3-3-1-3-1-3-3-7 (génotype n° 28 dans l'arbre)

On constate parmi ces génotypes MLVA que plusieurs génotypes PFGE sont observés et permettent de discriminer ces souches.

Les souches de référence sont signalées par un point, et les souches GISA par une étoile.

|                                       |                                                    |                              |                            |              | _            |                                                          |                  | an (20)        | ø          |         |       |        |             |         |            |            |
|---------------------------------------|----------------------------------------------------|------------------------------|----------------------------|--------------|--------------|----------------------------------------------------------|------------------|----------------|------------|---------|-------|--------|-------------|---------|------------|------------|
| Calegorical<br>MEVAx10                |                                                    |                              |                            |              | dilline      |                                                          | 2                | and the second |            | . A     | പ     |        |             | do A    | æ          | A. 🚓 de    |
| S CAN VA                              |                                                    |                              |                            | Je           | THE          |                                                          | agone .          | and the second | an' a      | olv age | S1131 | elvis. | all's all   | a state | SITE SIS   | and also   |
|                                       | n° ADN                                             | souche PFGE                  | codage spa                 | odage 1132 💌 | annee        | origine                                                  | U. C             | u. 4           | 1 II       | m       | The   | Up (   | Un LUn      | m       | nu nu      | Les Les    |
|                                       | Saur018 Staphyl. aureus                            | IPF 556 I-1                  | YFGFMBLO                   | R            | 1999         | Broussais - Paris                                        | 8                | 5 2            | 26         | 0.1     | 2     | 3 6    | 6 1         | 3       | 1 4        | 4 7        |
|                                       | Saur029 Staphyl. aureus<br>Saur032 Staphyl aureus  | HM 10629 I-5<br>#96145 I-17  | YHEGEMBOBLO<br>YHEGEMBOBLO | R            | 1993         | Bordeaux                                                 | 11               | 5 2            | 2626       | 0.1     | 2     | 3 4    | 5 1<br>I 1  | 3       | 1 4        | 4 7        |
|                                       | Saur023 Staphyl. aureus                            | HM10 XXIV                    |                            | R            | 2000         | Henri Mondor-Créteil                                     | 11               | 5 2            | 26         | 0.1     | 2     | 3.5 6  | <br>5 1     | 3       | 0.1 4      | 3 7        |
| , , , , , , , , , , , , , , , , , , , | Saur010 Staphyl. aureus                            | BM 3364 :13                  |                            | R            | 1981         | Broussais- Paris                                         | 11               | 5 2            | 2 6        | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
| *                                     | Saur022 Staphyl. aureus                            | BM 10828 I-1                 |                            | R            | 1993         | Bordeaux                                                 | 11               | 55 2           | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur028 Staphyl. aureus                            | Harmony9 I-5                 | YHFGFMBQBLO                | JK R         | 1990         | Finlande                                                 | 11               | 5 2            | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
| *                                     | Saur089 Staphyl. aureus                            | BM9586 A                     |                            | R            | 1987         | Broussais - PARIS                                        | 11               | 5 2            | 26         | 2       | 2     | 3 6    | 5 I         | 3       | 1 4        | 3 7        |
|                                       | Saur090 Staphyl. aureus                            | BM12184 A                    |                            | R            | 1987         | Broussais - PARIS                                        | 11               | 55 2           | 26         | 2       | 2     | з е    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur091 Staphyl. aureus                            | BM9591 A                     |                            | R            | 1987         | Broussais - PARIS                                        | 11               | 55 2           | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 37         |
|                                       | Saur092 Staphyl. aureus                            | EM12188 A                    |                            | R            | 1987         | Broussais - PARIS                                        | 11               | 5 2            | 26         | 2       | 2     | 3 6    | 5 1<br>• •  | 3       | 1 4        | 3 7        |
|                                       | Saur093 Staphyl aureus                             | BM10759 A 4                  |                            | R            | 1993         | TOULOUSE                                                 | 11               | 5 1            | 2 0        | 2       | 2     | 3 6    | , i<br>, 1  | 3       | 1 4        | 3 7        |
| 5                                     | Saur096 Staphyl. aureus                            | BM9343 A 7                   |                            | R            | 1987         | TOULOUSE                                                 | 11               | 5 2            | 2 6        | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur097 Staphyl. aureus                            | BM10872 A 8                  |                            | R            | 1992         | Aalst - BELGIQUE                                         | 11               | 55 2           | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur098 Staphyl. aureus                            | EM10888 A 8                  |                            | R            | 1993         | Aalst - BELGIQUE                                         | 11               | 5 2            | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur101 Staphyl. aureus                            | BM10896 A 9                  |                            | R            | 1994         | Ghent -BELGIQUE                                          | 11               | 5 2            | 26         | 2       | 2     | 3 6    | , i<br>3 1  | 3       | 1 4        | 3 7        |
|                                       | Saur102 Staphyl. aureus                            | BM10138 A 10                 | YHFGFMBQBLO                | JK R         | 1989         | Barcelone - ESPAGNE                                      | 11               | 55 2           | 26         | 2       | 2     | з е    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur103 Staphyl. aureus                            | BM10130 A 10                 |                            | R            | 1989         | Barcelone - ESPAGNE                                      | 11               | 55 2           | 26         | 2       | 2     | 3 6    | 6 1         | 3       | 1 4        | 37         |
|                                       | Saur105 Staphyl. aureus                            | BM12152 A 12                 |                            | R            | 1989         | Barcelone - ESPAGNE                                      | 11               | 5 2            | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saurios Stapnyl aureus<br>Sauri07 Staphyl aureus   | BM10877 G<br>BM12156 G       |                            | R            | 1992         | Aaist - Belgique<br>Barcelone - ESPAGNE                  | 11               | 5 2            | 2 6        | 2       | 2     | 3 6    | 5 1<br>5 1  | 3       | 1 4        | 3 7        |
| 6                                     | Saur071 Staphyl. aureus                            | IPF65 #8.                    | YHFGFMBQBLO                | R            | 2000         | Rotschild-Paris                                          | 11               | 5 2            | 2 6        | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 2 7        |
|                                       | Saur112 Staphyl. aureus                            | Rn450 (8325)                 |                            | R            |              |                                                          | 11               | 55 2           | 2 10       | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 37         |
|                                       | Saur172 Staphyl. aureus                            | NCTC8325                     | YHGGFMBQELO                | JK S         |              | old laboratory strain                                    | 11               | 55 2           | 2 10       | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur019 Staphyl. aureus<br>Saur026 Staphyl. aureus | IPI-555 I-1<br>Harmony26 I-1 | YEGEMBLO                   | R            | 1989<br>1989 | Broussais - Pans<br>Espagne                              | 8<br>13          | 5 2            | 2626       | 2       | 2     | 3 6    | 5 1<br>5 1  | 0.1     | 1 4        | 3 7        |
|                                       | Saur021 Staphyl. aureus                            | IPF 562 I-1                  | YFGFMBLO                   | R            | 1999         | Broussais - Paris                                        | 8                | 5 2            | 2 6        | 2       | 2     | 3 6    | 5 1         | 0.1     | 1 4        | 2 7        |
|                                       | Saur020 Staphyl. aureus                            | IPF 557 I-1                  |                            | R            | 1999         | Broussais - Paris                                        | 8                | 55 2           | z 6        | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur163 Staphyl. aureus                            | GISA-904062                  |                            |              |              | HIA Percy                                                | 8                | 55 2           | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur024 Staphyl. aureus<br>Saur030 Staphyl aureus  | BM12612 I-1<br>HM9 XX        | YFGFMBQBLO                 | R            | 1998         | Villiers St Denis<br>Henri Mondor-Créteil                | 10               | 5 2            | 26         | 2       | 2     | 3 (    | 5 1<br>5 1  | 3       | 1 4        | 3 7        |
|                                       | Saur088 Staphyl. aureus                            | BM9290 A                     |                            | R            | 1987         | Hötel Dieu - PARIS                                       | 10               | 5 2            | 26         | 2       | 2     | 3 6    | , .<br>5 1  | 3       | 1 4        | 3 7        |
| 12                                    | Saur155 Staphyl. aureus                            | SARM-4030210                 |                            | R            |              | HIA Val de Grâce                                         | 10               | 55 2           | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
| *                                     | Saur161 Staphyl. aureus                            | GISA-Xavier16-10-3           |                            |              |              | HIA Val de Grâce                                         | 10               | 55 2           | 26         | 2       | 2     | 3 6    | 5 1         | 3       | 1 4        | 3 7        |
|                                       | Saur162 Staphyl. aureus<br>Saur110 Staphyl aureus  | GISA-1106024<br>BM10883 0    | YFGFMBQBLO                 | JK R         | 199.3        | HIA Val de Grâce<br>Ghent - Beloinue                     | 10               | 5 2            | 26         | 2       | 2     | 3 (    | 5 1<br>5 1  | 3       | 1 4        | 3 7        |
| - 14                                  | Saur003 Staphyl. aureus                            | BM 10675 :29                 | YHGEO                      | J S?         | 1993         | Broussais- Paris                                         | 5                | 5 2            | 2 2        | 2       | 1     | 3 6    | , .<br>5 1  | 2       | 1 4        | 2 7        |
|                                       | Saur005 Staphyl. aureus                            | BM 9520 30b                  | YHGFMBQBLO                 | J S          | 1988         | Broussais- Paris                                         | 10               | 55 2           | <b>2</b> 2 | 2       | 1     | 3 6    | 5 1         | 2       | 1 4        | 2 7        |
| 16                                    | Saur011 Staphyl. aureus                            | BM 10215 :18                 | YHGFMBQBLO                 | J S          | 1990         | Broussais- Paris                                         | 10               | 55 2           | 22         | 2       | 1     | 3 6    | 5 1         | 2       | 1 4        | 3 7        |
|                                       | Saur009 Staphyl. aureus<br>Saur080 Staphyl aureus  | BM 12174 17b<br>#162 Vild    |                            | R            | 1996         | Grenoble<br>Beauion - CLICHY                             | 10               | 5 2            | 2 4        | 2       | 1     | 3 3    | 31<br>1     | 3       | 1 3        | 3 7        |
| 19                                    | Saur054 Staphyl. aureus                            | IPF648 \$                    |                            | R            | 2000         | Centre Hospitalier Abbeville                             | 10               | 5 2            | 26         | 2       | 1     | 3 3    | , .<br>3 1  | 3       | 1 3        | 1 7        |
|                                       | Saur156 Staphyl. aureus                            | SARM-60300661                |                            | R            |              | HIA Vai de Grâce                                         | 10               | 55 2           | <b>2</b> 2 | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
| ( 20                                  | Saur158 Staphyl. aureus                            | SARM-5040072                 |                            | R            |              | HIA Val de Grâce                                         | 10               | 55 2           | 22         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Saur007 Staphyl. aureus<br>Saur008 Staphyl aureus  | BM 12828 16a<br>BM 12830 16b | YHGFMBQBLO                 | R            | 1999         | Broussais- Paris<br>Broussais- Paris                     | 10               | 5 2            | 26         | 2       | 1     | 3 3    | 31<br>1     | 3       | 1 3        | 3 7        |
|                                       | Saur043 Staphyl. aureus                            | IPF641 B                     |                            | R            | 2000         | Centre Hospitalier Nimes                                 | 10               | 5 2            | 26         | 2       | 1     | 3 3    | , .<br>3 1  | 3       | 1 3        | 3 7        |
|                                       | Saur044 Staphyl. aureus                            | IPF642 A1                    |                            | R            | 2000         | Centre Hospitalier Nimes                                 | 10               | 55 2           | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Saur045 Staphyl. aureus                            | IPF643 C                     |                            | R            | 2000         | Centre Hospitalier Nimes                                 | 10               | 5 2            | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Sauru+6 Staphyl. aureus<br>Saur052 Stanhvl aureue  | ⊪1+644 A2<br>IPF646 \$       | YHGEMBORIO                 | R            | 2000         | Centre Hospitalier Nimes<br>Centre Hospitalier Abbeville | 10<br>10         | 5 1<br>5 1     | 26<br>26   | 2       | 1     | 3 3    | 5 1<br>5 1  | 3       | 1 3<br>1 3 | 37<br>37   |
|                                       | Saur053 Staphyl. aureus                            | IPF647 #\$                   |                            | e R          | 2000         | Centre Hospitalier Abbeville                             | 10               | 5 2            | 2 6        | 2       | 1     | 3 3    | ·<br>·      | 3       | 1 3        | 3 7        |
|                                       | Saur059 Staphyl. aureus                            | IPF667 ##^                   |                            | R            | 2000         | Fé camp (Patients hospitalisé                            | is. 10           | 55 2           | z 6        | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Saur065 Staphyl. aureus                            | IPF92 &                      |                            | R<br>-       | 2000         | Rotschild-Paris                                          | 10               | 5 2            | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
| 1 h 🔽                                 | Sauroo Stapnyi. aureus<br>Sauro67 Staphyl. aureus  | ⊪r-54 &<br>IPF55 &           |                            | R            | 2000         | Rotschild-Paris                                          | 10               |                | ~ 6<br>2 6 | 2       | 1     | 3 3    | ) 1<br>3 1  | а<br>3  | , 3<br>1 3 | 3 7<br>3 7 |
|                                       | Saur068 Staphyl. aureus                            | IPF56 &                      |                            | R            | 2000         | Rotschild-Paris                                          | 10               | 55 2           | 2 6        | 2       | 1     | 3 3    | ·<br>3 1    | 3       | 1 3        | 3 7        |
| 21                                    | Saur069 Staphyl. aureus                            | IPF57 &                      |                            | R            | 2000         | Rotschild-Paris                                          | 10               | 55 2           | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 37         |
|                                       | Saur070 Staphyl. aureus                            | IPF66 &                      |                            | R            | 2000         | Rotschild-Paris                                          | 10               | 5 2            | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Saur072 Staphyl. aureus                            | ⊮noo ia<br>#165 la           |                            | R            | 1995         | Beaujon - CLICHY<br>Beaujon - CLICHY                     | 10               |                | د خ<br>2 6 | 2       | 1     | 3 3    | , 1<br>3 1  | 3       | , 3<br>1 3 | 3 7<br>3 7 |
|                                       | Saur074 Staphyl. aureus                            | #97386 Ib                    |                            | R            | 1996         | Broussais - PARIS                                        | 10               | 55 2           | 2 6        | 2       | 1     | 3 3    | ·<br>3 1    | 3       | 1 3        | 3 7        |
|                                       | Saur076 Staphyl. aureus                            | #97383 Vila                  |                            | R            | 1996         | Broussais - PARIS                                        | 10               | 55 2           | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 37         |
|                                       | Saur078 Staphyl. aureus                            | #97117 Vild                  | YHGFMBQBLO                 | e R<br>_     | 1997         | TOULOUSE                                                 | 10               | 55 2           | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Saurove Staphyl. aureus<br>Saur081 Stanhvl aureus  | #95035 Vild<br>#96164 Vild   |                            | R            | 1995<br>1996 | CH BLOIS                                                 | 10<br>10         | 5 1<br>5 1     | 26<br>26   | 2       | 1     | 3 3    | 5 1<br>5 1  | 3       | 1 3<br>1 3 | 37<br>37   |
|                                       | Saur144 Staphyl. aureus                            | SARM-29                      |                            | R            | 1996         | collecti on Pitié                                        | 10               | 5 2            | 26         | 2       | 1     | 3 3    |             | 3       | 1 3        | 3 7        |
|                                       | Saur145 Staphyl. aureus                            | SARM-58                      |                            | R            | 1996         | collecti on Pitié                                        | 10               | 55 2           | z 6        | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Saur153 Staphyl. aureus                            | SARM-192                     |                            | R            | 1996         | collecti on Pitié                                        | 10               | 55 2           | 26         | 2       | 1     | 3 3    | 3 1         | 3       | 1 3        | 3 7        |
|                                       | Saur055 Staphyl. aureus<br>Saur056 Stanhyl aureus  | IPF657 ^                     |                            | R            | 1999<br>1999 | Fe camp (Patients hospitalisé                            | is. 10<br>is. 10 | -30 S          | 26<br>28   | 2       | 1     | 3 3    | 5 1<br>5 1  | 3       | 1 2<br>1 2 | 37<br>37   |
|                                       | Saur057 Staphyl aureus                             | IPF659 ^                     |                            | R            | 2000         | Fécamp (Patients hospitalisé                             | is. 10           | 5 2            | z 6        | 2       | 1     | 3 3    | ,<br>,<br>, | 3       | 1 2        | 3 7        |
| 23                                    | Saur006 Staphyl. aureus                            | #99135 :31                   | YHGFMBQBLO                 | s            | 1999         | St Louis-Paris                                           | 10               | 55 2           | z 6        | 2       | 1     | 3 3    | 3 1         | 3       | 1 4        | 3 7        |
|                                       | Saur075 Stachvi. aureus                            | #97381 VIb                   |                            | R            | 1996         | Broussais - PARIS                                        | 10               | 55 2           | 26         | 2       | 1     | 3 3    | 3 1         | 0.1     | 1 3        | 37         |
|                                       |                                                    |                              |                            | 1            | 16           |                                                          |                  |                |            |         |       |        |             |         |            |            |

| — 24 se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ur075 Staphvi. aureus   | #97381        | VID                        |                 | R      | 1996  | Broussais - PARIS               | 10       | 55         | 2 6   | 2   | 1  | 3        | 3   | 1   | 0.1 | 1   | 3      | 3 | 7    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|----------------------------|-----------------|--------|-------|---------------------------------|----------|------------|-------|-----|----|----------|-----|-----|-----|-----|--------|---|------|
| <b>1 25</b> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ur157 Stanbyl aureus    | SARM-60300663 |                            |                 | R      |       | HIA Val de Grâce                | 10       | 5          | 2 2   | 2   | 1  | 3        | 3   | 1   | 0.1 | 1   | 3      | 3 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w077 Cleand arms        | 40727.0       | 101-                       |                 |        | 100.0 |                                 | 10       |            |       | -   |    | 2        | 2   |     | 0.1 |     | 2      | 2 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uio// Stapinyi. auleus  | #013/9        |                            |                 | R      | 1990  | BIOUSSAIS-PARIS                 | 10       | 30         | 2 0   | 2   |    | 3        | 3   |     | •   |     | 3      | 3 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iur086 Staphyl. aureus  | #97120        | VID                        |                 | к      | 1997  | IOULOUSE                        | 10       | 50         | 2 6   | 2   | 2  | 3        | 3   | 1   | 0.1 | 1   | 3      | 3 | 7    |
| r Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ur014 Staphyl. aureus   | #2001 045     | 24a                        |                 | R      | 1998  | Toulouse                        | 10       | 55         | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur082 Staphyl. aureus   | #920          | VIb                        |                 | R      | 1995  | St Germain                      | 10       | 55         | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur084 Stanbyl aureus    | #1207.2       | VIb                        |                 | R      | 1995  | Hon I. Mourrier-COLOMBES        | 10       | 5          | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur085 Standad autout    | #1206.9       | VID                        |                 |        | 100.5 | CH EVEX                         | 10       |            | 2 6   | -   | -  | -        | -   |     | 2   |     | 2      | - | 7    |
| 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uloss Staphyl. auleus   | #12000        | VID                        |                 | R      | 1995  |                                 | 10       | 50         | 2 0   | 2   | 2  | 3        | 3   |     | 2   | -   | 3      | 3 | -    |
| 20 Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iur109 Staphyl. aureus  | BM10827       | к                          | JK              | к      | 1993  | BORDEAUX                        |          | 55         | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| Si Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur149 Staphyl. aureus   | SARM-131      | YHGFM                      | MBQBLO          | R      | 1996  | collecti on Pitié               | 10       | 55         | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur151 Staphyl. aureus   | SARM-135      |                            |                 | R      | 1996  | collecti on Pitié               | 10       | 55         | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| Sé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur152 Staphyl. aureus   | SARM-142      |                            |                 | R      | 1996  | collecti on Pitié               | 10       | 55         | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| <b> 29</b> s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ur00.4 Stanbyl aureus   | #2001.042     | 30 a                       |                 | s      | 100.0 | Taulouse                        | 10       | 5          | 2 6   | 2   | 2  | 35       | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| 30 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wold 2 Steeled even     | DM 420 42     | .10                        |                 | , e    | 1000  | Prevenceia Daria                | 10       |            | 2 0   | -   | ~  | 2        |     |     | 2   |     | 2      | 2 |      |
| 31 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ururz Stapinyi. aureus  | DW 12942      | . 19                       |                 | ĸ      | 199.9 | Broussais- Paris                | 10       | 30         | 2 0   | 2   | 2  | 3        | 5   |     | 3   |     | 3      | 3 | '    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iur083 Staphyl. aureus  | #1625         | VID                        |                 | к      | 1995  | Beaujon - CLICHY                | 10       | 50         | 2 6   | 2   | 3  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| si si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur148 Staphyl. aureus   | SARM-119      |                            |                 | R      | 1996  | collecti on Pitié               | 10       | 55         | 26    | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 5    |
| 33 Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur146 Staphyl. aureus   | SARM-88       | YHGFM                      | ABQBLO          | R      | 1996  | collecti on Pitié               | 10       | 44         | 2 6   | 2   | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| r St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ur013 Staphyl. aureus   | #97233        | 24h                        |                 | R      | 1997  | Broussais-Paris                 | 10       | 55         | 2 6   | 0.1 | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| 34 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ur015 Stanbyl aureus    | #9318.4       | -26                        |                 | R      | 1993  | Laenne o-Paris                  | 10       | 5          | 2 6   | 0 1 | 2  | 3        | 3   | 1   | 3   | 1   | 3      | 3 | 7    |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |               |                            |                 |        | 0004  |                                 |          | -          |       |     | -  | 2        | -   |     |     |     |        |   | -    |
| 26 30 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iuru41 Stapnyi. aureus  | IPF 511       | :3 ZM2PN0                  | IGKBRGOLB       | 5      | 2001  | Hopital pediatrique Tunisie     | 12       | 9 <b>9</b> | 4 Z   | 0.1 | 1  | 5        | 0   | 5.5 | 0.2 | 2   | 2      | 3 | '    |
| 30 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iur134 Staphyl. aureus  | SARM ref JV   | XKAOB                      | 30              | R      |       | collecti on Pitié               | 6        | 77         | 0.1 5 | 0.1 | 1  | 6        | 0.1 |     | 4   | 0.1 | 3      | 3 | 7    |
| 37 Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur042 Staphyl. aureus   | IPF 512       | 48a WGKAK                  | Kaomqqq         | s      | 2001  | Hopital pédiatrique Tunisie     | 11       | 44         | 3 3   | 0.1 | 2  | 5        | 0.1 | 2   | 0.2 | 5   | 2      | 4 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur175 Staphyl. aureus   | MRSA252       | WGKAK                      | Kaomqqq Hi      | R      |       | nosocomial EMRSA16              | 11       | 44         | 3 3   | 0.1 | 2  | 3        | 5   | 2   | 0.2 | 5   | 2      | 4 | 7    |
| 39 <sub>Sé</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ur035 Staphyl, aureus   | BM1 2975      | 45c WGAKB                  | BMQ HI          | s      | 1999  | Hôpital pédiatrique Tunisie     | 7        | 44         | 3 3   | 0.1 | 2  | 5        | 0.1 | 2   | 0.2 | 3   | 2      | 3 | 7    |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | word & Chanked average  | DM 422.00     | 26.                        |                 | 62     | 100.0 | Beauing Clinter                 |          | æ          |       |     |    | -        |     |     | 0.0 | -   | 2      |   | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alleri olaphiyi. auleus | DNI 122.00    | 30a                        |                 |        | 1000  | Design Clink                    |          |            | 2 3   | 2   | ~  | 5        | 5   | 2   | 0.2 | -   | 2      | 5 | -    |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iuru17 Stapnyi. aureus  | BM 1228/      | 368                        |                 | 57     | 1996  | Beaujon-Crichy                  | 9        | 60         | 2 3   | z   | z  | 5        | 0.1 | 2   | 0.2 | 5   | 2      | 3 | '    |
| 42 <sup>Sa</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iur138 Staphyl. aureus  | SASM-6        | A2AKBE                     | EMBKB d         | s      |       | collecti on Pitié               | 9        | 66         | 5.5 5 | 0.1 | 1  | 7        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur143 Staphyl. aureus   | SARM-15       |                            | d               | R      | 1996  | collecti on Pitié               | 9        | 66         | 5.5 5 | 0.1 | 1  | 7        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur040 Staphyl. aureus   | IPF 510       | 37a XKAKBI                 | BEMEKB b        | S      | 2001  | Hôpital pédiatrique Tunisie     | 11       | 66         | 5.5 5 | 0.1 | 1  | 7        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur036 Stanbyl aureus    | IPE160        | 38c XKB                    | d               | s      | 200.0 | Hôpital pédiatrique Tunisie     | 3        | 66         | 55 5  | 0 1 | 1  | 7        | 0.1 | 1   | 02  | 4   | 3      | 1 | 7    |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur047 Stanbyl aureus    | IPE735        | <ul> <li>XKAKBI</li> </ul> | MB b            | s      | 2001  | Centre Hospitalier Calais       | 7        |            | 55 5  | 0.1 | 1  | 7        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | allow Chaptryl. adleus  | IPT 755       |                            |                 |        | 2001  |                                 | -        |            |       | 0.1 | 1  | -        | 0.1 | 1   | 0.2 | -   | 5      |   | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uro46 Stapinyi. auleus  | IFF/30        |                            | D               | •      | 2001  | Centre Hospitalier Calais       | ,        | 80         | 33 3  | 0.1 |    | '        | 0.1 |     | 0.2 | 5   | 3      |   | '    |
| 45 Sé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur049 Staphyl. aureus   | IPF738        | <ul> <li>XKAKBI</li> </ul> | 3MB d           | S      | 2001  | Centre Hospitalier Calais       | 7        | 66         | 55 5  | 0.1 | 1  | 7        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
| Si Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur050 Staphyl. aureus   | IPF741        | <ul> <li>XKAKBI</li> </ul> | BMB b           | S      | 2001  | Centre Hospitalier Calais       | 7        | 66         | 55 5  | 0.1 | 1  | 7        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
| Si Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur051 Staphyl. aureus   | IPF743        | <ul> <li>XKAKBI</li> </ul> | BMB b           | S      | 2001  | Centre Hospitalier Calais       | 7        | 66         | 5.5 5 | 0.1 | 1  | 7        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
| <b>– 46</b> se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ur058 Staphvi. aureus   | IPF658        | #^ A2AKEE                  | EMBKB d         | R      | 2000  | Fé camo (Patients hospitalisés. | .9       | 66         | 55 5  | 0.1 | 1  | 8        | 0.1 | 1   | 0.2 | 5   | 3      | 1 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur14.7 Stanbyl auraus   | SARM-100      | 424KEE                     | EMRKR b         | R      | 1996  | collection Pitié                | a        | æ          | 55 5  | 0.1 | 1  | 8        | 0.1 | 1   | 0.2 | 0.1 | 3      | 1 | 7    |
| — 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |               | 745 4424                   |                 | -      | 1000  |                                 |          | -          |       | -   | ÷. | 0        | -   |     |     | -   | -      |   |      |
| ● Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ur113 Staphyl. aureus   | Mu50          |                            |                 | к      |       |                                 | 10       | 66         | 3 4   | 3   | 6  |          | 5   | 4   | 4   | 5   | 3      | 3 | 5    |
| 48 Sé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur159 Staphyl. aureus   | Mu3(SARM)     |                            | BACDEF          | R      |       | HIA Val de Grâce                | 10       | 66         | 3 4   | 3   | 6  | 7        | 5   | 4   | 4   | 5   | 3      | 3 | 5    |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur160 Staphyl. aureus   | Mu50(GISA)    | TJMEMI                     | IDMGMK BACDEF   | R      |       | HIA Val de Grâce                | 10       | 66         | 3 4   | 3   | 6  | 7        | 5   | 4   | 4   | 5   | 3      | 3 | 5    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur170 Staphyl. aureus   | Mu50          | TJMEMI                     | IDMGMK BACDEF   | R      |       | nosocomial                      | 10       | 66         | 3 4   | 3   | 6  | 7        | 5   | 4   | 4   | 5   | 3      | 3 | 5    |
| r Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ur087 Staphyl. aureus   | #9737 3       | XVIII TJMBMI               | IDMGMK          | R      | 1996  | Broussais - PARIS               | 10       | 66         | 3 4   | 3   | 6  | 7        | 5   | 4   | 4   | 5   | 3      | 3 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur174 Stanbyl gumme     | N315          | TIMOM                      |                 | R      |       | nosocomial                      | 10       | æ          | 3 4   | 3   | 6  | 7        | 5   | 4   | 4   | 5   | 3      | 3 | 7    |
| <b>50</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | unit otaphyl. auteus    | DAM 2046      |                            |                 |        | 1000  | Decisional Decis                | 10       | æ          | J 4   | 2   | 4  | -        | 5   |     | 7   | 5   | 3      | 2 | ,    |
| 50 Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alloui Stapinyi. aufeus | DIMI 2040     | .i ijwiewi                 |                 |        | 1999  | Divustalis- Fallis              | 10       |            | - 4   | 3   | *  |          | 5   | 3   | •   | 5   |        | 3 | ,    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iuruu 2 Staphyl. aureus | BM1 2451      | :2 YC2FME                  | IBUBLOO BAALMMN | NINN S | 1997  | Grenoble                        | U        | 80         | z 6   | 0.1 | 9  | 6        | 5   |     | 3   | 6   | 3      | 2 | 9    |
| <b>52</b> Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ur141 Staphyl. aureus   | SASM-11       | UJGFM                      | AB BOPQK        | s      |       | collecti on Pitié               | 6        | 66         | 4 4   | 0.1 | 5  | 5        | 5   | 2   | 2   | 1   | 3      | 2 | 36   |
| μ Γ ε Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ur034 Staphyl. aureus   | BM 12634      | 36a H2GJA/                 | ABB BAM         | s      | 1998  | Hôpital pédiatrique Tunisie     | 7        | 55         | 1 6   | 0.1 | 3  | 7        | 5   | 1   | 1   | 4   | 4      | 2 | 36   |
| 53 54 Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ur142 Staphyl. aureus   | SASM-12       | UKGJB                      | BMD             | s      |       | collecti on Pitié               | 5        | 4          | 1 2   | 0.1 | 3  | 7        | 5   | 1   | 3   | 4   | 4      | 2 | 32   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ur033 Staphyl. aureus   | BM 12632      | 40e                        |                 | s      | 1998  | Hôpital pédiatrique Tunisie     | 9        | 55         | 2 5   | 4   | 6  | 5        | 1   |     | 3   | 4   | 4      | 2 | 7    |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur061 Standad aurour    | IDE200        | - 700M                     | IDMOSD          | e .    | 200.1 | CH Intercommunal Créteil        | 4        |            | 2 5   | 4   | 6  |          | 4   |     | 2   |     | 2      | - | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                            |                 |        | 2001  |                                 | -        | -          |       |     | -  | -        |     | _   | -   |     | -      | - |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iur062 Staphyl. aureus  | IPF310        | ~ UJGBBI                   | BGGJ UREKKM     | MN S   | 2001  | CH Intercommunal Creteil        | 9        | 50         | 25 2  | 0.1 | 8  | 7        | 7   | 5   | 3   | 3   | 3      | 2 | 36   |
| 57 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur063 Staphyl. aureus   | IPF311        | ~ UJGBBI                   | BBGGJ UREKKM    | MN S   | 2001  | CH Intercommunal Créteil        | 9        | 55         | 25 2  | 0.1 | 8  | 7        | 7   | 5   | 3   | 3   | 3      | 2 | 36   |
| Sector Se | ur064 Staphyl. aureus   | IPF323        | ~ UJGBBI                   | BBGGJ           | s      | 2001  | CH Intercommunal Créteil        | 9        | 55         | 25 2  | 0.1 | 8  | 7        | 7   | 5   | 3   | 3   | 3      | 2 | 36   |
| <b>58</b> se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ur060 Staphyl. aureus   | IPF308        | ~ UJGBBI                   | BBGGJ frekkimi  | /N S   | 2001  | CH Intercommunal Créteil        | 9        | 55         | 25 2  | 0.1 | 8  | 7        | 7   | 4   | 3   | 3   | 3      | 2 | 36   |
| 59 se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur038 Staphyl. aureus   | IPF518        | 22a                        |                 | s      | 2001  | Hôpital pédiatrique Tunisie     | 9        | 66         | 1 2   | 0.1 | 1  | 7        | 1   |     | 4   | 2   | 3      | 2 | 36   |
| <b>60</b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ur137 Stanbyl gumme     | SASM-5        | 121/20                     | GMM IK2M        | s      |       | collection Pitié                | 9        | 5          | 15 4  | 0.1 | 3  | 7        | 3   | 1   | 0.1 | 3   | 3      | 1 | 7    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and company. addeds     | CADM-0        | LINE                       |                 | 5      |       | concol UIT FILE                 |          |            |       | 0.1 | 2  | ,<br>,   | 2   |     | 0.1 | 2   | 3      |   | ~    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | unio a otapnyt. aureus  | OMOM-1        | H 2M2E                     | - CIMINI J NZM  | 5      |       | collection mue                  | -        | зо<br>—    |       | 0.1 | 3  | <u>'</u> | 3   |     | 0.1 | 3   | э<br>- |   | - 30 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iur140 Staphyl. aureus  | SASM-8        | H 2M2E                     | -GMMJK2M        | s      |       | collecti on Pitié               | 9        | 56         | 15 4  | 0.1 | 3  | 7        | 3   | 1   | 0.1 | 3   | 3      | 1 | 32   |
| 63 Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ur039 Staphyl. aureus   | IPF 509       | :57 H2M2E0                 | Egmmjk2m vwww   | S      | 2001  | Hopital pédiatrique Tunisie     | 9        | 55         | 1.5 4 | 0.1 | 4  | 7        | 3   | 1   | 0.2 | 3   | 3      | 1 | 33   |
| 64 • Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ur171 Staphyl. aureus   | MSSA476       | UKJFKE                     | BPE BG          | s      |       | community aquired               | 8        | 55         | 36    | 2   | 2  | 4        | 5   | 2   | 3   | 3   | 1      | 1 | 7    |
| 65 • Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ur173 Staphyl. aureus   | MW2           | UJIFKB                     | BPE B           | R      |       | community aquired               | 8        | 55         | 4 8   | 2   | 1  | 4        | 5   | 3   | 2   | 3   | 3      | 1 | 7    |
| 66 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ur037 Staphyl. aureus   | IPF489        | 42a                        | Хүгк            | s      | 2001  | Hôpital pédiatrique Tunisie     | 10       | 4          | 25 6  | 0.1 | 4  | 4        | 5   | 3   | 2   | 3   | 3      | 4 | 7    |
| 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and 2 E Charled as      | CACH 2        | U Ever                     |                 | -      |       | collection Dild                 | -        | -          |       |     |    |          |     | -   | -   | -   | -      |   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IUT135 Staphyl. aureus  | SASM-2        | UJFKBF                     | PE              | 8      |       | collection Pitié                | <u>'</u> | 30<br>     | 2 6   | 2   | 2  | 4        | 4   | 3   | 3   | 3   | 4      | 1 | 36   |
| L 68 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ur136 Staphyl. aureus   | SASM-4        | UJFKBF                     | PE BG           | S      |       | collecti on Pitié               | 7        | 56         | 2 6   | 2   | 2  | 4        | 4   | 3   | 3   | 3   | 4      | 1 | 7    |

Figure 29 : Arbre MLVA 140 souches S. aureus.

On peut observer deux grands groupes de souches de même génotype MLVA. En comparant avec les génotypes de champ pulsé, on constate que plusieurs génotypes PFGE sont présents à l'intérieur de ces deux grands génotypes MLVA. Le champ pulsé apparaît ici plus résolutif que l'analyse MLVA ; cependant, les difficultés de reproductibilité et de comparaison des génotypes nous incitent à une certaine prudence face à la solidité des données PFGE. Même si le MLVA est moins résolutif ici, la robustesse des données et la reproductibilité en font un outil de génotypage plus satisfaisant.

Si l'on observe la répartition des souches selon leur sensibilité à la méthicilline, on constate que dans quelques rares cas des souches de même génotype MLVA sont sensibles ou résistantes à la méthicilline. Sinon, le complexe principal est constitué de façon homogène de souches MRSA. Des allèles de ms1132 de taille égale sont trouvés dans les différents complexes. Pour ms0266 (coa) qui évolue lentement, ainsi que pour ms0122 (spa) qui évolue plus rapidement, les allèles de même taille sont assez bien regroupés dans les différents complexes. Le plus souvent, les souches provenant d'un même hôpital sont groupées ensemble et ont parfois des génotypes uniques. Par exemple les souches « Calais » sont de même génotype MLVA et celui-ci est unique dans l'arbre. En champ pulsé, un seul génotype a également été déterminé pour les souches Calais.

## 3.3.2 Séquençage des locus spa et Mu50\_1132

Dans un certain nombre de cas, il semble que le typage MLVA puisse être complété par, le cas échéant, le séquençage d'allèles de répétitions en tandem. Nous en avons fourni une première illustration pour *P. aeruginosa*, *S. aureus* en est un autre exemple. Nous allons l'illustrer avec 2 locus.

Le développement du séquençage de quelques marqueurs polymorphes permettant d'obtenir une résolution d'analyse équivalente à celle obtenue par analyse MLVA, réduirait sensiblement le nombre de marqueurs à analyser. En effet, le séquençage est une méthode de typage rapide à mettre en œuvre, qui permet de comparer sans ambiguïté les résultats de typages entres laboratoires, permettant ainsi la mise en commun des données concernant des milliers de souches analysées à travers le monde.

Deux locus ont été séquencés dans ce travail : *spa* et ms1132. Nous avons choisi la répétition située dans le gène *spa* codant la protéine A, pour pouvoir faire un lien entre la littérature concernant le typage des souches de *S. aureus* et nos données. Le choix de ms1132 s'explique par le fait qu'il s'agit de l'un des marqueurs les plus polymorphes parmi les 14 VNTRs de l'analyse MLVA. Pour *spa*, 11 allèles ont été observés (de 3 à 13 motifs) dans la collection de souches étudiées, et 8 allèles (de 1 à 9 motifs) pour ms1132. Les indices de polymorphisme de *spa* et de ms1132 sont respectivement de 0,68 et de 0,64.

Dans les deux exemples illustrés ici, le codage des allèles est avant tout purement descriptif, c'est un autre mode de représentation des allèles. Chaque motif est codé par une lettre. Il n'y a pas de proximité phylogénétique entre deux motifs proches dans le codage, par exemple « a » n'est pas forcément plus proche de « b » par sa séquence.

#### 3.3.2.1 Spa

La répétition en tandem située dans le gène de la protéine A (spa) a déjà été étudiée par Shopsin *et al*. Cette répétition a été séquencée pour plusieurs souches et les allèles codés par des lettres. Il y a au total 37 motifs différents dans le codage de Shopsin *et al.*, (Shopsin 1999). Chaque lettre a été assignée à un motif sans prendre en considération le nombre de mutations entre motifs. La liste des motifs est présentée en Annexe 4.

Le codage dépend dans une certaine mesure de la définition du point de départ de la répétition en tandem. Dans le cas présent, un point de départ décalé de quelques paires de bases aurait permis de réduire légèrement cette liste, cependant la convention « Shopsin » constitue désormais une référence qu'il a semblé préférable de conserver. Certaines tailles d'allèles vues dans notre étude n'ont pas été observées dans l'étude de Shopsin (3U, 6U, 12U et 13U).

Pour pouvoir évaluer la cohérence de l'arbre obtenu avec l'analyse MLVA présentée ici, nous avons en parallèle amplifié et séquencé la répétition située dans le gène *spa* pour 51 souches de la collection. Au total nous disposons donc de 57 allèles spa codés, en ajoutant les allèles des 6 génomes complets.

| allèles <i>spa</i> séquencés<br>(taille en nombre de motifs) | Nombre de codages<br>différents |
|--------------------------------------------------------------|---------------------------------|
| 1 allèle 13U                                                 | 1                               |
| 1 allèle 12U                                                 | 1                               |
| 9 allèles 11U                                                | 4                               |
| 16 allèles 10U                                               | 4                               |
| 11 allèles 9U                                                | 3                               |
| 5 allèles 8U                                                 | 3                               |
| 8 allèles 7U                                                 | 4                               |
| 2 allèles 6U                                                 | 2                               |
| 2 allèles 5U                                                 | 2                               |
| 1 allèle 4U                                                  | 1                               |
| 1 allèle 3U                                                  | 1                               |

Tableau 15 : Nombre de codages spa différents observés.

Le Tableau 16 présente le résultat du codage des 57 allèles spa.
| souches séquencées: | codage spa:            | u:<br>nombre<br>de motifs | souches<br>séquencées: | codage spa:           | u:<br>nombre<br>de motifs |  |  |
|---------------------|------------------------|---------------------------|------------------------|-----------------------|---------------------------|--|--|
| >Saur026-0122       | YHFGFMBQBQBLO          | 13U                       | >Saur138-0122          | A2AKBEMBKB            |                           |  |  |
| >Saur041-0122       | Z <b>M2</b> PNGKBKGOLB | 12U                       | >Saur147-0122          | A2AKEEMBKB            |                           |  |  |
| >MRSA252_0122_11U   | WGKAKAOMQQQ            |                           | >Saur058-0122          | A2AKEEMBKB            |                           |  |  |
| >Saur042-0122       | WGKAKAOMQQQ            |                           | >Saur060-0122          | UJGBBBGGJ             |                           |  |  |
| >NCTC8325_0122_11U  | YHGGFMBQBLO            |                           | >Saur063-0122          | UJGBBBGGJ             |                           |  |  |
| >Saur029-0122       | YHFGFMBQBLO            |                           | >Saur064-0122          | UJGBBBGGJ             | 9U                        |  |  |
| >Saur032-0122       | YHFGFMBQBLO            | 11U                       | >Saur062-0122          | UJGBBBGGJ             |                           |  |  |
| >Saur071-0122       | YHFGFMBQBLO            |                           | >Saur139-0122          | H2 <b>M2</b> EGMMJK2M |                           |  |  |
| >Saur028-0122       | YHFGFMBQBLO            |                           | >Saur039-0122          | H2 <b>M2</b> EGMMJK2M |                           |  |  |
| >Saur102-0122       | YHFGFMBQBLO            |                           | >Saur140-0122          | H2 <b>M2</b> EGMMJK2M |                           |  |  |
| >Saur040-0122       | ХКАКВВЕМЕКВ            |                           | >Saur137-0122          | H2 <b>M2</b> EGMMJK2M |                           |  |  |
| >Saur160-0122       | TJMBMDMGMK             |                           | >MSSA_0098_8U          | UKJFKBPE              |                           |  |  |
| >N315_0122_10U      | TJMBMDMGMK             |                           | >MW2_0099_8U           | UJJFKBPE              |                           |  |  |
| >Mu50_0122_10U      | TJMBMDMGMK             |                           | >Saur018-0122          | YFGFMBLO              | 8U                        |  |  |
| >Saur087-0122       | TJMBMDMGMK             |                           | >Saur019-0122          | YFGFMBLO              |                           |  |  |
| >Saur001-0122       | TJMBMDMGMK             |                           | >Saur021-0122          | YFGFMBLO              |                           |  |  |
| >Saur024-0122       | YFGFMBQBLO             |                           | >Saur034-0122          | H2GJAABB              |                           |  |  |
| >Saur162-0122       | YFGFMBQBLO             |                           | >Saur035-0122          | WGAKBMQ               |                           |  |  |
| >Saur007-0122       | YHGFMBQBLO             | 1011                      | >Saur047-0122          | XKAKBMB               |                           |  |  |
| >Saur052-0122       | YHGFMBQBLO             | 100                       | >Saur049-0122          | XKAKBMB               | 711                       |  |  |
| >Saur005-0122       | YHGFMBQBLO             |                           | >Saur050-0122          | XKAKBMB               | 70                        |  |  |
| >Saur146-0122       | YHGFMBQBLO             |                           | >Saur051-0122          | XKAKBMB               |                           |  |  |
| >Saur149-0122       | YHGFMBQBLO             |                           | >Saur136-0122          | UJFKBPE               |                           |  |  |
| >Saur011-0122       | YHGFMBQBLO             |                           | >Saur135-0122          | UJFKBPE               |                           |  |  |
| >Saur078-0122       | YHGFMBQBLO             |                           | >Saur134-0122          | XKAOBO                | 611                       |  |  |
| >Saur006-0122       | YHGFMBQBLO             |                           | >Saur141-0122          | UJGFMB                | 00                        |  |  |
| >Saur002-0122       | YC2FMBQBLOO            |                           | >Saur142-0122          | UKGJB                 | 511                       |  |  |
|                     |                        |                           | >Saur003-0122          | YHGFO                 | 50                        |  |  |
|                     |                        |                           | >Saur061-0122          | ZGGM                  | 4U                        |  |  |
|                     |                        |                           | >Saur036-0122          | ХКВ                   | 3U                        |  |  |

Tableau 16 : Codage des allèles spa séquencés.

Nous avons séquencé un nouveau motif, M2, qui comporte une délétion de 3pb. Ce motif a été observé dans 5 souches, dont 4 sont très proches dans l'arbre obtenu par l'analyse MLVA. On constate que, parmi des allèles de même taille, plusieurs séquences différentes sont observées. L'intérêt majeur du séquençage d'allèles est d'affiner la précision du typage lorsque plusieurs allèles sont de même taille. On peut ainsi créer des sous-groupes parmi ces allèles proches sur le simple critère de taille de la répétition. Par exemple pour les allèles à 11 motifs, 4 types de séquences ont été observées. Le Tableau 15 récapitule le nombre de codages différents observés pour chaque taille d'allèles.

Les 57 souches séquencées se répartissent en 26 codages différents. Par typage MLVA, ces souches se répartissent en 45 génotypes différents, comme le montre la Figure 30. Dans cet exemple, on voit que le seul séquençage du locus *spa* ne permet pas d'avoir la même résolution des souches qu'avec l'analyse MLVA de 14 locus. Par exemple l'allèle YHGFMBQBLO est retrouvé dans 8 souches, réparties par ailleurs en 6 génotypes par l'analyse MLVA.

On observe aussi différents groupes d'allèles avec des codages très différents. Ceux qui sont très ressemblants du point de vue du codage mais de longueur différente sont proches dans l'arbre. Par exemple XKAKBMB (7 motifs) est plus proche de XKB (3 motifs) que de ZGGM plus proche en taille (4 motifs). Cette proximité des souches XKAKBMB (Saur047, Saur049, Saur050, Saur051), et XKB (Saur036) obtenue par typage MLVA correspond probablement à une réelle proximité biologique des souches. Les souches Saur051 et Saur036 sont identiques pour 13 des 14 locus, elles diffèrent uniquement pour le locus *spa*.

D'autres types de codages particuliers sont retrouvés groupés ensemble dans l'arbre MLVA, il s'agit par exemple des allèles commençant par UJGB, YHGF, H2M2E et UJF.

| Arbre MI      | _VA des                          | 57 souc                   | :he   | es S         | S. aureus s                                       | éc       | que               | enc      | cé     | es         | aı  | l I       | ocı            | us       | sp      | a :             |                   |        |          |
|---------------|----------------------------------|---------------------------|-------|--------------|---------------------------------------------------|----------|-------------------|----------|--------|------------|-----|-----------|----------------|----------|---------|-----------------|-------------------|--------|----------|
| Categorical   | NP80E                            |                           |       | aine         |                                                   |          | مر چ <sup>و</sup> | م<br>م   | ره     |            | ~   | •         |                | <b>a</b> |         |                 |                   | 6      |          |
| n° ADN أُر    | souche AG                        | codage spa                | methi | année        | e origine                                         | ment     | mes               | 60 mag   | me     | 104 OF     | mst | 134<br>MS | 194 12<br>ms12 | ms       | 291 1   | 25 12<br>115172 | <sup>5</sup> ns18 | nel02  | n92541   |
| Saur041 3     | 5 IPF 511 :3                     | ZM2PNGKBKGOLB             | s     | 2001         | Hôpital péd. Portage nasal                        | 12       | 9                 | 4        | 2      | 0.1        | 1   | 5         | 6              | 5.5      | 0.2     | 2               | 2                 | 3      | 7        |
| Saur134 3     | 6 SARM ref JV<br>7 IPE 512 48a   | XKAOBO                    | R     | 2001         | collection P.<br>Hônital néd Portage nasal        | 6<br>11  | 7<br>4            | 01<br>3  | 5<br>3 | 0.1        | 1   | 6<br>5    | 0.1            | 2        | 4<br>02 | 0.1<br>5        | 3                 | 3<br>4 | 7<br>7   |
| Saur175 3     | 8 MRSA252                        | WGKAKAOMQQQ               | R     | 2001         | nosocomial.                                       | 11       | 4                 | 3        | 3      | 0.1        | 2   | 3         | 5              | 2        | 0.2     | 5               | 2                 | 4      | 7        |
| Saur035 3     | 9 BM12975 45c                    | WGAKBMQ                   | s     | 1999         | Hôpital péd. OMA (calcaneum)                      | 7        | 4                 | 3        | 3      | 0.1        | 2   | 5         | 0.1            | 2        | 0.2     | 3               | 2                 | 3      | 7        |
| - Saur040 4   | 3 IPF 510 37a                    | XKAKBBEMEKB               | S     | 2001         | Hôpital péd. Portage nasal                        | 11       | 6                 | 55<br>55 | 5      | 0.1        | 1   | 7         | 0.1            | 1        | 0.2     | 5               | 3                 | 1      | 7        |
|               | 5 IPF735 *                       | XKAKBMB                   | s     | 2001         | Centre Ho. CEI                                    | 9<br>7   | 6                 | 55       | 5      | 0.1        | 1   | 7         | 0.1            | 1        | 0.2     | 5               | 3                 | 1      | 7        |
| Saur049 4     | 5 IPF738 *                       | XKAKBMB                   | s     | 2001         | Centre Ho. Cathéter                               | 7        | 6                 | 55       | 5      | 0.1        | 1   | 7         | 0.1            | 1        | 0.2     | 5               | 3                 | 1      | 7        |
| Saur050 4     | 5 IPF741 *                       | XKAKBMB                   | S     | 2001         | Centre Ho. Gorge                                  | 7        | 6                 | 55       | 5      | 0.1        | 1   | 7         | 0.1            | 1        | 0.2     | 5               | 3                 | 1      | 7        |
| Saur051 4     | 5 IPF743 *                       | XKAKBMB                   | S     | 2001         | Centre Ho. Sonde trachéale                        | 7        | 6                 | 55<br>66 | 5      | 0.1        | 1   | 7         | 0.1            | 1        | 0.2     | 5               | 3                 | 1      | 7        |
| Saut030 4     | 6 IPF658 #^                      | A2AKEEMBKB                | R     | 2000         | Fécamp (P. Aspiration bronchi.                    | . 9      | 6                 | 55       | 5      | 0.1        | 1   | 8         | 0.1            | 1        | 0.2     | 5               | 3                 | 1      | 7        |
| Saur147 4     | 7 SARM-100                       | A2AKEEMBKB                | R     | 1996         | collection P.                                     | 9        | 6                 | 55       | 5      | 0.1        | 1   | 8         | 0.1            | 1        | 0.2     | 0.1             | 3                 | 1      | 7        |
| Saur160 4     | 8 Mu50(GISA)                     | TJMBMDMGMK                | R     |              | HIA Val de.                                       | 10       | 6                 | 3        | 4      | 3          | 6   | 7         | 5              | 4        | 4       | 5               | 3                 | 3      | 5        |
| Saur170 4     | 8 Mu50<br>9 #97373 X\/III        |                           | R     | 1006         | nosocomial<br>Broussais - Blaie                   | 10<br>10 | 6                 | 3        | 4      | 3          | 6   | 7         | 5              | 4        | 4       | 5               | 3                 | 3      | 5        |
|               | 9 N315                           | TJMBMDMGMK                | R     | 1550         | nosocomial                                        | 10       | 6                 | 3        | 4      | 3          | 6   | 7         | 5              | 4        | 4       | 5               | 3                 | 3      | 7        |
| Saur001 5     | 0 BM12846 :1                     | TJMBMDMGMK                | s     | 1999         | Broussais                                         | 10       | 6                 | 2        | 4      | 3          | 4   | 7         | 5              | 5        | 4       | 5               | 1                 | 3      | 7        |
| Saur002 5     | 1 BM12451 :2                     | YC2FMBQBLOO               | S     | 1997         | Grendble Plaie orteil                             | 10       | 6                 | 2        | 6      | 0.1        | 9   | 6         | 5              |          | 3       | 6               | 3                 | 2      | 9        |
| Saur141 5     | 2 SASM-11                        | WGFMB                     | S     | 2001         | collection P.                                     | 6        | 6                 | 4        | 4      | 0.1        | 5   | 5         | 5              | 2        | 2       | 1               | 3                 | 2      | 36       |
| Saur034 5     | 3 BM 12634 36a                   | H2GJAABB                  | s     | 1998         | Hôpital péd. OMA (peropératoir                    | 4        | 5                 | 2        | 5<br>6 | 4          | 3   | 5         | 5              | 1        | 3       | 4               | 3                 | 2      | 7<br>36  |
| Saur142 5     | 4 SASM-12                        | UKGJB                     | s     |              | collection P.                                     | 5        | 4                 | 1        | 2      | 0.1        | 3   | 7         | 5              | 1        | 3       | 4               | 4                 | 2      | 32       |
| Saur062 5     | 7 IPF310 ~                       | WGBBBGGJ                  | s     | 2001         | CH Interc. Pustule                                | 9        | 5                 | 25       | 2      | 0.1        | 8   | 7         | 7              | 5        | 3       | 3               | 3                 | 2      | 36       |
| Saur063 5     | 7 IPF311 ~                       | WGBBBGGJ                  | S     | 2001         | CH Interc. Pustule                                | 9        | 5                 | 25       | 2      | 0.1        | 8   | 7         | 7              | 5        | 3       | 3               | 3                 | 2      | 36       |
| Sauro64 5     | 7 IPF323 ~<br>8 IPF308 ~         | WGBBBGGJ                  | s     | 2001         | CH Interc. Nez(personrei)<br>CH Interc. Pustule   | 9        | 5<br>5            | 25<br>25 | 2      | 0.1        | 8   | 7         | 7              | 5<br>4   | 3       | 3               | 3                 | 2      | 36<br>36 |
| - Saur137 6   | 0 SASM-5                         | H2M2EGMMJK2M              | s     |              | collection P.                                     | 9        | 5                 | 1.5      | 4      | 0.1        | 3   | 7         | 3              | 1        | 0.1     | 3               | 3                 | 1      | 7        |
| - Saur139 6   | 1 SASM-7                         | H2M2EGMMJK2M              | S     |              | collection P.                                     | 9        | 5                 | 1.5      | 4      | 0.1        | 3   | 7         | 3              | 1        | 0.1     | 3               | 3                 | 1      | 36       |
| Saur140 6     | 2 SASM-8                         | H2M2EGMMJK2M              | S     | 2001         | collection P.                                     | 9        | 5                 | 1.5      | 4      | 0.1        | 3   | 7         | 3              | 1        | 0.1     | 3               | 3                 | 1      | 32       |
|               | Harmony 9 I-5                    | YHEGEMBOBLO               | R     | 1990         | Finlande                                          | 9<br>11  | 5                 | 2        | 4      | 2          | 4   | 3         | 6              | 1        | 3       | 3<br>1          | 3                 | 3      | 7        |
| Saur102 5     | BM10138 A 10                     | YHFGFMBQBLO               | R     | 1989         | Barcelone                                         | 11       | 5                 | 2        | 6      | 2          | 2   | 3         | 6              | 1        | 3       | 1               | 4                 | 3      | 7        |
| Saur071 6     | IPF65 #&                         | YHFGFMBQBLO               | R     | 2000         | Rotschild Lésions cutanées                        | 11       | 5                 | 2        | 6      | 2          | 2   | 3         | 6              | 1        | 3       | 1               | 4                 | 2      | 7        |
| Saur172 7     | NCTC8325                         | YHGGFMBQBLO               | S     | 4000         | old laborat.                                      | 11       | 5                 | 2        | 10     | 2          | 2   | 3         | 6              | 1        | 3       | 1               | 4                 | 3      | 7        |
| Saur024 1     | 2 BM12612 I-1<br>2 GISA-11060    | YEGEMBOBLO                | ĸ     | 1998         | Villiers St. Hemoculture                          | 10       | 5                 | 2        | 6      | 2          | 2   | 3         | 6              | 1        | 3       | 1               | 4                 | 3      | 7        |
| Saur019 8     | IPF 555 I -1                     | YEGEMBLO                  | R     | 1999         | Broussais Hémoculture                             | 8        | 5                 | 2        | 6      | 2          | 2   | 3         | 6              | 1        | 0.1     | 1               | 4                 | 3      | 7        |
| L Saur021 1   | 0 IPF 562 I-1                    | .YFGFMBLO                 | R     | 1999         | Broussais LBA                                     | 8        | 5                 | 2        | 6      | 2          | 2   | 3         | 6              | 1        | 0.1     | 1               | 4                 | 2      | 7        |
| Saur026 9     | Harmony 26 I - 1                 | . YHF GFMBQBQBLO          | R     | 1989         | Espagne                                           | 13       | 5                 | 2        | 6      | 2          | 2   | 3         | 6              | 1        | 0.1     | 1               | 4                 | 3      | 7        |
|               | IPF 556 I-1<br>BM 10829 J-5      |                           | R     | 1999         | Broussais Hemoculture                             | 8<br>11  | 5                 | 2        | ช<br>6 | U.1<br>0.1 | 2   | 3         | 6<br>6         | 1        | 3       | 1               | 4<br>4            | 4<br>4 | /<br>7   |
|               | #96145 I-17                      | .YHFGFMBQBLO              | R     | 1996         | Blois                                             | 11       | 5                 | 2        | 6      | 0.1        | 2   | 3         | 4              | 1        | 3       | 1               | 4                 | 4      | 7        |
| Saur003 1     | 4 BM 10675 :29                   | YHGEO                     | S?    | 1993         | Broussais Cathéter                                | 5        | 5                 | 2        | 2      | 2          | 1   | 3         | 6              | 1        | 2       | 1               | 4                 | 2      | 7        |
| L Saur005 1   | 5 BM 9520 30b                    | YHGFMBQBLO                | s     | 1988         | Broussais Pustule cuisse                          | 10       | 5                 | 2        | 2      | 2          | 1   | 3         | 6              | 1        | 2       | 1               | 4                 | 2      | 7        |
| Saur011 1     | 6 BM 10215 :18<br>1 BM 12828 16a | YHGFMBQBLO<br>YHGFMBQBI O | R     | 1990<br>1999 | Broussais Pustule cusse<br>Broussais Plaie orteil | 10<br>10 | 5                 | 2        | 2      | 2          | 1   | 3         | 6<br>3         | 1        | 2       | 1               | 4<br>3            | 3      | 7        |
|               | 1 IPF646 \$                      | YHGFMBQBLO                | R     | 2000         | Centre Ho. Expectoration                          | 10       | 5                 | 2        | 6      | 2          | 1   | 3         | 3              | 1        | 3       | 1               | 3                 | 3      | 7        |
| Saur078 2     | 1 #97117 VIId                    | YHGFMBQBLO                | R     | 1997         | TOULOU. Hémaculture                               | 10       | 5                 | 2        | 6      | 2          | 1   | 3         | 3              | 1        | 3       | 1               | 3                 | 3      | 7        |
| Saur006 2     | 3 #99135 :31                     | YHGFMBQBLO                | s     | 1999         | St Lauis-P.                                       | 10       | 5                 | 2        | 6      | 2          | 1   | 3         | 3              | 1        | 3       | 1               | 4                 | 3      | 7        |
| Saur146 3     | 3 SARM-88<br>8 SARM-131          | THGEMBOBLO                | R     | 1996<br>1996 | collection P.                                     | 10<br>10 | 4<br>5            | 2        | б<br>6 | 2          | 2   | 3<br>3    | 3              | 1        | 3<br>3  | 1<br>1          | 3<br>3            | 3<br>3 | 7        |
| Sauri 49 2    | 4 MSSA476                        | UKJFKBPE                  | s     | 1000         | community.                                        | 8        | 5                 | 3        | 6      | 2          | 2   | 4         | 5              | 2        | 3       | 3               | 1                 | 1      | 7        |
| Saur173 6     | 5 MW2                            | <b>UUUFKBPE</b>           | R     |              | community.                                        | 8        | 5                 | 4        | 8      | 2          | 1   | 4         | 5              | 3        | 2       | 3               | 3                 | 1      | 7        |
| Saur135 6     | 7 SASM-2                         | WEKBPE                    | S     |              | collection P.                                     | 7        | 5                 | 2        | 6      | 2          | 2   | 4         | 4              | 3        | 3       | 3               | 4                 | 1      | 36       |
| └── Saur136 6 | B SASM-4                         | WEKBPE                    | s     |              | collection P.                                     | 7        | 5                 | 2        | 6      | 2          | 2   | 4         | 4              | 3        | 3       | 3               | 4                 | 1      | 7        |
|               |                                  |                           |       |              |                                                   |          |                   |          |        |            |     |           |                |          |         |                 |                   |        |          |

Figure 30



Figure 31

Dans cette représentation « minimum spanning tree » (voir Figure 31), les numéros correspondent aux numéros des génotypes de l'arbre MLVA des 140 souches S. aureus. Chaque couleur correspond à une grande branche de l'arbre. R et S correspondent à la résistance ou à la sensibilité à la méthicilline. En blanc, il s'agit des génotypes très éloignés des autres. Les cercles sans numéro de génotype correspondent aux souches hypothétiques qui seraient intermédiaires d'un génotype à l'autre. D'une manière générale, pour que cette réprésentation « minimum spanning tree » soit intéressante, il faut avoir une représentation la plus exhaustive possible des individus de la population (c'est-à-dire un échantillonage global), afin de limiter le nombre de souches hypothétiques. Globalement, si on se refère à l'arbre, les souches MRSA sont assez bien regroupées dans le complexe central (en vert clair), elles présentent pour la majorité un allèle de type YHFG. Les souches MSSA sont réparties dans de nombreux complexes. Le clone ibérique est le clone MRSA le plus répandu actuellement. On retrouve un certain nombre de souches dans l'étude présentée ici qui ont le même codage spa que ce clone : YHFGFMBQBLO. Dans l'étude réalisée par Crisostomo (Crisostomo 2001), toutes les souches MRSA étudiées présentent un codage commençant par YHFGF ou YHGFM, en revanche, parmi les souches MSSA, une grande diversité de codages a été observée (dont des allèles commençant eux aussi par YHGFM ou YHFGF). Un clone MSSA ancien (1963) présente une duplication d'un motif G : YHGGFMBQBLO, ce codage est observé dans notre étude pour la souche de référence NCTC8325 qui est de type MSSA. Des allèles avec un codage de type TJMBM..., UJFK...ou WGKA... sont aussi retrouvés dans notre étude. Certaines souches MRSA présentent un allèle spa de type UJFK ou WGKA.

#### 3.3.2.2 Mu50\_1132

La répétition en tandem ms1132 est localisée dans une séquence codante (protéine hypothétique). Elle a un motif de 63 pb. Trente six allèles représentant les 8 tailles observées sur gel ont été séquencés. Avec les séquences des 6 souches de référence, nous disposons de 42 séquences. Le codage a été réalisé comme pour celui de la protéine A, selon l'ordre d'apparition des motifs dans les séquences, sans classement des motifs selon leur proximité. La Figure 32 présente l'alignement des 34 motifs de 63pb observés dans les séquences des différents allèles ms1132.

|                | hundre         |                  | milin               |             | بالتنباليت              | adami                   | malmut        |
|----------------|----------------|------------------|---------------------|-------------|-------------------------|-------------------------|---------------|
|                | 1.1            | 10               | 20                  | 30          | 40                      | 50                      | 60            |
| A              | TTGTAAG        | <b>GTAAAAGAG</b> | GGATACATG           | CGCCGAGCAC7 | TGCAAAAAA               | CCCCTAACA               | ACTAAAAG      |
| B              | G.             | ********         |                     |             |                         |                         |               |
| [C]            | 7/7/2/2/2/2/20 |                  |                     | .AG.        | A                       |                         | G.            |
| $ \mathbf{D} $ | *****          | .A.G             |                     | .A          | TT                      |                         |               |
| E              |                |                  | ********            |             | · · · · · T · · · · ]   |                         |               |
| F              |                | .A.G             | .A.C                |             | T                       | · · · · · · · · · · · · |               |
| G              |                | .A.G             | and Constant        | ********    | T                       |                         |               |
| 1HI            | 747(2)7(3)7(5) |                  | CA.                 | GG.         | A                       | · · · · A · · · ·       | (10.000.000)  |
| 111            | ******         |                  |                     |             | <mark>.</mark>          |                         | G             |
| 14             | ++8++++        | -A.G             | ********            |             |                         | 2                       |               |
| K I            |                | .A.66            |                     | ••••••      | · · • • • T • · · · · · |                         |               |
| 11             | ******         |                  |                     |             |                         |                         |               |
| 101            | 757223055      | 3.00             | 110120100           | n           |                         | 10000000000             | (6 T MPT 9 5) |
| N              |                | A.00             |                     |             |                         |                         |               |
| 101            |                | -M-G             |                     |             |                         |                         |               |
| P              |                | N.G              |                     | - C         | 7 T                     | ********                |               |
| 21             |                | A.G.             |                     |             | ň                       |                         |               |
| 101            | 1.0            | 3. GG            |                     |             | 11                      |                         |               |
|                | 6              |                  | C3                  | G G         | <u>n</u>                | P.                      |               |
| 1121           |                | A.G.             |                     |             | 1 7                     |                         |               |
| W.             | G.             |                  | Т                   |             | A TRG                   | 2000 (NG)               |               |
| (m)            |                |                  |                     |             | T                       |                         |               |
| 121            |                | .A.G             |                     |             |                         |                         |               |
| Y I            |                | .A.G             |                     |             |                         |                         |               |
| 121            |                | .A.G             | T                   | TTG.        | .AT                     |                         |               |
| a              | G.             |                  |                     | .A          | TT                      |                         |               |
| Ibi            | GA             | AT.              | T                   | GTG.        | A T                     |                         |               |
| ICI            | G.             |                  | T                   | TG.         | T                       |                         |               |
| 1d             |                | AT.              | · · · · · · . T · · | GTG.        | .AT                     |                         |               |
| lei            | + . A          | .A.G             |                     |             | · · · · · T · · · · ]   |                         |               |
| f              | *****          | .A.G             |                     |             |                         |                         |               |
| g              |                |                  | T                   | G.          | A.T]                    |                         | G             |
| $ \mathbf{h} $ | G.             |                  |                     | C           |                         |                         | - + <b>-</b>  |

Figure 32 : Alignement des motifs pour le codage des allèles Mu50\_1132

Les allèles codés sont présentés dans le Tableau 17.

| allèles ms1132:  | codage des motifs: | allèles ms1132:  | codage des motifs: |
|------------------|--------------------|------------------|--------------------|
| Saur002_9U_720bp | BAALMMNNN          | Saur028_2U_280bp | JK                 |
| Saur062_8U_658bp | UREKKMMN           | Saur102_2U_280bp | JK                 |
| Saur063_8U_658bp | UREKKMMN           | Saur109_2U_280bp | JK                 |
| Saur060_8U_658bp | fREKKMMN           | Saur162_2U_280bp | JK                 |
| Mu50_6U_532bp    | BACDEF             | MW2_1U_217bp     | В                  |
| N315_6U_532bp    | BACDEF             | Saur003_1U_217bp | J                  |
| Saur159_6U_532bp | BACDEF             | Saur011_1U_217bp | J                  |
| Saur160_6U_532bp | BACDEF             | Saur005_1U_217bp | J                  |
| Saur061_6U_532bp | JRMQSD             | Saur040_1U_217bp | b                  |
| Saur141_5U_469bp | BOPQK              | Saur047_1U_217bp | b                  |
| Saur039_4U_406bp | VWWW               | Saur048_1U_217bp | b                  |
| Saur037_4U_406bp | XYZK               | Saur050_1U_217bp | b                  |
| Saur142_3U_343bp | BMD                | Saur051_1U_217bp | b                  |
| Saur034_3U_343bp | BAM                | Saur147_1U_217bp | b                  |
| MSSA_2U_280bp    | BG                 | Saur049_1U_217bp | d                  |
| Saur136_2U_280bp | BG                 | Saur058_1U_217bp | d                  |
| MRSA_2U_280bp    | H                  | Saur036_1U_217bp | d                  |
| Saur016_2U_280bp | H                  | Saur138_1U_217bp | d                  |
| Saur035_2U_280bp | HI                 | Saur143_1U_217bp | d                  |
| Saur017_2U_280bp | TI                 | Saur053_1U_217bp | е                  |
| 8325_2U_280bp    | JK                 | Saur078_1U_217bp | e                  |

 Tableau 17 : Codage ms1132 des allèles séquencés.

Le Tableau 18 indique le nombre de codages différents observés pour chaque taille d'allèle séquençée.

| allèles ms1132<br>séquencés (taille en<br>nombre de motifs) | nombre de<br>codages<br>différents |
|-------------------------------------------------------------|------------------------------------|
| 1 allèle 9U                                                 | 1                                  |
| 3 allèles 8U                                                | 2                                  |
| 5 allèles 6U                                                | 3                                  |
| 1 allèle 5U                                                 | 1                                  |
| 2 allèles 4U                                                | 2                                  |
| 2 allèles 3U                                                | 2                                  |
| 11 allèles 2U                                               | 4                                  |
| 17 allèles 1U                                               | 5                                  |

 Tableau 18 : Nombre de codages ms1132 observés.

|                         |            |                                        |             |            |           |        |        |                              |          | 5      | 2        | 、<br>、  |        |        |          |                                |          |                      |     |        |        |     |
|-------------------------|------------|----------------------------------------|-------------|------------|-----------|--------|--------|------------------------------|----------|--------|----------|---------|--------|--------|----------|--------------------------------|----------|----------------------|-----|--------|--------|-----|
| ategoric al<br>//LVAx10 |            |                                        | notype      | đ.         | codage    |        | Notine |                              | 2        | 2 500  | Se co    | ^       | 04,00  | ,      | 32 ,     | 0 <sup>4</sup> .0 <sup>4</sup> | <u>ې</u> | 19 <sup>°</sup> . 16 | p.  | 129.   | @      | ్రణ |
|                         | n° ADN     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | souche      | PRO        | ms1132    | ner    | année  | e origine                    | neo.     | neur   | man      | me      | rebs   | nei    | risi     | nel                            | msi      | " mst."              | ne  | ์ กร์  | "C ME  | ~   |
|                         | Saur035    | 39                                     | BM12975     | 45c        | н         | s      | 1999   | Hôpital pédiatrique Tunisie  | 7        | 4      | 3        | 3       | 0.1    | 2      | 5        | 0.1                            | 2        | 0.2                  | 3   | 2      | 3      |     |
|                         | Saur175    | 38                                     | MRSA252     |            | н         | R      |        | nosocomial EMRSA16           | 11       | 4      | 3        | 3       | 0.1    | 2      | 3        | 5                              | 2        | 0.2                  | 5   | 2      | 4      |     |
|                         | Saur016    | 40                                     | BM 12286    | 36a        | н         | S?     | 1996   | Beaujon-Clichy               |          | 6      | 2        | 3       | 2      | 2      | 5        | 3                              | 2        | 0.2                  | 5   | 2      | 3      |     |
|                         | . Saur017  | 41                                     | BM 12287    | 36a        | п         | S?     | 1996   | Beaujon-Clichy               | 9        | 6      | 2        | 3       | 2      | 2      | 5        | 0.1                            | 2        | 0.2                  | 5   | 2      | 3      |     |
| Г                       | Saur159    | 48                                     | Mu3(SARM)   | )          | BACDEF    | R      |        | HIA Val de Grâce             | 10       | 6      | 3        | 4       | 3      | 6      | 7        | 5                              | 4        | 4                    | 5   | 3      | 3      |     |
|                         | Saur160    | 48                                     | Mu50(GISA   | )          | BACDEF    | R      |        | HIA Val de Grâce             | 10       | 6      | 3        | 4       | 3      | 6      | 7        | 5                              | 4        | 4                    | 5   | 3      | 3      |     |
|                         | Saur170    | 48                                     | Mu50        |            | BACDEF    | R      |        | nosocomial                   | 10       | 6      | 3        | 4       | 3      | 6      | 7        | 5                              | 4        | 4                    | 5   | 3      | 3      |     |
| L                       | Saur174    | 49                                     | N315        |            | BACDEF    | R      |        | nosocomial                   | 10       | 6      | 3        | 4       | 3      | 6      | 7        | 5                              | 4        | 4                    | 5   | 3      | 3      |     |
|                         | Saur002    | 51                                     | BM12451     | :2         | BAALMMNNN | s      | 1997   | Grenoble                     | 10       | 6      | 2        | 6       | 0.1    | 9      | 6        | 5                              |          | 3                    | 6   | 3      | 2      |     |
|                         | Saur037    | 66                                     | IPF489      | 42a        | XYZK      | s      | 2001   | Hôpital pédiatrique Tunisie  | 10       | 4      | 2.5      | 6       | 0.1    | 4      | 4        | 5                              | 3        | 2                    | 3   | 3      | 4      |     |
|                         | Saur141    | 52                                     | SASM-11     |            | Bopqk     | s      |        | collection Pitié             | 6        | 6      | 4        | 4       | 0.1    | 5      | 5        | 5                              | 2        | 2                    | 1   | 3      | 2      |     |
|                         | Saur061    | 56                                     | IPF309      | ~          | JRMQSD    | s      | 2001   | CH Intercommunal Créteil     | 4        | 5      | 2        | 5       | 4      | 6      | 5        | 1                              |          | 3                    | 4   | 3      | 2      |     |
|                         | Saur034    | 53                                     | BM 12634    | 36a        | BAM       | s      | 1998   | Hôpital pédiatrique Tunisie  | 7        | 5      | 1        | 6       | 0.1    | 3      | 7        | 5                              | 1        | 1                    | 4   | 4      | 2      |     |
|                         | Saur142    | 54                                     | SASM-12     |            | BMD       | s      |        | collection Pitié             | 5        | 4      | 1        | 2       | 0.1    | 3      | 7        | 5                              | 1        | 3                    | 4   | 4      | 2      |     |
|                         | Saur062    | 57                                     | IPF310      | ~          | UREKKMMN  | s      | 2001   | CH Intercommunal Créteil     | 9        | 5      | 2.5      | 2       | 0.1    | 8      | 7        | 7                              | 5        | 3                    | 3   | 3      | 2      |     |
|                         | Saur063    | 57                                     | IPF311      | ~          | UREKKMMN  | s      | 2001   | CH Intercommunal Créteil     | 9        | 5      | 2.5      | 2       | 0.1    | 8      | 7        | 7                              | 5        | 3                    | 3   | 3      | 2      |     |
|                         | Saur060    | 58                                     | IPF308      | ~          | frekkmmn  | s      | 2001   | CH Intercommunal Créteil     | 9        | 5      | 2.5      | 2       | 0.1    | 8      | 7        | 7                              | 4        | 3                    | 3   | 3      | 2      |     |
|                         | Saur039    | 63                                     | IPF 509     | :57        | vwww      | s      | 2001   | Hôpital pédiatrique Tunisie  | 9        | 5      | 1.5      | 4       | 0.1    | 4      | 7        | 3                              | 1        | 0.2                  | 3   | 3      | 1      |     |
| _                       | Saur138    | 42                                     | SASM-6      |            | d         | s      |        | collection Pitié             | 9        | 6      | 5.5      | 5       | 0.1    | 1      | 7        | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | Saur143    | 42                                     | SARM-15     |            | d         | R      | 1996   | collection Pitié             | 9        | 6      | 5.5      | 5       | 0.1    | 1      | 7        | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | Saur040    | 43                                     | IPF 510     | 37a        | b         | S      | 2001   | Hôpital pédiatrique Tunisie  | 11       | 6      | 5.5      | 5       | 0.1    | 1      | 7        | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | Saur036    | 44                                     | IPF160      | 38c        | d         | s      | 2000   | Höpital pédiatrique Tunisie  | 3        | 6      | 5.5      | 5       | 0.1    | 1      | 7        | 0.1                            | 1        | 0.2                  | 4   | 3      | 1      |     |
|                         | Saur047    | 45                                     | IPF735      |            | b         | s      | 2001   | Centre Hospitalier Calais    | 7        | 6      | 5.5      | 5       | 0.1    | 1      | 7        | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | Saur048    | 45                                     | IPF736      |            | b         | s      | 2001   | Centre Hospitalier Calais    | 7        | 6      | 5.5      | 5       | 0.1    | 1      | 7        | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | Sauro49    | 45                                     | IPF/38      | -          | a         | 5      | 2001   | Centre Hospitalier Calais    | <u>_</u> | 6      | 5.5      | 5       | 0.1    | 1      | <i>′</i> | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | Sauroso    | 45                                     | IPF/41      |            | D .       | S      | 2001   | Centre Hospitalier Calais    | <u>_</u> | 6      | 5.5      | 5       | 0.1    | 1      | <i>′</i> | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | Saur051    | 45                                     | IPF743      | *          | b         | s      | 2001   | Centre Hospitalier Calais    | 7        | 6      | 5.5      | 5       | 0.1    | 1      | 7        | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
|                         | - Saur058  | 46                                     | IPF658      | #^         | a<br>-    | R      | 2000   | recamp (Patients nospitali.  | 9        | 6      | 5.5      | 5       | 0.1    | 1      | 8        | 0.1                            | 1        | 0.2                  | 5   | 3      | 1      |     |
| L                       | - Saur147  | 4/<br>5                                | SARM-100    |            |           | R      | 1996   | collection Pitle             | 9        | 6      | 5.5<br>2 | 5       | 0.1    | 1      | 8        | U.1                            | 1        | 0.2                  | 0.1 | 3      | 1      |     |
| г                       | Sauru28    | 0<br>5                                 | FIAILIONY 9 | 1-0        |           | R      | 1990   |                              | 11       | 5<br>5 | ∠<br>2   | 0       | ∠<br>2 | ∠<br>2 | ა<br>ი   | 0                              | 1        | ა<br>ი               | 1   | 4      | ა<br>ი |     |
|                         | Sour162    | 12                                     | CIEA 1100   | A IU       |           | ĸ      | 1909   | HIA Val da Crâca             | 10       | 5<br>5 | ∠<br>2   | 6       | 2<br>2 | ∠<br>2 | 3        | U<br>e                         | 1        | Э                    | 1   | 4      | ა<br>ი |     |
|                         | Sour172    | 1∠<br>7                                | GIGA-1100.  |            |           | e      |        |                              | 10       | 5      | ∠<br>2   | 0       | 2      | ∠<br>2 | ა<br>ი   | 0                              | 1        | ა<br>ი               | 1   | 4      | ა<br>ი |     |
|                         | - Saur1/2  | 1<br>21                                | INC 1 C8325 | #\$        |           | э<br>Р | 2000   | Centre Hospitalion Abbeville | 10       | D<br>F | ∠<br>2   | 10<br>6 | ∠<br>2 | ∠<br>1 | 3        | 0<br>3                         | 1        | ა<br>ვ               | 1   | 4      | ა<br>ი |     |
|                         | Saur079    | ∠ I<br>21                              | #97117      | ₩          | -         | R      | 1007   |                              | 10       | 5      | ∠<br>2   | 6       | ∠<br>2 | 1      | 3<br>7   | 3                              | 1        | 3                    | 1   | 3<br>3 | ა<br>ვ |     |
|                         | Saur100    | 28                                     | BM10827     | K          | ĸ         | R      | 1002   | BORDEALIX                    |          | 5      | 2        | 6       | 2      | ,<br>2 | 3        | 3                              | 1        | 3                    | 1   | 3      | 3      |     |
|                         | Saur003    | 14                                     | BM 10675    | ·29        | .1        | 52     | 1993   | Broussais- Paris             | 5        | 5      | 2        | 2       | 2      | 1      | 3        | 6                              | 1        | 2                    | 1   | 4      | 2      |     |
| h                       | Saur005    | 15                                     | BM 9520     | .20<br>30h | Т         | s      | 1089   | Broussais- Faris             | 10       | 5      | 2        | 2       | 2      | 1      | 3        | 6                              | 1        | 2                    | 1   | -      | 2      |     |
|                         | Saur011    | 16                                     | BM 10215    | -18        | 5<br>1    | 3<br>6 | 1000   | Broucesie, Darie             | 10       | 5      | 2        | 2       | 2      | 1      | 3        | 6                              | 1        | 2                    | 1   | -      | 2      |     |
|                         | Sauriae    | 68                                     | SASM_4      | .10        | BG        | 5      | 1990   | collection Pitié             | 7        | 5      | 2        | ∠<br>6  | ∠<br>2 | 2      | ⊿        | 4                              | 3        | ∠<br>3               | 3   | 4      | 1      |     |
|                         | Saur 171   | 64                                     | MSSA476     |            | BG        | s      |        | community aquired            | ,<br>8   | 5      | 2        | 6       | 2      | 2      | 4        | 5                              | 2        | 3                    | 3   | 1      | 1      |     |
|                         | . Jau // I |                                        | 1100/14/0   |            | 50        | 0      |        | community aquireu            | 5        | 5      | 5        | 5       | 2      | 4      | -        | 9                              | ~        | 5                    | 5   |        |        |     |

### Figure 33

On observe une certaine diversité même dans les allèles à 1 motif. Les 42 séquences ms1132 se répartissent en 20 codages différents. Par typage MLVA, ces souches se répartissent en 32 génotypes (voir Figure 33 arbre MLVA). Là aussi, le séquençage d'un seul locus n'atteint pas le pouvoir discriminant de l'analyse MLVA. On peut noter que la répartition des allèles ms1132 dans l'arbre est en accord avec les données MLVA. Globalement, les allèles ne sont pas groupés de façon aléatoire, par exemple tous les allèles ayant J comme premier (ou unique) motif sont regroupés dans la même partie de l'arbre. Une exception cependant, les allèles commençant par un motif B sont dispersés dans l'arbre.

Les souches « Calais », de génotype identique en champ pulsé, avec l'analyse MLVA et par séquençage *spa*, sont divisées en 2 codages ms1132 : allèle b ou allèle d. Lorsque l'on regarde la séquence de ces deux motifs (voir Figure 32) on voit qu'ils sont proches puisqu'ils diffèrent pour seulement 2 nucléotides sur 63. De même, H et T se distinguent par une seule mutation.



Figure 34 : Représentation « minimum spanning tree » de l'arbre MLVA des 42 souches séquencées au locus ms1132

De cette représentation « minimum spanning tree », il apparaît clairement que les souches commençant par B sont réparties largement. La souche à allèle BAM n'est pas particulièrement proche de celle à allèle BAALMMNNN contrairement à ce que nous avons observé pour le codage spa, où des allèles de taille différente, mais ressemblants en ce qui concerne leur codage, sont proches dans l'arbre. Les souches avec un allèle à 1 motif, b ou d sont toutes regroupées ensembles dans l'un des complexes principaux. Parmi ces souches, on trouve des souches MRSA et quelques MSSA. Le souches qui étaient regroupées par l'analyse MLVA ont dans l'ensemble des allèles avec un codage très identique ou proche.

### 3.3.2.3 Comparaison de la résolution des typages par séquençage spa/ms1132 et par l'analyse MLVA (14 locus) :

Environ un tiers de la collection de souches a été séquencé pour ces deux locus, il était donc intéressant de voir en combien de génotypes le séquençage de *spa* et ms1132 permet de classer ces souches par rapport à l'étude MLVA avec 14 VNTRs.

Avec l'analyse MLVA, les 34 souches se répartissent en 28 génotypes différents. Le codage des allèles des deux locus séquencés a presque la même résolution puisque 27 génotypes sont observés. La Figure 35 représente l'arbre MLVA des 34 souches.

Globalement, on observe une certaine cohérence entre les génotypes obtenus par typage MLVA et les codages spa/ms1132. Des souches proches pour le codage spa sont proches pour le codage ms1132 (congruence des analyses). Ces marqueurs semblent liés. Leurs positions sur le génome sont très éloignées (spa en position 122kb et ms1132 en position 1132kb). Ceci reflète la clonalité observée chez *S.aureus* (Feil 2003), il y a peu de recombinaison, donc les allèles ne sont pas aléatoirement distribués. L'observation de deux types d'allèles ms1132, b et d (qui diffèrent pour 2 nucléotides) pour des souches identiques en codage spa, PFGE et MLVA, est une illustration de l'évolution des *S. aureus* par mutation ponctuelle plus que par recombinaison où l'on verrait un réassortiment des allèles (Smith 1993).

| Callagorical<br>MLV As 10               | 5ª AD M  | - 96 | 20 <sup>C1</sup> | ofot | oodaaa aaa       | endage      | * Joshno             |                             | NP. | (app.) | (000) | s^ . | 1000 | pp , | 131 | 1. 40 A | RA            | ør j | 西  | TP. | 9g | 202   |
|-----------------------------------------|----------|------|------------------|------|------------------|-------------|----------------------|-----------------------------|-----|--------|-------|------|------|------|-----|---------|---------------|------|----|-----|----|-------|
| ह                                       | 1 70 N   |      | souche           |      | codage spa       | ms1132      | ش <sup>هم</sup> anné | e origine 😽                 | 9   | Ma     | Up.   | 49   | Up.  | 49   | 40  | 40      | 40            | 40   | 42 | 49  | 4  | 5° 44 |
| · · ( · · · · · T · · · · · T · · · · · | Saur136  | 68   | SASM-4           |      | UJFKBPE          | BG          | S                    | collection Pitié            | 7   | 5      | 2     | 6    | 2    | 2    | 4   | 4       | 3             | 3    | 3  | 4   | t: | 7     |
|                                         | Saur171  | 64   | MSSA476          |      | UKJFKBPE         | BG          | S                    | community aquired           | 8   | 5      | 3     | 6    | 2    | 2    | 4   | 5       | 2             | 3    | 3  | 1   | 1S | 7     |
|                                         | Saur173  | 65   | MW2              |      | UJJFKBPE         | в           | В                    | community aquired           | 8   | 5      | 4     | 8    | 2    | 1    | 4   | 5       | 3             | 2    | 3  | 3   | 臣  | 7     |
|                                         | Saur035  | 39   | BM12975          | 45c  | WG AKB MQ        | HI          | S 1999               | Hôpital pédiatrique Tunisie | 7   | 4      | 3     | 3    | 0.1  | 2    | 5   | 0.1     | 2             | 0.2  | 3  | 2   | 3  | 7     |
|                                         | Saur175  | 38   | MR SA252         |      | WG KAK AOM Q Q Q | н           | R                    | nosocomial BMRSA16          | 11  | 4      | 3     | 3    | 0.1  | 2    | 3   | 5       | 2             | 0.2  | 5  | 2   | 4  | 7     |
|                                         | Saur002  | 51   | BM12451          | 2    | YC2FMBQBLOO      | BAALMMNNN   | S 1997               | Grenoble                    | 10  | 6      | 2     | 6    | D.1  | 9    | 6   | 5       |               | 3    | 6  | 3   | 2  | 9     |
|                                         | Saur141  | 52   | SASM-11          |      | UJGFMB           | во рок      | S                    | collection Pitié            | 6   | 6      | 4     | 4    | D.1  | 5    | 5   | 5       | 2             | 2    | 1  | 3   | 2  | 36    |
|                                         | Saur061  | 56   | IP F309          |      | ZGGM             | JRMQSD      | S 2001               | CH Intercommunal Crétei     | 4   | 5      | 2     | 5    | 4    | 6    | 5   | 1       |               | 3    | 4  | 3   | 2  | 7     |
|                                         | Saur034  | 53   | BM 12634         | 36a  | H2GJA ABB        | BAM         | S 1998               | Hôpital pédiatrique Tunisie | 7   | 5      | 1     | 6    | D.1  | 3    | 7   | 5       | 1             | 1    | 4  | 4   | 2  | 36    |
|                                         | Saur142  | 54   | SASM-12          |      | UKGJB            | BM D        | S                    | collection Pitié            | 5   | 4      | 1     | 2    | 0.1  | 3    | 7   | 5       | st.           | 3    | 4  | 4   | 2  | 3:    |
|                                         | Saur062  | 57   | IP F310          | N.   | UJGBBBGGJ        | UREKKMMN    | \$ 2001              | CH Intercommunal Crétei     | 9   | 5      | 2.5   | 2    | 0.1  | 8    | 7   | 7       | 5             | 3    | 3  | 3   | 2  | 31    |
|                                         | Saur063  | 57   | IP F311          | 2    | UJGBBBGGJ        | UREKKMMN    | S 2001               | CH Intercommunal Crétei     | 9   | 5      | 2.5   | 2    | 0.1  | 8    | 7   | 7       | 5             | 3    | 3  | 3   | 2  | 31    |
|                                         | Saur060  | 58   | IP F308          | *    | UJGBBBGGJ        | fR EKK MM N | \$ 2001              | CH Intercommunal Créteil    | 9   | 5      | 2.5   | 2    | 0.1  | 8    | 7   | 7       | 4             | 3    | 3  | 3   | 2  | 31    |
| 2                                       | Saur039  | 63   | IP F 509         | 57   | H2M2EGMMJK2M     | www         | S 2001               | Hôpital pédiatrique Tunisie | 98  | 5      | 1.5   | 4    | 0.1  | 4    | 7   | 3       | 812           | 0.2  | 3  | 3   | 18 | 3:    |
|                                         | Saur160  | 48   | Mu5 D(GISA       | )    | TJMB MDM GMK     | BACDEF      | B                    | HIA Val de Gräce            | 10  | 6      | 3     | 4    | 3    | 6    | 7   | 5       | 4             | 4    | 5  | 3   | 3  | 5     |
|                                         | Saur170  | 48   | Mu5 D            |      | TJMB MDM GMK     | BACDEF      | R                    | nosocomial                  | 10  | 6      | 3     | 4    | 3    | 6    | 7   | 5       | 4             | 4    | 5  | 3   | 3  | 15    |
| _ L                                     | Saur174  | 49   | N3 15            |      | TJMB MDM GMK     | BACDEF      | R                    | nosocomial                  | 10  | 6      | 3     | 4    | 3    | 6    | 7   | 5       | 4             | 4    | 5  | 3   | 3  | 7     |
| - 10°-                                  | Saur028  | 5    | Harmony 9        | 1-5  | .YHFGFMBQBLO     | ЈК          | R 1990               | Finlande                    | 11  | 5      | 2     | 6    | 2    | 2    | 3   | 6       | 1             | 3    | 1  | 4   | 3  | ¥     |
|                                         | Saur 102 | 5    | BM10138          | A 10 | YHFGFMBQBLO      | JK          | R 1989               | Barcelone - ES PAGNE        | 11  | 5      | 2     | 6    | 2    | 2    | 3   | 6       | 1             | 3    | 1  | 4   | 3  | 7     |
|                                         | Saur 162 | 12   | GISA 1106.       | 9    | YFGFMBQBLO       | JK          |                      | HIA Val de Grâce            | 10  | 5      | 2     | 6    | 2    | 2    | 3   | 6       | 1             | 3    | 1  | 4   | 3  | 7     |
|                                         | Saur172  | 7    | NCTC8325         |      | YHGGFMBQBLO      | JK          | S                    | old laboratory strain       | 11  | 5      | 2     | 10   | 2    | 2    | 3   | 6       | 1             | 3    | 1  | 4   | 3  | 7     |
|                                         | Saur078  | 21   | #97117           | VIId | YHGFMBQBLO       | e           | R 1997               | TOULOUSE                    | 10  | 5      | 2     | 6    | 2    | 1    | 3   | 3       | 1             | 3    | 1  | 3   | 3  | 7     |
|                                         | Saur003  | 14   | BM 10675         | 29   | YHGFO            | J           | \$ ? 1993            | Broussais- Paris            | 5   | 5      | 2     | 2    | 2    | 1    | 3   | 6       | ा             | 2    | 1  | 4   | 2  | 7     |
| L L                                     | Saur005  | 15   | BM 9520          | 30Б  | YHG FMB QBL O    | L.          | S 1988               | Broussais- P aris           | 10  | 5      | 2     | 2    | 2    | 1    | 3   | 6       | s (j          | 2    | 1  | 4   | 2  | 7     |
| <u></u>                                 | Saur011  | 16   | BM 10215         | :18  | YHG FMB QBL O    | J           | S 1990               | Broussais- Paris            | 10  | 5      | 2     | 2    | 2    | 1    | 3   | 6       | :É            | 2    | 1  | 4   | 13 | / 7   |
|                                         | Saur040  | 43   | IP F 510         | 37a  | XKAKBBEMEKB      | ь           | S 2001               | Hôpital pédiatrique Tunisie | 11  | 6      | 5.5   | 5    | 0.1  | 1    | 7   | 0.1     | 28 <b>1</b> 2 | 0.2  | 5  | 3   | 1  | 7     |
| Г                                       | Saur138  | 42   | SASM-6           |      | A2 AKB EMB KB    | Ь           | S                    | collection Pitié            | 93  | 6      | 5.5   | 5    | 0.1  | 1    | 7   | 0.1     | 2812          | 0.2  | 5  | 3   | 長  | 7     |
|                                         | Saur047  | 45   | IP F735          | 8    | ХКАКВМВ          | ь           | S 2001               | Centre Hospitalier Calais   | 7   | 6      | 5.5   | 5    | 0.1  | 1    | 7   | 0.1     | 2812          | 0.2  | 5  | 3   | 12 | 7     |
| 1 11                                    | Saur049  | 45   | IP F738          | *    | ХКАКВМВ          | (d)         | S 2001               | Centre Hospitalier Calais   | 7   | 6      | 5.5   | 5    | 0.1  | 1    | 7   | 0.1     | 1             | 0.2  | 5  | 3   | 1  | 7     |
|                                         | Saur050  | 45   | IP F741          | ×    | ХКАКВМВ          | b           | S 2001               | Centre Hospitalier Calais   | 7   | 6      | 5.5   | 5    | D.1  | 1    | 7   | 0.1     | 1             | 0.2  | 5  | 3   | 1  | 7     |
|                                         | Saur051  | 45   | IP F743          | ×    | ХКАКВМВ          | ь           | S 2001               | Centre Hospitalier Calais   | 7   | 6      | 5.5   | 5    | 0.1  | 1    | 7   | 0.1     | 1             | 0.2  | 5  | 3   | 1  | 7     |
|                                         | Saur036  | 44   | IP F160          | 38c  | ХКВ              | d           | S 2000               | Hôpital pédiatrique Tunisie | 3   | 6      | 5.5   | 5    | 0.1  | 1    | 7   | 0.1     | 1             | 0.2  | 4  | 3   | 1  | 7     |
|                                         | Saur058  | 46   | IP F658          | #0   | A2 AKEEMB KB     | d           | R 2000               | Fécamp (Patients hospitali. | 9   | 6      | 5.5   | 5    | 0.1  | 1    | 8   | 0.1     | 1             | 0.2  | 5  | 3   | 1  | 7     |

**Figure 35** 129



La représentation « minimum spanning tree » des 34 souches nous montre que les souches choisies pour le séquençage sont très diverses du point de vue des génotypes MLVA.

**Figure 36 :** Représentation « minimum spanning tree » de l'analyse MLVA des 34 souches *S. aureus* séquencées spa/ms1132.

Les souches qui ont un génotype proche par l'analyse MLVA ont aussi des codages d'allèles très proches, il y a une certaine cohérence entre les données de séquençage et celle de l'analyse de 14 VNTRs.

#### 3.3.3 Conclusions de l'étude sur S. aureus

Le développement des marqueurs polymorphes pour l'analyse MLVA chez *S. aureus* nous a permis de valider douze nouveaux marqueurs de type VNTRs. Ces douze marqueurs, combinés à *spa* et *coa*, deux marqueurs déjà utilisés pour le génotypage de *S. aureus*, ont été utilisés pour l'analyse MLVA de 137 souches *S. aureus* MRSA, MSSA et GISA provenant pour la majorité d'hôpitaux français. Les souches sont réparties en 68 génotypes différents. Cette résolution semble moins bonne que celle observée par l'analyse de ces souches en PFGE, puisque l'on observe deux grands groupes de souches de même génotype MLVA qui peuvent être réparties en plusieurs génotypes PFGE. Cependant, la robustesse de l'analyse MLVA tant au niveau de la mise en œuvre technique que de l'analyse des résultats, en font un outil puissant d'analyse des souches de *S. aureus*.

Une étude de séquençage d'allèles a été réalisée pour 2 des 14 locus de l'analyse MLVA, *spa* et ms1132. Les allèles séquencés ont été codés par des lettres pour faciliter la comparaison de la composition en motifs des allèles de taille identique, et aussi pour observer des ressemblances de motif entre des allèles de tailles très différentes.

Individuellement, ces marqueurs sont moins résolutifs que l'analyse MLVA, en revanche, ces deux marqueurs combinés atteignent une résolution quasi identique à celle du MLVA.

### **4 DISCUSSION ET PERSPECTIVES**

### 4.1 Intérêts du typage des répétitions en tandem pour les bactéries pathogènes

Comme nous l'avons illustré dans ce travail, le génotypage par MLVA d'une espèce bactérienne dont le génome complet est accessible est relativement facile à mettre en œuvre. Cela est encore plus vrai lorsque deux souches différentes ont été séquencées. L'absence d'un deuxième génome a été un handicap important pour le projet *P. aeruginosa*, et lorsque le deuxième génome en cours de séquençage aura été publié, il sera sans doute intéressant de réexaminer les données. Les nombreux outils bioinformatiques développés au laboratoire dans le cadre du travail de thèse de France Denoeud (Université Paris Sud, 2003) ont contribué grandement à faciliter les différents projets réalisés au cours de cette thèse.

Par rapport aux techniques de génotypage évoquées dans l'introduction, il apparaît très clairement que l'amplification par PCR de répétitions en tandem est l'outil de génotypage le plus simple et l'un des plus puissants pour la discrimination des souches dans les espèces bactériennes étudiées ici. Cette méthode présente plusieurs avantages:

- Pas ou peu de problème de « typabilité », sauf dans le cas d'espèces dont les membres présentent des pertes de matériel chromosomique importantes ou une grande divergence, et chez qui le choix d'amorces fonctionnant chez toutes les souches est difficile (par exemple pour *N. meningitidis*). Les réarrangements chromosomiques, sans perte de matériel, n'empêchent pas le typage MLVA (par exemple *Y. pestis*).

- Grande sensibilité et spécificité de la technique.
- Bonne reproductibilité intra et inter -laboratoires.

- Pas de profils multibandes à analyser donc moins d'ambiguïté pour l'analyse et pour la comparaison de résultats entre laboratoires (illustré par le développement d'une page de comparaison en ligne des résultats de typage de répétitions en tandem).

- Utilisation de matériel courant de laboratoire.

- Peu coûteuse en termes de consommables et de degré de qualification requis et donc utilisable dans des pays où les infections bactériennes sont importantes, et dont les structures d'analyse ne sont pas forcément aussi développées que dans les pays riches.

- Développable pour d'autres espèces bactériennes. La liste des génomes de bactéries pathogènes pour l'homme, entièrement séquencés et qui n'ont pas encore fait l'objet d'une étude MLVA est longue.

- Délais d'obtention des résultats fortement réduit par rapport aux techniques de phénotypage, on passe de 24 heures minimum (pour des bactéries qui poussent vite) à moins de 6 heures pour un génotypage de type MLVA automatisé.

Le génotypage par MLVA a un fort pouvoir discriminant chez *P. aeruginosa* par rapport au ribotypage, plus faible chez *S. aureus* par rapport à l'analyse PFGE, où l'on observe dans certains cas plusieurs génotypes PFGE pour un seul génotype MLVA. Cependant l'avantage majeur de l'analyse MLVA est que les résultats sont interprétables sans ambiguïté. Le socle de données pour la classification des souches est donc relativement solide pour comparer par la suite d'autres souches avec les données existantes, en développant par exemple des bases de données accessibles à la communauté.

En définitive, cette efficacité du typage de bactéries pathogènes par les répétitions en tandem est somme toute assez étonnante. Un nombre croissant de bactéries d'importance en santé humaine ou animale se trouve se prêter à cette approche. La liste s'allonge rapidement, elle compte déjà le complexe tuberculosis, Bacillus anthracis, Brucella, Yersinia pestis, Salmonella, E. coli O157, Pseudomonas aeruginosa, Staphylococcus aureus, Legionella, Neisseria meningitidis. Il peut être utile de rappeler par ailleurs que les bactéries pathogènes pour l'homme sont très rares, au regard de la diversité bactérienne dans l'environnement. Ces exceptions sont celles qui ont pu s'adapter à l'homme mais leur pathogénicité même met en danger ce biotope, et du même coup leur propre existence. Il est ainsi tentant de spéculer que les pathogènes les plus dangereux sont condamnés par l'évolution. De ce fait, les espèces correspondantes sont jeunes, à structure le plus souvent clonale, génétiquement homogènes. Le fait que les répétitions en tandem soient, en dépit de la forte homogénéité génétique par ailleurs, des sites à polymorphisme élevé, est un argument assez fort suggérant que ces structures contribuent à l'adaptation du pathogène à son hôte. On pourrait illustrer ce point pour chacune des bactéries citées en montrant qu'un certain nombre de répétitions en tandem est associé à des gènes de surface.

De ce point de vue, *Pseudomonas aeruginosa* et *Legionella pneumophila* sont dans une certaine mesure des contre-exemples qui « illustrent la règle ». Ces deux espèces sont très anciennes, et génétiquement très diverses, mais certains représentants, rares, ont des conséquences en santé humaine. *Legionella*, ou au moins certaines souches, s'adapte à des biotopes nouveaux, créés récemment par l'homme : canalisations d'eau chaude, tours de refroidissement, conduites de climatisation. La colonisation de ces biotopes nouveaux va être réalisée par les bactéries les plus versatiles, les plus aptes à s'adapter à un nouveau milieu. La rencontre éventuelle entre ces populations et l'homme qui est un autre biotope à coloniser peut alors conduire à l'émergence d'une nouvelle bactérie pathogène. En résumé, l'apparition de nouveaux biotopes en raison de modifications écologiques (liées au développement de l'agriculture, de l'élevage, de l'urbanisation) favorise ainsi mécaniquement le développement de bactéries particulièrement versatiles, susceptibles, si l'occasion d'un contact se présente, de coloniser un être humain. Le plus souvent, cette colonisation restera anecdotique, parce qu'il n'y aura pas contagion. Parfois, l'homme, ou l'animal, deviendra un biotope à part entière. La bactérie perdra alors la capacité à survivre dans son milieu d'origine. C'est le cas de

*Burkholderia mallei*, récemment issue de *B. pseudomallei*, de biotope largement restreint aux chevaux, et probablement en voie de disparition. C'est le cas également de *M. tuberculosis*, adaptée à l'homme.

Ces clones, qui réussissent plus vite que d'autres à coloniser des milieux nouveaux, dépendent pour cela de leur capacité d'adaptation génétique. Les changements liés aux répétitions en tandem constituent très certainement une composante de cette capacité. Ces hypothèses et spéculations expliqueraient ainsi, *a posteriori* comme souvent, la raison pour laquelle les bactéries pathogènes, le seraient devenues parce que génétiquement versatiles par nature, se prêtent aussi bien au typage MLVA.

# 4.2 Rôle fonctionnel de certaines répétitions en tandem

Les répétitions en tandem ont la particularité de pouvoir provoquer des variations de l'expression de gènes, ou des variations de la protéine elle-même, de façon réversible. Parmi l'ensemble des gènes d'une bactérie, une poignée seulement de gènes est affectée par ces mécanismes. La recherche de telles situations a débuté immédiatement après le séquençage en 1995 d'Haemophilus influenzae, premier génome bactérien entièrement séquencé (Hood 1996). Neuf locus comportant des unités de 4 pb ont été identifiés. Les séquences homologues dans d'autres génomes bactériens correspondent à des gènes impliqués dans la biosynthèse du LPS (lipopolysaccharide), la fixation du fer, ou encore l'adhésion. Une recherche similaire d'exemples de « variation de phase » liée à la mutation (réversible) de répétitions en tandem a été entreprise pour N. meningitidis (Martin 2003). Des preuves expérimentales d'une régulation par variation de phase ont été observées pour 14 gènes. Il s'agit là de la recherche de répétitions en tandem instables, et dont l'instabilité provoque, de façon réversible, l'expression ou l'arrêt de l'expression du gène associé. Ce ne sont donc pas les répétitions en tandem auxquelles nous nous sommes intéressés ici à des fins épidémiologiques. La variation de répétitions en tandem dans la région codante, tout en préservant la phase, est également relativement rare. Nous l'avons vu pour P. aeruginosa et S. aureus, seuls quelques gènes sont concernés. Parfois les variations de tailles sont remarquables. Par exemple il existe dans M. tuberculosis un gène qui contient 3 répétitions en tandem différentes (Le Flèche 2002). La taille de ce gène peut varier de plusieurs kilobases entre différentes souches du complexe tuberculosis.

Il est alors tentant d'utiliser le polymorphisme des séquences répétées en tandem codantes comme révélateur de gènes associés à la pathogénicité. Bien entendu par la suite, l'exploration du rôle fonctionnel de ces « candidats » doit être faite dans des modèles expérimentaux, et dépendra de l'existence d'une part d'outils de génétique permettant de créer

des souches mutées et d'autre part de modèles animaux. Le travail de typage ne constitue donc que l'étape la plus facile de ces approches.

# 4.3 Recherche de critères prédictifs du polymorphisme des répétitions en tandem

L'analyse des caractéristiques des répétitions en tandem dans les différents génomes bactériens a pour objectif de trouver des critères prédictifs du polymorphisme, à partir de la séquence d'un seul génome.

Lorsque l'on étudie une espèce bactérienne dont un seul génome est entièrement séquencé, il n'est pas possible d'utiliser la méthode de comparaison de génomes pour rechercher des répétitions polymorphes. Il serait donc intéressant de pouvoir sélectionner des répétitions en tandem selon des critères prédictifs de leur polymorphisme à partir des données de séquence d'un seul allèle, comme cela a été montré pour les minisatellites humains (Denoeud 2003). Chez l'homme, les critère prédictifs du polymorphisme des répétitions en tandem sont essentiellement le pourcentage en GC et le critère HistoryR.

Chez les bactéries, nous n'avons pas trouvé de critère prédictif du polymorphisme qui s'appliquerait à tous les génomes bactériens. Des tendances sont observées, comme par exemple le critère de conservation des motifs par rapport au consensus, et la longueur totale de la répétition. Le critère HistoryR développé par Gary Benson (indice de 0 à 1), correspond à un calcul de « coût » pour revenir par contractions successives au motif initial, avec le moins d'événements possibles. Lorsque la reconstruction est « simple », le critère HistoryR est élevé, soit proche de 1, et constitue un assez bon critère prédictif du polymorphisme. Malheureusement, le critère History R n'a pas été retenu comme un bon critère prédictif du polymorphisme chez les bactéries, parce qu'il est souvent égal à 1 en raison de la petite taille des répétitions, et donc peu informatif. Un travail spécifique devrait être réalisé pour adapter son mode de calcul. Dans différentes espèces bactériennes étudiées au laboratoire, nous avons regardé les caractéristiques des séquences des répétitions en tandem pour trouver des corrélations avec le polymorphisme. Une corrélation entre la conservation des motifs et le polymorphisme des répétitions en tandem avait déjà été observée pour Y. pestis. Pour B. anthracis, il semblerait que les critères corrélés au polymorphisme soient plutôt le pourcentage en GC et la longueur totale de la répétition. Nous avons observé ici que pour S. aureus et P. aeruginosa, le pourcentage de conservation des motifs serait un bon critère prédictif du polymorphisme associé aux répétitions.

# 4.4 Etude de population dans les espèces bactériennes étudiées au cours de cette thèse

L'étude de structure des populations chez *P. aeruginosa* a été entreprise récemment. Ces études sont pour l'instant très préliminaires et il est encore difficile de statuer sur la structure des populations de *P. aeruginosa*. Les auteurs ont analysé plusieurs données de typage : des séquences de trois protéines membranaires (oprI, oprL et oprD), des données AFLP, des sérotypages et enfin des typages de la pyoverdine (Pirnay 2002). Les souches étudiées étaient des souches cliniques et des souches environnementales, collectées partout dans le monde. La conclusion de ce travail est que *P. aeruginosa* aurait une structure de population de type épidémique, comparable à celle observée chez *N. meningitidis*, c'est à dire une structure clonale superficielle avec de fréquentes recombinaisons, et parfois l'apparition d'une population épidémique à partir d'un clone qui a « réussi », comme par exemple le clone de sérotype O12 (Pitt 1989)

Nous avons constaté expérimentalement que le sérotype O12, clone très largement répandu en Europe, de ribogroupe 87S-3, peut être réparti en plusieurs génotypes MLVA, essentiellement grâce aux deux marqueurs les plus polymorphes, ms10 et ms61 qui présentent un petit motif répété de 6pb. Ces marqueurs pourraient appartenir aux locus dit de contingence, du fait de la taille du motif et du très grand nombre d'allèles observés, et ne seraient peut être pas utilisables pour des études plus globales de suivi du clone O12 à travers l'Europe. Ces marqueurs permettent de révéler une situation épidémique (par rapport aux autres marqueurs qui semblent beaucoup plus stables).

L'évolution des souches peut être étudiée par SPE (Serial Passage Experiments), c'est-à-dire par des dilutions en série d'une culture bactérienne, afin de tester les variations phénotypiques et génotypiques après des centaines de générations. Nous avons testé la stabilité des répétitions en tandem (à court terme), par des dilutions successives de cultures de *P. aeruginosa* pendant au moins trois semaines. Le milieu de culture était du milieu LB, c'est à dire un milieu riche standard, sans antibiotique. Il pourrait être également intéressant de tester l'effet de différentes conditions de culture (antibiotiques, pH, milieu de culture etc...) sur le polymorphisme des répétitions décrites dans l'article, pour voir s'il existe une régulation par les minisatellites de l'expression de certains gènes selon les conditions expérimentales.

En ce qui concerne les souches de patients atteints de mucoviscidose, il serait intéressant de tester l'analyse MLVA directement à partir du prélèvement dans les poumons. Il faudra très certainement faire des mises au point pour la lyse des bactéries de phénotype mucoïde afin de pouvoir réaliser les PCR. Ceci permettrait de voir rapidement si le patient est infecté par une seule souche ou par plusieurs. En parallèle un ré-isolement sur boite sera certainement

nécessaire afin, dans un second temps et en cas de population hétérogène, d'analyser les clones individuels et de déterminer leur génotype.

Dans l'article « How clonal is Staphylococcus aureus », les auteurs ont analysé les données MLST de 334 isolats (isolats de la communauté, isolats hospitaliers et isolats de portage nasal de personnes saines) (Feil 2003). Du fait que l'analyse MLST est basée sur des gènes qui évoluent lentement, elle fournit des données qui permettent des études épidémiologiques globales et donc des études de populations (Maiden 1998). Les auteurs ont fait cette analyse pour savoir si la recombinaison a une contribution plus importante que les mutations ponctuelles dans l'évolution du génome de S. aureus. Ils ont fait des comparaisons des séquences MLST pour identifier les mutations entre les différents allèles. Deux souches très proches présenteront de nombreux locus identiques, et si certains locus diffèrent, ce sera pour un petit nombre de nucléotides. Cependant, si les clones se diversifient par recombinaison essentiellement, les allèles qui diffèrent entre souches très proches vont être différents pour un très grand nombre de positions, appuyant le fait que ces allèles ont été importés depuis des lignées non reliées. La conclusion de cette étude des données MLST chez S. aureus est que les mutations ponctuelles ont une fréquence quinze fois plus importante que la recombinaison. Cependant, la recombinaison contribue quand même à l'évolution de l'espèce à plus long terme.

Nous avons constaté, dans l'étude réalisée sur 137 souches *S. aureus* par séquençage des allèles à deux locus spa et ms1132, que les différents allèles observés à ces deux locus semblent liés, malgré la distance (environ 1Mb) qui les sépare sur le chromosome de *S. aureus*. Cette observation va bien dans le sens d'une faible recombinaison chez *S. aureus*, mais il faudrait bien sûr confirmer ces observations par des tests statistiques.

# 4.5 Quelle méthode pour reconstruire l'histoire évolutive des répétitions en tandem à partir de la séquence ?

Un deuxième niveau d'analyse des VNTRs a été exploré dans ce travail, il s'agit du séquençage d'allèles. En effet, nous avons constaté que des allèles de taille identique à un locus donné (et donc considérés comme proches) peuvent avoir des séquences différentes. Il s'agit du phénomène d'homoplasie. Il n'existe pas actuellement de méthodes d'analyse et de comparaison des répétitions en tandem. Les méthodes classiques d'alignement sont peu efficaces du fait du polymorphisme de longueur des séquences à aligner. Par ailleurs, les mécanismes d'évolution des répétitions en tandem (autres que les motifs courts parfaitement conservés qui évoluent par glissement à la réplication), sont mal connus et peu étudiés chez

les bactéries. Il existe un certain nombre d'études mais elles ont porté sur de très longues séquences répétées dispersées dans les génomes bactériens (Rocha 1999), or la plupart des répétitions en tandem situées à un seul locus dans le génome sont des séquences courtes.

Nous avons tenté de faire un codage des allèles selon la séquence des motifs qui se succèdent dans la répétition. Il est parfois possible de déduire « à l'œil » qu'un allèle est issu d'un autre par simple duplication d'un motif par exemple. Le plus souvent, il est difficile d'expliquer simplement comment un allèle est passé d'une taille à une autre. Le développement d'outils d'analyse des motifs permettra de mieux comprendre l'évolution de ce type de séquences répétées.

L'analyse des allèles *spa* très ressemblants pour essayer de voir comment passer simplement d'une taille d'allèle à la suivante est facilitée par le codage d'allèle et aussi par un outil de visualisation des motifs, le TRView développé par Gary Benson et accessible sur sa base de données de répétitions en tandem, le TRDB. Ces deux moyens de visualisation des motifs peuvent aider à repérer des duplications ou délétions de motifs conduisant d'un allèle à un autre. Mais tout cela reste une analyse « manuelle », plus ou moins complexe selon les répétitions étudiées. Un exemple d'allèles spa visualisés avec le TRView est illustré par la Figure 37.



Figure 37 : Visualisation d'allèles *spa* à l'aide du TRView

Cette figure illustre comment passer d'un allèle à 10 motifs à un allèle à 11 motifs par une simple duplication. De même pour passer d'un allèle à 11 motifs à un allèle à 13 motifs.

Il serait souhaitable pour une meilleure compréhension des mécanismes d'évolution des répétitions en tandem chez les bactéries de disposer d'outils d'analyse des séquences des motifs (y compris lorsque les allèles sont de tailles très différentes). Par exemple faire le codage d'allèle en classant les motifs selon leur ressemblance et pas uniquement selon la position dans le minisatellite. C'est à dire que le 1<sup>er</sup> motif codé « a » puis le 2<sup>ème</sup> codé « b » soient ensuite codés « a » et « b » si ce sont bien les motifs les plus proches phylogénetiquement pour donner un autre sens au codage.

### 4.6 Développements futurs

### 4.6.1 Etudier le lien entre génotype et pathogénicité

Il faudrait développer l'étude des gènes impliqués dans la virulence et qui possèdent une répétition en tandem polymorphe par exemple, pour essayer d'associer un phénotype à un génotype. Ce type d'étude a déjà été effectué en ce qui concerne la variation de phase. Ceci est possible par l'étude du niveau de transcription des gènes impliqués dans la pathogénicité ayant une répétition en tandem dans la région promotrice, ou l'étude de la traduction lorsque la répétition est dans la région codante (et éventuellement étude de l'activité de la protéine).

On peut aussi faire de l'inactivation des gènes possédant une répétition en tandem dans des ORF, pour tenter d'observer un phénotype. Puis de comparer le phénotype de la souche inactivée avec ceux des différentes souches présentant un nombre de répétitions différent. Chez *P. aeruginosa*, l'inactivation de gènes semble tout à fait réalisable (Windgassen 2000).

Il va être de plus en plus nécessaire d'essayer de trouver un lien entre les génotypes observés et la pathogénicité des souches, ceci est très important pour le diagnostic clinique. En effet, des populations bactériennes différentes peuvent avoir un potentiel pathogène différent. Il a été montré récemment le lien immédiat entre un facteur de virulence chez *S. aureus* et la sévérité de la maladie. Des souches de *S. aureus* qui possèdent le gène codant la leukocidine Panton-valentine, prédisposent certains groupes de patients (enfants et jeunes adultes) à une forme fatale de pneumonie hémorragique (Gillet 2002). Ceci constitue une nouvelle forme de diagnostique moléculaire qui associe l'identification de la bactérie pathogène en cause et la détection de gènes de virulence.

Une autre étude très intéressante a consisté à tester la présence de 33 facteurs de virulence dans des souches de *S. aureus* (29 facteurs testés par PCR et 4 par test phénotypique)

(Peacock 2002). La majorité des maladies provoquées par S. aureus ne peuvent s'expliquer par l'action d'un seul facteur de virulence (sauf par exemple pour le syndrome de choc toxique provoqué par la toxine TSST1, Toxic Shock Syndrome Toxin 1). D'une manière générale, il semblerait plutôt qu'il s'agisse de l'action combinée de plusieurs facteurs de virulence qui permette d'expliquer le développement et la sévérité de certaines maladies. Le « fonds » génétique du patient infecté est également important pour tenter de relier une forme de maladie à des facteurs de prédisposition. D'une manière générale, le but est d'essayer de relier une forme d'infection donnée à un « profil » de facteurs de virulence. Un groupe de 7 facteurs de virulence (dont certains possédant une répétition en tandem ont été étudiés au cours de cette thèse) sont communs aux souches invasives. Il s'agit de fnbA, cna, sdrE, sej, eta, hlg et ica. Leur effet semble cumulatif. Il semblerait aussi que les variants alléliques d'un locus polymorphe puissent avoir des contributions différentes dans le développement de la maladie. Il serait intéressant de pouvoir relier certains allèles à une forme d'infection. Le transfert horizontal de gènes de virulence se produit chez S. aureus, et des mutations dans ces gènes peuvent avoir un effet sur la gravité de l'infection. Une autre étude a été réalisée chez les streptocoques de groupe A, avec la même démarche tentant de relier certains facteurs de virulence aux différentes manifestations de l'infection (Vlaminckx 2003).

Actuellement, de plus en plus d'études de génomique et de protéomique sont réalisées sur des pathogènes. Par exemple pour *P. aeruginosa*, d'autres génomes ont été séquençés et comparés à celui de PAO1. Deux souches persistantes dans des poumons de patients CF (Cystic Fibrosis) et une souche provenant du milieu aquatique ont été séquencées. Le génome de PAO1 constitue le « core » génome caractéristique de *P. aeruginosa*. Les 3 autres souches possèdent 10% de génome en plus dont la moitié sont des séquences nouvelles (Spencer 2003). Par ailleurs, une analyse par puces à ADN à permis d'aborder l'expression globale du génome d'une souche mucoïde, pour essayer de trouver des facteurs de virulence spécifiques du phénotype étudié. En effet, la conversion en phénotype mucoïde n'est pas due à l'expression d'un seul gène, c'est pourquoi il était nécessaire de rechercher d'autres gènes outre ceux impliqués dans la biosynthèse de l'alginate (Firoved 2003).

## 4.6.2 Etendre les études MLVA à d'autres bactéries pathogènes

Les pathogènes émergents ou ré-émergents représentent une préoccupation permanente pour la santé humaine. Les virus et les bactéries pathogènes sont responsables de la mort de 14 millions de personnes chaque année. Au cours des trente dernières années, quelques bactéries pathogènes ont été découvertes, par exemple *Legionella pneumophila*, *Campylobacter jejuni*, *Borrelia burgdorferi*, *Helicobacter pylori*. L'émergence de nouveaux pathogènes est souvent liée à des changements écologiques. Les facteurs de risque liés à un pathogène sont dus au

type de pathogène, à la voie de contamination et à sa spécificité d'hôte. La plupart des pathogènes infectent plusieurs hôtes, et cette spécificité d'hôte est assez mal connue (Woolhouse 2002). Les méthodes de typage des bactéries pathogènes sont donc indispensables au suivi épidémiologique des souches pathogènes à l'échelle mondiale comme à l'échelle locale, pour tenter de mettre en place des mesures sanitaires adaptées aux différentes situations. Pour cet objectif ambitieux, le typage des répétitions en tandem constitue une des solutions à étendre à d'autres espèces bactéries pathogènes.

### 5 BIBLIOGRAPHIE

Achtman, M., Azuma, T., Berg, D. E., Ito, Y., Morelli, G., Pan, Z. J., Suerbaum, S., Thompson, S. A., van der Ende, A. et van Doorn, L. J. 1999. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. *Mol Microbiol* **32**: 459-70.

Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. et Carniel, E. 1999. *Yersinia pestis*, the cause of plague, is a recently emerged clone of *Yersinia pseudotuberculosis*. *Proc Natl Acad Sci U S A* **96**: 14043-8.

Adair, D. M., Worsham, P. L., Hill, K. K., Klevytska, A. M., Jackson, P. J., Friedlander, A. M. et Keim, P. 2000. Diversity in a variable-number tandem repeat from *Yersinia pestis*. *J Clin Microbiol* **38**: 1516-9.

Ajayi, T., Allmond, L. R., Sawa, T. et Wiener-Kronish, J. P. 2003. Single-nucleotidepolymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. *J Clin Microbiol* **41**: 3526-31.

Allred, D. R., McGuire, T. C., Palmer, G. H., Leib, S. R., Harkins, T. M., McElwain, T. F. et Barbet, A. F. 1990. Molecular basis for surface antigen size polymorphisms and conservation of a neutralization-sensitive epitope in Anaplasma marginale. *Proc Natl Acad Sci U S A* **87**: 3220-4.

Alm, R. A. *et al.* 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. *Nature* **397:** 176-80.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. et Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* **25**: 3389-402.

Astagneau, P. 1998. Epidemiology of nosocomial infections. Rev Prat 48: 1525-9.

Baba, T. *et al.* 2002. Genome and virulence determinants of high virulence community-acquired MRSA. *Lancet* **359**: 1819-27.

Bachellier, S., Saurin, W., Perrin, D., Hofnung, M. et Gilson, E. 1994. Structural and functional diversity among bacterial interspersed mosaic elements (BIMEs). *Mol Microbiol* **12:** 61-70.

Barber, M. et Rozwadnowska-Dowzenko, M. 1948. Infection by penicillin-resistant staphylococci. *Lancet* ii: 641-644.

Bayliss, C. D., Field, D. et Moxon, E. R. 2001. The simple sequence contingency loci of *Haemophilus influenzae* and *Neisseria meningitidis*. *J Clin Invest* **107**: 657-666.

Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S. et Small, P. M. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. *Science* **284**: 1520-3.

Bennekov, T., Colding, H., Ojeniyi, B., Bentzon, M. W. et Hoiby, N. 1996. Comparison of ribotyping and genome fingerprinting of *Pseudomonas aeruginosa* isolates from cystic fibrosis patients. *J Clin Microbiol* **34**: 202-4.

Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res* 27: 573-580.

Bernal, A., Ear, U. et Kyrpides, N. 2001. Genomes OnLine Database (GOLD): a monitor of genome projects world-wide. *Nucleic Acids Res* **29**: 126-7.

Bessen, D., Jones, K. F. et Fischetti, V. A. 1989. Evidence for two distinct classes of streptococcal M protein and their relationship to rheumatic fever. *J Exp Med* **169**: 269-83.

Bingen, E. H., Denamur, E. et Elion, J. 1994. Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. *Clin Microbiol Rev* 7: 311-27.

Branger, C. *et al.* 1994. Epidemiology of Staphylococcus aureus in patients with cystic fibrosis. *Epidemiol Infect* **112**: 489-500.

Bricker, B. J., Ewalt, D. R. et Halling, S. M. 2003. Brucella 'Hoof-Prints': strain typing by multi-locus analysis of variable number tandem repeats (VNTRs). *BMC Microbiol* **3**: 15.

Brisse, S., Fussing, V., Ridwan, B., Verhoef, J. et Willems, R. J. 2002. Automated ribotyping of vancomycin-resistant Enterococcus faecium isolates. *J Clin Microbiol* **40**: 1977-84.

Brisse, S., Milatovic, D., Fluit, A. C., Kusters, K., Toelstra, A., Verhoef, J. et Schmitz, F. J. 2000. Molecular surveillance of European quinolone-resistant clinical isolates of *Pseudomonas aeruginosa* and *Acinetobacter* spp. using automated ribotyping. *J Clin Microbiol* **38**: 3636-45.

Britten, R. J. & Kohne, D. E. 1968. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. *Science* **161**: 529-40.

Brookes, A. J. 1999. The essence of SNPs. Gene 234: 177-86.

Bruun, F. N., McGarrity, G. J., Blakemore, W. S. et Coriell, L. L. 1976. Epidemiology of Pseudomonas aeruginosa infections: determination by pyocin typing. *J Clin Microbiol* **3**: 264-71.

Buard, J. & Vergnaud, G. 1994. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). *EMBO J.* **13**: 3203-3210.

Burch, C. L., Danaher, R. J. et Stein, D. C. 1997. Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. *J Bacteriol* **179**: 982-6.

Chan, M. S., Maiden, M. C. et Spratt, B. G. 2001. Database-driven multi locus sequence typing (MLST) of bacterial pathogens. *Bioinformatics* **17**: 1077-83.

Charlesworth, B., Sniegowski, P. et Stephan, W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. *Nature* **371**: 215-220.

Citti, C. & Rosengarten, R. 1997. Mycoplasma genetic variation and its implication for pathogenesis. *Wien Klin Wochenschr* 109: 562-8.

Cole, S. T., Supply, P. et Honore, N. 2001. Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. *Lepr Rev* **72**: 449-61.

Costerton, J. W., Stewart, P. S. et Greenberg, E. P. 1999. Bacterial biofilms: a common cause of persistent infections. *Science* **284**: 1318-22.

Cramton, S. E., Schnell, N. F., Gotz, F. et Bruckner, R. 2000. Identification of a new repetitive element in Staphylococcus aureus. *Infect Immun* **68**: 2344-8.

Crisostomo, M. I., Westh, H., Tomasz, A., Chung, M., Oliveira, D. C. et de Lencastre, H. 2001. The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. *Proc Natl Acad Sci U S A* **98**: 9865-70.

Dabrowski, W., Czekajlo-Kolodziej, U., Medrala, D. et Giedrys-Kalemba, S. 2003. Optimisation of AP-PCR fingerprinting discriminatory power for clinical isolates of Pseudomonas aeruginosa. *FEMS Microbiol Lett* **218**: 51-7.

Daum, R. S., Ito, T., Hiramatsu, K., Hussain, F., Mongkolrattanothai, K., Jamklang, M. et Boyle-Vavra, S. 2002. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. *J Infect Dis* **186**: 1344-7.

De Bolle, X., Bayliss, C. D., Field, D., van de Ven, T., Saunders, N. J., Hood, D. W. et Moxon, E. R. 2000. The length of a tetranucleotide repeat tract in *Haemophilus influenzae* determines the phase variation rate of a gene with homology to type III DNA methyltransferases. *Mol Microbiol* **35**: 211-22.

de Gialluly, C., Loulergue, J., Bruant, G., Mereghetti, L., Massuard, S., van der Mee, N., Audurier, A. et Quentin, R. 2003. Identification of new phages to type Staphylococcus aureus strains and comparison with a genotypic method. *J Hosp Infect* **55**: 61-7.

Denoeud, F. & Vergnaud, G. 2004. Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains : a Web-based ressource. *BMC Bioinformatics* **5**: 4.

Denoeud, F., Vergnaud, G. et Benson, G. 2003. Predicting Human Minisatellite Polymorphism. *Genome Res* 13: 856-867.

Deretic, V., Hibler, N. S. et Holt, S. C. 1992. Immunocytochemical analysis of AlgP (Hp1), a histonelike element participating in control of mucoidy in Pseudomonas aeruginosa. *J Bacteriol* **174**: 824-31.

Deretic, V. & Konyecsni, W. M. 1990. A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within *algP*, a gene involved in regulation of mucoidy in *Pseudomonas aeruginosa*. *J Bacteriol* **172**: 5544-54.

Domann, E., Zechel, S., Lingnau, A., Hain, T., Darji, A., Nichterlein, T., Wehland, J. et Chakraborty, T. 1997. Identification and characterization of a novel PrfA-regulated gene in Listeria monocytogenes whose product, IrpA, is highly homologous to internalin proteins, which contain leucine-rich repeats. *Infect Immun* **65**: 101-9.

Dore, N., Bennett, D., Kaliszer, M., Cafferkey, M. et Smyth, C. J. 2003. Molecular epidemiology of group B streptococci in Ireland: associations between serotype, invasive

status and presence of genes encoding putative virulence factors. *Epidemiol Infect* **131:** 823-33.

Drenkard, E. & Ausubel, F. M. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. *Nature* **416**: 740-3.

Embley, T. M. 1991. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. *Lett Appl Microbiol* **13**: 171-4.

Enright, M. C. 2003. The evolution of a resistant pathogen--the case of MRSA. *Curr Opin Pharmacol* **3**: 474-9.

Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H. et Spratt, B. G. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). *Proc Natl Acad Sci U S A* **99:** 7687-92.

Farlow, J., Postic, D., Smith, K. L., Jay, Z., Baranton, G. et Keim, P. 2002. Strain typing of Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii by using multiple-locus variable-number tandem repeat analysis. *J Clin Microbiol* **40**: 4612-8.

Farlow, J., Smith, K. L., Wong, J., Abrams, M., Lytle, M. et Keim, P. 2001. Francisella tularensis strain typing using multiple-locus, variable-number tandem repeat analysis. *J Clin Microbiol* **39**: 3186-92.

Feil, E. J., J. E. Cooper, H. Grundmann, D. A. Robinson, M. C. Enright, T. Berendt, S. J. Peacock, J. M. Smith, M. Murphy, B. G. Spratt, C. E. Moore and N. P. Day. 2003. How clonal is Staphylococcus aureus? *J Bacteriol* **185**: 3307-16.

Feil, E. J., Enright, M. C. et Spratt, B. G. 2000. Estimating the relative contributions of mutation and recombination to clonal diversification: a comparison between Neisseria meningitidis and Streptococcus pneumoniae. *Res Microbiol* **151**: 465-9.

Feil, E. J., Maiden, M. C., Achtman, M. et Spratt, B. G. 1999. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. *Mol Biol Evol* **16**: 1496-502.

Filliol, I. et al. 2002. Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Infect Dis 8: 1347-9.

Filliol, I., Ferdinand, S., Negroni, L., Sola, C. et Rastogi, N. 2000. Molecular typing of Mycobacterium tuberculosis based on variable number of tandem DNA repeats used alone and in association with spoligotyping. *J Clin Microbiol* **38**: 2520-4.

Firoved, A. M. & Deretic, V. 2003. Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. *J Bacteriol* **185**: 1071-81.

Fitzgerald, J. R., Sturdevant, D. E., Mackie, S. M., Gill, S. R. et Musser, J. M. 2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. *Proc Natl Acad Sci U S A* **98**: 8821-6.

Fleischmann, R. D. *et al.* 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. *Science* **269**: 496-512.

Fleischmann, R. D. *et al.* 2002. Whole-Genome Comparison of *Mycobacterium tuberculosis* Clinical and Laboratory Strains. *J Bacteriol* **184:** 5479-5490.

Fletcher, H. A., Donoghue, H. D., Taylor, G. M., van der Zanden, A. G. et Spigelman, M. 2003. Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians. *Microbiology* **149**: 143-51.

Foissaud, V., Puyhardy, J. M., Chapalain, J. C., Salord, H., Depina, J. J., Morillon, M., Nicolas, P. et Perrier-Gros-Claude, J. D. 1999. [Inter-laboratory reproducibility of pulsed-field electrophoresis for the study of 12 types of Pseudomonas aeruginosa]. *Pathol Biol (Paris)* **47**: 1053-9.

Foster, P. L. & Trimarchi, J. M. 1994. Adaptive reversion of a frameshift mutation in *Escherichia coli* by simple base deletions in homopolymeric runs. *Science* **265**: 407-409.

Foster, T. J. & McDevitt, D. 1994. Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence. *FEMS Microbiol Lett* **118**: 199-205.

Francois, P., Pittet, D., Bento, M., Pepey, B., Vaudaux, P., Lew, D. et Schrenzel, J. 2003. Rapid detection of methicillin-resistant Staphylococcus aureus directly from sterile or nonsterile clinical samples by a new molecular assay. *J Clin Microbiol* **41**: 254-60.

Frangeul, L., Nelson, K. E., Buchrieser, C., Danchin, A., Glaser, P. et Kunst, F. 1999. Cloning and assembly strategies in microbial genome projects. *Microbiology* **145** ( **Pt 10**): 2625-34.

Fraser, C. M., Eisen, J. A., Nelson, K. E., Paulsen, I. T. et Salzberg, S. L. 2002. The value of complete microbial genome sequencing (you get what you pay for). *J Bacteriol* **184:** 6403-5; discusion 6405.

Fraser, C. M., Eisen, J. A. et Salzberg, S. L. 2000. Microbial genome sequencing. *Nature* **406**: 799-803.

Frenay, H. M., Bunschoten, A. E., Schouls, L. M., van Leeuwen, W. J., Vandenbroucke-Grauls, C. M., Verhoef, J. et Mooi, F. R. 1996. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. *Eur J Clin Microbiol Infect Dis* **15**: 60-4.

Frothingham, R. & Meeker-O'Connell, W. A. 1998. Genetic diversity in the *Mycobacterium tuberculosis* complex based on variable numbers of tandem DNA repeats. *Microbiology* **144**: 1189-1196.

Gillet, Y. *et al.* 2002. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. *Lancet* **359**: 753-9.

Gilson, E., Clement, J. M., Brutlag, D. et Hofnung, M. 1984. A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. *Embo J* **3**: 1417-21.

Gilson, E., Perrin, D., Saurin, W. et Hofnung, M. 1987. Species specificity of bacterial palindromic units. *J Mol Evol* 25: 371-3.

Gilson, E., Saurin, W., Perrin, D., Bachellier, S. et Hofnung, M. 1991. Palindromic units are part of a new bacterial interspersed mosaic element (BIME). *Nucleic Acids Res* **19**: 1375-83.

Glaser, P. et al. 2001. Comparative genomics of Listeria species. Science 294: 849-52.

Glew, M. D., Baseggio, N., Markham, P. F., Browning, G. F. et Walker, I. D. 1998. Expression of the pMGA genes of Mycoplasma gallisepticum is controlled by variation in the GAA trinucleotide repeat lengths within the 5' noncoding regions. *Infect Immun* **66**: 5833-41.

Goering, R. V. & Winters, M. A. 1992. Rapid method for epidemiological evaluation of gram-positive cocci by field inversion gel electrophoresis. *J Clin Microbiol* **30**: 577-80.

Goguet de la Salmoniere, Y. O., Li, H. M., Torrea, G., Bunschoten, A., van Embden, J. et Gicquel, B. 1997. Evaluation of spoligotyping in a study of the transmission of Mycobacterium tuberculosis. *J Clin Microbiol* **35**: 2210-4.

Goh, S. H., Byrne, S. K., Zhang, J. L. et Chow, A. W. 1992. Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. *J Clin Microbiol* **30**: 1642-5.

Govan, J. R. & Deretic, V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. *Microbiol Rev* **60**: 539-74.

Gravekamp, C., Kasper, D. L. et Madoff, L. C. 1997. Immunization with a single-repeat alpha C protein may prevent escape of lower repeat mutants of group B Streptococcus. *Adv Exp Med Biol* **418**: 855-7.

Gravekamp, C., Rosner, B. et Madoff, L. C. 1998. Deletion of repeats in the alpha C protein enhances the pathogenicity of group B streptococci in immune mice. *Infect Immun* **66**: 4347-54.

Grisold, A. J., Leitner, E., Muhlbauer, G., Marth, E. et Kessler, H. H. 2002. Detection of methicillin-resistant Staphylococcus aureus and simultaneous confirmation by automated nucleic acid extraction and real-time PCR. *J Clin Microbiol* **40**: 2392-7.

Groenen, P. M., Bunschoten, A. E., van Soolingen, D. et van Embden, J. D. 1993. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. *Mol Microbiol* **10**: 1057-65.

Grundmann, H., Schneider, C., Hartung, D., Daschner, F. D. et Pitt, T. L. 1995. Discriminatory power of three DNA-based typing techniques for *Pseudomonas aeruginosa*. *J Clin Microbiol* **33**: 528-34.

Guerin, M., Robichon, N., Geiselmann, J. et Rahmouni, A. R. 1998. A simple polypyrimidine repeat acts as an artificial Rho-dependent terminator in vivo and in vitro. *Nucleic Acids Res* **26:** 4895-900.

Heath, D. G., An, F. Y., Weaver, K. E. et Clewell, D. B. 1995. Phase variation of Enterococcus faecalis pAD1 conjugation functions relates to changes in iteron sequence region. *J Bacteriol* **177**: 5453-9.

Hebert, G. A., Cooksey, R. C., Clark, N. C., Hill, B. C., Jarvis, W. R. et Thornsberry, C. 1988. Biotyping coagulase-negative staphylococci. *J Clin Microbiol* **26**: 1950-6.

Henderson, I. R., Owen, P. et Nataro, J. P. 1999. Molecular switches--the ON and OFF of bacterial phase variation. *Mol Microbiol* **33**: 919-32.

Hermans, P. W., Sluijter, M., Hoogenboezem, T., Heersma, H., van Belkum, A. et de Groot, R. 1995. Comparative study of five different DNA fingerprint techniques for molecular typing of Streptococcus pneumoniae strains. *J Clin Microbiol* **33**: 1606-12.

Hermans, P. W., van Soolingen, D., Bik, E. M., de Haas, P. E., Dale, J. W. et van Embden, J. D. 1991. Insertion element IS987 from *Mycobacterium bovis* BCG is located in a hot-spot integration region for insertion elements in *Mycobacterium tuberculosis* complex strains. *Infect Immun* **59**: 2695-2705.

Higgins, C. F., Ames, G. F., Barnes, W. M., Clement, J. M. et Hofnung, M. 1982. A novel intercistronic regulatory element of prokaryotic operons. *Nature* **298**: 760-2.

Higgins, C. F., McLaren, R. S. et Newbury, S. F. 1988. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. *Gene* **72:** 3-14.

Hiramatsu, K., Cui, L., Kuroda, M. et Ito, T. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. *Trends Microbiol* **9**: 486-93.

Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T. et Tenover, F. C. 1997. Methicillinresistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. *J Antimicrob Chemother* **40**: 135-6.

Hiramatsu, K., Katayama, Y., Yuzawa, H. et Ito, T. 2002. Molecular genetics of methicillinresistant Staphylococcus aureus. *Int J Med Microbiol* **292:** 67-74.

Holliday, M. G., Ford, M., Perry, J. D. et Gould, F. K. 1999. Rapid identification of Staphylococcus aureus by using fluorescent staphylocoagulase assays. *J Clin Microbiol* **37**: 1190-2.

Hollingshead, S. K., Fischetti, V. A. et Scott, J. R. 1987. Size variation in group A streptococcal M protein is generated by homologous recombination between intragenic repeats. *Mol Gen Genet* **207**: 196-203.

Holloway, B. W., Escuadra, M. D., Morgan, A. F., Saffery, R. et Krishnapillai, V. 1992. The new approaches to whole genome analysis of bacteria. *FEMS Microbiol Lett* **79:** 101-5.

Hood, D. W., Deadman, M. E., Jennings, M. P., Bisercic, M., Fleischmann, R. D., Venter, J. C. et Moxon, E. R. 1996. DNA repeats identify novel virulence genes in Haemophilus influenzae. *Proc Natl Acad Sci U S A* **93:** 11121-5.

Hookey, J. V., Richardson, J. F. et Cookson, B. D. 1998. Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. *J Clin Microbiol* **36**: 1083-9.

Hulton, C. S., Higgins, C. F. et Sharp, P. M. 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. *Mol Microbiol* **5**: 825-34.

Jackson, P. J. *et al.* 1997. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates. *Appl Environ Microbiol* **63**: 1400-5.

Jansen, R., Embden, J. D., Gaastra, W. et Schouls, L. M. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. *Mol Microbiol* **43**: 1565-75.

Jeffreys, A. J., Tamaki, K., MacLeod, A., Monckton, D. G., Neil, D. L. et Armour, J. A. L. 1994. Complex gene conversion events in germline mutation at human minisatellites. *Nat. Genet.* **6**: 136-145.

Jeffreys, A. J., Wilson, V. et Thein, S. L. 1985. Hypervariable 'minisatellite' regions in human DNA. *Nature* **314**: 67-73.

Jeffreys, A. J., Wilson, V. et Thein, S. L. 1985. Individual-specific 'fingerprints' of human DNA. *Nature* **316**: 76-79.

Jernigan, D. B. *et al.* 2002. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. *Emerg Infect Dis* **8**: 1019-28.

Jevons, M. P. 1961. Celbenin-resistant staphylococci. Br. Med. J. i: 124-125.

Johnson, A. P. & Woodford, N. 2002. Glycopeptide-resistant Staphylococcus aureus. J Antimicrob Chemother 50: 621-3.

Jordon, P., Snyder, L. A. et Saunders, N. J. 2003. Diversity in coding tandem repeats in related Neisseria spp. *BMC Microbiol* **3**: 23.

Josefsson, E., McCrea, K. W., Ni Eidhin, D., O'Connell, D., Cox, J., Hook, M. et Foster, T. J. 1998. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. *Microbiology* **144** ( **Pt 12**): 3387-95.

Kaida, S., Miyata, T., Yoshizawa, Y., Kawabata, S., Morita, T., Igarashi, H. et Iwanaga, S. 1987. Nucleotide sequence of the staphylocoagulase gene: its unique COOH-terminal 8 tandem repeats. *J Biochem (Tokyo)* **102:** 1177-86.

Kamerbeek, J. *et al.* 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. *J Clin Microbiol* **35**: 907-14.

Katayama, Y., Ito, T. et Hiramatsu, K. 2000. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. *Antimicrob Agents Chemother* **44**: 1549-55.

Keim, P., Price, L. B., Klevytska, A. M., Smith, K. L., Schupp, J. M., Okinaka, R., Jackson, P. J. et Hugh-Jones, M. E. 2000. Multiple-Locus Variable-Number Tandem Repeat Analysis Reveals Genetic Relationships within *Bacillus anthracis*. *J Bacteriol* **182**: 2928-2936.

Khalifa, K. I., Heiba, A. A. et Hancock, G. 1989. Nontypeable bacteriophage patterns of methicillin-resistant Staphylococcus aureus involved in a hospital outbreak. *J Clin Microbiol* **27**: 2249-51.

Kim, W., Hong, Y. P., Yoo, J. H., Lee, W. B., Choi, C. S. et Chung, S. I. 2002. Genetic relationships of Bacillus anthracis and closely related species based on variable-number tandem repeat analysis and BOX-PCR genomic fingerprinting. *FEMS Microbiol Lett* **207**: 21-7.

Klevytska, A. M., Price, L. B., Schupp, J. M., Worsham, P. L., Wong, J. et Keim, P. 2001. Identification and characterization of variable-number tandem repeats in the *Yersinia pestis* genome. *J Clin Microbiol* **39**: 3179-85.

Koeuth, T., Versalovic, J. et Lupski, J. R. 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. *Genome Res* **5**: 408-18.

Krasilnikova, M. M., Samadashwily, G. M., Krasilnikov, A. S. et Mirkin, S. M. 1998. Transcription through a simple DNA repeat blocks replication elongation. *Embo J* **17**: 5095-102.

Kreiswirth, B., Kornblum, J., Arbeit, R. D., Eisner, W., Maslow, J. N., McGeer, A., Low, D. E. et Novick, R. P. 1993. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. *Science* **259**: 227-30.

Kremer, K. *et al.* 1999. Comparison of methods based on different molecular epidemiological markers for typing of *Mycobacterium tuberculosis* complex strains: interlaboratory study of discriminatory power and reproducibility. *J Clin Microbiol* **37**: 2607-2618.

Kresse, A. U., Dinesh, S. D., Larbig, K. et Romling, U. 2003. Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. *Mol Microbiol* **47**: 145-58.

Kruglyak, S., Durrett, R. T., Schug, M. D. et Aquadro, C. F. 1998. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. *Proc Natl Acad Sci U S A* **95:** 10774-8.

Kuroda, M. *et al.* 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. *Lancet* **357**: 1225-40.

Lander, E. S. & Green, P. 1987. Construction of multi-locus genetic linkage maps in humans. *Proc. Natl. Acad. Sci. USA* **84:** 2363-2367.

Le Flèche, P., Fabre, M., Denoeud, F., Koeck, J. L. et Vergnaud, G. 2002. High resolution, on-line identification of strains from the *Mycobacterium tuberculosis* complex based on tandem repeat typing. *BMC Microbiol* **2:** 37.

Le Flèche, P., Hauck, Y., Onteniente, L., Prieur, A., Denoeud, F., Ramisse, V., Sylvestre, P., Benson, G., Ramisse, F. et Vergnaud, G. 2001. A tandem repeats database for bacterial genomes: application to the genotyping of *Yersinia pestis* and *Bacillus anthracis*. *BMC Microbiol* **1**: 2.

Lenski, R. E., Winkworth, C. L. et Riley, M. A. 2003. Rates of DNA sequence evolution in experimental populations of Escherichia coli during 20,000 generations. *J Mol Evol* **56**: 498-508.

Levinson, G. & Gutman, G. A. 1987. High frequency of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in *Escherichia coli* K-12. *Nucleic Acids Res.* **15**: 5323-5338.

Linares, J. 2001. The VISA/GISA problem: therapeutic implications. *Clin Microbiol Infect* **7 Suppl 4:** 8-15.

Lindstedt, B. A., Heir, E., Gjernes, E. et Kapperud, G. 2003. DNA fingerprinting of Salmonella enterica subsp. enterica serovar typhimurium with emphasis on phage type DT104 based on variable number of tandem repeat loci. *J Clin Microbiol* **41**: 1469-79.

Linhardt, F., Ziebuhr, W., Meyer, P., Witte, W. et Hacker, J. 1992. Pulsed-field gel electrophoresis of genomic restriction fragments as a tool for the epidemiological analysis of Staphylococcus aureus and coagulase-negative staphylococci. *FEMS Microbiol Lett* **74**: 181-5.

Liu, Y., Lee, M. A., Ooi, E. E., Mavis, Y., Tan, A. L. et Quek, H. H. 2003. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats. *J Clin Microbiol* **41**: 4388-94.

Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in *Pseudomonas* aeruginosa: our worst nightmare? *Clin Infect Dis* **34**: 634-40.

Lysnyansky, I., Rosengarten, R. et Yogev, D. 1996. Phenotypic switching of variable surface lipoproteins in Mycoplasma bovis involves high-frequency chromosomal rearrangements. *J Bacteriol* **178**: 5395-401.

Ma, X. X., Ito, T., Tiensasitorn, C., Jamklang, M., Chongtrakool, P., Boyle-Vavra, S., Daum, R. S. et Hiramatsu, K. 2002. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. *Antimicrob Agents Chemother* **46**: 1147-52.

Madoff, L. C., Michel, J. L., Gong, E. W., Kling, D. E. et Kasper, D. L. 1996. Group B streptococci escape host immunity by deletion of tandem repeat elements of the alpha C protein. *Proc Natl Acad Sci U S A* **93**: 4131-6.

Mahillon, J., Leonard, C. et Chandler, M. 1999. IS elements as constituents of bacterial genomes. *Res Microbiol* **150**: 675-87.

Maiden, M. C. *et al.* 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. *Proc Natl Acad Sci USA* **95:** 3140-5.

Martin, B. *et al.* 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. *Nucleic Acids Res* **20**: 3479-83.

Martin, P., van de Ven, T., Mouchel, N., Jeffries, A. C., Hood, D. W. et Moxon, E. R. 2003. Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. *Mol Microbiol* **50**: 245-57.

Masepohl, B., Gorlitz, K. et Bohme, H. 1996. Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. *Biochim Biophys Acta* **1307:** 26-30.

Mazars, E., Lesjean, S., Banuls, A. L., Gilbert, M., Vincent, V. V., Gicquel, B., Tibayrenc, M., Locht, C. et Supply, P. 2001. High-resolution minisatellite-based typing as a portable approach to global analysis of *Mycobacterium tuberculosis* molecular epidemiology. *Proc Natl Acad Sci U S A* **98**: 1901-1906.

McDevitt, D. & Foster, T. J. 1995. Variation in the size of the repeat region of the fibrinogen receptor (clumping factor) of Staphylococcus aureus strains. *Microbiology* **141** ( **Pt 4**): 937-43.

McDevitt, D., Francois, P., Vaudaux, P. et Foster, T. J. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. *Mol Microbiol* **11**: 237-48.

Meunier, J. R. & Grimont, P. A. 1993. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. *Res Microbiol* **144:** 373-9.

Meyer, T. F., Gibbs, C. P. et Haas, R. 1990. Variation and control of protein expression in Neisseria. *Annu Rev Microbiol* **44**: 451-77.

Mifsud, A. J., Watine, J., Picard, B., Charet, J. C., Solignac-Bourrel, C. et Pitt, T. L. 1997. Epidemiologically related and unrelated strains of *Pseudomonas aeruginosa* serotype O12 cannot be distinguished by phenotypic and genotypic typing. *J Hosp Infect* **36**: 105-16.

Mojica, F. J., Diez-Villasenor, C., Soria, E. et Juez, G. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. *Mol Microbiol* **36**: 244-6.

Moore, H., Greenwell, P. W., Liu, C. P., Arnheim, N. et Petes, T. D. 1999. Triplet repeats form secondary structures that escape DNA repair in yeast. *Proc Natl Acad Sci U S A* **96**: 1504-9.

Moreno, E., Cloeckaert, A. et Moriyon, I. 2002. *Brucella* evolution and taxonomy. *Vet Microbiol* **90**: 209-27.

Motin, V. L. *et al.* 2002. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD). *J Bacteriol* **184:** 1019-27.

Moxon, E. R., Rainey, P. B., Nowak, M. A. et Lenski, R. E. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. *Curr Biol* **4**: 24-33.

Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H. et Watanabe, S. 1991. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. *J Clin Microbiol* **29**: 2240-4.

Musser, J. M. & Kapur, V. 1992. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. *J Clin Microbiol* **30**: 2058-63.

Nahvi, M. D., Fitzgibbon, J. E., John, J. F. et Dubin, D. T. 2001. Sequence analysis of dru regions from methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococcal isolates. *Microb Drug Resist* **7**: 1-12.

Nakata, A., Amemura, M. et Makino, K. 1989. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. *J Bacteriol* **171**: 3553-6.

Nelson, K. E. *et al.* 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. *Nature* **399**: 323-9.

Nelson, K. E., Paulsen, I. T., Heidelberg, J. F. et Fraser, C. M. 2000. Status of genome projects for nonpathogenic bacteria and archaea. *Nat Biotechnol* **18**: 1049-54.

Ochman, H. & Jones, I. B. 2000. Evolutionary dynamics of full genome content in Escherichia coli. *Embo J* **19:** 6637-43.

Okuma, K. *et al.* 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. *J Clin Microbiol* **40**: 4289-94.

Olive, D. M. & Bean, P. 1999. Principles and applications of methods for DNA-based typing of microbial organisms. *J Clin Microbiol* **37:** 1661-9.

Oliver, A., Canton, R., Campo, P., Baquero, F. et Blazquez, J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. *Science* **288**: 1251-4.

Onteniente, L., Brisse, S., Tassios, P. T. et Vergnaud, G. 2003. Evaluation of the polymorphisms associated with tandem repeats for Pseudomonas aeruginosa strain typing. *J Clin Microbiol* **41**: 4991-7.

Orskov, F. & Orskov, I. 1983. From the national institutes of health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the enterobacteriaceae and other bacteria. *J Infect Dis* **148**: 346-57.

Parkhill, J. *et al.* 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. *Nat Genet* **35:** 32-40.

Parkhill, J. *et al.* 2001. Genome sequence of *Yersinia pestis*, the causative agent of plague. *Nature* **413**: 523-7.

Patti, J. M., Allen, B. L., McGavin, M. J. et Hook, M. 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. *Annu Rev Microbiol* **48**: 585-617.

Patti, J. M., Bremell, T., Krajewska-Pietrasik, D., Abdelnour, A., Tarkowski, A., Ryden, C. et Hook, M. 1994. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. *Infect Immun* **62**: 152-61.

Patti, J. M., Jonsson, H., Guss, B., Switalski, L. M., Wiberg, K., Lindberg, M. et Hook, M. 1992. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. *J Biol Chem* **267**: 4766-72.

Peacock, S. J., Moore, C. E., Justice, A., Kantzanou, M., Story, L., Mackie, K., O'Neill, G. et Day, N. P. 2002. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. *Infect Immun* **70**: 4987-96.

Perry, R. D. & Fetherston, J. D. 1997. Yersinia pestis--etiologic agent of plague. *Clin Microbiol Rev* 10: 35-66.

Perutz, M. F. 1983. Species adaptation in a protein molecule. Mol Biol Evol 1: 1-28.
Pirnay, J. P., De Vos, D., Cochez, C., Bilocq, F., Vanderkelen, A., Zizi, M., Ghysels, B. et Cornelis, P. 2002. *Pseudomonas aeruginosa* displays an epidemic population structure. *Environ Microbiol* **4**: 898-911.

Pitt, T. L., Livermore, D. M., Pitcher, D., Vatopoulos, A. C. et Legakis, N. J. 1989. Multiresistant serotype O 12 *Pseudomonas aeruginosa*: evidence for a common strain in Europe. *Epidemiol Infect* **103**: 565-76.

Pourcel, C., Vidgop, Y., Ramisse, F., Vergnaud, G. et Tram, C. 2003. Characterization of a Tandem Repeat Polymorphism in *Legionella pneumophila* and Its Use for Genotyping. *J Clin Microbiol* **41**: 1819-1826.

Quelle, L. S., Corso, A., Galas, M. et Sordelli, D. O. 2003. STAR gene restriction profile analysis in epidemiological typing of methicillin-resistant Staphylococcus aureus: description of the new method and comparison with other polymerase chain reaction (PCR)-based methods. *Diagn Microbiol Infect Dis* **47**: 455-64.

Radnedge, L., Agron, P. G., Worsham, P. L. et Andersen, G. L. 2002. Genome plasticity in *Yersinia pestis*. *Microbiology* **148**: 1687-98.

Ramshaw, J. A., Coyne, J. A. et Lewontin, R. C. 1979. The sensitivity of gel electrophoresis as a detector of genetic variation. *Genetics* **93**: 1019-37.

Read, T. D. *et al.* 2002. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. *Science* **296**: 2028-33.

Renders, N., Romling, Y., Verbrugh, H. et van Belkum, A. 1996. Comparative typing of *Pseudomonas aeruginosa* by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. *J Clin Microbiol* **34:** 3190-5.

Renders, N., van Belkum, A., Barth, A., Goessens, W., Mouton, J. et Verbrugh, H. 1996. Typing of Pseudomonas aeruginosa strains from patients with cystic fibrosis: phenotyping versus genotyping. *Clin Microbiol Infect* **1**: 261-265.

Renders, N., Verbrugh, H. et Van Belkum, A. 2001. Dynamics of bacterial colonisation in the respiratory tract of patients with cystic fibrosis. *Infect Genet Evol* 1: 29-39.

Rice, K., Peralta, R., Bast, D., de Azavedo, J. et McGavin, M. J. 2001. Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. *Infect Immun* **69**: 159-69.

Rocha, E. P., Danchin, A. et Viari, A. 1999. Functional and evolutionary roles of long repeats in prokaryotes. *Res Microbiol* **150**: 725-33.

Rohrer, S., Tschierske, M., Zbinden, R. et Berger-Bachi, B. 2001. Improved methods for detection of methicillin-resistant Staphylococcus aureus. *Eur J Clin Microbiol Infect Dis* **20**: 267-70.

Romling, U., Fiedler, B., Bosshammer, J., Grothues, D., Greipel, J., von der Hardt, H. et Tummler, B. 1994. Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. *J Infect Dis* **170**: 1616-21.

Rosenberg, S. M., Longerich, S., Gee, P. et Harris, R. S. 1994. Adaptive mutation by deletions in small mononucleotide repeats. *Science* **265**: 405-407.

Sabat, A., Krzyszton-Russjan, J., Strzalka, W., Filipek, R., Kosowska, K., Hryniewicz, W., Travis, J. et Potempa, J. 2003. New method for typing Staphylococcus aureus strains: multiple-locus variable-number tandem repeat analysis of polymorphism and genetic relationships of clinical isolates. *J Clin Microbiol* **41**: 1801-4.

Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. et Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* **230**: 1350-4.

Salama, N., Guillemin, K., McDaniel, T. K., Sherlock, G., Tompkins, L. et Falkow, S. 2000. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. *Proc Natl Acad Sci U S A* **97:** 14668-73.

Saunders, N. J., Peden, J. F., Hood, D. W. et Moxon, E. R. 1998. Simple sequence repeats in the Helicobacter pylori genome. *Mol Microbiol* **27**: 1091-8.

Schouls, L. M., Reulen, S., Duim, B., Wagenaar, J. A., Willems, R. J., Dingle, K. E., Colles, F. M. et Van Embden, J. D. 2003. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. *J Clin Microbiol* **41**: 15-26.

Schwartz, D. C. & Cantor, C. R. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. *Cell* **37**: 67-75.

Schwarzkopf, A. & Karch, H. 1994. Genetic variation in Staphylococcus aureus coagulase genes: potential and limits for use as epidemiological marker. *J Clin Microbiol* **32**: 2407-12.

Schwiebert, E. M., Benos, D. J., Egan, M. E., Stutts, M. J. et Guggino, W. B. 1999. CFTR is a conductance regulator as well as a chloride channel. *Physiol Rev* **79**: S145-66.

Scieux, C., Grimont, F., Regnault, B. et Grimont, P. A. 1992. DNA fingerprinting of Chlamydia trachomatis by use of ribosomal RNA, oligonucleotide and randomly cloned DNA probes. *Res Microbiol* **143**: 755-65.

Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N. et Whittam, T. S. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. *Appl Environ Microbiol* **51**: 873-84.

Senna, J. P., Pinto, C. A., Carvalho, L. P. et Santos, D. S. 2002. Comparison of pulsed-field gel electrophoresis and PCR analysis of polymorphisms on the mec hypervariable region for typing methicillin-resistant Staphylococcus aureus. *J Clin Microbiol* **40**: 2254-6

Sharp, P. M. & Li, W. H. 1987. Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. *J Mol Evol* **25**: 58-64.

Sharples, G. J. & Lloyd, R. G. 1990. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. *Nucleic Acids Res* 18: 6503-8.

Shields, D. C., McDevitt, D. et Foster, T. J. 1995. Evidence against concerted evolution in a tandem array in the clumping factor gene of Staphylococcus aureus. *Mol Biol Evol* **12**: 963-5.

Shopsin, B., Gomez, M., Montgomery, S. O., Smith, D. H., Waddington, M., Dodge, D. E., Bost, D. A., Riehman, M., Naidich, S. et Kreiswirth, B. N. 1999. Evaluation of protein A gene polymorphic region DNA sequencing for typing of *Staphylococcus aureus* strains. *J Clin Microbiol* **37**: 3556-63.

Shopsin, B., Gomez, M., Waddington, M., Riehman, M. et Kreiswirth, B. N. 2000. Use of coagulase gene (coa) repeat region nucleotide sequences for typing of methicillin-resistant Staphylococcus aureus strains. *J Clin Microbiol* **38**: 3453-6.

Skuce, R. A., McCorry, T. P., McCarroll, J. F., Roring, S. M., Scott, A. N., Brittain, D., Hughes, S. L., Hewinson, R. G. et Neill, S. D. 2002. Discrimination of *Mycobacterium tuberculosis* complex bacteria using novel VNTR-PCR targets. *Microbiology* **148**: 519-528.

Smith, J. M., Dowson, C. G. et Spratt, B. G. 1991. Localized sex in bacteria. *Nature* **349**: 29-31.

Smith, J. M., Smith, N. H., O'Rourke, M. et Spratt, B. G. 1993. How clonal are bacteria? *Proc Natl Acad Sci U S A* **90:** 4384-8.

Smith, N. H., Beltran, P. et Selander, R. K. 1990. Recombination of Salmonella phase 1 flagellin genes generates new serovars. *J Bacteriol* **172**: 2209-16.

Snel, B., Bork, P. et Huynen, M. A. 1999. Genome phylogeny based on gene content. *Nat Genet* **21**: 108-10.

Sokurenko, E. V., Hasty, D. L. et Dykhuizen, D. E. 1999. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. *Trends Microbiol* **7**: 191-5.

Sola, C., Filliol, I., Legrand, E., Lesjean, S., Locht, C., Supply, P. et Rastogi, N. 2003. Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. *Infect Genet Evol* **3**: 125-33.

Spencer, D. H., Kas, A., Smith, E. E., Raymond, C. K., Sims, E. H., Hastings, M., Burns, J. L., Kaul, R. et Olson, M. V. 2003. Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa. *J Bacteriol* **185**: 1316-25.

Sreevatsan, S., Pan, X., Stockbauer, K. E., Connell, N. D., Kreiswirth, B. N., Whittam, T. S. et Musser, J. M. 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. *Proc Natl Acad Sci US A* **94**: 9869-74.

Stern, M. J., Ames, G. F., Smith, N. H., Robinson, E. C. et Higgins, C. F. 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. *Cell* **37:** 1015-26.

Stothard, D. R., Van Der Pol, B., Smith, N. J. et Jones, R. B. 1998. Effect of serial passage in tissue culture on sequence of omp1 from Chlamydia trachomatis clinical isolates. *J Clin Microbiol* **36**: 3686-8.

Stover, C. K. *et al.* 2000. Complete genome sequence of *Pseudomonas aeruginosa* PA01, an opportunistic pathogen. *Nature* **406**: 959-64.

Suerbaum, S., Smith, J. M., Bapumia, K., Morelli, G., Smith, N. H., Kunstmann, E., Dyrek, I. et Achtman, M. 1998. Free recombination within Helicobacter pylori. *Proc Natl Acad Sci U S A* **95:** 12619-24.

Supply, P., Lesjean, S., Savine, E., Kremer, K., van Soolingen, D. et Locht, C. 2001. Automated high-throughput genotyping for study of global epidemiology of *Mycobacterium tuberculosis* based on mycobacterial interspersed repetitive units. *J Clin Microbiol* **39**: 3563-3571.

Supply, P., Magdalena, J., Himpens, S. et Locht, C. 1997. Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. *Mol Microbiol* **26**: 991-1003.

Supply, P., Mazars, E., Lesjean, S., Vincent, V., Gicquel, B. et Locht, C. 2000. Variable human minisatellite-like regions in the *Mycobacterium tuberculosis* genome. *Mol Microbiol* **36**: 762-771.

Supply, P., Warren, R. M., Banuls, A. L., Lesjean, S., Van Der Spuy, G. D., Lewis, L. A., Tibayrenc, M., Van Helden, P. D. et Locht, C. 2003. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. *Mol Microbiol* **47**: 529-38.

Sutter, V. L., Hurst, V. et Fennell, J. 1965. A Standardized System for Phage Typing Pseudomonas Aeruginosa. *Health Lab Sci* **30**: 7-16.

Sylvestre, P., Couture-Tosi, E. et Mock, M. 2003. Polymorphism in the collagen-like region of the *Bacillus anthracis* BclA protein leads to variation in exosporium filament length. *J Bacteriol* **185**: 1555-63.

Tassios, P. T., Gennimata, V., Maniatis, A. N., Fock, C. et Legakis, N. J. 1998. Emergence of multidrug resistance in ubiquitous and dominant *Pseudomonas aeruginosa* serogroup O:11. The Greek *Pseudomonas Aeruginosa* Study Group. *J Clin Microbiol* **36**: 897-901.

Tenover, F. C. *et al.* 1994. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. *J Clin Microbiol* **32**: 407-15.

Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. et Swaminathan, B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. *J Clin Microbiol* **33**: 2233-9.

Theiss, P. & Wise, K. S. 1997. Localized frameshift mutation generates selective, high-frequency phase variation of a surface lipoprotein encoded by a mycoplasma ABC transporter operon. *J Bacteriol* **179**: 4013-22.

Tibayrenc, M. 1998. Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. *Int J Parasitol* **28**: 85-104.

Tomb, J. F. *et al.* 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. *Nature* **388**: 539-47.

Tonjum, T., Caugant, D. A., Dunham, S. A. et Koomey, M. 1998. Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. *Mol Microbiol* **29**: 111-24.

Tsang, V. C., Peralta, J. M. et Simons, A. R. 1983. Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. *Methods Enzymol* **92**: 377-91.

van Belkum, A. 1999. The role of short sequence repeats in epidemiologic typing. *Curr Opin Microbiol* **2**: 306-11.

van Belkum, A. 1999. Short sequence repeats in microbial pathogenesis and evolution. *Cell Mol Life Sci* 56: 729-34.

van Belkum, A. 2000. Molecular epidemiology of methicillin-resistant Staphylococcus aureus strains: state of affairs and tomorrow' s possibilities. *Microb Drug Resist* 6: 173-88.

van Belkum, A. 2003. Molecular diagnostics in medical microbiology: yesterday, today and tomorrow. *Curr Opin Pharmacol* **3**: 497-501.

van Belkum, A., Bax, R., Peerbooms, P., Goessens, W. H., van Leeuwen, N. et Quint, W. G. 1993. Comparison of phage typing and DNA fingerprinting by polymerase chain reaction for discrimination of methicillin-resistant Staphylococcus aureus strains. *J Clin Microbiol* **31**: 798-803.

van Belkum, A., Scherer, S., van Alphen, L. et Verbrugh, H. 1998. Short-sequence DNA repeats in prokaryotic genomes. *Microbiol Mol Biol Rev* **62**: 275-93.

van Belkum, A., Scherer, S., van Leeuwen, W., Willemse, D., van Alphen, L. et Verbrugh, H. 1997. Variable number of tandem repeats in clinical strains of *Haemophilus influenzae*. *Infect Immun* **65:** 5017-27.

van Belkum, A., Sluijuter, M., de Groot, R., Verbrugh, H. et Hermans, P. W. 1996. Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. *J Clin Microbiol* **34**: 1176-9.

van Belkum, A., Struelens, M., de Visser, A., Verbrugh, H. et Tibayrenc, M. 2001. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. *Clin Microbiol Rev* 14: 547-60.

van der Ende, A., Hopman, C. T., Zaat, S., Essink, B. B., Berkhout, B. et Dankert, J. 1995. Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the -10 and -35 regions of the promoter. *J Bacteriol* **177**: 2475-80.

van Embden, J. D. *et al.* 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. *J Clin Microbiol* **31:** 406-9.

van Embden, J. D., van Gorkom, T., Kremer, K., Jansen, R., van Der Zeijst, B. A. et Schouls, L. M. 2000. Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. *J Bacteriol* **182**: 2393-401.

van Ham, S. M., van Alphen, L., Mooi, F. R. et van Putten, J. P. 1993. Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region. *Cell* **73**: 1187-96.

van Leeuwen, W., Verbrugh, H., van der Velden, J., van Leeuwen, N., Heck, M. et van Belkum, A. 1999. Validation of binary typing for Staphylococcus aureus strains. *J Clin Microbiol* **37:** 664-74.

van Leeuwen, W. B., Jay, C., Snijders, S., Durin, N., Lacroix, B., Verbrugh, H. A., Enright, M. C., Troesch, A. et van Belkum, A. 2003. Multilocus sequence typing of Staphylococcus aureus with DNA array technology. *J Clin Microbiol* **41**: 3323-6.

van Leeuwen, W. B. *et al.* 2002. Intercenter reproducibility of binary typing for Staphylococcus aureus. *J Microbiol Methods* **51**: 19-28.

van Leeuwen, W. B., van Pelt, C., Luijendijk, A., Verbrugh, H. A. et Goessens, W. H. 1999. Rapid detection of methicillin resistance in Staphylococcus aureus isolates by the MRSA-screen latex agglutination test. *J Clin Microbiol* **37**: 3029-30.

Vaneechoutte, M., Rossau, R., De Vos, P., Gillis, M., Janssens, D., Paepe, N., De Rouck, A., Fiers, T., Claeys, G. et Kersters, K. 1992. Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). *FEMS Microbiol Lett* **72**: 227-33.

Vergnaud, G. 1989. Polymers of random short oligonucleotides detect polymorphic loci in the human genome. *Nucleic Acids Res.* **17:** 7623-7630.

Versalovic, J., Koeuth, T. et Lupski, J. R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. *Nucleic Acids Res* **19:** 6823-31.

Vlaminckx, B. J., Mascini, E. M., Schellekens, J., Schouls, L. M., Paauw, A., Fluit, A. C., Novak, R., Verhoef, J. et Schmitz, F. J. 2003. Site-specific manifestations of invasive group a streptococcal disease: type distribution and corresponding patterns of virulence determinants. *J Clin Microbiol* **41**: 4941-9.

Vos, P. *et al.* 1995. AFLP: a new technique for DNA fingerprinting. *Nucleic Acids Res* 23: 4407-14.

Wei, M. Q., Udo, E. E. et Grubb, W. B. 1992. Typing of methicillin-resistant Staphylococcus aureus with IS256. *FEMS Microbiol Lett* **78**: 175-80.

Weiser, J. N., Love, J. M. et Moxon, E. R. 1989. The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. *Cell* **59:** 657-65.

Weiser, J. N., Williams, A. et Moxon, E. R. 1990. Phase-variable lipopolysaccharide structures enhance the invasive capacity of Haemophilus influenzae. *Infect Immun* **58**: 3455-7.

Weissman, S. J., Moseley, S. L., Dykhuizen, D. E. et Sokurenko, E. V. 2003. Enterobacterial adhesins and the case for studying SNPs in bacteria. *Trends Microbiol* **11**: 115-7.

Welsh, J. & McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. *Nucleic Acids Res* 18: 7213-8.

Wichelhaus, T. A., Hunfeld, K. P., Boddinghaus, B., Kraiczy, P., Schafer, V. et Brade, V. 2001. Rapid molecular typing of methicillin-resistant Staphylococcus aureus by PCR-RFLP. *Infect Control Hosp Epidemiol* **22**: 294-8.

Wielders, C. L., Fluit, A. C., Brisse, S., Verhoef, J. et Schmitz, F. J. 2002. mecA gene is widely disseminated in Staphylococcus aureus population. *J Clin Microbiol* **40**: 3970-5.

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. et Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Res.* **18**: 6531-6535.

Windgassen, M., Urban, A. et Jaeger, K. E. 2000. Rapid gene inactivation in Pseudomonas aeruginosa. *FEMS Microbiol Lett* **193**: 201-5.

Woolhouse, M. E. 2002. Population biology of emerging and re-emerging pathogens. *Trends Microbiol* **10**: S3-7

Wyman, A. R. & White, R. 1980. A highly polymorphic locus in human DNA. *Proc. Natl. Acad. Sci. USA* **77:** 6754-6758.

Yang, Y. & Ames, G. F. 1988. DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. *Proc Natl Acad Sci U S A* **85**: 8850-4.

Yogev, D., Rosengarten, R., Watson-McKown, R. et Wise, K. S. 1991. Molecular basis of Mycoplasma surface antigenic variation: a novel set of divergent genes undergo spontaneous mutation of periodic coding regions and 5' regulatory sequences. *Embo J* **10**: 4069-79.

Yother, J. & Briles, D. E. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. *J Bacteriol* **174:** 601-9.

Young, V. M. & Moody, M. R. 1974. Serotyping of Pseudomonas aeruginosa. *J Infect Dis* **130 Suppl:** S47-52.

Zheng, X., Teng, L. J., Watson, H. L., Glass, J. I., Blanchard, A. et Cassell, G. H. 1995. Small repeating units within the Ureaplasma urealyticum MB antigen gene encode serovar specificity and are associated with antigen size variation. *Infect Immun* **63**: 891-8.

## ANNEXES

## ANNEXE 1 : Liste des solutions utilisées

Milieu gélosé LBA (Luria Bertani)+ Agar :

|        | Bactotryptone<br>Extrait de levure<br>NaCl<br>Agar<br>Ajuster le pH à 7,5 | 1%<br>0,5%<br>0,171M<br>0,7% |
|--------|---------------------------------------------------------------------------|------------------------------|
| Milieu | LB (Luria Bertani) :                                                      |                              |
|        | Bactotryptone<br>Extrait de levure<br>NaCl<br>Ajuster le pH à 7,5         | 1%<br>0,5%<br>0,171M         |
| Tampo  | on de lyse :                                                              |                              |
|        | Tris HCl ph 8,5<br>EDTA<br>Triton 100X                                    | 50mM<br>5mM<br>1%            |
| « Bleu | de dépôt » :                                                              |                              |
|        | Bleu de xylène cyanol (Sigma)<br>Glycerol<br>TE                           | 0,1mg/ml<br>50%<br>0,5X      |
| TE 1X  | :                                                                         |                              |
|        | Tris HCl pH 8,0<br>EDTA                                                   | 0,01mM<br>0,001mM            |
| TBE 0  | ,5 X :                                                                    |                              |
|        | Tris HCl<br>Acide borique<br>EDTA<br>Ajuster à pH 8,3                     | 0,045M<br>0,045M<br>0,001M   |

## ANNEXE 2 : 137 souches *Staphylococcus aureus* étudiées

## Souches Pasteur :

| n°<br>ADN | n° souche | Génotype<br>PFGE | Année | Hôpital - Ville                             | Marqueurs de Résistance aux antibiotiques                                    | Références |
|-----------|-----------|------------------|-------|---------------------------------------------|------------------------------------------------------------------------------|------------|
| 1         | BM12846   | 1                | 1999  | 99 Broussais- Paris Chl, Pt, PIB, PIIA, Pef |                                                                              |            |
| 2         | BM12451   | 2                | 1997  | Grenoble                                    | Pc,Sm,Km,Tm,Gm,Em,Pt,PIB,PIIA,Lc,Su,Tmp                                      |            |
| 3         | BM 10675  | 29               | 1993  | Broussais- Paris                            | Pc, <b>Ox</b> ,Sm,Km,Nm,Tm,Gm,PIIA,Rf                                        |            |
| 4         | 2001042   | 30a              | 1999  | Toulouse                                    | Pc,PIIA,Lc,Pef                                                               |            |
| 5         | BM 9520   | 30b              | 1988  | Broussais- Paris                            | Pc,Sm,Spe,Km,Nm,Tm,Gm,Pt,PIB,PIIA,Lc                                         |            |
| 6         | 99135     | 31               | 1999  | St Louis-Paris                              | Pc,Km,Tm,Gm,Tc,Em,Spi,Cl,Pt,PIB,PIIA,Lc,Fa                                   |            |
| 7         | BM 12828  | 16a              | 1999  | Broussais- Paris                            | Pc, <b>Ox</b> ,Spe,Km,Nm,Tm,Em,Spi,Cl,Pt,PIB,PIIA,Lc,Tp,<br>Pef              |            |
| 8         | BM 12830  | 16b              | 1999  | Broussais- Paris                            | Pc, <b>Ox</b> ,Spe,Km,Nm,Tm,Gm,Em,Spi,Cl,Pt,PIB,PIIA,L<br>c,Pef,Rf           |            |
| 9         | BM 12174  | 17b              | 1996  | Grenoble                                    | Pc, <b>Ox</b> ,Spe,Km,Nm,Tm,Gm,Em,Spi,Cl,Pt,PIB,PIIA,L<br>c,Tp,Pef,Fm        |            |
| 10        | BM 3364   | 13               | 1981  | Broussais- Paris                            | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Mn,Em,Spi,Cl,Pt,<br>PIB,PIIA,Lc         |            |
| 11        | BM 10215  | 18               | 1990  | Broussais- Paris                            | Pc,Sm,Km,Nm,Em,PIIA,Lc,Pef                                                   |            |
| 12        | BM 12942  | 19               | 1999  | Broussais- Paris                            | Pc, <b>Ox</b> ,Sm,Km,Nm,Em,Spi,Cl,Pt,PIB,PIIA,Lc,Su,Tp,<br>Fa                |            |
| 13        | 97233     | 24h              | 1997  | Broussais- Paris                            | Pc, <b>Ox</b> ,Km,Nm,Tm,Gm,Em,Spi,Cl,Pt,PIB,PIIA,Lc,Tp,<br>Pef               |            |
| 14        | 2001045   | 24a              | 1998  | Toulouse                                    | Pc, <b>Ox</b> ,Km,Nm,Tm,PIIA,Pef                                             |            |
| 15        | 93184     | 26               | 1993  | Laennec- Paris                              | Pc, <b>Ox</b> ,Km,Nm,Tm,Pt,PIB,PIIA,Pef,Rf                                   |            |
| 16        | BM 12286  | 36a              | 1996  | Beaujon-Clichy                              | Pc, <b>Ox</b> ,Sm,Km,Nm,Pt,PIB,PIIA                                          |            |
| 17        | BM 12287  | 36a              | 1996  | Beaujon-Clichy                              | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Pt,PIB,PIIA                                      |            |
| 18        | IPF 556   | l -1             | 1999  | Broussais - Paris                           | Broussais - Paris Pc, <b>Ox</b> ,Sm,Km,Tm,Gm,Tc,Mn,Em,Lc,Pt,Su,Pef,Fa,R f.Fm |            |
| 19        | IPF 555   | I -1             | 1999  | Broussais - Paris                           | Pc, <b>Ox</b> ,Sm,Km,Tm,Gm,Tc,Mn,Em,Lc,Pt,Su,Pef,Fa,R<br>f,                  |            |

| n°<br>ADN | n° souche     | Génotype<br>PFGE | Année     | Année Hôpital - Ville Marqueurs de Résistance aux antibiotiques |                                                                           | Références |
|-----------|---------------|------------------|-----------|-----------------------------------------------------------------|---------------------------------------------------------------------------|------------|
| 20        | IPF 557       | I -1             | 1999      | Broussais - Paris                                               | Pc, <b>Ox</b> ,Sm,Km,Tm,Gm,Tc,Mn,Em,Lc,Pt,Su,Pef,Fa,R<br>f,Fm             |            |
| 21        | IPF 562       | l -1             | 1999      | Broussais - Paris                                               | Pc, <b>Ox</b> ,Sm,Km,Tm,Gm,Tc,Mn,Em,Lc,Pt,Su,Pef,Fa,R<br>f,Fm             |            |
| 22        | BM 10828      | I -1             | 1993      | Bordeaux                                                        | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Pef,Rf,Fa,Fm,Em<br>,Spi,Lc,Cl        |            |
| 23        | HM10          | XXIV             | 2000      | Henri Mondor-Créteil                                            | Pc, <b>Ox</b> ,Sm,Km,Tm,Gm,Rf, fm,Em,Spi,Lc,Cl,PIB                        |            |
| 24        | BM12612       | I - 1            | 1998      | Villiers St Denis                                               | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Pef,Rf,Fm,Em,S<br>pi,Lc,Cl           |            |
| 25        | IPF 216b      | XVII             | 2000-2001 | Bordeaux                                                        | Pc, <b>Ox</b> ,Spe,Nm,Su,                                                 |            |
| 26        | Harmony<br>26 | I - 1            | 1989      | Espagne                                                         | Pc, <b>Ox</b> ,Sm,Spe,Km,Tm,Gm,Tc,Su,Pef,Fa,Em,Spi,Lc,<br>Cl              |            |
| 27        | IPF 340       | XVIII            | 2001      | St Etienne                                                      | Pc, <b>0x</b> ,Km,Tm,Gm,Nm,Rf                                             |            |
| 28        | Harmony 9     | l - 5            | 1990      | Finlande                                                        | Pc, <b>Ox</b> ,Sm,Spe,Km,Tm,Gm,Tc,Pef,Rf,Em,Spi,Lc,Cl                     |            |
| 29        | BM 10829      | l - 5            | 1993      | Bordeaux                                                        | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Pef,Rf,Fa,Fm,Em<br>,Spi,Lc,Cl,PlB    |            |
| 30        | НМ 9          | XX               | 2000      | Henri Mondor-Créteil                                            | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Mn,Su,Pef,Rf,Fm<br>,Em,Spi,Lc,Cl,PIB |            |
| 31        | 97130         | I - 18           | 1997      | Toulouse                                                        | Pc, <b>0x</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Pef,Rf,Fa,Fm,Em                      |            |
| 32        | 96145         | l - 17           | 1996      | Blois                                                           | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Pef,Rf,Fm,Em,S<br>pi,Lc,Cl           |            |
| 33        | BM 12632      | 40e              | 1998      | Hôpital pédiatrique Tunisie                                     | Lc                                                                        |            |
| 34        | BM 12634      | 36a              | 1998      | Hôpital pédiatrique Tunisie                                     | Pc,Sm,Km,Em                                                               |            |
| 35        | BM12975       | 45c              | 1999      | Hôpital pédiatrique Tunisie                                     | Pc,Cm                                                                     |            |
| 36        | IPF160        | 38c              | 2000      | Hôpital pédiatrique Tunisie                                     | Pc                                                                        |            |
| 37        | IPF489        | 42a              | 2001      | Hôpital pédiatrique Tunisie                                     | Pc,Sm,Km,Tc,Fa                                                            |            |
| 38        | IPF518        | 22a              | 2001      | Hôpital pédiatrique Tunisie                                     | Pc                                                                        |            |
| 39        | IPF 509       | 57               | 2001      | Hôpital pédiatrique Tunisie                                     | Pc,Tc                                                                     |            |
| 40        | IPF 510       | 37a              | 2001      | Hôpital pédiatrique Tunisie                                     | Pc                                                                        |            |
| 41        | IPF 511       | 3                | 2001      | Hôpital pédiatrique Tunisie                                     | Pc                                                                        |            |
| 42        | IPF 512       | 48a              | 2001      | Hôpital pédiatrique Tunisie                                     | Pc                                                                        |            |
| 43        | IPF641        | В                | 2000      | Centre Hospitalier Nimes                                        | Pc, <b>0x</b> ,Tm,Em,Cl,Pt,Pef,Fm                                         |            |

| n°<br>ADN | n° souche | Génotype<br>PFGE | Année     | Hôpital - Ville              | Marqueurs de Résistance aux antibiotiques                                  | Références |
|-----------|-----------|------------------|-----------|------------------------------|----------------------------------------------------------------------------|------------|
| 44        | IPF642    | A1               | 2000      | Centre Hospitalier Nimes     | Pc, <b>Ox</b> ,Tm,Em,Cl,Pef,Fm                                             |            |
| 45        | IPF643    | С                | 2000      | Centre Hospitalier Nimes     | Pc, <b>Ox</b> ,Tm,Em,Cl,Pef,Fm                                             |            |
| 46        | IPF644    | A2               | 2000      | Centre Hospitalier Nimes     | Pc, <b>Ox</b> ,Tm,Em,Cl,Pef,Fm                                             |            |
| 47        | IPF735    | *                | juin-01   | Centre Hospitalier Calais    | Pc,Em,(Spi)                                                                |            |
| 48        | IPF736    | *                | juin-01   | Centre Hospitalier Calais    | Pc,Em,(Spi)                                                                |            |
| 49        | IPF738    | *                | juin-01   | Centre Hospitalier Calais    | Pc,(Spi)                                                                   |            |
| 50        | IPF741    | *                | juin-01   | Centre Hospitalier Calais    | Pc,Em,(Spi)                                                                |            |
| 51        | IPF743    | *                | juin-01   | Centre Hospitalier Calais    | Pc,Em,(Spi)                                                                |            |
| 52        | IPF646    | \$               | Fev.2000  | Centre Hospitalier Abbeville | Pc, <b>Ox</b> ,Tm,Km,Em,Lc,Pef,Rf                                          |            |
| 53        | IPF647    | #\$              | Janv.2000 | Centre Hospitalier Abbeville | Pc, <b>Ox</b> ,Tm,Km,Em,Lc,Pef                                             |            |
| 54        | IPF648    | \$               | Janv.2000 | Centre Hospitalier Abbeville | Pc, <b>Ox</b> ,Tm,Km,Em,Lc,Pef                                             |            |
| 55        | IPF654    | ۸                | Juil.1999 | Fécamp (clinique privée)     | Pc, <b>Ox</b> ,Km,Tm,Em,Lc,Pef,Fm                                          |            |
| 56        | IPF657    | ۸                | Dec.1999  | Fécamp (clinique privée)     | Pc, <b>Ox</b> ,Km,Tm,Em,Lc,Pef,Fm                                          |            |
| 57        | IPF659    | ^                | Janv.2000 | Fécamp (clinique privée)     | Pc, <b>Ox</b> ,Km,Tm,Em,Lc,Pef                                             |            |
| 58        | IPF658    | #^               | Fev.2000  | Fécamp (clinique privée)     | Pc, <b>Ox</b> ,Km,Tm,Em                                                    |            |
| 59        | IPF667    | ##^              | Mar.2000  | Fécamp (clinique privée)     | amp (clinique privée) Pc, <b>Ox</b> ,Km,Tm,Em,Lc,Pef                       |            |
| 60        | IPF308    | ~                | mai-01    | CH Intercommunal Créteil     | Pc                                                                         |            |
| 61        | IPF309    | ~                | juin-01   | CH Intercommunal Créteil     | Pc                                                                         |            |
| 62        | IPF310    | 2                | mai-01    | CH Intercommunal Créteil     | Pc                                                                         |            |
| 63        | IPF311    | ۲                | Juil.2001 | CH Intercommunal Créteil     | Pc                                                                         |            |
| 64        | IPF323    | ۲                | Oct.2001  | CH Intercommunal Créteil     | Pc                                                                         |            |
| 65        | IPF92     | &                | Juil.2000 | Rotschild- Paris             | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,MLSc,Pf,Fm                                  |            |
| 66        | IPF54     | &                | Aout2000  | Rotschild- Paris             | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,MLSc,SgA,Pt,Pf,Fm                           |            |
| 67        | IPF55     | &                | Sept.2000 | Rotschild- Paris             | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,MLSc,Pf,Fm                                  |            |
| 68        | IPF56     | &                | Sept.2000 | Rotschild- Paris             | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,MLSc,SgA,Pt,Pf,Fm                           |            |
| 69        | IPF57     | &                | 2000      | Rotschild- Paris             | Pc, <b>Ox</b> ,Spe,Km,Nm,Tm,MLSc,SgA,Pt,Pef,Fm                             |            |
| 70        | IPF66     | &                | Sept.2000 | Rotschild- Paris             | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,MLSc,SgA,Pt,Pf,Fm                           |            |
| 71        | IPF65     | #&               | Aout2000  | Rotschild- Paris             | Pc, <b>Ox</b> ,Sm,Spe,Km,Nm,Tm,Gm,Tc,Mn,MLSc,SgA,Pt<br>,Rf,Tp,Fa,Pf,Fm,TSU |            |

| n°<br>ADN | n° souche | Génotype<br>PFGE | Année | Hôpital - Ville               | Marqueurs de Résistance aux antibiotiques      | Références                                              |
|-----------|-----------|------------------|-------|-------------------------------|------------------------------------------------|---------------------------------------------------------|
| 72        | 166       | la               | 1995  | Beaujon - CLICHY              | Pc, <b>0x</b> ,Nm,Sp,MLSc,Pf                   | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 73        | 165       | la               | 1995  | Beaujon - CLICHY              | Pc, <b>Ox</b> ,Nm,Sp,MLSc,Pf                   | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 74        | 97386     | lb               | 1996  | Broussais - PARIS             | Pc, <b>Ox</b> ,Gm,Nm,Sp,MLSc,Pf,Fm             | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 75        | 97381     | VIIb             | 1996  | Broussais - PARIS             | Pc, <b>Ox</b> ,Gm,Nm,Sp,MLSC,Pf,Fm             | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 76        | 97383     | VIIa             | 1996  | Broussais - PARIS             | Pc, <b>Ox</b> ,Nm,Sp,MLSc,Pf,Fm                | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 77        | 97379     | VIIa             | 1996  | Broussais - PARIS             | Pc, <b>Ox</b> , Nm,Sp,MLSc,SgA,Pf,Fm,Tp        | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 78        | 97117     | VIId             | 1997  | TOULOUSE                      | Pc, <b>Ox</b> ,Nm,Sm,Sp,MLSc,SgA,Pf            | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 79        | 95035     | VIId             | 1995  | CH - NIMES                    | Pc, <b>Ox</b> ,Nm,Sm,Sp,MLSc,Pf,Fm             | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 80        | 162       | VIId             | 1995  | Beaujon - CLICHY              | Pc, <b>Ox</b> ,NM,Sm,Sp,MLSc,Pf                | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 81        | 96164     | VIId             | 1996  | CH BLOIS                      | Pc, <b>Ox</b> ,Nm,Sp,MLSc,Pf,Fm                | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 82        | 920       | VIb              | 1995  | St Germain                    | Pc, <b>Ox</b> ,Nm,Sm,Sp,Lc,SgA,Pf              | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 83        | 1625      | VIb              | 1995  | Beaujon - CLICHY              | Pc, <b>Ox</b> ,Nm,Sm,Sp,MLSc,Pf,Rf             | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 84        | 12072     | VIb              | 1995  | Hop. L. Mourrier-<br>COLOMBES | Pc, <b>Ox</b> ,Nm,Sm,Sp,Pf                     | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 85        | 12068     | Vlb              | 1995  | CH - EVRY                     | Pc, <b>Ox</b> ,Nm,Sm,Sp,Pf                     | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 86        | 97120     | Vlb              | 1997  | TOULOUSE                      | Pc, <b>0x</b> ,Nm,Sm,Pf,Rf,Fa                  | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 87        | 97373     | XVIII            | 1996  | Broussais - PARIS             | Pc, <b>Ox</b> ,Nm,MLSc,Tc,Mn                   | Galdbart JO, J Clin Microbiol.<br>2000 Jan;38(1):185-90 |
| 88        | BM9290    | А                | 1987  | Hôtel Dieu - PARIS            | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23.  |

| n°<br>ADN | n° souche | Génotype<br>PFGE | Année     | Hôpital - Ville     | Marqueurs de Résistance aux antibiotiques                          | Références                                             |
|-----------|-----------|------------------|-----------|---------------------|--------------------------------------------------------------------|--------------------------------------------------------|
| 89        | BM9586    | А                | Jan.1987  | Broussais - PARIS   | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Fm                  | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 90        | BM12184   | А                | Avr.1997  | Broussais - PARIS   | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Fm                  | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 91        | BM9591    | А                | Juil.1987 | Broussais - PARIS   | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf                     | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 92        | BM12188   | А                | Dec.1987  | Broussais - PARIS   | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf                     | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 93        | BM10761   | A 4              | mai-93    | TOULOUSE            | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm,Sg<br>A,Tp,Fa,Fm | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 94        | BM10759   | A 4              | mai-93    | TOULOUSE            | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm,Sg<br>A,Tp,Fa,Fm | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 96        | BM9343    | Α7               | 1987      | TOULOUSE            | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm,Sg<br>A,Tp,Fa,Fm | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 97        | BM10872   | A 8              | Dec.1992  | Aalst - BELGIQUE    | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm                        | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 98        | BM10888   | A 8              | Aout 1993 | Aalst - BELGIQUE    | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Nm                     | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 100       | BM10914   | A 9              | Ma1991    | Broussais - PARIS   | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm,Sg<br>A,Tp,Fm    | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 101       | BM10896   | A 9              | Dec.1994  | Ghent -BELGIQUE     | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Nm                     | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 102       | BM10138   | A 10             | Oct.1989  | Barcelone - ESPAGNE | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm                  | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 103       | BM10130   | A 10             | Oct.1989  | Barcelone - ESPAGNE | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm                  | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 105       | BM12152   | A 12             | Oct.1989  | Barcelone - ESPAGNE | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm                  | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 106       | BM10877   | G                | Fev.1992  | Aalst - BELGIQUE    | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm                        | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 107       | BM12156   | G                | Oct.1989  | Barcelone - ESPAGNE | Pc, <b>0x</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm                  | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 109       | BM10827   | к                | Nov.1993  | BORDEAUX            | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Rf,Nm,Fa<br>,Fm        | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |

| n°<br>ADN | n° souche | Génotype<br>PFGE | Année    | Hôpital - Ville  | Marqueurs de Résistance aux antibiotiques      | Références                                             |
|-----------|-----------|------------------|----------|------------------|------------------------------------------------|--------------------------------------------------------|
| 110       | BM10883   | Q                | Fev.1993 | Ghent - Belgique | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm    | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |
| 111       | BM10886   | R                | avr-93   | Ghent - Belgique | Pc, <b>Ox</b> ,Pf,Tc,Mn,MLSc,Sp,Sm,Km,Tm,Gm,Nm | Morvan A. J Clin Microbiol.<br>1997 Jun;35(6):1415-23. |

#### Marqueurs de résistance aux antibiotiques

| Pc : Pénicilline                                          |
|-----------------------------------------------------------|
| <b>Ox</b> :Oxacilline (= méthicilline)                    |
| Spe :Spectinomycine                                       |
| Sm :Streptomycine                                         |
| Km :Kanamycine                                            |
| Nm :Néomycine                                             |
| Tm :Tobramycine                                           |
| C :Chloramphénicol                                        |
| Tc :Tétracycline                                          |
| Mn :Minocycline                                           |
| Em :Erythromycine                                         |
| Sp :Spiramycine                                           |
| Lc :Lincomycine                                           |
| Pt :Pristinamycine                                        |
| PIB :Pristinamycine IB                                    |
| PIIA :Pristinamycine IIA                                  |
| Su :Sulfamides                                            |
| Tp :Triméthoprime                                         |
| Pef :Pefloxacine                                          |
| Fa :Acide fusidique                                       |
| Fm :Fosfomycine                                           |
| MLSc: Macrolides-Lincosamides-Streptogramines constitutif |

## Souches Val de Grâce :

| n° ADN | n° souche          | Année | Hôpital          |  |
|--------|--------------------|-------|------------------|--|
| 134    | SARM réf JV        |       | collection Pitié |  |
| 135    | SASM-2             |       | collection Pitié |  |
| 136    | SASM-4             |       | collection Pitié |  |
| 137    | SASM-5             |       | collection Pitié |  |
| 138    | SASM-6             |       | collection Pitié |  |
| 139    | SASM-7             |       | collection Pitié |  |
| 140    | SASM-8             |       | collection Pitié |  |
| 141    | SASM-11            |       | collection Pitié |  |
| 142    | SASM-12            |       | collection Pitié |  |
| 143    | SARM-15            | 1996  | collection Pitié |  |
| 144    | SARM-29            | 1996  | collection Pitié |  |
| 145    | SARM-58            | 1996  | collection Pitié |  |
| 146    | SARM-88            | 1996  | collection Pitié |  |
| 147    | SARM-100           | 1996  | collection Pitié |  |
| 148    | SARM-119           | 1996  | collection Pitié |  |
| 149    | SARM-131           | 1996  | collection Pitié |  |
| 150    | SARM-132           | 1996  | collection Pitié |  |
| 151    | SARM-135           | 1996  | collection Pitié |  |
| 152    | SARM-142           | 1996  | collection Pitié |  |
| 153    | SARM-192           | 1996  | collection Pitié |  |
| 154    | SARM-5170201       |       | HIA Val de Grâce |  |
| 155    | SARM-4030210       |       | HIA Val de Grâce |  |
| 156    | SARM-60300661      |       | HIA Val de Grâce |  |
| 157    | SARM-60300663      |       | HIA Val de Grâce |  |
| 158    | SARM-5040072       |       | HIA Val de Grâce |  |
| 159    | Mu3(SARM)          |       | HIA Val de Grâce |  |
| 160    | Mu50(GISA)         |       | HIA Val de Grâce |  |
| 161    | GISA-Xavier16-10-3 |       | HIA Val de Grâce |  |
| 162    | GISA-1106024       |       | HIA Val de Grâce |  |
| 163    | GISA-904062        |       | HIA Percy        |  |

| SARM: S.aureus résistante à la méthicilline |
|---------------------------------------------|
| SASM: S.aureus sensible à la méthicilline   |
| GISA: Glycopeptide Intermédiaire S.aureus   |

| 6 | souches | de | Référence | séquen | cées | : |
|---|---------|----|-----------|--------|------|---|
|---|---------|----|-----------|--------|------|---|

| Nom de la souche | caractéristiques                                  | Références                                      |
|------------------|---------------------------------------------------|-------------------------------------------------|
| Mu50             | souche hospitalière                               | Kuroda M, Lancet. 2001 Apr 21;357(9264):1225-40 |
| MSSA476          | souche hyper-virulente acquise dans la communauté | non publié                                      |
| NCTC8325         | vieille souche de laboratoire                     | non publié                                      |
| MW2              | souche hyper virulente acquise dans la communauté | Baba T, Lancet. 2002 May 25;359(9320):1819-27.  |
| N315             | souche hospitalière                               | Kuroda M, Lancet. 2001 Apr 21;357(9264):1225-40 |
| MRSA252          | souche hospitalière épidémique                    | non publié                                      |

#### ANNEXE 3 :

#### Liste des 23 répétitions en tandem de *Pseudomonas aeruginosa* abandonnées lors de l'étude MLVA, pour lesquelles des problèmes d'amplification par PCR ont été rencontrés :

| Nom de la répétition | Position dans<br>le génome<br>PAO1 (en kb) | L: taille du<br>motif souche<br>PAO1 (pb) | N: nombre de<br>motifs souche<br>PAO1 |
|----------------------|--------------------------------------------|-------------------------------------------|---------------------------------------|
| ms006                | 44                                         | 63                                        | 56                                    |
| ms019                | 308                                        | 9                                         | 12                                    |
| ms023                | 388                                        | 9                                         | 31                                    |
| ms025                | 417                                        | 12                                        | 30                                    |
| ms031                | 750                                        | 15                                        | 7                                     |
| ms041                | 1165                                       | 15                                        | 7                                     |
| ms047                | 1466                                       | 9                                         | 15                                    |
| ms057                | 1727                                       | 9                                         | 11                                    |
| ms068                | 2036                                       | 246                                       | 22                                    |
| ms074                | 2247                                       | 10                                        | 8                                     |
| ms084                | 2512                                       | 18                                        | 9                                     |
| ms088                | 2550                                       | 24                                        | 21                                    |
| ms102                | 2768                                       | 21                                        | 119                                   |
| ms137                | 3750                                       | 12                                        | 12                                    |
| ms138                | 3791                                       | 15                                        | 7                                     |
| ms140                | 3858                                       | 21                                        | 11                                    |
| ms144                | 3925                                       | 12                                        | 11                                    |
| ms154                | 4432                                       | 15                                        | 8                                     |
| ms156                | 4590                                       | 15                                        | 8                                     |
| ms160                | 4730                                       | 12                                        | 24                                    |
| ms162                | 4732                                       | 24                                        | 7                                     |
| ms170                | 5043                                       | 12                                        | 10                                    |
| ms189                | 5700                                       | 12                                        | 33                                    |

# Liste des 170 répétitions en tandem monomorphes chez *P. aeruginosa* : amorces utilisées et conditions de PCR :

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus                                         | Amorce gauche          | Amorce droite         | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------------------------------|------------------------|-----------------------|------------------------------------------|
| ms001                      | 3989                                             | 12                                                 | 14                                             | 263                                            | AGCCGGCGATGA                                            | ATGACCAGGATCGGCTTCAG   | GACACGGCTTTCGTCCTGAT  | 60                                       |
| ms002                      | 239                                              | 9                                                  | 18                                             | 272                                            | CCGCGCCGG                                               | GAGCGTCCTCGACGATACCT   | GAAGGTCAGGGTTTCCATCTC | 60                                       |
| ms003                      | 1370                                             | 15                                                 | 15                                             | 336                                            | GGCGGCAGCAGCGAC                                         | GAAGAACAGGATCGCCAGTAAC | CCTGATCAACCTGCCGATCT  | 59,3                                     |
| ms004                      | 22                                               | 15                                                 | 5                                              | 166                                            | CGCCGACGGCAAGTT                                         | ATGACGAGAAGACCTTCACCAG | CTTGGTCTTCGGATCGATGTA | 60                                       |
| ms005                      | 30                                               | 21                                                 | 6                                              | 239                                            | GCGGCAGCCTTCGTAGTGCAG                                   | ACAAGCTGCAGCGGGAAT     | CCAGGTGAACTTCATCGACTT | 60                                       |
| ms007                      | 76                                               | 24                                                 | 11                                             | 357                                            | GCCAGCAGGCCGACGCCGAGCA<br>GC                            | AGCTGGTCGGCGTAGCAC     | GATGCAGTTCCTTCCCTACG  | 60                                       |
| ms008                      | 82                                               | 12                                                 | 11                                             | 227                                            | GCCGGCCAGGCC                                            | ATCGCTGATCTGCTTCTGCT   | ACTACCCGTCCTGCTACGAG  | 60                                       |
| ms009                      | 85                                               | 9                                                  | 9                                              | 248                                            | CGGCGATGG                                               | GGAAGCCCAGCAGACGTAG    | CCTGTACGCCCGAGACCT    | 60                                       |
| ms011                      | 114                                              | 12                                                 | 9                                              | 228                                            | CGGCGGCGACCA                                            | CCCTTGACGATCTGGAACAT   | CCCTAGCTGACCCGAGTACC  | 60                                       |
| ms012                      | 116                                              | 48                                                 | 10                                             | 573                                            | GTCGGCAACAACGAGACCATCA<br>GCATCGGCGCGACCGCACCGAG<br>AAC | GAGCAGTTGTTCATCCATGC   | GTTGAGCGTGAAGCTCTTGC  | 60                                       |
| ms013                      | 155                                              | 13                                                 | 9                                              | 230                                            | TCGCCGGCGGCGG                                           | ACCTCGACGAGCTGTTCCT    | GAGAGGCCAGCAGCATCC    | 60                                       |
| ms014                      | 156                                              | 10                                                 | 16                                             | 336                                            | TCGGCGCTGC                                              | ACTACATCGCGCTGAACCTG   | ACAGCAGCACGAACCAGAC   | 60                                       |
| ms015                      | 161                                              | 14                                                 | 7                                              | 227                                            | CGGGCCGGCTGGC                                           | GTGCTGTCCTCGCTGCTG     | ATGAGCGAAGAACCCACTGT  | 60                                       |
| ms016                      | 196                                              | 12                                                 | 5                                              | 216                                            | CAGCGCCAGCAA                                            | GTGCAGCAGGGTGAAGTTCT   | GCTTTCGATCCATGATTTCG  | 60                                       |
| ms017                      | 243                                              | 12                                                 | 9                                              | 232                                            | TGCTGCTCGGCG                                            | GCAACCGAGGACAACAATAA   | GTAGACCGCGCTCCAGAACT  | 60                                       |
| ms018                      | 269                                              | 15                                                 | 14                                             | 296                                            | GCCCGCGCTGGAGCT                                         | GTCGATGGACGAAATCCTTC   | AAAGAAACGATCGGCTTCAA  | 51                                       |
| ms020                      | 311                                              | 12                                                 | 11                                             | 263                                            | TGCTGCTGGCGC                                            | CATTCCGATGATCGTCCTCT   | AATGACCGACGAACTGGATG  | 60                                       |

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus              | Amorce gauche        | Amorce droite         | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------|----------------------|-----------------------|------------------------------------------|
| ms021                      | 330                                              | 11                                                 | 8                                              | 250                                            | CGGATATAAAT                  | GTCATGGAGCACCTCGTGT  | CCTACCTGGGGCTCTACCTG  | 60                                       |
| ms022                      | 376                                              | 15                                                 | 8                                              | 274                                            | GCCGAGCAGCGGCAG              | GAAGCCGCTGAGGATCAC   | GCCTGTACAACGGCCTCTAC  | 60                                       |
| ms024                      | 388                                              | 24                                                 | 8                                              | 299                                            | GGCCAGGGCCAGCACCAGCAGC<br>CG | CTGAGCCACAGCCAGAGC   | CCGCGCCGTATTCTCACC    | 60                                       |
| ms026                      | 435                                              | 12                                                 | 8                                              | 200                                            | GCCACGGCCTCG                 | AGGCTGGCGCAGGGGATG   | AGCAACGCGCGAAGATCG    | 60                                       |
| ms027                      | 461                                              | 11                                                 | 8                                              | 200                                            | CGGCGGCCCGG                  | CTCGGTGCATTGCTCGAC   | ATGTGCTGGGCATAGAGGAA  | 60                                       |
| ms028                      | 622                                              | 15                                                 | 8                                              | 244                                            | CAGCCCCAGCCAGCC              | TCAAAAAGTGAGGCCGTACA | CGCCTGGAACCTGTACAACTA | 60                                       |
| ms029                      | 622                                              | 12                                                 | 10                                             | 253                                            | CAGCAGCGCCGG                 | GTGTACTGGGCGAAACTCG  | GCAGCTACCGTTTCGTCAC   | 60                                       |
| ms030                      | 658                                              | 12                                                 | 8                                              | 203                                            | CGGCGGCCTGCT                 | AGATGCTCTGGCCCGCTAC  | CAGATAGCCGAGCAACTGAA  | 51                                       |
| ms032                      | 758                                              | 18                                                 | 8                                              | 308                                            | CTGGAGGCCGGCACCCGG           | ACTACGACCTGCCGATCAAG | CAGGACATTGGGTCTGCTG   | 63,9                                     |
| ms033                      | 775                                              | 10                                                 | 10                                             | 220                                            | AGCAGCGCCG                   | AGGACGGCGAGGAAGACT   | CCCTTACCGAGCTACACCTG  | 60                                       |
| ms034                      | 810                                              | 18                                                 | 8                                              | 254                                            | CGACGGCGCTCTGCACCAGGT        | CGAGGTACAGGCCTTCGAC  | GGAGGAGCTCCATGAAACAG  | 60                                       |
| ms035                      | 819                                              | 15                                                 | 7                                              | 245                                            | GCACGTCGGCCAGCG              | CCAGCACTTGCTCGATCACT | CGTCACCTGGAGGCTGTACT  | 60                                       |
| ms036                      | 825                                              | 12                                                 | 7                                              | 237                                            | GGCGGCGCCGAG                 | CTGATCCACCTGGCCAAC   | TCACCCTGGATCCACACC    | 60                                       |
| ms037                      | 880                                              | 15                                                 | 8                                              | 242                                            | GCTCGGCCTGCCGCT              | CCTCGGTCGCACGCAACT   | ATCAGGCCACCTCCTGGAC   | 60                                       |
| ms038                      | 1055                                             | 24                                                 | 7                                              | 326                                            | GCCAAGAAGAGCGCCGAGGACG<br>AG | CGATGAAGCCAAGAAAGCTG | GGTCGTATCCGAAAGCAACT  | 60                                       |
| ms039                      | 1140                                             | 10                                                 | 7                                              | 207                                            | TGGCCGGCGC                   | GACCCTTGGCGAGGACTT   | GTCTTGCCGTGCAGGCTCT   | 60                                       |
| ms040                      | 1160                                             | 15                                                 | 9                                              | 302                                            | CGCCGAACACGGCGG              | GCTTGAGGGACTGGCTCATA | CATGCAGTACGGCGTGAT    | 60                                       |
| ms042                      | 1196                                             | 11                                                 | 10                                             | 220                                            | CGCTCGGCCGCG                 | CTTTTCCGGTAGCAAGGTGT | CTTGAGCGGGTTGATCGT    | 60                                       |
| ms043                      | 1349                                             | 21                                                 | 7                                              | 275                                            | GCGCTGGCCGGCACGCTCGGC        | GCTGACATCGGTGCATGA   | CGACCAGCTTCAGGTAATCC  | 57                                       |
| ms044                      | 1379                                             | 13                                                 | 7                                              | 212                                            | GCCGCGGCGGAC                 | AGTTGGCGAACCAGGGCAAG | CAGGCCGAGCAGGTCGAG    | 64,7                                     |
| ms045                      | 1428                                             | 9                                                  | 8                                              | 185                                            | CAGGACATG                    | CTCACCAAGTACGAGCACCA | TGCGCTTACTCCTGGGTACT  | 60                                       |
| ms046                      | 1457                                             | 12                                                 | 9                                              | 205                                            | GGCATCGCCAGC                 | TGAGCGGTTCGTCACTCGAC | CATCCGGCTGGCCGTTCC    | 60                                       |

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus              | Amorce gauche        | Amorce droite         | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------|----------------------|-----------------------|------------------------------------------|
| ms048                      | 1494                                             | 15                                                 | 7                                              | 207                                            | TCGGCCAGCTCGATG              | GATGTTGTCGTGGCTGAACA | CAGCGGATCAACCTCTACG   | 60                                       |
| ms049                      | 1574                                             | 10                                                 | 8                                              | 198                                            | GCGCCGCGG                    | GACATGCGTCGCTACCTGTT | AGGCGAGCAGGAAGATCAG   | 60                                       |
| ms050                      | 1579                                             | 21                                                 | 8                                              | 306                                            | GCTCGGCCTGCTGCTGACCCT        | ACTGAGCCTGCTGATGCTG  | ACGAGGAACCCGATGAGCTA  | 60                                       |
| ms051                      | 1593                                             | 18                                                 | 8                                              | 234                                            | GCCGCTGCTCGACGACCC           | GTGCTCGAGGAGCAGGTC   | GAACAGCAGGCACTCGAAG   | 65                                       |
| ms052                      | 1624                                             | 12                                                 | 22                                             | 366                                            | CAGGCCAGCAGC                 | GGCCAGGCGCAGGTACAG   | ATCGGCGAGATCATCTTCCT  | 65                                       |
| ms053                      | 1637                                             | 24                                                 | 7                                              | 262                                            | GGCGATGCCCACGCCGAACATC<br>CC | GTGGGAAGAAACGCACGAT  | GAGGAAATCGCCTTCCTGAT  | 60                                       |
| ms054                      | 1688                                             | 9                                                  | 14                                             | 246                                            | GATGCAGTC                    | AGCCCTTTCGGGTAGTTCAT | ACAAGGACACCCTGATCGTC  | 60                                       |
| ms055                      | 1702                                             | 15                                                 | 8                                              | 227                                            | CGGCCAGGGGCAGGT              | CTGTAGGCCTCGACCAGCTT | CTGACCGTCACGCAGATG    | 60                                       |
| ms056                      | 1706                                             | 12                                                 | 14                                             | 271                                            | CGAGCAGGCTGG                 | GTAGCTGTTGGCCTGGAAGC | CTACAAGCGCCTGGTCAAG   | 60                                       |
| ms058                      | 1737                                             | 9                                                  | 7                                              | 170                                            | GCCGGCGCC                    | AGCTGACGCTGGAGAAGAAC | CGGTTCGACTTGGACCAG    | 60                                       |
| ms059                      | 1812                                             | 24                                                 | 8                                              | 313                                            | GGCCGAAGGCGAGCGCCAGCG<br>CCA | GTCCTCGACACCGCCTGT   | GGCCCTGGCCAATTGCTG    | 60                                       |
| ms060                      | 1826                                             | 12                                                 | 9                                              | 236                                            | GCCAGGCGCCAGC                | GAGGCAGAGCGACAGCAG   | CGGGATGAAGTTGTCCGATA  | 60                                       |
| ms062                      | 1859                                             | 12                                                 | 11                                             | 223                                            | GGTGCTGGCGCC                 | ATCCCGAGCGACTCGAAC   | CTGCGCCACATAGTCGTAAG  | 60                                       |
| ms063                      | 1878                                             | 9                                                  | 12                                             | 242                                            | GCTGGTGGC                    | GGCAATGGCTTCTTCTATGG | ACAGCAGGGTCGAACACAG   | 60                                       |
| ms064                      | 1919                                             | 12                                                 | 8                                              | 206                                            | GCCAAGCTGCTG                 | CTTCATCCCCAACCTGCTC  | CGAACCAGTAGACGATCTTGC | 60                                       |
| ms065                      | 1998                                             | 12                                                 | 8                                              | 218                                            | GCAGCCGACCGC                 | GCCCATGAACACCACTTTCT | GCCTGCTGGTGGAACTGG    | 60                                       |
| ms066                      | 2014                                             | 12                                                 | 20                                             | 356                                            | AGGCGCCGAGGC                 | GGCGAACATCAGCAGCAT   | GTACGCACCTGGCTGAAAG   | 60                                       |
| ms067                      | 2026                                             | 18                                                 | 7                                              | 246                                            | GGCGCGCTGGTGCGACCT           | CCAGGGCTTCTACGAACG   | GCCTCGTCCACCAGTACC    | 60                                       |
| ms069                      | 2080                                             | 12                                                 | 8                                              | 209                                            | GTCGCAGAGGCC                 | GACCAGCACCAGCGGAGT   | AAGACGCCATTGGAGAAGC   | 60                                       |
| ms070                      | 2149                                             | 12                                                 | 7                                              | 202                                            | CGAGGCGCTCGG                 | ATCAAGTCGCGCTTCGTC   | GCACTTCGACGCTGACCT    | 60                                       |
| ms071                      | 2166                                             | 15                                                 | 40                                             | 696                                            | CAGGTCGGCGTCGGC              | AATCCTTGCAACCCTGCAT  | CGGAGTATCCCGATGAAGAC  | 60                                       |
| ms072                      | 2197                                             | 12                                                 | 12                                             | 223                                            | CCGGCGGCTTCG                 | GGTAGGTGCATTTGGCACTC | ACTCGATCCTCGACCTGGAC  | 60                                       |
| ms073                      | 2245                                             | 12                                                 | 7                                              | 186                                            | GAGGGCCGGCTG                 | GACGCCTCGGCGATTCTC   | CAGCGGGTAGATGCCACT    | 61,3                                     |
| ms075                      | 2248                                             | 14                                                 | 9                                              | 251                                            | CAGCAGGCGCGCAGC              | GACGCTGAGGATCACGATG  | TCCTGGCCATCTACTTCCAG  | 60                                       |

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus               | Amorce gauche        | Amorce droite         | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------|----------------------|-----------------------|------------------------------------------|
| ms076                      | 2248                                             | 12                                                 | 19                                             | 340                                            | GCGCCGCCGAGC                  | GGGACGGAAAGGTAAAGTCC | CCTGGCGATCTGGAGCAT    | 60                                       |
| ms078                      | 2303                                             | 14                                                 | 8                                              | 236                                            | GGCCGGCGCGCTGCT               | ACGGTGGAACTGGTGGTG   | AGCAACAGGGCGAAGCTC    | 51                                       |
| ms079                      | 2309                                             | 12                                                 | 19                                             | 375                                            | CGGCTGCCTGCG                  | AGCTTGCCGACTATGACCTG | GTAGTCCACCGCGCAGAC    | 60                                       |
| ms080                      | 2371                                             | 12                                                 | 10                                             | 211                                            | CTGCAGCGCGGC                  | ATGAGCGAACCGATGTCC   | GGTCGCTCTGCTCCAGTTC   | 60                                       |
| ms081                      | 2374                                             | 19                                                 | 7                                              | 281                                            | CGGCGGCCAGCAGGTAGC            | GCCATCAGCGACCAGTTG   | CTCACCTTCAGCCTGGTGAC  | 60                                       |
| ms082                      | 2475                                             | 13                                                 | 10                                             | 254                                            | GCCACCGCGGGGC                 | CCGGAGAAACCGAAGGAAG  | GGTCAGGTAGGCATCGAGGT  | 60                                       |
| ms083                      | 2492                                             | 18                                                 | 7                                              | 282                                            | CCGGCCTGCGCCTGGCG             | GGAGCATCCGATGAAGAAAG | CGGTCGAGGTAGTCGATGTC  | 60                                       |
| ms085                      | 2533                                             | 11                                                 | 12                                             | 248                                            | CGGCGGCGCGG                   | GATACTGGATCGCCAGCAG  | ACTGAGCCTGGGGCTGTT    | 60                                       |
| ms086                      | 2544                                             | 12                                                 | 7                                              | 188                                            | GCGCCAGGCCGC                  | CGAACAGATGGTGGAGTACG | CGATCCCCAGTACGACGAAT  | 60                                       |
| ms087                      | 2546                                             | 10                                                 | 8                                              | 187                                            | CGCGGCTCGC                    | GGATATCGGCGAAGTCGAG  | ACCGCATCCTGCTGCTCT    | 60                                       |
| ms089                      | 2552                                             | 27                                                 | 12                                             | 428                                            | CCGAGCAGCCAGCGCCAGCCGG<br>CAG | CGACGATCACCAGCAATACC | TGCTGATCTTCTTCGTCTGC  | 61,3                                     |
| ms090                      | 2553                                             | 12                                                 | 13                                             | 269                                            | GCCGCCAGCGCT                  | GAATGCCGACGCAGTCCT   | CTCCGTGCCCTTGCTCTAC   | 60                                       |
| ms091                      | 2559                                             | 9                                                  | 8                                              | 181                                            | GGCGACGCG                     | GGCCACGTAGCCGAGTTC   | GAGCATCACCAAGAACGACA  | 51                                       |
| ms092                      | 2566                                             | 12                                                 | 11                                             | 235                                            | CGCCATCGACGC                  | CGTCATCCTGGACAACGTG  | GACCTGCTGGATGGTGTAGG  | 60                                       |
| ms093                      | 2587                                             | 10                                                 | 9                                              | 182                                            | CGCCGCGCAG                    | CATGCACGGATTGTTCCTC  | ATGGCTTCCAGCCAGTCC    | 59,3                                     |
| ms094                      | 2597                                             | 12                                                 | 7                                              | 199                                            | GCCTGCCCGGCC                  | GTGGTGGTCCTCGAATGC   | GGTGTACTGGAGATCGAGCAG | 60                                       |
| ms095                      | 2625                                             | 24                                                 | 15                                             | 470                                            | GGCGGCAACCTGACCATCAAGG<br>CC  | ACCGTCACCCTGGAGAAAG  | CGCTTCTCCTCAGTTGACCT  | 60                                       |
| ms096                      | 2630                                             | 15                                                 | 8                                              | 223                                            | GCGCCAGCGCCATGC               | CCACCCCTGCAACTGATT   | CAAGGTCCAGCAGGACAACT  | 60                                       |
| ms097                      | 2635                                             | 21                                                 | 7                                              | 273                                            | GCTGGGCGAGGATCGCCGCGA         | CGAAGGACTCGACAGGAGAA | GGTCTCGAGGGGATGCTC    | 60                                       |
| ms098                      | 2727                                             | 12                                                 | 8                                              | 192                                            | CAGCGCCGGGCG                  | GACTGGATCGCATCGTTGA  | GGTACCCTCCGAGGTGCT    | 60                                       |
| ms099                      | 2735                                             | 12                                                 | 16                                             | 313                                            | CGGCGGCCTGCG                  | GTCCGAGTTGGCGGTAGTAG | AGCGGCGTCGAGGTACTG    | 60                                       |
| ms100                      | 2755                                             | 12                                                 | 7                                              | 192                                            | CGAGTCCGGCGC                  | TGGTGGAGTTCCATCCTTTC | GGAACTCGTAGCTGGGATGA  | 60                                       |
| ms101                      | 2758                                             | 12                                                 | 9                                              | 238                                            | CGGCAGCACCGC                  | ACCTGACCCAGGTGACCA   | TCGTAGCTCAGCCAACTGC   | 60                                       |

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus       | Amorce gauche         | Amorce droite        | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|-----------------------|----------------------|------------------------------------------|
| ms103                      | 2790                                             | 11                                                 | 21                                             | 381                                            | CTGCGGCGCGC           | GATGGTTACCGCGATGTTCT  | AGGTGCCGTCGGACTCGT   | 60                                       |
| ms104                      | 2818                                             | 12                                                 | 9                                              | 232                                            | TGCTGGCCGCGC          | CCTGGTTGCCGGTGTACTA   | ATCAACGCCACCACAGT    | 60                                       |
| ms105                      | 2848                                             | 9                                                  | 8                                              | 241                                            | CGATCAGCG             | ATCATGATCGGCCGGAAG    | ACCCGCTGACCATCCTCT   | 60                                       |
| ms106                      | 2866                                             | 21                                                 | 8                                              | 311                                            | GCAGGCCCAGCACGGCGGCCA | GGTCCAGGTCTTGGGTCTG   | GAGCCATCGGCGGAACTG   | 60                                       |
| ms107                      | 2866                                             | 22                                                 | 13                                             | 409                                            | GCGCCAGCGCCAGCGCCGCCA | AGAGCCAGGCGTTGATCC    | CTGCTGCATGGCTGGTTC   | 60                                       |
| ms108                      | 2886                                             | 12                                                 | 7                                              | 207                                            | GCGGCGAGCACC          | ACATCTTGTTCAGCGTCGAG  | GCGACTTCAAGGACGTCAAC | 60                                       |
| ms109                      | 2887                                             | 15                                                 | 7                                              | 234                                            | GCGGCCTCGGCCTG        | ATTGCGTCCGAGGACCTT    | GCGAAGATGCTGGTGGAG   | 60                                       |
| ms110                      | 2890                                             | 12                                                 | 11                                             | 233                                            | CCCTGCTCGCCG          | GTAGGGTTTGCCGAGCAG    | CGCGATTGAGAGGATGGAG  | 60                                       |
| ms111                      | 2979                                             | 15                                                 | 8                                              | 214                                            | GCGCCGCTCCCGCCA       | GAACAACCCGCACATGAAC   | GGCGTTTGAAAGGCAAGC   | 60                                       |
| ms112                      | 3011                                             | 15                                                 | 8                                              | 232                                            | CCATGCCAGCAGCG        | CGAGATTGAGCAGAGCGAAA  | CTGCTCTGGTCTCTGCACCT | 60                                       |
| ms113                      | 3011                                             | 12                                                 | 7                                              | 198                                            | GCAGCGCCAGCA          | CGGGTAATTGCGCTTCTG    | CAGACCTGGACCGGCGTA   | 60                                       |
| ms114                      | 3055                                             | 12                                                 | 26                                             | 434                                            | CGCGCTGCTCGG          | CTCAACGCCCTCTCCTTCTT  | AAATAGAGGTTGCGCAGCAG | 60                                       |
| ms115                      | 3143                                             | 12                                                 | 7                                              | 223                                            | CCCGCCGCCTGC          | GGAAACCGTCTCATGACCTAA | GAGCGTGTCGAGGTAGGC   | 60                                       |
| ms116                      | 3170                                             | 12                                                 | 21                                             | 384                                            | GCAGCAGGAACA          | AGGCCATCATGCTCAAGCTA  | GCTGCTGGTCCAGTTGCT   | 60                                       |
| ms117                      | 3189                                             | 15                                                 | 7                                              | 207                                            | GCCCGCGTCGACCAG       | GCCGGCAGCCTGCAGAAC    | GCGGAGTTCGCAGTAGGAGA | 60                                       |
| ms118                      | 3192                                             | 12                                                 | 9                                              | 219                                            | GCCGCCTGCGGC          | CGAAACGCTGCTCGATCT    | ATCTTGGCGTCCAGGTAGC  | 60                                       |
| ms119                      | 3194                                             | 9                                                  | 12                                             | 216                                            | CGCTCGCCG             | CAGGTTCTTCGCCGCAAC    | AGGCGCTGGACCTGGAGT   | 60                                       |
| ms120                      | 3210                                             | 15                                                 | 40                                             | 698                                            | CCTGCTCGCCTGCGC       | GCGAAACCCTGCTCCTCTAC  | CAACAACTGGCCGAGTCC   | 60                                       |
| ms121                      | 3212                                             | 18                                                 | 9                                              | 306                                            | CGGCCTGCTAGGCGGCGC    | CTCTTCGCCGGTCTCCAG    | CAGCGGGCTGCTGTTGAG   | 60                                       |
| ms122                      | 3268                                             | 12                                                 | 11                                             | 238                                            | CCGCCAGCCGGT          | CACAAGGGCCTGTTCGAC    | GTTCGTCGAGGATCAGCAG  | 60                                       |
| ms123                      | 3270                                             | 12                                                 | 20                                             | 361                                            | CTGCGTCGGCGC          | GAGCACATCGTCTGGCTGAT  | CGAGGAACAGCAGCAGGT   | 60                                       |
| ms124                      | 3292                                             | 12                                                 | 7                                              | 196                                            | CCGCGGCGAGCA          | ATACCGAAGCCGATCGAAGT  | GGTTGTTCCTGGTGATCCTC | 60                                       |
| ms125                      | 3341                                             | 9                                                  | 59                                             | 639                                            | GCCAGCCAGC            | ACAATGCCGGCAGTAGCA    | CCTGGAGCTACGGGTTGAT  | 60                                       |
| ms126                      | 3342                                             | 17                                                 | 15                                             | 376                                            | GCGCCAGCTCAGGCGCGCC   | GTCCTGGAACATTCGCCACT  | CTTCCGGCTGGAGGAGGT   | 60                                       |

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus                                                                  | Amorce gauche         | Amorce droite         | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------------------------|
| ms128                      | 3496                                             | 21                                                 | 11                                             | 358                                            | CGGCAGGCGCCGGAGGCTTCG                                                            | GCTGCTCTGCCGCCTGTA    | AGTTGGCCAAGCTGCAAG    | 60                                       |
| ms129                      | 3497                                             | 10                                                 | 8                                              | 224                                            | GCGGGCGCTT                                                                       | GAAACGGTGCGATAGGTGTC  | CCCTACCTGAACTTCCTGGTC | 60                                       |
| ms130                      | 3569                                             | 15                                                 | 9                                              | 272                                            | GCCGCCGGCTTGCGG                                                                  | GCGACCATTAGACACCGATT  | AGCAGGGCACTCCGGTTG    | 60                                       |
| ms131                      | 3589                                             | 12                                                 | 8                                              | 214                                            | CCTCCGCGACGG                                                                     | TGAATTCTACAGGGTGGAACG | GAGCAGGGCGACGAGTCC    | 60                                       |
| ms132                      | 3609                                             | 12                                                 | 10                                             | 239                                            | CGCCGCGCCAGC                                                                     | GGCCAACTGGTGAACTGG    | AGGAACAGGCTGTGGAAGC   | 60                                       |
| ms133                      | 3675                                             | 12                                                 | 13                                             | 243                                            | GGCCGGCGGCTC                                                                     | ATAGGCGAATGGCGACAG    | CTGGAGCTGGCTCACTACG   | 60                                       |
| ms134                      | 3701                                             | 12                                                 | 10                                             | 245                                            | CTGGGCGCGGCG                                                                     | GGTGCAGAGCTTCCTGCT    | GTGCAGGGGGACTGAACG    | 60                                       |
| ms135                      | 3717                                             | 13                                                 | 11                                             | 228                                            | CGCGCGACCCCGC                                                                    | CCTCTACGCCAACGAACAAC  | CTGAACAGGCCGGGGATA    | 60                                       |
| ms136                      | 3723                                             | 12                                                 | 12                                             | 291                                            | CGCCCGAGCAGA                                                                     | ATCGCCACCGTCAGGTAG    | TGGTACTGATGGCAGTTTCG  | 60                                       |
| ms139                      | 3844                                             | 11                                                 | 8                                              | 191                                            | GCCGCCAGCGC                                                                      | ACCCCGTTGATGACCTACTG  | AATCGGATTGATGCAGGGTA  | 60                                       |
| ms141                      | 3864                                             | 9                                                  | 10                                             | 215                                            | CTCGGCGGC                                                                        | CGGCTTCCTGATCTACCTGA  | CTACCCGCCGTAGAGCTTC   | 60                                       |
| ms143                      | 3910                                             | 12                                                 | 10                                             | 307                                            | GCCGCCGCCGAG                                                                     | AAGAAGGCCGAGAAACAGTTG | CTTCGCAACGCTCGACCT    | 60                                       |
| ms145                      | 3956                                             | 9                                                  | 8                                              | 177                                            | CGGCGGCAG                                                                        | TCCGCCGTCGAAGTCAAT    | GAAAGCTCCACCGCGTAG    | 60                                       |
| ms146                      | 3975                                             | 11                                                 | 10                                             | 215                                            | GTGCCCGCCGC                                                                      | CTACAACCAGCCATTGCAGA  | CCAGCTCGGCTGGTAGAC    | 60                                       |
| ms147                      | 4013                                             | 12                                                 | 8                                              | 221                                            | CGGCCTGCTGAT                                                                     | TTCCTCGTCGAAGTGGTGAT  | CCAGGTAGGTCATCAGCTTG  | 60                                       |
| ms148                      | 4036                                             | 18                                                 | 7                                              | 243                                            | TTCGACCTGCTCGGCCTG                                                               | GAACCGAAGCCTGAAGATTG  | TCCACCAGATAGCGGATGTT  | 60                                       |
| ms149                      | 4106                                             | 12                                                 | 11                                             | 232                                            | CGGCCTGCTCGC                                                                     | CTGGACGAAGCCGAAGTC    | GTACCTCGAGGCGTTGCAG   | 60                                       |
| ms150                      | 4157                                             | 12                                                 | 7                                              | 212                                            | GCCGCTGGCGCC                                                                     | GTAGGCCTTGTAGGCGATCA  | GGCAGGAAATGTTGCAGAAC  | 60                                       |
| ms151                      | 4199                                             | 9                                                  | 18                                             | 297                                            | СТБСБССТБ                                                                        | ACCCTGGTCAACGTCAGC    | GTCCGCTGTCGTCCTGTT    | 60                                       |
| ms152                      | 4201                                             | 9                                                  | 8                                              | 218                                            | CCGCCAGTC                                                                        | TAATCGACCCCAGCTTATCC  | GGATGGTTATGGCCAGTGC   | 60                                       |
| ms153                      | 4221                                             | 22                                                 | 9                                              | 316                                            | GCCTGCGGCGCGCCTCCACGAC<br>CA                                                     | CGCATTCATGAAATGGTAGG  | GCTGCTGGTATTCGACAATG  | 60                                       |
| ms155                      | 4495                                             | 69                                                 | 11                                             | 876                                            | GCCGACGGCGCCCGCTACCACG<br>GCGGCTTCAGCAGGGCCTGCTG<br>CACGGCCAGGGCCAGCTGGACG<br>GC | CAGGTCTCTCTCGCTCTGCT  | CCCAGAGTCCCTGCTCAC    | 60                                       |

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus             | Amorce gauche        | Amorce droite         | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------|----------------------|-----------------------|------------------------------------------|
| ms157                      | 4620                                             | 9                                                  | 13                                             | 237                                            | CGACTGCAT                   | GACAAGGACACCCTGATCGT | GCGTTCATAGCCCATCTTGT  | 60                                       |
| ms158                      | 4688                                             | 12                                                 | 8                                              | 176                                            | CGCCCTGGCCGA                | CCATCCACAACGTGCATC   | AGACGATCGCCTGGTTCAC   | 60                                       |
| ms159                      | 4728                                             | 11                                                 | 19                                             | 347                                            | GCCGGCGCAGC                 | GAACAGCCCGAGGATCAC   | GTTGGTCGAGGCCTGGTT    | 60                                       |
| ms161                      | 4730                                             | 9                                                  | 17                                             | 247                                            | CGGCGGCGC                   | GTCACGAGGCTTGCTCCAG  | AGCGCCCAGCTCTGGTAT    | 60                                       |
| ms163                      | 4740                                             | 18                                                 | 13                                             | 359                                            | GGCCAGCAGGTCGAGCCA          | ACGGAAGACAGCTCGAACG  | GACCTCAGATGCTTGCCCTA  | 60                                       |
| ms164                      | 4746                                             | 12                                                 | 8                                              | 211                                            | CTGCTGCGGGGC                | TCGAAGCTGTCGTAGTCCTG | GATCGCTACACCACCGAGAT  | 60                                       |
| ms165                      | 4800                                             | 12                                                 | 10                                             | 219                                            | AGGCGCGGCGCC                | CCGGTGATCAGGCTGAAATA | CGTCTCTACCTGCGTCGTTA  | 60                                       |
| ms166                      | 4808                                             | 12                                                 | 13                                             | 281                                            | CGCGGCAGCGCG                | ATCGAGGAAATCCCGAACAC | GACCTGTTCGACCAGTACCAG | 60                                       |
| ms167                      | 4811                                             | 12                                                 | 9                                              | 198                                            | TCGGCCTGGCCC                | GCCCTCTGCCAGTTCCTT   | CTTCAGGCCATGCAGCAC    | 60                                       |
| ms168                      | 4879                                             | 21                                                 | 8                                              | 263                                            | CGCCTGCTGCGCGCTGCGCA        | GACGTGTTCATCCTGCTCAA | GCTGACCCTGACCTCGAA    | 60                                       |
| ms169                      | 4898                                             | 9                                                  | 10                                             | 199                                            | GCGCCCGCC                   | GAATCCGCCATGACTCGTAT | AATTCTTGATCACCGCCTTG  | 53,3                                     |
| ms171                      | 5045                                             | 9                                                  | 10                                             | 204                                            | CGCCGAACC                   | GACGACGTCCTGGTGATGTA | CTTGTGGAAGGCGCAACC    | 60                                       |
| ms174                      | 5282                                             | 15                                                 | 9                                              | 240                                            | CGGCGCCGACTTCCG             | GAAGGCTTCAACCGACAGAA | CGCAACGGGAAATACGTACC  | 60                                       |
| ms175                      | 5394                                             | 12                                                 | 7                                              | 246                                            | GCCGAGCGCCTC                | CCCGCGCAGGGCTTCCTC   | ACCACCCTGCGCCTGCTC    | 60                                       |
| ms176                      | 5411                                             | 12                                                 | 8                                              | 226                                            | GCCCTGCCCTG                 | GCCTGTACACCCTGATGGTC | CCGAAGGTTGCATCAGTTG   | 60                                       |
| ms177                      | 5440                                             | 15                                                 | 9                                              | 226                                            | CGGCTCGATCCGCGG             | CATGTTCGGCTTCTTCGAG  | CCGCTGGCGCTGATATAGA   | 60                                       |
| ms178                      | 5444                                             | 9                                                  | 16                                             | 225                                            | GCTGCCGCT                   | AACGGTGTACTCCTGCTGCT | ATTGGCCAGGTGGCAGGTA   | 60                                       |
| ms179                      | 5460                                             | 15                                                 | 9                                              | 272                                            | CGACGCCAGCGGCCG             | AGAAGGAGCAATGAGGACCA | CCGATGTACAGGGTCAGGTC  | 60                                       |
| ms180                      | 5463                                             | 14                                                 | 7                                              | 226                                            | CGGCGCGCTGCTGG              | AGATCGACACCGACCTGCT  | GAGGGGACAAGTCCATCTCA  | 60                                       |
| ms181                      | 5468                                             | 18                                                 | 17                                             | 511                                            | CGCTGCTCGGCGCCTGG           | CAACTGCACGGCCTGTATC  | GCGACAGTCTGGTTCAGGAT  | 60                                       |
| ms182                      | 5485                                             | 24                                                 | 7                                              | 314                                            | GTCGCGCACGCAGCGCTGCGCA<br>G | GTTGTTCCGGGGTCAGTTC  | GTCGCAGCGGGAAGTCTC    | 60                                       |
| ms183                      | 5489                                             | 18                                                 | 7                                              | 251                                            | CTGCTCGCCGCCCTCGCC          | ACTTCGCAACGACAAGGAAC | CATGGTGCCGACGAAGGT    | 60                                       |
| ms184                      | 5489                                             | 12                                                 | 10                                             | 241                                            | CTCGCCGTGGCC                | CACCTTCGTCGGCACCAT   | GAAACCGAGCGCGTACAG    | 60                                       |
| ms185                      | 5584                                             | 12                                                 | 8                                              | 206                                            | GCCGACCACGCC                | ATCTTTTCCAGGACGAACGA | CTGGGGCACCACTTCCTT    | 60                                       |

| Nom de<br>la<br>répétition | Position<br>dans le<br>génome<br>PAO1<br>(en kb) | L: taille<br>du<br>motif<br>souche<br>PAO1<br>(pb) | N:<br>nombre<br>de<br>motifs<br>souche<br>PAO1 | Taille<br>du<br>produit<br>PCR<br>PAO1<br>(pb) | Motif consensus    | Amorce gauche        | Amorce droite        | T°<br>hybridation<br>des amorces<br>(°C) |
|----------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------|----------------------|----------------------|------------------------------------------|
| ms186                      | 5588                                             | 12                                                 | 13                                             | 262                                            | CGCCTGCAGCGG       | GGTATAGGCCAGTTGGGTCA | GCGCAAGTTCAACGACTTCT | 53,3                                     |
| ms187                      | 5602                                             | 12                                                 | 11                                             | 264                                            | CGGCCAGCGCGG       | CTATCCGATCTCCTGCATCC | ATCTCCCGTTGCAGGTTG   | 60                                       |
| ms188                      | 5635                                             | 10                                                 | 8                                              | 189                                            | GCCAGGTCGC         | CCGAACTGCTCGCACTGG   | CGCCGACGAGGACGAACT   | 60                                       |
| ms190                      | 5758                                             | 18                                                 | 27                                             | 588                                            | GCGCCGACCAGCCGCCAG | CAGGCCATAAGGCACGAAG  | CAGGGTGGGGTATTCGACTC | 60                                       |
| ms191                      | 5791                                             | 15                                                 | 10                                             | 275                                            | CGCCGGCGGCTGGT     | GCCTGGACCTGGCGAAGAT  | CAGCGGCTTGCCGGCTTC   | 60                                       |
| ms192                      | 5836                                             | 12                                                 | 21                                             | 399                                            | GGCGGCGCCATC       | CTCTCCTGGTAATCGCGTTC | ATCAACGATGCTTGTGCTTG | 60                                       |
| ms193                      | 5873                                             | 12                                                 | 10                                             | 273                                            | AGGCCGGCAGCG       | CTCGCTGGTCATCTCGAAG  | GCCTACCTGATCCGTTTCAT | 60                                       |
| ms195                      | 5960                                             | 11                                                 | 12                                             | 249                                            | CGGCCTGGCCGG       | ATCCGCGGTCTCAAGGAC   | AGCCGCTCGGCAATTGAG   | 61,3                                     |
| ms196                      | 5990                                             | 18                                                 | 7                                              | 260                                            | CCTGGTCAGCGCCCGCGA | CAACCACAGTTCCGGAAAGA | CGCTGGTAGGGTCTTTCTTC | 53,3                                     |
| ms197                      | 6020                                             | 9                                                  | 36                                             | 441                                            | CGCAGCCGC          | ACCAGGCGTCGATATTGC   | CCGGAGTCGAGTACCACAAG | 60                                       |
| ms198                      | 6113                                             | 18                                                 | 14                                             | 371                                            | CCGCGCGCGCTGCGCAGG | CGTTCTCGAGCAACACCTG  | CACCTACGTTGCCGAGTTG  | 60                                       |
| ms199                      | 6130                                             | 15                                                 | 7                                              | 185                                            | CGCCGAGCAGCCAGC    | CTATCGGCCTGCTGGAAG   | CGTACCCGGCTCCTTTATCT | 60                                       |
| ms200                      | 6155                                             | 15                                                 | 8                                              | 208                                            | GCCGCGCTGATGCT     | CGTATTGCGCTTCAACACCT | GAGGCAGGCGAGGATCAG   | 60                                       |
| ms201                      | 6225                                             | 9                                                  | 13                                             | 240                                            | GCTGGGCGG          | TTGATGTCGCTGTCGTTGAG | GAAACCCAAGCCCAAACC   | 60                                       |

## ANNEXE 4:

122 répétitions en tandem polymorphes dans au moins deux des six génomes *S. aureus* comparés (tableau fourni par la page de comparaison de la base de données du laboratoire)

| nombre<br>d'allèles<br>dans les<br>6<br>souches | <b>Mu50</b><br>Position | L:<br>Longueur<br>totale du<br>minisatellite<br>(pb) | U:<br>taille<br>du<br>motif<br>(pb) | N :<br>nombre<br>de<br>copies | séquence<br>détectée<br>par le <b>TRF</b> | N315<br>Position     | L:   | U:  | N:  | TRF | Position<br><b>MW2</b> | L:  | U:  | N:   | TRF | Position<br>MRSA252 | L:   | U:  | N:   | TRF | Position<br>NCTC8325 | L:   | U:  | N:  | TRF | Position<br>MSSA476 | L:  | U:  | N:   | TRF |
|-------------------------------------------------|-------------------------|------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------------|----------------------|------|-----|-----|-----|------------------------|-----|-----|------|-----|---------------------|------|-----|------|-----|----------------------|------|-----|-----|-----|---------------------|-----|-----|------|-----|
| 5                                               | 1098012-<br>-1098170    | 159                                                  | 18                                  | 9                             | oui                                       | 1021633-<br>-1021791 | 159  | 18  | 9   | oui | 1023399<br>1023512     | 114 | 9   | 9,66 | oui | 1064018<br>1064221  | 204  | 9   | 19,7 | oui | 959425<br>959565     | 141  | 9   | 13  | oui | 1052122<br>1052253  | 132 | 9   | 11,2 | oui |
| 5                                               | 1866118-<br>-1866562    | 445                                                  | 159                                 | 3                             | oui                                       | 1788113-<br>-1788557 | 445  | 159 | 3   | oui | 1825797<br>1826247     | 451 | 159 | 3,24 | oui | 1897230<br>1897521  | 292  | 159 | 2,1  | oui | 1760294<br>1760897   | 604  | 159 | 4   | oui | 1805450<br>1805582  | 133 | ?   | ?    | non |
| 5                                               | 2511193-<br>-2511367    | 175                                                  | 61                                  | 2,9                           | oui                                       | 2440643-<br>-2440817 | 175  | 61  | 2,9 | oui | ?                      | 53  | ?   | ?    | non | 2543631<br>2545649  | 2019 | ?   | ?    | non | ?                    | 261  | ?   | ?   | non | ?                   | 114 | ?   | ?    | non |
| 5                                               | 636061<br>636666        | 606                                                  | 18                                  | 33,3                          | oui                                       | 611789<br>612394     | 606  | 18  | 33  | oui | 602378<br>602869       | 492 | 18  | 27,3 | oui | 622352<br>622777    | 426  | 18  | 22,8 | oui | 554474<br>554971     | 498  | 18  | 27  | oui | 601015<br>601560    | 546 | 18  | 30,3 | oui |
| 5                                               | 704561<br>704796        | 236                                                  | 67                                  | 3,5                           | oui                                       | 680287<br>680522     | 236  | 67  | 3,5 | oui | 675398<br>675899       | 502 | 133 | 3,78 | oui | 687428<br>687596    | 169  | ?   | ?    | non | 623744<br>624378     | 635  | 133 | 5   | oui | 674030<br>674398    | 369 | 133 | 2,78 | oui |
| 5                                               | 888858<br>889722        | 865                                                  | 18                                  | 48                            | oui                                       | 850133<br>851159     | 1027 | 18  | 61  | oui | 858671<br>859571       | 901 | 18  | 52,5 | oui | ?                   | ?    | ?   | ?    | non | 794658<br>795498     | 841  | 18  | 50  | oui | 842718<br>843564    | 847 | 18  | 49,5 | oui |
| 4                                               | 1000868-<br>-1000965    | 98                                                   | ?                                   | ?                             | non                                       | ?                    | ?    | ?   | ?   | non | 924472<br>924622       | 151 | 58  | 2,6  | oui | 956430<br>956560    | 131  | 56  | 2,3  | oui | 860386<br>860611     | 226  | 56  | 4   | oui | 908441<br>908591    | 151 | 58  | 2,6  | oui |
| 4                                               | 1291998-<br>-1292219    | 222                                                  | 64                                  | 4                             | oui                                       | 1215585-<br>-1215806 | 222  | 64  | 4   | oui | 1215471<br>1215628     | 158 | 64  | 3,04 | oui | 1257576<br>1257668  | 93   | 20  | 2,5  | oui | 1151427<br>1151456   | 30   | 20  | 2,5 | oui | ?                   | ?   | 20  | 2,5  | oui |
| 4                                               | 1729388-<br>-1729679    | 292                                                  | 56                                  | 5,1                           | oui                                       | 1652885-<br>-1653176 | 292  | 56  | 5,1 | oui | 1698498<br>1698675     | 178 | 59  | 3    | oui | 1763381<br>1763661  | 281  | 54  | 5,1  | oui | 1631653<br>1631711   | 59   | ?   | ?   | non | 1678150<br>1678327  | 178 | 59  | 3    | oui |
| 4                                               | 1757525-<br>-1757639    | 115                                                  | ?                                   | ?                             | non                                       | ?                    | 115  | ?   | ?   | non | 1726650<br>1726890     | 241 | 126 | 1,9  | oui | ?                   | 172  | ?   | ?    | non | ?                    | 46   | ?   | ?   | non | 1706302<br>1706542  | 241 | 126 | 1,9  | oui |
| 4                                               | 2152442-<br>-2152714    | 273                                                  | 6                                   | 48                            | oui                                       | 2075919-<br>-2076191 | 273  | 6   | 48  | oui | 2104534<br>2104818     | 285 | 39  | 7,84 | oui | 2180593<br>2180829  | 237  | 39  | 7,02 | oui | 2090361<br>2090645   | 285  | 39  | 8   | oui | 2083776<br>2083943  | 168 | 39  | 4,84 | oui |
| 4                                               | 2351355-<br>-2351474    | 120                                                  | 24                                  | 5                             | oui                                       | 2281762-<br>-2281881 | 120  | 24  | 5   | oui | 2300573<br>2300643     | 71  | 24  | 2,8  | oui | 2383917<br>2384011  | 95   | 24  | 3,7  | oui | 2293971<br>2294048   | 78   | 24  | 3,2 | oui | 2279678<br>2279748  | 71  | 24  | 2,8  | oui |
| 4                                               | 2561664-<br>-2561795    | 132                                                  | 56                                  | 2,4                           | oui                                       | 2490953-<br>-2491084 | 132  | 56  | 2,4 | oui | 2504456<br>2504567     | 112 | ?   | ?    | non | 2596190<br>2596265  | 76   | ?   | ?    | non | 2503207<br>2503262   | 56   | ?   | ?   | non | 2483624<br>2483735  | 112 | ?   | ?    | non |
| 4                                               | 2642053-<br>-2642330    | 278                                                  | 42                                  | 7                             | oui                                       | 2570943-<br>-2571220 | 278  | 42  | 7   | oui | 2580884<br>2581077     | 194 | 42  | 4,61 | oui | 2661066<br>2661217  | 152  | ?   | ?    | non | 2582156<br>2582361   | 206  | 42  | 4,7 | oui | 2560243<br>2560436  | 194 | 42  | 4,61 | oui |
| 4                                               | 631615<br>632142        | 528                                                  | 18                                  | 30,3                          | oui                                       | 607343<br>607870     | 528  | 18  | 30  | oui | 597926<br>598459       | 534 | 18  | 29,3 | oui | ?                   | ?    | ?   | ?    | non | 549902<br>550555     | 654  | 18  | 36  | oui | 596557<br>597096    | 540 | 18  | 29,3 | oui |
| 4                                               | 965164<br>965428        | 265                                                  | 43                                  | 6                             | oui                                       | 888833<br>889097     | 265  | 43  | 6   | oui | 890502<br>890552       | 51  | ?   | ?    | non | 922321<br>922500    | 180  | 43  | 4,18 | oui | 826375<br>826467     | 93   | 42  | 2,2 | oui | 874471<br>874521    | 51  | ?   | ?    | non |
| 3                                               | 1086975-<br>-1087029    | 55                                                   | 22                                  | 2,5                           | oui                                       | 1010596-<br>-1010650 | 55   | 22  | 2,5 | oui | 1010526<br>1010580     | 55  | 22  | 2,5  | oui | 1051143<br>1053033  | 1891 | ?   | ?    | non | 946612<br>948442     | 1831 | 22  | 2,5 | oui | ?                   | ?   | ?   | ?    | non |
| 3                                               | 1105143-                | 44                                                   | 18                                  | 2,4                           | oui                                       | 1028774-             | 44   | 18  | 2,4 | oui | 1030495                | 44  | 18  | 2,4  | oui | 1071205             | 53   | 9   | 5,2  | oui | 966548<br>966591     | 44   | 18  | 2,4 | oui | 1059236             | 26  | ?   | ?    | non |

| nombre<br>d'allèles<br>dans les<br>6<br>souches | <b>Mu50</b><br>Position | L:<br>Longueur<br>totale du<br>minisatellite<br>(pb) | U:<br>taille<br>du<br>motif<br>(pb) | N :<br>nombre<br>de<br>copies | séquence<br>détectée<br>par le <b>TRF</b> | N315<br>Position     | L:   | U:  | N:  | TRF | Position<br><b>MW2</b> | L:   | U:  | N:   | TRF | Position<br>MRSA252 | L:   | U:  | N:   | TRF | Position<br>NCTC8325 | Ľ    | U:  | N:  | TRF | Position<br>MSSA476 | L:   | U:  | N:   | TRF |
|-------------------------------------------------|-------------------------|------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------------|----------------------|------|-----|-----|-----|------------------------|------|-----|------|-----|---------------------|------|-----|------|-----|----------------------|------|-----|-----|-----|---------------------|------|-----|------|-----|
| 3                                               | 1116357-<br>-1116488    | 132                                                  | ?                                   | ?                             | non                                       | ?                    | ?    | ?   | ?   | non | 1041734<br>1041923     | 190  | 58  | 3,3  | oui | 1082254<br>1082498  | 245  | 58  | 4,3  | oui | ?                    | ?    | ?   | ?   | non | 1070457<br>1070646  | 190  | 58  | 3,3  | oui |
| 3                                               | 1132682-                | 386                                                  | 63                                  | 6,1                           | oui                                       | 1056313-<br>-1056698 | 386  | 63  | 6,1 | oui | ?                      | 71   | 9   | 9,11 | oui | 1098554<br>1098687  | 134  | 63  | 2,1  | oui | 994051<br>994184     | 134  | 63  | 2,1 | oui | 1086698<br>1086831  | 134  | 63  | 2,1  | oui |
| 3                                               | 1194184-                | 347                                                  | 134                                 | 2,7                           | oui                                       | 1117818-<br>-1118164 | 347  | 134 | 2,7 | oui | 1119272<br>1119421     | 150  | ?   | ?    | non | 1160092<br>1160176  | 85   | ?   | ?    | non | 1055411              | 86   | ?   | ?   | non | 1148058<br>1148207  | 150  | ?   | ?    | non |
| 3                                               | 1219058-                | 167                                                  | 55                                  | 3                             | oui                                       | 1142646-             | 167  | 55  | 3   | oui | 1142369<br>1142602     | 234  | ?   | ?    | non | ?                   | ?    | ?   | ?    | non | 1078520<br>1078640   | 121  | ?   | ?   | non | 1171155<br>1171275  | 121  | ?   | ?    | non |
| 3                                               | 122905<br>123156        | 252                                                  | 24                                  | 10,5                          | oui                                       | 122917<br>123168     | 252  | 24  | 11  | oui | 99820<br>100023        | 204  | 24  | 8,5  | oui | 124119<br>124394    | 276  | 24  | 11,5 | oui | 73719<br>73994       | 276  | 24  | 11  | oui | 98526<br>98729      | 204  | 24  | 8,5  | oui |
| 3                                               | 123159<br>123840        | 682                                                  | 174                                 | 3,9                           | oui                                       | 123171<br>123852     | 682  | 174 | 3,9 | oui | 100026<br>100881       | 856  | 174 | 4,9  | oui | 124397<br>125252    | 856  | 174 | 4,9  | oui | 74021<br>74852       | 832  | 174 | 4,9 | oui | 98732<br>99587      | 856  | 174 | 4,9  | oui |
| 3                                               | 1425109-<br>-1425340    | 232                                                  | 58                                  | 4,1                           | oui                                       | 1348687-<br>-1348918 | 232  | 58  | 4,1 | oui | 1350816<br>1350933     | 118  | ?   | ?    | non | ?                   | ?    | ?   | ?    | non | 1286639<br>1286814   | 176  | 58  | 4   | oui | 1379312<br>1379487  | 176  | 58  | 3,63 | oui |
| 3                                               | 1695062-<br>-1695135    | 74                                                   | ?                                   | ?                             | non                                       | ?                    | 74   | ?   | ?   | non | 1664175<br>1664305     | 131  | 57  | 2,3  | oui | ?                   | 16   | ?   | ?    | non | ?                    | 73   | ?   | ?   | non | ?                   | 74   | ?   | ?    | non |
| 3                                               | 1985673-<br>-1985771    | 99                                                   | ?                                   | ?                             | non                                       | ?                    | ?    | ?   | ?   | non | 1949784<br>1949940     | 157  | 60  | 2,61 | oui | ?                   | ?    | 58  | 2,2  | oui | 1890158<br>1890518   | 361  | 117 | 3,1 | oui | 1929118<br>1929274  | 157  | 60  | 2,61 | oui |
| 3                                               | 2039328-<br>-2039458    | 131                                                  | 56                                  | 2,3                           | oui                                       | 1961441-<br>-1961571 | 131  | 56  | 2,3 | oui | 2002095<br>2002111     | 17   | ?   | ?    | non | 2078902<br>2079089  | 188  | ?   | ?    | non | 1987680<br>1987811   | 132  | 58  | 2,3 | oui | 1981342<br>1981358  | 17   | ?   | ?    | non |
| 3                                               | 2185031-<br>-2185605    | 575                                                  | 256                                 | 2,2                           | oui                                       | 2108506-<br>-2109080 | 575  | 256 | 2,2 | oui | 2136921<br>2137239     | 319  | ?   | ?    | non | ?                   | ?    | ?   | ?    | non | 2122742<br>2122804   | 63   | ?   | ?   | non | ?                   | ?    | ?   | ?    | non |
| 3                                               | 2294935-<br>-2295172    | 238                                                  | 9                                   | 29                            | oui                                       | 2225122-<br>-2225359 | 238  | 9   | 29  | oui | 2245083<br>2245380     | 298  | 9   | 33,1 | oui | 2324595<br>2324892  | 298  | 9   | 33,3 | oui | 2232991<br>2233279   | 289  | 18  | 7,6 | oui | 2224188<br>2224485  | 298  | 9   | 33,1 | oui |
| 3                                               | 2546242-<br>-2546492    | 251                                                  | 123                                 | 3                             | oui                                       | 2475692-<br>-2475751 | 60   | ?   | ?   | non | 2489123<br>2489250     | 128  | 69  | 2,4  | oui | 2580875<br>2581002  | 128  | 69  | 2,4  | oui | ?                    | ?    | ?   | ?   | non | 2468291<br>2468418  | 128  | 69  | 2,4  | oui |
| 3                                               | 2611979-<br>-2612851    | 873                                                  | ?                                   | ?                             | non                                       | ?                    | 873  | ?   | ?   | non | 2554557<br>2555866     | 1310 | 437 | 3    | oui | ?                   | 1982 | ?   | ?    | non | ?                    | 873  | ?   | ?   | non | 2533849<br>2535158  | 1310 | 437 | 3    | oui |
| 3                                               | 2630754-<br>-2632463    | 1710                                                 | 384                                 | 4,5                           | oui                                       | 2560028-<br>-2561353 | 1326 | 384 | 3,5 | oui | ?                      | ?    | ?   | ?    | non | ?                   | ?    | ?   | ?    | non | 2571285<br>2574147   | 2863 | 384 | 7,5 | oui | ?                   | ?    | ?   | ?    | non |
| 3                                               | 2638502-<br>-2638675    | 174                                                  | 42                                  | 5                             | oui                                       | 2567392-<br>-2567565 | 174  | 42  | 5   | oui | 2577387<br>2577518     | 132  | 42  | 3,3  | oui | 2661081<br>2661212  | 132  | 42  | 4,8  | oui | 2578667<br>2578810   | 144  | 42  | 3,3 | oui | 2556704<br>5556877  | 174  | 42  | 4,3  | oui |
| 3                                               | 2642422-<br>-2642721    | 300                                                  | 114                                 | 2,6                           | oui                                       | 2571312-<br>-2571611 | 300  | 114 | 2,6 | oui | 2581169<br>2581468     | 300  | 114 | 2,6  | oui | ?                   | 186  | ?   | ?    | non | 2578822<br>2579180   | 359  | 114 | 3,1 | oui | 2560528<br>2560827  | 300  | 114 | 2,6  | oui |
| 3                                               | 266128<br>266583        | 456                                                  | 81                                  | 5,6                           | oui                                       | 266141<br>266596     | 456  | 81  | 5,6 | oui | 244215<br>244589       | 375  | 81  | 4,6  | oui | 259889<br>260182    | 294  | 81  | 3,7  | oui | 213234<br>213608     | 375  | 81  | 5   | oui | 242915<br>243289    | 375  | 81  | 4,6  | oui |
| 3                                               | 2781740-<br>-2782399    | 660                                                  | 18                                  | 42                            | oui                                       | 2717342-<br>-2718001 | 660  | 18  | 42  | oui | 2720626<br>2721375     | 750  | 18  | 47,9 | oui | ?                   | ?    | ?   | ?    | non | 2723734<br>2724393   | 660  | 18  | 42  | oui | 2699972<br>2700715  | 744  | 18  | 47,6 | oui |
| 3                                               | 2818769-<br>-2819116    | 348                                                  | 42                                  | 17                            | oui                                       | 2754371-<br>-2754718 | 348  | 42  | 17  | oui | 2757747<br>2758106     | 360  | 18  | 18,8 | oui | 2839324<br>2839445  | 122  | 42  | 2,9  | oui | 2760766<br>2761113   | 348  | 42  | 17  | oui | 2737087<br>2737446  | 360  | 18  | 18,8 | oui |
| 3                                               | 2837314-<br>-2837372    | 59                                                   | ?                                   | ?                             | non                                       | ?                    | ?    | ?   | ?   | non | 2776867<br>2777037     | 171  | 56  | 3,1  | oui | 2855668<br>2855783  | 116  | 56  | 2,1  | oui | 2779312<br>2779482   | 171  | 56  | 3,1 | oui | 2756207<br>2756377  | 171  | 56  | 3,1  | oui |
| 3                                               | 311490<br>311657        | 168                                                  | 55                                  | 3,1                           | oui                                       | 311503<br>311670     | 168  | 55  | 3,1 | oui | 290110<br>290334       | 225  | 56  | 4,1  | oui | 309197<br>309366    | 170  | 56  | 3,1  | oui | 258535<br>258646     | 112  | 54  | 3   | oui | 288810<br>288979    | 170  | 56  | 3,1  | oui |

| nombre<br>d'allèles<br>dans les<br>6<br>souches | Mu50<br>Position     | L:<br>Longueur<br>totale du<br>minisatellite<br>(pb) | U:<br>taille<br>du<br>motif<br>(pb) | N :<br>nombre<br>de<br>copies | séquence<br>détectée<br>par le <b>TRF</b> | N315<br>Position     | L:  | U:  | N:  | TRF | Position<br><b>MW2</b> | L:  | U:  | N:   | TRF | Position<br>MRSA252 | L:   | U:  | N:   | TRF | Position<br>NCTC8325 | L:  | U:  | N:  | TRF | Position<br>MSSA476 | L:  | U:  | N:   | TRF |
|-------------------------------------------------|----------------------|------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------------|----------------------|-----|-----|-----|-----|------------------------|-----|-----|------|-----|---------------------|------|-----|------|-----|----------------------|-----|-----|-----|-----|---------------------|-----|-----|------|-----|
| 3                                               | 43142<br>43471       | 330                                                  | 40                                  | 8,3                           | oui                                       | 43137<br>43506       | 370 | 40  | 9,3 | oui | 37788<br>38077         | 290 | 40  | 7,3  | oui | 43105<br>43394      | 290  | 40  | 7,3  | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 3                                               | 465115<br>465161     | 47                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 427477<br>427525       | 49  | 8   | 6,1  | oui | ?                   | 37   | ?   | ?    | non | ?                    | 37  | ?   | ?   | non | 426122<br>426186    | 65  | 8   | 8,1  | oui |
| 3                                               | 529716<br>529869     | 154                                                  | ?                                   | ?                             | non                                       | ?                    | 154 | ?   | ?   | non | ?                      | 147 | ?   | ?    | non | 513361<br>513642    | 282  | 133 | 2,1  | oui | ?                    | 147 | ?   | ?   | non | ?                   | 147 | ?   | ?    | non |
| 3                                               | 535447<br>536092     | 646                                                  | 277                                 | 2,3                           | oui                                       | 511215<br>511860     | 646 | 277 | 2,3 | oui | 496440<br>497086       | 647 | 277 | 2,33 | oui | 519278<br>521105    | 1828 | 18  | 2    | oui | 453788<br>454412     | 625 | 257 | 2   | oui | 495102<br>495748    | 647 | 277 | 2,33 | oui |
| 3                                               | 550991<br>551087     | 97                                                   | 21                                  | 4,6                           | oui                                       | 526760<br>526814     | 55  | 21  | 2,6 | oui | 511986<br>512019       | 34  | ?   | ?    | non | 536007<br>536039    | 33   | ?   | ?    | non | 469312<br>469345     | 34  | ?   | ?   | non | 510648<br>510681    | 34  | ?   | ?    | non |
| 3                                               | 632181<br>632224     | 44                                                   | 21                                  | 2,1                           | oui                                       | 607909<br>607952     | 44  | 21  | 2,1 | oui | 598270<br>598541       | 272 | 21  | 2,1  | oui | ?                   | ?    | ?   | ?    | non | 550570<br>550637     | 68  | 21  | 2,1 | oui | ?                   | ?   | ?   | ?    | non |
| 3                                               | 640048<br>640484     | 437                                                  | 18                                  | 24,3                          | oui                                       | 615776<br>616212     | 437 | 18  | 24  | oui | 606251<br>606687       | 437 | 18  | 24,3 | oui | ?                   | 413  | 18  | 22,4 | oui | 554474<br>554970     | 497 | ?   | ?   | non | 604942<br>605378    | 437 | 18  | 24,3 | oui |
| 3                                               | 683273<br>683427     | 155                                                  | ?                                   | ?                             | non                                       | ?                    | 155 | ?   | ?   | non | ?                      | 275 | ?   | ?    | non | 665553<br>665843    | 291  | 72  | 4,1  | oui | ?                    | 273 | ?   | ?   | non | ?                   | 275 | ?   | ?    | non |
| 3                                               | 684180<br>684299     | 120                                                  | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 656481<br>656659       | 179 | 61  | 2,9  | oui | ?                   | ?    | ?   | ?    | non | 604760<br>605006     | 247 | 61  | 2,7 | oui | 655173<br>655291    | 119 | 62  | 1,9  | oui |
| 3                                               | 748508<br>748564     | 57                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 719614<br>719947       | 334 | 69  | 4,8  | oui | ?                   | ?    | ?   | ?    | non | ?                    | ?   | ?   | ?   | non | 718112<br>718375    | 264 | 69  | 4,68 | oui |
| 3                                               | 847717<br>848067     | 351                                                  | 59                                  | 6                             | oui                                       | 823499<br>823849     | 351 | 59  | 6   | oui | 819191<br>819361       | 171 | 58  | 3,1  | oui | 862219<br>862392    | 174  | 58  | 3,1  | oui | 768247<br>768646     | 400 | 58  | 7   | oui | 817619<br>817789    | 171 | 58  | 3,1  | oui |
| 3                                               | 855096<br>855387     | 292                                                  | 56                                  | 5,2                           | oui                                       | 830878<br>831169     | 292 | 56  | 5,2 | oui | 826400<br>826409       | 10  | ?   | ?    | non | ?                   | ?    | ?   | ?    | non | 775684<br>775692     | 9   | ?   | ?   | non | 824828<br>824893    | 66  | 56  | 2    | oui |
| 2                                               | 101929<br>101971     | 43                                                   | 20                                  | 2,1                           | oui                                       | 101941<br>101983     | 43  | 20  | 2,1 | oui | 80524<br>80566         | 43  | 20  | 2,1  | oui | 108840<br>108908    | 69   | 20  | 2,1  | oui | 53573<br>53615       | 43  | 20  | 2,1 | oui | 79231<br>79273      | 43  | 20  | 2,1  | oui |
| 2                                               | 1105876-<br>-1105912 | 37                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 1031228<br>1031288     | 61  | 24  | 4,37 | oui | 1071946<br>1072004  | 59   | 21  | 2,7  | oui | 967281<br>967341     | 61  | 24  | 4   | oui | 1059951<br>1060011  | 61  | 24  | 4,37 | oui |
| 2                                               | 1107863-<br>-1107903 | 41                                                   | 18                                  | 2,2                           | oui                                       | 1031494-<br>-1031534 | 41  | 18  | 2,2 | oui | 1033239<br>1033279     | 41  | 18  | 2,3  | oui | 1073953<br>1074002  | 50   | ?   | ?    | non | 969292<br>969332     | 41  | 18  | 2,2 | oui | 1061962<br>1062002  | 41  | 18  | 2,3  | oui |
| 2                                               | 1139138-<br>-1139258 | 121                                                  | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1104758<br>1104879  | 122  | 14  | 8,4  | oui | 1000232<br>1000293   | 62  | 17  | 3,4 | oui | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1175797-<br>-1175833 | 37                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1141665<br>1141708  | 44   | 7   | 6,6  | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1182603-<br>-1182659 | 57                                                   | 9                                   | 6                             | oui                                       | 1106237-<br>-1106293 | 57  | 9   | 6   | oui | 1107690<br>1107746     | 57  | 9   | 6,3  | oui | 1148478<br>1148555  | 78   | 18  | 5    | oui | 1043829<br>1043885   | 57  | 9   | 6,3 | oui | 1136476<br>1136532  | 57  | 9   | 6,3  | oui |
| 2                                               | 1183288-<br>-1183311 | 24                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1149183<br>1149218  | 36   | 18  | 2    | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1183549-<br>-1183618 | 70                                                   | 15                                  | 4,3                           | oui                                       | 1107183-<br>-1107252 | 70  | 15  | 4,3 | oui | 1108636<br>1108705     | 70  | 15  | 4,3  | oui | 1149435<br>1149525  | 91   | 15  | 5,7  | oui | 1044776<br>1044845   | 70  | 15  | 4,3 | oui | 1137422<br>1137491  | 70  | 15  | 4,3  | oui |
| 2                                               | 1213418-<br>-1213706 | 289                                                  | 56                                  | 5,1                           | oui                                       | 1137053-<br>-1137341 | 289 | 56  | 5,1 | oui | 1138300<br>1138587     | 288 | 56  | 5    | oui | ?                   | ?    | ?   | ?    | non | 1074391<br>1074735   | 345 | 113 | 3   | oui | 1167086<br>1167373  | 288 | 56  | 5    | oui |
| 2                                               | 1326853-<br>-1326899 | 47                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | ?                   | ?    | ?   | ?    | non | 1186083<br>1186154   | 72  | 25  | 2,9 | oui | ?                   | ?   | ?   | ?    | non |

| nombre<br>d'allèles<br>dans les<br>6<br>souches | <b>Mu50</b><br>Position | L:<br>Longueur<br>totale du<br>minisatellite<br>(pb) | U :<br>taille<br>du<br>motif<br>(pb) | N :<br>nombre<br>de<br>copies | séquence<br>détectée<br>par le <b>TRF</b> | N315<br>Position     | L:  | U:  | N:  | TRF | Position<br><b>MW2</b> | L:  | U:  | N:   | TRF | Position<br>MRSA252 | L:      | U:  | N:   | TRF | Position<br>NCTC8325 | L:  | U:  | N:  | TRF | Position<br>MSSA476 | L:  | U:  | N:   | TRF |
|-------------------------------------------------|-------------------------|------------------------------------------------------|--------------------------------------|-------------------------------|-------------------------------------------|----------------------|-----|-----|-----|-----|------------------------|-----|-----|------|-----|---------------------|---------|-----|------|-----|----------------------|-----|-----|-----|-----|---------------------|-----|-----|------|-----|
| 2                                               | 1385013-<br>-1385033    | 21                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 1308759<br>1308790     | 32  | 11  | 2,9  | oui | ?                   | ?       | ?   | ?    | non | ?                    | ?   | ?   | ?   | non | 1337254<br>1337285  | 32  | 11  | 2,9  | oui |
| 2                                               | 149437<br>149526        | 90                                                   | 18                                   | 8                             | oui                                       | 149449<br>149538     | 90  | 18  | 8   | oui | 126936<br>127025       | 90  | 18  | 8,27 | oui | 150846<br>150875    | 30      | 18  | 4,7  | oui | 100907<br>100994     | 88  | 18  | 8   | oui | 125642<br>125731    | 90  | 18  | 8,27 | oui |
| 2                                               | 1513544-<br>-1513661    | 118                                                  | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 1440617<br>1440792     | 176 | 58  | 3,1  | oui | ?                   | ?       | ?   | ?    | non | 1375167<br>1375342   | 176 | 58  | 3,1 | oui | 1469172<br>1469347  | 176 | 58  | 3,1  | oui |
| 2                                               | 1516384-<br>-1517097    | 714                                                  | 231                                  | 3                             | oui                                       | 1439879-<br>-1440592 | 714 | 231 | 3   | oui | 1443514<br>1443996     | 483 | 231 | 2,09 | oui | 1504861<br>1505574  | 714     | 231 | 3,22 | oui | 1378065<br>1378778   | 714 | 231 | 3   | oui | 1472069<br>1472551  | 483 | 231 | 2,09 | oui |
| 2                                               | 1649052-<br>-1649072    | 21                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1683319<br>1683360  | 42      | 21  | 2    | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1654721-<br>-1654766    | 46                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 1623788<br>1623878     | 91  | 45  | 2,02 | oui | ?                   | ?       | ?   | ?    | non | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 167280<br>167319        | 40                                                   | 18                                   | 2,1                           | oui                                       | 167292<br>167331     | 40  | 18  | 2,1 | oui | 145525<br>145564       | 40  | 18  | 2,1  | oui | 168564<br>168603    | 40      | 18  | 2,1  | oui | 119397<br>119436     | 40  | 18  | 2,1 | oui | 144231<br>144263    | 33  | ?   | ?    | non |
| 2                                               | 1673654-<br>-1673689    | 36                                                   | 18                                   | 2                             | oui                                       | 1597150-<br>-1597185 | 36  | 18  | 2   | oui | 1642765<br>1642800     | 36  | 18  | 2,1  | oui | 1707940<br>1707957  | 18      | ?   | ?    | non | 1576290<br>1576307   | 18  | ?   | ?   | non | 1622475<br>1622510  | 36  | 18  | 2,1  | oui |
| 2                                               | 1756265-<br>-1756417    | 153                                                  | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 1725259<br>1725542     | 284 | 131 | 2,2  | oui | ?                   | ?       | ?   | ?    | non | ?                    | ?   | ?   | ?   | non | 1704911<br>1705194  | 284 | 131 | 2,2  | oui |
| 2                                               | 1853651-<br>-1853790    | 140                                                  | 12                                   | 12                            | oui                                       | 1775646-<br>-1775785 | 140 | 12  | 12  | oui | 1813311<br>1813462     | 152 | 12  | 13,8 | oui | ?                   | ?       | ?   | ?    | non | 1747808<br>1747959   | 152 | 12  | 14  | oui | 1792964<br>1793115  | 152 | 12  | 13,8 | oui |
| 2                                               | 1865545-<br>-1865762    | 218                                                  | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1896672<br>1896880  | 209     | 9   | 26,4 | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1873108-<br>-1873168    | 61                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1904067<br>1904169  | 103     | 42  | 2,5  | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1877455-<br>-1877488    | 34                                                   | 15                                   | 2,4                           | oui                                       | 1799450-<br>-1799483 | 34  | 15  | 2,4 | oui | 1837138<br>1837172     | 35  | 16  | 3,6  | oui | 1908454<br>1915095  | 6642??? | 24  | 4,5  | oui | 1771789<br>1771822   | 34  | 15  | 2,4 | oui | 1816473<br>1816507  | 35  | 16  | 3,6  | oui |
| 2                                               | 1886389-<br>-1886434    | 46                                                   | 12                                   | 3,8                           | oui                                       | 1808384-<br>-1808548 | 165 | ?   | ?   | non | 1846208<br>1846372     | 165 | ?   | ?    | non | 1923642<br>1923806  | 165     | ?   | ?    | non | 1781029<br>1781193   | 165 | ?   | ?   | non | 1825544<br>1825708  | 165 | ?   | ?    | non |
| 2                                               | 1893467-<br>-1893523    | 57                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1930849<br>1930903  | 55      | 14  | 4    | oui | 1788227<br>1788300   | 74  | 17  | 6   | oui | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1949758-<br>-1949836    | 79                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | ?                   | ?       | ?   | ?    | non | 1861659<br>1861725   | 67  | 20  | 3,2 | oui | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1953870-<br>-1953917    | 48                                                   | 24                                   | 2                             | oui                                       | 1875986-<br>-1876033 | 48  | 24  | 2   | oui | ?                      | ?   | ?   | ?    | non | 1994971<br>1995042  | 72      | 24  | 2    | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1953969-<br>-1954020    | 52                                                   | 24                                   | 2                             | oui                                       | 1876085-<br>-1876136 | 52  | 24  | 2   | oui | ?                      | ?   | ?   | ?    | non | 1995070<br>1995145  | 76      | 24  | 2,9  | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1956568-<br>-1956589    | 22                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 1997693<br>1997729  | 37      | 15  | 2,5  | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 1977349-<br>-1977436    | 88                                                   | 46                                   | 1,9                           | oui                                       | 1899463-<br>-1899550 | 88  | 46  | 1,9 | oui | 1941499<br>1941540     | 42  | ?   | ?    | non | 2018571<br>2018612  | 42      | ?   | ?    | non | ?                    | ?   | ?   | ?   | non | 1920833<br>1920874  | 42  | ?   | ?    | non |
| 2                                               | 1994271-<br>-1994532    | 262                                                  | 90                                   | 2,9                           | oui                                       | 1916384-<br>-1916645 | 262 | 90  | 2,9 | oui | 1956920<br>1957181     | 262 | 90  | 2,9  | oui | 2033984<br>2034157  | 174     | 90  | 1,9  | oui | 1899022<br>1899283   | 262 | 90  | 2,9 | oui | 1936254<br>1936427  | 174 | 90  | 1,9  | oui |
| 2                                               | 2002370-                | 20                                                   | ?                                    | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 2041984             | 52      | 16  | 3,25 | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |

| nombre<br>d'allèles<br>dans les<br>6<br>souches | <b>Mu50</b><br>Position | L:<br>Longueur<br>totale du<br>minisatellite<br>(pb) | U:<br>taille<br>du<br>motif<br>(pb) | N :<br>nombre<br>de<br>copies | séquence<br>détectée<br>par le <b>TRF</b> | N315<br>Position     | L:  | U:  | N:  | TRF | Position<br>MW2    | L:  | U:  | N:   | TRF | Position<br>MRSA252 | L:  | U: | N:   | TRF | Position<br>NCTC8325 | L:   | U:  | N:  | TRF | Position<br>MSSA476 | L:  | U:  | N:   | TRF |
|-------------------------------------------------|-------------------------|------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------------|----------------------|-----|-----|-----|-----|--------------------|-----|-----|------|-----|---------------------|-----|----|------|-----|----------------------|------|-----|-----|-----|---------------------|-----|-----|------|-----|
| 2                                               | 2028521-<br>-2028651    | 131                                                  | 59                                  | 2,3                           | oui                                       | 1950634-<br>-1950764 | 131 | 59  | 2,3 | oui | 1991229<br>1991359 | 131 | ?   | ?    | non | 2068164<br>2068468  | 305 | 56 | 6    | oui | 1976877<br>1977004   | 128  | 56  | 3   | oui | 1970476<br>1970606  | 131 | ?   | ?    | non |
| 2                                               | 2029936-<br>-2030051    | 116                                                  | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 1992644<br>1992818 | 175 | 59  | 3    | oui | ?                   | ?   | ?  | ?    | non | ?                    | ?    | ?   | ?   | non | 1971891<br>1972065  | 175 | 59  | 3    | oui |
| 2                                               | 20320<br>20353          | 34                                                   | 15                                  | 2,3                           | oui                                       | 20319<br>20352       | 34  | 15  | 2,3 | oui | 20313<br>20346     | 34  | 15  | 2,3  | oui | 20301<br>20334      | 34  | 15 | 2,3  | oui | 20309<br>20348       | 40   | 6   | 7   | oui | 20313<br>20346      | 34  | 15  | 2,3  | oui |
| 2                                               | 2051404-<br>-2051428    | 25                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                  | ?   | ?   | ?    | non | 2091034<br>2091069  | 36  | 11 | 3,3  | oui | ?                    | ?    | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 2081629-<br>-2082475    | 847                                                  | 327                                 | 3                             | oui                                       | 2003743-<br>-2004589 | 847 | 327 | 3   | oui | 2044650<br>2045496 | 847 | 315 | 4,98 | oui | ?                   | ?   | ?  | ?    | non | 2030349<br>2031201   | 853  | 315 | 5   | oui | 2023896<br>2024742  | 847 | 315 | 4,98 | oui |
| 2                                               | 2089256-<br>-2089300    | 45                                                   | ?                                   | ?                             | non                                       | 2012180-<br>-2012272 | 93  | 18  | 5,2 | oui | ?                  | ?   | ?   | ?    | non | ?                   | ?   | ?  | ?    | non | ?                    | ?    | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 2168990-<br>-2169070    | 81                                                   | 16                                  | 5,3                           | oui                                       | 2092465-<br>-2092545 | 81  | ?   | ?   | non | 2121093<br>2121173 | 81  | ?   | ?    | non | 2197120<br>2197206  | 87  | ?  | ?    | non | 2106915<br>2106995   | 81   | ?   | ?   | non | 2100218<br>2100298  | 81  | ?   | ?    | non |
| 2                                               | 2197107-<br>-2197142    | 36                                                   | 18                                  | 1,9                           | oui                                       | 2120582-<br>-2120617 | 36  | 18  | 1,9 | oui | 2148817<br>2148852 | 36  | 18  | 1,9  | oui | 2225236<br>2225271  | 36  | 18 | 1,9  | oui | 2135312<br>2135336   | 25   | 18  | 2   | oui | 2127942<br>2127977  | 36  | 18  | 1,9  | oui |
| 2                                               | 2221867-<br>-2222183    | 317                                                  | 100                                 | 4                             | oui                                       | 2145343-<br>-2145659 | 317 | 100 | 4   | oui | 2172073<br>2172190 | 118 | 16  | 4,7  | oui | 2249472<br>2249587  | 116 | 28 | 2,3  | oui | 2158559<br>2158875   | 317  | 100 | 4   | oui | 2151178<br>2151295  | 118 | 16  | 4,7  | oui |
| 2                                               | 2289406-<br>-2289469    | 64                                                   | 23                                  | 2,7                           | oui                                       | 2219593-<br>-2219656 | 64  | 23  | 2,7 | oui | 2239554<br>2239617 | 64  | 23  | 2,7  | oui | 2319072<br>2319129  | 58  | 23 | 2,7  | oui | 2227462<br>2227525   | 64   | ?   | ?   | non | 2218659<br>2218722  | 64  | 23  | 2,7  | oui |
| 2                                               | 2325183-<br>-2325236    | 54                                                   | 12                                  | 4,3                           | oui                                       | 2255590-<br>-2255643 | 54  | 12  | 4,3 | oui | 2275635<br>2275688 | 54  | 12  | 4,3  | oui | 2356984<br>2357037  | 54  | ?  | ?    | non | 2265087<br>2267095   | 2009 | ?   | ?   | non | 2254740<br>2254793  | 54  | 12  | 4,3  | oui |
| 2                                               | 2421817-<br>-2421975    | 159                                                  | 9                                   | 18                            | oui                                       | 2352786-<br>-2352944 | 159 | 9   | 18  | oui | 2363993<br>2364157 | 165 | 9   | 16,9 | oui | 2451527<br>2451691  | 165 | 9  | 18,3 | oui | 2363139<br>2363297   | 159  | 9   | 16  | oui | 2343098<br>2343262  | 165 | 9   | 16,9 | oui |
| 2                                               | 2426421-<br>-2426489    | 69                                                   | 9                                   | 8,1                           | oui                                       | 2357390-<br>-2357458 | 69  | 9   | 8,1 | oui | 2368602<br>2368670 | 69  | 9   | 8,1  | oui | 2456140<br>2456199  | 60  | 9  | 4,1  | oui | 2367742<br>2367810   | 69   | 9   | 8,1 | oui | 2347707<br>2347775  | 69  | 9   | 8,1  | oui |
| 2                                               | 2458089-<br>-2458260    | 172                                                  | 60                                  | 2,9                           | oui                                       | 2389058-<br>-2389229 | 172 | 60  | 2,9 | oui | ?                  | ?   | 60  | 4,8  | oui | 2488212<br>2488383  | 172 | 60 | 2,9  | oui | 2400032<br>2400383   | 352  | 60  | 6   | oui | ?                   | ?   | 60  | 4,8  | oui |
| 2                                               | 2467281-<br>-2467306    | 26                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                  | ?   | ?   | ?    | non | 2497391<br>2497443  | 53  | 27 | 2,03 | oui | 2409402<br>2409455   | 54   | 9   | 6   | oui | ?                   | ?   | ?   | ?    | non |
| 2                                               | 2495005-<br>-2495040    | 36                                                   | 15                                  | 2,4                           | oui                                       | 2425974-<br>-2426009 | 36  | 15  | 2,4 | oui | 2437791<br>2437826 | 36  | 15  | 2,4  | oui | ?                   | ?   | ?  | ?    | non | 2437997<br>2438047   | 51   | 15  | 3,4 | oui | 2416896<br>2416931  | 36  | 15  | 2,4  | oui |
| 2                                               | 2495094-<br>-2495218    | 125                                                  | 9                                   | 16                            | oui                                       | 2426063-<br>-2426187 | 125 | 9   | 16  | oui | 2437880<br>2438004 | 125 | 9   | 16,6 | oui | ?                   | ?   | ?  | ?    | non | 2438086<br>2438225   | 140  | 9   | 17  | oui | 2416985<br>2417109  | 125 | 9   | 16,6 | oui |
| 2                                               | 2546034-<br>-2546073    | 40                                                   | 10                                  | 4,2                           | oui                                       | 2475484-<br>-2475523 | 40  | 10  | 4,2 | oui | 2488914<br>2488953 | 40  | 10  | 5,4  | oui | 2580665<br>2580705  | 41  | ?  | ?    | non | 2487615<br>2487709   | 95   | 10  | 4,2 | oui | 2468082<br>2468121  | 40  | 10  | 5,4  | oui |
| 2                                               | 2547600-<br>-2547676    | 77                                                   | 15                                  | 5,1                           | oui                                       | 2476859-<br>-2476965 | 107 | 30  | 3   | oui | 2490358<br>2490464 | 107 | 30  | 3,36 | oui | 2582110<br>2582216  | 107 | 15 | 6,73 | oui | 2489113<br>2489219   | 107  | 15  | 7   | oui | 2469526<br>2469632  | 107 | 30  | 3,36 | oui |
| 2                                               | 2569627-<br>-2569663    | 37                                                   | 18                                  | 2                             | oui                                       | 2498916-<br>-2498938 | 23  | 18  | 2   | oui | 2512390<br>2512426 | 37  | 18  | 2    | oui | 2604097<br>2604133  | 37  | 18 | 2    | oui | 2511096<br>2511132   | 37   | 18  | 2   | oui | 2491558<br>2491594  | 37  | 18  | 2    | oui |
| 2                                               | 2640837-<br>-2640874    | 38                                                   | 18                                  | 2,1                           | oui                                       | 2569727-<br>-2569764 | 38  | 18  | 2,1 | oui | 2579677<br>2579705 | 29  | 18  | 2,1  | oui | ?                   | ?   | ?  | ?    | non | 2580948<br>2580976   | 29   | ?   | ?   | non | 2559036<br>2559064  | 29  | 18  | 2,1  | oui |
| 2                                               | 2644556-<br>-2644605    | 50                                                   | 24                                  | 2,1                           | oui                                       | 2573446-<br>-2573495 | 50  | 24  | 2,1 | oui | 2583303<br>2583367 | 65  | 24  | 2,1  | oui | 2663335<br>2663399  | 65  | ?  | ?    | non | 2584584<br>2584648   | 65   | 24  | 2,1 | oui | 2562662<br>2562726  | 65  | 24  | 2,1  | oui |

| nombre<br>d'allèles<br>dans les<br>6<br>souches | <b>Mu50</b><br>Position | L:<br>Longueur<br>totale du<br>minisatellite<br>(pb) | U:<br>taille<br>du<br>motif<br>(pb) | N :<br>nombre<br>de<br>copies | séquence<br>détectée<br>par le <b>TRF</b> | N315<br>Position     | L:  | U:  | N:  | TRF | Position<br><b>MW2</b> | L:  | U:  | N:   | TRF | Position<br>MRSA252 | L:  | U:  | N:   | TRF | Position<br>NCTC8325 | L:  | U:  | N:  | TRF | Position<br>MSSA476 | L:  | U:  | N:   | TRF |
|-------------------------------------------------|-------------------------|------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------------|----------------------|-----|-----|-----|-----|------------------------|-----|-----|------|-----|---------------------|-----|-----|------|-----|----------------------|-----|-----|-----|-----|---------------------|-----|-----|------|-----|
| 2                                               | 2644617-<br>-2644699    | 83                                                   | 9                                   | 9                             | oui                                       | 2573507-<br>-2573589 | 83  | 9   | 9   | oui | 2583364<br>2583461     | 98  | 9   | 12,2 | oui | 2663396<br>2663493  | 98  | 9   | 12,2 | oui | 2584645<br>2584742   | 98  | 9   | 9   | oui | 2562723<br>2562820  | 98  | 9   | 12,2 | oui |
| 2                                               | 2654323-<br>-2654372    | 50                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 2673118<br>2673167  | 50  | 18  | 2,8  | oui | 2594368<br>2594410   | 43  | 18  | 2,4 | oui | ?                   | ?   | ?   | ?    | non |
| 2                                               | 267130<br>267160        | 31                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 245136<br>245182       | 47  | 16  | 2,9  | oui | ?                   | ?   | 26  | 3,4  | oui | 214156<br>214202     | 47  | 16  | 2,9 | oui | 243836<br>243882    | 47  | 16  | 2,9  | oui |
| 2                                               | 2806967-<br>-2807000    | 34                                                   | 12                                  | 2,8                           | oui                                       | 2742569-<br>-2742602 | 34  | 12  | 2,8 | oui | 2745944<br>2745977     | 34  | 12  | 3,1  | oui | 2827546<br>2827555  | 10  | ?   | ?    | non | 2748963<br>2748996   | 34  | 12  | 3,1 | oui | 2725284<br>2725317  | 34  | 12  | 3,1  | oui |
| 2                                               | 2877111-<br>-2877148    | 38                                                   | 18                                  | 2,1                           | oui                                       | 2812712-<br>-2812749 | 38  | 18  | 2,1 | oui | 2819551<br>2819570     | 20  | ?   | ?    | non | 2901703<br>2901722  | 20  | ?   | ?    | non | 2820994<br>2821013   | 20  | ?   | ?   | non | 2798891<br>2798910  | 20  | ?   | ?    | non |
| 2                                               | 344399<br>344444        | 46                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 323320<br>323365       | 46  | 17  | 2,7  | oui | ?                   | ?   | ?   | ?    | non | 293261<br>293326     | 66  | 21  | 3,1 | oui | 321965<br>322010    | 46  | 17  | 2,7  | oui |
| 2                                               | 348324<br>348354        | 31                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 344418<br>344462    | 45  | 14  | 5,57 | oui | 297232<br>297262     | 31  | 20  | 2,2 | oui | ?                   | ?   | ?   | ?    | non |
| 2                                               | 474268<br>474313        | 46                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | 439066<br>439104       | 39  | 17  | 2,2  | oui | ?                   | ?   | ?   | ?    | non | ?                    | ?   | ?   | ?   | non | 437727<br>437765    | 39  | 17  | 2,2  | oui |
| 2                                               | 502396<br>502454        | 59                                                   | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | ?                   | ?   | ?   | ?    | non | 420460<br>420602     | 143 | 49  | 2,9 | oui | ?                   | ?   | ?   | ?    | non |
| 2                                               | 509671<br>509872        | 202                                                  | ?                                   | ?                             | non                                       | 485129<br>485531     | 403 | 201 | 2   | oui | 470529<br>470931       | 403 | 201 | 2    | oui | ?                   | ?   | 201 | 2    | oui | 427819<br>428221     | 403 | 201 | 2   | oui | 469191<br>469593    | 403 | 201 | 2    | oui |
| 2                                               | 751815<br>751992        | 178                                                  | 6                                   | 30                            | oui                                       | 727541<br>727718     | 178 | 6   | 30  | oui | 723198<br>723375       | 178 | 6   | 29,7 | oui | 766466<br>766637    | 172 | 12  | 23,8 | oui | 671478<br>671655     | 178 | 6   | 30  | oui | 721626<br>721803    | 178 | 6   | 29,7 | oui |
| 2                                               | 800299<br>800522        | 224                                                  | ?                                   | ?                             | non                                       | ?                    | ?   | ?   | ?   | non | ?                      | ?   | ?   | ?    | non | 814942<br>814985    | 44  | 18  | 2,4  | oui | ?                    | ?   | ?   | ?   | non | ?                   | ?   | ?   | ?    | non |
| 2                                               | 801381<br>801460        | 80                                                   | ?                                   | ?                             | non                                       | 777107<br>777242     | 136 | 56  | 2,4 | oui | ?                      | ?   | 56  | 2,4  | oui | ?                   | ?   | ?   | ?    | non | ?                    | ?   | ?   | ?   | non | ?                   | ?   | 56  | 2,4  | oui |
| 2                                               | 842266<br>842402        | 137                                                  | 55                                  | 2,5                           | oui                                       | 818048<br>818184     | 137 | 55  | 2,5 | oui | 813797<br>813877       | 81  | ?   | ?    | non | 856819<br>856902    | 84  | ?   | ?    | non | 762798<br>762933     | 136 | 55  | 2,5 | oui | 812225<br>812305    | 81  | ?   | ?    | non |
| 2                                               | 899533<br>899596        | 64                                                   | 24                                  | 2,7                           | oui                                       | 860970<br>861033     | 64  | 24  | 2,7 | oui | 869406<br>869469       | 64  | 24  | 2,8  | oui | 900911<br>900974    | 64  | ?   | ?    | non | 805283<br>805346     | 64  | 24  | 2,7 | oui | 853399<br>853438    | 40  | ?   | ?    | non |
| 2                                               | 906124<br>906248        | 125                                                  | 56                                  | 2,3                           | oui                                       | 874273<br>874397     | 125 | 56  | 2,3 | oui | 875996<br>876064       | 69  | ?   | ?    | non | ?                   | ?   | ?   | ?    | non | 811873<br>811942     | 70  | ?   | ?   | non | 859965<br>860033    | 69  | ?   | ?    | non |

## Caractéristiques des 122 répétitions en tandem de Staphylococcus aureus :

| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif<br>(pb) | position<br>Mu50   | gène à cette<br>position dans Mu50 | produit protéique                                                  | position du<br>gène | taille<br>motif / 3 | motif protéique répété                                        | répétitions en tandem<br>étudiées  |
|----------------------------------------------|----------------------------|--------------------|------------------------------------|--------------------------------------------------------------------|---------------------|---------------------|---------------------------------------------------------------|------------------------------------|
| 5                                            | 9 ou 18                    | 1098012<br>1098170 | sspA                               | V8 protéase, glutamyl endopeptidase                                | 10990311098003      | 3 ou 6              | PNNPDN                                                        | Mu50_1098_18bp_9U                  |
| 5                                            | 159                        | 1866118<br>1866562 | SAV1738                            | hypothetical protein similar to smooth<br>muscle caldesmon         | 18654901866848      | 53                  | ALKAQQAAIKEEASANNLSDTSQEA<br>QEIQEAKREAQAEADKSVAVSNEE<br>SKAS | Mu50_1866_159bp_3U                 |
| 5                                            | 61                         | 2511193<br>2511367 | intergénique                       |                                                                    |                     | 20,33               |                                                               |                                    |
| 5                                            | 18                         | 636061636666       | sdrD                               | Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein | 632692636849        | 6                   | SD                                                            | Mu50_0636_18bp_33,3U               |
| 5                                            | 67 ou 133                  | 704561704796       | intergénique                       |                                                                    |                     | 22,33 ou<br>44,33   |                                                               | Mu50_0704_67bp_4U                  |
| 5                                            | 18                         | 888858889722       | fnb                                | fibrinogen-binding protein                                         | 887186889993        | 6                   | SD                                                            | Mu50_0888_18bp_48U                 |
| 4                                            | 58                         | 1000868<br>1000965 | intergénique                       |                                                                    |                     | 19,33               |                                                               |                                    |
| 4                                            | 20 ou 64                   | 1291998<br>1292219 | intergénique                       |                                                                    |                     | 6,67 ou<br>21,33    |                                                               | Mu50_1291_64bp_3,5U                |
| 4                                            | 56                         | 1729388<br>1729679 | intergénique                       |                                                                    |                     | 18,67               |                                                               | séquence STAR<br>Mu50_1729_56bp_5U |
| 4                                            | 126                        | 1757525<br>1757639 | intergénique                       |                                                                    |                     | 42                  |                                                               |                                    |
| 4                                            | 6 ou 39                    | 2152442<br>2152714 | SAV2032                            | hypothetical protein similar to SdrH                               | 21517602153007      | 2 ou 13             | PK ou PN ou PD                                                |                                    |
| 4                                            | 24                         | 2351355<br>2351474 | SAV2208                            | hypothetical protein                                               | 23513932351563      | 8                   |                                                               | Mu50_2351_24bp_5U                  |
| 4                                            | 56                         | 2561664<br>2561795 | intergénique                       |                                                                    |                     | 18,67               |                                                               | séquence STAR                      |
| 4                                            | 42                         | 2642053<br>2642330 | fnb                                | fibronectin-binding protein homolog                                | 26418242644940      | 14                  | PETPTPPTPEVPSE                                                | Mu50_2642_42bp_7U                  |
| 4                                            | 18                         | 631615632142       | sdrC                               | Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein | 629464632325        | 6                   | SD                                                            | Mu50_0631_18bp_30,3U               |
| 4                                            | 43                         | 965164965428       | intergénique                       |                                                                    |                     | 14,33               |                                                               | Mu50_0965_43bp_6U                  |
| 3                                            | 22                         | 1086975<br>1087029 | intergénique                       |                                                                    |                     | 7,33                |                                                               |                                    |

| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif<br>(pb) | position<br>Mu50   | gène à cette<br>position dans Mu50 | produit protéique                                               | position du<br>gène | taille<br>motif / 3 | motif protéique répété                                                                                                             | répétitions en tandem<br>étudiées  |
|----------------------------------------------|----------------------------|--------------------|------------------------------------|-----------------------------------------------------------------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 3                                            | 9 ou 18                    | 1105143<br>1105186 | atl                                | autolysin                                                       | 11036241106455      | 3 ou 6              |                                                                                                                                    | Mu50_1105_18bp_2,5U                |
| 3                                            | 58                         | 1116357<br>1116488 | intergénique                       |                                                                 |                     | 19,33               |                                                                                                                                    |                                    |
| 3                                            | 63                         | 1132682<br>1133067 | SAV1078                            | hypothetical protein                                            | 11326221133071      | 21                  | LQLLVVRGFYACARRMYPSFT                                                                                                              | Mu50_1132_63bp_6,1U                |
| 3                                            | 134                        | 1194184<br>1194530 | intergénique                       |                                                                 |                     | 44,67               |                                                                                                                                    | Mu50_1194_67bp_7U                  |
| 3                                            | 55                         | 1219058<br>1219224 | SAV1165                            | hypothetical protein                                            | 12191371219268      | 18,33               | pas de répétition d'acides aminés                                                                                                  | séquence STAR                      |
| 3                                            | 24                         | 122905123156       | spa                                | Immunoglobulin G binding protein A precursor                    | 122614123966        | 8                   | PGKEDNNK                                                                                                                           | Mu50_0122_24bp_10U                 |
| 3                                            | 174                        | 123159123840       | spa                                | Immunoglobulin G binding protein A precursor                    | 122614123966        | 58                  | QQNAFYEILNMPNLNEEQRNGFIQ<br>SLKDDPSQSANLLSEAKKLNESQA<br>PKADNKFNKE                                                                 | Mu50_0123_174bp_3,9U               |
| 3                                            | 58                         | 1425109<br>1425340 | intergénique                       |                                                                 |                     | 19,33               |                                                                                                                                    | séquence STAR<br>Mu50_1425_58bp_4U |
| 3                                            | 57                         | 1695062<br>1695135 | SAV1584                            | hypothetical protein                                            | 16950321695190      | 19                  |                                                                                                                                    |                                    |
| 3                                            | 60                         | 1985673<br>1985771 | intergénique                       |                                                                 |                     | 20                  |                                                                                                                                    |                                    |
| 3                                            | 56                         | 2039328<br>2039458 | intergénique                       |                                                                 |                     | 18,67               |                                                                                                                                    | séquence STAR<br>Mu50_2039_56bp_3U |
| 3                                            | 256                        | 2185031<br>2185605 | rRNA-5S                            | SAVrRNA11                                                       | 21855452185659      | 85,33               |                                                                                                                                    |                                    |
| 3                                            | 9                          | 2294935<br>2295172 | fmtB(mrp)                          | FmtB protein                                                    | 22879352295380      | 3                   |                                                                                                                                    | Mu50_2294_9bp_29U                  |
| 3                                            | 69                         | 2546242<br>2546492 | intergénique                       |                                                                 |                     | 23                  |                                                                                                                                    |                                    |
| 3                                            | 437                        | 2611979<br>2612851 | SAV2475                            | hypothetical protein                                            | 26119782612397      | 145,67              |                                                                                                                                    |                                    |
| 3                                            | 384                        | 2630754<br>2632463 | SAV2496                            | hypothetical protein similar to accumulation-associated protein | 26304062631983      | 128                 | KNPLTGEIISKGESKEEITKDPINELT<br>EYGPETITPGHRDEFDPKLPTGEKE<br>EVPGKPGIKNPETGDVVRPPVDSV<br>TKYGPVKGDSIVEKEEIPFEKERKF<br>NPDLAPGTEKVTR |                                    |
| 3                                            | 42                         | 2638502<br>2638675 | fnbB                               | fibronectin-binding protein homolog                             | 26382582641143      | 14                  | PEVPSEPETPVPPT                                                                                                                     | Mu50_2638_42bp_4,1U                |

| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif<br>(pb) | position<br>Mu50   | gène à cette<br>position dans Mu50 | produit protéique                                                      | position du<br>gène | taille<br>motif / 3 | motif protéique répété            | répétitions en tandem<br>étudiées  |
|----------------------------------------------|----------------------------|--------------------|------------------------------------|------------------------------------------------------------------------|---------------------|---------------------|-----------------------------------|------------------------------------|
| 3                                            | 114                        | 2642422<br>2642721 | fnb                                | fibronectin-binding protein homolog                                    | 26418242644940      | 38                  |                                   |                                    |
| 3                                            | 81                         | 266128266583       | соа                                | staphylocoagulase precursor                                            | 264640266616        | 27                  | KKPSKTNAYNVTTHANGQVSYGAR<br>PTQ   | Mu50_0266_81bp_5,6U                |
| 3                                            | 18                         | 2781740<br>2782399 | clfB                               | Clumping factor B                                                      | 27815182784151      | 6                   | SD                                | Mu50_2781_18bp_36,7U               |
| 3                                            | 18 ou 42                   | 2818769<br>2819116 | SAV2654                            | hypothetical protein similar to<br>streptococcal hemagglutinin protein | 28184762825291      | 6 ou 14             | riche en S                        |                                    |
| 3                                            | 56                         | 2837314<br>2837372 | SAV2670                            | hypothetical protein                                                   | 28372782837388      | 18,67               | pas de répétition d'acides aminés |                                    |
| 3                                            | 56                         | 311490311657       | intergénique                       |                                                                        |                     | 18,67               |                                   | séquence STAR<br>Mu50_0311_55bp_3U |
| 3                                            | 40                         | 4314243471         | intergénique                       |                                                                        |                     | 13,33               |                                   | mec HVR region (ou dru)            |
| 3                                            | 8                          | 465115465161       | intergénique                       |                                                                        |                     | 2,67                |                                   |                                    |
| 3                                            | 133                        | 529716529869       | intergénique                       |                                                                        |                     | 44,33               |                                   |                                    |
| 3                                            | 277                        | 535447<br>0536092  | rRNA-5S                            | SAVrRNA03                                                              | 535393535507        | 92,33               |                                   |                                    |
| 3                                            | 21                         | 550991551087       | intergénique                       |                                                                        |                     | 7                   |                                   |                                    |
| 3                                            | 21                         | 632181632224       | sdrC                               | Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein     | 629464632325        | 7                   | SD                                |                                    |
| 3                                            | 18                         | 640048640484       | sdrE                               | Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein     | 637243640668        | 6                   | SD                                | Mu50_0640_18bp_24,3U               |
| 3                                            | 72                         | 683273683427       | intergénique                       |                                                                        |                     | 24                  |                                   |                                    |
| 3                                            | 61                         | 684180684299       | intergénique                       |                                                                        |                     | 20,33               |                                   |                                    |
| 3                                            | 69                         | 748508748564       | intergénique                       |                                                                        |                     | 23                  |                                   |                                    |
| 3                                            | 59                         | 847717848067       | intergénique                       |                                                                        |                     | 19,67               |                                   | séquence STAR                      |
| 3                                            | 56                         | 855096855387       | intergénique                       |                                                                        |                     | 18,67               |                                   | séquence STAR                      |
| 2                                            | 20                         | 101929101971       | SAV0094                            | hypothetical protein                                                   | 101923102405        | 6,67                | pas de répétition d'acides aminés |                                    |

| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif<br>(pb) | position<br>Mu50   | gène à cette<br>position dans Mu50 | produit protéique                                                                 | position du<br>gène | taille<br>motif / 3 | motif protéique répété                                                                    | répétitions en tandem<br>étudiées  |
|----------------------------------------------|----------------------------|--------------------|------------------------------------|-----------------------------------------------------------------------------------|---------------------|---------------------|-------------------------------------------------------------------------------------------|------------------------------------|
| 2                                            | 24                         | 1105876<br>1105912 | atl                                | autolysin                                                                         | 11036241106455      | 8                   |                                                                                           |                                    |
| 2                                            | 18                         | 1107863<br>1107903 | SAV1056                            | conserved hypothetical protein                                                    | 11077691108986      | 6                   |                                                                                           |                                    |
| 2                                            | 14                         | 1139138<br>1139258 | SAV1085                            | conserved hypothetical protein                                                    | 11392281139461      | 4,67                |                                                                                           |                                    |
| 2                                            | 7                          | 1175797<br>1175833 | SAV1121                            | hypothetical protein similar to<br>glycerophosphoryl diester<br>phosphodiesterase | 11758021176728      | 2,33                | pas de répétition d'acides aminés                                                         |                                    |
| 2                                            | 9                          | 1182603<br>1182659 | SAV1129                            | conserved hypothetical protein                                                    | 11810011182938      | 3                   |                                                                                           |                                    |
| 2                                            | 18                         | 1183288<br>1183311 | SAV1130                            | cell surface protein                                                              | 11831411184193      | 6                   |                                                                                           |                                    |
| 2                                            | 15                         | 1183549<br>1183618 | SAV1130                            | cell surface protein                                                              | 11831411184193      | 5                   |                                                                                           |                                    |
| 2                                            | 56                         | 1213418<br>1213706 | intergénique                       |                                                                                   |                     | 18,67               |                                                                                           | séquence STAR<br>Mu50_1213_56bp_5U |
| 2                                            | 25                         | 1326853<br>1326899 | intergénique                       |                                                                                   |                     | 8,33                |                                                                                           |                                    |
| 2                                            | 11                         | 1385013<br>1385033 | intergénique                       |                                                                                   |                     | 3,67                |                                                                                           |                                    |
| 2                                            | 18                         | 149437149526       | 148984149709                       | hypothetical protein                                                              | 148984149709        | 6                   |                                                                                           |                                    |
| 2                                            | 58                         | 1513544<br>1513661 | intergénique                       |                                                                                   |                     | 19,33               |                                                                                           |                                    |
| 2                                            | 231                        | 1516384<br>1517097 | ebhA                               | hypothetical protein similar to streptococcal adhesin emb                         | 15144101534551      | 77                  | KEKQALKDRINQILQQGHNGINNAM<br>TKEEIEQAKAQLAQALKEIKDLVKAK<br>ENAKQDVDKQVQALIDEIDQNPNLT<br>D | Mu50_1516_231bp_3U                 |
| 2                                            | 51                         | 1649052<br>1649072 | intergénique                       |                                                                                   |                     | 17                  |                                                                                           |                                    |
| 2                                            | 45                         | 1654721<br>1654766 | SAV1540                            | hypothetical protein                                                              | 16546021654901      | 15                  | pas de répétition d'acides aminés                                                         |                                    |
| 2                                            | 18                         | 167280167319       | intergénique                       |                                                                                   |                     | 6                   |                                                                                           |                                    |
| 2                                            | 18                         | 1673654<br>1673689 | dnaG                               | DNA primase                                                                       | 16731921675009      | 6                   |                                                                                           |                                    |
| 2                                            | 131                        | 1756265<br>1756417 | intergénique                       |                                                                                   |                     | 43,67               |                                                                                           |                                    |
| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif<br>(pb) | position<br>Mu50   | gène à cette<br>position dans Mu50 | produit protéique                                       | position du<br>gène | taille<br>motif / 3 | motif protéique répété            | répétitions en tandem<br>étudiées |
|----------------------------------------------|----------------------------|--------------------|------------------------------------|---------------------------------------------------------|---------------------|---------------------|-----------------------------------|-----------------------------------|
| 2                                            | 12                         | 1853651<br>1853790 | SAV1731                            | hypothetical protein                                    | 18532621855937      | 4                   |                                   |                                   |
| 2                                            | 9                          | 1865545<br>1865762 | SAV1738                            | hypothetical protein similar to smooth muscle caldesmon | 18654901866848      | 3                   |                                   |                                   |
| 2                                            | 42                         | 1873108<br>1873168 | SAV1742                            | phenylalanyl-tRNA synthetase<br>homolog beta subunit    | 18726691873265      | 14                  |                                   |                                   |
| 2                                            | 15                         | 1877455<br>1877488 | intergénique                       |                                                         |                     | 5                   |                                   |                                   |
| 2                                            | 12                         | 1886389<br>1886434 | SAV1755                            | hypothetical protein                                    | 18855151886459      | 4                   |                                   |                                   |
| 2                                            | 14                         | 1893467<br>1893523 | intergénique                       |                                                         |                     | 4,67                |                                   |                                   |
| 2                                            | 20                         | 1949758<br>1949836 | intergénique                       |                                                         |                     | 6,67                |                                   |                                   |
| 2                                            | 24                         | 1953870<br>1953917 | intergénique                       |                                                         |                     | 8                   |                                   |                                   |
| 2                                            | 24                         | 1953969<br>1954020 | intergénique                       |                                                         |                     | 8                   |                                   |                                   |
| 2                                            | 15                         | 1956568<br>1956589 | yent1                              | Pathogenicity island SaPIn3                             | 19563941956795      | 5                   |                                   |                                   |
| 2                                            | 46                         | 1977349<br>1977436 | intergénique                       |                                                         |                     | 15,33               |                                   |                                   |
| 2                                            | 90                         | 1994271<br>1994532 | tRNA-Gly                           |                                                         |                     | 30                  |                                   | Mu50_1994_90bp_3U                 |
| 2                                            | 16                         | 2002370<br>2002389 | intergénique                       |                                                         |                     | 5,33                |                                   |                                   |
| 2                                            | 59                         | 2028521<br>2028651 | intergénique                       |                                                         |                     | 19,67               |                                   | séquence STAR                     |
| 2                                            | 59                         | 2029936<br>2030051 | intergénique                       |                                                         |                     | 19,67               |                                   |                                   |
| 2                                            | 15                         | 2032020353         | rpll                               | 50S ribosomal protein L9                                | 2029320739          | 5                   |                                   |                                   |
| 2                                            | 11                         | 2051404<br>2051428 | SAV1907                            | conserved hypothetical protein                          | 20514192051721      | 3,67                | pas de répétition d'acides aminés |                                   |
| 2                                            | 315 ou 327                 | 2081629<br>2082475 | truncated-mapW                     | truncated map-w protein                                 | 20811962082626      | 105 ou<br>109       |                                   |                                   |
| 2                                            | 15                         | 2089256<br>2089300 | intergénique                       |                                                         |                     | 5                   |                                   |                                   |

| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif<br>(pb) | position<br>Mu50   | gène à cette<br>position dans Mu50 | produit protéique                                                      | position du<br>gène | taille<br>motif / 3 | motif protéique répété            | répétitions en tandem<br>étudiées |
|----------------------------------------------|----------------------------|--------------------|------------------------------------|------------------------------------------------------------------------|---------------------|---------------------|-----------------------------------|-----------------------------------|
| 2                                            | 16                         | 2168990<br>2169070 | intergénique                       |                                                                        |                     | 5,33                |                                   |                                   |
| 2                                            | 18                         | 2197107<br>2197142 | rsbU                               | sigmaB regulation protein                                              | 21963232197324      | 6                   |                                   |                                   |
| 2                                            | 100                        | 2221867<br>2222183 | intergénique                       |                                                                        |                     | 33,33               |                                   | Mu50_2221_100bp_3,2U              |
| 2                                            | 23                         | 2289406<br>2289469 | fmtB(mrp)                          | protéine FmtB                                                          | 22879352295380      | 7,67                |                                   |                                   |
| 2                                            | 12                         | 2325183<br>2325236 | asp23                              | alkaline shock protein 23                                              | 23251662325675      | 4                   |                                   |                                   |
| 2                                            | 9                          | 2421817<br>2421975 | ssaA                               | homologue à la protéine SsaA<br>(secretory antigen precursor)          | 24216042422407      | 3                   | NNY                               |                                   |
| 2                                            | 9                          | 2426421<br>2426489 | SAV2304                            | protéine hypothétique similaire à SsaA                                 | 24263252426825      | 3                   | NNY                               |                                   |
| 2                                            | 60                         | 2458089<br>2458260 | SAV2332                            | protéine hypothétique similaire au<br>régulateur transcriptionnel LysR | 24572102458094      | 20                  | pas de répétition d'acides aminés |                                   |
| 2                                            | 9 ou 27                    | 2467281<br>2467306 | SAV2342                            | protéine hypothétique conservée                                        | 24672582467878      | 3 ou 9              |                                   |                                   |
| 2                                            | 15                         | 2495005<br>2495040 | SAV2368                            | protéine hypothétique similaire à la<br>protéine TpgX                  | 24946872495301      | 5                   |                                   |                                   |
| 2                                            | 9                          | 2495094<br>2495218 | SAV2368                            | protéine hypothétique similaire à la<br>protéine TpgX                  | 24946872495301      | 3                   |                                   |                                   |
| 2                                            | 10                         | 2546034<br>2546073 | intergénique                       |                                                                        |                     | 3,33                |                                   |                                   |
| 2                                            | 15 ou 30                   | 2547600<br>2547676 | sbi                                | protéine de liaison aux IgG                                            | 25467922548078      | 5 ou 10             | PKVEA ?                           | Mu50_2547_15bp_5U                 |
| 2                                            | 18                         | 2569627<br>2569663 | SAV2438                            | homologue au transporteur ABC<br>permease amino acid                   | 25687392570148      | 6                   |                                   |                                   |
| 2                                            | 18                         | 2640837<br>2640874 | fnbB                               | homoloque à la protéine de fixation à la fibronectine                  | 26382582641143      | 6                   |                                   |                                   |
| 2                                            | 24                         | 2644556<br>2644605 | fnb                                | homoloque à la protéine de fixation à la fibronectine                  | 26418242644940      | 8                   |                                   |                                   |
| 2                                            | 9                          | 2644617<br>2644699 | fnb                                | homoloque à la protéine de fixation à la fibronectine                  | 26418242644940      | 3                   |                                   |                                   |
| 2                                            | 18                         | 2654323<br>2654372 | SAV2512                            | protéine hypothétique similaire à au transporteur glucarate            | 26540012655278      | 6                   |                                   |                                   |
| 2                                            | 16 ou 26                   | 267130267160       | intergénique                       |                                                                        |                     | 5,33 ou<br>8,67     |                                   |                                   |

| nombre<br>d'allèles<br>dans les 6<br>souches | taille du<br>motif<br>(pb) | position<br>Mu50   | gène à cette<br>position dans Mu50 | produit protéique                                                         | position du<br>gène | taille<br>motif / 3 | motif protéique répété | répétitions en tandem<br>étudiées  |
|----------------------------------------------|----------------------------|--------------------|------------------------------------|---------------------------------------------------------------------------|---------------------|---------------------|------------------------|------------------------------------|
| 2                                            | 12                         | 2806967<br>2807000 | SAV2646                            | protéine hypothétique conservée                                           | 28056712807578      | 4                   |                        |                                    |
| 2                                            | 18                         | 2877111<br>2877148 | intergénique                       |                                                                           |                     | 6                   |                        |                                    |
| 2                                            | 21                         | 344399344444       | SAV0300                            | protéine hypothétique conservée                                           | 344169344630        | 7                   |                        |                                    |
| 2                                            | 14                         | 348324348354       | SAV0305                            | protéine hypothétique similaire au<br>transporteur NirC                   | 347438348262        | 4,67                |                        |                                    |
| 2                                            | 17                         | 474268474313       | set14                              | llôt de pathogénicité SaPIn2 exotoxin 14                                  | 474574475257        | 5,67                |                        |                                    |
| 2                                            | 49                         | 502396502454       | intergénique                       |                                                                           |                     | 16,33               |                        |                                    |
| 2                                            | 201                        | 509671509872       | SAV0465                            | protéine hypothétique                                                     | 509460510263        | 67                  |                        |                                    |
| 2                                            | 6 ou 12                    | 751815751992       | SAV0677                            | protéine hypothétique conservée                                           | 751712752107        | 2 ou 4              | KD                     |                                    |
| 2                                            | 18                         | 800299800522       | SAV0724                            | protéine hypothétique similaire à l'histidinol-phosphate aminotransferase | 799323800381        | 6                   |                        |                                    |
| 2                                            | 56                         | 801381801460       | intergénique                       |                                                                           |                     | 18,67               |                        |                                    |
| 2                                            | 55                         | 842266842402       | intergénique                       |                                                                           |                     | 18,33               |                        | séquence STAR<br>Mu50_0842_55bp_3U |
| 2                                            | 24                         | 899533899596       | SAV0825                            | protéine hypothétique conservée                                           | 899565900182        | 8                   |                        | Mu50_0899_24bp_2,7U                |
| 2                                            | 56                         | 906124906248       | intergénique                       |                                                                           |                     | 18,67               |                        | séquence STAR<br>Mu50_0906_56bp_3U |

## Codage Shopsin des motifs de la répétition en tandem localisée dans le gène *spa*

| AAAGAAGACAACAACAAGCCTGGC                                                             | Ι | F  | :consensus |
|--------------------------------------------------------------------------------------|---|----|------------|
| AAAGAAGA <mark>C</mark> AACAAAAAA <mark>CC</mark> TGGC                               | Ī | A  |            |
| AAAGAAGA <mark>C</mark> AACAAAAAA <mark>CC</mark> TGGT                               | Ì | B  |            |
| AAAGAAGA <mark>C</mark> AACAAAAAG <mark>CC</mark> TGGC                               | Ī | C  |            |
| AAAGAAGA <mark>C</mark> AACAACAAACCTGGC                                              | Ī | D  |            |
| AAAGAAGA <mark>C</mark> AACAACAAACCTGGT                                              | Ī | E  |            |
| AAAGAAGA <mark>C</mark> AACAACAAGCCTGGC                                              | I | F  |            |
| AAAGAAGA <mark>C</mark> AACAAGCCTGGT                                                 | Ī | G  |            |
| AAAGAAGA <mark>C</mark> AATAA <mark>C</mark> AAG <mark>CC</mark> TGGC                | Ī | н  |            |
| AAAGAAGACGGCAACAAACCTGGC                                                             |   | J  |            |
| AAAGAAGA <mark>CGGC</mark> AA <mark>C</mark> AAA <mark>CC</mark> TGGT                |   | кļ |            |
| AAAGAAGACGGCAACAAGCCTGGC                                                             |   | ц  |            |
| AAAGAAGACGGCAACAAGCCTGGT                                                             |   | м  |            |
| AAAGAAGATGG <mark>C</mark> AA <mark>C</mark> AAA <mark>CC</mark> TGGC                |   | N  |            |
| AAAGAAGATGG <mark>C</mark> AA <mark>C</mark> AAA <mark>CC</mark> TGGT                |   | 0  |            |
| AAAGAAGATGG <mark>C</mark> AACAAGCCTGGC                                              |   | P  |            |
| AAAGAAGATGG <mark>C</mark> AA <mark>C</mark> AAG <mark>CC</mark> TGGT                |   | Q  |            |
| AAAGAAGATGGTAA <mark>C</mark> AAA <mark>CC</mark> TGGC                               |   | R  |            |
| GAGGAAGACAACAAAAAACCTGGC                                                             |   | ន  |            |
| GAGGAAGA <mark>C</mark> AAAAAAACCTGGT                                                |   | т  |            |
| GAGGAAGA <mark>C</mark> AA <mark>C</mark> AACAAACCTGGT                               |   | ש  |            |
| GAGGAAGACAACAAGCCTAGC                                                                |   | v  |            |
| GAGGAAGACAACAAGCCTGGC                                                                |   | W  |            |
| GAGGAAGA <mark>C</mark> AA <mark>C</mark> AA <mark>C</mark> AAG <mark>CC</mark> TGGT |   | x  |            |
| GAGGAAGA <mark>C</mark> AATAA <mark>C</mark> AAG <mark>CC</mark> TGGC                |   | Y  |            |
| GAGGAAGA <mark>C</mark> AATAA <mark>C</mark> AAG <mark>CC</mark> TGGT                |   | z  |            |
| GAGGAAGA <mark>C</mark> GG <mark>C</mark> AA <mark>C</mark> AAA <mark>CC</mark> TGGT |   | A2 |            |
| AAAGAAGA <mark>C</mark> AAACAAAAAG <mark>CC</mark> TGGT                              |   | в2 |            |
| AAAGAAGA <mark>C</mark> AATAA <mark>C</mark> AAG <mark>CC</mark> TGGT                |   | C2 |            |
| GAGGAAGA <mark>C</mark> AATAA <mark>C</mark> AAA <mark>CC</mark> TGGT                |   | D2 |            |
| AAAGAAGACAGCAACAAGCCTGGC                                                             |   | E2 |            |
| GAGGAAGA <mark>C</mark> AATAA <mark>C</mark> AAG <mark>CC</mark> TAGT                |   | F2 |            |
| AAAGAAGA <mark>CGGC</mark> AAAAAA <mark>CCTGGC</mark>                                |   | G2 |            |
| GAGGAAGACAACAAACCTGGC                                                                |   | Н2 |            |
| AAAGAAGA <mark>C</mark> AAAAAAG <mark>CC</mark> TAGC                                 | 1 | 12 |            |
| AAAGAAGA <mark>C</mark> AACAAAAAG <mark>CC</mark> TAGC                               | 1 | J2 |            |
| AAAGAAGATGG <mark>C</mark> AACAAG <mark>CC</mark> TAGT                               | 1 | К2 |            |
| AAAGAAGA <mark>C</mark> AACAAG <mark>CC</mark> TGGT                                  |   | M2 | (nouveau)  |

## Résumé

Les répétitions en tandem sont constituées de successions de motifs d'ADN. Ces structures présentes dans tous les organismes, procaryotes comme eucaryotes, ont des applications dans de nombreux domaines. Depuis quelques années seulement, les répétitions en tandem sont étudiées chez les bactéries. Le polymorphisme associé à ces séquences peut être utilisé pour le génotypage de bactéries pathogènes, permettant une identification précise au niveau de la souche. Le polymorphisme des séquences répétées est de deux types : polymorphisme de longueur et mutations internes aux motifs. Les génomes des deux bactéries pathogènes responsables d'infections nosocomiales, *Staphylococcus aureus* et *Pseudomonas aeruginosa,* ont été étudiés dans le but d'identifier des séquences répétées polymorphes. Un ensemble de marqueurs polymorphes a été validé expérimentalement pour ces deux espèces permettant un typage dit MLVA (pour « Multiple Locus VNTR Analysis »). Le travail plus classique de typage par la taille de la répétition a été complété par un travail de séquençage de certains allèles. Les résultats obtenus montrent comment le typage « MLVA » complété si nécessaire par le séquençage d'allèles, pourraient constituer de nouvelles méthodes peu coûteuses participant au contrôle des infections bactériennes.

## Abstract

Tandem repeats are constituted by the succession of DNA units. These structures, present in all organisms, prokaryotes as well as eukaryotes, have many fields of application. Since a few years, and owing to a large extend to the release of whole genome sequence data, these sequences are being studied in bacteria. Polymorphism associated with repeated sequences is useful for the genotyping of pathogenic bacteria in the aim to identify bacteria at the strain level. Two levels of polymorphism can be associated with tandem repeats: length polymorphism (counting the number of repeat units) and internal variants in units (interpreting the internal organisation of the array). Two bacterial species implicated in hospital aquired infections, Pseudomonas aeruginosa and Staphylococcus aureus, were studied in order to validate sets of polymorphic tandem repeats witch discriminate strains. A collection of polymorphic markers were developped for the two bacterial species as a MLVA scheme typing. In addition, sequence data was produced for some loci, in order to see to which extend strain similarity suggested by MLVA does correlate with the often more complex evolutionary history revealed by tandem repeat sequence analysis. The results obtained further illustrate the potential of tandem repeat analysis for the monitoring of a growing number of infectious diseases.