

Adéquation Algorithme Architecture pour la reconstruction 3D en imagerie médicale TEP

Nicolas GAC

Thèse préparée à l'Institut Polytechnique de Grenoble (INPG)

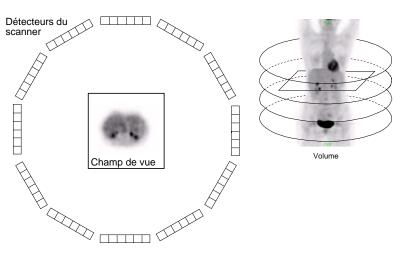
Direction : Michel DESVIGNES & Stéphane MANCINI

Laboratoire : Gipsa-lab (Département Images et Signal), Grenoble

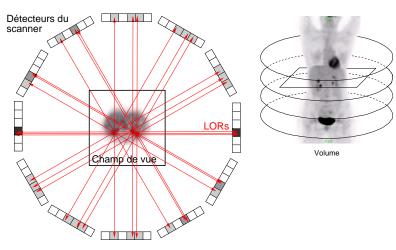
17 Juillet 2008

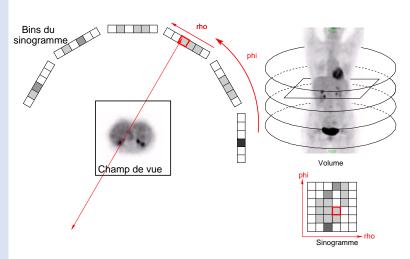
- Accélération de la reconstruction 3D en imagerie médicale TEP
 - Imagerie médicale TEP
 - Accélération matérielle
- Adéquation Algorithme Architecture
 - Stratégie d'accès mémoire
 - Architecture 3P : Pipelinée, Préfetchée et Parallélisée
- Performances de l'architecture 3P
 - Protocole de mesure
 - Qualité et efficacité de reconstruction
 - Etude comparative sur CPU/GPU/FPGA
- 4 Vers une reconstruction de meilleure qualité
- Conclusion et Perspectives

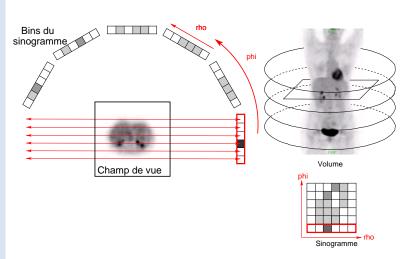
- Accélération de la reconstruction 3D en imagerie médicale TEP
 - Imagerie médicale TEP
 - Accélération matérielle
- Adéquation Algorithme Architecture
- Performances de l'architecture 3P
- Ders une reconstruction de meilleure qualité
- **5** Conclusion et Perspectives

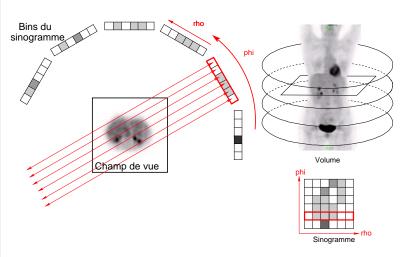

rojet ArchiTEP

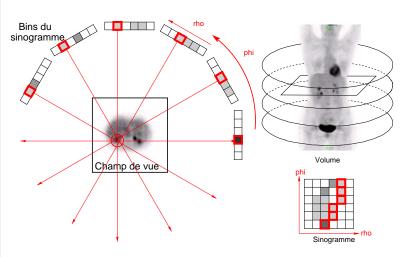
Tomographie à Emission de Positons (TEP)

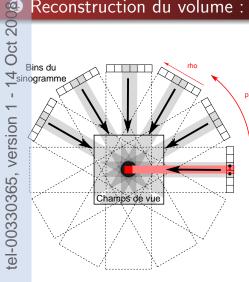

- Imagerie fonctionnelle in vivo
- Temps de reconstruction importants




Injection du traceur

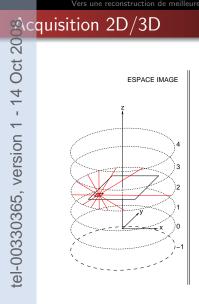


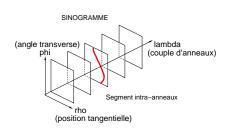

Détections des paires de photons émis

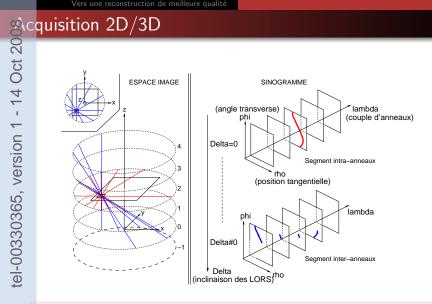


Reconstruction du volume : rétroprojection 2D

Sommation des bins :


$$f^*(xn, yn) = \sum_{phi} \min[phi, rho(phi)]$$

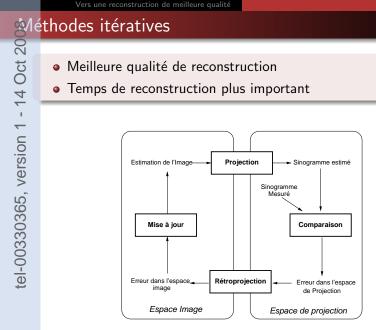

Calcul des coordonnées :

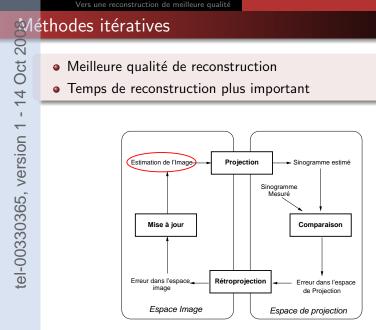

rho =
$$xn \cdot cos(\phi) - yn \cdot sin(\phi)$$

= $rho_e + \epsilon_o$

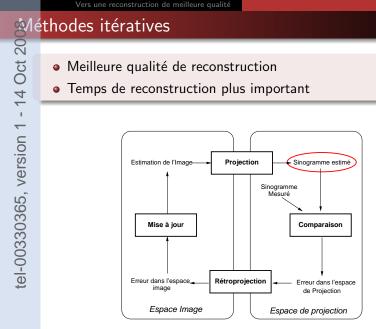
Interpolation linéaire :

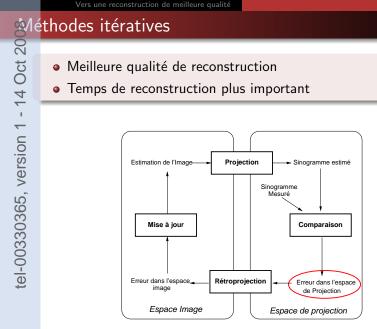
$$egin{aligned} ext{bin} &= & (1 - \epsilon_{
ho}) \cdot ext{bin(phi, rho_e)} \ &+ \ &\epsilon_{
ho} \cdot ext{bin(phi, rho_e + 1)} \end{aligned}$$

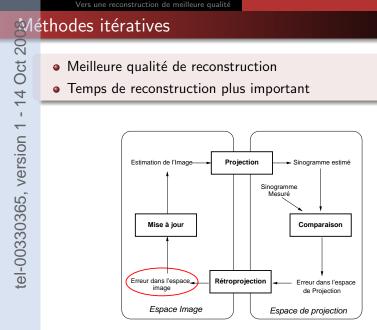


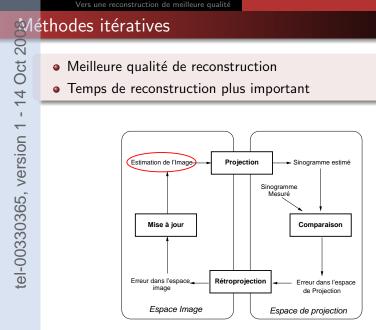

Acquisition 3D

Meilleure qualité de reconstruction


- Meilleure qualité de reconstruction
- Temps de reconstruction plus important


- Meilleure qualité de reconstruction
- Temps de reconstruction plus important


- Meilleure qualité de reconstruction
- Temps de reconstruction plus important


- Meilleure qualité de reconstruction
- Temps de reconstruction plus important

- Meilleure qualité de reconstruction
- Temps de reconstruction plus important

- Meilleure qualité de reconstruction
- Temps de reconstruction plus important

Un problème de plus en plus complexe • Amélioration de la résolution spatiale des • Volume de $\simeq 10^6$ voxels • Sinogramme de $\simeq 500 \cdot 10^6$ bins pour la $\simeq 1000$ mises à jour par voxel • Utilisation de méthodes itératives • Reconstruction 4D en TEP dynamique • Reconstruction 4D en TEP dynamique • 30/60 frames à reconstruire Temps de reconstruction insuffisant sur PCs • 16 heures de calcul en OSEM sur un scan

- Amélioration de la résolution spatiale des scanners

 - \supset Sinogramme de $\simeq 500 \cdot 10^6$ bins pour le scanner HRRT

- 16 heures de calcul en OSEM sur un scanner HRRT
- Retard technologique de 10/15 ans par rapport aux scanners

Parallélisation sur machines multi-processeurs

- Efficace sur machine à mémoire distribuée
- Inefficace sur machine à mémoire centralisée
 - ☐ L'accès à la mémoire est un goulot d'étranglement

2 Noeuds de calcul performants

- Multi-Processor System on Chip (MPSoC) (Cell, GP-GPU)
- System on Programmable Chip (SoPC)
 - → Nécessité d'une stratégie efficace d'accès mémoire

Parallélisation sur machines multi-processeurs

- Efficace sur machine à mémoire distribuée
- Inefficace sur machine à mémoire centralisée
 - ☐ L'accès à la mémoire est un goulot d'étranglement

2 Noeuds de calcul performants

- Multi-Processor System on Chip (MPSoC) (Cell, GP-GPU)
- System on Programmable Chip (SoPC)
 - → Nécessité d'une stratégie efficace d'accès mémoire

- Accélération de la reconstruction 3D en imagerie médicale TEP
- Adéquation Algorithme Architecture
 - Stratégie d'accès mémoire
 - Architecture 3P : Pipelinée, Préfetchée et Parallélisée
- Performances de l'architecture 3P
- Vers une reconstruction de meilleure qualité
- **5** Conclusion et Perspectives

```
for (xn, yn, zn) in volume do
  for delta = 0 to delta<sub>max</sub> -1 do
     for phi = 0 to phi<sub>max</sub> -1 do
        // CALCUL DES COORDONNEES
        rho(phi) = xn \cdot cos \phi + yn \cdot sin \phi
        lambda(phi, delta) = ...
        // INTERPOLATION BI-LINEAIRE
        bin_{interp} = C_{00} \cdot bin_{00} + C_{01} \cdot bin_{01} \dots
        // ACCUMULATION
        f^*(xn, yn, zn) = f^*(xn, yn, zn) + bin_{interp} \cdot J_{\Lambda}
     end for
  end for
end for
```

```
for (xn, yn, zn) in volume do
  for delta = 0 to delta<sub>max</sub> -1 do
     for phi = 0 to phi<sub>max</sub> -1 do
        // CALCUL DES COORDONNEES
        rho(phi) = xn \cdot cos \phi + yn \cdot sin \phi
        lambda(phi, delta) = ...
        // INTERPOLATION BI-LINEAIRE
        bin_{interp} = C_{00} \cdot bin_{00} + C_{01} \cdot bin_{01} \dots
        // ACCUMULATION
        f^*(xn, yn, zn) = f^*(xn, yn, zn) + bin_{interp} \cdot J_{\Lambda}
     end for
  end for
end for
```

lgorithme de rétroprojection 3D

```
for (xn, yn, zn) in volume do
  for delta = 0 to delta_{max} - 1 do
     for phi = 0 to phi<sub>max</sub> -1 do
        // CALCUL DES COORDONNEES
        rho(phi) = xn \cdot cos \phi + yn \cdot sin \phi
        lambda(phi, delta) = ...
        // INTERPOLATION BI-LINEAIRE
        bin_{interp} = C_{00} \cdot bin_{00} + C_{01} \cdot bin_{01} \dots
        // ACCUMULATION
        f^*(xn, yn, zn) = f^*(xn, yn, zn) + bin_{interp} \cdot J_{\Lambda}
     end for
  end for
end for
```

```
for (xn, yn, zn) in volume do
  for delta = 0 to delta<sub>max</sub> -1 do
     for phi = 0 to phi<sub>max</sub> -1 do
        // CALCUL DES COORDONNEES
        rho(phi) = xn \cdot cos \phi + yn \cdot sin \phi
        lambda(phi, delta) = ...
        // INTERPOLATION BI-LINEAIRE
        bin_{interp} = C_{00} \cdot bin_{00} + C_{01} \cdot bin_{01} \dots
        // ACCUMULATION
        f^*(xn, yn, zn) = f^*(xn, yn, zn) + bin_{interp} \cdot J_{\Delta}
     end for
  end for
end for
```

Séquence de calcul

- Boucles imbriqués sans dépendance de données
 - ⊃ Algorithme massivement parallèle
- Séquence simple de calcul pour la mise à jour d'un voxel
 - ⊃ Architecture en pipeline

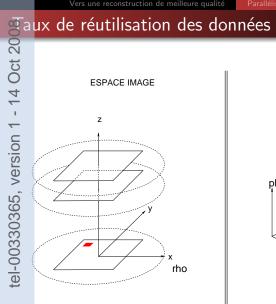
Accès mémoire

- Sinogramme de taille importante (10 Mo à 1 Go)
 - ⊃ Stockage du sinogramme en SDRAM
- Accès à 4 bins par mise à jour de voxel
 - ⊃ Nécessité de masquer le temps d'accès en SDRAM

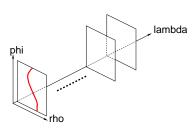
- - Algorithme \(\bigcirc \) localit\(\epsilon \) temporelle
- Mécanisme de préchargement mémoire
 - "ad hoc" (double buffering)
 - **⊃** Ressources de calcul supplémentaires
 - → Mécanisme de prédiction figé
- Tratégie d'accès mémoire

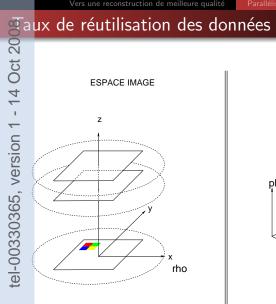
 1 Réutilisation des données

 Algorithme localité tem

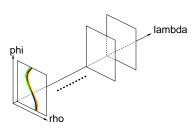

 2 Mécanisme de préchargemer

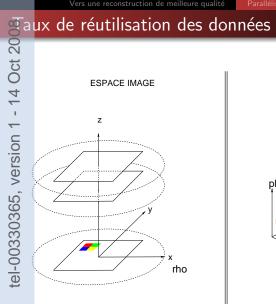
 "ad hoc" (double buffering

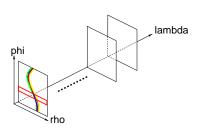

 Ressources de calcul su


 Mécanisme de prédictic

 Algorithme Algorithme Architecture Algorithme I localité spatio-temporelle Architecture \supset cache mémoire "intelligent"




SINOGRAMME



SINOGRAMME

SINOGRAMME


```
for Bloc in Volume do

for delta = 0 to delta<sub>max</sub> - 1 do

for phi = 0 to phi<sub>max</sub> - 1 do

for (xn, yn, zn) in Bloc do

// CALCUL DES COORDON

rho(phi) = xn · cos \phi + yn · s

lambda(phi, delta) = ...

// INTERPOLATION BILINE

bin<sub>interp</sub> = C_{00} · bin<sub>00</sub> + C_{01} ·

// ACCUMULATION

f^*(xn, yn, zn) = f^*(xn, yn, zn

end for

end for
                                         // CALCUL DES COORDONNEES
                                         rho(phi) = xn \cdot cos \phi + yn \cdot sin \phi
                                         // INTERPOLATION BILINEAIRE
                                         bin_{interp} = C_{00} \cdot bin_{00} + C_{01} \cdot bin_{01} \dots
                                          f^*(xn, yn, zn) = f^*(xn, yn, zn) + bin_{interp} \cdot J_{\Delta}
                       end for
                  end for
```

```
for Bloc in Volume do

for delta = 0 to delta<sub>max</sub> - 1 do

for phi = 0 to phi<sub>max</sub> - 1 do

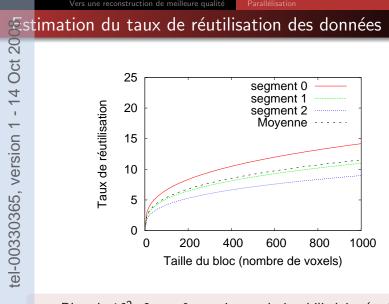
for (xn, yn, zn) in Bloc do

// CALCUL DES COORDON

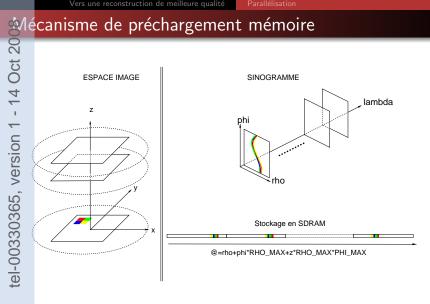
rho(phi) = xn · cos \phi + yn · s

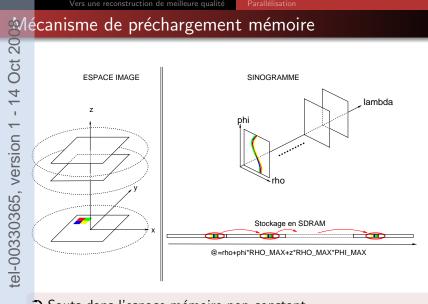
lambda(phi, delta) = ...

// INTERPOLATION BILINE

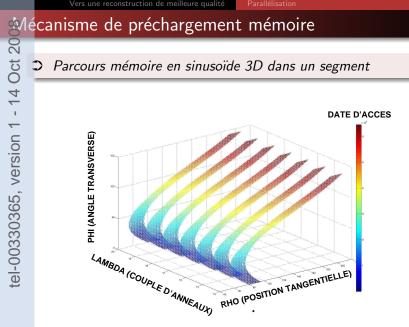

bin<sub>interp</sub> = C_{00} · bin<sub>00</sub> + C_{01} ·

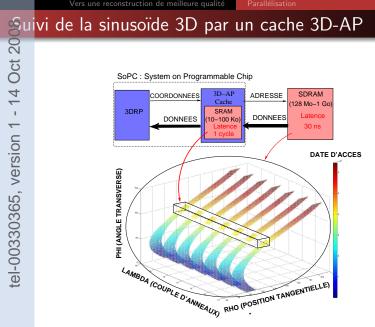
// ACCUMULATION

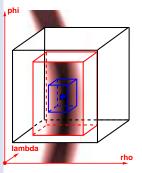

f^*(xn, yn, zn) = f^*(xn, yn, zn


end for

end for
                                         // CALCUL DES COORDONNEES
                                         rho(phi) = xn \cdot cos \phi + yn \cdot sin \phi
                                         // INTERPOLATION BILINEAIRE
                                         bin_{interp} = C_{00} \cdot bin_{00} + C_{01} \cdot bin_{01} \dots
                                          f^*(xn, yn, zn) = f^*(xn, yn, zn) + bin_{interp} \cdot J_{\Delta}
                       end for
                  end for
```



• Bloc de $16^2 \cdot 3 : \simeq 9$ sans interpolation bilinéaire ($\simeq 36$ avec)

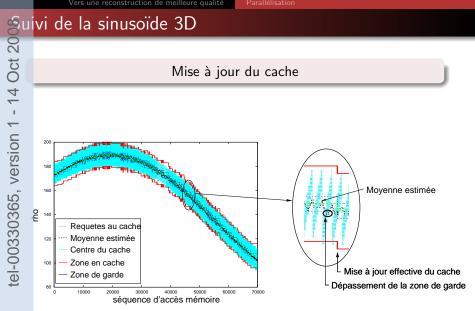



Sauts dans l'espace mémoire non constant

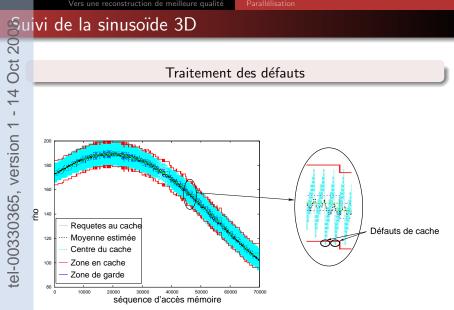
Parcours mémoire en sinusoïde 3D dans un segment

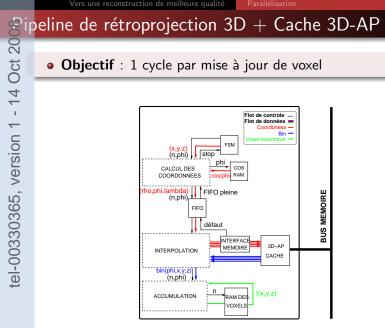
édiction par analyse statistique tel-00330365, version 1 - 14 Oct 2008

zone en cache | memoire cache centre du cache zone de garde

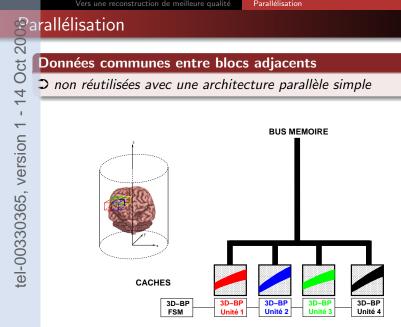

Coordonnées des accès mémoire précédents

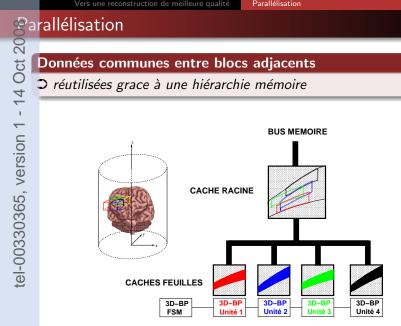
$$\overrightarrow{bin}(n) = \begin{pmatrix} phi(n) \\ rho(n) \\ lambda(n) \end{pmatrix}$$


Calcul de la moyenne des coordonnées


Filtre IIR de premier ordre

Mise à jour du cache


Traitement des défauts


Données communes entre blocs adjacents

non réutilisées avec une architecture parallèle simple

Données communes entre blocs adjacents

Tréutilisées grace à une hiérarchie mémoire

- Accélération de la reconstruction 3D en imagerie médicale TEP
- Adéquation Algorithme Architecture
- Performances de l'architecture 3P
 - Protocole de mesure
 - Qualité et efficacité de reconstruction
 - Etude comparative sur CPU/GPU/FPGA
- Vers une reconstruction de meilleure qualité
- 6 Conclusion et Perspectives

Protocole de mesure

Etude en simulation

- Premiers "calibrages" du cache
- Impossibilité de traiter des données de taille "réelle"

Prototypage de l'architecture 3P


- Implémentation sur un SoPC
- Simulateur du bus mémoire
 - ⊃ Paramétrage de la latence et du débit mémoire

Données utilisées

- Sinogrammes correspondant au scanner HR+ de Siemens
- Précorrections sur STIR (filtrage, correction en arc ...)

1 Comportement du cache 3D-AP • η_{defaut}: taux de défaut de cac • η_{cache}: taux de réutilisation de 2 Efficacité de reconstruction • Nombre de cycles d'horloge pa 3 Qualité de reconstruction • EAM_r: Erreur Absolue Moyen

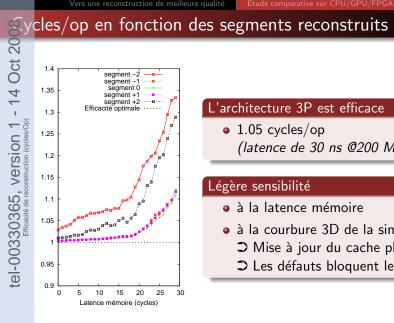
- - η_{defaut}: taux de défaut de cache
 - η_{cache}: taux de réutilisation des données mises en cache
- - Nombre de cycles d'horloge par mise à jour de voxels
- - EAM_r: Erreur Absolue Moyenne relative

Oct 2			1 unité	4 unités	9 unités		
1 -	Rétro 3D	slices CLB Multiplieurs	573 12	1 817 48	3 924 108		
sion 1	Cache 3D-AP	slices CLB RAMs	672 2 Ko	2 830 24 Ko	4 804 36 Ko		
ö, vers	Rétro 3D + Cache 3D-AP	slices CLB	1 245 (9.1%)	4 637 (32.9%)	8 728 (63.7%)		
330365 ×	Tunité 4 unités 9 unités Rétro 3D slices CLB 573 1 817 3 924 Multiplieurs 12 48 108 Cache 3D-AP slices CLB 672 2 830 4 804 RAMs 2 Ko 24 Ko 36 Ko Rétro 3D + slices CLB 1 245 4 637 8 728 Cache 3D-AP slices CLB 1 245 4 637 8 728 Cache 3D-AP (9.1%) (32.9%) (63.7%) Xilinx 2VP30 (13 696 slices, 136 multiplieurs, 306 Ko RAMs)						

			1 unité	4 unités	9 unités
	Rétro 3D	slices CLB	573	1 817	3 924
		Multiplieurs	12	48	108
	Cache 3D-AP	slices CLB	672	2 830	4 804
		RAMs	2 Ko	24 Ko	36 Ko
	Rétro 3D +	slices CLB	1 245	4 637	8 728
	Cache 3D-AP		(9.1%)	(32.9%)	(63.7%)
×	Rétro 3D Cache 3D-AP Rétro 3D + Cache 3D-AP Cilinx 2VP30 (13) 3 unités sur un Valimitation dûe a	696 slices, 136	o multiplie	urs, 306 Ko	RAMs)

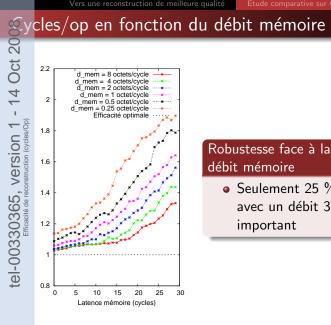
The comportement du cache 3D-AP cache suit correctement la sinusoïde $\eta_{defaut} \simeq 0.1$ % pour un cache no $\eta_{defaut} \simeq 0.2$ % pour un cache hié $\eta_{cache} \simeq 0.2$ % pour un cache hié

Le cache suit correctement la sinusoïde 3D

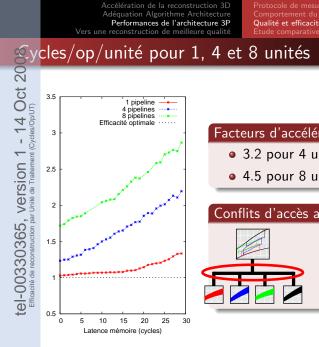

- ullet $\eta_{defaut} \simeq 0.1 \%$ pour un cache non hiérarchique
- $\eta_{defaut} \simeq 0.2 \%$ pour un cache hiérachique avec 8 unités

Difficulté à suivre "au plus près" une courbe 3D

• $\eta_{
m cache\ feuille} \simeq 10\ (\simeq 36\ {
m id\'ealement})$


Hiérarchie mémoire utile à partir de 8 unités

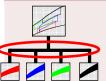
- $\eta_{
 m cache\ racine} \simeq 1.1$ pour 4 unités ($\simeq 3.5$ idéalement)
- $\eta_{
 m cache\ racine} \simeq 1.7$ pour 8 unités ($\simeq 5$ idéalement)


(latence de 30 ns @200 Mhz)

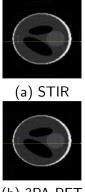
- à la courbure 3D de la sinusoïde
 - → Mise à jour du cache plus long
 - ⇒ Les défauts bloquent le pipeline

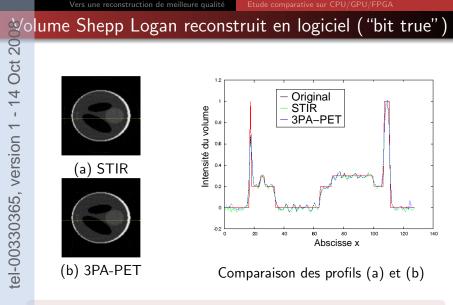
Robustesse face à la dégradation du

 Seulement 25 % moins efficace avec un débit 32 fois moins

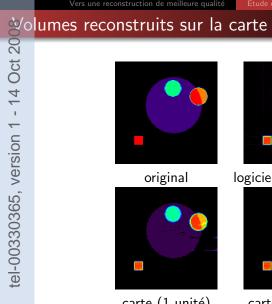


tel-00330365, version


Facteurs d'accélération

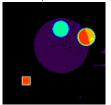

- 3.2 pour 4 unités
- 4.5 pour 8 unités

Conflits d'accès au cache racine



- → Duplication de la mémoire racine
- Désynchronisation des calculs

• Reconstruction de qualité satisfaisante ($EAM_r \simeq 1 \%$)



carte (1 unité)

logiciel (virgule fixe)

carte (8 unités)

nplémentation sur CPUs


Caractéristiques du Pentium 4 et du bi-Xeon dual core

- Puissance de calcul : 3.2 GFlops (P4), 12 GFlops (bi-Xeon)
- Caches set associatifs (L1: 16/32 Ko, L2: 2 Mo)

Optimisations sur CPU

- Introduction localité spatiale et temporelle
 - ⊃ accélération d'un facteur 3
- Réduction du nombre d'opérations par mutualisation des calculs
 - ⊃ accélération d'un facteur 7
- Parallélisation avec la librairie pthread sur 4 coeurs (bi-Xeon)

rchitecture des GPUs 8800 de Nvidia

Caractéristiques du GTS 8800

- Puissance de calcul : 260 GFlops (8*12 PEs)
- Caches 2D de texture (8 Ko)

ptimisations sur GPU

Parallélisation conservant la localité spatio-temporelle

- Reconstruction par blocs de voxels
- Reconstruction "en parallèle" des voxels adjacents dans chaque bloc de voxels

Réduction du nombre d'opérations par mutualisation des calculs

⊃ Accélération d'un facteur 2

mps de	Reconstruction	sur CPU/GP	U/FPG	Α	
	Reconstruction :				
	Hardware	Nb Unités de	Temps	Cycle	s/Op
		Traitement		/UT	total
	Pentium 4	1	2.5 s	16	16
CPU	(3.2 Ghz, 6.4 Go/s)				
	bi-Xeon dual core	4	294 ms	7,12	1,78
	(3 Ghz, 10.6 Go/s)				
GPU	GTS8800	96	50 ms	12.9	0.135
	(1.2 Ghz, 64 Go/s)				
FPGA	Virtex 4	8	526 ms	1,7	0,21
	(200 Mhz, 0,8 Go/s)				
ASIC	5*3PA-PET	40	27 ms	2.62	0,065
	(1.2 Ghz, 24 Go/s)				

mps de	Reconstruction	sur CPU/GP	Nb Unités de Temps Cycles/Op				
	Hardware	Nb Unités de	Temps	Cycle	s/Op		
		Traitement		/UT	total		
	Pentium 4	1	2.5 s	16	16		
CPU	(3.2 Ghz, 6.4 Go/s)						
	bi-Xeon dual core	4	294 ms	7,12	1,78		
	(3 Ghz, 10.6 Go/s)						
GPU	GTS8800	96	50 ms	12.9	0.135		
	(1.2 Ghz, 64 Go/s)						
FPGA	Virtex 4	8	526 ms	1,7	0,21		
	(200 Mhz, 0,8 Go/s)						
ASIC	5*3PA-PET	40	27 ms	2.62	0,065		
	(1.2 Ghz, 24 Go/s)						

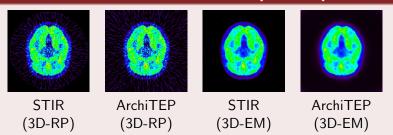
- Accélération de la reconstruction 3D en imagerie médicale TEP
- Adéquation Algorithme Architecture
- 3 Performances de l'architecture 3P
- Vers une reconstruction de meilleure qualité
- 6 Conclusion et Perspectives

lgorithme 3D-RP et 3D-EM

Algorithme 3D-RP

- Algorithme analytique
- Etape de projection utilisée afin d'utiliser les segments inter-anneaux

Algorithme 3D-EM


- Algorithme itératif bayesien
- Etape de projection fait partie intégrante du processus itératif

Paire matérielle de projection/rétroprojection

- Rétroprojecteur "voxel-driven" avec interpolation bi-linéaire
- Projecteur par lancer de rayon [Mancini07]

Qualité de reconstruction

Reconstruction des volumes PET-SORTEO [Reilhac05]

Quantification de l'écart de reconstruction avec STIR

- ullet $\simeq 1\%$ pour l'algorithme 3D-RP
- $\bullet \simeq 3\%$ pour l'algorithme 3D-EM

Virtex 4 (200 Mhz) vs Pentium 4 (3.2 Ghz)

	Vers i	ine reconstru	ction de meilleu	re qualité	~		
æfl	ficacité	de rec	onstruc	ction			
20							
t							
Ŏ							
4							
- 1	Virtox 1	200 146	ız) vs Per	atium 1	(2 2 Ch	-)	
7	virtex 4 (iz) vs rei	ILIUIII 4			
		Accélération			Gain en efficacité		
.0		A	ccélérati	on	Gain	en effic	cacite
ersio		par ra	ccélérati apport à	on STIR		i en effic apport à	
, versio		par ra	ccélérati apport à Rétro.	STIR Total			
65, versio	3D-RP	par ra	ccélérati apport à Rétro. 17.5	STIR Total 7.5	par ra	apport à	STIR
0365, versio	3D-RP 3D-EM	par ra Proj. 6 3	ccélérati apport à Rétro. 17.5 12	STIR Total 7.5 3.5	par ra Proj.	a pport à Rétro.	STIR Total
330365, versio	3D-RP 3D-EM	par ra Proj. 6	ccélérati apport à Rétro. 17.5 12	STIR Total 7.5 3.5	par ra Proj. 95	apport à Rétro. 300	STIR Total 120
00330365, versio	3D-RP 3D-EM	par ra Proj. 6 3	ccélérati apport à Rétro. 17.5 12	on STIR Total 7.5 3.5	par ra Proj. 95	apport à Rétro. 300	STIR Total 120
el-00330365, versio	3D-RP 3D-EM	par ra Proj. 6	ccélérati apport à Rétro. 17.5 12	STIR Total 7.5 3.5	par ra Proj. 95	apport à Rétro. 300	STIR Total 120
tel-00330365, versio	Virtex 4 (3D-RP 3D-EM	Proj. 6 3	ccélérati apport à Rétro. 17.5 12	STIR Total 7.5 3.5	par ra Proj. 95	apport à Rétro. 300	STIR Total 120

- Accélération de la reconstruction 3D en imagerie médicale TEP
- Adéquation Algorithme Architecture
- Performances de l'architecture 3P
- Vers une reconstruction de meilleure qualité
- 6 Conclusion et Perspectives

Démarche d'Adéquation Algorithme Architecture

- Lever du verrou technologique constitué par le "mur mémoire"
 - → Parcours mémoire en sinusoïde 3D + Cache 3D-AP
- Généricité de la stratégie mémoire adoptée

Accélération de la rétroprojection 3D sur CPU/GPU/FPGA

- Fort impact fort de la localité spatio-temporelle
- GPU plus rapide mais architecture 3P plus efficace

Vers une reconstruction de meilleure qualité

⇒ algorithmes 3D-RP et 3D-EM

Perspectives

Amélioration de la parallélisation des calculs

- Parallélisation sur une puce SoC
- Parallélisation sur carte multi SoPCs
 - ⊃ carte du projet ArchiTEP : 1+6 Virtex 4

Accélérations Algorithmiques

OSEM, sous échantillonage, méthodes "divide and conquer"

Tomographie CT

• Rétroprojection à faisceaux coniques

Merci de votre attention!