
UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR
Sciences

École Doctorale STIC

THÈSE

pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice-Sophia Antipolis

Discipline: Informatique

présentée et soutenue par Carlos GRANDÓN

Résolution de systèmes d’équations de
distance avec incertitudes

Thèse dirigée par Bertrand Neveu
et préparée à l’INRIA Sophia-Antipolis, projet COPRIN

Soutenue le 22 Mars 2007

Jury:

M. Benhamou, Frédéric Professeur Rapporteur

M. Jaulin, Luc Professeur Rapporteur

M. Lhomme, Olivier Principal Scientist Examinateur

M. Neveu, Bertrand Ingénieur en Chef P.C. Directeur de thèse

M. Rueher, Michel Professeur Président

Mme. Sam-Haroud, Jamila Professeur assistant Examinateur

2

Abstract

In this thesis we are interested in a particular class of problems which frequently

appear in robotics (and many other areas as chemistry, molecular biology, Compu-

ter-Aided Design (CAD), and aeronautics). They are systems of distance equa-

tions with uncertainties.

Uncertain values mean values which are not exactly determined but are bounded

by well-known limits. These values are represented as intervals, and frequently

come from measurements. In a model, these values appear as existentially quan-

tified parameters.

Solving such a problem with uncertainties means to find a set of solutions

taking into account these inaccuracies in order to obtain certified answers (in the

way that no solution is lost).

The aim of the works contained in this thesis is to solve systems of distance

equations with uncertainties in their parameters as accurately as possible, combin-

ing techniques from Constraint Programming and Interval Analysis communities.

A common approximation for the solutions for these types of problems is to

replace parameters with interval values by real numbers, and to solve the problem

without considering the inaccuracies. We show that this approximation is not

convenient, especially when certified solutions are required (for example for safely

reasons for a Surgical Robot).

In a first phase, we propose a special Branch and Prune algorithm with condi-

tional bisection which is able to compute a rough approximation of each continuum

of solutions for a given problem.

A rough approximation (a box) is not enough in all the cases, thus a sharp

approximation (a set of boxes) describing continuous solution sets is often required.

We show that this approximation must consider an inner box test in order to

detect large parts of the search space containing only solutions to the problem.

Using inner box tests not only reduces the number of generated boxes but also

provides more information about the geometry of the solutions set. We propose

and compare various inner box tests for distance equations with uncertainties.

When a single solution point belonging to a continuum of solutions is given,

an inner box around this point and totally included within the continuum of

solutions may be very interesting for tolerance issues. For this reason we propose

a strategy for building such a box based on theoretical results of Modal Interval

Analysis combined with a well-known technique of Constraint Programming called

3

projection.

Finally, the developed techniques are illustrated on a real problem of Robotics

in which we solve the direct kinematics of a special class of parallel robot.

4

Résumé

Nous nous intéressons dans le cadre de cette thèse à une classe particulière de

problèmes qui apparaissent fréquemment en robotique (et dans beaucoup d’autres

domaines comme la chimie, la biologie moléculaire, la conception assistée par or-

dinateur (CAO), et l’aéronautique). Ces sont les systèmes d’équations de distance

avec des incertitudes.

Nous considérons les valeurs entachées d’incertitudes comme des valeurs qui

ne sont pas exactement connues mais que l’on peut considérer comme étant dans

des limites bien définies. Ces valeurs sont représentées par des intervalles, et

représentent fréquemment les mesures de quantités physiques. Dans les modèles,

elles peuvent apparâıtre sous forme de paramètres existentiellement quantifiés.

Résoudre un problème avec des incertitudes signifie trouver l’ensemble des

points solutions en considérant les inexactitudes des données, afin d’obtenir des

réponses certifiées (dans le sens où aucune solution n’est négligée).

Le but des travaux contenus dans cette thèse est de résoudre des systèmes

d’équations de distance avec des incertitudes dans leurs paramètres de la manière

la plus précise possible, en combinant différentes techniques d’analyse par inter-

valles et de programmation par contraintes.

Une approximation fréquemment utilisée pour gérer de tels problèmes est de

remplacer les paramètres mal connus par des valeurs réelles, et ainsi ne pas prendre

en compte les incertitudes. Nous montrons que cette approche n’est pas adaptée,

surtout quand les solutions doivent être certifiées (par exemple, pour des raisons

de sécurité pour un robot chirugical).

Dans une première phase, nous proposons un algorithme spécifique de type

Branch and Prune combiné avec une bissection conditionnelle qui permet de cal-

culer une approximation grossière des différents ensembles contenant des continu-

ums de solutions pour un problème donné.

Comme la donnée d’une approximation grossière (une bôıte) de chaque con-

tinuum de solutions n’est pas suffisante dans tous les cas, il est parfois nécessaire

de calculer une approximation plus précise décrivant chaque ensemble continu de

valeurs admissibles. Nous montrons que pour calculer cette approximation, il faut

considérer un test de bôıte intérieure, afin de détecter des parties de l’espace con-

tenant seulement des solutions au problème. L’utilisation d’un tel test réduit la

quantité de bôıtes produites, et fournit plus d’informations à propos des différentes

zones solutions. Nous proposons et comparons quelques tests adaptés pour les

5

équations de distance avec incertitudes.

Étant donné un point solution appartenant à un continuum de solutions, on

peut s’intéresser à une bôıte autour de ce point qui soit totalement incluse dans

le continuum de solutions (pour des raisons de tolérance, par exemple). Pour

cela nous proposons une stratégie de construction d’une telle bôıte basée sur des

résultats théoriques sur les intervalles modaux combinés avec une technique connue

de programmation par contraintes appelée projection.

Finalement, nous illustrons les techniques développées dans cette thèse sur un

problème de robotique qui consiste à calculer la position et l’orientation d’un robot

parallèle.

6

Remerciements/Agradecimientos/Acknowledgements

I had the chance of being helped by people speaking many different languages. It

is for this reason that I would like to thank each of them in his/her own language.

Tout d’abord, je souhaite remercier chaleureusement Bertrand Neveu, mon

directeur de thèse qui a cru en moi depuis le début (mon stage), pour ses grandes

qualités personnelles et professionnelles avec lesquels il a su encadrer ma thèse.

Sa disponibilité (toujours à 100%) et la qualité de ses remarques ont été un pilier

fondamental de ma réussite. Merci Bertrand!

Je tiens à remercier aussi Frédéric Benhamou et Luc Jaulin pour avoir accepté

d’être à la fois rapporteurs de ma thèse et membres du jury, et pour la qualité de

leurs remarques que j’ai énormément appréciée. Je remercie aussi Olivier Lhomme,

Michel Rueher et Jamila Sam-Haroud pour avoir accepté de faire partie de mon

jury de thèse.

Ma plus profonde gratitude à tous les membres du projet COPRIN, en par-

ticulier à Jean-Pierre Merlet (chef du projet), pour m’avoir accueilli dans son

équipe et m’avoir aidé à mieux comprendre plusieurs sujets auxquels je me suis

intéressé pendant mes années d’études. Un très grand merci à David Daney, que

je considère comme un catalyseur de la recherche au centre du projet. Merci à

lui pour faire les liens entre les travaux de différentes personnes et pour favoriser

l’échange des idées entre elles.

Je voudrais exprimer ma gratitude à tous mes collègues et amis (Alexandre

Goldsztejn, Gilles Chabert, Gilles Trombettoni, Odile Pourtallier, Yves Papegay,

Raphaël Pereira...), pour m’avoir supporté et encouragé pendant mes moments de

doute et de faiblesse. Merci à tous!

Evidemment, je ne peux pas oublier deux personnes qui m’ont beaucoup aidé à

surmonter d’autres difficultés et ont contribué au bon déroulement de ma thèse (et

qui n’ont pas forcément de rapport avec la recherche) Vanessa Wallet et Corinne

Mangin. J’apprécie tous vos efforts et votre travail.

Una parte muy importante en el éxito de una persona es el apoyo de su familia

y amigos. Por esta razón quiero expresar mis más profundos agradecimientos a

mi familia: Marcela, Patricio y Valentina, que estuvieron conmigo y compartieron

mis altos y bajos a lo largo de mis años de estudio. Gracias por su tiempo y

esfuerzo. Sin ustedes, no habŕıa podido llegar a un final exitoso.

7

Gracias a mis amigos de la “mafia latinoamericana”: chilenos, argentinos,

mexicanos, colombianos, todos los que me acompañaron y apoyaron durante todos

estos años. Mis agradecimientos especiales a Gonzalo, Tomás, Marcelo, Nelson,

Tamara, Antonio, Mario y tantos otros que estuvieron siempre ah́ı cuando tuve

algún problema. Muchas gracias muchachos!

To conclude, I would like to thank all the people that have contributed in some

way to the good end of this work and that I have not explicitly named above for

some reason.

This work was partially supported by the National Commission for Scientific

and Technological Research (CONICYT), Chile.

Contents

1 Introduction 12

1.1 Problem Statement . 15

1.2 Outline of the Document . 16

I State of Art and Related works 18

2 Constraint Programming 20

2.1 A Short Introduction . 21

2.2 Constraint Satisfaction Problems 22

2.2.1 Constraints . 24

2.3 Solving Phase . 25

2.3.1 Searching Process . 26

2.3.2 Complete Algorithms . 27

2.3.3 Consistency Techniques . 31

2.3.4 Backtracking and Consistency Techniques 37

2.4 Conclusions . 41

3 Interval Analysis 42

3.1 Intervals . 44

3.2 Interval Arithmetic . 47

3.2.1 Properties of Interval Arithmetic 49

3.3 Union and Intersection . 50

3.4 Interval Functions . 51

3.5 Solving Equations Systems . 55

3.5.1 An Evaluation/Bisection Algorithm 56

3.5.2 Fixed Point based Methods 58

3.5.3 Unicity Operator . 62

8

CONTENTS 9

3.6 A Note about Implementation . 63

3.6.1 Software and Libraries . 64

3.7 Generalized and Modal Intervals 65

3.7.1 Generalized Intervals . 66

3.7.2 Kaucher Arithmetic . 67

3.7.3 Modal Intervals . 69

3.8 Conclusions . 73

4 Constraint Programming and Intervals 74

4.1 Introduction . 75

4.2 Numeric Constraint Satisfaction Problem 75

4.3 Filtering Techniques . 76

4.3.1 2B-consistency . 77

4.3.2 3B-consistency . 80

4.3.3 Box-consistency . 82

4.3.4 Bound-consistency over continuous domains 83

4.4 Domain splitting strategies . 84

4.5 Uncertainty and Approximations 86

4.5.1 Quantified Parameters . 88

4.5.2 Solution Representation . 89

4.6 Solving NCSP . 90

4.6.1 The Branch and Prune Algorithm 91

4.6.2 Improving the Solving Phase 92

4.7 Solving Distance Constraints . 94

4.8 Conclusions . 97

II Contributions 100

5 Separating Continua of Solutions 102

5.1 A brief description . 102

5.2 The basis algorithm . 104

5.2.1 An inner box test . 105

5.3 Drawbacks of the first approach . 106

5.4 Rough approximation of continua of solutions 108

5.5 Conclusions . 110

CONTENTS 10

6 An application in Robotics 112

6.1 Introduction . 113

6.2 A Formal Model . 115

6.3 The Solving Process . 115

6.3.1 Algebraic Reduction . 115

6.3.2 Interval Evaluation . 117

6.3.3 Constraint Programming 119

6.4 The CATRASYS measuring system 119

6.4.1 Experimental Results . 121

6.5 Conclusions . 124

7 Improving the inner box detection 126

7.1 Introduction . 127

7.2 Quantifier Elimination . 128

7.2.1 Quantifier Elimination Problem 129

7.3 A Test Based on Quantifier Elimination 130

7.3.1 The Two Dimensional Case 130

7.3.2 The Three Dimensional Case 132

7.3.3 Implementation . 135

7.3.4 Preliminary Results . 136

7.4 A Test based on Generalized Interval 140

7.4.1 Generalized Interval Evaluation of a Distance Constraint . 141

7.5 Inner Boxes for Systems of Distance Equations 142

7.5.1 Quantifier Elimination versus Generalized Interval 142

7.6 An Optimal Inner Box Test for Distance Equations 145

7.7 Conclusion . 148

8 Generalized Interval Projection 152

8.1 Introduction . 153

8.2 Exploiting the Inner Box Test . 155

8.2.1 A General Inner Box Test 156

8.3 A Generalized Interval Projection 156

8.3.1 Overview . 157

8.3.2 Base case (x ⊆ z) . 158

8.3.3 Basic function (φ(g(x, y, v)) ⊆ z) 158

8.3.4 Binary Operator (g(x, y, v) ⋆ h(y, v) ⊆ z) 160

8.4 An Example with the Relay Problem 162

CONTENTS 11

8.5 Conclusions . 165

9 Conclusions 168

9.1 Future Works . 170

Chapter 1

Introduction

Many problems in chemistry, robotics, or molecular biology can be modeled as

solving a system of equations and inequalities. Although in some particular cases

these systems can be easily solved, in the general case they are not. Among the

most important difficulties that it is necessary to handle are the non-linearity of

the equations/inequalities and the uncertainties.

In this thesis we are interested in a particular class of equations which fre-

quently appear in robotics (and other areas) and are the so-called Distance Equa-

tions [21].

A distance equation is a relation between two points in a n-dimensional space

that constraints their relative position. In this document only Euclidean distances

are considered, therefore the expression of this relation between two points ~x, ~y ∈Rn is as follows:

d(~x, ~y) =

√
√
√
√

n∑

i=1

(xi − yi)2 (1.1)

where xi and yi are the coordinates of ~x and ~y in the Euclidean space, respec-

tively.

A set of points in space constrained by distance equations forms a system of

distance equations. Solving such a system means to determine the position of each

unknown point, based on the position of the known fixed points and the set of

distance equations between them.

Many real-life problems involve these types of systems. Here are some examples

in different areas:

12

CHAPTER 1. INTRODUCTION 13

Robotics

Solving the kinematics relationship of a robot is a fundamental problem in Robotics

and Control [143, 145]. This problem relates the position and orientation of the

robot end-effector to the set of the control parameters associated to the robot.

Kinematics involves two fundamental questions:

1. Direct Kinematics: being given the design parameters of the robot and a set

of control input, determine the pose of the end-effector.

2. Inverse Kinematics: being given the design parameters of the robot and a

pose for the end-effector, find the control input.

The first one is a difficult problem for parallel robots [144] because it involves a

system of non-linear equations with (most of the time) several possible solutions.

On the other hand, solving the inverse kinematics of a parallel robot is (usually)

easier than the direct kinematic, but depends on the mechanical structure of the

robot.

A possible formulation for both problems involves a system of distance equa-

tions. This system relates a set of parameters (i.e. the coordinates of some specific

points of the robot and the lengths of some robot’s components) with the position

of the end-effector.

Molecular Biology

It is well-known that proteins play an important role in metabolism control. One

of the main factors of their effectiveness depends on their spatial structure. For

this reason, finding the possible structures of protein (i.e. their conformation) is

one of the major problems in molecular biology.

One of the methods to determine these structures is based on the resolution of a

system of distance equations, the distance being measured with Nuclear Magnetic

Resonance (NMR) data. The measurement principle is to irradiate a molecule

using different frequencies, and to measure the influence that one resonating nu-

cleus may have on nearby nuclei. As this influence is proportional to the distance

between nuclei, a system of distance equations can be obtained [44].

Many strategies have been applied to this problem, and some of them are based

on a Constraint Programming approach [8, 127].

CHAPTER 1. INTRODUCTION 14

Aeronautics

For navigation and safety reasons the pilot of an airplane must always know the

altitude of the plane. In order to do it the pilot relies on redundant measurements

(i.e. different measurement systems are used). A common and well-known mea-

surement system is based on the pressure of the atmosphere (which depends on

the altitude). Eventhough this is a good system, it cannot be the only one.

Another interesting measurement system is based on distance information be-

tween the plane and some fixed points on the ground [175]. In this system, a radio

receiver is installed in the plane, and it is configured for receiving information

coming from three or more ground level fixed antennas. This information gives

an approximate distance between the plane and each antenna, and it is combined

with the known position of the antennas in a system of distance equations.

The same principle is used for Global Positioning System (GPS). A formal

method for solving these types of problems (without considering uncertain data)

has been proposed in [137].

The previous three examples are only some situations involving distance equa-

tions. It is important to notice that in many of them, part of the input data may

come from measurements (e.g. the distances in the molecular biology problem)

or relies on some a-priori information (e.g. the respective location of the specific

parts on the robot). In both cases these values are only approximations of the

actual values. We call them values with uncertainty.

There are various forms to express these uncertainties. For example, associat-

ing a probability distribution to the error, giving several possible values, or simply

giving two limits representing their possible minimum and maximum values. In

this thesis, the last option has been selected to represent the uncertainty, and

the only additional information required is a bounded error for the values of the

parameters of a system.

Thus, some parameters of a system are represented by intervals.

The use of intervals for representing uncertainties in the input data can have

different meanings, and it is important to specify which is the associated interpre-

tation. For example, solving the simple equation a · x = b, where x is the variable

and a, b represent parameters with interval values may raise different issues:

• Finding all the values x for which there exist a and b such that a · x = b?

• Finding all the values x such that for all values a there exists a value b,

CHAPTER 1. INTRODUCTION 15

a · x = b?

• Finding all the values x such that for all b there exists a value a, a · x = b?

• Finding all the values x for which for all a and b, a · x = b?

Actually, some of them have a sense which is directly related with the charac-

teristics of the given problem.

1.1 Problem Statement

This thesis is dedicated to the solving of systems of distance equations with un-

certainties. Being given a set of points ~xp ∈ Rn (p = 1, . . . , n) and a set of

distances djk (j, k ∈ {1, . . . , n}) between them, we are interested in the system of

m equations:

eqi :
n∑

l=1

(xjl − xkl)
2 = d2

jk j, k ∈ {1, . . . , n}; i = 1, . . . ,m (1.2)

where xjl represents the coordinate l of the point ~xj , and d2
jk represents the square

of the distance between the points ~xj and ~xk.

Some points and the distances are considered as parameters of the problem.

Parameters with uncertainty are represented by intervals, thus a fixed point with

uncertainty is represented by an interval vector.

We define a solution of the problem as an instantiation of the unknown points

such that there exists a value of the parameters for which all the equations in the

system are verified.

Example 1.1.1 Consider the following system of two distance equations:

(x11 − x21)
2 + (x12 − x22)

2 = d2
12 (1.3)

(x11 − x31)
2 + (x12 − x32)

2 = d2
13 (1.4)

where ~x1 = (x11, x12) is unknown and ~x2 = (x21, x22), ~x3 = (x31, x32), d
2
12, and d2

13

are parameters of the system.

The aim of the works presented in this thesis is to describe the set of all

solutions of the problem as accurately as possible. As the set of solutions are not

isolated points in the space but continuous solution sets, different strategies to

CHAPTER 1. INTRODUCTION 16

approximate these solution sets have been developed. These strategies are based

on two different but complementary approaches: Interval Analysis and Constraint

Programming.

1.2 Outline of the Document

This document is divided into two parts. The first part presents the basis of two

approaches for problems solving: Constraint Programming and Interval Analysis.

The second part contains the contributions of the thesis.

The first part is composed of three chapters. In Chapter 2, an introduction to

Constraint Programming (centered on finite domains) and a set of techniques for

problem solving are given. Chapter 3 introduces Interval Analysis and the set of

tools to obtain reliable results in computational operations. These tools include

techniques for solving systems of non-linear equations in a numerical way. Chapter

4 presents the combination of Constraint Programming and Interval Analysis as

complementary approaches for problem solving.

The second part is composed of four chapters. Chapter 5 discusses a first

approach for solving a system of distance equations with uncertainties and some

limitations of it. A new strategy based on conditional bisection is then introduced

in order to overcome some of these liminations. In Chapter 6, an application of

this and other techniques for a special class of parallel robot is discussed. Chapter

7 introduces two techniques for detecting boxes included inside the solution set of a

problem. These techniques are called inner boxes tests. Chapter 8 presents a new

technique for extending domains of the variables in a consistent way (ensuring that

all values are solutions of the problem). Finally, Chapter 9 contains the conclusion

of this thesis.

CHAPTER 1. INTRODUCTION 17

Part I

State of Art and Related works

18

Chapter 2

Constraint Programming

A basic principle of evolution is adaptation. Most species must find a compatible

state with the set of constraints imposed by their environment. It may seem that

it is not a frequent problem (or that it is restricted only to big changes in the

nature), but actually we always face the problem of finding a compatible state

with the set of constraints imposed by our environment. By environment we can

understand our family, our work or activities, the city in which we are living, etc.

Everything that we cannot control is a part of our environment.

Consider, for example, a man in a supermarket trying to put his objects in a

little box. He has essentially a space constraint and must find a good arrangement

for all the objects in the box. A woman needs to buy several things in different

parts of a big city during the day must find a good schedule for her visits. She has

a time constraint. A boy painting a map with a limited number of colors, must be

sure that two adjacent countries have not the same color. He has a compatibility

constraint.

In all these examples we have some things that we can control and some

constraints that we must respect. This is exactly the cornerstone of an important

and powerful paradigm in computer science called Constraint Programming.

Constraint Programming (CP) is a declarative programming technique that

has grown from the collaboration of several research communities including Ar-

tificial Intelligence, Computational Logic, Programming Language, Mathematics,

and Operations Research. It is a good framework for modeling and solving difficult

combinatorial and optimization problems. A problem is typically characterized as

a state of the world containing a number of objects, and a set of relationships

between them that must be verified.

20

CHAPTER 2. CONSTRAINT PROGRAMMING 21

In this framework, a generic form to represent a problem is through a Con-

straint Satisfaction Problem (CSP), that is a model built from a set of variables

with associated domains and a set of relationships between these variables, called

constraints. A solution of the problem is an instantiation for each variable such

that all constraints are satisfied. This solution is commonly obtained with a solving

process that combines search and filtering techniques.

The aim of this chapter is to give a brief introduction of these concepts, that

will be useful thereafter. Section 2.1 presents a short introduction of Constraint

Programming and the main contributions received from other communities. Sec-

tion 2.2 introduces some concepts like CSP, equivalent CSP, CSOP, among some

others in a more formal way. Section 2.3 presents the main tools for solving Con-

straint Satisfaction Problems, including complete algorithms, consistency tech-

niques and combination of them. Finally, section 2.4 presents the conclusions of

this chapter.

2.1 A Short Introduction

The Constraint Programming community was formally born at the beginnings of

the nineties. Is is based on ideas coming from different communities as Artificial

Intelligence, Operations Research, Logic Programming and Mathematics. One of

its main characteristics is the use of constraints for representing a problem. Thus,

solving the problem means to find an instantiation of a set of variables that verifies

these constraints (see [135]).

In this framework, the process of solving a real-life problem can be separated

in two parts: the model, and the solving phase.

The model part means to express the real-life problem in the form of a set

of variables, domains and constraints; which is called a Constraint Satisfaction

Problem (CSP). This idea was originally introduced by the Artificial Intelligence

community (see [136, 150]) and later used in other communities like Constraint

Logic Programming and Operations Research.

The solving phase combines different strategies for searching solutions in the

space given for the domains of the variables. This search can be performed sys-

tematically or stochastically, and can combine several tools as the consistency

techniques (introduced in the area of Artificial Intelligence [136, 150, 208]), tree

search and backtracking techniques (commonly used in the area of Logic Program-

ming [38, 39, 40]), simplex method (used in Operations Research for problems

CHAPTER 2. CONSTRAINT PROGRAMMING 22

with linear constraints over reals domains [47]), and combinations of those (see

[91, 157]).

In order to perform this process automatically, many of these strategies have

been implemented in specific solvers or programming languages. One of the

first implementations of constraint programming languages was CHIP (Constraint

Handling In Prolog), introduced by Pascal van Hentenryck [93] and based on

PROLOG. It contains some ideas introduced by Jean-Louis Laurière [129], who

proposed the ALICE system (a general system for problem solving using logic).

CHIP introduced in logic programming new domains of computation: the in-

teger, rational, and boolean domains. It also combined the approaches of logic

programming with combinatorial search and constraint propagation in a new

paradigm characterized by its declarative nature [63, 106].

As CHIP, many other implementations of constraint programming have been

proposed in the form of libraries for particular programming languages or specific

solvers. Some examples are ILOG Solver [104, 105], Mozart-OZ [192], ECLiPSe

[5], Choco (Claire) [26], CHR [62], and JSolver [32]. A comparative study of some

of them can be found in [58].

2.2 Constraint Satisfaction Problems

The Constraint Satisfaction Problems (CSPs) have a long history from the works

of Waltz [208], Montanari [150], and Mackworth [136]. A CSP is basically a Model

which represents a real problem using a set of decision objects called variables.

From a formal point of view, a CSP is defined as follows:

Definition 1 (CSP) A CSP is a triple (X,D,C) where X = {x1, . . . , xn} de-

notes a set of variables, D = {Dx1 , . . . ,Dxn} denotes a set of associated domains

and C = {c1, . . . , cm} denotes a set of constraints.

Example 2.2.1 Consider the problem of the boy painting a map with a lim-

ited number of colors (presented at the beginning of this chapter), and consider

a set of variables x1, . . . , xn representing each country in the map. Let D =

{blue, red, yellow, ...} be the set of available colors for painting a country. This

problem can be easily modeled with the following CSP:

P = (X,D,C)

X = {x1, . . . , xn}

CHAPTER 2. CONSTRAINT PROGRAMMING 23

D = {Dxi
= {blue, red, yellow, ...} ∀i = 1, . . . , n}

C = {cij : xi 6= xj , ∀i adjacent to j}

Notice the declarative nature of the CSP. This model only gives the set of

characteristics that a solution must verify. Notice also that domain values do

not need to be a set of integers (although often they are), nor numerical. Some

examples of domains are:

• Boolean: in which only the values true or false are considered.

• Finite: in which a finite set of values or symbols are considered.

• Continuous: in which values are represented by intervals.

• Mixed: involving two or more of the above.

The set of all possible combinations of values from the domains of the variables

is called the search space, and is defined as follows:

Definition 2 (Search Space) Let P = (X,D,C) be a CSP with domains D =

{Dx1 , . . . ,Dxn}. The sub-space E = Dx1 × . . . × Dxn is called the search space

associated to P and corresponds to the Cartesian product of the domains of the

variables.

An element of the search space that verifies all the constraints is called a

solution. The set S of all solutions of the CSP in the search space is called the

solution space.

Some CSPs also require a solution that maximizes (or minimizes) an objective

function1. They are commonly called Constraint Satisfaction and Optimization

Problems (CSOPs). As an example, consider the same problem presented in ex-

ample 2.2.1, but with the following additional condition: minimize the number of

colors used for painting the map. Clearly, it becomes an optimization problem and

therefore a CSOP.

A real-life problem can often be represented in different ways, and therefore it

is possible to associate different CSPs. Actually, two CSPs are said equivalent if

they are the same solution space.

1Also called cost function in the Operations Research literature.

CHAPTER 2. CONSTRAINT PROGRAMMING 24

2.2.1 Constraints

The constraints are relations that restrict the possible values of the variables. A

constraint affecting only one variable is called unary constraint, while a constraint

affecting two variables is called binary constraint. Obviously a constraint affecting

n variables is called n-ary constraint, but only unary and binary constraints will

be considered in this section.

If all constraints of a CSP are at most binary constraints, the CSP can be

easily represented using a constraint graph. In a constraint graph, the variables

are represented by nodes and the constraints by edges. For example, consider the

problem of painting the map of the South American continent presented in Figure

2.1, using four colors: blue, yellow, red, and green. This problem can be modeled

Figure 2.1: Map of the South American continent.

with the following CSP:

P = (X,D,C)

X = {Ch,Ar,Ur,Br, Pa,Bo, Pe,Ec,Co, V e,Gu, Su,GF}

CHAPTER 2. CONSTRAINT PROGRAMMING 25

D = {Dk = {blue, yellow, red, green} ∀k = Ch, . . . , GF}
C = {Ch 6= Ar, Ch 6= Bo, Ch 6= Pe, Ar 6= Ur, Ar 6= Br, Ar 6= Pa,

Ar 6= Bo, Ur 6= Br, Br 6= Pa, Br 6= Bo, Br 6= Pe, Br 6= Co, Br 6= V e, Br 6= Gu,

Br 6= Su, Br 6= GF , Pa 6= Bo, Bo 6= Pe, Pe 6= Ec, Pe 6= Co, Ec 6= Co, Co 6= V e,

V e 6= Gu, Gu 6= Su, Su 6= GF}

and represented with the constraint graph shown in Figure 2.2.

Pa
Ar

Bo

Ch

Ur

Br

GF
Su

Gu

Ve

Pe

Co

Ec

Figure 2.2: Constraint graph of the problem.

2.3 Solving Phase

The process of solving a CSP may have different meanings. For example:

• to determine whether a solution exists,

• to find one or all solutions, or

• to find an optimal solution relative to an objective function.

The strategy used for performing this process depends on the type of the

domains of the variables. In this chapter, only CSP over finite domains will

be considered, because the most of the initial works in Constraint Programming

are related to these types of domains. CSPs over continuous domains and their

relations with Interval Analysis will be presented in Chapter 4.

When finite domains are considered, the search space of a CSP is composed by

a finite number of elements that increases exponentially in the number of variables.

This phenomenon is known as combinatorial explosion.

CHAPTER 2. CONSTRAINT PROGRAMMING 26

For some types of problems, there exists an algorithm that is able to solve them

in a polynomial time (in the worst case), but for the general CSPs this algorithm

does not exist.

The problems for which finding an answer takes a nondeterministic polynomial

time are called NP. For this type of problems it is possible to quickly (in polynomial

time) test whether a solution is correct, but finding this solution is generally a hard

task.

Among the NP problems, there exists a special family of problems known as

NP-complete. In this family, any problem can be reduced to another one (that

means, it is possible to transform a problem into a particular case of another one

using a polynomial time worst case algorithm). Therefore, if one problem of this

family could be solved in polynomial time, every problem in the family could be

solved in polynomial time. Anyway, many studies suggest that it is far to be

possible.

In the case of CSPs with finite domains (presented in this chapter), knowing

if there exists a solution to them (in the general case) is NP-complete. For this

reason, most of the works in Constraint Programming try to improve the perfor-

mance of the searching process, even though the process keeps non polynomial in

the worst case.

2.3.1 Searching Process

In order to find solutions in the search space of a CSP over finite domains, a

searching process must be performed. This process can be performed by searching

systematically through the possible assignments of values to the variables, or by

searching stochastically elements of the search space. Techniques based on the

first idea are called complete techniques, while the techniques based on stochastic

search are called incomplete.

Complete algorithms guarantee to find a solution if one exists or prove that

no solution exists. They are based on tree search and combine domain reduction

and constraint propagation in order to eliminate values from the domain of the

variables, which cannot be part of any solution of the problem. Their main draw-

back is that, in the worst case, these algorithms need to examine all the elements

of the search space and this process is sometimes computationally unfeasible for

real-life problems.

Incomplete algorithms generally use local search methods [163, 1], and address

the problems that cannot be solved by complete algorithms. Local search is based

CHAPTER 2. CONSTRAINT PROGRAMMING 27

on the concept of a neighborhood, which means to look for a solution near to a

given initial candidate solution. Among the most popular incomplete techniques

are Hill Climbing [177], Taboo search [69], and Simulated Annealing [117]. Genetic

and Evolutionary Algorithms [146] are also popular incomplete techniques, but

they are based on the simultaneous evolution of a set of candidate solutions and

generally address optimization problems.

In this document, only complete techniques are considered, mainly because

they give a guaranteed response. So, the expression solving the problem means to

find all the solutions of the problem (or to prove that no solution exists).

2.3.2 Complete Algorithms

Complete algorithms are based on the idea of searching systematically in the whole

search space of a problem. It means to test the elements of the search space and to

identify those that verify all constraints. The simplest method to perform this task

is called Generate-and-test. The main idea is to generate all possible combinations

of the values from the domains of the variables and to test if the generated element

is feasible (the element verifies every constraint). Its main drawback is the number

of generated candidates (that is equal to the cardinal of Cartesian product of all

the variable domains).

A better method is to use a tree search algorithm. These algorithms were first

introduced in the Artificial Intelligence community. The three basic algorithms

are [177]: Depth-first search, Breadth-first search, and Best-first search.

In Logic Programming, the Depth-first search algorithm is implemented under

the name of Backtracking algorithm and combined with the concept of failure in

the instantiation. In backtracking, the main idea is to instantiate the variables

sequentially, and to check a constraint as soon as the associated variables are

instantiated. If a partial instantiation violates any of the checked constraints,

then the value of the last instantiated variable is changed and the constraints are

re-checked. If no more values are available in the domain of a variable v, a failure

is detected and the algorithm comes back to the variable instantiated before v.

This is the backtracking process, and it allows one to eliminate a part of the

search space (that cannot contains any solution), improving the performance of

the search.

Anyway, if all the constraints of the problem involve all variables, backtracking

and generate-and-test will generate all possible combinations of the values in the

search space.

CHAPTER 2. CONSTRAINT PROGRAMMING 28

From now on, only binary CSPs will be used to explain the techniques as-

sociated to the solving phase on problems over finite domains. On one hand

due to their simplicity, and on the other hand because any CSP involving n-ary

constraints can be transformed into an equivalent CSP involving at most binary

constraints (as it has been shown in [180]).

Example 2.3.1 Consider the following CSP:

P = (X,D,C)

X = {x, y, z}
D = {Dx = {1, 2, 3, 4}, Dy = {1, 2, 3, 4}, Dz = {1, 2, 3}}
C = {c1 : x < y, c2 : y ≥ z, c3 : z > 2}

Table 2.1 presents the results of applying both the generate-and-test and the

backtracking algorithms for solving this CSP.

Generate-and-test x, y, z Backtracking x, y, z

(1, 1, 1) (2, 2, 2) (3, 3, 3) (1, ,) (2, 2,) (3, 4, 3)

(1, 1, 2) (2, 2, 3) (3, 4, 1) (1, 1,) (2, 3,) (4, ,)
(1, 1, 3) (2, 3, 1) (3, 4, 2) (1, 2,) (2, 3, 1) (4, 1,)
(1, 2, 1) (2, 3, 2) (3, 4, 3) (1, 2, 1) (2, 3, 2) (4, 2,)

(1, 2, 2) (2, 3, 3) (4, 1, 1) (1, 2, 2) (2, 3, 3) (4, 3,)

(1, 2, 3) (2, 4, 1) (4, 1, 2) (1, 2, 3) (2, 4,) (4, 4,)
(1, 3, 1) (2, 4, 2) (4, 1, 3) (1, 3,) (2, 4, 1)
(1, 3, 2) (2, 4, 3) (4, 2, 1) (1, 3, 1) (2, 4, 2)

(1, 3, 3) (3, 1, 1) (4, 2, 2) (1, 3, 2) (2, 4, 3)

(1, 4, 1) (3, 1, 2) (4, 2, 3) (1, 3, 3) (3, ,)

(1, 4, 2) (3, 1, 3) (4, 3, 1) (1, 4,) (3, 1,)
(1, 4, 3) (3, 2, 1) (4, 3, 2) (1, 4, 1) (3, 2,)

(2, 1, 1) (3, 2, 2) (4, 3, 3) (1, 4, 2) (3, 3,)
(2, 1, 2) (3, 2, 3) (4, 4, 1) (1, 4, 3) (3, 4,)

(2, 1, 3) (3, 3, 1) (4, 4, 2) (2, ,) (3, 4, 1)
(2, 2, 1) (3, 3, 2) (4, 4, 3) (2, 1,) (3, 4, 2)

Table 2.1: Results using Generate-and-test and Backtracking algorithms.

In the example 2.3.1, the problem has only five solutions (which are underlined

in the table 2.1). Both algorithms obtain the same solutions, but backtracking

generates only 38 elements instead of 48. It is because backtracking tests a partial

instantiation as soon as possible and eliminates a part of the search space when a

partial instantiation does not verify all the constraints.

CHAPTER 2. CONSTRAINT PROGRAMMING 29

Notice that the set of generated elements depends on the order in which vari-

ables are instantiated. For this reason, different heuristics for selecting the next

variable to be instantiated have been proposed. Among the most popular heuris-

tics are:

• selecting the next variable randomly,

• the variable with the smallest domain (also called the fail-first),

• the variable involved in the most of the constraints (also called maximum

degree).

These heuristics have shown to effectively reduce the number of generated ele-

ments and therefore to improve the computing time in the backtracking algorithm.

Table 2.2 shows the results of applying the same backtracking algorithm with

different instantiation orders.

Backtracking z, x, y Backtracking z, y, x

(, , 1) (2, , 3) (3, 3, 3) (, , 1) (3, 3, 3)
(, , 2) (2, 1, 3) (3, 4, 3) (, , 2) (4, 3, 3)

(, , 3) (2, 2, 3) (4, , 3) (, , 3) (,4, 3)
(1, , 3) (2, 3, 3) (4, 1, 3) (,1, 3) (1, 4, 3)

(1, 1, 3) (2, 4, 3) (4, 2, 3) (,2, 3) (2, 4, 3)

(1, 2, 3) (3, , 3) (4, 3, 3) (,3, 3) (3, 4, 3)

(1, 3, 3) (3, 1, 3) (4, 4, 3) (1, 3, 3) (4, 4, 3)

(1, 4, 3) (3, 2, 3) (2, 3, 3)

Table 2.2: Results using Backtracking with some heuristics.

The backtracking z, x, y first instantiates the variable with the fewest values

in the domain (because a failure of this instantiation will perform a big pruning

in the search space). If two variables have the same number of values in their

domains, then the alphabetic order is used.

The backtracking z, y, x uses both the fail-first and the maximum degree heuris-

tics. It first instantiates the variable with the fewest values in the domain, but if

two variables are the same number of values, then the maximum degree heuristic is

used (choosing the variable that is involved in the largest number of constraints).

This backtracking algorithm reduces the search space by early pruning zones that

cannot contain solutions due to an incompatible value in the domain of a variable,

and generates only 15 elements of the search space.

CHAPTER 2. CONSTRAINT PROGRAMMING 30

Sometimes, only one solution to the problem is needed. In this case, the

number of generated elements until finding a solution, depends on the order in

which values from the domains of the variables are selected. Among the well-

known value selection heuristics are random selection, minimum value selection,

and the value with the greatest probability of success (in this case additional

information about the problem is needed).

Although these heuristics improve the performance of backtracking, there ex-

ists another important drawback called the thrashing problem [67]. It is considered

as the main drawback of the pure backtracking algorithm and consists in searching

in different parts of the search space failing for the same reason.

In the results of Table 2.2, the first three values of the backtracking are due to

the constraint c3 : z > 2. This column would have a lot of values if the domain of

the variable z were bigger (e.g. {−100,−99, . . . , 3}). The same effect appears in

the backtracking column of Table 2.1 each time that variable z takes a value less

than 3.

This situation can be avoided by using some techniques to eliminate inconsis-

tent values from the domain of the variables, and therefore to prune parts of the

search space. These techniques are called consistency techniques and perform two

important processes in Constraint Programming: domain reduction and propaga-

tion. Consistency techniques are deterministic (as opposed to the search which is

non-deterministic), and sometimes they can find the solution of a problem without

performing any search phase. Nevertheless, they are rarely used alone.

The combination of backtracking, consistency techniques and heuristics for

choosing the next variable to be instantiated or the next value to be assigned are

the basis of several strategies for searching solutions. Some of them use also the

constraint graph for detecting the reason of a failure.

Among these strategies are the look-back strategies (e.g. backjumping and

intelligent backtracking), and the look-ahead strategies (e.g. forward checking).

Look back strategies try to determine the actual reason of a failure in a partial

instantiation. The main idea is to change the value of the variable that caused

the failure instead of the last instantiated variable, and therefore to avoid the

thrashing problem.

Look-ahead strategies try to determine if a current partial instantiation is

compatible with the set of uninstantiated variables by applying a consistency

technique. If after this process one of the variable domains becomes empty, the

last instantiation can be considered as not possible, and the backtracking process

CHAPTER 2. CONSTRAINT PROGRAMMING 31

is immediately performed.

More information about these and other strategies can be found in [91, 157] and

[51, 194]. A good survey on algorithms for Constraint Programming can be found

in [128]. In the next section, a brief introduction of consistency techniques will be

presented. In Section 2.3.4, these techniques will be combined with backtracking

in order to show the advantages of a Look-ahead approach.

2.3.3 Consistency Techniques

Consistency techniques were first introduced for improving the efficiency of picture

recognition programs by researchers in artificial intelligence (see [208, 150]). In

his work, Waltz [208] was interested in the problem of automatically generating

three-dimensional representations from line drawings of scenes. Roughly speaking,

his approach involved labelling all the lines in a picture in a consistent way. As

the number of possible combinations can be huge, he introduced a sort of filtering

program to systematically remove all inconsistent labellings at a very early stage,

and thus reduce the number of combinations in a tree search.

The work of Montanari [150] introduced the idea of networks of constraints, and

the possibility of using these networks for removing inconsistent values from the

domain of the variables. Finally, Mackworth [136] integrated the previous works in

his paper Consistency in networks of relations, in which he presented, in a general

framework, some consistency algorithms like node, arc and path consistency.

The main idea behind a consistency technique is to eliminate from the domain

of the variables all the values that cannot belong to a solution of the problem.

This section discusses three of the most popular consistency properties and some

algorithms to achieve it. For simplicity, the explanation will be based on the

following binary CSP:

P = (X,D,C)

X = {x, y, z, w}
D = {{1, 2, 3}, {2, 3, 4}, {2, 3}, {2, 3}}
C = {c1 : x > 1; c2 : x = y; c3 : y 6= z; c4 : z 6= w; c5 : y 6= w}

The constraint graph of the CSP is shown in figure 2.3.

Node Consistency

This is the simplest consistency technique and involves the unary constraints in

the constraint graph.

CHAPTER 2. CONSTRAINT PROGRAMMING 32

��
��
w ��

��
z

��
��
x ��

��
yc1

c2

c3

c4
�

�
�

�
�

�
�

�
��

c5

{1, 2, 3} {2, 3, 4}

{2, 3} {2, 3}

Figure 2.3: Constraint graph of the problem.

Definition 3 (node-consistency) Let N a node representing a variable x in the

constraint graph, and let Dx be the domain of the variable x. N is node consistent

iff for any value v ∈ Dx each unary constraint on N is satisfied.

This property is based on the following observation: if a value v in the domain

of a variable x does not satisfy a unary constraint, then the instantiation of x to

v will always result in immediate failure.

In the example of figure 2.3, node x is not node-consistent because the value

x = 1 does not verify the constraint c1 : x > 1. The node inconsistency can

be eliminated by removing those values that do not satisfy unary constraints.

This process is called domain reduction, and has a considerable impact in a

later application of the backtracking algorithm. Notice that deleting such values

does not eliminate any solution of the original CSP (it is a basic property of any

consistency technique). The procedure for achieving node consistency is presented

in algorithm 1.

Algorithm 1 Node consistency

for all N in Nodes(G) do
for all v in the domain D of N do

if any unary constraint on N is inconsistent with v then
delete v from D

return

When all unary constraints are verified, and there is no value in the domain of

the variables that violates the unary constraints, the CSP is called node-consistent.

Figure 2.4 shows the final equivalent CSP (which is node-consistent).

CHAPTER 2. CONSTRAINT PROGRAMMING 33

��
��
w ��

��
z

��
��
x ��

��
yc1

c2

c3

c4
�

�
�

�
�

�
�

�
��

c5

{2, 3} {2, 3, 4}

{2, 3} {2, 3}

Figure 2.4: Result of applying node-consistency over the CSP.

Arc Consistency

This is one of the most popular consistency techniques and has been an inspira-

tion for other classes of consistency techniques used, for example, in continuous

domains (see section 4.3.1). It is based on the notion of support of a value in

the domain of the other variables. A value v of the domain of a variable x has a

support in the domain of another variable y iff there exists at least one value in

the domain of y, such that the constraints between them are satisfied.

Definition 4 (arc-consistency) An arc Arc(x, y) between two variables x and

y is arc consistent iff for every value v ∈ Dx, there is some value w ∈ Dy such

that x = v and y = w is permitted by the binary constraints between x and y.

Notice that this property is directional, i.e., if an arc Arc(x, y) is consistent,

then it does not automatically mean that Arc(y, x) is also consistent. For example,

consider the node x with domain Dx = {2, 3} (node consistent), and the node y

with domain Dy = {2, 3, 4} of the figure 2.4. The arc Arc(x, y) is arc consistent,

while the arc Arc(y, x) is not (because the value y = 4 does not have any support

in the domain of the variable x for the constraint x = y).

As in the case of node consistency, an arc Arc(x, y) can be made consistent

by simply deleting those values from the domain of x for which there does not

exist any support in the domain of y (observation made by Fikes [59] for discrete

domains).

A CSP is arc-consistent if all its arcs are consistent. Algorithm 3 presents

the procedure AC-3 for achieving arc-consistency. This algorithm is based on

the procedure REVISE(x,y) shown in Algorithm 2. Notice that after applying

CHAPTER 2. CONSTRAINT PROGRAMMING 34

the procedure REVISE to an arc Arc(x, y), this arc becomes consistent; however,

some changes in the domain of the variable x can produce inconsistent values in

the other arcs of the graph. The procedure AC-3 includes in a queue these possible

inconsistent arcs.

Algorithm 2 REVISE(x,y)

DELETE ← false
for all v ∈ Dx do

if there is no w ∈ Dy such that Arc(x, y) is consistent then
delete v from Dx

DELETE ← true
return DELETE

Notice also that AC-3 algorithm performs a revision only for those arcs that are

possibly affected by a previous revision. Moreover, after applying REVISE(x,y),

it is not necessary to add arc (y, x) to the queue because none of the elements

deleted from x provides a support for any value in y.

Here is the other important process of Constraint Programming, which is called

constraint propagation. When the domain of a variable is changed (by deleting

one or more of its values), the change is propagated across the whole network.

Every variable which is possibly affected by this change is again revised, and

every value which becomes inconsistent is removed. The process continues until

the whole network becomes consistent.

Algorithm 3 Arc-consistency (AC-3)

Q ← {(x, y)|(x, y) ∈ arcs(G), x 6= y}
while Q not empty do

select and delete any arc (x, y) from Q
if REVISE(x,y) then

Q ← Q ∪{(z, x)|(z, x) ∈ arcs(G), z 6= x, z 6= y}
return

After applying AC-3 to a CSP, it becomes arc-consistent, but it does not mean

that the problem has a solution. Consider, for example, the resulting arc-consistent

CSP shown in Figure 2.5.

Even though this CSP is arc-consistent, it does not have any solution2.

2It is because arc-consistency and node-consistency only use the information of one constraint
at once. Other techniques like path consistency try to avoid this limitation by considering more
than one constraint for detecting inconsistent values.

CHAPTER 2. CONSTRAINT PROGRAMMING 35

��
��
w ��

��
z

��
��
x ��

��
yc1

c2

c3

c4
�

�
�

�
�

�
�

�
��

c5

{2, 3} {2, 3}

{2, 3} {2, 3}

Figure 2.5: Results of applying arc-consistency over the CSP.

There exists only one case in which the arc-consistency technique gets the

solution of the problem (without using a backtracking or similar process after),

and that is when the domain size of each variable becomes one. In this case, the

CSP has a single solution, and can be obtained by assigning to each variable the

only possible value in its domain.

Path Consistency

Path consistency technique (introduced by Montanari [150]) is a generalization of

the arc-consistency technique. Path consistency tries to improve the detection of

inconsistent values in the domain of the variables by considering more than one

constraint at the same time.

A CSP will be path-consistent if for every pair of values vx, vy allowed by a

constraint between two variables x and y, it is also allowed by all paths from x to y.

In other words, the CSP will be path-consistent if there exists at least a compatible

intermediate vertex value that satisfies the unary and binary constraints from x

to y.

Montanari has shown that a CSP is path-consistent if all paths of length 2 are

path consistent. Therefore, an algorithm to enforce path-consistency needs only

triples of variables to work (path of length 2).

Consider again the CSP shown in Figure 2.5, which is arc-consistent. The

value 2 in the domain of the variable w has a compatible value 3 in the domain

of y, but has no value vz in the domain of the variable z such that (2, vz) and

(vz, 3) are allowed simultaneously. Therefore, the pair (2, 3) is not allowed for the

constraint c5 between w and y. The same occurs with the pair (3, 2). As the

CHAPTER 2. CONSTRAINT PROGRAMMING 36

pairs (3, 3) and (3, 3) the application of a path-consistency algorithm removes all

possible combination of values between y and w, and then proves that no solution

is possible for this CSP.

Singleton Consistency

The main idea behind any consistency technique is to detect inconsistent values

in the domain of the variables in order to remove them. Consider a CSP P =

(X,D,C) and a variable x ∈ X. If there exists a solution for P in which the

variable x can take the value v, then none consistency technique applied to P

when Dx = {v} can produce an empty domain. In other words, if a consistency

technique applied to P with Dx = {v} produces an empty domain in a variable,

then the value v is not consistent (and cannot belong to any solution).

This is the basic idea in a singleton consistency technique. For example, sin-

gleton arc-consistency [49] deletes the value v from the domain of a variable x if

a CSP P = (X,D,C) cannot be arc-consistent when Dx = {v}. Actually, any

consistency technique can be applied to detect the possible inconsistency of a CSP

when one of its variables takes a specific value. Moreover, if a local consistency

can be enforced in a polynomial time, the corresponding singleton consistency can

also be enforced in a polynomial time (see [168] for some examples).

Bound Consistency

In problems involving ordered numeric domains, another technique for detecting

inconsistencies is called bound-consistency [169]. The main idea is to check only

the bounds of the ordered domains instead of checking all values in the domain.

Definition 5 (bound-consistency) An n-ary constraint c involving the vari-

ables (x1, . . . , xn) is called bound-consistent if and only if for each variable xi :

∀di ∈ {min Di,maxDi},∀j ∈ {1, . . . , n} − {i},∃dj ∈ [minDj ,max Dj] such that

(d1, . . . , dm) verifies c.

The main advantage of this consistency technique is that only the bounds of the

domains are verified. Therefore, less time is needed to verify a bound consistent

constraint. Moreover, this consistency can be applied with special domains (e.g.

continuous domains), for which classic arc-consistency techniques are unfeasible.

CHAPTER 2. CONSTRAINT PROGRAMMING 37

Generalized Arc-consistency

The original arc-consistency technique has a sense only in binary CSPs because

binary CSPs can be represented as a graph. In the case of general non-binary

constraints, there exists an equivalent arc-consistency technique called generalized

arc-consistency (GAC) (see [20]). A constraint is GAC if for any value of the

variable in the constraint there exist values for the other variables in the constraint

such that the constraint is satisfied.

Improvement of Consistency Techniques

Many improved algorithms for achieving arc-consistency and path consistency

have been proposed. In the case of arc-consistency, an algorithm having an optimal

worst-case time complexity (known as AC-4) was introduced in [149]. As the AC-4

algorithm has still a not optimal space complexity, a new arc-consistency algorithm

with optimal time and space complexity was introduced in [17]. This algorithm is

known as AC-6. Other examples of improvement can be found in [86, 31], specially

in the path-consistency algorithm.

In [60, 42], a generalization of the consistency techniques is introduced under

the concept of k − consistency, showing that node, arc and path consistency can

be considered as particular cases of 1-consistency, 2-consistency and 3-consistency,

respectively.

Some stronger consistency techniques (k-consistency with k > 3) have been

proposed, but they are in general too expensive to be applied in practice.

Combinations of consistency techniques and heuristics have introduced many

other improvement in the so-called filtering algorithm. Some examples can be

found in [50, 173, 213, 200]).

The development of specific consistency techniques for global constraints is

another of the most important improvements in the area of Constraint Program-

ming. Specific algorithm for the AllDiff constraints [174, 201] or the Cardinality

constraints are only some examples.

2.3.4 Backtracking and Consistency Techniques

A basic idea to improve the performance of the search process is to perform a

consistency technique before starting a backtracking algorithm. Thus, each value

of the domain of the variables is checked in a early phase, and if some inconsistency

is detected the inconsistent value is deleted immediately.

CHAPTER 2. CONSTRAINT PROGRAMMING 38

A better idea is to check for inconsistencies at each step of the search because

the instantiation of a variable with a given value can produce an inconsistent

situation in the remaining variables. There are different Look-ahead algorithms

that perform this process. One of the most popular is the Forward Checking

algorithm [91].

Forward Checking

The main idea of the Forward Checking algorithm is to (temporarily) remove

from the domain of the not yet instantiated variables the set of values that are

incompatible with the last instantiated variable. Only variables related to the last

instantiated variable are considered. If the domain of one or more of these variables

becomes empty, then the (previously) deleted values of the domains of the checked

variables are restored and the current value of the last instantiated variable is

changed. If no value is consistent then the backtrack process is performed.

Forward Checking guarantees that at each step the current partial solution is

consistent with each value in each not yet instantiated variable.

Example 2.3.2 Consider the following CSP:

P = (X,D,C)

X = {v,w, x, y, z}
D = {Dv = {2, 5, 6},Dw = {2, 4, 5, 7},Dx = {2, 4},Dy = {2, 4, 5},Dz =

{1, 2, 3, 4, 5}}
C = {c1 : v ≥ w, c2 : w 6= x, c3 : w 6= y, c4 : x 6= y, c5 : y = z, c6 : v ≥ z}

v w

x

yz
{1,2,3,4,5}

{2,5,6} {2,4,5,7}

{2,4}

{2,4,5}

Figure 2.6: Graph of constraints with initial domains.

This CSP is represented in Figure 2.6 in the form of a graph of constraints.

After applying an arc-consistency technique the search space of the problem is

reduced from 360 elements to 108, as shown in Figure 2.7(a).

CHAPTER 2. CONSTRAINT PROGRAMMING 39

v w

x

yz

{2,4}

{2,4,5}

{2,5} {2,4,5}

{2,4,5}

(a)

v w

x

yz

{2,4}

{2,4,5}

2 {2}

{2}

(b)

v w

x

yz

2

{2}

2

{4,5}

{4}

(c)

v w

x

yz

2

{2}

2

4

{5}

(d)

v w

x

yz

2 2

4

5{ }

(e)

v w

x

yz

{2,4}

{2,4,5}

{2,4,5}

{2,4,5}

5

(f)

Figure 2.7: (a) CSP arc-consistent. (b) Instantiation of the variable v and forward
check of the variables w and z. (c) Instantiation of w and forward check of x and y.
(d) Instantiation of x and forward check of y. (e) Instantiation of y and detection
of the inconsistency: the domain of z is empty. (f) The backtracking process
returns until the variable v (restoring the deleted values in each step) and the
variable v is instantiated with the next value.

The search process starts with the instantiation v = 2 and the forward check

of the related variables w and z. This process continues with the instantiation of

w, x, and y respectively. After the instantiation of the variable y, the domain of z

becomes empty, and a consistency fail is detected. At this point, the deleted value

from the domain of the variable z is restored. The value of the last instantiated

variable must be changed, but y has no another value in its domain. The backtrack

process is then preformed, restoring the deleted values from the domain of y and

CHAPTER 2. CONSTRAINT PROGRAMMING 40

going back to the variable x. The backtrack process will return until the variable

v, deleting the value 2 from its domain and performing a new instantiation with

the next value 5.

This technique has been generalized by van Hentenryck [93] in order to han-

dle n-ary constraints. The main idea is to performed the forward check over an

uninstantiated variable as soon as the n-1 variables of an n-ary constraint have

been instantiated. In such cases the n-ary constraint is called forward checkable.

A stronger generalization of forward checking to n-ary constraints has also been

proposed in [18].

Full Look Ahead

Although Forward Checking effectively improves the performance of the searching

process, it still suffers from late detection of inconsistencies. For example, in Figure

2.7, the insconsistent instantiation v = 2 is detected only after the instantiation

of the variable y.

A better approach for early detection of inconsistencies was introduced in [183]

as Maintaining Arc Consistency (MAC). It is a full look ahead technique that

enforces a complete consistency technique after each instantiation of a variable.

No only the related variables are checked but all the remaining uninstantiated

ones. This algorithm guarantees that at each step the current partial solution has

an arc-consistent sub-network.

Figure 2.8 shows the MAC technique applied to the same problem of example

2.3.2. The process starts with the application of arc-consistency to the whole sys-

tem. The first instantiation of the variable v yields to an inconsistent sub-network

(detected by arc-consistency). This value is deleted, and the domains restored. A

new instantiation is performed (v = 5), and a consistent network is detected. The

instantiation of the next variable (w = 2) produces an arc-consistent network with

only one value in the domain of the remaining uninstantiated variables. Therefore,

a solution is immediately detected.

In [19], a comparison between Forward Checking and MAC has been reported.

The results suggest that MAC is more efficient than Forward Checking to solve

not only large practical problems but also hard and large random problems. A

combination of these techniques with different variable ordering heuristics is also

presented.

CHAPTER 2. CONSTRAINT PROGRAMMING 41

v w

x

yz

{2,4}

{2,4,5}

{2,5} {2,4,5}

{2,4,5}

(a)

v w

x

yz

2 {2}

{4}

{} {5}

(b)

v w

x

yz

{2,4}

{2,4,5}

{2,4,5}

{2,4,5}

5

(c)

v w

x

yz

5 2

{4}

{5}{5}

(d)

Figure 2.8: (a) CSP arc-consistent. (b) Instantiation of v with the value 2 and
detection of inconsistency. (c) Instantiation v with the value 5 and the remaining
arc-consistency network. (d) Instantiation of w with the value 2 and detection of
the first solution.

2.4 Conclusions

Constraint Programming has been one of the important advances in programming

since the last two decades. As a framework, it allows one to model and solve

difficult combinatorial and optimization problems in an efficient way.

In this chapter, a brief introduction to Constraint Programming with finite

domains and its associated tools has been presented. Important concepts about

constraint programming, CSPs solving techniques, complete and incomplete search

algorithms, and heuristics for variable and value ordering have been presented.

Some important elements to keep in mind are the formal model of a real-life

problem (the CSP) and the solving process which involves the concepts of search

space, solution and solution space, domain reduction, and constraint propagation.

These ideas, combined with others tools from Interval Analysis community

provide a good framework for solving difficult non linear problems over continuous

domains, and they are the bases of the works developed in this thesis.

Chapter 3

Interval Analysis

Computers work with digital numbers, not with real ones. This is a big difference

between a theoretical result and a practical result. In order to express a real

number, a computer will usually truncate and round it. Therefore, the digital

number computed (or floating-point number [70]) is only an approximation of the

original number. This simple fact produces important differences in computed

results when many operations are performed, and sometimes these results are not

only imprecise but also incorrect.

A good example of the limitation of floating-point numbers and arithmetic

was introduced by Rump [181], and it is often cited and studied (for example, in

[45, 87]). It consists in computing the value of a function f(a, b).

Example 3.0.1 Consider the following function:

f(a, b) = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
(3.1)

with a = 77617 and b = 33096. The results of computing f on an IBM S/370

main frame using single, double and extended-precision arithmetic are:

Single precision: f = 1.172603...

Double precision: f = 1.1726039400531...

Extended precision: f = 1.172603940053178...

It may seem that a reliable approximation of f is 1.172603 (using the argument

that increasing the number of digits the result does not change), but the correct

result of f is near to −0.827396, and it can be obtained using an arithmetic that

considers 37 or more digits. Notice that even in the last case there is no guarantee

in the result.

42

CHAPTER 3. INTERVAL ANALYSIS 43

A modified version of this example for computers that use IEEE-754 arithmetic

[4] can be found in [134]. This new expression produces the same effect as that

proposed by Rump in a modern machine like Intel x86:

f(a, b) = (333.75 − a2)b6 + a2(11a2b2 − 121b4 − 2) + 5.5b8 +
a

2b
(3.2)

There are many good examples of the consequences of the different errors

introduced when floating-point arithmetics is considered. One of them is the

Patriot missile battery that failed to intercept a Scud missile in Saudi Arabia1

(see [92, 176], for more examples).

The conclusion of all these examples is that floating-point arithmetic is not

reliable, and it is necessary to use another method in order to obtain certified

results.

Interval Analysis is a tool for automatically confining errors in numerical com-

putation on machines. The seminal book in interval analysis was written by Moore

[153] in 1966, and it is the main reference in the subject. Nevertheless, some of

these ideas can be found in the work of Young [212] (thirty years before), who

introduced the concept of many-valued quantities, and defined operations between

these quantities. In her work, Young identifies the lower value (a) and upper

value (a) of a quantity a, and computes the bounds of the four basic operations

{+,−,×,÷} in the same way that will be computed for intervals.

At the end of the fifties, three mathematicians developed in almost simul-

taneous way, the essential ideas of interval arithmetics: Warmus [210] in Poland,

Sunaga [195] in Japan, and Moore [151, 152] in the United States; but the Moore’s

version has been the most influential. The aim of this method is to compute re-

liable results even when uncertainties in the data input, truncation or rounding

operations are involved. It is based on a new kind of number called interval,

represented by a pair of real numbers.

There are many well-known reference books [2, 87, 153, 155, 159], papers and

reports [25, 92, 107, 176] about classic interval analysis, interval arithmetic and

applications. There exists also a website with tutorials, papers and material (see

[124, 141]).

The aim of this chapter is to present the basis of interval analysis and arith-

metic, and some of the most important results that will be used later in this

document. It is organized as follows: Section 3.1 presents a brief introduction to

1http://www.fas.org/spp/starwars/gao/im92026.htm

CHAPTER 3. INTERVAL ANALYSIS 44

intervals (from an ideal point of view), while section 3.2 introduces classic inter-

val arithmetic and its properties. Section 3.3 explains some differences between

the operations union and intersection defined for set of numbers and for interval

numbers. Section 3.4 introduces the concepts of interval extensions and interval

functions. In Section 3.5, some methods to solving systems of equations using

intervals are presented. Section 3.6 presents some details about implementations

of interval arithmetic, while Section 3.7 give a brief introduction to generalized

and modal intervals, an special extension of classic interval analysis.

3.1 Intervals

This section presents classic interval arithmetic from a theoretical point of view.

That means, it does not consider the limitation of a machine or the representa-

tion of the real numbers. Anyway, section 3.6 presents some differences between

this ideal point of view and the practical results obtained when a computational

implementation of interval arithmetic is used. More details on these differences

can be found in [97].

An interval a is the closed, connected subset of real numbers defined by

a = [a, a] = {x ∈ R | a ≤ x ≤ a} (3.3)

where a, a ∈ R, and a ≤ a. An interval whose endpoints are the same, is called

a degenerate interval, and can be identified with the real number equal to its

identical endpoints. So, the interval [5, 5] can be represented by the real number

5. Two intervals x and y are equal if their corresponding endpoints are equal.

Thus,

x = y ⇐⇒ (x = y) and (x = y) (3.4)

The set of intervals with bounds in R is denoted by IR, and it is partially

ordered by set inclusion.

x ⊆ y ⇐⇒ (x ≥ y) and (x ≤ y) (3.5)

Example 3.1.1 Consider the intervals x = 5 (degenerated interval), y = [5, 5],

z = [4, 5], and w = [0, 10]. They can be ordered by set inclusion as following:

x ⊆ y ⊆ z ⊆ w = 5 ⊆ [5, 5] ⊆ [4, 5] ⊆ [0, 10]

CHAPTER 3. INTERVAL ANALYSIS 45

Here are some concepts related with intervals that will be useful thereafter:

the midpoint m(x), the radius r(x), the magnitude |x|, and the width w(x).

m(x) =
1

2
(x + x)

r(x) =
1

2
(x− x)

|x| = max
x∈x
|x|= max{|x|, |x|}

w(x) = x− x = 2r(x) (3.6)

Example 3.1.2 Consider the interval x = [−3, 1]) ∈ IR. Then

m(x) = −1, r(x) = 2, |x|= 3, w(x) = 4

Notice that if x = [x, x] is a degenerated interval, then m(x) = x = x and w(x) =

r(x) = 0.

An interval vector x ∈ IRn, is an ordered n-tuple of intervals (x1, . . . ,xn). It

can be represented by a n-dimensional rectangle of points (ai, bi), i = 1, . . . , n such

that ai = xi and bi = xi. For this reason, an interval vector is often called a box.

For example, the rectangle in figure 3.1 represents the box x = (x1,x2) ∈ IR2.

-

6

X

Y

x

x1 x1

x2

x2

Figure 3.1: A graphic representation of an interval vector x = (x1,x2).

The equality and inclusion defined in (3.4) and (3.5) are extended to interval

vectors in the natural way, that is componentwise: x = y ⇐⇒ ∀i(xi = yi) and

x ⊆ y ⇐⇒ ∀i(xi ⊆ yi). The first three concepts defined in (3.6) are extended in

CHAPTER 3. INTERVAL ANALYSIS 46

the same way for an interval vector x ∈ IRn:

m(x)i = m(xi)

r(x)i = r(xi)

|x|i = |xi| (3.7)

They correspond to vectors in Rn. The width w(x) ∈ R+ and the norm

‖x‖ ∈ R+ of an interval vector are scalars (real numbers) defined as following:

w(x) = 2‖r(x)‖∞ = max
i
{w(xi)}

‖x‖ = ‖|x|‖∞ = max
i
|xi| (3.8)

Example 3.1.3 Consider the interval vector x = ([−1, 1], [5, 9]) ∈ IR2. Then

m(x) = (0, 7), r(x) = (1, 2), |x|= (1, 9), w(x) = 4, ‖x‖ = 9

An interval matrix A ∈ IRm×n, is an object with m rows and n columns of

interval elements ai,j ∈ IR, i = 1, . . . ,m; j = 1, . . . , n. The equality and inclusion

defined in (3.4) and (3.5) and the first three concepts in (3.6) are extended to

interval matrices in the same way that they were extended to interval vectors

(componentwise). The scalars defined in (3.8) are extended to matrices as follows:

w(A) = max
i,j
{w(ai,j)}

‖A‖ = ‖|A|‖∞ = max
i
{
∑

j

|ai,j|} (3.9)

Example 3.1.4 Consider the interval matrix A =

(

[0, 2] [−1, 1]

[2, 4] [−1, 3]

)

∈ IR2×2.

Then

m(A) =

(

1 0

3 2

)

, r(A) =

(

1 1

1 2

)

, |A|=
(

2 1

4 3

)

, w(A) = 4, ‖A‖ = 7

Let y ∈ IRm,A ∈ IRm×n,x ∈ IRn, and y = Ax. It can be proved that ‖y‖ ≤
‖A‖ · ‖x‖ (a property equivalent to infinity norm of real vectors and matrices).

CHAPTER 3. INTERVAL ANALYSIS 47

3.2 Interval Arithmetic

As noted by Moore [155], intervals have a dual nature, that means they can be

considered as a number represented by the ordered pair of their endpoints (like a

complex number a + ib is represented by a and b) or a set of real numbers.

Considering intervals as sets of numbers, the result of an operation between

two sets x and y must be a new set containing all possible combinations among

an element from x and an element from y. This is the most important property in

interval arithmetic and is called correctness. Therefore, if ⋄ represents any of the

four basic operators {+,−,×, /}, the corresponding interval operation is defined

as:

x ⋄ y = {x ⋄ y | x ∈ x ∧ y ∈ y} (3.10)

with x/y undefined if 0 ∈ y. Notice that the constraint 0 /∈ y assures that the

four basic operations (if defined) are closed in IR. Anyway, several authors have

pointed out the importance of a definition for the division by an interval containing

zero (mainly for using with interval Newton like methods). The first contribution

was done by Kahan [109] in 1968, but only in the nineties it is possible to find

formal definitions with proofs of correctness (with the works of Hansen [87], Ratz

[171], Walster [207], and Hickey [97]).

Notice that from definition (3.10) it follows that

x ⊆ y and z ⊆ w ⇒ x ⋄ z ⊆ y ⋄w (3.11)

That is another important property in interval arithmetic, and it is called

inclusion monotony. Thus, the four basic operations are inclusion monotonic.

Although definition (3.10) is not operational, it is possible to express the results

based on the bounds of the involved interval as following:

x + y = [x + y, x + y],

x− y = [x + y, x− y],

x× y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]
1/y = [1/y, 1/y], 0 /∈ y

x/y = x× 1/y 0 /∈ y (3.12)

Example 3.2.1 Consider the intervals x = [1, 2], y = [−3, 1], and z = [−5,−4].

CHAPTER 3. INTERVAL ANALYSIS 48

Then

x + y = [1, 2] + [−3, 1] = [−2, 3] x− y = [1, 2] − [−3, 1] = [0, 5]

y × z = [−3, 1] × [−5,−4] = [−5, 15] y ÷ z = [−3, 1] ÷ [−5,−4] = [−1
4 , 3

4]

It is important to notice that the interval substraction is not the inverse of

interval addition, and the interval division is not the inverse of interval multiplica-

tion (in the sense of its real counterpart). That means the expressions x + y = z,

x = z− y, and y = z− x are not equivalent.

Example 3.2.2 Consider the intervals x = [3, 5], y = [2, 3], and z = [5, 8]. Then

x + y = [3, 5] + [2, 3] = [5, 8]

z− x = [5, 8] − [3, 5] = [0, 5]

z− y = [5, 8] − [2, 3] = [2, 6]

Moreover, the expression x+y−y is equal to x only when y is a degenerated

interval. The value of y − y is in general different to zero. It may be difficult

to understand that a number y minus itself is not zero, but if you think about

intervals as set of numbers, the question What is the result of take an element

y1 from y and substract another element y2 from y?, has more than one answer.

This situation, called decorrelation (or dependency problem), is considered as a

drawback of interval arithmetic. When an interval appears more than once in an

expression, each occurrence becomes an independent set of values. Subdistributy

property and the absence of inverse element in section 3.2.1 are consequences of

this drawback.

Computations with intervals are not reduced to the four basic operations. It

can be generalized, for example, for unary operations2 (like sqr, sin, cos, etc). If

r(x) is a continuous unary operation on R, then

r(x) = [min
x∈x

r(x),max
x∈x

r(x)] (3.13)

defines a (subordinate) unary operation on IR. Operational definition may also

be given in the case of unary operations or classic binary operations. For example,

2Many authors prefer to use the name elementary function instead of unary operation. Both
terms are considered equivalent for this presentation.

CHAPTER 3. INTERVAL ANALYSIS 49

consider the operation power applied to an interval x. Then

xn =

[1, 1] if n = 0

[xn, xn] if x ≥ 0 and n is even, or if n is odd

[xn, xn] if x ≤ 0 and n is even

[0,max(xn, xn)] if x ≤ 0 ≤ x and n is even

Example 3.2.3 Consider the intervals x = [−1, 5] and y = [π4 , π]. Then

x2 = [−1, 5]2 = [0, 25] sin(y) = sin([π4 , π]) = [0, 1]

x3 = [−1, 5]3 = [−1, 125] cos(y) = cos([π4 , π]) = [−1,
√

2
2]

3.2.1 Properties of Interval Arithmetic

The following algebraic properties are consequences of the definitions of the inter-

val arithmetic operations (3.10).

1. Commutativity:

x + y = y + x

x× y = y × x

2. Associativity:

(x + y) + z = x + (y + z)

(x× y)× z = x× (y × z)

3. Neutral element:

x = x + y = y + x ∀x ∈ IR ⇐⇒ y = [0, 0]

x = x× y = y × x ∀x ∈ IR ⇐⇒ y = [1, 1]

4. Elimination laws:

x + y = x + z ⇐⇒ y = z

x× y = x× z with x, x > 0 ⇐⇒ y = z

5. IR has no zero divisor:

x× y = 0 ⇐⇒ (x = 0 or y = 0)

6. There is no inverse element for + and × when x ∈ IR with x 6= x. Never-

theless it follows that:
0 ∈ x− x and 1 ∈ x/x (0 /∈ x)

x + y = 0 =⇒ x and y are degenerated.

x/y = 1 =⇒ x and y are degenerated and not equal to zero.

CHAPTER 3. INTERVAL ANALYSIS 50

7. Subdistributivity:

x× (y + z) ⊆ x× y + x× z

x× (y + z) = x× y + x× z x ∈ R and y, z ∈ IR
x× (y + z) = x× y + x× z if yz ≥ 0 for all y ∈ y, z ∈ z

3.3 Union and Intersection

This section is included because there are some important differences between the

natural idea of union and intersection, and the operations meet and join used in

the case of interval numbers. As shown in section 3.1, an interval can be considered

as a set of real numbers. Using this interpretation, the intersection of two intervals

x and y must be the set of real numbers included in both x and y. In the other

hand, the union of two intervals is the set of real numbers included either in x or

y.

Example 3.3.1 Consider the intervals x = [1, 4], y = [0, 2], and z = [3, 5]. Then

x ∩ y = [1, 2] and x ∪ y = [0, 4] (3.14)

x ∩ z = [3, 4] and x ∪ z = [1, 5] (3.15)

y ∩ z = ∅ and y ∪ z = {[0, 2], [3, 5]} (3.16)

These operations correspond to the set intersection and set union, but they

are not closed in IR (notice that the results in (3.16) are not interval numbers).

Instead of them, the interval meet and join operations define the intersection and

union between intervals, respectively. Thus,

x ∧ y = [max(x, y),min(x, y)] if max(x, y) ≤ min(x, y)

x ∨ y = [min(x, y),max(x, y)]

In other words, the interval meet between x and y represents the bigger interval

z ∈ IR such that z ⊆ x and z ⊆ y, while the interval join represents the smaller

interval z ∈ IR such that x ⊆ z and y ⊆ z. Both operations (if defined) are closed

in IR.

Moore’s Diagram3 of figure 3.2 shows the set of interval z ∈ IR in which an

interval a is included, while the diagram of 3.3 show the set of interval included in

3A Moore’s Diagram is an easy and friendly way to graphically represent intervals. Each
interval a = [a, a] is identified by a point (a, a) in the cartesian plane. The line x = y represents
the set of degenerated intervals, while the points (x, y) with x ≤ y represent IR (See [85, 84]).

CHAPTER 3. INTERVAL ANALYSIS 51

-

6

X

Y

�
�

�
�

�
�

�
�

�
�
x = y

qa

Figure 3.2: {z ∈ IR | z ⊇ a}.

-

6

X

Y

�
�

�
�

�
�

�
�

�
�
x = y

qa

Figure 3.3: {z ∈ IR | z ⊆ a}.

a. Using this diagram it is easily to identify the operations meet and join between

two or more intervals.

Figure 3.4 graphically shows the results of operations meet and join between

the intervals y and x of the last example, while figure 3.5 shows the results for

intervals y and z.

-

6

X

Y

�
�

�
�

�
�

�
�

�
�
x = y

q
y

qx

q

y ∨ xq

y ∧ x

Figure 3.4: Meet and join of y and x.

-

6

X

Y

�
�

�
�

�
�

�
�

�
�
x = y

q
y

qzqy ∨ z

Figure 3.5: Join of y and z.

Notice that if max(x, y) ≤ min(x, y) for two intervals x and y, the operations

meet and join obtain the same result that the set intersection and set union,

respectively.

3.4 Interval Functions

Let f be a continuous real function over a box x. The image of x under the

mapping f (that means, the set of values f(x) with x ∈ x) is denoted by

range(f,x) = {f(x) | x ∈ x} (3.17)

A general property of continuous functions is that they map connected sets

CHAPTER 3. INTERVAL ANALYSIS 52

into connected sets (and compact sets into compact sets), so the real arithmetic

operations map intervals into closed intervals. Notice that the ranges of the four

elementary interval arithmetic operations are exactly the ranges of the correspond-

ing real operations. Although in some particular cases the range of a function f

may be easily computable, in a general case it is not. Hence the goal of interval

arithmetic is to find a computable interval extension f of a function f , such that

for all x ∈ x, f(x) ∈ f(x).

Definition 6 (Interval Extension) Let f be a continuous real function f of n

real variables x1, . . . , xn. The interval function f of n intervals x1, . . . ,xn is an

interval extension of f iff

f(x1, . . . , xn) = f(x1, . . . , xn) ∀x ∈ R (3.18)

That means, if the arguments are degenerated intervals the result of computing

f(x1, . . . , xn) is the interval [f(x1, . . . , xn), f(x1, . . . , xn)].

Example 3.4.1 Consider the real function f(x) = x2−2x. The following interval

functions are interval extensions of f .

f1(x) = x2 − 2x f2(x) = x(x− 2)

f3(x) = x2 − 3x + x f4(x) = xx− x− x

As is shown in the example, there is never a unique interval extension of a

given real function f , but an interval extension f will be better (in the sense

of interval inclusion) than an interval extension g iff f(x) ⊆ g(x). In the last

example, if x = [−1, 2] then f1(x) = [−4, 6], f2(x) = [−6, 3], f3(x) = [−7, 9], and

f4(x) = [−6, 6]. Of course, the range(f,x) = [−1, 3] is included in all results of

the interval extensions.

Definition 7 (United Extension) Given a continuous real function f of n real

variables with interval domains x1, . . . ,xn, the united extension Rf is defined as

the range of function values

Rf (x) = [min
x∈x

f(x),max
x∈x

f(x)] (3.19)

where x = (x1, . . . , xn) and x = (x1, . . . ,xn).

Although the united extension of a function f is its optimal interval exten-

sion, it is not computable in general. For this reason, one of the most important

CHAPTER 3. INTERVAL ANALYSIS 53

objective of interval analysis is to provide a computable interval extension of a

function.

It is important to note that an interval function is defined by the rational4

expression given for it, and this expression cannot be changed without changing the

associated interval function. That means, the expression x+1/x (in the variable x)

is not equivalent to the expression (x2 +1)/x (even though x+1/x = (x2 +1)/x in

real arithmetic). This is a direct consequence of the dependency problem presented

in section 3.2.

Theorem 1 if f(x1, . . . ,xn) is a rational expression in the interval variables

x1, . . . ,xn, then

x′
1 ⊆ x1, . . . ,x

′
n ⊆ xn =⇒ f(x′

1, . . . ,x
′
n) ⊆ f(x1, . . . ,xn) (3.20)

for every set of interval numbers x1, . . . ,xn for which the interval arithmetic op-

erations in f are defined.

This theorem introduced by Moore (see theorem 3.1 in [153]) is considered as

the fundamental theorem of interval arithmetic, and it allows interval arithmetic to

obtain certified results when implemented on a machine. This theorem is related

with a property called inclusion monotonic and defined as follows:

Definition 8 (Inclusion Monotonic) Let f be an interval valued function of

the interval variables x1, . . . ,xn. f is inclusion monotonic if

x′
1 ⊆ x1, . . . ,x

′
n ⊆ xn =⇒ f(x′

1, . . . ,x
′
n) ⊆ f(x1, . . . ,xn) (3.21)

As is shown in section 3.2, the four basic operators are inclusion monotonic.

Moreover, all unary operations presented in (3.13) are inclusion monotonic too.

The importance of the theorem introduced by Moore is that every function

based on a rational expression in a set of interval variables is inclusion monotonic.

In particular, the interval extension of a function f , obtained by substituting each

real variable by the corresponding interval variable and the real operations by the

corresponding interval operations, is inclusion monotonic. This extension is called

the natural interval extension of the function f and it was introduced by Moore

[155].

4A rational expression in the variables x1, . . . , xn means a finite combination of x1, . . . , xn and
a finite set of constants with arithmetic operations such that the expression has a sense.

CHAPTER 3. INTERVAL ANALYSIS 54

Example 3.4.2 Consider the real functions f1(x) = x2−2x and f2(x) =
√

x− 2,

and their natural interval extensions f1(x) = x2−2x and f2(x) =
√

x− 2. Related

to the intervals x1 = [3, 6] ⊆ x2 = [2, 11], it follows that

Rf1(x1) = [3, 24] ⊆ f1(x1) = [−3, 30] (3.22)

f1(x1) = [−3, 30] ⊆ f1(x2) = [−18, 117] (3.23)

Rf2(x1) = [1, 2] ⊆ f2(x1) = [1, 2] (3.24)

f2(x1) = [1, 2] ⊆ f2(x2) = [0, 3] (3.25)

Notice that in general, the natural interval extension of a function f is an

overestimation of the range of f . Nevertheless, if f(x1, . . . , xn) is based on a

rational expression in which each variable xi occurs only once5, then its natural

interval extension f(x1, . . . ,xn) computes the actual range of values for xi ∈ xi.

That means

f(x1, . . . ,xn) = {f(x1, . . . , xn) | xi ∈ xi, ∀i = 1, . . . , n} (3.26)

As one of the central problem in Interval Analysis is to provide sharp estima-

tions of the range of a function and the natural interval extension is optimal only

for particular cases (single occurrence of variables), other interval extensions have

been proposed.

For example, mean value interval extension is based on the Mean Value Theo-

rem which states that if a function f(x) is defined and continuous on the interval

[a, b] and differentiable on]a, b[, then there is at least one value c ∈]a, b[such that

f ′(c) =
f(b)− f(a)

b− a
(3.27)

Notice that if equation (3.27) is true, then the following is also true:

f(x) = f(x̃) + f ′(c)(x − x̃)

where c is a point between x and x̃ with x, x̃ ∈ [a, b]. Therefore, for a given interval

x, the last expression can be used for approximating the range of a continuous

differentiable function f(x) in the following way:

Rf (x) ⊆ f(x̃) + f ′(x)(x − x̃)

5Notice that the expression x · x is considered as a double occurrence of the variable x.

CHAPTER 3. INTERVAL ANALYSIS 55

where x̃ ∈ x (generally x̃ = m(x) the middle point of the interval) and f ′(x) is

an interval containing all possible values f ′(x) in the interval x. Obviously, the

problem now is to compute a sharp approximation of f ′(x). An easy way (but not

so sharp) to compute an enclosure of f ′(x) is to use the natural interval extension

of f ′(x). Another method to approximate f ′(x) based on the slope function [172]

can be found in [122, 156].

Another method to compute the range Rf (x) for a given interval x can be

obtained by using interval Taylor form [153, 179]. The main idea is to express the

function f(x) in the form:

f(x) = f(x̃) +

n∑

k=1

f (k)(x̃)

k!
(x− x̃)k +

f (n+1)(ξ)

(n + 1)!
(x− x̃)(n+1) (3.28)

and to compute an enclosure of the error term f(n+1)(ξ)
(n+1)! (x − x̃)(n+1). For a given

interval x, the range of f(x) is then approximated by:

Rf (x) = f(x̃) +

n∑

k=1

f (k)(x̃)

k!
(x− x̃)k +

f (n+1)(x)

(n + 1)!
(x− x̃)(n+1) (3.29)

where x̃ ∈ x and f (n+1)(x) is an interval containing all the values of f (n+1)(x) for

the given interval x. Obviously, it must be possible to compute the n derivatives

of f in the point x̃ and a sharp enclosure of the error term. More details about

Taylor forms interval extensions can be found in [160]. A good comparison between

Taylor Forms and other types interval extensions can be found in [193].

3.5 Solving Equations Systems

Interval Analysis can be used not only for reliability reason in computational

operations. The most important advances in Interval Analysis have been done in

problem solving and global optimization. This section presents in a brief way some

techniques for problem solving based on Interval Analysis. Most of the techniques

described in this section can be found in [90, 107, 159].

This thesis focuses only on the resolution of systems of non-linear equations (in

particular, distance equations systems). It is important to note that many of the

techniques presented hereafter are also related to global optimization because the

classic method to find the maximum and minimum of a function f is based on a

system of equations of the form f ′ = 0. Other works related to global optimization

CHAPTER 3. INTERVAL ANALYSIS 56

can be found in [161].

3.5.1 An Evaluation/Bisection Algorithm

One of the simplest approach to solving a system of non-linear equations using

intervals is based on a combination of evaluation and bisection phases. The base

algorithm Evaluation/Bisection is similar to the Branch and Bound algorithm

commonly used in optimization.

Consider for example an equation f(x) = 0, an interval domain x, and f(x)

(an interval extension of f evaluated in x). Following the properties of interval

analysis (presented in Section 3.4), we know that 0 /∈ f(x) implies the equation

has no solution in x. Therefore, 0 ∈ f(x) is a necessary condition for solving the

system f(x) = 0. Algorithm 4 presents a procedure for solving a system using this

condition.

Algorithm 4 Evaluation Bisection(f ,x, ǫ)

Q ← x
Sols ← ∅
while Q not empty do

select and delete an interval x′ from Q
if 0 ∈ f(x′) then

if width(x′) < ǫ then
Sols ← Sols ∪ x′

else
Q ← Q ∪ bisection(x′)

return Sols

This procedure evaluates the interval function f in a domain x′. If the condition

0 ∈ f(x′) is verified and the width of x′ is less than the precision ǫ, the interval is

stored in Sols as a potential solution else the interval x′ is bisected into two new

intervals and both are added to the queue Q for posterior revision. The algorithm

returns Sols (the set of potential solutions).

This procedure is easily generalized for a system of m equations f(x) = 0 with

f = (f1, . . . , fm) and x = (x1, . . . , xn) by considering the condition (0, . . . , 0) ∈
(f1(x), . . . , fm(x)) and bisecting the box x into two new boxes. The final result is

a set of boxes with a given precision.

Example 3.5.1 Consider the following system of two non-linear equations with

CHAPTER 3. INTERVAL ANALYSIS 57

initial domains x1 = [0, 10], x2 = [0, 10]):

x1 · sin(x2)− cos(x1) · x2 − 5 = 0

x2
1 + cos(x2)− 8 = 0

Table 3.1 shows the first iterations of Algorithm 4 applied to this system6 by con-

sidering x = (x1,x2) and f = (f1, f2), with f1 = x1 · sin(x2)− cos(x1) · x2 − 5 and

f2 = x2
1 + cos(x2)− 8. At the end of the process a set of boxes is returned.

x′ 0 ∈ f(x′) bisection Q

([0, 10], [0, 10]

([0, 10], [0, 10]) yes yes (x1) ([0, 5], [0, 10]), ([5, 10], [0, 10])

([5, 10], [0, 10]) no – ([0, 5], [0, 10])

([0, 5], [0, 10]) yes yes (x2) ([0, 5], [0, 5]), ([0, 5], [5, 10])

([0, 5], [5, 10]) yes yes (x1) ([0, 2.5], [5, 10]), ([2.5, 5], [5, 10]), ([0, 5], [0, 5])

.

Table 3.1: First steps of Algorithm 4 applied to example 3.5.1.

It is important to note that the set of returned boxes includes all the solutions

of the problem included in the initial domain (this is a safe procedure), but also

that some boxes may contain no solution. For this reason, other techniques of

numerical analysis are applied (as those presented in Section 3.5.3) in order to

identify which boxes contain solutions.

One of the first works in this area, based on the intermediate value theorem7

and the interval extension of a univariate real function f was introduced by Moore

in [152] and corresponds to the following existence test (also known as Rolle the-

orem):

Theorem 2 Let f(x) be an interval extension of f(x) (with x = [x, x]), and let

f ′(x) be the interval extension of f ′(x) = df
dx

. If

f(x) = f(x) < 0 < f(x) = f(x) and 0 /∈ f ′(x) (3.30)

then there exists a unique solution xsol for f(x) = 0 in x.

6A graphic explanation of the procedure evaluation+bisection applied to this example can be
found in the web site of the COPRIN project (see http://www-sop.inria.fr/coprin).

7This theorem states that if f is continuous on a closed interval [a, b], and c is any number
between f(a) and f(b) inclusive, then there is at least one number x in the closed interval such
that f(x) = c.

CHAPTER 3. INTERVAL ANALYSIS 58

Moreover, by the mean value theorem, if x̃ ∈ x then

xsol ∈ x̃− f(x̃)

f ′(x)
(3.31)

and if the interval x is not too wide, the expression x̃ − f(x̃)
f ′(x) will be properly

contained in x and the solution xsol can be obtained with the following iterative

process (which is the classical Newton-Raphson scheme)

xn+1 = x̃n −
f(x̃n)

f ′(xn)
(3.32)

with x0 = x and x̃n = m(xn).

Example 3.5.2 Consider the real function f(x) = x2 − 2 and the interval x =

[1, 2]. Let f(x) = x2 − 2 and f ′(x) = 2x be the natural interval extension of f(x)

and f ′(x) respectively. Using (3.32) with x0 = [1, 2], and x̃0 = 1.5, it follows

x0 = [1, 2] x̃0 = 1.5

x1 = [1.375, 1.4375] x̃1 = 1.40625

x2 = [1.4140625, 1.414417613 . . .] x̃2 = 1.414240056 . . .

x3 = [1.414213559 . . . , 1.414213565 . . .] x̃3 = 1.414213562 . . .

x4 = [1.414213562 . . . , 1.414213562 . . .] x̃4 = 1.414213562 . . .

Notice that the solution of f(x) = 0 (xsol =
√

2 = 1.414213562 . . .) is contained in

all intervals x0, . . . ,x4 (as it is attended).

Actually, the observation did by Moore is a clear application of the Brouwer’s

theorem. The expression given to compute the final solution is quite similar to

the interval Newton method presented in Section 3.5.2.

3.5.2 Fixed Point based Methods

Informally, given a mapping f : D1 → D2 an a value x ∈ D1, x is called a fixed

point of f if f(x) = x. In other words, the point x is not affected by the mapping.

Many methods for solving f(x) = 0 are based on iterative algorithms that look

for a fixed point in a given domain. The existence of this fixed point is guarantee

by the Brouwer’s theorem stated as follows:

Theorem 3 Let D be homeomorphic to the closed unit ball 8 in Rn, and let

8The closed unit ball is the set of all points in Euclidean n-space Rn which are at distance at
most 1 from the origin.

CHAPTER 3. INTERVAL ANALYSIS 59

f : D → D be a continuous mapping such that the range f(D) ⊆ D. Then f has

a fixed point in D (i.e. there is a x ∈ D such that f(x) = x).

In other words, the theorem states that every continuous function which maps

elements from a closed domain into itself has at least one fixed point. This is

the main argument of many existence and uniqueness theorems (see for exam-

ple Moore[154] and Miranda[148]), and the base of others techniques for solving

systems of non-linear equations (see [121] and [88, 89]).

Interval Newton Method

The main idea is to compute an enclosure of the zero of a real function f(x) by

iteratively improving an initial approximation x = [x, x]. This method assumes

that the derivative f ′(x) is continuous in x and that it is possible to compute

an interval extension f ′(x). Two additional conditions are needed: 0 /∈ f ′(x) and

f(x) · f(x) < 0. Starting with x0 = x, the method iterates as follows:

• x̃n = m(xn)

• N(x̃n,xn) = x̃n − f(x̃n)
f ′(xn)

• xn+1 = xn ∩N(x̃n,xn)

The value x̃n may be any value inside the interval x but some works suggest

that the middle point of x is the best choice for it.

Example 3.5.3 Consider the equation f(x) = 0 with

f(x) =
√

x + (x + 1) · cos(x) (3.33)

and the initial domain x = [2, 3]. Table 3.2 shows four iterations of the interval

Newton method applied to equation (3.33) considering the natural interval exten-

sion

f ′(x) =
1

2
√

x
+ cos(x) − (x + 1) · sin(x)

Figure 3.6 graphically presents the first iteration of the method.

The result of N(x̃0,x0) is commonly called interval Newton operator and has

some interesting properties that will be presented below.

In the case of systems of equations, the interval Newton operator is derived

from a linearization of the system by considering an enclosure of its Jacobian

CHAPTER 3. INTERVAL ANALYSIS 60

xn x̃n N(x̃n,xn) xn+1

[2, 3] 2.5 [−0.016421, 2.218137] [2, 2.218137]
[2, 2.218137] 2.109068 [2.051401, 2.064726] [2.051401, 2.064726]

[2.051401, 2.064726] 2.058063 [2.059037, 2.059053] [2.059037, 2.059053]
[2.059037, 2.059053] 2.059045 [2.059045, 2.059045] [2.059045, 2.059045]

Table 3.2: First iterations of the interval Newton method applied to (3.33).

0

−2

−1

321

f(x) =
√

x + (x + 1) · cos(x)

x0N(x̃0,x0)
x1

f(x̃0)

Figure 3.6: First iteration of interval Newton method (x1 = N(x̃0,x0) ∩ x0).

matrix. Consider a function f : Rn → Rn continuous and differentiable in a

domain D ⊆ Rn (in particular D = x ∈ IRn) and J−1(x) as an interval matrix

which contains all the matrix J−1(x) where J represents a Jacobian matrix of the

system evaluated in x (with x ∈ x). The new expression of the interval Newton

operator (INO) for non-linear systems f(x) = 0 can be written as follows:

INO(x) = x̃− J−1(x) · f(x̃) (3.34)

All solutions of the system (if exist) will be contained in INO(x). Obviously,

this expression considers the regularity of the Jacobian matrix of the system (on

the other case, J−1(x) cannot be computed). The method iterates using the

following expression:

xn+1 = xn ∩ (x̃n − J−1(xn) · f(x̃n)) (3.35)

where x0 = x (the original domain) and x̃i = m(xi).

The interval Newton operator has two important properties:

CHAPTER 3. INTERVAL ANALYSIS 61

• If INO(x) ⊆ x then there is a unique solution in x.

• If INO(x) ∩ x = ∅ then no solution exists in x.

Important improvements to this basic operator have been proposed in [123]

(the Krawczyk operator) and [89] (the Hansen-Sengupta Algorithm).

Krawczyk operator

The Krawczyk operator [123] is an alternative of the interval Newton method

commonly used when the Jacobian matrix of the system is singular in at least one

point inside the interval x. The main idea is to use the center form to express

f(x) as follows:

f(x) = f(x̃) + J · (x− x̃) (3.36)

where J is the Jacobian matrix of the system evaluated in some point ξ ∈ x. The

solution of f(x) = 0 implies that f(x̃)+J · (x− x̃) = 0. An algebraic manipulation

is then performed to transform this expression into the following one:

x = x̃− f(x̃) + (I − J) · (x− x̃) (3.37)

where I represents the identity matrix. This is exactly the expression needed to

find the roots of the system by computing a fixed point in the domain given by x.

It can be computed as follows:

xn+1 = x̃n − f(x̃n) + (I − J(x)) · (xn − x̃n) (3.38)

with x0 = x (the initial domain) and J(x) is an interval matrix containing the

jacobian matrix of the system evaluated in all the points ξ ∈ x. A drawback of

this method is that it narrows the domain x only if (I − J(x)) is near to zero (in

other words, if J(x) is near to the identity matrix). For this reason the Krawczyk

operator uses a matrix C (generally C = m(J(x))−1)) to precondition the system

as follows:

K(x) = x̃n − Cf(x̃n) + (I − CJ(x)) · (xn − x̃n) (3.39)

As similar as INO the Krawczyk operator has some important properties as:

• If K(x) ∩ x = ∅ then no solution exists in x.

• If K(x) ⊂ x then there is a unique solution in x.

CHAPTER 3. INTERVAL ANALYSIS 62

Notice that K(x) needs to be completely included in x to prove the unicity of

the solution.

3.5.3 Unicity Operator

One of the problems of the Evaluation/Bisection algorithm presented in Section

3.5.1 is that some result boxes may contain no solution. These boxes are returned

because their widths are less than a given precision and no bisection is authorized.

For this reason, other important tools are needed in order to prove the existence

and/or uniqueness of a solution.

At the end of Section 3.5.1 a method to prove the existence of a solution for

the equation f(x) = 0, proposed by Moore, has been presented. The operators of

Section 3.5.2 can also be used to prove existence and uniqueness of solutions for

systems of equations. This section presents another way to do it, based on the

Kantorovich theorem9 as presented in [143].

Theorem 4 Let f(x) = 0 a system of n equations f = (f1, . . . , fn) and n un-

knowns x = (x1, . . . , xn). Let x̃ be a point for which the inverse of the Jacobian

matrix of the system J−1(x̃) exists, and let Ω = {x | ‖x− x̃‖ ≤ 2B}. If

• ‖J−1(x̃)‖ ≤ A,

• ‖J−1(x̃)f(x̃)‖ ≤ 2B,

• ∑n
k=1

∣
∣
∣
∂2fi(x)
∂xj∂xk

∣
∣
∣ ≤ C for i, j = 1, . . . , n and x ∈ Ω,

• A,B,C constants satisfying 2nABC ≤ 1.

then there is a unique solution x∗ ∈ Ω such that f(x∗) = 0, and this solution can

be obtained by using the Newton method with x̃ as initial estimation.

The advantage of the Kantorovich theorem is that it can be used not only for

proving the uniqueness of a solution in a given domain x, but also for inflating this

initial domain in order to obtain a bigger zone containing only one solution (see

[143, 182]). In [143], for example, Merlet shows a special case of inflation operation

for distance equations which is able to compute the maximal box containing a sole

solution (without using iterative methods). The key point of distance equations

is that the expression ∂2fi(x)
∂xj∂xk

becomes a constant which can be easily computed.

9The original presentation is discussed in [110, 196]. A comparison between these different
tools can be obtained in [61]. Some explanations of how these tools are used when computational
operations are involved can be obtained in [114, 181].

CHAPTER 3. INTERVAL ANALYSIS 63

3.6 A Note about Implementation

When interval arithmetic is implemented in a machine, it uses the finite set of

floating-point numbers that the hardware makes available [4, 70]. A simple real

number is not always representable in a machine, so a floating-point number (usu-

ally the nearest) is instead used. Moreover, even if two numbers a and b are

exactly representable in a machine, it is not always true that a+ b is representable

too. This is another source of errors in computed results, and must be taken into

account when interval arithmetic is implemented.

The standard IEEE 745 [4] (under revision since 2000, see [103]), defines

formats for representing floating-point numbers (including ±zero, infinities, and

NaNs), a set of floating-point operations, four rounding modes, and five excep-

tions. It was first implemented in the microprocessor Intel 8087 and it is a great

support for implementations of interval arithmetic.

This section explains how interval arithmetic is implemented in a machine,

and what types of operations are needed in order to guarantee the results. For

this presentation, only the rounding modes will be of interest, specially the round-

ing towards positive infinity and towards negative infinity (also called rounding

upwards and downwards).

Example 3.6.1 Consider, for instance, a machine that can represent numbers

with only three digits of mantissa. The value of π = 3.141596... cannot be repre-

sented in this machine (actually, no machine can represent it), but keeping only

three digits and rounding this number towards positive infinity the value 3.15 is a

machine representable number. Using rounding towards negative infinity will give

the value 3.14, and therefore the interval x = [3.14, 3.15] is a safe representation

of the number π in this machine.

In the last example, an interval y = [3, 4] is already a safe representation of

the number π, but in general it is desirable to make interval bounds as narrow10

as possible. In order to do it, the hull approximation of a set is defined.

Definition 9 (Hull approximation) Let S be a subset of R. The hull approx-

imation of S, denoted �S, is the smallest interval x such that S ⊆ x.

By definition the hull approximation is unique. In the case of interval arith-

metic over floating-point numbers, the hull approximation corresponds to the

10Many books use the term sharp instead of narrow. In this document both are used without
distinction.

CHAPTER 3. INTERVAL ANALYSIS 64

smallest representable interval x such that S ⊆ x.

Let F denote the available set of floating-point numbers in a machine. Let

x− ∈ F be the greatest number lower or equal to x, and let x+ ∈ F be the

smallest number greater or equal to x. So, related to the machine numbers, a real

number x will be represented11 by the interval xf = �x = [x−, x+], and a real

interval y = [y, y] will be represented by the interval yf = �y = [y−, y+].

On the other hand, if x and y are two intervals, the result of x + y will be

always contained in the interval zf = �(x + y) = [(x + y)−, (x + y)+]. The four

arithmetic operations can be adapted in the same way to be implemented in a

machine, and the inclusion property of interval arithmetic always holds.

Example 3.6.2 Consider the same machine used in the last example for comput-

ing the expression z = sin(y)+ ln(x) with x = e and y = π. The result is obtained

by computing

e = 2.718 . . . → x = [2.71, 2.72] → ln(x) = [0.99, 1.01]

π = 3.141 . . . → y = [3.14, 3.15] → sin(y) = [−0.01, 0.01]

z = [0.98, 1.02]

Notice that the computed result includes the actual value z = 1. Moreover,

the computed interval z = [0.98, 1.02] will always contain both the actual value

and the value computed with floating-point arithmetic.

3.6.1 Software and Libraries

Although it is possible to implement interval arithmetic in a machine for a par-

ticular programming language or application, there exist several implementations

for the most popular languages available in Internet12.

Maybe the first among them is INTLIB [112, 113], developed in Fortran 77

and after in Fortran 90. It is a set of subroutines based on BLAS for basic interval

operations. It uses a simulated direct rounding which makes it portable.

Another well-known library (maybe the most popular) is PROFIL/BIAS [119,

118]. It is written in C++ and provides an object-oriented interface for computing

with intervals, interval vectors and matrices. Many classic functions, constants and

special operation are also available.

11Notice that the floating-point numbers x− and x+ represent the rounding towards negative
infinity and positive infinity of the real value x, respectively.

12See, for example http://interval.sourceforge.net/interval/index.html or the website
of Interval Computation http://www.cs.utep.edu/interval-comp/, for details.

CHAPTER 3. INTERVAL ANALYSIS 65

As a public domain software, it can be downloaded13 and used in several

operating systems and platforms. It is a complete and very fast interval library

for C++ users.

Currently, there are some proposals to add interval arithmetic to the C++

Standard Library (see [23], for example), Boost Interval Arithmetic Library14.

and filib++ (Fast Interval LIRrary[132]) are some examples.

Commercial environment for linear algebra, scientific calculus and mathematics

also include packages for computing with intervals (see [116] for Mathematica,

Intpak [41, 43] and IntpakX [120] for Maple, and [101, 102] for MS Excel, for

example).

3.7 Generalized and Modal Intervals

This section presents a brief introduction to generalized15 and modal intervals,

with a special attention in the semantics of a given expression. It is not considered

as a part of classic interval analysis but as another branch called Modal Interval

Analysis (MIA) introduced by Gardeñes [64, 66] in the eighties.

Consider, for instance, the following equation

x + y = z (3.40)

with x = [1, 2] and y = [0, 5]. It is clear that the value of z must be the set of

values {z = x + y | x ∈ x and y ∈ y}, and that is z = [1, 7]. Now, consider the

same equation with the values y = [0, 5] and z = [1, 7]. What interval x ∈ IR
verifies x + y = z?. This is an interval equation, and the answer to this question

cannot be obtained using the expression

x = z− y (3.41)

as shown in example 3.2.2 in section 3.2. Moreover, the equation x + y = z has a

solution for x ∈ IR only when w(z) ≥ w(y), and the solution is x = [z− y, z− y].

The last expression is called algebraic difference [66] (in opposition to interval

difference defined in section 3.2).

13From http://www.ti3.tu-harburg.de/knueppel/profil/Profil2.tgz
14See http://www.boost.org/libs/numeric/interval/doc/interval.htm
15Also called directed interval (see [138]).

CHAPTER 3. INTERVAL ANALYSIS 66

Example 3.7.1 Consider the interval equation x + y = z, and the list of values

for y and z. The interval value x that verifies this equation is

y = [1, 2], z = [5, 8] =⇒ x = [5− 1, 8 − 2] = [4, 6] (3.42)

y = [0, 9], z = [0, 9] =⇒ x = [0− 0, 9 − 9] = [0, 0] (3.43)

y = [2, 8], z = [3, 6] =⇒ x = [3− 2, 6 − 8] = [1,−2] (3.44)

Notice that only equation (3.42) and equation (3.43) have a solution x ∈ IR.

The solution of equation (3.44) is not an interval (in the sense of the definition 3.3

in section 3.1). Notice that as w(z) < w(y), there exists no value x ∈ IR which

verifies the equation x + [2, 8] = [3, 6].

The result x = [1,−2] (an improper interval) of equation (3.44) is an object

of another set called generalized interval, and introduced by Kaucher [56, 57,

111] in his Kaucher arithmetic. This new set of numbers coupled with Kaucher

arithmetic extends the classic interval analysis allowing new interpretations to

interval expressions.

3.7.1 Generalized Intervals

As its classic counterpart, a generalized interval x = [x, x] is defined by two

real numbers x, x ∈ R, but without imposing the constraint x ≤ x. The set of

generalized intervals is denoted by KR and it is related with the set of classic

intervals by the relation KR = IR ∪ IR
where IR is the set of classic intervals (with x ≤ x), and IR is the set of improper

intervals (with x > x). Some of the definitions given for classic intervals are also

applied for generalized intervals. Some examples are:

1. Equality:

x = y ⇐⇒ (x = y) and (x = y)

2. Inclusion:

x ⊆ y ⇐⇒ (x ≥ y) and (x ≤ y)

3. Midpoint:

m(x) = 1
2(x + x)

Some other definitions have been added in order to change the proper/improper

quality of a generalized interval keeping unchanged the underlying set of associated

CHAPTER 3. INTERVAL ANALYSIS 67

reals.

1. Dual operator:

Dual([x, x]) = [x, x]

2. Proper projection:

Pro([x, x]) = [min{x, x},max{x, x}]

3. Improper projection:

Imp([x, x]) = [max{x, x},min{x, x}]

Operations meet and join between two generalized intervals x and y (see sec-

tion 3.3) are extended by relaxing the constraint max(x, y) ≤ min(x, y). Thus

x ∧ y = [max(x, y),min(x, y)]

x ∨ y = [min(x, y),max(x, y)]

are closed in KR.

3.7.2 Kaucher Arithmetic

In Kaucher interval arithmetic (also called complete interval arithmetic [190] or

directed interval arithmetic [138]) intervals form a commutative group with respect

to addition16 and a complete lattice with respect to inclusion. As its classic coun-

terpart, addition and substraction are defined using the bounds of the intervals as

follows:

• Addition

x⊕ y = [x + y, x + y]

• Substraction

x⊖ y = [x− y, x− y]

The expression x ⊗ y for interval multiplication in KR is more complicated

than the classic version. It is shown in table 3.3. The symbol KR+ represents the

set of intervals with positive bounds17, that is {x ∈ KR | (x > 0) and (x > 0)},
while the symbol KR− represents the set of intervals with negative bounds {x ∈KR | (x < 0) and (x < 0)}.

16Intervals together with addition operation satisfy the four fundamental properties of closure,
associativity, the identity property, and the inverse property.

17Also called positive intervals.

CHAPTER 3. INTERVAL ANALYSIS 68

y ∈ KR+ 0 ∈ y y ∈ KR− y ⊆ 0

x ∈ KR+ [xy, xy] [xy, xy] [xy, xy] [xy, xy]

0 ∈ x [xy, xy]
[min{xy, xy},

max{xy, xy}] [xy, xy] 0

x ∈ KR− [xy, xy] [xy, xy] [xy, xy] [xy, xy]

x ⊆ 0 [xy, xy] 0 [xy, xy]
[max{xy, xy},

min{xy, xy}]

Table 3.3: Multiplication in complete interval arithmetic.

Interval division is defined as its classic counterpart

x⊘ y = x⊗ y−1 = x⊗ [1/y, 1/y] for yy > 0

Notice that division by an interval x ∋ 0 or x ⊆ 0 is forbidden. Anyway, the

most important property of classic interval arithmetic (inclusion monotony) holds

in complete interval arithmetic too. That is

x ⊆ y and z ⊆ w ⇒ x ⋄ z ⊆ y ⋄w

for ⋄ ∈ {⊕,⊖,⊗,⊘} and x,y, z,w ∈ KR.

Example 3.7.2 Remember the interval equation x + y = z presented in example

3.7.1, with y = [2, 4] and z = [3, 8]. The solution x ∈ KR that verifies this

equation can be easily obtained using complete interval arithmetic and the Dual

operator as follows

x + y = z =⇒ x + y −Dual(y) = z−Dual(y)

x + [0, 0] = z−Dual(y) =⇒ x = [3, 8] − [4, 2]

x = [1, 4]

Notice that x = [1, 4] is the solution of the equation in classic interval arithmetic

(because x ∈ IR).

Another example using y = [2, 5] and z = [3, 4] shows that the solution x =

[1,−1] is not an interval in the classic sense (x /∈ IR), so the equation has no

CHAPTER 3. INTERVAL ANALYSIS 69

solution in classic intervals arithmetic. The remaining question is, What is the

sense of a solution x = [1,−1]? The answer has been pointed out by Gardeñes

and studied by several authors (see [126, 190]).

3.7.3 Modal Intervals

Modal interval analysis (MIA) is a special tool introduced by Gardeñes (see

[64, 65, 66]) which studies the semantics behind the operations between inter-

vals. May be the most important results from MIA are the relationship between

proper/improper intervals as sets of uncertain/controlable values (with an asso-

ciated quantifier), and the interpretability of the result of an operation between

them.

Example 3.7.3 Let x and y represent the uncertain (but limited) length of two

cords. If x = [5, 7] and y = [8, 10], can I make a new cord with a length 15 using

these cords? The answer is clearly you cannot! Why?, because you do not know

the length of the cords. The only available information is that the lengths of cords

x and y are bounded, so the result of the operation

x + y = [5, 7] + [8, 10] = [13, 17]

gives the uncertain bounded length of a resulted cord build from x and y.

In classic interval arithmetic, the only semantic interpretation of an operation

⋄ between two intervals x and y is as follows

(∀x ∈ x)(∀y ∈ y)(∃z ∈ z)(x ⋄ y = z)

So, in the last example, the only information we have is that there exists a value

z ∈ [13, 17] but we do not know it. This is a limitation of classic interval arithmetic.

Although we can control the value of a variable (for example, cutting the first

cord in a desired long between 5 and 7), we cannot express it with classic interval

arithmetic.

MIA extends the semantic interpretation of classic intervals by associating a

quantifier to each interval. Thus, a modal interval (x, Qx) is a couple built from

a classic interval x ∈ IR and its associated quantifier Qx ∈ {∃,∀}. The interval x

is called the extension and the quantifier Qx is the modality.

Because this theory has a totally different construction from classic interval

analysis, its presentation needs the introduction of many concepts and of course

CHAPTER 3. INTERVAL ANALYSIS 70

a special notation. Instead of including the complete theory in this document,

a simpler re-formulation proposed by Goldsztejn [71] and based on the practical

aspect of modal intervals will be used. The formal definitions of the original theory

can be found in [64, 65, 66] and [85].

Classic interval arithmetic is based on the possibility of building interval ex-

tension of a given function f , keeping the monotony property. That means to find

an interval value z ∈ IR such that range(f) ⊆ z for a given domain x. On other

words, to compute an interval z ∈ IR that verifies

(∀x ∈ x)(∃z ∈ z)(z = f(x))

Of course, the sharper the interval z is, the better the approximation of the

range of the function is. Goldsztejn [71] generalizes this problem as following:

Given a function f and set of variables x1, . . . , xn with interval domains x1, . . . ,xn

and an associated quantifier Qk for each of them, determine a quantifier Q and

an interval z ∈ IR such that

(∀xA ∈ xA)(Qz ∈ z)(∃xE ∈ xE)(z = f(x)) (3.45)

where A = {k | Qxk
= ∀} and E = {k | Qxk

= ∃}. In other words, to determine an

interval result with associated information. Only the case of universal quantifiers

preceding the existential ones is dealt and the solution set corresponding to this

particular case is called AE-Solution set.

Generalized intervals are used in order to represent domains and quantifiers

as follows: the set of real numbers associated to a variable is represented by

the proper projection of a generalized interval, while the associated quantifier is

represented by its proper/improper character. The convention used for quantifiers

is as follows:

• if xk is proper then Qxk
= ∀ else Qxk

= ∃.

• if zk is proper then Qzk
= ∃ else Qxk

= ∀.

Notice that this convention is compatible with classic interval arithmetic be-

cause we obtain the same semantic interpretation when only proper intervals are

involved.

According to this representation, the problem presented in (3.45) is formulated

as follows:

(∀xP ∈ xP)(Qz ∈ z)(∃xI ∈ Pro(xI))(z = f(x)) (3.46)

CHAPTER 3. INTERVAL ANALYSIS 71

where the subindices P represent the proper intervals, while I represent the im-

proper ones.

Example 3.7.4 Let x = [1, 3] and y = [2, 5] represent two generalized interval,

and f(x, y) = x + y a real function. It is easy to verify that the value z = [3, 8] is

a solution for (3.45), and the classic semantic interpretation

(∀x ∈ [1, 3])(∀y ∈ [2, 5])(∃z ∈ [3, 8])(z = x + y)

holds.

Such interval z ∈ KR is called interpretable with respect to f and x (or simply

(f,x)-interpretable). Actually, there exist several (f,x)-interpretable intervals for

a given problem, but an interval zi will be better (more accurate) than an interval

zj if zi ⊆ zj (generalized interval inclusion).

The best18 interval z ∈ KR (in the sense of interval inclusion) for the four ba-

sic arithmetic operators {+,−,×,÷} can be easily computed using Kaucher arith-

metic. Elementary function (like sqrt, log, exp, etc...) can also be computed using

the proper projection of the generalized interval and keeping its proper/improper

characteristic in the result.

Example 3.7.5 Let x = [1, 3] and y = [9, 4] represent two generalized intervals,

and f1(x, y) = x + y, f2(y) =
√

y. The solution z for each evaluation (using

generalized interval) and their semantic interpretation are computed as follows:

z1 = f1(x,y) ⇒ z1 = [1, 3] + [9, 4] = [10, 7]

⇒ (∀x ∈ [1, 3])(∀z1 ∈ [7, 10])(∃y ∈ [4, 9])(z1 = x + y)

z2 = f2(y) ⇒ z2 = Imp(
√

Pro([9, 4])) = Imp([2, 3]) = [3, 2]

⇒ (∀z2 ∈ [2, 3])(∃y ∈ [4, 9])(z2 =
√

y)

Notice that the same idea can be applied in order to compute interval eval-

uation and semantic interpretation for more complicated functions. Using a tree

decomposition of the whole expression into simpler binary operations and elemen-

tary functions it is possible to compute a natural generalized interval evaluation (as

computed in classic interval arithmetic for rational expressions) and its semantic

interpretation.

18It means to compute the smallest proper interval (if z is proper) or the largest improper
interval (if z is improper).

CHAPTER 3. INTERVAL ANALYSIS 72

Example 3.7.6 Let x = [1, 3], y = [−1, 2], and w = [6, 0] be three generalized in-

tervals and f(x, y,w) = x2+2
√

w − y. The solution z and the associated semantic

interpretation can be computed as follows:

z1 = w − y ⇒ z1 = [6, 0] − [−1, 2] = [4, 1]

z2 =
√

z1 ⇒ z2 = Imp(
√

Pro([4, 1])) = [2, 1]

z3 = 2× z2 ⇒ z3 = 2× [2, 1] = [4, 2]

z4 = x2 ⇒ z4 = [1, 3]2 = [1, 9]

z = z4 + z3 ⇒ z = [1, 9] + [4, 2] = [5, 11]

Based on the final result z = [5, 11], the semantic interpretation of the generalized

interval evaluation of f is

(∀x ∈ [1, 3])(∀y ∈ [−1, 2])(∃z ∈ [5, 11])(∃w ∈ [0, 6])(z = x2 + 2
√

w − y)

Nevertheless, the natural interval evaluation of an given expression does not

give the best result in a general case. In classic interval arithmetic, for example,

when multi-ocurrence variables are involved in the evaluation of a function the

result is generally an over-estimation of the range of the function (remember the

expression f(x) = x−x with x = [0, 1], the result of the natural interval evaluation

is f([0, 1]) = [−1, 1], but f(x) = 0 for all x in the interval [0, 1]).

The same problem is found when multi-ocurrence variables are involved in a

function f over generalized intervals. When multi-ocurrence variables are proper,

the computed interval z′ obtained by evaluating f using Kaucher arithmetic is an

over approximation of the optimal z (that means z ⊆ z′). Otherwise, when multi-

ocurrence variables are improper, the computed interval z′ obtained by evaluating

f using Kaucher arithmetic is not an interpretable interval. For example, consider

the interval function f(x) = x− x with x = [1, 0]. The natural interval evaluation

given by Kaucher arithmetic is f([1, 0]) = [1,−1], but the value [1,−1] is not a

(f,x)-interpretable result.

In some cases, a mean-value extension to generalized intervals can be used

in order to compute interpretable intervals, but computing the best interpretable

interval in a general case is still an open problem.

A better description of the limitation of this approach and some condition for

obtaining interpretable intervals for a given function (and for vectorial functions)

can be found in [71].

CHAPTER 3. INTERVAL ANALYSIS 73

3.8 Conclusions

Computers work with digital numbers, not with real ones. This is a very important

fact that must be taken into account when a set of operations is performed by a

machine. At the beginnings of interval arithmetic it was a good motivation for

developing special tools to handle rounding errors and floating-point arithmetic

limitations. But the whole Interval Analysis theory is much more powerful and

not only protect the correctness of results against rounding errors, but provides

elaborated algorithms for solving systems of linear and non-linear equations in a

certified19 way, among other things.

Many of these tools have been successfully used in Constraint Programming

over continuous domains (generally represented by intervals). The combination

of both Constraint Programming and Interval Analysis has shown to improve the

performance in problem solving and has been used in many other areas.

In this chapter, a brief introduction of Interval Analysis and their tools has

been presented. The combination of these and the Constraint Programming tools

is given in the next chapter. The contributions of this thesis are based on this

combination.

19The expression certified way means that no solution is lost during the system solving process.

Chapter 4

Constraint Programming and

Intervals

Although Constraint Programming and Interval Analysis may seem two very dif-

ferent and distant approaches for problem solving (from the origins and objectives

point of view), they have many things in common.

The inclusion of continuous domains in the area of Constraint Programming

brings the natural use of intervals and their associated arithmetic. This fact

not only brought the knowledge of Interval Analysis to the set of tools already

developed in Constraint Programming but also allowed the development of new

tools used afterward by both communities.

The aim of this chapter is to present the combination of Interval Analysis and

Constraint Programming for solving CSPs over continuous domains and a set of

tools generated by this combination. These tools are the basis of the second part

of the thesis which contains the contributions.

Section 4.1 presents an introduction of the evolution of Constraint Program-

ming over continuous domains. Section 4.2 introduces the concept of Numeric

Constraint Satisfaction Problem (NCSP) as a special class of CSP. Section 4.3

presents some of the most popular consistency techniques over continuous do-

mains, while Section 4.4 presents different domain splitting strategies. Section

4.5 discusses the problem of the uncertainty in the input data (called parame-

ters), while Section 4.7 introduces some special techniques for solving systems of

distance equations. Finally, Section 4.8 presents the conclusions of the chapter.

74

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 75

4.1 Introduction

Among the first works combining Intervals and Constraint Programming we can

cite Cleary [33] (who proposed an interval representation to handle operations

over de reals in Prolog, and included a propagation algorithm to be used with in-

tervals), Davis [48] (who introduced some theoretical results about the complexity

of such a propagation), and Hyvönen [100] (who addressed problems with inexact

input/output values and under-constrained situations, and used intervals for prop-

agating simultaneous alternative values, which he called Tolerance Propagation).

Some of these ideas were after developed in a more formal way as consistency

techniques over continuous domains. Examples of those are the 2B-consistency

[133] (also known as Hull-consistency [13]), 3B-consistency [133], Box-consistency

[16], and Bound-consistency over continuous domains.

Another advantage of using intervals is the guarantee. When intervals are

used to guarantee results, the inexactitude of the input data is reflected in the

solutions of the problem. Therefore, the solutions of a NCSP involving inexact

input data are no more isolated points but a continuum of feasible points in the

space (this is also the case of under-constrained NCSP). That brings an additional

difficulty which is the representation of constraints and their solutions. A special

representation of constraints has been introduced in [186].

4.2 Numeric Constraint Satisfaction Problem

A system of equations is basically a CSP over continuous domains (also called

a Numeric Constraint Satisfaction Problem or simply NCSP). The definition of

a NCSP is almost the same as for a CSP (see section 2.2) except that variable

domains are defined by intervals1 and the constraints are defined by any numeric

relation linking a set of variables.

NCSPs are very common in the real life and have been widely studied in many

areas (generally posed as system of equations). In this document, a NCSP is

considered as a system of equations and/or inequalities (possibly with interval

parameters).

Example 4.2.1 Consider the following NCSP:

P = (X,D,C)

1A more general definition considers variable domains as sets of numbers without forcing the
use of intervals. In this document only interval domains will be considered.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 76

X = {x, y}
D = {Dx = [0, 5],Dy = [0, 5]}
C = {c1 : x2 + y2 = 4, c2 : (x− 3)2 + (y − 2)2 = 4}

Figure 4.1 graphically shows the solutions of the system.

0 2 3 41

1

2

3

Solutions

Figure 4.1: Example of a NCSP and its solutions.

In the last example, the real (fixed) values are parameters of the problem.

Most of the time they are considered as simple real values but in some cases they

can be intervals with a associated quantifier (see Section 4.5.1).

4.3 Filtering Techniques

Roughly speaking, a filtering technique is a method to eliminate values from the

domains of the variables that cannot belong to any solution of the problem. This

is the case, for example, of the consistency techniques for CSP over finite domains

(discussed in Section 2.3.3) and the contracting operators (discussed in Section

3.5.2).

There exist two types of filtering techniques:

• Local filtering technique: which considers only one constraint at a time, and

propagates the domain reductions due to this constraint through the whole

system.

• Global filtering technique: which considers all the constraints simultaneously.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 77

Section 3.5.2 discussed some global filtering techniques (as the interval Newton

and Krawczyk operators). This section presents four of the most popular local fil-

tering techniques known as consistency techniques over continuous domains. Some

of them are extensions of those presented in Section 2.3.3 and others are combi-

nations of Numerical Analysis (Interval Analysis) and Constraint Programming.

The process of enforcing a consistency technique is known as filtering or nar-

rowing. As the same as in finite domains, the filtering phase is performed by prop-

agation, reducing the domain of a given variable (based on a given constraint) and

propagating this reduction along the network. Algorithm 5 presents the basis of

the propagation.

Algorithm 5 Propagation(P = (X,D,C))

Q ← {〈xi, cj〉|xi ∈ V ars(cj) ∧ cj ∈ C}
while Q not empty do

select and delete 〈xi, cj〉 from Q
if narrowing(xi, cj) then

Q ← Q ∪{〈xk, c〉 | (c 6= cj) ∧ (xi, xk ∈ V ars(c))}
return

The algorithm uses a queue of pairs variable-constraint to be revised. The

narrowing() operator represents a consistency technique which is enforced on the

variable xi for a given constraint cj . If the domain of the variable xi is reduced, the

set of variables related to xi through a constraint (and the respective constraint)

is added to the queue. The algorithm finishes when no reduction is possible and

the queue is empty.

The main difference between propagation algorithms is in the consistency tech-

nique applied in the narrowing operator. Among the most popular techniques are

2B-consistency, 3B-consistency, Box-consistency and Bound-consistency2. They

are briefly explained below. More information about them and techniques for

improving their performance can be obtained in [130].

4.3.1 2B-consistency

The 2B-consistency can be considered as a generalization of the arc-consistency

technique (see Section 2.3.3) originally proposed for CSP over finite domains. It

2There exists a difference between the Bound-consistency in finite domains (presented in
Section 2.3.3) and the Bound-consistency over continuous domains which is an adaptation of the
3B-consistency.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 78

was introduced in [133] and after presented under the name Hull-consistency [13].

It is based on an important concept in NCSP which is the projection of a constraint

on a given variable.

Definition 10 (Projection of a Constraint) Let x1, . . . , xk be a set of vari-

ables and S = D1 × . . . × Dk a subspace. The projection on xi of a constraint

c(x1, . . . , xk) restricted to domains D1, . . . ,Dk (denoted by Πi(c, S)) is the set:

{vi ∈ Di | ∃(v1, . . . , vi−1, vi+1, . . . , vk) ∈ D1 × . . . ×Di−1 ×Di+1 × . . . ×Dk such

that c(v1, . . . , vn) is verified}.

Example 4.3.1 Consider the constraint c2 : (x− 3)2 + (y − 2)2 ≤ 4 presented in

the example 4.2.1. The projection of c2 on the variable x is Πx(c2,Dx×Dy) = [1, 5]

while the projection on y is Πy(c2,Dx ×Dy) = [0, 4].

Note that the projection of a constraint on a given variable is not necessarily

an interval. Actually, it may be an union of intervals which is commonly approx-

imated by a single interval (including all of them) for practical issues.

Definition 11 (2B-consistency) Let P be a NCSP and x a variable of P with

domain Dx = [a, b]. Dx is 2B-consistent iff ∀c(x, x1, . . . , xk) a constraint over x:

• ∃v1, . . . , vk ∈ D1 × . . .×Dk | c(a, v1, . . . , vk) is satisfied,

• ∃v1, . . . , vk ∈ D1 × . . .×Dk | c(b, v1, . . . , vk) is satisfied.

A NCSP is 2B-consistent if all its domains are 2B-consistent.

As shown in the definition, the 2B-consistency is restricted only to the bounds

of the variable domains. That means some values of a domain may be locally

inconsistent3. That is similar to the Bound-consistency over finite domains pre-

sented in Section 2.3.3.

Definition 12 (Closure by 2B-consistency) Given a NCSP P = (X,D,C),

a closure by 2B-consistency of P (denoted Φ2B(P)), is a NCSP P ′ = (X,D′, C)

such that:

• P ′ is equivalent to P ,

• P ′ is 2B-consistent,

3Actually, when the projection of a constraint on a variable is a set of disjoint intervals, each
gap between these intervals contains inconsistent values.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 79

• D′ is the biggest domain D′ ⊆ D such that P ′ is 2B-consistent.

The closure Φ2B(P) always exists and is unique.

A closure by 2B-consistency can be implemented in several ways. The basic

algorithm for enforcing 2B-consistency is based on the projection of each constraint

on each variable (and looks like that presented in Section 2.3.3 for arc-consistency).

Other implementations use symbolic manipulations of the constraints in order to

obtain better interval evaluations (see [142], for an example).

In the original presentation, the algorithm was designed in terms of simple

primitive constraints, and the system should be decomposed into primitives.

An important improvement to the original algorithm was introduced in [15]

under the name HC4 (algorithm for enforcing Hull-consistency). It removes the

decomposition of a constraint into primitives and enforces hull-consistency over

complex constraints. The main idea is to use the syntactic tree of a constraint c

and to perform a forward evaluation (starting from the leaves to the root of the

tree) and a backward evaluation (from the root to each leaf representing a variable)

in order to project the whole constraint on each variable. At the root of the tree,

both child nodes are intersected and the backward propagation begins. Figure 4.2

shows an example of the narrowing operator of HC4 (called HC4Revise) using both

forward and backward propagations to compute the projection of c : y = z − x2

on the variables x, y, and z.

[−5,5] 2

z

x

y

^

2

=

−

[0,25][0,9]

[−25,9][0,30]

(a)

[−5,5] 2

z

x

y

^

2

=

−

[0,25][0,9]

[−25,9][0,30][0,9] [0,9]

[0,9] [0,9]

[−3,3]

(b)

Figure 4.2: Example of the forward (a) and backward (b) propagations performed
by the algorithm HC4Revise for computing the projection of c : y = z − x2 with
initial domain x = [−5, 5], y = [0, 30], and z = [0, 9] on each variable.

Lhomme [133] identified a termination problem of the algorithm for enforcing

2B-consistency, which is shown in the following example:

Example 4.3.2 Consider the following NCSP:

P = (X,D,C)

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 80

X = {x, y}
D = {Dx = [0, 10],Dy = [0, 100]}
C = {c1 : y = x + 1, c2 : y = 2 ∗ x}

Considering Dx = [0, 10] the projection of c1 on y leads to Dy = [1, 11]. Using

this new domain for y and the constraint c2 we obtain a projection Dx = [0.5, 5.5].

Actually, this process continues reducing alternately Dx and Dy with an asymptotic

convergence towards the solution x = 1, y = 2.

A possible solution for this problem is the inclusion of a precision coefficient

w. The resulting consistency is called 2B(w)-consistency, and the main idea is to

revise again the constraints containing a variable x only if the domain of x was

sufficiently reduced in the last projection.

It is important to note that the closure Φ2B(w)(P) is not unique. It depends on

the order in which constraints are evaluated (only Φ2B(0)(P) is unique because it

is equivalent to the 2B-consistency). Anyway, the 2B(w)-consistency is the most

frequently implemented in practice.

4.3.2 3B-consistency

It is important to note that enforcing a 2B-consistency for a given problem does

not always reduce the domain of the variables to the smallest interval containing

the projection of the solutions of the problem.

Example 4.3.3 Consider the following NCSP:

P = (X,D,C)

X = {x, y}
D = {Dx = [0, 5],Dy = [0, 5]}
C = {c1 : (x− 1)2 + (y − 1)2 ≤ 1, c2 : (x− 2)2 + (y − 1)2 ≤ 1}

Figure 4.3 shows the resulting box after enforcing 2B-consistency on the prob-

lem P . The final domains Dx = [1, 2] and Dy = [0, 2] are 2B-consistent, but even

though the value 2 ∈ Dy satisfies both constraints (separately), it does not belong

to any solution of the problem.

Lhomme [133] introduced a stronger consistency called 3B-consistency which

allows one to obtain a better rough approximation of the solutions of the problem.

It can be seen as a form of strong 3-consistency [60] restricted to the bounds of

the domains (see Section 2.3.3).

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 81

0 2 31

1

2

Figure 4.3: Example of a 2B-consistent problem.

Definition 13 (3B-consistency) Let P be a NCSP and x a variable of P with

domain Dx = [a, b]. The domain Dx is 3B-consistent iff

• Φ2B(P ′) is not empty, where P ′ is derived from P by replacing Dx = [a, a+),

• Φ2B(P ′′) is not empty, where P ′′ is derived from P by replacing Dx = (b−, b].

A NCSP is 3B-consistent if all its domains are 3B-consistent.

In other words, a domain is 3B-consistent if it can be reduced to one of its

bounds and enforce a 2B-consistency over the resulting NCSP (without producing

an empty set). The closure of a NCSP P by 3B-consistency is denoted by Φ3B(P)

and can be theoretically obtained by removing the part of the domain which is

not consistent.

In practice, the algorithm commonly implemented enforces another consis-

tency called 3B(w1, w2)-consistency which follows the same idea as the 2B(w)-

consistency presented in Section 4.3.1. The 3B(w1, w2)-consistency tries to avoid

the asymptotic convergence by considering a form of precision coefficient for the

2B-consistency and the 3B-consistency processes.

Definition 14 (3B(w1, w2)-consistency) Let P be a NCSP, x a variable of P

with domain Dx = [a, b], and w1 ≥ w2 ≥ 0. Dx is 3B(w1, w2)-consistent iff

• Φ2B(w2)(P
′) is not empty, when Dx is replaced by [a, a+w1] in P ′,

• Φ2B(w2)(P
′′) is not empty, when Dx is replaced by [b−w1, b] in P ′′.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 82

A NCSP is 3B(w1, w2)-consistent if all its domains are 3B(w1, w2)-consistent.

In some implementations the coefficient w is considered as a fixed precision

value and if the projection of a constraint c produces a domain reduction less

than w (on a variable x) then this reduction is not more propagated to the other

constraints (that means the set of constraints containing the variable x are not

revised again).

4.3.3 Box-consistency

Box-consistency was first introduced in [16] as an approximation of arc-consistency

and whose implementation uses the Newton interval method. It avoids the de-

composition of a constraint into primitives (tackling the dependency problem of

intervals for variables with many occurrences). Roughly speaking, the idea is to

compute the left-most and right-most zeros of an univariate interval function fx

obtained by replacing all variables but one (x) by their interval domains.

Definition 15 (Box-consistency) Let P = (X,D,C) be a NCSP and c ∈ C

a n-ary constraint over the variables x1, . . . , xn with interval domains x1, . . . ,xn.

The constraint c is box-consistent (w.r.t. x1, . . . ,xn) iff

xi = hull(xi ∩ {ai ∈ R | c(x1, . . . , xi−1, ãi, xi+1, . . . , xn) holds})

A NCSP is Box-consistent if all its constraints are Box-consistent.

The value ãi in the definition denotes the computational safe representation of

the real value ai. In other definitions (see [34]) it is replaced by the open interval

[ai, a
+
i) (for the lower bound) and (a−i , ai] (for the upper bound).

The closure by Box-consistency is defined in the same way as it was defined

for 2B-consistency and is denoted ΦBox(P). The algorithm for enforcing Box-

consistency follows the generic Algorithm 5 with a narrowing operator which

computes the left-most quasi-zero as shown in Algorithm 6 (see [34]) and the

right-most quasi-zero in an analogous way.

The function fx corresponds to the constraint c expressed in the form c : fx = 0

when all variables but x are replaced by their interval domain. The interval [i, i+]

represents the safe approximation of the possible left-most zero of fx.

It can be proved that the interval obtained by computing the left-most and

right-most quasi-zeros of a function fx corresponding to a constraint c for a vari-

able x, is equivalent to a simple projection of c on the variable x when x appears

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 83

Algorithm 6 LNAR(fx,x)

r ← x
if 0 /∈ fx(x) then

return ∅
else

i← NEWTON(fx,x)
if 0 ∈ fx([i, i+]) then

return [i, r]
else

SPLIT(i, i1, i2)
l1 ← LNAR(fx, i1)
if l1 6= ∅ then

return [l1, r]
else

return [LNAR(fx, i2), r]
return

exactly once in c. As finding the left-most and right most quasi-zeros is compu-

tationally expensive, a new algorithm for enforcing Box-consistency called BC4

was proposed in [15]. This algorithm uses the same narrowing operator that BC3

when the variable occurs more than once in the constraint, and uses HC4revise

(the narrowing operator based on projection of the HC4 algorithm) when the

variable occurs only once in the constraint.

4.3.4 Bound-consistency over continuous domains

Bound-consistency applies the same principle of the 3B-consistency to the Box-

consistency. In other words, Bound-consistency checks whether Box-consistency

can be enforced when the domain of a variable is reduced to the value of one

of its bounds. It is important to note that this consistency technique is related

to continuous domains and based on Box-consistency (even though the name is

the same as the Bound-consistency for finite domains defined in Section 2.3.3).

Hereafter, this name is related only to the consistency for continuous domains.

Definition 16 (Bound-consistency) Let P be a NCSP and x a variable of P

with domain Dx = [a, b]. The domain Dx is Bound-consistent iff

• ΦBox(P ′) is not empty, where P ′ is derived from P by replacing Dx = [a, a+),

• ΦBox(P ′′) is not empty, where P ′′ is derived from P by replacing Dx = (b−, b].

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 84

A NCSP is Bound-consistent if all its domains are Bound-consistent.

Some authors [34] define the Bound-consistency as follows:

Definition 17 (Bound-consistency) Let P be a NCSP and c a k-ary constraint

over the variables (x1, . . . , xk) with interval domains (x1, . . . ,xk). The constraint

c is Bound-consistent iff for all xi, the following relations hold:

• ΦBox(c(x1, . . . , xi−1, [xi, x
+
i), xi+1, . . . , xk)) is not empty,

• ΦBox(c(x1, . . . , xi−1, (x
−
i , xi], xi+1, . . . , xk)) is not empty.

A NCSP is Bound-consistent if all its constraints are Bound-consistent.

In practice, both definitions are equivalent.

4.4 Domain splitting strategies

A domain splitting strategy is simply an adaptation of the political proverb divide

ut imperes (also called divide-and-conquer in computer science) that consists

in breaking a problem into simpler subproblems of the same type, next to solve

these subproblems, and finally to reunify the obtained results into a solution to the

original problem. As presented in Section 3.5.1, this is a common strategy used

in Interval Analysis for solving systems of non-linear equations. This strategy can

be generalized by considering different ways to split the domains. This section

explains some of them.

Consider a CSP P with an initial domain D. A domain splitting strategy

generates a set of subdomains D′
1, . . . ,D

′
n such as D = D′

1∪ . . .∪D′
n. The original

problem is then broken into a set of problems P ′
1, . . . , P

′
n with domain D′

1, . . . ,D
′
n

respectively. Each problem P ′
i is solved separately, and finally the solution of P

is obtained as the union of the solutions of the problems P ′
i .

In general these subproblems will be easier to solve, either because they have

no solution at all or because some techniques for getting the solutions become

effective.

Example 4.4.1 Consider the following CSP:

P = (X,D,C)

X = {x}

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 85

D = {[2, 6]}
C = {c1 : sin(x)

x
= 0}

A domain splitting strategy (like bisection in the middle) will split the in-

terval [2, 6] in two intervals D′ = [2, 4] and D′′ = [4, 6]. Using Interval Arith-

metics we can prove that all values of the expression sin(x)
x

for x ∈ [4, 6] are into

[−0.25,−0.04], so the problem with domain D′′ has no solution. Now we must

solve the problem with domain D′. The same technique can be applied for splitting

this domain in [2, 3] and [3, 4], and go on.

Thus it is primarily a recursive method. The common stop condition used for

recursivity is a fixed interval width ǫ, called precision. The precision constrains

the width of the largest interval in D. If all variable domains have a width lower

than ǫ, the problem is considered solved, and the solution is the current domain.

Other techniques are used to prove uniqueness and/or existence of solutions in the

returned domain (see Section 3.5.3 for more details).

In order to apply a domain splitting strategy, two basic questions need to be

answered: Where to split? and How to split?.

The first question (Where to split?) has many proposals, but the most common

method is the single splitting mode (i.e. split only one variable at a time).

Among the strategies for determining the variable to be split, the Round Robin

method is one of the simplest, and does not require additional information from the

problem. In this method, the domains of the variables are processed alternatively,

so all variable domains are expected to be split (unless their width is lower than

the precision).

Other strategies use syntactic or semantic information. For example, the Large

First strategy consists in selecting first the domain of maximal width, and in

some situations this strategy allows one to eliminate large domain spaces without

solutions, improving the performance of the solving process.

Another example is the Maximal Smear function [115, 87] strategy, which uses

a special expression to determinate the variable with the most important impact

in the problem (that is, the variable in which f has the strongest slope). Let J(x)

be the interval extension of the Jacobian matrix of the system, and let x1, . . . , xn

be the set of variables. The smear function of the variable xj is defined as follows:

sj = max
1≤i≤m

{|Ji,j |, |Ji,j |}(xj − xj)

where m represents the total number of functions, [Ji,j , Ji,j] is the interval in the

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 86

(i, j)-th entry of J(x), and [xj , xj] is the interval domain of the variable xj . The

variable that will be split will be the one having the largest sj.

The main drawback in the strategies based on syntactic or semantic infor-

mation is that some variable domains may be never split, whether because their

interval widths are very small (w.r.t. the others variables), or because the influ-

ence in the evaluation of the Jacobian matrix is very low. Anyway, these strategies

can be easily combined in order to avoid this problem.

The second question (How to split?) has many answers depending on the

problem and the solving strategy used. The simplest method is a middle point

bisection of the domain, that is, given a variable domain Dxj
= xj , the bisection

computes the new domains:

D′
xj

=

[

xj,
xj + xj

2

]

and D′′
xj

=

[
xj + xj

2
, xj

]

Many authors suggest the importance of considering gaps detection for splitting

domains. In [87], the author suggests the use of gaps detected when applying the

interval Newton method, for splitting the domain of the variables. In [170], the

author discusses the performance of a global optimization method using different

splitting strategies based in gaps detection in the interval Newton Gauss-Seidel

method.

More recent strategies for splitting domains based in gaps detection during

the filtering phases have been suggested in [15], and studying in depth in [30, 10].

Experimental results show that these strategies may significantly improve the

performance of a search process in some particular cases.

4.5 Uncertainty and Approximations

Most of the problems presented up to now are based on the assumptions that the

exact values of the input quantities are known. Actually, the data often come

from measurements, and measurements are never 100% precise. That means the

actual value p of each input quantity may differ from its measurement result p̃.

Sometimes, the probabilities of different error values δp = p − p̃ are known, but

in general only an upper bound for the error is available. In this cases, the only

information about the (unknown) actual value p is that p belongs to an interval

p = [p, p].

Consider for example the parallel robot presented in Figure 4.4. It is built

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 87

from two legs (l1 and l2) attached to fixed points (p = (0, 0) and q = (3, 0)).

0 2 3 41

1

2

3

l1 l2

p s qs

Position of the

terminal effector

Figure 4.4: Example of a Parallel Robot.

The position of the terminal effector of the robot can be easily computed by

solving the following NCSP:

P = (X,D,C)

X = {x, y}
D = {Dx = [0, 5],Dy = [0, 5]}
C = {c1 : x2 + y2 = l21, c2 : (x− 3)2 + y2 = l22}

where l1 and l2 correspond to the parameters of the system (actually, the

positions p and q are also parameters of the system).

If we consider that l1 and l2 are measurements and therefore have a degree of

uncertainty, then a solution point (x̃, ỹ) is nothing more than an approximation

of the actual value (x, y). As the only available information is that l1 ∈ l1 and

l2 ∈ l2, all values (x, y) for which there exists a value l1 ∈ l1 and l2 ∈ l2 are

potential solutions for the problem.

The same problem can also be posed in another way (from the point of view

of control). For example, consider an effector placed in each leg (which allows the

leg to change its length according to a given interval li), and consider that the

attachment points are not well known. The question is: What is the reachable

workspace4 of the robot?

4The workspace of a robot corresponds to the set of positions that the terminal effector can

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 88

As we are looking for the set of possible positions (x, y) of the terminal effector

and we need to be sure that the robot can reach the solution point, we need to

compute the following solution set:

S = {s | (∀p ∈ p)(∀q ∈ q)(∃l1 ∈ l1)(∃l2 ∈ l2)((d(s, p) = l1) ∧ (d(s, q) = l2))}

where d(s, p) = l represents a distance constraint between the points s and p. In

other words, we are looking for the set of points in the space that we are sure to

reach whatever the values p and q are.

We say that this problem has uncertainties or simply that it is a NCSP with

uncertainties in its parameters. Sometimes, this types of problems can be trans-

formed into equivalent problems in which equations (containing parameters with

uncertainty) are replaced by inequalities. For example, the NCSP resulting from

replacing a constraint c : x2 + y2 ∈ l21 by c′ : x2 + y2 ≥ l1
2 and c′′ : x2 + y2 ≤ l1

2

will be equivalent to the original. The advantage here is that the new NCSP has

only real valuated parameters (instead of interval ones).

It is clear that these types of problems have no more isolated solutions but

one (or several) continuum of solutions. Therefore, classic techniques for problem

solving are not adapted to solve them, and new strategies to approximate these

continua of solutions must be developed. Section 4.6.1 briefly presents some of

them.

4.5.1 Quantified Parameters

As shown in the last section, the parameters of a system can have different mean-

ings (depending on the represented object). For example, measurements of phys-

ical quantities (or approximations of them) or range of values which can be con-

trolled by a user. These different meanings are represented by quantifiers (∀ and

∃).
Constraints involving parameters with an associated quantifier are called quan-

tified constraints. Some examples of quantified constraints are:

c1(x) : (∀p ∈ p)(∃l ∈ l)((x− p)2 = l) (4.1)

c2(x, y) : (∀a ∈ a)(∀b ∈ b)(∃c ∈ c)((x − a)2 + (y − b)2 = c2) (4.2)

c3(z) : (∃a ∈ a)(∀b ∈ b)(az = z2 − b) (4.3)

reach (i.e. the set of possible poses given a set of parameters).

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 89

CSPs involving quantified constraints are called quantified CSPs (in our case

QNCSP). There is a special class of QNCSP in which predicates are such that

all the universally quantified parameters appear before the existentially quantified

ones (as is shown in the constraints (4.1) and (4.2)). The solution sets of this class

of problems are called AE-solution sets (see [190] for more details). This is the

class of problems treated in this thesis.

4.5.2 Solution Representation

Problems involving inequalities or existentially quantified parameters generally

have solution sets with a non-null volume. In other words, the solutions of the

problem are not isolated points in the space. In these cases, it is not possible to

enumerate all solutions and a better alternative is to describe them in some way.

Sam-Haroud [186] has introduced a special representation of constraints using

2k-trees, in which nodes are labelled in one of three possible states:

• white (or completely legal) which corresponds to boxes containing only

points that verify the constraint.

• gray (or partially legal) which corresponds to boxes containing both solutions

and non-solutions of the constraint.

• black (or completely illegal) which corresponds to boxes containing only

points that do not verify the constraint.

Figure 4.5 shows an example of the 2k-tree representation of the constraint c :

x2 +y2 ≤ 1. The root node of the tree corresponds to the domain ([−1, 1], [−1, 1]).

A node labelled as white or black never has sub-nodes because all its points are

already characterized. Only gray boxes are subdivided (but only until a given

precision).

The advantage of this representation is that a conjunction of constraints can

be easily computed as a new tree in which the nodes are labelled according to a

logic operation between the nodes of the trees representing each constraint.

Two important concepts (based on the label of the box representing the solu-

tion space of a problem) are then introduced [185, 186]: the inner content approx-

imation of a solution space, given by the white nodes of the tree; and the outer

content approximation which is given by the union of the white and grey nodes

of the tree. Some authors have proposed different definitions for inner and outer

approximations (see [6, 15, 189]).

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 90

(a)

1

1

−1

−1

(b)

Figure 4.5: (a) A part of the 2k-tree representation of the constraint c : x2+y2 ≤ 1.
(b) The visual interpretation of the tree.

In [6], an inner approximation is basically any box included inside the solution

space of an n-ary real relation ρ. In [189], it is a box included in ρ that cannot be

extended in any direction without containing a non-solution point, while in [15],

the inner approximation contains all the elements included in ρ. This last one is

much more similar to the definition proposed in [186], and will be the definition

used hereafter in this document5.

There is a better consensus in the definition of an outer approximation of the

solution sets of a problem: it is a conservative enclosure of the set of solutions.

Some authors prefer to specify the type of approximation by separating it in

rough outer approximation (the smallest box containing the set of solutions) and

sharp approximation which corresponds to an union of boxes describing the set

of solutions of the problem. These two types of outer approximations are used in

this thesis.

4.6 Solving NCSP

Solving a NCSP is similar to solve a CSP, that means to find an assignment to the

variables which verifies all the constraints. Maybe the main difference is that in

NCSP we are commonly interested in all the solutions of the problem (instead of

only one). Moreover, problems related to robotics need to have more information

about the type of solution found and the space around this solution.

5From a practical point of view, given a paving of the search space, an inner approximation
corresponds to the set of boxes totally included inside the solution space of the problem. This
type of approximation is also called sound approximation.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 91

Section 4.5 showed that parameters frequently change a punctual solution into

a continuum of solutions. This continuum of solutions (or solution set) can have

different meanings. For example, when the workspace of a parallel robot is com-

puted, this solution set may represent a single configuration6 disturbed by the

influence of the parameters, or to represent several configurations sharing parts of

the same space. It is important to know which of them is the case, because if two

configurations share the same space then there is at least one singularity in the

space in which the robot breaks (see [145] for more details).

Another difficulty of the NCSP with uncertainties is that the set of all solutions

cannot be computed in an exact way (actually, even in linear systems computing

the exact bounds is NP-hard [125, 178]). Thus the aim is to find a good approxi-

mation of the solution set (see Section 4.5.2 for a note about approximations).

4.6.1 The Branch and Prune Algorithm

The branch and prune algorithm is a direct consequence of the combination of

an Evaluation/Bisection approach (see Section 3.5.1) with consistency techniques

(see Section 4.3) and/or contracting operators (see Section 3.5.2). Algorithm 7

shows a generic implementation of a branch and prune algorithm as a solver for

NCSP.

Algorithm 7 Solver(P,x, w)

Q ← x
Sols ← ∅
while Q not empty do

select and delete a box x′ from Q
x′ ← filtering(P,x′)
if x′ 6= ∅ then

if width(x′) < w then
Sols ← Sols ∪ x′

else
Q ← Q ∪ split strategy(x′)

return Sols

The main idea is to generate a set of boxes that conservatively approximate

the set of solutions of the problem. The filtering(P,x′) operator corresponds to

one (or several) algorithm for enforcing consistencies (as 2B, 3B, Box, or Bound

presented in Section 4.3), a contracting operator as interval Newton or Krawczyk

6Position of the different parts of the robot that brings the terminal effector to a given point.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 92

(Section 3.5.2), or a combination of both. The split strategy(x′) can be a simple

bisection in the middle point (as in the original algorithm) or a more elaborated

strategy (as presented in Section 4.4).

This algorithm is the kernel of many state of art solvers in Constraint Program-

ming over continuous domains. Some examples are ILOG Solver[104], Numerica[94],

ALIAS[142], RealPaver[83], and IcosAlias7. Obviously, there are many improve-

ments for this generic algorithm and some of them are discussed below.

4.6.2 Improving the Solving Phase

The main drawback of the Branch and Prune algorithm presented in Section 4.6.1

is that the splitting is done blindly. That means the algorithm does not identify

more than one type of box: the box with a width less than a given precision.

In problems involving inequality constraints (see [127]) or constraints with

existentially quantified parameters (see [96]), such a branch and prune algorithm

frequently bisect again and again the boxes included inside the solution set, leading

to inefficient computations. A simple method to avoid this behavior is to include

a test for detecting boxes fully included inside the continuum of solutions.

Interval analysis provides a mechanism for performing such a test (using an

interval evaluation of the left-side of the constraint and comparing this evaluation

with its right-side).

Another method to perform such a test (for universally quantified constraints

involving inequalities) was introduced by Benhamou and Goualard [14]. It is based

on the computation of an outer (rough) approximation of the solution set of the

negation of the involved constraints.

Example 4.6.1 Consider the following NCSP:

P = (X,D,C)

X = {x, y}
D = {Dx = [0, 5],Dy = [0, 5]}
C = {c : x2 + y2 < 4}

and the boxes b1 = ([0, 1], [0, 1]), b2 = ([2, 3], [2, 3]) shown in Figure 4.6. The

box b2 can be easily removed from the queue of the Algorithm 7 by applying a

consistency technique, because no solution of c : x2 + y2 < 4 can be found in b2.

7IcosAlias is a state of art platform for developing and testing algorithm for solv-
ing interval-based problems. It is under development in the COPRIN project (see
http://www-sop.inria.fr/coprin for more details).

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 93

The same cannot be applied to b1 because this box contains solutions. So the next

step of the algorithm will be the splitting phase.

0 2 31

1

2

3
b2

b1

Figure 4.6: Example of internal box (b1) and external box (b2).

The original strategy proposed in [14] applies a filtering technique to the nega-

tion of the constraint (i.e. c : x2 + y2 ≥ 4). As no solution exists for the last

constraint in b1, the filtering technique will return an empty set. This implies

that all the points inside b1 are solutions of the original constraint.

The advantage of this approach is that boxes which are proved to lie inside

the solution set will not be bisected any more.

In [191], this approach is used to improve the splitting phase by computing

a point which separes the original box in two new boxes: a box containing only

solutions of the problem and another box with no particular meaning.

Example 4.6.2 Consider the same NCSP presented in example 4.6.1, and the

box b = ([1, 3], [0, 1]) shown in Figure 4.7. A filtering technique applied to b can

reduce it to the new box b′ = ([1, 2], [0, 1]). Before applying a split strategy to b′,

we apply a filtering technique using the negated constraint c and b′. The part of

b′ removed by the this filtering is proved to contain only solutions of the original

problem and then we obtain a good point to perform the splitting phase.

Both approaches (the negation test for detecting inner boxes and the strategy

of splitting using the negation test) have been combined with a new representation

(called extreme vertex representation EVR) in [204, 205] for solving problems

with non-isolated solutions. The preliminary results showed that this combination

can improve the performance of both computing time and space requirements (to

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 94

0 2 31

1

2

3

b

A good split point

Figure 4.7: Example of a specific split operator based on the negation test.

represent the solutions). A good summary of these works, including a comparison

of many of the algorithms proposed in [191, 203, 204, 205] can be found in [206].

As noted by [14], in order to apply the negation test the constraints need to

be easily negated. This is the case, for example, of inequalities in universally

quantified constraints but it is not the case in equations involving existentially

quantified parameters.

For this reason, this type of problems has been studied from a different point

of view. Bouchon-Meunier et al. [22] studied the limitation of modal mathemat-

ics for solving problems involving different quantified variables. As result they

propose a classification of the problems involving quantifiers and modalities into

decidable/undecidable and polynomial/no polynomial time complexity.

In [190], Shary shows that Modal Interval Analysis combined with Kaucher

generalized interval arithmetic can successfully be applied to problems with exis-

tentially and universally quantified parameters, and Herrero [95, 96] presents some

results of the application of modal interval analysis to control problems.

In the last years, the problem to solve linear and non-linear systems involving

quantified parameters has interested many authors. Some examples are the works

of Shary [190], Jaulin [107, 108], Popova [164, 165], and Goldsztejn [73, 74].

4.7 Solving Distance Constraints

As presented in the introduction, distance constraints play an important role in

many areas like Robotics and Molecular biology. For this reason, many works in

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 95

these areas are related to this problem.

In [167, 197], for example, the authors solve systems of distances equations

(without uncertainties/parameters) based on the theory of Cayley-Menger deter-

minants [27, 139, 147]. The main idea is to use a matrix A = (aij) representing

the distance between the points i and j. Unknown distance are represented by

an interval [0, σ] where σ represents the maximal possible distance8. The method

iterates reducing and expanding the dimension of the problem in order to filter

the ranges of the possible solution. A bisection phase is used when the algorithm

does not reduce any range in the matrix. The main advantage of this approach is

that it is independent of a reference frame.

Another approach introduced in [11] consists in using semantic domain decom-

position (SDD) for distance constraints. It does not consider quantified parameters

but it can be used when inequalities are involved in the problem. The main idea

is to separate the initial domain of the variable into sub-domains for which the

constraint (expressed as f(x) = 0) has a monotonic function f(x). After that,

and considering the monotonicity of f(x), it is possible to compute the smallest

box that verifies the constraint for each sub-domain. The set of solutions of the

problem must to be inside the computed boxes. Preliminary results show that

this approach increases the performance of the solving process in small problems.

Experiments in large size problems have not be reported yet.

The basic algorithm presented in Section 4.6.1 is also a valid approach for

solving distance constraints. As distance constraints have particular properties (as

the single occurrence of the variables), filtering techniques (like 2B-consistency)

can effectively reduce the domain of the variables to the smallest box that verifies

a constraint. Anyway, it is important to remember the locality problem.

Although the 2B-consistency is a good strategy for filtering distance con-

straints, it remains a local consistency technique. Merlet [143] introduced a global

filtering for systems of distance constrains inspired from the work of Yamamura

et. al. [211]. The main idea is to perform a change of variables on the original

system in order to generate a linear system of equations and inequalities. The

simplex algorithm is then used to determine if the generated linear system admits

a feasible region and to filter this original domain according to this feasible region

(if exists).

8Actually, this upper bound can be easily computed because the distance between two points
i, j cannot be greater than the sum of the partial well-known distances between intermediate
points in the chain from i to j.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 96

Another global filtering for distance equations, based on linearization has been

proposed in [9, 12]. It introduces the algorithm QuadDist (based on the previous

work of Lebbah et. al.[131]) which performs a linearization of the system in order

to approximate parts of the space containing potential solutions. As same as

Merlet[143], it uses the simplex algorithm to reduce the domain of the variables.

It is important to note that the effectiveness of the filtering techniques and

solving process also depends on the selected reference frame. A good selection of

the reference frame may drastically improve the solving process by reducing the

complexity of the constraints and facilitating the domain reduction. Although this

is a strategy frequently used in areas as Physics and Robotics9, it is not well-known

in other areas.

Example 4.7.1 Consider the system of three distance equations graphically shown

in Figure 4.8(a). It is described by the following equations:

x2
2 + y2

2 = 82

x2
3 + y2

3 = 102

(x2 − x3)
2 + (y2 − y3)

2 = 62

−1
−2

1
2
3
4
5
6
7

−1 1 2 3 4 5 6 7 8

(x1, y1) (x2, y2)

(x3, y3)

8

10
6

(a)

−1
−2

1
2
3
4
5
6
7

−1−2−3−4−5−6−7−8 1

(x1, y1) (x2, y2)

(x3, y3)

8

10
6

(b)

Figure 4.8: An example of two possible reference frames.

The same system, but using a reference frame centered in the point (x2, y2), is

9In [75], for example, Gosselin et. al. showed that the polynomial of degree 12 (introduced
by Merlet [140]) can be reduced to a polynomial of degree 6 by using an appropriate reference
frame.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 97

presented in Figure 4.8(b). It is described by the following equations:

x2
1 + y2

1 = 82

x2
3 + y2

3 = 62

(x1 − x3)
2 + (y1 − y3)

2 = 102

A 2B-consistency technique applied to the first system reduces the domains of

the variables to (x2, y2) = ([−8, 8], [−8, 8]) and (x3, y3) = ([−10, 10], [−10, 10]).

The same consistency technique applied to the second system reduces the domains

of the variables to (x1, y1) = ([−8, 8], [−8, 8]) and (x3, y3) = ([−6, 6], [−6, 6]). In

this example, a selected reference frame may reduce the domain of two variables

by 40%.

4.8 Conclusions

This chapter presented the combination of two important approaches for solving

difficult problems over continuous domains: Constraint Programming and Interval

Analysis.

Although Constraint Programming is a framework mainly used to solve com-

binatorial problems, it can also be used in presence of continuous domains. The

development of techniques adapted to them have allow important improvements

in the solving process of non-linear systems. The support given by Interval Arith-

metic ensures the numerical reliability of computation while the set of tools pro-

vided by Interval Analysis (and Numerical Analysis in general) increases the per-

formance of the solving process by providing proofs of existence and/or uniqueness

of the solutions and new filtering techniques (as the interval Newton and Krawczyk

operators).

A generic strategy for problem solving based on the Branch and Prune algo-

rithm and a set of improvements to this basic strategy have been also discussed.

The most important characteristic in this process is the reliability, which guar-

antees that the union of all the computed boxes contains all the solutions of the

NCSP.

The problem of the uncertainty in the input data and its influence in the

solutions of a system of equations has been also treated. This uncertainty has

been introduced in the form of quantified parameters. As the problems involving

inequalities or constraints with existentially quantified parameters frequently have

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 98

a solution set with a non-null volume, a representation of their solutions has been

discussed. This representation introduced the concepts of inner approximation

and outer approximation of the solution set of a NCSP, and they are the base of

some works presented in the second part of this thesis. Thus, the next chapters

focus on solving problems with uncertainties, and specifically on those involving

distance constraints.

CHAPTER 4. CONSTRAINT PROGRAMMING AND INTERVALS 99

Part II

Contributions

100

101

Chapter 5

Separating Continua of

Solutions

This chapter is based on the works presented in [79, 81]. The main objective is

to describe the set of solutions of a distance equation system with uncertainties.

As this set is composed by several continua of solutions, this chapter studies some

tools to describe them.

The first approach consists of a three phases algorithm which performs an

initial approximation of the set of solutions of the problem without considering

the associated uncertainties. The main idea is to separate the initial space into a

set of sub-spaces containing one isolated solution each, and (in a later step) study

the influence of uncertainties in each of these sub-space.

As this approach has strong limits, the second part of this chapter studies a

new methodology to approximate the disjoint continua of solutions of a problem.

The main idea is to detect as many disjoint sub-spaces as possible based on a

branch and prune algorithm with conditional bisection.

Section 5.1 presents a brief description of the first approach, while 5.2 presents

some details of its implementation. Section 5.3 discusses the main drawback of

this methodology and Section 5.4 presents a new approach which overcomes some

of these drawbacks. Finally, Section 5.5 summaries the conclusions of the chapter.

5.1 A brief description

This section studies a first approach for solving a NCSP built from a set of distance

constraints with uncertainties (as shown in Section 1.1).

102

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 103

For the types of problems presented in Section 1 describing physical situations,

the uncertainties represent errors in the measurement of some parameters. It is

natural to think that the NCSP without considering uncertain values has a finite

set of isolated solutions, and that the uncertainties only disturb these solutions.

Therefore, one of the methods for solving systems of distance equations (presented

in Section 4.7) can be used to solve the NCSP resulting from replacing each pa-

rameter with interval value by the middle point of its associated interval, and to

generate a set of isolated solutions. The advantage of such a process is to obtain

more information about the geometry of the solutions, but no information about

the continua of solutions is known.

Another possibility is to apply a branch and prune algorithm to generate a set

of boxes that include all the continua of solutions, but this algorithm generates a lot

of boxes without information about independent continua of solutions. Therefore,

a subsequent task will be to apply a clustering algorithm (as in [203]) to recover

the different solution sub-spaces.

The first approach discussed in this section (and based on the work of Touati

[199]) combines different solving process into a three phases algorithm. The main

idea is solving the NCSP without taking into account the uncertainties (by replac-

ing each interval valued parameter by a real number). The aim is to identify a set

of isolated solutions of the problem.

After that, a solution separation algorithm (SSA) is used in order to compute

a set of independent sub-spaces containing only one isolated solution. The SSA

computes the equation of the median plane between each pair of solutions.

Finally, for each solution found, we solve a new NCSP built from the original

NCSP (with uncertainties) and a the set of inequalities given by SSA. A branch

and prune algorithm (see section 4.6.1) is applied for solving each NCSP.

The best results of this methodology are obtained when the following two

conditions are verified:

• The problem has a finite number of solutions {s1, . . . , sn}, without taking

into account the uncertainties.

• The problem has only independent continua of solutions around each initial

solution, when the uncertainties are considered.

The first condition allows the separation of the initial domain into a set of sub-

domains containing only one isolated solution, while the second one, guarantees

the existence of only one solution sub-space in each sub-domain.

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 104

5.2 The basis algorithm

The first approach can be summarized in three steps:

1. Finding all solutions of the problem without considering the uncertainties.

2. Applying a division of the initial space into sub-spaces containing only one

isolated solution each.

3. Considering the original problem (with uncertain values represented by inter-

val parameters), applying a branch and prune algorithm on each generated

sub-spaces in order to obtain a sharp approximation of the continuum of

solutions included inside the sub-space.

Figure 5.1 graphically shows the three steps of the approach.

(a) (b) (c)

Figure 5.1: (a) A set of isolated solutions. (b) The result of the SSA applied for
each point. (c) The result of a Branch and Prune applied to the problem with
uncertainties on the sub-space of each solution.

Consider a NCSP P ′ obtained from the original NCSP P by replacing each

parameter with interval value by the middle point of the interval. Let S′ =

{s1, . . . , sn} be the set of solutions of P ′, obtained from one of the methods for

solving systems of distance equations described in Section 4.7.

The second step of the algorithm consists of applying a solution separation

algorithm on S′. For each solution si ∈ S′, we calculate the equation of the

median plane Mpsi,sj
(x) between si and sj, si 6= sj, as shown in Algorithm 8.

The subspace generated by the conjunction of the inequalities obtained from

the computed median planes for a given solution is similar to the sub-space of a

Voronoi1 diagram [7], as is shown in Figure 5.1(b).

1Actually, there is another way to to obtain the same sub-space by automatically computing
the Voronoi diagram of the points (see CGAL in http://www-sop.inria.fr/geometrica).

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 105

Algorithm 8 : SSA(s, S′): constraints

C ′ ← ∅
for all solution si in S′\{s} do

Mps,si
(x)← (x− s+si

2) · (s−si

‖s−si‖) ≥ 0

C ′ ← C ′ ∪Mps,si
(x)

return C ′

In the third step, the original NCSP P is solved for each solution si ∈ S′,

by considering the set of inequalities given by SSA(si, S
′). A Branch and Prune

algorithm is used to solve each new NCSP.

As noted by Benhamou and Goualard [14], using an inner box test2 drastically

improves the performance of the solving process, since each branching in the search

tree exponentially increases the number of boxes (see Section 4.6.2).

The techniques discussed in Section 4.6.2 (based on the negation test) cannot

be applied to this type of equation, because the continuum of solution is given by

all the points x that verify a set of constraints of the form:

c(x) : (∃a ∈ a)(∃b ∈ b)(f(x, a) = b) (5.1)

where f(x, a) is the expression of the Euclidean distance between the points x

and a, and these constraints are not easily reversed.

5.2.1 An inner box test

Considering the type of constraint presented in (5.1), it is possible to build an inner

box test by evaluating the left side of the constraint using interval arithmetic and

using following interval inclusion condition: f(x,a) ⊆ b.

As the semantic of such a comparison implies that:

(∀x ∈ x)(∀a ∈ a)(∃b ∈ b)(f(x, a) = b)

it can be used as an inner box test. The main drawback is that it is a very

restrictive condition. For this reason we introduce another condition, which is less

restrictive and allows one to find bigger inner boxes.

Proposition 5 Let f(x,m(a)) be the interval extension of f(x, a) when x is re-

placed by its associated interval x and a is replaced by the middle point of a. If

2A test for detecting boxes which are totally included in a continuum of solutions.

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 106

f(x,m(a)) ⊆ b, then x is an inner box for the constraint.

The proof is immediate using the definition of inner box and the semantics of

the evaluation of f(x,m(a)).

5.3 Drawbacks of the first approach

Preliminary experiments show that although it is possible to apply this approach

for solving NCSP with uncertainties, its efficiency is very limited, mainly due to

the following reasons:

• Sometimes, it is not possible to calculate all solutions to a NCSP P ′, either

because the problem without uncertainties has no solutions (Figure 5.2(a))

or because P ′ has a infinite number of solutions (Figure 5.2(b)). In any of

these cases, it is not possible to apply this approach.

Equations without uncertainty
(no intersection)

Solutions with
uncertainty

(a)

Solutions with
uncertainty

Solutions
without
uncertainty

(b)

Figure 5.2: (a) A problem without solution when uncertainties are not considered
(equations in dot line). (b) An under-constraint problem having an infinite number
of solutions when the uncertainty is not considered (dot line).

• The approach considers that the number of continua of solutions in the

NCSP with uncertainties P is equal to the number of isolated solutions of

the NCSP without uncertainty P ′. That is not necessarily true. Eventhough

one or more isolated solutions can be found when solving P ′, that does not

mean the problem with uncertainties has the same (or less) solution sub-

spaces. In some cases, the number of continua of solutions can be greater3

than the number of isolated solutions found (see Figure 5.3).

3It is not true if the initial solving phase considers both real and complex solutions, but this
approach has not be studied here.

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 107

Only one continuum
of solutions

Two isolated solutions

(a)

Solution without
uncertainty

Parameter
and its
uncertainty

A new continuum

Pa

Pb

Pc

Px

P ′

x

(b)

Figure 5.3: (a) Two isolated solutions become one continuum of solutions. (b)
A single initial solution (Px) obtained from a over-constrained problem (three
distance constraints without uncertainty: d(Pa, Px), d(Pb, Px), d(Pc, Px)), where
Pa, Pb, Pc are fixed, becomes two continua of solutions (two zones, around Px and
P ′

x) when the uncertainty of the point Pc is considered (small box around Pc).

• The inner boxes test presented in Section 5.2.1 is only a sufficient condition

for an inner box, and its effectiveness is severely limited by the width of

the interval representing fixed points. The bigger the interval, the worse

the detection. Figure 5.4 shows the zone of detection for the constraint

c : (x−a)2 +(y− b)2 = c2. In the left side a = 0 and b = 0 (no uncertainty),

and in the right side a ∈ [−1, 1] and b ∈ [−1, 1]. In both c ∈ [4, 5].

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8 Identifiable zones

Non identifiable zone
(the inner box test fails)

Figure 5.4: Examples of identifiable zones of a constraint with uncertainty.

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 108

5.4 Rough approximation of continua of solutions

An important drawback of the first approach (described in Section 5.1) is that

it needs an initial set of isolated solutions to apply a space separation algorithm.

This section introduces a new methodology for detecting different continua of

solutions in NCSP involving distance constraints without using any additional

information. This approach is based on a branch and prune algorithm with con-

ditional bisection. The main idea is to forbid the separation of a continuum of

solutions by analyzing the effect of a filtering technique after the application of a

splitting operator. It is based on the following proposition:

Proposition 6 Let P = (X,D,C) be a NCSP, and Da,Db two sub-spaces such

that D = Da ∪ Db. Let Pa = (X,Da, C) and Pb = (X,Db, C) be two NCSPs

derived from P by replacing the initial domain D by Da and Db, respectively. Let

D′
a and D′

b be the resulting domains after applying a filtering technique4 over Pa

and Pb, respectively. If D′
a ∩ D′

b = ∅ then no continuum of solutions is shared

between Da and Db.

The proof is based on the properties of the filtering technique. As shown

in Chapters 2 and 4, constraint propagation eliminates parts of the domains of

the variables that cannot belong to any solution of the problem. Therefore, if a

continuum of solutions is shared between Da and Db then there exists at least a

point x∗ (solution) such that x∗ ∈ Da and x∗ ∈ Db. If after applying a filtering

technique we obtain D′
a ∩D′

b = ∅ then no solution x∗ ∈ Da and x∗ ∈ Db exists.

Algorithm 9 SOISS(P,D, ss)

D′ ← D
while ss not empty do

select and remove a split strategy from ss
Da,Db ← apply split strategy(D)
D′

a ← filtering(P,Da)
D′

b ← filtering(P,Db)
if D′

a ∩D′
b = ∅ then

return D′
a,D

′
b

else
D′ ← Hull(D′

a,D
′
b)

return D′

4It can be any of the consistency techniques discussed in Section 4.3.

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 109

Algorithm 9 shows a generic implementation of the algorithm Split Only Inde-

pendent Solution Sets (SOISS). It takes a problem P with initial domain D and a

set of splitting strategies.

If one of the strategies produces two independent sub-spaces (that means no

continuum of solutions is shared between them) then both sub-spaces are returned,

else a hull approximation of the generated boxes is computed. This process is called

conditional bisection.

Algorithm 10 presents a generic implementation of the Branch and Prune

algorithm with conditional bisection, called Solver SOISS. This algorithm has been

implemented5 in C + + using the IcosAlias library (a tool in development in the

COPRIN project).

Algorithm 10 Solver SOISS(P,D, ss)

Q ← filtering(P,D)
Sols ← ∅
while Q not empty do

select and remove a box x′ from Q
if x′ 6= ∅ then

Qtmp ← SOISS(P,x′, ss)
if Qtmp has only one box then

Sols ← Sols ∪ Qtmp

else
Q ← Q ∪ Qtmp

return Sols

Note that SOISS is used not only for bisecting purposes, but also as filtering

technique. As the sub-domains returned by SOISS have been filtered, it is not

necessary to apply another filtering strategy in the main solver (as shown in the

implementation of Solver SOISS).

Table 5.1 presents some preliminary results on a set of benchmark problems6.

A classic approach (based on a Branch and Prune algorithm7 with precision 10−5)

is compared with Solver SOISS.

A small uncertainty has been introduced in each equation (in the form of an in-

terval valued parameter p with w(p) = 10−6). This uncertainty produces continua

of solutions. For each problem, the number of solutions (without uncertainties) is

5Source code available in http://www-sop.inria.fr/coprin/cgrandon/solver-soiss.cc.
6The characteristics of these problems can be obtained in the website of the COPRIN project

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node1.html.
7Implemented in IcosAlias v0.2 (see http://www-sop.inria.fr/coprin/gchabert).

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 110

Problem Classic Approach Solver SOISS

Boxes Volume Time (s) Boxes Volume Time (s)
Bronstein(4) 9 2.32e−15 0.009 4 7.91e−14 0.023
Cyclo(8) 276 3.50e−14 0.248 8 1.21e−6 0.568
Kearl11(16) 672 1.06e−42 0.174 16 1.74e−39 0.226
Kincox(2) 18 9.73e−22 0.018 2 2.05e−11 0.029
Nauheim(4) 233 2.18e−40 0.681 4 1.45e−20 17.409

Table 5.1: A Comparison between a classic approach and Solver SOISS.

presented in parentheses.

Both processes are safe (no solution is lost), but the classic approach has no

information about the geometry of the solutions (only a set of boxes is returned).

Moreover, it depends on a given precision (in this case 10−5), while Solver SOISS

stops when it cannot find new disjoint sub-spaces. Both algorithms have used the

same filtering strategy (a 3B(w1, w2)-consistency with w1 = 10−3 and w2 = 10−4).

The split strategy used in SOISS is a simple bisection in the middle (for each

variable of the problem). No other optimization has been used.

The classic approach uses a largest domain first heuristic and a bisection in

the middle as splitting strategy.

It is important to note that in all the problems, the number of boxes given by

the Solver SOISS algorithm was equal to the number of solutions of the original

problem. A posterior analysis has shown that each box found contains one solution

of the original problem (the problem without uncertainty). Although this is the

best behavior of the algorithm, it may be difficult to obtain because it depends

on the given splitting strategies (in a more general problem, a simple bisection in

the middle is not always the best strategy, because the continua of solutions have

not necessary a symmetry w.r.t. this point).

Anyway, the identification of independent zones of the space containing poten-

tial solutions of the problem may be of interest for many problems (as for example,

in robotics). Chapter 6 presents an application in robotics of this algorithm.

5.5 Conclusions

This chapter presented a methodology for solving NCSP with uncertainties based

on a three phases algorithm. This algorithm addresses to problems in which

isolated solutions can be computed when the uncertainties are not considered.

CHAPTER 5. SEPARATING CONTINUA OF SOLUTIONS 111

In these cases, several sets of boxes (around each initial isolated solution) are

returned by a branch and prune algorithm. In order to reduce the number of boxes

generated by this algorithm a new inner box test (for detecting boxes containing

only solutions of the problem during the solving process) has been also introduced.

We notice that the performance of this test is very limited when the parameters

with interval values participate in the interval evaluation of the function (left-side

of the equation in the constraint). Other strategies for improving the detection of

inner boxes are studied in Chapter 7.

It is important to note that the returned clusters (sets of boxes) have no

additional information about the geometry of the solutions. In other words, in

order to guarantee that a median plane produces an appropriated separation of

two continua of solutions an additional analysis must be performed8.

The drawbacks of this approach (presented in Section 5.3) motivate the in-

troduction of a new strategy for solving these types of problem. The advantage

of this strategy is that it can be used in different situations (not only for NCSP

involving distance constraints) for detecting disjoint continua of solutions without

using a later clustering strategy.

Some preliminary results show that it can effectively improve the information

about the geometry of the solutions. Moreover, the use of filtering techniques to

separate continua of solutions guarantees the appropriate separation of the initial

domain.

As future work, it can be interesting to combine the first approach with the

Solver SOISS algorithm into a four phases algorithm. The first phase identifying

a set n of isolated solutions, while in a second phase, the Solver SOISS algorithm

may identify a set m of disjoint sub-spaces containing potential solutions. In

this case, the use of a space separation algorithm (using a median plane) can be

restricted only to the sub-spaces k ∈ m containing more than one isolated solution.

8For example, by searching for solutions in the equation of the median plane computed for two
isolated solutions (when uncertainties are considered), or proving that any intersection between
a box included in one cluster and a box included in another cluster produces an empty set.

Chapter 6

An application in Robotics

This chapter is based on the works presented in [77, 78]. It focuses on a combina-

tion of symbolic and numerical methods for handling uncertainties in a particular

class of parallel robots.

The main idea is to compute, for given uncertainties on parameters and mea-

surements, a certified enclosure of the set of all possible poses of a robot. Pose

determination is done by solving the direct Kinematics, which relies on the geo-

metric parameters and measurements.

A model involving uncertainties (represented by intervals) is considered and

several methods combining interval analysis and constraint programming are com-

pared.

Some experiments have been performed with the CATRASYS (Cassino Track-

ing System) measuring system, which is a wire tracking system used for deter-

mining of poses of objects in the space. It is well modeled as a 3-2-1 parallel

manipulator.

Section 6.1 presents an introduction to the pose determination problem and

some measuring system commonly used to solve it. In Section 6.2, a formal model

of the 3-2-1 parallel robot is presented. Section 6.3 introduces the different ap-

proaches for solving the problem that are combined in the final algorithm. Section

6.4 describes the CATRASYS measuring system and presents some preliminary

results. Finally, Section 6.5 presents the conclusions of the chapter.

112

CHAPTER 6. AN APPLICATION IN ROBOTICS 113

6.1 Introduction

An object’s pose usually represents the rigid body transformation between a mov-

ing frame attached to this object and a base fixed frame. The problem of pose

identification of a rigid body in the space has been studied from different points

of view, from theoretical approaches [3] to numerical algorithms [202].

Several measuring systems are widely used to determine the pose of a rigid

body. Current technologies for pose determination include vision systems, photo-

grammetry, theodolite, laser interferometry, magnetic tracking systems, stereo

optical image registration, and acoustic methods.

The above-mentioned systems can be classified according to the measuring

principle and used technology, but many of them are rather complex and expen-

sive. The measuring principle of most of the above-mentioned systems is based

on trilateration or triangulation techniques. Trilateration and triangulation de-

termine the relative position between points by using the geometry of triangles

or tetrahedra. Triangulation uses measurements of both distances and angles,

whereas trilateration uses only distance measurements.

Measuring systems can also be classified according to their features, such as

accuracy, resolution, cost, measurement range, portability, and calibration require-

ments. Laser tracking systems exhibit good accuracy, which can be less than 1mm

if the system is well calibrated. Unfortunately, they are rather expensive, their cal-

ibration procedure is time consuming, and they are sensitive to the environment.

Vision systems have an accuracy of 0.1mm, they are low cost portable devices but

their calibration procedure can be complicated. Wire-based systems may have an

accuracy of 0.1mm, they are also low cost portable devices but capable of mea-

suring large displacements. Moreover, they exhibit a good compromise between

measurement range, cost and operability.

Wire-based tracking devices consist of a fixed base and a platform connected

by six wires whose tension is maintained, while the platform is moved by pulleys

and spiral springs on the base, where a set of encoders give the wires’ length.

Figure 6.1 presents a typical wire-based tracking device seen as a 3-2-1 parallel

robot (a simplified version of a general 6-Degrees of freedom parallel manipulator,

with a set of 3 wires attached to the same point H of the platform, and a another

set of 2 wires attached to a point F , and a single wire attached to a point Q).

Computing an object’s pose using this robot means solving the direct Kine-

matics of the robot, based on geometric and measured information. Geometric

CHAPTER 6. AN APPLICATION IN ROBOTICS 114

H

Q

F

a1
a2

a3

a4

a5

a6

Figure 6.1: A typical wire-based tracking based on a 3-2-1 parallel robot.

information is in general easily obtained from the design of the robot while mea-

sured information must be obtained from built-in sensors.

Uncertainties, which appear in these parameters are namely due to measure-

ments and manufacturing, and have to be taken into account when certified results

are required.

Algebraic methods for solving the Direct Kinematics for the 3-2-1 parallel

robot using the formulation for trilateration as been proposed in [68, 99, 158].

The answer of these methods is a good approximation of the solution, but they

do not consider uncertainties in the measurement.

Numerical method based on interval analysis [52, 143] have shown to give

certified results when applied to system of equations with uncertainties, but due

to a wrapping effect, and to the interval natural extension, using only interval

arithmetic for evaluating the expressions of the direct kinematic model does not

produce good results. For this reason, it is natural to combine interval analysis

tools with the set of tools provided by constraint programming (specifically, with

the consistency techniques discussed in Chapter 4.3).

The rest of this chapter shows how the combination of these strategies greatly

enhances the quality of the results in the computation of the direct Kinematics of

a 3-2-1 parallel robot, and how symbolic computation improves the solving process

of numerical methods.

CHAPTER 6. AN APPLICATION IN ROBOTICS 115

6.2 A Formal Model

As shown in Figure 6.1, the 3-2-1 parallel robot considered here, consists of two

solids (the basis and the mobile platform) linked through six linear rods of variable

lengths.

The direct kinematic model expresses how the lengths of the legs are related

to the position and the orientation of the mobile platform, through six distance

equations (commonly presented in a vectorial form):

‖a1 −H‖2 = d2
1 ‖a2 −H‖2 = d2

2 ‖a3 −H‖2 = d2
3 (6.1)

‖a4 − F‖2 = d2
4 ‖a5 − F‖2 = d2

5 (6.2)

‖a6 −Q‖2 = d2
6 (6.3)

When studying a 3-2-1 robot, to take into account its specificity, it is classical to

represent the position and the orientation of the mobile platform through the nine

unknown coordinates of the three attachment points H, F, and Q. As the geometry

of the mobile platform is known, the direct kinematic model is completed by the

following three distance equations:

‖H − F‖2 = d2
HF (6.4)

‖H −Q‖2 = d2
HQ (6.5)

‖F −Q‖2 = d2
FQ (6.6)

Notice that the parameters of the system (fixed points a1, . . . , a6, and dis-

tances) have been considered as interval values, which represent the uncertainties

in the measurements and manufacturing process.

6.3 The Solving Process

This section describes different parts of the solving process that will be combined

in a symbolic/numerical algorithm for solving the system of equations presented

in Section 6.2.

6.3.1 Algebraic Reduction

The method described here is based on the works by Ceccarelli [28] and Ottaviano

[162]. Considering the formulation given in Section 6.2, the Forward Kinematics

CHAPTER 6. AN APPLICATION IN ROBOTICS 116

of the 3-2-1 parallel robot can be algebraically reduced using three consecutive

trilateration operations.

Indeed, according to Figure 6.2(a), giving the wire lengths d1, d2, and d3, there

are two possible mirror locations for point H with respect to the plane defined by

points a1, a2, and a3. Once one of these two solutions is chosen, a4, a5, and H

define the second tetrahedron with known edge lengths. Again, there are two

possible mirror locations for F, in this case with respect to the plane defined by

a4, a5 and H, as shown in Figure 6.2(b). Finally, after choosing one of the two

solutions, a6, H, and F define another tetrahedron with known edge lengths. In

this case there are two possible mirror locations for Q with respect to the plane

defined by a6, H, and F (Figure 6.2(c)).

(a) (b)

(c)

Figure 6.2: Three consecutive trilateration operations to compute the position of
H, F, Q: (a) Tetrahedron T1, (b) Tetrahedron T2, and (c) Tetrahedron T3.

According to Section 4.7 (the importance of choosing an appropriate reference

frame) and without lost of generality we can assume our reference frame to be

CHAPTER 6. AN APPLICATION IN ROBOTICS 117

based on a1, a2, and a3, i.e. that

xa1 = ya1 = za1 = ya2 = za2 = za3 = 0

So, algebraic transcription of the above described method computes a closed-form

of the solution in three steps:

1. equations in (6.1) become

x2
H + y2

H + z2
H = d2

1

(xH − xa2)
2 + y2

H + z2
H = d2

2

(xH − xa3)
2 + (yH − ya3)

2 + z2
H = d2

3

(6.7)

and allow us to easily express xH , yH , and two solutions for zH ,

2. Given xH , yH , zH , equations in (6.2) and (6.4), the coordinates xF , yF , and

zF are then expressed by the equations

(xF − xa4)
2 + (yF − ya4)

2 + (zF − za4)
2 = d2

4

(xF − xa5)
2 + (yF − ya5)

2 + (zF − za5)
2 = d2

5

(xF − xH)2 + (yF − yH)2 + (zF − zH)2 = d2
HF

(6.8)

3. and similarly, xQ, yQ, and zQ are expressed by

(xQ − xa6)
2 + (yQ − ya6)

2 + (zQ − za6)
2 = d2

6

(xQ − xH)2 + (yQ − yH)2 + (zQ − zH)2 = d2
HQ

(xQ − xF)2 + (yQ − yF)2 + (zQ − zF)2 = d2
FQ

(6.9)

Theoretically, successive substitutions of the coordinates of H and of F return

eight different solutions for the nine expressions of the coordinates of the point Q

in terms of the parameters (coordinates of the ai and distances). Obviously, the

final expressions for the coordinates have multiple occurrences of the parameters

(xai
, yai

, zai
, d2

i).

6.3.2 Interval Evaluation

Numerical solutions of the direct kinematic model are computed by evaluating at

each of the above steps the symbolic expressions after substitution of the numerical

values of the parameters, and of the results of the previous steps.

CHAPTER 6. AN APPLICATION IN ROBOTICS 118

Due to measurement uncertainties and to the inaccuracy of manufacturing and

assembly, we only have approximate values and bounded errors for the parameters.

In this context, we use an interval representation, and we are interested in getting

certified enclosing 3D-boxes approximating the positions of the points H, F and

Q for each of the solutions. These points describe the position and orientation of

the platform containing the robot end-effector.

The classical way to compute the corresponding intervals is to perform the

evaluation of the symbolic expressions using the interval values of the parameters

and interval arithmetic. For avoiding numerical errors when evaluating huge ex-

pressions, this numerical evaluation is done at each of the three steps described

above.

Actually, each sub-system of three distance equations is solved in the same

way (trilateration), vanishing square terms by subtracting the initial equations

and generating linear expressions. A polynomial of degree 2 is then solved to

obtain the solutions of the initial system. The process is performed as follows:

• Considering the generic system presented in (6.8).

• Subtracting the second equation from the first one to obtain a linear equation

L1(xF , yF , zF), as follows:

2xF (xa5 − xa5) + 2yF (ya5 − ya5) + 2zF (za5 − za5) + K = 0

with K = x2
a4

+ y2
a4

+ z2
a4
− d2

4 − (x2
a5

+ y2
a5

+ z2
a5
− d2

5).

• Subtracting the third equation from the first one to obtain another linear

equation L2(xF , yF , zF), similar to the last one.

• Getting xF (zF) and yF (zF) from L1 and L2.

• Replacing xF by xF (zF) and yF by yF (zF) in the third equation and solving

a quadratic polynomial p(zF) = az2
F + bzF + c.

The classic expression zF = −b±
√

b2−4ac
2a

is then used to obtain the solutions of

p(zF). The expressions are manipulated to minimize the number of occurrences of

the variables (in order to improve their interval evaluation). As the same process

can be applied to obtain a polynomial p′(xF) = a′x2
F + b′xF + c′ (starting from

yF (xF) and zF (xF)) or p′′(yF) = a′′y2
F + b′′yF + c′′ (starting from xF (yF) and

zF (yF)) without additional complexity, we compute the solutions of the system

using the three possible polynomials and intersect the obtained solutions.

CHAPTER 6. AN APPLICATION IN ROBOTICS 119

Unfortunately, results are strongly overestimated, in term of width of the ob-

tained intervals as illustrated by the numerical example of Table 6.2. This is a

well known drawback of interval methods of accumulating and propagating uncer-

tainties and of not properly considering multiple occurrences of the same variables

when evaluating an expression.

Summarizing, even though a explicit formula to compute the coordinates of

a given point is available, it is not a good approach in general. The computed

expression will be optimal only if each of its terms has a single occurrence.

6.3.3 Constraint Programming

To overcome the overestimation of the interval evaluation, classical methods of

Constraint Programming have been implemented and tested. The SOISS algo-

rithm (introduced in Section 5.4) has been used in order to avoid the separation

of a continuum of solutions.

Experiments have been carried out using an algorithm with four different levels:

1. The basic level, tested for comparison purpose, consists of an interval eval-

uation of symbolic expressions, at each of the three steps. It only uses the

Algebraic Reduction combined with Interval Evaluation.

2. Second level applies the Solver SOISS algorithm using a 2B-consistency as

filtering technique to the solutions after each step and a 2B-consistency to

the whole system after the third step.

3. Third level applies the same strategy as the previous one but using 3B-

consistency instead of 2B-consistency.

4. The last level is an enhancement of the previous, computing a sharp approx-

imation of the solution sets using a branch and prune algorithm for each

sub-space given by the Solver SOISS algorithm. A rough precision has been

set in order to reduce the number of returned boxes. The inner box test

for distance constraints presented in Section 5.2.1 (that is, the condition

f(x,m(a)) ⊆ b, with b = r2) has been also included.

6.4 The CATRASYS measuring system

CaTraSys (Cassino Tracking System) is a measuring system, which has been con-

ceived and designed at LARM (LAboratory of Robotics and Mechatronics) in

CHAPTER 6. AN APPLICATION IN ROBOTICS 120

Cassino, to determine the pose of a rigid body by using trilateration. Details of

CaTraSys and its operation are reported in [28] and [198]. CaTraSys system is

composed of a mechanical part, an electronics/informatics interface unit, and a

software package. The mechanical part consists of a fixed base, which has been

named as Trilateral Sensing Platform, and a moving platform, which has been

named as end-effector for CaTraSys (see Figures 6.3 and 6.4).

Figure 6.3: CaTraSys: A scheme for the design and operation.

It is a coupling device: it connects the wires of the six transducers to the

extremity of a moving system. It allows the wires to track the system while it

moves. Signals from wire transducers are fed though an amplified connector to the

electronic interface unit, which consists of a Personal Computer for data analysis.

The wire transducers in the built prototype are of potentiometric type. They

have a working range of 2500mm and continuous resolution (see [29]). A torsional

spring, a pulley for the wire and a potentiometer are fixed on a common shaft.

The output transducer signal is proportional to the length of the wire and it is

expressed in Volt. Tension of the wire is ensured through the torsional spring.

The tension of the wire is 0.08 N. The position of each attachment point on the

Trilateral Sensing Platform has an uncertainty of ±0.1mm.

CHAPTER 6. AN APPLICATION IN ROBOTICS 121

Figure 6.4: CaTraSys: A built prototype with PUMA robot at LARM in Cassino.
Six of the white boxes (on the right) are linked to the platform by wires. The
boxes have sensors to measure the length of the wires. In the image, the platform
is placed on the terminal effector of the PUMA robot (a mechanical arm).

6.4.1 Experimental Results

A set of measurements of the distances and the geometric parameters were done in

order to compute the direct Kinematics of CaTraSys for a given position. Table 6.1

shows the set of interval values for the coordinates (x, y, z) of the points a1, . . . , a6,

and the set of distances corresponding to the model presented in section 6.2.

Table 6.2 below shows the results (1 selected solution) obtained for the numer-

ical example described in Table 6.1.

The precision vector is the vector of the half-widths of the intervals computed

for the respective coordinates of H, F and Q. In other words, if ([0, 2], [2, 6], [0, 1])

is the final box computed for the point ξ, then its corresponding precision vector

is (1, 2, 0.5) (the distance between the middle point and the upper bound for each

coordinate).

Levels 1, 2, and 3 compute a solution in the form s± ǫ where s represents the

coordinates of the points H, F and Q, and ǫ is the precision vector. Partial volumes

are the respective volumes of the corresponding boxes. Levels 4 and 4∗ compute a

representation of the solution space through a set of boxes with a given precision

CHAPTER 6. AN APPLICATION IN ROBOTICS 122

xa1 = 0
xa2 = [1000, 1001]
xa3 = [799, 800]
xa4 = [1800, 1801]
xa5 = [2099, 2100]
xa6 = [1300, 1301]

ya1 = 0
ya2 = 0
ya3 = [1199, 1200]
ya4 = [400, 401]
ya5 = [900, 901]
ya6 = [2199, 2200]

za1 = 0
za2 = 0
za3 = 0
za4 = [199, 200]
za5 = [99, 100]
za6 = [200, 201]

d1 = [1100, 1110]
d2 = [900, 910]
d3 = [1203, 1213]
d4 = [855, 865]
d5 = [801, 811]
d6 = [872, 882]

dHF = [1489, 1490]
dHQ = [1256, 1257]
dFQ = [1799, 1800]

Table 6.1: Measurements for the parameters of the robot’s model (lengths in mm),
provided by the LARM in Cassino, Italy.

Level Precision vector Time

1 (10.4, 17.2, 22.5);(125, 86, 155);(1350, 1350, 1400) 0.001
2 (10.4, 17.2, 16.2);(45.6, 73.2, 15.5);(637, 395, 539) 0.002
3 (10.3, 9.57, 6.74);(23.5, 32.8, 7.22);(56.6, 24.3, 25.4) 0.127
4 (10.3, 9.57, 6.74);(23.5, 32.8, 7.22);(56.6, 23.1, 25.4) 4.041
4∗ (10.3, 9.57, 6.74);(23.5, 32.8, 7.22);(56.5, 21.5, 25.4) 142.9

Level Partial volumes Total volume

1 (3.2244 × 104, 1.3283 × 107, 2.0331 × 1010) 8.7e21

2 (2.3222 × 104, 4.15187 × 105, 1.0835 × 109) 1.1e19

3 (5.321 × 103, 4.4438 × 104, 2.78634 × 105) 6.6e13

4 −(4,438 boxes)− 1.1e11

4∗ −(158,591 boxes)− 6.9e9

Table 6.2: Numerical results of the different levels of our algorithm. The first
level uses only interval evaluation, while the remaining levels combine different
consistency techniques. Levels 4 and 4∗ work in R9.

of 10mm and 5mm, respectively. For these levels, the computed precision vector is

obtained by computing a rough (box) approximation (a box which contains all the

boxes returned by the solver). The partial volume of these levels only shows the

number of boxed returned by the solver. Figure 6.5 shows the computed results

for the points H, F and Q with the first three levels. Figure 6.6 is a zoom on the

points H and F, showing also the set of boxes computed by the last level.

CHAPTER 6. AN APPLICATION IN ROBOTICS 123

H

Q

F

Z

Y

X

2696mm

2797mm

2695mm

Figure 6.5: Computed results for the points H (red boxes), F (green boxes), and
Q (blue boxes) using the first three levels of the algorithm. Notice the difference
between the evaluation of the explicit formula (biggest box) and the results using
filtering techniques.

Level 1

Level 2

Level 3

Level 4 X = 21mm

Y = 34mm

Z = 45mm

(a)

Level 1

Level 2

Level 3

Level 4

X = 249mm

Y = 172mm

Z = 330mm

(b)

Figure 6.6: Zoom on points H and F. The darkest zone (given by the Level 4) is
a sharp approximation containing several boxes.

CHAPTER 6. AN APPLICATION IN ROBOTICS 124

6.5 Conclusions

This chapter presented a wire-parallel measuring device and an efficient algorithm

for handling uncertainties in the computation of its Direct Kinematics. Certified

results of a pose determination using this measuring device and computed by

different levels of this algorithm have also been shown.

The algorithm, which combines a phase of formal resolution, and a phase of

interval evaluation and propagation is able to handle uncertainties in the direct

Kinematics problem of a whole class of parallel robot.

The experimental studies emphasizes the problem of interval evaluation of

a model and shows that specific filtering algorithms are interesting to provide

realistic sharp results.

Some important advantages of the presented method are:

• a better description of the geometry of the solutions, mainly given by the

combination of the formal approach (algebraic reduction) and the SOISS

algorithm.

• certified results, guaranteed by the use of interval arithmetic for the evalua-

tions and the intermediate operations.

• an improved approximation, mainly given by the use of filtering techniques

and constraint propagation.

It is important to note that a four level algorithm not only provides a way

to compare different techniques, but also a choice between required precision and

time limitation. The first level is the fastest (but it is not so sharp), while the last

level is the sharpest (but time consuming).

CHAPTER 6. AN APPLICATION IN ROBOTICS 125

Chapter 7

Improving the inner box

detection

This chapter is based on the works presented in [79, 80, 82]. As shown in Chapter

6, a combination of symbolic and numerical approaches can effectively improve

the solving process by providing more information about the geometry of the

solutions, and better outer-approximation of the different continua of solutions.

It overcomes some of the limitations of the basis algorithm presented in Chapter

5, but it remains another one: the detection of inner boxes.

A good detection of inner boxes prevents the division of a box (containing only

solutions of the problem) into a lot of boxes, avoiding the waste of time due to this

process. In this chapter, different approaches for detecting inner boxes in NCSP

involving distance constraints with uncertainties are studied and compared.

The outline of the chapter is as follows: Section 7.1 presents an introduction

and the motivation of such a test. In Section 7.2 the problem of quantifier elimina-

tion is introduced. Section 7.3 shows how existentially quantified parameters can

be eliminated from the evaluation of a distance constraint in order to use classic

interval arithmetic for detecting inner boxes. In Section 7.4, another approach

based on generalized intervals for building an inner box test is discussed. The

explanation of how these tests can be used for detecting inner boxes in systems

of distances equations with uncertainties is given in Section 7.5. A comparison

between the approach based on a specific quantifier elimination algorithm and

that based on generalized interval evaluation is presented in Section 7.5.1. Based

on these approaches, Section 7.6 presents an optimal test for distance constraints.

Finally, Section 7.7 presents the conclusion of the chapter.

126

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 127

7.1 Introduction

Sometimes, an outer (box) approximation of different continua of solutions is not

enough for solving a given problem. A good example is the workspace determina-

tion of a parallel robot. In this problem, given a set of control parameters and a

robot design, one is interested in the set of effective positions that the robot end-

effector can reach. For this reason, a tight description of the workspace (given by

a branch and prune algorithm with a high precision) is for far a better approach.

It is important to note that the performance of such an algorithm is strongly

influenced by the inner box detection process. Without an inner box test, such

a branch and prune algorithm will bisect again and again the boxes included

inside the continua of solutions, leading to inefficient computations and providing

enclosures that are either prohibitively verbose or poorly informative.

Interval arithmetics can be successfully used for building such a test in some

types of quantified constraints. For example, an interval evaluation of a function

f(x, y) : 3x2− 2y + 9 with x ∈ [−1, 3] and y ∈ [−2, 4] can be used for detecting an

inner box in a constraint f(x, y) > 0, because

f([−1, 3], [−2, 4]) = 3 · [−1, 3]2 − 2 · [−2, 4] + 9 = [1, 40]

As the evaluation of the function f is inside the interval [1, 40], that means

(∀x ∈ [−1, 3])(∀y ∈ [−2, 4])(3x2 − 2y + 9 > 0)

In some quantified distance constraints, this process can also be successfully

used, when existentially quantified parameters are not taken into account in the

evaluation of the function. For example, consider the following constraint:

cr(x) : (∃r ∈ r)(x2
1 + x2

2 = r2)

with x1 = [1, 2], x2 = [−1, 1], and r = [1, 3]. Let f(x1, x2) = x2
1 + x2

2 be a func-

tion and consider the interval evaluation of f(x1,x2) : ([1, 2]2 + [−1, 1]2) = [1, 5].

From the point of view of interval arithmetics, we have the following semantic

interpretation:

(∀x1 ∈ x1)(∀x2 ∈ x2)(∃z ∈ [1, 5])(x2
1 + x2

2 = z)

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 128

In particular, if [1, 5] ⊆ r2 the following proposition is also verified:

(∀x1 ∈ x1)(∀x2 ∈ x2)(∃r ∈ r)(x2
1 + x2

2 = r2)

So, the inclusion x2
1 + x2

2 ⊆ r2 is a sufficient (and necessary, in this case)

condition for the detection of an inner box.

In a more general case (a general quantified distance constraint with uncer-

tainties), the interval evaluation is less effective, because existential quantified

parameters are inside the evaluated function. For example, consider the following

two dimensional distance constraint:

ca,r(x) : (∃a ∈ a)(∃r ∈ r)((x1 − a1)
2 + (x2 − a2)

2 = r2) (7.1)

with x1 = [3, 6], x2 = [−1, 1], a1 = [−1, 1], a2 = [−1, 1], and r = [4, 5]. If we

consider the function f(a, x) = (x1 − a1)
2 + (x2 − a2)

2, the interval evaluation of

f(a,x) is

([3, 6] − [−1, 1])2 + ([−1, 1] − [−1, 1])2 = [4, 53]

and the inclusion [4, 53] ⊆ r2 is not true, so the test fails.

A classic interval evaluation cannot prove that the interval vector x = (x1,x2)

is inside of the solution set of the constraint, but it is. This fault is not due to

interval arithmetics but to a conceptual problem in its application: existentially

quantified parameter have been considered as universally quantified ones. In other

words, the evaluation z = f(a,x) verifies (∀x ∈ x)(∀a ∈ a)(f(a, x) ∈ z) which is

not the semantics needed.

This chapter studies several strategies to detect inner boxes in quantified dis-

tance constraints when existentially quantified parameters are involved in the ex-

pression of the function.

7.2 Quantifier Elimination

Informally, the basic motivation of the quantifier elimination is to eliminate un-

wanted variables from an algebraic description of some situation. These variables

may represent parameters of a model, or real quantities that cannot be measured

in an exact way (values with uncertainties, for example). Many mathematical

problems can be phrased as quantifier elimination problems (see [98, 187]).

The first real quantifier elimination procedure which has been implemented

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 129

was introduced by Collins in 1975 (see [36]). This method based on cylindrical

algebraic decomposition (CAD) is worst-case doubly exponential in the number of

variables. Some methods for solving the quantifier elimination problem have been

proposed and implemented since the introduction of the CAD based algorithm (see

QEPCAD[37], REDLOG[54], and QERRC[53]). A good survey of these methods

can be found in [55].

7.2.1 Quantifier Elimination Problem

From a more formal point of view, the real quantifier elimination problem can be

phrased as follows:

• Given a formula F with quantified variables (universally ∀ and/or existen-

tially ∃), find a formula F in which no variables are quantified, and that both

F and F are equivalent in the domain of the real numbers.

F is called the input formula, and F the solution formula. For example, one

solution formula for F : (∃x)[ax2 + bx + c = 0] can be:

F : b2 − 4ac ≥ 0 ∧ [b 6= 0 ∨ a 6= 0 ∨ c = 0]

In the case of distance constraints, a formula F : (∃r ∈ [1, 2])[x2 + y2 = r2] is

equivalent to the following quantifier-free formula:

F : (x2 + y2 ≥ 1) ∧ (x2 + y2 ≤ 4)

Using the QEPCAD implementation of the quantifier elimination algorithm

(available in [24]), it is possible to transform a 2D quantified distance constraint

into a set of non-quantified constraints in only some seconds, but in the general

case, the 3D quantified distance constraint cannot be transformed1.

In the next sections we show that it is possible to transform both types of

constraints into a set of non-quantified constraints in less than one second, using a

Specific Quantifier Elimination (SQE) algorithm based on graphic consideration.

Moreover, this set of non-quantified constraints can be evaluated with interval

arithmetics in order to build an inner box test.

1We use a PentiumIV 3GHz based machine with 512MB RAM and 2GB of swap memory. A
general 2D quantified distance constraint is transformed into a quantifier-free formula in 33s, but
the calculus for a general 3D quantified distance constraint could not be ended before memory
overflow.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 130

7.3 A Test Based on Quantifier Elimination

In this section, we propose a Specific Quantifier Elimination (SQE) algorithm

for distance constraints ca,r(x) in a two (and three) dimensional space. Higher

dimensions are out of the scope of this algorithm2.

Let ρa,r be the set of x ∈ Rn which verifies ca,r(x) (see Figure 7.1 for an

example in a two dimensional space). The main idea is to decribe ρa,r using a

set of equations/inequalities depending only on the variable x. In other words,

we transform a quantified distance constraint into an equivalent non quantified

conjunction/disjunction of constraints which can be evaluated using classic interval

arithmetics.

(a) (b) (c)

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

Figure 7.1: Some examples of quantified distance constraints and their solu-
tions. (a) Only the parameter r has an interval value: ca,r(x) with a = (0, 0)
and r = [4, 5]. In (b) only the parameter a has an interval value: ca,r(x) with
a = ([−1, 1][−1, 1]) and r = 4.5. In (c) both parameters have interval values:
ca,r(x) with a = ([−1, 1], [−1, 1]) and r = [4, 5].

7.3.1 The Two Dimensional Case

Let us consider a quantified distance constraint ca,r(x) as following:

ca,r(x) : (∃a ∈ a)(∃r ∈ r)(f(a, x) = r2) (7.2)

where a = (a1, a2), x = (x1, x2), and f(a, x) = (x1 − a1)
2 + (x2 − a2)

2. Figure

7.2(a) graphically shows the set of x which verify this constraint.

2The main reason is that, because the limitation of the general QE algorithm, we perfom a
hand-craft specific QE based on graphic consideration.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 131

(a) (b) (c)

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

Figure 7.2: A two dimensional quantified distance constraint. (a) Set of solutions
for the generic constraint ca,r(x). (b) Representation of the internal auxiliary
constraint ci

a,r(x). (c) Representation of the external auxiliary constraint ce
a,r(x).

The first step of the algorithm is the decomposition of ca,r(x) into two auxiliary

constraints. These constraints are the result of the elimination of the quantified

parameter r from the constraint:

(∃r ∈ r)(f(a, x) = r2) ⇐⇒ f(a, x) ≤ r2 ∧ f(a, x) ≥ r2 (7.3)

Figure 7.2(b) and figure 7.2(c) show both auxiliary constraints. Let us call

figure 7.2(b) the internal auxiliary constraint ci
a,r(x) and figure 7.2(c) the external

auxiliary constraint ce
a,r(x). Therefore, ca,r(x) ⇐⇒ ci

a,r(x) ∧ ¬ce
a,r(x). These

two auxiliary constraints can be characterized using the bounds of the involved

interval, as presented below.

The constraint ci
a,r(x)

Using only the bounds of the intervals in a we obtain a disjunction of four non-

quantified constraints that represent an approximation of ci
a,r(x):

(x1 − a1)
2 + (x2 − a2)

2 ≤ r2 (x1 − a1)
2 + (x2 − a2)

2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 ≤ r2 (x1 − a1)
2 + (x2 − a2)

2 ≤ r2
(7.4)

These constraints do not describe the constraint ci
a,r(x), because some gaps are

still present (see Figure 7.3(a)). In order to fill the remaining gaps, two inclusion

constraints are used (as shown in figure 7.3(b)) that are characterized in a compact

way as follows:

x ∈ ([a1 − r, a1 + r],a2) x ∈ (a1, [a2 − r, a2 + r]) (7.5)

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 132

(a) (b)

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

−1−2−3−4−5−6−7−8 1 2 3 4 5 6 7 8−1
−2
−3
−4
−5
−6
−7
−8

1
2
3
4
5
6
7
8

Figure 7.3: Reconstruction of ci
a,r(x) using four disks (a) and two boxes (b).

Finally, ci
a,r(x) is equivalent to the disjunction of the six non-quantified con-

straints presented in (7.4) and (7.5).

The constraint ce
a,r(x)

The graph of the constraint ce
a,r(x) is easily obtained by intersecting four open

disks. This constraint is represented as a conjunction of the following no quantified

constraints:

(x1 − a1)
2 + (x2 − a2)

2 < r2 (x1 − a1)
2 + (x2 − a2)

2 < r2

(x1 − a1)
2 + (x2 − a2)

2 < r2 (x1 − a1)
2 + (x2 − a2)

2 < r2
(7.6)

Notice that the boundary of the figure 7.2(c) is not included in the graph of

ce
a,r(x). The constraint ¬ce

a,r(x) is then represented as the disjunction of four

(non-strict) inequalities.

7.3.2 The Three Dimensional Case

In the three dimensional case, we use the same decomposition into two auxiliary

constraints used in (7.3). The main difference is in the construction of the internal

auxiliary constraint.

Consider the three dimensional distance constraint ca,r(x) as in (7.2) but with

a = (a1, a2, a3), x = (x1, x2, x3), and f(a, x) = (x1−a1)
2 +(x2−a2)

2 +(x3−a3)
2.

The generic graph of the constraint ca,r(x) is shown in Figure 7.4.

As in the two dimensional case, the constraint ca,r(x) is replaced by the con-

junction of two auxiliary constraint ci
a,r(x) and ¬ce

a,r(x) (as shown in Figure 7.5).

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 133

Figure 7.4: Generic graph of the constraint ca,r(x). All values between the clearest
surface and the darkest one are solutions of the constraint. Values inside the
darkest surface are not solution.

Figure 7.5: Decomposition of the constraint ca,r(x) into two auxiliary constraints:
ci
a,r(x) (left-side picture) and ce

a,r(x) (right-side picture).

The constraint ci
a,r(x)

Using the bounds of the intervals in a we build eight inequalities. The disjunction

of these inequalities are a first approximation of ci
a,r(x):

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 ≤ r2

(7.7)

As some gaps are still present in the graph of this approximation, a new set

of constraints (based on geometric entities like boxes and cylinders) are also con-

sidered. Figure 7.6 shows the graph of three boxes characterized by the following

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 134

interval inclusion constraints:

x ∈ ([a1 − r, a1 + r],a2,a3) x ∈ (a1, [a2 − r, a2 + r],a3)

x ∈ (a1,a2, [a3 − r, a3 + r])
(7.8)

1
2

3
4

5
6

1 5 6 7 842 3

1
2
3
4
5
6
7
8

Figure 7.6: Graph of some interval inclusion constraints for building ci
a,r(x).

The remaining gaps are filled with the following twelve cylindrical constraints

(that correspond to the edges of the graph of ci
a,r(x)):

(x1 ∈ a1) ∧ ((x2 − a2)
2 + (x3 − a3)

2 ≤ r2)

(x1 ∈ a1) ∧ ((x2 − a2)
2 + (x3 − a3)

2 ≤ r2)

(x1 ∈ a1) ∧ ((x2 − a2)
2 + (x3 − a3)

2 ≤ r2)

(x1 ∈ a1) ∧ ((x2 − a2)
2 + (x3 − a3)

2 ≤ r2)

(x2 ∈ a2) ∧ ((x1 − a1)
2 + (x3 − a3)

2 ≤ r2)

(x2 ∈ a2) ∧ ((x1 − a1)
2 + (x3 − a3)

2 ≤ r2)

(x2 ∈ a2) ∧ ((x1 − a1)
2 + (x3 − a3)

2 ≤ r2)

(x2 ∈ a2) ∧ ((x1 − a1)
2 + (x3 − a3)

2 ≤ r2)

(x3 ∈ a3) ∧ ((x1 − a1)
2 + (x2 − a2)

2 ≤ r2)

(x3 ∈ a3) ∧ ((x1 − a1)
2 + (x2 − a2)

2 ≤ r2)

(x3 ∈ a3) ∧ ((x1 − a1)
2 + (x2 − a2)

2 ≤ r2)

(x3 ∈ a3) ∧ ((x1 − a1)
2 + (x2 − a2)

2 ≤ r2)

(7.9)

Finally, the graph of the constraint ci
a,r(x) is equivalent to the disjunction of

the twenty-three non-quantified constraints given the (7.7), (7.8), and (7.9).

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 135

The constraint ce
a,r(x)

As in the two dimensional case, the graph of the constraint ce
a,r(x) is easily obtained

by intersecting the following eight inequalities:

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(x1 − a1)
2 + (x2 − a2)

2 + (x3 − a3)
2 < r2

(7.10)

Note that the boundary is not included in the graph of ce
a,r(x). The constraint

¬ce
a,r(x) is then represented as the disjunction of eight (non-strict) inequalities.

7.3.3 Implementation

It is possible to represent a constraint in the form of a tree, where the internal

nodes have logic operators and and or, and terminal nodes have non-quantified

constraints or interval inclusion constraints. Figure 7.7 shows the generic tree of

a quantified distance constraint (x1 − a1)
2 + (x2 − a2)

2 = r2.

Given an interval vector x and a decomposition tree, the algorithm computes

an interval evaluation of the left side of each constraint and compares this evalu-

ation with the right side. Each node of the tree has then a label (true or false),

and the whole tree can be logically evaluated. If it is true then x is an inner box.

Some Optimizations

Based on the number of intervals in a, it is possible to perform some optimization

of the decomposition process. For example, in a two dimensional case, if only a1

and r are intervals and a2 is a real value, the constraint ci
a,r(x) is characterized

by the disjunction of the following three constraints:

(x1−a1)
2 +(x2−a2)

2 ≤ r2 (x1−a1)
2 +(x2−a2)

2 ≤ r2 x ∈ (a1, [a2−r, a2 +r])

Moreover, if (2r ≤ a1 − a1), then the constraint ce
a,r(x) is not considered

(because the graph of ca,r(x) has no gap in the middle), and the decomposition of

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 136

��
��
and

�
�
�
�
�
���
��

or
,

,
,

,
,

,,
(x1 − a1)

2 + (x2 − a2)
2 ≤ r2

������
(x1 − a1)

2 + (x2 − a2)
2 ≤ r2

(((((((x1 − a1)
2 + (x2 − a2)

2 ≤ r2

hhhhhh (x1 − a1)
2 + (x2 − a2)

2 ≤ r2HHHHHH x ∈ ([a1 − r, a1 + r],a2)

l
l

l
l

l
ll x ∈ (a1, [a2 − r, a2 + r])

B
B
B
B
B
B
B
B
B��
��

or
������ (x1 − a1)

2 + (x2 − a2)
2 ≥ r2

(((((((x1 − a1)
2 + (x2 − a2)

2 ≥ r2

hhhhhh (x1 − a1)
2 + (x2 − a2)

2 ≥ r2HHHHHH (x1 − a1)
2 + (x2 − a2)

2 ≥ r2

Figure 7.7: Generic decomposition tree of the constraint ca,r(x).

ca,r(x) is built as a disjunction of the last three inequalities.

The evaluation of the tree can be also optimized. It is performed with a

Depth-First Search algorithm and the logic value of the intermediate OR nodes is

computed inmediately when one of their child nodes get a true value.

7.3.4 Preliminary Results

This section presents different cases of quantified distance constraints (QDC) in

2D (see Table 7.1) and 3D (see Table 7.2), and the results of applying a classic

solver3 (without inner box test), a solver with a basic test (as that presented in

Section 5.2.1 for the basic approach), and a solver combining an inner box test

based on the Specific Quantifier Elimination (SQE) algorithm.

The first three constraints of Table 7.1 correspond to the examples presented

in Figure 7.1 (Section 7.3). Constraint c
(4)
a,r(x) is a special example where the graph

of the solution set has no gap in the middle.

3An implementation of a Branch and Prune algorithm for solving NCSPs (see Section 4.6.1).

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 137

QDC Initial Domain Parameters

c
(1)
a,r(x) ([−10, 10], [−10, 10]) a = (0, 0)

r = [4, 5]

c
(2)
a,r(x) ([−10, 10], [−10, 10]) a = ([−1, 1], [−1, 1])

r = 4.5

c
(3)
a,r(x) ([−10, 10], [−10, 10]) a = ([−1, 1], [−1, 1])

r = [4, 5]

c
(4)
a,r(x) ([−10, 10], [−10, 10]) a = ([−2, 2], [0, 0])

r = [2, 5]

c
(5)
a,r(x) ([−10, 10], [−10, 10]) a = ([−0.1, 0.1], [−0.1, 0.1])

r = [3, 5]

Table 7.1: Some examples of quantified distances constraints in 2D.

Finally, constraint c
(5)
a,r(x) is an example with a big uncertainty in the parameter

r and a little uncertainty in the parameter a. The aim of these examples is to

show the performance of the detection in constraints with different degrees of

uncertainty.

QDC Initial Domain Parameters

c
(6)
a,r(x) ([−10, 10], [−10, 10], [−10, 10]) a = ([−0.1, 0.1], [−0.1, 0.1], [−0.1, 0.1])

r = [4, 5]

c
(7)
a,r(x) ([−10, 10], [−10, 10], [−10, 10]) a = ([−2, 2], [−2, 2], [−2, 2])

r = [4.4, 4.5]

c
(8)
a,r(x) ([−10, 10], [−10, 10], [−10, 10]) a = ([−2, 2], [−2, 2], [−2, 2])

r = [3, 6]

Table 7.2: Some examples of quantified distances constraints in 3D.

A Branch and Prune based solver was used to compute a sharp outer approx-

imation of the continuum of solutions of each constraint. The inner box test was

applied each time the filtering phase failed in reducing the domain of the variables.

Table 7.3 summarizes the computing results4 of the experimentations. Row

Time presents the running time in seconds. Rows Boxes and Inner present the

total number of boxes and the number of inner boxes found, respectively.

The results show that in any case the use of inner box tests drastically reduces

4Obtained on a Pentium IV 3GHz with 512MB of RAM and 1.5GB of swap memory, running
IcosAlias v0.2b (a tool in development in the COPRIN project) on a Linux operating system.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 138

Prec. w = 2e−2 Without Test Basic Test SQE Test

c
(1)
a,r(x)
Time (s) 4.516 0.358 0.361
Boxes 107,629 7,820 7,820
Inner – 3,839 3,839

c
(2)
a,r(x)
Time (s) 21.946 22.783 0.505
Boxes 510,307 510,306 9,540
Inner – – 4,551

c
(3)
a,r(x)
Time (s) 31.640 33.151 0.515
Boxes 754,768 754,768 9,559
Inner – – 4,556

c
(4)
a,r(x)
Time (s) 19.767 18.042 0.290
Boxes 470,776 410,412 5,896
Inner – 1,328 2,776

c
(5)
a,r(x)
Time (s) 4.407 2.293 0.411
Boxes 170,214 50,338 7,147
Inner – 2,604 3,590

Prec. w = 2e−1 Without Test Basic Test SQE Test

c
(6)
a,r(x)
Time (s) 6.754 5.469 4.420
Boxes 124,832 97,384 48,458
Inner – 12,616 15,218

c
(7)
a,r(x)
Time (s) 58.767 62.634 9.805
Boxes 1,162,876 1,162,876 99,827
Inner – – 25,467

c
(8)
a,r(x)
Time (s) 79.263 84.294 13.288
Boxes 1,592,076 1,592,076 147,648
Inner – – 37,996

Table 7.3: Computed results of the experiments. All constraints in 2D are com-
puted with a precision ǫ = 2e−2. Precision for constraints in 3D was ǫ = 2e−1.

the computing time. It is normal because the set of boxes that have proved to

be inside the continua of solutions are no more split. Table 7.3 shows that the

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 139

test based on the SQE is the best in most of cases but in constraint c
(1)
a,r(x). The

reason is that for this constraint, the basic inner box test is optimal (see Section

7.1), so the cost of the decomposition may lightly increase the computing time.

It is important to note that the basic inner box test detected inner boxes only

in the constraints c
(1)
a,r(x), c

(4)
a,r(x), c

(5)
a,r(x), and c

(6)
a,r(x). In most of these cases,

the degree of the uncertainties in the center parameter a is low (with respect to

the degree of the distance parameter r), and the test can detect a few number of

boxes.

Figure 7.8 shows a graphic comparison between the solution set computed with

the basic inner box test (left-side picture) and the results obtained with the test

based on the SQE (right-side picture).

(a) (b)

Figure 7.8: The computed solution set of the constraint c
(5)
a,r(x). (a) Using the

basic inner box test, (b) Using the test based on SQE.

In the first case, the test cannot detect inner boxes in a big surface (due to the

existential parameters in the left-side of the constraint), and therefore, the solver

splits the boxes inside this zone until arriving to the given precision.

On the other hand, the test based on the SQE successfully detects the inner

boxes inside this surface, and the number of boxes needed for describing the con-

tinua of solutions is substantially lower. Similar results can be observed in the

three dimensional cases, but the performance of the inner box test is lower.

It is important to note that both tests are only sufficient conditions (and they

are not necessary ones). In other words, a box can be inside the continuum of

solutions while it does not satisfy any of the constraints generated by the decom-

position. Such a box would intersect several graphs of the generated constraints

but would be included in none of them. This situation is called the decomposition

flaw and it is generally found in the 3D decomposition.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 140

Another limitation of the test based on the SQE is the scalability. It has

been presented for constraints in two and three dimensional spaces, but higher

dimensions are out of the scope of the decomposition.

In orden to overcome some of these limitations, the next section studies another

approach for detecting inner boxes. This approach is based on the Generalized

Intervals and a result of Modal Interval Analysis.

7.4 A Test based on Generalized Interval

In this section a sufficient condition is proposed for a n-dimensional box x to

be an inner box. It is based on one evaluation of the expression of f(x, a) using

generalized intervals and their arithmetic. This technique is based on an important

result of the Modal Interval theory (see [66, 71, 96]) roughly explained in Section

3.7.3.

Let f : Rn −→ R be a continuous function and x ∈ KRn be a generalized

interval vector. Let xP be a generalized interval vector containing all the proper

interval components of x, and let xI be another generalized interval vector con-

taining all the improper ones. As shown in Example 3.7.4, a generalized interval

z will be (f,x)-interpretable if and only if

(∀xP ∈ xP)(Qz ∈ Pro(z))(∃xI ∈ Pro(xI))(f(x) = z) (7.11)

where Q = ∀ if z is an improper interval and Q = ∃ if z is a proper one. Notice

that it is exactly the semantic needed for the detection of inner boxes in distance

constraints. The problem is now, to compute such interval z.

As it has been noted in [66, 71], under some conditions (notably the single-

occurrence of the variables with improper intervals associated), it is possible to

compute such a generalized interval by using Kaucher arithmetic to evaluate the

given function. Although it was not introduced with this goal, the Kaucher op-

eration x ⋄ y, where ⋄ ∈ {+,−,×, /}, is proved to raise the minimal5 (⋄,x,y)-

interpretable generalized intervals.

As univariate functions f(x) like x2 or
√

x are also extended to general-

ized intervals (by computing the interval z = f(Pro(x)) and keeping the same

proper/improper quality), it is possible to provide interpretable intervals for more

realistic functions compounded of elementary functions.

5In the sense of the generalized interval inclusion.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 141

7.4.1 Generalized Interval Evaluation of a Distance Constraint

Consider a quantified distance constraint ca,r(x), between two points x and a in

a n-dimensional space, defined as follows:

ca,r(x) : (∃a ∈ a)(∃r ∈ r)(f(a, x) = r2) (7.12)

where a = (a1, . . . , an), x = (x1, . . . , xn), and f(a, x) =
∑n

i=1(xi − ai)
2. Notice

that in these types of distance constraints, each existentially quantified parameter

has only one occurrence. Therefore, using Kaucher arithmetic it is possible to

compute a (f,x,Dual(a))-interpretable generalized intervals by evaluating:

• zi = xi −Dual(ai),

• z′i = z2
i ,

• z =
∑n

i=1 z′i.

As a consequence, the generalized interval evaluation z = f(Dual(a),x) given

by this process can be semantically interpreted as follows:

(∀x ∈ x)(Qz ∈ z)(∃a ∈ a)(f(a, x) = z) (7.13)

Furthermore, thanks to the properties of the generalized intervals inclusion

(see Section 3.7.1), if z ⊆ r2 then r2 is also (f,x,Dual(a))-interpretable, that is

(∀x ∈ x)(∃r ∈ r)(∃a ∈ a)(f(a, x) = r2) (7.14)

which is exactly the semantics of the quantified distance constraint.

Finally, the inclusion f(Dual(a),x) ⊆ r2 is a sufficient condition for detecting

an inner box x. Notice that this condition is not necessary in general. For example,

consider a = ([−1, 1], [−1, 1]) and r = [1, 1] so that x = ([−1, 1], [−1, 1]) is an inner

box which does not satisfy f(Dual(a),x) ⊆ r (in this case, the test based on SQE

presented in Section 7.3 succeeds in proving it). However, it can be proved that this

sufficient condition is furthermore necessary provided that m(ai) /∈ xi (∀i = 1..n),

which is likely to be met for inner boxes x in some realistic situations.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 142

7.5 Inner Boxes for Systems of Distance Equations

The tests discussed in sections 7.3 and 7.4 were designed to detect inner boxes

in only one quantified distance constraint. Of course, the solving process of a

system of distances constraints with uncertainties needs to detect boxes included

inside the continuum of solutions of the whole system, and not only inside a single

constraint.

It can be noted that a sufficient condition designed for one quantified distance

constraint can also be used for a conjunction of quantified distance constraints:

C = {c(1)

a(1),r(1)(x), . . . , c
(n)

a(n),r(n)(x)} (7.15)

where each a(k) is a n-dimensional box, and each r(k) is an interval. Indeed, if

existentially quantified parameters are not shared between different constraints6,

we have the following implication:

n∧

k=1

(x ⊆ ρc(k)) =⇒ x ⊆ ρC (7.16)

where ρc(k) is the set of solutions of the constraint c
(k)

a(k),r(k)(x) and ρC represents

the set of solutions of the problem. In other words, if the box x is an inner box

for each constraint of the problem then it is an inner box for the whole problem.

Notice that it is true only if existentially quantified parameters are not shared

between different constraints, because the existence of a value a ∈ a which satisfies

the constraint c(1) and a value a′ ∈ a which satisfies the constraint c(2) does not

imply the existence of a value a′′ ∈ a which satisfies c(1) ∧ c(2) simultaneously.

7.5.1 Quantifier Elimination versus Generalized Interval

Some academic examples were selected in order to compare both approaches for

checking inner boxes. Problem 1 and Problem 2 are in a two dimensional space,

while Problem 3 is in a three dimensional space. The first problem is composed of a

single constraint. The second and third problem are composed of three constraints.

All problems have uncertainties. Table 7.4 shows the description of each one.

A Branch and Prune algorithm combining 2B-consistency and bisection tech-

niques was used for solving each problem.

6Otherwise, other techniques have to be used (see [65, 71]).

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 143

Problem Constraints Domains

Problem 1 x = ([−100, 100], [−100, 100])
ca,r(x) a = ([−0.5, 0.5], [−0.5, 1.3])

r = [1.3, 1.6]

Problem 2 x = ([−100, 100], [−100, 100])
ca1,r1(x) a1 = (0, 0)

r1 = [2, 2.25]
ca2,r2(x) a2 = ([3, 3.5], 0)

r2 = [2.95, 3.05]
ca3,r3(x) a3 = ([−2.5,−2.25], 2)

r3 = [3.25, 3.5]

Problem 3 x = ([0, 100], [−100, 100], [0, 100])
ca1,r1(x) a1 = ([−0.1, 0.1], [−0.1, 0.1], [−0.1, 0.1])

r1 = [4, 5]
ca2,r2(x) a2 = ([4.9, 5.1], [−0.1, 0.1], [−0.1, 0.1])

r2 = [3, 4]
ca3,r3(x) a3 = ([1.8, 2.2], [3.95, 4.05], [0.8, 1.2])

r3 = [4, 5]

Table 7.4: Description of some academic examples.

The inner box test was applied each time the consistency algorithm failed in

reducing the domain of the variables. Table 7.5 shows the computational results7

of the experiments, using the specific quantifier elimination (SQE Test) and the

generalized interval evaluation (GIE Test).

Rows Boxes and Inner present the total number of boxes and the number of

inner boxes found, respectively. Row Volume shows the total volume of the boxes,

while row IVolume shows the volume of the inner boxes. Row Time presents the

running time in seconds.

Some experiments have been conducted without using any inner box test (only

for information), but Problem 1 led to swap memory overflow (1.6Go) before

reaching the expected precision.

On Problem 1 and Problem 2 (Figure 7.9), both approaches are optimal and

compute exactly the same approximations: on one hand, the bisection is performed

in such a way that the decomposition flaw (Section 7.3.4) of the SQE is not met.

On the other hand, we have m(ai) /∈ xi (∀i = 1..n) for all inner boxes, so that

the GIE Test is optimal. The running time using the GIE Test is always slightly

7Obtained on a Pentium IV 2GHz with 256Mb of RAM and 1,5Gb of swap memory, running
IcosAlias v0.2b (http://www-sop.inria.fr/coprin/gchabert/icosalias.html).

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 144

No Test SQE Test GIE Test

Problem 1 (ǫ = 10−3)
Boxes > 107 64877 64877
Inner – 33225 33225
Volume – 18.50312 18.50312
IVolume – 18.49187 18.49187
Time (sec.) – 4.63 4.08

Problem 2 (ǫ = 10−3)
Boxes 451655 5481 5481
Inner – 2550 2550
Volume 0.21236 0.21236 0.21236
IVolume – 0.21103 0.21103
Time (sec.) 36,08 0.53 0.43

Problem 3 (ǫ = 10−2)
Boxes 7717507 503059 501795
Inner – 137900 137799
Volume 2.83133 2.83133 2.83133
IVolume – 2.72203 2.72254
Time (sec.) 803.63 87.49 58.38

Table 7.5: Computational results of the experiments.

lower than using the SQE Test because the former computes only one evaluation

of the constraint.

(a) (b)

Figure 7.9: A graphic representation of the continua of solutions. (a) Solutions of
Problem 1, (b) Solutions of Problem 2.

On Problem 3 (Figure 7.10), the two tests compute different approximations:

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 145

the total volumes are equal with both methods but the inner volume provided

by the GIE Test is greater, with a lower number of inner boxes. While the GIE

Test is still optimal (because m(ai) /∈ xi (∀i = 1..n)), the decomposition flaw is

now met (in dimension 3 the decomposition used for the SQE is more complicated

so that the decomposition flaw is more likely to be met). As a consequence, the

speedup of GIE Test is more sensitive on this example.

Figure 7.10: Graphic representation of the solutions for Problem 3.

7.6 An Optimal Inner Box Test for Distance Equations

This section introduces an optimal inner box test for distance constraints with

existentially quantified parameters, based on generalized interval evaluation and

geometric considerations.

As shown in the Section 7.4.1, the Modal Interval theory (see Section 3.7.3),

guarantees that if f(x, a) has a single occurrence of the variable8 a, the eval-

uation of z = f(x,Dual(a)) using generalized interval arithmetic produces a

(f,x,Dual(a))-interpretable interval z, but it does not say anything about the

optimality of the computed interval.

Actually, for the four basic operations {+,−,×, /}, the computed interval z

is optimal. Even for the elementary function sqr, sqrt, cos, sin, . . . the resulting

interval will be optimal, but it does not mean that the composition of functions will

be optimal too. As counter-example, consider the expression f(a, x) = (x − a)2

8Actually, a single occurrence of each component of the interval vector a, in a general case.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 146

with x = [−1, 1] and a = [−1, 1]. The result of evaluating z = f(x,Dual(a))

involves two steps:

ztmp = (x−Dual(a)) = ([−1, 1] − [1,−1]) = [0, 0] (7.17)

z = (ztmp)
2 = ([0, 0])2 = [0, 0] (7.18)

The final result z = [0, 0] is (f,x,Dual(a))-interpretable but is not optimal9,

even though each performed operation is optimal (that means, each operation φ

returns the minimal interpretable interval z (i.e. which verifies the (φ,x,Dual(a))-

interpretability).

This drawback basically occurs because the expression is split into sub-expressions

that all are required to verify an inner property by itself, regardless of possible

overlays due to non-monotonicity. This condition is stronger than it is needed.

Indeed, non monotonicity (e.g. of the square function) means that the same

value (e.g., 4) may be obtained by several different values of the sub-expression

(x− a) (-2 and 2). If the value 2 of the sub-expression (x− a) can be obtained for

all values of a part of the box x, and if −2 can be obtained for all values of the

other part, then the value 4 for (x− a)2 can be obtained for all values in x. Such

overlay cannot be detected by generalized interval arithmetic since neither 2 nor

−2 appears to be obtained for all values in x.

In the case of distance equations, we identify this situation in the form of a

symmetry of the expression (x−a)2 w.r.t. the middle point of a (see Figure 7.11).

Definition 18 (Symmetric Interval) Let x = [x, x] ∈ IR and ã ∈ R. The

interval x∗ = [x∗, x∗] ∈ IR is a symmetric interval of x w.r.t. ã, iff

(x + x∗)
2

=
(x + x∗)

2
= ã (7.19)

This definition allows us to formulate the following proposition:

Proposition 7 Let x,a ∈ IR such that x ∩ {m(a)} ∈ {∅, {x}, {x}} and consider

a function f(x, a) = (x − a)2. The interval x has a symmetric interval x∗ w.r.t.

the middle point of a, such that the evaluation f(x,Dual(a)) = f(x∗,Dual(a)).

Proof. Let ã = m(a) be the middle point of a, and x∗ = [2ã − x, 2ã − x] be the

9Note that the minimal interval z verifying the (f,x, Dual(a))-interpretability is z = [1, 0],
but it cannot be obtained with a simple generalized interval evaluation of the expression.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 147

a a x

(x− a)

(x− a)

(x− a)

(a)

a a x

(x − a)2
(x − a)2(x− a)2

symmetry
point

(b)

Figure 7.11: (a) Graphic representation of the expression (x − a), without sym-
metry. (b) Graphic representation of (x − a)2. There is a symmetry w.r.t. the
middle point of the interval a.

symmetric interval of x = [x, x] w.r.t. ã. Then,

f(x∗,Dual(a)) = ([2ã− x, 2ã− x]− [a, a])2

= ([2ã− x− a, 2ã − x− a])2

= ([2 (a+a)
2 − x− a, 2 (a+a)

2 − x− a])2

= ([a + a− x− a, a + a− x− a])2

= ([a− x, a− x])2

= ([−(x− a),−(x− a)])2

= ((−1)[x − a, x− a])2

= ([x, x]− [a, a])2

= f(x,Dual(a))

�

Now, consider an interval x ∈ IR such that x ∩ {m(a)} /∈ {∅, x, x}, and let

xleft = [x,m(a)] and xright = [m(a), x] be two intervals generated by bisecting

the initial interval x in the middle point of the interval a. Because the symmetry

(Proposition 7), we do not need to evaluate the expression (x−Dual(a))2 in the

whole interval x but only in one of the intervals xleft or xright (the biggest10 one).

The resulting interval z = (x′−Dual(a))2 (with x′ ∈ {xleft,xright}) will not only

be (f,x,Dual(a))-interpretable but also optimal.

10Because the evaluation of the smallest interval is already taken into account in the evaluation
of the biggest one.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 148

The optimality of this evaluation can be proved by studying its behavior in

different parts of the domain. Without loss of generality, consider the interval

x′ = xright to be the biggest one.

The evaluation z = f(x′,Dual(a)) = ([x′ − a, x′ − a])2 involves two expressions:

• (x′ − a), which is equal to (m(a)− a) = a−a
2 , always greater or equal than

zero (see Figure 7.11(b) in the symmetry point), and

• (x′ − a), which depends on the value of x′. If (m(a) ≤ x′ ≤ a) then the

expression (x′ − a) is such that −a−a
2 ≤ (x′ − a) ≤ 0, and z = [(a−a

2)2, 0]

which is the optimal evaluation (see the yellow box of Figure 7.11(b)), else

(x′ > a) and then (x′−a) > 0. The evaluation will be z = [(a−a
2)2, (x′−a)2]

which is again optimal.

Finally, in order to build an optimal inner box test for distance constraints with

existentially quantified parameters, each term (xi−ai)
2 is evaluated according the

following rule: If xi ∩ {m(ai)} ∈ {∅, {x}, {x}} then a usual generalized interval

evaluation is performed to compute the value of zi, else the interval xi is bisected

into xileft
= [xi,m(ai)] and xiright

= [m(ai), xi] and zi = (x′
i − a)2, where x′

i is

the biggest between xileft
and xiright

.

7.7 Conclusion

Equality constraints with existentially quantified parameters, i.e. constraints like

(∃a ∈ a)(f(a, x) = 0), generally have continua of solutions. Therefore, any bisec-

tion algorithm dedicated to the approximation of their solutions should incorporate

a test for checking if a box is included inside the continuum of solutions. Unless

it will spend most of the time bisecting again and again boxes included in the

solution set.

This chapter studied different tests for detecting inner boxes. First, it showed

how interval arithmetics can be successfully used for detecting inner boxes in some

types of constraints and why this arithmetics is less effective in a more general

case of quantified constraint. In addition, the quantified elimination problem was

presented within an explanation of how the solution of this problem can be used

with classic interval arithmetics in order to improve the detection of inner boxes.

A special quantified elimination algorithm based on geometric considerations

was also proposed. This algorithm allows one to transform a quantified distance

constraint into a set of non-quantified constraints in less than one second. Classic

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 149

interval arithmetic is then used to detect boxes included inside a continuum of

solutions.

On the other hand, using a new point of view, a test which was initially pro-

posed by the modal intervals theory has been introduced. This new test combines

generalized interval arithmetic and a semantic interpretation of the result to detect

inner boxes in quantified constraints.

Some experiments have been conducted on academic examples of conjunctions

of quantified distance constraints in a two- and three-dimensional space. Although

both methods are very different, they raise very similar results about both com-

putation times and description of the solution set (with a slight advantage for the

test based on generalized intervals).

This situation drastically changes when arbitrary dimensions (greater than 3)

are considered. While the test based on generalized interval evaluation can be

trivially extended, the proposed test based on specific quantifier elimination fails.

Moreover, the former is much simpler to implement.

Notice that both tests are only sufficient conditions. That means some boxes

which are inside the continuum of solutions may not be detected11. For this

reason, a deeper study of these tests has been performed. In the case of the SQE,

it is difficult to overcome the decomposition flaw, because it is in the basis of the

approach. In the case of the generalized interval evaluation (and using geometric

consideration), we showed that an optimal inner box test can be built. This is

the first test which can be considered as a necessary a sufficient condition for

detecting inner boxes in the discussed quantified distance constraints. As well as

being optimal, it is also cheap, because it only involves interval evaluations and

some verifications that can be performed in a linear time (w.r.t the terms involved

in the constraint). Moreover, it can be interesting to study its applicability to

others types of constraints verifying a symmetry condition.

Anyway, after the study of the inner box test and the description of the con-

tinua of solutions using a set of boxes, an important drawback of this approach

has been detected. In a two dimensional space, any interval based solver must

describe the border of the continuum of solutions (a line) with small boxes (these

boxes will have the given precision used as stop condition). In a three dimen-

sional space, an interval based solver must describe a surface (the border of the

continuum of solutions in the space) with the same precision. That means, in

11Anyway, it can be proved that after a finite number of bisections, all the generated boxes
will be detected as inner ones.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 150

a n-dimensional space any interval based solver will describe a (n-1)-dimensional

volume with boxes smaller than the given precision, even though an optimal inner

box test be applied.

This is a weakness of the interval based approach that motivates the study

performed in the next chapter.

CHAPTER 7. IMPROVING THE INNER BOX DETECTION 151

Chapter 8

Generalized Interval Projection

This chapter is based on the work presented in [76]. As discussed in the conclusions

of Chapter 7, an important weakness of the use of an interval based solver (e.g.

a Branch and Prune algorithm with a given precision) for describing continua of

solutions of a NCSP, is that in a n-dimensional space this solver will describe a

(n − 1)-dimensional volume with a lot of boxes having the given precision (even

though an optimal inner box test be applied).

In problems involving quantified constraints and several continua of solutions

it can be interesting to have an inner-(rough)-approximation as the same as an

outer-approximation. That means, to compute a small box which conservatively

approximates a continuum of solutions and a big box fully included inside the

same continuum.

In this chapter, a new technique for building such a box in a constraint with

existentially quantified parameters is presented. This approach is able to build

an inner box for the problem starting with a single point solution, by consistently

extending the domain of every variable. The key point is a new method called

generalized projection which is based on the extended algebraic structure provided

by generalized intervals. The requirements are that each parameter must occur

only once in the system, variable domains must be bounded, and each variable

must occur only once in each constraint.

The outline of the chapter is as follows: Section 8.1 presents a brief introduction

and a motivating example for the domains extension. Section 8.2 remembers the

inner box test which will be used in Section 8.3 to perform consistent domains

extension. Section 8.4 shows the application of the extension algorithm on the

introductory problem. Finally, Section 8.5 presents the conclusions of the chapter.

152

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 153

8.1 Introduction

The purpose of the work presented in this chapter will be illustrated on a simple

example of signal relay positioning. The situation is as follows: m units are

deployed on an area, each of them being equipped with a transceiver. Because of the

limited transmission distance of their transceivers, the units cannot communicate.

The question is to find a good position for a relay such that all units get connected

(can communicate between them).

Denote (ai, bi) the coordinates of the ith unit position, and di its distance from

the relay. Assume first that all ai, bi and di are fixed. Then, the model consists

in m simple distance equations and can be solved by any traditional algebraic

or numerical technique presented in Section 4.7. Since the system is probably

unfeasible, a least-square method can provide a point making each distance being

as close as possible to the desired value di.

Unfortunately, this model suffers from three serious limitations:

1. Distances should not be fixed. The distance di must be neither more than

the transceiver range di, nor less than a lower bound di, say, because of the

damaging loop effect. Hence, distances must rather be assigned intervals

{d1,. . . ,dm}.

2. Positions of units are not fixed neither. They usually patrol around their

position and can move in a zone (box (ai,bi)) to pick up the signal.

3. Providing a single solution (x, y) is often not realistic. For example, an

antenna cannot be installed exactly at a precise position in presence of ob-

stacles. Therefore, one is rather interested by a box (x,y) such that any

position chosen in this box is appropriate. Obviously, the wider the box, the

better.

Considering the above limitations, a better model for the problem can be

defined considering a set of m quantified distance constraints c(i)(x, y) as follows:

c(i)(x, y) : ∃(ai, bi, di) ∈ (ai×bi×di) (x− ai)
2 + (y − bi)

2 = d2
i (8.1)

Figure 8.1 graphically shows an example of the relay problem considering two

points (a1, b1) and (a2, b2). A solution of this problem is a tuple (x, y) such that

for all i = {1, . . . ,m}, ci(x, y) is true and the goal is to build an inner box (x,y),

in which each point (x, y) is a solution [209].

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 154

a2

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

inner box

position of the

y

x

solutions

first unit
position of the

second unit

b

b

a

1

2

1

Figure 8.1: The relay positioning problem

As discussed in the previous chapters, classical Interval Analysis and Con-

straint Programming provide well-known algorithms for handling systems of equa-

tions with continuum of solutions [14, 191, 204], but they are not well-adapted for

building inner boxes when the system involves existentially quantified parameters

(especially when the system is not square w.r.t. the parameters).

Other techniques (as shown in chapters 5 and 7) either based on Modal Inter-

vals [95], or Newton-like existence theorems [72] can detect inner boxes in presence

of parameters, but one needs to enforce a whole branch-and-bound process to get

an answer.

This chapter proposes an original method for building an inner box around

an initial solution of the parameter-free problem. This method starts with a

degenerate box (a box reduced to a point, that can be obtained using a least-

square method or with the basic approach discussed in Chapter 5, for example)

and tries successively to enlarge the dimensions of the box, while proving that the

current box remains an inner box.

Domain extension has already been achieved in case of parameter-free inequal-

ities by defining an univariate extrema function and computing its left most and

right most solutions of a selected variable, using a Newton like method [34].

The new extension algorithm proposed here, works for parametric equations,

thus subsuming inequalities and addressing more situations. It essentially extends

one variable at a time and the resulting box depends on the order in which variables

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 155

are selected. It is based on arithmetical functions defined as follows:

Definition 19 (Arithmetical Function) f is said to be an arithmetical func-

tion, if the formal expression f(x) matches the following recursive definition:

• f(x) = xi, with i = {1, . . . , n}.

• f(x) = c, where c is a constant in R.

• f(x) = φ(g(x)), where g is an arithmetical function, and φ is a elementary

function such as sqr, sqrt, sin, . . .

• f(x) = g(x) ⋆ h(x) where g and h are arithmetical functions, and ⋆ is a

binary operator in {+,−,×, /}.

Informally, the algorithm uses an inner box characterized by a generalized

inclusion as f(x) ⊆ [2,−1]. It is known that, as long as f(x) ⊆ [0, 0], x is an inner

box (see sections 3.7.3 and 7.4, for more details). Hence, the idea is to enlarge x

as much as possible by considering a right-hand side enlarged to [0, 0]. The latter

enlargement is backward-propagated through the syntactic tree of f down to the

leaf representing x (See [15] or Section 4.3.1 for an explanation about backward

propagation).

8.2 Exploiting the Inner Box Test

As shown in sections 3.7.3 and 7.4.1, by chaining the basic arithmetic operators and

functions, one can evaluate any expression with generalized intervals arguments.

Moreover, from the Modal Intervals theory (see Section 3.7.3) we have the following

proposition:

Proposition 8 Let f : Rn × Rp → R such that each component of v has only

one occurrence in f(x, v). Let x ∈ IRn, v ∈ IRp and z = f(x,Dual(v)). If z is

improper then

(∀x ∈ x)(∀z ∈ Pro(z))(∃v ∈ v)(z = f(x, v)) (8.2)

Up to now, this proposition was mainly used as an inner box test (see Section

7.4). As a new result, we will show that Proposition 8 can also be used as a

constructive tool for inner boxes.

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 156

8.2.1 A General Inner Box Test

Consider a system of m constraints ci, each constraint being a parametric equation

fi(x, v) = 0 with fi : Rn×Rp. Assume that every component vj appears only once

in the whole system. To check if a given box x is inner, evaluate f(x,Dual(v)).

The result is a vector z ∈ KRm. If z ⊆ 0 then x is an inner box.

From Proposition 8, we have

(∀x ∈ x)(∀z ∈ Pro(z))(∃v ∈ v)(z = f(x, v)) (8.3)

Since z ⊆ 0 ⇐⇒ 0 ∈ Pro(z) then

(∀x ∈ x)(∃v ∈ v)(f(x, v) = 0) (8.4)

8.3 A Generalized Interval Projection

Let us first consider a real-valued arithmetical function f : Rn × Rp → R. We

split variables into x ∈ R and y ∈ Rn−1, while v ∈ Rp is the vector of parameters.

Thus, with no loss of generality, we shall write f(x, y, v).

This section gives a technique to enlarge the domain of a variable that has

only one occurrence1 in the expression of the function2, with given domains for

other variables and parameters. So we assume that x has only one occurrence in

f , and fix once for all y ∈ IRn−1 and v ∈ IRp.

This technique handles x (the domain of x) as a variable and tries to find a

solution inKR to some interval relation. We work at the interval level, which must

be sharply distinguished from the usual standpoint of interval analysis: Instead

of solving an equation of real variable/parameters and using intervals as a way to

represent an infinite number of values, we solve an equation of interval variable

and look for one interval solution.

To be applied, this technique requires that the variable x has a domain, i.e., a

lower bound and an upper bound, w.r.t. the inclusion order defined in Section 3.1

(Interval Analysis). So there must be intervals xl and xu such that xl × y is the

initial inner box we want to enlarge, and xu is the domain of all possible values

1This is a limitation due to the dependency problem of interval arithmetic. It can be solved
by applying a fixed point algorithm over the multi-occurrence variable, but this is out of scope
of this work.

2This presentation is done for one constraint. In presence of several constraints, the same op-
eration is performed for each constraint and the intersection of the obtained intervals is returned.

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 157

for x. Most of the time, it is easy to provide such an upper bound. Both bounds

are proper. We can finally write

xl ⊆ x ⊆ xu. (8.5)

The goal is to find a maximal interval x ∈ KR such that, x satisfies (8.5) and

f(x,y,Dual(v)) ⊆ [0, 0] (8.6)

In other words, an interval x such that both the domain constraint and the

inner test are satisfied3. Consider now the (slightly) more general problem of

finding a maximal x such that

x satisfies (8.5) and f(x,y,Dual(v)) ⊆ z (8.7)

with z ∈ KR such that

f(xl,y,Dual(v)) ⊆ z ⊆ f(xu,y,Dual(v)). (8.8)

Notice that a maximal interval x satisfying (8.7–8.8) is not necessarily a max-

imal inner extension of xl in xu. Using Definition 19, we can recursively solve

(8.7) by isolating the sub-expression containing x and applying one of the three

elementary projections detailed below.

8.3.1 Overview

The recursion consists in reducing (8.7–8.8) to a simpler relation

x satisfies (8.5) and g(x,y,Dual(v)) ⊆ z′, (8.9)

where g is a subexpression of f , and z′ satisfies

g(xl,y,Dual(v)) ⊆ z′ ⊆ g(xu,y,Dual(v)). (8.10)

Relation (8.9-8.10) must be a sufficient condition to (8.7-8.8) in the sense that a

maximal x ∈ KR satisfying (8.9-8.10) must also be a maximal x ∈ KR satisfying

(8.7-8.8). Given f , x, y, v and z, we detail now how to compute an appropriate

z′, dealing with three different cases. These cases are related to the syntactic

3If f is linear, some methods already tackle this problem [46, 184, 188, 190].

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 158

decomposition of f given by Definition 19. The base case is straightforward. The

other cases lie on three concepts: theoretical projection, selection and filtering.

8.3.2 Base case (x ⊆ z)

By hypothesis, (8.8) holds, i.e., xl ⊆ z ⊆ xu. Hence, a maximal x such that x

satisfies (8.5) and (x ⊆ z) is z itself.

8.3.3 Basic function (φ(g(x, y, v)) ⊆ z)

Theoretical projection

For clarity, we replace g(x,y,Dual(v)) by the symbol g. Since every basic function

φ is piecewise strictly monotonic, hence piecewise invertible, for any z ∈ KR, a

disjunction of inclusions

(g ⊆ z1) or (g ⊆ z2) or . . .

can formally be derived from φ(g) ⊆ z, regardless of condition (8.5). For example,

exp(g) ⊆ [1, 2] ⇐⇒ g ⊆ [0, log(2)]

g2 ⊆ [4, 0] ⇐⇒ g ⊆ [2, 0] or g ⊆ [0,−2]

Notice that if φ = sqr, Pro(z) cannot include negative values, so that the

square root is always well defined. Indeed, by hypothesis (8.8) holds. If z is proper,

then z ⊆ g(xu,y,Dual(v))2 and g(xu,y,Dual(v))2 ≥ 0 implies Pro(z) ≥ 0.

Otherwise, g(xl,y,Dual(v))2 ⊆ z, i.e., Pro(z) ⊆ Pro(g(xl,y,Dual(v))2) which

again implies Pro(z) ≥ 0. This symmetry in the domain of sqrt and the image of

sqr is obviously valid for every basic function.

As soon as φ is trigonometric, the disjunction includes an infinity of terms

(which justifies the theoretical qualifier), for example:

cos(g) ⊆ [0.5, 1] ⇐⇒ g ⊆ [−π/3, π/3] or . . .

All intervals in the (possibly infinite) sequence share both the same proper/improper

nature and the same diameter. Furthermore, either their proper projections are

all disjoint (i 6= j =⇒ Pro(zi) ∩ Pro(zj) = ∅), either they all intersect. They

cannot however overlap more than on a bound.

One may wonder if two overlapping intervals g1 and g2 can be merged, i.e., if

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 159

the condition (g ⊆ z1) or (g ⊆ z2) can be replaced by g ⊆ (z1 ∨ z2). This is not

allowed since g ⊆ (z1∨z2) is only a necessary condition4. In contrast, g ⊆ (z1∧z2)

is a sufficient but stronger condition, and maximality is lost (no solution can even

be found). Thus, no merging of any kind can be done.

Summing up, solving (8.7) boils down to solving

x satisfies (8.5) and g(x,y,Dual(v))) ⊆ zj (8.11)

for one zj in the sequence. We can now avail ourselves of the constraint on the

domain of x to select and filter a feasible interval in this sequence. Selection means

that we pick an interval zj such that a solution x of (8.11) exists. Filtering means

that we find the largest z′ ⊆ zj such that (8.10) is satisfied.

Selection

Relation (8.5) allows us to keep only a finite number of zj in the theoretical

projection. Note that by inclusion isotonicity of Kaucher arithmetic, xl ⊆ x

implies g(xl,y,Dual(v)) ⊆ g(x,y,Dual(v)). So it is possible to detect whether

zj (j = 1, 2, . . .) is feasible or not by checking g(xl,y,Dual(v)) ⊆ zj . The number

of feasible zj resulting from this test is necessarily finite (see Example 8.3.2). We

can pick any one of them.

Example 8.3.1 Consider f(x, y, v) = (x + v)2, xl = [−1,−1], xu = [−2, 3],

v = [−1, 2] and z = [4, 1]. Then, we have φ = sqr, g(x, y, v) = x + v and

(x + Dual(v))2 ⊆ [4, 1] ⇐⇒
{

x + Dual(v) ⊆ [2, 1]or

x + Dual(v) ⊆ [−1,−2]

But since xl + Dual(v) = [1,−2], [2, 1] is not feasible (because [1,−2] 6⊆ [2, 1])

whereas [−1,−2] is feasible ([1,−2] ⊆ [−1,−2]).

For the sake of simplicity, we performed in the last example theoretical pro-

jection and selection consecutively, as two separate steps. With trigonometric

functions, this is not possible as the number of theoretical projections is infinite.

So, we rather use selection as a pre-selecting process. This is illustrated on the

next example.

4As counter-example, g := [−1, 1] satisfies g ⊆ [0, 2] ∨ [−2, 0] = [−2, 2] but neither satisfies
g ⊆ [0, 2] nor g ⊆ [−2, 0].

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 160

Example 8.3.2 Consider f(x, y, v) = cos(x + v), xl = [6, 6], xu = [5, 9], v =

[−1, 1] and. Then, we have φ = cos and g(x, y, v) = x + v. We first compute

gl := xl + Dual(v) = [7, 5],

It follows that Pro(gl) ⊆ [5, 7], which restricts the projection of cosine to two half

periods, [π, 2π] and [2π, 3π]:

x + Dual(v) ⊆ 2π + arccos([0.7, 0.8]) = [6.93, 7.08]

or

x + Dual(v) ⊆ 2π − arccos([0.7, 0.8]) = [5.49, 5.64].

Filtering

Once zj was proven to be feasible, relation (8.5) can be used to make zj smaller

and fulfill (8.10). Indeed, x ⊆ xu implies g(x,y,Dual(v)) ⊆ g(xu,y,Dual(v)).

Hence we can substitute zj by zj ∧ g(xu,y,Dual(v)).

Example 8.3.3 In Example 8.3.1, we found out that interval [−1,−2] was fea-

sible. But as xu + Dual(v) = [0, 2], we must actually have x + Dual(v) ⊆
[0, 2] ∧ [−1,−2] = [0,−2]. This condition is indeed stronger.

8.3.4 Binary Operator (g(x, y, v) ⋆ h(y, v) ⊆ z)

As h(y, v) is a function in which x does not appear, we simply replace it using an

interval w := h(y,Dual(v)). Considering first the addition we have:

g(x,y,Dual(v)) + w ⊆ z

and adding −Dual(w) to each side of the latter, we get

g(x,y,Dual(v)) ⊆ z−Dual(w)

thanks to the group property of Kaucher arithmetic.

Filtering can apply here to narrow z − Dual(w). The same idea applies to

subtraction and division (by respectively adding and multiplying z by Dual(w)).

Example 8.3.4 Consider the following expression x + y ⊆ z, with y = [−1, 3]

and z = [6, 12]. Figure 8.2 shows the difference between the classic projection and

the generalized projection.

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 161

x

x+y

0

z

x + y

x + y

x

Classic Projection
︷ ︸︸ ︷

︸︷︷︸

Generalized Projection

• Classic Projection

x ⊆ z− y

x ⊆ [3, 13]

• Generalized Projection

x ⊆ z− dual(y)

x ⊆ [7, 9]

Figure 8.2: An example of the classic projection and the generalized projection.

Multiplication however requires some precaution. If 0 6∈ Pro(w), then we

can again divide z by Dual(w). But if 0 ∈ Pro(w), because Kaucher arithmetic

does not handle infinite bounds we need to hand-craft a special division. Similar

extensions of Kaucher’s division are proposed in [71, 166].

Table 8.1 presents the expression for the maximal g satisfying g ×w ⊆ z.

z > 0 z < 0 0 ⊆ z z ⊂ 0

0 ⊆ w ∅ ∅ [max{z/w, z/w},
min{z/w, z/w}] ∅

w ⊂ 0
[−∞, z/w]

or
[z/w, +∞]

[−∞, z/w]
or

[z/w, +∞]
[−∞, +∞]

[−∞, min{z/w, z/w}]
or

[max{z/w, z/w}, +∞)]

Table 8.1: The results of g for the different cases of z and w.

Applying filtering on g immediately removes infinite bounds since g is necessar-

ily proper. Hence, infinite bounds are not propagated to subsequent computations

(which would have led to undefined results). They only are a convenient way to

represent arbitrarily large values when enforcing filtering.

Example 8.3.5 Consider f(x, y, v) = x × v, xl = [−1, 1], xu = [−3, 3], v =

[−1, 2] and z = [−2, 6]. Then, thanks to the Table 8.1, we get

x ⊆ [−∞,−1] or x ⊆ [1,+∞].

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 162

Both contain xl, hence are feasible. Applying meet operator with xu yields

x ⊆ [−3,−1] or x ⊆ [1, 3]

We have seen that the constraint on the domain is crucial in presence of trigono-

metric functions or multiplication with 0 in operands. In the other cases, by re-

moving domain constraint (i.e., condition (8.5)), it can be easily proven that a

maximal x satisfying

f(x,y,Dual(v)) ⊆ [0, 0]

also satisfies f(x,y,Dual(v)) = [0, 0].

It is worth mentioning that functions need not be decomposed formally into

sub-expressions: projections are directly performed by an automatic projection

algorithm [15], similar to automatic differentiation.

8.4 An Example with the Relay Problem

In this section, the trace of the extension algorithm applied to the relay problem

with 4 units is presented. According to the problem in section 8.1, the set of

constraints are:

c(i)(x, y) : ∃(ai, bi, di) ∈ (ai×bi×di) (x− ai)
2 + (y − bi)

2 = d2
i

and the domains of the parameters are:

a1 = [0, 2] b1 = [0, 1] d1 = [1, 8]

a2 = [4, 5] b2 = [9, 10] d2 = [1, 8]

a3 = [13, 15] b3 = [−11,−10] d3 = [1, 14]

a4 = [16, 17] b4 = [5, 7] d4 = [1, 8]

A least-square solution obtained by fixing each parameter to the midpoint of its

domain is (x̃ = 9.04286, ỹ = 2.6494). We first check that this solution can be

taken as the starting point of our domain extension. We compute for all i,

(x−Dual(ai))
2 + (y −Dual(bi))

2 −Dual(di)
2

with x = [x̃, x̃] and y = [ỹ, ỹ]. We get the following image vector :

([87.8,−11.7], [78.5,−7.3], [220.8,−20.3], [81.2,−10])

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 163

As this vector is included in 0, then the initial degenerate box x × y is an inner

box for the problem. We can now decide that the position (x, y) should not be

out of a bounding box xu × yu = [5, 15] × [0, 20]. The extension of x can start.

We detail the projection of c(1)(x, y) over x. Our goal is to find the biggest x

(x̃ ⊆ x ⊆ xu) such that

(x−Dual(a1))
2 + (y −Dual(b1))

2 −Dual(d1)
2 ⊆ 0

Apply Case 3

Compute w := (y − Dual(b1))
2 − Dual(d1)

2. We get w = (2.6494 − [1, 0])2 −
[8, 1]2 = [6.02,−61.28]. Then,

(x−Dual(a1))
2 + w ⊆ 0⇒ (x−Dual(a1))

2 ⊆ −Dual(w)

Finally, (x−Dual(a1))
2 ⊆ [−6.02, 61.28].

We apply domain restriction. We first compute (x̃−Dual(a1))
2 = [81.77, 49.60]

and check that [81.77, 49.60] ⊆ [−6.02, 61.28]. We also compute (xu−Dual(a1))
2 =

[25, 169] and filter [−6.02, 61.28] to [25, 61.28]. Then,

(x−Dual(a1))
2 ⊆ [25, 61.28]

Apply Case 2

(x−Dual(a1)) ⊆ [5,
√

61.28] = [5, 7.82]

∨
(x−Dual(a1)) ⊆ [−

√
61.28,−5] = [−7.82,−5]

But (xl −Dual(a1)) = [9.04, 7.04] and (xu −Dual(a1)) = [5, 13]. So, by domain

restriction, [−7.82,−5] is discarded, and [5, 7.82] is left intact. Then,

x−Dual(a1) ⊆ [5, 7.82]

Apply Case 3

x ⊆ [5, 7.82] + a1 ⇐⇒ x ⊆ [5, 9.82]

Apply Case 1

The final answer is [5, 9.82].

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 164

We perform a generalized projection to compute consistent extension of x̃ w.r.t

the other constraints and get three other intervals:

xc(2) ⊆
√

d2
2 −Dual((ỹ −Dual(b2))2) + a2 = [5, 9.86]

xc(3) ⊆
√

d2
3 −Dual((ỹ −Dual(b3))2) + a3 = [7, 15]

xc(4) ⊆
√

d2
4 −Dual((ỹ −Dual(b4))2) + a4 = [8.36, 15]

The intersection of the four intervals, [8.36, 9.82], is inner w.r.t. the whole

system (See Section 7.5).

We can perform now a generalized projection to compute an extension over

y of the new box [8.36, 9.82] × ỹ and we get respectively for each constraint

y1 = [0, 2.6494], y2 = [2.62, 16], y3 = [0, 3.20] and y4 = [2.64, 9.35]. The in-

tersection of these extensions is [2.6494, 2.6494]. The final inner box [8.36, 9.82]×
[2.6494, 2.6494] is shown in Figure 8.3(a).

(a) (b)

(c) (d)

Figure 8.3: (a). Inner box with maximal extension of x and (b) with maximal
extension of y. (c) First step of heuristic starting with x. (d) First step of heuristic
starting with y.

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 165

Let us roll back this extension. If we start domain extension over the variable

y at first, and then, over x, we obtain another box, [9.04286, 9.04286] × [2.1, 3.42]

shown in 8.3(b). We observe that the maximal extension obtained for the first vari-

able we project over generally prevents the other variables from being extended.

In order to obtain more balanced boxes, we introduce a extension heuristic in two

steps.

In the first step, we extend all variables but the last one to the middle point

between the initial value and each bound of the maximal extension. The last

variable is extended to the maximal interval. For example, using this heuristic x

will be extended to [8.7, 9.43] instead of [8.36, 9.82], and then y will be extended

to [2.35, 3.32].

In the second step, we perform a maximal extension for all variables (if they

can again be extended). Figures 8.3(c) and 8.3(d) show the results obtained

with the first step of the heuristic, starting with variable x and variable y (boxes

[8.7, 9.43] × [2.35, 3.32] and [8.45, 9.48] × [2.373, 3.039]), respectively.

Notice that Figure 8.3(c) shows a maximal inner box, while Figure 8.3(d) can

be extended again. The second step will extend y to a maximal interval, which is

[2.373, 3.237].

8.5 Conclusions

It is clear that for problems having continua of solutions, computing an inner box

instead of a solution point is of particular interest, because it gives greater freedom

for choosing a solution5. Moreover, given a solution point of a problem, it may be

interesting to compute a box around this initial solution containing only solutions

of the problem. This chapter provided a new method to do it. The key point is the

generalized projection, a new operator that combines a Constraint Programming

concept with theoretical results from Modal Interval Analysis. This projection

can be computed in linear time w.r.t. the number of operators and functions in-

volved in the equations. It makes this approach cheap and efficient. Furthermore,

universally quantified parameters can also be straightforwardly included.

Some limitations remain: parameters must occur once in the whole system

(that means, they must be local to each constraint and appear only once in the

constraint), and variables cannot appear more than once in a given equation. This

5As noted in [35], in electro-mechanical engineering or civil engineering applications, this
approach permits the tolerance of any associated component to be enlarged, and therefore to
lower the cost of the components.

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 166

last limitation can be overcome by applying a search algorithm to find the maximal

x which verifies f(x,Dual(v)) ⊆ 0, but this process is no more a simple evaluation

but an iterative algorithm which is more complex and also needs more computing

time. Anyway, it may be interesting to study this approach for systems in which

only some equations have multi-occurrence variables.

Despite the cited limitations, this is an original and promising approach to

handle parametric equations, especially when existentially quantified parameters

are involved (problems with uncertainties).

CHAPTER 8. GENERALIZED INTERVAL PROJECTION 167

Chapter 9

Conclusions

We studied several strategies for solving systems of equations with uncertainties

(specially, distance equations systems) in the framework of Constraint Program-

ming and Interval Analysis. As the uncertainties frequently appear when mea-

surements of physical quantities or experimental data are used as input of a given

model, a guaranteed answer to such a model needs to consider the influence of

these uncertain values in the final solutions of the problem.

In some situations, it is possible to obtain more information about uncertain

values (e.g. an error distribution), but in a general case only a bound for the

maximal error is given1. In this context, Interval Analysis provides a set of tools

for taking into account uncertain data (here represented by intervals), while Con-

straint Programming contributes with a set of methods and strategies to efficiently

solve difficult combinatorial and optimization problems.

The contribution of this thesis is twofold: on the one hand, the introduction

of some strategies specifically designed to improve the solving process of systems

of distance equations with uncertainty, and on the other hand, the proposition

of sufficiently general techniques to be applied to non-linear problems involving

uncertain data as parameters.

• Strategies for solving systems of distance equations: In Chapter

5 we studied a basic approach for solving systems of distance equations

with uncertainty. This approach combines different phases into a specific

algorithm which tries to take advantage of the geometry of the solutions

1Notice that it is the simplest information that we can have. In a manufacturing process, for
example, a good quality control can guarantee that a measure is not more than a given value nor
less than another one, but to guarantee an error distribution is quite more difficult to do.

168

CHAPTER 9. CONCLUSIONS 169

(given for an initial solving process without considering uncertain values) to

obtain a sharp approximation of different continua of solutions. As the final

phase of this algorithm applies a Branch and Prune strategy to describe

a continuum of solutions, we introduce an inner box test to improve the

process. Such a test has been studied from different points of view in Chapter

7, introducing the first optimal2 inner test for distance constraints with

existentially quantified parameters.

• General Strategies for solving problems with uncertainty: The

SOISS algorithm (within the Solver SOISS) introduced in Chapter 5 is the

first approach combining filtering techniques with conditional splitting strate-

gies. The advantage of this approach is that it can be used in different

situations (not only for problems involving distance constraints) for detect-

ing disjoint continua of solutions without using a later clustering strategy.

Maybe the main drawback of this algorithm is the box representation3 used

for each generated sub-space. When the continua of solutions cannot be

separated in a parallel-to-axis way, it returns a subspace containing more

than one continuum. Anyway, if more than one sub-space is generated, the

algorithm guarantees that no solution in common exists.

Still in the framework of continua of solution, Chapter 8 introduced a gen-

eral approach for building inner boxes, starting with a solution point. The

advantage of this approach is that it is not necessary to apply a Branch and

Prune process to obtain an inner description of the continuum of solutions.

It can be very interesting, for example, for tolerance issues. The limitations

of this approach have been also analyzed in the chapter.

As an application to robotics, we presented a novel and efficient algorithm

for handling uncertainties in the computation of the direct Kinematics of a 3-

2-1 parallel robots (a special class parallel manipulator). We showed that even

if an explicit formulation (obtained, for example, with symbolic manipulation

of the equations) for the solutions of a problem is available, the use of simple

interval evaluation of this expression in order to obtain certified results for a

given problem does not produce (in general) thin results (principally due to the

2Given a point with uncertainty a ∈ IRn, a distance with uncertainty r ∈ IR, and a variable
point x ∈ IRn, this test is a necessary and sufficient condition for the following proposition:
(∀x ∈ x)(∃a ∈ a)(∃r ∈ r)(

Pn

i=1(xi − ai)
2 = r2).

3The conditional splitting phase only splits in a parallel-to-axis way. Therefore, a set of
interval vectors (boxes) is generated.

CHAPTER 9. CONCLUSIONS 170

wrapping effect and dependency problem of interval arithmetic). For this reason,

in Chapter 6 we introduced a four levels algorithm, which combines symbolic

manipulation, interval evaluation and constraint propagation. Results show that

this combination drastically improves the performance of the solving process, and

not only provides a way to compare the influence of different techniques, but

also a trade-off between required precision and time limitation. It can be a very

interesting choice for someone who needs fast results (and not so sharp) for some

situations, but sharp results for others (paying the precision with computing time).

Another important characteristic of the proposed algorithm is the guarantee

of the results. This approach takes into account the uncertain data in each phase

of the solving process, providing certified results (no solution is lost) for all the

levels.

9.1 Future Works

Problems involving continua of solutions are difficult to solve because many of the

existential and uniqueness tools do not verify their conditions to be applied. The

algorithm SOISS (introduced in Section 5.4) can help to identify disjoint continua

of solutions, but the solutions contained inside each computed sub-space need to

be analyzed. As evoked in the conclusions of Chapter 5, a combination of initial

solving without uncertainty and Solver SOISS algorithm may be of interest to

obtain a first approach of the characteristics of the solutions inside each generated

sub-space. For example, an important question is: is the continuum of solutions

only a consequence of the uncertain values of the parameters or there exists more

than one solution point for an arbitrary value of the parameters?

Answering such a question means to identify zones in the space in which a

unique solution exists, whatever the values of the parameters. A generalization of

classic theorems (as for example Kantorovich), to take into account the existen-

tially quantified parameters and guarantee the uniqueness of the solutions (under

these conditions) would be a very powerful tool.

On the other hand, if a sharp approximation of the continuum of solutions is

needed (for example, to analyze the behavior of the solution space for different

values in the parameters of the system), the detection of inner zones is crucial.

The optimal detection of such an inner zone for problems involving existen-

tially quantified parameters is still an open problem. Several works addressing

this problem have been proposed in the literature. Most of them are only either

CHAPTER 9. CONCLUSIONS 171

sufficient conditions or necessary ones. In this thesis we presented a test which is

both necessary and sufficient condition, but it is specifically designed for distance

constraints. The extension of such a test for more general quantified constraints

may be very interesting in other areas as, for example, control.

Another open problem is the evaluation of expressions with multi-occurrence

of existentially quantified parameters. The evaluation of such a expression (by

using generalized interval arithmetic) does not produce an interpretable interval,

and thus it is not possible to use this approach for detecting inner boxes. Some

recent works (notably those introduced by Goldsztejn [71]) try to overcome this

difficulty, but the optimality of such an evaluation is still an open problem.

Bibliography

[1] E. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization.

John Wiley and Sons Ltd., Chichester, England, 1997.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Aca-

demic Press, 1983.

[3] J. Angeles. Is there a characteristic length of a rigid-body displacement?

Mechanism and Machine Theory, 41(8):884–896, 2006.

[4] ANSI/IEEE. IEEE standard for binary floating point arithmetic, 1985.

[5] K. Apt and M.G. Wallace. Constraint Logic Programming using ECLiPSe.

Cambridge University Press, 2006.

[6] J. Armangol, L. Travé-Massuyès, J. Veh́ı, and M.A. Sainz. Modal interval

analysis for error-bounded semiqualitative simulation. In 1r Congrés Català

d’Intelligència Artifical (CCIA), pages 223–231, 1998.

[7] F. Aurenhammer. Voronoi diagrams-A survey of a fundamental geometric

data structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[8] R. Backofen. Constraint Techniques for Solving the Protein Structure Pre-

diction Problem. Lecture Notes in Computer Science, 1520:72–88, 1998.

[9] H. Batnini. Constraintes Globales et Heuristiques de Recherche pour les

CSPs Continus. PhD thesis, Université de Nice-Sophia Antipolis, 2005.

[10] H. Batnini, C. Michel, and M. Rueher. Mind The Gaps: A New Splitting

Strategy for Consistency Techniques. In Proceedings of Principles and Prac-

tice of Constraint Programming (CP 2005), Sitges, Spain, volume LNCS

3709, pages 77–91. Springer-Verlag, 2005.

172

BIBLIOGRAPHY 173

[11] H. Batnini and M. Rueher. Semantic decomposition for solving distance

constraints. In Proceedings of the Ninth International Conference on Prin-

ciples and Practice of Constraint Programming (CP 2003), pages 964–965,

2003.

[12] H. Batnini and M. Rueher. Quaddist: Filtrage global pour les contraintes

de distance. In 10ème Journées Nationales pour la résolution de Problemes

NP-Complets (JNPC’04), Angers, France, pages 59–71, 2004.

[13] F. Benhamou. Interval constraint logic programming. In Andreas Podelski,

editor, Constraint Programming: Basics and Trends, volume 910 of Lecture

Notes in Computer Science, pages 1–21. Springer-Verlag, London, UK, 1995.

[14] F. Benhamou and F. Goualard. Universally quantified interval constraints.

In Principles and Practice of Constraint Programming, pages 67–82, 2000.

[15] F. Benhamou, F. Goualard, and L. Granvilliers. Revising hull and box

consistency. In International Conference on Logic Programming, pages 230–

244, 1999.

[16] F. Benhamou, D. McAllester, and P.Van Hentenryck. Clp(intervals) revis-

ited. In ILPS ’94: Proceedings of the 1994 International Symposium on Logic

programming, pages 124–138, Cambridge, MA, USA, 1994. MIT Press.

[17] C. Bessière and M.O. Cordier. Arc-consistency and arc-consistency again.

In Manfred Meyer, editor, Proceedings ECAI’94 Workshop on Constraint

Processing, Amsterdam, 1994.

[18] C. Bessière, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward checking

for non-binary constraint satisfaction. In Principles and Practice of Con-

straint Programming, pages 88–102, 1999.

[19] C. Bessière and J.C. Régin. MAC and combined heuristics: Two reasons to

forsake FC (and CBJ?) on hard problems. In Proceedings of Principles and

Practice of Constraint Programming, pages 61–75, 1996.

[20] C. Bessière and J.C. Régin. Arc-consistency for general constraint networks:

Preliminary results. In Proceedings of IJCAI, pages 398–404, 1997.

[21] L.M. Blumenthal. Theory and Applications of Distance Geometry. Chelsea,

New York, 1970.

BIBLIOGRAPHY 174

[22] B. Bouchon-Meunier and V. Kreinovich. From interval computations to

modal mathematics: applications and computational complexity. SIGSAM

Bull., 32(2):7–11, 1998.

[23] H. Brönnimann, G. Melquiond, and S. Pion. A proposal to add interval

arithmetic to the c++ standard library. Research Report 5646, INRIA, July

2005.

[24] C. Brown. Quantifier Elimination by Partial Cylindrical Algebraic Decom-

position, http://www.cs.usna.edu/~qepcad/B/QEPCAD.html.

[25] O. Caprani, K. Madsen, and H.B. Nielsen. Introduction to interval analysis.

lecture notes 2002, http://www2.imm.dtu.dk/courses/02611/.

[26] Y. Caseau and F. Laburthe. CLAIRE: Combining objects and rules for prob-

lem solving. In Proceedings of the JICSLP’96 workshop on multi-paradigm

logic programming, pages 105–114, 1996.

[27] A. Cayley. A theorem in the geometry of position. Cambridge Mathematical

Journal, 2:267–271, 1841.

[28] M. Ceccarelli, M.E. Toti, and E. Ottaviano. CATRASYS (Cassino Track-

ing System): A new measuring system for workspace evaluation of robots.

In 8th International Workshop on Robotics in Alpe-Adria-Danube Region

RAAD’99, Munich, pages 19–24, 1999.

[29] Celesco. User’s Manual for Wire Transducers mod. PT101. Celesco Inc.,

1994.

[30] G. Chabert, G. Trombettoni, and B. Neveu. Box-set consistency for interval-

based constraint problems. In SAC ’05: Proceedings of the 2005 ACM sym-

posium on Applied computing, pages 1439–1443, New York, NY, USA, 2005.

ACM Press.

[31] Y. Chen. Improving Han and Lee’s path consistency algorithm. In In Pro-

ceedings of the 3rd IEEE International Conference on Tools for AI, pages

346–350, 1991.

[32] H. Chun. Constraint programming in java with jsolver. In Proceedings of the

First International Conference and Exhibition on the Practical Application

of Constraint Technologies and Logic Programming, London, 1999.

BIBLIOGRAPHY 175

[33] J.G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149,

1987.

[34] H. Collavizza, F. Delobel, and M. Rueher. Comparing partial consistencies.

Reliable Computing, 1:1–16, 1999.

[35] H. Collavizza, F. Delobel, and M. Rueher. Extending consistent domains of

numeric CSP. In Proceedings of IJCAI, pages 406–413, 1999.

[36] George Collins. Quantifier elimination for the elementary theory of real

closed fields by cynlindrical algebraic decomposition. In Automata Theory

and Formal Languages, Berlin, Germany, volume LNCS 33, pages 264–274.

Springer-Verlag, 1975.

[37] George Collins and Hoon Hong. Partial cylindrical algebraic decomposition

for quantifier elimination. J. Symb. Comput., 12(3):299–328, 1991.

[38] A. Colmerauer. Solving equations and inequations on finite and infinite trees.

In Proceedings of the Conference on Fifth Generation Computer Systems,

pages 85–99, Tokyo, 1984.

[39] A. Colmerauer. Prolog in 10 figures. Commun. ACM, 28(12):1296–1310,

1985.

[40] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système de com-

munication en français. Technical report, Groupe Intelligence Artificielle,

Faculté de Sciences de Luminy, Université Aix-Marseille II, France, 1972.

[41] A. Connell and R. Corless. An experimental interval arithmetic package in

maple. Interval Computations, (2):120–134, 1993.

[42] M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence,

41(1):89–95, 1989.

[43] G. Corliss. INTPAK for interval arithmetic in maple : Introduction and

applications. Submitted to Journal of Symbolic Computation, 1994.

[44] G.M. Crippen and T.F. Havel. Distance geometry and molecular conforma-

tion. Quarterly Review of Biology, 64(4), 1989.

[45] A. Cuyt, B. Verdonk, S. Becuwe, and P. Kuterna. A remarkable example of

catastrophic cancellation unraveled. Computing, 66(3):309–320, 2001.

BIBLIOGRAPHY 176

[46] S. Markov d E. Popova and Ch. Ulrich. On the Solution of Linear Alge-

braic Equations Involving Interval Coefficients. Iterative Methods in Linear

Algebra, II, 3:216–225, 1996.

[47] G.B. Dantzig. Programming in a linear structure. Econometrica, 17:73–74,

1949.

[48] E. Davis. Constraint propagation with interval labels. Artificial Intelligence,

32(3):281–331, 1987.

[49] R. Debruyne and C. Bessière. Some practicable filtering techniques for the

constraint satisfaction problem. In Proceedings of IJCAI, volume 1, pages

412–417. Morgan Kaufmann, 1997.

[50] R. Debruyne and C. Bessière. Domain filtering consistencies. Journal of

Artificial Intelligence Research, 14:205–230, 2001.

[51] R. Dechter. Enhancement schemes for constraint processing: backjumping,

learning, and cutset decomposition. Artificial Intelligence, 41(3):273–312,

1990.

[52] O. Didrit. Analyse par intervalles pour l’Automatique; Résolution globale et

garantie des problèmes non linéaires en robotique et en commande robuste.

PhD thesis, Université Paris sud. UFR Scientifique d’Orsay, 1997.

[53] A. Dolzmann. Reelle Quantorenelimination durch parametrisches Zählen von

Nullstellen. PhD thesis, FMI, Universität Passau, D-9403 Passau, Germany,

November 1994.

[54] A. Dolzmann and T. Sturm. Redlog user manual. Technical Report MIP-

9616, FMI, Universität Passau, D-94030 Passau, Germany, October 1996.

[55] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination

in practice. Technical Report MIP9720, FMI, Universität Passau, D-94030

Passau, Germany, December 1997.

[56] Kaucher E. über Eigenschaften und Anwendungsmöglichkeiten der erweit-

erten Intervallrechnung und des hyperbolischen Fastkörpers über IR. Com-

puting, Suppl. 1:81–94, 1977.

[57] Kaucher E. Interval Analysis in the Extended Interval Space IR. Computing,

Suppl. 2:33–49, 1980.

BIBLIOGRAPHY 177

[58] A.J. Fernández and P.M. Hill. A comparative study of eight constraint

programming languages over the boolean and finite domains. Constraints,

5(3):275–301, 2000.

[59] R.E. Fikes. REF-ARF: A System for Solving Problems Stated as Procedures.

Artificial Intelligence, 1:27–120, 1970.

[60] E.C. Freuder. Synthesizing constraint expressions. Commun. ACM,

21(11):958–966, 1978.

[61] A. Frommer, B. Lang, and M. Schnurr. A comparison of the Moore and

Miranda existence tests. Computing, 72(3-4):349–354, 2004.

[62] T. Frühwirth. Constraint handling rules. In A. Podelski, editor, Constraint

Programming: Basics and Trends, volume 910 of Lecture Notes in Computer

Science, page 90. Springer-Verlag, 1995.

[63] T. Frühwirth, A. Herold, V. Küchenhoff, T. Le Provost, P. Lim, E. Monfroy,

and M. Wallace. Constraint logic programming - an informal introduction.

Technical report, European Computer-Industry Research Center, 1993.

[64] E. Gardeñes, H. Mielgo, and A. Trepat. Modal Intervals: Reason and

Ground Semantics. In Proceedings of the International Symposium on Inter-

val Mathemantics 1985, pages 27–35, London, UK, 1986. Springer-Verlag.

[65] E. Gardeñes, M.Á. Sainz, L. Jorba, R. Calm, R. Estela, H. Mielgo, and

A. Trepat. Modal intervals. Reliable Computing, 1(2):77–111, 2001.

[66] E. Gardeñes and A. Trepat. Fundamentals of SIGLA, an interval computing

system over the completed set of intervals. Computing, 24(2–3):161–179,

1980.

[67] J.G. Gaschnig. Performance measurement and analysis of certain search

algorithms. PhD thesis, Carnegie Mellon University, Pittsburgh, 1979.

[68] Z.J. Geng and L.S. Haynes. A 3-2-1 kinematic configuration of a stewart

platform and its application to six degree of freedom pose measurements.

Robotics and Computer-Integrated Manufacturing, 11(1):23–34, 1994.

[69] F. Glover. Tabu search. ORSA Journal on Computing, 1(3):190–206, 1989.

BIBLIOGRAPHY 178

[70] D. Goldberg. What every computer scientist should know about floating-

point arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

[71] A. Goldsztejn. Définition et Applications des Extensions des Fonctions

Réelles aux Intervalles Généralisés. PhD thesis, Université de Nice-Sophia

Antipolis, 2005.

[72] A. Goldsztejn. A Branch and Prune Algorithm for the Approximation of

Non-Linear AE-solution Sets. In SAC ’06: Proceedings of the 2006 ACM

symposium on Applied computing, pages 1650–1654, New York, NY, USA,

2006. ACM Press.

[73] A. Goldsztejn and G. Chabert. On the approximation of linear AE-solution

sets. In Proc. of the 12th GAMM - IMACS International Symposion on Sci-

entific Computing, Computer Arithmetic and Validated Numerics (SCAN-

2006), Duisburg, Germany, 2006.

[74] A. Goldsztejn and L. Jaulin. Inner and outer approximations of existentially

quantified equality constraints. In Proceedings of Principles and Practice of

Constraint Programming (CP 2006), Nantes, France, volume LNCS 4204,

pages 198–212. Springer-Verlag, 2006.

[75] C. Gosselin, J. Sefrioui, and M.J. Richard. Solution polynomiale au problème

de la cinématique directe des manipulateurs parallèles plans à 3 degrés de

liberté. Mechanism and Machine Theory, 27(2):107–119, 1992.

[76] C. Grandón, G. Chabert, and B. Neveu. Generalized Interval Projection:

A New Technique for Consistent Domain Extension. In Twentieth Interna-

tional Joint Conferences on Artificial Intelligence (IJCAI-07), pages 94–99,

2007.

[77] C. Grandón, D. Daney, and Y. Papegay. Combining CP and interval meth-

ods for solving the direct kinematic of a parallel robot under uncertainties. In

Proc. of the Workshop IntCP of Twelfth International Conference on Prin-

ciples and Practice of Constraint Programming (CP-2006), Nantes, France,

2006.

[78] C. Grandón, D. Daney, C. Tavolieri, E. Ottaviano, and M. Ceccarelli. A

Combination of Symbolic and Numerical Solvers for Handling Uncertainties

for a Class of Parallel Robots. Accepted for publication to the 12th World

BIBLIOGRAPHY 179

Congress in Mechanism and Machine Science (IFToMM-2007), Besançon,

France, 2007.

[79] C. Grandón and A. Goldsztejn. Inner Aproximation of Distance Constraints

with Existentially Quantified Parameters. In SAC ’06: Proceedings of the

2006 ACM symposium on Applied computing, pages 1660–1661, New York,

NY, USA, 2006. ACM Press.

[80] C. Grandón and A. Goldsztejn. Quantifier Elimination versus Generalized

Interval Evaluation: A comparison on a special class of quantified con-

straints. In Proc. of the 11th Information Processing and Management of

Uncertainty International Conference, IPMU 2006, pages 786–793, Paris,

France, 2006. Editions EDK.

[81] C. Grandón and B. Neveu. Using Constraint Programming for Solving

Distance CSP with Uncertainty. In Principles and Practice of Constraint

Programming - CP 2005: 11th International Conference, CP 2005, Sitges,

Spain, volume LNCS 3709. Springer-Verlag, 2005.

[82] C. Grandón and B. Neveu. A Specific Quantifier Elimination for Inner Box

Test in Distance Constraints with Uncertainties. Research Report 5883,

INRIA, April 2006.

[83] L. Granvilliers. RealPaver user’s manual, August 2004.

[84] SIGLA/X group. Análisis intervalar clásico (white paper in spanish)

http://ima.udg.es/~sainz/cuadernosint.html.

[85] SIGLA/X group. Modal intervals (basic tutorial). Applications of Interval

Analysis to Systems and Control (Proceedings of MISC’99), pages 157–227,

1999.

[86] C-C Han and C-H Lee. Comments on mohr and henderson’s path consistency

algorithm. Artificial Intelligence, 36(1):125–130, 1988.

[87] E. Hansen. Global optimization using interval analysis. Marcel Deckler,

1992.

[88] E. Hansen and R. Greenberg. An interval newton method. Applied Mathe-

matics and Computation, 12:89–98, 1983.

BIBLIOGRAPHY 180

[89] E. Hansen and S. Sengupta. Bounding solutions of systems of equations

using interval analysis. BIT Numerical Mathematics, 21(2):203–211, 1981.

[90] E. Hansen and G.W. Walster. Global Optimization Using Interval Analysis.

Second Edition, Revised and Expanded. Marcel Deckler, 2003.

[91] R. Haralick and G. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[92] B. Hayes. A Lucid Interval. American Scientist, 91(6):484–488, 2003.

[93] P.Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT

Press, Cambridge, MA, USA, 1989.

[94] P.Van Hentenryck. A gentle introduction to NUMERICA. Artificial Intelli-

gence, 103(1-2):209–235, 1998.

[95] P. Herrero, M.A. Sainz, J. Veh́ı, and L. Jaulin. Quantified set inversion

algorithm with applications to control. In Proceedings of IMCP’04 (Inter-

val Mathematics and Constrained Propagation methods), Novosibirsk, 2004,

volume 5 of Reliable Computing, 2004.

[96] P. Herrero, M.A. Sainz, J. Veh́ı, and L. Jaulin. Quantified set inversion with

applications to control. In IEEE International Symposium on Computer

Aided Control Systems Design, 2004.

[97] T. Hickey, Q. Ju, and M.H. Van Emden. Interval arithmetic: From principles

to implementation. J. ACM, 48(5):1038–1068, 2001.

[98] Hoon Hong, Richard Liska, and Stanly Steinberg. Testing stability by quan-

tifier elimination. Journal of Symbolic Computation, 24(2):161–187, 1997.

[99] K.H. Hunt and E.J.F. Primrose. Assembly configurations of some in-parallel

actuated manipulators. Mechanism and Machine Theory, 28(1):31–42, 1993.

[100] E. Hyvönen. Constraint reasoning based on interval arithmetic. In Proceed-

ings of IJCAI, pages 1193–1198, 1989.

[101] E. Hyvönen and S. De Pascale. Interval computations on the spreadsheet.

In Applications of Interval Computations, Kluwer, pages 169–209, 1996.

BIBLIOGRAPHY 181

[102] E. Hyvönen and S. De Pascale. A new basis for spreadsheet computing: In-

terval solver for microsoft excel. In Proceedings of the sixteenth national con-

ference on Artificial Intelligence AAAI’99/IAAI’99, pages 799–806, Menlo

Park, CA, USA, 1999. American Association for Artificial Intelligence.

[103] IEEE. Draft standard for floating-point arithmetic p754, august 2006,

http://754r.ucbtest.org/drafts/754r.pdf.

[104] ILOG. Ilog Solver, reference manual, August 2000.

[105] ILOG. Ilog Solver, user’s manual, August 2000.

[106] J. Jaffar and M.J. Maher. Constraint logic programming: A survey. Journal

of Logic Programming, 19/20:503–581, 1994.

[107] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analy-

sis with Examples in Parameter and State Estimation, Robust Control and

Robotics. Springer-Verlag, 2001.

[108] L. Jaulin, S. Ratschan, and L. Hardouin. Set computation for nonlinear

control. Reliable Computing, 10(1):1–26, 2004.

[109] W.M. Kahan. A more complete interval arithmetic. Technical report, Uni-

versity of Toronto, 1968.

[110] V. Kantorovich. Functional Analysis ans Applied Mathematics, translated

by C. D. Benster, National Bureau of Standards, Report 1509, 1952.

[111] E. Kaucher. Über metrische und algebraische Eigenschaften einiger beim nu-

merischen Rechnen auftretender Räume. PhD thesis, Universität Karlsruhe,

Germany, 1973.

[112] R.B. Kearfott, M. Dawande, K. Du, and C. Hu. Intlib: A portable fortran-77

elementary function library. Interval Computations, 3:96–105, 1992.

[113] R.B. Kearfott, M. Dawande, K. Du, and C. Hu. Algorithm 737: Intlib—a

portable fortran 77 interval standard-function library. ACM Trans. Math.

Softw., 20(4):447–459, 1994.

[114] R.B. Kearfott, J. Dian, and A. Neumaier. Existence verification for singular

zeros of complex nonlinear systems. SIAM J. Numer. Anal., 38(2):360–379,

2000.

BIBLIOGRAPHY 182

[115] R.B. Kearfott and M. Novoa. Algorithm 681: INTBIS, a portable interval

Newton/bisection package. ACM Trans. Math. Softw., 16(2):152–157, 1990.

[116] J. Keiper. Interval arithmetic in mathematica. Interval Computations,

(3):76–87, 1993.

[117] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598):671–680, 1983.

[118] O. Knuppel. PROFIL/BIAS v2.0, february 1999, (library and user manual)

http://www.ti3.tu-harburg.de/knueppel/profil/index e.html.

[119] O. Knuppel. PROFIL/BIAS – a fast interval library. Computing, 53(3-

4):277–287, 1994.

[120] W. Krämer and I. Geulig. Interval calculus in maple - the extension intpakx

to the package intpak of the share-library. Preprint 2001/2, Universität

Wuppertal, 2001.

[121] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit

Fehlerschranken. Computing, 4:187–201, 1969.

[122] R. Krawczyk and A. Neumaier. Interval slopes for rational functions and

associated centered forms. SIAM Journal on Numerical Analysis, 22(3):604–

616, 1985.

[123] R. Krawczyk and A. Neumaier. An improved interval Newton operator.

Journal of mathematical analysis and applications, 118(1):194–207, 1986.

[124] V. Kreinovich, D.J. Berleant, R. Joan-Arinyo, and M. Koshelev. Interval

computations, http://www.cs.utep.edu/interval-comp/.

[125] V. Kreinovich, A.V. Lakeyev, and S.I. Noskov. Optimal solution of interval

linear systems is intractable (NP-hard). Interval Computations, (1):6–14,

1993.

[126] V. Kreinovich, V.M. Nesterov, and N.A. Zheludeva. Interval methods that

are guaranteed to underestimate (and the resulting new justification of

Kaucher arithmetic). Reliable Computing, 2(2):119–124, 1996.

[127] L. Krippahl and P. Barahona. Applying Constraint Programming to Pro-

tein Structure Determination. In Proc. of 5th International Conference on

BIBLIOGRAPHY 183

Principles and Practice of Constraint Programming (CP’99), volume 1713

of Lecture Notes in Computer Science, pages 289–302, 1999.

[128] V. Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey. AI

Magazine, 13(1):32–44, 1992.

[129] J.-L. Laurière. A language and a program for stating and solving combina-

torial problems. Artificial Intelligence, 10(1):29–127, 1978.

[130] Y. Lebbah and O. Lhomme. Accelerating filtering techniques for numeric

CSPs. Artificial Intelligence, 139(1):109–132, 2002.

[131] Y. Lebbah, M. Rueher, and C. Michel. A global filtering algorithm for

handling systems of quadratic equations and inequations. volume 2470 of

Lecture Notes in Computer Science, pages 109–123, 2002.

[132] M. Lerch, G. Tischler, J.W. von Gudenberg, W. Hofschuster, and

W. Krämer. FILIB++, a fast interval library supporting containment com-

putations. ACM Transactions on Mathematical Software, 32(2):299–324,

2006.

[133] O. Lhomme. Consistency techniques for numeric csps. In Proceedings of

IJCAI, pages 232–238, 1993.

[134] E. Loh and G.W. Walster. Rump’s example revisited. Reliable Computing,

8(3):245–248, 2002.

[135] I.J. Lustig and J.-F. Puget. Program does not equal program: Constraint

programming and its relationship to mathematical programming. Interfaces,

31(6):29–53, 2001.

[136] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-

gence, 8(1):99–118, 1977.

[137] D.E. Manolakis. Efficient solution and performance analysis of 3-d position

estimation by trilateration. IEEE Transactions on Aerospace and Electronic

Systems, 32(4):1239–1248, 1996.

[138] S.M. Markov. On directed interval arithmetic and its applications. J. UCS,

1(7):514–526, 1995.

BIBLIOGRAPHY 184

[139] K. Menger. New foundation for euclidean geometry. American Journal of

Mathematics, (53):721–745, 1931.

[140] J.-P. Merlet. Assembly modes and direct kinematics of parallel manipulators.

In ISRAM, volume 3, pages 43–48, Burnaby, 1990. ASME Press Series.

[141] J.-P. Merlet. Analyse par intervalles et applications (cours in french),

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Examples/COURS/,

2003.

[142] J.-P. Merlet. ALIAS: An Algorithms Library of Interval Analysis for equa-

tion Systems, September 2004.

[143] J.-P. Merlet. Solving the forward kinematics of a Gough-type parallel ma-

nipulator with interval analysis. I. J. Robotic Res., 23(3):221–235, 2004.

[144] J.-P. Merlet. Parallel robots, Second edition. Springer-Verlag New York Inc,

2006.

[145] J.-P. Merlet and D. Daney. A formal-numerical approach to determine the

presence of singularity within the workspace of a parallel robot. Computa-

tional Kinematics, pages 167–176, 2001.

[146] Z. Michalewicz. Genetics Algorithms + Data Structures = Evolution Pro-

grams. WNT, Warsaw, 1996.

[147] D. Michelucci and S. Foufou. Using cayley-menger determinants for geomet-

ric constraint solving. In Proceedings de ACM Symposium on Solid Modeling

and Application, Genova, Italy, pages 285–290, 2004.

[148] C. Miranda. Un’ osservazione su un teorema di Brouwer. Bol. Un. Mat.

Ital., 3:5–7, 1940.

[149] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial

Intelligence, 28:225–233, 1986.

[150] U. Montanari. Networks of constraints: Fundamental properties and appli-

cations to picture processing. Information Sciences, 7:95–132, 1974.

[151] R.E. Moore. Automatic error analysis in digital computation. Technical

report, LMSD-48421, Lockheed Missiles and Space Division, Sunnyvale, CA,

1959.

BIBLIOGRAPHY 185

[152] R.E. Moore. Interval arithmetic and automatic error analysis in digital

computing. PhD thesis, Stanford University, 1962.

[153] R.E. Moore. Interval Analysis. Prentice Hall, 1966.

[154] R.E. Moore. A test for existence of solutions to nonlinear systems. SIAM

J. Numer. Anal., 14(4):611–615, 1977.

[155] R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-

phia, 1979.

[156] H. Muñoz and R.B. Kearfott. Slope intervals, generalized gradients, semi-

gradients, slant derivatives, and csets. Reliable Computing, 10(3):163–193,

2004.

[157] B.A. Nadel. Tree search and arc consistency in constraint satisfaction algo-

rithms. pages 287–342, 1988.

[158] P. Nanua and K.J. Waldron. Direct kinematic solution of a stewart platform.

IEEE Trans. on Robotics and Automation, 6(4):438–444, 1991.

[159] A. Neumaier. Interval Methods for Systems of Equations, volume 37. Ency-

clopedia of Mathematics and its Applications, 1990.

[160] A. Neumaier. Taylor forms-use and limits. Reliable Computing, 9(1):43–79,

2003.

[161] A. Neumaier. Complete search in continuous global optimization and con-

straint satisfaction. In Acta Numerica 2004 (A. Iserles, ed.), Cambridge

University Press, pages 271–369, 2004.

[162] E. Ottaviano, M. Ceccarelli, M. Toti, and C. Avila-Carrasco. CATRASYS

(Cassino Tracking System): A wire system for experimental evaluation of

robot workspace. Journal of Robotics and Mechatronics, 14(1):78–87, 2002.

[163] Ch.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-

rithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[164] E. Popova. Generalizing the parametric fixed-point iteration. In Proceedings

in Applied Mathematics & Mechanics (PAMM), volume 4, pages 680–681,

2004.

BIBLIOGRAPHY 186

[165] E. Popova. Improved solution enclosures for over- and underdetermined

interval linear systems. In Proceedings of LSSC 2005, volume LNCS 3743,

pages 305–312. Springer-Verlag, 2006.

[166] E.D. Popova. Extended Interval Arithmetic in IEEE Floating-Point Envi-

ronment. Interval Computations, (4):100–129, 1994.

[167] J.M. Porta, L. Ros, F. Thomas, and C. Torras. A Branch-and-Prune Al-

gorithm for Solving Systems of Distance Constraints. In Proc. of the 2003

IEEE International Conference on Robotics and Automation (ICRA’03),

Taipei, Taiwan, May 2003.

[168] P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In R. Dechter,

editor, Proceedings of Principles and Practice of Constraint Programming,

pages 353–368. Springer Verlag, 2000.

[169] J.F. Puget. A fast algorithm for the bound consistency of alldiff constraints.

In Proceedings of AAAI’98/IAAI’98, pages 359–366, Menlo Park, CA, USA,

1998. American Association for Artificial Intelligence.

[170] D. Ratz. Box-splitting strategies for the interval Gauss–Seidel step in a

global optimization method. Computing, 53:337–354, 1994.

[171] D. Ratz. Inclusion isotone extended interval arithmetic. a toolbox update.

Technical report, Institut für Angewandte Mathematik, Universität Karl-

sruhe, Germany, 1996.

[172] D. Ratz. An optimized interval slope arithmetic and its application. Tech-

nical report, Institut für Angewandte Mathematik, Universität Karlsruhe,

Germany, 1996.

[173] J-C Régin. Ac-*: A configurable, generic and adaptive arc consistency algo-

rithm. In Proceedings of Principles and Practice of Constraint Programming

(CP 2005), Sitges, Spain, volume LNCS 3709, pages 505–519. Springer-

Verlag, 2005.

[174] J.C. Régin. A filtering algorithm for constraints of difference in csps. In Pro-

ceedings of the twelfth national conference on Artificial Intelligence (AAAI

’94), pages 362–367, Menlo Park, CA, USA, 1994. American Association for

Artificial Intelligence.

BIBLIOGRAPHY 187

[175] C.M. Rekkas, C.C. Lefas, and N.J. Krikelis. Improving the accuracy of

aircraft absolute altitude estimation using dme measurements. International

journal of systems science, 21(7):1381–1392, 1990.

[176] N. Revol. Introduction à l’arithmétique par intervalles. Rapport de

Recherche 4297, INRIA Rhône-Alpes, 2001.

[177] E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill Higher Educa-

tion, 1990.

[178] J. Rohn and V. Kreinovich. Computing exact componentwise bounds on

solutions of linear systems with interval data is NP-hard. SIAM Journal on

Matrix Analysis and Applications (SIMAX), 16:415–420, 1995.

[179] J.G. Rokne and P. Bao. Interval Taylor forms. Computing, 39(3):247–259,

1987.

[180] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of

constraint satisfaction problems. In Luigia Carlucci Aiello, editor, ECAI’90:

Proceedings of the 9th European Conference on Artificial Intelligence, pages

550–556, Stockholm, 1990. Pitman.

[181] S.M. Rump. Algorithms for verified inclusions – theory and practice. Reli-

ability in computing, 19:109–126, 1988.

[182] S.M. Rump. A note on epsilon-inflation. Reliable Computing, 4:1–5, 1998.

[183] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint

satisfaction. In Alan Borning, editor, Proceedings of the Second International

Workshop on Principles and Practice of Constraint Programming, PPCP’94,

Washington, USA, pages 10–20, 1994.

[184] M.Á. Sainz, E. Gardeñes, and L. Jorba. Formal Solution to Systems of

Interval Linear or Non-Linear Equations. Reliable Computing, 8(3):189–211,

2002.

[185] D. Sam-Haroud and B. Faltings. Consistency techniques for continuous

constraints. Constraints, 1(1/2):85–118, 1996.

[186] J. Sam-Haroud. Constraint Consistency Techniques for Continuous Do-

mains. Phd. thesis no. 1423, École Polytechnique Fédérale de Lausanne,

Lausanne (Switzerland), 1995.

BIBLIOGRAPHY 188

[187] Jacob Schwartz and Micha Sharir. On the ’piano movers’ problem i. the

case of a two-dimensional rigid polygonal body moving amidst polygonal

barriers. Technical Report 39, Department of Computer Science, Courant

Institute of Mathematical Sciences, 1981.

[188] S.P. Shary. Algebraic Approach to the Interval Linear Static Systems. Re-

liable Computing, 3(1):3–33, 1996.

[189] S.P. Shary. Interval Gauss-Seidel method for generalized solution sets to

interval linear systems. Reliable Computing, 7(2):141–155, 2001.

[190] S.P. Shary. A new technique in systems analysis under interval uncertainty

and ambiguity. Reliable Computing, 8(5):321–418, 2002.

[191] M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Search techniques for non-

linear constraint satisfaction problems with inequalities. In Proc. of 14th Bi-

ennial Conference of the Canadian Society on Computational Studies of In-

telligence: Advances in Artificial Intelligence, volume 2056 of Lecture Notes

in Computer Science, pages 183–193, 2001.

[192] G. Smolka. The oz programming model. In Jan van Leeuwen, editor, Com-

puter Science Today: Recent Trends and Developments, volume 1000 of Lec-

ture Notes in Computer Science, pages 324–343. Springer-Verlag, Berlin,

1995.

[193] V. Stahl. Interval methods for bounding the range of polynomials and solving

systems of nonlinear equations. PhD thesis, Research Institute for Symbolic

Computation, University Linz, Germany, 1995.

[194] R. Steiner, H. Kaindl, and G. Kainz. Backjumping in state-space search. In

Proceedings European Conference on Artificial Intelligence, ECAI-96, pages

395–399, 1996.

[195] T. Sunaga. Theory of interval algebra and its applications to numerical

analysis. RAAG Memoirs, 2:29–46, 1958.

[196] R.A. Tapia. The kantorovich theorem for Newton’s method. American

Mathematic Monthly, 78(1):389–392, 1971.

[197] F. Thomas. Solving geometric constraints by iterative projections and

backprojections. In Proceedings of the IEEE International Conference on

Robotics & Automation (ICRA’04), volume 2, pages 1789–1794, 2004.

BIBLIOGRAPHY 189

[198] F. Thomas, E. Ottaviano, L. Ros, and M. Ceccarelli. Performance analysis of

a 3-2-1 pose estimation device. IEEE Transactions on Robotics, 21(3):288–

297, 2005.

[199] J. Touati. Traitement des incertitudes dans les contraintes de distance.

Rapport de stage scientifique, ENPC, 2002.

[200] M.R.C. van Dongen. Ac-3d an efficient arc-consistency algorithm with a low

space-complexity. In CP ’02: Proceedings of the 8th International Confer-

ence on Principles and Practice of Constraint Programming, pages 755–760,

London, UK, 2002. Springer-Verlag.

[201] W.J. van Hoeve. The alldifferent constraint: A survey, 2001.

[202] R. Vertechy and V. Parenti-Castelli. An accurate and fast algorithm for

the determination of the rigid body pose by three point position data. In

International Worshop on Computational Kinematics, 2005.

[203] X-H. Vu, D. Sam-Haroud, and B. Faltings. Clustering for disconnected so-

lution sets of numerical csps. In Recent Advances in Constraints: Joint

ERCIM/CoLogNET International Workshop on Constraint Solving and

Constraint Logic Programming, CSCLP 2003, Budapest, volume LNAI 3010.

Springer-Verlag, 2004.

[204] X-H Vu, D. Sam-Haroud, and M.C. Silaghi. Approximation techniques for

non-linear problems with continuum of solutions. In Proceedings of The

5th International Symposium on Abstraction, Reformulation and Approxi-

mation, volume LNAI 2371, Canada, August 2002.

[205] X-H. Vu and D. Sam-Haroud M.C. Silaghi. Numerical constraint satis-

faction problems with non-isolated solutions. In 1st International Work-

shop on Global Constrained Optimization and Constraint Satisfaction (CO-

COS’2002), France, October 2002.

[206] X.-H. Vu, M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Branch-and-

Prune Search Strategies for Numerical Constraint Solving. Submited to

ACM Transactions on Computational Logic, 2006.

[207] G.W. Walster and E.R. Hansen. Interval algebra, composite

functions and dependence in compilers, white paper available at

http://www.mscs.mu.edu/~globsol/Papers/composite.ps, 1998.

BIBLIOGRAPHY 190

[208] D.L. Waltz. Generating semantic descriptions from drawings of scenes with

shadows. Technical report, Massachusetts Institute of Technology, Cam-

bridge, MA, USA, 1972.

[209] A.C. Ward, T. Lozano-Perez, and W.P. Seering. Extending the constraint

propagation of intervals. In Proceedings of IJCAI, pages 1453–1458, 1989.

[210] M. Warmus. Calculus of approximations. Bulletin de Sciences, L’Academie

Polonaise de Sciences, 4(5):253–259, 1956.

[211] K. Yamamura, H. Kawata, and A. Tokue. Interval solution of nonlinear

equations using linear programming. BIT, 38(1):186–199, 1998.

[212] R.C. Young. The algebra of many-valued quantities. Mathematische An-

nalen, 104:260–290, 1931.

[213] Z. Yuanlin. Consistency Techniques in Constraint Networks. PhD thesis,

National University of Singapore, 2003.

