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Abstract

Automatic detection and selection of regions of interest inside an image is a key step in
image understanding. Many studies have been dedicated to this issue during the past
decades. Efficient and robust algorithms have been developed for many applications.
However, most of them make use of heuristics inherent to a particular class of images.
The limiting factor to obtain a general algorithm is the large variety of cues available
to characterize a region of interest. Examples include gray-level, color, texture and
shape.

In this thesis, we propose a general formulation able to deal with each one of
these characteristics. Image intensity, color, texture, motion and prior shape knowl-
edge are considered. For this purpose, a probabilistic inference is obtained from a
Bayesian formulation of the segmentation problem. Then, reformulated as an energy
minimization problem, the most probable image partition is obtained using front evo-
lution techniques. Level-set functions are introduced to represent the evolving fronts
while region statistics are optimized in parallel. This framework can naturally handle
scalar and vector-valued smooth images but more complex cues are also integrated.
Texture and motion features, as well as prior shape knowledge are successively in-
troduced. Complex medical images are considered in the last part of the thesis, with
a focus on diffusion magnetic resonance images and their associated 3D probability
density fields.





Résumé

La détection et l’extraction automatique de régions d’intéret à l’intérieur d’une image
est une étape primordiale pour la compréhension des images. Une multitude d’études
dédiées à ce problème ont été proposées durant les dix dernières années. Des algo-
rithmes efficaces et robustes ont été développés pour diverses applications. Cependant,
la plupart d’entre eux introduisent des heuristiques propres au type d’image considéré.
La variété des caractéristiques possibles définissant une région d’intéret est le principal
facteur limitant leur généralisation. Ces critères région peuvent être le niveau de gris,
la couleur, la texture, la forme des objets, etc...

Dans cette thèse, nous proposons une formulation générale qui permet d’introduire
chacune de ces caractéristiques. Plus précisément, nous considérons l’intensité de
l’image, la couleur, la texture, le mouvement et enfin, la connaissance à priori sur la
forme des objets à extraire. Dans cette optique, nous obtenons un critère probabiliste
à partir d’une formulation Bayésienne du problème de la segmentation d’images. En-
suite, une formulation variationnelle équivalente est introduite et la segmentation la
plus probable est finalement obtenue par des techniques d’évolutions de fronts. La
représentation par ensembles de niveaux est naturellement introduite pour décrire ces
évolutions, tandis que les statistiques régions sont estimées en parallèle. Ce cadre de
travail permet de traı̂ter naturellement des images scalaires et vectorielles mais des
caractéristiques plus complexes sont considérées par la suite. La texture, le mouve-
ment ainsi que l’à priori sur la forme sont traı̂tés successivement. Finalement, nous
présentons une extention de notre approche aux images de diffusion à résonnance
magnétique où des champs de densité de probabilité 3D doivent être considérés.
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Introduction

Analyzing image content has become vital in many applications. Personal as well as
national security make use of image or video monitoring which require automatic ex-
traction of meaningful information. Medical imaging has also become an important
application in image analysis by helping doctors in the detection and diagnosis of dis-
eases and assisting them during the operating phases. Other applications are coming to
light with the fast development of communications and entertainment which need more
and more tools to compress and manipulate multimedia content. The large number of
images and their very high resolutions make manual analysis obsolete and automatic
algorithms need to be developed. This domain of computer-aided image processing is
still very young, since it became practical only in the early eighties. Seminal works
were mostly heuristic but recent studies are using mathematical techniques from geom-
etry, statistics and learning.

Among all image processing tools, segmentation is probably one of the most im-
portant since it is a necessary step in numerous algorithms. Loosely speaking, it con-
sists in partitioning an image in regions of interest. There is no general definition of
a region of interest since it may depend on the type of image and on the considered
application. It can be defined as homogeneous regions with respect to a given measure
or as regions that fit the best with some prior knowledge.

For example, in natural images, one will try to mimic the human visual system
to obtain results equivalent to the ones that would be given by a human. Given the
numerous varieties of natural images [Figure 1], resolving this problem is in general
quite difficult. Image intensity, color and texture are probably the most prominent
features but, when analyzing a scene, in addition to the image content, a human makes
use of prior knowledge learned from its own experience or inherited from the species.
Even if more and more neurobiological studies are starting to propose models of the
visual cortex, its high complexity is far from being completely understood. Therefore,
rather than considering arbitrary images, most studies concentrate only on a subset
of real images with particular characteristics. Another problem is the segmentation of
medical images. In this case, the objective is not to copy the visual system but to extract
real structures/organs from a given modality of acquisition. Hence, understanding and
modeling the acquisition process is a key step to extract information from acquired
images. Despite all advances in medical image acquisition, many important structures
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Figure 1: Examples of natural images.

remain hardly visible. All information that can be obtained from prior knowledge is of
great interest and it has to be used to help the segmentation process.

A wide range of methods has been proposed to tackle the problems posed by image
segmentation. They include direct thresholding based on image gray-level, grouping
from edge detector results, classical clusterings on pixel values (k-means, Gaussian
mixture models), graph-cuts, Markov random fields and others. In this thesis, we
consider a geometric approach based on front evolution techniques. The geometric
flow is obtained from a general Bayesian formulation of the segmentation problem
which allows for various cues to be considered and therefore, a large set of images.

The choice of a geometric approach has been made for several reasons. The seg-
mentation problem is by definition a geometric one since geometric structures have
to be extracted from the 2D image domain. Optimizing with respect to contours or
shapes, we consider an optimization space that permits a straightforward formulation
of partitioning problems. As we will see along this thesis, geometric constraints can
then be naturally expressed to integrate properties of object borders. Simple spatial
regularizations can be introduced but more complex geometric knowledge will also
be presented. The second characteristic of our framework is the definition of the geo-
metric flow from a Bayesian formulation. Allowing us to integrate multiple cues, the
simplification of the general partitioning probability density function can be done by
making explicit assumptions which gives us a very clear view of the limits of our algo-
rithms. Aiming at removing parts of these assumptions, extensions are then possible.
In the following, we introduce briefly this Bayesian formulation, the base of the work
presented in this thesis.

A Bayesian formulation for image segmentation

We consider a general framework for image segmentation integrating different cues:
gray-value, color, texture, motion and prior shape knowledge. The main idea is to
evolve a front subject to internal and external forces such that it maps the boundaries
of the object(s) to be extracted at convergence. Using a Bayesian formulation of the
problem, different cues can be integrated in this front evolution. Let I be the image
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to be segmented and P(Ω), a partition of the image domain Ω. Following [107], we
consider pS(P(Ω)|I), the a posteriori frame partition probability, given the observed
image I . The optimal partition of the image is obtained by maximizing this probability
according to the associated hypothesis. The Bayes rule permits one to express this
probability as:

pS(P(Ω)|I) =
p(I|P(Ω))
p(I)

p(P(Ω)), (1)

where p(P(Ω)) and p(I) are respectively the probability of a partition P(Ω) and an
image I . The third term, p(I|P(Ω)) represents the a posteriori segmentation proba-
bility for the image I , given the partition P(Ω). When segmenting a given image, the
term p(I) is constant and (1) simplifies to:

pS(P(Ω)|I) ∝ p(I|P(Ω))p(P(Ω)). (2)

Both terms p(I|P(Ω)) and p(P(Ω)) are studied in this thesis.
An approximation of p(I|P(Ω)) for piecewise smooth images will be first pro-

posed in Chapter 2 assuming pixel values to be independent realizations of a random
process. This approximation will be applied to scalar and vector-valued images, con-
sidering either parametric or non-parametric probability density approximations for
each region. Then, an extension to textured images will be presented in Chapter 3 by
considering a two-step approach where texture features are first extracted.

The probability of a partition P(Ω) will be also studied in detail. It will first be
expressed as a simple regularization constraint in Chapter 2 but more complex models
will be proposed in Chapter 4. In a given application, the objects to be extracted often
have a similar shape. Assuming a set of training samples to be available, it is possible
to model a family of shapes by learning the distribution of the training shapes. Then,
this distribution can be used to express the probability of a new partition P(Ω). Two
different models will be presented in Chapter 4.

Organization of this thesis

This thesis is organized in five chapters. The first one is a detailed review of state of
the art techniques in front evolution methods for image segmentation. Considering
such techniques, the second part introduces a general region-based unsupervised
segmentation approach from which all the other parts are based. Hence, complex
cues are integrated in this framework: texture and motion are considered in Chapter 3
while Chapter 4 deals with prior shape knowledge. The fifth and last chapter shows
an extension to a relatively new modality in medical imaging by considering diffusion
magnetic resonance images. A more detailed summary of each one of these parts is
presented below.
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CHAPTER 1
In the first part, we review recent progress in level-set based surface evolutions
which represent efficient techniques for object extraction. Boundary and region-based
methods are presented and we discuss the advantages of each variant.

CHAPTER 2
Based on a Bayesian formulation, the second chapter proposes a general formulation
for region-based image partitioning of scalar as well as vector-valued images. A direct
application of this approach is presented on gray and color images. Parametric and
nonparametric probability density functions are considered to approximate region
properties. Links with more “classical” clustering techniques are also discussed.

CHAPTER 3
Textured images do not fit the assumptions made to simplify the Bayesian formulation.
Contrary to smooth images, spatial links between pixel values must be considered.
To this end, we apply the idea of the nonlinear structure tensor which turns out to
have very good discrimination properties while inducing only three feature channels.
Motion information is also introduced through the estimation of the optical flow,
extending a segmentation technique of static images to the detection of moving objects
in image sequences.

CHAPTER 4
The fourth part focuses on the introduction of prior shape knowledge within the
segmentation process. In many applications like medical imaging, hand-segmented
data are often available and structures usually exhibit similar shapes. Analyzing and
incorporating this information can be of great interest to improve the robustness of
the algorithm and to deal with critical images. Two different models are proposed,
both are based on implicit shape representations. We first deal with voxel-wise shape
variability through a stochastic shape modeling. We then extend Active Shape Models
[38] by analyzing the principal variations of the implicit shapes.

CHAPTER 5
Finally, we propose a novel approach to extract structures from diffusion magnetic
resonance images. Our goal is to extract structures of interest in the white matter.
These types of images differ from classical modalities by describing the stochastic
motion of water molecules at each voxel. We extend our region-based formulation
to segment 3D probability density fields, by recasting this problem into the recent
framework of information geometry. Promising results are obtained on synthetic as
well as on real datasets.

At the end of each chapter, we recall its main contributions and mention possible
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extensions. To summarize, this thesis contributes to the problem of image segmenta-
tion by:

1. presenting a detailed review of state of the art methods in front evolution for
image segmentation (chapter 1),

2. extending region-based approaches to vector-valued images with parametric or
non-parametric statistical models (chapter 2),

3. estimating region statistics, jointly with the partitioning process (chapter 2),

4. extracting and integrating texture and motion cues (chapter 3),

5. modeling and integrating prior shape knowledge (chapter 4),

6. extending all this framework to the use of the more complex diffusion tensor
images (chapter 5).
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Résumé détaillé (version française)

Introduction

L’analyse d’images est devenue un élément vital de nombreuses applications. Elle est
par exemple omniprésente dans les systèmes de sécurité, que ce soit pour défendre
des intérêts collectifs ou plus personnels. Ainsi, de plus en plus de systèmes de sur-
veillance ont recours à des techniques de traitement d’images afin d’extraire les au-
tomatiquement les informations pertinentes. Dans un tout autre domaine, l’imagerie
médicale a pris une place importante dans le monde médical en offrant aux docteurs de
nouveaux moyens pour la détection et le suivi de maladies ainsi qu’une assistance en
phases opératoires. Un troisième secteur important est celui des contenus multimédias
qui sont récemment devenus entièrement digitaux. De nombreux challenges sont alors
apparu pour la compression, la manipulation et l’indexation de telles données. Le nom-
bre important d’images et leur haute résolution rend l’analyse de toutes ces données
impossible par un observateur humain et l’élaboration d’algorithmes automatiques est
nécessaire. L’analyse d’images assistée par ordinateur est un domaine encore très
récent. Les premiers travaux étaient pour la plupart heuristiques mais de nombreuses
études plus récentes reposent sur des bases mathématiques telles que la géométrie, les
statistiques ou les théories de l’apprentissage.

Dans toues ces applications, la segmentation est une étape clé dans la plupart des
algorithmes d’analyse d’images utilises. De manière générale, segmenter une image
consiste à extraire les différentes régions d’intérêt. La caractérisation de ces zones
dépend à la fois du type d’image considéré et de l’application visée et il n’existe donc
pas de définition unique. Par exemples, elles peuvent être caractérisées par certaines
mesures d’homogénéité ou à partir d’informations à priori.

La segmentation d’images naturelles est un problème particulier puisque le but
d’obtenir des résultats comparables a ceux que donnerait un observateur humain. Étant
donné la grande diversité des images naturelles, résoudre ce problème est en pratique
très compliqué. L’intensité de l’image, la couleur et la texture sont certainement les
caractéristiques les plus importantes mais lorsque nous analysons une scène, nous em-
ployons des sources d’information autres que son contenu propre. Nous utilisons no-
tamment les informations acquises par expérience. Bien que de plus en plus d’études
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neuro-biologiques aient pour objectif de comprendre notre système visuel, elles sont
encore loin de pouvoir modéliser sa grande complexité. Par conséquent, au lieu de
considérer des images quelconques, la plupart des approches se concentrent sur un
sous-ensemble d’images naturelles ayant des propriétés particulières.

La segmentation d’images médicales est un problème légèrement différent.
L’objectif n’est plus de copier un système visuel mais d’extraire des structures/organes
réels à partir d’une modalité d’acquisition donnée. Ainsi, la compréhension et
la modélisation du système d’acquisition est une étape importante afin d’extraire
l’information des images obtenues. Malgré tous les progrès effectués en acquisi-
tion d’images médicales, de nombreuses structures sont à peine visibles et l’utilisation
d’informations à priori est alors primordiale.

Différents types d’approches ont été proposées pour résoudre les nombreux
problèmes posés par la segmentation d’images. Parmi les méthodes les plus popu-
laires, on trouve de simples seuillages basés sur l’intensité de l’image, des approches
de regroupement suivant la valeur des pixels (k-moyennes, modèles de mixtures de
Gaussiennes), des techniques utilisant le parcellement de graphes (graph-cut), d’autres
introduisent des champs aléatoires de Markov, etc... Dans cette thèse, nous considérons
une approche géométrique basée sur les techniques d’évolution de fronts. Un critère
géométrique est obtenu à partir d’une formulation Bayésienne du problème de seg-
mentation qui permet d’intégrer différents attributs et par conséquent, de traiter une
grande diversité d’images.

Une formulation Bayésienne pour la segmentation d’images

Nous considérons un cadre général permettant d’intégrer les attributs suivants: niveau
de gris, couleur, mouvement et connaissance à priori sur la forme. L’idée principale
est de propager un front soumis à des forces internes et externes afin qu’une fois
à l’équilibre, il délimite les différentes régions d’intérêt. Grâce à une formulation
Bayésienne du problème, nous montrons que différents attributs peuvent être intégrés
dans une telle évolution du front. Soit I l’image à segmenter et P(Ω) une partition du
domaine Ω de l’image. En se basant sur les idées développées dans [107], nous con-
sidérons pS(P(Ω)|I), la probabilité à posteriori d’un partitionnement d’une image
donnée I . La partition optimale de l’image est obtenue en cherchant à maximiser cette
probabilité par rapport aux hypothèses associées. La règle de Bayes permet d’exprimer
cette probabilité comme:

pS(P(Ω)|I) =
p(I|P(Ω))
p(I)

p(P(Ω)) (3)

où p(P(Ω)) et p(I) sont respectivement les probabilités d’une partition P(Ω) et d’une
image I . Le troisième terme p(I|P(Ω)), représente la probabilité à postériori d’une
image I pour un partitionnement P(Ω). Lorsque l’on segmente une image donnée, le
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terme p(I) est constant et l’équation (3) se simplifie pour donner:

pS(P(Ω)|I) ∝ p(I|P(Ω))p(P(Ω)) (4)

Dans cette thèse, nous étudions les deux termes de cette relation: p(I|P(Ω)) et
p(P(Ω)).

Une approximation du terme p(I|P(Ω)) pour des images lisses par morceaux est
tout d’abord proposée dans le chapitre 2 en introduisant l’hypothèse que les pixels
d’une même région sont des réalisations indépendantes d’un processus aléatoire. Cette
approximation est appliquée à des images scalaires et vectorielles avec des approxima-
tions paramétriques et non-paramétriques des densités de probabilité régions. Dans le
chapitre 3, nous présentons une extension de cette approche aux images texturées. La
stratégie en deux étapes considérée consiste à extraire dans un premier temps les com-
posantes texture et de segmenter ensuite l’image vectorielle formée par l’ensemble des
attributs souhaités.

La probabilité d’une partitionP(Ω) est aussi étudiée en détail. Elle est tout d’abord
exprimée comme une simple contrainte de régularisation dans le chapitre 2 mais des
modèles plus complexes sont introduits par la suite dans le chapitre 4. Dans une ap-
plication donnée, les formes extraites d’images différentes sont souvent similaires. En
supposant qu’un jeu de formes d’apprentissage soit disponible, il est alors possible de
modéliser la famille de forme correspondant au problème en apprenant leur distribu-
tion. Cette modélisation permet par la suite d’exprimer la probabilité d’une nouvelle
partition de l’image. Deux modélisations différentes de cette information sur la forme
sont proposées dans le chapitre 4.

Organisation de la thèse

Cette thèse est organisée en cinq chapitres. Le premier présente un bref état de l’art
des techniques de segmentation par évolution de fronts. Dans la seconde partie, nous
utilisons ces techniques pour définir une approche générale de segmentation d’images
non-supervisée qui sera la base des autres parties. Ainsi, des attributs complexes
sont par la suite introduits dans ce cadre de travail: la texture et le mouvement
sont considérés au cours du chapitre 3 et le chapitre 4 est dédié à l’introduction
d’information à priori sur la forme. La cinquième et dernière partie présente une
extension de ces travaux à une modalité d’imagerie médicale relativement récente, les
images de diffusion à résonance magnétique. Un résumé plus détaillé de chacune de
ces parties est présenté ci-dessous.

CHAPITRE 1
Dans ce chapitre, nous présentons les avancées récentes en techniques d’évolution de
surfaces implicites pour l’extraction de structures dans une image. La représentation
par ensembles de niveaux est décrite et des méthodes dites frontières et régions sont
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introduites. Nous parlons en particulier des limitations de chacune d’entre elles.

CHAPITRE 2
En ce basant sur le cadre de travail présenté dans le chapitre 1, nous proposons une
formulation région pour la segmentation d’images scalaires et multivaluées. Une
application directe de cette méthode est présentée sur des images en niveaux de
gris et sur des images couleur. Des densités de probabilités paramétriques et non-
paramétriques sont introduites pour approximer les propriétés de chaque région. Les
relations liant notre approche et des méthodes générales d’estimation de paramètres
statistiques sont finalement présentées.

CHAPITRE 3
Les images texturées ne satisfont pas aux hypothèses introduites au cours du chapitre
2. Contrairement aux images “lisses”, des relations spatiales entre pixels doivent être
considérées. Afin de capturer cette information, nous utilisons le tenseur de structure
non-linéaire qui a de très bonnes propriétés de discrimination, tout en introduisant un
nombre réduit de composantes. Une approche similaire est proposée pour intégrer
le mouvement grâce à une estimation du flot optique. Cela permet d’étendre notre
approche de segmentation d’images statiques à la détection et au suivi d’objets en
mouvement dans des séquences vidéos.

CHAPITRE 4
Dans le quatrième chapitre, nous introduisons un à priori sur la forme dans ce
processus de segmentation. Dans de nombreuses applications, telles que l’analyse
d’images médicales, des données segmentées à la main sont disponibles et les struc-
tures d’intérêt ont souvent des formes similaires d’une image à l’autre. L’introduction
de cette information sur la forme peut grandement améliorer la robustesse d’un
algorithme d’extraction automatique. Deux modèles différents sont proposés, tous
deux basés sur une représentation implicite des formes. Le premier modèle incorpore
une variabilité voxelique sur la forme à priori alors que le deuxième capture les
variations principales d’un jeu de représentations implicites, étendant les modèles
actifs de formes aux ensembles de niveaux.

CHAPITRE 5
Finalement, nous proposons une nouvelle approche pour la segmentation d’images
de diffusion à résonance magnétique, notre objectif étant d’extraire des structures
d’intérêt à l’intérieur de la matière blanche du cerveau. Ce type d’images est différent
des images classiques car elles décrivent le mouvement stochastique des molécules
d’eau en chaque voxel. Nous étendons notre formulation région à la segmentation de
champs de densité de probabilité 3D, utilisant des travaux récents effectués dans le
domaine de la géométrie de l’information. Des résultats prometteurs sont obtenus sur
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des images synthétiques et réelles.

Chapitre 1
Segmentation d’images par évolutions de fronts

Les techniques d’évolution de fronts ont été introduites en segmentation d’images par
Kaas et al. dans [74]. Leurs travaux proposent de détecter les frontières entre les objets
en faisant se déplacer une courbe (souvent appelée “snake”) dans l’image. L’évolution
de courbe proposée dans [74] est introduite pour minimiser une énergie définie le long
de la courbe. Cette énergie incorpore des contraintes géométriques ainsi qu’un terme
de recouvrement avec les forts gradients de l’image. Cette approche fut une avancée
importante dans le développement des techniques de segmentation et tout une partie du
domaine s’en est fortement inspirée. Diverses extensions du modèle “Snake” ont rapi-
dement été proposées afin d’éliminer plusieurs de ses limitations initiales. Le principal
problème était la nécessité d’avoir une très bonne initialisation du contour pour obtenir
le résultat escompté. Parmi ces contibutions, on trouve notamment les travaux de
Blake [15], Cohen [35], Berger [9], Fua et Leclerc [58]. Cependant, ces améliorations
n’éliminent pas entièrement l’importance de l’initialisation et la topologie des objets à
extraire doit toujours être connue au préalable. Une autre étape a été franchie lorsque
la représentation par ensembles de niveaux a été utilisée pour la propagation de fronts.
Introduite par Dervieux et Thomasset dans [47, 48], cette représentation implicite fut
redécouverte et plus largement diffusée quelques années plus tard par Osher et Sethian
[106]. Cette représentation implicite et intrinsèque du contour fournit naturellement
une solution aux principales limites des contours actifs (le changement de topologie
et la paramétrisation du contour). De plus, les propriétés géométriques de la courbe
telles que la courbure, le vecteur normal ou tangent, peuvent être facilement exprimées
à l’aide de cette représentation. De nombreux flots bénéficiant de cette formulation ont
donc été proposés [27, 34, 91, 76, 28]. Des schémas d’implémentation rapides dont la
convergence et la stabilité sont prouvées ont aussi été proposés [132, 1]. Le modèle dit
des “contours actifs géodésiques” est certainement l’un des plus élégants en reformu-
lant le problème de la segmentation par celui de la recherche d’un chemin de distance
minimale dans un espace Riemmanien dont la métrique est induite par des propriétés
de l’image.

Plus récemment, des approches ont proposé d’utiliser des termes régions pour
contrôler l’évolution du contour [171, 30, 107, 122, 68]. Alors que les contours act-
ifs ou les évolutions de fronts classiques incluent uniquement l’information gradient
pour définir un critère d’arrêt, les approches région considèrent une formulation plus
globale où des quantités sur le domaine complet de l’image sont intégrées. Contraire-
ment à l’approche gradient qui repose sur des mesures locales, elles sont plus robustes
aux conditions initiales et il n’est plus nécessaire de régler de manière précise un
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critère d’arrêt. Ces méthodes régions peuvent être classées en deux catégories: celles
basées sur la fonctionnelle de Mumford-Shah ou issues de minimisations des “Varia-
tions Totales” [102, 15, 30, 31, 144] et celles obtenue par formulations Bayésiennes
[171, 107, 122].

Dans le prochain chapitre, nous revisitons ces méthodes régions. Nous étendons
celle présentée dans [107] en ajoutant l’estimation des statistiques régions en parallèle
à l’évolution de courbe. Nous considérons des images scalaires et multivaluées dans
le cas d’approximations paramétriques et non-paramétriques des statistiques régions.

Chapitre 2
Évolutions de fronts basés sur l’information région

Dans ce chapitre, nous développons des évolutions de fronts basées région et issues
de la formulation Bayésienne du problème de segmentation. Ce type d’approche
a été choisi pour plusieurs raisons. Tout d’abord, le choix d’une approche région
semble le meilleur pour définir un algorithme robuste à l’initialisation et pouvant
s’appliquer à une large variété d’images. De plus, l’objectif principal de cette thèse
étant l’incorporation de différents attributs, l’approche considérée doit intégrer un
processus de décision afin de sélectionner dynamiquement les attributs importants et
la formulation Bayésienne est tout à fait adaptée.

La fonctionnelle que nous considérons dans ce chapitre est proche de celle
présentée en section 1.2.3. Plusieurs travaux [81, 171, 107] ont proposé des critères
similaires obtenus à partir de formulations différentes. Dans [81, 171], cette énergie est
obtenue à partir d’un critère dit ”Descripteur de Longueur Minimale” alors que dans
[107], elle est prouvée être équivalente à approximation du maximum à posteriori de la
probabilité de partitionnement de l’image. Pour cela, plusieurs hypothèses explicitées
par les auteurs sont nécessaires.

Soit I l’image à segmenter et P(Ω) une partition du domaine Ω de l’image. En se
basant sur les idées développées dans [107], nous considérons pS(P(Ω)|I), la prob-
abilité à posteriori d’un partitionnement d’une image I . La partition optimale de
l’image est obtenue en cherchant à maximiser cette probabilité par rapport aux hy-
pothèses associées. La règle de Bayes permet d’exprimer cette probabilité comme

pS(P(Ω)|I) =
p(I|P(Ω))
p(I)

p(P(Ω)), (5)

où p(P(Ω)) et p(I) sont respectivement les probabilités d’une partition P(Ω) et d’une
image I . Le troisième terme p(I|P(Ω)), représente la probabilité à posteriori d’une
image I pour un partitionnement P(Ω). Lorsque l’on segmente une image donnée, le
terme p(I) est constant et l’équation (5) se simplifie pour donner:

pS(P(Ω)|I) ∝ p(I|P(Ω))p(P(Ω)) : (6)
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Contrainte de partitionnement

Le terme p(P(Ω)) permet d’intégrer de l’information à priori sur le partitionnement de
l’image. La modélisation et l’introduction de contraintes de forme sont étudiées dans
chapitre 4 mais pour l’instant, nous considérons une contrainte plus générale en util-
isant ce terme pour exprimer des propriétés de régularité géométrique sur l’interface
entre les régions. Soit C cette frontière, une contrainte de régularisation peut être in-
troduite en favorisant les partitions avec une interface de longueur minimale:

p(P(Ω)) =
ν

2
e−ν |C|,

où |C| est la longueur de l’interface et ν est une constante permettant de contrôler
l’importance donnée à ce terme de régularisation.

Terme région

Le second terme p(I|P(Ω)) ne peut pas être estimé dans le cas général et plusieurs
simplifications doivent être introduites. Tout d’abord, nous supposons que le nombre
de régions est connu et qu’aucune corrélation entre labels n’existe. Le premier facteur
de l’expression (6) s’écrit alors:

p(I|P(Ω)) = p(I|{Ω1, . . . ,ΩN}) = p(I|Ω1)p(I|Ω2) . . . p(I|ΩN ),

où p(I|ΩX) est la probabilité de l’image I sachant que ΩX est une région d’intérêt.
Une autre simplification est introduite en supposant que les pixels d’une région

sont des réalisations indépendantes et identiquement distribuées d’un même processus
aléatoire. Cela permet de remplacer les distributions régions par les probabilités jointes
des pixels de chaque région:

p(I|P(Ω)) =
∏

x∈Ω1

p(I(x)|Ω1)
∏

x∈Ω2

p(I(x)|Ω2) · · ·
∏

x∈ΩN

p(I(x)|ΩN ).

Cette approximation n’est généralement pas valide puisque les régions de l’image sont
souvent caractérisées par des relations spatiales à un niveau plus ou moins local. Dans
le cas d’images texturées par exemple, ces relations spatiales sont les propriétés prin-
cipales des régions d’intérêt. Par conséquent, ce modèle n’est valide que pour des
images lisses par morceaux et éventuellement bruitées. Néanmoins, comme nous le
verrons dans le chapitre 3, des filtres peuvent être utilisés afin d’extraire ces propriétés
spatiales pour ensuite être intégrées dans cette approche.

Formulation variationelle

L’estimation du maximum à posteriori est équivalente à minimiser l’énergie obtenue
en appliquant la fonction [−log()]. En négligeant les termes constants, nous obtenons
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l’énergie suivante:

E({Ω1, . . . ,ΩN}) = −
∑

i

∫
Ωi

log p(I(x)|Ωi) dx + ν |C|. (7)

Par la suite, nous considérons différents types de densités de probabilité régions.
L’estimation de ces densités est effectuée pendant le processus de segmentation.
Cela est possible en optimisant l’énergie (7) à la fois par rapport aux statistiques
régions et par rapport au partitionnement. Des approximations paramétriques et non-
paramétriques de ces densités sont proposées.

Densités régions paramétriques

Soit p(I|θi) une représentation paramétrique de la densité de probabilité dans la région
Ωi, paramétrisée par θi. La segmentation est obtenue en minimisant

E({Ω1, . . . ,ΩN}, {θ1, . . . , θN}) = −
∑

i

∫
Ωi

log p(I(x)|θi) dx + ν |C|. (8)

Cette énergie dépend de deux types de paramètres: les régions Ωi, sous-ensembles
ouverts et bornés de Ω, et les paramètres statistiques appartenant à un espace de
paramètres Θ donné. Une combinaison de fonctions d’ensembles de niveaux per-
met de reformuler cette énergie. L’optimisation par rapport à des sous-domaines de
l’image est alors remplacée par une minimisation d’énergie qui dépend de fonctions
Lipschitziennes définissant implicitement le partitionnement de l’image. Par souci de
simplicité, nous considérons le cas élémentaire d’un bi-partitionnement (N = 2)1.
Soit φ la fonction distance signée à la frontière entre Ω1 et Ω2, positive dans Ω1 et
négative dans Ω2. L’énergie (8) s’écrit

E(φ, {θ1, θ2}) =−
∫

Ω

(
H(φ) log p(I(x)|θ1) + (1−H(φ)) log p(I(x)|θ2)

)
dx

+ ν

∫
Ω
|∇H(φ(x))| dx.

(9)
Pour θ1 et θ2 fixés, cette fonctionnelle peut être minimisée par rapport à φ par de-
scente de gradient. L’équation d’Euler-Lagrange pour φ donne l’équation d’évolution
suivante:

∂φ

∂t
(x) = δ(φ)

(
ν div

(
∇φ
|∇φ|

)
+ log

p(I(x)|θ1)
p(I(x)|θ2)

)
, (10)

1Plusieurs travaux proposent des formulations par ensembles de niveaux pour plus de deux régions
[167, 107, 155, 20] mais la complexité devient plus importante et ces approches sont alors plus sensibles
aux conditions initiales. Le but de notre travail étant l’estimation de paramètres statistiques durant le par-
tionnement, nous nous limitons au cas simple de deux régions. Cependant, ce cas simplifié est pertinent
dans la plupart des extractions d’objets où un seul objet doit être séparé du reste de l’image.
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tandis que les paramètres statistiques doivent être régulièrement mis à jour afin de
vérifier la contrainte

θi = Arg min
θ∈Θ

∫
Ωi

log p(I(x)|θ) dx for i = 1, 2. (11)

Dans le cas d’approximations par des densités Gaussiennes, les formes analytiques de
ces paramètres statistiques sont disponibles et ils peuvent être mis à jour après chaque
itération de l’évolution du front.

Densités régions non-paramétriques

Choisir une famille de densités paramétriques peut être vu comme une limitation de
la modélisation des statistiques régions. Contrairement aux modèles paramétriques,
l’estimation de densités non-paramétriques peuvent approximer n’importe quel type
de distribution pour un jeu de données suffisamment large. Parmi les méthodes non-
paramétriques, la méthode dite des fenêtres de Parzen et couramment utilisée. Ap-
pliquée à notre problème, l’estimation de Parzen de la distribution de l’intensité dans
une région ΩX s’écrit:

pX(z) =
1

|ΩX |

∫
ΩX

1
h
K

(
z − I(x)

h

)
dx. (12)

Notre énergie devient alors:

E({Ω1, . . . ,ΩN}) = −
∑

i

∫
Ωi

log
(

1
|Ωi|

∫
Ωi

1
h
K

(
I(x)− I(x̂)

h

)
dx̂
)
dx + ν|C|.

(13)
Contrairement au cas paramétrique, cette fonctionnelle ne dépend que des sous-
domaines Ωi mais des intégrales emboı̂tées apparaissent. Ce type de fonctionnelle
peut être minimisé en utilisant le formalisme de Gradient de Forme introduit dans [4].
Appliqué à nore problème, nous obtenons la proposition suivante:

Proposition 0.1 La dérivée de Gâteaux du terme région défini par une estimation de
Parzen avec écart type fixé

F (ΩX) =
∫

ΩX

log
(

1
|ΩX |

∫
ΩX

1
h
K

(
I(x)− I(x̂)

h

)
dx̂
)
dx, (14)

dans la direction d’un champs de vecteurs V est:

< F ′(ΩX), V >= −
∫

∂ΩX

(
log pX(I(x))+

1
|ΩX |

(∫
ΩX

1
hK

(
I(x)−I(x̂)

h

)
pX(I(x̂))

dx̂− 1
))

(V (x) ·N(x))da(x).

(15)
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Dans le cas d’un noyau Gaussien, certains termes peuvent être négligés et
l’équation d’évolution complète est alors proche de celle du cas paramétrique:

pi(I(x)) =
1
|Ωi|

∫
Ωi

1
h
K

(
I(x)− I(x̂)

h

)
dx̂, i = 1, 2

∂φ

∂t
(x) ≈ δ(φ)

(
ν div

(
∇φ
|∇φ|

)
+ log

p1(I(x))
p2(I(x))

) (16)

Implémentation

L’algorithme général est similaire dans les deux approches. Deux étapes alternent
jusqu’à convergence: (i) l’estimation des statistiques régions et (ii), l’évolution de
front.

Les détails techniques pour mettre à jour les statistiques régions ont été abordées
mais l’évolution de front nécessite quelques clarifications. Tout d’abord, les équations
d’évolution de fronts (10) et (16) ne doivent pas nécessairement être appliquées au
domaine de l’image complet. La fonction Dirac étant en facteur dans chacune de ces
équations, seuls les pixels proches du niveaux zéro doivent être mis à jour. Il est ainsi
possible de travailler seulement dans une bande étroite autour du passage par zéro de
φ. En pratique, une liste de points correspondant à cette bande doit être maintenue et
modifiée à chaque itération. Cette bande est en fait obtenue facilement à partir de la
ré-initialisation de l’ensemble de niveaux à la fonction distance [142, 132].

Chapitre 3
Extraction et intégration d’attributs

L’approche présenté jusqu’ici est limitée aux images lisses par morceaux, i.e. sans
structures. Ceci est dû à l’hypothèse restrictive faite dans le chapitre précédent où es
pixels d’une même région sont supposés être des réalisations indépendantes et iden-
tiquement distribuées d’un processus aléatoire:

p(I|Ωi) ≈
∏
x∈Ωi

p(I(x)|Ωi).

Par conséquent, seuls les histogrammes des régions sont utilisés pour modéliser les
statistiques régions. Cette approximation est valide pour des images lisses mais dès
que de la texture est présente, cette approche ne peur capturer l’information perti-
nente. Par définition, une texture est liée à une distribution spatiale des pixels dans
un certain voisinage. Comme notre approche n’intègre pas de tels modèles spatiaux,
l’information texture n’a pas d’influence sur la segmentation.

Afin d’étendre notre approche aux images non-lisses/texturées, deux possibilités
s’offrent à nous. La première est de construire des modèles statistiques de textures
d’ordres élevés à partir de distributions de probabilités sur des champs aléatoires en
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utilisant la théorie des champs de Markov [64, 43]. La deuxième approche utilise la
théorie du filtrage qui s’inspirent d’études neurobiologiques du cortex visuel suggérant
la présence d’une multitude de filtres orientés [94, 135]. Les méthode les plus utilisés
sont basées sur les filtres de Gabor [59, 151] ou sur des transformées en ondelettes
[93, 136].

Afin d’obtenir un compromis entre simplicité et généricité, nous proposons une
approche en deux étapes dont la première peux s’inscrire dans les méthodes de fil-
trage. Des caractéristiques textures sont tout d’abord extraites en considérant une ver-
sion non-linéaire du tenseur de structure. Ensuite, elles sont combinées à l’intensité
pour former un vecteur caractéristique permettant de partitionner l’image. Les tech-
niques d’évolutions de courbes basées régions présentées dans le chapitre précédent
sont utilisées pour segmenter l’image à partir du vecteur caractéristique qui peut être
vu comme une image vectorielle. De nombreux tests expérimentaux sur des images
très variées illustrent le potentiel de la méthode, nous fournissant ainsi un algorithme
non-supervisé de segmentation d’images texturées.

Une approche similaire en deux étapes est proposée pour intégrer l’information
mouvement. Dans un premier temps, cette information est extraite dans la séquence
d’images grâce à une estimation robuste du flot optique. Ensuite, les composantes
mouvement sont combinées avec l’intensité (ou la couleur) et la texture pour définir un
nouveau vecteur caractéristique. Ce vecteur peut être utilisé pour segmenter/détecter
des objets en mouvement et ensuite pour les suivre au cours du temps. Une nou-
velle formulation couplant plusieurs ensembles de niveaux est introduite afin de suivre
plusieurs objets, tout en gérant les cas de recouvrements.

Caractéristiques statiques: intensité/couleur et tenseur de structure

L’utilisation de filtres de Gabor ou de modèles basés sur les champs de Markov a
le grand inconvénient d’introduire de nombreux paramètres difficiles à estimer. Une
solution très intéressante à ce problème de discrimination de textures a été proposée
par Bigün et al [11] avec le tenseur de structure. Comparé aux autres méthodes, le
tenseur de structure introduit seulement trois composantes à une échelle donnée. Dans
le paragraphe suivant, nous démontrons que, combinées à l’intensité, ces trois com-
posantes sont suffisantes pour la discrimination de nombreux types de textures. Le
seul problème dans le travail original [11] est l’utilisation d’un lissage Gaussien qui
déplace les frontières et conduit ainsi à des segmentations peu précises. Pour résoudre
ce problème, Weickert et al. ont développé dans [162] une version non-linéaire du
tenseur de structure basée sur la diffusion non-linéaire d’images à valeurs matricielles.
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Le tenseur de structure non-linéaire

Nous proposons d’extraire les caractéristiques textures à partir du tenseur de structure
[55, 11, 118, 87, 63]:

Jρ = Kρ ∗ (∇I∇I>) =

(
Kρ ∗ I2

x Kρ ∗ IxIy
Kρ ∗ IxIy Kρ ∗ I2

y

)
,

où Kρ est un noyau Gaussien ayant comme déviation standard ρ. Ainsi le tenseur de
structure fourni trois composantes à un niveau d’échelle donné. Nous traitons ici le
cas simplifié où seul un niveau d’échelle est considéré. Il est possible d’incorporer
plusieurs niveaux d’échelle en ajoutant les composantes correspondantes. En com-
paraison aux méthodes basées sur les filtres de Gabor, l’orientation de la texture est ici
obtenue à partir de versions régularisées des dérivées de l’image. Cette est totalement
contenue dans les dérivées de l’image. Ainsi, le tenseur de structure peut être aussi
efficace qu’un ensemble de filtres de Gabor pour discriminer les textures. Il est en
outre invariant par rotation.

Le problème principal du tenseur de structure classique et le déplacement des con-
tours causé dû au lissage Gaussien. Cela conduit à une segmentation peu précise près
des contours. Comme mentionné plus tôt, l’idée introduite dans [162] pour régler ce
problème est de remplacer le lissage Gaussien par une diffusion non-linéaire. Suivant
cette idée, nous proposons une version améliorée pour la segmentation de textures. La
diffusion non-linéaire est basée sur les travaux précurseurs de Peronal et Malik [115].
L’idée principale est de réduire le lissage sur les contours. L’équation de diffusion
résultante est ∂tu = div (g(|∇u|)∇u) où u(t = 0) est l’image I et g est une fonction
décroissante. Cette équation peut seulement être utilisée sur des valeurs scalaires mais
Gerig et al. [61] ont proposé une version pour les données vectorielles:

∂tui = div

(
g

(
N∑

k=1

|∇uk|2
)
∇ui

)
∀i = 1, . . . , N,

où ui est une composante du vecteur caractéristique et N est le nombre de com-
posantes. Il faut noter que les composantes sont couplées par l’intermédiaire d’une
diffusion jointe, un contour dans une composante réduisant ainsi le lissage dans les
autres.

Si les composantes d’une matrice sont vues comme les composantes d’un vecteur
(ce qui est raisonnable puisque la norme de Frobenius d’une matrice est égale à la
norme Euclidienne du vecteur résultant), il est possible de diffuser une matrice telle
que le tenseur de structure. Cela nous conduit à un tenseur de structure non-linéaire
légèrement différent de celui utilisé dans [162]. La diffusion correspondante sur la
matrice est en fait équivalente à celle proposée dans [145, 146]. Il est à noter, d’après
[162], que le couplage entre les composantes permet de conserver la semi-positivité.

Ensuite, un point important est le choix de la fonction de diffusivité g. Pour le
cas de caractéristiques texture, le flot à variations totales (TV) [127, 22] semble être
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très bien adapté puisqu’il permet d’éliminer les oscillations et conduit à un résultat
constant par morceaux. Cela est très utile étant donné que le tenseur de structure, qui
contient des dérivées premières de l’image, a des réponses très locales. Le lissage
a pour objectif principal de fermer les zones entre ces phénomènes locaux, tout en
préservant les contours importants. Cependant, lorsque le gradient est proche de zéro,
le flot TV conduit à des problèmes numériques. Ce cas est traité en ajoutant une
constante ε au module du gradient: g(|∇u|) = 1

|∇u|+ε .
Pour l’implémentation, nous appliquons la technique AOS [164] qui permet un

calcul efficace du flot TV, même pour des valeurs très faibles de ε (proche de 0.001),
introduisant ainsi peu de flou. Dans ce cas précis, la technique AOS est environ 4 fois
plus rapide qu’une simple implémentation explicite.

Combinaison de l’intensité et des composantes textures

L’étape suivante est la combinaison de l’information texture et de l’intensité dans le
but de simplifier les données et de fermer les structures. Pour cela, nous utilisons la
diffusion d’images multivaluée présentée dans le paragraphe précédent car elle cou-
ple chaque composante avec la même diffusivité. De cette manière, l’information de
toutes les composantes influe sur la probabilité d’avoir une frontière à un point donné.
Cependant, pour un couplage équilibré, l’équation de diffusion suppose que toutes les
composantes aient des valeurs comparables. Malheureusement, une simple normali-
sation sur toutes les composantes n’est pas une approche adéquate puisqu’elle risque
d’amplifier le bruit dans les composantes avec peu d’information. Ce problème doit
donc être résolu d’une manière différente.

Pour les composantes textures, cela peut être fait en remplaçant le tenseur de struc-
ture pas sa racine carrée. Notons J0 = T (λi)T>, une décomposition en valeurs pro-
pres du tenseur de structure, sa racine carrée peut être calculée de la manière suivante:

J̃0 :=
√
J0 = T (

√
λi)T>.

Dans le cas d’images en niveaux de gris, cela revient à:

J̃0 =

(
Ix
|∇I| − Iy

|∇I|
Iy
|∇I|

Ix
|∇I|

)(
|∇I| 0

0 0

)(
Ix
|∇I|

Iy
|∇I|

− Iy
|∇I|

Ix
|∇I|

)
=

J0

|∇I|
.

En couplant ainsi l’intensité et le tenseur de structure, la diffusion non-linéaire est
appliquée au vecteur caractéristique u composé de l’intensité et des composantes de
J̃0.

Segmentation non supervisée d’images texturées

Comme nous l’avons déjà mentionné, l’approche de segmentation développée dans le
chapitre précédent est limitée au cas d’images lisses car les pixels de chaque région
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sont supposés indépendants. Cependant, les composantes textures que nous venons
d’extraire incluent une information de cohérence spatiale des pixels. Par conséquent,
il devient possible de segmenter des images plus compliquées incluant de la texture
en appliquant l’approche développée dans le chapitre précédent sur ce vecteur car-
actéristique:

p(I|Ωi) ≈ p(u|Ωi) ≈
∏
x∈Ωi

p(u(x)|Ωi),

où u inclut l’intensité et les composantes du tenseur de structure après diffusion
couplée.

Suivant le cadre de travail développé précédemment, le problème de segmentation
peut être reformulé comme une minimisation d’énergie. De plus, au lieu de modéliser
la distribution jointe de chaque composante, nous les supposons non-corrélées. Soit
pij(x), la densité de probabilité conditionnelle d’une valeur uj(x) d’apparaı̂tre dans la
région Ωi, la fonctionnelle de bi-partitionnement correspondante est:

E(φ) =
∫

Ω

(
H(φ)

4∑
j=1

log p1j(u(x)) + (1−H(φ))
4∑

j=1

log p2j(u(x))
)
dx

+
∫

Ω
ν|∇H(φ)| dx.

Une approximation Gaussienne appairait raisonnable pour représenter chaque densité
région et une optimisation alternée permet alors de minimiser cette énergie par rapport
à φ, et par rapport aux paramètres statistiques. Le calcul des variations de φ conduit à
l’évolution d’ensembles de niveaux suivante:

∂φ

∂t
(x) = δ(φ)

ν div
(
∇φ
|∇φ|

)
+

4∑
j=1

log
p1j(I(x))
p2j(I(x))

 ∀x ∈ Ω,

tandis que les paramètres statistiques optimaux peuvent être estimés en parallèle di-
rectement à partir de leurs estimations empiriques.

Caractérisation du mouvement: le flot optique

Si l’on considère le mouvement, l’estimation du flot optique est la méthode princi-
pale pour intégrer cette information. L’estimation du flot optique est en soit un do-
maine de recherche entier et de nombreuses méthodes existent [7, 99, 141]. Il est
intéressant de constater que le tenseur de structure non-linéaire peut aussi être utilisé
dans le cadre d’estimation du mouvement [19]. Dans ce cas, un tenseur de struc-
ture non-linéaire spatio-temporal est nécessaire. Il est obtenu de la même manière
que dans la section précédente mais en changeant la condition initiale: u(t = 0) =
(I2

x, I
2
y, I

2
z , 2IxIy, 2IxIz, 2IyIz) où z est la coordonnée temporelle.
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Segmentation d’objets en mouvement

Lorsque l’on considère une séquence d’images, l’information mouvement devient
disponible et les composantes du flot optique peuvent alors être ajoutées au vecteur car-
actéristique. Pour une séquence d’images en niveaux de gris, le vecteur caractéristique
contient alors 6 éléments: l’intensité, les 3 composantes du tenseur de structure et les
deux composantes du flot optique. Pour la détection d’objets en mouvement, il est
souvent utile d’augmenter le poids des composantes du flot, sans quoi des objets non-
mobiles mais avec une intensité ou une texture différente du fond risquent aussi d’être
détectés.

Suivi d’objets en mouvement

Le problème du suivi d’objets est similaire. La principale différence est que la posi-
tion ainsi que le nombre d’objets dans l’image précédente sont supposés connus. Cela
permet d’éliminer l’hypothèse de bi-partitionnement et il devient possible de suivre
chaque objet séparément. Mais il est alors nécessaire d’introduire un couplage en-
tre plusieurs ensembles de niveaux décrivant chaque objet mobile. Ce couplage est
important afin d’éviter des recouvrements entre objets.

Un ensemble de niveaux est assigné à chaque objet mobile Ωi tel que φi(x) > 0 si
x ∈ Ωi. En ajoutant la contrainte de non-recouvrement, une fonction caractéristique
χi peut être associée a chaque objet et une autre fonction χb caractérise le fond de
l’image. Soit ei la log-vraisemblance d’un pixel pour la région Ωi et eb, celle du fond,
le suivi de M objets est alors obtenu en minimisant l’énergie suivante:

E({φk, k = 1..M}) =−
∫

Ω
χb(x)eb(x) dx−

M∑
i=1

∫
Ω
χi(x)ei(x) dx

+ ν
M∑
i=1

∫
Ω
|∇H(φi)| dx

La minimisation de cette énergie fournit un système d’équations correspondant aux
évolutions de chaque ensemble de niveaux. De la même manière que précédemment,
les statistiques région peuvent être mises à jour régulièrement à partir de leurs estima-
tions empiriques.

Chapitre 4
Représentation implicite pour la connaissance à priori sur la
forme

Afin d’introduire un à priori sur la forme dans les méthode basées sur les ensembles de
niveaux, la première étape consiste à construire un modèle de forme. La représentation
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par ensemble de niveaux apparaı̂t adaptée pour la construction de tels modèles, comme
le prouvent de nombreux travaux publiés récemment [86, 33, 143, 125, 42]. L’objectif
est alors de retrouver une représentation compacte d’un jeu d’ensembles de niveaux
[φ1, φ2, . . . , φN ] correspondant aux contours ou surfaces d’apprentissage. Une sim-
ple moyenne de ces représentation peut être estimée et utilisée comme modèle [33]
mais cette technique ne permet de capturer aucune variabilité autour de cette forme
moyenne.

Lorsqu’un nombre relativement important d’exemples est disponible, il est possi-
ble de capturer les variations principales des formes et une analyse en composantes
principales (ACP) peut être appliquée afin de capturer ces variations [86, 143]. L’ACP
est une transformation linéaire des variables considérées qui permet d’extraire les
modes de variation principaux.

Nous présentons comment extraire ce modèle de formes et nous proposons une
nouvelle méthode pour l’introduire dans des évolutions de fronts classiques.

Extraction des variations principales par ACP

Dans une application donnée, les formes d’apprentissage sont supposées appartenir
a une même famille de formes. En analysant ce jeu d’apprentissage, le but est
de modéliser cette famille. Pour cela, nous considérons l’approche introduite dans
[86, 143]. Ce modèle fait l’hypothèse que cette famille peut être générée à partir de
combinaisons linéaires d’ensembles de niveaux. Dans un premier temps, les exemples
φi sont centrées par rapport à une représentation moyenne φs, [ψi = φi−φs]. Ensuite,
les principaux modes de variation peuvent être obtenus en effectuant une ACP sur la
matrice de covariance:

Σi,j =
1
|Ω|

∫
Ω
ψi(x)ψj(x) dx, 1 ≤ i ≤ N, 1 ≤ j ≤ N.

Gardant seulement les m modes de variation principaux, une nouvelle forme appar-
tenant à la même famille est obtenue par combinaison linéaire:

φ = φs +
m∑

j=1

λj Uj , (17)

où les Uj sont les principaux modes de variation sélectionnés et λj sont les poids
associés a chacun de ces modes. La valeur de ces poids étant limitée dans un certain
intervalle défini par les valeurs propres correspondantes.

Contraintes de forme et extraction d’objets

L’étape suivante est l’introduction de ce modèle de forme à priori dans une évolution de
front en définissant la probabilité d’un partitionnement de l’image p(P(Ω)) lorsqu’un
modèle de forme est disponible. Nous nous limitons à l’extraction d’un seul objet (pas
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nécessairement connexe) et nous représentons le front par un ensemble de niveaux φ.
La probabilité d’un partitionnement est alors obtenue à partir de la distribution à priori
p(φ|“modèle de forme”).

La même représentation de forme étant utilisée lors de la modélisation et de
l’extraction, la définition de cette probabilité à priori est des plus naturelle. A par-
tir d’une formulation Bayésienne, nous proposons un critère permettant de contraindre
l’évolution de fronts en incluant une estimation dynamique de la pose de l’objet. En-
suite, nous développons deux modules de contrainte de forme: (i) l’à priori sur la
forme est constitué d’un seul ensemble de niveaux et (ii), le modèle ACP de la section
précédente est intégré.

Évolution de fronts sous contrainte de forme

Nous considérons maintenant l’évolution d’un front représenté par une fonction im-
plicite φ. Le but est de contraindre l’évolution de ce front par certaines propriétés
de forme φM, modulo une transformation donnée A. Il est possible de modéliser
l’espace joint du front et de la transformation vers le modèle à priori en utilisant une
densité de probabilité. Soit [p(φ,A|φM)], la distribution à priori du couple (φ,A)
pour un modèle φM donné. Cette distribution n’est pas connue, elle varie entre
différents objets et elle ne peut pas être estimée dans le cas général. Cependant, les
méthodes d’échantillonnage dites de Monte-Carlo ou d’autres techniques peuvent être
utilisées pour retrouver ce type de distribution lorsque des informations empiriques
sont disponibles. En l’absence d’une telle connaissance, nous pouvons considérer une
formulation Bayésienne de cette densité:

p(φ,A|φM) =
p(φM|φ,A)
p(φM)

p(φ,A) =
p(φM(A)|φ)
p(φM)

p(φ,A).

Le terme constant p(φM) peut être ignore et l’espace joint des interfaces et des
transformations est supposé uniforme. Cette hypothèse est souvent considérée en
l’absence de connaissance sur les propriétés de l’objet à extraire. Ensuite, retrou-
ver l’interface optimale et la transformation est équivalent à trouver le maximum à
posteriori p(φM(A)|φ) obtenu en maximisant

p(φM(A)|φ) =
∏
x∈Ω

p(φM(A(x))|φ(x)).

où les pixels sont supposés indépendants. Il faut aussi tenir compte de la transforma-
tion du front φ dans une pose similaire de celle du modèle φM. Si l’on considère
une similitude (transformation rigide et facteur d’échelle), les variations d’échelle en-
traı̂ne des changements “prédictifs” de la fonction distance [111] et il doit être introduit
comme facteur multiplicatif de φ. Si on note s le facteur d’échelle, on obtient:

p(φM(A)|φ) =
∏
x∈Ω

p(φM(A(x))|sφ(x)).
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La distribution à priori [px()] est obtenue à partir de la phase de modélisation et trouver
le maximum à posteriori est équivalent à minimiser le potentiel obtenu en appliquant
la fonction − log:

E(φ,A) = − log

[∏
x∈Ω

p(φM(A(x))|sφ(x))

]
= −

∫
Ω

log(px(s φ(x))) dx

Modèle de forme statique: Si l’on considère un modèle de forme le plus simple
possible, i.e. une seule forme à priori φM, nous devons définir la probabilité du front
φ, modulo la transformation A. Une distribution Gaussienne en chaque voxel est con-
sidérée:

px(s φ(x)) = p(φM(A(x))|sφ(x)) =
1√
2πσ

exp
(
−(sφ(x)− φM(A(x)))2

2σ2

)
,

où σ représente la confiance en la forme à priori φM. En supposant que cette confiance
soit la même en tout point de l’image, l’évolution de front et les paramètres de la
transformation doit doivent minimiser l’énergie suivante:

Eshape(φ,A) =
1

2σ2

∫
Ω
(s φ(x)− φM(A(x)))2 dx.

Le facteur constant σ peut être omis ou remplacé par un poids lorsque ce terme
est utilisé comme module dans une énergie incluant un terme image. En limitant
l’intégrale au voisinage du niveau zéro de φ, nous obtenons l’expression analytique
suivante:

Eshape(φ,A) =
∫

Ω
δε(φ)(s φ(x)− φM(A(x)))2 dx, (18)

où δε est la version lissée de la fonction Dirac usuelle.

Modèle actif de forme: Lors de la phase de construction du modèle, nous avons
analysé les modes de variation principaux dans le jeu d’apprentissage. Incluant cette
information, la transformation idéale doit mettre en correspondance le front courant
avec la “meilleure” représentation par ensemble de niveaux appartenant à la famille
générée par notre modèle. Comme déjà mentionné, une forme φM appartenant a cette
classe peut être obtenue à partir des m modes de variation principaux:

φM = φs +
m∑

j=1

λj Uj .

Le modèle de forme est alors compose de la représentation moyenne φs et des modes
de variation principaux {Uj , j = 1..m}. Nous devons estimer [p(φ,A, λ|M)], la
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distribution jointe à priori de l’interface, de la transformation et des poids des modes
pour un modèle de forme donné. Une formulation Bayésienne de cette densité donne:

p(φ,A, λ|M) =
p(M|φ,A, λ)

p(M)
p(φ,A, λ) =

p(φM(A)|φ)
p(M)

p(φ,A, λ).

Le terme constant p(M) peut être ignore et la distribution jointe p(φ,A, λ) est sup-
posée uniforme. L’interface optimale, la transformation et les poids de modes sont
obtenus en maximisant:

p(φM(A)|φ) =
∏
x∈Ω

p(φM(A(x))|sφ(x)).

Un modèle plus complexe pourrait facilement être déduit à partir de la phase de
modélisation en apprenant la distribution marginale p(λ). En l’absence d’une telle in-
formation, nous gardons l’hypothèse d’une distribution uniforme. De la même manière
que pour le modèle statique, p(φM(A(x))|sφ(x)) est approximée par une Gaussienne
centrée en φM pour chaque pixel. Nous appliquons le fonction − log à cette densité et
nous limitons l’intégrale autour du niveau zéro de φ. Les paramètres optimaux doivent
alors minimiser l’énergie

Eshape(φ,A, λ) =
∫

Ω
δε(φ)

(
s φ(x)−

(
φs(A(x)) +

m∑
j=1

λj Uj(A(x))
))2

dx.

Extraction d’objets sous contrainte de forme

Dans ce paragraphe nous intégrons les deux différents modèles de forme que nous
venons de définir dans la méthode de segmentation présentée dans le chapitre 2.

Comme nous l’avons démontré précédemment, il est possible d’intégrer une in-
formation de forme à priori dans l’évolution de front représenté par un ensemble de
niveaux. Cette information peut donc être intégrée avec les termes images proposés
dans les chapitre 2 et 3. Le terme d’attache aux données conduira l’interface vers
l’objets d’intérêt alors que l’à priori sur la forme garantira que la forme reste en accord
avec le modèle de la forme de l’objet. Pour cela, nous pouvons intégrer les contraintes
de forme dans la formulation Bayésienne du chapitre 2. Dans le cas de l’extraction
d’un seul objet dont le contour est donné par un ensemble de niveaux φ, la formulation
Bayésienne du chapitre 2 s’écrit

p(φ|I) ∝ p(I|φ)p(φ).

Le premier terme de cette expression a été intensivement étudié dans les chapitre 2
et 3 mais le second terme n’a jusqu’ici été utilisé que pour introduire une contrainte
de régularité sur l’interface. Nous pouvons maintenant définir un terme plus ciblé en
intégrant des modèles de forme. La formulation variationnelle correspondante sera
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composée de deux termes: un module image ou d’attache aux données et un module
de contrainte sur la forme.

Dans le cas d’un à priori statique sur la forme, la fonctionnelle suivante doit être
minimisée:

E(φ,A) = bEshape(φ,A) + (1− b)Edata(φ),

où Eshape est le terme d’attraction vers la forme à priori, Edata est le module image et
le poids b permet de contrôler l’influence de chacun des termes.

Comme nous l’avons démontré dans le paragraphe précédent, le modèle actif de
forme peut aussi être incorporé de manière dynamique dans un tel processus de seg-
mentation en optimisant par rapport aux poids des modes de variation retenus dans le
modèle:

E(φ,A, λ) = bEshape(φ,A, λ) + (1− b)Edata(φ).

La minimisation de ces deux fonctionnelles par rapport à φ et A est effectuée
par descente de gradient. Quand aux poids des modes de variation présents dans
la deuxième énergie, leurs valeurs optimales peuvent être facilement estimées en
résolvant un système linéaire après chaque évolution du front.

Chapitre 5
Segmentation d’un champ de densité de probabilité 3D: ap-
plication à l’IRM de diffusion

Dans ce chapitre, nous proposons trois approches originales pour la segmentation d’un
champ de densités de probabilités 3D. Ce travail a de nombreuses applications en im-
agerie médicale, en particulier pour les images de diffusion à résonance magnétique
où une fonction représentant le mouvement moyen des molécules d’eau est assignée
à chaque voxel. L’extraction automatique de structures importantes dans la matière
blanche, telles que le corpus callosum, pourrait permettre d’améliorer grandement
notre connaissance des connectivités cérébrales. Dans la première approche, nous
utilisons une loi Gaussienne multivariée afin d’approximer la distribution des com-
posantes du tenseur de diffusion à l’intérieur de chaque sous région du volume DTI.
La seconde technique est basée sur la version symétrisée de la distance de Kullback-
Leibler et de la modélisation de sa distribution dans chaque région d’intérêt. Dans
la troisième approche, nous considérons la variété statistique de dimension 6 définie
par les paramètres du tenseur de diffusion et nous proposons un nouvel algorithme
en définissant distance géodésique et moyenne intrinsèque dans cette variété Rieman-
nienne. Les formulations variationnelles du problème conduisent à trois évolutions
différentes sur des ensembles de niveaux qui convergent vers la segmentation opti-
male correspondante. Nous validons ces approches sur des données synthétiques et
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nous montrons des résultats prometteurs pour l’extraction du corpus callosum et des
ventricules latéraux.

Conclusion

Un cadre de travail général pour la segmentation non-supervisée d’images a été
présenté dans cette thèse. Une évolution de front basée région a été obtenue à partir
d’une formulation Bayésienne du problème. La méthode proposée améliore celles ex-
istantes et propose différentes extensions. Cela nous a permis d’extraire des structures
avec une grande précision dans une grande variété d’images naturelles et médicales.
La principale contribution de cette thèse est la définition d’un cadre général permettant
d’incorporer différents attributs pour résoudre le problème de la segmentation dans des
cas pratiques. Cet objectif a été atteint en combinant et en améliorant plusieurs tech-
niques de l’état de l’art:

1. Nous avons introduit une évolution de front basée région issue d’une formulation
Bayésienne qui permet d’intégrer des modèles statistiques dans une approche
géométrique.

2. La représentation par ensembles de niveaux a été introduite pour définir la fonc-
tionnelle de partitionnement, conduisant naturellement à une évolution de front
implicite.

3. Des approximation paramétriques et non-paramétriques des densités de proba-
bilité régions ont été estimées de manière dynamique en parallèle à l’évolution
de courbe.

4. Des caractéristiques texture et mouvement ont été extraites et introduites dans
ce cadre de travail afin de traiter une plus grande diversité d’images.

5. Une approche implicite a été présentée pour modéliser et intégrer une connais-
sance à priori sur la forme des objets à extraire.

6. Cette approche a finalement été étendue à des données plus complexes à
valeurs matricielles, en particulier au cas des images de diffusion a résonance
magnétique.

Tout au long de cette thèse, nous étions concentré sur l’aspect non-supervisé des
approches présentées. Afin d’éviter des modèles statistiques trop compliqués dont
l’estimation des paramètres aurait pu être un frein important, nous avons essayé
d’identifier et d’extraire les informations importantes qui définissent les régions
d’intérêt dans un type d’image donné. Nous y sommes arrivé avec un certain succès
puisque nous avons démontré l’efficacité de nos approches en fournissant de meilleurs
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résultats que de nombreux travaux récents et avec une complexité moindre. Cependant,
en vu d’une robustesse accrue, l’apprentissage des quelques paramètres introduits et
l’utilisation d’estimateurs plus robustes pourraient être considérés. Nous pensons que
ce cadre de travail est une bonne base pour élaborer des systèmes efficaces d’analyse
et de reconnaissance d’images.

Nous concluons sur une vision plus générale du problème de segmentation pour
les images naturelles. Sur ce type d’images, ce que nous essayons d’accomplir en
intégrant différents attributs et de la connaissance à priori, c’est d’imiter le complexe et
toujours mystérieux système visuel humain. Les progrès effectués ces dernières années
en imagerie cérébrale apportent des moyens inespérés pour étudier ce système com-
plexe et pour comprendre comment nous, humains, effectuons ces taches d’extractions
d’objets. Afin de franchir les limites des méthodes d’analyse d’images actuelles et de
les rapprocher de nos propres performances, il pourrait être bénéfique de réunir infor-
maticiens et neurologistes afin de créer des modèles motivés biologiquement de plus
en plus proche de la réalité [80].



Chapter 1

Image Segmentation by Front
Evolution

Curve evolution was first proposed for image segmentation in the seminal work of
Kaas et al. [74]. This technique tries to find edges by evolving a curve in the image
domain, often referred to as a snake. The curve evolution was initially based on the
minimization of an energy functional defined along the curve, reflecting curve regu-
larity and overlap with image edges. In [74], the initial energy is composed of three
terms: the first two ones stand for intrinsic properties of the curve like smoothness
and elasticity while the last one is an external term whose role is to attract the curve
toward image edges. This work was a breakthrough in the very early development of
image segmentation and a whole part of the domain has been influenced by this view
of the problem. Various direct extensions of the Snake model were rapidly proposed
to overcome some of its important limitations. The principal problem was the need
for a very good initialization to obtain the expected result. The works of Blake and
Zisserman [15], Cohen [35], Berger [9], Fua and Leclerc [58] are some examples of
such contributions. However, these approaches did not remove the dependency on the
parameterization and the object topology had still to be known in advance. Then, a
step was taken when the Level-Set representation was introduced for front propaga-
tion. First discovered by Dervieux and Thomasset in [47, 48], it was later rediscovered
and more largely popularized by Osher and Sethian [106]. This implicit and intrinsic
representation of the contour gives a solution to the two main limitations of the active
contours mentioned above, namely the changes of topology and the parameterization
of the contour. Geometric properties of the curve can be easily approximated from the
Level-Set representation, like the curvature, the normal and tangent vectors. Therefore,
various geometric flows have been proposed, some based on an energy minimization
[76, 77, 28] and others [27, 34, 91]. Efficient schemes have also been proposed for their
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implementation, a detailed description can be found in [1]. Moreover, convergence and
stability as well as mathematical proof of existence and uniqueness of the solution have
been widely studied [132]. The Geodesic active contour model [76, 77, 28] is certainly
the most elegant one, where the segmentation problem is reformulated as the one of
finding a minimal geodesic path in a Riemannian space induced by image properties.

A more recent approach is the introduction of region-based terms to control the
evolution of the curve [171, 167, 30, 107, 122, 68]. While classical active contours
or front propagation consider only gradient information to define a stopping criterion,
region-based approaches use more global partitioning formulation which integrates
quantities over the whole image domain. Contrary to gradient-based approaches which
rely on local measures, they are more robust to the initial conditions and there are fewer
critical stopping functions to be tuned. Region-based active contours can be classified
in two classes: the first one is based on the Mumford-Shah functional or on Total
Variation minimization while the second one comes from a Bayesian formulation.

In the following, we give a detailed insight into the evolution of these techniques.
In the first part, we introduce classical contour evolution where the evolving curve
aims at finding image discontinuities/high gradients. The second part focuses on recent
contributions to region-based curve evolution techniques.

1.1 Boundary-based curve evolutions: from Snakes to geo-
desic active contours

1.1.1 The Snake model

The classical Snake model aims at finding image boundaries by moving a con-
tour/snake whose evolution is guided by internal as well as external forces. It was
initially formulated by the means of an energy minimization by Kaas et al. in [74].
Let I : Ω ∈ R2 → R+ be a scalar image, the Snake functional is defined along a
parameterized contour C : [0, 1] → Ω:

E(C) =
∫ 1

0
α|C′(p)|2 dp+

∫ 1

0
β|C′′(p)|2 dp− λ

∫ 1

0
|∇I(C(p))| dp. (1.1)

The first two terms stand for internal properties of the curve, rigidity and elasticity
respectively, while the last term is the external energy integrating image data. It is in-
tended to be minimum when the contour overlaps image boundaries (high gradients).
This seminal model has important limitations and numerous extensions and gener-
alizations have been proposed in the literature. The data term is for example quite
restrictive: image intensities may have quite a different dynamic in different images
and thus, a more general term should be considered.

An other important issue to be dealt with is the minimization of this energy. Simple
gradient descent-based methods were initially proposed to update a parametric repre-
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sentation of the contour until convergence. In this direct approach, the functional has
the disadvantages that it depends on the parameterization of the curve and topological
changes are not allowed. To resolve the parameterization issue, different types of basis
functions have been proposed [174, 117, 6, 44]. The most promising are B-splines [44]
for evolving contours in 2D images and finite elements [36, 95] for evolving surfaces
in 3D images or in higher dimension. Topological changes have also been introduced
in several works [95]. The level-set framework of Osher and Sethian [106] provides a
new way of representing evolving fronts which permits both issues to be resolved. The
major negative aspect of this new representation, compared to classical parametric con-
tours, is the additional computational cost. However, efficient and stable algorithms
are now available.

In summary, parametric active contours are still the most time-efficient and they
are often favored to level-sets in real-time applications. However, the level-set frame-
work permits new constraints to be defined, without worrying about the type of pa-
rameterization. Moreover, it is often possible to restrict the level-set evolution to a
small narrow-band around its zero level, decreasing dramatically the complexity. In
the next paragraph, we introduce very briefly this representation for evolving contours
or surfaces.

1.1.2 The level-set representation for front evolutions

The level-set representation was introduced for flame propagation by Osher and
Sethian in [106] and later for image segmentation by Malladi et al. in [92] (let us
note that the same idea was already present, almost ten years earlier, in the work of
Dervieux and Thomasset [47, 48]). This framework is well-suited for front evolution
and it has naturally become the standard way of expressing contour evolution tech-
niques [105]. Level-sets are implicit and intrinsic representations of interfaces of any
dimension, topological changes are naturally possible, efficient and stable numerical
schemes have been proposed and theoretical correctness can be provided by the theory
of viscosity solutions [39, 132].

The basic idea is to see the interface between two regions as the zero level of
a level-set function φ which is defined on the whole image domain Ω ∈ Rp. An
evolving front C : [0, 1] × R+ → Rp is then implicitly represented by a Lipschitz
function φ : Ω× R+ → R, i.e. verifying:

∃C ∈ R+,∀x,y ∈ Ω, |φ(x)− φ(y)| ≤ C‖x− y‖.

A common choice is the signed distance function which has other nice properties to
express geometric properties of the curve. It is defined as follows:

φ(x; t) =


0, x ∈ C(t)

+D(x, C(t)) > 0, x ∈ Cin(t)

−D(x, C(t)) < 0, x ∈ Cout(t) = [Ω− Cin(t)]
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Figure 1.1: Illustration of a level-set function obtained for a circle.

where D(x, C(t)) is the minimum Euclidean distance between the pixel x and C(t).
The signed distance function obtained for a circle is shown in [Figure 1.1]. Geometric
properties of the interface can be easily expressed with its implicit representation:

• The inward unit normal vector to C is N = − ∇φ
|∇φ| ,

• The mean curvature at any point of C can be directly estimated by: κ = ∇· ∇φ
|∇φ| .

These relations permit to rewrite easily classical contour evolutions. For example,
let us consider a simple front evolution without tangential component: Ct = FN . For
each point x(t) ∈ C(t), we have:

∂x(t)
∂t

= F (x(t))
∇φ(x)
|∇φ(x)|

and φ(x(t), t) = 0.

Then, applying the chain rule to the second relation, we obtain the following equality:

∂φ(x(t), t)
∂t

+∇φ(x(t)) · ∂x(t)
∂t

= 0.
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Now, we can deduce the evolution equation for the level-set function:

∂φ

∂t
+ F |∇φ| = 0, (1.2)

while the initial level-set φ(x, t = 0) is given by the initial curve C(t = 0) = C0.
For certain forms of speed functions F , the equation 1.2 is a standard Hamilton-Jacobi
equation and the corresponding theoretical analysis applies [132].
General curve evolutions with possible tangential speed (Ct = v) can be also embed-
ded in a level-set evolution. The corresponding evolution equation is a convection of
φ by the velocity field v:

∂φ

∂t
+ v · ∇φ = 0. (1.3)

Before ending this section, we review an important point of the level-set formula-
tion, namely the “re-distancing” step. This implicit way of propagating fronts remains
valid only if the level-set φ remains Lipschitz function. This has been an important
issue since there is no guarantee from the evolution equations that the level-set em-
bedding maintains such properties. The easier way to deal with this limitation is to
reinitialize the level-set to the distance function when is needed. Several methods have
been proposed for this task, one of the most used aims at solving the following PDE
[142]:

∂φ

∂t
= (1− sign (φ0)) (1− |∇φ|) ,

where φ0 is the level-set we wish to reinitialize. Another efficient re-distancing algo-
rithm is based on the Fast Marching technique [132] and has a very low complexity
in time but an interpolation step around the zero level makes it less accurate. From
our experience, a mixed approach appears to be the most accurate and efficient: the
PDE is used for reinitialization in a small neighborhood of the zero level while the
Fast Marching permits to extend the distance function to a larger band. Let us also
mention the elegant work of Gomes et al. [62] where the level-set evolution equation
was rewritten so that the level-set remains a distance function. However, this modifi-
cation may decrease the convergence speed of the evolution and the re-distancing step
is often preferred.

In this section, we have presented a general formulation which applies to evolv-
ing interfaces of any dimension. The next section will focus on the influence of this
framework on boundary-based curve evolution techniques. Then, the second section
will present region-based evolutions which also make use of the level-set formulation.
In particular, we will see how the level-set representation can be also useful as an op-
timization framework to define boundary as well as regional partitioning functionals.

1.1.3 Geometric active contours

The level-set representation [106] was initially used for geometric active contours by
Caselles et al. [27], Chopp et al. [34] and Malladi et al. [91]. They are based on
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the geometric heat equation Ct = κN , which permits to express internal properties
of the curve as in the Snake model by smoothing the curve. This flow can be directly
expressed with the level-set function φ:

∂φ

∂t
= |∇φ| div

(
∇φ
|∇φ|

)
. (1.4)

Following the idea of the Snake model, this equation must be modified in two ways to
be able to detect edges: (1) the evolving interface should be attracted toward the edges
and, (2) it should stop on the edges. For this purpose, a function of the image gradient
is generally defined such that:{

g
(
|∇Î|

)
→ 0 , if |∇Î| → ∞

g
(
|∇Î|

)
→ 1 , if |∇Î| ≈ 0

where Î is a smoothed version of the image, obtained from a convolution with a
Gaussian kernel. This function can be seen as an edge detector and a common choice
is:

g
(
|∇Î|

)
=

1
1 + |∇Î|n

, n = 1 or 2.

The heat flow is then modified as follows:

∂φ

∂t
= g
(
|∇Î|

)
|∇φ|

(
div
(
∇φ
|∇φ|

)
+ ν

)
. (1.5)

where ν is a balloon force [35] whose role is to push the curve toward a given direction.
This geometric flow has some nice properties: it will shrink or expand the curve (de-
pending on the sign of ν + κ) toward the image edges and thanks to the function g, its
speed will fall to zero on the edges. Moreover, the method benefits from the level-set
formulation and the contour can split or merge, making it able to detect objects with
arbitrary topology. However, the contour remains to be initialized completely inside or
outside the objects, the balloon force ν being set respectively positive or negative. An
other important practical limitation is the definition of the stopping function g. This
can be an arduous task because image gradients of edges may vary a lot for different
images and even inside one image. A badly defined stopping function will make the
contour go through the edge without any possible backward propagation.

1.1.4 Geodesic active contours

Geodesic active contours were proposed by Caselles et al. in [28] and by Kichenas-
samy et al. in [76, 77]. Being a natural extension of geometric active contours, the
geometric flow is obtained from the minimization of a given functional and an addi-
tional term that improves the evolution appears. In both papers, [28] and [76, 77],
similar flows are obtained but following slightly different formulations.
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In [28], the authors start from the classical snakes approach [74]. Neglecting the
rigidity term, the snakes model is modified to:

E(C) = α

∫ 1

0
|C′(p)|2 dp+ λ

∫ 1

0
g(|∇I(C(p))|)2 dp, (1.6)

where g() is function of the image gradient as the one defined in the last paragraph.
While only the ratio α

λ has to be fixed, this energy still depends on the parameterization
of the curve. Thanks to the Maupertuis’Principle, Caselles et al. proposed in [28] to
reformulate the problem of minimizing (1.6) by the one of finding the curve of minimal
geodesic length in a Riemannian space whose metric is induced by image gradients1.
The reformulation introduces a single free parameter corresponding to the difference
between the internal and external parts of the energy (1.6), i.e. the trade-off between α
and λ. The choice of this parameter is discussed [28]. Setting it to 0, minimizing (1.6)
is shown to be equivalent to the minimization of the intrinsic energy:

E(C) =
∫ 1

0
g(|∇I(C(p))|)|C′(p)| dp =

∫ L(C)

0
g(|∇I(C(p))|) ds, (1.7)

where ds = |C′(p)| dp.
Then, the problem of fitting the curve to the image edges is translated to the one

of finding geodesics of minimal distance curves in a Riemannian space by minimizing
(1.7). Taking the first variations of (1.7) (we refer to [76, 77, 28] for details), the
direction that minimizes the length as fast as possible is given by:

∂C
∂t

= g()κN − (∇g() · N )N .

This curve evolution can be expressed with a level-set function and the corresponding
flow is then

∂φ

∂t
= g() |∇φ| div

(
∇φ
|∇φ|

)
+∇g() · ∇φ.

This evolution equation shares almost the same first term with the geometric evolution
equation (1.5). The additional weight ν is generally also introduced in this new evolu-
tion to improve convergence speed. Then, we obtain the final geodesic active contour
model:

∂φ

∂t
= g() |∇φ|

(
div
(
∇φ
|∇φ|

)
+ ν

)
+∇g() · ∇φ. (1.8)

Now, the only difference with geometric active contours is the new term ∇g() · ∇φ.
This term improves the geometric flow in several aspects: the attraction toward the
edges is increased when the contour gets close to them, the curve evolution is no more
“one way” and the cases where the contour did not stop on low contrast edges are

1The equivalence between geodesic active contours and a modified version of the classical Snake
model was further analyzed in [5].
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more easily handled without setting a complex stopping function, the weight ν is only
an optional parameter that is introduced to increase the convergence speed.

Despite the improved flexibility of this last evolution becomes in terms of initial-
ization and choice of boundary function, this approach remains very local. The contour
will be attracted to the closest edges and in homogeneous parts, the speed of the evo-
lution will be only controlled by the artificial force ν. Several extensions have been
proposed to overcome this last limitation. Siddiqi et al. proposed in [133] a shape and
area minimizing flow whose level-set form is:

∂φ

∂t
(x) = α

(
g() |∇φ| div

(
∇φ
|∇φ|

)
+∇g() · ∇φ

)
+

1
2

div (xg()) |∇φ|, (1.9)

where the second term minimizes the area enclosed by the contour and provides the
inflatory term ν, artificially introduced before, as well as a new attraction force in the
vicinity of edges.

Gradient Vector Flows [166] lead to important improvements. They permit to at-
tract the contour to an edge for any initialization by normalizing and extending edge
attraction terms to the whole image domain. This extension permits also to increase
the robustness with respect to holes along boundaries, hence reducing leak problems.
However, the contour will still converge toward the closest edges and important object
boundaries may be missed. In several applications, a good guess of the object bound-
aries may be available and this will not be an issue. However, without such knowledge,
these techniques require manual initializations. Relying on more global information
(not only along the curve) may help in improving the robustness with respect to the
initial curve position. As we will see in the next section, the minimization of a region-
based functional drives to a new curve evolution where the region-based part can be
seen as an adaptive balloon force which makes the approach much more independent
to the initialization.

Before starting with region-based front evolutions, we want to emphasize that geo-
desic active contours and area minimizing flow have been deeply studied and mathe-
matical proofs of correctness and existence of the solution are established.

1.2 Region-based contour evolutions

Region-based contour evolutions are defined from a global functional and they are
intended to give a complete partitioning of the image domain. This vision has been
shown to be quite promising to improve classical active contours and many recent
works are based on this approach [102, 81, 171, 167, 30, 31, 144, 107, 122, 120, 68].
Before describing some of these works, we first show how the level-set formulation
can be an efficient framework to define regional criteria. Then, we present two classes
of region-based contour evolution techniques: the first one is based on the Mumford-
Shah functional while the second one comes from a Bayesian formulation.
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Figure 1.2: Heaviside and Dirac functions with ε = 1

1.2.1 The level-set representation as an optimization framework

The level-set representation can be also usefull as an optimization framework [170].
Let δ and H denote the usual Dirac and Heaviside functions. These functions permit
to define quantities along the curve or over the inside/outside region:

Ecurve =
∫

Ω
|∇H(φ)| f(x, C) dx =

∫
Ω
δ(φ)|∇φ| f(x, C) dx,

Ein =
∫

Ω
Hα(φ(x)) fin(x, C) dx, Eout =

∫
Ω
(1−Hα(φ(x))) fout(x, C) dx.

For example, we can obtain the length of the interface from the first energy by setting
f to 1 and the other ones will furnish the area of the respective region for a similar
choice. Regularized versions of the Heaviside and Dirac functions must be used for
implementation, a possible choice is the following one:

Hε(φ) =


1, φ > ε

0, φ < −ε
1
2

(
1 +

φ

ε
+

1
π

sin
(
πφ

ε

))
, |φ| < ε.

δε(φ) =


0, |φ| > ε

1
2ε

(
1 + cos

(
πφ

ε

))
, |φ| < ε.

A general region-based partitioning objective functional can be written by asso-
ciating a penalty function ei to each pixel of the region Ωi. Assuming the number
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of regions to be known and equal to N , a continuous formulation can be written by
integrating these “error” functions on the corresponding regions:

E({Ωi, i = 1..N}) =
∑

i

∫
Ωi

ei(x) dx. (1.10)

The simple binary case of bi-partitioning can be easily expressed within the level-set
framework. Using the same notations as in the previous section, one level-set φ stands
for the implicit representation of the interface between Ω1 and Ω2. The expression of
(1.10) for N = 2 is then:

E(φ) =
∫

Ω

(
Hε(φ(x))e1(x) + (1−Hε(φ(x)))e2(x)

)
dx. (1.11)

The generalization to N regions is more challenging. The idea is to couple a set of
level-set functions Φ = {φ1, . . . , φn} by defining a characteristic function χi(Φ) for
each Ωi such that: {

χi(x) > 0, if x ∈ Ωi

χi(x) = 0, otherwise
(1.12)

Two other constraints must be added to respect the partitioning definitions∪N
i=1Ωi = Ω

and for all i 6= j, Ωi ∩ Ωj = ∅.
A straightforward choice to verify (1.12) is to associate one level-set φi to each

region Ωi and then the corresponding characteristic function is defined as Hε(φi). A
coupling term must be generally added if the energy minimization does not maintain
the partitioning constraint valid as in [170]. Yezzi et al. also proposed in [167] to
couple several contour evolutions to segment an arbitrary number of regions. Using N
coupled contour evolutions, they are able to segment the image inN+1 regions. Also,
the coupling between the curves is not an “artificial” additive term but it is obtained
from the definition of binary and ternary flows.

In [30], Chan and Vese proposed an other way of defining these charac-
teristic functions that has two nice advantages: (i) only log(N) level-sets are
necessary to represent N regions and (ii), the partitioning constraint is naturally
maintained by construction. Their idea is to define a characteristic function from
each logical combination of the level-sets’ signs. For example, if two level-sets
φ1 and φ2 are considered, 4 regions can be represented by the combinations
{(φ1 > 0, φ2 > 0), (φ1 < 0, φ2 > 0), (φ1 > 0, φ2 < 0), (φ1 < 0, φ2 < 0)}. The
re-definition of the energy with a combination of Heaviside functions of the level-sets
is direct.

The next two parts present two different classes of region-based contour evolutions
for image segmentation. The first class starts from the Mumford-Shah functional and
is purely based on geometric properties of images. Two cases are presented, both try-
ing to solve the segmentation problem within the level-set framework. The first one is



1.2 Region-based contour evolutions 51

restricted to a simplification of the general Mumford-Shah functional by assuming the
image to be well-approximated by a piece-wise constant model. The second one pro-
poses an optimization framework for the general case of a piece-wise smooth model.
The second class of methods is based on a Bayesian formulation where geometric and
statistical concepts are combined. Geometric properties are intrinsic to the contour
evolution technique while statistical properties of each region can be learnt from the
intensity histogram or from filter responses. Moreover, several links between these
two different approaches for particular/asymptotic cases will be presented.

1.2.2 The Mumford-Shah functional

The week membrane model [102, 15] assumes that the image can be approximated by a
piece-wise smooth image. Mumford and Shah proposed in [102] to obtain this “ideal”
representation u of the image I by minimizing the following functional:

EMS(u, C) =
∫

Ω
|u(x)− I(x)|2 dx + µ

∫
Ω\C

|∇u(x)|2 dx + ν|C|. (1.13)

The interpretation of the three terms of this energy is straightforward: the first one
is the usual mean-square data term, the second one makes the cartoon model smooth
everywhere but on the image discontinuities and the last one enforces the boundaries
C to be smooth too. This functional is closely related to the general total variation
minimization functional [127] but here, image discontinuities are introduced explicitly
with C. However, since the level-set representation permits to express implicitly these
discontinuities, both functionals may be equivalent by restricting u to a certain family
of functions. Such examples can be found in the first chapter of [105].

Active Contours Without Edges - Chan and Vese [30]

Rather than minimizing the Mumford-Shah functional (1.13) for a general function
u, Chan and Vese considered in [30] an easier one, “the minimal partition problem”
[103], assuming u piecewise constant. If {Ωi, i = 1..N} is a partitioning of the image
and u(x) = ci for x ∈ Ωi, the Mumford-Shah functional (1.13) can be simplified as:

E0
MS(u, C) =

N∑
i=1

∫
Ωi

|ci − I(x)|2 dx + ν|C|. (1.14)

In [30], the authors proposed to represent implicitly the boundaries C, using a com-
bination of level-set functions. In the simplest case of bi-partitioning, one level-set is
sufficient and the above energy can be re-written the following way:

E0
CV (c+, c−, φ) =

∫
Ω
|c+ − I(x)|2Hε(φ(x)) dx +

∫
Ω
|c− − I(x)|2(1−Hε(φ(x))) dx

+ ν

∫
Ω
|∇Hε(φ(x))| dx.

(1.15)
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This energy must be minimized with respect to two types of parameters, the re-
gion constants c+ and c− and the level-set function φ. A two-step approach is em-
ployed [30]: at fixed φ, the optimal constant c+ and c− are nothing but the empir-
ical intensity means in the corresponding regions: c+ =

∫
Ω I Hε(φ)/

∫
ΩHε(φ) and

c− =
∫
Ω I (1−Hε(φ))/

∫
Ω(1−Hε(φ)), and the level-set is updated according to the

following evolution equation:

∂φ

∂t
= δε(φ)

(
ν div

(
∇φ
|∇φ|

)
− |c+ − I|2 + |c− − I|2

)
. (1.16)

This method is quite efficient to segment scalar images that can be modeled by a piece-
wise constant function. In such cases, the regularization term permits to deal with
noisy data by imposing spatial regularity of the contour. However, no noise model
is integrated and thus, the regularization weight ν must be increased for highly noisy
images. This can bring two important drawbacks: (i) sharp edges of the objects to be
detected will be smoothed and (ii), the convergence2 speed decreases when ν increases
because the schema is not stable. In Section 1.2.3, a similar contour evolution is ob-
tained from a Bayesian formulation which can be seen as a direct extension of this
model but integrating intensity variances over each region.

The case of N regions is also considered with the coupling of log(N) level-sets as
presented before. In [29], the authors proposed a similar method to deal with vector-
valued images. Next to the straightforward use of vector means as region approx-
imations, logical operators can be defined to design channel-selective segmentation
strategies.

Level-set implementation of the Mumford-Shah functional

The extension of the Active Contours Without Edges [30] approach to the more general
piecewise smooth model was proposed in [31] and [144]. The idea is still to use a
combination of level-set functions to represent the boundaries but a general smooth
function ui is considered instead of a constant to model image intensity on each region
Ωi. The corresponding bi-partitioning functional is:

ECV (u+, u−, φ) =
∫

Ω
|u+(x)− I(x)|2Hε(φ(x)) dx

+
∫

Ω
|u−(x)− I(x)|2(1−Hε(φ(x))) dx

+ µ

∫
Ω
|∇u+(x)|Hε(φ(x)) dx + µ

∫
Ω
|∇u−(x)|(1−Hε(φ(x))) dx

+ ν

∫
Ω
|∇Hε(φ(x))| dx.

(1.17)

2The existence of a minimizer for this functional and more generally for the Mumford-Shah functional
has been proved in [103].
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This energy must be minimized with respect to the three different functions u+, u−

and φ. In both works [31, 144], the authors obtained the same system of coupled
equations:

u+ = I + µ∆u+ on {φ > 0}, ∂u
+

∂N
= 0 on {φ = 0} ∪ C,

u− = I + µ∆u− on {φ < 0}, ∂u
−

∂N
= 0 on {φ = 0} ∪ C,

∂φ

∂t
= δε(φ)

(
ν div

(
∇φ
|∇φ|

)
− |u+ − I|2 + |u− − I|2 − µ|∇u+|2 + µ|∇u−|2

)
.

(1.18)

This approach permits to segment and restore an image at the same time. The segmen-
tation takes benefit from the smoothed image while the smoothing integrates explicitly
the contour position as discontinuities. Contrary to the piecewise constant model, un-
connected components may have different intensity properties and thus, only two cou-
pled level-sets permit to extend the method to an arbitrary number of regions, thanks
to the Four Color Theorem [31].

However, several issues remain open, as the balancing strategy between the two
parallel optimization processes. As mentioned in the seminal work of Mumford and
Shah, it is still not clear how far the two Poisson equations in (1.18) should be con-
ducted at each iteration step of the contour evolution. The time complexity may also
be critical since after each displacement of the curve, a new smoothing process has to
be done on each part of the image.

An other important limitation is the piece-wise smooth model which is limited
to a very small set of images. As soon as regions are textured, the method cannot
be applied. In the next section, we present a parallel way of tackling non-smoothed
images which leaves out the Mumford-Shah model but introduces statistical analysis
over regions within a variational framework.

1.2.3 Bayesian formulation

The Bayesian formulation for image segmentation is based on the assumption that
pixel intensities within each region are the realization of a “random” process with a
given density function. Let pi be the probability distribution in the region Ωi, Paragios
and Deriche showed in [107] that assuming pixel intensities to be independent realiza-
tions of the corresponding random process, the maximum a posteriori partitioning of
the image can be obtained by minimizing the energy:

E({Ωi, i = 1..N}) = −
∑

i

∫
Ωi

log pi(I(x)) dx (1.19)

The spatial structure of the image is only visible through the unknown regions Ωi and
if no additional spatial constraint is imposed, this functional is a simple clustering
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criteria of a set of random variables. This equation is spatially constrained by adding
a regularization term on the interface C between the regions Ωi:

E({Ωi, i = 1..N}) = −
∑

i

∫
Ωi

log pi(I(x)) dx + ν|C| (1.20)

Several works are based on this functional. For example, in [171], Zhu et al. con-
sidered this functional for gray, color and textured images and they showed the
equivalence with a minimum descriptor length (MDL) based criteria [81] as well as
the Mumford-Shah functional by choosing Gaussian probability densities and setting
µ→∞ in (1.13).

Geodesic active regions

The geodesic active regions (GAR) framework was presented by Paragios et al. in
[107]. Their approach combines the MAP region-based term of equation (1.20) with
the geodesic active contour model (1.7). This model permits to obtain a speed function
that is controlled by global region properties while accuracy on boundaries is guaran-
teed by the boundary term. The objective functional of the GAR model is:

E({Ωi, i = 1..N}) = −
∑

i

∫
Ωi

log pi(I(x)) dx + ν

∫ 1

0

∣∣∣∣∂C∂p
∣∣∣∣ g() dp (1.21)

Another contribution in [107] is the generalization of the boundary function g(), which
was initially a direct function of image gradients, to a function of a predefined probabil-
ity density function of edge points. This probability density function is usually learnt
from a selected set of edge detectors. For the minimization of the energy (1.21), the
authors introduced one level-set to represent each region. A partitioning in N regions
of the image is then obtained through the following system of evolution equations:

∀i ∈ [1, N ]

∂φi

∂t
= |∇φi|

(
ν

(
g()κi +∇g() · ∇φi

|∇φi|

)
+ log

pi(I)
pOi(I)

) (1.22)

where Oi is the competing region at the current pixel. A coupling force was also
proposed to avoid vacuum and overlaps between regions, driving to a more complex
system.

Until now, region probability densities were not specified. A straightforward ap-
proach is to apply a clustering technique on the image intensity histogram. In [107],
Gaussian densities or mixtures of Gaussian densities (for textured images) were learnt
a priori from image intensity or filter responses (for textured images). In the early
Region Competition approach proposed by Zhu et al. [171], single Gaussians where
used for each region but their parameters were estimated dynamically during the curve
evolution process, following the Expectation-Minimization algorithm [65]. In the fol-
lowing section, we revisit this approach using the level-set framework and we show the
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similitude with the Active Contours Without Edges model of section 1.2.2 and other
recent works.

Expectation-minimization approach

Following [122, 120], we introduce the statistical parameters as unknowns. For the
sake of simplicity, we start with the simplest case of bi-partitioning and we consider
only the Euclidean curve length as regularization. The image is assumed to be com-
posed by two regions Ω1 and Ω2, and each region intensity distribution can be approx-
imated by a single Gaussian:

pi(I|µi, σi) =
1√
2πσ2

i

e
− (I−µi)

2

2σ2
i

Using one level-set φ as implicit representation of the interface between Ω1 and Ω2,
the corresponding MAP energy (1.21) can be written as follow:

E(φ, {µ1,2, σ
2
1,2}) =

∫
Ω
Hε(φ)

(
log(2πσ2

1) +
(I(x)− µ1)2

2σ2
1

)
dx

+
∫

Ω
(1−Hε(φ))

(
log(2πσ2

2) +
(I(x)− µ2)2

2σ2
2

)
dx + ν|C|

(1.23)
This energy is minimized by following an Expectation-Minimization algorithm: at
fixed φ, the optimal statistical parameters are estimated, then the energy is minimized
with respect to φ and both steps are iterated until convergence. For a fixed level-set
function, close form of the optimal statistical parameters can be easily obtained from
the derivation:

µ1 =

∫
Ω I(x)Hε(φ(x)) dx∫

ΩHε(φ(x)) dx
, σ2

1 =

∫
Ω(I(x)− µ1)2Hε(φ(x)) dx∫

ΩHε(φ(x)) dx
,

µ2 =

∫
Ω I(x)(1−Hε(φ(x))) dx∫

Ω(1−Hε(φ(x))) dx
, σ2

2 =

∫
Ω(I(x)− µ2)2(1−Hε(φ(x))) dx∫

Ω(1−Hε(φ(x))) dx
.

(1.24)
Then, the minimization step is done through the following gradient decent:

∂φ

∂t
= δε(φ)

(
ν div

(
∇φ
|∇φ|

)
− (I − µ1)2

2σ2
1

+
(I − µ2)2

2σ2
2

− log
σ2

1

σ2
2

)
(1.25)

Remark 1: Setting the variances to one gives exactly the same evolution equation
as the one obtained for the Active Contours Without Edges model (1.16). Here, the in-
troduction of the variance permits to capture naturally regions with different variances
and noisy images are more easily handled.

Remark 2: In [68], Jehan et al. obtained the same evolution equation but con-
sidering a slightly different formulation of the problem. Region statistics are also
assumed to be Gaussian and their parameters (means and variances) are set to their
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empirical estimation while in the Bayesian formulation, these estimates are obtained
from the minimization of the energy (1.23). Then, the authors propose to segment the
image by minimizing region descriptors depending on region variances. The entropy
of Gaussian densities is one of these descriptors and the following functional has to be
minimized:

E(C) =
∫
Cin

log(σ2
1(C)) +

∫
Cout

log(σ2
2(C)) + ν|C| (1.26)

The level-set formulation is not introduced in the energy but an Eulerian minimization
approach is employed. Once the gradient descent is estimated for C, the authors in-
troduce the level-set formulation to represent implicitly the evolving contour and the
evolution equation (1.25) is obtained.

Kernel density estimation

Rather than considering Gaussian densities, which is quite restrictive on region in-
tensity distributions, a kernel-based estimation of these distributions can be introduced
within a variational framework. Actually, a Gaussian model assumes the image to have
piecewise smooth intensities but once textured objects are present, this assumption is
no longer valid. In [78], Kim et al. proposed to consider the Parzen window estimator
for textured gray images. The intensity distribution in a region Ωi is estimated by:

pi(I) =
1
|Ωi|

∫
Ωi

gσ(I − Î(x)) dx (1.27)

where gσ(z) = (2πσ2)−1/2exp(−z2/2σ2) is a Gaussian kernel with standard devia-
tion σ. The objective function for bi-partitioning is then:

E(C) =−
∫
Cin

log
(

1
|Cin|

∫
Cin

gσ(I(x)− Î(x̂)) dx̂
)
dx

−
∫
Cout

log
(

1
|Cout|

∫
Cout

gσ(I(x)− Î(x̂)) dx̂
)
dx + ν|C|

(1.28)

This functional is composed by nested region integrals; the calculus of variations of
such types of functionals was studied in [4]. Using these Shape Derivatives tools and
applying the chain rule, the following gradient descent is obtained for the implicit
representation of C:

∂φ

∂t
(x) = δ(φ)

(
ν div

(
∇φ
|∇φ|

)
︸ ︷︷ ︸

Regularization

+ log
pCin(I(x))
pCout(I(x))︸ ︷︷ ︸

Region Competition

+
∑

CX={Cin,Cout}

1
|CX |

∫
CX

gσ(I(x)− I(x̂))
pCX

(I(x̂))
dx̂

︸ ︷︷ ︸
Additional Term

)
.

(1.29)
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If we compare this evolution equation to the static case given in equation (1.22), a new
term appears which accounts for region density variations. Even if this density estima-
tion does not make use of a parametric representation of region intensity distributions,
this approach is not parameter-free since the kernel size σ has to be chosen. Actually,
this parameter is very important to remove noise and to capture density modes, but
a heuristic choice is not possible in general. However, a multi-scale strategy can be
employed, similarly to simulated annealing, by minimizing the functional (1.28) suc-
cessively for decreasing standard deviation σ, initializing the contour from its last final
position. This strategy permits to obtain the good segmentation for the ideal σ and the
contour should keep this position for lower σ, thanks to the regularization constraint
on the contour. A remaining issue is the assumption of similar noise properties for
each region.

1.3 Conclusion

We have presented a short summary of contour evolution in image segmentation. Two
different types of contour evolution have been considered: boundary-based and region-
based. Boundary-based methods were the natural formulation of early evolution tech-
niques but strong limitations were present, in particular concerning the initial contour
position. On the other hand, region-based methods are more global by minimizing
a functional defined on the whole image domain. The contour evolution is guided
by region information and its initial position is no longer so important. While most
region-based techniques only incorporate a length regularization as boundary term,
the geodesic active contour model can be integrated within a region-based formula-
tion [107], taking benefits from both methods. Two classes of region-based techniques
have been presented. The first one is purely based on geometric properties while the
second one incorporates statistical models of each region. The geometric view of the
problem is elegant and may perform well. However, in most cases, images are subject
to noise or unknown perturbing phenomena and the introduction of statistical mod-
els is necessary. Motivated by a Bayesian formulation, the second technique models
region statistics and so, it can handle a wider range of natural and real images.

In the next chapter, we revisit the region-based method presented in [107]. Scalar
and vector-valued images are considered with parametric and non-parametric approx-
imations of pixel values distribution over each region. The main contribution is the
estimation of region statistics during the partitioning process itself.
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Chapter 2

Bayesian Region-Based Front
Evolution

In this chapter, a region-based front evolution is obtained from a Bayesian formulation
of the image partitioning problem. This approach has been favored in this thesis for
several reasons. The choice of a region-based approach seems to be the best one to
define robust algorithms which can deal with a large set of images and with arbitrary
initializations. Besides, since the main objective of this thesis is the incorporation
of different cues within front evolution, the chosen framework need to incorporate a
decision process to dynamically select relevant cues and the Bayesian formulation is
well adapted for this task.

Our objective functionals are issued from the one presented in Section 1.2.3. Sev-
eral works [81, 171, 107] have proposed to use very similar optimization criteria from
different formulations. In [81, 171], this energy was obtained from a Minimum De-
scriptor Length [50] criteria while in [107], it was proven to be equivalent to an ap-
proximation of the maximum a posteriori (MAP) frame partition by making several
explicit assumptions/simplifications.

In the next part, we recall this MAP formulation and we discuss the validity of
the assumptions and the possibilities of removing them. Then, we revisit this seg-
mentation criteria with the level-set formulation and we introduce region statistics as
unknown parameters. Applications to scalar and vector-valued images are considered
for parametric and nonparametric distributions. This framework is validated on numer-
ous synthetic and real images. In the last section, we present several similarities with
classical clustering techniques and we discuss the advantages of geometric methods
when dealing with images.
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2.1 Maximum a posteriori frame partition

Following [107], we consider pS(P(Ω)|I), the a posteriori frame partition probability,
given the observed image I . The optimal partition of the image is obtained by maxi-
mizing this probability according to the associated hypothesis. The Bayes rule permits
one to express this probability as:

pS(P(Ω)|I) =
p(I|P(Ω))
p(I)

p(P(Ω)), (2.1)

where p(P(Ω)) and p(I) are respectively the probability of a partition P(Ω) and the
probability of an image I . The third term, p(I|P(Ω)) represents the a posteriori seg-
mentation probability of the image I , given the partition P(Ω). When segmenting a
given image, the term p(I) is constant and (2.1) simplifies to:

pS(P(Ω)|I) ∝ p(I|P(Ω))p(P(Ω)).

2.2 Partition constraint

The term p(P(Ω)) allows for the integration of a priori knowledge about the image
partition. When, in a particular application, shapes keep similar properties from one
image to another, learning prior shape distributions from training samples may be of
great interest to design this term. Chapter 4 is dedicated to the modeling and introduc-
tion of such information but, right now, we consider a more general constraint, using
this term to express geometric regularity on the border between image regions. Let C
be this interface, a simple regularization constraint can be imposed by favoring image
partitions with the shortest interface:

p(P(Ω)) ∝ e−ν |C|

where |C| is the length of the interface and ν, a weighting constant controlling the
regularization.

2.3 Region-based term

Now, we concentrate on the term p(I|P(Ω)), the a posteriori segmentation probability
for the image I , given the partition P(Ω). This probability cannot be recovered in the
general case and several simplifications have to be done. First, we assume the image
domain Ω to be composed of N regions: P(Ω) = {Ω1, . . . ,ΩN} with no correlation
between region labeling. Then, we can write:

p(I|P(Ω)) = p(I|{Ω1, . . . ,ΩN}) = p(I|Ω1)p(I|Ω2) . . . p(I|ΩN )

where p(I|ΩX) denotes the probability of having the image I when ΩX corresponds
to a region of interest.
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Another important approximation is generally made by assuming pixels inside a
region to be independent and identically distributed realizations of a same random
process. This permits us to replace region distributions by the joint probability of the
pixels belonging to the region:

p(I|P(Ω)) =
∏

x∈Ω1

p(I(x)|Ω1)
∏

x∈Ω2

p(I(x)|Ω2) · · ·
∏

x∈ΩN

p(I(x)|ΩN )

This approximation is generally not valid since image intensities are often character-
ized by local spatial relations as modeled in the Markov Random Field theory. In the
case of textured images, these spatial relations are the main characterization of the
regions of interest. Therefore, this model is only valid for piecewise smooth images.
Nevertheless, as we will see in the chapter 3, spatial filters can be applied to the image
to extract pertinent features that can be used for the segmentation.

2.4 Energy formulation

The maximization of the a posteriori segmentation probability is equivalent to the
minimization of the obtained energy after applying the negative logarithm:

E({Ω1, . . . ,ΩN}) = −
∑

i

∫
Ωi

log p(I(x)|Ωi) dx + ν |C| (2.2)

This energy was presented in Section 1.2.3 and it is the basis of several works [81,
171, 129, 107]. The MAP formulation permits all the approximations that are needed
to obtain this criteria to be made explicit. Then, it becomes easier to understand which
conditions should be verified by an image so that it can be segmented by this approach.
Let us recall the principal simplifications and their consequences on the possible set of
images:

1. The partition constraint is approximated by a regularization on the interface: this
has no limitation on the type of image, but in a given application, the distribution
of possible partitions can be learnt a priori and it may be useful to constraint the
optimization process. This issue will be studied in Chapter 4 of this thesis.

2. The image domain Ω is composed of N regions: the number of regions need to
be known a priori, limiting the unsupervised aspect of the approach. However,
heuristics can be used to decide whether two regions can be merged or not like
in [20].

3. Pixels within a region are independent and identically distributed realizations
of a random process: this is actually the strongest assumption of the approach.
It restricts the set of possible images to piecewise smooth images. A two-step
approach will be considered in Chapter 3 to deal with a wider range of images.
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As explained in Section 1.2.3, a regularization term on the interface is necessary
to include spatial constraints. While a simple length constraint as the one considered
so far is generally employed, more complex boundary-based terms can be used to inte-
grate image features on the interface. In [107], the geodesic active contour functional
stands as the boundary term.

Comparing the works presented in [81, 171, 129, 107], several important differ-
ences arise. In [171], a region competition approach is employed to segment gray,
color and textured images. Region densities are approximated by Gaussian distribu-
tions whose parameters are estimated during the optimization process. In [129], the
use of the energy is limited to the task of classification while region densities are
learnt a priori. Finally, in [107], region densities are still known in advance but the
region-based classification is fused with the geodesic active contours, driving to a new
partitioning energy referred as geodesic active regions.

2.5 Adaptive region-based segmentation

In this section, we consider the energy (2.2) with different types of region probability
densities. The estimation of these densities is done online, i.e. during the optimiza-
tion process itself. This can be achieved by optimizing the objective functional with
respect to region statistics in parallel to the partitioning. Parametric as well as non-
parametric densities are considered. As far as the parametric case is concerned, we
consider single Gaussians for scalar images and multivariate Gaussians for the more
general case of vector-valued images. The Parzen window estimate [112] is used for
the nonparametric case.

In the case of unsupervised methods, pixel value distributions inside each region
are not known a priori and they must be estimated during the partitioning process.
Two different approaches are presented; in the parametric case, region densities are
estimated explicitly while in the nonparametric formulation, region densities are intro-
duced as functions of the partition.

2.5.1 Parametric region densities

The definition of a general criteria without making any assumption on region intensity
distributions is not possible. However, a straightforward approach is to assume each
intensity distribution to belong to the same parametric family but with different para-
meters. Then, the segmentation criteria can be optimized with respect to two set of
parameters: the image partition and the statistical parameters. The energy (2.2) can
be used to define such an optimization criteria by simply introducing the statistical
parameters as unknown. If p(I|θi) is a parametric representation of the a posteriori
intensity distribution in the region Ωi parameterized by θi, the segmentation of the



2.5 Adaptive region-based segmentation 63

image is obtained from the minimization of:

E({Ω1, . . . ,ΩN}, {θ1, . . . , θN}) = −
∑

i

∫
Ωi

log p(I(x)|θi) dx + ν |C|. (2.3)

This energy has clearly two different types of parameters: the image sub-domains Ωi,
open and bounded subsets of Ω and the statistical parameters θi which belongs to a
parameter space Θ. As explained in the previous chapter, a combination of level-set
functions permits to reformulate this energy. The optimization with respect to image
sub-domains is replaced by a new minimization with unknown Lipschitz functions
defined on the image domain. For the sake of simplicity, we consider the case of bi-
partitioning (N = 2) 1. Let φ be the signed distance function to the border between
Ω1 and Ω2, the energy (2.3) becomes:

E(φ, {θ1, θ2}) =−
∫

Ω

(
H(φ) log p(I(x)|θ1) + (1−H(φ)) log p(I(x)|θ2)

)
dx

+ ν

∫
Ω
|∇H(φ(x))| dx.

(2.4)
For θ1 and θ2 fixed, this functional can be minimized with respect to the function φ
through a gradient descent. The Euler-Lagrange equation for φ gives the following
evolution equation:

∂φ

∂t
(x) = δ(φ)

(
ν div

(
∇φ
|∇φ|

)
+ log

p(I(x)|θ1)
p(I(x)|θ2)

)
(2.5)

while the statistical parameters are regularly updated according to:

θi = Arg min
θ∈Θ

∫
Ωi

log p(I(x)|θ) dx for i = 1, 2 (2.6)

As will be the case for Gaussian approximations, closed form solutions may exist for
optimal values of the statistical parameters and therefore, they can be continuously
updated during the level-set evolution.

Single Gaussian approximations for scalar images

A Gaussian approximation of region densities is well-adapted to smoothed gray-valued
images since it models each region by a constant intensity with possible noise. Let us
first recall the well-known Normal or Gaussian law:

p(z|µ, σ) =
1√

2πσ2
e−

(z−µ)2

2σ2 . (2.7)

1Several works propose level-set formulations for more than two regions [167, 107, 155, 20] but
the increased complexity makes them more sensitive to the initial conditions. Since the purpose of our
approach lies in the estimation of region statistics jointly with the image partionning, we stick to the
simplest case of bi-partitioning. However, the binary case is still pertinent for most object extractions
where a single object of interest has to be separated from the rest of the image. For the purpose of
demonstration, we show some promising results obtained with our approach and the coupling method
developed in [20] in [Figure 2.9].
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According to the last paragraph, the objective energy can be minimized by iteratively
estimating the optimal statistical parameters (µi, σ

2
i ) for a fixed level-set and evolv-

ing the level-set with these parameters. Here, the optimal mean and variances of the
Gaussian law are simply their empirical values in the corresponding region. Then,
the bi-partionning energy can be minimized using the following system of coupled
equations:


µi =

1
|Ωi|

∫
Ωi

I(x) dx, σ2
i =

1
|Ωi|

∫
Ωi

(I(x)− µi)2dx for i = 1, 2

∂φ

∂t
(x) = δ(φ)

(
ν div

(
∇φ
|∇φ|

)
− (I(x)− µ1)2

2σ2
1

+
(I(x)− µ2)2

2σ2
2

− log
σ2

1

σ2
2

)
(2.8)

Let us note that this system simplifies to the Active Contours Without Edges model
introduced by Chan and Vese in [30] if the variances of both regions are set to a same
constant (i.e. if the region model does not incorporate variance).

At each iteration, the statistical parameters have to be updated and if they had to
be estimated directly, the whole image domain would have to be considered after each
iteration of the curve evolution, leading to a very high complexity for the complete
algorithm. However, this can be done in a more “clever” way by watching the pixels
that are changing domain at each iteration of the level-set evolution. Then, the new
statistical parameters can be expressed with respect to their previous update. Let n+

and n− be the number of pixels going respectively from Ω1 to Ω2 and inversely. The
associated domains are named Ω+ and Ω−. We assume the statistical parameters at
time t, µ(t)

i and σ(t)
i , to be known. First, we can express the domains at time t + 1:

Ω(t+1)
1 = Ω(t)

1 +Ω+−Ω− and Ω(t+1)
2 = Ω(t)

2 −Ω++Ω− and consequently: |Ω(t+1)
1 | =

|Ω(t)
1 |+n+−n− and |Ω(t+1)

2 | = |Ω(t)
2 |−n+ +n−. Then, the new values of the means

are: 

µ
(t+1)
1 =

1

|Ω(t+1)
1 |

∫
Ω

(t+1)
1

I(x) dx

=
1

|Ω(t+1)
1 |

(
|Ω(t)

1 |µ
(t)
1 +

∫
Ω+

I(x) dx−
∫

Ω−

I(x) dx
)

µ
(t+1)
2 =

1

|Ω(t+1)
2 |

∫
Ω

(t+1)
2

I(x) dx

=
1

|Ω(t+1)
2 |

(
|Ω(t)

2 |µ
(t)
2 −

∫
Ω+

I(x) dx +
∫

Ω−

I(x) dx
)

(2.9)

The same trick can be used to update region variances. For this purpose, we re-
call the relation between the first and second order moments of a random variable X:



2.5 Adaptive region-based segmentation 65

Figure 2.1: Convergence time for the entire process on different scales of the same
image.

V (X) = E(X2)− E(X)2. The following update rules follow:
σ

(t+1)2

1 =
1

|Ω(t+1)
1 |

∫
Ω

(t+1)
1

I2(x) dx− µ
(t+1)2

1

σ
(t+1)2

2 =
1

|Ω(t+1)
2 |

∫
Ω

(t+1)
2

I2(x) dx− µ
(t+1)2

2

(2.10)

Of course the same decomposition in Ω(t)
i , Ω+ and Ω− can be used to estimate the

first terms. To summarize, we need to estimate the expectation of the intensity and
the squared intensity in each domain at the initialization. Then, only integrals over
the “changing” domains Ω+ and Ω− are necessary. The complexity of each iteration
of the front evolution is thus decreased to the length of the contour multiplied by the
number of pixels changing regions. Assuming the evolving contour to visit each pixel
only once, the total complexity is linear in the image size as shown in [Figure 2.1]2.

In [Figure 2.2], we show the curve evolution as well as a plot of the corresponding
energy for a simple synthetic image composed of two regions with different mean
gray values and with additional Gaussian noise. An initialization with small circles is
considered to detect holes more easily. The evolution of the statistical parameters are
presented in [Figure 2.3]. We also show an example on a real hand image in [Figure
2.4]. Both examples show the benefits of using the level-set representation as the

2The convergence times of this experiment, as well as the other ones for other results were obtained
on a computer with a 1 Gz CPU and 1 Gb of RAM.
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Figure 2.2: Synthetic example composed of two regions with different mean gray
values (256x256)- TOP: Curve evolution (ν = 5, convergence time 12 seconds), BOT-
TOM: Corresponding energy evolution.

Figure 2.3: Synthetic example of [Figure 2.2] - LEFT: Mean evolutions, RIGHT: Vari-
ance evolutions.
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Figure 2.4: Real gray-valued hand image (303x243) - Curve evolution (ν = 3, conver-
gence time: 11 seconds).

contour changes topology many times before convergence. Other initializations may
be considered but the use of tiny circles is quite efficient in terms of convergence speed
and for the detection of small parts and holes.

Multivariate Gaussian approximations for vector-valued images

A direct extension to vector-valued images and more particularly to color images is to
use a multivariate Gaussian density as approximation of region statistics:

p(z|µ,Σ) =
1

(2π)d/2|Σ|
e−

1
2
(z−µ)T Σ−1(z−µ). (2.11)

The derivation of the corresponding energy is quite similar to the scalar case. For a
fixed contour, the optimal statistical parameters are also their empirical estimations in
the corresponding regions. Therefore, for the bi-partitioning case, the image partition
is obtained by updating the level-set function according to the following system of
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Figure 2.5: Synthetic hand image with constant background (234x161) - Curve evolu-
tion (ν = 5, convergence time: 6 seconds).

Figure 2.6: Synthetic hand image with complex background (234x161) - Curve evolu-
tion (ν = 5, convergence time: 10 seconds).

coupled equations:

µi =
1
|Ωi|

∫
Ωi

I(x) dx,

Σi =
1
|Ωi|

∫
Ωi

(I(x)− µi)T (I(x)− µi) dx for i = 1, 2

∂φ

∂t
(x) = δ(φ)

(
ν div

(
∇φ
|∇φ|

)
− (I(x)− µ1)T Σ−1

1 (I(x)− µ1) + (I(x)− µ2)T Σ−1
2 (I(x)− µ2)− log

|Σ1|
|Σ2|

)
.

(2.12)
Similarly to the scalar case, the estimation of the statistical parameters can be opti-
mized to avoid full computation over the whole image domain at each iteration. Here,
it becomes a bit more technical since cross-components products appear in the covari-
ance matrices but the final complexity is identical to the one obtained in the scalar case
(modulo the number of parameters).

Several segmentation examples are presented in [Figures 2.5, 2.6, 2.7 and 2.8].
First we built two synthetic images composed of a real hand with different back-
grounds. In the first one shown in [Figure 2.5], the background color was chosen
similar to the mean color of the hand and a successful segmentation is obtained due
to the estimation of the covariance matrix inside each region. A more complex back-
ground with black stripes is considered in the second example [Figure 2.6]. Here, the
regularization term plays an important role to make our algorithm able to extract the
hand.

Experiments on real images are more challenging. When considering color im-
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Figure 2.7: Segmentation of a Squirrel color image (288x209) - Curve evolution (ν =
5, convergence time: 10 seconds) and final segmentation.

ages, the choice of a pertinent color space is important. If we want our region statis-
tics to make sense, distances between pixel values should reflect perceptual difference
between the associated colors. Hopefully, the CIE-Lab color space was designed to
fulfill this requirement. Several promising results are shown in [Figure 2.7 and 2.8].
The squirrel image is rather simple to segment since the colors are quite different but
the grass is still noisy and a strong regularity has to be imposed to obtain the smooth
result presented in [Figure 2.7]. The other example presented in [Figure 2.8] is more
difficult since the frog color is really close to the color of the background and some
texture is present in the image.

As mentioned before, several level-sets can be coupled to segment the image in
an arbitrary number of regions. The extension of our framework with such coupling
methods like the ones presented in [107, 155, 20] is straightforward and we show some
nice results in [Figure 2.9] which were obtained using the algorithm proposed in [20],
jointly with our region-based evolution.

2.5.2 Nonparametric region densities

The choice of a parametric family to approximate intensity distributions may be seen
as a limitation to model region statistics. Contrary to parametric models, nonparamet-
ric density estimations can approximate any type of distribution for a sufficiently large
data set. Within nonparametric methods, Kernel or equivalently Parzen density esti-
mates are the most widely used. Going back to our segmentation problem, the Parzen
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Figure 2.8: Segmentation of a Frog color image (250x210) - Curve evolution (ν = 3,
convergence time: 16 seconds).

density estimate of the intensity in a region ΩX can be written as follows:

pX(z) =
1

|ΩX |

∫
ΩX

1
h
K

(
z − I(x)

h

)
dx, (2.13)

where K is a kernel function and h is the scale parameter or bandwidth. In general,
density estimates are expressed directly from the histogram. If hX is the histogram in
region ΩX :

pX(z) =
1

|ΩX |
∑

k

hX(k)
1
h
K

(
z − k

h

)
. (2.14)

Actually, we can see that both formulations are equivalent from the definition of the
histogram:

hX(k) =
∫

ΩX

δ(k, I(x)) dx, (2.15)

where δ(i, j) is the usual kronecker function, equal to 1 if i = j and 0 otherwise.

Several types of Kernels have been proposed. The most commons are spheri-
cal (uniform), Gaussian or Epanechnikov kernels [51]. This last one is shown to be
asymptotically-optimal by minimizing the Mean Squared Error for an infinite number
of samples. However, the choice of the scale parameter h is much more important than
the type of kernel and in general, the easiest kernel to implement is preferred.

Then, using general Kernel density estimates to approximate region statistics, our
objective function becomes:

E({Ω1, . . . ,ΩN}) = −
∑

i

∫
Ωi

log
(

1
|Ωi|

∫
Ωi

1
h
K

(
I(x)− I(x̂)

h

)
dx̂
)
dx + ν|C|.

(2.16)
Contrary to the parametric case, this functional depends only on the sub-domains Ωi

but nested region integrals appear. This type of functional can be minimized using the
Shape Gradient formalism introduced in [4]. In particular, we will use the following
theorem:
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Figure 2.9: Unsupervised segmentation of color images in an arbitrary number of
regions using the coupling method introduced in [20], jointly with our region-based
evolution.
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Theorem 2.1 The Gâteaux derivative of the functional J(Ω) =
∫
Ω g(x,Ω) dx in the

direction of a vector field V is the following:

< J ′(Ω),V >=
∫

Ω
fs(x,Ω,V) dx−

∫
∂Ω
f(x,Ω)(V(x) ·N(x)) da(x)

where N is the unit normal to ∂Ω and da its area element and fs(x,Ω,V) is the shape
derivative of f(x,Ω).

Applied on our criteria, we obtain the

Proposition 2.2 The Gâteaux derivative of a region-based term using a kernel density
estimation with constant bandwidth

F (ΩX) =
∫

ΩX

log
(

1
|ΩX |

∫
ΩX

1
h
K

(
I(x)− I(x̂)

h

)
dx̂
)
dx (2.17)

in the direction of a vector field V is the following:

< F ′(ΩX), V >= −
∫

∂ΩX

(
log pX(I(x))+

1
|ΩX |

(∫
ΩX

1
hK

(
I(x)−I(x̂)

h

)
pX(I(x̂))

dx̂− 1
))

(V (x) ·N(x))da(x)

(2.18)

Proof : Let us consider the region-term (2.17). We introduce the following notations:

G(x,ΩX) =
∫

ΩX

1
h
K

(
I(x)− I(x̂)

h

)
dx̂

V (ΩX) = |ΩX | =
∫

ΩX

dx̂
(2.19)

The functional (2.17) can then be rewritten:

F (ΩX) =
∫

Ω
f(x,ΩX) dx =

∫
ΩX

log
G(x,ΩX)
V (ΩX)

dx (2.20)

Let ∂ΩX be the boundary of ΩX . According to Theorem 2.1, the Gâteaux derivative
of this functional in the direction of a vector field V is given by:

< F ′(ΩX), V >=
∫

ΩX

fs(x,ΩX , V ) dx−
∫

∂ΩX

log pX(I(x))(V (x) ·N(x))da(x)

(2.21)
Using the chain rule on G(x,ΩX) and V (ΩX), the shape derivative of f(x,ΩX) can
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be expressed as follow:

fs(x,ΩX , V ) = fG < G′(x,Ω), V > +fV < V ′(Ω), V >

=
1

G(x,ΩX)

(
−
∫

∂ΩX

1
h
K

(
I(x)− I(x̂)

h

)
(V (x̂) ·N(x̂)) da(x̂)

)
− 1
V (ΩX)

(
−
∫

∂ΩX

(V (x̂) ·N(x̂)) da(x̂)
)

= −
∫

∂ΩX

 1
hK

(
I(x)−I(x̂)

h

)
|ΩX |pX(I(x))

− 1
|ΩX |

 (V (x̂) ·N(x̂)) da(x̂)

(2.22)
Changing the order of the integrals and adding the second term, we obtain the final
expression of the Gâteaux derivative of our functional (2.18). 2

The first term of this derivative is similar to the one obtained for the Parametric
evolution (2.5) but here a new term appears, accounting for histogram variations. Let
us look closer to this new term:

qX(z) =
1

|ΩX |

∫
ΩX

1
hK

(
z−I(x)

h

)
pX(I(x))

dx. (2.23)

This term is quite similar to the density estimation but the convolution is weighted by
1

pX(I(x)) . Therefore, two convolutions are needed, the first one to estimate the densities
and the second for this term.

If we consider the entire functional for the bi-partitioning case, the corresponding
level-set evolution can be expressed as:

∂φ

∂t
(x) = δ(φ)

(
ν div

(
∇φ
|∇φ|

)
+ log

p1(I(x))
p2(I(x))

− 1
|Ω1|

+
1
|Ω2|

+ q1(I(x))− q2(I(x))
)
.

(2.24)

Obviously, the two terms in 1
ΩX

can be neglected because of the size of the image.
For a Gaussian kernel, the terms q1 and q2 can be also generally neglected. Then, the
simplified evolution equation becomes very similar to the parametric one:

pi(I(x)) =
1
|Ωi|

∫
Ωi

1
h
K

(
I(x)− I(x̂)

h

)
dx̂, i = 1, 2

∂φ

∂t
(x) ≈ δ(φ)

(
ν div

(
∇φ
|∇φ|

)
+ log

p1(I(x))
p2(I(x))

)
.

(2.25)

1D case: scalar images

In the case of scalar or gray-valued images, density estimations can be done directly
on the histogram as its dimension is generally much lower than the dimension of the
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Figure 2.10: From left to right: contour initialization, result with Gaussian approxima-
tions, results using Parzen density estimates with σ = 1 and σ = 10 respectively.

image. On this type of data, intensity densities can be estimated very efficiently using
a Gaussian kernel:

gσ(z) =
1√

2πσ2
e−

z2

2σ2 . (2.26)

A recursive implementation permits to convolve the histogram with the Gaussian ker-
nel in a linear complexity [46]. The most important element of kernel density estima-
tion is the choice of the bandwidth σ. It should be chosen high enough to remove noise
but too large values would make details of the histogram disappear. Each different
choice of σ will emphasize different aspects of the data and several works [134, 131]
suggest to consider several density estimations with different bandwidths. However,
we limit our study to a single choice of σ.

In [Figure 2.5.2], we compare results obtained on a gray version of the squirrel im-
age, using either a Gaussian approximation or Parzen density estimates with different
bandwidths. The density estimates, obtained at convergence for σ = 10, are shown in
[Figure 2.5.2] . While a too small bandwidth is unable to capture region properties and
gives a result highly dependent on the initialization, a pertinent choice of bandwidth
gives a segmentation similar to the one obtained with a Gaussian approximation. The
dependence on the initialization may be useful in applications where a good guess of
the object of interest is possible. The nonparametric approximation can capture the
distribution of a complex background like in medical images [Figure 2.5.2] or of a
complex object like in [Figure 2.5.2].

Several similar nonparametric approaches can be found in [78, 69, 66] where
slightly different criteria based on the information theory are considered.

General case: vector-valued images

The extension of kernel density estimation to vector-valued images straightforward,
a similar Gaussian kernel is considered. However, the increase of complexity may
be seen as a limiting factor. A simple solution is to quantify the image to a reduced
number of color levels.
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Figure 2.11: Histograms (after normalization) and density estimations of the inside
and outside regions in the gray-valued squirrel image at convergence (σ = 10).

Figure 2.12: Cardiac image - Contour initialization and final segmentation using
Parzen density estimates (σ = 5).

Figure 2.13: F15 image - Contour initialization and final segmentation using Parzen
density estimates (σ = 20).
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2.6 Implementation

2.6.1 The general case

The general algorithm is similar for both, parametric and nonparametric, models. Two
steps alternate until convergence: (i) the estimation of region statistics, (ii) the front
evolution.

While technical details for the update of region statistics have been discussed, the
implicit front evolution needs some clarifications. First, as mentioned before, the level-
set evolutions (2.5) and (2.25) are not to be applied to the whole level-set, i.e. the im-
age domain. Thanks to the Dirac function, factor of these two evolutions, only pixels
within the vicinity of the zero level of φ have to be updated. Then, working only a
narrow-band is natural (early level-set methods made this restriction as an approxima-
tion since the narrow-band was not obtained from the equations). In practice, it can
be done by using a list of points corresponding to this band which is modified after
each iteration. This band is in fact naturally obtained from the reinitialization of the
level-set to a distance function.

The implicit way of propagating fronts remains only valid if the level-set φ remains
a distance function, or at least a Lipschitz function. This has been one of the important
issues since there is no guarantee from the evolution equations that the level-set will
keep these properties. The easier way of dealing with that is to reinitialize the level-set
to the distance function when this is needed. Several methods have been proposed for
this task, one of the most used aims at solving the following PDE [142]:

∂φ

∂t
= (1− sign (φ0)) (1− |∇φ|) ,

where φ0 is the level-set we wish to reinitialize. Another efficient re-distancing algo-
rithm is based on the Fast Marching technique [132] and has a very low complexity
in time but the interpolation around the zero level for the initialization makes it less
accurate. From our experience, a mixed approach appears to be the most accurate and
efficient: the PDE is used for reinitialization in a small neighborhood of the zero level
while the Fast Marching permits to extend the distance function to a larger band. Let
us also mention the elegant work of Gomes et al. [62] where the level-set evolution
equation was rewritten so that the level-set remains a distance function. However, this
modification may decrease the convergence speed and the re-distancing step is often
preferred.

2.6.2 Multi-resolution implementation

Multi-resolution extensions are often employed to avoid local minima and to increase
convergence speed. Our algorithm can be easily modified to a multi-resolution version.
For this purpose, we solve successively the segmentation problem on down-scaled
images while using the result of the lower scale as an initialization. Let I(s) be the
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down-scaled version of the image I such that each side of the image has been divided
by 2s. For s = n to s = 0, we evolve successively each level-set until convergence
according to:

φ
(s)
t=0 = φ̃

(s+1)
t=∞ ,

∂φ(s)

∂t
(x) = δ(φ(s))

(
ν(s) div

(
∇φ(s)

|∇φ(s)|

)
+ log

p1(I(s)(x))
p2(I(s)(x))

)
.

where φ̃ corresponds to an upper-scaled version of φ. ν(s) is the regularization weight
at a scale s. Since this term is factor of the regularity constraint which is proportional
to the length of the evolving curve, the weight ν(s) should be inversely proportional
to this length so as to keep a similar ratio between regularity and data-based terms.
Assuming the length of the curve to be proportional to the perimeter of the image, ν(s)

can be expressed according to ν(0): ν(s) = ν(0)

4s .
This implementation permits a drastic increase of the convergence speed. In [Fig-

ure 2.14], we show the segmentation obtained with three different scales on the frog
image. The convergence time drops from 16 seconds to only 2 seconds. Additional
results on other natural high-resolution images are presented in [Figure 2.15].

2.7 Connections with classical clustering methods

2.7.1 K-means

The K-means algorithm is frequently used for clustering tasks because it is fast and
rather simple to implement. This approach aims at finding the partitions of a datasetX
in a given numberN of clusters. A simple mean-squared error functional is employed,
summing the squared distances between each point of a cluster j to the corresponding
center cj :

KM(X) =
∑

xi∈X

min
j=1..N

d2(xi, cj). (2.27)

The definition of a pertinent distance depends on the type of data and often, a natural
distance can be obtained from the geometry of the ambient space. For general vector-
valued data sets with no particular geometry, L1, L2 and Mahalanobis distances can
be considered. The optimization process consists in iterating two steps: (i) the points
are clustered for given centers, (ii) new centers are estimated from the last partitioning.
A critical point of such methods is the choice of the initial centers. Several heuristics
have been proposed but no general strategy can be defined and a simple random choice
is often preferred.

Actually, the Active Contours Without Edges model introduced by Chan and Vese
in [30] can be seen like a topological K-means. Let us recall the CV functional for
the partitioning of an image I in N regions (please refer to the previous chapter for
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Figure 2.14: Multi-resolution segmentation of a Frog color image (250x210) - Curve
evolution (ν = 5, convergence time: 2 seconds).
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notation conventions):

E0
CV (C, ci) =

∫
Ω

N∑
i=1

χi(x) d2(I(x), ci) dx + ν|C| (2.28)

If the regularization term ν|C| is omitted, this energy reduces to the K-means criteria
(2.27). However, the optimization process of the CV functional differs from the K-
means. In classical K-means, the clustering is directly applied in the space of pixel
values while the CV model is expressed on the image domain. Besides the possibility
of imposing a spatial regularization permits to deal with noise and to remain consistent
with the initialization. Consequently, the initialization is no more blind but it can be
used to express prior spatial knowledge on the objects to be segmented.

2.7.2 Maximum-likelihood and the expectation-maximization (EM) al-
gorithm

In this part, we show our optimization schemes of statistical parameters to be part
of a very general statistical concept: the maximum-likelihood estimation. Referring
to [13], we shortly summarize the maximum-likelihood estimation problem and the
expectation-maximization algorithm [45]. A possible extension of our segmentation
framework to mixture densities is also discussed.

Maximum-likelihood

The maximum-likelihood estimation problem consists in finding the set of parameters
θ ∈ Θ of a density function p(x|θ) from an observed dataset X = {x1, . . . ,xN} gen-
erated from this distribution. Assuming these data vectors independent and identically
distributed, the density corresponding to X can be approximated as:

p(X|θ) =
N∏

i=1

p(xi|θ) = L(θ|X )

The quantity L(θ|X ) is said to be the likelihood of θ given X . The maximum-
likelihood estimate (MLE) θ∗ is then obtained by maximizing this quantity:

θ∗ = Arg max
θ∈Θ

L(θ|X )

Going back to our segmentation functional, if we replace the dataset X by the pixel
values in an subregion of the image ΩX , the maximum-likelihood for this dataset gives
the update rule of our statistical parameters (2.6). The optimal parameters can be easily
obtained for simple densities like single Gaussian distributions (see (2.8) and (2.12))
but more complex densities like mixtures need more elaborate techniques.
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Figure 2.15: Multi-resolution segmentation of high resolution color images - (ν = 5,
convergence time≈ 20 seconds). Image resolutions are respectively (from left to right
and top to bottom): 900x1200, 1400x1400 and 1280x960.
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The EM algorithm

The EM algorithm is an iterative process that permits to solve the maximum-likelihood
estimation problem for incomplete data. It can be used when observations are missing
but it is also a technique to simplify the likelihood function when no analytical solution
is available.

Assuming X to be an incomplete observation of a complete dataset Z , a set of hid-
den or missing data is introduced such thatZ = {X ,Y}. The complete-data likelihood
function is then defined as L(θ|Z) = L(θ|X ,Y) = p(X ,Y|θ).

The EM algorithm assume an initial guess of the MLE and then iterates two steps.
The first step is called the E-step, it consists in estimating the expected value of the
log-likelihood log p(X ,Y|θ) for a given observed data X and a previous estimate of
the MLE θ(i−1):

Q(θ, θ(i−1)) = E
[
log p(X ,Y|θ)|X , θ(i−1)

]
.

During the second step, the M-step, a new estimate of the MLE is estimated by maxi-
mizing the quantity estimated from the E-step:

θi = Arg max
θ∈Θ

Q(θ, θ(i−1)).

The two steps are repeated until convergence. The log-likelihood is guaranteed to
increase at each iteration and the algorithm is proven to converge to local maxima.
This algorithm is in particular well-adapted for mixture-densities. Analytical solutions
of the M-step are available when considering a mixture of Gaussian densities in [13].

This approach can be used to extend our segmentation framework to Gaussian
mixture models for each region. However, the rather small size of regions, i.e. the
observed dataset, may be a limiting factor on the complexity of the density models.

2.8 Contributions and conclusions

In this chapter, we have presented a general method for the segmentation of scalar
and vector-valued piecewise smooth images. An objective functional including region
statistics and geometric constraints is obtained from a Bayesian formulation of the
partitioning problem. Parametric and nonparametric densities are introduced to ap-
proximate pixel value distributions within each region. These two types of statistical
models are presented for scalar and vector-valued images. The most important points
of this chapter are the following ones:

1. Level-set functions are introduced directly in the objective functional to express
region-dependent integrals and geometric constraints. The calculus of variations
of the level-set leads naturally to an evolution equation equivalent to a front
propagation. This makes our approach different from most approaches where the
level-set representations are only used as a tool to implement the front evolution.
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2. The new functional is minimized with respect to the level-set and region statis-
tics simultaneously. Therefore, no supervised step is necessary to learn a priori
region properties. A fast technique to update region statistics is proposed and
the complexity of the complete algorithm remains linear in the size of the image.

Parts of this work have been presented in [122, 123]. This approach is well-adapted
to smooth images but as soon as spatial structures are relevant to define regions of
interest, the assumption of no-correlation between pixels, necessary to our model, is
no longer valid. The next chapter proposes an extension to a wider range of images, in
particular to images with texture.



Chapter 3

Cue Extraction & Integration

The approach presented so far is limited to smooth images. This is due to the impor-
tant assumption that pixels inside a region are independent realizations of a random
process:

p(I|Ωi) ≈
∏
x∈Ωi

p(I(x)|Ωi).

Consequently, only region histograms are used to model region statistics. This ap-
proximation is valid for smooth images but, as soon as texture is present in the image,
the approach will fail to capture the pertinent information. By definition, a texture is
related to a particular spatial distributions of pixel values within a given neighborhood.
Since our approach does not integrate such spatial models, texture information has no
influence on the segmentation.

Several possibilities are available to extend our approach to non-smooth images.
Motivating our choice on a compromise between simplicity and genericity, a two-
step unsupervised approach has been defined. The first phase consists in extracting
texture features by considering a non-linear version of the structure tensor which is
combined with the intensity to form a feature vector from which the image partition
can be extracted. The region-based curve evolution technique of the previous chapter
is considered to partition the image domain by considering this feature vector as input
image. Experiments on a wide range of images show the potential of the approach,
leading to an unsupervised segmentation of images with texture.

The second section is dedicated to the incorporation of motion information. A
similar two-step strategy is employed. First, motion features are extracted from an im-
age sequence using a robust estimation of the optical flow. Then, motion components
are combined with intensity/color and texture characteristics to define a new feature
vector. This vector can be used for the segmentation/detection of moving objects and
their tracking along the sequence. A new coupling between level-sets is also intro-
duced for the tracking of multiple objects to avoid overlaps between objects. Finally,
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Figure 3.1: Examples of natural images with textures.

experiments on different image sequences show the genericity of the approach with
the incorporation of gray/color, texture and motion features.

3.1 Static cue: intensity/color and structure tensor

3.1.1 Dealing with texture

When looking to natural images, texture is often one of the most characteristic visual
properties [Figure 3.1]. Therefore, analyzing and modeling such information is impor-
tant not only to understand natural scenes but also to mimic human perception. Despite
numerous studies on this topic during the past decades [72, 43, 151, 90], the problem of
texture segmentation remains unsolved. The first critical step is the definition of what
a texture is. If we look in the literature, it appears that there is no unique definition.
The main reason is the wide variety of textures [Figure 3.2]. A rather general but vague
definition can be found in [116]: “texture images are specially homogeneous and con-
sist of repeated elements, often subject to some randomization in their location, size,
color, orientation, etc”. In the absence of a more accurate definition, various models
have been proposed, often targeting at a particular class of textures. Most of them can
be classified into two areas [172]. The first one is “statistical modeling”: high-order
statistical models of textures are built from probability distributions on random fields.
They use the theory of Markov random fields [64, 43]. The second one is “filtering
theory”: they are inspired by neurobiological studies of the visual cortex suggesting
the presence of a multitude of oriented filters [94, 135]. The methods the most fre-
quently used are based on Gabor filters [59, 151] and wavelet transforms [93, 136].
Recent works by Zhu et al. [172] and Simoncelli et al. [116] propose to combine both
areas, applying statistical modeling on filter responses.

Unsupervised segmentation of textured images is different from texture analysis
because no samples are available to learn texture parameters. Alternate techniques
can be considered by iterating parameters estimation and segmentation. However,
whichever method is used, Gabor filters [128, 130, 108] or Markov random fields, the
estimation of the parameters remains difficult issue and lots of redundancy are often



3.1 Static cue: intensity/color and structure tensor 85

Figure 3.2: Different types of textures from the Brodatz dataset [16].

present in the extracted feature channels. A very interesting solution was proposed
by Bigün et al. in [11] with the introduction of the structure tensor. It can be classi-
fied as a filtering approach but, in contrast to other methods, the structure tensor only
yields three different feature channels per scale. This tensor has mainly been used to
determine the intrinsic dimensionality of images in [11, 55] by providing a continuous
measure to detect critical points like edges or corners. However, the structure tensor
does not only give a scalar value reflecting the probability of an edge but it also in-
cludes the texture orientation. All these properties make this matrix a good descriptor
for textures.

The only problem of the original work in [11] is the Gaussian smoothing used for
the structure tensor which reduce spatial accuracy in the feature space by dislocating
edges. To overcome this limitation, Weickert and Brox proposed in [162] to develop
a non-linear version of the structure tensor based on a non-linear matrix-valued diffu-
sion. We propose to extend this idea by also considering the intensity during the the
nonlinear diffusion.

3.1.2 Nonlinear structure tensor

The nonlinear structure tensor introduced in [162] is based on the classic linear struc-
ture tensor [55, 11, 118, 87, 63]:

Jρ = Kρ ∗ (∇I∇I>) =

(
Kρ ∗ I2

x Kρ ∗ IxIy
Kρ ∗ IxIy Kρ ∗ I2

y ,

)
(3.1)

whereKρ is a Gaussian kernel with standard deviation ρ, I is the image, and subscripts
denote partial derivatives. In the case of color images, all channels are taken into
account by summing the tensor products of the particular channels [168]:

Jρ = Kρ ∗

(
3∑

i=1

∇Ii∇I>i

)
. (3.2)

The major problem of the classic structure tensor is the dislocation of edges due to
the smoothing with Gaussian kernels. This leads to inaccurate results near discontinu-
ities in the data. [Figure 3.3] shows the structure tensor obtained on a natural textured
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Figure 3.3: Classical structure tensor on the zebra image (TOP: original image and
vector representation of the structure tensor, BOTTOM: I2

x , I2
y , IxIy components of the

structure tensor).

image (the color representation of the structure tensor is composed of the three differ-
ent components of the matrix as RGB components). The structure tensor is clearly a
good descriptor for the zebra texture but the contour of the zebra is quite blurry. First
mentioned in [162], the basic idea to address this problem is to replace the Gaussian
smoothing by a nonlinear diffusion. This can be done by applying the scheme of
nonlinear matrix-valued diffusion introduced in [145, 146], and diffusivity functions
without a contrast parameter. In the following, we describe the details of this proce-
dure. Nonlinear diffusion is based on the early work of Perona and Malik [115]. For a
review we refer to [160]. The main idea is to reduce the smoothing in the presence of
edges. The resulting diffusion equation is

∂tu = div (g(|∇u|)∇u), (3.3)

with u(t = 0) being the initial image and g a decreasing diffusivity function. Perona
and Malik proposed two different diffusivity functions

g(|∇u|) =
1

1 + |∇u|2/λ2
, (3.4)

g(|∇u|) = exp
(
− |∇u|2

2λ2

)
, (3.5)

where λ is a contrast parameter steering the transition from forward diffusion (i.e.
edges are blurred by the process) to backward diffusion (i.e. edges are enhanced by
the process).
Equation (3.3) can only be used with scalar-valued data like a gray-level image. Gerig
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Figure 3.4: Nonlinear structure tensor on the zebra image for p = 0.5, 1 and 1.5.

et al. [61] introduced a version of nonlinear diffusion for vector-valued data

∂tui = div

(
g

(
N∑

k=1

|∇uk|2
)
∇ui

)
∀i = 1, . . . , N, (3.6)

where ui is an evolving vector channel and N the total number of vector channels.
Note that in this approach all channels are coupled by a joint diffusivity, so an edge in
one channel also inhibits smoothing in the others. A recent survey on vector-valued
diffusion can be found in [148].

When regarding the components of a matrix as components of a vector, what is
reasonable, since the Frobenius norm of a matrix equals the Euclidean norm of the
resulting vector, it is possible to diffuse a matrix, such as the structure tensor, with the
above-mentioned scheme. In fact, this complies with the scheme proposed in [145].

A rather critical issue is the appropriate choice of the diffusivity function g. Ap-
plied to the structure tensor, the diffusivity functions proposed by Perona and Malik,
for example, will not work properly. This is because the structure tensor contains first
derivatives, which have very local responses of different magnitude. Thus it is mostly
impossible to choose an appropriate contrast parameter. Instead we use diffusivity
functions of type [149]

g(|∇u|) =
1

|∇u|p
, (3.7)

with p ∈ R and p ≥ 1. These diffusivity functions include for p = 1 total variation
(TV) flow [2, 49], a diffusion filter that is equivalent to TV regularization [127, 22].
For p = 2, one obtains the so-called balanced forward backward diffusion introduced
in [75]. Their properties fit the requirements of the structure tensor very well: there is
no contrast parameter, they remove oscillations, and experiments show that they yield
piecewise constant results. Therefore they can preserve, or for p > 1 even enhance,
important edges. Unfortunately, these diffusivity functions will lead to numerical prob-
lems when the gradient gets close to zero. This problem can be avoided by adding a
small positive constant ε to the denominator.

g(|∇u|) =
1

|∇u|p + ε
. (3.8)
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Regarding the implementation, we apply the AOS scheme [164] which allows effi-
cient computation of such flows also for small ε. For ε in the area of 0.01, where the
approximation of such kinds of flow is much better than for larger ε, causing less blur-
ring effects, the AOS scheme is around three orders of magnitude faster than a simple
explicit scheme.

Our texture features consist of the three different components of the spatial struc-
ture tensor u(t = 0) = (I2

x, I
2
y , 2IxIy) with I being the gray-level image. By applying

equation (3.6) with the diffusivity function of equation (3.8) we obtain the smoothed
components, i.e. the nonlinear structure tensor. In the case of color, the initial condi-
tion is extended to the sums u(t = 0) = (

∑
i(Ii)

2
x,
∑

i(Ii)
2
y, 2
∑

i(Ii)x(Ii)y). Note
that in both cases the third vector component has to be weighted twice, since it appears
twice in the matrix. In [Figure 3.4], the nonlinear structure tensor is estimated for
different values of p. High values of p make the edges very accurate but some large
texture structures remain visible.

3.1.3 Combination of intensity and texture cues

At this stage it becomes important to combine texture information with image inten-
sity in a way that allows the simplification of the data, the removal of outliers, and
the closing of structures, using the cues of all channels. For this purpose, vector-
valued diffusion according to equation (3.6) is very well suited, as it couples all vector
channels by a joint diffusivity. This way, the information of all channels is used to
decide whether an edge is worth to be enhanced or not. However, for a balanced cou-
pling, equation (3.6) assumes the values of all channels to have approximately the
same range. Unfortunately, a simple normalization of all channels to the same range,
which would solve this problem immediately, is not a good approach. If a channel
contains no information, e.g. there is no texture, the data in this channel should be
constant. A normalization, however, amplifies the noise in such a situation. Therefore,
the problem of how all channels get approximately the same range has to be solved in
a different manner.

For the texture channels this can be done by replacing the structure tensor by
its square root. Given the eigenvalue decomposition of the structure tensor J0 =
T (λi)T>, the square root can be computed by

J̃0 :=
√
J0 = T (

√
λi)T>.

In the case of a gray-level image, this comes down to

J̃0 =

(
Ix
|∇I| − Iy

|∇I|
Iy

|∇I|
Ix
|∇I|

)(
|∇I| 0

0 0

)(
Ix
|∇I|

Iy

|∇I|
− Iy

|∇I|
Ix
|∇I|

)
=

(
I2
x

|∇I|
IxIy

|∇I|
IxIy

|∇I|
I2
y

|∇I|

)
=

J0

|∇I|
.

With color images, this simplification is not possible, due to the sum of matrices for
each color channel. With a common range of values, only the question of the diffusivity
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Figure 3.5: Image intensity and nonlinear structure tensor obtained after coupled dif-
fusion with p = 1.2.

function remains open. As it was stressed in Section 2, diffusion processes based on
the diffusivity functions in equation (3.8) yield some nice properties, like the removal
of oscillations and piecewise constant results. Also the fact that there is no further
contrast parameter is beneficial at this stage. It has also been mentioned that for p > 1
the diffusion process will be edge enhancing. This is very useful, since the feature
combination should result in simplified data with precise common edges. It has to
be noted that in the continuous case, backward diffusion is ill-posed. Discretization,
however, has been shown to resolve this problem [161].

Hence, for our experiments we have chosen p = 1.2, though other values of p > 1
will also work. The larger p, the more important is the influence of the edge enhance-
ment compared to the simplification effect. We want to stress that p has nothing to do
with the contrast parameter λ in the Perona-Malik diffusivities, which is rather critical
to choose. Conversely, p globally specifies the ratio between edge enhancement and
simplification. As edge enhancement has basically a positive effect for our application,
it would be best to use large p. However, this will considerably increase diffusion time
necessary to obtain also an appropriate simplification effect.

The coupling of the intensity and the structure tensor components permits to im-
prove the texture features [Figure 3.5]. The legs of the zebra are now visible in the
texture components contrary to the simple nonlinear structure tensor of [Figure 3.4].
The smoothing of the intensity is also improved since region with a homogeneous tex-
ture have large diffusivity. This set of four features can now be considered as input for
the segmentation.

3.1.4 Unsupervised segmentation of textured images

As mentioned before, the segmentation approach of the last chapter is restricted to
smooth images because pixels inside a region are assumed to be independent. Markov
random fields can be used to express directly these spatial links between pixel values.
If these models are well-suited for texture analysis and synthesis, their high complex-
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Figure 3.6: Result on a synthetic texture image - TOP, FROM LEFT TO RIGHT: original
image, input features (smoothed image and structure tensor components), BOTTOM:
curve evolution.

ity is a disadvantage in an unsupervised segmentation approach. The same problem
for the learning texture parameters appears when a combination of linear filters is
considered. However, when one wants to segment a textured image, accurate mod-
els of each texture may not be necessary since only a characteristic distinguishing the
different textures would be sufficient. Based on the structure tensor, the features ex-
traction gives us such characteristics where each pixel value reflects spatial properties.
Therefore, it becomes possible to integrate texture information assuming pixels to be
independent realizations of a random process within these channels:

p(I|Ωi) ≈ p(u|Ωi) ≈
∏
x∈Ωi

p(u(x)|Ωi),

where u is a feature vector including the image intensity and the structure tensor com-
ponent obtained after coupled diffusion. Following the framework developed in the
previous chapter, the segmentation can be formulated as an energy minimization prob-
lem. The corresponding bi-partitioning energy with an additional regularization term
is expressed by considering the level-set representation φ of the border between Ω1

and Ω2. φ is defined as the signed distance function to this border (we refer the reader
to the last chapter for more details). The optimal segmentation is then obtained by
minimizing

E(φ) =
∫

Ω

(
H(φ) log p(u(x)|Ω1) + (1−H(φ)) log p(u(x)|Ω2) + ν|∇H(φ)

)
| dx.

The variational framework is not completely defined so far, since it still lacks the def-
inition of the probability density function. Rather than modeling the joint probability
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Figure 3.7: Result on a synthetic texture image - TOP, FROM LEFT TO RIGHT: original
image, input features (smoothed image and structure tensor components), BOTTOM:
curve evolution.

of the four channels, we assume the channels to be independent. Let pij(x) the condi-
tional probability density function of a value uj(x) to appear in region Ωi, the energy
becomes:

E(φ) =
∫

Ω

(
H(φ)

4∑
j=1

log p1j(u(x)) + (1−H(φ))
4∑

j=1

log p2j(u(x))
)
dx

+
∫

Ω
ν|∇H(φ)| dx.

A Gaussian approximation is a reasonable choice to represent region densities for each
channel and their parameters are introduced as unknown parameters. The optimization
process alternates between the minimization of the energy with respect to φ and the
estimation of the optimal statistical parameters. The first variations of φ gives the
following level-set evolution:

∂φ

∂t
(x) = δ(φ)

ν div
(
∇φ
|∇φ|

)
+

4∑
j=1

log
p1j(I(x))
p2j(I(x))

 ∀x ∈ Ω,

while the optimal statistical parameters are obtained directly from their empirical es-
timations in the corresponding regions. The whole approach introduces only two pa-
rameters: the number of iterations of the coupled diffusion for the features extraction
and the weight of the regularization term of the curve evolution. The second one has a
clear interpretation and can be fixed for regular objects (ν = 1 is used for the experi-
ments). The meaning of the first one is less obvious at first sight. The diffusion process
permits to characterize local geometric structures. Small structures are characterized
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Figure 3.8: Result on a synthetic texture image - TOP, FROM LEFT TO RIGHT: original
image, input features (smoothed image and structure tensor components), BOTTOM:
curve evolution.

during the first iterations but coarser and more complex structures need more itera-
tions. Therefore, two aspects have to be considered to set the number of iterations:
the scale of the structures and their “complexity”. A first empirical estimate can be
obtained from the size of the image. For the coming experiments, the number of itera-
tions was taken proportional to the perimeter of the image: N = α∗(width+height).
Using this conjecture, we are able to deal with a wide range of synthetic as well as real
images with the same choice for α.

Segmentation of gray textured images

In order to verify the discrimination power of our segmentation approach with respect
to texture, it was first applied to several synthetic gray images composed of the well-
known Brodatz textures [16]. The complete process (features extraction and curve
evolution) is presented in [Figures 3.6,3.7,3.8 and 3.9]. Extracted features are shown
on the top of each figure and the corresponding curve evolution is shown on the bottom.
The same parameters are used for each experiment: ν = 1, α = 0.08 and p = 1.2.
Other synthetic results are presented in [Figure 3.10] where the same curve initializa-
tion with small circles was used on all examples. The results are quite satisfactory
and they show the method to perform very well in delimiting the textured parts with
a high accuracy. Contrary to classical kernel-based results where a loss of accuracy is
generally observed because of the size of the kernels, our nonlinear features extraction
avoids any blurring effect and the curve fits to the border of the objects at the pixel
level. Even textures that are difficult to distinguish by humans, such those in [Figure
3.10f] and [Figure 3.10h], can be handled by the nonlinear structure tensor combined
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Figure 3.9: Result on a synthetic texture image - TOP, FROM LEFT TO RIGHT: original
image, input features (smoothed image and structure tensor components), BOTTOM:
curve evolution.

with the statistical region model.

To validate our approach on a larger set of images, we build a set of 100 syn-
thetic images composed of two textures randomly taken from the Brodatz dataset. A
complex symmetric mask was considered not to bias the experiment with a particular
geometry [Figure 3.11(top)]. The twenty first samples of this test suite are shown in
[Figure 3.11(bottom)]. Our approach has been tested on the whole suite with different
parameters. Since the ground-truth image partition is available, we are able to estimate
the ratio of well-classified pixels over all image pixels. In [Figure 3.12a], we show this
ratio for the first twenty images for different values of α. The average percentage of
well-classified pixels is 75% for α = 0.05 and 81% for α = 0.1. The performance
of the algorithm for different values of α is better described in [Figure 3.12b] where
the repartition of the images with respect to the classification rate is presented. Our
approach performs very well for a wide range of parameters but α = 0.1 gives clearly
the best average ratio with a large majority of images including less than 20% of miss-
classified pixels. However, a “bump” can be observed in [Figure 3.12b] for a ratio
around 0.6, showing that several textures are not well captured with our algorithm.
This limitation will be discussed in the next section.

Although synthetic test images are best suites to verify the potential and the limits
of a method, results achieved for real images are more interesting. So we applied
our method also to natural images. Contrary to synthetic images, a textured region
may have large variation in a real image. This can be seen in the commonly used
zebra2 image in [Figure 3.13]. This make the segmentation of real images much more
challenging. Our approach can deal with these large texture variations thanks to the
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Figure 3.10: (a)-(h) FROM LEFT TO RIGHT, TOP TO BOTTOM: Segmentation results
for synthetic texture images.

nonlinear regularization. Several convincing results are shown in [Figure 3.13, 3.14,
3.15 and 3.16]. All these results were obtained still using the same parameters: ν =
1, α = 0.08 and p = 1.2. To show the influence of the diffusion time on the the
simplification of the image, results with two different values of α are shown in [Figure
3.14]. The first one is obtained for α = 0.05 and the other one for α = 0.08. More
details are clearly captured for the smaller diffusion time.

Segmentation of color textured images

The structure tensor can also be expressed for color images by taking the sum of the
gradients of each component. Color information can be combined with the correspond-
ing structure tensor to extract particular structures. Like for gray images, a coupled
diffusion of the color and texture components allows for the extraction of a feature
vector from which the image partition can be obtained. We show several examples
on real images where the addition of color improves the segmentation. In [Figures
3.17 and 3.18], we consider the same images as in [Figures 3.15 and 3.16] but with
color. The result for the frog image is greatly improved and the frog’s outline is al-
most extracted perfectly. Two more examples are shown in [Figures 3.19 and 3.20].
The fish of [Figures 3.19] has rather big structures which share a similar color with
the background. Our approach is still able to extract correctly the fish with the default
parameters. The last example is a giraffe with a complex background. The body of the
giraffe is successfully discriminated from the background.
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Figure 3.11: Brodatz texture test suite - TOP: region mask, BOTTOM: 20 samples of
the 100 test images.
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(a)

(b)

Figure 3.12: Experiments on the Brodatz texture test suite for Experiment 1: α = 0.05,
Experiment 2: α = 0.1 - TOP: Ratio of well-classified pixels for the first 20 images,
BOTTOM: Ratio repartition over the test suite.
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Figure 3.13: Result on the zebra2 image - TOP: Original image, BOTTOM, FROM

LEFT TO RIGHT: input features (smoothed image and structure tensor components),
final segmentation.

Figure 3.14: Results on the zebra image - TOP: Original image, BOTTOM ROWS,
FROM LEFT TO RIGHT: input features (smoothed image and structure tensor compo-
nents), final segmentation for different regularization times.
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Figure 3.15: Result on the frog image - TOP: Original image, BOTTOM, FROM LEFT

TO RIGHT: input features (smoothed image and structure tensor components), final
segmentation.

Figure 3.16: Result on the city1 image - TOP: Original image, BOTTOM, FROM LEFT

TO RIGHT: input features (smoothed image and structure tensor components), final
segmentation.
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Figure 3.17: Result on the frog image with color - TOP: Original image, BOTTOM,
FROM LEFT TO RIGHT: input features (smoothed image and structure tensor compo-
nents), final segmentation.

Figure 3.18: Result on the city1 image with color - TOP: Original image, BOTTOM,
FROM LEFT TO RIGHT: input features (smoothed image and structure tensor compo-
nents), final segmentation.
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Figure 3.19: Result on the fish2 image with color - TOP: Original image, BOTTOM,
FROM LEFT TO RIGHT: input features (smoothed image and structure tensor compo-
nents), final segmentation.

Figure 3.20: Result on the giraffe image with color - TOP: Original image, BOTTOM,
FROM LEFT TO RIGHT: input features (smoothed image and structure tensor compo-
nents), final segmentation.
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(a) (b)

Figure 3.21: The method fails when texture structures have a large difference in scale.

3.1.5 Limitations and possible extensions

The feature extraction characterizes texture magnitude and orientation at a given scale.
The scale is given by the number of iterations of the diffusion process and so, it is the
same for all pixels. When in an image, textures are defined at a different scale, the ex-
traction process is no longer adequate. A typical synthetic example is composed by the
same texture at different scales [Figure 3.21(a)] but it may occur in more general im-
ages where the structures of the different textures are defined at various scales [Figure
3.21(c)]. A straightforward extension is to consider texture features at different scales
by either introducing the nonlinear structure tensor obtained at different iterations or
extracting these features at different scales of the image. If such modification includes
the whole information, it also increases dramatically the number of channels and re-
dundant information is introduced, making the second phase (the image partitioning)
more difficult. With the same idea of a reduced feature space, Brox and Weickert pro-
posed in [21] an elegant and efficient approach to tackle this problem by extending our
framework. Similar texture features are considered but a local scale measure is also in-
troduced. The scale component is deduced from the speed of a diffusion process based
on the TV (total variation) flow. Another limitation is the restriction to a bi-partitioning
of the image. This issue has been discussed for the segmentation of smooth images
in the last chapter. Texture segmentations were restricted to the simplest case of two
regions to concentrate only on texture discrimination but all the extensions presented
earlier for more than two regions can be applied to this case.

3.1.6 Conclusion

In this section, we have presented an unsupervised approach to segment textured im-
ages. It is composed of two phases: the feature extraction and the image partitioning.
Texture features are based on a nonlinear version of the structure tensor obtained from
a coupled nonlinear diffusion of the second moment matrix components with the im-
age intensity. The image is then segmented by applying a region-based curve evolution
on the feature vector composed of the regularized version of the image intensity and
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the texture features. This framework has proven to be able to automatically segment
a wide range of synthetic and real images, with and without color. The quality of the
results is comparable to recent supervised methods which is quite remarkable given
that only two parameters need to be chosen and all the results were obtained with the
same choices.

3.2 Motion cue: optical flow

Considering motion, the optical flow is the principal way of extracting this informa-
tion. Optical flow estimation is a complete research area on its own, and there exist
plenty of different techniques; see e.g. [7, 99, 141] for overviews. Interestingly, the
nonlinear structure tensor, already applied for the texture, can also be used here [19].
Two different kinds of features for motion can be derived from the optical flow: first
the optical flow vector as such, and second its magnitude. While the first case is more
general and also allows the detection and tracking of moving objects in a scene where
the camera is moving as well, the second case might be more attractive, if motion
needs to be detected in a scene with a static camera.

3.2.1 Optical flow extraction

The structure tensor can also be used for optical flow estimation. In this case a
spatio-temporal structure tensor is needed. It is obtained the same way as described
in the last section, with only the initial condition being changed to u(t = 0) =
(I2

x, I
2
y , I

2
z , 2IxIy, 2IxIz, 2IyIz) where z describes the time axis. In the case of color,

these values will again be extended by using the corresponding sums. Although the
explicit usage of the structure tensor for optical flow estimation has been proposed in
[11] we will use the early approach of Lucas and Kanade [88] here, which implicitly
also employs the structure tensor.

Optical flow estimation is based on the assumption that image structures do not
alter their gray values during their motion. This is expressed by the optical flow con-
straint [67]

Ixu+ Iyv + Iz = 0. (3.9)

Again subscripts denote partial derivatives, and u and v are the unknown components
of the optical flow vector. As this is only one equation for two flow components, the
optical flow is not uniquely determined by this constraint (aperture problem). A second
assumption has to be made. Lucas and Kanade proposed to assume the optical flow
vector to be constant within some neighborhoodBρ of size ρ. The optical flow in some
point (x0, y0) can then be estimated by the minimizer of the local energy function

E(u, v) =
1
2

∫
Bρ(x0,y0)

(Ixu+ Iyv + Iz)2dxdy. (3.10)
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Figure 3.22: Two successive images of the stau2 sequence.

A minimum (u, v) of E satisfies ∂uE = 0 and ∂vE = 0, leading to the linear system( ∫
Bρ
I2
xdxdy

∫
Bρ
IxIydxdy∫

Bρ
IxIydxdy

∫
Bρ
I2
ydxdy

)(
u

v

)
=

(
−
∫
Bρ
IxIzdxdy

−
∫
Bρ
IyIzdxdy

)
(3.11)

Instead of a sharp window for Bρ often a convolution with a Gaussian kernel Kρ is
used yielding(

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)(
u

v

)
=

(
−Kρ ∗ IxIz
−Kρ ∗ IyIz

)
. (3.12)

The linear system can only be solved if the system matrix is not singular. Such singular
matrices appear in regions where the image gradient vanishes or the aperture problem
remains present. In such situations the smaller eigenvalue of the system matrix is close
to 0, and one may only compute the so-called normal flow (the optical flow compo-
nent parallel to the image gradient). Using a sufficient amount of smoothing for the
structure tensor, however, will greatly reduce such singular situations and dense results
are obtained in most cases. A technique that combines the Lucas-Kanade method with
dense flow fields can be found in [163].

Obviously the entries of the linear system are the five components of the spatio-
temporal structure tensor Jρ. Of course, instead of the classic linear structure tensor,
the nonlinear structure tensor will be employed here, as proposed in [19]. For the
diffusion of the structure tensor, TV flow will be applied, i.e. p = 1.

The idea to use a data adaptive structure tensor for optical flow estimation has
already been proposed in [104]. Although it is still a linear method, this structure
tensor is closely related to the nonlinear structure tensor. In [97] a method for how to
find appropriate parameters for this technique has been proposed.

3.2.2 Combining spatial and temporal cues

In the case of the optical flow channels, a comparable range can only be achieved by
some weighting. We weighted those channels with factor 64, so a displacement of
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Figure 3.23: Detection of moving objects between frame 130 and 131 in the stau2
sequence. LEFT: Using optical flow. RIGHT: Using intensity, optical flow, and texture.

4 pixels per frame corresponds to the possible maximum value in the other channels.
This is a reasonable choice, since above a velocity of 4 pixels per frame differential op-
tical flow estimation methods become more and more unreliable, so image sequences
with such large displacements should not be used for input or a multi-scale approach
should be considered.

3.2.3 Motion segmentation

With image sequences, motion information becomes available and the optical flow
components can be added to the feature vector. For a gray value sequence the feature
vector therefore consists of 6 components, namely the gray value, the 3 components
of the spatial structure tensor, and the two components of the optical flow.

For the special case of motion detection, it is often useful to weight the optical
flow channels higher than the other channels. Otherwise, the resulting segmentation
might not split the moving objects from the non-moving background, but some bright,
textured parts from dark parts. Experimentation pushed us to weight twice the optical
flow channels. In [Figure 3.24] we show the results obtained for different combinations
of the feature channels on the same test images (Figure 3.22) from the traffic scene
stau2 1. While the optical flow gives a robust information for the coarse shape and
location of the objects, the addition of intensity and texture information increases the
accuracy of the detection. The complete feature vector including all information is the
only one that permits to separate the cars on the left, as shown in [Figure 3.24(iii)].
In [Figure 3.25], a colored and textured moving box is segmented with a very high
accuracy when using all the features.

The complete feature vector also permits to capture small moving objects. A clip-

1The sequence stau2 was kindly provided by the Institut für Algorithmen und kognitive Systeme at the
University of Karlsruhe, Germany. The size of the whole sequence is (700× 566× 1034)
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(i)

(ii)

(iii)

Figure 3.24: Motion segmentation integrating different cues. LEFT: Feature chan-
nels. RIGHT: Final Segmentation. (a) optical flow. (b) Intensity and optical flow. (x)
Intensity, optical flow, and texture.



106 Chapter 3: Cue Extraction & Integration

Figure 3.25: Object detection in the box sequence. LEFT: Using optical flow. RIGHT:
Using color, optical flow, and texture.

ping from the stau2 sequence clearly shows this benefit. Pedestrians and bicycles are
rarely detected if only the optical flow is considered. [Figure 3.23] is an example
where two more objects are detected thanks to spatial information (these objects are
really moving in the sequence).

3.2.4 Tracking

When switching from segmentation to tracking, only a few things change. The main
issue is that for tracking the initial position and number of objects are known by de-
finition, so the initialization of the level-set is not a problem anymore. This allows
for the assumption of a scene with one object and the background to be dropped, and
it becomes possible to simultaneously track multiple objects. For this purpose, a new
energy functional has to be introduced that allows the coupled evolution of an arbitrary
number of level-sets, one for each object. The coupling is important in order to avoid
overlaps between objects.

Before the general case of M objects, we consider the simplified case of only two
objects Ω1 and Ω2, and the background Ωb. One level-set is assigned to each object
such that φi(x) > 0 if x ∈ Ωi. Adding the non-overlapping constraint yields the
characteristic functions

χ1 = H(φ1)(1−H(φ2)),
χ2 = H(φ2)(1−H(φ1)).

(3.13)

The characteristic function assigned to the background is the remaining part of the
image domain:

χb = H(φ1)H(φ2) + (1−H(φ1))(1−H(φ2)) = 1− (χ1 + χ2). (3.14)

Let e1, e2, and eb be the log-likelihoods of a pixel to be in Ω1, Ω2, and Ωb. Considering
a feature vector u of dimension N (gray-level, color, texture, motion...) and assuming
no interaction between its components, these log-likelihoods can be expressed as:

ei =
N∑

j=1

log pij(uj), i = 1, 2, b. (3.15)
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According to our framework, the tracking of Ω1 and Ω2 at frame t is obtained by
minimizing the region integrals of the negative log-likelihoods:

E(φ1, φ2) = −
∫
Ω e1χ1 + e2χ2 + ebχb

= −
∫
Ω(e1 − eb)χ1 + (e2 − eb)χ2 + eb.

(3.16)

By means of the Euler-Lagrange equations a system of evolution equations for the
level-sets is obtained:

∂φ1

∂t
= δ(φ1)

(
(e1 − eb)(1−H(φ2))− (e2 − eb)H(φ2)

)
∂φ2

∂t
= δ(φ2)

(
(e2 − eb)(1−H(φ1))− (e1 − eb)H(φ1)

)
.

(3.17)

This model is slightly different from the one we proposed in [17] where the coupling
between the level-sets was weaker. Overlapping was avoided there, yet there has been
no competition between objects when they are next to each other. Now in the case of
overlapping objects, the system of evolution equations simplifies to:

∂φ1

∂t
= δ(φ1) (e1 − e2) /2

∂φ2

∂t
= δ(φ2) (e2 − e1) /2

(3.18)

which effectively represents a competition between the two objects.
The extension to the general case of M objects is straightforward. Including the

smoothness constraint for each level-set leads to the following energy:

E({φk, k = 1..M}) =ν
M∑
i=1

∫
Ω
|∇H(φi)|dx−

∫
Ω
eb(x) dx

+
M∑
i=1

∫
Ω
(ei(x)− eb(x))H(φi)Πj 6=i(1−H(φj)) dx.

(3.19)
A system of coupled evolution equations is obtained for the minimization of this en-
ergy:

∂φk

∂t
=δ(φk)

(
(ek − eb)

∏
j 6=k

(1−H(φj))

−
∑
j 6=k

(ej − eb)H(φj)
∏

l 6=j,l 6=k

(1−H(φl)) + ν div
∇φk

|∇φk|

)
, k = 1..M

(3.20)
while region statistics are still updated after each iteration.

The tracking algorithm was first tested on two gray-level sequences: the famous
Hamburg taxi sequence2 [Figure 3.26] as well as the stau2 sequence already consid-
ered in the motion detection part [Figure 3.27]. In the first sequence, the objects are

2The sequence was created at the University of Hamburg and can be obtained from
ftp://csd.uwo.ca/pub/vision
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Figure 3.26: FROM LEFT TO RIGHT, TOP TO BOTTOM: Tracking result for the Ham-
burg Taxi sequence (256× 190× 20).

relatively large, yet its quality caused by the camera hardware available at that time
is rather challenging. Since the gray value and texture information is unreliable for
the van on the right, only the motion information can provide for its rough tracking.
Note that also in [Figure 3.27] the small cyclist can only be tracked because of its clear
motion. In [Figure 3.28], only a small sub-part of the stau2 sequence is considered. In
this example, very small objects – one pedestrian and two bikes – are tracked along the
sequence. In particular, the bike encircled in yellow is tracked despite very low inten-
sity difference with the background. Finally, we have tested our approach in critical
cases where objects overlap each other. The coupling between the level-sets permits to
deal with this kind of situation. The soccer example depicted in [Figure 3.29] benefits
from this behavior since three players very close to each other have to be tracked. This
color sequence introduces also another complexity by having a moving camera, which
actually does not change our approach.

3.3 Contributions and conclusions

The two-step approach proposed in this part permits to extend the Bayesian formula-
tion of Chapter 2 to a wider range of images. Textured images have first been consid-
ered, including gray and color images. Then, an extension to image sequences incor-
porates the optical flow and allows for the extraction and tracking of moving objects.
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Figure 3.27: FROM LEFT TO RIGHT, TOP TO BOTTOM: Tracking result for a down-
sampled version of the stau2 sequence (170× 130× 76).

The generalization of our approach is based on several points:

1. The first one consists in extracting important characteristics of image regions.
A reduced set of features is proposed to characterize texture and motion infor-
mation. A nonlinear version of the structure tensor is used to extract texture
properties from image derivatives while the optical flow is estimated to charac-
terize moving objects in image sequences.

2. A coupled nonlinear diffusion of the vector formed by these characteristics is
proposed to extend local features and remove noise while keeping an accurate
separation between regions.

3. A new coupled level-set formulation is introduced to track multiple objects, al-
lowing a natural competition between the level-sets representing each object.
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Figure 3.28: FROM LEFT TO RIGHT: Tracking of small objects in a sub-part of the
stau2 sequence (110× 220× 90).
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Figure 3.29: FROM LEFT TO RIGHT, TOP TO BOTTOM: Tracking of 3 players in the
soccer sequence (180× 130× 40).
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Parts of this work have been published in several conference papers [120, 17, 121] and
research reports [89, 18].

Acknowledgments: I would like to thank Thomas Brox for his important con-
tribution in the work presented in this chapter.



Chapter 4

Implicit Representation for Prior
Shape Knowledge

Often, the extraction of a given object from an image is an ill-posed problem and
data-based formulations as the ones presented so far will fail. The ill-posedness of the
problem can be due to various perturbing factors like noise, occlusions, missing parts,
cluttered data, etc... To overcome these limitations, one will try to make use of prior
knowledge to constrain the extraction process. Different cues may be considered to
include prior knowledge, such as the ones we have considered to define region terms
with pixel-values distributions or texture properties. However, even when consider-
ing a particular application, these cues may vary a lot from one image to another and
we will rather integrate prior knowledge about the shape of the objects which may
remain similar. For example, this is the case for most organs extracted in medical
imaging and in general, the shape of the object can be classified in a given shape fam-
ily. Modeling this particular family is of high interest to help for the extraction of a
new instance from another image. This strategy has been considered in many critical
applications where the use of such prior information was mandatory and it is often
referred to model-based. Such approaches consist of two steps: (i) the shape modeling
from a training set and (ii), the constrained extraction in a new image. The Bayesian
framework considered so far is well suited to integrate this kind of information using
the partition probability term p(P(Ω)). Previously approximated by a simple regular-
ization constraint, more complex distributions can be introduced. In the following, the
distribution of the training shapes will be learnt during the shape modeling phase. This
will give us a direct estimation of the probability of a new shape defined by a partition
of the image P(Ω), i.e p(P(Ω)).

Assuming the object(s) of interest to belong to a given class of shapes, the first
step aims at building an accurate and compact model of this class from a set of training
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samples. Then, the object extraction is an optimization problem where the best model
parameters must be found so as to map best the data (possibly modulo some pose
parameters). Both steps are quite critical: the shape model must be able to generate
any object of the considered family while it should be restrictive/specific to this class,
and then, appropriate features must be selected from the image to fit an instance of
the modeled family to the object boundaries. Front evolution techniques have shown
to be able to capture efficiently image features and the introduction of prior shape
knowledge in such techniques will give a powerful tool to answer to the second issue,
i.e. the attraction of the model toward image features.

The choice of the shape representation is quite a critical component when consid-
ering shape knowledge. Early works were considering rather simple geometric rep-
resentations like straight segments [53] or ellipsoids [14]. While these models are
efficient in terms of performance and low complexity when modeling simple geomet-
ric structures, they fail to account for local information and important variabilities of
the object of interest. More general representations were later introduced with land-
mark representations [38], Fourier descriptors [139] or B-splines [41, 40]. A statistical
study of these representations for a given training set is generally employed to capture
its distribution and to obtain a compact model.

Fourier descriptors were considered by Staib and Duncan in [139] to approximate
closed curves. This gives a very compact representation of the shapes and a shape
distribution can be modeled by learning the distribution of the weights of each Fourier
descriptor. However, this representation is limited to single closed curves and the
compactness of the representation is only valid for smooth curves.

In [38], Cootes et al. proposed a more geometrical way of modeling a class of
objects by simply considering a parametric representation of the contours, positioning
landmark points at chosen locations. These control points need to be placed in a co-
herent way on all training contours, such that a one to one correspondence is obtained
for each control point from one contour to another. A principal component analysis
(PCA) is then applied on the landmark representations of the training shapes to reduce
the dimension of the model by considering only the principal modes of variation with
respect to a mean shape. Moreover, statistical analysis of the shape distribution can
be also conducted in the PCA subspace, reducing again the degree of freedom of the
model (less “false” shapes can be generated). Non-linear extensions of this approach
have been proposed in [37] and [152]. This modeling approach is quite general and it
has been applied on various types of shapes (hands, faces, medical images...). Never-
theless, as mentioned by the authors, the positioning of the landmark points is critical
and different topologies in the learning set cannot be dealt with. Despite these limita-
tions, this method remains well-adapted to represent numerous families of shapes with
a fixed topology and where obvious and persistent shape features permit to easily set
control points.

More recently, Klassen et al. [79] proposed a continuous representation of closed
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curves, considering an arc length parameterization. A Riemmanian structure can be
associated to the considered manifold, allowing the computation of geodesic distances
between shapes, as well as statistical analysis. Several constraints are introduced to
integrate natural invariance, first with respect to rotations but also removing the re-
parameterization group. Advanced applications to shape clustering and object extrac-
tions demonstrate the power of this framework [71, 98]. However, the approach is
restricted to 2D closed curves and the extension to higher dimensions does not seem
straightforward.

Cremers et al. considered a B-Splines representation in [41, 40], easing the in-
troduction of shape knowledge in classical front evolution techniques. The modeling
phase relies on B-spline representations whose control points can be used for statistical
analysis like the landmark points of the active shape model. Relying on a kernel-PCA
analysis in [40], a non-linear reduction of the learning space is proposed, allowing
multiple modes. Besides, contrary to active shape models, this representation can be
used in a classical contour evolution approach. A variational formulation introduces
the shape constraint in a B-spline-based Mumford-Shah functional. Nevertheless, B-
splines still do not allow different topologies and the (re)parameterization of the con-
tour remains a critical step.

The level-set representation has no such limitations: being implicit, different
topologies can be handled and its intrinsic definition removes the constraining pa-
rameterization and re-parameterization issues. The first work to consider such repre-
sentation to include prior shape knowledge is the one of Chen et al. in [33]. Distance
functions are used to represent training shapes and the model is characterized by a
mean distance function obtained from an averaging of the training distance functions
after alignment. We proposed a direct extension of this method in [125], the same
representation is considered but a stochastic model stands as a shape model by also
considering the pixel-wise variance within the level-set space. A new shape module is
defined to constrain classical curve evolution techniques. The final variational formu-
lation integrates a prior shape module, jointly with the usual data terms. The stochastic
model defines a region selective prior: the data terms will govern the curve evolution in
regions of low confidence in the shape prior while the prior knowledge will be highly
imposed when its variance is low. Moreover, pose invariance is directly integrated into
the variational formulation.

Going further in the integration of prior shape knowledge and front evolution, the
active shape model can be extended to the implicit representation. A similar PCA re-
duction can be considered but directly on the implicit representations. Such a modeling
was used in [86] and [143]. In the following, we will review the principal steps of this
modeling which is quite similar to the parametric case. The second step, the active in-
tegration of the model in object extractions, can be done in several ways. In [143], the
authors considered the segmenting curve directly in the PCA subspace by expressing
the segmenting level-set with the mean level-set of the model, plus a weighted combi-
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nation of the principal modes of variation. Then, the optimization process is no more
a curve evolution process but rather consists in finding the optimal mode weights. In
[86], a variational framework integrates two terms. One is data-driven while the other
one attracts the evolving contour to an optimal shape which is updated according to an
other optimization process accounting for visual and prior shape knowledge.

We propose a more natural and adaptive way of introducing the shape constraint.
We define a new energetic module that will attract the evolving contour to the specific
class. The variational formulation permits to select actively a shape from the learning
class that best approximates the evolving level-set. Contrary to [143], the evolving
curve is not constrained to the learning space but only attracted to it. This allows for
local variations and it is less subject to local minima inherent to the geometry of the
learning space. Compared to [86] where a mixed approach alternates two optimization
problems, our approach makes a clear separation between data-driven and shape prior
terms.

This chapter is organized as follows: first, we present an approach to align the
contours/surfaces of the training set since registration is a required step before shape
modeling. The algorithm is also based on the level-set representation and it considers
rigid transformations with possible additional scale factor. The second part is dedi-
cated to the construction of two shape models: (i) a stochastic shape model and (ii),
an active shape model. Then, the introduction of shape constraints within front evo-
lution schemes is addressed and the efficiency and the flexibility of our approach are
demonstrated through its integration with various data terms.

4.1 Implicit shape registration/alignment

Shape registration is a required step before any shape analysis. Shape alignment and
registration is a complex issue in vision, graphics and medical imaging [10, 153]. The
registration problem consists in matching a shape C to a target shape CT allowing a
certain type of deformations/transformations. To solve this problem, a dissimilarity
measure between shapes need to be defined. Then, an optimization procedure will try
to minimize the dissimilarity between the transformed shape Ĉ and the target shape
CT . This dissimilarity can be defined either along the contour (shape-based) or in
the entire region (area-based) determined by the contour. Beside the dissimilarity,
the nature of transformation is also a key component in registration. Global motion
models or local deformations can be considered. In our particular problem, a global
transformation is preferred since local deformations between shapes must be preserved
to be captured during the modeling phase. Rigid (translation and rotation), similarity
(translation, rotation and scale) and affine transformations are general global motion
models. In the following, shape alignment is performed on distance transforms on the
shapes considering rigid ans similarity transformations.
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4.1.1 The level-set representation for global registration

We consider the general problem of aligning closed shapes of arbitrary dimension and
topology. The registration is restricted to the transformation space of similarity trans-
forms which are composed of a rigid transformation and a scale factor. The objective
is to align a shape C to a target shape CT . Distance transforms φ and φT are used as
implicit representations of the two shape according to the following definition:

φ(x) =


0, x ∈ C

D(x, C), x ∈ Cin

−D(x, C), x ∈ Cout

(4.1)

where D(x, C) refers to the minimum Euclidean distance between x and C, while
Cin and Cout are the image sub-domains delimited by C (the definition of the target
level-set φT is similar). In practice, the fast marching algorithm [132] or PDE-based
techniques [142] can be used for the construction of these representations. We refer
the reader to the first chapter of this thesis where the choice of the algorithm has been
discussed. This representation defines a feature space with several nice properties for
front evolutions: shapes of any dimension and topology can be considered, it is intrin-
sic and parameter free and it defines an optimization framework where the calculus of
variations can be employed.

Furthermore, we can show easily that this representation is invariant to rigid trans-
formations and that it can integrate easily a scale factor to deal with more general
transformations. But first, we consider a rigid transformation A that can be decom-
posed in a rotation R and a translation T: A(x) = Rx + T. Let φ′ be the function
obtained after the transformation of φ by A. The zero-crossing of φ′ gives a shape C′

which is nothing but the shape C being transformed by A. We want to show that φ′ is
also the distance transform of C′. Let x′ be the image of x by the transformation T,
for all x in the image domain Ω, we have: φ′(x′) = φ(x) = D(x, C). Then, we have
to show that the following relation holds:

∀x ∈ Ω,x′ = Rx + T ⇒ D(x′, C′) = D(x, C).

This equality is easily obtained from the definition of D:

D(x′, C′) = min
y′∈C′

{
‖x′ − y′‖2

}
= min

y∈C
{‖Rx+ T− (R y + T)‖2}

= min
y∈C

{‖R (x− y)‖2}

= D(x, C)

We can now also deduce the effect of adding a scale factor in the transformation:
A(x) = sRx + T. Using the same relations as above, the transformed level-set
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appears to be equal to a scaled distance function:

D(x′, C′) = min
y∈C

{‖sR (x− y)‖2}

= sD(x, C)

which leads to φ′(x′) = D(x, C) = 1
sD(x′, C′). Therefore, φ′ is simply multiplied by

s to represent the distance transform of C′.
Dealing with more general global deformations like affine transformations is not

so straightforward. In general, the distance transform of the transformed shape is not
available and it has to be recomputed. When considering iterative optimizations as the
one of the following part, this reinitialization brings high computational costs.

4.1.2 Global registration

Registration is equivalent with finding a point-wise transformation between the current
shape C and the target shape CT which minimizes a given dissimilarity measure. Dis-
tance transforms refer to a higher dimension space than the original one and increase
the problem/solution potentials. One can seek for a transformation A that creates
pixel-wise intensity correspondences between the source representation φ and the tar-
get representation φT . We have proved that distance transforms representations [φ;φT ]
are invariant to translation and rotation and we are able to predict the effect of scale
variations. These conditions lead to the following constraint:

(s,R,T)

A(x) = sRx + T

∀x ∈ Ω : [s φT (x) = φ(A(x))]

With this constraint, we consider registration in a global optimization framework that
involves all pixels in the image plane. The sum of squared differences, the optimization
of the correlation ratio, the maximization of the mutual information, etc. can be used
as as similarity measure between the source and the target representation:

E(s, θ,T) =
∫

Ω
ρ(s φT (x), φ(A(x))) dx. (4.2)

where ρ is the dissimilarity measure and θ the rotation angle: R =(
cos θ sin θ
− sin θ cos θ

)
.

A gradient descent can be used to recover the optimal registration parameters.
Let ρ1 and ρ2 be respectively the derivatives of ρ with respect to its first and second
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argument, we can write the gradient descent for a general dissimilarity measure:

d

dt
s = 2

∫
Ω

(
ρ1(, )φT (x) + ρ2(, )∇φ ·Rx

)
dx

d

dt
θi = 2

∫
Ω
ρ2(, )∇φ · ∇θi

(A(x)) dx, 1 ≤ i ≤ p

d

dt
T = 2

∫
Ω
ρ2(, )∇φdx

(4.3)

where p is the number of rotation angles (1 in 2D and 3 in 3D).
In order to introduce and demonstrate the potential of the implicit shape represen-

tation and our method, we consider a simple well known and widely used criterion;
the sum of squared differences:

∀x ∈ Ω, ρ(s φT (x), φ(A(x))) = (s φT (x)− φ(A(x)))2.

The corresponding gradient descent is obtained by replacing ρ1 and ρ2 in (4.3) accord-
ing to: {

ρ1(, ) = 2(s φT (x)− φ(A(x))),

ρ2(, ) = −2(s φT (x)− φ(A(x))).

Domain restriction

The initial positions of the source C and the target CT can produce distance map rep-
resentations that are not equally defined in a fixed image plane. To deal with this
technical limitation, as well to decrease computational costs, we may restrict the inte-
gral to some parts of the image close to the contours. To this end, a region selective
function f() can be designed from pixel-values of the distance representations. After
normalization, the following type of dissimilarity measure is obtained:

ρ(φ1, φ2) =
f(φ1, φ2)(φ1 − φ2)2∫

Ω f(φ1, φ2) dx
.

Several choices have been proposed in the literature [111, 42, 32]. As proposed in [42],
the comparison can be restricted to the inside parts of the contours, taking f(φ1, φ2) =
Hε(φ1) +Hε(φ2). In [111], the distance maps are used to consider the areas defined
by two equal-distance contours (inwards, outwards) from the input shapes.

f(φ1, φ2) = Nα(φ1, φ2) =

{
0,min(|φ1|, |φ2|) > α

1,min(|φ1|, |φ2|) ≤ α

with the interpretation that only pixels (isophotes) within a range of distance α from
the shapes to be registered are considered in the optimization process. When α → 0,
we obtain a simple geometric interpretation since our functional simplifies to:

E(A) =
1
|C|

∫
C

(
min
y∈CT

{‖y −A(x)‖2}
)2

dx+
1
|CT |

∫
CT

(
min
y∈C

{‖x−A(y)‖2}
)2

dx,

which can be related to [33, 60].
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ρa ρb ρc

ρ(φ1, φ2) Nα(φ1, φ2)(φ1 − φ2)
2 (H(φ1) + H(φ2))(φ1 − φ2)

2 (H(φ1)−H(φ2))
2

Meaning band φ-diff. inside φ-diff. symmetric diff.

Figure 4.1: Several examples of dissimilarity measures

In [32], a purely area based functional was proposed. The level-set represen-
tations are used to express the symmetric difference between shapes: ρ(φ1, φ2) =
(H(φ1) −H(φ2))2. All these dissimilarities have different properties and the choice
of a pertinent one is not obvious since it may also depend on the type of shape.
The absence of local minima and the robustness to particular perturbing factors are
some desirable properties one will seek. Despite the high dimension of the parameter
space (4 in 2D), an empirical comparison between these functionals can be estab-
lished on selected shapes, estimating the corresponding energy for a limited range of
the transformation parameters. To this end, we can constrain the unknown parame-
ter space in one or two dimensions. This comparison has been conducted on sev-
eral 2D examples shown in [Figures 4.2 and 4.3]. For these empirical evaluations,
we have quantized the search space using an uniform sampling rule (100 elements)
for all unknown parameters in each case. Translation in (x, y) were in the range of
[−width

2 , width
2 ]x[−height

2 , height
2 ], scale in [0.5, 1.5] and rotation in [−π, π]. Then, one

can estimate the cost function in the space of two unknown parameters, by considering
all possible combinations derived from the sampling strategy (the other two parameters
are fixed).

In [Figure 4.2], a comparison between the different criteria of table 4.1 is shown
where translation in x and rotation vary. Each energy plot shows a single global min-
ima when the transformation is the identity (null translation and rotation). Several
differences can be observed according to the chosen criteria. The complete evaluation
of the mean square difference between the distance maps [Figure 4.2(b)] is particularly
smooth and has only one minima which means that convergence will be obtained for
any initialization within the considered transformation range. [Figure 4.2(c,d)] indi-
cates the influence of the band approximation of the mean square criteria. A small band
of 6 gives a flatter energy around the global minima while a choice of 50 is almost sim-
ilar to the complete estimation. The evaluation of the criteria ρb and ρc are presented
in [Figures 4.2(e,f)]. ρb shows a similar behavior to the previous ones but results in a
flatter surface. The symmetric difference criteria ρc shows completely different prop-
erties. It is highly peaked around the global minima but many local minima are present.
This shows that this criteria it quite sensitive to initial conditions. When considering
mean square differences between signed distance functions [Figures 4.2(b-e)], the fea-
ture space includes more information. The empirical evaluations show a larger basin
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Evaluations of different cost functionals between the cardiac image (a)
and its rigid transformation where translation in x and rotation vary: (b) ρ(φ1, φ2) =
(φ1 − φ2)2, (c) ρa with α = 6, (d) ρa with α = 50, (e) ρb, (d) ρc.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Evaluations of different cost functionals between the zebra images (a) and
(b) with rigid transformations: 1) x translation and rotation vary: evaluation of ρa with
α = 50 in (c) and ρc in (d); 2) y translation and scale vary: evaluation of ρa with
α = 50 in (e) and ρc in (f).

of attraction around the minimum for this feature space, compared to the purely area
based terms. Similar remarks can be made on the zebra shapes shown in [Figure 4.3]
where scale variations are also considered. However, for this particularly complicated
shape, several local minima are observed for far initializations.

Using either of the proposed functionals we are able to convert a geometry driven
point-correspondence problem into an image-registration application where space as
well feature-based (intensity) correspondences are considered. But we still need to
make a choice. According to the empirical evaluations, which are only partial, ρa

seems to give the best compromise between robustness with respect to the initial con-
ditions and convergence speed.
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Experimental results

Of course, when considering the full space of transformation parameters, the chosen
criteria cannot be evaluated in the whole space, even with a coarse quantization. To
solve this minimization problem, a gradient descent on each transformation parameter
is considered. If we neglect the variation of the band/domain which is a reasonable
approximation for small variations of the transformation parameters, the derivatives of
ρb with respect to its first and second arguments are:{

ρb,1(, ) = 2Nα(s φT (x), φ(A(x)))(s φT (x)− φ(A(x)))

ρb,2(, ) = −2Nα(s φT (x), φ(A(x)))(s φT (x)− φ(A(x)))

The corresponding gradient descent is obtained by replacing ρ1() and ρ2() in the gen-
eral gradient descent (4.3).

The performance of the proposed module under various initial conditions is shown
in [Figures 4.4 and 4.5]. Given the rigid-invariant representation, one can claim that
the method is suitable for rigid objects. Registrations of a hand shape are shown for
important global transformations: a rotation of π

2 was applied in [Figure 4.4] while
a more complex similarity transformation including translation, scaling and rotation,
was considered in [Figure 4.5]. In both cases, our method is able to register the shapes.
Our dissimilarity measure is also robust to small local variations as shown in [Figure
4.6] where the hand shape was registered with success to an altered and transformed
version. Finally, in [Figure 4.7], we show the complete registration of a set of training
contours from the SQUID dataset 1.

Even if the approach can deal with small deformations, important local variations
will bias the registration process. The use of robust estimators may be considered to
resolve this issue by reducing the influence of outliers. By outliers, we mean portions
of the objects that are quite different in the training shapes and that should not be
considered during the registration process. In the following part, we will present an
original and automatic way of defining such a robust estimator that incorporates infor-
mation from a shape modeling phase but before that we show an example of surface
registration.

A nice advantage of the level-set representation is the possibility of being used to rep-
resent hyper-surfaces of any dimension. This is of good use in medical imaging where

1Center for Vision, Speech and Signal Processing Laboratory at the Univ. of Surrey,
http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
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Figure 4.4: Hand registration for a synthetic rotation of π
2 .

Figure 4.5: Hand registration for a synthetic similarity transformation: {s = 0.25, θ =
π
4 ,T = (20,−10)}.
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Figure 4.6: Hand registration for a synthetic similarity transformation with alteration:
{s = 1, θ = π

6 ,T = (20,−10)}.

Figure 4.7: Fish registrations from the SQUID dataset - TOP: 10 of the 13 considered
shapes, BOTTOM: before and after alignment.

surfaces have to be considered. In [Figure 4.8], we show an example of structures
extracted from brain MR images. These surfaces represent the lateral brain ventricles.
Twelve structures have been extracted semi-automatically from different patients. Of
course, these surfaces have similar characteristics from one subject to another and gen-
erating a general shape model is of high interest. The registration is a required step
before any modeling. Our registration approach has been applied on this training set
and the obtained results are presented in [Figure 4.9]. For this 3D example, 7 pose
parameters are estimated: s,T(Tx, Ty, Tz),R(θ1, θ2, θ3).These results were obtained
by setting the band size α to 2 and despite the higher dimension of the problem (by
using implicit representations), the complexity of our registration approach is still lin-
ear in the size of the surfaces and convergence is generally obtained after less than 100
iterations. This 3D experiment is quite promising and it illustrates the power of the
approach to deal with real problems.

4.2 Implicit shape modeling

Once the elements of the training set registered to a common pose, it becomes possible
to analyze its properties, seeking for a meaningful compact representation that can
encode prior knowledge for this particular pose.
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Figure 4.8: 4 of the 12 considered lateral brain ventricle surfaces.

Figure 4.9: 3D registration of the lateral brain ventricles - LEFT: 2D cuts before align-
ment, BOTTOM: the same 2D cuts after alignment.
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Introducing prior knowledge inside level-set methods requires the definition of a
shape model. A cloud of points is a simple technique to represent such knowledge.
However, such a technique is not convenient within a level-set framework where the
evolving interface is not represented using points. A more natural selection is to con-
sider the definition of the prior within level-set space [86, 33, 143, 125]. Consistency
between the propagation technique/optimization framework and the form of the prior
is meaningful. In other words, the objective is to recover a compact representation to
encode the prior from a set of level-set examples [φ1, φ2, . . . , φN ]. Building an aver-
age shape across the examples of the training set can be sufficient enough to represent
such a prior [33] but such a technique cannot capture variability. However, local/pixel-
wise variability as well as principal shape variations can be characterized to capture
properties of the training set. We present two different shape models which capture
respectively local variability and principal shape variations.

The first model combines the simple structure of average shape and the ability to
capture the local variability of the learning set [125]. Such a model should consist
of two components. The most prominent shape as well as the confidence along the
shape parts. When agreement between the training examples for a particular part is
present, the confidence should be high and the recovery of the object in the image
should strongly respect the prior. On the other hand, when this is not the case, the prior
constraint should be relaxed and the image information should be more important.
Such a model will furnish a region selective shape constraint for the extraction of new
structures.

The second model intends to capture properties of more complex family of shapes,
not necessary close to a mean shape. When a significant number of samples is available
in the training set, one can think of capturing principal shape variations. Principle
component analysis (PCA) can be applied to capture the statistics of the corresponding
elements across the training examples [86, 143]. PCA refers to a linear transformation
of variables that retains - for a given number of operators - the largest amount of
variation within the training data.

In the following, we present these two shape models and we show 2D and 3D mod-
eling examples obtained for various shape sets. The technical question of reinitializing
the mean shape representation to a distance function is also addressed.

4.2.1 Capturing local variability : a stochastic shape model

A stochastic framework with two unknown variables can be considered:

• The mean shape image, φs(x),

• The local degrees (variability) of shape deformations σs(x).

Similar models were proposed in a different context [156]. This model refers
to a distance function [φs(x)] that is associated with some variability measurements
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(a)

(b) (c)

Figure 4.10: Stochastic shape model for the Fish dataset: (a) aligned training set, (b)
model mean, (c) model confidence map.

[σs(x)]. Then, for a given pixel location x and a given value φ, the conditional proba-
bility of having this value at this location is given by:

ps
x(φ) =

1√
2πσs(x)

e
− (φ−φs(x))2

2σ2
s (x) . (4.4)

The construction of such a model can be done through a training phase. One can
assume that N contours/shapes of the target are available. Global registration of the
training examples to a common pose provides N distance transforms representations
(one for each training sample) [φ̂i]. A sample - arbitrarily selected - shape from the
training set can be used as common pose [φs]. Such selection can introduce some bias
to the model construction.

We consider a variational framework for the estimation of the most appropriate
representation that aims at maximizing the local joint densities between the model
(φs, σs) and the registered training samples:

E(φs, σs) = −
n∑

i=1

∫
Ω

log
[
ps
x(φ̂i(x))

]
dx,

subject to the constraint : |∇φs(x)|2 = 1, ∀x ∈ Ω.

(4.5)

Additionally, it is natural to enforce spatial coherence on the variability estimates by
adding a smoothness term. Since the constant term (

√
2π) does not affect the mini-
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mization procedure, the following functional is used:

E(φs, σs) =α
∫

Ω
|∇σs(x)|2 dx

+ (1− α)
n∑

i=1

∫
Ω

(
log[σs(x)] +

(φ̂i(x)− φs(x))2

2σ2
s(x)

)
dx,

subject to the constraint : |∇φs(x)|2 = 1, ∀x ∈ Ω,

(4.6)

where [α] balances the contribution between the data attraction and regularity of the
variability field.

The constrained optimization of this functional can be done using Lagrange mul-
tipliers and a gradient descent method. However, given the form of the constraint
(involvement of first and second order derivatives), we cannot obtain a closed form
solution and prove that the conditions which guarantee the validity of Lagrange’s the-
orem are satisfied. Moreover, the number of unknown variables of the system is too
high and the system is quite unstable especially when a large variability among the
training samples is present. An alternative selection refers to a two-step optimiza-
tion process. During the first step, we obtain the “optimal” solution according to the
data-driven terms, while during the second step we find the “optimal” projection of
this solution on the manifold of acceptable solutions (distance functions). Thus, the
unknown variables are obtained by minimizing the previously defined data-driven ob-
jective function that preserves some regularity conditions:

d

dt
φs = (1− α)

n∑
i=1

φ̂i − φs

σ2
s

,

d

dt
σs = (1− α)

n∑
i=1

[
− 1
σs

+
(φ̂i − φs)2

σ3
s

]
+ 2α∆σs,

(4.7)

while the projection/correction to the manifold space of accepted solutions (Euclidean
distance maps) is done using a partial differential equation that does not require av-
erage shape extraction and was proposed in [142]. These two steps alternate until the
system reaches a steady-state solution. Upon convergence of the system, we will obtain
a distance map/transform representation model that optimally expresses the properties
of the training set using degrees of variability constrained to be locally smooth. As far
as the initial conditions of the system are concerned, we use the Euclidean distance
map of a reference sample.

Several modeling examples are shown in [Figures 4.10, 4.11 and 4.12]. All these
examples are well-adapted to our stochastic model since in each case the shapes are
very close to each other and differ only on local parts. The stochastic shape model is
able to retrieve a meaningful mean representation while it captures shape parts with
high and low variability. For the Fish training set of [Figure 4.10], the mean level-set
represents an “average” smooth fish without any particular detail and the confidence
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Figure 4.11: Stochastic shape model for the Dude dataset - TOP: Samples of the train-
ing set, BOTTOM: from left to right : dude shapes before alignment, after alignment,
model mean and model confidence map.

(a) (b) (c)

Figure 4.12: Stochastic shape model for the Cardiac Ventricles dataset: (a) aligned
training set, (b) model mean, (c) model confidence map.
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(a) (b) (c) (d)

Figure 4.13: Registration of highly different shapes - (a) and (b) synthetic shapes, (c)
model mean, (d) model confidence.

Figure 4.14: Alternate stochastic modeling/registration - TOP: Registration results at
different iterations (in green and blue are the two shapes while the model mean is in
red), BOTTOM: Corresponding model confidence map.

map shows a high variability around the tail. The Dude example in [Figure 4.11] is a
synthetic example where the same shape was considered but with some modifications
on local parts like the legs or the arms. We obtain a model in accordance with these
local modifications since high variance is recovered in the parts which have endured
some changes. The last example in [Figure 4.12] is taken from cardiac images. The left
and right heart ventricles were previously extracted along a cardiac cycle. The shape
model is able to capture the parts of the ventricles with important changes during
the cardiac cycle. This can be pertinent to analyze whether a patient has breathing
problems or not since a high variance will imply an important blood transfer.

The advantages of such a prior model are numerous. It encodes in a natural form
prior knowledge within implicit representations, it provides straightforward techniques
for the estimation of geometric properties, it can deal with multi-component objects
and it can be determined from a small set of training examples. Moreover, the regis-
tration process can take benefits from this model.

Stochastic registration

This confidence map may also help to improve the registration phase of the training set
by reducing the influence of variable parts of the objects and increasing the weight of
highly similar parts during the registration process. Given this model, one can register
a given shape C by maximizing the joint density between the model and the input shape
representation φ. If we assume that the conditional densities of the model are indepen-
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Figure 4.15: Alternate stochastic modeling/registration of the Dude dataset - Registra-
tion results at different iterations with superimposed confidence map.

dent across pixels, then the optimization criterion is equivalent to the maximization
of

p(s, θ,T|φ, φs, σs) =
∏
Ω

ps
A(x)(s φ).

As in the previous section, we consider the distance maps within a limited range of
their zero crossings, leading to the following minimization criterion:

E(s, θ,T) =
∫

Ω
Nα(s φ, φs)

(
log(σs(A(x))) +

(s φ(x)− φs(A(x)))2

2σs(A(x))

)
dx.

A gradient descent can be used for the minimization of this functional. The resulting
motion equations are similar to the ones obtained with the sum of squared differences
but it also includes the variability of the shape model. As a consequence, the contribu-
tion of pixel locations with high variability are less significant than the ones with high
confidence in the prior model. Both processes, the stochastic modeling and the sto-
chastic registration, can be iterated, improving one another until stability is achieved.
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In the experiments, this alternate registration/modeling approach converges toward a
solution that appears to be the optimal stochastic registration and modeling.

The capabilities of this iterative approach are demonstrated on a synthetic example
in [Figures 4.13 and 4.14]. In this example, the two shapes are highly different but they
share a common part. The different parts bias the aligning process in [Figure 4.13].
Then, if we build the stochastic model, we get a high variance in these different parts
and it is employed to improve the alignment. [Figure 4.14] shows the improvements
of the alignment when both steps are iterated. The same approach is used to improve
the registration of the Dude shapes [Figure 4.11]. The results are presented in [Figure
4.15] and our approach is able to capture regions of high confidence (head and left
upper part) to improve the alignment. The final registration is close to perfect.

4.2.2 Capturing principal variations through principal component
analysis

When a large training set is available, a more complex model can be built by seeking
to model the shape sub-space corresponding to the training set. In a given application,
the training shapes can be assumed to belong to a restricted family of shapes. Analyz-
ing the training set, we wish to model this family. For this purpose, we consider the
modeling approach introduced in [86, 143]. This model assumes the shape family to
be generated from a linear combination of implicit representations. A principal com-
ponent analysis is applied on the training shapes to retain only the principal modes of
variation. First, the samples φ̂i are centered with respect to a mean representation φs,
[ψi = φ̂i−φs]. Then, the most important modes of variation can be recovered through
principal component analysis on the covariance matrix Σ defined as:

Σi,j =
1
|Ω|

∫
Ω
ψi(x)ψj(x) dx, 1 ≤ i ≤ N, 1 ≤ j ≤ N.

Retaining the m principal modes of variation, a new shape belonging to the modeled
family can be expressed as:

φ = φs +
m∑

j=1

λj Uj , (4.8)

where Uj are the retained modes of variation (eigenvectors of Σ) and λj are weighting
factors taking values within the allowable range defined by the eigenvalues.

In [Figure 4.16], we show the first three modes of variation obtained for the car-
diac ventricles. The quantity of information rj described by the mode of variation j
is given directly by the corresponding eigen value: rj = λj

PN
i=1 λi

. Regarding the car-
diac example of [Figure 4.16], the first mode represents a large majority of the shape
variations, accounting for 81.7% of the information. Actually, this first mode captures
most of the deformation of the ventricles during a cardiac cycle. The second mode
cannot be neglected since its contribution is up to 13.5%. It incorporates more local
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81.7% 13.5% 2.7%

Figure 4.16: Shape model of the cardiac ventricles - The most important modes of
variation and their respective contributions are presented [principal three modes after
rigid alignment (green: mean, blue: +σ, red:−σ)].

Figure 4.17: Shape model of the lateral brain ventricles model - The most impor-
tant modes of variation are presented [principal two modes after rigid alignment
(blue:mean, red: +σ, green:−σ)].
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deformations of the ventricles. In this example, it appears that only two modes may
be sufficient to describe the shape as it represents more than 95% of the information.
Besides its use for constraining the extraction of new structures, this shape analysis
may be a good tool to characterize possible abnormalities during the cardiac cycle.

Another example of such an analysis is shown in [Figure 4.17] for the 3D modeling
of lateral brain ventricles. We consider the training set used in the last section for 3D
rigid alignment [Figure 4.8]. The space reduction is conducted on the aligned shapes.
[Figure 4.17] shows the mean level-set as well as the surfaces obtained from each of the
first modes of variation, varying the weight of the corresponding eigen vectors. From
only 12 surfaces, we are able to generate a whole family of brain ventricles whose
shapes seem quite possible and natural. One interesting point is the compactness of
the obtained representation since more than 70% of the information is contained in
the first two modes, while the third one represents 10% and seems to account for non-
symmetrical parts of the ventricles which can be observed in some samples of the
training set. Moreover, contrary to most shape analysis techniques, the alignment and
the modeling phases are entirely automatic and introduce no tuning parameter. The
user only need to specify the percentage of information the model should capture and
the number of retained modes will be set in consequence.

4.2.3 When should the mean representation be maintained to a distance
function?

One can claim that constraining the mean level-set representation to a distance function
is not necessary, that a simple average of the level-set representations of the training
samples would be sufficient to give a mean representation. Let us consider a sim-
ple example composed of the two shapes of [Figure 4.18]. A simple average of the
two implicit representations gives the image [Figure 4.19(a)] while constraining it to a
distance function gives [Figure 4.19(b)]. The simple average gives more information
since the legs of the horses can still be guessed while the other one completely removes
this information. Therefore, a simple average seems to be a better approximation for
the mean representation. However, in this case the information that is included in this
mean representation is not clear anymore since it becomes something different from
an implicit representation of a contour. Now, if we consider the full stochastic shape
model, including the estimation of a confidence map jointly with the mean represen-
tation (constrained to a distance function), we obtain the model of [Figures 4.19(c,d)].
With this model, we include all the information corresponding to the legs and we have
a clear interpretation. The mean level-set is the implicit representation of the mean
contour while the confidence map gives a pixel-wise confidence in this representation.
[Figures 4.19(c,d)] shows that the legs are included as areas of low confidence in the
mean representations.

Regarding the second model, a simple average should be preferred. The reason
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Figure 4.18: Zebras test shapes (see text).

(a) (b) (c) (d)

Figure 4.19: Zebras shapes analysis - (a) simple average, (b) mean constrained to a
distance function, (c) stochastic shape model mean, (c) stochastic shape model confi-
dence map.

relies in the linear assumption of the model. A non-linear estimation of the mean would
be in contradiction with the whole modeling process and training samples could not be
recovered using the relation 4.8. According to what have been said before, it appears
natural to investigate a non-linear extension of this principal component analysis in
future works.

These two modeling approaches capture important information within the training
sets which can be used as prior knowledge during the extraction of new structures. The
introduction of this prior shape knowledge is addressed in the following section.

4.3 Shape constraints in object extraction

The next step is the introduction of the prior shape knowledge within a front evolution
by defining the probability of a given partition of the image p(P(Ω)) when a shape
model is available. Restricting us to the extraction of a single object (not necessary
connex) and representing the evolving front by a level-set function φ, this is equivalent
to defining the prior distribution p(φ|“shape model”).

As the same representation is used for the modeling phase and the object extrac-
tion, the definition of the prior probability of a given shape is quite natural. Consid-
ering a Bayesian formulation, we first show how we can define a natural criteria that
will constrain the evolving level-set, including dynamic estimation of pose parameters.
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Then, we successively develop shape constraint modules for: (i) a simple static prior
composed of one prior shape, (ii) the stochastic shape model introduced in Section
4.2.1 and (iii), the PCA-based model presented in Section 4.2.2. For this last model,
the prior shape will be actively selected from the modeled family by optimizing with
respect to the weights of the principal modes of variation. Finally, promising results
will show the ability of our approach to tackle difficult problems including highly noisy
data or objects with missing parts and occlusions.

4.3.1 Shape constrained surface evolution

Let us now consider an evolving interface represented by a level-set function φ as de-
scribed in Chapters 2 & 3. We would like to evolve it while respecting some shape
properties φM modulo a given transformation A. One can model the joint space of
evolving interface and its transformation to the prior model using a probability density
function. Let [p(φ,A|φM)] be the prior distribution of the transformation given the
model φM. Such distribution is unknown, varies across different objects and cannot
be recovered in the more general case. However, Monte-Carlo sampling or other tech-
niques can be used to recover such distribution when empirical evidence is sufficient
enough. In the absence of such knowledge, we can consider a Bayesian formulation
for this density:

p(φ,A|φM) =
p(φM|φ,A)
p(φM)

p(φ,A) =
p(φM(A)|φ)
p(φM)

p(φ,A).

The constant term p(φM) can be ignored and the joint space of interfaces and their
transformations is assumed to be uniform. Such an assumption is often considered
in the absence of knowledge on the properties of the object to be recovered. Then,
recovering the optimal interface and the transformation is equivalent with finding the
maximum posterior p(φM(A)|φ) that is equivalent with finding the extremum of:

p(φM(A)|φ) =
∏
x∈Ω

p(φM(A(x))|φ(x)),

where x is an image location and independence across pixels was assumed. The last
thing to be accounted for is the conversion of the evolving interface φ to a similar
pose to the one of the prior model φM (rigid transformations are often considered for
pose estimation). Including rotation, translation and scaling, we consider a similarity
transformation: A = (T , θ, s). As explained in the registration part, scale variations
cause predictive changes in the distance transform level-set representations. Therefore,
the scale factor s is to be accounted for, leading to the following form for the posterior:

p(φM(A)|φ) =
∏
x∈Ω

p(φM(A(x))|sφ(x)).

The pixel-defined prior distributions [px()] are known from the modeling phase and
solving the inference problem is equivalent with finding the lowest potential of the
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− log function, or:

E(φ,A) = − log

[∏
x∈Ω

p(φM(A(x))|sφ(x))

]
= −

∫
Ω

log(px(s φ(x))) dx.

Static prior knowledge

Considering the simplest shape model, i.e. a single prior shape φM, we would like to
define the probability of the evolving level-set φ, modulo a given transformation A. A
pixel-wise Gaussian distribution can be considered:

px(s φ(x)) = p(φM(A(x))|sφ(x)) =
1√
2πσ

exp
(
−(sφ(x)− φM(A(x)))2

2σ2

)
,

where σ is global confidence in the prior shape φM. Then, the evolving level-set φ
and the transformation parameters should minimize the following energy:

E(φ,A) =
1

2σ2

∫
Ω
(s φ(x)− φM(A(x)))2 dx. (4.9)

The constant factor in σ can be omitted or replaced by a weighting factor when this
term is used as a module in a complete energy including data-based terms. Restricting
the integral in the vicinity of the zero-level of φ, the following analytical expression
for the objective function is obtained:

E(φ,A) =
∫

Ω
δε(φ)(s φ(x)− φM(A(x)))2 dx, (4.10)

where δε is the usual smoothed version of the Dirac function. This energy is close to
the dissimilarity measure used in Section 4.1.2 to register two level-sets φ1 and φ2:

ρ(φ1, φ2) = Nα(φ1, φ2)(φ1 − φ2)2,

which gives for small values of α: ρ(φ1, φ2) = δε(φ1)(φ1 − φ2)2 + δε(φ2)(φ1 −
φ2)2. The geometric interpretation of this dissimilarity measure was discussed in the
registration Section 4.1.2 and only the first term is sufficient to attract φ1 toward φ2

which corresponds to the energy (4.10).
In order to minimize this energy with respect to the evolving level-set represen-

tation and the global linear transformation, we use the calculus of variations. The
current representation will evolve toward φM modulo the rigid transformation A. The
equation of evolution for φ is given by:

∂φ

∂t
= −2δε(φ)s

(
s φ− φM(A)

)
− δ′ε(φ)

(
s φ− φM(A)

)2
The second term is a deflation force and does not affect the position of the zero level
of φ, thus it can be neglected.
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The rigid transformation A is also dynamically updated so as to map φ and φM
the best. The gradients of this functional with respect to the parameters of A drives
to a system similar to the one obtained for the registration (4.3) replacing respectively
ρ1(, ) and ρ2(, ) by: {

ρ1(, ) = 2δε(φ)(s φ(x)− φM(A(x)))

ρ2(, ) = −2δε(φ)(s φ(x)− φM(A(x)))

Stochastic prior knowledge

Rather than considering a single prior shape, we can consider the Gaussian model of
Section 4.2.1 which gives us not only a mean shape φM but also a pixel-wise con-
fidence map σM. The prior distribution of an evolving level-set φ can be expressed
as:

px(s φ(x)) = p(φM(A(x))|sφ(x)) =
1√

2πσM(x)
exp

(
−(sφ(x)− φM(A(x)))2

2σM(x)2

)
.

Still restricting the integral around the zero-level of φ, the corresponding energy is:

E(φ,A) =
∫

Ω
δε(φ(x))

(
log(σM(A(x))) +

(s φ(x)− φM(A(x)))2

sσM(A(x))

)
dx, (4.11)

where constant terms have been omitted. This objective function consists of two terms.
The first one discourages the recovery of a transformationA that projects the evolving
interface to model areas with low confidence (large σM(A)). The second term cou-
ples local propagation and estimation with the following objectives: (i) to recover a
transformation that aligns the evolving interface with the prior and (ii), to evolve the
interface so it becomes close to the prior. Such terms have similar conceptual interpre-
tation with the one used to introduce the static prior but it is also able to integrate the
model confidence map. The projection error (s φ − φM(A))2 is weighted according
to the model confidence σM(A).

Within such an optimization framework, the error for deviating from the model
in areas with low confidence (high σM(A)) is downgraded (according to σM(A)).
Consequently, such areas become less important in the process of imposing the prior
and recovering the transformation. Last, but not least, such a model deals in an implicit
manner with outliers in the process of shape enforcement within the segmentation
process.

Active shape model

During the model construction, we have also analyzed the principal modes of variation
within the training set. Including this information, the ideal transformation will map
each value of current representation to the “best” level set representation belonging to
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the class of the training shapes. As mentioned in Section 4.2.2, if a shape representa-
tion φM belongs to this class, then it can be derived from the m principal modes:

φM = φs +
m∑

j=1

λj Uj .

The shape model M is composed of the mean representation φs and the principal
modes of variation {Uj , j = 1..m}. We would like to estimate [p(φ,A, λ|M)], the
prior distribution of the transformation and mode weights given M. A Bayesian for-
mulation of this density gives

p(φ,A, λ|M) =
p(M|φ,A, λ)

p(M)
p(φ,A, λ) =

p(φM(A)|φ)
p(M)

p(φ,A, λ).

The constant term p(M) can be ignored and the joint distribution p(φ,A, λ) is as-
sumed to be uniform. Then, the optimal interface, transformation and mode weights
are obtained by maximizing

p(φM(A)|φ) =
∏
x∈Ω

p(φM(A(x))|sφ(x)).

A more complex model could be easily deduced from the modeling phase by learning
the marginal distribution p(λ). In the absence of such a model, we keep the assumption
of a uniform distribution. Identically to the static prior, a pixel-wise Gaussian model
centered in φM is considered as the prior density estimate:

px(s φ(x)) = p(φM(A(x))|sφ(x)) =
1√
2πσ

exp
(
−(sφ(x)− φM(A(x)))2

2σ2

)
.

Again, we apply the − log function to this density, and, restricting the integral around
the zero-crossing of φ, the optimal parameters must minimize the new energy:

E(φ,A, λ) =
∫

Ω
δε(φ)

(
s φ(x)−

(
φs(A(x)) +

m∑
j=1

λj Uj(A(x))
))2

dx.

The evolution equation of φ and the gradient descent of the transformation parameters
are similar to the ones obtained with the static and stochastic shape models but this
energy should also be minimized with respect to the mode weights λ. Actually, these
new parameters are the easiest ones to estimate since their optimal values are solutions
of the linear system

Ūλ = b,

with 
Ū(i, j) =

∫
Ω
δε(φ)Ui(A(x))Uj(A(x)) dx

b(i) =
∫

Ω
δε(φ)(sφ(x)− φM(A(x)))Ui(A(x)) dx,

where Ū is a m×m positive definite matrix and can be easily inverted.
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Figure 4.20: Constrained segmentation with a single static prior - TOP: Cup shape
prior, BOTTOM: Constrained curve evolution.

Figure 4.21: Constrained segmentation with a single static prior: Curve evolution for
an object with missing parts.
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Figure 4.22: Constrained segmentation with a single static prior: Curve evolution for
an object with occlusions.

4.3.2 Constrained object extraction

In this section, we integrate the three different shape models of the last section in the
Bayesian segmentation method presented in Chapter 2. This permits us to constrain the
object extraction from new images with three different types of prior shape knowledge:

• a single prior shape,

• the stochastic shape model of Section 4.2.1,

• the PCA-based model of Section 4.2.2.

Two different constrained object extractions are proposed. The first one assumes the
prior shape constraint to be constant during the extraction process. It includes the
single shape prior and the stochastic shape model. The second one is a form of an
active shape model. It selects actively the “best” shape from the prior family while
attracting the evolving level-set toward this new prior. Promising results are presented
for both types of constrained extraction on 2D and 3D images.

Object extraction subject to a static shape constraint

Since prior shape knowledge can be introduced in a level-set evolution, this informa-
tion can be used jointly with any of the data terms of Section 2 and 3. The data term
will make the contour evolve toward the object of interest while the shape prior will
maintain a global shape in accordance with the shape model. For this purpose, we can
integrate our shape constraint in the Bayesian formulation of Chapter 2. In the case
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of the extraction of a single object given by a level-set representation φ, the Bayesian
formulation of Chapter 2 is:

p(φ|I) ∝ p(I|φ)p(φ).

While the first term of this expression has been extensively studied in Chapter 2 and 3,
the second one has been only used as a regularization constraint. Now, we can define a
much more complex constraint by integrating prior shape models. The corresponding
variational formulation will be composed of two terms: one accounting for data in-
formation and one constraining the shape of the evolving level-set with respect to the
shape model. In the case of a static shape prior, the following type of functional has to
be minimized:

E(φ,A) = bEshape(φ,A) + (1− b)Edata(φ).

where Eshape is the shape attraction term, Edata accounts for data information and the
weight b permits to control the influence of the shape prior. By static prior shape
knowledge, we mean a prior term that remains identical during the segmentation
process. Only the rigid/similarity transformation that maps the evolving level-set to
the prior will be updated. Such a prior can be a single shape or the stochastic shape
model of Section 4.2.1 and Section 4.3.1.

First, we show some experimental results with a simple prior composed of a single
shape. The corresponding energy is the one proposed in equation (4.10). In [Figures
4.20, 4.21 and 4.22], we show several experiments where the outline of a cup is used as
shape prior. For the sake of simplicity, the transformation A was restricted to a simple
translation in this experiment. In the first example ([Figure 4.20]), the complete cup
is present in the image and the contour evolves toward the shape prior in a first before
being translated to the object. [Figure 4.21] shows the robustness of the method after
removing a large part of the object while in [Figure 4.21], the object was occluded
and the method was still able to recover the object. The second set of experiments is
more general since A is a similarity transformation and color information is included
in the data term. The shape prior is a hand and two examples are shown. The first one
([Figure 4.23]) shows how the approach is able to recover the complete hand subject
to translation, rotation and scaling. To increase the difficulty, noise and occlusion were
also added in [Figure 4.24]. The shape constraint makes the curve capture the full
hand.

Going further, we consider the stochastic shape model as prior. Including a pixel-
wise confidence map, the model furnishes a region-selective constraint. In regions
of low confidence in the shape model, the data term will drive the curve evolution
while the shape term will be highly imposed in regions of high confidence. A first
synthetic example illustrates the region selectivity of the prior. Two similar shapes are
used to build a stochastic shape model in [Figure 4.25]. The confidence map separates
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Figure 4.23: Constrained segmentation with a single static prior - TOP: Hand shape
prior, BOTTOM: Constrained curve evolution.

Figure 4.24: Constrained segmentation with a single static prior: Curve evolution for
an object with occlusions and noise.
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Figure 4.25: Constrained segmentation with the stochastic shape prior - TOP: Training
contours and the corresponding stochastic shape model, BOTTOM: Constrained curve
evolution on a synthetic example.

clearly the image in two parts, one of high confidence and one of low confidence. The
constrained segmentation in [Figure 4.25] shows a very explicit example of this model.
The shape prior constrains the curve on the left and right parts while the data term is
favored in the top and bottom parts. This model is used on real medical data in [Figure
4.26]. The segmentation of cardiac ventricles is correct for the whole cardiac cycle.
The use of prior shape knowledge makes the approach insensitive to dark parts inside
the ventricles because the confidence in the prior is quite important in these regions.
On the other hand, the data term will drive the curve evolution in parts of the ventricles
with high variability.

Object extraction subject to an active shape constraint

As we have show in Section 4.3.1, the active shape model can be introduced dynami-
cally in the segmentation process by optimizing w.r.t. the mode weights in parallel to
the level-set evolution:

E(φ,A, λ) = bEshape(φ,A, λ) + (1− b)Edata(φ).

This framework has been tested on the extraction of the lateral brain ventricles.
[Figure (4.27)] show the robustness to noise brought by the prior shape knowledge
(the image is one of the training images but with additional Riccian noise). In [Figure
(4.28)], we show the ability of our approach to extract objects from new images (not
used for building the model). The active shape model is able to approximate the surface
with a similar one from the modeled class while the object extraction allows for small
local variations with respect to the model. Finally, in [Figure (4.29)], we show the
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Figure 4.26: Constrained segmentation with the stochastic shape prior: Curve evolu-
tion for an object with occlusions and noise.
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Figure 4.27: Segmentation of the lateral brain ventricles with Shape Prior (b = 0.3) of
a noisy MR image. TOP LEFT: surface evolution, TOP RIGHT: projected surface in
the learning space and ground-truth surface (from the training set), BOTTOM: surface
cut (green) and its projection in the learning space (red) during surface evolution.

influence of the shape prior by changing its weight. While prior knowledge improves
the quality of the object extraction, overweighting it will make object details to be
missed. The possibility of tuning this parameter is an important advantage of our
approach compared to [143].

4.4 Contributions and conclusion

In this chapter, we have presented a detailed study of prior shape knowledge in image
segmentation. Two phases have been considered: (i) the shape modeling from a set of
training samples, (ii) the shape constrained object extraction. Both steps make use of
level-set functions as implicit representations of contours or surfaces. Several original
aspects should be emphasized:

1. Two different modeling approaches have been proposed, both in the level-set
space. The first one consists in a pixel/voxel-wise stochastic model which as-
sumes the training shapes to be close to a mean representation and approximates
pixel/voxel-wise distributions of the level-set representations by a Gaussian den-
sity. This model permits local variability/confidence within the training set to be
captured with respect to the mean shape. The second model estimates the princi-
pal modes of variation through a principal component analysis over the training
samples.

2. Considering the Bayesian formulation introduced in Chapter 2, we define a new
term to account for prior shape model during the segmentation process. This new
constraint also comes from a Bayesian inference and it is presented for three
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Figure 4.28: Segmentation of the lateral brain ventricles with Shape Prior (b = 0.3) in
an MR image which was not used during the learning phase: surface cut (green) and
its projection in the learning space (red) at initialization (LEFT) and after convergence
(RIGHT).

different cases. The first one integrates a simple static shape prior composed
of a single shape. The second model naturally includes the whole stochastic
shape model, defining a region-selective prior constraint thanks to the learnt
confidence map. Finally, the last model is actively integrated by introducing the
modes of the principal modes of variation as additional unknown parameters in
a variational formulation.

3. Several examples show the introduction of each of these shape prior modules
with different data-terms. In addition to 2D images, several examples deal with
the extraction of surfaces from 3D medical images. The use of implicit repre-
sentations makes this possible.

Related publications can be found in [125, 110, 109, 111, 126].

Acknowledgments: I would like to thank Nikos Paragios who has been not
only a perfect guide for this part but also very active in formalizing different ideas.
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Figure 4.29: Segmentation of the lateral brain ventricles for different weights of the
shape prior constraint - From left to right and top to bottom, the shape prior weight b
is 0, 0.3, 0.4, 0.5.
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Chapter 5

Segmentation of 3D Probability
Density Fields: Application to
Diffusion MRI

In this chapter, we propose to extend the region-based front evolution proposed in
Chapter 2 for scalar and vector-valued images to more complex data. With the ob-
jective to segment diffusion magnetic resonance images, which represents a relatively
new modality in medical imaging, we consider the problem of segmenting images
where each voxel is assigned with a probability density function. In a first time, we
propose a direct extension of the vector-valued approach developed so far by assum-
ing the parameters of the densities to belong to a linear space. Then, we consider the
general case by defining divergences between probability distributions. A first gen-
eral approach is proposed by introducing the Kullback-Leibler divergence. Then, we
consider the 6-dimensional statistical manifold defined by the parameters of the dif-
fusion tensors. Region statistics are rigorously defined on this Riemannian manifold
by computing geodesic distances and intrinsic means. We validate these approaches
on synthetic data and show promising results on the extraction of the corpus callosum
and of the lateral brain ventricles from a real dataset.

5.1 Introduction

In the previous chapters, we have proposed to integrate different cues within front evo-
lutions for scalar and vector-valued images. While most images belong to these two
cases, one may have to deal with different data, composed of more complex ”objects”.
Medical imaging gives such data, in particular with diffusion magnetic resonance im-
ages where each voxel is assigned with a function describing the average motion of



152
Chapter 5: Segmentation of 3D Probability Density Fields: Application to

Diffusion MRI

water molecules [12, 96].
In 1994, P. Basser [8] proposed to model voxelwise the probability density function

of the molecular motion r ∈ R3 by a Gaussian law whose covariance matrix is given by
the diffusion tensor D. Diffusion Tensor Imaging (DTI) then produces a volumic image
containing, at each voxel, a 3 × 3 symmetric positive-definite tensor. The estimation
of these tensors requires the acquisition of diffusion weighted images in different sam-
pling directions together with a T2 image. Numerous algorithms have been proposed
to perform a robust estimation and regularization of these tensors fields [147], [159].
More recently, Q-ball Imaging has been introduced by D. Tuch et al. [150] in order to
reconstruct the Orientation Distribution Function (ODF). This ODF is the symmetric
probability density function S2 → R giving the probability for a spin to diffuse in a
given direction. Q-ball are then composed by a quantization on the sphere of this ODF
at each voxel. This method provides a better angular contrast and is able to recover
intra-voxel fiber crossings. Both, DTI and Q-ball imaging measure the same diffusion
of water molecules but with a different accuracy. Assuming the diffusion process to
follow a Gaussian law, DTI needs less measurements than the general non-parametric
estimation obtained with Q-ball imaging which requires a large amount of data. In
practice, the long acquisition time of Q-ball images (several hours) and the need of
strong diffusion gradients restrict their use to exploration research. Therefore, DTI are
naturally favored for human medical studies.

Diffusion MRI is particularly relevant to a wide range of clinical pathologies in-
vestigations such as acute brain ischemia detection [138], stroke, Alzheimer disease,
schizophrenia [3], etc. It is also extremely useful in order to identify the neural con-
nectivity of the human brain [82], [154], [26]. In the past, many techniques have
been proposed to classify gray matter, white matter and cephlo-spinal fluid from T1-
weighted MR [169] images but the issue of white matter internal structures segmenta-
tion is only feasible from diffusion images and only a few methods have been proposed
[173, 70, 158, 157, 165].

In [173], Zhukov et al. defines an invariant anisotropy measure in order to drive the
evolution of a level-set and isolate strongly anisotropic regions of the brain. The re-
duction of the full tensor to a single scalar gives a relatively low discrimination power
to the method, potentially resulting in segmentation of mixed structures. On the other
side, Wiegell et al. [165], Wang et al. [157, 158] and Jonassan et al. [70] propose
different measures of dissimilarity between diffusion tensors. The first two methods
use the Frobenius norm of the difference between tensors, together with a spatial co-
herence or regularity term respectively in a k-means algorithm or active contour model
to perform the segmentation of the thalamus nuclei. The third method [158] relies on
the symmetrized Kullback-Leibler divergence between Gaussian pdfs. The authors de-
rived an affine invariant dissimilarity measure between diffusion tensors and applied it
to the segmentation of 2D fields of diffusion tensor images. Finally, the fourth method
introduces a geometric measure of dissimilarity by computing the normalized tensor
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scalar product of two tensors, which can be interpreted as a measure of overlap. While
these works show interesting results on particular structures, the issue of choosing a
relevant dissimilarity measure between tensors appear clearly. Various ones are pro-
posed in [165, 157, 158, 70], either assuming linearity [165, 157] or motivated by
the geometry of the tensors [70] or by statistical divergence between the underlying
probability distributions [158].

In the following, we extend the region-based font evolution technique presented
in Chapter 2 to diffusion images. Of course, the main difficulty is to define statistical
models over sets of diffusion tensors or more generally, of probability density fields.
For this purpose, we need to start by defining a dissimilarity or distance between the
considered objects: 3 × 3 symmetric positive-definite tensor or probability density
functions. At first, we extend the works presented in Chapter 2 and in [165, 157]
where the components of the diffusion tensors are assumed to belong to 6D linear
space. Aiming at taking advantage of region statistics, multivariate Gaussian densi-
ties are defined on this 6D space to refine the segmentation process and hence recover
irregular anatomical structures such as the minor and major forceps of the corpus cal-
losum. Published in [124], this first approach also extend [157] to the 3D case. In the
second part, we propose to introduce dissimilarity measures that are defined directly
between the underlying probability density functions of the molecular motion. Our
method is thus applicable not only to DTI but also to Q-ball data which should enable
the proposed algorithm to catch even finer details. We start by defining region statis-
tics making use of the symmetrized Kullback-Leibler (KL) divergence. Then, taking
into account the Riemannian geometry of the space of Gaussian pdfs will allow us to
precise the notion of intrinsic Gaussian law between Gaussian pdfs in order to improve
our segmentation algorithm. Finally, we present and discuss experimental results both
on synthetic and real DTI datasets to compare each method. Before staring with seg-
mentation issue, we recall some details on the acquisition of diffusion images and for
the estimation of diffusion tensor images.

5.2 Data acquisition, DTI

In the following, we describe the method used for the acquisition of our data and the
robust estimation of the diffusion tensor. Our dataset consists of 30 diffusion weighted
images Sk : Ω → R, k = 1, ..., 30 as well as 1 image S0 corresponding to the signal
intensity in the absence of a diffusion-sensitizing field gradient (ie. b = 0 in equation
5.1). The dataset was obtained on a GE 1.5 T 1. We recall that the estimation of a field
of 3 × 3 symmetric positive definite tensors T is done by using the Stejskal-Tanner
equation [140] for anisotropic diffusion 5.1 at each voxel x.

Sk(x) = S0(x)e−bgT
k T(x)gk ∀x ∈ Ω. (5.1)

1We would like to thank F. Mangin and J.B. Poline for providing us the data used.
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Figure 5.1: [left] Fractional Anisotropy map and [right] Corresponding tensors in the
genu of the corpus callosum

where gk are the normalized non-collinear sensitizing gradient and b the diffusion
weighting factor. Various methods have been proposed for the estimation of the 6 el-
ements of T(x) by using equation 5.1 (see figure 5.1). A survey of these approaches
and a variational framework for the estimation and the regularization of of DTI data
can be found in [147]. This last method provides a convenient mean to impose im-
portant constraints on the sought solution such as tensor positivity, orthonormality of
the eigenvectors or some degree of smoothness of the result. This is performed by
minimizing the following energy on the manifold of positive definite tensors P (3):

Arg min
T∈P (3)

∫
Ω

n∑
k=1

ψ(‖ ln(S0/Sk)− bgT
k Tgk‖) + αρ(‖∇T‖)dΩ. (5.2)

5.3 Diffusion tensor images segmentation

As mentioned in the previous section, the diffusion tensor is directly related to tissue
properties. Thus, classical segmentation techniques may be applied on this type of
images for the extraction of white matter structures of particular interest. The region-
based front evolution developed along this thesis has shown to be efficient to extract
structures in classical vector-valued images. We briefly recall the framework presented
in Chapter 2. Let S be the optimal boundary between the 3D object to extract Sin and
the 3D background Sout, we introduce the level-set function φ : Ω → R3, defined as
follows: 

φ(x) = 0, if x ∈ S

φ(x) = D(x,S), if x ∈ Sin

φ(x) = −D(x,S), if x ∈ Sout
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whereD(x,S) stands for the Euclidean distance between x and S and Ω = Sin∪Sout.
Furthermore, let Hε(z) and δε(z) be regularized versions of the Heaviside and Dirac
functions as defined in Chapter 1.

Let q(x, r) be the probability density function of our random vector r of R3 de-
scribing the water molecules average motion at a given voxel x of a diffusion MR
image Ω ⊂ R3 and for a given diffusion time τ imposed by the parameters of the
PGSE (Pulsed Gradient Spin Echo) sequence. We are interested in characterizing the
global coherence of that pdf field. According to the framework developed in Chapter
2, the optimal partitioning of image domain Ω in two regions Sin and Sout is obtained
from the minimization of:

E(φ, p1, p2) =−
∫

Ω
Hε(φ) log p1(q(x, .)) dx−

∫
Ω
(1−Hε(φ)) log p2(q(x, .)) dx

+ ν

∫
Ω
|∇Hε(φ)| dx,

(5.3)
where p1 and p2 are respectively the distributions of the probability of q(x, .) to belong
in Sin and Sout. To define these two distributions p1 and p2, statistical measures must
be defined for the considered data.

When dealing with Diffusion Tensor Images, the voxel-wise motion of molecules
is described by a Gaussian distribution. The diffusion tensor, i.e. the covariance matrix
of the diffusion process, can be used to express our segmentation criterion:

E(φ, p̂1, p̂2) =−
∫

Ω
Hε(φ) log p̂1(T(x)) dx−

∫
Ω
(1−Hε(φ)) log p̂2(T(x)) dx

+ ν

∫
Ω
|∇Hε(φ)| dx.

(5.4)
Then, we still need to define probability distributions over sets of 3 × 3 symmetric
positive-definite matrices. A simple model can be obtained by assuming the 6 dif-
ferent parameters of these covariance matrices to belong to the linear space R6. This
simplification leads to the segmentation of a vector-valued image. We recall our algo-
rithm for this case in the next section.

It must be noted that such a simplification does not integrate the properties of the
data and we propose to build more adequate models in Section 5.3.2 and 5.3.3. First,
the Kullback-Leibler is introduced to define statistics over a general probability density
field. Then, we propose to consider the Riemannian geometry of the space of Gaussian
pdfs to define geodesic distances between Gaussian distributions, i.e. diffusion tensors,
as well as intrinsic means. Multivariate Gaussian estimations are also introduced in
this non-linear space, allowing us to capture regions with complex distributions of
diffusion tensors.
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5.3.1 Linear approximation

We consider a statistical distribution on linear spaces which overcomes the hypothesis
of isotropic distribution. Hence, as done in Chapter 3 for texture images with the
structure tensor, we consider a parametric approximation with a 6D Gaussian. Let u
be the vector representation of a tensor T, the likelihood of u in the region s = 1, 2 is
given by:

ps(u|µs,Σs) =
1

(2π)3|Σs|1/2
e−

1
2
(u−µs)T Σ−1

s (u−µs).

By construction, the diagonal and non-diagonal components of a diffusion tensor are
highly correlated and so, a full covariance matrix must be considered in the density
of its vector representation u. Then, the Euclidean vector means and the covariance
matrices of these densities are also supposed unknown. However, these parameters can
be introduced as unknown in (5.4):

E(φ, {µ1,2,Σ1,2}) =ν
∫

Ω
|∇Hε(φ)| dx−

∫
Ω
Hε(φ) log p1(u(x)|µ1,Σ1) dx

−
∫

Ω
(1−Hε(φ)) log p2(u(x)|µ2,Σ2) dx.

(5.5)

This type of energy was studied in Chapter 2. The Euler Lagrange equation for φ
yields the following evolution equation for the level-set function:

φt(x) = δε(φ(x))
(
ν div

∇φ
|∇φ|

+
1
2

log
|Σ2|
|Σ1|

− 1
2
(u(x)− µ1)T Σ−1

1 (u(x)− µ1)

+
1
2
(u(x)− µ2)T Σ−1

2 (u(x)− µ2)
)

while the statistical parameters are updated as follows:

µ1(φ) =

∫
Ω u(x)Hε(φ)dx∫

ΩHε(φ)dx
,

µ2(φ) =

∫
Ω u(x)(1−Hε(φ))dx∫

Ω(1−Hε(φ))dx
,

Σ1(φ) =

∫
Ω(µ1 − u(x))(µ1 − u(x))THε(φ)dx∫

ΩHε(φ)dx
,

Σ2(φ) =

∫
Ω(µ2 − u(x))(µ2 − u(x))T (1−Hε(φ))dx∫

Ω(1−Hε(φ))dx
.

Implementation schemes for this type of optimization are developed in Chapter 2. Two
important details must be noted: (i) the explicit scheme is not stable for any time step
because of regularization term, (ii) the level set function is reinitialized to the distance
function at each iteration. If we restrict the covariance matrix to the identity ma-
trix, these equations simplify and the log-likelihoods in equation (5.5) become simply
the Euclidean distance between the vectors u and µs=1,2, which is equivalent to the
Frobenius norm of the difference between the corresponding tensors, as nicely studied
in [157].
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5.3.2 Probability density fields segmentation

General case

We consider a general probability density function q(x, r) of the random vector r of
R3 describing the water molecules average motion at a given voxel x. The classical
symmetrized Kullback-Leibler divergence can be used to express the dissimilarity be-
tween diffusion processes at different voxels. With q1(x, .), q2(y, .) ∀x,y ∈ Ω two
pdfs from R3 onto R+, their KL divergence is given by:

Dkl(q1, q2) =
1
2

∫
R3

(
q1(r) log

q1(r)
q2(r)

+ q2(r) log
q2(r)
q1(r)

)
dr. (5.6)

Assuming a partition of the data between the structure we try to segment Sin and
the rest of the volume Sout, we again seek the optimal separating surface S between
those two subsets. We denote by q1 and q2 the mean pdfs over Sin and Sout verifying
equation 5.9. It is then possible to model the regional distributions to q1 and q2 by
suitable densities pkl

1 , p
kl
2 . In the following, we make the assumption that pkl

1 and pkl
2

are centered Gaussians in q1 and q2 of variances σ2
1 and σ2

2 . We then define the follow-
ing energy in order to maximize the likelihood of these densities on their associated
domain:

E(φ, {σ2
1,2, q1,2}) =ν

∫
Ω
|∇Hε(φ)| dx−

∫
Ω
Hε(φ) log pkl

1 (q(x)|q1, σ2
1) dx

−
∫

Ω
(1−Hε(φ)) log pkl

2 (q(x)|q2, σ2
2) dx,

(5.7)

where

pkl
i (q|qi, σ

2
i ) =

1√
2πσ2

i

exp
−D2

kl(q, qi)
2σ2

i

, i = 1, 2.

Of course, other models can easily be used for the pi. Note that in the case where the σi

are equal to 1, this energy will equal to the one proposed in [158]. In the experimental
part, the importance of adding σi will be illustrated.

The derivation of the Euler-Lagrange equations for this class of energy was studied
in Chapter 2 and yields the following evolution for φ:

φt(x) = δε(φ(x))
(
νdiv

∇φ
|∇φ|

+ log
pkl
1 (q(x)|q1, σ2

1)
pkl
2 (q(x)|q2, σ2

2)

)
. (5.8)

Moreover, the derivation of the energy with respect to σ2
i and qi provide the update

formulae for these statistical parameters. It can be shown that the variance must be
updated with its empirical estimation (see equation 5.3.1) whereas some more work is
needed for the qi. We indeed have to estimate:

qi = Arg min
qs

∫
Ωi

D2
kl(qs, q(x)) dx, i = 1, 2. (5.9)
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For a general pdf q(x), for instance if we consider the ODF derived from Q-ball data,
the variance is easily computed but the estimation of the qi might require the use of
numerical approximation techniques if no closed-form is available.

Application to Gaussian Distributions (DTI)

We now explicitly express the energy (5.7) for Gaussian pdfs and use a Gaussian law
to model the distributions. The energy becomes

E(Ωi, σ
2
i , qi) = ν

∫
Ω
|∇Hε(φ)| dx +

1
2

∫
Ω
H(φ)

(
log (2πσ2

1) +D2
kl(q(x), q1)σ

−2
1

)
dx

+
1
2

∫
Ω
(1−H(φ))

(
log (2πσ2

2) +D2
kl(q(x), q2)σ

−2
2

)
dx.

(5.10)

If we write, as in [158], the Kullback-Leibler distance between two Gaussian pdfs
parameterized by their covariance matrices (.ie the Diffusion Tensor T) as:

D2
kl(q(x), qi) =

1
2

(
trace

[
T−1(x)Ti + T−1

i T(x)
]
− 3
)
, (5.11)

then the Euler-Lagrange equations for our energy become:

φt(x) = δε(φ(x))
(
νdiv

∇φ
|∇φ|

+
1
2

(
1
4

(
trace

[
T−1(x)T2 + T−1

2 T(x)
]
σ−2

2

− trace
[
T−1(x)T1 + T−1

1 T(x)
]
σ−2

1

)
+ log

σ2
2

σ2
1

+
3(σ2

1 − σ2
2)

2(σ2
1σ

2
2)

))
.

(5.12)

Notice that we obtain additional terms (the σi coefficients) in (5.12) if compared to the
Euler-Lagrange equations proposed in [158].

For a given state of φ, closed-forms for the optimal covariance matrices of each
region are available. In their recent paper, Wang et al. [158] showed that these covari-
ance matrices are given by

Ti =
√

B−1
i

(√√
BiAi

√
Bi

)√
B−1

i ,

where
Ai =

∫
Ωi

T(x)dx and Bi =
∫

Ωi

T−1(x)dx,

thus giving the update formula of the qi.
The Kullback-Leibler divergence is a common choice to measure dissimilarities

between pdfs. However, the real meaning of this divergence is not always mentioned
and for particular parametric densities like multivariate Gaussians with 0-mean, better
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measures are naturally available. In the next paragraph, we see how a Riemmanian
metric can be associated to the parameter space of these densities using the Fisher
information matrix. Geodesic distances and intrinsic means can then be computed.

5.3.3 A Riemmanian approach to DTI segmentation

We now consider a Riemannian manifold M representing the family of three-
dimensional Gaussian probability density functions through the 6 parameters of their
covariance matrices. The pdfs are, again, assumed to be of 0-mean since this simply
translates the fact that the average displacement of spins in a voxel is zero. Follow-
ing the work by Rao [119] and Burbea-Rao [24], where a Riemannian metric was
introduced in term of the information matrix, we wish to define geodesic distances
and intrinsic means on this 6-dimensional manifold whose coordinate system is given
by a real vector parameter θ = (θ1, ..., θ6) ∈ R6 such that for all random vector
r ∈ R3, M = {q(r|θ)}. In the following, we present the closed-form expression of
the geodesic distance as well as an original algorithm to estimate the intrinsic mean of
multivariate Gaussian densities with common mean.

Geodesic distance and intrinsic mean

We concentrate on the space S+(m,R), endowed with the information metric g.
S+(m,R) denotes the set of m × m real symmetric positive-definite matrices.
A detailed study on the definition of statistical models on this nonlinear space
was presented in [84]. Another recent work by Pennec et al [114] relies on a
comparable approach to derive tensor fields filtering techniques. We now remind
some important results, necessary for our segmentation task. Following [84] and
[114, 54, 101, 100, 56, 25, 23, 52, 137], S+ can be characterized as an affine
symmetric space for which closed-form expressions are available for the solution
of the geodesic equations as well as for the geodesic distance (also known as Rao’s
distance). The geodesic distance Dg between any two elements Σ1 and Σ2 of S+,
whose components are given by the previously introduced vector parameter θ, was
derived by Jensen in the following theorem:

Theorem 5.1: (S.T. Jensen, 1976)
Consider the family of multivariate Gaussian distributions with common mean vector
µ but differing variance-covariance matrices Σ. The geodesic distance between two
members of the family with variance-covariance matrices Σ1 and Σ2 is given by

Dg(Σ1,Σ2) =
1
2

trace(log2(Σ−1/2
1 Σ2Σ

−1/2
1 )) =

1
2

m∑
i=1

log2(λi),

where the λi denote the m eigenvalues of the determinantal equation |λΣ2−Σ1| = 0.
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Properties of the geodesic distance:
The distance Dg on S+ defined above exhibits some nice properties: positivity,
symmetry, triangle inequality, invariance under congruent transformations and
inversion. The interested reader can find more details about this in the technical report
by Förstner and Moonen [56].

This distance can be used in the segmentation algorithm presented in the previous
part, replacing the symmetrized Kullback-Leibler divergence by the new expression.
For this purpose, we will need to estimate the empirical mean as proposed by Fréchet
[57], Karcher [73] and Pennec [113]. A closed-form expression of the mean cannot
be obtained [101] but a gradient descent algorithm was proposed in [84]. A flow is
derived from an initial guess Σ̂0 toward the mean of a set of S+(m,R). The following
evolution was obtained:

Σ̂t+1 = Σ̂1/2
t exp(− 1

N
Σ̂1/2

t

N∑
k=0

log(Σ−1
k Σ̂t)Σ̂t

−1/2
)Σ̂1/2

t . (5.13)

The derivation of this intrinsic numerical scheme is detailed in [84].

A normal distribution on multivariate normal distributions

In order to derive the expression of a normal distribution on S+, we make use of the
various quantities derived up to that point. We thus proceed by plugging the appropri-
ate quantities in the generalization of the normal distribution to Riemannian manifolds
proposed in [113] for sufficiently concentrated probability density functions, e.g. for
small covariance matrices. Following Theorem 4 proved in [113], we have the follow-
ing theorem:

Theorem 5.1 The normal distribution in S+(m,R) for an m×m covariance matrix
Λ of small variance σ2 = tr(Λ) is of the form

k. exp
−βγβT

2
,

where

• β is defined as ∇D2
g(Σ̂,Σ) = Σ̂ log(Σ−1Σ̂), as detailed in [101],

• The normalization constant: k = 1+O(σ3)+ε(σ
r
)√

(2π)m|Λ|
,

• The concentration matrix: γ = Λ−1 − Ricci
3 +O(σ) + ε(σ

r ), where Ricci is the
Riccian tensor whose expression can be found in [84].

r is the injection radius at Σ̂ and ε is such that limo+ x
−pε(x) = 0 ∀p ∈ R+.

For further details on the Riemmanian geometry of the space multivariate normal dis-
tributions, we refer the reader to [84].
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Segmentation of DTI assuming multivariate normal distributions

From this definition, we can express the probability of a diffusion tensor to belong to
a region with a given normal distribution. For this purpose, the diffusion tensors T
are considered as the covariance matrices Σ used so far. Assuming the data to follow
a normal distribution in region Ωs, the likelihood of a diffusion tensor T is given by
p(T|T̂s,Λs) of theorem 5.1. Our region-based functional can then be expressed as:

E(φ, T̂s=1,2,Λs=1,2) = ν

∫
Ω
|∇Hε(φ)| dx−

∫
Ω
Hε(φ) log p(T(x)|T̂1,Λ1) dx

−
∫

Ω
(1−Hε(φ)) log p(T(x)|T̂2,Λ2) dx.

(5.14)
We have introduced all the required tools for the minimization of this energy. The
corresponding level-set evolution equation is:

φt(x) = δε(φ(x))

(
ν div

∇φ
|∇φ|

+ log
p(T(x)|T̂1,Λ1)
p(T(x)|T̂2,Λ2)

)
, (5.15)

while the optimal statistical parameters are their empirical estimates. The intrinsic
means T̂1 T̂2 are estimated with the algorithm obtained from equation (5.13 with the
gradient descent:

T̂s=1,2;t+1 = T̂1/2
s;t exp

(
− 1
|Ωs|

T̂1/2
s;t

(∫
Ωs

log(T(x)−1T̂s;t) dx
)

T̂−1/2
s;t

)
T̂1/2

s;t .

(5.16)
The empirical covariance matrices are then easily obtained:

Λs=1,2 =
1
|Ωs|

∫
Ωs

β(x)β(x)T , (5.17)

with β(x) = ∇D2
g(T̂s,T(x)) = T̂s log

(
T(x)−1T̂s

)
.

Introducing multivariate statistics to represent the distribution of diffusion tensors
inside image sub-regions, we are able to capture structures with more complex diffu-
sivity properties than the univariate model of Section 5.3.2. We show this difference
in the next section where several experimental comparisons are presented between the
three approaches presented so far.

5.4 Experimental Results and Comparisons

We will respectively refer to the methods presented in Sections 5.3.1, 5.3.2 and 5.3.3
as Method 1, 2 and 3. We begin with a validation of Method 1 on synthetic data with
illustrative examples where other approaches fail. Then, experiments are conducted
on the extraction of the corpus callosum from DTI data by Methods 1, 2 and 3. We
exhibit promising results of Method 3.
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Figure 5.2: Segmentation (Method 1) of a noisy tensor field composed by two regions
with same orientation but different scale ([TOP LEFT]: 2D-cut of the tensor field, TOP

RIGHT: Final segmentation, BOTTOM: Surface evolution)

5.4.1 Synthetic data

Diffusion tensor images measure the average displacement of water molecules. This
displacement characterizes different tissues and provides two different information:
its intensities and its directions. When considering diffusion tensor images, these
information are given respectively by the largest eigenvalue and the corresponding
eigenvector. From this decomposition, we built one easy case to illustrate the general
segmentation process (all methods will succeed in this example). It is made of a spher-
ical inclusion [Figure 5.2] where the difference between the inside and the outside is
only based on the eigenvalues. We also generate a more complicated case where the
two regions differ only by the major orientation of the tensors. We also vary the main
orientation of the tensors within the inside region by creating a junction as shown on
[Figure 5.3]. In both cases, a Gaussian noise was added directly on the eigen-elements
of each tensor. Initializing the surface with a bounding box, Method 1 is able to give
the expected segmentations [Figure 5.2 and 5.3].

However, these examples do not show the necessity of including a statistical model
for the distance distribution of each region and the approach proposed in [158] for 2D
fields of pdfs gives a similar result. In order to show the advantages of our Method 2,
which is more general, we have generated another test image. As shown on [Figure
5.4], it is composed by a torus whose internal tensors are oriented according to the
tangential direction of the principal circle of the torus. A noise is also added to all
the tensors of the image but with a different variance whether the tensor is inside or
outside the torus. On [Figure 5.4], we compare the results obtained using [158] and
our approach, for different initializations. The first method fails to segment the torus
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Figure 5.3: Segmentation (Method 1) of a noisy tensor field composed by two regions
with same scale but different orientations (TOP LEFT: 2D-cut of the tensor field, TOP

RIGHT: Final segmentation, BOTTOM: Surface evolution).

Figure 5.4: Segmentation of a noisy tensor field composed by two regions with differ-
ent orientations (TOP LEFT: 2D-cut of the tensor field, TOP CENTER: Segmentation
obtained from [158], TOP RIGHT: Segmentation obtained with Method 2, BOTTOM:
Respective surface evolutions).
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Figure 5.5: Segmentation of the corpus callosum obtained with Method 1

because the high variation of the orientations within each region. If we initialize with
a bounding box, the surface shrinks until it disappears and if we start from a small
sphere inside the torus, only a small part of the torus can be recovered. Using our
Method 2, which models the variance of the distance between tensors, the torus is
correctly extracted for the different initializations.

5.4.2 Real diffusion tensor data

Experiments for Methods 1 and 2

As mentioned in the introduction, the extraction of objects from DTI data is of great
interest. This modality gives the opportunity to discriminate structures like the corpus
callosum, much harder to characterize using other modalities. Before any processing,
we need to roughly crop the image around the object of interest in order to respect
the assumption of bi-partitioning imposed by our model. [Figure 5.5] shows the result
obtained for the extraction of the corpus callosum with Method 1. The goal of the next
experiment is to extract the lateral ventricles with Method 2. Two small spheres are
manually set inside the ventricles to initialize the surface. The evolution and the final
segmentation are shown on [Figure 5.6]. This result seems to be consistent with what
we could expect from dissection data even though the validation for this type of data
will have to be carefully addressed. However, Method 2 is unable to capture structures
like the corpus callosum with complex diffusion tensor distributions because of the
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Figure 5.6: Segmentation (Method 2) of the lateral brain ventricles [TOP] in a real
diffusion tensor image superimposed on the DTI field, [BOTTOM] Surface evolutions.
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Figure 5.7: [TOP] Segmentation (Method 3) of a noisy tensor field composed by two
regions with very different orientations, [BOTTOM] Surface evolution.

univariate model.

5.4.3 Experiments for Method 3

In order to test our Method 3, we show results on a much harder synthetic dataset on
Figure 5.7. It is composed of an helix of tensors whose orientations follow the tangent
to the helix at each position. All the tensors have the same eigenvalues. While method
1 and 2 do not capture the whole helix, considering the geodesic distance helps and
gives the expected result. Results on real images are presented on [Figure 5.8] for the
extraction of the lateral brain ventricles and the corpus callosum.

5.5 Contributions and conclusions

We have presented several extensions of the region-based front evolution of Chapter 2
to the case of magnetic diffusion images. After showing that diffusion images cannot
me reduced the vector-valued case, we have proposed two original ways of including
the properties of the considered data. First, the Kullback-Leibler divergence is em-
ployed to define region statistics over sets of pdfs. Then, considering the particular
case of diffusion tensor images, a Riemmanian metric is associated to the multivariate
0-mean Gaussian densities observed at each voxel. Geodesic distance and intrinsic
mean are formulated and statistics over samples of this manifold are deduced. This
final approach gives us a segmentation method adapted to DTI with a strong mathe-
matical justification. Several experimental results have shown that our approach can
extract important structures from the brain white matter like the corpus callosum and
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Figure 5.8: Segmentation (Method 3) of the corpus callosum [TOP] in a real diffusion
tensor image superimposed on the DTI field, [BOTTOM] Surface evolution.
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it seems promising for clinical applications. However, the validation of the extracted
structures still need to be done which is a quite difficult task since no ground truth
data are available yet. We can summarize the contributions of the is chapter with the
following points:

1. Implementation of a direct extension of the vector-valued region-based front
evolution,

2. Introduction of the Kullback-Leibler divergence to define statistics over proba-
bility density fields,

3. Definition of statistics on the statistical manifold representing the family of
Gaussian probability density functions with 0-mean through the 6 parameters
of their covariance matrices.

These contributions have been published in two separates research reports: [85]
presents a detailed description of the Riemmanian geometry considered to define sta-
tistics over sets of multivariate 0-mean Gaussians while [84] is dedicated to the seg-
mentation issue of DTI. Parts of this work have also been presented in two conferences
[124] and [83].

Acknowledgments: This chapter mainly describes a joint work with
Christophe Lenglet and I would to thank him for his expertise on diffusion images and
for his strong involvement in the extension of vector-valued segmentation approaches
to such complex data.



Conclusion

We have presented in this thesis a general framework for unsupervised image segmen-
tation. A region-based front evolution has been obtained from a Bayesian formulation
of the problem. Improving and extending existing works, we have been able to extract
with good accuracy objects from a wide variety of natural and medical images. The
main contributions of this thesis is the definition of a general framework that permits
to integrate various cues to solve the problem of image segmentation in practical cases.
This objective has been achieved using and combining several state of the art theories:

1. We introduce a Bayesian region-based front evolution which permits to integrate
statistical models within a geometric approach,

2. The level-set representation has been employed to define our partitioning func-
tional, driving naturally to an implicit front evolution restricted to the vicinity of
the interface,

3. Parametric and non-parametric region densities have been estimated actively
during the segmentation process in the case of scalar and vector-valued images,

4. Texture and motion features have been extracted and integrated in our frame-
work,

5. An implicit approach has been presented to model and integrate prior shape
knowledge,

6. Finally, this framework has been extended to more complex images like diffu-
sion MR images.

Throughout these studies, we were concentrated on the unsupervised aspect of the
approach. Rather than using complex statistical models, we have tried to identify and
extract important information that defines regions of interest in an image. It has been
rather successful since we have been able to obtain better results than numerous recent
works and with a lower complexity. However, if we target a strong robustness, learning
the few parameters of our approach and using more robust estimators may be necessary
but we think that our framework is a good basis to elaborate efficient image analysis
and recognition systems.
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Of course, there is still place for improvement in most parts of this thesis. For ex-
ample, the extraction of texture features may be extended to deal with a wider range of
images. Several tasks remain to be done to model and integrate implicitly prior shape
knowledge: definition of a ”natural” distance between shapes, implicit introduction of
invariance to global transformations, integration of local variability in the second shape
model... Also, the last part on diffusion MR images still lacks an in depth evaluation
on a large real dataset and the results should be validated by experts.

When considering natural images, what we are trying to achieve with the inte-
gration of relevant cues and prior knowledge is to mimic the complex and not yet
understood human system. The progress in brain imagery brings powerfull means to
study the way we are doing these segmentation tasks ourseleves and the future of im-
age analysis may be in bringing together computer scientist and neurologist to create
efficient biologically motivated models like in [80].



Conclusion (version française)

Un cadre de travail général pour la segmentation non-supervisée d’images a été
présenté dans cette thèse. Une évolution de front basée région a été obtenue à partir
d’une formulation Bayésienne du problème. La méthode proposée améliore celles ex-
istantes et propose différentes extensions. Cela nous a permis d’extraire des structures
avec une grande précision dans une grande variété d’images naturelles et médicales.
La principale contribution de cette thèse est la définition d’un cadre général permettant
d’incorporer différents attributs pour résoudre le problème de la segmentation dans des
cas pratiques. Cet objectif a été atteint en combinant et en améliorant plusieurs tech-
niques de l’état de l’art:

1. Nous avons introduit une évolution de front basée région issue d’une formulation
Bayésienne qui permet d’intégrer des modèles statistiques dans une approche
géométrique.

2. La représentation par ensembles de niveaux a été introduite pour définir la fonc-
tionnelle de partitionnement, conduisant naturellement à une évolution de front
implicite.

3. Des approximation paramétriques et non-paramétriques des densités de proba-
bilité régions ont été estimées de manière dynamique en parallèle à l’évolution
de courbe.

4. Des caractéristiques texture et mouvement ont été extraites et introduites dans
ce cadre de travail afin de traiter une plus grande diversité d’images.

5. Une approche implicite a été présentée pour modéliser et intégrer une connais-
sance à priori sur la forme des objets à extraire.

6. Cette approche a finalement été étendue à des données plus complexes à
valeurs matricielles, en particulier au cas des images de diffusion a résonance
magnétique.

Tout au long de cette thèse, nous étions concentré sur l’aspect non-supervisé des
approches présentées. Afin d’éviter des modèles statistiques trop compliqués dont
l’estimation des paramètres aurait pu être un frein important, nous avons essayé
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d’identifier et d’extraire les informations importantes qui définissent les régions
d’intérêt dans un type d’image donné. Nous y sommes arrivé avec un certain succès
puisque nous avons démontré l’efficacité de nos approches en fournissant de meilleurs
résultats que de nombreux travaux récents et avec une complexité moindre. Cependant,
en vu d’une robustesse accrue, l’apprentissage des quelques paramètres introduits et
l’utilisation d’estimateurs plus robustes pourraient être considérés. Nous pensons que
ce cadre de travail est une bonne base pour élaborer des systèmes efficaces d’analyse
et de reconnaissance d’images.

Nous concluons sur une vision plus générale du problème de segmentation pour
les images naturelles. Sur ce type d’images, ce que nous essayons d’accomplir en
intégrant différents attributs et de la connaissance à priori, c’est d’imiter le complexe et
toujours mystérieux système visuel humain. Les progrès effectués ces dernières années
en imagerie cérébrale apportent des moyens inespérés pour étudier ce système com-
plexe et pour comprendre comment nous, humains, effectuons ces taches d’extractions
d’objets. Afin de franchir les limites des méthodes d’analyse d’images actuelles et de
les rapprocher de nos propres performances, il pourrait être bénéfique de réunir infor-
maticiens et neurologistes afin de créer des modèles motivés biologiquement de plus
en plus proche de la réalité [80].
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