
HAL Id: tel-00324429
https://theses.hal.science/tel-00324429

Submitted on 25 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Mapping Generation and Adaptation for
XML Data Sources

Xiaohui Xue

To cite this version:
Xiaohui Xue. Automatic Mapping Generation and Adaptation for XML Data Sources. Computer
Science [cs]. Université de Versailles-Saint Quentin en Yvelines, 2006. English. �NNT : �. �tel-00324429�

https://theses.hal.science/tel-00324429
https://hal.archives-ouvertes.fr

Xiaohui Xue

1

THÈSE / PhD THESIS

présentée à

L’UNIVERSITÉ DE VERSAILLES
SAINT-QUENTIN-EN-YVELINES

pour obtenir le titre de

DOCTEUR EN SCIENCES

Spécialité

Informatique

soutenue par

Xiaohui XUE

Titre

Génération et adaptation automatiques de mappings pour des
sources de données XML

Automatic Mapping Generation and Adaptation
for XML Data Sources

(Version Préliminaire)

JURY

Michel Scholl Professeur des universités, CNAM-Paris Président du jury, Examinateur

Christine Collet Professeur des universités, ENSIMAG Rapporteur

Mohand-Saïd Hacid Professeur des universités, Université Claude Bernard Lyon 1 Rapporteur

Mokrane Bouzeghoub Professeur des universités, Université de Versailles Directeur de thèse

Zoubida Kedad Maître de conférences, Université de Versailles Encadrante de thèse, Examinateur

Automatic Mapping Generation and Adaptation for XML Data Sources

2

Xiaohui Xue

3

Résumé

L’intégration de l’information fournie par de multiples sources de données hétérogènes est un besoin
croissant des systèmes d’information actuels. Dans ce contexte, les besoins des applications sont
décrits au moyen d’un schéma cible et la façon dont les instances du schéma cible sont dérivées à
partir des sources de données est exprimée par des mappings. Dans cette thèse, nous nous
intéressons à la génération automatique de mappings pour un schéma cible XML à partir des sources
de données XML ainsi qu’à l’adaptation de ces mappings en cas de changements survenant dans le
schéma cible ou dans les sources de données.

Nous proposons une approche automatique de génération de mappings en trois phases : (i) la
décomposition du schéma cible en sous-arbres, (ii) la recherche de mappings partiels pour chacun de
ces sous-arbres et enfin (iii) la génération de mappings pour l’ensemble du schéma cible à partir de
ces mappings partiels. Le résultat de notre approche est un ensemble de mappings ; chacun ayant une
sémantique propre. Dans le cas où l’information requise par le schéma cible n’est pas présente dans
les sources, aucun mapping ne sera produit. Dans ce cas, nous proposons de relaxer certaines
contraintes définies sur le schéma cible pour permettre de générer des mappings. Nous avons
également proposé une approche d’adaptation des mappings existants en cas de changement
survenant dans un des sources ou dans le schéma cible. Nous avons développé un prototype d’un
outil pour supporter notre approche.

Abstract

The integration of information originating from multiple heterogeneous data sources is required by
many modern information systems. In this context, the applications’ needs are described by a target
schema and the way instances of the target schema are derived from the data sources is expressed
through mappings. A mapping describes the transformation and the integration of the source
instances to conform to the target schema. In this thesis, we address the problem of mapping
generation for a XML target schema from multiple XML data sources and the automatic adaptation
of these mappings when the target schema or the source schemas evolve.

We propose an automatic generation approach that first decomposes the target schema into subtrees,
then defines mappings, called partial mappings, for each of these subtrees, and finally combines these
partial mappings to generate the mappings for the whole target schema. Applying our approach
creates a set of alternative mappings: all for the given target from the sources. If the information
required in the target schema cannot be provided by the sources, then no mapping can be generated.
In this case, we propose to relax some constraints of the target schema such that mappings can be
generated. We also propose a mapping adaptation approach to keep existing mappings current if
some changes occur either in the target schema or in one of the source schemas. We have developed
a prototype implementation of a tool to support the generation process.

Xiaohui Xue

1

Table of Contents

CHAPTER 1. INTRODUCTION ..1

1. Context and Motivation ... 1

2. An Overview on Mapping Generation and Adaptation ...2

3. Our Proposal..3

4. Outline of the Thesis ...5

CHAPTER 2. MAPPING GENERATION AND ADAPTATION: RELATED
WORKS ..7

1. Introduction...7

2. Mapping Generation..9
2.1. Mapping Generation for Relational Schemas ...10
2.2. Mapping Generation for XML Representations ..13
2.3. Industrial Tools..20
2.4. Discussions ...21
2.5. Limitations of the Existing Approaches ..24
2.6. Our Proposal ..25

3. Mapping Adaptation.. 25
3.1. Incremental Approaches ..26
3.2. Mapping Composition Approaches..31
3.3. Discussions ...35
3.4. Limitations of the Existing Approaches ..38
3.5. Our Proposal ..39

4. Conclusions ... 40

CHAPTER 3. AUTOMATIC MAPPING GENERATION FOR XML DATA
SOURCES ..41

1. Introduction... 41

2. Basic Assumptions .. 42
2.1. Schemas...43
2.2. Semantic Correspondences ..44

3. An Overview of our Automatic Mapping Generation Approach............................... 45

4. Decomposing Target Schemas.. 47

Automatic Mapping Generation and Adaptation for XML Data Sources

2

5. Defining Partial Mappings .. 49
5.1. Identifying Source Parts ...49
5.2. Identifying Join Operations ...51
5.3. Defining Partial Mappings from the Source Parts and the Joins...54

6. Generating Target Mappings .. 56
6.1. Generating Candidate Mappings...56
6.2. Checking Candidate Mappings ..57
6.3. Translating Target Mappings into XQuery ...59

7. Generating Incomplete Results ... 62
7.1. Changing Mandatory Elements to Optional ...62
7.2. Restructuring the Target Schema..63
7.3. Global Process for Generating Incomplete Results...64

8. Conclusions ... 66

CHAPTER 4. AUTOMATING MAPPING ADAPTATION WHEN SCHEMAS
EVOLVE ..69

1. Introduction... 69

2. Basic Assumptions .. 70
2.1. Schemas...71
2.2. Semantic Correspondences ..71

3. Mapping Representation ... 72

4. An Overview of our Automatic Mapping Adaptation Approach 74

5. Mapping Adaptation for Source Evolution.. 76
5.1. Addition of Source Elements and Source Constraints ..76
5.2. Removal of Source Elements ..77

5.2.1. Repairing an Invalid Target Assignment ...78
5.2.2. Replacing the Invalid Join Conditions ...82
5.2.3. Repairing the Duplicate-Elimination for Clause ...83
5.2.4. Substituting the Invalid Duplication-Elimination Statement ...85
5.2.5. Repairing the Invalid Element-Binding for Clause...86
5.2.6. Substituting the Invalid Grouping Conditions ...87

5.3. Removal of Source Constraints...88
5.4. Moving Source Subtrees ...89
5.5. Renaming of Source Elements ..90

6. Mapping Adaptation for Target Evolution.. 91
6.1. Removal of Target Elements ...91
6.2. Addition of Target Element...91

6.2.1. Repairing the Mapping after the Addition of a Mandatory Non-Text Element.........92
6.2.2. Repairing the Mapping after the Addition of a Mandatory and Monovalued Text
Elements ..93
6.2.3. Repairing the Mapping after the Addition of a Mandatory and Multivalued Text
Elements ..94

Xiaohui Xue

3

6.3. Removal of Target Keys...95
6.4. Addition of Target Keys...96
6.5. Moving of Target Subtrees...97
6.6. Renaming of Target Elements...97

7. Conclusion ... 97

CHAPTER 5. PROTOTYPE AND EXPERIMENTATION99

1. Introduction... 99

2. Prototype.. 99
2.1. System Functionalities ... 100

2.1.1. Mapping Generation Functionalities... 100
2.1.2. Mapping Adaptation Functionalities ... 100
2.1.3. Metadata management Functionalities.. 100
2.1.4. Visualization and Editing Functionalities ... 101
2.1.5. Application management functionalities .. 101

2.2. System Architecture ... 101
2.3. User Interfaces .. 102

2.3.1. Schemas and Correspondences.. 102
2.3.2. Mapping Generation.. 103

3. Applications ..104
3.1. The MediaGrid Project .. 104
3.2. An Adaptive System for Supporting the Mediation Query Generation 105

4. Performance Evaluation ...106
4.1. Evaluating the Different Steps of the Scenarios.. 107
4.2. Performance Evaluation of Different Steps of the Mapping Generation Approach...... 108

4.2.1. Decomposition of the Target Schema.. 108
4.2.2. Source Parts Identification.. 108
4.2.3. Join Identification... 109
4.2.4. Partial Mapping Definition ... 111
4.2.5. Target Mapping Generation ... 113

5. Conclusions ..114

CHAPTER 6. CONCLUSIONS ...115

1. Summary of the Contributions ...115

2. Outlooks ... 116
2.1. Semantic Correspondence Generation ... 117
2.2. Mapping Generation and Adaptation in Peer-to-Peer Systems .. 117
2.3. Schema and Correspondence Change Detection .. 118
2.4. Global Change Propagation.. 118
2.5. Quality Factors.. 118

Automatic Mapping Generation and Adaptation for XML Data Sources

4

APPENDIX I. XML SCHEMA REPRESENTATION OF THE THREE
SCHEMAS IN FIGURE 3-1...121

APPENDIX II. TRANSFORMATION OF SOME TYPICAL MAPPINGS INTO
OUR REPRESENTATION..125

REFERENCES ...129

Xiaohui Xue

5

List of Figures

Figure 1-1. One example of a mapping between a target schema and a source schema1
Figure 2-1. The general process of the transformation specification from a source to a target in a data
migration system, a data translation system or a wrapper..8
Figure 2-2. Example of operation graph ..11
Figure 2-3. Example of target and source relations in Clio’00..11
Figure 2-4. Two Xtra DTD trees...13
Figure 2-5. Schema transformation in AutoMed...15
Figure 2-6. Examples of schema transformation in ORA-SS ...16
Figure 2-7. Example target and source schemas in Clio’02...17
Figure 2-8. The logical relations in expenseDB, statDB ..17
Figure 2-9. One mediation schema and three source schemas in the X-Entity model...........................19
Figure 2-10. Example of an operation graph...20
Figure 2-11. Deleting attributes..28
Figure 2-12. Three evolution rules...29
Figure 2-13. Two schemas and three mappings between them..30
Figure 2-14. Logical associations for S and T and new mapping after a constraint removing30
Figure 2-15. Target schema and source schema evolution in mapping composition approach............32
Figure 2-16. A mapping adaptation scenario in MACES...33
Figure 2-17. Two HDM source schemas and a global schema...34
Figure 2-18. Evolution of the source schema S1 to S1’ ..35
Figure 3-1. Schemas and correspondences...43
Figure 3-2. The general framework of our mapping generation approach...46
Figure 3-3. An example of our mapping generation approach ...46
Figure 3-4. Target subtrees and source parts ...48
Figure 3-5. The process of partial mapping definition ...49
Figure 3-6. An example of instances for the source S2..50
Figure 3-7. Relating two source parts through several references ..52
Figure 3-8. Join operations..53
Figure 3-9. Join graph of t3...55
Figure 3-10. An XQuery target mapping..60
Figure 3-11. General syntax of the For-Where-Return expression..61
Figure 3-12. Changing mandatory elements to optional ..63

Automatic Mapping Generation and Adaptation for XML Data Sources

6

Figure 3-13. Re-execution of the mapping generation tasks after the relaxation of a cardinality
constraint ...63
Figure 3-14. Restructuring the target schema ..64
Figure 3-15. Re-checking parent-child relationships after the relaxation of a structural constraint64
Figure 3-16. An example of multiple possibilities of target constraint relaxation65
Figure 3-17. The global process for generating incomplete results..66
Figure 4-1. Schemas, semantic correspondences, and mapping ...72
Figure 4-2. General form of the For-Where-Return expressions ..73
Figure 4-3. The general process of mapping adaptation..74
Figure 4-4. An example of mapping adaptation for three changes ..75
Figure 4-5. An example of the addition of source elements and source constraints...............................77
Figure 4-6. General procedure of mapping adaptation for a source element removal78
Figure 4-7. Mapping adaptation after the removal of two source element...80
Figure 4-8. Mapping adaptation after the removal of a source element..82
Figure 4-9. Another example of mapping adaptation for a source element removal..............................85
Figure 4-10. A third example of mapping adaptation for a source element removal..............................87
Figure 4-11. Mapping Adaptation for a source constraint removal ...89
Figure 4-12. Re-defining keys and references after moving a subtree ...90
Figure 4-13. Mapping Adaptation for a target element removal ..92
Figure 4-14. Mapping Adaptation for target element and its correspondences addition93
Figure 4-15. Mapping Adaptation after the removal of a target key and the addition of another target
key ...96
Figure 5-1. The architecture of the mapping generation system ... 102
Figure 5-2. Graphical user interface of Meta-data in AuMGA.. 103
Figure 5-3. Graphical user interface of generated mappings in AuMGA .. 104
Figure 5-4. The toolkit architecture.. 106
Figure 5-5. Measuring target schema decomposition time ... 108
Figure 5-6. Measuring source part identification time... 109
Figure 5-7. Measuring join identification time with respect to the number of key definitions in the
sources... 110
Figure 5-8. Measuring join identification time with respect to the number of correspondences
involving a key ... 110
Figure 5-9. Measuring join identification time with respect to both the number of key definitions and
the number of correspondences involving keys ... 111
Figure 5-10. Measuring partial mapping definition time with respect to the number of
correspondences .. 112

Xiaohui Xue

7

Figure 5-11. Measuring partial mapping definition time with respect to the number of
correspondences relating a given key ... 112

Figure 5-12. Measuring partial mapping definition time with respect to both the maximum number
of correspondences for a key and the total number of correspondences .. 113

Figure 5-13. Measuring mapping generation time with respect to both the number of target
subtrees and the average correspondences per subtree... 113

Xiaohui Xue

1

Chapter 1. Introduction

1. Context and Motivation

Nowadays, interoperability is an increasingly important issue within many information management
contexts. Many modern information systems such as data migration systems, mediation systems, and
data warehouses need to import existing data with some particular structure and re-use it in a
different format. Building these applications begins with an understanding of how data will be used
and viewed; this consists in determining the application’s needs, represented by a schema called the
target schema. The data required by the application is provided by some data sources. The data
exported by each data source is described using a source schema. Mappings are therefore needed
between the target schema and the source schema to express the way instances of the target schema
are derived from the instances of the source schemas. That is, they state how the application’s data
needs are satisfied by the sources.

Consider the example given in Figure 1-1: a data source provides information about professors
and students of a university. It exports a source schema that contains information about professors,
students, and the teaching relationships between professors and students. Suppose that an application
requires the same information in another representation; this application provides a target schema
that contains information about persons representing both professors and students and the teaching
relationships between persons. A mapping can be defined to specify how instances of the target
schema can be derived from the instances of the source schema. Instances of a person are obtained
by constructing the union of the professor instances and student instances from the data source.
Instances of the teaching relationship in the target schema are obtained from the instances of the
same relationship in the data source; the mapping ensures that each teaching instance relates two
persons that correspond to a professor and a student related by the data source instance.

Professor

name
Address
…

Professor

name
Address
…

Student

name
degree
…

Student

name
degree
…

teaching

Source Schema

1..*

1..*

Person

name
…

Person

name
…

teaching
1..*

1..*

Target SchemaMapping

Professor ∪ Student
⇒ Person

teaching(Professor, Student)
⇒ teaching(Person, Person)

Figure 1-1. One example of a mapping between a target schema and a source schema

Automatic Mapping Generation and Adaptation for XML Data Sources

2

Mappings can be used in many different contexts such as data migration systems, data translation
systems, wrappers, mediation systems, or data warehouses. A data migration system [BH, CG04
and LD94] is used to transfer data from a legacy system to a new system. Mappings have to be
defined between the schema provided by the legacy system (source schema) and the schema of the
new system (target schema). They state the way to populate the new system using the data of the
legacy system. A data translation system [ACM97, Bil79 and KA04] manages information exchange
between applications. It has to create mappings between the schema of the information provider
(source schema) and the schema of the information consumer (target schema) to specify the way
information can be exchanged. A wrapper [IS06, LPH00 and THH05] encapsulates a single data
source to make it usable in a more convenient fashion than the original source. Therefore it has to
specify the mapping between the internal representation (the source schema) and the external
representation (target schema). In a mediation system [GPQ97, TRV98 and Wie92] that provides the
users a transparent access to heterogeneous data sources, the system defines a global view of these
sources (target schema). Mappings either define the target schema in terms of source schemas (in the
Global-as-View approach), or define each source schema in terms of the target schema (in the Local-
as-View approach). These mappings will be used to rewrite user queries expressed over the target
schema into local queries over the sources. In a data warehouse [Inm96 and TS99], mappings are
defined between the source schemas and the integrated schema of the system to derive the storage of
the data warehouse from the integration of the data sources.

Defining the mappings between the target and the sources is also called schema mapping. It is
often considered to be a manual process. To perform this task, the designer must have a thorough
understanding of not only all the data sources, but also the semantic links between the sources and
the target schema. Especially when there are a large number of data sources such as in mediation
systems and data warehouses, the amount of metadata to manage may be very important and makes
the manual definition of mapping extremely difficult and time consuming. Thus, it is necessary to
provide support for the automatic mapping generation.

Mappings are necessarily dependent on the schemas they relate. However, individual sources are
autonomous, freely evolving both their content and their capabilities, or even changing their status
between available and unavailable. Likewise, the applications also freely evolve their target schemas
to adapt to their new needs. These schema changes lead to continuous obsolescence and re-
definitions of the mappings. If the number of the source schemas is small and if the schemas are
simple, it is possible to check manually the mappings and to adapt them. But if the number of the
schemas is important and if they have complex structures, manually adapting the mappings becomes
a difficult task. If some change occurs in the sources or the target schema, one solution is to restart
the generation process; but this can be costly, especially when the changes have little impact on the
mappings. For example, the renaming of a source element can be propagated in a very simple way in
the existing mappings and does not require generating the mapping from scratch.

2. An Overview on Mapping Generation and Adaptation

Given one target schema and several source schemas, mapping generation produces mappings that
describe the way instances of the target schema are derived from the instances of the source schemas.
If one of the schemas referenced by the mapping evolves, the mapping may become obsolete.
Mapping adaptation consists in adapting this obsolete mapping to keep it consistent with the evolved
schemas.

Some research approaches [BKS04, MHH00, FW06, SKR01, Zam04, CLL03, PVM02 and FS03]
and industrial solutions [AIS, AMF and Sty] have been proposed for automatically or semi-
automatically generate mappings. Some of them [BKS04, MHH00 and FW06] consider relational
schemas and the others [SKR01, Zam04, CLL03, PVM02, FS03, AIS, AMF and Sty] consider XML
schemas. Many of the existing approaches generate mappings over one single source schema. Only

Xiaohui Xue

3

two approaches [BKS04 and FS03] generate mappings over several source schemas and the output
mappings can express joins between different sources. Some approaches [BKS04, MHH00, SKR01
and CLL03] generate mappings described in a standard query language such as SQL, XQuery or
XSLT. The other approaches [FW06, Zam04, PVM02 and FS03] generate mappings expressed in a
specific language. Among these existing works, some [SKR01, CLL03 and FS03] still assume that the
target schema and the source schemas have homogeneous structures. The existing industrial tools
can only generate very simple mappings to derive instances for every construction of the target
without considering the structure of the whole schema.

Some approaches [BFK03, LNR02, MP02, VMP04 and YP05] have been proposed to adapt
mappings automatically when the related schemas evolve. The approaches proposed in [BFK03 and
LNR02] assume relational schemas and mappings expressed in SQL. [VMP04 and YP05] consider
nested data models and mappings expressed in a specific language. [MP02] assumes schemas
described using an Entity-Relationship like model and mappings are expressed using a series of
transformation operations. The approaches proposed in [BFK03 and VMP04] are related to an
existing mapping generation methodology and the proposed mapping adaptation can be considered
as an incremental execution of this methodology. These approaches assume that all the intermediate
results of the mapping generation are provided. They define, for every change they consider, the
actions of re-computing the intermediate results and then the final results of the mapping generation
process. The approaches presented in [MP02 and YP05] consider that schema changes are expressed
using a mapping and the mappings have to be generated using a specific mapping generation
approach. Their adaptation consists in combining the original mapping with the mapping expressing
the changes to obtain new mappings. The approach proposed in [LNR02] adapts mappings between
relational schemas for its considered changes. This adaptation is performed using some information
about the source such as the possible joins between source relations and the inclusion relations
between different source instances, etc.

All the existing approaches on mapping generation and mapping adaptation use semantic
correspondences. Semantic correspondences involve elements of different schemas and state that
these elements represent the same concept. For example, a semantic correspondence can be defined
between “professor” and “teacher” to state that they represent the same meaning. Transformation
functions can be used in semantic correspondences. Generating semantic correspondences is also
called schema matching. Providing support to schema matching is a difficult problem and has been
an active research topic for a long time [BLN86] and is still an active research area [DLD04, DR02,
Gal06, HC06, RB01 and SE05]. The definition of semantic correspondences is beyond the scope of
our work.

3. Our Proposal

Only some of the existing mapping generation approaches can produce mappings involving joins
between different sources. The approach proposed in [FS03] generates mappings involving inter-
source joins for XML schemas. However, it assumes that the target schema and the source schemas
have homogeneous structures; this cannot always be the case in distributed and heterogeneous
environments. Most of the existing works proposed for mapping adaptation are related to a specific
mapping generation approach. They either require providing all the intermediate results of the
mapping generation process, or the generation of a mapping to describe the schema evolution. The
approach proposed in [LNR02] does not make such an assumption but it requires a large volume of
source descriptions and some of them are difficult to obtain such as the list of all possible joins
between the sources.

In this thesis, we address the problems of automatic mapping generation and adaptation. We
assume that the target and source schemas are described in XML Schema. We generate automatically
a set of mappings between the target schema and the source schemas and we adapt existing

Automatic Mapping Generation and Adaptation for XML Data Sources

4

mappings when the target and source schemas evolve automatically as well. Similarly to the existing
approaches, we assume that a set of semantic correspondences is provided between the schemas.

To handle the complexity of mapping generation, our approach comprises three steps:

− decomposing the target schema into a set of subtrees, called target subtrees;
− then finding different ways, called partial mappings, to derive instances of each target

subtree from the instances of the source schemas; the partial mapping generation for each
target subtree is done independently from the others.

− finally combining the partial mappings of different target subtrees to generate the mappings
for the whole schema, called target mappings.

The result of our approach is a set of mappings having different semantics. They are specified in
an abstract language and can be translated into another specific language such as XQuery. The
generated mappings can involve joins between different sources. Every resulting mapping represents
an alternative way to derive instances of the target schema that is different from the others.

If some information required in the target schema can not be found in the data sources, no
mapping can be generated (e.g. the target schema asks for “authors” writing computer science books
but no source has this information). We adapt our mapping generation approach to handle this case.
We propose to change the target schema by relaxing some cardinality constraints or some structural
constraints such that a mapping can be found for the new schema. The process is an interactive
process where the user is asked to validate the modifications made on the target schema or to choose
one relaxation option among the other alternatives.

We also provide an automatic approach to enable the adaptation of mappings that are either
generated by a specific mapping generation tool or manually specified by a designer. We consider
schemas described in XML Schema [xsd] and mappings expressed using XQuery [xquery]. We adapt
the mapping for a given set of changes (e.g. removing a key constraint from a source schema or
adding an element in the target schema). The adaptation is done in three steps:

− The original mapping is first checked to see if it is affected by the change. Not all the
changes affect the mapping. For example, a mapping will not be affected by a change that
occurred in a schema that is not referenced by the mapping. A mapping can be affected in
two cases: either the target schema has changed and the mapping does not satisfy the new
needs anymore, or some source resources that are used in the original mapping have been
moved or removed.

− The affected mapping is checked to see if it is adaptable, which means there is at least one
solution to adapt it to the new schemas. If some new components are added to the target
schema, the mapping has to be extended to derive instances for these new components. If
some source components used in the mappings are moved or removed, some substitutions
have to be found to replace the removed ones.

− If the mapping is adaptable, the process makes use of all the solutions found during the
second step to generate adapted mappings.

The result of applying the mapping adaptation approach may create several adapted mappings;
every adapted mapping represents an alternative way to adapt the mapping to the new schemas. We
propose a set of adaptation algorithms for every type of changes.

Our mapping adaptation approach allows the adaptation of the mappings after changes occurring
in the source schemas; this approach does not rely on a specific methodology for mapping generation.
Both target schema changes and source schema changes are supported.

Xiaohui Xue

5

4. Outline of the Thesis

The remaining of this thesis is organized in five chapters:

Chapter 2 presents a state of the art on mapping generation and mapping adaptation. It first
provides some system contexts in which a mapping can be used. Then, we present the existing works
on mapping generation. The principles of these works are first presented. Then we give some
discussions over the main features of these approaches such as the characteristics of the input data,
the characteristics of the result mappings and the methodology used to generate mappings. We also
present the existing works on mapping adaptation. We present the principles of these works and we
give some discussions over the main characteristics of these approaches such as the changes
considered by the approach, the system cost for adapting mappings, and the generalizability of these
approaches.

Through the study of the existing work, we identify some limitations of the existing approaches: no
approach can generate mappings for multiple XML schemas such that the input schemas do not have
to be homogeneous and the result mappings can involve joins between different sources. No
approach adapts mapping without relying on a specific mapping generation approach and without
relying on a large volume of user input metadata. We conclude by positioning our work with respect
to these existing works.

Chapter 3 describes our mapping generation approach and the associated algorithms; we also
present the adaptation of the approach to generate incomplete results when no mapping can be
generated for the target schema.

We propose an approach to automatically generate mappings for XML schemas using a set of
semantic correspondences. The mapping generation process is composed of three steps. The target
schema is first decomposed into several subtrees. Then mappings, called partial mappings, are
defined for each of the subtrees. The definition of the partial mappings for each subtree is done
independently from the others. Finally, partial mappings of different subtrees are combined to
generate the mappings for the whole target schema. The result is a set of different mappings: all for
the given target from the sources; every one represents a different semantics. We presented all the
algorithms used in the generation process.

If the information required by the target schema cannot be provided by the sources, no mapping
can be generated. We present our adaptation of the mapping generation approach to generate
incomplete results. The idea is to relax some constraints defined in the target schema in a way that a
mapping can be generated for the new target schema. This process requires user interaction to either
validate a proposed relaxation or to choose one relaxation manner between all the alternative ones.

Chapter 4 describes our mapping adaptation approach and the associated algorithms. We propose
an approach to automatically adapt mappings when schemas evolve. The schemas are XML schemas
and the mappings are expressed using XQuery in a particular format that we consider. We consider a
set of changes that are either in the source schemas or in the target schema and we adapt the
mapping for each of these changes in three steps. We first checks if the original mapping is affected
by the change. If the mapping is affected, we checks if it is adaptable with respect to the new
schemas; which means if there is at least one solution to adapt it to the new schemas. If the mapping
is adaptable, all the adaptation solutions are used to generate mappings for the new schemas. The
algorithms used in our mapping adaptation are also presented.

Chapter 5 presents the prototype system that implements our approaches presented in Chapters 3
and 4 and some experimental results. We first describe our prototype implementation for automatic
mapping generation and adaptation. This tool allows the execution of the algorithms presented in
Chapters 3 and 4 to perform the tasks of mapping generation, incomplete result generation and

Automatic Mapping Generation and Adaptation for XML Data Sources

6

mapping adaptation. The tool also provides some facilities to allow the use to select the input
metatdata, to monitoring the intermediate results and to interact with the system, etc.

The experimentation of the approach is twofold. First, the prototype has been used to generate
mappings in different scenarios; this enables to validate the approach. We describe two applications:
(i) the ACI-MediaGrid project that proposes a mediation framework to allow transparent access to
distributed sources, (ii) an adaptive system for aiding in the generation of mediation queries. We
briefly describe each application and we explain how our tool has been used. We also performed
some tests for evaluating the performance of the tool. To this end, we consider some scenarios we
executed the mapping generation algorithm over each scenario. The test results allow affirming that
the tool can be used in actual systems.

Chapter 6 presents conclusions and some research perspectives.

Xiaohui Xue

7

Chapter 2. Mapping Generation and Adaptation:

Related Works

1. Introduction

Many applications require the use of existing data, stored in multiple distributed and possibly
heterogeneous sources. Considering that the application needs are represented by a target schema,
mappings have to be defined to express the way instances of a target schema are derived from the
instances of the source schemas. Such mappings can be used in many different contexts such as data
migration systems, data translation systems, wrappers, mediation systems, or data
warehouses.

Mappings can be defined between one source and one target schema, as it is the case for data
migration systems, data translation systems and wrappers:

− data migration is necessary when an organization decides to use a new database management
system that is incompatible with the current one; a data migration system [BH, CG04 and
LD94] is used in this case to transfer data from the legacy system to the new one.

− data translation refers to the information exchange between applications; a data translation
system [ACM97, Bil79 and KA04] performs the transformation of data from its own
application’s representation to another;

− A wrapper [IS06, LPH00 and THH05] encapsulates a single data source to make it usable in
a more convenient fashion than the original unwrapped source. It specifies the transformer
of data from the internal representation to the external representation.

In the design of all these systems, mappings define the manner of transferring data from one
representation (the source schema) to another (the target schema); the two schemas are expressed in
the same model (e.g. relational model, XML model). If the schemas are expressed in different models,
some approaches [ACB06, MRB03 and SKS01] can be used to specify the model transformation
between the schemas (e.g. transforming a schema in a relational model to an object representation).
Figure 2-1 is inspired by [THH05] to illustrate the general process of the transformation in these
systems. Consider a source schema S1 and a target schema S4 expressed in different models. For
specifying the transformation of the instances of S1 to S4, the system may have to specify: (i) first the
model transformation from S1 to its equivalent schema S1 that is expressed using the internal model
of the system, (ii) then the mapping from S2 to S3 that is the target schema expressed using the
internal model of the system, (iii) and finally the model transformation from S3 to S4. If the internal
model of the system is the same as the source model, the transformation from S1 to S2 is not needed
and the mapping is specified directly from S1 to S3. If the internal model of the system is the same as
the source model, the transformation from S3 to S4 is avoided and the mapping is specified directly
from S2 to S4. If all the three data models are the same, there is no model transformation and only
the mapping need to be specified from S1 to S4.

Automatic Mapping Generation and Adaptation for XML Data Sources

8

Model Transformation

S
ch

em
a

Tr
an

sf
or

m
at

io
n

Internal
Form

Target
Model

Source
Model

S
ou

rc
e

S
ch

em
a

Ta
rg

et
Sc

he
m

a

Source-Internal
Model Transformation

Internal-Target
Model Transformation

S1 S2

S3 S4

Mapping

Figure 2-1. The general process of the transformation specification from a source to a target in a

data migration system, a data translation system or a wrapper

Beside the previous use contexts, mappings can also be defined between several sources and a
target schema as it is the case for mediation systems and data warehouses:

− mediation systems [GPQ97, TRV98 and Wie92] are systems that allow a transparent access
to distributed and heterogeneous sources by providing the user a global and uniform view of
the sources as well as the mechanisms that rewrite user queries over the global view into
source queries and returns integrated result.

− data warehouses [Inm96 and TS99] collects, integrates and stores an organization's data with
the aim of producing accurate and timely management of information and support for
analysis techniques. They provide an integrated schema and data is computerized from the
multiple sources to populate the integrated schema.

These systems are also called data integration systems since they all integrate data sources into a
global representation. During the design of these systems, the global schema can be elaborated
independently from the source schemas. Mappings are then defined to specify the way of deriving
instances of the global schema from the sources.

There exist also other research issues in the data integration systems. One of them is how to
resolve errors and inconsistencies between data from different sources (e.g. the dates can be
expressed in one source with the format DD-MM-YYYY and in another source with the format
MMDDYY). Resolving such conflict is known as data cleaning and it has been the topics for many
research works (a state of the art on data cleaning is provided in [Sou05]). In mediation systems,
another research topic consists in specifying the algorithm of user query rewriting into local queries
over the sources. In data warehouse, one of open problem is how to adapt the instances in the data
warehouse current to the source instances. For example, when some objects (e.g. tuples in a relational
source) are removed from the sources, the instances inside the data warehouse needed to be
maintained by removing the same objects. This problem is known as view maintenance [AMP98
and KR02].

Manually defining the mappings is a difficult task, especially for data integration systems in which
there may be a large number of data sources. The designer must have a thorough understanding of
not only all the data sources, but also the semantic links between the sources and the target schema.
Thus, providing a computer support to help generating these mappings is necessary. For this purpose,
many research approaches [BKS04, MHH00, FW06, SKR01, Zam04, CLL03, PVM02 and FS03] as

Xiaohui Xue

9

well as industrial solutions [AIS, AMF and Sty] have been proposed for automatic or semi-automatic
generating mappings.

Mappings are necessarily dependent on the schemas they relate; data sources are freely evolving
both their content and their capacities and the target schema may also evolve according to the
evolution of the users’ needs. When one of these schemas evolves, the existing mappings may
become obsolete and need to be redefined. The mapping definition done during the design time of
an information system is usually performed once for all the life cycle of the system. On the opposite, ,
schema evolutions may require the continuous redefinition of the mappings at runtime; sometimes
when a user query is waiting for the results and its rewriting recognizes an inconsistent between the
mapping and schemas. Redefining mappings in this context is more considered to be a costly process.
Moreover, the original mappings also embody certain preferences with respect to the other
alternative mappings, so that the re-definition of new mappings may ignore these preferences. For
these reasons, mapping adaptation making use of the original mapping and adapting it to the new
schemas seems to be more promising in terms of performance and of the resulting mapping
semantics. There are some existing solutions [BFK03, FP04, FS04, LNR02, MP02, VMP04 and YP05]
for mapping adaptation.

All the existing approaches on mapping generation and mapping adaptation take a set of semantic
correspondences as input. The definition of these correspondences is known as schema matching.
Providing a support to schema matching is a difficult problem and the research domain was being
devoted to it from years ago [BLN86]; while the problem still stays to be an actuality today [DLD04,
DR02, Gal06, HC06, RB01 and SE05]. We do not address the problem of schema matching in this
thesis and we omit the presentation of the existing approaches.

In the remainder of the chapter, we present a state of the art on mapping generate in Section 2.
Section 3 will describe these existing approaches as well as discuss their solutions. Section 4
concludes the chapter.

2. Mapping Generation

The problem of mapping generation, also known as schema mapping, consists in generating the way
instances of a given target schema are derived from the instances of a set of data sources.

Manual mapping generation is difficult to achieve, especially in in presence of many source
schemas. The need of managing a large number of metadata about the schemas and all the links
between these schemas makes manual mapping generation a difficult task. For this purpose, many
solutions have been proposed to semi-automatic or automatic mapping generation in both research
and industry. Since 1999, many research approaches have been proposed to generate mappings:
[BKS04, MHH00, FW06, SKR01, Zam04, CLL03, PVM02 and FS03]. Some industrial tools have
also been developed to automatically generate mappings such as Adeptia Integration Server, Altova
MapForce and Stylus.

Among the research approaches for mapping generation, we distinguish between the generation
approaches for relational schemas [BKS04, MHH00 and FW06] and the ones for XML
representation [SKR01, Zam04, CLL03, PVM02 and FS03]. The industrial solutions all consider
XML representations.

In this section, we describe the principle of the different mapping generation approaches and tools.
The approaches generating mappings for relational schemas are first presented in Section 2.1. Section
2.2 describes mapping generation approaches for XML representation. The industrial solutions will
be described in Section 2.3. Section 2.4 discusses the existing works and Section 2.5 presents their
limitations. Section 2.6 presents an overview of our proposal and compares it to the related works.

Automatic Mapping Generation and Adaptation for XML Data Sources

10

2.1. Mapping Generation for Relational Schemas

Three approaches, Kedad and Bouzeghoub’99 [KB99, BKS04], Clio’00 [MHH00] and TUPELO
[FW06], have been proposed to generate mappings between target and source schemas expressed in a
relational model that are described in the following.

Kedad and Bouzeghoub’99 [KB99, BKS04]

This approach has been proposed in the context of mediation systems in which target schemas are
called mediation schemas and mappings are called mediation queries. It considers that both
mediation and source schemas are relational schemas and mediation schemas are defined by domain
experts independently from the sources. The objective of this approach is to help users by
generating a set of candidate mediation queries to derive instances of the mediation schema from the
instances of the source schemas.

Mediation queries are generated for every relation of the mediation schema. The generation
process comprises three steps: (i) searching for the sources that are relevant to the mediation relation;
(ii) identifying candidate operations; (iii) defining mediation queries.

The step of searching for relevant sources consists in finding all source relations that can
contribute to the computation of the mediation relation. A source relation Si is contributive if it
includes some attributes of the mediation relation. In this case, a mapping relation is extracted from it;
the mapping relation contains all the common attributes between the mediation relation and Si. The
primary key and foreign keys of Si are added into the mapping relation. Consider the following
example in which there is one mediation relation Rm(#K,A,B,C) and four source relations
S1(#K,A,@X,Y), S2(#X,B,Z), S3(#B,C,W) and S4(#B,C,U). Primary key attributes are prefixed by #
and foreign key attributes are prefixed by @. In this example, four mapping relations are obtained
from S1, S2, S3 and S4: T1(#K,A,@X), T2(#X,B), T3(#B,C) and T4(#B,C).

The step of candidate operation identification searches for possible joins between mapping
relations. A join is possible between two mapping relations R1 and R2 either (i) if R1 and R2 are in
the same source and there is an explicit referential constraint between them or (ii) if R1 and R2 are in
different sources and the primary key of one has an equivalent attribute in the other. Figure 2-2
shows an example of possible operations for the example. The join 1 is possible between T1 and T2
because there is a referential constraint from T1 to T2 through the attribute X. The join 2 is possible
between T2 and T3 because the attribute B exists in both T2 and T3 and B is defined to be a key in
T3.

There is not always a candidate operation between two mapping relations following the previous
rule. However, they might be joined through a third relation. Some relations that contain only
primary keys and foreign keys and that have no common attribute with the mediation relation are
considered by the algorithm to make possible joins between mapping relations; they are called
transition relations. For example, consider the two mapping relations T5(#D, E) and T6(#F, G). There
is no possible join between them. Suppose that there is another source relation S7(#F, @D, H) and
none of F, D and H is in the mediation relation, then S7 can be used to join T5 and T6: a join
between T5 and T7 with the predicate over D and a join between T6 and T7 with the predicate over
F. A transition relation is generated from S7; it contains only foreign keys and primary keys: T7(#F,
@D). Both mapping relations and transition relations are called relevant relations.

Xiaohui Xue

11

Rm (#K, A, B, C)

T3 (#B, C)T2 (#X, B)T1 (#K, A, @X) T4 (#B, C)

1
2

3
Figure 2-2. Example of operation graph

Relevant relations and the joins between them can be represented by a graph (called operation graph)
in which every node is a relevant relation and every edge is a join. Over the operation graph, a
mediation query is defined from a computation path, which is a connected, acyclic sub-graph that
involves all the attributes of the mediation relation. Defining mediation queries consists in
enumerating all the computation paths from the operation graph. In the example of Figure 2-2,
C1 = (1, 3) and C2 = (1, 2) are two computation paths. Their corresponding mediation queries are
respectively:

E1 = ΠK,A,B,C[(ΠK,A,XS1) (ΠX,BS2) (ΠB,CS4)];
E2 = ΠK,A,B,C[(ΠK,A,XS1) (ΠX,BS2) (ΠB,CS3)].

Set-based operations such as union, difference, intersection can be used over existing mediation
queries to derive new mediation queries. For example, a third mediation query can be generated by
applying a union to E1 and E2:

E3 = ΠK,A,B,C[(ΠK,A,XS1) (ΠX,BS2) (ΠB,CS4)]
∪ ΠK,A,B,C[(ΠK,A,XS1) (ΠX,BS2) (ΠB,CS3)].

Clio’00 [MHH00]

This approach is the first result of the Clio project to generate mappings between relational
schemas. Given one source schema and one target schema, the approach generates one mapping
semi-automatically.

This approach assumes the existence of a set of value correspondences. Each value
correspondence is a function defining how a value (or combination of values) from a source database
can be used to form a value in the target. Consider the target and source schemas in Figure 2-3, then
the following correspondence f1 expresses how Personal(Sal) is formed from the product of the values
of PayRate(HrRate) and WorksOn(Hrs) attributes:

f1: SELECT P.HrRate * W.Hrs
 FROM PayRate P, WorksOn W
 WHERE P.Rank=W.ProjRank

All the value correspondences are shown in Figure 2-3.

Id Addr

Id Name Sal

Name GPA Yr

Rank HrRate

Name Proj Hrs ProjRank

Id Name Sal Addr

Address

Professor

Student

PayRate

WorksOn

Personnel

Source Targetf5

f1

f2

f3
f4

f6

Figure 2-3. Example of target and source relations in Clio’00

Automatic Mapping Generation and Adaptation for XML Data Sources

12

Mappings are generated from value correspondences. The algorithm of mapping generation is
divided into four phases. The value correspondences are first partitioned into sets such that every
one contains at most one correspondence per attribute of T. They are called potential candidate set.
Each potential candidate set represents a different possible way of mapping the attributes in the
target relation. For the example of Figure 2-3, the followings potential candidate sets are listed below.
There is first of all a potential candidate set for every correspondence (the first row). Then all
possible combinations of the correspondences are considered, every one contains zero or one
correspondence for each target element. Some potential candidate sets containing two and three
correspondences are shown at respectively the second and the third row. The fourth row shows the
potential candidate sets that contain correspondences for each of the four elements of the target
schema.

{f1}, {f2}, {f3}, {f4}, {f5}, {f6}, …
{f2, f3}, {f2, f4}, {f2, f5}, {f2, f6}, {f1, f3}, {f1, f4}, {f1, f5}, {f1, f6} …
{f2,f3,f4}, {f2,f4,f5}, {f2,f3,f5}, {f2,f3,f6}, {f1,f3,f4}, {f1,f4,f5}, {f1,f3,f5}, {f1,f3,f6} …
{f2, f3, f4, f5}, {f1, f3, f4, f5}, {f2, f3, f6, f5}, {f1, f3, f6, f5}.

Consider the potential candidate sets. For every one involving more than one source relation, the
system checks if there is one relation involved in the set and not related to the others through a
foreign key; if such relation is found, the potential candidate set is removed. Potential candidate sets
surviving this pruning are candidate sets. Assuming that WorksOn(Name) is a foreign key of
Student(Name) and Address(Id) is a foreign key of Professor(Id), they we get the following candidate sets
from the previous potential candidate sets:

{f1}, {f2}, {f3},{f4},{f5},{f6}, {f2, f3}, {f2, f4}, {f2, f5}, {f3, f4}, {f3, f5}, {f4, f5}, {f1, f6},
{f2, f3, f4}, {f2, f4, f5}, {f2, f3, f5}, {f3, f4, f5}, {f2, f3, f4, f5},

A subset C of the candidate sets is generated to cover all the input value correspondences (that is,
every value correspondence appears at least once in a candidate set in C); it is called a cover. In a
cover, one correspondence can participate in multiple candidate sets, but there is no candidate set
such that if it is removed, C is still a cover. If there is more than one cover, Clio ranks them in
reverse order with respect to the number of candidate sets in the cover. In the previous example, the
cover that has less candidate sets is:

{f2, f3, f4, f5}, {f1, f6}.

The final step is to build the query from the selected cover. For each candidate set in the cover, a
candidate SQL query is generated. Then all SQL queries from the selected cover are combined into
one query using the multiset UNION ALL, and this constitutes the resulting mapping.

TUPELO [FW06]

TUPELO generates mappings to derive instances of a target schema from a source schema where
both schemas are expressed in the relational model. The approach considers a set of pre-defined
transformation operators and uses heuristics to explore the full searching space to find mappings.

The approach makes use of operators defined in FIRA [WR05] such as dropping a column from a
relation, or transforming the values of a column A into column names with the values of the column
computed from the column B. The approach also considers complex functions provided by users.

TUPELO is based on the Rosetta stone principle, that is, it considers a set of critical instances s
and t (inputted by users) for the source and target schemas respectively. Data mapping is considered
to be a full exploration of the transformation space for the considered transformation operators on
the source instance s. The search terminates successfully when the target instance t is located in this
space.

Heuristics are used to reduce the search space. The approach uses an evaluation function f for
ranking a search state x: f(x) = g(x)+h(x) where g(x) is the number of transformations applied to the

Xiaohui Xue

13

start state to get to state x and h(x) estimates the distance from x to t. The authors discuss different
heuristics to estimate the distance from x to t such as set-based similarity heuristics, the Levenshtein
heuristic, or Euclidean heuristics. At each step in the exploration of the search space, TUPELO
compares f(x) values of different states and selectively searches the space based on the rankings.

2.2. Mapping Generation for XML Representations

Other approaches have been proposed to generate mappings for target and source schemas in an
XML model such as Xtra [SKR01], AutoMed [Zam04], ORA-SS [CLL03], Clio’02 [PVM02] and
Farias Lóscio and Salgado’03 [FS03]; they are described in the following.

Xtra [SKR01]

Xtra also generate mappings between one source schema and one target schema. Both schemas
are described by DTDs and the mapping generated for the schemas is expressed in XSLT.

DTD schemas are modeled as a tree in Xtra. Four kinds of nodes are possible in Xtra trees:
element node, attribute nodes, list nodes (each list node indicates how its children are composed, that
is, by sequence < , > or by choice < | >), and quantifier nodes (each quantifier node represents the
cardinality of its children with respect to its parent which is one or more < + >, zero or more < * >
or zero or one < ? >). Figure 2-4 shows two Xtra DTD trees.

company

address personnelcname license

zipstatecitystreet +

person

name ? +?

email faxurl

company

, personnelcname

licensepostalstatecitystreet +

person

name + fax?

email url

?

?

fax

phoneme

DTD 1’s DTD tree DTD 2’s DTD tree

Figure 2-4. Two Xtra DTD trees

The schema transformation process proposed by Xtra consists of three steps. It first generates
possible transformation sequences to transform one schema to another using a set of transformation
operators. Then it evaluates these operations using a pre-defined cost model and chooses one from
all the possible sequences. Finally this operation sequence is used to generate an XSLT
transformation script.

A set of transformation operators describes all possible tree transformations considered by Xtra,
some of which are:

− add(T, n): add a subtree T under node n.
− delete(T): delete subtree T.
− remove(n): remove node n which is a quantifier or a sequence list node. After the removal, all

n’s children become the children of the parent of n.
− insert(n): insert a new node n under p with n a quantifier node or a sequence list node and

move a subset of p’s children to become n’s children.

Automatic Mapping Generation and Adaptation for XML Data Sources

14

− relabel(n, l, l’): change n’s original label l to l’.

Consider the two DTD trees shown in Figure 2-4. One possible transformation from DTD 1 to
DTD 2 consists in first deleting the subtree having the root < address > and then adding a subtree
having the root < , > and the nodes < street >, < city >, < state > and < postal >. Another possible
transformation consists in re-labeling < address > to < , > and re-labeling < zip > to < postal >.

A cost model is defined based on data quality, is represented by the number of nodes involved in a
transformation sequence. This cost model is used to rank transformation sequences. For the two
previous possible transformation sequences concerning addresses, the first one removes a subtree of
five nodes and adds a new subtree of five nodes; it involves ten nodes. The second sequence re-labels
two nodes. Because there are ten nodes involved for the first sequence while only two nodes are
involved for the second one, the data quality with the first transformation sequence is less than with
the second one. The latter is therefore preferred. However, argue that the cost model might be
different for different situations; for example, a cost model based on the data freshness might result
in a different ranking.

To perform the schema transformation, DTD trees are decomposed into subtrees: each subtree
has the root r such that r is not a leaf and it has the same name with a node in another schema. If the
root of a subtree has a parent node, then this root is also included in the subtree containing its parent.
Figure 2-4 shows the subtrees of the two schemas. There is the same number of subtrees in the two
schemas. For each pair of subtrees of the two schemas having the root of the same name, the system
searches for all possible transformation sequences of the two subtrees and selects the best one based
on the cost model. Once the transformations of all the pairs of subtrees are obtained, they are
translated to an XSLT script that represents the mapping to transform the source XML documents
into the target format.

AutoMed [Zam’04]

This approach generates transformations (mappings) from one schema and a source schema within
the AutoMed system. The schemas of the XML data sources can be DTD or XML schemas that are
represented by XML DataSource Schema in AutoMed. Four constructs are defined in XML
DataSource Schema: elements, attributes, parent-child relationships between elements, and texts.
Figure 2-5 shows an example of schema transformation in AutoMed between two schemas S1 and S2.
Both schemas contain the four constructs. Elements are represented by rectangles and attributes are
represented by ellipsis. To solve the problem of multiple elements of the same schema having the
same name, every element or attribute is followed by a unique number in the schema. Texts are
represented by PCData constructs. Parent-child relationships between elements are represented by
edges and orders are specified for edges having the same parent.

Xiaohui Xue

15

root:1

book:1

genre:1title:1author:1

name:1

PCData

ISBN:1

S1

book:1

ISBN:1publisher:1

PCData

S2 root:1

author:1 name:1

title:1root:1

book:1

genre:1title:1author:1

name:1

PCData

ISBN:1

name:1 ISBN:1publisher:1Growing phase

book:1

ISBN:1publisher:1

PCData

root:1

author:1 name:1

title:1

name:1ISBN:1

genre:1Shrinking phase

Renaming phase

1

1 2 3

1 1 1

1

1

1

2

2 1

1

1111

2 3 4 5

11111

1

1

1 2 3 4 5

2 2

1

1

1 2 3

1 2 3

Figure 2-5. Schema transformation in AutoMed

The transformation in AutoMed is described by a sequence of transformation pathways: each one
expresses a change like adding an element or removing an attribute. Generating the transformation
pathways from schema S1 to schema S2 consists in three phases: (i) the growing phase that adds to
S1 the constructs that are in S2 but not in S1; (ii) the shrinking phase that removes from the result of
the growing phase those constructs that are not in S2; (iii) the renaming phase that renames elements
and edges in the result of the shrinking phase. All transformations are expressed using pre-defined
transformation operators. The sequence of all the transformations in these three phases forms the
transformation pathways from S1 to S2. Figure 2-5 shows the three phases in the transformation
from S1 to S2.

During the growing phase, S2 is browsed in a depth-first order. For every element e of S2, the
algorithm processes sequentially the element e itself, its attributes and its text. The algorithm first
processes the element e. Consider the parent of e in S2 being p, and p already exists in S2 when
processing e. If the element e is not in S1, it is added to S1 as a child of p. If an attribute a in S1 is
equivalent to e, the process marks that e’s data is obtained from a. In the case that e is in S1 but its
parent in S1 is not p, e is restructured to be a child of p. Once e is processed, every attribute a of e in
S2 that does not exist as an attribute of e in S1 is inserted. If a is found at another place of S1, an
expression will be added to a to note how data of a is found from S1. After adding attributes of e, if e
is linked to the PCData construct in S2 but the same link is not present in S1, this link is added in S1.
The shrinking and renaming phases are straightforward. The shrinking phase browses the result of
the growing phase and removes all the constructs not present in S2. The renaming phase renames
constructs and re-defines the order of the edges.

ORA-SS [CLL03]

This approach is done in the ORA-SS project. Given an integrated view (global schema) being
defined as the integration of the source schemas [YLL03], the approach generates a view definition
(mappings) for the integrated views from each source schema. The algorithm generates view
definitions that are represented by XQuery queries to express the restructuring of instances of the
source to the integrated schema.

The source and target schemas are all modeled by the ORA-SS (Object-Relationship-Attribute)
model [DWL00]. The model comprises three basic concepts: object classes, relationship types and
attributes. Figure 2-6 gives example of an ORA-SS model where object classes are presented by

Automatic Mapping Generation and Adaptation for XML Data Sources

16

rectangles and key attributes of object classes are denoted by filled circles. Referential constraints are
not supported.

vo

o

vo

o

vo_no

o_no

vo_no

o_no

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $vo1 in $in//vo satisfies (

exists($vo1[$vo_no=$vo_no]) and
exists($vo1[descendant::o/@o_no=$o_no]))

vo

o

o

vo

o_no

vo_no

vo_no

o_no

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $vo1 in $in//vo satisfies (

exists($vo1[$vo_no=$vo_no]) and
exists($vo1[ascendant::o/@o_no=$o_no]))

$in $in vo

o

o_no vo_no

vo_no

o_no

let $o_no_set := distinct-values($in//o/@o_no)
for $o_no in $o_no_set
where some $LCA in $in//LCA satisfies (

exists($LCA//o[$o_no=$o_no]) and
exists($LCA//vo[$vo_no=$vo_no]))

LCA

o

$in

vo

(a) vo is an ancestor of o in the source schema (b) vo is an descendant of o in the source schema (c) vo is neither ascendant nor descendant
of o in the source schema and their lowest
common ancestor in the source is not an
ascendant of o in the integrated schema

Figure 2-6. Examples of schema transformation in ORA-SS

The algorithm generates the definition of each object class individually and then combines them all
together according to the tree structure of the view. The definition of an object class o comprises of a
FLWR expression, that consists of for, let, where and returns clauses: the where clause
restricts the data instances represented by o; the for clause binds a variable to iterate over each
distinct key value of o that is qualified by the where clause; the return clause constructs the
instances of o, including the attributes associated to o.

Generating for and return clauses is straightforward for an object class but generating where
clauses is more difficult. Ways to derive the where clause for an object class o from a source
depends on how its ascendants in the integrated view are represented in the source as well as its
relationship with o in the source. Given an object class o and an ascendant vo of o in the integrated
schema, there are three kinds of relationships between vo and o in the source: vo is ascendant of o; vo is
descendant of o; or vo is neither descendant nor ascendant of o and their lowest common ascendant in
the source is not an ascendant of o in the integrated schema. A pattern is used to generate the where
clause for each of these three possibilities and they are shown in Figure 2-6 (a, b and c). If vo and o
are siblings and their lowest common ascendant in the source is an ascendant of o in the integrated
schema, the relationship between vo and o is expressed using the relationship between this lower
common ascendant and o.

The algorithm browses the integrated schema from top to bottom. For every object class o, it
generates all where clauses with respect to all its ascendants being in one of the three cases. The
result gives the view definition of the integrated schema from the source schema. However, we
consider that it is sometimes not necessary to generate where clauses with respect to all the
ascendants. In a target schema, if an object class o has the parent p that has parent a, it is not
necessary to generate a where clause for o with respect to a. There is a where clause for p with
respect to a and a where clause for o with respect to p, instances of o are then grouped with respect
to instances of a through the FLWR expression of p.

Clio’02 [PVM02]

Besides the approach proposed to generate mappings for relational schemas [MHH00], the Clio
project have proposed another approach to generate mappings between schemas that are in either
relational or XML model. Mappings are generated between one source schema and one target
schema. Given a set of correspondences, the approach generates a set of alternative mappings.

Xiaohui Xue

17

Clio’02 uses a nested relational data model to represent both relational and semi-structured
schemas. Figure 2-7 shows a relational source schema expenseDB and an XML target schema statDB.
Foreign keys are specified between elements of the same schema and correspondences existing
between the two schemas are represented by arrows.

expenseDB:Rcd
companies: Set of Rcd

company: Rcd
cid
cname
city

grants: Set of Rcd
grant: Rcd

grantee
pi
amount
sponsor
proj

projects: Set of Rcd
project: Rcd

name
year

statDB: Set of Rcd
cityStat: Rcd

city
orgs: Set of Rcd

org: Rcd
cid
name
fundings: Set of Rcd

fund: Rcd
pi
aid

financials: Set of Rcd
finaicial: Rcd

aid
amount
proj
year

v1

v2

v3

r1

r2

r3

expenseDB:Rcd
companies: Set of Rcd

company: Rcd
cid
cname
city

grants: Set of Rcd
grant: Rcd

grantee
pi
amount
sponsor
proj

projects: Set of Rcd
project: Rcd

name
year

statDB: Set of Rcd
cityStat: Rcd

city
orgs: Set of Rcd

org: Rcd
cid
name
fundings: Set of Rcd

fund: Rcd
pi
aid

financials: Set of Rcd
finaicial: Rcd

aid
amount
proj
year

v1

v2

v3

r1

r2

r3

Figure 2-7. Example target and source schemas in Clio’02

A set of primary paths is created for each schema to denote its tree structure such that each one is
the set of all elements found on a path from the root to any intermediate node or leaf in this tree.
The three primary paths of expenseDB (S1 to S3) and the four primary paths of statDB (T1 to T4) are
as follows:

S1: select * from c in expenseDB.companies
S2: select * from g in expenseDB.grants
S3: select * from p in expenseDB.projects
T1: select * from s in statDB
T2: select * from s in statDB, o in s.cityStat.orgs
T3: select * from s in statDB, o in s.cityStat.orgs, f in o.org.fundings
T4: select * from s in statDB, f’ in s.cityStat.financials

The primary paths are combined to form logical relationships. This process is done using the chase
method [PT99] that expands primary paths using foreign keys. The logical relationships for expenseDB
and statDB are shown in Figure 2-8. The primary paths S1, S3, T1, T2 and T4 cannot be chased
because there is no foreign key originating from them; they form logical relationships by themselves
(A1, A3, B1, B2, B4 respectively). The primary paths S2 can be chased using the two foreign keys in
expenseDB to produce the logical relationship A2. The primary paths T3 can be chased using the
foreign key of statDB to produce the logical relationship B3.

A1: select c.company.cid, c.company.cname, c.company.city
from c in expenseDB.companies

A2: select c.company.cid, c.company.cname, c.company.city,
g.grant.pi, g.grant.amount, g.grant.sponsor,
g.grant.proj, g.project, year

from g in expenseDB.grants, c in expenseDB.companies,
p in expenseDB.projects

where c.company.cid=g.grant.grantee and
p.project.name=g.grant.proj

A3: select p.project.name, p.project.year
from p in expenseDB.projects

B1: select s.cityStat.city from s in statDB
B2: select s.cityStat.city, o.org.cid, o.org.name

from s in statDB, o in s.cityStat.orgs
B3: select s.cityStat.city, o.org.cid, o.org.name, f.fund.pi,

f.fund.aid, f’.financial.amount, f’.financial.proj,
f’.financial.year

from s in statDB, o in s.cityStat.orgs, f in o.org.fundings,
f’ in s.cityStat.orgs

where f’.financial.aid=f.fund.aid
B4: select s.cityStat.city, f’.financial.amount, f’.financial.proj,

f’.financial.year
from s in statDB, f’ in s.cityStat.orgs

A1: select c.company.cid, c.company.cname, c.company.city
from c in expenseDB.companies

A2: select c.company.cid, c.company.cname, c.company.city,
g.grant.pi, g.grant.amount, g.grant.sponsor,
g.grant.proj, g.project, year

from g in expenseDB.grants, c in expenseDB.companies,
p in expenseDB.projects

where c.company.cid=g.grant.grantee and
p.project.name=g.grant.proj

A3: select p.project.name, p.project.year
from p in expenseDB.projects

B1: select s.cityStat.city from s in statDB
B2: select s.cityStat.city, o.org.cid, o.org.name

from s in statDB, o in s.cityStat.orgs
B3: select s.cityStat.city, o.org.cid, o.org.name, f.fund.pi,

f.fund.aid, f’.financial.amount, f’.financial.proj,
f’.financial.year

from s in statDB, o in s.cityStat.orgs, f in o.org.fundings,
f’ in s.cityStat.orgs

where f’.financial.aid=f.fund.aid
B4: select s.cityStat.city, f’.financial.amount, f’.financial.proj,

f’.financial.year
from s in statDB, f’ in s.cityStat.orgs

Figure 2-8. The logical relations in expenseDB, statDB

Automatic Mapping Generation and Adaptation for XML Data Sources

18

Consider every logical relationship in the source schema with every logical relationship in the
target schema. A logical pair is formed from these two logical relationships if there are
correspondences between their elements. For example, the following logical relationship v12 is
formed by A2 and B2: the for-where clause represents A2; the exists clause represents B2;
and the where clause contains the correspondences v1 and v2 that are between elements of A2 and
B2.

v12: for g in expenseDB.grants, c in expenseDB.companies,
p in expenseDB.projects

 where c.company.cid=g.grant.grantee and p.project.name=g.grant.proj
 exists s in statDB, o in s.cityStat.orgs, f in o.org.fundings, f’ in s.cityStat.orgs
 where f’.financial.aid=f.fund.aid and o.org.name= c.company.cname

and f.fund.pi= g.grant.pi

A set of logical pairs are generated from all pairs of the source logical relationships and the target
logical relationships satisfying the condition. This is the mapping solution of the approach introduced
by Clio’02. The two logical pairs in the same result may derive instances for the same portion of the
target because logical relationships from the same source may be overlapping. A rewriting algorithm
[YP04] is then proposed to rewrite user queries using these mappings into source queries.

Two other approaches [ABM05a, ABM05b] directly inspired by the Clio project have been
proposed for generating mappings between a conceptual model and a relational table [ABM05a] or
between a conceptual model and an XML schema [ABM05b]. The adaptation consists in using a
chase-like method to generate logical relationships over variables of the conceptual model. Then
referential constraints of the relational schema or XML schema tree structure are used to check the
generated logical relationships from which the relevant ones are selected. All these mappings are
expressed in a specific format, similar to the ones in [PVM02].

Farias Lóscio and Salgado’03 [FS03]

This approach is proposed in the context of mediation systems in which mediation schemas and
source schemas are all expressed through an XML schema. The approach generates a set of candidate
mediation queries to define alternative ways for deriving instances of the mediation schema from the
sources.

The proposed process first translates the schemas into an ER liked model, called X-Entity [FSG03];
then mediation queries are generated for each entity of the mediation schema [FS03]. The second
step of the approach is inspired from the ones discussed earlier [KB99, BKS04].

The X-Entity model [FSG03] consists in a set of entity types and a set of containment relationship
types. Each entity type represents an entity composed by attributes. Every attribute is associated with
a domain and a cardinality to specify the minimum and the maximum number of instances of the
attribute that can be related to an instance of the entity. Figure 2-9 shows one mediation schema and
three source schemas in the X-Entity model. Rectangles represent entities and ellipses represent
attributes. Dotte0d lines are used to connect optional attributes and thick lines are used to connect
required attributes. Multivalued attributes are represented by double ellipses. Containment
relationships between entity types specify that each instance of one entity contains instances of the
other. They are characterized by a cardinality specifying the minimum and maximum number of
instances of the contained entity in the containing entity.

An X-Entity diagram can be derived automatically from an XML schema. Every element in the
schema having the type defined as complexType is represented as an entity. Other elements and
attributes are represented by attributes of the entity that corresponds to their first ascendant. For
every element e1 of the type complexType and its first ascendant e2 of the type complexType,
there is a containment relationship between the entity of e1 and the entity of e2.

Xiaohui Xue

19

moviem

genrem

yearm

titlem titlem

actorm

nationalitymnamem

contains
(1,N)

(a). Mediation schema Smed

movie1genre1

title1 duration1 actor1
nationality1

name1

contains
(1,N)

(b). Data source S1

director1contains
(1,N)

movie2genre2

title2

director2

nationality2name2

contains
(1,N)

(c). Data source S2

actor2

director3

nationality3name3

contains
(1,N)

movie3

yearm titlem

(d). Data source S3

nationality1

name1

Figure 2-9. One mediation schema and three source schemas in the X-Entity model

Mediation queries are generated for every entity of the mediation schema. The process consists in
three steps: (i) selection of relevant source entities that potentially allow computing of the mediation
entity; (ii) identification of possible operators to apply between different relevant source entities; (iii)
generation of all possible queries from the selected source entities and operators.

Given a mediation entity Em, a source entity Es is relevant to the computation of Em if Es and Em
have equivalent names. Mapping views V({X1, .., Xn}{Y1, .., Yn}) are then defined to specify how Em
can be computed from Es. Every attribute Xi is equivalent to an attribute in Em. It either belongs to
Es or belongs to another source entity that is related to Es by a path of containment relationships.
For every relationship from Em to another mediation entity E’m, Yi is either a relationship between
two source entities equivalent to Em and E’m or a path of relationships between the two source
entities respectively. For the example of Figure 2-9, there are three mapping views for the mediation
entity moviem from the three source entities movie1, movie2 and movie3 respectively

Vmovie1({title1,genre1, movie1.movie1_director1.director1.name1}{movie1_director1});
Vmovie2({title2,genre2, movie2.movie2_director2.director2.name2}{});
Vmovie3({title3,genre1, (director3.director3_movie3.movie3)-1.name3, year3}{});

In Vmovie1, the expression movie1.movie1_director1.director1.name1 specifies the attribute name1 related to
movie1 through the path movie1.movie1_director1.director1. The expression (director3.director3_movie3.movie3)-

1.name3 specifies the attribute name3 that is related to movie3 through the relationship
director3.director3_movie3.movie3 in an reverse order.

There is one mapping view for actorm from actor1: Vactor1({name1, nationality1}{});

Given the mapping views for a mediation entity, the second step identifies candidate operators
between these mapping views. The authors consider three operators between mapping views: union
(∪p), intersection (∩p), difference (−p). The mapping operators to be applied between two mapping
views are determined based on the correspondence assertions that specify the relationships between
the source entities as specified in the following table. For example, given two mapping views V1 and
V2, if V1 ≡ V2, union and intersection can be both applied to them. If V1 ⊂ V2, they can be
combined as V1 ∪p V2 or V1 –p V2.

Automatic Mapping Generation and Adaptation for XML Data Sources

20

Vmovie1 Vmovie3Vmovie2

∪p

∪p
∪p

-p

Figure 2-10. Example of an operation graph

Mediation queries are defined for every mediation entity. Mapping views for a mediation entity
and the operations between them can be represented by an operation graph. Figure 2-10 gives an
example of an operation graph for the mediation entity moviem. Consider the operation graph.
Computation paths are first defined such that each one is a connected subgraph of the operation graph
that involves all the attributes of the mediation entity. A mediation query is a computation path with
a particular order on the operations in the path. From Figure 2-10, three of the possible mediation
queries are as follows:

Q1movie = (Vmovie1 ∪p Vmovie2) ∪p Vmovie3;
Q2movie = Vmovie1 ∪p (Vmovie2 ∪p Vmovie3);
Q3movie = (Vmovie2 -p Vmovie3) ∪p Vmovie1.

2.3. Industrial Tools

Some industrial tools are also available for automatic mapping generation such as Adeptia
Integration Server [AIS], Altova MapForce [AMF] and Stylus [Sty]. These three approaches all
propose the same kind of solutions: they consider one target schema and one source schema based
on the XML model. They allow users to specify correspondences between elements of the schemas
and to generate a mapping that can be expressed in XQuery or in XSLT.

The main objective of these approaches is to provide a friendly interface to help users to visualize
target and source schemas and to specify correspondences between source elements and target
elements. Users can specify 1-1 correspondences or complex 1-n correspondences to define a target
element from a function over one or several source elements.

Once a user specified all the correspondences, a mapping is automatically generated from the
source schema to the target schema. The mapping specifies for every target element having a
correspondence how to derive its instances from the sources using the correspondence. However,
generated mappings are simple mappings and they do not consider the structural constraints between
different target elements. Stylus and Adeptia Integration Server derive instances for every target
element without considering its location in the target schema and without considering the other
elements. Altova MapForce satisfies the structural constraints between target elements only if they
have a similar structural relationship in the source schema. If there are two target elements A and B
such that A is the parent of B and if their respective corresponding elements in the source schema A’
and B’ are siblings or A’ is a child of B’, Altova MapForce cannot restructure these elements. It
derives instances for A and B from A’ and B’ respectively, but does not satisfy the structural
constraint between them.

All these tools do not combine different portions of the source and they do not consider
referential constraints in the source schema. If a target element is related to two correspondences,
Altova MapForce duplicates the element and relates each of them to a correspondence. Stylus and
Adeptia Integration Server derive the target element as the union of the two corresponding source
elements without checking if one is the duplicate of the other

Xiaohui Xue

21

2.4. Discussions

Table 2-1 shows some of the main features of the existing approaches for mapping generation such
as metadata used to generate mappings, characterization of the resulting mappings, and the kind of
generation process.

The metadata for mapping generation gives is related to the input knowledge required by the
different approaches. It includes two aspects: schema model and semantic equivalence between
schema elements. Schema models can be relational, nested relational or an XML model. Equivalences
between elements can be 1-1 equivalences or 1-n equivalences.

To characterize the result mappings, we consider both the semantics and the format of the
resulting mappings. With respect to the semantics of the mappings, we differentiate between
mappings that involve joins between different sources and mappings that do not involve joins
between different sources. The mapping format is related to the formalism used to describe the
resulting mappings; this can be done using a standard language or an ad-hoc one. We also distinguish
between mappings that derives instances conform to the target schema and the others.

The type of mapping generation process indicates if the mapping is produced by generating
directly mapping expressions or by restructuring the source schema.

Table 2-1. Main features of the different approaches on mapping generation

Metadata for Mapping
Generation

Characterization of Resulting Mappings

Approach
Schema
model

Element
Equivalences

Involving
Inter-Source

Joins?

Description
Language

Mapping
Conform to
the Target?

Type of
Mapping

Generation

Kedad and
Bouzeghoub’99 Relational 1-1

equivalences Yes SQL Yes SQL query
generation

Clio’00 Relational 1-1 , 1-n
equivalences No SQL Yes SQL query

generation

TUPELO Relational 1-1 , 1-n
equivalences No specific algebra

expression Yes Source schema
restructuring

Xtra DTD 1-1
equivalences No XSLT No Source schema

restructuring

AutoMed
DTD,
XML

Schema

1-1
equivalences No Transformation

pathways No Source schema
restructuring

ORA-SS DTD 1-1
equivalences No XQuery No XQuery query

generation

Clio’02 Nested
relational

1-1
equivalences No Specific logical

expression No Logical expression
generation

Farias Lóscio
and Salgado’03

XML
Schema

1-1
equivalences Yes Specific algebra

expressions Yes
Algebra

expression
generation

Industrial tools XML
Schema

1-1 , 1-n
equivalences No XQuery, XSLT Yes (no information)

Metadata for Mapping Generation

All the mapping generation approaches discussed so far consider as inputs the target schema and the
source schemas. They also all assume that the correspondences between elements are given and are
used to generate mappings.

Automatic Mapping Generation and Adaptation for XML Data Sources

22

In some of approaches, the correspondences between elements are specifically represented . These
approaches include [BKS04, MHH00, CLL03 and FW06] and the industrial solutions. In [SKR01,
Zam04, PVM02 and FS03] the correspondences between elements are implicitly represented by
equivalences of element names.

All approaches assume the semantic correspondences between elements of the target schema and
elements of the source schemas. The approaches proposed in [BKS04 and FS03] also consider
correspondences between elements of different sources. They allow the expression of the
equivalence between two source elements that do not have equivalent elements in the target schema.

Mainly two kinds of equivalences are used: 1-1 correspondences and 1-n correspondences. A 1-1
correspondence is specified between two elements to state that they represent the same concept. This
is considered by all the approaches. A 1-n correspondence is used to relate a target element to one or
several source elements using a transformation function. It states that instances of the target element
can be derived from the result of applying the function to the instances of the source elements. 1-n
correspondences allow expressing more complex relationships between elements. A 1-1
correspondence can be seen as a special case of 1-n correspondence in which the transformation
function is applied on one source element and returns instances of this element. 1-n correspondences
are supported by [FW06 and PVM02] and they can be specified using the industrial tools presented
above.

Mapping Semantics

We distinguish between two kinds of mappings depending on if they can express joins between
different sources or not. Consider the mappings containing joins between different sources allows
generate more mappings conform to the target. It may happen that only these mappings can satisfy
the target. Suppose that a target schema requires authors and their respective books and assume that
one source S1 describes books while the other source S2 describes authors. If no mapping can
express joins between S1 and S2, books and authors can be retrieved separately for the target schema,
but no mapping can satisfy the target schema by expressing how the books are related to each author.
Getting this information requires joining books in S1 with authors in S2.

We distinguish the existing approaches into the ones that can not generate mappings involving
inter-source joins and those that can generate mappings involving inter-source joins. The first kind
covers the majority of the proposed solutions including [MHH00, FW06, SKR01, Zam04, PVM02
and CLL03] and the industrial tools. They use structural constraints and referential constraints to re-
organize instances of the source schema to match the target structure.

Two approaches [BKS04 and FS03] generate mappings that can join different sources. To generate
these mappings, these approaches have to deal with the issues such as how to identify identical
objects between different sources and how to “semantically” join them. For joining different sources,
the approach proposed in [BKS04] infers joins based on element equivalences and on key and
referential constraints. the approach proposed in [FS03] does not consider key constraints and uses
element equivalences to infer joins.

The approaches proposed in [MHH00 and Zam04] consider using the generated mapping for
single source schema to obtain mappings from several sources. The generation consists in two steps:
mappings are first generated for every source using a restructuring mapping generation approach, and
then the mappings for different sources are combined using a union to get a mapping involving
multiple sources. However, these methods are still different from generating integrating mappings. If
we consider the example presented at the beginning of the section, using union between authors and
books do not allow finding relationships between every book and its authors.

Mapping Description Language

Some approaches generate mappings in a standard language with respect to its data model: the
approaches proposed in [MHH00, BKS04] generate SQL queries; the approach proposed in [CLL03]

Xiaohui Xue

23

generates XQuery queries; Xtra [SKR01] generates XSLT scripts; and all the three industrial solutions
generate both XQuery queries and XSLT scripts. Other approaches [FS03, FW06, PVM02 and
Zam04], generate mappings in a specific high-level format.

Mappings expressed in a standard language can be directly used in the systems supporting the
language. Mappings expressed in an abstract language will require the translation of mappings to be
used in these systems.

The mappings generated by [PVM02] are expressed in an abstract language and an algorithm
[YP04] is proposed to rewrite user queries for this language. Mappings generated by [Zam04] are also
expressed in an abstract language and they are mainly used within the AutoMed project [BKL04].

Conformance of the Mappings to the Target Schema

Depending on the relationship between the resulting mappings and the target schema, we
differentiate the existing approaches into two kinds: those generating mappings that always derive
instances conforming to the target structure, and the others. We illustrate the difference between
these two kinds of approaches by an example. Consider a source that contains information about
some authors and their books and a target schema that specifies books with their authors and their
publisher. The first kind of approaches can not generate mappings in this case because the source do
not contains information about books’ publisher required by the target. The second kind of
approaches can generate a mapping to re-organize the instances of the source to the target structure:
classify the authors by their books. This mapping does not derive instances conforming to the target
structure because the books’ publishers are not given by the source. But the structure of the instances
is homogeneous with respect to the target one.

We can consider that those approaches that do not have to generate mappings deriving instances
conform to the target structure mainly focus on restructuring the source instances to a structure that
is homogeneous with the target structure. This kind includes the approaches [SKR01, Zam04, CLL03
and PVM02]. Among these approaches, [Zam04 and CLL03] are both in a system where the target
schema is generated as the integration of the source schemas and the system considers a Local-As-
View approach. Therefore mappings only need to define the restructuring of the instances of every
source to a structure homogeneous with respect to the target one. [SKR01 and PVM02] offer no
discussion for this subject. They generate a mapping without checking if the generated mappings
derive instances conform to the target.

The other kind of approaches mainly focuses on defining the target schema over the sources. It
includes [BKS04, MHH00, PVM02, FW06, FS03] and all the industrial approaches. To compare with
the first kind, their generated mappings derive instances conform to the target. However, no
mapping can be generated for the target schema even only a fraction of the target cannot be found in
the sources.

Number of Result Mappings

Most of the approaches generate only one single mapping result, such as [MHH00, FW06, SKR01,
Zam04, CLL03 and PVM02] and the industrial solutions. If several possibilities exist for deriving
instances from the source to the target, one of them is chosen based on a cost model [SKR01] or
based on some heuristics [FW06]. There are two approaches [BKS04 and FS03] that generate a set of
alternative mappings. In this set, each mapping represents a different way to derive instances from
the sources to the target independent from the other mappings.

The approach proposed in [PVM02] generates one single result that is a set of mappings: each one
defines a portion of the target schema from a portion of the source. Two target portions respectively
defined by two different mappings may be overlapping.

The advantage of the approaches generating several mappings is that they provide users a choice
to select the most relevant one, that is, the one having the semantics that corresponds to their needs.

Automatic Mapping Generation and Adaptation for XML Data Sources

24

In different use cases, a user may prefer one or the other. It may also be possible that in a given
context, two users prefer different mappings. However, providing alternative mappings also
complicates the mapping generation process since all possible ways to relate the target to the source
need to be enumerated. Mappings generated by [PVM02] can be considered as a hybrid solution of
the two previous ones. But mappings are specified in an ad-hoc format.

Schema Restructuring versus Mapping Expression Definition

With respect to the method used to generate mappings, we distinguish between approaches that
restructure source schemas and the approaches that generate mapping expression definitions without
restructuring.

The former generate mappings by restructuring the source schema to the target. This includes
TUPELO, Xtra and AutoMed. These approaches define a set of restructuring operators. Generating
mappings consists in producing a sequence of restructuring operators to restructure the source
schema to the target structure. Sometimes sequence operations are later translated to a more
declarative query between the source schema and the target schema. There are some approaches
[CR03 and THH05] that do not generate mappings but they propose a set transformation operators
that can be used to specify mappings.

The second kind of approaches generates directly declarative expressions to define the target
schema based on the sources. This includes Kedad and Bouzeghoub’99, Clio’00, ORA-SS, Clio’02, as
well as Farias Lóscio and Salgado’03.

2.5. Limitations of the Existing Approaches

Most of the existing approaches generate mappings from one source schema. The approaches
proposed in [BKS04 and FS03] generate mappings that can involve joins between different sources.
The approach proposed in [BKS04] consider relational schemas and the approach proposed in [FS03]
consider XML schemas; they assume that the objects are expressed using the same constructs in the
source schemas as in the target schema. A target complexType element can only be derived from
an equivalent complexType element in the sources. This represents a limitation because
complexType type in XML Schema only corresponds to a grammar definition and the same data
can be specified as complexType elements or as simpleType elements with attributes. We can
see that in the example of Figure 2-9, no mapping can be generated for actorm using S2 even if there is
an attribute actor2 in S2 and actor2 is equivalent with namem of actorm. Moreover, the approach does not
consider key and referential constraints. The generated queries are expressed in an ad-hoc language.

Among the approaches that generate mappings without joins between sources, Xtra and ORA-SS
also assume that the source schema and the target schema have homogeneous structures. TUPELO,
AutoMed and Clio’02 generate mappings expressed in an abstract language. Clio’02 generates a set of
mappings such that each one is for a portion of the target schema. Two mappings for the same
schemas populate different target portions and they may be overlapping. With this result, the system
cannot produce a mapping or a set of alternative mappings for the target from the sources and it
cannot know either if the target is satisfied by the sources. TUPELO requires users to input example
instances for the target schema and for the source to perform the mapping generation. Users need to
fully understand all the schemas and their relationships for editing these examples instances. The
existing industrial tools are very useful for specifying correspondences between elements. But the
generated mappings are still “simple” in a way that they cannot express integration of different
portions of sources and they cannot always express the restructuring from the source to the target
such as restructuring elements in tree structure, etc.

Xiaohui Xue

25

2.6. Our Proposal

We propose an approach to generate mappings between one target schema and some source schemas;
both target and source schemas are described through XML Schema [xsd]. It considers a set of 1-1 or
1-n semantic correspondences between the target schema and the source schemas. The result of the
generation process is a set of mappings: every one represents an alternative way to define the target
from the sources independently from the other result mappings.

Our basic idea is to generate mappings in three steps. To handle the complexity of mapping
generation for the whole target schema, the target schema is first decomposed into subtrees; each
subtree is such that, except for the root, all the other elements in the subtree are mono-valued.

Given the set of all the subtrees of the target schema, mappings are defined for each subtree to
derive its instances from the instances of the source schemas. In a subtree, since except the root, all
the other elements are monovalued, every instance derived by a mapping for the subtree have to
contain a value for each element, no matter how the values of different elements are organized. We
can therefore generate mappings for a subtree without looking for the hierarchical relationships
between its elements. This process is inspired by [BKS04]. The result mappings for subtrees can
involve joins between different schemas.

Partial mappings of the different subtrees in the target subtree are combined to generate the
mappings for the whole schema. Every combination that satisfies the parent-child relationships
between the subtrees lead to a target mapping. Mappings are expressed in an abstract language and
they can be translated into another language. We propose an algorithm to translate the abstract
queries into XQuery [xquery].

If the data sources do not allow the generation of a mapping that satisfies users’ needs as
represented by the target schema, our approach proposes to relax some cardinality constraints or
structural constraints in the target schema such that a mapping can be found for the new schema.
This process is interactive with respect to users who have to review the proposed schemas and have
to decide between alternative solutions.

To compare to the existing approaches discussed so far, our approach considers target and source
schemas expressed in XML Schema. It assumes having 1-1 and 1-n correspondences between the
target elements and the source elements. It generates a set of mappings to specify different ways of
defining the target and they can involve joins between different sources that are inferred using the
semantic correspondences and constraints; it considers relative keys that are valid only inside of a
portion of the schema (e.g. the chapter numbers can be considered to be a key for chapters, but the
key is only valid inside of the books).

The resulting mappings are specified in an abstract language and they can be translated into
XQuery. The approach generates mappings that conform to the target schema. If no mapping can be
generated to satisfy the target, it proposes to relax some constraints of the target schema to enable
generating mappings satisfying the new schema.

Our approach does not assume that the objects are described using the same constructs in the
target and the source schemas. Consider the example shown above in Section 2.5 that does not allow
generating a mapping using Farias Lóscio and Salgado’03, the same example allows generating a
mapping using our approach. It does not require users to provide these critical instances as required
by TUPELO.

3. Mapping Adaptation

Mappings are expressions defining a target schema from some source schemas and they
necessarily depend on the schemas to which they relate. However, in a distributed environment,

Automatic Mapping Generation and Adaptation for XML Data Sources

26

sources are autonomous and freely change their contents, as well as the target schemas may also
evolve for integrating new needs. When one of these schemas evolves, the mapping may become
obsolete and need to be redefined. Automatic mapping adaptation consists in making use of the
original mapping and automatically adapting it to the new schemas.

Several solutions have been proposed for automatic mapping adaptation: EVE, Bouzeghoub et al.’03,
Farias Lóscio and Salgado’04, ToMAS, AutoMed and MACES. They can be distinguished into two
kinds: incremental approaches and mapping composition approaches. Incremental approaches
consist in incrementally adapting the mapping by applying isolated modifications for every change
occurring in the system. Mapping composition approaches consider a mapping describing the
evolution and the adaptation is done by compositing such mapping with the original one.

In the remainder of this section, we first present some the incremental approaches in Section 3.1.
Mapping composition approaches are described in Section 3.2. A discussion on these approaches is
given in Section 3.3. Section 3.4 presents some the limitations of the existing approaches and Section
3.5 presents our proposal and compares it to the related works.

3.1. Incremental Approaches

The main idea of the incremental approaches is that schemas often evolve in small, primitive steps;
after each of these steps, the mapping can be incrementally adapted by applying isolated
modifications. The schema changes are represented using a sequence of elementary change
operations (e.g., adding an element, removing an element, removing a constraint etc.). The mapping
is then adapted following a predefined adaptation strategy for each of these elementary operations.
The approaches belonging to this category focus mainly on (i) defining a list of elementary change
types, and (ii) specifying a mapping adaptation strategy for each elementary change type.

The incremental approach, designed to handle elementary changes, is intuitive and efficient for the
cases where there is not a drastic evolution from the original schema to the changed schema. It also
allows a system to process specific adaptation actions for each change. For example, the system may
search substitutions for element removal and make some syntactical changes for element renaming.
However, there exist also some limits. The algorithm is applied after each elementary change. This
can become inefficient in a context where changes occur frequently. Consider one change that is
followed by its reverse change (e.g. adding an element in a source and then removing it), the mapping
adaptation will be done consequently for each of them.

Four approaches have been proposed for incremental mapping adaptation: EVE, Bouzeghoub et
al.’03, Farias Lóscio and Salgado’04 and ToMAS. We present the principles of these approaches in
the rest of the section.

EVE (Evolvable View Environment)

EVE has been proposed in the context of data warehousing where the mapping is called view and
the mapping adaptation is called view synchronization. Mappings are defined over several relational
sources and the views are defined in SQL. The main contributions of this approach are: (i) defining
an extension of SQL (E-SQL) for defining views with evolution preferences; (ii) defining what
constitutes a legal view rewriting (mapping adaptation) using source descriptions.

E-SQL is an extension of SELECT-FROM-WHERE queries augmented with specifications of how
the query may be evolved under source schema changes. Figure 2-11 shows two views defined using
E-SQL. The attributes (A) in the SELECT clause, relations (R) in the FROM clause, and primitive
clauses (C) in the WHERE clause are the basic units of a view, called view components. Two evolution
parameters are attached to each view component. The dispensable parameter states whether the view
component is required and, hence, must be kept in the evolved view (when the value is false). The
dispensable parameter is denoted XD, where X is A, R, or C for attribute, relation, or elementary

Xiaohui Xue

27

clause component respectively. The replaceable parameter specifies whether the view component can be
replaced in the view synchronization process (when the value is true). It is denoted XR where X is
defined as above. The default value of the parameter is false.

With E-SQL, a view can also specify the view extent parameter: if the evolved view extent must be
equivalent to (“≡”), a superset of (“⊇”), or a subset of (“⊆”), with respect to the original view extent.
This is defined using the VE parameter. VE is set to “≈” if no restriction is given. The default value
of VE is “≡”.

Views are evolved using the provided description of the sources. A common model is used to
describe source descriptions in which we have following components:

− data content description associated to the data in the sources. A relation R of the
information source (IS) and the set of attributes belonging to R are described as follows:
IS.R(A1, …, An).

− type integrity constraints describing the domain types of attributes.
− join constraints between relations. Every join constraint is between two relations R1 and R2

to state that tuples in R1 and R2 can be meaningfully joined if the join condition is satisfied. It
is denoted by JCR1, R2 = (C1 AND … AND Ct), where C1, …, Ct are elementary clauses over
the attributes of R1 and R2.

− partial/complete information constraint between relations. Every partial/complete
constraint is between two relations R1 and R2 to state that a fragment of R1 is semantically
contained or equivalent to a fragment of R2 at all times. Its denoted by πAi1, .., Aik(σC(Aj1, .., Ajt)R1)
θ πAn1, .., Ank(σC(Am1, .., Amt)R2), where Ai1, .., Aik and Aj1, .., Ajt are attributes of R1 and An1, ..,
Ank and Am1, .., Amt are attributes of R2; and θ = {⊆, ⊇, ≡} for the partial (⊆ and ⊇) or
complete (≡) information constraint, respectively. For example, πName, Address(Person) ⊇ πName,

Address(Customer) states that the Customer relation is contained in the Person relation.

The EVE approach considers (i) adding, removing and renaming relations and (ii) adding,
removing, and renaming attributes. For every change, a view becomes affected if any of its view
components is affected by the change. It is amendable if none of the affected view components has its
evolution parameters set to (false, false).

Only affected views need to be evolved. Adding attributes and relations does not affect the
existing views and therefore does not trigger view synchronization. Attribute and relation renaming
may affect the view but it just requires syntactic changes. Removing attributes and relations may also
make the view affected which is described in the following.

When an attribute R.A referred to in the view V (in the SELECT or WHERE clauses) is deleted
from its site, the view synchronizer attempts to find a substitute to replace R.A if it is replaceable. An
attribute S.B is said to be an appropriate substitute for R.A if:

− S.B has the same domain type as R.A.
− There is a meaningful join relationship between the relations R and S.
− Based on the value δ of the view extent parameter of V and the join condition C defined by

the previous point, π((Attr(V)∩Attr(R))\{R.A})∪{S.B}(R C S) δ π((Attr(V)∩Attr(R))\{R.A})∪{R.A}(R) must
hold. (Attr(V)∩Attr(R))\{R.A} denotes all attributes of R that are in view except A.

Consider that the attribute Customer.Phone is deleted from the view at the left side of Figure 2-11.
The view at the right side gives an example of the evolved view. Assuming another relation
Customer_pho having an attribute Phone such that Customer_pho.Phone and Customer.Phone have the same
domain type; Customer_pho can be joined with Customer; and the view extent parameter is satisfied, the
view synchronizer of EVE substitutes Customer.Phone with Customer_pho.Phone.

Automatic Mapping Generation and Adaptation for XML Data Sources

28

CREATE VIEW Asia-Customer (VE=“⊇”) AS
SELECT Name (AR=true), Address (AR=true),

C2.Phone (AD=true, AR=true)
FROM Customer C (RR=true), FlightRes F,

Custome_pho C2 (RD=true, RR=true)
WHERE C.Name = F.PName (CR=true)

AND F.Dest = ‘Asia’ (CD=true) AND
C2.Name = C.Name (CD=true, CR=true)

deleting
Customer.Phone

CREATE VIEW Asia-Customer (VE=“⊇”) AS
SELECT Name, Address,

C.Phone (AD=true, AR=true)
FROM Customer C (RR=true),

FlightRes F
WHERE C.Name = F.PName (CR=true)

AND F.Dest = ‘Asia’ (CD=true)

Assuring JCCustomerChi,Customer =
(Customer_pho.Name =Customer.Name)

CREATE VIEW Asia-Customer (VE=“⊇”) AS
SELECT Name (AR=true), Address (AR=true),

C2.Phone (AD=true, AR=true)
FROM Customer C (RR=true), FlightRes F,

Custome_pho C2 (RD=true, RR=true)
WHERE C.Name = F.PName (CR=true)

AND F.Dest = ‘Asia’ (CD=true) AND
C2.Name = C.Name (CD=true, CR=true)

deleting
Customer.Phone

CREATE VIEW Asia-Customer (VE=“⊇”) AS
SELECT Name, Address,

C.Phone (AD=true, AR=true)
FROM Customer C (RR=true),

FlightRes F
WHERE C.Name = F.PName (CR=true)

AND F.Dest = ‘Asia’ (CD=true)

Assuring JCCustomerChi,Customer =
(Customer_pho.Name =Customer.Name)

CREATE VIEW Asia-Customer (VE=“⊇”) AS
SELECT Name, Address,

C.Phone (AD=true, AR=true)
FROM Customer C (RR=true),

FlightRes F
WHERE C.Name = F.PName (CR=true)

AND F.Dest = ‘Asia’ (CD=true)

Assuring JCCustomerChi,Customer =
(Customer_pho.Name =Customer.Name)

Figure 2-11. Deleting attributes

When a relation R in the FROM clause of a view V is deleted, another relation needs to be found
to substitute R. A relation S is said to be an appropriate substitute for R if the following three
conditions are satisfied:

− The relation S must contain the corresponding attributes of the relation R that are
indispensable and replaceable in the view V.

− Every attribute of S that is used as replacement for an attribute of R must have the same
domain type.

− Assuming the value of the view extent parameter of V being δ, the following condition must
hold: πB(S) δ πA(R), where B are the attributes of S that are used as replacements for the
attributes A of R.

Several solutions may be found to substitute affected view components, and any one of them can
be chosen.

When a view component C’ is used to replace an affected view component C, the values of the
evolution parameters for C’ are assigned using the following rules:

− If C’ is used to replace exactly one view component C, the new evolution parameters are set
to be the same as those of C.

− If C’ is used to replace several view components X1, …, Xk with evolution parameter
settings being Xi(pari,1 = vali,1, pari,2 = vali,2), where pari,1 and pari,2 are two evolution
parameters and vali,j∈{true, false}. Then the two evolution parameters of C’ are:

 parC,1 = val1,1 AND… AND valk,1;

parC,2 = val1,2 AND… AND valk,2.

Bouzeghoub et al.’03 [BFK03]

This work is the continuation of Kedad and Bouzeghoub’99 [KB’99 and BKS’04], which is
presented in Section 2.2 to propose a design methodology to generate mediation queries based on the
relational model. The work of Bouzeghoub et al.’03 can be seen as an incremental execution of this
algorithm. It assumes that the mediation query generation system maintains all intermediate results of
the generation process that are operation graphs (relevant relations and candidate operations) and the
computation paths. For every change in the source, the incremental algorithm updates step-by-step
the affected parts of each intermediate result.

Source changes are propagated to the mediation queries. The following changes are considered (i)
adding or removing a source attribute, (ii) adding or removing a source referential constraint and (iii)
adding or removing a source relation.

Xiaohui Xue

29

A list of propagation primitives is also defined to specify elementary changes that can be applied to
the operation graph independently from any particular source change. Among them are the following
primitive:

− valid_operation_graph(GRm): checks the validity of the operation graph GRm associated with the
relation Rm and removes the invalid set based operations;

− search_operation(GRm): searches for new operations for combining pairs of relevant relations in
the operation graph GRm;

− add_relevant_relation(Ti, GRm): adds the relevant relation Ti into the operation graph GRm;
− remove_relevant_relation(Ti, GRm): removes the relevant relation Ti and the operation involving

Ti from the operation graph GRm
− search_relevant_relation(GRm, S): searches a new relevant relation associated with relation Rm

from the set of data sources S.
− generate_query(GRm, Q): generates the set Q of relational expressions to compute the relation

Rm using the operation graph GRm;

Given a set of changes considered by the system and a set of propagation primitives, evolution
rules are defined to relate every change with a set of propagation primitives. Every evolution rule is
an event-condition-action (ECA) rule in which the event is a change and the action is a set of
propagation primitives to execute when the conditions are satisfied. Figure 2-12 shows three
evolution rules. Rule 1 and 2 propagate attribute additions in the mediation queries. If the added
attribute belongs to a source relation corresponding to a relevant relation of the operation graph, rule
1 (i) first adds the new attribute to the actual relevant relation Ti, (ii) then checks for removing set-
based operations involving Ti such as union and difference; (iii) finally searches for new operations to
relate Ti. If the added attribute does not belong to a source relation corresponding to a relevant
relation in the operation graph, rule 2 (i) adds a relevant relation in the operation graph that concerns
the added attribute and the primary key and foreign keys in the same source relation; (ii) and searches
for new operations to relate the new relevant relation. Rule 3 defines the evolution actions for the
removal of a source relation Si. If Si corresponds to a relevant relation Ti in the operational graph,
the rule removes Ti from the operation graph with all the operations that involve Ti.

Rule 1 (Rm)
Event: add_attribute(Si, A)
Condition:
A ∈ Rm
∃ (Ti ∈ MRm | Ti ⊆ Si)
/*MRm is the set of relevant relations
for Rm*/
Action:
Ti := Ti ∪ {A},
valid_operation_graph(GRm),
search_operation(GRm)

Rule 2 (Rm)
Event: add_attribute(Si, A)
Condition:
A ∈ Rm
¬∃ (Ti ∈ MRm | Ti ⊆ Si)
Action:
/* X is the set of key attributes and
foreign keys of Si */
Ti := ∏X∪ A Si,
add_relevant_relation(Ti, GRm),
search_operation(GRm)

Rule 3 (Rm)
Event: remove_relation(Si)
Condition:
∃ (Ti ∈ MRm | Ti ⊆ Si)
Action:
remove_relevant_relation(Ti, GRm)

Figure 2-12. Three evolution rules

Once the operation graph is reorganized for the source changes, mediation queries can be
generated from the new operation graph if its corresponding relevant sources have been modified.

Farias Lóscio and Salgado’04 [FS04] makes use of this approach to evolve mappings generated by
Farias Lóscio and Salgado’03 [FS03]. The latter generates mappings for every entity using the process
of [BKS04] that generates mappings for a target relation. [FS04] therefore evolves mappings for each
entity in the same way as Bouzeghoub and al.’03 evolves mappings for each target relation.

Automatic Mapping Generation and Adaptation for XML Data Sources

30

ToMAS (Toronto Mapping Adaptation System) [VMP03]

ToMAS is a tool for automatically adapting mappings generated by Clio’02 [PVM02] that
generates a set of mappings between a target schema and a source schema.

m1:
foreach S.projects p, S.grants g, S.contacts c,

g.grant.sponsors n, n.sponsor.private r
where p.project.source=g.grant.gid and

r=c.contact.cid
exists T.privProjects j, T.companies m

where j.privProject.holder=m.company.cname
with j.privProject.code=p.project.code and

j.privProject.sponsor=c.contact.email
m2:
foreach S.companies c, S.persons p

where p.person.SSN=c.company.owner
exists T.companies o
with o.company.cname=c.company.cname

and o.company.leader=p.person.name
m3:
foreach S.contacts c, S.persons p

where p.person.SSN=c.contact.cid
exists T.catalog e
with e.entry.name=p.person.name and

e.entry.phone=c.contact.phone

S:Rcd
projects: Set of Rcd

project: Rcd
code
source

grants: Set of Rcd
grant: Rcd

gid
recipient
sponsors: Set[1..∝] of Rcd

sponsor: Choice of
private
gouvernment

contacts: Set of Rcd
contact: Rcd

cid
email
phone

companies: Set of Rcd
company: Rcd

cname
CEO
owner

persons: Set of Rcd
person: Rcd

SSN
name

T: Rcd
privProjects: Set of Rcd

privProject: Rcd
code
sponsor
holder

companies: Set of Rcd
company: Rcd

cname
leader

catalog: Set of Rcd
entry: Rcd

phone
name

m1:
foreach S.projects p, S.grants g, S.contacts c,

g.grant.sponsors n, n.sponsor.private r
where p.project.source=g.grant.gid and

r=c.contact.cid
exists T.privProjects j, T.companies m

where j.privProject.holder=m.company.cname
with j.privProject.code=p.project.code and

j.privProject.sponsor=c.contact.email
m2:
foreach S.companies c, S.persons p

where p.person.SSN=c.company.owner
exists T.companies o
with o.company.cname=c.company.cname

and o.company.leader=p.person.name
m3:
foreach S.contacts c, S.persons p

where p.person.SSN=c.contact.cid
exists T.catalog e
with e.entry.name=p.person.name and

e.entry.phone=c.contact.phone

S:Rcd
projects: Set of Rcd

project: Rcd
code
source

grants: Set of Rcd
grant: Rcd

gid
recipient
sponsors: Set[1..∝] of Rcd

sponsor: Choice of
private
gouvernment

contacts: Set of Rcd
contact: Rcd

cid
email
phone

companies: Set of Rcd
company: Rcd

cname
CEO
owner

persons: Set of Rcd
person: Rcd

SSN
name

T: Rcd
privProjects: Set of Rcd

privProject: Rcd
code
sponsor
holder

companies: Set of Rcd
company: Rcd

cname
leader

catalog: Set of Rcd
entry: Rcd

phone
name

Figure 2-13. Two schemas and three mappings between them

A1: select *
from S.projects p, S.grants g, S.contacts c,

g.grant.sponsors n, n.sponsor.private r
where p.project.source=g.grant.gid and

r=c.contact.cid

A2: select *
from S.projects p, S.grants g,

g.grant.sponsors n,
n.sponsor.gouvernment r, S.contacts c

where p.project.source=g.grant.gid and
r=c.contact.cid

A3: select *
from S.grants g, S.contacts c,

g.grant.sponsors n, n.sponsor.private r
where r=c.contact.cid

A4: select *
from S.grants g, S.contacts c,

g.grant.sponsors n,
n.sponsor.gouvernment r

where r=c.contact.cid

A5: select * from S.contacts c

A6: select *
from S.companies c, S.persons p,

S.persons w
where c.company.CEO=p.person.SSN

and c.company.owner=w.person.SSN

A7: select * from S.persons c

A8: select *
from S.contacts c, S.persons p
where c.person.SSN=p.contact.cid

B1: select *
from T.privProjects j, T.companies m
where j.privProject.holder

=m.company.cname

B2: select * from T.companies m

B3: select * from T.catalog e

A1a:
select *
from S.projects p, S.grants g, S.contacts c,

g.sponsors.sponsor.private r,
S.companies o, S.persons e, S.person e’

where p.project.source=g.grant.gid and
r=c.contact.cid and
g.grant.recipient=o.company.cname and
o.company.CEO=e.person.SSN and
o.company.owner=e’.person.SSN

m1a:
foreach S.projects p, S.grants g, S.contacts c,

g.sponsors.sponsor.private r,
S.companies o, S.persons e

where p.project.source=g.grant.gid and
r=c.contact.cid and
g.grant.recipient=o.company.cname and
o.company.CEO=e.person.SSN

exists T.privProjects j, T.companies m
where j.privProject.holder=m.company.cname
with j.privProject.code=p.project.code and

j.privProject.sponsor=c.contact.email and
m.company.cname=o.company.cname
and m.company.leader=e.person.name

(a) Logical associations for the schemas S and T (b) New logical association and mapping after the
mapping adaptation for a constraint removing

Figure 2-14. Logical associations for S and T and new mapping after a constraint removing

Figure 2-13 shows one target schema, one source schema and three mappings for them. Let S and
T be a pair of source and target schemas, each mapping is a foreach AS exists AT with D expression
such that AS and AT are logical associations in S and T and D contains the conditions of the
correspondences in C that concern elements in the pair <AS, AT>. Figure 2-14 (a) shows the logical
associations for the schemas of Figure 2-13: A1 to A8 for S and B1 to B3 for T. Logical associations

Xiaohui Xue

31

A1 to A7 and B1 to B3 are automatically generated following the above rule. A8 is additionally
specified by the user.

The mapping adaptation is done for each affected mapping in the system. ToMAS considers the
following changes such as: (i) adding and removing referential constraints; (ii) adding and removing
elements; and (iii) renaming, moving or copying elements. These changes may be in the source
schema or in the target schema. Since mappings consist in pairs of logical expressions from the target
and the source, the principle of mapping adaptation is similar for source evolution and for target
evolution. We therefore only present their mapping adaptation algorithm for the source evolutions.
Among them, renaming a schema element is mainly a syntactic change.

If a referential constraint F is added, the mapping m: foreach AS exists AT with D needs to be adapted
if F originated from an element that can be reached by AS. In this case, AS is chased [PT99] with the
set of the old schema constraints enhanced with the new constraint F. The chase enumerates logical
join relations based on these schema constraints. The result is a set of new logical associations and a
new mapping is generated for each one. These new mappings are added in the set of result mappings
and for each mapping m’ in M included by one of these new mappings, m’ is removed. Assume a new
constraint S.grants.grant.recipient referencing S.companies.company.cname is added to the source schema,
then this change affects m1. The logical association for S of m1 is chased using the new constraint
and gives a new logical association A1a, that is shown in Figure 2-14 (b). This association generates
two adaptations for m1 depending on if the leader element of the target is mapped as the name of
CEO or the name of the owner of the company. The first one m1a is shown in Figure 2-14 (b), while
the second m1b is the same as m1a except that c.company.CEO is replaced by o.company.owner.

If several mappings are generated from one logical association, one is chosen based on its
similarity with the old mapping. Among the two adaptations m1a and m1b for m1, m1a is more similar
to m1 than m1b because both m1 and m1a populate c.company.CEO compared to m1b which populates
o.company.owner. Then m1a is kept and m1b is discarded.

Once a constraint F is removed, the mapping covering the constraint needs to be adapted. The
approach isolates the affected logical association, and re-chases them by considering the set of
schema constraints without F. If we remove the constraint S.grants.grant.recipient referencing
S.companies.company.cname, the logical association of S in m1a is broken into two parts and lead to two
mappings m1 and m2.

Adding new structure does not lead to new mappings because ToMAS does not consider the
addition of new correspondences. When an atomic element e is removed, each constraint F using e is
removed and mappings are adapted. If the atomic element e is used in a correspondence V, then
every mapping m that is covering V has to be adapted by removing the correspondence from the
mapping. Removing code will invalidate mapping m1, which will be adapted by removing the equality
i.privProject.code=p.project.code from the with clause.

If a schema element e is moved from a location n1.n2….e to a new location m1.m2….e, existing
constraints that use e also become invalid. New constraints have to be defined. For every constraint
using n1.n2….e, one new constraint is defined by using m1.m2….e instead of using n1.n2….e.
Therefore, moving elements causes (i) removing constraints/elements and (ii) adding
constraints/elements. If the element is copied instead of being moved, the same reasoning is used
except that the original mappings and constraints are not removed from the mapping system as in the
case of a move.

3.2. Mapping Composition Approaches

Mapping composition is the other kind of mapping adaptation approaches. Unlike from the
incremental approaches, mapping composition approaches consider that changes of a schema are
expressed by a mapping, called evolution mapping. The adaptation of an original mapping is

Automatic Mapping Generation and Adaptation for XML Data Sources

32

therefore done by composing it with the evolution mapping. The approaches belonging to this type
focus mainly on (i) specifying the evolution mapping and (ii) defining the algorithm of composing the
original schema with the evolution mapping.

TS’

TS

SS

m

m’

m” =
composition(m, m’)

(b). Target schema changes(a). Source schema changes

TS

SS

SS’

m

m’

m” =
composition(m, m’)

Figure 2-15. Target schema and source schema evolution in mapping composition approach

Figure 2-15 illustrates the principles of mapping composition approaches. There are two possible
scenarios: one for the source schema changes and one for the target schema changes. The first one is
shown in Figure 2-15 (a). Consider the target schema TS, the source schema SS, and the mapping
between them m. If SS is changed to a new schema SS’ and the evolution mapping m’ is specified to
define SS from SS’, the new mapping m” between TS and SS’ is generated by composing m and m’.
The scenario of target schema changes is illustrated in Figure 2-15 (b). Consider that the mapping
between the target schema TS and the source schema SS is m’. If TS is changed to a new one TS’ and
the evolution mapping m is specified to define TS’ from TS, the new mapping m” between TS’ and
SS is generated by composing m and m’.

Using mapping composition approaches allows the adaptation once for a set of changes. Moreover,
the system does not need to distinguish between the changes in the target and the changes in the
source schemas. As shown in Figure 2-15, either the target schema or the source schema changes, the
adaptation consists in composing two mappings m and m’ to obtain the mapping m”.

The mapping composition approaches have also its limitations. The definition of the evolution
mapping is a complex process. If the schema that has evolved is very complex, generating the
evolution mapping may be more costly than generating mappings directly for the new schemas.
Mappings are less intuitive than schema changes to express the difference between the original
schema and the new schema. It is therefore difficult to analyze schema changes and optimize the
adaptation process. Using this approach in a context only having few changes makes a simple
problem more complex.

Two adaptation approaches by mapping composition have been proposed: AutoMed and MACES.
The principle of these approaches is presented in the following.

MACES (Mapping Adaptation, using Composition, for Evolving Schemas) [YP05]

Like ToMAS, MACES is another tool for automatically adapting mappings generated by Clio’02
[PVM02], which generates a set of mapping between a target schema and a source schema. Unlike
ToMAS which is an incremental approach, MACES is a mapping composition approach.

Xiaohui Xue

33

m:
foreach o in Order, p in o.parts, p’ in Part,

s in p’.suppliers, i in case s.supp->US_supp,
c in Contact

where p.partKey=p’.suppliers and i=c.cid
exists os in OrderUSSupp
with os.orderKey=o.orderKey and

os.supp_contact.phone=c.phone and
os.supp_contact.email=c.email

e1:
foreach l in LineIte, s0 in Supplier

where l.suppKey=s0.suppKey and s0.nation=‘US’
exists o in Order, p in o.parts, p’ in Part,

s in p’.suppliers, i in case s.supo->US_supp,
c in Contact

where p.partKey=p’partKey and i=c.cid
with o.orderKey=l.orderKey and

p.partKey=l.partKey and i=s0.suppKey and
c.phone=s0.phone and c.email=s0.email

e2: similar to e1, but with s0.nation≠’US’ as source filter, and i in
case s.supp->foreign_supp as target choice selection

Source:
Order: Set of

orderKey
parts: Set of

partkey
Part: Set of

partKey
suppliers: Set of

supp: Choice
US_supp
foreign_supp

Contact: Set of
cid
phone
email

Target:
OrderUSSupp: Set of

orderkey
supp_contact

phone
email

Source’:
LineItem: Set of

orderKey
partkey
supplierKey
qty

Supplier: Set of
suppKey
phone
email
nation

nation=‘US’?

m:
foreach o in Order, p in o.parts, p’ in Part,

s in p’.suppliers, i in case s.supp->US_supp,
c in Contact

where p.partKey=p’.suppliers and i=c.cid
exists os in OrderUSSupp
with os.orderKey=o.orderKey and

os.supp_contact.phone=c.phone and
os.supp_contact.email=c.email

e1:
foreach l in LineIte, s0 in Supplier

where l.suppKey=s0.suppKey and s0.nation=‘US’
exists o in Order, p in o.parts, p’ in Part,

s in p’.suppliers, i in case s.supo->US_supp,
c in Contact

where p.partKey=p’partKey and i=c.cid
with o.orderKey=l.orderKey and

p.partKey=l.partKey and i=s0.suppKey and
c.phone=s0.phone and c.email=s0.email

e2: similar to e1, but with s0.nation≠’US’ as source filter, and i in
case s.supp->foreign_supp as target choice selection

Source:
Order: Set of

orderKey
parts: Set of

partkey
Part: Set of

partKey
suppliers: Set of

supp: Choice
US_supp
foreign_supp

Contact: Set of
cid
phone
email

Target:
OrderUSSupp: Set of

orderkey
supp_contact

phone
email

Source’:
LineItem: Set of

orderKey
partkey
supplierKey
qty

Supplier: Set of
suppKey
phone
email
nation

nation=‘US’?

Source:
Order: Set of

orderKey
parts: Set of

partkey
Part: Set of

partKey
suppliers: Set of

supp: Choice
US_supp
foreign_supp

Contact: Set of
cid
phone
email

Target:
OrderUSSupp: Set of

orderkey
supp_contact

phone
email

Source’:
LineItem: Set of

orderKey
partkey
supplierKey
qty

Supplier: Set of
suppKey
phone
email
nation

nation=‘US’?

Figure 2-16. A mapping adaptation scenario in MACES

Consider three schemas S1, S2 and S3, a mapping m12 between S1 and S2 and another m23 between
S2 and S3. MACES composes m12 and m23 to get the possible mappings between S1 and S3. The result
may contain several mappings and it is denoted M13.

Composing two mappings m12 and m23 consists in three steps. The mapping m12 is firstly
skolemized into a set of rules to express how the elements of S2 are expressed using elements of S1.
In each rule, the elements of S2 that are not directly related to a source term in the with clause of m12
are assigned by a function F(t1, …, tk), where t1, …, tk are the source terms that appear in the with
clause of m12. These rules are used to modify m23 by translating all references to S2 into references to
S1. The result of the modification is M13. Finally the mappings in M13 are checked to see if they are
valid, which means if the terms of S3 are all related to terms of S1.

Figure 2-16 depicts the mapping m between Source and Target and the two evolution mappings e1
and e2 between Source’ and Source. With respect to e1, the following rules for Part and Part/suppliers for
Source are created:

Part = for l0 in LineItem, s0 in Supplier
 where l0.suppKey=s0.suppKey and s0.nation = ‘US’
 return [partKey=l0.partKey, suppliers=SKs(l0.partKey)]
SKs(p) = for l1 in LineItem, s1 in Supplier
 where l1.suppKey=s1.suppKey and s1.nation=‘US’ and p=l1.partKey
 return [supp=<US_supp=s1.suppKey>]

The rules are used to replace source terms in the mapping m in Figure 2-16 and the result is
reduced such as all equalities between function terms are replaced by the equalities of their arguments.
Only one mapping is obtained and it is as follows:

foreach l in LineItem, l’ in LineItem, s0 in Supplier
 where l.partKey = l’.partKey and l’.suppKey = s0.suppKey and s0.nation=‘US’
exists os in OrderUSSupp
 with os.orderKey=l.orderKey and os.supp_contact.phone=s0.phone

and os.supp_contact.email=s0.email

The composition of e2 and m is dropped during the reduction phase because the term US_supp in
m does not have matching functions with e2.

There is a set of mappings between two schemas. Consider N mappings between S1 and S2 and M
mappings between S2 and S3, then there are M*N combinations to get the mappings between S1 and
S3. For reducing the number of combinations, MACES presents a method that filters the unaffected

Automatic Mapping Generation and Adaptation for XML Data Sources

34

original mappings, and the evolution mappings that do not need to participate in the adaptation. The
mapping pruning is done in three steps. It first removes all the original mappings that are not
affected. Then it searches pairs of the original mapping and the evolution mapping such that these
two mappings reference common parts of S2. For every mapping m between S1 and S2, it looks for
mappings between S2 and S3 in which sources terms can be expressed by m. At the end, it removes
redundant mappings by using containment relationships between evolution mappings. For every two
evolution mappings e1 and e2, if e1 contains e2, then all combinations containing e2 are removed.

AutoMed [MP02, FP04]

This work is done in the context of the AutoMed project where the target schema is called global
schema and it is defined as the integration of the sources. Mappings are called query translation
pathways and they are defined between the global schema and each source schema. AutoMed adapts
the translation pathways for both the global view and the source evolution. The global schema may
be also evolved from the source evolution.

Transformation S1 -> GS
1. addNode <<boss>>{x|<x,T> ∈ <<_,staff,mgrade>>}
2. addCons <<boss>> ⊆ <<staff>>
3. delEdge <<_,staff,mgrade>>

{x,T| x∈<<boss>>}∪{x,F | x∈<<staff>>-<<boss>>}
4. delCons <<mgrade>> = {T, F}
5. delNode <<mgrade>> {T, F}
6. extendNode <<site>>
7. extendEdge <<located_at, division, site>>

Transformation S2 -> GS
1. renEdge <<within, stuff, dept>> work_in
2. extendNode <<skill>>
3. extendEdge <<_, stuff, skill>>

site division

deptstaff

boss

within

part_of

located_at

boss⊆staff

S2

site division

deptstaff

boss

work_in
part_of

located_at

boss⊆staff

skill

GS

skill division

deptstaff

mgrade

work_in

part_of

S1

mgrade={T, F}

Figure 2-17. Two HDM source schemas and a global schema

In AutoMed, each schema is represented in the hypergraph data model (HDM), which is a triple
<Nodes, Edges, Constraints>. The query translation pathways are expressed over a schema S using a set
of primitive transformation operators on schemas. Some of them are shown as follows:

− adding a node, an edge, or a constraint when this new construct can be derived from the
existing constructs of S; for example, adding in a schema containing a node “person” a node
“professor”: “professor” can be derived from “person”;

− extending a node or an edge when the new construct cannot be derived from S;
− deleting a node, an edge, or a constraint; In this case, the deleted construct can be

reconstructed from the extents of the remaining schema constructs; for example, deleting in
a schema containing two nodes “person” and “professor” the node “professor”: “professor”
can be reconstructed from “person”;

− contracting a node or an edge when the contracted construct cannot be reconstructed from S;
− renaming a node or an edge;

Figure 2-17 illustrates three schemas S1, S2, their integrated global schema GS and the
transformations from S1 and S2 to GS respectively. The node mgrade in S1 is constrained to have a
two-valued extent {T, F} T for managers and F for other staff.

The approach of mapping adaptation is based on mapping composition. If some source schema Si
evolves, say to Si’, the transformation t from Si to Si’ is first specified. It is then combined with the
transformation between Si and GS to get the transformation Ti’ from Si’ to GS. Suppose that S1 of
Figure 2-17 is changed to S1’ in Figure 2-18, the transformation from S1 to S1’, denoted by t, is

Xiaohui Xue

35

shown in Figure 2-18. Given the transformation T from S1 to GS, the transformation from S1’ to GS
is T-t as shown in Figure 2-18.

skill

staff

boss

boss⊆staff

S1’

division

deptwork_in

part_of

Transformation S1 -> S1’
1. addNode <<boss>>{x|<x,T> ∈ <<_,staff,mgrade>>}
2. addCons <<boss>> ⊆ <<staff>>
3. delEdge <<_,staff,mgrade>> {x,T| x∈<<boss>>}∪{x,F | x∈<<staff>>-<<boss>>}
4. delCons <<mgrade>> = {T, F}
5. delNode <<mgrade>> {T, F}

Transformation S1’ -> GS
1. extendNode <<site>>
2. extendEdge <<located_at, division, site>>

skill

staff

boss

boss⊆staff

S1’

division

deptwork_in

part_of

skill

staff

boss

boss⊆staff

S1’

division

deptwork_in

part_of

Transformation S1 -> S1’
1. addNode <<boss>>{x|<x,T> ∈ <<_,staff,mgrade>>}
2. addCons <<boss>> ⊆ <<staff>>
3. delEdge <<_,staff,mgrade>> {x,T| x∈<<boss>>}∪{x,F | x∈<<staff>>-<<boss>>}
4. delCons <<mgrade>> = {T, F}
5. delNode <<mgrade>> {T, F}

Transformation S1’ -> GS
1. extendNode <<site>>
2. extendEdge <<located_at, division, site>>

Figure 2-18. Evolution of the source schema S1 to S1’

If the new schema does not add components that are not in the global schema or remove
components that are not in the other sources, only pathways will be repaired. If added components
are not in the global schema yet or deleted components are not in any other source, the global
schema may be evolved.

After the operations of contracting source schemas, the global schema GS may contain constructs
that are no longer supported by any source schema. In this case, the global schema is repaired by
contracting these unsupported constructs. Once the global schema is repaired, every related
transformation pathway is repaired again by removing every transformation that extends the
unsupported constructs.

If a source schema Si is transformed to Si’ by an extend transformation and the global schema does
not contain this construct yet, the global schema is evolved by adding the new construct. The
transformation pathways are evolved afterwards.

AutoMed also considers the changes of the global schema expressed using the same operators.
Adapting mappings for target schema changes is similar to the one for source changes by first finding
evolution mappings then compose them with the existing one. For the target changes, only
transformation pathways will be adapted and no source schema will be changed for the target
evolution.

3.3. Discussions

The previous approaches on mapping adaptation assume different contexts and have different
objectives. Table 2-2 shows some of their main features such as schema models, mapping characters,
whether or not they consider the source and target schema changes, and whether mappings involve
joins between different sources. As for mapping generation, mapping adaptation becomes more
complicated when mappings express joins between different sources. The volume of the data that the
system needs to manage is more important and the system also needs to identify the same objects
from different sources. The mappings considered by EVE and Bouzeghoub et al.’03 are of this kind.
In AutoMed, ToMAS and MACES, each mapping is defined for one target schema and one source
schema. EVE and Bouzeghoub et al.’03 consider only the changes in the source schemas. The other
approaches consider changes in both the source or target schema. “Generalizability” shows whether
the approaches assume a specific mapping generation process and if their mapping adaptation
depends on the way mappings are generated. Bouzeghoub et al.’03 and ToMAS can be considered to
be an incremental algorithm of an existing mapping generation approach. MACES and AutoMed
both need a mapping generation approach to generate evolution mappings. EVE does not depend on
a mapping generation approach.

Automatic Mapping Generation and Adaptation for XML Data Sources

36

The remainder of this section will provide some discussions over the changes considered by the
approaches, their costs, as well as their context.

Table 2-2. Main features of the different approaches

Approaches
Schema
model

Mapping
Description
Language

Mapping
Involving

Inter-Source
Joins?

Source
Evolution?

Target
Evolution?

Generalizability

EVE Relational SQL Yes Yes No Generalizable

Bouzeghoub
et al.’03 Relational SQL Yes Yes No Not

generalizable

ToMAS Nested
relational

Specific logical
expressions No Yes Yes Not

generalizable

MACES Nested
relational

Specific logical
expressions No Yes Yes Not

generalizable

AutoMed Graph
(ER-liked)

Transformation
pathways No Yes Yes Not

generalizable

Considered Changes

In this section, we discuss the changes supported in the existing approaches of mapping adaptation.
Among the 5 works, there are two of them (EVE and Bouzeghoub et al.’03) that only support source
evolution. The others (ToMAS, MACES and AutoMed) support both source evolution and target
evolution.

Table 2-3 shows the source schema changes considered by the different systems and the actions to
adapt them. The changes comprise adding or removing elements or constraints, schema restructuring
and element renaming.

Adding source elements is considered by the approaches EVE, Bouzeghoub et al.’03 and
AutoMed. AutoMed adapts the mappings and potentially evolves the target schema. EVE consider
the change but since the mapping is not affected the approaches do not propose any adaptation
action. Bouzeghoub et al.’03 also considers the change and it adapts the operation graph. ToMAS
supports adding source elements but they do not support adding semantic correspondences for the
added elements. Since their mappings are based on correspondences, no adaptation can be done.
MACES does not support adding source elements. Since all changes are expressed using the
evolution mapping between the old schema and the new schema, all components that do not exist in
the old schema can not be described in the evolution mapping.

Removing source elements is supported by all these approaches: AutoMed repairs mappings and
potentially evolves the target schema; Bouzeghoub et al.’03 and ToMAS track their uses of the
removed element in different steps of the mapping generation and repair the corresponding results;
EVE and our approach search for substitutions to replace the deleted elements; and MACES adapts
the mapping for the changes.

All the approaches, except EVE, consider source constraints changes. These approaches all
assume that their mappings should satisfy certain constraints. When constraints are removed or
added, mappings need to be adapted. For EVE, constraints are in a source description server and
EVE does not support changes inside of the server. All the approaches can directly (ToMAS,
MACES, AutoMed and our approach) or indirectly (EVE and Bouzeghoub et al.’03) express source
schema restructuring. Renaming is supported by all the approaches.

Xiaohui Xue

37

ToMAS, MACES and AutoMed also support target schema changes which are shown in Table 2-4
For target evolution, the mapping composition approaches (MACES and AutoMed) adapt the
mappings in a same way as for source evolution since the adaptation consists in the composition of
the original mapping with the evolution mapping. Mappings considered in ToMAS have a symmetric
form, so ToMAS adapts mappings for target changes in the same way as it does for source changes.

Table 2-3. Considered source schema evolution of the different approaches

Approaches
Adding

elements
Removing
elements

Adding/removing
constraints

Restructuring
subtrees

Renaming
elements

EVE no action Substitution
search (do not consider) (do not

consider)
Syntactical

changes
Bouzeghoub
et al. 03

Mapping
adaptation

Mapping
adaptation Mapping adaptation Mapping

adaptation
(do not

consider)

ToMAS (do not
consider)

Mapping
adaptation Mapping adaptation Mapping

adaptation
Syntactical

changes

MACES (do not
consider)

Mapping
composition

Mapping
composition

Mapping
composition

Mapping
composition

AutoMed

Mapping
composition and

target schema
evolution

Mapping
composition and

target schema
evolution

Mapping
composition

Mapping
composition

Mapping
composition

Table 2-4. Considered target schema evolution of the different approaches

Approaches
Adding

elements
Removing
elements

Adding/removing
constraints

Restructuring
subtrees

Renaming
elements

ToMAS (do not
consider)

Mapping
adaptation Mapping adaptation Mapping

adaptation
Syntactical

changes

MACES (do not
consider)

Mapping
composition

Mapping
composition

Mapping
composition

Mapping
composition

AutoMed Mapping
composition

Mapping
composition

Mapping
composition

Mapping
composition

Mapping
composition

Costs

The re-definition of the mapping when the schemas evolve is a time consuming process, especially at
runtime. The main reason of adapting the original mappings to the new schemas is to avoid re-
generating mappings every time changes occur in the schemas.

Incremental approaches are efficient for the contexts in which schemas change in little steps.
Instead of generating the whole mapping, the algorithm only repairs the part of the mapping affected
by the change. The time to adapt mappings for one single change is in most cases shorter than from
scratch generation. In contexts where changes occur frequently in the schemas, incremental
approaches become less efficient. The algorithm has to be executed for every single change. When
the sequence of changes is long, the total time for all changes of the sequence may be longer than the
time used by a mapping composition approach and the time to directly generate mappings for the
new schemas.

Mapping composition approaches first generate evolution mappings then compose them with the
original mapping to obtain new mappings. This approach is less efficient than incremental
approaches if few changes occur in the system. However, it is more efficient than incremental
approaches in an inverse context.

Automatic Mapping Generation and Adaptation for XML Data Sources

38

We also compare the performances between the mapping adaptation approaches by mapping
compositions with from-scratch mapping generation for new schemas. In a mapping composition
approach, if some changes occurred in the system, the evolution mapping is first generated and then
composed with the original mapping. Consider that the time for generating the evolution mapping is
Te and the time for composing mappings is Tc, the total time for adapting mapping is Te + Tc.
Consider the time for generating mappings directly for the new schemas is Tn. Using a mapping
composition approach is more efficient than from-scratch mapping generation if Te + Tc > Tn.
Consider that we use the same mapping generation approach (such as Clio’02) to generate both
evolution mappings or new mappings. The time for mapping generation often depend on the size (i.e.
number of nodes) of the target and source schemas. In the context that the changed schema is more
complex than the other one, the time of Te can be bigger than Tn; then directly generating mappings
for the new schemas may be more efficient. Mapping composition approaches become more
efficient than from-scratch mapping generation if the size of the changed schema is less than the size
of the other schema.

Generalizability

Generalizability is an important feature; more an approach considers the standard languages with
minimum assumptions, more it can be used in a large number of existing systems.

As the mapping generation approaches, all the mapping adaptation approaches consider have the
target schema and the source schemas. They also assume a set of semantic correspondences are
provided. Recall that providing a support to schema matching is a difficult problem and there exist
many research works address it [BLN86, DLD04, DR02, Gal06, HC06, RB01 and SE05].

Among the existing approaches on mapping adaptation, some approaches are tightly related to the
way their mappings are generated: Bouzeghoub and al.’03 considers mappings generated by Kedad
and Bouzeghoub’99; and ToMAS considers mappings generated by Clio’02. These approaches can be
only used over their respective mapping generation approach. They consider that intermediate results
of the associate mapping generation are provided and permanently maintained; the mapping
adaptation approach can be considered as an incremental execution of the mapping generation.

For the mapping composition approaches (MACES and AutoMed), the algorithm of mapping
composition does not relate to the way mappings are generated. However, evolution mappings need
to be generated. Both of the two approaches consider mappings expressed in a specific language.
They therefore need to use a specific mapping generation approach (Clio’02 and AutoMed) to
generate evolution mappings.

Unlike all the other approaches, EVE does not rely on a mapping generation approach.

3.4. Limitations of the Existing Approaches

Most of the existing approaches on mapping adaptation are related to a particular mapping
generation approach. Among the incremental approaches, both Bouzeghoub et al.’03 and ToMAS
are the incremental execution of their corresponding mapping generation approach. The intermediate
results of these corresponding mapping generations need to be provided and permanently maintained.

AutoMed and MACES are mapping composition approaches and they are both based on a
mapping generation approach to generate evolution mappings. As we discussed before, generating
evolution mappings is itself a costly process and it is sometimes even more costly than generating
mappings directly between new schemas. Moreover, due to the limitations of the language describing
mappings, evolution mappings of MACES cannot express all additional changes such as adding
elements or adding referential constraints. Since added objects do not exist in the original schema,
they cannot be expressed in the mapping. AutoMed use a series of transformation to express
evolution mapping and it can express addition changes. But the schemas of AutoMed are expressed

Xiaohui Xue

39

in a highly abstract language and it does not express some information that we usually find in a
schema (e.g. attributes and keys, etc.). Mappings of both AutoMed and MACES are expressed in an
abstract language and can only be used in a specific system.

The EVE approach does not relate to a mapping generation approach. However, a large amount
of metadata is required by this approach such as all the joins that are possible between all the source
relations and the relation between instances of different source relations. Providing such metadata is
a difficult task; sometimes even unrealistic in some contexts such as distributed systems. The
approach does not support changes in the target schema.

3.5. Our Proposal

We propose an incremental approach for mapping adaptation. Given one target schema and several
source schemas expressed in XML Schema and a mapping for them expressed through XQuery, it
adapts the mapping when the target schema or a source schema evolves. We assume semantic
correspondences between the schemas and the result of the adaptation is a set of adapted mappings
representing alternative ways to adapt the mapping to the new schemas.

Being an incremental approach, we consider a set of changes that can occur in the target schema
and in the sources. In the sources, we consider addition and removal of elements, keys and references
and we also consider subtree moving within a schema. In the target schema, we consider addition
and removal of elements and keys and we also consider moving of subtrees. For every change, the
mapping adaptation consists in three steps:

− the original mapping is first checked to see if it is affected by the change. Not all the changes
affect the mapping. For example, a mapping will not be affected by a change occurring in a
schema that is not related to the mapping. There are two cases that a mapping can be
affected: either the target schema has changed such that the mapping does not satisfy the
new needs anymore, or some source resources that are used in the original mapping have
been moved or removed.

− the affected mapping is then checked to see if it is adaptable for the new schemas, which
means there is at least one solution to adapt it to the new schemas. If there are new needs in
the target, the mapping should be extended to support the needs. If some source
components used in the mapping have been moved or removed, the substitutions have to be
found to replace them.

− if the mapping is adaptable, adapted mappings are generated using the adaptation solutions.
Several adapted mappings are generated if there are several solutions.

The approach has a specific adaptation algorithm for every change type. A source element
removing affects the mapping using it and finding a solution to repair the mapping consists in finding
the substitutions of the removed element. A target element removing affects the mapping populating
it and repairing the mapping consists in removing the corresponding assignment from the mapping.

To compare to the existing works of mapping adaptation, we consider the target and the source
schemas expressed in XML Schema and we consider mappings defined in XQuery using a specific
format. The approach also assumes a set of semantic correspondences to enable mapping adaptation.

The mapping we adapt are mapping that involve joins. As for mapping generation, mapping
adaptation becomes more complicated when mappings express joins between different sources. The
volume of the data that the system needs to manage is more important and the system also needs to
identify the same objects from different sources.

As EVE, our approach does not reply on a mapping generation approach. The mapping can be
generated using an automatic approach and it can also be specified manually. Appendix I shows the
translations of different XQuery queries into our format.

Automatic Mapping Generation and Adaptation for XML Data Sources

40

Unlike EVE, we do not require any extra metadata besides schemas and correspondences, and we
support target changes. Differ from MACES that can not express addition changes, we consider both
target element addition and source element additions.

4. Conclusions

In this chapter, we presented some existing works on mapping generation and adaptation. Many
research approaches have been proposed for automatic mapping generation as well as industrial tools.
We showed in this chapter the principle of the research approaches and the functionalities of the
industrial tools. Through the analysis of those proposals, we can notice that few of them can generate
mappings involving joins between different sources. However such mappings can be necessary in
some different contexts such as data integration systems. Only one existing proposal generates
mappings involving inter-source joins for XML schemas but it assumes that the target schema and
the source schemas are homogeneous. Such assumptions are difficult to realize in today’s distributed
environment.

We also presented some proposed works for mapping adaptation. Most of those works depend on
a specific mapping generation approach. Only one approach does not have such assumption but it
requires a large volume of source descriptions and some of them are difficult to be obtained.

As shown, we address the problem of automatic mapping generation and adaptation for XML
schemas. We focus on generating mappings from multiple source schemas and mapping can express
inter-source joins. We do not assume any homogeneity between the target schema and the source
schemas and we generate mappings in an abstract language and can be later on translated in another
more declarative language. We adapt mappings expressed in XQuery when schemas evolve. The
mappings can be generated by a tool or manually specified by a designer and the mapping adaptation
does not depend on a mapping generation process. The approach does not require any extra
metadata besides schemas and correspondences.

Xiaohui Xue

41

Chapter 3. Automatic Mapping Generation for XML

Data Sources

1. Introduction

Information exchange between different applications and the integration of distributed
heterogeneous data sources are becoming increasing needs in today’s information systems. In this
context, every data provider exports a schema, called source schema, to describe the data it is
willing to share with external applications. Every application that asks for information provides a
schema, called target schema, to express its information needs. The way to transform the data from
the source representations to the target representation defined by the application is expressed using a
mapping.

A mapping is an expression defining how instances of a given target schema can be obtained for a
set of sources. Mappings can be used in many different contexts such as data translation systems,
wrappers, mediation systems, or data warehouses. In data translation systems and wrappers,
mappings usually relate one target schema to only one source schema. They express the
transformation of the data from the source representation to the target representation. In the data
integration systems like mediation systems and data warehouses, there are often several sources and
the application requires the integration of the sources data. In this case, mappings may be defined for
the target schema from several source schemas. In a mediation system where the target schema is
called mediation schema and mappings are called mediation queries, mappings are used to rewrite
user queries expressed over the target schema in terms of the source schemas.

Mapping generation is usually considered to be a manual and extremely difficult process. The
designer of the system must have a thorough understanding of not only the target schema and all the
data sources, but also the semantic links between the sources and the target schema. Especially when
the number of data sources is important, the amount of metadata to manage makes a manual
mapping generation a tedious and time consuming process. Furthermore, the evolutions occurring in
the system may require the redefinition of the mappings. If a source changes its schema, the
mappings may become obsolete and need to be redefined.

The problem of automatic or semi-automatic mapping generation has recently become an active
research area and many works have been proposed in this subject. In Chapter 2, we present a survey
of the approaches that generate mappings automatically or semi-automatically. [CLL03, FS03, FW06,
KB99, MHH00, PVM02, SKR01, and Zam04]. Among these works, some generate mappings
between relational schemas [FW06, KB99 and MHH00]. Following the proposal of XML (eXtensible
Markup Language [xml]) that is particularly well-suited common standard for data exchange between
applications, other works [CLL03, FS03, PVM02, SKR01, and Zam04] and some industrial tools
[AIS, AMF and Sty] have been proposed to generate mappings between XML schemas. Most of the
proposed works generate mappings between one target schema and one source schema. Two
approaches [KB99 and FS03] generate mappings for one target schema from several source schema
and their result mappings can express joins between different schemas. Some approaches [CLL03,
FS03 and SKR01] generate mappings between source and target schemas that have a homogeneous
structure, while the others do not make any assumption about the homogeneity of these structures.

Automatic Mapping Generation and Adaptation for XML Data Sources

42

There are still some open problems in mapping generation; only two of the existing approaches
[KB99 and FS03] generate mappings involving joins between different sources. [KB99] address the
problem of mapping generation between relational schemas and [FS03] generates mappings involving
inter-source joins between schemas expressed using XML schema. However, it assumes that the
target schema and the source schemas have a homogeneous structure, and the mappings are
generated in a specific language

Our goal is to propose an approach to support the process of mapping generation. Compared to
the existing works, our approach generates mappings for one XML target schema from several XML
data sources and the generated mappings may involve inter-source operations. The result of the
process is a set of mappings representing alternative semantics; the result mappings are specified in
an abstract format and can be translated into a given language such as XQuery. If the target schema
can not be satisfied by the sources, the generation process proposes to relax some constraints in the
target schema such that a mapping can be found.

The basic idea our automatic mapping generation approach is to (i) first decompose the target
schema into subtrees, called target subtrees; (ii) then define mappings, called partial mappings, for
these subtrees independently from the others; (iii) finally combine partial mappings of different
subtrees to generate the mappings for the whole target schema. At the end of the process, if no
mapping has been generated, this means that the information required by the target schema cannot
be provided by the sources. We propose in this case a procedure for relaxing either some cardinality
constraints or some structural constraints defined in the target schema in such a way that a mapping
can be generated for the new target schema. This process requires user interaction to either validate a
new target schema after constraint relaxation or choose between different options of relaxation.

The remainder of the chapter is organized as follows. In Section 2, we present some basic
assumptions and preliminary definitions that are used in our approach. Section 3 presents an
overview of automatic mapping generation process. Sections 4, 5 and 6 describe respectively the
main three steps of the mappings generation: the target schema decomposition, the partial mapping
definition, and the target mapping generation. The algorithms used in the generation are also
presented. Section 7 presents our adaptation of the mapping generation approach to handle the cases
where the target schema cannot be satisfied by the sources by relaxing some constraints in the target
schema. Section 8 concludes the chapter.

2. Basic Assumptions

To carry out the process of mapping generation, our approach uses some metadata describing the
source and the target representations as well as the semantic links between them. We suppose that
the target schema and the source schemas are available and we suppose that a set of semantic
correspondences between the schemas is provided.

We consider that both the target schema and the source schemas are expressed using XML
Schema [xsd]. There are two languages to define XML documents: DTD (Document Type
Declaration [dtd]) and XML Schema [xsd]. Both of the two languages allow defining structure,
content and constraints (key and references) for XML sources. XML Schema includes the full
capabilities of DTDs and it can also express more information such as relative keys (keys that are
valid only in a portion of the documents) that cannot be expressed in DTD. Consequently, we made
the choice of XML Schemas as the representation of the schemas in our mapping generation
approach.

We also assume that a set of semantic correspondences is provided between the target schema and
the source schemas. They will be used in our approach to generate mappings. Producing such
semantic correspondences is an old problem known as schema integration or schema matching

Xiaohui Xue

43

[BLN86] and it is still an active research area [DLD04, DR02, Gal06, HC06, RB01 and SE05]. We
suppose that the semantic correspondences used in our approach are given; and generating such
semantic correspondences is out of the scope of this thesis. The quality of the result mappings
depends on the quality of the input metadata. Consider the semantic correspondences that are used
to generate mappings. If the set of correspondences used by the system is incomplete, then some
possible solutions may be missing in the result set of mappings.

In the remainder of the section, we first present in Section 2.1 the representation of the different
schemas and then in Section 0 the semantic correspondences considered in our approach.

2.1. Schemas

We consider that the source schemas and the target schema are expressed using XML Schema [xsd].
This language allows defining structure, content and constraints (key and references) for XML
sources. Figure 3-1 depicts two source schemas and a target schema representing information about
books in a library. The representations of these three schemas in XML Schema [xsd] are described in
Appendix I. To avoid confusions, each element will be suffixed by the name of its schema: authorids1
will refer to the element author-id in S1, while isbns2 will refer to the element isbn in S2. Every
element in the tree may be either a text element (e.g. authorids1), that is, an element containing only
text, or an internal element (e.g. chapters1). The leaves of the tree are always text elements.

The cardinality of every element is characterized by the attributes minOccur and maxOccur,
representing respectively the minimum and maximum number of instances for this element in the
tree with respect to its parent. Each element is monovalued (maxOccurs = 1) or multivalued
(maxOccurs > 1); it is also optional (minOccurs = 0) or mandatory (minOccurs > 0). In
Figure 3-1, the symbol ‘+’ represents a multivalued and mandatory element (e.g. books2); the symbol
‘*’ represents a multivalued and optional element (e.g. bookts); and the symbol ‘?’ represents a
monovalued and optional element (e.g. abstractts). An element without any symbol behind is
monovalued and mandatory (e.g. ids1).

S1
library

author +
firstname
lastname
id

book +
isbn
booktitle
chapter +

number
abstract

address +
authorid
authoraddress

S1
library

author +
firstname
lastname
id

book +
isbn
booktitle
chapter +

number
abstract

address +
authorid
authoraddress

S2
library

book +
isbn
booktitle
priceindollar
authorid +
chapter +

number[scope:book]
chaptertitle

TS
library

author +
id
name
address
book *

isbn
booktitle
priceineuro
chapter +

number[scope:book]
chaptertitle
abstract ?

Figure 3-1. Schemas and correspondences

Automatic Mapping Generation and Adaptation for XML Data Sources

44

Keys are defined either in the whole schema or only in a subtree of the schema. In the former case,
the key is absolute. In the latter case, the key is relative and its scope is an antecessor of the identified
element, except the root. In Figure 3-1, the elements written in bold represent keys. If the name of a
key element is followed by a bracket, then the key is a relative key and its scope is the element
between brackets (e.g. numbers2 is a relative key and its scope is books2), otherwise it is an absolute key
(e.g. isbns1). A schema may also contain references; each one is a set of text elements referencing
another set of text elements defined as a key. In our example, authorids1 references ids1, and this is
represented by an arrow in Figure 3-1.

2.2. Semantic Correspondences

Semantic correspondences between elements of different schemas state that these elements have the
same meaning. We assume that a set of semantic correspondences is provided between the target
schema and the source schemas and our goal is to provide support for generating a mapping
definition using these semantic correspondences. We distinguish between three kinds of
correspondences: simple 1-1 correspondences, 1-1 correspondences involving a transformation
function and 1-n correspondences.

− a 1-1 correspondence relates one element n in the target schema to one element n’ in a
source schema and states that the two elements represent the same concept. We denote this
correspondence n ≅ n’. (e.g. ids1 ≅ idts and numbers2 ≅ numberts);

− a 1-1 correspondence involving a transformation function relates one element n in the
target schema to one element n’ in a source schema and a transformation function f is
applied to n’. It states that n represents the same concept as n’ after applying the
transformation function and it is denoted n ≅ f(n’). For example, a correspondence can relate
the target element priceineurots to the source element priceindollars2: priceineurots ≅ con(priceindollars2)
where the function con is the conversion from dollar to euro following a given exchange rate.

− a 1-n correspondence relates one target element n to a set of source elements n1, .., nk
combined using a transformation function f(n1, .., nk). It states the equivalence between n and
f(n1, .., nk) and it is denoted n ≅ f(n1, .., nk). For example, we can have a 1-n correspondence to
relate the target element namets with the concatenation of the source elements firstnames1 and
lastnames1: namets ≅ concat(firstnames1, lastnames1). The 1-n correspondences can be seen as the
general form of all the previous correspondences.

Previous work has shown how semantic correspondences can be defined automatically. [DLD04,
DR02, Gal06, HC06, RB01 and SE05]; we suppose that these correspondences are provided and we
do not address the problem of generating them. In the example of Figure 3-1, dotted lines between
the target schema and the source schemas represent correspondences.

We use the same notation to represent correspondences between sets of elements. Given a set a
set of target elements S and a set of source elements S’, there is a correspondence between S and S’ if
the follows conditions are satisfied:

− for each element n in S there is exactly one subset N’ of S’ such that n ≅ f(N’);
− every element in S’ is involved in exactly one correspondence with an element of S.

In the example of Figure 3-1, there are three semantic correspondences: idts, ≅ ids1,
namets ≅ concat(firstnames1, lastnames1), and booktitlets ≅ booktitles1. We can therefore consider that there is a
semantic correspondence {idts, namets, booktitlets} ≅ {ids1, firstnames1, lastnames1, booktitles1}.

Correspondences between two source schemas are derived through their correspondences with
the target schema. Given two source elements n and n’ in two different source schemas, the

Xiaohui Xue

45

correspondence n ≅ n’ holds if there is an element n” in the target schema such that n” ≅ n and n” ≅ n’.
The same holds for two sets of source elements N and N’ in two different source schemas. There is a
correspondence N ≅ N’ if there is a set of target elements N” such that N” ≅ N and N” ≅ N’. Some
correspondences may also be provided between the source schemas. In this case, they will be used in
our approach for mapping generation. For example, in the scenario considered in the MediaGRID
project1, there are three biological data sources GOLD, SMD and SGD. The domain experts are able
to state that the element gname from SMD represents the same concept as the element gene in the
source SGD (i.e. gname ≅ gene) even if such elements have no equivalent in the target schema.

3. An Overview of our Automatic Mapping Generation Approach

This chapter gives an overview of our proposal on automatic mapping generation. Given one target
schema and a set of source schemas in XML Schema, our approach generates a set of mappings to
derive instances of the target schema from the instances of the sources. Similarly to all the existing
approaches, it considers a set of semantic correspondences between the schemas. Applying the
generation process creates a set of mappings, each of them representing a different way to define the
target from the sources.

To handle the complexity of mapping generation, our approach comprises three steps:

− it first decomposes the target schema into a set of subtrees, called target subtrees; the
decomposition is done in such a way that all the elements in each target subtree, except the
root, are monovalued.

− then it defines mappings for each target subtree, called partial mappings; each partial
mapping defines a way to derive instances of a target subtree from the instances of the
source schemas; there may be several partial mappings for a target subtree to describe
different ways to derive its instances. Since a target subtree contains only monovalued
elements except the root, finding a mapping for this subtree consists in finding some
equivalent elements in the sources regardless their hierarchical organization. The process of
defining partial mappings is inspired by Kedad and Bouzeghoub’99 [KB’99, BKA’04] and it
uses the semantic correspondences and the key and the referential constraints defined in the
sources.

− Finally, partial mappings for different target subtrees are combined to generate mappings for
the whole schema, called target mappings. Every combination needs to satisfy the parent-
child relationships existing between the target subtrees to lead to a target mapping.

The generated mappings are expressed in an abstract language and they can be translated into a
given query languages. We propose a translation algorithm to translate the abstract queries into
XQuery [xquery]. Figure 3-2 shows the general framework of our mapping generation approach.

We will illustrate the principle of our mapping generation through the example of Figure 3-3.
There is one target schema, two source schemas and some semantic correspondences that relate the
elements of the target schema to elements of the source schemas.

The target schema is first decomposed into two target subtrees t1 and t2. The two target subtrees
are shown in Figure 3-3. In t1, except the root profts, all the other the elements are monovalued.

1 The MediaGRID Project, a mediation framework for a transparent access to data sources:
http://www-lsr.imag.fr/mediagrid/

Automatic Mapping Generation and Adaptation for XML Data Sources

46

source
schema 1

source
schema 1

source
schemas

target
schema

XQueryXQueryXQuery

…

partial
mappings

abstract
mappings

target
subtrees

partial mapping
definition

partial mapping
definition

partial mapping
definition

target schema
decomposition

XQuery
translation

target mapping
generation

source
schema 1

source
schema 1

semantic
correspondences

Figure 3-2. The general framework of our mapping generation approach

For each target subtree, partial mappings are defined. For the example in Figure 3-3, there are two
partial mappings pm1 and pm2 for t1. The partial mapping pm1 defines t1 from the elements names2
and addresss2 of S2. The partial mapping pm2 joins S1 and S2 with the join predicate [names1 = names2]
and defines t1 using names2 and addresss2 from the result of the join. These partial mappings represent
two alternative ways to derive instances of t1: compared to pm1, pm2 derives fewer instances because
of the join but it assures the derived instances occurred in both S1 and S2. There is only one partial
mapping pm3 for the target subtree t2: it defines t2 from courses1 in S1.

Partial mappings of the two target subtrees are used to generate target mappings. There are two
possible combinations: the first one combines pm1 for t1 with pm3 for t2 and the second one
combines pm2 for t1 with pm3 for t2. There is one parent-child relationship between t1 and t2 to
express the link between each professor and the courses he teaches. The two combinations therefore
need to satisfy this relationship to be a valid target mapping. This relationship is found in the source
S1 in which the courses are organized by their professors. Consequently, only the second
combination leads to a target mapping because it defines t1 from the combination of S1 and S2 and it
can therefore identify for every returned instance of t1, the corresponding instances of t2. It is
translated into XQuery which gives the result mapping at the right side of Figure 3-3.

t1

t2

TS
professors

prof +
name
address
course *

S1
university

prof +
name
salary
course +

S2
persons

item +
name
age
address

<professors>{
for $v1 in S1/university/prof
for $v2 in S2/persons/item
where $v1/name = $v2/name
return <prof>{

<name>{data($v1/name)}</name>,
<address>{data($v2/address)}</address>,
for $v3 in S1/university/prof/dept
for $v4 in S1/university/department
where $v3 = $v4/deptid
return

<course>{data($v4/deptname)}</course>
}</prof>

}</professors>

[name=name]

Figure 3-3. An example of our mapping generation approach

If the data sources do not allow generating a mapping that satisfies users’ needs as represented by
the target schema, our approach proposes to relax some cardinality constraints or structural
constraints in the target schema such that a mapping can be found for the new schema. For example,
a target schema may require information about authors such as names and ages while no source of

Xiaohui Xue

47

the environment provides this information and as a consequence, no mapping can be produced to
satisfy the target schema. In this case, a solution would be to relax the cardinality constraint of the
element defining author ages to optional; a mapping can therefore be produced to derive instances
only for author names. This process is interactive and users will review the proposed schemas and
choose between alternative solutions.

The general framework of our mapping generation approach has been presented in [KX05b]. In
[KX05c and KX05d], we have presented our generation approach using 1-1 correspondences and
some algorithms used in the approach. [KX05a] extends the approach by considering 1-n
correspondences.

4. Decomposing Target Schemas

To handle the complexity of mapping generation, we decompose the target schema into a set of
subtrees, called target subtrees; we first find mappings for each target subtree then combine these
mappings to generate the mappings for the whole schema. Given a target schema T, we define the
target subtrees in T as follows:

Definition 3-1: Target Subtrees. Each target subtree t of a target schema T is a subtree of T
satisfying the following conditions:

− the root r of the subtree is either a multivalued element or the root of T;
− all the other elements in t are descendents of r and are monovalued;
− there is at least one text element in t (t may contain a single element).

This decomposition of the target schema gives several subtrees in which every element is
monovalued except the root. The mapping generation problem for the target schema is decomposed
into two steps: first finding mappings for every target subtree then combining these mappings. Since
a target subtree contains only monovalued elements except the root, finding a mapping for this
subtree consists in finding some equivalent elements in the sources regardless their hierarchical
organization. The hierarchical structure of the different target subtrees is checked during the second
step.

The target schema given in Figure 3-1 has three target subtrees shown on the right side of Figure
3-4: t1 is composed of the multivalued element authorts and its three monovalued children idts, namets
and addressts; t2 is composed of bookts and its three monovalued children isbnts, booktitlets and priceineurots;
and t3 is composed of chapterts, numberts, chaptertitlets and abstractts. The root libraryts does not belong to
any target subtree.

Given two target subtrees t and t’ such that the root of t’ is a child of an element in t, we say that t
is the parent of t’ and t’ is a child of t (e.g. in Figure 3-4, t2 is the child of t1 and the parent of t3).

A target subtree can be either mandatory or optional in a target schema. Consider a target schema
with the root R and a subtree t of this schema with the root r. If t has a parent subtree t’ with the root
element r’, we say that t is mandatory if all the elements on the path from r to r’ (except r’) are
mandatory. If t has no parent subtree, it is mandatory if all the elements on the path from r to R are
mandatory. In all the other cases, t is optional. In our example, t1 and t3 are mandatory and t2 is
optional.

Automatic Mapping Generation and Adaptation for XML Data Sources

48

t3
t2

t1
TS
library

author +
id
name
address
book *

isbn
booktitle
priceineuro
chapter +

number[scope:book]
chaptertitle
abstract ?

sp3

sp5

sp7

S2
library

book +
isbn
booktitle
priceindollar
authorid +
chapter +

number[scope:book]
chaptertitle

S1
library

author +
id
firstname
lastname

book +
isbn
booktitle
chapter +

number
abstract

address +
authorid
authoraddress

sp1

sp2

sp4

sp6

t3
t2

t1
TS
library

author +
id
name
address
book *

isbn
booktitle
priceineuro
chapter +

number[scope:book]
chaptertitle
abstract ?

TS
library

author +
id
name
address
book *

isbn
booktitle
priceineuro
chapter +

number[scope:book]
chaptertitle
abstract ?

sp3

sp5

sp7

S2
library

book +
isbn
booktitle
priceindollar
authorid +
chapter +

number[scope:book]
chaptertitle

S2
library

book +
isbn
booktitle
priceindollar
authorid +
chapter +

number[scope:book]
chaptertitle

S1
library

author +
id
firstname
lastname

book +
isbn
booktitle
chapter +

number
abstract

address +
authorid
authoraddress

sp1

sp2

sp4

sp6

Figure 3-4. Target subtrees and source parts

Algorithm 3-1 describes the target schema decomposition. It takes the target schema (TS) as input
and produces a set of target subtrees (T) in TS. The algorithm performs a top-down browsing of the
target schema to identify all the subtrees satisfying the conditions.

Algorithm 3-1. Target schema decomposition

Target_Schema_Decomposition(TS, T)
Begin
 T := ∅;
 for each element n in TS from top to down:
 if multivalued_or_root(n) //returns true if n is either multivalued or the root of TS
 then
 D := get_monovalued_descendent_text(n);
 //returns the descendents of n that are text elements
 if D ≠ ∅
 then
 t := create_Subtree({n} ∪ D);
 //create a target subtree with the root n and the elements in D
 T := T ∪ {t};
End

Xiaohui Xue

49

5. Defining Partial Mappings

Each partial mapping represents a way to derive instances of a target subtree from the instances of
the source schemas. The partial mappings of a given target subtree are defined independently from
the other subtrees in three steps represented in Figure 3-5:

− identifying the parts of the sources (called source parts) that are relevant for the considered
target subtree;

− searching the joins to combine these source parts;
− and defining the partial mappings from the source parts and the joins between them; each

target subtree may have several partial mappings.

These three steps are described in the remaining of the section.

target
subtree

relevant
schemas

semantic
correspondences

partial
mappings

source
identification

join
identification

partial mapping
definition

joinssource
parts

target
subtree

relevant
schemas

semantic
correspondences

partial
mappings

source
identification

join
identification

partial mapping
definition

joinssource
parts

Figure 3-5. The process of partial mapping definition

5.1. Identifying Source Parts

A source part of a given target subtree is a set of text elements in the source schemas that can
contribute to derive instances for this target subtree.

Before defining source parts, we present an extended definition of element cardinality. In XML
Schema, the cardinality of an element is given with respect to the parent element: an element is
multivalued or monovalued with respect to its parent. We generalize this definition to any pair of
elements.

Definition 3-2: Extended definition of Cardinality. Given two elements n and n’ in a schema and
their first common antecessor m, n is monovalued with respect to n’ if every element on the path
from m to n (except m) is monovalued. Otherwise, n is multivalued with respect to n’.

According to this definition, isbns1 is monovalued with respect to booktitles1: their common
antecessor is books1 and the only element on the path from books1 to isbns1 (except books1) is isbns1,
which is monovalued. Similarly, booktitles1 is monovalued with respect to isbns1. The element numbers1 is
multivalued with respect to isbns1 because their common antecessor is books1 and the path from books1
to numbers1 contains chapters1 that is multi-valued. On the contrary, isbns1 is monovalued with respect to
numbers1.

Note that this extended definition of cardinality is different from the definition of functional
dependency. Consider the elements chaptertitles2 and numbers2 in S2. The element chaptertitles2 is
monovalued with respect to numbers2. However, the functional dependency numbers2 → chaptertitles2
does not hold as we can see in Figure 3-6: two different instances of chapter number may have the
same value, but associated with different titles. In fact, there are several titles for a given chapter
number, one for each book.

Automatic Mapping Generation and Adaptation for XML Data Sources

50

1library

3
book

2
book

8
chapter

…

6
chapter

5
chapter

10
chaptertitle

9
number

"Introduction""1"
12
chaptertitle

11
number

"Nuts and Bolts""2"

4
isbn

"0596001975"

…

14
chaptertitle

13
number

"Schemas: An Introduction"“1"

7
isbn

"0130655678"

…

Figure 3-6. An example of instances for the source S2

The source parts are defined using this extended definition of cardinality as follows.

Definition 3-3: Source Parts. Given a target subtree t, a source part sp for t in the source schema S
is a set of text elements that satisfies the following conditions:

− there is a set of text elements c in t such that c ≅ sp;
− there is one element n in sp such that the other elements in sp are monovalued with respect

to n;
− there is no other set of text elements c’ in S such that sp ⊆ c’ and c’ satisfies the two above

conditions.

Given a target subtree t, every source element involved in a correspondence with the elements of t
is found in at least one source part for t. If there is no source part, there is no relevant element for t
in the sources.

Consider the target subtree t1 of Figure 3-4 having the text elements idts, namets and addressts. In the
set {ids1, firstnames1, lastnames1}, all the elements are monovalued with respect to the others; this set is
therefore a source part for t1. In {authorids1, authoraddresss1} both authorids1 and authoraddresss1 are
monovalued with respect to the others; this set is also a source part for t1. {ids1} is not a source part
because it is a subset of {ids1, firstnames1, lastnames1}. {authorids1, authoraddresss1, ids1} is not a source part
also because ids1 is multivalued with respect to both authorids1 and authoraddresss1 and both authorids1 and
authoraddresss1 are multivalued with respect to ids1.

The source parts for the target subtrees of our example are shown on the left side of Figure 3-4.
The subtree t1 has two source parts sp1 and sp2 in S1 and one source part sp3 in S2; t2 has two source
parts sp4 and sp5 in S1 and S2 respectively; and t3 has two source parts sp6 and sp7.

Algorithm 3-2 describes the identification of source parts. It takes as input a target subtree t, a
source schema S and it produces the set of all the source parts (P) for t in S. The algorithm first
identifies sets of source elements such that each set contains at most one source element involved in
a correspondence with a target element in t. It then checks the cardinalities between the source
elements of each set to identify the source parts for t.

Xiaohui Xue

51

Algorithm 3-2. Source part identification

Source-part-Identification(t, S, P)
Begin
 P := ∅;
 Q := ∅; //a collection of sets of elements that are candidates to be source parts
 for each element n in t:
 if text_element(n) //returns true if n is a text element
 then
 if Q == ∅
 for each correspondence n ≅ f(N) in get_correspondences(n, S)
 //return correspondences relating n with source elements in S
 Q := Q ∪ {N};
 else
 for each set q in Q
 for each correspondence n ≅ f(N) in get_correspondences(n, S)
 q’ := q ∪ N;
 Q := Q ∪ {q’ };
 Q := Q - {q};
 while there is a set q in Q and two elements n and n’ in q such that
 self-multivalued(n, n’)
 //returns true if both n and n’ are multivalued with respect to the other
 q1 := q – {n};
 q2 := q – {n’};
 Q := Q – {q};
 Q := Q ∪ {q1} ∪ {q2};
 for each set q in Q
 if ∃q’ ∈ Q such that q ⊆ q’
 then Q := Q – {q};
 P := Q;
End

5.2. Identifying Join Operations

Once the source parts are defined for a given target subtree, the candidate joins between the source
parts need to be identified. Such identification uses the semantic correspondences existing between
the source elements, the key definitions and the referential constraints of the data sources. We
distinguish between two distinct cases: either the two source parts belong to the same source schema
or to different ones.

Identifying joins between source parts of the same schema. The identification of joins
between source parts of the same schema is based on the key and the key references defined in the
schema. Given two source parts sp and sp’ in the same source schema, a join with the predicate c = c’
is a candidate join if there are two sets of text elements c and c’ in the schema such that:

− c is a key and c’ references c;
− there is an element n in c such that every element in sp is monovalued with respect to n;
− there is an element n’ in c’ such that every element in sp’ is monovalued with respect to n’.

The join is denoted as j[c = c’](sp, sp’). Given the source parts of our example (Figure 3-4), j[ids1 =
authorids1](sp1, sp2) is a candidate join between sp1 and sp2 since authorids1 is a reference to ids1.

Automatic Mapping Generation and Adaptation for XML Data Sources

52

S
CustomerInfo

Customer +
cname
orderID

Order +
orID
itemID

Product +
prID
productName

sp2

sp1 T
Orders

Item +
cname
productName

S
CustomerInfo

Customer +
cname
orderID

Order +
orID
itemID

Product +
prID
productName

sp2

sp1 T
Orders

Item +
cname
productName

Figure 3-7. Relating two source parts through several references

This definition can be generalized to incorporate a sequence of references from c’ to c. Consider
the example shown in Figure 3-7. In the source S, the two source parts sp1 and sp2 correspond to the
single subtree of the target schema and there is no candidate join between them using the previous
rule because no reference relates them directly. However, they are related through the two references:
orderIDs referencing orIDs and itemIDs referencing prIDs. We generalize the previous definition to
consider this case and there is therefore a candidate join between sp1 and sp2 denoted by j[orderIDs1
= orIDs1, itemIDs1 = prIDs1](sp1, sp2).

Algorithm 3-3 describes join identification between source parts of the same source. It takes a
target subtree t and a source schema S as input and produces a set of candidate joins J between the
source parts for t in S. The basic idea of the algorithm is first to browse the references and the
referenced keys in S to identify the candidate join predicates, then to browse the source parts in S to
identify the ones that can be related through a join. The way the algorithm identifies joins between
source parts of the same schema consists in exploring the referential constraints defined in the
schema in the same way as the chase algorithm proposed in [MMS79 and PT99].

Algorithm 3-3. Join identification between source parts of the same source

Single_Source_Join_Identification(t, S, J)
Begin
 J := ∅;
 for each r in get_reference_elements(S)
 //returns all the sets of elements defined as references in S
 k := get_refed_key(r); //get the set of elements defined as the key referenced by r
 for each source part p in get_src_parts(t, S) //return the source parts for t in S
 if monovalued(r, p)
 //true if there is an element in r with respect to witch all elements in p are monovalued
 then
 for each source part p’ in get_src_parts(t, S)
 if monovalued(k, p’)
 then
 j := create_join(p, p’, r, k);
 //creates a join between p and p’ with the predicate r = k
 J := J ∪ {j};
End

Identifying joins between source parts of different schemas. If two source parts belong to
different schemas, it is not possible to identify candidate joins using some referential constraints since
such constraints are defined within a single schema. Consider the book chapters in our example: S1

Xiaohui Xue

53

contains the number and an abstract for every chapter and S2 contains the number and the title of
every chapter. The only way to obtain the abstract and the title for every chapter is therefore to find a
join involving the two sources S1 and S2.

We infer joins between source parts of different source schemas based on the definition of keys
and correspondences between elements. Consider two source parts sp and sp’ in the source schemas S
and S’ respectively. Given a set of text elements c={n1, .., nk} in S and a set of text elements
c’={n1’, .., nk’} in S’, there is a candidate join between sp and sp’ if the following conditions hold:

− c ≅ c’;
− either c or c’ is an absolute key in its schema;
− there is an element n in c with respect to which every element in sp is monovalued;
− there is an element n’ in c’ with respect to which every element in sp’ is monovalued.

If we only consider 1-1 correspondences, the join predicate is n1=n1’, .., nk=nk’, and the join is
denoted by j[n1=n1’, .., nk = nk’](sp, sp’). If we consider 1-n correspondences, the join predicate will
combine the transformation functions involved in the correspondence c ≅ c’.

Figure 3-8 shows all the candidate joins in our example; j[ids1 = authorids2](sp1, sp3) is a candidate
join between sp1 and sp3 because ids1 is defined as absolute key. There is no candidate join between
sp6 and sp7 with the predicate numbers1 = numbers2 because neither numbers1 nor numbers2 are defined as
absolute keys. However, we know that the combination {numbers2, isbns2} is unique in the whole
schema because the scope of numbers2 is books2 that has the absolute key isbns2. We have therefore to
consider the combination {numbers2, isbns2} as an absolute key and use it instead of numbers2. In fact,
each time a relative key is found, it is combined with other key elements to get an absolute key if
possible.

S1
library

author +
id
firstname
lastname

book +
isbn
booktitle
chapter +

number
abstract

address +
authorid
authoraddress

sp1

sp2

sp4
sp6

j2[ids1=authorids1]

j1[ids1 = authorids2]

j3[isbns1 = isbns2]

j4[isbns1 = isbns2 and
numbers1 = numbers2]

sp3

sp5

sp7

S2
library

book +
isbn
booktitle
priceindollar
authorid +
chapter +

number[scope:book]
chaptertitle

Figure 3-8. Join operations

Algorithm 3-4 describes join identification between source parts of different sources. It takes as
input a target subtree t, and two source schemas S and S’ and it produces a set of joins between the
source parts for t in S and the source parts for t in S’. The algorithm first browses the keys defined in
S and S’ to identify all the candidate join predicates. Then it browses the source parts in the two
schemas to identify the ones that can be related through a join.

Automatic Mapping Generation and Adaptation for XML Data Sources

54

Algorithm 3-4. Join identification between source parts of different sources

Multi_Source_Join_Identification(t, S, S’, J)
Begin
 P := ∅; //the sets of candidate join predicate between source parts in S and S’
 for each k in get_absolute_keys(S)
 //returns all the sets of elements defined as absolute keys in S
 for each k≅n in get_correspondences(k, S’)
 //returns the correspondences involving k with elements in S’
 P := P + {(k, n)};
 for each k’ in get_absolute_keys(S’)
 for each n≅k’ in get_correspondences(k’, S’)
 if (n, k’) ∉ P
 then P := P + {(n, k’)};

 J := ∅;
 for each pair (C, C’) in P
 for each source part p in get_src_parts(t, S) //return the source parts for t in S
 if monovalued(C’)
 //true if there is an element in C’ with respect to which the others are monovalued
 and monovalued(C, p)
 //true if there is a source element in C with respect to which
 //all the elements in p are monovalued
 then
 for each source part p’ in get_src_parts(t, S’)
 if monovalued(C’) and monovalued(C’, p’)
 then
 j := create_join(p, p’, C, C’);
 //create a join between p and p’ with the equal predicate between C and C’
 J := J ∪ {j};
End

In our approach, we consider candidate joins in a limited number of cases; therefore we do not
generate all the joins but only a subset of them. For example, a join involving two different sources is
considered as a candidate only if the join predicate involves an absolute key. We could also have
considered that there is a candidate join every time a correspondence is found between two sets of
elements, regardless the key definitions. But in our opinion, the semantics of such operations is not
clear and we therefore do not consider them. Consequently, only a subset of all the possible target
mappings is generated in our approach.

5.3. Defining Partial Mappings from the Source Parts and the Joins

The partial mappings of a target subtree are defined using the corresponding source parts and the
joins between them.

The source parts and the joins corresponding to a given target subtree can be represented by a
graph called a join graph where every element is a source part and every edge between two source
parts is a join between them. The edges are numbered and labeled with the join predicate. The partial
mappings are defined using join graphs as follows:

Xiaohui Xue

55

Definition 3-4: Partial Mappings. Given the join graph of the target subtree t, each partial
mapping for t, denoted pm, is a connected acyclic sub-graph G of the join graph such that:

− for every mandatory text element n in t, there is at least an element n’ in one of its source
parts such that n ≅ n’;

− for each optional text element n in t, there may (or not) be an element n’ in one of its source
parts such that n ≅ n’;

− there is no other partial mapping represented by a graph G’ included in G such that for each
element n in t, if there is an element n’ in G such that n ≅ n’, then there is also an element n’’
in G’ such that n ≅ n’’.

number[scope:book]
chaptertitle

sp7
number
abstract

sp6
j4[isbns1 = isbns2 and
numbers1 = numbers2]

pm1

pm2

number[scope:book]
chaptertitle

sp7
number
abstract

sp6
j4[isbns1 = isbns2 and
numbers1 = numbers2]

pm1

pm2
Figure 3-9. Join graph of t3

Consider the subtree t3 of Figure 3-4, the corresponding join graph is shown in Figure 3-9. It
contains two source parts sp6, sp7 and the join j4. In this graph, there are two partial mappings: pm1
containing a single source part sp7 and pm2 containing sp6 and sp7 related by j4. Both are connected
acyclic sub-graphs of the join graph and both produce instances for the mandatory text elements
numberts and chaptertitlets in t3; pm1 does not produce instances for the optional element abstractts; pm2
joins the two source parts; it may produce fewer chapters than pm1 but more information for every
chapter (its abstract).

In the rest of this section, we refer to a partial mapping by the source part name if it contains a
single source part, or by the names of the corresponding joins if it contains more than one source
part. For example, pm1 and pm2 are denoted by {sp7} and {j4} respectively.

Generating Target Mappings

The mappings for the whole target schema are generated from the partial mappings. The partial
mappings of the different target subtrees are first combined to generate candidate mappings. Then
each candidate mapping is checked to see if the parent-child relationships between the target subtrees
are satisfied. A candidate mapping satisfying these relationships is a target mapping. The candidate
mappings that do not satisfy the parent-child relationships are discarded. The algorithms for
generating candidate mappings and checking these mappings are described in Sections 5.1 and 5.2
respectively.

The target mappings are abstract queries that can be translated into another language. In Section
5.3, we present an algorithm for translating abstract target mappings into XQuery.

Algorithm 3-5 describes partial mapping definition. It takes as input one target subtree (st) and the
corresponding join graph G(SP, J) where SP represents the set of elements (the source parts) and J
the set of edges (the candidate joins). The algorithm uses a recursive procedure to browse the join
graph and produces the set of all the partial mappings (PM) for st; each partial mapping in PM is
represented by the corresponding sub-graph.

Automatic Mapping Generation and Adaptation for XML Data Sources

56

6. Generating Target Mappings

The mappings for the whole target schema are generated from the partial mappings. The partial
mappings of the different target subtrees are first combined to generate candidate mappings. Then
each candidate mapping is checked to see if the parent-child relationships between the target subtrees
are satisfied. A candidate mapping satisfying these relationships is a target mapping. The candidate
mappings that do not satisfy the parent-child relationships are discarded. The algorithms for
generating candidate mappings and checking these mappings are described in Sections 5.1 and 5.2
respectively.

The target mappings are abstract queries that can be translated into another language. In Section
5.3, we present an algorithm for translating abstract target mappings into XQuery.

Algorithm 3-5. Partial mapping definition

Partial_Mappings_Definition(G(SP, J), st, PM)
Begin
 PM := ∅;
 for each source part sp in SP:
 J’ := ∅;
 SP’ := {sp};
 Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM);
End

Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM)
Begin
 if mandatory_text_elements(SP’, st)
 //returns true if SP’ contains all the mandatory text elements in st
 then
 PM := PM ∪ {G’(SP’, J’)};
 //adds a new partial mapping represented by the graph G’ to set PM
 for each join j between the source parts sp and sp’ such that sp’ ∈ SP’ and sp ∉ SP’
 SP’’ := SP’ ∪ {sp};
 J’’ := J’ ∪ {j};
 if G’’(SP’’, J’’) ∉ PM
 //adding the edge representing the join j to the subgraph G’ does’nt give an element of PM
 then
 Build_Partial_Mapping (G’’(SP’’, J’’), G(SP, J), st, PM);
End

6.1. Generating Candidate Mappings

Candidate mappings are first generated by combining the partial mappings of the different target
subtrees. Given the target schema TS, a candidate mapping is defined as follows.

Xiaohui Xue

57

Definition 3-5: Candidate Mapping. A candidate mapping cm for the target schema TS is a set of
partial mappings such that:

− there is at most one partial mapping for each target subtree in TS;
− for each mandatory target subtree t having no parent subtree, there is one partial mapping

for t;
− for each subtree t, if there is no partial mapping for t, then there is no partial mapping for its

child subtrees.
− for each mandatory subtree t having the parent subtree t’, if there is a partial mapping for t

then there is also a partial mapping for t’.

All the source parts and the candidate joins for our example are shown in Figure 3-8; some of the
possible partial mappings for each target subtree are the following: pm3 = {j2} and pm4 = {j1, j2} for
t1; pm5 = {j3} for t2; and pm2 = {j4} for t3. Since t2 is optional and its child t3 is mandatory, each
candidate mapping (denoted cmi) either contains no partial mapping for both t2 and t3 such as cm1 =
{pm3} and cm2 = {pm4}, or contains a partial mapping for both t2 and t3 such as cm3 = {pm3, pm5,
pm2} and cm4 = {pm4, pm5, pm2}.

Checking Candidate Mappings

Target mappings are candidate mappings that satisfy the parent-child relationships between the target
subtrees. Consider a target subtree t, its parent subtree t’ and their respective partial mappings pm and
pm’; pm and pm’ preserve the parent-child relationship between t and t’ if the following conditions
hold:

− there is a source part sp in pm and a source part sp’ in pm’ that are in the same source;
− there is either an element in sp with respect to which all the elements in sp’ are monovalued,

or an element in sp’ with respect to which all the elements in sp are monovalued.

If there is an element in sp with respect to which all the elements in sp’ are mono-valued, then for
every instance of sp we can find the corresponding instance of sp’, and for every instance of sp’ we
can find the corresponding instances of sp. The parent-child relationship is therefore satisfied.

Algorithm 3-6 describes candidate mapping generation. This algorithm takes as input the target
schema TS and the sets of partial mappings PM1, ..., PMn corresponding respectively to the subtrees
t1, ..., tn in TS. The algorithm generates the set of candidate mappings CM by enumerating all the
combinations of partial mappings and checking if each combination satisfies the above definition.

6.2. Checking Candidate Mappings

Target mappings are candidate mappings that satisfy the parent-child relationships between the target
subtrees. Consider a target subtree t, its parent subtree t’ and their respective partial mappings pm and
pm’; pm and pm’ preserve the parent-child relationship between t and t’ if the following conditions
hold:

− there is a source part sp in pm and a source part sp’ in pm’ that are in the same source;
− there is either an element in sp with respect to which all the elements in sp’ are monovalued,

or an element in sp’ with respect to which all the elements in sp are monovalued.

If there is an element in sp with respect to which all the elements in sp’ are mono-valued, then for
every instance of sp we can find the corresponding instance of sp’, and for every instance of sp’ we
can find the corresponding instances of sp. The parent-child relationship is therefore satisfied.

Automatic Mapping Generation and Adaptation for XML Data Sources

58

Algorithm 3-6. Candidate mapping generation

Candidate_Mapping_Generation(TS, PM1, …, PMn, CM)
Begin
 CM := ∅; //each element of CM is a set of partial mappings
 for each target subtree ti in get-mandatory-top-subtrees(TS)
 // returns the subtrees in TS that are mandatory and has not parent subtrees
 if PMi == ∅
 then return (∅);
 //if a mandatory top subtree has no partial mapping, the target schema has no target mapping
 if CM == ∅
 then
 for each partial mappings pm in PMi
 CM := CM ∪ {pm};
 else
 for each set S in CM
 for each partial mapping pm in PMi
 S’ := S ∪ {pm};
 CM := CM ∪ {S’};
 CM := CM - {S};

 for each subtree ti in TS not in get-mandatory-top-subtrees(TS) from top to down:
 if top(ti) //returns true if ti has not parent subtree
 for each set S in CM
 for each partial mapping pm in PMi
 else
 for each set S in CM
 if contains_parent_mapping(ti, S)
 //returns true if the set S contains a partial mapping for the parent subtree of ti
 then
 for every pm in PMi
 S’ := S ∪ {pm};
 CM := CM ∪ {S’};
 if mandatory(ti)
 then CM := CM - {S};
End

Given a target schema TS and a candidate mapping cm for TS, a target mapping is defined as
follows.

Definition 3-6: Target Mapping. A target mapping for a target schema TS is a candidate mapping
cm such that for each pair of subtrees t and t’ in TS such that t is the parent of t’, if there are two
partial mappings pm and pm’ for t and t’ in cm respectively, then pm and pm’ preserve the parent-child
relationship between t and t’.

For the target schema of our example, there are two parent-child relationships to check: one
between t1 and t2 and the other between t2 and t3. Consider the candidate mapping cm4 = {pm4, pm5,
pm2}. The parent-child relationship between t1 and t2 is satisfied in cm4 because every element in sp5
(involved in pm5) is monovalued with respect to both authorids2 in sp3 (involved in pm4). The parent-
child relationship between t2 and t3 is also satisfied because every element in sp5 is monovalued with
respect to both numbers2 and chaptertitles2 in sp7 (in pm2). Therefore, cm4 is a target mapping for TS.

Xiaohui Xue

59

The candidate mappings cm1 and cm2 are also target mappings because both contain a single partial
mapping. The candidate mapping cm3 does not lead to a target mapping because the parent-child
relationship between t1 and t2 is not satisfied.

At this stage of the generation process, we obtain a set of mappings; each one populates all the
mandatory elements of the target schema and satisfies the structure of the target schema. We can
characterize mappings as sound, complete or exact followings the definition in [Len02]: a sound
mapping assures that every instance of the target schema can be found in the source instances; a
complete mapping assures that every instance of the sources can be found in the target instances; and
an exact mapping is mapping that is at the same time a sound and complete. Our result mappings are
sound mappings according to the definition.

Other target mappings can be derived by applying set-based operations like Union, Intersection
and Difference to two or more mappings. For example the union of cm1 and cm4 is a new target
mapping that takes the union of pm4 and pm3 for t1, pm5 for t2 and pm2 for t3.

Considering the set of generated mappings, the choice of the “best” mapping according to the
preferences of a given user cannot be done automatically: the user will have to select one mapping
among the proposed ones. We can also take advantage of these alternative mappings. For example, if
some data source used in the mapping becomes unavailable, we can choose (if it exists) an alternative
mapping that does not use this source. We can also classify the different mappings according to some
quality criteria and select an appropriate one for each user according to his preferences [KPS05].

6.3. Translating Target Mappings into XQuery

The target mappings are expressed in an abstract language and they can be translated into a standard
query language. In this section we present our algorithm to translate a mapping into XQuery.

Each partial mapping is translated into a FWR (For-Where-Return) expression [xquery]. The
organization of the different FWR expressions for a target mapping follows the organization of the
target schema. For each target subtree t and its parent t’, the FWR expression of t is nested in the FWR
expression of t’. Figure 3-10 shows the translation to XQuery of the target mapping cm4.

Automatic Mapping Generation and Adaptation for XML Data Sources

60

<library>{
 for $au in distinct-values(S1/library/author/id, S1/library/address/authorid,
 S2/library/book/authorids),
 for $sp1 in S1/library/author[id = $au][1],
 for $sp2 in S1/library/address,
 for $sp3 in S2/library/book/authorid
 where $sp1/id=$sp2/authorid and $sp1/id=$sp3
 return <author>{
 <id>{data($sp1/id)}</id>,
 <name>{data($sp1/firstname), data{$sp1/lastname}}</name>,
 <address>{data($sp2/authoraddress)}</address>
 for $bk in distinct-values(S2/library/book/isbn, S1/library/author/book/isbn),
 for $sp4 in S1/library/author/book[isbn=$bk][1],
 for $sp5 in S2/library/book
 where $sp4/isbn=$sp5/isbn and $sp5/authorid = $sp3
 return <book>{
 <isbn>{data($sp4/isbn)}</isbn>,
 <booktitle>{data($sp4/title)}</booktitle>,
 <priceineuro>{data($sp5/priceindollar)*0.797}</priceineuro>
 for $ch in distinct-values(S1/library/author/book/chapter/number,
 S2/library/book/chapter/number),
 for $sp6 in S1/library/author/book/chapter,
 for $sp7 in S2/library/book/chapter[number = $ch][1]
 where $sp6/number=$sp7/number and $sp7 = $sp5/chapter
 return <chapter>{
 <number>{data($sp6/isbn)}</number>,
 <chaptertitle>{data($sp7/chaptertitle)}</chaptertitle>,
 <abstract>{data($sp6/abstract)}</abstract>
 }</chapter>
 }</book>
 }</author>
}</library>

Figure 3-10. An XQuery target mapping

Figure 4-2 gives the general form of the FWR expressions we have considered for our mappings.
There are two kinds of for clauses. The first kind of for clause is optional and is used to
instantiate a variable with a set of values without duplicates that is shown at the first line in Figure 4-2.
Such a clause is added in the mapping for every target element n that is defined as a key; a grouping
variable is instantiated with the instances of the source elements such that each source element n’
satisfies that (i) n’ ≅ n and (ii) n’ is monovalued with respect to an element bound by a for clause in
the same FWR expression. A distinct-values function is used to eliminate duplicates. For
example, in the FWR expression for t1 in Figure 3-10, there is a for clause to bind a grouping
variable $au to the distinct instances of ids1, authorids1 and authorids2.

The other kind of for clause is used to bind source parts (at the second line in Figure 4-2). A
for clause of this kind is added in the mapping for each source part. It binds a variable to an
element n with respect to which all the other elements of the source part are monovalued. For
example, in the FWR expression for t1 in Figure 4-2, there are three for clauses for sp1, sp2 and sp3
respectively. Sometimes there are restrictions in the element path in the for clauses of this kind (e.g.
[id = $au][1] at line 4 in Figure 3-10). The two restrictions select the first element that satisfies the
value with respect to a distinct value defined using the first kind of for clause. It is used to
eliminate duplicates in the result with respect to the key element.

Xiaohui Xue

61

The where clause contains two kinds of conditions. The first one is to describe candidate joins in
partial mappings. A condition is added for every join in a partial mapping: (e.g. $sp1/id=$sp2/authorid).
The other kind of conditions is added to satisfy the parent-child relationship between the subtrees.
For a target subtree t and its parent t’, if their parent-child relationship is satisfied by two source parts
sp and sp’, a join condition is added in the FWR expressions of t (e.g. $sp5/authorid = $sp3 in the FWR
expression for t2).

 [for $key_variable in distinct-values(path [, path…])]
for $src_part_variable in path [, for $src_part_variable in path …]
[where [src_part_join_condition [and src_part_join_condition ..]]
 [and parent_child_condition]
return target_subtree_assignments

Figure 3-11. General syntax of the For-Where-Return expression

The return clause of each FWR expression specifies how to populate the corresponding target
subtree. The specification corresponds to the structure of this subtree. For every text element of the
target subtree, an assignment of a source element is added in the return clause.

Erreur ! Référence non valide pour un signet. describes the target mapping translation to
XQuery. It takes as input a target schema TS and a target mapping M for TS. The algorithm produces
the translation XM of M in XQuery. The principle of the algorithm is to translate for every target
subtree in TS from top to bottom the corresponding partial mapping of M into a FWR expression. If
this subtree has a parent subtree, the algorithm also adds a join condition in the FWR expression to
represent the parent-child relationship.

Algorithm 3-7. Target mapping translation into XQuery

XQuery_Translation(TS, M, XM)
Begin
 XM := null;
 if root_not_in_subtree(TS) //return true if the root of TS is not in a target subtree
 then
 add_tags(TS, XM);
 //add the tags of the XML elements of TS that are not in any target subtree
 for each subtree t in TS from top to down
 pm := get_partial_mapping(t,M) //returns the partial mapping for t in M
 if pm ≠ null
 then
 xq_pm := translate_FWR(pm); //return the translation of pm in XQuery
 t’ := get_parent_subtree(t); //get the parent subtree of t
 if t’ ≠ null
 then add_where_condition(t, t’, M, xq_pm);
 //get the pair of source parts satisfying the parent child relation between t and t’ in M
 //and add it in exp
 include(xq_pm, XM);
End

Automatic Mapping Generation and Adaptation for XML Data Sources

62

7. Generating Incomplete Results

The mapping generation approach presented in the previous sections generates a set of mappings
that derive instances for all the mandatory components of the target schema. If some mandatory
components are not found in the sources or the parent-child relationships between target subtrees
are not satisfied by all the candidate mappings, no target mapping is returned, which means that there
is no mapping meeting the users expectations described in the target schema in terms of components
or in terms of structure.

If no mapping is found for the target schema, one possible solution is to propose a new target
schema that can be satisfied by the sources and that is as close as possible to the initial target schema.
For this purpose, we extend our approach by relaxing some cardinality or structural constraints of the
original target schema such that a mapping can be found for the new schema from the sources. This
process is performed only if no mapping is found for the initial target schema, and the users will
decide whether to accept or not the resulting target schema and the corresponding mappings based
on their specific needs.

There are three cases in which no mapping is found for the target schema:

− there is no corresponding source element for some mandatory text elements of a given target
subtree;

− all the mandatory text elements have corresponding elements in the sources, but some joins
are missing to relate these source elements;

− all the target subtrees have partial mappings, but the parent-child relationship between two
target subtrees is not satisfied.

In the first two cases, no partial mapping can be found for the target subtree. For the third case,
no candidate mapping satisfies the structural links of the target schema. In the rest of this section, we
present the adaptation of our approach to propose a new target schema and the corresponding
mappings in all these situations. The target schema can be modified in two ways: changing some
mandatory elements into optional or restructuring the target schema. We also present the global
process for generating incomplete results.

7.1. Changing Mandatory Elements to Optional

For a given target subtree t, the partial mapping is defined as a connected acyclic subgraph of the join
graph that contains an equivalent element for each mandatory element of t. If no connected acyclic
subgraph meets this condition, then no partial mapping will be found.

Consider the case in which there is no corresponding source element for some mandatory text
elements of the target subtree. Our adaptation in this case consists in modifying the target schema by
changing the mandatory cardinality of this element into optional. A partial mapping can then be
generated from the subgraph for the modified target subtree.

Consider the example in Figure 3-12 (a). There is no partial mapping for the target subtree of TS1
from the source schema S3 because there is no correspondence for the mandatory element tel.
Consider a new target schema TS2 which is the same as TS1 except that the cardinality of tel is
changed to optional (shown in Figure 3-12 (b)), {j1} is a partial mapping for the subtree of the TS2
that derives instances for all the other text elements of TS2 except tel.

Xiaohui Xue

63

S3
library

author +
id
name

address +
authorid
authoraddress

TS1
library

author +
id
name
tel
address

j1[ids3=
authorids3]

sp8

sp9

(a). An example of missing
mandatory element (telts1)

TS2
library

author +
id
name
tel ?
address

(b).The new target schema: relaxing the
cardinality constraint of the element telts2

Figure 3-12. Changing mandatory elements to optional

Another situation in which there is no partial mapping for a target subtree is when all the
mandatory elements of the target subtree have equivalent elements in the join graph, but there is no
connected subgraph containing all these mandatory elements; these elements are in different
connected subgraphs. In this case, the system interacts with the user to get his or her preferences and
allows the selection of one of the subgraphs. A new target schema is produced from the initial one by
changing to optional the cardinality of all the mandatory elements that are missing in the subgraph
selected by the user. An alternative solution is to choose the connected subgraph containing the
maximum number of mandatory elements.

After relaxing the cardinality constraint of a target element, some steps of mapping generation are
re-executed: the partial mapping definition for the considered target subtree, the candidate mapping
generation and the parent-child relationship checking. This is shown in Figure 3-13.

partial mapping
definition

candidate mapping
generation

partial
mappings

target
mappings

source
parts

joins

…

…

parent-child
relation checking

candidate
mappings

partial mapping
definition

partial
mappings

source
parts

joins

…

…

partial mapping
definition

partial
mappings

source
parts

joins

…

…

…

Figure 3-13. Re-execution of the mapping generation tasks after the relaxation of a cardinality

constraint

7.2. Restructuring the Target Schema

In our generation process, a candidate mapping leads to a target mapping only if all the parent-child
relationships between the different target subtrees are satisfied. If there is no target mapping because
these relationships are not satisfied, our adaptation consists in proposing a new target schema by
relaxing some structural constraints. Consider a subtree t and one of its child subtree t’. If a candidate
mapping cannot satisfy the parent-child relationship between t and t’, the target schema can be

Automatic Mapping Generation and Adaptation for XML Data Sources

64

restructured by removing the link between t and t’ and adding a link between t’ and the parent subtree
p of t. This is done by removing the edge between the root element of t and its parent and adding an
edge between the root element of t and the root element of p. If the parent-child relationship
between t’ and the parent of t is not satisfied, the process of restructuring is repeated until a subtree is
found for which the parent-child relationship with t’ is satisfied. If no subtree satisfying this
condition is found, then the target schema is restructured as follows:

− if the root r of the target schema is not in a subtree, then t’ is related to r;
− if the root r of the target schema belongs to a subtree, then a new root element r’ is created

and two links are added: one between r’ and r and the other between r’ and t’.

B+

C+

(a). Original
target schema

D+ E+

A+

(b). Restructed target schema
if the parent-child relation

between C and D is missing

B+

C+

D+ E+

A+

(c). Restructed target schema if the parent-
child relation between C and D and the parent-

child relation between B and D are missing

B+

C+

D+ E+

A+

Figure 3-14. Restructuring the target schema

Consider the target schema of Figure 3-14 (a); if the parent-child relationship between C and D is
not satisfied, then a new schema is proposed as shown in Figure 3-14 (b): the link between C and D
is replaced by a link between B and D. If this new link is not satisfied, the schema is restructured as
shown in Figure 3-14 (c).

After restructuring the target schema, the candidate mappings for the given schemas need to be re-
checked to make sure they satisfy the remaining parent-child relationships of the target schema. This
is illustrated in Figure 3-15.

candidate mapping
generation

partial
mappings

target
mappings

parent-child
relation checking

candidate
mappings

partial
mappings

partial
mappings

…

…

…

Figure 3-15. Re-checking parent-child relationships after the relaxation of a structural constraint

7.3. Global Process for Generating Incomplete Results

The process of generating incomplete results is interactive and the user decides the most suitable
relaxation. He can first decide to accept or not to have incomplete results. The user can also decide
to keep one incomplete target schema rather than another if several solutions are possible. There are
three situations in which interaction with the user is required:

Xiaohui Xue

65

− there are several cardinality relaxations that lead to a mapping;
− there are several restructuring that lead to a mapping;
− both restructuring and cardinality relaxation lead to a mapping.

Consider the first case that the user decides to relax the cardinality constraint of different elements.
It may happen that no partial mapping is generated for the join graph of a target subtree; suppose
that several connected subgraphs miss equivalent elements for different target elements. The user can
decide to relax the cardinality constraint of one of the target element giving preference to one or
several subgraphs rather than the others.

Consider two candidate mappings deriving instances for the same target subtrees. Both of them do
not satisfy all the required parent-child relationships, but each candidate mapping satisfies different
ones. The user can choose one of the two candidate mappings because the missing parent-child
relationships in this one are less important than the ones in the other.

Users can also choose between relaxing some cardinality constraints and restructuring the target
schema. Consider the example in Figure 3-16. Given the target schema TS1 and three source
schemas S4, S5 and S6, there is no mapping that can be generated from the sources to satisfy the
target schema. The target schema contains two subtrees t1 and t2 and each one has two source parts
in the sources: sp1 and sp2 for t1, and sp3 and sp4 for t2. No join can be found between the source
parts because there is neither a key nor a reference in the sources. One partial mapping {sp1} is
defined for t1 and two partial mappings {sp3} and {sp4} are defined for t2. Such partial mappings
form two candidate mappings but none of them can satisfy the parent-child relation between t1 and
t2. In this case, there are two possibilities to generate incomplete results. The first one is to
restructure the target schema such that t2 becomes the child of the root libraryts. This relaxation
allows producing two target mappings from the two candidate mappings. There is another option of
relaxation: changing the cardinality constraint of the element affiliationts to optional. Such relaxation
leads to another partial mapping {sp2} for t1. A candidate mapping can be generated from the
combination of {sp2} and {sp4}; it satisfies the parent-child relationship and leads to a target
mapping.

S4
authors

author +
name
affiliation

TS1
library

author +
name
affiliation
publications +

title
abstract

sp1

t1

t2

S6
articles

article +
title
abstract
authors +

sp4

sp2

S5
books

book +
isbn
title
abstract

sp3

TS2
library

author +
name
affiliation ?
publications +

title
abstract

t1

t2

TS2
library

author +
name
affiliation

publications +
title
abstract

t1

t2

Relaxing the cardinality
constraint of affiliationts

Relaxing the structural
constraint of the schema

Figure 3-16. An example of multiple possibilities of target constraint relaxation

The system generates incomplete result and provides the facilities to allow users to explore the
intermediate results, especially the join graphs and the candidate mappings. It can also make some
suggestions of incomplete results. However, only users can decide if they accept them or not and to

Automatic Mapping Generation and Adaptation for XML Data Sources

66

select one among several possibilities. Figure 3-17 shows the global process of incomplete mapping
generation. All the steps presented in bold require user interaction. If there is no candidate mapping
for the target schema, then there is at least one mandatory target element that is not involved in a
correspondence and the system needs to relax cardinality constraints of such target elements. If there
is a candidate mapping, then the user can choose to relax a structural constraint or a cardinality
constraint. The user also decides to continue the relaxation if the new target schema is satisfactory or
if there is still no mapping generated for the new schema.

relax the restructure
constraint

there is a
candidate mapping

noyes

begin

accepted relaxation

relax cardinality constraint
of the target element

relaxing cardinality or
structural constraint cardinality

constraint
structural
constraint

choose one target
element to relax the

cardinality constraint

choose one target subtree
to restructure

generate mappings
for the new schema

yes

there are mappings
for the new schema continue the relaxation

no

no

choose a target element
that is not involved in a

correspondence

end

yes

yes

no

Figure 3-17. The global process for generating incomplete results

8. Conclusions

In this chapter, we have presented our approach on automatic mapping generation and its adaptation
for generating incomplete results. The approach takes one target schema and several source schemas,
all described in XML Schema as input and it generates mappings for the target schema from the
source schemas using a set of semantic correspondences. The mapping generation approach creates a
set of mappings such that each mapping represents alternative ways to derive instances of the target
schema. If the data sources do not allow generating a mapping satisfying the users’ needs as
represented by the target schema, new target schemas are proposed by relaxing some cardinality
constraints or some structural constraints on the target schema such that a mapping can be found.

The generated mappings are sound mappings according to the definition of [Len02]. They derive
instances that conform to the structure and the cardinality constraints of the target schema. Semantic
correspondences allow finding relevant sources for the target and the source constraints allow

Xiaohui Xue

67

relating objects. The result mappings therefore depend on the input metadata: if the set of available
metadata is complete, more possibilities are found to generate mappings that conform to the user’s
expectation.

Compared to the existing approaches, our approach generates mappings from multiple source
schemas and it generates mappings involving inter-source operations. It does not assume that the
target schema and the source schemas have homogeneous structures. It generates mappings
expressed in an abstract format and they can be translated into a specific query language; we have
presented the translation of the abstract mappings into the standard language XQuery.

Our approach enumerates all the possible solutions to generate mappings and produces a set of
mappings that represent different ways to define the target from the sources. In case of a large
number of source schemas, such method presents two drawbacks: (i) the time needed for
enumerating all the possible combinations between the sources may be very large; (ii) many mappings
may be generated which makes the choice of the “best” ones difficult. One of our perspectives is
therefore to use some methods for data quality evaluation. It can be used to automatically classify the
result mappings. It can be also used inside of the mapping generation process to eliminate some
intermediate results that will give mappings of unsatisfying qualities. We have proposed a platform as
a first attempt for evaluating data quality of mappings generated using our approach [KPS05].

Another perspective consists in adapting this mapping generation approach for peer-to-peer
systems, in which there is no global view of the peers. Every peer has only information about his
neighbor. A peer sends a query to his neighbors; either one neighbor answers the request or he
forwards the request to his own neighbors and so on till one peer answers the request. In this context,
mappings can be built dynamically. Some partial results may be first found from the neighbors of the
target and then they will be extended with the information provided by the other peers to produce
the final mappings. A cost model may be introduced and some optimization algorithm may be used
to limit the full exploration of the peers.

Automatic Mapping Generation and Adaptation for XML Data Sources

68

Xiaohui Xue

69

Chapter 4. Automating Mapping Adaptation when

Schemas Evolve

1. Introduction

Mappings are defined between a target schema and a set of source schemas to express the way
instances of the target schema are derived from the instances of the sources. In highly dynamic
environments with no centralized authority such as the Web, sources may evolve without prior
notification. This evolution may concern not only their content but also their schemas and their
query capabilities. When this happens, mappings that depend on these schemas may become invalid
or inconsistent and they have to be adapted to conform to the new schema structures and semantics.

If the number of the source schemas is small and if the schemas themselves are simple, manually
browsing a short list of mappings to perform the required changes is a feasible option, but as the
number of the schemas increases and their structure becomes more complex, the effort needed to
perform this task is considerable, since it requires rewriting of large complex transformation queries
and programs. If some change occurs in the sources or the target schema, one solution is to restart
the generation process; but this can be costly, especially when the changes have little impact on the
mappings. For example, the renaming of a source element can be propagated in a very simple way in
the existing mappings and does not require generating the mapping from scratch.

Some approaches [BFK03, LNR02, MP02, VMP04 and YP05] have been proposed to adapt
mappings automatically when the underlying source schemas evolve. Among the existing works,
BFK03 and LNR02] consider relational schemas and mappings expressed in SQL; [VMP04 and
YP05] consider XML schemas and mappings expressed in a specific format; [MP02] considers
schemas expressed using an Entity-Relationship like model with mappings expressed using a serial of
transformation operations. All these approaches assume that semantic correspondences are provided.
Three of the proposed approaches [BFK03, LNR02 andVMP04] are incremental approach. Each of
these approaches considers a set of schema changes and adapts the mapping for every change. The
approaches proposed in [MP02 and YP05] are mapping composition approaches. They use a
mapping to express the evolution between an original schema and a new schema; the mapping
adaptation consists in composing the original mapping with the mapping describing the evolution to
get an adapted mappings. Two of the proposed approaches [BFK03 and VMP04] can be considered
as an incremental execution of an existing mapping generation approach. These approaches consider
that all the intermediate results of the mapping generation process are provided and, for every change,
they re-compute step-by-step the intermediate results and the final results of the mapping generation.
The approaches presented in [MP02 and YP05] are mapping composition approaches; they consider
a specific mapping generation approach to produce the mappings describing the schema evolutions.
The approach presented in [LNR02] adapts mappings for source changes. This adaptation mainly
consists in searching for substitutions in case of removal of source attributes or source relations. The
adaptation is performed using some available metadata about the sources such as the possible joins
existing between source relations and the inclusion between sets of instances of different sources, etc.

One limitation of the existing approaches for mapping adaptation is that most of them rely on a
specific mapping generation approach to either provide all the intermediate results of the mapping
generation or generate the mappings after some changes occurring in some schema. The work

Automatic Mapping Generation and Adaptation for XML Data Sources

70

presented in [LNR02] does not make such assumption but it does not support target evolution and
requires a large volume of source descriptions that are difficult to be obtained in practical situations,
such as the set of possible joins between the sources.

Our goal is to propose an approach to enable the adaptation of the mappings after changes
occurring in the schemas without making any assumption about the methodology used to generate
these mappings: they can be either generated by some mapping generation tool or even manually
specified by a designer. Our adaptation approach supports both source schema changes and target
schema changes, representing the evolution of the users’ needs. We consider schemas described in
XML Schema [xsd] and mappings expressed using XQuery [xquery]. Our proposal is an incremental
approach and it adapts the mapping for every considered change in three steps:

− The original mapping is first checked to see if it is affected by the change. There are two
situations in which a mapping can be affected: either the target schema has changed, or some
source elements that are used in the original mapping have been moved or removed.

− If the original mapping is affected, it is checked to see if it is adaptable, which means that
there is at least one solution to adapt it to the new schemas. If some new components have
been added in the target schema, the mapping needs to be extended to allow deriving
instances for these new components. If some source components used in the mappings are
moved or removed, some substitutions needs to be found to replace them. For a given
change, all the possible ways to adapt the mapping are proposed.

− If the mapping is adaptable, adapted mappings are generated using all the adaptation
solutions found at the second step representing alternative ways to conform to the new
schemas.

In our adaptation approach, we consider a set of changes and we have defined specific adaptation
algorithms for every change type. As examples, adapting a mapping after a source element removal
consists in finding the substitutions of the removed element, and adapting a mapping after a target
element removal consists in removing the corresponding assignment from the mapping.

This chapter is organized as follows. Section 2 presents the basic assumptions for mapping
adaptation, and especially concerning the schemas representation and the metadata used in our
approach. Then Section 3 presents the general form of the mappings considered in our approach.
Section 4 gives an overview of the mapping adaptation approach. Sections 5 and 6 present the
detailed algorithms of mapping adaptation for source evolution and for target evolution respectively.
Section 7 concludes the chapter.

2. Basic Assumptions

As in our proposal for mapping generation, we consider that both the target schema and the source
schemas are provided and they are expressed using XML Schema [xsd]. Recall that there exist two
languages to describe XML documents: DTD (Document Type Declaration [dtd]) and XML Schema
[xsd]. XML Schema includes the full capabilities of DTDs and it can also express additional
information such as relative keys. We have considered that all the schemas are described using XML
Schema. We also consider that some metadata is available about the description of the target and the
source schemas and also about the semantic links between the sources and the target schema; these
links are represented by a set of semantic correspondences.

Similarly to the mapping generation approach presented in Chapter 3, the quality of the result of
the mapping adaptation process will depend on the quality of the metadata. For example, if an
element is removed from the sources and if the set of correspondences provided to the system is
complete, the system can identify more substitutions for the removed elements.

Xiaohui Xue

71

In the rest of the section, we first present our assumptions about the schema representation and
the semantic correspondences in Sections 2.1 and 2.2 respectively.

2.1. Schemas

As for the automatic mapping generation approach presented in Chapter 3, we consider in our
mapping adaptation approach that both the target schemas and the source schemas are described
using XML Schema [xsd] and we assume the a set of semantic correspondences between the target
schema and the source schemas is provided.

The presentation of the main features of XML Schema is presented in Section 2.1 of Chapter 3.
Figure 4-1 shows an example of two source schemas and a target schema in XML Schema. Every
element in a XML Schema is either a text element (e.g. authorIds1), or an internal element (e.g. chapters1).
Elements are suffixed by the name of their schema.

Based on the attributes minOccurs and maxOccurs, each element is monovalued
(maxOccurs = 1) or multivalued (maxOccurs > 1) and it is optional (minOccurs = 0) or
mandatory (minOccurs > 0). In Figure 4-1, the symbol ‘+’ represents a multivalued and
mandatory element (e.g. books2); ‘*’ represents a multivalued and optional element (e.g. bookts); and ‘?’
represents a monovalued and optional element (e.g. abstractts). An element without symbol is
monovalued and mandatory (e.g. ids1).

Key and referential constraints can be expressed in schemas. Keys are defined on mandatory
elements and there are two kinds of keys: absolute Keys and relative keys. Absolute keys are defined
for the whole schema. Relative keys are defined for a portion of the schema and its scope is marked
by an antecessor of the identified element, except the root. In Figure 4-1, the elements written in
bold represent keys. In case of a relative key, the name of the key element is followed by a bracket in
which there is the scope of key (e.g. Numbers2 is a relative key and its scope is Books2). Every
referential constraint is a set of text elements referencing another set of text elements defined as a key.
They are represented by arrows in Figure 4-1 (e.g., AuthorIds1 references Ids1). In our mapping
adaptation, we consider key and referential constraints in the source schemas. In the target schema,
we consider only key constraints but not referential constraints.

2.2. Semantic Correspondences

As for the mapping generation approach, we consider that a set of semantic correspondences
between the target schema and the source schemas is provided. At this stage of the work, only 1-1
correspondences are supported; recall that a 1-1 correspondence between two elements n and n’
states that these two elements represent the same concept and it is denoted n ≅ n’. In Figure 4-1,
dotted lines represent correspondences. Semantic correspondences between elements of different
sources can be derived from the correspondences between the target elements and the source
elements.

The same notation is used to represent correspondences between sets of elements. There is a
correspondence between two sets of elements s1 and s2 if (i) both s1 and s2 contain the same number
of elements (ii) and for each element n1 in s1 there is exactly one element n2 in s2 such that n1 ≅ n2,
and vice versa. The correspondence between the two sets s1 and s2 is denoted s1 ≅ s2 (e.g. {isbns1,
bookTitles1} ≅ {isbnts, bookTitlets}).

Automatic Mapping Generation and Adaptation for XML Data Sources

72

TS
library

author +
id
name
address
book *

isbn
bookTitle
chapter +

number
chapterTitle
abstract ?

TS
library

author +
id
name
address
book *

isbn
bookTitle
chapter +

number
chapterTitle
abstract ?

S1
library

author +
id
name

book +
isbn
bookTitle
chapter +

number
abstract

address +
authorid
authoraddress

S1
library

author +
id
name

book +
isbn
bookTitle
chapter +

number
abstract

address +
authorid
authoraddress

S2
library

book +
isbn
author +

id
name

chapter +
number[scope:book]
chapterTitle

S2
library

book +
isbn
author +

id
name

chapter +
number[scope:book]
chapterTitle

<library>{
for $ka in distinct-values(S1/library/author/id,

S1/library/address/authorid, S2/library/book/author/id)
for $v1 in S1/library/author[id=$ka][1],
for $v2 in S1/library/address,
for $v3 in S2/library/book/author
where $v1/id=$v2/authorid and $v1/id=$v3/id
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v1/name)}</name>,
<address>{data($v2/authoraddress)}</address>
for $v4 in S1/library/author/book,
for $v5 in S2/library/book
where $v4/isbn = $v5/isbn and $v3 = $v5/author
return <book>{

<isbn>{data($v4/isbn)}</isbn>,
<bookTitle>{data($v4/title)}</bookTitle>
for $v6 in S1/library/author/book/chapter,
for $v7 in S2/library/book/chapter
where $v6/number = $v7/number and $v7 = $v5/chapter
return <chapter>{

<number>{data($v6/isbn)}</number>,
<chapterTitle>{data($v7/chapterTitle)}</chapterTitle>,
<abstract>{data($v6/abstract)}</abstract>

}</chapter>
}</book>

}</author>
}</library>

Figure 4-1. Schemas, semantic correspondences, and mapping

3. Mapping Representation

Mappings are defined between the target schema and the source schemas to specify how instances of
the target schema can be derived from the instances of the sources. They can be generated
automatically by some generation tools [KX05, PVM02] or expressed manually by users. We consider
that the mappings used in our approach are expressed in XQuery [xquery]. XQuery is the standard
query languages for XML sources and it is largely used in today’s applications involving XML sources.
In our work, we consider that the mappings are expressed following a specific XQuery pattern that
we have defined. In XQuery, many different expressions can represent the same meaning. The goal
of the proposed XQuery pattern is to restrict the description of a mapping to a limited number of
XQuery clauses. This allows simplifying the query syntax. Mappings that use clauses that are not in
our pattern have first to be translated into our specific representation. Appendix II shows the
translations of some typical mappings into our specific format.

Before defining the general form of the mappings supported by our approach, we present the
definition of a For-Where-Return expression (FWR expression for short):

Definition 4-1. FWR (For-Where-Return) expression. A FWR expression contains:

− zero to several for clauses to define variables that will be used in this expression;
− possibly one where clause with several conditions that the variables defined by the for

clauses have to satisfy;
− a return clause that contains assignments for target elements; all the source elements used

for an assignment are related to the variable defined by a for clause of the same expression;
the return keyword can be omitted if there is no for clause in the same expression.

Figure 4-2 gives the general form of a FWR expression. The for clauses are used to define
variables and to bind them to source elements. There are two kinds of for clauses: the ones that

Xiaohui Xue

73

bind a variable to a source element; and the one that associates with a variable with a set of values
without duplicates.

[for $duplicate_elimination_variable in distinct-values(path [, path ..])]
[for $element_binding_variable in path [duplicate_elimination_statement] ..]
[where [join_condition [and join_condition ..]]
 [grouping_condition]]
[return] target _assignments

Figure 4-2. General form of the For-Where-Return expressions

The syntax of the for clauses that associate a variable to a set of values without duplicates is
shown at the first line of Figure 4-2. It associates a variable with the union of instances of some
source elements [xquery] and a distinct-values function is applied to these source elements
to eliminate duplicates in the returned set of instances. We denote this kind of for clauses
duplicate-elimination for clauses; variables bound by a duplicate-elimination for clauses are
denoted duplicate-elimination variables. There is a duplicate-elimination for clause at the second
line in the mapping of Figure 4-1. It associates the variable $ka to a set of author id without
duplicates.

The other kind of for clauses binds variables to an element of a source schema. This kind of
clause is shown at the second line of Figure 4-2. They are denoted element-binding for clauses
and the corresponding variables are denoted element-binding variables. In this kind of for clause,
the path of the element to which the clause binds the variable may contain a sequence of two
predicates: the first one is a predicate involving a duplicate-elimination variable and the second
predicate is [1]. The for clause at the fourth line of the mapping in Figure 4-1 belong to this kind. It
binds the variable v1 to the source element authors1. There are two predicates [id = $ka][1] in the path
of the element to which the for clause binds the variable $v1. The first predicate [id = $ka] involves
the duplicate-elimination variable $ka to group the instances of authors1 such that their child ids1 all
have the same value. The second predicate [1] selects the first one from the group. We denote the
sequence of these two predicates a duplicate-elimination statement. We assume that every
duplicate-elimination for clause is defined for a key of the target schema to select the unique
instances from the equivalent source elements. Duplicate-elimination statements are then used to
ensure that the returned instances do not contain duplicates with respect to the values of the key
element. For example, the duplicate-elimination for clause defining $ka and the duplicate-
elimination statement [id = $ka][1] ensures that the returned instances do not contains duplicates for
the target element idts that is defined as a key.

Two kinds of conditions can be defined in the where clause. We call the first one join
conditions. Every join condition involves two different source elements that are respectively related
to two element-binding variables (e.g. ids1 = authorids1) defined in the same FWR expression. The
second kind of conditions involves the same element related to two different element-binding
variables (e.g. [$v3 = $v5/author] in the mapping of Figure 4-1). In this case, one of the two element-
binding variables belongs to the same FWR expression as the condition, and the other is in the FWR
expression in which the current expression is nested. Using this join condition allow grouping the
instances derived by the current expression with respect to the instances derived by the expression in
which it is nested. We denote this kind of conditions grouping conditions.

The return clause of each FWR expression specifies the target assignments. The source element
used in every target assignment is related to an element-binding for clause of the same FWR
expression. The target assignments in the return clause have the same organization as the assigned
elements in the target schema.

Automatic Mapping Generation and Adaptation for XML Data Sources

74

Having defined the general form of FWR expressions that we consider, we now define the
mappings as follows:

Definition 4-2. Mapping. Given a target schema, a mapping for the target schema consists in a set
of FWR expressions such that:

− every FWR expression derives instances for a subtree of the target schema such that the root
of the subtree is multivalued and all the other elements are monovalued;

− for every element n and its parent n’ in the target schema, the FWR expression containing an
assignment for n is nested in the FWR expression containing an assignment for n’.

Following the definition, every FWR expression derives instances for a set of elements where each
element is monovalued with respect to the others. Recall that given two elements n and n’ in a
schema and their first common antecessor m, n is monovalued with respect to n’ if every element on
the path from m to n (except m) is monovalued. (ref. Definition 3-2).. The relationship between one
element and its multivalued children is represented in the mapping by the relationships between the
corresponding FWR expressions through a grouping condition. For every element-binding for
clause that binds a variable v to an element n, all the source elements that are in a target assignment
and that are related to v are monovalued with respect to n; and n is also monovalued with respect to
them. Consider again in Figure 4-1 the for clause that binds a variable $v1 to authors1. There is a
target assignment involving names1: authors1 is monovalued with respect to names1 and vice versa.
Appendix II shows the transformation of some typical mappings into our representation.

4. An Overview of our Automatic Mapping Adaptation Approach

This section describes the general process of automatic mapping adaptation. As an incremental
approach, our system considers a set of changes that can occur in the target schemas or in the source
schemas and we propose a specific mapping adaptation procedure for each of these changes.

In our approach, we have considered the following changes both in the target and the source
schemas: (i) adding an element, (ii) removing an element, (iii) moving a subtree in the same schema,
(iv) renaming an element, (iiv) adding a key definition and (iiiv) removing a key definition. In the
source schemas, we also consider the addition and removal of a referential constraint.

The mapping adaptation process is defined independently for each of these changes. Other
evolutions can be expressed as a set of changes, possibly partially or totally ordered. As an example,
removing a source schema can be represented by the following sequence of changes: first removing
all the constraints defined in the schema, and then removing all the elements of the schema in a
bottom-up order.

Consider a mapping that is defined for a target schema and some source schemas. For every
change occurring in the schemas, we first have to check if the mapping needs to be adapted. If that is
the case, the system checks if the mapping can be adapted and produces the different adapted
mappings. The general process of mapping adaptation is illustrated in Figure 4-3.

mapping
affected

Checking if the
original mapping

is affected

Adapting the
mapping

Checking if the
affected mapping

is adaptable

yes

no

mapping
adaptable yes

no

begin end
change

Figure 4-3. The general process of mapping adaptation

Xiaohui Xue

75

A mapping is adapted after a change only if the change concerns an element of the schema that is
involved in the mapping. For example if a source is removed from the environment, the mapping is
adapted only if it involves this source.

Consider the example shown in Figure 4-4. There is one target schema TS, two source schemas S1
and S2, and a mapping defining the target schema TS from the source S2 in Figure 4-4 (a). We
consider that three changes occurred in the schemas: (i) adding the element addresss1 in the source S1,
(ii) removing the element agets from the target schema, (iii) removing the element functionnames1 from
the source schema S2. The first change does not require the adaptation of the mapping. This change
adds a source element and this does not make the mapping obsolete. The mapping needs to be
adapted for the second and the third changes. After the removal of the element agets from the target
schema, the original mapping becomes obsolete because the returned instances using the mapping do
not conform to the new structure of the target schema. After the removal of the element
functionnames1 from S2, the mapping also becomes obsolete and an equivalent element has to be found
from the sources.

(a) Original mapping:
<professors>{

for $v1 in S2/persons/item
for $v2 in S1/university/prof
where $v1/name = $v2/name
return <prof>{

<name>{data($v1/name)}</name>,
<age>{data($v1/age)}</age>,
for $v3 in S1/university/function
for $v4 in S1/univeristy/prof/functionid
where $v3/functionid = $v4 and $v4 = $v2/functionid
return <function>{data($v3/functionname)}<function>

}</prof>
}</professors>

TS
professors

prof +
name
age
function+

S1
university

prof +
name
address
functionid +

function +
functionid
functionname

S2
persons

item +
name
age
course

(b) Adapted mapping after the removal of agets:
<professors>{

for $v1 in S2/persons/item,
return <prof>{

<name>{data($v1/name)}</name>,
<course>{data($v1/course)}</course>

}</prof>
}</professors>

2

1

2

3

3

Figure 4-4. An example of mapping adaptation for three changes

We introduce the notion of affected mappings to qualify mappings that need to be adapted after
a change:

Definition 4-3. Affected mappings. Consider a mapping defined for a target schema from a set of
source schemas and consider a change occurring in one of these schemas. The mapping is affected
after the change if the instances returned using this mapping do not conform either to the structure
or the semantics of the target schema. Otherwise, the mapping is not affected.

It is not always possible to adapt an affected mapping after a change. If the change adds more
requirements to the target schema, then the mapping can be adapted only if the new requirements
can be satisfied from the sources. If the change consists in removing some components from the
sources, then the mapping can be adapted only if some substitutions can be found to replace this
components.

Consider the example of Figure 4-4. There are the two changes that make the original mapping
affected: one removes the target element agets, and the other removes the source element functionnames1.
After the removal of the element agets, the mapping can be adapted; the adaptation will consist in

Automatic Mapping Generation and Adaptation for XML Data Sources

76

removing the corresponding assignment for agets. After the removal of the source element
functionnames2, the mapping can be adapted only if one substitution is found to replace functionnames1.
In the example, we can see that there is no more information in the sources that concerns the
function names (i.e. no more semantic correspondence involving functionnames1). No substitution can
be therefore found and the mapping can not be adapted for this change.

The notion of adaptable mappings is introduced to represent affected mappings that can be
adapted:

Definition 4-4. Adaptable mappings. Consider a mapping defined for a target schema from a set
of source schemas. If the mapping is affected by a change occurring in one of these schemas, the
affected mapping is adaptable if there is at least one solution to adapt it to the new schemas.
Otherwise, the mapping is not adaptable.

The mapping resulting of the adaptation is called adapted mapping. Consider the change in the
example of Figure 4-4 that removes the target element agets; one solution to adapt the mapping is to
remove the assignment for agets. This solution gives the adapted mapping shown in Figure 4-4 (b). If
there are several adaptation solutions for an affected mapping, an adapted mapping is generated for
each of these solutions.

5. Mapping Adaptation for Source Evolution

Given a mapping defined for a target schema over a set of data sources, and considering that these
sources are autonomous and can freely change their content or their structure, the mapping may
become obsolete as the data sources evolve. The changes occurring in the sources need to be
propagated in the mappings to keep the system consistent. In this section, we propose mapping
adaptation algorithms for adapting existing mappings after source changes. We consider the
following changes: addition or removal of source elements, removal of source constraints, moving
source subrees and renaming source elements. For each of these changes, a specific adaptation
algorithm is proposed in the following subsections.

5.1. Addition of Source Elements and Source Constraints

Adding a new element in a schema tree consists in adding a leaf element without reference or key
definition. The added element is associated two attributes minOccurs and maxOccurs to state
the minimum number of occurrences and the maximum number of occurrences of this element with
respect to its parent. If the added source element is equivalent to an element in the target schema the
semantic correspondence is added. Constraints can also be added in the source schemas. A key can
be added in a source schema to define a mandatory source element to be a key. We may also add a
reference on a source element and it references an existing key.

The mapping is not affected with respect to these added source objects (elements, keys and
constraints) because the sources components that are used in the mappings are not removed or
moved. The added objects may be used for future mapping adaptations.

Consider the example in Figure 4-5. There is one target schema TS, one source schema S, and a
mapping between the two schemas. Consider that the source schema S evolves and is changed to a
new schema S’; the changes that have occurred are the addition of: the three source elements studentss’,
snamess’, and advisorss’, the addition of a key on the element pnamess’, and the addition of a reference on
the element advisorss’ to pnamess’. The mapping between TS and S is not affected by these changes
because none of the elements it involves have been changed.

Xiaohui Xue

77

TS
university

prof +
name
address
grade

The mapping between TS and S:
<university>{

for $v1 in SS/university/prof
return <prof>{

<name>{data($v1/pname)}</name>,
<age>{data($v1/age)}</age>,
<grade>{data($v1/grade)}</grade>

}</prof>
}</university>

S
university

prof +
pname
address
grade

S’
university

prof +
pname
age
grade

student +
sname
advisor

Figure 4-5. An example of the addition of source elements and source constraints

5.2. Removal of Source Elements

We consider that removing source elements concerns the leaf elements in the schema tree such that
there is no constraint defined using this element. The removal of an element n is followed by the
removal of all the semantic correspondences involving n.

The removal of the element n invalidates all the components of the mapping that involve n. These
components are:

− the target assignment that defines a target element from n;
− the join conditions involving n;
− the duplicate-elimination for clause such that n is in the unique union to which the clause

binds its variable;
− the duplicate-elimination statement involving n;
− the element-binding for clause that binds its variable to n, and consequently all the other

mapping components that involve a source element related to this for clause;
− the grouping condition involving n.

A mapping that has at least one of these components invalidated by the change is an affected
mapping. The adaptation of this mapping will consist in repairing sequentially all the invalid mapping
components. A specific process is used to repair every component. If a target assignment uses the
removed element n, the mapping adaptation consists in substituting the invalid target assignment.
Adapting a mapping for an invalid join condition requires finding a substitution to replace the invalid
condition. If a duplicate-elimination for clause is invalidated by the removal, repairing this clause
consists in redefining the element to which the variable is bound. If a duplicate-elimination or a
grouping condition are invalidated by the change, a substitution has to be found to replace it.
Repairing an element-binding for clause invalidated by the change consists in either redefining it or
removing it if there is no more elements that is related to it in the mapping.

Figure 4-6 shows the procedure of mapping adaptation for a source element removal. It repairs
every of the invalid components. If the mapping is not adaptable for an intermediate step, the
adaptation is interrupted and the mapping is not adaptable. In this process, the mapping is always
adaptable for the invalid duplicate-elimination for clause and the invalid duplicate-elimination
statement.

In the following, we describe the repairing of the different mapping components if they are
invalidated after a source element removal. For every invalid component, we characterize the
adaptation solutions, and we show how to adapt the mapping with respect to the adaptation
solutions.

Automatic Mapping Generation and Adaptation for XML Data Sources

78

invalid join condition

substituting the target
assignment

substituting the join condition

invalid target
assignment

yes

no
yes

no

yes

begin

target assignment
substituted

yes

join condition
substituted

invalid duplicate-
elimination for clause

no

repairing the duplicate-
elimination for clause

invalid element
binding for clause

repairing the element
binding for clause

yes

no
invalid grouping

condition

substituting the grouping
condition

yes
no

no

end

invalid duplicate-
elimination predicate

substituting the
duplicate-elimination predicate

no
yes

yes

element-binding
for clause redefined

yes
no

Figure 4-6. General procedure of mapping adaptation for a source element removal

5.2.1. Repairing an Invalid Target Assignment

Consider a mapping that contains an assignment from n to a target element n’. The target
assignment becomes invalid if n is removed from its source schema. Adapting the mapping consists
in finding another element to replace n for assigning the target element n’.

For repairing the target assignment, we distinguish between two cases: the target element n’ is an
optional element or it is a mandatory element. If n’ is an optional element, it is always possible to
repair the invalid target assignment by removing the target assignment for n’.

If n’ is a mandatory element, we need to find another source element to assign n’. This source
element n” has to be involved in a correspondence with n’ and be related with the other source
elements used to assign the target elements in the same FWR expression. For this purpose, we first
introduce the notion of candidate join. This joins represent a possible way to relate two source
elements.

Xiaohui Xue

79

Definition 4-5. Candidate joins. Given two source elements m and m’, there is a candidate join
between m and m’ with the join condition c = c’, denoted j[c = c’](m, m’) if the following conditions are
satisfied;

− either c and m represent the same element, or c is monovalued with respect to m and vice
versa;

− either c’ and m’ represent the same element, or c’ is monovalued with respect to m’ and vice
versa;

− if m and m’ are in the same schema, either m is defined as a reference of m’ or m’ is defined as
a reference of m;

− if m and m’ belong to different schemas, m ≅ m’ and at least one element between m and m’ is
defined as a key in its schema.

For the example shown in Figure 4-7, there is a candidate join j[authorids1 = ids2](addresss1, authors2)
because (i) addresss1 is monovalued with respect to authorids2 and authorids2 is monovalued with respect
to addresss1; (ii) authors2 is monovalued with respect to ids2 and ids2 is monovalued with respect to
authors2; (iii) authorids1 and ids2 belong to different schemas: authorids1 ≅ ids2 and ids2 is defined as a key.
There is another candidate join j[authorids1 = ids2](authoraddresss1, names2). There is no candidate join
with the condition names1 = ids2 because these two elements are in different schemas and no
correspondence relates them.

Consider a FWR expression ep that contains an invalid target assignment for n’. Finding a
substitution to the invalid target assignment consists in finding a source element n” such that n’ ≅ n”
and there is an element-binding for clause f in ep that satisfies one of the following conditions:

− f binds its variable to n”;
− f binds its variable to an element e such that n” is monovalued with respect to e and vice versa;
− f binds its variable to an element e and there are two elements c and c’ such that there is a

candidate join j[c = c’](e, n”).

The mapping is adaptable for an invalid target assignment if at least one source element n” satisfies
one of the above conditions. If n” satisfies the first or the second condition, the invalid assignment is
replaced by the assignment from n” to n’; n” is related to the variable defined in f. If n” satisfies the
third condition, the mapping adaptation consists in:

− adding an element-binding for clause in the FWR expression ep that binds a variable v’ to n”;
− in the where clause of ep, adding a join condition c = c’ such that c is related to the variable

defined in f and c’ is related to v’;
− in the return clause of ep, replacing the assignment from n to n’ by the assignment from n”

to n; n” being related to v’.

Figure 4-7 shows an example of repairing an invalid target assignment. There are one target
schema and two source schemas. A mapping between the schemas is shown in Figure 4-7 (a). We
consider that two changes occurred in the sources: the first removes the source element booktitles1
from S1 and the second removes names1 from S1.

Consider the removal of the source element booktitles1. This change affects the original mapping
because there is a return clause that contains an assignment from booktitles1 to booktitlets. The source
element booktitles2 can be used for a substitution of the invalid target assignment: there is a
correspondence booktitles2 ≅ booktitlets and booktitles2 is monovalued with respect to books2 to which an
element-binding for clause of the same FWR expression binds a variable. The mapping is therefore
adaptable for this change and the adapted mapping is shown in Figure 4-7 (b). In the adapted
mapping, the added parts are in bold.

Automatic Mapping Generation and Adaptation for XML Data Sources

80

Consider the removal of the source element names1. The mapping of Figure 4-7 (b) is affected by
the change because it contains a target assignment from names1 to namets. For adapting the mapping,
the source element names2 can be used to substitute the invalid target assignment: there is a
correspondence names2 ≅ namets; there is an element-binding for clause in the same FWR expression
that binds a variable to the element addresss1; and there is a candidate join j[ids2 = authorids1](names2,
addresss1). The mapping is therefore adaptable in this case and the adapted mapping is shown in
Figure 4-7 (c).

(a) Original mapping:
<library>{

for $ka in distinct-values(S1/library/author/id, S1/library/address/authorid)
for $v1 in S1/library/author[id=$ka][1],
for $v2 in S1/library/address,
where $v1/id=$v2/authorid
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v1/name)}</name>,
<address>{data($v2/authoraddress)}</address>
for $v4 in S1/library/author/book
for $v5 in S2/library/book
where $v4/ = $v1/book and $v4/isbn=$v5/isbn
return <book>{

<isbn>{data($v4/isbn)}</isbn>,
<bookTitle>{data($v4/bookTitle)}</bookTitle>

}</book>
}</author>

}</library>

(c) Adapted mapping after the removal of names1≅namets:
<library>{

for $ka in distinct-values(S1/library/author/id, S1/library/address/authorid)
for $v1 in S1/library/author[id=$ka][1],
for $v2 in S1/library/address,
for $v3 in S2/library/book/author/id
where $v1/id=$v2/authorid and $v2/authorid=$v3
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v3/PARENT::author/id)}</name>,
<address>{data($v2/authoraddress)}</address>
for $v4 in S1/library/author/book
for $v5 in S2/library/book
where $v4/ = $v1/book and $v4/isbn=$v5/isbn
return <book>{

<isbn>{data($v4/isbn)}</isbn>,
<bookTitle>{data($v5/bookTitle)}</bookTitle>

}</book>
}</author>

}</library>

TS
library

author +
id
name
address
book *

isbn
booktitle

S1
library

author +
id
name
book +

isbn
booktitle

address +
authorid
authoraddress

S2
library

book +
isbn
booktitle
author +

id
name

(b) Adapted mapping after the removal of booktitles1≅booktitlets:
<library>{

for $ka in distinct-values(S1/library/author/id, S1/library/address/authorid)
for $v1 in S1/library/author[id=$ka][1],
for $v2 in S1/library/address,
where $v1/id=$v2/authorid
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v1/name)}</name>,
<address>{data($v2/authoraddress)}</address>
for $v4 in S1/library/author/book
for $v5 in S2/library/book
where $v4/ = $v1/book and $v4/isbn=$v5/isbn
return <book>{

<isbn>{data($v4/isbn)}</isbn>,
<bookTitle>{data ($v5/bookTitle)}</bookTitle>

}</book>
}</author>

}</library>

1

1

2

2

Figure 4-7. Mapping adaptation after the removal of two source element

As we have seen above, there are three different options for finding a substitution for the invalid
target assignment. One of them states that the source element n’ can be replaced by a source element
n” if n” is related to an element-binding for clause through a candidate join. We can generalize this
notion and consider a sequence of joins for relating n” to an element-binding for clause. For
relating two elements m and m’, we can consider a sequence of joins: j[c = c1](m, e1), j[c1 = c2](e1, e2), .. ,
j[ck-1 = ck](ek-1, ek), j[ck = c’](ek, m’), which allows relating m to e1, e1 to e2, .. , ek-1 to ek, and ek to m’. We
introduce the notion of candidate join path to represent this sequence of candidate joins.

Xiaohui Xue

81

Definition 4-6. Candidate join paths. Given two elements m and m’, a candidate join path between
m and m’ is a sequence of candidate joins: j[c = c1](m, e1), j[c1 = c2](e1, e2), .. , j[ck-1 = ck](ek-1, ek), j[ck =
c’](ek, m’).

Using this definition, a source element n” can be used to assign a target element if the following
conditions are satisfied:

− n’ ≅ n”;
− considering that the invalid target assignment is in the FWR expression ep, there is an

element-binding for clause f in ep that binds its variable to an element e and there exists a
candidate join path between n” and e:
 j[c = c1](e, e1), j[c1 = c2](e1, e2), .. , j[ck-1 = ck](ek-1, ek), j[ck = c’](ek, n”).

Algorithm 4-1 describes the process of finding substitutions to repair an invalid target assignment.
It takes as input the target element n concerned by the invalid target assignment and the FWR
expression ep containing the target assignment. It produces the set of substitutions (S) to repair the
invalid target assignment. The algorithm checks for each source element that is involved in a
correspondence with n, if it can be related to a for clause in ep.

Algorithm 4-1. Finding substitutions for an invalid target assignment

Substitution_Search_for_an_Invalid_Target_Assignment(n, ep, S)
Begin
 S := ∅;
 for each element n’ such that n ≅ n’:
 for each element-binding for clause f in ep:
 if n’ ≡ binding-element(f) //returns the element to which f binds its variable
 s := create-solution(n’, f); //create a solution to substitute the target assignment
 S := S ∪ {s};
 break;
 e := binding-element(f);
 if monovalued(n’, e) //returns true if n’ is monovalued with respect to e
 and monovalued(e, n’)
 s := create-solution(n’, f); //create a solution to substitute the target assignment
 S := S ∪ {s};
 break;
 else
 j := joinpath(n’, e); //returns a candidate join path to relate n’ and e
 if j ≠ ∅
 s := create-solution(n’, f);//create a solution to substitute the target assignment
 S := S ∪ {s};
 break;
End

Automatic Mapping Generation and Adaptation for XML Data Sources

82

If a source element n” can be used to repair the invalid target assignment, the mapping is adapted
using the following procedure:

− adding an element-binding for clause in ep that binds a variable v to n”;
− adding an element-binding for clause in ep that binds a variable vi to ei (1 ≤ i ≤ k);
− adding in the where clause of ep a join condition c = c1 with c being related to the variable of f

and c1 being related to v1;
− adding in the where clause of ep a join condition ci = ci+1 (1 ≤ i ≤ k-1) with ci being related to vi

and ci+1 being related to vi+1;
− adding in the where clause of ep a join condition ck = c’ with ck being related to vk and c’ being

related to v;
− in the return clause of ep, replacing the invalid target assignment by an assignment from n”

to n; n” is related to v.

Figure 4-8 shows an example of repairing an invalid target assignment. A mapping between a
target schema and two source schemas is shown in Figure 4-8 (a). Consider that the source element
depts2 is removed. The mapping is affected because it contains an assignment from depts2 to deptts. The
source element deptnames1 can be used to repair the invalid target assignment: there is a
correspondence deptnames1 ≅ deptts; and there is a candidate join path
j[names2 = names1](profs2, names1), j[depts1 = deptids1](names1, deptnames1). The mapping is adapted using
this candidate join path and the result is shown in Figure 4-8 (b).

(a) Original mapping:
<professors>{

for $kp in distinct-values(S2/profDB/prof/name)
for $v1 in S2/profDB/prof[name = $kp][1]
return <prof>{

<name>{data($v1/name)}</name>,
<age>{data($v1/age)}</age>,
<dept>{data($v1/dept)}</dept>

}</prof>
}</professors>

TS
professors

prof +
name
age
dept

S1
university

prof +
name
address
dept +

department +
deptid
deptname

S2
profDB

prof +
name
age
dept

(b) Adapted mapping after the removal of depts2≅deptts:
<professors>{

for $kp in distinct-values(S2/profDB/prof/name)
for $v1 in S2/profDB/prof[name = $kp][1],
for $v2 in S1/university/prof/name,
for $v3 in S1/university/department/departname
where $v1/name=$v2 and

$v2/PARENT::prof/dept=$v3/PRENT::department/departid
return <prof>{

<name>{data($v1/name)}</name>,
<age>{data($v1/age)}</age>,
<dept>{data($v3)}</dept>

}</prof>
}</professors>

Figure 4-8. Mapping adaptation after the removal of a source element

5.2.2. Replacing the Invalid Join Conditions

If a source element n is removed from a source schema, the join condition involving n becomes
invalid. Removing a join condition from the where clause of a FWR expression consists in removing
a join that relates two element-binding for clauses f and f’. Adapting the mapping to substitute this
removed join condition consists in finding a way to relate f and f’.

Consider that f binds its variable to m and f’ binds its variable to m’. Finding a way to relate f and f’
consists in finding a candidate join path between the two elements m and m’: j[c = c1](m, e1),
j[c1 = c2](e1, e2), .. , j[ck-1 = ck](ek-1, ek), j[ck = c’](ek, m’). If there is at least one candidate join path, the
mapping is adaptable.

Xiaohui Xue

83

Algorithm 4-2 describes the process of finding substitutions to repair an invalid join condition. It
takes as input the two element-binding for clauses f and f’ that were related by the invalid join
condition and the FWR expression ep containing the condition. It produces the set of substitutions (S)
to repair the invalid target assignment. The algorithm search for all the candidate join paths between
the variable defined by f and the variable defined by f’.

Algorithm 4-2. Finding substitutions for an invalid join condition

Substitution_Search_for_an_Invalid_Join_Condition(f, f’, ep, S)
Begin
 S := ∅;
 e := binding-element(p); //returns the element to which p binds its variable
 e := binding-element(q);
 for each j in joinpaths(e, e’) //returns the candidate join paths between n’ and e
 s := create-solution(j);//create a solution to substitute the invalid join condition
 S := S ∪ {s};
End

Consider the FWR expression ep that contains the invalid join condition. For every candidate join
path j[c = c1](m, e1), j[c1 = c2](e1, e2), .. , j[ck-1 = ck](ek-1, ek), j[ck = c’](ek, m’) that satisfies the above
conditions by relating the two for clauses f and f’, we substitute the invalid join condition by:

− adding an element-binding for clause in ep such that it binds a variable vi to ei (1 ≤ i ≤ k);
− adding in the where clause of ep a join condition ci = ci+1 (1 ≤ i ≤ k-1); ci is related to vi and ci+1

is related to vi+1;
− adding in the where clause of ep a join condition c = c1; c is related to the variable defined by f

(related to m) and c1 is related to v1;
− adding in the where clause of ep a join condition ck = c’; ck is related to vk and c’ is related to

the variable defined f’ (related to m’);

Figure 4-9 shows an example of mapping adaptation after the removal of a source element. There
are one target schema and three source schemas. A mapping shown Figure 4-9 (a) derives instances
of the target schema from the source schemas S1 and S3. Consider that the source element ids3 is
removed with the correspondence ids3 ≅ idts. This change affects the mapping by invalidating three
components: the join condition $v1/id = $v2/id, the duplicate-elimination for clause that defines the
variable $au, and the element-binding for clause that contains a duplicate-elimination statement
[id=$au][1]. The affected components are in bold and italic in Figure 4-9 (a). We adapt the mapping
sequentially for the three invalidated components. We here illustrate the repairing of the join
condition $v1/id = $v2/id. The repairing of the other components is shown in the following sections.

The invalid join condition $v1/id=$v2/id relates the two element-binding for clauses of the FWR
expression. Consider the candidate join path j[names1=names2](authors1, names2),j[names2=names3](names2,
authors3). It relates the two elements authors1 and authors3 to which these two for clauses bind their
variable respectively. Therefore it can be used to substitute the invalidate join condition. Figure 4-9 (b)
shows the repaired mapping using the candidate join path; the added components are in bold.

5.2.3. Repairing the Duplicate-Elimination for Clause

Consider a duplicate-elimination for clause; it is invalidated by the removal of a source element n if
it uses n to bind the variable of the for clause.

Automatic Mapping Generation and Adaptation for XML Data Sources

84

The invalid duplicate-elimination for clause has to be redefined in this case. As we assumed that
every invalid duplicate-elimination for clause is defined for a key defined on a target element n, we
search for all the source elements that can be used to assign n’ in this FWR expression; a source
element n has to satisfy the following conditions for being an adaptation solution:

− n ≅ n’;
− there is an element-binding for clause f in the same FWR expression such that either f binds

its variable to n or n is monovalued with respect to the element to which f binds its variable.

The mapping is adaptable if at least one element satisfies the condition. We can prove that the
mapping is always adaptable in this case. Every duplicate-elimination for clause is defined for a key
defined on a mandatory target element. Consider the process of mapping adaptation for a source
element removal. Before repairing the element-binding for clause, we first repair the invalid target
assignment if the removed source element is used for a target assignment. The process only
continues if there is a way to define the target element. Therefore at the moment of re-defining the
element-binding for clause, there is at least one source element that satisfies the condition to define
for clause, which is the one used to assign the target element in the return clause.

Algorithm 4-3. Finding elements for an invalid duplicate-elimination for clause

Element_Search_for_an_Duplicate_Elimination_for_clause(n, ep, E)
Begin
 E := ∅;
 for each element n’ such that n ≅ n’:
 for each element-binding for clause f in ep:
 if n’ ≡ binding-element(f) //returns the element to which f binds its variable
 E := E ∪ {n’};
 break;
 m := binding-element(f);
 if monovalued(n’, m) //returns true if n’ is monovalued with respect to e
 E := E ∪ {n’};
End

Algorithm 4-3 describes the process of finding elements to repair an invalid duplicate-elimination
for clause. It takes as input the target element n for which the invalid for clause has been defined
and the FWR expression ep containing the for clause. It produces the set of elements (E) that will
be used to redefine the invalid for clause. The algorithm checks for each source element n’ that is
involved in a correspondence with n, if there is a for clause in ep that binds the variable either to n’
or to another element with respect to which n’ is monovalued.

The set E of all the elements returned by Algorithm 4-3 constitutes a solution to repair the for
clause. The repairing process consists in re-defining the duplicate-elimination for clause to bind its
variable to the distinct union of the elements in E.

Consider the example shown in Figure 4-9. Three components of the original mapping have been
invalidated by the removal of the source element ids3. Among these invalid components, the invalid
join condition has first been substituted and the result is shown in Figure 4-9 (b). Afterwards, we
repair the invalid duplicate-elimination for clause that defines the variable $au. One element ids1 is
satisfies the conditions to be an adaptation solution. It is therefore used to redefine the duplicate-
elimination for clause and the result is shown in Figure 4-9 (c).

Xiaohui Xue

85

S1
authordb

author +
id
name
address

S3
library

book +
title
author +

id
name

S2
persons

person +
name
address

TS
library

author +
id
name
address
book +

(a) Original mapping:
<library>{

for $au in distinct-values(S1/authordb/author/id,
S3/library/book/author/id)

for $v1 in S1/authordb/author,
for $v2 in S3/library/bbok/author[id=$au][1]
where $v1/id=$v2/id
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v2/name)}</name>,
<address>{data($v1/address)}</address>
for $v4 in S3/library/book
where $v4/author = $v2
return <book>{ data($v4/title) }</book>

}</author>
}</library>

(b) Adapted mapping after having found a
substitution for the invalid value-join condition:
<library>{

for $au in distinct-values(S1/authordb/author/id,
S3/library/book/author/id)

for $v1 in S1/authordb/author,
for $v2 in S3/library/bbok/author[id=$au][1],
for $v3 in S2/persons/person/name
where $v1/name=$v3 and $v2/name=$v3
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v2/name)}</name>,
<address>{data($v1/address)}</address>
for $v4 in S3/library/book
where $v4/author = $v2
return <book>{ data($v4/title) }</book>

}</author>
}</library>

(c) Adapted mapping after having defined the
invalid grouping for clause:
<library>{

for $au in distinct-values(S1/authordb/author/id)
for $v1 in S1/authordb/author,
for $v2 in S3/library/bbok/author[id=$au][1],
for $v3 in S2/persons/person/name
where $v1/name=$v3 and $v2/name=$v3
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v2/name)}</name>,
<address>{data($v1/address)}</address>
for $v4 in S3/library/book
where $v4/author = $v2
return <book>{ data($v4/title) }</book>

}</author>
}</library>

(d) Adapted mapping after having finding a
substitution for the invalid grouping condition:
<library>{

for $au in distinct-values(S1/authordb/author/id)
for $v1 in S1/authordb/author[id=$au][1],
for $v2 in S3/library/bbok/author,
for $v3 in S2/persons/person/name
where $v1/name=$v3 and $v2/name=$v3
return <author>{

<id>{data($v1/id)}</id>,
<name>{data($v2/name)}</name>,
<address>{data($v1/address)}</address>
for $v4 in S3/library/book
where $v4/author = $v2
return <book>{ data($v4/title) }</book>

}</author>
}</library>

Figure 4-9. Another example of mapping adaptation for a source element removal

5.2.4. Substituting the Invalid Duplication-Elimination Statement

The removal of the source element n invalidates the duplicate-elimination statement involving n. We
recall that a duplicate-elimination variable has been defined for a target element defined as a key, and
duplicate-elimination statements are used to ensure that the returned instances of the mapping will
not contain duplicates with respect to this target element. Adapting the mapping therefore consists in
finding a substitution to replace the invalid statement.

Automatic Mapping Generation and Adaptation for XML Data Sources

86

Consider the FWR expression ep of the invalid duplicate-elimination statement, and the target
element n’ for which the duplicate-elimination statement is defined. Finding a substitution for the
statement consists in finding an element n” and another element-binding for clause f in ep such that:

− n’ ≅ n”;
− f either binds its variable to n” or binds its variable to an element e such that e is monovalued

with respect to n” and vice versa.

If these conditions are satisfies, the element n” and the for clause f together are an adaptation
solution. If there is at least one element satisfying the conditions, then the mapping is adaptable.
Notice that for the same reason as we mentioned for repairing duplicate-elimination for clauses,
there is always at least one element satisfying the condition and the mapping is always adaptable.

The way of finding an element to substitute a duplicate-elimination statement is the same as the
one to redefine a duplicate-elimination for clause presented in Algorithm 4-3.

For every combination of the element n” and the for clause f that is an adaptation solution,
repairing the mapping consists in:

− adding in f a duplicate-elimination statement that involves n” and the same duplicate-
elimination variable used in the invalid one;

− removing the invalid duplicate-elimination statement.

Consider again the example of Figure 4-9. The last invalid mapping component that needs to be
repaired is the duplicate-elimination statement [id=$au][1]. The element ids1 and the for clause
defining the variable $v1 together are an adaptation solution. The statement [id=$au][1] is added in
this for clause to replace the invalid one; the adapted mapping is shown in Figure 4-9 (d). All the
added components are in bold.

5.2.5. Repairing the Invalid Element-Binding for Clause

If a source element n is removed, the element-binding for clause f that binds its variable to n is
invalidated. Consequently, all the other mapping components that involve an element related to the
variable of f are invalidated; these mapping components may be join conditions, grouping conditions
and target assignments.

Consider the set N of elements related to the variable of the invalid for clause f and that are used
either in a target assignment or in a join condition. We distinguish between the two cases depending
on if N is empty or not.

If N is empty, the invalid for clause is the only element-binding for clause of the FWR
expression and there is no target assignment. This case is possible if the FWR expression populates a
single optional element. After the removal of the source element, we only remove its assignment
because the target element is optional. In this case, the adaptation consists in removing the whole
FWR expression containing the invalid for clause.

If N is not empty, the invalid for clause f was used either to relate other for clauses or to assign
a target element; it therefore needs to be re-defined to bind its variable to another element. Consider
an element e in N such that the other elements of N are monovalued with respect to e; the invalid
for clause is re-defined to binds the variable to e.

Once the invalid for clause is re-defined, all the other elements of N are changed to be related to
n’, except for the grouping conditions that involve n.

Xiaohui Xue

87

TS
library

author +
id
address *
book +

S1
library

author +
id
name
book +

isbn
bookTitle

address *

(a) Original mapping:
<library>{

for $sp1 in S1/library/author/name
return <author>{

<id>{data($sp1/PARENT::author/id)}</id>
for $sp2 in S1/library/author/book/isbn
where $sp1/PARENT::author/book/isbn = $sp2
return <book>{ data($sp2) }</book>
for $sp3 in S1/library/author/address
where $sp1 = $sp3/PARENT::author/name
return <address>{data($sp3)}</address>

}</author>
}</library>

(b) Repaired mapping for the invalid for clause sp1:
<library>{

for $sp1 in S1/library/author/id
return <author>{

<id>{data($sp1)}</id>
for $sp2 in S1/library/author/book/isbn
where $sp1/PARENT::author/book/isbn = $sp2
return <book>{ data($sp2) }</book>
for $sp3 in S1/library/author/address
where $sp1 = $sp3/PARENT::author/name
return <address>{data($sp3)}</address>

}</author>
}</library>

(c) Repaired mapping for the invalid join condition:
<library>{

for $sp1 in S1/library/author/id
return <author>{

<id>{data($sp1)}</id>
for $sp2 in S1/library/author/book/isbn
where $sp1/PARENT::author/book/isbn = $sp2
return <book>{ data($sp2) }</book>
for $sp3 in S1/library/author/address
where $sp1 = $sp3/PARENT::author/id
return <address>{data($sp3)}</address>

}</author>
}</library>

Figure 4-10. A third example of mapping adaptation for a source element removal

Consider the example of Figure 4-10 that contains one target schema and one source schema. A
mapping between them is shown in Figure 4-10 (a). The removal of the source element names1 affects
two mapping components: the element-binding for clause defining the variable $sp1 and the
grouping condition $sp1 = $sp3/PARENT::author/name. Two other mapping components are
indirectly affected because they involve an element related to $sp1: the target assignment using ids1
and the grouping condition $sp1/PARENT::author/book/isbn = $sp2. All the invalid mapping
components are in bold and italic. We illustrate here the adaptation of the mapping by repairing the
invalid for clause and the two mapping components that involves an element related to $sp1. The
repairing of the grouping condition involving names1 will be presented in the following section.

There is no join condition involving an element related to $sp1. The element ids1 is the only one
related to $sp1 and it is used for a target assignment. The invalid for clause is therefore re-defined to
bind the variable to ids1. The two components indirectly invalidated are also repaired: the path for the
element related to $sp1 is updated with respect to the new element to which $sp1 is bound. Figure
4-10 (b) gives the result of the adaptation; the repaired components are in bold in the new mapping.

5.2.6. Substituting the Invalid Grouping Conditions

The grouping conditions involving n are invalidated by the removal of the element n. The mapping
needs to be adapted; the adaptation consists in finding a substitution for the grouping condition that
groups the instances of ep by instances ep’. This consists in finding two elements e and e’ such that:

− there is an element-binding for clause f in ep that binds its variable to e;
− there is an element-binding for clause f’ in ep’ that binds its variable to e’;
− either e is monovalued with respect to e’, or e’ is monovalued with respect to e.

If there is a pair of for clauses satisfying the conditions, the mapping is adaptable. For every pair
of elements e and e’, the mapping is adapted by adding in the where clause of ep a new grouping
condition that involves either e’ or e’ related to f and f’.

Consider again the example in Figure 4-10. The mapping in Figure 4-10 (b) still contains an invalid
grouping condition $sp1 = $sp3/PARENT::author/name. To repair it, we consider a for clause that
binds a variable to ids1 and a for clause that binds a variable to addresss1 and ids1 is monovalued with

Automatic Mapping Generation and Adaptation for XML Data Sources

88

respect to addresss1; there is therefore a solution to substitute the invalid grouping condition. The
mapping is adapted by adding the grouping condition $sp1 = $sp3/PARENT::author/id to replace the
invalid one. Figure 4-10 (c) shows the adapted mapping.

Algorithm 4-4 described the process of finding substitutions to repair an invalid grouping
condition. It takes as input the FWR expression ep containing the invalid grouping condition and the
FWR expression in which ep is nested. It produces the set of substitutions (S) that will be used to
substitute the grouping condition. For every element-binding for clause f in ep and every element-
binding for clause f’ in ep’ such that f and f’ bind their variables respectively to the elements e and e’,
the algorithm checks if e is monovalued with respect to e’.

Algorithm 4-4. Finding substitutions for an invalid grouping condition

Substitution_Finding_for_an_Invalid_Grouping_Solution(ep, ep’, S)
Begin
 S := ∅;
 for each element-binding for clause f in ep:
 for each element-binding for clause f’ in ep’:
 m := binding-element(f);
 m’ := binding-element(f’);
 if monovalued(m, m’) or monovalued(m’, m)
 s := create-solution(f, f’); //create a solution to substitute the grouping condition
 S := S ∪ {s};
End

5.3. Removal of Source Constraints

We consider that the evolutions occurring in the sources may also concern the integrity constraints,
such as keys and referential constraints. Depending on whether the generation of the original
mapping has been performed using these constraints; their removal may affect the mapping or not. If
the mapping has been generated by an automatic approach based on the source constraints,
removing them will affects the mapping. If the mapping has been generated manually or generated by
an automatic approach that does not use the source constraints, removing such constraints will not
affects the mapping.

Removing a reference consists in releasing the constraints on the elements defining the reference.
If the intra-source joins in the mapping were inferred based on references during the mapping
generation (e.g. [KX05d, PVM03]), removing them may affect the mapping. If the intra-source joins
were not inferred based on references during the generation, removing references will not affect the
mapping. Consider the elements n and n’ of the same source schema, a key k defined on n’ and a
reference r defined on n to reference k. Removing r affects the mapping if there is a join condition
between n and n’ in one of its where clauses and if this join has been inferred based on the removed
reference.

Removing source keys only concerns keys without references. If the mapping generation assumes
that inter-source joins are based on key definitions (e.g. [KX05d]), key removal may affect the
mapping. If the generation (e.g. [PVM05]) does not make such assumption, removing keys does not
affect the mapping. Consider a key defined on the element n being removed from its source. The
change affects the mapping if it contains a join condition between n and another element n’ such that
n’ is in another source and it is not defined as a key, and the join is inferred based on the keys.

Xiaohui Xue

89

For both of the two cases, if the mapping is affected, the mapping adaptation consists in
substituting the invalidated join condition n=n’. The process of finding a substitution to replace an
invalid join condition is presented Section 5.2.2; the join condition is invalid because of the removal
of one of the two elements involved in the condition. In this case, a join condition is invalidated
because source constraint is removed, but the process of finding a substitution is the same as the one
described in Section 5.2.2.

An example is shown in Figure 4-11 to illustrate the adaptation in this case. There are a target
schema, three source schemas and a mapping is shown in Figure 4-11 (a). Suppose that this mapping
has been generated using an automatic tool based on the key constraints. Consider a source change
that removes the key defined on titles2. The mapping is affected by the change because it contains a
join condition (in bold and italic in Figure 4-11 (a)) involving titles1 and titles3; titles3 is not a key.
Adapting the mapping consists in finding a candidate join path to relate the two for clauses in the
FWR expression. Since there is a candidate join path j[titles1, titles2](movies1, videos2), j[titles2, titles3](videos2,
movies3) between the two elements movies1 and movies3, the mapping is adaptable and the adapted
mapping is shown in Figure 4-11 (b). The added components are in bold.

S1
moviestore

movie +
title
type
director

S3
actors

actor +
name
movie +

title
year

S2
videoclub

video +
title
price

TS
movies

movie +
title
director
year

(a) Original mapping:
<movies>{

for $v1 in S1/moviestore/movie,
for $v2 in S3/actors/actor/movie
where $v1/title = $v2/title
return <movie>{

<title>{data($v1/title)}</title>,
<director>{data($v1/director)}</director>,
<year>{data($v2/year)}</year>

}</movie>
}</movies>

S1’
moviestore

movie +
title
type
director

removing the key
defined on titles2

(b) Adapted mapping after the removal of
the key defined on titles2:
<movies>{

for $v1 in S1/moviestore/movie,
for $v2 in S3/actors/actor/movie,
for $v3 in S2/videoclub/video/title
where $v1/title = $v3 and $v3 = $v2/title
return <movie>{

<title>{data($v1/title)}</title>,
<director>{data($v1/director)}</director>,
<year>{data($v2/year)}</year>

}</movie>
}</movies>

Figure 4-11. Mapping Adaptation for a source constraint removal

5.4. Moving Source Subtrees

Moving a subtree from its original place to a new place in the same schema consists in:

− removing the elements of the subtree from the original place, as well as all the
correspondences and constraints that involves one of its element;

− and adding the same elements of the subtree at the new place with the new correspondences
and constraints for these elements.

Moving a leaf element n with its correspondences and its constraints can be considered to be a
special case of moving a subtree that contains a single element.

For each moved element n, if there was a correspondence relating n at the original place with an
element m, there is an correspondence between n at the new place and m. To illustrate the process of
re-defining the constraints, consider the example of a subtree t being moved to be a child of an
element p’. For every constraint defined on elements in t and having the scope element in t, a new

Automatic Mapping Generation and Adaptation for XML Data Sources

90

constraint is defined to imply the same elements in t at the new place. Consider that a constraint is
defined on an element of t and it has the scope element c being outside of t. If c is monovalued with
respect to p’, a new constraint will be defined on the same element at the new place; the scope of the
new constraint will be the first common ascendant of c and p’. If c is multivalued with respect to n, no
constraint will be defined from it for t at the new place. The rules used to re-define constraints after
moving a subtree are shown in Figure 4-12.

k

c
e

if c is monovalued
with respect to p’

r

k’

c’

e’
r’

if c is multivalued
with respect to p’

c’

e’ c
k

c
e

r

r’

c’

e’
k’

if c is monovalued
with respect to p’

c’

e’
k’

if c is multivalued
with respect to p’

k

c
e

r
if c is multivalued
with respect to p’

if c is monovalued
with respect to p’

k
c
e

k’
c’
e’

r r’

e: the root of the subtree to move
k: the original key
r: the original reference
c: the original scope
p’:the element which will be the

parent of the root of the moved
subtree at the new place

e’: the root of the subtree
at the new place

c’: the scope for inferred
key or reference

k’: new key
r’: new reference

e’

k’

c’

e’

r’

p’ p’

p’

p’

p’

p’

p’
p’

p’

p’

c

Figure 4-12. Re-defining keys and references after moving a subtree

Moving a source subtree t can be considered as a composition of the following changes:

− removing all the source references that reference to a key defined on an element of t;
− removing all the source keys and source references that involve an element in t;
− removing all the source element of t in a bottom up order with their correspondences;
− adding the elements of t at the new place in a top to down order with the new

correspondences; the cardinality of elements at the new place is the same as the ones at the
original place.

− adding the new source keys for the elements of the added subtree;
− adding the new source references for the elements of the added subtree.

The mapping components that are invalidated by a source subtree moving are the components
that are invalidated by one of its composing changes. Notice that all the invalid changes in this case
are the changes invalidated by a removal. The source addition changes never affect a mapping.

5.5. Renaming of Source Elements

Renaming source elements concerns all leaf or intermediate elements in the source schemas and it
consists in changing the tag name of the element. The change affects all the components involving
this element and the adaptation of the change consists simply in changing the name of this element
used in the mapping. The mapping is always adaptable in this case.

Xiaohui Xue

91

6. Mapping Adaptation for Target Evolution

Beside evolution occurring in the sources, some changes may also occur in the target schema. These
changes reflect the evolution of the users’ needs. In this section, we present the adaptation of the
mappings in the case of changes occurring in the target schema. We consider the following changes:
the addition or the removal of a target element, the addition or the removal of a key in the target
schema, moving target subtrees and renaming target elements.

6.1. Removal of Target Elements

We consider that removing a target element concerns only a leaf element n such that there is no key
defined on n. The removal affects the mapping if it contains an assignment for n.

The mapping is always adaptable for target element removal. There are two cases to consider
depending on the cardinality of the removed element:

− if the removed element is monovalued, the adaptation consists in removing the
corresponding assignment.

− if the removed element is multivalued, the adaptation will remove the whole FWR expression
assigning the removed element.

Figure 4-13 shows an example of mapping adaptation after the removal of two target elements.
We consider the following changes in the target schema: the element chaptertitlets is first removed, and
then the element chaptersts is removed. The original mapping of Figure 4-13 (a) is affected by the first
change. Since chaptertitlets is multivalued, the mapping is adapted by removing the whole FWR
expression for assigning the element chaptertitlets (in bold and italic in Figure 4-13 (a)). The result
mapping of the adaptation is given in Figure 4-13 (b). This mapping is still affected by the removal of
the element chaptersts, which is monovalued; the assignment for chapterts is therefore removed and the
adapted mapping is shown in Figure 4-13 (c).

6.2. Addition of Target Element

Adding a new target element n consists in adding n as a leaf element in the target schema. The
element n is associated with the two attributes minOccurs and maxOccurs to inform
respectively about the minimum and the maximum number of its occurrences with respect to its
parent. Recall that with these two attributes, the element is either monovalued or multivalued and it is
either mandatory or optional. Some semantic correspondences are added to relate n with its
equivalent elements in the sources. If n has no equivalent source element, there is no addition of
semantic correspondence.

The mapping is affected if n is mandatory and the mapping contains an assignment for the parent
of n. The process of repairing the mapping is also influenced by whether the added element is a text
element or a non-text element. If the added element is a non-text element, we do not need to assign
it from the sources. Otherwise, it needs to be assigned from a source element.

Automatic Mapping Generation and Adaptation for XML Data Sources

92

(a) Original mapping:
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>
for $sp2 in S1/library/author/book
for $sp3 in S2/library/book
where $sp2=$sp3 and $sp2 = $sp1/book
return <book>{

<isbn>{data($sp2/isbn)}</isbn>,
<booktitle>{data($sp2/title)}</booktitle>
<chapters>

for $sp4 in S2/library/book/chaptertitle
where $sp3/chaptertitle = $sp4
return

<chaptertitle>data($sp4)</chaptertitle>
</chapters>

}</book>
}</author>

}</library>

(b) Adapted mapping after the removal of chaptertitlets and
chaptertitles2≅chaptertitlets (before removing chapterts):
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>
for $sp2 in S1/library/author/book
for $sp3 in S2/library/book
where $sp2 = $sp3 and $sp2 = $sp1/book
return <book>{

<isbn>{data($sp2/isbn)}</isbn>,
<booktitle>{data($sp2/title)}</booktitle>
<chapters></chapters>

}</book>
}</author>

}</library>

TS
library

author +
id
book *

isbn
booktitle
chapters

chaptertitle+

S1
library

author +
id
name
book +

isbn
bookTitle

S2
library

book +
isbn
author +

id
chaptertitle +

TS
library

author +
id
book *

isbn
booktitle
chapters

chaptertitle+

S1
library

author +
id
name
book +

isbn
bookTitle

S2
library

book +
isbn
author +

id
chaptertitle +

(c) Adapted mapping after the removal of chapterts :
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>
for $sp2 in S1/library/author/book
for $sp3 in S2/library/book
where $sp2=$sp3 and $sp2 = $sp1/book
return <book>{

<isbn>{data($sp2/isbn)}</isbn>,
<booktitle>{data($sp2/title)}</booktitle>

}</book>
}</author>

}</library>

1

2

1

Figure 4-13. Mapping Adaptation for a target element removal

The rest of the section describes the mapping adaptations in three different cases: the element is a
non-text element, the element is a monovalued text element or the element is a multivalued text
element. The adaptation of the mapping in each of these situations is described in the following
subsections.

6.2.1. Repairing the Mapping after the Addition of a Mandatory Non-Text Element

If the element n added in the target schema is a mandatory non-text element, the mapping is always
adaptable and the adaptation consists in adding in the mapping the element n without any assignment
inside; the element is nested in the assignment for the parent of n.

If n is monovalued, the adaptation consists in adding an empty assignment for n in the FWR
expression of the subtree of the parent of n. If n is multivalued, the added element is represented by a
new FWR expression for the subtree containing this single element n: it only contains an empty
assignment for n and it is nested inside the FWR expression of the subtree of the parent of n.

Figure 4-14 shows an example of the addition of a mandatory non-text element. This is the reverse
situation as the one of the example shown in Figure 4-13. There is one target schema and two source
schemas. A mapping between these schemas is shown in Figure 4-14 (a). Consider two elements that
are successively added in the target schema: chaptersts and then chaptertitlets. In Figure 4-14, they are
represented in bold and underlined. In this section, we consider the mapping adaptation for the
addition of the element chaptersts. It is mandatory and the original mapping shown in Figure 4-14 (a) is
affected by the change. Since chaptersts is a non-text element, an element for chaptersts is nested in the
assignment for the parent bookts. The result of the adaptation is shown in Figure 4-14 (b) and the
added component is in bold.

Xiaohui Xue

93

TS
library

author +
id
book *

isbn
booktitle
chapters

chaptertitle+

S1
library

author +
id
name
book +

isbn
bookTitle

S2
library

book +
isbn
author +

id
chaptertitle +

(a) Original mapping:
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>
for $sp2 in S1/library/author/book
for $sp3 in S2/library/book
where $sp2 = $sp3 and $sp2 = $sp1/book
return <book>{

<isbn>{data($sp2/isbn)}</isbn>,
<booktitle>{data($sp2/title)}</booktitle>

}</book>
}</author>

}</library>

(b) Adapted mapping for the addition of chapterts:
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>
for $sp2 in S1/library/author/book
for $sp3 in S2/library/book
where $sp2 = $sp3 and $sp2 = $sp1/book
return <book>{

<isbn>{data($sp2/isbn)}</isbn>,
<booktitle>{data($sp2/title)}</booktitle>,
<chapter></chapter>

}</book>
}</author>

}</library>

(c) Adapted mapping for the addition of
chaptertitlets and chaptertitles2≅chaptertitlets:
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>
for $sp2 in S1/library/author/book
for $sp3 in S2/library/book
where $sp2=$sp3 and $sp2 = $sp1/book
return <book>{

<isbn>{data($sp2/isbn)}</isbn>,
<booktitle>{data($sp2/title)}</booktitle>
for $sp4 in S2/library/book/chaptertitle
where $sp3/chaptertitle = $sp4
return <chapter>

<chaptertitle>{data($sp4)}</chaptertitle>
</chapter>

}</book>
}</author>

}</library>
Figure 4-14. Mapping Adaptation for target element and its correspondences addition

6.2.2. Repairing the Mapping after the Addition of a Mandatory and Monovalued Text Elements

Consider that a text element n is added in the target schema such that n is mandatory and
monovalued. If a mapping contains an assignment for the parent of n, the mapping is affected by the
addition and needs to be adapted. Given the FWR expression ep for the parent of n, the adaptation
consists in extending ep to assign n.

We distinguish two cases depending on whether the FWR expression ep already populates some
text elements or does not populate any text element. If ep already populates some text elements, the
adaptation needs to add in ep an assignment for n from a source element n’; n’ has to be related to the
other source elements that are used in a target assignment of ep. If ep does not populate any target
element, the adaptation needs to add in ep an assignment for n; n has to be related to an element used
in a target assignment of the FWR expression in which ep is nested.

If the FWR expression already populates some text elements, mapping adaptation follows the same
algorithm as for repairing the return clause for a source element removal (ref. Section 5.2.1). In
both the two situations, the mapping need to assign a target element and to keep it related to the
other elements of the FWR expression. The only difference is that there is no invalid target
assignment that needs to be replaced in the case of a target element addition. Consider that the text
element n is added in the target schema with some semantic correspondences. The source elements
that can be used to assign n in the corresponding FWR expression ep are the ones that satisfy the
conditions specified in Section 5.2.1. If a source element n’ satisfies the condition, it then can be used
to assign n in ep. The mapping adaptation follows the same principle as the one presented in Section
5.2.1; except that only the new target assignment will be added and there is no invalid assignment to
be removed. Like in Section 5.2.1, the mapping is not adaptable if no source element satisfies the
conditions.

Automatic Mapping Generation and Adaptation for XML Data Sources

94

Adapting the mapping if the FWR expression does not populate any text element is similar to the
repairing a grouping condition after a source element removal (ref. Section 5.2.6). Consider a
monovalued text element n added in the target schema and the corresponding FWR expression ep. A
source element n’ can be used to assign n in ep if it satisfies that:

− n ≅ n’;
− if ep is nested in another FWR expression ep’: there is an element-binding for clause f’ in ep’

such that f’ binds a variable to an element e’ and either n is monovalued with respect to e’, or
e’ is monovalued with respect to n.

If an element satisfies these two conditions, it is an adaptation solution and the mapping is
adaptable. Algorithm 4-5 describes the adaptation in case of a target element addition. It takes as
input the new target element n and the FWR expression ep’ in which the FWR expression for n is
nested. It produces the set of substitutions (E) that can be used to replace the grouping condition.
For every source element that is equivalent to n and every element-binding for clause f’ in ep’, the
algorithm checks if the source element is monovalued with respect to the element of f’ or the inverse.

Algorithm 4-5. The algorithm for finding elements to assign an added target element

Elements_Serach_for_a_ Target_Element_Addition(n, ep’, E)
Begin
 S := ∅;
 for each element n’ such that n ≅ n’:
 for each element-binding for clause f’ in ep’:
 m := binding-element(f);
 if monovalued(m, m’) or monovalued(m’, m)
 E := E ∪ {n’};
End

The mapping is adaptable if some elements that satisfy the conditions are found. For every source
element n’ that satisfies the condition, the adaptation consists in adding the following components in
ep:

− an element-binding for clause f that binds a variable v to n’;
− a join condition involving either n’ or e related to f’ and to f;
− an assignment from n’ to n in the return clause of ep;

6.2.3. Repairing the Mapping after the Addition of a Mandatory and Multivalued Text Elements

If the added target element is multivalued and mandatory, we need to build a new FWR expression
for n and add it in the FWR expression populating the parent of n. As for the addition of a
monovalued target element in a FWR expression that does not populate any text element, the
adaptation of the mapping has to assure that the instances of n are grouped by the instances derived
by the FWR expression in which the new expression is nested.

Consider the added multivalued text element n and the FWR expression ep populating the parent of
n. A source element n’ can be used to assign n if it satisfies that:

− n ≅ n’;
− there is an element-binding for clause f’ in ep such that f’ binds its variable to an element e’

and either n is monovalued with respect to e’, or e’ is monovalued with respect to n.

Xiaohui Xue

95

For every source element satisfying the conditions to be an adaptation solution, mapping
adaptation consists in defining a FWR expression with the following components:

− an element-binding for clause f that binds a variable v to n’;
− a where clause that contains a grouping condition involving either n’ or e related to f’ and to f;
− a return clause with an assignment from n’ to n; n’ is related to v.

Once this FWR expression is built, it is nested in the FWR expression of the parent of n to produce
the adapted mapping.

Consider again the example shown in Figure 4-14. We also add another target element chaptertitlets
in the target schema (in bold and underlined) with a correspondence chaptertitlets ≅ chaptertitles2. The
element chaptertitlets is a mandatory and multivalued text element. The mapping of Figure 4-14 (b) is
therefore affected and a new FWR expression needs to be built for chaptertitlets. The mapping contains
the FWR expression ep’ populating chapterts. The instances of chaptertitlets must be related to the
instances of ep’. The element chaptertitles2 is a solution: it is equivalent to chaptertitlets and books2 is
monovalued with respect to it. It is therefore used to adapt the mapping and the result is shown in
Figure 4-14 (c). A new FWR expression is created for chapterts containing (i) an element-binding for
clause that binds the variable $sp4 to the element chaptertitles2; (ii) a grouping condition to group the
instances of the chaptertitles2 by books2: $sp3/chaptertitle = $sp4, (iii) and a return clause that contains
an assignment from chaptertitles2 to chaptertitlets; chaptertitles2 is related to $sp4.

6.3. Removal of Target Keys

According to our pattern, a mapping may contain a duplicate-elimination for clause and some
duplicate-elimination statements if an element is defined as a key in the target schema. Consider that
the key constraint defined on the element n is removed from the target schema. This removal affects
the mapping by invalidating all the concerned duplicate-elimination components: (i) the duplicate-
elimination for clause f for n, (ii) and the duplicate-elimination statements that involve the variable
defined by f.

The mapping is always adaptable for a key removal from the target schema. Mapping adaptation
consists in removing the invalidated for clause and the invalidated statements.

Figure 4-15 shows an example for both target key removal and addition. There is one target
schema, one source schema and a mapping defined between them (in Figure 4-15 (a)). We first
describe the example for the target removal. The element idts is defined as a key in the target schema,
and there is a duplicate-elimination for clause and a duplicate-elimination statement for this element
in the original mapping (represented in bold and in italic). Consider that the key defined on idts is
removed which transforms the target schema from TS to TS’. The mapping is affected because the
duplicate-elimination component is concerned. Mapping adaptation for this change consists in
removing all these components; the result is the mapping shown in Figure 4-15 (b).

Automatic Mapping Generation and Adaptation for XML Data Sources

96

TS
library

author +
id
name
book *

isbn
title

S1
library

author +
id
name
book +

isbn
title

address +
authorid
authoraddress

(a) Original mapping:
<library>{

for $au in distinct-values(S1/library/author/id)
for $sp1 in S1/library/author[id=$au][1]
return <author>{

<id>{data($sp1/id)}</id>,
<name>{data($sp1/name)}</name>
for $sp4 in S1/library/author/book
where $sp1/book = $sp4

return <book>{
<isbn>{data($sp4/isbn)}</isbn>,
<title>{data($sp4/title)}</title>

}</book>
}</author>

}</library>

(b) Adapted mapping after having
removed the key definition over idts:
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>,
<name>{data($sp1/name)}</name>
for $sp4 in S1/library/author/book
where $sp1/book = $sp4
return <book>{

<isbn>{data($sp4/isbn)}</isbn>,
<title>{data($sp4/title)}</title>

}</book>
}</author>

}</library>

(c) Adapted mapping after having defined
isbnts as a key :
<library>{

for $sp1 in S1/library/author
return <author>{

<id>{data($sp1/id)}</id>,
<name>{data($sp1/name)}</name>
for $bk in distinct-values(S1/library/author/id)
for $sp4 in S1/library/author/book[isbn=$bk][1]
where $sp1/book = $sp4
return <book>{

<isbn>{data($sp4/isbn)}</isbn>,
<title>{data($sp4/title)}</title>

}</book>
}</author>

}</library>

TS’
library

author +
id
name
book *

isbn
title

TS”
library

author +
id
name
book *

isbn
title

removing the key
defined on idts

defining isbnts
to be a key

Figure 4-15. Mapping Adaptation after the removal of a target key and the addition of another

target key

6.4. Addition of Target Keys

Adding a target key consists in defining an element of the target schema as a key; the target element
has to be mandatory. The addition makes the mapping affected. The mapping adaptation in this case
consists in adding a duplicate-elimination for clause for the new key and also the necessary
duplicate-elimination statements.

Consider that a key is added in the target schema over the element n and the original mapping
derives instances for n. The mapping is therefore affected. A duplicate-elimination for clause needs
first to be defined and then some duplicate-elimination statements will be added. Given the FWR
expression ep populating n, defining the for clause requires finding a set of source elements such
that element n’ satisfies the following conditions:

− n ≅ n’;
− there is an element-binding for clause f in ep such that either f binds a variable to n or n is

monovalued with respect to the element to which f binds its variable.

The above conditions are similar to the condition for finding elements to re-define an invalid
duplicate-elimination for clause in Section 5.2.3. As we already mentioned in Section 5.2.3, at least
one element will be found following this condition. The element n has to be mandatory. Therefore
there is at least one source element that is used to assign n in the mapping and that satisfies the above
condition.

Given a set of source elements {n1, .., nk} that satisfies the conditions, the duplicate-elimination
for clause is defined to bind its variable $v to the distinct union of these elements.

A duplicate-elimination statement is created for every source element ni in {n1, .., nk}: [ni = $v][1].
Consider the element-binding for clause f such that that either f binds a variable to ni or ni is
monovalued with respect to the element to which f binds its variable. The statement is added in the
path expression of the element to which f binds its variable.

Consider the example of Figure 4-15. The target schema TS’ is changed again by defining the
element isbnts as a key which leads to a new target schema TS”. The mapping is affected by the change;

Xiaohui Xue

97

a duplicate-elimination for clause is firstly defined and then some duplicate-elimination statements
are added for the new key. Consider the FWR expression ep that derives instances of isbnts. There is a
source element isbns1 that satisfies the condition to define the duplicate-elimination for clause:

− isbns1 ≅ isbnts;
− the only element-binding for clause of ep binds its variable to books1 and isbns1 is

monovalued with respect to books1.

A duplicate-elimination for clause is added to bind a variable from the distinct instances of isbns1.
A duplicate-elimination statement is also added in the concerning for clause. The adapted mapping
is shown in Figure 4-15 (c).

6.5. Moving of Target Subtrees

As for moving a source subtree, moving a target subtree also consists in removing the old subtree
with its constraints and adding the new subtree with the inferred constraints. Since there is no
referential constraint in the target schema, the process only infers keys and it follows the same rules
as the ones described in Section 5.4.

Moving a target subtree can be considered as a composition of the following changes:

− removing all the target keys that involve an element of t;
− removing all the target elements and their correspondences of the subtree in a bottom up

manner;
− adding the elements of the subtree t at the new place in a top-down manner with the

associated correspondences; the cardinalities of elements at the new place are the same as the
ones at the original place.

− adding the inferred keys for the elements of the added subtree.

The mapping components invalidated by moving a target subtree are the ones that are invalidated
by each change listed above. The mapping is adapted for every composing change following the
specific process described in the above sections.

6.6. Renaming of Target Elements

Renaming target elements concerns all leaf or intermediate elements in the target schema and it
consists in changing the tag name of the element. The change affects all the components involving
this element and the adaptation of the change consists simply in changing the name of this element in
the mapping. The mapping is always adaptable in this case.

7. Conclusion

In this chapter, we presented our automatic mapping adaptation approach when schemas evolve. We
consider schemas are described in XML Schema and mappings expressed using XQuery; we restrict
ourselves to a limited set of XQuery clauses and we define a general patter for the mappings. These
mappings are either generated by a specific mapping generation tool or manually specified by a
designer.

Automatic Mapping Generation and Adaptation for XML Data Sources

98

Our proposal is an incremental approach and it has a specific adaptation process for every change
type it considers; each change is propagated in the mappings in three steps: (i) the original mapping is
first checked to see if it is affected by the change; (ii) then the affected mapping is checked to see if it
is adaptable, which means there is at least one solution to adapt it to the new schemas; (iii) finally
adapted mappings are generated if the mapping is adaptable. There may be several adaptation
solution; in this case, an adapted mapping is generated for each solution.

Our approach considers the adaptation for both target changes and source changes. It does not
rely on a specific mapping generation and it considers the input mappings are either generated by a
generation tool or specified manually. It does not require extra metadata except the description of the
schemas, the correspondences and the mapping.

Our approach is an incremental approach. For each schema change, we have proposed adaptation
algorithm allowing to check if the mapping is adaptable and to build the adapted mapping. These
algorithms are the building blocks of a general evolution process; one of our perspectives to define a
global propagation process to propagate a set of schema changes. The system may re-order some
change propagation or combine some changes to optimize the performance of the adaptation. For
this purpose, some priority orders will be attributed to different change types and some algorithms
will be developed to recognize the changes that can be combined.

In our approach of mapping adaptation, we define a list of changes that the system considers.
Every time one of these changes occurs in the schemas, the system adapts the mapping affected by
the change. Few works [MAL05] has been proposed to detect change events. One perspective of our
work is to propose an approach and a tool for detecting change events in the schemas. The change
events must be detected in real-time. If a new version of a schema is added to the system, the tool
should be able to analyse the difference between the two versions and return the set of change events
representing the changes. Logs can be used for change detection.

Like our mapping generation approach, our mapping adaptation process also generates a set of
adapted mappings. It would be interesting to use some data quality evaluation methods to
automatically rank the adapted mappings. The evaluation can be also used inside of the mapping
adaptation process to eliminate some intermediate results that will give mappings that are not
satisfactory regarding some quality properties.

Xiaohui Xue

99

Chapter 5. Prototype and Experimentation

1. Introduction

Chapters 3 and 4 described our proposal for mapping generation and adaptation for XML schemas.
In this chapter we illustrate its practical use in real applications. To this end, we have developed a
prototype of an evaluation tool, called AuMGA (Automatic Mapping Generation and Adaptation),
which implements the proposed approaches. The tool allows the execution of the algorithms for
mapping generation and adaptation as well as some auxiliary functionalities such as the visualization
and the edition of the metadata.

In order to validate the approach, the prototype has been used in several application scenarios.
Specifically, we describe two data integration applications: the MediaGrid project and an adaptative
system for supporting the generation of mediation queries. For each of these applications, we briefly
describe its principle and we explain how AuMGA has been used. The validation of our approach in
these scenarios is twofold. Firstly, we want to analyze the practical difficulties of modeling different
scenarios into AuMGA. Secondly, we want to test the execution of mapping generation method
using these applications. We also tested the communication of the tool with the other modules in
these applications. We have performed some tests for evaluating the performance of the mapping
generation approach. For this purpose, we first consider some typical test scenarios and we execute
our method over every scenario. Secondly, we evaluate the performance of the different steps of the
approach.

The following sections describe our experimentations: Section 2 presents the AuMGA tool,
describing its functionalities, architecture and its user interface. Section 3 describes the experience of
using AuMGA in the two application scenarios. Section 4 presents the performance evaluation tests,
describing the considered test scenarios, the tests strategies and the obtained results. Finally, Section
5 concludes the chapter.

2. Prototype

We developed a prototype system to implement the approach of mapping generation and adaptation
and it is called AuMGA. The tool is implemented in Java (JDK 5.0) using the external package
Apache Xerces [xerces]. The source of the prototype implementation has been made available at
SourceForge.net2 under the GNU General Public License (GPL).

In the remainder of the chapter, Section 2.1 first describes the functionalities provided by the
system. Section 2.2 presents the system architecture and Section 2.3 describes the user interfaces
provided by the tool.

2 The AuMGA project at SourceForge.net: https://sourceforge.net/projects/aumga

Automatic Mapping Generation and Adaptation for XML Data Sources

100

2.1. System Functionalities

The system implements the functionalities required for mapping generation and mapping adaptation.
These functionalities can be classified into the following categories:

− Mapping generation functionalities;
− Mapping adaptation functionalities ;
− Metadata management functionalities
− Visualization and editing functionalities
− Application management functionalities

In the rest of the section, we will describe each of these categories.

2.1.1. Mapping Generation Functionalities

The system can generate a set of mappings for the given schemas. The approach takes as input one
target schema and several source schemas, all described in XML Schema. It also takes as input a set
of semantic correspondences between elements of different schemas. It generates several mappings
for the target schema from the source schemas; each mapping represents alternative semantics to
derive instances of the target schema. The generated mappings are described in an abstract
representation and the system can also translate these abstract mappings into XQuery. To support
this process, the tool includes the following functionalities:

− target schema decomposition: produces a set of target subtrees given a target schema;
− source parts identification: produces the relevant parts of the sources for a given target

subtree;
− candidate join identification: produces the set of candidate joins given a set of source parts

for a given target subtree;
− partial mapping definition: produces the set of partial mappings for a given target subtree

given the corresponding source parts and candidate joins;
− target mapping generation: produces the abstract target mappings by considering all the valid

combinations of partial mappings;
− XQuery translation: produces the XQuery expression of an abstract mapping;
− Incomplete results generation: produces a new target schema by relaxing some constraints;

this schema can be used as input to restart the generation process.

2.1.2. Mapping Adaptation Functionalities

The process of mapping adaptation modifies the mapping after a source or a target schema change.
It considers a mapping between one target schema and several source schemas; the process generates,
if possible, several adapted mappings for the new schemas. The tool includes the following mapping
adaptation functionalities:

− testing if a mapping is affected: checks the different components of a mapping to see if some
of them are invalid;

− testing mapping adaptability: produces the different adaptation solutions.
− repairing an affected mapping: produces a new mapping from an affected mapping;.

2.1.3. Metadata management Functionalities

The tool also proposes several auxiliary functionalities to allow the management of the data and of
the different results of mapping generation and adaptation.

Xiaohui Xue

101

The system gets input and it also outputs information as execution results. The system allows users
to input the schemas, the semantic correspondences and the mappings. The input data can be from
files: the schemas are defined in XML Schema [xsd] files (.xsd files), the correspondences are defined
in XML files, and the mappings are expressed in XQuery files (.xq files). The files are read into the
system using specific parsers. The same information can be also retrieved in a meta-data server
following a predefined model. The system communicates with the server through JDBC [jdbc].

Every time the system takes some information as input, it checks if the information is valid and
translated into the internal representation of the system. For example, nodes related by a semantic
correspondence have to exist in the schemas.

The system also outputs information. It produces generated mappings or adapted mappings, as
well as new target schemas after constraint relaxation. The system can also output the evolved
schemas and their related semantic correspondences. The data may be outputted as files or be
transferred to the data server.

2.1.4. Visualization and Editing Functionalities

Users need to visualize the input data as well as the intermediate and final results of the executions.
The system allows the visualization of the schemas, the semantic correspondences and the mappings.
Users sometimes can choose between different visualization options. As an example, the schemas
can be shown in a graphical representation or in a textual representation: the graphical representation
is more intuitive while the textual representation is more detailed with all the properties of the
schemas.

The system also allows the visualization of the intermediate results during the execution of a
process. The user interface is automatically refreshed every time after the execution of a step.

An editor of metadata allows users to edit the schemas and the semantic correspondences. This
allows the user to build a target schema and to modify some existing schemas. The system checks for
every change its validity before performing it (e.g. an added reference should reference to an existing
key in the schema).

2.1.5. Application management functionalities

Beside the above functionalities, the adaptation and generation tool provides some additional
functionalities such as the management of sessions. A session represents a concrete application
scenario and encloses the components for that scenario, i.e. schemas, correspondences, partial
mappings. Several sessions can be stored but the tool only manages one session at a time. Among the
functionalities of management of sessions, the tool includes: the creation, loading, storing and
deletion of sessions.

2.2. System Architecture

Figure 3-1 shows the architecture of our system. There are mainly three layers: data storage, logic and
view.

The data storage layer manages data including schemas, correspondences and mappings. It
communicates with the logic layer to provide input information and to obtain result data. The input
data can be retrieved from a meta-data server or from files. The output of the system can be
generated mappings, adapted mappings and also changed schemas and correspondences.

The logic layer contains the implementation of the processes of: mapping generation, incomplete
result generation and mapping adaptation. This layer communicates with the data storage layer to
take data as input. Different modules communicate via the data storage layer. As an example, the
mapping generation modules produce mappings and output them to the data storage layer. The

Automatic Mapping Generation and Adaptation for XML Data Sources

102

system checks if there is a result mapping after every execution of the mapping generation and it
decides or not to execute the process of incomplete result generation. Later on, the mapping
adaptation module can also take as input from the data storage layer the mapping produced by the
other modules.

The view layer contains all the utilities to allow the logical layer to communicate with the user.
Through the view layer, the user can explore the input data (i.e. schemas, etc.) and monitor the
intermediate and final results of the executions. It allows the user to visualize a relaxation option, to
validate a relaxation as well as to choose between different options. It also allows make some changes
into the schemas or into the set of correspondence; the latter will trigger the execution of the
mapping adaptation if some mappings are established between the target schema and the source
schemas of the system.

Interface

Mapping
generation

.xsd files

.xml files
.xq files

Mapping
adaptation

Meta-data server

Input data, intermediate
and final results

Schema and
correspondence changes

Input schemas and correspondences,
and considered mappings for the adaptation

Changed schemas and correspondences,
generated or adapted mappings

Incomplete
result generation

View

Logic

Data
Storage

Figure 5-1. The architecture of the mapping generation system

2.3. User Interfaces

In this section, we present the graphical user interfaces (GUI) of AuMGA through two screen
snapshots: one showing a panel of schemas and correspondences and the other showing a panel of
mapping generation.

2.3.1. Schemas and Correspondences

Figure 5-2 shows a user interface in AuMGA to visualize the schemas and correspondences of an
application session. The main window contains a main menu on the top. This menu allows starting,
closing and saving a session; allows starting mapping generation or mapping adaptation; and allows
personalizing looks and feeling of the application.

The interface of Figure 5-2 shows the schemas and the correspondences used by a session. For a
given session, this interface allows users exploring all the schemas and the correspondences used in
the session. The user can edit the schemas and the correspondences through the interface. As we can
see in the snapshot, the interface of meta-data contains three panels in vertical:

Xiaohui Xue

103

− the panel of the target schema: it is the panel on the top of the interface. The target
schema is visualized in a text representation. We can see that the elements of the schema are
organized by their hierarchical structure. Users can see the whole schema and it can also hide
some subtrees of the schema. Using this interface, users can edit the target schema, such as
adding or removing a target element.

− the panel of source schemas: this panel is shown at the bottom of the interface. At the left
side of the panel, there is a list of the source schemas that are considered in the session.
Users can select one schema in the list and the content of the schema will appear at the right
side of the panel. Here, users can edit the set of source schemas; such as removing an
element in a source schema, adding a source schema and removing a source schema.

− the panel of semantic correspondences: this is the panel at the middle of the interface. It
gives all the semantic correspondence between the target schema on the top and the selected
source schema shown at the bottom. Users can also edit these semantic correspondences
such as removing some correspondences or adding some new correspondences.

Figure 5-2. Graphical user interface of Meta-data in AuMGA

2.3.2. Mapping Generation

Figure 5-3 shows an interface of mapping generation. The snapshot shows some generated
mappings in an application session. It contains two main components:

− the panel of mapping generation: this panel is shown at left of the interface. It gives the
steps of the mapping generation. On the panel, every step can be active or inactive. An
inactive step can not be executed and user can click on the active steps to execute them. A
step becomes active only if its previous steps have been executed. In Figure 5-3, all the steps
are active.

Automatic Mapping Generation and Adaptation for XML Data Sources

104

− the panel of result: Apart from the panel of mapping generation, the rest of the interface is
used to visualize the intermediate or final results. The snapshot in Figure 5-3 shows the
generated target mappings for the input schemas and correspondences of Figure 5-2. There
is a list of 8 mappings generated form the schemas. The list is shown right next to the the
panel of mapping generation procedure. Among the generated mappings, the select mapping
(highlighted) is shown at the right side of the list: the target subtrees that are defined by the
mapping using which partial mappings. These mappings expressed as a set of partial
mappings. They can also be translated into XQuery; at the very right side, an XQuery query
is given for the selected mapping.

Figure 5-3. Graphical user interface of generated mappings in AuMGA

3. Applications

In order to validate the approach, the prototype has been used in several application scenarios. We
describe two data integration applications: the MediaGrid project and an adaptive system for
supporting the generation of mediation queries. For each of these applications, we briefly describe its
principle and we explain how AuMGA has been used.

3.1. The MediaGrid Project3

The MediaGrid is a multidisciplinary project supported by the French ministry of research through
the ACI-Grid program4. The MediaGrid project proposes a mediation framework for a transparent
access to data sources in a distributed and dynamic environment.

3 The MediaGrid Project, a mediation framework for a transparent access to data sources:

http://www-lsr.imag.fr/mediagrid/

Xiaohui Xue

105

The project contains a mediation query generator to generate automatically the mediation queries
between the mediation schema and the exported schemas of the sources. The mediation query
generator is built using our tool.

The MediaGrid framework considers both the Local-as-View (LaV) approach and the Global-as-
View (GaV) approach for data integration. The mediation query generator has to therefore generate
mediation queries in the two kinds of scenarios. The generations of mediation queries in both of the
two kinds are supported by AuMGA. In a GaV approach, generating the mediation queries consists
in generating mappings for the mediation schema from the exported schemas. In a LaV approach,
generating the mediation queries consists in generating mappings for every exported schema from
the mediation schema.

The mediation query generator is validated using the biological domain application of the project
(more characteristics will be given in the performance evaluation in Section 0). The application
consists in three biological sources GOLD, SGD and SMD. A wrapper is built for every of these
sources and it generates an exported schema from the source and export it to the mediation system;
the schemas are expressed in XML Schema. A mediation schema is designed by some biologists and
semantic correspondences are given between the elements of the mediation schema and their
equivalents elements in the three sources. From the input information, the mediation query generator
generates one mediation query in a GaV approach that defines the mediation schema from the three
sources. This mediation query is validated by the biologist that it integrates the three sources in a
right way and represents a meaningful semantics to define the target.

3.2. An Adaptive System for Supporting the Mediation Query Generation

In [KPS05], we presented an adaptive system for aiding the mediation query generation. The goal of
the system is to generate several mediation queries, evaluate the quality of their data and select the
most appropriate according to user preferences.

A design toolkit provides these functionalities. Figure 5-4 shows the architecture of the toolkit. It
is composed of three tools: mediation query generation, user profile management and data
quality evaluation. The tools communicate via a server of meta-data which store all the metadata
used and produced by the tools. A definition interface allows users to interact with the tools. The
mediation query generation tool is charged to generate mediation queries. The user profile
management tool [Kos06] is responsible for the definition of user profiles, which include quality
expected values. The data quality evaluation tool [Per06] is responsible for the estimation of the data
quality provided by the generated queries and the selection of those satisfying user quality
expectations.

4 ACI GRID (Actions Concertées Incitative - Globalisation des Ressources Informatiques et des

Données): http://www-sop.inria.fr/aci/grid/public/acigrid.htm

Automatic Mapping Generation and Adaptation for XML Data Sources

106

Definition Interface

Server of
meta-data

Data Quality
Evaluation

User Profile
Management

Mediation Query
Generation

user administrator

Figure 5-4. The toolkit architecture

The mediation query generation tool uses AuMGA to generate possible mediation queries between
the global schema and the source schemas. Since the data quality provided by a query also depends
on users expectations, it is necessary that the tool generates all the possible mediation queries by
considering all the sources and all the combination of the sources. Then data query evaluation tool
will evaluate the qualities of the query answer to allow selecting the desirable ones for the user.

4. Performance Evaluation

We have used five scenarios ranging from a simple scenario of a target schema defined over 3 data
sources to a complex one involving 50 sources. Table 5-1 summarizes the main characteristics of
these scenarios, such as the number of elements in the target schema, the number of data sources,
the number of elements for each one, the number of correspondences and the number of key
definitions in the sources. The first scenario is from the Mediagrid project. The Library1 scenario
contains six source schemas. The Library2 scenario is similar to Library1 but the overlap between the
sources is more important (more correspondences are defined for the same number of text elements
in the target schema). The ABC1 and ABC2 scenarios have 50 source schemas. The only difference
between them is that the ABC2 scenario contains 58 key definitions while ABC1 contain no key
definitions.

Table 5-1. Characterizing the different scenarios

Target schema Source schemas
Scenarios

Depth Elements Text
elements

Correspondences
Schemas Elements Text

elements Keys Refs

Mediagrid 6 18 12 22 3 1674 825 412 413

Library1 5 18 14 26 6 56 30 9 1
Library2 5 18 14 30 6 62 35 10 1
ABC1 7 47 36 1300 50 1650 1434 0 0
ABC2 7 47 36 1300 50 1650 1434 58 0

Xiaohui Xue

107

4.1. Evaluating the Different Steps of the Scenarios

We have run these different scenarios on a PC-compatible machine, with a 2.8G Hz P4 CPU and
516MB RAM, running Windows XP and JRE1.4.1. Each experiment is repeated five times and the
average of the five is used as the measurement. The time needed for the main steps of our approach
using the different scenarios are shown in Table 5-2.

Table 5-2. Measuring the main steps of our approach

Execution time (s)

Scenarios
Load Target Schema

Decomposition
Partial Mapping

Definition

Target
Mapping

Generation
Mediagrid 1.44 0.001 0.02 0.002

Library1 0.44 0.001 0.067 0.095
Library2 0.046 0.001 0.105 0.25
ABC1 0.98 0.001 2,844 0,375
ABC2 1.03 0.001 316 27

The loading time indicates the time to read the schemas and the correspondences into our internal
representation. As expected, it is correlated to the size of the schemas and the number of their
correspondences. The target schema decomposition time indicates the time to decompose the target
schema into target subtrees. We can see that the time needed to perform this task is negligible.

The partial mapping definition (pmd) time is proportional to the number of correspondences and
the number of key and key references in the sources. The Library1 and Library2 scenarios have the
same number of sources and the same target schema, but the pmd time for the Library1 scenario is
smaller than the one of the Library2 scenario because the Library2 has more correspondences than
Library1. The pmd time for the ABC2 scenario which has 58 keys is largely greater than the one of
the ABC1 scenario. This is because the number of keys of the ABC2 scenario makes the join graph
very complex.

The target mapping generation (tmg) time indicates the time to find all the candidate mappings
and to generate the target mappings. The tmg time is greater in ABC2 than in the other scenarios
because it has in average 150 partial mappings per subtree, which leads to much more combinations
to consider. From these measures, we can notice that the time required for defining the partial
mappings and generating the target mappings is important compared to the time needed for the
other tasks, except for the Mediagrid scenario in which there are few correspondences; the solution
space is therefore quite little although the source schemas are very big.

The pmd time is decomposed into source part identification time, join identification time and sub-
graphs definition time. These times are shown in Table 5-3.

Table 5-3. Measuring the activities of partial mapping definition

Scenarios Target
subtree

Total src
parts Total joins

Src parts
identification

time (s)

Joins
identification

time (s)

Sub-graphs
definition
time (s)

Mediagrid 3 6 5 0,002 0,006 0,012
Library1 3 14 19 0,005 0,012 0,05

Automatic Mapping Generation and Adaptation for XML Data Sources

108

Library2 3 15 22 0,006 0,014 0,085
ABC1 5 250 0 0,02 0,034 1,79
ABC2 5 100 120 0,02 5,346 310,2

The task that most contributes to the pmd time is sub-graph definition, which takes 75%, 86% and
99% for the Library1, ABC1 and ABC2 scenarios respectively.

The join identification time increases when the number of source parts and the number of keys in
the source schemas increases.

The sub-graph definition consists in enumerating all the paths in the join graphs of every target
subtree. The duration of this task depends on the size of the different join graphs. In ABC2, the size
of some join graphs is very important (one of them has 50 elements and 37 edges), and the sub-
graphs definition time is greater than the one of the other scenarios, in which the size of the join
graphs is smaller.

In the following sections, we measure the performances of the different steps of mapping
generation with respect to the parameters that influence each of the steps.

4.2. Performance Evaluation of Different Steps of the Mapping Generation Approach

The section gives the results of the performance evaluation over the different steps of mapping
generation. All of them use a scenario presented above and vary some critical inputs to measure the
performance of the approach.

4.2.1. Decomposition of the Target Schema

The time to perform the target schema decomposition is influenced by the size of the target schema.
Figure 5-5 shows the time with respect to the number of elements in the target schema. As we can
see, the variation of the target schema decomposition time is negligible.

0

0,0005

0,001

0,0015

0,002

0,0025

5 23 46 69 92 115 138 161 184

Number of elements in the target
schema

Ti
m

e
(s

)

target schema
decomposition

Figure 5-5. Measuring target schema decomposition time

4.2.2. Source Parts Identification

This task is influenced by the number of correspondences between the target schema and the sources
because the corresponding algorithm consists in browsing the set of correspondences to identify
contributive source elements.

Xiaohui Xue

109

Figure 5-6 shows variation of the time to perform the source part identification with respect to the
number of semantic correspondences using the ABC2 scenario. As expected, it is proportional to the
number of correspondences and the time to perform the task is almost negligible (about only 22 ms
for 1300 correspondences).

0

0,005

0,01

0,015

0,02

0,025

52 26
0

46
8

67
6

88
4

10
92

13
00

Number of correspondences

Ti
m

e
(s

) Source part
identification

Figure 5-6. Measuring source part identification time

4.2.3. Join Identification

If c and c’ are two sets of source elements belonging to two distinct sources respective, we consider
that a join with the predicate c = c’ is possible between these two sources if: (i) the two sets are
involved in a correspondence (c ≅ c’) and (ii) either c or c’ is defined as a key. The join identification
is therefore influenced by the number of key definitions in the sources and the number of
correspondences involving keys. We have conducted three experiments using the ABC2 scenario.

In the first experiment, we keep the same target schema, the same elements in the source schemas
and the same correspondences, and we progressively increase the number of key definitions that are
involved in a correspondence. Figure 5-7 shows the time of join identification with respect to the
number of key definitions in the source schemas.

The process of the join identification is decomposed as follows: (i) it firstly finds a pair of sets c
and c’ that satisfies the conditions to make c=c’ being the predicate of the join; (ii) then it searches,
for this predicate c = c’, two source parts p and p’ that respectively intersect with c and c’. Finding a
pair c and c’ such that c = c’ is a join predicate requires that either c or c’ is a key. Suppose c is a key;
adding a key definition on c’ doesn’t lead to new join predicate. At a certain point after having
increased the number of keys, if each correspondence involves one key definition, adding new keys
doesn’t lead to a new join predicate. We can see that in Figure 5-7, when the number of key
definitions is near 200, adding a new key doesn’t influence significantly the time needed for the task.

Automatic Mapping Generation and Adaptation for XML Data Sources

110

0

1

2

3

4

5

6

10 50 90 13
0

17
0

21
0

25
0

Number of keys in the sources

Ti
m

e
(s

)

Join identification

Figure 5-7. Measuring join identification time with respect to the number of key definitions in the

sources

In the second experiment represented by Figure 5-8, we kept the same target schema, the same
source schemas and the same key definitions. We increased progressively the number of
correspondences involving keys to measure the time needed for the join identification process.

In Figure 5-8, we can see that the process increases with respect to the number of
correspondences involving keys. Suppose that n is an element of the target schema and k1,...kn+1 a
set of elements in the sources, each one defined as a key; suppose also that the correspondences n≅ki,
i=1...n. If we add the correspondence k≅kn+1, this will also result in adding correspondences
between k and all the elements k1 to kn, which represent n more combinations to explore for finding
candidate joins.

0

1

2

3

4

5

6

52 26
0

46
8

67
6

88
4

10
92

13
00

Number of correspondences

Ti
m

e
(s

)

Join
identification

Figure 5-8. Measuring join identification time with respect to the number of correspondences

involving a key

The last experiment shown in Figure 5-9 consists in increasing at the same time the two
parameters used in the two previous experiments: the number of key definitions and the number of
correspondences involving keys. As we can see, with 300 key definitions and 300 correspondences

Xiaohui Xue

111

involving keys (which represents a quite complex case), the time for join identification is about 15
seconds.

0
2
4
6
8

10
12
14
16

20 60 100 140 180 220 260 300

20 60 100 140 180 220 260 300

The number of key definitions (a) and the
number of correspondences on the keys (b)

Ti
m

e
(s

)
Join identification

(a)

(b)

Figure 5-9. Measuring join identification time with respect to both the number of key definitions

and the number of correspondences involving keys

4.2.4. Partial Mapping Definition

Defining the partial mappings for a given target subtree consists in enumerating the sub-graphs of
the join graph. The time required for this task depends not only on the size of the corresponding join
graph (the number of edges and elements), but also on its structure. For example, consider two join
graph having the N elements, the one having no edge takes less time to be scanned than the one
having N2 edges. We characterize the structure of the graph using the maximum number of
neighbors for an element in the graph. We measure the performance of partial mapping definition
with respect to both the size of the corresponding join graph and its structure.

The time for partial mapping definition with respect to the size of the join graph is shown in
Figure 5-10 and it is performed using the ABC1 scenario. Keeping the same number of
correspondences for each key, the graph shows the time needed for the task with respect to the
number of correspondences between the target schema and the source schemas. Increasing the
number of correspondences is done by appending new source schemas. We can see that the time
increases with the number of correspondences.

Automatic Mapping Generation and Adaptation for XML Data Sources

112

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

52 26
0

46
8

67
6

88
4

10
92

13
00

Number of correspondences

Ti
m

e
(s

)

Partial mapping
definition

Figure 5-10. Measuring partial mapping definition time with respect to the number of

correspondences

The second experiment is represented by Figure 5-11. The experience considers the source
schemas and the target schema of the ABC1 and ABC2 scenarios. We select a random key in the
scenario initial. By increasing correspondences relating this chosen key, the graph shows the time for
partial mapping definition with respect to the number of edges in a graph (the number of the
elements doesn’t vary). We can see that the time needed for partial mapping definition is exponential
with respect to the correspondences number for keys.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7

Maximum number of correspondences
relating a key

Ti
m

e
(s

)

Partial mapping
definition

Figure 5-11. Measuring partial mapping definition time with respect to the number of

correspondences relating a given key

The experiment in Figure 5-12 shows the time needed for partial mapping definition with respect
to both the number of correspondences and the number of correspondences for a given key. The
source schemas and the target schema of the scenarios are the same as the Library2 scenario. The
graph shows that the task takes about 10 seconds to determine the partial mappings for a scenario
having 364 correspondences and 7 correspondences for a key, and only 2 seconds for a scenario
having 1300 correspondences and 2 correspondences for a key.

Xiaohui Xue

113

0

2

4

6

8

10

12

2 2 7 2

52 364 364 1300

Maximum number of correspondences for
a key (a) and the total number of

correspondences (b)

Ti
m

e
(s

)

Partial mapping
definition

(a)

(b)

Figure 5-12. Measuring partial mapping definition time with respect to both the maximum number

of correspondences for a key and the total number of correspondences

4.2.5. Target Mapping Generation

The time for target mappings generation depends on the number of partial mappings and the
structure of the target schema, that is, the number of parent/child relations between target subtrees.
Figure 5-13 shows the time required for this task with respect to the number of target subtrees and
the average correspondences per subtree. We have increased both parameters using the same sources
as for the ABC2 scenario. For example, in the case of 5 target subtrees and 230 correspondences per
subtree, it takes about 12 seconds for generating the target mappings; note that this case is a complex
one, since the scenario contains 50 sources, 1300 correspondences and 58 key definitions. The
complexity of this process is exponential with respect to the number of partial mappings. It is
possible to reduce this complexity using some quality criteria (for example, selecting the partial
mappings that use the sources having a high confidence factor) or some heuristics (for example,
selecting the partial mappings using a high number of sources).

0
5

10
15
20
25
30

69 115 230 230 253 46

1 3 3 5 5 10
Average number of correspondences per target

subtree (a) and number of target subtrees (b)

Ti
m

e
(s

)

Target mapping
generation

(a)

(b)

Figure 5-13. Measuring mapping generation time with respect to both the number of target

subtrees and the average correspondences per subtree

Automatic Mapping Generation and Adaptation for XML Data Sources

114

5. Conclusions

In this chapter we presented our experimentations with mapping generation and adaptation. We
described a prototype of mapping generation and adaptation tool, AuMGA, which manages the
proposed approaches in the Chapters 3 and 4. We presented the main functionalities, the system
architecture and some interfaces.

We used the AuMGA tool in several application scenarios in order to validate our approach.
Specifically, we described two data integration applications: the MediaGrid project and an adaptive
system for aiding in the generation of mediation queries. We showed how the data integration
applications were modeled in AuMGA and how the approaches execute for these specific scenarios.
This experimentation allows validating the approach in real applications; especially, it affirms that it is
ease to model these data integration systems into AuMGA.

We also describe some tests for evaluating performance. We first consider some typical test
scenarios and we execute our method over every scenario and compare the performances of
comparable scenarios. We also evaluate the performance over the different steps of the approach
using a scenario presented above and vary some critical inputs. The test results affirm that AuMGA
can be used for real applications.

The development of the system is an on-going work. We implemented all the algorithms that we
described in Chapters 3 and 4 and we also implemented other auxiliary functionalities such as the
data management and the visualization of the result. We still need to provide a user interface allowing
user to monitor the execution of the mapping adaptation. We also plan on doing some evaluation
tests over the algorithms of mapping adaptation to measure its performance.

Xiaohui Xue

115

Chapter 6. Conclusions

1. Summary of the Contributions

This thesis addresses the problem of automatic mapping generation and adaptation. We consider one
target schema and several source schemas, all described in XML Schema. We generate mappings to
derive instances of a target schema from the instances of the set of source schemas.. We also adapt
mappings when the target schema or one of the source schemas evolves. A set of semantic
correspondences are used to perform these tasks.

To handle the complexity of mapping generation, our approach comprises three steps:

− decomposing the target schema into a set of target subtrees;
− then finding partial mappings to derive instances of each target subtree from the instances of

the source schemas; the partial mapping generation for each target subtree is done
independently from the others.

− finally combining the partial mappings of different target subtrees to generate the target
mappings for the whole schema.

The result of the mapping generation is a set of mappings; every one represents an alternative way
to derive instances of the target schema. The result mappings are specified in an abstract language
and can be translated into a specific language such as XQuery.

If the target schema can not be satisfied by the sources, no mapping can be generated. We
proposed an adaptation of our generation process to provide incomplete results if the data sources
do not allow generating a mapping satisfying the users’ needs as represented by the target schema.
This is done by relaxing some cardinality constraints or some structural constraints of the target
schema such that a mapping can be found for the new schema. The process is an interactive process
in which the user is asked to validate the modifications made on the target schema and to choose one
relaxation option among the other alternatives.

A mapping it may become obsolete when the target schema or one of the source schemas evolves.
This thesis proposes a solution that adapts a mapping according to the changes to generate mappings
for the new schemas. We consider a set of changes and we specify an adaptation process for every of
these changes in three steps:

− first checking the original mapping to see if it is affected by the change.
− if the mapping is affected, checking if it is adaptable, which means there is at least one

solution to adapt it to the new schemas.
− if the mapping is adaptable, mappings are generated for the new schemas following all the

adaptation solutions found during the second step.

The result of this approach is a set of adapted mappings; every one represents an alternative way
to adapt the mapping to the new schemas.

Compared to the existing works, our generation approach produces mappings from multiple
source schemas and it generates mappings involving joins between different sources. It does not
assume that the target schema and the source schemas have homogeneous structures. It generates

Automatic Mapping Generation and Adaptation for XML Data Sources

116

mappings expressed in an abstract format such that they can be translated into any specific language.
It can also translate these mappings into XQuery. Our adaptation approach considers a large amount
of change types and it enables the adaptation for both target changes and source changes. The
approach does not rely on a specific mapping generation and it considers the input mappings are
either generated by a generation tool or specified manually. It does not require extra information
except for the schemas, the correspondences and the mapping.

The approach of automatic mapping generation led to results of several publications. In [KX05b]
we have proposed a general framework for mapping generation; in [KX05c, KX05d], we have
presented the generation approach, some of our algorithms and some experimental results; and in
[KX05a], we have presented the complete set of algorithms for generating abstract mappings and the
translation process to XQuery; we have also extend the approach to take into account 1-n
correspondences.

We developed a prototype implementation of the system, called AuMGA. It implements all the
algorithms presented in the thesis. We used this prototype to validate our approaches in different
application scenarios and to evaluate the performances. The source of the implementation has been
made available at SourceForge.net as open source under the GNU General Public License (GPL).
The prototype of the mapping generation approach has been demonstrated in the conference Bases
de Données Avancées (BDA) 2004 [KPS04]. We still need to develop the interface to allow the user
to monitor the execution of the mapping adaptation process. We also plan on doing some evaluation
tests over the algorithms of mapping adaptation to measure its performance.

The result of our mapping generation and adaptation processes depend on the input metadata: if
the set of available metadata is complete, more possibilities are found to generate mappings that
conform to the user’s expectation. As an example, if the schemas do not contain any constraints
allowing the element identification, few mappings will be generated.

The approach of mapping generation enumerates all the possible solutions to generate mappings
and produces a set of mappings that represent different ways to define the target from the sources.
The process therefore may become inefficient in case there are many equivalent elements between
different source schemas and many constraints defined on these elements. The process needs to
enumerate all the possible combinations between the sources; the complexity of the process is
exponential. Too many mappings may also be generated to make the user choice difficult. Some
heuristics or data quality criteria may be used to reduce this complexity.

2. Outlooks

In this thesis, we have addressed the problem of mapping generation and adaptation; we describe
below different research perspectives that can be drawn. Some of them consist in developing tools to
satisfy the assumption of the methods proposed in the thesis: the generation of semantic
correspondences, the detection of schema and correspondence changes. Some methods consist in
optimizing the existing approaches: the global propagation of changes in mappings and the cost
driven method to choice between mapping generation and mapping adaptation for change adaptation.
The others consist in adapting the existing methods in new contexts: the adaptation of the
approaches in peer-to-peer architecture and the adaptation of the approaches in contexts supporting
quality evaluations.

Xiaohui Xue

117

2.1. Semantic Correspondence Generation

In our approach, we consider that a set of semantic correspondences is provided; they can be 1-1
correspondences or 1-n correspondences involving transformation functions. The generation of
these semantic correspondences is called schema matching.

Many approaches [DLD04, DR02, Gal06, HC06, RB01, RSV01, and SE05] have been proposed to
generate semantic correspondences between schemas. However most of them still mainly focus on 1-
1 correspondence generation. Only two approaches allow generating more complex 1-n
correspondences: iMap [DLD04] relies on the availability of instance values to construct complex
correspondences from simple 1-1 correspondences; the DCM framework proposed in [HC06]
consists in a correlation mining approach to explore the co-occurrence information across Web
query interfaces. However, the 1-n semantic correspondences that can be found by these approaches
are still limited.

One of our perspectives is therefore to provide a tool to support the automatic generation of 1-n
correspondences. There exist different methodologies for discovery correspondences. Some
approaches infer correspondences based on the schema constraints (keys and references); while some
others make use of a linguistic thesaurus to establish relationships between different concepts. Some
approaches consider schemas structure to perform the schema matching while some others
approaches consider schema instances and some data mining technical to analyze dependences in the
instances. We can consider these different methodologies and propose a generic method to produce
semantic correspondences.

2.2. Mapping Generation and Adaptation in Peer-to-Peer Systems

Mapping generation consists in, given one target schema, finding a way to defining it from the
available sources. Mapping adaptation adapts a given mapping for the target from the available
sources. These methods can be used in many contexts such as data translation systems, wrappers,
mediation systems, and data-warehouses. These systems follow the classical client/server
architectures, in which there is a global view of all the available resources represented by the sources
in the systems.

Different from the client/server architecture, the peer-to-peer architecture contains a set of peers
have equivalent capabilities and responsibilities. There is no peer dedicated to serving the others and
no peer has a global view of all the peers in the system. Every peer knows some neighbors. If it
requests some information from the other peers, it first asks his neighbors, either one of these
neighbors answer the request or they forward the request to their own neighbors and so on till one
peer of the system answer the request.

If our mapping generation and adaptation approaches can be directly used in the client/server
architecture for the target from the sources, it can also be used in a peer-to-peer system. Consider
that one peer’s request is represented by a target schema and mappings need to be generated for it
from the other peers. To generate a mapping for this peer as well as to adapt an existing mapping for
it, the process has to first try to produce mappings from its neighbors’ schemas. If no mapping can
be produced, then it considers other peers to generate mappings. However this leads to re-
computation of the mapping generation and makes the whole process inefficient.

Our perspective is therefore to adapt our mapping generation and adaptation approaches to the
peer-to-peer systems. The methods should be able to incrementally build the mappings for the target.
For the mapping or mappings components that need to be found, some partial results may be first
found from the neighbors of the target and then they will completed with the other peers. A cost

Automatic Mapping Generation and Adaptation for XML Data Sources

118

model may be introduced and some optimization algorithm may be used to limit the full exploration
of the system.

2.3. Schema and Correspondence Change Detection

In our approach of mapping adaptation, we consider a set of changes and we define a specific
mapping adaptation process for every of the considered change. Few works has been proposed to
detect change events. We have found only one approach [MAL05] that has been proposed to check
the validation of semantic correspondences. It defines a set of computationally modules called
sensors, which capture salient characteristics of data sources. The sensors are first trained and then
deployed to detect broken correspondences.

Our perspective consists in developing a tool to detect the change events from the sources as well
as from the target schema. It may analyze source instances for capture changes in the metadata. It
may also analyze the system logs for the detection of the changes in the target schema. If a new
version of a schema is given; the tool should also be able to analyse the difference between the two
versions and return the set of change events representing the changes..

2.4. Global Change Propagation

The mapping adaptation approach presented in the thesis adapts the mapping for every change that
the system considers. If several changes occur, they form a set of changes that the system will
consider one by one. If many changes occur in the system, the change list may be long and the
approach may become costly. Moreover, suppose that two changes occurred in the system: one
removes a source element and the other adds the same element in another source. If the system first
considers the removal, it may decide that the mapping is inadaptable, while the mapping may be still
adapted if the system first considers the addition.

Our perspective consists in defining a global propagation process to propagate the schema
changes to the mapping. Given a set of changes, partially ordered, the system has to consider globally
all the changes and decides to applying the adaptation in an optimized order. For these purposes, a
priority order may be defined for different change types. As an example, addition changes have
intuitively more priority than remove changes. The system should also be able to analyze a given set
of changes to re-order the changes having the same priority.

2.5. Quality Factors

Our mapping generation approach enumerates all the possible solutions to generate mappings and
produces a set of mappings that represent different ways to define the target from the sources. As
well as our mapping adaptation also consider enumerating all the possible adapted mappings. In case
of a large number of source schemas, such method presents two drawbacks: (i) the time needed for
enumerating all the possible combinations between the sources may be very large; (ii) many mappings
may be generated which makes the choice of the “best” ones difficult.

Our perspective consists in taking into account some quality criteria to evaluate in the mapping
generation or mapping adaptation. We consider three use cases. First, quality criteria can be used to
classify the result mappings from either the mapping generation process or the mapping adaptation
process. Quality factors are applied to analyze the different mappings with respect to the system
expectation and allow the choice of the best one. For example, if the answering performance is the
most important criteria for the system. Depending on the performances of the sources used in every

Xiaohui Xue

119

mapping, an evaluation algorithm can be used to compute the answering performances of every
mapping and therefore allow the classification of the mappings based on their performance. We have
proposed a platform as a first attempt for evaluating data quality of mappings generated using our
approach [KPS05].

In the second scenario, we consider every user may have some user preferences concerning the
quality of the query results. The system conserves all the result mappings in the system. Every time a
user sends a query to the target schema, the system analyzes the system’s mappings with respect to
this user’s preference and selects one mapping that satisfies the most the user preferences to rewrite
the user query. As an example, if a user expresses his preference of using a particular source, then
mappings involving this source will have more priority than the others. This capability of adapting
system behaviours for different users is also called system polymorphism [BK06].

The third scenario is quality driven mapping generation and adaptation. It consists in using some
quality evaluation inside the mapping generation and the mapping adaptation processes. The
evaluation process can be executed after every step of the generation or adaptation to eliminate some
intermediate results that will give mappings of unsatisfying qualities. This will limit the search spaces
of the generation and adaptation then optimize the performance of the systems.

For all these possible scenarios, we need to define a set of quality criteria considered by the system.
Two algorithms of propagation need to be specified: one propagates the source qualities to mappings
and the other propagates the user expectations to mappings. We also need to define the evaluation
process to be able to evaluate mappings based on their qualities. One approach [PRB04] has been
proposed for the quality evaluation based on database freshness and accuracy. There is also an on-
going work on user preferences specification and managements [Kos06]. We need to define the
algorithms to evaluate mappings with respect to user or system expectation as well as the way to
consider it in the process of mapping generation and adaptation.

Automatic Mapping Generation and Adaptation for XML Data Sources

120

Xiaohui Xue

121

Appendix I. XML Schema Representation of the Three

Schemas in Figure 3-1

In this section, we show the representations in XML Schema of the three schemas considered in
Figure 3-1 of Chapter 3:

The Target Schema TS

<schema id="TS" xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <element name="library">
 <complexType>
 <sequence>
 <element name="author" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="id" type="xs:string"/>
 <element name="name" type="xs:string"/>
 <element name="address" type="xs:string"/>
 <element name="book" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="isbn" type="xs:string"/>
 <element name="booktitle" type="xs:string"/>
 <element name="priceineuro" type="xs:string"/>
 <element name="Chapter" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="number" type="xs:string"/>
 <element name="chaptertitle" type="xs:string"/>
 <element name="abstract" minOccurs="0" type="xs:string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <key name="chapterkey">
 <selector xpath="chapter"/>
 <field xpath="number"/>
 </key>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <key name="bookKey">
 <selector xpath="author/book"/>
 <field xpath="isbn"/>
 </key>
 <key name="authorKey">
 <selector xpath="author"/>
 <field xpath="id"/>
 </key>
 </element>
</schema>

Automatic Mapping Generation and Adaptation for XML Data Sources

122

The Source Schema S1

<schema id="S1" xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <element name="library">
 <complexType>
 <sequence>
 <element name="author" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="firstname" type="xs:string"/>
 <element name="lastname" type="xs:string"/>
 <element name="id" type="xs:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="book" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="isbn" type="xs:string"/>
 <element name="booktitle" type="xs:string"/>
 <element name="chapter" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="number" type="xs:string"/>
 <element name="abstract" type="xs:string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="address" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="authorid" type="xs:string"/>
 <element name="authoraddress" type="xs:string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <key name="bookkey">
 <selector xpath="author/book"/>
 <field xpath="isbn"/>
 </key>
 <key name="authorkey">
 <selector xpath="author"/>
 <field xpath="id"/>
 </key>
 <keyref name="addresskeyref" refer="authorkey" >
 <selector xpath="address"/>
 <field xpath="authorid"/>
 </keyref>
 </element>
</schema>

Xiaohui Xue

123

The Source Schema S2

<schema id="S2" xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <element name="library">
 <complexType>
 <sequence>
 <element name="book" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="isbn" type="xs:string"/>
 <element name="booktitle" type="xs:string"/>
 <element name="priceindollar" type="xs:string"/>
 <element name="authorid" type="xs:string" maxOccurs="unbounded"/>
 <element name="chapter" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="number" type="xs:string"/>
 <element name="chaptertitle" type="xs:string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <key name="chapterkey">
 <selector xpath="chapter"/>
 <field xpath="number"/>
 </key>
 </element>
 </sequence>
 </complexType>
 <key name="bookkey">
 <selector xpath="book"/>
 <field xpath="isbn"/>
 </key>
 </element>
</schema>

Automatic Mapping Generation and Adaptation for XML Data Sources

124

Xiaohui Xue

125

Appendix II. Transformation of some Typical Mappings

into our Representation

W3C published a document of XML query use cases [xquc]. The use case “XMP” contains 12 sample
queries to represent from most easy to more complicated use cases. We show the transformation of
the queries 1-5, 7, 9 into our XQuery representation. The other 5 queries contain more complicated
expression such as if-else clauses and restrictions on tag name etc. This will be one of our
perspectives to extend our representation to be able to support these XQuery features.

In our approach of mapping adaptation, we consider only elements for simplicity. However, the
same process can be applied in considering both elements and attributes: attributes can be considered
as monovalued elements that can be optional or mandatory. In schema and mapping representations,
there is only syntactical difference between elements and attributes. The sample queries we will use as
follows contain both attributes and elements. We can see that our transformation applies to the
sample queries in a way that only syntactical difference exists between the attributes and the elements.

Query 1

The query lists books published by Addison-Wesley after 1991, including their year and title.

<bib>{
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
 where $b/publisher = "Addison-Wesley" and $b/@year > 1991
 return
 <book year="{ $b/@year }">
 { $b/title }
 </book>
 }</bib>

This query can be transformed into our internal representation as follows. We do not consider
selections (e.g. $b/publisher = "Addison-Wesley") in our query representation for simplicity. But the
extension of our approach to support selections is straightforward.

<bib>{
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
 where $b/publisher = "Addison-Wesley" and $b/@year > 1991
 return

<book year="{ data($b/@year)}">{
<title>{data($b/title)}</title>

}</book>
 }</bib>

Query 2

This query creates a flat list of all the title-author pairs, with each pair enclosed in a "result"
element.

<results> {
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book,
 $t in $b/title,
 $a in $b/author

Automatic Mapping Generation and Adaptation for XML Data Sources

126

 return
 <result>
 { $t }
 { $a }
 </result>
 }</results>

The query can be transformed into our internal representation as follows:

<results> {
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book/author
 return
 <result>
 <title>{ data($t/PARENT::book/title)}</title>
 <author>{ data($a) }</author>
 </result>
 }</results>

Query 3

This query lists, for each book in the bibliography, its title and authors, grouped inside a "result"
element.

<results>{
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
 return
 <result>
 { $b/title }
 { $b/author }
 </result>
}</results>

The query can be transformed into our internal representation as follows:

<results> {
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
 return
 <result>
 <title>{ data($b/title)}</title>
 for $a in doc("http://bstore1.example.com/bib.xml")/bib/book/author
 where $b = $a/PARENT::book
 return <author>{ data($a) }</author>
 </result>
 }</results>

Query 4

This query lists, for each author in the bibliography, the author's name and the titles of all books
by that author, grouped inside a "result" element.

We do not consider ordering in our approach. This can be considered as a post-process to reorder
the result of the rest of the query. Here we keep the ordering function in the transformation but it
will not be considered in the mapping adaptation.

<results>{
 let $a := doc("http://bstore1.example.com/bib/bib.xml")//author
 for $last in distinct-values($a/last),
 $first in distinct-values($a[last=$last]/first)
 order by $last, $first
 return

Xiaohui Xue

127

 <result>
 <author>
 <last>{ $last }</last>
 <first>{ $first }</first>
 </author>{
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
 where some $ba in $b/author
 satisfies ($ba/last = $last and $ba/first=$first)
 return $b/title
 }</result>
 }</results>

The query can be transformed into our internal representation as follows:

<results>{
 for $last in distinct-values doc("http://bstore1.example.com/bib/bib.xml")//author/last),

for $first in distinct-values(("http://bstore1.example.com/bib/bib.xml")//author/[last=$last]/first)
for $author in "http://bstore1.example.com/bib/bib.xml")//author

 where $author/last = $last and $author/first = $first
 order by $last, $first
 return
 <result>{
 <author>{
 <last>{ data($author/last) }</last>
 <first>{ data($author/first) }</first>
 }</author>
 for $b in doc("http://bstore1.example.com/bib.xml")/bib/book
 where $b/author[first=$author/first]/last = $author/last
 return $b/title
 }</result>
 }</results>

Query 5

This query for each book found at both bstore1.example.com and bstore2.example.com, list the
title of the book and its price from each source.

<books-with-prices> {
 for $b in doc("http://bstore1.example.com/bib.xml")//book,
 $a in doc("http://bstore2.example.com/reviews.xml")//entry
 where $b/title = $a/title
 return
 <book-with-prices>
 { $b/title }
 <price-bstore2>{ $a/price/text() }</price-bstore2>
 <price-bstore1>{ $b/price/text() }</price-bstore1>
 </book-with-prices>
 }</books-with-prices>

The query can be transformed into our internal representation as follows:

<books-with-prices> {
 for $b in doc("http://bstore1.example.com/bib.xml")//book,
 $a in doc("http://bstore2.example.com/reviews.xml")//entry
 where $b/title = $a/title
 return
 <book-with-prices>
 <title>{ data($b/title) }</title>
 <price-bstore2>{ data($a/price) }</price-bstore2>

Automatic Mapping Generation and Adaptation for XML Data Sources

128

 <price-bstore1>{ data($b/price) }</price-bstore1>
 </book-with-prices>
 }</books-with-prices>

Query 7

This query lists the titles and years of all books published by Addison-Wesley after 1991, in
alphabetic order.

<bib>{
 for $b in doc("http://bstore1.example.com/bib.xml")//book
 where $b/publisher = "Addison-Wesley" and $b/@year > 1991
 order by $b/title
 return
 <book>
 { $b/@year }
 { $b/title }
 </book>
 }</bib>

The query is transformed into our representation as follows. As query 4, we keep the ordering
function in the transformation but it will not be considered in the mapping adaptation.

<bib>{
 for $b in doc("http://bstore1.example.com/bib.xml")//book
 where $b/publisher = "Addison-Wesley" and $b/@year > 1991
 order by $b/title
 return
 <book>
 <year>{ data($b/@year) }</year>
 <title>{ data($b/title) }</title>
 </book>
 }</bib>

Query 9

This query finds all section or chapter titles that contain the word "XML", regardless of the level
of nesting.

<results>{
 for $t in doc("books.xml")//(chapter | section)/title
 where contains($t/text(), "XML")
 return $t
 }</results>

The query is transformed into our representation as follows.

<results>{
 for $t in doc("books.xml")//(chapter | section)/title
 where contains($t/text(), "XML")

return <title>{data($t)}</title>
}</results>

Xiaohui Xue

129

References

[ACB06] Paolo Atzeni, Paolo Cappellari, Philip A. Bernstein: Model-Independent Schema and Data
Translation. EDBT 2006: 368-385

[ACM97] Serge Abiteboul, Sophie Cluet, Tova Milo: Correspondence and Translation for
Heterogeneous Data. ICDT 1997: 351-363

[AIS] Adeptia Integration Server (AIS): http://www.adeptia.com/products/ais.html

[AMF] Altova MapForce: http://www.altova.com/products_mapforce.html

[ABM05a] Yuan An, Alexander Borgida, John Mylopoulos: Inferring Complex Semantic Mappings
Between Relational Tables and Ontologies from Simple Correspondences. ODBase’05:
1152-1169

[ABM05b] Yuan An, Alexander Borgida, John Mylopoulos: Constructing Complex Semantic
Mappings Between XML Data and Ontologies. International Semantic Web Conference
2005: 6-20

[AMR98] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, Janet L. Wiener:
Incremental Maintenance for Materialized Views over Semistructured Data. Proc. of the
24th Int. Conf. on Very Large Data Bases (VLDB’98), New York, USA (1998) 38-49

[Bil79] Horst Biller: On the equivalence of data base schemas - a semantic approach to data
translation. Inf. Syst. 4(3): 35-47 (1979)

[BH] Blue Phoenix Datamigrator:
http://www.bphx.com/data_migration_tool.cfm?source=gada_datamig

[BKL04] Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis, Peter McBrien, Nikos
Rizopoulos: AutoMed: A BAV Data Integration System for Heterogeneous Data Sources,
Proc. of CAiSE04, 2004: 82-97

[BLK03] Mokrane Bouzeghoub, Bernadette Farias Lóscio, Zoubida Kedad, Ana Carolina Salgado:
Managing the Evolution of Mediation Queries. Proc. of the 11th Int. Conf. on
Cooperative Information Systems (CoopIS’03), Catania, Sicily, Italy (2003) 22-37

[BLN86] Carlo Batini, Maurizio Lenzerini, Shamkant B. Navathe: A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Comput. Surv. 18(4): 323-364
(1986)

[BKS04] Mokrane Bouzeghoub, Zoubida Kedad, Assia Soukane: Improving Mediation Query
Generation Using Constraints and Metadata, in Proc. of BDA 2004: 385-406

[BLN86] Carlo Batini, Maurizio Lenzerini, Shamkant B. Navathe: A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Comput. Surv. 18(4): 323-364
(1986)

[CG04] Paulo J. F. Carreira, Helena Galhardas: Efficient Development of Data Migration
Transformations. SIGMOD Conference 2004: 915-916

Automatic Mapping Generation and Adaptation for XML Data Sources

130

[CLL03] Ya Bing Chen, Tok Wang Ling, Mong-Li Lee: Automatic Generation of XQuery View
Definitions from ORA-SS Views. ER 2003: 158-171

[CR03] Kajal T. Claypool, Elke A. Rundensteiner: Sangam: A Transformation Modeling
Framework. In Proc. of DASFAA 2003: 47-54

[CBB03a] Christine Collet, Khalid Belhajjame, Gilles Bernot, Gennaro Bruno, Christophe Bobineau,
Béatrice Finance, Fabrice Jouanot, Zoubida Kedad, David Laurent, Genoveva Vergas-
Solar, Tuyet-Trinh Vu, Xiaohui Xue: Mediagrid : a mediation framework for a transparent
access to biological data sources, Poster in the 22nd International Conference on
Conceptual Modeling (ER'03), Chicago, Illinois, October 2003

[CBB03b] Christine Collet, Khalid Belhajjame, Gilles Bernot, Gennaro Bruno, Christophe Bobineau,
Beatrice Finance, Fabrice Jouanot, Zoubida Kedad, David Laurent, Genoveva Vergas-
Solar, Tuyet-Trinh Vu, Xiaohui Xue: Towards a target system framework for transparent
access to largely distributed sources, in the European Conf. on Computational Biology
(ECCB'03), Paris, France, June 2004

[CBB04] Christine Collet, Khalid Belhajjame, Gilles Bernot, Gennaro Bruno, Christophe Bobineau,
Béatrice Finance, Fabrice Jouanot, Zoubida Kedad, David Laurent, Genoveva Vergas-
Solar, Tuyet-Trinh Vu, Xiaohui Xue: Towards a target system framework for transparent
access to largely distributed sources, in the Int. Conf. on Semantics of a Networked World
Semantics for Grid Databases (IC-SNW'04), Paris, France, June 2004, 65-78

[DLD04] Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y., Domingos, P.: iMAP: Discovering
Complex Mappings between Database Schemas. Proc. of Int. Conf. ACM SIGMOD
(SIGMOD’04), Paris, France (2004) 383-394

[dom] W3C, Document Object Model (DOM), http://www.w3.org/TR/DOM-Level-3-Core/

[DR02] Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching
Approaches. Proc. VLDB, Hong Kong, China (2002) 610-621

[dtd] W3C, Extensible Markup Language (XML) 1.0 (Fourth Edition), Section 2.8 Prolog and
Document Type Declaration, http://www.w3.org/TR/xml/#sec-prolog-dtd

[Gal06] Gal, A.: Managing Uncertainty in Schema Matching with Top-K Schema Mappings. Proc
of Journal on Data Semantics (2006)

[DWL00] Gillian Dobbie, Wu Xiaoying, Tok Wang Ling, Mong Li Lee: ORA-SS: An Object-
Relationship-Attribute Model for Semistructured Data TR21/00, Technical Report,
Department of Computer Science, National University of Singapore, December 2000.

[FP04] Hao Fan, Alexandra Poulovassilis: Schema Evolution in Data Warehousing Environments
- A Schema Transformation-Based Approach. ER 2004: 639-653

[FW06] George H. L. Fletcher, Catharine M. Wyss: Data Mapping as Search. EDBT 2006: 95-111

[FS03] Bernadette Farias Lóscio, Ana Carolina Salgado: Generating Mediation Queries for XML-
based Data Integration Systems. SBBD 2003: 99-113

[FS04] Bernadette Farias Lóscio, Ana Carolina Salgado: Evolution of XML-Based Mediation
Queries in a Data Integration System. Proc. of ER Workshops, Shanghai, China (2004):
402-414

[FSG03] Bernadette Farias Lóscio, Ana Carolina Salgado, Luciano do Rêgo Galvão: Conceptual
modeling of XML schemas. WIDM 2003: 102-105

Xiaohui Xue

131

[GMR95] Ashish Gupta, Inderpal Singh Mumick, Kenneth A. Ross: Adapting Materialized Views
after Redefinitions. Proc. of Int. Conf. of ACM SIGMOD (SIGMOD’95), San Jose,
California (1995): 211-222

[GPQ97] H. Garcia-Molina , Y. Papakonstantinou , D. Quass , A. Rajaraman , Y. Sagiv , J. Ullman ,
V. Vassalos , J. Widom: The TSIMMIS approach to mediation: Data models and
Languages. In Journal of Intelligent Information Systems, 1997.

[HC06] Bin He and Kevin Chen-Chuan Chang: Automatic Complex Schema Matching across
Web Query Interfaces: A Correlation Mining Approach. Proc. of ACM Transactions on
Database Systems (2006)

[Inm96] Inmon, W. Building the Data Warehouse. Wiley & Sons, New York, 1996.

[IS06] Utku Irmak, Torsten Suel: Interactive wrapper generation with minimal user effort. WWW
2006: 553-563

[jdbc] Java Database Connectivity (JDBC):
http://java.sun.com/javase/technologies/database.jsp

[KA04] Anastasios Kementsietsidis, Marcelo Arenas: Data Sharing Through Query Translation in
Autonomous Sources. VLDB 2004: 468-479

[KB99] Zoubida Kedad, Mokrane Bouzeghoub: Discovering View Expressions from a Multi-
Source Information System. in Proc. of the 7th Int. Conf. on Cooperative Information
Systems (CoopIS'99) 57-68

[KR02] Andreas Koeller, Elke A. Rundensteiner: Incremental Maintenance of Schema-
Restructuring Views. in Proc. of 8th Int. Conf. of Extending Database Technology
(EDBT’02), Prague, Czech Republic, (2002) 354-371

[KX05a] Zoubida Kedad, Xiaohui Xue: An automatic tool for discovering complex mappings,
Technical Report #2005/75, University of Versailles, Versailles, France, 2005

[KX05b] Zoubida Kedad, Xiaohui Xue: Mapping Generation for XML Data Sources: a General
Framework, in the Int. Workshop on Challenges in Web Information Retrieval and
Integration (WIRI'05), in conjunction with the 21st Int. Conf. on Data Engineering
(ICDE'05), Tokyo, Japan, April (2005) 164-172

[KX05c] Zoubida Kedad, Xiaohui Xue: Discoverying complex mappings for XML data integration,
in the 21th Conf. of Bases de données avancées (BDA'05), Saint Malo, France, October
(2005) 41-50

[KX05d] Zoubida Kedad, Xiaohui Xue: Mapping Discovery for XML Data Integration. in Proc. of
the 13th Int. Conf. on Cooperative Information Systems (CoopIS'05), Agia Napa, Cyprus,
November (2005) 166-182

[Kos06] Dimitre Kostadinov: Personalization de l’information et gestion de profils utilisateur, PhD
Thesis, University of Versailles Saint-Quentin-en-Yvelines (Ongoing work)

[KPS04] Dimitre Kostadinov, Verónika Peralta, Assia Soukane, Xiaohui Xue: Système adaptif à
l'aide de la génération de requêtes de médiation (French), Demonstration in the 20th Conf.
of Bases de données avancées (BDA'04), Montpellier, France, Ocotober 2004, 351-355

[KPS05] Kostadinov, D., Peralta, V., Soukane, A., Xue, X.: Intégration de données hétérogènes
basée sur la qualité. Proc. of INFORSID 2005 (Inforsid’05), Grenoble, France (2005) 471-
486

[Len02] Lenzerini, M.: Data integration: a theoretical perspective. In Proc. of PODS, (2002) 233–
246

Automatic Mapping Generation and Adaptation for XML Data Sources

132

[LD94] Qing Li, Guozhu Dong: A Framework for Object Migration in Object-Oriented
Databases. Data Knowl. Eng. 13(3): 221-242 (1994)

[LNR02] Amy J. Lee, Anisoara Nica, Elke A. Rundensteiner: The EVE Approach: View
Synchronization in Dynamic Distributed Environments. IEEE Trans. Knowl. Data Eng.
14(5): 931-954 (2002)

[LPH00] Ling Liu, Calton Pu, Wei Han. `` XWRAP: An XML-enabled Wrapper Construction
System for Web Information Sources", Proceedings of the 16th International Conference
on Data Engineering (ICDE'2000), San Diego CA (February 28 - March 3, 2000)

[MAL05] Robert McCann, Bedoor K. AlShebli, Quoc Le, Hoa Nguyen, Long Vu, AnHai Doan:
Mapping Maintenance for Data Integration Systems. VLDB 2005: 1018-1030

[MHH00] Renée J. Miller, Laura M. Haas, Mauricio A. Hernández: Schema Mapping as Query
Discovery. Proc. of the 26th Int. Conf. on Very Large Data Bases (VLDB’00), Cairo,
Egypt (2000) 77-88

[MP02] Peter McBrien, Alexandra Poulovassilis: Schema Evolution in Heterogeneous Database
Architectures, A Schema Transformation Approach. CAiSE 2002: 484-499

[MRB03] Sergey Melnik, Erhard Rahm, Philip A. Bernstein: Rondo: A Programming Platform for
Generic Model Management. SIGMOD Conference 2003: 193-204

[NR99] Anisoara Nica, Elke A. Rundensteiner: View Maintenance after View Synchronization.
Proc. of Int. Database Engineering and Applications Symposium (IDEAS’99), Montreal,
Canada (1999) 215-213

[Per06] Verónika Peralta: Data Quality Evaluation in Data Integration Systems, PhD Thesis,
University of Versailles Saint-Quentin-en-Yvelines (Ongoing work)

[PRB04] Verónika Peralta, Raul Ruggia, Mokrane Bouzeghoub: Analyzing and Evaluating Data
Freshness in Data Integration Systems. Journal of Ingénierie des Systèmes d'Information
9(5-6): 145-162 (2004)

[PT99] Lucian Popa, Val Tannen: An Equational Chase for Path-Conjunctive Queries,
Constraints, and Views. Proc. of the 7th Int. Conf. on Database Theory (ICDT’99),
Jerusalem, Israel (1999): 39-57

[PVM02] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Hernandez M.A., Fagin R.: Translating
web data. Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB’02), Hong Kong,
China (2002) 598-609

[RB01] E. Rahm, P. A. Bernstein, A survey of approaches to automatic schema matching. Proc. of
the 27th Int. Conf. on Very Large Data Bases (VLDB’01), Roma, Italy (2001) 334-350

[RSV01] Chantal Reynaud, Jean-Pierre Sirot, Dan Vodislav: Semantic Integration of XML
Heterogeneous Data Sources. IDEAS 2001: 199-208

[SE05] Shvaiko, P., Euzenat, J.: A Survey of Schema-based Matching Approaches . Proc. of
Journal on Data Semantics IV (2005) 146-171

[SKS01] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene J. Shekita, Catalina Fan, John E.
Funderburk: Querying XML Views of Relational Data. VLDB 2001: 261-270

[Sou05] Assia Soukane: Génération automatique des requêtes de médiation avec prise en compte
des besoins des utilisateurs dans un environnement hétérogène. PhD Thesis, Université de
Versailles-Saint-Quentin-en-Yvelines, December 2005

[Sty] Stylus XML-to-XML Mapper: http://www.stylusstudio.com/xml_to_xml_mapper.html/

Xiaohui Xue

133

[SKR01] Hong Su, Harumi A. Kuno, Elke A. Rundensteiner: Automating the transformation of
XML documents. WIDM 2001: 68-75

[SF] SourceForge.net: http://sourceforge.net/

[THH05] Philippe Thiran, Jean-Luc Hainaut, Geert-Jan Houben: Database Wrappers Development:
Towards Automatic Generation. Proc. of the 9th European Conference on Software
Maintenance and Reengineering (CSMR’05), Manchester, UK (2005): 207-216

[TRV98] Anthony Tomasic, Louiqa Raschid, Patrick Valduriez: Scaling Access to Heterogeneous
Data Sources with DISCO. IEEE Trans. Knowl. Data Eng. 10(5): 808-823 (1998)

[TS99] Dimitri Theodoratos, Timos K. Sellis: Designing Data Warehouses. Data Knowl. Eng.
31(3): 279-301 (1999)

[VMP04] Yannis Velegrakis, Renée J. Miller, Lucian Popa: Preserving mapping consistency under
schema changes. VLDB J. 13(3): 274-293 (2004)

[Wie92] Wiederhold, G.: “Mediators in the architecture of future information systems”. IEEE
Computer, Vol. 25(3):38-49, 1992.

[WN] WordNet: a Lexical Database for English: http://wordnet.princeton.edu/

[WR05] Catharine M. Wyss, Edward L. Robertson: Relational languages for metadata integration.
ACM Trans. Database Syst. 30(2): 624-660 (2005)

[xerces] Xerces2 Java Parser: http://xerces.apache.org/xerces2-j/

[xml] W3C, eXtensible Markup Language (XML), http://www.w3.org/XML/

[xpath] W3C, XML Path Language 1.0, http://www.w3.org/TR/xpath/

[xquery] W3C, XQuery 1.0, an XML Query Language, http://www.w3.org/TR/xquery/

[xquc] W3C, XML Query Use Cases, http://www.w3.org/TR/xquery-use-cases/

[xsd] W3C, XML Schema, http://www.w3.org/XML/Schema/

[xslt] W3C, XSL Transformations (XSLT), http://www.w3.org/TR/xslt/

[Xue06] Xiaohui Xue: Adapting Mapping for Schema Evolution: An Automatic Approach. Internal
Technical Report, Sial Team, University of Versailles, April, 2006

[YLL03] Xia Yang, Mong-Li Lee, Tok Wang Ling: Resolving Structural Conflicts in the Integration
of XML Schemas: A Semantic Approach. ER 2003: 520-533

[YP04] Cong Yu and Lucian Popa. Constraint-Based XML Query Rewriting for Data Integration.
Proc. of Int. Conf. of ACM SIGMOD, Paris, France (2004): 371-382

[YP05] Cong Yu, Lucian Popa: Semantic Adaptation of Schema Mapping when Schemas Evolve.
Proc. of the 31st Int. Conf. on Very Large Data Bases (VLDB’05), Trondheim, Norway,
(2005)

[Zam04] Lucas Zamboulis: XML Data Integration by Graph Restructuring. BNCOD (2004) 57-71

