Stochastic processes analysis for Genomics: MTD model and Dynamic Bayesian Network inference.

Sophie Lèbre

Thesis defense - Supervisor Bernard Prum

14 September 2007

Université d'Évry-Val-d'Essonne - Laboratoire Statistique et Génome

- **③** Sequence modeling: an EM algorithm for MTD models
- ② Genetic network: inferring DBN with partial order dependence
- Inferring non-homogneous DBN with rjMCMC

DNA sequences: MTD modeling?

→ in collaboration with Pierre-Yves Bourguignon

Let $\mathbf{Y} = Y_1 \dots Y_n$ be a random sequence in \mathcal{Y} , $|\mathcal{Y}| = q$,

• *mth*-order Markov model,

$$\forall t > m, \ \mathbb{P}(Y_t | \mathbf{Y}_1^{t-1}) = \mathbb{P}(Y_t | \mathbf{Y}_{t-m}^{t-1}).$$

• Mixture Transition Distribution model (Raftery, 1985)

$$\mathbb{P}(Y_t|\mathbf{Y}_1^{t-1}) = \sum_{g=1}^m \varphi_g \ \mathbb{P}(Y_t|Y_{t-g}),$$
$$= \sum_{g=1}^m \varphi_g \ \pi_g(y_{t-g}, y_t).$$

with $\varphi_g > 0$, $\sum_{g=1}^{m} \varphi_g = 1$ and π_g stochastic matrices.

MTD model: very parsimonious but estimation?

• Number of independent parameters:

Full Markov ModelvsMTD $\prod_{[q^m \times q]}$ $(\varphi_g, \pi_{g[q \times q]})_{g=1..m}$

Order <i>m</i>	Full MM	MTD
1	12	12
2	48	25
3	192	38
4	768	51
5	3 072	64

- No expression of the Maximum Likelihood Estimate \rightsquigarrow Estimation with constraints (Berchtold, 2001)
 - $\rightsquigarrow \mathsf{Drawbacks}$

• A mixture model: hidden process S_t $\forall \ 1 \leq g \leq m$,

$$\mathbb{P}(S_t = g) = \varphi_g$$
$$\mathbb{P}(Y_t | S_t = g, \mathbf{Y}_{t-m}^{t-1}) = \pi_g(y_{t-g}, y_t)$$

.⊒ . ►

• A mixture model: hidden process S_t $\forall \ 1 \leq g \leq m$,

$$\begin{aligned} \mathbb{P}(S_t = g) &= \varphi_g \\ \mathbb{P}(Y_t | S_t = g, \mathbf{Y}_{t-m}^{t-1}) &= \pi_g(y_{t-g}, y_t) \end{aligned}$$

 \rightsquigarrow EM algorithm

• E-Step: compute $\mathbb{P}(S_t = g | Y, \theta)$

$$= \mathbb{P}(S_t = g | Y_{t-m}^t, \theta)$$

=
$$\frac{\mathbb{P}(Y_t | S_t = g, \mathbf{Y}_{t-m}^{t-1}, \theta) \mathbb{P}(S_t = g | \mathbf{Y}_{t-m}^{t-1}, \theta)}{\sum_{l=1}^m \mathbb{P}(Y_t | S_t = l, \mathbf{Y}_{t-m}^{t-1}, \theta) \mathbb{P}(S_t = l | \mathbf{Y}_{t-m}^{t-1}, \theta)}.$$

• A mixture model: hidden process S_t $\forall \ 1 \leq g \leq m$,

$$\begin{aligned} \mathbb{P}(S_t = g) &= \varphi_g \\ \mathbb{P}(Y_t | S_t = g, \mathbf{Y}_{t-m}^{t-1}) &= \pi_g(y_{t-g}, y_t) \end{aligned}$$

 \rightsquigarrow EM algorithm

• E-Step: compute $\mathbb{P}(S_t = g | Y, \theta)$

$$= \mathbb{P}(S_t = g | Y_{t-m}^t, \theta)$$

=
$$\frac{\mathbb{P}(Y_t | S_t = g, \mathbf{Y}_{t-m}^{t-1}, \theta) \mathbb{P}(S_t = g | \mathbf{Y}_{t-m}^{t-1}, \theta)}{\sum_{l=1}^m \mathbb{P}(Y_t | S_t = l, \mathbf{Y}_{t-m}^{t-1}, \theta) \mathbb{P}(S_t = l | \mathbf{Y}_{t-m}^{t-1}, \theta)}.$$

• A mixture model: hidden process S_t $\forall \ 1 \leq g \leq m$,

$$\begin{aligned} \mathbb{P}(S_t = g) &= \varphi_g \\ \mathbb{P}(Y_t | S_t = g, \mathbf{Y}_{t-m}^{t-1}) &= \pi_g(y_{t-g}, y_t) \end{aligned}$$

 \rightsquigarrow EM algorithm

• E-Step: compute $\mathbb{P}(S_t = g | Y, \theta)$

$$= \mathbb{P}(S_t = g | Y_{t-m}^t, \theta)$$

=
$$\frac{\mathbb{P}(Y_t | S_t = g, \mathbf{Y}_{t-m}^{t-1}, \theta) \mathbb{P}(S_t = g | \mathbf{Y}_{t-m}^{t-1}, \theta)}{\sum_{l=1}^m \mathbb{P}(Y_t | S_t = l, \mathbf{Y}_{t-m}^{t-1}, \theta) \mathbb{P}(S_t = l | \mathbf{Y}_{t-m}^{t-1}, \theta)}.$$

EM algorithm - kth iteration

$$\forall g \in \{1, ..., m\}, \forall i_m, ..., i_1, i_0 \in \mathcal{Y},$$

• E-Step:

$$\mathbb{P}_{S}^{(k)}(g|\mathbf{i}_m^0) = \frac{\varphi_g^{(k)} \pi_g^{(k)}(i_g, i_0)}{\sum_{l=1}^m \varphi_l^{(k)} \pi_l^{(k)}(i_l, i_0)}.$$

• M-Step:

$$\varphi_{g}^{(k+1)} = \frac{1}{n-m} \sum_{i_{m}...i_{0}} \mathbb{P}^{(k)}(g|\mathbf{i}_{m}^{0}) \mathcal{N}(\mathbf{i}_{m}^{0})$$

$$\pi_{g}^{(k+1)}(i,j) = \frac{\sum_{i_{m}...i_{g+1}i_{g-1}...i_{1}} \mathbb{P}^{(k)}(g|\mathbf{i}_{m}^{g+1}i\mathbf{i}_{g-1}^{1}j) \mathcal{N}(\mathbf{i}_{m}^{g+1}i\mathbf{i}_{g-1}^{1}j)}{\sum_{i_{m}...i_{g+1}i_{g-1}...i_{1}i_{0}} \mathbb{P}^{(k)}(g|\mathbf{i}_{m}^{g+1}i\mathbf{i}_{g-1}^{0}) \mathcal{N}(\mathbf{i}_{m}^{g+1}i\mathbf{i}_{g-1}^{0})}$$

$$\Rightarrow \text{available in seq++} \qquad (\text{Vincent Miele})$$

伺 と く ヨ と く ヨ と

3

Application to bacteria coding DNA sequences

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

• New inference procedure,

easy to use and avalaible in seq++

• Improved goodness of fit when m >>

 \rightsquigarrow annotation, gene detection... (HMM)

• Article: An EM algorithm for estimation in the MTD Model. Lèbre S. and Bourguignon, P-Y., to appear in the Journal of Statistical Computation and Simulation.

- **9** Sequence modeling: an EM algorithm for MTD models
- **②** Genetic network: inferring DBN with partial order dependence
- Inferring non-homogneous DBN with rjMCMC

Genes functions?

• Recover cellular regulations:

- up/down regulation
- retroaction, feedforwards loops...

 \Rightarrow Complex dynamic system

Genes functions?

• Recover cellular regulations:

- up/down regulation
- retroaction, feedforwards loops...

 $\Rightarrow \mathsf{Complex} \mathsf{ dynamic} \mathsf{ system}$

• Objective: identify this organisation in large scale.

Temporal gene expression data

 Microarrays: simultaneous expression of several thousands of genes.

Notations:

Stochastic process $X = \{X_t^i; \forall i \in \{1, ..., p\}, \forall t \in \{1, ..., n\}\}.$

• X_t^i expression of gene *i* at time *t*,

What information extracting from expression profiles?

 \Rightarrow Study the interactions between genes.

identify coexpressed genes

 \rightsquigarrow coregulated genes? $\quad \rightsquigarrow$ same biological process?

- which genes directly interact? 2 main objectives:
 - modeling temporal dependencies,
 - carrying inference when *n* << *p*.

How to model biological motifs ?

- A biological motif
- Gaussian Graphical Modeling

 \rightarrow Concentration graph (x_1) (x_2) (x_2) (Toh et al. 2002, Wang et al. 2003, Schäfer and Strimmer 2005)

Bayesian Networks

 \rightarrow Dynamic: allows to model cycles!

Introduced by Murphy and Mian (1999) to model gene expression time series.

- Discrete DBN (Ong et al. 2002)
- HMM, State Space Models (Perrin et al. 2003, Beal et al. 2005)
- Non parametric additive models (Kim, Imoto and Miyano, 2004)

DBN modeling

Assumptions

- (A_1) X 1st order Markov process
- (A_2) 'simultaneous independence' given the past,

$$\forall t > 1, \forall i, j \in \mathbb{N}, \quad X_t^i \perp X_t^j \mid X_{t-1}.$$

* E > * E >

э

Theorem

Under (A_1) and (A_2) , the probability distribution \mathbb{P}_X admits a DBN representation according to DAG $\tilde{\mathcal{G}}$,

$$ilde{\mathcal{G}} := X^j_{t-1} o X^i_t \ \Leftrightarrow \ X^i_t
ot \hspace{-0.5mm} \not\perp \ X^j_{t-1} \ \mid X_{t-1}$$

where $P = \{1, ..., p\}$. (Proof: graphical models theory.)

A B > A B >

DAG $\mathcal{G}^{(1)}$ for an AR(1) process

• AR(1) process: $\forall t \geq 1$, $X_t = AX_{t-1} + B + \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, \Sigma)$

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

DAG $\mathcal{G}^{(1)}$ for an AR(1) process

• AR(1) process: $\forall t \geq 1$, $X_t = AX_{t-1} + B + \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, \Sigma)$

Proposition

If
$$\Sigma = Var(\varepsilon_t)$$
 is diagonal then $\tilde{\mathcal{G}} := \{X_{t-1}^j \to X_t^i\} \Leftrightarrow a_{ij} \neq 0.$

DAG $\mathcal{G}^{(1)}$ for an AR(1) process

• AR(1) process: $\forall t \geq 1$, $X_t = AX_{t-1} + B + \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, \Sigma)$

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

- 1st order dependencies (Wille, 2004).
 - \Rightarrow Extention to dynamic graphs

Definition

 q^{th} order conditional dependence DAG $\mathcal{G}^{(q)}$, $(q \geq 1)$

$$\exists Q \subseteq P, |Q| = q, \ \ X^i_t \perp X^j_{t-1} \ | \ X^Q_{t-1} \ \Leftrightarrow \ \ \{X^j_{t-1} \to X^i_t\} \notin \mathcal{G}^{(q)},$$

• Example:
$$\{X_t^1 \to X_{t+1}^3\} \notin \mathcal{G}^{(1)}$$

- 1st order dependencies (Wille, 2004).
 - \Rightarrow Extention to dynamic graphs

Definition

 q^{th} order conditional dependence DAG $\mathcal{G}^{(q)}$, $(q \geq 1)$

$$\exists Q \subseteq P, |Q| = q, \ \ X^i_t \perp X^j_{t-1} \ | \ X^Q_{t-1} \ \Leftrightarrow \ \ \{X^j_{t-1} \to X^i_t\} \notin \mathcal{G}^{(q)},$$

• Example:
$$\{X_t^1 \to X_{t+1}^3\} \notin \mathcal{G}^{(1)}$$

- 1st order dependencies (Wille, 2004).
 - \Rightarrow Extention to dynamic graphs

Definition

 q^{th} order conditional dependence DAG $\mathcal{G}^{(q)}$, $(q\geq 1)$

$$\exists Q \subseteq P, |Q| = q, \ \ X^i_t \perp X^j_{t-1} \ | \ X^Q_{t-1} \ \Leftrightarrow \ \ \{X^j_{t-1} \to X^i_t\} \notin \mathcal{G}^{(q)},$$

- 1st order dependencies (Wille, 2004).
 - \Rightarrow Extention to dynamic graphs

Definition

 q^{th} order conditional dependence DAG $\mathcal{G}^{(q)}$, $(q \geq 1)$

$$\exists Q \subseteq P, |Q| = q, \ \ X^i_t \perp X^j_{t-1} \ | \ X^Q_{t-1} \ \Leftrightarrow \ \ \{X^j_{t-1} \to X^i_t\} \notin \mathcal{G}^{(q)},$$

• Example:
$$\{X_t^1 \to X_{t+1}^3\} \notin \mathcal{G}^{(1)}$$

....
....
....
Dimension reduction: $p \rightsquigarrow 2$

If the number of parents of each vertex in $\tilde{\mathcal{G}}$ $N_{pa}^{Max}(\tilde{\mathcal{G}}) \leq q$, then $\tilde{\mathcal{G}} \supseteq \mathcal{G}^{(q)}$.

э

If the number of parents of each vertex in $\tilde{\mathcal{G}}$ $N_{pa}^{Max}(\tilde{\mathcal{G}}) \leq q$, then $\tilde{\mathcal{G}} \supseteq \mathcal{G}^{(q)}$.

Definition

Faithfulness: any conditional independence can be derived from $\tilde{\mathcal{G}}$.

If the number of parents of each vertex in $\tilde{\mathcal{G}}$ $N_{pa}^{Max}(\tilde{\mathcal{G}}) \leq q$, then $\tilde{\mathcal{G}} \supseteq \mathcal{G}^{(q)}$.

Definition

Faithfulness: any conditional independence can be derived from $\tilde{\mathcal{G}}$.

Proposition

If
$$\mathbb{P}_X$$
 is faithful to $\tilde{\mathcal{G}}$ then,
• $\tilde{\mathcal{G}} \subseteq \mathcal{G}^{(q)}$,

伺 ト イヨト イヨト

If \mathbb{P}_X is 'faithful' to $\tilde{\mathcal{G}}$ then $\tilde{\mathcal{G}} \subseteq \mathcal{G}^{(q)}$.

Proof.

Contraposition

- Assume (X^j_{t-1}, X^j_t) ∉ G^(q), then ∃ Q ⊂ P, |Q| = q, such that X^j_t ⊥ X^j_{t-1}|X^Q_{t-1}.
 From faithfulness, X^Q_{t-1} separates X^j_{t-1} and X^j_t in the moral graph of the ancestral set containing X^j_t ∪ X^j_{t-1} ∪ X^Q_{t-1},
 - then $(X_{t-1}^j, X_t^i) \not\in \tilde{\mathcal{G}}$.

If the number of parents of each vertex in $\tilde{\mathcal{G}}$ $N_{pa}^{Max}(\tilde{\mathcal{G}}) \leq q$, then $\tilde{\mathcal{G}} \supseteq \mathcal{G}^{(q)}$.

Definition

Faithfulness: any conditional independence can be derived from $\tilde{\mathcal{G}}$.

Proposition

If
$$\mathbb{P}_X$$
 is faithful to $\tilde{\mathcal{G}}$ then,

•
$$\tilde{\mathcal{G}} \subseteq \mathcal{G}^{(q)}$$

• for all
$$q \geq N^{Max}_{pa}(ilde{\mathcal{G}})$$
, $ilde{\mathcal{G}} = \mathcal{G}^{(q)}$,

If the number of parents of each vertex in $\tilde{\mathcal{G}}$ $N_{pa}^{Max}(\tilde{\mathcal{G}}) \leq q$, then $\tilde{\mathcal{G}} \supseteq \mathcal{G}^{(q)}$.

Definition

Faithfulness: any conditional independence can be derived from $\tilde{\mathcal{G}}$.

Proposition

- If \mathbb{P}_X is faithful to $\tilde{\mathcal{G}}$ then,
 - $ilde{\mathcal{G}} \subseteq \mathcal{G}^{(q)}$,
 - for all $q \geq N_{pa}^{Max}(\tilde{\mathcal{G}})$, $\tilde{\mathcal{G}} = \mathcal{G}^{(q)}$,

• if
$$q \geq \mathsf{N}^{Max}_{\mathsf{pa}}(\mathcal{G}^{(q)})$$
, then $ilde{\mathcal{G}} = \mathcal{G}^{(q)}$.

 \Rightarrow infer $\mathcal{G}^{(1)}$ to reduce the dimension.

DBN Inference from $\mathcal{G}^{(1)}$ (package R 'G1DBN')

• Step 1: infer $\mathcal{G}^{(1)}$ (dimension reduction)

$$X_t^i = b_{ijk} + a_{ij|k} X_{t-1}^j + a_{ik|j} X_{t-1}^k + \eta_t^{i,j,k}$$

•
$$\hat{E}_i^{(1)} = \{j \in P, S_1(i,j) < \alpha_1\}.$$

- Step 2: infer $\tilde{\mathcal{G}}$ from $\mathcal{G}^{(1)}$.
 - For all edge in $\hat{\mathcal{G}}^{(1)}$, compute the p-value $p_{ij|\hat{E}_i^{(1)}}$.

•
$$E(\tilde{\mathcal{G}}) = \{(X_{t-1}^j, X_t^i)_{t>1}, i \in P, j \in \hat{E}_i^{(1)}$$
tel que $p_{ij|\hat{E}_i^{(1)}} < \alpha_2\}.$

 Package R 'G1DBN' available from the CRAN archive http://cran.at.r-project.org,

→ 3 → < 3</p>

- Package R 'G1DBN' available from the CRAN archive http://cran.at.r-project.org,
- Comparative simulation study,

< ≣ > <

- Package R 'G1DBN' available from the CRAN archive http://cran.at.r-project.org,
- Comparative simulation study,
- Real data analysis:

4 3 b

- Package R 'G1DBN' available from the CRAN archive http://cran.at.r-project.org,
- Comparative simulation study,
- Real data analysis:
 - Yeast cell cycle S. Cerevisiae (Spellman 1998),

- Package R 'G1DBN' available from the CRAN archive http://cran.at.r-project.org,
- Comparative simulation study,
- Real data analysis:
 - Yeast cell cycle S. Cerevisiae (Spellman 1998),
 - Starch metabolism in Arabidopsis leaves (Smith 2004).

Simulation study

• Random generation of 100 matrices $A_{[p \times p]}$:

- 2 % of edges: non-zero coefficients, $a_{ij} \sim \mathcal{U}(-1,1)$.
- AR(1) process simulation

$$\forall 1 \le t \le n, \ X_t^i = \sum_{j=1}^p a_{ij} X_{t-1}^j + b_i + \varepsilon_t^i, \ \varepsilon_t^i \sim \mathcal{N}(0, \sigma_i).$$

• $b_i \sim \mathcal{U}(0, 1),$
• $\sigma_i \sim \mathcal{U}(0.03; 0.08),$
• $n = 20 \text{ to } 50.$

A B M A B M

ROC curves: G1DBN vs Lasso (Tibshirani, 1996) Shrinkage (Opgen-Rhein and Strimmer, 2007)

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

Expression data:

- 792 genes,
- 18 time points (each 7 minutes).
- 9 transcription factors,

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

Starch metabolism in Arabidopsis leaves (Smith, 2004)

Expression data

- 800 genes
- 11 time points (2 repetitions)

Inferred network:

- 236 genes,
- 168 edges,
- "hub" structure.

DAG $\hat{\mathcal{G}}^{(1)}$ for $lpha_1=0.1$ (168 edges).

Inferring homogenous DBN with partial order dependences

- Mathematical results:
 - $\tilde{\mathcal{G}}$, $\mathcal{G}^{(q)}$ definition and characterization for DBNs.
- A new DBN inference procedure
 - when $n \ll p$
 - performs well in comparison with existent inference procedures
 - R package 'G1DBN' available from the CRAN.
- Inferring dynamic genetic networks with low order independencies. Lèbre, S., under revision for Statistical Applications in Genetics and Molecular Biology.

- **1** Sequence modeling: an EM algorithm for MTD models
- **②** Genetic network: inferring DBN with partial order dependence
- Inferring non-homogneous DBN with rjMCMC

Extension: infering a time-dependent network?

Multiple changepoint Model

 For each gene i,

- changepoint vector $e = (e_1, ..., e_{h-1}, e_h, ..., e_s)$
- in each phase h,
 - a set of k_h predictors $\tau_h = \{j_1, ..., j_{k_h}\}$
 - and a set of parameters $\theta_h = ((b_h^{ij})_{j \in \{0,...,q\}}, \sigma_h)$,

define the regression model, for all $e_h \leq t < e_{h+1}$,

$$X^i_t = b^{i0}_h + \sum_{j \in au_h} b^{ij}_h X^j_{t-1} + arepsilon_t, \quad arepsilon_t \sim \mathcal{N}(0, \sigma_h).$$

Inference: 2 steps **embedded** *reversible jump MCMC.* (Green 95, Andrieu and Doucet 99)

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

Phases updating: regression model change within phases. (Andrieu and Doucet, 1999)

- Priors
 - number of predictors
 - set of predictors

$$egin{array}{lll} s_h^i &\sim \mathcal{P}(\Lambda) \ \pi_h^i | s_h^i &\sim \mathcal{U}$$
niform
onumber

Integration of the "nuisance" parameters (a, σ)
 → acceptance ratio :

$$r_{s_{h}^{i},s_{h}^{i}+1}(\tau_{h}^{i},\tau_{h}^{i+}) = \frac{1}{\sqrt{1+\delta^{2}}} \left(\frac{\gamma_{0} + (y_{h}^{i})^{t} \mathcal{P}_{\tau_{h}^{i}} y_{h}^{i}}{\gamma_{0} + (y_{h}^{i})^{t} \mathcal{P}_{\tau_{h}^{i+}} y_{h}^{i}} \right)^{(m^{i}(\xi_{h}^{i} - \xi_{h-1}^{i}) + \upsilon_{0})/2}$$

- Acceptance probability: $\alpha_{s_h^i, s_h^i+1} = \min\{1, r_{s_h^i, s_h^i+1}(\tau_h^i, \tau_h^{i+})\}$ \rightsquigarrow Reversibility
- Convergence property

Simulation study

$$X_t^i = b_h^{i0} + \sum_{j \in \tau_h} b_h^{ij} X_{t-1}^j + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_h^i).$$

- p = 1000 target genes
- *s_{max}*= 2 (max number changepoints)
- $q_{max} = 5$ (max number of factor genes)
- σⁱ ~ U(0.03; 0.08)
- $b^{ij} \sim \mathcal{U}(0.2 + \sigma_i; 1 + \sigma_i)$
- $b^{i0} \sim \mathcal{U}([-2, -0.5] \cup [0.5, 2])$
- n = 50 and then 100 repeated time points.

$$PPV = \frac{TP}{TP + FP}$$
 $Sensitivity = \frac{TP}{TP + FN}$

Example of simulated data (10 series)

Changepoints detection

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

Edges detection

Edges PPV **Edges Sensitivity** 1.0 0.1 0.8 0.8 0.6 0.6 4.0 0.4 0.2 0.2 0:0 0.0 2 3 5 2 3 1 4 1 4 5 Nb of edges in the model Nb of edges in the model

< 一型

< ≣⇒

æ

Response to benomyl addition by the yeast S cerevisiae

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

FLR1 and GTT2: time-delayed YAP1 targets

- An EM algorithm for estimation in MTD model (1 article).
 → available from seq++
- A new DBN inference procedure when n << p by considering 1st order dependence (1 article under revision).
 → R package 'G1DBN' available from the CRAN
- Relaxation of the homogenity assumption for DBN modeling and reversible jump MCMC inference procedure.

- RJ MCMC procedure: real data,
 - finalize reaction to benomyl analysis,
 - test on Yeast gene expression with 36 repeated time points (Tu et al., 2005).
- Use those DBN inference procedures to study stress response in E. coli and cancer data.
- Random networks and characterization from incomplete graphs.

Priors

- number of changepoints
- changepoints vector
- number of predictors
- set of predictors
- variance
- regression coefficient

 $\begin{array}{rcl} k & \sim & \mathcal{P}(\lambda) \\ \xi | k & \sim & \mathcal{U}niform \\ s_{h}^{i} & \sim & \mathcal{P}(\Lambda) \\ \tau_{h}^{i} | s_{h}^{i} & \sim & \mathcal{U}niform \\ (\sigma_{h}^{i})^{2} & \sim & \mathcal{IG}(\upsilon_{0}, \gamma_{0}), \quad \upsilon_{0}, \gamma_{0} \ll \\ a_{h}^{i} | \sigma_{h}^{i} & \sim & \mathcal{N}(0, (\sigma_{h}^{i})^{2}\Sigma) \end{array}$

Changepoints Detection

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics

٩,

FLR1 and GTT2: time-delayed YAP1 targets

TPO1 and SNG1

э

< 同 ▶

A B + A B +

Résultats : nombre de points de ruptures.

Nombre de points de rupture.

Temps de séjour pour chaque point de rupture.

Loi a posteriori du vecteur de ruptures

Ordre	Probabilité	Vecteur
	a Posteriori	de ruptures
1	0.4722	(1,2,6)
2	0.3266	(1,6)
3	0.0816	(1, 2, 3, 6)
4	0.0242	(1, 4, 5, 6)
5	0.0218	(1, 2, 5, 6)
6	0.0206	(1,3,6)
7	0.015	(1,4,6)
8	0.0134	(1, 5, 6)
9	0.0046	(1, 3, 4, 6)
10	0.0042	(1,2,3,4,5,6)

э

伺 と く ヨ と く ヨ と

Loi a posteriori pour chaque phase.

э

Données Bénomyl

- PDR1

э

Sophie Lèbre - Thesis defense - Supervisor Bernard Prum - 14 Stochastic processes analysis for Genomics