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Introduction

Les travaux de G.Lusztig sur les caracteres irréductibles des groupes réductifs
sur les corps finis ont mis en évidence le role important joué par les “familles
de caracteres” des groupes de Weyl concernés. Cependant, on s’est récemment
rendu compte qu’il serait de grand intérét de généraliser la notion des familles
de caracteres aux groupes de réflexions complexes ou, plus précisément, a
divers types d’algebres de Hecke associées aux groupes de réflexions com-
plexes.

D’une part, les groupes de réflexions complexes et certaines déformations
de leurs algebres génériques (les algebres cyclotomiques) interviennent na-
turellement pour classifier les “séries de Harish-Chandra cyclotomiques” des
caracteres des groupes réductifs finis, généralisant ainsi le role joué par le
groupe de Weyl et son algebre de Hecke traditionnelle dans la description
de la série principale. Puisque les familles de caracteres du groupe de Weyl
jouent un role essentiel dans la définition des familles de caracteres unipo-
tents du groupe réductif fini correspondant (cf. [27]), on peut espérer que
plus généralement les familles de caracteres des algebres cyclotomiques jouent
un role-clef dans I'organisation des familles de caracteres unipotents.

D’autre part, pour certains groupes de réflexions complexes (et non de
Coxeter) W, on a des données qui semblent indiquer que, derriere le groupe
W se cache un objet mystérieux - le Spets (cf. [13], [32]) - qui pourrait jouer
le role de “la série des groupes réductifs finis de groupe de Weyl W”. Dans
certains cas, il est possible de définir les caracteres unipotents du Spets, qui
sont controlés par 'algebre de Hecke “spetsiale” de W, une généralisation de
I’algebre de Hecke classique des groupes de Weyl.

L’obstacle principal pour cette généralisation est le manque de bases de
Kazhdan-Lusztig pour les groupes de réflexions complexes (non de Coxeter).
Cependant, des résultats plus récents de Gyoja [23] et de Rouquier [37] ont
rendu possible la définition d'un substitut pour les familles des caracteres,
qui peut étre appliqué a tous les groupes de réflexions complexes. Gyoja a
démontré (cas par cas) que la partition en “p-blocs”de Ialgebre de Twahori-
Hecke d’un groupe de Weyl W coincide avec la partition en familles, quand p



est 'unique mauvais nombre premier pour W. Plus tard, Rouquier a prouvé
que les familles des caracteres d'un groupe de Weyl W sont exactement les
blocs de caracteres de l'algebre de Iwahori-Hecke de W sur un anneau de
coefficients convenable. Cette définition se généralise sans probleme a toutes
les algebres cyclotomiques de Hecke des groupes de réflexions complexes.
Expliquons comment.

Soit i le groupe des racines de I'unité de C et K un corps de nombres
contenu dans Q(i). On note u(K) le groupe des racines de l'unité de K
et pour tout d > 1, on pose (4 := exp(2mi/d). Soit V un K-espace vectoriel
de dimension finie. Soit W un sous-groupe fini de GL(V') engendré par
des (pseudo-)réflexions et agissant irréductiblement sur V' et B le groupe de
tresses associé a W. On note A l’ensemble des hyperplans de réflexion de
Wet V% .= C®V — Uy, C® H. Pour zp € V', on définit B :=
IL, (VI8 /W, o)

Pour toute orbite C de W sur A, on note ec 'ordre commun des sous-
groupes Wy, ot H € C et Wy est le sous-groupe formé de 1 et toutes les
réflexions qui fixent H.

On choisit un ensemble d’indéterminées u = (uc ;) (cea/w)(0<j<ec—1) €t on
définit ’algebre de Hecke générique 'H de W comme le quotient de ’algebre
du groupe Z[u,u"!]B par 'idéal engendré par les éléments de la forme

(S — UJC’O)(S — U(;J) . (S — UC,ec—1)7
ou C parcourt ’ensemble A/W et s 'ensemble de générateurs de monodromie
autour des images dans VI®8 /W des éléments de I'orbite d’hyperplans C.
Si on suppose que H est un Z[u, u™!]-module libre de rang |[W| et qu’elle
est munie d’une forme symétrisante ¢t qui satisfait les conditions 3.2.2, alors on
a le résultat suivant di a Malle ([32], 5.2) : si v = (vej)(cea/w)(0<j<ec—1) UN

ensemble de ZCEA/W ec indéterminées tel que, pour tout C, j, on a v%KM =

Cgcj uc,;, alors l'algebre K (v)H est semisimple déployée. Noter bien que ces
hypotheses sont verifiées pour tous les groupes de réflexions irréductibles sauf
un nombre fini d’entre eux ([13], remarques précédant 1.17, § 2; [22]). Dans
ce cas, par le “théoreme de déformation de Tits”, on sait que la spécialisation
ve,; — 1 induit une bijection y +— xv de I'ensemble Irr(1V) des caracteres
absolument irréductibles de W sur I’ensemble Irr(K (v)H) des caractéres ab-
solument irréductibles de l'algebre K (v)H.

Soit maintenant y une indéterminée. La Zg[y, y~']-algebre, notée par
H4, obtenue comme la spécialisation de ‘H via le morphisme ¢ : ve ; — y™c7,
ol n¢; € Z pour tous C et j, est une algebre de Hecke cyclotomique. Elle est
aussi munie d’'une forme symétrisante ¢, définie comme la spécialisation de la
forme canonique ¢. On remarque que, pour y = 1, 'algebre 'H,, se spécialise
a l'algebre du groupe Zg [W].



On appelle anneau de Rouquier de K et note par Ry(y) la sous-Zy-
algebre de K(y)

Ri(y) = Zxly, y—17 (y" — 1)7%1]'

Les blocs de Rouquier de H, sont les blocs de l'algebre R (y)Hys. Rouquier
[37] a montré que si W est un groupe de Weyl et Hy est obtenue via la
spécialisation cyclotomique (“spetsiale”)

¢ :veot— Yy et vej— 1 pour j #0,

alors ses blocs de Rouquier coincident avec les “familles de caracteres” selon
Lusztig. Ainsi, les blocs de Rouquier jouent un role essentiel dans le pro-
gramme “Spets” dont ’ambition est de faire jouer a des groupes de réflexions
complexes le role de groupes de Weyl de structures encore mystérieuses.

En ce qui concerne le calcul des blocs de Rouquier, le cas de la série
infinie est déja traitée par Broué et Kim dans [12] et par Kim dans [24].
D’ailleurs, les blocs de Rouquier de 'algebre de Hecke cyclotomique “spet-
siale” de plusieurs groupes de réflexions complexes exceptionnels ont été
déterminés par Malle et Rouquier dans [33]. Généralisant les méthodes em-
ployées dans le dernier, nous avons pu calculer les blocs de Rouquier de toutes
les algebres de Hecke cyclotomiques de tous les groupes de réflexions com-
plexes exceptionnels. De plus, nous avons découvert que les blocs de Rouquier
d’une algebre de Hecke cyclotomique dépendent d’'une donnée numérique du
groupe de réflexions complexe W, ses hyperplans essentiels.

De fagon plus précise, les deux premiers chapitres de cette these présentent
des résultats qui sont donnés ici pour la commodité du lecteur. Dans le pre-
mier chapitre, qui est consacré a l'algebre commutative, nous démontrons
des résultats sur la divisibilité et l'irréductibilité qui vont étre tres utiles
dans le chapitre 3. Nous introduisons aussi les notions des “morphismes as-
sociés a des monomes” et des “morphismes adaptés”. Le deuxieme chapitre
est I'adaptation et la généralisation des résultats classiques de la théorie des
blocs et de la théorie des réprésentations des algebres symétriques, qui peu-
vent etre trouvés dans [12] et [20]. Par ailleurs, nous donnons un critére pour
qu’une algebre soit semisimple déployée.

Dans le troisieme chapitre, nous trouvons le coeur théorique de cette
these. Son but est la détérmination des blocs de Rouquier des algebres de
Hecke cyclotomiques des groupes de réflexions complexes. Nous donnons la
formule explicite suivante pour les éléments de Schur associés aux caracteres



irréductibles de I'algebre de Hecke générique d’un groupe de réflexions com-
plexe W : si K est le corps de définition de W et v = (Uc,j)(CeA/W)(ogjgec—l)
est un ensemble d’indéterminées comme ci-dessus, alors 1’élément de Schur
sy (V) associé au caractere yy de K(v)H est de la forme

Sy (V) = &Ny H Wi (M) ™

i€l
ou
o &, est un élément de Zg,
o Ny = Il vgfjij est un monome dans Zg[v,v™!] avec ngl bej =0
pour tout C € A/W,
e [, est un ensemble d’indices,

o (U, ;)icr, est une famille de polynomes K-cyclotomiques a une variable
(i.e., polynomes minimaux sur K des racines de I'unité),

(Myi)icr, est une famille de monoémes dans Zg[v,v™'] et si M,; =
[l vesy’, alors pged(ac ;) = 1 et Z;C:Bl ac; = 0 pour tout C € A/W,

® (ny,i)ier, est une famille d’entiers positifs.

Cette factorisation est unique dans K[v,v™'] et les monomes (M, ;);cr, sont
uniques a inversion pres. Si p est un idéal premier de Zg et W(M, ;) est
un facteur de s, (v) tel que ¥, ;(1) € p, alors le monome M, ; s’appellera p-
essentiel pour x. Nous montrons que plus on spécialise notre algebre via des
morphismes associés aux monomes p-essentiels, plus la taille de ses p-blocs
s’agrandit.

Soit maintenant M := Hc,j vg’cj’j un monome p-essentiel. L’hyperplan
défini dans C2cea/w e par la relation Zc,j acjte; = 0, ou (t¢;)c,; est un
ensemble de > . 4 Jw €c indéterminées, s’appelle hyperplan p-essentiel pour
W. S8i ¢ :ve; — y" est une spécialisation cyclotomique, alors les blocs
de Rouquier de Hy dépendent des hypeplans p-essentiels auxquels les nc¢ ;
appartiennent (ou p parcourt I’ensemble des idéaux premiers de Zg ). Donc
les blocs de Rouquier d’une algebre de Hecke cyclotomique dépendent d’une
donnée numérique du groupe W.

Le quatrieme chapitre est la partie calculatoire de cette these. Nous
présentons l'algorithme et les résultats de la détermination des blocs de
Rouquier de toutes les algebres de Hecke cyclotomiques de tous les groupes
de réflexions complexes exceptionnels.
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Introduction

The work of G.Lusztig on the irreducible characters of reductive groups over
finite fields has displayed the important role of the “character families” of
the Weyl groups concerned. However, only recently was it realized that it
would be of great interest to generalize the notion of character families to the
complex reflection groups, or more precisely to some types of Hecke algebras
associated with complex reflection groups.

On one hand, the complex reflection groups and their associated “cy-
clotomic” Hecke algebras appear naturally in the classification of the “cyclo-
tomic Harish-Chandra series” of the characters of the finite reductive groups,
generalizing the role of the Weyl group and its traditional Hecke algebra in
the principal series. Since the character families of the Weyl group play an
essential role in the definition of the families of unipotent characters of the
corresponding finite reductive group ([27]), we can hope that the character
families of the cyclotomic Hecke algebras play a key role in the organization
of families of unipotent characters more generally.

On the other hand, for some complex reflection groups (non-Coxeter) W,
some data have been gathered which seem to indicate that behind the group
W, there exists another mysterious object - the Spets (see [13],[32]) - that
could play the role of the “series of finite reductive groups of Weyl group W”.
In some cases, one can define the unipotent characters of the Spets, which
are controlled by the “spetsial” Hecke algebra of W, a generalization of the
classical Hecke algebra of the Weyl groups.

The main obstacle for this generalization is the lack of Kazhdan-Lusztig
bases for the non-Coxeter complex reflection groups. However, more recent
results of Gyoja [23] and Rouquier [37] have made possible the definition of
a substitute for families of characters which can be applied to all complex
reflection groups. Gyoja has shown (case by case) that the partition into
“p-blocks” of the Iwahori-Hecke algebra of a Weyl group W coincides with
the partition into families, when p is the unique bad prime number for W.
Later, Rouquier showed that the families of characters of a Weyl group W
are exactly the blocks of characters of the Iwahori-Hecke algebra of W over
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a suitable coefficient ring. This definition generalizes without problem to all
the cyclotomic Hecke algebras of complex reflection groups. Let us explain
how.

Let pi be the group of all the roots of unity in C and K a number field
contained in Q(ps). We denote by p(K') the group of all the roots of unity of
K and for all d > 1, we put (4 := exp(2mi/d). Let V be a finite dimensional
K-vector space. Let W be a finite subgroup of GL(V') generated by (pseudo-
Jreflections and acting irreducibly on V. Denote by A the set of its reflecting
hyperplanes. We set VI8 .= C® V — UpeaC® H. For z( € VICE we
define B := I1;(V¥®8 /W, ) the braid group associated with W.

For every orbit C of W on A, we set e¢ the common order of the subgroups
Wy, where H is any element of C and Wy the subgroup formed by 1 and all
the reflections fixing the hyperplane H.

We choose a set of indeterminates u = (uc;)cea/w)o<j<ec—1) and we
denote by Z[u,u™!] the Laurent polynomial ring in all the indeterminates u.
We define the generic Hecke algebra H of W to be the quotient of the group
algebra Z[u,u™!|B by the ideal generated by the elements of the form

(s —wuco)(s—uca)...(S—uceo—1),

where C runs over the set A/W and s over the set of monodromy generators
around the images in V8 /W of the elements of the hyperplane orbit C.

If we assume that H is a free Z[u, u"!]-module of rank |WW| and it has
a symmetrizing form ¢ which satisfies assumptions 3.2.2, then we have the
following result by Malle ([30], 5.2): If v = (vc;)cea/w)o<j<ec—1) i a set
of Y oca w €c indeterminates such that, for every C,j, we have v|c“ ](K)l =
(oo Juc j, then the K(v)-algebra K (v)H is split semisimple. Note that these
assumptions have been verified for all but a finite number of irreducible
complex reflection groups ([13], remarks before 1.17, § 2; [22]). In this case,
by “Tits” deformation theorem”, we know that the specialization v¢; — 1
induces a bijection y +— xv from the set Irr(WW) of absolutely irreducible
characters of W to the set Irr(K (v)H) of absolutely irreducible characters of
K(v)H.

Now let y be a indeterminate. The Zg [y, y~!]-algebra obtained as a spe-
cialization of H via the morphism ¢ : v¢; — y"¢7, where n¢; € Z for all C
and 7, is a cyclotomic Hecke algebra and it is denoted by Hg. It also has a
symmetrizing form ¢, defined as the specialization of the canonical form ¢.
We notice that, for y = 1, the algebra H, specializes to the group algebra
Z[W].

We call Rouquier ring of K and denote by Ry (y) the Zy-subalgebra of
K(y)

Ric(y) = Zrly,y~ ', (" = 1)y2i).

14



The Rouquier blocks of H, are the blocks of the algebra Ry (y)Hs. It has
been shown by Rouquier [37], that if W is a Weyl group and H,, is obtained
via the cyclotomic specialization (“spetsial”)

¢:veor—y and vej— 1 for j #0,

then its Rouquier blocks coincide with the “families of characters” defined
by Lusztig. Thus, the Rouquier blocks play an essential role in the program
“Spets” whose ambition is to give to complex reflection groups the role of
Weyl groups of as yet mysterious structures.

As far as the calculation of the Rouquier blocks is concerned, the case of
the infinite series has already been treated by Broué and Kim in [12] and Kim
in [24]. Moreover, the Rouquier blocks of the “spetsial” cyclotomic Hecke
algebra of many exceptional complex reflection groups have been determined
by Malle and Rouquier in [33]. Generalizing the methods used in the latter,
we have been able to calculate the Rouquier blocks of all cyclotomic Hecke al-
gebras of all exceptional complex reflection groups. Moreover, we discovered
that the Rouquier blocks of a cyclotomic Hecke algebra depend on a numer-
ical datum of the complex reflection group W, its essential hyperplanes.

Let us get into more details: The first two chapters of this thesis present
results which are given here for the convenience of the reader. In the first
chapter, which is dedicated on commutative algebra, we prove some results
about divisibility and irreducibility which are going to be very useful in chap-
ter 3. We also introduce the notions of “morphisms associated with mono-
mials” and “adapted morphisms”. The second chapter is the adaptation and
generalization of classic results of block theory and representation theory of
symmetric algebras, which can be found in [12] and [20]. We also give a
criterion for an algebra to be split semisimple.

In the third chapter, we find the theoretical core of this thesis. Its aim is
the determination of the Rouquier blocks of the cyclotomic Hecke algebras
of complex reflection groups. We give the following explicit formula for the
Schur elements associated with the irreducible characters of the generic Hecke
algebra of a complex reflection group W: If K is the field of definition of W
and v = (vej)(cea/w)0<j<ec—1) 18 a set of indeterminates like above, then the
Schur element s, (v) associated with the character yv of K(v)H is of the
form

Sy (V) = &Ny H Wi (M )™
i€y

where

15



&y is an element of Zg,

_ bej . . 1 . co—1 B
Ny =1l¢, ve; is a monomial in Zg[v, v™] with > 7" bc; = 0 for all

Ce A/W,

I, is an index set,

(Vy.i)ier, is a family of K-cyclotomic polynomials in one variable (i.e.,
minimal polynomials of the roots of unity over K),

(M, ;)icr, is a family of monomials in Zg|[v, v andif M, ; = HC,j vgg’j,

then ged(acj) = 1 and nggl ac; =0forall C € A/W,

® (ny,i)ier, is a family of positive integers.

This factorization is unique in K[v,v™'] and the monomials (M, ;);cr, are
unique up to inversion. If p is a prime ideal of Zy and V(M ;) is a factor of
sy (v) such that ¥, ;(1) € p, then the monomial M, ; will be called p-essential
for y. We show that the more we specialize our algebra via morphisms asso-
ciated with p-essential monomials, the more the size of its p-blocks becomes
larger.

Now let M := Hc,j vgcjj be a p-essential monomial. The hyperplane

defined in C>cea/w e by the relation >c;jacgte; = 0, where (tc;)c; is a
set of > oc4 w €c indeterminates, is called p-essential hyperplane for W. If
¢ vej — y"¢ is a cyclotomic specialization, then the Rouquier blocks of Hy
depend on which p-essential hyperplanes the n¢ ; belong (where p runs over
the prime ideals of Zk). Hence the Rouquier blocks of a cyclotomic Hecke
algebra depend on a numerical datum of the group W.

The fourth chapter is the calculation part of this thesis. We present the

algorithm and the results of the determination of the Rouquier blocks of all
cyclotomic Hecke algebras of all exceptional complex reflection groups.
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Chapter 1

On Commutative Algebra

Throughout this chapter, all rings are assumed to be commutative with 1.
Moreover, if R is a ring and zg, x1,...,T,, is a set of indeterminates on R,

then we denote by R[zg", 27, ... 2!] the Laurent polynomial ring on m+1

rYm

indeterminates, i.e., the ring R[zg, zo L, x1, 2174, . o) Ty 2 Y.

1.1 Localizations

Definition 1.1.1 Let R be a commutative ring with 1. We say that a subset
S of R is a multiplicatively closed set if 0 ¢ S, 1 € S and every finite product
of elements of S belongs to S.

In the set R x S, we introduce an equivalence relation such that (r, s) is
equivalent to (17, s') if and only if there exists ¢ € S such that t(s'r —sr’) = 0.
We denote the equivalence class of (7, s) by r/s. The set of equivalence classes
becomes a ring under the operations such that the sum and the product of
r/s and 1’ /s" are given by (s'r + s1’)/ss’ and rr’/ss’ respectively. We denote
this ring by S™!R and we call it the localization of R at S. If S contains no
zero divisors of R, then any element r of R can be identified with the element
r/1 of ST'R and we can regard the latter as an R-algebra.

Remarks:

e If S is the set of all non-zero divisors of R, then S™'R is called the total
quotient ring of R. If, moreover, R is an integral domain, the total
quotient ring of R is the field of fractions of R.

e If R is Notherian, then S™'R is Noetherian.
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o If p is a prime ideal of R, then the set S := R — p is a multiplicatively
closed subset of R. Then the ring S™' R is simply denoted by R,.

The proofs for the following well known results concerning localizations
can be found in [6].

Proposition 1.1.2 Let A and B be two rings with multiplicative sets S and
T respectively and f an homomorphism from A to B such that f(S) is con-
tained in T. There exists a unique homomorphism f' from S™'A to T™'B
such that f'(a/1) = f(a)/1 for every a € A. Let us suppose now that T is
contained in the multiplicatively closed set of B generated by f(S). If f is
surjective (resp. injective), then f' is also surjective (resp. injective).

Corollary 1.1.3 Let A and B be two rings with multiplicative sets S and T
respectively such that A C B and S CT. Then ST'AC T 'B.

Proposition 1.1.4 Let A be a ring and S,T two multiplicative sets of A
such that S CT. We have S™'A = T A if and only if every prime ideal of
R that meets T' meets S.

The following proposition and its corollary give us information about the
ideals of the localization of a ring R at a multiplicatively closed subset S of
R.

Proposition 1.1.5 Let R be a ring and let S be a multiplicatively closed
subset of R. Then

1. Every ideal b of S™'R is of the form S~'b for some ideal b of R.

2. Let b be an ideal of R and let f be the canonical surjection R — R/b.
Then f(S) is a multiplicatively closed subset of R/b and the homomor-
phism from ST'R to (f(S)) ' (R/b) canonically associated with f is
surjective with kernel b’ = S™1b. By passing to quotients, an isomor-
phism between (ST'R) /b6 and (f(S))"'(R/b) is defined.

3. The application b’ — b, restricted to the set of mazximal (resp. prime)
ideals of ST'R, is an isomorphism (for the relation of inclusion) be-
tween this set and the set of mazimal (resp. prime) ideals of R that do
not meet S.

4. If ' is a prime ideal of ST'R and q is the prime ideal of R such that
q = S7'q (we have NS = D), then there exists an isomorphism from
Ry to (ST'R)y which sends r/s to (r/1)/(s/1) forr € R, s € R—q.
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Corollary 1.1.6 Let R be a ring, p a prime ideal of R and S := R — p.
For every ideal b of R which does not meet S, let b’ := bR,. Assume that
b" # R,. Then

1. Let f be the canonical surjection R — R/b. The ring homomorphism
from R, to (R/b)yse canonically associated with f is surjective and
its kernel is b'. Thus it defines, by passing to quotients, a canonical
isomorphism between R,/b" and (R/b),/p.

2. The application b’ +— b, restricted to the set of prime ideals of Ry, is an
isomorphism (for the relation of inclusion) between this set and the set
of prime ideals of R contained in p (thus do not meet S). Therefore,
p R, is the only maximal ideal of R,,.

3. If now b’ is a prime ideal of Ry, then there exists an isomorphism from
Ry to (Ry)y which sends r/s to (r/1)/(s/1) forr € R, s € R—b.

The notion of localization can also be extended to the modules over the
ring R.

Definition 1.1.7 Let R be a ring and S a multiplicatively closed set of R. If
M is an R-module, then we call localization of M at S and denote by S™'M
the S™'R-module M ®g S~'R.

1.2 Integrally closed rings

Theorem-Definition 1.2.1 Let R be a ring, A an R-algebra and a an ele-
ment of A. The following properties are equivalent:

(i) The element a is a root of a monic polynomial with coefficients in R.

(ii) The subalgebra R[a] of A is an R-module of finite type.
(iii) There exists a faithful Rla]-module which is an R-module of finite type.

If a € A verifies the conditions above, we say that it is integral over R.

Definition 1.2.2 Let R be a ring and A an R-algebra. The set of all ele-
ments of A that are integral over R is an R-subalgebra of A containing R; it
is called the integral closure of R in A. We say that R is integrally closed in
A, if R is an integral domain and if it coincides with its integral closure in
A. If now R is an integral domain and F is its field of fractions, then the
integral closure of R in F' is named simply the integral closure of R, and if
R is integrally closed in F', then R is said to be integrally closed.
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The following proposition ([7], §1, Prop.13) implies that transfer theorem
holds for integrally closed rings (corollary 1.2.4).

Proposition 1.2.3 If R is an integral domain, let us denote by R the integral
closure of R. Let wg,...,zm be a set of indeterminates over R. Then the
integral closure of R[zo, ..., xy] is Rlxo, ..., on].

Corollary 1.2.4 Let R be an integral domain. Then R|x,...,T,] is inte-
grally closed if and only if R is integrally closed.

Corollary 1.2.5 If K is a field, then every polynomial ring Klzo, ..., xy]
15 integrally closed.

The next proposition ([7], §1, Prop.16) along with its corollaries treats
the integral closures of localizations of rings.

Proposition 1.2.6 Let R be a ring, A an R-algebra, R the integral closure
of Rin A and S a multiplicatively closed subset of R which contains no zero
divisors. Then the integral closure of ST'R in S™'A is ST'R.

Proof: Let b/s be an element of S™'R (s € S,b € R). Since the diagram

R — SR

l !
A — S7'4

commutes, the element b/1 is integral over ST'R. Since 1/s € S7!R, the
element b/s = (b/1)(1/s) is integral over S™'R.

On the other hand, let a/t (a € A,t € S) be an element of S~!'A integral
over ST'R. Then a/1 = (t/1)(a/t) is integral over S™'R. This means that
there exist 7, € R (1 <i <n) and s € S such that

(a/1)" + (r1/s)(a/1)" " + ...+ (rn/s) = 0.
The above relation can also be written as
(sa™ +ra™ ' + .. +1,)/s =0
and since S contains no zero divisors of R, we obtain that
sa"+ a4+ . 4+, =0.
Multiplying the above relation with s"~! we deduce that
(sa)" +7ri(sa)"  + ...+ 5" 'r, = 0.

Thus, by definition, we have sa € R. Therefore, a/1 € S™'R and hence,
a/t € STIR. [
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Corollary 1.2.7 Let R be an integral domain, R the integral closure of R
and S a multiplicatively closed subset of R. Then the integral closure of ST'R
is ST'R.

Corollary 1.2.8 If R is an integrally closed domain and S is a multiplica-
tively closed subset of R, then S™'R is also integrally closed.

Lifting prime ideals

Definition 1.2.9 Let R, R’ be two rings and let h : R — R’ be a ring homo-
morphism. We say that a prime ideal @’ of R' lies over a prime ideal a of R,
if a=h7'(a).

The next result is [7], §2, Proposition 2.

Proposition 1.2.10 Let h: R — R’ be a ring homomorphism such that R’
is integral over R. Let p be a prime ideal of R, S := R —p and (p});cs the
family of all the prime ideals of R' lying over p. If S" = (\,c;(R' — p;), then
S—lR/ — S,_IR,.

Proof: By definition, we have h(S) C S’ and since h(S)'R' ~ S™'R/,
it is enough to show that if a prime ideal g’ of R’ doesn’t meet h(S5),
then it doesn’t meet S’ either (see proposition 1.1.4). Let us suppose that
g NA(S) =10 and let q :== h~'(q’'). Then we have ¢ NS = @), which means
that g C p. Since ¢’ is lying over q by definition, there exists an index i € [
such that q' C p}. Therefore, g’ NS’ = 0. |

The following corollary deals with a case we will encounter in a following
chapter, where there exists a unique prime ideal lying over the prime ideal p
of R. In combination with proposition 1.2.6, proposition 1.2.10 implies that

Corollary 1.2.11 Let R be an integral domain, A an R-algebra, R the in-
tegral closure of R in A. Let p be a prime ideal of R and S := R—p. If there
exists a unique prime ideal p of R lying over p, then the integral closure of

R, in S™1A is Ry.

Valuations

Definition 1.2.12 Let R be a ring and I' a totally ordered abelian group.
We call valuation of R with values in T’ every application v : R — T' U {oo}
which satisfies the following properties:
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(V1) v(zy) =v(z) +v(y) forz € R,y € R.
(V2) v(z+y) > inf(v(z),v(y)) forx € R,y € R.
(V3) v(1) =0 and v(0) = co.

In particular, if v(z) # v(y), property (V2) gives v(x + y) = inf(v(z), v(y))
for x € R,y € R. Moreover, from property (V1), we have that if z € R with
2" = 1 for some integer n > 1, then nv(z) = v(2") = v(1) = 0 and thus
v(z) = 0. Consequently, v(—z) = v(—1) + v(z) = v(z) for all x € R.

Now let F' be a field and let v : F — I' be a valuation of F. The set A of
a € F such that v(a) > 0 is a local subring of F. Its maximal ideal m(A) is
the set of a € A such that v(a) > 0. Foralla € F — A, we have a~! € m(A).
The ring A is called the ring of the valuation v on F.

We will now introduce the notion of a valuation ring. For more informa-
tion about valuation rings and their properties, see [8]. Some of them will
also be discussed in Chapter 2, Section 2.4.

Definition 1.2.13 Let R be an integral domain contained in a field F'. Then
R is a valuation ring if for all non-zero element x € F', we have x € R or
27t € R. Consequently, F is the field of fractions of R.

If R is a valuation ring, then it has the following properties:

e [t is an integrally closed local ring.

e The set of the principal ideals of R is totally ordered by the relation of
inclusion.

e The set of the ideals of R is totally ordered by the relation of inclusion.

Let R be a valuation ring and F its field of fractions. Let us denote by
R* the set of units of R. Then the set I'r := F*/R* is an abelian group,
totally ordered by the relation of inclusion of the corresponding principal
ideals. If we denote by vg the canonical homomorphism of F'* onto I'g and
set vR(0) = oo, then vg is a valuation of F' whose ring is R.

The following proposition gives a characterization of integrally closed
rings in terms of valuation rings ([8], §1, Thm. 3).

Proposition 1.2.14 Let R be a subring of a field F'. The integral closure
R of R in F is the intersection of all valuation rings in F which contain R.
Consequently, an integral domain R s integrally closed if and only if it is the
intersection of a family of valuation rings contained in its field of fractions.
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This characterization helped us to prove the following result about inte-
grally closed rings.

Proposition 1.2.15 Let R be an integrally closed ring and f(x) =Y, a;a",
g(x) = 37, bja? be two polynomials in R[x]. If there exists an element ¢ € R
such that all the coefficients of f(x)g(x) belong to cR, then all the products
a;b; belong to cR.

Proof: Due to the proposition 1.2.14, it is enough to prove the result in
the case where R is a valuation ring.

From now on, let R be a valuation ring. Let v be a valuation of the
field of fractions of R such that the ring of valuation of v is R. Let k :=
inf;(v(a;)) and A := inf;(v(b;)). Then x + A = inf; ;(v(a;b;)). We will
show that x + A > wv(c) and thus ¢ divides all the products a;b;. Ar-
gue by contradiction and assume that x + A < v(c). Let a;,a;,...,aq;,
with 41 < iy < ... < 4, be all the elements among the a; with valuation
equal to k. Respectively, let bj,,bj,,...,b;, with j; < jo < ... < js be
all the elements among the b; with valuation equal to A\. We have that
i1+ J1 < im + Ju, YV(m,n) # (1,1). Therefore, the coefficient ¢;, 4;, of
in f(z)g(z) is of the form (a;,b;, + > (terms with valuation > x + X)) and
since v(a;, b;,) # v(>_(terms with valuation > k + \)), we obtain that

v(¢iy+4,) = inf(v(a;, bj,), U(Z(terms with valuation > kK + \))) = k + A.

However, since all the coefficients of f(x)g(z) are divisible by ¢, we have that
v(€iy+4,) > v(c) > K+ A, which is a contradiction. [

The propositions 1.2.16 and 1.2.18 derive from the one above. We will
make use of the results in corollaries 1.2.17 and 1.2.19 in Chapter 3.

Proposition 1.2.16 Let R be an integrally closed domain and let F be its
field of fractions. Let p be a prime ideal of R. Then

(R[z])pri) N Flz] = Rylz].

Proof: The inclusion Ry[z] C (R[z])pr2) N F|x] is obvious. Now, let f(x)
be an element of F[z]. Then f(x) can be written in the form r(x)/¢, where
r(x) € R[z] and £ € R. If, moreover, f(z) belongs to (R[x])yr[s, then there
exist s(x),t(z) € Rlz] with t(z) ¢ pR[z| such that f(x) = s(z)/t(z). Thus

we have () ()
f(I):T:t(_w)'
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All the coefficients of the product r(z)t(x) belong to £R. Due to proposi-
tion 1.2.15, if r(z) = 3~ a;2’ and t(z) = 3, b;2/, then all the products a;b;
belong to {R. Since t(x) ¢ pR[x], there exists jo such that b;, ¢ p and
a;b;, € R, Vi. Consequently, bj, f(x) = bj,(r(x)/§) € R[z] and hence all the
coefficients of f(x) belong to R,,. |

Corollary 1.2.17 Let R be an integrally closed domain and let F' be its field
of fractions. Let p be a prime ideal of R. Then

1. (Rlz, 2™ ) pripe—1) N Flz, 271 = Rylz, z71).

2. (Rlxo, - Tm])pRwo,.am] NV E [0y -+ s ] = Rp[xo, ..., Tl
8. (RlzZh, ... ,xil})pR[m# 77777 s N Flagt, .. atl = Ry, ... 2l

Proposition 1.2.18 Let R be an integrally closed domain and let F' be its
field of fractions. Let r(x) and s(z) be two elements of R[x] such that s(x)
divides r(x) in Flx]. If one of the coefficients of s(x) is a unit in R, then
s(x) divides r(zx) in Rx].

Proof: Since s(x) divides r(x) in Fx], there exists an element of the
form ¢(x)/¢ with t(x) € R[z] and £ € R such that

All the coefficients of the product s(z)t(x) belong to {R. Due to proposition
1.2.15, if s(z) = 37, ;2" and t(z) = >, b;a’, then all the products a;b; be-
long to ¢R. By assumption, there exists ig such that a;, is a unit in R and

a;,b; € ER,Vj. Consequently, b; € ER,Vj and thus t(x)/¢ € R|x]. |

Corollary 1.2.19 Let R be an integrally closed domain and let F' be its field

of fractions. Let r,s be two elements of R[xg", ..., x| such that s divides
roin Flogt, ... atl]. If one of the coefficients of s is a unit in R, then s
divides v in Rlzzt, ... xEl].

Discrete valuation rings and Krull rings

Definition 1.2.20 Let F' be a field, I' a totally ordered abelian group and v
a valuation of F with values in I'. We say that the valuation v is discrete, if
I' is isomorphic to 7.
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Theorem-Definition 1.2.21 An integral domain R is a discrete valuation
ring, if it satisfies one of the following equivalent conditions:

(i) R is the ring of a discrete valuation.
(ii) R is a local Dedekind ring.

(iii) R is a local principal ideal domain.
(iv) R is a Noetherian valuation ring.

By proposition 1.2.14, integrally closed rings are intersections of valuation
rings. Krull rings are essentially intersections of discrete valuation rings.

Definition 1.2.22 An integral domain R is a Krull ring, if there exists a
family of valuations (v;);er of the field of fractions F' of R with the following
properties:

(K1) The valuations (v;)ier are discrete.
(K2) The intersection of the rings of (v;)ier is R.

(K3) Forallz € F* there exists a finite number of i € I such that v;(x) # 0.

The proofs of the following results and more information about Krull
rings can be found in [9], §1.

Theorem 1.2.23 Let R be an integral domain and let Specy(R) be the set
of its prime ideals of height 1. Then R is a Krull ring if and only if the
following properties are satisfied:

1. For allp € Spec,(R), Ry is a discrete valuation ring.
2. R is the intersection of Ry, for all p € Spec,(R).

3. For all v # 0 in R, there exists a finite number of ideals p € Spec,(R)
such that r € p.

Transfer theorem holds also for Krull rings.

Proposition 1.2.24 Let R be a Krull ring, F' the field of fractions of R and
x an indeterminate. Then R[z| is also a Krull ring. Moreover, its prime
ideals of height 1 are:

e the prime ideals of the form pR[x|, where p is a prime ideal of height 1
of R,
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e the prime ideals of the form mN R[z]|, where m is a prime ideal of F|x].

The following proposition provides us with a simple characterization of
Krull rings, when they are Noetherian.

Proposition 1.2.25 Let R be a Noetherian ring. Then R is a Krull ring if
and only if it is integrally closed.

Example 1.2.26 Let K be a finite field extension of Q and Zg the integral clo-
sure of Z in K. The ring Z is a Dedekind ring and thus Noetherian and integrally
closed. Let xg,x1,..., %, be indeterminates. Then the ring ZK[a:aE, :z:ic, . ,xi} is

also Noetherian and integrally closed and thus a Krull ring.

1.3 Completions

For all the following results concerning completions, the reader can refer to
[35], Chapter II.

Let I be an ideal of a commutative ring R and let M be an R-module.
We introduce a topology on M such that the open sets of M are unions of
an arbitrary number of sets of the form m + "M (m € M). This topology is
called the I-adic topology of M.

Theorem 1.3.1 If M is a Noetherian R-module, then for any submodule N
of M, the I-adic topology of N coincides with the topology of N as a subspace
of M with the I-adic topology.

From now on, we will concentrate on semi-local rings and in particular,
on Noetherian semi-local rings.

Definition 1.3.2 A ring R is called semi-local, if it has only a finite number
of mazimal ideals. The Jacobson radical m of R is the intersection of the
maximal ideals of R.

Theorem 1.3.3 Assume that R is a Noetherian semi-local ring with Jacob-
son radical m and let R be the completion of R with respect to the m-adic
topology. Then R is also a semi-local ring and we have R C R.

Theorem 1.3.4 Assume that R is a Noetherian semi-local ring with Jacob-
son radical m and that M is a finitely generated R-module. Let R be the
completion of R with respect to the m-adic topology. Endow M with the m-
adic topology. Then M ®Rg R is the completion of M with respect to that

topology.
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Corollary 1.3.5 Let a be an ideal of a Noetherian semi-local ring R with
Jacobson radical m. Let R be the completion of R with respect to the m-adic
topology. Then the completion of a is aR and aR is tsomorphic to a @p R.
Furthermore, aRN R = a and R/aR is the completion of R/a with respect to
the m-adic topology.

Theorem 1.3.6 Assume that R is a Noetherian semi-local ring with Jacob-
son radical m and let R be the completion of R with respect to the m-adic
topology. Then

1. The total quotient ring F' of R (localization of R at the set of non-zero
divisors) is naturally a subring of the total quotient ring F' of R.

2. For any ideal a of R, aRN F = a.

In particular, RNF =R.

1.4 Morphisms associated with monomials
We have the following elementary algebra result

Theorem-Definition 1.4.1 Let R be an integral domain and M a free R-
module of basis (€;)o<i<m. Let © = roeg + r1e1 + ... + rmen be a non-zero
element of M. We set M* := Hompg(M, R) and M*(x) := {p(z)| ¢ € M*}.

Then the following assertions are equivalent:

(i) M*(z)=R.

(i) >, fri = R

(iii) There ezists p € M* such that p(x) = 1.

(iv) There exists an R-submodule N of M such that M = Rx & N.

If x satisfies the conditions above, we say that it is a primitive element of M.

Proof:

(1) < (i) Let (ef)o<i<m be the basis of M* dual to (€;)o<i<m. Then M*(z)
is generated by (e} (z))o<i<m and el (x) = r;.

(i) = (44i) There exist ug, u1,...,u, € R such that > " jw;r; = 1. If p :=
Yo ouer, then p(x) = 1.
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(17i) = (iv) Let N := Keryp. For all y € M, we have

y=ey)r+(y —ey)z).
Since p(x) = 1, we have y € Rx + N. Obviously, Rz N N = {0}.

(iv) = (¢) Since M is free and R is an integral domain, x is torsion-free (oth-
erwise there exists 7 € R,r # 0 such that > ;" (rr;)e; = 0). Therefore,
the map

R— M,r—rx

is an isomorphism of R-modules. Its inverse is a linear form on Rz
which sends z to 1. Composing it with the map

M — M/N — R,

we obtain a linear form ¢ : M — R such that ¢(z) = 1. We have
1 € M*(z) and thus M*(z) = R. |

We will apply the above result to the Z-module Z™*!. Let us consider
(€:)o<i<m the standard basis of Z™! and let a := ageg +aje; +. .. + apmem be
an element of Z™ %! such that ged(a;) = 1. Then, by Bezout’s theorem, there
exist ug, w1, ..., U, € Z such that Y " w;a; = 1 and hence Y " Za; = Z.
By theorem 1.4.1, there exists a Z-submodule N, of Z™*! such that Z™*! =
Za & N,. In particular, N, = Kerp,, where ¢, := Z?;o uze;. We will denote
by p, : Z™*t! — N, the projection of Z™*! onto N, such that Kerp, = Za.
We have a Z-module isomorphism i, : N,—Z™. Then f, := i, 0p, is a
surjective Z-module morphism Z™* — Z™ with Ker f, = Za.

Now let R be an integral domain and let xg, x1,...,x, be m+ 1 indeter-
minates over R. Let GG be the abelian group generated by all the monomials

+1 +1

in R[z3', #7, ..., #E1] with group operation the multiplication. Then G is

isomorphic to the additive group Z™*! by the isomorphism defined as follows

9@ : G = 7+l
H;ZO xil = (l07ll7"'7lm)-

Lemma 1.4.2 We have R[zF!, 2, ... o' = R[G] ~ R[Z™].
Respectively, if yi,...,y,, are m indeterminates over R and H is the

group generated by all the monomials in R[yi™, ..., yE'], then H ~ Z™ and
Rlyi', ...,y = R[H] ~ R[Z™].
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The morphism F, := 0y ' o f, 06 : G — H induces an R-algebra
morphism
Yot RG] — R[H]
dec; agg deo agFa(g)
Since F, is surjective, the morphism ¢, is also surjective. Moreover, Keryp,
is generated (as an R-module) by the set

< g—1]g € G such that 05(g) € Za > .

How do we translate this in the polynomial language?

Let A := Rlz3" o', ...zt and B := R[yf™, v3, ..., yE']. The map ¢,
is a surjective R-algebra morphism from A to B with Kerp, = ([[\~,z;"—1)A
such that for every monomial N in A, ¢,(N) is a monomial in B.

Definition 1.4.3 Let M :=[[",z{" be a monomial in A with gcd(a;) = 1.
An R-algebra morphism @y : A — B defined as above will be called associated
with the monomial M.

Example 1.4.4 Let A := R[X*,Y*! Z*] and M := X5Y 3272, We have
= (5,—3,—2) and

(=1)-54+(-2)-(=3)+0-(-2)=1.
Hence, with the notations of the proof of theorem 1.4.1, we have
ug = —1,u1 = —2,u3 = 0.
The map ¢ : Z3 — Z defined as
= —ey — 2€].

has Kerp = {(xg,1,22) € Z3| w9 = —211} = {(—2a,a,b) |a,b € Z} = N

By theorem 1.4.1, we have Z3 = Zx @ N and the projection p : Z3> — N is
the map

(Mo, y1,92) =y =y — (y)o = (6yo + 10y1, —3yo — 5y1, —2yo — 4y1 + y2).
The Z-module N is obviously isomorphic to Z? via
i:(—2a,a,b) — (a,b).
Composing the two previous maps, we obtain a well defined surjection

73 —» 7.2
(Yo, y1,y2) +—  (—3yo — 5y1, —2y0 — 4y1 + y2)-
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The above surjection induces (in the way described before) an R-algebra epimor-
phism

e R[Xil,yil,zil] s R[Xil,yil]
X - X3y ?
Y — Xy
Z — Y

By straightforward calculations, we can verify that Kerpy = (M — 1)A.

Lemma 1.4.5 Let M =[] x}" be a monomial in A such that ged(a;) = 1.
Then

1. The ideal (M — 1)A is a prime ideal of A.

2. If p is a prime ideal of R, then the ideal qpr := pA+ (M — 1)A is also
prime in A.

Proof:

1. Let oy : A — B be a morphism associated with M. Then ¢, is
surjective and Kergy = (M — 1)A. Since B is an integral domain, the
ideal generated by (M — 1) is prime in A.

2. Set R := R/p, A" = Rz xF, .. . 2tl], B = Ry, ...yt .
Then R’ is an integral domain and

Alqu ~ A" /(M —1)A"'~ B’

Since B’ is an integral domain, the ideal q,; is prime in A. |

The following assertions are now straightforward. Nevertheless, they are
stated for further reference.

Proposition 1.4.6 Let M :=[[",z{" be a monomial in A with gcd(a;) =1
and let ppr © A — B be a morphism associated with M. Let p be a prime
ideal of R and set qp = pA+ (M — 1)A. Then the morphism oy has the
following properties:

1. If f € A, then oy (f) € pB if and only if f € qur. Corollary 1.1.6(1)
implies that
AQM/(M - 1)ACIM = BPB‘

2. If N is a monomial in A, then @y (N) = 1 if and only if there exists
k € Z such that N = M*.
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Corollary 1.4.7 qy; N R =1p.

Proof: Obviously p C qy N R. Let £ € R such that & € qu. If @p/ is a
morphism associated with M, then, by proposition 1.4.6, ¢y () € pB. But
en(§) =& and pBN R =p. Thus £ € p. |

Remark: If m = 0 and we set & := g, then A := R[z,x7!] and B := R. The
only monomials that we can associate a morphism A — B with are x and
271, This morphism is unique and given by x + 1.

The following lemma, whose proof is straightforward when arguing by
contradiction, will be used in the proofs of propositions 1.4.9 and 1.4.12.

Lemma 1.4.8 Let G, H be two groups and p : G — H a group homomor-
phism. If R is an integral domain, let us denote by pr : R|G] — R[H] the
R-algebra morphism induced by p. If pr is surjective, then p is also surjective.

Proposition 1.4.9 Let ¢ : A — B be a surjective R-algebra morphism such
that for every monomial M in A, (M) is a monomial in B. Then ¢ is
associated with a monomial in A.

Proof: Due to the isomorphism of lemma 1.4.2, ¢ can be considered as
a surjective R-algebra morphism

¢ : R[Z™ — R[Z™).

The property of ¢ about the monomials implies that the above morphism is
induced by a Z-module morphism f : Z™*!' — Z™, which is also surjective
by lemma 1.4.8. Since Z™ is a free Z-module the following exact sequence

sequence splits
0— Kerf — Z™" - 7™ —0

and we obtain that Z™! ~ Kerf @ Z™. Therefore, Kerf is a Z-module of
rank 1 and there exists a := (ag, a1, ...,a,) € Z™ such that Kerf = Za.
By theorem 1.4.1, a is a primitive element of Z™"! and we must have
Yoo Za; = Z, whence ged(a;) = 1. By definition, the morphism ¢ is as-

sociated with the monomial [, z7". |

R[?Jfla---,yil], for 1<r <m;

R, forr=m+1,
where v, ...,y are m —r + 1 indeterminates over R.

Nowletr € {1,...,m+1}and R :=
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Definition 1.4.10 An R-algebra morphism ¢ : A — R is called adapted, if
© =, 0Q,_10...0p1, where @; is a morphism associated with a monomaial
foralli=1,...,r. The family F := {¢r, 0r_1,---,p1} is called an adapted
famaly for ¢ whose initial morphism is ;.

Let us introduce the following notation: If M := [[", «}" is a monomial
such that ged(c;) = d € Z, then M° := HZZO xfi/d,

Proposition 1.4.11 Let ¢ : A — R be an adapted morphism and M a
monomial in A such that (M) = 1. Then there exists an adapted family for
© whose initial morphism is associated with M°.

Proof: Let M := [,z be a monomial in A such that p(M) = 1.
Note that ¢(M) = 1 if and only if p(M°) = 1. Therefore, we can assume
that ged(c;) = 1. We will prove the desired result by induction on r.

e For r =1, due to property 1.4.6(2), ¢ must be a morphism associated
with M.

e Forr =2 set B:= R[z{",..., 251, Let ¢ := ¢} 0 @,, where

a;

— ¢ : A — B is a morphism associated with a monomial []" z}
in A such that ged(a;) = 1.

— ¢y B — R is a morphism associated with a monomial [}, z?j
in B such that ged(b;) = 1.

By theorem 1.4.1, the element a := (ag, ay,...,a,) is a primitive ele-
ment of Z™*! and the element b := (by,...,by,,) is a primitive element
of Z™. Therefore, there exist a Z-submodule N, of Z™*! and a Z-
submodule N, of Z™ such that Z"™t! = Za & N, and Z™ = Zb & N,.
We will denote by p, : Z™! — N, the projection of Z™*! onto N, and
by pp : Z™ — N,, the projection of Z™ onto N,. We have isomorphisms
iq 1 N,=Z™ and i, : Ny—=Z™ 1.

By definition of the associated morphism, ¢, is induced by the mor-
phism f, := i, 0p, : Z™ — Z™ and @y, by f, ;= iy 0py 1 Z™ — Z™ L
Set f:= f, o f,. Then ¢ is the R-algebra morphism induced by f.

The morphism f is surjective. Since Z™ ! is a free Z-module, the
following exact sequence sequence splits

0 — Kerf —zZ™ - 71 -0

and we obtain that Z™*! ~ Kerf @ Z™ 1.
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Let b := i;(b). Then Kerf = Za ® Zb. By assumption, we have that
¢ = (co,C1,-..,¢m) € Kerf. Therefore, there exist unique A\, Ay €
Z such that ¢ = Ma + \b. Since ged(e;) = 1, we must also have
ged(Aq, A2) = 1. Hence Zle Z)\; = 7. By applying theorem 1.4.1 to
the Z-module Kerf, we obtain that c¢ is a primitive element of Kerf.
Consequently, f = f'o f., where f. is a surjective Z-module morphism
7Zm+ — 7" with Ker f, = Zc and f' is a surjective Z-module morphism
Z™ — Z™~ 1. Asfar as the induced R-algebra morphisms are concerned,
we obtain that ¢ = ¢’ o ., where ¢, is a morphism associated with
the monomial M = [[", ;" and ¢ is also a morphism associated with
a monomial (by proposition 1.4.9). Thus the assertion is proven.

for r > 2, let us suppose that the proposition is true for 1,2,...,r — 1.
If o =, 0¢,_10...0¢1, the induction hypothesis implies that there
exist morphisms associated with monomials ¢/, ¢!, ..., ¢, such that

L op=¢,0...0p0¢.
2. ¢, is associated with the monomial (¢ (M))°.

We have that ¢4 (p1(M)) = 1. Once more, by induction hypothesis we
obtain that there exist morphisms associated with monomials ¢}, ¢
such that

L. @h0p1 = hopi.
2. ¢} is associated with M°.
Thus we have
O =, 0...0p300h00 =, 0...0¢050p;0¢]

and ¢ is associated with M°. [

Proposition 1.4.12 Let p : A — R be a surjective R-algebra morphism
such that for every monomial M in A, o(M) is a monomial in R. Then ¢
1s an adapted morphism.

Proof: We will work again by induction on r. For r = 1, the above
result is proposition 1.4.9. For r > 1, let us suppose that the result is true
for 1,...,7—1. Due to the isomorphism of lemma 1.4.2, ¢ can be considered

as a surjective R-algebra morphism

Q: R[zm—i—l] N R[zm—i—l—r]‘
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The property of ¢ about the monomials implies that the above morphism
is induced by a Z-module morphism f : Z™*' — Z™*1=" which is also
surjective by lemma 1.4.8. Since Z™1~" is a free Z-module the following
exact sequence sequence splits

0 — Kerf — zm™t — 7m0

and we obtain that Z™*! ~ Kerf @ Z™*'=". Therefore, Kerf is a Z-module
of rank r, i.e., Kerf ~ Z". We choose a primitive element a of Kerf. Then
there exists a Z-submodule N, of Kerf such that Kerf = Za & N,. Since
Kerf is a direct summand of Z™*!, @ is also a primitive element of Z™*! and

we have
72"t ~Za® N, ® Zm.

Thus, by theorem 1.4.1, if (ag, a1, . . ., a,,) are the coefficients of a with respect
to the standard basis of Z™!, then ged(a;) = 1.

Let us denote by p, the projection Z™*! — N, ® Z™ =" and by p’ the
projection N, @ Z™T1=" — Z™*1=" Then f = p’ o p,. We have a Z-module
isomorphism

i: N, ®zZ" g™

Set f, :=iop, and f' :=p’oit. Thus f = f'o f,. If p, is the R-algebra
morphism induced by f,, then, by definition, ¢, is a morphism associated
with the monomial [ z{*. The R-algebra morphism ¢’ induced by f'is a
surjective morphism with the same property about monomials as ¢ (it sends
every monomial to a monomial). By induction hypothesis, ¢’ is an adapted

morphism. We have ¢ = ¢’ 0 ¢, and so ¢ is also an adapted morphism. W

1.5 Irreducibility

Let k be a field and y an indeterminate over k. We can use the following
theorem in order to determine the irreducibility of a polynomial of the form
y" — a in k[y] (cf.[25], Chapter 6, Thm. 9.1).

Theorem 1.5.1 Let k be a field, a € k — {0} and n € Z with n > 2. The
polynomial y" — a is irreducible in kly|, if for every prime p dividing n, we

have a & kP and if 4 divides n, we have a ¢ —4k*.

Let zg, x1, ..., x,, be aset of m+1 indeterminates. We will apply theorem
1.5.1 to the field k(xq, ..., zpm).
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Lemma 1.5.2 Let k be a field. The polynomial xi° — p [~ " with p €
k—{0}, a; € Z, ged(a;) = 1 and ag > 0 is irreducible in k[zT", ... 2Y[2).

rYm

Proof: If ayp = 1, the polynomial is of degree 1 and thus irreducible in
kE(xy,...,2m)[x0]. If ap > 2, let us suppose that

[T = (Jlrncatly

pale ’ g(x1, .. )
with f(x1,...,2m),9(x1,. .., xy) € k1, ..., 2] prime to each other,
g(x1,...,Tm) # 0 and plag, p prime. This relation can be written as
g(x1, ..., Tm)Pp H it = f(xy,...,xp)P H x; "
{i|ai20} {i\ai<0}

We have that
ged(f(x1, .., xm)? g1, .. x,)P) = 1

Since k[zy,...,x,] is a unique factorization domain and x; are primes in
klxyi,..., T, we also have that
ged( H xi, H ;%) = 1.
{iJa;>0} {ila; <0}

As a consequence,

flz,...,xm)?P = Mp H it and g(xq,. .., T, = A H x; "

{ila;>0} {i]a; <0}

for some A € k — {0}. Suppose that (A\p)*/?,A\'/? € k. Once more, the
fact that k[xq,...,x,] is a unique factorization domain and z; are primes in
klxy, ...,z implies that

f('rla SR wxm) = ()\P)l/p H mfl and g(xl, . ,Q?m) = )\1/p H l’i_bi,

{ila; >0} {ila; <0}

with b; € Z and b;p = a;,¥i = 1,...,m. Since plag, this contradicts the
fact that ged(a;) = 1. In the same way, we can show that if 4|ag, then
pl[L, )" ¢ —4k(xy, ..., zy)" Thus, by theorem 1.5.1, 23° — p[[;%, « is
irreducible in k(xq, ..., Tm)[zol.

Thanks to the following lemma, we obtain that xz(° — p[[%, zi" is irre-
ducible in k[zT!, ...,z [x).

rYm
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Lemma 1.5.3 Let R be an integral domain with field of fractions F and
f(z) a polynomial in Rlx]. If f(x) is irreducible in Fx] and at least one of
its coefficients is a unit in R, then f(x) is irreducible in R[z].

Proof: If f(z) = g(x)h(x) for two polynomials g(z),h(x) € R[x], then
g(x) € R or h(x) € R. Let us suppose that g(z) € R. Since one of the
coefficients of f(x) is a unit in R, g(x) must also be a unit in R. Thus, f(x)
is irreducible in R[z]. |

Lemma 1.5.2 implies the following proposition, which in turn is going to
be used in the proof of proposition 1.5.5.

Proposition 1.5.4 Let M =[], x% be a monomial in k(x5 z7", ...z}
such that ged(a;) = 1 and let p € k — {0}. Then M — p is an irreducible
element of k[xg', o, ... aFl].

Proof: Since ged(a;) = 1, we can suppose that ag # 0. Then it is enough
to show that M — p is 1rreduc1ble in the polynomlal rmg ko ... ot [wo].
If ag > 0, then M — p is irreducible in k[, ... oF

£1[z0] by lemma 1.5.2.
If now ap < 0, then lemma 1.5.2 implies that M~ — p~! is irreducible in

ElzEt, . ot [a:o] and hence M — p is also irreducible in k{25, ..., 22 [z].
|

Proposition 1.5.5 Let M =[], z%* be a monomial in k[zy", 27", ... 2!
such that ged(a;) = 1. If f(x) is an irreducible element of k[z] such that
f(z) # x, then f(M) is irreducible in k[zF"', 25, ... o).

Proof: Suppose that f(M) = g-h with g, h € k[zF", 2", ... 22!, Let
P1,- -, pn be the roots of f(z) in a splitting field k’. Then

f(@) =alz—p1)...(z—pn)
for some a € k — {0}, hence

f(M)=a(M—p1)...(M—py).

By proposition 1.5.4, M — p; is irreducible in k'[z5", 27, ..., zE!] for all
jedl,....n}. Slnce Kxgt, o ... 2Fl] is a unique factorization domain,

we must have

g=r]2" (M =p;)... (M —p;)
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for some r € k, b; € Z and ji,...,js € {1,...,n}. Thus there exists ¢'(z) €
k[x] such that

Respectively, there exists h'(x) € k[z] such that

m

h=(]]z")n ).

1=0

Thus, we obtain that

f(M) = g (M)W(M). (1)

Since ged(a;) = 1, there exist integers (u;)o<i<m such that > " wa; = 1.
Let us now consider the k-algebra specialization

o klzE ottt —  klx]

T — ot

Then p(M) = ([[, ) = a>=o%% = x. If we apply ¢ to the relation
(1), we obtain that
f(x) =g (x)l (z).

Since f(x) is irreducible in k[z], we must have that either ¢’'(x) € k or h/(z) €
k. Respectively, we deduce that either g or h is a unit in k[zZ!, 27, ... 21

37



Chapter 2
On Blocks

All the results presented in the first two sections of this chapter have been
taken from the first part of [12].

2.1 Generalities

Let O be a commutative ring with a unit element and A be an O-algebra.
We denote by ZA the center of A.

An idempotent in A is an element e such that e = e. We say that e is
a central idempotent, if it is an idempotent in ZA. Two idempotents e, ey
are orthogonal, if eje; = ese; = 0. Finally, an idempotent e is primitive,
if e # 0 and e can not be expressed as the sum of two non-zero orthogonal
idempotents.

Definition 2.1.1 The block-idempotents of A are the central primitive idem-
potents of A.

Let e be a block-idempotent of A. The two sided ideal Ae inherits a
structure of algebra, where the composition laws are those of A and the unit
element is e. The application

.. A — Ae
h +— he

is an epimorphism of algebras. The algebra Ae is called a block of A. From
now on, abusing the language, we will also call blocks the block-idempotents
of A.

Lemma 2.1.2 The blocks of A are mutually orthogonal.
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Proof: Let e be a block and f a central idempotent of A with f # e.
Then ef and e —ef are also central idempotents. We have e = ef + (e —ef)
and due to the primitivity of e, we deduce that either ef =0 ore=ef. If f
is a block too, then either ef =0 or f = ef = e. Therefore, f is orthogonal
to e. |

The above lemma gives rise to the following proposition.

Proposition 2.1.3 Suppose that the unit element 1 of A can be expressed
as a sum of blocks: 1 =3 _pe. Then

1. The set E is the set of all the blocks of A.

2. The family of morphisms (7.)ecp defines an isomorphism of algebras

A H Ae.

ecE

Proof: If fis a block, then f = >  _pef. Due to lemma 2.1.2, there
exists e € E such that f =e. |

In the above context (1 is a sum of blocks), let us denote by BI(A) the
set of all the blocks of A. Proposition 2.1.3 implies that the category 4smod
of A-modules is a direct sum of the categories associated with the blocks:

Amod% @ Aemod.
e€BI(A)

In particular, every representation of the O-algebra Ae defines (by composi-
tion with 7.) a representation of A and we say, abusing the language, that it
“belongs to the block e”.

Every indecomposable representation of A belongs to one and only one
block. Thus the following partitions are defined:

Ind(A) = |_| Ind(A,e) and Irr(A) = |_| Irr(Ae),
e€BI(A) e€BI(4)
where Ind(A) (resp. Irr(A)) denotes the set of indecomposable (resp. irre-
ducible) representations of A and Ind(A,e) (resp. Irr(A,e)) denotes the set
of the elements of Ind(A) (resp. Irr(A)) which belong to e.

We will consider two situations where 1 is a sum of blocks.

First case: Suppose that 1 is a sum of orthogonal primitive idempotents,
i.e., 1 =3 ,.pi, where
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e cvery ¢ € P is a primitive idempotent,
o ifi,j € P, i j, thenij =ji=0.

Let us consider the equivalence relation B defined on P as the symmetric and
transitive closure of the relation “¢A4j # {0}”. Thus (iB7) if and only if there
exist ig, i1, . . ., i, € P with ig =i and 7,, = j such that for all k € {1,... n},
ik—1Aig # {0} or ixAip_y # {0}. To every equivalence class B of P with
respect to B, we associate the idempotent eg := ) ..

Proposition 2.1.4 The map B — ep is a bijection between the set of equiv-
alence classes of B and the set of blocks of A. In particular, we have that
1= ZBGP/B ep and 1 is sum of the blocks of A.

Proof: It is clear that 1 = ZBep/B ep. Let a € A and let B, B’ be two
equivalence classes of B with B # B’. Then, by definition of the relation B,
egaeg = 0. Since 1 = ZBGP/B e, we have that ega = egaeg = aeg. Thus
ep € ZA for all B € P/B.

It remains to show that for all B € P/B, the central idempotent ep is
primitive. Suppose that eg = e+ f, where e and f are two orthogonal prim-
itive idempotents in ZA. Then we have a partition B = B, LI By, where
B, :={i € Blie = i} and By := {j € B|jf = j}. For all i € B, and
Jj € By, we have iAj = ieAfj = iAefj = {0} and so no element of B, can
be B-equivalent to an element of By. Therefore, we must have either B, = ()
or By = (0, which implies that either e = 0 or f = 0. |

Second case: Suppose that Z A is a subalgebra of a commutative algebra
C where 1 is a sum of blocks. For example, if A is of finite type over O, where
O is an integral domain with field of fractions F', we can choose C' to be the
center of the algebra FA := F ®p A.

We set 1 =3 _pe, where E is the set of blocks of C. For all S C E, set
es = Y g€ Asubset Sof Eis “on ZA” if eg € ZA. If S and T are on
Z A, then SNT is on ZA.

Proposition 2.1.5 Let us denote by Pr(ZA) the set of non-empty subsets
B of E which are on ZA and are minimal for these two properties. Then the
map Prp(ZA) — A, B — ep induces a bijection between Pr(ZA) and the set
of blocks of A. We have 1 = ZBepE(ZA) eB.

Proof: Since every idempotent in C' is of the form eg for some S C F, it
is clear that ep is a central primitive idempotent of A, for all B € Pr(ZA).
It remains to show that
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1. If B,B’ are two distinct elements of Pg(ZA), then BN B’ = 0.
2. Pr(ZA) is a partition of E.
These two properties, stated in terms of idempotents, mean:

1. If B,B’" are two distinct elements of Pg(ZA), then ep and ep are
orthogonal.

Let us prove them:

1. We have egep = epnp and so BN B’ = (), because B and B’ are
minimal.

2. Set I = UpepyzayB- Then ep = 3 pp zaye5 € ZA. Then
l—ep =ep_p € ZA, which means that E—Fison ZA. If E—F # 0,
then F — F' contains an element of Pg(ZA) in contradiction to the def-
inition of F'. Thus F' = FE and Pg(ZA) is a partition of E. |

Let us assume that

e O is a commutative integral domain with field of fractions F',
e K is a field extension of F,

e A is an O-algebra, free and finitely generated as an O-module.

Suppose that the K-algebra KA := K ®0 A is semisimple. Then K A is
isomorphic, by assumption, to a direct product of simple algebras:

KA~ ][] M.

X€EIrr (K A)

where Irr(/K A) denotes the set of irreducible characters of KA and M, is a
simple K-algebra.

For all x € Irr(KA), we denote by 7, : KA — M, the projection onto
the x-factor and by e, the element of K'A such that

1MX7 if X = X/7
7TX'(€X) = { 0, if v # Y.

The following theorem results directly from propositions 2.1.3 and 2.1.5.
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Theorem 2.1.6

1. We have 1 = erlrr(KA) ey and the set {ey}yecm(ra) is the set of all
the blocks of the algebra KA.

2. There exists a unique partition BI(A) of Irr(K A) such that

(a) For all B € BI(A), the idempotent ep := Y pey is a block of A.

b) We have 1 = ep and for every central idempotent e o
BEBI(A)
A, there exists a subset BI(A,e) of BI(A) such that

e = E €RB.

BEBI(A,e)
In particular the set {ep}pepi(a) is the set of all the blocks of A.
Remarks:
o If x € B for some B € BI(A), we say that “x belongs to the block ep”.

e For all B € BI(A), we have

KAep ~ H M,,.

XEB
From now on, we make the following assumptions

Assumptions 2.1.7

(int) The ring O is a Noetherian and integrally closed domain with field of
fractions F and A is an O-algebra which is free and finitely generated
as an O-module.

(spl) The field K is a finite Galois extension of F' and the algebra K A is split
(i.e., for every simple K A-module V', Endg (V) ~ K ) semisimple.

We denote by Oy the integral closure of O in K.
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Blocks and integral closure

The Galois group Gal(K/F) acts on KA = K ®p A (viewed as an F-algebra)
as follows: if 0 € Gal(K/F) and A ® a € KA, then 0(A® a) := () ® a.

If V is a K-vector space and o € Gal(K/F), we denote by 7V the K-
vector space defined on the additive group V with multiplication A.v :=
o '(ANvforall € K andv e V. If p: KA — Endg(V) is a representation
of the K-algebra KA, then its composition with the action of ¢! is also a
representation 7p : KA — Endg(V):

o1

KA KA—2%Endg (V).

We denote by ?x the character of ?p and we define the action of Gal(K/F')
on Irr(K A) as follows: if 0 € Gal(K/F) and x € Irr(K A), then

o 1

o(x)=%=0coxo0 .
This operation induces an action of Gal(K/F') on the set of blocks of K A:
o(ey) = eoy for all o0 € Gal(K/F), x € Irr(KA).

Hence, the group Gal(K/F) acts on the set of idempotents of ZOx A and
thus on the set of blocks of O A. Since FNOg = O, the idempotents of ZA
are the idempotents of ZOxA which are fixed by the action of Gal(K/F).
As a consequence, the primitive idempotents of ZA are sums of the elements
of the orbits of Gal(K/F) on the set of primitive idempotents of ZOk A.
Thus, the blocks of A are in bijection with the orbits of Gal(K/F') on the set
of blocks of OgA. The following proposition is just a reformulation of this
result.

Proposition 2.1.8

1. Let B be a block of A and B’ a block of OxA contained in B. If
Gal(K/F)p: denotes the stabilizer of B" in Gal(K/F'), then

B= U o(B') i.e., eg= Z o(epr).

c€Gal(K/F)/Gal(K/F) g c€Gal(K/F)/Gal(K/F) g

2. Two characters x,v € Irr(KA) are in the same block of A if and only
if there exists o € Gal(K/F) such that o(x) and v belong to the same
block of Ok A.

Remark: For all x € B’, we have Gal(K/F), C Gal(K/F)p'.

The assertion (2) of the proposition above allows us to transfer the prob-
lem of the classification of the blocks of A to that of the classification of the
blocks of Ok A.
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Blocks and prime ideals

We denote by Spec,(O) the set of prime ideals of height 1 of O. Since O is
Noetherian and integrally closed, it is a Krull ring and by theorem 1.2.23,

we have
o= () 0,
peSpec, (0)

where O, := {z € F'|(3a € O —p)(ax € O)} is the localization of O at p.
More generally, if we denote by Spec(O) the set of prime ideals of O, then

o= () 0,

pEeSpec(O)

Let p be a prime ideal of O and O,A := O, ®» A. The blocks of O, A are
the “p-blocks of A”. If x, 1 € Irr(K A) belong to the same block of OyA, we
write x ~p 1.

Proposition 2.1.9 Two characters x, v € Irr(K A) belong to the same block
of A if and only if there exist a finite sequence o, X1, - - -, Xn € Irr(KA) and
a finite sequence py, ..., p, € Spec(O) such that

® Yo=X anan:¢;
o forallj (1<j<n), xj-1 ~p; Xi-

Proof: Let us denote by ~ the equivalence relation on Irr(K A) defined
as the closure of the relation “there exists p € Spec(O) such that y ~, ¢”.
Thus, we have to show that x ~ v if and only if y and v belong to the same
block of A.

We will first show that the equivalence relation ~ is finer than the relation
“being in the same block of A”. Let B be a block of A. Then B is a subset
of Irr(K'A) such that >° .pe, € A Since O = (\,cgpec(0) Op, We have that
erB e, € OpA for all p € Spec(O). Therefore, by theorem 2.1.6, C' is a
union of blocks of O, A for all p € Spec(O) and, hence, a union of equivalence
classes of ~.

Now we will show that the relation “being in the same block of A”
if finer than the relation ~. Let C' be an equivalence class of ~. Then
> vecx € OpA for all p € Spec(0). Thus 3 ey € MNyespeco) OpAd = A
and C'is a union of blocks of A. |
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Blocks and central morphisms

Since K A is a split semisimple K-algebra, we have that
KA~ ][] M.
X€EIrr(KA)

where M, is a matrix algebra isomorphic to Mat, 1) (k).

Recall that A is of finite type and thus integral over O ([7], §1, Def.2).
The map 7, : KA — M,, restricted to ZK A, defines a map w, : ZKA - K
(by Schur’s lemma), which in turn, restricted to ZA, defines the morphism

wy 1 ZA — Ok,

where Ok denotes the integral closure of O in K.

In the case where O is a discrete valuation ring, we have the following
result which is proven later in this chapter, proposition 2.4.16. For a different
approach to its proof, see [12], Prop.1.18.

Proposition 2.1.10 Suppose that O is a discrete valuation ring with unique
mazximal ideal p and K = F. Two characters x,x" € Irr(KA) belong to the
same block of A if and only if

wy(a) = wy(a) modyp for all a € ZA.

2.2 Symmetric algebras

Let O be a ring and let A be an O-algebra. Suppose again that the assump-
tions 2.1.7 are satisfied.

Definition 2.2.1 A trace function on A is an O-linear map t : A — O such
that t(ab) = t(ba) for all a,b € A.

Definition 2.2.2 We say that a trace functiont : A — O is a symmetrizing
form on A or that A is a symmetric algebra if the morphism

t: A — Homp(A,O), ar (x t(a)(x) := t(az))
is an isomorphism of A-modules-A.

Example 2.2.3 In the case where O = Z and A = Z[G] (G a finite group), we
can define the following symmetrizing form (“canonical”) on A

t:Z|G] — Z, Zagg = ai,
geG

where a4 € Z for all g € G.
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Since A is a free O-module of finite rank, we have the following isomor-
phism
HOII10<A, O) Ko A S Homo(A, A)
pYRa —  (x— ¢(r)a).

Composing it with the isomorphism

A@C)A = HOHI(Q(A,O) ®OA
a®b t(a) @b,

we obtain an isomorphism
A®p A-Homp(A, A).

Definition 2.2.4 We denote by Cy and we call Casimir of (A, t) the inverse
image of Id4 by the above isomorphism.

Example 2.2.5 In the case where O = Z, A = Z|G] (G a finite group) and ¢ is
the canonical symmetrizing form, we have Cz(q) = deG g l®g.

More generally, if (e;);cr is a basis of A over O and (€});cr is the dual
basis with respect to t (i.e., t(e;€;) = d;;), then

CA:Z€§®€¢-

el

In this case, let us denote by c4 the image of Cy by the multiplication
AR A — A de, ca= ), ee. Itis easy to check (see also [13], 7.9) the
following properties of the Casimir element:

Lemma 2.2.6 For all a € A, we have
1. Y aei®e; =) . e ® ea.
2. aCy = Cya. Consequently, cq € ZA.
3. a="7Y tlae)e, =) . tlae;)e; = tle))e,a =Y. t(e;)esa.

If 7: A— O is a linear form, we denote by 7V its inverse image by the
isomorphism ¢, i.e., 7V is the element of A such that

t(tVa) = 7(a) for all a € A.

The element 7V has the following properties:
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Lemma 2.2.7

1. 7 is a trace function if and only if TV € ZA.

2. We have 7V = .

(T(eh)e, = Y. 7(e;)e; and more generally, for all
a € A, we have TVa = )", T(ela)e; =Y. T(e;a)é]

Proof:
1. Recall that t is a trace function. Let a € A. For all z € A, we have
t(rVa)(z) = t(rVazr) = 1(ax)
and
t(atV)(z) = t(arVx) = t(rVza) = 7(xa)

If 7 is a trace function, then 7(az) = 7(xa) and hence, t(7Va) = t(atV).
Since t is an isomorphism, we obtain that 7¥a = a7 and thus 7V € ZA.

Now if 7V € ZA and a,b € A, then
7(ab) = t(rVab) = t(btVa) = t(bat") = t(7"ba) = 7(ba).

2. It derives from property 3 of lemma 2.2.6 and the definition of 7¥. W

Let Xreg be the character of the regular representation of A, i.e., the linear
form on A defined as

Xreg(a) = trA/O(/\a))
where A\, : A — A, x — ax, is the endomorphism of left multiplication by a.

Proposition 2.2.8 We have X, = ca.

Proof: Let a € A. The inverse image of A, by the isomorphism
A®o ASHomep (A, A) is aCys (by definition of the Casimir). Hence,

A= (@ Y ia)(@)e) = (@ 3 telar)e)

i
and

tra/o(Ae) = Z t(elae;) = t(a Z eie;) = t(aca) = t(caa).

Therefore, for all a € A, we have xye5(a) = t(caa), i.e., Xy = Ca- [ |

If A is a symmetric algebra with a symmetrizing form ¢, we obtain a
symmetrizing form t% on KA by extension of scalars. Every irreducible
character y € Irr(KA) is a central function on KA and thus we can define
X' € KA.
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Definition 2.2.9 For all x € Trr(KA), we call Schur element of x with
respect to t and denote by s, the element of K defined by

sy = wy(x)-
Proposition 2.2.10 For all x € Irr(KA), s, € Ok.
The proof of the above result will be given in proposition 2.4.6.

Example 2.2.11 Let O :=Z, A :=Z|G] (G a finite group) and ¢ the canonical
symmetrizing form. If K is an algebraically closed field of characteristic 0, then
K A is a split semisimple algebra and s, = |G|/x(1) for all x € Irr(K A). Because
of the integrality of the Schur elements, we must have |G|/x(1) € Z = Zx N Q for
all x € Irr(K A). Thus, we have shown that x(1) divides |G].

The following properties of the Schur elements can be derived easily from
the above (see also [11],[19],]20],[21],[13])

Proposition 2.2.12
1. We have

t= Z ix.

S
x€lrr(KA) X

2. For all x € Irr(KA), the central primitive idempotent associated with
X 1S

3. For all x € Irr(KA), we have

sx(1) =D x(e)x(e) and syx(1)* = X ehes) = x(Xeg)-

i€l i€l

Corollary 2.2.13 The blocks of A are the non-empty subsets B of Trr(K A)
minimal for the property

Z iX(a) € O for all a € A.

S
xXE€B X
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2.3 Twisted symmetric algebras of finite groups

This part is an adaptation of the section “Symmetric algebras of finite
groups” of [12] to a more general case.

Let A be an O-algebra such that the assumptions 2.1.7 are satisfied with
a symmetrizing form ¢. Let A be a subalgebra of A free and of finite rank as

O-module. ) B )
We denote by A+ the orthogonal of A with respect to t, i.e., the sub-A-
module-A of A defined as

At ={ac A|(Va € A)(t(aa) = 0)}.
Proposition 2.3.1

1. The restriction of t to A is a symmetrizing form for A if and only if
A@® At = A. In this case the projection of A onto A parallel to At is

the map

Bry : A — A such that t(Br4(a)a) = t(aa) for alla € A and a € A.

2. If the restriction of t to A is a symmetrizing form for A, then A is
the sub-A-module-A of A defined by the following two properties:

(a) A=A AL,
(b) At C Kert.

Proof:

1. Let us denote by t the restriction of ¢t to A. Suppose that ¢ is a
symmetrizing form for A. Let a € A. Then t(a) := (z — t(az)) €
Home (A, ©). The restriction of £(a) to A belongs to Home (A, O) and
therefore, there exists @ € A such that #(az) = t(az) = t(az) for all
7 € A Thus a —a € At and since a = @ + (a — @), we obtain that
A= A+At Ifa € ANAL, then we have ;(EL) =0 € Homp(A, O). Since
£ is an isomorphism, we deduce that @ = 0. Therefore, A = A @ A+
and the definition of Brf; is immediate.

Now suppose that A = A @ AL+, We will show that the map

:

NN

—
—



is an isomorphism of A-modules-A. The map £ is obviously injective,
because t(a) = 0 implies that @ € AN A+ and thus @ = 0. Now let
f be an element of Home (A, ©). The map f can be extended to a
map f € Homp(A, O) such that f(a) = f(Br4(a)) for all a € A, where
Br‘% denotes the projection of A onto A parallel to A+. Since t is a
symmetrizing form for A, there exists a € A such that t(a) = f, i.e.,
t(ax) = f(x) for all z € A. Consequently, if z € A, we have

t(Bri(a)z) = t(az) = f(z) = f(z)
and thus %(Brg(a)) = f. Hence, ¢ is surjective.

2. Let B be a sub—A—moduLe—A of A such that A = A& B and B C Kert.
Let b € B. For all a € A, we have ba € B C Kert and thus ¢(ba) = 0.
Hence B C At. Since the restriction of ¢ to A is a symmetrizing form

for A, we also have A = A @ A'. Now let a € A*. Since A = A& B,
there exist @ € A and b € B such that a = @+ b. Since b € At we
must have a = b € B and therefore, B = A*. [ |

Example 2.3.2 In the case where O = Z and A = Z[G] (G a finite group), let
A := Z[G] be the algebra of a subgroup G of G. Then the morphism Br? is the
projection given by
grg, ifgeG;
{gHQimgé

Definition 2.3.3 Let A be a symmetric O-algebra with symmetrizing form
t. Let A be a subalgebra of A. We say that A is a symmetric subalgebra of
A, if it satisfies the following two conditions:

1. A s free (of finite rank) as an O-module and the restriction Res4(t) of
the form t to A is a symmetrizing form on A,

2. A is free (of finite rank) as an A-module for the action of left multipli-
cation by the elements of A.

From now on, let us suppose that A is a symmetric subalgebra of A and
set 1 := Res%(t). We denote by

Ind% :1 mod —4 mod and Resj;1 ‘4 mod — ;7 mod
the functors defined as usual by

Indg = A®4; — where A is viewed as an A-module-A
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and
Resg ‘= A ®4 — where A is viewed as an A-module-A.

Since A is free as A-module and as module-A, the functors Res‘% and Indg
are adjoint from both sides.

Moreover, let K be a finite Galois extension of the field of fractions of O
such that the algebras KA and K A are both split semisimple.

We denote by (—, —) x4 the scalar product on the K-vector space of trace
functions for which the family (x)yemnr(xa) is orthonormal and (—, —) k1 the
scalar product on the K-vector space of trace functions for which the family
(X)xem(x 4) is orthonormal.

Since the functors Resﬁ and Indg are adjoint from both sides, we obtain
the Frobenius reciprocity formula:

(G Ind K4 (0)) wa = (Respd(x), X) ka-

For every element x € Irr(K A), let

Res?}‘(x) = Z my X (where m, y € N).
x€lrr(K A)

Frobenius reciprocity implies that, for all y € Irr(K A),

Indii(0) = >, myx.

X€ELrr(KA)

The following property is immediate.

Lemma 2.3.4 For x € Irr(KA) and x € Irr(KA), let e(x) and é(x) be
respectively the block-idempotents of KA and KA associated with x and X.
The following conditions are equivalent:

(i) myx #0,
(ii) e(x)e(x) # 0.
For all ¥ € Irr(K A), we set
(KA, x) o= {x € Tn(KA) | myx # 0},
and for all xy € Irr(K A),
(KA, x) = {x € Tn(KA) |y £ 0}

We denote respectively by s, and sy the Schur elements of x and x ( with
respect to the symmetrizing forms ¢ for A and ¢ for A).
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Lemma 2.3.5 For all ¥ € Irr(KA) we have
1 My x

S S
X Xx€Irr(KA,x) X

Proof: It derives from the relations
1 1 B
t= —x, t= — v, t=Res4(t).
Z X Z et t = Res%(t)
xelrr(K A) ~X xehr(KA) X

In the next chapters, we will work on the Hecke algebras of complex
reflection groups, which, under certain assumptions, are symmetric. Some-
times the Hecke algebra of a group W appears as a symmetric subalgebra
of the Hecke algebra of another group W', which contains W. Since we will
be mostly interested in the determination of the blocks of these algebras, it
would be helpful, if we could obtain the blocks of the former from the blocks
of the latter. This is possible with the use of a generalization of some classical
results, known as “Clifford theory” (see, for example, [16]), to the twisted
symmetric algebras of finite groups and more precisely of finite cyclic groups.
For the application of these results to the Hecke algebras, the reader may
refer to the Appendix of this thesis.

Definition 2.3.6 We say that a symmetric O-algebra (A: t) is the twisted
symmetric algebra of a finite group G over the subalgebra A, if the following
conditions are satisfied:

o A is a symmetric subalgebra of A,

o There exists a family {A,|g € G} of O-submodules of A such that
(a) A= B, A
(b) AjA, = Ay, forall g,h € G,
(c) A = A4,
(d) t(A,) =0 forallge G,g#1,
(e) A,NA* £ forall g € G (where A* is the set of units of A).

If that is the case, then proposition 2.3.1 implies that

P 4,=4"

geG—{1}
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Lemma 2.3.7 Let ay € A, such that ag is a unit in A. Then
A, = ag/_l = flag.

Proof: Since a, € Ay, property (b) implies that a;' € Ag1. If a € Ay,
then ag_la € Ay = A. We have a = aga, 'a € a,A and thus A, C a,A.
Property (b) implies the inverse inclusion. In the same way, we show that

Ay = Aa,. [ |

From now on, let (A, t) be the twisted symmetric algebra of a finite group
G over the subalgebra A. Due to property (e) and the lemma above, for all
g € G, there exist a, € Ay N A* such that A; = a;A = Aa,.

Proposition 2.3.8 Let (¢;)ic; be a basis of A over O and (€})icr its dual
with respect to the symmetrizing form t. We fix a system of representatives

Rep(A/A) :={a, | g € G}. Then the families

— _ —1 = B
(eiag)iel,ageRep(A/A) and (% ei)ie[,agERep(A/A)

are two O-bases of A dual to each other.

Action of G on ZA

Lemma 2.3.9 Leta € ZA and g € G. There exists a unique element g(a)
of A satisfying

g(a)g = ga for allg € A;. (1)
If a, € A* such that A, = a,A, then

g(a) = azaa, .
Proof: Set g(a) := ayaa, ' Then, for all g € A,, we have a,"'g € A
and g(a)g = ayaa, 'g = aga, 'ga = ga. Now, let y be another element of
A such that yg = ga for all g € A,. Then ya, = a,a and hence y = g(a).
Therefore, g(a) is the unique element of A which satisfies (). [

Proposition 2.3.10 The map a — g(a) defines an action of G as ring
automorphism of ZA.

Proof: Let a € ZA, g € G and a, € A such that 4, = ag[l. We will
show that g(a) € ZA. If z € A, then Za, € A, and we have



1

Multiplying both sides by a,™", we obtain that

zg9(a) = g(a)z

and hence, g(a) € ZA.
Since the identity 1 of A lies in Ay, we have 1¢(a) = a. If g1, g2 € G, then
equation (}) gives

91(92(a))a91a92 = angZ(a)agz = Qg, (g, Q.

Due to property (b) of the definition 2.3.6, the product a4, a,, generates the
submodule A, 4. Therefore, g;(g2(a))u = ua for all w € A, 4. By lemma
2.3.9, we obtain that (g192)(a) = g1(g2(a)).

Finally, let us fix ¢ € G. By definition, the map a — g(a) is an additive
automorphism of ZA. If a;,ay € ZA, then

ga1as = g(az)gar = g(a1)g(az)g for all g € A,.

By lemma 2.3.9, we obtain that g(aiaz2) = g(a1)g(as). |

If g € G, then ¢(b) is also a

Now let b be a block(-idempotent fg )
r g(b) orthogonal to b. Set

) of A
block of A. So we must have either g(b) = b o

Te(Gb) = ) (),
9€G/Gy
where G := {g € G| g(b) = b}. It is clear that
e b is a central idempotent of @ e Ay = Ag;,
e Tr(G,b) is a central idempotent of A.
From now on, let b := Tr(G,b) and g € A,. We have
L C s
bgb=bg and bgb= gb.
Proposition 2.3.11 The applications

bAD @ 5, 5 bAb — Ab
bayab ® ba'ayb — agabd’ay
ab — deG/GE aaysb @ ba, !,
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and _ _ _
bAb X Ap bAb — AG5b7 B
baaga,a'd, if gg' € Gy;

- e
baaib ® bagla b 7»—> { 0. if not.
aagb — Gaghb ® b ( where g € Gp),

define isomorphisms inverse to each other
bAb ®ag,b bAb < Ab and bAb @4, bAb < Ag,b.
Therefore, bAb and bAb are Morita equivalent. In particular, the functors
Ind4 = (bAD ®ag,b —) and b-Resi = (bAb @4, —)

define category equivalences inverse to each other between , ., ;mod and
b
apmod.

Multiplication of an A-module by an OG-module

Let X be an A-module and p : A — Endp(X) be the structural morphism.
We define an additive functor

X -—:ogmod -, mod,Y — XY

as follows:
If Y is an OG-module and ¢ : OG — Endp(Y') is the structural mor-
phism, we denote by X - Y the O-module X ®¢ Y. The action of A on the

latter is given by the morphism
p-o:A—Endo(X ®Y), aa, — plaa,) @ o(g).
Proposition 2.3.12 Let X be an A-module. The application
Az X —- X -0G
defined by
ag @42+ plag)(r) ®o g (for allz € X and g € G)
s an isomorphism of A-modules

Ind4(X)=X - OG.
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Induction and restriction of K A-modules and K A-modules

Let X be a K A-module of character x and Y a KG-module of character &.
We denote by x - £ the character of the K A-module X - Y. From now on, all
group algebras over K will be considered split semisimple.

Proposition 2.3.13 Let x be an irreducible character of KA which restricts
to an irreducible character Y of KA. Then

1. The characters (x-§)ecue(xc) are distinct irreducible characters of KA.

2. We have
Indgi(v) = > <
(elr(KQ)
Proof: The second relation results from proposition 2.3.12. Frobenius

reciprocity now gives

<Ind§£( )Indgﬁ( Nra = <ReSKA(Z§eIrr(KG)§( )X €): X) KA
(> ectr(ra) §(1X: XDk 4
= delrr(KG) 5( ) |G|

hence from the relation in part 2 we obtain

Gl= > MEMx-&x-Eka

£ elr(KG)

Since |G| = Y cerm(xa) §(1)? we must have (x - & x - §')xa = dge and the
proof is complete. |

For all Y € Irr(K A), we denote by &(y) the block of K A associated with
X. We have seen that if g € G, then g(é(y)) is also a block of KA. Since
K A is split semisimple, it must be associated with an irreducible character
g(x) of KA. Thus, we can define an action of G' on Irr(K A) such that for
all g € G, e(g9(x)) = g(é(x)). We denote by Gy the stabilizer of y in G.

Proposition 2.3.14 Let ¥ € Iir(KA) and suppose that there exists X €
Ag.
Irr(K Ag, ) such that Resggcx (X) = x. We set

X = Ind?ﬁg)Z (X) and x¢ = IndKAG (X - &) for all € € Irr(KGy).
Then

1. The characters (Xg)geIrr(KGi) are distinct irreducible characters of KA.
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2. We have
Indigd(0) = > &@)xe.

Eelr(KGy)

In particular,
Myex = &) and xe(1) = |G : Gy|x(1)E().
3. For all ¢ € Irr(KGy), we have

G-

Proof:

1. By proposition 2.3.13, we obtain that the characters (X - §)cerr(xay)
are distinct irreducible characters of Irr(K Ag, ). Now let e(x) be the
block of KA associated with the irreducible character y. We have
seen that e(x) is a central idempotent of K Ag . Proposition 2.3.11
implies that the functor Indg‘g defines a Morita equivalence between
the category g AG*@(,—()mod and its image. Therefore, the characters

(Ind&4 o. (X - §))ecnr(ray) are distinet irreducible characters of KA.
X

2. By proposition 2.3.13, we obtain that
KA. , _ .
Ind, ; (V)= Y &Lx-&
elr(KGy)
Applying Indfﬁcf to both sides gives us the required relation. Obvi-
X
ously, my, v = &(1).

Now let us calculate the value of x¢(a) for any @ € A. Let Y be an irre-
ducible K Ag -module of character ¢». Then Indgﬁc_ (V)= KA®ka, Y
X X

has character Indgfxcf (). We have KA = B ,c/a, a,KA. Leta € A.
Then

aIndﬁfxci (V) = Beq/c, 0,KA®K Ao, Y
®96G/Gi ag(ag__ldag)KA QK Ag, Y
- 69geG/G)z ag KA QK Ag, (ay~"aa,)Y.

Thus, Indgﬁci (¥)(a) = Z:geG/G>2 (ay""aay) and

Xe(a) = Z (X - &)(ay 'aay) = Z X(a,""aay)&(1).

9€G/Gx g€G/Gx
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Therefore,

xe()= Y X(EW) =G Glx(DED).

9€G/Gx

3. Let (&)ic; be a basis of A as O-module and let (€));c; be its dual
with respect to the symmetrizing form ¢. Proposition 2.2.12(3), in
combination with proposition 2.3.8, gives

SX5X§(1)2 = Xel( Z é;agag_léi) = xe(|G| Zégéi)-

iel,ge@ iel

However, 3., cq €iaga, € belongs to to center of A (by lemma 2.2.6)

and thus, for all h € G,

'O daga, E@)an =) Eaga, e = |G e

iel icl il

Since Y., éé; € A, by part 2,

i€l 1

Xe(|Gl ier@iei) = Pneaso, X(an (1G] Xies €ei)an)€(1)
Y onecyay XUG| Xie; @iei)€(1)

|G = GRIIGIEMX (e Eis)

|G+ G| Grle (1) sex(1)*.

So we have
sxeXe(1)? = |G+ Gy*|Gls(1)x (1) s
Replacing x¢(1) = |G : Gg|x(1)€(1) gives

sxe€(1) = |Gxlsx
|

Now let Q be the orbit of the character y € Irr(K A) under the action of
G. We have |Q] = |G|/|Gx|. Define
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If ¥ € Q, the set Irr(K A, x) depends only on Q and we set Irr(K A, Q) :=
Irr(K A, Y). The idempotent () belongs to the algebra (ZKA)“ of the
elements in the center of K A fixed by G and thus to the center of K A (since

it commutes with all elements of A and all a,, g € G). Therefore, it must be
a sum of blocks of KA, i.e.,

Q= el

xEIrr (K A,Q)

Let X be an irreducible K A-module of character y and X an irreducible
K A-submodule of Resk4(X) of character y. For g € G, the K A-submodule
9(X) of Resk4(X) has character g(x). Then > gea g(X) is a K A-submodule
of X. We deduce that

Resf4(X) = ( @D g(X)™,

1.€.,
Resgél(X) = My x' Z g(i)
9€G/Gx
In particular, we see that Irr(K A, x) is an orbit of G on Irr(KA). Notice
that x(1) = m,|Qx(1).

Case where G 1is cyclic

Let G be a cyclic group of order d and let g be a generator of G (we can choose
Rep(A/A) = {1,a,,a,°,...,a,°'}). We will show that the assumptions of
proposition 2.3.14 are satisfied for all irreducible characters of KA.

Let X be an irreducible K A-module and let p: KA — Endg(X) be the
structural morphism. Since the representation of X is invariant by the action
of Gy, there exists an automorphism « of the K-vector space X such that

ap(a)a” = g(p)(a),
for all g € Gy.
The subgroup Gy is also cyclic. Let d(x) := |Gx|. Then
ﬁ(&) — ad(@ﬁ(d)a*d(@.

Since X is irreducible and K A is split semisimple, a®X) must be a scalar.
Instead of enlarging the field K, we can assume that K contains a d()-th

root of that scalar. By dividing o by that root, we reduce to the case where
dx) =1
o :
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This allows us to extend the structural morphism p : KA — Endg(X)
to a morphism

p: KAg, — Endg(X)

such that

plaa)) = p(a)a’ for 0 < j < d(x),
where h := ¢¥%X) generates Gy. The morphism p defines a K Ag -module
X of character Y.

Since the group G is abelian, the set Irr(KG) forms a group, which we
denote by GV. The application 9 — 1) - £, where ¢ € Irr(K A) and £ € GV,
defines an action of GV on Irr(K A).

Let © be the orbit of y under the action of (Gy)¥. By proposition
2.3.13, we obtain that  is a regular orbit (i.e., |Q] = |Gy|) and that
Q=Irr(KAq,, X).

Like in proposition 2.3.14, we introduce the notations

X = Indﬁﬁ%(i) and xg := Indﬁﬁ@z (x-€) for all € € (Gy).
Then
Irr(KA, x) = {x¢l§ € (Gg)"} and my, x = £(1) = 1 for all £ € (Gy)".

Recall that d(x) = |Gg|. There exists a surjective morphism G — Gy

defined by g +— ¢%4®  which induces an inclusion (Gy)¥ — GV. If ¢ €

(Gg)Y, we denote (abusing notation) by ¢ its image in G by the above
injection. It is easy to check that x¢ = x - &.
Hence we have proved the following result

Proposition 2.3.15 If the group G is cyclic, there exists a bijection

Iir(KA)/G < TIrr(KA)/GY
Q — Q

such that

(6 ~ Vx € Q, Reskd(x) =3 ..oX
e(Q2) = e(Q), |2]|1Q| = |G| and A KA xEQ
(@) = (), |20 = |€] {VXEQ’ o0 Zoen

Moreover, for all x € Q and Y € Q, we have

SX - |Q|S>Z
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Blocks of A and blocks of A

Let us denote by BI(A) the set of blocks of A and by BI(A) the set of blocks
of A. For b € BI(A), we have set

Tr(G,b) == Z g(b).

9eG/Gy

The algebra (ZA)Y is contained in both ZA and ZA and the set of its
blocks is B o B
BI((ZA)%) = {Tr(G,b) | b € BI(A)/G}.

Moreover, Tr(G, b) is a sum of blocks of A and we define the subset Bl(A4, b)
of BI(A) as follows

Tr(G, b) = Z b.

bEBI(A,b)
Lemma 2.3.16 Let b be a block of A and B := Irr(K Ab). Then
1. For all X € B, we have Gy C Gj,.

2. We have

(G0 = > Te(Gex)= > &)

XEB/G {Q1ONB#£0}
Proof:
1. If g ¢ Gy, then b and g(b) are orthogonal.

2. Note that b = > xes €(X) = D sen/q, (G, €(X)). Thus

(G0 = > Te(Gex)= > &),

X€B/G (QIONB£0}

by the definition of &(Q). [

Now let GY := Hom(G, K*). We suppose that K = F. The multiplica-
tion of the characters of KA by the characters of KG defines an action of
the group GY on Irr(K A). This action is induced by the operation of G¥ on
the algebra A, which is defined in the following way:

¢ (aay) :=&(g)aa, forallé € G¥ae A geq.
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In particular, GV acts on the set of blocks of A. Let b be a block of A. Denote
by £ - b the product of £ and b and by (G"), the stabilizer of b in G¥. We set

(G, b) = Y &b
£eGY /(G
The set of blocks of the algebra (Z A)Gv is given by
BI((ZA)%") = {Tr(G",b) | b € BI(A)/G"}.
The following lemma is the analogue of lemma 2.3.16
Lemma 2.3.17 Let b be a block of A and B := Irr(K Ab). Then
1. For all x € B, we have (G¥), C (GY).
2. We have

Tr(GY,b) = Z Tr(GY,e(x)) = Z e(Q).

x€B/GY {QIQNB#£D}

Case where G 1s cyclic

For every orbit ) of G¥ on BI(A), we denote by b()) the block of (ZA)"

defined as
(V)= b

bey
For every orbit J of G on BI(A), we denote by b()) the block of (ZA)“

defined as
b(Y) = Z b.
bey
The following proposition results from proposition 2.3.15 and lemmas
2.3.16 and 2.3.17.

Proposition 2.3.18 If the group G is cyclic, there exists a bijection
Bl(%)/G & BlI(A)/GY

such that

1.€.,
Tr(G,b) = Tr(GY,b) for allb€ Y and b€ Y.
In particular, the algebras (ZA)¢ and (ZA)" have the same blocks.

Corollary 2.3.19 If the blocks of A are stable by the action of GV, then the
blocks of A coincide with the blocks of (ZA)C.
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2.4 Representation theory of symmetric al-
gebras

For the last part of Chapter 2, except for the subsection “A variation for
Tits” deformation theorem”, the author follows [20], Chapter 7.

Grothendieck groups

Let O be an integral domain and K a field containing O. Let A be an
(D-algebra free and finitely generated as O-module.

Let Ry(K A) be the Grothendieck group of finite-dimensional K A-modules.
Thus, Ry(K A) is generated by expressions [V], one for each K A-module V
(up to isomorphism), with relations [V] = [V’] 4 [V"] for each exact sequence
0 —-V —-V = V" — 0 of KA-modules. Two K A-modules V, V' give
rise to the same element in Ry(KA), if V' and V' have the same composi-
tion factors, counting multiplicities. It follows that Ro(K A) is free abelian
with basis given by the isomorphism classes of simple modules. Finally, let
R$ (K A) be the subset of Ry(K A) consisting of elements [V], where V is a
finite-dimensional K A-module.

Definition 2.4.1 Let x be an indeterminate over K and Maps(A, K [x]) the
K-algebra of maps from A to K[x] (with pointwise multiplication of maps
as algebra multiplication). If V is a KA-module, let py : KA — Endg (V)
denote its structural morphism. We define the map

pr: RJ(KA) — Maps(4, K[z])
V] +— (a — characteristic polynomial of py(a)).

Considering Maps(A, K[z]) as a semigroup with respect to multiplication, the
map P s a semigroup homomorphism.

Let Irr(KA) be the set of all characters yy, where V' is a simple K A-
module.

Lemma 2.4.2 (Brauer-Nesbitt) Assume that Irr(K A) is a linearly indepen-
dent set of Homg (KA, K). Then the map pr is injective.

Proof: Let V.V’ be two K A-modules such that px([V]) = px([V']).
Since [V], [V'] only depend on the composition factors of V, V' we may
assume that V, V"’ are semisimple modules. Let

V= éaiVi and V' = ébi‘[ia
i=1

i=1
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where the V; are pairwise non-isomorphic simple K A-modules and a;,b; > 0
for all 2. We have to show that a; = b; for all <.

If, for some i, we have both a; > 0 and b; > 0, then we can write
V=V,®Vand V' =V, ® V'. Since pg is a semigroup homomorphism, we
obtain

P (Vi) - pxc(V]) = p(V]) = pxc([V']) = pxc (Vi) - pc ([V']),
and, dividing by p([Vi]), we conclude that pg([V]) = px([V']). Thus, we
can suppose that, for all 7, we have a; = 0 or b; = 0. Taking characters yields

that
Xv =Y axy, and xyr = bixy,.

For each a € A, we have that the character values xy(a) and xy/(a) appear
as coefficients in the polynomials pg([V])(a) and px([V'])(a) respectively.
Hence, we have that ) .(a; — b;)xy; = 0. By assumption, the characters xy,
are linearly independent. So we must have (a; — b;)1x for all 4. Since for all
1, a; = 0 or b; = 0, this means that a;1x = 0 and b;1x = 0 for all 7. If the
field K has characteristic 0, we conclude that a; = b; = 0 for all 7 and we are
done. If K has characteristic p > 0, we conclude that p divides all a; and
all b; and so }D[V] and %[V’] exist in Ry (K A). Consequently, we also have
pK(i[V]) = pK(%[V’]). Repeating the above argument for %[V] and ]—1)[‘/']
yields that the multiplicity of V; in each of these modules is still divisible
by p. If we repeat this again and again, we deduce that a; and b; should be

divisible by arbitrary powers of p. This forces a; = b; = 0 for all 7, as desired.
[ |

Remark:The assumption of the Brauer-Nesbitt lemma is satisfied when (but
not only when):

e KA is split.

e K is a perfect field.

The following lemma implies the compatibility of the map px with the
field extensions of K ([20], Lemma 7.3.4).

Lemma 2.4.3 Let K C K’ be a field extension. Then there is a canonical
map d%' = Ro(KA) — Ry(K'A) given by [V] — [V ®g K']. Furthermore, we
have a commutative diagram

R (KA) P Maps(A4, K[z])

ld? lnfg’

RJ(K'A) —5 Maps(A, K'[z])
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. . . . . .
where 7Y is the canonical embedding. If, moreover, KA is split, then d% is
an isomorphism which preserves isomorphism classes of simple modules.

Integrality

We have seen in Chapter 1 that a subring R C K is a valuation ring if, for
each non-zero element x € K, we have z € R or 7! € R. Consequently, K
is the field of fractions of R.

Such a valuation ring is a local ring whose maximal ideal we will denote
by J(R). Valuation rings have interesting properties, some of which are:

(V1) If I is a prime ideal of O, then there exists a valuation ring R C K
such that O C R and J(R)NO = 1.

(V2) Every finitely generated torsion-free module over a valuation ring in
K is free.

(V3) The intersection of all valuation rings R € K with O C R is the
integral closure of O in K; each valuation ring itself is integrally closed
in K (Proposition 1.2.14).

Lemma 2.4.4 LetV be a K A-module. Choosing a K-basis of V', we obtain a
corresponding matriz representation p : KA — M,,(K), where n = dimg (V).
If R C K s a valuation ring with O C R, then a basis of V' can be chosen
so that p(a) € My (R) for all a € A. In that case, we say that V is realized
over R.

Proof: Let (vy,...,v,) be a K-basis of V and B an O-basis for A. Let 1%
be the O-submodule of V' spanned by the finite set {v;b|1 < i < n,b € B}.
Then V is invariant under the action of RA and hence a finitely generated
RA-module. Since it is contained in a K-vector space, it is also torsion-free.
So (V2) implies that V is an RA-lattice (a finitely generated RA-module
which is free as R-module) such that V ®z K ~ V. Thus any R-basis of V
is also a K-basis of V' with the required property. |

Remark: Note that the above argument only requires that R is a subring
of K such that K is the field of fractions of R and R satisfies (V2). These
conditions also hold, for example, when R is a principal ideal domain with

K as field of fractions.

The following two important results derive from the above lemma.
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Proposition 2.4.5 Let V be a KA-module and Ok be the integral closure
of O in K. Then we have pr([V])(a) € Oklz] for all a € A. Thus the map
px of definition 2.4.1 is in fact a map Ry (KA) — Maps(A, Ok |x]).

Proof: Fix a € A. Let R C K be a valuation ring with O C R. By
lemma 2.4.4, there exists a basis of V' such that the action of a on V' with
respect to that basis is given by a matrix with coefficients in R. Therefore,
we have that px([V])(a) € Rlz]. Since this holds for all valuation rings R in
K containing O, property (V3) implies that px([V])(a) € Ok|[z]. |

Note that, in particular, proposition 2.4.5 implies that xy (a) € Ok for
all @ € A, where xy is the character of the representation py .

Proposition 2.4.6 (Integrality of the Schur elements) Assume that we have
a symmetrizing form t on A. Let V be a split simple KA-module (i.e.,
Endga(V) ~ K) and let sy be its Schur element with respect to the induced
form t5% on KA. Then sy € Ok.

Proof: Let R C K be a valuation ring with O C R. By lemma 2.4.4,
we can assume that V' affords a representation p : KA — M, (K) such that
p(a) € M, (R) for all @ € A. Let B be an O-basis of A and let B’ be its dual
with respect to t. Then sy = >, 2 p(b)i;p(b');; for all 1 <4, 5 < n ([20], Cor.
7.2.2). All terms in the sum lie in R and so sy € R. Since this holds for all
valuation rings R in K containing O, property (V3) implies that sy € Ok.
|

The decomposition map

Now, we moreover assume that the ring O is integrally closed in K. Through-
out we will fix a ring homomorphism # : O — L into a field L such that L is
the field of fractions of §(0). We call such a ring homomorphism a special-
ization of O.

Let R C K be a valuation ring with O C R and J(R) N O = Kerf (note
that Kerf is a prime ideal, since (QO) is contained in a field). Let k be the
residue field of R. Then the restriction of the canonical map 7 : R — k to
O has kernel J(R) N O = Kerf. Since L is the field of fractions of 6(O), we
may regard L as a subfield of k. Thus, we have a commutative diagram

o ¢ R < K
i X
L <k
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From now on, we make the following assumption:
Assumption 2.4.7 (a) LA is split or (b) L =Fk and k is perfect.

The map 0 : O — L induces amap A — LA, a — a®1. One consequence
of the assumption 2.4.7 is that, due to lemma 2.4.3, the map d¥ : Ry(LA) —
Ry(kA) is an isomorphism which preserves isomorphism classes of simple
modules. Thus we can identify Ry(LA) and Ry(kA). Moreover, the Brauer-
Nesbitt lemma holds for LA, i.e., the map py, : Ry (LA) — Maps(A, L[z]) is
injective.

Let V be a KA-module and R C K be a valuation ring with O C R.
By lemma 2.4.4, there exists a K-basis of V' such that the corresponding
matrix representation p : KA — M, (K) (n = dimg (V")) has the property
that p(a) € M,(R). Then that basis generates an RA-lattice V such that
V @r K = V. The k-vector space V &g k is a kA-module via (v®1)(a®1) =
va® 1(v e V,ae A), which we call the modular reduction of V.

The matrix representation p* : kA — M, (k) afforded by kV is given by

pfla® 1) = (7(ai;)) where a € A and p(a) = (a;j).
To simplify notation, we shall write
KV :=V®r K and kV :=V @z k.

Note that if V' is another R A-lattice such that V' @z K ~ V, then V and
V' need not be isomorphic. The same hold for the kA-modules V ®% k and
V' Qr k.

Theorem-Definition 2.4.8 Let 0 : O — L be a ring homomorphism into a
field L such that L is the field of fractions of 0(O) and O is integrally closed
in K. Assume that we have chosen a valuation ring R with O C R C K and
J(R) N O = Kerf and that the assumption 2.4.7 is satisfied. Then

(a) The modular reduction induces an additive map dg : Rj (KA) — Ry (LA)
such that dy([KV]) = [kV], where V is an RA-lattice and [kV] is re-
garded as an element of R} (LA) via the identification of Ro(kA) and
Ry(LA).

(b) By Proposition 2.4.5, the image of px is contained in Maps(A, O[z])
and we have the following commutative diagram

R (KA) —5 Maps(A, Olz))

L
R (LA) —% Maps(4, Liz])
where 1y : Maps(A, Olz]) — Maps(A, L[z]) is the map induced by 6.
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(c) The map dy is uniquely determined by the commutativity of the above
diagram. In particular, the map dy depends only on 6 and not on the

choice of R.

The map dy will be called the decomposition map associated with the special-
wzation 0 : O — L. The matriz of that map with respect to the bases of
Ro(KA) and Ry(LA) consisting of the classes of the simple modules is called
the decomposition matrix with respect to 6.

Proof: Let V be an RA-lattice and a € A. Let (my;) € M,(R) be the
matrix describing the action of a on V with respect to a chosen R-basis of
V. Due to the properties of modular reduction, the action of a ® 1 € kA on
kV is given by the matrix (7(mj;)). Then, by definition, py([kV])(a) is the
characteristic polynomial of (7(m;;)). On the other hand, applying 6 (which
is the restriction of  to Q) to the coefficients of the characteristic polynomial
of (mj;) returns (pops)([KV])(a). Since the two actions just described com-
mute, the two polynomials obtained are equal. Thus the following relation
is established:

pL([EV]) = 79 0 px([KV]) for all RA-lattices V (1)

Now let us prove (a). We have to show that the map dy is well defined
i.e., if V, V' are two RA-lattices such that KV and KV’ have the same
composition factors (counting multiplicities), then the classes of kV and kV’
in Ry(LA) are the same. Moreover, for all a € A, the endomorphisms p,(a)
and pgy-(a) are conjugate. So the equality (}) implies that

pL([EV])(a) = pL([kV'])(a) for all a € A.

We have already remarked that, since the assumption 2.4.7 is satisfied, the
Brauer-Nesbitt lemma holds for LA. So we conclude [kV] = [kV'], as desired.
Having established the existence of dy, we have [kV] = dy([KV]) for any
RA-lattice V. Hence (1) yields the commutativity of the diagram in (b).
Finally, by the Brauer-Nesbitt lemma, the map p; is injective. Hence
there exists at most one map which makes the diagram in (b) commutative.
This proves (c). |

Remark: Note that if O is a discrete valuation ring and L its residue field,
we do not need the assumption 2.4.7 in order to define a decomposition map
from R (K A) to Ry (LA) associated with the canonical map 6 : O — L. For
a given K A-module V| there exists an A-lattice V such that V =V Qo K.
The map dy : Rf(KA) — R} (LA), [KV] — [V/LV] is well and uniquely
defined. For the details of this construction, see [15], §16C.
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Recall from proposition 2.4.5 that if V' is a K A-module, then its character
Xv restricts to a trace function xy : A — O. Now, any linear map A : A — O
induces an L-linear map

MG LA—Lia®l— 0(\a))(a € A).

It is clear that if \ is a trace function, so is A*. Applying this to xi shows
that x¥ is a trace function on LA. Since character values occur as coefficients
in characteristic polynomials, theorem 2.4.8 implies that Y% is the character
of dp([V]). Moreover, for any simple K A-module V', we have

Xy = ZdVV’XV’a
V/

where the sum is over all simple LA-modules V' (up to isomorphism) and
D = (dyy) is the decomposition matrix associated with 6.

The following result gives a criterion for dy to be trivial. For its proof,
the reader may refer, for example, to [20], Thm. 7.4.6.

Theorem 2.4.9 (Tits’ deformation theorem) Assume that KA and LA are
split. If LA is semisimple, then K A is also semisimple and the decomposition
map dg is an isomorphism which preserves isomorphism classes of simple
modules. In particular, the map Irr(KA) — Trr(LA), x — X% is a bijection.

Finally, if A is symmetric, we can check whether the assumption of Tits’
deformation theorem is satisfied, using the following theorem (cf. [20], Thm.
7.4.7).

Theorem 2.4.10 (Semisimplicity criterion) Assume that KA and LA are
split and that A is symmetric with symmetrizing form t. For any simple
KA-module V', let sy € O be the Schur element with respect to the induced
symmetrizing form t% on KA. Then LA is semisimple if and only if 0(sy) #
0 for all V.

Corollary 2.4.11 Let K be the field of fractions of O. Assume that KA is
split semisimple and that A is symmetric with symmetrizing form t. If the
map 0 is injective, then LA is split semisimple.

A variation for Tits’ deformation theorem

Let us suppose that O is a Krull ring and 6 : O — L is a ring homomorphism
like above. We will give a criterion for LA to be split semisimple.
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Theorem 2.4.12 Let K be the field of fractions of O. Assume that KA
is split semisimple and that A is symmetric with symmetrizing form t. For
any simple K A-module V', let sy € O be the Schur element with respect to
the induced symmetrizing form t* on KA. If Ker is a prime ideal of O of
height 1, then LA is split semisimple if and only if 6(sy) # 0 for all V.

Proof: If LA is split semisimple, then theorem 2.4.10 implies that 0(sy) #
0 for all V. Now let us denote by Irr(K A) the set of irreducible characters of
KA. If x is the character afforded by a simple K A-module V,, then s, := sy, .
We set q := Kerf and suppose that s, ¢ q for all y € Irr(K A). Since KA is
split semisimple, it is isomorphic to a product of matrix algebras over K:

KA~ ] Endk(1)

x€Irr(KA)

Let us denote by m, : KA — Endg(V,) the projection onto the y-factor,
such that 7 := erlrr( KAy Tx 18 the above isomorphism. Then x = try, o m,,
where try, denotes the standard trace on Endg (V).

Let B, B’ be two dual bases of A with respect to the symmetrizing form
t. By lemma 2.2.7, for all a € KA and y € Irr(K A), we have

x'a= Z x(V'a)b.

beB

Applying 7 to both sides yields

n(x)m(a) =) x('a)m(b).

beB

By definition of the Schur element, 7(x") = 7, (x") = wy(x") = s,. Thus, if
a € Endg(V,), then

7 Ha) = si Ztrvx(ﬂx(b,)a)b (1)

X beB

Since O is a Krull ring and q is a prime ideal of height 1 of O, the ring
O, is, by theorem 1.2.23, a discrete valuation ring. Thanks to lemma 2.4.4,
there exists an O, A-lattice V, such that K ®o, V, ~ V.

Moreover, 1/s, € Og for all x € Irr(KA). Due to the relation (}), the
map 7 induces an isomorphism

O;A~ [ Endo, (V).

x€Irr(KA)
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e., O4A is the product of matrix algebras over O,. Since Kerf = q, the
above isomorphism remains after applying 6. Therefore, we obtain that LA
is a product of matrix algebras over L and thus split semisimple. |

If that is the case, then the assumption of Tits’ deformation theorem is
satisfied and there exists a bijection Irr(K A) < Irr(LA).

Symmetric algebras over discrete valuation rings

From now on, we assume that the following conditions are satisfied:

e O isadiscrete valuation ring in K and K is perfect; let v : K — ZU{oo}
be the corresponding valuation.

e K A is split semisimple.
e 0 : O — L is the canonical map onto the residue field L of O.
e A is a symmetric algebra with symmetrizing form t.

We have already seen that we have a well-defined decomposition map
dp : R§(KA) — R{(LA). The decomposition matrix associated with dy is
the |Irr(K A)| x |Irr(LA)| matrix D = (dy,) with non-negative integer entries
such that

do(Vi]) = > dy[Vy] for x € Irr(KA),

¢€lr(LA)

where V) is a simple K'A-module with character y and Vj is a simple LA-
module with character ¢. We sometimes call the characters of KA “ordinary”
and the characters of LA “modular”. We say that ¢ € Irr(LA) is a modular
constituent of x € Irr(KA), if d,4 # 0.

The rows of D describe the decomposition of dyp([V,]) in the standard
basis of Ro(LA). An interpretation of the columns is given by the following
result (cf. [20], Thm. 7.5.2), which is part of Brauer’s classical theory of
modular representations.

Theorem 2.4.13 (Brauer reciprocity) For each ¢ € Irr(LA), there exists
some primitive idempotent ey € A such that

o KA = > dyy[Vi] € R{(KA).

X€EIrr (K A)
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Let ¢ € Trr(LA). Consider the map ¢(¢) : ZKA — K defined by
d
P(¢) = Z Si(wav
Xx€E€Irr(KA) X

where w,, : ZKA — K is the central morphism associated with y € Irr(/K A),
as defined at the end of section 2.1.

Theorem 2.4.14 The map (¢) restricts to a map ZA — O. In particular,

o= 3 eo

Sx
x€lrr(KA)

Proof: Let us denote by t¥ the induced symmetrizing form on KA. If
eg is an idempotent as in theorem 2.4.13, then we can define a K-linear map
Ao : ZKA — K, z — t5(ze,). We claim that Ay = 1(¢). Since K A is split
semisimple, the elements {x"|x € Irr(KA)} form a basis of ZKA. 1t is,
therefore, sufficient to show that

As(x”) = ¥(d)(x") for all x € Irr(KA).
We have ¢(¢)(x") = dyslx. Now consider the left-hand side.

Ao(XY) =t (xVey) = x(ey) = dimp (Vyey)1x
= dimK(HomK(e¢KA, Vx)lK = dx¢1K

Hence the above claim is established.
Finally, it remains to observe that since e, € A, the function A, takes
values in O on all elements of A. [ |

Finally, we will treat the block distribution of characters. For this pur-
pose, we introduce the following notions.

Definition 2.4.15

1. The Brauer graph associated with A has vertices labeled by the irre-
ducible characters of KA and an edge joining x,x' € Irr(KA) if x # X’
and there exists some ¢ € Irr(LA) such that dyy # 0 # dyg. A con-
nected component of a Brauer graph is called a block.

2. Let x € Irr(KA). Recall that 0 # s, € O. Let 0, = v(sy), where v
is the gwen valuation. Then 6, is called the defect of x and we have
6y > 0 forall x € Irr(KA). If B is a block, then 0p := max{J, | x € B}
is called the defect of B.
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By [18], 17.9, each block B of A corresponds to a central primitive idem-
potent (block-idempotent, by definition 2.1.1) e of A. If x € B and e, is
its corresponding central primitive idempotent in K'A, then ege, # 0.

Every x € Irr(KA) determines a central morphism w, : ZKA — K.
Since O is integrally closed, we have w,(z) € O for all z € ZA. We have the
following standard results relating blocks with central morphisms.

Proposition 2.4.16 Let x,x' € Irr(KA). Then x and X' belong to the same
block of A if and only if

O(wy(2)) = O(wy (2)) for all z € ZA.

1.€.,

wy (2) = wy(2) mod J(O) for all z € ZA.

Proof: First assume that y, x’ belong to the same block of A, i.e., they
belong to a connected component of the Brauer graph. It is sufficient to
consider the case where x, x' are directly linked on the Brauer graph, i.e.,
there exists some ¢ € Irr(LA) such that dyg # 0 # dyy. Let Vi be an
A-lattice such that K ‘7 affords x. Let z € ZA. Then 2z ® 1 acts by the
scalar f(wy(2)) on every modular constituent of kV;. Similarly, z ® 1 acts
by the scalar 6(w,/(z)) on every modular constituent of kVy, where Vs is an
A-lattice such that K V/ affords x’. Since, by assumption, K V and K V
have a modular constituent in common, we have 0(w,(z)) = O(wx (2)), as
desired.

Now assume that y belongs to the block B and x’ to the block B’, with
B # B’. Let ep, ep be the corresponding central primitive idempotents.
Then w,(eg) = 1 and wy/(eg) = 0. Consequently, 8(wy(eg)) # O(wy (ep)). B

Theorem 2.4.17 (Blocks of defect 0) Let x € Irr(KA) with 6(s,) # 0.
Then x is an isolated vertex in the Brauer graph and the corresponding de-
composition matrix is just (1).

Proof: Let ¢t be the induced symmetrizing form on KA and t¥ the
isomorphism from KA to Homg (KA, K) induced by t%. The irreducible
character x € Irr(KA) is a trace function on KA and thus we can define
XY = ()71 (x) € KA. Since x restricts to a trace function A — O, we have
in fact x¥ € ZA. By definition, we have that w,(x") = s, and wy/(x¥) =0
for any x' € Irr(K A), x' # x. Now assume that there exists some character
X" which is linked to x in the Brauer graph. Proposition 2.4.16 implies that

0 # 6(sy) = 0wy (x")) = O(wy (x¥)) = 0, which is absurd.
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It remains to show that dy([V}]) is the class of a simple module in Ry (LA).
By lemma 2.4.4, there exists a basis of 1, and a corresponding representation
p: KA — M,(K) afforded by V, such that p(a) € M,,(O) for all a € A. Let
B be an O-basis of A and let B’ be its dual with respect to t. We have seen
in proposition 2.4.6 that s, = >,z p(0)ip(0); for all 1 < 4,57 < n. All
terms in this relation lie in O. So we can apply the map # and obtain a
similar relation for (s,) with respect to the module LV, where V, C V, is
the A-lattice spanned by the above basis of V,. Since 6(s,) # 0, the module
LV, is simple ([20], Lemma 7.2.3). [

The following result is an immediate consequence of theorems 2.4.14 and
2.4.17.

Proposition 2.4.18 Let x € Irr(KA). Then x is a block by itself if and
only if (sy) # 0.
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Chapter 3

On Hecke algebras

3.1 Complex reflection groups and associated
braid groups

Let po be the group of all the roots of unity in C and K a number field
contained in Q(s). We denote by p(K) the group of all the roots of unity
of K. For every integer d > 1, we set (4 := exp(2mi/d) and denote by g
the group of all the d-th roots of unity. Let V be a K-vector space of finite
dimension 7.

Definition 3.1.1 A pseudo-refiection of GL(V') is a non-trivial element s of
GL(V) which acts trivially on a hyperplane, called the reflecting hyperplane
of s.

If W is a finite subgroup of GL(V') generated by pseudo-reflections, then
(V,W) is called a K-reflection group of rank r.

We have the following classification of complex reflection groups, also
known as “Shephard-Todd classification”. For more details about the classi-
fication, one may refer to [40].

Theorem 3.1.2 Let (V,W) be an irreducible complex reflection group (i.e.,
W acts irreducibly on V). Then one of the following assertions is true:

e There exist non-zero integers d,e,r such that (V,W) ~ G(de,e,r),
where G(de, e, r) is the group of all monomial r xr matrices with entries
n pge and product of all non-zero entries in fiq.

o (V,W) is isomorphic to one of the 3/ exceptional groups G, (n =
4,...,37).
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The following theorem has been proved (using a case by case analysis)
by Benard [2] and Bessis [4] and generalizes a well known result for Weyl
groups.

Theorem 3.1.3 Let (V,W) be a reflection group. Let K be the field gen-
erated by the traces on V of all the elements of W. Then all irreducible

KW -representations are absolutely irreducible i.e., K is a splitting field for
W. The field K is called the field of definition of the reflection group W'.

o If K CR, then W is a (finite) Coxeter group.

o If K =Q, then W is a Weyl group.
For the following definitions and results about braid groups we follow [14].

Let X be a topological space. Given a point o € X, we denote by
I1; (X, zg) the fundamental group with base point z.

Let V be a K-vector space as before. Let W be a finite subgroup of
GL(V) generated by pseudo-reflections and acting irreducibly on V. We
denote by A the set of its reflecting hyperplanes. We define the regular variety
VI . =Co®V —Upea C® H. For 2y € VI8, we define P := II; (V' )
the pure braid group (at ) associated with W. If now p : VI¢& — VI€8 /jy/
denotes the canonical surjection, we define B := II; (V'8 /W, p(x()) the braid
group (at xg) associated with W.

The projection p induces a surjective map B — W, 0 + & as follows: Let
5 :[0,1] — V€8 be a path in V'8 such that 6(0) = xg, which lifts 0. Then
o is defined by the equality 7(z¢) = &(1). Note that the map o — & is an
anti-morphism.

Denoting by W°P the group opposite to W, we have the following short
exact sequence

1-P—B—>W?P—1,

where the map B — W*®P is defined by o — 4.

Now, for every hyperplane H € A, we set ey the order of the group Wy,
where Wy is the subgroup of W formed by 1 and all the reflections fixing the
hyperplane H. The group Wy is cyclic: if sy denotes an element of Wy with
determinant (g := (., then Wy =< sy > and sp is called a distinguished
reflection in W.

Let Ly := Im(s—idy). Then, for all z € V', we have 2 = pry(z)+pr,, ()
with pry(z) € H and pr;(z) € Ly. Thus, sy(x) = pry(z) + Capry,, (7).
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If t € R, we set (}; := exp(2mit/ey) and we denote by s, the element of
GL(V) (a pseudo-reflection if ¢ # 0) defined by

sy (x) == pry(z) + C;IPI"LH(-CE)-
For z € V, we denote by op, the path in V from z to sy(x) defined by
oy 0,1 =V, t— sy(z).

Let v be a path in V™8 with initial point zy and terminal point xy. Then
1 is the path in V™ with initial point zy and terminal point xy such that

v Ht) = (1 —t) for all t € [0, 1].

Thus, we can define the path sgy(y™1) : ¢t — sg(y~1(¢)), which goes from
sp(xm) to sp(xo) and lies also in V™8 since for all z € V™8 sy (z) € V'8 (If
sp(x) ¢ V'8 then sy(z) must belong to a hyperplane H'. If sy is a distin-
guished pseudo-reflection with reflecting hyperplane H’, then sy (sy(z)) =
sp(r) and sy~ (sg(sg(x))) = x. However, sy~ 'sgsy is a reflection and x
belongs to its reflecting hyperplane, sz (H’). This contradicts the fact that
x belongs to V*™8.). Now we define a path from zy to sy(zg) as follows:

oy =sa(Y (1) Orey Y

If x5 is chosen “close to H and far from the other reflecting hyperplanes”,
the path op , lies in V**® and its homotopy class doesn’t depend on the choice
of zg. The element it induces in the braid group B, sp, is a distinguished
braid reflection around the image of H in V™8 /.

Proposition 3.1.4

1. The braid group B is generated by the distinguished braid reflections
around the images of the hyperplanes H € A in V'8 /W

2. The 1mage of sg in W is sy.

3. Whenever ~' is a path in V™8 from x¢ to xy, if T denotes the loop in
Ve defined by T := "1y, then

O'Hﬁ/ = SH(T) 'O-H,'y '7'71

and in particular sg~ and sg . are conjugate in P.

4. The path Hing—lgH,siI(w)’ a loop in V™, induces the element s3
in the braid group B and belongs to the pure braid group P. It is a

distinguished braid reflection around H in P.
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Definition 3.1.5 Let s be a distinguished pseudo-refiection in W with re-
flecting hyperplane H. An s-distinguished braid reflection or monodromy gen-
erator is a distinguished braid reflection s around the image of H in V' /W
such that's = s.

Definition 3.1.6 Let o € V'8 as before. We denote by w the element of P
defined by the loop t — xoexp(2mit).

Lemma 3.1.7 We have e ZP.

Theorem-Definition 3.1.8 GivenC € A/W, there is a unique length func-
tion lc : B — 7Z defined as follows: if b = s7* - s5? - - - st where (for all j)

m
n; € Z and s; is a distinguished braid reflection around an element of C;,

then
e®)= > n;
{ilc;=C}
Thus, the length function l: B — 7Z is defined, for allb € B, as

()= Y le(b).

CeA/W

We say that B has an Artin-like presentation ([36], 5.2), if it has a pre-
sentation of the form

<s€S|{v,=w;}ier >,

where S is a finite set of distinguished braid reflections and [ is a finite set
of relations which are multi-homogeneous, i.e., such that for all 7, v; and w;
are positive words in elements of S (and hence, for each C € A/W, we have
le(vi) = le(w;)).

The following result by Bessis ([5], Thm.0.1) shows that any braid group
has an Artin-like presentation.

Theorem 3.1.9 Let W be a complex reflection group with associated braid
group B. Then there exists a subset S = {s1,...,s,} of B such that

1. The elements sy, ...,s, are distinguished braid reflection and therefore,
their images s1,...,S, in W are distinguished reflections.

2. The set S generates B and therefore, S := {s1,...,s,} generates W.

3. There exists a set R of relations of the form wi = wo, where wy and
Wy are positive words of equal length in the elements of S, such that
< S | R > is a presentation of B.
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4. Viewing now R as a set of relations in S, the group W is presented by
<S|IR; (Vs € 9)(s*=1) >

where ey denotes the order of s in W.

3.2 (Generic Hecke algebras

Let K, V,W., A, P, B be defined as in the previous section. For every orbit C
of W on A, we set ec the common order of the subgroups Wy, where H is
any element of C and Wy the subgroup formed by 1 and all the reflections
fixing the hyperplane H.

We choose a set of indeterminates u = (uc;)cea/w)o<j<ec—1) and we
denote by Z[u,u™!] the Laurent polynomial ring in all the indeterminates u.
We define the generic Hecke algebra H of W to be the quotient of the group
algebra Z[u,u™!]B by the ideal generated by the elements of the form

(S — UJC’O)(S — U(;J) e (S — Uaec_l),

where C runs over the set A/ and s runs over the set of monodromy
generators around the images in V8 /W of the elements of the hyperplane

orbit C.

Example 3.2.1 Let W := G4 =< s,t|sts = tst, s =3 =1 >. Then s and ¢
are conjugate in W and their reflecting hyperplanes belong to the same orbit in
A/W. The generic Hecke algebra of W can be presented as follows

H=<S8,T| STS=TST, (S—uo)(S—u1)(S—us)=0,
(T—uo)(T—ul)(T—uQ):O>.

We make some assumptions for the algebra H. Note that they have been
verified for all but a finite number of irreducible complex reflection groups
([13], remarks before 1.17, § 2; [22]).

Assumptions 3.2.2 The algebra 'H is a free Zlu,u™']-module of rank |W]|.
Moreover, there erists a linear form t : H — Z[u,u™'| with the following
properties:

1. t is a symmetrizing form for H, i.e., t(hh') = t(h'h) for all h,h' € H
and the map
t: H — Hom(H,Z[u,u])
h +— (h' +— t(hh'))

s an isomorphism.
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2. Via the specialization uc; + Cgc, the form t becomes the canonical
symmetrizing form on the group algebra ZW .

3. If we denote by a — o the automorphism of Zlu,u™'] consisting of
the simultaneous inversion of the indeterminates, then for all b € B,
we have

tb ) = 2=
where 7 s the central element of P defined in 3.1.6.

We know that the form ¢ is unique ([13], 2.1). From now on, let us suppose
that the assumptions 3.2.2 are satisfied. Then we have the following result
by G.Malle ([30], 5.2).

Theorem 3.2.3 Let v = (ve;)(cea/w)o<j<ec—1) be a set of ZCGA/W ec in-

determinates such that, for every C,j, we have v'éfj(.K)' = C;jjucd. Then the
K(v)-algebra K (v)H is split semisimple.

By “Tits’ deformation theorem” (theorem 2.4.9), it follows that the spe-
cialization v¢; + 1 induces a bijection x +— xv from the set Irr(W) of
absolutely irreducible characters of W to the set Irr(K(v)H) of absolutely
irreducible characters of K (v)H, such that the following diagram is commu-

tative
xv: H — Zglv,vl]

! !

Since the assumptions 3.2.2 are satisfied and the algebra K(v)H is split
semisimple, we can define the Schur element s,,, for every irreducible char-
acter xy of K(v)H with respect to the symmetrizing form ¢. The bijection
X — xv from Irr(W) to Irr(K(v)H) implies that the specialization ve j — 1
sends sy, to [W][/x(1) (which is the Schur element of x in the group algebra
with respect to the canonical symmetrizing form). The following result is
simply the application of proposition 2.2.12 to this case.

Proposition 3.2.4
1. We have

S
xvElr(K(V)H) v

2. For all xv € Irr(K(v)H), the block-idempotent of K(v)H associated
with Xv 8 exy = Xv/Sxy-
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Remark: The bijection Irr(W) <« Irr(K(v)H), x — xv allows us to write
Irr(W) instead of Irr(K (v)H) and x instead of yv in all the relations above.

Our first result concerns the form of the Schur elements associated with
the irreducible characters of K(v)H (always assuming that the asumptions
3.2.2 are satisfied). We will see later that this result plays a crucial role in
the determination of the blocks of Hecke algebras.

Theorem 3.2.5 The Schur element s, (v) associated with the character xv
of K(v)H is an element of Zx[v,v™'] of the form

53 (V) = &Ny [ ] WMy )™

i€l
where
o &, is an element of L,
o Ny =1l vgf]ij is a monomial in Zg[v, v~ with Zj‘:ol bej =0 for all
Ce AW,
o [, is an index set,

(Vy.i)ier, s a family of K-cyclotomic polynomials in one variable (i.e.,
minimal polynomials of the roots of unity over K ),

(Myi)ier, is a family of monomials in Zg[v,v—'] and if My ; =[], et

then ged(acj) =1 and chzgl acj =0 for allC € A/W,

o (nyi)ier, 1s a family of positive integers.

Proof: By proposition 2.2.10, we have that s, (v) € Zg[v,v~!]. The rest
is a case by case analysis. For W an irreducible complex reflection group,
we will denote by H(W) its generic Hecke algebra defined over the splitting
field of theorem 3.2.3.

Let us first consider the group G(d,1,r) for d > 1,7 > 2. By [34],
Cor. 6.5, the Schur elements of H(G(d,1,7)) are of the desired form. In
[24] it was shown that H(G(de, 1,r)) for a specific choice of parameters be-
comes the twisted symmetric algebra of the cyclic group of order e over
a symmetric subalgebra which is isomorphic to H(G(de,e,r)) (it had been
already shown in [12] for d = 1). Thus, by proposition 2.3.15, the Schur ele-
ments of H(G(de, 1,r)) are multiples by some integer of the Schur elements
of H(G(de,e,r)). Therefore, the assertion is established for all the groups of
the infinite series G(de, e, ) with r > 2.
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For the groups G(de,e,2), G7, G1; and Gig, the generic Schur elements
are determined by Malle in [29]. In the same article, we can find the special-
izations of parameters which permit us to calculate, using again proposition
2.3.15, the Schur elements of

® H<G4), H(G5), H<G6) from H<G7)
[ ] H(Gg), H(Gg), H(Glo), H<G12), H(G13>, H(GM), H(G15) from H(Gn)
[ ] H(Gw), H(Gn), H(Gm), H(Gzo), H(Gzl), H(Ggg) from H(Glg)

For more details, the reader may refer to the Appendix, where the above
specializations are given explicitly.

The generic Schur elements for the remaining non-Coxeter exceptional
complex reflection groups, i.e., the groups Gay, Gas, Gaog, Gaor, Gag, G31, G2,
(33, i34, have been also calculated by Malle in [31].

As far as the exceptional real reflection groups are concerned, i.e., the
groups Gz = Hs, Gog = Fy, G390 = Hy, G35 = Eg,Ggs = E7,G37 = Ly, the
Schur elements have been calculated

e for Fg and F; by Surowski ([41]),

e for Fs by Benson ([3]),

e for Fy and Hj by Lusztig ([28] and [26] respectively),
e for H, by Alvis and Lusztig ([1]).

To obtain the desired formula from the data given in the above articles,
we used the GAP Package CHEVIE (where some mistakes in these articles
have been corrected). |

In the Appendix of this thesis, we give the factorization of the generic
Schur elements of the groups Gz, G11, Gig, Gag, Gag and (3o, so that the
reader may verify the above result. The Schur elements for G5 are also
obtained as specializations of the Schur elements of Gy5. The groups Gss,
G24, G27, GQQ, G30 Ggl, G33, G34, G35, G36 and G37 are all generated by
reflections of order 2 whose reflecting hyperplanes belong to one single orbit.
Therefore, the splitting field of their generic Hecke algebra is of the form
K (vg,v1), where K is the field of definition of the group. In these cases, the
generic Hecke algebra is essentially one-parametered and it is easy to check
that the irreducible factors of the generic Schur elements over K[v3,vi] are

K-cyclotomic polynomials taking values on v := vovy '
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Remark: Tt is a consequence of [38], Thm. 3.4, that the irreducible factors of
the generic Schur elements over C[v, v~!] are divisors of Laurent polynomials
of the form M (v)" — 1, where

e M (v) is a monomial in C[v,v™1],

e 1 is a positive integer.

Thanks to proposition 1.5.5, the factorization of the theorem 3.2.5 is
unique in K[v,v~!]. However, this does not mean that the monomials M, ;
appearing in it are unique. Let

Uy i(My i) = uly (M, ),

where 7,5 € I, ¥, ;, ¥, ; are two K-cyclotomic polynomials, M, ;, M, ; are
two monomials in K[v,v~!] with the properties described in 3.2.5 and u
is a unit element in K[v,v~!]. Let ¢; be a morphism associated with the
monomial M, ; (see definition 1.4.3) from Zg[v,v~!] to a Laurent polynomial
ring with one indeterminate less. If we apply ¢; to the above equality, we
obtain

Ui(1) = @i(u)i(Vy;(My,))-
Since U, ;(1) € Zk and ¢; sends M, ; to a monomial, we deduce that

©;(M, ;) = 1. By proposition 1.4.6(2) and the fact that M, ; satisfies the
conditions described in proposition 3.2.5, we must have

_ gL
My; =M.

Hence, the monomials M, ; appearing in the factorization of the generic Schur
element are unique up to inversion.
If M, ; =M, then ¥, ; =V, ; and u=1. If M, ; = M}, then ¥, ; is

X0
conjugate to ¥, ; and w is of the form CM:ig(q}X’i), where ( is a root of unity.

Therefore, the coefficient &, is unique up to a root of unity.

Remark: The first cyclotomic polynomial never appears in the factoriza-
tion of a Schur element s, (v). Otherwise the specialization v ; — 1 would
send s,(v) to 0 and not to |W|/x(1) as it should.

Now let p be a prime ideal of Zx and let us denote by A the ring
Zi|v,v7 . If (M, ) is a factor of s,(v) and ¥, ;(1) € p, then the mono-
mial M, ; is called p-essential for x in A. Due to proposition 1.4.6(1), we
have

Uyi(l) € p e Uy (M) €95, (1)
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where q; := (M, ; — 1)A + pA. Recall that q; is a prime ideal of A (lemma
1.4.5). Due to the primeness of q;, the following proposition is an immediate
consequence of (7).

Proposition 3.2.6 Let M =[] ; vgfjfj be a monomial in A with ged(ac ;) =
1 and qp := (M — 1)A+ pA. Then M is p-essential for x in A if and only
if sy /& € qum, where &, denotes the coefficient of s, in 3.2.5.

From now on, for reasons of convenience and only for this section, we will
substitute the set of indeterminates v = (v¢ ;) (cea/w)o<j<ec—1) With the set

{zo,21,. ..,z }, where m := (3 cc 4w €c) — 1. Hence, the algebra H will be

. : +1 41 +1
considered over the ring A = Zg[zg , 27, ..., 25}

Let M :=[[",z{" be a monomial in A, such that a; € Z and ged(q;) = 1.
Let B := Zg [y, ..., y='] and consider ¢y : A — B a Zg-algebra morphism
associated with M. Let us denote by H,,, the algebra obtained by H via
the specialization @,,.

PMm

Proposition 3.2.7 The algebra K(y1, ..., Ym)Hy,, s split semisimple.

Proof: By theorem 3.2.3, the algebra K (zg, 1, . .., T,,)H is split semisim-
ple. The ring A is a Krull ring and Kerpy, = (M — 1)A is a prime ideal of
height 1 of A. Due to the form of the generic Schur elements, given in theorem
3.2.5, the fact that the morphism ¢j; sends every monomial in A to a mono-
mial in B implies that ¢a(sy) # 0 for all x € Irr(K (zo, z1,...,Tm)H) (we
have already explained why the first cyclotomic polynomial never appears in
the factorization of the generic Schur elements). Thus we can apply theorem
2.4.12 and obtain that the algebra K(y1,...,Ym)Hy,, is split semisimple. W

By “Tits’deformation theorem”, the specialization y; — 1 induces a bijec-
tion from the set Irr(K (y1,...,ym)H,,,) of absolutely irreducible characters
of K(y1,...,Ym)H,,, to the set Irr(W). The Schur elements of the former
are the specializations of the Schur elements of K(xq,z1,...,z,m)H via @y
and thus of the form described in 3.2.5.

From now on, whenever we refer to irreducible characters, we mean irre-
ducible characters of the group W. Due to the existing bijections

Irr (K (zo, 1, . . .y ) H) < Iir(K(y1, - - Ym) Hoy, ) < Irr(W),

it makes sense to compare the blocks of H and H,,, (in terms of partitions

of Irr(WW)) over suitable rings.

PM

Let p be a prime ideal of Zx and q5; := (M — 1)A + pA.
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Theorem 3.2.8 The blocks of Bpg'H,,, coincide with the blocks of Ag,, H.

M

Proof: Let us denote by ny, the kernel of pyy, i.e., ny := (M — 1)A.
By proposition 1.4.6(1), we have that Ag,, /nyAq, =~ Bps. Therefore, it
is enough to show that the canonical surjection Aq,, H — (Ag,, /0amAq,)H
induces a block bijection between these two algebras.

From now on, the symbol ~ will stand for qj;-adic completion. It is
immediate that, via the canonical surjection, a block of Ay, H is a sum of
blocks of (Aq,,/nmAqy,)H. Now let € be a block of (A4, /namAq,)H. By
theorem 1.3.3, all Noetherian local rings are Cowed in their completions.
Thus € can be written as a sum of blocks of (Aq,, /naAq,, )H. Due to corollary
1.3.5, the last algebra is isomorphic to (AqM/nMAqM)H, which is in turn
isomorphic to the quotient algebra AqMH/nMAqMH. By the theorems of
lifting idempotents (see [42], Thm.3.2) and the following lemma, € is lifted
to a sum of central primitive idempotents in A, H. However, by the fact
that K (xo, 21, ..., %y )H is split semisimple, we have that the blocks of AqMH
belong to K(xg, 1, ..., Tm)H. But K(xg,z1,...,Tm) ﬂflqM = A, (theorem
1.3.6) and Ay, H N Z(Ay,H) C Z(Aq, H). Therefore, € is lifted to a sum of

am am am

blocks in Ag,,H and this provides the block bijection.

am

Lemma 3.2.9 Let O be a Noetherian ring and q a prime ideal of O. Let H
be an Og-algebra free and of finite rank as a Oq-module. Let p be a prime
ideal of O such that p C q and e an idempotent of H whose image € in
(Oq/pq)H := Oq/pOq @0, H is central. Then e is central.

Proof: We set P := Oq4/p,. Since € is central, we have
ePH(1 —e)=(1—¢e)PHe = {0},

1.€.,

eH(1—e) CpOH and (1 —e)He C pOyH.
Since e and (1 — e) are idempotents, we get
eH(1—e) CpOseH(1l—e) and (1 —e)He C pO4(1 —e)He.

However, pO, C q0,, the latter being the maximal ideal of O,. By Nakayama’s
lemma,

eH(1—¢) = (1 —e)He = {0}.

Thus, from

H=cHedeH(l—e)@®(l—e)Hed (1 —e)H(1 —¢)
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we deduce that
H=eHe® (1 —e)H(1—e¢)

and consequently, e is central. [ |
|

Remark: Since qp = qp-1, proposition 3.2.8 implies that the blocks of
BysH,,, coincide with the blocks of By,p'H

Prp—1-°

Proposition 3.2.10 If two wrreducible characters x and v are in the same
block of AyaH, then they are in the same block of Aq,, 'H.

Proof: Let C be a block of Ag,,H. Then )  _ e, € Ag,H C ApaH.
Thus C' is a union of blocks of A,4H. [ |

Corollary 3.2.11 If two irreducible characters x and 1 are in the same
block of AyaH, then they are in the same block of Byp'H

YM "

The corollary above implies that the size of p-blocks grows larger as the
number of indeterminates becomes smaller. However, we will now see that
the size of blocks remains the same, if our specialization is not associated
with a p-essential monomial.

Proposition 3.2.12 Let C be a block of AgaH. If M is not a p-essential
monomial for any x € C, then C is a block of Aq,,H (and thus of BygH,,, ).

am

Proof: Using the notations of proposition 3.2.5, we have that, for all
X € C, 5,/ ¢ qu. Since C is a block of ApaH, we have

ZGX = ZX—V c ApAH-
xeC xeC Sx

If B, B’ are two bases of H dual to each other, then x" = 37, . x(b)0' and
the above relation implies that

b
> X Apa, Vb € B.
xeC Sx

Let fo == > co(X(b)/sy) € Apa. Then f; is of the form 7,/({s), where
§:=[liecéx € Zx and s :=[[ o 8,/& € A. Since qu is a prime ideal of
A, the element s, by assumption, doesn’t belong to qy;. We also have that
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/€ € Apa. By corollary 1.2.17, there exists £ € Zg — p such that r,/§ =
ry /& for some 7, € A. Since qy N Zg = p (corollary 1.4.7), the element &
doesn’t belong to the ideal q,s either. Therefore, f, =1,/({'s) € Ag,,,Vb € B
and hence, > ey € Ag, H. Thus C is a union of blocks of Ay, H. Since
the blocks of A,,,’H are unions of blocks of A,4H, we eventually obtain that

C is a block of A, H. [ |

am

Corollary 3.2.13 If M is not a p-essential monomial for any x € Irr(W),
then the blocks of Aq,, H coincide with the blocks of AgaH.

anr

Of course all the above results hold for B in the place of A, if we further
specialize B (and H,,,) via a morphism associated with a monomial in B
(always assuming that the assumptions 3.2.2 are satisfied).

Ly, forr=m+1,
where y,, ..., Y, are m —r + 1 indeterminates over Zx. We shall recall some
definitions given in Chapter 1.

= ytt << m
Nowletre{1,..,,m+1}andR::{ Zrlyy s s Ym ), for 1 <r <m;

Definition 3.2.14 A Zg-algebra morphism ¢ : A — R is called adapted, if
© = Q,0Q,_10...0p1, where @; is a morphism associated with a monomial
foralli=1,...;r. The family F := {¢r, 0r_1,---,p1} is called an adapted
famaly for ¢ whose initial morphism is ;.

Let ¢ : A — R be an adapted morphism and let F' be the field of frac-
tions of R. Let us denote by H, the algebra obtained as the specialization
of H via . Applying Proposition 3.2.7 r times, we obtain that the algebra
F'H, is split semisimple. Again, by “Tits’deformation theorem”, the spe-
cialization y; — 1 induces a bijection from the set Irr(FH,) of absolutely
irreducible characters of F'H,, to the set Irr(W). Therefore, whenever we
refer to irreducible characters, we mean irreducible characters of the group
W.

We shall repeat here proposition 1.4.11, proved in Chapter 1. Recall that
if M := [[",2% is a monomial such that ged(h;) = d € Z, then M° :=

| i/,
Proposition 3.2.15 Let ¢ : A — R be an adapted morphism and M a

monomial in A such that (M) = 1. Then there exists an adapted family for
@ whose initial morphism is associated with M°.
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Proposition 3.2.16 Let ¢ : A — R be an adapted morphism and H, the
algebra obtained as the specialization of H via w. If M is a monomial in A
such that (M) =1 and qpe == (M° — 1)A+ pA, then the blocks of RyrH.,
are unions of blocks of Ay H.

Adnro

Proof: Let M be a monomial in A such that ¢(M) = 1. Due to propo-
sition 3.2.15, there exists an adapted family for ¢ whose initial morphism
1 is associated with M°. Let us denote by B the image of ¢, and by H,,
the algebra obtained as the specialization of ‘H via ¢;. Thanks to theorem
3.2.8, the blocks of BygH,, coincide with the blocks of Ay, .H. Now, by
corollary 3.2.11, if two irreducible characters belong to the same p-block of
a Hecke algebra, then they belong to the same p-block of its specialization
via a morphism associated with a monomial. Inductively, we obtain that the
blocks of R,rH,, are unions of blocks of BygH,, and thus of A, H. [ |

We will now state and prove our main result concerning the p-blocks of
Hecke algebras. Let us recall the factorization of the generic Schur element
s, associated with the irreducible character x in 3.2.5. We have defined a
monomial M := [[I", z;" with ged(a;) = 1 to be p-essential for y if s, has a
factor of the form W(M), where ¥ is a K-cyclotomic polynomial such that
U(1) € p. We have seen (proposition 3.2.6) that M is p-essential for x if and
only if s, /&, € qu. A monomial of that form is called generally p-essential
for W if it is p-essential for some irreducible character x of W. We can easily
find all p-essential monomials for W by looking at the unique factorization

of the generic Schur elements in K[zZ,zf,... 2]

Let ¢ : A — R be an adapted morphism and H,, the algebra obtained as
the specialization of 'H via . Let My, ..., M} be the p-essential monomials
for W such that ¢(M;) = 1 for all j = 1,..., k. We have M7 = M; for
all j =1,...,k. Set qo :=pA, q; :=pA+ (M; —1)Afor j =1,...,k and
Q= {0, q1,- -, qr}

Now let ¢ € Q. If two irreducible characters x, v belong to the same

block of A H, we write x ~q 1.

Theorem 3.2.17 Two irreducible characters x,v € Irr(W) are in the same
block of RyrHy if and only if there exist a finite sequence Xo, X1, ---,Xn €
Irr(W) and a finite sequence qj,,...,q;, € Q such that

® Xo=X and X, =1,

o foralli (1<i<n), xi1 ~aq;, Xi-
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Proof: Let us denote by ~ the equivalence relation on Irr(W) defined as
the closure of the relation “there exists q € Q such that x ~g1”. Therefore,
we have to show that x and ¢ are in the same block of R,grH,, if and only if
X~ .

If x ~ 9, then proposition 3.2.16 implies that x and 1 are in the same
block of RyrH,. Now let C' be an equivalence class of ~. We have that C' is
a union of blocks of A;H,Vq € Q and thus

9\/
Y —€eAMH Vqe Q.

s
occ 0

If B,B" are two dual bases of H with respect to the symmetrizing form ¢,
then 6V =", 5 0(b)V’ and hence

o(b
ZQ € Ag, Vg € QWb € B.
oec 0

Let us recall the form of the Schur element sy in 3.2.5. Set {c 1= [[pee &0
and sc = [[yc(50/&). Then, for all b € B, there exists an element r¢; € A

such that
3 0(b) _ ey
el §cse

The element s¢ € A is product of terms (K-cyclotomic polynomials tak-

ing values on monomials) which are irreducible in K[z3! 2, ... 2], due
to proposition 1.5.5. We also have s¢ ¢ pA.
Fix b € B. Thering K[z7', 27", ..., 2] is a unique factorization domain

and thus the quotient r¢,/sc can be written uniquely in the form r/as where
e rseA,
o o€ Ly,
o s|s¢in A,
e ged(r,s) = 1in Klagt oft, ... ot
and for £ := a&c we have

Tco r
> = — € A, Vg € Q.
§csc &s @ 7

Thus, for all q € Q, there exist rq, 54 € A with sq ¢ q such that

Il

§s  sq
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Since (r,s) = 1, we obtain that s|s, in K[zg", 27", ..., 2k}

,x|. However,
s|s¢ in A and thus s is a product of K-cyclotomic polynomials taking values
on monomials. Consequently, at least one of the coefficients of s is a unit in
A. Corollary 1.2.19 implies that s|sq in A. Therefore, s ¢ q for all g € Q.

Moreover, we have that /¢ € Ay = Apa. By corollary 1.2.17, there exist
€ Aand & € Zyx — p such that r/§ =r'/¢'. Then

r r’

& &s
Now let us suppose that ¢(&'s) = £'p(s) belongs to pR. Since & ¢ p, we
must have ¢(s) € pR. However, the morphism ¢ always sends monomial to

monomial. Since s ¢ pA and s|s¢, s must have a factor of the form W (M),
where

€ Ay, Vg € Q.

o M := ][,z is a monomial in A such that ged(a;) = 1 and p(M) =1,

e U is a K-cyclotomic polynomial such that ¥(1) € p.

Thus s € qu := (M — 1)A+ pA. Since ¥(M)|sc, M is a p-essential mono-
mial for some irreducible character § € C, i.e., M € {My,..., My}. This
contradicts the fact that s ¢ q for all g € Q. Therefore, p(¢'s) ¢ pR.

So we have )
elres) _ ) _p
p(éesc)  w(&s) 0 F
and this holds for all b € B. Consequently,
QV
2O7) ¢ g,
sz ¥(s50)
Thus C'is a union of blocks of Ry,rH,,. |

Remark: We can obtain corollary 3.2.13 as an application of the above the-
orem for @ = {qo}.

To summarize: Theorem 3.2.17 allows us to calculate the blocks of Ry,rH.,
for all adapted morphisms ¢ : A — R, if we know the blocks of Ap,sH and
the blocks of Ay, H for all p-essential monomials M. Thus the study of the
blocks of the generic Hecke algebra H in a finite number of cases suffices to
calculate the p-blocks of all Hecke algebras obtained via such specializations.

The following result will be only used in the section about cyclotomic

Hecke algebras. However, it is also a result on generic Hecke algebras, so it
will be stated now.
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Let n be an integer, n # 0. Define I" : A — A’ := Zr [yt yi, ..., yt!
to be the Zk-algebra morphism x; — y'. Obviously, I" is injective.

Lemma 3.2.18 Let n be an integer, n # 0. Let I : A — A’ be the Zg-
algebra morphism defined above and H' the algebra obtained as the special-
ization of H wvia I"™. Then the blocks of A} ,H' coincide with the blocks of

Proof: Since the map I" is injective, we can consider A as a subring of
A’ via the identification x; = y for all i = 0,1,...,m. By corollary 1.1.3,
we obtain that A, is contained in A;  and hence, the blocks of A,4H are
unions of blocks of Ay, H'.

Now let C' be a block of A, H'. Since the field of fractions of A is a
splitting field for H (and thus for H'), we obtain that

Zex € (Ap N K (w0, 21, .., 7)) H .

xeC

If ALy N K (20,71, .., Tm) = Apa, then C' is also a union of blocks of Ap4H
and we obtain the desired result.

In order to prove that Ay, N K (o, 21, ..., %) = Apa, it suffices to show
that:

(a) The ring Apy4 is integrally closed.

(b) The ring Ay 4 is integral over Aya.

Since the ring A is integrally closed, part (a) is immediate by corollary
1.2.8 which states that any localization of an integrally closed ring is also
integrally closed.

For part (b), we have that A’ is integral over A, since y!' — x; = 0, for
all © = 0,1,...,m. Moreover, A" is integrally closed and thus the integral
closure of A in K (yo,%1,---,Ym). The only prime ideal of A’ lying over pA is,
obviously, pA’. Following corollary 1.2.11, we obtain that the integral closure
of Apa in K (Yo, Y1, - -+, Ym) is Ay Thus Aj , is integral over Apa. |

We can consider I as an endomorphism of A and denote it by 7. If k
is another integer, k # 0, then I§ o I% = [T o I% = I%". Ifnow ¢ : A — R
is an adapted morphism, we can easily check that ¢ o I’} = I} o ¢. Abusing
notation, we write o o I = [" o .

Corollary 3.2.19 Let ¢ : A — R be an adapted morphism and H, the
algebra obtained as the specialization of H via ¢. Let ¢ : A — R be a Z-
algebra morphism such that 1o o = I° o ¢ for some o, 3 € Z —{0}. If Hy
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is the algebra obtained as the specialization of H wvia ¢, then the blocks of
RyrHy coincide with the blocks of RyrH, and we can use theorem 3.2.17 to

calculate them.

3.3 Cyclotomic Hecke algebras
Let y be an indeterminate. We set z := yl#(5l,

Definition 3.3.1 A cyclotomic specialization of ‘H is a Zk-algebra mor-
phism ¢ : Ly |[v, v — Zk[y,y~ '] with the following properties:

® ¢, — Yy where ne; € Z for all C and j.

o For all C € A/W, and if z is another indeterminate, the element of
Zly,y~ ', 2] defined by

ec—1

Te(y, ) = [[(z = y"e)

=0
is invariant by the action of Gal(K(y)/K(z)).

If ¢ is a cyclotomic specialization of H, the corresponding cyclotomic
Hecke algebra is the Zg |y, y']-algebra, denoted by H,, which is obtained as
the specialization of the Zg|v, v~ !]-algebra H via the morphism ¢. It also
has a symmetrizing form ¢4 defined as the specialization of the canonical
form ¢.

Remark: Sometimes we describe the morphism ¢ by the formula

. J pne.j
UC’]I—> ecx .

If now we set ¢ := (x for some root of unity ¢ € pu(K), then the cyclotomic
specialization ¢ becomes a (-cyclotomic specialization and H, can be also
considered over Zg[q, ¢ '].

Example 3.3.2 The spetsial Hecke algebra H;(W) is the 1-cyclotomic algebra
obtained by the specialization

uc,o > q, Ucj — Cgc for1<j<ec—1, forallC € A/W.
For example, if W := G4, then

HE(W) =< S, T |STS =TST,(S—q)(S*+S+1)=(T—q)(T*+T+1)=0>.
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Set A :=Zg[v,v7] and Q := Zg[y,y~']. Let ¢ : A — Q be a cyclotomic
specialization such that ¢(ve ;) = y"¢7. Recall that, for a € Z — {0}, we
denote by ¢ : 2 — € the monomorphism y — y°.

Theorem 3.3.3 Let ¢ : A — Q be a cyclotomic specialization like above.
Then there exist an adapted Zg-algebra morphism ¢ : A — Q and o € Z—{0}
such that

p=1%p.

Proof: We set d := ged(ne,j) and consider the cyclotomic specialization
@ vej — Y/l We have ¢ = I?0 p. Since ged(nej/d) = 1, there exist
ac,; € Z such that

ZCLCJ(TLC,J'/d) =1.
C?j

We have y = (] ; vgcjj) an hence, ¢ is surjective. Then, by proposition
1.4.12, ¢ is adapted. |

Let ¢ be defined as in theorem 3.3.3 and H,, the corresponding cyclotomic
Hecke algebra. Proposition 3.2.7 implies that the algebra K(y)H, is split
semisimple. Due to corollary 2.4.11 and the theorem above, we deduce that
the algebra K (y)H, is also split semisimple. For y = 1 this algebra specializes
to the group algebra KW (the form t, becoming the canonical form on the
group algebra). Thus, by “Tits’ deformation theorem”, the specialization
ve,; — 1 defines the following bijections

Irr (W) < Irr(K(y)Hy) < Ir(K(v)H)
X = X¢ = XV

The following result is an immediate consequence of the proposition 3.2.5.

Proposition 3.3.4 The Schur element s, (y) associated with the irreducible
character x4 of K(y)Hy is a Laurent polynomial in y of the form

Sxo () = U0y ™? H D(y)™ee

PeCik

where ¥y 4 € Lk, ayy € Z, nyy € N and Ck is a set of K-cyclotomic
polynomaials.

Let p be a prime ideal of Zy. Theorem 3.3.3 allows us to use theorem
3.2.17 for the calculation of the blocks of 2,nH, since they coincide with
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the blocks of Q,0H,, by corollary 3.2.19. Therefore, we need to know which
p-essential monomials are sent to 1 by ¢.

Let M := ch vgf}‘j be a p-essential monomial for W in A. Then

gb(M) =1 Z ac.;jnec,; = 0.
C.j

Set m =) o4 w €c- The hyperplane defined in C™ by the relation

Z ac jte; =0,

C?j

where (fcj)c,; is a set of m indeterminates, is called p-essential hyperplane
for W. A hyperplane in C™ is called essential for W, if it is p-essential for
some prime ideal p of Zg.

In order to calculate the blocks of 2,0H4, we check to which p-essential
hyperplanes the n¢ ; belong:

e If the n¢ ; belong to no p-essential hyperplane, then the blocks of Q,0H
coincide with the blocks of Ay 4H.

o If the n¢ ; belong to exactly one p-essential hyperplane, corresponding
to the p-essential monomial M, then the blocks of Qy,0H, coincide with
the blocks of A, H.

am

o If the n¢ ; belong to more than one p-essential hyperplane, then we use
theorem 3.2.17 to calculate the blocks of Q2,0H,.

If now n¢j =n € Z for all C, j, then QuoHy ~ QuoW and the ne ; belong
to all p-essential hyperplanes. Due to theorem 3.2.17, we obtain the following
proposition

Proposition 3.3.5 Let p be a prime ideal of Zk lying over a prime number
p. If two irreducible characters x and v are in the same block of QuoHg,
then they are in the same p-block of W.

Proof: The blocks of Qu0H, are unions of the blocks of Ag,,’H for all
p-essential monomials M such that ¢(M) = 1, whereas the p-blocks of W
are unions of the blocks of A,,,’H for all p-essential monomials M. [

Remark: It is well known that, since the ring €, is a discrete valuation

ring (by theorem 1.2.23), the blocks of QuqW are the p-blocks of W as de-
termined by Brauer theory. The reason is the following:
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Let Qp be the p-adic completion of €2,. Then the p-blocks of W corre-

spond to the central primitive idempotents of QpW. Since K (y)W is a split
semisimple algebra and €, is a local Noetherian ring, by theorem 1.3.6, the

central primitive idempotents of Q,,W belong to
K(y)W N QW = Q,W.
Since we are working with group algebras, we also have that
Z(Q,W) N QW = Z(Q,W).

Thus the central primitive idempotents of QpW coincide with the central
primitive idempotents of 2,

However, we know from Brauer theory that if the order of the group W is
prime to p, then every character of W is a p-block by itself (see, for example,
[39], 15.5, Prop.43). It is an immediate consequence of proposition 3.3.5 that

Proposition 3.3.6 If p is a prime ideal of Zy lying over a prime number p
which doesn’t divide the order of the group W, then the blocks of QuoH, are
singletons.

3.4 Rouquier blocks of the cyclotomic Hecke
algebras

Definition 3.4.1 We call Rouquier ring of K and denote by Ry (y) the Zy-
subalgebra of K(y)

Ri(y) = Zgly, vy, (y" — 1);24]

Let ¢ : ve j — y"¢7 be a cyclotomic specialization and H, the correspond-
ing cyclotomic Hecke algebra. The Rouquier blocks of H, are the blocks of
the algebra Ry (y)Hs.

Remark: It has been shown by Rouquier [37], that if W is a Weyl group
and H, is obtained via the “spetsial” cyclotomic specialization (see example
3.3.2), then its Rouquier blocks coincide with the “families of characters”
defined by Lusztig. Thus, the Rouquier blocks play an essential role in the
program “Spets” (see [13]) whose ambition is to give to complex reflection
groups the role of Weyl groups of as yet mysterious structures.
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Proposition 3.4.2 (Some properties of the Rouquier ring)

X

1. The group of units Rk (y)* of the Rouquier ring Ry (y) consists of the

elements of the form

w' [ e,

eCycl(K)

where u € Ly, n,ny € Z, Cycl(K) is the set of K-cyclotomic polyno-
mials and ng = 0 for all but a finite number of ®.

2. The prime ideals of Rk (y) are

e the zero ideal {0},
e the ideals of the form pRk(y), where p is a prime ideal of Zg,

e the ideals of the form P(y)Rk(y), where P(y) is an irreducible
element of Zkly| of degree at least 1, prime to y and to ®(y) for
all & € Cycl(K).

3. The Rougquier ring R (y) is a Dedekind ring.

Proof:

1. This part is immediate from the definition of K-cyclotomic polynomi-
als.

2. Since Rk (y) is an integral domain, the zero ideal is prime.

The ring Zg is a Dedekind ring and thus a Krull ring, by proposition
1.2.25. Proposition 1.2.24 implies that the ring Zg[y| is also a Krull
ring whose prime ideals of height 1 are of the form pZk[y] (p prime
in Zg) and P(y)Zk|y] (P(y) irreducible in Zg[y| of degree at least 1).
Moreover, Zy has an infinite number of non-zero prime ideals whose
intersection is the zero ideal. Since all non-zero prime ideals of Zx are
maximal, we obtain that every prime ideal of Z is the intersection of
maximal ideals. Thus Zg is, by definition, a Jacobson ring (cf. [17],
§4.5). The general form of the Nullstellensatz ([17], Thm.4.19) implies
that for every maximal ideal m of Zg[y], the ideal mNZ is a maximal
ideal of Zy. We deduce that the maximal ideals of Zg[y| are of the
form pZk|y| + P(y)Zk[y] (p prime in Zg and P(y) of degree at least
1 irreducible modulo p). Since Zg[y] has Krull dimension 2, we have
now described all its prime ideals.

The ring R (y) is a localization of Zg[y]. Therefore, in order to prove
that the non-zero prime ideals of R (y) are the ones described above,

96



it is enough to show that mRk(y) = Rk(y) for all maximal ideals m
of Zk[y]. For this, it suffices to show that pR(y) is a maximal ideal
of Rk (y) for all prime ideals p of Zg.

Let p be a prime ideal of Zg. Then

Ric(y) /PR (y) = Fyly, y™, (y" — 1),24],

where F,, denotes the finite field Zx /p. Since F,, is finite, every polyno-
mial in Fy[y] is a product of elements which divide y or y™ — 1 for some
n € N. Thus every element of F,[y] is invertible in Ry (y)/pRik(y).
Consequently, we obtain that

Ri(y)/pRi(y) ~ Fy(y)

and thus p generates a maximal ideal in Rx(y).

3. The ring Rk (y) is the localization of a Noetherian integrally closed ring
and thus Noetherian and integrally closed itself. Moreover, following
the description of its prime ideals in part 2, it has Krull dimension 1.1

Remark: 1f P(y) is an irreducible element of Zk [y] of degree at least 1, prime
to y and to ®(y) for all & € Cycl(K), then the field Ri(y)/P(y)Ri(y) is
isomorphic to the field of fractions of the ring Zx[y|/P(y)Zk[y].

Now let us recall the form of the Schur elements of the cyclotomic Hecke
algebra Hy4 given in proposition 3.3.4. If x, is an irreducible character of
K(y)Hg, then its Schur element s, (y) is of the form

Sxo (Y) = Uroy™? H D(y)"e

PeCik

where ¥, 4 € Zg, ayg € Z, nys € N and Ck is a set of K-cyclotomic
polynomials.

Definition 3.4.3 A prime ideal p of Zy lying over a prime number p is
o-bad for W, if there exists xo € Irr(K(y)Hy) with iy € p. If p is ¢-bad
for W, we say that p is a ¢-bad prime number for W.

Remark: Tf W is a Weyl group and ¢ is the “spetsial” cyclotomic specializa-
tion, then the ¢-bad prime ideals are the ideals generated by the bad prime
numbers (in the “usual” sense) for W (see [21], 5.2).
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Note that if p is ¢-bad for W, then p must divide the order of the group
(since sy, (1) = [W]/x(1)).

Let us denote by O the Rouquier ring. By proposition 2.1.9, the Rouquier
blocks of H, are unions of the blocks of Op'H, for all prime ideals P of
O. However, in all of the following cases, due to the form of the Schur
elements, the blocks of OpHy are singletons (i.e., ey, = xJ /sy, € OpHg for
all x4 € Irr(K(y)Hy)):

e P is the zero ideal {0}.

e P is of the form P(y)O, where P(y) is an irreducible element of Zx|[y]
of degree at least 1, prime to y and to ®(y) for all & € Cycl(K).

e P is of the form pO, where p is a prime ideal of Zx which is not ¢-bad
for W.

Therefore, the blocks of OH, are, simply, unions of the blocks of OpoH,
for all ¢-bad prime ideals p of Z. By proposition 1.1.5(4), we obtain that
Opo =~ Qya, where Q := Zg[y,y']. In the previous section we saw how we
can use theorem 3.2.17 to calculate the blocks of €2,0H4 and thus obtain the
Rouquier blocks of H,.

The following description of the Rouquier blocks results from proposition
2.1.10 and the description of ¢-bad prime ideals for W.

Proposition 3.4.4 Let x,v € Irr(W). The characters x, and 4 are in
the same Rouquier block of He if and only if there exists a finite sequence
X0s X1, - - - Xn € (W) and a finite sequence py, . .., p, of ¢-bad prime ideals
of Zy such that

e (Xo)o = X0 and (Xn)s = Vs,
o forallj (1<j<n), wy, 1, = Wy,), mod p;O.
Following the notations in [13], 6B, for every element P(y) € C(y), we call

e valuation of P(y) at y and denote by val,(P) the order of P(y) at 0
(we have val,(P) < 0 if 0 is a pole of P(y) and val,(P) > 0if 0 is a
zero of P(y)),

e degree of P(y) at y and denote by deg, (P) the opposite of the valuation
of P(1/y).
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Moreover, if 4" = x, then

val,(P(y)) := Val?;fp ) and deg, (P(y)) = degZ(P).

For x € Irr(W), we define

Ay = Valx(sx¢<y)) and Ax¢ = degw(San (y))

The following result is proven in [12], Prop.2.9.

Proposition 3.4.5 Let x := yl#5l

1. For all x € Irr(W), we have

Wy (m) = ty(m)z™e +Axg 7

where w is the central element of the pure braid group defined in 3.1.6.

2. Let x,¢ € Irr(W). If x4 and 4 belong to the same Rouquier block,
then

aX¢ +AX¢ = a% +A¢¢.
Proof:

1. If P(y) € Cly,y '], we denote by P(y)* the polynomial whose coeffi-
cients are the complex conjugates of those of P(y). By [13], 2.8, we
know that the Schur element s, (y) is semi-palindromic and satisfies

—1ys t¢<77) s
Sxo () = ou o (Y)-

We deduce ([13], 6.5, 6.6) that

t(z)(ﬂ-) €$—(ax¢+Ax¢)’

wX¢ (W)

for some § € C. For y = x = 1, the first equation gives t4(7) = w,, ()
and the second one £ = 1. Thus we obtain

Wy, () = ty(m)a™e TAxs
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2. Suppose that x4 and 14 belong to the same Rouquier block. Due to
proposition 3.4.4, it is enough to show that if there exists a ¢-bad prime
ideal p of Zg such that w,, = wy, mod pO, then a,,+A,, = ay,+Ay,.
If wy, = wy, mod pO, then, in particular, wy,(7) = wy, (7) mod pO.
Part 1 implies that

to(m)a™e T =ty (m)x™s T mod pO.

We know by [13], 2.1 that ¢4(n) is of the form x| where £ is a root
of unity and M € Z. Thus t,(7) ¢ pO and the above congruence gives

et = 3% T mod pO,

whence
Uy, +qu5 = ay, +A%.

Remark: For all Coxeter groups, Kazhdan-Lusztig theory states that if x4
and 1, belong to the same Rouquier block, then a,, = ay, and A,, = Ay,
(cf. [26]). The same assertion has been proven

e for the imprimitive complex reflection groups in [12].
e for the “spetsial” complex reflection groups in [33].

The results of the next chapter prove that it holds for the groups G2, G2 and
G'31. We conjecture that it is true for all the remaining exceptional complex
reflection groups (i.e., the groups G, G7, Go, G1o, G11, G13, G15..01)-

100



Chapter 4

Rouquier blocks of the
cyclotomic Hecke algebras of
the exceptional complex
reflection groups

All the notations used in this chapter have been explained in Chapter 3.

4.1 General principles

Let W be a complex reflection group such that the assumptions 3.2.2 are
satisfied. Let H be its generic Hecke algebra defined over the ring A :=
Zg[v,vl. Let p be a prime ideal of Z lying over a prime number p
which divides the order of the group W. We can determine the p-essential
hyperplanes for each character y € Irr(WW) by looking at the factorization of
its generic Schur element in K[v,v~!] (see theorem 3.2.5).

Let ¢ : ve; — y"¢ be a cyclotomic specialization and let H, be the
cyclotomic Hecke algebra obtained by H via ¢. Let us denote by O the
Rouquier ring. We can distinguish three cases.

o If the n¢; belong to no p-essential hyperplane, then the blocks of
OpoH4 coincide with the blocks of ApsH.

o If the n¢ ; belong to exactly one p-essential hyperplane, corresponding
to the p-essential monomial M, then the blocks of OyoH coincide with
the blocks of Ag,, H, where qp :=pA+ (M — 1)A.

am

e If the n¢ ; belong to more than one p-essential hyperplane, then we use
theorem 3.2.17 in order to calculate the blocks of OppH .
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Now recall that the Rouquier blocks of H, are unions of the blocks of
OpoHy for all ¢-bad prime ideals p of Zg. We distinguish again three cases.

e If the n¢; belong to no essential hyperplane, then the Rouquier blocks
of Hy are unions of the blocks of A,4H for all ¢-bad prime ideals p.
We say that these are the Rouquier blocks associated with no essential
hyperplane for W.

o If the n¢ ; belong to exactly one essential hyperplane, corresponding to
the essential monomial M, then the Rouquier blocks of Hy are unions
of the blocks of A, H, where gy := pA+ (M —1)A, for all ¢-bad prime
ideals p (if M is not p-essential, then, by corollary 3.2.13, the blocks
of Ay, H coincide with the blocks of A,4H). We say that these are the
Rouquier blocks associated with that essential hyperplane.

o If the n¢; belong to more than one essential hyperplane, then the
Rouquier blocks of H, are unions of the Rouquier blocks associated
with the essential hyperplanes to which the n¢ ; belong.

Therefore, if we know the blocks of A 4 H and Ag,, H for all p-essential
monomials M, for all p, we know the Rouquier blocks of Hy4 for any cyclo-
tomic specialization ¢.

In order to calculate the blocks of ApaH (resp. of Ag,,H), we find a
cyclotomic specialization ¢ : ve; + y"¢7 such that the n¢; belong to no
p-essential hyperplane (resp. the n¢; belong to the p-essential hyperplane
corresponding to M and no other) and we calculate the blocks of OpoH,.

The algorithm presented in the next section uses some theorems proved
in previous chapters in order to form a partition of Irr(W) into sets which
are unions of blocks of OypoHy. These theorems are

2.4.18 An irreducible character x is a block by itself in OppHy if and only if
Sys & PZily, 7).

3.3.5 If x, v belong to the same block of OyoH,, then they are in the same
p-block of W.

3.4.5 1If x,9 are in the same block of OpoHg, then a,, + A\, = ay, + Ay,.

3.2.12 Let C be a block of Ag4H. If M is not a p-essential monomial for any
x € C , then C is a block of A, H.

If the partition obtained is minimal, then it represents the blocks of Oy0H,.
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With the help of the package CHEVIE of GAP, we created a program that
follows this algorithm to obtain the Rouquier blocks of all cyclotomic Hecke
algebras of the groups G7, Gi1, Gig, Gag, Gag and Gz We used Clifford

theory (for more details, see Appendix) in order to obtain the Rouquier
blocks for

L] G4, G5, G6 from G7,
o Gy, Gy, Gio, Gi2, Gi3, G4, G5 from Gy,
o Gy, G17> Gis, Gao, G21> Goo from G19,

o (395 from Gog.

In all of the above cases (except for the “spetsial” case for G33), we can
determine that the partition into p-blocks obtained is minimal. This is done
either by using again the above theorems or by applying the results of Clifford
theory.

For all remaining groups, the Rouquier blocks of the “spetsial” cyclo-
tomic Hecke algebra have already been calculated in [33] (along with those
of G32), where more criteria for the partition of Irr(W) into p-blocks are
given. Since they are groups generated by reflections of order 2 whose re-
flecting hyperplanes belong to one single orbit, their generic Hecke algebras
are defined over a ring of the form Z[z3, 27] and the only essential monomial
is mow; . If 7; — y% is a cyclotomic specialization and ayp = a1, then the
specialized algebra is the group algebra, whose Rouquier blocks are known
(they are unions of the group’s p-blocks for all primes p dividing the order
of the group). According to the above algorithm, it is enough to study one
case where ag # a; and thus the “spetsial” case covers our needs.

4.2 Algorithm

Let p be a prime ideal of Zy lying over a prime number p which divides the
order of the group W. As we saw in the previous section, we need to calculate
the blocks of Ap4’H and the blocks of Ag,, H for all p-essential monomials M.

Together with Jean Michel, we have programmed into GAP the factorized
generic Schur elements for all exceptional complex reflection groups, verifying
thus theorem 3.2.5. These data have been stored under the name “Schur-
Data” and correspond to the following presentation of the Schur element of
an irreducible character y:

Sy = &lVy H Ui (M i)™ (1)

il
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(for the notations, the reader should refer to theorem 3.2.5). Firstly, we
determine the p-essential monomials/p-essential hyperplanes for W. Given
the prime ideal p, GAP provides us with a way to determine whether an
element of Zy belongs to p. In the above formula, if U, ;(1) € p, then M, ;
is a p-essential monomial.

If now we are interested in calculating the blocks of Ay,sH, we follow the
steps below:

1. We select the characters y € Irr(IW) whose Schur element has its co-
efficient &, in p. The remaining ones will be blocks of A,4H by them-
selves, thanks to proposition 2.4.18. Thus we form a first partition Ay
of Irr(W); one part formed by the selected characters, each remaining
character forming a part by itself.

2. We calculate the p-blocks of W. By proposition 3.3.5, if two irreducible
characters aren’t in the same p-block of W, then they can not be in the
same block of Aps’H. We intersect the partition A\; with the partition
obtained by the p-blocks of W and we obtain a finer partition, named
)\2.

3. We find a cyclotomic specialization ¢ : ve ; +— y"¢7 such that the nc ;
belong to no p-essential hyperplane. This is done by trying and checking
random values for the n¢ ;. The blocks of Ay4H coincide with the blocks
of Opp'Hy. Following proposition 3.4.5, we take the intersection of the
partition we already have with the subsets of Irr(1V), where the sum
ay, + Ay, remains constant. This procedure is repeated several times,
because sometimes the partition becomes finer after some repetitions.
Finally, we obtain the partition A3, which is the finest of all.

If we are interested in calculating the blocks of A,,,’H for some p-essential

monomial M, the procedure is more or less the same:

1. We select the characters x € Irr(1W) for which M is a p-essential mono-
mial. We form a first partition A; of Irr(W); one part formed by the
selected characters, each remaining character forming a part by itself.
The idea is that, by proposition 3.2.12, if M is not p-essential for any
character in a block C of A,4H, then C is a block of A,,,’H. This
explains step 4.

am

2. We calculate the p-blocks of W. By proposition 3.3.5, if two irreducible
characters aren’t in the same p-block of W, then they can not be in the
same block of A,,,’H. We intersect the partition A\; with the partition
obtained by the p-blocks of W and we obtain a finer partition, named
)\2.
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3. We find a cyclotomic specialization ¢ : v¢; — y"¢ such that the n¢
belong to the p-essential hyperplane defined by M and to no other,
(again by trying and checking random values for the n¢ ;). We repeat
the third step as described for Ap4’H to obtain partition As.

4. We take the union of A3 and the partition defined by the blocks of
ApaH.

The above algorithm is, due to step 3, heuristic. However, as we have
said in the previous section, for the cases we have used it (G7, G11, G19, Gag,
Goas, Gi32), we have been able to determine (using the criteria explained also
in the previous section) that the partition obtained at the end is minimal
and corresponds to the blocks we are looking for.

The Rouquier blocks associated with no essential hyperplane (resp. with
the essential hyperplane corresponding to some essential monomial M) are
unions of the blocks of AysH (resp. of Ag,,H) for all p lying over primes
which divide the order of the group W. We have observed that the above
algorithm provides us with the correct Rouquier blocks for all exceptional
complex reflection groups in all cases, except for the “spetsial” case of Ga4.

4.3 Results

Using the algorithm of the previous section, we have been able to calculate the
Rouquier blocks associated with all essential hyperplanes for all exceptional
complex reflection groups.

We will give here the example of GG; and show how we obtain the blocks
of G from those of GG;. Nevertheless, let us first explain the notations of
characters used by the CHEVIE package.

Let W be an exceptional irreducible complex reflection group. For x €
Irr(W), we set d(x) := x(1) and we denote by b(x) the valuation of the
fake degree of x (for the definition of the fake degree see [10], 1.20). The
irreducible characters y of W are determined by the corresponding pairs
(d(x),b(x)) and we write x = ¢qp, where d := d(x) and b := b(x). If two
irreducible characters x and x’ have d(x) = d(x’) and b(x) = b(x’), we use
primes “’ 7 to distinguish them (following [32],[33]).

Example 4.3.1 The generic Hecke algebra of G is

H(G7) = <ST,U| STU=TUS=UST
(S - l’o)(s — 1’1) =0
(T = yo)(T —y1)(T' —y2) =0
(U— Z())(U— Zl)(U— 22) =0>
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Let ¢ be a cyclotomic specialization of H(G7) with
Ows) = G5, olyy) = G, (1) = ™.

The ¢-bad prime numbers are 2 and 3. We will now give all the essential hyper-
planes for G7 and the non-trivial Rouquier blocks associated with each.

No essential hyperplane
{¢297¢2 15}, {05,785 15} {6911, 8251 {957, 0213% {0511, 025} {859,031 {0211, 0275
{¢’2’,’97 5 3% {¢2,7,¢2,1} (63,6, 83,10, 83,2}, (3.4, 3.8, $3,12}

cp—c2=0
{‘15/174’ ¢ s} { 87¢ 12}7 { /1/712’ ¢1,16}: {¢i’107¢l1,14}7 { l1l,14y¢/1,18} {(]5// 1,183 é1, 22} {¢/2,97¢2,15}7
{¢/2,77¢2,117¢2,13:¢2,0}7 {85 795 13} {D5 11, D5 9, B3 5, 85 3}, {0511, D5, } {85, ¢5'7, 05 5, b2,1},
{#3,6, 03,10, 3,2}, {$3,4, 3,8, 93,12}

co—c1=0
{¢1,O7¢/1,4}7{ /1/,47 /1/,8}7{ ,1,,/8’ /1/,12}’7 {¢1,67¢/1,10}7{ /1/,107 ,1/,14}7{ ,1/,/147 ,1,,18}7
{¢’2,9v¢/2,77¢2,157¢/2,13}» {¢/2,11:¢’2,5}7 {‘i’/zl,w¢/2/,117¢/2/,137¢/2/,5}7 {¢,2’,91 /2,3}»
{85711, 859, ¢h's: 05 3}, {857, d2,1}, 3,6, #3,10, d3,2}, {#3,4, $3,8, P3,12}

co—c2=0
{¢1 07¢,1 8} { ”47¢/ 12} { /1”87¢1 16} {¢1 65 14} { 107(25/1,18}7 {¢3’{147¢1,22}7
{‘152979752 110 P2, 15v¢2 5} {¢2 7»¢2 13} {¢2 7 297¢2 137¢2,3}a {45,2,,117 /2/,5}7
{511 '2','71 ', b2, 1} {¢'2”9» ,3} {63.6, 83,10, 83,2}, (63,4, b3.,5, b3,12}

b1 —ba=0
{67 4 #Vs} D7 5581 1235 {01,125 d1,163, {07 10, #7714} {¢/147¢,1,,18}
{81 18> 1,22}, {#5 9, 92,15}, {¢2 7 ®515h {511,055} {85 7 P51, 85 15, P55
{¢2 115 Phg9s 2,57%,3} {879, '2','7,¢2,3,¢2,1} (63,6, 83,10, 63,2}, {¢3,47¢3,8,¢3,12}

bp—b1 =0
{¢1,07¢l1/,4}7 {¢l1,4: /1l,8}: {¢/1787¢l1,12}7 {¢1,6:¢/1l,1o}7 {¢1 ,100 14} {¢1 14> ¢1 18}
{¢/2797 ¢,2,7:¢2 15,(15/2/,13}7 {(15/2,7» ¢,2/7117 47,2,137(1’/2/,5}» {¢l2,11a¢279» ¢2’5:¢2,3}
{6511, ¢4 iy ‘st {59 ¢4 3} {857, 2,1}, {d3,6, @3,10, 83,2}, {d3,4, P38, P3,12}

bg—b2=0
{¢1,0’¢/1/’/8}7 {¢1 4> 12} {¢1 8a¢1 16} {¢1 6 ”/14}7 {¢l1’10:¢l1l,18}’ {d)ll,14:¢1,22},
{¢/279,¢l2/7/117¢2,157¢2,5} {¢2,7» ¢2797¢2,13:¢2,3} {¢/27117¢/2/j77¢l2’5:¢2,1}7 {¢/2/777¢l2/,13}:
{85 11,85 53, {959, 5 3} {#3,6: 93,10, ¢3,2}, {b3,4,b3,8, $3,12}

ap —a1 —2bgp +b1 +ba —2co+c1+c2=0
{¢1,6, 452 9, $2,15, 83,4, 83,8, 3,12}, {5 7,85 15}, {0511, D2 5} {657, 05 131 {85 11,
{d)z 93 ,3} {‘bIQ/,Illv b3, } {¢/2"9’ ,3} {‘1) /,/7:¢2,1} {¢3,67¢3,107¢3,2}

ap —a1 —2bg + b1 +b2 +co—2c1+c2=0
{¢/1,107 ¢,2,77 ¢/2,137 ¢3,47 ¢3,87 ¢3,12}7 {¢/2797 ¢2,15}7 {(béyllv ¢/2’5}= {¢,2/,77 /2/,13}7 { /2/,11= ¢/2/,5}7
{59,853}, {85711, 95'5 1 {9579, 85 3}, 18577, d2,1}, {3,6, ¢3,10, d3,2}

ag —a1 —2bg+b1 +b2+co+c1 —2c2=0
{¢/17147 ¢/2711» ¢,2’5: ¢3 4, ¢3 8 3,12}, {47,2’9: ¢2,15}» {¢l2,7y ¢/2713}: {¢/2/777 l2,,13}7 { /2/’117 ¢l2l,5}7
{85 9: 95 3}, {6511, 855} {85, ¢4 3}, {D57, #2,1}, {#3,6, P3,10, P3,2}

ag—ay1 —bg —by +2by —cop—c1+2c2=0
{#1,16, #5'7. 92,1, ¢3,6, 3,10, 3,2}, {85 s P2,15}, {Ph 7 Db 13}, {Dh 11, Ph 5}y {65 7085 13}
{¢/2/7117¢2 5} {¢2 g:d’z 3} {¢/2 117 W } {¢2/97¢l2l,3}’ {¢3,4, ¢3,87¢3,12}

ag —ay —bg —by +2ba —co+2¢c1 —c2=0
{¢7 125 '2”91% 37053 6, 93,10, 93,2}, {0 9, 02,15}, {#5 7,85 13}, {95,118 5} {95,7, 65 15
{¢2 11° } { 97452 3} {¢/2//117 /”} {¢2 77‘1’2 1} {(1534,(1’387(153 12}
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—a1 —bg —by +2by+2c)g—c1 —c2=0
{ /1/’/8’ /2/’/117¢l2/’/53¢3,6’ ¢3,10a¢3,2}7 {¢l2’97¢2,15}7 {¢/2,7’ ¢/2,13}7 {¢/27117¢) 5} {¢2 Ng) 2 135
{(]5/2/7117 ¢/2/75}7 {¢l2/797 ¢l2,3}7 {¢/2l,l9’ ¢,2/73}7 {¢l2lf77 ¢2,1}7 {¢3,47 ¢3,87 ¢3,12}

—a1—byg+b2—co+c1 =0
{¢1 12) 91,6, 05 9:¢2 3} {¢297¢2 15}, {85 7:¢2 13} {¢2 11> P 5} {‘152 7 213} {45 117¢l2l,5
{¢gf11, 55} { ’g,¢>2 3t {857, b2}, {¢3 6, $3,10, ¢3, 2}, {¢347¢3 8,¢3 12}

— a1 —b0+b2—c1+62 =0
{¢>1,16, ¢/1 10"1’ 77¢2 13} {¢/2,97¢2,15}7 {¢IQ,7’¢/2,13}: {¢ 117‘1)2 5} {¢2 11> /2/’5}7 {¢/2’,9, /2,3},
{85711, /”} {859, ¢4 3}, {dh'7, d2,1}, {¢3,6: ¢3,10, P3,2}, {¢3,47¢3,87¢3,12}

—ai *b0+b2+60*62 =0
{ /1”8’ 14’¢2 117 2,55 {‘15/2 9, $2,15}, {‘1’/2 77¢/2 13} {¢/2 117‘15/2 50 {¢'2'7, 5 13]>7 {‘1’/2/,974’/2,3}’
{571,855} { /97¢>2 3t {¢2 "1y d2,1} {¢>3 6, 93,10, P3, 2} {¢347¢3 8, P3, 12}

—a1 —bg+bi —co+c2=0
{01,12: 01,6, 93], 85 3}, {85 9, P2,15}, {h 7,85 13} {d211, 025} {827, 05 13}, {5115 5
{85 9: b5 3}, 10511, /”} {8577, ¢2,1}, {¢3 6, $3,10, P3, 2} {¢3,4, 3,8, $3,12}

—a1 —bo+b1+c1—c2=0
{¢/87¢1 14> /2”117 m} {¢2 9> P2, 15}, {¢2 7=¢2 13} {¢’2 117¢2 5} {¢2 7 ,2,,13}7 {45,2,,117 /2/,5}7
{50, ,3} {659, ¢4 3}, {¢2,7,¢2,1} (63,6 83,10, #3,2}, (3.4, B3.8, $3,12}

—a1 —bo+b1+co—c1 =0
{¢/1/,47¢/ 107¢/2”7v¢2 1}, {¢'2,97¢2,15}, {¢/2,7v¢/2,13}7 {¢/2,11v¢/2,5}a {¢'2',77 2, 13} {¢2 1159
{8 g, B 51, {0511, 045}, {04/, 8 5}, {b3.6, 03,10, 63,2}, {93.4, 63,8, ¥3.12}

—a1 —bg+2by —by —cop—c1+2c2=0
{¢/17127 ¢,2/797¢/2,37¢3 6 ¢d 107¢3,2}7 {¢l2,9,¢2,15}7 {¢/2777¢,2,13}7 {¢,2’117¢ 5} {¢2 7 2 130
{¢/2/,117 ‘75,2,,5}7 { ,117¢m }7 {(15/2/,/97‘75,2/,3}7 {¢,2,f77¢2,1}7 {¢3,47 ¢3,8a¢3,12}

—al —b0+2b1—b2—C0+201 —coa=0
{ 87¢2 117¢l2,53¢3 6, ¢3,107¢3,2}7 {¢l2,97¢2,15}7 {(15/2777(17,2,13}: {¢,2’117¢ 5} {¢2 7 2 130>
{¢2797¢2 3} {¢2 117¢/2l,/5}7 {¢/2/,/97 ¢,2,’3}7 {¢/2/f7a¢2,1}7 {¢3,47¢3,87¢3,12}

— a1 —bg+2b1 —ba+2cg—c1 —c2 =0
{ /1/747 ¢,2/7:¢l2l 13:¢3 6 ¢3 10, ¢3 2} {¢l2’9,¢2,15}7 {¢/277’ ¢,2’13}: {¢,2’117¢ } {¢2 11: }7
{85 995 3}, {0511, 055} {859, 95 3}, {D57, d2,1}, {#3,4, P3,8, b3,12}

—a1—bi+b2—co+c2=0
{¢1,167 ¢/1/ 10° ¢/2 Nl ¢l2 13}7 {¢l2,97 ¢2,15}7 {¢/27117 ¢l275}7 {¢12/777 ¢l2l,13}» {¢l2l,117 ¢/2l,5}7 {¢/2/797 ¢é,3}7
{85711, #5 ”/ s} {¢2 g:d’ 3b {8577, 92,1}, {¢3,6, 83,10, 83,2}, {#3,4, ¢3,8, b3,12}

—a1—bi+b2+c1—c2=0
{d) / 127¢1 ,189 ¢2 97¢)2 15} {¢2 77¢2 13} {¢2 117¢2 5} { 7:¢2 13}» {¢l2l,117 /2/,5}7 {¢/2/797¢)/2,3}7
{¢’2’7’117 W s} {¢>2 "9, #5 3} {¢2,7,¢2,1} {¢3,6:¢3,107¢3,2} {¢3,47¢3,87¢3,12}

—a1—bi+b2+co—c1 =0
{ /1/:8’ //147¢) 117¢2 5} {d)z 9»¢2 15} {452 77‘1’2 13} {¢2 Rdl 213} {d)z 11 } { 97¢2 3}
{8571, ”'} {¢///g:¢ 3t {¢>2,7,¢>2,1} {¢3,6,¢>3,10,¢3,2} {¢3,47¢3,8,¢3,12}

—a1 =0
{¢1,0a¢1,6}7 {‘15/174745/1,10}) {d)/l,S’(b 14} { 147 /1/,10}7{ /1/,8’ /1/714}7 {¢/1,12’¢/1,18}7{ lll,/g, /1/7/14}7
{d)lll,127¢/1/718}7 {d)l 16 91, 22}, {d)/z,g’ ¢2,15} {452,77(1)/2,13}7 {45/2’117(1)/2,5}’ {¢l2l,77¢/21,13}7 {¢IQI,117¢IQI,5}7
{85 9: 0 3}, {0511, D55} {859, 85 3}, {957, 2,1}, {#3,6, P3,4, D3,10, D38, H3,2, #3,12}

—a1+by1 —ba—co+c1 =0
{ /1/,8’ ///147(1) 117¢l2 5} {¢/2 9»¢2 15} {¢/2 77¢/2 13} {‘15/2/7: 2, 13} {¢2 11 N }: {¢/2/797¢l2,3}’
{85711, #5 i st { /g7¢>2 3t {¢>2 " #2,1} {¢>3 6, 93,10, #3,2}, {¢347¢>3 8,¢>3 12}
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ag

ao

ao

ao

ao

ao

ao

ag

ag

ao

ao

ao

ao

ao

ao

a1 +bir —ba—c1+c2=0

{¢/1,127 45/1/ 18’¢/2 97¢2 15}» {¢l2’77¢/2713}7 {¢/27117 ¢/275}a {¢/2/,7:¢l2l,13}» {d)lzl,u:d)lzl,s}v {¢/2/797¢)l2,3}»

{(]5/27117 /N } { /97¢ }7 {¢/2l,l7a¢2,

a1 +br —ba+cop—c2=0

1}, {#3,6, 93,10, 3,2}, {$3,4, 93,8, 3,12}

{¢/1/,4’¢1 227(1)/2 7:¢/2 13} {d)lz 90 ¢2 15} {¢/2 11’¢/ 5} {d)l2/77 2, 13} {¢2 112 N }7 {¢/2/,97¢12

{¢/2/7l11’ 2 } {¢///97¢2 5} {d)z 7’¢2

a1+bo—2b1+bg—200+c1+02 =0
{¢? o’¢2 7 ®5 13, $3,4, $3,8, $3,12},
{650, 8 5}, {651. 84’5}, {64,

a1 +bo —2b1 +b24+co—2c1 +c2=0
{#Y 14> 85 11,5 50 P3,4, P38, d3,12},
{85 9: 05 3}, {6511, D55} {85,

a1 +bo —2b1 +b2+co+c1 —2c2=0
{#1.18: 99 9: 95 3, 3,4, $3,8, ¥3,12},
{65 11,95 51 {85711, 855} {959

a; +bp—by —co+c1=0
{¢,1 4> /1,71()7¢/2/,,77¢2 1} {¢,2 97¢2,15
{659,953}, {0511, P55}, {¢’2”9,

a; +bp—by —c1+c2=0

1} {¢3 6,¢3,10,$3,2}, {¢>3 4,03, 8,¢3 12}

{¢2 97@52 15} {¢2 7’¢2 13} {¢2 11»¢2 5} {d) 17(1)/2/,5
23} {¢2,7:¢2,1} {¢3,67¢)3,107¢3,2}

,3}’

{¢/2’97¢2,15}: {45/2,7, ¢/2,13}7 {‘15/2,11"1’/275}: { /2/777(15/2/’13 )

5 3} {h'7 b2,1}, {#3,6, 3,10, 93,2}

{69,9, 02,15}, {85 7,85 15}, {511,055}, {95,795 13}

53t 18577, 92,1}, {d3,6, 3,10, #3,2}

}v {¢ 77¢2 13} {¢2 11’¢2 5} {¢2 el 213} {¢2 ll7

5 3t {¢3,67 3,10, ¢3,2} {¢3,47 3,8, $3,12}

{81,887 14: 9511, 855} {D.9, b2,15}, {607, 85 15}, {85 11, P2 5}, {95 7585 13} {95 11,
{85 9,953} {¢/2/,9a¢, } {¢2,71¢2,1} {¢3,67¢3,107¢3,2} {¢3,4,¢3,8,¢3,12}

a1 +byp—b14+co—c2=0
{¢1,07 ¢,1 187¢/2”97 U } {¢’2 97¢2 15
{¢/2/,97¢2 3hs {¢2 11,95 } {¢2 7 ¢2,

a1 +byg—bx—co+ca2=0

bAds 7,85 13} {6511, 85 51 {05 7,95 13} {6511, @
1} {¢3 67¢3 10, $3, 2} {¢34,¢73 8, 3,12}

5,50

{01,814 D511, P 515 {d5,0: B2,15}, {65,785 13} {511,553 {95, 7,85 131 {959, 5 3}

{04710, 94’5}, {¢29,¢ s} {04, 6o,

a1 +byg—ba+c1—c2=0

1} {#3,6, 93,10, #3,2}, {¢3,4, ¥3.s, ¢3,12}

{¢I1747¢1,227¢l2l,7:¢/2l,13}7 {¢/2,97 ¢2,15}: {¢/2777¢l2,13}7 {¢l2,11:¢l2,5}7 {¢/2l7117¢/2/75}: {¢'2’,g,¢'2,3}7

{62711, 855} {8579, 95 33, {d507, ¢2,

a1 +byg—ba+co—c1 =0
{#1,0: 97 18+ 95.9: o 3}s {85 95 P2,15

{85711, 95’5} {959, 5 3}, {8577, ¢z,

a1 +bo+b1 —2b2 —2co+c1+c2=0
{8114 9511, 85’5, 63,4, $3,8, $3,12},

{¢>2,11, b35} {62.9, 93} {0509, &5,

a1 +bo+b1 —2ba+co—2c1+c2=0
{6 18 /2”97 //3:¢34»¢387¢3 12},

{¢2 11 } { 97¢2 3} {¢/2"117

a1 +bo+b1 —2b24+co+c1 —2c2=0
{#1,22, 857, ¢2,1, ¢3,4, b3,8, #3,12},
{85 11,85 53 {50, Do 3}, {65711, b5

ay +2bg — by —ba —cg—c1+2c2=0
{#] 8+ Ph 115 Ph 50 P3,6, 3,10, 3,2}
{#59: 953}, {452 11,955} {857,

1} {#3,6, 93,10, ¥3,2}, {$3,4, 93,8, $3,12}

b Adh 7 @513} {0201, 951 {57, 05 15} {6511, ¢
1}, {63,6, 03,10, 63,2}, {63,4, 3.5, $3,12}

{¢/2,g:¢)2,15}’ {¢l2,77¢/2713}7 {¢l2711» ¢/275}7 {¢)12/77’¢/2/,13 )

3b {857, 92,1}, {3,6, #3,10, #3,2}

{85 9, 2,15}, {¢h 7, P, 13} {8511, 85 53 {957, 05 13
55t 1857, @21}, {36, #3,10, 32}

{(1)/297(152 15} {¢/2 7’¢/ 13} {¢/ 11’¢ 5} {¢2 ,70 213 ’

5’5t {85%: ¢4 3}, {¢s, 6»¢3 10,¢>3 2}

{¢/2,97¢2,15}a {¢/2,77¢/2’13}7 { /2/,77¢/2/,13}? {¢I2/,11’¢/2/,5}’

5 3} {hl7 b2,1}, {#3,4, ¢35, ¢3,12}
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ag—ay +2bg —by —ba —co+2c1 —c2 =0
{¢/174’ ¢/2,7: ¢l2,13: ¢3,6a ¢3,107 ¢>3,2}7 {¢/2’9’ ¢2,15}7 {@3/2,117 ¢/275}: { /2/777 ¢l2l,13}» {¢l2l,11: d)lzl,s}v
{¢/2/797 ¢l2’3}7 {¢l2lf117 ¢l2l,l5}7 {¢/217l9’ ¢,2/73}7 {¢l2l,/77 ¢2,1}7 {¢3,47 ¢3,87 ¢3,12}

ag—ay +2bg —by — by +2c)—c1 —c2=0
{d)l,O’ ¢/2797 ¢2,157 ¢3,6’ (253,10’ ¢3,2}) {¢l2,7: ¢/2,13}7 {¢/2,117 ¢/275}: {45/2/777 ¢>’2’,13}’ {¢l2/,11: d)lzl,s}v
{85 99 3}, {0511, D55} {859, 95 3}, {Dh'7, d2,1}, {#3,4, P38, b3,12}

Now, the generic Hecke algebra of G is

H(Gs) = <V,W | VIWVWVW =WVIWVWYV,
(V - l’o)(v - .1‘1) =0
(W —20)(W — 21)(W — 22) =0 >

As we can see in lemma 1 of the Appendix, H(Gg) is isomorphic to the subalgebra
A =< S,U > of the following specialization of H(G7)

A = <STU| STU=TUS=UST,T3 =1
(S—J}Q)(S—xl):o
(U—=20)(U—=21)(U—22)=0>

The algebra A is the twisted symmetric algebra of the cyclic group Cs over the
symmetric subalgebra A and the block-idempotents of A and A coincide for all
further specializations of the parameters. If we denote by ¢ the characters of A
and by ¢ the characters of A, we have

Ind%(ﬁbl,o) = Y10+ Y14 + Prgm Ind§(¢1,4) = Yro + 1 +Y1a2n
Ind§(¢1,8) = Y8 + Y112 + Y116 Indﬁ(‘blﬁ) = Y16+ Y1107 + Y1147
Ind§(¢1,10) = Y110 + Y11 + Y1 Indé(¢1,14) = Y11+ Y1y + Y122
Ind§(¢2,5“) = oy + 2137 + Posm Indé(¢2,3”) = Yo+ o + P2z
Indé(@,s/) = o1 + o 4+ oy Indﬁ_(@’?) = o + o1 + 215
Indé((ﬁm) = thogr + Yo + a1 Indé(¢2,5') = o9 + b2z + o5
Ind%(¢32) = 36+ Y310+ Y32 Ind%(d34) = 34+ s8+ 312

Let ¢ be a cyclotomic specialization of H(G7) with
o(wi) = Gha®, o(z) = CFacr.
It corresponds to the cyclotomic specialization ¢ of H(G7) with
O (2:) = G, ¢/ () = G, d(an) = .

Therefore, the essential hyperplanes for G¢ are obtained from the essential hyper-
planes for G7 by setting bg = b1 = by = 0 and the non-trivial Rouquier blocks
associated with each are:

No essential hyperplane

{¢/2/757 ¢2,7}7 {¢l2l’39 ¢l2,5}7 {¢/2737 ¢2,1}

109



c1—c2=0

{#1,4: 91,8}, {d1,10, 01,14}, {05 5, b2,7}, {5 3, Db 3, 2,1, 5 5}

co—c1 =0

{#1,0: 01,4}, {b1,6,1,10}s {85 55 P4 55 P2,7, 05 5}, {#h 30 P21}

co—c2=0

{61,0: 01,8}, {P1,6,b1,14}, {85 5,05 3, 92,7, d2,1}, {85 5,05 5}

ap—a1 —2cop+c1+c2=0

{#1,6: 9% 5 b2,7, b3}, {85 3,05 5}, {05 3, H2,1}

ag—a1 +cog—2c1+c2=0

{#1,10, 85 3. 0% 5. P3,4}, {65 5, d2,7}, {5 5, D2,1}

ag—a1 +cog+c1 —2c2=0

{¢)1,14) ¢/2737 ¢2,17 ¢3,4}7 {¢/2/,5a (1)2,7}) {¢l2/’37 ¢)/2,5}

apg—ay; —cg—c1 +2c2 =0

{61,895 3, 92,1, 83,2}, {85 5. P27}, {d5 3,05 5}

ap—a1 —cog+2c; —c2=0

{#1,4, 95 3, 95 5, 3,2}, {85 5, P2,7}, {05 3, H2,1}

ag— a1 +2cg—c1 —c2 =0

{#1,0: 94 5. b2,7, d3,2}, {85 3,95 5}, {dh 3, H2,1}

apg—a1 —cog+c1 =0

{¢1,4a ¢1,67 ¢l2’37 ¢2,1}7 {¢/2/,57 ¢2,7}’ {d)lgl,g’ ¢/275}

apg—ay; —c1+c2=0

{#1,8: 91,10, 05 5, P2,7}, {85 3,85 5}, {5 5, b2,1}

ap—a1 +cog—ca2=0

{#1,0, 91,14, 4 5, 95 5}, {85 5, d2,7}, {5 3, b2,1}

ag—ay —cog+co2=0

{#1,8: 91,6, 95 3,85 51, {85 5, 92,7}, {dh 3, H2,1}

ag—a1 +c1 —ca =0

{b1,4, 91,14, 04 5, b2,7}, {85 3,95 5}, {dh 5, 02,1}

ag—a1 +cog—c1 =0

{#1,0,01,10, 95 3, 92,1}, {65 5, d2,7}, {95 5,95 5}
ap—a1 =0

{61,0: 01,6}, {P1,4, 61,10}, {b1,8, D114}, {95 5, 82,7}, {85 5,05 5}, {9 3, b2,1}, {#3,2, b3,4}

Since it will take too many pages to describe the Rouquier blocks as-
sociated with all essential hyperplanes of all exceptional complex reflection
groups, we have stored these data in a computer file and created two GAP
functions which display them. These functions are called “AllBlocks” and
“DisplayAllBlocks” and they can be found on my webpage

http://www.math.jussieu. fr/~chlouveraki

Let us give an example of their use for the group Gjy.
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Example 4.3.2 “gap> 7 is the GAP prompt
gap> W:=ComplexReflectionGroup(4);
#£creates the group W

gap> DisplayAllBlocks (W) ;

No essential hyperplane

[["phi{1,0}"], ["phi{1,4}"], ["phi{1,8}"], ["phi{2,5}"],
["phi{2,3}"], ["phi{2,1}"], ["phi{3,2}"]]

c_1-c_2=0

[["phi{1,0}"], ["phi{1,4}","phi{1,8}","phi{2,5}"],
["phi{2,3}","phi{2,1}"], ["phi{3,2}"]]

c_0-c_1=0

[["phi{1l,0}","phi{1,4}","phi{2,1}"], ["phi{1,8}"],
["phi{2,5}","phi{2,3}"], ["phi{3,2}"]]

c_0-c_2=0

[["phi{1,0}","phi{1,8}","phi{2,3}"], ["phi{1,4}"],
["phi{2,5}","phi{2,1}"], ["phi{3,2}"]]

2c_0-c_1-c_2=0

[["phi{1,0}","phi{2,5}", "phi{3,2}"],

["phi{1,4}"], ["phi{1,8}"], ["phi{2,3}"],["phi{2,1}"]]
c_0-2c_1+c_2=0

[["phi{1,0}"], ["phi{1,4}","phi{2,3}","phi{3,2}"], ["phi{1,8}"],
["phi{2,5}"], ["phi{2,1}"]]

c_O0+c_1-2c_2=0

[["phi{1,0}"], ["phi{1,4}"], ["phi{1,8}","phi{2,1}","phi{3,2}"],
["phi{2,5}"], ["phi{2,3}"]]

# displays all essential hyperplanes for W and the Rouquier blocks associated with
each

gap> AllBlocks (W) ;

[rec( cond:=[ ],
block:=[[1], [2], (3], [4],[5],[6],[7]1]1),
rec( cond:=[0,1,-1],
block:=[[1],[2,3,4],[5,6],[7]11),
rec( cond:=[1,-1,0],
block:=[[1,2,6],[3],[4,5],[7]1]),
rec( cond:=[1,0,-1],
block:=[[1,3,5],[2],[4,6],[7]1]),
rec( cond:=[2,-1,-1],
block:=[[1,4,7],[2],[3],[5],[6]11),
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rec( cond:=[1,-2,1],
block:=[[1],[2,5,7],[3], [4],[6]1]1),
rec( cond:=[1,1,-2],
block:=[[1],[2],[3,6,7]1,[4],[5]11)]

# displays the same data in a way easy to work with: the essential hyperplanes are
represented by the vectors cond (such that condx[cy, c1, ca] = 0 is the corresponding
essential hyperplane and cond:= [ ] means “No essential hyperplane”) and the
characters are defined by their indexes in the list “CharNames(W)

” .,

gap> CharNames (W) ;
[ "phi{l,O}", "phi{1,4}", "phi{l,S}", llphi{2,5}ll ,
"phi{2,3}", "phi{2,1}", "phi{3,2}” ]

Let W be an exceptional irreducible complex reflection group. Since we
have the Rouquier blocks associated with all essential hyperplanes for W, we
have created the function “RouquierBlocks” which calculates the Rouquier
blocks of any cyclotomic Hecke algebra associated with W. Given a cyclo-
tomic specialization uc ; +— gg’cx"c,j, this function checks to which essential
hyperplanes the n¢ ; belong and returns the blocks obtained as unions of the
Rouquier blocks associated with these hyperplanes.

The function “RouquierBlocks” along with the function “DisplayRouquier
Blocks” (the first returns the characters’ index in the list “CharNames(W)”,
whereas the second returns their name) can be also found on my webpage.
Before we give an example of their use, let us explain how we create a cyclo-
tomic Hecke algebra in GAP with the use of the package CHEVIE (we copy
here the relative part in the GAP manual, which can be found on J.Michel’s
webpage http://www.math.jussieu. fr/~jmichel):

The command “Hecke(W, para)” returns the cyclotomic Hecke algebra
associated with the complex reflection group W. The following forms are
accepted for para: if para is a single value, it is replicated to become a list
of same length as the number of generators of W. Otherwise, para should
be a list of the same length as the number of generators of W, with possibly
unbound entries (which means it can also be a list of lesser length). There
should be at least one entry bound for each orbit of reflections, and if several
entries are bound for one orbit, they should all be identical. Now again, an
entry for a reflection of order e can be either a single value or a list of length
e. If it is a list, it is interpreted as the list [uo, ..., u._1] of parameters for that
reflection. If it is a single value ¢, it is interpreted as the partly specialized
list of parameters [q, E(e), ..., E(e)!] (in GAP, E(e) represents (. ).
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Let us now give an example of the definition of a cyclotomic Hecke algebra
and the use of the functions “RouquierBlocks” and “DisplayRouquier Blocks”
on it.

Example 4.3.3 The generic Hecke algebra of Gy is

H(Gy) = <S,T| STS=TST, (S—20)(S—21)(S—2x2)=0
(T —20) (T —21)(T —22) =0 >

If we want to calculate the Rouquier blocks of the cyclotomic Hecke algebra

Hey = <S,T| STS=TST, (S—1)(S—Gz)(S—¢G2?)=0
(T = 1)(T = Ga)(T — (§2°) = 0 >

we use the following commands:

gap> W:=ComplexReflectionGroup(4);
gap> H:=Hecke(W, [[1,E(3)*x,E(3)"2*x"2]]);

# here the single value [1, E(3) 2, E(3)?*22] is interpreted, according to the rules,
as [[1,E(3) * 2, E(3)? * 22], [1,E(3) * 2, E(3)? % 22]]

gap> RouquierBlocks(H);

(011,02 56,71, 03], 041, [61]]

gap> DisplayRouquierBlocks(H);

[["phi{1,0}"], ["phi{1,4}","phi{2,3}","phi{3,2}"],
["phi{1,8}"], ["phi{2,5}"]1,[ "phi{2,1}"]1]

4.4 Essential hyperplanes

We have checked for all exceptional complex reflection groups that the p-
Rouquier blocks associated with no or some p-essential hyperplane (i.e., the
blocks of Ay,aH or Ay, ’H respectively) are fixed by the action of the Galois
group Gal(K/Q). This implies that if a hyperplane is p’-essential for W for
some prime ideal p’ lying over a prime number p, then it is p-essential for all
prime ideals p lying over p. Therefore, we can talk about determining the
p-essential hyperplanes for W, where p is a prime number dividing the order
of the group.

Example 4.4.1 The prime numbers which divide the order of the group G7 are

2 and 3. The essential hyperplanes for G are already given in example 4.3.1 (note
that different letters represent different hyperplane orbits).
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The only 3-essential hyperplanes for G7 are:

ct—ca=0, cg—c1 =0, cg—co=0
b1 —by=0, bg—b1=0, bg—by=0

All its remaining essential hyperplanes are strictly 2-essential.

From these, we can obtain the p-essential hyperplanes (where p = 2, 3)
e for G6 by setting bo = b1 = b2 == 0,
e for G5 by setting ag = a1 = 0,

e for G4 by setting ag = a3 = by = by = b = 0.

For the p-essential hyperplanes of the other groups, the reader may refer
to my webpage and use the function “EssentialHyperplanes” which is applied
as follows

gap> EssentialHyperplanes(W,p);
and returns
e the essential hyperplanes for W, if p = 0.
e the p-essential hyperplanes for W if p divides the order of W.

e crror, if p doesn’t divide the order of W.

Example 4.4.2

gap> W:=ComplexReflectionGroup(4);
gap> EssentialHyperplanes(W,0);
c_1-c_2=0

c_0-c_1=0

c_0-c_2=0

2c_0-c_1-c_2=0

c_0-2c_1+c_2=0

c_0+c_1-2c_2=0

gap> EssentialHyperplanes(W,2);
2c_0-c_1-c_2=0

c_0-2c_1+c_2=0

c_0+c_1-2c_2=0

c_0-c_1=0

c_1-c_2=0

c_0-c_2=0
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gap> EssentialHyperplanes(W,3);

c_1-c_2=0

c_0-c_1=0

c_0-c_2=0

gap> EssentialHyperplanes(W,5);

Error, The number p should divide the order of the group

Remark: For the groups Gha, Gaa, Gas, Gaa, Gar, Gag, Gso, Gs1, Gs3, G4,

G35, G3g, G'37 the only essential hypeplane is ag = aq, which is p-essential for
all the prime numbers p dividing the order of the group.
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Appendix

Let W be a complex reflection group and let us denote by H(W) its generic
Hecke algebra. Suppose that the assumptions 3.2.2 are satisfied. Let W’ be
another complex reflection group such that, for some specialization of the
parameters, H(W) is the twisted symmetric algebra of a finite cyclic group
G over the symmetric subalgebra H(W’). Then, if we know the blocks of
H(W), we can use propositions 2.3.15 and 2.3.18 in order to calculate the
blocks of H(W").

Moreover, in all the cases that will be studied below, if we denote by x’ the
(irreducible) restriction to H(W') of an irreducible character y € Irr(H(W)),
then the Schur elements verify

Sy = [W: W|sy.

Therefore, if the Schur elements of H(WW) verify theorem 3.2.5, so do the
Schur elements of H(W’).

The groups G4, G5, Gg, Gr

The following table gives the specializations of the parameters of the generic
Hecke algebra H(G7), (xo, 1; Yo, Y1, Y2; 20, 21, 22), which give the generic Hecke
algebras of the groups G4, G5 and Gg ([29], Table 4.6).

Group | Index S T U
G 1 o, %1 | Yo, Y1, Y2 | 20, 21, 22
G 2 L=1 | %0,v1,y2 | 20,21, 22
Gs 3 zo,x1 | 1,83, 82 | 20,21, 22
Gy 6 L,—1 | 1,(3,¢3 | 20,21, 22

Specializations of the parameters for H(G7)
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Lemma 1

o The algebra H(G7) specialized via

(20, 15 Yo, Y1, Y2; 20, 21, 22) — (1, =15 Yo, Y1, Ya; 20, 21, 22)

is the twisted symmetric algebra of the cyclic group Cy over the symmet-
ric subalgebra H(Gs5) with parameters (Yo, Y1, Ya; 20, 21, 22). The block-
idempotents of the two algebras coincide.

o The algebra H(G7) specialized via

(0, T1; Yo, Y1, Y2; 20, 21, 22) > (@0, 215 1, G5, G5 20, 21, 22)

is the twisted symmetric algebra of the cyclic group Cs over the sym-
metric subalgebra H(Gg) with parameters (xg, x1; 20, 21, 22). The block-
idempotents of the two algebras coincide.

o The algebra H(Gg) specialized via
(w0, 15 20, 21, 22) > (1, —1; 20, 21, 22)

is the twisted symmetric algebra of the cyclic group Cs over the symmet-
ric subalgebra H(Gy) with parameters (zo, 21, 22). The block-idempotents
of the two algebras coincide.

Proof: We have

H(Gr) = <S,T,U| STU=TUS =UST
(S—xo)(S—asl):0
(T = yo)(T —y1)(T —y2) =0
(U—Zo)(U—Zl)(U—ZQ) =0>

o Let
A = <STU| STU =TUS =UST,S? =1
(T = yo)(T =y (T —y2) =0
(U—Zo)(U— 21)(U—22) =0>
and
A:=<T,U > .
Then

A=A® SA and A ~ H(G5).
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o Let
A = <S8 TU| STU=TUS=UST,T? =1
(S — xo)(S — 561) =0
(U— Zo)(U — Zl)(U— 22) =0>

and
A=< SU>.
Then )
A= T'A and A ~ H(Gs).
i=0
o Let
A = <SU| SUSUSU=USUSUS,S*=1
(U—=20)(U—=21)(U—22)=0>
and
A:=<USUS > .
Then

A=A® SA and A ~ H(Gy).
|

The Schur elements of all irreducible characters of H(G7) are calculated
in [29] and they are obtained by permutation of the parameters from the fol-
lowing ones (for an explanation concerning the notations of characters, see
section 4.3):

Sor.o = Pr(xo/21) - Pr(woygad/T1y1y22122) - P1(Yo/y1) - ®1(yo/y2) - P1(20/71) - P1(20/22) -
@1 (zoyozo/T1y121) - P1(T0Yo20/T1Y122) - P1(ToYo20/T1Y221) - P1(Toyoz0/T1Y222)

Sa.0 = 202/%0P1(40/y1) - 1(y2/y0) - ®1(21/20) - ®1(22/20) - P1(r/woyo20) - 1 (r/woy221) -
1 (r/z0y222) - P1(1/T1Y020) - P1(1/T1Y221) - P1(1/T1Y222)
where 7 = JToT1y11221 %2

Shse = 3P1(w1/m0) P1(20Y020/7) P1(T0Y021/7)-P1(T0Y022/7)-P1(T0Y120/7) - P1 (TOY121 /T)-
Py (voy122/7) - P1(w0y220/7) - P1(w0Y221/7) - P1(W0Y222/T)
where r = \3/$(2)x1y0y1y2202122

Following theorem 3.2.3 and [30], Table 8.1, if we set

X2 = (&) (1=0,1),
V2= (G)7y; (1=0,1,2),
Zi2 = ()", (k=0,1,2),
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then Q(¢12)(Xo, X1, Yo, Y1, Y2, Zo, Z1, Z5) is a splitting field for H(G7). Hence
the factorization of the Schur elements over that field is as described by
theorem 3.2.5.

The groups Gy, Gy, Gio, G11, G12, G135, G4, G135

The following table gives the specializations of the parameters of the generic
Hecke algebra H(G11), (zo, x1; Yo, Y1, Y2; 20, 21, 22, 23), Which give the generic
Hecke algebras of the groups Gs, ..., G5 ([29], Table 4.9).

Group | Index S T U
Gu 1 Zo, T1 | Yo, Y1, Y2 20, 21, 225 23
Go 2 L =11 vo,v1,92 21, %1, %2, 23
Gis 2 20, T1 | Yo, Y1, Y2 | VU0, /U1, —/ Uy, —/ U1
Gy 3 zo, 1 | 1,(5, G5 20, 21, 22, 23
G4 4 %0, T1 | Yo, Y1, Yo 1,4,—1,—i
Gy 6 L,—1| 1,¢,¢2 20, 21, 22, 23
G13 6 Ty, T1 17C37C3? \/u_07 \/u_la_\/u_()v_\/u_l
G12 ].2 Lo, T1 1,<3,C§ 1,i,—1,—’i

Specializations of the parameters for H(G1q)
Lemma 2
o The algebra H(G11) specialized via
(o, 15 Y0, Y1, Y2i 20, 21, 22, 23) > (L, =13 Yo, Y1, Y2; 20, 21, 22, 23)

15 the twisted symmetric algebra of the cyclic group Cy over the sym-
metric subalgebra H(G1g) with parameters (Yo, Y1, Y2; 20, 21, 22, 23). LThe
block-idempo-tents of the two algebras coincide.

o The algebra H(G11) specialized via

2
(20, 215 Yo, Y1, Y2; 20, 21, 22, 23) > (X0, T1; 1>C37C3;20,21722723)

15 the twisted symmetric algebra of the cyclic group Cs over the symmet-
ric subalgebra H(Go) with parameters (xo,x1; 29, 21, 22, 23). The block-
idempotents of the two algebras coincide.

o The algebra H(Gy) specialized via
(o, 215 20, 21, 22, 23) = (1, —1; 20, 21, 22, 23)

15 the twisted symmetric algebra of the cyclic group Cy over the sym-
metric subalgebra H(Gg) with parameters (2o, 21, 22,23). The block-
idempotents of the two algebras coincide.
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o The algebra H(Gh1) specialized via

(9507 15 Y0, Y1, Y25 R0, 21, 22, 23) = (1507 T1; Yo, Y1, Y25 1,4, —1, _2)

15 the twisted symmetric algebra of the cyclic group Cy over the sym-
metric subalgebra H(G14) with parameters (xo, x1; Yo, Y1, y2). The block-
idempotents of the two algebras coincide.

o The algebra H(G14) specialized via

(0, 213 Yo, Y1, Y2) — (w0, 7151, (5, G5)

1s the twisted symmetric algebra of the cyclic group Cs over the symmet-
ric subalgebra H(G12) with parameters (xg,x1). The block-idempotents
of the two algebras coincide.

o The algebra H(G11) specialized via

(1’07 Z1; Y0, Y1, Y25 20, 21, 22, 23) = (3307 T1;Y0, Y1, Y25 /U0, /U1, —+/Ug, _\/Ul)

is the twisted symmetric algebra of the cyclic group Cy over the sym-
metric subalgebra H(G1s5) with parameters (o, x1; Yo, Y1, Y2; Uo, u1). The
block-idempotents of the two algebras coincide.

o The algebra H(G15) specialized via

(%0, Z1; Yo, Y1, Yo Uo, U1) — (20, 213 1, (3, C§§ Up, U1 )

15 the twisted symmetric algebra of the cyclic group Cs over the sym-
metric subalgebra H(G13) with parameters (xg, z1;ug,uy). The block-
idempotents of the two algebras coincide.

Proof: We have
H(G11) = <S,T,U| STU=TUS=UST
(S —xz0)(S—z1)=0
(T —yo)(T —y1)(T —y2) =0
(U—ZQ)(U—Zl)(U—ZQ)(U—Zg) =0>

o Let
A = <ST,U | STU:TUS:UST,S2 =1
(T = yo)(T —y1)(T —y2) =0
(U—Zo)(U—Zl)(U—Zz)(U—Zg) =0>
and
A:=<T,U > .
Then

A=A D SA and A ~ H(Glo).

120



e Let

A = <STU| STU=TUS =UST,T3 =1
(S — .%'0)(5 — xl) =0
(U—Zo)(U—Zl)(U—Zz)(U—Zg) =0>

and
A=< S U>.
Then )
A= @Tifi and A ~ H(Gy).
i=0
e Let
A = <SU| SUSUSU=USUSUS,S*=1
(U — Zo)(U — 2’1)(U — ZQ)(U — 2’3) =0>
and
A:=<USUS > .
Then
A=A® SA and A ~ H(Gy).
e Let
A = <STU| STU=TUS=UST,U*=1
(S — .730)(5 — 5131) =0
(T = yo)(T =y )(T —y2) =0 >
and
A=< S T>.
Then
3 PR— —
A=EDU'A and A ~ H(Ga).
i=0
o Let
A = <S8 T| STSTSTST =TSTSTSTS,T? =1
(S—l‘o)(s —.731) =0>
and
A:=< S, TST? T?ST > .
Then

2
A= @TZA and /_1 ~ H(Glg)
1=0
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e Let
A = <S,T,U\ STU =TUS =UST
(S—xo)(S—xl):O
(T = yo)(T — y1)(T —y2) =0
(Uz—uO)(U2—U1):O>

and
A:=<S,T,U*>.
Then
A=A®UA and A ~ H(G15).
o Let
A = <U?8,T| STU? =U?ST,U?STST =TU?STS,T% =1
(S — l’o)(S — :L'l) =0
(U2 —UO)(U2 —ul) =0>
and
A:=<U?8,T*ST > .
Then

2
A= @Ti/i and A ~ H(G13).
i=0
|

The Schur elements of all irreducible characters of H(G1;) are calculated
in [29] and they are obtained by permutation of the parameters from the
following ones:

S$o10 = P1(@0/21) P1(Yo/y1) P1(yo/y2) P1(20/21) @1 (20/22) P1(20/23) - P1(z0yo20 /T1Y121):
1 (woyo20/1y122) - P1(T0Y020/T1Y123) - P1(ToYoz0/T1Y221) - P1(Toy020/T1Y222) -

D1 (zoyoz0/T1Y223) 1 (2oyd 28 /T1Y1y22122) @1 (T0Y3 25/ T1y1Y22123) @1 (T0Yd 25 /T1Y1Y22223)-
D1 (23525 /2T Y1y2212223)

Span = —221/20P1(Yo/y2) - P1(y1/y2) - P1(20/22) - P1(20/23) - Pi(z1/22) - Pilz1/23) -
®1(yo2021/Y22223) - P1(y12021/Y22223) - P1(r/woy222) - P1(r/T0Y223) - P1(r/T1Y222) -

Py (r/z1y223) - P1(r/20y021) - P1(r/@oyr121) - P1(r/21y021) - Pu(r/@19121)

where r = /ToZ1yoy1 2021

S¢s. = 3P1(x1/20) - P1(21/23) - Pi(22/23) - P1(20/23) - P1(r/w1Yy023) - Pi(r/T1Y123) -
Q1 (r/x1y223) - P1(T0Y020/7) - P1(T0Yo21/7) - P1(TOY022/T) - P1(TOY120/T) -

1 (zoy121/7) - P1(z0y122/7) - P1(T0Y220/7) - P1(T0Y221/7) - P1(TOY222/T)

where 7 = ¢/2221Y0y1Y22021 22
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Sps0 = —4P1(yo/y1)-P1(yo/y2)- P1(r/x0y020)-P1(r/21Y020) P1(T0oy021 /1) P1(T0Y022/T)-
P (zoyozs/r) - P1(z1y021/7) - P1(T1Y022/7) - P1(T1Y023/T) -

P4 (zoz1Y0y12021/72) - P1(Tom1Y0Y12022/72) - P1(T0T1Y0Y12023/77) -

P4 (zoT1Y0y22021/72) - P1(ToT1Y0Y22022/12) - P1(T0T1Y0Y22023/17)

— A/2,.2,2
where r = \/$0$1y0y1y220212223

Following theorem 3.2.3 and [30], Table 8.1, if we set

X2 = () (i=0,1),
}/;’24 = <C3)_jyj (] = 07 17 2)7
ZI§4 = (<4)_kzk’ (k = 07 17 27 3)7

then Q(C24)(X07 Xl, Yb, Y'l, }/2, ZQ, Zl; ZQ, Zg) is a Sphttmg field for H(Gll)
Hence the factorization of the Schur elements over that field is as described
by theorem 3.2.5.

The groups Gis, Gi7, Gis, Gig, Gaoy, G21, G2

The following table gives the specializations of the parameters of the generic
Hecke algebra H(G1o), (2o, Z1; Yo, Y1, Yo; 20, 21, 22, 23, 24), Which give the generic
Hecke algebras of the groups Gy, . .., Gao ([29], Table 4.12).

Group | Index S T U
Gy 1 Zo, L1 | Yo, Y1, Y2 | R0, 21, %2, 23, 24
Gis 2 L, =1 | vo,y1,%2 | 20,21, 22,23, 24
Gy 3 zo, 21 | 1,(3,G | 20,21, 22, 23, %4
G 5 zo, 21 | Yo, 1,2 | 1,6, (2, C2, G
G16 6 17_1 17C3>C§ 205 21, 22, %3, %4
G20 10 17_1 Yo, Y1, Y2 17(57C§7C§7C§
G22 15 Zo, 1 17C37C32 17(57<§7C§7<§

Specializations of the parameters for H(G1g)
Lemma 3
o The algebra H(G1g) specialized via
(@0, 15 Yo, Y1, Y23 20, 21, 22, 23, 24) > (1, =190, Y1, Y23 20, 21, 22, 23, 24)

18 the twisted symmetric algebra of the cyclic group Cs over the symmet-
ric subalgebra H(Ghg) with parameters (Yo, Y1, Ye2; 20, 21, 22, 23, 24). Lhe
block-idempotents of the two algebras coincide.

123



o The algebra H(Ghg) specialized via

. . . 2.
(ZE07 T13Y0, Y1, Y2; 20, 21, 22, 23, Z4) — (ZL'(), T3 ]-7 C37 C37 20y %1, 22, 23, Z4)

is the twisted symmetric algebra of the cyclic group Cs over the sym-
metric subalgebra H(G17) with parameters (o, x1; 20, 21, 22, 23, 24). The
block-idempotents of the two algebras coincide.

o The algebra H(G17) specialized via
(5(70a L1520, 1y R25 23y Z4) = (]—) _1; 20y %1y 22, 23, 24)

is the twisted symmetric algebra of the cyclic group Cs over the sym-
metric subalgebra H(G1g) with parameters (zo, 21, 22, 23, 24). The block-
idempotents of the two algebras coincide.

o The algebra H(G1g) specialized via

2 3 44
($0,$1;y0uy17y2§2’0,2172272372’4) = ($0;$1§yoay1;y2; 1,(57C5;C57C5)

1s the twisted symmetric algebra of the cyclic group Cs over the sym-
metric subalgebra H(Gay) with parameters (xo, 1; Yo, Y1, y2). The block-
idempotents of the two algebras coincide.

o The algebra H(Gay) specialized via

($0, Z1; Yo, Y1, y2) = (17 —1; 90, Y1, yz)

15 the twisted symmetric algebra of the cyclic group Cs over the symmet-
ric subalgebra H(Gao) with parameters (Yo, y1,y2). The block-idempotents
of the two algebras coincide.

o The algebra H(Gay) specialized via

(1307 15 Y0, Y1, yz) = (xoa 7131, G, C:?)

18 the twisted symmetric algebra of the cyclic group Cs over the symmet-
ric subalgebra H(Ga2) with parameters (xg,x1). The block-idempotents
of the two algebras coincide.

Proof: We have
H(Gy) = <S,T,U| STU=TUS =UST
(S — l’o)(S — xl) =0

(T —yo)(T —1)(T —y2) =0
(U —20)(U—=21)(U—=22)(U —23)(U —24) =0 >
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e Let

A = <ST,U| STU=TUS=UST,S?=1

(T —yo)(T — 1 )(T —y2) =0
(U = 20)(U = 21)(U = 22)(U — 23)(U — 24) = 0>

and
A:=<T,U > .
Then
AZA@SA and[lz'H(Glg).
o Let
A = <STU| STU=TUS=UST, T3 =1
(S — wo)(S — xl) =0
(U—Zo)(U—Zl)(U—Zz)(U—Zg)(U—Z4) =0>
and
A=< S U>.
Then )
A= @T’ﬂ and A ~ H(G17).
i=0
o Let
A = <SU| SUSUSU =USUSUS, 5% =1
(U—Zo)(U—21)(U—22)(U—23)(U—Z4) =0>
and
A:=<USUS > .
Then
A=A® SA and A ~ H(G1p).
o Let
A = <STU| STU =TUS =UST,U° =1
(S — xo)(S — 5131) =0
(T = yo)(T —y1)(T — y2) =0 >
and
A=< S T>.
Then

4
A= @UZA and /_1 ~ H(Ggl)
=0
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e Let

A = <8 T| STSTSTSTST =TSTSTSTSTS,S? =1
(T = yo)(T =y )(T —y2) =0 >
and
A:=<T,STS > .
Then
A=A®SA and A ~ H(Gay).
o Let
A = <S8, T| STSTSTSTST =TSTSTSTSTS, T3 =1
(S—xo)(S—xl) =0>
and
A:=< S, TST? T?ST > .
Then

2
A= @T’K and A ~ H(Ga2).
i=0
|

The Schur elements of all irreducible characters of H(G1g) are calculated
in [29] and they are obtained by permutation of the parameters from the
following ones:

Ser0 = P1(zo/z1) - P1(yo/y1) - P1(yo/y2) - P1(20/21) - P1(20/22) - P1(20/23) - P1(20/24) -
1(Toyoz0/T1y121) - P1(Toyozo/T1y122) - P1(T0Y020/T1Y123) - P1(T0Yo20/T1Y124) -
1(Toyoz0/T1y221) - P1(Toyozo/T1y222) - P1(T0Yo20/T1Y223) - P1(T0Yo20/T1Y224) -
1(20Yd 23 [x1y1y22122) - P1(2oyd 28 /T1y1y22123) - P1 (20328 /21y1y22124) -
1(x y328/$1y1y22223) : <I>1(x0y§z§/x1y1y222z4) : <I>1(xoy828/m1y1y22324) :
1 (22228 |23 y1yeziz223) - @1 (23yd 28 J23y1yaz1 2024) - P1(2RyR28 /23 y1y2212324) -

(23y3 20 /2 y1yazazaza) - @1 (xqyd 20 /2 yTyaz1222324) - P1(aqys 20 /2315 212023 24) -
1(xdyo g /2}yiys z1222324)

1\X

L= S SIS RS

0
2
0
2
0
3

¢y 40 = —2P1(yo/y2)  P1(y1/y2) - P1(20/22) - P1(20/23) - P1(20/24) - P1(21/22) - P1(21/23) -

Dy ( .

D1 (y12021/y2222a) - P1(y12021/y22324) - P1(Yoy12027 /Y3 222324) - P1(yoy12521/Y5222324) -

(r/x0y0z0) - P1(zoyoz1/7) - P1(x1yo20/7) - P1(r/T1y021) - Pi(r/21Y222) - P11/ T1Y223) -
(

Q1 (rzoz1/r1y2222324)

where 7 = J/ZoT1YoY12021
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S65.00 = 3P1(21/20) - P1(20/23) - P1(20/24) - P1(21/23) - Pu(21/24) - P1(22/23) - P1(22/74) -

@1 (z02021/712324) - P1(T02022/T12324) - P1(T02122/T12324) - P11/ T1Y023) - P1(r/T1Y024) -

1 (r/z1y123) - P1(r/z1y124) - P1(r/T1y223) - P1(r/T1Y224) - P1(T0Y020/7) - P1(T0Y021/T) -
1(zoyoz2/1) - P1(zoy120/7) - P1(woy121/7) - P1(Toy122/7) - P1(T0Y220/7) - P1(T0Y221/T) -

Py (zoyaza/r) - ®1(r?/woz1yoy12324) - P1(r?/Tox1y0y2z3za) - P1(r? /o 1y1y223%4)

where r = f/x%a:lyoy 12202122

Spans = —4P1(Y1/Y0) P1(Yo/y2) P1(20/24) P1(21/24) - P1(22/24) P1(23/24) - L1 (T0Y020/7)"

@1 (voyoz1/7) - P1(2oyoz2/T) - P1(T0Yoz3/T) - P1(T1Y020/7) - P1(T1Y021/7) - P1(T1Y022/T) -

i (z1y023/7) - P1(r/T0y124) - P11 /T1Yy124) - P11/ T0Y224) - P1(1/T1Y224) -

@1 (r? /zoz1yoy12021) - @1 (r? /zom1y0y1 2022) - P1(oz1yoy12023/72) - P1(woz1Y0Y1 21 22/77) -

@1 (r?/zoz1yoy1z123) - @1(r? [zom1yoy1 2223) - 1(r? [Tox1y1y22024) - P1 (12 /To1y1Y22174) -

D1 (r? /zor1y1y22224) - P1(r? /x0T 1y1Y223%4)

_ 4/ 2 33
where 7 = /2223y2y1y220212223

Spsae = 0P1(w0/21) - P1(y2/y0) - P1(y2/y1) -

1 (zoyoz3/r) - P1(z0Yo2a/7) - P1(Toy120/T)
Q1 (woy124/7) - @1(r/T1Y220) - P4
(0]
(0]

(
(

1(moz1yoy1 2021/72) - ®1(xoT1Y0Y12022/T2
(

Py (wox1yoy1z124/1%) - D1 (zoz1Y0y1 2223/1°

_ 5/23,2,2.2
where r = i’/xoxlyoy1y22021222324

Spers = —6P1(20/21) - P1(20/22)
Dy (r/x0y220) - P1(x1Y020/7) - P1(21y120/T)
Dy (zox1y0y12022/17) - P1(T0T1Y0Y1 2023/ 77
Py (zox1y0y22022/12) - P1(T0T1Y0Y22023/77)
Py (
Py (

1 $0$1y1y22022/7”2) : q’1($0$1y1y22023/7’2)

(r/x1y221) -

)
1(zoz1yoy1z023/1r?) - ®1(Tow1Y0y12024/T7) -
) - ®1(wox1yoyr2224/1%) - 1 (0T 1y0y1 2324 /77)

- ®1(20/23)
- Py (x1y220/1) - Py
) - @1 (zoz1y0y12024/72) - P1(T0T1Y0Y2 2021 /17) -
- @y (zoz1y0y22024/12) - P1(T0T1Y1Y22021 /1T7) -
- By (woz1y1y22024/77) -

Q1 (zoyozo/T) - P1(zoyoz1/7) - P1(x0Yo22/T) -

-y (zoy121/1) - P1(zoyr22/7) - P1(xoy123/7) -

O (r/x1Y222) - P1(r/T1Y223) - P1(r/T1Y224) -

By (zow1yoyr2122/12) - @1 (woz1Yoy12123/17) -

- ®1(20/21) - P1(r/xoy020) - P1(1/T0Y120) -

(zoT1yoy12021/1?) -

1(@8z1y0y1y2202122/12) - 1 (23T1Y0y1Y2202123/72) - ®1(T3T1Y0y1Y2202124/7) -
(23 z1yoy1y2202223/1°) - @1 (zdT1Y0y1y2202224/77) - @1 (2ET1Y0Y1Y2202324/77)

— 5/3323,2,2,2.2
where r = {/z3x3y2y?y222 21202324

Following theorem 3.2.3 and [30], Table 8.1, if we set

(Cz) in
(CB) ]yj
(S

Y6()
Z60

(i =0,1),
(1=0,1,2),
(k=0,1,2,3,4),

then Q(Ceo)(Xo, X1, Yo, Y1, Ya, Zo, Z1, Zo, Z3, Z4) is a splitting field for H(Go).
Hence the factorization of the Schur elements over that field is as described

by theorem 3.2.5.
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The groups G25, G26

The following table gives the specialization of the parameters of the generic
Hecke algebra H(Gag), (zo, 1; Yo, Y1, yY2), which give the generic Hecke algebra
of the group Gy ([31], Theorem 6.3).

Group | Index S T
Gas 1 Lo, L1 | Yo, Y1,Y2
G25 2 ]-7_]- Yo, Y1, Y2

Specialization of the parameters for H(Gag)

Lemma 4 The algebra H(Gog) specialized via

(900, Z1; Y0, Y1, y2) = (17 —1; 90, 91, yz)

15 the twisted symmetric algebra of the cyclic group Cy over the symmetric
subalgebra H(Gas) with parameters (Yo, y1,y2). The block-idempotents of the
two algebras coincide.

Proof: We have

H(Gas) = <S,T,U| STST =TSTS,UTU =TUT,SU = US
(S —x0)(S—z1)=0
(T —yo)(T — 1 )(T —y2) =0
(U =y)U —y1)(U —y2) =0 >

Let
A = <STU| STST =TSTS,UTU =TUT,SU =US,S*=1
(T = yo)(T —y1)(T —y2) =0
(U —=yo)(U —41)(U —y2) =0 >
and
A=< SUS,T,U > .
Then

A=A® SA and A ~ H(Gos).
|
The Schur elements of all irreducible characters of H(Ggs) are calculated

in [31] and they are obtained by permutation of the parameters from the
following ones:

S¢10 = —P1(wo/x1)-P1(yo/y1) P1(yo/y2) - P2(zoyo/z1y1) - Po(Toyo/T1Y2) - 1 (zoys /T1y7)-
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B (zoyg /m1y3)- Pa(woys /21y y2) Pa(xoys /x1y1Y3) Do (20yd /21y1Y2)- P2 (U3 /y12) P (Yo /y1)-
D6(yo/y2)

Shas = Y1/Y0P1(20/71) P1(yo/y2) P1(y1/y2) - P1(zoyo/T1y2) P1(Toy1/T1y2) Pa(Toyo/T1Y2):
o (zoy1/z1y2) - P2(zoyo/T1y1) - P2(Toy1/T1Y0) - Ps(Toyoyr /z1y3) - P2 (yoyr /y3) - Pe(yo/y1)

S¢56 = —P1(xo/x1) P3(x0/x1) P2(zoyo/z1y1) P2(zoyo/T1Y2) - Pa(Toy1/T1Y0) P2 (oY1 /T1Y2)-
Do (zoy2/1Y0) - P2(z0y2/T1y1) - P2(You1/y3) - P2(yoy2/yi) - Po(y1y2/y3)

Sosr = —P1(x1/20) P1(yo/y1) - P1(yo/y2) P2(yo/y2) 1 (y1/y2)  Pa(yoy1/y3) P2 (y3 /y1y2)-
®6(yo/y2) - P2(zoyo/x1y2) - P2(oyr/z1y0) - ®1(20yd/T1Y7) -
Do (xoypy1/2193)

Sos.. = Pr(zo/21) - ®1(y1/y0) - P1(yo/y2) - P1(y1/y2) - P2(y2/Y0) - Ps(y0/y2) - P2(yoy2/vyi) -
Dy (zoy1/21y2) - Pa(T1y0/T0y2) - Pa2(oy1 /T1Y2) - P2(Toyd /2197 Y2)

Sgs.s = 2P1(yo/y1)-P1(yo/y2)- Pa(x1y2/zoy1 ) Pa(z11 /Toy2) P2 (ryo/z193) - Pa(ryo/T1y7)-
Q1 (ry2/2190y1) - P1(ry1/z1y0y2) - P3(ryo/x1y1Y2) - P3(ryo/Toy1y2)
where r = ¥—xor1Y1Y2

Sger = P1(C3) - Ps(yo/y1) - Ps(y2/y0) - Pe(y1/y2) - Pa(C3woyry2/z193) - P2(Cszoyoya/z1y7) -
o (Gzoyoyr /z1Y3) - P1(21/20) - P1(C3T0/T1)

Following theorem 3.2.3 and [30], Table 8.2, if we set

then Q((3)(X1, Xo,Y7,Y5,Y5) is a splitting field for H(Gag). Hence the fac-
torization of the Schur elements over that field is as described by theorem
3.2.5.

The group ng (“F4”)

Let H(Gas) be the generic Hecke algebra of the real reflection group Gag over
the ring Z[zF, v7, y5, yF]). We have

H(Gas) = < 51,89, T, Ty | 815251 = 52518, TVTLTy = TyT1T;
S1Ty =TSy, SiTy =TeS,, SoTy = TS,
SoT1.55Ty = 11551715,
(S; — 20)(Si — 1) = (T; — yo)(T; — 1) = 0 >
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The Schur elements of all irreducible characters of H(Gag) have been calcu-
lated in [28] and they are obtained by permutation of the parameters from
the following ones:

Ser0 = P1(yo/y1) - Ps(yo/y1) - Pr(zo/x1) - Pe(zo/x1) - Pr(zoyd/®1y7) - Pe(zoyo/2z111) -
@1 (xgyo/xiy1) - Pa(@oyo/z1y1) - P2(xoyo/x1y1) - P2(Toyo/T1y1)

S g1 = —y1/Y0®P6(vo/y1) - P3(wo/71) - Ps(20/21) - P1(W0/71) - @1(550/551)'@1(»”8(2)1/0/50@1)'
o (zoyo/T1y1) - Pa(woy1/z1y0) - P1(23y1/27yo)

Spas = 2P6(Yo/y1) P (w1/20) P2(T0y1/T1Y0) P2(T0y1/T1Y0) P2 (T1Y1/T0Y0) P2 (T0Y0 /T1Y1)

Spsn = P1(vo/y1) - Pe(vo/y1) - P1(w1/20) - Pe(0/21) - Pa®0y1/T1Y0) - P6(Toy0/T1Y1) -
Qo (woyo/T1y1) - P2(0Yo/T1Y1)

S¢g.en = 3P1(y1/Y0) - P1(y1/y0) - P1(x1/70) - P1(w1/70) - Po(T0Yo/T191) - P2(Toy1/T1Y0) -
Da(z1y0/T0Y1)

Sos o = —Y1/Y0P6(Y0/y1) - Ps(x0/21) - @1 (20 /1) - @1 (21/T0) - P3(w0/21) - P (20yT /7197) -
Py (oys/x197)

Sg02 = P1(yo/y1)-@1(2z0/x1)-P1(xoy7/215)- Pa(zoyo/T1y1)-P1 (20 /2Fy1)-Pa(zoyo /191 )-
o, (CU(]yo/xlyl)

Shras = 6P3(yo/y1) P3(w1/0) Pa(woy1/T1Y0) P2(Toy1/T1Y0) P2(z0yo/T1y1) - P2(21y1/T0Y0)
S¢165 = 201Y1/T0YoPs (Yo /Y1) - Pe(x1/x0) - PalToy1/21Y0) - Pal(Toyo/T191)

Following theorem 3.2.3, if we set

then Q(Xo, X1, Y, Y1) is a splitting field for H(Gas). Hence the factorization
of the Schur elements over that field is as described by theorem 3.2.5.
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The group Gs»

Let H(G32) be the generic Hecke algebra of the complex reflection group Gso
+ 4

over the ring Z[zE, 2, v5]. We have
H(Gs2) = < 51,52,85,5: | SiSit1Si = Sit15:Si41,
SZ'S]' = S]SZ when |Z —]’ > 1,

The Schur elements of all irreducible characters of H(G52) have been calcu-
lated in [31] and they are obtained by permutation of the parameters from
the following ones:

8410 = P1(x0/22)-®1(20/22)-®1(20/21)-®1 (20/21)- P (] /71 23)- @1 (2 /2T 22)- Py (25 /2 5)-
Dy (2 /a3 x])- Do (w5 /w125) - o (x5 /T wa) - o (2 /2129) - o (25 /2122) - P (w0 / 2)- Pe (0 /1)
D¢ (23 /2123)- Do (23 /2Tw2) - Po (2 /2122) - Pa(@F /2122) Pa(w0 /22) - Pa(w0 /21) B3 (2] /2122)-
®1g(z0/x2) - Pro(w0/T1) - P5(2f/2122)

S¢s, = P1(xg/m123) - Po(a]/m1a3) - 1 (af/aiwe) - Pr(xfwr/a3) - Pi(x1/20) - Por(21/T2) -
Py (20/w2) - @1 (w0/22) - Po(af/m105) - Po(afmy/25) - Po(a]/105) - Po(af/2122) - Po(w0/22) -
Dy (zow1/73) - P6(0/72) - P6(20/71) - Pa(w0/72) - P3(25/7122) - P10(20/71) - Prs(wo/22)

854 = P1(x§at/23) @1 (xw1/23)- @1 (20/22) P (20/72)-®1 (21 /20)-P1 (21 /20)-P1 (21/2)-
Dy (21 /22) Bo (2] /2123)- Bo (x0T /23)- Bo (21 /72)- Do (2F /2122) - Do (w021 /25) - Do (G201 /25) -
Qo(wo/w2) - Po(z0/22) - Pe(w0/T2) - P6(T0/2) - P(w0/71) - Pa(w0/71) - (1’3(x0331/x§) )
D yo(x0/22)

Spes = T1/25P1(x0/21) - Pr(21/20) - P1(20/T2) - Pr(21/22) - Pi(20/T2) - P1(21/22) -
O (woa?/23) - @1(2g21/23) - P2(wow?/23) - Pa(2fzr/a3) - Po(ad/z122) - Po(2i/zox2) -

Oy (2011 /23) - Po(T071/23) - Po(1/2) - Po(0/22) - Ps(w071/23) - P6(30/2) - P6 (21 /T2) -
P1o(x0/71) - P5(wo21/73)

S¢r0. = P1(gw1/3) Oy (2] /2125)-B1 (21 /2)- @1 (1 /22)-P1 (21 /20)-P1 (22 /20)-P1 (w0 /2)-
Dy (2z0/w2) - o5/ w2) - Po (2 /2173) - Po (w021 /73) - Pa(wowa/2T) - Pa (w0 /2) - P20/ 22) -
By (w1 /m2) - Po(af/z122) - Po(fwr/x3) - Pg(0/22) - Po(20/21) - Pa(wo/22) - B3]/ w122)

S¢156 = cI>1(xg/ﬂflﬂ’?%)'q’l(378/33%5'32)"1’1(9770/951)"1’1(3?0/351)"1’1(%‘2/331)"1)1(352/331)"131(Jiz/mo)'
Dy (zo/z2) Po(xiza/2t)  Po(xdmy/25) Po(2F/T0w2) - Po(m0T1 /23) - Po(20/22) - P2(0/21) -
Do (af/x122) - Po(25/2122) - Po(@F/2122) - Po(wo/@1) - Po(w0/22) - Pa(2f/T122)

S¢158 = q)l(5”%372/338)"1’1(5”%@/55?)"1’1($0/$2)"I>1($0/172)"1)1(zl/zz)'@l(951/952)‘(1)1(331/950)’
Dy (zo/21)- Po(w129/25) - Po(w0w2/27) - D071 /73) - Po(ow1/75) - Po(21 /T2) - Doy (21 /22) -
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Dy (w0 /w2) - P2(20/22) - Po(T0/%2) - Po(w1/22) - Palwow1/23)

S¢a05 = P1(wgw2/a})-@1(x0/21)-®1(0/21)-P1 (w2 /20)-P1 (20 /22) B (25 /2123)- B (2 /2123
Dy (1 /29) - Po(woa?/23) - Po(a]/Tow2) - P27 /2172) - Po(0w1/75) - Po (20 /T2) - Pa(22/20) -
Do (x5 /xT22) - P6(T0/22) - Pa(T0/72) - P31 /23)

S¢a05 = —P1(2}/a5w2) - 1 (2 /2 w2) - B1(w02] /23) - By (aF21/25) - By (w2 /21) - Do (22/1) -
Dy (20/w2)-P1(0/T2) Po (2 /03)- Po (2] /2125) - Pa (201 /25) - o (w021 /23)- B (w021 /73)-
g (x1/20) + Po(w1/22) - Ps(wo/x2) - P3(wow1/23)

S¢a07 = P1(gw1/25)- @1 (2077 /23)- @1 (21/70)-P1 (21 /0)-P1 (22 /20)-P1 (20 /72)- P (21 /22)-
D1 (21/22) - Pa(wo/w2) - Po(w2/0) - Po(wiwa/2l)  Po(z0x]/23) - Po (w021 /23) - P2 (2] /T0W2)-
<I>6(:E0/x2) . (1)6(1'0/1'2) . <I>6(x1/x2) . (I)g(x%/xll'g)

Shao12 = 2P1(T2/71) P1(21/22) 1 (22 /0) P1(21/70) P1(22/0) - P1(1/20)- 1 (20 /72)-
Dy (z0/x1) Pa(ox]/23) - Po(w0w5/2F) - Po (25 /2172) - Po(2172/27) - Pa(20/71) - P20/ 22)-
Do(zo/21) - Pa(wo/22) - P(w2/1) - Pg(21/22) - P3(2/2122)

Sme = &y (2} /afas) - ®1(af/agwr) - Pr(wo/m1) - Prwo/w2) - Pi(wo/21) - Pi(wo/22) -
Py (wa/x1) - P1(z1/22) - Pa(wo/21) - Pa(wo/w2) - Po(w0wa2/2%) - Po(W021/23) - P6(0/21) -
Bg(wo/x2) - Palwo/m1) - Pa(wo/22) - P52/ 12)

S¢a0.4 = P1(xg/Ta3)- @1 (w0 /22)-P1(21/20) P11 /T0) Po(21/32)- D1 (21 /2) - P (w0 /22)-
Py (20/x2) - Po(w1/m0) - Po(w1/22) - Po(w2/20) - Bo(a/w123) - Po(wow3/a}) - Pa(wo/22) -
Py (woza/2t) - Po(2d/2122) - Po(w0/21) - Pe(w1/22) - Pe(w0/w2) - Pa(w0/T2)

Soho 15 = P1(2]/2323) @1 (21/22) - @1 (20 /21) @1 (20 /21)- P1 (20/22) @1 (w0 /@2) 1 (21/2)-
Dy (21/12) - Pa(wo/m1) - Po(w0/22) - Po(w2/21) - Bo(2F/0w3) - Po(w123/2F) - Pa(w1/72) -
Py (2129/23) - Po(x7/0w2) - P6(w1/20) - P6(w0/22) - Po(21 /) - Pal1/72)

Sp30s = P1(1/G) - @1(wo/@2) - P1(21/w0) - @1 (g /2122) - @1 ((Gwowa/at) - @1 (23/(Gaorr)-
Do (w122/25) P2 (fw2/(3at) Pa((Gugrr /23) o (af/2122) Po(20/21) o (20 /22) D6 (21 /22)-
5(C3w0/22) - P5(C370/ 1)

Spuos = P1(iat/@3) @1(21/20) P1(0/21) P1 (20 /@2) P1(22/T0) 1 (20/2) P1 (2F22 /)
(1)1(332/33‘1) (I’Q(Io/xl ‘I’g(l‘olj/l‘%) . @2(333/.%1332) . @2(560/%2) . (I)ﬁ(l‘o/xl) . <I>6(x1/x2) .
(1)4(1‘0/I1) @4(.%‘0/.%‘2 @3($0$2/I%)

~— ~—

S¢a56 = P1(C3) - P1(CGag/212) - P1(Cawowa/aT) - ®1(Cazow1/a3) - Pr(22/T0) - Py /22) -
Do (CFapwa/al) - Bo(CGuiwa/af) - Pa(wo/CFus) - Pa((sar/m2) - Pawowy/a3) - Ps(w1/x0) -
Dg(x1/22) - P (0 /22) - Po(wow1/73) - Pa((320/22) - Pa(C3w1/72)
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Spgo.r = P1(xoat/23) - @1(zo/21) @1 (20/21) D121 /22) Pr(21/22) P1(20/22) D1 (20 /22)-
Oy (w123 /2f) - @2(wo/21) - Po(wgr1/23) - Po(2]/zo2) - Pa(w122/27) - Pa(21/22) - Pa(21/22) -
Pg(zo/x1) - Po(2/21) - PalT0/21)

Sodon — By (w125 /25)- Py (z0/21)-P1 (0 /21)-P1 (21 /22) Py (1 /22)- Py (22/20)- D1 (22/20)-
D1 (woa3/a1) - Po(2}/Tow2) o021 /23) Do (2021 /23) P (@ /2122) 2 (20 /21)- P2 (0 /21)-
Pg(xoz1/73) - Po(21/70)

Sge01z = 2@1(zo3/a}) - ®1(z0xT/28) - @1(21/T0) - P1(1/0) - Po(21/20) - P1(w2/0) -
Dy (xa/x0) - 1 (w2/m0) - Po(w2/21) - Po(21/T2) - Po(aF/w1222) - Po(wF/w122) - D (25 /T12) -
g(21/72) - Po(w2/71) - Pa(w0/21) - Pa(T0/72)

Sgeas = 2P1(ra1/23)- @1 (25 /120) P1(20/T2)-P1 (22 /21)-P1 (20 /21)- 1 (21 /20) @1 (2 /71 23)-
Dy (zow3/2}) - Po(rag/aias) - Bo(ral/agas) - P3(zow1/x3) - Pro(r/wa) - Pi5(r/xo)

where r = Yxgx;

Séses = 2®1(zox3/a}) - ®1(zoai/al) - ®1(wo/21) - P1(zo/21) - P1(w2/20) - P1(22/20) -
Dy (w2/21) - ®i(xa/21) - Powo/x2) - Pa(w0/21) - Pu(w122/27) - Pa(w0/21) - a0 /72) -
P3(2d/z122) - Pr2(1/22)

Ser 10 = 3Po(rwa/ag) - o(rag/al) - Po(rao/a3) - ®o(rao/al) - Po(ray/xf) - ®o(rey/a3) -
Oy (xoz1/23) - Po(woT2/27) - Po(T122/23) - Po(r/T2) - Po(1/0) - a(r/21) - Pu(r?/T021) -
Oy (r?/woxs) - Py(r?/z129) - @5(1/30) - P5(1/72) - P5(1 /1)

where r = ¥zoz172

Following theorem 3.2.3 and [30], Table 8.2, if we set
XP = (G) " (1=0,1,2),

then Q((3)(Xo, X1, X2) is a splitting field for H(G32). Hence the factorization
of the Schur elements over that field is as described by theorem 3.2.5.

Some corrections on the article [33]

Example 3.17 (G3,) :
type M(Z3)": the first character of the first block is ¢j; s
type o4, the second block is

(¢84,417 ¢84,377 ¢336,347 ¢336,32; ¢420,31a ¢420,357 ¢504,33)-

Example 3.19 (G56) : There are two families of type M(Z;) missing:
(015,28, P105,26, P120,25) and (P15.7, P105,5, P120,4)
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(the characters may not be in the correct order).

Example 4.1 (G5) : The decomposition matrix of the last family for p = 3
is wrong; the characters of degree 1 aren’t in the same 3-block of the
group algebra with the characters of degree 2.

Example 4.3 (G13) : The decomposition matrix of the last family for p = 2
is wrong; the characters of degree 2 aren’t in the same 2-block of the
group algebra with the characters of degree 4.

Example 6.4 (Gg) : The blocks given here are completely wrong. The
correct, probably, are:
(Qb,Q,?v /2,11)7 ( /2,,77 /2/,11)7 ( /1,127 /1/,127 ¢2,47 ¢2,8)7 (¢1,67 ¢1,307 ¢2,107 ¢2,14)7
(2,5, 2,13, 2,1, P2,17, Pa9, Pa3, Payr, Pas)-

Example 6.5 (G1o) : The last three non-trivial blocks are:
(D1,165 D210, D512, P38, D3.4), (D112, D218, B3 8, D5 12, D3,16),
(¢1,14, ¢1,267 Cbz,s, ¢3714 ¢3,2a ¢/3/,10a ¢§,10a g,e’v ¢/3,6a ¢4,117 ¢475)-
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