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Résumé : Vorticité dans le modele de Ginzburg-Landau de la supracon-
ductivité

Prenant ¢ = % avec k > 0 est le parametre de Ginzburg-Landau, ce mémoire
de theése porte sur I'étude asymptotique dans la limite ¢ — 0 des minimiseurs
périodiques ainsi que des points critiques de 1’énergie de Ginzburg-Landau.

En premiere partie, on prouve pour des certeins champs magnétiques appliqués he,
a la surface du supraconducteur de 'ordre du premier champ critique H,, = |102g el
que pour les minimiseurs périodiques de Ginzburg-Landau, le nombre des vortex par
période est de l'ordre de he, et leur répartition est uniforme. En outre, en prenant
des champs he, proches de H., de la forme he, = H., + f(g) ou f(e) — +oo et
f(e) = o(]logel), on montre que le nombre de vortex des minimiseurs périodiques
par période est de l'ordre de f(e) et leur répartition est aussi uniforme.

Dans une deuxieme partie, toujours dans le modele périodique, on construit une
suite de points critiques ayant des vortex répartis sur un nombre fini de lignes hori-
zontales.

Dans une troisieme partie, on construit dans le cas d’un disque une suite de points
critiques telle que les vortex sont répartis sur un nombre fini de cercles concentriques
de rayon strictement positif et de centre, le centre du disque. Dans le cas ot il y a
un seul cercle de vorticité, le rayon est bien caractérisé.

Finalement, dans un modele de Ginzburg-Landau avec “pinning”, on s’intéresse a
I’étude du signe des degrés des vortex et on donne des résultats partiels indiquant
que les degrés ne sont pas toujours positifs.

Mots clés : EDP non linéaire ; Equations de Ginzburg-Landau ; Supraconductivité
; Modele périodique ; Vorticité ; Effets de concentration ; Convergence de mesure ;
Comportment asymptotique ; “pinning” de vortex.

Abstract: Vorticity in the Ginzburg-Landau model of superconductivity

Taking ¢ = % where k > 0 is the Ginzburg-Landau parameter, this PhD thesis
is devoted to the study of the asymptotic behavior in the limit ¢ — 0 of periodic
minimizers and also of critical points of the Ginzburg-Landau energy.

In the first part, we prove for certain applied magnetic fields h., of the order of
the first critical field H., = |102g€‘ that periodic minimizers of the Ginzburg-Landau
energy have a uniform vortex-distribution where their number per period is of the
order of he,. Moreover, considering fields he, close enough to H., in the form of
her = Hey + f(€) where f(g) — +oo and f(g) = o(]loge]), we check that the number
of vortices in the periodic minimizers per period is close to f(g) and their repartition
is uniform too.

In the second part, still in the periodic model, we construct a sequence of critical
points such that the vortices are supported on a finite number of horizontal lines.
In the third part, we construct in the case of a disk domain a sequence of critical
points such that the vortices are concentrated on a finite number of concentric circles
of positive radii and of center, the center of the disk. Also, in the case where there
is one circle of vorticity, the radius is well characterized.

Finally, in a Ginzburg-Landau model with pinning, we are interested in the sign of
the degrees of the vortices and we give partial results indicating that the degrees
may not always be positive.
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Chapter 1

Introduction

Les équations de Ginzburg-Landau sont des équations aux dérivées partielles non
linéaires proposées dans les années 50 pour la modélisation de la supraconductivité.
Depuis, elles sont devenues un outil tres courant dans de nombreux domaines de
la physique ou des tourbillons et/ou des défauts topologiques interviennent, comme
par exemple les super-fluides. De nouveaux probléemes de cette nature apparaissent
constamment en physique (par exemple le ferromagnétisme, les condensats de Bose-
Einstein,...). Depuis les années 90, des avancées importantes ont eu lieu dans la
compréhension mathématique des équations de Ginzburg-Landau. Elles font inter-
venir des techniques issues de nombreux domaines des mathématiques: EDP non
linéaire, théorie géométrique de la mesure, effets de concentration, tourbillons, etc.

1 Sur un domaine borné

Dans le modele de Ginzburg-Landau, ’énergie libre d’un supraconducteur soumis a
un champ magnétique extérieur he, appliqué a sa surface est donnée apres renor-
malisations par

1 1 2
Ja(u, A)= /Q|Vu—iAu\2+2 /Q\h—her\2—|—z /9(1_|u12)2. (1.1)

Ici le supraconducteur est assimlié & un cylindre vertical de section  C R?, réguliere
et simplement connexe. A est le potential-vecteur du champ magnétique induit
h = rotA et u est le “parametre d’ordre” qui indique I’état local du matériau. La
ou |u| ~ 0 c’est la phase normale, 1& ol |u| ~ 1 la phase supraconductrice. k est le
“parametre de Ginzburg-Landau”. Le comportement du supraconducteur varie en
fonction de h., et k. En effet, si le champ appliqué h., est assez faible, on observe
que le champ magnétique ne péneétre pas dans le matériau (c’est l'effet Meissner).
Puis au dela d’un champ critique H,,, il se produit une transition de phase et on
observe des filaments de vorticité (ou des vortex) par lesquels le champ pénétre.
Plus le champ est grand et plus ils sont nombreux, et comme ils se repoussent, ils
tendent & s’organiser en réseau triangulaire dit “réseau d’Abrikosov”. Pour plus de
détails concernant I’aspect physique, on renvoit a [Ab], [GL], [SST], [Ti] et [TT].

La fonctionnelle Jg, vue dans son aspect mathématique, a suscité beaucoup
d’interét ces dernieres années, apres les travaux fondateurs de Béthuel, Brezis et
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Hélein dans [BBH]. Beaucoup d’auteurs se sont intéressés au cas x grand, qui
correspond aux supraconducteurs de type II, la limite s infini étant appelée “lim-
ite de London”. Le but était de comprendre mathématiquement les mécanismes
d’apparition des vortex, les valeurs des champs critiques et d’avoir des descriptions
des solutions, de leurs vortex et des estimations de leur énergie dans cette limite.
Parmi les résultats obtenus, Serfaty a pu caractériser le premier champ critique H,,
et donner son expression qui est sous la forme C(Q) logk (voir [Sel], [Se2]). Il a
été prouvé que les minimiseurs de I'énergie sur H'(2,C) x H'(Q, R?) n’ont pas de
vortex en-dessous de H.,, puis en ont au-dessus, et qu’ils se répartissent d’abord
pres du centre de domaine, en configurations régulieres (polygones, etc), puis de
maniere uniforme dans une sous partie du domaine que 1’on peut caractériser par un
probléeme & frontiere libre, pour cela voir [ASS], [Se3|, [SS2] et [SS3]. Des résultats
ont également été prouvés sur la répartition de vortex de solutions non-minimisantes

(voir [SS5]).

2 Le modele périodique

Le modele périodique de Ginzburg-Landau permet d’éviter les effets du bord et de
mettre 'accent sur ce qui se passe au coeur du supraconducteur, le “bulk”. Ici on
prend k > % et Q = R?, ceci correspond & un large supraconducteur infini de type
II.

2.1 DMotivation

Soit (u,A) dans l'espace de Sobolev H. (R? C) x H} (R%* R?), alors la densité de
Iénergie de Ginzburg-Landau

L Gum i A+ R b+ (1= [uf?)?
2 2 “ 4

est dans L}OC(R2). De plus, cette densité est invariante sous une transformation
de jauge sous la forme (v, B) = (u €'9, B + Vg) avec g € H? (R?). Toutes les
quantités physiques a savoir |u|, h = rotA et (iu,V qu) sont invariantes de jauge.
Les équations de Ginzburg-Landau associées sont
—Viu=r?u(l-|u? R?
(1.2)
~V+h = (iu,Vau) RZ

En considérant le cas ou le champ appliqué he, est légerement inférieur & H,, =

K? avec Kk > %, Abrikosov a introduit dans [Ab], une modélisation spéciale et

a prédit une structure périodique des zéros de u avec (u, A) est une solution de
la premiere équation de Ginzburg-Landau linéarisée en u (en ignorant a droite le
terme u |ul?) qui . Un tel (u, A) dit solution d’Abrikosov existe si he, = He, et
K> % Récemment, dans le cas ou k > %, Dutour [D] a montré qu’il existe une
fonction continue K — H, (k) telle que des solutions de 1’équation originale (non
linéarisée) existent et correspondent aux solutions d’Abrikosov si he, est tel que
H. < hey < He,. Notons que H, et H., sont deux champs critiques et que H,, se
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comporte comme # lorsque kK — +00. Les solutions d’Abrikosov sont périodiques
et leurs zéros forment un réseau et autour de chaque zéro, v a une charge topologique
non nulle. Ecrivant u = |u| €' #, et dans les coordonnées polaires (r, ) centrées en
un zéro de u, si v > 0 est petit, 'entier

1 0=2m b
— 2 (r,0) db,
27 6=0 69
est non nul. Les points ou u s’annule sont appelés vortex et I'entier est le degré du
vortex.

On fixe K > 0 et hey > 0, et on prend £ un réseau de R? dont le domaine
fondamental est €2. Pour définir le modele périodique, on utilise les conditions au
bord de t” Hooft [Th] sous lesquelles le vecteur potentiel A et le parametre d’ordre u
sont périodiques a une transformation de jauge pres. Dans ce sens, on dit que (u, A)
est £ -périodique si pour tout v € £, il existe g* € H7 (R% R) tel que
u(z 4 v) = u(z) e 9"

(1.3)
A(z +v) = A(2) + Vg°(2).

On note B l'espace des configurations (u, A) qui sont £ -périodiques.

Définition :

On dit qu’une fonction T' définie sur R? est périodique si pour tous z € R? et v € Z2,
T(z+4v) =T(z).

Les conditions (1.3) garantissent que les quantités invariantes de jauge sont
périodiques. Pour chercher les solutions périodiques des équations (1.2), I'idée na-
turelle est de trouver la configuration périodique qui minimise I’énergie de Ginzburg-
Landau par unité d’aire parmi tous les réseaux possibles de R?. Ceci revient a étudier

Ja(u, A)

Qb (1.4)

inf inf{

L Br
Mais, malheureusement 1’étude complete du probleme (1.4) est toujours ouverte,
donc une analyse rigoureuse des solutions périodiques des équations de Ginzburg-
Landau (1.2) reste limitée. Le probleme se pose essentiellement au niveau de la
recherche de la géométrie du réseau associé a 1’énergie minimale.

Le réseau étant fixé, 'analyse de la vorticité des minimiseurs périodiques de
I’énergie dans la limite kK — 400 et pour des champs extérieurs de 'ordre de log x
n’est pas encore étudiée. Pour cela, dans toute la suite de la these on fixe le réseau
des le début et on se restreint a un réseau dont le domaine fondamental est un par-
allélogramme d’aire 1. Par commodité, on prend un réseau carré. Notons que nos
résultats décrivent des mesures de vorticité limites et ne semblent pas assez précis
pour étre influencés par la géométrie du réseau. Ceci explique pourquoi nous nous
restreignons a un réseau carré de coté 1.

13



En reprenant les idées de Sandier et Serfaty et pour des champs appliqués he,
en particulier de l'ordre de logx avec kK — +00, ce travail a pour but principal la
recherche de la vorticité des minimiseurs de I’énergie de Ginzburg-Landau parmi les
configurations périodiques ou parmi celles qui présentent certaines symétries.

2.2 Le modele périodique sur le carré K de coté 1

Les chapitres 2 a 7 traitent du modele périodique. Dans le chapitre 2, on introduit
le modele périodique sur le carré K de coté 1. Pour cela, soit A 'espace des (u, A)
dans H. (R? C) x H] (R% R?) tels que pour tout v € Z?, il existe g* € HZ_(R? R)
tel que les conditions (1.3) soient vérifiées.

Connaissant que toutes les quantités physiques |u|, h = rotA et (iu, V q4u) sont
périodiques, il suffit de mesurer I’énergie de Ginzburg-Landau d’une configuration
(u, A) L -périodique sur la période K. Ici, on s’intéresse juste a 1’étude de

inf J A).
inf Jic(u, 4)

On démontre en particulier les propriétés bien connues de quantification du flux
(en chapitre 2) et d’existence de minimiseurs de ’énergie de Ginzburg-Landau ( en
chapitre 3).

2.3 Résultats sur la vorticité

Dans le chapitre 4, pour des champs appliqués qui sont tels que he, < C' |loge| avec
€= % et pour des configurations périodiques (uc, A.) d’énergie minimale, on définit
des vortex en s’inspirant d’une méthode de Jerrard [J]. De la, on peut associer a
(ue, Ae) une mesure de vorticité

27> . d; b,
exr
ou (a;,d;); sont les positions et les degrés des vortex de (ue, A¢).
Dans le chapitre 5, on prend he; tel que lim._.q % = ), avec la condition

additionnelle : si A = 0, on impose que he; < 5% Dans toute la suite de la these,
on gardera cette définition du parametre . Alors, en prouvant que

i T (e, Ac) 2(1-2) si0<A<2 o)
im ———7 = .
e—0 hgm % si A > 2,

qui est obtenue par une borne supérieure et puis une borne inférieure dans I’esprit
de la gamma-convergence (voir [DC]) de I’énergie minimale “normalisée” %,

on peut montrer que dans le cas A > 0, on a si € — 0,

e — max((), 1-— g) dx,

oll dz est la mesure de Lebesgue de R?. Donc, pour 0 < A < 2, on en déduit que
la répartition de la vorticité des minimiseurs périodiques de ’énergie de Ginzburg-
Landau est uniforme et que le nombre des vortex sur K est de 'ordre de he,, alors que
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pour A > 2, il est petit par rapport a h.,. Plus précisement, a partir de I’estimation
de I’énergie minimale, ou plutét de sa borne inférieure, on prouve qu’il n’ y a pas de
vortex si A > 2. Ces derniers résultats sont légerement différents a ceux de Sandier
et Serfaty [SS3]. En effet, ceci est dit a ’absence d’effets de bord dans le modele
périodique.

Dans le chapitre 6, on s’interesse au cas A = 2. Ceci correspond a des champs
appliqués hez proches du premier champ critique H., = % pour € — 0, qui sont
de la forme

hex = Hcl + f(E),

avec si € — 0, f(e) — +oo et f(e) = o(|loge|). D’apres (1.6), on remarque que si
e — 0, I"énergie minimale Jx (ue, Ac) est équivalente a 1’énergie sans vorticité sur K
égale a % h2,. Plus clairement, on montre que
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JK(UEJ A&) ) h‘ex
2
(f(e))
est la quantité appropriée a considérer. Dans ce cas, en prouvant une borne inférieure

de I’énergie minimale plus fine, qui se base sur la construction des boules précédemment
mentionnée, on démontre que si € — 0,

(1.7)

2m Zdz 5(1'
#Ad‘r’
f(e)

ou (a;,d;); sont les positions et les degrés des vortex de (uc, A:) définis dans le
chapitre 4. Donc la répartition des vortex des minimiseurs périodiques est uniforme
et plus précisement leur nombre sur le carré K est de 'ordre de f(e). Cela contraste
avec [SS1], ou il faut un incrément de |log|loge|| pour ajouter un vortex.

3 Ligne de vorticité

Toujours dans le cadre périodique, le septieéme chapitre est consacré a construire une
suite de solutions (u., A.) des équations de Ginzburg-Landau (1.2) telle que dans
la limite e — 0 et pour des champs appliqués bien précis, les vortex de (ug, Ac) sur
K se concentrent sur un nombre fini de lignes horizontales. La méthode consiste a
minimiser I’énergie de Ginzburg-Landau parmi les configurations périodiques (u, A)
(c’est adire (u, A) € A) ayant de plus une symétrie par des translations bien choisies
données comme suit

u(@ + 5,y) = u(z,y) e £V

Az + o-,y) = Az, y) + V E(x,y),
avec £ € H ZQOC(RQ,R) et p. € N est une fonction de ¢ telle que la limite suivante

existe et ne s’annule pas

a=2m lim Pe .
e—0 heg

Pour hey < C |logel|, on peut associer a un minimiseur (u., Ac) de ’énergie de
Ginzburg-Landau une mesure de vorticité analogue a (1.5). On montre que sur K
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et dans la limite ¢ — 0, elle est portée par un nombre fini de lignes horizontales. En
outre, elle attribue a chaque ligne une masse appartenant o Z. Ensuite, sous une
relation bien précise liant A & «, on prouve que la mesure limite de vorticité n’est
pas nulle. Ceci implique plutot qu’il y a au moins une ligne horizontale de vorticité.
Malheureusement, on ne connait pas explicitement la mesure de vorticité lorsqu’elle
est non nulle. Mais, dans le cas ou la restriction de la mesure limite sur K est portée
par une seule ligne horizontale, on précise la valeur de sa masse.

4 Cercle de vorticité

Le huitieme chapitre répond a une question posée par Sandier et Serfaty dans [SS5],
et consiste en la construction d’une suite de points critiques (ue, Az) de Jq ou Q
est un disque de rayon R telle que dans la limite ¢ — 0, la vorticité de (ue, A-) se
concentre sur un nombre fini de cercles concentriques de rayon strictement positif
et de centre, le centre de disque. Pour cela, on minimise 1’énergie Jo parmi les
configurations (u, A) € H'(Q, C) x H'(, R?) présentant certaines symétries données
par

S 2T

u(z: e’ ¥> = u(z) € ¥(x)

27w

A(m e %) =c'e Alx)+e « Vi(z),

avec ¢ € HIZOC(RQ,(C) et g € N est une fonction de ¢ telle que la limite suivante
existe et ne s’annule pas

Pour he, < C |loge|, on peut construire, a partir d’'un minimiseur (u., A;) de Jq,
une mesure de vorticité notée fi.. Puis, quite a extraire une sous-suite €,, on montre
que la limite faible de ZETZ dans H'(Q) notée hy est radiale et que la limite de fi., au
sens des mesures de Radon est égale & —Ahs + hoo. Cette mesure limite est portée
par un nombre fini de cercles concentriques de rayon strictement positif et de centre,
le centre du disque. De plus, elle attribue a chaque cercle une masse appartenant a
2 m B Z. Notons que le cas ol —Ahy + hoo = 0 n’est pas exclu. Cependant, sous
certaines hypothéses, la mesure —Ahs + hoo n’est pas nulle. En effet, on prouve
que pour tout R > 0 et pour tout 3 > 0 petit, il existe une relation bien choisie liant
A a 3 de fagon a ce que
—Ahso + hoo # 0.

Signalons que la preuve nécessite quelques propriétés sur les fonctions de Bessel
modifiées du premier ordre. Ceci montre qu’ il y a au moins un cercle de vorticité de
centre, le centre du disque. L’inconvinient est qu’ on ne connait pas explicitement la
mesure de vorticité lorsqu’elle est non nulle. Cependant, dans un cas tres particulier,
si la mesure de vorticité est portée par un seul cercle avec une masse bien donnée
egale a 2 m 3, on peut caractériser ce cercle par la donnée de son rayon qui sera
I'unique solution d’un probleme de minimisation.
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5 “Pinning” des vortex

Enfin dans le neuvieme et dernier chapitre, on s’intéresse a 1’étude du signe des
degrés des vortex qui interviennent dans un modele de Ginzburg-Landau avec un
probleme de 'ancrage (“pinning”) des vortex, étudié par André, Bauman et Philips
dans [APB]. Dans ce cas, I’énergie est

1 . 1 1
T, A) = /Q]Vu—zAuP—i—Q /Q|h—hew|2—|—4€2 [ (o= lupy

Le poids a(z) est positif et s’annule en un nombre fini de points notés {x1, ...,z }.
Pour x = % et un champ appliqué he, suffisamment grands, André, Bauman et
Philips ont montré que les minimiseurs (ue, A;) de J. sur H'(2,C) x H' (2, R?) ont
une structure non triviale de vortex pres des zéros x1, ..., z,. Notons d; le degré de
ue autour du point x;. Le n-uplet d’entiers d = (dy, ...,dy) est un minimum d’une
fonctionnelle bien déterminée sur Z"™. On s’intéresse au signe des degrés d;, et on
montre que, dans des cas tres particuliers, les degrés sont positifs. On donne aussi
des indices qui laissent penser que, pour certains choix de poids a(x), ceci pourrait
étre faux.
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Plan of the thesis

Our interest is to describe the repartition of the vortices in minimizers of the
Ginzburg-Landau energy J over appropriate spaces according to the value of the
applied field. The plan of the thesis is as follows:

In chapter 1, we have introduced some notations and given some known results
on vortices. In addition, we have stated the main results which will be proved in
the rest of this work.

In chapter 2, we introduce the periodic Ginzburg-Landau model, and in chapter
3, we give results concerning the minimization of the energy J over a space denoted
by A presenting some periodicities and we consider the Ginzburg-Landau equations,
these are a system of partial differential equations that are derived from the model.

In chapter 4, we construct a family of vortex balls in the periodic setting and we
give precise lower bound of the energy on these balls.

According to the value of the applied field h.,, we give in the chapters 5 and 6,
some results concerning the repartition of the vortices and their number of global
minimizers of J over the space A as ¢ — 0.

First, in chapter 5, we take the case of applied fields he, which are of the order of
O(|log ).
Second, in chapter 6, we take applied fields close enough to the first critical field
H., ~ % defined by

he:p = Hc1 + f({—:),

where f(e) = o(]loge|) and f(e) tends to +oo as € — 0.
Moreover, in chapter 7 we construct a sequence of periodic critical points of J

such that as € — 0, the repartition of the vortices on the square K is supported on
a finite number of horizontal lines.

In chapter 8, we show that the distribution of the vortices is scattered on a finite
number of concentric circles of positive radius and of center, the center of the disk.

Finally, for bounded applied fields he,, we are concerned in the chapter 9 with

the study of the sign of the degrees of the vortices intervening in a Ginzburg-Landau
model with pinning.
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Chapter 2

The periodic Ginzburg-Landau
model

In this chapter, we define the periodic Ginzburg-Landau model and we give the
space where we minimize the Ginzburg-Landau energy. Moreover, we state some
properties of this space. Finally, constructing a gauge transformation, we obtain an
equivalent minimization problem.

1 Definitions

First, we give some classical properties of Sobolev spaces that we will need later.
Letting n € N*, 1 < p < 400 and m € Z, we say that a distribution f on R"
belongs to W™P(R") if

8a1+a2+7..+anf

D*f .= IS e € LP(R"), Ya; € N such that |a|=a1+...+a, <m.

(2.1)
Let O be an open domain of R"™, then we define similarly as the above the spaces
W™P(0) (respectively W, »P(R™)) by imposing that the derivatives until the order
m belong to LP(O) (respectively L} (R™)). Note that the above derivatives are
taken in the sense of distributions. We set

HL(R™,R) = W,™2(R™).

Now, let us give from [B] or [GT] or [Ad] some Sobolev’s injections which will be
useful for the rest. In particular, we state

Theorem: For p such that 1 < p < 400, we have with ¢ = T:’—_pp, the following
injections
(i) if n > p, then W,2P(R™) © LL (R™).

(ii) if n = p, then Vr such that n < r < 400, we have VVllof c Lj . (R™).

(ifi) if 7 < p, then WLP(R™) € CO(R™).

Moreover, if 1 < r < ¢ and if O is relatively compact of R™, then WP(O) c L"(O)
and the injection is compact.
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Before all, let K be any square in R?. The free Ginzburg-Landau energy of a
superconductor given by (1.1) is

1 1 2
Tl 4) = /K|Vu—iAu|2+2 /K|h—h@,;|2+’jl /K(1—|u|2)2. (2.2)

The superconductor is assumed to be an infinite vertical cylinder of section K.
A : K — R? is the vector potential, and the induced magnetic field in the material
is h = curlA. The complex-valued function u is called the “order parameter” and
K > 0 is the Ginzburg-Landau parameter. x is a dimensionless constant and from
now on we take kK = %, € > 0. ¢ represents the scale of variation for the supercon-
ducting order parameters, and in some sense measures the radius of the core region
of an isolated vortex. hey = heg(€) > 0 1is the applied magnetic field on the boundary
of the superconductor. One can refer for example to [Ab], [SS1], [SS2], and [SS3] for

a discussion of the functional J = Jg.

Definition 2.1. A vortex is an isolated zero of u such that restricted to a small ball
C around it, the map ﬁ =¢e'%:C — S has a nonzero winding number d, the degree
of the vortex, defined as follows

0

% _9 7 d,

C 87’

where T is the unit vector such that if v is the inward pointing unit normal vector on
C, then (1,v) is at each point of C a direct orthonormal frame. Away from vortices,
it is expected that |u| ~ 1.

Definition 2.2. We say that a function T is periodic if it is periodic with respect
to the lattice determined by the vectors ¢ = ((1)) and j = ((1)), meaning that
T(x+1y) =T(zr,y) =T(x,y+1) Y(z.y) €R” (23)

Here, T may be scalar or vector-valued and may be real or complex-valued. Note
that (2.3) implies, for differentiable T, that

oT _ar _ar )

%(954'1&)—%(%?/)— 61,($7y+1) V(z,y) € R?,
and or or oT

il 1.9) = — = 1 R2.

3y (x+1,y) oy (z,y) a9 (z,y+1) V(z,9) €

The subtlety of the periodic Ginzburg-Landau problems is that periodic magnetic
fields and currents are generally represented by non-periodic potentials A and order
parameter u. One setting for such periodic problems is via the t’ Hooft boundary
conditions [Th], for which one demands that A and u be periodic up to a family of
gauge transformations from one period cell the next. This is given as follows
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Definition 2.3. Let (u,A) be in H. (R* C) x H} (R? R?). (u, A) belongs to the
space A if there exists (f,g) € H? .(R%,R) x H? (R* R) such that

u(@ +1,y) = u(z,y) e F#9)

. 2.4
w(z,y+1) = u(z,y) e 9@, 24

and
A+ 1,y) = A(z,y) + Vf(z,y)

(2.5)
Alz,y+1) = A(x,y) + Vg(z,v).

The conditions (2.4) and (2.5) are called in physics the t’"Hooft’s boundary con-
ditions. We can refer to [ABB], [ABS], [DGP] to find configurations (u, A) which
are given analogously as in the definition 2.3.

2 Some properties

As was noted in definition 2.3, the order parameter u, or more precisely, the phase of
the order parameter, and the magnetic potential A are not periodic (in the sense of
definition 2.2). The first of the basic interpretations of the periodic Ginzburg-Landau
model for superconductivity concerns the periodic nature of the physical attributes
of the superconductor, meaning that the density of superconducting charge carriers

|u|?, the magnetic field h and the free energy .J are periodic with respect to the

lattice vectors 7 = ((1)) and j = ((1)) Indeed, taking the curl in (2.5), then since

curlV f = curlVg = 0, hence the induced field h defined by h = curl A satisfies

h(z+1,y) = h(z,y) = h(z,y + 1).

Let locally v = |u| ¢!¥ = p €'¥ where ¢ denoted the phase of the order parameter
u. We get from (2.4)

ple+1,y) = pla,y) = p(z,y +1).
Now, again from (2.4)-(2.5), it is obvious that

(Ve =A@ +1,y) = (Vo = A)(z,y) = (Vo = A)(z,y +1).
We replace u by p ! % in (Vu —i A u) to write

Vau:=Vu—iAu
=(Vp+ipVep)e'? —ipAe?
—(Vp+ip(Vo—Aa)) e
It follows that
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Vaul® = [Vpl2 + * [V — AP (2.6)

Let (u, A) € A. Thanks to the above, it is easy to remark that the fundamental do-
main of periodicity is any square K C R? of sidelength 1. Without loss of generality,
we take

K =1[0,1[x[0,1].

Again from the above, it suffices to compute the energy .J given by (2.2) over the
period K = [0, 1[x[0, 1[. Using (2.6), J can be written as follows

1 1 1
J(u,A>=JK<u,A>=2/K|Vp|2+p2|w—A2+2 /K|h—hm2+4€2 /Ka—p?)?.

For (u, A) € A, we define the quantity

I (z,y) = f(z,y) — f(z,y+ 1)+ gz + 1,y) — g(z,y), V(z,y) € R2. (2.8)
Moreover, we define

1

N = —
2m K

Now, we give a classical property for (u, A) belonging to the space A.

Lemma 2.4. Let (u,A) € A. Let h be the magnetic field defined by h = curlA,
then I1(z,y) defined by (2.8) is independent of (x,y) and belongs to 2 © Z if u is
not identically zero. Moreover

1
N =—11(0,0) € Z. (2.10)
2T

Proof: Decomposing the potential A(x + 1,y + 1) into two different ways, we
obtain the following equations

Az + 1,y +1) =A(z,y) + Vf(z,y + 1) + Vg(,y)
=A(z,y) + Vf(z,y)+ Vg(z + 1,y).

Then, by identification, we can write for all (z,y) € R?

Thanks to (2.8), this means

VII(z,y) =0 V (x,y) € R

22



This implies that the function I7 is independent of (z,y). Also,

7 x,y+1 x,
w(z+ 1,y +1) =u(z,y) e (f( y+1)+g( y))

—u(z, y) 6%’ (f(w,y)+9(ar+17y)>.

Thus, if u is not identically zero then for some (z,y) € R?

(f(afyy) —flz,y+1) +g(z+1,y) —g(w,y)) €2nZ.

Combining the two above properties of the function II, we can say that II is a
constant in 2 m Z. Now, integrating the magnetic field strength over the basic unit
period cell K and applying Stokes’” Theorem, we get

/ / curlA = A T

1

| (2.11)
/ A1 $ 1 A1 l’ 0 / AQ 1 y A2(O>y)) dya
0 0

where A = (A1, As) and 7 = v+, v is the exterior unit normal on the boundary of
K, and A.7 is the component of A in the direction 7. Referring to the definition
2.3, we have

Ai(z+ 1,y) — Ai(z,y) = Oz9(z,y)

A2(x7y + 1) - A2($7y) = 8yf(x7y)7
where V = (0,,0,). We insert these equations in (2.11) to get

/ h=(0,0) — £(0,1) + g(1,0) - 9(0,0)
K (2.12)

=11(0,0).

Hence, by definition of N given by (2.9), we find

1 1
N=_—— / h=— II(0,0).
27 K 2m

Thus, N € Z. Hence, the total flux per period cell is quantized for any element of
A. O
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3 The minimization of the energy J

In this paragraph, our interest is to study the following minimization problem
inf  J(u,A). 2.13
Wt (u, A) (2.13)

First, we remark that the A given by definition 2.3 is neither a vectorial nor affine
space, because of the gauge invariance. Hence, we need to choose a gauge transfor-
mation that makes easy the study of (2.13).

3.1 Gauge transformation

For (z,y) € R2, we introduce the potential vector C = % (7Y). Then, C verifies

divC =0 and curlC = 1.

First, we need to state the following definition

Definition 2.5. Let (u1, Q1) and (u2,Q2) be in the space A. We say that (u1, Q1)
is gauge equivalent to (uz, Q2) if there exists ® € H2 (R?) such that

loc

Q1=Q2+ VP in R?

up =ug et ®  in R2.

Now, we give a gauge transformation in order to find an equivalent study to the
minimization problem (2.13).

Proposition 2.6. Let (u, A) be in A and N be defined by (2.9). Then, there ex-
ists (v, P) € H- (R?,C) x H} (R? R?) such that (u, A) is gauge equivalent to the

loc loc

configuration (v,2 m N C + P) where
v(z+1,y) = "NV u(z,y) V(z,y) R? (2.14)
v(z,y+1)=e "N y(z,y) V(z,y) R? (2.15)
P s periodic,
divP=0 in R
If N # 0, then we can impose that [, P = 0.

Proof: See [D], Theorem 2.3.2. We can also see [ABB] where there is a similar
result on fixing a gauge in the case of the Lawrence-Doniach model. O

Remark 2.7. Thanks to the definition 2.5, the fact that (u, A) € A is gauge equiv-
alent to the configuration (v,2 m N C + P) means that there exists a function
o € H? (R?,R) such that

A=2aNC+P+Vo in R

‘ (2.16)
u=wve in R2
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Let us fix d € Z and let v € HL

loc

(R%,C) such that V (z,y) € R?

v(x+1,y) = e T o(z,y)
‘ (2.17)
v(z,y+1) = gimdz v(z,y),

then, we are in a situation to introduce the new space

(v, P) € H} (R?*) x H. (R?,R?) such that (2.17) is verified,
By := . (2.18)
P is periodic, div P=0 in R? and [, P=0if d#0

Observe that By is a vector space. Let us define

B = UgezBa. (2.19)

By definition of B, we can write

(v,P)e B<=3 deZ, (v,P)eBy. (2.20)

Now, let (u, A) be in the space A. Then, going back to lemma 2.4, the N given in
proposition 2.6 which is such that
/ h=2m N,
K

is in Z. Consequently, combining the properties of (v, P) defined by proposition 2.6,
we can write referring to (2.18)

(v, P) € By.

In particular, this yields (v, P) € B. In the next paragraph, we will give an equivalent
to the minimization problem (2.13).

3.2 The equivalent minimization problem

First, we take d to be fixed in Z and (v, P) € B,. Taking

u=7v and Az27rd5+P,

it is clear that (u, A) is in the space A and is gauge equivalent to the configuration
(v,27d C + P). Moreover, in particular for h = curl A, we find

/h:2ﬂ'd,
K

since curlC' =1 and / i curlP = 0 which follows from the fact that P is periodic.
Second, reciprocally let (u, A) € A and N be such that N = ﬁ Jr h. We know
that N € Z, and then the proposition 2.6 implies that there exists (v, P) in By such
that (u, A) is in addition gauge equivalent to the configuration (v,2 7 N C + P).
Obviously, the energy J is invariant under the gauge transformation (2.16), hence
we have for (u, A) € A,
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J(u, A) = J(v,27 N C + P).

For d € Z, let us take the function G defined over By given as follows

G(v,P) =J(v,27dC + P)

_2/K\Vv—z(27rd0+P)v —1—5 /K\27rd—|—curlP—hem] (2.21)

1
L 1— 1ol2)2.
g [ =)

As a consequence of all the above, we can deduce that the minimization problem
(2.13) of the energy J over the space A is equivalent to the minimization of G over

the space B, i.e.
inf J(u, A) = inf G(v,P)=inf G(v, P). 2.22
inf J(u, A) b (v, P) = inf G(v, P) (2.22)

Now, we calculate the quantity

1
5 /K|27Td+curlPhex|2. (2.23)

Thanks to the periodicity of P, we find

/ (27 d— heg) curl P =0. (2.24)
K

Then, we use (2.24) in the decomposition of (2.23) to get

1 1 1
= / 127 d+ curl P — heg|® = = / 127 d— heg|® + = / lcurl P|?.  (2.25)
2 Jk 2 Jk 2 Jk

Consequently, inserting (2.25) in (2.21), we obtain for (v, P) € By

1

- 1 1
G(U,P):/|w—i(27rdc+P)v|2+/(1_|v|2)2+/|27rd—hm|2
2 K 462 K 2 K

1
+= / |curl P|?.
2 Jk

The next chapter is devoted to study

(2.26)

iréfG(v, P), (2.27)

where G is the functional given by (2.26) and B is defined by (2.19).
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Chapter 3

Minimizers and critical points of
the Ginzburg-Landau energy in
the periodic model

This chapter describes the periodic model introduced at the end of the chapter 2.
In the first part, we are concerned with the minimization of the functional G over
the space B. In the second part, we give the critical points of G and we give their
regularity.

1 Existence of minimizing solution for the functional G
over the space B

Here, we are concerned with the study of the minimization of the energy G over the

space B. More precisely, we will prove that the functional G has a minimizer over

the space B. We define the space By by (2.18) and we take K to be any square of
sidelength 1.

Proposition 3.1. The minimum of G over the space B is achieved.

Proof: Let
- (v, P) (3.1)

Because the functional G is positive, this infimum exists. We consider a minimizing
sequence (vy, P,,) in B. Then, P, is periodic, divergence free and with zero mean in
K. There exists d,, € Z such that

(Un, Pn> S Bdn-

First, (1,0) € B because (1,0) € By. Then, testing the energy G by the configuration
(1,0), we get

1
G(vn, Po) < G(1,0) = 5 hZ,.
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If d,, = 0, then necessarily G(vy,, P,) = % h2,, and then the infimum of the functional
G is obtained for the so-called pure state v, = 1 and P, = 0. The interesting case
corresponds to d,, # 0. From (2.26), since (G(vy,, P,))r is bounded, then (d,), also.
Taking a subsequence, we may assume (d,,),, to be constant and equal to some d € Z.
Still from (2.26), (curlP,), is bounded in L?(K). Since P, is divergence free and has
zero mean in K, this implies that (P,), is bounded in H'(K) and by periodicity in
H'(U) for any bounded open subset U of R?. In particular, by Sobolev embedding,
(Py)r is locally bounded in LP for any 1 < p < +o0.

As for (vp)n, the potential term in (2.26) guaranties that it is locally bounded in
L*. Moreover, (an —i(27dC+P) vn) is bounded in L?(K) and by periodicity

is locally bounded in L?. Using the L* bound on v, and the LP bound on P,, we
get that Vv, is locally bounded in L?, hence (vy,), is locally bounded in H'. Then,
passing to a subsequence and using a diagonal argument if necessary, (v,), and
(P,)n weakly converge in H' on every bounded open set in R?. Reasoning as in
[BR], the limit minimizes G. O

Remark 3.2. We remark that a minimizer (v, P) of the functional G over the space
B depends on the parameter e, so we will take (ve, P-). But, when it is not necessary
to take the £ and to keep the subscripts, we write (v, P) instead of (ve, P:). Thanks
to (2.22), we remark in addition that the minimum of the energy J over the space
A is achieved.

2 Properties of Critical points

Let (v, P) be a minimizer of G over the space B. By definition of B, there exists
d € Z such that (v, P) € By. If d = 0, G(v, P) = G(1,0) = % (the superconducting
phase). The interesting case is when d # 0. In this paragraph, letting d # 0, we will
prove that (v, P) has the regularity C*° and verifies a system of partial differential
equations. Let V+ and < .,. > denote respectively (—0q, 0y) and the scalar-product
in C identified with R?, where V = (9, 9,). First, referring to [D], we can have

Proposition 3.3. For d € 7Z, let (v,P) € By be a critical point of G. Then,
(v, P) € C2(R%,C) x C2(R%,R?) and
—Vio = 6% v(l—|v?) in R2
(3.2)
—VteurlB =<iv,Vgv> in RZ

where B=21dC + P.

Now, let (v, P) be a minimizer of G over the space B. By definition of B, there
exists d € Z such that (v, P) € By. Then, in particular (v,2 7 d C + P)is a
minimizer of the energy J over the space A. Consequently, any minimizer of J over
A has the form (v e'”,2 w d C'+ P+ Vv) where v € H} (R%*R). Now, let (u, A) be
a minimizer of the energy J over the space A, so there exists k € H7 (R% R) such

that
(u, A) = (ve'* 21 dC+ P+ Vk), (3.3)
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where (v, P) is a minimizer of G over the space B and (v, P) € B;. Since it is
easy that (3.2) is invariant under the above gauge transformation, we can state the
following corollary

Corollary 3.4. Any minimizer (u, A) of the energy J over the space A satisfies

—Viu = E% u(l—|u?) in R?
(3.4)
—ViteurlA =< i u, Vau > in R2.

Theses equations are termed the Ginzburg-Landau equations.

3 Remarks on the Ginzburg-Landau equations

In this section, we prove a few elementary results concerning solutions of the Ginzburg-
Landau equations (3.4), that are going to be useful for the rest and that help un-
derstand the idea of the proofs.

First, let (u, A) € A be a critical point of J and let N be the corresponding degree.
Then, thanks to proposition 2.6, (u, A) is gauge equivalent to (v, B), where

B=2xNC+P, (3.5)

and it follows from the preceding section that (v, B) is smooth. In particular |u|? =
|v|? is smooth and similarly are all the gauge-invariant quantities.
Now, we give a standard property for the Ginzburg-Landau equations (3.4).

Lemma 3.5. Any solution (u, A) of the Ginzburg-Landau equations (3.4) satisfies

|l oo (m2) < 1. (3.6)

Proof: Let (u, A) be a solution of the Ginzburg-Landau equations (3.4). Let us
adapt the same notations as the above on the configuration (v, B). First, we have
|u| = |v], so to prove (3.6), it suffices to show that |v| < 1, which follows from the
maximum principle. Indeed, we will check that at the points where the density of
the superconducting electrons which is |v|? is maximum, the inequality |v| < 1 holds.
From (3.2), we can write under the gauge divB = divP = 0 which is known as the
Coulomb gauge.

v . .
Av= (b -1)+[BPv+2iB Vv in R (3.7)

Let us calculate the laplacian of |v|?

Alv|? =0 Av +v Av + 2 |[Vo|?
=2 Re(T Av) + 2 |V
We replace Av with the right-hand side of (3.7) in the above to get
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2
Al == [of? (Jv]* = 1) + 2 |B|* [v]* + 4 Re(i v B .Vv) + 2 |i Vo
9

(3.8)
2
=53 o (W =) +2|Vo—i Bof”

Let z € R? where the maximum of the function |v|? is achieved, then (A]v|2> (z) <0.

We obtain from (3.8) that necessarily |v|(z) < 1. z is a maximum hence by continuity
of v the inequality |[v| < 1 is true everywhere. 0

The following two inequalities, in particular the last assertion, will be very useful
in the sequel.

Lemma 3.6. Let (u, A) be a solution of the Ginzburg-Landau equations (3.4) and
h = curl A. Then
|V qul? > |Vh|?, (3.9)

and 1
Tic(us A) = 5 (b = heal | - (3.10)

Proof: We have noted locally, u = p e’ ¢. First, (2.6) is

IV aul? = [V + p* [Vo — A,

Moreover, the second Ginzburg-Landau (3.4) gives us

Vh|=|<iu, Vau>|=p? Vo — Al

Hence Vi
v
2 _
This implies that
Vh|? _ |Vh|?
Vauf = v+ 0 > L

P
Using p < 1, we get (3.9). Returning now to the energy given by (2.7), we can write
using (3.9)

1 1 1
A) == 2, - —heg? 1— 2)2
JK(U, ) 5 /K‘VAU +2 /K‘h h ‘ +4<€2 /K( /0)
1 1 1
>= hl? + = h—he*+ — [ (1—p%)?
—2/K‘V‘+2/K’ ’+462/K< &

1 1
> hi?2+ = h— heyg|?
>3 [V [ el

1
=5 lIh = heallF i)

(3.11)
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O

We state the following a priori estimates of (u, A) solution of the Ginzburg-
Landau equations (3.4). Set locally p = |ul.

Lemma 3.7. Let (u, A) be a solution of the Ginzburg-Landau equations (3.4) and
h = curlA. Then

Vol Lo (r2) < g, (3.12)
IV aul| Lo (m2y < g, (3.13)
I~ heallop w2 < 5 (3.14)
1 = heallr (me) < g (3.15)

Proof: These estimates are proved in [HP], proposition 4.2, see also [P] lemma
7.1. They rely on a blow-up at scale e, which leads to equations at scale 1, for which
all the quantities are uniformly bounded. a

Remark 3.8. Let (u, A) be a minimizer of the energy J over the space A. In
particular, it is a solution of the Ginzburg-Landau equations (3.4), and then the
results of lemmas 3.5, 8.6 and 3.7 remain true.

From now on, we will only consider the energy J and take the configurations (u, A)
which are in A.
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Chapter 4

Construction of vortex balls

In this chapter, keeping the same notations as in chapter 2, we define the vortices
of (u,A) € A with their degrees, by defining balls (B@) g such that u| > 2 on
1€

K\ Ujer B;. We also give a suitable lower bound of the energy J on the balls B;
which will be very useful for the rest.

1 The main result
In this chapter, we take applied fields he, satisfying the a priori bound
hex < C |loge|.

We take K to be any square of sidelength 1. Now, we define some quantities that
will be useful in the sequel. For (uc, A.) € A —where A is given by definition 2.3
— we set for any compact O C R?

1 , 1
Fe(ue, Ac, 0) i= 5 /O |Vue —i Az uel?® + = /0(1 — |uc|?)2. (4.1)

We know that the quantities |Vu. —i Ac uc|?, (1 — |uc|?)? and he are periodic, thus
there exists C' > 0 depending on O such that

Fg(ue,Ag,O) S CFE(UE,AE,K), HhEHLQ(O) S C Hh’EHLZ(K) (42)
Let us define

Ve = Hha”LQ(K)~ (4.3)

Now, we construct a family of disjoint balls (B;); containing the set {|u| < 2}. The
main result is

Proposition 4.1. Let K be any square of sidelength 1. If he, < C |logel, there
exists €9 such that if ¢ < g9 and (us, Ac) € A satisfies |Vue — i Az ue| < g,
Ye = llhellz2(k) < C hex, and

FE(“’E?A&JK) <Ca; hez,
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where 1 € a. < C |loge| and m. = o(1) satisfy

log .

< M, (4.4)
Qe

then there exist a square of sidelength 1 still denoted K and a family of disjoint balls
(Bi = Bi(ai,ri)) ; of center a; and of radii r; satisfying
1€

€

3
(€ K, Jue(@)] < 3} C Uier. B (4.
User. Bi(ai, ) C K, (4.6)
S < Cag e, (4.7
icl.
card(I;) < C ag heg, (4.8)
Fs(“a: A67Bi> > ’dz‘ (’ loge\ — logye —me. 065>, (4~9)

where d; is the degree of the map ﬂ; restricted to 0B;.

Remark 4.2. Thanks to the construction of the vortex balls that we recall in the
above proposition, the fundamental domain of periodicity of (ue, A;) in A will be
from now on the square K = [0,1[x[0,1][. We will refer to (ai,d;)ic1. as the family
of the vortices defined on K associated to (us, Ac) and to (Bj)icr. as the family of
the vortex balls. In particular, the balls (B;)icr. can be extended by periodicity to
R2. For this, for any i € I., denote by B; = B; 0,0, then we let B;,m be the ball
image of B; = Bj o0 by translation of vector (n i+m ;) where n and m are in Z .
Going back to (4.5)-(4.6), then by periodicity of |us|, we can write

3
lue| > 1 on Rz\( UieI., n,mez) anm)

Let us give the meaning of the different inequalities given in the proposition 4.1.
First, (4.5) locates the set where |u.| is less than 2, which is contained in a union
of the disjoint balls (B;);er.. Second, from (4.6), there is no intersection between
the balls and the boundary of K. Finally, (4.7) gives us a control on the size of the
balls and (4.9) states a lower bound of the energy. Note that d; be the degree of IZZ\

restricted to 0B; = 0B;(a;, ;). Writing locally |“€| = ¢’ %<, then by definition of d;,
we have

di = deg(k)

| |

0B;) = —

Ve .T.
27 Jon, ver

Now, taking B; 10 which is the ball image of B; o by translation of vector Z, we
have

1
deg( ,0Bj10) = / Ve .T. (4.10)
| | 2 T JoB;a,0
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Thanks to (2.4), there exist | € Z and f € H?_(R?) such that V (z,y) € R?

pe(@,y) = (= Ly)+ fla—Ly)+2m L
We take the gradient

Obviously,
1 dpe _ 1 Op.  Of

ﬂ 83'10 87’ _271' BB'OO 87’ 87'.

feH , hence it is continuous on R2. Then, in view of curlV f = 0, we obtain
loc

/ g = curlV f = 0.
9B;0,0 or B; 0,0
Thus, for any ¢ € I,
1 dpe 1 Dipe
deg 831,1’0 = — / = — = d = deg 6310 0
(\ ue|’ ) 27 Joapi,, OT 27 Jom,,, OT (] e|’ )
(4.11)
Similar to (7.51), we can prove for any ¢ € I and n,m € Z
d; = deg( ,0Bi0,0) = deg( OB n.m). (4.12)

This means that the degree is invariant under periodicity.

Isl

2 Corollaries from Proposition 4.1

Corollary 4.3. Under the hypotheses of proposition 4.1 and using the notations
there, we have

Fo(ue, Ae B) > 7 |d| [loge| (1= o(1))), (4.13)
and if v- = O(a),
F.(ug, Az, B;) > |d| (\ loge| — C m,. 045). (4.14)
Proof. Combining the assumption a. < C' |loge| together with 7. < C |loge| in
(4.9), the lower bound (4.9) rewrites as

Fe(ue, A, Bi) > 7 |di| | loge| (1 - 0(1)>.

In the case where 7. = O(a.), we have from (4.4)
logve + me ae <logC + log a. +me a. < C m; ag.

Inserting this in (4.9), the proof of (4.14) is completed. O
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The second corollary is

Corollary 4.4. Let (u., Ac) € A satisfying the hypotheses of proposition 4.1 and
he = curlA; be the induced magnetic field, then

N.=> d, (4.15)

1€l

where the family (d;)icr. is given by the proposition 4.1 and N, = ﬁ [ he

Proof. Let
Ug i
We = =e' e, 4.16
€ ‘us‘ ( )
Then
(1 we, Vwe) = Re(i we Vwe) = V. (4.17)

It follows that curl(i we, Vw:) = 0 in K\ Ujer. B;. In particular,
/ curl(i we, Vwg) = 0. (4.18)
K\UzEIEB

Thanks to (4.6), which is U;er. Bi(a;,r;) C K, (4.18) implies

8’(05 / aws
,L wE) Z wa, . 419
/8K Z 0B; ( )

el

Hence from (4.17), (4.19) reads
Dipe / e
= . 4.20
OK 87' ZGZIE 8B; 87’ ( )

On the one hand, by definition of the degree d; of IZfI restricted to dB;, we have

Ope ,
Z/BB =27 > d (4.21)

’LEI ie[s

On the other hand, using definition 2.3, a simple calculation gives

1 1
0
8% :/(A1(337 1) — Ai(z,0)) / (A2(1,y) — A2(0,y))dy
oK 0T
0
(4.22)
=/(0,0) = f=(0,1) + (1, 0) — 9-(0,0)
=I1.(0,0) =2 7 N..
Combining now (4.21) together with (4.22) in (4.20) proves (4.15). O
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3 Proof of Proposition 4.1

Here, let © C R? be the smooth, bounded and connected section of the supercon-
ductor. We consider (u,A) € H'(Q,C) x H(Q,R?) and h = curlA the induced
magnetic field. We use the method of R. Jerrard introduced in [J] in order to con-
struct balls containing all the zeroes of u, on which we have a suitable lower bound
of the energy (see [Sa] for a similar construction). The size of the balls has to be
large enough, so that most of the energy is concentrated in these balls.

We follow closely the proofs of [J] and we adopt the presentation of [SS1].

First, we include the set {1’, lu(z)| < %} in well-chosen disjoint small balls B; of
radii r; > € such that
C T

FE(U,A, Bz) Z 5
e

where F¢(u, A, B;) is defined in (4.1). This is possible according to the following.

Lemma 4.5. Let u: Q — C, A: Q — R? be such that |Vu—i Au| < €. Then,
there exist disjoint balls B, ..., Bi of radii r; such that

(HV1<i<k,r>c¢,

3
(2) {z € Q, |u(z)] < Z} C Ui<i<kBs,

CT‘Z'

B)V1<i<h F(uABNQ)>—

3.1 Proof of lemma 4.5

We use the notation S(x,r) for the circle in R? of center x and radius r. Let
(u, A) € HY(Q,C) x HY(Q,R?) and h = curl A. Let us take

v = 1Rl 20,

then we will take v to be fixed and establish lower bounds for F. on circles in which
v appears as a parameter. For y € R, set y™ = max{y, 0}.
We have

Lemma 4.6. If u : Q — C and A : Q — R2?, there exist 7(2), C(2) such that
Vee, Ve <r<r(Q), letting m = ming,nq |ul,

(1—m)”

Fa(UaAaSr) > Cz

(4.23)
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Proof: We write locally u = p €' ?. For y = (y1,%2) € Sy, let 7(y) := ﬁ (—y2,41)
denote the oriented tangent at y. We start by

1 1 1
F.(u,A,S, :/ — V|2 + = p? W—A2+/ 1—[p|?)?
( ) sr2| "+ 5 0| "tz K( p[”)

1 1
> | S Vel 4+ — /(1—!p|2)2,
/Sr2 462 K

then, using lemma 2.5 of [J] completes the proof of lemma 4.6. O

Using (4.23) and replacing in the proof of lemma 3.1 of [SS1] the quantity
Jo IVul? + 55 [ (1 = [uf?)? with F.(u, 4, S,), the lemma 4.5 is proved.
3.2 Estimation on circle
From [J], lemma 6.1, we have the following

Lemma 4.7. There exist constants C,p > 0 such that if u : Sy — C and A : S; —
R2, where S; is a circle of radius t in R? such that t > ¢, then

Fo(u, A, Sp) > A(t,]d]),

where )
— mi m- IR AR S PR
AE(’I“,d)—mIél[IOI,IH{ . ((ﬁd 5 ) ) t s 1 —mlP 5. (4.24)
Moreover )
T ry \+t g
Ard) = [(d—2ﬁ> } [1—Cw], (4.25)

where ¢ = pil > 0.

Let us define a function A., which provides a convenient way of keeping track
of lower bounds on balls, and we record several properties of A.. First, denote by
a A b =min(a,b) for any a,b € R, and then we set for r > 0

Ac(r) == / Ae(s, 1) A %Ods, (4.26)
0
where ¢g is a constant to be selected below.

Remark 4.8. In [J], proposition 6.1, Jerrard has assumed that 7y is bounded inde-
pendently of € and has found that

1
Ac(r)>m logg +log(rAy™1) —C, Vr>o0.

However, this assertion remains true under the weaker assumption
ye<C.

For the reader ’s convenience, we will give a proof of this in the next paragraph.
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3.3 Properties of A,
The function A, satisfies the following properties.

Lemma 4.9. The function A is increasing. Moreover

(1) Ac(r +s) < Ac(r) +Ae(s) Vr,s>0.

is nonincreasing on R.

Assume that v < £, thenVr >0

(3) Ac(r) > log<r/;$) - C.

Proof: From the definition (4.24) of A, it is clear that A. > 0 and that r — A-(r, 1)
is nonincreasing. The first of these facts implies that A, is increasing; from the two
facts together it is easy to see that the assertion (1) holds.

Next, the assertion (2) is clear, since 1 A(s) is just the average over the interval
[0, 5] of the nonincreasing function 7 —— A.(r, 1) A 2.

Now, we provide a proof of the assertion (3). Recall from (4.25) that
" <1 _ i)
Ae(r,1) > ((1 5 ) SO ). (4.27)
We need to find a condition on 7 in order to obtain

(1) (o) < 125

First, (% - C TﬁL) < < whenever r > ¢ ¢ for some ¢z > 0. Second, the quantity

2
((1 - %)Jr) < 1 even when ~ is unbounded. Then, there exists ¢y > 0, which

is ¢g = 7 ca, such that for co € < r, the inequality (4.28) holds. As a result from
(4.27)-(4.28), we can write for cop e <r

co ry 2 /1 el
Al )AL > (1f +) <ffC—). 4.29
I G W N G (429)
Now, we assume that v ¢ < V. We distinguish the two following cases.
Case 1: r< %
Here, we can write

For@eﬁsﬁr,wegetsﬁ%,so
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Ac(r) =7 /2 (%—cs%) / =

"ol g vy
e [ (e iy [T L
/025 S 8q+1 co € ﬁ

A simple calculation gives us

27
R 2
Ac(r)>m log(f) —Cce | 7 s s — (7\/7? —c2¢) L
€ co € v ™

> 1og(£) +C (7)1 - C.
We find
Ae(r) > 7 1og(£) el (4.30)

Case 2: r > %

Here, we can write (1 — %ﬁ = 0. First, using the assumption v ¢ < ¢?, we can

state

stz [ x (0= 200 (e )

c2 €

2V

~ 5 +>2<1 8‘1>
> 1-— -—C —
_/02‘E 7T(( 2\/77) s satl

Since co e < s gTﬁZ
sy s
(1- )T =1-



Obviously as in the case 1,

sz [ (e ) (e )
= 2yr) 570
1

> log<2\/i7 +C (ey)?—-C.

We obtain

Ac(r)>m log(ry:) - C. (4.31)

From (4.30)-(4.31), we can deduce
rAL
A(r)>m log<T7> -C.

This completes the proof of lemma 4.9. a

3.4 Estimation on an annulus

The proof of proposition 4.1 involves dilating the balls B; ( which are defined by
lemma 4.5) into balls B]. A lower bound for F;(u, A, B}) is obtained by combining
the lower bound for F.(u, A, B;) and a lower bound of the energy on the annulus
BI\B;. In particular, referring to proposition 6.2 of [J], we have the following

Lemma 4.10. Vr > s > ¢, if B, and Bs are two concentric balls of respective
radii v and s, and if u : B \B; — C is such that |u| > 3, d = deg(u,dB,), and
A: B \Bs; — R2, then

F.(u, A, B\B,) > |d] (Ae(é) — A (ﬁ)). (4.32)

Also,
F.(u, A, B,\Bs) > A.(r) — A: (). (4.33)

3.5 Growing and merging

The method consists in starting from {|u| < 2}, and when this set is not too big,
including it the balls B;, 1 < ¢ < k that shall grow progressively. The energy on
each ball is controlled during the growth process thanks to lemma 4.10. Then, it
may happen that some balls intersect. We then merge them into a larger ball of a
radius equal to the sum of the merged balls, and check that we still have a suitable
lower bound on the energy over the new ball. We proceed with the growing and
merging until the balls have the desired size. For more details of this phenomena,
we can refer to [Sa]. The following lemma sums up the whole growth process.
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Lemma 4.11. Let u: Q — C, A: Q — R? be such that |[Vu—iAu| < € and {B;};
be a family of balls of radii satisfying the results of lemma 4.5.
Let

T
So = min (

ey
where d; = deg(ue, 0B;) if B; C Q and 0 otherwise. Then, for every s > sq, there
exists a family B(s) of disjoint balls B1(s), ..., By(s)(s) of radii v;(s) such that
(1) the family of balls is monotone,

(2) for every i, F.(u, A, Bi(s)) > M, where A is defined by lemma 4.10,

S

(3) if di(s) = deg(u,0B;(s)) with B;(s) C Q, then ri(s) > s |di(s)].

Proof: The proof is as in [SS1], proposition 3.1, replacing the quantity 3 fBi(s) |Vul?+
ﬁ fBl(s)(l - ’U|2)2 Wlth FE(U7A7Bi(S))‘ 0

3.6 The final balls

Now, we get as a consequence of the above, the following proposition which gives us
the final balls that we need.

Proposition 4.12. Let u:Q — C, A: Q — R? be such that [Vu —i A u| < % and
Fo(u, A, Q) < C o |loge| where 1 < a. < C |loge| and v < C |loge|, then letting
me = o(1) be any sequence verifying

log ac

<K Mg,
Q¢

there is an €y such that ¥V € < egqg, there exists a finite family of disjoint balls
(Bi = B(ai,ri)) - of center a; and of radii r; such that

i€
3
(1) {z € @, Ju(z)| < 1} C UienBi,
(2) Zri < Cage M
i€
(3) card T < C o |logel.
In addition

F.(u,A,B;NQ) > 7 |d;] <\ loge| + log(e_mg @A %—1))’ (4.34)

where d; is the degree of the map ﬁ restricted to OB; if B; C Q and is equal to 0
otherwise.
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Proof of proposition 4.12

First, consider the balls given by lemma 4.5, then apply the lemma 4.11 to get bigger
balls. If sg = min{d#o}(lg—?l), we must then check that sg is small enough to be able

to apply the lemma 4.11 for s large enough. By the assertion (3) of lemma 4.5,

Cri<eF.(u,A,BiNQ) < Ce|loge| ae, (4.35)

so that sg < C ¢ |loge| a.. We can apply the lemma 4.11 for all s > C ¢ |loge| a.
We take m. = o(1) any sequence verifying

log a

<K Meg.
Qe

Note that m. is positive. Now, we choose in particular

51 = e e %,

In other words, the lemma 4.11 yields the final balls B(s;) such that

Vi i B C O Fo(w A B) > U (o),

S1

with
ri(sl) Z S1 ]dz(sl)\

Furthermore

FE(U,A, Bl) 2 |d2(81)| AE(Sl).

Then, from the assertion (3) of the lemma 4.10, we have under v, ¢ < ¢

—1
Fu(u, A, 1) 2 1di(s)]| (7 1og 20 — ), (4.36)

which holds in our case because we have assumed that 7. < C |loge|, so for € a
small enough, 7. ¢ < ¢. We thus get the lower bound (4.34) on F.. Now, we will
prove the assertion (2). From the assertion (2) of the lemma 4.11,

3o Aelsr) 3" Fe(u, A, Bi(s1)).

S
i€l 1 i€

Since the balls (Bi(sl)) _ are disjoint,

1€

Z F€(u7 Aa B’L(Sl)) = F€(u7 Aa UiE—IBi(Sl)) S F€(u7 A7 Q) S C ’ lOgE‘ Q.
€]
It follows that
Zn(sl) <o |log el a. (4.37)
i€ Ac(s1)

Moreover, thanks to fact that v, and a. are less than C h,,, together with the fact
that m. > lof’;%, we have for e sufficiently small
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A(s1) > (| loge| + log(e™™= % A ’ya_l)>

> (| loge| — me a. —log 'ys) (4.38)
> C'|logel|.
We insert (4.38) in (4.37) to get
S1
Zm(sl) <C |loge| ae
° Aa(sl)
€ (4.39)

—Me Qe

<Csja.~Cage

Thanks to m. > loi%, we remark for a sufficiently small e

Zri(sl) = 0(1).

i€
There only remains to show that the assertion (3) holds. This is easy, since in lemma
4.5 each ball satisfies F.(u, A, B; N Q) > C £, with r; > ¢, hence carries an energy
that is bounded from below by a constant independent from . As F, < C a. |loge|,
we see that the number of these balls has to be bounded by C a. |loge|. Then, the
procedure of lemma 4.11 does not increase the number of balls, so that property (3)
is true. This completes the proof of proposition 4.12.

3.7 Completing the proof of proposition 4.1

Here, we apply proposition 4.12 in = [0, 2[x[0, 2[, taking u = u. and A = A, such
that |Vue — i Az ug| < g and F;(ue, A, Q) < C ag |loge| with

log o

l<a: <Clloge|, 7 <C |loge| and < me =o0(1).

£

The conclusion is that there exist balls (keeping the same notations) (Bi(ai, n)) -
1€ e
such that the assertions (1), (2), (3) and the lower bound (4.34) hold.

Lemma 4.13. If € is sufficiently small, there exist 0 < zop < 1 and 0 < yo < 1
such that there is no intersection between the boundary of the square K° = [xg, 2o +

1[X[yo, yo + 1] and any ball of the family (Bi(ai,ri)>

1€

Proof: We project the balls (Bi(ai,ri)) - on the horizontal line of equation
1€ e

y = 1 contained in = [0,2[x[0,2[. Then, since loi% < m. = o(1), the assertion
(2) in proposition 4.12 gives us

Z ri < Caze Mm% =0(1).

1€
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From the above identity and if ¢ is sufficiently small, there must exist 0 < zg < 1
such that the two lines contained in €2 of equations z = x¢ and x = x¢o + 1 don’t

intersect any ball of the family (Bl-(ai, rl)) - Similarly, using the same argument,

1€ e
then if ¢ is sufficiently small there exists 0 < gy < 1 such that there is no intersection

between the two lines contained in ) of equations y = yg and y = yo + 1, and the
balls (B,'(ai,n))

Consequently, fo; an ¢ small enough, it is clear that the boundary of the square
K° = [zg, 20+1[X [0, yo+1[ does not intersect any ball of the family (Bi(ai, rl))

ZE-IG
Now, let card(I;) be the number of the balls from (Bi(ai,ri)) - which are

€

contained in the square K°. It is obvious from the lemma 4.13 that (Bi(ai, m)) -
1€1e
is the new family of balls verifying, thanks to lemma 4.13,

Uier. Bi(ai, i) € K°. (4.40)
Remark that K° can be considered as the fundamental domain of periodicity for
(usa As) €A
The balls (Bi(al-, m)) - are disjoint, then by definition of I, the balls (Bi(ai, m)) o
1€ e 1€le
are disjoint too. Moreover, it is immediate that the assertions (1), (2), (3) and the
lower bound (4.34) in proposition 4.12 hold.
Finally, let (ue, Ac) verify the hypotheses of proposition 4.1, then referring to

(4.2), we can find that the hypotheses of proposition 4.12 remain true. Hence, using
the above completes the proof of the proposition 4.1 ( Here K° is the square of

sidelength 1 where the family of balls (Bi(al-, n)) ; is defined). Proposition 4.1 is
then proved with K = K.

€

Remark 4.14. Without loss of generality, we will assume that the square K above
is simply [0,1[x[0, 1].
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Chapter 5

Applied magnetic fields of the
order of H,

In this chapter, we assume that he; is of the order of H., where H. behaves for
€ —0as %. We will study in the limit ¢ — 0 the asymptotic behavior of global
minimizers (ue, Ac) of the Ginzburg-Landau energy Jx over the space A and we
will explore the vortex-structure of (ue, A:). In particular, our interest is to describe
the repartition and the number of the vortices. Our work will be based on the

construction of the vortex balls summarized in proposition 4.1.

1 Statement of results

Consider h., a function of ¢ and assume

A= lim 108€]

e—0 hex ’ (5.1)

exists and is finite. If A = 0, we require in addition that he, < E% We take K to
be any square of sidelength 1. Let (ue, A:) be a minimizer of the energy Jx over
the space A and h. = curlA; be the induced magnetic field. From now on, we will
write J instead of Jgk.

In the case A = 0, we have the following.

Proposition 5.1. Assume |loge| < hey < 6% Let h be the induced magnetic field

of a minimizing configuration (us, Ac). Then, }ZEE tends strongly to 1 locally in H*

and

lim 7J(u€, Ae)

lim 5 =0 (5.2)

Now, we restrict to the case A > 0, i.e. he, < C |loge|. We define the space V'

Vv ::{f € HIIOC(RQ, R) such that f is periodic and p = —Af+f is a Radon measure}.
(5.3)
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We define for f € V

By =2 [1-afsf+t (vl [r-ap, (5.4)
2 Jk 2 Jk 2 Jk

and

1 1
Pt =5 [ IVit+s [ IfP
We have

Proposition 5.2. There exists a unique hy such that

B(h.) = win B(f) = 5 — min P(f) = 5 — P(h),

where

Wo ::{f c HL.(R:R), f is periodic, and | f — | oo r2y <

N >

}. (5.5)

1.1 Notations

We recall some facts about the weak convergence of general Radon measures.
Theorem 1([EG])

Let v, v, (k=1,2,...) be Radon measures defined on R2. The following three state-
ments are equivalent:

(i) limg—oo fgo f dvk = [o f dv for all f € Co(R?).

(ii) lim supy,_, oo 4 (0) < v(O) for each compact set O C R? and v(U) < liminfy_ o v4(U)
for each open set U C R2.

(iii) limg_ oo vx(B) = v(B) for each bounded Borel set B C R? with v(9B) = 0.

Definition 5.3. If (i) through (iii) hold, then we say that the measures vy converge
weakly to the measure v, it is written

vp — 1. (5.6)

We also have
Theorem 2 ([EG])
Let {vx}32, be a sequence of Radon measures on R? satisfying

sup v;(0) < oo for each compact set O C R2.
k

Then, there exists a subsequence {vj; }]"’;1 and a Radon measure v on R? such that
(in the sense of (5.6))

Vk; — .
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1.2 Main Theorem

Let JY be the energy of the test configuration (v = 1, A = 0), also called the vortex-
less energy. Then

1
J0:J(u517AEO):§h§w.

Once we restrict to the case A > 0, we use the construction of the vortex balls that
we recalled in proposition 4.1. Indeed, letting (ue, A:) be a minimizer of J over
the space A, we will prove after (precisely, in the section of the lower bound of the
energy J) that the hypotheses of the proposition 4.1 remain true, so we take the
“vortices” (a;,d;)ics. defined by that proposition on the square K = [0, 1[x[0, 1.
The main result is the following

Theorem 5.4. Assume X\ > 0. Let (ue, Ac) be a minimizer of J over A and h. =
curl Az be the associated magnetic field. Then, as e — 0

he
he:p

— hy = maX(O, 1-— %) weakly locally in H'.
In addition,

2(1—-2) ifo<A<?2
hmJ(UE’AE):{f ! (5.7)
2

=0 hZ, if A>2.

Moreover, letting p. be the extended measure by periodicity to R? of the measure
Yier. 27 di ba;

7 , we have as € — 0
exr

e — maX(O, 1- %) dx (5.8)

where dx is the Lebesque measure on R?.

Let (ue, Ac) be a minimizer of J over A and h. = curlA.. Recall that, if N, is

defined by
1

Ng = —
c 2 K

he, (5.9)

then from corollary 4.4, we have N, = >, 1. di, and then N, represents the number
of the vortices per period. In particular, Theorem 5.4 gives us the order of N. when
e tends to 0.

Corollary 5.5. Let A > 0, then

lim % = max((), 2i(1 - %)) (5.10)

e—0 ey ™

Proof. Since N, = ﬁ fK he, we have

. N: 1 he
lim

. 5.11
e—0 hem 2 me—0 hex ( )
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If A > 0, Theorem 5.4 implies that f% tends weakly in H'(K) to h., where h, =
max(0,1— %), and modulo a subsequence, the convergence is strong in L!. Therefore

N [, A
27 ngr_eoo e = /Kh* = max <0,1 2) . (5.12)

If A =0, then f%z tends to 1 strongly in H' from corollary 5.1, and therefore

N,
27 lim —= =1. (5.13)

n—-+oo he:c
This completes the proof. O

Proposition 5.6. If A > 2, there exists g > 0 such that for any e < &g

Z |dl’ =0,

1€l

where (a;,d;)icr. is the family of vortices defined on K and associated to minimizers
of J over the space A.

1.3 Interpretations and commentaries

The results of Theorem 5.4 first indicate that (he; max (0,1 — %)) can be seen as
a good approximation of h. as ¢ — 0, and provide the asymptotic expansion of the
energy. Also, the convergence (5.8) gives us an idea on the limit measure of vortices,
so it describes the repartition of the vortices for global minimizers (u., A:) of the
energy J over the space A. While, (5.10) gives us an estimate on the number of the
vortices per period. In particular, we have with respect to A (and then the applied
field he,) the following

e If 0 < A < 2, (5.8) implies that there is a uniform-vortex distribution, and
from corollary 5.5, we remark that the number of the vortices per period is
expected to be proportional to the applied magnetic field heg.

e If A > 2, the number of vortices in the material is negligible compared to A,
but the Theorem 6.1 does not give us an affirmative answer on the number and
the repartition of the vortices. However, from proposition 5.6, the minimizers
of J have no vortices when A > 2. While, the case A = 2 will be addressed in
chapter 6.

The above gives us a meaning to the value of the first critical field H., which behaves
fore — 0 as %. Our results are slightly different to [SS3]. Indeed, in [SS3] the
vortices of minimizers of the Ginzburg-Landau energy Jq over H!(Q,C) x H' (92, R?)
are scattered uniformly in an inner region denoted w)y with a vortex-density equal to
hex — % (note that € is the section of the superconductor) . In the outer region
Q\wy, there are no vortices. Moreover, taking v solution to
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—AYp+1p=-1 in Q

=0 on 01,

then as A decreases, the vortex-region first appears at the minimum of ¥. More
clearly, a necessary and sufficient condition for wy to be nonempty is

he 1
I
w0 = e |loge| — 2 max |1)|

In addition, there exists C' > 0 such that

<= X <2 max ||

dist(wy,0) > C A

Note that the difference between our results and those of [SS3] is due to the fact
that the periodic model removes the boundary effects.

The proof of Theorem 5.4 will be obtained by getting first an upper bound on the
energy by construction of approximate solutions, and then a lower bound based on
energy estimates and convergence of measures, in the spirit of gamma-convergence
(see [DC]) of the “normalized” energy h(i > defined on A to the functional E over
the space V.

2 Upper bound of the energy

. . A . L.
In this section, we bound from above % where (ug, Ac) is a minimizer of J over

exr

the space A.
2.1 Preliminaries
We take a € Ry. Let f € V — where V is defined by (5.3) — satisfy
p=a=—-Af+f in R? (5.14)
where dy = a dz. The fact that f is bounded in (5.14) leads to
f(z)=a YzeR2 (5.15)

Inserting (5.15) in (5.4), we obtain

~da (a—1)?
E(f) = T—FT (5.16)
We define G to be the solution to
~A,G(z,y) +G(z,y) =6, in R (5.17)

Remark that G exists and it is unique. We state some well known properties of G
(see [Ti] for instance).
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Lemma 5.7. The function G(x,y), solution of (5.17), has the following properties
(1) G(z,y) is symmetric and positive.
(2) G(z,y) + 5= log |z — y| has a C1 extension on R2.
(3) As |z —y| — +oo we have that G(z,y), V.G (x,y) are O(e~1#=Yl).

Finally

s G(z,y) de = 1. (5.18)

Proof: The first property is well known, and so is the third. The second property
follows by noting that U(z) = G(z,y) + 5= log |z — y| satisfies the equation

1
—AU +U = — loglz —y|.
27

The right hand side is in L¢ locally for any ¢, hence locally by elliptic regularity, the
function U is locally in W9 | and therefore C*.

Finally, letting B(y, R) (resp. B(y,r)) be the ball of center y and of radius R > 0
(resp. r > 0), (5.18) follows by integrating the equation —A,G(x,y) + G(x,y) =0
in B(y, R) \ B(y,r), letting R — 400 and r — 0, and using the asymptotics of G to
estimate the boundary terms. a

2.2 Main result

The upper bound of the energy J we prove is

Proposition 5.8. Let he, be such that lim._.q “;L)iid = \, with the additional condi-
tion; if A =0, that hey < E% Let (ue, A:) be a minimizer of the energy J over the
space A, then for any a > 0

) J(ue,As) _ Aa  (a—1)?
limsup ———— < — + ————. 5.19
P T < 5 5 (5.19)
Minimizing the right-hand side with respect to a € R yields

Corollary 5.9. Under the same assumptions of proposition 5.8, we have

o If0 < \<2, we have

. J(ue, Ae) A A
1 — (1= 5. 2
e <207V o
o If A\ =0, we have
A
lim sup ‘](l;;s) = 0. (5.21)
e—0 ex
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Remark 5.10. Let h. be the induced magnetic field of a minimizing configuration
(ue, Ac). If X\ =0, (5.21) holds, then going back to (3.11) to write

J(ue, Ac he _le ' (5.22)

25
Rz,  — 2llh HY(K)

Using (5.2) in (5.22) implies that }ZZ tends to 1 strongly in H'(K). Now, thanks
to the periodicity of he, there exists C > 0 such that for each compact O C R?

:x B HH1<K>'

H:; B 1HH1(O) s¢ ‘

It follows that }ZEZ tends to 1 strongly in H'(O) for each compact O C R2. The

proposition 5.1 is then proved.

2.3 Proof of proposition 5.8

Proposition 5.8 is proved by constructing a test configuration having approximately
a heg

45tz vortices of degree one regularly spread in K = [0, 1[x[0,1[. We follow closely

[SS3], proposition 2.2.
Step 1
Let

p= [ a;;””] , (5.23)

where [x] denotes the greatest integer less than or equal to z. We place a point at
the center of each square [%, %[x[%, l+71[, where 0 < k,1 < p. We call (a5)1<i<n(e)
the resulting family of points in the square K. The total number of points n(e) is

h
n(e) = p* ~ %;x.

Letting pi be the uniform measure on d(B;(a$,¢)) of mass 2 7, we define uX to be

Zigisn() Ko and . to be the extension of X to R? by periodicity. In other words,

ex

He =D k¢ pX where the sum runs over a tiling of R? by squares of sidelength 1. It
is clear from the above
e — a dx. (5.24)

Step 2
Let 8 > 0 and set Ag to be a 3 neighborhood of the diagonal in K x K. Namely,

Ag={(z,y) e K x K, |z—y|<p}
Since pe — a dz, we have
,u€®u€4a2dx®da: as ¢ — 0.

In view of the continuity of G' on (K X K) \Ag, we are led to

1 2
lim sup — // G dpe dpe = a G dz dy. (5.25)
w0 2 (KxK)\Ag 2 Jxrnag
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Moreover, since G(.,.) is continuous on K x (R?\K), it follows that

lim G du. dpe = a® / G dx dy. (5.26)
=0 J K x (R2\K) Kx(R2\K)

Now, we treat the integral on Ag. Referring to [SS3], proposition 2.2, there exists a
constant ¢(3) — 0 as § — 0 such that

1

i [ [ G due) ) < C ) (Itogel +1) +n(e) ( [loge| +c(5))

+Ca® hZ, |Aygl.
(5.27)

We divide by h2, and we replace n(e) with "2’1% to have for a small enough ¢

a |loge| 1
(&

1
3 | [ Gt e i) < “7E w05 (omel +1)

c(8)

+
hez

+ C [Aggl.
Weuse)\:%assﬁomget

) 1 A
timsup ;[ [ Glaw) duco) dicy) < 5 a+ € |Bas] + MB),
e—0 AB

where M([3) is a constant of § tending to 0 as § — 0. Thanks to (5.25) and to the
fact that limg_. |Agg| = 0, we get

1 A
fmsup s [ Gl )dela) duc) < 5 Gz,y) o dy.  (5.28)
JN KxK 2 2 Jkxk

Now, combining (5.26) together with (5.28), we can deduce

, 1
lim sup - / G(x,y)dpe(y) dpe(z)
K xR2

e—0

. 1 1.

<timsupy [ Glo,y)ducly) dpe(o) + ; T G dp. d.

e—0 KxK 2 =0 Kx(R2\K)

A 1 a’

<—-a+-= G(z,y) dx dy + — G dx dy
2 2 JrxK 2 Jrx(@®2\K)
by 2

<Za+L G(z,y) dz dy
2 2 Jk xr2

= i a+ CLQ

2 2"
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Consequently, we find

nmwp1/“ Gla,y) dv. — 1)(@) d(v- ~ 1)(y) < 2 a+ = (a—12%  (5.29)
JG K xR2 2 2
Step 3

Now, our interest is to prove (5.19), so for this we construct an appropriate test
configuration (ve, Be) in A. First, we define he to be the periodic solution of

—Ah. + he = heg 1= in R? (5.30)

where ji. was defined in step 1. Alternatively, h.(x) = hes [p2 G(2,y) dpie(y). Now,
let B, be a solution of
curl Be = he.

B. is taken to be the magnetic potential.
We then need to define v. on R2. Writing v, = p.e'®<, we define p. to be periodic
and in the square K

0 in Ujcicn(e) (Bi(af,£)>

pe(x) = 5.31)
) 1 in K\Uicicn(e) (Bz'(af,%)) (
and such that 0 < p. <1, and for each 1 <i < n(e),
1
2 2\2
— (1 — <C. 5.32
J 19 + 502 (5:32)

To define ¢., let first
B; = B;(a5,e) for 1 <i<mn(e).

For any 1 <i < n(e), let B; , m be the image of B; by translation of vector n i+mj
where n and m are in Z. We need only to define the function ¢. only modulo 2 T,
and where p. # 0. The fact that ¢. is not defined on U(i<j<p(c), n,mez) Bin,m is not
important, since p. = 0 there. Choosing a point zo € R?\ Ui<i<n(e), n,mez) Binm,
we define for any = € R?\ Ugi<i<n(e), n,mez) Binm, the function

¢e(x) = 7{ B..1 — Vhe..v, (5.33)
(:1707:17)

where (g, z) is any curve joining zg to = in R?\ Uai<i<n(e), nymez) Binm and (7,v)
is the Frenet frame on the curve. Note that the function ¢, is well defined modulo
2 m. Indeed, if w C R? is such that dw C R*\ U(1<i<n(c), n,mez) Binm, then by (5.33)

/ B..t —Vhe..v = / —Ahz 4+ he = hey pre(w).
ow w

This quantity is in turn equal to 2 7 k, where k is the number of points a; in w.
Thus, e’ % defined by (5.33) does not depend on the choice of the particular curve
(w0, 2). Now, let us take v. = p. e’ %-.

Step 4

We begin with
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Lemma 5.11. The test configuration (ve, B:) belongs to the space A where A is
given by the definition 2.5.

Proof: The periodicity of the magnetic field h. yields for (z,y) € R? that

he(z +1,y) = he(2,y) = he(z,y + 1).
The magnetic potential B, is taken to solve curl B. = h., hence there exist R; and

Ry in H} (R?) such that

oc

Bs(x + lvy) = Bg(:c,y) + Rl(xu y)
(5.34)
Ba(x,y =+ 1) = Ba(x,y) + RQ(‘ra y)v

where
curl Ri(z,y) =0
curl Ry(z,y) = 0.

For 1 < i < 2, curlR; = 0 implies the existence of (fo,g0) € HZ.(R?) x HE (R?)
such that

R?(xv y) = v.g()(x7 y)
We insert (5.35) in (5.34) to get
Be(x + 17y) = Bs(.’IJ,y) + VfO(xa y)
(5.36)
Be(xz,y +1) = Be(2,y) + Vgo(z,y).
Now, from the construction of ¢., we have in R?\ Ui<i<n(e), nymez) Binm
V¢. = B. — V'h.. (5.37)

On the one hand, we use again the periodicity of h. with (5.36) in (5.37) to write

Voe(x+ 1,y) =B:(x + 1,y) — VLhE(az +1,y)
=B.(z,y) + Volz,y) — V'he(z,y) (5.38)
:v¢€(xay) +Vf0(x,y)

By integration, there exists ¢ € R such that

¢€(l‘ + 17y) = ¢€($ay) + fO(l'ay) + c.
Let us set f-(z,y) = fo(x,y) + ¢, hence

¢5(.%'+1,y) :qﬁg(x,y)—i-fg(m,y). (539)
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On the other hand, proceeding similarly as (5.39), there exists g. € H7 (R?) such
that we have in RQ\ U(lglgn(s)’ n,mGZ) Bi7n7m
¢=(z,y +1) = d(2,y) + 9:(z, y)- (5.40)

Recall that v, = p. €’ %<, then combining (5.39)- (5.40) together with the periodicity
of p., we get the two following equations in R?

ve(z + 1,y) = ve(, y) e F=(@v)

: 5.41
ve(z,y 4+ 1) = ve(m, y) ¢l 9=@y), (5.41)

since p. is equal to 0 in Ui<j<n(c), n,mez) Binm- We replace fo and go respectively
with (f: — ¢) and (g — ¢) in (5.36)

Be(z +1,y) = Be(2,y) + Vfe(2,y)

(5.42)
Bs(l'ay + 1) = B€($ay) + VQE(:U’:’/)'

A Combination of (5.41) together with (5.42) gives us that the configuration (v, B;) €
A. This completes the proof of lemma 5.11. a

Step 5: Completing the proof of proposition 5.8
From the equation (5.30), the induced magnetic field h. satisfies

~Ahe +he — heg = heg (e —1) in R% (5.43)

Hence, from (5.18) we can write

he(y) = hex /R2 G(y,z) dus(x), V yeK. (5.44)

Now, multiplying (5.43) by (he — hes), integrating on K, and using (5.44) with the
periodicity of he, it follows that

2 B 2 _ _ _ _
/K|th| +/Krhg el /K< Ahe + he — hew) (he — hes)
- / hew (he — hea)(y) d(pz — 1)(y)
K

2, / G(y,x) d(ps — 1)(z) d(ue — 1)(y),
K JR2

where (pe — 1) denotes the difference between of the measure . and the Lebesgue
measure on R?. We divide by 2 hZ, to get

1 2 1 2

5 Vhe|* + 5 he — h 1

i sup 232V - Juclhe Zheel g 2 / G(x,y) d(pe—1)(y) d(pe—1)().
e—0 ex e—0 K xR2
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We use (5.29) to have

5 Jic|Vhel* + 5 [ic1he — heal? < Aa + (a—1)*

lirilj(l]lp he <5 5 (5.45)
In addition, by definition of p. and the fact that n(e) = O(hey), it is clear
1 2, 1 2)2
5 Vol + 7= 1-
lim sup 2 fK| pe| é62 fK( Pz =0. (5.46)
e—0 h‘ex
Moreover, from (5.37)
p? |Vée — B> < |Vh|. (5.47)
In particular, (5.47) leads to
B 3 i |Vhel* + 5 [ic 1he — hew?
limsupin(U;7 <) Slimsup(2 fK| d +3 fK| d | )
e—0 he:ﬂ e—0 hea:
1 2, 1 2)2
+limsup(§ S5 Ve Jm;? Jre(1=p2) ) (5.48)
e—0 h’ex
A combination of (5.45) together with (5.46) in (5.48) allows to write
J B A — 1)
limsupM < A4 + (a ) , YVa>0. (5.49)
0 hZ, 2 2

This inequality is true for the test configuration (v., Be), so it is true in particular
for any minimizer of J over A. This completes the proof of proposition 5.8.

3 Lower bound

Let (ue, A;) be a minimizer of the energy J over the space A and h, = curlA. be the
induced magnetic magnetic field. We take K to be any square of sidelength 1. From
now on, we assume that A > 0, i.e. the applied field satisfies he, < C |loge|. First,
it is clear by testing J with the configuration (v = 1, A = 0), that the minimum of
J is less than JO = % h2,. Then, from the expression of J, and by the definition
(4.3), we have

Ye = ||h€”L2(K) < C heg.
On the other hand, from the expressions of the energy J and the functional F_, we
have

F.(ue, A, K) < J(ue, As). (5.50)
Knowing J(u., A.) < C h2,, hence F.(uc, Ac, K) < C h2,. Let

ex’
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e = heg,

then ae — 400 as ¢ — 0 and a. < ¢ hey (¢ > 1). Moreover, we can write

F:(ue, A, K) < C o heg.
We define m. = o(1) to be any sequence verifying
log h
M << ms.
hex

Note that m, is positive. Combining all the above, we can say that the hypotheses
of proposition 4.1 hold. Hence, there exist a square of sidelength 1, (without loss

(5.51)

of generality the square is K = [0,1[x[0,1]), and a family of disjoint balls <BZ- =
Bz-(ai,ri)) ; such that
(]

UieIEBi(ai,Ti> C K, (5.52)

where the sum of radii r; verifies

D> 1 S C heg e e, (5.53)
i€l

Note that thanks to (5.51), we have as ¢ — 0

> ri=o(1). (5.54)

i€l

. .. 2 . di Oa,
For any such set of balls, we can associate to u. the vorticity measure %

where d; is the degree of ﬁji i restricted to dB;(a;,7;). Now, let e be the Sieriodic
ZiEIs 27 d; b,
hez

)

measure on R? whose restriction to K is . We begin with the following

proposition.

Proposition 5.12. For all ¢, — 0, we can extract a subsequence such that there
exist a periodic hy in HZIOC(RQ) and a Radon measure py on R? satisfying

he,

= ho weakly in H}.(R?), (5.55)
and
He, — Ho- (5.56)
Also, we have
—Ahg+ho=po in R2 (5.57)

Hence, 19 € H=' and hg € V where V is defined by (5.3).
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3.1 Proof of proposition 5.12

We split the proof into five steps
Step 1
We start with the inequality (3.10) which is

1
5 Hha - hex”%_p(K) < J(UE,Aa).

Using then J(u., Az) < § h2, allows to say that }i‘; is bounded in H'(K). Then, by
periodicity of h., we can say that hs is bounded in H'(O) for any compact O C R?,
so in particular it is bounded in H; OC(RQ) Hence, for a subsequence ¢, there exists
ho in H} (R?) such that E” tends to hg weakly in H} (R?) as n — +oo. Again,
the per10d1c1ty of h. 1mphes that the weak limit hq is perlodlc

Step 2

The lower bound of the energy on the vortex balls (Bi(ai, r,)) . defined by (4.13)
1€l

is

Fo(ue, Ae, B) > 7 |d| [loge| (1= o(1)). (5.58)
The balls are disjoint, then a summation yields

Fo(ue, Ao K) > Folue, Ao Uier, By) > m Y |di] [loge] (1-o(1)).
i€l.

We use (5.50) to get

Ji (e, A) > w3 |dif [loge] (1 o(1)). (5.59)

icl.

Inserting he, < C |loge| in the fact that Jx (ue, A.) < 5 h2,, we have

exr’

Ik (ug, Ac) < C hey | logel.

We divide (5.59) by hey |loge| and we use the above to deduce from the definition
of the measure p.

1 T D ier |dil Ji (ue, Ae)
1 = of1) = T T (1) < SKUe R < 5.60
5 /K|M | —o(1) I o(1) < how [0z €| (5.60)

Thus, by periodicity

sup e (0) < oo for each compact set O C R?.
3

Thus, thanks to the Theorem 2 [EG] given in the beginning of the chapter, there
exists a Radon measure o on R? such that

Ue,, — Uo @S n — +00.

Now, we pass to the proof of the third assertion giving us the relation between g
and hg.
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Step 3
Let (ue, Az) be a minimizer of J over A. Recall that

1
N, = h €.
27

Thanks to the proposition 2.6 given in chapter 2, there exists (ve, Pz) € Hlloc(Rz, C)x
H]} (R%* R?) such that (ue, A.) is gauge equivalent to (vs,2 ® N C + P.) where
(ve, P:) € By, and

As mentioned in (3.5), we take

B.=P.4+27 N. C.
Having curlC = 0, hence the induced field h. defined by h. = curl A necessarily
satisfies
he = curl B;.

Clearly, (ve, Be) is again a minimizer of the energy J over the space A. In particular,
it is a solution of the two Ginzburg-Landau equations defined by (3.4). Recall that
the second Ginzburg-Landau equation holds

—Vth, = —=VteurlB. =< i Ve, VBV > in R2,

where by definition Vp_v. = Vv, — 4 B; v.. Taking the curl and dividing by h.,, we
find

he he CUTl((l — ‘05‘2) Bs) curl(ive, Vve) . 2
e T he hea L .

Now, since N. < C' he, and reasoning as in the proof of proposition 3.1, we get that
B, and v, are locally bounded in H' by C he,.
For ¢ € N*, we let

K% =[-q,q[x[-q,q][. (5.62)

Let us fix ¢ in N*. For any £ € W&ﬁ;z(Kq), we have

/fcurl (1— v / B. (1 - |v|?) V* e

Then, using the Cauchy-Schwartz and the a priori bound on B,

‘/qu curl((l ~Juef?) Bg)

<C V€| rxay 1 Bellpo(icay 11 = [0l p2(xca

<C hZ, € [|VE| 2(ka),
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for some p < 2. The right-hand side tends to 0 as € — 0, therefore
mm(u—hu%BQ-ao (5.63)

in W~1P(K4). The family of the vortex balls contained in the square K9 is { B; s, i €
I.,m,m' € [—q,q — 1]}, where B, , , is the image of B; by translation of vector
m i+ m' j with m,m’ € Z. Thanks to (5.52), this family satisfies

U(iele, m,m’e[—q,q—l])Bz’,m,m/ C K1.

Referring to (5.51) and (5.53), we get as € — 0

(46°) [loge| Y ri=o(1), (5.64)

i€l

and therefore the sum of the radii of the vortex balls {B;, n} tends to zero as
e — 0.
Step 4
Using the above we can deduce thanks to [ASS], lemma 2.2,
curl(i ve, V ve)

— e — 0, (5.65)

12 _
hex Wp;ép(Kq)

where . is the extended measure by periodicity to the square K? of the measure
2icr. 27 di Sa;

heac
Step 5
Combining (5.63) together with (5.65) in the identity (5.61), we obtain

he e
Tow | s

’—A

~ e 0. (5.66)

W23 (K1)
Finally, having (5.66), then using the same procedure as in [SS3|, lemma 3.1, one
can check

he he

Tew | Troa

_A _ ’ 0. 5.67

The convergence (5.67) holds independently of ¢ in N*, then (—Af= 4 e = 1o)

hEI
converges to 0 locally in Wp_<12’p . We know that };Lﬂ — ho weakly in H! (R?), hence

e loc

again up to subsequence

h
hE" — ho strongly in W;’fQ 1oe(R?).
exr

Thus, passing to the limit in (—A }Z‘; + 7= ), ho satisfies

Mo = —Ahg+ hg in R2.

The properties which we have found on hg are hg € H. (R?) and hy is periodic such
that (—Ahg + ho) is a Radon measure on R%. Then, by definition of the space V'
defined by (5.3), hp € V. Finally, the fact that hy € HIIOC(RQ) in ug = —Ahg + ho

gives us
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Mo € HL

This completes the proof of the proposition 5.12. We also have the following result,
proved in [SS3], lemma 3.2.

Lemma 5.13. We have for the (ho, o) defined by proposition 5.12 that

J(ue,, Ac,) _ A 1 1
(“"")22/!—Aho+ho\+2/!Vhol2+2/Iho—1|2=E(ho)-
K K K

(5.68)

3.2 Minimization of £ over V

Let us minimize the functional E defined by (5.4) over the space V. Having that V'
is convex, closed, not empty and E is strictly convex, hence inf rey E(f) is uniquely
achieved. We denote by h, the minimum. First, let us split £

A 1 1
E(u):§ /K|—Au—|—u]—|—2 /K|Vu\2+2 /K|u—1|2

1 1 A
5+ Mgy +5 [ 1=t [ w

@(u):;/K]—Au—i-M—/Ku,

and ®(u) = +oo if u ¢ V. It follows that

Foru e V, let

1 1
VueV, Blu)=g+3 [l 7 ) + ®(w). (5.69)

Now, we use the following Lemma (see [BS]).

Lemma 5.14. Let ® be convex lower semi-continuous from a Hilbert space H to
(—00, +0o0], then

1 1
min (5 |10l +2(n)) = —min(5 /1% + (=), (5.70)

and minimizers coincide, where ®* is the convexr conjugate of ® defined by

®*(f) = sup < < fiu> —@(u)), (5.71)
u€Dom(P)

where Dom(®) is the domain of ® and < .,. > is the scalar product in H.
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For duality problem, we can refer to [ET]. Let us take H to be

H ::{f € HlloC(RQ,R) such that f is periodic }

Observe that H is Hilbert and the ® defined above from H to (—oo, 00| is convex
and lower semi- continuous. Let us calculate its conjugate. By the definition (5.71),
the conjugate of G for all f € H is the following

(I)*(f):UEEBE(G)(/KVfVqu/Kfu—;\ /Ky—Au+u\+/Ku).

Using Dom(G) =V and the fact that f is periodic, we can write

@ (f) =sup(~ 2 /K\—Au—i—u]—i—/K(—Au—i—u)f—i—/(—Au—i—u))

ueV

K
— sup (—;\/K|ﬂ|+/KN(f+1))

{peH-1 and p is a Radon measure}

— sup | sup (=5l + [ i+ 1)),

teRy+ -, is a Radon measure, |ul=t} 2

On the one hand, for f € L>°(R? R), we have

. A
' (f) = swp (=5 e+t llf + 1)
+

= sup (117 + 1l — 5) 1)

teR+ 2 (5.72)
too it [If 4 Uz > %
o if || f 4 U@y < 3

On the other hand, if we take f ¢ L*®(R% R), we get ®*(f) = +oo. From

lemma 5.14, equation (5.69), we then deduce
B(h) = min (3 11300) + 5 (5.73)
«) = min ( = =, :
Fewp\2 M IHNEK) ) T 9

where
Wo = {f € Hp,.(R*) such that f is periodic and ||f — 1|| 00 (g2) < %}.

Moreover h, is the unique minimizer of this problem. It immediately follows that
Lemma 5.15. We have )
hsy = max(1 — BL 0). (5.74)

Combining all the above shows us that the proposition 5.2 is proved.
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4 Completing the proof of Theorem 5.4

We can now complete the convergence results. From lemmas 5.13 and 5.15, we

deduce J A
lim inf 7(%" , Aey)

n—oo hgx

> E(hy) > E(h.). (5.75)

We distinguish the two following cases:
Case 1: If 0 < X\ < 2. In this case, from lemma 5.15, we have h, = 1 —
Therefore,

A

[

A A
BE(h)=201-2).
(h)=3(1-2)
We insert this in (5.75) to get
e J(uey,, Ay, A A
lﬁgf(lés)zEW®22“‘4>

On the other hand, proposition (5.8) gives us

M<é(1_i)
5 :

lim sup 1

e PR

We compare the two above inequalities to get

J(ue,, Ac,) A AL
Now, thanks to the fact that h, = 1 — % is the unique minimizer of E over V, we
conclude

ho=h,=1-% in R?
Hence, Ziz — hyp = he =1— % weakly in H} (R?). In addition, knowing that
o = —Ahg + hg, hence in view of lemma 5.12
A
pen = po = (1= 3) dz, (5.76)

where dz is the Lebesgue measure on R2. This explains the uniform-vortex distrib-
ution.

Case 2: If X > 2. In this case, from lemma 5.15, we have h, = 0, thus
E(h,) = §. We insert this in (5.75) to have

liminf 7'](“5” » Acy)

n—oo hzm

> E(ho) >

Second, since J(us, A.) < 3 h2,, we find

A
lim sup 7J(u5" , Acy)

2 S
n—-+00 hex

1
5"
Comparing the two above inequalities, we get
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J(ue,, Ac,) _ 1

E(ho) = 5

Since h, = 0 is the unique minimizer of F over V, we conclude that hg = h, = 0. It
loc( 2). Consequently, thanks to

lim

n—-+4o0o h2 - E(h*>

follows from lemma 5.12 that ha" — 0 weakly in H}
lemma 5.12,

e, — o = 0. (5.77)

Now, the limits in the above two cases are independent of the chosen subsequence,
therefore the whole sequence converges. This completes the proof of Theorem 5.4.

Remark 5.16. In the case A\ > 2, the convergence (5.77) does not give us an idea
on the number of the vortices and their repartition. Indeed, taking A > 2 in the
corollary 5.5, we can deduce

Ne =" di < heg,
i€l
so we just find that the number of vortices is negligible to he,. We start with the
study of the case A > 2 in the next paragraph.

5 The case \ > 2
From the definition of the parameter A\, we can write in the limit ¢ — 0,
1
hex = X |log e]. (5.78)
Here, assume that A > 2. Splitting the energy Jx of a minimizer (u., Ac) between

the contribution inside the vortex-balls and the contribution outside, we get using
(5.59)

1
7 S |dif |oge] (1 - o(1)) + / e — heal? < J(ue, A). (5.79)
i€l 2 K
But, since fK |he — hez|? = fK |he|? + h2, — 4 7 N: hey and J(ue, Ac) < % h2,, we
find
m Y _|di| [loge| (1 —0(1)) =27 Ne hey < 0. (5.80)
i€l
Thanks to (5.78) and N <,/ |dil,
> |di| ( 1_7 ) [loge| — o(1 )|10g5|) <0. (5.81)

i€l
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The fact that A > 2 yields (1 — %) > 0, and therefore there exists g > 0 such that

for any € < gq
> |di| =o0.
i€l

Thus, the minimizers of the energy J have no vortices when A > 2. This proves the

proposition 5.6. The above gives a meaning to the value of the first critical field H,,
|log ]

which behaves for € — 0 as 5

Remark 5.17. Thanks to Theorem 5.4 and proposition 5.6, the study of the vortex
structure of minimizers of J over A is well known for applied field he, which are
such that A > 0 with A # 2. The case A = 2 will be treated separately in the next
chapter (chapter 6).
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Chapter 6

The case of applied fields close
to H,

In this chapter, we will be concerned with the case of applied fields h., which are
close to the first critical field H.,. More precisely, we assume

hex = He, + f(e), (6.1)

where H., behaves for ¢ — 0 as % and f(e) is any sequence tending to +oo such

that

f(€) = o(|logel).
We will study, in the limit ¢ — 0, the vortex-structure of global minimizers (u., A;)
of the Ginzburg-Landau energy J over the space A, in a more precise way than in
the preceding chapter.

1 Statement of the result

We take K to be any square of sidelengeth 1. The first critical field H., behaves for

1 : 1 . .

e —0as 02g£\7 ie. H. =~ | OQgE‘. Since, the parameter ¢ is taken usually to tend to 0,
. . loge| - 1 . .

we will write from now on H, = % instead of H,, =~ %. We consider applied

fields defined by hey = He, + f(g) where f(e) — +oo ase — 0 and f(e) = o(]loge|),
and then A = lim._,g % = 2. Thus, letting A = 2 in (5.7) gives us

lim J(ue, 4c) = 1,

e—0 hzx 2
where (ug, A:) is a minimizer of the energy J over the space A. The above limit

2
implies that J(u., A.) is equivalent to J° as ¢ — 0, where J? = hQﬂ From now on,
we will be concerned with the estimate of the energy
J(ue, A) — J°
(f(e))?

as ¢ — 0 and we show that it is the appropriately normalized quantity to consider.
From the chapter 5, we know that for (u., A;) a minimizer of J over A, the hypothe-
ses of the proposition 4.1 hold, and applying it yields vortices (a;, d;);cr.. The main
result we prove in this chapter is
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Theorem 6.1. We take applied magnetic fields defined by hey, = He, + f(g) such
that f(e) tends to +o00 and f(e) = o(|loge|) when ¢ — 0. Consider, for every e,
(ue, Az) minimizing the energy J over A, and h. = curlA;. Then, as e — 0,

hs . 1
1 strongl WP (R?). 6.2
6] — strongly in loc,p<2( ) (6.2)

In addition,

_ 70
im LW Ae) =7 1 (6.3)

. . TP ; d; da;
Finally, letting v, be the extended measure by periodicity to R? of %, we

have as € — 0,

v — dz, (6.4)
where dx is the Lebesque measure on R2.

Remark 6.2. The Theorem 6.1 gives us an idea on the repartition of the vortices
and their number par period. Indeed, we obtain from (6.4) that the minimizers of J
over the space A have a uniform scattering of vortices. Moreover, the number of the
vortices per period is close to f(g). This contrasts the result of [SS1]. Indeed, Sandier
and Serfaty have found for minimizers of the energy Jo over H'(Q,C) x H*(Q, R?)
that we need to have an increment of | log |loge|| to add a vortex (where §2 is the sec-
tion of the domain occupied by the superconductor). Note that the difference between
our results and those of [SS1] is due to the fact that the periodic model removes the
boundary effects.

In order to prove the Theorem 6.1, we give first an upper bound on the energy,
through the proposition 6.3, and then a lower bound in proposition 6.12. Note that
the upper bound will be obtained by construction of a test configuration in the space
A, while the lower bound of the energy will follow essentially from a combination
of the suitable lower bound of the energy J on the vortex balls that we recalled in
proposition 4.1 and the property

Ne =Y d;.

i€l

2 Upper bound of the energy

The main result we prove here is

Proposition 6.3. Set h., = |1°2gel + f(e) with f(e) tends to +oo and f(e) =
o(|logel). Let (ue, Az) be a minimizer of the energy J over A, then

lim sup (6.5)

A TS
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We split the proof into four steps:
Step 1
Let he, = % + f(e) where f(e) = o(]logel|) and tends to +0o0. Arguing as in the
proof of proposition 5.8, step 1, we construct points (a5);, 1 < i < p(¢)? in K and
equally spaced, with

n(e) = ple)?. p(e)zl “’;(73]

Then, 2 m n(e) = f(¢) as ¢ — 0 and 2 7w n(e) < f(e). Letting p. be the extended

Elgign(s) pt
2 mn(e)
0(B;i(a5,e)) of mass 2 7, we also have

measure by periodicity to R? of , where pl is the uniform measure on

pe =~ dx as € — 0, (6.6)

where dz is the Lebesgue measure on R2.

Step 2

We define G to be the Green function solution of —A,G(z,y) + G(z,y) = J§, in R%
We prove

Lemma 6.4.

(6.7)

. 1 loge 1
isup(5 [ Glony) ducly) dcto) - 22Dy <
X

-0 AT n(e)

Proof: Let 8 > 0 and take
As={(z,y) e K x K, |z—y| < B}
From (6.6), recall that p. — dz. Hence, it follows that

e @ e ~dr®dr as e — 0.
In view of the continuity of G in (K x K)\Ag, we are led to

lim 1 // G du. dp: = 1/ G dx dy. (6.8)
e—0 2 (KxK)\Ag 2 J(kxK))\As

Now, we treat the integral on Ag. From the definition of .,

/Aﬂ ) dpete) duety) = f(i)2 (X ) //G dp du?rjz(? //G dpi dpit).

1<i#j<n
laf —a%|<28
(6.9)
The analogous of (5.27) is
1 n(e) ‘ ‘
B Z//G dut dps < n(e)(m |loge| + C). (6.10)
i=1
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Moreover,

1 S
3 Z / G dpd dul < C n(e)? |Ag gl (6.11)
1<ij<n(e)
la —a%|<2p

A combination of (6.10) together with (6.11) in (6.9) leads to
4m2n

2
ML [ Gl duele) duly) < 0fe) (x ogel +€) +C nle)? |agl
Ag

Then

1 loge
> / G dpe dpe < [ log €] +/ G dpe dpe 4 0-(1) + C|Azg),
2 JrxK dmn(e)  Jirxrna,

where o (1) denotes a function of € which goes to zero as ¢ — 0. Passing to the limit
as € — 0 and using (6.8) imply

. 1 |log ¢| 1
limsup|( = / G dpe dpe — <= / G dx dy. 6.12
e—0 <2 KxK = 4 ”(5)> 2 J(kxK))\Ag (6.12)
Letting (6 — 0) in (6.12) yields
. 1 |log €| 1 /
limsup( = G dpe dpe — < - G dz dy. 6.13
e—>0p<2 /K><K e e 477”(5)> "2 Jrxk Y (6.13)
We go back to (5.26) to write
lim G dpe dpe = / G dz dy.
=0 J K x (R2\K) K x(R2\K)

Combining this together with (6.13) gives us

. 1 |log €| 1 / 1 /
lim su / G du. dus — <- Gdxrdy+ = Gdx d
5—>0p(2 oz e e T ”(5)) 2 JrxK 7o K x(R2\K) Y

1 1
=— Gdx dy = —-.
2 /K><]R2 v 2

This completes the proof of (6.7). O

Step 3
The proof of (6.5) needs a construction of an appropriate test configuration (v., B)
in A. First, we define h. by

he(z) = 2 7 n(e) /R Glay) drely).

Then, h,. is periodic, continuous and in H. llo C(]RQ). It satisfies

—Ah.+h. =27 n(e) pe in RZ (6.14)
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We let B: be a solution of curl B. = h.. Then, we define v. as in the proof of
proposition 5.8 in a way such that (ve, B;) € A and

1 1
Jg(ve, Be) < = / |Vh5|2+f / ]ha—hez\z—i—Cn(E). (6.15)
2 Jk 2 Jk

Step 4: Proof of proposition 6.3, completed
From (6.14),

—Ahg + he — hey :(2 mn(e) pe — hex> in R? (6.16)

Now, we multiply (6.16) by (he — hes), we integrate on K, and we use the periodicity
of h. to obtain

Jvn s [ e naf = [ (= hea)@) (27006 e~ her) @) (0.7

It follows that

J19n [ et = [ @ra@) ([ G dnan) dus(o)—4wnle) hes
K K

(6.18)
Thus

2 —hez|?—h2 = (2 7 n(e))? x < e(T) =4 T n(E) Nex-
/K\VhEH/K\hs b1 = @7 @) [ Gloy) duly) dpele)—4 7 n(e)

K xR2

Now, we divide by (2 m n())? to get

Jic IV + [i e

— he|? — h2 2 h
exr — d . d . o exr
SIS | Glaw) duely) duety

27 n(e)

Then, replacing the applied field he, with (%4— f (5)) and recalling that 2 7 n(e) <
f(e), we find

Jx IVhe|? + [ [he = R

8$2_hzx loge| + 2 9
| < /K . G(z,y) dpe(y) dpe(z) — M-
X 2

(f(€))? 27 n(e)
(6.19)
We refer to (6.7) and the fact that 2 7 n(e) =~ f(¢) as € — 0 to deduce
. 2, ) 1
limsup o= / Vhe| / Ihe — heg|? — ) <= (6.20)
e—0 2

Going back to (6. 15) we obtain from (6.20)
. J(ve, Be) — JY 1
limsup ——— < ——.
e—0 f (6)2 2
This inequality is true for the test configuration (v, B), so it is true in particular

for any minimizer of J over the space A. This completes the proof of (6.5). The
proposition 6.3 is then proved.
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3 Lower bound

We start with

3.1 Preliminary estimates

We consider (ug, A¢) a family of minimizers of the energy J over A and h. = curl A
the associated induced magnetic field. Let K be any square of sidelengeth 1.

First, in the following lemma, we give for an € small enough a preliminary idea on
the estimate of the order of the quantities 7. = |hel/2(x), Ne = ﬁ S5 he and
F.(ue, Ac, K).

Lemma 6.5. Set he, = |1°2g€‘ + f(e) with f(e) = o(]logel|) and tends to +oo when
e — 0. Then, for ¢ sufficiently small

N: = o (|logel), (6.21)
Ve < C /N |loge|, (6.22)
Fo(ue, Ae, K) < C N, |loge|. (6.23)

[loge]

e = 2 in the

Proof: First, he, = % + f(e), hence letting A = lim._,
convergence (5.10),

N, 1 A
= , — 1——): .
- maX(O 27r( 2) 0

It means that N. = o0 (hes), so in particular N = o (|loge|) as € — 0. Second, by
definition of the functional F,

e—0

1
J(ue, AL) = Fo(ue, A, K) + = / |he — hea|?.
2 Jk

We split % [x 1he = heg|? to get

1
5 [ Ihe=heo =5 [ Mo+ g b2 —he [ he
K K
1 1
=5 / \h512+§hzx—2wN8hex.
K

Replacing [y |he|* with 72 leads to

1

J(ue, Ae) = (uE,AE,K)—i—2

’ys+ h2 — 27 N, heg. (6.24)

Since (ug, A¢) is a minimizer, in particular

1
J(ue, A) < J(1,0) = J° = 5 hZ,.

Using this in (6.24),
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1
Felue, Ac, K) + 5 72 <27 N: hey < C N. |logel. (6.25)

For any € > 0, we obtain

Ve < C +/N: |logel,
and
Fo(ue, Asy K) <21 Ng hey < C N. |logel.

3.2 Vortices have mostly positive degrees

Lemma 6.6. Let (ue, A:) be a minimizer and he = curlA.. For a sufficiently small
&
N #0. (6.26)

Proof: We argue by contradiction. Assume that N. = 0. On the one hand, from
(6.22), it is immediate that 7. = 0, consequently h. = 0. Letting V. = 0 in (6.23),
we get

F.(us, Ae, K) = 0.

By definition of F;, this implies that |u.| = 1. This means that the material is in its
superconducting phase, so the energy of (uc, A¢) is

1

J(uz, A) = JY = 3 hZ,
In particular,
. J(ue, A) = J° B

On the other hand, proposition 6.3 gives us

. J(ue, Ag) — JY 1
limsup ————F—— < ——. 6.28
NPT RGP 2 (629
Comparing (6.27) to (6.28), we get a contradiction. This means that N. # 0, and
thanks again to (6.23), N; is necessarily positive.
O
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3.3 The vortex balls

Let (ug, Az) be a minimizer of J over A. Now, let
a: = max (N, f(e)). (6.29)

Having he, = % + f(e) with 1 < f(e) = o(|loge|), hence in particular from
(6.29) and lemma 6.5, 1 < . < he,. Using the fact that N < o, in (6.23), we get

F(us, Ae, K) < C ag | logel.

Thanks to (6.21) and (6.22), we have 7. < C |loge|. Moreover, let m. be any
sequence verifying

log a.

< me = o(1). (6.30)

Qe
Of course, m. is positive. A combination of all the above yields that the hypotheses
of proposition 4.1 hold, so there exists g such that if € < g, there exist a square of
sidelength 1, (without loss of generality the square K = [0,1[x[0,1[), and a family

of disjoint balls still denoted (Bi = B;(a;, rz)) ; verifying

iel.
Uier.Bi C K,
such that

Fo(ue, Az, Bi) > |di (| log ] — log iz — m. az ), (6.31)

where d; is the degree of 1= on J(B;). Let us define for £ < g,

Jue |
D.=> |di. (6.32)
i€l
Recall that, (4.15) holds
Ne=)> d;.
i€l

We compare this to (6.32) to get

N, <D, V < eg. (6.33)

Lemma 6.7. Let (ue, Ac) be a minimizer of J over A and h. = curlA. be the
induced magnetic field. Then, for a. and m. defined respectively by (6.29) and
(6.30), there exists eg > 0 such that if € < &g

1 1
T De (|10g5| - log’YE — mg aa) + = / ‘Vha‘Q + 3 / |h8‘2 <27 Ng heg.
2 K\Uiey, Bi 2 Jk
(6.34)
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Proof: We split the energy J between the contribution inside the vortex-balls and
the contribution outside as follows

J(ue, AL) z/ V. — i A, u5]2+/ Ve — i A uel? + -1 (1= Jue )2
User. Bi K\Uier. Bi 4e Uier. Bi
1
+§ / |hs_hex|2-
K
From the expression of F_,
. 1
J(uavAe) > Fe(ua A, Uz‘eIEBz‘) + / ’vue -1 A Us|2 + ) / ‘he - he:v’2-
K\UiEIEBi K
Using |Vhe|? < |Vue —i Ac ue|?, we get
1
J(ues A) > Flue, Ao, Uier, BY) +/ Vhel? + / he — heo2. (6.35)
K\Uier. Bi K

We know

1
/\h hea|? = /\h !2+§hzx—2wN€hw.

The lower bound of the energy on the balls (Bi(ai, rz)) defined by the (6.31) is

i€l
F.(ue, Az, By) > 7 |dy| <\ loge| —m. o — log’ya>.

Now, thanks to the fact that the balls (B;);cr. are disjoint, then using the above

inequality and the identity D. = > ,_; |d;|, it is clear

Fe(ue, Ac,Uier, Bi) = Y Fu(ue, Az, By)
i€l

> D, <|log€] — M Qe — log%).

Combining all the above in (6.35), we find

D. (y log £|—log Y. — m. oz,5> 97 N, heat s / |v115|2+1 / P42 B2, < J(ue, Ay).
2 i\ Uier. B 2 Jk 2
(6.36)
Using again the inequality J(ue, A.) < J° = 1 h2, in (6.36) gives us (6.34). The
lemma is then proved. O

From (6.33), we know that N. < D, hence thanks to lemma 6.6, we have for ¢
small enough (e < &)
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D. # 0.

(6.37)

Then, (6.37) explains the presence of vortices in the superconductor. The rest is

devoted to find the exact order of N, > 1. We start with

Corollary 6.8. For an applied field hey = He, + f(g) where f(e) = o(|loge|) and

tends to +o0, we have

— tendsto 1 as e tends to 0.
€

Proof: From (6.34),
7 D, <| loge| — log v — m. a€> <27 Ng hey.

We insert now the applied field h., = % + f(e) in (6.39) to get

T <D5—Na> |loge| —m D logv: +27 N f(e) <7 De me .

Dividing now (6.40) by = D, |loge¢]|, (DE + 0),

N
1——)<2
( DS)_

Then, using N. < D¢, one finds
Ney o f(e) a:  logye

0<(1-=9)< .
= DE)_ |log5]+mellog5\ | log £

N:  f(e) Qe log 7.
— + me .
D, |loge| |loge|  |loge|

(6.38)

(6.39)

(6.40)

Thanks to (6.22)-(6.29) together with the fact that m. — 0 and f(e) = o (| loge]),
the right-hand side of the above inequality tends to 0 as € — 0. This implies for

e —0,

Sz

3.4 Estimate of N, and .
Now, using (6.38), we prove the optimal bound on v, and ..

Proposition 6.9. For any € < g, there exists C' > 0 such that

e < C fle), N:<C f(e).
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Proof: Step 1: 72 < C a. max(f(s),(ys)
First, by Cauchy-Schwartz inequality

(/th)ngK\haP-

Then, we replace [ he with 2 7 N. and [|h.|| 2k with 7. to obtain

47 N2 <A~2 (6.41)
From (6.34),

1
5 / |he|* <27 N, hey — 7 D, (|10g5]—log'y€—mga€).
K

Replacing he, with (% + f(e)) and & [, |he|? with £ 42, we get

'YSSW(NE_DE) |10g5’+27TN€ f(€)+7TD6 logv: + 7 De me ae.

N

lim._,g % = 1, hence for € small enough, D, < C N.. We use this with the fact
that N. < D. to find

1
§7§§27rN5f(5)+CNg logve + C me N: a.

Then, by definition of a., we have N, < a., so using this and m. — 0 together with
the fact that logv. < e,

V< Cacy+Ca fe) +Ca
Thus, we are led to
7= Cacr—Ca: (f(e) +ac) 0.
It is obvious that

7 <Cae max(f (o), as)- (6.42)

By definition of a., we get 7. < C a..

Step 2: N, <C f(¢)

Now, we argue by contradiction. Assume that N. > f(e).

In particular o = Ng, and then . < C' N.. Thanks again to (6.34),

1
7 D¢ (|10g5‘ —log e — me Na) —m Ne |loge| + ) / |hs‘2 <27 N f(e).
K

Rearranging the terms, we get

1
5%2 <7 (N:—D.) |loge|+ 27 N.f(¢) + m D¢ (logv: + me N¢).
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Using the fact D. > N, and that D, is equivalent to N. as ¢ — 0 together with
Y. > N¢, we rewrite the above as

N2 < C Ne (f(6) +1ogre +me Nz ).

Now we use 7. < C' N and m. = o(1) to deduce from the above that N. < C f(¢).
The proposition follows inserting this in the inequality proved in step 1. O

3.5 Improved lower bound on the vortex balls
Let (ue, Ac) be a minimizer of the energy J over the space A and h. be the induced
magnetic field. The fact that N. < C f(e) and (6.23) yield

Fo(us, Ac, K) < C f(e) |logel. (6.43)

Thus, we may choose

a: = f(e) (6.44)
in the vortex-ball construction. Indeed, since 1 < f(g) < |loge|, the same holds
for a., and F.(ue, Az, K) < C g |loge|. Then, we choose m. satisfying

log f(e) loga:
f(€) Qe

Therefore, the results of proposition 4.1 become the following. First, the sum of the
radii of the balls (B;)es, satisfies Y ,.; 7 < C f(g) e™™= 7€) and thanks to the

above
Zri =o0(l) as € —0.
i€le

<< mg == 0(1).

In addition
card(I;) < C f(e) |logel.

Second, combining a. = f(¢) and 7. < C f(e) together with % < me in (6.31),
the lower bound of J on the ball B; becomes

Flue, Ac, By) > 7 |dy] <|log5| — me f(s)). (6.45)

Thanks to the boundedness of % and the positivity of N, then up to extraction
of €, from ¢, the following limit exists and it is finite

. N: . D¢
0< L= lim " = lim 2 < 400. 6.46
En—>0 f(g'fl) €n—>0 f(gn) ( )

Now, to get a better suited normalization of the induced magnetic field h. and the
vorticity-measure associated to minimizers, we define

he
T. =,
T f(e)
7" Zie]a di b, )

and v, to be the extended measure by periodicity to R? of 2 76

(6.47)
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3.6 Convergence of T, and 1,

From Proposition 6.9 and the periodicity of h. and v., we immediately deduce

Lemma 6.10. From any sequence €, — 0, we can extract a subsequence such that

there exist a periodic Ty € L% (R?) and a Radon measure vy on R? such that
T., —To weakly in L% _(R?), (6.48)
and
Ve, — 1. (6.49)

3.7 Relation between of 7; and 1

In this paragraph, our interest is to find a relation between the two limits Tp and
vg. Let (ug, Ac) be a minimizer of the energy J over A. Recall that

1
N, = — he € Z.
2m K
From (6.43)
Fe(ue, Ae, K) < C f(e) [logel. (6.50)

Working in a Coulomb gauge, from the fact that k. is bounded locally in L? by
C f(¢), we find that A. is bounded locally in H! by C' f(¢). The second Ginzburg-

Landau equation yields

h he curl((l — Juc]?) AE) curl(i ue,Vug) 2
N CAN G 1) N TC R

It is clear that

curl((l — |uel?) AE)
f(€)
A

at least in the sense of distributions, since 7 is bounded in H Land (1 — |uc|?) goes

— 0 (6.52)

to zero in L?, then the product goes to 0 in the sense of distributions and so does
the curl. However, the second term is more difficult to treat and the reason is that

(I1ogel i) = o(1),

i€l

does not need be true because that the balls <Bi = Bi(a;, rl)) we work with are

i€l
too large. Consequently, examining the proof of proposition 5.12, step 4, then as

a consequence of the fact that (| loge| > ;ep. i) = o(1) does not hold, we are not

able to obtain locally the convergence

curl(i ugs, V ug)
| =y
f(E) Wp<2,

- 0. (6.53)
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The solution to this, following [SS6] is to go back to the proof of proposition 4.12
and to choose a parameter 5 between the two reals sy and s1, in order to obtain

new balls denoted by B(S) smaller than the balls (Bl-(ai,ri))l .= B(s1) and of
1€

5

course greater than the balls of the family B(sg). The next proposition explains the
method.

Proposition 6.11. The limit configuration (Ty,vy) defined by lemma 6.10 satisfies

~ATo+To=vy in R? (6.54)
T., — Ty strongly in Wfli’fpd(]R%. (6.55)
Moreover,
L=t L [ (6.56)
= — vy = — .
2m K 0 2T K o

where L is defined by (6.46).

Proof: We split the proof into four steps.

Stepl

We go back to the proof of proposition 4.12 and we choose un parameter § between
so and s1 given there, then using the same arguments taken as for the construction

of the balls B(s1) :<Bi(a,~, 7“2)> T there exists a family of disjoint balls denoted
1€

£

by B(3) :(Bl-(dj, fj)) - that covers the region {z € K, |u.| < 2}. In particular,
J€le

let us take

B 1
= (o) [ogel®

Note that sp < § < s1 where sp and s; are given in the proof of proposition 4.12.
Let d; be the degree of 2= restricted on 9(Bj). For i € I, let m; be the number of

|ug|

balls of the family (Bj),.; contained in the ball B;. Then, we can write

UT:ilBi(CNLj,dj) Cc B;, Viel..

Therefore, it is obvious that the degree of u. restricted to dB; is written as
mg B
di=) dj Viel. (6.57)
j=1

Consequently, since 7. and «. are less than C' f(¢), we get from (4.39)
- - 1

er <C5 f(e) SCW'

jele

Moreover, referring to (4.36), the lower bound of J on B; is

F.(ue, Ae, Bj) = 7 |d;| (log | - C |1og | logel| - C'log f(e) ).
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Since f(g) = o(|logel), it follows that
> Fe(ue, Ac, Bj) =7 Y |dy| |loge| (1 - o(1)). (6.58)
jEis jefe
In other terms, recall that (6.23) holds
Fo(us, Ay K) < C Ne |logel.

We need to give an upper bound of the energy on the balls (B;)cr., so using the
fact that N, < C f(e) in the above inequality, we obtain

ZFS(US7A87B’Z) < FE(u€7A87K)
i€l (6.59)
< C f(e) |logel.

Now, since the m; balls of the family (Bj);.; contained in the ball B; are disjoint,

m;
> Fe(ue, Ac, Bj) < Fe(ue, A, By).
j=1

We compare the energy J on the families (B;);er. and (Bj)je 7. to get using the
above inequality

Z FE(uEaA€7Bi) = ZEZ:Fs(UsaAaBj) < ZFE(UQE)AE)BZ')'

jefs i€l j=1 i€l

Inserting (6.58) and (6.59) in the above, we find

Cm Y ldj| lloge| (1 —o(1)) < C f(e) |logel-

jele
We deduce
> i 1)l
——=_— < C. 6.60
76 (660
~ . . . 2 27‘(’2-61‘ d~j6&.
Let 7 be the extended measure by periodicity to R* of the measure #

Thanks to (6.60), we can say that (7, ) is a bounded sequence of measures, and
extracting again if necessary, we can assume that there exists a measure 7y on R?
such that

7., — 1. (6.61)
Step 2: —ATy+ Ty =1y

The balls <Bi(dj,7’j)> ;. areso much small as that we have )
jE

€

- 1
jer. i = [Togz|®°
hence
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|log ¢| Z 7j=o0(l) as € — 0. (6.62)
jel
Using (6.62) and referring to the proof of proposition 5.12, steps 3,4, we find similarly
as (5.66),

AT 4T, — . — 0 (6.63)
p

locally in W,_3". Now, having (6.63) and using the same procedure as in [SS4],
lemma 3.1, one can check

AT, +T,—19p—0 (6.64)
locally in Wp <3 - Tp is the weak limit of T, locally in L?, hence by uniqueness of
the limit, T;, — Tp locally in I/Vp’<p2 and

—ATy+To =10y in R (6.65)

Step 3: Vg = 170
Now, having » ;c; i = o(1), we can claim
Ve

— v, —0. (6.66)

n

Indeed, first for any f € C°(K)

/f e ) = (deaz Zcfz-f(da)- (6.67)

USIE iel.
Referring to (6.57),

/Kf(ue—zz:)—f()(Zdeaz S5 @)

icle j=1 i€l j=1

(6.68)
Z(Zd ~ 1(@)])-
el j=1

Therefore, the function f satisfies

|fai) = f(a;)| < C la; — a;].
We know that a; is the center of B; and a; € Bj(a;,r;), hence |a; — a;| < r;. Using
this in (6.68), we get

[ 1w

(ic |d] Ti)
el j—1

IN

2
C
7 Z” |d .
i€l 1

Jj=
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Obviously, it is immediate that

e

maxm ZZ]CZ \
E €l

i€l. j=1
Sf(ce) <1e21:€n) (%Wﬂ)

We go back to (6.60) to get

\/f )

Then, thanks to » ;c; 7 = o(1), we deduce

<C Zrl

i€l

/f(z/g—ﬁg)—>0 as € — 0.
K

] 2 - di 85, o d; 8a, .
This means that the measure ( i ije(f) 10 2T Z}G(S 1) converges to 0 in the

! 2 o7 dj ba.
sense of distributions, i.e. in (Cé?o (K)) . But, due to the fact that (M -

f(e)
27 . d; 0a: \ . . .
%) is a bounded sequence of measures, and extracting again if necessary,

2 s djda, 2 . d; 8a.
hence by uniqueness of the limit, ( i Z]fe(;’s e R Z}e(;i’s Z) converges to 0

in the sense of measures.
Now, let ¢ be fixed in N* and f € C°(K1?). Proceeding similar to the above, we can
prove

fWe—=1e)—0 as € =0,
Ka

. . 27 Yo, d; ba,
where v, and 7. are respectively the extended measure to K9 of 27 Yier dide; o g

- fe)
2 o7 dj 0 . ~ . C . .
%. This means that (v. — ) converges to 0 in the sense of distributions

and therefore vy = 7y, from which it follows that —ATy + Ty = vyp.
Step 4
The fact that

1 1
L =— vy = — TO
27 K 2w K
follows from the above and the strong convergence of T, to Ty in L. a

3.8 The lower bound

In this paragraph, we give the lower bound of the minimal energy %E%Q_JO which

complements the upper bound given by (6.5).
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Proposition 6.12. Let f(¢) tend to +oo such that f(e) = o(|loge|). Then, for Tj
defined by lemma 6.10, we have
J(uan,Aan)—JO 1

lim inf e > 5 1T - g — 5- (6.69)

Proof: First, (6.36) gives us

1
JK(ug,Aa)—JO > D, (] log e|—me f(e)) —27 N, heg+—

1
2/ \Vha2+2/ |he |2
K\Uier, Bilai,ri) K

We multiply the above by (f( T ve replace hep with (“Og5| + f(e)) and we pass to
the limit to get

ity A) =0 1 / [Vhe,[* . / e, [°
lim inf L — liminf n l inf —
n—oo (f(sn))2 2 n—oo K\UiEIEn Bi(ai,n-) (f( n))2 2 n—0oo K (f(sn))Z

. |log en| me,, De, Ne,
+ i (7 (Do, = No) (05 =7 505 — 2w )
(6.70)

A combination of m. — 0 and N, < D, together with the fact that % tends to L
in (6.70) yield

0 2 2
limian KUy, Ae,) — 7 1 liminf/ M—I—1 lim / M—Qﬂ'[;.
K\U'L€IgnB (aurz) K

oo (f(en))? =2 R ) (f(en))? 2 n=oo Jie (f(en))?
(6.71)
By definition of the function 7. which is %,
0
lim inf 28 Y Acn) =T 1liminf/ |vTan‘2+} lim / T.,|*—2 L.
n—0e0 (f(sn))Q T2 nooo K\UiEIEnBi(aiari) 2 n—oo K
(6.72)

From proposition 6.11,

T., — Tp strongly in Wp’<p2(K )

VI, — VIj a.e.
Let X. = VT. in K\ Usjer., Bi(ai,r;) and 0 otherwise, so thanks to [SS6]

X., = VIy a.e.

In particular, using Fatou lemma, we have

lim inf

/ yxsﬂz/ VTy|2.
oo K\Uier,,, Bi(ai,r:) K
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Consequently, by definition of the function X, this implies

lim inf

e /K\Uielsn Bi(ai,r;)
Again, since T., — T weakly in L?(K),

hmmf/ T, |* > / |To)?.
K

Inserting (6.73) and (6.74) in (6.72),

|VTEH|22/ VT, |2
K

A 0
lim inf 2K (Uens Aen) = J = / ITo)? + /|VT0|2—27rL.
K

n—o0 (f(en)) 2

Referring to (6.56), we know

/T0:27TL.
K

Consequently,

. Ik (ue,, —J°
it UG 2 [t [ ot - [ 7

More precisely, this means

0
lim inf i (te,, Ae, )2 J 1 2 _ 1
n—00 (f(en)) =3

4 Proof of Theorem 6.1, completed

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

First, combining the properties of the limit configuration Tp, we can say that TO eV.
From a comparison of the upper and the lower bound of the quantity ( f(a))27 we

present the values taken by the limiting configuration of vortices (Tp,vp) in the

following lemma.

Lemma 6.13. The (Ty,vy) defined by lemma 6.10 satisfies
To=1
vy = dx

where dx is the Lebesque measure on R%. Moreover,

D, 1

.
ntoo flen) 27
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Proof: Let (ug, Ac) be a minimizer of J, then propositions 6.3 and 6.12 both give
us

. L Ae,) = J° A)—J0 1
T < timin P A T gy, Tl Ac)

< ——.
2 n—0o0 (f(gn))Z n—00 (f(gn))2 -2
Examining the left and right-side of the above, we find

70
oy T e, Ac) =0 1 (6.79)

e (f(gn))2 2

and
Ty = 1.

Thanks to proposition 6.11,

T., — To =1 strongly in VV;’SPQ(RQ).

Moreover, the limit measure, which is vy = —ATy + Ty, is written as

vg=dr in R2 (6.80)

where dx is the Lebesgue measure on R?. Consequently, thanks to (6.49)

Ve, — Vg = dx,

n

where v, is the extended measure by periodicity to R? whose restriction on K is

%. This means that the vortex-repartition is uniform. In addition, from

(6.80),
/ Vg = 1,
K

/1/0:27TL,
K

then by identification, we get thanks to the fact that lim._q g—i =1

and in view of (6.56),

: Ne . De, 1
L= lim “— = lim = —.
n—+too f(e,) n—too f(e,) 2w
This allows to ensure that the number of vortices per period is of the order of f(e).
The above limits do’nt depend on the chosen of the subsequence and since it is true
for any &, — 0, the whole sequence converges. Combining all the above completes
the proof of Theorem 6.1. a

(6.81)

Remark 6.14. In the chapters 5 and 6, we have studied in the limit ¢ — 0 the
vortex-structure of minimizers of the Ginzburg-Landau energy over the space A with
respect to the all possible values of A > 0. In particular, we have given the value
of \ for which the vortices appear, and when there are vortices we have successfully
stated their repartition in the superconductor and their number per period.
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Chapter 7

Vortices’s concentration along
one line

In this chapter, we construct a periodic critical point of the energy J, i.e. a solution
of the Ginzburg-Landau equations (3.4), such that as ¢ — 0, the vortices contained
in the square K of (uc, A-) minimizer of the energy J over an appropriate space, are
concentrated along a finite number of horizontal lines.

1 Introduction
Here, we deal with applied fields he, given by the following limit

| log €|

A= iliI(l] I (7.1)
We assume that the limit exists. From now on, we consider fields such that
0<A<2 (7.2)

Note that A > 0, i.e. hep < C |loge|. We take K any square of sidelength 1.
Our goal is to find a sequence of solutions of the Ginzburg-Landau equations (3.4)
such that as € — 0, the vortices contained in K concentrate on a finite number of
horizontal lines. The sequence is constructed by minimizing the energy J over an
appropriate space. First, let p. € N be a function of € such that the following limit
exists and does not vanish

a=2m lim Pe .
e—0 hew

(7.3)

Now, we define the space where we perform the minimization of the Ginzburg-
Landau energy J.

Definition 7.1. Let (u, A) € H} (R? C) x H. (R?,R?). Then, (u, A) belongs to G.

loc
if there exists (ki1,ko) € HE (R% R) x H? (R% R) such that ¥(z,y) € R?

loc
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u(x + p%:,y) = u(z,y) ¢ 1Y)
w(z,y+1) = u(z,y) e Py

and

A :c+,,%,y> = A(z,y) + V ki (,y) 5)

Alz,y+1) = A(z,y) + V ka(z,y).

Proceeding similarly as in the chapter 3, the infimum of J over G. is achieved.
We denote by (ue, Ac) a sequence of minimizers and h. = curlA. its associated
magnetic field. Then, it is a solution of the Ginzburg-Landau equations, namely

Viug = E% e (1 —|uel?)  in R2

—Vth, =< i u,, Va ue > in R2.
We restrict our attention to the asymptotic behavior of the minimizers (u., A;) over
G- when ¢ tends to 0 and their vortices. From now ow, let K = [0,1[x[0, 1[. First,
we state some notations and definitions.

Notations

Let f be a function on R2.
i) We mean by the K -periodicity of f that there is a periodicity with respect to the
square K, i.e. V (z,y) € R?

fla+Ly) = flz,y) = flz,y+1).
ii) We say that f is R -periodic if

flo+ pl,y) = f(z,y) ¥ (z,) €RZ.

iii) We say that f is KR -periodic if for any (x,y) € R2,

flat+ —y) = f(a,y) = fla,y + 1).

Pe

Now, let (u, A) be in the space G. and h = curlA. Then, in particular from (7.4)
and (7.5), a simple calculation gives us that the physical quantities like h, |u| and
<iwu, Vau > are KR -periodic (in the sense of (iii)).

2 An upper bound of the energy

Recall that « is defined by (7.3). First, we give the space
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f € H. (R*R) such that f is K — periodic, * — f(z,y) is constant and the
U := { restriction of the measure v = —Af + f on K is supported on a finite number

of horizontal lines such that the mass of v on each one belongs to a Z

(7.6)
We take for any f € U the measure
v=—Af+f in RZ (7.7)
For y € K, we define G to be the Green function solution of
—A,G(z,y) + Gz,y) =6, in R (7.8)

Remark that G exists, is unique and symmetric, i.e. G(x,y) = G(y,x). Let I be the
functional

=5 [ W+5 [ Gepdv-Dwdv-n@.  (19)

Lemma 7.2. We have for any f € U,

PN [ O P -
B =5 [1-af+si+g [1ViP+g [1r-1P=10) ¥ - A{;g)

Proof: First, we multiply the equation (7.8) by z — f(z) and we integrate over
R? to get for y € K

42(—Aza<x,y>+a<x,y>) f@)yde= | 8,2) fz) du=fly).  (7.11)

R2
Second, thanks to lemma 5.7, it is easy to find

—A,G(z,y) f(x) dx = —A,f(x) G(x,y) dx.
R2 R2

We insert this in (7.11) to have

L (=8t @ + 1@) Glay) dz = f0). (7.12)
Going back to (7.7) and the symmetry of G, we obtain
fly) = - Gy, z) dv(z), yeK. (7.13)

Now, set for f € U
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= [ 9sP+ [ 1112

It follows that

(=3 [ 1-Af+f+5F.

We need to give the explicit form of the functional F' only in function of the measure
v. Using the K -periodicity of f

/KAfzo and /K—fAf:/K|Vf|2.

We insert this in the functional F' to obtain

F(= [ (r=n (~ar+7-1)

(7.14)
= [ (7= D) d - 1)
K
The equation (5.18) gives us
G(y,z) de = 1.
R2
Using this in (7.13),
(F=1) = [ Glna) dw = 1)(o). (7.15)

The measure (v — 1) denotes the difference between of the measure v and the
Lebesgue measure on R?. Inserting (7.15) in (7.14) leads to

F(f)= /K< - G(y,x) d(v — 1)(1:))d(p —1)(y).
We obtain for v = —Af + f,

B =5 [ 1=Af+f145 P

=5 [ W5 [ 6w dv=-1 dv -1

=I(v).
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2.1 Main result

The upper bound on the minimal energy is stated in the following

“;:f;' = X exists, is finite and does
not vanish. Let v be any K -periodic Radon measure on R? constant on horizontal
lines such that the restriction of v on K is supported on a finite number of horizontal
lines and its mass on each line belongs to a N, and (uc, A:) be a minimizer of the

energy J over the space G, then

Proposition 7.3. Set ho, be such that lim._,q

. J usyAs
lim sup (h2) < I(v). (7.16)
e—0 ex

Thanks to lemma 7.2, the proposition 7.3 can be stated differently

Corollary 7.4. If A > 0, then for any f € U with (—Af + f) is positive, we have
for a minimizer (u., Ac) of the energy J over G.

. ‘](uaa AE)
1 N ==
e

< E(f).

Proof. Let f € U, then by definition of the space U, f is K -periodic, so the measure
v = —Af+f isin particular K -periodic. Again, v is constant on horizontal lines and
its restriction on K is concentrated on a finite number of horizontal lines. Moreover,
v is taken to be positive, so the mass of v on each line belongs to a N. Combining
all the above, the proposition 7.3 implies

J(ue, A
lim sup (1;;2’8) < I(v).
e—0 ex

Therefore, for v = —Af + f, the lemma 7.2 leads to

. J (“Ea As)
1 _ &/ e
e T

< E(f).

2.2 The proof of proposition 7.3

Suppose that the assumptions of proposition 7.3 hold, then without loss of generality,
we assume that the restriction of the measure v on K is supported on m horizontal
lines denoted by {¥;, 1 <i < m}. Since the mass of v on each horizontal line belongs
to a N, there exist (yi)i<i<m With 0 < y1 < y2 < ... < ym < 1 and (n;)1<i<m with
n; € N such that the restriction of v on K is equal to « 2211 n; 0y, where Jy;; is
the measure of arclength along ¥; and the equation of ¥; is y = y;.

The upper bound (7.16) is obtained by a construction of a test configuration (ve, B)
in the space G.. For this, we need to describe the vortices of (v, B;). We split the
proof into three steps.

Stepl

We consider the sequence p. defined by (7.3). Let R; be the rectangle
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SR '
R]:[] ai[x[071[7 13] Spe
De  De

We place in the rectangle R; the points

j—1/2

&€

(af)lgkgm =( ,Z/k>1<k<m- (7.17)

The extended points on K are (a’?>
I/ 1<k<m, 1<j<pe

points in the square K. Now, we define v, to be the extended measure to R? by K
-periodicity of % Yoy (nk Zfil (Sak>. Let 1 < k < m be fixed, then as ¢ — 0

. We deduce that there are (m p;)

i

Pe
i=1"a

Pe

k
7

— dy, in the sense of measures,

where Y is the horizontal line of equation y = y;. Consequently, using the fact that
a hey ~27p: as € — 0, we find

ve —=v as € — 0.

Step2
We refer to the proof of proposition 5.8 to have

. 1 A
limsup = /K - G(x,y) d(ve—1)(z) d(re—1)(y) < 5

e—0

W)+ [ Glay) do=)(a) d-1)0).

(7.18)
Step3
Now, we construct a test configuration (ve, B:) to be in the space G.. First, we
construct a function h, KR -periodic by letting

he@) =hes [ | Glv) delo),
R
so that
—Ahe + he = hey Ve in RZ. (7.19)

he is taken as the magnetic field. Then, v. and B. are defined as in the proof of
proposition 5.8 in a way such that h. = curlB. and (ve, B:) € G. with

(0, Be) _ % [iclhel? + 3 Jie Ihe = heal?
e To.(1), (7.20)

where 0.(1) — 0 as € — 0. Then, following again the proof of proposition 5.8 and
using (7.18) yield

1 2,1 2
2 Vhe 2 hs - hex
lim sup 2 Jic| | +h3 Jic| | < I(v).

e—0

Combining with (7.20) allows to conclude
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B
lim sup J(z;;,g) < I(v). (7.21)
e—0 ex

This inequality is true for the test configuration (v., B:), so it is true in particular
for any minimizer of the energy J over the space G. and (7.16) is proved.

Assumption

Let f € U, then without loss of generality we assume from now on that the restriction
of the measure v = —Af + f on the square K is supported on m horizontal lines.
We take (yi)1<i<m such that 0 < y; < y2 < ... < ym, < 1 and we define ¥; be the
horizontal line contained in K and of equation y = y;. As a consequence of the
above,

is the family of the m disjoint horizontal lines where the restriction of the measure
v on K concentrates. Since the mass of v on each line belongs to «a Z, there exists
n; € Z such that the mass of the measure v on ¥; is equal to a n;. It means that
the restriction of the measure v on K can be written as

v= Za n; dy,. (7.22)
i=1

Now, for f € U and under the above assumptions, our interest is to rewrite the
energy E, which is given by lemma 7.2, only in function of the family (i, ni)i<i<m.
This will be the subject of the next paragraph.

3 New formulation of the energy F

Here, we take K = [0,1[x[0,1[. Let f € U, then in particular, the restriction of
the measure (—Af + f) on K is concentrated on a finite number of horizontal lines.
We start with the case where the measure (—Af + f) is not concentrated on any
horizontal line.

3.1 Energy without horizontal lines of concentration

Let f € U. In the case of absence of concentration’s horizontal lines, f verifies in
particular

~Af+f=0 in R% (7.23)
Since f is bounded, it is easy that
f=0 in R2

Consequently, letting f = 0 in the energy without line of concentration, we deduce
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B(f) =35

3.2 The energy in the presence of horizontal line (or lines) of con-
centration

In this case, let m > 1 and (y;,ni)1<i<m such that 0 < y1 < ... <y, < land n; € Z
for 1 <i <m. Let f € U, then taking the assumption given in the above paragraph
and thanks to (7.22), the restriction of the measure (—Af + f) on K is

—“AfH =)o by, (7.24)
=1

where Y; is the horizontal line contained in K and of equation y = y;. Due to the
parameter m, then for the family (y;, n;)1<i<m defined in the above, let us set the
space

fe€HL (R:R) suchthat f is K — periodic, # — f(z,y) is constant and the
Up, := { restriction of the measure (—Af + f) on K is of the form ", o n; dy,

where n; € Z forl <i<m

Let f € Uy, then there exist (n;)i1<i<m with n; € Z for any 1 < i < m such that the
restriction of the measure (—Af + f) on K can be written as Y ;" a n; dy,. Again
by definition of the space U,,, = — f(x,y) is constant in [0, 1], hence to drop the
subscripts, we set for y € [0,1], g(y) = f(z,y). In particular, we deduce

m

/KI—Aerf!:a;m and /K<—Af+f><f—1>=a;m(g—l)(y».

Using g(y) = f(x,y) together with these two identities and the fact that f is K
-periodic, the energy E corresponding to m horizontal lines can be written as

We can write

E(f) = % - ;a ni (g(‘;”) = (% - %)) - % /Kf. (7.25)

We need to calculate [, f. For this, denote by g; (resp. g;.) the left (resp. right)
derivative of g, so it is clear

96



ani = gi(yi) — gu(y:) V1<i<m (7.26)

By definition of the function g,

(7.27)

Using (7.26) and ¢'(0) = ¢/(1) (which follows from f € U,y,),

/Kf = ; a n;. (7.28)

Inserting (7.28) in (7.25),

E(f) = % +3 a n <g(2y"') —(1- i)). (7.29)
=1

From now on, we restrict to the case m = 1. In particular, we have

Lemma 7.5. If f € U is such that —Af+ f is equal on K to o ny Oy, where ny € Z,
then

1 A e+1
E(f) = E1(n1,y1) = 5 + (1 — 5) a ni+ m Oé2 n% (730)

where ¥ is the horizontal line contained in K and of equation y = y;.
Proof: The restriction of the measure (—Af + f) on K is

—Af—f—f = « Ny 521.
Taking ¢g(y) = f(x,y), we have thanks to (7.26),

ani = g/(y1) — g.(y1).

By definition of g, g(0) = ¢(1) and ¢’(0) = ¢’(1). Now, combining the above together
with the continuity of g at y1, a simple calculation gives us

e+1

xR (7.31)

g(y1) =

However, letting m = 1 in (7.29),

E(f) = Ei(n, ) = % +a m ( )) (7.32)
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We insert (7.31) in (7.32) to deduce

e+1 9 9

E(f):El(nlayl):%—F(l—é)Oé ny + ni.

2 1e—1)

This completes the proof of the lemma 7.5. a

The expression given by (7.32) does not depend on y;, hence for simplification,
we take for nq € Z
1 A e+1
F(n1) = E1(n1,y1) = §—|—(1—§)a n1+m o nl. (7.33)
Now, let (ue, Ac) be a minimizer of J over the space G., then going back to the
upper bound given by corollary 7.4 and using the definition of F', we can deduce for
any n1 € N

lim sup JK(usa As)

up TS < F(m). (7.34)

3.3 The finer upper bound of the minimal energy

The fundamental result of this section which will be very useful for the rest is stated
in the following lemma

Lemma 7.6. Let (uz, Ac) be a minimizer of J over the space Ge. Then, if

A e+1
1—— _ .
2>a4(€_1), (735)
we have (e, AL) )
. Ug, Ag
llI;ljélp higx < 5 (736)

Remark 7.7. Thanks to the assumption (7.2), we remark that the left-hand side of
(7.85) is positive. Then, for a sufficiently small a > 0, the condition (7.35) has a
sense. Note that the right-hand side of (7.36) which is % corresponds to the energy
without horizontal line (or lines). Moreover, the inequality given by (7.36) will be
very essential at the end of the chapter.

Proof: We take particularly n; =1 in (7.34) to get

. J(ue, A
hmsup(};s) < F(1).
e—0 ex

By definition of the functional F' given by (7.33),

lim sup 7J(u€, Ae)

< L (1
e—0 hzx 2

Now, we choose
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A e+ 1

1-2 T2
27 YT e—1)
to conclude from the above
) J(us, Ae) 1
limsup ——— < —.
e—0 P h’g:v 2
The proof of lemma 7.6 is then completed. O

4 Lower bound

Here, we assume that the applied field he; is such that

0< <2

Consider (ue, A;) a family of minimizers of the energy J over the space G., thus a
family of critical points of J and let h. = curlA. be the induced field. Similar to
the proposition 4.1, we can state

Proposition 7.8. For h., < C |loge|, there exists gy such that if e < g¢ and (ue, A;)
a minimizer of J over G., then there exist a rectangle R* of the form [z, a:—l—p%[x ly, y+

1[ z,y € R, (without loss of generality the rectangle is R* = [0, p%[x[(), 1)), and a
family of disjoint balls (Bi = Bi(ai,ri))

of center a; and of radii r; satisfying

€L,
1 3
{xr € R, |u:(z)| < Z} C Ujer. Bi, (7.37)
UiGLEBi(aia 7“@') - Rl, (7.38)
> i < Clloge| e VITosel, (7.39)
i€Le
card(L:) < C |loge| hey, (7.40)
1 . 1
Fe(us, Ae, Bi) = 5 / Vue—i Ac e +— / (1=|ucl*)* > 7 |dif |loge| (1-0(1)),
2 B; 4 ¢ B;
(7.41)
where d; is the degree of the map IZZ\ restricted to 0B;.
4.1 Proof of proposition 7.8
First, letting Q = [0, 1[x[0, 2[, me = ——— and a. = |loge| in the proposition 4.12,

v/ | loge|

we have
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Lemma 7.9. For he, < C |loge|, there exists eg such that if € < g9 and (ue, A;)
satisfies |Vus — 1 Ac ue| < % and F.(ue, Ac,Q) < C |logel|?, then there eists a

family of disjoint balls (Bi = Bi(ai,n))' ; of center a; and of radii r; such that
1€

€

3
{x € Q, |us(x)| < 1} C Ujer. B;, (7.42)

> 1 < C |loge| e VIlael, (7.43)

i€l
card(I;) < C |loge| hes, (7.44)
Fe(ue, Ae, Bi) > m |dy| [log e (1 —o(1)), (7.45)

where d; is the degree of the map |Z§| restricted to 0B; if B; C Q and d; = 0
otherwise.

Let (ue, Ac) be a minimizer of J over G., then it is a critical point, so going back
to (3.13), we have

C
[Vue —1 Az ug| < s (7.46)

We test the energy J by the configuration (1, 0), since it belongs to G.. The minimum
of the energy Jg is then less than Jo(1,0) < C h2, < C |loge| he,. Hence

F.(ue, Ac, ) < Ja(ue, As) < C |loge| heg.

So, the hypotheses of lemma 7.9 are verified. Then, applying it, there exists a family
of balls in 2 depending on € denoted by (B;)icr. = (Bi(ai, n)) ~such that the three

el
assertions (7.43)-(7.44) and (7.45) hold.
We start by the proof of the assertion (7.38). Thanks to (7.43), we have

Zri < C |loge| e~ VIoeel,
i€l

Then, since p. = O(|logel),

Zri = o(i).

iel. pe

Consequently, projecting the balls <B¢(ai, 7“Z>> - on the horizontal line of equation
1€1e
Yy = %, then if ¢ is sufficiently small there exists 0 < x7 < 1 such that the two

lines of equations x = z1 and z = x1 + p% don’t intersect any ball of the family

<Bi(ai, 7‘,)) . Using the same argument, then if ¢ is sufficiently small there exists

icl.
0 < y1 < 1 such that there is no intersection between the two lines of equation

y =11 and y = y1 + 1, and the balls (Bi(ai, m)) L We define

1€

1
L Z{i €I, Bj(a;m) C R =[21,21+ ;[X[?J,yl + 1[}-

£
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Note that the balls (Bi(ai, rl)) defined on R! are disjoint, since the initial balls

€L,
(Bi = B(ai,n)) are disjoint. In addition, the lemma 7.9 implies in particular

i€l
that the other assertions of proposition 7.8 hold. Without loss of generality, the
rectangle R! is [0, p%[x[(), 1.

Combining all the above completes the proof of proposition 7.8.

Notation

In the above proposition, the rectangle R! is [0, p%[x [0, 1], then from now on we will

take K = [0,1[x[0,1[. Now, let us extend the balls (Bi(a,-, n)) - by R -periodicity
1€Le

to K. For simplification, the ball B;(a;, ;) defined on R! will be denoted

Bi(aj,r;) = Bl-l(a%,ri), Vie L.

Note that the rectangle R' can be taken as the fundamental domain of periodicity

for (ue, Ac) € Ge. Then, for i € L., we let B! (al,7;), 1 < j < g be the extended ball

of B}(a},r;) by R -periodicity to the rectangle R/ = [j — 1,4[x[0, 1[. Consequently,

(Bg (ag , n)> is the family of the vortex balls defined on the square K.
(1§j§pe, ie['s)

4.2 Preliminaries

Let (ue, Ac) be a minimizer of J over G.. Then, proposition 7.8 gives us the existence

of the balls (le (ag, rz)) - defined on R!. Let us take
1€Le

D.:= > |di. (7.47)
1€L:
Our interest now is to estimate, for an € small enough, the order of D.. In particular,
we give an upper bound for D,.

Lemma 7.10. For a sufficiently small €, there exists C' > 0 independently of ¢ such
that
D. <C. (7.48)

Proof: First, knowing UieﬁgBl-l C R, we have

Jpi(ue, Ag) > JUiellsBil (ue, Ag). (7.49)
It is immediate by R -periodicity that
J A
Jp1(ue, Ac) = K (te 6)-
Pe

Then, inserting this together with (7.41) in (7.49), we obtain thanks to the fact
2T pe~ahe, ase — 0
h2
7 D, |loge| (1 —o0(1)) < 5 L < C heg. (7.50)

£
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Since he, < C |logel, (7.50) leads to

D. < C.
O

The inequality (7.48) gives us a bounded vorticity in each rectangle RI,1<j<
pe. Now, knowing that Bg“ is the ball image of B by translation of vector pisi,
then we can easily prove for any i € L.

Ug Ue

deg(—=,0B!) = deg(—,dBJ*"). (7.51)

| | | |

It is then clear that the degree of |ZZ| restricted to OB} where i € L., is invariant

under the K R -periodicity to R?. In particular, (7.51) implies that the number of
the vortices of u. in K is a multiple of p..

Remark 7.11. Let (u., Ac) € G, then by definition of the spaces G and A, it is
clear that (us, A;) belongs to the space A. If (ue, Ac) is in addition a minimizer of
the energy J over G., then using (7.51) together with the fact that

U Bg(ag,ri)CK,
<i€£s, 1§j§pe)

and proceeding similar to the corollary 4.4, we can deduce for a sufficiently small €

/Kh5:27rp€ > ds

€L

4.3 Convergence of minimizing sequence

Consider h,, satisfying (7.1) and (7.2). Let (ue, Ac) be a sequence of minimizers of
the Ginzburg-Landau energy J over G. and h. = curlA; be the induced magnetic

field. For any such set of the balls (BZJ (ag , m)) defined on K by propo-
(i€£av 1§j§p£)
sition 7.8, we can associate to u. the extended measure by K -periodicity to R? of
27 Zieﬁe dl (Z.Z;il 60,‘7) . .
i/ denoted by v.. Using the fact that Jx(ue, A:) < C hZ, in

hex
(3.10), we have

1
5 ||ha - hex||12L[1(K) < JK(UayAa) <C hgm‘

Then, }Zi" is bounded in H!(K), so thanks to the K -periodicity of he, }% is bounded
in H'(O) for each compact O C R2. In particular, it is bounded in H} (R?). So,
up an extraction we can find a subsequence &, — 0 and there exists fo € H. (R?)
such that

he,
hex

— fo weakly in H. (R?). (7.52)

Moreover, using again the K -periodicity of ,f:x implies that
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fo is K — periodic.

Now, by definition of the restriction of the Radon measure v. on K, it is clear

D
/ Ve, | =2 7 pe,, hEn'
K ex

Thanks to (7.48), (%)n is bounded, hence by K -periodicity to R?, we can
write for any compact O C R?
/ |ve, | < C.
O

Thus, (v, )n is a bounded sequence of measures, and extracting again if necessary,
we can assume that there exists a Radon measure 1y on R? such that

Ve — 1.

n

Finally, proceeding similarly as in the proof of proposition 5.12, the relation between
vy and fo is
vp=—Afo+ fo in R2 (7.53)

Now, let (u., A:) be a minimizer of Jx over the space G.. Knowing that G. belongs
to the space A, hence in particular the lemma 5.13 yields

.. o Jdr(ue,, Ae, A 1 1
hmmf@ 25 / | —Afo+ fol + 5 / IVfol*+ 5 / |fo— 11> = E(fo).
n—oo hea: 2 K 2 K 2 K
(7.54)
4.4 Properties of f, and v,
Let us start with
Lemma 7.12. f; is continuous on R2.
Proof: First, referring to [SS5], lemma 4.1, we have
Vol € VVZZ’f(RQ), 1 <p< +oo.
Thus, in particular
foe WEP(R?), 1<p< +oo.
By Sobolev injection, we conclude
foe Cr(R?), 0<a<l,
which completes the proof of lemma. O

Proposition 7.13. The limit configuration (fo,vo) verifies
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o z — fo(z,y) is constant.

e The restriction of vy on K is concentrated on a finite number of horizontal
lines .

e The mass of vy on each horizontal line belongs to « Z.

Remark 7.14. The case where vy = 0 is included in the result of the above propo-
sition; it corresponds to the case where the measure vy is not concentrated on any
horizontal line. Moreover, combining the fact that vg = —Afo + fo in R? together
with the above proposition, it is clear from the definition of the space U defined by

(7.6),

foel.

Proof: Stepl: z — fo(z,y) is constant
We know that f5($+p%, y) = f-(z) for any integer k. Now, taking any real number a,

there exists a sequence of integers k. such that ’;—i — a. We denote t. the translation

(z,y) — (z + f)—z,y) and t, the translation (x,y) — (z + a,y). Then, taking g any
smooth compactly supported function and using change of variables

/fsg:/(fsots)g:/fs (got:").

fo is the limit of f., hence passing to the limit we find

/fog=/f0 (gota_l):/(foota)g,

and therefore fo = fgot,. Step 1 is then proved.
Step2: The restriction of 1y on K is concentrated on a finite number
of horizontal lines such that the mass of 1y on each line belongs to o Z

The vortex balls (Bf (af,ri)) defined on K depends on ¢, hence from
(i€Le, 1<5<pc)
now on, we write

di(e)=d; and al(e)=dal for i€ L. and 1< j<p.,

[ i

where d; = deg( Ue 835 (ag , 7‘@)) First, for a sufficiently small €, lemma 7.10 gives

uel?
us De = >, |di(e)| < C. Thus, the cardinal of {i € L., d;(¢) # 0} is bounded
independently of €. First, if for any € < eq, d;(¢) =0, Vi € L.. This means that for
any € < €9, D = 0, so by definition of the measure v., we have v = 0. Then, the
limit measure

o = 0. (7.55)

Second, if for a sufficiently small e, there exist points with non zero degrees, then
without loss of generality, there exists m € N* such that these points are denoted
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{af(e), 1<i<m, 1<j<p:}. Now, up to extraction from ¢ — 0, we can get
from the above that V 1 <+¢ < m there exist ¢; € Z and bi1 € R! such that

di(en) — ¢, and ail(en) — bl

;.
For simplification, let
V1<i<m, b= (z;y) where 0<y; <..<ym<Ll

Note that y; is constant and does not depend on €. The extended points of (b )1<Z<m
by R -periodicity to K are {b) = (x; + U El),yz) 1<i<m, 1<j<p} Itis
easy that V. 1 <i¢ <m, asn — +o©

Pen .
j=1 6af (en)

8([0,1)x{y;)} in the sense of measures. (7.56)
Pey,

Consequently, using d;(g,) — ¢; together with « he, >~ 2 7 p., as n — +o0 in (7.56),
we find for any 1 <i<m

2252 0y
hex

s T

2 di(en) — @ @i O(j0,1]x{y;}) in the sense of measures. (7.57)

Finally, as n — 400

m POATRICH
27 Z di(en) . — ; ¢ O([0,1]x{y;}) 1D the sense of measures.

(7.58)
We define ¥’ to be the horizontal line contained in K and of equation y = v;.
Hence, {¥%, 1 <i < m,} is the family of the m horizontal disjoint lines where the
restriction of the limit measure vy on K concentrates. The left hand-side of (7.58)
is the restriction of the measure v, on K, hence we can conclude that the restriction
of the measure vy on K is equal to ) ;" & ¢; dxi. The mass of the limit measure
vp on the line X is equal to (a ¢;). The conclusion from this and (7.55) is that the
mass of vy on the horizontal lines which are contained on K belongs to o Z. This
completes the proof of proposition 7.13. a

Now, under some condition relaying A ( and then the applied field) to the para-
meter «, we state a fundamental property for the limit measure vy.

Lemma 7.15. If1— 2 >«

1 (6 11), we have vy # 0.

Proof: We argue by contradiction and we suppose that vy = 0. First, let (u., A;)
be a minimizer of J over the space G., then going back to (7.54) and using the fact
that vy = —Afo + fo, we have

J A 1 1
liminfmz— / IV fol2 + = / |fo— 1% (7.59)
2 Jk 2 Jk

TR

where Afy+ fo = 0 in R2. In this case, we have fo = 0. Inserting this in (7.59), we

get,

ey A 1
S

(7.60)
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However, if we choose 1 — % > g f:_ll), then the lemma 7.6 gives us
, J(us, Ae) 1
limsup ———= < —.
e—0 hg:}: 2
Comparing this to (7.60), we get a contradiction. Consequently, vy # 0. O

Now, under the hypotheses of lemma 7.15, we have obtained that the limit
measure of vorticity vy verifies vy # 0, which allows to say that the restriction of 1y
on K concentrates on at least one horizontal line. From now on, we restrict to the
case where the restriction of the limit measure 1y on K is supported exactly on one
horizontal line.

5 Vortices’s concentration on one horizontal line

In this paragraph, we assume that 1 — % > g ?;:11)' If the restriction of the limit

measure vy on K is supported exactly on one horizontal line, then v is written on
K as

vg=ad dy, (7.61)

where d € Z* and y = y; €]0,1[ is the equation of the horizontal line ¥. Note that
the mass of 1y on ¥ is a d. My interest is then to give for certain applied fields, the
value of d.

Lemma 7.16. If in addition

1

1
- % °r (7.62)

<y —
=Y9 1y

then the d defined by (7.61) is equal to 1. Moreover, letting (ue, Az) be a minimizer
of J over the space G., we get

J(ue,, Ae,) 1 A e+1 9

lim :*—(1—*) CX-FmO&

Proof: From remark 7.14, fy € U, then from (7.61) which is
vp=—-Afo+ fo=ad éy on K,

it is clear, fy € U;. In particular, from lemma 7.5, we have by definition of the
functional F' given by (7.33)
1 A 9 l+4e

E(fo)=F(d)=5-al-3)d+a 1e-1D

d2. (7.63)
Let (ue, Ac) be a minimizer of the energy J over the space G.. Going back to (7.54),

: : J u n?A n
lim inf (*fhza) > E(fy) = F(d). (7.64)
Now, let us take in particular n; =1 in (7.34) to find

[SB] AE
lim sup M

msup S < Fm) = F(1) (7.65)
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Combining (7.64) together with (7.65), we have for d € Z*

A A
J(UE}’:Q? an) S llm Sup J(uarﬂ an)

ex n—oo hgx

F(d) < liminf

n—oo

< F(1). (7.66)

Let d, be the minimum of F' over Z. Since x — F(z) is convex in R, the minimum
of F' over R is achieved at

e—1 2—AX

Having 1 — % >« %}1), hence x,;n > % Now, let us take in addition
PR
2 2(e—1)

Inserting this in (7.67), we get x,, < 1. Consequently, under the assumptions
(7.35) and (7.62), 3 < @y < 1. This implies that the unique minimum of F' over
Z is dy = 1. Inserting this in (7.66) to find

A A
Fm:FMQ§ﬂ®§MMMﬂ&%iQSMMW£@ﬂJﬁ

ex n—o0o hzzr

< F(1) = F(d,).

In particular, we get F(d) = F(1) = F(d.). In view of the uniqueness of the
minimum d, = 1 of the functional F' over Z, we obtain d = 1. We deduce using
(7.63),

J(ue,, Ac,) 1 A e+1 9
TA\TenrTen) _ p1y = _ (1 -2 T

W=5-0=3) e+ @
Finally, inserting d = 1 in (7.61), the restriction of the limit measure vy = —A fo+ fo
on K is written as a Jx; where X is an arbitrary horizontal line. Note that the mass

of the measure vy on X is equal to a. O

lim
2
n—oo hem

As a consequence, combining all the above, the main result that we have proved
along the chapter is stated in the following.

Theorem 7.17. A- Convergence:

Let (ue, A:) be a minimizer of the energy J over the space G. and he = curlA; be the

associated magnetic field. Then, letting v. be the extended measure by K -periodicity
2w Zieﬁe di (Z§i1 4 J

to R? of o “L there exist a K -periodic fo € H. (R?) and a Radon

measure vo on R? such that up an extraction of €, from e

h’f n

T fo weakly in H._(R?). (7.68)
Ve, = 10 = —Afo+ fo. (7.69)

B-Properties of (fo,v0):
We have f, € U. Moreover, if

A e+1
4(e—1)

o |
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we have vg # 0. In addition, when the restriction of vg on K concentrates on one
horizontal line, then if

1A cq oL
2 2 (e—1)
we have (e, AL) ) \ .
. Ue, Ag e+ 2
lim ——— = - —(1— = B
eS0T R, ;- U=3) et ey @

and the restriction of vy on K is equal to (o dy) where ¥ is any arbitrary horizontal
line.

Remark 7.18. In the above Theorem, we don’t study the case where the vortices
contained i K are concentrated on more than one horizontal line. It is rather
difficult to obtain a concentration of vortices on m > 2 horizontal lines. The first
step is to determine the expression of the functional defined by (7.29) only in function
of the family (n;, yi)1<i<m where n; € Z for any 1 <i<m and 0 < y; < ... < ym <
1. The second step consists in the minimization of this expression among all the
configurations (n;,yi)1<i<m defined above. Unfortunately, this minimization is not
easy to study, so we can not give explicitly the limit measure of vorticity. This
explains the fact that we only consider the case m = 1, which corresponds to one
horizontal line of vortices in K.
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Chapter 8

Vortices’s concentration along
one circle

In this chapter, the domain is taken to be the disk Br of center O and of radius
R > 0. We then construct a sequence (u., Ac)c>0 of critical points of the energy Jp,,
such that in the limit € — 0 and under some condition on the applied magnetic field
hes, the vortices of (u., A;) are supported on a finite number of concentric circles of
center O and of strict positive radii (at least, there is concentration on one circle).
In particular, if the limit measure of vorticity is concentrated exactly on one circle
such that its mass is known, we will characterize this circle of vorticity by giving its
radius which will be the solution of a minimization problem.

1 Statement of the problem

1.1 Purpose of the chapter

Let © be a bounded, regular and simply connected domain in R%. Let (u, A) denote
a critical point of the energy Jo and h the magnetic field will denote curlA. Then
from [SS5], (u, A) is a solution of the Ginzburg-Landau equations, namely

Viu= E% u(l—[ul?) inQ

(8.1)
—Vth=<iu,Vaiu> in§
with the boundary conditions on 0f2
h = hem
(8.2)
Vauv =0,

where v is the unit outward normal to the boundary 9Q. We take H{(2) to be
the space of functions f in H'() such that f = 1 on the boundary Q. Let again
BV (Q) be the space of functions with bounded variations on 2. In the sequel, M()
will be the set of Radon measures on {2.

Now, we give a result of Sandier and Serfaty that describes the asymptotic behavior
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of critical points of J when ¢ — 0.

Theorem [SS5]: Let ¢, — 0 and (uy, A,,) be critical points of Jq with Jo(uy, 4,) <
C h2, and he, < C |loge|. Then, up to extraction of a subsequence, there exist
heo € HE(Q) and oo € M(Q) such that

b,

ET

— heo weakly in H{ (),

and

27 Zie[ di 601‘
Hn =
hex

— oo = —Ahso + hoo  in the sense of measures,

where {(a;,d;)ier} is the family of vortices defined by proposition 4.12. Moreover,
hso is stationary with respect to inner variations for the functional

1
L) =5 [ 9P+
Q
defined over H{ (). If Vhy is continuous on Q and |Vheo| € BV (), then

hoo € CL2(Q,R)
hoo =1 on 0f2
0<ho<1

Poo = hoo 119h|=0-

Thus, o 18 a nonnegative L™ function and pe < dz holds.

In the above Theorem, there is unfortunately no way that ensures poo < dz is
true, unless we know that Vhy, is continuous and |Vhe| € BV (). peo could be a
measure that concentrates on lines (since it has to belong to H~1). Yet, the above
Theorem only asserts that |Vhe| is continuous, but not necessarily Vhs,. There are
counter-examples of (heo, lioo) satisfying these conclusions with Vs, discontinuous,
thus without pe < dzx.

We state now a counter example. We restrict ourselves to the case of the disk
domain Q = B(O, R) such that R > 0 is the radius and O is the center. Taking
R; < R, let us solve

—Ahi+h; =0 in B(O,Rl)
(8.4)
hi =1 on 0B(O,R;),

and

“Ahs+he =0 in B(O, R\B(O,R1)
(8.5)
he =1 on 0B(O,R)UOB(0, Ry).

The two functions hy and hgy are radial, and we can adjust R; and R (see remark
8.9) in such a way that
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T (R = - SR, (5:6)

We define h as hy in B(O, R;) and hy in B(O, R)\B(O, Ry), then hisin H'(B(O, R)).
Moreover, Vh is discontinuous on dB(O, R;), while |Vh| remains continuous. The
measure p = —Ah + h is positive and it is supported on 0B(O, Ry), thus p < dz
does not hold. Nothing allows us to exclude that there are sequences of critical
points converging to such limiting configurations. They would correspond to so-
lutions with vortices of positive degrees concentrated along the circle 0B(O, Ry).
These sequences of critical points are constructed by minimizing the energy J over
an appropriate space.

1.2 Definitions

In this chapter, the domain is taken to be the disk B = B(O, R) where R > 0 is
its radius and O is its center. Assume that A = lim._,g % exists, is finite and
does not vanish. We define ¢. € N to be a function of € such that the following limit

exists, is finite and does not vanish too

(8.7)

Note that when it is not necessary, we will write J instead of Jp,. The natural
space where we perform the minimization of the energy Jp, is denoted by G, and
it is defined as follows.

Definition 8.1. Let (u, A) € H'(Bg,C) x H*(Bg,R?), then (u, A) belongs to the
space G if there exists f € H*(Bg, C) such that for any x € Bp

u(x eiif) = u(z) & 1@, (8.8)
and 2T 22 T s 2T
A(m e ¥> =ec"e A(x)+e' e« Vf(z). (8.9)

Now, let us choose the following gauge named the Coulomb gauge

divA=0 in BR
(8.10)
Av=0 on 0Bpg.

In the presence of this gauge, we can check that the infimum of J over the space
G. is achieved. Without loss of generality, we denote by (ue, Ac)e>o a sequence of
minimizers. Then, it is a critical point, hence a solution of the Ginzburg-Landau
equations (8.1) and (8.2). Let h. = curlA. be the induced field. We restrict our
attention to the asymptotic behavior of minimizers (ue, A:) as € — 0 and we explore
the vortex-structure of minimizers which will be obtained by getting first an upper
bound on the minimal energy J(ue, A:), and then a lower bound.
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2 Construction of an upper bound

In this section, letting (u., Ac) be a minimizer of J over the space G., we are

interested in giving an upper bound for the “renormalized” energy %.

2.1 Preliminaries

Recall that the parameter (3 is defined by (8.7). Then, we start by giving the space

f € H}(Bg,R) such that fisradial and p= —Af + f is supported on
Y := < a finite number of concentric circles of center O and the mass of u on each

one belongs to 27 6 Z
(8.11)

Remark 8.2. we have for any f € Y, f € H{(Bgr,R). Then, the measure i =
—Af + f belongs to H~, so it does not concentrate on isolated points (in particular
the point O, the center of the disk Br). Hence, the finite number of concentric
circles where p concentrates have strict positive radii. In addition, for f € Y, we
remark that f is continuous, but V f is not continuous.

First, any f € Y is solution of

—Af+f:M in BR

(8.12)
f=1 on O0Bg.
Then, V x € Bg
(f=D(x)= [ Glz,y)dp—1)(y),
Br
where G is the Green solution of
—-A,G(z,y) + G(z,y) =0, in Bp
(8.13)
G(z,y) =0 x € 0Bg.
Recall that the functional F, defined over Y, is
A 1 , 1 )
E(f)=35 | = Af+ fl+ 5 IVIIF+5 lf=1" (8.14)
2 JBg 2 JBg 2 /By

We refer to [SS3], proposition 2.1 to get for any f € Y

B =10 =5 [ s [ Gl dp-1)@) du-D). u=-Af+f,
" o (8.15)
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2.2 The upper bound

Proposition 8.3. Consider he, < C |loge|. Let u be any Radon measure invariant
by rotation and concentrated on a finite number of concentric circles of center O and
of strict positive radii such that the mass of u on each one belongs to 2 m 3 N. Let
(ue, A:) be a minimizer of the energy J over the space G, then

. J (ue, Ae A 1
s 255 <=3 [ g [ Gl -1 d(u—(l)(y)).
8.16

Thanks to (8.15), proposition 8.3 can be stated differently

Corollary 8.4. If A\ > 0, then for any f € Y with (—Af + f) is positive, we have

< E(f). (8.17)

Proof. First, the fact that A > 0 means that he, < C |loge|. Let f € Y, then by
definition of the space Y, the measure y = —A f+ f is invariant by rotation and it is
concentrated on a finite number of concentric circles of center O. Now, thanks to the
remark 8.2, these concentric circles have strict positive radii. Moreover, y = —Af+f
is taken to be positive, so the mass of 1 on each concentric circle belongs to 2 = 5 N.
Combining all the above, the proposition 8.3 implies

. J(ug, A
lim sup <h‘€28) < I(p).
e—0 ex

Therefore, (8.15) leads to

2.3 Proof of proposition 8.3

Suppose that the assumptions of proposition 8.3 hold, then without loss of generality,
we assume that the measure p is supported on m concentric circles denoted by
(T'i)1<i<m, of center O and of strict positive radii. The mass of p on each circle
belongs to 2 m B N, hence there exist (7;)1<i<m With 0 <71 <712 < ... <7y < R
and (m;)1<i<m with m; € N for 1 <4 < m such that

/,u:27r 6 m;.
I

Note that r; is taken to be the radius of the circle I';. From the concentration of the

measure g on the m concentric circles (FZ> . By M can be written as
1<i<m
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m
K :/ B= / H-
/BR Ui, I ; i

It follows that

m
/ p=27 0 Z m;.
Br i=1

Then, it is clear that the measure p is given as

m m;
p=0 = dr, (8.18)
i=1 "

where O, is the measure of arclength along I';.
The upper bound (8.16) is obtained by a construction of a test configuration (v., B;)
in the the space G.. For this, we need to describe the vortices of (v, B:). We
decompose the proof of the proposition 8.3 into five steps.
Stepl
We consider the sequence ¢. defined by (8.7). Let S; be the sector

27 (j—1) 27y

Sj:{reiG, 0§’I"<R, 96[ q 9 q [) 1§]§Q£}

First, we place in the sector S; the points

k i
(@) 1<h<m :(Tk € q€>1<k<m’

where {ry, 1 <k < m} are the radii of the circles where the measure u concentrates.
Then, by rotation of center O and of angle Qq—:, we extend these points to the ball

Bpg. In particular, the extended points of (a})1<x<m to the sector S;, 1 < j < ¢,
are denoted

.1
k i2m =2
(af)1<k<m =(7k € @

)1§k§m'

We deduce that there are (m ¢.) points in the ball Br which are

j,l
P27 2
=\TL € qe

(a£) ) . (8.19)
1<k<m, 1<j<gqe 1<k<m, 1<j<qe
We define for any 0 < j < ¢,

2mg

Y, ={re e, 0<r<R}.
Remark that the boundary of S; is

8Sj = (0Bgr HST) UXi—1UX;, 1 <j <ge.
From now on, we say that a function T is S -periodic means

. 27

T(ze' «)=T(z), z€ Bg.
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Note that we pass from the sector S; to S;y1 by a rotation of center O and of angle
27 Now, we define the measure i,

qe
- 5 (m ia) (8.20)

k=1 i=1

where my, and af are defined respectively by (8.18) and (8.19). Now, let 1 <k <m
be fixed, then it is clear that as ¢ — 0,

= léak 1
—

1)
Qe 27r7'kF

in the sense of measures,

k

where 'y, is the circle of center O and of radius ;. Consequently, using the fact that
B hex > ¢- as € — 0,

ZZE:I 5(1]-“
h

ex

2 7 my — 8k s (8.21)
T

It follows that as € — 0,

Z 271 my ( p L ) —f Z — 51"k in the sense of measures. (8.22)

Then, by definition of the measures u. and p, we deduce from (8.22), as e — 0,

te — o in the sense of measures.

Step2
Here, thanks to [SS3], proposition 2.2, we can state

lim sup = //BR . G(z,y) d(pe—1)(z) d(p—1)(y) < %

e—0
(8.23)
Step3
Now, we construct a test configuration (ve, B:) to be in G¢. First, we construct a
function h. S -periodic. Indeed, let h. be the unique solution of

—Ahge + he = E?:l 21T my (Sallc in Sy
he = hey on S;NOBg
% = on XU Xy,

where the points (a’f) L<nem € defined by (8.19). Because, we have set % =0
m

on Yo U X, and thanks to the fact that h. has the symmetry of the sector Si, the
extended h. by S -periodicity to the ball Bgr necessarily verifies

—Ahe +he = heg e in Bp

(8.24)
hg:hex on aBR,
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where 1. is defined by (8.20). In particular, we obtain

he (:1: ei%) = h.(x), x € Bg.

he is taken as the magnetic field. Having defined h. on Bg, we let B, be a solution
of curl B = h.. B. is taken to be the magnetic potential. Furthermore, we define the

function ¢. only modulo 2 = where p. # 0. Set 2 € BR\[U(1§k§m, 1<j<q.) (B(aé?, 6))]
and the function

oe(x) = 7{ et B..1 — Vhe.v, (8.25)
(:BOv:B)

where (¢, ) is any curve joining g to x in BR\{U(1<k<m 1<j<q.) (B(a;?, 5))} Let

us then choose p. such that 0 < p. < 1, p. =0 in U1§k§m<B(a’f,e)), pe = 1lin

_ le—df]

Sl\( Ut<ke<m B(ak,2 5)), and p. = —% — 1 otherwise. We may extend p. by S
-periodicity to Br, hence

-2 T
Pe (w el¥> = p:(x) Va € Bp.
Similar to the proof of proposition 5.8, step 3, €' ® is well defined, so let us take
ibe

Ve = pPe €

Step4
Here, we prove

Lemma 8.5. The test configuration (1}5, BE> belongs to the space Ge.

Proof: First, thanks to (8.24)

he (w e’ QTEW) = he(z) Vz € Bpg. (8.26)

The magnetic potential B. € H'(Bg,R?) is taken to solve curlB. = h.. For simpli-
fication, set

Then, (8.26) becomes h.(b: x) = h.(x). We replace h. with curlB. in (8.26) to
obtain

(curlBe)(be x) = (curlB:)(x).
But,

(curlBe)(be z) = bl curl (Bs(ba 33)>7

€

then by identification, we get
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curl(bi B.(be =) — Be(x)> = 0.

)

In view of this and to the fact that the quantity <é B (b: ) — B: (x)) is a complex-

vector potential, there exists a function g. € H?(Bg, C) such that

bl Be(be ¥) — Be(v) = Vge(z).

€

It follows that

B.(be ©) = b: Bc(z) +b: Vg-(x) Vz € Bpg.
Consequently, the potential vector B, satisfies for any « € Bp

.27 2i7m 277

B (:U e’ ¥> =e e B.(zr)+e = Vg(x). (8.27)

Now, from the construction of the function ¢, it is obvious that on Br\ U <p<m, 1<j<q.) (B(af, 6))

Vé. =e e B.— Vthe.

.27

. 7
It means, using b, = e

1
= B. — V*h..

)

v¢€ =

In particular, Vo € Br\Un<p<m, 1<j<q.) (B(aéﬂg))

(Vo) (b z) = bi? B.(be z) — (V1he)(be x). (8.28)

£

On the one hand, the left-hand side of (8.28) is

(Ve)(be ) = bl V(gba(bg x)). (8.29)

On the other hand, using (8.26)-(8.27) in the right-hand side of (8.28), we have for
z € BRA\Uqn<k<m, 1<j<40) (B(“§’5)>

L B ) — (Vo) (be 1) = Bu(a) + - Vo) — — VY he(a)

b2 b b b
(8.30)
1 1
=— V¢ (x) + — Vg (z).
be be
Comparing (8.28)-(8.29) to (8.30), we get by identification
1
V(gf)g(ba :L‘)) =5 B.(b. ) — be (Vhe)(be ) = Voo (z) + Vge(x). (8.31)

£

By integration of (8.31), there exists a constant ¢ € C such that
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¢E(b8 33) = ¢E(CC) + 95(56) +c.
Set f.(z) = g-(z) 4 ¢ and replace b. with ¢’ = to get
j 2T
be (w e’ e ) = ¢e(z) + fe(2). (8.32)
Using (8.32) together with the fact that p. (:L‘ ¢ 27?) = pe(x) in v. = p. €, we

Obtaln ln BR\ U(lgkgm, 1§]§Ck) <B(a§;7 E))’

1)5(30 eiif) = p- <x e%:) ei & (x e QTEW)
= po(z) € 9@ ¢i f=(@) (8.33)
= v.(z) ' <)

Thanks to the fact that pe is equal to 0 in U <p<pm, 1<j<q.) (B(a;?,a)), we find for
any x € Bgr

Ve (x eiQT:) = v.(z) ' (@), (8.34)

Finally, we replace g. with (f. — ¢) in (8.27) to have
B. (x ¢ 3?) — e Bo(z)tew Vi(z). (8.35)
Combining (8.34) together with (8.35) completes the proof of the lemma 8.5. 0

Step5
From the equation (8.24), the induced magnetic field h. satisfies

—Ahe + he — hey = hey (0 —1) in Bp

he = hey on 9Bpg.

Hence, in particular

(he — hez) () = hex : G(y,x) d(pe —1)(x), V y € Bg. (8.36)

Now, multiplying —Ah. + he — hey = hex (e — 1) by (he — hey), integrating on Bp,
and using (8.36), it follows that

2 2 _ _ _
/BR Vh| +/BR Ihe — he) /BR (=Ahe + he — hes) (he — he)
_/B hex (ha - hem)(y) d(pe — 1)(9)

2, [ [ Gl dipe = (@) die - 1)),
Br v/ Br
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where (pe — 1) denotes the difference between of the measure u. and the Lebesgue
measure on Bg. We divide by 2 h2, to get

1 2 1 2
L (V4L [ fhe — he !
jimsup 2320 VAL 2 Jog lhe = Reel o 1 [ Gl 1)) dlpe1)(a)
ex RXDR

e—0 e—0

Using (8.23),

b S IVR2 4 [ he =Rl » !
timsup 2200 2 e 22 8 [l [ Gl de- 1)) de 1))
e—0 ex Br BrxBr

We remark that the right-hand side is the functional I defined by (8.15), so that

. % fBR‘VhE‘2+% fBR|h€_he~’v|2
lim sup 3
e—0 h‘ez

< I(p). (8.37)

In addition, thanks to the fact that there are (m ¢.) points (af)(lgigq& 1<k<m) i
Bpr, hence by definition of p,., it is clear

. % fBR‘Vpa‘Q‘i‘é fBR(l_Pg)2
lim sup 5
e—0 hex

=0. (8.38)

Here, it is easy that (5.47) holds, so in particular

Jg. (v, B
lim sup M <limsup
e—0 h’e$ e—0

% fBR Vhe|* + % fBR |he — heal?
( )
(8.39)

5 Jpp Vol + 1 fK(l—p§>2>
hew '

A combination of (8.37) together with (8.38) in (8.39) allows to write

+ lim sup (

e—0

e, Be
lim sup IBr Ve, Be) (w )

; . < I(p). (8.40)
E— exr

This inequality is true for the test configuration (ve, Be) € Ge, so it is true in
particular for any minimizer of J over the space G.. This completes the result of
the proposition 8.3.

3 New formulation of the energy F

Let f € Y. In particular, the measure (—Af + f) is concentrated on a finite number
of concentric circles of center O and of strict positive radii. Recall that

A 1 1
=5 [ 1-ar+fieg [ v [ oir-ap

Let us start with the case where the measure (—Af + f) is not concentrated on any
circle.
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3.1 Energy without circle of concentration

In the case where the measure (—Af + f) is not concentrated on any circle, each
f €Y is solution of

—-Af+f=0 in Bp
(8.41)
fZl on 8BR.

Consequently, for the f unique solution of (8.41), E(f) is the energy which cor-
responds to the case of the absence of circle of concentration. Using (8.41), we
deduce

1
B =y [ ity [ i

-1 /B (CAf+f-1)(f—1)
"’ (8.42)

Now, our interest is to calculate [ Br f. In polar coordinates, remember that the
Laplacian reads

1 1
A =0+ =0, + 0.
T T

Let us take f(r %) = f(r,0). The scalar function f € Y is radial, hence using the
above in (8.41), it solves

- rrf(ry 9)

~ W +f(r0)=0 in[0,R] x[0,27] and f(R,0) = 1. (8.43)

Again f is radial, hence there exists g : [0, R] — R such that

f(ret?) =g(r) forany 6 € 0,2 7).
In particular, (8.43) becomes

/
—g" - 97 +g=0 in[0,R] and g(R)=1. (8.44)

Note that the continuity of f yields that g is continuous on [0, R] too.

120



Modified Bessel functions

Now, let us resolve the following ordinary differential equation

/
" - L 4y=0 in [a,b], 0<a<b<+oo (8.45)
x
such that y is continuous on [a,b]. We define Iy and Ky to be respectively the
modified Bessel function of the first kind and of the second kind. We need to give
some properties of the Bessel functions Iy and K. For this, we can refer to the
literature [W]. First,

o0 $2n
Ip(z) = Z% T (8.46)

Note that Ij increases and Ip(0) = 1. We define I; to be the derivative of I, so it
is positive. Second, Kj is given as follows

x2n

Ko(x) = —(1og(3) +7) Iow) + Y e ) (8.47)

where ®(n) =14 3+ ...+ 2 for n # 0, ®(0) = 0, and v = (limy— yoc P(n) — logn).
We note that K is positive, decreases and tends to +00 as x — 0. Let K be the
derivative of the function (—Kj), then it is positive and thanks to (8.47), K; tends
to +o00 as x — 0.

Let y be a solution of (8.45). We distinguish two cases:
Case 1: If a >0
Here, there exist C;, Co € R such that for any x € [a, b], y(z) can be written as

y(xr) = C1 Io(x) + Co Ko(z).

Case 2: If a =0

In this case, knowing that y is continuous on [0, b] (especially at 0), hence necessarily
the constant Co = 0 (given in the case 1) because Kj is not well defined at 0, so
there exists only C7 € R such that

y(x) = C1 Io(z).
Lemma 8.6. Let f be the solution of (8.41), then

(R _L(R)
Blf)=m (2_R 13<R>>'

Proof: First, we go back to resolve (8.44). Using the fact that ¢ is continuous in
[0, R] implies that there exists C; € R such that g(r) = C1 Ip(r) in [0, R]. Knowing

g(R) = 1, then in particular C = ﬁ. It follows that

in [0, R). (8.48)
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Using (8.48),

- 43

Let again f(r,0) = g(r), then having f = Af in Bg gives us

_ _ ﬁ_ / _ II(R)
/BRf—/BRAf— aBRGV—27TRg(R)—27TRI0(R),

where v is the outward normal at the boundary of Br. Inserting the above in (8.42),
we have

_ T R? L(R)
Ef) == "R Ry
For simplification, we take
. R? Ii(R
Jo=E(f)=n (2_RI(1)ER;>' (8.49)

3.2 The energy in the presence of circle (or circles) of concentration

In this section, we take f € Y such that (—Af + f) is positive. Let us consider the
measure

p=-Af+f.

We take the assumption on the measure pu given by the proposition 8.3, so that u
is supported on m > 1 concentric circles of center O. Of course, it is known that
these circles have positive radii. For (r;)i<i<m with 0 < 7] <71y < ... <1y < R,
we take I';(r;) to be the circle of center O and of radius r;. As a consequence,
{Ti(r;), 1 < i < m} is taken to be the family of the m disjoint concentric circles
where the measure p concentrates. Again, by definition of the space Y and using
the fact that the measure p is taken to be positive, so the mass of p on each circle
belongs to 2 m 3 N. Hence, there exist (m;)i<i<m with m; € N for any 1 <i <m
such that the mass of the measure p on the circle I';(r;) is equal to 2 m 5 m;.

From now on, when we write (7, m;)1<i<m, it means that this family verifies the
above assumptions.

Thanks to the concentration of the measure p on the m disjoint concentric circles

(Fi(m))KKm, we get as (8.18)

g

p=-Af+f=)

my .
) 6F¢(T¢) m BR.
=1 '

r

Letting f(r,0) = g(r), then proceeding as (8.44), we can write

—g"(r) — g/ff') +gr =Y ﬁ:‘”" 5., n[0,R], g(R)=L1. (8.50)
i=1 v
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Let us denote g; (resp. g;.) the left (resp. right) derivative of g. We have for
1<i:<m

p 7:; = gi(ri) = g(ri)  (ri,m;) €]0, R[xN. (8.51)

The g solution of (8.50) on the intervals [0, r1[, |ri, rit1] for 1 <i < m—1 and |ry,, R]
is in particular solution of the following ordinary differential equation

—g"(r) -

Due to the parameter of m and under the above, let us take the space

+g(r) =0. (8.52)

f € H(Bg,R) such that fis radial and (—Af + f) is of the form

Y, = > Bm; ory(r) I Br where 0 <ry <..<rp <R and m; €N

Ti

forl1<i<m
(8.53)
Taking f € Y;,,, our interest now is to determine the energy E defined by (8.14) only
in function of the family (r;,m;)1<i<m. The following lemma presents a preliminary
expression of F.

Lemma 8.7. Let m > 1. If f € Y is such that =Af + f = >0 5 Or,y)
where (1, m;)1<i<m are such that 0 <ry < ... <1y < R and m; €N for1 <i<m,
then letting g(r) = f(r,0), we have

2 m
BU T Ry« >> 0 mi (o0~ ), (8.54)
Proof: Letting f €Y,
B =5 [ 1-aresvy [ (~arer-1)g-n. @)

since f =1 on BRr. We use the fact that f is radial and verifies

m mi
—Af+f=5 ) 2 On
i=1 '

to obtain

/B |—Af+fl=27 8 ) m, (8.56)
R =1

and by definition of the function g which is g(r) = f(r,0),
| arenu-n=2x8 3 m 4= (5.57)
R i=1
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We insert (8.56)-(8.57) in (8.55) to have

S f. (8.58)

E(fy=AxpB Y mi+7B > mi (g—1)(r)+ 5 2 /.
i=1 i=1 R

Now, we need to calculate [ Br f. First, the fact that f is radial leads to

R
f(r,0)rdrdd=2m / g(r) rdr. (8.59)
Br 0

Second, we decompose the interval [0, R] and we use (8.50) to deduce

/OR g(r) rdr = i( /O” g(r) rdr+ /TZR g(r) rdr)
:g( /0” (9" (r)r+4'(r)) dr + /T: (g"(r)r+4(r)) dr) (8.60)
S]]
=1 i=1 ¢

where [S(x)]% = S(b) — S(a) for any a, b € R and S any function defined on R.
Referring to the fact that 3 7 = g;(ri) — g.(r;) for 1 <i <m,

R m m
| oty rar= R g+ Yon (si) - k) = R g(R)+3 5 m
=1 =1
Inserting this (8.59), we find

/BRf:27r<Rg'(R)+gﬁ mz>

We insert again this in (8.58) to complete the proof of the lemma. O

In the next paragraph, we will be interested in giving the expression of the
energy E defined by (8.54) only in function of (r;, m;)1<i<m. For this, it suffices to
determine the quantities ¢’(R) and g(r;), 1 <1 < m. First, let us define the function
X on |0, R] as follows

YV E]O,R], X(l‘) = Io(R) Ko(l') — Ko(R) I()(l')
We mention that X (R) = 0. Moreover, since I} = I} > 0 and K; = —K{, > 0, it is
clear that the function X is decreasing in ]0, R]. Using Iy(0) = 1 and the fact that
Ky tends to 400 as x — 0, then X tends to 400 as x — 0. As a consequence, the
function X is positive on ]0, R[. In addition, by definition of the Bessel functions I
and Ky as solutions of (8.45), the function X satisfies for 0 <z < R
X/

X'+ — =X
x
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Remark 8.8. Let f € Y be such that —Af + f = 3 221% Or,(r;) where

(ri, mi)1<i<m are such that 0 < r; < ... <7y, < R andm; € N for 1 <i <m. Let
us take

E(f) = En(r1, ooy Ty My ey M) (8.61)

In this case, (8.17) can be rewritten to be

: J u n?A n
hmsup(ahga) S En(T1y ey Pany My ooy M) (8.62)
n—aoo exr
It seems be not easy to give the expression of the energy E,, for large m, even for
m > 2. From now on, we just restrict to the case m = 1.

Remark 8.9. Here, we show how Ry and R, which are given in (8.4) and (8.5),
are adjusted in order to prove (8.6). The solutions hy and ha respectively of (8.4)
and (8.5) are radial. Using the Bessel functions, we can find

_ Jo(r)
ha(r) = I(?(R) VO <r<R, (8.63)
and
ha(r) = KO(R;()U;I’;(O(R) Ip(r) w Ko(r) VR <r<R. (8.64)
In particular (B
/ _ I(Ry
1(R1) = IR’ (8.65)
and
héUﬁ)zzkbuﬁgdiﬁb(R)<h(Rn-+I“E§%;;f“azg(Rg. (8.66)
Now, we adjust R1 and R in order to get

Thus, h}(R1) = —h4H(R1). (8.6) is then proved.

3.3 The case m=1

Lemma 8.10. If f € Y is such that —Af + f =3 T 6 () where 0 <11 < R
and my € N, then letting g(r) = f(r,0), we have

oy = Do) g Bmi X(r1) 263
)= lﬂMmmmthme> (509

and
g'(R) = hr) 5 Io(ry) ma. (8.69)

Io(R) R Io(R)
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Proof: Under the assumption on f, then by definition of the function g, it is clear

g'(r) my
T

— 0y, in [0,R] and g(R) = 1.
1

—g"(r) —

Using the continuity of g at 0, there exist real constants oy, o1, and w; such that
g(r) is written as

+g(r) =0

oo Lo(r) in [0,71]

atr) = o1 lo(r) + w1 Ko(r)  in[r1, R].

Our aim is to find ¢g(r1) and ¢'(R), so we need to find the parameters oy, o1 and wy.
First, the boundary condition g(R) =1 yields

9(R) = o1 Io(R) + w1 Ko(R) = 1. (8.70)

The continuity of g at 7 reads g4(r1) = g4(r2), so that

00 10(7’1) =01 IQ(T’l) —+ w1 K()(Tl). (871)
(8.71) gives us
Ky(ry)
— = 8.72
o0 — 01 = w To(r1) (8.72)
Now, we use (8.51) to get
m
B — =gi(r1) — gh(r1).
1
In particular, we have
my
3 E:UO 11(7‘1)—01 Il(r1)+w1 Kl(rl). (873)
Therefore,
my Ki(r1)
ocp—o01 =0 ——— —w 8.74
We compare (8.72) to (8.74) to have
B my Io(r1) 1
VT T Kalr) + L) Kol (57
Let us define the function
b(x) = Iy(x) Ki(x) + I1(x) Ko(z), x €]0,R]. (8.76)
The derivative of the function b is b/ (z) = —%, so by integration there exists a € R

such that

b(z) = % vz €]0, R].
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In particular, we have for x = R, b(R) = & = Io(R) K1(R) + I1(R) Ko(R). It is
then clear that b(z) = £ for any z €]0, R], where

a=R (IO(R) Ki(R) + I,(R) KO(R)). (8.77)
Inserting b(r1) = &+ in (8.75),

_ Bmylo(r) B
w1 = W = E mi 10(7"1). (878)

Replacing w; with (8.78) in (8.70), we have

_i_ﬁ m 10(7’1) Ko(R)
IR a ' IyR)

Consequently, inserting the two quantities (8.78) and (8.79) in g(r1) = o1 Io(r1) +
w1 Ko(r1) and referring to the function X,

(8.79)

g(r) = (1+ g my X(rl)).

Moreover, we have

g'(R) =01 [i(R) — w1 K1(R)

_L(R) Bm L(R) B
_I(l](R) - L Io(r1) Ko(R) I(l)(R) -, m Io(r1) K1(R)
CL(R) B Io(r) b(R) (8.80)
TR a ™ T IR
_A@®) - Dol

I(R)  RI®R) "~ ™

The lemma 8.10 is then proved.
O

Corollary 8.11. If f € Y is such that —Af+ f=0 T—ll ory(r;) where 0 <ry < R
and m1 € N, then we have

Io(ry)
Io(R)

E(f) _ Ex(r,m1) @Jr

B2 mi Io(r1) X(r1)
a

()\—(2—2 Io(R)

)) B myi+ , (8.81)

7r T ™
where a is defined by (8.77).
Proof. Let g(r) = f(r,0). Inserting (8.68)-(8.80) in (8.54), we get
El(rl, ml) _R2

- - —R(R)+5 m (9(7’1) - (2—A))

:R—Q—R L(R) | Io(r)
2 Ip(R)  Io(R)

Iy(r1)
Io(R)

Bmi—(2-A) B mi+p

(g my X(rl)—i—l) my.
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From (8.49), we have (R—Q - R ggg) = %. It follows that

By (r1,m) Zﬁ—l-ﬁ my ()\_2)_1_25 my Io(r1) | 5% mi Io(r1) X(Tl)‘

m m Iy(R) a Ip(R)

O]

Remark 8.12. Now, let us take my = 1. We show at the end of the chapter the
reason which allows me to choose my = 1. In particular, thanks to (8.81),

Bl (o glliy) 5 LX) g
To simplify, we set
Flz) = El(:’ Y e R (8.83)

Let (ue, Ac) be a minimizer of Jp, over the space G.. In particular, letting m =1
with rp = x €]0, R[ and m1 =1 in (8.62),

lim sup 7J(u€, Ae)

3 < El(x, 1) vV 6]0, R[. (8.84)
e—0 hea:

The next paragraph is devoted to minimize the right-hand side of (8.84), which is the
functional x — Ey(z,1), over the interval |0, R[. By (8.83), we will be interested in
minimizing the functional F over |0, R].

4 Minimization of F' over |0, R|

First, we state some properties of the Bessel functions I; and K;, 0 <4 < 1 which
will be very useful for the rest.
4.1 Some properties of the modified Bessel functions

Lemma 8.13. I is increasing in [0, +o00] and K is decreasing in |0, +o00[. Moreover
for any x >0

2 2
In— =1, >0 and Ko+ = Ky > 0. (8.85)
Xz Xz

In addition, for any 0 <i <1 andx >0

Ii(z) ~ LT when x is large enough, (8.86)
Ki(z) ~ \/ZW when z is large enough. (8.87)

Finally,
Ip>1 and Ky < Kj. (888)
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Proof: First, referring to the expressions of Iy and K given respectively by (8.46)
and (8.47), it is obvious that the assertion (8.85) is immediate. Second, we can refer
to [W] to find the assertions (8.86) and (8.87). Now, we will prove (8.88). Let us
take for x >0

Ni(z) = (Io())* = (L (z))*.
We have

I
L=I-—,

since I{] + % = Iy and I; = I)). Using the fact that Iy > 2% yields that I] > 0, so
I is increasing. A derivation of Nj gives us

I

/ o o (Il)2
Nl(m')—QI()Il—QIl ([ —;)—2

X

> 0.

In particular, we deduce that Ni(z) > N;1(0) = 1, which proves Ip > I in [0, +-o0].
Now, let us take for x > 0

No(z) = (Ki1(2))? — (Ko(x))*.
From K{/ + KT‘,) = K and the definition of Kj, we have
K = —Ky— 2L,
Using the fact that Ko + % > 0 yields that K is decreasing. The derivative of
N2 is
K 2
Nj(z) = —2 (;) <0.
Thanks to lemma 8.13, No tends to 0 as * — 400, hence with the fact that Ns is
decreasing, we get Na(z) > 0 for any = €0, +oo]. 0
4.2 Critical point (or points) of the functional F
Recall that for a = R (IO(R) Ki(R) + I(R) Kg(R)) and for any r €]0, R

—J0+ﬁ A—2)+27

™

(r)

Io(R)  a  Io(R)

Now, my interest is to determine the critical points of the functional F'. First, let B
be the derivative of (—X), so that

Io(r) , 8% Io(r) X(r)
0

B(x) = Io(R) Kl(x) + K()(R) Il(aj), YV E]O, R].

Note that B(z) > 0 for any = €]0, R] and in particular from (8.76), we have B(R) =
b(R) = %. The derivative of F' is
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Let us define

T(x) = Ip(z) B(z) — Ii(z) X(z) Yz €]0,R]. (8.89)
We know from lemma 8.13 that K; > Ky, then it is immediate that B > X in |0, R].
Moreover, since Iy > I, it is clear from (8.89)
T(x) >0 forany z €]0,R].
We replace (Ip B — I X) with T in F'(r) to get for any r €]0, R|

oy - B _8
Fir) =15 (2000 -=T(). (8.90)
Letting F'(r) = 0, we get g =2 {[1((:)) Hence, if we take the function
Li(z)
=2 91
Gla) =2 33 @ €. RL (891)

it follows that any critical point r in |0, R] of the functional F' satisfies the following
identity
b = G(r).

a
Consequently, the critical points of x — F'(x) in the plane (x,y) are the intersection
between the graph of z — G(z) and the horizontal line of equation y = g Thus, to
determine this intersection, we need to know the sense of variation of the function

G.
Proposition 8.14. If
2R (R)
I(R)
then the functional F' has one critical point in |0, R[. Precisely, this critical point is
the minimizer of F' over |0, R and it is in |0, R].

0 <

Remark 8.15. Note that T(R) = GI%R), since X(R) =0 and B(R) = %. Thus,
(8.91) gives us

=

In particular, the assumption on the parameter B given by the above proposition
becomes

p < G(R).

a
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4.3 Proof of proposition 8.14

To prove the proposition 8.14, we are concerned firstly with the determination of
the sense of variation of the function G in the interval |0, R]. To drop the subscripts,
when it is not necessary, we omit the variable x. Let us give the derivatives of the
functions B and T'. We have for x €]0, R],

B':—X—E, T':2llB—2IOX—Z.
Y T

The functions B and X are respectively positive and nonnegative on ]0, R], hence
B’ < 0, meaning that B is decreasing in |0, R]. Using the above derivatives, we have
for = €]0, R]

2
¢(@) = = <IO T+210 (IpX - I B)). (8.92)
We replace T by the right-hand side of (8.89) in (8.92) to find
T° ! 2 2
5 G = -2)B+h L X. (8.93)

In view of the fact that X (R) =0, B(R) = 3 and T(R) = $R(R), hence again from
(8.93),
alo(R)? ., o _ 2 2
S A _(JO(R)) —9 (11(3)) .

We remark that the sign of G’(R) depends on the sign of the quantity

2 2
(1o(R)) =2 (n(R)),
consequently it depends on (IO(R) —V2 Il(R)>.
Now, let us take for x € [0, +00]

M(z) :(Ig(x)>2 9 (Il(:r:)>2.

For x > 0, the derivative of M is

2
M/(l’) =21 (—Io + ; Il)

Thanks to lemma 8.13, we have (—Io + 2 I;) < 0. Then, M’'(z) < 0, so the
function M is decreasing in [0, +00[. Again, from lemma 8.13, M (x) tends to —oo
as © — +oo, which with the fact that M decreases and M(0) = 1 > 0 imply that

there exists a unique 0 < R* < +o0 such that M(R*) = 0, meaning that

Io(R*) = V2 I,(R").
Note that R* ~ 2, and from (8.93) G'(R*) > 0.
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Step 1: The sense of variation of G

To determine the cardinal of the set {r €0, R, 2 = G(r)}, we need to know the

a
sense of variation of the function . For this, we distinguish with respect to R the

radius of the disk Bg the two following cases. We start with

Casel: Iy(R) > V2 Il(R)( <— R< R*)
In this case, we have G'(R) > 0. The function M is decreasing in [0, +o0[, hence in
particular V x €]0, R],

(Io(2))? = 2 (I1(2))* = (Io(R))* — 2 (I(R))*.
We insert this in (8.93) to have
T%(x)
2
Thanks to the fact that Io(R) > v/2 I1(R), we get

G'(@) 2 ((Io(R)* = 2 ((R))?) B(x). (8.94)

VOo<z <R, G'(z)>0.

This implies that G is increasing in |0, R[, so

Vz€]0,R[, G(z)<G(R).

Remember that any critical point r of I satisfies g = G(r), so the intersection be-
tween the graph of  — G(z) and the horizontal line of equation y = g is restricted
to one point ( even without a condition on ). Consequently, there is a unique
critical point of F' in ]0, R].

Case2: Io(R) < V2 L(R)( < R > ")
First, it is clear that G'(r) > 0 for any r €]0, R*]. But, unfortunately we have no idea
on the sign of G’ on the interval [R*, R]. Then, from now on we will be concerned
with the study of the behavior of G on the interval [R*, R]. Knowing R > R*, we
have G'(R) < 0, then combining this with the fact that G'(R.) > 0, there exists at
least 4, R* < ry < R such that

GI(T+) =0.

We will prove that r is the unique point in [R*, R] where the function G’ vanishes.
Firstly, after a simple calculation, the second derivative of the function G for r in
[R*, R] is

I

T G" T
7”)211T3+10T2 2L B-2IpX——)+2Igp——=)Io X -0 B)T*+2 1, T* (I, X — Iy B)
T T

I B
OLT2B(Iy— Y4227 (X+ ) 27T (IOT+2.71 (I X — I B)).
T

_h
' (8.95)
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Because we know that G'(r;) = 0 and r4 € [R*, R], so the set of the critical points
of G in [R*, R] is not empty. Let r be an arbitrary critical point of G in [R*, R],
then in particular thanks to (8.92),

Io T(’I“)

Ii(r) B(r) — Ip(r) X(r) = 2T (8.96)
Replacing T with (I B — I; X) in (8.96), we can write
(2 (1())? = (1o(1)?) B(r)
X(r) = . (8.97)

Io(r) L(r)
Now, replacing (Iyp B —I; X) with T and Inserting (8.96) in (8.95), it is easy to find

T G"(r) B I
— =4 =—-3T=(—-3L)B-31 X. :
5T, 11— =3 (T 3 Ip) 30 (8.98)

Let us replace the X given in (8.98) with the right-hand side of (8.97), then any
critical point r of G in [R*, R] satisfies

rIoT? G"(r)
SV
Let us study the right-hand side of (8.99). Its derivative is equal to the quantity
( —(I0)? = ()* -2 %), which is negative. Then, the right-hand side of (8.99)

is decreasing in the interval [R*, R], so by the definition of R* which is such that
Io(R*) = v/2 I, (R*) and then R* ~ 2, we have for any = € [R*, R]

=21 Iy+37r (I1)* =37 (I (8.99)

2 I (x) In(z) + 3z (I1(x))? — 3 = (In(z))? < 2 (R*) In(R*) + 3 R* (I (R*))? — 3 R* (Iy(R*))?
=(2V2 =3 R") (L(R))*<0.

Thus, going back to (8.99), we conclude that any critical point r of the function G
in [R*, R] satisfies

G"(r) <O0. (8.100)

Thus, r is necessarily a maximum of G in [R*, R], so that by continuity of G, there is
a unique critical point of G in [R*, R]. But, knowing that G'(r1) = 0, hence r4 = r
is the unique critical point of GG, and it is then the maximum of G. So, in particular
G'(r) > 0 for any r € [R*,r+[. We know that G'(r) > 0 for any r €]0, R*], then as
a consequence of the above, we have G’'(r;) = 0 and G'(r) > 0 for r €]0,r[ with
G'(r) < 0 for r €]ry, R]. It means that G is increasing in ]0,74[ and is decreasing
in |ry, R]. Thus, we must have G(r;) > G(R). Now, assume that the parameter (3
satisfies

2 R I1(R)

B < Ih(R)

Then, we can write
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3 2RIL(R)

— <
a a Ip(R)

Note that the right-hand side of the above inequality is G(R), so this means that
% < G(R). The set {r €]0, R, G(r) = g} is then restricted to one point, so there
is a unique critical point of F' in |0, R|.

Step 2: The nature of the critical point of F'

Finally, let us determine the nature of the critical point of F' in each case. On the

one hand, going back to (8.90) and using the fact that T'(R) = %@(R), we get

(2 L(R) - g T(R)) e (2 I(R) -

IOE{R) ) _

Then, under the fact that 3 < 2 II%O(I}%()R), we get F'(R) > 0. On the other hand, by

definition of the functions I; and K; where 0 < ¢ < 1, we can deduce T'(x) — +o00
as x — 0. Inserting this in (8.90),
F'(z) —» —00 as x — 0.

Consequently, combining this together with F’(R) > 0 implies that the unique crit-
ical point of the functional F' in the interval |0, R[ is necessarily a minimizer and in
particular, it is in ]0, R[. The proposition 8.14 is then proved.

4.4 The finer upper bound of the minimal energy

From now on, the applied magnetic field is taken to satisfy

2
A<2— ———. 8.101
Iy(R) ( )
Moreover, assume that
2RI(R
§ < 2R
Iy(R)
then, let us define Ry by
F(Rp) = inf F(r). 8.102
(Ro) . (r) (8.102)

From the proposition 8.14, the minimum Ry exists, is unique and it is in |0, R[. In
addition, it satisfies

, (8.103)

where a = R (Io (R) Ki(R)+11(R) KO(R)> . We finish the section with the following
fundamental result which will be essential for the rest.
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Lemma 8.16. Let (ue, Ac) a minimizer of J over G. and a = R (IO(R) Ki(R) +
I(R) KO(R)). Assume that

2R IL(R)
< —F7p
g Io(R)
then if the applied field is such that
2 Ip(R) —2 21o(Ro) —2 |, To(Ro) X(Ro)
—_— Y —A> + , 8.104
Io(R) wE) T an®) (3104
we have J "
limsup 2 4e) 7 (8.105)
e—0 h’ex

Remark 8.17. Thanks to the assumption (8.101), we remark that the left-hand side
of (8.104) is positive. Then, for a small enough 3 > 0, the condition (8.104) has a
sense. Moreover thanks to the inequality (8.105), we obtain in the limit e — 0 the
presence of concentric circles of vortices (at least one circle) of center O, the center

of the disk.

Proof: Let us evaluate the energy F(Ry)

Jo 2 Ip(Ro) > Io(Ro) X(Ro)
F(Ry) = — A— 2———= —_—. 8.106
(Ro) =245 A=p (2= =) +0° =2 (8.106)
If the applied field is such that
2 I -2 2 I -2 1 X
o) =2 20(Ro)—2 3 0(f) (Ro)’
I[)(R) I()(R) a [()(R)
we obtain from (8.106)
Jo
F —.
(Ro) < —
Referring to the definition of F' given by (8.83), we deduce
E1(Ro,1) < Jo. (8.107)
Now, going back to (8.84), we can write
J(ue, A
lim sup (“};E) < E1(Ro, 1). (8.108)
e—0 ex
Thanks to (8.107), we conclude
. J(UJE’ AE) 7
1 — < Jp.
e g <
The lemma is then proved. a
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5 Lower bound

Let (us, Ac) be a minimizer of the energy J over the space G. and h. = curlA..
Here, the applied field is taken to verify

0<A<2(1—IO(1R)).

5.1 The vortex balls

Similar to the proposition 4.1, we can state

Proposition 8.18. For he, < C |loge|, there exists gy such that if ¢ < g9 and

(ue, Ae) a minimizer of J over G, then there exist r. E]\loilgd’ @[, 61 € (0,2 7]
and a family of disjoint balls <BZ~ = B(ai,m)) . of center a; and of radii r;
1€eLeUTe
such that
Uiec. Bi(ai,ri) C B(0,72), (8.109)
, 2
Uier. Bi(as,m) C {re'?, r. <r <R, 0, <60<0,+ q—ﬂ}, (8.110)
€

Z ri < C |loge] e~ Vlogel, (8.111)

i€L:UTe
card(Le UT:) < C |logel heg, (8.112)
F.(ue, Ae, B;) > 7 |d;] |loge| (1 —o(1)), (8.113)

where d; is the degree of the map |Zi| restricted to 0B; if B; C Br and d; = 0
otherwise.

Notation

Taking the radius 7. and the parameter #; given by the above proposition, we take
Sy. 6, the sector

, 2
Spg, ={re’, re<r<R, 6, <0<60+ —W} (8.114)

Ge

Note that the angle of S,_g, is 2(1—:.

5.2 Proof of proposition 8.18

. . . 1 _ . oy
Before all, letting 2 = Bgr, m. = 7\/@, and a. = |loge| in the proposition 4.12,
we have

Lemma 8.19. If he, < C |loge|, there exists €y such that if ¢ < ¢ and (ue, A¢)
satisfies |Vue — 1 A ug| < g and F.(us, Ac, Br) < C |loge| hey, then there exists a
family of disjoint balls (Bz- = B(ai,n)) - of center a; and of radii r; such that

1€ e

3
{:E € Bgp, ‘UE‘ < Z} C User., B, (8.115)
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3" r < C |loge| emVIoeel, (8.116)

i€
card(T:) < C |loge| heg, (8.117)
F.(ue, Ag, B;) > m |d;| | loge| (1 —o(1)), (8.118)

where d; is the degree of the map ﬂzl restricted to 0B; if B; C Br and d; = 0
otherwise.

Let (ue, Ac) be a minimizer of J over G., then it is solution of the Ginzburg-
Landau equations (8.1)-(8.2), so going back to (3.13),

C
|Vu: —i Az ue| < s (8.119)

(1,0) € G, then testing the energy J by the configuration (1,0), the minimum of
the energy Jp,, is less than Jp,(1,0) = ’TTRQ hew < C |loge| hey. By definition of
the functional F, it follows that

F.(us, Ac, Br) < Jp,(ue, Ac) < C |loge| heg.
So combining all the above, the hypotheses of lemma 8.19 are verified. Then ap-
plying it there exists a family of balls in Br depending on € denoted by (B;)icT. =
(B(ai,ri)) such that the assertions (8.115)-(8.116)-(8.117) and (8.118) hold.

1€ e

We start by the proof of the assertions (8.109)-(8.110). First,

Z ri < C |loge| e~ VIosel,
i€ e

Therefore,

9y —
Z i = rloge\)

Hence, if ¢ is small enough, there exists ¢, 1 < ¢ < 2 such that when we take

re = “07";5', the boundary of the ball of center O and of radius r. does not intersect

any ball of the family ( B;(a;,r;) . We define
1€ e

L.={i€ T, Bilai,ri) C B(0,7e)},

then (8.109) is satisfied. Now, in view of the fact that ¢. ~ 3 |loge| as € — 0 and

— C 3
Te = Tloga]» We Can write

3 2T _ o2, (8.120)

,
i€l ° 4

Consequently, projecting the balls (Bi(ai, r2)> . on the curve
[AS=

, 2
{re? r=r., 0 belongs to an intervall of length l},
q

£
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then thanks to (8.120) which gives us a comparison of the angles, and if £ is small
enough, there exists necessarily 0 < #; < 2 7 such that the two lines {r ¢, r €
[re, R] and @ = 61} and {r ¢, r € [r.,R] and 6 = 6; + 2(1—:} don’t intersect any

ball of the family {(Bi(ai, n)) oy }. These two lines together with {(r,0), r =
1€ le\Le

re and 61 <0 <01+ Qq—:} form in the disk Bg the boundary of the sector S, g,
which is defined by (8.114). Now, let us define

. 2
T.={ie T, Bilar) C{re®, re<r<R 0i<0<6+="}=S. 0}

£

ZE—IE

Thanks to the fact that the balls (Bi(ai, m)) are disjoint, hence in particular by

definition of £, and 7, the balls (Bi = B(ai, rl)) L are disjoint too. Moreover,
i€LUT:

it is clear that the three assertions (8.111)-(8.112) and (8.113) hold. Combining all
the above completes the proof of the proposition 8.18.

Notation

Let (ue, Ac) be a minimizer of J over the space G.. As defined by proposition 8.18,
note that {(a;,d;)iec.} is the associated family of vortices in the ball B, = B(0,r.),
while {(a;,d;)ie7. } is the associated family of vortices in the sector S,_p,. Now, let
us extend the family {B;(a;, ;)iez. } by S -periodicity to Bg\B,.. For simplification,
let

ST1€,91 = Srayel‘
For any i € 7T, the ball B;(a;,r;) defined on S"}e,el will be denoted

Bi(ai,ri) = B}(a},ri), Vie Tg

Then, for 7 € 7, we let Bg(ag, 7:), 1 < j < ¢- be the extended of the ball B}(a},r;)

by S -periodicity to Sﬁa 0, 1 < j < ¢ where 0; = 01 + %. So that the

extended balls defined on Sﬁ g, are (Bf (a{,n)) . Consequently, we get in the
_ €y ,Le e
annulus Br\ B,
Bl(al,r)) .
( i (ai,7i) (1<j<q., i€Tz)

Note that the sector Sﬁsﬁl can be taken as the fundamental domain of periodicity for
(ue, Ac) € Ge in the annulus Br\B,.. Moreover, thanks to (8.115) and by definition

- 2T
of 7; and L., it is easy to get from the fact that |u.|(z €' ) = |uc|, the following
property for the vortex balls

3 .
{z € Br, Jue| < 7} C([U(mgqe,ie?;)BZ] ulu z‘eﬁaBi])‘ (8.121)
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5.3 Preliminaries

Recall that for 1 < j < ¢., we have 0; = 6; + %. Then
J i0 27
Srs,ej:{re , re<r <R, 9j<9<9j+?}'
€

Fori € 7, let Bf (ag ,7i) be contained strictly in the sector Sﬁg 0, then writing locally

|Zi| = ¢! %= and taking Bg 1 Which is the image of Bg by rotation of angle zq—: and

center O, we have

deg( ,OB!) = Ve .T. (8.122)

|u a‘ 27 oB!

Using (8.8), there exists [ € Z such that V = € Bg

_i2m _s2m
() = ez e ")+ flwe " )+2ml.
We take the gradient

-2 T

_2rm —jim —iZn —isE
Ve(r) =€ "a (Vgog) (xe e )+e (Vf)( a ).
We insert this in (8.122)

1 Oy of
d ]+1 / € YJ
eg(’u’ )= 27 opl OT +87'
(8.123)
1 Jpe Uge ;
p— :d - ).
2m Jopi OT e lug|’ i)

Set

D, := Z ).

i€Te
Now, our interest is to give the order of D,. he, < C |loge|, hence thanks to (8.113)
and (8.123),

s <q6 D, + Z \dz]> |loge| (1—0(1)) < Jpg(ue, A) < C B2, < C |loge| hey.

1€Le
(8.124)
We deduce from (8.124) that
> di] < C hea, (8.125)
1€Le
and
ge Dz < C hey. (8.126)
Inserting hq% tends to % as € tends to 0 in (8.126), we conclude
D. <C. (8.127)
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5.4 Expansion of the energy

Let (ue, Ac) be a minimizer of J over G.. We have noted that the resulting family
of vortices in Bp is

{(ai,di), i€ ca}u{(a{,di), ieT, 1<j< qe}. (8.128)

For any such of the family of vortices defined by (8.128), we take the measure

27 (Lier, i da; + Tier. di (S116,0))
hem ‘

In such the Coulomb gauge (8.10), the H' norms of u. and A. are controlled by
JBg (ue, Ae), consequently by C he,. Then, applying the Theorem [SS5] for a

minimizer (u., A:) over G¢ (because it is a critical point of J), there exist hoo €
H{(Bg,R) and a Radon measure ji, such that up an extraction of &, from &

[e = (8.129)

ZE” — heo  weakly in Hi (Bg), (8.130)
and
e, — lloo 1N the sense of measures. (8.131)

Moreover, we have

fioo = —Ahoo + hoo. (8.132)
Lemma 8.20. Let (ue, A:) be a minimizer of J over G, then

A A 1 1
liminfMZE(hm):/ \—AhooJrhooH—/ \Vhoo\%r/ |hoo—1]2.
n—-+o00 hz:r: 2 Br 2 Br 2 Br

(8.133)

Proof: Splitting the energy Jp, between the contribution inside the vortex-balls

([U(lgqu& z‘eTE)BZj] U [Usec. BZ]) and the contribution outside, we get

1
o, A) = 7 (@ Do+ Y |dif) [logel (1—o(1)) + - Vh.|”

ieLe 2 /BR\ ((UieﬁsBz')U(UweTe, 193%)35))

1
+ = / \ |he = hez|* = o(1).
2 BR\((UieﬁsBi)U(U(ieTE,1§j§q5)33)>

(8.134)

Now, we divide (8.134) by h2, and we proceed similarly as in [SS3], lemma 2.2 to
obtain

A 1 1
hmianBR(ug’”E”)>)\/ ]—Ahoo—irhoo\—ir/ |Vhoo|2+/ hoe — 12,
n—+00 hgib 2 BR 2 BR 2 BR
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O
From (8.130) and (8.131), we can mention that us, € H~!, so in particular no
concentration of the vorticity on isolated points. From now on, our interest is to
determine the support of the limit measure of vorticity.
5.5 Properties of h,, and i
First, we begin with

Lemma 8.21. h is continuous on Bp.
Proof: Referring to [SS5], lemma 4.1, we have

|Vheo| € WYP(Bg), 1<p< +oc.

In particular

heo € WYP(Bg), 1<p< +oo.

By Sobolev injection, we conclude

heo € C¥%(Bg), 0<a<l,
which completes the proof of lemma. a

The following proposition gives us other properties of the limiting configuration
of vortices (hoo, foo)-

Proposition 8.22. We have
hoo €Y,

where Y is defined by (8.11).

We split the proof of proposition 8.22 into two steps.
Step 1: h is radial
First, we take for any x € Bg
a::rew, 0<r<R, 0<0<2m.

For 0 € [0,2 7], let €, — 0 and k,, an integer such that

2wk
T .0 as n— +00.
Qe,,
We take R, to be the rotation of center O and of angle 2;67]“". Taking the curl in
(8.9), we get for any n € N
he, o Ry, = he,,. (8.135)

Since, {};fez },, is bounded in H'(2), there exists a subsequence still denoted n such

that {ZZZ }n and {%}n converge weakly in H'! to the same limit which thanks

to (8.130) is heo. In addition, for any ® € C5°(BR), and by change of variables we
obtain
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/ he, © B g, :/ fev (@0 R, (8.136)
Br hex Bpgr hex

where R, ! is the rotation of center O and of angle —2;57]“". Inserting (8.135) in
(8.136) to have

h h
/ —n <I>:/ —“n (®o R, (8.137)
Br hew Br hea:

But, as n — 400

doR;'—>doR_y in CF(Bg) Vk, (8.138)

where R_g is the rotation of center O and of angle —f. Thus, we pass to the limit
in (8.137) and we use (8.138) to find

/ hoo ® = / hoo (® 0 R_y), (8.139)
Br Br

Now, again by change of variables, it is easy that
/ heo (PoR_g) = / (hoo © Rp) @. (8.140)
Br

Br
Comparing (8.139) to (8.142), we get for any ® € C§°(Bg)

/BR hoo @ = /BR(hoo o Ry) ®. (8.141)

We deduce for any 6 € [0,2 7]

hoo = hoo © Ry. (8.142)
It means that ho, is radial. The step 1 is then proved.

Step2: (i is supported on a finite number of concentric circles of cen-
ter O and of strict positive radii such that the mass of i, on each one
belongs to 2 7 3 7Z

The balls (BZJ (a{ ,m)) defined in Bgr\B,. by proposition 8.18 de-
(1€7c, 1<j<qe)
pends on ¢, hence from now on we write

di(e) =d; and al(e)=al for i€ L. 1<j<q.,

7 %

where d; = deg( e 8Bg(ag,ri)>. First, for any € < eq, (8.127) gives us

[uel”
D.=> ld| <C.
i€Te

Thus, the cardinal of {i € 7, d;(¢) # 0} is bounded independently of e. First, if
for any € < €g, di(¢) =0, Vi € L.. This means that for any ¢ < ¢g, D, = 0, so the
measure /. defined by (8.129) is written as
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_ 27 Zz’eﬁg d; a,
o hew
The points (a;)iec. are in the ball B,_, then using r. — 0 together with the fact
that the limit measure ji is not concentrated on isolated points ( in particular on
the center of the disk Bpg), we find

fiso = 0. (8.143)

Second, if for sufficiently small ¢, there exist points with non zero degrees, then
without loss of generality there exists m € N* such that these points are denoted
{al(e), 1<i<m, 1<j<q}.

Then, up to extraction from ¢ — 0, we can get for any 1 <i <m

di(en) — pi, and al(e,) — b} as n — 4oo, (8.144)

where p; € Z and b} is contained strictly in the sector Sﬁaal. To simplify, we take

Vi<k<m, b,lgzrkew’C where 0<ry <..<mr,<R.

Note that r is constant and does not depend on £. The extended points of (b}ﬁ)lg k<m
by S -periodicity to Br\B,, are

27 (j—1)

(bl =(rp e a= &%) 1<k<m, 1<j<gq}

Let Fk(rk) be the circle of center 0 and of radius rg. It is clear for 1 < k < m and
n — 0o,

?le 0y (en) 1
. . ~ o o Ork(r,) In the sense of measures. (8.145)

Consequently, using dj(e,) — pi together with § he, ~ q., as n — +oo in (8.145),

Qen 5 )
Jj=1 a]~(an) Pk
2 dk(En) Txk — ﬁ E (Sr‘k(rk) V 1 S ]{7 § m. (8146)
Finally,
m qsnl ) m
27 Z di(en) 97 aen) Z (5Fk in the sense of measures. (8.147)
k=1 e k=

However, for any ¢ € L., a; € B,_ and r. — 0 as ¢ — 0, then using the fact that
too € H™1, we can find

2ier. 2™ di b,
hex

Combining this together with (8.147) in the definition of the measure f., which is
given by (8.129), implies

— 0 in the sense of measures.
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m
We, — B Z Pl Opk(r,) in the sense of measures. (8.148)
Tk
k=1

Note that {T*(r;), 1 <k <m, 0<r <..<ry, < R} is the family of the m
concentric circles of strict positive radii where the limit measure po, concentrates.
We can conclude

5 D
k=1

The mass of fio on the circle I'*(r;) is (2 @ 3 px). The conclusion from this and
(8.143) is that the mass of the measure o, on each circle of vorticity belongs to
2 7 3 Z. We combine the properties of (hso, too) given in the two above steps to
conclude from the definition of the space Y

heo €Y.

This completes the proof of proposition 8.22.
Now, under some conditions on the parameters 8 and A, we will give the fundamental
property on the limit measure of vorticity fieo.

Lemma 8.23. We assume that § < 2?0([}%()]%). Let Ry be given by (8.102) and

a=R (IO(R) Ki(R) + I;(R) KO(R)), then if

20(R)—2 2 1y(Ro) —2

- Iy(Ro) X (Rop)
Ip(R) Iy(R)

alp(R)

+ 68

we have s # 0.

Proof: We argue by contradiction. Suppose that jioo = —Ahoo + hoo = 0, then in
particular (8.133) gives us

J A 1 1

lim inf 722Uz Az) 5 1 / Vhoo? + 1 / oo — 112, (8.150)
n—-+o0o he$ 2 BR 2 BR

where (ue, A;) is a minimizer of the energy J over the space G.. Note that h

satisfies

—Ahs +heo =0 in Bp

(8.151)
heo =1 on O0Bg.
heo is radial, then referring to (8.49), we have
1 1 N R? 5L(R)
= Vhoo2+/ hoo—12—J—7r<—R :
2 /BR 43 BR' 7= 2 Io(R)
Replacing this in the right-hand side of (8.150), we find
€9 AE T
1iminf‘]BR(h“2) > Jo. (8.152)
e—

ET
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Now, going back to lemma 8.16, then under the hypotheses of this proposition we
have

JBR(ué‘)A&‘) 7

lim sup < Jo.

e—0 hgw
A comparison of this to (8.152) yields a contradiction. 0

Now, under the hypotheses of lemma 8.23, we have obtained that the limit
measure of vorticity verifies pioo # 0, which allows to say that us, concentrates on
at least one circle of center O, the center of the disk Br. From now on, we restrict
to the case where i is supported exactly on one circle of center O.

5.6 Vortices’s concentration along one circle

In this paragraph, we assume that

2 R I(R)
and
21o(R) -2 2 Ip(Ro) —2 Io(Ro) X(Ro)
R T T wm T anm (5154

where a = R (IO(R) Ki(R) + ILi(R) KO(R)>. In the case where the vortices’s
concentration is exactly along one circle, the limit measure o, can be written as

liso = 3 d or, (8.155)
T

where d € Z* and I' is the circle of center O and of radius r such that 0 < r < R.
The mass of o on I' is then 2 7 G d.

Lemma 8.24. The d defined by (8.155) is in N*.

Proof: Let hg be the solution of

—Ahg+ho=0 in By
(8.156)
ho =1 on aBR.

By definition of the measure p. and thanks to the convergence of e, to oo,

| =1 = tim [ (o= 1) e,
Br

n—-+o0o Br

. (2 ™ Y icc., i (ho = 1)(ai) L 2T Yiet, di(en) (ho —1)(aj(en))

n—-4o0o

h,eg; he:v
(8.157)
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Now, referring to [SS4], proposition 2, we can find an expansion of the energy Jp,
of a minimizer (ue, A;) over the space G. in terms of the positions and degrees of
its vortices. It is slightly different to (8.134) and it is given as follows

Jpg(ue, Ad) > h2, Jo + ( D |dil + g DE) [loge| (1—0(1)) + 27 hew > di (ho — 1)(a;)

i€Le 1€Le
1
+2mhe g S di (ho —1)(al(e)) + = / IV (he — hes ho)?
i€T. 2 JBr\ ((UieﬁeBi)U(U(iETs, 1§j§¢15)BzJ’)>
1 2
+§ |he — hex hol” — o(1).
Br
(8.158)
From (8.158), we can write
o (Sl +a D dil) Nogel (1= o(1))
i€Le i€Te
+27 o (30 di (ho = 1)(as) +a= 3 dife) (ho — D(al(e))) < o(1).
’LEES 267—5
(8.159)

Using (8.125) and (8.126),

. (Zz’eﬁgn |dil + ¢e, ZieTen |di]) [logen| o(1)
nginoo h2

=0.

We divide (8.159) by h2, and we use the above convergence to obtain

7 og el (Liec,, |l + e Sier,, |
lim
n—-+400 h?zaz

(Sieea, di (ho = 1)(@) + 4z, Ticr, dilen) (ho = 1)(ak(en)
<—27 lim .

n—oo h@l‘

Inserting this in (8.157),

m ogen] (Siee,, 1dil + o Lier, ldi(en)l)

ho—1) oo < — i . (8.160
/BR(o ) Hoo < — lim Wz (8.160)
By definition of the measure .,
.. . |logey] /
ho—1) tioo < —1 f . 8.161
/BR( 0= 1) pioo = —Hminf 570 [ ke (8.161)
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We know that A = lim. g3 Hogel 5 g as ¢ — 0. Moreover, using the fact that
JB,, lteo] < liminf, o fB \,ugn| together with p. # 0, the inequality (8.161)
becomes as

A
/ (ho — 1) oo < —= / |ptoo| < 0. (8.162)
BR 2 BR

Now, using (8.155) and the fact that hg is radial leads to

/ (ho — 1) oo = 27 d 3 (ho — 1)(1). (8.163)
Br
Comparing (8.162) to (8.163) gives us

d (ho —1)(r) < 0.

From (8.156), we can check that 0 < hg < 1 in Bpg, then in particular we get
(hg — 1)(r) < 0, since 0 < r < R . Thus, it is clear that d > 0 which with d # 0
yield d € N*. O

The above lemma implies that the mass of p on the circle I' belongs to 2 = 3 N*.
Now, assuming that the mass of us, on I' is equal to 2 7 (3, we have

8 5F7

r

Lemma 8.25. Let (us, Ac) be a minimizer of J over the space G.. If jioo =
then r = Ryg. Moreover,

. J(Usna A: )
nEI—&I—loo - oh2,

. 2 Io(R Io(Ro) X (Ro)
E]_(ROa ) Jo+B8mA-0Fw (2— IO(ER)O)+,B2 T %

Proof: The mass of u on the circle I' is equal to 2 w 3, then uo is written as

g

oo = ~Ahoo + hoo = - 1, (8.164)

where 0 < r < R is the radius of I'. Consequently, it is clear that ho, € Y; where
Y is the space defined by (8.53). In particular, in the sense of the definition (8.61),
we have thanks to (8.164),

E(hoo) = Er(r,1). (8.165)

Let (ue, A;) be a minimizer of J over the space G.. Going back to (8.133), we can
write using (8.165)

liminf 7J(u5" , Acy)

mR TR,

> By (r 1). (8.166)
Now, returning to (8.84) we have for any 0 < x < R

3 7A€
hﬁi sup J(U;;Qn)
Combining (8.166) together with (8.167), we get for r €]0, R| (the radius r is defined
by (8.164))

< Ey(z,1). (8.167)
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J A J A
Ei(r,1) < l%zrri)icgf M < 1iTan_>sip (us;;éz-:n) < Ei(z,1) Vaze€]0,R[
(8.168)
By definition of the functional F' given by (8.83) as F'(z) = % for x in ]0, R|.

Then, (8.168) gives us

. J(ue, , A
5 < lim sup I (Uen; Acr) 8"2’ en)
n—oo ex n—oo he:c

A
7w F(r) < liminf I (e, Ac,) <7m F(zx) Vax€|0,R].

(8.169)
We know from (8.102)

inf F(z) = F(Ry).
sl (z) (Ro)

We can then write for r €]0, R|, thanks to (8.169),

) J(ug, , A
5 < lim sup 7( 8"2’ n)
n—oo ex n—oo hem

r F(Ro) < 7 F(r) < liminf 7 (2 A=) < 1 F(Rp). (8.170)

The uniqueness of Ry (0 < Ry < R) minimum of the functional x — F(zx) over |0, R]
in (8.170) implies

T:Ro.

Consequently, the radius of the circle of vortices is Ry where 0 < Ry < R. So that,
the limit measure of vorticity is

Hoo = —Ahoo + hoo = or,

Ry
where I is the circle of radius Ry and of center O. Finally, using the expression of
E1(Rp,1) =7 F(Rp) given by corollary 8.11, it follows from (8.170)

. J(uEn 9 AEn)
LU he,

- - . 2 Io(Ro Io(Ro) X (Ro)
= E1(Ro,1) =7 F(Ro) = Jo+Bm A= m (2— To(R) )+52 T AI(R)

O

As a consequence of all the above, the main Theorem that we have proved is the
following

Theorem 8.26. Let (u., Ac) be a minimizer of the energy J over the space G- and
he = curlA. be the induced magnetic field. Then, up to extraction of €, from e,
there exist hoo € H{(BRr) and po € M(BR) such that

he,,
heq

— hoo weakly in H{(Bg),

and
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Le, — Moo = —Ahoo + hoo in the sense of measures,

where e is defined by (8.129). Again, heo is radial and peo is supported on a
finite number of concentric circles with strict positive radii such that the mass of

loo ON each circle belongs to 2 m 3 Z. In addition, taking a = R (IO(R) Ki(R) +
Ii(R) KO(R)>, then if
2RIL(R
p< 2RO
Ip(R)
there exists a unique 0 < Ry < R defined by (8.107) such that if

2Io(R) =2 . _ 2Iy(Ro) —2
LT T LR

In(Ro) X(Ro)
a I()(R) ’

+ 6

we have oo # 0. Moreover, if us concentrates on one circle with a mass equal to
2w (3, the radius of this circle of vortices is Ry. Finally
J (e, , Ac,) —r <R2 R I (R)

2 Iy(R)

lim
LN E

2 Io(Ro>

>+B7r)\—ﬁ7r (2— A

In(Ro) X(Ro).

2
o a Io(R)

Remark 8.27. Analogously to the remark 7.18, we don’t give explicitly the limit
measure of vorticity.
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Chapter 9

Vortex pinning with bounded
fields

In [APB], N. André, P. Bauman and D. Philips investigate vortex “pinning” in
solutions to the Ginzburg-Landau energy. The coefficient a(x) in the free Ginzburg-
Landau energy modelling non-uniform superconductivity is nonnegative and is al-
lowed to vanish at a finite number of points. For a sufficiently large applied field
her and for all sufficiently large values of the Ginzburg-Landau parameter x = %,
they show that the minimizers (u., A;) have nontrivial vortex structures around the
zeroes of a(z). Denote d; be the degree of u. around the zero z; of the function a,
and then d = (d, ..., d,) minimizes a precise functional defined on Z". In this chap-
ter, we are interested in the sign of the degrees (d;)1<i<n. We give partial results

indicating that the degrees may not always be positive.

1 Notations

In this chapter, we consider the Ginzburg-Landau energy of superconductivity with
a pinning coefficient a(x) given by

1 . 1 1
JE(U,A):§ /Q]Vu—zAu|2+2 /Q|h—hex|2—i—482 /Q(a—|u|2)2. (9.1)

Q) C R? is a bounded regular simply connected domain and a :  — R. We require
that the function a(x) satisfies the following;:

Assume that a € CY(Q\{z1,22,...,2,}) N CP(Q) for some § > 0, Ja € H'(Q),
a(x) > 0 for all z in Q, and a(z) = 0 if and only if z € {z1,x2,...,2n} where
r1,..,T, are distinct points in © and n € N*. Moreover, assume that there are
positive constants m;, M; and «; such that

m; | — z;|% <a(x) < M; |z —x|* for 1<i<n

in some neighborhood of x;. Let & > 0, say that (u., A.) € H'(Q,C) x H(Q,R?) is
a critical point of J; if it is solution of the Ginzburg-Landau equations, namely

Visug = a% ue(a —|us?)  in Q
—Vth. =< Us, VA U > In (),
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with the following boundary conditions
he = hey on 0f?

<Vaue,v>=0 on 0f.
In this chapter, we take the Coulomb gauge (8.10). Let (uc, A-) be a minimizer of the
energy J. over the space H'(2,C) x H'(Q,R?) and h. = curlA. be the associated
induced magnetic field.

1.1 Absence of vortices

Here, we prove

Lemma 9.1. Let (u., A.) be a minimizer of the energy J. over the space H(Q, C) x
HY(Q,R?). Then, if Vo €Q, |u(z)| >0, we have

h: >0 in Q.

Proof: First, writing locally u. = p. € ?, the second Ginzburg-Landau equation

holds

—Vthe =<iu.,Vau >=p? (Vo —A.) inQ. (9.2)
We take the curl to have

—Ahe + p2 he =2 p. Vp. (AL — V+o,). (9.3)
But, in view of (9.2),

p? Vp. (AL — V1) = —Vp.. Vh..
Multiplying (9.3) by p. and using the above identity, we find

—pe Ahe +2 p- Vp: Vh, + pg he =0 in Q. (9.4)

Let zp be a minimizer of the function h., so in particular Vh.(zp) = 0. It follows
from (9.4)

—p=(20) Ahe(20) + p2(20) he(20) = 0. (9.5)

Knowing that V x € Q |u-(x)| > 0, hence p-(z9) > 0. Then, thanks to Ah.(z9) > 0,
(9.5) leads to ho(zp) > 0, which gives us the nonnegativity of h. in € since zj is a
minimizer of h,.

O
When he, = 0, every minimizer (uc, Ac) of J. in H'(2,C) x H'(Q, R?) satisfies
A: = 0 and a ue > 0 for some a € C with |a] = 1, so in particular h. = 0. In

this chapter, let he; > 0 be bounded independently of ¢ and take the function a(z)
vanish at a finite number of points denoted {1, ..., z, }, hence unfortunately nothing
allows us to say that the result of the above lemma remains true.
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1.2 Presence of vortices

Before all, we set the space

U :{g e HY(Q), /Qal Vgl < oo}.

Then, U is a Hilbert space with the norm

1
lolho =( [ o™ V9 + lg) .

Let us consider the (n + 1) functions in U, {no, ..., m,} solving that

—div(a™t Vng) +m0=—-1 in
(9.6)
no=0 on 09,

and for 1 <i<n
_div (afl vm) Y =270, in O

(9.7)
7,=0 on ONQ.

Note that thanks to [APB], lemma 2.1, we have ¢,, € U’, the dual space of U,
and clearly 1 € U’. Thus, the Lax-Milgram lemma gives us the existence and the
uniqueness of 79 and 7;, 1 < i < n, solutions respectively of (9.6) and (9.7). Now,
we define the quantities a;; for 1 < 4,5 < n and X; for 0 < i < n to be given as
follows

aij = /(a_l Vi Vinj+mimy) forl <i,j <n, (9.8)
Q

and

Xo = / a! |V770]2 + ]no\Z and X; = — / (a_l Vo Vni+non) forl<i<n.
Q

N (9.9)
Fix hep > 0. Let (ue,, Ac,) be a sequence of minimizers of J;, in H' x H' with
er — 0 as k — +o0. Then, thanks to [APB], Theorem 3, there exists a subsequence
ek, such that as | — 400

us, , Az, ) — (u, A) weakly in H' x H' as | — +oo, 9.10
ki ki

where |u| = y/a. Moreover,

1 1 1
Jep, (g Acy,) = 5 Xo hZ, + 3 / IVval|* + 3 5@, (9.11)
Q
where
S(d) = inf S(e) = nf (A c.) =2 hew (X,0)), (9.12)
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such that X is the vector (Xi,..., X,,) and A is the matrix defined by
A = laijli<ij<n
Note that, for ¢ = (1, ...,¢cp,) € Z"
n n
S(C) = Z Qi5 Cj Cj — 2 hew ZXZ C;. (9.13)
ij=1 i=1

If » > 0 and B,(z;) are disjoint balls of Q for ¢ = 1,...,n, then in addition from
[APB], for all [ sufficiently large, |ue,,| is uniformly positive outside U}, B,(x;) and

the degree of u.,, in B,(x;) is d; where d = (dq, ..., d,) minimizes the functional S
over Z"™. Thus, for € sufficiently small, we remark that minimizers (u., A;) of J. over
the space H'(Q,C) x H'(2,R?) have “pinned” vortices near the zeroes z1, ..., T, of
the function a(x).

2 Goal of the chapter

In this chapter, our interest is to study the minimization problem (9.12), and then
to give some properties of d = (dy, ..., d,) minimum of S over Z". Recall that d;
is the degree of u.,, around the zero z; of the function a. In particular, we will be
concerned with the sign of the degrees d; for 1 <1i < n.

3 Some properties of the functions 7;

In this paragraph, we give some properties of the functions 7; for 0 < i < n. Before
all, we note that the functions 7; for 0 < ¢ < n are continuous in 2. We can state
in addition the following

Lemma 9.2. We have

—1<n<0 and 7, >0 V1<i<n. (9.14)

Moreover,
Xo>0 and V1<i<n, Xi:27r770(xi):/77i>0. (9.15)
Q

In addition, the matriz A = |ai;|i<i j<n is positive definite and

aji = a;j =271 ni(x;) =27 ni(x;) >0 forl <i,j<n. (9.16)

Proof: First, using the maximum principle in (9.6), it is immediate to show

—1<nmp<0 in Q.

Second, n; = min(n;,0) € UN H (), hence we use it as a test function in (9.7) to
find
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/ o™ [Vl + [ni* = 2 77 (a3) < 0.
{ni<0
We deduce
vVi<i<n, n;>0 in Q.
(9.14) is then proved. Now, we restrict to prove (9.15) and (9.16). Recall that
Xo = / a1 Vo[ + 02 (9.17)
Q

Then, Xy > 0 because that 1y # 0. Multiplying (9.6) by n; for 1 < i < n and
integrating over €2, we have

/G_IVUOUH‘UOTHZ—/m forl1 <i<n.
Q Q

Again, we multiply (9.7) by 7o and we integrate over 2 to get

/al Vo ni+mnom =2mno(x;) forl <i<n.
Q

Comparing the two above identities to the definition (9.9) of X; for 1 < i < n, we
deduce

Xi=—=2mno(z;) = / ;-
Q

The fact that n; > 0 for 1 < ¢ < n implies that X; > 0 for 1 < i < n. By definition
of a;j, we remark that aj; = a;;. Moreover, we multiply (9.7) by n; and we integrate
over () to have

/Qa_l Vi nj+miny =2mni(x;) forl <i,j<n.
By (9.8), we find

aji = a;; =271 ni(z;) =27 ni(x;) >0 forl <i,j<n.

Finally, thanks to [APB], lemma 3.3, the matrix A is positive definite. The lemma
is then proved. O

Proposition 9.3. We have

ni(wi) > ni(zj) V1<i#j<n. (9.18)

Proof: To prove (9.18), it suffices to show that x; is the global maximum of n;,
1 <14 < n. Let us split the demonstration into two steps.

Step 1

We define on the space U N HE () the functional
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) =5 [ ViP5 [ 1P =27 fw),

Obviously, note that each critical point f of the functional T on the space UNH}(£2)
is solution of

—div(a‘l Vf) Y f=216, in Q

f=0 on 0.

But, by uniqueness of solution of the above system and referring to (9.7), then
we can say that 7; is the unique critical point of the functional T' on the space
U N H(Q). Let us determine the nature of the above critical point. For this, it
suffices to compare T'(n;) to a test configuration in the space U N H}(Q). From
(9.16),

/erVmF+/NmF=2wm@»
Q Q
Then, we find

1 _ 1
T (m:) =5 /Qa ! \Vﬂi’2+§ /Q|771'|2—27Tm($z‘)

= — 7 ni(z;).

Since n;(z;) > 0, we get T(n;) < T(0) = 0 ( note that 0 € U N H}(Q)). As a
consequence of the above, we can say that n; is necessarily the unique minimum of
the functional T over the space U N HE(12).

Step 2

Here, let us take the function

ni(z) if ni(z) < mi(xi)
vie) = ni(zi) if ni(z) > ni(zi). 919

By definition, it is clear that v belongs to the space UN HE (). Let us evaluate the
quantity T'(v). Indeed,

1 1
T(v) =5 /Qa_l \Vv\z + 3 /Q ]’U|2 — 27 v(x;)
1 _ 1 1
T2 / a ! |Vil* + 2 / Imil* + 2 / i) =2 m i)
{ni<ni(z:)} {ni<ni(z;)} {ni>ni(z:)}

(9.20)

Remark that |, (i ()} Ini(z:)]? < f{wm(xi)} [n;|%. Then, inserting it in (9.21), it
follows that
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1 _ 1 1
1) <5 (ot Py [ mPey [ P zmae)
Q {ni<ni(=z:)} {ni>ni(z:)}
1 —1 2 1 2
<5 e IVmlm 45 | lml” =2 i)
Q Q

=T ().
(9.21)

Using the fact that 7; is the unique minimum of 7" over the space U N Hg () allows
to deduce

v(z) =ni(x) Yael (9.22)
By definition of the function v, (9.22) implies for 1 <i <n

ni(z) < mi(w;) Ve (9.23)

This means that x; is the global maximum of the function 7;. The proposition 9.3
is then proved. O

We summarize the previous information in the following
Proposition 9.4. The function S defined in (9.12) satisfies
ai;; >0, X;>0, ay;>ay; V1<1i,j<n.
Moreover, the matriz (a;j) is positive definite.
Then, let us give

Definition 9.5. We say a function S : Z™ — R is admissible if it is of the form
S(d) = (Ad,d) =2 hey Y di X,
i=1

where hey, X; are positive, and A = (a;j) is a symmetric positive definite matriz
such that a;; > a;j for every 1 <i,j <n.

4 Some properties of d

Remember that X; > 0 for 1 < i < n. We start with

Lemma 9.6. Set

Qi
2 X;’
If hey > heg, then d # 0 where d minimizes S over Z".

hex = min{ i=1,2,...,n}.
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Proof: Set j € {1,...,n} satisfy hep = 2“% Let €; be the vector in Z" whose "

component is §;; for i = 1,...,n (§;; = 1 if i = j and 0 if not). When h, > hes, then
from (9.13),

S’(e_]') :ajj -2 hex Xj

=2 X, (hew — hea) < 0= S(0).

By definition of d minimum of S over Z", we must have d # 0. O

From now on, he, is taken to satisfy the fact that hey > hes. Now, we give a
preliminary idea on the sign of the degrees (d;)1<i<n.

Lemma 9.7. Let d = (dy,...,dy) minimize S over Z", then there ezists ig where
1 <19 < n such that d;, > 0.

Proof: We argue by contradiction by assuming that d; < 0,V 1 < i < n. We
know that V 1 <7 <n, X; > 0, hence

n
ZXi d; < 0.
=1

Recall that the matrix A is positive definite, so in particular we have (A d,d) > 0,
since d # 0. Combining the above in S(d) to get

S(d) = (Ad,d) =2 hex »_X;di >0=5(0).
=1

This contradicts the fact that d minimizes S over Z". O

Notation

Recall that d = (di,...,d,) minimizes S over Z". Without loss of generality, we
mean by the fact that d is positive if d; is nonnegative for each 1 < i <n, and by d
is not positive if there exists 1 < j < n such that d; < 0.

The study of the degrees (d;)1<i<n seems be not easy. Then, when it is necessary to
make our study easier we need to make extra hypotheses on the domain €2, on the
function a(z) and on the location of its zeroes x1,...,z,.

In this case, assume that the domain is the disk By of center O and of radius R > 0.
The zeroes {x1, xa, ..., x,, } of the function a are such that x; xs...z,, is a polygon with
the same sidelength and of center O, the center of the disk Br. Moreover, letting A;
be the mediatrix of the line [x;, z;41] and Sa, be the axial symmetry with respect
to A;, the function a(z) is taken to be invariant under each Sa;, 1 <1i < n, meaning
that the weight a(z) verifies

a(x) = a(Sa,(z)) = ... = a(Sa, (z)) Y € Bg. (9.24)

Note that the above is called symmetric hypotheses. It is clear in this case that
ni(z;) depends only on the value modulo n of |i — j|. Therefore, in this case, from
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the definition of the coefficients (a;;), we see that a;; depends only on the value of
|i — j| modulo n and that X; = X for any 4, j. Motivated by this example, we give
the following.

Definition 9.8. We will say an admissible function

S(d) = (Ad,d) —2hey »_di X,
i=1
is symmetric if A = (a;5), and a;; depends only on the value of |i — j| modulo n and
if Xi = Xj foralli,j.

5 The main result

5.1 Setting of the Theorem

The main result here is

Theorem 9.9. For hey > hes, then
A)The non symmetric case

1) Ifn =1, and d is the minimum of an admissible S, then d > 1.

2) If n =2, there exists an admissible S such that every minimum of S is not
positive.

B) The symmetric case

1) If S is admissible and symmetric, then for n = 2 or n = 3 any minimum of
S is positive.

2) If n =4, there exist an admissible symmetric S such that every minimum of
S is not positive.

5.2 Remark

In the cases (A-2) and (B-2), it is open whether there exists a pinning coefficient
giving rise to the function S we have found.

6 The case A: The non symmetric case

6.1 Thecasen=1

Here, A = a1 > 0 and X = Xy > 0. Then, for ¢ € Z the functional S is
S(c) = ai1 ¢ =2 hey X c. Remark that the minimum of ¢ — S(c) over R is achieved
at cg = % Now, if he, is such that he, > 2“}31, we have ¢y > 1. Then, the
minimum d of S over Z does not vanish and verifies d > 1.

6.2 The case n =2
Here, we have
a1 > a2 = az1, a2 > ajz, Xi,X9>0.

Let d = (d1,dz) be a minimum of S over Z?. Our aim is to determine the sign of
the two degrees d; and dy. From the lemma 9.7, either d; > 0 or do > 0. We start
with
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Lemma 9.10. Let hey > hey. If X1 = Xa, then dy and da are nonnegative (and at
least one of them is positive).

Proof: We argue by contradiction. First, suppose that d; do = 0 and d; or ds is
negative. Without loss of generality, we assume that d; = 0 and dy < —1, then

S(dl,dg) = S(O,dg) = a2 d% —2hey X1do >0= S(0,0),

which contradicts the fact that (dq,d2) is a minimum of S.
Second, we suppose that d; da < 0. On the one hand, comparing S(d) to S(d;+ds,0)
and using X; = Xo,

S(dy,ds) — S(dy + da,0) =(ags — a11) di + 2 (a12 — a11) di dg — 2 hey (Xo — X1) do

:(a22 — all) d% + 2 (a12 — all) dl dg.

(9.25)
Since a2 < a11 and dy dy < 0, it follows that
(a12 — a11) di da > 0,
Now, if (a22 — a11) > 0, then combining the two above inequalities in (9.25),
S(di,d2) > S(dy + da,0). (9.26)

On the other hand,

S(dy,do) — S(0,dy + do) =(a11 — ags) d3 + 2 (a12 — ags) dy do — 2 hey (X1 — Xo) dy

=(a11 — ag) d5 4 2 (a12 — ag) dy da.

Using a12 < asg2, (CL12 - agg) dy do > 0. In addition, if (a11 - a22) > 0, we get

S(dy,da) > S(0,d; + d2). (9.27)

A combination of (9.26) together with (9.27) contradicts the fact that d is a minimum
of S over Z2. This leads to d; dy > 0 independently of the sign of (a11 — age). But,
going back to lemma 9.7, there exists 1 < 49 < 2 such that d;, > 0. Then, necessarily
the two components are nonnegative, meaning that d is positive. Moreover, when
Rex > hey, We note that if one component is equal to 0, then thanks to lemma 9.6,
the other component must be positive. a

Lemma 9.11. If Xy < X1, then dy is nonnegative.

Proof: We do the proof by contradiction. Assume that d; is strictly negative, i.
e. dp < —1. From lemma 9.7, we have necessarily ig = 2, meaning that do > 0. We
exclude the case of dys = 0 because
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S(d1,0) = a1y d3 — 2 hey di > 0= 5(0,0).
Then, do > 1 which with dy < 0 yield that dy d2 < 0. On the one hand

S(dy,d) — S(dy +do,0) = (aze — a11) d3 + 2 (a12 — ay1) dy dy — 2 hep (X2 — X1) da.

We insert Xo < X1, do > 1, d; do < —1 < 0 and a2 < a11 in the above identity to
find

S(dl,dg) > S(dl + dz,()) if a9 > ayy.

Proceeding similarly as in the above, we can get

S(dl,dg) > S(O,d1 + dg) if a1 > aso.

The two above inequalities contradict the fact that (dq, dz2) is a minimum. We must
have dy > 0, i.e. ig = 1. O

We know prove assertion A) 2) of the Theorem. More precisely
Proposition 9.12. If X; > X5 and if
a11Xs < (a22 + 2&12)X1 < 3a11Xa, (928)

a22(2X2 — Xl) + 3a11 X9 — 2a12(X1 + XQ) < 0, (929)

ai;  agy  3ai1 +ax — 4a12) L ags + 2a19
2X1" 22X 2(X;— Xo) “ 2 Xy

max< min( (9.30)

then dy < 0.

Remark 9.13. Remark that the first two assumptions ensure that the set of hey
satisfying the third assumption is not empty.

6.3 Proof of proposition 9.12

First, thanks to the lemma 9.6, each minimum d of S over Z? does not vanish if the
applied magnetic field satisfies

an o
2X: 2Xy
Since X1 > X5, we have from lemma 9.11 dy > 0. First, let us start by minimizing
the functional S over N2.

Stepl

We define (n1,n2) to be a minimum of S over N2. If a1; Xo < (ags + 2 a12) X1 and

hez > hep = min( (9.31)

a2 + 2 ae
_ .32
heaw < 5x, (9.32)

and ni,ng > 1, then
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S(n1,m9) =a1; N2 — 2 hey X1 01 + ago n3 + 2 ayo ny no — 2 hey Xo no
>a11 13 — 2 hep X111 4 12 (a2 + 2 a1 — 2 hey X2)
>S(n1,0),

which contradicts the fact that (ni,n2) is a minimum of S over N2. Moreover,
(n1,n2) # (0,0) because hey > 35, hence the two only possibilities for (n1,ns) are
the following

(n1,n2) = (n1,0) with ny >1 or (ni,n2) = (0,n2) with ng > 1.
In the first case, n; > 2 and
S(n1,0) — 8(1,0) = (ng — 1) (an (n14+1) — 2 hes X1>. (9.33)
Then, using ny > 2, we get
air (1 +1) =2 hex X1 >3 a1 — 2 hey X1.

Moreover, assume that

ag +2a12 _ 3an

2 X9 2X;°

Inserting this in (9.32), we have (3 a;1 — 2 hey Xi) > 0. This yields that the

quantity (n; — 1) <a11 (n1+1) —2 hey Xl) is strictly positive for no > 2. Hence,
(9.33) gives us

(9.34)

S(ny,0) > S(1,0).

So that if (n1,0) is a minimum of S over N2, then necessarily n; = 1. Now, we study
the second possibility which is (n1,n2) = (0,n2) with ng > 1. For this, assume that
ng > 2, hence using the same argument as for the first possibility,

S(O,ng) - S(O, 1) Z 3 agy — 2 hea: XQ.

Knowing a2 < a29, then from (9.32, (3 a2 — 2 heg XQ) > 0, so that S(O,ng) >
S(0,1). Then, we must have ng = 1. Consequently, if (n1,n2) is a minimum of S
over N2, then necessarily we get

(n1,n2) = (1,0) or (ni,n2)=(0,1).
Let us compare S(1,0) to S(0,1). In fact,

5(1,0) — S(O, 1) = a1 — 2 hea; X1 — a2 + 2 hex XQ = a1 — a2 — 2 hew (Xl — XQ).
(9.35)
We assume that
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as9 (2 X9 — X1)+3a11 Xo — 2 a1z (X1+X2) < 0. (9.36)
Using the fact that 2 aj2 < ag2 + a;; with X; > Xa, we can write

3ail+ax —4a2 ail — a
2X,—2X, 2X;-2Xy

Hence, if h., is such that

3ail +ax —4an
h 9.37
e N X, (9.37)

we obtain
ail — a2

X 2 Xy
Note that the assumption (9.36) gives a sense to the inequalities (9.32)-(9.37). Then,
inserting (9.38) in (9.35) implies that S(1,0) < S(0,1). Finally, the minimum of S
over N? is achieved at (1,0).

h (9.38)

Our interest now is to find a point in the region Z2 N (z > 0, y < 0) such that
its image by S is less than S(1,0).
Step 2
Let us take the point (2,—1), then comparing S(2, —1) to S(1,0), we obtain
5(2, —1) — 5(1,0) =3a11+ae —4a12 —2 hey X1+ 2 heg Xo.

Note that (9.37) gives us
S(2,-1) < 5(1,0).

This implies that (1,0) is not a minimum of S over Z2, and there exists a non
positive minimum of S over Z2. The proposition 9.12 is then proved.

7 The case B: the symmetric case

7.1 The case n=2

In this case we deduce from S(dj,ds) = S(da,d;) that X; = Xy. In particular,
going back to lemma 9.10, we can say that any minimum d of S over Z? is positive.
Moreover, if hey > hes, the lemma 9.6 leads to d # 0. Thus, if one component is
equal to 0, then the second component must be positive.

7.2 The case n =3
In this case,
a1l = age = agz, a2 = a3 =azy, X1 = Xo=X3.

Let d = (dy,ds,d3) be a minimum of the functional S over Z3. We start with a
preliminary result on the sign of the degrees (d;)1<i<3-
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Lemma 9.14. For any 1 <1i,5 <3,

d; d; > 0.

Proof: We compare S(d) to S(di + da,ds,0) to get

S(dl,dz,dg) — S(dl + dz,d3,0) =2 (a12 — a11) dy ds.

Since, aia < a11, we can write by definition of (dy,ds, d3) minimum of S over Z3,

dy d2 > 0.

Similarly as in the above, we find again d3 do > 0 and d; dg > 0. The lemma 9.14
is then proved. O

Our result is the following

Lemma 9.15. Let hep > hey, then for the functions ng and n;, 1 < i < 3, solutions
respectively of (9.6) and (9.7), the three degrees dy, do and ds are nonnegative and
at least one of them is positive.

Proof: We argue by contradiction. Without loss of generality, we assume for
example that d; < —1. We refer to the fact that d; do > 0 and d; d3 > 0 to find
necessarily d2 < 0 and d3 < 0. We insert these in the expression of S(d) to get

S(dl,dg,dz) >0= S(O)

It is the contradiction. Thus, the three degrees di, do and d3 are nonnegative. In
addition, if hey > hey, the lemma 9.6 gives us that d # 0, so in particular there is
at least one positive degree from (d;)1<i<3. O

7.3 The case n =4

In this case, we define
Y1 = Q11 = a2 = 433 = Q44, 72 = A12 = 423 = A34 = A14, Y3 = @31 = A24.

Let d = (dy, da, d3, ds) be a minimum of S over Z*. We start by giving a preliminary
idea on the sign of the components (d;)1<i<4.

Lemma 9.16. We have,

d1d320 and d2d420.
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Proof: Testing the minimal functional S(di, ds, ds, ds) by the configuration (d; +
d3, dg, 0, d4), we have

S(dy,da,ds,ds) < S(di +ds,d2,0,ds).

A simple calculation gives us

(73 —71) di d3 < 0.

dy d3 > 0, since 3 < 1. Moreover, writing

S(dy,dz, d3,ds) — S(d1,da + ds,0,d3) =2 (y3 —71) d2 dg <0,
and using again 3 < 71, we obtain da dg > 0. O

By symmetry, remark that

S(dy,dg,d3,ds) = S(dy,ds,ds,d2) = S(ds,do,d1,ds) = S(d3,ds,dr,d2).  (9.39)

Then, if (d1, ds, ds,ds) is a minimum, the above identities give us three other mini-
mums. Here, nothing allows us that all the degrees d;, 1 < ¢ < 4, are nonnegative.
For this, we state a condition on the applied magnetic field he; and on the functions
1;, 0 < i < 4, giving us different signs on the degrees d;, 1 < i < 4. This will finish
the proof of the Theorem.

Proposition 9.17. If v1, 72 and 3 are such that

v < 2 V3, (9.40)
Y1 —27v +v3 <0, (9.41)

then if in addition he, is such that
max(’yl, 971 — 16 79 + 10 73) <2 hew X1 <71+ 273, (9.42)

there exists a mon positive minimum of S over VA

Remark 9.18. We note that the assumptions (9.40) and (9.41) are taken in order
to ensure that the condition (9.42) is not empty. Indeed, under those assumptions,
we have

991 — 1672 +10v3 — (71 +27v3) =8 v1 — 16 72 + 8 3

=8 (1 =272+ 13) <0,

which is the condition (9.41).
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7.4 Proof of proposition 9.17

We begin with the minimization of the functional S over N%. In particular, we have
Lemma 9.19. Assume that v1 < 2 3, then if he, is such that
71 < 2 her Xi <7 +273,

the minimum of S over N* is achieved at (1,0,0,0), (0,1,0,0), (0,0,1,0) and
(0,0,0,1).

Proof: Let n = (n1,n2,n3,n4) be a minimum of S over N%. First, we suppose that
n; >1,V1<i<4,then

S(n1,n2,n3,n4) :(A (n1,n2,n3,n4), (n1;n27n37n4)) — 2 heg X1 (n1 4+ na + ng + ny)

=71 (nf 4+ n3 +n3 + n3) + 272 (N1 n2 + n2 ng + ng ng +ng ny) + 2 33 (01 N3 + N2 nyg)
—2 her X1 (711 +ngo +n3 + n4)
=S(n1,n2,n3,0) + 71 1] +2 72 (n3 Ny +n4 1) + 293 19 g — 2 hey X1 Ny

>S(n1,n2,13,0) + 14 (71 + 273 — 2 hex X1).
(9.43)

If the applied field is such that

Y1 +273

h
€$< 2X1 )

(9.44)
then (9.43) gives us

S(nlu na,ns, 7'L4) > S(nla na,ns, 0)7
which contradicts the fact that (ny,n2, ng, ng) is a minimum. This implies that there
exists 1 < 49 < 4 such that n;, = 0. Without loss of generality, we suppose that
ny =0 and n; > 1 for 2 < i < 4. From now on, he, is taken to verify (9.44). The
case no > 1 is excluded, indeed if it is true, we have

S(0,n2,n3,n4) =S(0,0,n3,n4) + 71 13 + 272 12 13 + 273 N2 Ny — 2 hey X1 N2

25(070777’3;”4) + ng (71 + 279 — 2 hey Xl)
(9.45)

Y142 v3 < 71 + 2 72, since 3 < 2. Then, using this together with (9.44), we find

We insert this in (9.45) to deduce for ny > 1
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5(0,n2,n3,n4) > 5(0,0,n3,n4),

which contradicts the fact that (0,n2,n3,n4) is a minimum. Consequently, we can
obtain ne = 0. Third, we suppose that ng > 1 and ngq > 1, then
5(0,0,n3,14) =5(0,0,0,14) +v1 13 + 2 72 N3 N4 — 2 hey X1 N3
>5(0,0,0,n4) +n3 (71 + 272 — 2 hex X1) (9.46)
>5(0,0,0,n4).

The same argument implies that n3 = 0. Now, combining all the above, we have
under (9.44) that at this stage the only possibility of n minimum of S over N* is
n = (0,0,0,n4) with ng > 0. But, since

we have ny > 1. Moreover,

5(0,0,0,m4) — S(0,0,0,1) =~; (n3F —1) — 2 hep X1 (ng — 1)
(9.47)
= (ng— 1) (’yl (g +1) — 2 hey X1>.

Suppose that ng > 2, then using the fact that 73 < 1, we have from (9.44)

04! (n4+1)—2he$X1 >37 —2hex X1 >71+273 —2 hey X1 >0.
Thanks to this, (9.47) implies for ng > 2

5(0,0,0,n4) > S(0,0,0,1).

Finally, we must have ny = 1, so (0,0,0,0,1) minimizes S over N*. Referring to
(9.39), the proof of lemma 9.19 is completed. O

Completing the proof of proposition 9.17

Here, our interest is to find a minimum of S over Z* such that it does not belong to
N*%. For this, it suffices to find a point in the part Z*N(x > 0,y < 0,z > 0,t < 0) such
that its image by S is strictly less than S(1,0,0,0), since (1,0,0,0) is a minimum of
S over N%. Now, we assume in addition to (9.40) that

Y1 — 272+ 793 <0,
then we can find an applied field he, satisfying (9.42). In particular,

991 — 1692 + 10 73 < 2 ey X1. (9.48)
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Note that

5(2, —1,2, —1) =10~ — 16 v2 + 10 y3 — 4 hey X7
Comparing S(2,-1,2,—1) to S(1,0,0,0), we get

S(2,-1,2,—1) — S(1,0,0,0) = 9 v1 — 16 72 + 10 73 — 2 hey X;. (9.49)
We deduce thanks to (9.48),

S(2,-1,2,—1) < S(1,0,0,0).

Consequently, there exists a minimum d of S over Z* in the region (z > 0,y < 0,z >
0,t < 0), meaning that there exists a non positive minimum of S over Z*. This
completes the proof of proposition 9.17.

Finally, combining all the above, the Theorem 9.9 is then proved.
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