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Abstract

Automatic speech recognition technology has ackien&turity, where it has been widely
integrated into many systems. However, speech néitog system for non-native speakers still
suffers from high error rate, which is due to thismatch between the non-native speech and the
trained models. Recording sufficient non-nativeegefor training is time consuming and often
difficult.

In this thesis, we propose approaches to adaptsticoand pronunciation model under
different resource constraints for non-native spemk A preliminary work on accent
identification has also been carried out.

Multilingual acoustic modeling has been proposedrfmdeling cross-lingual transfer of
non-native speakers to overcome the difficulty btaining non-native speech. In cases where
multilingual acoustic models are available, a hybapproach of acoustic interpolation and
merging has been proposed for adapting the tagmiséic model. The proposed approach has
also proven to be useful for context modeling. Hesve if multilingual corpora are available
instead, a class of three interpolation methodsljaally been introduced for adaptation. Two of
them are supervised speaker adaptation methodshwhin be carried out with only few non-
native utterances.

In term of pronunciation modeling, two existing apgches which model pronunciation
variants, one at the pronunciation dictionary andtlaer at the rescoring module have been
revisited, so that they can work under limited amtoaf non-native speech. We have also
proposed a speaker clustering approach calledntig®nunciation analysis” for clustering non-
native speakers based on pronunciation habits. dgpsoach can also be used for pronunciation
adaptation.

Finally, a text dependent accent identificationtmoéthas been proposed. The approach can
work with little amount of non-native speech foeating robust accent models. This is made
possible with the generalizability of the decistomes and the usage of multilingual resources to
increase the performance of the accent models.

Keywords: non-native speech recognition, non-native mudilial acoustic modeling, non-native
pronunciation modeling, accent identification



Résumé

Les technologies de reconnaissance automatiqua garble sont désormais intégrées dans de
nombreux systémes. La performance des systémescdanaissance vocale pour les locuteurs
non natifs continue cependant a souffrir de taarrelur élevés, en raison de la différence entre la
parole non native et les modéles entrainés. Lesadi@in d’enregistrements en grande quantité de
parole non native est souvent difficile et peu isfalpour représenter toutes les origines des
locuteurs.

Dans cette thése, nous proposons des approchesgpter les modéles acoustiques et de
prononciation sous différentes conditions de ressopour les locuteurs non natifs. Un travail
préliminaire sur I'identification d’accent a égalenh proposé.

Ce travail de thése repose sur le concept de nsadiél acoustique translingue qui permet
de représenter les locuteurs non natifs dans wcespultilingue sans utiliser (ou en utilisant trés
peu) de parole non native. Une approche hybridetatjpolation et de fusion est proposée pour
'adaptation des modéles en langue cible en utilisane collection de modéles acoustiques
multilingues. L'approche proposée est égalemerie yiour la modélisation du contexte de
prononciation. Si, en revanche, des corpus mudtigs sont disponibles, des méthodes
d’interpolation peuvent étre utilisées pour I'addisn a la parole non native. Deux d'entre elles
sont proposées pour une adaptation supervisée wetee étre employées avec seulement
quelques phrases non natives.

En ce qui concerne la modélisation de la pronoiociatdeux approches existantes (I'une
fondée sur la modification du dictionnaire de prmciation, I'autre fondée sur la définition d’'un
score de prononciation utilisé dans une phase -deaiing) sont revisitées dans cette thése et
adaptées pour fonctionner sur une quantité de dsnfihitée. Une nouvelle approche de
groupement de locuteurs selon leurs habitudes @®opciation, est également présentée : nous
I'appelons « analyse de prononciation latente >tteCapproche se révele également utile pour
améliorer le modele de prononciation pour la reafssance automatique de la parole non native.

Enfin, une méthode d'identification d’accent esigmsée. Elle nécessite une petite quantité
de parole non native pour créer les modéles d'ascé&eci est rendu possible en utilisant la
capacité de généralisation des arbres de décisien atilisant des ressources multilingues pour
augmenter la performance du modéle d’accent.

Mots clés :reconnaissance automatique de la parole non nativéé¢lisation acoustique
multilingue non native, modélisation de prononaiatiidentification d'accent
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Introduction

Most people nowadays can speak more than one lgaglraa world where competition becomes
more and more critical, the ability to communicate several languages gives extended
advantages to the speakers. This is because laagdags not solely play the role of
communication but also represent the identity amiue of the community who speaks that
language. People who speak the same language egecapable of relating to each others.

Many people also acquire new languages to havalga i@ the economy. The booming of
many economies around the world has renewed inta@reanguages such as Arabic, Indian,
Korean, Mandarin and others.

Besides thatljingua francassuch as English, Spanish and French have long dféeterest
for people around the world because of their rissngarticularly in the domain of science and
technology. Many of these languages are taugtthinds and universities around the world.

People may also learn a new language when they meogenew country, since they may
speak a language different from the native spealdtsnan migration is becoming more
common particularly for economic reasons. In théteéthStates for example, 37.5 million of the
population or nearly one in five is from foreigrighn in 2006 [Ohlemacher 2007].

Tourism is a lucrative industry for many countriés.France for example, there were 78
million tourists who visited the country in 2006Hkpansion 2007]. People who travel to other
countries also often pick up some common local gggdrom travel guide books or Internet to
facilitate communication.

This thesis is about automatic speech recognitiomdn-native speakers. The popularity of
using speech recognition system as a natural ageris increasing with the maturity of speech
recognition technology. Nowadays, speech recognitipplications are embedded in different
systems such as telephony systems, computers, angldines, car and others. However, most
people who try to use speech recognition applioatto recognize their non-native speech will be
discouraged by their performance. Studies show ttatperformance of speech recognition
systems in decoding non-native speech is at lgasttimes lower compared to native speech.
This is due to the difference in characteristicsveen native and non-native speech.

Statistical speech recognition system uses thneestyf models for modeling speech at
different levels, namely acoustic model, pronunciamodel and language model. These models
are created by using data-driven approach. Siree dhe usually modeled using only the native
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language resources, there may be a mismatch betw@enative speech and the models. As a
result, the recognition rate for non-native speisctmuch lower compared to the native speech.
The solution is to build models that better matoh-native speakers by using non-native speech.
However, acquiring non-native speech is time asdurce consuming. There are more than six
thousand languages in this world. Therefore, tongtall the non-native speech for each language
is difficult if not impossible. In certain cases,i$ unfeasible particularly for under resourced

languages.

The objective of this thesis is to propose nonweathodeling methods that are flexible to be
employed under different resource constraints. iNudual resources have been proposed for
adapting non-native models to overcome the diffictd obtain non-native speech whenever
possible. In situation when some non-native spéeakiailable, it can also be taken advantage of.

In this thesis, we will look at non-native acoosind pronunciation modeling. In acoustic
modeling, we look at the usage of multilingual @ses for adapting the acoustic model of the
target language. The reason why multilingual resesircan be used for adapting non-native
speakers is because the ‘cross-lingual transfempimenon by non-native speakers. By using the
multilingual resource and cross-lingual transféoiimation, a new language space that is aligned
with the target language space is created. Thislapguage space can then be used to estimate
the non-native language space (see Figure |a). idiépg on the type of multilingual resources
such as multilingual acoustic models or corpora @ available, different techniques are
proposed. In cases where some non-native is alailedm the speaker, more effective approach
for estimating the non-native language space is @ioposed. We will also see that the
multilingual approach proposed can be used forec@mhodeling.

In pronunciation modeling, we revisit two of theneentional approaches. We have
modified two of the approaches to make sure thay ttan be used even in situation when only
small amount of non-native speech is available. W&o propose a new approach of
pronunciation habits clustering and pronunciatiataation. This is done by creating a
pronunciation space and the non-native speakershesinbe separated into groups or cluster on
the pronunciation space. For an unknown speakerptbnunciation variants of the speaker can
be estimated the position of the speaker on theymr@ation space given some non-native speech.

Besides acoustic and pronunciation modeling, airpiehry study on accent identification
has also been carried out by making use of mudtilah resources with non-native speech.
Multilingual resources have been shown to be beiadfin improving the language identification
systems. In our proposed accent identificationesgstising phonotactic features, multilingual
resources are being used to capture the pattermegrege of changes with different non-native
speech (see Figure Ib). Like the approach propfiseabn-native modeling before, this approach
is able to take advantage of limited non-nativeeshe
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Figure I. Non-native acoustic and accent modelisiggi multilingual resources. a) Using target
language and language X (for instance native laggu the speaker) space to estimate non-
native language space. b) Using model from langXaged some non-native speech to create the
accent modebx, and compared against the accent of the teskep&d

In the first chapter of this thesis, a brief intnotlon to the architecture and components of
speech recognition is given. Subsequently, a disonn the language acquisition of human in
term of first and second language will follow. Hesge will learn why non-native speech
recognition performance is significantly lower camgd to native speech recognition. At the end
of the chapter, recent works in the domain of native speech recognition will be presented.

The second chapter presents our proposed non-retivgstic modeling approaches using
multilingual resources. Depending on the types oltitimgual resources such as acoustic models
or corpora available, different modeling approaches proposed. If some non-native speech is
available, non-native speaker adaptation technigoeslso proposed. The approaches proposed
are hybrid approach of interpolation and mergimgl mew interpolation approaches.

In the following third chapter, two pronunciationodeling approaches: pronunciation
dictionary and n-best rescoring are revisited, enodlified for modeling pronunciation habits. In
addition, we also propose an original approach weatcalled “latent pronunciation analysis”,
which uses pronunciation eigenvectors for spedkstaring. The approach can also be employed
for pronunciation adaptation. Next, we presentpratiminary work in accent identification. It is
a phonotactic approach which makes use of multiithgesources for creating accent models in
the form of multilingual decision trees.

Chapter four presents the non-native French cotfpatswe have acquired for testing and
adaptation purpose. The corpus is evaluated thrpagteption and acoustic analysis. In addition,
we also use data-driven approach for analysing it.

Finally in chapter five, the acoustic modeling, muaciation modeling and accent
identification approaches that have been preseirtedrevious chapters two and three are
evaluated. This chapter is followed by conclusiand future works.






CHAPTER 1

Automatic Speech Recognition for Non-
Native Speakers

1.1 Introduction

H uman has always been fascinated by artificial ligeshce such as the ability of machine to
understanding speech. However, before a speechl sign be analyzed for its meaning, it
has to be first converted to a simpler form — thet transcription. Speech to text or speech
recognition is an interesting but challenging dambiecause of its multi-disciplines nature.
Among the domains involved are signal processiagfepn recognition, linguistics, information
theory and others.

For more than five decades, researchers have achigneat advancement in the field of
automatic speech recognition, from the earliestated word recognition to current large
vocabulary speech recognition. Significant progiedbe areas of speech recognition is achieved
with the introduction of statistical based approadtich uses hidden Markov model and n-gram
model since 1980s for large vocabulary recognitigd. the same time, the technology
advancement has also propelled the progress aof athas such as biometric speaker recognition
and statistical machine translation.

Nowadays, the technology used in automatic speecbgnition (ASR) has matured to a
level where it has been increasingly applied irvises such as telephony systems, mobile
phones, GPS, as well as cars and computers. Howawematic speech recognition still faces
many challenges before it can be employed by ewnery anywhere. One of the problems faced
by current speech recognition systems is the diffjcof recognizing non-native speech. While
the word error rate of speech recognition systeansdtive speakers is now in the range of less
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than twenty percents for a large vocabulary speechgnition system, the word error rate for
non-native speakers is at least twice the ratative speakers.

In this chapter, a brief introduction to the arebtture of statistical automatic speech
recognition system and its components will be prese Subsequently, we will look at why non-
native speech is poorly recognized by speech retogrsystem, and how the current non-native
modeling techniques improve the system for recagginon-native speech. In addition, accent
identification approaches will also be discussed.

1.2 Architecture of an Automatic Speech Recognitiont&ys

An automatic speech recognition system also knownsgeech to text system receives an
utterance as input and delivers an output textstndption. Figure 1.1 shows the main
components of a speech recognition system.

| I_ ........................................................ \ ________________________________ ,
Iy : Signal :l/r\ :l/l\
”’ P MJM l:> processing Decode Tex

. J

Pronunciatior
mode

Language
mode

Decoding

Acoustic
modeling

; Training Grapheme

to phoneme

Language
modeling

Figure 1.1 Automatic speech recognition systemitacture

An automatic speech recognition system can be elividto two main processes: decoding
and training. The decoding components consist sifjaal processing front-end and a decoder.
The purpose of signal processing front-end is @itide analog signal and to convert it to
discriminative features for recognition. The decodehe engine of a speech recognition system
that uncovers the possible word sequence from é¢htufe vectors using the knowledge from
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acoustic, pronunciation and language models. Fraringuistic view point, these models have
roughly the following representations in a language

« Acoustic model — phonology of a language
e Pronunciation model — vocabulary and pronunciations
« Language model — grammar of a language

In a typical speech recognition system, acoustidehdefines the elementary units of speech. It
can be phones, phonemes, syllables, and words. h@nother hand, pronunciation model
represents language units such as word or syllabté sometimes common word sequences using
the acoustic units defined in the acoustic modahduage model in turn defines the structure and
syntax of a language with the vocabulary from thenpnciation dictionary. In the following
sections, we will look at the speech recognitiomponents in more details.

1.2.1 Signal Processing Front-End

The objective of the signal processing front-endoisextract discriminative features that are
perceptually important. The signal processing fiemd first digitizes the analog signal to a form
suitable for analysis. The process involves sevetafjes such as pre-emphasis, filtering,
sampling, and quantization [Kent 2002]. A samplimgquency of 16 kHz is sufficient to
represent human speech intelligibly. Study shows ahhigher sampling frequency does not give
any further improvement to the speech recognitimtesn [Huang 2001].

The digitized signal is then converted to featugetors, a form which is more relevant for
speech processing. The possible types of featarestaort time spectral envelope, energy, zero
crossing rates, level crossing rates, and otheesjuency-domain features such as short time
spectral envelope are more accurate and descriptivepared to time-domain features for
analyzing speech. Among the well known spectralyaimmethods are linear predictive coding
(LPC), perceptual linear prediction (PLP), and fineguency cepstral (MFC) spectral analysis
model. The mel-frequency cepstral coefficients (MF@re one of the most widely used features
in speech recognition. These features can be detiwough the following procedures [Davis
1980; Tychtl 1999]:

» Fourier Transform is computed for each frame

» Triangular mel filter banks are applied on the posgectrum

* Alog function is used to smooth the spectrum

» Discrete cosine transform (DCT) encodes the spectouMFCC

Studies show that ¥3order MFCC contains sufficient information to regpent speech
[Huang 2001]. In addition to the raw MFCC featurt® first and second derivatives of the
MFCC features are normally also computed, becéhesg frovide temporal changes information
of the spectral. For speech recognition systemgusidden Markov model (HMM), these
information can be useful, because the acoustimndsaare assumed to be independent and
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stationery. For reducing the size of the featuretors, dimension reduction techniques such as
principal component analysis (PCA) or linear disgnative analysis (LDA) can be applied on
the vectors to create a more compact and discriimenfeature.

1.2.2 Decoder

The worddecoderis originated from the field of information thepmyhich means the conversion
of a coded message to an understandable form.elechrecognition, decoder is the component
that uncovers the word sequences from the spegohlsir more precisely the feature vectors.
The search for the most probable word sequencébeaachieved by maximizing the posterior
probability for the given feature vectors. It idfidult to calculate efficiently and robustly the
posterior probability. Thus, instead of calculatthg posterior probability directly, it can be put
in another form using Bayes theorem:

W= argmaxP(W |O)
PW)P(O|W)

= arg\Ar/naxT (1.1

=argmaxP(W)P(O|W)
w

where W is the word sequence, W, ...W,, which gives the maximum posterior probability
P(W|O) given O, a series of observations ®,... 0, which produce the word sequence. This
means that the best word sequence can be foundrlicing the language probability of word
sequence P(W) (prior probability) with the acougiiobability of the word sequence P(O|W)
(conditional probability) from an acoustic modeliefn gives the highest value. The state of the
art acoustic model used in automatic speech retiognis hidden Markov model. It will be
discussed in the coming section. Conversely, thegdage model provides the language
probability. A widely used language model is thgram model.

Figure 1.2 shows an example of decoding an utteraih a single word, using a decoder
with a vocabulary of only three words {A, B, C}. &ltonnected circles represent the phoneme
models except the model ‘sil’ which representsdifence at the start (<s>) and the end (</s>) of
a sentence, while the dotted circles are word proiation models. The arrows leaving one
dotted circle to another indicate the language aodity, while the arrow from a connected circle
to another indicates the transition from one phanemdel to another.

The complexity of the problem can be imagined frBigure 1.2. In continuous speech,
where the total number of words in an utteranaeigiown and the boundary of words is blurred,
uncovering the most probable word sequence is m@aay task. The equation 1.1 however did
not specify how to search for the best word. Thetnalirect way is to calculate all the possible
word sequences and select the one which givesigtest value from the formula. For short
single word recognition as we see above, this mighipossible, but when the length of the
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sentence is unknown and the vocabulary gets lattgjeris no longer feasible. For example, for a
sentence withm words and with a vocabulary of there aren™ possible solutions. Search
algorithms using dynamic programming strategieseHasen successfully applied to uncover the
word sequence in a feasible and efficient mannea\mjiding redundant computation. This is
done by breaking up a problem to common sub-progldimding the best solution for the sub-
problems and storing the previous calculated resuitich are common. Another technique used
to speed up the search is by pruning the unpromigath. An example of search algorithm for
automatic speech recognition is time-synchronousrkii beam search.

, Feature vecto
POW,

01 02 03 Og 0506 0708 09010011012 013014 O35

Figure 1.2 Speech recognition as a search probléa.most probable word is the word which
gives the highest score of P(W)P(O|W)

The performance of a speech recognition systempisally measured byord error rate
(WER). The word error rate is calculated from thigmes of errors a speech recognition system
commit:

« Substitution: replacement of a correct word by haotlifferent word
» Deletion: omission of a correct word

* Insertion: addition of an extra word
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For calculating the number of substitutions (sulds)etions (dels) and insertions (ins) made, the
hypothesis from the system is aligned against tteah reference transcription using minimum
edit distance (Levenstein distance), with the seast given to the errors.

Word Error Rate= subst dels+ ins x100% (1.2)

numberof wordsin thecorrectsentence

1.2.3 Acoustic Modeling

Building a robust acoustic model is one of the n@iallenges in the field of speech recognition.
The difficulty of modeling acoustic features in @ust manner is due to the variability which
exists in the speech. Context variability can happethe sentence, word and phonetic level
[Huang 2001]. In a continuous speech, words inndesee may be connected instead of separated
by silence. Variability can also exist in pronuricia when the words are pronounced in an
isolate and continuous manner. At the phoneticl|eriability can exist in a phoneme when it is
realized under different contexts. At the speakeel, variability is most noticeable since the
speech is influenced by the physical attributedvsag vocal tract size, height, age, sex and also
social characteristics. Environmental conditiomi®ther contribution to speech variability. The
environmental noise and variation in microphone @mong the factors that can influence the
performance of a speech recognition system.

The selection of appropriate acoustic unit for anustic model is important. Among the
units often used for modeling are word, syllabled @hone. From word model to phone model,
the ability for each to generalize increases; floeee the amount of speech required to train the
unit robustly decreases. In small vocabulary wardognition system, word models can give
better results than other type of units when sigffit speech is available for each word model.
However, in continuous speech recognition, interdveariability can happen as mentioned
previously. In this case, context dependent modelinrequired to record the differences to
achieve high recognition performance. Thus, thismsehat the number of instances needed for
training different word contexts will also increasgyllable model is the next best choice if
sufficient speech is available for training themor Ranguages with a (relatively) limited number
of syllables such as Japanese and Chinese, syllabtkel can be an attractive option. Most
speech recognition systems use phone as the umoba@éling, since it requires moderate amount
of speech to robustly model and will not over getiee. However, phone model is greatly
influenced by the context compared to other modetsmisequently, context dependent modeling
is often employed to achieve a high recognitioe.rat

There are many possible approaches for modelingato@istic units, for example hidden
Markov model (HMM), artificial neural network andmplate model etc. Hidden Markov model
is one of the most widely used approaches in statisspeech recognition because of its
robustness. In the following sections, we willdlyy present the theory of HMM, and followed
by the training procedures.

1C
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1.2.3.1 Hidden Markov Model

The theory of hidden Markov model (HMM) was devadgsince the late 1960s. It was used by
IBM in automatic speech recognition since 19709Vidrkov chain is a stochastic process with
short memory, where the current state dependsanthe previous state. In a Markov chain, the
observations are actually the state sequence. dehiMlarkov model is an extension of a Markov
chain where the observation is a function of tlaesttherefore, the state sequence is hidden in
hidden Markov models. The probability to be at dipalar state can be calculated instead given
the observation.

Figure 1.3 shows an example of a continuous mixtiemesity HMM for recognizing three
phonemes /a/, /e/ and /il. Each phoneme is repexbdry a state, and each state is defined by
Formant 1 (F1) value with a single Gaussian. Iftkgat the figure as simply a Markov chain, the
observation in this case will be the three possiililenemes /a/, /e/, and /i/. Given the current
observed phoneme, we can know the probability arfidition to the next phoneme (state). For
example, if currently we observed that the speakiers the phoneme /e/, the probability of it to
transit to phoneme /a/ will be 0.1. For a hidderrbda model, the observation is a series of F1
value instead. From the F1 value, we do not knaatttual state it is in, but we know that if the
F1 value is near to the mean of one of the phonédiegs a higher probability to be at that
phoneme. Thus, if we observed an F1 value of 528H&s a higher probability to be /e/, than /a/
or /il.

lal, X~N(753, 0.2 lel, X~N(510, 0.2t

0.t
0.33:
0.33:

Figure 1.3 A continuous hidden Markov model for miaty three phonemes /a/, /e/ and /i/
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A hidden Markov model is defined by the followingrameters:

* 0=0,0,...0n — A sequence of observations. In the given exantpéeobservations are a
series of F1 values. For a period of time t, fromutterance of a speaker, the possible
series of F1 observations are 558 Hz, 561 Hz, 562.H

« 0={1,2,...N} — A set of states in the model. In thergi example, there are three states,
which represent the phoneme /a/, /e/, and /i/.

+ A={a;} — A state transition probability matrix. Amongettvalues of the state transition
for the given example are,a0.3 and g=0.1.

«  B={bi(t) = P(Q=0] s=i)} — An output probability matrix, where,#) is the probability of
observing the value @t state i. In the given example, it is a contumimixture density
HMM with single Gaussian. The conditional probapilcan be calculated by using the
Bayes Gaussian classifier. Given the observatiantio dimension n (in our case n = 1),
the probability of it to be emitted by distributian state i with mean vectqy; and
covariance matrix ds:

— 1 -1/ 2(0~14) G (0-u;)
b(0)=——— e #) G (o (1.3)
[ (27T)n/2 |C| |1/2

 n={m = P(s=i)} — an initial state transition probability, wiee1< i <N. In the case above,
all three states have the equal chance to start.

There are two assumptions made in the hidden Mankmdel: first-order Markov
assumption and output-independence assumptiontéBsen is to simplify the calculation and to
make the system more efficient and feasible. Tre-firder Markov assumption states that the
probability at state s and time t, depends onlyhernpreceding state at time t-1.

P(s; [51:S2:--51) = P(S | S11) (1.4)

The output-independence assumption states thgprtteability that a particular observation at
time t depends only on the statarsd is conditionally independent of the past oke@rns.

PO 10,,0;,.-014,8.,8,,-5) =P(O, | s) (1.5)

In a typical large vocabulary speech recognitiosteay, an acoustic model normally consists of
multiple HMMs. Each HMM models an acoustic unit faotample a phone, using a left to right
architecture with three to five states, see Fidude

12



Chapter 1. Automatic Speech Recognition for Nonvide&8peakers

Q

Figure 1.4 A three state left to right HMM topology

The HMM in Figure 1.3 is a continuous HMM. In fathere are three types of HMM
depending on how the feature space of the moddefmed: continuous, discrete and semi-
continuous (tied-mixture), see Figure 1.5. In atemous HMM, the feature space of a model is
represented using Gaussian mixtures. In a disdi#dd/, the feature space is divided into
clusters of speech sounds, normally using vectantation (VQ) algorithm such as k-means.
For a discrete HMM, the continuous features obskraee mapped to a finite set of discrete
observations. Thus, the feature space of each nwdielfined using the discrete features. Semi-
continuous space as its name suggests, is an #déta between discrete and continuous model.
The feature space of each model is defined usoaranon set of Gaussian densities.

o5
ﬂ‘ Centroic @ Model

Discret¢ Continuou Sem-continuou

Figure 1.5 Representation of feature space usswete, continuous and semi-continuous models
[Rabiner 1993]
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1.2.3.2 Training a Continuous Mixture Density HMM

Given the hidden Markov model, how do we learndptmized model parameters or patterns for
speech recognition? In HMM training, the observaidrom the training utterances are used to
model the corresponding acoustic units in the tiapsons with the assistance of a pronunciation
model through iterative re-estimation. There areyndifferent strategies to train a continuous
HMM acoustic model. Figure 1.6 shows one of thesflibs ways for training an acoustic model,

which is applied in Sphinx and HTK systems [Woodld®93, Woodland 1994, CMU 2000].

Global densit /\ Flat initializatior
A7V

State )
Context independel
modeling
l

p-i+l 44 l n- |+m

il

Untied contex
dependent modeling

etc
State tyin
etc
Context dependel
modeling
etc

Figure 1.6 Procedure for building a context depatdentinuous HMM acoustic model

Flat initialization is used here to initialize thMM parameters by calculating a global
means and variances from the features files. Nio#¢ the same front-end module used in
recognition stage will be used here to convertsiieech to the same type of feature, for example
MFCC. Equally probable transition matrix and mixwreights are also initialized in the process.
These values are then copied to the context inadlgper(Cl) models to initialize the parameters.
Subsequently, the parameters are re-estimated WBagn Welch algorithm. Baum Welch
algorithm is an expectation maximization (EM) meththat iteratively maximizes the log
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likelihood from the observed training data. The rédM parameters will update the previous
estimated values. Following are the re-estimatimmntilas for the coefficients of the mixture
density, mixture weight, meary, and covariance matri@ [Rabiner 1993].

]
PWACHY)
S (1.6)
PN AGAN
t=1 k=1
T
D 1Ko,
Hy = tZIT (1.7)
PWACHY)
t=1
]
D Vi (0.K)-00 = 13 )0 = )
C, =+ (1.8)

Zn(j,k)

Note that the equation for the weight of #feGaussian mixture component in stptey has the
same form as the state transition from siéte statej, ;. In fact, a HMM state with a mixture
density has shown to be equivalent to a multi-stittgle-mixture density mode}(j,k) is the
probability of observingy in statej, K" Gaussian mixture at tinte

For creating a multi-Gaussians context independerttel, the number of Gaussians will be
increased by splitting each Gaussian in the comteldpendent model normally to two when it is
converged by perturbing the means slightly. Contedépendent model is created by modeling
the defined acoustic unit without taking into calesation the context (surrounding acoustic units
and possibly its position) of the acoustic unitsimly training. Context independent model is
especially useful in situation when little speestavailable. It is also useful as a bootstrap model
in multilingual acoustic modeling. The re-estimatigtep is again repeated until the total number
of Gaussians is reached. If the acoustic unitsddfare phonemes, then there will be one HMM
for representing each phoneme. Note that phonertfeeismallest sound unit that distinguishes
meaning. The acoustic units can also be traineddmgidering the context of the acoustic unit
through context dependent modeling. The contexewd@ent acoustic unit which is trained by
taking into consideration the left context of cutrehoneme is known as biphone. The acoustic
unit trained by considering its left and right aaxttis known as triphone model. Thus, for the

vowel k/ in the context of the word “yes” which is pronaed as /g s/, the monophone//will
be modeled, but for a biphone it will be; (written also as §), and the triphone will bes/fs
(also can be represented as§). In this manuscript, we will consider phonersespeech sound

independent of the context (monophone), while ph@@nenore precisely allophone) is used to
refer to the speech sound which takes into coraider of its context.
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In general, context dependent model outperformeest independent model for speech
recognition. However, it requires more data tontraibustly compared to context independent
model. The data sparsity problem implies that peeciontext modeling cannot be used in most
cases. A possible solution is to use a combinatfodifferent contexts, where a sharper phone
model is trained if there are sufficient data. Avestapproach to overcome this problem is by
state tying [Young 1993]. The idea is to model i&m states together based on the contexts they
are in. This is carried out using decision treesfostering the untied context dependent states by
asking linguistic questions about the context efdintied states such as the type of the phoneme,
the place of articulation, the position of tongte ,efrom the root node to the leaf node. Normally,
a decision tree is used for classifying states ftoensame base unit. Consequently, for a triphone
model, the phonemes realised in different contas¢sclustered using the same phoneme tree. All
untied states to be clustered are placed on thenamte of the tree, and the log likelihood of the
training data calculated on the assumption thadfathe states in that node are tied. The node is
then split based on the linguistic questions whitye rise to the maximum increase in log
likelihood. The process is repeated until the iaseein log likelihood fall below a threshold or a
minimum occupation count is reached. Besides udéuision tree, other way of tying the states
is by using neural networks [Li 1998].

9696}69 Untied [-i+| state
»6»6}@

Left context is a Fricative

Left context is a Plosivt
N

Right context is a Nase

Y

Six tiec-state

Figure 1.7 Phonetic decision tree for the phonéame /

Figure 1.7 shows an example of decision tree fampme /i/ built from triphone [i]. At
each branch, phonetic question is asked aboutdhtext of the untied triphone [i] state. For
example at the root node, the question is “Is thenpme at the left of the triphone [i] a
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fricative? ". For an untied triphone p-i+l (a trigphe [i] with left context /p/ and right context)/l/
the answer is “no” because /p/ is a plosive, niitcative. All the untied states which reach the
same leaves will be tied together as the same Jtates, the untied state such as f-i+m and s-i+n
will be tied together at the same state in the iptesvexample.

1.2.4 Pronunciation Modeling

Acoustic model defines elementary speech unitsgusire phonetic features which are related to
mouth, tongue, vocal tract and others from speBcbnunciation modeling on the other hand
consists of creating the bigger word or syllabledeis using the acoustic units defined in acoustic
model. Since in most cases, phoneme or phone isdbastic unit employed in the acoustic
model, a pronunciation dictionary (lexicon) cankaglt from a typical dictionary, since most of
them contain descriptions of how words should benpunced using International Phonetic
Alphabet.

If there is no description on the manner of promatian, then rules for converting the
graphemes to phonemes have to be created. Howngrrequires an understanding of the
language involved. An automatic grapheme to phonukcan be created for generating the
‘standard’ pronunciation models using linguistidess A manual verification of the generated
pronunciation models is often required to correotds which are exception to the rules. In cases
where rules for converting graphemes to phonemesndb exist, and there is limited
understanding of the language involved, studiesdaihat using graphemes (context dependent)
as the acoustic units for modeling pronunciationdetocan produce acceptable speech
recognition performance, where it is only slighthorse compared to word modeled using
phonemes [Killer 2003a, Killer 2003b]. Note thdlistalso means that the grapheme units have to
be trained in the acoustic model. Using a phoneamed) acoustic model, the words can be
modeled in the pronunciation dictionary as follo\Esiglish pronunciations):

ABANDON oabandan
CARPET karpat

If there are few possible pronunciations for thensawvord, pronunciation variants can also be
added into the pronunciation dictionary as follows:

VOYAGE voIads
VOYAGE(2) VoIid3

Often in a word pronunciation dictionary, frequémind phrases or word sequences can also be
modeled here, for example:

DRAG_AND DROP dregaendrop
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THERE_ARE derar

We will look into more details about pronunciatiorodeling in Section 1.5.2, particularly on
different approaches to find pronunciation variaarid model them, since they are also related to
the problem of non-native speakers.

1.2.5 Language Modeling

The language model represents the grammar of adayeg It defines rules that govern the proper
use of a language such as morphology and syntateTdre two very different ways to represent
the grammar of a language: formal language moddl stochastic language model. Formal

language modeling is a knowledge-based approadptesent a language model using linguistic
knowledge, while stochastic language modelingstasistical data-driven approach that uses text
corpora for generating the rules automatically.

1.2.5.1 Formal Language Model

A formal language model corresponds to knowledgkrate based language modeling. There are
two important components in a formal language modeimmars and parser. Grammars are
described using a set of rewrite rules, and thdynelehe permissible structures of a language,
and the parser decomposes a sentence to smalieal leategories (lexical class, part of speech,
word class) such as noun, verb, adjective, pronpteposition, adverb, and conjunction. With
formal language model, a sentence is analyzedt®rdame whether its grammatical structure is
allowed by the grammars. In this case, a sententtansformed normally to a tree structure with
words at the leaves nodes. The shortcoming of tiésbased approach is that the grammars need
to be defined by someone with the linguistic knalgle, and the grammars defined here typically
have the standard structures which are permisbipline language. However, in conversational
speech, this is often not the case. Furthermoee,sthucture can also be ambiguous in some
situations. For example the sentence “time flie@$ two possible representations with the given
rewrite rules in Figure 1.8.

Rewrite Rules
(we) () () S->NP
S->NP VP
@ ° ° “ NP-> ADJ N
NP-> N

. ) ) . VP->V
time flies time flies

Figure 1.8 Two different tree representations efghntence “time flies”
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1.2.5.2 N-Gram Model

Stochastic language model is a statistical appréachpresent grammar. In the formal language
model, a sentence is classified as either an grdicatig acceptable or unacceptable sentence.
On the other hand, stochastic language model wdeslassification by estimating the probability
of a sentenc® (W) whereW is a series of wordgv/=w;,w>,ws... W,. P(W) can be calculated by
decomposing it using the chain rule of probabéitybelow:

PW) = P(w,,w,,w;..w,)
= P(w)P(w, |wy)P(w, [wy,w,)..P(w, |w,,..w,) (1.9

n
= ” PW, [wy, W,.. W)
=

The problem of calculating the sentence probabhiliting the above formula is in estimating
w; which depends oirl previous words. Even for a moderately long serggtitis probability
can be impossible to calculate robustly. The warkad to this problem is to approximate the
history by using several previous words (Markowuagstion), instead of using all the previous
words. This approach is known as n-gram languaggetimgy. Depending on the constraint in the
amount of text available, n-gram model can be et@ily using different values of or order.
When n is one, the probability of a word in the sentenepends only on its frequency of
occurrence in the text, it is known as unigram.r&ng model assumes that the probability of a
word depends on the immediately preceding word. @irtee most often used n-gram model is
trigram model, since most words in a language testrong dependency on the previous two
words, and it can be built using a reasonable®zpus. The trigram probability can be estimated
from total observation counts of word p&i(w.,, W.;) and tripletC(w.», W.;, W) in a training
corpus using the maximum likelihood approach dsvol

C(W,_p,Wi_y, W,)

P, (w |w_,,w_)=
ML( || i-2 i 1) C(VVi_z,Wi_l)

(1.10)

The chain rule of probability in (1.4) can be resameted in the following form for trigram:
PuL (W) = P(w;) x P(w, |W1)|_J P(wW, |W_,,W;_;) (1.11)
1=

Even with the usage of n-gram to estimate sentpradgability, calculating a robust trigram
model can still pose problem because of data spesse This is because some words are more
rare than others, for example proper name comptrgutonouns in a text. As a result, in a
trigram model, most words exist only in a few im&t@s. Furthermore, the training corpus may
also not contain certain words because of diffesenm training and actual environment.
Smoothing is used in this case to produce a mdrestcestimation. Often, lower order n-gram is
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used in some way for compensating the estimatgdatri probability. For example, smoothing
can be carried out using deleted interpolation gmng as follow:

Por (Wi [Wi_pige- Wig) = AP(W, [Wi_pyg o Wiy) + @ = A)P(W; [Wi_ppp. Wiy ) (1.12)

where) is interpolation weight that dependswin.;... W.;. Another commonly used approach is
backoff approach. Backoff smoothing is first intuodd by Katz, where smoothing is carried out
by recursively backing off to lower n-gram untilnse counts are found. The Katz’s trigram
backoff approach is defined as below [Jelinek 2001]

Puc (W Wi, W) if r>k
Pz (Wi [Wi_p, Wi_y) = < aQr (W, [Wi_y, W) if k=r>0 (1.13)
BWi_y, W) P (W, [Wiy)  if =0

P (W, [Wi4) if r>k
Peaz (W, [Wi_1) = aQr (W, [W ) if k=r>0 (1.14)
BW, 1) Py (W) if r=0

where a and 3 can be considered as weigh@y is a Good-Turing type functior. is the
occurrences in the training data daid a threshold.

Another approach for reducing data sparseness whieg trigram model is to use class n-
gram. In this approach, words with similar semamticgrammatical behavior can be grouped
together and represented using a particular cl@sexample for a tourism domain language
model, we may group together proper name of placed as Paris, London, New York, and
Tokyo into city class. This will allow the n-gramotel to generalize better because proper names
are rarely found in the data. Furthermore, new wdod example in this case new city names can
be added and associate to the same class. Asli tiesy will inherit the same relationship found
from the previous observed training data, withaihg any additional training data.

1.3 Language Acquisition

The studies on language acquisition can generalydibided into first and second language
acquisitions. First language acquisition deals wht development of the first or native language
on children, while second language acquisition soakthe process of learning a language other
than the native. First and second languages angradcdifferently and often in different stages
of life, which can affect the language capabilifytioe speakers. Before we look at non-native
speech recognition, it is important to first undansl how language capability developed in an
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infant compared to an adult who learns a new lagguand how these differences will affect the
speech recognition system, so that approaches eateveloped to take into consideration the
differences to improve the system for non-nativeasers.

1.3.1 First Language (L1) Acquisition

Research in the area of language acquisition stutlie developmental process of children in
learning a language. For years, researchers haame fascinated by how children are able to
master language effortlessly in a short periodimet An understanding of this area may help
educator in proposing a better approach for legregctond language.

Study shows that the ability of children to distirgh speech sounds is well developed
before their speech production ability [O'Grady @D(Early research has shown that infants
demonstrate the ability to respond to phoneticsuoftall languages. This discriminative ability
could be accounted to the general auditory prongssiechanism, which has also been shown for
animals such as monkeys. The acquisition of aqudati language on the other hand, involves the
specialization of this general auditory processimgchanism, where specialized auditory features
are exploited [Kuhl 2000]. For example, for speakafrtonal languages, they appeared to activate
different regions of brain compared to those of -tmmmal languages [ScienceDaily 2008];
therefore, the ability for infants to discriminaten-native consonant and vowel contrasts, and
musical rhythms deteriorates across first yeaifef increasing the sensitivity toward their native
languages [Weikum 2007]. According to one of theotly [Kuhl 2000], infants detect patterns in
language input, and exploit the statistical prdperof the input, altering their perception to
enhance specific language perception, see FigQrdrlthis case, Japanese speakers have shown
to have lost the ability to distinguish the /I/fmdr/ because their perceptual space for /r/ has be
expanded to the area of /I/ to enhance their rezognof the speech sound /r/.

A Perceivec Perceivec A Perceivec
goodness /I/ goodness /r/ goodness /r/
S| e T S
3 <« - > 3
s N
A 4 4 4 4 4 4 Stimulue A 4 4 4 4 4 4 Stimulue
a) Formant : b) Formant .

Figure 1.9 a) Physical stimulus given at differetérvals equally spaced on the mel scale and the
perceived category goodness by American listenetaden /r a/ and /I a/ syllables. b) the
perceived goodness of /r/ by Japanese listenersl A00, lverson 2003].

Infants begin babbling starting from around six mhsnof age. Studies show that there are
similarities among the babbling sounds of infaetgen though they are from different origin.
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Among the sounds, plosive consonants are moredraquompared to fricatives [O'Grady 2000].
Understandable words are pronounced starting atndrawelve months old, with one-word
utterances. Syllable deletion is common in the wopdonounced. There are also systematic

deletions of certain sounds to simplify the syl&aldbr example the worstopis pronounced as [

a p] [O'Grady 2000]. Other widespread observatiorhis $ubstitution of one sound by another.
Among the vocabulary acquired, nouns are more &egut is followed by words associated with
common daily expressions and interactions. Childtkso often express themselves using two-
word utterances, few months after their first orerdvutterances. For examplegby chairwith

the meaning of ‘the baby is sitting on the cha®@'Grady 2000]. More complex and longer
sentences are expressed several months afterFthitiermore, studies also found that simply
exposing infants with recorded material has shawhave no benefits. On the other hand, active
exposure with feedback and recast from multipleakpes is important [Kuhl 1997, O'Grady
2000].

1.3.2 Second Language (L2) Acquisition

There is a general agreement that age of leardi@).) a language plays an important role in
determining how well one will master the languagbgther it is the first or second language.
Results from functional magnet resonance imagiMR({) shows that the early adult bilinguals
activate overlapping regions of the Brodmann’s anelarain, whereas the late bilingual subjects
who acquire the language in adulthood activatedistnct regions of the area for processing the
two languages [Kim 1997]. However, there are soifferdnces on how age influences language
acquisition. Early studies suggest that there @itical period (Critical Period Hypothesis) to
learn first and also second language. After thisope the ability to acquire the language
successfully will decline and compromise. One of thain reasons stated is that neurology
maturation will reduce the ability for a persoriéarn a language after the period has passed. For
second language acquisition, some works show ttettis a linear relationship instead of a
threshold between age of learning and the perceigednt [Flege 1995]. Inaccurate perception is
claimed as one of the main reason why non-natiealsgrs are unable to articulate like the native
speakers [Flege 1995, Rochet 1995, Kuhl 2000]. #hér research on the topic shows that the
frequent usage of L1 by a non-native speaker camiatrease the perceived accent, even though
the speaker learns the foreign language at a yagadFlege 1997, Flege 2004].

Besides age, the learner himself is also a fachiclwdetermines how successful he learns a
new language [O'Grady 2000]. The degree of motwaton learning a language is one
determining factor. The cognitive factor of a perse also important. There are two cognitive
styles: field independent and field dependent. fi¢ld independent person focuses on the details
of a particular subject, while those of field degent focus more on the overall picture. Thus,
field independent and dependent learners do bettifferent tasks in second language learning.
Field independent learners are better for examplgrammatical task, while field dependent
learners are better in synthesizing knowledgedtfiteon, different people have different learning
strategies which may determine their rate of sucesecond language learning.
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There are two types of errors made by second laygylesarners, namely transfer errors and
development errors according to Ontogeny model [&d§ 2000]. Transfer errors are mistakes
made based on the knowledge of the speaker onlhi®©h the other hand, development errors
are mistakes made in the process of acquiring itbelanguage. According to the model, the
amount of transfer errors go down in a linear fashover time, while development errors
increase and then go down over a period of time,Bgure 1.10. Second language acquisition
involves four areas: phonology, pronunciation, \mdary and grammars.

Development Errol

Transfer Error

sloug #
sloug #

Time i Time

Figure 1.10 L2 errors predicted by Ontogeny model

1.3.2.1 Phonology
Mastering the L2 phonology is one of the most diffi lessons for language learners. It involves
the phonetic segments (speech sounds) and prosody.

Phonetic Segments

The correct acquisition of speech sound is impoértaacause it distinguishes one word from
another. The interference from the L1 of the speakay lead to incorrect perception, where the
speakers will interpret L2 sounds based on theiph&nology [Flege 1995], which resulted in
incorrect speech production. For instance, from ghevious example, Japanese speakers will
interpret English /I/ as Japanese /r/. Howeverdistishow that this is not irreversible. With
appropriate training, it has shown that Japanesakgps can be trained to perceive correctly these
two sounds [Logan 1991]. A general model about sg¢danguage acquisition known as speech
learning model (SLM) has been proposed to desthidehanges in the perception of the speaker,
which takes into account of age-related limits loa &bility to produce L2 sounds [Flege 1995].
According to SLM’s hypotheses:

i. Initially L2 sounds are linked perceptually to #lesest L1 sounds (the linked L1 and L2
sounds also known as “diaphones).

ii. However, when L2 learners gain experience in L2ytmay gradually recognize the
phonetic difference between certain L2 sounds dmd dosest L1 sounds and new
category can be established.
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iii. The greater the perceived dissimilarity betweerphiimes, the higher the phonetic
differences between sounds will be recognized &vd phonetic category will be formed
for the L2 sound.

iv.  When AOL increases, the likelihood for distingurghiLl and L2 sounds will decrease.

v.  Similar L2 sounds will be classified as L1 sounduigalent classification), and both
sounds may interfere each other to achieve a dntévalue to be used in both L1 and L2.

Vi. If a new sound category is created, the new L2goayemay not necessary be the same
as the native, it can be based on different featarephonetically different from the
native to maintain phonetic contrast between thenpk using the common phonology
space.

vii.  Eventually, speaker produces L2 sounds that casrebfo the phonetic category.

In term of vowels, some observations that supp@thodel were presented by Flege [Flege
1987]. In his studies, he found that the type ateption errors one might make on L2 vowels
depends on the perceived similarity of it with Mowels that are perceptually far from each
other are easier to distinguish. Sometimes, whatarlers seem to correctly identify the type of
vowel, they may in fact use a different featurentlae one normally used by the natives for
distinguishing the sounds. For example, Spanishksye of English incorrectly use duration for
distinguishing /I/ from /i/, rather than spectrales [Bohn 1995]. This means that during
production, they may use the wrong feature also.'f@n’ L2 sound test (perceptually far from
L1), an articulation experiment of French /y/ byivea English speakers shows that their ability to
articulate /y/ improves when experience increasbdle initial learner will articulate it as /u/.

On the other hand, for consonants, AOL affectspteluction of consonants just like on
vowels. Native Italians who learn English by abthé age of 10 are capable to produifeand
/8/ consonants that are perceived to be native. likiker that, their performance reduces
dramatically according to AOL, and the L1 countetfmoften produced instead of the L2 sound
[Flege 1995]. Experiments on “similar” L2 plosivé articulated by inexperienced non-native
speakers showed that they used their L1’s voicetaimse (VOT) in L2 [Flege 1987]. Note that
VOT is the duration between a burst and the begmmif the vibration of vocal cords [Kent
2002]. On the other hand, experienced native Emglseakers of French and experienced native
French speakers of English have a compromise VQiewahich is between VOT of L1 and L2.
Consonant final stops /t/ and /d/ produced by Sgpanative speakers are less often identified by
native English speakers. The analysis shows thatldbs experienced Spanish speakers have
smaller closure voicing differences between /t/ &id while the experienced Spanish speakers
have the same closure voicing as the native Englisakers. However, the failure for native
English speakers to detect the final consonantadtéy the experience Spanish speakers has
shown that the feature learned is not the sigmificae.

The speech learning model provides a general ingigh the changes in the perception of
language learners at different stage of learnirtjadso on the type of speech productions that are
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foreseen for different type of L2 sounds comparethe native sounds of the speaker. However,
they do not specify quantitatively the effects frane L1 phoneme set of the speakers on a
particular L2 phoneme set.

Prosody

In general, prosody comprises of intonation, steggsrhythm. L2 Intonation is one of the widely
studied topics. The intonation shows the variatibpitch (fundamental frequency or f0) over the
speech. Intonation conveys linguistic informatidor example whether the utterance is a
statement, command or question, and also the stadeperson for instance emotion, physical,
sociolinguistic and others. Hence, an inappropriatenation may cause misunderstanding in
communication. One of the widely used intonatiordeias by [Pierrehumbert 1980]. It separates
the intonation to phonological and phonetic compon&he phonology component consists of
four types of tone at the higher suprasegmentaléve pitch accent (tone associates with stress),
tone at the phrase level and tone at the boundfaitheo sentence. The tone at the phonetic
component studies the changes of tone along plwolestel, for example from one phone to
another. Each of these tones is represented by afgagh and low tone.

The studies conducted on L2 intonation acquisiSbowed that there are similarities with
L2 speech sound acquisition discussed earlierntekferes with L2 intonation is apparent. Hence,
speakers from different L1 commit different typeeofors in intonation according to their L1. For
example native English speakers who learn Italereta local (tone) peak at the later position of
a syllable, which is native English like comparednttive Italian speakers which have a peak
earlier in a syllable [Mennen 2006], see Figurel1However, not all L1 features will affect L2
intonation. There are also different degrees o€ssg in L2 intonation acquisition which depends
on the experience of the speakers [Ueyama 1996n&12004].

a.Mantov b.M antov

Figure 1.11 The Italian word ‘Mantova’ uttered Byn@n-native Italian (native English speaker)
compared to b) native Italian speaker [Mennen 2006]

Different languages have different levels of tond gitch range. For example, English has
a higher mean tone than German. Studies show thstt mon-native speakers are able to adapt to
different level of tone when they learn a new laagg, but their pitch range is narrower
compared to the native speakers [Mennen 1998, aiiajia 2007].
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In term of stress, three factors have been detexnto affect the placement of stress in
English by L2 learners: syllabic structure, lexicdss and stress patterns of phonologically
similar words [Wayland 2006]. However, speakersrfrdifferent L1 (e.g. stress versus tonal
language) shows different degree of these efféds.example, non-native speakers where their
native language is a stressed language, they tetndrisfer their stressed pattern from their L1 to
L2, while those from tone language do not show ecifig pattern. Interestingly, studies also
found that non-native English speakers from a sé@sative language perceive English stress
poorly compared to speakers from a non-stressefi¥aye because of L1 interference. However,
the same speakers with stressed native languagésnped better in the tests involving the
production of L2 stress compared to speakers fromstressed native languages [Altmann 2006].

1.3.2.2 Pronunciation

In term of pronunciation, when language beginnaoanter unfamiliar L2 syllables, they may
resort to use their L1 pronunciation rules. Fornegke Spanish does not allow /s/ to be followed
by consonant sequences word initial. So, it is ipbsshat Spanish speakers pronounce the word
‘Spanish’ as ‘Espanish’ [O'Grady 2000]. Developmeartors which are observed in L1
acquisition by children can also happen on secanduage learners. For complex pronunciations,
they may resort to simplify the pronunciation bgerting, deleting or substituting certain sounds
with another sound. This is the same as what hagabenchildren acquiring L1. Other possibility
is to pronounce the word according to the grapheegeence, which is not necessarily correct.

1.3.2.3 Vocabulary

Non-native speakers are likely to use the wrongaiatary for expressing themselves. In general,
the errors committed come from two sources: L1 batay transfer and wrong association. L1
vocabulary transfer happens for L1 words with samdrthography to L2. For example, a Spanish
who speaks English may say “my wife is embarrassetiere the actual intended meaning is
“my wife is pregnhant” because the Spanish word “arabado” means pregnant [O'Grady 2000].
Another example from French and English is the wdlavertissement” and “advertisement”
which may seem to be similar have different meaniig French word means warning, but the
English word means an announcement. In the woes, ¢he speakers may also introduce words
in their native language. For example, in Frenbbrd exists words that end with “-ment” like in
English, for example the French word “départemenith the corresponding English word
“department”. An English language beginner may emd introducing the English word
“experiment” in French. Furthermore, “expériences @& valid word in French, but not
“experiment”.

Wrong association happens because of influencehéyrdlationship between the native
language vocabulary and the actual meaning. Thiaredor certain words which have one-to-n
relationship between the meaning of the native wafrthe speaker and the foreign word. For
instance, in Malay there are two possible wordsctvgan translate the English word ‘rice’.
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‘Beras’ b s r a s/ is the uncooked rice and ‘nasi 4 s i/ is the cooked rice. Thus, a Malay
language beginner with English native backgroung associate one of the Malay words (e.qg.
beras) with rice for all contexts, and end up usingrongly in certain context. For the sentence
‘| eat rice’, the speaker may translate it as belhich is incorrect.

*Saya makan beras /saymakan bras/

The probability of incorrect usage by a native Erefearning Malay is even higher. See Figure
1.12 for the relation between the words.

In term of perplexity, study shows that non-nathpeech has a lower perplexity compared
to native speech [Tomokiyo 2000]. This may meamd tion-native speakers tend to use more
common words in their speech, while native speafterisare expert in their language are capable
of using more specific words to form sentences.

Nas
riz

Bera:
Pad

English Malay French

Figure 1.12 Different associations between wordmfdifferent languages

1.3.2.4 Grammars

Non-native speakers also make more grammaticalsecampared to native speakers, because of
the unfamiliarity with the target language. Theg ékely to use the sentence structure of their
native language in the target language. For exammeme languages like Spanish, it is possible
to drop the subject in a sentence. Speakers havitgive language with this characteristic have
also shown to commit certain grammatical error@aiased with them [O'Grady 2000]. Another
example is the placement of adverb by French spgakie French, the adverb is put after the
verb. Studies show that English beginners of Freoradiin show the same tendency when they
speak English. For example, they tend to say “Mamdches often television”, because of the
influence from the French sentence “Marie regaaieent la télé” [O'Grady 2000].

27



Chapter 1. Automatic Speech Recognition for Norivide&&peakers

1.4 Speech Recognition for Non-Native Speakers

The advancement in communication and transport rhade cultural interactions between
different parts of the world easier and more frequé\lthough European languages such as
English, French, Spanish and others have long theemternational languages learned by people
around the world at schools and universities, withdevelopment of countries in Asia and other
continents, more and more people around the waddembracing languages such as Mandarin,
Indian, Arabic, Korean etc. Nowadays, apart from ilative language, most people can speak at
least one foreign language. Furthermore, peoplerame and more likely to travel to foreign
countries for vacation or business. They also gfiekh up some common phrases with the help of
the Internet and travel guides to make the comnatioic easier with the locals.

Speech recognition technology has achieved tremenddvancement in the past decades.
However, most of the works in speech recognitiorthi@ past focus on native speakers. Non-
native speech as we see in previous section isrdiff from native speech in term of phonology,
pronunciation, vocabulary and grammars. Theserdiffees give rise to what is known as accent
of a particular group of non-native speakers. Whahe difference between non-native speech
and dialects? For dialect speakers, there is anster of L1 like what happens for non-native
speakers, because the dialect is often the fingjuiage of the speakers. However, variation from
the ‘standard’ language can still happen in thas@ phonology, pronunciation, vocabulary and
grammars. However, unlike non-native speech, diaketxs commonly accepted phonology,
pronunciation, vocabulary and grammars rules ardsted among the speakers. Conversely, there
is different degree of accent in non-native speg&ble. difficulty of non-native speech recognition
is worsening by the number of languages available] the limited amount of non-native
resources. How non-native speech is going to afi@ctautomatic speech recognition system?
Three important components in speech recognitictegy are affected. They are the acoustic
model, pronunciation model and language model.

The mismatch which is caused by the negative tearaffthe L1 phonology of the speaker
to L2 will affect the performance of the target astic model and pronunciation model for
recognizing their speech. For similar phonemes.ef@mple French and English /t/, they have
different VOT. Inexperienced non-native speakeryg mse their native /t/ in the foreign language.
As for prosody, although the differences do no¢etfthe meaning of an utterance for a speaker, it
may also affect the performance of a speech retiogréystem. The speaking rate is one obvious
example. For new phonemes which are perceived tdifferent from L1 phonemes of the
speakers, inexperienced non-native speakers niblgaste trouble articulating them even though
they can perceive the differences. In some cabey, inay even use the wrong features for
differentiating the sounds, which may result incatation that varies from the native variants
which is modeled in the acoustic model. Contextedelent modeling which is used to improve
speech recognition performance for native speakerg not be useful for non-native speakers
[Compernolle 2001]. On the other hand, a contedejpendent model may end up performing
better. As a result, the model which is built fatime speakers is not fully compatible with non-
native speakers. From previous section, we also liggat non-native speakers may also simplify
some pronunciations which are not familiar for thigmough insertion, substitution and deletion.
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We have seen that it is possible that Spanish speapeaking English pronounce the word
‘Spanish’ as ‘Espanish’. This pronunciation varidrds to be added to the pronunciation
dictionary.

Incorrect usage of vocabulary and grammars may lalst the language model. Similar
words, even if they exist in the speaker nativegleage and the second language, may have
different semantic and form of usage. Occasionatbgabularies which exist only in the native
language of the speaker but not in the foreigndagg may also be used. These will affect the n-
gram probability of the words. The incorrect usafigrammars will show up as different n-gram
probability of the words involved. Table 1.1 shotte difference in the accuracy of speech
recognition for native and non-native speakers femme studies. The results show that the WER
for non-native speakers is about twice or highanttihe rate of native speakers.

Table 1.1 Comparison of the performance of autansgéech recognition (ASR) on different
non-native speakers

Target Language Native Language WER WER
(L2) (L2) (native) (non-native)
[Oh 2006] English Korean 4.2 39.2
[Liu 2006] Mandarin Cantonese 7.9 20.0
. German 50 countries 18.5 34.0
[Steidl 2004] English German 35.0 65.6
[Wang 2003b] English German 16.2 49.3
[Witt 1999a] English Spanish and Japangse - 28.2

1.5 Non-native Modeling in Speech Recognition

As mentioned in previous section, non-native spewah different characteristics compared to
native speech. Hence, specific non-native moddtzréd to different non-native speaker groups
have to be created to achieve better recognitieedp performance. However, the lack of non-
native resources implies that many of the conveatidechniques proposed for native speakers
are unable to be used effectively. Over the pastdie creative approaches have been developed
for modeling non-native speech under the constdingésources, by taking advantage of existing
resources.

Automatic speech recognition system for non-nasipeakers has the same architecture as
the conventional system at Figure 1.1. Howevematy have an additional component which
determines the accent of the speaker either manaalautomatically. With this information,
matching models which correspond to the accenh@fspeaker can be selected for decoding the
speech. In this section, we will look at approacfasbuilding acoustic, pronunciation, and
language model for non-native speakers. In additonrent state of the art accent identification
approaches will also be investigated.
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1.5.1 Non-native Acoustic Modeling

Non-native speakers do not articulate the speeuhdsolike the native speakers, because their
speech is often influenced by their native phonglddon-native speakers from different origin
therefore often have pronunciation habits which ralated to their native language. Getting
enough non-native speech to create non-native acouedel is time consuming and sometimes
unfeasible. Consequently, the existing approachgsosed for adapting acoustic model for non-
native speakers make use of the native languagieec$peaker or a little non-native speech for
adaptation. Generally, these approaches can bededivinto four main categories. They are
acoustic model reconstruction, acoustic model jatition, acoustic model merging and the
more general adaptation algorithms.

1.5.1.1 Acoustic Model Reconstruction

The most direct way of creating a non-native adousbdel is through acoustic model training.
However, it is not easy to get enough non-nativeesh to create a non-native model. Thus,
instead of creating it from scratch, existing tarig@guage acoustic model is employed as the
bootstrapping model, which will be subsequentlyed using some acquired non-native speech.
Studies have also found that native speech froormtmenative speaker can also be useful for
adapting the target language acoustic model imtitas when non-native speech is not available
[Uebler 1999, Tomokiyo 2001]. However, non-natipeach has found to be a better adaptation
source than the native language of the speaker.

Alternative state tying methods using phonetic sieai trees to create tied-states during
training have also been proposed to improve théopeance of accented and non-native speech
recognition systems. The idea is to initialize mative acoustic features at state tying. These
approaches have shown to reduce the recognitiamseaf non-native speech and at the same
time cause little or no reduction in the performeané native speakers. This means that the same
model can be applied for both groups of speaketiseasame time. [Oh 2006] has proposed to tie
all the confused target language phones togethesing the same decision tree for the confused
phones. This is done by using non-native speedndothe target language phones confusion.
The phones with confusion probability exceeding eatain threshold will be selected and
collected together. A phonetic decision tree wél donstructed and tied together the states for
these phones (see Figure 1.13a) using the stawi@aigion tree approach discussed in Section
1.2.3. On the other hand, [Liu 2003a, Liu 2003y 2006] has proposed a slightly different
approach for tying states earlier for accentedapbg using decision tree. There are two types of
tree which being used here. A standard phonetisidectrees built using the target language, and
auxiliary tree which is also a phonetic decisioger but built with non-native data, where a
particular phoneme is pronounced or realised athanphoneme. In another word, that phoneme
is confused as another phoneme by the speakeexBample /d/ is realised or confused as /t/. The
leaves of the auxiliary trees with single Gausslansity each will be merged to the nearest leaf
nodes of the standard target language phoneticsidactree by applying weights (see Figure
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1.13b). The purpose is to initialize the densitiest define non-native speech. After that, standard
training procedures follows, where only native gteis used for creating the acoustic model.

L5 an 558 st
5B v SEEE can

N/

a) [d+t/ tree b)

Figure 1.13 Comparing two states tying approacbeadoustic model reconstruction. a) The
confusion of phoneme /t/ and /d/ is above the $jeelcihreshold. A decision tree /d+t/ is built to
tie all triphones [t] and [d]. b) The confusion/gfand /d/ is used to build an auxiliary d_t tree,
which will be merged to the leaves of the targaglaage /d/ tree.

1.5.1.2 Acoustic Model Interpolation

Acoustic model reconstruction requires the raw wsrgor modeling, but acoustic model
interpolation on the other hand can be carriedemain when the resources are in the form of
acoustic models. It is carried out normally betwéen acoustic models by applying a-priori
weight to the models. A target language acoustidehonay be interpolated with the native
language acoustic model of the speaker [Witt 199i#t, 1999b], see Figure 1.14. In this case, it
is based on the hypothesis that the pronunciat@minson-native speakers are intermediate
between the two languages. For finding the targdtsource language model mapping, Witt has
proposed three approaches. The first approach msek of linguistic knowledge for mapping
the target and source language sounds. Anotheibgidgds to conduct perception analysis by
phonetician and the third approach is to use samnenative speech to create confusion matrix to
find the phoneme confusion. Besides interpolatimjwieen target and the native language
acoustic model, it is also possible to interpotatetarget language acoustic model with the non-
native acoustic model [Tomokiyo 2001, Wang 2008]tHis case, the model is created with only
limited amount of non-native speech. Alternativéhgtead of using it to adapt the target acoustic
model, the non-native speech can also be useddale phoneme confusion between the target
language phonemes, and interpolation can be peefbran these confused phonemes [Steidl
2004]. In a continuous HMM acoustic model, the matg Gaussians in the corresponding states
will be interpolated. If the source acoustic mofilinterpolation is not derived from the target
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language acoustic model, the Gaussians in thettangksource are mismatched, so they have to
be matched first before interpolation can be cdrdat using distance measure. Contrary, for a
semi-continuous HMM, non-native speech is usedhih the target language phoneme confusion,
and interpolation can subsequently be carried guinterpolating the mixture weights [Steidl
2004]. The benefits of acoustic model interpolatiwa that the approach is simple to carry out
and the interpolated model has the same numbesmponents in term of number of states and
Gaussians. In situation where some non-native $pisezvailable from the speaker, [Witt 1999a]
has proposed a non-native speaker adaptation aghpvdsch is able to estimate the interpolation
weights automatically which is known as linear maaenbination.

=~ /bl

Figure 1.14 Acoustic space. Interpolation betweeget language phonemes in cycles and source
language phoneme in square. The shaded cycleseepithe interpolated non-native phonemes.

1.5.1.3 Acoustic Model Merging

Like acoustic model interpolation, acoustic modedrging requires only the acoustic models,
without any raw speech data. It involves combirting or more acoustic models from normally
two sources. Often, the target language acoustideinwill be merged with the corresponding
native language acoustic model of the non-natiealsgr [Witt 1999a, Witt 1999b, Morgan 2004,
Bouselmi 2005, Bouselmi 2006] to form a new modéie idea is that different speakers are
likely to use different strategies to pronounceansl. In this case, it is either the target languag
speech sound or the native speech sound of théespddnere is also a work which merges the
native and the non-native models [Minematsu 2083jveight will be assigned to each of the
merged model, either on the transition of each rhffeigure 1.15a) or into the mixture weights
(Figure 1.15b). The weights can be assigned manwoallestimated automatically using some
non-native speech [Bouselmi 2005]. The disadvantdgeoustic merging is that it increases the
number of states or Gaussians in each HMM and it araate some redundant distributions,
which therefore increase the memory and computaitioe.
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Figure 1.15 Two variants of acoustic model mergingated from a target model./p:/ and a
source model [Rud. @) Two models are merged to form a new modelwih six states.
Transition weights wand w are assigned. b) The mixtures from source moeefhrsrged to the
corresponding state in the target state to fornew model /p/ with only 3 states. Different
weights are assigned to the mixture weights ofetaagd source.

1.5.1.4 General Adaptation Algorithms

General adaptation algorithms have proven to lecfle for creating speaker specific model. By
using a few utterances from a speaker, a speallep@mdent model can be adapted. Adaptation
algorithms have also been used for adapting theramaent conditions. The flexibility of
adaptation algorithms, which are capable to worttemrdimited resource constrains makes them
an ideal choice to be employed for creating noiivaeahodels.

Two of the most popular adaptation algorithms irtomatic speech recognition are
Maximum Likelihood Linear Regression (MLLR) [Legggt 1995] and Maximum a Posteriori
Estimation (MAP) [Gauvain 1994]. [Tomokiyo 2001]uiod that adapting the target language
acoustic model using MLLR or MAP with native speaifhthe speakers does not produce any
improvement. Contrary with this result, the acaustiodels created from merging of the target
language acoustic model with the target languagmustic model adapted with the native
language of the speakers, have shown to be bealefgartkova 2004]. On the other hand,
[Tomokiyo 2001] found that significant improvemetdn be obtained by adapting the target
language acoustic model using small amount of radive speech with MLLR or MAP. [Wang
2003a, Wang 2003b] proposes to apply non-nativeadp&ith MAP adaptation and Polyphone
Decision Trees Specialization (PDTS). PDTS [Schd@00] is a decision tree adaptation
algorithm which is used to grow specialized nonveabranches from a target language trees by
pruning to the point where it can be inserted. @dapted tree represents contexts of the non-
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native speech data. Other general adaptation #igorivhich has been tested on non-native
speakers is [Deng 2006]. It is an unsupervisedkgpeadaptation algorithm using incremental
singular value decomposition (SVD) adaptation témine

1.5.2 Pronunciation Modeling

We see in Section 1.2.4 the typical ways to creatd add pronunciation models in the
pronunciation dictionary. Although pronunciationriaats are also typically added in the
pronunciation dictionary, it is not the only chaiCehe pronunciation variants or surface forms
can also be modeled in other components. This dokesnly affect the memory and computation
time for instance, but can affect the ways howgtteunciation variants are generated. In general,
there are four possible places to model the praation: pronunciation dictionary, language
model, acoustic model and rescoring module [St9i@8] Strik 1999].

1.5.2.1 Pronunciation Dictionary

Typically a speech recognition system has a praatino dictionary which stores at least the
baseform representations or standard way for pi@ation of words or syllables. Hence, it is
also natural to add the surface form or the vamgmohunciation which maybe different from the
baseform into the pronunciation dictionary as aeothossible realization of the word. For

example in the previous example, the weoyagehas the standard pronunciatierf s ds/. It
also has another possible variant pronunciation i/ dz/.

One possible way to add pronunciation variant&rsugh listening to the utterances, and to
write down their pronunciations. However, thisiimé consuming and not necessarily produces
better result than the automatic approach. A sslbws that manual pronunciation modeling do
not necessary outperforms automatic approach [G@gra@001a]. Automatic variants generation
can be performed using data-driven approachesg&heral procedure for finding pronunciation
variants is by aligning the hypotheses obtainethfrmn-native speech against the corresponding
reference transcriptions to create phone confusiatrix. Pronunciation variants can be observed
from the phone confusion matrix. The unobservedawss can be found by generalizing the
variants found according to context by using decisirees, and optionally adding the variant
probability from the decision trees for each wartbithe dictionary [Humpries 1997].

The procedure described above requires the usagenefative speech. However, in many
situations non-native speech is hard to acquirerg@zy 2002] has attempted to generate
pronunciation variants using the native phonemeofé#te speaker. It is based on the hypothesis
of cross-lingual transfer, where non-native spealgrbstitute target language phonemes with
their native phonemes. The procedures are the aardescribed before for finding pronunciation
variants using non-native speech. The only diffeeeis that the target language speech is
decoded by a phoneme recognition system of thecsolanguage (native language of the
speaker). The phone confusions created from tigaraknt are then used to create the decision
trees. The pronunciation variants can then be suilesely retrieved from the trees. However, the
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results show that the new dictionary does not predusignificant improvement. Improvement is
only obvious when the dictionary is used in confiorc with MLLR applied to the acoustic
model with some speech from the speaker.

Different non-native speakers have different pramation habits which are specific to that
group. [Raux 2004] has proposed an automatic spefksering method for non-native speakers
based on a list of manually defined vocalic subttihs. A vector is used to represent a dialogue
session from a speaker. It contains the numbeintfst a variant appears. Clustering is carried
out using model-based k-means and the vectorsamd@omly assigned to one of the cluster
initially. In the subsequent iteration, the vedmrssigned to the cluster which gives the highest
likelihood to the pronunciation variants observédis step is executed until it converges. The
pronunciation dictionary created for each clust@s Bhown to be able to reduce the WER of a
speech recognition system for each group.

1.5.2.2 Language Model

Language model is another place where pronunciaoiants can be represented. There are two
ways to calculate the best word sequence by tahkilmgaccount the pronunciation variants. First
method is to treat each variant as a separate Wword-gram model will be built which includes
all the variants. For this to be carried out, asibed speech corpus with the possible variants i
required. Recall that in Section 1.2.2, the bestrdwgequence can be formulated by
argmax(P(O|W) P(W)). So, in this case the formulahe:

V =argmax(P(O|V)P(V)) (1.15)

where V is the sequence of pronunciation variarite Becond method is to calculate the
probability through an intermediate conditional lpatbility as follows

V =argmax(P(O|V)P(V [W)P(W)) (1.16)

The probability of the variant P(V|W) can be estidafrom the unigram. The second approach
requires less data compared to the first apprddotvever, the shortcoming is that in the second
approach the context of the variant cannot be nealdel

1.5.2.3 Acoustic Model

Modeling pronunciation variants at the acoustieléwas blurred the difference between acoustic
and pronunciation modeling. Acoustic model mergiwwgich is described in Section 1.6.1.3 can
also be used for modeling pronunciation variant®ugelmi 2005, Bouselmi 2006]. The

pronunciation dictionary in this case may storeydhke baseform pronunciations, and the variants
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or the surface representations are stored in tloeiséic model. The procedures to find the
pronunciation variants are the same as discussqatdaunciation dictionary, the only difference
is that the pronunciation variations are storeth@acoustic model. For example, if there is a lot
of confusion between the phonem# @nd /e/, then pronunciation variants can be puthe
acoustic model like Figure 1.16.

Figure 1.16 Acoustic model merging to represenhpneiation variation

Other approaches of modeling pronunciation variahtbe acoustic level can be considered
more as a combination with other approaches, pdatiy with the pronunciation dictionary. One
of the most common techniques to optimize the é@imacoustic model is to go through a
procedure known as iterative transcribing [Nock &99The idea is to use the baseform
pronunciation as the initial model for training theoustic model. Subsequently, pronunciation
variants are found and added into the pronunciatiictionary. By forced-aligning the
transcription using the new dictionary, the mostadlle pronunciation variants for the words in
the transcription will be chosen by the speech geition system. The transcription is updated
with the right variants and will be used for traigia new acoustic model. The procedure is
repeated iteratively.

Another issue related to modeling pronunciationiards is the selection of the type of
acoustic unit to model. Most speech recognitionesys model phone, but it is also possible to
model units bigger than phone for example wordlabi¢, demi-syllable. Some speech
recognition systems use a combination of thesergifft units. The training of bigger units is only
possible when the unit occur frequently enough. I®maub-phonemic units are also possible.
We did not found any works which model units othlean phones for non-native speech
recognition, however indirect results from the waorlaccent identification [Arslan 1996] indicate
that using whole word models for accent identifimatshows better performance. If this is true,
then modeling whole word models for automatic sheescognition should also give a better
result, provided that there is sufficient speeamiiodeling them.
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1.5.2.4 Rescoring Module

Rescoring module is an optional component used utipass search. In a multipass search
strategy, decoding produces a word lattice or d&est-list, instead of a one-best word sequence,
which will be re-evaluated in the rescoring modUlke idea is to use a more general and simpler
knowledge source (e.g. language model) during degdd prune away unlikely hypotheses, and
subsequently increase the complexity of the knogéesburce in the rescoring module for finding
the best match. This will make sure the searchga®s done in a manageable and feasible level.

The same idea can also be extended to knowledgeestike pronunciation model, where
during decoding a pronunciation dictionary whicmtzons the standard pronunciations is used to
produce word lattice or n-best list, while in tlescoring process the output will then be rescored
using all the possible pronunciation variants. [@ri2004] proposes to model the variants by
using the hypotheses from the phoneme recognitistes to align against the references to build
a discrete HMM for the word pronunciation model.the rescoring process, the decoder will
produce n-best sentences, which will be rescored) s different pronunciation model. We wiill
look more detail into this approach in Section3.2.

1.5.3 Language Modeling

Obtaining sufficient non-native speech to creata-mative acoustic model is not an easily
achievable task. Acquiring enough non-native speecimodel the grammars of non-native
speakers is even more difficult. One possible swiufor this is to collect instead the writing
materials such as homework from the related noivaapeakers, since the speaking habits such
as common used sentence form and often made gracamatrors may also show up in their
writing.
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Figure 1.17 Cross-lingual adaptation of a languagdel
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There are not many studies done in language maddtin non-native speakers, since
obtaining enough dialogs for testing is not easye @elated work can be found in cross-lingual
language model adaptation for multilingual speesdognition [Kim 2003], which may have the
potential to be ported to non-native language modelsee Figure 1.1.7 above). The approach
tries to solve the lack of data for constructindagget language model by utilizing texts in
resource rich source language, which have simyjlddtthe target language to adapt the target
language model. The related texts are identifiethgusross-lingual information retrieval
technique. Subsequently, machine translation apprim used to estimate the target language
unigram language model.

1.5.4 Accent Identification

Accent can be defined as a way of pronouncing gulage that indicates the origin and social
background of the speaker. Accent can generallyivided into two types: dialect (local accent)

and foreign accent. Accent identification approachan be grouped according to the type of
features they treated. The two main categoriea@wastic or phonotactic features.

1.5.4.1 Acoustic Features

One of the earliest works in accent identificatemploys fO for dialect identification [Itahashi
1992]. The relative starting frequency and the geanin fO are judged sufficient for Japanese
dialect identification. On the other hand, [Blackibil993] has segmented incoming speech to
voiced and unvoiced, stop and energy dip, befoassdlying it using neural network. Other
acoustic features like formants, duration and badithwhave also found their way into the accent
identification domain [Liu 1999, Ghesquiere 200Phe more general MFCC features were also
employed for accent identification since the feasuican serve for dual purposes: speech
recognition and accent identification. [Arslan 1ppfoposes to use the HMM speech recognition
system for accent identification task by employWigCC features, see Figure 1.18.

Accen-1 P(x| accen-1)

Hyp.
Speec Feature Accen-2 "’[ argmax(accen ]—> accent
extraction . /

Accen-n P (x| accen-n)
HMM Codeboo

i

Figure 1.18 Accent identification using acoustiattees
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The system applies a text dependent strategy, whigdns the speakers were required to
read specific words, and the scores derived froenatoustic models are used to identify the
accent of the speakers. The accented HMM modelhwhas the highest score for the input
speech will be selected as the hypothesized ac@éet.study found that word based accent
models perform better than phone based accent modatcent identification experiments. This
shows that word based models are more capablepirazg coarticulation of non-native speech.
However, phone models have the benefit of beingbolary independent. On the other hand, in
term of context dependent (CD) and context indepeh@Cl) phones, context dependent phone
models give a better result than the context inddget phone models in accent identification
tasks.

On the other hand, [Kumpf 1996] employed a slighdifferent strategy, where parallel
phoneme recognizers with accented acoustic andgph@fanguage models (which we will see in
next section) were used to evaluate the accentedchpin a text independent manner. The
accented speech recognizer which produces the dtigbere for the input speech is selected as
the hypothesized accent. Besides the typical HMMusSian mixture model has also proven to
be useful for accent identification task [Chen JO@Dbr identifying accent, Chen created accent
specific models which are gender based using ungspd approach, without the need for any
transcriptions. This approach is similar to apphescin speaker identification. Approaches
proposed for language identification have also €buheir way into accent identification.
Heteroscedastic linear discriminant analysis (HLE maximum mutual information (MMI)
training have been combined for creating accentatsobased on Gaussian mixture models
(GMM) [Choueiter 2008]. In addition, index languagedels have also been created by using the
sequence of indices, which indicates the mixturenpmmnent with the highest likelihood,
generated by the Gaussian tokenizer.

In addition, there are also approaches that talcedonsideration all the possible types of
acoustic features and subsequently use multivaaiadéysis to extract discriminative features for
accent identification tasks. For example [Kumpf 2]9®roposed to use Linear Discriminant
Analysis (LDA) to reduce the feature vectors whidmsist of MFCC and other acoustic features,
while [Ghesquiere 2002] proposed a one-way ANOVAdkect the best discriminant features.

1.5.4.2 Phonotactic Features

Accent identification systems using phonotactid¢diees make use of the hypothesized phonemes
sequence uttered by the speaker to distinguistatbents. There are many ways to model the
phonotactic features and one of it is using phondéanguage model. [Zissman 1996b] has
proposed a text independent system which used anwatels from phoneme language models
for evaluating non-native speech. Separate accepiethieme language models are built by
decoding corresponding non-native speech usingptiget language phoneme recognizer, and the
transcriptions generated are used to create phomégngm and unigram models. The bigram
model will then be smoothed by interpolating ittwihe unigram phoneme language model. An
utterance with unknown accent is decoded usingdtget language phoneme recognizer (PR).
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The language model score is calculated by evalyaach accented phoneme language models
using the following formula:

P' (W] Weq) = a P (W] weg) + B P(w) +y Py (1.17)

wherew is the word aftew;, anda, Randy are interpolation weights which sum to 1Pg,is the
reciprocal of the number of speech sounds. Thenéedgohoneme language model that produces
the highest score will be selected as the hypathdsaccent (see Figure 1.19). In fact, a similar
approach can also be found in language identiiogd#Zissman 1996a]. In language identification,
instead of accented models, language models ardiif languages are created using the native
languages. Besides the phoneme sequence, theopasitthe phoneme realised by a non-native
speaker in a particular syllable is also importantpredicting the origin of a speaker [Berkling
1998]. However, this means that the reference phengequence has to be known, so that it can
be compared against the hypothesis.

Phore strinc -
C Phoneme LM1 LM-1 scort

Speec Hyp.
Target languag accent
PR Phoneme LM2 _,[ argmax(accen J-»

J (.

Phoneme LMn LM-n score

Figure 1.19 Accent identification using accentedr@me language model (LM)

Besides using phoneme language model to represemthionotactic features of the accent,
other approaches of phonotactic modeling using @tp@ctor machine (SVM) are also possible
options. Support vector machine is a superviseuthileg. approach for classification [Duda 2000].
The procedure to create SVM accent models is girtildext categorization, where instead of
calculating the word distributions in a text duriti@ining, phoneme distributions from the
decoding of the utterances are used for modelihgyTre calculated by first decoding the non-
native utterances with a phoneme recognizer. Téaeth utterance is described by a vector which
contains the hypothesized phoneme distributiorthaff utterance. Each utterance is an instance
for training the SVM accent models. For improvihg ticcuracy, several phoneme recognizers of
different languages can be used at the same tisiagdeveral phoneme recognizers of different
languages have shown to improve accuracy in laregudentification tasks [Zissman 1996a].
Different phoneme distributions are calculated freach phoneme recognizer and they are later
appended to form a single vector, which is subsattjuased for modeling. During classification,
an unknown utterance is decoded by the same naiftipbneme recognizers and its hypothesized
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phoneme distributions are calculated. The accettieofitterance is then determined by using the
SVM classifier (see Figure 1.20).

PR-1 Phore string(lang. 1,
/ T Calculate, merg SVM Hyp.
Speec —¥ distributions classifier accent
\ PR-n Phore string (lang. r
—

Figure 1.20 Accent identification using phonemaeristion features

Another similar approach is to use distance measuch as Kullback—-Leibler divergence
(KL distance) for classifying the accent of theetdince by calculating the phoneme distributions
of the utterance compared to the phoneme distabsitof different accent models. This is carried
out using a phoneme recognizer for estimating thenpme distribution of each accent. During
identification, the phoneme distribution for tetteuance is calculated. The accented model which
gives the shortest distance for that utterancebailelected as the hypothesized accent.

1.6 Conclusions

In this chapter, we have presented the architedtura statistical speech recognition system.
Speech recognition can be considered as a patteogmition and search problem. The acoustic
model defines the most basic unit in speech, plyssilth a phone, syllable or word unit. Phone
is often selected as the preferred acoustic urétsalse of the better generalizability of it
compared to others. HMM is used to represent tlaeseistic units. An iterative re-estimation
procedure is used for training the models untilvesged. For improving the precision of the
model trained, the speech sounds can be model¢aking into consideration the context. On
the other hand, the pronunciation model definesd&/@nd phrases by using the acoustic units as
the basis. Normally, the pronunciation entrieshia dlictionary which is based on IPA are used.
However, in cases where this is not available aplggme based pronunciation dictionary can also
be used instead. Given the defined vocabularylaihguage model in turn defines the rules that
govern the usage of words and phrases to constenteénces. N-gram is a widely used approach
for this purpose. During decoding, the search medmds the best combination of acoustic and
pronunciation units which is governed by the lamggueules, producing the most probable word
sequence.

The performance of speech recognition system for-nmadive speakers is at least twice
lower than for the native speakers. The reasorgsise there is a mismatch between the models
trained (normally only using native speech), anel déistual non-native speech that one tries to
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recognize. In fact, non-native speakers do notlsfika native speakers. The characteristics of
non-native speech are different compared to thévenafNon-native speech is influenced
particularly by the native language of the speakgohonology, pronunciation, vocabulary and
grammar. The negative transfer of L1 knowledge 2anay happen. Besides that, different types
of development errors may also occur in these atragrm of phonology, language beginners
may interpret L2 speech sounds based on theirendivguage. They may also use the wrong
features to distinguish the L2 speech sounds, whitlhbe reflected in wrong production. The
influence of the native language of the speakephionology is not only limited to speech
segments, it has also shown up in suprasegmentdldach as intonation and stress. In the area
of L2 pronunciation, non-native speakers have #réncy to use their native pronunciation
rules in the target language. They will also sifiyptiomplex syllable that they are not familiar
with by insertion, deletion and substitution. Oe thther hand, in term of vocabulary, they may
even transfer their native vocabulary to the tatgeguage, or wrongly associate the vocabulary
in their native language to the target languagdchvhesulted in incorrect usage. Finally at the
grammars level, non-native speakers may uncondgi@mploy the grammatical structure of
their native language on the target language. #esalt, the acoustic, pronunciation and language
model that are trained do not match the charatitayisf non-native speech.

Non-native modeling techniques have been proposededucing or compensating the
mismatch between models trained for the native dp@ad the non-native speech, by inserting
non-native speech characteristics into the modéis. problem of modeling non-native speech
lies in the difficulty of acquiring non-native dafghus, the existing approaches proposed attempt
to use a small amount of non-native speech or #tigenlanguage of the speakers for improving
the target models. Non-native acoustic modeling@gghes can be divided into acoustic model
reconstruction, acoustic model interpolation, atiouaodel merging and the general adaptations.
Acoustic model reconstruction and the general adiapt approaches are interesting methods
which can be used when the non-native or the n#ivguage corpus of the speaker is available,
while acoustic model interpolation and merging barapplied when the resources are in the form
of acoustic models. However, there remain some sweared questions. First, there are not many
studies that look into how context modeling migfieet non-native speakers. Second, how the
multilingual acoustic modeling which has been aaplfor modeling new languages can be
adopted for non-native adaptation. Third, it woaldo be interesting to know in what ways the
existing linguistic studies can be taken advant#ge

Pronunciation modeling approaches can be divideskdan the component where the
pronunciation variants are modeled. The possilkdegd are pronunciation dictionary, language
model, acoustic model and rescoring module. Exgssitudies show that using native language
alone for pronunciation modeling does not produssy encouraging results. Thus, the interesting
guestions are how the existing approaches can dfieth to make use of limited non-native
speech for modeling, and which approach is bettembdeling pronunciation variants. An
equally interesting question is whether non-nasipeakers can be classified into groups based on
their pronunciation habits, so that pronunciatiactionary based on group or speaker can be
created.
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In term of language modeling, there is not muchk&an non-native language modeling.
We will also not be analyzing non-native languagedeling here because of the lack of non-
native textual data for testing.

Finally, accent identification approaches will bavestigated. Accent identification
approach can generally be divided according taype of feature used, which are acoustic and
phonotactics. We are interested to know how thgg@moaches perform when only limited
amount of non-native speech is available for cnggatthe accent models. In addition, is it possible
to propose an approach which is capable of modéliegaccent models robustly using limited
non-native resources?
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CHAPTER 2

Multilingual Acoustic Modeling for Non-
Native Speech Recognition

2.1 Introduction

he speech from non-native speakers has a diffefaracteristic compared to the one from

native speakers as we have mentioned in Chapbéori-native speakers do not articulate the
target language phonemes just like the nativedécause their perception pattern is influenced
by their native language phonology. To articuldie ‘hew’ phonemes, which do not exist in the
mother tongue of the speaker, is a challenge #magulage beginners have to face. For example
native English speaker who starts learning Frenaly pronounce /y/ as /u/. On the other hand,
for ‘similar’ phonemes which exist in both the tardanguage and the native language of the
speakers, non-native speakers may have troublegicitpertain articulation habits which are
specific to their mother tongue. They may alsorilisinate them using the wrong features which
resulted in a different articulation. For experietigion-native speakers who acquire the language
at an older age, they may not be able to articlilgehe native speakers.

Current speech recognition systems achieve higbgrétion rate by taking advantage of
very precise context clues such as triphone and pgataphone. For example, context dependent
model such as triphone model produces 25% relativer reduction compared to context
independent model [Huang 2001]. However, non-najveakers are not capable of pronouncing
the target language phoneme precisely like najpealeers. Furthermore, for complex syllables,
they may decide to simplify the pronunciations. ésesult, the system performs very well on
native speakers but at the expense of the nonenggigakers.
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Getting enough non-native speech to create a ntiveracoustic model is time consuming
and sometimes unfeasible especially when it comamter-resource native languages such as
Vietnamese or Khmer. Furthermore, there are maae #ix thousand languages in this world
[WilFord 2007]. It would be an enormous task tolect all the non-native speech for each
language. Although currently many efforts have bpahin collecting non-native speech, the
number of corpora available in language resours&iutors such as LDC and ELRA is still
small. According to a review [Raab 2007], only abone third of about forty corpora appeared
in the research publications are actually availéblethers. In addition, the corpora are normally
small compared to the native corpora.

The works in non-native acoustic modeling make afsa little non-native speech or the
native language of the speaker for adaptation. faéiype non-native acoustic modeling
approaches can be divided into four main categofiégy are acoustic model reconstruction,
acoustic model interpolation, acoustic model megygend general adaptation approaches.
Creating non-native acoustic model using some radivé speech or the native language of the
speaker by training is normally not as effectivenpared to other non-native acoustic adaptation
approaches. However, appropriate state tying sdenie able to improve non-native speech
recognition considerably. However, this can onlydbae if some non-native speech is available.
Acoustic model interpolation and merging are irgéng as they can be performed easily with the
native language acoustic model of the speaker,owitany non-native speech, while speaker
adaptation approaches are also very useful fornative adaptation when some non-native
speech or the native speech of the speaker isahlail

Existing works on acoustic modeling for non-natppeakers however do not address some
important issues. Firstly, multilingual acoustic geting has been used for some time for
constructing acoustic model for new languages. Maqsting works employ the native language
of the speaker for adaptation. It will be intenagtito look at how the existing multilingual
resources can be further utilized for adapting atoumodel for non-native speakers, since
getting the target language non-native speechdaptation is not always practical. Secondly, is
to look at how the existing linguistic studies amrmative speakers can be used advantageously
for acoustic model adaptation. Thirdly, there isstady which compares the effects of context
(Cl and CD) modeling on non-native speakers, alghoit is understandable that very precise
context dependent models may not work in favor arf-native speakers. It will be useful to be
able to employ context dependent model since lieiseficial for the native speakers and at the
same time without causing any reduction in perfarcesfor non-native speakers.

Non-native multilingual acoustic modeling approachave been proposed in our works by
taking into consideration these issues. Theyhgleid of interpolation and mergingpproach and
a new interpolation approach. Section 2.2 presents the overview oltiimgual acoustic
modeling for non-native speakers. Section 2.3 dessrthe first step in non-native acoustic
modeling, which is determining the matching phongrbetween the languages. The remaining
section 2.4 and 2.5 describes our proposed appesadtybrid of interpolation and merging
approach and new interpolation approaches to nmgjtinl acoustic modeling for non-native
speakers. We define the following terms to makectiapters easy to follow: the target language
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is the spoken language, or the language for retiognby speech recognition syste,, while the
source language is the language used for adajpingtget model.

2.2 Non-Native Multilingual Acoustic Modeling

Multilingual resources such as acoustic modelsamgora have shown to be particularly useful
for creating acoustic models for new languages (i8zh1998, Le 2005]. The idea is to use
multilingual resources to overcome the difficultyacquiring speech corpora especially for those
rare languages. The general strategy is to constriglobal phone set using the multilingual
acoustic model. A new acoustic model for a paréiclhnguage can be constructed by matching
as much as possible the polyphone context. If sanget language speech is available, it can be
equally used to adapt the acoustic model creatdd thie multilingual acoustic resources.
Multilingual resources can be potentially useful &mlapting the target language acoustic model
to better suit the non-native speakers, since radiven speakers show cross-lingual transfers in
their speech. Unlike multilingual acoustic modelifay new languages which creates a new
model out of the existing multilingual resourcese tmultilingual acoustic modeling for non-
native speakers uses the multilingual resourcesdépt the target language acoustic model for
non-native speakers. However, not all languageuress are suitable to be used as source
language for a particular group of non-native speadaptation. We identified three types of
multilingual resources which can be used to adaptdrget acoustic model:

¢ The native language of the speaker (L1)
¢ Any non-native language spoken by the same natwepg(L2)
« Language close to the native language of the ntimenspeaker (L3.

These are the possible candidates for adaptingatet language acoustic model. For instance, if
we consider French as the target language for aitorapeech recognition system, and if the

task is to recognize non-native speech from Viewsarspeakers, the resources considered will
be Viethamese speech (L1), any non-native sped¢etedtby Vietnamese for example non-native

English by Vietnamese (L2) and a language closdgdtmamese (L3), respectively.

In general, the approach consists of first, deteimgi the cross-lingual phoneme transfer (as
described in the subsequent section) of the namenapeakers. Next, with this information, the
non-native adaptation can be carried out deperwlinipe type of resources available. The idea is
to create an intermediate model between the tangdtmultilingual model mentioned above,
which better suit non-native speakers. We propege different methods of adaptation for
modeling cross-lingual transfer of non-native sgeaklepending on whether we have a
multilingual acoustic model or a speech corpusdses where the suitable multilingual acoustic
model is available, a hybrid approach of intergofaind merging is useful for offline adaptation.
However, when the original multilingual corpora che accessed, it is possible to use it for

! Non-standard abbreviation
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adaptation directly. Three types of cross-linguahsfer modeling are evaluated. They are manual
interpolation which can also be applied offline,iglted least square and eigenvoices for cross-
lingual transfer speaker adaptation. Finally, wé also see that the hybrid approach introduced
for modeling cross-lingual transfer can also beduse modeling context variation for non-native
speech recognition.

e 538

French acoustic model

/ e

Mandarin model

SO

Nonr-native Englist
by Viethamese
model

o Nor- naQ.Eng
? %E 6 Ej : ~V{/ietnames by Viet.

Vietnamese corpl

kM ultilingual acoustic modeling /
Multilingual resource

___________________________________________________ | év}éé

Non-native French acoust
model for Viethamese

Figure 2.1 Creating a non-native French acoustic model fortndmese speakers using
multilingual resources

2.3 Cross-Lingual Phoneme Transfer

As described in the previous section, there areetltypes of speech which can be used as source
language to adapt the target acoustic model. Theeyha native languages (L1) of the non-native
speakers, any non-native languages from the sative speakers (L2) and languages close to the
native languages (L3). The hypothesis is that rative speakers show cross-lingual transfer
when they learn a new language (L2), where theiv@danguage (L1) sounds or phonemes are
transferred to the new target language. So, thma téransfer” here carries the meaning of
“applying the familiar to the unfamiliar” [Bohn 189 When finding the source-target phonemes
transfer, the aim is to find the corresponding ¢afg@nguage phoneme which is perceptually
similar, according to the non-native speakershé&dne in the source language. This is important
because it provides the necessary information dapting the target language acoustic model
using the available source language resource®iauthsequent stage.
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The approaches to measure the similarity of phoseoan generally be grouped into
knowledge-based and data-driven approaches. In lkdge-based approaches, the probable
source phonemes transfer for non-native speakerbe@btained from existing linguistic studies
[Flege 1995], perception tests, and acoustic poaeialysis or simply through the analysis of
the International Phonetic Alphabet (IPA) tableboth the target and the source languages. On
the other hand, data-driven methods, which are usedultilingual acoustic modeling, can be
carried out by using phoneme distances such asdeaal distance, Kullback-Leibler, HMM
distance [Juang 1985], phoneme confusion matrixodinelrs.

We have adapted two popular approaches often mseultiingual acoustic modeling on
new languages for measuring phoneme distance, afotitby can be used to find the source
language phoneme transfer, one using phoneme éonfomatrix and another using IPA table.

2.3.1 Phoneme Confusion Matrix

Phoneme confusion matrix is created by aligninghiygothesis from the phoneme recognition
system against the corresponding reference phosepeence from the forced alignment of a
speech recognition system. The alignment will shtheshypothesized phoneme actually realized
at the position of the actual phoneme. Although dberent phoneme recognizer is not perfect
(often with accuracy in the range of 50%), withfignt amount of data available, the confusion
matrix result can give insight to the actual substns that occur.

The alignment can be performed by using for exantjple alignment or Levenshtein
distance. In our case, we use a variant of tingnaient. Examples of the ways the alignment is
carried out are shown in Figure 2.2. Each hypotlegsiphoneme is aligned to a reference
phoneme according to the time alignment. Excepth& case of Figure 2.2c, where deletion
happens to the reference phoneme, a hypothesizatepte can be assigned to more than one
reference phoneme. However, it is better to intceda deletion label. The confusion probability
can be calculated in two pass, where the score framnfirst pass can be used to determine
whether the deletion occurred at the first or sdqamoneme like in the case of Figure 2.2c. If this
probability is not available, we assume the seaoriteyond phonemes are deleted.

a. C.
| o X| yz | | | x|\ |del
PX tyrtzd PXor oy
_ > All ( _t > Al 110 |C
AT B ! ‘A B! C!
1 \ 1 B 0 1 ! ! ! ! B O O 1
b C| 0o 1] C
o o Xy
PX Yoy zo .
B . > Al 1 |C Given p(y|C) > p(y|B
i Lo B| 0 |1

Figure 2.2 Examples of phoneme alignment. On tfieake three pairs of hypothesis (top) and
reference (bottom) phoneme string. On the rightlegemonophone confusion matrices
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To find the matching source phoneme transfer fergvarget phoneme, without using any
non-native speech, one possibility is to use aclanguage phoneme recognition system to
decode the target language speech. The targetdgagpeech will also be forced-aligned using
the target language acoustic model. The sourcegpherwith the most probable alignment for a
particular target phoneme will be selected (seargi@.3).

Forcec ﬁ Target Ianguagg a_cous
/ alignmen model + transcripti

Targe-

Referenc\A Al S g
Target languagt ignment |, ource
match

speec \ Hypothesi_»

Phoneme S |
recognitior '\Ej ource languag

acoustic model

Figure 2.3Determining phoneme match by using phoneme confusiatrix

In certain cases where we have access to the niverspeech, even though it is from
another target language, it can also be used &teceephoneme confusion matrix. This secondary
information derived from the phoneme confusion matan then be applied especially for those
‘similar’ phonemes (according to the InternatioRbnetic Alphabet-IPA) which also exist in the
target language of our interest. Thus, for exarifplee phoneme confusion matrix of non-native
English gives the matching Vietnamese phonem@rshg English phonemg// we can also use
the same match for non-native French (see figute 2.

Nonr-native Englist

by Vietnames albjdje|f|9 Il
v v v
Viethames albld|lel|lf]| X s| z
_ v v v
Non-native Frencl
by Vietnames alb|d|e|f|9]|.]|.|J]|3

Figure 2.4 Using the knowledge from other non-reaf@nguage for determining the phoneme
match

2.3.2 International Phonetic Alphabet (IPA) Table

Existing linguistic studies [Flege 1987, Bohn 19Bf&ge 1995] can also provide information on
the kind of substitution to apply, especially fawphonemes. It is based on the idea that non-
native speakers substitute target language phomwethetheir native language phoneme. For
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instance, it is well known that native Japanesealsgrs of English have difficulty withi/ and/1/,
because they are perceived to be similar to Japanedtalians tend to hear word initiad,/ as
/d/. This information can help us in deciding the sedarget phonemes transfer, either as

primary or secondary information source. Howevers important to note that the substitution
choice is not always easy to predict. Some stustesved that it is dependent on the mother

tongue and education level. For example, Russemt tb substitutet/ for English/6/, whereas

Japanese beginners uge/. However when primary result is unavailable, tlsiscondary
information can provide clues on the type of substn to apply. Table 2.1 shows the
corresponding L1 phoneme transfers for the resgetdirget English phoneme.

Table 2.1Common observed source (L1) phoneme transfer flmalsers of different origins for
various target English (L2) phonemes [Flege 1995]

Target Source Description

/&/ (front, open-mid_open)a/ (front, open),

Je/ | /a/ (Spanish)/e/ (Korean) e/ (front, open-mid)

/a/ /a/ (Spanish) /a/ (back, open)/a/ (front, open)

e/ /e/ (Spanish) /e/ (front, open-mid)/e/ (front, close-mid)

/i/ (Spanish)/i/ (Korean),

Ji/ (Chinese),i/ (Italian) /1/ (front, close_close-midy,/ (front, close)

/1/

1o /u/ (Italian) /u/ (central_back, back_close-mid)/ (back,

close)
/s/ (French),/s/ (Japanese), | /8/ (fricative, dental)/s/ (fricative, alveolar),
18/ /t/ (Russian)/t/ (Italian) /t/ (plosive, alveolar)
1/ /r/ (Japanese) /1/ (lateral, alveolar)/r/ (trill, alveolar)
18/ /d/ (Italian) 18/ (fricative, dental)/d/ (plosive, alveolar)
/p/ /b/ (Arabic) /p/ (plosive, bilabial),/b/ (plosive, bilabial)

The IPA table is constructed based on the linguistudy; therefore we can also take
advantage of that knowledge. It consists of twomirts, a consonant table and a vowel chart.
For consonants, the results from our tests in Gnapptshow that non-native speakers often
transfer the nearest source language phoneme ¢&gado IPA) to the target language phoneme.
It means that similar phonemes in the target lagguwaill be substituted for the same phoneme in
the native language of the speaker. For new coms®mehich do not exist in the native language
of the speaker, the nearest native phoneme can b#efound in the same row (manner of
articulation) for example Vietnamese speaker speakinglish may replacg/ and/3/ for the
phoneme/s/ and/z/ respectively, or in the same column (place ofcaféition). However, it is
not always like that. In some cases, we will see tion-native speaker substitutes a target
language phoneme for a native phoneme at a neatbyno in the IPA, although there is one
native phoneme at the same column.
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As for vowels, the vowel distances can be obsearsticompared using the vowel formant chart
instead of using the vowel chart from IPA. As auigsa vowel formant chart has to be

constructed to determine the similarity between theget language and native language
phonemes. Figure 2.5 shows an example of voweldotrohart for target and source phonemes.
Using this approach, we assume that a vowel intdhget language will be substituted for a

similar vowel in the source language (vowel whigfses in both the language according to IPA).

We can project these source language vowels tedhresponding target language vowels. The
other remaining source vowels (new vowels whichndb have a corresponding vowel in the

native language according to the IPA) will then fdrejected by taking into consideration the

projection of all other similar phonemes.

Sourct

F2

»
»

Figure 2.5 An example of vowel formant chart ofyitrand source phonemes

The estimation is carried out simply using equafidnand 2.2 below. We want to know the
transformation of the vowel.; which is the source language (L1 of speaker) Vevirich does
not have a corresponding vowel in the target laggu#o the new target poiply;. Psc, iS the
source language vowel with a corresponding vowelthia target languageyg; d() is the
Euclidean distance, ang; is the weight for the voweds,.;, contributed by the similar vowel.
The weight is depend on the distance of the vquwg] to the vowelps.;. After all the source
vowels are projected, the matching source langwagesls for the vowel in the target language
can then be determined by using Euclidean distafice.source vowel which is nearest to the
target vowel is selected.

z d ( psrc,j ’ psrc,i )

= 2.1)
Y d ( psrc,j ’ psrc,i )
n W i
ptgt,j = psrc,j + Z n—“* (psrc,i - ptgt,i) (22)
i=1 zwj,k
k=1
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Besides the method describe above, other possiethath is using weighted least square (see
equation 2.12) for estimating the transformatiothef source vowels.

Since there are few possible sources of phonemesfénainformation, we present here a
general ranking of the confidence from the higheshe lowest:

e Perception test results and literature knowledge

¢ Phoneme confusion matrix using non-native speech
 IPATable

¢ Phoneme confusion matrix using native speech o$pleaker

In a situation when several sources of informattam be obtained, it is also a good idea to
compare their results and pick the most suitable ém next section, we will look at how the
information found here is exploited for modelingss-lingual transfer by non-native speakers.

2.4 Cross-Lingual Transfer Acoustic Modeling

This section presents the proposed methods for lingdeross-lingual transfer of non-native

speakers by using multilingual resources undeewdfit constraints. Two offline adaptations and
two online speaker adaptations are proposed. Thechgf acoustic interpolation and merging

can be used for adapting target acoustic modelhusppropriate multilingual acoustic models,
while interpolation approaches employ multilinguarpora for adapting the target acoustic
model.

2.4.1 Hybrid of Acoustic Model Interpolation and Merging Approach for
Offline Adaptation

Acoustic model interpolation is a promising appito&c create a model which is intermediate
between two languages using only the target andcedanguage acoustic model. However in
some cases, non-native speakers may also intradwerels which do not have correspondence in
the target language or vice versa. The idea islaind the one described in Section 1.3.2.1,
where non-native speakers tend to achieve an ietliate level for similar target and source
language sounds, while for two very different spesounds, speakers will use the one or another.
An approach which therefore incorporates interpmtieind merging seems appropriate.

The general approach of interpolation is to seldw nearest Gaussian from the
corresponding source state for every Gaussianeraiget state using certain distance measure.
Instead, we propose to carry out the interpolaitioa different manner, where every Gaussian in
the target state is treated like the ‘centroid’ ttee Gaussians in the source state. The nextstep i
to find the nearest target Gaussian for all so@aassians using distance measure like Euclidean
distance or approximated divergence distance.
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Euclideandistarce= /> (14 - #4,)* (2.3)

Approximaed divergencalistarce = (2.4)

Every source Gaussian will be associated with amig target Gaussian. Certain target
Gaussians will be instead associated with zero erensource Gaussians. When the distance
between the associated target Gaussian and thees@aussian is below a threshold, their means,
variances and mixture weights will be interpolat@juation 2.5). Otherwise, merging is
performed: for those target Gaussians without aspeiated source Gaussian (equation 2.7) or
for the source Gaussian that are far (more thanthheshold) from their associated target
Gaussians (equation 2.6). In equation 2.6 andtBeir mixture weights will be reduced by the
interpolation weight. The threshold can be cal@adafor example by measuring the average
distance among the Gaussians, and then multipiyingth a constant. The resulted model is a
hybrid model of interpolation and merging. gt = { Psrc -, Pscrj Psren} Wherepse is the set
of source Gaussian associate Wit the target Gaussiapagpk is the adapted model with the
weighta, while d() is the distance function amgis the mixture weight.

pAdp,k =a. pTgt,i + (1_ a)'pSrC,j ’ pSrc 7 @, d( pTgt,i ’ pSrc,j ) <threshold (25)
pAdnk = pScr,j ’ wAdgk = (1_ a)'wScr,j ’ pScr Z ¢7, d(pTgt,i ’ psrqj ) >threshold (2-6)
Padpk = Prgtis Wadapk = (@) -@Wrgii s Pser =@ (2.7)

Using the information from the target and sourcergmes, we can model non-native
speaker cross-lingual transfer using the methoggsed above with the target and source
language acoustic model. The target language sndhase is the new acquired language of the
non-native speakers. The possible source langugebe any of the three types of languages we
mentioned in the earlier of Section 2.2 (L1, L2 &3l

The target and source acoustic models may havereliff configuration in term of number
of states and number of Gaussians. Consequenfigrebthe modeling can be carried out, the
states and Gaussians of the target and sourcetigcowslel have to be matched. In our current
implementation, we use a simple context matchirtgs Tneans that in cases where the models
used for modeling are context dependent (CD) motiedsmatching triphone in the source model
will be looked upon. If there is no matching tripleg a backoff strategy is applied where the
context independent (Cl) monophone in the CD atousbdel will be used instead. Another
possibility is to use decision trees to selectibst matching context.

Figure 2.6 shows an example of what will take placevo dimensions acoustic space for
two target language Gaussians (French) and thigeestanguage Gaussians (Viethamese) from
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the matching state. Two Vietnamese Gaussignsig and pw, sig2 Will be associated with the
French Gaussianep s1gz Both will be interpolated with g, 5151 While pg, s1go Which although
associates with\R s143is far from the French Gaussian (more than thestiold), so both of them
will be merged into the state, and their mixturaghewill be recalculated with the weight given.
The new state created will have four Gaussians.

A fx b Perosigr i T Ael_
/.,4 , 1 ...... 4 -
P Fr, s1g1 FR, s1g2
Pwn, s1g1 Pvn,s1g2

PvN,s1g3

. PR, s1g3
p 3

1
PFR, s1g2 FR, slg4 JB---

~ —

Mixture - ' . P
weights H i : Z : lj.

Figure 2.6 Interpolating and merging of the targetdel pr (French) and the corresponding
source model \ (Vietnamese) to create the new modekph a two dimension acoustic space
by setting the weight at 0.5. The points and c#rdfelicate the means and variances. The newly
created Gaussians are in dotted circles. Thednato presents the Gaussian mixture weights

2.4.2 Acoustic Model Interpolation for Offline Adaptation

Non-native cross-lingual transfer can be modeledgulybrid approach with source language
acoustic model, as we have shown in the previoosose However, if we have access to the
original source corpus, it is better to use ther@sdanguage speech directly to create a new
source language acoustic model which has the sanigoration as the target acoustic model, in
terms of the number of states and Gaussians, savthaan carry out the interpolation directly
with the target acoustic model. This will avoid thee of distance measure from matching
Gaussians between target and source states. Fodiegrusing an adaptation algorithm will
allow predicting unobserved means and the totalbmurof Gaussians will stay the same, with no
addition of Gaussian like in the case of the hylapg@roach.
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Figure 2.7 Interpolation of the target statg (French) and the corresponding source state p
(Vietnamese) in a two dimension acoustic spaceeltyng the weight at 0.5. The points and the
circles indicate means and variances. The newkltedeGaussians are in dotted circles.

This is done by adapting the target acoustic maodiglg the source corpus. The first step is
to map each phoneme in the pronunciation dictiomdémhe source language to the phoneme of
the target language using the phoneme matchingniafiion that we had found previously. It
must be noted, however, that several source phaenmay be mapped to the same target
phoneme. For source phonemes which associate tiplathrget phonemes, there will be several
possible pronunciations (source language words witbet language phonemes). One of the
possibilities is to create all the possible pronaitien variants, and randomly associate one of the
pronunciation variants in the pronunciation dicionto the word in transcription. It is also
possible that there are some source phonemes whicdot have any associated target phoneme.
We can either associate the source phonemes widrgupartners to one of the nearest target
phonemes, or copy these source HMMs to the tamgetstic model, and remove them later in the
process. Our test shows that the results do nfardifuch. Now that the phonemes in the source
language pronunciation dictionary have been coadetd target language phonemes, the next
step is to adapt the target acoustic model usiagpeech in the source corpus. Instead of using
only Baum Welch algorithm to recalculate the Gaarssi we adapt the target language acoustic
model (in our case MLLR and then MAP) using therseuanguage speech and the modified
pronunciation dictionary for a few iterations. Thidll create a source acoustic model which has
the same amount of Gaussians, and at the samentiatehes the target acoustic model. A weight
is then predicted and assigned to the target amges@coustic model, and a new model is created
with the following interpolation formula (see Figu2.7),

/uAdp = W':uTgt + (1_W):usrc’ Oswsl (2'8)
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whereuaqp is the interpolated means using the weightrom x1, the target language means, and
Usrc the source language means.

2.4.3 Acoustic Model Interpolation for Online Speaker Adgtation:
Weighted Least Square

Manual interpolation is useful for adaptation withahe need for any non-native speech.
However, in certain situations when we are ableltain some speech from the non-native
speakers involved, we may want to predict the wisigi apply on the acoustic models. Here we
attempt to use weighted least square (WLS) to prate weights to assign to the target and
source acoustic model (created using the procegkseribe in previous section). Since only two
variables are estimated, the approach is suitabladaptation even when small amount of non-
native speech is available. The idea is to use sgpmeech to predict the mean values of the
speaker. Nevertheless, because the mean valueseated using only few utterances, the vector
contains a lot of missing values. Equation 2.8lmamewritten in a matrix formulation,

Ax=b (2.9)

A = [:UTgt :USrc]’ X = {xl j|’ b = [:uSpk] (2-10)
2

whereurq andus. are the target and source language means, widldéhe mean values of the
speaker. We want to finkthat minimizes the value ofx-t, which can be viewed as a measure
of error. If there is an exact solution farthen the error will be zero. We can solve thevabo
equation and fink, given the least square errors by using the lsgqsare formula in equation
2.11. Variance€ are used as weight to the least square formulaf{fybonery, 2001].

ATAx=A"b (2.11)

A'C'Ax=A"C™b (2.12)

The mean vector of the spealgrcan be estimated by force aligning some speech the
non-native speaker using the target language dacomstdel. However this method is not that
accurate because the weight will tend to be clogeg mean vector of the target acoustic model
that we had used. A better approach is to createrged acoustic model by using both the target
and source acoustic models, and use it for theetbedignment instead. The merged model has
the same number of states, but with the combinatfdhe target and source Gaussians. Assume
that we create the merged model (Figure 1.15b)ipgding the source Gaussians of every state
to the corresponding target state. The mean vettitre speaker can then be estimated using the
formula below,
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_2y(.ke+3 y(i.k+n)o
Ty k) +Zy(ik+n) (2.13)
2y(i,k)+Xy(i,k+n)>0

ik

whereb;, is the mean vector of the speaker at stadad Gaussiak, andn is the number of
Gaussians for stajdor the target language model. Since only a feerahces are used, many of
the values in the vectdrwill be zeros. Only the values in the vedbowhich is non zero are used
for estimating the weights by using equation 2.12.

2.4.4 Eigenvectors Interpolation for Online Speaker Adapation:
Eigenvoices

Eigenvoices method has been successfully appliesb@aker adaptation [Kuhn 1998a, Kuhn
1998b, Kuhn 1999]. The works in eigenvoices ar@inesl by the works in eigenfaces for face
recognition [Turk 1991]. These works are made gmssihrough a pattern analysis approach
known as principal component analysis (PCA) fodifity the vectors that best characterize or
describe the pattern of a set of feature vectohss T achieved by analysing the covariance
structure of a data set and finding directions iffecent variability. The vector (axis or linear
equation) which forms the largest variance fromdhat is the principal component [Flury 1988].
These generalized vectors are known as eigenveatalsheir relative descriptive power of the
data are indicated by their eigenvalues, see Figue The eigenvectors can then be used to
describe or normalize any feature vectors includmgse unknown relevant vectors by finding
the eigenvalues for them.

ei

v

Figure 2.8 a) Original plot of data. b) Plotting déta using eigenvector one and two. c)
Normalization of data using eigenvector one, the agis with the largest variance

In the previous two methods, interpolation is @atriout on the acoustic models. For
eigenvoices, on the other hand, we can see it astarpolation of eigenvectors. The standard
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eigenvoices technique is applied here. Howeverattempt to insert language space into the
eigenspace by adding source language supervediogsthe source language.

Speaker adaptation in eigenvoices is carried outchsating a speaker space and
subsequently finding the speaker we want to adaphat space. The first step to create a speaker
space is to create a speaker dependent acoustr fooedach speaker. For each target language
speaker dependent acoustic model, the process issthal one in which we first create a speaker
independent acoustic model. Subsequently, speaipendlent models for each speaker are
derived, by adapting the speaker independent modelg a few iterations of combined
supervised MLLR and MAP adaptations with the spefeaim each speaker. Next, we create the
components for language space by going throughlasirsteps we used to create the source
language acoustic model for the previous interpmtaimethods. The only difference is that in
eigenvoices, we have to use MLLR and MAP to adhpttarget speaker independent acoustic
model to speaker dependent acoustic models usengdihirce language speech from each source
speaker (see Figure 2.9).

= ]

Target languag

corpus + target 6} 6} 6 m-target supervectc
dictionary PCA

target acoustic moc

v K-eigenvectot
MAP

Source language corp

dictionary

Figure 2.9 Steps to create eigenvectors usingttargksource language corpus

Once the speaker dependent acoustic models fattangl source languages are created, the
means of the acoustic models are written out, esch sequential vector which is known as
supervector. A total of K supervectors, each witlliamension of D will be created. Next,
principal components analysis (PCA) or singulaugallecomposition (SVD) can be used to find
the eigenvectors E=e(1)...e(K), from the supervectohich define the eigenspace (Howard,
2000). Not all eigenvectors will be used. A subskeigenvectors, k, which have among the
highest eigenvalues (principal components), wilsbkected for interpolation, where k is less than
K, and K<<D. The projection methods in PCA, MLED diyen 1998] or other methods
[Westwood 1999] can be used to find the interpotativeights by using some speech from the
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speaker. We have chosen to use MLED approachitoastthe new means. The weights for the
eigenvectors can be calculated with the equatiefsb

v=Qw (2.14)

Ve =D 4e(1TC(LK Y (Ko (2.15)

Aoj =2 0 41 (KT CULK) (10D 14 (. K) (2.16)
e=l f=1 t=1

wherev is anE-dimension vectorQ) is an (E x E) matrix, and is theE-dimension eigenvalues
or weights. . is the means of the eigenvector a@dis covariance matrix of the speaker
independent acoustic modglandk are the state and Gaussian mixture componentatbsglg.
The weightswv can be estimated using Gaussian elimination amehéfv means can be estimated
as follow:

i1 =Pw (2.17)

whereP is the eigenvectorgy, , 4 .4, ]

2.5 Context Variation Modeling

Precise context dependent modeling as mentiondigreiarnot suitable for non-native speakers.

One possibility is to use a smaller tied statevanecontext independent acoustic model for non-
native speakers. However, this means that diffemeatistic model has to be used for native and
non-native speakers, because native speakers oafitdeom a precise context modeling. Here,

we propose to use the hybrid of interpolation aretgimg proposed earlier for modeling cross-

lingual transfer for non-native speakers for matggltontext variation.

2.5.1 Hybrid of Acoustic Model Interpolation and Merging Approach for
Offline Adaptation

The idea applied for modeling context variationsisilar to modeling cross-lingual transfer,

where the hybrid approach proposed is used toemmatacoustic model which is intermediate
between a very precise context dependent modelaawery flat context independent model.

When modeling context variation, the model with raaer number of states (e.g. context
independent model) will be treated as the targedehwhile the other one will be considered as
the source model. In context modeling, since altlet® with bigger number of states are also part
of the model with smaller number of states (both &om the same language), all source
Gaussians are assumed to have a target Gaussgoolation partner. Thus, no threshold needs
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to be set. This is the difference compared to eliogsial transfer modeling.

For example, if we employ a context independent ehdthrget model) and a context
dependent model (source model) for context variatinodeling, context dependent (CD)
triphones are matched to their corresponding coritedependent (Cl) monophones. Next, the
corresponding Cl Gaussian for every CD Gaussidourd using a particular distance measure
(Equation 2.3 or 2.4). Interpolation is then pearied on the Cl Gaussians with their associated
CD Gaussians, while the Cl Gaussians without abgrpolation partner will be merged. See
Figure 2.10 below.

I-p+8er, s1g1 T ' '~< )

i'p"-aFR, slg2

PrR, s1g2 i-p’ +arR, s1g3

Mixture . 10
weights ﬂ P

Figure 2.10 Interpolating and merging of contextependent model-p and the corresponding
context dependent model i-phato create a newp’+argr model in a two dimension acoustic
space by setting the weight at 0.5. The point ardecindicate mean and variance respectively.
The newly created Gaussians are in dotted cirCldég histogram presents the Gaussian mixture
weights

v

2.6 Conclusions

We have presented multilingual acoustic modelingregches to adapt target language acoustic
model for non-native speakers without requiring amn-native resources from the target
language. The multilingual acoustic modeling apphes proposed can be used for modeling
cross-lingual transfer and context variation to lioyg non-native speech recognition.
Multilingual resources from three types of speegh lbe used for non-native adaptation when the
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target non-native language is not available. Theytlae native language of the speaker, any non-
native speech from the same native speakers agddges close to the speaker native language.

Non-native speakers often transfer their nativglage phonology to the target language.
The mismatch of speech sounds and the acoustic Inmdlledegrade the system recognition
capability. In addition, unlike the native speakersn-native speakers are not able to pronounce
the speech sounds of the target language predmsguse of unfamiliarity. Hence, context
dependent modeling which is beneficial for imprayithe speech recognition performance for
native speakers may not be useful for non-natiealsgrs.

For modeling cross-lingual transfer by non-natiyeakers, two approaches have been
proposed for treating multilingual acoustic modaisorpora. However, before the modeling can
be carried out, the target and source languageckspeminds have to be matched. This can be
done by using phoneme confusion matrix or IPA taBleoneme confusion matrix is a data-
driven method, which can be employed by using thgve language speech with a source
language phoneme recognizer and a target langupgects recognition system. The IPA
approach on the other hand makes use of linguastit IPA information for finding the match.
Depending on the type of resources that are avajlalooustic modeling can then be performed.
If the source resource is in the form of acoustmdet, the hybrid approach used for modeling
context variation can also be applied for modetirass-lingual transfer. However, if the resource
is in the form of corpus, interpolation can be igatrout. In certain situation when some non-
native speech is available, the speech can betasestimate the interpolation weights by using
weighted least square method. This approachrigctitte because there are only two parameters
to measure. This means that we do not need a Ispeéch from the speaker to estimate the
weights. Eigenvoices approach which is coined #b fBémited speech) adaptation has also been
proposed for non-native acoustic modeling. It ubessource language for creating a bi-lingual
space in the eigenspace, and subsequently fintimgasition of the speaker on the eigenspace
for adaptation. For context variation modeling, bybrid of interpolation and merging approach
has been proposed for creating a model which isrnmtdiate between a very flat context
independent model and a very precise context depeéndodel. With appropriate weight, the
new context dependent model created can be apptiednly for improving speech recognition
system for non-native speakers, but also be usechdtive speakers without causing huge
decrease in word error rate. All the proposed aguites are experimented in Chapter 5.
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CHAPTER 3

Non-Native Pronunciation Modeling and
Accent Identification

3.1 Introduction

n the previous chapter, we have looked at acowstideling without using any non-native
I speech for adaptation. However, we learned fronvipus study that using only the native
acoustic units of the speaker to model pronunaiatariants is not effective. Thus, in the coming
section, we look at pronunciation modeling appreacfor modeling pronunciation variants by
using a little amount of non-native speech. Follayithat, a preliminary work on accent
identification has also been proposed. The newagmbr can work even with limited amount of
non-native speech for creating the accent models.

3.2 Non-Native Pronunciation Modeling

As discussed in Chapter 1, non-native speakers tidfieulty to pronounce words or syllables

like the native speakers. For complex and unfamiglables, non-native speakers tend to
simplify them, just like the children learning thdirst language by insertion, deletion or

substitution of speech sounds. On the other hamdafget language syllables which are similar
to the native syllables of the speaker, they may te articulate them by employing their native
manner of articulation. The differences in the pmriation strategies and the pronunciation
model used result in lower speech recognition aagur
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Pronunciation modeling approaches can be dividegdan the component in the speech
recognition system where the pronunciation variaats modeled. There are four possible
locations, namely the pronunciation dictionary,gaage model, acoustic model and rescoring
module. Studies in pronunciation modeling found timdeling non-native pronunciations by
generating the pronunciation variants using thévedanguage phonemes of the speaker alone
into the pronunciation dictionary, do not seem &difective for modeling the pronunciation
behaviour of the speaker, neither is applying listies rules blindly to all speakers. On the
contrary, some non-native speech seems to be pisitecfor modeling non-native pronunciation
correctly.

We have experimented with some modifications topf@unciation dictionaryandn-best
rescoringapproach, so that with little amount of non-natpeech, it is possible to estimate the
non-native pronunciation variants of the speak&k& have also tested the possibility of
clustering non-native speakers according to thesngnciation habits. For this, we propose an
original speaker clustering approach which groupakprs based on their pronunciation habits
and use this information for pronunciation adaptatWe call this approadhtent pronunciation
analysis

3.2.1 Pronunciation Dictionary: Decision Trees

There are few possibilities to derive pronunciati@miants, and one of it is through the use of
decision trees [Humpries 1996, Humpries 1997]. Phecedure used here is the general one
proposed, except that we derive the pronunciatasiamts by going through two passes, since we
only have a little amount of non-native speech, tiedphoneme recognizer employed produces
around 50% recognition errors. It is thus importantave the hypotheses as accurate as possible.
In the first pass, the observed variants are etddagsing confusion matrix. Only variants that are
observed more than the given threshold are seldobed the confusion matrix. The possible
pronunciations are then generated into the temypatiationary. Then in the second pass, from
the observed variants, the pronunciation varianlisbe generalized according to the features of
the pronunciation context using decision treesraiot unobserved variants. Figure 3.1 shows
the steps for deriving the pronunciation variants.

The objective of the first pass is to retain therenkikely observed pronunciation variants
and to remove those less likely. The hypothesisnphme strings generated by phoneme
recognizer from the decoding of non-native speech aligned against the corresponding
reference phoneme strings from forced alignmemgughe modified time-alignment approach
presented earlier in Section 2.3.1. A triphone gsioin matrix is then created from the alignment.
A low threshold is set to the triphone confusiontnmaso that the pronunciation substitutions or
variants which appear more than the threshold elected. All possible (word) pronunciation
variant combinations will be generated and addemldartemporary pronunciation dictionary. This
will produce a pronunciation dictionary which isrydig compared to the original.
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Phoneme
/1 recognitior ~.
Speec Hypothesi Alignmert Temp.
Referenc/v dict,
Forcec-
Training alignmen
3

dict.
Test
word list

Transcriptiol

Speec
A 4 A)

3
Tra_ining Decision Alignmen Forcec-
dict. Tree alignmen
Variants Confusiol

Figure 3.1 Generating pronunciation variants usiagjsion tree

In the second pass, pronunciation variants willgemeralized by using decision trees
according to the context features. The first stepoi re-estimate the hypotheses of non-native
utterances, this time by force aligning the presiospeech using the new (temporary)
pronunciation dictionary created in the first palse new hypothesis phoneme time stamps will
then be aligned against the corresponding referphoaeme time stamps estimated in the first
pass. The triphone confusions with the same basegohe will be collected together, and a tree
will be built for each base phoneme except silefite left and right phoneme contexts need to
be translated to the corresponding feature veste Figure 3.2b). One possibility is to convert
the context to phonetic feature vector using IPAedohfeatures, so that phonemes can be
classified according to similar phonetic contextdécision tree algorithm such as CART or C4.5
[Quinlan 1993] will then classifies the triphonenfasion according to the features defined. The
idea is to classify triphones with similar pattefnsubstitutions together by searching for feature
or attribute with high information gain. This wdllow the unobserved pronunciation contexts to
be predicted from the decision trees. This is sinib the usage of decision tree in state tying in
Figure 1.7. After the decision trees for all thepames are built, a probability threshold is set to
extract pronunciation variants which are observedenthan the given probability from the leaves
of the decision trees. The pronunciation variantdl wubsequently be added into the
pronunciation dictionary by generating all the polgspronunciation combinations.
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Figure 3.2 Sub-steps to create the decision tretfgidecision tree process

3.2.2 N-Best List Rescoring

In the previous approach, pronunciation varianésaatded into the pronunciation dictionary, and
the speech recognition system will then selectsbést pronunciation during decoding. On the
contrary, it is also possible to evaluate the pnomtion variants at the word lattice or n-bedt lis
stage after decoding [Gruhn 2004]. Figure 3.3 shtdwes architecture of the n-best rescoring
system, where a phoneme recognizer is employedetmd® non-native speech to produce
hypothesis that will be used to re-evaluate orargkrthe n-best sentences from the speech
recognition system. The approach applied here iesdame architecture as the one suggested in
[Gruhn 2004], except that we attempt to use a tniyghmodel to represent the variants instead of
a word model. The main reason is to reduce dataapass because of limited data.

=
Triphone
model
Phoneme strin
Phoneme : > ;
\4 A Alignment Rescorint  |—»

Figure 3.3 Pronunciation modeling using n-bestoesg

Convert tc
phonem

/ N-best

N-best phonem
sentence

Speec strings

Before pronunciation rescoring can be carried tnat triphone model has to be created. The
triphone model actually contains the triphone ceitios of non-native speakers. In previous
pronunciation dictionary approach, triphone corduosi are also used to find pronunciation
variants. However, only those variants from theislen trees that exceed the threshold are added
into the pronunciation dictionary. In this approaell the variants are used and the confusion
probabilities are also made used of during evalnatsome non-native speech is required for
training the triphone model. This is done by fidsicoding non-native speech with the phoneme
recognizer and the hypotheses produced are thgnedliagainst the corresponding reference
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phoneme strings. For smoothing the triphone coafusnatrix, the triphone confusion values are
interpolated with the corresponding monophone csinfu probability. A floor value is used if
both the confusion values are zero.

P'(sublbaseleft, right) = w P(sub|baseleft, right) + (1- w) P(sub|basg,

3.1
P(subjbasg >0,0<sw<1 (3.1)

P'(sub|baseleft, right) = floor probability, P(subjbasg =0 (3.2)

wherew is weight,left is the phoneme to the left of the base phoneigle, is the phoneme to the
right of base phoneme, asdbis the hypothesis phoneme(s).

During evaluation, the non-native speech is decdmethe speech recognition system and
the phoneme recognizer. Note that the pronunciadiotionary used during decoding contains
only the baseform representations or standard pations of the words. The speech
recognition system produces n-best sentences hétm-tighest P(W)P(O|W) score, where W is
the word sequence and O is the observation. Theseerses will then be converted to the
corresponding (reference) phonemes strings fromwtbed strings using the pronunciation
dictionary. The hypothesis phoneme string from pheneme recognizer will then be aligned
against each of the reference phoneme string. fdreupciation score for each sentence from the
n-best list is calculated by considering the triph@onfusions of the hypothesis phoneme string
against the reference string using the triphoneathod

Pronunciationscore= I_J P'(sub |base, left;, right;) (3.3)

wherei is the reference base phoneme, pisdthe hypothesized substitution. The pronunamtio
score for each sentence is then included in thdinegar model that calculate the final speech
recognition composite score using acoustic anduageg score. The sentence from the n-best list
with the highest composite score will be selected.

Figure 3.4 below shows a toy example of pronuimiatescoring using n-best list. Given a
non-native utterance, the speech recognition systethis case produces two most probable
sentences:dh bori and “all6”, which are converted to the corresponding phonsetriags. The
same utterance is also decoded by a phoneme reeogmioducing the hypothesis phoneme
string /a n o/. The hypothesis is then aligned resiahe references from the speech recognition
system, and the pronunciation scores are calculatezbnsidering the triphone confusion from
triphone model. For example, the confusion of tipd a-b+~ as phoneme /n/ is 0.1. The total
pronunciation score is calculated and the log dibais added to the total score (acoustic and
language model). The word with the highest scoeeliscted.
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acoustic +

language scor i .
ASR Alignment Rescorin allé

1.ahbon=/ab~/ n, o
—H— >
bl >~ Triphone| P(n[b.a»~)=0.1
n, o model | P(n|l,a,0)=0.4

2.all6=/alo/

Phoneme
recognize

Figure 3.4 An example of pronunciation modelinghgsa 2-best list rescoring
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3.2.3 Latent Pronunciation Analysis

Non-native speakers from different origin differ timeir pronunciation habits. Sometimes, even
non-native speakers from the same native languaaye mave different pronunciation habits
which are influenced by education, social-econonmg a@ther factors. Thus, it would be
interesting to know whether it is possible to cdustpeakers to different groups. Earlier work in
speaker clustering using pronunciation habits e proposed before [Raux 2004]. The work is
not fully automatic since the possible vowel subttins are manually defined. In this approach,
we attempt to cluster non-native speakers autoaitimto groups based on their pronunciation
habits, and subsequently use this information fi@p#ation. An unsupervised speaker clustering
method based on pronunciation habits is proposesl fitne approach is inspired by eigenfaces
and eigenvoices approaches and also from idea ¢wegmot experimented) in [Goronzy 2002].
We call it “latent pronunciation analysis” by angyowith the ‘latent semantic analysis’ used in
natural language processing. The idea is to cragpeonunciation eigenspace and use it for
speaker clustering and pronunciation adaptatioms ¢an be done by creating a set of speaker
dependent pronunciation confusion vectors, whiah @wed to derive pronunciation confusion
eigenvectors. The eigenvectors can subsequentlysied for clustering and estimating the
pronunciation confusion of the test speakers. Ftben estimated pronunciation confusion, a
speaker dependent pronunciation dictionary can diestoucted and included in the speech
recognition system.

Like the previous eigenvoices approach proposedadoustic modeling, the first step in
creating an eigenspace is to build speaker depemdedels. In this case for each speaker, a
speaker dependent pronunciation confusion supenvedl be created. The supervector is in fact
the triphone confusion matrix being laid out inextor format. Table 3.1 shows an example of K
supervectors created for the non-native trainingakprs (note that in actual case, all operations
are done in column vector, instead of a row vectdfe supervectors are built from their
corresponding speaker dependent pronunciationidadisees. The procedure to create speaker
dependent decision trees is the same as to creaékes independent decision trees described
earlier in Section 3.2, except that the speech feach speaker is separated to build the speaker
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dependent trees. The next step is to create thensgtorcontextstructure by extracting all
pronunciation contexts from the test pronunciatiationary. The possiblsubstitutionsfor each
context and their values are extracted from spedé&pendent decision trees from every speaker
and put into a pronunciation confusion vector. c8ievery speaker may have a different set of
substitution, a standard pronunciation confusiattare(supervector) must contain all the possible
substitutions for every speaker and in the sameroFbr each context, the total probability of the
substitution for each context will then be normedizo 1.0.

Table 3.1 K supervectors of pronunciation confusidhe context row shows the base/ target
phoneme followed by its left and right context

Contexts b-a+n ad+p

Substitutions| 5 | g~ a 3 DEL

speaker1 | 0.90.1 0.0 0.9 0.1
speaker2 | 0.70.2 0.1| 1.0 0.0

speaker K | 0.50.05 0.45( 0.4 0.6
— 7
—~

D

The pronunciation models or pronunciation eigenwactE=e(1)...e(k) are derived from the
covariance matrix of K supervectors V with dimems®, where k is less than K, and K<<D by
using principal component analysis (PCA) or singwlalue decomposition (SVD). Table 3.2
shows an excerpt of the actual eigenvectors created

Table 3.2 An excerpt (feature 1-9) of the actualhpnciation confusion eigenvector 1 and 2 for
non-native English speakers

Ctx. ar-a+l b-a+d

Sub. |a b) DEL QU a A ) a1 I
Eigl [0.00580 0.00337 -0.0036 -0.005p9.00709 0.00994 -0.01280 0.01918 -0.009p3
Eig2 [-0.0132 0.00233 0.015520.00463(-0.01389 -0.01586 0.00248 0.03498 -0.007|71

For clustering the speakers, the eigenvalues (wsigh the speaker is found using equation
3.4 and plotted to the k-space of the eigenspalse.speakers can then be separated to groups
manually or automatically using clustering approach

w=E xV (3.4)
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For pronunciation adaptation, some adaptation $peeth transcription from the test
speaker is required. This can be done in some Bpeeognition applications, where the speaker
can be asked to read some sentences. If this igsasstble, the initial decoding of the non-native
speech from the speech recognition system can Ipiplee used as the transcription for the
speech, although the accuracy will be lower witls tmsupervised approdciThe idea is to use
some non-native speech to get the ‘partial pictaféhe pronunciation habits of the speaker and
then project it to the eigenspace to estimate ¢henplete picture’. The speech is forced aligned
using the standard dictionary to get the refergrtememe string. It is also forced aligned using
another dictionary which contains all the varigintsn the supervectors to obtain the hypothesis
phonemes for the pronunciations. The corresponkyptheses and reference phoneme strings
are compared to create a confusion matrix. A sigmov is constructed for each test speaker by
finding its triphone and monophone confusion matamd subsequently interpolating them, and
filling the supervector. The weights of the testaler are first calculated using equation 3.4, and
subsequently the weights are used to reconstraditpervector by using the eigenvectors:

V' =Exw (3.5)

Recall that each vector is in fact the pronuncrattonfusion of each speaker. Consequently, a
threshold is set to extract the speaker specifimynmciation variants from the vectdf. The
variants are subsequently added into the pronuogiatictionary by generating the possible
combinations. The new dictionary is then readydcaimployed on the utterances of the particular
speaker.

3.3 Accent Identification

The accent of the speaker is a factor that affgtatly the performance of speech recognition
systems. By knowing the accent information, suéalviodels that match the speaker can be
selected for speech recognition tasks. Althougkemricmformation can be manually given by the
speaker, automatic accent identification could &eful in situation when this is not possible, or
when the purpose is to provide user with a frimrdbystem. Thus, accent identification is
sometimes an important component in speech tecoynoResides that, another area where accent
identification has the potential to be appliedrigglobal security, where one tries to identify the
origin of a non-native speaker.

The type of accent can be classified as eitheedhial or non-native. Although dialectal and
non-native speeches are variants of the ‘standgmaken language, both are quite different. The
most obvious difference between dialectal and retiva speech is the fact that dialect is often
acquired as first language, while non-native spegaonsidered as the second language of the

2 However, we did not test this unsupervised scenarid in our experiments, pronunciation adaptdton
made using manually transcribed adaptation datedoh speaker.
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speaker. Thus, the differences between a languayésadialects are variant rules in phonology,
pronunciation, vocabulary and possible grammardeamed since infancy, while for non-native
speakers, the accent is caused particularly byfémence from the native language rules of the
speaker. Hence, there is an acceptable norm anfenglidlect speakers, while there is no
acceptable standard among non-native speakersewlifferent degrees of variability exist. As a
result, dialect and foreign accent may requireeddint strategies for identification. Non-native
speech may also be harder to collect compared ateatal speech. As a result, dialect
identification may use methods that are more datmnsive for creating the accent models, while
non-native accent identification will not have swiprivilege. Accent identification approaches
can be divided according to the features used l&msifying the accent: acoustic or phonotactic
features. Acoustic features that have been stutiedccent identification are pitch, energy,
formants, MFCC and others, while for phonotactiatdees phoneme sequence and position are
important. We are particularly interested in apphess that are capable to generalize the accent
features even though data from only a few spedageagven, because in many cases, only speech
from a few speakers is available. In this prelimnaork, we propose an approach using
phonotactic features. Multilingual decision trees ased to model the phonotactic features. For
the moment, the approach is text dependent whighines the transcription of the input speech.
Although this strong hypothesis, such method caruged in situation where speakers can be
asked to read a particular sentence, or when #hechpof the user can be predicted accurately.

3.3.1 Multilingual Decision Tree for Accent Identification

Works in language identification have received moubre attention than accent identification.
One of the propositions using parallel multilinguphoneme recognizers for language
identification task has shown promising results§anan 1996a, Schultz 2002]. The idea is to use
multiple phoneme recognizers (PRs) of differentglaages to generate phoneme strings and
subsequently score them using the correspondingiéage model. Since phoneme recognizers are
not perfect and the type of errors made by eacthei maybe different, the use of multiple
phoneme recognizers for generating several phorsegpgences can enhance the performance of
a single language system, although it is more cdatipnal intensive.

The same idea can be applied for non-native speedgnition with some modifications, so
that the accented models can be trained for rezimgnthe accent, even with small amount of
non-native speech. It has a similar architectursmpared to parallel multilingual phoneme
recognizers for language identification, the diéfece is that it also uses speech recognition
system in the known target language (for instammead¢h) to force align the same utterance at the
same time. Another difference is that the accerdetsoare made up of decision trees of different
languages instead of language models. The reasasifty accent models created from decision
trees is to take advantage of the context of tteeme and the generalizability of decision trees
for classifying the accent. Furthermore, decisiees have been proven to be useful in state-tying
and pronunciation modeling to classify similar etttogether, and to predict unobserved or
missing data. However, this means that we neeve the transcription of the utterance during
accent identification. Figure 3.5 shows our proposgcent identification system using
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multilingual decision trees. Before accent ideatfion can be carried out, the accent models
have to be trained. In the following section, tfening procedure is first presented, followed by
the identification step.

T R R PR,

/Viet. accent models
French PR | Hyp. French DT / Vietnames
. ™ Align / score
Forced aligr |_w : Chinese DT
(French)  |ref Vietnames DT +

. Hyp.
Chinese PR W yp Phone onfusior | argmax(accen |+

Speech__,, Align
— » memmeemem T ;
Forced aligr ‘Chinese accent mode
(French) Ref - 7 .\
renc ;
Vietnames | Hyp. Chinese DT Chinese
PR N aian Lo ; score

Forced aligr |- 9 A Vietnames DTs | /
(French) Ref L ’

Figure 3.5 The usage of multilingual decision tr@@8§s) for non-native French accent (Chinese
and Vietnamese) identification

3.3.1.1 Training

In the training step, accent models which are mamlef multilingual decision trees will be built.
The steps to create the decision trees are sitoildre one presented for pronunciation modeling
in Section 3.2. Instead of going through two pas$seseate the decision trees, here only one pass
is applied because all phone confusions wheth& gignificant or not should be taken into
consideration for building the accent models. Tigdthesis phoneme strings from the phoneme
recognizer are aligned against the correspondifegerece phoneme time stamps from the forced
alignment to create the triphone confusions. Tipldne confusions with the same base phoneme
are gathered to build the base phoneme decisien &red their contexts are converted to the
corresponding phonetic feature vectors. They atesequently passed to the decision tree
algorithm to create the decision trees.

The procedure is repeated by decoding the samenaiive speech with phoneme
recognizer of different languages, and aligning thgotheses against the corresponding
reference phoneme strings of the target languagea fesult, for each accent to be identified,
set of decision trees will be created, wherés the number of languages available for the

72



Chapter 3. Non-Native Pronunciation Modeling and&a Identification

phoneme recognizers. Each set containshonemes of the target language. The hypotheses
generated from each phoneme recognizer are aligmgainst the corresponding reference
phoneme strings from the forced alignment produtiimnone confusions. Recall from Section
3.2.1 that the triphone confusion of the same lfzsget language) reference phoneme will be
collected together for each language. The leftragit context phoneme will then be converted to
feature vectors, for example by using IPA artidolatfeatures. Decision tree algorithm can
finally be applied to build the trees. Since theef are created by using the hypotheses generated
by phoneme recognizers of different languages dmphesl against the corresponding target
language references, they are actually decisiogs tod the target language phoneme set. An
interesting remark is that these trees have theefeaf different languages depending on the
phoneme recognizer used. Thus, the language afetision trees actually refers to the language
of the phoneme recognizer used. Figure 3.6 showslegision trees for the French phoneme /a/,
which is created by aligning the hypotheses fromanEh and Mandarin phoneme recognizers
respectively against the French reference phonéings In this case, the triphone confusions of
the base phoneme /g/ with French and Mandarin pheseare each gathered to create the
decision trees below.

@) O
o o 7 o
o e v=05  v=0.8

2=0.7 DEL=0.£ 2=0.3 0=0.2
DEL=0.1 3=0.2 e=0.2
0=0.2
Phoneme Treea/ Phoneme Treeg/
French Decision Tre Mandarir Decision Tre

Figure 3.6 Example of accent models for Vietnamedske form of decision trees created using
French and Mandarin phoneme recognizers

3.3.1.2 Identification

During identification, the utterance from a noniveatspeaker will be sent to the phoneme
recognizers of different languages and at the sameforced aligned using the transcription of
the utterance, supposed known in advance, seee=gbir Only one speech recognition system of
the target language is actually needed for foragalent. The triphone confusions generated
from the alignment of hypotheses and references@reed using the accent models. The phone
confusion probability is retrieved from the decistoees based on the reference phoneme context
and substitution information. A small floor probiityi is assigned to avoid getting a zero
confusion probability. The accent score for a patéir language is calculated by taking into
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consideration all the phone confusion given thaigien trees. This is done by multiplying all the
phone confusion probabilities given the decisi@esr (equation 3.6). The total accent score (for
the decision trees for L language) is calculateaniogtiplying the accent score from L language
trees (equation 3.7). The accent model with tgeadst score will be selected.

accentscorg = I_J P'(sub |base,left;,right;) + B (3.6)

L
total accent score= H accentscorg (3.7)

wherel is the language of the decision treeb is the hypothesis substitution for thase
phonemeleft andright indicates the left and right context of the bakengme, an® is a small
floor probability.

3.4 Conclusions

In this chapter, we have presented two modifiechpnaiation modeling approaches using a
limited amount of non-native speech, and an origaggproach called “latent pronunciation
analysis” that can be used for pronunciation chirsgeand adaptation. The first approach is the
conventional approach of pronunciation modelingiclwimodels the variants in the pronunciation
dictionary. Variants are estimated by using deoisiees. Two passes are applied for finding the
variants because the phoneme recognizer is notatecand there are only limited amount of
non-native speech available for modeling. Hencés itnportant to generate the hypotheses as
accurate as possible for estimating the unobsevee@dnts using decision trees. The second
approach models the pronunciation variants in #ecoring module. The rescoring module
employs a triphone model to rescore the n-bespiieiuced by the decoder. A unigram model is
used for smoothing the triphone model. The proratian score obtained is included in the log-
linear model to compute a composite score andniedtze n-best hypotheses. The third approach
called latent pronunciation analysiss in fact a new pronunciation clustering methadhich
clusters the speakers according to their pronupaiabtabits. This approach is motivated by
eigenfaces and eigenvoices, where it uses eigamsegérived from speaker dependent decision
trees. Thuslatent pronunciation analysiattempts to use the pronunciation eigenvectorvetir
for pronunciation adaptation. However, this metiheguires more non-native data to carry out,
but the benefit is that the knowledge about theemicof the speaker is not required to be known
a-priori, unlike the typical non-native pronunciatimodeling approaches.

Preliminary work in accent identification has aldeen proposed. A new accent
identification approach using multilingual decisitrees has been presented. This is a text
dependent accent identification approach which iregithe transcription of the test utterance.
The approach can be used in situation when speakarbe asked to read a particular sentence,
or when the utterance of the user can be predeaxtedrately. The advantage of the approach is
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that the accent models require a little amountaf-native speech to create. The benefits come
from the generalizability of the decision treesntodel phonotactic features. The identification
capability is further improved with the usage ofgiel phoneme recognizers to create decision
trees of different languages for each accent moeitilingual phoneme recognizers have
proven to be beneficial in language identificatismere they are able to improve the language
identification rate. This approach will be experitezl in Chapter 5, and compared to the existing
baseline accent identification approaches discussedrlier.
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CHAPTER 4

Non-native Corpus Acquisition and
Evaluation

4.1 Introduction

peech corpus is required for testing the approatttadave been proposed. For this purpose,

a non-native French speech corpus in the tourismado has been recorded. In the next
chapter, the corpus will be employed for testingisTchapter presents the procedure used for
recording the corpus, follows by some analyses eraduation tests. Among the analyses that
have been carried out are intelligible test, phiorastalysis and data-driven analysis.

4.2 Acquisition of a Non-Native French Corpus

A typical speech corpus for speech recognition kgeent consists of training, testing and
development parts. This is generally true for retspeech corpora. However, for non-native
automatic speech recognition, collecting sufficissinples of non-native speech for training non-
native models is difficult. Furthermore, there amaply too many possible groups of non-native
speakers that may involve. Thus, our non-nativedpeorpus is recorded only for testing and
adaptation purposes.
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This corpus has been developed for testing, adaptahd research in mind. For testing, we
would like to test the non-native speakers in theism domain, which might be a realistic case,
where non-native speakers are likely to stumblenupdthough this is a read non-native corpus,
there is a dialog part where speakers are askezhtband simulate the sentences in real situation.
The sentences are also designed to contain prepeesiof places, person nhames and others.

4.2.1 Text Corpus Acquisition

The corpus is divided into two parts. The testirggt onsists of common dialog and article
sentences from the tourism domain. The adaptagixincomprises of sentences from the ESTER
corpus [Gravier 2004].

4.2.1.1 Read Sentences that Simulate Dialog

For the first part, the common dialog phrases entthurism domain were selected (for example
from dialogs in hotel, restaurant, transport areotelated areas). They were collected from web
resources, travel books and elementary French #&geglbooks. After the sentences were
collected, we extracted the vocabularies out aedl asscript to generate their pronunciations. In
the first step, the script simply searched for wgditht were defined in the existing pronunciation
dictionaries. If the words were found, they wergied from the pronunciation dictionary and
added to the new pronunciation dictionary. For wgdittht were not found, the LIA grapheme to
phoneme application [Béchet 2005] was used to gémehe possible pronunciations for each
word. After the pronunciation dictionary was gemeda sentences were selected to be read by
speakers from the text pool. The sentences weeetsdl such that those with the most number of
unique unseen triphones were selected, so thataweeealuate non-native speaker in as many
context as possible. For each speaker in the samg,ga hundred unique sentences were
selected.

4.2.1.2 Read Articles

The texts in this second part are also from tourdwmain, but instead of dialog, they are
sentences from tourism articles on the web. Thes terere first gathered from tourism websites
using a web crawler. Subsequently, the texts wete@ed from the HTML files. Next, the
sentences were filtered and normalized by remothegounctuations, changing the digits to text
numbers, lowering the case of the text, changinggraph to sentences, limiting the size of
sentences etc. After having manually verified thatsentences were suitable, the same approach
described in previous section was applied to salectences to be uttered by speakers. The total
number of unseen triphones found over time is skowe~igure 4.1. The graph shows that the
number of unique triphones found drops dramatidalfythe first hundred sentences. This shows
that frequent triphones are repeatedly found, wisckomething desirable, because they should
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be tested more frequently compared to rare triphodehundred unique sentences were assigned
to every speaker in the same group.

Changes in the number of unique triphones over the number of
sentences selected

160
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Number of unique triphones
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1 31 61 91 121151 181 211 241 271 301 331 361 391 421 451 481 511 541 571 601

Number of sentences

Figure 4.1Changes in the number of unique triphones fourtiérsentences over the number
of sentences selected from text corpus

4.2.1.3 Adaptation Text

Adaptation sentences were selected from ESTER soiffhe ESTER corpus is a broadcast new
corpus. It was recorded and transcribed as pamipaign for the evaluation of Broadcast News
enriched transcription systems using French dagat ffom ESTER corpus was used since it
contains about sixty hours of transcribed speeathtmse from. At the same time, we can also
take advantage of other resources that are readdyable together with the corpus such as the
pronunciation dictionary. It is also possible tomgare the adaptation speech and the speech
recorded in the ESTER corpus if necessary. The saowedure discussed before was used for
collecting the adaptation text. A hundred senteraresselected for each speaker. All speakers
were assigned sixty sentences with the most nurobeunique triphones. The other forty
sentences selected for each speaker were unigeepdrpose is to adapt as many triphones as
possible, while making sure those frequent triplscare adapted with more data.
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4.2.2 Text Corpus Evaluation

We calculated the correlation coefficient of oumrprs compared to the general phoneme
distribution in French according to [Vaufreydaz @QQ)0to have an idea of the phoneme
distribution in our corpus by using equation 4.fheTesult in Table 4.1 shows that our corpus has
a correlation coefficient of about 0.9 for allitsee parts, which means that it is phoneticallil we
balanced. Note that the phoneme distribution giwely a general idea of the speech corpus,
because we only select one possible pronunciatioegch word. In addition, we assume ‘liaison’
occurred. This is why there is a high percentage/oSee Figure 4.2.

cov(x, y)
oxoy

wherecou(x, ) == " (x ~X)(y, =) andox=\[1 Y (x -’
i=1 i=1

Table 4.1 Correlation coefficients for dialog, reaticle and adaptation parts of our corpus

Corr(x,y) = (4.2)

Type Correlation Coefficient
Dialog 0.910
Article 0.893
Adapt 0.920
Percent (%) Phoneme Distribution
9
8 O Standard French|
W Corpus
7
. 1
5 -
4
3
2,
0,
J] o~ R o0 ® @9 ¢e~9o~3 z y w v ¢ p ut s p onm | k j i g f e d b a
Phoneme

Figure 4.2 Phoneme distribution of Standard Frénambers taken from [Vaufreydaz 2000])
compared to our non-native corpus
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4.2.3 Recording

A total of seven native Chinese speakers and eigliive Vietnamese speakers with a
comfortable degree of experience in the targetdagg (French) were recruited. They consist of
seven males and eight females (see Table 4.2) e€dhigpeakers who took part in the recording
have previously taken 500 hours of French courgghima before they came to France, and they
were attending French courses at a local languetgmog at the time of the recording. All of them
have been in France for less than a year. MosteoEpeakers are from Beijing. The Vietnamese
speakers are students from local universities. Mbshem are from Hanoi. All of them have
been in France for more than a year and have ldafnench for more than three years. For
baseline comparison, three native French speakers also selected for recording the same test

part.

Table 4.2 Number of native and non-native Fren&akers involved in test and adaptation

French Vietnamese Chinese
Speakers . . .
Test Adaptation Test Adaptation Test Adaptati
Male 1 0 3 2 2 0
Female 2 0 2 1 3 2
Total 3 0 5 3 5 2

Recording was done in a sound proof room, usingad$et microphone, with sampling
frequency set at 16 kHz. EMACOP (Multimedia Enviment for Acquiring and Managing
Speech Corpora) was used for recording and mandigengpeech corpus [Vaufreydaz 2000]. A
supervisor was assigned to monitor and facilithiee tecording. Table 4.3 shows the average
duration of the utterances spoken. The results shawthe average duration of the non-native
utterances is longer compared to the utterances frative speakers. The Chinese speakers read
the slowest. This might be due to the lower exmpegeof Chinese speakers compared to
Vietnamese speakers.

Table 4.3 Average duration of a sentence and daii@tion (in parenthesis) of sentences read by
different native groups

French| Vietnamese Chinese
Read Dialog 2.84s 3.04s o
(852s) | (1822s) | (2047s)
i 6,27s 10.2s 11.72s
Read Article (1843s)|  (4694s) (5740s)
_ 12.54s 17.9s
Adaptation - (3687s) | (3509s)
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4.3 Intelligibility Test

To investigate the intelligibility of the speechadeby the non-native speakers, we invited native
French speakers from CLIPS/IMAG laboratory for arcpetion test study. The test was
conducted through Internet, and the volunteers \garen eight recorded files to listen. Thirteen
persons took part in the test. They were allowelisten to the files for an unlimited number of
times at their own place and pace. Subsequengy, Were required to transcribe the utterances
they heard on the specified textbox, and the systemed their answer in a database. The results
from Table 4.4 shows that the pronunciations of-native speakers are not clear even for the
human native French speakers. Refer to appendiicaire A1 and A2 for the web based
interface used in the test.

Table 4.4 Average human WER from the Intelligililiest

Speakers Vietnamese Chinese
WER 12.1 11.3

4.4 Phonetic Analysis

Perception test was conducted for analysing in ndeteil the pronunciation of the non-native
speakers. For the perception test, we had spenvrdhnatAix-en-Provencewith Dr. Martine
Faraco fronlaboratoire parole et langagat Université de Provenc® analyze some of the non-
native speech. To complement the perception testiave also conducted some simple acoustic
analysis on the non-native speech using Praat fBwer2007]. Table 4.5 below shows the
summary of the analysis results. Only frequent oeclierrors found for more than one non-
native speaker are presented.

Table 4.5 Perception test and acoustic analysidtsesf non-native French speakers

French Phoneme Perception Test Acoustic Observation Speakers
/b/ /p/ No voiced feature Chinese
/d/ /t/ No voiced feature Chinese
/a/ /k/ No voiced feature Chinese
/o] /o] - Chinese

Have the features of a fricative,

o) i instead of a plosive. Whem/ is Vietnamese

followed by/R/, /g/ seems to be
deleted

More energy at higher frequency

. Vietnamese
range instead of lower frequency

i /s/
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below 4000 Hz [Ladefoged 2000,
Kent 2002]

Final plosive in a

syllable, e.g. /p/, I/ deletion No burst was found Vietnamese

More energy at higher frequency

/3/ /z/ range instead of lower frequency Sg?r?;ris;g
below 4000Hz [Kent 2002]

Chinese and

IR/ too strong i Vietnamese

0.596310

0.04858|

0.001223

-0.04455]
5000 He|

o0 5[50 Hz

2316 Hz|

0 Hy| 501 4578 He

I pb o~ 3 u R e

Figure 4.3 The wordonjour pronounced by a non-native French speaker of Ghirigin.
Voiced feature are shown with blue line. Noticetthzere is no voiced feature on the first
phoneme. This indicates that it igpa instead of aby
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008014

0.001308]

-0.0B512)
5000 Hz|

2573 Hz|

0 Hz

0.292207

......................................................................................................................................................................................

5 a SIL (k)

T 75 (500 Hz

50 dBFS Hz

Phoneme:

€]

Figure 4.4 The wordac pronounced by a non-native French speaker of ®isgse origin.

Notice that the phoneme/ is not visible. It is either deleted or it is amrelased’k/ common in
Vietnamese

0.851748

3596 Hzl

D Hz|

45500 Hz

) IEfra He

a b (g ) o J- |Phaneme

@

Figure 4.5 The non-native speaker of Vietnameggroffemale) read the wor@sgaucheNotice

that instead of ag/ which is a voiced plosive, the phoneme looks nligeea fricative.
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0.411218
0.487 i

0.006556]

-0.4457
5000 Hz|

3990 Hz| - &

0 Hz

1 5 (J-) € s (R J-) (F’g;mname

Figure 4.6 The wordherchepronounced by a non-native French speaker of dia@se origin
(male). Notice that the speaker pronoung¢edinstead of/f/ at the start and final phonemes.
Compare it with the accuratg/ at Figure 4.5, which has more noise energy beld@0Hiz.

The finding from the acoustic tests confirms thsutes from perception test. The results show
that different non-native groups have a differemtdency of substituting certain phoneme with
another phoneme. The phenomena can be explainedobg-lingual phoneme transfer, where
non-native speakers substitute the target langphgeemes with their native language phonemes,
and pronunciation simplification that was discusse8ection 1.3. Before going more detail into
this, we will look at the finding from data-drivamalyses on non-native speech.

4.5 Data-driven Evaluation with Phoneme Confusion Matri

Evaluating the speech corpus through knowledgeebamgproach is time and resource
consuming. Furthermore, it requires person withcigeed linguistic knowledge in the field.
Getting phoneticians to agree upon the same trigtiser is another difficulty. In addition, the
phoneticians involved have to possess the knowleéigfee languages involved. Some phonemes
can also be difficult to analyse, for example threrigeh /R/. It is also difficult to determine
whether a particular phoneme realised is near #teven form. Data-driven approach has the
benefit to be fast, standardized and can be quitaerate if the models used are robustly built. It
can therefore provide researchers with some insigitd the data. For analysing the cross lingual
transfer of non-native speakers, we employed tbhnigue of phoneme confusion matrix as
described in Section 2.3.1. This verifies further phoneme confusion approach used in many of
the next experiments.
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The idea is to find the confusion or mismatch betwéhe phonemes pronounced by the
non-native speakers and the actual pronunciatibriteowords. Phoneme confusion matrix is
created by aligning the hypotheses from a phoneew®gnizer against the corresponding
reference phoneme strings from the forced alignroéat speech recognition system (see Figure
4.7). For analysing the pronunciation habits of-native speakers, we want to know the type of
speech sounds that non-native speakers have nuhstedethe type of errors they are likely to
commit. Since non-native speakers are influencedhkyr native language greatly when they
learn a new language, the phoneme recognizer uastlilra able to recognize both the target and
the native phoneme set of the speaker. Thus, thesac model of the phoneme recognizer has
both the target and the native language acoustis ahthe speaker.

Forcec Ei Target Ian.guage acou§ .
alignmen model + dict. + transcription

Nor-native Referenc Alignmen Phoneme
speec mismatch

\ Hypoth@v

'\ Target Ianguage + lacoustic
recognitior
g Ej mode

Figure 4.7 Finding the pronunciation habits of mative speaker by using phoneme confusion
matrix

For our data-driven analyses, the French acoustidemwas the target acoustic model,
while the source acoustic models were Vietnameddamdarin. The acoustic model used by the
phoneme recognizer was created by merging Frencdasic model with Vietnamese and
Mandarin acoustic model to enable it to recogniath llarget and source phonemes. For more
information about the system and corpora usedy tefeéSection 5.2 ahead. Table 4.6 and 4.7
below show the results.

For Viethamese speakers, similar phonemes whicst @xiboth the target and the native
language of the speaker (according to IPA) weregeized as both the variants. They also have

problem pronouncingp/ even though it exists in both the languages. Rigbihis is because

Vietnamese/p/ exists only as an unreleased plosive at the finaltion of a syllable. In French
however, it can appear in the front of a syllabiid & is a released form. There are few interesting
sightings about new phonemes which exist only ettliget language French (according to IPA)

but not in Viethamese. The French vowels, /ee/ and /s/ were recognized with a high
probability as the Viethamese phoneme The Frencha/ on the other hand was recognized as
/a/. These are some new sighting from the data-drivealysis. Similar to our results from
perception and acoustic analysig;, and /3/ were replaced by phoneme/ and/z/. /R/ was
recognized also as Viethamese phongRye It is possible that Viethamese speakers pronounce
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/g/ as/R/, since it has the same top two substitutions/fyr There is also confusion of the
French semivowely/ with the vowel/y/. This is understandable because they are quitdasim
and both are articulated by rounding the lips, and can be considered as the semivocalic
counterpart ofy/.

Like Vietnamese speakers, similar French and Mangdronemes (according to IPA) were
also recognized as both French and Chinese var@wgs of the time in the test. The result shows
that the accuracy of recognizing is low, even though the phoneme also exists imddan. For
new French plosives such @as/, /d/ and/g/, the results from data-driven test are comparable
with the perception and acoustic analysis. Howether results from the analysis show that is
pronounced ags/, which is something we did not expect. It is pbksihat the/z/ pronounced
by Chinese speakers is more similar to the maqdel even though the voiced feature is
articulated. Different from Vietnamese speakersn€se speakers have learned to pronounce the
French post-alveolar fricativeg/ and/3/ rather well, with a high accuracy rate. For newvels
only found in French, Chinese speakers have thietay of substitutinge; and/ce/ with back
vowels /o/ and /x¥/ respectively. They are able to grasp nasal vowatser well with a high

accuracy, particularly the nasal vowels~/ and /ee~/, although there seem to be some
confusions between these two phonemes.

Table 4.6 Top two phoneme confusions for every émeconsonant uttered by Viethamese and
Chinese speakers.

C(i:r::(?r(:gnts Vietnamese speakers Chinese speakers
p p (vn, 0.081) t (vn, 0.075) p (cn, 0.209) p" (cn, 0.12)
b b (vn, 0.284) b (fr, 0.148) p (cn, 0.199) b (fr, 0.118)
t t (vn, 0.174) t (fr, 0.121) t (fr, 0.118) t" (cn, 0.094)
d d (vn, 0.232) d (fr, 0.198) t (fr, 0.151) d (fr, 0.123)
k k (vn, 0.205) k (fr, 0.158) k (fr, 0.157) k" (cn, 0.155)
g R (fr, 0.129) X (vn, 0.097) k (cn, 0.283) k" (cn, 0.13)
m m (fr, 0.444) m (vn, 0.209) m (fr, 0.503) m (cn, 0.129)
n n (fr, 0.293) n (vn, 0.125) n (fr, 0.419) n (cn, 0.074)
n n (fr, 0.467) n(vn, 0.2) n (fr, 0.643) n € (cn, 0.071)
R R (fr, 0.189) X (vh, 0.048) R (fr, 0.294) X (cn, 0.25)
f f (vn, 0.467) f (fr, 0.383) f (fr, 0.394) f (cn, 0.129)
Y v (fr, 0.335) v (vn, 0.161) v (fr, 0.175) u (cn, 0.072)
S s (fr, 0.377) s (vn, 0.302) s (fr, 0.605) s (cn, 0.159)
z z (fr, 0.258) z (vn, 0.2) z (fr, 0.331) s (cn, 0.11)
I [ (fr, 0.494) s (fr, 0.187) J (fr, 0.734) ¢ (cn, 0.086)

3 (fr, 0.259) z (vn, 0.176) 3 (fr, 0.594) s (cn, 0.058)
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j
y
w

j (fr, 0.234)
y (fr, 0.246)

w (fr, 0.222)

I (vn, 0.314)

ie (vn, 0.286)

i (fr, 0.154)

a (vn, 0.089)

| (fr, 0.109)

j (fr, 0.203)
e (fr, 0.155)

w (fr, 0.381)

| (fr, 0.199)

j (cn, 0.194)

y (cn, 0.138)

a (fr, 0.074)
| (cn, 0.124)

Within the parenthesis is the language informatibthe phoneme (French-fr, Viethamese-vn and

Chinese-cn) and its confusion probability (0-1).t&that the phoneme@//is not included in the
table because it does not occur sufficiently indata to calculate a reliable confusion value.

Table 4.7 Top two phoneme confusions for every €memowel uttered by Vietnamese and

Chinese speakers.

5;3:;2 Vietnamese speakers Chinese speakers
i i (fr, 0.309) i (vn, 0.272) i (fr, 0.24) e (fr, 0.229)
. y (fr,0.267) | i(vn, 0.131) y (fr, 0.34) e (fr, 0.202)
u u (fr, 0.293) u (fr, 0.168) u (fr, 0.265) o (fr, 0.177)
e e (vn, 0.29) e (fr, 0.204) e (fr, 0.335) £ (fr, 0.196)
2 ¥ (vn, 0.288) o (fr, 0.096) @ (fr, 0.189) o (fr, 0.108)
o o (fr, 0.332) o (vn, 0.205) o (fr, 0.234) a~ (fr, 0.173)
° ¥ (vn, 0.162) | w(vn, 0.065) | x(cn.0.084) | ce(fr,0.053)
€ € (vn, 0.262) e (fr, 0.257) € (fr, 0.323) a (fr, 0.08)
o ¥ (vn, 0.332) ce (fr, 0.153) e (fr, 0.242) | ¥ (cn, 0.194)
> > (vn, 0.201) | a~ (fr, 0.097) > (fr,0.172) | a~(fr, 0.172)
a a(vn, 0.322) a (fr, 0.178) a (fr, 0.233) a(cn, 0.132)
a a(vn, 0.328) e~ (fn, 0.131) a (fr, 0.424) a(cn, 0.153)

& e~ (fr,0.128) | &€ (v, 0.128) | &~ (fr,0.272) | ce~ (fr, 0.141)
e~ | @~ (fr,0.198) | 57 (vn,0.121) | ce~(fr,0.333) | &~ (fr, 0.144)
- a~ (fr, 0.276) | ©0(vn, 0.088) | >~(fr,0.333) | a~(fr, 0.188)
a~ a~ (fr, 0.259) > (vn, 0.13) a~ (fr, 0.361) n (cn, 0.102)
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4.6 Cross-lingual Transfer in Non-native Speakers

To understand why certain target language phonemeeplaced by another phoneme by a
particular group of non-native speakers, it is imgat to understand cross-lingual transfer of
non-native speakers. This can be done by comp#hnmgarget and native phoneme set of non-
native speakers. Table 4.8 and 4.9 show the conscmad vowel tables respectively for
Vietnamese, while Table 4.10 and 4.11 present thaddrin consonant and vowel tables. Note
that the IPA tables are not the standard one, fihecaimants and affricates have been combined
to give a compact presentation.

Here, we attempt to generalize the finding from gleeception, acoustic and also data-
driven analysis, so that it can be applied for ottases. Notice that similar phonemes are often
replaced by the same phoneme in the target languatee native language of the speaker. The
more interesting observations are the new phonevhash do not exist in the native language of
the speaker. The new phonemes are often replacéiehyearest native phonemes according to
the IPA table. For new consonants which do notterishe native language of the speaker, the
nearest native phoneme can often be found in tiree saw (manner of articulation) or in the
same column (place of articulation). Notice anreséing fact that the place of articulation in IPA
table is in fact arranged in order from the lipghe glottal (refer to the vocal tract Figure A3 in
the appendix). For example, Chinese speakerseylace/b/, /d/ and/g/ with /p/, /t/ and/k/,
while Vietnamese speakers will substitufe and /3/, with /s/ and/z/. However, this is not
always true as we see for the phone@e It is substituted byx,/ instead of/k/ or /y/, which is
nearer to/g/ according to the IPA table.

As for vowels, it is harder to explain using themed table. Instead, it seems to be more
obvious from the vowel formant graph derived frone tspeech. Figure 4.8 and 4.9 show the
original vowel formant graph plotted using the rd@rmant values from Viethamese and
Mandarin compared to French. The formant valueseweetracted automatically using Praat
[Boersma 2007]. The phoneme alignment is obtaimenh fthe forced alignment of the speech.
For understanding why certain new vowels in thgdardanguage are substituted by native
language vowels, we assume that similar vowelshéntarget language will be substituted by
similar vowels in the source language. We can ptojeese source language vowels to the
corresponding target language vowels. The otherceouowels are projected by taking into
consideration the projection of all other similawels, using the equation 2.1 and 2.2. For a new
target language vowel, the nearest native voweh ftiee speaker is chosen. For example in our
case, after projecting all the Viethamese vowebs faund that the nearest source language vowel
for /a/, /e/, and/e/ is /x/, because the Vietnamegg will be projected to somewhere between

/3/ and /e,e/, which corresponds to our results obtained fromongime confusion matrix in
previous section. This can explain most of the Suib®ns observed.
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French and Vietnamese share a lot of similaritieteim of consonants and vowels. There
are 23 similar phonemes between them, most of thgist as consonants. Viethamese has
relatively more fricatives than French. In termvoifvel, there are short vowels and dipthongs in
Vietnamese, but not in French. The diphthongs iethdmese argie/, /wy/and /uo/. On the
other hand, French has more types of vowels amdrasal vowels.

Table 4.8 Comparison of French and Vietnamese camgs

Bilabial | Labiodental Dentall Alveolar | PostalveolaRetroflex| Palatal Velar Uvular Glotal
[l
Plosive p b @O d @ @ kK 191
Nasal m n n r]
[ |
Trill R
Tap or Flap
1 1 1
1 1
£y s 21 31|00 ©I© (v
Affricate
Lateral
fricative

Approximant

Lateral
approximant

Consonants in black are common in both languagass@hants in green and dotted square are
found only in French, while consonants in blue einded are available only in Viethamese [Le
2006]. * - rounded

Table 4.9 Comparison of French and Vietnamese \wwel

Fronlt : Central Back
Close [ LY @ u
Close-mid e i_@j @9@ o
Open-mid Eiej:@ iho_e:ioeé 5 :DZ@
open__|2&) oo

Vowels in black are common in both languages. Vewerlgreen and dotted square are found
only in French, while vowels in blue and circlee available only in Viethamese
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Mandarin do not shares a lot of similarity with kel in terms of consonants and vowels.
Only eighteen ‘similar’ phonemes are shared betwblem, and seven of them are vowels. In
Mandarin there is no voiced plosive and fricativempared to French. On the other hand,
affricate does not exist in French but can be fanrdandarin.

Table 4.10 Comparison of French and Mandarin ccanstsn

Dental |

Alveolar | Postalveo

Bilabial Labiodental ar Retroflex Palatal Velar Uvula Glotal
177 1= 1=
Plosive é :_l?: é LCL: K :_g_,:
1 1
1
Nasal m n i n
1 1
Trill @ IR}
Tap or Flap
1 1 1 1 [ 1
Fricative £ v s az i3 @ @ @
Affricate ts t
ts s" tc”
Lateral
fricative

Approximant

—
r=—
U

L= ]

Lateral
approximant

Consonants in black are common in both languagess@hants in green and dotted square are
found only in French, while consonants in blue airtled are available only in Mandarin

[Duanmu 2002]. * - rounded

Table 4.11 Comparison of French vowels and Mandanirels

Front Central Back
Close i Yy u
Close-mid | e 50 : @ o]
T,— = T a ™= T
Open-mid is;ie~i i oo :OE~E I2i:g_~_l
Open a iaiia~i

Vowels in black are common in both languages. Vewelgreen and dotted square are found
only in French, while vowel in blue and circled amailable only in Mandarin [Duanmu 2002]
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Figure 4.8 French and Vietnamese vowel charts
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Figure 4.9 French and Mandarin vowel charts
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4.7 Conclusions

In this chapter, we have presented our non-natre@dh corpus in the tourism domain, which
consists of read speech from speakers of Chined&/@tnamese origin. In addition, few native
French speakers have also taken part in the regpfdi comparison purpose. The corpus is used
for testing and adaptation in the coming chapteurRypes of analysis, namely intelligible,
perception, acoustic and data-driven tests hava bagied out on the corpus for analyzing the
speech of non-native speakers. The influence fieemative language phonology of the speaker
on the target language is very obvious from the-mative speech. Among the frequent
observations are cross-lingual transfer and praatioo simplification mentioned in Section 1.3.
The finding shows that the non-native speech resmbiths a high degree of accent, which may
affect dramatically the speech recognition perfaroea
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CHAPTER 5

Evaluations of Non-Native Modeling
Approaches

5.1 Introduction

I n the previous chapters, acoustic and pronunciatodeling for non-native speakers have
been proposed together with accent identificatimoreach. In this chapter, we will present the
experiments that had been conducted to examinevanty the performance of the proposed
techniques. In the coming section, a general dasani of the experimental setup will be given.
Then in Section 5.3, we will examine the multiliag@coustic modeling approach proposed (in
Chapter 2), follows by tests on pronunciation misdgin Section 5.4 (proposed in Chapter 3),
and finally in Section 5.5, the proposed accemnttifieation approach (in Chapter 3) is compared
with some baseline accent identification approaches

5.2 Experimental Setup

First, this section gives a general descriptiothefspeech recognition system employed for both
speech recognition and accent identification tallext, the corpora used for testing, training and
adaptation through out this chapter are presented.
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5.2.1 Automatic Speech Recognizer: Sphinx

Sphinx speech recognition system [CMU 2000][Raviglaa 2006] from Carnegie Mellon
University (CMU) was selected for the speech redagn tasks. It consists of several speech
applications. The two main applications are thén&aand the decoder. The trainer, known as
SphinxTrain, can be used for training continuous MiMacoustic models. The original
SphinxTrain application provides only context degemt modeling, and we have modified it for
producing context independent model. The differeme®veen context independent and context
dependent models lies in the modeling of the cdntéxhe speech sounds. The iterative re-
estimation procedure described in Chapter 1 is eyepl by using Baum Welch algorithm. In
addition, for creating robust triphone context dejent models, states are being tied together
(senones). On the other hand, Sphinx3 is the aiit for decoding speech. Sphinx3 is a fast
decoder, capable of decoding speech at real tithis. i$ achieved using conventional Viterbi
search strategy and beam heuristics. In additionas a lexicon-tree search structure. Sphinx3
uses the acoustic model created by SphinxTrainldfguage model, it accepts n-gram model in
binary format, which is converted from a standaf@P® n-gram model. Speaker adaptation
utilities such as MLLR and MAP are also part of 8ghinx speech recognition package.

In the following experiments, the front-end modulas used to pre-process the raw speech
at 16 bits sample with sampling frequency of 16 kblzepstral feature vectors together with its
first and second derivative. This produces featueetors with a total of 39 dimensions.
SphinxTrain makes use of the feature vectors tater@a continuous HMM acoustic model.
Phoneme or phone were used as the unit of HMM,eanth has three states, with a left-to-right
topology. Conversely, the n-gram language model evaated using CMU statistical language
modeling toolkit [Clarkson 1997].

5.2.2 Speech Corpora

Almost all the experiments were carried out on native French speakers, and further tests were
conducted on non-native English speakers to raefahe results whenever possible. The

following section presents the general descriptibrihe French and English corpora used for

training and testing the non-native French and iEhgipeakers. For creating non-native acoustic
models, multilingual corpora were also employed.

5.2.2.1 French

The non-native French corpus (NNF) described inpgteious chapter was tested. It contains
speakers of Chinese and Viethamese origin, eacimative group is made up of 5 speakers who
read about 100 common sentences related to diatogise tourism domain. The non-native

speech recognition experiments made use of thefdata BREF120 corpus [Lamel 1991] for

creating the target French acoustic model (SeeeTaldl). A general domain trigram language
model was first created by using the texts fioemMondenewspaper. The text corpus contains
about 2.8 Gigabyte of texts, from the year 1992Q063. The generic language model was then
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interpolated with a tourism domain language modeinf NESPOLE project [Besacier 2001].
Conversely, for the French test pronunciation didry, it contains more than two thousand
entries.

Table 5.1 Summary of the Corpora Used for Trair@nd Testing for French

Task Corpus Description SpK.  Houls
Training BREF120 French - training 12p 100f+
Test NNF Non-native French 10 1
5.2.2.2 English

The tests on non-native English speakers wereechout on the ISLE corpus [Menzel 2000],
which contains native German and Italian speakére.English acoustic model was created from
TIMIT corpus® [Fisher 1986], while the general domain languagedeh and pronunciation
dictionary were originated from Sphinx speech redthgn system. However, the entries in the
test pronunciation dictionary have been reducedlout one thousand for testing. Table 5.2
summarizes the corpora usage.

Table 5.2 Summary of the Corpora Used for Trairsing Testing for English

Task Corpus Description Spk.  Houts
Training TIMIT English - training 630 4
Test ISLE Non-native English 46 18

5.2.2.3 Multilingual

The multilingual corpora used in the experimentsstst of multiple independent corpora from
different sources, namely a Vietnamese (VN) corfuss 2004], a Mandarin CADCC corpus
[CCC 2005], a small non-native English corpus withinese and Viethamese speakers from a
public archive (GMU) [Weinberger 2007], and a Malsgyeech corpus courtesy of Universiti
Sains Malaysia.The general information of the corpora is presentedlable 5.3. These
multilingual corpora were used in non-native acieustodeling for adapting target acoustic
model, while they were employed in accent iderdifizn tasks to create accent models.

¥ We are aware that this corpus maybe small to @maifEnglish acoustic model; but at the time of ¢hes
experiments, we did not have the WSJ corpus yeteawer, the experiences on non-native English must
be seen only as a validation of what is done for-native French speech recognition.
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Table 5.3 Summary of the multilingual corpora used

Task Corpus Description SpKk.  Houts
VN Viethamese 29 15
CADCC Chinese 20 5

Adaptation and/

; e GMU Non-native English 17 0.14
or identification (Vietnamese and Chines¢)
MSC Malay 18 5

5.3 Non-Native Multilingual Acoustic Modeling

This section describes the experimental performasfceghe multilingual acoustic modeling
proposed for non-native speakers in Chapter 2. fiypes of modeling are being examined here:
cross-lingual transfer and context. For modelirmssflingual transfer in these experiments, non-
native speech of the target language was assumeg tmavailable. Three types of multilingual
resources were examined for non-native adaptatiamely the native language of the speaker
(L1), any non-native language spoken by the sartigengroup (L2), and languages close to the
native language of the non-native speaker (L3)s&la@e the possible candidates for adapting the
target language acoustic model. On the other hand;ontext modeling, it is sufficient to have
the target language acoustic models to carry auatiaptation.

5.3.1 Cross-Lingual Transfer Modeling

In Section 1.3.2, we mentioned that non-native lspesaare influenced by their native language
when they learn to speak a new language, wheredftey transfer their native language speech
sounds to the corresponding target language spmmefds. This mismatch between non-native
speech and the trained models causes major redutgpeech recognition performance.

We will start by describing the experiments conddcto determine the source phoneme
transfer of non-native speakers without using amy-mative speech. Next, two baseline
approaches for modeling cross-lingual transfers ewgéested. They are acoustic model
interpolation and merging. Subsequently, the pregdsybrid approach of acoustic interpolation
and merging are examined for modeling cross-lingtehsfer by using multilingual acoustic
models. We will also verify our proposed interpadat approaches for modeling cross-lingual
transfer by employing multilingual corpora. Two ager adaptation approaches using
interpolation were tested. They are weighted Isgstre and eigenvoices.

The proposed approaches were experimented usingnoltitingual resources. Three types
of multilingual resources will be examined. Theg #re native language of the speaker (L1), any
non-native language spoken by the same native gfo?) and languages close to the native
language of the non-native speaker (L3). For ircganf we consider French as the target
language for speech recognition system, and iftdkk is to recognize non-native speech from
Vietnamese speakers, the resources considerelemliethamese speech, any non-native speech
uttered by Vietnamese, and a language close tmafigése respectively. For non-native acoustic
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modeling, non-native French speakers from our Nbipus were tested, and BREF120 was used
for training the target French acoustic model. Fadeling cross-lingual transfer by non-native
speakers, the Vietnamese (VN) corpus, the Mand@DCC corpus and the TIMIT corpus were
used. We have also made used of non-native Engtisach from a public archive (GMU). The
GMU corpus was either used separately or togeth#tr WMIT corpus. Since the non-native
English speech itself is not sufficient for cregtimon-native models, it is used to adapt the TIMIT
acoustic model to create non-native English moftgl€hinese and Viethamese speakers. Table
5.4 describes the ways the multlingual corpora wemployed for adapting Chinese and
Vietnamese speakers.

Notice that, Mandarin and Viethamese are assigeddlase” languages even though both
are belonging to different language families. Mairddelongs to Sino-Tibetan family in the
Sinitic branch, while Vietnamese is classified e tbranch of Mon-Khmer in Austroasiatic
family [O'Grady 2000]. However, both are Asian tdaeguages, where Mandarin has four tones
while Vietnamese has six. In addition, a recentwt{Ou 2007] found that both group of
language learners share similar usage of stre&ngtish. This suggests that there are similar
characteristics between the two languages whichbeaexploited. In the coming section, we will
examine our proposed approaches for modeling difftecontext variation and cross-lingual
transfer. All experiments were carried out usingitest independent acoustic models with 16
Gaussians mixture except specifies otherwise.

Table 5.4 Description of multilingual corpora ugedadapting French acoustic model (BREF120)

Speaker Corpus Description
VN L1
Vietnamese CADCC L3 (Mandarin)
GMU L2 (English by Viethamese)
TIMIT + GMU L2 (English by Vietnamese)
VN L3 (Viethamese)
Chinese CADCC L1
GMU L2 (English by Chinese)
TIMIT + GMU L2 (English by Chinese)

5.3.1.1 Cross-Lingual Phoneme Transfer

Two approaches to determine non-native cross-lingbaneme transfer by non-native speakers
from a source to a target language without usingreom-native speech from the target language
has been presented in Section 2.3. This can bewathby using phoneme confusion matrix or by
using existing linguistic knowledge and IPA.

Recall that phoneme confusion matrix can be crebtedligning the hypotheses from a
phoneme recognizer against the corresponding referphoneme strings from force alignment.
Since we assume that non-native speech is noélailthe source language phoneme recognizer
and the target language speech recognition systemnaployed for decoding the target language
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speech. Hence, for determining the phoneme trafsfevietnamese and Chinese speakers, the
source language will be Viethamese and Mandaripeas/ely, while the target language will be
French. Creating the phoneme confusion matrix dmg¢sneed a lot of target language speech.
Consequently, only 20 utterances were selectecoralydfrom each speaker (total 120 speakers)
from the BREF120 corpus.

For determining the possible phoneme transfer ftBé table, the corresponding source
phoneme for a particular target phoneme is detethipy referring to the IPA and existing
linguistic knowledge. Refer to Viethamese and C&inédPA at Table 4.8, 4.9, 4.10, 4.11 and
vowel chart in Figure 4.8 and 4.9. For similar phores (according to IPA) which exist in the
source and also in the target language, these ptemare assumed to transfer from the source to

the target. For example, in Viethnamese and Fremmghand/b/ exist in both languages. Thus, we
assume that Vietnamegp/ and/b/ are transferred to Frengh/ and/b/ respectively. For new
target language phonemes which do not exist iretdemguage, the nearest source phonemes in
the IPA will be chosen by taking into consideratixisting linguistic studies. For example for
Vietnamese speakers, the possible source phonansddr for/f/ for Vietnamese igs/ and/s/
since they are the nearest phonemes. In some caseslso take into consideration
linguistic knowledge, for example~/ is near to/a/ in vowel chart for Vietnamese speakers,
but this phoneme is a nasal versiorygf For French vowely/, the nearest Viethamese vowels
are/i/ and/w/. On the other hand, linguistic studies also sugted American speakers replace
/y/ with /u/. Consequently, the same transfer may also hagpéretnamese speakers. Thus, the
possible Vietnamese vowels that may substityteare/i/, /w/ and/u/.

The possible source vowel and consonant transfeviginamese, Chinese and non-native
English speakers (of Viethamese and Chinese origie) presented in Table 5.5 and 5.6
respectively. For both Viethamese and Chinese gpsakhe possible source phoneme transfer
using confusion matrix and IPA are shown, exceptEoglish speakers (native Viethnamese and
Chinese origin) where solely the IPA choices aredusince both French and English shares a lot
of similar phonemes. The general guidelines used foe selecting the final source phonemes are:

e Source phonemes which also exist in the targetulage are assumed to transfer to the
corresponding target phonemes. e.g. Viethamgs® Frenchyp/.

« Existing linguistic study that shows a particulause phoneme is transferred to another
target phoneme is applied. e.g. Vietnameseto Frenchyy/.

« Compare the IPA and confusion matrix choices afetsthe best option.

It is also interesting to compare our choice ofrseuphonemes set with the results from our
earlier corpus analysis results in Table 4.6 aiid 4.
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Table 5.5 Determining the transfers of source coasts (Vietnamese, Mandarin and English)
using confusion matrix and IPA to target language

French Vietnamese Speakers Chinese Speakers sigglféﬁs
Consonant¥ conf Mat. | IPA | Selected| Conf. Mat.| IPA | Selected| Selected
p v, t p p D, ph D, ph b o
b b, v b b b, t o, p" 0 o
t "t t, t" t t, t" £, th t )
d d, t d d t, p t, th t d
k k, g k k, k" k, k" k K
g k, d k, ¥ ¥ k, t k, k" k g
m m, | m m m, n m m m
n n, n n n n, m n n n
n n, ie n n j, m n, j j n
n n, N n n n, c n n n
R X, 2 X X a,w " « ]
f fv f f f,s f f f
v v, i Y v f, i f £ v
s S, § s s 5, s s . s
z zZ, Zr z y4 S,_j S, s s 7
J 2 Z S, % s s, t s, s s f
3 % % z, 2 z j, s S, s 3
J ie, s j i iv's j i i
y i, | w, y w i j W,y W W
w uo, w w w W, 0 o W W
' l, m I I I, m | | |

Note: Confusion matrix result shows the top two r@roe confusions in descending order, and
IPA shows the likely phoneme transfer

Table 5.6 Determining the transfers of source veWélethamese, Mandarin and English) using
confusion matrix and IPA to target language

French Vietnamese Speakers Chinese Speakers Siggllfe?s
VOWelS I"Conf. Mat.| IPA | Selected Conf. Mat.| IPA | Selected| Selected

! hc i i i j i i !

y I, c i, w, u u i, j y y u

u u, o u u w, u u u u

e e, ie e e i, e e e

o w, wy ¥ ¥ ¥, i 3, % ¥ 5

o o, u ) 0 W, U . o o

E) w, | ¥ ¥ ¥t 5 5 5
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€ g, e € € ¥, e e e €
. ¥, W ¥ ¥ ¥, a 9, % ¥ E)
b) 0,2 b) b) u, ¥ o o b)
a ¥',0 a a a, Yy a a a
a J,a a a a, ¥ a a a
£~ a, ¥ £, a a a,y g, a a a
®~ a, ¥ a a a, Yy a a a
o~ o, W b) b) u, w o o b)
a~ 3,0 J,a b) u, a J,a a a

Note: Confusion matrix result shows the top two e confusions in descending order, and
IPA shows the likely phoneme transfer
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5.3.1.2 Baseline Non-native Acoustic Modeling

Baseline non-native acoustic modeling approachesystic model interpolation and merging
were tested by using the target-source phonemehingtt¢hat we found in Table 5.5 and 5.6.
Acoustic interpolation and merging were performed using French and the corresponding
context independent L1 acoustic model with 16 Ganssiixtures. For acoustic model merging,
the merging variant in Figure 1.15b was applied| fom acoustic model interpolation, Euclidean
distance was used for measuring the distance bettleeGaussians. Figure 5.1 shows the word
error rate (WER) of non-native French speakerstoh€se and Vietnamese origin by employing
acoustic model interpolation and merging acrosiedawreights.

Overall, the results show that acoustic model nmgrgierforms better than acoustic model
interpolation, although it creates a model withcevthe number of Gaussian mixtures compared
to the acoustic model interpolation. Note that, wh&gench weight is equal to 1.0, it is the
baseline result. When French weight equals toth€) French acoustic model is replaced by the
corresponding phonemes from the L1 acoustic mddbleospeaker.

85
---¢--- Vietnamese (interpolation)
80 - ---m--- Chinese (interpolation)
—a— Vietnamese (merging) .
7541 | —&— Chinese (merging) R4
g 70 1
o
w
= 65
60 -
55
50 T T T T

1.0/0.0 0.9/0.1 0.8/0.2 0.7/0.3 0.6/0.4 0.5/0.5 0.4/0.6 0.3/0.7 0.2/0.8 0.1/0.9 0.0/1.0
Weight (French/ Spk Native)

Figure 5.1 WER on non-native French speakers afi€dd and Vietnamese origin by
interpolating and merging acoustic models, whicghaeated from a 16 Gaussian Cl target
(French) and source (Chinese/ Vietnamese) acaustitels across different weights
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5.3.1.3 Hybrid of Interpolation and Merging Approach

In this section, the hybrid of interpolation andrgieg approach proposed in Section 2.4.1 is
applied for modeling cross-lingual transfer. Retadit the approach interpolates source and target
Gaussian in the matching states that are nearcto @her. For Gaussians that are far from each
other, the source or target Gaussians will be naergaus, before this can be carried out, the
source-target phoneme transfer information fours¥ipusly will first have to be used to map the
states of the target and source acoustic model.tdiget language in this case is the newly
acquired language of the non-native speakers, whiEhench. The possible source languages can
be any of the three types of languages (L1, L2 l&8)dproposed. For Viethamese speakers, L1,
L2 and L3 will be Viethamese, non-native English\igtnamese and Mandarin respectively. As
for Chinese speakers, L1, L2 and L3 are Mandarimn-mative English by Chinese and
Vietnamese respectively. The non-native Englishuatto models for Vietnamese and Chinese
speakers were created by adapting TIMIT acoustidehwith non-native English speech from
GMU corpus using MLLR algorithm with one regress@ass.

The results from non-native cross-lingual transfevdeling using L1, L2 and L3 are
presented in Figures 5.2 and Figure 5.3. Eucliditsstance was used as the distance measure. The
initial context independent acoustic models forriete Vietnamese, Chinese and non-native
English were employed for the experiments. The lredumodels have an average of 26
Gaussians per state. A threshold was set at alvoutirhes the average Gaussian distance. In fact,
currently Sphinx speech recognition system is napable of handling varied number of
Gaussians per state. To model this, we set alestwd the maximum number of Gaussian
mixtures possible. As a result, the means, varmaoe mixture weights for the empty Gaussians
are set to zero.

The results of adapting the target acoustic modidl il and L2 (English) acoustic model
are very promising. On average, using L1 for adaptavith the hybrid approach performs better
than acoustic model merging in Figure 5.1. In muestes, it scores an average relative WER
improvement of 6.61% and 12.78% for Chinese andndimese speakers respectively, while the
acoustic merging approach has an average of 5.86%41h86% of improvement for Chinese and
Vietnamese speakers respectively. Furthermorepitbposed approach uses smaller number of
Gaussians. As for L2 adaptaticgurprisingly for Chinese speakers, the results sthavthe non-
native acoustic model created from only about Suteis of non-native English speech is equally
effective compared to Mandarin acoustic model eeétom 5 hours of CADCC corpus to adapt
the French acoustic model (by using the procedueationed).The improvement from L2
adaptation for Viethamese is lower. This is underdable since there are only 7 speakers and
only slightly more than 3 minutes of non-native Esty speech is available for adaptation.
Another interesting result shown in the graph & i3 can be useful for adaptation. By giving
appropriate weight, Vietnamese acoustic model seerne able to adapt French acoustic models
for Chinese speakers and vice versa. A 3% reduaiaWER for non-native speech recognition
of native Chinese and Vietnamese speakers is redavtien French weight is equal to 0.8.

Overall, the results from the modeling are verynpiging, not only for L1 but also for L2
and L3 acoustic models. The results from our expents suggest that L2 resource, even though
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from a different target language may produce adiaptaesults which is equal or better than the
L1 acoustic model, when there are sufficient amoaftiata available. However, more tests
should be carried out to verify the same happeimguher adaptation algorithms and languages.
As for L3, using a low weight for modeling has simoiw be beneficial for adaptation.
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88
—e—Vietnamese

83 - —-& - - Non-natif English (Vietnamese)
—a— Mandarin

78 A

73 A

1.0/0.0 0.9/0.1 0.8/0.2 0.7/0.3 0.6/ 0.4 0.5/ 0.5 0.4/ 0.6 0.3/0.7 0.2/0.8 0.1/ 0.9 0.0/ 1.0
Weight (French/ Source language)

Figure 5.2 WER on non-native French speakers otndimese origin using hybrid models
created from a 16 Gaussian Cl French and diffesentce acoustic models with varied weights

87 —e— Mandarin
—-&-—-Non-native English (Chinese)

821 — & Vietnamese

77 -

WER (%)

67

62

57

5 2 T

1.0/ 0.0 0.9/0.1 0.8/0.2 0.7/ 0.3 0.6/ 0.4 0.5/ 0.5 0.4/ 0.6

0.3/0.7 0.2/ 0.8 0.1/ 0.9 0.0/ 1.0

Weight (French/ Source language)

Figure 5.3 WER on non-native French speakers ohé&& origin using hybrid models created
from a 16 Gaussian CI French and different soucosistic models with varied weights
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5.3.1.4 Manual Interpolation

The hybrid approach works by interpolating and rmeygof Gaussian mixtures of target and
source acoustic models. A small shortcoming is that resulting model will have a higher
number of Gaussian mixtures than the original tangedel. However, the advantage is that it is
capable of treating acoustic model resources. Heweavhen the original source language speech
corpus is available, it may be more beneficialde the corpus directly to create a source acoustic
model that corresponds to the target language ticausdel for modeling purpose by adapting
the target acoustic model with source languages Wiili also avoid using distance measure for
matching the Gaussians. This can be achieved withpooposed interpolation approach in
Section 2.4.2 for modeling cross-lingual transfeing multilingual corpora.

MLLR (with single regression class) and MAP werediso adapt the target acoustic model
with the same three types of languages, experirdeéntéhe previous hybrid approach. Only two
iterations of MLLR and an iteration of MAP were éipd to avoid the transformations go too far
until deteriorate the recognition results. Figuked and 5.5 present the speech recognition
performance using the acoustic models created &onproposed interpolation approach across
different weights for non-native French speakergietnamese and Chinese origin.

66
—e— Vietnamese
64 - —=a— Non-native English (Viethamese)
---a--- Vietnamese+Non-native English
62 1 ---X--- Mandarin
60 -

50

1.0/0.0 0.9/0.1 0.8/0.2 0.7/0.3 0.6/ 0.4 0.5/ 0.5 0.4/ 0.6 0.3/ 0.7 0.2/0.8 0.1/ 0.9 0.0/ 1.0
Weight (French/ Source language)
Figure 5.4 WER on non-native French speakers oftndimese origin using the proposed

interpolated models which are created from a 16sGan CI French and different source
acoustic models with varied weights
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62
—e&— Mandarin

60 | —=&— Non-native English (Chinese)
---A--- Mandarin+Non-native English
---%X--- Vietnamse

58 - ‘

52 A

50 T T T T T T T T T T
1.0/0.00.9/0.10.8/0.2 0.7/0.30.6/0.40.5/0.50.4/0.6 0.3/ 0.7 0.2/ 0.8 0.1/ 0.9 0.0/ 1.0

Weight (French/ Source language)

Figure 5.5 WER on non-native French speakers of€3a origin using the proposed interpolated
models which are created from a 16 Gaussian Clchreamd different source acoustic models
with different weights

The modeling results show that L1, L2 and L3 arke ab improve the non-native French
speakers. Again, the results show that there is leigel of accent in the non-native speech. Even
without doing any interpolation, all three languagecept non-native English for Viethamese are
able improve the target acoustic model. The impream@s from using L1 and L2 (English) with
our proposed interpolation are comparable withhiyierid approach, but without any increase in
the amount of Gaussian mixtures. The average vel&f/ER improvements of using the
corresponding L1 as source language for Vietnanaesk Chinese speakers are 11.13% and
9.38% respectively. Similar to the L2 adaptatiosuits from the hybrid modeling, 5 minutes of
non-native English speech seems to perform ratkiroempared to 5 hours of Mandarin speech
for adaptation. We compared the performances di b L1 and L2 in adaptation further by
randomly selecting about the same amount of spechthe corresponding L1 corpus compared
to the L2 speech to adapt the French acoustic naukkubsequently tested it on the non-native
speakers. The tests were not very conclusive. &bgts which are not shown in the figures here
indicate that non-native acoustic models createch fadapting French acoustic model using the
non-native English speech produced lower WER acdifésrent weights for Chinese speakers
compared to the one created by adapting with Mamdgeech (L1), resulting in as many as 3%
reduction in error rate in the best case. HowefarVietnamese speakers, Viethamese speech
(L2) is slightly better than non-native English sple from Vietnamese speakers for adapting
French acoustic model. We have also tested theiocatidn of L1 and the L2 for adaptation. The
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combined model was built by simply adapting thegeéarmodel with the non-native English
speech and then adapting it again with the natimguage of the speaker. From the figures, they
show that combining both speech sources for adaptie French acoustic model produced
models which are only slightly better for Viethamepeakers, while there are no big differences
for Chinese speakers. Finally, French acoustic tsoogerpolated with L3 produce a more
significant reduction in error rate compared to thedels created using the hybrid approach on
average, where word error rate reduced as muckoa®iGnative Viethamese and 4% for native
Chinese speakers. Surprisingly for Viethamese speakeven without any interpolation,
Mandarin speech is able to improve the target damowusodel, but only slightly for Chinese
speakers with Viethamese speech. One possible ratfda for this is that the transformation
carried out with Mandarin speech and the (origimah-native Chinese) phoneme mapping suits
Vietnamese more than the opposite for Chinese spgakurthermore, only few iterations of
MLLR and MAP were employed.

These results from our proposed interpolation aggitcare promising. The acoustic model
created from modeling with L1 is comparable wittbhigt approach, but at the same time there is
no increase in the number of Gaussian mixturebenmodels. On the other hand, the modeling
with L2 and L3 produces acoustic models that ateebthan the corresponding one adapted with
hybrid approach for speech recognition on average.

5.3.1.5 Weighted Least Square

The proposed interpolation approach above can peudary good recognition results if suitable
weight is assigned for modeling. However, in oupeskment, we evaluated different weights as a
priori. In fact, when some non-native speech islabke from the speaker, the speech can be used
to estimate the weights. In this section, weigHeabt square (WLS) proposed in Section 2.4.3
will be tested for its effectiveness in estimatihg weights.

Table 5.7 Comparing WER from manual interpolatiod &/LS

Native Source language FR=0.5, | Manual Int. WLS
speaker VN/CN=0.5] (best result

VN (L1) 52.0 51.8 52.3

Vietnamese| VN+GMU (L1+L2) 51.7 51.1 50.2

CADCC (L3) 55.8 54.1 54.9

CADCC (L1) 52.5 51.0 51.8

Chinese [CADCC+GMU (L1+L2) 52.5 50.9 51.1

VN (L3) 53.9 53.9 52.7

Baseline results for Vietnamese and Chinese spgeaker60.6% and 58.5% respectively

Table 5.7 presents the performance improvementppiymng WLS for estimating the
weights for different source languages compareasiog manual interpolation. Three utterances
were selected from each speaker for estimatingvitights for each speaker. The results are very
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encouraging, where the average improvements fot2gnd L3 are equal or better than the best
results found in the manual interpolation. Thisbscause in manual interpolation, the same
weight is applied for all the speakers, and onlg areight is used. Using WLS, speaker specific
weights can be estimated. The improvement canftirerée higher if the estimation is accurate.
This shows that the weights automatically estimébednodeling are relevant.

5.3.1.6 Eigenvoices in Bilingual Space

In this section, eigenvoices approach presente@dation 2.4.4 is examined for non-native
acoustic modeling. The idea is to use the sourguiage corpus to create a language space in the
eigenspace to improve non-native speaker adaptation

We did not create speaker dependent models frommative English speech (for creating
supervectors) since only about 30 seconds of sperecavailable from each speaker. Hence, only
language resources of L1 and L3 were verified. Fhench supervectors were created from
BREF120 corpus, producing 120 supervectors (oneeémh speaker from BREF120). On the
other hand, the ‘non-native’ supervectors weretereasing VN and CADCC corpora, but using
the same French speaker independent context indepemodel as the initial model. This is
done by using MLLR and MAP to adapt the French kpeandependent acoustic model using the
Vietnamese and Mandarin corpora. This produces &9 20 speaker dependent models for
Vietnamese and Chinese respectively. Subsequeziggnvectors were derived from both the
target and source supervectors (bi-lingual spdégure 5.6 shows the positions of ten of the
French and Viethnamese speakers used for creagngigenvectors on eigenspace. This example
shows that the second dimension of the eigenspagecarrespond to the bi-lingual space.

a1
()

& French B o o 40 |
O Vietnamese o, B
o 30
o
20 1
N
g lo 4
<
>
@ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0
=
w -210 -205 -200 -195 -190 -185 -180 -175 -170
_lo 4
-20 4
. *
. ” o, e ¢
* -30
40

Eigenvalue 1

Figure 5.6 Position of ten French and ten Vietnantegining speakers in eigenspace created
from French and Vietnamese supervectors
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Table 5.8 presents the improvement in WER using2@cipal components with MLED
eigenvoices approach. The results show that usig Brench supervectors for creating the
eigenvectors produces 5.9% and 5.8% reduction tiar eate for Vietnamese and Chinese
speakers. This improvement corresponds to a coiovethtspeaker adaptation using eigenvoices
approach. When French supervectors are combinddtiagt L1 supervectors of the speakers, to
form a bi-lingual space, this can further improtie performance of eigenvoices. However, L3
resources do not produce any significant improveémen

Table 5.8 Average WER of Eigenvoices using 20 camepts

Native Baseline French French + Vietnamese French + Chinese

Speaker supervectors supervectors supervectors
Viethamese¢ 60.6 54.7 51.9 54.4

Chinese 58.5 52.7 52.6 51.5

We went further to verify the performance of usthg source language supervectors by
verifying whether adding more target language segmors will actually lead to the same
improvement. For this, we varied the number of Ehesupervectors used for creating the
eigenvectors and setting the number of principahmanents used at constant. The results in
Figure 5.7 show that when the number of French rsegtors reaches 40, the adaptation has
already reached an optimum state for native Vietsmmand native Chinese, where subsequent
results do not differ much after that. The additmhsource language supervectors after 120
French supervectors produces a significant drofyiR.

We have also evaluated the performance of our pexpapproaches with the conventional
(supervised) MLLR used in speaker adaptation, ambsequently combined the proposed
approaches with MLLR (using one regression claBsg same amount of adaptation speech was
used in all the tests. The results are presentélchiote 5.9. Surprisingly, the results show that
WLS and eigenvoices perform better than MLLR. lis thase, WLS produces better results
compared to eigenvoices. In addition, WLS is simghke carry out. It is also able to take
advantage of small amount of L3 speech, but notifpenvoices. When the non-native adaptation
approaches are combined with MLLR, for both Chinasd Viethamese speakers, the proposed
approaches give more than 10% absolute WER reductio

We did not test unsupervised adaptation with the-mettive data. However, we suppose
that for both the WLS and eigenvoices approachesabte to do well, since eigenvoices are
famous for its fast adaptation (using a little amtonf speech), while for WLS, there are only two
parameters (weights) to estimate.
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62

—- & -—Viethamese

—a— Chinese
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Number of Supervectors

Figure 5.7 WER on non-native French speakers udiiifierent number of supervectors to create
eigenvectors and maintaining the number of prifcipamponents at 20 (the number of
supervectors beyond 120 corresponds to the additfothe source language speakers in the
eigenspace).

Table 5.9 Comparing WER of different approachesfor-native speaker adaptation

Native speaker| BaselinéMLLR WLS Egv. WLS +MLLR Egv+ MLLR

Vietnamese 60.6 53.4 50.2 51.9 48.9 50.1
Chinese 58.5 51.5 51.1 515 49.1 48.9

5.3.2 Context Variation Modeling

In the previous section, the hybrid of interpolatiand merging has proven to be effective for
modeling cross-lingual transfer by non-native sgeskin this section, we compare the effects of
context modeling using the common state-tying apgnoduring acoustic model training against

our proposed context modeling in Section 2.5.1 qusire hybrid approach of interpolation and

merging. Unlike the native speakers, the non-natipeakers are not capable of articulating
accurate second language sounds. Their speecfiusnoed by their native language and there
are possibly incorrect pronunciations. Hence, usiny precise context dependent modeling such
as triphones during training may not be a goodahoihe hybrid of interpolation and merging is

applied on two acoustic models with different catdeto achieve an intermediate level between
context independent and context dependent modeling.
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5.3.2.1 Baseline Context Modeling

Baseline speech recognition experiments were chwoig for testing acoustic models created
using different number of tied-states (triphoné®)e results for native French and non-native
French speakers are shown in Table 5.10. In gendmralaverage WER for Vietnamese and
Chinese speakers is high, about twice the rateati¥en French speakers. The results from non-
native French speakers also show that speech rigicogsystem performed better using acoustic
model trained with a low number of tied-states.tiégnese speakers who are more experienced
in this case show a slight reduction in word emaie when there are a small number of tied-
states. On the other hand, Chinese speakers dseapot to benefit at all from context dependent
modeling. These results confirm our expectaticat trery precise context modeling does not
improve and even degrades the performance of ntivenspeakers. On the opposite, context
dependent model works well with the native Frenpbagkers, with a reduction of about twelve
percent absolute word error rate by changing fromtext independent to context dependent with
8129 states.

Table 5.11 shows the results of training contedependent model using varied amount of
Gaussian mixture. Adding more Gaussian reduces/ting error rate quite substantially for non-
native speakers, but the improvement for nativenéhrespeakers was significantly less than the
improvement gained from using context dependent enodhis shows that adding more
Gaussians seems to be more effective for improthegrecognition of non-native speech than
using very precise context dependent modeling.

Table 5.10 WER of native (French) and non-nati%éstGamese and Chinese) using Cl and CD
acoustic models at different number of tied-stait) 16 Gaussians per state

State Cl: 129 429 629 | 4129 8129

French 36.9 30.00 279 23p 2451
Viethamese 60.6 59.7 596 66/5 702
Chinese 58.5 63.80 67.5 780 83|0

Table 5.11 WER of native (French) and non-nati¥@stamese and Chinese) using Cl acoustic
models with different number of Gaussians mixtuze giate

Gaussian 16) 34 64 128256
French 36.9 34.0( 32.7(31.4| 32.2
Vietnamesg¢ 60.6| 57.4( 56.4(55.8| 54.9
Chinese 58.%56.6| 56.1|55.6[ 56.0

5.3.2.2 Hybrid of Acoustic Model Interpolation and Merging for Context Modeling

Context dependent modeling as mentioned in previmasion is not beneficial for non-native
speakers with a strong accent in general. In thisian, we attempt to create a model which is
intermediate between a flat context independenteinamd a very precise triphone context
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dependent model by using the hybrid approach oérjpmiation and merging. For the
experiments, a context independent (Cl) model an8129 states context dependent (CD) model
were used. Each contains 16 Gaussians per state.

Recall that in the hybrid modeling, each CD Gaussidll be associated with one CI
Gaussian, and subsequently interpolated with thengiveight, while the CI Gaussian without
any associated CD Gaussian will be merged inst€allle 5.12 shows WERs of non-native
French speech recognition using acoustic modekganieby modeling the context across different
Cl and CD weights. Approximated divergence distawes used as the distance measurement.
The interpolation-merging produced CD models wittl2® states, where each state has an
average of 25 Gaussians (except for Cl weight=0Gingleight=1.0).

We noticed that there was a slight decrease in \WE&n the CI weight is at 1.0, compared
to the original CI result. Note that when Cl weighequal to 1.0, the algorithm produces a model
with 8129 states, where all triphones are repldmgdheir respective monophones. The best
WERSs for native Viethamese and Chinese speakdfseoich were achieved when Cl weight was
0.7. The WERs were 51.5% and 54.0% for ViethameseCGhinese respectively. The results are
even better than context independent modeling ugb& Gaussian mixtures. The results show
that when appropriate weight is used, the hybridhow produces encouraging results. The
weight to apply seems to correspond to the expegiasf the speaker in the language. The
Vietnamese speakers who are more experienced sigberhimprovements in WER compared to
the Chinese speakers. We also found that the WERtofe French speakers only showed slight
increase of 2% compared to the baseline CD modehwtme Cl weight is equal to 0.5.

The results from the experiments are very encongagince the approach is very easy to
apply and produces a better result than contextpeddent model with a lot of Gaussians.
Furthermore, native French speakers only show ghtskilecrease in performance using our
proposed modeling approach.

Table 5.12 Interpolation-merging of a 16 Gaussiafl@9 States) and a CD (8129 States) model

Cl weight 1.0| 09| 0.7/ 05 03 0.1 0.0
French 36.9 33.2| 28.6| 26.1| 25.0| 22.7| 24.1
Vietnamesg 58.0| 53.5| 51.5| 51.5| 53.4| 56.4| 70.2

Chinese 57.355.2| 54.0| 55.2| 58.3| 63.5| 83.0
Cl weight at 1.0 denotes Cl model, and CI weigta.@tdenotes CD results

Finally, it is also interesting to verify whethesrbining context and cross-lingual transfer
modeling will produce an additive effect. We uskd hew French CD acoustic model created
from our proposed hybrid approach of context mogeht Cl weight equals to 0.5, followed by
cross-lingual transfer adaptation using the cowedmg L1 acoustic model of the non-native
speakers. The results are presented in Table Wh8n French weight equals to 0.5, the results
showed an overall improvement in WER compared ¢éoltiseline presented in Table 5.12 from
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60.6% to 44.1% for Viethamese speakers and frombs80 52.1% for Chinese speakers. On the
other hand, the WER for native French speakersghoivn here) increased only about 3% with
the non-native acoustic models, compared to thelin@sCD acoustic model.

Table 5.13 WER of non-native French using combamatif context and cross-lingual modeling
(using the 0.5/0.5 hybrid model of the previouddpab

French weight 1.0 09 0.7 05 03 01
Vietnamese 51.549.1 46.6 44.1 45.0 45.9
Chinese 55.254.4 52.5 52.1 53.0 53.0

5.3.3 Conclusions from Non-Native Acoustic Modeling

We have examined the proposed multilingual acousticieling approaches to adapt French
acoustic model for non-native speakers withoutgisiny non-native French speech. Three types
of speech were experimented for adaptation. Fotndieese speakers, they were Vietnamese
(L1), non-native English by Vietnamese (L2) and Marmn (L3). On the other hand for Chinese
speakers, the languages tested were Mandarin (ldtinative English by Chinese (L2) and
Vietnamese (L3). Among these three types of spetiehnon-native speech can be more or
equally effective as the native language of theakpefor adaptation, even though the language
pronounced by non-native speakers is different fthentarget language of speech recognition
system. Interestingly, with appropriate (smallegight to the source model, native Viethamese
speech seems to be useful for adapting non-natigech speaker of Chinese origin and vice
versa. This shows that native language close tantitber tongue of the speaker can be useful.

Two approaches have been proposed for adaptingatcbestic models for non-native
speakers, depending on whether the resource alitalm the form of acoustic model or corpus.
The hybrid approach performs better than the baselcoustic model interpolation and merging
approach given the source L1 acoustic model. Itaiss shown to be beneficial for adaptation
with L2 and L3 acoustic models. If L1, L2 or L3 pos is available, our proposed manual
interpolation approach performs nearly as effectiseghe hybrid approach, and at the same time
maintains the number of Gaussians in each statsaime as the initial target acoustic model. In
addition, two speaker adaptation techniques hase bEen proposed for non-native speaker
adaptation, they are weighted least square (WL8)e@genvoices. In term of language resources,
WLS has shown to be capable of taking advantade? aind L3 resources even though in small
quantifies. However, eigenvoices approach doeseein to be able to work with L3 resources.
Both WLS and eigenvoices when combined with MLLR/énahown additional reduction in
WER, producing more than 10% reduction in absoMER.

In term of context variation modeling, using contdgpendent modeling for inexperienced
non-native speakers will end up producing morersrion the other hand, increasing the number
of Gaussian mixtures gives a better improvemerspimech recognition accuracy. However, this
means that the benefit of context dependent favenapeakers have to be sacrificed. The hybrid
approach proposed for multilingual acoustic modghas proven to be also useful for modeling
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between two different contexts to achieve an intgtiste state, where the resulting model
reduces the errors of non-native speakers ancaaime time causes only a slight increase in the
recognition errors for the native speakers.
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5.4 Pronunciation Modeling

This section examines the pronunciation modelin¢hods proposed in Chapter 3 for non-native
speakers. In these experiments, we assume that isomeative speech is available for finding
the pronunciation variants. Three pronunciation efiog approaches were tested. Two of the
approaches are modifications of earlier works, whee attempt to use small amount of non-
native speech available for modeling pronunciatianants with pronunciation dictionary and n-
best list rescoring approach. We have also testedva approach called latent pronunciation
analysis for pronunciation habit clustering and -native pronunciation adaptation. The non-
native French (NNF) and non-native English corpl&LE) are tested in all the approaches,
except the latent pronunciation analysis, whicbrify tested with non-native English speakers,
because there is no sufficient data in Frenchxeceting the test.

5.4.1 Pronunciation Dictionary: Decision Tree

This section presents the experiments carried outtdsting pronunciation modeling using
pronunciation dictionary in Section 3.2.1. The pnociation variants are derived from decision
trees, and then added into the pronunciation diatip. Table 5.14 below shows the data used for
testing and training the accent models for nonvedtirench and English speakers.

Table 5.14 Number of speakers involved in test@odunciation modeling

Corpus Description # Speaker
Test 10
NNF Pronunciation modeling (Viethamese) 3
Pronunciation modeling (Chinese 2
Test 34
ISLE Pronunciation modeling (German 6
Pronunciation modeling (Italian) 6

In the first pass, triphone confusion matrix wasated by aligning the hypotheses and the
references from the phoneme recognizer and theedoatignment system respectively. The
threshold for the confusion matrix was set very .15, which created on average about 10
variants per pronunciation. The variants were thdthed into a temporary dictionary.

In the second pass, the dictionary created in itisé gass was used for forced-alignment.
The phoneme time stamps produced from the forgmmkent were aligned again with the
corresponding references from the first pass. €ieates triphone confusions which will be used
to create phoneme decision trees. Wagon utilitylepmpy CART algorithm from the Festival
speech synthesis system [Taylor 1998] was usecetiecthe phonetic decision trees. Before the
decision trees can be created, the left and rightexts of the phoneme confusions from the
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second pass have to be converted to feature vetgksased articulation features were used to
represent the phoneme for classification, see Talke.

Table 5.15 Articulation feature vector (completegd for building decision trees for four French

phonemes
Phoneme 5 a~ t m
vowel vowel vowel consonant  consongnt
Tongue back front NA NA
Opening open-mid open NA NA
Lips rounded  unrounded NA NA
Duration normal normal NA NA
Nasal non-nasal nasal NA NA
Manner NA NA plosive nasal
Place NA NA alveolar bilabial
Voiced NA NA unvoiced unvoiced
Aspirated NA NA unaspiratedunaspirateq

The tests for non-native French and English spesakesre carried out using context
independent models with 16 Gaussians per stateneP® decision trees were subsequently
created, and the threshold for the decision treses st at 0.3, producing about one extra variant
per pronunciation. Table 5.16 shows an excerpt hid hon-native variants added into
pronunciation dictionary. From the example variaiitgs obvious that substitution, deletion and
insertion have happened. Some of the pronunciativiants have been seen in previous chapter,
for instance the deletion of final plosive by Viaetnese speakers, while others are new
observations. As discussed in Chapter 1, the red®orhis may be caused by wrong perception,
native pronunciation norm or simplification of th@onunciation that occur on non-native

speakers.

Table 5.16 Examples of non-native pronunciatioriards (Viethamese and Chinese)

derived from decision trees.

French Word French (standard) Viethamese variant ingSk variant
aodQt ut u -

brochure bR>[yR - bRo[iR
désirez deziRe - desiRe
excusez ekskyze eskyze -

fixé fikse fise -

monnaie mone monce ma~nge
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Table 5.17 below shows the performance improveroérihe speech recognition system
after adding the pronunciation variants into thedtiae dictionary and for testing. Context
independent model with 16 Gaussians mixture wad irsthe tests. Non-native French speakers
from Chinese and Viethamese origin shows a redudctioNVER of 1.3% and 1.8% respectively,
while German and ltalian speakers speaking Enghsiw a reduction of 2.6% and 4.6%.

Table 5.17 The improvement in WER by modeling prariation variants using decision trees for
non-native French and English speakers

Non-native French Non-native EnglisH
Approach
Chinese | Vietnamese German Italian
Baseline 56.2 58.1 58.7 81.5
Decision Tree 54.9 56.3 56.1 76.9

Dependent T-tests were calculated to verify whether improvement was significant
(95% confidence). The t-values for Chinese andnéistese speakers (non-native French) are
4.089 and 3.182 respectively, while the values Garman and Italian speakers (non-native
English) are 7.975 and 4.877 respectively. Thelte$or non-native English speakers show that
the reductions in WER are significant, but the ltssistom non-native French speakers are not.
This is due to the small sample of number of spesalteat we used for testing non-native French
speakers. The calculations for statistical sigaificare done for reference purpose, and the
statistical insignificant of the non-native Frenobsults do not necessary indicate that the
approach is flaws, or the difference is not impoita

5.4.2 N-Best List Rescoring

In the n-best list rescoring approach, the proratimi models are re-evaluated after decoding in
the rescoring module. The same speakers used prélvéous section were used for creating the
triphone pronunciation model and also for testisge(Table 5.14). To create the triphone model,
the triphone confusion is interpolated with the w@mone confusion, using the weight 0.8 and
0.2 respectively. The number of n-best sentencesetisat 100. Table 5.18 below shows the
improvement after rescoring.

Table 5.18 The improvement in WER by modeling pramation variants using n-best rescoring
for non-native French and English speakers

Non-native French Non-native English
Approach
Chinese | Vietnamege German Italian
Baseline 56.2 58.1 58.7 81.5
N-Best rescoring 55.5 56.8 56.9 79.6
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The results show that n-best rescoring is abledoge the error made. However, compared
to the pronunciation dictionary results, n-bestoeimg performance is slightly lower in all the
tests. Furthermore, n-best list rescoring requimasch more processing compared to the
traditional dictionary approach.

5.4.3 Latent Pronunciation Analysis

In latent pronunciation analysis, pronunciation fasion supervectors are created to derive
eigenvectors, which will be used for clusteringags according to their pronunciation habits,
and estimating the pronunciation model of an unkmepeaker.

In this test, only the non-native English corpBLfE) was evaluated, because there was no
sufficient adaptation data to create French proiationn models for testing. Eighteen non-native
English speakers, each with about 15 minutes ofstidbed speech from native German and
Italian were selected as the training set to crésespeaker dependent pronunciation confusion
supervectors. For creating the ‘training’ supergesstspeaker dependent decision trees have to be
grown. Wagon utility was again applied for this pose. The next step is to create the
supervectors. First, triphone contexts have toxteeted from the test dictionary to create the
bare bones of the supervectors. In total, 146adrne contexts were extracted from the test
pronunciation dictionary. Subsequently, the thréghor the decision trees was set at 0.5,
pronunciation variants for the triphone contextsrevextracted from the speaker dependent
decision trees, and this creates supervectors 4688 dimensions (features) each. This means
that for each context, there were about 4 possibtants. With the 36 pronunciation confusion
supervectors, a covariance matrix was calculated sabsequently the eigenvectors were derived.

First, we examined the approach in term of clustgrthe speakers according to
pronunciation habits. We will look only at the effiweness of first and second eigenvectors in
clustering the speakers. This is done by plottirgdigenvalues for the 36 training speakers. The
results in Figure 5.8 show that the two groupsai-native speakers can be indeed separated by
using the first eigenvector. Without any knowledgmut the accent of the speakers, one way is
to manually divide the speakers to two groups usiggnvector 1, at the value zero.
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Figure 5.8 Plotting 36 non-native English (18 Genmda8 Italian) speakers on eigenspace
(dimension one and two)

For pronunciation adaptation, ten principal compasevith the highest eigenvalues were
used. The remaining ten speakers were tested. Timates of transcribed speech from each test
speaker was used for estimating the test pronuoeiabnfusion supervectors. Subsequently, the
weights of the supervector on the eigenspace wstimaed. The weights are then used for re-
estimating the test supervector by projecting usiregeigenvectors. The threshold was set at 0.4
and 0.3 to extract the pronunciation variants frone supervector and added into the
pronunciation dictionary. Table 5.19 shows the ltssiccompared to the conventional
pronunciation dictionary approach. Since only tpeakers were involved in the test, the baseline
results in this experiment are different from threvious two tests. The results show that the
latent pronunciation analysis approach is ableraipt the pronunciation variants rather well
with reduction in WER. However, the improvemenleiss compared to the general pronunciation
dictionary (decision tree) approach. The benefithig approach is that the accent of the speaker
does not need to be known in advance for selethiagight dictionary. We have also carried out
a simple comparison of the variants generated hgamly selecting the variants estimated for an
Italian speaker, and compared them against thantarifor other Italian and German speakers.
The average difference (deletion and addition) betwthe number of variants for that Italian
speaker and the other ltalian speakers is 209ewhé average difference between the variants
for the ltalian speaker and the German speaketslisThis shows that the variants generated are
speaker specific, and at the same time more relatee accent group of the speaker.
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Table 5.19 Comparing the result of latent pronuimisanalysis with the normal decision tree
approach for modeling pronunciation variants

Baseline Latent PronL_mciation Decision Tree
Speaker (<1 words) Adaptation
200 variants 400 variantg 200 variants 400 variantg
Italian 75.5 72.6 72.2 73.0 71.2
German 59.0 57.6 57.2 56.3 56.0

5.4.4 Conclusions from Pronunciation Modeling

We have examined three different approaches ofuprciation modeling. The use of decision
trees remains the best way to model pronunciatianamts. Adding variants created from
decision trees into pronunciation dictionary redttee WER more than the rescoring n-best list.
Furthermore, the n-best list rescoring requireshmaore processing compared to the traditional
dictionary approach. As for the latent pronunciatanalysis, it has shown to be promising for
clustering speakers using pronunciation habits. #iso shown to be beneficial for pronunciation
adaptation given some speech. The method can lkinisgtuation when we do not know in
advance the accent of the speakers. If the acdghemspeaker is known, it is better to use the

accent specific pronunciation dictionary, singeridduces better results.
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5.5 Accent Identification

In this section, accent identification using mudtjual decision tree which has been proposed in
Chapter 4 will be examined. Some baseline accemtification approaches mentioned in
Chapter 1 were also tested by comparing them Wetptoposed approach. In all the experiments,
non-native French from our NNF corpus and non-eafinglish speakers from ISLE corpus were
examined.

5.5.1 Baseline Approaches

Four baseline accent identification approachesritestin Section 1.5.4 were tested. Two of the
approaches employ acoustic features, and the t#®ruse phonotactic features for accent
identification. Table 5.20 shows the amount of mative speech used to create and test the
accent models. The NNF corpus contains about as#ml test sentences (Chinese and
Vietnamese), while the ISLE corpus has about tvausnd eight hundred sentences (German
and ltalian).

Table 5.20 Number of speakers involved in testaomént modeling

Corpus Description # Speaker
Test 10
NNF Accent modeling (non-native French by Viethamesge)

Accent modeling (non-native French by Chinese

Test 34
ISLE Accent modeling (non-native English by German 6
Accent modeling (non-native English by Italian) 6

5.5.1.1 Baseline 1: Acoustic Features Score using HMM

A text dependent accent identification approactedam the approach presented in Figure 1.18
was tested. The accent models were created byiadape target context independent acoustic
models with 16 Gaussian mixtures by using non-eapeech with MLLR and MAP. For testing
the accent of an unknown speaker, it is carriechgdbrced aligning the speech of the non-native
speaker, and comparing the acoustic scores geddradifferent accent models.

The results for the experiment are presented ineTa1. Using non-native speech to adapt
the target acoustic model gave encouraging refutgdentifying German and Italian accents.
However, the approach did not do well for identifyiaccents from non-native French speakers.
For non-native French test, to verify further wegtthe low correct identification rates are due to
the unsuitable decision threshold used, we havedadditional score to the Chinese accent
model (which is equaled to changing the decisioastmold). The results in Table 5.22 show that
changing the decision threshold improves the Clirsesent identification, but at the same time
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reduces the Vietnamese accent identification. $hsws that changing the threshold score does
not help. The possible reason for the failure enitfying non-native French accent is due to the
small amount of adaptation speech, and the simyilagtween the two accents.

Table 5.21 Accent identification using accenteduatio models

HMM Model for PR 1 HMM Model for PR 2 Speaker Careate
French + Non-native French | French + Non-native Frenclp Vietnamese|  53.14%
(Vietnamese) (Chinese) Chinese 47.24%
English + Non-native English | English + Non-native English German 87.43%
(German) (Italian) ltalian 89.38%

Table 5.22 Effect of changing the decision thregliolaccent identification (acoustic features)

Threshold scorg 1000 5000 10000 50000 104000
Vietnamese 53.14%52.94% 52.94% 51.72% 50.71%
Chinese 47.24%47.44% 47.65% 48.47% 50.10%

5.5.1.2 Baseline 2: Acoustic Features Score using GMM

A text independent accent identification approaakeol on Gaussian mixture model (GMM) for
speaker recognition was also tested. The Alizé lsgyescognition toolkit [Bonastre 2005] was

used to create the accent models based on GMM.cBan& independent model was initially

created. It was then adapted to accented modehsferit iterations of MAP adaptation, by using

the same amount of non-native speech as beforele Tal23 below shows the accent

identification results using 32 Gaussians mixtudei. The results again show that recognizing
English accent is relatively good, although slightlborer that previous approach. Non-native
French accent is still a problem for recognition.

Table 5.23 Accent identification using Gaussiantor models

GMM 1 GMM 2 Speaker Correct rafe
. . . . Vietnamese 58.62%
Non-native French (Viethamese) Non-native Frendhir{€se) ) °
Chinese 45.43%
German 74.78%
Non-native English (German) Non-native Englishlidia) . °
Italian 73.31%
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5.5.1.3 Baseline Method 3: Phonotactic Features Score usitdv

In this test, language models are used to captarenative phonotactic features for accent
identification. The approach has earlier been mteskein Section 1.5.4.2 (see Figure 1.19). In
general, the phoneme trigram models were created tise phoneme strings from the decoding
of non-native speech. For a given utterance withirdtnown accent, a target language phoneme
recognizer decodes the utterance, and the accaiglmdich gives the highest language model
score according to equation 1.17 is selected abypethesized accent. For our test, the phoneme
bigram weight was set at 0.7999, and the unigrathZatThe same conditions in term of test and
adaptation material were used for testing as meetion the previous section, refer to Table 5.20.
Table 5.24 shows the accent identification results.

Table 5.24 Accent identification using phoneme laage models

LM 1 LM 2 Speaker Correct ratg
Bigram: Bigram: Chinese| Vietnamese 78.09%
Vietnamese accert accent Chinese 25 15%
Bigram: German | Bigram: Italian German 67.67%
accent accent ltalian 83.79%

The results show that it identifies English acaguite well, but like the approach before, it
also suffers from classification errors with noriive French accent from Chinese speakers.
Again, to verify the accent from non-native Frersgeakers, we have attempted to modify the
decision threshold, and Table 5.25 shows the eslilte results show that changing the decision
threshold improves the identification of the accehtChinese speakers, and at the same time
deteriorate the identification of the accent oftW@nese speakers.

Table 5.25 Effect of changing the decision thredhmlaccent identification (language model)

Threshold scor¢ 0 1.0 2.0
Vietnamese 78.09% 60.74% 46.04%
Chinese 25.15% 42.80% 57.81%

5.5.1.4 Baseline 4: Phoneme Distribution Score using SVM

In this section, phonotactic features are modedguSVM, based on the approach described in
Section 1.5.4.2 (see Figure 1.20). This is a tagependent method. The accent models were
built by using SVM classifier through supervisedining using instances of multilingual
phoneme distributions. Recall that each traininterance is decoded by parallel phoneme
recognizers producing phoneme distributions ofedéht languages, which will be merged to
become the training instance.
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In this test, five phoneme recognizers of Frenatglish, Malay, Chinese and Viethamese
were employed. Their context independent acoustidets were created from BREF120, TIMIT,
MSC, CADCC and VN corpora respectively (refer tdolea5.3 for information on the corpora).
The phoneme recognizers produced phoneme distitsubtf five languages with a total of 202
dimensions or phonemes distributions each. The sameunt of non-native utterances like
before was used for creating the accent modelsfantesting. Table 5.26 shows the accent
identification results. This method is relativelgtter comparing to the previous phonotactic
approach using LM score in term of identifying nuative English accent. However, like the
previous two approaches, it also faces the sanfieuiy in discriminating non-native French
accent from Vietnamese and Chinese speakers.

Table 5.26 Accent identification using phonemeritistion features

Speakers| Correct rate Speaker | Correct rate
Vietnamesg¢ 70.00% German 70.19%
Chinese 48.48% Italian 89.96%

5.5.2 Proposed Approach: Multilingual Decision Trees

This section will examine our proposed multilingudécision tree approach for accent
identification. Note that the experiments were iegrrout in a text dependent mode which
requires the knowledge of the transcription of tkterance spoken by the speaker during testing.
No fundamental constraint would prevent us to teg method in a text independent (and
unsupervised) mode using a first pass hypothesispeéch recognition system instead of the
reference transcription. However, since we are mgribn non-native speech recognition, such a
hypothesis may be seriously degraded comparedetoetierence. Testing the feasibility of this
text independent mode is part of future work. Asntimmed in Chapter 4, the accent models
consist of multilingual decision trees, which arailtoby using the hypotheses from the
multilingual phoneme recognizers and the refererfcesy the force alignment using target
language speech recognition system. During acdentification, the speech from the non-native
speakers is also decoded by the multilingual ph@neroognizer and the hypothesis is compared
to a forced aligned reference. The triphone confssiare created and evaluated using the accent
models in the form of multilingual decision tre@fe accent model which gives the highest score
will be selected as the hypothesized accent.

In this test, the same multilingual phoneme recoens (French, Mandarin, Vietnamese,
English and Malay) employed in the previous testensdso used here. The same decision trees
utility as in the pronunciation dictionary experimtg was used. The floor probability is set at
0.005. The results in Table 5.27 show that mosh®fecision trees of different languages can be
used to identify different accents equally wellths target language. By making use of all the
decision trees during evaluation, it produces debatesult compared to just using a target
language decision trees, except for German speakensipared to the baseline, the method
seems to work for non-native English and Frendhpoalgh the performance of German speakers
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is less than the baseline approaches. The appsmarhs useful in situation when the training
data is limited (case of non-native French).

Table 5.27 Accent identification for non-native ke and English speakers using decision trees
(DT) of different languages

Language in | Non-native| Correct] Non-native [ Correct
the DT French rate English rate
Viethnames¢75.05% German 65.30%
French ) )
Chinese | 55.83% Italian 90.24%
i Viethnames§69.78% German 54.74%
Chinese ) )
Chinese | 60.53% Italian 92.04%
. Viethnames¢67.95% German 58.41%
Vietnamese ) )
Chinese | 70.35% Italian 92.40%
. Viethames¢72.81% German 75.93%
English ) )
Chinese | 54.40% Italian 88.81%
Viethnames§65.92% German 67.39%
Malay ) )
Chinese | 66.46% Italian 89.38%
. Vietnamesq 83.16% German | 68.46%
Combine All ) )
Chinese [70.76% Italian 95.62%

5.5.3 Conclusions from Accent Identification

This section describes our preliminary experimamtsaccent identification, which is useful for
non-native speech recognition. We have examineduliilimgual decision trees approach for
accent identification and compared it against sdraseline approaches. This approach gives
consistently good results even when only small athotinon-native speech is available to create
the accent models. On the other hand, baselin@agipes seems to work well when large amount
of speech is available for creating the accent tso@feon-native English case), but not very
satisfactory when small amount of training datavailable (non-native French case). However,
the baseline approaches presented here excephéheising acoustic features have the added
advantages of being text independent. The combmaif these approaches may be useful to
overcome the pros and cons of each other.



Chapter 5. Evaluations of Non-Native Modeling Ammioes
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Conclusions

Automatic speech recognition system has been isitrglg applied in various fields. However,
speech recognition systems still suffer from vagidifficulties in treating non-native speech. The
accuracy of the systems in recognizing non-natijweesh is at least twice lower than native
speakers. The high error rate is due to the diffegein native and non-native speech
characteristics. In general, non-native speakersnad development and transfer errors when
they learn a new language. These two types of®eme obvious and occurr in different levels of
language, namely phonology, pronunciation, vocalgwdad grammars.

The L2 phonology of non-native speakers may beedifit from native speaker. Mastering
L2 speech sounds is not easy for language leabemause of interference from the L1 of the
speaker. A Speech Learning Model (SLM) has beempgzed by Fledge for describing the
process a non-native speaker goes through wheeahesl a new language. In term of prosody,
there are also differences between non-native atidenspeakers. Even though the difference in
prosody does not change the meaning of the utterainmight influence the speech recognition
performance. In term of pronunciation, the L1 praziation rules of the speaker may influence
how the he pronounces L2 words. They may also #ynghe pronunciation for complex
syllables through insertion, deletion and substitubf speech sounds. They are also likely to use
the wrong vocabulary. One reason is the negatarester of L1 vocabulary to L2. Another is the
wrongly association of meaning to L2 vocabularye Gnammars used by non-native speakers are
also more general and common. In grammars, nonengpieakers make more mistakes, and part
of the mistakes is due to the influence from thdiras well as unfamiliarity. These differences in
phonology, pronunciation, vocabulary and grammansan-native speech cause mismatch in the
acoustic, pronunciation and language model usexhéech recognition system for treating the
non-native speech.

For studying non-native speech recognition, we ha@eorded a non-native French read
speech corpus in the tourism domain. The corpus wteesed by Vietnamese and Chinese
speakers. The highly accented speech has beenama@lusing phonetic approach through
perception and acoustic analysis, as well as thralaga-driven approach. The results show that
both approaches show comparable results. Howewata;dtiven approach is easier to conduct,
and it is able to provide some additional insigttbithe data. The results show that cross-lingual
transfer is evident in the non-native speech. Thasservations and also from other existing
linguistic studies have shown that non-native spesatend to transfer their native phoneme close
to the target phoneme (according to IPA) to sulogtitthe target language phoneme. This
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generalized procedure can be useful for predictiveg possible cross-lingual transfer by non-
native speakers.

Existing non-native acoustic modeling approaches generally be divided into acoustic
model reconstruction, acoustic model interpolatianpustic model merging and the general
speaker adaptation approaches. These approadmesiese small amount of non-native speech or
the native language of the speaker for adaptagoalrse of the difficulty to acquire large amount
of non-native speech. We have proposed to uselmgltal resources for adapting target acoustic
model for non-native speakers. Three types of messthave been identified. There are the native
language of the speaker (L1), any non-native laggu®2), and languages close to the native
language of the speakers (L3). Besides that, egistpproaches do not address the problem of
how the linguistic knowledge can be utilized fordeting cross-lingual transfer.

We have proposed to use the generalized knowladge lPA and existing linguistic study
to determine the source phoneme transfer of namenapeakers. It can also be estimated using
data-driven phoneme confusion approach. After niagcthe target and source phonemes, non-
native adaptation can be carried out. Dependinthertype of multilingual resources available,
different acoustic modeling approaches have beepgsed. If multilingual acoustic models are
available, the hybrid of acoustic model interpaatiand merging has proven to be useful for
modeling cross-lingual transfer. The idea is teiipblate the target and source Gaussian that are
close, and merge them if they are far from eaclerothhis is similar to the hypotheses of the
Speech Learning Model (SLM), where language learmeay use the L1 speech sounds, the
target language speech sounds, or the intermegpatrh sounds between L1 and target language
depending on the experience of the speaker angdiweived difference between L1 and target
language. The results from our proposed hybridbetter that the traditional interpolation or
merging approaches.

Moreover, in cases where multilingual corpora arailable, we have proposed different
interpolation approaches for adaptation. Three gygieinterpolation have been proposed to be
used under different constraints. In situation wioaty multilingual corpora are available, a
manual interpolation can be performed by predictimg a priori weight to be assigned. If the
non-native speaker can provide some non-native chpethie interpolation weights can be
estimated using weighted least square. We have shlsan that the results from traditional
eigenvoices approach can be improved by creatirg-limgual space in the eigenspace for
adapting non-native speakers. Interpolation in ttase is carried out by using eigenvectors.
Overall, among the three kinds of resources thet lieeen proposed, L2 even though it is from a
language different from the target language, cafopa as good as L1 for adaptation. On the
other hand, L3 can also improve the target acoustidel, although not as much as L1 and L2.
Our proposed interpolation approaches are equagiformance of the hybrid approach, but the
interpolation approaches produce models with lagsler of Gaussians mixture compared to
hybrid approach. Weighted least square is ablestomate the interpolation weights rather
accurately. The approach is slightly better thgemevoices in non-native adaptation: it is easier to
carry out; it is able to take advantage of limitedource, and L3 resources for adaptation. Overall,
both approaches perform better than traditional MLGQiven L1 resources. When these
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approaches are combined with MLLR, it further rezki¢he error rate of speech recognition
system for non-native speakers.

Existing studies also do not address deeply theeise§ context dependent modeling for non-
native speakers. We have suggested that the hgbricterpolation and merging proposed for
cross-lingual transfer to be applied also for mmdetontext variation. The results show that, by
giving appropriate (intermediate) weight, the apgto performs better than state tying or
increasing the amount of Gaussians mixture pee.stat the same time, the improvement is
attained with only a slight reduction in error rafenative speech recognition system.

Pronunciation modeling approaches can be divideskdan the component where the
pronunciation variants are modeled. The possiliations are pronunciation dictionary, acoustic
model, language model, and rescoring module. Exjstiudies found that using only the native
speech of the speaker for modeling pronunciatioramgs do not give a significant improvement.
Hence, we have modified two approaches which mdbel variants in the pronunciation
dictionary and the rescoring module, so that theykveven with limited non-native speech. For
the pronunciation dictionary approach, two passesewemployed to find the pronunciation
variants using decision trees. The purpose of usitgpasses is due to the low accuracy of the
phoneme recognizer. By using two passes, the dgeist to reduce those unlikely observations
in the first pass. As for modeling pronunciationrizats at the rescoring module, triphone
confusion model has been used with phoneme reocagtizrescore n-best lists. Experiments
carried out found that modeling pronunciation vatsausing pronunciation dictionary produce
better results than modeling it at rescoring leweladdition, the rescoring approach requires
more processing than the traditional dictionaryraepph. We have also proposed an original
pronunciation clustering approach using eigenvectois called latent pronunciation analysis, by
analogy with latent semantic analysis. The eigetoreare derived from supervectors which are
created from speaker dependent pronunciation dectsees. The results have shown that the
speakers can be separated based on their origig the first eigenvector. Given some non-native
speech, the approach can also be used for protiencidaptation. The results show that the
pronunciation adaptation approach is able to pteéke pronunciation habits quite well. However,
when the accent of the speaker is known in advaheetesults show that it is sufficient to use
only the pronunciation dictionary approach.

Accent identification techniques are generally bdasa acoustic or phonotactic features.
Many accent identification approaches are availdhi¢it is unknown how well these systems do
in situation when non-native speech available teai the accent models is limited. Our
experiments carried out showed that the baselimgoaphes using acoustic and phonotactics
methods may fail to identify the non-native accemit&n non-native speech is limited, but when
the amount of speech is sufficient and the accénthe speakers differ significantly, the
approaches can perform quite well. We have propaseew multilingual decision tree approach
for accent identification. It is however a text dagent approach which requires the existence of
the transcription of the utterance spoken. Decisieas are used because they have proven to be
useful in generalizing the observation for examplpronunciation modeling and state tying. On
the other hand, using multilingual models improlie tesult of language identification system.
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The results show that the proposed approach identiie accent of the speakers better than the
baseline approaches examined, in situation whelseliomited amount of speech is available for
training.

Future works

In this work, we have presented approaches fortamppcoustic and pronunciation model using
multilingual resources. Three types of languagege ha&oven to be beneficial for adapting the
non-native speakers from our experiments. Theyteeaative language of the speaker (L1), any
non-native language spoken by the same native g¢bRp and language close to the native
language of the speaker (L3). In current work, we ribt address the characteristics that
determine the closeness of a language. An in degdiysis into this will certainly be useful, so
that relevant L3 resources can be identified far-native adaptation purpose. At the same time,
it will also be interesting to know how well thenguages from the same family, classified by
linguists performed in adaptation. In addition,fapin the experiments, all the target language
phonemes are mapped to only one source phoneméplwource language resources are used
to adapt the target language acoustic model bylgiagapting it with one after another. In fact,
this do not necessary have to be the case. Thearglphones from different source multilingual
corpora can be used for adapting the target phmaore intelligent approach which takes into
consideration the type, the context and the amofirthe speech in each corpus may give a
further boost in improving to the target acoustiodel. However, if some non-native speech is
available, it can probably be used to select trst beits from multilingual resources to adapt the
target acoustic units, probably using existingatise measures such as HMM distance [Juang
1985], Polyphone Decision Tree Specialization [#zh2000] and others proposed for
multilingual acoustic modeling. This may produceeaen better result if correctly executed.

The hybrid approach of interpolation and mergingaipromising method for modeling
cross-lingual transfer and context using only atiousodels. Currently, we do not propose a way
to estimate the weights given some non-native $pdéthere are some non-native speech from
the speaker, a simple solution which can be useéd carry out forced alignment with the pre-
adapted acoustic models (from hybrid approach),rmadsure the acoustic scores. The one that
gives the highest score will be chosen for thabkpe However, it would be better to be able to
estimate the weights instead, which is more flexdotd may give a better result.

Because of the difficulty in acquiring non-natiygesch, we have not addressed the problem
of adapting the language model for non-native spesalEor testing language model adaptation, it
is prerequisite to acquire spontaneous non-napeech which we do not posses. We learned in
Chapter 1 that non-native speakers are likely andfier their native vocabulary and grammar
rules to the target language. It would be intengsto see whether it is possible to use the native
language of the speaker to adapt the language medefored language models, which are an
extension of the n-gram language models, may b&ulugsa improving non-native language
model. Part of speech or semantic class can bgnaskito the words in the target and source
languages. The source language grammar structuah s represented by part of speech with
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trigram, and vocabulary which have similar graphentethe target language can be transferred
to the target language, for instance by interpodathe both the target and source language model.

Code switching occurs more and more often amongkgps nowadays. It is a phenomenon
where speakers use more than one language ortdiatbeir speech. Normally, it happens when
the persons involved know the languages or dialestsd. In speech which contains code
switching, it has been found that 84% are singledvwswitch, 10% phrase switch and 6% clause
(a group of words consisting of a subject and itddjzate) switch [Skiba 1997]. Code switching
is common when the speaker has difficulty to expreisnself using the target language. As a
result, he has to temporary switch to another lagguo express the idea. For example, in the
areas of science and technology, where the nadivgulge of the speaker may not be able to
present clearly the idea, it is common to find &ees to switch to English. Code switching is
becoming increasing popular in the conversationtref speakers with the introduction of
international languages such as English becausts eichness and possibly the higher social
position associate with it. Code switching can dappen because of social reason, for example
to associate to a particular group or identity. iRstance, Singlish is a type of English spoken by
Singaporean which is a mixture of English, Malaygkkien, Teochew and Cantonese. It is
associated to the Singaporean identity. Finallgecawitching can also happen when the speakers
involved want to limit part of the conversationagarticular group of speakers.

Code switching has increased the challenges inspgeech recognition area. A typical
language identification system will have difficulbecause the period the switching occurred is
not known and the duration is very short, sinamaty involve only one word. Hence, combining
the speech recognition systems of different langsagith a language identification system for
treating code switching may not be effective. Amothossibility is to treat code switching as a
single system. This means that the existing tangetiels have to be adapted to recognizing
acoustic units, vocabulary and possibly grammamfrother languages. In term of acoustic
modeling, the interesting question concerns the aliogl of different acoustic units. Our
proposed non-native acoustic modeling approachgsoped here may be useful. The advantage
is that the same acoustic units can serve for ainghonemes in different languages. For the
pronunciation dictionary, this means that the laggs that shares the same phoneme set can
employ the same acoustic unit from the acousticehddowever, for the new phoneme in other
languages, they may have to be adapted and addkd target acoustic model. Code switching
also means that foreign words from languages irtblrave to be added to the pronunciation
dictionary and take into consideration in the laagg model. If all the words in the language
involved are added to the target language, thisondlate an exponential increase in the possible
words. This will reduce the accuracy of speech gaition system. However, not all words and
word combinations are possible. An in dept study the habits of the speaker in code switching
will be necessary. In term of language model, edeng question is how to adapt the target
language model to take into consideration the pdigiof code switching, since it is normally
observable in conversation but not in writing. Cagtching is not a random process and it
follows certain ‘rules’ or constraints. According [[Skiba 1997], there are two constraints which
restrict the speaker from switching between langsagirst, the free morpheme constraint which
states that the speaker only switches to words tttrar language that has a certain similar form
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to the target language. Second, the equivalencstredmt which indicates that switching is only
possible if it does not violate the grammars dieitlanguage. It would be interesting to see how
these kinds of linguistic rules can be combinechvgitatistical n-gram language models. Code
switching therefore is a new territory that is netging and worth studying on.

Confidence scoring is another interesting area lwihiay be applied to non-native speech
recognition. The aim of confidence scoring is tdireate the quality of the decoding of the
utterance. Hence, it has a great potential to lee irs non-native speech recognition. Firstly, in
the field of computer-assisted language learninglL{G, the score can give language learners an
idea about their pronunciations. The existing aarice scoring algorithm may need to be
modified to allow it to analyze and compare thenpireciation of non-native speaker at different
levels for example phoneme, syllable, word andeserdts, to help them know the types of error
they often commit. Second, confidence scoring cancbmbined with non-native speech
recognition to evaluate the decoding, so that farsé decoding under the threshold, some
additional processing can be carried out on it, gample by going through another pass of
decoding, or the speaker can be asked to repedthehsaid. This would improve the efficiency
of the speech recognition system.
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Contexte et résumé des contributions

Dans un monde de plus en plus globalisé, la capaaiiommuniquer en plusieurs langues donne
beaucoup d'avantages aux locuteurs. Par ailleaitsgdoin d’apprentissage d’une nouvelle langue
est rendu nécessaire par les migrations qui soptugeen plus communes en particulier pour des
raisons économiques. Aux Etats-Unis par exempleg Billlions de personnes, soit prés d’une
personne sur cing, était d'origine étrangere en6ZZ@hlemacher 2007]. Parallelement a cela,
I'activité touristique génere aussi d'importantsumements de personnes : en France par exemple,
78 millions de touristes ont visités le pays en@lExpansion 2007].

Ces «locuteurs étrangers » (touristes, migrants)t sle plus en plus confrontés a
I'utilisation de services vocaux interactifs, carsaintégrant la reconnaissance vocale. Alors que
la reconnaissance automatique de la parole at@désormais des performances souvent
satisfaisantes pour les locuteurs natifs, la perémce de reconnaissance sur les locuteurs non
natifs reste encore insuffisante. Ce problémemé$tain au développement des services vocaux.

Cette thése aborde les problemes qui concerneatdanaissance automatique de la parole
pour des locuteurs non natifs. Des études montoeiet la performance des systémes de
reconnaissance vocale est au moins deux fois plbke fpour des locuteurs non natifs. La parole
des locuteurs non natifs a des caractéristiquésreiftes. Pour les apprenants d’une langue, c’est
un défi de prononcer les nouveaux phonémes quistét pas dans leur langue maternelle. lls
ont donc tendance a emprunter les sons de leundanmaternelle. D'autre part, méme pour les
phonemes similaires qui existent a la fois danarigue cible et la langue maternelle du locuteur,
les locuteurs non natifs peuvent avoir des diffiesila changer certaines habitudes d’articulation
spécifiques a leur langue maternelle.

La reconnaissance automatique de la parole, daredie de I'approche statistique, utilise
trois modéles principaux, a savoir le modéle adquet le modele de prononciation et le modéle
de langage. Ces modéles sont créés en utilisampl@®ches fondées sur les données avec les
données des locuteurs natifs uniguement dans |zagildes cas. En conséquence, il y a des
disparités entre la parole non native et les maddtidisés ce qui réduit le taux de reconnaissance
par rapport a la parole native. L'obtention de f@rmn native pour une langue cible donnée (afin
de créer un modéle acoustique qui modélise la @aroh native) peut par ailleurs étre longue et
parfois irréalisable.
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Dans cette thése, nous nous sommes intéressésttuadas de modélisation non native qui
peuvent étre employées sous différentes contraitdesssources. Nous proposons d'utiliser des
ressources multilingues pour surmonter la difféutobtenir la parole non native. Au cas ou des
phrases en parole non native sont disponiblegszellpeuvent également étre exploitées.

La modélisation acoustique et la modélisation dm@nciation pour la parole non native
sont étudiées dans cette thése. Sur le theme dwodiglisation acoustique, nous examinons
I'utilisation de ressources multilingues pour adape modele acoustique de la langue cible. Les
locuteurs non natifs réalisent parfois un transésrre les unités phonétiques de leur langue
maternelle et celles de la langue cible quandgfgennent une nouvelle langue. En utilisant les
ressources multilingues et cette information dediert, nous pouvons représenter I'espace de la
parole non native dans un espace acoustique mgliéi (voir la Figure Ra). Selon le type de
ressources multilingues (modéles acoustiques quuspdisponibles, différentes techniques sont
proposées.

Concernant la modélisation de prononciation, nowsvisitons deux approches
conventionnelles de modélisation de prononciatiGes approches sont modifiées pour étre
utilisées méme en situation ou peu de parole ntimvenest disponible. Nous proposons également
une technique originale de regroupement des locutaiivant leurs habitudes de prononciation.
Cette approche peut étre aussi utilisée pour I'adigpm du dictionnaire de prononciation. Un
ensemble de locuteurs non natifs est représent® wan espace de prononciation » de faible
dimension. Pour un locuteur inconnu, les variadee@rononciation de ce locuteur peuvent étre
estimées a partir de sa position dans I'espacerai@opciation, estimée a partir de quelques
phrases de ce locuteur.

A
d0x; = Modele d’accent

Espace de la langua
X

v
v

Figure R. Modélisation acoustique non native et @isdtion d’accent en utilisant des ressources
multilingues. a) Utilisation de I'espace de la laaccible et de la langue X (par exemple langue
maternelle du locuteur) pour estimer I'espace deal@le non native en langue cible prononcée
par un locuteur d’'origine X. b) Utilisation du madeéde la langue X et quelques phrases non
natives pour créer le modéle d’accént qui servira de référence pour positionner leitear X’
inconnu lors du test (=> modéle d’accénry).
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En plus de la modélisation acoustique et de prdation, une étude préliminaire sur
I'identification automatique d’accents est égaletm@oposée, a partir de ressources multilingues.
Les ressources multilingues se sont révélées utjear I'amélioration des systemes
d’identification de la langue. Notre systéeme d'itification d'accent utilise lui aussi des
parametres phonotactiques. Les ressources multédsgont utilisées pour capturer la structure et
le degré de changement avec la parole non natoiel@/Figure Rb). Cette approche préliminaire
donne des résultats encourageants lorsque peuale pat disponible.

Organisation du mémoire

Ce mémoire débute par une bréve introduction suchitecture et les composants d'un systéme
de reconnaissance automatique de la parole. Usermtedion sur le sujet de I'acquisition de la
langue maternelle et de la langue seconde esttertgnnée. Ces deux points nous permettent de
comprendre les mauvaises performances des systédmesconnaissance vocale pour les
locuteurs non natifs par rapport aux locuteursfaatia fin du chapitre est consacrée a I'état de
I'art des approches dans le domaine de la recssemace automatique de la parole non native.
Les techniques de modélisation acoustique, de puaiion et de langage pour la parole non
native sont présentées, ainsi que les rares syst@ndentification d’accent existant.

Le chapitre 2 présente nos propositions pour laésation acoustique non native en
utilisant les ressources multilingues. En génd@wilix approches différentes sont proposées selon
le type de ressources multilingues qui sont didpesi Si les modeles acoustiques multilingues
sont disponibles, I'approche hybride d'interpolatiet de fusion peut étre appliquée pour adapter
le modele cible. Par contre si les corpus multilieg sont & notre disposition, les approches par
interpolation peuvent étre utilisées. L'une desrappes d'interpolation présentée peut étre
employée sans avoir du tout de parole non native.

Le chapitre 3 concerne nos travaux sur la mod@isate prononciation. Les approches de
modélisation de prononciation conventionnelles cemitapproche par modification du
dictionnaire de prononciation (en utilisant desestde décision) ou re-ordonnément de listes des
n-best en utilisant un score de prononciation, gentsitées. Nous proposons en plus une
approche originale pour le regroupement de locstegue nous appelons «analyse de
prononciation latente », par analogie avec l'aralggmantique latente. Cette approche est
utilisée pour I'adaptation du dictionnaire de prociation. Apres les travaux en modélisation de
prononciation, nous présentons nos travaux prédimes dans le domaine de lidentification
d’accent. Nous décrivons une approche phonotactiquatilise les ressources multilingues pour
la création des modéles d’accent sous la forméarde décision.

Afin d’évaluer les approches proposés dans lesithaprécédents, nous décrivons, dans le
chapitre 4, un corpus francais non natif que neessenregistré. Avant d'utiliser ce corpus pour
les tests, nous I'avons évalué en effectuant dis tke perception et une analyse acoustique.

Dans le chapitre 5, nos expériences sont présep@@sla modélisation acoustique, la
modélisation de prononciation et le systéme préline d'identification d'accent. Nous
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définissons les conditions d’expérimentation : letenir de reconnaissance automatique de la
parole, les corpus multilingues d'apprentissagaliddonnaire de prononciation et le modeéle de

langage utilisé. Les tests sont réalisés sur roatneus de parole non native en francgais, mais des
tests supplémentaires sont effectués sur de ldeparmlaise non native. Nous concluons ce

mémoire par une discussion de nos travaux et de lesultats et par une présentation des
perspectives.

Principaux résultats et conclusions

Corpus de parole non native en francais

Un corpus francgais non natif dans le domaine desime a été acquis. Nous avons enregistré des
phrases lues par des locuteurs viethamiens et ishih@nalyse du corpus (par des méthodes
d'analyses automatiques ou manuelles) montre queatesfert des unités phonétiques de la
langue maternelle a la langue seconde est évidemtles locuteurs non natifs. Ces observations
et aussi les résultats d’'autres études linguissigmentrent que les locuteurs non natifs ont
tendance a transférer le phonéme de leur languermedle (L1) qui est le plus proche du
phonéme cible (selon le tableau API). Cette infdiomaest utile pour la modélisation acoustique
non native.

Modélisation acoustique multilingue pour la recoissance automatique de la parole non native

Les approches de modélisation acoustique non naturent généralement étre groupées en
quatre catégories: la reconstruction de modélesusiiues, l'interpolation de modéles
acoustiques, la fusion de modéles acoustiquessetelehniques d'adaptation au locuteur. Ces
approches utilisent soit la langue maternelle dwteur, soit une petite quantité de parole non
native pour adapter le modéle acoustique cible.sNavons utilisé, dans nos travaux, des
ressources multilingues pour adapter le modélesticpue cible. Trois types de ressources ont été
examinées : des données correspondant a la langteenelle du locuteur (L1), des données de
parole non native, mais dans une langue différeletda langue cible (L2), et des données
correspondant & une langue proche de la languemetiéedu locuteur (L3).

Nous avons comparé deux différentes approchesqimenir le transfert de phonémes entre
langues source et cible (méthodes fondées surdemaissances, et méthodes automatiques
utilisant un décodeur acoustico-phonétique). Cethoaes se sont révélées équivalentes pour
obtenir le transfert de phonémes source / cible fdis que le phonéme correspondant en langue
source pour chaque phonéme de la langue cibleééstaing, I'adaptation du modéle acoustique
standard en langue cible peut étre effectuée. Seltype de ressources multilingues disponibles,
différentes techniques de modélisation acoustiquedté proposées. Si les modeles acoustiques
multilingues sont disponibles, une approche hybd'itgerpolation et de fusion s’est révélée utile
pour la modélisation acoustique non native. L’idgencipale consiste a interpoler les
distributions Gaussiennes cible et source qui swothes, et a les fusionner si elles sont
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éloignées les unes des autres. Le concept estsenfar rapport aux hypotheses sur la parole
non native de Fledge, qui spécifient que les lagstaon natifs peuvent utiliser les sons de leur
langue maternelle, les sons en langue cible, oades intermédiaires entre la langue maternelle
et la langue cible, en fonction de leur expériemss résultats montrent que I'approche hybride
proposée est plus performante que I'approche caiverelle d’interpolation ou de fusion.

Nous évaluons également quelques approches d'adéign pour profiter de données
multilingues pour adapter le modéle acoustiqueeciblois types d'approche d’interpolation ont
été proposés pour l'adaptation de modéle acoustipuis différentes contraintes. Au cas ou
seulement les corpus multilingues sont disponihlas, interpolation manuelle peut étre effectuée
par la prévision du poids a priori & attribuer. Avelques phrases non natives du locuteur, les
poids d’interpolation peuvent étre estimés avefoteule des moindres carrés pondérés. Enfin,
nous montrons que les résultats de I'approcheemgnvoicespour les locuteurs non natifs
peuvent étre améliorés par la création d'un esgasaptation propre bi-lingue (langue source +
langue cible). L'interpolation dans ce cas estiséal en utilisant des vecteurs propres. Nos
résultats montrent que parmi les trois types dgot@ges que nous avons proposeées, la ressource
L2 méme si elle est d'une langue différente dealeglie cible, est utile pour I'adaptation des
modeéles acoustiques a la parole non native, et ambfe a ressource L1. La ressource L3
d’autre part peut améliorer le modéle acoustigbtecimais pas aussi bien que les ressources L1
et L2. Les approches d'interpolation proposées sontparables en performance a I'approche
hybride, mais les approches par interpolation cisaht & des modeles de moindre complexité
(moins de distributions gaussiennes). En généea, deux approches sont meilleures que
I'approche conventionnelle d’adaptation au locutgyre MLLR (testée en mode superviseé).
Lorsque ces approches sont combinées avec MLLURuled’erreur est encore amélioré.

Les études existantes n'abordent pas en profordejurestion qui concerne la modélisation
du contexte phonétique pour les locuteurs nonidtiapproche hybride d'interpolation et de
fusion que nous avons proposée précédemment peld@liquée aussi pour la modélisation de
contexte (interpolation/fusion entre le modeéledipendant du contexte et le modéle dépendant du
contexte). Les résultats montrent que, en accordanpoids moyen, I'approche donne un
meilleur résultat par rapport a la mise en commem états (state-tying) ou a 'augmentation du
nombre de distributions gaussiennes par état. &) pamélioration des taux erreur des locuteurs
non natifs est obtenue avec seulement une légduetién des taux d’'erreur pour les locuteurs
natifs.

Modélisation de la prononciation et reconnaissad@Ecents

Les approches de modélisation de prononciationgreudtre divisées en fonction du composant
du systeme ou les variantes de prononciation souiglisées. Les composants possibles sont le
dictionnaire de prononciation, le modéle acoustidaemodéle de langage, et le module de re-
ordonnément de liste n-best-lhest rescoring Les études existantes montrent que I'utilisation
seulement de parole en langue maternelle pour t&hsation des variantes dans le dictionnaire
de prononciation ne produit pas une amélioratigniBcative. Par conséquent, nous avons
examiné et modifié deux approches qui modélisest Variantes dans le dictionnaire de
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prononciation et le module de réévaluation, poueltgs puissent traiter de la parole non native
en faible quantité. Nos expériences montrent quemtzdélisation des variantes dans le
dictionnaire de prononciation (I'approche par asbde décision) produit des meilleurs résultats
que la modélisation effectuée dans le module devahégtion. En outre, I'approche de
réévaluation desi-best nécessite plus de traitement que I'approche cdiorarelle avec le
dictionnaire de prononciation. Nous proposons égetfé une approche de regroupement des
locuteurs selon leurs habitudes de prononciatiasusNnommons cette approche « analyse de
prononciation latente », par analogie avec I'arabémantique latente. Les vecteurs propres sont
dérivés de supervecteurs créés a partir d’arbredédision qui modélisent la prononciation de
chaque locuteur. Nos résultats montrent que legtdocs non natifs peuvent étre regroupés en
fonction de leur origine en utilisant cette analiente. La méme approche peut également étre
utilisée pour l'adaptation de prononciation étaohmies quelques phrases non natives. Les
résultats montrent que I'analyse de prononciatataente est capable de prédire des variantes de
prononciation lorsque I'accent du locuteur n’est ponnu a I'avance.

Nous proposons aussi dans cette thése une techoidgieale qui utilise les arbres
multilingues de décision pour identifier I'accenti ¢bcuteur. C’est cependant une approche
dépendante du texte qui nécessite la transcriptiogsignal de parole servant a identifier I'accent.
L’'approche proposée utilise des ressources mutitis pour créer les modéles d’accent sous la
forme d'arbres de décision qui ont montré leur piéé pour généraliser les observations par
exemple dans la modélisation de prononciation. réssltats montrent que I'approche proposée
est plus efficace par rapport aux approches t«détfiart » dans le cas ou la quantité de parole
non native disponible pour I'entrainement est kit

Quelques perspectives

Nous avons proposé d'utiliser des ressources tingitiés pour la modélisation acoustique non
native. Nos expériences montrent que trois typesgoteées de parole sont utiles pour adapter le
modeéle non natif. Ce sont les données correspordintangue maternelle du locuteur (L1), des
données de parole non native prononcées par datelos de méme origine, mais dans des
langues différentes de la langue cible (L2), etdimmées correspondant a une langue proche de
la langue maternelle du locuteur (L3). Dans ce marit) nous n’'étudions pas les caractéristiques
qui déterminent la proximité des langues. Une amalpapprofondie dans ce sujet sera
certainement utile pour trouver davantage de resssumultilingues utiles pour la modélisation
non native. De plus, I'adaptation acoustique maofjile est faite en trouvant pour chaque
phonéme de la langue cible avec un phoneme comdapb de la langue source. En fait, les
ressources multilingues peuvent étre employéesediifferente maniere qui est plus intelligente
pour créer des modéles non natifs plus performdsmultiples phones de différents corpus
multilingues peuvent étre utilisés pour adaptemphone d’'une langue cible. Une approche qui
prend en considération le type, le contexte etukntjté de la parole dans chaque corpus source
pourrait certainement améliorer davantage le modéteistique pour les locuteurs non natifs. Si
guelgues phrases non natives sont disponibles p#event probablement étre utilisées pour
sélectionner les meilleures phones des ressourakimgues pour I'adaptation, en utilisant des
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mesures de distance par exemple la distance de HMaMhg 1985], I'approche PDT8dlyphone
Decision Tree Specializatiofpchultz 2000] et d’'autres qui sont proposées paunodélisation
acoustique multilingue.

L'approche hybride d'interpolation et de fusion aste méthode prometteuse pour
modeéliser le transfert translingue et le contexterpmles locuteurs non natifs. La performance de
I'approche dépend du poids & priori qui est assigsious n’'avons pas proposé une méthode
automatique pour estimer le poids de modélisatigiriie. Une solution simple qui peut étre
appliquée si nous avions quelques phrases du lagwdst de faire des alignements forcés avec
les modéles acoustiques pré-adaptés (de I'approgirede), et de mesurer le score acoustique.
Le modele qui donne le score le plus élevé ser@sichimutefois, une méthode plus souple qui
peut estimer automatiquement les poids serait aiéti

En raison de la difficulté a acquérir la parole mative spontanée, nous n’abordons pas le
sujet de I'adaptation du modéle de langage. Ledeétmontrent que les locuteurs non natifs sont
susceptibles de transférer leur vocabulaire et ggammaire native a la langue cible. Il serait
intéressant de voir s'il est possible d'utiliserlémgue maternelle du locuteur pour adapter le
modele de langage. Les modeles de langage factdfiaétored language mod@Jsqui sont une
extension des modéles de langage n-gramme classigmerraient étre utiles pour cela. La classe
lexigue ou sémantique peut étre attribuée aux dets la langue cible et source. Les trigrammes
de classe lexique qui représentent les regles denrgaire, et les vocabulaires de langue
maternelle du locuteur qui ont les graphemes sirafigpar rapport aux vocabulaires de la langue
cible pourraient étre transférés a la langue cipl, exemple en interpolant les modéles de
langage cible et source.

L’alternance codiquécode switching) est de plus en plus courante p&miocuteurs de
nos jours. Il s’agit d'une alternance de deux ausiglurs langues ou dialectes dans une méme
conversation. Généralement, les personnes impkquémnaissent les langues ou dialectes
utilisés. Dans des discours qui concernent I'altece codique, les études montrent que 84% des
cas impliquent l'alternant d’'un seul mot, 10% altemt d’'une phrase, et 6% alternant d’'une
proposition (clause) [Skiba 1997]. L’alternance iqoé est utilisée comme une stratégie par les
locuteurs pour surmonter la difficulté a exprimeeudée en langue courante. En conséquence, il
doit passer temporairement a une autre langueeXanple, dans le domaine de la science et de
la technologie, les locuteurs peuvent avoir laicliffé & présenter clairement les termes ou les
idées en langue maternelle, donc ils peuvent pasd@nglais pour I'exprimer. L'alternance
codique peut également se produire pour des raisons sscipl exemple pour s'identifier
comme appartenant a un groupe particulier. Par pbenm’anglais singapourien (Singlish,
dialecte anglais parlé a Singapour) est un méldrayglais, de malais, de minnan, de teochew et
de cantonais. Il est associé a lidentité des $iogaens. Enfin, l'alternance codique peut
également se produire lorsque les locuteurs im@liqweulent limiter une partie de la
conversation a un groupe particulier. L'alternanodique est une difficulté supplémentaire pour
les systémes de reconnaissance automatique deola.fddn systeme d’identification de la langue
typique aura la difficulté parce que la période dengement n’est pas connue et la durée
d’'alternance est trés courte puisqu’elle peut coreeseulement un mot. Par conséquent, la
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combinaison de systémes de reconnaissance vocalgdusieurs langues, avec un systéme
d’identification de la langue pour traiter I'altemmce codique n’est pas une bonne solution. Une
autre possibilité consiste a traiter l'alternanceligue comme un systéme indépendant. Cela
signifie que les modéles cibles contiennent lestésniacoustiques, les vocabulaires et la
grammaire pour toutes les langues impliquées. Enetele modélisation acoustique, la question
intéressante est ce qui concerne la modélisatismifférentes unités acoustiques. Nos approches
proposées pour la modélisation acoustiqgue peuviat Ldiles. Les phonémes similaires de
différentes langues sont modélisés une fois seuledens un modéle acoustique. Toutefois, les
nouveaux phonémes qui n'existent pas dans la laoiple doivent étre adaptés et ajoutés. Les
mots des langues impliqués doivent étre ajoutésliaiionnaire de prononciation et pris en
compte dans le modéle de langage cible. Une étpdeofandie des habitudes du locuteur a
propos de l'alternance codique peut étre égalemé&sgssaire. En terme de modéle de langage, il
est difficile d’adapter le modele de langage ciplésque l'alternance codique est observable
seulement en conversation, mais pas dans les tégtés. L'alternance codique n’est pas un
processus aléatoire et elle suit certaines réglescantraintes. Deux contraintes limitent
I'alternance chez les locuteurs [Skiba 1997]. Pesernent, les contraintes articulatoires
impliquent que le locuteur alterne avec les mottadangue qui ont une certaine forme similaire
a la langue cible. Deuxiemement, une autre con@aimdique que Il'alternance codique n'est
possible que si elle ne viole pas les grammairssdéeix langues. Il serait intéressant de savoir
comment ces regles linguistiques peuvent étre audelsiavec les modéles de langage n-gramme.
L'alternance codique est donc un nouveau territpirieast intéressant et mériterait d'étre étudié.

La mesure de confiance pour la parole non nativalessi un sujet intéressant. L'objectif de
la mesure de confiance est d’évaluer la qualitééodage. Dans le domaine de I'apprentissage
des langues assistées, la mesure donne aux apsranaridée de la qualité de leur prononciation.
La plupart des techniques existantes sont coresrygbur analyser la parole native. Des tests
doivent étre effectués pour savoir si ces appropbesent étre utilisés pour la parole non native.
Le systéme doit étre capable d’analyser et de coenfmprononciation des locuteurs non natifs a
différents niveaux, par exemple les phonémes Jkabgs, les mots et les phrases, pour les aider
a connaitre les types d'erreurs qu’ils font souvémt plus, la mesure de confiance peut étre
intégré dans des systémes de reconnaissance aigisenade la parole non native. Pour les
décodages en dessous du seuil de mesure, un &aitsopplémentaire peut étre effectué, ou le
locuteur peut répéter ce qu'il a dit. Cela pernadtttd’améliorer la performance du systéme de
reconnaissance de parole non native.
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