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Abstract 
Automatic speech recognition technology has achieved maturity, where it has been widely 
integrated into many systems. However, speech recognition system for non-native speakers still 
suffers from high error rate, which is due to the mismatch between the non-native speech and the 
trained models. Recording sufficient non-native speech for training is time consuming and often 
difficult.  

In this thesis, we propose approaches to adapt acoustic and pronunciation model under 
different resource constraints for non-native speakers. A preliminary work on accent 
identification has also been carried out. 

Multilingual acoustic modeling has been proposed for modeling cross-lingual transfer of 
non-native speakers to overcome the difficulty in obtaining non-native speech. In cases where 
multilingual acoustic models are available, a hybrid approach of acoustic interpolation and 
merging has been proposed for adapting the target acoustic model. The proposed approach has 
also proven to be useful for context modeling. However, if multilingual corpora are available 
instead, a class of three interpolation methods has equally been introduced for adaptation. Two of 
them are supervised speaker adaptation methods, which can be carried out with only few non-
native utterances. 

In term of pronunciation modeling, two existing approaches which model pronunciation 
variants, one at the pronunciation dictionary and another at the rescoring module have been 
revisited, so that they can work under limited amount of non-native speech. We have also 
proposed a speaker clustering approach called “latent pronunciation analysis” for clustering non-
native speakers based on pronunciation habits. This approach can also be used for pronunciation 
adaptation. 

Finally, a text dependent accent identification method has been proposed. The approach can 
work with little amount of non-native speech for creating robust accent models. This is made 
possible with the generalizability of the decision trees and the usage of multilingual resources to 
increase the performance of the accent models. 

 

Keywords: non-native speech recognition, non-native multilingual acoustic modeling, non-native 
pronunciation modeling, accent identification 

 



Résumé 

Les technologies de reconnaissance automatique de la parole sont désormais intégrées dans de 
nombreux systèmes. La performance des systèmes de reconnaissance vocale pour les locuteurs 
non natifs continue cependant à souffrir de taux d'erreur élevés, en raison de la différence entre la 
parole non native et les modèles entraînés. La réalisation d’enregistrements en grande quantité de 
parole non native est souvent difficile et peu réaliste pour représenter toutes les origines des 
locuteurs.  

Dans cette thèse, nous proposons des approches pour adapter les modèles acoustiques et de 
prononciation sous différentes conditions de ressource pour les locuteurs non natifs. Un travail 
préliminaire sur l’identification d’accent a également proposé. 

Ce travail de thèse repose sur le concept de modélisation acoustique translingue qui permet 
de représenter les locuteurs non natifs dans un espace multilingue sans utiliser (ou en utilisant très 
peu) de parole non native. Une approche hybride d’interpolation et de fusion est proposée pour 
l’adaptation des modèles en langue cible en utilisant une collection de modèles acoustiques 
multilingues. L’approche proposée est également utile pour la modélisation du contexte de 
prononciation. Si, en revanche, des corpus multilingues sont disponibles, des méthodes 
d’interpolation peuvent être utilisées pour l’adaptation à la parole non native. Deux d'entre elles 
sont proposées pour une adaptation supervisée et peuvent être employées avec seulement 
quelques phrases non natives. 

En ce qui concerne la modélisation de la prononciation, deux approches existantes (l’une 
fondée sur la modification du dictionnaire de prononciation,  l’autre fondée sur la définition d’un 
score de prononciation utilisé dans une phase de re-scoring) sont revisitées dans cette thèse et 
adaptées pour fonctionner sur une quantité de données limitée. Une nouvelle approche de 
groupement de locuteurs selon leurs habitudes de prononciation, est également présentée : nous 
l’appelons « analyse de prononciation latente ». Cette approche se révèle également utile pour 
améliorer le modèle de prononciation pour la reconnaissance automatique de la parole non native. 

Enfin, une méthode d’identification d’accent est proposée. Elle nécessite une petite quantité 
de parole non native pour créer les modèles d’accents. Ceci est rendu possible en utilisant la 
capacité de généralisation des arbres de décision et en utilisant des ressources multilingues pour 
augmenter la performance du modèle d’accent. 

 

 

Mots clés : reconnaissance automatique de la parole non native, modélisation acoustique 
multilingue non native, modélisation de prononciation, identification d’accent 
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Introduction 

 

 
Most people nowadays can speak more than one language. In a world where competition becomes 
more and more critical, the ability to communicate in several languages gives extended 
advantages to the speakers. This is because language does not solely play the role of 
communication but also represent the identity and culture of the community who speaks that 
language. People who speak the same language are more capable of relating to each others.  

Many people also acquire new languages to have an edge in the economy. The booming of 
many economies around the world has renewed interest in languages such as Arabic, Indian, 
Korean, Mandarin and others. 

Besides that, lingua francas such as English, Spanish and French have long been of interest 
for people around the world because of their richness particularly in the domain of science and 
technology. Many of these languages are taught in schools and universities around the world.  

People may also learn a new language when they move to a new country, since they may 
speak a language different from the native speakers. Human migration is becoming more 
common particularly for economic reasons. In the United States for example, 37.5 million of the 
population or nearly one in five is from foreign origin in 2006 [Ohlemacher 2007].  

Tourism is a lucrative industry for many countries. In France for example, there were 78 
million tourists who visited the country in 2006 [LExpansion 2007]. People who travel to other 
countries also often pick up some common local phrases from travel guide books or Internet to 
facilitate communication. 

This thesis is about automatic speech recognition for non-native speakers. The popularity of 
using speech recognition system as a natural interface is increasing with the maturity of speech 
recognition technology. Nowadays, speech recognition applications are embedded in different 
systems such as telephony systems, computers, mobile phones, car and others. However, most 
people who try to use speech recognition applications to recognize their non-native speech will be 
discouraged by their performance. Studies show that the performance of speech recognition 
systems in decoding non-native speech is at least two times lower compared to native speech.  
This is due to the difference in characteristics between native and non-native speech.  

Statistical speech recognition system uses three types of models for modeling speech at 
different levels, namely acoustic model, pronunciation model and language model. These models 
are created by using data-driven approach. Since they are usually modeled using only the native 
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language resources, there may be a mismatch between non-native speech and the models. As a 
result, the recognition rate for non-native speech is much lower compared to the native speech. 
The solution is to build models that better match non-native speakers by using non-native speech. 
However, acquiring non-native speech is time and resource consuming. There are more than six 
thousand languages in this world. Therefore, to record all the non-native speech for each language 
is difficult if not impossible. In certain cases, it is unfeasible particularly for under resourced 
languages.  

The objective of this thesis is to propose non-native modeling methods that are flexible to be 
employed under different resource constraints. Multilingual resources have been proposed for 
adapting non-native models to overcome the difficulty to obtain non-native speech whenever 
possible. In situation when some non-native speech is available, it can also be taken advantage of.  

 In this thesis, we will look at non-native acoustic and pronunciation modeling. In acoustic 
modeling, we look at the usage of multilingual resources for adapting the acoustic model of the 
target language. The reason why multilingual resources can be used for adapting non-native 
speakers is because the ‘cross-lingual transfer’ phenomenon by non-native speakers. By using the 
multilingual resource and cross-lingual transfer information, a new language space that is aligned 
with the target language space is created. This new language space can then be used to estimate 
the non-native language space (see Figure Ia). Depending on the type of multilingual resources 
such as multilingual acoustic models or corpora that are available, different techniques are 
proposed. In cases where some non-native is available from the speaker, more effective approach 
for estimating the non-native language space is also proposed. We will also see that the 
multilingual approach proposed can be used for context modeling. 

In pronunciation modeling, we revisit two of the conventional approaches. We have 
modified two of the approaches to make sure that they can be used even in situation when only 
small amount of non-native speech is available. We also propose a new approach of 
pronunciation habits clustering and pronunciation adaptation. This is done by creating a 
pronunciation space and the non-native speakers can then be separated into groups or cluster on 
the pronunciation space. For an unknown speaker, the pronunciation variants of the speaker can 
be estimated the position of the speaker on the pronunciation space given some non-native speech. 

Besides acoustic and pronunciation modeling, a preliminary study on accent identification 
has also been carried out by making use of multilingual resources with non-native speech. 
Multilingual resources have been shown to be beneficial in improving the language identification 
systems. In our proposed accent identification system using phonotactic features, multilingual 
resources are being used to capture the pattern and degree of changes with different non-native 
speech (see Figure Ib). Like the approach proposed for non-native modeling before, this approach 
is able to take advantage of limited non-native speech. 
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Figure I. Non-native acoustic and accent modeling using multilingual resources. a) Using target 
language and language X (for instance native language of the speaker) space to estimate non-
native language space. b) Using model from language X and some non-native speech to create the 
accent model δx, and compared against the accent of the test speaker δx’ 

 

In the first chapter of this thesis, a brief introduction to the architecture and components of 
speech recognition is given. Subsequently, a discussion on the language acquisition of human in 
term of first and second language will follow. Here, we will learn why non-native speech 
recognition performance is significantly lower compared to native speech recognition. At the end 
of the chapter, recent works in the domain of non-native speech recognition will be presented. 

The second chapter presents our proposed non-native acoustic modeling approaches using 
multilingual resources. Depending on the types of multilingual resources such as acoustic models 
or corpora available, different modeling approaches are proposed. If some non-native speech is 
available, non-native speaker adaptation techniques are also proposed. The approaches proposed 
are hybrid approach of interpolation and merging, and new interpolation approaches. 

In the following third chapter, two pronunciation modeling approaches: pronunciation 
dictionary and n-best rescoring are revisited, and modified for modeling pronunciation habits. In 
addition, we also propose an original approach that we called “latent pronunciation analysis”, 
which uses pronunciation eigenvectors for speaker clustering. The approach can also be employed 
for pronunciation adaptation. Next, we present our preliminary work in accent identification. It is 
a phonotactic approach which makes use of multilingual resources for creating accent models in 
the form of multilingual decision trees. 

Chapter four presents the non-native French corpus that we have acquired for testing and 
adaptation purpose. The corpus is evaluated through perception and acoustic analysis. In addition, 
we also use data-driven approach for analysing it. 

Finally in chapter five, the acoustic modeling, pronunciation modeling and accent 
identification approaches that have been presented in previous chapters two and three are 
evaluated. This chapter is followed by conclusions and future works.   
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CHAPTER 1  

 
 
 

Automatic Speech Recognition for Non-
Native Speakers 

 

 

 

1.1 Introduction 
uman has always been fascinated by artificial intelligence such as the ability of machine to 
understanding speech. However, before a speech signal can be analyzed for its meaning, it 

has to be first converted to a simpler form – the text transcription. Speech to text or speech 
recognition is an interesting but challenging domain because of its multi-disciplines nature. 
Among the domains involved are signal processing, pattern recognition, linguistics, information 
theory and others. 

For more than five decades, researchers have achieved great advancement in the field of 
automatic speech recognition, from the earliest isolated word recognition to current large 
vocabulary speech recognition. Significant progress in the areas of speech recognition is achieved 
with the introduction of statistical based approach which uses hidden Markov model and n-gram 
model since 1980s for large vocabulary recognition. At the same time, the technology 
advancement has also propelled the progress of other areas such as biometric speaker recognition 
and statistical machine translation. 

Nowadays, the technology used in automatic speech recognition (ASR) has matured to a 
level where it has been increasingly applied in services such as telephony systems, mobile 
phones, GPS, as well as cars and computers. However, automatic speech recognition still faces 
many challenges before it can be employed by everyone at anywhere. One of the problems faced 
by current speech recognition systems is the difficulty of recognizing non-native speech. While 
the word error rate of speech recognition systems for native speakers is now in the range of less 

H 
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than twenty percents for a large vocabulary speech recognition system, the word error rate for 
non-native speakers is at least twice the rate of native speakers. 

In this chapter, a brief introduction to the architecture of statistical automatic speech 
recognition system and its components will be presented. Subsequently, we will look at why non-
native speech is poorly recognized by speech recognition system, and how the current non-native 
modeling techniques improve the system for recognizing non-native speech.  In addition, accent 
identification approaches will also be discussed. 

 

1.2 Architecture of an Automatic Speech Recognition System 
An automatic speech recognition system also known as speech to text system receives an 
utterance as input and delivers an output text transcription. Figure 1.1 shows the main 
components of a speech recognition system.  

 

 

Figure 1.1 Automatic speech recognition system architecture 

 
An automatic speech recognition system can be divided into two main processes: decoding 

and training. The decoding components consist of a signal processing front-end and a decoder. 
The purpose of signal processing front-end is to digitize analog signal and to convert it to 
discriminative features for recognition. The decoder is the engine of a speech recognition system 
that uncovers the possible word sequence from the feature vectors using the knowledge from 
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acoustic, pronunciation and language models. From the linguistic view point, these models have 
roughly the following representations in a language:  

• Acoustic model – phonology of a language 

• Pronunciation model – vocabulary and pronunciations 

• Language model – grammar of a language 

In a typical speech recognition system, acoustic model defines the elementary units of speech. It 
can be phones, phonemes, syllables, and words. On the other hand, pronunciation model 
represents language units such as word or syllable, and sometimes common word sequences using 
the acoustic units defined in the acoustic model. Language model in turn defines the structure and 
syntax of a language with the vocabulary from the pronunciation dictionary. In the following 
sections, we will look at the speech recognition components in more details. 

 

1.2.1 Signal Processing Front-End 

The objective of the signal processing front-end is to extract discriminative features that are 
perceptually important. The signal processing front-end first digitizes the analog signal to a form 
suitable for analysis. The process involves several stages such as pre-emphasis, filtering, 
sampling, and quantization [Kent 2002]. A sampling frequency of 16 kHz is sufficient to 
represent human speech intelligibly. Study shows that a higher sampling frequency does not give 
any further improvement to the speech recognition system [Huang 2001].  

The digitized signal is then converted to feature vectors, a form which is more relevant for 
speech processing. The possible types of feature are short time spectral envelope, energy, zero 
crossing rates, level crossing rates, and others. Frequency-domain features such as short time 
spectral envelope are more accurate and descriptive compared to time-domain features for 
analyzing speech. Among the well known spectral analysis methods are linear predictive coding 
(LPC), perceptual linear prediction (PLP), and mel-frequency cepstral (MFC) spectral analysis 
model. The mel-frequency cepstral coefficients (MFCC) are one of the most widely used features 
in speech recognition. These features can be derived through the following procedures [Davis 
1980; Tychtl 1999]: 

• Fourier Transform is computed for each frame 

• Triangular mel filter banks are applied on the power spectrum   

• A log function is used to smooth the spectrum 

• Discrete cosine transform (DCT) encodes the spectrum to MFCC 

Studies show that 13th-order MFCC contains sufficient information to represent speech 
[Huang 2001]. In addition to the raw MFCC features, the first and second derivatives of the 
MFCC features are normally also computed, because they provide temporal changes information 
of the spectral. For speech recognition system using hidden Markov model (HMM), these 
information can be useful, because the acoustic frames are assumed to be independent and 
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stationery. For reducing the size of the feature vectors, dimension reduction techniques such as 
principal component analysis (PCA) or linear discriminative analysis (LDA) can be applied on 
the vectors to create a more compact and discriminative feature. 

 

1.2.2 Decoder 
The word decoder is originated from the field of information theory, which means the conversion 
of a coded message to an understandable form. In speech recognition, decoder is the component 
that uncovers the word sequences from the speech signal or more precisely the feature vectors. 
The search for the most probable word sequence can be achieved by maximizing the posterior 
probability for the given feature vectors. It is difficult to calculate efficiently and robustly the 
posterior probability. Thus, instead of calculating the posterior probability directly, it can be put 
in another form using Bayes theorem: 

 

)|()(maxarg

)(

)|()(
maxarg

)|(maxargˆ

WOPWP

OP

WOPWP

OWPW

W

W

W

=

=

=

     (1.1) 

 
where W is the word sequence w1, w2, …wm which gives the maximum posterior probability 
P(W|O) given O, a series of observations o1, o2,… on which produce the word sequence. This 
means that the best word sequence can be found by combining the language probability of word 
sequence P(W) (prior probability) with the acoustic probability of the word sequence P(O|W) 
(conditional probability) from an acoustic model which gives the highest value. The state of the 
art acoustic model used in automatic speech recognition is hidden Markov model. It will be 
discussed in the coming section. Conversely, the language model provides the language 
probability. A widely used language model is the n-gram model. 

Figure 1.2 shows an example of decoding an utterance with a single word, using a decoder 
with a vocabulary of only three words {A, B, C}. The connected circles represent the phoneme 
models except the model ‘sil’ which represents the silence at the start (<s>) and the end (</s>) of 
a sentence, while the dotted circles are word pronunciation models. The arrows leaving one 
dotted circle to another indicate the language probability, while the arrow from a connected circle 
to another indicates the transition from one phoneme model to another. 

The complexity of the problem can be imagined from Figure 1.2. In continuous speech, 
where the total number of words in an utterance is unknown and the boundary of words is blurred, 
uncovering the most probable word sequence is not an easy task. The equation 1.1 however did 
not specify how to search for the best word. The most direct way is to calculate all the possible 
word sequences and select the one which gives the highest value from the formula. For short 
single word recognition as we see above, this might be possible, but when the length of the 
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sentence is unknown and the vocabulary gets larger, this is no longer feasible. For example, for a 
sentence with m words and with a vocabulary of n, there are nm possible solutions. Search 
algorithms using dynamic programming strategies have been successfully applied to uncover the 
word sequence in a feasible and efficient manner by avoiding redundant computation. This is 
done by breaking up a problem to common sub-problems, finding the best solution for the sub-
problems and storing the previous calculated results which are common. Another technique used 
to speed up the search is by pruning the unpromising path. An example of search algorithm for 
automatic speech recognition is time-synchronous Viterbi beam search. 

 
 

 

Figure 1.2 Speech recognition as a search problem. The most probable word is the word which 
gives the highest score of P(W)P(O|W)  

 
 

The performance of a speech recognition system is typically measured by word error rate 
(WER). The word error rate is calculated from three types of errors a speech recognition system 
commit: 

• Substitution: replacement of a correct word by another different word 

• Deletion: omission of a correct word 

• Insertion: addition of an extra word 
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For calculating the number of substitutions (subs), deletions (dels) and insertions (ins) made, the 
hypothesis from the system is aligned against the actual reference transcription using minimum 
edit distance (Levenstein distance), with the same cost given to the errors.  

 

%100×++=
sentencecorrecttheinwordsofnumber

insdelssubs
RateErrorWord   (1.2) 

 

1.2.3 Acoustic Modeling 
Building a robust acoustic model is one of the main challenges in the field of speech recognition. 
The difficulty of modeling acoustic features in a robust manner is due to the variability which 
exists in the speech. Context variability can happen at the sentence, word and phonetic level 
[Huang 2001]. In a continuous speech, words in a sentence may be connected instead of separated 
by silence. Variability can also exist in pronunciation when the words are pronounced in an 
isolate and continuous manner. At the phonetic level, variability can exist in a phoneme when it is 
realized under different contexts. At the speaker level, variability is most noticeable since the 
speech is influenced by the physical attributes such as vocal tract size, height, age, sex and also 
social characteristics. Environmental condition is another contribution to speech variability. The 
environmental noise and variation in microphone are among the factors that can influence the 
performance of a speech recognition system. 

The selection of appropriate acoustic unit for an acoustic model is important. Among the 
units often used for modeling are word, syllable, and phone. From word model to phone model, 
the ability for each to generalize increases; therefore, the amount of speech required to train the 
unit robustly decreases. In small vocabulary word recognition system, word models can give 
better results than other type of units when sufficient speech is available for each word model. 
However, in continuous speech recognition, inter-word variability can happen as mentioned 
previously. In this case, context dependent modeling is required to record the differences to 
achieve high recognition performance. Thus, this means that the number of instances needed for 
training different word contexts will also increase. Syllable model is the next best choice if 
sufficient speech is available for training them. For languages with a (relatively) limited number 
of syllables such as Japanese and Chinese, syllable model can be an attractive option. Most 
speech recognition systems use phone as the unit of modeling, since it requires moderate amount 
of speech to robustly model and will not over generalize. However, phone model is greatly 
influenced by the context compared to other models. Consequently, context dependent modeling 
is often employed to achieve a high recognition rate. 

There are many possible approaches for modeling the acoustic units, for example hidden 
Markov model (HMM), artificial neural network and template model etc. Hidden Markov model 
is one of the most widely used approaches in statistical speech recognition because of its 
robustness.  In the following sections, we will briefly present the theory of HMM, and followed 
by the training procedures. 
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1.2.3.1 Hidden Markov Model 

The theory of hidden Markov model (HMM) was developed since the late 1960s. It was used by 
IBM in automatic speech recognition since 1970s. A Markov chain is a stochastic process with 
short memory, where the current state depends only on the previous state. In a Markov chain, the 
observations are actually the state sequence. A hidden Markov model is an extension of a Markov 
chain where the observation is a function of the state; therefore, the state sequence is hidden in 
hidden Markov models. The probability to be at a particular state can be calculated instead given 
the observation.  

Figure 1.3 shows an example of a continuous mixture density HMM for recognizing three 
phonemes /a/, /e/ and /i/. Each phoneme is represented by a state, and each state is defined by 
Formant 1 (F1) value with a single Gaussian. If we treat the figure as simply a Markov chain, the 
observation in this case will be the three possible phonemes /a/, /e/, and /i/. Given the current 
observed phoneme, we can know the probability of transition to the next phoneme (state). For 
example, if currently we observed that the speaker utters the phoneme /e/, the probability of it to 
transit to phoneme /a/ will be 0.1. For a hidden Markov model, the observation is a series of F1 
value instead. From the F1 value, we do not know the actual state it is in, but we know that if the 
F1 value is near to the mean of one of the phoneme, it has a higher probability to be at that 
phoneme. Thus, if we observed an F1 value of 525Hz, it has a higher probability to be /e/, than /a/ 
or /i/. 
 
 
 

 

Figure 1.3 A continuous hidden Markov model for modeling three phonemes /a/, /e/ and /i/ 
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A hidden Markov model is defined by the following parameters: 

• O=o1,o2,…om – A sequence of observations. In the given example, the observations are a 
series of F1 values. For a period of time t, from an utterance of a speaker, the possible 
series of F1 observations are 558 Hz, 561 Hz, 562 Hz… 

• Ω={1,2,…N} – A set of states in the model. In the given example, there are three states, 
which represent the phoneme /a/, /e/, and /i/. 

• A={a ij} – A state transition probability matrix. Among the values of the state transition 
for the given example are a12=0.3 and a31=0.1. 

• B={b i(t) = P(Ot=ot| st=i)} – An output probability matrix, where bi(k) is the probability of 
observing the value ot at state i. In the given example, it is a continuous mixture density 
HMM with single Gaussian. The conditional probability can be calculated by using the 
Bayes Gaussian classifier. Given the observation o with dimension n (in our case n = 1), 
the probability of it to be emitted by distribution in state i with mean vector µi and 
covariance matrix Ci is: 
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• π={πi = P(s0=i)} – an initial state transition probability, where 1≤ i ≤N. In the case above, 

all three states have the equal chance to start.  

 
There are two assumptions made in the hidden Markov model: first-order Markov 

assumption and output-independence assumption. The reason is to simplify the calculation and to 
make the system more efficient and feasible. The first-order Markov assumption states that the 
probability at state s and time t, depends only on the preceding state at time t-1. 

 
)|(),...,|( 1121 −− ≈ tttt ssPssssP     (1.4) 

 
The output-independence assumption states that the probability that a particular observation at 
time t depends only on the state st and is conditionally independent of the past observations. 

 
)|(),...,,,...,|( 21121 ttttt sOPsssOOOOP =−    (1.5) 

 
In a typical large vocabulary speech recognition system, an acoustic model normally consists of 
multiple HMMs. Each HMM models an acoustic unit for example a phone, using a left to right 
architecture with three to five states, see Figure 1.4.   
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Figure 1.4 A three state left to right HMM topology 

 
 

The HMM in Figure 1.3 is a continuous HMM. In fact, there are three types of HMM 
depending on how the feature space of the model is defined: continuous, discrete and semi-
continuous (tied-mixture), see Figure 1.5. In a continuous HMM, the feature space of a model is 
represented using Gaussian mixtures. In a discrete HMM, the feature space is divided into 
clusters of speech sounds, normally using vector quantization (VQ) algorithm such as k-means. 
For a discrete HMM, the continuous features observed are mapped to a finite set of discrete 
observations. Thus, the feature space of each model is defined using the discrete features. Semi-
continuous space as its name suggests, is an intermediate between discrete and continuous model. 
The feature space of each model is defined using a common set of Gaussian densities. 
 
 
 

 
Figure 1.5 Representation of feature space using discrete, continuous and semi-continuous models 
[Rabiner 1993] 
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1.2.3.2 Training a Continuous Mixture Density HMM 

Given the hidden Markov model, how do we learn the optimized model parameters or patterns for 
speech recognition? In HMM training, the observations from the training utterances are used to 
model the corresponding acoustic units in the transcriptions with the assistance of a pronunciation 
model through iterative re-estimation. There are many different strategies to train a continuous 
HMM acoustic model. Figure 1.6 shows one of the possible ways for training an acoustic model, 
which is applied in Sphinx and HTK systems [Woodland 1993, Woodland 1994, CMU 2000]. 

 

 

Figure 1.6 Procedure for building a context dependent continuous HMM acoustic model 

 

Flat initialization is used here to initialize the HMM parameters by calculating a global 
means and variances from the features files. Note that the same front-end module used in 
recognition stage will be used here to convert the speech to the same type of feature, for example 
MFCC. Equally probable transition matrix and mixture weights are also initialized in the process.  
These values are then copied to the context independent (CI) models to initialize the parameters. 
Subsequently, the parameters are re-estimated using Baum Welch algorithm. Baum Welch 
algorithm is an expectation maximization (EM) method that iteratively maximizes the log 
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likelihood from the observed training data. The new HMM parameters will update the previous 
estimated values. Following are the re-estimation formulas for the coefficients of the mixture 
density, mixture weight c, mean µ, and covariance matrix C [Rabiner 1993]. 
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Note that the equation for the weight of the kth Gaussian mixture component in state j, wjk has the 
same form as the state transition from state i to state j, aij. In fact, a HMM state with a mixture 
density has shown to be equivalent to a multi-state single-mixture density model. γt(j,k) is the 
probability of observing ot in state j, kth Gaussian mixture at time t.  

For creating a multi-Gaussians context independent model, the number of Gaussians will be 
increased by splitting each Gaussian in the context independent model normally to two when it is 
converged by perturbing the means slightly. Context independent model is created by modeling 
the defined acoustic unit without taking into consideration the context (surrounding acoustic units 
and possibly its position) of the acoustic units during training. Context independent model is 
especially useful in situation when little speech is available. It is also useful as a bootstrap model 
in multilingual acoustic modeling. The re-estimation step is again repeated until the total number 
of Gaussians is reached. If the acoustic units defined are phonemes, then there will be one HMM 
for representing each phoneme. Note that phoneme is the smallest sound unit that distinguishes 
meaning. The acoustic units can also be trained by considering the context of the acoustic unit 
through context dependent modeling. The context dependent acoustic unit which is trained by 
taking into consideration the left context of current phoneme is known as biphone. The acoustic 
unit trained by considering its left and right context is known as triphone model. Thus, for the 

vowel /ǫ/ in the context of the word “yes” which is pronounced as /j ǫ s/, the monophone /ǫ/ will 

be modeled, but for a biphone it will be /ǫ/j (written also as j-ǫ), and the triphone will be /ǫ/j,s  

(also can be represented as j-ǫ+s). In this manuscript, we will consider phoneme as speech sound 

independent of the context (monophone), while phone (or more precisely allophone) is used to 
refer to the speech sound which takes into consideration of its context. 
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 In general, context dependent model outperforms context independent model for speech 
recognition. However, it requires more data to train robustly compared to context independent 
model. The data sparsity problem implies that precise context modeling cannot be used in most 
cases. A possible solution is to use a combination of different contexts, where a sharper phone 
model is trained if there are sufficient data. Another approach to overcome this problem is by 
state tying [Young 1993]. The idea is to model ‘similar’ states together based on the contexts they 
are in. This is carried out using decision trees for clustering the untied context dependent states by 
asking linguistic questions about the context of the untied states such as the type of the phoneme, 
the place of articulation, the position of tongue etc., from the root node to the leaf node. Normally, 
a decision tree is used for classifying states from the same base unit. Consequently, for a triphone 
model, the phonemes realised in different contexts are clustered using the same phoneme tree. All 
untied states to be clustered are placed on the root node of the tree, and the log likelihood of the 
training data calculated on the assumption that all of the states in that node are tied. The node is 
then split based on the linguistic questions which give rise to the maximum increase in log 
likelihood. The process is repeated until the increase in log likelihood fall below a threshold or a 
minimum occupation count is reached. Besides using decision tree, other way of tying the states 
is by using neural networks [Li 1998]. 

 

 

Figure 1.7 Phonetic decision tree for the phoneme /i/ 

 

Figure 1.7 shows an example of decision tree for phoneme /i/ built from triphone [i]. At 
each branch, phonetic question is asked about the context of the untied triphone [i] state. For 
example at the root node, the question is “Is the phoneme at the left of the triphone [i] a 
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fricative? ”. For an untied triphone p-i+l (a triphone [i] with left context /p/ and right context /l/), 
the answer is “no” because /p/ is a plosive, not a fricative. All the untied states which reach the 
same leaves will be tied together as the same state. Thus, the untied state such as f-i+m and s-i+n 
will be tied together at the same state in the previous example. 

 

1.2.4 Pronunciation Modeling 

Acoustic model defines elementary speech units using fine phonetic features which are related to 
mouth, tongue, vocal tract and others from speech. Pronunciation modeling on the other hand 
consists of creating the bigger word or syllable models using the acoustic units defined in acoustic 
model. Since in most cases, phoneme or phone is the acoustic unit employed in the acoustic 
model, a pronunciation dictionary (lexicon) can be built from a typical dictionary, since most of 
them contain descriptions of how words should be pronounced using International Phonetic 
Alphabet. 

If there is no description on the manner of pronunciation, then rules for converting the 
graphemes to phonemes have to be created. However, this requires an understanding of the 
language involved. An automatic grapheme to phoneme tool can be created for generating the 
‘standard’ pronunciation models using linguistic rules. A manual verification of the generated 
pronunciation models is often required to correct words which are exception to the rules. In cases 
where rules for converting graphemes to phonemes do not exist, and there is limited 
understanding of the language involved, studies found that using graphemes (context dependent) 
as the acoustic units for modeling pronunciation model can produce acceptable speech 
recognition performance, where it is only slightly worse compared to word modeled using 
phonemes [Killer 2003a, Killer 2003b]. Note that, this also means that the grapheme units have to 
be trained in the acoustic model. Using a phoneme based acoustic model, the words can be 
modeled in the pronunciation dictionary as follows (English pronunciations): 

 
ABANDON  ǩ b æ n d ǩ n 

CARPET  k ǡ r p ǩ t 

 
If there are few possible pronunciations for the same word, pronunciation variants can also be 
added into the pronunciation dictionary as follows: 

 

VOYAGE   v ǤǺ ǩ ȴ 

VOYAGE(2)  v ǤǺ i ȴ 

 
Often in a word pronunciation dictionary, frequent found phrases or word sequences can also be 
modeled here, for example: 

 
DRAG_AND_DROP d r æ g æ n d r Ǣ p 
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THERE_ARE  ð e r ǡ r 

 
We will look into more details about pronunciation modeling in Section 1.5.2, particularly on 
different approaches to find pronunciation variants and model them, since they are also related to 
the problem of non-native speakers.  

 

1.2.5 Language Modeling 
The language model represents the grammar of a language. It defines rules that govern the proper 
use of a language such as morphology and syntax. There are two very different ways to represent 
the grammar of a language: formal language model and stochastic language model. Formal 
language modeling is a knowledge-based approach to represent a language model using linguistic 
knowledge, while stochastic language modeling is a statistical data-driven approach that uses text 
corpora for generating the rules automatically. 

 

1.2.5.1 Formal Language Model 

A formal language model corresponds to knowledge and rule based language modeling. There are 
two important components in a formal language model: grammars and parser. Grammars are 
described using a set of rewrite rules, and they define the permissible structures of a language, 
and the parser decomposes a sentence to smaller lexical categories (lexical class, part of speech, 
word class) such as noun, verb, adjective, pronoun, preposition, adverb, and conjunction. With 
formal language model, a sentence is analyzed to determine whether its grammatical structure is 
allowed by the grammars. In this case, a sentence is transformed normally to a tree structure with 
words at the leaves nodes. The shortcoming of this rule based approach is that the grammars need 
to be defined by someone with the linguistic knowledge, and the grammars defined here typically 
have the standard structures which are permissible by the language. However, in conversational 
speech, this is often not the case. Furthermore, the structure can also be ambiguous in some 
situations. For example the sentence “time flies” has two possible representations with the given 
rewrite rules in Figure 1.8.  

 

 

Figure 1.8 Two different tree representations of the sentence “time flies” 

S 

flies time time flies 

Rewrite Rules: 
S->NP 
S->NP VP 
NP-> ADJ N 
NP-> N 
VP->V 
 

NP 

N  ADJ 

S 

NP VP 

N V 



Chapter 1. Automatic Speech Recognition for Non-Native Speakers 

 19 

1.2.5.2 N-Gram Model 

Stochastic language model is a statistical approach to represent grammar. In the formal language 
model, a sentence is classified as either an grammatically acceptable or unacceptable sentence. 
On the other hand, stochastic language model uses soft classification by estimating the probability 
of a sentence P(W) where W is a series of words W=w1,w2,w3... wn. P(W) can be calculated by 
decomposing it using the chain rule of probability as below: 
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The problem of calculating the sentence probability using the above formula is in estimating 

wi which depends on i-1 previous words. Even for a moderately long sentence, this probability 
can be impossible to calculate robustly. The workaround to this problem is to approximate the 
history by using several previous words (Markov assumption), instead of using all the previous 
words. This approach is known as n-gram language modeling. Depending on the constraint in the 
amount of text available, n-gram model can be created by using different values of n or order. 
When n is one, the probability of a word in the sentence depends only on its frequency of 
occurrence in the text, it is known as unigram. Bigram model assumes that the probability of a 
word depends on the immediately preceding word. One of the most often used n-gram model is 
trigram model, since most words in a language have a strong dependency on the previous two 
words, and it can be built using a reasonable size corpus. The trigram probability can be estimated 
from total observation counts of word pair C(wi-2, wi-1) and triplet C(wi-2, wi-1, wi) in a training 
corpus using the maximum likelihood approach as follow: 
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The chain rule of probability in (1.4) can be represented in the following form for trigram: 
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Even with the usage of n-gram to estimate sentence probability, calculating a robust trigram 

model can still pose problem because of data sparseness. This is because some words are more 
rare than others, for example proper name compared to pronouns in a text. As a result, in a 
trigram model, most words exist only in a few instances. Furthermore, the training corpus may 
also not contain certain words because of differences in training and actual environment. 
Smoothing is used in this case to produce a more robust estimation. Often, lower order n-gram is 
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used in some way for compensating the estimated trigram probability. For example, smoothing 
can be carried out using deleted interpolation smoothing as follow: 

 
)...|()1()...|()...|( 121111 −+−−+−−+− −+= iniiiniiiniiDI wwwPwwwPwwwP λλ  (1.12) 

 
where λ is interpolation weight that depends on wi-n+1… wi-1. Another commonly used approach is 
backoff approach. Backoff smoothing is first introduced by Katz, where smoothing is carried out 
by recursively backing off to lower n-gram until some counts are found. The Katz’s trigram 
backoff approach is defined as below [Jelinek 2001]: 
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where α and ß can be considered as weights. QT is a Good-Turing type function. r is the 
occurrences in the training data and k is a threshold. 

 

Another approach for reducing data sparseness when using trigram model is to use class n-
gram. In this approach, words with similar semantic or grammatical behavior can be grouped 
together and represented using a particular class. For example for a tourism domain language 
model, we may group together proper name of places such as Paris, London, New York, and 
Tokyo into city class. This will allow the n-gram model to generalize better because proper names 
are rarely found in the data. Furthermore, new words for example in this case new city names can 
be added and associate to the same class. As a result, they will inherit the same relationship found 
from the previous observed training data, without using any additional training data.  

 

1.3 Language Acquisition 
The studies on language acquisition can generally be divided into first and second language 
acquisitions. First language acquisition deals with the development of the first or native language 
on children, while second language acquisition looks at the process of learning a language other 
than the native. First and second languages are acquired differently and often in different stages 
of life, which can affect the language capability of the speakers. Before we look at non-native 
speech recognition, it is important to first understand how language capability developed in an 
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infant compared to an adult who learns a new language, and how these differences will affect the 
speech recognition system, so that approaches can be developed to take into consideration the 
differences to improve the system for non-native speakers. 

 

1.3.1 First Language (L1) Acquisition 
Research in the area of language acquisition studies the developmental process of children in 
learning a language. For years, researchers have been fascinated by how children are able to 
master language effortlessly in a short period of time. An understanding of this area may help 
educator in proposing a better approach for learning second language.  

Study shows that the ability of children to distinguish speech sounds is well developed 
before their speech production ability [O'Grady 2000]. Early research has shown that infants 
demonstrate the ability to respond to phonetic units of all languages. This discriminative ability 
could be accounted to the general auditory processing mechanism, which has also been shown for 
animals such as monkeys. The acquisition of a particular language on the other hand, involves the 
specialization of this general auditory processing mechanism, where specialized auditory features 
are exploited [Kuhl 2000]. For example, for speakers of tonal languages, they appeared to activate 
different regions of brain compared to those of non-tonal languages [ScienceDaily 2008]; 
therefore, the ability for infants to discriminate non-native consonant and vowel contrasts, and 
musical rhythms deteriorates across first year of life, increasing the sensitivity toward their native 
languages [Weikum 2007]. According to one of the theory [Kuhl 2000], infants detect patterns in 
language input, and exploit the statistical properties of the input, altering their perception to 
enhance specific language perception, see Figure 1.9. In this case, Japanese speakers have shown 
to have lost the ability to distinguish the /l/ from /r/ because their perceptual space for /r/ has been 
expanded to the area of /l/ to enhance their recognizing of the speech sound /r/.  

 

 

Figure 1.9 a) Physical stimulus given at different intervals equally spaced on the mel scale and the 
perceived category goodness by American listeners between /r a/ and /l a/ syllables. b) the 
perceived goodness of /r/ by Japanese listeners [Kuhl 2000, Iverson 2003]. 

 
Infants begin babbling starting from around six months of age. Studies show that there are 

similarities among the babbling sounds of infants, even though they are from different origin. 
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Among the sounds, plosive consonants are more frequent compared to fricatives [O'Grady 2000]. 
Understandable words are pronounced starting at around twelve months old, with one-word 
utterances. Syllable deletion is common in the words pronounced. There are also systematic 

deletions of certain sounds to simplify the syllable, for example the word stop is pronounced as [t 

ǡ p] [O'Grady 2000]. Other widespread observation is the substitution of one sound by another. 

Among the vocabulary acquired, nouns are more frequent. It is followed by words associated with 
common daily expressions and interactions. Children also often express themselves using two-
word utterances, few months after their first one-word utterances. For example, baby chair with 
the meaning of ‘the baby is sitting on the chair’ [O'Grady 2000]. More complex and longer 
sentences are expressed several months after this. Furthermore, studies also found that simply 
exposing infants with recorded material has shown to have no benefits. On the other hand, active 
exposure with feedback and recast from multiple speakers is important [Kuhl 1997, O'Grady 
2000].  

 

1.3.2 Second Language (L2) Acquisition 
There is a general agreement that age of learning (AOL) a language plays an important role in 
determining how well one will master the language, whether it is the first or second language. 
Results from functional magnet resonance imaging (fMRI) shows that the early adult bilinguals 
activate overlapping regions of the Brodmann’s area in brain, whereas the late bilingual subjects 
who acquire the language in adulthood activate two distinct regions of the area for processing the 
two languages [Kim 1997]. However, there are some differences on how age influences language 
acquisition. Early studies suggest that there is a critical period (Critical Period Hypothesis) to 
learn first and also second language. After this period, the ability to acquire the language 
successfully will decline and compromise. One of the main reasons stated is that neurology 
maturation will reduce the ability for a person to learn a language after the period has passed. For 
second language acquisition, some works show that there is a linear relationship instead of a 
threshold between age of learning and the perceived accent [Flege 1995]. Inaccurate perception is 
claimed as one of the main reason why non-native speakers are unable to articulate like the native 
speakers [Flege 1995, Rochet 1995, Kuhl 2000]. A further research on the topic shows that the 
frequent usage of L1 by a non-native speaker can also increase the perceived accent, even though 
the speaker learns the foreign language at a young age [Flege 1997, Flege 2004].  

Besides age, the learner himself is also a factor which determines how successful he learns a 
new language [O'Grady 2000]. The degree of motivation on learning a language is one 
determining factor. The cognitive factor of a person is also important. There are two cognitive 
styles: field independent and field dependent. The field independent person focuses on the details 
of a particular subject, while those of field dependent focus more on the overall picture. Thus, 
field independent and dependent learners do better in different tasks in second language learning. 
Field independent learners are better for example in grammatical task, while field dependent 
learners are better in synthesizing knowledge. In addition, different people have different learning 
strategies which may determine their rate of success in second language learning. 
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There are two types of errors made by second language learners, namely transfer errors and 
development errors according to Ontogeny model [O'Grady 2000]. Transfer errors are mistakes 
made based on the knowledge of the speaker on his L1. On the other hand, development errors 
are mistakes made in the process of acquiring the first language. According to the model, the 
amount of transfer errors go down in a linear fashion over time, while development errors 
increase and then go down over a period of time, see Figure 1.10. Second language acquisition 
involves four areas: phonology, pronunciation, vocabulary and grammars. 

 
 

 

Figure 1.10 L2 errors predicted by Ontogeny model 

 

1.3.2.1 Phonology 

Mastering the L2 phonology is one of the most difficult lessons for language learners. It involves 
the phonetic segments (speech sounds) and prosody.  

 

Phonetic Segments 

The correct acquisition of speech sound is important, because it distinguishes one word from 
another. The interference from the L1 of the speaker may lead to incorrect perception, where the 
speakers will interpret L2 sounds based on their L1 phonology [Flege 1995], which resulted in 
incorrect speech production. For instance, from the previous example, Japanese speakers will 
interpret English /l/ as Japanese /r/. However, studies show that this is not irreversible. With 
appropriate training, it has shown that Japanese speakers can be trained to perceive correctly these 
two sounds [Logan 1991]. A general model about second language acquisition known as speech 
learning model (SLM) has been proposed to describe the changes in the perception of the speaker, 
which takes into account of age-related limits on the ability to produce L2 sounds [Flege 1995]. 
According to SLM’s hypotheses:  

i. Initially L2 sounds are linked perceptually to the closest L1 sounds (the linked L1 and L2 
sounds also known as “diaphones).  

ii. However, when L2 learners gain experience in L2, they may gradually recognize the 
phonetic difference between certain L2 sounds and the closest L1 sounds and new 
category can be established.  
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iii.  The greater the perceived dissimilarity between diaphones, the higher the phonetic 
differences between sounds will be recognized and new phonetic category will be formed 
for the L2 sound. 

iv. When AOL increases, the likelihood for distinguishing L1 and L2 sounds will decrease.  

v. Similar L2 sounds will be classified as L1 sound (equivalent classification), and both 
sounds may interfere each other to achieve a ‘tolerant’ value to be used in both L1 and L2.  

vi. If a new sound category is created, the new L2 category may not necessary be the same 
as the native, it can be based on different features or phonetically different from the 
native to maintain phonetic contrast between the phones using the common phonology 
space. 

vii. Eventually, speaker produces L2 sounds that correspond to the phonetic category.  

 

In term of vowels, some observations that support the model were presented by Flege [Flege 
1987]. In his studies, he found that the type of perception errors one might make on L2 vowels 
depends on the perceived similarity of it with L1. Vowels that are perceptually far from each 
other are easier to distinguish. Sometimes, when listeners seem to correctly identify the type of 
vowel, they may in fact use a different feature than the one normally used by the natives for 
distinguishing the sounds. For example, Spanish speakers of English incorrectly use duration for 
distinguishing /I/ from /i/, rather than spectral cues [Bohn 1995]. This means that during 
production, they may use the wrong feature also. For ‘new’ L2 sound test (perceptually far from 
L1), an articulation experiment of French /y/ by native English speakers shows that their ability to 
articulate /y/ improves when experience increases, while initial learner will articulate it as /u/. 

On the other hand, for consonants, AOL affects the production of consonants just like on 
vowels. Native Italians who learn English by about the age of 10 are capable to produce /θ/ and 
/ð/ consonants that are perceived to be native like. After that, their performance reduces 
dramatically according to AOL, and the L1 counterpart is often produced instead of the L2 sound 
[Flege 1995]. Experiments on “similar” L2 plosive /t/ articulated by inexperienced non-native 
speakers showed that they used their L1’s voice onset time (VOT) in L2 [Flege 1987]. Note that 
VOT is the duration between a burst and the beginning of the vibration of vocal cords [Kent 
2002]. On the other hand, experienced native English speakers of French and experienced native 
French speakers of English have a compromise VOT value which is between VOT of L1 and L2. 
Consonant final stops /t/ and /d/ produced by Spanish native speakers are less often identified by 
native English speakers. The analysis shows that the less experienced Spanish speakers have 
smaller closure voicing differences between /t/ and /d/, while the experienced Spanish speakers 
have the same closure voicing as the native English speakers. However, the failure for native 
English speakers to detect the final consonant uttered by the experience Spanish speakers has 
shown that the feature learned is not the significant one. 

The speech learning model provides a general insight into the changes in the perception of 
language learners at different stage of learning and also on the type of speech productions that are 
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foreseen for different type of L2 sounds compared to the native sounds of the speaker. However, 
they do not specify quantitatively the effects from the L1 phoneme set of the speakers on a 
particular L2 phoneme set. 

 

Prosody 

In general, prosody comprises of intonation, stress and rhythm. L2 Intonation is one of the widely 
studied topics. The intonation shows the variation of pitch (fundamental frequency or f0) over the 
speech. Intonation conveys linguistic information, for example whether the utterance is a 
statement, command or question, and also the state of a person for instance emotion, physical, 
sociolinguistic and others. Hence, an inappropriate intonation may cause misunderstanding in 
communication. One of the widely used intonation model is by [Pierrehumbert 1980]. It separates 
the intonation to phonological and phonetic component. The phonology component consists of 
four types of tone at the higher suprasegmental level: the pitch accent (tone associates with stress), 
tone at the phrase level and tone at the boundary of the sentence. The tone at the phonetic 
component studies the changes of tone along phonetic level, for example from one phone to 
another. Each of these tones is represented by a pair of high and low tone.  

The studies conducted on L2 intonation acquisition showed that there are similarities with 
L2 speech sound acquisition discussed earlier. L1 interferes with L2 intonation is apparent. Hence, 
speakers from different L1 commit different type of errors in intonation according to their L1. For 
example native English speakers who learn Italian have a local (tone) peak at the later position of 
a syllable, which is native English like compared to native Italian speakers which have a peak 
earlier in a syllable [Mennen 2006], see Figure 1.11. However, not all L1 features will affect L2 
intonation. There are also different degrees of success in L2 intonation acquisition which depends 
on the experience of the speakers [Ueyama 1996, Menne 2004].  

 

 

Figure 1.11 The Italian word ‘Mantova’ uttered by a) non-native Italian (native English speaker) 
compared to b) native Italian speaker [Mennen 2006] 

 

Different languages have different levels of tone and pitch range. For example, English has 
a higher mean tone than German. Studies show that most non-native speakers are able to adapt to 
different level of tone when they learn a new language, but their pitch range is narrower 
compared to the native speakers [Mennen 1998, Ullakonoja 2007].  
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In term of stress, three factors have been determined to affect the placement of stress in 
English by L2 learners: syllabic structure, lexical class and stress patterns of phonologically 
similar words [Wayland 2006]. However, speakers from different L1 (e.g. stress versus tonal 
language) shows different degree of these effects. For example, non-native speakers where their 
native language is a stressed language, they tend to transfer their stressed pattern from their L1 to 
L2, while those from tone language do not show a specific pattern. Interestingly, studies also 
found that non-native English speakers from a stressed native language perceive English stress 
poorly compared to speakers from a non-stressed language because of L1 interference. However, 
the same speakers with stressed native languages performed better in the tests involving the 
production of L2 stress compared to speakers from non-stressed native languages [Altmann 2006]. 

 

1.3.2.2  Pronunciation 

In term of pronunciation, when language beginners encounter unfamiliar L2 syllables, they may 
resort to use their L1 pronunciation rules. For example Spanish does not allow /s/ to be followed 
by consonant sequences word initial. So, it is possible that Spanish speakers pronounce the word 
‘Spanish’ as ‘Espanish’ [O'Grady 2000]. Development errors which are observed in L1 
acquisition by children can also happen on second language learners. For complex pronunciations, 
they may resort to simplify the pronunciation by inserting, deleting or substituting certain sounds 
with another sound. This is the same as what happened in children acquiring L1. Other possibility 
is to pronounce the word according to the grapheme sequence, which is not necessarily correct. 

 

1.3.2.3 Vocabulary 

Non-native speakers are likely to use the wrong vocabulary for expressing themselves. In general, 
the errors committed come from two sources: L1 vocabulary transfer and wrong association. L1 
vocabulary transfer happens for L1 words with similar orthography to L2. For example, a Spanish 
who speaks English may say “my wife is embarrassed”, where the actual intended meaning is 
“my wife is pregnant” because the Spanish word “embarasado” means pregnant [O'Grady 2000]. 
Another example from French and English is the words “avertissement” and “advertisement” 
which may seem to be similar have different meaning. The French word means warning, but the 
English word means an announcement. In the worst case, the speakers may also introduce words 
in their native language. For example, in French, there exists words that end with “-ment” like in 
English, for example the French word “département” with the corresponding English word 
“department”. An English language beginner may end up introducing the English word 
“experiment” in French. Furthermore, “expérience” is a valid word in French, but not 
“experiment”. 

Wrong association happens because of influence by the relationship between the native 
language vocabulary and the actual meaning. This occurs for certain words which have one-to-n 
relationship between the meaning of the native word of the speaker and the foreign word. For 
instance, in Malay there are two possible words which can translate the English word ‘rice’. 
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‘Beras’ /b ǩ r a s/ is the uncooked rice and ‘nasi’ /n a s i/ is the cooked rice. Thus, a Malay 
language beginner with English native background may associate one of the Malay words (e.g. 
beras) with rice for all contexts, and end up using it wrongly in certain context. For the sentence 
‘I eat rice’, the speaker may translate it as below, which is incorrect. 

 
*Saya makan beras      /s a y ǩ   m a k a n   b ǩ r a s/ 

 
The probability of incorrect usage by a native French learning Malay is even higher. See Figure 
1.12 for the relation between the words.  

In term of perplexity, study shows that non-native speech has a lower perplexity compared 
to native speech [Tomokiyo 2000]. This may means that non-native speakers tend to use more 
common words in their speech, while native speakers that are expert in their language are capable 
of using more specific words to form sentences. 

 

 

Figure 1.12 Different associations between words from different languages 

 

1.3.2.4 Grammars 

Non-native speakers also make more grammatical errors compared to native speakers, because of 
the unfamiliarity with the target language. They are likely to use the sentence structure of their 
native language in the target language. For example in some languages like Spanish, it is possible 
to drop the subject in a sentence. Speakers having a native language with this characteristic have 
also shown to commit certain grammatical errors associated with them [O'Grady 2000]. Another 
example is the placement of adverb by French speakers.  In French, the adverb is put after the 
verb. Studies show that English beginners of French origin show the same tendency when they 
speak English. For example, they tend to say “Marie watches often television”, because of the 
influence from the French sentence “Marie regarde souvent la télé” [O'Grady 2000].   
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1.4 Speech Recognition for Non-Native Speakers 
The advancement in communication and transport has made cultural interactions between 
different parts of the world easier and more frequent. Although European languages such as 
English, French, Spanish and others have long been the international languages learned by people 
around the world at schools and universities, with the development of countries in Asia and other 
continents, more and more people around the world are embracing languages such as Mandarin, 
Indian, Arabic, Korean etc. Nowadays, apart from the native language, most people can speak at 
least one foreign language. Furthermore, people are more and more likely to travel to foreign 
countries for vacation or business. They also often pick up some common phrases with the help of 
the Internet and travel guides to make the communication easier with the locals. 

Speech recognition technology has achieved tremendous advancement in the past decades. 
However, most of the works in speech recognition in the past focus on native speakers. Non-
native speech as we see in previous section is different from native speech in term of phonology, 
pronunciation, vocabulary and grammars. These differences give rise to what is known as accent 
of a particular group of non-native speakers. What is the difference between non-native speech 
and dialects?  For dialect speakers, there is no transfer of L1 like what happens for non-native 
speakers, because the dialect is often the first language of the speakers. However, variation from 
the ‘standard’ language can still happen in the areas of phonology, pronunciation, vocabulary and 
grammars. However, unlike non-native speech, dialect has commonly accepted phonology, 
pronunciation, vocabulary and grammars rules or standard among the speakers. Conversely, there 
is different degree of accent in non-native speech. The difficulty of non-native speech recognition 
is worsening by the number of languages available, and the limited amount of non-native 
resources. How non-native speech is going to affect an automatic speech recognition system? 
Three important components in speech recognition system are affected. They are the acoustic 
model, pronunciation model and language model.  

The mismatch which is caused by the negative transfer of the L1 phonology of the speaker 
to L2 will affect the performance of the target acoustic model and pronunciation model for 
recognizing their speech. For similar phonemes, for example French and English /t/, they have 
different VOT. Inexperienced non-native speakers may use their native /t/ in the foreign language. 
As for prosody, although the differences do not affect the meaning of an utterance for a speaker, it 
may also affect the performance of a speech recognition system. The speaking rate is one obvious 
example. For new phonemes which are perceived to be different from L1 phonemes of the 
speakers, inexperienced non-native speakers may still have trouble articulating them even though 
they can perceive the differences. In some cases, they may even use the wrong features for 
differentiating the sounds, which may result in articulation that varies from the native variants 
which is modeled in the acoustic model. Context dependent modeling which is used to improve 
speech recognition performance for native speakers may not be useful for non-native speakers 
[Compernolle 2001]. On the other hand, a context independent model may end up performing 
better. As a result, the model which is built for native speakers is not fully compatible with non-
native speakers. From previous section, we also learn that non-native speakers may also simplify 
some pronunciations which are not familiar for them through insertion, substitution and deletion. 
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We have seen that it is possible that Spanish speakers speaking English pronounce the word 
‘Spanish’ as ‘Espanish’. This pronunciation variant has to be added to the pronunciation 
dictionary.  

 Incorrect usage of vocabulary and grammars may also hurt the language model. Similar 
words, even if they exist in the speaker native language and the second language, may have 
different semantic and form of usage. Occasionally, vocabularies which exist only in the native 
language of the speaker but not in the foreign language may also be used. These will affect the n-
gram probability of the words. The incorrect usage of grammars will show up as different n-gram 
probability of the words involved. Table 1.1 shows the difference in the accuracy of speech 
recognition for native and non-native speakers from some studies. The results show that the WER 
for non-native speakers is about twice or higher than the rate of native speakers. 

 
Table 1.1 Comparison of the performance of automatic speech recognition (ASR) on different 
non-native speakers 

 Target Language 
(L2) 

Native Language 
(L1) 

WER 
(native) 

WER 
(non-native) 

[Oh 2006] English Korean 4.2 39.2 
[Liu 2006] Mandarin Cantonese 7.9 20.0 

[Steidl 2004] 
German 
English 

50 countries 
German 

18.5 
35.0 

34.0 
65.6 

[Wang 2003b] English German 16.2 49.3 
[Witt 1999a] English Spanish and Japanese - 28.2 

 

1.5 Non-native Modeling in Speech Recognition 
As mentioned in previous section, non-native speech has different characteristics compared to 
native speech. Hence, specific non-native models tailored to different non-native speaker groups 
have to be created to achieve better recognition speech performance. However, the lack of non-
native resources implies that many of the conventional techniques proposed for native speakers 
are unable to be used effectively. Over the past decade, creative approaches have been developed 
for modeling non-native speech under the constraint of resources, by taking advantage of existing 
resources.  

Automatic speech recognition system for non-native speakers has the same architecture as 
the conventional system at Figure 1.1. However, it may have an additional component which 
determines the accent of the speaker either manually or automatically. With this information, 
matching models which correspond to the accent of the speaker can be selected for decoding the 
speech. In this section, we will look at approaches for building acoustic, pronunciation, and 
language model for non-native speakers. In addition, current state of the art accent identification 
approaches will also be investigated. 
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1.5.1 Non-native Acoustic Modeling 
Non-native speakers do not articulate the speech sounds like the native speakers, because their 
speech is often influenced by their native phonology. Non-native speakers from different origin 
therefore often have pronunciation habits which are related to their native language. Getting 
enough non-native speech to create non-native acoustic model is time consuming and sometimes 
unfeasible. Consequently, the existing approaches proposed for adapting acoustic model for non-
native speakers make use of the native language of the speaker or a little non-native speech for 
adaptation. Generally, these approaches can be divided into four main categories. They are 
acoustic model reconstruction, acoustic model interpolation, acoustic model merging and the 
more general adaptation algorithms. 

 

1.5.1.1 Acoustic Model Reconstruction 

The most direct way of creating a non-native acoustic model is through acoustic model training. 
However, it is not easy to get enough non-native speech to create a non-native model. Thus, 
instead of creating it from scratch, existing target language acoustic model is employed as the 
bootstrapping model, which will be subsequently adapted using some acquired non-native speech. 
Studies have also found that native speech from the non-native speaker can also be useful for 
adapting the target language acoustic model in situations when non-native speech is not available 
[Uebler 1999, Tomokiyo 2001]. However, non-native speech has found to be a better adaptation 
source than the native language of the speaker. 

Alternative state tying methods using phonetic decision trees to create tied-states during 
training have also been proposed to improve the performance of accented and non-native speech 
recognition systems. The idea is to initialize non-native acoustic features at state tying. These 
approaches have shown to reduce the recognition errors of non-native speech and at the same 
time cause little or no reduction in the performance of native speakers. This means that the same 
model can be applied for both groups of speakers at the same time. [Oh 2006] has proposed to tie 
all the confused target language phones together by using the same decision tree for the confused 
phones.  This is done by using non-native speech to find the target language phones confusion. 
The phones with confusion probability exceeding a certain threshold will be selected and 
collected together. A phonetic decision tree will be constructed and tied together the states for 
these phones (see Figure 1.13a) using the standard decision tree approach discussed in Section 
1.2.3. On the other hand, [Liu 2003a, Liu  2003b, Liu 2006] has proposed a slightly different 
approach for tying states earlier for accented speech by using decision tree. There are two types of 
tree which being used here. A standard phonetic decision trees built using the target language, and 
auxiliary tree which is also a phonetic decision trees but built with non-native data, where a 
particular phoneme is pronounced or realised as another phoneme. In another word, that phoneme 
is confused as another phoneme by the speaker. For example /d/ is realised or confused as /t/. The 
leaves of the auxiliary trees with single Gaussian density each will be merged to the nearest leaf 
nodes of the standard target language phonetic decision tree by applying weights (see Figure 
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1.13b). The purpose is to initialize the densities that define non-native speech. After that, standard 
training procedures follows, where only native speech is used for creating the acoustic model. 

 

Figure 1.13 Comparing two states tying approaches for acoustic model reconstruction. a) The 
confusion of phoneme /t/ and /d/ is above the specified threshold. A decision tree /d+t/ is built to 
tie all triphones [t] and [d]. b) The confusion of /t/ and /d/ is used to build an auxiliary d_t tree, 
which will be merged to the leaves of the target language /d/ tree.  

 

1.5.1.2 Acoustic Model Interpolation 

Acoustic model reconstruction requires the raw corpus for modeling, but acoustic model 
interpolation on the other hand can be carried out even when the resources are in the form of 
acoustic models. It is carried out normally between two acoustic models by applying a-priori 
weight to the models. A target language acoustic model may be interpolated with the native 
language acoustic model of the speaker [Witt 1999a, Witt 1999b], see Figure 1.14. In this case, it 
is based on the hypothesis that the pronunciations of non-native speakers are intermediate 
between the two languages. For finding the target and source language model mapping, Witt has 
proposed three approaches. The first approach made used of linguistic knowledge for mapping 
the target and source language sounds. Another possibility is to conduct perception analysis by 
phonetician and the third approach is to use some non-native speech to create confusion matrix to 
find the phoneme confusion. Besides interpolating between target and the native language 
acoustic model, it is also possible to interpolate the target language acoustic model with the non-
native acoustic model [Tomokiyo 2001, Wang 2003]. In this case, the model is created with only 
limited amount of non-native speech. Alternatively, instead of using it to adapt the target acoustic 
model, the non-native speech can also be used to find the phoneme confusion between the target 
language phonemes, and interpolation can be performed on these confused phonemes [Steidl 
2004]. In a continuous HMM acoustic model, the matching Gaussians in the corresponding states 
will be interpolated. If the source acoustic model for interpolation is not derived from the target 
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language acoustic model, the Gaussians in the target and source are mismatched, so they have to 
be matched first before interpolation can be carried out using distance measure. Contrary, for a 
semi-continuous HMM, non-native speech is used to find the target language phoneme confusion, 
and interpolation can subsequently be carried out by interpolating the mixture weights [Steidl 
2004]. The benefits of acoustic model interpolation are that the approach is simple to carry out 
and the interpolated model has the same number of components in term of number of states and 
Gaussians. In situation where some non-native speech is available from the speaker, [Witt 1999a] 
has proposed a non-native speaker adaptation approach which is able to estimate the interpolation 
weights automatically which is known as linear model combination. 

 

 

Figure 1.14 Acoustic space. Interpolation between target language phonemes in cycles and source 
language phoneme in square. The shaded cycles represent the interpolated non-native phonemes. 

 

1.5.1.3 Acoustic Model Merging 

Like acoustic model interpolation, acoustic model merging requires only the acoustic models, 
without any raw speech data. It involves combining two or more acoustic models from normally 
two sources. Often, the target language acoustic model will be merged with the corresponding 
native language acoustic model of the non-native speaker [Witt 1999a, Witt 1999b, Morgan 2004, 
Bouselmi 2005, Bouselmi 2006] to form a new model. The idea is that different speakers are 
likely to use different strategies to pronounce a sound. In this case, it is either the target language 
speech sound or the native speech sound of the speaker. There is also a work which merges the 
native and the non-native models [Minematsu 2003]. A weight will be assigned to each of the 
merged model, either on the transition of each model (Figure 1.15a) or into the mixture weights 
(Figure 1.15b). The weights can be assigned manually or estimated automatically using some 
non-native speech [Bouselmi 2005]. The disadvantage of acoustic merging is that it increases the 
number of states or Gaussians in each HMM and it may create some redundant distributions, 
which therefore increase the memory and computation time. 
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Figure 1.15  Two variants of acoustic model merging created from a target model /ptarget / and a 
source model /psource/. a) Two models are merged to form a new model /p/ with six states. 
Transition weights w1 and w2 are assigned. b) The mixtures from source model are merged to the 
corresponding state in the target state to form a new model /p/ with only 3 states. Different 
weights are assigned to the mixture weights of target and source. 

 

1.5.1.4 General Adaptation Algorithms 

General adaptation algorithms have proven to be effective for creating speaker specific model. By 
using a few utterances from a speaker, a speaker independent model can be adapted. Adaptation 
algorithms have also been used for adapting the environment conditions. The flexibility of 
adaptation algorithms, which are capable to work under limited resource constrains makes them 
an ideal choice to be employed for creating non-native models.  

Two of the most popular adaptation algorithms in automatic speech recognition are 
Maximum Likelihood Linear Regression (MLLR) [Leggetter 1995] and Maximum a Posteriori 
Estimation (MAP) [Gauvain 1994]. [Tomokiyo 2001] found that adapting the target language 
acoustic model using MLLR or MAP with native speech of the speakers does not produce any 
improvement. Contrary with this result, the acoustic models created from merging of the target 
language acoustic model with the target language acoustic model adapted with the native 
language of the speakers, have shown to be beneficial [Bartkova 2004]. On the other hand, 
[Tomokiyo 2001] found that significant improvement can be obtained by adapting the target 
language acoustic model using small amount of non-native speech with MLLR or MAP. [Wang 
2003a, Wang 2003b] proposes to apply non-native speech with MAP adaptation and Polyphone 
Decision Trees Specialization (PDTS). PDTS [Schultz 2000] is a decision tree adaptation 
algorithm which is used to grow specialized non-native branches from a target language trees by 
pruning to the point where it can be inserted. The adapted tree represents contexts of the non-
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native speech data. Other general adaptation algorithm which has been tested on non-native 
speakers is [Deng 2006]. It is an unsupervised speaker adaptation algorithm using incremental 
singular value decomposition (SVD) adaptation technique. 

 

1.5.2 Pronunciation Modeling 
We see in Section 1.2.4 the typical ways to create and add pronunciation models in the 
pronunciation dictionary. Although pronunciation variants are also typically added in the 
pronunciation dictionary, it is not the only choice. The pronunciation variants or surface forms 
can also be modeled in other components. This does not only affect the memory and computation 
time for instance, but can affect the ways how the pronunciation variants are generated. In general, 
there are four possible places to model the pronunciation: pronunciation dictionary, language 
model, acoustic model and rescoring module [Strik 1998, Strik 1999].  

 

1.5.2.1 Pronunciation Dictionary 

Typically a speech recognition system has a pronunciation dictionary which stores at least the 
baseform representations or standard way for pronunciation of words or syllables. Hence, it is 
also natural to add the surface form or the variant pronunciation which maybe different from the 
baseform into the pronunciation dictionary as another possible realization of the word. For 

example in the previous example, the word voyage has the standard pronunciation /v ǤǺ ǩ ȴ/. It 

also has another possible variant pronunciation /v ǤǺ i ȴ/.  

One possible way to add pronunciation variants is through listening to the utterances, and to 
write down their pronunciations. However, this is time consuming and not necessarily produces 
better result than the automatic approach. A study shows that manual pronunciation modeling do 
not necessary outperforms automatic approach [Goronzy 2001a]. Automatic variants generation 
can be performed using data-driven approaches. The general procedure for finding pronunciation 
variants is by aligning the hypotheses obtained from non-native speech against the corresponding 
reference transcriptions to create phone confusion matrix. Pronunciation variants can be observed 
from the phone confusion matrix. The unobserved variants can be found by generalizing the 
variants found according to context by using decision trees, and optionally adding the variant 
probability from the decision trees for each word into the dictionary [Humpries 1997]. 

The procedure described above requires the usage of non-native speech. However, in many 
situations non-native speech is hard to acquire. [Goronzy 2002] has attempted to generate 
pronunciation variants using the native phoneme set of the speaker. It is based on the hypothesis 
of cross-lingual transfer, where non-native speakers substitute target language phonemes with 
their native phonemes. The procedures are the same as described before for finding pronunciation 
variants using non-native speech. The only difference is that the target language speech is 
decoded by a phoneme recognition system of the source language (native language of the 
speaker). The phone confusions created from the alignment are then used to create the decision 
trees. The pronunciation variants can then be subsequently retrieved from the trees. However, the 
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results show that the new dictionary does not produce a significant improvement. Improvement is 
only obvious when the dictionary is used in conjunction with MLLR applied to the acoustic 
model with some speech from the speaker. 

Different non-native speakers have different pronunciation habits which are specific to that 
group. [Raux 2004] has proposed an automatic speaker clustering method for non-native speakers 
based on a list of manually defined vocalic substitutions. A vector is used to represent a dialogue 
session from a speaker. It contains the number of times a variant appears.  Clustering is carried 
out using model-based k-means and the vectors are randomly assigned to one of the cluster 
initially. In the subsequent iteration, the vector is assigned to the cluster which gives the highest 
likelihood to the pronunciation variants observed. This step is executed until it converges. The 
pronunciation dictionary created for each cluster has shown to be able to reduce the WER of a 
speech recognition system for each group. 

 

1.5.2.2 Language Model 

Language model is another place where pronunciation variants can be represented. There are two 
ways to calculate the best word sequence by taking into account the pronunciation variants. First 
method is to treat each variant as a separate word. An n-gram model will be built which includes 
all the variants. For this to be carried out, a transcribed speech corpus with the possible variants is 
required. Recall that in Section 1.2.2, the best word sequence can be formulated by 
argmax(P(O|W) P(W)). So, in this case the formula will be:  

 

))()|((maxargˆ VPVOPV
v

=     (1.15) 

 
where V is the sequence of pronunciation variant. The second method is to calculate the 
probability through an intermediate conditional probability as follows  

 

))()|()|((maxargˆ WPWVPVOPV
v

=     (1.16) 

 
The probability of the variant P(V|W) can be estimated from the unigram. The second approach 
requires less data compared to the first approach. However, the shortcoming is that in the second 
approach the context of the variant cannot be modeled. 

 

1.5.2.3 Acoustic Model 

Modeling pronunciation variants at the acoustic level has blurred the difference between acoustic 
and pronunciation modeling. Acoustic model merging, which is described in Section 1.6.1.3 can 
also be used for modeling pronunciation variants [Bouselmi 2005, Bouselmi 2006]. The 
pronunciation dictionary in this case may store only the baseform pronunciations, and the variants 
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or the surface representations are stored in the acoustic model. The procedures to find the 
pronunciation variants are the same as discussed for pronunciation dictionary, the only difference 
is that the pronunciation variations are stored in the acoustic model. For example, if there is a lot 
of confusion between the phoneme /ə/ and /e/, then pronunciation variants can be put in the 
acoustic model like Figure 1.16. 

 

 

Figure 1.16 Acoustic model merging to represent pronunciation variation  

 
Other approaches of modeling pronunciation variants at the acoustic level can be considered 

more as a combination with other approaches, particularly with the pronunciation dictionary. One 
of the most common techniques to optimize the trained acoustic model is to go through a 
procedure known as iterative transcribing [Nock 1998]. The idea is to use the baseform 
pronunciation as the initial model for training the acoustic model. Subsequently, pronunciation 
variants are found and added into the pronunciation dictionary. By forced-aligning the 
transcription using the new dictionary, the most suitable pronunciation variants for the words in 
the transcription will be chosen by the speech recognition system. The transcription is updated 
with the right variants and will be used for training a new acoustic model. The procedure is 
repeated iteratively. 

Another issue related to modeling pronunciation variants is the selection of the type of 
acoustic unit to model. Most speech recognition systems model phone, but it is also possible to 
model units bigger than phone for example word, syllable, demi-syllable. Some speech 
recognition systems use a combination of these different units. The training of bigger units is only 
possible when the unit occur frequently enough. Smaller sub-phonemic units are also possible. 
We did not found any works which model units other than phones for non-native speech 
recognition, however indirect results from the work in accent identification [Arslan 1996] indicate 
that using whole word models for accent identification shows better performance. If this is true, 
then modeling whole word models for automatic speech recognition should also give a better 
result, provided that there is sufficient speech for modeling them.  
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1.5.2.4 Rescoring Module 

Rescoring module is an optional component used in multipass search. In a multipass search 
strategy, decoding produces a word lattice or an n-best list, instead of a one-best word sequence, 
which will be re-evaluated in the rescoring module. The idea is to use a more general and simpler 
knowledge source (e.g. language model) during decoding to prune away unlikely hypotheses, and 
subsequently increase the complexity of the knowledge source in the rescoring module for finding 
the best match. This will make sure the search process is done in a manageable and feasible level. 

The same idea can also be extended to knowledge source like pronunciation model, where 
during decoding a pronunciation dictionary which contains the standard pronunciations is used to 
produce word lattice or n-best list, while in the rescoring process the output will then be rescored 
using all the possible pronunciation variants. [Gruhn 2004] proposes to model the variants by 
using the hypotheses from the phoneme recognition system to align against the references to build 
a discrete HMM for the word pronunciation model. In the rescoring process, the decoder will 
produce n-best sentences, which will be rescored using a different pronunciation model. We will 
look more detail into this approach in Section 3.2.3. 

 

1.5.3 Language Modeling 

Obtaining sufficient non-native speech to create non-native acoustic model is not an easily 
achievable task. Acquiring enough non-native speech to model the grammars of non-native 
speakers is even more difficult. One possible solution for this is to collect instead the writing 
materials such as homework from the related non-native speakers, since the speaking habits such 
as common used sentence form and often made grammatical errors may also show up in their 
writing.  

 
 

 

Figure 1.17 Cross-lingual adaptation of a language model 
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There are not many studies done in language modeling for non-native speakers, since 
obtaining enough dialogs for testing is not easy. One related work can be found in cross-lingual 
language model adaptation for multilingual speech recognition [Kim 2003], which may have the 
potential to be ported to non-native language modeling (see Figure 1.1.7 above). The approach 
tries to solve the lack of data for constructing a target language model by utilizing texts in 
resource rich source language, which have similarity to the target language to adapt the target 
language model. The related texts are identified using cross-lingual information retrieval 
technique. Subsequently, machine translation approach is used to estimate the target language 
unigram language model.  

 

1.5.4 Accent Identification 
Accent can be defined as a way of pronouncing a language that indicates the origin and social 
background of the speaker. Accent can generally be divided into two types: dialect (local accent) 
and foreign accent. Accent identification approaches can be grouped according to the type of 
features they treated. The two main categories are acoustic or phonotactic features.  

 

1.5.4.1 Acoustic Features 

One of the earliest works in accent identification employs f0 for dialect identification [Itahashi 
1992]. The relative starting frequency and the changes in f0 are judged sufficient for Japanese 
dialect identification. On the other hand, [Blackburn 1993] has segmented incoming speech to 
voiced and unvoiced, stop and energy dip, before classifying it using neural network.  Other 
acoustic features like formants, duration and bandwidth have also found their way into the accent 
identification domain [Liu 1999, Ghesquiere 2002]. The more general MFCC features were also 
employed for accent identification since the features can serve for dual purposes: speech 
recognition and accent identification. [Arslan 1996] proposes to use the HMM speech recognition 
system for accent identification task by employing MFCC features, see Figure 1.18.  

 
 

 

Figure 1.18 Accent identification using acoustic features 
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The system applies a text dependent strategy, which means the speakers were required to 
read specific words, and the scores derived from the acoustic models are used to identify the 
accent of the speakers. The accented HMM model which has the highest score for the input 
speech will be selected as the hypothesized accent. The study found that word based accent 
models perform better than phone based accent models in accent identification experiments. This 
shows that word based models are more capable of capturing coarticulation of non-native speech. 
However, phone models have the benefit of being vocabulary independent. On the other hand, in 
term of context dependent (CD) and context independent (CI) phones, context dependent phone 
models give a better result than the context independent phone models in accent identification 
tasks. 

On the other hand, [Kumpf 1996] employed a slightly different strategy, where parallel 
phoneme recognizers with accented acoustic and phoneme language models (which we will see in 
next section) were used to evaluate the accented speech in a text independent manner. The 
accented speech recognizer which produces the highest score for the input speech is selected as 
the hypothesized accent. Besides the typical HMM, Gaussian mixture model has also proven to 
be useful for accent identification task [Chen 2001]. For identifying accent, Chen created accent 
specific models which are gender based using unsupervised approach, without the need for any 
transcriptions. This approach is similar to approaches in speaker identification. Approaches 
proposed for language identification have also found their way into accent identification. 
Heteroscedastic linear discriminant analysis (HLDA) and maximum mutual information (MMI) 
training have been combined for creating accent models based on Gaussian mixture models 
(GMM) [Choueiter 2008]. In addition, index language models have also been created by using the 
sequence of indices, which indicates the mixture component with the highest likelihood, 
generated by the Gaussian tokenizer. 

In addition, there are also approaches that take into consideration all the possible types of 
acoustic features and subsequently use multivariate analysis to extract discriminative features for 
accent identification tasks. For example [Kumpf 1997] proposed to use Linear Discriminant 
Analysis (LDA) to reduce the feature vectors which consist of MFCC and other acoustic features, 
while [Ghesquiere 2002] proposed a one-way ANOVA to select the best discriminant features. 

 

1.5.4.2 Phonotactic Features 

Accent identification systems using phonotactic features make use of the hypothesized phonemes 
sequence uttered by the speaker to distinguish the accents. There are many ways to model the 
phonotactic features and one of it is using phoneme language model. [Zissman 1996b] has 
proposed a text independent system which used accent models from phoneme language models 
for evaluating non-native speech. Separate accented phoneme language models are built by 
decoding corresponding non-native speech using the target language phoneme recognizer, and the 
transcriptions generated are used to create phoneme bigram and unigram models. The bigram 
model will then be smoothed by interpolating it with the unigram phoneme language model. An 
utterance with unknown accent is decoded using the target language phoneme recognizer (PR). 



Chapter 1. Automatic Speech Recognition for Non-Native Speakers 

 40 

The language model score is calculated by evaluating each accented phoneme language models 
using the following formula: 

 
P' (w| w t-1) = α P (w| w t-1) + ß P(w)  + γ P0   (1.17) 

 
where w is the word after w t-1, and α, ß and γ are interpolation weights which sum to 1.0, P0 is the 
reciprocal of the number of speech sounds. The accented phoneme language model that produces 
the highest score will be selected as the hypothesized accent (see Figure 1.19). In fact, a similar 
approach can also be found in language identification [Zissman 1996a]. In language identification, 
instead of accented models, language models of different languages are created using the native 
languages. Besides the phoneme sequence, the position of the phoneme realised by a non-native 
speaker in a particular syllable is also important for predicting the origin of a speaker [Berkling 
1998]. However, this means that the reference phoneme sequence has to be known, so that it can 
be compared against the hypothesis.  

 
 

 

Figure 1.19 Accent identification using accented phoneme language model (LM)  

 
Besides using phoneme language model to represent the phonotactic features of the accent, 

other approaches of phonotactic modeling using support vector machine (SVM) are also possible 
options. Support vector machine is a supervised learning approach for classification [Duda 2000]. 
The procedure to create SVM accent models is similar to text categorization, where instead of 
calculating the word distributions in a text during training, phoneme distributions from the 
decoding of the utterances are used for modeling. They are calculated by first decoding the non-
native utterances with a phoneme recognizer. Then, each utterance is described by a vector which 
contains the hypothesized phoneme distributions of that utterance. Each utterance is an instance 
for training the SVM accent models. For improving the accuracy, several phoneme recognizers of 
different languages can be used at the same time. Using several phoneme recognizers of different 
languages have shown to improve accuracy in language identification tasks [Zissman 1996a]. 
Different phoneme distributions are calculated from each phoneme recognizer and they are later 
appended to form a single vector, which is subsequently used for modeling. During classification, 
an unknown utterance is decoded by the same multiple phoneme recognizers and its hypothesized 
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phoneme distributions are calculated. The accent of the utterance is then determined by using the 
SVM classifier (see Figure 1.20).  

 

 

Figure 1.20 Accent identification using phoneme distribution features 

 
Another similar approach is to use distance measure such as Kullback–Leibler divergence 

(KL distance) for classifying the accent of the utterance by calculating the phoneme distributions 
of the utterance compared to the phoneme distributions of different accent models. This is carried 
out using a phoneme recognizer for estimating the phoneme distribution of each accent. During 
identification, the phoneme distribution for test utterance is calculated. The accented model which 
gives the shortest distance for that utterance will be selected as the hypothesized accent. 

 

1.6 Conclusions 
In this chapter, we have presented the architecture for a statistical speech recognition system. 
Speech recognition can be considered as a pattern recognition and search problem. The acoustic 
model defines the most basic unit in speech, possibly with a phone, syllable or word unit. Phone 
is often selected as the preferred acoustic units because of the better generalizability of it 
compared to others. HMM is used to represent these acoustic units. An iterative re-estimation 
procedure is used for training the models until converged. For improving the precision of the 
model trained, the speech sounds can be modeled by taking into consideration the context.  On 
the other hand, the pronunciation model defines words and phrases by using the acoustic units as 
the basis. Normally, the pronunciation entries in the dictionary which is based on IPA are used. 
However, in cases where this is not available, a grapheme based pronunciation dictionary can also 
be used instead. Given the defined vocabulary, the language model in turn defines the rules that 
govern the usage of words and phrases to construct sentences. N-gram is a widely used approach 
for this purpose. During decoding, the search process finds the best combination of acoustic and 
pronunciation units which is governed by the language rules, producing the most probable word 
sequence. 

The performance of speech recognition system for non-native speakers is at least twice 
lower than for the native speakers. The reason is because there is a mismatch between the models 
trained (normally only using native speech), and the actual non-native speech that one tries to 
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recognize. In fact, non-native speakers do not speak like native speakers. The characteristics of 
non-native speech are different compared to the native. Non-native speech is influenced 
particularly by the native language of the speaker in phonology, pronunciation, vocabulary and 
grammar. The negative transfer of L1 knowledge to L2 may happen. Besides that, different types 
of development errors may also occur in these areas. In term of phonology, language beginners 
may interpret L2 speech sounds based on their native language. They may also use the wrong 
features to distinguish the L2 speech sounds, which will be reflected in wrong production. The 
influence of the native language of the speaker in phonology is not only limited to speech 
segments, it has also shown up in suprasegmental level such as intonation and stress. In the area 
of L2 pronunciation, non-native speakers have the tendency to use their native pronunciation 
rules in the target language. They will also simplify complex syllable that they are not familiar 
with by insertion, deletion and substitution. On the other hand, in term of vocabulary, they may 
even transfer their native vocabulary to the target language, or wrongly associate the vocabulary 
in their native language to the target language, which resulted in incorrect usage. Finally at the 
grammars level, non-native speakers may unconsciously employ the grammatical structure of 
their native language on the target language. As a result, the acoustic, pronunciation and language 
model that are trained do not match the characteristics of non-native speech.  

Non-native modeling techniques have been proposed for reducing or compensating the 
mismatch between models trained for the native speech and the non-native speech, by inserting 
non-native speech characteristics into the models. The problem of modeling non-native speech 
lies in the difficulty of acquiring non-native data. Thus, the existing approaches proposed attempt 
to use a small amount of non-native speech or the native language of the speakers for improving 
the target models. Non-native acoustic modeling approaches can be divided into acoustic model 
reconstruction, acoustic model interpolation, acoustic model merging and the general adaptations. 
Acoustic model reconstruction and the general adaptation approaches are interesting methods 
which can be used when the non-native or the native language corpus of the speaker is available, 
while acoustic model interpolation and merging can be applied when the resources are in the form 
of acoustic models. However, there remain some unanswered questions. First, there are not many 
studies that look into how context modeling might affect non-native speakers. Second, how the 
multilingual acoustic modeling which has been applied for modeling new languages can be 
adopted for non-native adaptation. Third, it would also be interesting to know in what ways the 
existing linguistic studies can be taken advantage of.  

Pronunciation modeling approaches can be divided based on the component where the 
pronunciation variants are modeled. The possible places are pronunciation dictionary, language 
model, acoustic model and rescoring module. Existing studies show that using native language 
alone for pronunciation modeling does not produce very encouraging results. Thus, the interesting 
questions are how the existing approaches can be modified, to make use of limited non-native 
speech for modeling, and which approach is better in modeling pronunciation variants. An 
equally interesting question is whether non-native speakers can be classified into groups based on 
their pronunciation habits, so that pronunciation dictionary based on group or speaker can be 
created.  
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In term of language modeling, there is not much works on non-native language modeling.  
We will also not be analyzing non-native language modeling here because of the lack of non-
native textual data for testing. 

Finally, accent identification approaches will be investigated. Accent identification 
approach can generally be divided according to the type of feature used, which are acoustic and 
phonotactics. We are interested to know how these approaches perform when only limited 
amount of non-native speech is available for creating the accent models. In addition, is it possible 
to propose an approach which is capable of modeling the accent models robustly using limited 
non-native resources? 
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2.1 Introduction 
he speech from non-native speakers has a different characteristic compared to the one from 
native speakers as we have mentioned in Chapter 1. Non-native speakers do not articulate the 

target language phonemes just like the natives do, because their perception pattern is influenced 
by their native language phonology. To articulate the ‘new’ phonemes, which do not exist in the 
mother tongue of the speaker, is a challenge that language beginners have to face. For example 
native English speaker who starts learning French may pronounce /y/ as /u/. On the other hand, 
for ‘similar’ phonemes which exist in both the target language and the native language of the 
speakers, non-native speakers may have trouble changing certain articulation habits which are 
specific to their mother tongue. They may also discriminate them using the wrong features which 
resulted in a different articulation. For experienced non-native speakers who acquire the language 
at an older age, they may not be able to articulate like the native speakers.  

Current speech recognition systems achieve high recognition rate by taking advantage of 
very precise context clues such as triphone and even pentaphone. For example, context dependent 
model such as triphone model produces 25% relative error reduction compared to context 
independent model [Huang 2001]. However, non-native speakers are not capable of pronouncing 
the target language phoneme precisely like native speakers. Furthermore, for complex syllables, 
they may decide to simplify the pronunciations. As a result, the system performs very well on 
native speakers but at the expense of the non-native speakers. 

T 
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Getting enough non-native speech to create a non-native acoustic model is time consuming 
and sometimes unfeasible especially when it comes to under-resource native languages such as 
Vietnamese or Khmer. Furthermore, there are more than six thousand languages in this world 
[WilFord 2007]. It would be an enormous task to collect all the non-native speech for each 
language. Although currently many efforts have been put in collecting non-native speech, the 
number of corpora available in language resource distributors such as LDC and ELRA is still 
small. According to a review [Raab 2007], only about one third of about forty corpora appeared 
in the research publications are actually available to others. In addition, the corpora are normally 
small compared to the native corpora.  

The works in non-native acoustic modeling make use of a little non-native speech or the 
native language of the speaker for adaptation. Generally, non-native acoustic modeling 
approaches can be divided into four main categories. They are acoustic model reconstruction, 
acoustic model interpolation, acoustic model merging and general adaptation approaches. 
Creating non-native acoustic model using some non-native speech or the native language of the 
speaker by training is normally not as effective compared to other non-native acoustic adaptation 
approaches. However, appropriate state tying seems to be able to improve non-native speech 
recognition considerably. However, this can only be done if some non-native speech is available. 
Acoustic model interpolation and merging are interesting as they can be performed easily with the 
native language acoustic model of the speaker, without any non-native speech, while speaker 
adaptation approaches are also very useful for non-native adaptation when some non-native 
speech or the native speech of the speaker is available. 

Existing works on acoustic modeling for non-native speakers however do not address some 
important issues. Firstly, multilingual acoustic modeling has been used for some time for 
constructing acoustic model for new languages. Many existing works employ the native language 
of the speaker for adaptation. It will be interesting to look at how the existing multilingual 
resources can be further utilized for adapting acoustic model for non-native speakers, since 
getting the target language non-native speech for adaptation is not always practical. Secondly, is 
to look at how the existing linguistic studies on non-native speakers can be used advantageously 
for acoustic model adaptation. Thirdly, there is no study which compares the effects of context 
(CI and CD) modeling on non-native speakers, although it is understandable that very precise 
context dependent models may not work in favor of non-native speakers. It will be useful to be 
able to employ context dependent model since it is beneficial for the native speakers and at the 
same time without causing any reduction in performance for non-native speakers. 

Non-native multilingual acoustic modeling approaches have been proposed in our works by 
taking into consideration these issues. They are hybrid of interpolation and merging approach and 
a new interpolation approach.  Section 2.2 presents the overview of multilingual acoustic 
modeling for non-native speakers. Section 2.3 describes the first step in non-native acoustic 
modeling, which is determining the matching phonemes between the languages. The remaining 
section 2.4 and 2.5 describes our proposed approaches, hybrid of interpolation and merging 
approach and new interpolation approaches to multilingual acoustic modeling for non-native 
speakers. We define the following terms to make the chapters easy to follow: the target language 
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is the spoken language, or the language for recognition by speech recognition syste,, while the 
source language is the language used for adapting the target model. 

 

2.2 Non-Native Multilingual Acoustic Modeling  
Multilingual resources such as acoustic models and corpora have shown to be particularly useful 
for creating acoustic models for new languages [Schultz 1998, Le 2005]. The idea is to use 
multilingual resources to overcome the difficulty in acquiring speech corpora especially for those 
rare languages. The general strategy is to construct a global phone set using the multilingual 
acoustic model. A new acoustic model for a particular language can be constructed by matching 
as much as possible the polyphone context. If some target language speech is available, it can be 
equally used to adapt the acoustic model created with the multilingual acoustic resources. 
Multilingual resources can be potentially useful for adapting the target language acoustic model 
to better suit the non-native speakers, since non-native speakers show cross-lingual transfers in 
their speech. Unlike multilingual acoustic modeling for new languages which creates a new 
model out of the existing multilingual resources, the multilingual acoustic modeling for non-
native speakers uses the multilingual resources to adapt the target language acoustic model for 
non-native speakers. However, not all language resources are suitable to be used as source 
language for a particular group of non-native speaker adaptation. We identified three types of 
multilingual resources which can be used to adapt the target acoustic model: 

• The native language of the speaker (L1) 

• Any non-native language spoken by the same native group (L2) 

• Language close to the native language of the non-native speaker (L31).  

These are the possible candidates for adapting the target language acoustic model. For instance, if 
we consider French as the target language for automatic speech recognition system, and if the 
task is to recognize non-native speech from Vietnamese speakers, the resources considered will 
be Vietnamese speech (L1), any non-native speech uttered by Vietnamese for example non-native 
English by Vietnamese (L2) and a language close to Vietnamese (L3), respectively. 

In general, the approach consists of first, determining the cross-lingual phoneme transfer (as 
described in the subsequent section) of the non-native speakers. Next, with this information, the 
non-native adaptation can be carried out depending on the type of resources available. The idea is 
to create an intermediate model between the target and multilingual model mentioned above, 
which better suit non-native speakers. We propose two different methods of adaptation for 
modeling cross-lingual transfer of non-native speaker depending on whether we have a 
multilingual acoustic model or a speech corpus. In cases where the suitable multilingual acoustic 
model is available, a hybrid approach of interpolation and merging is useful for offline adaptation. 
However, when the original multilingual corpora can be accessed, it is possible to use it for 

                                                   

1 Non-standard abbreviation  
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adaptation directly. Three types of cross-lingual transfer modeling are evaluated. They are manual 
interpolation which can also be applied offline, weighted least square and eigenvoices for cross-
lingual transfer speaker adaptation. Finally, we will also see that the hybrid approach introduced 
for modeling cross-lingual transfer can also be used for modeling context variation for non-native 
speech recognition. 

 

 

Figure 2.1 Creating a non-native French acoustic model for Vietnamese speakers using 
multilingual resources 

 

2.3 Cross-Lingual Phoneme Transfer 
As described in the previous section, there are three types of speech which can be used as source 
language to adapt the target acoustic model. They are the native languages (L1) of the non-native 
speakers, any non-native languages from the same native speakers (L2) and languages close to the 
native languages (L3). The hypothesis is that non-native speakers show cross-lingual transfer 
when they learn a new language (L2), where their native language (L1) sounds or phonemes are 
transferred to the new target language. So, the term “transfer” here carries the meaning of 
“applying the familiar to the unfamiliar” [Bohn 1995]. When finding the source-target phonemes 
transfer, the aim is to find the corresponding target language phoneme which is perceptually 
similar, according to the non-native speakers, to the one in the source language. This is important 
because it provides the necessary information for adapting the target language acoustic model 
using the available source language resources in the subsequent stage. 
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The approaches to measure the similarity of phonemes can generally be grouped into 
knowledge-based and data-driven approaches. In knowledge-based approaches, the probable 
source phonemes transfer for non-native speakers can be obtained from existing linguistic studies 
[Flege 1995], perception tests, and acoustic phonetic analysis or simply through the analysis of 
the International Phonetic Alphabet (IPA) table of both the target and the source languages. On 
the other hand, data-driven methods, which are used in multilingual acoustic modeling, can be 
carried out by using phoneme distances such as Euclidean distance, Kullback-Leibler, HMM 
distance [Juang 1985], phoneme confusion matrix and others.  

We have adapted two popular approaches often used in multilingual acoustic modeling on 
new languages for measuring phoneme distance, so that they can be used to find the source 
language phoneme transfer, one using phoneme confusion matrix and another using IPA table.  

 

2.3.1 Phoneme Confusion Matrix 
Phoneme confusion matrix is created by aligning the hypothesis from the phoneme recognition 
system against the corresponding reference phoneme sequence from the forced alignment of a 
speech recognition system. The alignment will shows the hypothesized phoneme actually realized 
at the position of the actual phoneme. Although the current phoneme recognizer is not perfect 
(often with accuracy in the range of 50%), with sufficient amount of data available, the confusion 
matrix result can give insight to the actual substitutions that occur.  

The alignment can be performed by using for example time alignment or Levenshtein 
distance. In our case, we use a variant of time alignment. Examples of the ways the alignment is 
carried out are shown in Figure 2.2. Each hypothesized phoneme is aligned to a reference 
phoneme according to the time alignment. Except in the case of Figure 2.2c, where deletion 
happens to the reference phoneme, a hypothesized phoneme can be assigned to more than one 
reference phoneme. However, it is better to introduce a deletion label. The confusion probability 
can be calculated in two pass, where the score from the first pass can be used to determine 
whether the deletion occurred at the first or second phoneme like in the case of Figure 2.2c. If this 
probability is not available, we assume the second or beyond phonemes are deleted. 

 

 

Figure 2.2 Examples of phoneme alignment. On the left are three pairs of hypothesis (top) and 
reference (bottom) phoneme string. On the right are the monophone confusion matrices 
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To find the matching source phoneme transfer for every target phoneme, without using any 
non-native speech, one possibility is to use a source language phoneme recognition system to 
decode the target language speech. The target language speech will also be forced-aligned using 
the target language acoustic model. The source phoneme with the most probable alignment for a 
particular target phoneme will be selected (see Figure 2.3). 

 

 

Figure 2.3 Determining phoneme match by using phoneme confusion matrix 

 

In certain cases where we have access to the non-native speech, even though it is from 
another target language, it can also be used to create a phoneme confusion matrix. This secondary 
information derived from the phoneme confusion matrix can then be applied especially for those 
‘similar’ phonemes (according to the International Phonetic Alphabet-IPA) which also exist in the 
target language of our interest. Thus, for example if the phoneme confusion matrix of non-native 

English gives the matching Vietnamese phoneme /s/ for the English phoneme /ʃ/, we can also use 

the same match for non-native French (see figure 2.4). 

 

 

Figure 2.4 Using the knowledge from other non-native language for determining the phoneme 
match 

 

2.3.2 International Phonetic Alphabet (IPA) Table 
Existing linguistic studies [Flege 1987, Bohn 1995, Flege 1995] can also provide information on 
the kind of substitution to apply, especially for new phonemes. It is based on the idea that non-
native speakers substitute target language phoneme with their native language phoneme. For 
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instance, it is well known that native Japanese speakers of English have difficulty with /ȉ/ and /l/, 

because they are perceived to be similar to Japanese /r/. Italians tend to hear word initial /ð/ as 

/d/. This information can help us in deciding the source-target phonemes transfer, either as 

primary or secondary information source. However, it is important to note that the substitution 
choice is not always easy to predict. Some studies showed that it is dependent on the mother 

tongue and education level. For example, Russians tend to substitute /t/ for English /θ/, whereas 

Japanese beginners use /s/. However when primary result is unavailable, this secondary 

information can provide clues on the type of substitution to apply. Table 2.1 shows the 
corresponding L1 phoneme transfers for the respective target English phoneme. 

 
Table 2.1 Common observed source (L1) phoneme transfer from speakers of different origins for 
various target English (L2) phonemes [Flege 1995] 

Target Source Description 

/æ/ /a/ (Spanish), /ǫ/ (Korean) 
/æ/ (front, open-mid_open), /a/ (front, open),    
/ǫ/ (front, open-mid) 

/ǡ/ /a/ (Spanish) /ǡ/ (back, open), /a/ (front, open) 

/ǫ/ /e/ (Spanish) /ǫ/ (front, open-mid), /e/ (front, close-mid) 

/Ǻ/ 
/i/ (Spanish), /i/ (Korean),      
/i/ (Chinese), /i/ (Italian) 

/Ǻ/ (front, close_close-mid), /i/ (front, close) 

/Ț/ /u/ (Italian) /Ț/ (central_back, back_close-mid), /u/ (back, 
close) 

/θ/ 
/s/ (French), /s/ (Japanese),    
/t/ (Russian), /t/ (Italian) 

/θ/ (fricative, dental), /s/ (fricative, alveolar),  
/t/ (plosive, alveolar) 

/l/ /r/ (Japanese) /l/ (lateral, alveolar), /r/ (trill, alveolar) 

/ð/ /d/ (Italian) /ð/ (fricative, dental), /d/ (plosive, alveolar) 

/p/ /b/ (Arabic) /p/ (plosive, bilabial), /b/ (plosive, bilabial) 
 

The IPA table is constructed based on the linguistic study; therefore we can also take 
advantage of that knowledge. It consists of two main parts, a consonant table and a vowel chart. 
For consonants, the results from our tests in Chapter 4 show that non-native speakers often 
transfer the nearest source language phoneme (according to IPA) to the target language phoneme. 
It means that similar phonemes in the target language will be substituted for the same phoneme in 
the native language of the speaker. For new consonants which do not exist in the native language 
of the speaker, the nearest native phoneme can often be found in the same row (manner of 

articulation) for example Vietnamese speaker speaking English may replace /ȓ/ and /Ȣ/ for the 

phoneme /s/ and /z/ respectively, or in the same column (place of articulation). However, it is 

not always like that. In some cases, we will see the non-native speaker substitutes a target 
language phoneme for a native phoneme at a nearby column in the IPA, although there is one 
native phoneme at the same column.  
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As for vowels, the vowel distances can be observed and compared using the vowel formant chart 
instead of using the vowel chart from IPA. As a result, a vowel formant chart has to be 
constructed to determine the similarity between the target language and native language 
phonemes. Figure 2.5 shows an example of vowel formant chart for target and source phonemes. 
Using this approach, we assume that a vowel in the target language will be substituted for a 
similar vowel in the source language (vowel which exists in both the language according to IPA). 
We can project these source language vowels to the corresponding target language vowels. The 
other remaining source vowels (new vowels which do not have a corresponding vowel in the 
native language according to the IPA) will then be projected by taking into consideration the 
projection of all other similar phonemes.  

 

Figure 2.5 An example of vowel formant chart of target and source phonemes 

 
The estimation is carried out simply using equation 2.1 and 2.2 below. We want to know the 

transformation of the vowel psrc,j, which is the source language (L1 of speaker) vowel which does 
not have a corresponding vowel in the target language, to the new target point ptgt,j. psrc,i is the 
source language vowel with a corresponding vowel in the target language, ptgt,i; d() is the 
Euclidean distance, and wj,i is the weight for the vowel psrc,j, contributed by the similar vowel psrc,i. 
The weight is depend on the distance of the vowel psrc,j to the vowel psrc,i. After all the source 
vowels are projected, the matching source language vowels for the vowel in the target language 
can then be determined by using Euclidean distance. The source vowel which is nearest to the 
target vowel is selected.  
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Besides the method describe above, other possible method is using weighted least square (see 
equation 2.12) for estimating the transformation of the source vowels. 

Since there are few possible sources of phoneme transfer information, we present here a 
general ranking of the confidence from the highest to the lowest: 

• Perception test results and literature knowledge 

• Phoneme confusion matrix using non-native speech 

• IPA Table 

• Phoneme confusion matrix using native speech of the speaker 

In a situation when several sources of information can be obtained, it is also a good idea to 
compare their results and pick the most suitable one. In next section, we will look at how the 
information found here is exploited for modeling cross-lingual transfer by non-native speakers. 

 

2.4 Cross-Lingual Transfer Acoustic Modeling 
This section presents the proposed methods for modeling cross-lingual transfer of non-native 
speakers by using multilingual resources under different constraints. Two offline adaptations and 
two online speaker adaptations are proposed. The hybrid of acoustic interpolation and merging 
can be used for adapting target acoustic model using appropriate multilingual acoustic models, 
while interpolation approaches employ multilingual corpora for adapting the target acoustic 
model.  

 

2.4.1 Hybrid of Acoustic Model Interpolation and Merging Approach for 
Offline Adaptation 

Acoustic model interpolation is a promising approach to create a model which is intermediate 
between two languages using only the target and source language acoustic model. However in 
some cases, non-native speakers may also introduce sounds which do not have correspondence in 
the target language or vice versa. The idea is similar to the one described in Section 1.3.2.1, 
where non-native speakers tend to achieve an intermediate level for similar target and source 
language sounds, while for two very different speech sounds, speakers will use the one or another. 
An approach which therefore incorporates interpolation and merging seems appropriate.  

The general approach of interpolation is to select the nearest Gaussian from the 
corresponding source state for every Gaussian in the target state using certain distance measure. 
Instead, we propose to carry out the interpolation in a different manner, where every Gaussian in 
the target state is treated like the ‘centroid’ for the Gaussians in the source state. The next step is 
to find the nearest target Gaussian for all source Gaussians using distance measure like Euclidean 
distance or approximated divergence distance. 
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Every source Gaussian will be associated with only one target Gaussian. Certain target 

Gaussians will be instead associated with zero or more source Gaussians. When the distance 
between the associated target Gaussian and the source Gaussian is below a threshold, their means, 
variances and mixture weights will be interpolated (equation 2.5). Otherwise, merging is 
performed: for those target Gaussians without any associated source Gaussian (equation 2.7) or 
for the source Gaussian that are far (more than the threshold) from their associated target 
Gaussians (equation 2.6). In equation 2.6 and 2.7, their mixture weights will be reduced by the 
interpolation weight. The threshold can be calculated for example by measuring the average 
distance among the Gaussians, and then multiplying it with a constant. The resulted model is a 
hybrid model of interpolation and merging. Let psrc = { pSrc,1, ..., pScr,j, pSrc,n } where pSrc is the set 
of source Gaussian associate with pTgt,i the target Gaussian. pAdp,k is the adapted model with the 
weight α, while d() is the distance function and ω is the mixture weight. 

 
thresholdppdpppp jSrciTgtSrcjSrciTgtkAdp ≤≠−+= ),(,,).1(. ,,,,, φαα            (2.5) 

thresholdppdppp jSrciTgtScrjScrkAdpjScrkAdp >≠−== ),(,,).1(, ,,,,,, φωαω           (2.6) 

φωα === ScriTgtkAdpiTgtkAdp pwpp ,).(, ,,,,              (2.7) 

 

Using the information from the target and source phonemes, we can model non-native 
speaker cross-lingual transfer using the method proposed above with the target and source 
language acoustic model. The target language in this case is the new acquired language of the 
non-native speakers. The possible source languages can be any of the three types of languages we 
mentioned in the earlier of Section 2.2 (L1, L2 and L3).  

The target and source acoustic models may have different configuration in term of number 
of states and number of Gaussians. Consequently, before the modeling can be carried out, the 
states and Gaussians of the target and source acoustic model have to be matched. In our current 
implementation, we use a simple context matching. This means that in cases where the models 
used for modeling are context dependent (CD) models, the matching triphone in the source model 
will be looked upon. If there is no matching triphone, a backoff strategy is applied where the 
context independent (CI) monophone in the CD acoustic model will be used instead. Another 
possibility is to use decision trees to select the best matching context. 

Figure 2.6 shows an example of what will take place in two dimensions acoustic space for 
two target language Gaussians (French) and three source language Gaussians (Vietnamese) from 
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the matching state. Two Vietnamese Gaussians pVN, s1g1 and pVN, s1g2 will be associated with the 
French Gaussian pFR, s1g1. Both will be interpolated with pFR, s1g1, while pFR, s1g2 which although 
associates with pVN,s1g3 is far from the French Gaussian (more than the threshold), so both of them 
will be merged into the state, and their mixture weight will be recalculated with the weight given. 
The new state created will have four Gaussians. 

 

 

Figure 2.6 Interpolating and merging of the target model pFR (French) and the corresponding 
source model pVN (Vietnamese) to create the new model p’FR in a two dimension acoustic space 
by setting the weight at 0.5. The points and circles indicate the means and variances. The newly 
created Gaussians are in dotted circles.  The histogram presents the Gaussian mixture weights 

 

2.4.2 Acoustic Model Interpolation for Offline Adaptation  
Non-native cross-lingual transfer can be modeled using hybrid approach with source language 
acoustic model, as we have shown in the previous section. However, if we have access to the 
original source corpus, it is better to use the source language speech directly to create a new 
source language acoustic model which has the same configuration as the target acoustic model, in 
terms of the number of states and Gaussians, so that we can carry out the interpolation directly 
with the target acoustic model. This will avoid the use of distance measure from matching 
Gaussians between target and source states. Furthermore, using an adaptation algorithm will 
allow predicting unobserved means and the total number of Gaussians will stay the same, with no 
addition of Gaussian like in the case of the hybrid approach.  
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Figure 2.7 Interpolation of the target state pFR (French) and the corresponding source state pVN 
(Vietnamese) in a two dimension acoustic space by setting the weight at 0.5. The points and the 
circles indicate means and variances. The newly created Gaussians are in dotted circles. 

 

This is done by adapting the target acoustic model using the source corpus. The first step is 
to map each phoneme in the pronunciation dictionary of the source language to the phoneme of 
the target language using the phoneme matching information that we had found previously. It 
must be noted, however, that several source phonemes may be mapped to the same target 
phoneme. For source phonemes which associate to multiple target phonemes, there will be several 
possible pronunciations (source language words with target language phonemes). One of the 
possibilities is to create all the possible pronunciation variants, and randomly associate one of the 
pronunciation variants in the pronunciation dictionary to the word in transcription. It is also 
possible that there are some source phonemes which do not have any associated target phoneme. 
We can either associate the source phonemes without any partners to one of the nearest target 
phonemes, or copy these source HMMs to the target acoustic model, and remove them later in the 
process. Our test shows that the results do not differ much. Now that the phonemes in the source 
language pronunciation dictionary have been converted to target language phonemes, the next 
step is to adapt the target acoustic model using the speech in the source corpus. Instead of using 
only Baum Welch algorithm to recalculate the Gaussians, we adapt the target language acoustic 
model (in our case MLLR and then MAP) using the source language speech and the modified 
pronunciation dictionary for a few iterations. This will create a source acoustic model which has 
the same amount of Gaussians, and at the same time, matches the target acoustic model. A weight 
is then predicted and assigned to the target and source acoustic model, and a new model is created 
with the following interpolation formula (see Figure 2.7), 
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where µAdp is the interpolated means using the weight w, from µTgt, the target language means, and 
µSrc the source language means. 

 

2.4.3 Acoustic Model Interpolation for Online Speaker Adaptation: 
Weighted Least Square 

Manual interpolation is useful for adaptation without the need for any non-native speech. 
However, in certain situations when we are able to obtain some speech from the non-native 
speakers involved, we may want to predict the weights to apply on the acoustic models. Here we 
attempt to use weighted least square (WLS) to predict the weights to assign to the target and 
source acoustic model (created using the procedure describe in previous section). Since only two 
variables are estimated, the approach is suitable for adaptation even when small amount of non-
native speech is available. The idea is to use some speech to predict the mean values of the 
speaker. Nevertheless, because the mean values are created using only few utterances, the vector 
contains a lot of missing values. Equation 2.8 can be rewritten in a matrix formulation, 
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where µTgt and µSrc are the target and source language means, while b is the mean values of the 
speaker. We want to find x that minimizes the value of |Ax-b|, which can be viewed as a measure 
of error. If there is an exact solution for x, then the error will be zero. We can solve the above 
equation and find x, given the least square errors by using the least square formula in equation 
2.11. Variances C are used as weight to the least square formula [Montgomery, 2001]. 

 

bAAxA TT =      (2.11) 

bCAAxCA TT 11 −− =      (2.12) 

 
The mean vector of the speaker, b, can be estimated by force aligning some speech from the 

non-native speaker using the target language acoustic model. However this method is not that 
accurate because the weight will tend to be close to the mean vector of the target acoustic model 
that we had used. A better approach is to create a merged acoustic model by using both the target 
and source acoustic models, and use it for the forced alignment instead. The merged model has 
the same number of states, but with the combination of the target and source Gaussians. Assume 
that we create the merged model (Figure 1.15b) by appending the source Gaussians of every state 
to the corresponding target state. The mean vector of the speaker can then be estimated using the 
formula below, 
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where bj,k is the mean vector of the speaker at state j and Gaussian k, and n is the number of 
Gaussians for state j for the target language model. Since only a few utterances are used, many of 
the values in the vector b will be zeros. Only the values in the vector b which is non zero are used 
for estimating the weights by using equation 2.12.  

 

2.4.4 Eigenvectors Interpolation for Online Speaker Adaptation: 
Eigenvoices 

Eigenvoices method has been successfully applied in speaker adaptation [Kuhn 1998a, Kuhn 
1998b, Kuhn 1999]. The works in eigenvoices are inspired by the works in eigenfaces for face 
recognition [Turk 1991]. These works are made possible through a pattern analysis approach 
known as principal component analysis (PCA) for finding the vectors that best characterize or 
describe the pattern of a set of feature vectors. This is achieved by analysing the covariance 
structure of a data set and finding directions of different variability. The vector (axis or linear 
equation) which forms the largest variance from the data is the principal component [Flury 1988]. 
These generalized vectors are known as eigenvectors and their relative descriptive power of the 
data are indicated by their eigenvalues, see Figure 2.8. The eigenvectors can then be used to 
describe or normalize any feature vectors including those unknown relevant vectors by finding 
the eigenvalues for them. 

 

 

Figure 2.8 a) Original plot of data. b) Plotting of data using eigenvector one and two. c) 
Normalization of data using eigenvector one, the new axis with the largest variance 

 

In the previous two methods, interpolation is carried out on the acoustic models. For 
eigenvoices, on the other hand, we can see it as an interpolation of eigenvectors. The standard 
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eigenvoices technique is applied here. However, we attempt to insert language space into the 
eigenspace by adding source language supervectors using the source language. 

Speaker adaptation in eigenvoices is carried out by creating a speaker space and 
subsequently finding the speaker we want to adapt on that space. The first step to create a speaker 
space is to create a speaker dependent acoustic model for each speaker. For each target language 
speaker dependent acoustic model, the process is the usual one in which we first create a speaker 
independent acoustic model. Subsequently, speaker dependent models for each speaker are 
derived, by adapting the speaker independent model using a few iterations of combined 
supervised MLLR and MAP adaptations with the speech from each speaker. Next, we create the 
components for language space by going through similar steps we used to create the source 
language acoustic model for the previous interpolation methods. The only difference is that in 
eigenvoices, we have to use MLLR and MAP to adapt the target speaker independent acoustic 
model to speaker dependent acoustic models using the source language speech from each source 
speaker (see Figure 2.9). 

 

 

Figure 2.9 Steps to create eigenvectors using target and source language corpus 

 

Once the speaker dependent acoustic models for target and source languages are created, the 
means of the acoustic models are written out, each as a sequential vector which is known as 
supervector. A total of K supervectors, each with a dimension of D will be created. Next, 
principal components analysis (PCA) or singular value decomposition (SVD) can be used to find 
the eigenvectors E=e(1)…e(K), from the supervectors which define the eigenspace (Howard, 
2000). Not all eigenvectors will be used. A subset of eigenvectors, k, which have among the 
highest eigenvalues (principal components), will be selected for interpolation, where k is less than 
K, and K<<D. The projection methods in PCA, MLED [Nguyen 1998] or other methods 
[Westwood 1999] can be used to find the interpolation weights by using some speech from the 
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speaker. We have chosen to use MLED approach to estimate the new means. The weights for the 
eigenvectors can be calculated with the equations below: 

 
Qwv =       (2.14) 
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where v is an E-dimension vector, Q is an (E x E) matrix, and w is the E-dimension eigenvalues 
or weights. µe is the means of the eigenvector and C is covariance matrix of the speaker 
independent acoustic model; j and k are the state and Gaussian mixture component respectively. 
The weights w can be estimated using Gaussian elimination and the new means can be estimated 
as follow: 

 
Pw=µ̂      (2.17) 
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TT µµµ . 

 

2.5 Context Variation Modeling 
Precise context dependent modeling as mentioned earlier is not suitable for non-native speakers. 
One possibility is to use a smaller tied state or even context independent acoustic model for non-
native speakers. However, this means that different acoustic model has to be used for native and 
non-native speakers, because native speakers can benefit from a precise context modeling. Here, 
we propose to use the hybrid of interpolation and merging proposed earlier for modeling cross-
lingual transfer for non-native speakers for modeling context variation.  

 

2.5.1 Hybrid of Acoustic Model Interpolation and Merging Approach for 
Offline Adaptation 

The idea applied for modeling context variation is similar to modeling cross-lingual transfer, 
where the hybrid approach proposed is used to create an acoustic model which is intermediate 
between a very precise context dependent model and a very flat context independent model. 

When modeling context variation, the model with a smaller number of states (e.g. context 
independent model) will be treated as the target model while the other one will be considered as 
the source model. In context modeling, since all models with bigger number of states are also part 
of the model with smaller number of states (both are from the same language), all source 
Gaussians are assumed to have a target Gaussian interpolation partner. Thus, no threshold needs 
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to be set. This is the difference compared to cross-lingual transfer modeling. 

For example, if we employ a context independent model (target model) and a context 
dependent model (source model) for context variation modeling, context dependent (CD) 
triphones are matched to their corresponding context independent (CI) monophones. Next, the 
corresponding CI Gaussian for every CD Gaussian is found using a particular distance measure 
(Equation 2.3 or 2.4). Interpolation is then performed on the CI Gaussians with their associated 
CD Gaussians, while the CI Gaussians without any interpolation partner will be merged. See 
Figure 2.10 below. 

 

 

 

Figure 2.10 Interpolating and merging of context independent model pFR and the corresponding 
context dependent model i-p+aFR to create a new i-p’+a FR model in a two dimension acoustic 
space by setting the weight at 0.5. The point and circle indicate mean and variance respectively. 
The newly created Gaussians are in dotted circles.  The histogram presents the Gaussian mixture 
weights 

 

2.6 Conclusions 
We have presented multilingual acoustic modeling approaches to adapt target language acoustic 
model for non-native speakers without requiring any non-native resources from the target 
language. The multilingual acoustic modeling approaches proposed can be used for modeling 
cross-lingual transfer and context variation to improve non-native speech recognition. 
Multilingual resources from three types of speech can be used for non-native adaptation when the 
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target non-native language is not available. They are the native language of the speaker, any non-
native speech from the same native speakers and languages close to the speaker native language.  

Non-native speakers often transfer their native language phonology to the target language. 
The mismatch of speech sounds and the acoustic model will degrade the system recognition 
capability. In addition, unlike the native speakers, non-native speakers are not able to pronounce 
the speech sounds of the target language precisely because of unfamiliarity. Hence, context 
dependent modeling which is beneficial for improving the speech recognition performance for 
native speakers may not be useful for non-native speakers.  

For modeling cross-lingual transfer by non-native speakers, two approaches have been 
proposed for treating multilingual acoustic models or corpora. However, before the modeling can 
be carried out, the target and source language speech sounds have to be matched. This can be 
done by using phoneme confusion matrix or IPA table. Phoneme confusion matrix is a data-
driven method, which can be employed by using the native language speech with a source 
language phoneme recognizer and a target language speech recognition system. The IPA 
approach on the other hand makes use of linguistic and IPA information for finding the match. 
Depending on the type of resources that are available, acoustic modeling can then be performed. 
If the source resource is in the form of acoustic model, the hybrid approach used for modeling 
context variation can also be applied for modeling cross-lingual transfer. However, if the resource 
is in the form of corpus, interpolation can be carried out. In certain situation when some non-
native speech is available, the speech can be used to estimate the interpolation weights by using 
weighted least square method.  This approach is attractive because there are only two parameters 
to measure. This means that we do not need a lot of speech from the speaker to estimate the 
weights. Eigenvoices approach which is coined to fast (limited speech) adaptation has also been 
proposed for non-native acoustic modeling. It uses the source language for creating a bi-lingual 
space in the eigenspace, and subsequently finding the position of the speaker on the eigenspace 
for adaptation. For context variation modeling, the hybrid of interpolation and merging approach 
has been proposed for creating a model which is intermediate between a very flat context 
independent model and a very precise context dependent model. With appropriate weight, the 
new context dependent model created can be applied not only for improving speech recognition 
system for non-native speakers, but also be used for native speakers without causing huge 
decrease in word error rate. All the proposed approaches are experimented in Chapter 5. 

 

 

 



 

CHAPTER 3  
 
 
 

Non-Native Pronunciation Modeling and 
Accent Identification 

 

 

 

 

3.1 Introduction 
n the previous chapter, we have looked at acoustic modeling without using any non-native 
speech for adaptation. However, we learned from previous study that using only the native 

acoustic units of the speaker to model pronunciation variants is not effective. Thus, in the coming 
section, we look at pronunciation modeling approaches for modeling pronunciation variants by 
using a little amount of non-native speech. Following that, a preliminary work on accent 
identification has also been proposed. The new approach can work even with limited amount of 
non-native speech for creating the accent models.  

 

3.2 Non-Native Pronunciation Modeling 
As discussed in Chapter 1, non-native speakers have difficulty to pronounce words or syllables 
like the native speakers. For complex and unfamiliar syllables, non-native speakers tend to 
simplify them, just like the children learning their first language by insertion, deletion or 
substitution of speech sounds. On the other hand, for target language syllables which are similar 
to the native syllables of the speaker, they may tend to articulate them by employing their native 
manner of articulation. The differences in the pronunciation strategies and the pronunciation 
model used result in lower speech recognition accuracy. 

I 
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Pronunciation modeling approaches can be divided based on the component in the speech 
recognition system where the pronunciation variants are modeled. There are four possible 
locations, namely the pronunciation dictionary, language model, acoustic model and rescoring 
module. Studies in pronunciation modeling found that modeling non-native pronunciations by 
generating the pronunciation variants using the native language phonemes of the speaker alone 
into the pronunciation dictionary, do not seem to be effective for modeling the pronunciation 
behaviour of the speaker, neither is applying linguistics rules blindly to all speakers. On the 
contrary, some non-native speech seems to be prerequisite for modeling non-native pronunciation 
correctly. 

We have experimented with some modifications to the pronunciation dictionary and n-best 

rescoring approach, so that with little amount of non-native speech, it is possible to estimate the 
non-native pronunciation variants of the speakers. We have also tested the possibility of 
clustering non-native speakers according to their pronunciation habits. For this, we propose an 
original speaker clustering approach which group speakers based on their pronunciation habits 
and use this information for pronunciation adaptation. We call this approach latent pronunciation 
analysis. 

 

3.2.1 Pronunciation Dictionary: Decision Trees 

There are few possibilities to derive pronunciation variants, and one of it is through the use of 
decision trees [Humpries 1996, Humpries 1997]. The procedure used here is the general one 
proposed, except that we derive the pronunciation variants by going through two passes, since we 
only have a little amount of non-native speech, and the phoneme recognizer employed produces 
around 50% recognition errors. It is thus important to have the hypotheses as accurate as possible. 
In the first pass, the observed variants are extracted using confusion matrix. Only variants that are 
observed more than the given threshold are selected from the confusion matrix. The possible 
pronunciations are then generated into the temporary dictionary. Then in the second pass, from 
the observed variants, the pronunciation variants will be generalized according to the features of 
the pronunciation context using decision trees to predict unobserved variants. Figure 3.1 shows 
the steps for deriving the pronunciation variants. 

The objective of the first pass is to retain the more likely observed pronunciation variants 
and to remove those less likely. The hypothesis phoneme strings generated by phoneme 
recognizer from the decoding of non-native speech are aligned against the corresponding 
reference phoneme strings from forced alignment using the modified time-alignment approach 
presented earlier in Section 2.3.1. A triphone confusion matrix is then created from the alignment. 
A low threshold is set to the triphone confusion matrix, so that the pronunciation substitutions or 
variants which appear more than the threshold are selected. All possible (word) pronunciation 
variant combinations will be generated and added into a temporary pronunciation dictionary. This 
will produce a pronunciation dictionary which is very big compared to the original. 
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Figure 3.1 Generating pronunciation variants using decision tree 

 

In the second pass, pronunciation variants will be generalized by using decision trees 
according to the context features. The first step is to re-estimate the hypotheses of non-native 
utterances, this time by force aligning the previous speech using the new (temporary) 
pronunciation dictionary created in the first pass. The new hypothesis phoneme time stamps will 
then be aligned against the corresponding reference phoneme time stamps estimated in the first 
pass. The triphone confusions with the same base phoneme will be collected together, and a tree 
will be built for each base phoneme except silence. The left and right phoneme contexts need to 
be translated to the corresponding feature vector (see Figure 3.2b). One possibility is to convert 
the context to phonetic feature vector using IPA based features, so that phonemes can be 
classified according to similar phonetic context. A decision tree algorithm such as CART or C4.5 
[Quinlan 1993] will then classifies the triphone confusion according to the features defined. The 
idea is to classify triphones with similar pattern of substitutions together by searching for feature 
or attribute with high information gain. This will allow the unobserved pronunciation contexts to 
be predicted from the decision trees. This is similar to the usage of decision tree in state tying in 
Figure 1.7. After the decision trees for all the phonemes are built, a probability threshold is set to 
extract pronunciation variants which are observed more than the given probability from the leaves 
of the decision trees. The pronunciation variants will subsequently be added into the 
pronunciation dictionary by generating all the possible pronunciation combinations. 
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Figure 3.2 Sub-steps to create the decision trees in the decision tree process 

 

3.2.2 N-Best List Rescoring 

In the previous approach, pronunciation variants are added into the pronunciation dictionary, and 
the speech recognition system will then selects the best pronunciation during decoding. On the 
contrary, it is also possible to evaluate the pronunciation variants at the word lattice or n-best list 
stage after decoding [Gruhn 2004]. Figure 3.3 shows the architecture of the n-best rescoring 
system, where a phoneme recognizer is employed to decode non-native speech to produce 
hypothesis that will be used to re-evaluate or re-rank the n-best sentences from the speech 
recognition system. The approach applied here has the same architecture as the one suggested in 
[Gruhn 2004], except that we attempt to use a triphone model to represent the variants instead of 
a word model. The main reason is to reduce data sparseness because of limited data. 

 

 

Figure 3.3 Pronunciation modeling using n-best rescoring 

 
Before pronunciation rescoring can be carried out, the triphone model has to be created. The 

triphone model actually contains the triphone confusions of non-native speakers. In previous 
pronunciation dictionary approach, triphone confusions are also used to find pronunciation 
variants. However, only those variants from the decision trees that exceed the threshold are added 
into the pronunciation dictionary. In this approach, all the variants are used and the confusion 
probabilities are also made used of during evaluation. Some non-native speech is required for 
training the triphone model. This is done by first decoding non-native speech with the phoneme 
recognizer and the hypotheses produced are then aligned against the corresponding reference 
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phoneme strings. For smoothing the triphone confusion matrix, the triphone confusion values are 
interpolated with the corresponding monophone confusion probability. A floor value is used if 
both the confusion values are zero. 
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where w is weight, left is the phoneme to the left of the base phoneme, right is the phoneme to the 
right of base phoneme, and sub is the hypothesis phoneme(s). 

During evaluation, the non-native speech is decoded by the speech recognition system and 
the phoneme recognizer. Note that the pronunciation dictionary used during decoding contains 
only the baseform representations or standard pronunciations of the words. The speech 
recognition system produces n-best sentences with the n-highest P(W)P(O|W) score, where W is 
the word sequence and O is the observation. These sentences will then be converted to the 
corresponding (reference) phonemes strings from the word strings using the pronunciation 
dictionary. The hypothesis phoneme string from the phoneme recognizer will then be aligned 
against each of the reference phoneme string. The pronunciation score for each sentence from the 
n-best list is calculated by considering the triphone confusions of the hypothesis phoneme string 
against the reference string using the triphone model.  
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where i is the reference base phoneme, and j is the hypothesized substitution. The pronunciation 
score for each sentence is then included in the log-linear model that calculate the final speech 
recognition composite score using acoustic and language score. The sentence from the n-best list 
with the highest composite score will be selected. 

 Figure 3.4 below shows a toy example of pronunciation rescoring using n-best list. Given a 
non-native utterance, the speech recognition system in this case produces two most probable 
sentences: “ah bon” and “allô”, which are converted to the corresponding phoneme strings. The 
same utterance is also decoded by a phoneme recognizer producing the hypothesis phoneme 
string /a n o/. The hypothesis is then aligned against the references from the speech recognition 
system, and the pronunciation scores are calculated by considering the triphone confusion from 

triphone model. For example, the confusion of triphone a-b+Ǥ~ as phoneme /n/ is 0.1. The total 

pronunciation score is calculated and the log probability is added to the total score (acoustic and 
language model). The word with the highest score is selected. 



Chapter 3. Non-Native Pronunciation Modeling and Accent Identification 

 68 

 

Figure 3.4 An example of pronunciation modeling using a 2-best list rescoring 

 

3.2.3 Latent Pronunciation Analysis 
Non-native speakers from different origin differ in their pronunciation habits. Sometimes, even 
non-native speakers from the same native language may have different pronunciation habits 
which are influenced by education, social-economy and other factors. Thus, it would be 
interesting to know whether it is possible to cluster speakers to different groups. Earlier work in 
speaker clustering using pronunciation habits has been proposed before [Raux 2004]. The work is 
not fully automatic since the possible vowel substitutions are manually defined. In this approach, 
we attempt to cluster non-native speakers automatically into groups based on their pronunciation 
habits, and subsequently use this information for adaptation. An unsupervised speaker clustering 
method based on pronunciation habits is proposed here. The approach is inspired by eigenfaces 
and eigenvoices approaches and also from idea given (but not experimented) in [Goronzy 2002]. 
We call it “latent pronunciation analysis” by analogy with the ‘latent semantic analysis’ used in 
natural language processing. The idea is to create a pronunciation eigenspace and use it for 
speaker clustering and pronunciation adaptation. This can be done by creating a set of speaker 
dependent pronunciation confusion vectors, which are used to derive pronunciation confusion 
eigenvectors. The eigenvectors can subsequently be used for clustering and estimating the 
pronunciation confusion of the test speakers. From the estimated pronunciation confusion, a 
speaker dependent pronunciation dictionary can be constructed and included in the speech 
recognition system. 

Like the previous eigenvoices approach proposed for acoustic modeling, the first step in 
creating an eigenspace is to build speaker dependent models. In this case for each speaker, a 
speaker dependent pronunciation confusion supervector will be created. The supervector is in fact 
the triphone confusion matrix being laid out in a vector format. Table 3.1 shows an example of K 
supervectors created for the non-native training speakers (note that in actual case, all operations 
are done in column vector, instead of a row vector). The supervectors are built from their 
corresponding speaker dependent pronunciation decision trees. The procedure to create speaker 
dependent decision trees is the same as to create speaker independent decision trees described 
earlier in Section 3.2, except that the speech from each speaker is separated to build the speaker 

/a n o/ 

1. ah bon = / a b Ǥ~ / 
2. allô = / a l o / 
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dependent trees. The next step is to create the supervector context structure by extracting all 
pronunciation contexts from the test pronunciation dictionary. The possible substitutions for each 
context and their values are extracted from speaker dependent decision trees from every speaker 
and put into a pronunciation confusion vector.  Since every speaker may have a different set of 
substitution, a standard pronunciation confusion vector (supervector) must contain all the possible 
substitutions for every speaker and in the same order. For each context, the total probability of the 
substitution for each context will then be normalized to 1.0. 

 
Table 3.1 K supervectors of pronunciation confusion. The context row shows the base/ target 
phoneme followed by its left and right context 

Contexts b-a+n d-ə+p   

Substitutions a ǡ~ ǡ ǩ DEL   

speaker 1 0.9 0.1 0.0 0.9 0.1 … 

speaker 2 0.7 0.2 0.1 1.0 0.0 … 

.       

.       

speaker K 0.5 0.05 0.45 0.4 0.6 … 

 
 

The pronunciation models or pronunciation eigenvectors E=e(1)…e(k) are derived from the 
covariance matrix of K supervectors V with dimension D, where k is less than K, and K<<D by 
using principal component analysis (PCA) or singular value decomposition (SVD). Table 3.2 
shows an excerpt of the actual eigenvectors created. 

 
Table 3.2 An excerpt (feature 1-9) of the actual pronunciation confusion eigenvector 1 and 2 for 
non-native English speakers 

Ctx. aǺ-ǡ+l b-ǡ+d 

Sub. ǡ Ǥ DEL ǩȚ ǡ Ȝ Ǥ aǺ l 

Eig1 0.00580 0.00337 -0.0036 -0.00559 -0.00709 0.00994 -0.01280 0.01918 -0.00923 

Eig2 -0.0132 0.00233 0.01552 -0.00463 -0.01389 -0.01586 0.00248 0.03498 -0.00771 

 

For clustering the speakers, the eigenvalues (weights) of the speaker is found using equation 
3.4 and plotted to the k-space of the eigenspace. The speakers can then be separated to groups 
manually or automatically using clustering approach. 

 

w = ET x V     (3.4) 

D 
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For pronunciation adaptation, some adaptation speech with transcription from the test 
speaker is required. This can be done in some speech recognition applications, where the speaker 
can be asked to read some sentences. If this is not possible, the initial decoding of the non-native 
speech from the speech recognition system can probably be used as the transcription for the 
speech, although the accuracy will be lower with this unsupervised approach2. The idea is to use 
some non-native speech to get the ‘partial picture’ of the pronunciation habits of the speaker and 
then project it to the eigenspace to estimate the ‘complete picture’. The speech is forced aligned 
using the standard dictionary to get the reference phoneme string. It is also forced aligned using 
another dictionary which contains all the variants from the supervectors to obtain the hypothesis 
phonemes for the pronunciations. The corresponding hypotheses and reference phoneme strings 
are compared to create a confusion matrix. A supervector is constructed for each test speaker by 
finding its triphone and monophone confusion matrix, and subsequently interpolating them, and 
filling the supervector. The weights of the test speaker are first calculated using equation 3.4, and 
subsequently the weights are used to reconstruct the supervector by using the eigenvectors:  

   
V’ = E x w     (3.5) 

 
Recall that each vector is in fact the pronunciation confusion of each speaker. Consequently, a 
threshold is set to extract the speaker specific pronunciation variants from the vector V’. The 
variants are subsequently added into the pronunciation dictionary by generating the possible 
combinations. The new dictionary is then ready to be employed on the utterances of the particular 
speaker.  

 

3.3 Accent Identification 
The accent of the speaker is a factor that affects greatly the performance of speech recognition 
systems. By knowing the accent information, suitable models that match the speaker can be 
selected for speech recognition tasks. Although accent information can be manually given by the 
speaker, automatic accent identification could be useful in situation when this is not possible, or 
when the purpose is to provide user with a friendlier system. Thus, accent identification is 
sometimes an important component in speech technology. Besides that, another area where accent 
identification has the potential to be applied is in global security, where one tries to identify the 
origin of a non-native speaker. 

The type of accent can be classified as either dialectal or non-native. Although dialectal and 
non-native speeches are variants of the ‘standard’ spoken language, both are quite different. The 
most obvious difference between dialectal and non-native speech is the fact that dialect is often 
acquired as first language, while non-native speech is considered as the second language of the 

                                                   

2 However, we did not test this unsupervised scenario, and in our experiments, pronunciation adaptation is 
made using manually transcribed adaptation data for each speaker. 
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speaker. Thus, the differences between a language and its dialects are variant rules in phonology, 
pronunciation, vocabulary and possible grammars are learned since infancy, while for non-native 
speakers, the accent is caused particularly by interference from the native language rules of the 
speaker. Hence, there is an acceptable norm among the dialect speakers, while there is no 
acceptable standard among non-native speakers, where different degrees of variability exist. As a 
result, dialect and foreign accent may require different strategies for identification. Non-native 
speech may also be harder to collect compared to dialectal speech. As a result, dialect 
identification may use methods that are more data intensive for creating the accent models, while 
non-native accent identification will not have such a privilege. Accent identification approaches 
can be divided according to the features used for classifying the accent: acoustic or phonotactic 
features. Acoustic features that have been studied in accent identification are pitch, energy, 
formants, MFCC and others, while for phonotactic features phoneme sequence and position are 
important. We are particularly interested in approaches that are capable to generalize the accent 
features even though data from only a few speakers is given, because in many cases, only speech 
from a few speakers is available. In this preliminary work, we propose an approach using 
phonotactic features. Multilingual decision trees are used to model the phonotactic features. For 
the moment, the approach is text dependent which requires the transcription of the input speech. 
Although this strong hypothesis, such method can be used in situation where speakers can be 
asked to read a particular sentence, or when the speech of the user can be predicted accurately. 

 

3.3.1 Multilingual Decision Tree for Accent Identification 
Works in language identification have received much more attention than accent identification. 
One of the propositions using parallel multilingual phoneme recognizers for language 
identification task has shown promising results [Zissman 1996a, Schultz 2002]. The idea is to use 
multiple phoneme recognizers (PRs) of different languages to generate phoneme strings and 
subsequently score them using the corresponding language model. Since phoneme recognizers are 
not perfect and the type of errors made by each of them maybe different, the use of multiple 
phoneme recognizers for generating several phoneme sequences can enhance the performance of 
a single language system, although it is more computational intensive.  

The same idea can be applied for non-native speech recognition with some modifications, so 
that the accented models can be trained for recognizing the accent, even with small amount of 
non-native speech. It has a similar architecture compared to parallel multilingual phoneme 
recognizers for language identification, the difference is that it also uses speech recognition 
system in the known target language (for instance French) to force align the same utterance at the 
same time. Another difference is that the accent models are made up of decision trees of different 
languages instead of language models. The reason for using accent models created from decision 
trees is to take advantage of the context of the phoneme and the generalizability of decision trees 
for classifying the accent. Furthermore, decision trees have been proven to be useful in state-tying 
and pronunciation modeling to classify similar context together, and to predict unobserved or 
missing data. However, this means that we need to have the transcription of the utterance during 
accent identification. Figure 3.5 shows our proposed accent identification system using 



Chapter 3. Non-Native Pronunciation Modeling and Accent Identification 

 72 

multilingual decision trees. Before accent identification can be carried out, the accent models 
have to be trained. In the following section, the training procedure is first presented, followed by 
the identification step.  

 

 

Figure 3.5 The usage of multilingual decision trees (DTs) for non-native French accent (Chinese 
and Vietnamese) identification 

 

3.3.1.1 Training 

In the training step, accent models which are made up of multilingual decision trees will be built. 
The steps to create the decision trees are similar to the one presented for pronunciation modeling 
in Section 3.2. Instead of going through two passes to create the decision trees, here only one pass 
is applied because all phone confusions whether it is significant or not should be taken into 
consideration for building the accent models. The hypothesis phoneme strings from the phoneme 
recognizer are aligned against the corresponding reference phoneme time stamps from the forced 
alignment to create the triphone confusions. The triphone confusions with the same base phoneme 
are gathered to build the base phoneme decision tree, and their contexts are converted to the 
corresponding phonetic feature vectors. They are subsequently passed to the decision tree 
algorithm to create the decision trees. 

The procedure is repeated by decoding the same non-native speech with phoneme 
recognizer of different languages, and aligning the hypotheses against the corresponding 
reference phoneme strings of the target language. As a result, for each accent to be identified, n 
set of decision trees will be created, where n is the number of languages available for the 
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phoneme recognizers. Each set contains x phonemes of the target language. The hypotheses 
generated from each phoneme recognizer are aligned against the corresponding reference 
phoneme strings from the forced alignment producing triphone confusions. Recall from Section 
3.2.1 that the triphone confusion of the same base (target language) reference phoneme will be 
collected together for each language. The left and right context phoneme will then be converted to 
feature vectors, for example by using IPA articulation features. Decision tree algorithm can 
finally be applied to build the trees. Since the trees are created by using the hypotheses generated 
by phoneme recognizers of different languages and aligned against the corresponding target 
language references, they are actually decision trees of the target language phoneme set. An 
interesting remark is that these trees have the leaves of different languages depending on the 
phoneme recognizer used. Thus, the language of the decision trees actually refers to the language 
of the phoneme recognizer used. Figure 3.6 shows two decision trees for the French phoneme /ø/, 
which is created by aligning the hypotheses from French and Mandarin phoneme recognizers 
respectively against the French reference phoneme strings. In this case, the triphone confusions of 
the base phoneme /ø/ with French and Mandarin phonemes are each gathered to create the 
decision trees below. 

 

 

Figure 3.6 Example of accent models for Vietnamese in the form of decision trees created using 
French and Mandarin phoneme recognizers 

 

3.3.1.2 Identification 

During identification, the utterance from a non-native speaker will be sent to the phoneme 
recognizers of different languages and at the same time forced aligned using the transcription of 
the utterance, supposed known in advance, see Figure 3.5. Only one speech recognition system of 
the target language is actually needed for force alignment. The triphone confusions generated 
from the alignment of hypotheses and references are scored using the accent models.  The phone 
confusion probability is retrieved from the decision trees based on the reference phoneme context 
and substitution information. A small floor probability is assigned to avoid getting a zero 
confusion probability. The accent score for a particular language is calculated by taking into 
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consideration all the phone confusion given that decision trees. This is done by multiplying all the 
phone confusion probabilities given the decision trees (equation 3.6). The total accent score (for 
the decision trees for L language) is calculated by multiplying the accent score from L language 
trees (equation 3.7).  The accent model with the highest score will be selected. 
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where l is the language of the decision tree, sub is the hypothesis substitution for the base 
phoneme, left and right indicates the left and right context of the base phoneme, and ß is a small 
floor probability.  

 

3.4  Conclusions 
In this chapter, we have presented two modified pronunciation modeling approaches using a 
limited amount of non-native speech, and an original approach called “latent pronunciation 
analysis” that can be used for pronunciation clustering and adaptation. The first approach is the 
conventional approach of pronunciation modeling, which models the variants in the pronunciation 
dictionary. Variants are estimated by using decision trees. Two passes are applied for finding the 
variants because the phoneme recognizer is not accurate and there are only limited amount of 
non-native speech available for modeling. Hence, it is important to generate the hypotheses as 
accurate as possible for estimating the unobserved variants using decision trees. The second 
approach models the pronunciation variants in the rescoring module. The rescoring module 
employs a triphone model to rescore the n-best list produced by the decoder. A unigram model is 
used for smoothing the triphone model. The pronunciation score obtained is included in the log-
linear model to compute a composite score and re-rank the n-best hypotheses. The third approach 
called latent pronunciation analysis is in fact a new pronunciation clustering method, which 
clusters the speakers according to their pronunciation habits. This approach is motivated by 
eigenfaces and eigenvoices, where it uses eigenvectors derived from speaker dependent decision 
trees. Thus, latent pronunciation analysis attempts to use the pronunciation eigenvectors derived 
for pronunciation adaptation. However, this method requires more non-native data to carry out, 
but the benefit is that the knowledge about the accent of the speaker is not required to be known 
a-priori, unlike the typical non-native pronunciation modeling approaches.  

Preliminary work in accent identification has also been proposed. A new accent 
identification approach using multilingual decision trees has been presented. This is a text 
dependent accent identification approach which requires the transcription of the test utterance. 
The approach can be used in situation when speakers can be asked to read a particular sentence, 
or when the utterance of the user can be predicted accurately. The advantage of the approach is 
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that the accent models require a little amount of non-native speech to create. The benefits come 
from the generalizability of the decision trees to model phonotactic features. The identification 
capability is further improved with the usage of parallel phoneme recognizers to create decision 
trees of different languages for each accent model. Multilingual phoneme recognizers have 
proven to be beneficial in language identification, where they are able to improve the language 
identification rate. This approach will be experimented in Chapter 5, and compared to the existing 
baseline accent identification approaches discussed in earlier. 
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CHAPTER 4  
 
 
 
Non-native Corpus Acquisition and 
Evaluation 

 

 

 

 

4.1 Introduction 
peech corpus is required for testing the approaches that have been proposed. For this purpose, 
a non-native French speech corpus in the tourism domain has been recorded. In the next 

chapter, the corpus will be employed for testing. This chapter presents the procedure used for 
recording the corpus, follows by some analyses and evaluation tests. Among the analyses that 
have been carried out are intelligible test, phonetic analysis and data-driven analysis. 

 

4.2 Acquisition of a Non-Native French Corpus 
A typical speech corpus for speech recognition development consists of training, testing and 
development parts. This is generally true for native speech corpora. However, for non-native 
automatic speech recognition, collecting sufficient samples of non-native speech for training non-
native models is difficult. Furthermore, there are simply too many possible groups of non-native 
speakers that may involve. Thus, our non-native speech corpus is recorded only for testing and 
adaptation purposes.  

S 
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This corpus has been developed for testing, adaptation and research in mind. For testing, we 
would like to test the non-native speakers in the tourism domain, which might be a realistic case, 
where non-native speakers are likely to stumble upon. Although this is a read non-native corpus, 
there is a dialog part where speakers are asked to read and simulate the sentences in real situation. 
The sentences are also designed to contain proper names of places, person names and others. 

 

4.2.1 Text Corpus Acquisition 
The corpus is divided into two parts. The testing part consists of common dialog and article 
sentences from the tourism domain. The adaptation text comprises of sentences from the ESTER 
corpus [Gravier 2004]. 

 

4.2.1.1 Read Sentences that Simulate Dialog 

For the first part, the common dialog phrases in the tourism domain were selected (for example 
from dialogs in hotel, restaurant, transport and other related areas). They were collected from web 
resources, travel books and elementary French language books. After the sentences were 
collected, we extracted the vocabularies out and used a script to generate their pronunciations. In 
the first step, the script simply searched for words that were defined in the existing pronunciation 
dictionaries. If the words were found, they were copied from the pronunciation dictionary and 
added to the new pronunciation dictionary. For words that were not found, the LIA grapheme to 
phoneme application [Béchet 2005] was used to generate the possible pronunciations for each 
word. After the pronunciation dictionary was generated, sentences were selected to be read by 
speakers from the text pool. The sentences were selected such that those with the most number of 
unique unseen triphones were selected, so that we can evaluate non-native speaker in as many 
context as possible. For each speaker in the same group, a hundred unique sentences were 
selected. 

 

4.2.1.2 Read Articles 

The texts in this second part are also from tourism domain, but instead of dialog, they are 
sentences from tourism articles on the web. The texts were first gathered from tourism websites 
using a web crawler. Subsequently, the texts were extracted from the HTML files. Next, the 
sentences were filtered and normalized by removing the punctuations, changing the digits to text 
numbers, lowering the case of the text, changing paragraph to sentences, limiting the size of 
sentences etc. After having manually verified that the sentences were suitable, the same approach 
described in previous section was applied to select sentences to be uttered by speakers. The total 
number of unseen triphones found over time is showed in Figure 4.1. The graph shows that the 
number of unique triphones found drops dramatically for the first hundred sentences. This shows 
that frequent triphones are repeatedly found, which is something desirable, because they should 
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be tested more frequently compared to rare triphones. A hundred unique sentences were assigned 
to every speaker in the same group. 

 

Changes in the number of unique triphones over the number of 
sentences selected

0

20

40

60

80

100

120

140

160

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541 571 601

Number of sentences

N
u

m
b

er
 o

f 
u

n
iq

u
e 

tr
ip

h
o

n
es

 

Figure 4.1 Changes in the number of unique triphones found in the sentences over the number 
of sentences selected from text corpus 

 

4.2.1.3 Adaptation Text 

Adaptation sentences were selected from ESTER corpus. The ESTER corpus is a broadcast new 
corpus. It was recorded and transcribed as part of campaign for the evaluation of Broadcast News 
enriched transcription systems using French data. Text from ESTER corpus was used since it 
contains about sixty hours of transcribed speech to choose from. At the same time, we can also 
take advantage of other resources that are readily available together with the corpus such as the 
pronunciation dictionary. It is also possible to compare the adaptation speech and the speech 
recorded in the ESTER corpus if necessary. The same procedure discussed before was used for 
collecting the adaptation text. A hundred sentences are selected for each speaker. All speakers 
were assigned sixty sentences with the most number of unique triphones. The other forty 
sentences selected for each speaker were unique. The purpose is to adapt as many triphones as 
possible, while making sure those frequent triphones are adapted with more data. 
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4.2.2 Text Corpus Evaluation 
We calculated the correlation coefficient of our corpus compared to the general phoneme 
distribution in French according to [Vaufreydaz 2000], to have an idea of the phoneme 
distribution in our corpus by using equation 4.1. The result in Table 4.1 shows that our corpus has 
a correlation coefficient of about 0.9 for all its three parts, which means that it is phonetically well 
balanced. Note that the phoneme distribution gives only a general idea of the speech corpus, 
because we only select one possible pronunciation for each word. In addition, we assume ‘liaison’ 
occurred. This is why there is a high percentage of /z/. See Figure 4.2. 
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Table 4.1 Correlation coefficients for dialog, read article and adaptation parts of our corpus 

Type Correlation Coefficient 

Dialog 0.910 

Article 0.893 

Adapt 0.920 
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Figure 4.2 Phoneme distribution of Standard French (numbers taken from [Vaufreydaz 2000]) 
compared to our non-native corpus 



Chapter 4. Non-Native Corpus Acquisition and Evaluation 

 81 

4.2.3 Recording 
A total of seven native Chinese speakers and eight native Vietnamese speakers with a 
comfortable degree of experience in the target language (French) were recruited. They consist of 
seven males and eight females (see Table 4.2). Chinese speakers who took part in the recording 
have previously taken 500 hours of French course in China before they came to France, and they 
were attending French courses at a local language school, at the time of the recording. All of them 
have been in France for less than a year. Most of the speakers are from Beijing. The Vietnamese 
speakers are students from local universities. Most of them are from Hanoi. All of them have 
been in France for more than a year and have learned French for more than three years. For 
baseline comparison, three native French speakers were also selected for recording the same test 
part.  

 
Table 4.2 Number of native and non-native French speakers involved in test and adaptation 

French Vietnamese Chinese 
Speakers 

Test Adaptation Test Adaptation Test Adaptation 

Male 1 0 3 2 2 0 
Female 2 0 2 1 3 2 

Total 3 0 5 3 5 2 
 

Recording was done in a sound proof room, using a headset microphone, with sampling 
frequency set at 16 kHz. EMACOP (Multimedia Environment for Acquiring and Managing 
Speech Corpora) was used for recording and managing the speech corpus [Vaufreydaz 2000].  A 
supervisor was assigned to monitor and facilitate the recording. Table 4.3 shows the average 
duration of the utterances spoken. The results show that the average duration of the non-native 
utterances is longer compared to the utterances from native speakers. The Chinese speakers read 
the slowest. This might be due to the lower experience of Chinese speakers compared to 
Vietnamese speakers.  

 
Table 4.3 Average duration of a sentence and total duration (in parenthesis) of sentences read by 

different native groups 

 French Vietnamese Chinese 

Read Dialog 
2.84s 
(852s) 

3.64s 
(1822s) 

4.09s 
(2047s) 

Read Article 6,27s 
(1843s) 

10.2s 
(4694s) 

11.72s 
(5740s) 

Adaptation - 
12.54s 
(3687s) 

17.9s 
(3509s) 
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4.3 Intelligibility Test 
To investigate the intelligibility of the speech read by the non-native speakers, we invited native 
French speakers from CLIPS/IMAG laboratory for a perception test study. The test was 
conducted through Internet, and the volunteers were given eight recorded files to listen. Thirteen 
persons took part in the test. They were allowed to listen to the files for an unlimited number of 
times at their own place and pace. Subsequently, they were required to transcribe the utterances 
they heard on the specified textbox, and the system stored their answer in a database. The results 
from Table 4.4 shows that the pronunciations of non-native speakers are not clear even for the 
human native French speakers. Refer to appendix at Figure A1 and A2 for the web based 
interface used in the test. 

 
Table 4.4 Average human WER from the Intelligibility test 

Speakers Vietnamese Chinese 

WER 12.1 11.3 
 
 

4.4 Phonetic Analysis 
Perception test was conducted for analysing in more detail the pronunciation of the non-native 
speakers. For the perception test, we had spent a month at Aix-en-Provence with Dr. Martine 
Faraco from laboratoire parole et langage at Université de Provence to analyze some of the non-
native speech. To complement the perception test, we have also conducted some simple acoustic 
analysis on the non-native speech using Praat [Boersma 2007]. Table 4.5 below shows the 
summary of the analysis results. Only frequent occurred errors found for more than one non-
native speaker are presented. 

 
 
 
Table 4.5 Perception test and acoustic analysis results of non-native French speakers 

French Phoneme Perception Test Acoustic Observation Speakers 

/b/ /p/ No voiced feature Chinese 

/d/ /t/ No voiced feature Chinese 

/g/ /k/ No voiced feature Chinese 

/ø/ /o/ - Chinese 

/g/ - 

Have the features of a fricative, 
instead of a plosive. When /g/ is 
followed by /R/, /g/ seems to be 

deleted 

Vietnamese 

/ȓ/ /s/ 
More energy at higher frequency 
range instead of lower frequency 

Vietnamese 
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below 4000 Hz [Ladefoged 2000, 
Kent 2002] 

Final plosive in a 
syllable, e.g. /p/, /k/ 

deletion No burst was found Vietnamese 

/Ȣ/ /z/ 

More energy at higher frequency 
range instead of lower frequency 

below 4000Hz [Kent 2002] 

Chinese and 
Vietnamese 

/R/ too strong - 
Chinese and 
Vietnamese 

 
 
 
 
 
 
 
 
 

 

Figure 4.3 The word bonjour pronounced by a non-native French speaker of Chinese origin. 
Voiced feature are shown with blue line. Notice that there is no voiced feature on the first 

phoneme. This indicates that it is a /p/ instead of a /b/ 
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Figure 4.4 The word sac pronounced by a non-native French speaker of Vietnamese origin. 

Notice that the phoneme /k/ is not visible. It is either deleted or it is an unrelased /k/ common in 
Vietnamese  

 

 

Figure 4.5 The non-native speaker of Vietnamese origin (female) read the words à gauche. Notice 

that instead of a /g/ which is a voiced plosive, the phoneme looks more like a fricative. 
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Figure 4.6 The word cherche pronounced by a non-native French speaker of Vietnamese origin 

(male). Notice that the speaker pronounced /s/ instead of /ȓ/ at the start and final phonemes. 

Compare it with the accurate /ȓ/ at Figure 4.5, which has more noise energy below 4000Hz. 

 
The finding from the acoustic tests confirms the results from perception test. The results show 
that different non-native groups have a different tendency of substituting certain phoneme with 
another phoneme. The phenomena can be explained by cross-lingual phoneme transfer, where 
non-native speakers substitute the target language phonemes with their native language phonemes, 
and pronunciation simplification that was discussed in Section 1.3. Before going more detail into 
this, we will look at the finding from data-driven analyses on non-native speech.  

 

4.5 Data-driven Evaluation with Phoneme Confusion Matrix 

Evaluating the speech corpus through knowledge-based approach is time and resource 
consuming. Furthermore, it requires person with specialized linguistic knowledge in the field. 
Getting phoneticians to agree upon the same transcription is another difficulty. In addition, the 
phoneticians involved have to possess the knowledge of the languages involved. Some phonemes 

can also be difficult to analyse, for example the French /R/. It is also difficult to determine 

whether a particular phoneme realised is near the native form. Data-driven approach has the 
benefit to be fast, standardized and can be quite accurate if the models used are robustly built. It 
can therefore provide researchers with some insights into the data. For analysing the cross lingual 
transfer of non-native speakers, we employed the technique of phoneme confusion matrix as 
described in Section 2.3.1. This verifies further the phoneme confusion approach used in many of 
the next experiments.  
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The idea is to find the confusion or mismatch between the phonemes pronounced by the 
non-native speakers and the actual pronunciations of the words. Phoneme confusion matrix is 
created by aligning the hypotheses from a phoneme recognizer against the corresponding 
reference phoneme strings from the forced alignment of a speech recognition system (see Figure 
4.7). For analysing the pronunciation habits of non-native speakers, we want to know the type of 
speech sounds that non-native speakers have mastered and the type of errors they are likely to 
commit. Since non-native speakers are influenced by their native language greatly when they 
learn a new language, the phoneme recognizer used must be able to recognize both the target and 
the native phoneme set of the speaker. Thus, the acoustic model of the phoneme recognizer has 
both the target and the native language acoustic units of the speaker.  

 

 

Figure 4.7 Finding the pronunciation habits of non-native speaker by using phoneme confusion 
matrix 

 
For our data-driven analyses, the French acoustic model was the target acoustic model, 

while the source acoustic models were Vietnamese or Mandarin. The acoustic model used by the 
phoneme recognizer was created by merging French acoustic model with Vietnamese and 
Mandarin acoustic model to enable it to recognize both target and source phonemes. For more 
information about the system and corpora used, refer to Section 5.2 ahead. Table 4.6 and 4.7 
below show the results. 

For Vietnamese speakers, similar phonemes which exist in both the target and the native 
language of the speaker (according to IPA) were recognized as both the variants. They also have 

problem pronouncing /p/ even though it exists in both the languages. Probably this is because 

Vietnamese /p/ exists only as an unreleased plosive at the final position of a syllable. In French 

however, it can appear in the front of a syllable and it is a released form. There are few interesting 
sightings about new phonemes which exist only in the target language French (according to IPA) 

but not in Vietnamese. The French vowels /ø/, /œ/ and /ǩ/ were recognized with a high 

probability as the Vietnamese phoneme /Ǵ/. The French /ǡ/ on the other hand was recognized as 

/a/. These are some new sighting from the data-driven analysis. Similar to our results from 

perception and acoustic analysis, /ȓ/ and /Ȣ/ were replaced by phoneme /s/ and /z/. /R/ was 

recognized also as Vietnamese phoneme /X/. It is possible that Vietnamese speakers pronounce 
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/g/ as /R/, since it has the same top two substitutions for /R/. There is also confusion of the 

French semivowel /ǵ/ with the vowel /y/. This is understandable because they are quite similar 

and both are articulated by rounding the lips, and /ǵ/ can be considered as the semivocalic 

counterpart of /y/. 

Like Vietnamese speakers, similar French and Mandarin phonemes (according to IPA) were 
also recognized as both French and Chinese variants most of the time in the test. The result shows 

that the accuracy of recognizing /ə/ is low, even though the phoneme also exists in Mandarin. For 

new French plosives such as /b/, /d/ and /g/, the results from data-driven test are comparable 

with the perception and acoustic analysis. However, the results from the analysis show that /z/ is 

pronounced as /s/, which is something we did not expect. It is possible that the /z/ pronounced 

by Chinese speakers is more similar to the model /s/, even though the voiced feature is 

articulated. Different from Vietnamese speakers, Chinese speakers have learned to pronounce the 

French post-alveolar fricatives /ȓ/ and /Ȣ/ rather well, with a high accuracy rate. For new vowels 

only found in French, Chinese speakers have the tendency of substituting /ø/ and /œ/ with back 

vowels /o/ and /Ǵ/ respectively. They are able to grasp nasal vowels rather well with a high 

accuracy, particularly the nasal vowels /ǫ~/ and /œ~/, although there seem to be some 

confusions between these two phonemes. 

 
 

Table 4.6 Top two phoneme confusions for every French consonant uttered by Vietnamese and 
Chinese speakers. 

French 
Consonants 

Vietnamese speakers Chinese speakers 

p p (vn, 0.081) t (vn, 0.075) p (cn, 0.209) pȹ (cn, 0.12) 

b b (vn, 0.284) b (fr, 0.148) p (cn, 0.199) b (fr, 0.118) 

t t (vn, 0.174) t (fr, 0.121) t (fr, 0.118) tȹ (cn, 0.094) 

d d (vn, 0.232) d (fr, 0.198) t (fr, 0.151) d (fr, 0.123) 

k k (vn, 0.205) k (fr, 0.158) k (fr, 0.157) kȹ (cn, 0.155) 

g R (fr, 0.129) X (vn, 0.097) k (cn, 0.283) kȹ (cn, 0.13) 

m m (fr, 0.444) m (vn, 0.209) m (fr, 0.503) m (cn, 0.129) 

n n (fr, 0.293) n (vn, 0.125) n (fr, 0.419) n (cn, 0.074) 

Ȃ Ȃ (fr, 0.467) Ȃ (vn, 0.2) Ȃ (fr, 0.643) n ǫ (cn, 0.071) 

R R (fr, 0.189) X (vn, 0.048) R (fr, 0.294) x (cn, 0.25) 

f f (vn, 0.467) f (fr, 0.383) f (fr, 0.394) f (cn, 0.129) 

v v (fr, 0.335) v (vn, 0.161) v (fr, 0.175) u (cn, 0.072) 

s s (fr, 0.377) s (vn, 0.302) s (fr, 0.605) s (cn, 0.159) 

z z (fr, 0.258) z (vn, 0.2) z (fr, 0.331) s (cn, 0.11) 

ȓ ȓ (fr, 0.494) s (fr, 0.187) ȓ (fr, 0.734) ç (cn, 0.086) 

Ȣ Ȣ (fr, 0.259) z (vn, 0.176) Ȣ (fr, 0.594) s (cn, 0.058) 
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j j (fr, 0.234) ie (vn, 0.286) j (fr, 0.203) j (cn, 0.194) 

ǵ y (fr, 0.246) i (fr, 0.154) e (fr, 0.155) y (cn, 0.138) 

w w (fr, 0.222) a (vn, 0.089) w (fr, 0.381) ǡ (fr, 0.074) 

l l (vn, 0.314) l (fr, 0.109) l (fr, 0.199) l (cn, 0.124) 

Within the parenthesis is the language information of the phoneme (French-fr, Vietnamese-vn and 

Chinese-cn) and its confusion probability (0-1). Note that the phoneme /ŋ/ is not included in the 

table because it does not occur sufficiently in the data to calculate a reliable confusion value. 

 
 
Table 4.7 Top two phoneme confusions for every French vowel uttered by Vietnamese and 
Chinese speakers. 

French 
Vowels 

Vietnamese speakers Chinese speakers 

i i (fr, 0.309) i (vn, 0.272) i (fr, 0.24) e (fr, 0.229) 

y y (fr, 0.267) i (vn, 0.131) y (fr, 0.34) e (fr, 0.202) 

u u (fr, 0.293) u (fr, 0.168) u (fr, 0.265) o (fr, 0.177) 

e e (vn, 0.29) e (fr, 0.204) e (fr, 0.335) ǫ (fr, 0.196) 

ø Ǵ (vn, 0.288) ø (fr, 0.096) ø (fr, 0.189) o (fr, 0.108) 

o o (fr, 0.332) o (vn, 0.205) o (fr, 0.234) ǡ~ (fr, 0.173) 

ǩ Ǵ (vn, 0.162) ǿ (vn, 0.065) Ǵ (cn. 0.084) œ (fr, 0.053) 

ǫ ǫ (vn, 0.262) ǫ (fr, 0.257) ǫ (fr, 0.323) a (fr, 0.08) 

œ Ǵ (vn, 0.332) œ (fr, 0.153) œ (fr, 0.242) Ǵ (cn, 0.194) 

Ǥ Ǥ (vn, 0.201) ǡ~ (fr, 0.097) Ǥ (fr, 0.172) ǡ~ (fr, 0.172) 

a a (vn, 0.322) a (fr, 0.178) a (fr, 0.233) a (cn, 0.132) 

ǡ a (vn, 0.328) ǫ~ (fn, 0.131) ǡ (fr, 0.424) a (cn, 0.153) 

ǫ~ ǫ~ (fr, 0.128) ǫ˘ (vn, 0.128) ǫ~ (fr, 0.272) œ~ (fr, 0.141) 

œ~ œ~ (fr, 0.198) Ǥ˘ (vn, 0.121) œ~ (fr, 0.333) ǫ~ (fr, 0.144) 

Ǥ~ ǡ~  (fr, 0.276) o (vn, 0.088) Ǥ~ (fr, 0.333) ǡ~ (fr, 0.188) 

ǡ~ ǡ~ (fr, 0.259) Ǥ (vn, 0.13) ǡ~ (fr, 0.361) ŋ (cn, 0.102) 
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4.6 Cross-lingual Transfer in Non-native Speakers 
To understand why certain target language phoneme is replaced by another phoneme by a 
particular group of non-native speakers, it is important to understand cross-lingual transfer of 
non-native speakers. This can be done by comparing the target and native phoneme set of non-
native speakers. Table 4.8 and 4.9 show the consonant and vowel tables respectively for 
Vietnamese, while Table 4.10 and 4.11 present the Mandarin consonant and vowel tables. Note 
that the IPA tables are not the standard one, the approximants and affricates have been combined 
to give a compact presentation. 

Here, we attempt to generalize the finding from the perception, acoustic and also data-
driven analysis, so that it can be applied for other cases. Notice that similar phonemes are often 
replaced by the same phoneme in the target language or the native language of the speaker. The 
more interesting observations are the new phonemes which do not exist in the native language of 
the speaker. The new phonemes are often replaced by the nearest native phonemes according to 
the IPA table. For new consonants which do not exist in the native language of the speaker, the 
nearest native phoneme can often be found in the same row (manner of articulation) or in the 
same column (place of articulation). Notice an interesting fact that the place of articulation in IPA 
table is in fact arranged in order from the lips to the glottal (refer to the vocal tract Figure A3 in 

the appendix). For example, Chinese speakers will replace /b/, /d/ and /g/ with /p/, /t/ and /k/, 

while Vietnamese speakers will substitute /ȓ/ and /Ȣ/, with /s/ and /z/. However, this is not 

always true as we see for the phoneme /g/. It is substituted by /X/ instead of /k/ or /ǳ/, which is 

nearer to /g/ according to the IPA table.  

As for vowels, it is harder to explain using the vowel table. Instead, it seems to be more 
obvious from the vowel formant graph derived from the speech. Figure 4.8 and 4.9 show the 
original vowel formant graph plotted using the raw formant values from Vietnamese and 
Mandarin compared to French. The formant values were extracted automatically using Praat 
[Boersma 2007]. The phoneme alignment is obtained from the forced alignment of the speech. 
For understanding why certain new vowels in the target language are substituted by native 
language vowels, we assume that similar vowels in the target language will be substituted by 
similar vowels in the source language. We can project these source language vowels to the 
corresponding target language vowels. The other source vowels are projected by taking into 
consideration the projection of all other similar vowels, using the equation 2.1 and 2.2. For a new 
target language vowel, the nearest native vowel from the speaker is chosen. For example in our 
case, after projecting all the Vietnamese vowels, we found that the nearest source language vowel 

for /ǩ/, /œ/, and /ø/ is /Ǵ/, because the Vietnamese /Ǵ/ will be projected to somewhere between 

/ǩ/ and /œ/, which corresponds to our results obtained from phoneme confusion matrix in 
previous section. This can explain most of the substitutions observed.  
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French and Vietnamese share a lot of similarities in term of consonants and vowels. There 
are 23 similar phonemes between them, most of them exist as consonants. Vietnamese has 
relatively more fricatives than French. In term of vowel, there are short vowels and dipthongs in 

Vietnamese, but not in French. The diphthongs in Vietnamese are /ie/, /ǿǴ/and /uo/. On the 

other hand, French has more types of vowels and also nasal vowels.  

 

 
Table 4.8 Comparison of French and Vietnamese consonants 

  Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Glotal 

Plosive p b     t tȹ t` d   Ș  c  k g     

Nasal 
  m      n      Ȃ  ŋ     

Trill 
                  R   

Tap or Flap 
                     

Fricative 
   f v   s z ȓ Ȣ sʕ zʕ    ǳ X  h  

Affricate 
                     

Lateral 
fricative                      

Approximant 
             j ǵ*  w*     

Lateral 
approximant         l             

Consonants in black are common in both languages. Consonants in green and dotted square are 
found only in French, while consonants in blue and circled are available only in Vietnamese [Le 
2006]. * - rounded 

 
Table 4.9 Comparison of French and Vietnamese vowels 

  Front Central Back 

Close i y     ǿ u 

Close-mid e ø     Ǵ Ǵ˘ o 

   ǩ    

Open-mid ǫ ǫ~ ǫ˘ œ œ~      Ǥ Ǥ~ Ǥ˘ 

Open a a˘         ǡ ǡ~ 

Vowels in black are common in both languages. Vowels in green and dotted square are found 
only in French, while vowels in blue and circled are available only in Vietnamese  
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Mandarin do not shares a lot of similarity with French in terms of consonants and vowels. 
Only eighteen ‘similar’ phonemes are shared between them, and seven of them are vowels. In 
Mandarin there is no voiced plosive and fricative compared to French. On the other hand, 
affricate does not exist in French but can be found in Mandarin. 

 

 

Table 4.10 Comparison of French and Mandarin consonants 

  Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Glotal 

Plosive 
p 

pȹ  

b 

        

t  

tȹ  

d 

            

k 

kȹ  

g 

        

Nasal   m     n      Ȃ  ŋ         

Trill         r                 R     

Tap or Flap                            

Fricative     f  v     s z ȓ Ȣ Ȓ   ç    x           

Affricate 
         

ts 

tsȹ       

ȘȒ 

ȘȒȹ     

tç 

tçȹ            
Lateral 
fricative                                         

Approximant                   j ǵ*  w*         
Lateral 
approximant               l                          
Consonants in black are common in both languages. Consonants in green and dotted square are 
found only in French, while consonants in blue and circled are available only in Mandarin 
[Duanmu 2002]. * - rounded 

 

Table 4.11 Comparison of French vowels and Mandarin vowels 

  Front Central Back 

Close i y      u 

Close-mid e ø     Ǵ o 

      ǩ     

Open-mid ǫ ǫ~ œ œ~      Ǥ Ǥ~ 

Open a         ǡ ǡ~ 

Vowels in black are common in both languages. Vowels in green and dotted square are found 
only in French, while vowel in blue and circled are available only in Mandarin [Duanmu 2002] 
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Figure 4.8 French and Vietnamese vowel charts 
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Figure 4.9 French and Mandarin vowel charts 
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4.7 Conclusions 
In this chapter, we have presented our non-native French corpus in the tourism domain, which 
consists of read speech from speakers of Chinese and Vietnamese origin. In addition, few native 
French speakers have also taken part in the recording for comparison purpose. The corpus is used 
for testing and adaptation in the coming chapter. Four types of analysis, namely intelligible, 
perception, acoustic and data-driven tests have been carried out on the corpus for analyzing the 
speech of non-native speakers. The influence from the native language phonology of the speaker 
on the target language is very obvious from the non-native speech. Among the frequent 
observations are cross-lingual transfer and pronunciation simplification mentioned in Section 1.3. 
The finding shows that the non-native speech recorded has a high degree of accent, which may 
affect dramatically the speech recognition performance. 
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CHAPTER 5  
 
 
 
Evaluations of Non-Native Modeling 
Approaches 

 

 

 

5.1 Introduction 
n the previous chapters, acoustic and pronunciation modeling for non-native speakers have 
been proposed together with accent identification approach. In this chapter, we will present the 

experiments that had been conducted to examine and verify the performance of the proposed 
techniques. In the coming section, a general description of the experimental setup will be given. 
Then in Section 5.3, we will examine the multilingual acoustic modeling approach proposed (in 
Chapter 2), follows by tests on pronunciation modeling in Section 5.4 (proposed in Chapter 3), 
and finally in Section 5.5, the proposed accent identification approach (in Chapter 3) is compared 
with some baseline accent identification approaches.  

 

5.2 Experimental Setup 
First, this section gives a general description of the speech recognition system employed for both 
speech recognition and accent identification tasks. Next, the corpora used for testing, training and 
adaptation through out this chapter are presented. 

 

I  
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5.2.1 Automatic Speech Recognizer: Sphinx 
Sphinx speech recognition system [CMU 2000][Ravishankar 2006] from Carnegie Mellon 
University (CMU) was selected for the speech recognition tasks. It consists of several speech 
applications. The two main applications are the trainer and the decoder. The trainer, known as 
SphinxTrain, can be used for training continuous HMM acoustic models. The original 
SphinxTrain application provides only context dependent modeling, and we have modified it for 
producing context independent model. The difference between context independent and context 
dependent models lies in the modeling of the context of the speech sounds. The iterative re-
estimation procedure described in Chapter 1 is employed by using Baum Welch algorithm. In 
addition, for creating robust triphone context dependent models, states are being tied together 
(senones). On the other hand, Sphinx3 is the application for decoding speech. Sphinx3 is a fast 
decoder, capable of decoding speech at real time. This is achieved using conventional Viterbi 
search strategy and beam heuristics. In addition, it has a lexicon-tree search structure. Sphinx3 
uses the acoustic model created by SphinxTrain. For language model, it accepts n-gram model in 
binary format, which is converted from a standard ARPA n-gram model. Speaker adaptation 
utilities such as MLLR and MAP are also part of the Sphinx speech recognition package.  

In the following experiments, the front-end module was used to pre-process the raw speech 
at 16 bits sample with sampling frequency of 16 kHz to cepstral feature vectors together with its 
first and second derivative. This produces feature vectors with a total of 39 dimensions. 
SphinxTrain makes use of the feature vectors to create a continuous HMM acoustic model. 
Phoneme or phone were used as the unit of HMM, and each has three states, with a left-to-right 
topology. Conversely, the n-gram language model was created using CMU statistical language 
modeling toolkit [Clarkson 1997]. 

 

5.2.2 Speech Corpora 
Almost all the experiments were carried out on non-native French speakers, and further tests were 
conducted on non-native English speakers to reinforce the results whenever possible. The 
following section presents the general description of the French and English corpora used for 
training and testing the non-native French and English speakers. For creating non-native acoustic 
models, multilingual corpora were also employed. 

 

5.2.2.1 French 

The non-native French corpus (NNF) described in the previous chapter was tested. It contains 
speakers of Chinese and Vietnamese origin, each non-native group is made up of 5 speakers who 
read about 100 common sentences related to dialogs in the tourism domain. The non-native 
speech recognition experiments made use of the data from BREF120 corpus [Lamel 1991] for 
creating the target French acoustic model (See Table 5.1). A general domain trigram language 
model was first created by using the texts from Le Monde newspaper. The text corpus contains 
about 2.8 Gigabyte of texts, from the year 1992 to 2003. The generic language model was then 
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interpolated with a tourism domain language model from NESPOLE project [Besacier 2001]. 
Conversely, for the French test pronunciation dictionary, it contains more than two thousand 
entries. 

 
Table 5.1 Summary of the Corpora Used for Training and Testing for French 

Task Corpus Description Spk. Hours 

Training BREF120 French - training 120 100+ 

Test NNF Non-native French 10 1 
 

5.2.2.2 English 

The tests on non-native English speakers were carried out on the ISLE corpus [Menzel 2000], 
which contains native German and Italian speakers. The English acoustic model was created from 
TIMIT corpus3 [Fisher 1986], while the general domain language model and pronunciation 
dictionary were originated from Sphinx speech recognition system. However, the entries in the 
test pronunciation dictionary have been reduced to about one thousand for testing. Table 5.2 
summarizes the corpora usage. 

 
Table 5.2 Summary of the Corpora Used for Training and Testing for English 

Task Corpus Description Spk. Hours 

Training TIMIT English - training 630 4 

Test ISLE Non-native English 46 18 
 
 

5.2.2.3 Multilingual 

The multilingual corpora used in the experiments consist of multiple independent corpora from 
different sources, namely a Vietnamese (VN) corpus [Le 2004], a Mandarin CADCC corpus 
[CCC 2005], a small non-native English corpus with Chinese and Vietnamese speakers from a 
public archive (GMU) [Weinberger 2007], and a Malay speech corpus courtesy of Universiti 
Sains Malaysia. The general information of the corpora is presented in Table 5.3. These 
multilingual corpora were used in non-native acoustic modeling for adapting target acoustic 
model, while they were employed in accent identification tasks to create accent models.  

 
 
 
 

                                                   

3 We are aware that this corpus maybe small to train an English acoustic model; but at the time of these 
experiments, we did not have the WSJ corpus yet; moreover, the experiences on non-native English must 
be seen only as a validation of what is done for non-native French speech recognition. 
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Table 5.3 Summary of the multilingual corpora used 

Task Corpus Description Spk. Hours 

 
Adaptation and/ 
or identification 

 

VN 
CADCC 

GMU 
 

MSC 

Vietnamese 
Chinese 

Non-native English 
(Vietnamese and Chinese) 

Malay 

29 
20 
17 
 

18 

15 
5 

0.14 
 
5 

 

5.3 Non-Native Multilingual Acoustic Modeling 
This section describes the experimental performance of the multilingual acoustic modeling 
proposed for non-native speakers in Chapter 2. Two types of modeling are being examined here: 
cross-lingual transfer and context. For modeling cross-lingual transfer in these experiments, non-
native speech of the target language was assumed to be unavailable. Three types of multilingual 
resources were examined for non-native adaptation, namely the native language of the speaker 
(L1), any non-native language spoken by the same native group (L2), and languages close to the 
native language of the non-native speaker (L3). These are the possible candidates for adapting the 
target language acoustic model. On the other hand, for context modeling, it is sufficient to have 
the target language acoustic models to carry out the adaptation. 

 

5.3.1 Cross-Lingual Transfer Modeling 
In Section 1.3.2, we mentioned that non-native speakers are influenced by their native language 
when they learn to speak a new language, where they often transfer their native language speech 
sounds to the corresponding target language speech sounds. This mismatch between non-native 
speech and the trained models causes major reduction in speech recognition performance. 

We will start by describing the experiments conducted to determine the source phoneme 
transfer of non-native speakers without using any non-native speech. Next, two baseline 
approaches for modeling cross-lingual transfers were tested. They are acoustic model 
interpolation and merging. Subsequently, the proposed hybrid approach of acoustic interpolation 
and merging are examined for modeling cross-lingual transfer by using multilingual acoustic 
models. We will also verify our proposed interpolation approaches for modeling cross-lingual 
transfer by employing multilingual corpora. Two speaker adaptation approaches using 
interpolation were tested. They are weighted least square and eigenvoices.  

The proposed approaches were experimented using our multilingual resources. Three types 
of multilingual resources will be examined. They are the native language of the speaker (L1), any 
non-native language spoken by the same native group (L2), and languages close to the native 
language of the non-native speaker (L3). For instance, if we consider French as the target 
language for speech recognition system, and if the task is to recognize non-native speech from 
Vietnamese speakers, the resources considered will be Vietnamese speech, any non-native speech 
uttered by Vietnamese, and a language close to Vietnamese respectively. For non-native acoustic 
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modeling, non-native French speakers from our NNF corpus were tested, and BREF120 was used 
for training the target French acoustic model. For modeling cross-lingual transfer by non-native 
speakers, the Vietnamese (VN) corpus, the Mandarin CADCC corpus and the TIMIT corpus were 
used. We have also made used of non-native English speech from a public archive (GMU). The 
GMU corpus was either used separately or together with TIMIT corpus. Since the non-native 
English speech itself is not sufficient for creating non-native models, it is used to adapt the TIMIT 
acoustic model to create non-native English models for Chinese and Vietnamese speakers. Table 
5.4 describes the ways the multlingual corpora were employed for adapting Chinese and 
Vietnamese speakers.  

Notice that, Mandarin and Vietnamese are assigned as “close” languages even though both 
are belonging to different language families. Mandarin belongs to Sino-Tibetan family in the 
Sinitic branch, while Vietnamese is classified in the branch of Mon-Khmer in Austroasiatic 
family [O'Grady 2000]. However, both are Asian tone languages, where Mandarin has four tones 
while Vietnamese has six. In addition, a recent study [Ou 2007] found that both group of 
language learners share similar usage of stress in English. This suggests that there are similar 
characteristics between the two languages which can be exploited. In the coming section, we will 
examine our proposed approaches for modeling different context variation and cross-lingual 
transfer. All experiments were carried out using context independent acoustic models with 16 
Gaussians mixture except specifies otherwise. 

 
 
Table 5.4 Description of multilingual corpora used for adapting French acoustic model (BREF120) 

Speaker Corpus Description 

 
Vietnamese 

 

VN 
CADCC 

GMU 
TIMIT + GMU 

L1 
L3 (Mandarin) 

L2 (English by Vietnamese) 
L2 (English by Vietnamese) 

 
Chinese 

 

VN 
CADCC 

GMU 
TIMIT + GMU 

L3 (Vietnamese) 
L1 

L2 (English by Chinese) 
L2 (English by Chinese) 

 

5.3.1.1 Cross-Lingual Phoneme Transfer 

Two approaches to determine non-native cross-lingual phoneme transfer by non-native speakers 
from a source to a target language without using any non-native speech from the target language 
has been presented in Section 2.3. This can be achieved by using phoneme confusion matrix or by 
using existing linguistic knowledge and IPA.  

Recall that phoneme confusion matrix can be created by aligning the hypotheses from a 
phoneme recognizer against the corresponding reference phoneme strings from force alignment. 
Since we assume that non-native speech is not available, the source language phoneme recognizer 
and the target language speech recognition system are employed for decoding the target language 
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speech. Hence, for determining the phoneme transfer for Vietnamese and Chinese speakers, the 
source language will be Vietnamese and Mandarin respectively, while the target language will be 
French. Creating the phoneme confusion matrix does not need a lot of target language speech. 
Consequently, only 20 utterances were selected randomly from each speaker (total 120 speakers) 
from the BREF120 corpus.   

For determining the possible phoneme transfer from IPA table, the corresponding source 
phoneme for a particular target phoneme is determined by referring to the IPA and existing 
linguistic knowledge. Refer to Vietnamese and Chinese IPA at Table 4.8, 4.9, 4.10, 4.11 and 
vowel chart in Figure 4.8 and 4.9. For similar phonemes (according to IPA) which exist in the 
source and also in the target language, these phonemes are assumed to transfer from the source to 

the target. For example, in Vietnamese and French, /p/ and /b/ exist in both languages. Thus, we 

assume that Vietnamese /p/ and /b/ are transferred to French /p/ and /b/ respectively. For new 

target language phonemes which do not exist in target language, the nearest source phonemes in 
the IPA will be chosen by taking into consideration existing linguistic studies. For example for 

Vietnamese speakers, the possible source phoneme transfer for /ȓ/ for Vietnamese is /s/ and /sʕ/ 
since they are the nearest phonemes. In some cases, we also take into consideration 

linguistic knowledge, for example /ǫ~/ is near to /a/ in vowel chart for Vietnamese speakers, 

but this phoneme is a nasal version of /ǫ/. For French vowel /y/, the nearest Vietnamese vowels 

are /i/ and /ǿ/. On the other hand, linguistic studies also suggest that American speakers replace 

/y/ with /u/. Consequently, the same transfer may also happen to Vietnamese speakers. Thus, the 

possible Vietnamese vowels that may substitute /y/ are /i/, /ǿ/ and /u/. 

The possible source vowel and consonant transfer for Vietnamese, Chinese and non-native 
English speakers (of Vietnamese and Chinese origin) are presented in Table 5.5 and 5.6 
respectively. For both Vietnamese and Chinese speakers, the possible source phoneme transfer 
using confusion matrix and IPA are shown, except for English speakers (native Vietnamese and 
Chinese origin) where solely the IPA choices are used since both French and English shares a lot 
of similar phonemes. The general guidelines used here for selecting the final source phonemes are:  

• Source phonemes which also exist in the target language are assumed to transfer to the 

corresponding target phonemes. e.g. Vietnamese /p/ to French /p/. 

• Existing linguistic study that shows a particular source phoneme is transferred to another 

target phoneme is applied. e.g. Vietnamese /u/ to French /y/. 

• Compare the IPA and confusion matrix choices and select the best option. 

It is also interesting to compare our choice of source phonemes set with the results from our 
earlier corpus analysis results in Table 4.6 and 4.7. 
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Table 5.5 Determining the transfers of source consonants (Vietnamese, Mandarin and English) 
using confusion matrix and IPA to target language 

Vietnamese Speakers Chinese Speakers English 
Speakers French 

Consonants 
Conf. Mat. IPA Selected Conf. Mat. IPA Selected Selected 

p v, t p p p, pȹ p, pȹ p p 

b b, v b b p, t p, pȹ p b 

t tȹ, t t, tȹ t t, tȹ t, tȹ t t 

d d, t d d t, p t, tȹ t d 

k k, g k k k, kȹ k, kȹ k k 

g k, d k, ǳ ǳ k, t k, kȹ k g 

m m, l m m m, n m m m 

n n, Ȃ n n n, m n n n 

Ȃ Ȃ, ie Ȃ Ȃ j, m n, j j n 

ŋ ŋ, Ȃ ŋ ŋ ŋ, c ŋ ŋ ŋ 

R X, Ǥ X X a, w x x r 

f f, v f f f, s f f f 

v v, i v v f, i f f v 

s s, sʕ s s s, Ȓ s s s 

z z, zr z z s, j s, Ȓ s z 

ȓ sʕ, zʕ s, sʕ s s, t s, Ȓ Ȓ ȓ 

Ȣ zʕ, sʕ z, zʕ z j, s s, Ȓ  Ȓ Ȣ 

j ie, s j j j, s j j j 

ǵ i, l w, y w i, j w, y w w 

w uo, w w w w, o w w w 

l l, m l l l, m l l l 

Note: Confusion matrix result shows the top two phoneme confusions in descending order, and 
IPA shows the likely phoneme transfer  

 
Table 5.6 Determining the transfers of source vowels (Vietnamese, Mandarin and English) using 
confusion matrix and IPA to target language 

Vietnamese Speakers Chinese Speakers English 
Speakers French 

Vowels 
Conf. Mat. IPA Selected Conf. Mat. IPA Selected Selected 

i i, c i i i, j i i i 

y l, c i, ǿ, u u i, j y y u 

u u, o u u w, u u u u 

e e, ie e e i, j e e e 

ø ǿ, ǿǴ Ǵ Ǵ Ǵ, i ǩ, Ǵ Ǵ ǩ 

o o, u o o w, u o o o 

ǩ ǿ, l Ǵ Ǵ Ǵ, t ǩ ǩ ǩ 
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ǫ ǫ, e ǫ ǫ Ǵ, e e e ǫ 

œ Ǵ, ǿ Ǵ Ǵ Ǵ, a ǩ, Ǵ Ǵ ǩ 

Ǥ o, Ǥ Ǥ Ǥ u, Ǵ o o Ǥ 

a Ǵ˘, Ǥ a a a, Ǵ a a ǡ 

ǡ Ǥ, a a a a, Ǵ a a ǡ 

ǫ~ a, Ǵ˘ ǫ, a a a, Ǵ ǫ, a a ǡ 

œ~ a, Ǵ˘ a a a, Ǵ a a ǡ 

Ǥ~ o, w Ǥ Ǥ u, w o o Ǥ 

ǡ~ Ǥ, o Ǥ, a Ǥ u, a Ǥ, a a ǡ 

Note: Confusion matrix result shows the top two phoneme confusions in descending order, and 
IPA shows the likely phoneme transfer  
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5.3.1.2 Baseline Non-native Acoustic Modeling  

Baseline non-native acoustic modeling approaches, acoustic model interpolation and merging 
were tested by using the target-source phoneme matching that we found in Table 5.5 and 5.6. 
Acoustic interpolation and merging were performed by using French and the corresponding 
context independent L1 acoustic model with 16 Gaussian mixtures. For acoustic model merging, 
the merging variant in Figure 1.15b was applied, and for acoustic model interpolation, Euclidean 
distance was used for measuring the distance between the Gaussians. Figure 5.1 shows the word 
error rate (WER) of non-native French speakers of Chinese and Vietnamese origin by employing 
acoustic model interpolation and merging across varied weights.  

Overall, the results show that acoustic model merging performs better than acoustic model 
interpolation, although it creates a model with twice the number of Gaussian mixtures compared 
to the acoustic model interpolation. Note that, when French weight is equal to 1.0, it is the 
baseline result. When French weight equals to 0.0, the French acoustic model is replaced by the 
corresponding phonemes from the L1 acoustic model of the speaker. 
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Figure 5.1 WER on non-native French speakers of Chinese and Vietnamese origin by 

interpolating and merging acoustic models, which are created from a 16 Gaussian CI target 
(French) and source (Chinese/ Vietnamese) acoustic models across different weights 
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5.3.1.3 Hybrid of Interpolation and Merging Approach 

In this section, the hybrid of interpolation and merging approach proposed in Section 2.4.1 is 
applied for modeling cross-lingual transfer. Recall that the approach interpolates source and target 
Gaussian in the matching states that are near to each other. For Gaussians that are far from each 
other, the source or target Gaussians will be merged. Thus, before this can be carried out, the 
source-target phoneme transfer information found previously will first have to be used to map the 
states of the target and source acoustic model. The target language in this case is the newly 
acquired language of the non-native speakers, which is French. The possible source languages can 
be any of the three types of languages (L1, L2 and L3) proposed. For Vietnamese speakers, L1, 
L2 and L3 will be Vietnamese, non-native English by Vietnamese and Mandarin respectively. As 
for Chinese speakers, L1, L2 and L3 are Mandarin, non-native English by Chinese and 
Vietnamese respectively. The non-native English acoustic models for Vietnamese and Chinese 
speakers were created by adapting TIMIT acoustic model with non-native English speech from 
GMU corpus using MLLR algorithm with one regression class. 

The results from non-native cross-lingual transfer modeling using L1, L2 and L3 are 
presented in Figures 5.2 and Figure 5.3. Euclidean distance was used as the distance measure. The 
initial context independent acoustic models for French, Vietnamese, Chinese and non-native 
English were employed for the experiments. The resulted models have an average of 26 
Gaussians per state. A threshold was set at about two times the average Gaussian distance. In fact, 
currently Sphinx speech recognition system is not capable of handling varied number of 
Gaussians per state. To model this, we set all states to the maximum number of Gaussian 
mixtures possible. As a result, the means, variances and mixture weights for the empty Gaussians 
are set to zero. 

The results of adapting the target acoustic model with L1 and L2 (English) acoustic model 
are very promising. On average, using L1 for adaptation with the hybrid approach performs better 
than acoustic model merging in Figure 5.1. In most cases, it scores an average relative WER 
improvement of 6.61% and 12.78% for Chinese and Vietnamese speakers respectively, while the 
acoustic merging approach has an average of 5.86% and 11.86% of improvement for Chinese and 
Vietnamese speakers respectively. Furthermore, the proposed approach uses smaller number of 
Gaussians. As for L2 adaptation, surprisingly for Chinese speakers, the results show that the non-
native acoustic model created from only about 5 minutes of non-native English speech is equally 
effective compared to Mandarin acoustic model created from 5 hours of CADCC corpus to adapt 
the French acoustic model (by using the procedure mentioned). The improvement from L2 
adaptation for Vietnamese is lower. This is understandable since there are only 7 speakers and 
only slightly more than 3 minutes of non-native English speech is available for adaptation. 
Another interesting result shown in the graph is that L3 can be useful for adaptation. By giving 
appropriate weight, Vietnamese acoustic model seems to be able to adapt French acoustic models 
for Chinese speakers and vice versa. A 3% reduction in WER for non-native speech recognition 
of native Chinese and Vietnamese speakers is recorded when French weight is equal to 0.8. 

Overall, the results from the modeling are very promising, not only for L1 but also for L2 
and L3 acoustic models. The results from our experiments suggest that L2 resource, even though 
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from a different target language may produce adaptation results which is equal or better than the 
L1 acoustic model, when there are sufficient amount of data available. However, more tests 
should be carried out to verify the same happens using other adaptation algorithms and languages. 
As for L3, using a low weight for modeling has shown to be beneficial for adaptation.  
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Figure 5.2 WER on non-native French speakers of Vietnamese origin using hybrid models 
created from a 16 Gaussian CI French and different source acoustic models with varied weights 
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Figure 5.3 WER on non-native French speakers of Chinese origin using hybrid models created 
from a 16 Gaussian CI French and different source acoustic models with varied weights 
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5.3.1.4 Manual Interpolation 

The hybrid approach works by interpolating and merging of Gaussian mixtures of target and 
source acoustic models. A small shortcoming is that the resulting model will have a higher 
number of Gaussian mixtures than the original target model. However, the advantage is that it is 
capable of treating acoustic model resources. However, when the original source language speech 
corpus is available, it may be more beneficial to use the corpus directly to create a source acoustic 
model that corresponds to the target language acoustic model for modeling purpose by adapting 
the target acoustic model with source language. This will also avoid using distance measure for 
matching the Gaussians. This can be achieved with our proposed interpolation approach in 
Section 2.4.2 for modeling cross-lingual transfer using multilingual corpora. 

MLLR (with single regression class) and MAP were used to adapt the target acoustic model 
with the same three types of languages, experimented in the previous hybrid approach. Only two 
iterations of MLLR and an iteration of MAP were applied to avoid the transformations go too far 
until deteriorate the recognition results. Figures 5.4 and 5.5 present the speech recognition 
performance using the acoustic models created from our proposed interpolation approach across 
different weights for non-native French speakers of Vietnamese and Chinese origin.  
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Figure 5.4 WER on non-native French speakers of Vietnamese origin using the proposed 
interpolated models which are created from a 16 Gaussian CI French and different source 
acoustic models with varied weights 
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Figure 5.5 WER on non-native French speakers of Chinese origin using the proposed interpolated 
models which are created from a 16 Gaussian CI French and different source acoustic models 
with different weights 

 

The modeling results show that L1, L2 and L3 are able to improve the non-native French 
speakers. Again, the results show that there is high level of accent in the non-native speech. Even 
without doing any interpolation, all three languages except non-native English for Vietnamese are 
able improve the target acoustic model. The improvements from using L1 and L2 (English) with 
our proposed interpolation are comparable with the hybrid approach, but without any increase in 
the amount of Gaussian mixtures. The average relative WER improvements of using the 
corresponding L1 as source language for Vietnamese and Chinese speakers are 11.13% and 
9.38% respectively. Similar to the L2 adaptation results from the hybrid modeling, 5 minutes of 
non-native English speech seems to perform rather well compared to 5 hours of Mandarin speech 
for adaptation. We compared the performances of both the L1 and L2 in adaptation further by 
randomly selecting about the same amount of speech from the corresponding L1 corpus compared 
to the L2 speech to adapt the French acoustic model and subsequently tested it on the non-native 
speakers. The tests were not very conclusive. The results which are not shown in the figures here 
indicate that non-native acoustic models created from adapting French acoustic model using the 
non-native English speech produced lower WER across different weights for Chinese speakers 
compared to the one created by adapting with Mandarin speech (L1), resulting in as many as 3% 
reduction in error rate in the best case. However, for Vietnamese speakers, Vietnamese speech 
(L1) is slightly better than non-native English speech from Vietnamese speakers for adapting 
French acoustic model. We have also tested the combination of L1 and the L2 for adaptation. The 
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combined model was built by simply adapting the target model with the non-native English 
speech and then adapting it again with the native language of the speaker. From the figures, they 
show that combining both speech sources for adapting the French acoustic model produced 
models which are only slightly better for Vietnamese speakers, while there are no big differences 
for Chinese speakers. Finally, French acoustic models interpolated with L3 produce a more 
significant reduction in error rate compared to the models created using the hybrid approach on 
average, where word error rate reduced as much as 6% for native Vietnamese and 4% for native 
Chinese speakers. Surprisingly for Vietnamese speakers, even without any interpolation, 
Mandarin speech is able to improve the target acoustic model, but only slightly for Chinese 
speakers with Vietnamese speech. One possible explanation for this is that the transformation 
carried out with Mandarin speech and the (original non-native Chinese) phoneme mapping suits 
Vietnamese more than the opposite for Chinese speakers. Furthermore, only few iterations of 
MLLR and MAP were employed. 

These results from our proposed interpolation approach are promising. The acoustic model 
created from modeling with L1 is comparable with hybrid approach, but at the same time there is 
no increase in the number of Gaussian mixtures in the models. On the other hand, the modeling 
with L2 and L3 produces acoustic models that are better than the corresponding one adapted with 
hybrid approach for speech recognition on average. 

 

5.3.1.5 Weighted Least Square 

The proposed interpolation approach above can produce very good recognition results if suitable 
weight is assigned for modeling. However, in our experiment, we evaluated different weights as a 
priori. In fact, when some non-native speech is available from the speaker, the speech can be used 
to estimate the weights. In this section, weighted least square (WLS) proposed in Section 2.4.3 
will be tested for its effectiveness in estimating the weights.  

 
Table 5.7 Comparing WER from manual interpolation and WLS 

Native 
speaker 

Source language 
FR=0.5, 

VN/CN=0.5 
Manual Int. 
(best result) 

WLS 

Vietnamese 
 

VN (L1) 
VN+GMU (L1+L2) 

CADCC (L3) 

52.0 
51.7 
55.8 

51.8 
51.1 
54.1 

52.3 
50.2 
54.9 

Chinese 
 

CADCC (L1) 
CADCC+GMU (L1+L2) 

VN (L3) 

52.5 
52.5 
53.9 

51.0 
50.9 
53.9 

51.8 
51.1 
52.7 

Baseline results for Vietnamese and Chinese speakers are 60.6% and 58.5% respectively 

 
Table 5.7 presents the performance improvement of applying WLS for estimating the 

weights for different source languages compared to using manual interpolation. Three utterances 
were selected from each speaker for estimating the weights for each speaker. The results are very 
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encouraging, where the average improvements for L1, L2 and L3 are equal or better than the best 
results found in the manual interpolation. This is because in manual interpolation, the same 
weight is applied for all the speakers, and only one weight is used. Using WLS, speaker specific 
weights can be estimated. The improvement can therefore be higher if the estimation is accurate. 
This shows that the weights automatically estimated for modeling are relevant. 

 

5.3.1.6 Eigenvoices in Bilingual Space 

In this section, eigenvoices approach presented in Section 2.4.4 is examined for non-native 
acoustic modeling. The idea is to use the source language corpus to create a language space in the 
eigenspace to improve non-native speaker adaptation.  

We did not create speaker dependent models from non-native English speech (for creating 
supervectors) since only about 30 seconds of speech are available from each speaker. Hence, only 
language resources of L1 and L3 were verified. The French supervectors were created from 
BREF120 corpus, producing 120 supervectors (one for each speaker from BREF120). On the 
other hand, the ‘non-native’ supervectors were created using VN and CADCC corpora, but using 
the same French speaker independent context independent model as the initial model. This is 
done by using MLLR and MAP to adapt the French speaker independent acoustic model using the 
Vietnamese and Mandarin corpora. This produces 29 and 20 speaker dependent models for 
Vietnamese and Chinese respectively. Subsequently, eigenvectors were derived from both the 
target and source supervectors (bi-lingual space). Figure 5.6 shows the positions of ten of the 
French and Vietnamese speakers used for creating the eigenvectors on eigenspace. This example 
shows that the second dimension of the eigenspace may correspond to the bi-lingual space. 
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Figure 5.6 Position of ten French and ten Vietnamese training speakers in eigenspace created 
from French and Vietnamese supervectors 
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Table 5.8 presents the improvement in WER using 20 principal components with MLED 
eigenvoices approach. The results show that using only French supervectors for creating the 
eigenvectors produces 5.9% and 5.8% reduction in error rate for Vietnamese and Chinese 
speakers. This improvement corresponds to a conventional speaker adaptation using eigenvoices 
approach. When French supervectors are combined with the L1 supervectors of the speakers, to 
form a bi-lingual space, this can further improve the performance of eigenvoices. However, L3 
resources do not produce any significant improvement. 

 
Table 5.8 Average WER of Eigenvoices using 20 components 

Native 
Speaker 

Baseline 
French 

supervectors 
French + Vietnamese 

supervectors 
French + Chinese 

supervectors 

Vietnamese 60.6 54.7 51.9 54.4 
Chinese 58.5 52.7 52.6 51.5 

 
 

We went further to verify the performance of using the source language supervectors by 
verifying whether adding more target language supervectors will actually lead to the same 
improvement. For this, we varied the number of French supervectors used for creating the 
eigenvectors and setting the number of principal components used at constant. The results in 
Figure 5.7 show that when the number of French supervectors reaches 40, the adaptation has 
already reached an optimum state for native Vietnamese and native Chinese, where subsequent 
results do not differ much after that. The addition of source language supervectors after 120 
French supervectors produces a significant drop in WER. 

We have also evaluated the performance of our proposed approaches with the conventional 
(supervised) MLLR used in speaker adaptation, and subsequently combined the proposed 
approaches with MLLR (using one regression class). The same amount of adaptation speech was 
used in all the tests. The results are presented in Table 5.9. Surprisingly, the results show that 
WLS and eigenvoices perform better than MLLR. In this case, WLS produces better results 
compared to eigenvoices. In addition, WLS is simpler to carry out. It is also able to take 
advantage of small amount of L3 speech, but not the eigenvoices. When the non-native adaptation 
approaches are combined with MLLR, for both Chinese and Vietnamese speakers, the proposed 
approaches give more than 10% absolute WER reduction. 

We did not test unsupervised adaptation with the non-native data.  However, we suppose 
that for both the WLS and eigenvoices approaches are able to do well, since eigenvoices are 
famous for its fast adaptation (using a little amount of speech), while for WLS, there are only two 
parameters (weights) to estimate.  
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Figure 5.7 WER on non-native French speakers using different number of supervectors to create 
eigenvectors and maintaining the number of principal components at 20 (the number of 
supervectors beyond 120 corresponds to the addition of the source language speakers in the 
eigenspace). 

 

Table 5.9 Comparing WER of different approaches for non-native speaker adaptation 

Native speaker Baseline MLLR WLS Egv. WLS + MLLR Egv + MLLR 

Vietnamese 60.6 53.4 50.2 51.9 48.9 50.1 

Chinese 58.5 51.5 51.1 51.5 49.1 48.9 

 

5.3.2 Context Variation Modeling 
In the previous section, the hybrid of interpolation and merging has proven to be effective for 
modeling cross-lingual transfer by non-native speakers. In this section, we compare the effects of 
context modeling using the common state-tying approach during acoustic model training against 
our proposed context modeling in Section 2.5.1 using the hybrid approach of interpolation and 
merging. Unlike the native speakers, the non-native speakers are not capable of articulating 
accurate second language sounds. Their speech is influenced by their native language and there 
are possibly incorrect pronunciations. Hence, using very precise context dependent modeling such 
as triphones during training may not be a good choice. The hybrid of interpolation and merging is 
applied on two acoustic models with different contexts to achieve an intermediate level between 
context independent and context dependent modeling.  
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5.3.2.1 Baseline Context Modeling 

Baseline speech recognition experiments were carried out for testing acoustic models created 
using different number of tied-states (triphones). The results for native French and non-native 
French speakers are shown in Table 5.10. In general, the average WER for Vietnamese and 
Chinese speakers is high, about twice the rate of native French speakers. The results from non-
native French speakers also show that speech recognition system performed better using acoustic 
model trained with a low number of tied-states. Vietnamese speakers who are more experienced 
in this case show a slight reduction in word error rate when there are a small number of tied-
states. On the other hand, Chinese speakers do not seem to benefit at all from context dependent 
modeling.  These results confirm our expectation that very precise context modeling does not 
improve and even degrades the performance of non-native speakers. On the opposite, context 
dependent model works well with the native French speakers, with a reduction of about twelve 
percent absolute word error rate by changing from context independent to context dependent with 
8129 states.  

Table 5.11 shows the results of training context independent model using varied amount of 
Gaussian mixture. Adding more Gaussian reduces the word error rate quite substantially for non-
native speakers, but the improvement for native French speakers was significantly less than the 
improvement gained from using context dependent model. This shows that adding more 
Gaussians seems to be more effective for improving the recognition of non-native speech than 
using very precise context dependent modeling. 

 
Table 5.10 WER of native (French) and non-natives (Vietnamese and Chinese) using CI and CD 

acoustic models at different number of tied-state, with 16 Gaussians per state 

State CI: 129 429 629 4129 8129 

French 36.9 30.0 27.9 23.9 24.1 

Vietnamese 60.6 59.7 59.6 66.5 70.2 

Chinese 58.5 63.8 67.5 78.0 83.0 
 

Table 5.11 WER of native (French) and non-natives (Vietnamese and Chinese) using CI acoustic 
models with different number of Gaussians mixture per state 

Gaussian 16 32 64 128 256 

French 36.9 34.0 32.7 31.4 32.2 

Vietnamese 60.6 57.4 56.4 55.8 54.9 

Chinese 58.5 56.6 56.1 55.6 56.0 
 

5.3.2.2 Hybrid of Acoustic Model Interpolation and Merging for Context Modeling 

Context dependent modeling as mentioned in previous section is not beneficial for non-native 
speakers with a strong accent in general. In this section, we attempt to create a model which is 
intermediate between a flat context independent model and a very precise triphone context 
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dependent model by using the hybrid approach of interpolation and merging.  For the 
experiments, a context independent (CI) model and an 8129 states context dependent (CD) model 
were used. Each contains 16 Gaussians per state.  

Recall that in the hybrid modeling, each CD Gaussian will be associated with one CI 
Gaussian, and subsequently interpolated with the given weight, while the CI Gaussian without 
any associated CD Gaussian will be merged instead. Table 5.12 shows WERs of non-native 
French speech recognition using acoustic models created by modeling the context across different 
CI and CD weights. Approximated divergence distance was used as the distance measurement. 
The interpolation-merging produced CD models with 8129 states, where each state has an 
average of 25 Gaussians (except for CI weight=0 and CI weight=1.0).  

We noticed that there was a slight decrease in WER when the CI weight is at 1.0, compared 
to the original CI result. Note that when CI weight is equal to 1.0, the algorithm produces a model 
with 8129 states, where all triphones are replaced by their respective monophones. The best 
WERs for native Vietnamese and Chinese speakers of French were achieved when CI weight was 
0.7. The WERs were 51.5% and 54.0% for Vietnamese and Chinese respectively. The results are 
even better than context independent modeling using 256 Gaussian mixtures. The results show 
that when appropriate weight is used, the hybrid method produces encouraging results. The 
weight to apply seems to correspond to the experience of the speaker in the language. The 
Vietnamese speakers who are more experienced show higher improvements in WER compared to 
the Chinese speakers. We also found that the WER of native French speakers only showed slight 
increase of 2% compared to the baseline CD model when the CI weight is equal to 0.5.  

The results from the experiments are very encouraging, since the approach is very easy to 
apply and produces a better result than context independent model with a lot of Gaussians. 
Furthermore, native French speakers only show a slight decrease in performance using our 
proposed modeling approach. 

 
Table 5.12 Interpolation-merging of a 16 Gaussian CI (129 States) and a CD (8129 States) model 

CI weight 1.0 0.9 0.7 0.5 0.3 0.1 0.0 

French 36.9 33.2 28.6 26.1 25.0 22.7 24.1 

Vietnamese 58.0 53.5 51.5 51.5 53.4 56.4 70.2 

Chinese 57.3 55.2 54.0 55.2 58.3 63.5 83.0 

CI weight at 1.0 denotes CI model, and CI weight at 0.0 denotes CD results 

 
 

Finally, it is also interesting to verify whether combining context and cross-lingual transfer 
modeling will produce an additive effect. We used the new French CD acoustic model created 
from our proposed hybrid approach of context modeling at CI weight equals to 0.5, followed by 
cross-lingual transfer adaptation using the corresponding L1 acoustic model of the non-native 
speakers. The results are presented in Table 5.13. When French weight equals to 0.5, the results 
showed an overall improvement in WER compared to the baseline presented in Table 5.12 from 
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60.6% to 44.1% for Vietnamese speakers and from 58.5% to 52.1% for Chinese speakers. On the 
other hand, the WER for native French speakers (not shown here) increased only about 3% with 
the non-native acoustic models, compared to the baseline CD acoustic model. 

 
Table 5.13 WER of non-native French using combination of context and cross-lingual modeling 

(using the 0.5/0.5 hybrid model of the previous table) 

French weight 1.0 0.9 0.7 0.5 0.3 0.1 

Vietnamese 51.5 49.1 46.6 44.1 45.0 45.9 

Chinese 55.2 54.4 52.5 52.1 53.0 53.0 

 

5.3.3 Conclusions from Non-Native Acoustic Modeling 
We have examined the proposed multilingual acoustic modeling approaches to adapt French 
acoustic model for non-native speakers without using any non-native French speech. Three types 
of speech were experimented for adaptation. For Vietnamese speakers, they were Vietnamese 
(L1), non-native English by Vietnamese (L2) and Mandarin (L3). On the other hand for Chinese 
speakers, the languages tested were Mandarin (L1), non-native English by Chinese (L2) and 
Vietnamese (L3). Among these three types of speech, the non-native speech can be more or 
equally effective as the native language of the speaker for adaptation, even though the language 
pronounced by non-native speakers is different from the target language of speech recognition 
system. Interestingly, with appropriate (smaller) weight to the source model, native Vietnamese 
speech seems to be useful for adapting non-native French speaker of Chinese origin and vice 
versa. This shows that native language close to the mother tongue of the speaker can be useful.  

Two approaches have been proposed for adapting the acoustic models for non-native 
speakers, depending on whether the resource available is in the form of acoustic model or corpus. 
The hybrid approach performs better than the baseline acoustic model interpolation and merging 
approach given the source L1 acoustic model. It has also shown to be beneficial for adaptation 
with L2 and L3 acoustic models. If L1, L2 or L3 corpus is available, our proposed manual 
interpolation approach performs nearly as effective as the hybrid approach, and at the same time 
maintains the number of Gaussians in each state the same as the initial target acoustic model. In 
addition, two speaker adaptation techniques have also been proposed for non-native speaker 
adaptation, they are weighted least square (WLS) and eigenvoices. In term of language resources, 
WLS has shown to be capable of taking advantage of L2 and L3 resources even though in small 
quantifies. However, eigenvoices approach does not seem to be able to work with L3 resources. 
Both WLS and eigenvoices when combined with MLLR have shown additional reduction in 
WER, producing more than 10% reduction in absolute WER. 

In term of context variation modeling, using context dependent modeling for inexperienced 
non-native speakers will end up producing more errors. On the other hand, increasing the number 
of Gaussian mixtures gives a better improvement in speech recognition accuracy. However, this 
means that the benefit of context dependent for native speakers have to be sacrificed. The hybrid 
approach proposed for multilingual acoustic modeling has proven to be also useful for modeling 
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between two different contexts to achieve an intermediate state, where the resulting model 
reduces the errors of non-native speakers and at the same time causes only a slight increase in the 
recognition errors for the native speakers. 
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5.4 Pronunciation Modeling 
This section examines the pronunciation modeling methods proposed in Chapter 3 for non-native 
speakers. In these experiments, we assume that some non-native speech is available for finding 
the pronunciation variants. Three pronunciation modeling approaches were tested. Two of the 
approaches are modifications of earlier works, where we attempt to use small amount of non-
native speech available for modeling pronunciation variants with pronunciation dictionary and n-
best list rescoring approach. We have also tested a new approach called latent pronunciation 
analysis for pronunciation habit clustering and non-native pronunciation adaptation. The non-
native French (NNF) and non-native English corpus (ISLE) are tested in all the approaches, 
except the latent pronunciation analysis, which is only tested with non-native English speakers, 
because there is no sufficient data in French for executing the test. 

 

5.4.1 Pronunciation Dictionary: Decision Tree 

This section presents the experiments carried out for testing pronunciation modeling using 
pronunciation dictionary in Section 3.2.1. The pronunciation variants are derived from decision 
trees, and then added into the pronunciation dictionary. Table 5.14 below shows the data used for 
testing and training the accent models for non-native French and English speakers. 

  
Table 5.14 Number of speakers involved in test and pronunciation modeling 

Corpus Description # Speaker 

Test 10 

Pronunciation modeling (Vietnamese) 3 NNF 

Pronunciation modeling (Chinese) 2 

Test 34 

Pronunciation modeling (German) 6 ISLE 

Pronunciation modeling (Italian) 6 
 

In the first pass, triphone confusion matrix was created by aligning the hypotheses and the 
references from the phoneme recognizer and the forced alignment system respectively. The 
threshold for the confusion matrix was set very low at 0.15, which created on average about 10 
variants per pronunciation. The variants were then added into a temporary dictionary. 

In the second pass, the dictionary created in the first pass was used for forced-alignment. 
The phoneme time stamps produced from the force alignment were aligned again with the 
corresponding references from the first pass. This creates triphone confusions which will be used 
to create phoneme decision trees. Wagon utility employing CART algorithm from the Festival 
speech synthesis system [Taylor 1998] was used to create the phonetic decision trees. Before the 
decision trees can be created, the left and right contexts of the phoneme confusions from the 
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second pass have to be converted to feature vectors. IPA based articulation features were used to 
represent the phoneme for classification, see Table 5.15.  

 

Table 5.15 Articulation feature vector (complete) used for building decision trees for four French 
phonemes 

Phoneme Ǥ ǡ~ t m 

vowel vowel vowel consonant consonant 

Tongue back front NA NA 

Opening open-mid open NA NA 

Lips rounded unrounded NA NA 

Duration normal normal NA NA 

Nasal non-nasal nasal NA NA 

Manner NA NA plosive nasal 

Place NA NA alveolar bilabial 

Voiced NA NA unvoiced unvoiced 

Aspirated NA NA unaspirated unaspirated 

 
 
The tests for non-native French and English speakers were carried out using context 

independent models with 16 Gaussians per state. Phoneme decision trees were subsequently 
created, and the threshold for the decision trees was set at 0.3, producing about one extra variant 
per pronunciation. Table 5.16 shows an excerpt of the non-native variants added into 
pronunciation dictionary. From the example variants, it is obvious that substitution, deletion and 
insertion have happened. Some of the pronunciation variants have been seen in previous chapter, 
for instance the deletion of final plosive by Vietnamese speakers, while others are new 
observations. As discussed in Chapter 1, the reasons for this may be caused by wrong perception, 
native pronunciation norm or simplification of the pronunciation that occur on non-native 
speakers.  

 
Table 5.16 Examples of non-native pronunciation variants (Vietnamese and Chinese) 

derived from decision trees. 

French Word French (standard) Vietnamese variant Chinese variant 

août u t u  - 

brochure b R Ǥ ȓ y R  - b R Ǥ ȓ i R 

désirez d ǫ z i R e  - d ǫ s i R e 

excusez ǫ k s k y z e ǫ s k y z e  - 

fixé f i k s e f i s e  - 

monnaie m Ǥ n ǫ m o n ǫ m ǡ~ n ǫ 
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Table 5.17 below shows the performance improvement of the speech recognition system 
after adding the pronunciation variants into the baseline dictionary and for testing. Context 
independent model with 16 Gaussians mixture was used in the tests. Non-native French speakers 
from Chinese and Vietnamese origin shows a reduction in WER of 1.3% and 1.8% respectively, 
while German and Italian speakers speaking English show a reduction of 2.6% and 4.6%.  

 
Table 5.17 The improvement in WER by modeling pronunciation variants using decision trees for 

non-native French and English speakers 

Non-native French Non-native English 
Approach 

Chinese Vietnamese German Italian 

Baseline 56.2 58.1 58.7 81.5 

Decision Tree 54.9 56.3 56.1 76.9 

 

Dependent T-tests were calculated to verify whether the improvement was significant 
(95% confidence). The t-values for Chinese and Vietnamese speakers (non-native French) are 
4.089 and 3.182 respectively, while the values for German and Italian speakers (non-native 
English) are 7.975 and 4.877 respectively. The results for non-native English speakers show that 
the reductions in WER are significant, but the results from non-native French speakers are not. 
This is due to the small sample of number of speakers that we used for testing non-native French 
speakers. The calculations for statistical significant are done for reference purpose, and the 
statistical insignificant of the non-native French results do not necessary indicate that the 
approach is flaws, or the difference is not important. 

 

5.4.2 N-Best List Rescoring 

In the n-best list rescoring approach, the pronunciation models are re-evaluated after decoding in 
the rescoring module. The same speakers used in the previous section were used for creating the 
triphone pronunciation model and also for testing (see Table 5.14). To create the triphone model, 
the triphone confusion is interpolated with the monophone confusion, using the weight 0.8 and 
0.2 respectively. The number of n-best sentences is set at 100. Table 5.18 below shows the 
improvement after rescoring. 

 
Table 5.18 The improvement in WER by modeling pronunciation variants using n-best rescoring 

for non-native French and English speakers 

Non-native French Non-native English 
Approach 

Chinese Vietnamese German Italian 

Baseline 56.2 58.1 58.7 81.5 

N-Best rescoring 55.5 56.8 56.9 79.6 
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The results show that n-best rescoring is able to reduce the error made. However, compared 
to the pronunciation dictionary results, n-best rescoring performance is slightly lower in all the 
tests. Furthermore, n-best list rescoring requires much more processing compared to the 
traditional dictionary approach. 

 

5.4.3 Latent Pronunciation Analysis 

In latent pronunciation analysis, pronunciation confusion supervectors are created to derive 
eigenvectors, which will be used for clustering speakers according to their pronunciation habits, 
and estimating the pronunciation model of an unknown speaker. 

In this test, only the non-native English corpus (ISLE) was evaluated, because there was no 
sufficient adaptation data to create French pronunciation models for testing. Eighteen non-native 
English speakers, each with about 15 minutes of transcribed speech from native German and 
Italian were selected as the training set to create the speaker dependent pronunciation confusion 
supervectors. For creating the ‘training’ supervectors, speaker dependent decision trees have to be 
grown. Wagon utility was again applied for this purpose. The next step is to create the 
supervectors. First, triphone contexts have to be extracted from the test dictionary to create the 
bare bones of the supervectors. In total, 1464 triphone contexts were extracted from the test 
pronunciation dictionary. Subsequently, the threshold for the decision trees was set at 0.5, 
pronunciation variants for the triphone contexts were extracted from the speaker dependent 
decision trees, and this creates supervectors with 4023 dimensions (features) each. This means 
that for each context, there were about 4 possible variants. With the 36 pronunciation confusion 
supervectors, a covariance matrix was calculated, and subsequently the eigenvectors were derived.  

First, we examined the approach in term of clustering the speakers according to 
pronunciation habits. We will look only at the effectiveness of first and second eigenvectors in 
clustering the speakers. This is done by plotting the eigenvalues for the 36 training speakers. The 
results in Figure 5.8 show that the two groups of non-native speakers can be indeed separated by 
using the first eigenvector. Without any knowledge about the accent of the speakers, one way is 
to manually divide the speakers to two groups using eigenvector 1, at the value zero. 
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Figure 5.8 Plotting 36 non-native English (18 German/ 18 Italian) speakers on eigenspace 
(dimension one and two) 

 
For pronunciation adaptation, ten principal components with the highest eigenvalues were 

used. The remaining ten speakers were tested. Two minutes of transcribed speech from each test 
speaker was used for estimating the test pronunciation confusion supervectors. Subsequently, the 
weights of the supervector on the eigenspace were estimated. The weights are then used for re-
estimating the test supervector by projecting using the eigenvectors. The threshold was set at 0.4 
and 0.3 to extract the pronunciation variants from the supervector and added into the 
pronunciation dictionary. Table 5.19 shows the results compared to the conventional 
pronunciation dictionary approach. Since only ten speakers were involved in the test, the baseline 
results in this experiment are different from the previous two tests. The results show that the 
latent pronunciation analysis approach is able to predict the pronunciation variants rather well 
with reduction in WER. However, the improvement is less compared to the general pronunciation 
dictionary (decision tree) approach. The benefit of this approach is that the accent of the speaker 
does not need to be known in advance for selecting the right dictionary. We have also carried out 
a simple comparison of the variants generated by randomly selecting the variants estimated for an 
Italian speaker, and compared them against the variants for other Italian and German speakers. 
The average difference (deletion and addition) between the number of variants for that Italian 
speaker and the other Italian speakers is 209, while the average difference between the variants 
for the Italian speaker and the German speakers is 411. This shows that the variants generated are 
speaker specific, and at the same time more related to the accent group of the speaker.  
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Table 5.19 Comparing the result of latent pronunciation analysis with the normal decision tree 
approach for modeling pronunciation variants 

Latent Pronunciation 
Adaptation 

Decision Tree 
Speaker 

Baseline  
(≈1k words) 

200 variants 400 variants 200 variants 400 variants 

Italian 75.5 72.6 72.2 73.0 71.2 

German 59.0 57.6 57.2 56.3 56.0 

 

5.4.4 Conclusions from Pronunciation Modeling 
We have examined three different approaches of pronunciation modeling. The use of decision 
trees remains the best way to model pronunciation variants. Adding variants created from 
decision trees into pronunciation dictionary reduce the WER more than the rescoring n-best list. 
Furthermore, the n-best list rescoring requires much more processing compared to the traditional 
dictionary approach. As for the latent pronunciation analysis, it has shown to be promising for 
clustering speakers using pronunciation habits. It is also shown to be beneficial for pronunciation 
adaptation given some speech. The method can be used in situation when we do not know in 
advance the accent of the speakers. If the accent of the speaker is known, it is better to use the 
accent specific pronunciation dictionary, since it produces better results.  
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5.5 Accent Identification 
In this section, accent identification using multilingual decision tree which has been proposed in 
Chapter 4 will be examined. Some baseline accent identification approaches mentioned in 
Chapter 1 were also tested by comparing them with the proposed approach. In all the experiments, 
non-native French from our NNF corpus and non-native English speakers from ISLE corpus were 
examined. 

 

5.5.1 Baseline Approaches 
Four baseline accent identification approaches described in Section 1.5.4 were tested. Two of the 
approaches employ acoustic features, and the other two use phonotactic features for accent 
identification. Table 5.20 shows the amount of non-native speech used to create and test the 
accent models. The NNF corpus contains about a thousand test sentences (Chinese and 
Vietnamese), while the ISLE corpus has about two thousand eight hundred sentences (German 
and Italian). 

 
Table 5.20 Number of speakers involved in test and accent modeling 

Corpus Description # Speaker 

Test 10 

Accent modeling (non-native French by Vietnamese) 3 NNF 

Accent modeling (non-native French by Chinese) 2 

Test 34 

Accent modeling (non-native English by German) 6 ISLE 

Accent modeling (non-native English by Italian) 6 

 

5.5.1.1 Baseline 1: Acoustic Features Score using HMM 

A text dependent accent identification approach based on the approach presented in Figure 1.18 
was tested. The accent models were created by adapting the target context independent acoustic 
models with 16 Gaussian mixtures by using non-native speech with MLLR and MAP. For testing 
the accent of an unknown speaker, it is carried out by forced aligning the speech of the non-native 
speaker, and comparing the acoustic scores generated by different accent models.  

The results for the experiment are presented in Table 5.21. Using non-native speech to adapt 
the target acoustic model gave encouraging results for identifying German and Italian accents. 
However, the approach did not do well for identifying accents from non-native French speakers. 
For non-native French test, to verify further whether the low correct identification rates are due to 
the unsuitable decision threshold used, we have added additional score to the Chinese accent 
model (which is equaled to changing the decision threshold). The results in Table 5.22 show that 
changing the decision threshold improves the Chinese accent identification, but at the same time 
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reduces the Vietnamese accent identification. This shows that changing the threshold score does 
not help. The possible reason for the failure in identifying non-native French accent is due to the 
small amount of adaptation speech, and the similarity between the two accents.  

 

Table 5.21 Accent identification using accented acoustic models 

HMM Model for PR 1 HMM Model for PR 2 Speaker Correct rate 

Vietnamese 53.14% French + Non-native French 
(Vietnamese) 

French + Non-native French 
(Chinese) Chinese 47.24% 

German 87.43% English + Non-native English 
(German) 

English + Non-native English 
(Italian) Italian 89.38% 

  

Table 5.22 Effect of changing the decision threshold in accent identification (acoustic features)  

Threshold score 1000 5000 10000 50000 100000 

Vietnamese 53.14% 52.94% 52.94% 51.72% 50.71% 

Chinese 47.24% 47.44% 47.65% 48.47% 50.10% 

 

5.5.1.2 Baseline 2: Acoustic Features Score using GMM 

A text independent accent identification approach based on Gaussian mixture model (GMM) for 
speaker recognition was also tested. The Alizé speaker recognition toolkit [Bonastre 2005] was 
used to create the accent models based on GMM. An accent independent model was initially 
created. It was then adapted to accented models with few iterations of MAP adaptation, by using 
the same amount of non-native speech as before. Table 5.23 below shows the accent 
identification results using 32 Gaussians mixture model. The results again show that recognizing 
English accent is relatively good, although slightly poorer that previous approach. Non-native 
French accent is still a problem for recognition. 

 
Table 5.23 Accent identification using Gaussian mixture models 

GMM 1 GMM 2 Speaker Correct rate 

Vietnamese 58.62% 
Non-native French (Vietnamese) Non-native French (Chinese) 

Chinese 45.43% 

German 74.78% 
Non-native English (German) Non-native English (Italian) 

Italian 73.31% 
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5.5.1.3 Baseline Method 3: Phonotactic Features Score using LM 

In this test, language models are used to capture non-native phonotactic features for accent 
identification. The approach has earlier been presented in Section 1.5.4.2 (see Figure 1.19). In 
general, the phoneme trigram models were created using the phoneme strings from the decoding 
of non-native speech. For a given utterance with an unknown accent, a target language phoneme 
recognizer decodes the utterance, and the accent model which gives the highest language model 
score according to equation 1.17 is selected as the hypothesized accent. For our test, the phoneme 
bigram weight was set at 0.7999, and the unigram at 0.2. The same conditions in term of test and 
adaptation material were used for testing as mentioned in the previous section, refer to Table 5.20. 
Table 5.24 shows the accent identification results. 

 
Table 5.24 Accent identification using phoneme language models 

LM 1 LM 2 Speaker Correct rate 

Vietnamese 78.09% Bigram: 
Vietnamese accent 

Bigram: Chinese 
accent Chinese 25.15% 

German 67.67% Bigram: German 
accent 

Bigram: Italian 
accent Italian 83.79% 

 

The results show that it identifies English accent quite well, but like the approach before, it 
also suffers from classification errors with non-native French accent from Chinese speakers. 
Again, to verify the accent from non-native French speakers, we have attempted to modify the 
decision threshold, and Table 5.25 shows the results. The results show that changing the decision 
threshold improves the identification of the accent of Chinese speakers, and at the same time 
deteriorate the identification of the accent of Vietnamese speakers. 

  
Table 5.25 Effect of changing the decision threshold in accent identification (language model) 

Threshold score 0 1.0 2.0 

Vietnamese 78.09% 60.74% 46.04% 

Chinese 25.15% 42.80% 57.81% 

 

5.5.1.4 Baseline 4: Phoneme Distribution Score using SVM  

In this section, phonotactic features are modeled using SVM, based on the approach described in 
Section 1.5.4.2 (see Figure 1.20). This is a text independent method. The accent models were 
built by using SVM classifier through supervised training using instances of multilingual 
phoneme distributions. Recall that each training utterance is decoded by parallel phoneme 
recognizers producing phoneme distributions of different languages, which will be merged to 
become the training instance.  
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In this test, five phoneme recognizers of French, English, Malay, Chinese and Vietnamese 
were employed. Their context independent acoustic models were created from BREF120, TIMIT, 
MSC, CADCC and VN corpora respectively (refer to Table 5.3 for information on the corpora). 
The phoneme recognizers produced phoneme distributions of five languages with a total of 202 
dimensions or phonemes distributions each. The same amount of non-native utterances like 
before was used for creating the accent models and for testing. Table 5.26 shows the accent 
identification results. This method is relatively better comparing to the previous phonotactic 
approach using LM score in term of identifying non-native English accent. However, like the 
previous two approaches, it also faces the same difficulty in discriminating non-native French 
accent from Vietnamese and Chinese speakers.  

 
Table 5.26 Accent identification using phoneme distribution features 

Speakers Correct rate Speaker Correct rate 

Vietnamese 70.00% German 70.19% 

Chinese 48.48% Italian 89.96% 

 

5.5.2 Proposed Approach: Multilingual Decision Trees 

This section will examine our proposed multilingual decision tree approach for accent 
identification. Note that the experiments were carried out in a text dependent mode which 
requires the knowledge of the transcription of the utterance spoken by the speaker during testing. 
No fundamental constraint would prevent us to test this method in a text independent (and 
unsupervised) mode using a first pass hypothesis of speech recognition system instead of the 
reference transcription. However, since we are working on non-native speech recognition, such a 
hypothesis may be seriously degraded compared to the reference. Testing the feasibility of this 
text independent mode is part of future work. As mentioned in Chapter 4, the accent models 
consist of multilingual decision trees, which are built by using the hypotheses from the 
multilingual phoneme recognizers and the references from the force alignment using target 
language speech recognition system. During accent identification, the speech from the non-native 
speakers is also decoded by the multilingual phoneme recognizer and the hypothesis is compared 
to a forced aligned reference. The triphone confusions are created and evaluated using the accent 
models in the form of multilingual decision trees. The accent model which gives the highest score 
will be selected as the hypothesized accent. 

In this test, the same multilingual phoneme recognizers (French, Mandarin, Vietnamese, 
English and Malay) employed in the previous test were also used here. The same decision trees 
utility as in the pronunciation dictionary experiments was used. The floor probability is set at 
0.005. The results in Table 5.27 show that most of the decision trees of different languages can be 
used to identify different accents equally well as the target language. By making use of all the 
decision trees during evaluation, it produces a better result compared to just using a target 
language decision trees, except for German speakers. Compared to the baseline, the method 
seems to work for non-native English and French, although the performance of German speakers 
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is less than the baseline approaches. The approach seems useful in situation when the training 
data is limited (case of non-native French). 

 
Table 5.27 Accent identification for non-native French and English speakers using decision trees 
(DT) of different languages 

Language in 
the DT 

Non-native 
French 

Correct 
rate 

Non-native 
English 

Correct 
rate 

Vietnamese 75.05% German 65.30% 
French 

Chinese 55.83% Italian 90.24% 

Vietnamese 69.78% German 54.74% 
Chinese 

Chinese 60.53% Italian 92.04% 

Vietnamese 67.95% German 58.41% 
Vietnamese 

Chinese 70.35% Italian 92.40% 

Vietnamese 72.81% German 75.93% 
English 

Chinese 54.40% Italian 88.81% 

Vietnamese 65.92% German 67.39% 
Malay 

Chinese 66.46% Italian 89.38% 

Vietnamese 83.16% German 68.46% 
Combine All 

Chinese 70.76% Italian 95.62% 

 

5.5.3 Conclusions from Accent Identification 
This section describes our preliminary experiments on accent identification, which is useful for 
non-native speech recognition. We have examined a multilingual decision trees approach for 
accent identification and compared it against some baseline approaches. This approach gives 
consistently good results even when only small amount of non-native speech is available to create 
the accent models. On the other hand, baseline approaches seems to work well when large amount 
of speech is available for creating the accent models (non-native English case), but not very 
satisfactory when small amount of training data is available (non-native French case). However, 
the baseline approaches presented here except the one using acoustic features have the added 
advantages of being text independent. The combination of these approaches may be useful to 
overcome the pros and cons of each other. 
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Conclusions 

Automatic speech recognition system has been increasingly applied in various fields. However, 
speech recognition systems still suffer from various difficulties in treating non-native speech. The 
accuracy of the systems in recognizing non-native speech is at least twice lower than native 
speakers. The high error rate is due to the difference in native and non-native speech 
characteristics. In general, non-native speakers commit development and transfer errors when 
they learn a new language. These two types of errors are obvious and occurr in different levels of 
language, namely phonology, pronunciation, vocabulary and grammars.  

The L2 phonology of non-native speakers may be different from native speaker. Mastering 
L2 speech sounds is not easy for language learners because of interference from the L1 of the 
speaker. A Speech Learning Model (SLM) has been proposed by Fledge for describing the 
process a non-native speaker goes through when he learns a new language. In term of prosody, 
there are also differences between non-native and native speakers. Even though the difference in 
prosody does not change the meaning of the utterance, it might influence the speech recognition 
performance. In term of pronunciation, the L1 pronunciation rules of the speaker may influence 
how the he pronounces L2 words. They may also simplify the pronunciation for complex 
syllables through insertion, deletion and substitution of speech sounds. They are also likely to use 
the wrong vocabulary. One reason is the negative transfer of L1 vocabulary to L2. Another is the 
wrongly association of meaning to L2 vocabulary. The grammars used by non-native speakers are 
also more general and common. In grammars, non-native speakers make more mistakes, and part 
of the mistakes is due to the influence from their L1 as well as unfamiliarity.  These differences in 
phonology, pronunciation, vocabulary and grammars in non-native speech cause mismatch in the 
acoustic, pronunciation and language model used in speech recognition system for treating the 
non-native speech. 

For studying non-native speech recognition, we have recorded a non-native French read 
speech corpus in the tourism domain. The corpus was uttered by Vietnamese and Chinese 
speakers. The highly accented speech has been evaluated using phonetic approach through 
perception and acoustic analysis, as well as through data-driven approach. The results show that 
both approaches show comparable results. However, data-driven approach is easier to conduct, 
and it is able to provide some additional insight into the data. The results show that cross-lingual 
transfer is evident in the non-native speech. These observations and also from other existing 
linguistic studies have shown that non-native speakers tend to transfer their native phoneme close 
to the target phoneme (according to IPA) to substitute the target language phoneme. This 
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generalized procedure can be useful for predicting the possible cross-lingual transfer by non-
native speakers. 

Existing non-native acoustic modeling approaches can generally be divided into acoustic 
model reconstruction, acoustic model interpolation, acoustic model merging and the general 
speaker adaptation approaches. These approaches either use small amount of non-native speech or 
the native language of the speaker for adaptation because of the difficulty to acquire large amount 
of non-native speech. We have proposed to use multilingual resources for adapting target acoustic 
model for non-native speakers. Three types of resources have been identified. There are the native 
language of the speaker (L1), any non-native language (L2), and languages close to the native 
language of the speakers (L3). Besides that, existing approaches do not address the problem of 
how the linguistic knowledge can be utilized for modeling cross-lingual transfer.  

We have proposed to use the generalized knowledge from IPA and existing linguistic study 
to determine the source phoneme transfer of non-native speakers. It can also be estimated using 
data-driven phoneme confusion approach. After matching the target and source phonemes, non-
native adaptation can be carried out. Depending on the type of multilingual resources available, 
different acoustic modeling approaches have been proposed. If multilingual acoustic models are 
available, the hybrid of acoustic model interpolation and merging has proven to be useful for 
modeling cross-lingual transfer. The idea is to interpolate the target and source Gaussian that are 
close, and merge them if they are far from each other. This is similar to the hypotheses of the 
Speech Learning Model (SLM), where language learners may use the L1 speech sounds, the 
target language speech sounds, or the intermediate speech sounds between L1 and target language 
depending on the experience of the speaker and the perceived difference between L1 and target 
language. The results from our proposed hybrid are better that the traditional interpolation or 
merging approaches.  

Moreover, in cases where multilingual corpora are available, we have proposed different 
interpolation approaches for adaptation. Three types of interpolation have been proposed to be 
used under different constraints. In situation when only multilingual corpora are available, a 
manual interpolation can be performed by predicting the a priori weight to be assigned. If the 
non-native speaker can provide some non-native speech, the interpolation weights can be 
estimated using weighted least square. We have also shown that the results from traditional 
eigenvoices approach can be improved by creating a bi-lingual space in the eigenspace for 
adapting non-native speakers. Interpolation in this case is carried out by using eigenvectors. 
Overall, among the three kinds of resources that have been proposed, L2 even though it is from a 
language different from the target language, can perform as good as L1 for adaptation. On the 
other hand, L3 can also improve the target acoustic model, although not as much as L1 and L2. 
Our proposed interpolation approaches are equal in performance of the hybrid approach, but the 
interpolation approaches produce models with less number of Gaussians mixture compared to 
hybrid approach. Weighted least square is able to estimate the interpolation weights rather 
accurately. The approach is slightly better than eigenvoices in non-native adaptation: it is easier to 
carry out; it is able to take advantage of limited resource, and L3 resources for adaptation. Overall, 
both approaches perform better than traditional MLLR given L1 resources. When these 



Conclusions and Future Works 

 131

approaches are combined with MLLR, it further reduces the error rate of speech recognition 
system for non-native speakers.  

Existing studies also do not address deeply the issue of context dependent modeling for non-
native speakers. We have suggested that the hybrid of interpolation and merging proposed for 
cross-lingual transfer to be applied also for modeling context variation. The results show that, by 
giving appropriate (intermediate) weight, the approach performs better than state tying or 
increasing the amount of Gaussians mixture per state. At the same time, the improvement is 
attained with only a slight reduction in error rate of native speech recognition system. 

Pronunciation modeling approaches can be divided based on the component where the 
pronunciation variants are modeled. The possible locations are pronunciation dictionary, acoustic 
model, language model, and rescoring module. Existing studies found that using only the native 
speech of the speaker for modeling pronunciation variants do not give a significant improvement. 
Hence, we have modified two approaches which model the variants in the pronunciation 
dictionary and the rescoring module, so that they work even with limited non-native speech. For 
the pronunciation dictionary approach, two passes were employed to find the pronunciation 
variants using decision trees. The purpose of using two passes is due to the low accuracy of the 
phoneme recognizer. By using two passes, the objective is to reduce those unlikely observations 
in the first pass. As for modeling pronunciation variants at the rescoring module, triphone 
confusion model has been used with phoneme recognizer to rescore n-best lists. Experiments 
carried out found that modeling pronunciation variants using pronunciation dictionary produce 
better results than modeling it at rescoring level. In addition, the rescoring approach requires 
more processing than the traditional dictionary approach. We have also proposed an original 
pronunciation clustering approach using eigenvectors. It is called latent pronunciation analysis, by 
analogy with latent semantic analysis. The eigenvectors are derived from supervectors which are 
created from speaker dependent pronunciation decision trees. The results have shown that the 
speakers can be separated based on their origin using the first eigenvector. Given some non-native 
speech, the approach can also be used for pronunciation adaptation. The results show that the 
pronunciation adaptation approach is able to predict the pronunciation habits quite well. However, 
when the accent of the speaker is known in advance, the results show that it is sufficient to use 
only the pronunciation dictionary approach. 

Accent identification techniques are generally based on acoustic or phonotactic features. 
Many accent identification approaches are available, but it is unknown how well these systems do 
in situation when non-native speech available to create the accent models is limited. Our 
experiments carried out showed that the baseline approaches using acoustic and phonotactics 
methods may fail to identify the non-native accents when non-native speech is limited, but when 
the amount of speech is sufficient and the accent of the speakers differ significantly, the 
approaches can perform quite well. We have proposed a new multilingual decision tree approach 
for accent identification. It is however a text dependent approach which requires the existence of 
the transcription of the utterance spoken. Decision trees are used because they have proven to be 
useful in generalizing the observation for example in pronunciation modeling and state tying. On 
the other hand, using multilingual models improve the result of language identification system. 
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The results show that the proposed approach identifies the accent of the speakers better than the 
baseline approaches examined, in situation where only limited amount of speech is available for 
training. 

 

Future works 

In this work, we have presented approaches for adapting acoustic and pronunciation model using 
multilingual resources. Three types of languages have proven to be beneficial for adapting the 
non-native speakers from our experiments. They are the native language of the speaker (L1), any 
non-native language spoken by the same native group (L2) and language close to the native 
language of the speaker (L3). In current work, we do not address the characteristics that 
determine the closeness of a language. An in dept analysis into this will certainly be useful, so 
that relevant L3 resources can be identified for non-native adaptation purpose. At the same time, 
it will also be interesting to know how well the languages from the same family, classified by 
linguists performed in adaptation. In addition, so far in the experiments, all the target language 
phonemes are mapped to only one source phoneme. Multiple source language resources are used 
to adapt the target language acoustic model by simply adapting it with one after another. In fact, 
this do not necessary have to be the case. The relevant phones from different source multilingual 
corpora can be used for adapting the target phone. A more intelligent approach which takes into 
consideration the type, the context and the amount of the speech in each corpus may give a 
further boost in improving to the target acoustic model. However, if some non-native speech is 
available, it can probably be used to select the best units from multilingual resources to adapt the 
target acoustic units, probably using existing distance measures such as HMM distance [Juang 
1985], Polyphone Decision Tree Specialization [Schultz 2000] and others proposed for 
multilingual acoustic modeling. This may produce an even better result if correctly executed. 

The hybrid approach of interpolation and merging is a promising method for modeling 
cross-lingual transfer and context using only acoustic models. Currently, we do not propose a way 
to estimate the weights given some non-native speech. If there are some non-native speech from 
the speaker, a simple solution which can be used is to carry out forced alignment with the pre-
adapted acoustic models (from hybrid approach), and measure the acoustic scores. The one that 
gives the highest score will be chosen for that speaker. However, it would be better to be able to 
estimate the weights instead, which is more flexible and may give a better result.  

Because of the difficulty in acquiring non-native speech, we have not addressed the problem 
of adapting the language model for non-native speakers. For testing language model adaptation, it 
is prerequisite to acquire spontaneous non-native speech which we do not posses. We learned in 
Chapter 1 that non-native speakers are likely to transfer their native vocabulary and grammar 
rules to the target language. It would be interesting to see whether it is possible to use the native 
language of the speaker to adapt the language model. Factored language models, which are an 
extension of the n-gram language models, may be useful for improving non-native language 
model. Part of speech or semantic class can be assigned to the words in the target and source 
languages. The source language grammar structure which is represented by part of speech with 
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trigram, and vocabulary which have similar graphemes to the target language can be transferred 
to the target language, for instance by interpolating the both the target and source language model.  

Code switching occurs more and more often among speakers nowadays. It is a phenomenon 
where speakers use more than one language or dialect in their speech. Normally, it happens when 
the persons involved know the languages or dialects used. In speech which contains code 
switching, it has been found that 84% are single word switch, 10% phrase switch and 6% clause 
(a group of words consisting of a subject and its predicate) switch [Skiba 1997]. Code switching 
is common when the speaker has difficulty to express himself using the target language. As a 
result, he has to temporary switch to another language to express the idea. For example, in the 
areas of science and technology, where the native language of the speaker may not be able to 
present clearly the idea, it is common to find speakers to switch to English. Code switching is 
becoming increasing popular in the conversation of the speakers with the introduction of 
international languages such as English because of its richness and possibly the higher social 
position associate with it. Code switching can also happen because of social reason, for example 
to associate to a particular group or identity. For instance, Singlish is a type of English spoken by 
Singaporean which is a mixture of English, Malay, Hokkien, Teochew and Cantonese. It is 
associated to the Singaporean identity. Finally, code switching can also happen when the speakers 
involved want to limit part of the conversation to a particular group of speakers.  

Code switching has increased the challenges in the speech recognition area. A typical 
language identification system will have difficulty because the period the switching occurred is 
not known and the duration is very short, since it may involve only one word. Hence, combining 
the speech recognition systems of different languages with a language identification system for 
treating code switching may not be effective. Another possibility is to treat code switching as a 
single system. This means that the existing target models have to be adapted to recognizing 
acoustic units, vocabulary and possibly grammar from other languages. In term of acoustic 
modeling, the interesting question concerns the modeling of different acoustic units. Our 
proposed non-native acoustic modeling approaches proposed here may be useful. The advantage 
is that the same acoustic units can serve for similar phonemes in different languages. For the 
pronunciation dictionary, this means that the languages that shares the same phoneme set can 
employ the same acoustic unit from the acoustic model. However, for the new phoneme in other 
languages, they may have to be adapted and added to the target acoustic model.  Code switching 
also means that foreign words from languages involved have to be added to the pronunciation 
dictionary and take into consideration in the language model. If all the words in the language 
involved are added to the target language, this will create an exponential increase in the possible 
words. This will reduce the accuracy of speech recognition system. However, not all words and 
word combinations are possible. An in dept study into the habits of the speaker in code switching 
will be necessary. In term of language model, interesting question is how to adapt the target 
language model to take into consideration the possibility of code switching, since it is normally 
observable in conversation but not in writing. Code switching is not a random process and it 
follows certain ‘rules’ or constraints. According to [Skiba 1997], there are two constraints which 
restrict the speaker from switching between languages. First, the free morpheme constraint which 
states that the speaker only switches to words from other language that has a certain similar form 
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to the target language. Second, the equivalence constraint which indicates that switching is only 
possible if it does not violate the grammars of either language. It would be interesting to see how 
these kinds of linguistic rules can be combined with statistical n-gram language models. Code 
switching therefore is a new territory that is interesting and worth studying on. 

Confidence scoring is another interesting area which may be applied to non-native speech 
recognition. The aim of confidence scoring is to estimate the quality of the decoding of the 
utterance. Hence, it has a great potential to be used in non-native speech recognition. Firstly, in 
the field of computer-assisted language learning (CALL), the score can give language learners an 
idea about their pronunciations. The existing confidence scoring algorithm may need to be 
modified to allow it to analyze and compare the pronunciation of non-native speaker at different 
levels for example phoneme, syllable, word and sentences, to help them know the types of error 
they often commit. Second, confidence scoring can be combined with non-native speech 
recognition to evaluate the decoding, so that for those decoding under the threshold, some 
additional processing can be carried out on it, for example by going through another pass of 
decoding, or the speaker can be asked to repeat what he said. This would improve the efficiency 
of the speech recognition system. 
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Figure A1 Intelligibility test screen: welcome screen 

 

 

 

Figure A2 Intelligibility test screen: listening screen
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Figure A3 Human vocal tract 

 



 

 

 

Résumé étendu en français 

 
 

Contexte et résumé des contributions 

Dans un monde de plus en plus globalisé, la capacité à communiquer en plusieurs langues donne 
beaucoup d’avantages aux locuteurs. Par ailleurs, le besoin d’apprentissage d’une nouvelle langue 
est rendu nécessaire par les migrations qui sont de plus en plus communes en particulier pour des 
raisons économiques. Aux États-Unis par exemple, 37,5 millions de personnes, soit près d’une 
personne sur cinq, était d’origine étrangère en 2006 [Ohlemacher 2007]. Parallèlement à cela, 
l’activité touristique génère aussi d’importants mouvements de personnes : en France par exemple, 
78 millions de touristes ont visités le pays en 2006 [LExpansion 2007]. 

Ces « locuteurs étrangers » (touristes, migrants) sont de plus en plus confrontés à 
l’utilisation de services vocaux interactifs, certains intégrant la reconnaissance vocale. Alors que 
la reconnaissance automatique de la parole atteint désormais des performances souvent 
satisfaisantes pour les locuteurs natifs, la performance de reconnaissance sur les locuteurs non 
natifs reste encore insuffisante. Ce problème est un frein au développement des services vocaux. 

Cette thèse aborde les problèmes qui concernent la reconnaissance automatique de la parole 
pour des locuteurs non natifs. Des études montrent que la performance des systèmes de 
reconnaissance vocale est au moins deux fois plus faible pour des locuteurs non natifs. La parole 
des locuteurs non natifs a des caractéristiques différentes. Pour les apprenants d’une langue, c’est 
un défi de prononcer les nouveaux phonèmes qui n’existent pas dans leur langue maternelle. Ils 
ont donc tendance à emprunter les sons de leur langue maternelle. D’autre part, même pour les 
phonèmes similaires qui existent à la fois dans la langue cible et la langue maternelle du locuteur, 
les locuteurs non natifs peuvent avoir des difficultés à changer certaines habitudes d’articulation 
spécifiques à leur langue maternelle. 

La reconnaissance automatique de la parole, dans le cadre de l’approche statistique, utilise 
trois modèles principaux, à savoir le modèle acoustique, le modèle de prononciation et le modèle 
de langage. Ces modèles sont créés en utilisant les approches fondées sur les données avec les 
données des locuteurs natifs uniquement dans la plupart des cas. En conséquence, il y a des 
disparités entre la parole non native et les modèles utilisés ce qui réduit le taux de reconnaissance 
par rapport à la parole native. L’obtention de parole non native pour une langue cible donnée (afin 
de créer un modèle acoustique qui modélise la parole non native) peut par ailleurs être longue et 
parfois irréalisable. 
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Dans cette thèse, nous nous sommes intéressés aux méthodes de modélisation non native qui 
peuvent être employées sous différentes contraintes de ressources. Nous proposons d’utiliser des 
ressources multilingues pour surmonter la difficulté d’obtenir la parole non native. Au cas où des 
phrases en parole non native sont disponibles, celles-ci peuvent également être exploitées. 

La modélisation acoustique et la modélisation de prononciation pour la parole non native 
sont étudiées dans cette thèse. Sur le thème de la modélisation acoustique, nous examinons 
l’utilisation de ressources multilingues pour adapter le modèle acoustique de la langue cible. Les 
locuteurs non natifs réalisent parfois un transfert entre les unités phonétiques de leur langue 
maternelle et celles de la langue cible quand ils apprennent une nouvelle langue. En utilisant les 
ressources multilingues et cette information de transfert, nous pouvons représenter l’espace de la 
parole non native dans un espace acoustique multilingue (voir la Figure Ra). Selon le type de 
ressources multilingues (modèles acoustiques ou corpus) disponibles, différentes techniques sont 
proposées.  

Concernant la modélisation de prononciation, nous revisitons deux approches 
conventionnelles de modélisation de prononciation. Ces approches sont modifiées pour être 
utilisées même en situation où peu de parole non native est disponible. Nous proposons également 
une technique originale de regroupement des locuteurs suivant leurs habitudes de prononciation. 
Cette approche peut être aussi utilisée pour l’adaptation du dictionnaire de prononciation. Un 
ensemble de locuteurs non natifs est représenté dans un « espace de prononciation » de faible 
dimension.  Pour un locuteur inconnu, les variantes de prononciation de ce locuteur peuvent être 
estimées à partir de sa position dans l’espace de prononciation, estimée à partir de quelques 
phrases de ce locuteur. 

 

 

Figure R. Modélisation acoustique non native et modélisation d’accent en utilisant des ressources 
multilingues. a) Utilisation de l’espace de la langue cible et de la langue X (par exemple langue 
maternelle du locuteur) pour estimer l’espace de la parole non native en langue cible prononcée 
par un locuteur d’origine X. b) Utilisation du modèle de la langue X et quelques phrases non 
natives pour créer le modèle d’accent δx, qui servira de référence pour positionner le locuteur X’ 
inconnu lors du test (=> modèle d’accent δx’). 

 

Espace de la language 
X 
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En plus de la modélisation acoustique et de prononciation, une étude préliminaire sur 
l’identification automatique d’accents est également proposée, à partir de ressources multilingues. 
Les ressources multilingues se sont révélées utiles pour l’amélioration des systèmes 
d’identification de la langue. Notre système d’identification d’accent utilise lui aussi des 
paramètres phonotactiques. Les ressources multilingues sont utilisées pour capturer la structure et 
le degré de changement avec la parole non native (voir la Figure Rb). Cette approche préliminaire 
donne des résultats encourageants lorsque peu de parole est disponible. 

 

Organisation du mémoire 

Ce mémoire débute par une brève introduction sur l’architecture et les composants d’un système 
de reconnaissance automatique de la parole. Une présentation sur le sujet de l’acquisition de la 
langue maternelle et de la langue seconde est ensuite donnée. Ces deux points nous permettent de 
comprendre les mauvaises performances des systèmes de reconnaissance vocale pour les 
locuteurs non natifs par rapport aux locuteurs natifs. La fin du chapitre est consacrée à l’état de 
l’art des approches  dans le domaine de la reconnaissance automatique de la parole non native. 
Les techniques de modélisation acoustique, de prononciation et de langage pour la parole non 
native sont présentées, ainsi que les rares systèmes d’identification d’accent existant. 

Le chapitre 2 présente nos propositions pour la modélisation acoustique non native en 
utilisant les ressources multilingues. En général, deux approches différentes sont proposées selon 
le type de ressources multilingues qui sont disponibles. Si les modèles acoustiques multilingues 
sont disponibles, l’approche hybride d’interpolation et de fusion peut être appliquée pour adapter 
le modèle cible. Par contre si les corpus multilingues sont à notre disposition, les approches par 
interpolation peuvent être utilisées. L’une des approches d’interpolation présentée peut être 
employée sans avoir du tout de parole non native. 

Le chapitre 3 concerne nos travaux sur la modélisation de prononciation. Les approches de 
modélisation de prononciation conventionnelles comme l’approche par modification du 
dictionnaire de prononciation (en utilisant des arbres de décision) ou re-ordonnément de listes des 
n-best en utilisant un score de prononciation, sont revisitées. Nous proposons en plus une 
approche originale pour le regroupement de locuteurs que nous appelons « analyse de 
prononciation latente », par analogie avec l’analyse sémantique latente. Cette approche est 
utilisée pour l’adaptation du dictionnaire de prononciation. Après les travaux en modélisation de 
prononciation, nous présentons nos travaux préliminaires dans le domaine de l’identification 
d’accent. Nous décrivons une approche phonotactique qui utilise les ressources multilingues pour 
la création des modèles d’accent sous la forme d’arbres de décision. 

Afin d’évaluer les approches proposés dans les chapitres précédents, nous décrivons, dans le 
chapitre 4, un corpus français non natif que nous avons enregistré. Avant d’utiliser ce corpus pour 
les tests, nous l’avons évalué en effectuant des tests de perception et une analyse acoustique. 

Dans le chapitre 5, nos expériences sont présentées pour la modélisation acoustique, la 
modélisation de prononciation et le système préliminaire d’identification d’accent. Nous 
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définissons les conditions d’expérimentation : le moteur de reconnaissance automatique de la 
parole, les corpus multilingues d’apprentissage, le dictionnaire de prononciation et le modèle de 
langage utilisé. Les tests sont réalisés sur notre corpus de parole non native en français, mais des 
tests supplémentaires sont effectués sur de la parole anglaise non native.  Nous concluons ce 
mémoire par une discussion de nos travaux et de leurs résultats et par une présentation des 
perspectives. 

 

Principaux résultats et conclusions 

 

Corpus de parole non native en français 

Un corpus français non natif dans le domaine de tourisme a été acquis. Nous avons enregistré des 
phrases lues par des locuteurs vietnamiens et chinois. L’analyse du corpus (par des méthodes 
d’analyses automatiques ou manuelles) montre que le transfert des unités phonétiques de la 
langue maternelle à la langue seconde est évident pour les locuteurs non natifs. Ces observations 
et aussi les résultats d’autres études linguistiques montrent que les locuteurs non natifs ont 
tendance à transférer le phonème de leur langue maternelle (L1) qui est le plus proche du 
phonème cible (selon le tableau API). Cette information est utile pour la modélisation acoustique 
non native. 

 

Modélisation acoustique multilingue pour la reconnaissance automatique de la parole non native 

Les approches de modélisation acoustique non native peuvent généralement être groupées en 
quatre catégories : la reconstruction de modèles acoustiques, l’interpolation de modèles 
acoustiques, la fusion de modèles acoustiques et les techniques d’adaptation au locuteur. Ces 
approches utilisent soit la langue maternelle du locuteur, soit une petite quantité de parole non 
native pour adapter le modèle acoustique cible. Nous avons utilisé, dans nos travaux, des 
ressources multilingues pour adapter le modèle acoustique cible. Trois types de ressources ont été 
examinées : des données correspondant à la langue maternelle du locuteur (L1), des données de 
parole non native, mais dans une langue différente de la langue cible (L2), et des données 
correspondant à une langue proche de la langue maternelle du locuteur (L3).  

Nous avons comparé deux différentes approches pour obtenir le transfert de phonèmes entre 
langues source et cible (méthodes fondées sur les connaissances, et méthodes automatiques 
utilisant un décodeur acoustico-phonétique). Ces méthodes se sont révélées équivalentes pour 
obtenir le transfert de phonèmes source / cible. Une fois que le phonème correspondant en langue 
source pour chaque phonème de la langue cible est déterminé, l’adaptation du modèle acoustique 
standard en langue cible peut être effectuée. Selon le type de ressources multilingues disponibles, 
différentes techniques de modélisation acoustique ont été proposées. Si les modèles acoustiques 
multilingues sont disponibles, une approche hybride d’interpolation et de fusion s’est révélée utile 
pour la modélisation acoustique non native. L’idée principale consiste à interpoler les 
distributions Gaussiennes cible et source qui sont proches, et à les fusionner si elles sont 
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éloignées les unes des autres. Le concept est similaire par rapport aux hypothèses sur la parole 
non native de Fledge, qui spécifient que les locuteurs non natifs peuvent utiliser les sons de leur 
langue maternelle, les sons en langue cible, ou les sons intermédiaires entre la langue maternelle 
et la langue cible, en fonction de leur expérience. Nos résultats montrent que l’approche hybride 
proposée est plus performante que l’approche conventionnelle d’interpolation ou de fusion. 

Nous évaluons également quelques approches d’interpolation pour profiter de données 
multilingues pour adapter le modèle acoustique cible. Trois types d’approche d’interpolation ont 
été proposés pour l’adaptation de modèle acoustique sous différentes contraintes. Au cas où 
seulement les corpus multilingues sont disponibles, une interpolation manuelle peut être effectuée 
par la prévision du poids a priori à attribuer. Avec quelques phrases non natives du locuteur, les 
poids d’interpolation peuvent être estimés avec la formule des moindres carrés pondérés. Enfin, 
nous montrons que les résultats de l’approche par eigenvoices pour les locuteurs non natifs 
peuvent être améliorés par la création d’un espace d’adaptation propre bi-lingue (langue source + 
langue cible). L’interpolation dans ce cas est réalisée en utilisant des vecteurs propres. Nos 
résultats montrent que parmi les trois types de ressources que nous avons proposées, la ressource 
L2 même si elle est d’une langue différente de la langue cible, est utile pour l’adaptation des 
modèles acoustiques à la parole non native, et comparable à ressource L1. La ressource L3 
d’autre part peut améliorer le modèle acoustique cible, mais pas aussi bien que les ressources L1 
et L2. Les approches d’interpolation proposées sont comparables en performance à l’approche 
hybride, mais les approches par interpolation conduisent à des modèles de moindre complexité 
(moins de distributions gaussiennes). En général, les deux approches sont meilleures que 
l’approche conventionnelle d’adaptation au locuteur type MLLR (testée en mode supervisé). 
Lorsque ces approches sont combinées avec MLLR, le taux d’erreur est encore amélioré. 

Les études existantes n’abordent pas en profondeur la question qui concerne la modélisation 
du contexte phonétique pour les locuteurs non natifs. L’approche hybride d’interpolation et de 
fusion que nous avons proposée précédemment peut être appliquée aussi pour la modélisation de 
contexte (interpolation/fusion entre  le modèle indépendant du contexte et le modèle dépendant du 
contexte). Les résultats montrent que, en accordant un poids moyen, l’approche donne un 
meilleur résultat par rapport à la mise en commun des états (state-tying) ou à l’augmentation du 
nombre de distributions gaussiennes par état. En plus, l’amélioration des taux erreur des locuteurs 
non natifs est obtenue avec seulement une légère réduction des taux d’erreur pour les locuteurs 
natifs. 

 

Modélisation de la prononciation et reconnaissance d’accents 

Les approches de modélisation de prononciation peuvent être divisées en fonction du composant 
du système où les variantes de prononciation sont modélisées. Les composants possibles sont le 
dictionnaire de prononciation, le modèle acoustique, le modèle de langage, et le module de re-
ordonnément de liste n-best (n-best rescoring). Les études existantes montrent que l’utilisation 
seulement de parole en langue maternelle pour la modélisation des variantes dans le dictionnaire 
de prononciation ne produit pas une amélioration significative. Par conséquent, nous avons 
examiné et modifié deux approches qui modélisent les variantes dans le dictionnaire de 
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prononciation et le module de réévaluation, pour qu’elles puissent traiter de la parole non native 
en faible quantité. Nos expériences montrent que la modélisation des variantes dans le 
dictionnaire de prononciation (l’approche par arbres de décision) produit des meilleurs résultats 
que la modélisation effectuée dans le module de réévaluation. En outre, l’approche de 
réévaluation des n-best nécessite plus de traitement que l’approche conventionnelle avec le 
dictionnaire de prononciation. Nous proposons également une approche de regroupement des 
locuteurs selon leurs habitudes de prononciation. Nous nommons cette approche « analyse de 
prononciation latente », par analogie avec l’analyse sémantique latente. Les vecteurs propres sont 
dérivés de supervecteurs créés à partir d’arbres de décision qui modélisent la prononciation de 
chaque locuteur. Nos résultats montrent que les locuteurs non natifs peuvent être regroupés en 
fonction de leur origine en utilisant cette analyse latente. La même approche peut également être 
utilisée pour l’adaptation de prononciation étant données quelques phrases non natives. Les 
résultats montrent que l’analyse de prononciation latente est capable de prédire des variantes de 
prononciation lorsque  l’accent du locuteur n’est pas connu à l’avance. 

Nous proposons aussi dans cette thèse une technique originale qui utilise les arbres 
multilingues de décision pour identifier l’accent du locuteur. C’est cependant une approche 
dépendante du texte qui nécessite la transcription du signal de parole servant à identifier l’accent. 
L’approche proposée utilise des ressources multilingues pour créer les modèles d’accent sous la 
forme d’arbres de décision qui ont montré leur potentiel pour généraliser les observations par 
exemple dans la modélisation de prononciation. Les résultats montrent que l’approche proposée 
est plus efficace par rapport aux approches   « état de l’art » dans le cas où la quantité de parole 
non native disponible pour l’entraînement est limitée. 

 

Quelques perspectives 

Nous avons proposé d’utiliser des ressources multilingues pour la modélisation acoustique non 
native. Nos expériences montrent que trois types de données de parole sont utiles pour adapter le 
modèle non natif. Ce sont les données correspondant à la langue maternelle du locuteur (L1), des 
données de parole non native prononcées par des locuteurs de même origine, mais dans des 
langues différentes de la langue cible (L2), et des données correspondant à une langue proche de 
la langue maternelle du locuteur (L3). Dans ce manuscrit, nous n’étudions pas les caractéristiques 
qui déterminent la proximité des langues. Une analyse approfondie dans ce sujet sera 
certainement utile pour trouver davantage de ressources multilingues utiles pour la modélisation 
non native. De plus, l’adaptation acoustique multilingue est faite en trouvant pour chaque 
phonème de la langue cible avec un phonème correspondant de la langue source. En fait, les 
ressources multilingues peuvent être employées d’une différente manière qui est plus intelligente 
pour créer des modèles non natifs plus performants. De multiples phones de différents corpus 
multilingues peuvent être utilisés pour adapter un phone d’une langue cible. Une approche qui 
prend en considération le type, le contexte et la quantité de la parole dans chaque corpus source 
pourrait certainement améliorer davantage le modèle acoustique pour les locuteurs non natifs. Si 
quelques phrases non natives sont disponibles, elles peuvent probablement être utilisées pour 
sélectionner les meilleures phones des ressources multilingues pour l’adaptation, en utilisant des 
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mesures de distance par exemple la distance de HMM [Juang 1985], l’approche PDTS (Polyphone 

Decision Tree Specialization) [Schultz 2000] et d’autres qui sont proposées pour la modélisation 
acoustique multilingue.  

L’approche hybride d’interpolation et de fusion est une méthode prometteuse pour 
modéliser le transfert translingue et le contexte pour des locuteurs non natifs. La performance de 
l’approche dépend du  poids à priori qui est assigné. Nous n’avons pas proposé une méthode 
automatique pour estimer le poids de modélisation hybride. Une solution simple qui peut être 
appliquée si nous avions quelques phrases du locuteur, est de faire des alignements forcés avec 
les modèles acoustiques pré-adaptés (de l’approche hybride), et de mesurer le score acoustique. 
Le modèle qui donne le score le plus élevé sera choisi. Toutefois, une méthode plus souple qui 
peut estimer automatiquement les poids serait préférable. 

En raison de la difficulté à acquérir la parole non native spontanée, nous n’abordons pas le 
sujet de l’adaptation du modèle de langage. Les études montrent que les locuteurs non natifs sont 
susceptibles de transférer leur vocabulaire et leur grammaire native à la langue cible. Il serait 
intéressant de voir s’il est possible d’utiliser la langue maternelle du locuteur pour adapter le 
modèle de langage. Les modèles de langage factorisés (Factored language models), qui sont une 
extension des modèles de langage n-gramme classiques, pourraient être utiles pour cela. La classe 
lexique ou sémantique peut être attribuée aux mots dans la langue cible et source. Les trigrammes 
de classe lexique qui représentent les règles de grammaire, et les vocabulaires de langue 
maternelle du locuteur qui ont les graphèmes similaires par rapport aux vocabulaires de la langue 
cible pourraient être transférés à la langue cible, par exemple en interpolant les modèles de 
langage cible et source. 

L’alternance codique (code switching) est de plus en plus courante parmi les locuteurs de 
nos jours. Il s’agit d’une alternance de deux ou plusieurs langues ou dialectes dans une même 
conversation. Généralement, les personnes impliquées connaissent les langues ou dialectes 
utilisés. Dans des discours qui concernent l’alternance codique, les études montrent que 84% des 
cas impliquent l’alternant d’un seul mot, 10% alternant d’une phrase, et 6% alternant d’une 
proposition (clause) [Skiba 1997]. L’alternance codique est utilisée comme une stratégie par les 
locuteurs pour surmonter la difficulté à exprimer une idée en langue courante. En conséquence, il 
doit passer temporairement à une autre langue. Par exemple, dans le domaine de la science et de 
la technologie, les locuteurs peuvent avoir la difficulté à présenter clairement les termes ou les 
idées en langue maternelle, donc ils peuvent passer à l’anglais pour l’exprimer. L’alternance 
codique peut également se produire pour des raisons sociales, par exemple pour s’identifier 
comme appartenant à un groupe particulier. Par exemple, l’anglais singapourien (Singlish, 
dialecte anglais parlé à Singapour) est un mélange d’anglais, de malais, de minnan, de teochew et 
de cantonais. Il est associé à l’identité des Singapouriens. Enfin, l’alternance codique peut 
également se produire lorsque les locuteurs impliqués veulent limiter une partie de la 
conversation à un groupe particulier. L’alternance codique est une difficulté supplémentaire pour 
les systèmes de reconnaissance automatique de la parole. Un système d’identification de la langue 
typique aura la difficulté parce que la période de changement n’est pas connue et la durée 
d’alternance est très courte puisqu’elle peut concerner seulement un mot. Par conséquent, la 



Résumé étendu en français 

 144

combinaison de systèmes de reconnaissance vocale en plusieurs langues, avec un système 
d’identification de la langue pour traiter l’alternance codique n’est pas une bonne solution. Une 
autre possibilité consiste à traiter l’alternance codique comme un système indépendant. Cela 
signifie que les modèles cibles contiennent les unités acoustiques, les vocabulaires et la 
grammaire pour toutes les langues impliquées. En terme de modélisation acoustique, la question 
intéressante est ce qui concerne la modélisation des différentes unités acoustiques. Nos approches 
proposées pour la modélisation acoustique peuvent être utiles. Les phonèmes similaires de 
différentes langues sont modélisés une fois seulement dans un modèle acoustique. Toutefois, les 
nouveaux phonèmes qui n’existent pas dans la langue cible doivent être adaptés et ajoutés. Les 
mots des langues impliqués doivent être ajoutés au dictionnaire de prononciation et pris en 
compte dans le modèle de langage cible. Une étude approfondie des habitudes du locuteur à 
propos de l’alternance codique peut être également nécessaire. En terme de modèle de langage, il 
est difficile d’adapter le modèle de langage cible puisque l’alternance codique est  observable 
seulement en conversation, mais pas dans les textes écrits. L’alternance codique n’est pas un 
processus aléatoire et elle suit certaines règles ou contraintes. Deux contraintes limitent 
l’alternance chez les locuteurs [Skiba 1997]. Premièrement, les contraintes articulatoires 
impliquent que le locuteur alterne avec les mots de la langue qui ont une certaine forme similaire 
à la langue cible. Deuxièmement, une autre contrainte indique que l’alternance codique n’est 
possible que si elle ne viole pas les grammaires des deux langues. Il serait intéressant de savoir 
comment ces règles linguistiques peuvent être combinées avec les modèles de langage n-gramme. 
L’alternance codique est donc un nouveau territoire qui est intéressant et mériterait d’être étudié. 

La mesure de confiance pour la parole non native est aussi un sujet intéressant. L’objectif de 
la mesure de confiance est d’évaluer la qualité du décodage. Dans le domaine de l’apprentissage 
des langues assistées, la mesure donne aux apprenants une idée de la qualité de leur prononciation. 
La plupart des techniques existantes sont construites pour analyser la parole native. Des tests 
doivent être effectués pour savoir si ces approches peuvent être utilisés pour la parole non native. 
Le système doit être capable d’analyser et de comparer la prononciation des locuteurs non natifs à 
différents niveaux, par exemple les phonèmes, les syllabes, les mots et les phrases, pour les aider 
à connaître les types d’erreurs qu’ils font souvent. En plus, la mesure de confiance peut être 
intégré dans des systèmes de reconnaissance automatique de la parole non native. Pour les 
décodages en dessous du seuil de mesure, un traitement supplémentaire peut être effectué, ou le 
locuteur peut répéter ce qu’il a dit. Cela permettrait d’améliorer la performance du système de 
reconnaissance de parole non native. 
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