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● Introduction
Structured LDPC codes
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Conclusion

■ Context
■ LDPC codes
■ Decoding LDPC codes
■ Encoding LDPC codes
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Motivations

Digital communications
High data rates

• Base assumption is now Hundreds of Mbit/s
• 1-10 Gbit/s in the future?

Low complexity implementation 
• Small component size
• Low power consumption
• Low cost

Physical layer
Forward Error Correction Scheme

• Close to the theoretical limit

● Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

▪ Context
LDPC codes
Decoding LDPC codes
Encoding LDPC codes
Codes construction
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Definitions

LDPC codes
Low Density Parity Check codes
Parity check constraints, M parity equations and N bits

Modeling
Matrix representation

Graphical definition
• Bipartite graph (Tanner graph)

Variable node (VN)

Hidden variable node (HVN)

Check node (CN)

Context

▪ LDPC codes
Decoding LDPC codes
Encoding LDPC codes
Codes construction

● Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion
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Decoding algorithm

Belief Propagation (BP) Algorithm
Graph based algorithm
Computation of messages which are propagated along the edges

• Exchange of extrinsic information

Optimal decoding
• No cycle into the code graph

Context
LDPC codes

▪ Decoding LDPC codes
Encoding LDPC codes
Codes construction

● Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion
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Problematic of encoding

Encoding LDPC codes
Unconstraint parity check matrices

• Encoding through the generator matrices G

Context
LDPC codes
Decoding LDPC codes

▪ Encoding LDPC codes
Codes construction

● Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion
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Problematic of encoding

Encoding LDPC codes
Unconstraint parity check matrices

• Encoding through the generator matrices G

Constraint parity check matrices
• Quasi-cyclic codes

• Upper/Lower triangular matrices
– Unconstraint
– Strictly or not dual-diagonal structure

Simple encoding in a 
linear time

● Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Context
LDPC codes
Decoding LDPC codes

▪ Encoding LDPC codes
Codes construction
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Design of LDPC codes

Objective:
Define the position of all the non null elements into the parity check 
matrix

• Degree distribution optimization (EXIT Chart, Density Evolution)

Context
LDPC codes
Decoding LDPC codes
Encoding LDPC codes

▪ Codes construction
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Design of LDPC codes

Objective:
Define the position of all the non null elements into the parity check 
matrix

• Degree distribution optimization (EXIT Chart, Density Evolution)

Unconstraint construction
Pseudo random construction
Progressive Edge-Growth (PEG) algorithm [Hu01]
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Design of LDPC codes

Objective:
Define the position of all the non null elements into the parity check 
matrix

• Degree distribution optimization (EXIT Chart, Density Evolution)

Unconstraint construction
Pseudo random construction
Progressive Edge-Growth (PEG) algorithm 

Structured LDPC codes
Dual-diagonal structure (RA and IRA codes)
Protograph based codes

• Quasi-Cyclic codes

Etc..
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Problematic

How to define an efficient coding system using LDPC 
codes?

Structured LDPC codes family

Study the link between architectures and codes design

Optimize jointly codes and architectures

A joint definition of the codes and the encoding/decoding
methods is highly recommended

● Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Context
LDPC codes
Decoding LDPC codes
Encoding LDPC codes

▪ Codes construction
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Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

■ Structured LDPC codes design
■ Codes analysis
■ Decoding structured LDPC codes
■ Conclusions

Structured LDPC codes
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Motivations

Constraints on family of LDPC codes 

Good codes have strictly concentrated CN degree distribution [Chung01]

Richardson et al. design rules about degree 2 variables nodes [Richardson01,03]

Simple characterization
• Protograph based codes

dual-diagonal structure for H

Parity check matrices designed from permutation matrices

▪ Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes
Conclusions

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion
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Some definitions

Definition of the code considered
The parity check matrix H (M x N) is divided into two sub matrices Hs
(M x K) and Hp(M x M)

Hp is defined to be a dual-diagonal matrix
• Stability condition

• No short cycles involving only degree 2 variable nodes

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

▪ Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes
Conclusions
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Characterization

Matrix Hs of size MxK is constructed with both:
Circularly shifted identity matrices of size z x z

• Notation: Iδ , δ≥0, is a right shifted identity matrix by δ positions (modulo z)

Null matrices of size z x z
• Notation: Iδ , δ<0, is a null matrix

Hs can be defined by a (m x k) block matrix
• Simple characterization

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

▪ Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes
Conclusions
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Characterization

Matrix Hp of size MxM is a dual-diagonal matrix
Avoid low weight codeword requires a new definition of Hp

Quasi-Cyclic Irregular Repeat Accumulate Codes (QC IRA) 
[Tanner99]

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

▪ Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes
Conclusions
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Framework

Distances properties
Which kind of configurations are critical for performance?

Cycles properties
How to detect cycles into the code graph?
What is the role of short cycles on decoder behavior?

Definition of a design algorithm for the family of codes studied

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design

▪ Codes analysis
Decoding Structured LDPC codes
Conclusions
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Distances properties

Main results
Based on Return To Zero properties of the dual-diagonal part of H

• Accumulator code

Bound on minimal distance
• Influence the choice of parameter m and the smallest variable node degree q

Rules on permutation coefficients
• Weight-Spectrum of the codes can be constrained
• Avoid the generation of low weight codeword from low weight information word

Equi-repartition of permutation coefficients on [0,z-1] into a column of Hs
but not strictly…

Structured LDPC codes design

▪ Codes analysis
Decoding Structured LDPC codes
Conclusions

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion
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Cycles detection

Detection of cycle and enumeration of the distribution
Geometrical approach

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design

▪ Codes analysis
Decoding Structured LDPC codes
Conclusions
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Algorithm for code design

Problematic: Find the unknown coefficient which

Maximizes the cycle length 
Guarantees a minimal cycle length (Target Cycle Length-TCL) 

Application to the description of a design algorithm 
Incremental construction of the code
PEG like algorithm

• Based on protograph representation of the code

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design

▪ Codes analysis
Decoding Structured LDPC codes
Conclusions
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Additional constraints

Improve design algorithm
Target Cycle Length (TCL) depends on variable node degree

• ACE (Approximate Cycle Extrinsic message) [Tian03]

Avoid low weight codeword and pseudo-codeword (Trapping-set)
• Better minimal distance
• Better behavior of the BP decoder

N
um

be
ro

f e
rro

r
Pseudo codeword

Decoding failure

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design

▪ Codes analysis
Decoding Structured LDPC codes
Conclusions
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State of art

LDPC codes decoding algorithm
No a priori information on the code structure

• BP with flooding scheduling

When the structure of the code is known
• Explore other decoding strategies

Example: Codes defined by a protograph
Layered BP decoding

Structured LDPC codes design
Codes analysis

▪ Decoding Structured LDPC codes
Conclusions

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion
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Main idea

What’s about the dual-diagonal structure properties?
“Isolate trellis-like sub graphs and locally applying the MAP algorithm 
is a good scheduling” [Forney01]

Modeling of the considered codes
Consider the decoder as the dual of the encoder

Association with layer decoding concept

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design
Codes analysis

▪ Decoding Structured LDPC codes
Conclusions
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Illustration of the sequencing

Layered 1

Layered 2

Layered 3

Turbo Layered BP: Scheduling

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design
Codes analysis

▪ Decoding Structured LDPC codes
Conclusions
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Illustration of the sequencing
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Layered 2

Layered 3

Turbo Layered BP: Scheduling

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design
Codes analysis

▪ Decoding Structured LDPC codes
Conclusions
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Illustration of the sequencing

Layered 1

Layered 2

Layered 3

Turbo Layered BP: Scheduling
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Structured LDPC codes design
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Illustration of the sequencing

Layered 1

Layered 2

Layered 3

Turbo Layered BP: Scheduling

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design
Codes analysis

▪ Decoding Structured LDPC codes
Conclusions
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Simulation results

Comparison LBP/TLBP

Rules on permutation coefficients to reach the best possible convergence

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design
Codes analysis

▪ Decoding Structured LDPC codes
Conclusions
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Synthesis

Definition of  structured LDPC codes
Good performance
Simple encoding (linear time)
Simple characterization

Analysis of codes properties
Distance properties
Cycles properties

Studies on the decoding of structured LDPC codes
A priori information on code structure is exploited 

QC IRA codes

Codes design algorithm

Turbo Layered BP

Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes

▪ Conclusions

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion
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Synthesis
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A priori information on code structure is exploited 

QC IRA codes

Codes design algorithm

Turbo Layered BP

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes

▪ Conclusions
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Synthesis

Definition of  structured LDPC codes
Good performance
Simple encoding (linear time)
Simple characterization

Analysis of code properties
Distance properties
Cycles properties

Studies on the decoding of structured LDPC codes
A priori information on code structure is exploited at the decoder side

QC IRA codes

Codes design algorithm

Turbo Layered BP

Introduction

● Structured LDPC codes
Decoding architectures for LDPC decoders 
FPGA implementation of LDPC coder/decoder
Conclusion

Structured LDPC codes design
Codes analysis
Decoding Structured LDPC codes

▪ Conclusions
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Decoding architectures for 
LDPC decoders

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

■ Conception flow
■ Architectures for LBP decoding algorithm
■ Architectures for TLBP decoding algorithm
■ Conclusions
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Framework

Methodology
“Cross stage” design flow

Codes design

Decoding Algorithm
Layered BP

Turbo Layered BP

▪ Conception flow
Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
Conclusions

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion
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Codes design

Decoding Algorithm
Layered BP

Turbo Layered BP

Architectures

Framework

Methodology
“Cross stage” design flow

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

▪ Conception flow
Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
Conclusions
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Framework

Methodology
“Cross stage” design flow

Codes design

Decoding Algorithm
Layered BP

Turbo Layered BP

Architectures
Optimization of complexity
Optimization of processors activity
Optimization of data rate

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

▪ Conception flow
Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
Conclusions
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Framework

Methodology
“Cross stage” design flow

Codes design

Decoding Algorithm
Layered BP

Turbo Layered BP

Architectures

A joint design of both code and decoder architecture is highly 
recommended for the design of an efficient system

Hardware integration

Optimization of complexity
Optimization of processors activity
Optimization of data rate

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

▪ Conception flow
Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
Conclusions
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Efficiency of the decoder

Problematic: Maximize the activity of processors?
Layered BP with serial architecture for CNP

z is the size of a shifted identity matrix
np is the number of processors working in parallel

z

np parallel processors

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow

▪ Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
Conclusions
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Efficiency of the decoder

Problematic: Maximize the activity of processors?

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow

▪ Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
Conclusions
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Configurations studied

np = max z
Already studied in the literature

• WiMAX LDPC codes R=1/2 and 2/3 

But
• Very complex for large z
• Not very efficient when z is not constant

np < max z
Motivations

• Optimize the activity of processor
• Target a complexity

Goals
• Look for design rules on permutation coefficients in order to keep the Layered BP 

properties

z=np processors

z > np processors

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow

▪ Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
Conclusions
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Turbo Layered BP: Summary of the work

The decoding of a window can start if all the most up-to-date extrinsic 
information are available

Various sequencing have been studied
Constraints on the code design

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow
Architectures for LBP decoding algorithm

▪ Architectures for TLBP decoding algorithm
Conclusions
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Turbo Layered BP: Summary of the work

Various sequencing have been studied
Serial scheduling  (pipelined or not)

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow
Architectures for LBP decoding algorithm

▪ Architectures for TLBP decoding algorithm
Conclusions
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Turbo Layered BP: Summary of the work

Various sequencing have been studied
Serial scheduling  (pipelined or not)
Parallel scheduling (pipelined or not)

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow
Architectures for LBP decoding algorithm

▪ Architectures for TLBP decoding algorithm
Conclusions
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Various sequencing have been studied
Serial scheduling  (pipelined or not)
Parallel scheduling (pipelined or not)

Definition of an efficient multi-rate decoder

Turbo Layered BP: Summary of the work

Coding rate

Check node
degree

Good codes

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow
Architectures for LBP decoding algorithm

▪ Architectures for TLBP decoding algorithm
Conclusions
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J

J

Genericity problematic

Exploit the structure of the parity check matrix
Properties of the dual-diagonal structure

Throughput

Complexity
Serial architecture
-Low data rate
-Very flexible scheme

Parallel architecture
-Very high throughput
-Bad flexibility (coding rate)

Find a good tradeoff

J

J

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow
Architectures for LBP decoding algorithm

▪ Architectures for TLBP decoding algorithm
Conclusions
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Proposed solution

Parallel architecture for SPC processors
J0 messages are processed in parallel

J0 ones per rows of Hs

J0=2

J0
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Conclusion

Conception flow
Architectures for LBP decoding algorithm

▪ Architectures for TLBP decoding algorithm
Conclusions
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Proposed solution

Parallel architecture for SPC processors
J0 messages are processed in parallel

Extension of the dual-diagonal part 
Window decoding of the trellis (serial oriented)

• Memory size proportional to the size of the window

Efficient method for TLBP algorithm
Very flexible scheme if J0 is well designed

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow
Architectures for LBP decoding algorithm

▪ Architectures for TLBP decoding algorithm
Conclusions
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Synthesis

"Architecture driven" approach
Joint design of code and decoder architectures

Architecture for Layered BP decoding algorithm
Modeling of the CNP processor
Study the case of np < max z
Some open issues

• flexible permutation network (barrel shifter)

Architecture for Turbo Layered BP decoding algorithm
Various sequencing have been described
Problematic of multi rate decoder

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
FPGA implementation of LDPC coder/decoder
Conclusion

Conception flow
Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm

▪ Conclusions
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Modeling of the CNP processors
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Some open issues

• Flexible permutation network (barrel shifter)

Architectures for Turbo Layered BP decoding algorithm
Various sequencing have been described
Problematic of multi-rate decoder

Introduction
Structured LDPC codes

● Decoding architectures for LDPC decoders
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Conclusion

Conception flow
Architectures for LBP decoding algorithm
Architectures for TLBP decoding algorithm
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Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 

● FPGA implementation of LDPC coder/decoder
Conclusion

FPGA implementation of 
LDPC coder/decoder

■ Implementation options
■ Quantization
■ Complexity considerations
■ Simulation results
■ Conclusion
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Options

Turbo Layered BP algorithm
With and without pipeline

2 decoding processors
• p = 2
• Duplication of the buffers

Double input buffers
• Optimize the processor activity
• Optimize the decoding throughput

Memory banks organization
• Avoid simultaneous access
• Exploit code structure

▪ Implementation options
Quantization
Complexity  considerations
Simulation results
Conclusions

Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 

● FPGA implementation of LDPC coder/decoder
Conclusion
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Options

2 decoding processors
• p = 2
• Duplication of the buffers

Double input memories
• Optimize the processor activity
• Optimize the decoding throughput

Memory banks organization
• Avoid simultaneous access
• Exploit code structure

Turbo Layered BP algorithm
With and without pipeline

Introduction
Structured LDPC codes
Decoding architectures for LDPC decoders 

● FPGA implementation of LDPC coder/decoder
Conclusion

▪ Implementation options
Quantization
Complexity  considerations
Simulation results
Conclusions
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Problematic

Continuous to discrete domain
Influence the performance

• Lower granularity
• Introduction of erasures

Influence the complexity of the decoder
• Size of the memories
• Size of internal data path
• Complexity of the basic operators (+, - , < …)

What is the good trade off between performance and 
complexity?
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• Introduction of erasures

Influence the complexity of the decoder
• Size of the memories
• Size of internal data path
• Complexity of the basic operators (+, - , < …)

What is the good trade off between performance and 
complexity?

Input data
• Quantization on 4 bits is a good trade off

Internal data path
• Various methods have been studied
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Simulation context
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Simulation context

FPGA Hardware simulation chain
ALTERA Stratix EPS80-C6

■ QNX real time OS
● Automatic measures
● Real time performance curves
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Applications

Broadcast context
Large block size (≈16 kbits)

Parameters
AWGN, QPSK
Qc = 4 bits (+/-7)
15 it TLBP

No early error floor
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Applications

Broadcast context
Large block size (≈16 kbits)

Parameters
AWGN, QPSK
Qc = 4 bits (+/-7)
15 it TLBP

No early error floor

Validation of both
• Code design algorithm
• Quantization strategy

Quasi Error Free
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Duo binary Turbo-Codes vs LDPC

Objectives
Try to do a fair comparison

• 8 states duo binary Turbo-codes
• LDPC codes studied

Difficulties of comparisons
Usually context are different

• Coding size, coding rate, coding structure, Target performance

Implementation choices
• Architectures, Quantizations
• FPGA (Altera or Virtex), mm² on x µm for ASIC

Proposed scheme
Similar context (Valentinno)
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Duo binary Turbo-Codes vs LDPC
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Performance
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Implementation aspects
FPGA – ALTERA Stratix EP1S80F C6

Decoding throughput
• At same data rates

x 1.33 x 1.34
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Performance
Duo binary TC have a very good decoding threshold

• Even for small size

Proposed LDPC outperforms TC at low error rate
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Duo binary Turbo-Codes vs LDPC

Performance
Duo binary TC have a very good decoding threshold

• Even for small size
• ….. For large coding size, the gap is reduced

Proposed LDPC outperforms TC at low error rate
• ….. It is possible to design DBTC with better behavior at low error rate (3D TC,16 states)

Complexity
DTC outperforms LDPC codes studied
….  however

• Maturity of the work and the architecture

A FEC technology should be considered into a global system
Be locally the best do not mean be the best globally
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Performance
Duo binary TC have a very good decoding threshold

• Even for small size
• ….. For large coding size, the gap is reduced

Proposed LDPC outperforms TC at low error rate
• …..    It is possible to design DBTC with better behavior at low error rate (3D TC,16 states)

Complexity
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Duo binary Turbo-Codes vs LDPC

Performance
Duo binary TC have a very good decoding threshold

• Even for small size
• ….. For large coding size, the gap is reduced

Proposed LDPC outperforms TC at low error rate
• …..   It is possible to design DBTC with better behavior at low error rate (3D TC,16 states)

Complexity
DBTC outperforms LDPC codes studied
….  however

• Maturity of the work and architectures

A FEC technology should be considered into a global system,
according to the target application
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Synthesis

Integration of the decoders into a FPGA
Definition of the computational units
Proof of concept: FPGA integration

Study of the quantization effects
Influence of the quantization of channel observations
Quantization of internal data path

Applications
Analysis of architectures proposed for different contexts
Comparison with duo binary Turbo-Codes
Low error rate behavior: Track and analyze
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Analysis of QC IRA codes
Constraints on permutation coefficients

Definition of a new algorithm for the design of codes

Joint studies on code design and decoding algorithm definition

Contributions

▪ General  conclusion
Future prospects
Discussion
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Analysis of QC IRA codes

Decoding architectures for LDPC codes
Layered BP algorithm

Turbo Layered BP algorithm

Contributions
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Analysis of QC IRA codes

Decoding architectures for LDPC codes

FPGA implementation of LDPC decoders
Study of quantization effects 

Definition of computational units

Complexity analysis of the proposed architectures
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Analysis of QC IRA codes

Decoding architectures for LDPC codes

FPGA implementation of LDPC decoders

Disseminations
7 international conferences
1 journal submission (under review)
5 patents

Contributions
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Perspectives

Extension of the work
Integration of the hardware decoder into a realistic context

• Realistic channel
• Integration into a whole communication system 

Turbo Layered BP decoding
• Application to other parity check matrix structures

– Modified dual-diagonal matrix (WiMax)

Theoretical aspects
Analysis the behavior of the sequencing proposed
How to improve the convergence threshold of the codes?

• Practical aspect (Finite length)

Implementation issues
Explore the problematic of flexible ultra-parallelized LDPC decoder

• Very high throughput decoding

General  conclusion

▪ Future prospects
Discussion
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Questions and answers

Optimisation conjointe de codes LDPC et de leurs
architectures de décodage et mise en œuvre sur FPGA

Jean-Baptiste Doré
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Outline

Simplification of BP 
Illustration of the design of codes
Performance example: effects of TCL
BP/LBP/TLBP
CNP modeling: case of Min-Sum approximation
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Simplification of BP algorithm

Practical implementation of BP algorithm
Approximation of the function f(x)
Limit the number of different edges messages

performance

complexity
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Algorithm for codes design

Description of the algorithm
Target: > 6 length cycle
z = 8
Mask considered:

Incremental construction
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Algorithm for codes design
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Algorithm for codes design

Expansion of the protograph to detect 
the configurations
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Algorithm for codes design
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Simulation results

BER
BLER

TCL>6 – 8 length-cycle

Algorithm parameterization: some results
Avoid low length cycle involving low degree variable nodes
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Simulation results

TCL depends on variable node degree

BER
BLER

Algorithm parameterization: some results
Avoid low length cycle involving low degree variable nodes
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BP/LBP/TLBP

Comparison BP/LBP

Good convergence for LBP
15-25 iterations
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BP/LBP/TLBP

Comparison LBP/TLBP

Good convergence for TLBP
10-20 iterations
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About CNP processors: Modeling for Min-Sum algorithm (I)

Serial implementation of CNP Processors
dc cycles to compute mvc

dc cycles to compute Av
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About CNP processors: Modeling for Min-Sum algorithm (II)
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About CNP processors: Modeling for Min-Sum algorithm (II)
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About CNP processors: Modeling for Min-Sum algorithm (II)
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About CNP processors: Modeling for Min-Sum algorithm (II)
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About CNP processors: Modeling for Min-Sum algorithm (III)

Min-Sum algorithm
Comparison of the input mvc

• Two smallest messages

It can be done during the forward step
• The backward step is not required

but…
• dc cycles are required for the computation of mvc

• At least dc cycles are required for the computation of the min (pipeline)
• dc cycles are required to re-estimate Av
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About CNP processors: Modeling for Min-Sum algorithm (IV)

Min-Sum algorithm

The proposed model is valid but parameter ε depends on the algorithm
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