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Résumé

Les Convertisseurs Analogique-Numérique (CAN) à Bancs de Filtres Hybrides
(BFH) sont de bons candidats pour répondre aux exigences des futurs systèmes
de communication devant être versatile, intelligent et à large-bande. Cependant,
les BFH montrent une grande sensibilité aux non-idéalités analogiques du banc
d’analyse, de sorte que les CAN à BFH classiques ne seraient pas pratiquement
utilisables à moins que ces erreurs ne soient corrigées. Les efforts, dans cette
thèse, ont porté sur l’étude de ce problème afin de proposer des pistes de solu-
tions. A cet égard, la conception des BFH est, d’abord, décrite sous la forme de
matrice. Puis, en utilisant des circuits analogiques simplement réalisables ainsi
que des filtres numériques à Réponse Impulsionnelle Finie (RIF), les BFH sont
conçus pour la conversion A/N. Selon la simulation des CAN à BFH, nous mon-
trons que la sensibilité de ceux-ci aux erreurs analogiques est très élevée puisque
la matrice d’analyse associée est mal-conditionnée, surtout dans le cas où le sur-
échantillonnage est utilisé. Pour estimer numériquement les imperfections des cir-
cuits analogiques, nous proposons l’utilisation de méthodes d’estimation aveugle,
basées sur des statistiques de seconde-ordre ou d’ordre supérieur. Cependant, ces
techniques semblent ne pas être applicables aux BFH classiques en raison du sous-
échantillonnage inclus à chaque branche du CAN à BFH. Ainsi, pour exploiter les
techniques numériques pour la correction des imperfections analogiques des filtres
d’analyse, nous proposons de nouvelles structures à Entrée-sortie Multiple (ESM).
Dans ces structures, il n’existe plus aucune opération de sous-échantillonnage en-
tre les entrée-sortie associées. Les simulations prouvent que les BFH à ESM (à
sous-bande et à multiplexage temporel) mènent non seulement à une meilleure
résolution mais aussi à une sensibilité moins élevée par rapport aux BFH clas-
sique. En conclusion, en utilisant les BFH à ESM, les méthodes aveugles telles que
la déconvolution ou l’annulation du bruit peuvent être employées afin de réduire
encore la sensibilité aux non-idéalités analogiques.

Les mots clés: Bancs de filtres hybrides, convertisseur analogique-numérique,
la radio logicielle, non-idéalités analogiques, les méthodes aveugles.
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Abstract

Hybrid Filter Bank (HFB) A/D converters are a good candidate for realizing the
future versatile, intelligent and wide-band communication systems. However, the
HFB structures exhibit a large sensitivity to the analog non-idealities of analysis
part so that the classical HFB ADCs are not practically useful unless these errors
are corrected. The efforts have been made in this thesis to more profoundly study
this problem and to propose a group of possible solutions. Firstly, the design phase
of related HFBs is described in the matrix form. Considering the simply realizable
first- and second-order analog circuits as analysis filter bank and FIR digital syn-
thesis filters, the HFB structures are designed for A/D conversion in this thesis.
Simulating some exemplary HFB ADCs, it is shown that the sensitivity of HFB
to analog errors is so large because the related analysis matrix is ill-conditioned,
particularly in the case of oversampling process. Using Second-Order and Higher-
Order Statistics, it is shown that the analog imperfections of analog circuits may
digitally be estimated through the output samples. However, these techniques
appear not to be applicable to the conventional HFB structure because of under-
sampling process included at each branch of HFB-based ADC. Thus, for exploiting
the digital techniques to estimate and then correct the analog imperfections of anal-
ysis filter bank, new Multiple-Input Multiple-Output (MIMO) HFB structures are
proposed so that there exist no under-sampling operation anymore between the
related input-output signals. The simulations show that the MIMO (TDM and
subband) HFB architectures provide not only a better output resolution but a less
sensitivity to the realization errors of analysis filter bank than the classical HFB.
Finally, using the TDM and subband MIMO HFBs, it is proposed to use the blind
methods such as blind deconvoluton or Automatic Noise Cancelation (ANC) for
compensating and then reducing the sensitivity to the analog non-idealities.

Keywords: Hybrid Filter Bank, parallel A/D conversion, Software-Defied Radio,
analog non-idealities, blind techniques.
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Systems (MWSCAS), Montréal, Canada, Aug., 2007.

4. Asemani D., Oksman J.,Performance of subband HFB-based A/D converters,
International Symposium on Signal Processing and its Applications (ISSPA),
Sharjah, UAE, Feb., 2007.

5. Asemani D., Oksman J.,Subband architecture for HFB-based A/D converters
, International Symposium on Communications and Information Technolo-
gies (ISCIT), Bangkok, Thailand, Oct., 2006.

xi



6. Asemani D., Oksman J.,Influences of oversampling and analog imperfections
on Hybrid Filter Bank A/D converters , IEEE MidWest Symposium on
Circuits and Systems (MWSCAS), San Juan, Puerto Rico, Aug., 2006.

7. Asemani D., Oksman J., Poulton D.,Digital estimation of analog imperfec-
tions using blind equalization , IEEE European Signal Processing Conference
(EUSIPCO), Florence, Italy, Sep., 2006.

8. Asemani D., Oksman J., Poulton D.,Modeling the imperfections of analog
circuits using Second-Order Statistics , IEEE International Symposium
on Communications, Control and Signal Processing (ISCCSP), Marrakesh,
Morocco, March, 2006.

9. Asemani D., Oksman J.,Two-stage synthesis filters for Hybrid Filter Banks
A/D converters, IEEE conference on Signal Processing Systems (SiPS),
Athens, Greece, Nov., 2005.

xii



Table of Contents

Acknowledgments ix

List of Figures xvi

List of Tables xx

List of Symbols xxi

Abbreviations xxiii
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Chapter 1

Résumé de la thèse en français

La vérité vaut bien qu’on passe quelques années sans la trouver.

- Renard

1.1 Sensibilité des convertisseurs à BFH à mul-

tiplexage temporel par rapport aux erreurs

analogiques

Ce chapitre est basé sur les articles suivantes:

• Asemani Davud, Oksman Jacques, Sensitivity of time-division multiplexing

parallel A/D converters to analog imperfections ”, IEEE workshop on signal

Processing Systems (SiPS), Shanghai, Chine, 2007.

• Asemani Davud, Oksman Jacques, ” A wide-band A/D converter for the

Software-Defined Radio systems”, IEEE International Conference on Signal

Processing and Communications (ICSPS), Dubai, UAE, 2007.

1.1.1 Introduction

Le défi important dans la conversion Analogique/Numérique (A/N) et Numérique/

Analogique (N/A) est d’atteindre simultanément une grande vitesse ainsi qu’une

haute résolution. Les convertisseurs sigma-delta (Σ∆) sont capables de fournir la
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Figure 1.1. L’architecture classique de BFH à temps continu pour la conversion A/N
parallèle.

meilleure résolution, mais sont néanmoins limités quant à la largeur de la bande

de conversion [1]. La demande en convertisseurs A/N ou N/A ayant des vitesses

plus élevées a considérablement augmenté car ils serviraient à réaliser les nouveaux

systèmes de communication tels que la radio logicielle qui seraient à l’origine d’une

nouvelle industrie sur une plus grande échelle encore que l’industrie de l’ordinateur

personnel [2]. La radio logicielle se caractériserait par une plus grande versatilité et

intelligence. En mettant des Convertisseurs A/N (CAN) à haute précision en par-

allèle, on pourrait réaliser un CAN à large bande. Dans ce sens, on a déjà proposé

les structures à l’entrelacement temporel et celles des Bancs des Filtres Hybrides

(BFH) à temps discret. Elles rencontrent néanmoins respectivement les problèmes

suivants : une haute sensibilité à la disparité des convertisseurs et la limitation en

vitesse due aux limites du circuit [3]. On a proposé la structure de BFH à temps

continu employant des filtres d’analyse analogiques pour résoudre les problèmes

des structures précédemment mentionnées. La figure 1.1 représente la structure

classique de BFH à temps continu employée à la conversion A/N où M et T sont

associées au nombre de branches et à la période de Nyquist de l’entrée x(t) [4].
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Dans cette structure parallèle, M convertisseurs A/N sont maintenant utilisés qui

fonctionnent tous parallèlement à une fréquence qui est M fois moins élevée que la

fréquence de Nyquist. Supposons que le spectre de l’entrée d’origine x(t) est limité

à la fréquence maximale ± 1
T
. A la sortie des BFH, apparaissent des interférences

appelées aliasing qui restreint la résolution finale comme le bruit de quantifica-

tion. Les convertisseurs A/N en structure BFH ont une bonne performance en

terme d’aliasings même en utilisant des filtres analogiques simples tels que ceux de

premier et second ordre si un petit rapport du sur-échantillonnage est considéré.

Cependant, la performance se dégrade considérablement en prenant en compte

même de petites erreurs dans les filtres d’analyse [5]. Il est alors nécessaire d’une

façon ou d’une autre d’atténuer ou compenser la sensibilité aux imperfections des

filtres analogiques pour rendre pratiquement utile ces CAN parallèles. Des tech-

niques numériques ont été proposées pour surmonter ce problème de la sensibilité

élevée aux erreurs de réalisation chez les CAN en structure BFH. Néanmoins,

les méthodes proposées sont limitées à certaines erreurs ou situations [6]. Pin-

heiro et al. ont essayé d’optimiser la conception des structures de BFH en termes

d’imperfections analogiques [7], mais leur solution ne propose pas une technique

de compensation. Ils ont juste mis en place un critère correspondant à un com-

promis entre la distorsion et les aliasings qui mène à une amélioration de moins de

5 dB dans le Rapport Signal sur Bruit (RSB). En outre, cette amélioration a été

constatée pour la structure classique de BFH sans effectuer de sur-échantillonnage.

Quand le sur-échantillonnage n’est pas employé, la structure de BFH est relative-

ment robuste contre les imperfections analogiques des filtres d’analyse [5], mais la

performance de celle-ci n’est pas acceptable pour les applications pratiques à moins

qu’un petit rapport du sur-échantillonnage soit considéré. Des techniques aveugles

tels que la déconvolution pourraient être utilisées afin d’améliorer la sensibilité des

structures de BFH aux imperfections analogiques si ces structures représentaient

un Système Linéaire Invariant (SLI) dans le temps. Cependant, l’architecture

classique de BFH est associée à une relation entrée-sortie variante dans le temps

en raison du processus de décimation qui s’effectue implicitement au cours de

l’échantillonnage en cadence 1
MT

. Par conséquent, il n’est pas possible d’appliquer

directement une technique aveugle notamment la décorrélation au CAN à struc-

ture BFH. On a récemment proposé une nouvelle structure de BFH nommée ar-
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Figure 1.2. . L’architecture de multiplexage temporel pour la conversion A/N en BFH
où sont estimées les composants MRT d’entrée à la sortie.

chitecture de Multiplexage par Répartition dans le Temps (MRT) dont la relation

entrée-sortie est invariante dans le temps (cf. le chapitre 5). Cette structure MRT

de BFH est représentée dans la figure 1.2. On peut voir qu’une matrice F (z) des

M2 filtres numériques est considérée dans l’étape de synthèse pour une structure

BFH de M branches, à la place de M filtres exigés pour celle de BFH classique

(voir figures 1.2 et 1.1). Dans l’architecture MRT de BFH, on construit le vecteur

d’entrée s[n] avec les M échantillons consécutifs de l’entrée d’origine (en cadence

Nyquist):

s[n] =




s0[n]

s1[n]
...

sM−1[n]




=




x(n′T )

x((n′ − 1)T )
...

x((n′ − (M − 1))T )




n′=nM

(1.1)

n′ et n représentent respectivement les indices temporelles associés aux périodes T

et MT . Donc, les BFH à structure MRT cherchent à estimer le vecteur d’entrée

à sa sortie. Contrairement à l’architecture classique, une technique aveugle tel

que la décorrélation pourrait être appliquée à l’architecture MRT de BFH afin
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de corriger les imperfections analogiques. D’ailleurs, les simulations spectrales

ont montré que la structure aboutit à une beaucoup plus grande performance

que celle de la structure classique en l’absence des erreurs analogiques (cf. le

chapitre 5). Dans cette partie, des BFH à structure MRT sont simulés dans le

domaine temporel pour démontrer dans un premier temps la validité du modèle

proposé en terme de résolution de la sortie. Et puis, la performance de celui-

ci est également étudiée en présence des erreurs de réalisation et comparée avec

celle des BFH classique. L’organisation de cette partie est résumée ci-après. Tout

d’abord, les BFH à structure MRT sont brièvement présentés et les équations

de la Parfaite Reconstruction (PR) sont introduites dans le paragraphe suivant.

Puis, les simulations dans le domaine temporel sont réalisées pour udes BFH à 8

branches. La résolution et la sensibilité aux imperfections analogiques des filtres

d’analyse sont représentées et comparées pour l’architecture MRT et classique dans

le paragraphe 1.1.3. Enfin, les résultats des simulations et l’interprétation sont

résumés dans le paragraphe de conclusion 1.1.4.

1.1.2 Le BFH à structure MRT

1.1.2.1 Le modèle à entrées et sorties multiples

Dans le paragraphe précédent, on a mentionné que l’architecture MRT fournit une

structure à entrées et sorties multiples pour les BFH. Pour mieux comprendre les

BFH à structure MRT, un modèle à entrées et sorties multiples est représenté

pour le CAN à structure MRT dans la figure ??. Dans ce modèle, le bruit de

quantification est négligé. Le vecteur d’entrée s[n] peut facilement être identifié

dans ce modèle (voir le chapitre 5). Pour la simplicité, l’entrée d’origine x(t) est

remplacée par x[n′] qui représente l’entrée échantillonnée à la fréquence de Nyquist
1
T

(x[n′] = x(n′T )). Celui-ci est le signal estimé à la sortie. Comme on montre

dans ce modèle à entrées et sorties multiples, l’opération de décimation n’existe

plus entre la nouvelle entrée s[n] et sortie ŝ[n]. Donc, la relation entrée-sortie

correspondra à un SLI. La matrice (virtuelle) H(z) des filtres d’analyse utilisée

dans le modèle est constituée de M2 filtres numériques. Chaque élément Hkr(z)
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Figure 1.3. Le modèle à entrées et sorties multiples du CAN consistant en un BFH à
structure MRT où n′ et n représentent respectivement les indices temporels associés aux
périodes T et MT .

Figure 1.4. Le filtre analogique (en haut) et celui qui a subit une extension périodique
de la fréquence 1

T
.

peut être obtenu à partir du filtre analogique Hk(s) de la kème branche:

Hkr(e
jω) =

1

M
ej ω

M
r

M−1∑

m=0

e−j 2π
M

rmH̃k(j
ω

M
− j

2π

M
m) (1.2)

H̃k(jΩ) représente l’extension périodique du filtre analogique Hk(jΩ) comme il-

lustré par la figure 1.4. Les variables Ω et ω représentent respectivement les

fréquences liées au signal analogique et discret dans le temps. On a démontré
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que chaque élément de la matrice H(z) représente un filtre causal et stable si

et seulement si les filtres analogiques d’analyse sont tous causaux et stables (cf.

le chapitre 5). Dans l’architecture MRT (la figure 1.2), on reconstruit l’entrée

d’origine à partir des M signaux x0[n], x1[n],, et xM−1[n] (les sorties de la pièce

d’analyse) seuls. D’après le modèle MRT (la figure 1.3), les sorties de l’étape

d’analyse (x0[n], x1[n],, et xM−1[n]) peuvent être décrites en termes du vecteur

d’entrée s[n] dans le domaine de fréquence comme:

X(ejω) = H(ejω)S(ejω) (1.3)

Une relation de SLI peut apparemment se percevoir dans cette équation entre

X(ejω) et S(ejω). Pour estimer et reconstruire les signaux S(ejω), on peut évaluer

une matrice F(ejω) comprenant M filtres numériques de synthèse. En conséquent,

le vecteur de sortie s’obtient par la relation suivante :

Ŝ(ejω) = F(ejω)X(ejω) = F(ejω)H(ejω)S(ejω) (1.4)

1.1.2.2 La conception de la matrice des filtres de synthèse

Le CAN d’architecture BFH à structure MRT est considéré (la figure 1.2). Dans le

paragraphe précédent, on a expliqué que les M échantillons successifs de l’entrée

d’origine sont considérés comme le nouveau vecteur d’entrée qui sera estimé à la

sortie des BFH à structure MRT. Si une des matrices de filtres d’analyse ou ceux

de synthèse est connue à priori, l’autre peut être calculée. Dans la pratique, il est

préférable de supposer les filtres analogiques (banc d’analyse) a priori connus à

cause des contraintes des circuits analogiques. Ainsi, on désire concevoir les filtres

de synthèse (numériques) en supposant a priori M circuits analogiques comme

étant les filtres d’analyse. Pour obtenir commodément la matrice des filtres de

synthèse, le bruit de quantification des convertisseurs A/N de toutes les branches

est de nouveau négligé. En employant le modèle du CAN à structure MRT (la

figure 1.3), les équations de RP seront :

F(ejω).H(ejω) = I.e−jωnd (1.5)
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où I représente la matrice identité de dimension M ×M et nd représente un retard

quelconque. Le retard est ajouté pour maintenir la causalité. En employant la

méthode d’optimisation des Moindres Carrées (MC), l’équation 1.11 mène à la

solution suivante pour chaque fréquence donnée:

F(ejω) = e−jωndH−1(ejω) (1.6)

où l’existence de la matrice inverse H−1(ejω) est implicitement supposée (le choix

des filtres d’analyse est fait de telle façon que la matrice d’analyse soit non-

singulière). Cette relation peut être établie pour les N fréquences quelconques

( pour garder l’interpolation appropriée). Ainsi, la réponse en fréquence de chaque

filtre de synthèse peut être obtenue à partir de l’équation 1.6. Un filtre à Réponse

Impulsionnelle Finie (RIF) peut être employé pour estimer chaque élément de la

matrice des filtres de synthèse. En utilisant des estimations à RIF des filtres de

synthèse, des termes de distorsion et des interférences apparaissent à la sortie.

Alors, tout signal de sortie peut être exprimé en termes de fonctions de distor-

sion et d’interférences. Celles-ci peuvent s’appeler les Interférences Inter-Canaux

(IIC). Les IIC sont équivalentes aux termes d’aliasing de l’architecture classique.

Supposons des filtres de synthèse à RIF, la matrice est définie comme suivant:

T(ejω) = F(ejω)H(ejω)

Où T(ejω) est une matrice contenant la fonction de la distorsion et celles des IIC.

En intégrant avec équation 1.4, tout signal de sortie ŝk[n] peut être décomposé

dans le domaine de fréquence comme:

Ŝk(e
jω) = Tkk(e

jω)Sk(e
jω)︸ ︷︷ ︸

distorsion

+
M−1∑

m=0,m6=k

Tkm(ejω)Sm(ejω)

︸ ︷︷ ︸
IIC

(1.7)

L’élément diagonal Tkk(e
jω) de la ligne k de la T(ejω) décrit la fonction de distorsion

du kème composant du MRT. Les autres M -1 éléments de cette ligne représentent

les IIC présentes dans la sortie ŝk[n]. e−jωnd est la valeur idéale pour la fonction

de distorsion et les éléments IIC sont idéalement nuls.
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1.1.3 Simulations d’un CAN à structure MRT et à huit

branches

1.1.3.1 Conception dans le domaine temporel

En utilisant l’environnement MATLAB/Simulink, un CAN à structure MRT et à

huit branches est simulé dans le domaine temporel. Un banc de filtres d’analyse

simplement réalisables comprenant un circuit RC (Résistance-Capacité) et sept

circuits RCI (Résistance-Capacité-Inductance) est utilisé. Le filtre RC fonctionne

en tant que filtre passe-bas. Les sorties suivent bien les signaux d’entrée avec un

retard MndT . On rappelle que le retard temporel de l’architecture classique est

ndT (ou bien M fois moins élevé que celui de l’architecture MRT) bien que les deux

architecture suppose le même retard discret nd. En effet, dans l’architecture MRT

on ne fait pas un élevage de fréquence à l’opposé du cas classique (voir les figures 1.1

et 1.2). Des filtres RIF ayant 64 coefficients ont été utilisés comme banc des filtres

de synthèse. Pour obtenir un niveau des IIC qui serait pratiquement acceptable, on

a proposé qu’une petite partie du spectre de chaque composante MRT soit réservée

comme Bande de Garde (BG) (cf. le chapitre 5). D’une manière équivalente, une

partie du spectre n’est pas occupé par le signal d’entrée dans le cas d’architecture

classique ce qui implique un sur-échantillonnage. Le rapport de BG représente le

pourcentage de chaque sous-signal de MRT consacré à la BG. Le rapport de sur-

échantillonnage correspond au pourcentage de la fréquence de Nyquist 1
T

qui n’est

pas employé par le signal d’entrée. On utilise ici le rapport de sur-échantillonnage

optimal 7% constaté dans [5]. De la même manière, on a utilisé un rapport de

BG 7% pour l’architecture MRT. La figure 1.5 montre le spectre d’erreur quand

un signal sinusöıdal à la fréquence ω0 = 0, 5 π
8T

est présenté à l’entrée des deux

structures. Pour cette entrée sinusöıdale, aucun signal n’apparat aux bandes de

garde des huit composants de MRT. Remettant en série les composante parallèles

de MRT (les sorties), l’entrée d’origine x[n′] est simplement reconstruite. La fig-

ure 1.5 montre clairement que l’on a une meilleure performance pour l’architecture

MRT par rapport à classique supposant une entrée sinusöıdale. Un signal aussi

important apparat dans les bandes de sur-échantillonnage dans le cas classique.

Donc, une étape Post-Filtrage (PF) serait incontournable pour enlever le signal

d’erreur apparaissant en bande de sur-échantillonnage. Par contre, le bruit dans



11

−0.5 0 0.5
−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0
Error spectrum normalized to input variance

dB

Normalized frequency

Classical HFB

TDM HFB

Oversampling area

Figure 1.5. Le spectre d’erreur associé à l’architecture MRT (en bleu) et classique (en
rouge) pour une entrée sinusöıdale.

les BG de l’architecture MRT ne s’amplifie pas. Par exemple, le Rapport de Signal

à Bruit (RSB) de la sortie est presque 49 dB dans le cas classique lorsqu’un PF

n’est pas utilisé. Mais, le RSB s’améliore au 73 dB quand on élimine la bande de

sur-échantillonnage (autrement dit faire le PF). Le PF n’est pas nécessaire pour le

cas MRT puisque l’erreur ne s’intensifie pas dans ses BG pour ce signal sinusöıdal.

Le RSB de l’architecture MRT est 123dB qui représente une grande supériorité de

50 dB par rapport au cas classique. La figure 1.6 représente une comparaison entre

l’architecture MRT et classique pour un signal chirp en entrée. Le chirp d’entrée

balaye le spectre entre les fréquences zéro et (1−α) π
T

où α représente le rapport de

sur-échantillonnage de 7%. Ni les BG, ni la bande de sur-échantillonnage n’ont été

filtrées dans cette figure. En négligeant les BG et la bande de sur-échantillonnage,

les architectures MRT et classique sont respectivement associées aux RSB 91 dB

et 63 dB. Etant donné que la sortie du CAN à structure classique a été post-filtrée

pour éliminer la bande de sur-échantillonnage, la sortie de chaque branche du CAN

à structure MRT est également post-filtré avec le même filtre. L’architecture MRT

a besoin de traiter M filtrage numériques correspondant aux M sorties. Les simu-

lations dans le domaine temporel montrent que l’architecture MRT peut mener à
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Figure 1.6. Le spectre d’erreur associé à l’architecture MRT (en bleu) et classique (en
rouge) pour une entrée du chirp.

une meilleure performance que celle classique en l’absence d’erreurs de réalisations

en ce qui concerne les interférences IIC (l’aliasing dans le cas classique).

1.1.3.2 Sensibilité aux imperfections analogiques

Pour étudier la sensibilité aux erreurs de réalisation, les structures classiques

et MRT sont simulées en présence des imperfections analogiques. Les architec-

tures de CAN à huit branches sont ici considérées comme dans le paragraphe

précédent. Pour observer les effets des imperfections analogiques, tous les éléments

électroniques (R, C et I) des filtres d’analyse sont supposés ayant un profil gaussien.

L’écart type empirique de la distribution gaussienne est utilisé pour représenter les

imperfections analogiques (STD). Les simulations sont répétées pour 1000 épreuves

pour chaque valeur des erreurs de réalisation. La résolution de sortie des deux

structures MRT et classique est prise comme référence pour faire la comparaison

entre leurs performances. Dans un premier temps, on suppose que l’entrée est un

signal sinusöıdal de fréquence ω0 = 0, 5 π
8T

. La figure 1.7 montre la résolution

de sortie (en bit) pour les deux architectures MRT et classique versus les erreurs
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Figure 1.7. La résolution de sortie des architectures classiques (en rouge) et MRT (en
bleu) versus l’écart type de la distribution des erreurs. Un signal sinusöıdal est appliqué
à l’entrée

de réalisation (l’écart type de la distribution des erreurs). Si le PF est appliqué

pour éliminer la bande de sur-échantillonnage et les BG associées respectivement

aux cas classique et MRT, l’architecture de MRT présente une performance de 3

bits meilleure que celle lié au cas classique en présence des erreurs de réalisation.

Cela signifie que l’architecture MRT est moins sensible que la classique aux er-

reurs de réalisation dans le cas de l’entrée sinusöıdale. Autrement dit, le RSB

de l’architecture classique s’améliore de 20 dB en utilisant la structure MRT.

Si les régions spectrales des BG ne sont pas filtrées pour le MRT, il mène à la

même résolution que le CAN à structure classique après avoir filtré la bande de

sur-échantillonnage. Ceci prouve que l’architecture de MRT peut fournir dans le

plus mauvais des cas (c’est-à-dire sans PF) la même performance que celle du cas

classique. Pour avoir une comparaison sur le spectre entier, un chirp balayant

l’intervalle spectral entre 0 et (1 − α) π
T

est appliqué comme entrée. Le rapport de

sur-échantillonnage α est supposé valoir 7%. Un procédé similaire au cas de l’entrée

sinusöıdale est appliqué pour obtenir la sensibilité aux erreurs de réalisation. La

figure 1.8 illustre la résolution de sortie associée au cas classique et MRT versus
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Figure 1.8. La résolution sortie des architectures classiques (en rouge) et MRT (en
bleu) versus l’écart type de la distribution des erreurs. Un signal chirp est appliqué à
l’entrée

les erreurs de réalisation. Pour le signal d’entrée chirp, l’architecture de MRT

montre une performance meilleure d’environ 1 bit en présence des imperfections

analogiques par rapport au cas classique. On rappelle que la performance du MRT

est bien meilleure que dans le cas d’absence des erreurs de réalisation (voir la fig-

ure 1.8 pour les erreurs égales à zéro). Un autre résultat intéressant peut être

déduit de ces deux simulations. Selon les figures 1.7 et 1.8, le MRT peut fournir

une performance approximativement égale au classique même si aucun PF n’est

considéré pour éliminer les BG. Cependant, si la bande de sur-échantillonnage n’est

pas filtrée pour le CAN classique, la performance se dégrade beaucoup.

1.1.4 Conclusion

Les simulations du CAN à structure MRT dans le domaine temporel ont montrées

que les équations mathématiques proposées pour l’architecture MRT sont pra-

tiquement valides puisque le signal d’origine est précisément estimé à la sortie. On
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a également montré que l’architecture MRT a une meilleure performance que le

cas classique en termes de résolution de la sortie en l’absence des erreurs de la

réalisation (environ 10 et 6 bits pour les entrées sinusöıdales et chirp respective-

ment). En présence des erreurs de réalisation, l’architecture MRT mène aussi à une

plus grande résolution (3 bits et 1 bit) que l’architecture classique (pour les entrées

sinusöıdales et chirp respectivement). Le PF semble être toujours nécessaire pour

le BFH classique afin d’éliminer le signal du bruit apparaissant sur le sous-spectre

de sur-échantillonnage. Bien que le CAN à structure MRT ait besoin de M2 filtres

numériques de synthèse par rapport à M filtres pour le cas classique, la complexité

de calcul pour chaque échantillon de sortie est la même pour les deux structures

parce que le MRT fournit M échantillons de sortie à chaque top d’horloge. En con-

clusion, un SLI régit la relation entre les entrées et sorties du CAN à structure MRT

à l’opposé du cas classique où celle-ci ne représente pas un SLI. Ainsi, une méthode

aveugle telle que la déconvolution peut être appliquée seulement à l’architecture de

MRT pour corriger d’une manière adaptative les erreurs de réalisation. Cela n’est

pas possible pour les systèmes variables dans le temps tel que le CAN à structure

classique.
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Figure 1.9. Le schéma général d’un CAN à BFH. La sortie y[n] représente soit une
séquence soit un vecteur de signaux associés respectivement à l’architecture classique et
à entré-sortie multiple.

1.2 Un convertisseur A/N à large-bande pour la

radio logicielle

1.2.1 Introduction

Les CAN actuels ne peuvent pas encore remplir les conditions requieses pour le

récepteur à large bande pour la radio logicielle. Un des principes de la radio

logicielle est la compatibilité entre les diverses protocoles de communication sans

fil [8]. Le récepteur et l’émetteur de la radio logicielle seraient ouverts à une plus

grande largeur du spectre de telle manière que les filtres et le système qui distribue

entre différrents canaux (channelizer) conventionnellement analogiques puissent

être substitués par des traitements numériques. Par conséquent, le cot global du

récepteur serait constant et indépendant du nombre de canaux [8]. Pour éviter les

inconvénients des bancs de filtres en temps discret et ses difficultés de réalisation,

il est proposé d’utiliser des filtres analogiques dans les BFH. La figure 1.9 illustre

l’architecture générale d’un CAN à BFH. M filtres numériques construisent l’étape

de synthèse dans l’architecture classique (la figure 1.10) [9, 10]. On a proposé les

architectures à MRT et à sous-bande (la figure 1.11) de sorte qu’un système SLI
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Figure 1.10. L’étape de synthèse des BFH à l’architecture classique

Figure 1.11. L’étape de synthèse des BFH à entrée-sortie multiple.

représenterait la relation entrée-sortie tandis que celle des BFH classique est non-

SLI (cf. le chapitre 5). Les BFH à entrée-sortie multiple sont non seulement moins

sensible aux erreurs analogiques, mais également compatible avec des techniques

numériques telles que la deconvolution aveugle afin de compenser les erreurs. Une

comparaison complète entre l’architecture classique et à entrée-sortie multiple est

présentée en utilisant des simulations temporelles dans cette partie. Le prochain

paragraphe présente les deux groupes d’architectures des BFH en résumé. Aussi,

la conception des filtres de synthèse est décrite pour les BFH différents. Dans
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le paragraphe 1.2.4, toutes les architectures des BFH sont simulées et comparées

l’une à l’autre. Enfin, les résultats sont résumés en conclusion.

1.2.2 La reconstruction parfaite

1.2.2.1 Les BFH à architecture classique

Le CAN à BFH classique est montré dans les figures 1.9 et 1.10. En négligeant le

bruit de quantification lié aux convertisseurs A/N à chaque branche, la description

spectrale X̂(ejω) de la sortie x̂[n′] serait comme il suit [11]:

X̂(ejω) = X̃(jΩ) · T◦(e
jω)︸ ︷︷ ︸

terme de distortion

∣∣∣∣
Ω= ω

T

+
M−1∑

m=1

X̃(jΩ) · Tm(ejω)

︸ ︷︷ ︸
termes d’aliasing

∣∣∣∣
Ω= ω

T
− 2π

MT
m

où X̃(jΩ) représente l’extension périodique de l’entrée considérant l’intervalle spec-

tral [−π
T

, π
T
] (avec la période 2π

T
). La distorsion et les termes d’aliasings (m=1,· · · ,

M -1) sont :





T◦(e
jω) = 1

MT

∑M−1
k=0 Fk(e

jω) · H̃k(j
ω
T
)

Tm(ejω) = 1
MT

∑M−1
k=0 Fk(e

jω) · H̃k(j
ω
T
− j 2π

MT
m)

(1.8)

où H̃k(jΩ) est obtenu par prolongement périodique du filtre analogique d’analyse

Hk(jΩ) avec la période 2π
T

de la même manière que X̃(jΩ). La reconstruction

parfaite (RP) est accomplie quand la sortie et les échantillons d’entrée sont les

mêmes sauf un possible retard. C’est à dire, les conditions de RP peuvent être

interprétées comme il suit:





T◦(e
jω) = e−jωnd

Tm(ejω) = 0 m = 1, . . . , M − 1

(1.9)



19

1.2.2.2 L’Architecture à multiple entrée-sortie

Dans l’architecture sous-bande ou MRT (voir la figure 1.11), on cherche à par-

faitement reconstruire un vecteur d’entrée s[n]. Pour obtenir la matrice de filtres

de synthèse, les M filtres analogiques d’analyse sont substitués par une matrice

H(z) de filtres numériques de la dimension M × M . Chaque élément Hkl(e
jω) de

H(ejω) représente un filtre numérique qui pourrait être obtenu à partir du filtre

analogique Hk(jΩ) selon le type de la structure à multiple entrée-sortie. Dans les

cas sous-bande et à MRT, la réponse fréquentielle Ŝ(ejω) du vecteur ŝ[n] de sorties

peut être décrite en termes de vecteur S(ejω) d’entrée:

Ŝ(ejω) = T(ejω)S(ejω) = F(ejω)H(ejω)S(ejω) (1.10)

Où T(ejω) est une matrice contenant la distorsion et les interférences Inter-Canaux

(IIC). Il suppose que la valeur estimée ŝk[n] de kième élément sk[n] du vecteur

d’entrée peut être développée en fréquence comme suivant :

Ŝk(e
jω) = Tkk(e

jω)Sk(e
jω)︸ ︷︷ ︸

distorsion

+
M−1∑

m=0,m6=k

Tkm(ejω)Sm(ejω)

︸ ︷︷ ︸
IIC

Le kième élément diagonal Tkk(e
jω) de T(ejω) représente la distorsion liée à l’entrée

sk[n] . Les autres M -1 éléments de la kième ligne de T(ejω) représentent les

interférences IIC. Les IIC sont idéalement nuls. Puis, les équations de RP à chaque

fréquence ω seront:

F(ejω).H(ejω) = I.e−jωnd (1.11)

Où I représente la matrice identité (M × M) et nd est un retard quelconque. nd

est considéré pour remplir la condition de causalité et est souvent remplacé par

la moitié de la longueur L du filtre de synthèse. La matrice s’obtient pour les

architectures à sous-bande et à MRT de la manière suivante.

• L’architecture à sous-bande

Pour obtenir la kième ligne de la matrice H(ejω), le filtre analogique Hk(jΩ)

est premièrement étudié dans l’intervalle [−π
T

, π
T
]. Puis, Hk0(e

jω), Hk1(e
jω), ...,

et Hk(M−1)(e
jω) sont extraits de la même manière que les composants d’entrée
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sous-bande sont obtenus à partir du signal d’origine.

• L’architecture à MRT

Dans le cas de MRT, l’extraction de H(ejω) peut être faite comme si les réponse im-

pulsionnelles des filtres d’analyse étaient échantillonnées. Chaque élément Hkl(e
jω)

de H(ejω) peut être obtenu à partir du filtre analogique Hk(jΩ) d’analyse dans le

domaine fréquentielle paritr des quations prsentes au chapitre 5.

1.2.3 Conception d’étape de synthèse

En utilisant les équations de RP, un CNA à BFH peut être conçu à condition

qu’un des bancs de filtres de synthèse ou d’analyse soit à priori connu. Selon les

contraintes des circuits analogiques, on préfère, en pratique, concevoir les filtres

numériques de synthèse en fixant un ensemble de circuits analogiques comme filtres

d’analyse. La réponse en fréquence des filtres de synthèse peut être obtenue à

chaque fréquence ω en utilisant les équations de RP connaissant les filtres d’analyse.

Les filtres à Réponse Impulsionnelle Finie (RIF) sont choisis pour réaliser le banc

de filtres de synthèse grâce à leur commodité ainsi que leur simplicité. En utilisant

des filtres RIF, les équations seraient linéaires en termes de coefficients inconnus de

filtres de synthèse. Puis, la réponse fréquentielle des filtres de synthèse peut être

estimée par les filtres numériques à RIF. Le nombre L de coefficients de chaque filtre

de synthèse joue un rôle important en déterminant la distorsion et les interférences

d’aliasings (ou IIC dans le cas à entrée-sortie multiple). Dans la pratique, les

équations de RP sont incompatibles aux fréquences près des bords spectraux (± π
T
).

Pour obtenir une résolution appropriée à la sortie des BFH à l’aide des filtres

de synthèse à RIF, ces fréquences devraient être négligées. À cette fin, l’entrée

analogique x(t) est supposée d’occuper juste l’intervalle [−(1−α) π
T
, (1−α) π

T
] dans

le cas classique où α représente le rapport de sur-échantillonnage. On a constaté

que le rapport optimal de sur-échantillonnage pour des BFH à huit branches est

à peu près de 7%. De même, une partie spectrale de chaque composant d’entrée

dans le cas à entrée-sortie multiple doit être désigné comme bande de garde (BG).

Dans le cas des BFH à sous-bande, le BG couvre des basses ainsi que des hautes

fréquences de chaque composant de sous-bande. Cependant, il suffit que le BG

des BFH à MRT couvre des basses ou des hautes fréquences du spectre de chaque
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composant MRT selon un nombre M pair ou impair de branches respectivement.

1.2.4 Évaluation des BFH à structures différentes

En utilisant une classe simple des circuits analogiques pour le banc de filtres

d’analyse et en négligeant le bruit de quantification, un convertisseur A/N à BFH

à huit branches est conçu et simulé dans ce paragraphe. On suppose que le banc

de filtres d’analyse se compose de circuits du second-ordre (RLC) sauf un qui est

constitué d’un circuit de premier-ordre (RC) en tant que filtre passe-bas. Tous les

circuits de second-ordre ont une bande passante constante. Le banc de filtres de

synthèse est composés par des filtres numériques à RIF comportant chacun 64 co-

efficients. Les résultats sont discutés et comparés pour les architectures classiques,

à sous-bande et à MRT en termes de différents paramètres tels que la résolution

de la sortie et la sensibilité aux erreurs analogiques.

• Sensibilité aux erreurs analogiques

Les tableaux 1.1 et 1.2 montrent la résolution de sortie pour les différentes ar-

chitectures en appliquant les signaux sinusöıdaux et chirp en tant qu’entrée. Ils

démontrent que la résolution de sortie est beaucoup plus élevée pour l’architecture

à MRT et sous-bande que celle classique en l’absence des erreurs de réalisation de

banc d’analyse. En présence des imperfections analogiques, la résolution de sortie

réduit rapidement. En présence d’erreurs de réalisation, la résolution de sortie des

BFH à MRT et sous-bande reste néanmoins approximativement 2 et 1 bit respec-

tivement supérieure à celle des BFH classiques. Par conséquent, les architectures à

entrée-sortie multiple montrent moins de sensibilité aux imperfections analogiques

que les BFH classiques. Pour mieux évaluer la performance de différentes archi-

tectures, le signal d’erreur en sortie de chaque structure est comparé à celui du

cas classique (la figure 1.12). Tous les composants de sortie des BFH à sous-bande

sont nuls sauf la première sous-bande dans laquelle se trouve le signal sinusöıdal

d’origine. Le signal d’erreur des BFH classiques est clairement plus grand que celui

lié au cas à sous-bande et à MRT pour cette entrée sinusöıdale.

• Emploi des techniques aveugles pour corriger les erreurs

Les structures à MRT et à sous-bande sont associées à un SLI pour la relation

entrée-sortie contrairement au cas classique. Les méthodes telles que l’annulation
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Table 1.1. La résolution (en bit) de la sortie pour les différentes architectures des BFH
en présence des erreurs analogiques et en supposant une entrée sinusöıdale.

Table 1.2. La résolution (en bit) de la sortie des BFH à différentes architectures en
présence des erreurs analogiques du banc de filtres d’analyse et en supposant un signal
d’origine chirp.
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Figure 1.12. Le spectre du signal d’erreur pour l’architecture classique (en rouge) et à
sous-bande (en bleu) en supposant un signal d’origine sinusöıdal en fonction de fréquence
normalisée.
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du bruit peuvent être appliquées à la structure à MRT ainsi qu’à celle à sous-bande

afin de corriger les erreurs analogiques. Cependant, la technique de déconvolution

aveugle est seulement applicable dans le cas à MRT. La structure à sous-bande

ne peut pas exploiter les méthodes aveugles telles que la déconvolution. En fait,

celle-ci est valable pour une entrée blanche à profil non-gaussien. En considérant

la structure à sous-bande, cela est équivalent à la blancheur à la fois dans le temps

et dans la fréquence. Par contre, un signal blanc dans le temps ainsi que dans la

fréquence est forcément gaussien. Alors, on ne pourrait pas remplir les conditions

d’une méthode aveugle pour la structure à sous-bande.

• Complexité de l’étape de synthèse

L’étape de synthèse se compose de M filtres numériques dans le cas des BFH

classiques. Néanmoins, on a besoin d’une matrice de filtres numériques (com-

portant M2 filtres) pour réaliser l’étape de synthèse des BFH à MRT ainsi qu’à

sous-bande. Chaque filtre RIF comportant L coefficients effectue L multiplica-

tions afin de calculer sa sortie. Donc, l’étape de synthèse fera respectivement ML

et M2L multiplications dans les cas classique et à entrée-sortie multiple durant

chaque cycle de calcul. D’autre part, une structure à entrée-sortie multiple fournit

M échantillon en tant que sorties à chaque cycle de calcul à l’inverse d’un seul

pour des BFH classique. Alors, le nombre de multiplications par rapport à chaque

échantillon de sortie sera le même pour les deux groupes de BFH (L multiplication

par chaque échantillon de sortie). En outre, les BFH à entrée-sortie multiple n’ont

pas besoin des blocs de Zero-padding (étalement des zéros) qui sont utilisés pour

l’architecture classique. En phase de conception, une différence encore importante

existe. En supposant N points de fréquence en phase de conception de l’étape de

synthèse, les BFH classiques sont associés à une matrice d’analyse de la dimension

MN ×MN . Par contre, les structures à entrée-sortie multiple correspondent à de

petites matrices d’analyse de la dimension M × M à chaque point de fréquence.

Il est évident que l’on a besoin d’un beaucoup plus grand nombre de calcul pour

obtenir l’inverse de la matrice de dimension MN ×MN que celle des matrices de

dimension M × M . Ainsi, les BFH classiques dispose d’une phase de conception

beaucoup plus complexe que celle de la structure à entrée-sortie multiple. Cette

différence serait très importante si un algorithme adaptatif était employé afin de

corriger les erreurs analogiques
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1.2.5 Conclusion

Les différentes architectures des BFH pour réaliser des CAN en parallèle sont

démontrées comme étant de bons candidats pour réaliser le concept de la radio

logicielle. Deux architectures à entrée-sortie multiple nommée sous-bande et MRT

sont présentées et les équations de RP sont décrites ainsi que la méthode de con-

ception associée. Les BFH classiques, à sous-bande et MRT sont dans le domaine

temporel. Les architectures à entrée-sortie multiple paraissent moins sensibles aux

erreurs analogiques en terme de résolution de la sortie que celle classique. En

outre, les deux groupes de BFH ont la même complexité de calcul. Enfin, les ar-

chitectures à entrée-sortie multiple peuvent être corrigées en ce qui concerne les

erreurs analogiques en utilisant la méthode d’annulation du bruit contrairement au

cas classique. Par contre, les méthodes aveugles telles que la déconvolution n’est

applicable qu’à la structure à MRT.





Chapter 2

Introduction

Minds are like parachutes. They only function when they are open.

- J. Dewar

The relation between an analog signal and its sampled form has been studied in

the first half of twentieth century [12, 13]. The Analog to Digital (A/D) as well as

Digital to Analog (D/A) converters are often one of the most critical components

in the applications such as the storage of real time signals, radar signal processing

systems, digital time-base correction and digital enhancement of images[4]. The

rate and precision of conversion are two important factors in the design and use of

A/D or D/A converters. The conversion rate is associated with the sampling clock

and represents the speed of circuit. The precision of conversion is measured in bits

or by Signal to quantization Noise Ratio (SNR) at the output. Figure 2.1 illus-

trates the actual different types of A/D converters [14]. The important challenge

in A/D and D/A conversion is to achieve both of high-speed and high-resolution

conversion at the same time, particularly for the communications systems. This

feature is vital in some equipments and applications such as radar receivers, net-

work analyzers, test equipments like oscilloscopes, modems and medical imaging

systems[9]. The resolution, and thus the dynamic range of a Nyquist rate A/D

converter (one output sample per each period of Nyquist rate) is limited by the

component matching or offset spread at its front-end. The flash (or all parallel)

A/D Converters (ADCs) represent the most commonly used architecture for high

speed A/D conversion. In this case, the conversion rate is fundamentally limited
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Figure 2.1. Different types of A/D converter in terms of resolution (in bits) versus the
sampling rate (in samples per second) extracted from [14].

by the decision time for the latches comparing the input with the threshold lev-

els [15]. However, the complexity of flash ADC circuit grows exponentially with

the number of bits of the resolution. Accordingly, the flash converters are practi-

cally designed with about 10 bits in a single chip (see figure 2.1). Flash monolithic

A/D converters are not available at a sufficiently low cost or price for commercial

applications. Flash converters require a large die size and/or fairly exotic fabrica-

tion processes so that the relevant integrated circuits have remained too expensive

for many applications such as television receivers. In addition, it is exceedingly

difficult to integrate analog part with a VLSI digital signal processor for Flash A/D

or D/A conversion technique because of the large ADC die size and for process

bandwidth requirements.

Considering figure 2.1, oversampling A/D converters called delta-sigma (∆Σ) con-

verters exist on the extreme of resolution. Over the last few years, the low cost

and availability of quality ∆Σ devices have had a considerable impact on the

hi-fidelity and voice-band audio. ∆Σ ADC can now provide almost 24 bits of reso-
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Figure 2.2. ADC applications in the speed/resolution space considering the equi-power
contours extracted from [18].

lution for low frequency (about 100Hz) biomedical applications and easily produce

the accuracy level of 20 bits for hi-fidelity audio systems [16]. However, a large

OverSampling Ratio (OSR) is necessary to provide the high precision conversion.

The total sampling rate is very limited because of the large OSR and practical

constraints of electronic circuits [17]. The choice of an ADC or DAC (Digital to

Analog Converter) for a specific application depends also on the other parameters

such as power dissipation. In many cases, the throughput of ADCs is set by the

allowable power dissipation [18]. Figure 2.2 shows several ADC applications in the

speed/resolution space with contours of equal power consumption.

The demand for A/D or D/A converters with higher speeds has dramatically

increased for realizing the new communications concepts such as Software-Defined

Radio (SDR) approach [19, 20]. Nowadays, the performance of ADCs cannot

still fulfill the requirements of the wide-band receiver of SDR approach. The

available silicon technologies do not provide the performance required and the

current converters are far from meeting them [21]. The primary target of SDR is

to be compatible with various wireless communication protocols [8]. Stimulated

by the need for a global communication network, SDR will form a new industry

on an even larger scale than the personal computer industry [22, 2]. Figure 2.3

shows the general idea of software radio [23]. The receiver and transmitter of

SDR are open to a wider segment of spectrum so that the conventional analog
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Figure 2.3. General idea of software-defined radio systems. The wide-band ADC
and DAC are necessary for digitally realizing the conventionally analog parts such as
modulator/demodulator and channelizer extracted from [26].

Figure 2.4. Example of a re-
ceiver topology [27].

sharp filters and channelizer are substituted by digital filtering [24, 25]. Then,

the cost of receiver is independent of the channel number [8]. Moreover, for some

years, the tendency is to place the ADC nearest the antenna. This implies that

the converter processes wide-band signal and delivers a digital signal with a large

resolution [27]. An exemplary architecture for this kind of receivers is shown in

figure 2.4. Considering the large demands for higher sampling rates as well as

the practical constraints of common A/D converters, the use of A/D converters in

parallel has been attractive for four decades. In 1980, Black and Hodges proposed

a new technique of high-speed A/D conversion which is realized through an array

of time-interleaved parallel converters [28, 29]. This approach is able to provide

a high sampling rate, a considerable reduction in die size consumption and power

dissipation as well as it includes the on-chip compatibility with dense digital signal

processors. Hewlett-Packard presented an 8 Gs/sec, 8 bit time-interleaved ADC

with a signal bandwidth of nearly 2 GHz [4]. Timing errors, harmonic distortions

and nonlinearities due to the mismatch between individual A/D converters, clock

jitters of two rank sampling and uncontrolled quantization noise are the great

problems of this technique [9, 30].
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Generalized sampling theorem has been another inspiration for offering new parallel

A/D converters. As a simple form of generalized sampling theorem, Shannon in his

classic paper had even announced that a low-pass signal may be reconstructed if

the samples of signal and its derivatives are available at a lower rate as follows [12]:

One can further show that the value of the function and its derivative

at every other sample point are sufficient. The value and first and

second derivatives at every third sample point give a different set of

parameters which uniquely determine the function.

An early result along these lines was given by Fogel, namely, that sampling a low-

pass band-limited (|Ω| ≤ σ) signal and its first (m − 1) derivatives, each at a rate

of 2σ
m

, suffices for a complete reconstruction of the analog signal [31]. Consider-

ing these simple extensions of sampling theory, Papoulis proposed the generalized

sampling theorem showing that the complete reconstruction may be possible if

any (m − 1) Linear Time-Invariant (LTI) filtered forms of input signal are avail-

able [32]. Based upon generalized sampling theorem which was offered by Papoulis

and later discussed and extended by the others [33], multirate filter banks were

proposed as a special extension of time-interleaving technique for A/D and D/A

conversion [34, 35, 36]. Petraglia and Mitra offered a high-speed A/D conversion

technique employing Quadrature Mirror Filter (QMF) banks [37]. Figure 2.5 illus-

trates this structure [38]. It includes two filter banks. The first one called analysis

filter bank is a discrete-time filter bank and the other one consisting of digital

filters is called synthesis filter bank. This idea has then been followed and studied

by the others [39, 9, 10]. The discrete-time Hybrid Filter Bank (HFB) architecture

overcomes the problems of extremely high sensitivity to the mismatch of convert-

ers and timing errors from which time interleaving structure suffers much [3]. The

filters employed in the HFB architecture isolate the converters of each branch and

attenuate the aliasing errors caused by gain and phase mismatches existing be-

tween every pair of channels. The analysis filters of discrete-time type used in

this structure are commonly realized by Charge Coupled Devices (CCD). CCD

architecture is well suited for low power and monolithic purposes but it is nev-

ertheless limited to the moderate speeds (tens of MHz) and it would no longer

be low power for high resolution applications [4]. Anyway, it is necessary to have
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Figure 2.5. Parallel A/D converter using discrete-time parallel structure. Analysis
filter bank includes Switched-Capacitor (SC) circuits.

a very fast and very high-precision sampler for input stage of discrete-time HFB

A/D converters. Furthermore, Switched-Capacitors (SC) circuits employed in the

input stage have to function at the same frequency that sampler operates. Noises

generated by operational amplifiers and switches, limited gain-bandwidth product

of operational amplifiers and limited capacitor ratio accuracy are the non-ideal

effects of SC analysis filters representing the main sources of errors [19, 40].

Considering these disadvantages of discrete-time filter bank and its realization

difficulties in A/D or D/A conversion, analog filter banks have been offered to

operate instead of discrete-time analysis filter bank. Figures 2.6 and 2.7 show

these continuous-time HFB structure for A/D and D/A converters respectively.

This idea was firstly presented and dealt with by Brown [34]. The technique

was later discussed and developed by Velazquez [41, 42], Oliaei [43] and Lowen-

borg [44, 45, 46]. A frequency analysis of continuous-time HFB-based A/D con-

verters has been proposed in [47]. In this frequency analysis, the distortion and

interference (aliasing) terms are represented in terms of 2M − 1 expressions of

analysis/synthesis filters for an HFB having M branches. Anyway, it may be in-

terpreted using only M terms considering periodic extensions of analysis filters as

in appendix A [11]. The approximations of standard filters Butterworth, Tcheby-
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Figure 2.6. The structure of continuous-time HFB-based A/D converter.

chev and Cauer have been tried as the analog analysis filters [44, 48]. On the

other hand, the feasibility of analog filters is very important in the design of HFB

structures, particularly considering the constraints of electronic circuits at high

frequencies. The simply realizable first- and second-order circuits including RC

and RLC circuits may be a good candidate for this purpose [49, 50]. Infinite-

Impulse Response (IIR) digital filters have been tried in the synthesis stage as well

as Finite-Impulse Response (FIR) ones for two-channel [51, 52] and eight-channel

HFB structures [53]. A slight improvement in the performance of HFB ADC has

been reported for IIR synthesis filters but the instability problem remains unsolved

in this case. Moreover, FIR synthesis filters maintain a linear relationship in terms

of the coefficients of synthesis filters which may be useful for the compensation

purposes (refer to chapter 5).

In the case of first- and second-order analysis filters, the performance of HFB struc-

tures in terms of aliasing interference is not so acceptable unless an oversampling

ratio is used [54]. An oversampling ratio of 7% provides an obvious improvement

for an eight-channel HFB structure as shown in the section 3.2.4 [54]. The Perfect

Reconstruction (PR) equations are generally used for designing the FIR synthesis

filters assuming the fixed analog analysis circuits [55, 56]. However, other criteria
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Figure 2.7. The architecture of continuous-time HFB-based D/A converter.

in terms of distortion and interference (aliasing) functions have been tried [57, 58].

Shu et al. have proposed a criterion based on H∞ to which an optimization al-

gorithm such as Least Squares (LS) may be applied for obtaining the synthesis

filters [59, 60]. The proposed Minmax algorithm leads to an optimization criterion

representing the sum of distortion and aliasing absolute values except a weighting

factor influencing the distortion term [59]. Although, H∞ optimization does not

provide a large improvement but Shu et al. offer a model of HFB fully described

in discrete-time domain neglecting the quantization process [59]. This model may

be interesting considering chapter 5 where a discrete-time model is obtained from

another point of view. The quantization noise has often been neglected for con-

centrating on the aliasing interferences in the mentioned works. However, the

quantization and word-length effects have been studied in the HFB structures as

well [61]. Assuming a high-resolution A/D converter at each branch of HFB ADC,

it is possible to neglect quantization noise for studying the aliasing interferences

which would be the dominant limit of output resolution in this case. This assump-

tion is correct as long as the resolution of each branch ADC is sufficiently large

compared to the resolution associated with the aliasing interference terms (because

aliasing interferences may be considered like the quantization noise as an additive
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noise which restricts the output resolution [62].

The real challenge in the implementation of HFB-based A/D converters is nev-

ertheless its high sensitivity to the realization errors [63]. In fact, a very small

deviation in the parameters of analysis filter bank results in a large degradation

of performance so that the respective HFB ADC would no longer be useful [64].

The realization errors of analog analysis filters are rarely avoidable. The errors

are associated with either the time-varying sources such as temperature drifts or

the fixed unknown origins like analog imperfections of fabrication phase. Analog

methods for decreasing the realization errors such as laser trimming and compen-

sated circuit design are so expensive. On the other hand, these techniques are not

at times applicable for example in the HFB case (see section 3.3.1). Moreover, the

HFB-based A/D converters are so sensitive to the realization errors that a small

deviation 0.5% from nominal values leads to a large degradation of performance

as it is shown in section 3.3.2.1 [5]. The performance in the presence of even small

realization errors degrades so that the HFB ADC will be useless unless a com-

pensation technique is considered [5]. Digital techniques have been considered for

overcoming the problem of high sensitivity to the realization errors recently [65, 6].

However, the proposed methods are often so limited to some types of errors [6, 9]

or to a very specific case [66, 67]. Considering the realization errors in a general

case, Pinheiro et al. tried to optimize the design of HFB structures in terms of

realization errors [7]. However, the proposed solution is not a compensation tech-

nique. They have just proposed a weighted criterion of distortion and aliasing

terms which only leads to less than five dB of improvement. This improvement is

considered for the classical HFB-based ADC without any oversampling. When no

oversampling is used, the HFB structure is less sensitive to the realization errors,

but the related performance is not acceptable for practical applications as shown

in section 3.2.4. In fact, it is necessary to look for a mechanism of compensation

being capable of eliminating the effects of realization errors as much as possible.

This method would be an adaptive algorithm to cope with the time-varying errors

such as temperature drifts as well.

This thesis is an attempt to define digital methods aiming at firstly estimating,

then compensating analog non-idealities in the electronic circuits particularly in

some special case of ADCs, namely HFB-based structures which are supposed to be
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Figure 2.8. General diagram for digitally estimating and compensating the analog
non-idealities of a system.

a very promising way for future, wide-band, versatile applications. This work takes

place in the more general context of trying to use the power of digital methods

in order to correct the compulsory analog part of general systems (see figure 2.8).

This problem is linked with some kind of blind estimation since neither errors (sys-

tem) nor input signal are known. The main objective of this thesis is firstly to

study the effects of realization errors on HFB-based A/D converters to highlight

the origins of sensitivity to realization errors. Then, the capability of compensa-

tion for these structures is discussed and reviewed so that new HFB architecture

may be obtained in which the realization errors can be compensated.

The organization of this thesis may briefly be described as following. In the next

chapter 3, HFB-based A/D converters are reviewed and their performance is stud-

ied in terms of oversampling procedure and realization errors. Considering different

optimization techniques, the sensitivity to realization errors is discussed as well as

the important factors contributing in the sensitivity. Chapter 4 deals with the

blind equalization techniques. To digitally compensate the realization errors of

analog circuits, Second-Order Statistics (SOS) may be used as well as Higher-

Order Statistics (HOS). A survey on the blind estimation methods is provided,

and both SOS and HOS are explored for applying to the analog circuits. It is also

shown that the proposed blind methods in this chapter face with some problems

for applying to the HFB-based A/D converters. In chapter 5, the possibility for

compensating the realization errors of HFB structures is firstly discussed. Then,

some new structures of HFB-based A/D converters are proposed. The proposed

Multiple-Input Multiple-Output (MIMO) models of HFB structures are shown to

be digitally compensable. The performance and sensitivity of new MIMO HFB

structures are simulated and described as well. Finally, the chapter 6 of conclu-

sion provides a short review on the results of the preceding chapters. Besides, the
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possible architectures of HFB-based A/D converters are offered so that a compen-

sation method is integrated. The perspectives and feasibility of new structures are

discussed as well.



Chapter 3

Classical Hybrid Filter Bank A/D

converters

Doubt is not a pleasant condition, but certainty is absurd.

- Voltaire

3.1 Introduction

Sampling rate and digital precision (in terms of resolution) are two important issues

in dealing with A/D or D/A converters. Wide-band A/D or D/A converters are

very wanted in new domains of telecommunications such as the software-defined

radio approach [4]. Continuous-time Hybrid Filter Bank (HFB) structure has been

regarded as a suitable candidate for that and has been studied for two decades [34].

HFB structures may be used to practically implement parallel A/D or D/A con-

version [4]. Figures 2.6 and 2.7 show the (continuous-time) HFB structure for

A/D and D/A conversion respectively. This chapter focuses on the classical ar-

chitecture of maximally-decimated HFB-based A/D converters. According to the

figure 2.6, an HFB-based A/D converter uses M A/D converters sampling at the

rate of 1
MT

which is M times less than the Nyquist rate 1
T

associated with the

analog input x(t). The analog input signal x(t) is supposed to be limited to the

frequency band of [−π
T

, π
T
]. An HFB-based A/D converter consists of analysis and

synthesis filter banks. In the continuous-time HFB case, the analysis and synthesis
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Figure 3.1. Simplified HFB-based A/D converter considering the maximally-decimated ar-
chitecture. Neglecting the quantization process, each A/D converter has been substituted by a
simple sampler.

filter banks contain M analog and digital filters respectively. The digital output

of classical HFB-based A/D converter is subject to the frequency distortion and

interferences [4]. The interferences called aliasing terms are originated from the

spectral overlapping at each branch of HFB structure. Spectral overlapping is

due to the undersampling process present at each branch. Digital synthesis filters

try to eliminate these spectral overlapping terms. Nevertheless, practical digital

synthesis filters are unable to completely suppress the aliasing terms appearing at

the output of HFB structure because the frequency responses of ideal synthesis

filters cannot be realized. It is due to the non-ideal aspects such as the limited

capacity of Finite-Impulse Response (FIR) synthesis filters. Besides, interferences

may be intensified because of practical constraints such as the analog imperfec-

tions of analysis filter bank. The reconstructed signal may have some distortions

in addition to the additive aliasing terms as well. The distortion effects may often

be compensated whilst, aliasing terms cannot be avoided. Aliasing terms are gen-

erally the dominant restricting source of resolution in the realization of HFB-based

A/D converters [62].

To better pursue the aliasing and distortion effects, the quantizer parts of con-

version are ignored throughout this report unless the opposite is indicated [62, 14].
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Thus, neglecting quantizer parts, the A/D converter of each branch may be substi-

tuted with an ideal sampler. Figure 3.1 represents the classical HFB architecture

for A/D conversion neglecting quantization process [4, 9].

The aliasing terms are the main restricting factors of output resolution in the HFB

configuration. Lowenborg et al. proposed a general formulation to describe the

aliasing and distortion functions associated with an HFB structure [62, 45, 44].

Using these equations, there are two possible methods for designing HFB struc-

tures. As the first method, it is theoretically possible to design analysis analog

filters on the base of presumed synthesis digital filters. Secondly, it is also possible

to design synthesis digital filters on the basis of a presumed set of analysis analog

circuits. The second method is practically preferred since it may deal with the

realizable analog circuits [55, 68]. Considering simple FIR digital filters at the

synthesis stage along with first- and second-order electronic circuits (RC and RLC

filters) in the analysis filter bank, Petrescu et al. minimize the aliasing terms in

order to obtain the FIR synthesis filters [54]. They have proposed to use a small

oversampling ratio to handle the associated aliasing problems. An 8-channel HFB

structure is considered with the Least Squares (LS) technique for designing the

FIR synthesis filters. It is based on a fixed presumed analysis filter bank (one

RC circuit as low-pass filter along with seven RLC circuits as band-pass filters

with equal passing bands). Using a small oversampling ratio, HFB-based A/D

converters have shown a large reduction in the aliasing levels [54]. However, a high

sensitivity to the analog imperfections of analysis filters have been reported in this

case as shown in the section 3.3 [5].

In this chapter, design of synthesis filters is reviewed for the HFB-based A/D

converters. To have a better view on the reconstruction constraints, the Perfect

Reconstruction (PR) equations are demonstrated in the matrix form as well as the

relationships associated with the design of HFB filter banks. The HFB-based A/D

converters are discussed in terms of different values of oversampling ratio and the

optimal oversampling ratio is obtained in the section 3.2. Then, section 3.3 pro-

vides a survey on the sensitivity to the analog imperfections in the HFB structures.

The Total Least Squares (TLS) optimization method is described and applied to

HFB structures in order to possibly reduce the sensitivity to analog imperfections

in 3.3.2.2. Finally, the feasibility of HFB-based A/D converters is discussed and it
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is demonstrated that a compensation technique is necessary for using the classical

HFB structures in the conclusion section 3.4.

3.2 Designing HFB A/D converters

3.2.1 Perfect reconstruction equations

Considering the classical architecture of HFB-based A/D converters (figure 3.1),

the synthesis filters (Fi(z), i = 0, · · · ,M −1) are designed so that the contribution

of aliasing terms in the output is eliminated or minimized. The mutual information

between the branches of HFB is exploited in the synthesis filter bank. Considering

the problems of practical realization, analysis filters are assumed to be chosen and

fixed firstly (refer to 3.1). Realization of HFB A/D converter is feasible if and

only if the presumed analysis filters hold some conditions [33, 34]. This condition

implies the existence of a unique series of synthesis filters (at least in the frequency

domain) which ideally reconstructs the original analog signal without any aliasing

or distortion [33, 34]. This condition supposes some constraints on the analysis

filters (orthogonality of the respective analysis matrix explained in section 3.2.2).

However, the approximation of respective ideal synthesis filters using real FIR

sequences fails to completely eliminate the aliasing terms. A wide-band HFB-

based A/D converter is achievable if the ensemble of the analysis/synthesis filters

are obtained from the practical viewpoint so that the aliasing terms tend to zero

or remain in an acceptable range.

Considering the appendix A, the frequency representation Y (ejω) of the output y[n]

may be described in terms of the analysis and synthesis filters and input signal.

For convenience, an intermediate variables H
′

k(jΩ) is defined as follows (for more

details refer to the appendix A). H
′

k(jΩ) represents an analog filter as following:

H
′

k(jΩ) =





Hk(jΩ) Ω ∈ [− π
T
, + π

T
)

0 elsewhere

where Hk(jΩ) is the kth analog analysis filter. X̃(jΩ) and H̃k(jΩ) are defined as

the periodic extensions of X(jΩ) and H
′

k(jΩ) respectively with the period Ω◦ = 2π
T
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(refer to the appendix A). In fact, H̃k(jΩ) is achieved from periodically extending

the kth analog analysis filter (with the period 2π
T

where T represents the Nyquist

period) limited already to the band [− π
T
, + π

T
]. Using these terms and considering

figure 3.1, the output of classical HFB-based A/D converter may be described as

follows (see appendix A):

Y (ejω) =
1

MT

M−1∑

m=0

X̃(j
ω

T
− j

2π

MT
m)

M−1∑

k=0

H̃k(j
ω

T
− j

2π

MT
m) · Fk(e

jω) (3.1)

where ω represents the frequency associated with Discrete-Time Fourier Transform

(DTFT) [69]. Fk(e
jω) stands for the kth synthesis filter. Considering the above

relationship (3.1), Tk(e
jω) for 0 ≤ k ≤ M − 1 is defined as following:





T0(e
jω) = 1

M

∑M−1
k=0 Fk(e

jω) · H̃k(j
ω
T
)

Tm(ejω) = 1
M

∑M−1
k=0 Fk(e

jω) · H̃k(j
ω
T
− j 2π

MT
m)

m=1,. . . ,M -1

(3.2)

where T0(e
jω) is the distortion function and {Tm(ejω), m = 1, 2, · · · , M − 1} rep-

resent (M − 1) aliasing functions. Perfect Reconstruction (PR) of analog input

would be possible under some criteria. PR conditions would be useful for designing

one of the analysis or synthesis filter bank while the other one is already known.

To maintain PR conditions, the following set of equations are sufficient:





T0(e
jω) = e−jωnd

Tm(ejω) = 0 m=1,. . . ,M -1

(3.3)

nd stands for an arbitrary integer (or a real number in global view). The delay term

e−jωnd has been considered instead of ideal distortion term (unity) to maintain the

causality condition. It has been proposed to use the half length of FIR synthesis

filters [70]. This value will be used throughout the simulations.
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3.2.2 Designing filter banks of HFB-based A/D converter

To follow conveniently the design phase, it is better to summarize the previous re-

lationships in a matrix-vectorial format. Accordingly, above-mentioned distortion-

aliasing expressions may be described at each frequency ω as follows:

T (ejω) =
1

M
H(j

ω

T
)F (ejω) (3.4)

where the associated vectors are considered as follows:

T (ejω) =




T0(e
jω)

T1(e
jω)

...

TM−1(e
jω)




M×1

F (ejω) =




F0(e
jω)

F1(e
jω)

...

FM−1(e
jω)




M×1

and H(j ω
T
) at the frequency ω is:

H(j
ω

T
) =




H̃0(j
ω
T
) · · · H̃M−1(j

ω
T
)

H̃0(j
ω
T
− j 2π

MT
) · · · H̃M−1(j

ω
T
− j 2π

MT
)

...
...

...

H̃0(j
ω
T
− j 2π

MT
(M − 1)) · · · H̃M−1(j

ω
T
− j 2π

MT
(M − 1))




M×M

The M equations included in (3.4) correspond to a frequency point ω. To approx-

imate the unknown filter bank, these equations may be considered in N (N ≫ M)

frequencies. N frequency points should be spread out throughout the band of

interest (here
[−π

T
, π

T

]
) so that the approximation of unknown filter bank may

be suitable. These frequencies are chosen equally spaced throughout this thesis.

Now, assuming N frequency points {ωi, i = 1, 2, · · · , N}, the equality (3.4) may

be generalized in the matrix form as follows:

T =
1

M
HF (3.5)
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where the new parameters shown in bold are described as following:

T =




T (ejω1)

T (ejω2)

...

T (ejωN )




MN×1

F =




F (ejω1)

F (ejω2)

...

F (ejωN )




MN×1

and the analysis filters matrix H is:

H =




H(j ω1

T
)

H(j ω2

T
) 0

0
. . .

H(j ωN

T
)




MN×MN

Considering the relationship (3.5) and PR conditions, the analysis filters matrix

H is evidently required to be non-singular (a matrix with non-zero determinant).

Otherwise, the respective architecture of parallel conversion is no longer useful

because it would be impossible to reconstruct the analog input through the outputs

of HFB branches. In other words, the equations (3.3) and (3.5) would not lead

to a solution. This condition (non-singularity of H) is implicitly supposed to

be maintained throughout this thesis. Therefore, using (3.5), the aliasing and

distortion terms can be extracted for N frequency points. To have the perfect

reconstruction, it is required that the aliasing terms are all null. The distortion

function in this case has to be equal to unity, but to have the capability of realizable

causal synthesis filters, a delay term is generally considered. In other words, the

output y[n] of the mentioned HFB A/D converter will provide the exact samples

of a shifted version x(t − ndT ) of the analog input x(t) with the sampling rate of
1
T

provided that the PR conditions are held (noting that the sampling rate used

at each branch of HFB architecture is 1
MT

or M times less than the global Nyquist

rate of 1
T
). Supposing the delay length nd, the equations associated to the PR
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conditions will then be as following:

HF = B (3.6)

where the new constant vector B is defined as follows:

B =




B(ejω1)

B(ejω2)

...

B(ejωN )




MN×1

that B(ejωi) =




Me−jωind

0

...

0




M×1

i ∈ {1, 2, · · · , N}

Invoking the prerequisite implicit condition for the PR equations (it means that H

is a non-singular matrix), the matrix equation (3.6) may be solved. Then, it leads

to a special frequency response for the synthesis filters represented by F◦ if the

analysis filters are known a priori. The vector of synthesis filters F◦ is interpreted

as the ideal synthesis filters (of course defined at only N frequency points) since the

perfect reconstruction may be accomplished if F◦ is used as the synthesis filters.

Assuming a known analysis filter bank, the problem is to design the respective

suitable digital synthesis filters. FIR filters are conveniently-realizable and need

only a limited resource of memory and processing. Using FIR filters, the equations

would be linear in terms of the unknown coefficients of synthesis filters as well.

Considering IIR digital filters, the problem will be no longer linear [71].

A series of FIR filters are considered as the synthesis filters. They are assumed to

have L coefficients. The impulse responses of synthesis filters are then regarded

as the sequences {fk[n], k = 0, 1, · · · ,M − 1}. fk[n] is zero except for the range

0 ≤ n ≤ L − 1. Thus, fk[n] is a real vector as following:
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fk =




fk[0]

fk[1]

...

fk[L − 1]




L×1

that k ∈ {0, 1, . . . , M − 1}

To obtain the synthesis filters, the equation (3.6) should be described in terms of

the vectors {fk[n], k = 0, 1, · · · ,M −1}. F(ejω) used in (3.4) may be related to the

impulse responses {fk[n], k = 0, 1, · · · ,M − 1} through the matrix A of Fourier

transform as following:

A.f = F (3.7)

where f is the overall vector of FIR synthesis filters as follows:

f =




f0

f1

...

fM−1




ML×1

Considering the vector F used in (3.6), the matrix A of Fourier transform is:

A =




A(ejω1)

A(ejω2)

...

A(ejωN )




MN×ML
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that A(ejωi) is itself another matrix described as:

A(ejωi) =




aT (ejωi)

0
. . . 0

aT (ejωi)




M×ML

= IM ⊗ aT (ejωi)

where IM is the identity matrix (M ×M) and ⊗ stands for the Kronecker produc-

tion. The vector of aT (ejωi) is described as following:

aT (ejωi) =
[
1 , e−jωi , · · · , e−jωi(L−1)

]
1×L

Finally, according to the preceding explanations, the impulse response f of synthe-

sis filters may contribute in the relationship as follows:

HF = B Af = F (3.8)

The first matrix equation in (3.8) (associated with (3.6)) consists of a square

matrix H which should be non-singular. Otherwise, the relative HFB architecture

would be unable to reconstruct the original signal as discussed earlier. Therefore,

it yields a unique solution. The non-ideality emerges as soon as the second matrix

equation in (3.8) (associated with the FIR approximation) is considered. The

matrix A is not square (MN × ML). It is necessarily a tall matrix(N > L) to

provide an acceptable interpolation. Then, the solution is not unique and can only

approximate the associated equations. The problem of designing HFB structure

using FIR filters for the synthesis stage is effectively only a problem of digital filter

design (FIR filters) which are required to fit a prescribed form. The desired vector

f is real to provide real outputs. To better analyze and follow the result, the right

equation in (3.8) may be described through the real vectors as following:

Af = F (3.9)
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where A and F are:

A =




Re(A)

Im(A)




2MN×ML

F =




Re(F)

Im(F)




2MN×1

Re and Im stand for the real and imaginary parts respectively. It can be also

applied to the left equation in (3.8) as follows:

H.F = B (3.10)

where the new matrix H and vector B are defined as:

H =




Re(H) −Im(H)

Im(H) Re(H)




2MN×2MN

B =




Re(B)

Im(B)




2MN×1

3.2.3 A simply-realizable class of HFB-based A/D convert-

ers

Using a simply-realizable class of analog filters for the analysis filter bank, a group

of HFB-based A/D converters is designed and simulated in this section. It is

supposed that the analysis filter bank is composed of the second-order RLC circuits

except one first-order RC circuit as low-pass filter. All the second-order RLC

circuits are supposed to have a constant passing band ( π
MT

) as described in [50, 49].

For example, figure 3.2 shows the frequency responses of the mentioned analysis

filters for an eight-branch HFB structure. Regarding the most straight way, it

is possible to solve the respective series of the equations (3.9) and (3.10) to find

the coefficients of the FIR synthesis filters. This may be established through two

following methods:

• Local optimization: Two matrix equations (3.9) and (3.10) may be sep-

arately solved (or locally optimized). Regarding to this method, (3.10) is

solved firstly considering N arbitrary frequency points (N >> L). Invoking
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the non-singularity of the analysis matrix H, the solution F◦ is:

F◦ = H
−1.B (3.11)

F◦ is called the ideal synthesis filters. Secondly, F◦ is substituted in the

equation (3.9). Using the Least Squares (LS) optimization method, the ap-

proximated FIR synthesis filters f◦ may be obtained. Thus, the impulse

response of FIR synthesis filters is:

f◦ = A
†
F◦ = (AT

A)−1
A

T
F◦ (3.12)

where (.)† represents the pseudo-inverse of operand matrix. According to the

LS algorithm, the solution is achieved from minimizing a criterion as follows:

f◦ = arg min
f

‖Af − F◦‖ = arg min
f

M−1∑

k=0

‖T F(fk[n]) − F◦
(k)‖ (3.13)
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Figure 3.2. Absolute value of frequency responses of the analysis filters versus normalized
frequency for an exemplary eight-branch HFB. The analysis filter bank consists of second-order
RLC circuits except a first-order RC circuit as low-pass filter.
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where T F(fk[n]) is the discrete-time Fourier transform of the FIR filter fk[n]

and F◦
(k) represents the ideal frequency response of the kth FIR synthesis

filter. Each of M FIR synthesis filters has its distinct coefficients, then the

above equality may be described as:

min
M−1∑

k=0

‖T F(fk[n]) − F◦
(k)‖ =

M−1∑

k=0

min ‖T F(fk[n]) − F◦
(k)‖ (3.14)

The relation (3.14) reveals that the solution is obtained as if the FIR synthesis

filter of each branch is independently estimated through applying the LS

technique.

• Global optimization: Another option is to integrate the equations (3.9)

and (3.10) and to solve them simultaneously as following:

(H.A)f = B (3.15)

where the real vector of f represents the impulse response of FIR synthesis

filters. Applying the LS technique to (3.15), it yields:

f◦ = (HA)†B = [(HA)T (HA)]−1(HA)T
B (3.16)

According to the LS technique, f◦ is equivalently achieved when under-

mentioned criterion is minimized:

f◦ = arg min
f

‖(HA)f − B‖

= arg min
f

‖H[Af − H
−1

B]‖

= arg min
f

‖H[Af − F◦]‖

where the non-singularity of H has implicity been used to guarantee the exis-

tence of its inverse matrix. The analog analysis filters used in the simulation

are approximately orthogonal (due to the distinct passing bands). This re-

sults in a quasi unitary analysis filter matrix (HH
H ∼= I). Accordingly, both

local and global optimizations lead to the same solution. The simulations

confirm this property as well.
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According to the matrix analysis theory, following relationship may be consid-

ered [71]:

σm.‖∆F‖ ≤ ‖H[Af◦ − F◦]‖ ≤ σ1.‖∆F‖ (3.17)

where

∆F = Af◦ − F◦

∆F represents the deviation from the ideal synthesis filter (F◦). σ1 and σm are

the largest and the least singular values (the first and the last or 2MN th singular

values) associated with the analysis matrix H. Meanwhile, the minimum occurs

when the real vector [Af − F◦] is parallel to the one of Singular Value Decompo-

sition (SVD) vectors of H which is associated with the least singular value σm.

This remark will be used in the analysis of sensitivity (section 3.3). According to

the preceding discussions, both local and global optimization methods lead to the

same synthesis filters for classical HFB structure. The equality of these methods

originates from the choice of analysis filters which provides a unitary analysis ma-

trix H. It is important to remind that the local and global optimization methods

do not lead to the same solution in the oversampling case (subsection 3.2.4).

Figure 3.3 shows the impulse response of the synthesis filters obtained for a two-

channel HFB structure (M = 2) assuming the length of 64 coefficients for the FIR

synthesis filters. Figure 3.4 illustrates the respective distortion and aliasing func-

tions in dB versus normalized frequencies. If the number of coefficients of the FIR

synthesis filters is chosen larger than 64, there will be no considerable reduction in

the aliasing terms, but the fluctuations increase. Besides, using the larger values of

delay nd (nd > 32), the fluctuations of the aliasing terms reduce. The aliasing and

distortion functions for the same two-channel HFB considering nd = 42 is shown

in figure 3.5. It is seen that the fluctuations have decreased so much. The average

interference (aliasing terms) nevertheless rises slightly. It is necessary to mention

that if we change either the delay length or the number of coefficients of the FIR

synthesis filters, there will be no important effect on the maximum value of the

aliasing term. The maximum aliasing appears approximately robust and constant.

This trial has been repeated for a structure including 8 branches. Analysis filter

bank includes an RC low-pass filter at first branch but second-order RLC circuits

are used for the other seven branches (figure 3.2). The analysis filters are designed
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Figure 3.3. Impulse response of the synthesis filters for a two-channel HFB structure. The
analysis filter bank includes an RC and an RLC circuit. FIR filters have 64 coefficients and nd

is 32.

Figure 3.4. Distortion
and aliasing terms (in dB)
for a two-channel HFB
structure. The analysis
filter bank includes an RC
and an RLC circuit. FIR
synthesis filters have 64
coefficients and nd is sup-
posed to be 32.
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with a constant passing band of π
8T

. Synthesis filters are supposed to be FIR dig-

ital filters with 64 coefficients. Figure 3.6 illustrates the respective aliasing and
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Figure 3.5. Distortion
and aliasing terms (in dB)
for a two-channel HFB
structure. The analysis
filter bank includes an RC
and an RLC circuit. FIR
synthesis filters consist of
64 coefficients and nd is
42.
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distortion functions (in dB) versus normalized frequencies.

When the FIR synthesis filters consist of larger number of coefficients, no impor-

tant change is seen in the performance except a little improvement in aliasing like

to the two-branch case. For example, using 128 coefficients for each FIR filter,

the new average of aliasing terms is equal to −53dB which is 7dB better than

the one achieved for the case of 64 coefficients. If synthesis stage is realized with

even longer FIR filters, the fluctuations of the aliasing terms will increase. It may

reveal the happening of an over-fitting. Supposing a delay length of nd = 42 and

with the same FIR synthesis filters, the fluctuations of aliasing terms disappear ap-

proximately but the mean value increases slightly. The maximum value of aliasing

terms is again robust and unchanging versus the modification of synthesis filters.

Considering the shape of the impulse responses (for example figure 3.3), there is a

similarity between the FIR synthesis filters and the orthogonal basis of the wavelet

structure [72]. The analysis filters that we have used (the RC and RLC resonator

circuits) are quasi-orthogonal since their passing bands do not overlap. Thus, it

has led to a quasi-orthogonality of synthesis filters.
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Figure 3.6. Distortion and aliasing terms (in dB) for an eight-channel HFB structure. One
RC and seven RLC circuits construct the analysis filter bank. Synthesis filter bank uses FIR
synthesis filters with 64 coefficients.

3.2.4 Oversampling method

The aliasing terms may be considered as an additive noise source which restricts

the output resolution of HFB A/D converters as well as the quantification noise.

The performance of HFB A/D converters in terms of aliasing terms is not so ac-

ceptable using typical FIR synthesis filters (subsection 3.2.3). Then, it is necessary

to somehow improve the performance.

Invoking (3.8) and the aliasing curves in figures 3.4 and 3.6, it is observed that

the aliasing terms deteriorate around the particular frequency points. These fre-

quencies are all an integer multiple of 2π
M

(k 2π
M

, 0 ≤ k ≤ M − 1). There is an

incompatibility in PR equations around these frequencies. It corresponds to the

frequency points situated at the borders of the band (around ± π
T
). To mitigate

the effects of this fracture points, it is offered not to consider the frequency bor-

ders [54]. It would be equivalent to use a small oversampling ratio so that the

equations representing the border frequencies are eliminated (i.e. the analysis fil-

ters are supposed to be null near the frequency borders ± π
T
) [54].
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Figure 3.7. Impulse
response of the synthesis
filters for a two-channel
HFB structure supposing
an oversampling ratio of
7%. The analysis filter
bank consists of an RC
first-order and an RLC
second-order circuit.
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Using a small oversampling ratio, the preceding relationships (3.9) and (3.10) are

still valid but the rows associated with the frequencies |Ω| > π
T
(1 − α) are elimi-

nated. α represents the oversampling ratio. This elimination originates from the

oversampling process according to which the input spectrum is supposed to be

[− π
T
(1 − α), + π

T
(1 − α)]. Then, the output of analysis filters would be zero in the

frequency domain for the frequencies |Ω| ≥ π
T
(1 − α). In other words, there have

already (without oversampling) been M equations associated with each frequency

ω according to (3.3) and (3.4). Invoking the oversampling process, one of these

M equations may be omitted depending on the frequency (see (3.4)). Thus, there

would exist (M−1) equations associated with M unknown values (F (ejω) in (3.4))

in this case (of course at some frequencies). It is evident that its solution is not

unique at the mentioned frequency. Considering N above-mentioned frequency

points, H
′

and B
′

substitute H and B respectively in ??Ch:2-eq10) and (3.10).

Therefore, the matrix H
′

is no longer square (some rows of H have been omitted).

The local and global optimizations do not lead to the same solution in this case.

Applying the global optimization method, the following solution is achieved:

f◦ = (H
′

A
′

)
†
B

′

= [(H
′

A
′

)
T
(H

′

A
′

)]−1(H
′

A
′

)
T
B

′

(3.18)
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Figure 3.8. Distortion
and aliasing terms (in dB)
for a two-channel HFB
structure. The analysis
filter bank includes an RC
and an RLC circuits. FIR
synthesis filters having 64
coefficients and an over-
sampling ratio of 7% are
used.
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It is associated with the minimization of following criterion:

f◦ = arg min
f

‖(H
′

A
′

)f − B
′

‖ (3.19)

In this case, the M FIR synthesis filters are obtained simultaneously and the new

analysis matrix H
′

establishes a relationship between the absolute errors corre-

sponding to the synthesis filters. Then, there is no unique (ideal) synthesis filter

bank which may result in the ideal conditions (aliasing equal to zero). The global

optimization method provides a much better performance than the latter (local

optimization) since it performs the optimization of M synthesis filters at the same

time. It has been approved by simulations. To have a better approximation and

to more exploit the mutual information between different branches, the global

optimization method is utilized for solving the equations through LS technique.

Figure 3.7 demonstrates the impulse responses of synthesis filters for a two-branch

HFB structure considering an oversampling ratio of 7%. The respective aliasing

and distortion terms are illustrated in figure 3.8.

In fact, the oversampling technique eliminates the frequency points where the

equations are very difficult to be held. Comparing this result with the counterpart

of preceding subsection 3.2.3 , one can discover that the impulse responses of the

synthesis filters are the same except at the beginning and ending. In other words,



56

Figure 3.9. Distortion
and aliasing terms (in dB)
for an eight-channel HFB
structure. FIR synthesis
filters have 64 coefficients
and oversampling ratio is
7%. The analysis filter
bank includes an RC and
seven RLC circuits.
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the little fluctuations at the beginning and ending borders have been omitted (com-

pare figures 3.3 and 3.7). This trial has been repeated for a structure including

8 branches. The analysis filter bank is the same one used in the previous subsec-

tion 3.2.3. FIR synthesis filters have been considered with 64 coefficients. The

oversampling ratio is 7%. Figure 3.9 shows the aliasing and distortion functions

in this case. To better show the effect of oversampling process, the first aliasing

term has been illustrated for the oversampling ratios of 7% and 0 in figure 3.10.

It is seen that the performance is apparently improved. When the oversampling

ratio increases, the aliasing terms decrease. The distortion function is nevertheless

maintained at the unity. However, the aliasing terms do not decrease anymore

when the oversampling ratio approaches 1
M

. Figure 3.11 illustrates the average

aliasing term versus oversampling ratio for an eight-channel HFB structure. It is

seen in figure 3.11 that there is no decrease in the average aliasing for the over-

sampling ratios larger than 8%. It is necessary to mention that the oversampling

ratio may not exceed 1
M

. Otherwise, there exist no longer a maximally-decimated

structure.

Using the oversampling process, the analysis matrix H
′

tends toward rank defi-

ciency. In fact, larger the oversampling ratio is chosen, more the matrix of analysis

filters is ill-conditioned. Figure 3.12 shows the condition number related to the
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Figure 3.10. First aliasing terms (in dB) of an eight-channel HFB structure for the oversam-
pling ratios of 7% and 0%. The FIR synthesis filters have 64 coefficients and the analysis filter
bank includes an RC and seven RLC circuits.

Figure 3.11. Alias-
ing term (in dB) for an
eight-channel HFB struc-
ture versus oversampling
ratio (%). L represents
the length of FIR synthe-
sis filters. The analysis fil-
ter bank includes an RC
and seven RLC circuits.
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coefficient matrix (H
′

A
′

) versus oversampling ratio. At the limit, when the over-

sampling ratio approaches the ratio of 1
M

, this matrix will be more ill-conditioned
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Figure 3.12. Condition
number of coefficient ma-
trix versus the oversam-
pling ratio for an eight-
channel HFB A/D con-
verter.

(larger condition number) and the prediction (or interpolation) properties of the

solution reduces.

3.3 Sensitivity to realization errors

3.3.1 Analog imperfections of HFB structure

According to the previous section, HFB-based A/D conversion provides an ac-

ceptable aliasing level if the oversampling process is considered. Supposing the

oversampling ratio 7%, the level of aliasing mean decreases to −86dB for the

FIR synthesis filters consisting of 64 coefficients. However, the analog imperfec-

tions which are always present during the fabrication procedure of the electronic

components, have not been considered. HFB structures have exhibited a large

sensitivity to these imperfections [64, 5]. The performance of the proposed archi-

tectures in presence of analog imperfections deteriorates so that they may be no

longer useful [5]. On the other hand, electronic components are always subject to

realization errors. The realization errors are mostly originated from the non-ideal

phenomena due to fabrication [73]. Meanwhile, there are some time-dependent

variations in the parameters of analog circuits as well. These analog imperfections

may be associated with aging and ambience factors such as temperature drifts. The
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analog imperfections are always unknown. For being capable to handle the analog

imperfections in HFB structures, it is necessary to initially know and study the

sensitivity of optimization methods exactly. Appendix B provides a brief survey on

the sensitivity analysis of optimization methods. It would be useful to analyze the

sources from which the high sensitivity of HFB structures to analog imperfection

is originated. This will enable us to include the associated results at the opti-

mization as well as at the search for new structures. The analysis of optimization

methods presented in appendix B assumes a condition according to which the rank

of coefficient matrix remains unchanged. In terms of HFB structure, it means that

the analog imperfections do not change the rank number of analysis matrix. This

condition is always held through the HFB structures. Otherwise, the HFB struc-

ture will not respect the reconstruction prerequisite condition (non-singularity of

analysis matrix).

3.3.2 Performance of HFB A/D converters versus

realization errors

3.3.2.1 Classical HFB structure in presence of realization errors

The effects of analog imperfections on the performance of HFB-based A/D convert-

ers are studied in this section. For simulation purpose, an 8-channel HFB-based

A/D converter has been used. This is the same HFB structure that was considered

in the section 3.2.3. The effects of oversampling process on the performance of HFB

structures are also studied in the presence of analog imperfections. The classical

HFB architecture for A/D conversion (figure 3.1) is here considered. In practice,

only the design (or nominal) values of parameters are known for the analysis fil-

ters. The real parameters of analysis filter bank have generally some deviations

from the nominal values. The synthesis filter bank is designed according to the

nominal parameters instead of the real ones. So, the designed synthesis filter bank

is not optimal for the real analysis filter bank. To measure the sensitivity Sf of

HFB structure to realization errors, the relative deviation of synthesis filter bank

is defined as follows (refer to appendix B):

Sf =
‖f − f◦‖

‖f◦‖
(3.20)
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Figure 3.13. Sensitivity Sf (logarithmic) versus the deviation from typical values (%)
for the case of no oversampling (above) and with oversampling 7% (below). The curves
are related to the classical HFB structure. L represents the length of FIR synthesis
filters.

where f◦ and f are the impulse responses of synthesis filter bank considering no

realization error and practical (with realization errors) cases respectively. This

measure would be almost independent from the length of FIR synthesis filters be-

cause of relativity [74]. The electronic elements (R, C and L) of analysis filter

bank are assumed to include Gaussian random deviations from their nominal val-

ues. In this section, the standard deviation of the error distribution is used as the

parameter of deviation from typical (or design) values. Using an 8-branch HFB

structure, the simulations have been performed for 1000 trials of the Gaussian re-

alization errors. The performance is studied in terms of the different deviations

from typical values. Figure 3.13 demonstrates Sf versus the deviation from typical

values for the classical HFB structure in the logarithmic scale. In both cases of

oversampling ratios 0 and 7%, the sensitivity increases about linearly versus the

deviation ratios of electronic elements (in logarithmic scale). Figure 3.14 shows

the mean and maximum aliasing versus the deviations from typical values without

oversampling process. Figure 3.15 shows the same when the oversampling ratio
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Figure 3.14. Mean (above) and maximum (below) aliasing functions in dB versus the
deviation from typical values (%). The curves belong to the classical HFB structure. In
this case, no oversampling has been used. L represents the number of coefficients used
for FIR synthesis filters.

is equal to 7%. Comparing the figures 3.14 and 3.15, it may easily be seen that

the performance of HFB-based ADC degrades rapidly in the presence of realiza-

tion errors. Though, oversampling process provides a lower aliasing level for the

HFB-based A/D converters (refer to subsection 3.2.4), but it causes an increase in

the sensitivity to realization errors. In fact, the oversampling process eliminates

the equations that are not compatible in the optimization procedure. Consider-

ing these equations, aliasing terms are large. However, the oversampling process

increases the condition number associated with the analysis matrix (figure 3.12).

The design of synthesis filters of HFB structures is a non-zero-residual problem

when FIR filters are used. Accordingly, the sensitivity would be proportional to

the square of condition number associated with analysis matrix in this case (refer

to the appendix B). Then, oversampling process deteriorates intensely the sensi-

tivity of HFB structure to realization errors. In other words, oversampling process

improves the performance of HFB structure at the expense of sensitivity increase.

Although, the sensitivity of HFB structure to analog imperfections is less when
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Figure 3.15. Mean (above) and maximum (below) aliasing functions in dB versus the
deviation from typical values (%). The curves belong to the classical HFB structure and
the oversampling ratio 7% has been used. L shows the length of FIR synthesis filters.

the oversampling process is not used, but the performance of HFB is not acceptable

for A/D conversion purposes. It may be seen that the aliasing terms dominate the

output of HFB A/D converter when the electronic circuits of the analysis filter

bank are subject to the deviations even about 1% from typical values (figure 3.15).

3.3.2.2 Using total least squares method

To reduce the large sensitivity of HFB to the realization errors, HFB structure may

be designed according to another optimization method instead of LS one. Total

Least-Squares (TLS) or errors in variables optimization method is a candidate

for decreasing the sensitivity to the deviations of coefficient matrix (refer to the

appendix C) [75, 76]. TLS is an alternative to the Least-Squares (LS) method and

uses the fact that the errors can exist both in the focusing allocation matrix and

the estimated location matrix at the frequency bin for array processing [77]. TLS

may be used for the localization of wide-band signals in array processing. TLS

can then be used for designing the synthesis filters of classical HFB instead of LS



63

0 2 4 6 8 10
10

−2

10
0

10
2

10
4

S
f

Relative sensistivity (no oversampling)

 

 
TLS
LS

0 2 4 6 8 10
10

−2

10
0

10
2

10
4

Deviation from typical values (%)

S
f

Relative sensitivity (oversamplig ratio = 7%)

 

 
TLS
LS

Figure 3.16. Sensitivity Sf (logarithmic) versus the deviation from typical values (%)
in the case of no oversampling (above) and with oversampling 7% (below) using TLS
and LS optimization methods. The synthesis filters have 128 coefficients.

optimization technique. To apply the TLS method as explained in appendix C, it

is possible to imagine the data matrix Λ and measurement vector b in terms of

HFB formulations (sections 3.2 and 3.3.1) as following:

Λ = H.A and b = B (3.21)

In the HFB case, the analog imperfections appear only in the matrix H (and then

in Λ) and there is no perturbation on the fixed vector B (or equivalently in mea-

surement vector b). An eight-channel HFB structure is considered with the same

parameters used already for the LS optimization method.

The sensitivity to analog imperfections associated with the TLS and LS opti-

mization methods is shown in figure 3.16 for comparison. The performances are

approximately equal and the TLS optimization technique shows no improvement

in the performance. Figure 3.17 shows the aliasing terms related to TLS and LS

optimization methods considering oversampling ratios 0 and 7%. Aliasing terms

do not reduce for TLS case. In fact, TLS is anticipated to improve the performance
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Figure 3.17. Mean aliasing functions in dB versus the deviation from typical values
(%) for TLS and LS optimization methods considering no oversampling (above) and the
oversampling ratio 7% (below). FIR synthesis filters have 128 coefficients.

for zero-residual problems [74, 78]. The design of synthesis filter bank of HFB is

not a zero-residual problem because there is no FIR synthesis filter bank leading to

a null aliasing (refer to subsection 3.2). Therefore, the TLS optimization method

does not lead to a lower sensitivity to analog imperfections (figures 3.16 and 3.17).

3.4 Summary and discussion

The performance of conventional HFB-based A/D converters has been studied ne-

glecting the quantization noise in this chapter. Using FIR synthesis filters, the

aliasing terms are very large so that HFB structures do not appear useful for A/D

conversion. Applying a small oversampling ratio, HFB structures show a good

performance in terms of aliasing and distortion terms. There is always an optimal

oversampling ratio depending on the number of branches and analysis filter bank.

The optimal value for an eight-channel HFB using first- and second-order analysis
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filters is about 7% (see figure 3.11).

However, HFB structures appear to be very sensitive to the analog imperfections

so that the output resolution is not acceptable for even 1% of realization errors.

Though, the oversampling process decreases the aliasing terms of HFB structures,

but leads to a large increase in the relative sensitivity to analog imperfections.

The sensitivity of HFB structures is proportional to the squared condition num-

ber associated with the coefficient matrix. The oversampling process increases the

condition number which leads to a larger sensitivity to realization errors. TLS

optimization technique is a candidate for reducing the sensitivity of LS solution

for zero-residual problems. Using TLS technique, no improvement is obtained in

the sensitivity of HFB structures because the design of FIR synthesis filters of

HFB structures is a non-zero-residual problem. Therefore, the classical HFB ar-

chitecture with practical FIR synthesis filters is not useful for implementing the

real A/D converters unless a compensation technique is incorporated to reduce the

effects of analog imperfections. For practically using HFB-based A/D converters,

a mechanism is required either to decrease the aliasing terms or to provide a ro-

bustness in reference to the realization errors simultaneously. Two strategies may

be useful for this purpose. New HFB architectures can be obtained so that the

related sensitivity decreases as the first solution. Secondly, the sensitivity of HFB

structures to analog imperfections may be handled by compensating the imperfec-

tions of analysis filter bank. To compensate the errors, analog imperfections have

to be estimated. Next chapter will deal with these techniques as the estimation

method. New HFB architectures are proposed to overcome the problem of analog

imperfections in HFB-based A/D converters in the chapter 5 as well.



Chapter 4

Blind estimation of realization errors

in analog circuits

We think in generalities, but we live in details.

- Whitehead

4.1 Introduction

Despite the fast development of the digital technology and the signal processing

methods, it is still at times required to use the analog circuits either through an

analog system or along with a digital part at the mixed analog/digital circuits.

Both the discrete and integrated electronic components of analog circuits are al-

ways subject to random deviation from the nominal values [73, 79]. Therefore,

the analog electronic circuits associated with LTI systems are characterized by the

transfer functions which include uncertainties. The coefficients of numerator and

denominator of these transfer functions may be considered as random numbers.

The average values of the coefficients represent the typical or nominal values. The

difference between the typical and real values called the deviations from typical

values is unknown. The realization errors associated with the fabrication process

can be considered as time-independent factors. However, the analog imperfections

include some time-varying contributions related to the phenomena such as the

operative temperature. To lessen the fabrication imperfections of analog circuits,
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some possibilities exist such as laser trimming in the case of integrated circuits at

the production phase. The laser trimming is generally too expensive [80]. More-

over, the time-varying imperfections cannot be compensated during the fabrication

phase. Accordingly, digital compensation may be considered as a suitable solution

particularly when the mixed analog-digital circuits are dealt with.

Analog imperfections degrade the performance of analog circuits. This dete-

rioration is sometimes so large that the related circuits are no longer useful. For

example, delta-sigma A/D converters exhibit a high sensitivity to the nonlinearity

of their internal multi-bit D/A converters [1]. The cascade architecture (MASH)

has been proposed to handle this high sensitivity and the instability from which

the delta-sigma modulators suffer. In return, a large sensitivity to analog circuit

imperfections emerge when MASH is used [1]. In Switched-Capacitor (SC) circuits,

these imperfections are mostly related to finite op-amp gains, capacitor ratio er-

rors and settling times [81]. HFB-based A/D converters are much sensitive to the

analog imperfections as shown in the previous chapter. To overcome the analog im-

perfections in wide-band HFB-based A/D converters, Velazquez proposed a digital

calibration method [9]. The calibration was established in the whole spectrum but

the adaptive compensation of proposed comb filter was classified according to the

different origins of the imperfections. Petrescu has also proposed a digital calibra-

tion technique using a known analog input for calibrating the design phase [50].

This algorithm necessitates to accommodate a calibration process circuit in the

system. To correct the realization errors of analysis filter bank, the unknown (or

main) input is disconnected and an internal calibration signal is applied to the

converter. This calibration circuit would occupy an important part of die size.

Besides, it requires to generate a wide band analog input which covers the whole

frequency band of interest.

Till now, most of proposed digital compensation techniques deal with specific im-

perfections (for example only with capacitor ratio or with finite op-amp gain error).

Accordingly, they are not generic methods and are applicable only for the supposed

special cases. Besides, they sometimes utilize a reference signal that necessitates

to use an auxiliary subsystem being completely dependent on the system [82, 81].

Thus, it is necessary to look for a general method which can estimate the real pa-

rameters of analog circuits using only the output of the system. Desired estimation
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Figure 4.1. An arbitrary
LTI analog circuit with trans-
fer function H(s). y[n] rep-
resents the output after sam-
pling.

method has to be independent of the type and the origins of errors. Then, one

would be able to digitally compensate the analog imperfections of electronic cir-

cuits. It will be very useful particularly for mixed analog-digital circuits containing

digital parts. Accordingly, calibration phase could be omitted in the fabrication

process of electronic circuits. On the other hand, time-varying drifts (especially

temperature drifts) would be possibly compensated in a real-time manner.

The aim of this chapter is to offer two methods for estimating the real pa-

rameters of transfer function of an analog circuit using the sampled output. The

estimation algorithm has to be independent of the type and the source of analog

imperfections. To formulate the problem, the unknown LTI analog system H(s)

is assumed according to the figure 4.1. Considering figure 4.1, it is supposed that

the Nyquist sampling rate is at least used and that the sampled output y[n] is

the only available data. The objective is to estimate the real spectral parameters

of the analog system (or the coefficients of H(s)) using the only available data

y[n]. Regarding to the analog imperfections, the coefficients of numerator and de-

nominator of H(s) are the random variables which have the different distributions

depending on the fabrication factors, the number and type of electronic elements

and the circuit structure. The central (or expectation) values of these parame-

ters are often known but the real values are subject to a random additive error

(deviation from the typical values). Analog imperfections cause a change in the

coefficients of H(s) but have no effect on the order of the system H(s). Accord-

ingly, the real coefficients may be estimated in order to compensate the analog

imperfections as the most direct way. An algorithm is then required to directly

estimate the relative imperfections through the output samples. It is supposed

to have K unknown parameters α = [α1, α2, . . . , αK ]T through which H(s) is de-

scribed. These parameters may be either the coefficients of H(s) or any function

of the coefficients such as cut-off frequency, resonance frequency and quality factor



69

for the first- and second-order analog circuits respectively. The transfer function

of analog circuit may be described as follows:

H(s) = g(α, s) (4.1)

Each element αi of the vector α is supposed to be randomly distributed around

the known expected value αi◦ as follows:

αi = αi◦ + △αi = αi◦(1 + δαi
) (4.2)

where δαi
describes the relative imperfection of αi (or the relative deviation from

the typical value αi◦) as follows:

δαi
=

△αi

αi◦

i = 1, . . . , K

where △αi is a random variable which represents the overall analog imperfections

of αi. The probability distribution of △αi is not necessarily Gaussian even in

the case of Gaussian fabrication errors. It is desired to estimate unknown relative

imperfections {δα1 , δα2 , · · · , δαK
} using only the output samples y[n]. In practice,

the nominal values {α1◦ , α2◦ , · · · , αK◦
} are a priori known, although this is not

necessary (refer to the section 4.3). The structure of analog circuit (or simply

the order of nominator and denominator of H(s)) is known since it is defined at

the design phase. It is useful in the extraction of relative imperfections in the

proposed blind estimation method (section 4.3). In this chapter, two methods

are proposed and discussed for estimating the analog imperfections of LTI ana-

log circuits. Second-Order Statistics (SOS) are used in section 4.2 to provide a

mathematical model for analog imperfections. This mathematical model is pre-

sented in 4.2.1. Then, the performance of this SOS model is studied in 4.2.2.

In section 4.2, Higher-Order Statistics (HOS) are used for estimating analog im-

perfections. General constraints of HOS methods are discussed in 4.3.1. Then,

Super-Exponential Algorithm (SEA) is reviewed and used for the blind estimation

of analog imperfections in 4.3.2 and 4.3.2. Finally, the results are summarized and

the feasibility of the proposed estimation algorithms for the case of HFB-based

A/D converters is discussed in section 4.4.



70

4.2 Second-order statistics method

4.2.1 Mathematical model of realization errors

In this section, a model is proposed for the blind estimation of analog imperfec-

tions. The proposed model is totally general and is applicable to every LTI circuit.

Figure 4.1 is considered. Using the linear approximation of Taylor development,

the transfer function H(s) may be simplified. Assuming that the relative imper-

fections (δαi
) are very small (| δαi

|≪ 1), H(s) may be approximated as follows:

H(s) ∼= g(α◦, s) +
K∑

i=1

δαi
· (αi

∂g(α, s)

∂αi

)

∣∣∣∣
α=α

◦

= H◦(s) +
K∑

i=1

δαi
· Hi(s)

(4.3)

where H◦(s) represents the transfer function of analog circuit when there is no

imperfection and Hi(s) is defined as follows:

Hi(s) = αi

∂g(α, s)

∂αi

∣∣∣∣
α=α

◦

i = 1, 2, . . . , K (4.4)

Hi(s) does not have necessarily the same order as H◦(s). Depending on the factors

influencing on the distribution function of coefficients, Hi(s) may have a different

order in reference to the order of H◦(s). Equally, the following relationship may

be established in the time domain:

h(t) ∼= h◦(t) +
K∑

i=1

δαi
· hi(t) (4.5)

where each hi(t) is the impulse response associated with the respective transfer

function Hi(s). According to (4.4), hi(t) depends neither on analog imperfections

nor on input-output signals.

To estimate the relative imperfection using only the output samples y[n], it is

required to have some assumptions about the input type. In the deterministic

case, there would be no general solution, and the estimation may be realized by

the methods depending on the type of deterministic signal. Supposing to have a
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Figure 4.2. An LTI analog circuit with transfer function of H(s) to which another
auxiliary FIR filter of Fi(z) has been applied.

stochastic input signal (not deterministic), the type of input distribution may be

exploited like the blind estimation techniques. If the input signal is independent

and identically-distributed (i.i.d.), the following equality holds [83]:

σ2
y = σ2

x

∫
(h(t))2dt (4.6)

where σ2
x and σ2

y are the input and output variances respectively. Supposing that

the filter H(s) is band-limited and using sufficiently high sampling rate, (4.6) may

be approximated in the discrete-time domain as follows:

σ2
y
∼= σ2

x

∑

n

(h[n])2 (4.7)

where h[n] is obtained by sampling h(t) with the sampling period T . Invoking (4.5)

and (4.7), the following relationship is obtained:

σ2
y

σ2
x

∼=
∑

n

h◦[n]2 + 2δα1

∑

n

h1[n].h◦[n] + . . . + 2δαK

∑

n

hK [n].h◦[n] (4.8)

where the relative imperfections δαi
and the input variance σ2

x are unknown. K

additional equations are required to find the unknown relative imperfections. For

this purpose, we propose to choose K auxiliary FIR filters which are applied sep-

arately to the system output y[n] [84]. For instance, figure 4.2 shows this process

after applying ith auxiliary FIR filter fi[n]. Then, (4.8) may be established for each

new output signal vi[n] versus the original input x(t) because the convolution of

two filters h[n] and fi[n] provides an LTI filter as well. Applying (4.8) to this new
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configuration, the following relationship yields:

σ2
vi

σ2
x

∼=
∑

n

s◦i[n]2 + 2δα1

∑

n

s1i[n].s◦i[n] + · · · + 2δαK

∑

n

sKi[n].s◦i[n] (4.9)

where sji[n] is an intermediate impulse response defined as following:

sji[n] = hj[n] ⋆ fi[n] j ∈ {◦, 1, 2, · · · , K}

that ⋆ represents the convolution operation. Some choices of auxiliary FIR filters

have been tried in the simulations. An FIR filter f [n] approximating the inverse of

typical transfer function H◦(s) shows a good performance when K = 1 as shown in

the next section 4.2.2 [84]. For K > 1, it is proposed to have a quasi-orthogonality

in the frequency domain. This means that K mutually orthogonal FIR filters

must be chosen. For example, kth FIR filter fk[n] is a filter with a passing band of

[(k − 1) π
T
, k π

T
] where T is the sampling period and 1 ≤ k ≤ K. Considering (4.9)

and (4.8), K + 1 equations may be obtained as following:





C◦◦δα1 + · · · + C◦KδαK
+ (σ2

y)
1
σ2

x
= d◦

C11δα1 + · · · + C1KδαK
+ (σ2

v1
) 1

σ2
x

= d1

...
...
...

CK1δα1 + · · · + CKKδαK
+ (σ2

vK
) 1

σ2
x

= dK

(4.10)

where the (K + 1) unknown parameters are {δα1 , δα2 , . . . , δαK
, 1

σ2
x
}. All the coeffi-

cients Cij and di are independent of the input and imperfections. Invoking (4.10)

and using Crammer method, each unknown relative imperfection δαi
is found as

follows:

δαi
=

b◦σ
2
y +

∑K

k=1 bkσ
2
vk

a◦σ2
y +

∑K

k=1 akσ2
vk

(4.11)

where b(i) = [b◦, · · · , bK , a◦, · · · , aK ] represent the coefficients vector of the model

associated with δαi
. To provide the coefficients, some known imperfections are

applied to the system and the coefficients are then approximated using the Least

Squares (LS) method. In other words, N known relative imperfections are selected

and the system is simulated using a white noise at the input. For having an overde-



73

Figure 4.3. Im-
pulse response (above)
and frequency spectrum
(below) due to the es-
timated inverse filter of
an RC circuit.
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termined problem, N is considered much larger than K (N ≫ K). Therefore, the

optimum vector of coefficients b
(i)
opt associated with the relative imperfection δαi

may be approximated as follows:

b
(i)
opt = arg min

b(i)
‖δm

αi
(b(i)) − δr

αi
‖2 (4.12)

that δm
αi

and δr
αi

represent the model and real values of the relative imperfection

δαi
. This model can be separately established for each unknown imperfection

(δαi
, 1 ≤ i ≤ K).

4.2.2 Estimation of realization errors of the analog circuits

using SOS-based model

The algorithm described in the previous section has been applied to several first-

and second-order circuits. RC and RLC circuits are selected like the ones used

in the HFB structures of chapter 3. The performance of estimation due to the

model has been found dependent on the number of relative imperfections present

in the system. Therefore, the results of simulations are discussed according to the

number of unknown variables.
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Figure 4.4. Estimated deviation (solid) from typical value of cut-off frequency versus
real values for an RC circuit. The dashed line represents the ideal response.

© Unique unknown parameter

An analog circuit independent of its order may include only one unknown variable.

If only one parameter is affected by analog imperfections and is unknown, then

just one auxiliary filter will be required. An approximative inverse FIR filter with

three non-zero coefficients has been used for the RC and RLC circuits. The impulse

and frequency responses of that auxiliary FIR filter have been shown in figure 4.3.

This FIR filter was obtained by blind equalization technique applied to an RC

circuit [85]. The model is implemented for an RC circuit with the imperfections

considered through its cut-off frequency. The estimation has been implemented for

the imperfection range of ±20%. Figure 4.4 shows the estimated deviation from

typical values versus the real values in this case. The average precision of this

estimation is ±2.7% (ratio of the standard deviation of the estimation errors on

real values in percent). Figure 4.5 shows the result of the estimation associated

with a second-order RLC circuit. In this case, the resonance frequency is subject

to the analog imperfections. The estimation is again considered for a range of
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Figure 4.5. Estimated deviation (solid) from typical value of resonance frequency versus
real values for an RLC circuit. The dashed line represents the ideal response.

±20%. The same auxiliary filter has been again used. There is a standard devia-

tion of ±3.9% for the errors of this estimation. It is seen that the performance of

estimation degrades in the case of second-order circuit.

© Two unknown parameters

This method has been used in the case of two unknown variables, considering

an RC circuit including analog imperfections applied to its DC-gain and cut-off

frequency. The estimation is implemented for the imperfections in the range of

±20%. Figure 4.6 demonstrates the result of the estimation. The values of stan-

dard deviation for the estimation errors are ±2.1% and ±4.6% associated to the

parameters of DC-gain and cut-off frequency respectively. Considering a shorter

range of estimation, the performance is improved.

The proposed homographic model (4.11) is useful when the input x(t) is white

(i.i.d.). It is applicable for both Gaussian and non-Gaussian signals since only SOS
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Figure 4.6. Estimated deviation (solid) from typical value versus real values for DC-
gain (above) and cut-off frequency (below) of an RC circuit. The dashed lines represent
the ideal responses.

parameters are used. The performance of estimation is not so acceptable for appli-

cations such as HFB structures which need a very high precision (see chapter 3).

Larger the number of unknown coefficients of H(s), worse is the performance of

this SOS model for estimating analog imperfections. This is originated from the

correlations between different coefficients of H(s). For example, both resonance

frequency and quality factor of an RLC circuit would vary even if only the resistor

R includes imperfections and the inductance L and the capacitor C have no imper-

fection. The other reason for the low performance of this model is related to the

approximation error involved in (4.7). The approximation error of (4.7) depends

on the sampling period T . If T tends to zero, this approximation error will be

zero. Figure 4.7 exhibits the effects of approximation in the discrete-time domain

by (4.7) as well as the linearization procedure.
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Figure 4.7. The curve (in solid) represents the result of the estimation and the one
in dashed illustrate the real values of the imperfection percent. Below is a focus of the
result in the range of linearization. This is due to a first-order analog circuit with the
unity gain and the linearization is realized in the limit of ±10% imperfections.

4.3 Higher-order statistics method

4.3.1 General constraints

Blind deconvolution or equalization is referred to the case where the input of an

unknown LTI system is desired to be reconstructed using only the output signal.

The equalization is mostly implemented using Higher-Order Statistics (HOS) tech-

niques [83]. Regarding to the properties of HOS, cumulants and polyspectra are

blind to any Gaussian process because all cumulants of the order higher than two

are equal to zero for a Gaussian process [83]. Accordingly, the input would be

supposed to be a non-Gaussian i.i.d. process for implementing the blind equaliza-

tion. An equalization technique looks adaptively for the inverse filter of unknown

system. This inverse filter is often considered as an FIR filter called equalizer filter
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Figure 4.8. Blind equalization system. Equalizer filter fn is an FIR filter with length L. x̂[n]
approximates the unknown input signal x[n] in this system.

(see figure 4.8).

To realize blind deconvolution techniques, an objective or contrast function is

generally considered (refer to appendix D). Equalization is realized through op-

timizing the equalizer filter f [n] so that the criterion function is maximized (or

minimized for Constant Modulus Algorithm (CMA) criterion) [83]. Contrast func-

tions are some specific functions in terms of the cumulants due to y[n] and x̂[n]

(refer to appendix D). The third order cumulants are null for the signals with

symmetric distributions [83]. Therefore, fourth-order cumulant of x̂[n] is chosen

to be non-zero for the symmetric distributions. The analog input has been consid-

ered with a uniform distribution in the simulations. Super-Exponential Algorithm

(SEA) proposed by Shalvi and Weinstein has been used in order to have a rapid

convergence [86]. This algorithm provides an iterative procedure for updating the

coefficients of equalizer filter. Before implementing the updating algorithm, it is

required to calculate the vector of input/output cross cumulant (fourth-order cu-

mulant) d and the output covariance matrix R (refer to appendix D). The current

value of the equalizer filter f = [f0, f1, · · · , fL−1]
T is used to compute the next up-

dated equalizer. L is the length of the equalizer filter f . Using cumulant operation

cum(·), the ith element di of the vector d (L × 1) is obtained as follows:

di = cum(x̂n, x̂n, x̂n, yn−i) 0 ≤ i ≤ L − 1 (4.13)

Each element Rij of the covariance matrix R (L × L) is calculated as following:

Rij =
cum(yn−i, yn−j)

σ2
x

(4.14)



79

where σ2
x stands for the variance of unknown input. If σ2

x is not a priori known,

it can be substituted with any positive real number in (4.14). In this case, there

would exist an ambiguity on the amplitude (refer to appendix D). In other words,

the exact inverse filter is scaled to the estimated inverse filter f [n]. Now, the

iterative algorithm of SEA for obtaining the updated equalizer fnew is implemented

as follows [86]:

V = R−1d

fnew = 1√
VHRV

V

(4.15)

where (·)H denotes transpose-conjugate operation and V (L × 1) represents an

intermediate vector. The old value of equalizer vector is implicitly incorporated

in (4.15) through taking part in the calculation of d and R. The covariance matrix

R is positive-definite (existence of inverse matrix) and there is only one converging

point which is associated with the inverse filter [83]. However, this algorithm may

in practice converge to false results (spurious local maxima) for the reasons such

as inappropriate length of equalizer L, insufficient number of data utilized in the

cumulant calculation, nonlinearities of the system and then some initializations

of the equalizer [83]. Initialization problem can be handled in the estimation of

analog imperfections because the nominal analog system is a priori known. Hence,

the related typical equalizer may be used as the initial value of equalizer.

4.3.2 Estimation procedure for analog circuits

Figure 4.9 shows the implementation through which analog imperfections may be

estimated by blind equalization. Equalizer filter F (z) is supposed to be an FIR

filter with length L. For estimating the imperfections of analog circuit, the proce-

dure is realized in two phases. Firstly, blind equalization method (SEA procedure)

is applied to the system as explained in the preceding section. It provides an FIR

filter f [n] which approximates the inverse filter associated with the analog circuit.

At the second phase, the real coefficients of H(s) are estimated. The order of nomi-

nator and denominator of H(s) is supposed to be known. Then, the equalizer F (z)

would tend to 1
H(s)

. The coefficients of H(s) may be found through minimizing the
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Figure 4.9. An LTI analog circuit with transfer function of H(s) to which the equalizer
F (z) has been applied.

error expression which follows:

Hopt(s) = arg min
H(s)

‖
1

H(s)
− F (ejω)‖s=j ω

T
w ∈ ρ (4.16)

where T is the sampling period utilized in the first phase and ρ is the frequency

band of interest. Depending on the transfer function of the analog system, ρ

is appropriately selected so that the contribution of the unknown parameter is

highlighted. For example, it can be concentrated about the nominal resonance

frequency for an RLC circuit. The real coefficients of H(s) and evidently the re-

spective deviations from nominal values are obtained from Hopt(s).

4.3.3 Simulations for estimating the analog imperfections

© First-order circuit

The algorithm that was explained in the previous section is now applied to several

first- and second-order analog circuits. Firstly, a first-order RC circuit is consid-

ered. There are two parameters describing the transfer function of a general RC

circuit: DC-gain g (gain at the zero frequency) and cut-off frequency ωc. Respec-

tive transfer function can be described as follows:

H(s) =
gωc

s + ωc

(4.17)

For estimating the DC-gain g (scale factor), it is required to know a priori the

variance of the analog input (refer to 4.3.1). The first stage (blind equalization)

has been realized 1000 times for each deviation from nominal values using an FIR

equalizer (L = 9). The algorithm has converged to the spurious local maxima
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Figure 4.10. Histogram due to the ratio of estimated to real values after 1000 sample
paths of noise for an RC circuit. The real deviation from the nominal values are 20%
and 10% for the cut-off frequency and the DC-gain respectively.

(false results) in 5% of the times when the initial equalizer is a dirac impulse (all

coefficients are zero except the middle one). Using an initial equalizer associated

with nominal RC circuit (no deviation from nominal values) at the initialization

procedure of blind equalization, the algorithm always converges to the global max-

imum. Figure 4.10 shows the histogram of the results for the realization of the

algorithm supposing an RC circuit having 20% and 10% deviations from nominal

cut-off frequency and DC-gain respectively. This histogram is in terms of the ratio

of the estimated to real parameter values. The histogram illustrates the distribu-

tion of the results due to 1000 sample paths of the noise. The average values of

the results estimate the unknown deviations from nominal values (for DC-gain and

cut-off frequency) with an error of 0.05% and 0.11% respectively.

This simulation was implemented for different deviations from nominal values as

well. The average estimation errors are shown in figure 4.11. The mean estima-

tion error is always less than 0.25% for 1000 sample paths of noise. Using larger

repetition number in the simulation, the mean values will better approximate the

deviation from nominal values.
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Figure 4.11. Average errors of the estimation due to the DC-gain (solid) and the cut-off
frequency (dashed) versus the real values of the deviation from nominal cut-off frequency
for the general RC circuits.

Figure 4.12. The arbitrary RLC
circuit used in the simulations.
{R◦, L◦, C◦} are the design values
to which the unknown realization
errors {δR, δL, δC} are applied.

C

R

LC

R

+ δ+ δ

+ δ

L

© Second-order circuit

The algorithm is implemented for an RLC circuit as well (refer to figure 4.12).

Related transfer function is described as following:

H(s) =

ωr

Q
s

s2 + ωr

Q
s + ω2

r

(4.18)
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Figure 4.13. The percentage of convergence to the global maximum. Horizontal axis
shows the percentage of deviation from the nominal frequency of resonance. Deviation
from nominal quality factor is fixed (10%) and the algorithm is initialized by nominal
values.

Deviations from nominal values for the quality factor (Q) and the resonance fre-

quency (ωr) are supposed to be the unknown parameters. There is no need for

the variance of input at the algorithm in the RLC case because the unknown pa-

rameters are independent of any scaling factor. Using a random initialization,

the algorithm of blind equalization (first phase) converges to the spurious local

maxima in 35% of times. Using the nominal equalizer (related to the circuit with

no deviations from nominal values) in the initialization of algorithm, the rate of

convergence to spurious local maxima changes. The percentage of convergence to

the global maximum in terms of deviations from nominal frequency of resonance

is shown in figure 4.13. However, converging to spurious local maxima causes no

problem in practice even with random initialization because the incorrect equaliz-

ers are conveniently detected and put aside. Figure 4.14 illustrates the histogram

of the results when the deviations from the nominal frequency of resonance and

quality factor are supposed 20% and 10% respectively. The algorithm is repeated

500 times using an equalizer with the length L = 41. The average error of es-
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Figure 4.14. Histogram due to the ratio of estimated to real values after 500 sample
paths of noise for an RLC circuit. The real deviation from the nominal values are 20%
and 10% for the resonance frequency and the quality factor respectively.

timation are 0.01% and −1.3% for the frequency of resonance and quality factor

respectively. Figure 4.15 shows the mean errors due to the several implementa-

tion of the algorithm supposing different deviations from the nominal values. The

simulations show that this algorithm (first phase) is very sensitive to the sampling

period. In fact, the larger the sampling frequency, the longer equalizer is required

for compensating the lower levels of the spectrum amplitude at the frequency ex-

tremes (the frequencies near to ± π
T
). This is approved through analysis of the

distribution of the mean errors particularly in figure 4.15. In the RLC case, the

presence of a zero situated on the origin (ω = 0) increases the rate of convergence

to spurious local maxima since the algorithm tries to compensate this zero (infi-

nite gain for real equalizer at zero frequency). In practice, there is a resistance in

series with inductance that removes the associated zero in the spectrum. The bias

appeared in the estimation of the quality factor (see figure 4.14) is due to this zero

as well. The bias value depends on the sampling frequency used as well as to the

frequency interval (ρ) through which the estimation is optimized.
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Figure 4.15. Average errors of the estimation due to the quality factor (solid) and
the resonance frequency (dashed) versus the real values of the deviation from nominal
resonance frequency for the RLC circuits.

4.4 Summary and discussion

The estimation of analog circuit imperfections involved in analog or mixed analog-

digital circuits is studied and carried out in this chapter. Digital estimation of

analog imperfections is much more attractive than analog techniques such as cal-

ibration and laser trimming. Moreover, the time-varying imperfections such as

temperature drifts may only be compensated by digital techniques for some ap-

plications such as HFB-based A/D converters. For compensating the realization

errors of analog circuits, two techniques have been proposed and discussed in this

chapter. Firstly, a SOS-based model of analog imperfections has been proposed

for estimating the relative imperfections. It appears more useful when the transfer

function of LTI circuit includes only one erroneous coefficient. The performance

of estimation of this model is limited to several percents. Then, blind equalization

methods have been offered as a good candidate for estimating analog imperfections.

SEA algorithm has been used in the simulations exploiting its rapid convergence

properties. In this case, the precision of estimation of the analog imperfections is
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better (about 0.2%) than SOS model. However, SEA algorithm uses HOS param-

eters. Then, it is useful only for non-Gaussian input signals. Besides, it needs the

structure of unknown LTI circuit (or the order of analog circuit). Computations

burden is much more than SOS model as well.

Both proposed SOS model and HOS blind equalization technique have been con-

sidered in the cases where the sampling rate is equal to or more than the Nyquist

rate. This constraint is a necessary condition for using the algorithm of HOS blind

equalization (SEA algorithm) [83] as well as the proposed SOS model. Therefore,

both the estimation methods proposed in this chapter are not applicable to the

classical HFB-based A/D converters which include essentially an undersampling

process at each branch (refer to the section 5.1). In return, the HFB structures

have a multi-channel architecture that may be exploited in the estimation pro-

cedure. Both the techniques proposed in this chapter have not used the mutual

information of multi-channel HFB structure. Blind equalization techniques have

been also proposed for Multiple-Input Multiple-Output LTI systems in terms of

Blind Source Separation (BSS) methods [87]. Nevertheless, they are not applicable

for the classical HFB structures. This issue is discussed and studied in the next

chapter.



Chapter 5

New structures for hybrid filter bank

A/D converters

Whenever you find you are on the side of the majority, it is time to pause and

reflect.

- Mark Twain

5.1 Introduction

HFB-based A/D converters exhibit a large sensitivity to the analog imperfections

of analysis filter bank as shown in the chapter 3 (refer to the section 3.3). On the

other hand, the analog circuits (analysis filter bank of HFB) are always subject

to the analog imperfections originating from the fabrication phase or versatile fac-

tors such as temperature drifts (refer to 3.3). Thus, for practically using the HFB

structure in A/D conversion, it is necessary to somehow compensate or eliminate

the high sensitivity of HFB to realization errors. As a suitable choice, it seems rea-

sonable to use the digital part of HFB structure for handling the above-mentioned

high sensitivity to the realization errors. Both the analog imperfections and analog

input signal are unknown in the HFB architecture. Thus, the relative realization

errors would have to be corrected in a blind way.

Two SOS- and HOS-based techniques were used for estimating the analog imperfec-

tions in the preceding chapter 4. The HOS-based methods generally lead to a more
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accurate estimation than the SOS-based ones as it is seen in chapter 4 [88]. Then,

the blind deconvolution methods are preferred to the SOS-based model in the HFB

case (reminding that a high precision is needed). However, the proposed meth-

ods have been used for estimating the analog non-idealities (figure 4.1) provided

that two conditions hold (refer to chapter 4). Firstly, the analog circuit should

represent an LTI system. Secondly, the available digital output is supposed to be

obtained from sampling at a rate higher or at least equal to the Nyquist frequency

associated with the analog input. Now, the classical architecture of HFB-based

A/D converter is considered (see figure 3.1). To estimate the realization errors of

analysis filter bank, either the output of each branch (xk[n] 0 ≤ k ≤ M − 1) or the

reconstructed signal y[n] may be used. The mentioned blind methods cannot be

applied to the outputs of branches (xk[n], 0 ≤ k ≤ M−1) because the Nyquist rate

does not hold (the output xk(t) of each analysis filter is undersampled at 1
MT

which

is M times less than the Nyquist frequency 1
T
). Considering the reconstructed out-

put signal y[n], the Nyquist rate is maintained. It was mentioned that the output

y[n] would be a shifted version of original input if the PR condition holds (refer to

the section 3.2.1) as follows:

y[n] = x(t)

∣∣∣∣
t=nT−ndT

In the PR case, the output y[n] can then be obtained from the original input

x(t) by sampling (at 1
T
) the output of an LTI system (a pure delay Heq(s) =

e−s(ndT )) to which x(t) has been applied (nd stands for the delay considered in the

reconstruction). However, it is evident that the PR condition cannot practically

hold according to two reasons: the restrictions of digital synthesis filters and analog

imperfections of analysis filters bank. If PR condition does not hold, the output

y[n] may be related to the input by one distortion T0(e
jω) and M − 1 aliasing

functions Tm(ejω) as following (refer to the relations (3.1) and (3.2)):

Y (ejω) =
1

T
T0(e

jω)X̃(j
ω

T
)

︸ ︷︷ ︸
distortion term

+
1

T

M−1∑

m=1

Tm(ejω)X̃(j
ω

T
− j

2π

MT
m)

︸ ︷︷ ︸
aliasing terms

(5.1)
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Although, the distortion term can be modeled by an analog LTI system (followed

by sampling at 1
T
), but each aliasing term is associated with a pure non-LTI system

considering the frequency shifting in the input signal X̃(j ω
T
− j 2π

MT
m) (equal to a

multiplication in the time domain as x(t)e−j 2π
MT

mt). Accordingly, the global HFB

system may be modeled in practice by a non-LTI system followed by sampling at

the Nyquist rate 1
T
. Considering the above-mentioned conditions, the proposed

SOS- and HOS-based methods cannot in practice be applied to the output y[n]

of classical HFB architecture either because it represents a non-LTI system. It is

reminded that this is again originated from the undersampling process M > 1. If no

undersampling is considered (i.e. M = 1), the aliasing terms disappear according

to (5.1). Finally, it can be concluded that the proposed blind techniques are not

applicable to the conventional HFB-based A/D converters, though quantization

process and word-length effects have been neglected.

To overcome this obstacle, new HFB structures are proposed in this chapter for

the A/D conversion purpose. A new HFB architecture would be useful if it holds

one or both of the following properties:

1. Less sensitive to the realization errors of analysis filter bank compared to the

classical HFB.

2. The relationship between the related input and output is LTI and includes

no decimation.

The first property may be looked for through a rearrangement of the equations as-

sociated with the PR condition. For this purpose, we have proposed the two-stage

HFB-based ADC using a modification in the PR equations. Invoking the second

strategy, new HFB structures would be obtained to which the compensation tech-

niques may be applied for decreasing the associated sensitivity to the realization

errors. In the next section 5.2, modifying the classical HFB structure, two-stage

HFB architecture is obtained. Then, the performance and sensitivity of two-stage

HFB are discussed. The section 5.3 deals with the new HFB architectures pro-

viding an LTI relationship and without any decimation between the related input

and output. For this purpose, a different arrangement of the analog input samples

is interpreted as the new input signal so that a Multiple-Input Multiple-Output

(MIMO) architecture is obtained. We have proposed two possible MIMO HFB
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Figure 5.1. Two-stage architecture for the HFB-based A/D conversion. The synthesis
procedure is implemented in two stages by: Anti-aliasing filter bank F (z) and then
anti-distortion filter G(z).

architectures in the section 5.3. These new architectures are studied in terms of

performance and sensitivity in the subsections 5.3.3.1 and 5.3.4.2.

5.2 Two-stage HFB A/D converter

5.2.1 Architecture and frequency-domain analysis

Considering two strategies explained in the previous section 5.1, the main idea is

here to look for a possible new architecture which may lead to a better performance

as well as less sensitivity to the realization errors. Invoking the original HFB

architecture (see figure 3.1) and the PR equations (3.3), it is possible to classify

the PR equations of an M -channel HFB at each arbitrary frequency into two

categories: one distortion-related equation and M − 1 aliasing-related equations.

Therefore, the synthesis part may be designed in two stages. Firstly, the aliasing

interferences are eliminated considering only the aliasing-related equations. At

the second stage, distortion effects are compensated. Figure 5.1 better illustrates

this idea. The effects of quantization are neglected like the chapter 3. Figure 5.2

shows the relative HFB structure without the quantization process. To obtain a
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Figure 5.2. The model of two-stage HFB-based A/D converter neglecting quantization
process. The A/D converters have been substituted by simple samplers.

spectral representation for the output in the frequency domain, the input signal

is assumed to be band-limited to [− π
T
, π

T
]. T is the global sampling period which

holds the Nyquist sampling criterion for the original input x(t). To better formulate

the frequency representation of output, two intermediate variables are defined as

follows. H̃i(jΩ) represents the periodic extension of the analysis filter Hi(jΩ)

considering only the frequency interval [− π
T
, π

T
]. The input signal spectrum is

null for the frequencies out of this band. X̃(jΩ) represents similarly the periodic

extension of the input signal with the period 2π
T

(refer to the appendix A). Then,

the spectral description of the output y[n] of anti-aliasing stage for an M -branch

architecture may be described as:

Y (ejω) =
M−1∑

m=0

X̃(j
ω

T
− j

2π

MT
m) · Tm(ejω) (5.2)

where T0(e
jω) stands for the distortion function and {Tm(ejω), 1 ≤ m ≤ M − 1}

are the (M − 1) aliasing terms. These terms may be obtained as following (refer

to the appendix A):

Tm(ejω) =
1

M

M−1∑

k=0

H̃k(j
ω

T
− j

2π

MT
m)Fk(e

jω) (5.3)
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Considering the anti-distortion filter G(z), the overall distortion and aliasing func-

tions of two-stage structure may be described as follows:

T̂m(ejω) = Tm(ejω).G(ejω), 0 ≤ m ≤ M − 1 (5.4)

To have a simple and convenient design, the synthesis filter bank may be realized

by FIR digital filters. The design phase of synthesis filters is now a bit different

from the one due to the classical HFB architecture. The synthesis part consisting

of anti-aliasing and anti-distortion filters is designed in two stages. The aliasing

terms are nullified through the anti-aliasing filter bank {Fi(z), i = 0, 1, ...,M − 1}

at the first stage. For this purpose, neglecting the effects of anti-distortion filter

G(z), 5.2 is used. Thus, M − 1 equations are obtained at an arbitrary frequency

ω as follows:

Tm(ejω) = 0 1 ≤ m ≤ M − 1 (5.5)

The only difference with the PR equations (3.3) of classical HFB is that the dis-

tortion term T0(e
jω) is not considered in (5.5). Invoking (5.5) and (5.3), there are

M unknown values {Fi(e
jω), i = 0, 1, ..., M −1} versus only M −1 equations. The

solution of this problem is discussed in the next subsection 5.2.2.

At the second stage, the overall distortion function T̂0(e
jω) is considered. To main-

tain the PR conditions, it is possible to have just a pure delay as the distortion

function. Considering the anti-aliasing filters obtained in the first stage, following

equation may be used for designing the anti-distortion filter G(z):

T̂0(e
jω) = Me−jωnd (5.6)

where nd represents the delay of reconstructed signal ŷ[n] in comparison with the

related input signal y[n]. Using (5.6), the anti-distortion FIR filter G(z) may be

designed. However, it will have some effects on the aliasing terms. In practice,

G(z) will not considerably deteriorate the aliasing terms since all aliasing functions

are made sufficiently small (ideally null) by the preceding anti-aliasing filter bank.

The simulations prove this issue (refer to the subsection 5.2.3). The product of

each aliasing function by the input signal spectrum is an undesired signal appearing

at the output of A/D converter. Then, the sum of the aliasing terms multiplied
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by the input signal spectrum may be considered as an additive noise at the output

of the A/D converter (refer to (5.2)). Accordingly, the aliasing functions can be

considered as a limitation on the output resolution in terms of number of bits.

Regarding the aliasing effects on the output precision, it is necessary to note that

there are (M − 1) aliasing functions. The classical ”6 dB/bit” law can be used

to provide a rough idea of the precision at the output associated with the aliasing

functions contribution [69].

5.2.2 Design of two-stage HFB using FIR synthesis filters

In the two-stage HFB architecture, the synthesis filters {Fi(z), i = 0, 1, · · · ,M−1}

are designed to eliminate only the aliasing terms. Besides, the anti-distortion filter

G(z) is accommodated to compensate the deviations of the distortion expression

versus the constant function. To design anti-aliasing filter Fi(z), the analysis ma-

trix of chapter 3 may be used again (refer to section 3.2.2). FIR filters are used to

realize conveniently the anti-aliasing filters. It is supposed to use L coefficients for

each FIR anti-aliasing filter. N frequency points are selected so that N is much

larger than L (N ≫ L) to have a suitable interpolation (frequencies are spread out

through the band of interest). Then, following relationship may be considered for

designing the anti-aliasing filters:

(H.A)f = 0 (5.7)

The matrix H is just the same H used in (3.15) except the equations (the rows)

relative to the distortion are omitted. Thus, it is a matrix with the dimension of

2(M − 1)N × 2MN . There is a zero vector with the size of 2(M − 1)N × 1 in the

right side of the equality. To approximate the matrix equation (5.7), it is necessary

to hold following criterion:

f◦ = arg min
f

‖HAf‖ (5.8)

subject to ‖f‖ = 1

where the normalization constraint ‖f‖ = 1 is considered to avoid the evident so-

lution (f = 0) and any scaling ambiguity since the equalizer f contributes inversely
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in the design of antialiasing filter (in (5.9)) to compensate any deviation of distor-

tion function in reference to a pure delay of unity gain. According to the theory

of the Singular Value Decomposition (SVD), the solution locates in the null space

of the coefficient matrix HA [71]. In other words, f◦ is the singular vector of the

coefficient matrix HA associated with the least singular value. It is the optimum

solution for (5.8).

To design the anti-distortion filter G(z), two possibilities exist. It is possible to

utilize a blind equalization method which will adapt to the specific realization of

the analysis filters. In this case, the input has to be white and non-gaussian (refer

to the appendix D). Using blind equalization technique, the anti-distortion filter

would be adaptive. However, it can only adaptively compensate the distortion

function. Aliasing terms would be additive noises. In this case, blind equalization

cannot converge unless the aliasing interferences are considerably less than the

distortion function (refer to the appendix D).

As the second way, it is possible to rearrange and solve the distortion equations

directly. This method is valid for all the inputs in contrary to the blind method.

The equations associated with the distortion may be summarized in the vectorial

form as following:

(E.Ag)g = c (5.9)

where the components are defined as follows:

g =




g[0]

g[1]

...

g[L′ − 1]




L
′×1

c =




Me−jω1nd

Me−jω2nd

...

Me−jωNnd




N×1
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E =




∑M−1
k=0 H̃k(j

ω1

T
)Fk(e

jω1)

0
. . . 0

∑M−1
k=0 H̃k(j

ωN

T
)Fk(e

jωN )




N×N

and,

Ag =




1 e−jω1 · · · e−jω1(L′−1)

...
...

1 e−jωN · · · e−jωN (L
′−1)




N×L
′

where the anti-distortion filter with the impulse response g[n] is supposed to be

an FIR filter defined in the interval 0 ≤ n ≤ L′ − 1 with the length of L′.

Applying the LS optimization technique to (5.9), the anti-distortion FIR filter may

be designed.

5.2.3 Implementation and performance of two-stage HFB

structure

To observe the behavior of the two-stage HFB architecture, an 8-branch HFB

structure has been considered. One of the analysis filters is a low-pass filter (RC

circuit) and the other ones are the second-order RLC circuits with the same band-

width π
8T

and distributed through the whole band of interest (like the one used in

chapter 3 shown in figure 3.2). An oversampling ratio 6% is used in order to reach

the acceptable levels of aliasing (refer to the section 3.2.4). The simulations are car-

ried out for the classical HFB architecture as well as the two-stage HFB structure.

Figure 5.3 demonstrates the aliasing and distortion functions versus normalized

discrete-time frequencies associated to the conventional HFB structure. The syn-

thesis filter bank includes FIR digital filters with 64 coefficients. All eight functions

of aliasing and distortion are simultaneously illustrated. This simulation is accom-

plished for a two-stage HFB structure as well. 64 coefficients are similarly used

for the FIR synthesis filters together with an oversampling ratio of 6%. Figure 5.4
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shows the related aliasing and distortion terms of this two-stage HFB structure.

Distortion functions for both the structures remain at an acceptable level (0 dB)

with a standard deviation lower than 10−3dB. However, the performance of the

aliasing functions are considerably different in the two structures. Comparing fig-

ures 5.3 and 5.4, one can obviously notice that the performance of the proposed

two-stage HFB structure is much better than the classical one. This superiority

of performance is observed for the FIR synthesis filters including 32 coefficients

as well (refer to table 5.1). To better compare the performances of the classical

structure with those of the proposed two-stage architecture, the first aliasing terms

(T̂1(e
jω)) associated with the two structures are simultaneously shown. Figure 5.5

compares the first aliasing terms in the two-stage and classical structures assuming

32 coefficients for the FIR synthesis filters. Figure 5.6 illustrates this comparison

when each of the FIR synthesis filters consists of 64 coefficients. According to 5.2,

the product of the mth aliasing function and X̃(j ω
T
−j 2π

MT
m) appears at the output

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Aliasing and Distortion (Original structure)

dB

Normalized frequency

Distortion 

Aliasing 

Figure 5.3. Distortion and aliasing functions (dB) versus normalized frequency due to
the classical HFB structure of 8-channel. An oversampling ratio of 6% is used. Each
synthesis filter consists of 64 coefficients.
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Figure 5.4. Distortion and aliasing functions (dB) versus normalized frequency due to
an 8-channel two-stage HFB structure. An oversampling ratio of 6% is considered. 64
coefficients are used for each synthesis filter.

(1 ≤ m ≤ (M − 1)). Thus, the narrow oversampling band for which the input

spectrum is supposed null is shifted in the frequency domain. The shift value is
2π

MT
m for the mth aliasing term. A gap (6% of total bandwidth) may be seen in fig-

ures 5.5 and 5.6. It is due to the oversampling process (refer to the section 3.2.4).

Figures 5.5 and 5.6 show that there is an obviously better performance for

Table 5.1. Comparison of two-stage and classical HFB for L = 32

Method Original Two-stage

Mean aliasing (dB) -49.1 -67.3

Max. aliasing (dB) -37.5 -46.7

Precision (bits) 5 8

the two-stage HFB structure. Tables 5.1 and 5.2 list the maximum and average

aliasing functions for these structures assuming different lengths for the synthesis
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Figure 5.5. First aliasing functions (T̂1(e
jω)) versus normalized frequency due to the

original structure (blue) and two-stage architecture (red) with FIR synthesis filters hav-
ing 32 coefficients. An oversampling ratio of 6% has been used. The zero gap at the
negative frequencies is due to the oversampling band which is shifted for every aliasing
term.

Table 5.2. Comparison of two-stage and classical HFB for L = 64

Method Original Two-stage

Mean aliasing (dB) -84.5 -148

Max. aliasing (dB) -65.9 -113.9

Precision (bits) 11 22

FIR filters (32 and 64 coefficients). An oversampling ratio of 6% has been used

for both cases. Both tables show that the performance of two-stage HFB is better

than the classical one in terms of both the mean and maximum aliasing. However,

it is reminded that the two-stage architecture uses an additional (anti-distortion)

digital filter. The last row in the above-mentioned tables shows an approximated

maximal achievable number of bits due to the aliasing effects. Since the quantiza-
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Figure 5.6. First aliasing functions (T̂1(e
jω)) versus normalized frequency due to the

original structure (above) and two-stage architecture (below) when 64 coefficients are
utilized for each FIR synthesis filter. The oversampling ratio of 6% has been utilized.
The zero gap at the negative frequencies is due to oversampling which is shifted for every
aliasing term.

tion process in each branch of the structure results in a lower output precision, the

real output precision may practically be some bits lower than the ones mentioned

in the tables.

5.2.4 Sensitivity to realization errors

Up to this point of the chapter 5, it has been supposed that the analog part of

two-stage and classical HFB structures is perfect and without any analog imper-

fection. In this subsection, the influence of analog realization imperfections on the

performance is studied. In the real world, the practical aliasing level is different

from above-mentioned simulation values because the analysis filter bank (analog

circuits) includes the imperfections associated with the fabrication phase or drifts

such as temperature drift (refer to the section 3.3). In practice, only the design

(or nominal) values of the analysis filters are known. The synthesis filter bank
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is designed according to those values. So, the designed digital filter bank is not

optimum for the actual analysis filter bank. To measure the sensitivity of HFB

structure to realization errors, the relative deviation Sf of synthesis filter bank

is used as described in the section 3.3. This measure would be almost indepen-

dent from the length of FIR synthesis filters [74]. The electronic elements (R,

C and L) of analysis filter bank are assumed to include Gaussian random devia-

tions from their nominal values. The standard deviation of the error distribution

is used as the parameter of deviation from typical (or design) values. Using an

8-branch HFB structure, the simulations have been carried out for 1000 trials of

the Gaussian realization errors. The performance is studied versus the deviation

from typical values. Figure 5.7 demonstrates Sf versus the deviation from typical

values for the classical and two-stage HFB structures in logarithmic scale. It may

be seen that the two-stage HFB structure is much more sensitive to the analog

imperfections. Figure 5.8 shows the mean and maximum aliasing versus the de-

viations from typical values without oversampling process. Figure 5.9 shows the

Figure 5.7. Sensitivity Sf (logarithmic) versus the deviation from typical values (%) for
the case of no oversampling (above) and with oversampling 7% (below). The curves are
related to the classical (left) and two-stage (right) structures. L represents the length of
FIR synthesis filters.
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Figure 5.8. Mean (above) and maximum (below) aliasing functions in dB versus the
deviation from typical values (%). The curves belong to the classical (left) and two-stage
(right) structures and no oversampling has been used. L represents for the number of
coefficients used for FIR synthesis filters.

same variables when the oversampling ratio is equal to 7%. It may be seen that

the two-stage HFB is not useful without oversampling because the aliasing is so

large. The classical HFB appears less sensitive to analog imperfections. However,

the performance of the original HFB is not practically acceptable in the presence

of realization errors (figure 5.9). Practically, the classical HFB is less sensitive to

analog imperfections than the two-stage one. Nevertheless, it needs a compensa-

tion mechanism for being used in the architecture of wide-band A/D conversion.

It may be seen that the performance is no longer acceptable when the electronic

circuits of the analysis filter bank are subject to deviations from typical values

higher than 1% (figure 5.9). Finally, two-stage HFB structure does not provide

an architecture with less sensitivity, though it leads to a better performance than

classical one in the absence of analog imperfections.
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Figure 5.9. Mean (above) and maximum (below) aliasing functions in dB versus the
deviation from typical values (%). The curves belong to the classical (left) and two-stage
(right) structures and the oversampling ratio 7% has been used. L shows the length of
FIR synthesis filters.

5.3 Multiple-Input Multiple-Output structures

for HFB A/D converter

5.3.1 Necessity of MIMO HFB structures

As it was explained in the previous section, both two-stage and classical HFB

structures show a large sensitivity to the realization errors so that a compensation

method has to be considered for correcting these errors. The required compen-

sation method would be a blind estimation technique since neither the input nor

the exact transfer function of system are known. If the deviations from the nom-

inal values are estimated for the analysis filters, the proper transfer functions of

analysis filters would be available for being used in the design of synthesis filters.

Blind equalization (deconvolution) reviewed in the chapter 4 cannot be exploited

in the classical HFB case because of the undersampling process existing at each

branch (refer to the section 5.1). To better explain, the undersampling process at
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the rate 1
MT

may mathematically be interpreted by two operations: a decimation

process (1 out of M) preceded by the sampling procedure at the Nyquist rate 1
T

(see figure 5.10). For using blind deconvolution techniques, it is essential first of all

to have an LTI system relating the input and output signals (section 5.1). Besides,

no decimation should exist between input-output so that no spectral overlapping

occurs. The main objective of this section is to provide new architectures for

HFB-based A/D converters so that the associated input and output relationship

is LTI and no decimation is included between them. In practice, the signals x0[n],

x1[n], ..., xM−1[n] are the only available signals for processing (see figure 3.1). Fig-

ure 5.11 illustrates the HFB-based A/D converter structure without the synthesis

stage (see figure 3.1). This part of HFB is here called the analysis part. The

analysis part includes apparently a decimation procedure at each branch between

input and output. In this section, we try to model the analysis part without any

modification so that an LTI relationship governs between the inputs and outputs

of proposed model without any decimation between them. To complete the HFB

structure of A/D conversion, the synthesis part would be later designed according

to the proposed model of analysis part. Observing the analysis part (figure 5.11),

it is proposed to define new virtual input signals so that the decimation process

exists no longer between the new input signals and the outputs of analysis part

x0[n], x1[n], ..., xM−1[n]. It means to somehow eliminate the decimation proce-

dure existing between input and output at each branch. It is evident that the

decimation cannot be totally omitted (otherwise why we use HFB-based ADC?).

Then, the only way would be to consider the input signal after the decimation

Figure 5.10. The sampling process at the rate 1
MT

is equal to the cascade form of two
processes. The sampling at the rate 1

T
in series with the decimation procedure (1 out of

M). n and n′ are the discrete-time indices associated with the sampling rates 1
MT

and
1
T

respectively.
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Figure 5.11. The analysis part

of the HFB-based A/D converter.
Quantization process has been
neglected. The only available
signals are x0[n], x1[n], ..., and
xM−1[n].

operation. This idea would lead to a MIMO model for HFB structures since M

inputs are defined associated with M decimation processes. This concept is ex-

ploited in the next subsections. We will offer two possible MIMO models for the

HFB structures. To better figure out these new architectures, an interpretation

of analysis part is presented in the next subsection 5.3.2 that is fully described in

the discrete-time domain. Sections 5.3.3.1 and 5.3.4.2 provide two possible MIMO

models for the analysis part which establish an LTI relationship between the re-

lated inputs and outputs. For convenience, both these MIMO models are described

in the discrete-time domain using the discrete-time model of HFB extracted in the

subsection 5.3.2.

Note that following notations are always respected in the coming sections of this

chapter:

• M : Number of branches in HFB structure

• n: Discrete-time index associated with the sampling rate 1
MT

• n′: Discrete-time index associated with the sampling rate 1
T
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5.3.2 Discrete-time model of HFB A/D converter

For obtaining the LTI MIMO models of HFB structure, it is more convenient to

have the analysis part fully described in the discrete-time domain. A discrete-

time model of analysis part is obtained in this subsection. The analysis part has

already been modeled in the discrete-time domain by Shu et al. to obtain a minmax

criterion [59]. We propose here a totally different method for providing its discrete-

time model. The analysis part of HFB shown in figure 5.11 may be rearranged

using the concept of figure 5.10. Accordingly, the analysis part may be regarded

as shown in figure 5.12. x(t) is supposed to be the analog input and band-limited

Figure 5.12. The analysis part of the HFB-based A/D converter shown in terms of
the decimation procedure. The anti-aliasing filter has been neglected as the positive
bandwidth σ of the analog input x(t) holds the Nyquist criterion ( 1

T
≥ 2σ).

to the Nyquist rate 1
T
. Then, the analog input x(t) may be sampled without any

spectral overlapping at the sampling rate 1
T
. According to the sampling theory,

x(t) can be represented in the discrete-time domain by x[n′] as following:

x[n′] = x(n′T ), n′ = · · · ,−2,−1, 0, 1, 2, 3, · · · (5.10)
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Figure 5.13. Analog filter H(jΩ)
and its equivalent filter H(ejω) in the
discrete-time model.

where n′ represents the time index. According to the figure 5.12, the output xk(t)

of the filter Hk(s) can be explained in the frequency-domain as follows:

Xk(jΩ) = Hk(jΩ)X(jΩ) k = 0, 2, ..., M − 1

Since X(jΩ) is a band-limited signal ( 1
T

≥ 2σ), Xk(jΩ) will be band-limited as

well. Considering this property, Hk(jΩ) can be substituted with another analog

filter H
′

k(jΩ) as follows:

Xk(jΩ) = H
′

k(jΩ)X(jΩ) k ∈ {0, 2, ..., M − 1}

where H
′

k(jΩ) is defined as:

H
′

k(jΩ) =





Hk(jΩ) Ω ∈ [− π
T
, + π

T
]

0 elsewhere

(5.11)

H
′

k(jΩ) would be useful for obtaining the equivalent filter for the analog anal-

ysis filters in the discrete-time domain. According to (5.11), H
′

k(s) is evidently

band-limited. Its impulse response h
′

k(t) may be sampled without any spectral

overlapping considering the sampling rate 1
T
. If the continuous-time impulse re-

sponse h
′

k(t) is sampled at the rate 1
T
, the discrete-time impulse response hk[n

′] is
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Figure 5.14. The discrete-time
model for the analysis part of
HFB-based A/D converter. The
only available signals are x0[n],
x1[n], ..., and xM−1[n]. n′ and
n represent the discrete-time in-
dices associated with the sam-
pling rates 1

T
and 1

MT
respec-

tively.

obtained as following:

hk[n
′] = h

′

k(t)

∣∣∣∣
t=n′T

n′ = · · · ,−2,−1, 0, 1, 2, 3, · · ·

This relationship can be described in the frequency-domain as follows:

Hk(e
jω) =

1

T

+∞∑

m=−∞
H

′

k(jΩ −
2π

T
m)

∣∣∣∣
Ω= ω

T

that ω and Ω stand for the discrete-time and continuous-time frequencies respec-

tively. According to (5.11), the analog filter Hk(jΩ) of analysis part can be replaced

by H
′

k(jΩ). On the other hand, the filter H
′

k(jΩ) may be represented by Hk(e
jω)

in the discrete-time domain. The analog filter Hk(jΩ) may conclusively be substi-

tuted by Hk(e
jω) in the discrete-time domain. Figure 5.13 shows this equality for

an exemplary analog filter. Therefore, the continuous-time components x(t) and

Hk(jΩ) of the analysis part may be represented in the discrete-time domain by

x[n′] and Hk(e
jω) respectively. With this substitution, the samplers are eliminated

and the discrete-time model of analysis part is obtained. This discrete-time model

is shown in figure 5.14. Considering that model, the objective of HFB-based A/D

conversion is to achieve the unknown signal x[n′].
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Figure 5.15. The output X0(e
jω) of analysis part related to the first branch of a two-

branch HFB that X(ejω) and H0(z) are the frequency responses of the input and analysis
filter respectively.

5.3.3 Subband Hybrid Filter Bank A/D Converter

5.3.3.1 Subband MIMO model of analysis part

• General illustration

In this part, the idea of subband MIMO model is simply demonstrated by general

diagrams. The discrete-time model of analysis part associated with the HFB-based

A/D converter is considered (figure 5.14). Firstly, we show how the output of each

branch is mathematically related to the original input x[n′] with a non-LTI relation.

For convenience, the analysis part of a two-branch HFB (M = 2) is considered.

Without loss of generality, the frequency responses of the original input X(ejω)

and the analysis filter H0(e
jω) are supposed to be as shown in figure 5.15. It

is reminded that the DTFT of discrete-time signals are periodic with the period

2π. Then, the frequency axis is demonstrated between [−π, π] (for a period).

Figure 5.15 shows the output x0[n] of the branch associated with the analysis filter

H0(z) in the frequency domain as well. According to figure 5.14, x0[n] may be
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Figure 5.16. The
detailed demonstration
of the decimation af-
ter filtering. The input
X(ejω) passes an anal-
ysis filter H0(e

jω) and
then decimated by M =
2. The output X0(e

jω)
has an LTI relationship
with the spectral parts
shown in hexagons and
bricks.
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described for a two-branch HFB as follows:

x0[n] = x[n′] ⋆ h0[n
′]

∣∣∣∣
n′=2n
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Figure 5.17. The ex-
traction of subband sig-
nals from the original
input X(ejω) for a two-
branch HFB structure.
The subband signals
S0(e

jω) and S1(e
jω) are

obtained by decimating
(one out of 2) from the
narrow-band parts of
the original input. The
associated LTI filters
H00(e

jω) and H01(e
jω)

may be obtained simi-
larly from the analysis
filter H0(e

jω).
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where h0[n
′] is the discrete-time impulse-response function of H0(z) and ⋆ rep-

resents the convolution operation. The decimation appears by the substitution

n′ = 2n. This relationship may be demonstrated in the frequency domain as

following:

X0(e
jω) =

1

2

[
X(ej ω

2 ).H0(e
j ω

2 ) + X(ej(ω
2
−π)).H0(e

j(ω
2
−π))

]
(5.12)

The second term of above equality (5.12) includes a frequency shift which clearly

corresponds to a non-LTI operation. However, this spectral overlapping cannot be

conveniently discovered in the figure 5.15. To better observe the relationship 5.12,

this equality is shown in figure 5.16. The spectrum has been divided into two parts

0 ≤ |ω| ≤ π
2

and π
2
≤ |ω| ≤ π shown in hexagonal and brick patterns respectively

in this figure. It may be seen that these two spectral parts of the input X(ejω)
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and analysis filter H0(e
jω) are multiplied. Then, the spectral overlapping occurs

only at the last point where these two products are added (see figure 5.16). The

decimation procedure is represented by two operations in reference with these two

narrow bands: spectral dilating, and addition. The frequency dilating causes no

spectral overlapping on these two bands. If these two narrow-band components of

the input signal are considered as the new input signals, there exist no spectral

overlapping and the new inputs would have an LTI relationship with the output

X0(e
jω). Figure 5.17 shows schematically these new input signals. The new input

signals S0(e
jω) and S1(e

jω) can be obtained from the narrow-band components

of the original input X(ejω) by decimation (refer to figure 5.17). We call these

signals the subband components of the input x[n′]. It may be seen that X0(e
jω) is

produced from the subband signals S0(e
jω) and S1(e

jω) as follows (figure 5.16):

X0(e
jω) = S0(e

jω)H00(e
jω) + S1(e

jω)H01(e
jω) (5.13)

According to (5.13), X0(e
jω) is obtained from the subband signals S0(e

jω) and

S1(e
jω) passing through two LTI filters H00(e

jω) and H01(e
jω). This may be gen-

eralized to the other branches. In general case (see figure 5.14), we can state that

the outputs x0[n], x1[n], ..., and xM−1[n] of analysis part may be associated to M

subband signals through an LTI relationship as there will exist M subband sig-

nals for an M -branch HFB structure. Considering the subband signals as the new

input vector, an LTI model may be obtained for the analysis part. This model is

mathematically discussed and provided in the next subsection.

• Mathematical description

The discrete-time model of analysis part associated with the HFB-based A/D con-

verter is again considered (figure 5.14). For having an LTI system, it is required to

relate the available signals x0[n], x1[n], ..., and xM−1[n] to the input x[n′] through

an LTI relationship. It is evident that this relationship is non-LTI because of dec-

imation procedure (supposing M > 1). Using the decimation procedure in the kth

branch, the following equation is obtained:

xk[n] = hk[n
′] ⋆ x[n′]

∣∣∣∣
n′=Mn

k ∈ {0, 1, ...,M − 1} (5.14)
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that ⋆ stands for the convolution operation. This relation can be equally estab-

lished in the frequency domain as follows:

Xk(e
jω) =

1

M

M−1∑

m=0

Hk(e
(j ω

M
−j 2π

M
m))X(e(j ω

M
−j 2π

M
m)) (5.15)

ω represents the Discrete-Time Fourier Transform (DTFT) frequency. The fre-

quency representation of discrete-time signal is periodic with the period interval

of 2π [69]. The spectral overlapping related to the decimation procedure is seen

through the equation (5.15). According to the preceding subsection, we now pro-

pose to consider M discrete-time signals s0[n], s1[n], ..., and sM−1[n] called subband

signals. Figure 5.18 shows how sk[n] may be extracted from the original input x[n′]

in the frequency domain. The subband signals may be obtained from the frequency

decomposition of the input signal x[n′] into M narrow-band signals followed by the

decimation. This process may be interpreted in the frequency domain as follows

(refer to figure 5.18). For k = 0, 2, ..., it is:

Sk(e
jω) =





1
M

X(ej ω
M

+jk π
M ) ω ∈ [0, π]

1
M

X(ej ω
M

−jk π
M ) ω ∈ [−π, 0]

(5.16)
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Figure 5.18. The schematic illustration for extracting each subband signal Sk(e
jω)

(0 ≤ k ≤ M − 1) from the original signal X(ejω).
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Figure 5.19. Each
subband signals sk[n] is
obtained from the orig-
inal signal x[n′] by the
decimation preceded
with the subband filter
Gk(z).

and for k = 1, 3, ..., it will be:

Sk(e
jω) =





1
M

X(ej ω
M

−j(k+1) π
M ) ω ∈ [0, π]

1
M

X(ej ω
M

+j(k+1) π
M ) ω ∈ [−π, 0]

(5.17)

where Sk(e
jω) is the frequency representation of sk[n] for 0 ≤ k ≤ M − 1. These

signals are like the subband signals used in the audio/speech processing and cod-

ing [72]. They can be obtained in the time-domain from the tandem of a subband

filtering bank and a decimation procedure. Figure 5.19 illustrates schematically

how the subband signals may be produced. For instance, the kth subband signal

sk[n] can be obtained as follows. Firstly, the original signal x[n′] is passed through

the kth subband filter Gk(e
jω). After filtering, the decimation procedure is carried

out to eliminate the zero parts of the spectrum. The subband filter Gk(e
jω) is
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Figure 5.20. The fre-
quency response of the
subband filter Gk(e

jω).
It is zero for all the fre-
quencies |ω| ≤ π except
k π

M
≤ |ω| < (k + 1) π

M
.

defined as following (for |ω| ≤ π):

Gk(e
jω) =





1 k π
M

≤ |ω| < (k + 1) π
M

0 elsewhere

(5.18)

Gk(e
jω) has been shown in figure 5.20. There is no spectral overlapping or am-

biguity due to the decimation procedure in the production of s0[n], s1[n], ..., and

sM−1[n] because of the narrow-band nature of subband filters.

The available signals x0[n], x1[n], ..., and xM−1[n] (the outputs of analysis part)

may be reconstructed in terms of these subband signals. According to 5.15 - 5.18,

each available signal xk[n] may be produced by the subband signals as following:

Xk(e
jω) =

M−1∑

m=0

Hkm(ejω)Sk(e
jω) (5.19)

The filters Hk0(z), Hk1(z), ..., and Hk(M−1)(z) are extracted from the analysis

filter Hk(z) through a process similar to the production of subband signals (equa-

tions (5.16) and (5.17)). Hkm(ejω) is the (k,m)th element of analysis matrix H(z)

which is described in the next paragraph. If m is even (m = 0, 2, ...), Hkm(ejω) is

obtained as following:

Hkm(ejω) =





1
M

Hk(e
j ω

M
+jm π

M ) ω ∈ [0, π]

1
M

Hk(e
j ω

M
−jm π

M ) ω ∈ [−π, 0]

(5.20)
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and in the odd case (m = 1, 3, ...), it is:

Hkm(ejω) =





1
M

Hk(e
j ω

M
−j(m+1) π

M ) ω ∈ [0, π]

1
M

Hk(e
j ω

M
+j(m+1) π

M ) ω ∈ [−π, 0]

(5.21)

At last, the available signals x0[n], x1[n], ..., and xM−1[n] can be described in

terms of the subband signals s0[n], s1[n], ..., and sM−1[n] through an LTI relation-

ship. It leads to:

x[n] = H[n] ⋆ s[n] (5.22)

where:

x[n] =

[
x0[n], x1[n], ..., xM−1[n]

]T

s[n] =

[
s0[n], s1[n], ..., sM−1[n]

]T

and the analysis matrix H[n] is an M × M matrix of discrete-time filters. The

(i, j)th element of H[n] is the impulse response hij[n] of the subband analysis filter

Hij(z) (refer to (5.20) and (5.21)) as follows:

H[n] =




h00[n] h01[n] ... ... h0(M−1)[n]

...
...

...
...

...
...

h(M−1)0[n] h(M−1)1[n] ... ... h(M−1)(M−1)[n]




In the frequency domain, the convolution is substituted with the simple multi-

plication. The vectors X(ejω) and S(ejω) are supposed in the frequency domain

as:

X(ejω) =

[
X0(e

jω), X1(e
jω), ..., XM−1(e

jω)

]T

S(ejω) =

[
S0(e

jω), S1(e
jω), ..., SM−1(e

jω)

]T
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Figure 5.21. The subband MIMO model for the analysis part of HFB-based A/D
converter. The inputs s0[n], s1[n], ..., and sM−1[n] are the subbands of the original
input x[n′]. x0[n], x1[n], ..., and xM−1[n] are the only available signals.

Then, (5.22) may be rewritten in the frequency domain as follows:

X(ejω) = H(ejω)S(ejω) (5.23)

where the analysis matrix H(ejω) is the M × M matrix of discrete-time filters

in the frequency domain. Thus, the subband signals vector s[n] is related to the

available signals vector x[n] through an LTI operation. Substituting the model of

subband signals (figure 5.19) and using 5.22, the analysis part of HFB structure

may be modeled in the discrete-time domain using a MIMO structure as shown in

figure 5.21. Assuming the subband signals s[n] as the new inputs, an LTI system

has been achieved. The decimation procedure exists no longer between input-

output signals. It leads to an LTI MIMO system for which s[n] and x[n] are the

input and output vectors respectively.
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Figure 5.22. The subband architecture of HFB-based A/D converter for estimating
the (narrow-band) subband components of the input signal. The outputs ŝ0[n], ŝ1[n],
..., and ŝM−1[n] are the estimated subband signals.

5.3.3.2 Subband architecture for HFB-based A/D converter

Using the MIMO model of analysis part (figure 5.21), a new HFB-based A/D

converter may be proposed. Figure 5.22 shows this subband architecture of HFB-

based A/D converter. In fact, this architecture will perform simultaneously both

A/D conversion and frequency demultiplexage (through decimation). Now, the

unknown inputs s0[n], s1[n], ..., and sM−1[n] are reconstructed instead of the orig-

inal input x[n′]. The original input x[n′] can nevertheless be obtained from the

subband signals as explained later in this subsection.

To implement this multiple-output HFB-based A/D conversion, an M ×M matrix

F(z) of FIR filters is required for the synthesis stage. In fact, the synthesis filters

matrix would tend to the inverse of analysis filters matrix defined in (5.22). For

obtaining the synthesis filters matrix F(ejω), the quantization noise of A/D con-

verters is again neglected. Thus, a MIMO model may be found for the subband

HFB-based A/D converter of figure 5.22. Integrating figures 5.21 and 5.22, the

MIMO HFB A/D converter may be substituted by the model shown in figure 5.23.
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Figure 5.23. The model of subband MIMO HFB-based A/D converter in the discrete-
time domain. The subband components of the input signal are estimated as the output
signals.

Considering figure 5.23, PR equations will be:

F(ejω).H(ejω) = I.e−jωnd (5.24)

where I represents the identity matrix (M × M) and nd stands for an arbitrary

delay. nd is considered for maintaining the causality.

Using the prefixed analysis filters, the equation (5.24) leads to the following solution

of synthesis filters at each frequency ω:

F(ejω) = e−jωndH−1(ejω) (5.25)

where the existence of the inverse matrix H−1(ejω) has implicitly been supposed

(refer to the section 3.2.2). This relation may be established for N frequency

points (here equally spaced in the band of interest). Thus, the frequency response

of each synthesis filter Fij(e
jω) is achieved using (5.25). An FIR filter may be

estimated for the (i, j)th element of synthesis filter matrix. Using FIR estimations

of synthesis filters, some distortion and interferences may appear. The outputs may
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be interpreted in terms of distortion and Inter-Channel Interference (ICI) terms.

ICI terms are equivalent for the aliasing terms considered in the classical HFB

structure (see chapter 3). Supposing that the solution of (5.25) is approximated

by a matrix F(ejω) of FIR synthesis filters, T(ejω) is defined as following:

T(ejω) = F(ejω)H(ejω)

T(ejω) is a matrix containing distortion and ICI functions. It shows that the

estimated value ŝk[n] of kth subband signal sk[n] may be developed in the frequency

domain as:

Ŝk(e
jω) = Tk,k(e

jω)Sk(e
jω)︸ ︷︷ ︸

distortion term

+
M−1∑

m=0,m6=k

Tk,m(ejω)Sm(ejω)

︸ ︷︷ ︸
ICI terms

(5.26)

The kth diagonal element T(k+1)(k+1)(e
jω) of T(ejω) describes the distortion function

related to the subband signal Sk(e
jω). The other M − 1 elements of kth row of

T(ejω) represent the relative ICI terms. e−jωnd is the ideal value of the distortion

function and the ICI elements are desired to be ideally null. The proposed subband

HFB architecture for A/D conversion has particular characteristics. The properties

of subband HFB may be summarized as following:

1. x0[n], x1[n], ..., and xM−1[n] are the only available and known signals. The

desired unknown signals for the A/D conversion are the subband signals

s0[n], s1[n], ..., and sM−1[n] in the subband HFB structure. However, the

original input x[n′] can be reconstructed through the output vector as shown

in figure 5.24. It requires an extra computational load. For reconstructing

the original input, it is better to use the TDM architecture described in the

section 5.3.4 which provides directly the reconstructed original input without

any extra computation. Then, the suband architecture would be useful if it

is desired to obtain the subband components of input.

2. The computations are implemented in parallel for subband HFB structure.

All digital computations are then carried out on the signals associated with

the sampling period MT for the subband HFB.
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Figure 5.24. The original sig-
nal x[n′] may be reconstructed
from the subband signals. Gk(z)
represents the kth subband fil-
ter explained by (5.18) and
x̂[n′] stands for the reconstructed
original input.

3. Knowing the analysis filters, the matrix of analysis filters may be calculated

and hence, the subband architecture may be implemented using (5.25). The

subband architecture uses the same hardware as the classical HFB but differs

in the digital part.

4. A subband HFB-based A/D converter may be very interesting for the ap-

plications such as software radio and intelligent Frequency Division Multiple

Access (FDMA ). The subband HFB A/D converter may be considered as

an FDMA receiver which implements the A/D conversion and frequency de-

multiplexage simultaneously (software radio).

5. There is not any condition for using the proposed subband architecture ex-

cept the total Nyquist criterion is respected ( 1
T
≥ 2σ).

6. As the subband architecture of HFB-based A/D converter provides a MIMO

LTI system between the inputs and outputs, the multichannel blind deconvo-

lution techniques might be exploited for compensating the analog imperfec-

tions of analysis filter bank as well as the other techniques such as automatic

noise cancelation in contrary to the classical HFB (refer to the section 5.1).
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Figure 5.25. Distor-
tion and ICI functions
due to 4th subband sig-
nal x3[n] in the case
where no guard band
is used. The synthe-
sis part uses FIR fil-
ters with 64 coefficients
(GB = 0).
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Figure 5.26. Distor-
tion and ICI functions
(in dB) due to 4th

subband signal x3[n]
versus the normalized
frequency. Each FIR
synthesis filter consists
of 128 coefficients. The
whole spectrum has
been considered for
useful signal (no guard
band).
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5.3.3.3 Performance of Subband HFB architecture

© Simulations in the frequency domain

The subband architecture is simulated for an 8-channel HFB structure using the

same analysis filter bank mentioned in chapter 3. Figure 5.25 shows the dis-

tortion and ICI functions related to the subband signal s3[n]. Each FIR synthesis

filter has been assumed to include 64 coefficients. The distortion and ICI averages
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Figure 5.27. The ICI
functions due to the
4th subband component
(subband HFB struc-
ture) versus normalized
frequency. Each FIR
synthesis filter includes
64 coefficients and a GB
ratio of 7% has been
used.

Figure 5.28. The ICI
functions related to the
4th subband component
(subband HFB struc-
ture) versus normalized
frequency. The length
of each FIR synthe-
sis filter is considered
128 coefficients. 7% of
each subband spectrum
is used as guard band.

are −0.04 dB and −60 dB respectively. The performance is not so acceptable for

practical applications (reminding that the quantization noise would be added as

well). The poor performance is related to the limited capabilities of FIR synthesis

filters. In fact, there is only one group of synthesis filters leading to no ICI terms.

These ideal synthesis filters are obtained from inverting the analysis matrix (refer

to 5.25). The FIR digital filters (with a limited number of coefficients such as 64
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Table 5.3. The ICI and distortion averages of an eight-branch subband HFB structures
considering L = 32, 64 and 128 coefficients.

coefficients) cannot exactly approximate those ideal synthesis filters. The approx-

imation degrades at the frequency borders for each subband signal as shown in

figure 5.25 (around w = 0 and w = π). The ICI and distortion of this eight-branch

subband HFB is shown in figure 5.26 in the case where each FIR synthesis filter

consists of 128 coefficients. The associated ICI average is −67 dB. To improve the

performance of subband HFB structures, we propose to consider some percents of

each subband spectrum as Guard Band (GB ) since an incompatibility appears

in the PR equations at low and high frequencies. Thus, the proposed guard band

permits to eliminate the PR equations associated with the frequency borders. This

proposed guard band would cover low (around w = 0) and high (around w = π)

frequencies at the spectrum of each subband. Applying a small GB ratio, the re-

sults are largely improved. Figures 5.27 and 5.28 illustrate the distortion and ICI

terms when 7% of each subband is regarded as guard band for L = 64 and L = 128

respectively. L stands for the number of coefficients used by each FIR synthesis

filter. It may be seen that the performance in terms of ICI and distortion mean

values have largely improved. Table 5.3 lists the ICI and distortion averages in dB

for the subband HFB structures in the cases where no guard band and a guard

band ratio of 7% are used. The variable L shows the number of coefficients of FIR

synthesis filters in this table. The ICI and distortion averages have not been here

compared with the aliasing and distortion terms of classical HFB because they do

not cover the same spectrum. In return, their performances are compared in terms

of output resolution resulted from the temporal simulations in the next subsection.
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Figure 5.29. The in-
put and output spec-
tra (in dB) versus nor-
malized frequencies for
a subband HFB-based
ADC using FIR synthe-
sis filters with 64 coef-
ficients and a GB ra-
tio 7%. Analog input
is a sinusoidal signal at
the middle of the first
subband spectrum. All
subband output are null
except the first one in
which the input signal is
considered.
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Figure 5.30. The in-
put and output spec-
tra (in dB) versus nor-
malized frequencies for
a subband HFB struc-
ture using FIR synthe-
sis filters of 64 coeffi-
cients and a GB ratio of
7%. The analog input
is a chirp signal sweep-
ing the spectrum of first
subband. All subband
outputs are null except
the first one which in-
cludes the input chirp. −0.5 0 0.5
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© Simulations in the time domain

• Resolution

The classical and subband HFB structures have been simulated in the time do-

main to compare directly the output resolutions. For comparing with the output

signal of classical HFB, the reconstruction process (figure 5.24) has been applied

to the output vector of subband HFB architecture. The results of simulations
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Figure 5.31. The error spectra (normalized to the input variance) (in dB) versus
normalized frequencies for the subband (blue) and classical (red) HFB structures. FIR
synthesis filters include 64 coefficients and a the same GB and oversampling ratio of 7%
is used. Analog input is a sinusoidal signal at the middle of the first subband spectrum.
All subband outputs are null except the first one in which the input signal is considered.

are discussed and compared regarding the output resolution, sensitivity to analog

imperfections and computation load. The same set of analysis filters used in the

preceding subsection have been considered in this part as well. Different input

signals such as sinusoidal and chirp signals are applied for evaluating the respec-

tive performance. Considering a sinusoidal signal at the frequency 0.5 π
8T

(in the

middle of the first subband), the Discrete-Time Fourier Transform (DTFT) of the

output and input signals is shown in figure 5.29. It may be seen that all subband

outputs are null except the output of the first subband ŝ0[n] which is directly

corresponding to the original input. Figure 5.30 shows the spectra of input and

output for the subband HFB in the case where a chirp signal is considered as in-

put. All the subband outputs are zero else the one related to the first subband in

conformity with the input chirp. It may be seen that no signal component appears

at the GB spectral area unless the original input includes a component at the GB

area. This issue will be highlighted in the following remarks. To better study

the performance, the error signal is compared for both the subband and classical
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Figure 5.32. The error spectra (normalized to the input variance) (in dB) versus nor-
malized frequencies for the subband (blue) and classical (red) HFB structures considering
FIR synthesis filters with 64 coefficients and the same oversampling and GB ratio of 7%
for the classical and subband HFBs respectively. Analog input is a chirp sweeping the
first subband spectrum. All subband outputs are null except the first one in which the
input signal is considered.

architectures considering the same input signals. Regarding the above-mentioned

sinusoidal signal, the error spectrum is illustrated in the figure 5.31. In the sub-

band HFB case, the error appears only in the first subband spectrum and the

other subband signals may be assumed null according to figure 5.30. Figure 5.32

shows the error spectra for the classical and subband architectures considering a

chirp sweeping the first subband spectrum as the input signal. The error spectrum

covers again only the first subband spectrum for the subband HFB since it was

mentioned that all subband outputs are null except the first subband ŝ0[n] in the

case of subband HFB (see 5.30). According to figures 5.31 and 5.32, the error

signal of the classical HFB not only covers the whole spectrum, but also always is

non-zero in the oversampling spectral area. In other words, it may be interpreted

that the error related to one input subband appears at the other M − 1 subbands

on the output of M -channel classical HFB-based ADC. Thus, a digital filter is

always necessary to omit the output components at the oversampling area (here
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|Ω| ≥ 0.93π) for the classical HFB. Otherwise, the output resolution of classical

HFB-based ADC is so much low. In the subband HFB case, this post-filtering

procedure for filtering out the GB spectral area is not required unless the original

input spectrum covers the GB parts. The output resolutions of both (subband

and classical) HFB structures are listed in table 5.4 considering the FIR synthesis

filters with 64 and 128 coefficients. The resolution due to the conventional HFB

is related to the case where post-filtering has been applied. It may be seen that

subband HFB-based ADC provides a better resolution than the classical structure

supposing FIR synthesis filters of the same order.

Table 5.4. Resolution of HFB-based ADC assuming the chirp and sinusoidal signals as
input. Having FIR synthesis filters with 64 coefficients, the same oversampling and GB
ratios of 7% are used for the classical and subband HFBs respectively.

• Sensitivity analysis

Each electronic element is often associated with a nominal value plus a devia-

tion or realization error. To study the sensitivity to the realization errors, the

subband and classical HFB structures have been simulated considering Gaussian-

distributed realization errors for the electronic elements of analysis filter bank. The

HFB structures are supposed to include eight branches with the same analysis fil-

ter bank used in the preceding sections. The simulations have been repeated for

1000 trials of random mutually-independent realization errors. Firstly, an analog

input is considered including one sinusoidal signal located at the middle of first

subband (0.5 π
8T

). Figure 5.33 shows the average resolution of both (subband and

classical) HFB structures versus STandard Deviation (STD) of error distribution

considering 64 coefficients for each FIR synthesis filter. The resolutions have been

shown in the presence or without Post-Filtering (PF) procedure. As it was men-

tioned in the preceding subsection, PF process filters out the signal component

at the oversampling and GB spectral areas for the classical and subband HFBs
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Figure 5.33. The resolution (in bits) of the classical and subband HFB-based ADC
versus STD of realization errors for a sinusoidal input signal. Gaussian errors have
been applied to the electronic elements constituting the analysis filter bank. Each FIR
synthesis filter includes 64 coefficients and both the oversampling and GB ratios are 7%.

respectively. It is seen that the subband HFB exhibits a less sensitivity to the

realization errors than the classical HFB for this sinusoidal input. The simulations

have been reestablished for a chirp input signal sweeping the first subband spec-

trum as well. Figure 5.34 demonstrates the output resolutions versus the STD of

error distribution for the classical and subband HFBs.

• Computational complexity

The classical HFB-based A/D converter consists of M FIR synthesis filters, but

the subband architecture needs M2 ones (compare figures 2.6 and 5.22). For an

FIR filter with L coefficients, L multiplying operations and delay components are

effectively necessary. Then, for implementing the synthesis stage, the subband

architecture will need M2L multiplications to be compared with ML ones in the

classical case. However, the subband HFB structure provides M output samples

compared with only one output sample of the classical HFB. Therefore, the compu-

tational complexity per each output sample is equivalent for both HFB structures.

To thoroughly compare the computational complexity, the design phase has to be



129

0 2 4 6 8 10
3

4

5

6

7

8

9

10

11

STD of realization errors (%)

R
es

ol
ut

io
n 

(b
its

)

Resolution for Subband (blue) and claasical (chirp) HFBs (chirp input)

 

 
Subband with PF
Subband without PF
Classical with PF
Classical without PF

Figure 5.34. The resolution (in bits) of the classical and subband HFB-based ADC
versus STD of realization errors considering a chirp input signal. Gaussian errors have
been applied to the electronic elements constituting the analysis filter bank. Each FIR
synthesis filter includes 64 coefficients and both the oversampling and GB ratios are 7%.

considered as well. In the design phase, FIR synthesis filters are obtained. Assum-

ing N frequency points for designing the synthesis filters, conventional HFB struc-

ture would require the inversion of an MN ×MN matrix (refer to the chapter 3).

The subband HFB needs the inversion operation of N matrices of M ×M (refer to

the previous section). In practice, N must be much larger than M (N >> M) to

have an acceptable interpolation. Thus, the design phase of classical HFB archi-

tecture is obviously much more complex than the subband one. The complexity

of the design phase is particularly important when an adaptive method would be

applied to estimate the real analysis filter bank for compensating realization errors.

For example, the design phase of synthesis filters should be regularly repeated to

compensate the variations due to temperature drifts. Accordingly, the subband

HFB-based ADC may be preferred to the conventional structure when realiza-

tion errors are regularly compensated. However, there would be a computational

overload if the original analog signal x(t) is required. The original signal may be

reconstructed from the estimated subband signals in this case.
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5.3.4 Time-Division Multiplexing architecture for HFB-

based ADC

Before beginning this subsection, it is necessary to remind that the signals s0[n],

s1[n], ..., and sM−1[n] and the analysis filters matrix H[n] used here are totally

different from the ones mentioned in the previous subsection (subband HFB). This

notation is here repeated to avoid complexity.

5.3.4.1 MIMO Time-Division Multiplexing model of analysis part

In the previous section 5.3.3, a MIMO model was obtained for analysis part which

led to a MIMO architecture for the HFB-based A/D converter. From another point

of view, Single-Input Multiple Output (SIMO) model of analysis part (figure 5.11)

includes a non-LTI operation because the associated discrete-time signals are re-

lated to two timing periods: T and MT . This phenomenon is originated from the

decimation procedure (a pure time-variant operation) in the HFB structure that

provides a switch between two timing periods. For eliminating the time-variant

decimation operation, a MIMO model would be a good candidate. In this sec-

tion, a new MIMO model is obtained without using the concept of subband filters.

Again, the discrete-time model of analysis part (figure 5.14) is considered. To have

a MIMO model without the concept of subband filtering, the input signal x[n′] is

taken on parallel in the time-domain. An M × 1 vector of signals s0[n], s1[n], ...,

and sM−1[n] is defined as following:

s[n] =




s0[n]

s1[n]
...

sM−1[n]




=




x[n′]

x[n′ − 1]
...

x[n′ − (M − 1)]




n′=nM

(5.27)

These signals may be called Time-Division Multiplexing (TDM) signals. The

relationship (5.27) is better shown by figure 5.35 using polyphase structure [89, 90].

The TDM signals defined in (5.27) can be interpreted in the frequency domain as

well. For instance, the Fourier transform Sk(e
jω) of kth TDM signal sk[n] would
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Figure 5.35. The
polyphase structure
showing the relation
between the new-
defined decimated
input signals s0[n],
s1[n], ..., and sM−1[n]
and the original input
signal x[n′].

be:

Sk(e
jω) =

1

M
e−j ω

M
k

M−1∑

m=0

ej 2π
M

kmX(ej ω
M

−j 2π
M

m) (5.28)

According to (5.27), no signal or information is lost if TDM signals are considered.

In fact, the input signal x[n′] is decomposed into M parallel signals s0[n], s1[n], ...,

and sM−1[n] (a simple serial to parallel operation). Besides, using new decimated

TDM signals, the discrete-time index n is associated with the time period of MT .

Now, it is necessary to find a description for the outputs x[n]= [x0[n], x1[n], ...,

xM−1[n]]T of analysis part in terms of the new-defined TDM input vector s[n].

Invoking the equation (5.14), following relationship is obtained (k ∈ {0, 1, ...,M −

1}):

xk[n] =
∞∑

m=−∞
hk[m]x[n′ − m]

∣∣∣∣
n′=Mn

(5.29)

It shows a convolution operation followed by the decimation procedure (n′ = Mn).

The integer m can be decomposed as follows:

m = lM + r l ∈ Z, r ∈ {0, 1, 2, ..., M − 1}
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Figure 5.36. The gen-
erating model for the
elements hk0[n], hk1[n],
..., and hk(M−1)[n] of
the analysis filters ma-
trix H[n]. This filters
are associated with the
analysis filter Hk(e

jω)
due to the kth branch of
HFB structure.

that Z represents the set of integers. Accordingly, (5.29) can be rewritten as

follows:

xk[n] =
M−1∑

r=0

∑

l

hk[Ml + r].x[Mn − lM − r]

=
M−1∑

r=0

∑

l

hk[Ml + r].x[M(n − l) − r]

(5.30)

To better reformulate (5.30), M intermediate digital filters hkj[n] (0 ≤ j ≤ M−1)

are defined in terms of the analysis filter hk[n
′] as follows:

hkj[n] = hk[Mn + j] 0 ≤ j ≤ M − 1 (5.31)

Now, using (5.31) and (5.30), the relationship (5.29) may be rewritten as:

xk[n] =
M−1∑

r=0

∑

l

hkr[l].sr[n − l]

=
M−1∑

r=0

hkr[n] ⋆ sr[n]

(5.32)
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where ⋆ represents the convolution operation. Then, above relationship provides a

LTI relationship between the available signals x0[n], x1[n], ..., and xM−1[n] (the out-

puts of analysis part) and the TDM input signals s0[n], s1[n], ..., and sM−1[n]. Each

digital filter hkj[n] is extracted from the analysis filter hk[n
′] according to (5.31).

Figure 5.36 illustrates schematically how digital filters hkj[n] (0 ≤ j ≤ M − 1)

are produced from the analysis filter hk[n
′]. The presence of prediction operators

z+1 may be incorrectly interpreted that these digital filters are not causal and nor

realizable. However, the following lemma 5.3.1 shows that the digital filters hk0[n],

hk1[n], ..., and hk(M−1)[n] are causal and stable provided that hk[n
′] is causal and

stable.

Lemma 5.3.1. f [n′] is supposed to be a causal and stable discrete-time filter. If

the filters f0[n], f1[n], ..., and fM−1[n] (M > 1) are defined as following:

fr[n] = f [n′ + r]

∣∣∣∣
n′=Mn

r ∈ {0, 1, 2, ..., M − 1}

Then, all M digital filters of f0[n], f1[n], ..., and fM−1[n] are stable and causal as

well.

Proof. Firstly, the causality is demonstrated. f [n′] is causal, then:

f [n′] = 0 for n′ < 0

According to the assumptions, fr[n] is:

fr[n] = f [Mn + r] 0 ≤ r ≤ M − 1

For the integers n ≤ −1, it may be shown that:

n ≤ −1 ⇒ Mn + r ≤ −M + r < 0 =⇒ fr[n] = 0

Therefore, fr[n] is a causal discrete-time filter for 0 ≤ r ≤ M − 1.

Secondly, the stability of f [n′] (BIBO definition) provides that:

∞∑

n′=−∞

∣∣∣∣f [n′]

∣∣∣∣ < L < ∞
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According to the assumptions, we have:

∞∑

n′=−∞

∣∣∣∣f [n′]

∣∣∣∣ =
M−1∑

r=0

∞∑

n=−∞

∣∣∣∣f [Mn + r]

∣∣∣∣

Thus:
M−1∑

r=0

∞∑

n=−∞

∣∣∣∣fr[n]

∣∣∣∣ < L

As each term
∑∞

n=−∞

∣∣∣∣fr[n]

∣∣∣∣ for 0 ≤ r ≤ M − 1 is positive, then it is found that:

∞∑

n=−∞

∣∣∣∣fr[n]

∣∣∣∣ < L r ∈ {0, 1, ..., M − 1}

and implies that fr[n] is a stable discrete-time filter as long as 0 ≤ r ≤ M − 1.

Thus, in the case of HFB-based A/D converters, all these digital filters are real-

izable because the analysis filters are realistic (causal and stable). In the frequency

domain, the digital filter hkr[n] may be described as follows (for 0 ≤ k ≤ M − 1

and 0 ≤ r ≤ M − 1):

Hkr(e
jω) =

1

M
ej ω

M
r

M−1∑

m=0

e−j 2π
M

rmHk(e
j ω

M
−j 2π

M
m) (5.33)

Therefore, using equation (5.32) for 0 ≤ k ≤ M − 1, it can be shown in the matrix

format that:

x[n] = H[n] ⋆ s[n] (5.34)

where the vector x[n] and the matrix H[n] are:

x[n] =

[
x0[n], x1[n], ..., xM−1[n]

]T
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Figure 5.37. Model
of analysis part of the
HFB-based ADC on the
basis of TDM inputs.

H[n] =




h00[n] h01[n] ... ... h0(M−1)[n]

...
...

...
...

...
...

h(M−1)0[n] h(M−1)1[n] ... ... h(M−1)(M−1)[n]




H[n] represents an M × M matrix whose elements are the impulse response of

discrete-time filters. This LTI MIMO model can be shown in the frequency domain

as follows:

X(ejω) = H(ejω)S(ejω) (5.35)

Accordingly, an LTI MIMO model is obtained for the analysis part of HFB struc-

ture using the available x[n] and TDM s[n] signals as the output and input re-

spectively. This linear model has been illustrated in figure 5.37. It is necessary

to remind that above MIMO TDM model is totally different from the one ob-

tained in the previous subsection 5.3.3.1 (the subband HFB). The subband model

is extracted in terms of subband components of the input signal x[n′], but above

MIMO TDM model is on the basis of time-division signal components. The ma-
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Figure 5.38. The model of TDM HFB-based A/D converter using the concept of TDM
signals s0[n], s1[n], ..., and sM−1[n]. The signals x0[n], x1[n], ..., and xM−1[n] are the only
available signals. The synthesis filters matrix F[n] approximate the inverse of analysis
filter matrix H[n] multiplied by a delay term.

trix of H[n] in two MIMO models are then totally different, although there is some

mathematical relationship between them. The synthesis filters of the HFB-based

A/D converter realized for these two MIMO models are different as well.

5.3.4.2 TDM architecture for HFB-based A/D converter

Considering the MIMO TDM model of analysis part (figure 5.37), a new multiple-

output configuration for the HFB-based A/D converter may be obtained. The

block-diagram of TDM HFB-based A/D converter would be exactly as the same

one proposed for the subband HFB-based A/D converter (figure 5.22). However,

the synthesis filters matrix F(ejω) is different in two MIMO HFB structures which

leads only to a software difference. Thus, figure 5.22 can also be regarded schemat-

ically as the architecture of TDM HFB-based A/D converter. Substituting the

TDM model of analysis part, the model of TDM HFB-based A/D converter may

be obtained as shown in figure 5.38 neglecting the quantization noise. The compu-

tations of synthesis filters matrix are performed regarding to this model. For ob-

taining the synthesis filters matrix of FIR filters, the relationships (5.24) and (5.25)
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Figure 5.39. Distor-
tion and ICI terms of
fourth TDM component
s3[n] in dB versus nor-
malized frequency for
a seven-branch HFB.
The FIR synthesis fil-
ters consist of 64 coef-
ficients.
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may again be used. However, the elements of analysis filters matrix H(ejω) would

be provided by (5.33). Moreover, the TDM signals are estimated in this case. TDM

HFB architecture appears more interesting than the subband one since the original

signal x[n′] may be conveniently reconstructed from the TDM signals s[n] by (5.27)

(only an operation of parallel to serial). There are many applications such as satel-

lite and Global System for Mobile (GSM) communications where TDM concept is

used [91, 92]. The TDM HFB-based A/D converter may seem very interesting for

these applications so that the concepts of software radio and intelligent spectrum

sharing would be simply realizable.

The characteristics of proposed TDM HFB-based A/D converter may be summa-

rized as follows:

1. The only available signals are x0[n], x1[n], ..., and xM−1[n] like the former

subband architecture. However, the input signal x[n′] (or the analog input

x(t) after sampling at 1
T
) is directly obtained in this case without any extra

computation.

2. Using above TDM model, M samples of the input signal x[n′] are achieved

in parallel and at the same time in contrary to the classical HFB architec-

ture where only one sample of x[n′] is obtained after each synthesis-filtering

process.
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Figure 5.40. Distor-
tion and ICI terms of
fourth TDM component
s3[n] in dB versus nor-
malized frequency for
an eight-branch HFB.
The FIR synthesis fil-
ters include 64 coeffi-
cients.
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3. There is no longer a need for upsamplers (zero-padding). All digital compu-

tations are associated with the sampling period MT like the subband HFB.

4. A Time-Division Multiple-Access (TDMA) A/D converter can be imple-

mented using this structure. This may be very interesting for the applications

such as the mobile (GSM) and satellite communications [93]. An intelligent

spectrum managing would conveniently be possible in this case.

5. There is no condition for using the proposed TDM HFB architecture else the

global sampling Nyquist criterion.

6. There is no decimation process between the input-output in the TDM archi-

tecture of HFB-based A/D converter. Then, multichannel blind deconvolu-

tion or automatic noise canceling techniques may be exploited to compensate

the analog imperfections. This capability does not exist for the classical HFB.

5.3.4.3 Performance of TDM HFB architecture

The TDM architecture of HFB-based ADC is simulated considering the same anal-

ysis filter bank of previous sections which are simply-realizable. An RC and (M−1)

RLC circuits are used in the analysis filer bank for an M -channel HFB structure.

The simulations are carried out in both frequency and time domains.
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Figure 5.41. ICI
terms of fourth TDM
component s3[n] in dB
versus normalized fre-
quency for a seven-
branch HFB. The FIR
synthesis filters include
64 and 128 coefficients. −0.5 0 0.5
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• Frequency domain

Firstly, the proposed TDM structure is simulated in the frequency domain. Sup-

posing the seven- and eight-branch HFB structures (M = 7, 8), the distortion and

ICI terms related to the TDM signal s3[n] are shown in figures 5.40 and 5.39 re-

spectively. Considering the figures 5.40 and 5.39, it may be seen that the ICI terms

degrade around the frequencies of zero and ±π for the even and odd number of

branches respectively. This phenomenon has been observed for the various number

M of branches. This poor performance of TDM HFB at low and high frequencies

for an even or odd number of branches respectively may be described in terms of

the condition number of related equations matrix. Referring to figure 5.45, it may

be seen that the condition number is larger at low and high frequencies for the

eight- and seven-branch TDM HFB structures. To improve the performance of

TDM architecture, a Guard Band (GB) may be used at low or high frequencies

depending on the number of branches. If the number M of branches is odd, a per-

centage of the spectrum related to each TDM signal is allocated to the GB at the

high frequencies. It means each TDM signal would be considered at the spectrum

interval [−(1 − α)π, (1 − α)π] where α represents the ratio of GB to the whole

spectrum 2π. In the even case, the GB is accommodated near the low frequencies.

In other words, each TDM signal would include no information at the frequency
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Figure 5.42. ICI
terms of fourth TDM
component s3[n] in dB
versus normalized fre-
quency for an eight-
branch HFB. The FIR
synthesis filters include
64 and 128 coefficients. −0.5 0 0.5
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interval [−απ, απ] if α stands again for the ratio of GB to the whole spectrum

2π. Figure 5.41 exhibits the ICI terms related to the TDM signal s3[n] of a seven-

branch HFB considering a GB ratio of 7%. The FIR synthesis filters have 128 and

64 coefficients. This process has been carried out in the case of eight-branch HFB

M = 8 considering a GB ratio of 7% as well. The related ICI terms are shown in

figure 5.42. To better show the performance improvement by using GB, table 5.5

provides the distortion and ICI mean values for the seven- and eight-branch TDM

HFB structures considering 64 and 128 coefficients at each FIR synthesis filter.

The performance has apparently improved by using a GB ratio of 7%.

• Time domain

The behavior of TDM HFB structures are simulated in time-domain in this section.

The eight-branch TDM HFB architecture of the previous subsection has been sim-

ulated and various signals are applied at the input. The outputs follow the input

signals with a delay. It is necessary to remind that the delay would be MndT in

the TDM HFB case where M , nd and T represent the number of branches, the

delay considered at each branch and Nyquist sampling period respectively. It is M

times larger than the delay ndT of the classical HFB architecture. This difference is

associated with the different time indices used in the reconstruction equations. In

fact, the reconstruction equation (3.6) is established in reference to the decimated
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Table 5.5. The ICI and distortion averages for the seven- and eight-branch TDM HFB
structures considering L = 64 and L = 128.

digital signals with the sampling period MT in the case of TDM HFB structure.

For conveniently observing the performance, the spectrum of error signal is shown

in figures 5.43 and 5.44. Figure 5.43 shows the error spectrum when the input

is a sinusoidal signal at the frequency ω◦ = 0.5π
8T

. For this sinusoidal input, no

signal appears at the guard bands of eight TDM components. A parallel to serial

operation has been applied to the TDM outputs of TDM HFB architecture. It

enables us to reconstruct the original input signal through the TDM components.

To better compare the performances, the spectrum of error signal is demonstrated

for both classical and TDM HFB structures in this figure. An oversampling ratio

7% has been considered for the classical HFB. Similarly, a GB ratio of 7% has

been assumed in the design of synthesis filters for the TDM HFB. It may be seen

that the TDM HFB exhibits clearly a better performance than the classical HFB

for this sinusoidal input. An important signal appear at the oversampling spectral

area for the classical HFB so that a post-filtering is necessary to omit this part of

output signal. For example, Signal-to-Noise Ratio (SNR) at the output of classical

HFB structure remains at 49dB without the post-filtering. If the oversampling

spectral area is filtered out, the output SNR would be 73dB for the classical HFB.

In return, no signal appears at the guard bands of TDM HFB structure for this

sinusoidal input signal. The TDM HFB provides a SNR of 123dB in this case

which is 50dB better than the classical architecture.

Then, two important aspects may be noted in this case. Firstly, the classical HFB
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Figure 5.43. The error spectrum associated with the TDM (blue) and classical (red)
HFB structures. Both structures consist of eight branches and use 64 coefficients for the
FIR synthesis filters.

structure needs a post-filtering process to filter out the oversampling spectral area

even no input signal is present at the oversampling spectral band. The TDM HFB

does not need any post-filtering if the analog input does contain no signal at the

guard bands. Secondly, the TDM HFB provides a much higher SNR than the

classical one for this sinusoidal input. Figure 5.44 provides a comparison between

the TDM and classical HFBs supposing a chirp input signal. The input chirp

sweeps the spectrum at the interval [0, π
T
(1 − α)] that α is supposed to be the

oversampling ratio of 7% (α = 0.07). As figure 5.44 shows, the oversampling area

has not been filtered out for the classical HFB neither the GB peaks due to the

TDM HFB. Neglecting the oversampling and GB spectral regions, the classical

and TDM architectures provide the output SNR of 63dB and 91dB respectively.

However, the output of the classical HFB has to be filtered to the frequency in-

terval [−(1 − α)π, (1 − α)π]. The output of each branch of the TDM HFB is to

be post-filtered with the same filter. Thus, the TDM HFB would need M digital

filtering process applied to the outputs of M branches. Finally, the simulations in

time domain exhibit that the TDM HFB architecture may lead to a better perfor-
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Figure 5.44. The error spectrum associated with the TDM (blue) and classical (red)
HFB structures. Both structures include eight branches and use 64 coefficients for the
FIR synthesis filters.

mance than the classical one in the absence of realization errors with respect to

the ICI (versus aliasing in the classical case) interference terms.

• Computational complexity

Like the subband HFB architecture, M2 digital filters construct the synthesis filter

bank of the TDM HFB structure compared to M digital filters required in the

classical architecture. The TDM HFB provides M output samples at each time

instant (refer to figure 5.38). At each cycle, an output sample x̂[n′] is obtained

through the classical HFB architecture, but M output samples {x̂0[n], ..., x̂M−1[n]}

are provided by the TDM one. For comparing the number of multiplications at

each cycle, the results of the section 5.3.3.3 may be reused since the structure of

TDM HFB includes a matrix of M2 digital filters like to the subband HFB. Then,

the TDM HFB affects M2L multiplications at each cycle where L represents the

length of each FIR synthesis filter. The classical HFB needs ML multiplications

at each cycle. However, considering the number of output samples obtained from

each architecture, both the classical and TDM HFBs make ML multiplications
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per output sample. The TDM HFB may seem more interesting than subband one

from this point of view, because no digital calculation is required to reconstruct

the original input signal x[n′] from the TDM output components but only a par-

allel to serial operation. A comprehensive comparison between these various HFB

architectures is presented in the section 5.4.

5.3.4.4 Sensitivity of TDM HFB architecture

It was mentioned in the previous sections that the TDM HFB architecture includes

M2 digital filters in the synthesis stage. The classical HFB would have only M

digital synthesis filters. Then, the relative sensitivity Sf of synthesis filter f [n]

(section 3.3) may not be a good candidate for comparing the sensitivity of these

structures. However, the condition number of analysis matrix may be considered

as a suitable measure for showing the sensitivity to the analog imperfections as it

was described in section 3.3. Figure 5.45 shows the condition number of analysis

matrices versus the normalized frequency for the eight- and seven-branch TDM

structures. It is reminded that there is an M × M analysis matrix associated

with each frequency point in the TDM case (refer to section 5.3.4.2). Observing

Figure 5.45. The condition number of analysis matrices versus normalized frequency
for seven- and eight-branch TDM HFBs are shown in blue and red respectively.
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figure 5.45, it is firstly found that the average value of condition number for the

TDM HFB is so smaller than the condition number associated with the classical

HFB (refer to section 3.2.4 and figure 3.12). It was mentioned that the sensitivity

of the solution (here the synthesis filters) to the deviations of the analysis matrix

coefficients (or the realization errors in this case) is proportional with the square

of related condition number (section 3.3.2.1). Then, the TDM HFB would be less

sensitive to the realization errors than the classical one. On the other hand, the

sensitivity of the classical HFB architecture increases largely with the oversampling

ratio because of the exponential growth of the related condition number (see fig-

ure 3.12). In the TDM case, the guard band (equivalent factor for the oversampling

band) has no effect on the condition number because it causes no modification in

the coefficients analysis matrix. Considering the guard bands, just the respective

equations of perfect reconstruction are neglected to avoid the non-conformity of

these equations. The figure 5.45 conforms also with the definition of guard bands

for the even and odd number of branches (M) (section 5.3.4.3). It is seen that the

condition number is larger at either high frequencies or lower frequencies for odd

and even number M of branches respectively.

To better study the sensitivity to the realization errors, the output resolutions may

directly be compared in time domain supposing different values of analog imper-

fections. For this purpose, both the classical and HFB structures are simulated

in the time domain. The same eight-branch HFB architectures used in the previ-

ous section are considered. Both the oversampling and GB ratios are considered

7% for the classical and TDM HFBs respectively. To observe the effects of real-

ization errors, all electronic elements (R, C and L) included in the analysis filter

bank are considered with a Gaussian profile. The standard deviation of Gaussian

distribution is employed for representing the analog imperfections. Sweeping the

analog imperfections at the interval [0, 10%], the simulations are repeated for 1000

trials of each value of realization error. Each trial of realization errors is mutually-

independent versus the other trials. The output resolution of HFB structures are

used for comparison. Firstly, the input is assumed to be a sinusoidal signal at the

frequency ω◦ = 0.5π
8T

. Figure 5.46 shows the output resolution (in bits) of the classi-

cal and TDM HFBs versus the realization errors. If Post-Filtering (PF) is applied

for eliminating the oversampling and GB spectral areas in the classical and TDM
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Figure 5.46. The output resolution of the classical (in red) and TDM (in blue) HFB
architectures versus the relative realization errors. A sinusoidal signal has been applied
to the input and Post-Filtering (PF) is considered for eliminating the oversampling and
GB areas for the classical and TDM cases respectively.

cases respectively, the TDM HFB architecture is associated with a performance of

3 bits better than the one related to the classical HFB in the presence of realization

errors. It means that the TDM HFB is less sensitive than the classical one to the

realization errors in the case of sinusoidal input. In other words, the SNR at the

output of this eight-branch TDM HFB is about 20dB better than the one related

to the classical HFB. If GB spectral areas are not filtered out in the TDM HFB,

it leads to the same resolution that a classical HFB may provide with eliminating

the oversampling band. This shows that the TDM HFB architecture may provide

at worst case (meaning without PF) the same performance that the classical one.

To have a comparison in the whole spectrum, a chirp input sweeping the frequency

interval [0, π
T
(1−α)] is applied to both the TDM and classical structures. α stands

for the oversampling ratio of 7% (α = 0.07). Like to the sinusoidal case, a similar

procedure is applied to obtain the sensitivity to the realization errors. Figure 5.47

illustrates the output resolution of TDM and classical HFBs versus the STandard

Deviation (STD) of realization errors. For the chirp input signal, the TDM HFB
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Figure 5.47. The output resolution of the classical (in red) and TDM (in blue) HFB
architectures versus the relative realization errors. A chirp signal is considered as the
input and Post-Filtering (PF) is considered for eliminating the oversampling and GB
spectra for the classical and TDM HFBs respectively.

architecture exhibits a better performance of about 1 bit in the presence of analog

imperfections than the classical HFB. It is reminded that the performance of TDM

HFB is much better than the one related to the classical HFB in the absence of

realization errors (refer to the figure 5.47 at the STD of errors equal to zero). An-

other interesting result may be deducted from these two simulations. According

to figures 5.46 and 5.47, the TDM HFB may provide a performance approximately

equal to the classical HFB even if no Post-Filtering (PF) is considered to elim-

inate the GB spectral areas. However, if the oversampling spectral area is not

post-filtered out in the classical HFB, the performance degrades so much.

5.4 Summary and discussion

In this chapter, several new HFB architectures have been offered for realizing the

HFB-based A/D conversion. It is shown that a blind method such as the blind
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Figure 5.48. The general architecture for HFB-based ADC. The output y[n] may
include either one or a vector of sequences depending on the type of architecture. The
synthesis stage may also consist of either a vector or a matrix of digital filters.

deconvolution techniques is necessary to estimate the realization errors of the ana-

log analysis filter bank, since the classical HFB is much sensitive to these analog

imperfections. On the other hand, the mentioned blind methods cannot directly be

applied to the classical HFB A/D converters because of undersampling process ex-

isting at each branch between the input and output. The proposition of new HFB

architectures has concentrated on two objectives. Firstly, a new HFB architecture

may result in a less sensitivity to the realization errors than the classical HFB.

The second aim is to provide an LTI relationship between the input and output of

new HFB architecture without any undersampling so that a blind deconvolution

technique may be applicable to estimate or compensate the realization errors (refer

to section 5.1).

The four types of (classical, two-stage, subband and TDM) HFB architectures have

the same analysis part. But, the difference is in the digital part which constitutes

the synthesis stage. In other words, a general diagram of an HFB-based ADC may

be considered independent of its architecture type as shown in figure 5.48. The

synthesis stage of the general HFB-based ADC may represent either a matrix or
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Table 5.6. The comparison of all four types of HFB architectures in reference to the
applicability of a blind estimation technique to correct the analog imperfections.

a vector of FIR digital filters for the subband , TDM or classical and two-stage

architectures respectively. Anyway, they are different only in the digital signal pro-

cessing unit (software) and then realizable on the same hardware platform. This

may be very attractive for realizing the ideas such as the Software-Defined Radio

(SDR) systems for which all the manipulations including frequency management

would be implemented in the digital part. Finally, the general HFB-based A/D

converter may be a good candidate for implementing the SDR systems as well as

the future telecommunication services.

However, the four different types of HFB architectures may be compared in ref-

erence to various parameters. Table 5.6 compares the four (classical, two-stage,

subband and TDM) HFB architectures in terms of the possibility to exploit the

blind techniques for estimating or possibly compensate the realization errors. The

TDM and subband HFB structures are the only ones which provide an LTI re-

lationship without any decimation between the related inputs and outputs. The

HFB architectures are different only in the synthesis stage as it was mentioned.

The various parameters of synthesis stages are compared for the proposed HFB

architectures versus the classical one in table 5.7. The two-stage exhibit much

more sensitivity to realization errors than the classical one. On the other hand, it

cannot provide a minimum acceptable performance when no oversampling process

is used. Accordingly, the classical HFB is in practice preferred to the two-stage

HFB architecture. The other proposed TDM and subband HFBs exhibit a group

of interesting characteristics. Although a subband or TDM M -branch HFB struc-

ture includes M2 FIR synthesis filters compared to the M ones required for the

classical HFB, but the computations per each output sample are the same for
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Table 5.7. The comparison of all four types of HFB architectures in terms of the
parameters of synthesis stage.

Table 5.8. The comparison of the classical, subband and TDM HFB architectures in
terms of output resolution (in bits) considering a sinusoidal input located at the middle
of first subband.

all of them. This is originated from MIMO architecture of TDM and subband

HFBs. On the other hand, the design phase for the classical HFB is associated

with inverting a huge analysis matrix particularly for large number of branches.

In practice, the TDM and subband HFB architectures are much more compatible

than the classical HFB with increasing the number M of branches. Finally, the

synthesis stage of subband and TDM HFBs provide M output samples at each

cycle. The output of TDM HFB may directly provide the original input signal.

Nevertheless, the original input can be reconstructed from the outputs of subband

structure through a reconstruction stage (figure 5.24). The outputs of subband

HFB are corresponding to the subband components of the original input which
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Table 5.9. The comparison of the HFB architectures in reference to the output resolu-
tions supposing a chirp input signal sweeping the first subband.

may be interesting in the FDMA systems. The TDM and subband HFBs not only

are interesting regarding to their possibility to use blind estimation techniques,

but also exhibit a better performance compared to the classical HFB. Tables 5.8

and 5.9 list the output resolutions considering a sinusoidal and a chirp input signal

respectively. The sensitivity of TDM and subband HFBs also appears to be less

than the one related to the classical HFB in this case.

Finally, it may be seen that the high sensitivity of HFB architectures necessitates

to consider a compensation mechanism to provide an acceptable output resolution

in the presence of realization errors of analog part of the system (analysis part)

(see figure 5.48).



Chapter 6

Conclusion

Each problem that I solved became a rule which served afterwards to solve other

problems.

- Rene Descartes

6.1 Brief survey on the results

This thesis deals with the HFB-based A/D converters. As the practical implemen-

tation of HFB-based ADCs generally encounters the important obstacle of high

sensitivity to the realization errors, efforts have been made in this thesis to more

profoundly study this problem and to propose a group of possible solutions. To

exclusively focus on the main problem, namely the sensitivity of the classical HFB

structures to the realization errors, the quantization noise has been neglected in

this thesis report unless the opposite is indicated. Considering he constraints of

high frequency electronic circuits, simply-realizable first- and second-order analog

filters have been used in the analysis filter bank. For convenience, the synthesis

filters are implemented by FIR digital filters as well. To better analyze the HFB

architecture, the design phase has been formulated in the matrix form. The origins

of high sensitivity to the realization errors have been shown to associate with the

related analysis matrix. It has been shown that the oversampling process causes a

large increase in the sensitivity, although it provides a better performance in the

absence of analog imperfections. It is also shown that there is always an optimal
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oversampling ratio depending on the number of branches and analysis filter bank.

The optimum value for an eight-channel HFB using first- and second-order analy-

sis filters is about 7%.

The optimization technique of TLS has been used as a candidate for reducing

the sensitivity of LS solution. TLS led to no improvement because the design

of FIR synthesis filters of HFB structures is a non-zero residual problem. It has

been shown that the classical HFB architecture with practical FIR synthesis filters

may not implement the real A/D converters unless a compensation technique is

considered to reduce or eliminate the high sensitivity to the analog imperfections.

To aim at an HFB architecture compensated in reference to the analog imperfec-

tions, the capability of estimation methods have been reviewed in estimating the

realization errors of general analog circuits. For estimating the realization errors

of analog circuits, two techniques have been proposed and discussed. Firstly, a

SOS-based model of analog imperfections has been proposed for estimating the

relative imperfections. It appears more useful when the transfer function of LTI

circuit includes only one erroneous coefficient. Blind equalization methods have

been tried for estimating analog imperfections as the second way. SEA algorithm

has been used in the simulations because of its suitable convergence properties.

Since the SEA algorithm uses HOS parameters, it is useful only for non-Gaussian

signals. Besides, it needs a priori the structure of unknown LTI circuit (or the

order of analog circuit). Computations burden is much more than SOS model as

well. However, the SEA algorithm provides a better precision of estimation than

the proposed SOS-based model. These two estimation techniques are acceptable

in the cases where the Nyquist criterion holds. Both the proposed estimation

methods can not directly be applied to the HFB-based A/D converters because of

time-varying characteristics existing at each branch of HFB.

Then, several new (two-stage, subband and TDM) HFB architectures have been

offered for realizing the HFB-based A/D conversion to result either in less sensi-

tivity to the realization errors or in an LTI relationship between the input and

output. The only difference of the four (classical, two-stage, subband and TDM)

HFB structures is in the digital part which constitutes the related synthesis stage.

This could be very interesting for the applications such as Software-Defined Radio

(SDR) systems to include a digital manipulation of the spectrum. The two-stage
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HFB architecture provides a better performance than the classical HFB in the

absence of realization errors (considering an additional anti-distortion filter). Nev-

ertheless, the two-stage HFB is much more sensitive to the realization errors of

analysis filter bank than the classical HFB architecture. Besides, a blind method

can be applied only to the anti-distortion stage. Therefore, the two-stage HFB-

based A/D converters are not practically preferable in reference to the classical

ones. The TDM and subband HFB structures not only are less sensitive to the

realization errors than the classical one, but also provide an LTI relationship be-

tween the inputs and outputs. Then, a blind method such as blind deconvolution

technique may be applied to TDM and subband HFBs. It results in a capability to

estimate the analog imperfections and hence to correct them. Some possible HFB

architectures in which the analog imperfections may be estimated and compensated

are discussed in the next section 6.2.

6.2 Perspectives

The high sensitivity of HFB architecture to analog imperfections appears as an

important challenge in the realization of HFB-based ADC. This problem may be

handled by two groups of solutions: indirect and direct correction. The direct

methods are only applicable for MIMO architectures such as the subband and

TDM HFBs which provide an LTI relationship between the outputs and inputs.

Applying a blind equalization or decorrelation method to the output vector, the

corrected input samples are directly obtained. For indirect correction, an estima-

tion algorithm may be used to obtain the realization errors or the real transfer

functions associated with the analysis filter bank. Having the real spectral param-

eters of analysis filter bank, the design phase of FIR synthesis filters can be again

established to correct the previous synthesis stage. Thus, a new (compensated)

synthesis filter bank would be available for using in the HFB architecture. Invok-

ing the mentioned methods, some compensated HFB architectures are proposed

in this section. On the other hand, two types of algorithms may be used to cor-

rect the HFB architectures: Automatic Noise Canceling (ANC ) algorithms and

blind deconvolution methods. The ANC algorithms are a type of decorrelation

methods [70]. The blind deconvolution methods may be classified for two types
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Figure 6.1. The HFB ADC compensated by ANC algorithm to correct the analog
imperfections. The synthesis stage may be either the TDM or subband architecture.
The ANC correction stage G(z) is adaptively adjusted by the related outputs.

of LTI systems: Single-Input Single-Output (SISO) and Multiple-Input Multiple-

Output (MIMO). The case of SISO has been used in chapter 4. A short survey on

the deconvolution techniques for SISO LTI systems may be found in appendix D.

However, for the HFB architectures, the blind deconvolution of MIMO LTI sys-

tems is applicable because of MIMO structures of the TDM and subband HFBs.

The MIMO blind deconvolution belongs to the Blind Source Separation (BSS)

techniques associated with the convolutive mixtures [87].

• Direct compensation of analog imperfections

Using ANC algorithm, the original input samples may directly be estimated. Then,

it does not require to estimate the real analysis filter bank. The compensation pro-

cedure is intrinsically integrated in the ANC algorithm. This method is applicable

only to the TDM or subband HFB architectures. The prerequisite condition for

using an ANC algorithm is that the vector of input sequences are mutually un-

correlated. In the TDM HFB case, it means that the original analog input is a

second-order white process. Figure 6.1 shows the HFB-based ADC architecture

compensated by ANC algorithm. The inputs {ŝ0[n], ŝ1[n], ..., ŝM−1[n]} of ANC
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procedure may be the TDM or subband components of the original input x(t)

depending on the TDM or subband synthesis stage respectively. The ANC fil-

ter matrix G(z) is an M × M matrix of FIR filters whose diagonal elements are

identity (δ(n − nd)). G(z) is adaptively modified according to the output signals

{s̃0[n], ..., s̃M−1[n]}. Figure 6.2 demonstrates schematically the structure of ANC

filter matrix. The TDM or subband components of input have to be uncorrelated

Figure 6.2. The gen-
eral structure of ANC
algorithm where gij [n]
is an FIR filter repre-
senting the (i, j)th ele-
ment of ANC filter ma-
trix G(z) and is adap-
tively modified.

depending on the type of HFB architecture. The ANC algorithm can even improve

the output resolution in the absence of any realization errors because the ICI terms

appear as noise signals at each branch.

The proposed HFB structure may lead to a simple two-branch ADC as shown in

figure 6.3. It is associated with a simplified TDM architecture when M = 2. This

two-branch ADC uses only one analog filter and the other analysis filter has been

supposed to be an all-pass (unity) filter for more convenience. Accordingly, one

TDM component s0[n] is available without any ICI interferences. To obtain the

second TDM component s1[n], the simplified synthesis filter matrix including only

two digital filters F10(z) and F11(z) are used. At last, to reject the residual interfer-

ences of first TDM component in the estimated second TDM component ŝ1[n], an

ANC stage is used including only one adaptive FIR digital filter G1(z). According

to the ANC algorithm, G1(z) would be adaptively adjusted by the related output

so that the contribution of first TDM component s0[n] in the second output s̃1[n]
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is minimized. The final output resolution would depend on the performance of

Figure 6.3. A simplified two-branch HFB-based ADC architecture based on the TDM
architecture to which the ANC algorithm is applied. The HFB structure includes only
one analog filter H1(s) and one ANC FIR digital filter G1(z).

ANC algorithm. It depends on many factors such as the length of ANC FIR filter

and performance of adaptive noise canceling algorithm.

The estimation of input signals may alternatively be realized by a BSS algorithm

as well. In fact, an ANC algorithm may be assumed as a special case of BSS

methods. Figure 6.1 may be considered as the general structure of HFB-based

ADC compensated by the BSS techniques if the ANC FIR filter matrix G(z) is

substituted with a BSS FIR filter matrix. In the BSS case, an FIR filter matrix

is again used but the adaptive correction algorithm is a BSS technique. The BSS

techniques often employ Higher-Order Statistics (HOS). For this purpose, the orig-

inal input is generally assumed to be a non-Gaussian white signal.

• Compensation by estimating the real analysis filter bank

There is another possibility to use the aforementioned ANC and BSS techniques for

estimating the real transfer functions of analysis filter bank. This idea is schemat-

ically demonstrated in the figure 6.4. The diagram shows a feedback path for

correcting the synthesis filters. In this method, all types of HFB architectures

may be accommodated in the main synthesis stage. The output y[n] may be one

or a vector of signal sequences according to the main synthesis architecture. The

estimation block may provide the real spectral parameters of analysis filter bank

which are useful to correct the analog imperfections.



158

Figure 6.4. The HFB-based ADC architecture with a compensation block. A blind
technique used to estimate the real analysis filter bank. Applying the estimated analysis
filter bank, the synthesis filter bank is corrected.



Appendix A

Frequency representation of

HFB-based A/D converters

A.1 Introduction

Perfect Reconstruction (PR) equations and their extensions are traditionally used

for designing the HFB-based A/D converters. Hence, the comprehension of PR

equations and their conditions would be very essential in order to either reduce

the computational complexity or prevent from more round-off or calculation errors

appearing through the exhaustive computations of HFB implementation such as

matrix inversion. Accordingly, we present a new formulation of PR equations and

its conditions in this appendix. Then, the symmetry of PR equations is discussed

and we show that only one out of M parts of the whole spectrum is required to be

considered for the design phase of the M -branch HFB structure.

A.2 Frequency Analysis of maximally-decimated

Hybrid Filter Bank ADC

The main focus is on the structures of HFB-based A/D converters in this section

(see figure 2.6). The quantization noise of A/D converters is neglected to highlight

the interference and distortion terms appearing through the HFB architectures.

The PR equations provide a relationship between the output and input of HFB
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so that both the analysis and synthesis filter banks are incorporated. Then, one

of the analysis or synthesis filter banks may be designed having a priori the other

one provided that the PR equations are available.

Neglecting the nonlinear effects of A/D converter such as quantization noise and

the effects of sample-and-hold circuits at each channel, an HFB ADC may be

simplified as illustrated in figure A.1 (refer to chapter 3). Observing the Nyquist

criterion for global system, the analog input x(t) is supposed to be limited in the

frequency domain between [− π
T
, π

T
] where T represents the global sampling period

so that Ω◦ = 2π
T

stands for the Nyquist sampling rate.

Figure A.1. Simplified HFB-based A/D converter considering the maximally-decimated ar-
chitecture. Neglecting the Quantization process, each A/D converter has been substituted by a
simple sampler at 1

MT
.

According to the structure of figure A.1, the input signal x(t) after being filtered

and sampled can be represented as following:

Uk(jΩ) = X(jΩ) · Hk(jΩ) k = 0, 1, . . . ,M − 1 (A.1)

Vk(e
jω) =

1

MT

+∞∑

p=−∞
Uk(j

ω

MT
− j

2π

MT
p) (A.2)

that Uk(jΩ) and Vk(e
jω) stand for the spectral representation of u(t) and v[n] re-

spectively. It is worth to point out that the input signal X(jΩ) is modulated by
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an LTI system (Hk(jΩ)) at each branch, and then down-sampled at 1
MT

. The fol-

lowing spectral description may be obtained considering the interpolator operation

(up-sampling):

Wk(e
jω) = Vk(e

jMω) =
1

MT

+∞∑

p=−∞
Uk(j

ω

T
− j

2π

MT
p) (A.3)

and then we can conclude as follows:

Yk(e
jω) = Fk(e

jω) · Wk(e
jω) (A.4)

Y (ejω) =
M−1∑

k=0

Yk(e
jω) (A.5)

Substituting and integrating all preceding relationships in equation A.5, we can

finally state that:

Y (ejω) =
1

MT

+∞∑

p=−∞
X(j

ω

T
− j

2π

MT
p) ·

M−1∑

k=0

Hk(j
ω

T
− j

2π

MT
p) · Fk(e

jω) (A.6)

Using lemma 1 (at the end of appendix A), we can rewrite above relationship as

following:

Y (ejω) =
1

MT

M−1∑

m=0

X̃(j
ω

T
− j

2π

MT
m) ·

M−1∑

k=0

H̃k(j
ω

T
− j

2π

MT
m) · Fk(e

jω) (A.7)

where X̃(jΩ) and H̃k(jΩ) are periodic extensions of X(jΩ) and H
′

k(jΩ) with the

period of Ω◦ = 2π
T

. There is no aliasing term through mentioned periodic extensions

leading to X̃ and H̃k because the Nyquist rate is Ω◦. H
′

k(jΩ) is formed by the part

of Hk(jΩ) described between [−Ω◦

2
, +Ω◦

2
] as below:

H
′

k(jΩ) =





Hk(jΩ) Ω ∈ [−Ω◦

2
, +Ω◦

2
]

0 elsewhere

(A.8)

Figure 5.13 shows the periodic extension for an exemplary analog filter. To define
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the distortion and aliasing functions, we had better rewrite equation A.7 as follows:

Y (ejω) = X̃(j
ω

T
) · T◦(e

jω)
︸ ︷︷ ︸

distortion part

+
M−1∑

m=1

X̃(j
ω

T
− j

2π

MT
m) · Tm(ejω)

︸ ︷︷ ︸
aliasing part

(A.9)

Integrating with the equation A.7, the following definition may be obtained for the

distortion T◦(e
jω) and aliasing Tm(ejω) functions:





T◦(e
jω) = 1

MT

∑M−1
k=0 Fk(e

jω) · H̃k(j
ω
T
)

Tm(ejω) = 1
MT

∑M−1
k=0 Fk(e

jω) · H̃k(j
ω
T
− j 2π

MT
m)

m = 1,. . . ,M -1

(A.10)

A.3 Perfect Reconstruction for

Hybrid Filter Bank

We now observe PR conditions and criteria to facilitate the filter design procedure

employed in the implementation phase. To have a PR filter bank, the following

set of equations are sufficient to hold:





T◦(e
jω) = e−jωnd

Tm(ejω) = 0 m=1,. . . ,M-1

(A.11)

where nd stands for an arbitrary integer (or real number in global view) that

minimizes the error of above equalities. To follow readily, the conditions may be

explained in vector/matrix form. So:

F (ω) =
[

F0(e
jω) F1(e

jω) · · · FM−1(e
jω)

]T

M×1
(A.12)

H(ω) =
[

H̃0(j
ω
T
) H̃1(j

ω
T
) · · · H̃M−1(j

ω
T
)

]
1×M

(A.13)



163

A(ω) =




H(ω)

H(ω − 2π
M

)

...

H(ω − 2π(M−1)
M

)




M×M

(A.14)

Therefore, A is a matrix of M × M which is computed at every arbitrary discrete

time frequency ω ∈ R. PR criteria are now possible to be described as following.

A · F = B (A.15)

B =
[

e−jωnd 0 · · · 0
]T

(A.16)

B is a fixed vector of the dimension M × 1. Above matrix equation A.15 may

hold in any arbitrary frequency ω ∈ R. The analysis matrix A has a very useful

property. Brown has shown that there is a close relationship between the columns

of the inverse matrix A−1 of A (if existing) [33] so that:





ejωpnd · F (ωp) = (p + 1)th column of A−1(ω)

ωp = ω − 2π
M

p p = 0,. . . ,M-1

(A.17)

This property may be exploited in design phase of synthesis filters. Accordingly,

we can conclude following issues which may be very advantageous in the imple-

mentation of HFB architecture:

• Overlap of analysis filters

Based upon the previous section, there is no criterion or condition assumed

by the analysis or synthesis filter banks for holding the PR equation except

the existence of inverse of the analysis matrix at every frequency. Thus,

analysis filters are not required to be in contiguous frequency bands. For

example, an analog filter of unity (Hk(jΩ) = 1) may be used or even the

analysis filters can overlap. This is useful for the practical realization of

analysis filter bank.
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• computational efficiency

According to A.17, it is not necessary to spread out the frequency points

throughout the whole spectrum ±π for the design phase. It is enough to

suppose the frequency samples at a narrow band of 2π
M

for example [−π,−π+
2π
M

]. The rest of spectrum is covered by the columns of inverse matrix (A−1).

This characteristic provides efficiency in computation.

♣♣♣

Lemma 1: A function Y (ω) of ω is supposed as follows:

Y (ω) =
+∞∑

p=−∞
X(ω −

Ω◦

M
p) (A.18)

where M is an integer (M ≥ 1). If the periodic extension X̃(ω) of X(ω)

with the period Ω◦ is defined as X̃(ω) =
∑+∞

k=−∞ X(ω−Ω◦k) then, the

above equality may be described using only M terms as following:

Y (ω) =
M−1∑

m=0

X̃(ω −
Ω◦

M
m) (A.19)

Proof: Using a new counter variable as p = k + mM , in which 0 ≤

m ≤ M − 1 and k = 0,±1,±2, . . ., we can rewrite the equality A.18 as

follows:

Y (ω) =
M−1∑

m=0

+∞∑

k=−∞
X(ω −

Ω◦

M
(m + kM))

=
M−1∑

m=0

+∞∑

k=−∞
X(ω −

Ω◦

M
m − Ω◦k)

=
M−1∑

m=0

X̃(ω −
Ω◦

M
m) (A.20)

Thus, the relationship A.19 is apparently obtained.



Appendix B

Performance of LS optimization

method

in the presence of errors in variables

The sensitivity of Least Squares (LS)optimization method to the errors of coeffi-

cients is presented in this appendix [74]. To generally discuss about the sensitivity

of an over-determined problem, the following one-dimensional optimization prob-

lem is considered:

Λ.f = b (B.1)

where f and b are the unknown parameters and known fixed-value vectors (n× 1)

respectively. The matrix of coefficients Λ is an m × n matrix such that m > n to

have an over-determined problem. The parameters f and all the coefficients of b

and Λ are assumed to be real-valued for convenience. The aim of optimization is to

look for an optimal parameters vector f so that a presumed criterion is minimized

(or maximized regarding to the type of criterion). Using LS method, this criterion

is a 2-norm error as follows:

fLS = arg min
f

‖Λ.f − b‖2 (B.2)

It is supposed that Λ◦ and b◦ represent the coefficients when there is no pertur-

bation (or without any errors in variables). The LS solution for the unperturbed
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problem is:

f◦ = (ΛT
◦ Λ◦)

−1ΛT
◦ .b◦ (B.3)

r◦ = ‖Λ◦.f◦ − b◦‖2

where r◦ is called the residual of the solution. If this value is null, it is called

a zero-residual problem. Otherwise, it is a non-zero residual problem [74]. The

residual is possible to be described through the angle θ◦ as follows:

sin θ◦ =
‖Λ◦.f◦ − b◦‖

‖b◦‖

=
r◦
‖b◦‖

(B.4)

where ‖ · ‖ stands for the 2-norm value. Now, it is supposed that the real coeffi-

cients Λ and b include some perturbations (or imperfections). Then, they may be

described in terms of unperturbed coefficients Λ◦ and b◦ as follows:

Λ = Λ◦ + ∆Λ

b = b◦ + ∆b

∆Λ and ∆b represent the matrix and vector of errors respectively. The condition

number κ(Λ) of the coefficient matrix Λ is defined as follows:

κ(Λ) = ‖Λ‖.‖Λ†‖

=
σ1

σr

(B.5)

where Λ† is the respective pseudo-inverse matrix. σ1 and σr stand for the largest

and the least non-zero singular values associated to the coefficient matrix Λ. The

rank of Λ is r (r ≤ n). The rank of Λ and Λ◦ are supposed to be equal and to

remain unchanged. It means that the errors do not change the rank number of

the coefficient matrix. The sensitivity may be interpreted in terms of different

measures. It is here described in terms of the unknown vector f . Then, the

sensitivity Sf is considered as the relative modification of the solution vector which
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occurs because of the errors in the coefficients vector and matrix as follows:

Sf =
‖∆f‖

‖f◦‖
=

‖f − f◦‖

‖f◦‖
(B.6)

where f and f◦ are the solutions of perturbed and unperturbed cases respectively

according to the same optimization technique. The errors are often unknown. An

inequality containing the upper limit of sensitivity would be useful for interpreting

the effects of errors. The coefficient matrix is supposed to be full column rank

so that there is no zero singular value or equally n = r. Following discussion is

related to this case. Otherwise, some modifications would be necessary.

There are always three terms contributing in the sensitivity value: the residual

component, the component due to ∆Λ, and the component related to ∆b. Follow-

ing theorem describes the sensitivity limit for the LS solution. It is evident that

the limit is quite different for various optimization methods.

Theorem B.0.1. Upper bound on the absolute error in the LS solution

Considering above-mentioned over-determined problem B.1, if the constants ε and

µ are supposed so that following relationships always hold:

‖∆Λ‖ ≤ εσ1 and ‖∆b‖ ≤ ε‖b◦‖

µ = ε.κ(Λ◦) = ε
σ1

σn

< 1

then, following inequality may be established for the LS solution:

‖∆f‖ ≤
ε

σn

[ σ1r◦
σn(1 − µ2)

+
σ1‖f◦‖

1 − µ
+

‖b◦‖

1 − µ

]
(B.7)

where three terms are associated with the residual component, ∆Λ and ∆b respec-

tively [74].

If the problem is non-zero residual, the residual component is generally dom-

inant. In this case, the absolute error due to the errors would approximately be

proportional to the square of the condition number related to the coefficient ma-

trix. Otherwise, it is directly proportional to the condition number. The worst

case for the non-zero residual problem occurs when the following criterion comes
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true:

ΛΛT r◦ ‖ Λυn (B.8)

where υn is the nth right singular vector of the matrix Λ. In this case, the residual

component will exactly contribute in the inequality.

In the zero-residual case, the bound will change to the following form:

‖∆f‖ ≤
ε

σn

σ1‖f◦‖ + ‖b◦‖

1 − µ
(B.9)

The bound introduced by theorem B.0.1 may be rewritten for the description of

relative errors of the solution. To better demonstrate the contribution of condition

number, a parameter is defined as follows:

F (f) =
‖Λ.f‖

‖f‖
(B.10)

This parameter F (f) is always between the least and the largest singular values

of the coefficient matrix Λ. Using this parameter, the bound of the theorem B.0.1

can be described as following:

‖∆f‖

‖f◦‖
≤ ε

[σ1

σn

F (f◦)

σn

tan θ◦

1 − µ2
+

σ1

σn

1

1 − µ
+

F (f◦)

σn

1

cos θ◦

1

1 − µ

]
(B.11)

There are again three components which contribute in the bound definition. The

residual component is again proportional to the square of the condition number

but the middle term ( or the contribution of imperfections of the coefficient matrix)

is directly proportional to the condition number. In the case of zero-residual prob-

lems, Total Least Squares (TLS) optimization technique is less sensitive than the

LS method [74]. The TLS method minimizes the 2-norm of the matrix [∆Λ; ∆b].

In return, the LS solution is associated with the minimum of the error vector ∆b or

with the Frobenius norm of residual vector. However, TLS and LS solutions tend

to each other when the coefficient matrix Λ is very far from the rank deficiency.

TLS and LS solutions are nearly equal if one of the following conditions is held:

• The set of equations Λ.f = b is only slightly incompatible. This is the case

where the least singular value σ
′

n+1 of the matrix [Λ; b] is sufficiently small.
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• The Frobenius norm ‖b‖F is small, i.e., TLS solution becomes very close to

the LS solution.

• σn >> σ
′

n+1.

• The coefficient vector b is close to the largest singular vector of Λ.

In fact, all above items represent the same criterion. To have another interpreta-

tion, the Singular Value Decomposition (SVD) components may be used. Following

equality reveals the SVD development associated with the coefficient matrix Λ:

Λ = UΣV T (B.12)

where Σ is an m × n diagonal matrix including the singular values of Λ [71].

According to the SVD analysis, the Frobenius norm of the singular values variations

∆Σ is always less or equal to the Frobenius norm of the errors matrix [∆Λ; ∆b] as

follows:

‖∆Σ‖F ≤ ‖[∆Λ; ∆b]‖F (B.13)

This can equally reveal that the absolute change in a singular value is not larger

than the absolute change of the total matrix [∆Λ; ∆b] as following:

|σ
′

i − σ
′◦
i | ≤ ‖[∆Λ; ∆b]‖2 for i = 1, 2, · · · , n + 1 (B.14)

The above inequality may be used to have a raw measure for the modification

of solution when the coefficient matrix Λ and vector b are perturbed by errors.♠



Appendix C

Total Least Squares optimization

method

The term Total Least Squares (TLS) appeared in 1980 [94], although this opti-

mization method had been introduced using the SVD in 1970 by Golub [95, 96].

The main principle of the TLS problem is here formulated using the SVD. One

important application of TLS problems is to estimate the unknown parameters as-

sociated with the errors-in-variables model. The model of errors-in-variables may

be described as following. It is assumed that a process may be modeled by m

linear equations as following:

Λ◦f = b◦

where f represents the vector (n × 1) of n unknown parameters. Λ◦ and b◦ stand

for the m × n matrix of data and the m × 1 vector of measurement respectively.

In practice, Λ◦ and b◦ are not available but their erroneous forms (Λ and b) as

following:

Λ = Λ◦ + ∆Λ b = b◦ + ∆b

that ∆Λ and ∆b represent the measurement errors. The basic problem of TLS

seeks to:

mininmize[
Λ̂;b̂

]
∈ Rm×(n+1)

∥∥∥∥
[
Λ;b

]
−

[
Λ̂; b̂

]∥∥∥∥
F

(C.1)

subject to b̂ ∈ R(Λ̂) (C.2)
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where ‖.‖F represents the Frobenius norm of matrix. The above criterion leads to

the optimum
[
Λ̂opt; b̂opt

]
which minimizes the relation C.1. The TLS solution fTLS

of parameters will be any vector satisfying:

Λ̂opt.fTLS = b̂opt (C.3)

The TLS solution is equivalent to the LS one in the specific case. For this purpose,

let us assume that Λ◦ has full-rank and all rows of errors matrix
[
∆Λ; ∆b

]
are

i.i.d. with zero mean and covariance matrix σ2
vI. Then it may be proved that the

TLS solution fTLS of Λf ≈ b estimates the true parameter values (the LS solution

fLS), given by Λ†b (Λ† represents the pseudo-inverse of Λ). In other words, fTLS

converges to fLS as m tends to infinity. Whatever is the distribution of errors, this

property of TLS is valid.

• Basic TLS solution

The decomposition of SVD may be used for solving the TLS problems [74]. The

basic TLS problem Λf ≈ b may equally be described as following:

[
Λ;b

][
f T ;−1

]T
≈ 0

Let the SVD of
[
Λ;b

]
be as follows:

[
Λ;b

]
= UΣV T (C.4)

where Σ is an m × (n + 1) diagonal matrix including the singular values:

Σ = diag(σ1, σ2, ..., σn+1)

If the (n + 1)th singular value σn+1 is non-zero (σn+1 6= 0), the coefficient matrix
[
Λ;b

]
is of rank n + 1. Thus, the set of equations C.4 is incompatible. To obtain

a solution, the rank of coefficient matrix must be reduced to n. It is shown that

the best TLS approximation
[
Λopt;bopt

]
of the coefficient matrix, which minimizes

the deviations in variances, is given by:

[
Λopt;bopt

]
= UΣoptV

T (C.5)
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where Σopt is the same diagonal matrix Σ except the (n+1)th singular value is put

zero as following:

Σopt = diag(σ1, σ2, ..., σn, 0)

Then, for obtaining the TLS solution vector fTLS, it is sufficient to solve the com-

patible set of equations C.3. According to the SVD theory, it is clear that its

solution is given by the only right singular vector vn+1 (i.e., the last column of V ).

The TLS solution fTLS is then obtained by scaling vn+1 so that its last component

is -1 as following:
[
f T
TLS ,−1

]T
=

−1

V(n+1),(n+1)

vn+1 (C.6)

If V(n+1),(n+1) 6= 0, then the TLS solution vector fTLS is obtained according to

above relation C.6. If the TLS solution exists, it may be described as follows:

fTLS =
(
ΛT Λ − σn+1I

)−1
ΛTb (C.7)

It may be interesting to compare the TLS solution with the LS one fLS:

fLS =
(
ΛT Λ

)−1
ΛTb (C.8)

The LS and TLS solutions would be the same if the (n + 1)th singular value σn+1

of coefficient matrix is null.



Appendix D

Blind deconvolution techniques

D.1 Introduction

There have been historically two challenging concepts of inverse problems concern-

ing LTI systems. An LTI system may represent any linear convolution operation

appeared in either the concrete physical systems such as LTI telecommunication

channels and earth’s reflectivity impulse response due to earthquakes or the vir-

tually concepts like the convolutional coding. These two concepts are different

according to the desired unknowns: the estimation of the input and the identi-

fication of the LTI system. Both of them are supposed to use only the system

response or output. Masssey et. al. published a pioneering work in this regard in

1968 [97, 98]. They tried to formulate the necessary and sufficient conditions for

the existence of a feed-forward inverse for a linear sequential circuit concerning the

concepts of convolutional codes [99].

Depending on the desired unknown parameter, it is called either system identifica-

tion or deconvolution. The system identification (or equally the channel estimation

in telecommunication) is referred to when one wants to find the system impulse

response but blind deconvolution (channel equalization) is mostly considered while

the input signal of unknown system or channel is desired to be somehow recon-

structed. However, both are very closely related [100]. The system identification

and deconvolution are utilized in so many fields. The first applications were con-

cerning with the inverse convolutional codes and communication channel equal-

ization [97, 100]. During recent years, there exist a wide group of applicability in



174

many diverse fields e.g. sonar, radar, plasma physics, biomedicine, seismic data

processing, image reconstruction, harmonic retrieval, time-delay estimation, adap-

tive filtering, noise cancelation, array processing, cellular telecommunication and

ultrasonic Non-Destructive Evaluation (NDE ). It has mostly been implemented

using Higher-Order Statistics (HOS) [101]. It has been shown that HOS-based

methods exhibit a better performance even in the cases that Second-Order Statis-

tics (SOS)-based algorithms like Linear Prediction Error(LPE ) method is appli-

cable [86].

The idea of deconvolution or equalization is simply to compensate the non-ideal

characteristics of a system or channel by additional filtering and dates back to the

use of loading coils to improve the characteristics of telephone cables for voice trans-

mission [102]. Then,classical deconvolution is concerned with the task of recovering

an excitation signal, given the response of a known time-variant linear operator to

that excitation [103]. The deconvolution or equalization (being more common in

telecommunication texts) is classified depending on some features. Equalization

may be called non-blind, semi-blind or blind. Non-blind and semi-blind equalizers

are referred to respectively when the impulse response of system is known or a

training signal (or pilot) is transmitted. Blind equalizers nevertheless reconstruct

the input signal using only the output or received signal. When both the system

impulse response and the response or output are observable (non-blind case), the

equalizer approximates the inverse of known distortion system or channel. As an

example, classical equalizers of telephone channels were designed to recover the

voice signals using an approximation of the telephone cable lines [100, 99].

The rapidly-rising need for higher speed data transmission to furnish computer

communications through widespread network of voice band-width channels faced

with some difficulties like channel variations. The needing adaptive equalizers

realized in the MODulator-DEModulator(MODEM) stages employed some train-

ing signals and were adapted to varying channels through a semi-blind man-

ner [104, 105]. The adaptive semi-blind equalizers were still inefficient and at

times unrealizable in order to overcome the problem of new computer networks.

Fast startup equalization was not possible and it was to be held by control unit of

a computer network regarding to the initial training period that was necessary in

the adaptive equalizers. Furthermore, the multipoint networks had some problems
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in retraining the tributary receivers because of extensive changes in channel char-

acteristics or simply because a tributary was not powered on during initial network

synchronization. To realize large or heavily loaded multipoint systems having in-

creasing data throughput and a simple network monitoring, Godard proposed a

blind equalization method or ” Self-Recovering equalizer”, in 1980 [106]. Through

a blind equalizer, there is no longer a need to the training sequences and every

data terminal or tributary in the network would be capable to achieve complete

adaptation without a need to the cooperation of the control station and therefore

without disrupting normal data transmission to other terminals.

The blind deconvolution was later developed in telecommunication fields through

pioneering works of Sato in [105], Benveniste et. al. in 1980 [107] and Shalvi

and Weinstein in 1990 [108]. However, this concept had been already proposed

and realized in the research of seismic studies by Wiggins (1978) and Donoho

(1981) [109]. All of the blind equalization techniques have utilized the HOS meth-

ods either implicitly (like Godard and Sato works) or explicitly like Shalvi and We-

instein one [88]. The deconvolution or equalization includes either Maximum Like-

lihood(ML) methods, Second-Order Cyclostationary Statistics (SOCS) (i.e. cyclic

correction-based methods, or HOS-based methods (>= 3)). The ML methods de-

rive the optimum equalizer according to a presumed probability density function

(pdf) of signals while the SOCS and HOS-based methods obtain the blind equal-

izers using the SOCS or HOS characteristics of the signals respectively. Higher-

Order Moments or cumulants are mostly exploited in blind equalization techniques

whereas blind channel estimation or system identification methods commonly use

Higher-Order Spectra[101].

According to the characteristics of the input signal and the channel or system

properties, the blind equalization methods may be classified as well. HOS-based

methods are not useful when the input process is Gaussian. If a random process is

Gaussian, all its cumulants with the order higher than 2 are zero. If the unknown

channel or system is stable and causal (minimum-phase or maximum-phase) and

the input is white noise (i.i.d. random process), classical linear prediction error

methods (LPE) can be used for equalization. In this case, the solution is not opti-

mal unless the input is Gaussian. For non-Gaussian case, available adaptive esti-

mations can be used but they would be asymptotically minimax for causal ARMA
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processes. When the system is neither minimum-phase nor maximum-phase, the

methods generally use HOS moments or cumulants. Second-order moments are ac-

tually unable to distinguish the phase ambiguities. Shalvi and Weinstein proposed

the Super-Exponential Algorithm (SEA) for blind deconvolution in 1993 [86]. The

SEA includes a very fast converging iterative algorithm using HOS cumulants for

blind equalization in a batch processing sense. This method nevertheless suffers

from divergence problem in some special cases. Hybrid SEA proposed by Chi et.

al. handles this problem [88].

The equalization or deconvolution methods are also possible to be classified ac-

cording to the type of equalizer filters utilized. Classical equalizers consist of only

a feed-forward tapped delay line (non-recursive) that are in fact equivalent to a

real FIR filter. However, it may cause some problems in the realization and also

needs heavy calculations if the length of required equalizer (the order of FIR filter)

is very large. Truncation of very large FIR equalizers may produce an intolerable

level of errors. Using some output feedback lines in equalizer design or the recur-

sive equalizers, there is no longer a need for very long FIR equalizers. The larger,

the length of impulse response of unknown system, its equalizer would correspond

to a lower order [100]. However, both recursive and nonrecursive equalizers may

be realized either online or in the batch processing mode.

D.2 Higher-Order Statistics and Cumulants

D.2.1 Introduction

Higher-Order Statistics (HOS) have been used in the system identification and

equalization as long as a half century. The motivations behind the use of HOS in

signal processing are indispensable. The HOS-based techniques for identifying or

equalizing non-minimum phase systems are at times the only techniques being ca-

pable in this regard [110]. Many algorithms of signal processing exploit HOS-based

methods either implicitly or explicitly. Indeed second-order moments or SOS-based

methods are unable to distinguish between the systems with the same spectral den-

sity functions but with different phases [111]. Hence, they are limited to deal with

minimum-phase (or equally maximum-phase) systems. In other words SOS-based
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methods are limited to stable and causal LTI systems. Furthermore, SOS-based

methods are optimal only in the cases where the input signal is Gaussian. It has

been shown that HOS-based techniques show a better performance even in the

case of minimum-phase LTI systems than SOS-based methods such as LPE [86].

The concepts of cumulant extrema in HOS are often used in blind deconvolution

or equalization of LTI systems, whereas the methods of HOS spectra are mostly

utilized for channel estimation or system identification [103, 110]. These two cate-

gories are nevertheless related to each other [110]. In this appendix, the principal

focus is on the blind deconvolution techniques. Before dealing with the equaliza-

tion algorithms, a brief summary of the concepts used in HOS such as cumulants

are presented. The signals are assumed for convenience to be real-valued.

D.2.2 Moments

A stationary stochastic process or random time-series is supposed to be gener-

ated by a sequence of independent or dependent samples of a generating random

variable X. This generating random variable is defined by a probability density

function (pdf) p
X
(x) . The probability density function associated with a discrete-

or continuous-time random variable can uniquely be described in terms of a set of

discrete parameters called moments. The nth-order moment of the random variable

X is specified by:

m
X
(n) = E(Xn) =

∫
+∞

−∞

xnf
X
(x)dx n = 1, 2, . . . (D.1)

If nth order moment is finite, then all its moments of the order smaller than n

exist as well. First-order moment is called the mean value of a random variable X

(shown by m
X
).

D.2.3 Central Moments

Central moments interpret that how a random variable is distributed about its

mean value. The nth-order central moment of X is formally defined as:

µ
X
(n) = E[(X − m

X
)n] =

∫ +∞

−∞

(x − m
X
)nf

X
(x)dx n = 1, 2, . . . (D.2)
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The first-order central moment is evidently null. The second-order central moment

is always referred to as the variance of random variable as following:

σ2
X

= µ
X
(2) (D.3)

Variance implicates the average dispersion of the random variable around its mean

value. The third-order central moment is typically referred as a determination of

”skewness” of the probability density function of a random variable around the

mean value. The fourth-order central moment is one of the important statistical

values that it often says how much flatness or ”Kurtosis” is involved in the proba-

bility density function. ”Kurtosis” is a Latin word standing for the shoulder and it

is also a statistical parameter closely related to fourth-order central moment. The

kurtosis is nevertheless different from the fourth-order central moment [103]. It is

evident that central moments are zero for any random process which is realized by

a symmetric generating random variable.

D.2.4 Moment Generating functions

It was mentioned that a random variable can uniquely and completely be deter-

mined in terms of its moments. In fact, this philosophy originates from the defi-

nition of Fourier Transform (FT). The Fourier transform of a probability density

function is called the moment generating function of the associated random vari-

able (with the sole difference of using the negative frequency index). It can readily

be shown that the moments actually correspond to the coefficients in the Taylor

development of the Fourier transform. The analysis and synthesis relationships

are as following:





Φ
X
(ω) = E(ejωx) =

∫ +∞

−∞

ejωxf
X
(x)dx

f
X
(x) = 1

2π

∫ +∞

−∞

Φ
X
(ω)e−jωxdω

(D.4)

The moment generating function always exist because the probability density func-

tion is a non-negative real-valued function with a total integral of unity. According

to the properties of probability density functions, the moment generating function
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will always hold the under-below relationships:

ΦX(0) = 1

|ΦX(ω)| ≤ 1 for all ω ∈ R

Φ∗
X(ω) = ΦX(−ω)

If one expands the moment generating function in terms of its Mclaurent-Taylor

series, there will obviously be found a close correspondence between the moments

and this expansion as follows:

dkΦX(ω)

dωk
|ω=0 = (−j)k.E(Xk)

= (−j)k.mX(k) k = 1, 2, . . .

(D.5)

In other words, the moment generating function could also be described as follow-

ing:

ΦX(ω) =
n∑

k=0

1

k!
E(Xk)(jω)k + rn(ω) (D.6)

The remainder function rn(ω) is so that rn(ω)
ωn tends to zero in the limit as ω

approaches zero. Some properties of the moment generating function are very

important through the signal processing perspective as follows:

Y = aX ⇐⇒ ΦY (ω) = ΦX(aω)

Y = X + a ⇐⇒ ΦY (ω) = ejωaΦX(ω)

Y = X1 + X2 ⇐⇒ ΦY (ω) = ΦX1(ω).ΦX2(ω)

where it is assumed that a is a scalar value and X1 and X2 are two independent

random variables.
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D.2.5 Cumulants

The natural logarithm of probability values always implicates the amount of in-

formation existing in the related sequence. This concept is also useful in the

utilization of moment generating functions. The natural logarithm of the moment

generating function is commonly referred to as the cumulant generating function.

ΨX(ω) = ln[ΦX(ω)]

= ln[E{ejω}]
(D.7)

According to the properties of the moment generating function, the cumulant

generating function holds apparently following properties:

Y = aX ⇐⇒ ΨY (ω) = ΨX(aω)

Y = X + a ⇐⇒ ΨY (ω) = ejωa + ΨX(ω)

Y = X1 + X2 ⇐⇒ ΨY (ω) = ΨX1(ω) + ΨX2(ω)

where a is a scalar value and X1 and X2 are two independent random variables.

The kth-order cumulant of a random variable may be described as:

CX(k) = (−j)k dkΨX(ω)

dωk
|ω=0 (D.8)

It can readily be shown that a real random variable corresponds to the real-valued

cumulants. Moreover, the cumulant generating function can be defined in terms

of the cumulants as follows:

ΨX(ω) =
n∑

k=1

1

k!
CX(k)(jω)k + rn(ω) (D.9)

If nth-order moment exists, there will exist a finite value for nth-order cumulant

as well. One can describe the cumulants as the functions of the associated mean

and central moments of desired random variable. There are hereunder for instance
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some exemplary relationships[103]:

C(1) = mX

C(2) = µ(2) = σ2
X

C(3) = µ(3)

C(4) = µ(4) − 3µ(2)2

C(5) = µ(5) − 10µ(3)µ(2)

C(6) = µ(6) − 15µ(4)µ(2) − 10µ(3)2 + 20µ(2)3

C(7) = µ(7) − 21µ(5)µ(2) − 35µ(4)µ(3) + 210µ(3)µ(2)2

C(8) = µ(8) − 28µ(6)µ(2) − 56µ(5)µ(3) − 35µ(4)2+

420µ(4)µ(2)2 + 560µ(3)2µ(2) − 630µ(2)4

where for the purpose of simplicity, the subscript of X has been omitted. It is

necessary to remind that for the stochastic processes having a Gaussian generating

random variable, all cumulants of the order higher than 2 are null.

Theorem D.2.1. The linear combinations of independent random variables

let a random variable Y be a linear combination of M independent random variables

{X1, X2, . . ., XM} as:

Y =
M∑

i=1

aiXi

where all ai are scalar values. Then, the following relationships always hold:

φ
Y
(ω) =

M∏

k=1

φXk
ak(ω) (D.10)





ΨY (ω) =
∑M

k=1 ΨXk
(akω)

CY (n) =
∑M

k=1 an
kCXk

(n)

(D.11)
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where CY (n) is the nth-order cumulant.

The proof can be found in [103].

Lemma D.2.2. Let {hn} be the unit impulse response of an LTI system.The time-

series {Xn} as the input of this system is supposed to be a white noise (samples

of an i.i.d. random process) and moreover, the pth-order cumulant related to the

input {Xn} is assumed to be finite. Then, we will have following relationship for

the response time-series {Yn}:

CY (p) = CX(p)
∑

k

(hk)
p (D.12)

Proof. The proof may readily be obtained using above-mentioned theorem D.2.1.

D.2.6 Normalized Cumulants

Using above definitions D.12, the cumulants depend on the magnitude of the ran-

dom variable. For making the cumulants invariant to the scalar multipliers, a

normalization operation is necessary as well. Accordingly, the normalized cumu-

lant with order (p, q) associated with the random variable {Xn} may be defined as

follows:

KX(p, q) =
CX(p)

|CX(q)|
p

q

(D.13)

where it is necessarily assumed that the cumulant CX(q) is non-zero. Using the

normalized cumulants D.13, we can readily show that:

Y = aX ⇐⇒ KY (p, q) = KX(p, q)

where a is a scalar parameter. The different values of (p, q) have been tried and

proposed in blind deconvolution. For instance, in the case where no noise is present,

it has been proposed to use the pairs (p = 3, q = 2) or (p = 4, q = 2). In the

presence of an additive gaussian noise, the pair (p = 6, q = 4) is offered or others

the case q = 2 has been proposed as well [103]. More discussions will be presented

through the next subsections. Considering the normalized cumulants, following
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lemma is used in the related blind equalization techniques.

Lemma D.2.3. Holding the same conditions that the ones of lemma D.2.2, we

can rewrite the result in terms of normalized cumulants as following:

KY (p, q) =

∑
k(hk)

p

∣∣ ∑
k(hk)q

∣∣ p

q

KX(p, q) (D.14)

According to above lemma, we can easily deduct the following remarks.

• The sign of normalized cumulants for both the excitation and response pro-

cesses is the same provided that p is an even integer.

• The normalized cumulants of outputs of two LTI systems associated with

the unit-impulse responses of {hn} and {ahn} are the same for any non-zero

scalar value as long as the excitation processes are the same.

D.2.7 Extension to Complex-Valued Data

Throughout the preceding sections, it has been supposed that the signal and the

impulse response of the system and equalizer are real-valued. This is not condition

but for convenience. A brief overview for the complex valued case is hereunder

presented. Let X={x1[n], x2[n], . . ., xM [n]} be a set of complex-valued random

processes. The joint characteristic function or joint moment generating function

can be defined as follows:

ΦX(ω) = E{ejωT X}

= E{ej
∑M

i=1 ωixi}
(D.15)

Like to the preceding section and the definition of the cumulant generating function

for real-valued data, it can readily be extended to the complex case. Therefore, we

will have following relationship standing for joint cumulant generating function:

ΨX(ω) = ln[ΦX(ω)]

= ln[E{ejωT X}]
(D.16)
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Hence, it is possible to have the joint cumulant of m arbitrary signals {xk1 [n],

xk2 [n], . . ., xkm
[n]} belonging to the above-mentioned set of M random signals as

follows:

cum(xk1 [n], xk2 [n], . . . , xkm
[n]) = (−j)m ∂mlnΨX(ω)

∂ωk1 . . . ∂ωkm

|ω=0 (D.17)

It is also possible to simplify this definition and to describe the joint cumulants

in terms of the moments. Supposing that x1[n], x2[n], . . . are zero-mean random

signals, the joint cumulants in terms of moments may be described as follows:

cum(x1[n], x2[n]) = E{x1x2}

cum(x1[n], x2[n], x3[n]) = E{x1x2x3}

cum(x1[n], x2[n], x3[n], x4[n]) = E{x1x2x3x4} − E{x1x2}E{x3x4}

−E{x1x3}E{x2x4} − E{x1x4}E{x2x3}

For more convenience in the practical applications, it may simply be noted as:

cum(x[n], x[n], . . . , x[n]︸ ︷︷ ︸
p terms

; . . .) = cum(x : p; . . .)

where,

Cx(p) = cum(x : p)

Cx(p, q) = cum(x : p ; x∗ : q)

that cum(x : p) and cum(x : p ; x∗ : q) are called pth- and (p, q)th-order cumulants

respectively. It is evident that for real-valued signal x[n], we have Cx(p + q) =

Cx(p, q). All the properties already explained in the real-value case are still gener-

ally valid. For instance, following properties hold [112]:

• Linearity: cum(
∑

i aixi; . . .) =
∑

i aicum(xi; . . .).

• Independent Signals: If the set of random signals {x1[n], x2[n], . . ., xM [n]}

can be divided into two or more subgroups being mutually-independent sub-

sets, then their joint cumulant equals null provided that they all include

zero-mean generating random variable .
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• Gaussian Signals: If M arbitrary jointly-gaussian processes are considered,

the associated joint cumulant is zero provided that M > 2 even if the signals

are non-zero mean.

• Variance: For any complex-valued random process x[n], we can consider

following equalities where V ar(x) and mx are the variance and mean values

of the process x[n] respectively.

Cx(1, 1) = V ar(x)

Cx(1) = mx

• White noise: For a complex-valued white random process (i.i.d. sequence)

x[n] the following equality always holds:

cum(x[n − k1]; . . . ; x[n − kp]; x
∗[n − m1]; . . . ; x

∗[n − mq]) =
{

Cx(p, q) if k1 = . . . = kp = m1 = . . . = mq

0, otherwise

(D.18)

The lemma explained in the real-valued signal case are also possible to be gener-

alized and considered in the complex case.

Lemma D.2.4.

Let {hn} be the unit impulse response of an LTI system.The complex time series

{xn}, the input of the system is supposed to be a white noise (samples of an i.i.d.

random process) and moreover, the (p, q)th-order cumulant due to the input {xn}

is assumed to be finite. Then, we will have following relationship for the response

time series {yn} .

Cy(p, q) = Cx(p, q)
∑

n

[(hn)p(h∗
n)q] (D.19)

The proof may readily be achieved through above-mentioned properties [83].

Theorem D.2.5. The linear combinations of independent random variables

It is supposed that {hn} is the unit impulse response of an LTI system, with an

excitation of i.i.d. random sequence (white noise) {xn}. The associated system
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response {yn} is a stationary random process. The (p, q)th-order cumulant related

to the input {xn} is supposed to be finite and non-zero, and p and q are some

arbitrary non-negative integers so that p + q > 2. If Cx(1, 1) = Cy(1, 1) > 0, then

following inequality always holds:

|Cy(p, q)| ≤ |Cx(p, q)| (D.20)

where the equality holds if and only if {hn} is a shifted and scaled version of unit-

impulse sequence αδ(n − nd).

D.2.8 Empirical Cumulants

In practice, the exact cumalants are unknown and therefore they can only be

approximated because it is possible neither to have the random process during

the whole time axis nor to use the infinite samples in the computations. Thus,

sample cumulants which are approximated by a finite duration of random processes

will approximate its real and unknown measures. Supposing a finite length N

of the signal sequence, the samples {x[n]| n = 1, 2, . . . , N} are available. It is

desired to approximate the relevant statistical parameters like the moments and

the cumulants. For convenience, we suppose again that the sequence samples are

all real-valued.

Standard central moments due to this sequence can be approximated as follows:

µ̂x(p) =
1

N

N∑

n=1

[x[n] − m̂x]
p (D.21)

m̂x =
1

N

N∑

n=1

x[n]

To approximate sample cumulants for an arbitrary sequence {x[n]|n = 1, 2, . . . , N},

it is enough to use D.21 along with the relationships presented in the preceding

subsections. For instance, integrating mentioned relationships, it is possible to

approximate 6th-order sample cumulant as follows:

Ĉx(6) = µ̂x(6) − 15µ̂x(2) − 10µ̂x(3)2 + 30µ̂x(2)3
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Empirical cumulants and moments are an approximation of the associated real

values. Using these approximated parameters through the techniques of equaliza-

tion, the problems of convergence and incorrect extremum will appear. As a result,

the number N of data samples used will play an important role in the algorithms

which are going to be explained in the next sections.

D.3 Blind Deconvolution

D.3.1 SISO blind deconvolution

Blind deconvolution or equalization of Single-Input Single-Output (SISO) systems

is a signal processing procedure to restore the source signal {Xn} from the received

signal {Yn} given by (refer to figure D.1):

y[n] = ys[n] + w[n]

ys[n] = h[n] ∗ x[n]

ys[n] is the noise free signal distorted by the unknown LTI SISO system h[n] and

w[n] is supposed to be an additive noise. It is desired to possibly reconstruct the

pure input x[n] through utilization of the only available signal y[n].

This problem has been handled during recent years using HOS in which x[n] is

Figure D.1. The SISO model of a telecommunication channel.

assumed to be any non-Gaussian random process and w[n] is preferably a Gaussian

noise being independent of the input. Regarding to the properties of HOS, cumu-

lants or polyspectra are blind to any Gaussian process because all cumulants of

the order higher than 2 are equal to zero for a Gaussian process. In this case, SOS-

based techniques are mostly exploited. On the other hand, SOS-based methods
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(autocorrelation and power spectrum density) are unable to distinguish uniquely

the poles of an LTI system h[n] (if it is non-minimum phase). Therefore, the SOS-

based methods such as LPE filter can be only applied when the unknown systems

is minimum-phase (or equally maximum phase). Furthermore, their performance

is highly sensitive to additive noise since autocorrelation of the received signal y[n]

equals the sum of its counterpart for both the noise free ys[n] and the additive

noise. Supposing a white additive noise, following equation is mostly regarded in

this regard.

|Y (ejω)|2 = |H(ejω)|2.|X(ejω)|2 + σ2
w (D.22)

Accordingly, HOS-based methods are a suitable candidate for equalizing unknown

non-minimum phase LTI systems as well as a better performance is anticipated in

the minimum-phase case. All HOS-based equalization methods are almost common

in the following conditions as a prerequisite for achieving the inverse system in the

equalizer.

CS1: Unknown LTI system is stable (
∑

n |h[n]| < ∞) and H(z) has no zero on

the unit circle |z| = 1.

CS2: The source signal is supposed to be a non-Gaussian and white (i.i.d) random

process.

CS3: The source signal and the additive noise are independent.

CS4: The noise is a Gaussian white or colored random process.

However, Gamboa and Gassiat have recently proposed a mathematical analysis for

the blind deconvolution in the case where the input may be a colored signal [111].

Furthermore, the suitably-chosen channel encoding schemes have been offered for

non-white source signals [88].

Equalizer is a specially-chosen filter or transfer function so that applying to the

response of unknown system, the result approximates the unknown input as well

as possible. If assumed a linear feed-forward equalizer (a linear tapped-delay line

or precisely an FIR filter), we will have the following relationship:

x̂[n] = f [n] ∗ y[n]

= x̂s[n] + x̂N [n]
(D.23)
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Figure D.2. The equalization setup for a SISO telecommunication channel.

where x̂s[n] and x̂N [n] are the signal and noise components in the equalized output.

It is also possible to consider the whole block as an LTI system through which

it is desired to have an output which approximates the input as close as possible.

The overall system of equalization procedure may be described as:

s[n] = h[n] ∗ f [n]

where s[n] represents the overall system consisting of unknown LTI system and

the equalization filter unit-impulse responses. Accordingly, the problem of SISO

blind deconvolution is equivalent to the problem of finding the coefficients of the

equalizer f [n] such that the signal component x̂s[n] approximates the source signal

x[n] as close as possible (up to a scale factor and a time delay) while maintaining

the lowest increase in the power of noise component x̂N [n]. For evaluating the

performance of equalizer, it is enough to view how close the overall system s[n]

is to αδ[n − nd]. A commonly-used measure for this purpose is Inter-Symbol

Interference (ISI) defined as:

ISI =

∑
n |s[n]|2 − s2

max

s2
max

(D.24)

smax = max |s[n]|

Another common parameter for measuring the equalization performance is the

Maximum Distortion(MD) defined as follows:

MD =

∑
n |s[n]| − smax

smax

(D.25)
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where {sn} stands again for the overall system unit-impulse response (unknown

system in tandem with equalizer).

Clearly MD and ISI are zero if {sn} equals a shifted and scaled version of unit

impulse function αδ[n − nd]. A small value of MD or ISI indicates the proximity

to the desired solution[86].

To equalize an unknown LTI system, the proposed methods use commonly a crite-

rion which is to be either maximized or minimized for the optimum desired equal-

izer. The algorithms are all iterative but differ from two points of view. Firstly,

they are categorized according to the specific criterion or the contrast function

which provides an extremum (maximum or minimum) for the optimum equalizer

filter. Secondly, they differ through the iterative algorithm of updating the equal-

izer coefficients for achieving the extremum vector of the criterion. The gradient

methods including the steepest descent algorithm or stochastic gradient procedure

are mostly used in this regard. The initialization of equalizer for iteratively opti-

mizing is so important. The initial filter used for the equalizer plays a major role in

the convergence and the correctness of the result. All these aspects are hereunder

briefly studied considering different methods of blind equalization. In addition to

the iterative algorithms, a non-iterative analysis has been presented by Benveniste

et. al. [107]. They have proved and used the following theorem as the basis for the

equalization problem.

Theorem D.3.1. Considering an LTI system {hn} to which an excitation {xn}

being a sequence of i.i.d. random variables with non-Gaussian distribution of ν is

applied as its input. ν is supposed to be symmetric and with a finite variance. The

output associated to the system {hn} is applied to a feed-forward equalizer having

at least two non-zero coefficients. If the distribution of equalized output (random

variable) is still ν, then the overall system equals to αδ(n − nd).

D.3.1.1 The Criteria

According to the theorem D.2.5, a group of universal deconvolution criteria may be

achieved which are either constrained or unconstrained. Meanwhile, the first cri-

teria proposed in the telecommunication areas were extracted heuristically though

they are really the special cases of cumulant-based extrema later offered. Some
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important and principal criteria are hereunder listed:

• Godard Criterion: Godard proposed a new approach for blind equalization

in QAM system. It was later shown that his criterion is actually equal to

the cumulant-based criteria. He heuristically looked for cost functions being

independent of the output phase so that it can be optimized without any

carrier information. He proposed to minimize the ”dispersion function” of

order p as follows:

minimize E[(|x̂[n]|p − Rp)
2] (D.26)

subject to: Rp =
E[|x[n]|2p]

E[|x[n]|p]

The constant Rp is used to control the gain of equalizer so that to achieve

a perfect equalization. If Rp is replaced with any desired positive value,

there will be only an ambiguity in the amplitude. If p = 2, this algorithm

(Godard-2) is also called the Constant Modulus Algorithm (CMA) which is

widely used. However, this criterion works only for the sub-Gaussian signals.

In other words, it works only when the kurtosis of the input is negative.

Godard dispersion function has widely been treated and used in the case of

p = 2.

• Maximum Response Cumulant: This is the earliest and the most straight

criterion which one can extract using theorem D.2.5. To equalize closely

the original white input sequence, it is enough that the overall system {sn}

approximates αδ[n−nd]. There will always exist an ambiguity in the ampli-

tude (α) and a delay (nd) because they can not be discovered through the

cumulant measure. Thereby, it is possible to use the following constrained

criterion for the equalization:

maximize |Cx̂(p, q)| (D.27)

subject to: Cx(1, 1) = Cx̂(1, 1)

where p and q are two positive integers so that p + q > 2.

As discussed in the preceding sections, different values for the pair of (p, q)

have been proposed such as (4, 2) and (6, 2). This criterion may be simplified
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as follows for the case of real-valued data as following:

maximize |Cx̂(p)| (D.28)

subject to: σ2
x = σ2

x̂

where p is a positive integer so that p > 2.

• Benevniste criterion: Benveniste has offered a modification for the above-

mentioned maximum cumulant criterion which is useful for the digital signals

in the applications such as telecommunication. Assuming that the real and

imaginary components of the input complex sequence are independent, the

following criterion may be used:

maximize |Cx̂r
(p)| (D.29)

subject to: σ2
x = σ2

x̂

or equally

maximize |Cx̂im
(p)| (D.30)

subject to: σ2
x = σ2

x̂

where x̂r and x̂im are real and imaginary parts of the equalized output re-

spectively.

• Normalized Cumulant Criterion: As it is just seen, cumulant-based criteria

offered are all constrained. One way for having an unconstrained criterion is

to exploit the normalized cumulants. Therefore, following family of normal-

ized cumulant criteria are possible to be considered.

maximize
|Cx̂(p, q)|

(Cx̂(1, 1))
p+q

2

(D.31)

that for real-valued signals, this criterion can be considered as follows:

maximize
|Cx̂(p)|

(Cx̂(2))
p

2

(D.32)
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This contrast function was firstly proposed by Donoho (considering p = 2)

and Wiggins.

• Unconstrained Cumulant criterion: Another method for changing the origi-

nal cumulant-based criterion into an unconstrained counterpart, is to add a

penalty term as follows:

maximize {|Cx̂(p, q)| + g(Cx̂(1, 1))} (D.33)

where g : [0,∞) −→ R
1 is a piece-wise continuous real-valued function. To

have only an maximum for above-mentioned criterion, this function has to

maintain some properties [83].As an interesting result, it has been shown that

Godard-2 or CMA algorithm can be achieved through a specially-chosen g(.)

as follows:

maximize {|Cx̂(2, 2)| − 2σ2 + 2kσ + k2} (D.34)

σ = Cx̂(1, 1)

Supposing k equal to Rp of the Godard-2 algorithm, both algorithms would

be the same.

D.3.1.2 The Iterative Updating

In the preceding subsection, an overview was presented about the criteria or con-

trast functions which consist of an extremum at the optimum equalizer. To find the

optimum equalizer filter, it is necessary to somehow look for the extremal points of

the criteria. The conventional and mostly common approach is to use the gradient

vector in the iterative updating procedure. A tapped-delay line equalizer (or an

FIR filter) with length of L = L2 − L1 + 1 is considered so that:

f = {f [n] | L1 ≤ n ≤ L2}

For convenience, the constraint of the criteria (the equality of the variances) may

hold by the following relationship:

Cx(1, 1) = Cx̂(1, 1) ⇐⇒ ‖sn‖ =
∑

n

|sn|
2 = 1 (D.35)
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Thus, the iterative update of stochastic gradient method for finding maximum of

a criterion can be described as follows:

s
′

= s + δ
∂Ψ

∂s
(D.36)

s” =
1

‖s′‖
s
′

that the vector s represents the total impulse response s[n] in the vectorial form

s=[· · · , s[−1], s[0], s[1], · · · ]T . The vector s” stands for the updated impulse re-

sponse after applying the iterative algorithm. It is reminded that all criteria have

been described in terms of the total system consisting of the unknown filter hn in

tandem with the equalizer filter fn (s[n] = h[n]∗f [n]). Accordingly, the true direc-

tion of the gradient vector toward the extremum has been defined in terms of s[n].

The total system impulse response is evidently unknown since hn is not available.

Furthermore, the iterative algorithm is defined in terms of equalizer coefficients.

Then, this updating algorithm can approximately be realized by following iterative

procedure [83]:

f
′

= f + δ(HHH)−1∂Ψ

∂f
(D.37)

f” =
1√

f ′HHHHf ′

f
′

where f and the operator (.)H stand for the impulse-response of equalizer and the

conjugate-transpose operation respectively. The step size of the gradient algorithm

is illustrated by δ as well. The matrix H is defined as below:

H = {Hij | Hij = hi−j, L1 ≤ j ≤ L2}

Shalvi and Weinstein have offered another algorithm which converges in a very

fast rate to the desired equalizer regardless of the initialization point. They called

this algorithm as Super-Exponential Algorithm (SEA). This algorithm updates the

equalizer coefficients according to the following iterative procedure:

f
′

= R−1d (D.38)
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f” =
1√

f ′HRf ′

f
′

where R = HHH is a matrix with the dimension L×L and d is a vector of L× 1

defined as following:

dn = cum(x̂ : p; x̂∗ : q − 1; y∗
t−n) (D.39)

The integers p and q stand for the order of the cumulant used in the chosen

criterion (or the (p, q)th order cumulant). It is evident that all these algorithms

are not realizable unless the matrix R is available. This matrix may be calculated

through the following relationship:

Rnm =
cum(y∗

t−n; yt−m)

Cx(1, 1)
(D.40)

It is interesting to note that R−1 is equal to the identity matrix if a whitening

operation is placed as a prefilter before the equalizer stage. In other words, it

corresponds to the spectral whitening operation which had firstly been suggested

by Benveniste et. al.

Therefore, the only prerequisite information about the input is its variance. Nev-

ertheless, the variance value may be replaced by the sample variance of equalized

output or any desired positive real number. There certainly exist an ambiguity in

the amplitude in this case.

D.3.2 MIMO blind deconvolution

It is supposed that there are K different input signals {x1[n], x2[n], . . ., xK [n]}

which simultaneously pass through a Multiple-Input Multiple-Output (MIMO)

LTI system and produce M output sequences {y1[n], y2[n], . . ., yK [n]} in the

presence of independent additive noises. The associated model for a typical MIMO

telecommunication channel is illustrated in figure D.3. For convenience, the signals

are illustrated in vectorial form as below:

X[n] = [x1[n], x2[n], . . . , xK [n]]T

Y [n] = [y1[n], y2[n], . . . , yM [n]]T

W [n] = [w1[n], w2[n], . . . , wM [n]]T
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Figure D.3. The linear MIMO model of a telecommunication channel.

where X[n], Y [n] and W [n] are the input, output and noise vectors associated with

the MIMO LTI model of the telecommunication channel respectively. Then, we

will have following equations governing on the channel model:

Y [n] = Ys[n] + W [n]

Ys[n] = H[n] ∗ X[n]
(D.41)

Ys[n] is the noise-free output of the system which is distorted by M×K MIMO LTI

system represented by the matrix H[n]. Using D.41, it may readily be discovered

that there exist not only ISI components but also Multiple Access Interference

(MAI) components at the output vector because each element of Ys[n] is a mixture

of all the source signals {xk[n], k = 1, 2, . . . , K}. Accordingly, blind equalization

of the MIMO system H[n] (figure D.4) is a problem in which both the ISI and

MAI contributions have to be eliminated. In other words, it is to recover the

source signals X[n] with only the output signals Y [n]. This type of problem is

met in many applications such as DS/CDMA systems, multiple-antenna systems,

fractionally spaced equalization in signal antenna, time delay estimation through

multiple sensors, and seismic signal processing. In the past decade, blind equaliza-

tion of MIMO channels using HOS-based methods has been extensively reported.

The following conditions are often assumed through all those applications:

• M 1: The M × K LTI MIMO system is stable.

• M 2: Each of the K inputs is a zero-mean non-Gaussian i.i.d. stochastic

process and they are all mutually independent.
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• M 3: The noise W [n] is a zero-mean Gaussian vector random process.

• M 4: The input signal and the additive noises are statistically independent.

Figure D.4. The general model of a MIMO telecommunication channel with the related
equalizer.

Figure D.5. The model of a MIMO telecommunication channel along with an equal-
izer. This equalizer can equalize only one input signal xm[n] at each realization
m ∈ {1, 2, . . . , K}.

The extension of MIMO blind equalization method to the case of temporally-

colored inputs is also possible. Using the equalization part, it is desired to recon-

struct the input signals by using only the output of MIMO system {yk[n], k =

1, 2, . . . , M}. There are two possibilities for realizing the equalizer. Using an

MIMO equalizer, it may be possible to calculate simultaneously all of the output

signals (see figure D.4). The related equalizer would include a matrix of digital

filters. In this case, the computations will be very heavy and it may even be prac-

tically impossible. Another option is to utilize a simpler equalizer as shown in

figure D.5. In this method, it is possible to calculate each time only one of the
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inputs. However, the K input signals may be estimated through the Multistage

Successive Cancelation procedure (MSC). Using the MSC procedure, one would

face with the essential problem of error propagation. The error will be propagated

in the signal estimation from a stage to the next stage in this case. the algorithm

for MSC procedure is described in figure D.6. This problem has been discussed

in terms of MIMO Blind Source Separation (BSS) as well. It concerns with the

non-stantaneous or convolutive source mixtures.

Figure D.6. The MSC Algorithm.
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