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Abstract of the Dissertation,

On the topology and differential geometry of
Kähler threefolds

by

Răsdeaconu Rareş

Doctor of Philosophy

in

Mathematics

Stony Brook University

2005

In the first part of my thesis we provide infinitely many examples

of pairs of diffeomorphic, non simply connected Kähler manifolds

of complex dimension 3 with different Kodaira dimensions. Also,

in any allowed Kodaira dimension we find infinitely many pairs of

non deformation equivalent, diffeomorphic Kähler threefolds.

In the second part we study the existence of Kähler metrics of pos-

itive total scalar curvature on 3-folds of negative Kodaira dimen-

sion. We give a positive answer for rationally connected threefolds.

The proof relies on the Mori theory of minimal models, the weak

factorization theorem and on a specialization technique.
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părinţilor mei



Contents

Acknowledgments vii

1 Kodaira dimension of diffeomorphic threefolds 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The s-Cobordism Theorem . . . . . . . . . . . . . . . . . . . . 5

1.3 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Diffeomorphism Type . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Deformation Type . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 23

2 The total scalar curvature of rationally connected threefolds 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Minimal models . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Various reductions . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Blowing-up at points . . . . . . . . . . . . . . . . . . . 38

2.3.2 Blowing-up along curves . . . . . . . . . . . . . . . . . 39

2.4 Specialization argument . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Rationally connected manifolds . . . . . . . . . . . . . 46

2.4.2 Construction of the specialization . . . . . . . . . . . . 50

v



2.4.3 Extensions of line bundles . . . . . . . . . . . . . . . . 63

2.4.4 Intersection Theory I . . . . . . . . . . . . . . . . . . . 67

2.4.5 Deformation to the normal cone . . . . . . . . . . . . . 69

2.4.6 Construction of the line bundle . . . . . . . . . . . . . 74

2.4.7 Intersection Theory II . . . . . . . . . . . . . . . . . . 83

2.5 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . 86

Appendix 88

A Intersection Theory . . . . . . . . . . . . . . . . . . . . . . . . 88

B The Blowing Up . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C Ruled Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 95

vi



Acknowledgments

I am indebted to many for their support and encouragement. It is a very

pleasant task to thank everyone for their help.

First of all, I would like to thank my advisor Claude LeBrun. He patiently

let me choose the areas of geometry that most interested me and helped me

become a mathematician. It has been a privilege to learn from him the craft of

thinking about Mathematics, and I am deeply grateful to him for being such

a supporting and inspiring mentor.

I would like to thank Mark Andrea de Cataldo, Lowell Jones and Sorin

Popescu for the time they spent discussing with me, for their teachings, en-

couragement, and their advice during my graduate years.

This project would not have seen the light without Ioana’s support. She

was with me in the difficult moments and more importantly, she has been the

source of the good times.

I am grateful to my friends who helped me survive graduate school. In no

particular order, thank you Vuli, Dan, Ionuţ, Olguţa, and Rodrigo.
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Chapter 1

Kodaira dimension of diffeomorphic threefolds

1.1 Introduction

Let M be a compact complex manifold of complex dimension n. On any such

manifold the canonical line bundle KM = ∧n,0 encodes important information

about the complex structure. One can define a series of birational invariants

of M,

Pk(M) := h0(M, K⊗k
M ), k ≥ 0,

called the plurigenera. The number of independent holomorphic n-forms on

M, pg(M) = P1(M) is called the geometric genus. The Kodaira dimension

Kod(M), is a birational invariant given by:

Kod(M) = lim sup
log h0(M, K⊗k

M )

log k
.

This can be shown to coincide with the maximal complex dimension of the im-

age of M under the pluri-canonical maps, so that Kod(M) ∈ {−∞, 0, 1, . . . , n}.

A compact complex n-manifold is said to be of general type if Kod(M) = n.

1



For Riemann surfaces, the classification with respect to the Kodaira dimen-

sion, Kod(M) = −∞, 0 or 1 is equivalent to the one given by the genus,

g(M) = 0, 1, and ≥ 2, respectively.

An important question in differential geometry is to understand how the

complex structures on a given complex manifold are related to the diffeomor-

phism type of the underlying smooth manifold or further, to the topological

type of the underlying topological manifold. Shedding some light on this

question is S. Donaldson’s result on the failure of the h-cobordism conjecture

in dimension four. In this regard, he found a pair of non-diffeomorphic, h-

cobordant, simply connected 4-manifolds. One of them was CP2#9CP2, the

blow-up of CP2 at nine appropriate points, and the other one was a certain

properly elliptic surface. For us, an important feature of these two complex

surfaces is the fact that they have different Kodaira dimensions. Later, R.

Friedman and Z. Qin [FrQi94] went further and proved that actually, for com-

plex surfaces of Kähler type, the Kodaira dimension is invariant under diffeo-

morphisms. However, in higher dimensions, C. LeBrun and F. Catanese gave

examples [CaLe97] of pairs of diffeomorphic projective manifolds of complex

dimensions 2n with n ≥ 2, and Kodaira dimensions −∞ and 2n.

In this thesis we address the question of the invariance of the Kodaira

dimension under diffeomorphisms in complex dimension 3. We obtain the ex-

pected negative result:

Theorem A. For any allowed pair of distinct Kodaira dimensions (d, d′),

with the exception of (−∞, 0) and (0, 3), there exist infinitely many pairs of

diffeomorphic Kähler threefolds (M, M ′), having the same Chern numbers, but
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with Kod(M) = d and Kod(M ′) = d′, respectively.

Corollary 1.1. For Kähler threefolds, the Kodaira dimension is not a smooth

invariant.

Our examples also provide negative answers to questions regarding the

deformation types of Kähler threefolds.

Recall that two manifolds X1 and X2 are called directly deformation equiv-

alent if there exists a complex manifold X , and a proper holomorphic submer-

sion ̟ : X → ∆ with ∆ = {|z| = 1} ⊂ C, such that X1 and X2 occur as

fibers of ̟. The deformation equivalence relation is the equivalence relation

generated by direct deformation equivalence.

It is known that two deformation equivalent manifolds are orientedly dif-

feomorphic. For complex surfaces of Kähler type there were strong indications

that the converse should also be true. R. Friedman and J. Morgan proved

[FrMo97] that, not only the Kodaira dimension is a smooth invariant but the

plurigenera, too. However, Manetti [Man01] exhibited examples of diffeomor-

phic complex surfaces of general type which were not deformation equivalent.

An easy consequence of our Theorem A and of the deformation invariance of

plurigenera for 3-folds [KoMo92] is that in complex dimension 3 the situation

is similar:

Corollary 1.2. For Kähler threefolds the deformation type does not coincide

with the diffeomorphism type.

Actually, with a bit more work we can get:
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Theorem B. In any possible Kodaira dimension, there exist infinitely many

examples of pairs of diffeomorphic, non-deformation equivalent Kähler three-

folds with the same Chern numbers.

The examples we use are Cartesian products of simply connected, h−cobor-

dant complex surfaces with Riemann surfaces of positive genus. The real

six-manifolds obtained will therefore be h−cobordant. To prove that these

six-manifolds are in fact diffeomorphic, we use the s−Cobordism Theorem, by

showing that the obstruction to the triviality of the corresponding h−cobor-

dism, the Whitehead torsion, vanishes. Similar examples were previously used

by Y. Ruan [Ruan94] to find pairs of diffeomorphic symplectic 6-manifolds

which are not symplectic deformation equivalent. However, to show that

his examples are diffeomorphic, Ruan uses the classification (up to diffeo-

morphisms) of simply-connected, real 6-manifolds [OkVdV95]. This restricts

Ruan’s construction to the case of Cartesian products by 2-spheres, a result

which would also follow from Smale’s h-cobordism theorem.

The examples of pairs complex structures we find are all of Kähler type with

the same Chern numbers. This should be contrasted with C. LeBrun’s exam-

ples [LeB99] of complex structures, mostly non-Kähler, with different Chern

numbers on a given differentiable real manifold.

In our opinion, the novelty of this article is the use of the apparently forgot-

ten s-Cobordism Theorem. This theorem is especially useful when combined

with a theorem on the vanishing of the Whitehead group. For this, there exist

nowadays strong results, due to F.T. Farrell and L. Jones [FaJo91].

In the next section, we will review the main tools we use to find our exam-
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ples: h-cobordisms, the Whitehead group and its vanishing. In section 3 we

recall few well-known generalities about complex surfaces. Sections 4 and 5

contain a number of examples and the proofs of Theorems A and B. In the

last section we conclude with few remarks and we raise some natural questions.

1.2 The s-Cobordism Theorem

Definition 1.3. Let M and M ′ be two n-dimensional closed, smooth, ori-

ented manifolds. A cobordism between M and M ′ is a triplet (W ; M, M ′),

where W is an (n+1)-dimensional compact, oriented manifold with boundary,

∂W = ∂W−

⊔
∂W+ with ∂W− = M and ∂W+ = M ′ (by ∂W− we denoted the

orientation-reversed version of ∂W−).

We say that the cobordism (W ; M, M ′) is an h-cobordism if the inclusions

i− : M → W and i+ : M ′ → W are homotopy equivalences between M, M ′ and

W.

The following well-known results [Wall62], [Wall64] allow us to easily check

when two simply connected 4-manifolds are h-cobordant:

Theorem 1.4. Two simply connected smooth manifolds of dimension 4 are

h-cobordant if and only if their intersection forms are isomorphic.

Theorem 1.5. Any indefinite, unimodular, bilinear form is uniquely deter-

mined by its rank, signature and parity.

In higher dimensions any h-cobordism (W ; M, M ′) is controlled by a com-

plicated torsion invariant τ(W ; M), the Whitehead torsion, an element of the

so called Whitehead group which will be defined below.
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Let Π be any group, and R = Z(Π) the integral unitary ring generated by

Π. We denote by GLn(R) the group of all nonsingular n× n matrices over R.

For all n we have a natural inclusion GLn(R) ⊂ GLn+1(R) identifying each

A ∈ GLn(R) with the matrix:




A 0

0 1


 ∈ GLn+1(R).

Let GL(R) =
∞⋃

n=1

GLn(R). We define the following group:

K1(R) = GL(R)/[GL(R), GL(R)].

The Whitehead group we are interested in is:

Wh(Π) = K1(R)/ < ±g | g ∈ Π > .

Theorem 1.6. Let M be a smooth, closed manifold. For any h-cobordism

W of M with ∂−W = M, and with dim W ≥ 6 there exists an element

τ(W ) ∈ Wh(π1(M)), called the Whitehead torsion, characterized by the fol-

lowing properties:

• s-Cobordism Theorem τ(W ) = 0 if and only if the

h-cobordism is trivial, i.e. W is diffeomorphic to ∂−W × [0, 1];

• Existence Given α ∈ Wh(π1(M)), there exists an h-cobordism W with

τ(W ) = α;

• Uniqueness τ(W ) = τ(W ′) if and only if there exists a diffeomorphism
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h : W → W ′ such that h|M = idM .

For the definition of the Whitehead torsion and the above theorem we refer

the reader to Milnor’s article [Mil66]. However, the above theorem suffices.

When M is simply connected, the s-cobordism theorem is nothing but the

usual h-cobordism theorem [Mil65], due to Smale.

This theorem will be a stepping stone in finding pairs of diffeomorphic

manifolds in dimensions greater than 5, provided knowledge about the van-

ishing of the Whitehead groups. The vanishing theorem that we are going to

use here is:

Theorem 1.7 (Farrell, Jones). Let M be a compact Riemannian manifold of

non-positive sectional curvature. Then Wh(π1(M)) = 0.

The uniformization theorem of compact Riemann surfaces yields then the

following result which, as it was kindly pointed to us by L. Jones, was also

known to F. Waldhausen [Wal78], long before [FaJo91].

Corollary 1.8. Let Σ be a compact Riemann surface. Then Wh(π1(Σ)) = 0.

An important consequence, which will be frequently used is the following:

Corollary 1.9. Let M and M ′ be two simply connected, h-cobordant 4-mani-

folds, and Σ be a Riemann surface of positive genus. Then M ×Σ and M ′×Σ

are diffeomorphic.

Proof. Let W be an h-cobordism between M and M ′ such that ∂−W = M

and ∂+W = M ′ and let W̃ = W × Σ. Then ∂−W̃ = M × Σ, ∂+W̃ = M ′ × Σ,
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and W̃ is an h-cobordism between M ×Σ and M ′×Σ. Now, since M is simply

connected π1(M × Σ) = π1(Σ) and so

Wh(π1(M × Σ)) = Wh(π1(Σ)).

By the uniformization theorem any Riemann surface of positive genus admits

a metric of non-positive curvature. Thus, by Theorem 1.7, Wh(π1(Σ)) = 0,

which, by Theorem 1.6, implies that M ×Σ and M ′×Σ are diffeomorphic.

1.3 Generalities

To prove Theorems A and B we will use our Corollary 1.9, by taking for

M and M ′ appropriate h-cobordant, simply connected, complex projective

surfaces, and for Σ, Riemann surfaces of genus g(Σ) ≥ 1. To find examples of

h-cobordant complex surfaces, we use:

Proposition 1.10. Let M and M ′ be two simply connected complex surfaces

with the same geometric genus pg, c2
1(M) − c2

1(M
′) = m ≥ 0 and let k > 0 be

any integer. Let X be the blowing-up of M at k + m distinct points and X ′

be the blowing-up of M ′ at k distinct points. Then X and X ′ are h-cobordant,

Kod(X) = Kod(M) and Kod(X ′) = Kod(M ′).

Proof. By Noether’s formula we immediately see that

b2(M
′) = b2(M) + m.

Since, by blowing-up we increase each time the second Betti number by

8



one, it follows that

b2(X
′) = b2(X).

Using the birational invariance of the plurigenera, we have that

b+(X ′) = 2pg + 1 = b+(X).

As X and X ′ are both non-spin, and their intersection forms have the same

rank and signature, their intersection forms are isomorphic. Thus, by Theorem

1.4, X and X ′ are h-cobordant.

The statement about the Kodaira dimension follows immediately from the

birational invariance of the plurigenera, too.

Corollary 1.11. Let S and S ′ be two simply connected, h-cobordant complex

surfaces. If Sk and S ′
k are the blowing-ups of the two surfaces, each at k ≥ 0

distinct points, then Sk and S ′
k are h-cobordant, too. Moreover, Kod(Sk) =

Kod(S), and Kod(S ′
k) = Kod(S ′).

The following proposition will take care of the computation of the Kodaira

dimension of our examples. Its proof is standard, and we will omit it.

Proposition 1.12. Let V and W be two complex manifolds. Then

Pm(V × W ) = Pm(V ) · Pm(W ).

In particular, Kod(V × W ) = Kod(V ) + Kod(W ).

For the computation of the Chern numbers of the examples involved, we

need:

9



Proposition 1.13. Let M be a smooth complex surface with c2
1(M) = a,

c2(M) = b, and let Σ be a smooth complex curve of genus g, and X = M × Σ

their Cartesian product. The Chern numbers (c3

1
, c1c2, c3) of X are

((6 − 6g)a, (2 − 2g)(a + b), (2 − 2g)b).

Proof. Let p : X → M, and q : X → Σ be the projections onto the two factors.

Then the total Chern class is

c(X) = p∗c(M) · q∗c(Σ),

which allows us to identify the Chern classes. Integrating over X, the result

follows immediately.

1.4 Diffeomorphism Type

In this section we prove Theorem A. All we have to do is to exhibit the appro-

priate examples. Thus, for each of the pairs of Kodaira dimensions stated, we

provide infinitely many examples, by taking Cartesian products of appropriate

h−cobordant Kähler surfaces with Riemann surfaces of positive genus.

Example 1: Pairs of Kodaira dimensions (−∞, 1) and (−∞, 2)

Let M be the blowing-up of CP2 at 9 distinct points given by the intersec-

tion of two generic cubics. M is a non-spin, simply connected complex surface

with Kod(M) = −∞ which is also an elliptic fibration, π : M → CP1. By tak-
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ing the cubics general enough, we may assume that M has no multiple fibers,

and the only singular fibers are irreducible curves with one ordinary double

point.

Let M ′ be obtained from M by performing logarithmic transformations on

two of its smooth fibers, with multiplicities p and q, where p and q are two

relatively prime positive integers. M ′ is also an elliptic surface, π′ : M ′ → CP1,

whose fibers can be identified to those in M except for the pair of multiple

fibers F1, and F2. Let F be homology class of the generic fiber in M ′. In

homology we have [F ] = p[F1] = q[F2]. By canonical bundle formula, we see

that: KM = −F, and

KM ′ = −F + (p − 1)F1 + (q − 1)F2 =
pq − p − q

pq
F. (1.1)

Then pg(M) = pg(M ′) = 0, c2
1(M) = c2

1(M
′) = 0, and Kod(M ′) = 1.

Moreover, from [FrMo94, Theorem 2.3, page 158] M ′ is simply connected and

non-spin.

For any k ≥ 0, let Mk and M ′
k be the blowing-ups at k distinct points of

M and M ′, respectively, and let Σ be a Riemann surface.

• If g(Σ) = 1, according to Corollary 1.9 and Proposition 1.12, (Mk ×

Σ1, M
′
k × Σ1), k ≥ 0 will provide infinitely many pairs of diffeomorphic

Kähler threefolds, whose Kodaira dimensions are −∞ and 1, respectively.

• If g(Σ) ≥ 2, we get infinitely many pairs of diffeomorphic Kähler three-

folds of Kodaira dimensions −∞, and 2, respectively.

11



The statement about the Chern numbers follows from Proposition 1.13.

✷

Example 2: Pairs of Kodaira dimensions (0, 1) and (0, 2)

In CP1 × CP2, let M be the the generic section of line bundle

p∗1OCP1
(2) ⊗ p∗2OCP2

(3),

where pi, i = 1, 2 are the projections onto the two factors. Then M is a

K3 surface, i.e. a smooth, simply connected complex surface, with trivial

canonical bundle. Moreover, using the projection onto the first factor, it fibers

over CP1 with elliptic fibers.

Kodaira [Kod70] produced infinitely many examples of properly elliptic

surfaces of Kähler type, homotopically equivalent to a K3 surface, by per-

forming two logarithmic transformations on two smooth fibers with relatively

prime multiplicities on such elliptic K3. Let M ′ to be any such surface, and let

Mk and M ′
k be the blowing-ups at k distinct points of M and M ′, respectively.

As before, let Σ be a Riemann surface.

• If g(Σ) = 1, the Cartesian products Mk × Σ and M ′
k × Σ will provide

infinitely many pairs of diffeomorphic Kähler 3-folds of Kodaira dimen-

sions 0 and 1, respectively.

• If g(Σ) ≥ 2, we obtain pairs in Kodaira dimensions 1 and 2, respectively.
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Again, the statement about the Chern numbers follows from Proposition

1.13. ✷

Example 3: Pairs of Kodaira dimensions (−∞, 2) and (−∞, 3)

Arguing as before, we present a pair of simply connected, h−cobordant

projective surfaces, one on Kodaira dimension 2, and the other one of Kodaira

dimension −∞.

Let M be the Barlow surface [Bar85]. This is a non-spin, simply connected

projective surface of general type, with pg = 0 and c2
1(M) = 1. It is therefore

h-cobordant to M ′, the projective plane CP2 blown-up at 8 points.

By taking the Cartesian product of their blowing-ups by a Riemann surface

of genus 1, we obtain diffeomorphic, projective threefolds of Kodaira dimen-

sions 3, and −∞, respectively, while for a Riemann surface of bigger genus, we

obtain diffeomorphic, projective threefolds of Kodaira dimensions 2, and −∞,

respectively. The invariance of their Chern numbers follows as usual. ✷

Example 4: Pairs of Kodaira dimensions (0, 2) and (1, 3)

Following [Cat78], we will describe an example of simply connected, mini-

mal surface of general type with c2
1 = pg = 1.

In CP2 we consider two generic smooth cubics F1 and F2, which meet

transversally at 9 distinct points, x1, · · · , x9, and let

σ : X̃ → CP2

13



be the blowing-up of CP2 at x1, · · · , x9, with exceptional divisors Ẽi, i =

1, ..., 9. Let F̃1 and F̃2 be the strict transforms of F1 and F2, respectively.

Then F̃1 and F̃2 are two disjoint, smooth divisors, and we can easily see that

O eX(F̃1 + F̃2) = L̃⊗2,

where

L̃ = σ∗OCP2
(3) ⊗O eX(Ẽ1 + · · · + Ẽ9).

Let π : X̄ → X̃ to be the double covering of X̃ branched along the smooth

divisor F̃1 + F̃2. We denote by

p : X̄ → CP2

the composition σ◦π, and by F̄1, F̄2 the reduced divisors π−1(F̃1), and π−1(F̃2),

respectively. Since each Ẽi intersects the branch locus at 2 distinct points, we

can see that for each i = 1, . . . , 9, Ēi = π−1(Ẽi) is a smooth (-2)-curve such

that

π|Ēi
: Ēi → Ẽi

is the double covering of Ẽi branched at the two intersection points of Ẽ1 with

F̃1 + F̃2. As the Ẽi
′s are mutually disjoint, the Ēi

′s will also be mutually

disjoint.

Similarly, if ℓ is a line in CP2 not passing through any of the intersection
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points of F1 with F2, then

L = p∗(ℓ) = p∗OCP2
(1)

is a smooth curve of genus 2, not intersecting any of the Ēi
′s. Since

p∗OCP2
(3) = OX̄(2F̄1 + Ē1 + · · · + Ē9),

we can write as before

OX̄(L + Ē1 + · · · + Ē9) = L̄⊗2,

where

L̄ = p∗OCP2
(2) ⊗OX̄(−F̄1).

Let now φ : S̄ → X̄ be the double covering of X̄ ramified along the smooth

divisor

L + Ē1 + · · · + Ē9.

The surface S̄ is non-minimal with exactly 9 disjoint exceptional curves of

the first kind, the reduced divisors φ−1(Ēi), i = 1, . . . 9. The surface S we were

looking for is obtained from S̄ by blowing down these 9 exceptional curves.

Lemma 1.14. S is a simply connected, minimal surface with

c2
1(S) = pg(S) = 1.
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Proof. As S is obtained from S̄ by blowing-down 9 exceptional curves,

c2
1(S) = c2

1(S̄) + 9.

The canonical line bundle KS̄ of S̄ as a double covering of X̄ is [BPV84, Lemma

17.1, p. 42]:

KS̄ = φ∗L̄,

since the canonical bundle of X̄ is trivial. The computation of c2
1(S̄) follows

again from [BPV84, Lemma 17.1, p. 42], and we have:

c2
1(S̄) = (KS̄ · KS̄) = (φ∗L̄ · φ∗L̄) = 2(L̄ · L̄)

= 2(p∗OCP2
(2) · p∗OCP2

(2)) − 4(p∗OCP2
(2) · OX̄(F̄1))

+ 2(OX̄(F̄1) · OX̄(F̄1))

= 4(σ∗OCP2
(2) · σ∗OCP2

(2)) − 2(π∗σ∗OCP2
(2) · π∗O eX(F̃1))

+
1

2
(π∗O eX(F̃1) · π

∗O eX(F̃1))

= 4(OCP2
(2) · OCP2

(2)) − 4(σ∗OCP2
(2) · O eX(F̃1))

+ (O eX(F̃1) · O eX(F̃1))

= 16 − 4(OCP2
(2) · OCP2

(3))

= − 8.

Thus c2
1(S) = 1.

To compute pg(S) using the birational invariance of the plurigenera, it
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would be the same to compute

pg(S̄) = h0(S̄,KS̄) = h0(X̄, φ∗KS̄).

Using the projection formula (cf. [BPV84], p. 182), we have:

h0(X̄, φ∗KS̄) = h0(X̄, φ∗φ
∗L̄) = h0(X̄,OX̄) + h0(X̄, L̄) = 1.

For the proof of the simply connectedness, we refer the interested reader

to [Cat78].

Let S ′
k be the blowing-up of a K3 surface at k distinct points. Let also Sk

denote the blowing-up of S at k + 1 distinct points, and let Σ be a Riemann

surface.

• If g(Σ) = 1, (Sk ×Σ, S ′
k ×Σ) will provide infinitely many pairs of diffeo-

morphic Kähler threefolds of Kodaira dimensions 2 and 0, respectively;

• If g(Σ) ≥ 2 we get infinitely many pairs of diffeomorphic Kähler three-

folds of Kodaira dimensions 3 and 1, respectively.

The statement about the Chern classes follows as before. ✷

Example 5: Pairs of Kodaira dimensions (1, 2) and (2, 3)

In CP1×CP2, let Mn be the the generic section of line bundle p∗1OCP1
(n)⊗

p∗2OCP2
(3) for n ≥ 3, where pi, i = 1, 2 be the projections onto the two factors.

Then Mn is a smooth, simply connected projective surface, and using the
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projection onto the first factor we see that Mn is a properly elliptic surface.

By the adjunction formula, the canonical line bundle is:

KMn = p∗1OCP1
(n − 2).

From this and the projection formula we can find the purigenera:

Pm(Mn) = h0(Mn, K
⊗m
Mn

) = h0(Mn, p
∗
1OCP1

(m(n − 2)))

= h0(CP1, p1∗p
∗
1OCP1

(m(n − 2)))

= h0(CP1,OCP1
(m(n − 2)))

= m(n − 2) + 1.

So, Kod(Mn) = 1, and pg(Mn) = n − 1. We can also see that c2
1(Mn) = 0.

Let M ′ be any smooth sextic in CP3. M ′ is a simply connected surface of

general type with pg(M ′) = 10, and c2
1(M

′) = 24. Let M ′
k be the blowing-up of

M at 24+k distinct points, Mk be the blowing-up of M11 at k+1 points, and let

Σ be a Riemann surface. If g(Σ) = 1, (Mk ×Σ, M ′
k ×Σ) will provide infinitely

many pairs of diffeomorphic Kähler threefolds of Kodaira dimensions 1 and 2,

respectively, while if g(Σ) ≥ 2 we get infinitely many pairs of diffeomorphic

Kähler threefolds of Kodaira dimensions 2 and 3, respectively. The statement

about the Chern classes again follows. ✷
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1.5 Deformation Type

Similar idea can be used to prove Theorem B. The proof follows from the

examples below.

Example 1: Kodaira dimension −∞

Here we use again the Barlow surface M, and M ′, the blowing-up of CP2

at 8 points as two h-cobordant complex surfaces. Let Sk and S ′
k denote the

blowing-ups of M and M ′, respectively at k distinct points. Then, by the

classical h-cobordism theorem, Xk = Sk × CP1 and X ′
k = S ′

k × CP1 are two

diffeomorphic 3-folds with the same Kodaira dimension −∞. The fact that Xk

and X ′
k are not deformation equivalent follows as in [Ruan94] from Kodaira’s

stability theorem [Kod63]. We also see immediately that they have the same

Chern numbers. ✷

Example 2: Kodaira dimension 2 and 3

We start with a Horikawa surface, namely a simply connected surface of

general type M with c2
1(M) = 16 and pg(M) = 10. An example of such surface

can be obtained as a ramified double cover of Y = CP1 × CP1 branched at

a generic curve of bi-degree (6, 12). If we denote by p : M → Y, its degree

2 morphism onto Y, then the canonical bundle of M is KM = OY (1, 4), see

[BPV84, page 182]. Here by OY (a, b) we denote the line bundle p∗1OCP1
(a) ⊗

p∗2OCP1
(b), where pi, 1 = 1, 2 are the projections of Y onto the two factors.

Notice that the formula for the canonical bundle shows that M is not spin.
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Lemma 1.15. The plurigenera of M are given by:

Pn(M) =





10 n = 1

8n2 − 8n + 11 n ≥ 2

Proof. Cf. [BPV84] we have p∗OM = OY ⊕OY (−3,−6). We have:

Pn(M) = h0(M, p∗OY (n, 4n)) = h0(Y, p∗p
∗OY (n, 4n))

= h0(Y,OY (n, 4n) ⊗ p∗OM)

= h0(Y,OY (n, 4n)) + h0(Y,OY (n − 3, 4n − 6)).

Now, if n < 3 we get Pn(M) = (n + 1)(4n + 1). In particular, pg(M) = 10

and P2(M) = 27. If n ≥ 3, Pn(M) = (n + 1)(4n + 1) + (n − 2)(4n − 5) =

8n2 − 8n + 11.

Let M ′ ⊂ CP3 be a smooth sextic. The adjunction formula will provide

again the the canonical bundle KM ′ = OM ′(2) and so c2
1(M

′) = 24.

Lemma 1.16. The plurigenera of M ′ are given by:

Pn(M ′) =





(
2n+3

3

)
n = 1, 2

12n2 − 12n + 11 n ≥ 3

Proof. From the exact sequence 0 → OCP3
(2n − 6) → OCP3

(2n) → K⊗n
M ′ → 0,
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we get:

0 → H0(CP3,OCP3
(2n − 6)) → H0(CP3,OCP3

(2n))

→ H0(M ′, K⊗n
M ′ ) → H1(CP3,OCP3

(2n)) = 0.

So, for n ≥ 3,

Pn(M ′) =

(
2n + 3

3

)
−

(
2n − 3

3

)
= 12n2 − 12n + 11,

while for n < 3, Pn(M ′) =
(
2n+3

3

)
. In particular, pg(M ′) = 10 and P2(M

′) =

35.

Let Mk be the blowing-up of M at k distinct points, M ′
k be the blowing-up

of M ′ at 8 + k distinct points, and let Σ be a Riemann surface. If g(Σ) =

1, (Mk × Σ, M ′
k × Σ), k ≥ 0 will provide the required examples of Kodaira

dimension 2, and if g(Σ) ≥ 2, will provide the required examples of Kodaira

dimension 3.

To prove that they are not deformation equivalent we will use the defor-

mation invariance of plurigenera theorem [KoMo92, page 535]. Because of the

their multiplicative property cf. Proposition 1.12, it will suffice to look at the

plurigenera of M and M ′. But, P2(M) = 27 and P2(M
′) = P2(S) = 35, and

so M × Σ and M ′ × Σ are not deformation equivalent.

The statement about the Chern numbers of this examples follows immedi-

ately. ✷
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Example 3: Kodaira dimension 1

Here we use again the elliptic surfaces π : Mp,q → CP1 obtained from

the rational elliptic surface by applying logarithmic transformations on two

smooth fibers, with relatively prime multiplicities p and q. From (1.1) we get

K⊗pq
Mp,q

= p∗OCP1
((pq − p− q)). Hence Ppq(Mp,q) = pq − p− q + 1, while if n ≤

pq, Pn(Mp,q) = 0, the class of F being a primitive element in H2(Mp,q, Z), cf.

[Kod70]. It is easy to see now that, for example, if (p, q) 6= (2, 3), P6(Mp,q) 6=

P6(M2,3). If Σ is any smooth elliptic curve, the 3−folds Xp,q = Mp,q × Σ will

provide infinitely many diffeomorphic Kähler threefolds of Kodaira dimension

1. Corollary 1.13 shows again that all these threefolds have the same Chern

numbers. The above computation of plurigenera shows that, in general, the

Xp,q’s have different plurigenera. Hence, these Kähler threefolds are not de-

formation equivalent. ✷

Example 4: Kodaira dimension 0

Here we are supposed to start with a simply connected minimal surface

of zero Kodaira dimension. But, up to diffeomorphisms there exists only one

[BPV84], the K3 surface. So our method fails to produce examples in this

case. However, M. Gross constructed [Gro97] a pair of diffeomorphic complex

threefolds with trivial canonical bundle, which are not deformation equivalent.

For the sake of completeness we will briefly recall his examples.

Let E1 = O⊕4
CP1

and E2 = OCP1
(−1) ⊕ O⊕2

CP1
(1) ⊕ OCP1

be the two rank

4 vector bundles over CP1, and consider X1 = P(E1) and X2 = P(E2) their
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projectivizations. Note that E2 deforms to E1. Let Mi ∈ | − KXi
|, i = 1, 2

general anticanonical divisors. The adjunction formula immediately shows

that KMi
= 0, i = 1, 2, and so M1 and M2 have zero Kodaira dimension. While

for M1 is easy to see that can be chosen to be smooth, simply connected and

with no torsion in cohomology, Gross shows [Gro97], [Ruan96] that the same

holds for M2. Moreover, the two 3-folds have the same topological invariants,

(the second cohomology group, the Euler characteristic, the cubic form, and

the first Pontrjaghin class), and so, cf. [OkVdV95], are diffeomorphic. To

show that M1 and M2, are not deformation equivalent, note that M2 contains

a smooth rational curve with normal bundle O(−1) ⊕O(−1), which is stable

under the deformation of the complex structure while M1, doesn’t. Obviously,

M1 and M2 have the same Chern numbers. By blowing them up simultaneously

at k distinct points, we obtain infinitely many pairs of diffeomorphic, projective

threefolds of zero Kodaira dimension with the same Chern numbers. ✷

1.6 Concluding Remarks

1. Let M and M ′ be any of the pairs of complex surfaces discussed

in the previous two sections. A simple inspection shows that they are not

spin, and so, their intersection forms will have the form m〈1〉 ⊕ n〈−1〉. By a

result of Wall [Wall62], if m, n ≥ 2, the intersection form is transitive on the

primitive characteristic elements of fixed square. Since, c1 is characteristic, if

it is primitive too, we can assume that the homotopy equivalence f : M →

M ′ given by an automorphism of such intersection form will carry the first
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Chern class of M ′ into the first Chern class of M. But this implies that the

h−cobordism constructed between X = M×Σ and X ′ = M ′×Σ also preserves

the first Chern classes.

Following Ruan [Ruan94], we can arrange our examples such that c1 is a

primitive class. In the cases when b+ > 1, which is equivalent to pg > 0, it

follows that there exists a diffeomorphism F : X → X ′ such that F ∗c1(X
′) =

c1(X), where F ∗ : H2(X ′, Z) → H2(X, Z) is the isomorphism induced by F.

In these cases our theorems provide either examples of pairs of diffeomorphic

Kähler threefolds, with the same Chern classes, but with different Kodaira

dimensions, or examples of pairs of non deformation equivalent, diffeomorphic

Kähler threefolds, with same Chern classes and of the same Kodaira dimension.

However, in some cases we are forced to consider surfaces with b+ = 1.

In these cases it is not clear whether one can arrange the h−cobordisms con-

structed between X = M ×Σ and X ′ = M ′ ×Σ also preserves the first Chern

classes.

2. With our method it is impossible to provide examples of diffeomorphic

3-folds of Kodaira dimensions (0, 3) and (−∞, 0). In the first case, our method

fails for obvious reasons. In the second case, the reason is that for a projective

surface of Kodaira dimension −∞, the geometric genus pg is 0, while for a

simply connected projective surface of Kodaira dimension 0, pg 6= 0. Thus,

any two surfaces of these dimensions will have different b+, which is preserved

under blow-ups. So, no pair of projective surfaces of these Kodaira dimensions

can be h-cobordant. However, this raises the following question:

Question 1.17. Are there examples of pairs of diffeomorphic, projective 3-
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folds (M, M ′) of Kodaira dimensions (0, 3) or (−∞, 0)?

Most of the examples exhibited here have the fundamental group of a

Riemann surface. Natural questions to ask would be the following:

Question 1.18. Are there examples of diffeomorphic, simply connected, com-

plex, projective 3−folds of different Kodaira dimension?

Question 1.19. Are there examples of projective, simply connected, diffeo-

morphic, but not deformation equivalent 3-manifolds with the same Kodaira

dimension?

As we showed, the answer is yes when the Kodaira dimensions is −∞ or

0, but we are not aware of such examples in the other cases.
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Chapter 2

The total scalar curvature of rationally

connected threefolds

2.1 Introduction

In the second part of my thesis we address the following question:

Question 2.1. Let X be a smooth complex n-fold of Kähler type and nega-

tive Kodaira dimension. Does X admit Kähler metrics of positive total scalar

curvature?

If we denote by sg and dµg the scalar curvature and the volume form of g,

respectively, this is the same as asking if there is any Kähler metric g on X

such that
∫

X
sgdµg > 0.

For Kähler metrics, the total scalar curvature has a simpler expression :

∫

X

sgdµg = 2πnc1(X) ∪ [ω]n−1 (2.1)

where [ω] is the cohomology class of the Kähler form of g. The negativity of
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the Kodaira dimension is a necessary condition [Yau74] because, arguing by

contradiction, if for some m > 0, the mth power of the canonical bundle of X

is either trivial or has sections one can immediately see that c1(X) ∪ [ω]n−1 is

negative, which, by (2.1), would imply that the total scalar curvature of (X, g)

was negative.

Question 2.1 has an immediate positive answer in dimension 1. The only

smooth complex curve of negative Kodaira dimension is P1, and the Fubini-

Study metric satisfies the required inequality. In complex dimension 2, a

positive answer was given by Yau in [Yau74]. His proof is based on the theory

of minimal models and the classification of Kähler surfaces of negative Kodaira

dimension to find the required metrics on the minimal models. Then he proved

that if on a given smooth surface such a metric exists, one can find Kähler

metrics of positive total scalar curvature on any of its blowing-ups. Moreover,

the metrics he found are Hodge metrics.

Inspired by Yau’s approach, we tackle Question 2.1 in the case of projec-

tive threefolds of negative Kodaira dimension, where a satisfactory theory of

minimal models exists. As in [Yau74], we look for Hodge metrics instead. In

this context the natural question to ask is 1:

Question 2.2. Let X be a smooth projective 3-fold, with Kod(X) = −∞. Is

there any ample line bundle H on X such that KX · H2 < 0?

A positive answer to this question can be connected to a deep result of S.

Mori and Y. Miyaoka [MiyMo86]. Namely, Question 2.2 can be regarded as a

1 The same question has also been raised in a different context by F. Campana, J. P.
Demailly, T. Peternell and M. Schneider, [DPS96], [CaPe98].
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possible effective characterization of the class of smooth, projective threefolds

of negative Kodaira dimension.

Also, Question 2.2 can be viewed as extracting some positivity property

of the anticanonical bundle. An affirmative answer would yield in dimension

three, a weak alternative to the generic semi-positivity theorem of Miyaoka

asserting that, for non-uniruled manifolds, the restriction of the cotangent

bundle to a general smooth complete intersection curve cut out by elements

of |mH| is semi-positive, for any ample divisor H and m ≫ 0.

As an attempt to answer the original Question 2.1, in this thesis we give

a partial positive answer to Question 2.2 in the case of rationally connected

threefolds. Recall that cf. [KMM92], a complex projective manifold X of

dimension n ≥ 2 is called rationally connected if there is a rational curve

passing through any two given points of X. Our result is:

Theorem A. For every projective, rationally connected manifold X of dimen-

sion 3, there exists an ample line bundle H on X such that KX · H2 < 0.

One reason to restrict our attention to this important case comes from the

observation that for rationally connected manifolds, answering affirmatively to

Question 2.1 is equivalent to answering affirmatively to Question 2.2. This is

automatically true for surfaces, but is a non-trivial issue in higher dimensions.

This follows from their convenient cohomological properties. Namely, if X is

such a manifold, then [KMM92]

H i(X,OX) = 0, for i ≥ 1.
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But in this case, from the Hodge decomposition

H2(X, C) = H0,2(X) ⊕ H1,1(X) ⊕ H2,0(X)

it follows that H2(X, C) ≃ H1,1(X). Thus, we can see that any (1, 1)−form

with real coefficients can be approximated 2 by a (1, 1)−form with rational

coefficients. Hence, up to multiplication by positive integers, any Kähler forms

can be approximated by first Chern classes of ample line bundles. From this

the equivalence of our two questions follows easily.

However, this is not the only reason to restrict ourselves to the case of

rationally connected threefolds, as it will become apparent from the proof of

Theorem A.

In what follows, we outline the proof of Theorem A. To simplify the expo-

sition, for any projective manifold X, We introduce the following definition:

Definition 2.3. Let X be a smooth projective threefolds. We say that the

property PX holds true if there exists an ample line bundle H on X such that

KX · H2 < 0.

Similar to the case of complex surfaces, the idea to prove this theorem is

to start with an arbitrary 3-fold X of negative Kodaira dimension, and show

that property P above holds true for its minimal model Xmin. In the first

section, we apply Mori’s theory of minimal models on X to get a birational

map f : X 99K Xmin to a new three dimensional projective variety Xmin, with

at most Q−factorial terminal singularities, which is either a Mori fiber space,

2Here we consider H2(X, R) as a finite dimensional real vector space, endowed with any
metric topology
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or has nef canonical bundle.

Deep results Miyaoka [Miy88], [MiPe97] exclude the possibility of Xmin

having nef canonical bundle (nef canonical bundle would imply non-negative

Kodaira dimension). Hence, Xmin has to be a Mori fiber space, i.e Xmin is

either a del Pezzo fibration, a conic bundle or a Fano variety. As in [CaPe98]

and [DPS96], it is easy to see that PXmin
holds true.

The difficult part of this program is to show that

PXmin
=⇒ PX .

As a first step for a better understanding of this problem, in Section 2.3

we prove the following:

Proposition 2.4. Let p : X ′ → X be a resolution of singularities of a pro-

jective Q−factorial variety X of dimension three, with terminal singularities.

Assume that p is smooth outside the singular locus Sing(X). Then

PX′ holds true ⇐⇒ PX holds true.

This shows that in order to answer Question 2.2 it is enough to show that

P is a birational property of smooth projective threefolds.

Our approach is to use the weak factorization theorem [AKMW02], which

says that any birational map between smooth (projective) manifolds can be de-

composed into a finite sequence of blow-ups and blow-downs with nonsingular

centers of (projective) manifolds. We prove the following:

Proposition 2.5. Let p : Y → X be the blow-up of a smooth, projective 3-fold
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at a point. Then

PX holds true ⇐⇒ PY holds true.

For the blowing-up along curves the following result is of crucial impor-

tance:

Proposition 2.6. Let p : Y → X be the blow-up of a smooth, projective 3-fold

along a smooth curve C.

• PX holds true =⇒ PY holds true.

• If KX · C < 0, then

PY holds true =⇒ PX holds true.

We should point out that these results do not require the rational connect-

edness of X.

In the last case to verify, PY =⇒ PX , where Y → X is the blowing-up

of smooth projective threefolds along smooth curves with KX · C ≥ 0, the

methods used to prove the previous results do not work anymore. It is the

last hurdle, where we use this extra assumption.

The condition KX · C < 0 imposed in the previous proposition can be in-

terpreted, by the Riemann Roch theorem, as saying that the curve C ”moves”.

Our approach is to reduce this case to the case which we have already solved.

To be more precise, we are going to find a smooth curve C ′ ⊂ X with

KX · C ′ < 0, such that PY ′ holds true, where Y ′ → X is the blowing-up

of X along C ′. What we do in our construction is ”forcing C to move”, by
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eventually modifying it, while preserving property P . This is done by a lengthy

specialization argument, where we strongly rely on the rational connectedness

hypothesis. This argument is inspired from the proof of Noether’s theorem

of Griffiths and Harris [GH85]. The construction presented in Section 2.4.2,

on which all the computations are performed is based on the work of Graber,

Harris, Starr [GHS03] and Kollár [ArKo03]. We devote to this specialization

argument, the entire Section 2.4.

In Section 2.5 we prove Theorem 1.9. An appendix containing some results

used intensively throughout this entire chapter is added for convenience.

Conventions: We work over the field of complex numbers and we use the

standard notations and terminology of Hartshorne’s Algebraic Geometry book

[Har77].

2.2 Minimal models

In this section we introduce the objects which appear in Mori’s theory of

minimal models and we show that our problem has a positive answer for the

”minimal models.”

Let X be a variety with dimX > 1, such that KX is Q−Cartier, i.e. mKX

is Cartier for some positive integer m. If f : Y → X is a proper birational

morphism such that KY is a line bundle (e.g. Y is a resolution of X), then

mKY is linearly equivalent to:

f ∗(mKX) +
∑

m · a(Ei) · Ei,
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where the Ei’s are the exceptional divisors. Using numerical equivalence, we

can divide by m and write:

KY ≡Qf ∗KX +
∑

a(Ei) · Ei.

Definition 2.7. We say that X has terminal singularities if for any resolution,

and for any i, a(Ei) > 0.

Definition 2.8. We say that a variety X is Q−factorial if for any Weil divisor

D there exist a positive integer m such that mD is a Cartier divisor.

The minimal model program (MMP) studies the structure of varieties via

birational morphisms or birational maps of special types to seemingly simpler

varieties. The birational morphisms which appear running the MMP are the

following:

Definition 2.9 (divisorial contractions). Let X be a projective variety

with at most Q−factorial singularities. A birational morphism f : X → Y is

called a divisorial contraction if it contracts a divisor, −KX is f−ample and

rank NS(X) = rank NS(Y ) + 1.

The main difficulty in the higher dimensional minimal model program is the

existence of non-divisorial contractions. When the variety X is Q−factorial

with only terminal singularities, one may get contractions, called contractions

of flipping type f : X → Y, where the exceptional locus E has codimension at

least 2, but such that −KX is f−ample and rank NS(X) = rank NS(Y ) + 1.

In this case, KY is no longer Q−Cartier. The remedy in dimension 3 is the

existence of special birational maps, called flips, which allow to replace X by
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another Q−factorial variety X+ with only terminal singularities, but simpler

in some sense:

Definition 2.10 (flips). Let f : X → Y be a flipping contraction as above.

A variety X+ together with a map f+ : X+ → Y is called a flip of f if X+ is

Q−factorial varieties with terminal singularities and KX+ is f+−ample.

By abuse of terminology, the birational map X 99K X+ will also be called

a flip.

The minimal model program starts with an arbitrary projective Q-factorial

threefold with at most terminal singularities X on which one applies an suitable

sequence of divisorial contractions and flips. To describe the outcome of the

MMP, we need to introduce the following definition:

Definition 2.11 (Mori fiber spaces). Let X and Y be two irreducible

Q−factorial varieties with terminal singularities, dim X > dim Y, and f :

X → Y a morphism. The triplet (X, Y, f) is called a Mori fiber space if −KX

is f−ample, and

rank NS(X) = rank NS(Y ) + 1.

Theorem 2.12 (Mori). Let X be a projective variety with only Q−factorial

terminal singularities, and dim X = 3. Then there exist a birational map

f : X 99K Xmin, which is a composition of divisorial contractions and flips,

such that either KXmin
is nef or Xmin has a Mori fiber space structure.

In their approach to Question 2.2, Campana and Peternell proved some

important cases. Because of the simplicity, we include their proofs.
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The following easy lemma will be used frequently throughout the proofs,

sometimes without referring to it.

Lemma 2.13. Let X be a projective Q−factorial variety of dimension 3, with

(at most) terminal singularities for which there exists a nef line bundle D

with KX · D2 < 0. Then there exists an ample line bundle H on X such that

KX · H2 < 0.

Proof. Let L be any ample on X. Then for any positive integer m, Hm :=

mD + L is an ample line bundle with:

KX · H2
m = KX · (mD + H)2 = mKX · D2 + 2KX · D · L + KX · L2 < 0

for m ≫ 0.

Proposition 2.14 (Mori fiber spaces). Let (X, Y, f) be a Mori fiber space,

with dim X = 3. Then the property PX holds true.

Proof. Since dim X = 3 we have 3 cases, according to the dimension of Y :

Case 1 (dim Y=0) In this case X is a Q−Fano variety with rank NS(X) =

1. In particular, −mKX is an ample line bundle, for some integer m > 0,

and the property PX follows immediately.

Case 2 (dim Y=1) Take LY be any ample line bundle on Y. Since −KX

is f−ample it follows that KX · (f ∗L)2 < 0, and as f ∗LY is nef, from

Lemma 2.13 we can see that PX holds true.

Case 3 (dim Y=2) As before we take LY be any ample line bundle on Y

and HX be an ample line bundle on X. Then for any positive integer
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Hm := mf ∗L + HX , is an ample line bundle and we have:

KX · H2
m = KX · (mf ∗L + HX)2 = KX · H2

X + 2mKX · HX · f ∗LY < 0,

for m ≫ 0, again because −KX is f−ample.

Corollary 2.15. Let X be a Q−factorial, projective variety of dimension three

with at most terminal singularities. If Kod(X) = −∞ then PXmin
holds true.

Proof. From Theorem 2.12 we know that Xmin is either a Mori fiber space, for

which PXmin
holds true, or KXmin

is nef. To exclude the second possibility, we

note that from Miyaoka’s abundance theorem [MiPe97, page 88], in dimension

three this would imply that Kod(Xmin) ≥ 0. However, this is impossible since

the Kodaira dimension is a birational invariant.

2.3 Various reductions

Our first reduction takes care of the singularities. Let X be a projective

Q−factorial variety X of dimension three, with terminal singularities. By

Hironaka’s resolution of singularities we can always find resolution p : X ′ → X

which is an isomorphism outside the singular points of X. We begin by proving

the following:

Proposition 2.16. PX′ holds true if and only if PX holds true.

Proof. Suppose first that PX holds true. Hence there exists an ample line

bundle L on X such that KX · L2 < 0, and let D′ = p∗L. Then D is a nef line
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bundle on X ′ and

KX′ · D′2 = (p∗KX +
∑

i

aiEi) · p
∗L · p∗L = KX · L2 < 0.

Using Lemma 2.13 it follows that PX′ holds also true.

Conversely, suppose now PX′ holds true, and let H ′ be a an ample line

on X ′ such that KX′ · H ′2 < 0. Without loss of generality we can assume H ′

very ample and represented by an irreducible divisor, still denoted by H ′. Let

D := p(H ′) its pushforward in X. Following [KoMo98, Lemma 3.39] we have

p∗D≡QH ′ +
∑

i

ciEi,

where the Ei ‘s are the exceptional divisors of the resolutions and ci ≥ 0.

Now, if C is any curve in X, let C ′ be its strict transform in X ′ and so

p∗C
′ = C. Then, D ·C = D · p∗C

′ = p∗D ·C ′ = H ′ ·C ′ +
∑

ci(Ei ·C
′) > 0, C ′

not being contained in any of the exceptional divisors. Thus D is a strictly

nef divisor. The singularities of X being terminal, KX′ ≡Q p∗KX +
∑

aiEi,

with ai > 0. Again, since the singularities of X are a finite number of isolated

points, p∗L · Ei = 0 for any cartier divisor L on X. We immediately obtain:

KX · D2 = (p∗KX) · (p∗D)2 = (p∗KX) · (H ′)2

= KX′ · H ′2 −
∑

aiEi · H
′2 < 0.

The proposition follows now from Lemma 2.13.

Proposition 2.16 allows us to interpret the results we proved in the previous
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section in in the following way. From the minimal models program we obtain

a birational map f : X 99K Y from a smooth projective threefold X to a

singular threefold Y for which PY holds true. We can replace now Y by a

smooth projective threefold X ′ for which PX′ holds true. Thus the problem

we study reduces to the following:

Question 2.17. Is P a birational property of the class of projective threefolds

of negative Kodaira dimension?

This is already a major simplification, because we can use now the weak

factorization theorem [AKMW02] of Abramovich, Karu, Matsuki and W lodar-

czyk:

Theorem 2.18 (Abramovich, Karu, Matsuki, W lodarczyk). A bira-

tional map between projective nonsingular varieties over an algebraically closed

field K of characteristic zero is a composite of blowings up and blowings down

with smooth centers of smooth projective varieties.

Therefore, what is left to prove is that the property P is preserved under

blowing-ups and blowing-downs at points and smooth curves, respectively.

2.3.1 Blowing-up at points

Proposition 2.19. Let p : Y → X be the blow-up of a smooth, projective

3-fold at a point. Then PX holds true if and only if PY holds true.

Proof. Let E be the exceptional divisor of p. Then by [Har77, Ex. II.8.5],

Pic(Y ) ∼= Pic(X) ⊕ Z[E] and KY = p∗KX + 2E.
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Suppose first that PX holds true and let HX be an ample line bundle on X

such that KX ·H2
X < 0. Then DY

def
= p∗HX is a nef line bundle on Y such that

KY ·D2
Y = (p∗KX + 2E) · p∗HX · p∗HX = p∗KX · p∗HX · p∗HX = KX ·H2

X < 0.

Using again Lemma 2.13 it follows that PY holds true.

Conversely, suppose that PY holds true, and let HY be an ample line

bundle on Y such that KY · H2
Y < 0. Then HY = p∗DX − aE, for some

line bundle DX ∈ Pic(X), and some positive integer a. As in the proof of

Proposition 2.16, we can show that DX is nef and KX · D2
X < 0. Let C be

any curve in X and let C ′ be its strict transform in Y. Then p∗C
′ = C, and

DX ·C = DX · p∗C
′ = p∗DX ·C ′ = HX ·C ′ + aE ·C ′ > 0, because HX is ample

and C ′ is not contained in E. Therefore DX is a nef line bundle and

KX · D2
X = p∗KX · p∗DX · p∗DX = p∗KX · HY · HY = KY · H2

Y − 2E · H2
Y < 0.

Applying again Lemma 2.13 we can conclude the proof of the proposition.

2.3.2 Blowing-up along curves

In the case of 1-dimensional blowing-up centers, it is easy to prove in one

direction:

Proposition 2.20. Let p : Y → X be the blow-up of a smooth, projective

3-fold along a smooth curve C. If PX holds true then PY holds true.

Proof. Let HX be an ample line bundle on X satisfying KX · H2
X < 0 and let
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DY
def
= p∗HX . Then DY is a nef line bundle on Y and we have

KY · D2
Y = (p∗KX + E) · p∗HX · p∗HX = p∗KX · p∗HX · p∗HX = KX · H2

X < 0.

The conclusion follows again from Lemma 2.13.

For the converse of Proposition 2.20 the following proposition is the key

step in our line of argument. Its proof is rather long, but elementary, based

on Proposition C.3.

Proposition 2.21. Let p : Y → X be the blowing-up of a smooth, projective

3-fold along a smooth curve C such that KX ·C < 0. If PY holds true then PX

holds true.

Proof. Let HY be an ample line bundle on X such that PY holds true. Without

loss of generality, we can assume that HX is very ample. Since p : Y → X

is the blowing-up of X along C ⊂ X, the exceptional divisor E = PC(N∨
C/X)

will be a ruled surface over C. Let d = degC(NC/X), and let g be the genus of

C. Let f be a fiber of p|E : E → C. We denote by a the intersection number

(HY · f) in the Chow ring A(Y ). We can write:

HY = p∗LX − aE (2.2)

for some line bundle LX ∈ Pic(X). As in the proof of Proposition 2.19, we can

check that LX ·C ′ > 0 for any irreducible curve C ′ ⊂ X, different than C. Let

C̃ be the strict transform of C ′. Then:

LX · C ′ = (HY + aE) · C ′ = HY · C̃ + aE · C̃ > 0,
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because E · C̃ ≥ 0, the curve C̃ is an irreducible curve, obviously not contained

in E. Thus, in order to show that LX is nef we only have to check that LX ·C ≥

0. A straightforward application of the projection formula and of Proposition

B.2 gives:

KY · H2
Y = (p∗KX + E) · (p∗LX − aE) · (p∗LX − aE)

= p∗KX · p∗LY · p∗E − 2ap∗KX · p∗LX · E + a2p∗KX · E2

+ E · p∗LX · p∗LX − 2aE2 · p∗LX + a2E3

= KX · L2
X − 2aE2 · p∗LX + a2p∗KX · E2 + a2E3

= KX · L2
X + 2a(LX · C) − a2(KX · C) − a2d

= KX · L2
X + 2a(LX · C) − a2(2g − 2).

Observation 2.22. Since KY · H2
Y < 0, to conclude the proof of the Propo-

sition 2.21 it will suffice to prove that

2a(LX · C) − a2(2g − 2) ≥ 0, (2.3)

because we would obtain:

• KX · L2
X < 0,

• LX · C ≥ 0, if g ≥ 1.

If g = 0, we still have to check that LX · C ≥ 0.

For a better understanding of (2.3) the following considerations are neces-

sary.
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On E = PC(N∨
C/X), let C0 be the section of minimal self-intersection C2

0 =

−e. We use {C0, f} as a basis for NumZ(E). With respect to this basis:

HX |E ≡ aC0 + bf, for some b ∈ Z ;

E|E ≡ xC0 + yf,

where x and y can be determined as follows:

−1 = E · f = E|E ·
E

f = (xC0 + yf) ·
E

f = x;

−d = E3 = E|E ·
E

E|E = (−C0 + yf)2 = −e − 2y,

so y = d−e
2

. Here we denoted by ” ·
E

” the intersection product on the exceptional

smooth divisor E.

Remark 2.23. Note that the two invariants, d and e, of E = PC(N∨
C/X), have

the same parity.

Lemma 2.24. In the above notations, we have:

2a(LX · C) − a2(2g − 2) = 2ab − a2e − a2(KX · C). (2.4)

Proof. Computing HY · E · p∗LX in two ways, we obtain:

HY · E · p∗LX = (LX · C)LX · f = a(LX · C);

HY · E · p∗LX = HY · E · (HY + aE) = H2
Y · E + aHY · E2.
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Thus

2a(LX · C) − a2(2g − 2) = 2(H2
Y · E + aHY · E2) − a2(2g − 2)

= 2(H2
Y · E + aHY · E2) − a2d − a2(KX · C).

Furthermore:

2(H2
Y · E + aHY · E2) = 2[(HX |E ·

E
HX |E ) + a(HX |E ·

E
E|E )]

= 2(aC0 + bf)2 + a(aC0 + bf) ·
E

[−2C0 + (d − e)f ]

= 2a2C2
0 + 4ab − 2a2C2

0 − 2ab + a2(d − e)

= 2ab + a2(d − e).

Therefore 2a(LX · C) − a2(2g − 2) = 2ab − a2e − a2(KX · C).

We can finish now the proof of Proposition 2.21:

• If g ≥ 0, by Proposition C.3, we have two subcases:

i) Case e ≥ 0 : Since HY is ample, HY |E is ample, and so, by Propo-

sition C.3, a > 0 and b > ae. Remembering that KX · C < 0, from

(2.4) we can see that:

2a(LX · C) − a2(2g − 2) = 2ab − a2e − a2(KX · C)

> a2e − a2(KX · C) > 0.

By the crucial Observation 2.22 and by Proposition 2.13 we are

done.
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ii) Case e < 0 : Similarly, since HY is ample, HY |E is ample, too.

Thus, by Proposition C.3, a > 0 and b > 1
2
ae. Then:

2a(LX · C) − a2(2g − 2) =2ab − a2e − a2(KX · C)

> − a2(KX · C) > 0,

and we are again done.

• If g = 0 then e ≥ 0, and in this case it suffices to show that 2ab + a2(d−

e) ≥ 0. Since HY |E is ample, a > 0 and b > ae. We have:

2ab + a2(d − e) > a2e + a2d = a2(e − 2 − KX · C).

So, if KX · C ≤ −2 it follows immediately that LX · C > 0, and with

the help of Observation 2.22 and Lemma 2.13 we are done again. If

KX ·C = −1, then d = −1 and since d and e have the same parity, e ≥ 1

and we obtain again LX · C > 0, and we can conclude as above.

With this Proposition 2.21 is completely proved.

Remark 2.25. The proof of Proposition 2.21 also works when KX · C =

0 and g > 0. However, when C is a rational curve d = deg NC/X = −2,

and the above arguments show that a possible exception occurs only when

e = 0, and 0 < b < a. In this case, NC/X ≃ OP1
(−1) ⊕ OP1

(−1), and what

fails is only the nefness of LX .

When KX · C > 0, nothing can be said with the above approach.

This remark inspires the following conjecture:
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Conjecture 2.26. Let Y be the blowing up of of a smooth, projective threefold

X along a curve C ≃ P1 with NC/X
∼= OP1

(−1) ⊕OP1
(−1). If the contraction

of the exceptional divisor of Y along the ”other direction” is projective, then:

PY holds true =⇒ PX holds true.

In the next section we will give a proof of a special case of this conjecture

as a part of our argument.

2.4 Specialization argument

From what we proved so far, to show that P is a birational property in the class

of smooth, projective threefolds it would be enough to answer affirmatively to

the following question:

Question 2.27. Let p : XC → X be the blowing up of smooth projective

threefold X along a smooth curve C ⊂ X with KX · C ≥ 0. Suppose that PXC

holds true. Does PX also hold true?

Proposition 2.21 is inspirational, suggesting that a positive answer is pos-

sible if we can replace the blowing-up p : XC → X of X along the curve C by

the blowing-up p′ : XC′ → X of X along a smooth curve C ′ ⊂ X, but such

that KX · C ′ < 0, as long as we are able to show that PXC′ also holds true.

We will show that such an approach works in the case of rationally connected

projective threefolds.

A more precise description of our strategy to answer Question 2.27, and the

outline of the structure of this section is the following. In the next subsection
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we introduce the results from the theory of rationally connected manifolds

we need. Then using the outcome of Theorem 2.31, in subsection 2.4.2, we

construct a smooth family over the unit disk X → ∆, whose general fiber

XCt is the blowing-up of X along a smooth curve Ct with KX · Ct < 0. The

central fiber of this family will be a normal crossing divisor whose irreducible

components are smooth rationally connected threefolds. In subsection 2.4.3

we show that any line bundle on the central fiber of X → ∆ extends to X .

Moreover, if the line bundle on the central fiber is chosen to be ample, its

extension restricted to XCt will also be ample, by eventually shrinking ∆. In

subsection 2.4.5, we apply the results obtained in the previous subsection,

to show how to construct ample line bundles on one of the components of

the central fiber of X → ∆. In the next subsection, we show how to use the

result of the previous subsection to construct an ample line bundles on the

whole central fiber of X → ∆. Finally, in the last subsection, we set up the

intersection theory of the central fiber, and show that on the central fiber of

X → ∆ satisfies property P holds true, which will imply that PXCt
holds true,

too.

2.4.1 Rationally connected manifolds

In this section we collect the necessary information from the theory of ratio-

nally connected manifolds. For the definitions and the main results presented

we refer the interested reader to [KMM92], [Kol96] and especially to [ArKo03].

Let X denote a complex projective manifold with dimX ≥ 2.

Definition 2.28. A nonsingular, complex, projective variety X will be called

46



rationally connected if any pair of points in X can be connected by a rational

curve.

The main properties and characterizations of rationally connected mani-

folds are summarized in the following:

Theorem 2.29. 1) Rationally connectedness is a birational property and

is invariant under smooth deformations.

2) Rationally connected manifolds are simply connected and satisfy

H0(X, Ω⊗m
X ) = 0 for m > 0 and H i(X,OX) = 0 for i > 0.

3) X is rationally connected if and only if for any point x ∈ X there exists

a smooth rational curve L ⊂ X passing through x, with arbitrarily pre-

scribed tangent direction and such that its normal bundle NL|X is ample.

We should point out that the statement in 3) is not one of the usual charac-

terizations of rationally connectedness. However, it easily follows from [Deb01,

page 110].

Definition 2.30. A comb with n teeth is a projective curve with n + 1 irre-

ducible components C, L1, . . . , Ln such that:

• The curves L1, · · · , Ln are mutually disjoint, smooth rational curves.

• Each Li, i 6= 0 meets C transversely in a single smooth point of C.

The curve C is called the handle of the comb, and L1, . . . , Ln are called the

teeth.
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The key result we use is the following theorem of Graber, Harris and Starr

[GHS03], which we present in the shape given by J. Kollár [ArKo03]:

Theorem 2.31. Let X be a smooth, complex, projective variety of dimension

at least 3. Let C ⊂ X be a smooth irreducible curve. Let L ⊂ X be a rational

curve with ample normal bundle intersecting C and let L be a family of rational

curves on X parametrized by a neighborhood of [L] in Hilb(X). Then there are

curves L1, . . . , Ln ∈ C such that C0 = C ∪L1 ∪ · · · ∪Ln is a comb and satisfies

the following conditions:

1) The sheaf NC0/X is generated by the global sections.

2) H1(C0, NC0/X) = 0.

Obviously the hypotheses are fulfilled in the case of rationally connected

manifolds.

For a better understanding of this theorem the following corollary [ArKo03]

is very useful. Since we consider that its proof gives some useful information

about our construction, we include for convenience Kollár’s proof.

Corollary 2.32. Hilb(X) has a unique irreducible component containing [C0].

This component is smooth at [C0] and a non-empty subset of it parametrizes

smooth, irreducible curves in X.

Proof. Since the curve C0 is locally complete intersection, its normal sheaf

NC0/X is locally free. We have an exact sequence

0 → NC/X → NC0/X |C
→ Q → 0
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where Q is a torsion sheaf supported at the points Pi = C ∩ Li, for i =

1, . . . n. Since NC0/X is globally generated, we can find a global section s ∈

H0(C0, NC0/X) such that, for each i, the restriction of s to a neighborhood of

Pi is not in the image of NC/X . This means that s corresponds to a first-order

deformation of C0 that smoothes the nodes Pi of C0. From the vanishing of

H1(C0, NC0/X) we see that there are no obstructions finding a global deforma-

tion of C0 that smoothes its nodes Pi.

To be more explicit, we choose local holomorphic coordinates, so that near

one of its nodes P, C0 is given by:

z1z2 = z3 = · · · = zn = 0.

Consider now a general 1−parameter deformation corresponding to a section

of NC0/X which does not belong to the subspace of NC0/X,P generated by

z3, · · · , zn. This deformation will be given by the equations:

z1z2 + tf(t, z) = z3 + tf3(t, z) = · · · = zn + tfn(t, z),

and f(t, z) 6= 0, by assumption. We can change new coordinates z1
′ :=

z1, z2
′ := z2 and zi

′ := zi + tfi(t, z) for i = 3, . . . n, to get new, simpler

equations:

z1
′z2

′ + t(a + F (t, z)) = z3
′ = · · · = zn

′ = 0, (2.5)

where a 6= 0 and F (0, 0) = 0. The singular points are given by the equations:

z1
′ + t

∂F

∂z2
′

= z2
′ + t

∂F

∂z1
′

= · · · = zn
′ = 0.
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Substituting back these equations into z1
′z2

′ + t(a + F (t, z) = 0 we get a new

equation for the supposed singular point:

ta = −tF (t, z) − t2
∂F

∂z1
′

∂F

∂z2
′

The latter has no solution for t 6= 0 and t, z1
′, z2

′, . . . zn
′ small since a 6= 0 and

F (0, 0) = 0.

Remark 2.33. Using the implicit function theorem we can change one more

time the coordinates in (2.5) such that near the node Pi, C0 is given by:

z1z2 + t = z3 = · · · = zn = 0. (2.6)

This change of coordinates is given by zi := zi
′ for i = 1, . . . , n, and t :=

t(a + F (t, z)).

2.4.2 Construction of the specialization

We start with our blowing-up p : XC → X of a projective, rationally connected

threefold X along a smooth curve C ⊂ X. Let E be the exceptional divisor.

We will construct a degeneration having an appropriate blowing-up of XC as

one of the components of the central fiber.

Since X is rationally connected, we can always attach [ArKo03] to the curve

C ⊂ X a finite number of disjoint, smooth rational curves L1, . . . Ln ⊂ X,

with ample normal bundle, meeting C at transversely at exactly one point

Pi = C ∩ Li, i = 1, . . . , n. Using Theorem 2.31 and Corollary 2.32, the comb

C0 = C ∪ L1 ∪ · · · ∪ Ln is smoothable for n ≫ 0. As in the proof of Corollary
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2.32 this means that we can find a small deformation of C0 parametrized by

a one dimensional disk ∆ ⊂ Hilb(X) centered in [C0]. That is there exists a

smooth submanifold C ⊂ X × ∆, such that its projection π : C → ∆ is flat,

and

π−1(t) =





C0, if t = 0

Ct, if t 6= 0,

where Ct is a smooth irreducible curve. From Corollary 2.32 and Remark

2.33, in local coordinates chosen w.r.t a neighborhood of the node Pi, π is the

projection

(z1, z2, z3, t) 7→ t

and C is given by z1z2 + t = z3 = 0. In these local coordinates, C ⊂ C is given

by z1 = z3 = t = 0, and Li by z2 = z3 = t = 0.

Let ̟ : XC → X × ∆ be the blow-up of X × ∆ along C, and let

Π : XC → ∆

be the projection onto ∆.

Lemma 2.34. (Structure of Π : XC → ∆)

i) XC is a smooth variety, and Π : XC → ∆ is a flat, proper family of

projective varieties.

ii) For t 6= 0, XC,t = Π−1(t) is the blowing-up of X along Ct, while XC,0 =

Π−1(0) is the blowing-up of X along the ideal sheaf of C0 ⊂ X.

Proof. i) This are standard facts about blowing-up, see sections II. 7 and II.

8 of [Har77].
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ii) For the proof we can either quote the universal property of the blowing-up,

Corollary II.7.15 of [Har77] or use local equations as in the proof of Corollary

2.32. We adopt the latter. The results we want to prove here are of local

nature. In a neighborhood of a node of C0 ⊂ U ⊂ X × ∆, C is given by the

equations:

z1z2 + t = z3 = 0.

XC|U ⊂ U × P1 will therefore given by the equations:

(z1z2 + t)v = z3u, (2.7)

where [u : v] are the homogeneous coordinates on P1, and the conclusion

follows now immediately.

Let Π0 : XC,0 → X denote the blowing-up map of X along the ideal sheaf

of C0.

Lemma 2.35. (Structure of the central fiber XC,0)

i) XC,0 has exactly n distinct ordinary double points as singularities.

ii) The exceptional divisor of Π0, denoted by E∗ is a union of smooth Weil

divisors E∗
C , E∗

1 , . . . , E∗
n.

Proof. i) From the arguments used in the above Lemma we can see that the

singular points of XC,0 can occur only over the singular points of C0. The type

of this singularities can be seen from (2.7) for t = 0. It follows that for node of

C0, in the above coordinates, there is exactly one singular point of XC,0, which
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appears in the chart where v 6= 0 and is given by the local equation

z1z2 = z3u
′, (2.8)

where u′ = u
v
.

ii) Since the center of the blowing-up has exactly n + 1 components, it follows

the exceptional divisor of XC,0 has n + 1 components too, one over each of the

components of C0. Using (2.8) the other claims easily follow.

Let Qi ∈ XC, 1 = 1, . . . , n denote the singular points of XC,0.

Remark 2.36. It can be seen that XC,0 is a Gorenstein non Q−factorial

variety. Hence push-forward arguments, as the ones we used in the previous

section cannot be applied.

In order to perform the computation to follow, we need a better under-

standing of the components E∗
i ’s of E∗.

Proposition 2.37. (The components E∗
i , i = 1, . . . n)

i) E∗
i = PLi

(N∨
C0/X |Li

).

ii) The conormal bundle of E∗
i is given by the extension:

0 −→ OE∗
i
−→ N∨

E∗
i /XC

−→ JQi
⊗OE∗

i
(1) ⊗OE∗

i
(f) −→ 0,

where, by JQi
we denoted the ideal sheaf of Qi on E∗

i , OE∗
i
(1) is the dual

of the tautological bundle of the ruled surface E∗
i , and f is its fiber.
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Proof. i) This is a well-known fact. We include a short proof for conve-

nience. The general theory of blowing-ups tells us that, since Li ⊂ C, E∗
i =

PLi
(N∨

C/X×∆|Li
). To compute N∨

C/X×∆|Li
we use the following commutative di-

agram:

0

��

0

��

OLi

��

OLi

��

0 // N∨
C/X×∆|Li

// N∨
Li/X

⊕OLi
//

��

OLi
(Pi) //

��

0

0 // N∨
C0/X |Li

// N∨
Li/X

//

��

OPi
(Pi) //

��

0

0 0

(2.9)

The first row is given by the exact sequence of conormal bundles of the

inclusions Li ⊂ C ⊂ X × ∆. We have the obvious isomorphism N∨
Li/X×∆

≃

N∨
Li/X

⊕OLi
.

On the smooth surface C, since the Li’s are mutually disjoint rational curves

and meet C transversally at exactly one point, we have:

0 = Li · Ct = Li · C0 = Li · (C + L1 + · · ·Ln) = 1 + L2
i .

Therefore, the Li’s are actually (−1)−curves and N∨
Li|C

≃ OLi
(Pi).

The second row is the exact sequence of Andreatta-Wisniewski [AnWi98,
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page 265]. From the snake lemma, we can see now that

N∨
C/X×∆|Li

≃ N∨
C0/X |Li

.

ii) Let F̄ : X̄ → XC be the blowing-up of XC at the points Qi, for i = 1, . . . , n,

and Π̄ : X̄ → ∆ the projection onto ∆. We denote by X̄ the strict transform of

XC,0, and by Zi, i = 1, . . . , n, the exceptional divisors of F̄ . Π̄ has the following

fibers:

Π̄−1(t) =





XCt , if t = 0

X̄ + 2Z1 + . . . 2Zn, if t 6= 0.

Since XC is smooth, we have Zi ≃ P3, and NZi/X̄ ≃ OP3
(−1). The multipli-

cities of the Zi’s in the central fiber are caused by the ordinary double point

singularities of XC,0. The reduced component X̄ is a big resolution of XC,0. The

induced map X̄ → XC,0 has n exceptional divisors, Ti = X̄ ∩ Zi, i = 1, . . . , n,

each of them isomorphic to P1 × P1, with NTi/X̄ ≃ O(−1,−1). Moreover,

NTi/Zi
≃ O(1, 1), for all i = 1, . . . , n.

To compute the conormal bundle N∨
E∗

i /XC
, we need a good understanding

of the main component X̄ of Π̄−1(0). Let p̄ : X̄ → X be the natural morphism

onto X. This has the following alternative description :

• Consider pL : XL → X, the blowing up of X, along the disjoint union of

curves L1, . . . , Ln. Let E1, . . . , En denote the exceptional divisors and C̄

denote the strict transform of C and {xi} = C̄ ∩ Ei. The Ei’s are ratio-

nal ruled surfaces over Li, Ei = PLi
(N∨

Li/X), with NEi/XL
≃ OEi

(−1).

Consider fi ∈ Ei, the fiber of Ei through xi, for all i = 1, . . . , n.
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• Let pC̄ : XL,C̄ → XL be the blowing-up of XL along C̄. We denote by

EC̄ the exceptional divisor, and by Ēi the strict transforms of Ei, for

all i = 1, . . . , n. Each of the Ēi
′
s is the blowing-up of Ei at xi. Let

ℓi denote the exceptional divisor of these blowing-up. EC̄ and Ēi meet

transversally along ℓi, and ℓi sits in EC̄ as fiber. Moreover, we have

NĒi/XL,C̄
= p∗

C̄
NEi/XL

(see [Ful98]). In each Ēi, we denote by f̄i the

strict transform of fi.

We can immediately see that NĒi/XL,C̄ |f̄i

≃ OP1
(−1), and the exact se-

quence:

0 → Nf̄i/Ēi
→ Nf̄i/XL,C̄

→ NĒi/XL,C̄ |f̄i

→ 0

yields

Nf̄i/XL,C̄
≃ OP1

(−1) ⊕OP1
(−1).

• We blow-up now XL,C̄ along f̄i, for all i = 1, . . . , n. The resulting 3−fold

is isomorphic to X̄, where the exceptional divisors of the last blowing-up

coincide with Ti, i = 1, . . . , n. Let pF̄ : X̄ → XL,C̄ be the blowing-up

map. The map p̄ is the composition:

p̄ = pL ◦ pC̄ ◦ pF̄ .

Denote by Ri = p∗
F̄
Ēi − Ti the strict transforms of Ēi. Since f̄i ⊂ Ēi, Ri

is isomorphic to Ēi, the blowing-up of of Ei at xi. Let Ē be the strict

transform of EC̄ , and ℓ̄i be the strict transform of ℓi, for all i = 1, . . . , n. Ē

is isomorphic to EC̄ blown-up at the intersection points of EC̄ with the
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curves f̄i, and intersects Ri transversally along ℓ̄i for all i = 1, . . . , n.

First we need to determine NRi/X̄ . To do this, we have to analyze more

closely the position of the exceptional divisors of the map p̄.

• Ri and Ti meet transversally along hi, one of the rulings of Ti which

coincides with f̄i, under the identification of Ri with Ēi;

• Ē and Ti meet transversally along ki, the other ruling of Ti, for all i =

1, . . . , n;

• Ē ∩ Ri ∩ Ti = {point}, for all i = 1, . . . , n;

• Ri ∩ Rj = ∅, for i 6= j.

Let pi : Ri → Ei be the blowing up of Ei at xi, where hi is the strict

transform of the fiber through xi, and ℓ̄i denotes the exceptional divisor. Using

i) we can see that E∗
i is actually the elementary transform of Ei centered at

xi. Consequently, we denote by qi : Ri → E∗
i , the blowing-down of f̄i, for every

i = 1, . . . , n.

Claim 2.37.1. NRi/X̄ ≃ ORi
(−hi) ⊗ p∗iOEi

(−1).

Proof of Claim. Since Ri is the blowing-up of Ei, we can write NRi/X̄ as

ORi
(ahi) ⊗ p∗iOEi

(b) ⊗ p∗iOEi
(cf),

where f is the generic fiber of the ruled surface Ei. Let di = deg NLi/X . Let

also denote by f̄ the strict transform in X̄ of the generic fiber of Ei. From the
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fact that Ri = p∗
F̄
Ēi − Ti and the projection formula, we compute:

Ri · f̄ = (p∗F̄ Ēi − Ti) · f̄ = Ei · f = −1;

Ri · ℓ̄i = (p∗F̄ Ēi − Ti) · ℓ̄i = p∗C̄Ei · ℓi − Ti · ℓ̄i = −1;

R3
i = (p∗F̄ Ēi − Ti)

3 = Ēi
3
− 3p∗F̄ Ēi · p

∗
F̄ Ēi · Ti + 3p∗F̄ Ēi · T

2
i − T 3

i

= E3
i + 3(Ēi · f̄i) · (Ti · ki) + 2 = −di + 3 − 2 = −di + 1.

On the other hand, computing on the surface Ri, we have:

• Ri · f̄ = (ahi + p∗iOEi
(b) + cp∗i f) · p∗i f = b, and so b = −1.

• Ri · ℓ̄i = (ahi + p∗iOEi
(b) + cp∗i f) · ℓ̄i = a(p∗i f − ℓ̄i) · ℓ̄i = a, and so a = −1;

• R3
i = (−hi − p∗iOEi

(1) + cp∗i f)2 = −1 − di + 2 − 2c = −di + 1 − 2c, and

so c = 0.

We compute now N∨
Ri/X̄

from the conormal sequence of the inclusions Ri ⊂

X̄ ⊂ X̄ :

0 → N∨
X̄/X̄ |Ri

→ N∨
Ri/X̄

→ N∨
Ri/X̄ → 0. (2.10)

In X̄ , we have X̄ + 2Z1 + · · · 2Zn ∼ 0, (linearly equivalence) and so

N∨
X̄/X̄ ≃ OX̄(2T1 + · · · 2Tn).

Tensoring by ORi
, we get N∨

X̄/X̄ |Ri

≃ ORi
(2hi). Hence we obtained:

0 → ORi
(2hi) → N∨

Ri/X̄
→ ORi

(hi) ⊗ p∗iOEi
(1) → 0. (2.11)
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On the other hand, since XC and E∗
i are smooth, Ri is the strict transform

of E∗
i in X̄ . Moreover, the restriction of blowing-up map F̄ to Ri coincides

with the blowing-up qi with hi as exceptional divisor. Therefore, by [Ful98,

page 437],

NRi/X̄ ≃ q∗i NE∗
i /XC

⊗ORi
(−hi).

From (2.11) we obtain:

0 → ORi
(hi) → q∗i N

∨
E∗

i /XC
→ p∗iOEi

(1) → 0. (2.12)

Lemma 2.38. On the surface Ri, we have:

p∗iOEi
(1) = q∗i OE∗

i
(1) ⊗ q∗i OE∗

i
(f) ⊗ORi

(−hi),

where here f denotes the generic fiber of E∗
i .

Proof of Lemma. Computing the canonical line bundle of Ri in two ways, we

get:

p∗iOEi
(KEi

) ⊗ORi
(ℓ̄i) = q∗i OĒi

(KĒi
) ⊗ORi

(hi). (2.13)

Using the canonical bundle formula for ruled surfaces, and the fact that E∗
i is

the elementary transform of Ei centered at xi, from (2.13) we have:

p∗iOEi
(−2) ⊗ p∗iOEi

(−dif) ⊗ORi
(ℓ̄i) =

q∗i OE∗
i
(−2) ⊗ q∗i OE∗

i
((−di − 1)f) ⊗ORi

(hi). (2.14)

But, ORi
(ℓ̄i) = q∗i OEi

(f) ⊗ ORi
(−hi), and p∗iOEi

(f) = q∗i OE∗
i
(f). Simplifying
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(2.14) we get:

p∗iOEi
(−2) = q∗i OE∗

i
(−2) ⊗ q∗i OE∗

i
(−2f) ⊗ORi

(2hi),

and the proof of the lemma follows.

To finish the proof of the proposition, notice that we obtained the following

exact sequence:

0 → ORi
(hi) → q∗i N

∨
E∗

i /XC
→ q∗i OE∗

i
(1) ⊗ q∗i OE∗

i
(f) ⊗ORi

(−hi) → 0.

By pushing forward on E∗
i , since R1qi∗ORi

(hi) = 0 and qi∗ORi
(hi) = OE∗

i
, the

projection formula yields:

0 −→ OE∗
i
−→ N∨

E∗
i /XC

−→ JQi
⊗OE∗

i
(1) ⊗OE∗

i
(f) −→ 0,

where, JQi
is the ideal sheaf of the point Qi, and we are done.

Corollary 2.39. The Chern classes of N∨
E∗

i /XC
are:

• det(N∨
E∗

i /XC
) = OE∗

i
(1) ⊗OE∗

i
(f);

• c2(N
∨
E∗

i /XC
) = 1.

Remark 2.40. The description of X̄ in the proof of the above proposition

is of local nature and it comes from the well-known diagram below [EiHa00,

pages 178-179]. This commutative diagram exhibits the relation between the

two small resolutions and the natural big resolutions of a three-dimensional

ordinary double points, as those appearing as singularities of XC,0.
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X̄
p̄

{{vvvvvvvvv

f̄

��

q̄

##HHHHHHHHH

XC,L̄

pL̄

��

rC
##HH

HH
HH

HH
H

XL,C̄

qC̄

��

rL
{{vv

vv
vv

vv
v

XC∪L

fC∪L

��

zz $$

XC

pC
$$IIIIIIIII

XL

pL
zzuu

uu
uu

uu
uu

X

(2.15)

To simplify the notation and explain the diagram (2.15), let X be an arbitrary

threefold, and C, L ⊂ X be two smooth curves intersecting transversally at

exactly one point {x} = C ∩ L.

• fC∪L : XC∪L → X is the blowing-up of X along the ideal sheaf of C ∪L;

• f̄ : X̄ → XC∪L is the big resolution of X̄ obtained by blowing-up the

singular point.

• pC : XC → X is the blowing-up of X along C. Let fC be the fiber of the

exceptional divisor over x.

• qL : XL → X is the blowing-up of X along L. Let fL be the fiber of the

exceptional divisor over x.

• pL̄ : XC,L̄ → X is the blowing-up of XC along L̄, the proper transform

of L in XC . Let f̄C denote the proper transform of fC .

• qC̄ : XL,C̄ → X is the blowing-up of XL along C̄, the proper transform

of C in XL; Let f̄L denote the proper transform of fL.
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• p̃ : X̃ → XC,L̄ is the blowing-up of XC,L̄ along f̄C .

• q̃ : X̃ → XL,C̄ is the blowing-up of XL,C̄ along f̄L.

• rL : XL,C̄ → X̄ and rC : XC,L̄ → X̄ are the two small resolutions of the

singular point of X̄.

We will modify the family Π : XC → ∆ to produce a flat, proper map

Φ : X → ∆

with normal crossing central fiber, and with XCt as the general fiber. Of

course, such a map can be viewed as a degeneration of XCt .

The map Φ is obtained as the composition

X
F

−→ XC
Π

−→ ∆,

where F : X → XC is the blowing-up XC along E∗
i , for i = 1, . . . , n.

It is easy to see that the generic fiber of Φ is XCt , the blowing-up of X along

the smooth curve Ct. The central fiber of Φ is a normal crossing thereefold

X0 = Xp ∪ X1 ∪ · · · ∪ Xn,

with exactly n + 1 irreducible, smooth components.

To describe the main component, denoted by Xp, as before, let XL → X

denote the blowing-up of X along the curves Li, i = 1, . . . , n. Then Xp is

obtained by blowing-up XL along C̄, the strict transforms of the C. It actually

coincides with the 3−fold XL,C̄ , described in the above proposition. We denote
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by

fp : Xp → X,

the projection onto X.

The other components,

Xi = PE∗
i
(N∨

E∗
i |XC

)
fi−→ E∗

i ,

are the exceptional divisors of the of the blowing-up of XC along E∗
i , for i =

1, . . . , n.

Moreover, the intersections Si := Xp∩Xi are smooth surfaces, the blowing-

up of E∗
i at Qi. Again, the Si actually coincides with the surfaces Ēi described

in the above proposition.

It is easy to notice that all of the components of the central fiber and their

intersections are in fact rationally connected manifolds.

2.4.3 Extensions of line bundles

In this section we will show that any line bundle on the central fiber of Φ

extends to a line bundle on an open neighborhood of the central fiber. The

results are probably standard and well-known [Per77, Theorem Q, page 50].

However, since we couldn’t find any reference for the proof, we include it for

completeness.

First, we must describe the line bundles on X0. To do this we follow [Fri83].

Since the components Xp and Xi of X0 intersect transversally along Si,

and Xi∩Xj = ∅, for i 6= j, a line bundle HX0
on X0 consists of a (n+1)−uple
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of line bundles (Hp, H1, . . . Hn) on Xp and Xi, for i = 1, . . . , n, respectively,

such that

Hp|Si
≃ Hi|Si

,

for any i = 1, . . . , n.

As an example, we consider [Fri83] the case of dualizing sheaf of ωX0
, an

example which will be needed later. We have:

ωp = ωX0 |Xp
= OXp(KXp + S1 + · · ·Sn),

ωi = ωX0 |Xi
= OXi

(KXi
+ Si).

By adjunction, we have the canonical isomorphisms:

ωp|Si
= OXp(KXp + Si)|Si

= ORi
(KSi

) = OXi
(KXi

+ Si)|Si
= ωi|Si

,

showing that ωp agrees with ωi on Si, and so

ωX0
= (OXp(KXp + R1 + · · ·Rn),OX1

(KXi
+ R1), . . .OXn(KXn + Rn)). (2.16)

Lemma 2.41. H1(X0,OX0
) = H2(X0,OX0

) = 0.

Proof. Recall that the central fiber X0 has (n + 1) smooth components

X0 = Xp ∪ X1 ∪ · · · ∪ Xn,

where Si = Xp∩Xs, is the blowing up of a rational ruled surface, and Xi∩Xj =
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∅. for i 6= j. Their structure sheaves are related by the Mayer-Vietoris sequence:

0 → OX0
→ OXp ⊕OX1

⊕ · · · ⊕ OXn → OS → 0, (2.17)

where S is the reduced, reducible surface S1 + · · · + Sn.

The relevant part of the cohomology sequence is:

· · · → H0(Xp,OXp) ⊕ H0(X1,OX1
) ⊕ · · · ⊕ H0(Xn,OXn)

s
→H0(S,OS)

→ H1(X0,OX0
) → H1(Xp,OXp) ⊕ H1(X1,OX1

) ⊕ · · · ⊕ H1(Xn,OXn)

→ H1(S,OS) → H2(X0,OX0
) → H2(Xp,OXp) ⊕ H2(X1,OX1

) ⊕ · · ·

⊕ H2(Xn,OXn) → · · · . (2.18)

Under the identification

Hk(S,OS) ≃ Hk(S1,OS1
) ⊕ · · · ⊕ Hk(Sn,OSn), ∀k ≥ 0,

the map:

s : H0(Xp,OXp) ⊕ H0(X1,OX1
) ⊕ · · · ⊕ H0(Xn,OXn) → H0(S,OS)

is given by (sp, s1, . . . , sn) 7→ (sp − s1, . . . , sp − sn), and is obviously surjective.

Since, as discussed in Theorem 2.29, the structural sheaf of a rationally

connected manifold has no higher cohomology, it follows that:

Hk(Xp,OXp) = Hk(Xi,OXi
) = Hk(Si,OSi

) = 0,
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for k = 1, 2 and i = 1, . . . , n and the lemma follows now from a simple inspec-

tion of (2.18).

Corollary 2.42. R1Φ∗OX = R2Φ∗OX = 0.

Proof. Since X is rationally connected, XCt will also be rationally connected

for any t ∈ ∆, t 6= 0. Then [ArKo03] we have:

H1(XCt ,OXCt
) = H2(XCt ,OXCt

) = 0.

But, since Φ is proper and H1(X0,OX0
) = H2(X0,OX0

) = 0, from the

semi-continuity theorem it follows that

R1Φ∗OX = R2Φ∗OX = 0.

Of course, we shrink ∆ whenever necessary.

Theorem 2.43. Any line bundle LX0
∈ Pic(X0) extends to a line bundle over

X .

Proof. Applying Φ∗ over the exponential sequence

0 → ZX → OX → O∗
X → 0

we obtain

0 = R1Φ∗OX → R1Φ∗O
∗
X → R2Φ∗ZX → R2Φ∗OX = 0.
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Hence R1Φ∗O
∗
X ≃ R2Φ∗ZX , and passing to global sections we get

Pic(X ) ≃ H2(X , Z).

However, X0 is a deformation retract of X , and therefore

H2(X0, Z) ≃ H2(X , Z).

But, from Lemma 2.41 and the exponential sequence we can see that

Pic(X0) ≃ H2(X0, Z),

and the proposition follows.

The following proposition is well-known. It is the key that allows us to

solve the ampleness issue discussed in Remark 2.25. For its proof we refer the

interested reader to [KoMo98, Proposition 1.41].

Proposition 2.44. Let f : X → Y be a proper morphism, and D a Cartier

divisor on X. Let y ∈ Y be a point and Xy the fiber of f over y. If OXy(D) is

ample, then D is ample over some open set U ∋ y of Y.

2.4.4 Intersection Theory I

In this section we set up the intersection theory of the central fiber X0 of

Φ : X → ∆. To do this, we will adopt a cohomological approach, as discussed

in Appendix A. In our situation we need the following:
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Proposition 2.45. If Li
0 = (Li

p, L
i
1, . . . L

i
n), i = 1, 2, 3 are three line bundles

on X0, then

L1
0 · L

2
0 · L

3
0 = L1

p · L
2
p · L

3
p +

n∑

k=1

L1
k · L

2
k · L

3
k.

Proof. Let L0 = (Lp, L1, . . . Ln) be an arbitrary line bundle on X0. Of course,

Lp ∈ Pic(Xp), Li ∈ Pic(Xi) for i = 1, . . . , n, with the property that:

LSi

def
=Lp|Si

≃ Li|Si
.

Tensoring the Mayer-Vietoris sequence (2.18) by L∨
0 we get:

0 → L∨
0 → L∨

p ⊕ L∨
1 ⊕ · · · ⊕ L∨

n → L∨
S1

⊕ · · · ⊕ L∨
Sn

→ 0 (2.19)

From (2.19) we immediately obtain:

χ(−L0) = χ(−Lp) +
n∑

k=1

χ(−Lk) −
n∑

k=1

χ(−LSk
). (2.20)

Now using (2.20) in (2.47) we see that

L1
0 · L

2
0 · L

3
0 = L1

p · L
2
p · L

3
p +

n∑

k=1

L1
k · L

2
k · L

3
k −

n∑

k=1

L1
Sk

· L2
Sk

· L3
Sk

.

But, since Sk is a smooth surface L1
Sk

· L2
Sk

· L3
Sk

= 0, and the conclusion

follows.

Corollary 2.46. Let Li, i = 1, 2, 3 be three line bundles on X , and denote

by Li
t their restriction to the fiber Φ−1(t). If Li

0 = (Li
p, L

i
1, . . . L

i
n), i = 1, 2, 3,
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then:

L1
t · L

2
t · L

3
t = L1

p · L
2
p · L

3
p +

n∑

k=1

L1
k · L

2
k · L

3
k, ∀t ∈ ∆.

Proof. Let L be an arbitrary line bundle on X . We will denote by Lt its

restriction to Φ−1(t) an arbitrary fiber of Φ. Since the Euler characteristic is

constant in flat families, we have:

χ(L0) = χ(Lt), ∀t ∈ ∆. (2.21)

From (2.47), (2.21) and the above proposition, the result follows.

Remark 2.47. The proposition and its corollary are nothing but the three

dimensional version of [Per77, Proposition 2.4.1]. There, U. Persson sets up

the intersection theory on the central fiber of degenerations of surfaces for

extendable line bundles. However, our cohomological approach is different

than his topological approach.

Remark 2.48. It is worth mentioning that Proposition 2.45 and Corollary

2.46 clearly hold in a more general settings. In the next section, we are going

to apply these results on a deformation to the normal cone construction.

2.4.5 Deformation to the normal cone

In this section we will provide an application of the previously obtained results

that will help to construct an appropriate ample line bundle on the main com-

ponent of the central fiber of Φ. This will be done by answering affirmatively to

our Conjecture 2.26 in the case of rationally connected manifolds. The method
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we adopt is based on the classical deformation to the normal cone construction

[Ful98].

We will show how an ample line bundle on the central fiber of the defor-

mation to the normal cone can be constructed. Then with the help of the

results in subsections 2.4.3 and 2.4.4 we will show that on the central fiber

of this degeneration property P holds true. This can be seen not only as an

important part of our argument, but also as a prelude to the next section.

We start with a smooth, projective threefold X containing a smooth ra-

tional curve C ⊂ X, with NC/X ≃ OP1
(−1) ⊕ OP1

(−1). Let p : XC → X be

the blowing-up of X along C, and suppose there exists an ample line bundle

HXC
on XC such that KXC

· H2
XC

< 0, i.e. PXC
holds true. We will prove the

following:

Proposition 2.49. If X is a rationally connected threefold, then

PXC
holds true =⇒ PX holds true.

The deformation to the normal cone construction

Let ∆ ⊂ C denote the unit disk. Also, let p : X → X × ∆ be the blowing-up

of X × ∆ along C × {0} and q : X → ∆ the projection onto ∆.

X

p

��
q

��

C × {0} ⊂ X × ∆

pr2

��

∆

(2.22)
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The fiber q−1(t) is clearly isomorphic to X for t 6= 0, while the central

fiber X0
def
=q−1(0) is a normal crossing divisor in X with two smooth irreducible

components. One of them is XC as the strict transform of X×{0} in X , while

the other one is P ≃ PP1
(OP1

(1) ⊕OP1
(1) ⊕OP1

)
f
→ C, the exceptional divisor

of q. These two components intersect transversally along E, the exceptional

divisor of q. Since NC/X ≃ OP1
(−1) ⊕OP1

(−1), we have

E ≃ PC(N∨
C/X) ≃ PP1

(OP1
(1) ⊕OP1

(1)) ≃ P1 × P1,

where fE : E → C is the projection onto to first factor identified with C. E

sits naturally in P and the restriction of f to E is fE.

Construction of the line bundle

A line bundle on X0 is given by a pair (LXC
, LP ) of isomorphism classes of

line bundles LXC
∈ Pic(XC) and LP ∈ Pic(P ), such that their restriction to E

coincide. From our starting hypothesis we have a clear choice for LXC
, namely

the ample line bundle HXC
. Its restriction to E can be written as

LXC |E ≃ f ∗
EOC(a) ⊗OP1

(b), (2.23)

with a, b > 0. Here we identify OP1
(1) with OE(1).

Since f|E = fE, OP (1) ⊗OE will be isomorphic to OE(1), and this forces

the choice of the line bundle LP on P. Namely,

LP = f ∗OC(a) ⊗OP (b). (2.24)
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With this choice, we obviously have

LXC |E ≃ LP |E.

Thus, the pair (LXC
, LP ) defines a line bundle L0 on X0.

Proof of Proposition 2.49. First we show that PX0
holds true. To do this,

we consider on X0 the line bundle LX0
constructed above. To simplify the

notations, we will denote by ξ the line bundle OP (1) ∈ Pic(P ), and by ξE the

line bundle OE(1) ∈ Pic(E). Let E = OP1
(1) ⊕OP1

(1) ⊕OP1
, and LE be the

line bundle LXC |E ≃ LP |E. Also, for simplicity we will abusively use additive

notations for line bundles.

Lemma 2.50. L0 is ample.

Proof. Since P is the projectivization of a globally generated line bundle, it

is not hard to see that ξ is nef. The 4-dimensional linear system |ξ| is also

base-point free [Deb01, page 26], and contains E as a member. The induced

map

φ|ξ| : P → P4

is an immersion outside the smooth rational curve, D = P(OP1
) ⊂ P. The

curve D has ND/P = OP1
(−1) ⊕ OP1

(−1), and is contracted to an ordinary

double point. The image φ|ξ|(P ) is the cone over the Segre embedding of

P1 × P1 ⊂ P3.

From this, by Nakai-Moishezon we can easily infer that LP = f ∗OC(a)+bξ

is ample. Since LXC
was chosen to be ample, L0 = (LXC

, LP ) is ample, too.
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As in Section 2.4.4, we have KX0
= (KXC

+E,KP +E), where KP is given

by

KP = f ∗(KC + det E) − 3ξ = −3ξ.

Using Proposition 2.45 and Proposition C.2, we have:

KX0
· L2

0 =(KXC
+ E) · L2

XC
+ (KP + E) · L2

P

=KXC
· H2

XC
+ KP · L2

P + 2(LE ·
E
LE)

=KXC
· H2

XC
− 3ξ · (f ∗OC(a) + bξ)2 + 2(f ∗

EOC(a) + bξE)2

=KXC
· H2

XC
− 3ξ(b2ξ2 + 2bξf ∗OC(a)) + 4ab + 4b2

=KXC
· H2

XC
− 6b2 − 6ab + 4ab + 4b2

=KXC
· H2

XC
− 2b2 − 2ab

< KXC
· H2

XC
< 0. (2.25)

But this implies that PX0
holds true.

Now, since XC , P and E are all rationally connected, the vanishing results

from Section 2.4.3 hold and any line bundle on X0 extends to X . In particular,

the line bundle L0 will extend to a line L bundle on X . But, since L0 is ample

on X0, by eventually shrinking ∆, we can see that Lt = L|Xt is ample on X

and with the help Corollary 2.46, from (2.25) it follows that PX holds true.

Recall that in Section 2.4.2, we described the components of X0. The one

called ”the main component”, denoted by Xp will play an important rôle in

our computations. As it will become apparent from future computations, Xp

must be endowed with an ample line bundle Hp, such that KXp ·H
2
p < 0. As we
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do not have to many options, this should be done by starting with the God-

given line bundle HXC
on XC . A natural choice for the line bundle Hp would

be the proper transform of HXC
on Xp, as Xp and XC are obviously birational.

However, since HXC
is ample, it is not hard to see that its proper transform will

have negative degree exactly on the rational curves f̄i introduced in Section

2.4.2.

To circumvent this ampleness issue, will we work on the normal cone con-

struction. As an application of Proposition 2.49, we obtain the following:

Corollary 2.51. The main component Xp of the central fiber of Φ admits an

ample line bundle Hp with KXp · H
2
p < 0.

Proof. By induction, the Corollary follows from Proposition 2.49 and the de-

scription of Xp. Since PXC
holds true, PXC,L̄

will also hold true. Applying

repeatedly Proposition 2.49 we can see that PXL,C̄
holds true, i.e. PXp holds

true.

2.4.6 Construction of the line bundle

Recall now the initial package. We have a smooth threefold X containing a

smooth curve C, with KX ·C ≥ 0, and let p : XC → X be the blowing-up of X

along C. On XC we have an ample line bundle HXC
such that KXC

·H2
XC

< 0.

We want to find an ample line bundle H0 on X0 such that KX0
· H2

X0
< 0.

The construction of a line bundle on X0 is guidelined by the method exhib-

ited in the previous section. What we are going to do is to start with the line

bundle on the main component Xp given by Corollary 2.51, and by studying

its restriction to Si we will extend it across X0.
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Remember that fp : Xp → X is gotten by first blowing-up X along the

curves L1, . . . , Ln, followed by blowing-up C̄, the strict transform of C. We

denoted the exceptional divisors by S1, . . . , Sn, and EC̄ , respectively. Moreover,

the Si’s can be either viewed as blowing-ups of Ei, the exceptional divisors of

X along the Li’s, at one point or as blowing-ups of E∗
i at one point. The

components Xi of X0 are pairwise disjoint and meet Xp transversally along Si.

To simplify the exposition, we introduce the following notations:

• di = degLi
(NLi/X) > 2, since Li is a very free rational curve;

• pi : Si → Ei is the blowing-up of Ei at Pi = C̄∩Ei with ei its exceptional

divisor.

• ki be the strict transform in Si of the fiber of the ruled surface Ei that

passes through Pi;

• qi : Si → E∗
i is the contraction of ki;

• hi = OEi
(1), h∗

i = OE∗
i
(1);

• f denotes the generic fiber of either Ei or E∗
i . We will still abusively

denote by f its strict transform in Si.

• c1 = det(N∨
E∗

i /XC
) = h∗

i + f ;

• ξi = OXi
(1).

What we do next is to find the restriction of Hp to Si, for each i = 1, . . . , n.

For convenience we will denote the restriction of Hp to Si by HSi
.
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Since Pic(Si) ≃ q∗i Pic(E∗
i ) ⊕ Z[ki], we can write:

HSi
= q∗i Mi − xiki, (2.26)

for some line bundle Mi ∈ Pic(E∗
i ), and some integer xi.

To construct the line bundle on Xi, recall that

Xi = P(N∨
E∗

i |XC
)

fi−→ E∗
i

is the exceptional divisor of the blowing-up of X along E∗
i , and Xi intersects

transversally Xp. This transversality can be used, as in [Per77, page 41], to

see that

NXi/X |Si
= NSi/Xp .

In our notations and using Lemma 2.38 this translates into:

ξi|Si
= p∗i hi = q∗i h

∗
i + q∗i f − ki. (2.27)

We can write now:

HSi
= q∗i (Mi − xih

∗
i − xif) + xiξi|Si

. (2.28)

Thus, if we let Ni = Mi − xih
∗
i − xif = Mi − xic1 we can see that we can

write HSi
as

HSi
= q∗i Ni + xiξi|Si

. (2.29)
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With this is now clear that, we have a unique choice for Hi, namely:

Hi = f ∗
i Ni + xiξi. (2.30)

As can be easily seen from the above consideration, the choice of the line

bundle Hp ∈ Pic(Xp) is not necessary to extend it across X0. Thus, we have

just proved:

Proposition 2.52. Let Lp be an arbitrary line bundle on Xp. Then Lp extends

to a unique line bundle H0 on X0.

For furher considerations, we need to show the ampleness of the line bundles

Hi. Before we proceed we need the following:

Lemma 2.53. OXi
(Si) = ξi.

Proof. In additive notations, we can write OXi
(Si) = aξi +bf ∗

i h∗
i +cf ∗

i OE∗
i
(f),

with a, b, c ∈ Z. Restricting to Si, and using (2.27) we obtain:

OSi
(Si) = aξi|Si

+ bq∗i h
∗
i + cq∗i OE∗

i
(f)

= (a + b)q∗i h
∗
i + (a + c)q∗i OE∗

i
(f) − aki. (2.31)

On the other hand, the restriction of OXi
(Si) to Si is the normal bundle NSi/Xi

.

But, from the transversality of the intersection of Xi with Xp we have [Per77,

page 41], NSi/Xi
≃ N∨

Si/Xp
= p∗i hi, and so:

OSi
(Si) = p∗i hi = q∗i h

∗
i + q∗i OE∗

i
(f) − ki
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Comparing with (2.31) in Pic(Si), we can immediately see that a = 1 and

b = c = 0.

For the computations involved in proving the ampleness of the Hi’s, we

will work with the more traditional basis of Pic(E∗
i ) described in Appendix

C. Pic(E∗
i ) is generated by {OE∗

i
(C0), OE∗

i
(f)}, where OE∗

i
(C0) is the line

bundle associated to the section of E∗
i of minimal self-intersection, and f is

the class of a fiber. Since E∗
i is rational, C2

0 = −e ≤ 0. It is easy to see

that h∗
i = C0 −

di+1−e
2

f. Using this basis, any line bundle L ∈ Pic(Xi) can be

written as L = aξi + bf ∗
i OE∗

i
(C0) + cf ∗

i OE∗
i
(f), where a, b, c ∈ Z. We have:

Proposition 2.54. Any line bundle L ∈ Pic(Xi) which admits sections, can

be written as

L = λ(ξi − f ∗
i c1) + βf ∗

i OE∗
i
(C0) + (γ + βe)f ∗

i OE∗
i
(f),

with λ, β, γ ≥ 0.

Proof. Let L = aξi + bf ∗
i OE∗

i
(C0) + cf ∗

i OE∗
i
(f) be an arbitrary line bundle on

Xi. For simplicity, we will abusively denote OE∗
i
(C0) by C0 and OE∗

i
(f) by f.

If L has sections, its restriction to an arbitrary fiber f of fi has sections. But

L|f ≃ OP1
(a), and so a ≥ 0.

Next we restrict our line bundle to Si. Using again (2.27) have:

L|Si
= aξi|Si

+ bf ∗
i C0|Si

+ cf ∗
i f |Si

= a(q∗i h
∗
i + q∗i f − ki) + bq∗i C0 + cq∗i f (2.32)

= (a + b)q∗i C0 + (c + a − a
di + 1 − e

2
)q∗i f − aki.
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Now, if L has sections, L|Si
restricted to f, the strict transform in Si of a generic

fiber of E∗
i , still has sections. But this can happen only if a+b ≥ 0. We restrict

now to the strict transform C̄0 of C0. Since E∗
i is the elementary transform of

Ei, C̄0 will intersect ki transversally at one point. If we assume that L has

sections, it will follow as before that c−adi+1−e
2

− (a+ b)e ≥ 0. By a change of

notation, if we let λ = a ≥ 0, β = a+b ≥ 0 and γ = c−adi+1−e
2

−(a+b)e ≥ 0,

a simple calculation will show that we can write any line bundle L ∈ Pic(Xi)

with sections as:

L = λ(ξ − f ∗
i h∗

i ) + βf ∗
i C0 + (γ + βe)f ∗

i f,

where λ, β, γ ≥ 0.

Remark 2.55. One could study if the necessary conditions we found are also

sufficient for line bundles on Xi to admit sections. However, the result we

proved is enough for our purpose.

Proposition 2.56. The line bundles Hi constructed above are ample for any

i = 1, . . . n.

Proof. Step 1: We show that for any i = 1, . . . n, the line bundle Ni =

Mi − xi(h
∗
i + f) ∈ Pic(E∗

i ) is ample.

Writing the line bundle Mi = ah∗
i + bf ∈ Pic(E∗

i ) a, b ∈ Z in our preferred

basis {C0, f}, we see that

Mi − xi(h
∗
i + f) = (a − xi)C0 + [(b − xi) − (a − xi)

di + 1 − e

2
]f.

To check the ampleness of this this line bundle, we use the conditions of
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Proposition C.3. First, if in (2.26) we take the intersection with the fiber

of E∗
i passing through the center of the blowing-up, we immediately see that

a − xi > 0. The other condition to check is:

(b−xi)−(a−xi)
di + 1 − e

2
> (a−xi)e ⇐⇒ (b−xi) > (a−xi)

di + 1 + e

2
(2.33)

Now, using the Nakai-Moishezon criterion is easy to check that since HSi
=

q∗i Mi − xiki is ample, then Mi ∈ Pic(E∗
i ) is ample, too. Proposition C.3 yields

that:

b > a
di + 1 + e

2
, (2.34)

which at its turn implies (2.33).

Step 2: We show that Hi is strictly nef. Let C ⊂ Xi be an arbitrary

irreducible curves. Depending on the position of the curve C with respect to

the surface Si ⊂ Xi we distinguish three cases.

1. C ⊆ Si. In this case the intersection pairing can be computed on Si,

where

Hi · C = HSi
·
Si

C > 0,

since HSi
is ample.

2. C = f is a fiber of Xi → E∗
i . Then

Hi · C = (f ∗
i Ni + xiξi) · f = xi(ξi · f) = xi > 0.
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3. When C * Si, using Lemma 2.31, we have:

Hi · C = (f ∗
i Ni + xiξi) · C = f ∗

i Ni · C + xiSi · C ≥ f ∗
i Ni · C > 0,

as Ni is ample and C is not contained in a fiber of fi.

Step 3: We show that Hi is ample. Using the Nakai-Moishezon, all we

need to prove are the following:

1. H2
i ·S > 0 for any irreducible surface S ⊆ Xi. Using Lemma 2.54, we can

write the line bundle associated to S as λ(ξ−f ∗
i h∗

i )+βf ∗
i C0+(γ+βe)f ∗

i f,

where λ, β, γ ≥ 0, are not simultaneously zero. We have:

H2
i · S = (f ∗

i Ni + xiξi)
2 · (λ(ξ − f ∗

i h∗
i ) + βf ∗

i C0 + (γ + βe)f ∗
i f)

= λ(f ∗
i Ni + xiξi)

2 · (ξ − f ∗
i h∗

i ) + β(f ∗
i Ni + xiξi)

2 · f ∗
i C0

+ (γ + βe)(f ∗
i Ni + xiξi)

2 · f ∗
i f. (2.35)

We compute now separately the terms involved.

(f ∗
i Ni + xiξi)

2 · f ∗
i f =(f ∗

i Ni · f
∗
i Ni + 2xiξi · f

∗
i Ni + x2

i ξ
2
i ) · f ∗

i f

= 2xiξi · f
∗
i Ni · f

∗
i f + x2

i ξ
2
i · f

∗
i f

= 2xi(Ni · f) + x2
i (f · c1)

= 2xi[(Mi − xic1) · f ] + x2
i [f · (h∗

i + f)]

= 2axi − x2
i > 0, (2.36)
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since a > xi.

(f ∗
i Ni + xiξi)

2 · f ∗
i C0 = (f ∗

i Ni · f
∗
i Ni + 2xiξi · f

∗
i Ni + x2

i ξ
2
i ) · f ∗

i C0

= 2xiξi · f
∗
i Ni · f

∗
i C0 + x2

i ξ
2
i · f

∗
i C0

= 2xi(Ni · C0) + x2
i (C0 · c1)

= xi(Ni · C0) + xi(Mi · C0), (2.37)

as Ni and Mi ar both ample line bundles on E∗
i . Finally,

(f ∗
i Ni + xiξi)

2 · (ξ − f ∗
i h∗

i ) = (f ∗
i Ni + xiξi)

2 · ξ − (f ∗
i Ni + xiξi)

2f ∗
i h∗

i

= H2
Si
− 2xi(Ni · h

∗
i ) − x2

i (h∗
i )2

= M2
i − 2xi(Mi · h

∗
i ) + x2

i (h∗
i )2 + x2

i . (2.38)

To show that this last term is positive we use (2.34) to get:

M2
i − 2xi(Mi · h

∗
i ) + x2

i (h∗
i )2 + x2

i

= (ah∗
i + bf)2 − 2xi[(ah∗

i + bf) · h∗
i ] + x2

i (h∗
i )2 + x2

i

= 2b(a − xi) − a2(di + 1) + 2axi(di + 1) − dix
2
i

> a(a − xi)(di + 1) − a2(di + 1) + 2axi(di + 1) − dix
2
i

= axi(di + 1) − dix
2
i > 0, (2.39)

since a > xi.

From (2.35),(2.36),(2.37), (2.38), (2.39), and since λ, β and γ cannot

simultaneously vanish, this step is concluded.
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2. H3
i > 0. This follows again by a direct computation and Step 1.

H3
i = (f ∗

i Ni + xiξi)
3

= [(f ∗
i Ni + xiξi)

2 · f ∗
i Ni] + xi[ξi · (f ∗

i Ni + xiξi)
2]

= 2xi[ξi · (f ∗
i Ni)

2] + x2
i (ξ2

i · f
∗
i Ni) + xiH

2
Si

= 2xi(Ni · Ni) + x2
i (Ni · c1) + xiH

2
Si

= xi(Ni · Ni) + xi(Ni · Mi) + xiH
2
Si

> 0, (2.40)

since xi > 0, and the line bundles Mi, Ni ∈ Pic(E∗
i ) are ample.

2.4.7 Intersection Theory II

In this subsection we conclude our arguments of this entire section, by proving

the the following:

Proposition 2.57. If HX0
= (Hp, H1, . . . , Hn) is the line bundle constructed

above,

KX0
· H2

X0
< 0.

Proof. Using Proposition A.3 and Corollary 2.45 we compute now KX0
·H2

X0
:

KX0
· H2

X0
=(KXp + S1 + · · · + Sn) · H2

p +
n∑

i=1

(KXi
+ Si) · H

2
i

=KXp · H
2
p +

n∑

i=1

(KXi
· H2

i + 2H2
Si

). (2.41)

We compute separately KXi
· H2

i . From Proposition C.1 we have that KXi
=
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f ∗
i Li − 2ξi, where

Li =KE∗
i

+ c1 = −2h∗
i − (di + 3)f + h∗

i + f

= − h∗
i − (di + 2)f = −c1 − (di + 1)f. (2.42)

A straightforward computation using Proposition C.1 again yields:

KXi
· H2

i =(f ∗
i Li − 2ξi) · (f ∗

i Ni + xiξi)
2

=(f ∗
i Li − 2ξi) · (f ∗

i Ni · f
∗
i Ni + 2xif

∗
i Ni · ξi + x2

i ξ
2
i )

=2xif
∗
i Li · f

∗
i Ni · ξi + x2

i f
∗
i Li · ξ

2
i

− 2f ∗
i Ni · f

∗
i Ni · ξi − 4xif

∗
i Ni · ξ

2
i − 2x2

i ξ
3
i

=2xi(Li · Ni) + x2
i (Li · c1) − 2(Ni · Ni)

− 4xi(Ni · c1) − 2x2
i (c2

1 − c2). (2.43)

Making use of (2.42), we can complete this computation as follows:

(Li · c1) = [(−c1 − (di + 1)f) · c1] = −c2
1 − (di + 1)(c1 · f)

= di − 1 − di − 1 = −2;

(Li · Ni) = [Li · (Mi − xic1)] = (Li · Mi) − xi(Li · c1) = (Li · Mi) + 2xi

(Ni · Ni) = [(Mi − xic1) · (Mi − xic1)] = (Mi · Mi) − 2xi(Mi · c1) + x2
i c

2
1;

= H2
Si

+ x2
i − 2xi(Mi · c1) + x2

i c
2
1;

(Ni · c1) = [(Mi − xic1) · c1] = (Mi · c1) − xic
2
1. (2.44)
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From (2.43), we get:

KXi
· H2

i + 2H2
Si

= 2H2
Si

+ 2xi(Li · Mi) + 2x2
i − 2x2

i − 2H2
Si

− 2x2
i + 4xi(Mi · c1) − 2x2

i c
2
1 − 4xi(Mi · c1)

+ 4x2
i c

2
1 − 2x2

i c
2
1 + 2x2

i

=2xi(Li · Mi). (2.45)

It is not hard to see, from [Har77] that on the ruled surface E∗
i , the line bundle

−Li = h∗
i + (di + 2)f has a section which is also a section of E∗

i , (actually we

can say much more, namely that −Li is ample) and since Mi is ample it follows

immediately that

KXi
· H2

i + 2H2
Si

< 0.

Finally, from (2.41) we obtain:

KX0
· H2

X0
= KXp · H

2
p +

n∑

i=1

(KXi
· H2

i + 2H2
Si

) < KXp · H
2
p < 0. (2.46)

Corollary 2.58. PX0
holds true.

Proof. The line bundle HX0
= (Hp, H1, . . . , Hn) has Hp ample by Corollary

2.51 and, by Proposition 2.56, the Hi
′s are also ample. Thus HX0

is ample.

With this, Proposition 2.57 actually says that PX0
holds true.

Remark 2.59. It would seem that the choice of the line bundle Hp is not

important, as by attaching more curves to C we could arbitrarily decrease

KX0
· H2

X0
. However, this is not correct, since Hp depends on the number of
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curves we attach, which makes the intersection number KX0
· H2

X0
hard to

control. This is the main reason we made a choice for the line bundle Hp in

Section 2.4.6.

2.5 Proof of the Main Theorem

Proposition 2.60. Let X be a rationally connected, projective threefold, and

let XC be the blowing-up of X along a smooth curve C ⊂ X. Then PXC
holds

true if and only if PX holds true.

Proof. The implication PX =⇒ PXC
is the conclusion of Proposition 2.20.

Conversely, we have two cases.

• If KX · C < 0 the result follows from Proposition 2.21.

• If KX · C ≥ 0 applying the results of the previous section we obtain a

flat, proper family Φ : X → ∆ over the unit disk, such that:

1) X is smooth;

2) For any t ∈ ∆, t 6= 0, Φ−1(t) = XCt , the blowing-up of X along a

smooth curve with KX · Ct < 0;

3) The central fiber X0 = Φ−1(0) is a normal crossing divisor in X with

smooth rationally connected components. Moreover, PX0
holds true.

By eventually shrinking ∆, we know from Theorem 2.43 and Proposition 2.44

that HX0
can be extended to a line bundle on X , whose restriction HXCt

to

the fiber XCt is ample. Moreover, since KX0
· H2

X0
< 0, from Corollary 2.46 it

follows that KXt · H
2
XCt

< 0. Thus, PXCt
holds true.

86



Since for all i = 1, . . . , n, KX · Li < 0, by attaching sufficiently many

such curves, KX · C0 < 0 and by the conservation law we will have KX · Ct <

0, for any t ∈ ∆. Thus the blowing-up XCt → X is along the curve Ct for which

KX ·Ct < 0. Applying again Proposition 2.21 it follows that PXCt
=⇒ PX and

we are done.

From the weak factorization theorem and Propositions 2.19 and 2.60 we easily

get:

Theorem 2.61. P is a birational property of rationally connected, projective

threefolds.

We can turn now to the main result of this paper:

Proof of Theorem A. If X is a rationally connected threefold, its Kodaira di-

mension is negative, and X is birational to a Mori fiber space, which we denote

by Xmin. Then, by Proposition 2.14, PXmin
holds true. Moreover, if X ′ is an

appropriate desingularization of Xmin, by Proposition 2.16 PX′ also holds true.

Since X and X ′ ar smooth and birational, the conclusion of the Theorem A

follows now from Theorem 2.61.
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Appendix

A Intersection Theory

Throughout this thesis we used the intersection theory algebraic varieties, from

a cohomological viewpoint. This is introduced via the the following theorem

due to Snapper [Kle66].

Theorem A.1. Let X be a proper scheme over a field k, F a coherent sheaf

on X, and let L1, . . . ,Lr be r Cartier divisors on X. Then the Euler-Poincaré

function

(m1, . . . ,mr) 7−→ χ(X,F ⊗ L⊗m1

1 ⊗ · · · ⊗ L⊗mr
r )

takes the same values on Zr as a polynomial with rational coefficients of degree

at most the dimension of the support of F .

Definition A.2. Let L1, . . . , Lr be Cartier divisors on a proper scheme X, F

a coherent sheaf on X. Suppose r ≥ dim Supp Z. The intersection number of

L1, . . . , Lr with F , denoted by

(L1 · · ·Lr · F)
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is the coefficient of m1, · · · , mr in the polynomial

χ(X,F ⊗ L⊗m1

1 ⊗ · · · ⊗ L⊗mr
r )

Notations: Let X be a proper scheme over a field k. If Z ⊂ X a closed

subscheme of dimension s and L1, . . . , Lr Cartier divisors on X, for any r ≥ s

we will denote by (L1 · · ·Lr · Z) the intersection number (L1 · · ·Lr · OZ). If

L1 = · · · = Ld then we also use the notation (Ld · Z). When Z = X we use

(L1 · · ·Ld) if no confusion is likely.

The basic properties of intersection numbers [Kle66] are summarized in the

following:

Proposition A.3. The intersection numbers (L1 · · ·Lr · F) are uniquely de-

termined by the following properties:

1) The intersection number is an integer.

2) (L1 · · ·Lr · Z) is symmetric and multilinear in the Li.

3) (L1 · · ·Lr · Z) = 0 if dim Z < r.

4) For any exact sequence of coherent sheaves

0 → F ′ → F → F ′′ → 0,

we have

(L1 · · ·Lr · F) = (L1 · · ·Lr · F
′) + (L1 · · ·Lr · F

′′).
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5) If j denotes the the inclusion j : Z → X, we have

(j∗L1 · · · j
∗Lr · Z)Z = (L1 · · ·Lr · Z)X .

6) If D is an effective Cartier divisor and Lr = OX(D), we have

(L1 · · ·Lr) = (L1 · · ·Lr−1 · OD) = (L1 · · ·Lr−1 · D).

7) If f : X ′ → X is a morphism of finite degree, and r ≥ dim X = dim X ′,

then

(L1 · · ·Lr) = deg(f)(f ∗L1 · · · f
∗Lr).

Corollary A.4. We have:

1) If L1 ≡ 0 then (L1 · · ·Ld · Z) = 0.

2) If X ⊂ PN and OX(L) = OX(1) then (Ld · Z) = deg Z.

3) If f : X ′ → X is a birational morphism, and r ≥ dim X = dim X ′, then

(L1 · · ·Lr · X) = (f ∗L1 · · · f
∗Lr · X

′).

For our computations we use the following identity (see [Deb01, page 8]),

which follows easily from Proposition A.3.4:

(L1 · · ·Lr) =
∑

I⊂{1,...,r}

εIχ

(
X,−

∑

i∈I

Li

)
(2.47)

where εI = (−1)Card(I).
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B The Blowing Up

Of particular importance for the computations we performed was the multi-

plication table in the Chow ring of the blowing-up of threefolds. The results

[GH78] we used are:

Proposition B.1. Let X be the a smooth projective threefold, and let p : X ′ →

X be the blow-up at a point. Let E ≃ P2 be the exceptional divisor, and f the

class of a line of E in the Chow ring A∗(X ′). Then

A∗(X ′) = p∗A∗(X) ⊕ Z · E ⊕ Z · f

as an additive group. Moreover p∗E = p∗f = 0, and p∗p
∗A∗(X) = A∗(X). The

multiplicative structure of A∗(X ′) is determined by:

E2 = −f, E3 = −E · f = 1, E · p∗Z = f · p∗Z = 0

for any cycle Z ∈ A∗(X).

Proposition B.2. Let X be the a smooth projective threefold, and let p :

X ′ → X be the blow-up along a smooth curve C ⊂ X. Let E ≃ P(N∨
C/X) be the

exceptional divisor, and f the class of a fiber of E in the Chow ring A∗(X ′).

Then

A∗(X ′) = p∗A∗(X) ⊕ Z · E ⊕ Z · f

as an additive group. Moreover p∗E = p∗f = 0, and p∗p
∗A∗(X) = A∗(X). The
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multiplicative structure of A∗(X ′) is determined by:

E2 = −p∗C + degC(NC/X) · f, E3 = −degC(NC/X), E · f = −1,

E · p∗D = (C · D)f, f · p∗D = 0, ∀D ∈ A1(X),

E · p∗Z = f · p∗Z = 0, ∀Z ∈ A2(X).

In addition, the usual relation holds:

degC(NC/X) = 2g(C) − 2 − KX · C,

where g(C) is the genus of the curve C, and NC/X is the normal bundle of C

in X.

C Ruled Manifolds

The computations in Proposition 2.57 are based on the following:

Proposition C.1. Let X = P(E)
f

−→S be the projectivization of a rank 2

vector bundle E over a smooth surface S. Let ξ = OX(1), c1 = det E , and

c2 = c2(E). We have:

i) f ∗L · f ∗K · f ∗M = 0, ∀L, K, M ∈ Pic(S);

ii) f ∗L · f ∗K · ξ = (L · K), ∀L, K ∈ Pic(S);

iii) f ∗L · ξ2 = (L · c1), ∀L ∈ Pic(S);

iv) ξ3 = c2
1 − c2;
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v) KX = f ∗L − 2ξ, where L = KS + c1.

Proof. i) and ii) are obvious, while for iii) and iv) we use the identity [GH85]:

ξ2 − f ∗c1 · ξ + f ∗c2 = 0.

Thus:

f ∗L · ξ2 = f ∗L · f ∗c1 · ξ − f ∗L · f ∗c2 = (L · c1);

ξ3 = f ∗c1 · ξ
2 − f ∗c2 · ξ = c2

1 − c2.

v) is also well-known.

Similarly, for projectivizations of rank three vector bundles we needed the

following:

Proposition C.2. Let X = P(E)
f

−→C be the projectivization of a rank 3

vector bundle E over a smooth curve C. Let ξ = OX(1), c1 = det E , and

c2 = c2(E). We have:

i) f ∗L · f ∗K · M = 0, ∀L, K ∈ Pic(C), M ∈ Pic(X);

ii) f ∗L · ξ2 = deg L, ∀L ∈ Pic(C);

iii) ξ3 = deg E ;

iv) KX = f ∗L − 3ξ, where L = KS + c1.

Proof. As in the proof of the previous proposition, i) and ii) are obvious and
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iv) is well known. For two we use again the fundamental identity [GH85]:

ξ2 − f ∗c1 · ξ = 0.

Multiplying by ξ, from ii) we immediately get ξ3 = deg E .

Also, of particular importance are the classical ampleness conditions on

ruled surfaces. For the following results, the interested reader is referred to

[Har77].

Recall that if π : X → C is a ruled surface, one can write X ≃ P(E), where

E is a normalized, locally free, rank two sheaf on C. The integer e = − deg(E)

is an invariant of X, and there is a section π0 : C → X with image C0, such

that L(C0) ≃ OX(1). Any element of Pic(X) can be written as aC0 + π∗ℓ

with a ∈ Z and ℓ ∈ Pic(C), and any element of the Num(X) can be written

aC0 + bf with a, b ∈ Z and where f is the class of a fiber of X. We denote by

g the genus of the curve C.

Proposition C.3. Let π : X → C be a ruled surface, and a divisor D ≡

aC0 + bf.

(a) If g = 0, then e ≥ 0, and D is ample if and only if a > 0 and b > ae.

(b) If g > 0, according to the the sign of e we have:

i) If e ≥ 0, D is ample if and only if a > 0, b > ae.

ii) If e < 0, D is ample if and only if a > 0, b > 1
2
ae.
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