# Analyse de sensibilité déterministe pour la simulation numérique du transfert de contaminants

**Estelle Marchand** 

financial support from ANDRA additional support from GDR MOMAS

12 décembre 2007

## **Outline**

- Introduction
- Statistical Analyses
  - 3 Deterministic uncertainty and sensitivity analysis
    - First order approximation
    - Singular Value Decomposition
    - SVD and statistical analysis
- 4 Applications
  - Flow problem
  - Transport problem
- Implementation aspects
  - Generic tools
  - C++ implementation of PIO
  - A generic tool for deterministic sensitivity analysis
- 6 Conclusions



## **Outline**

- Introduction
- Statistical Analyses
- Deterministic uncertainty and sensitivity analysis
  - First order approximation
  - Singular Value Decomposition
  - SVD and statistical analysis
- 4 Applications
  - Flow problem
  - Transport problem
- Implementation aspects
  - Generic tools
  - C++ implementation of PIO
  - A generic tool for deterministic sensitivity analysis
- Conclusions



### Context

## Long term management of radionuclear waste

- ullet long life waste : separation / transmutation ightarrow CEA
- reversible storage in deep geological layers → ANDRA
- storage in subsurface

## Storage in deep geological layers

- waste packages
- elaborated barrier
- geological barrier

#### Motivation

Modeling flow and transport around a nuclear waste storage site subsurface properties, contaminants properties:



Uncertainties about input data:  $\begin{tabular}{ll} & \rightarrow & uncertainties about \\ & \rightarrow & safety indicators \\ \end{tabular}$ 

Question: how to evaluate the influence of the uncertainties about the input parameters on the safety indicators?

## Sensitivity analysis

**Evaluation of the uncertainties** about the safety indicators due to the uncertainties about the input parameters.

**Hierarchical classification** of the input parameters according to their influence on the safety indicators.

| Two approaches   | Probabilistic<br>(Monte Carlo) | Deterministic |
|------------------|--------------------------------|---------------|
| Type of analysis | global                         | local         |
| Implementation   | simple                         | more complex  |
| Computation time | very important                 | smaller       |
|                  |                                |               |

The two approaches are complementary.

## Outline

- Introduction
- Statistical Analyses
- Deterministic uncertainty and sensitivity analysis
  - First order approximation
  - Singular Value Decomposition
  - SVD and statistical analysis
- Applications
  - Flow problem
  - Transport problem
- Implementation aspects
  - Generic tools
  - C++ implementation of PIO
  - A generic tool for deterministic sensitivity analysis
- Conclusions



## Quick overview of Monte Carlo methods — 1

## Sampling

- Generate a sample of vectors of input parameters (LHS...)
- Apply F to each vector

#### Uncertainty analysis

Analyse the sample of output variables

- scatterplots
- estimation of means, of standard deviations

## Quick overview of Monte Carlo methods — 2

#### Sensitivity analysis

 Analyse correlations between input and output variables to determine which inputs influence the outputs: computation of statistical indicators

| difficulties              | solution              |  |
|---------------------------|-----------------------|--|
| Deal with strong          | use of                |  |
| nonlinearities of F       | rank transformation   |  |
| Separate influences of F  | partial correlations, |  |
| and of input correlations | standard regressions  |  |

F must be monotoneous

## Outline

- Introduction
- Statistical Analyses
- Deterministic uncertainty and sensitivity analysis
  - First order approximation
  - Singular Value Decomposition
  - SVD and statistical analysis
- Applications
  - Flow problem
  - Transport problem
- Implementation aspects
  - Generic tools
  - C++ implementation of PIO
  - A generic tool for deterministic sensitivity analysis
- 6 Conclusions



## Uncertainty analysis of the linearized problem

$$F: p \mapsto \Phi$$
vector of input parameters vector of output variables

Local study: analysis of the linearized problem  $d\Phi = F'(p)dp$ 

#### Computation of

• uncertainties about output variables of the linearized problem:

$$(|\mathrm{d}p|,\ F') \to \text{upper bound for } |\mathrm{d}\Phi_i| = \sum_j \left|F'_{ij}\right| |\mathrm{d}p_j|$$

 statistical indicators for the linearized problem computed using formulas without sampling from F' and correlations and standard deviations of the input parameters



## Singular Value Decomposition

Local study: analysis of the linearized problem  $d\Phi = F'(p)dp$ 

#### Definition

SVD of 
$$F'(p)$$
:  $F'(p) = USV^T$  where

S: diagonal matrix

$$s_1 \ge s_2 \ge ... \ge 0$$
: singular values =  $\sqrt{\text{eigenvalues of } F'(p)^T F'(p)}$ 

*U* and *V*: orthogonal matrices
 *u<sub>k</sub>*, *v<sub>k</sub>* columns of *U*, *V*: singular vectors

$$F'(p)v_k = s_k u_k$$
  
or  $v_k \in \ker F'(p)$   
or  $u_k \in (\operatorname{im} F'(p))^{\perp}$ 

## SVD and statistical analysis

## Proper orthogonal decompositions: Bibliographic study

- Simplify the simulation of a random vector x by decomposing  $x = \sum s_k u_k$ 
  - with u orthogonal basis and  $s_k$  random variables
  - variance concentrated in the first terms of the decomposition
- by eigenvalue decomposition of the covariance matrix of x
- approximation using a sample of x: SVD of the sample

## Extension to sensitivity analysis?

- y = F(x), x random vector, F deterministic model
- We assume components of x are independent and  $E(xx^T) = I$ .
- We compute *SVD* of  $\hat{F} = \sum_{y,x} \sum_{x,x}^{-1}$
- We obtain changes of variables in input and output spaces s. t.
  - new input components are still independent
  - each new output is correlated with at most one new input

## Computation of the derivatives of F

### Approximate differentiation

- Divided differences (DD) are either expensive or inaccurate
  - $\rightarrow$  to be used for validation only

#### **Exact differentiation**

#### Adjoint or reverse mode / direct mode

- Automatic differentiation (AD) by operator overloading with AdolC
- Manual differentiation (MD): implementation of analytical formulas

#### Performance comparison

- AD with AdolC is competitive with MD concerning running time
- Memory management is difficult with AD
- AD is more convenient than DD to validate MD.

## **Outline**

- Introduction
- 2 Statistical Analyses
- Deterministic uncertainty and sensitivity analysis
  - First order approximation
  - Singular Value Decomposition
  - SVD and statistical analysis
- 4 Applications
  - Flow problem
  - Transport problem
- Implementation aspects
  - Generic tools
  - C++ implementation of PIO
  - A generic tool for deterministic sensitivity analysis
- Conclusions



#### Choice of the model F

#### Flow model: stationary Darcy's law

$$\begin{cases} \operatorname{div} \vec{\mathbf{u}} &= q & \Omega \\ \vec{\mathbf{u}} &= -\mathbf{K} \vec{\nabla} p & \Omega \\ p &= \bar{p} & \Gamma_D \\ \vec{\mathbf{u}} \cdot \vec{\nu} &= g_N & \Gamma_N \end{cases}$$

 $F_i$  associates water flow  $\Phi_i$  through outlet channel  $S_i$  to input parameters log K:

$$F_i: \log \mathbf{K} \to \Phi_i = \int_{S_i} \vec{\mathbf{u}} \cdot \vec{\nu} .$$

- K is piecewise constant.
- Computed with a mixed hybrid finite element formulation.



## Hydraulic test case





Display of a stream line



2D vertical cut

Simplified 3D hydrological model

## Spectrum of possible input parameters

## Global probabilistic study

Truncated lognormal laws of bounds min, max

| Variable | $K_{\nu}$ (m.s <sup>-1</sup> ) | $K_h/K_v$         | $K_4/K_3$           | $K_5 \text{ (m.s}^{-1}\text{)}$ | $K_6/K_5$           |
|----------|--------------------------------|-------------------|---------------------|---------------------------------|---------------------|
| min, max | $10^{-14}, 10^{-12}$           | 1,10 <sup>2</sup> | 10, 10 <sup>3</sup> | $10^{-9}, 10^{-7}$              | 10, 10 <sup>3</sup> |

•  $K_3/K_v \sim$  uniform law of bounds min = 10, max = 1000

## Choice of points for local deterministic studies with 6 parameters

- Most probable set of parameters (1 study)
- One parameter is set to *min* or max (2 × 6 studies)
- All parameters are set to *min* or *max* (2<sup>6</sup> studies)

## Sensitivity results for most probable set of parameters



Singular values  $\mathcal{S}_k$ 

input space singular vectors  $\emph{V}_\emph{k}$ 









#### Hierarchical classification of local influences:

 $log(K_6)$  on  $\Phi_4$   $log(K_5)$  on  $\Phi_3$  $log(K_V)$  on  $\Phi_1 + \Phi_2$ 

 $\log(K_V)$  on  $\Psi_1 + \Psi_2$ 

 $\log(K_3)$  on  $\Phi_1 - \Phi_2$  (almost zero)



## Sensitivity results for a less probable set of parameters

$$F'(\log K) v_k = s_k u_k$$

### Chosen parameters: $\max K_6$ and $\max (\log K_3 - \log K_V)$

Singular values  $S_k$ 

input space singular vectors  $\emph{V}_\emph{K}$ 

output space singular vectors  $oldsymbol{U}_{oldsymbol{k}}$ 







Modifications of the local influences:

$$\log(K_6) + \log(K_8)$$
 on  $\Phi_4$ 

v<sub>3</sub> and v<sub>4</sub> slightly modified



## Sensitivity results for a less probable set of parameters

$$F'(\log K) v_k = s_k u_k$$

## Chosen parameters: $\max(\log K_5 - \log K_V)$

Singular values  $S_k$ 

input space singular vectors  $\emph{V}_{\emph{k}}$ 









#### Local influences are reordered:

$$\frac{\ln(\mathcal{K}_6) \text{ on } \Phi_4}{\ln(\mathcal{K}_{\nu}) \text{ on } \Phi_1 + \Phi_2}{\ln(\mathcal{K}_5) \text{ on } \Phi_3}$$



## Results of probabilistic study: indicator of correlation between the water flows and the input parameters (\*)

## (\*) Laurent Loth and Guillaume Pépin, ANDRA

|                | Φ <sub>1</sub> | Φ3   | Φ <sub>4</sub> |
|----------------|----------------|------|----------------|
| $\log K_h$     | 0.10           | 0.03 | 0.01           |
| $\log K_{\nu}$ | 1.00           | 0.05 | 0.01           |
| $\log K_3$     | 0.08           | 0.00 | 0.03           |
| $\log K_4$     | 0.02           | 0.01 | 0.02           |
| $\log K_5$     | 0.12           | 0.93 | 0.14           |
| $\log K_6$     | 0.08           | 0.47 | 1.00           |



indicator = mean of the coefficients of Spearman, PRCC, SRRC

### Choice of the model F

#### **Transport model**

$$\begin{cases} \omega \frac{\partial \mathbf{c}}{\partial t} + \operatorname{div} \left( \mathbf{c} \vec{\mathbf{u}} - \mathbf{D} \vec{\nabla} \mathbf{c} \right) + \lambda \mathbf{c} &= q \quad \Omega \\ \mathbf{c} &= \mathbf{c}_d \quad \Gamma_D \\ \left( \mathbf{c} \vec{\mathbf{u}} - \mathbf{D} \vec{\nabla} \mathbf{c} \right) \cdot \vec{\nu} &= g_F \quad \Gamma_F \\ \vec{\nabla} \mathbf{c} \cdot \vec{\nu} &= g_N \quad \Gamma_N \end{cases}$$

 $F_i^n$  associates contaminant flow  $\Psi_i^n$  through outlet channel  $S_i$  at  $t_n$  to weighted (log of) K,  $\omega$ , D and q:

$$F_i^n$$
: input parameters  $\rightarrow \Psi_i^n = \int_{S_i} \left( c \vec{\mathsf{u}} - \mathsf{D} \vec{\nabla} c \right)^n \cdot \vec{\nu}$ .

- u from flow equation
- Parameters are piecewise constant.
- Computed with a splitting method
  - explicit for convection (for precision), with finite volumes
  - implicit for diffusion (for stability), with mixed finite elements

## Flow+transport test case

## Simplified model

- Two dimensional computation over a vertical non planar cut
- Computation over zones 1 to 6

#### 11 uncertain parameters

- q (source term)
- $\omega$  over  $\{1, 2, 3, 4\}$  and  $\{5, 6\}$
- D over {1,2,3,4} and {5,6}
- $\bullet$   $k_h, k_v, k_3, k_4, k_5, k_6$



- Computation for one set of parameters
- Output = fluxes  $(\Psi_1^{t_n}, \Psi_2^{t_n}, \Psi_3^{t_n}, \Psi_4^{t_n})$ , at a given date  $t_n$
- Output = fluxes  $(\Psi_i^{t_1}, \Psi_i^{t_2}, ...)$ , through a given outlet channel  $S_i$

## Sensitivity results for most probable set of parameters, $t_n = 10^6$ years



## Sensitivity results for most probable set of parameters, output = $\Psi_2^{t1}, ..., \Psi_2^{t5}$



Diffusion parameters then convection parameters.

## Probabilistic results (ANDRA)

- Most influent parameters: Φ<sub>1,2,3,4</sub>, D<sub>1,2,3,4</sub>, k<sub>v</sub>
- For  $S_1$  et  $S_2$ 
  - weak influence of param zones 5,6
  - time decreasing influence of diffusion parameters
- For  $S_3$ 
  - less weak influence of param zones 5,6



## Conclusion about comparisons

#### Flow

- Easy to choose a non linear scaling
- Log parameterization is consistant with probabilistic data

#### Transport

- Scaling more difficult
- Stronger coupling between parameters → consistance with probabilistic data difficult

## **Outline**

- Introduction
- 2 Statistical Analyses
- Deterministic uncertainty and sensitivity analysis
  - First order approximation
  - Singular Value Decomposition
  - SVD and statistical analysis
- Applications
  - Flow problem
  - Transport problem
- Implementation aspects
  - Generic tools
  - C++ implementation of PIO
  - A generic tool for deterministic sensitivity analysis
- 6 Conclusions



## Motivation

#### Possible structure for a program

- Generic: algorithmic part, difficult to set up
  - ex. domain decomposition algorithm
- Specific: computational part, heavy, already existing in libraries
  - ex. solve flow equation

#### Ideas

- Avoid reimplementing the generic part for each specific application
- Safe and expressive functional language used for the generic part

## Paradigm for the implementation of generic tools – 1

#### Paradigm

- Heavy computations → external programs (computational servers)
- Master program in Caml
- Communications between external and master programs → PIO

#### To deal with heterogeneity of codes

- Polyglot Input Output, agnostic communication library
  - Simple, robust protocole
  - Ascii and binary modes
  - Polyglot: implemented in Caml, C++, C, Fortran in project: Matlab, Java

## Paradigm for the implementation of generic tools – 2

= libraries or modules = process



#### Protocole of communication PIO

- Channels = standard i/o channels or file streams
- A communication can be
  - a Task communication: a function name and its arguments,
  - a Result communication: a sequence of typed values,
  - an Error communication: an exception value.
- When a Task communication is received
  - Try to apply the function given by its name
  - If success: Result communication sent back
  - Otherwise: Error communication sent back
  - → a communication is always sent back
- Values: one string, one integer, one float, one integer couple, one integer triple, one float couple, or one float triple, or vectors of such, or float matrices.

## Caml: a strongly typed functional language

- Distributed by INRIA since 1985 (http://caml.inria.fr/)
   ⇒ Unison, MLdonkey, Coq, FFTW, cdtools, ...
- High-level language based on clear theoretical foundation and formal semantics
- Strong typing: static and automatic
   No automatic type conversion ⇒ safety
   Segmentation fault or bus error never happens
   A program that compiles is close to be correct
- Functional language ⇒ close to the mathematics

```
# let compose f g = function x -> g (f x);; compose : (\alpha \to \beta) \to (\beta \to \gamma) \to \alpha \to \gamma
```

Polymorphism, modules, objects ⇒ complex structures/algorithms

Implementing with Caml requires a different way of thinking

## C++ implementation of PIO

- Based on preexisting Caml implementation
- Difficulty: late knowledge of concrete data types during communication
- Implementation of a general UNION type using standard C++ library

## Implementation of the UNION type

#### From Caml and C union

- class Elem<...> to simulate free pointers ie
   "Something (of fixed type) or nothing"
  - One vector of length 0 ("empty") or of length 1 ("full")
  - Identifier, safe constructors, safe assignment
- A UNION class
  - Several Elem<...> attributes: exactly one is "full"
  - Identifier, safe constructors, safe assignement

## General types for PIO

#### Information over communication channels

- Most general type: "Communication"
   UNION composed of: Task, Result, Error
- General type of data: "Typed\_value" for the arguments of a Task or the components of a Result UNION composed of: Matrix\_type[1,2], Vector\_type, Lexem
- Matrix\_type[1,2], Vector\_type, Lexem

## Using a generic tool is easy

- The user writes (several) independent external programs in any programing language
- Only his main function must follow a particular specification (infinite loop receiving orders and returning results using PIO).
   Examples are provided in each language
- It is not necessary to know Caml language to use the generic tool

## Generic tool for deterministic sensitivity analysis

#### Steps for an analysis

- Initialize: read mesh, compute values ... Returns the size of the Jacobian matrix
- Compute rows or columns of F'
- Assemble the Jacobian matrix
- Parameterize
- Compute SVD

We can use several generic tools together (for example computation of a column of F' using domain decomposition)

## **Outline**

- Introduction
- Statistical Analyses
- Deterministic uncertainty and sensitivity analysis
  - First order approximation
  - Singular Value Decomposition
  - SVD and statistical analysis
- Applications
  - Flow problem
  - Transport problem
- Implementation aspects
  - Generic tools
  - C++ implementation of PIO
  - A generic tool for deterministic sensitivity analysis
- 6 Conclusions



### Conclusions

## Local deterministic sensitivity analysis for a flow and transport problem

- Exact computation of the Jacobian matrix, use AdolC for validation
- SVD of Jacobian matrix provides locally a hierarchy for influences of the inputs on the outputs
- Cheap → several local analyses

## Conclusions

## Comparison with global probabilistic results for the flow problem

- For this example: weak variability of the results of the deterministic study 

   → weak nonlinearity of the model in the spectrum of possible input parameters
- For this example probabilistic and deterministic studies provide very similar results
- A strong variability of the deterministic results should lead to be wary of the results of the probabilistic study

#### Difficulties for the transport problem

- Scaling
- Consistant parameterization



## Conclusions

#### Software development

- Development of a generic tool for sensitivity analysis
- PIO C++

#### Perspective

- Use it with parallel domain decomposition, with Neumann-Neumann preconditioning and balancing
- Go on connecting probabilitic and deterministic analyses with numerical applications

#### THANK YOU FOR YOUR ATTENTION