
HAL Id: tel-00271168
https://theses.hal.science/tel-00271168

Submitted on 8 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximating Context-Free Grammars for Parsing and
Verification
Sylvain Schmitz

To cite this version:
Sylvain Schmitz. Approximating Context-Free Grammars for Parsing and Verification. Software
Engineering [cs.SE]. Université Nice Sophia Antipolis, 2007. English. �NNT : �. �tel-00271168�

https://theses.hal.science/tel-00271168
https://hal.archives-ouvertes.fr


Approximating Context-Free Grammars

for Parsing and Verification

The thorn bush of ambiguity.

Sylvain Schmitz

Laboratoire I3S, Université de Nice - Sophia Antipolis & CNRS, France





Ph.D. Thesis

Université de Nice - Sophia Antipolis, École Doctorale ✭✭ Sciences
et Technologies de l’Information et de la Communication ✮✮

Informatique Subject

Jacques Farré, Université de Nice - Sophia Antipolis Promotor

Referees

Eberhard Bertsch, Ruhr-Universität Bochum

Pierre Boullier, INRIA Rocquencourt

Defense

September 24th, 2007 Date

Sophia Antipolis, France Place

Jury

Pierre Boullier, INRIA Rocquencourt

Jacques Farré, Université de Nice - Sophia Antipolis

José Fortes Gálvez, Universidad de Las Palmas de Gran Canaria

Olivier Lecarme, Université de Nice - Sophia Antipolis

Igor Litovsky, Université de Nice - Sophia Antipolis

Mark-Jan Nederhof, University of St Andrews

Géraud Sénizergues, Université de Bordeaux I





Approximating Context-Free Grammars
for Parsing and Verification

Abstract

Programming language developers are blessed with the availability
of efficient, powerful tools for parser generation. But even with au-
tomated help, the implementation of a parser remains often overly
complex.
Although programs should convey an unambiguous meaning, the
parsers produced for their syntax, specified by a context-free gram-
mar, are most often nondeterministic, and even ambiguous. Fac-
ing the limitations of traditional deterministic parsers, developers
have embraced general parsing techniques, capable of exploring ev-
ery nondeterministic choice, but offering no unambiguity warranty.
The real challenge in parser development lies then in the proper
identification and treatment of ambiguities—but these issues are
undecidable.

The grammar approximation technique discussed in the thesis is ap-

plied to nondeterminism and ambiguity issues in two different ways.

The first application is the generation of noncanonical parsers, less

prone to nondeterminism, mostly thanks to their ability to exploit

an unbounded context-free language as right context to guide their

decision. Such parsers enforce the unambiguity of the grammar, and

furthermore warrant a linear time parsing complexity. The second

application is ambiguity detection in itself, with the insurance that

a grammar reported as unambiguous is actually so, whatever level

of approximation we might choose.

Key Words

Ambiguity, context-free grammar, noncanonical parser, position
automaton, grammar engineering, verification of infinite systems

ACM Categories

D.2.4 [Software Engineering ]: Software/Program Verification;

D.3.1 [Programming Languages]: Formal Definitions and Theory—

Syntax ; D.3.4 [Programming Languages]: Processors—Parsing ;

F.1.1 [Computation by Abstract Devices]: Models of Computation;

F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-

ing and Reasoning about Programs; F.4.2 [Mathematical Logic and

Formal Languages]: Grammars and Other Rewriting Systems





Approximation de grammaires algébriques
pour l’analyse syntaxique et la vérification

Résumé

La thèse s’intéresse au problème de l’analyse syntaxique pour les
langages de programmation. Si ce sujet a déjà été traité à maintes
reprises, et bien que des outils performants pour la génération
d’analyseurs syntaxiques existent et soient largement employés,
l’implémentation de la partie frontale d’un compilateur reste en-
core extrêmement complexe.
Ainsi, si le texte d’un programme informatique se doit de n’avoir
qu’une seule interprétation possible, l’analyse des langages de pro-
grammation, fondée sur une grammaire algébrique, est, pour sa
part, le plus souvent non déterministe, voire ambiguë. Confrontés
aux insuffisances des analyseurs déterministes traditionnels, les
développeurs de parties frontales se sont tournés massivement vers
des techniques d’analyse générale, à même d’explorer des choix non
déterministes, mais aussi au prix de la garantie d’avoir bien traité
toutes les ambigüıtés grammaticales. Une difficulté majeure dans
l’implémentation d’un compilateur réside alors dans l’identification
(non décidable en général) et le traitement de ces ambigüıtés.

Les techniques décrites dans la thèse s’articulent autour d’appro-

ximations des grammaires à deux fins. L’une est la génération d’a-

nalyseurs syntaxiques non canoniques, qui sont moins sensibles aux

difficultés grammaticales, en particulier parce qu’ils peuvent exploi-

ter un langage algébrique non fini en guise de contexte droit pour

résoudre un choix non déterministe. Ces analyseurs rétablissent la

garantie de non ambigüıté de la grammaire, et en sus assurent un

traitement en temps linéaire du texte à analyser. L’autre est la

détection d’ambigüıté en tant que telle, avec l’assurance qu’une

grammaire acceptée est bien non ambiguë quel que soit le degré

d’approximation employé.

Mots clefs

Ambigüıté, grammaire algébrique, analyseur syntaxique non canon-

ique, automate de positions, ingénierie des grammaires, vérification

de systèmes infinis





Foreword

This thesis compiles and corrects the results published in several articles
(Schmitz, 2006; Fortes Gálvez et al., 2006; Schmitz, 2007a,b) written over
the last four years at the Laboratoire d’Informatique Signaux et Systèmes de
Sophia Antipolis (I3S). I am indebted for the excellent working environment
I have been offered during these years, and further grateful for the advice
and encouragements provided by countless colleagues, friends, and family
members.

I am indebted to many friends and members of the laboratory, notably to
Ana Almeida Matos, Jan Cederquist, Philippe Lahire, Igor Litovsky, Bruno
Martin and Sébastien Verel, and to the members of my research team, Carine
Fédèle, Michel Gautero, Vincent Granet, Franck Guingne, Olivier Lecarme,
and Lionel Nicolas, who have been extremely helpful and supportive beyond
any possible repay. I especially thank Igor Litovsky and Olivier Lecarme for
accepting to examine my work and attend to my defense. I am immensely
thankful to Jacques Farré for his insightful supervision, excellent guidance,
and extreme kindness, that greatly exceed everything I could have wished
for.

I thank José Fortes Gálvez for his fruitful collaboration, his warm wel-
come on the occasion of my visit in Las Palmas, and his acceptance to work
on my thesis jury. I gratefully acknowledge several insightful email discus-
sions with Dick Grune, who taught me more on the literature on parsing
technologies than anyone could wish for, and who first suggested that study-
ing the construction of noncanonical parsers from the NFA to DFA point
of view could bring interesting results. I am also thankful to Terence Parr
for our discussions on LL(*), to Bas Basten for sharing his work on the
comparison of ambiguity checking algorithms, and to Claus Brabrand and
Anders Møller for our discussions on ambiguity detection and for granting
me access to their tool.

I am obliged to the many anonymous referees of my articles, whose
remarks helped considerably improving my work, and I am much obliged to
Eberhard Bertsch and Pierre Boullier for their reviews of the present thesis,
and the numerous corrections they offered. I am honored by their interest



x Foreword

in my work, as well as by the interest shown by the remaining members of
my jury, Mark-Jan Nederhof and Géraud Sénizergues.

Finally, I thank all my friends and my family for their support, and my
beloved Adeline for bearing with me through these years.

Sophia Antipolis, October 16, 2007



Contents

Abstract v

Résumé vii

Foreword ix

Contents xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 General Background 5

2.1 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Formal Syntax . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1.1 Context-Free Grammars . . . . . . . . . . . . 7

2.1.1.2 Ambiguity . . . . . . . . . . . . . . . . . . . 8

2.1.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2.1 Pushdown Automata . . . . . . . . . . . . . 10

2.1.2.2 The Determinism Hypothesis . . . . . . . . . 12

2.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Parsers for Programming Languages . . . . . . . . . . 13

2.2.1.1 Front Ends . . . . . . . . . . . . . . . . . . . 13

2.2.1.2 Requirements on Parsers . . . . . . . . . . . 15

2.2.2 Deterministic Parsers . . . . . . . . . . . . . . . . . . 16

2.2.2.1 LR(k) Parsers . . . . . . . . . . . . . . . . . 17

2.2.2.2 Other Deterministic Parsers . . . . . . . . . 18

2.2.2.3 Issues with Deterministic Parsers . . . . . . . 20

2.2.3 Ambiguity in Programming Languages . . . . . . . . . 21

2.2.3.1 Further Nondeterminism Issues . . . . . . . . 23



xii Contents

3 Advanced Parsers and their Issues 25
3.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Java Modifiers . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1.1 Grammar . . . . . . . . . . . . . . . . . . . . 26
3.1.1.2 Input Examples . . . . . . . . . . . . . . . . 26
3.1.1.3 Resolution . . . . . . . . . . . . . . . . . . . 28

3.1.2 Standard ML Layered Patterns . . . . . . . . . . . . . 28
3.1.2.1 Grammar . . . . . . . . . . . . . . . . . . . . 28
3.1.2.2 Input Examples . . . . . . . . . . . . . . . . 28
3.1.2.3 Resolution . . . . . . . . . . . . . . . . . . . 29

3.1.3 C++ Qualified Identifiers . . . . . . . . . . . . . . . . 29
3.1.3.1 Grammar . . . . . . . . . . . . . . . . . . . . 30
3.1.3.2 Input Examples . . . . . . . . . . . . . . . . 30
3.1.3.3 Resolution . . . . . . . . . . . . . . . . . . . 30

3.1.4 Standard ML Case Expressions . . . . . . . . . . . . . 31
3.1.4.1 Grammar . . . . . . . . . . . . . . . . . . . . 31
3.1.4.2 Input Examples . . . . . . . . . . . . . . . . 32
3.1.4.3 Resolution . . . . . . . . . . . . . . . . . . . 34

3.2 Advanced Deterministic Parsing . . . . . . . . . . . . . . . . 34
3.2.1 Predicated Parsers . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Regular Lookahead Parsers . . . . . . . . . . . . . . . 35
3.2.3 Noncanonical Parsers . . . . . . . . . . . . . . . . . . 36

3.3 General Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Families of General Parsers . . . . . . . . . . . . . . . 39

3.3.1.1 Backtracking Parsers . . . . . . . . . . . . . 39
3.3.1.2 Chart Parsers . . . . . . . . . . . . . . . . . 39
3.3.1.3 Generalized LR Parsers . . . . . . . . . . . . 40

3.3.2 Parse Forests . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2.1 Shared Forests . . . . . . . . . . . . . . . . . 43
3.3.2.2 Disambiguation Filters . . . . . . . . . . . . 44

4 Grammar Approximations 47
4.1 Derivation Trees . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Bracketed Grammars . . . . . . . . . . . . . . . . . . . 48
4.1.2 Position Graphs . . . . . . . . . . . . . . . . . . . . . 50

4.2 Position Automata . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Quotients of Position Graphs . . . . . . . . . . . . . . 53

4.2.1.1 The item0 Example . . . . . . . . . . . . . . 54
4.2.1.2 Languages Recognized by Position Automata 56
4.2.1.3 Lattice of Equivalence Relations . . . . . . . 58

4.2.2 Parsing with Position Automata . . . . . . . . . . . . 60
4.2.2.1 Shift-Reduce Parsing . . . . . . . . . . . . . 60
4.2.2.2 Earley Parsing . . . . . . . . . . . . . . . . . 60



Contents xiii

4.2.3 Approximating Languages . . . . . . . . . . . . . . . . 61
4.2.3.1 Galois Connection . . . . . . . . . . . . . . . 61
4.2.3.2 Approximating with Position Automata . . . 63

4.3 Recognizing Derivation Trees . . . . . . . . . . . . . . . . . . 65
4.3.1 Tree Languages . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Validating XML Streams . . . . . . . . . . . . . . . . 68

4.3.2.1 The XML Case . . . . . . . . . . . . . . . . . 68
4.3.2.2 The Bracketed Case . . . . . . . . . . . . . . 68

4.3.3 A Characterization . . . . . . . . . . . . . . . . . . . . 69
4.3.3.1 Well-bracketed Strings . . . . . . . . . . . . . 70
4.3.3.2 The no-mismatch Relation . . . . . . . . . . . 72

4.3.4 Optimality . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Related Models . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Recognition Graphs . . . . . . . . . . . . . . . . . . . 76
4.4.2 Parsing Schemata . . . . . . . . . . . . . . . . . . . . 77
4.4.3 Regular Approximations . . . . . . . . . . . . . . . . . 78
4.4.4 Abstract Interpretation . . . . . . . . . . . . . . . . . 78
4.4.5 Systems of Pushdown Automata . . . . . . . . . . . . 78
4.4.6 Item Grammars . . . . . . . . . . . . . . . . . . . . . . 79

5 Parser Generation 81
5.1 Parser Generation from Position Automata . . . . . . . . . . 82

5.1.1 Subset Construction . . . . . . . . . . . . . . . . . . . 82
5.1.1.1 Sets of Reachable States . . . . . . . . . . . 83
5.1.1.2 Canonical LR Automata . . . . . . . . . . . 83

5.1.2 Parsing Machine . . . . . . . . . . . . . . . . . . . . . 84
5.1.3 Strict Deterministic Parsers . . . . . . . . . . . . . . . 85

5.1.3.1 Strict Deterministic Grammars . . . . . . . . 86
5.1.3.2 sdΠ Position Equivalence . . . . . . . . . . . 86

5.2 Noncanonical LALR(1) Parsers . . . . . . . . . . . . . . . . . 88
5.2.1 Example Parser . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1.1 Noncanonical Parsing . . . . . . . . . . . . . 90
5.2.1.2 Construction Principles . . . . . . . . . . . . 90

5.2.2 Definition of NLALR(1) Parsers . . . . . . . . . . . . 92
5.2.2.1 Valid Covers . . . . . . . . . . . . . . . . . . 93
5.2.2.2 Noncanonical Lookaheads . . . . . . . . . . . 93
5.2.2.3 Noncanonical States . . . . . . . . . . . . . . 94
5.2.2.4 NLALR(1) Automata . . . . . . . . . . . . . 95

5.2.3 Efficient Construction . . . . . . . . . . . . . . . . . . 98
5.2.3.1 Computing Lookaheads . . . . . . . . . . . . 98
5.2.3.2 Finding the Valid Covers . . . . . . . . . . . 101
5.2.3.3 Practical Construction Steps . . . . . . . . . 103

5.2.4 Alternative Definitions . . . . . . . . . . . . . . . . . . 103



xiv Contents

5.2.4.1 Leftmost LALR(1) Alternative . . . . . . . . 103

5.2.4.2 Item-based Alternative . . . . . . . . . . . . 105

5.2.4.3 Transition-based Alternative . . . . . . . . . 106

5.2.5 NLALR(1) Grammars and Languages . . . . . . . . . 108

5.2.6 Practical Considerations . . . . . . . . . . . . . . . . . 111

5.2.6.1 Parser Size . . . . . . . . . . . . . . . . . . . 111

5.2.6.2 SLR Versus LALR . . . . . . . . . . . . . . . 112

5.2.6.3 Need for More Lookahead . . . . . . . . . . . 113

5.3 Shift-Resolve Parsers . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Time Complexity Matters . . . . . . . . . . . . . . . . 115

5.3.2 Example Parser . . . . . . . . . . . . . . . . . . . . . . 117

5.3.3 Generation . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.4 Shift-Resolve Grammars . . . . . . . . . . . . . . . . . 122

5.3.5 Example: SML Case Expressions . . . . . . . . . . . . 123

6 Ambiguity Detection 125

6.1 Regular Unambiguity . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.1 Regular Mutual Accessibility . . . . . . . . . . . . . . 127

6.1.2 Practical Concerns . . . . . . . . . . . . . . . . . . . . 128

6.1.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.3.1 Horizontal and Vertical Ambiguity . . . . . . 131

6.1.3.2 LL-Regular Testing . . . . . . . . . . . . . . 132

6.1.3.3 Bounded Length Detection Schemes . . . . . 134

6.1.3.4 LR Grammars . . . . . . . . . . . . . . . . . 135

6.2 Noncanonical Unambiguity . . . . . . . . . . . . . . . . . . . 136

6.2.1 Common Prefixes with Conflicts . . . . . . . . . . . . 136

6.2.2 Accessibility Relations . . . . . . . . . . . . . . . . . . 138

6.2.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.3.1 Regular Ambiguity . . . . . . . . . . . . . . 141

6.2.3.2 LR(k) and LR-Regular Testing . . . . . . . . 143

6.3 Practical Results . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 Example Test . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 149

6.3.3 Experimental Results . . . . . . . . . . . . . . . . . . 151

6.3.3.1 Toy Grammars . . . . . . . . . . . . . . . . . 152

6.3.3.2 Programming Languages Grammars . . . . . 152

6.3.3.3 Micro-Benchmarks . . . . . . . . . . . . . . . 154

6.3.4 Current Limitations . . . . . . . . . . . . . . . . . . . 157

6.3.4.1 Ambiguity Report . . . . . . . . . . . . . . . 157

6.3.4.2 Running Space . . . . . . . . . . . . . . . . . 157

6.3.4.3 Dynamic Disambiguation Filters . . . . . . . 158

7 Conclusion 159



Contents xv

A Formal Definitions 163
A.1 Elements of Formal Language Theory . . . . . . . . . . . . . 163

A.1.1 Formal Languages . . . . . . . . . . . . . . . . . . . . 163
A.1.2 Rewriting Systems . . . . . . . . . . . . . . . . . . . . 164
A.1.3 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.1.4 Notational Conventions . . . . . . . . . . . . . . . . . 165
A.1.5 Automata . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.1.6 Earley Recognizer . . . . . . . . . . . . . . . . . . . . 167

A.2 LR(k) Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.2.1 Valid Items and Prefixes . . . . . . . . . . . . . . . . . 168
A.2.2 LR Automata . . . . . . . . . . . . . . . . . . . . . . . 168
A.2.3 LALR Automata . . . . . . . . . . . . . . . . . . . . . 169

Synthèse en français 171
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Contenu de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Pistes de recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Bibliography 179

Index 201



xvi Contents



Introduction 1
1.1 Motivation • 1.2 Overview

“If you want a red rose”, said the Tree, “you must build it out
of music by moonlight, and stain it with your own heart’s-blood.
You must sing to me with your breast against a thorn.”

Oscar Wilde, The Nightingale and the Rose

1.1 Motivation

Grammars are pervasive in software development as syntax specifications for
text inputs. From a context-free grammar, software components like parsers,
program translators, pretty-printers and so forth can be generated instead of
hand-coded, greatly improving reliability and readability. Grammarware, as
coined by Klint et al. (2005) to comprise grammars and grammar-dependent
software, is blessed with a rich body of literature, and by the wide availability
of automated tools.

Regardless of their services over the years, classical parser generators in
the line of YACC (Johnson, 1975) have seen their supremacy contested by
several authors, who pointed out their inadequacy in addressing the modern
challenges in grammar engineering (Parr and Quong, 1996; van den Brand
et al., 1998; Aycock, 2001; Blasband, 2001). Accordingly, different parsing
techniques were investigated, and Tomita’s Generalized LR (GLR) algo-
rithm, originally aimed towards natural language processing, found many
proponents. With the broad availability of general parser generators, like
SDF (Heering et al., 1989), Elkhound (McPeak and Necula, 2004) or GNU
Bison (Donnely and Stallman, 2006) to name a few, it might seem that the
struggles with the dreaded report

grammar.y: conflicts: 223 shift/reduce, 35 reduce/reduce

are now over. General parsers simulate the various nondeterministic choices
in parallel with good performance, and return all the legitimate parses for
the input.



2 Introduction

What the above naive account overlooks is that all the legitimate parses
according to the grammar might not always be correct in the intended lan-
guage. With programming languages in particular, a program is expected
to have a unique interpretation, and thus a single parse should be returned.
Nevertheless, the grammar developed to describe the language is often am-
biguous: ambiguous grammars are more concise and readable (Aho et al.,
1975). The language definition should then include some disambiguation
rules to decide which parse to choose (Klint and Visser, 1994). But we can-
not always decide where such rules are needed (Cantor, 1962; Chomsky and
Schützenberger, 1963; Floyd, 1962a).

The difficulties raised by ambiguities were noted by McPeak and Necula
(2004) and they devote a few lines to the problem:

[There is] the risk that ambiguities would end up being more
difficult to debug than conflicts. After all, at least conflicts are
decidable. Would the lure of quick prototyping lead us into a
thorn bush without a decidable boundary?

Fortunately, ambiguities have not been a problem. By reporting
conflicts, Elkhound provides hints as to where ambiguities may
lie, which is useful during initial grammar development. But as
the grammar matures, we find ambiguities by parsing inputs,
and understand them by printing the parse forest (an Elkhound
option).

Indeed, many conflicts are caused by ambiguities, and with a careful study
of these numerous conflict cases and with extensive testing, the experienced
user should be able to determine whether disambiguation is required or not.
But as long as there remains a single conflict, there is no formal insurance
that all ambiguities were caught. Quoting Dijkstra (1972),

Program testing can be a very effective way to show the presence
of bugs, but is hopelessly inadequate for showing their absence.
The only effective way to raise the confidence level of a program
significantly is to give a convincing proof of its correctness.

Facing a thorn bush of ambiguity, we advocate wearing gloves. They come
in two shapes in this thesis.

1. The first is to generate noncanonical parsers, with less conflicts, thus
making the knotty process of eliminating conflicts less of a burden.
One can more realistically attempt to remove all the conflicts—and
thus to obtain the insurance that no ambiguity remains. Noncanonical
parsers rely on the remaining text to help choose between parsing



1.2 Overview 3

actions; they are able to perform parsing actions in this right context,
and pull back in order to use the information gathered there to help
with resolving earlier conflicts.

2. The second is to detect ambiguities as such. Since the problem is
undecidable, some approximations, in the form of false positives or
false negatives, are unavoidable. Our method is conservative in that
it cannot return false negatives, and it is therefore safe to employ a
grammar it reports as unambiguous.

1.2 Overview

After reviewing some essential background on parsing techniques (Chap-
ter 2) we describe four practical cases occurring in the syntax of Java
(Gosling et al., 1996), C++ (ISO, 1998) and Standard ML (Milner et al.,
1997) that illustrate the limitations of traditional LALR(1) parsing in Sec-
tion 3.1. Different approaches to handling these issues are discussed in the
remaining of Chapter 3, providing an overview of the “recent” developments
in parsing techniques. The three technical chapters of this thesis, which we
introduce in greater extent in the following paragraphs, are dedicated to
the approximation of grammars (Chapter 4), parser generation (Chapter 5)
and ambiguity detection (Chapter 6). We conclude with some final remarks
and future work in Chapter 7, and we gather some usual definitions and
notational conventions in Appendix A.

Position Automata Both the generation of a noncanonical parser and
the detection of ambiguities can be seen as the result of a static analysis on
the grammar. Guided by the intuition that most parsing techniques operate
a form of left-to-right depth-first walk in the set of all the derivation trees
of the grammar, we define the position graph of a grammar as the set of
all these walks, and a position automaton as a quotient of a position graph
by an equivalence relation between positions in derivation trees (Chapter 4).
We obtain various levels of approximation when we choose refined or coarser
equivalences, and thus position automata provide a fairly general approx-
imation framework, in which several classical parser generation techniques
can be expressed. In particular, the states of a position automaton generalize
the notion of items usually employed to denote a position in a grammar.

Besides the generation of noncanonical parsers and the detection of am-
biguity, we apply position automata to two small problems:

1. the recognition of derivation trees by means of a finite state automaton
(Section 4.3), a problem inspired by a similar issue in streaming XML
processing (Segoufin and Vianu, 2002). This issue fits the possibilities



4 Introduction

of position automata rather well, and as a result of our initial inves-
tigations, we managed to give a characterization, in terms of position
equivalences, of which context-free grammars can have their derivation
trees recognized by a finite state machine;

2. the generation of canonical bottom-up parsers (Section 5.1). In this
domain we simply show how to generate parsers for LR(k) grammars
(Knuth, 1965) and strict deterministic grammars (Harrison and Havel,
1973).

Noncanonical Parsing We present two different noncanonical parsing
techniques, namely Noncanonical LALR(1) parsing in Section 5.2 and Shift-
Resolve parsing in Section 5.3.

Noncanonical LALR(1) With NLALR(1) parsing, we investigate how a
noncanonical parser can be obtained from a canonical bottom-up one.
The generated parsers generalize the single other practical noncanoni-
cal parsing method, namely Noncanonical SLR(1) parsing (Tai, 1979).

Shift-Resolve Parsing The main weakness of most noncanonical parsing
techniques is their bound on the length of a reduced lookahead window.
With Shift-Resolve parsing, developed jointly with José Fortes Gálvez
and Jacques Farré, we exploit a position graph directly, and generate
parsers where the lookahead lengths are independent and computed
as needed for each parsing action.

Ambiguity Detection In Chapter 6, we present a conservative algo-
rithm for the detection of ambiguities in context-free grammars. The algo-
rithm is designed to work on any position automaton, allowing for various
degrees of precision in the ambiguity report, depending on the chosen po-
sition equivalence. We compare our procedure formally with other means
to detect ambiguities, namely bounded generation of sentences (Gorn, 1963;
Cheung and Uzgalis, 1995; Schröer, 2001; Jampana, 2005) and LR-Regular
testing (Čulik and Cohen, 1973; Heilbrunner, 1983), and we report on the
experimental results we obtained with an implementation of our algorithm
as an option in GNU Bison.



General Background 2
2.1 Topics (Formal Syntax, Parsing) • 2.2 Scope (Parsers for

Programming Languages, Deterministic Parsers, Ambiguity in

Programming Languages)

The chapter first provides a broad and somewhat historical introduction to
the main topics of the thesis, namely context-free grammars and determin-
istic parsers (Section 2.1). We focus then on the specific needs of parsers
for programming languages, and present the classical parsing techniques de-
signed during the Golden Age of parsing research (Section 2.2). A reader
familiar with these ideas might prefer to fast-forward to the following Chap-
ter 3, where we examine the shortcomings of these techniques, the more re-
cent developments they triggered, and the remaining issues that motivated
our research.

2.1 Topics

This first section attempts to provide an intuition of the main topics of
the thesis: context-free grammars and deterministic parsers. Though the
research we report is mostly motivated by the syntax of programming lan-
guages, the notions we use were introduced in the early attempts at un-
derstanding the nature of natural languages. We believe these notions to
be easier to grasp when presented in their original perspective, and we will
illustrate the basic concepts with examples in plain English.

This quick overview is by no means an exhaustive presentation of the
subjects in formal languages. The interested reader is directed to the ref-
erence works of Harrison (1978), Hopcroft and Ullman (1979) or Sippu and
Soisalon-Soininen (1988) for a more thorough treatment, while Appendix A
collects the formal definitions of the terms used here.

2.1.1 Formal Syntax

Our view of language is syntactic. If we consider the two sequences



6 General Background

The child ate a tomato .
*A tomato the child ate .

we will identify the first as a correct English sentence, and the second, starred
sequence as ungrammatical—and probably told by Yoda. The meaning, or
semantics, of a sentence is irrelevant. For instance, the sentence

A tomato ate the child .

is correct English, though wholly absurd since tomatoes are not carnivorous—
unless you consider 1978’s cult movie Attack of the Killer Tomatoes! to be a
realistic account of events.1 Likewise, the recognition of the word “tomato”
as a noun from its sequence of letters “t o m a t o” is a lexical issue—which
might be problematic in presence of homographs, like “a row” and “to row”.

How many syntactically correct English sentences do exist? Intuitively,
there is an infinite number of such sentences. A formal language (Defini-
tion A.3 on page 164) is a set of correct sentences, all of finite length, and all
built using the same finite vocabulary (Definition A.2 on page 164). Many
sentences in this infinite set are related, as for instance

The child ate a red tomato .
The child ate a round red tomato .
The child ate a big round red tomato .
. . .

This last sentence could grow indefinitely if we added more and more adjec-
tives qualifying our “tomato”. What we just observed is a rule for rewriting
correct sentences into new correct sentences. A rewriting system (Defini-
tion A.4 on page 164) is a finite set of such rules. A rewriting system can
act as a grammar for a language if the exact set of all the correct sentences
can be obtained by applying the rewrite rules.

As he investigated which models could account for these rules, Chomsky
(1956) observed that sentences were hierarchically structured in phrases. For
instance, “a tomato” is a noun phrase (NP) and, when prefixed with the
verb “ate”, it forms a verb phrase (VP). In turn, together with the noun
phrase “The child”, they form a complete sentence (S). Figure 2.1 on the
next page, which exhibits this phrase structure, is also called a derivation
tree. Instead of working solely on the sentence level, the rules in phrase
structure grammars (Definition A.5 on page 164) are also able to act on
the intermediate phrase structures, also called nonterminals by opposition
with the terminals on the sentence level. We denote the rule allowing the

1The fact that in some contexts both the ungrammatical and the absurd sequences
could be considered correct and meaningful is a hint at the sheer complexity of natural
languages.



2.1 Topics 7

v

NP

d n

VP

NP

d

S

n

The child ate a tomato.

Figure 2.1: Phrase structure of the sentence “The child ate a tomato .”.

sentence to be developed into the sequence of a noun phrase and a verb
phrase by

S−→NP VP (2.1)

where the left part and right part of rule (2.1) are S and NP VP respectively.

2.1.1.1 Context-Free Grammars

Chomsky (1959) further formalized how the rewriting rules in phrase struc-
ture grammars could be restricted, resulting in the famous Chomsky hierar-
chy. One of the possible restrictions stipulates that a rewriting rule should
have a single nonterminal on its left part and any sequence of terminal or
nonterminal symbols on its right part. Clearly, rule (2.1) complies with this
requirement. Grammars where all the rules do comply are called context-
free, or type 2 (CFG, Definition A.7 on page 165).

A context-free grammar generating our sentence “The child ate a tomato
.” could be the grammar with rules2

S−→NP VP , NP−→d n, VP−→v NP . (G1)

In this grammar d, n and v are the terminal symbols standing for deter-
minants, nouns and verbs, S, NP and VP the nonterminal symbols, and
among them S is the axiom, from which all sentences are derived. Gram-
mar G1 is rather limited since the only sentences it can generate are always
of form dnvdn. If we wanted to be able to generate the sentence “The child
ate a red tomato .”, we would need for instance the grammar with rules

S−→NP VP , NP−→dAN , AN−→aAN |n, VP−→v NP , (G2)

where AN−→a AN |n denotes the two rules AN−→a AN and AN−→n. Note
that, with this new grammar, we can further generate the sentences with as

2Names in capital letters denote nonterminal symbols. See Section A.1.4 on page 165
for our notations.



8 General Background

v

NP

d n

VP

NP

d

S

a

The child ate a red .tomato

n

AN

AN

Figure 2.2: Derivation tree for the sentence “The child ate a red tomato .”
according to G2.

many adjectives qualifying our “tomato” as we want by applying the rule
AN−→a AN again and again before choosing AN−→n. Figure 2.2 presents a
derivation tree using G2.

Context-free grammars are not so good for the description of natural
languages (Shieber, 1985), but they are well studied and employed in many
fields. In particular, the syntax of programming languages is almost always
described by context-free grammars. This popularity can be traced back to
the original formalization of the syntax and semantics of ALGOL 60, when
Backus (1959) and Naur (1960) first used a notation to describe its syntax,
notation since known as the Backus-Naur Form (BNF). Ginsburg and Rice
(1962) proved later that context-free grammars and grammars in BNF were
equivalent.

2.1.1.2 Ambiguity

Our grammar G2 is still rather poor. We might want to qualify our “tomato”
further, as in “The child ate a tomato with a bug .”. A grammar allowing
this kind of constructions could have the rules

S−→NPVP ,NP−→dAN |NPPP ,AN−→aAN |n,VP−→vNP ,PP−→pNP . (G3)

Note that the new preposition phrases qualifying a noun phrase can also be
added indefinitely using the rule NP−→NP PP , and indeed we can imagine
the sentence “The child ate a tomato with a bug from the garden .”. But
here we just introduced another phenomenon: is the “tomato” “from the
garden”, or is the “bug” “from the garden”? We have two different syntactic
interpretations for this sentence—there are two different derivation trees,
shown in Figures 2.3a and 2.3b.3 The sentence is ambiguous.

3The sentence has yet another syntactic interpretation, where “the child” is eating in
company of “a bug from the garden”. Our grammar G3 could exhibit this last interpreta-



2.1 Topics 9

v

NP

d n

VP

NP

S

The child ate a tomato with bug

NP

NP PP

p NP

n

n

ANd

a

ANd

from

PP

p

garden .

NP

AN

n

d

the

(a) Derivation tree where the “tomato” comes “from the gar-
den”.

v

NP

d n

VP

NP

S

NP PP

NPp

NP

n

AN

The child ate a tomato with bug

n

ANd

a

d

PP

p

from

n

AN

NP

garden .

d

the

(b) Derivation tree where the “bug” comes “from the garden”.

Figure 2.3: Derivation trees according to G3.

Syntactic ambiguity often occurs in natural languages, and its presence
is expected. But it can also occur in the syntax of programming languages,
which is quite worrying. Testing a context-free grammar for ambiguity is an
undecidable problem, as proven by Cantor (1962), Chomsky and Schützen-
berger (1963), and Floyd (1962a). However, approximative answers can be
provided to the question. An important part of this thesis is devoted to the
detection of syntactic ambiguities in context-free grammars.

tion if we added the rule VP−→VP PP .



10 General Background

2.1.2 Parsing

We now look at languages from a different perspective. Instead of develop-
ing a grammar describing how the English language is structured, we can
set up a device that recognizes correct English sentences and rejects incor-
rect ones. Just as we could define some rules to generate a correct sentence
from another correct one, we can devise rules recognizing correct sentences.
A formal language can be described just as well by such a recognizer (Def-
inition A.4 on page 164). A parser is a recognizer that also outputs the
sentence structure it uncovered. Thus the input of a parser for English
could be d n v d n, corresponding to “The child ate a tomato .”, and its
output the tree of Figure 2.1 on page 7—in which case we would call it a
parse tree. A parser has two missions: insuring the sentence correctness,
and exhibiting its structure for further analysis.

2.1.2.1 Pushdown Automata

A recognizer for a language somehow works by reversing the generative rules
exercised in the grammar. There are thus clear correspondences between
each restricted class of phrase structure grammars and their recognizers.
Chomsky (1962) proved that the recognizers for context-free languages were
pushdown automata (PDA, Definition A.10 on page 166).

Indeed, parsers for the languages generated by context-free grammars
commonly use a pushdown stack holding the roots of some partially com-
puted trees. Two main strategies are possible, namely

bottom-up parsers use the stack to remember which subtrees have al-
ready been recognized; they work their way from the terminal tree
leaves and try to reduce up to the tree root, while

top-down parsers use the stack to remember which subtrees have yet to
be recognized; they work their way from the tree root and try to predict
a correct derivation matching the tree leaves.

Table 2.1 on the next page presents how a bottom-up parser could recognize
the sentence “The child ate a tomato .”. This shift-reduce parser (Defini-
tion A.12 on page 167) has two types of rules, shift to push the next input
symbol on top of the stack, and reduce to replace the topmost symbols of
the stack by a nonterminal producing them. The special symbol $ denotes
the bottom of stack and end of sentence boundaries. Each reduction thus
connects tree nodes to their direct father in the parse tree.

The shift-reduce parser we just introduced is nondeterministic: as long as
we have some input symbol left, we can always choose to apply the shift rule,
and whenever a complete grammar rule right part is on top of the stack, we
can choose to apply a reduction. As explained in Table 2.1, there are times



2.1 Topics 11

Table 2.1: Recognition of “The child ate a tomato .” by a shift-reduce
parser.

parsing stack input rules

$ d n v d n $ shift
There is no complete grammar rule right part in the stack, thus the shift-reduce parser

should shift in order to complete its stack contents:

$ d n v d n $ shift
$ d n v d n $ reduce NP−→d n

We now have a complete right part for rule NP−→d n. We have just recognized a noun

phrase; we can replace d n by NP in the stack. Note however that we could have tried

to shift v as well, but then the parse would not have been successful.

$ NP v d n $ shift
$ NP v d n $ shift

$ NP v d n $ shift
$ NP v d n $ reduce NP−→d n

Once more, we have the constituents of a noun phrase on the top of the stack.

$ NP v NP $ reduce VP−→v NP
$ NP VP $ reduce S−→NP VP

$ S $
We have successfully recognized the entire sentence according to G1.

when the parser has to choose between two different actions. In the case of
an ambiguous sentence, two different correct parses of the whole sentence
are possible, and therefore the parser is bound to be nondeterministic.

The common description of a nondeterministic machine is that it is ad-
vised by some magical oracle telling which way to choose. A more pragmatic
view is that an external mechanism allows the machine to test all possibili-
ties, and to reject the choices that end up being wrong after all. Two kinds
of external mechanisms exist:

backtrack we choose one possibility and keep working until it fails—in
which case we undo the job performed since the last choice and try a
different possibility at this point—or definitely succeeds, and

parallelism we keep all the possibilities in parallel and discard the failing
ones on the fly.

Instead of resorting to a costly pseudo-nondeterminism mechanism, we
can also try to generate a more advanced form of the shift-reduce parser,
where the parser would be a bit more demanding about choosing a shift



12 General Background

or a reduction. Chapter 5 on page 81 is dedicated to the construction of
advanced deterministic parsers.

2.1.2.2 The Determinism Hypothesis

The few examples seen so far might give the impression that natural lan-
guages cannot be parsed deterministically, and that human understanding
would exert some form of pseudo-nondeterminism. A radically different
view was given by Marcus (1980) as he formulated the determinism hypoth-
esis. The claim of Marcus is that humans “normally” parse deterministi-
cally from left to right, never altering any previous decision—which rules out
backtracking—and always making a single choice at each point—which rules
out parallelism. Marcus describes in detail a parser for English to sustain
his theory, Parsifal.

This theory is not incompatible with the existence of syntactic ambigu-
ity: deterministic parsing is conditioned by the availability of precise lexical
and semantic information, so for instance we would know from the context
whether “the bug” was really “from the garden”. And if that fails, then the
sentence would also have to be reparsed by a human. Marcus advances the
same argument for unambiguous sentences for which Parsifal is nondeter-
ministic: a human being would also need some kind of backtrack; these are
called garden path sentences, like for instance

Have the children given a tomato by their parents.

The sentence usually needs a conscious reparsing after the reader led on a
garden path “Have the children given a tomato . . . ?” reads “by”, and has
to reinterpret the whole sentence.

The determinism hypothesis has been influential, more on the general
concepts than on the details of Parsifal (see for instance (Pritchett, 1992)
for a criticism of the latter). Actual natural language processors try to
exploit as much lexical and semantic information as possible in order to
decrease the huge numbers of possible parses for ambiguous sentences.

Several elements make the determinism hypothesis interesting to us.
First, Parsifal was later shown to behave like a noncanonical parser and
to accept context-free languages (Nozohoor-Farshi, 1986, 1987; Leermakers,
1992; Bertsch and Nederhof, 2007), which relates it to the parsing meth-
ods advocated in this thesis. Second, we are going to shift our interests
to programming languages in the next section. In their case, we are go-
ing to formulate a variant of the determinism hypothesis: we argue that
programming languages should be unambiguous.



2.2 Scope 13

2.2 Scope

Following the invention of context-free grammars and their basic properties
as summed up in the previous section, an important research effort was
directed towards investigating their adequacy as syntax specifications for
programming languages. This effort culminated during the seventies with
the large adoption of LALR(1) parser generators, and the supremacy of
YACC (Yet Another Compiler Compiler, Johnson, 1975) in particular.

Accordingly, we present in this section an overview of the major re-
sults of this Golden Age of parsing research; the reference books by Grune
and Jacobs (2007) on parsing techniques, and Sippu and Soisalon-Soininen
(1990) on parsing theory are warmly recommended to any reader interested
by an in-depth treatment of the subject. We first emphasize the importance
of parsing techniques in the development of programming languages, and
the specific requirements that stem from this particular application (Sec-
tion 2.2.1). We then present the classical deterministic parsing methods
(Section 2.2.2), and illustrate how they were extended to handle ambiguous
constructs (Section 2.2.3).

2.2.1 Parsers for Programming Languages

In a wide sense, programming languages encompass all the artificial lan-
guages developed in order to communicate with a computer: general pro-
gramming languages, like C (Kernighan and Ritchie, 1988), Java (Gosling
et al., 1996) or Standard ML (Milner et al., 1997), but also data description
languages, like LATEX (Lamport, 1994) or XML (Yergeau et al., 2004), or var-
ious other domain specific languages, like SQL (ISO, 2003) for databases.
The communication in these languages with computers is usually text-based,
hence the need for tools that allow to interpret or translate the texts. A
component is mandatory in all these tools in order to exhibit the relevant
structure from the text before interpretation or translation can occur; this
component is commonly referred to as the front end .

2.2.1.1 Front Ends

From the definition of parsing given in Section 2.1.2 on page 10, front ends
and parsers are clearly intimately related. Front ends are usually decom-
posed into three different tasks, summed up in Figure 2.4 on the next page
(e.g. (Aho and Ullman, 1972)):

lexical analysis (or scanning or tokenizing) recognizes the most basic con-
stituents of the syntax, like keywords, numbers, operators, or com-
ments, just like we needed to recognize that a “tomato” was a noun in



14 General Background

lexical

analysis

tokensinput

text

syntax

analysis

syntax

tree(s)

semantic

analysis

correct

tree

front end

evaluation

code generation

translation

. . .

Figure 2.4: The elements of a front end.

English. The result of this task is a sequence of tokens, or sometimes
a directed acyclic graph in case of an unresolved lexical ambiguity;

syntax analysis (or parsing) checks the program against the syntax of the
language and builds parse trees from the tokens;

semantic analysis (or bookkeeping or symbol table operations) checks
that the various identifiers are employed correctly with respect to their
names, scopes or types; we could compare this task with checking that
plurals are used consistently in an English sentence.

The separation of the front end in three distinct tasks is a result of
the impossibility to express some syntactic requirements using context-free
grammars only. As noted by Floyd (1962b), the fact that the identifier
xxxx—which could be arbitrarily long—in the following ALGOL 60 code
snippet has to be declared prior to its use cannot be enforced by a context-
free grammar:4

begin real xxxx; xxxx := xxxx end

The separation is thus mostly motivated by the limitations of context-free
grammars in the central parsing step—some performance concerns are also
taken into consideration.

Real world programming languages are seldom amenable to a clear sep-
aration into the three tasks of the front end. For instance, type and variable
names can collide and create ambiguities in C if the lexer does not differenti-
ate them—using the table of symbols—before feeding the parser. Keywords
in FORTRAN IV are not reserved and can also be interpreted as identifiers,
making the separation impossible. Extensions to context-free grammars
spawned from the separation issues: there exist scannerless parsers (Sa-
lomon and Cormack, 1989; Visser, 1997), and some table of symbols op-
erations can be integrated in the parsing phase using different variations
on context-free grammars, e.g. attribute grammars (Knuth, 1968; Watt,
1980), van Wijngaarden grammars (1975), affix grammars (Koster, 1971),

4If identifiers were of bounded length, a context-free grammar enumerating all cases
could be written.



2.2 Scope 15

facet grammars (Bailes and Chorvat, 1993) or boolean grammars (Okhotin,
2004; Megacz, 2006). Some have dropped context-free grammars completely,
in favor of a different, recognitive syntax formalism (Birman and Ullman,
1973; Ford, 2004), for which efficient parsers can be constructed (Ford, 2002;
Grimm, 2006).

We consider nonetheless the classical central view of the parser for a
context-free grammar, but we will allow some interplay with the other tasks
of the front end.

2.2.1.2 Requirements on Parsers

Some specificities of programming languages determine the desirable prop-
erties of front ends, and thus imply some properties on the parsers.

Reliability First of all, front ends have to be reliable. They are used
in compilers, in processes that will output programs running safety-critical
missions. They are blessed with one of the richest bodies of computing
literature, resulting in their being in one of the few fields with automated
tools generating program source (the front ends themselves) directly from
specifications (of the lexer, parser and typing system). Advanced parsers
being rather complex programs, the safest practice is to generate them from
the grammatical specifications.

Direct generation The current development of programming languages
is mostly centered on their semantic aspects. In this view, syntax provides
the user interface with the language, and should naturally reflect the seman-
tics. A second tendency is to create many small domain specific languages.
These trends require easy to use parsing tools, where some of the burden of
the syntax issues is shifted from the developer to the parser generator. In
other words, grammatical specifications should not have to be adapted to
the parser generator.

Unambiguous Programs (or document descriptions, or databases queries
etc.) should have a unique meaning. A lot of software already behaves er-
ratically, it is quite unnecessary to allow a program text to have several
interpretations. This is reflected in Figure 2.4 on the facing page by the fact
that the front end outputs a single correct tree. Since front ends have to be
reliable, we should detect any possibility for the language to be ambiguous.
The implication on parsers is simple:

• Either the parser always outputs a single parse tree—the parser itself is
unambiguous—, and the overall process is guaranteed to be unambigu-
ous. As mentioned before, an exact ambiguity detection is impossible
in general (Cantor, 1962; Chomsky and Schützenberger, 1963; Floyd,



16 General Background

1962a). There is however a simple way to guarantee unambiguity:
deterministic parsers are always unambiguous.

• Or, just as some lexical or semantic information was sometimes neces-
sary with Parsifal for the determinism hypothesis to hold, the parser
and the two other constituents of the front end might have to commu-
nicate in order to gather all the information necessary for the front end
to output a single tree. The parser could output several parse trees,
provided we have the insurance that subsequent processing will pick
at most one correct tree from the lot. This requires an (approxima-
tive) ambiguity detection mechanism telling where disambiguation is
required. We call such a parser pseudo deterministic, by contrast with
the pseudo nondeterministic methods mentioned in Section 2.1.2.

Performance Last of all, programs can be huge. The successive inclu-
sions of header files for several libraries in C can result in programs weighting
a hundred megabytes after preprocessing. The front end should therefore
be reasonably fast, even with today’s computing power. Parsers working in
time proportional with the size of the input text will be preferred.

In short, ideal parsers for programming languages are,

1. generated directly from a formal grammar,

2. deterministic or pseudo deterministic, and

3. fast, preferably working in linear time.

Parsing is a mature field, and there are numerous techniques meeting more
or less these requirements. The confrontation with practical issues (Sec-
tion 2.2.2) makes however some tradeoffs necessary. Our main purpose in
this thesis is to improve parsing methods on this three points basis. Er-
ror correction, robustness, modularity, or incremental processing are also
highly appreciated in the modern uses of parsers, and are subjects of study
by themselves.

2.2.2 Deterministic Parsers

In the classical meaning, deterministic parsers are based on deterministic
pushdown automata (DPDA, studied by Ginsburg and Greibach, 1966, Def-
inition A.11 on page 167). The literature abounds with techniques trying to
construct a deterministic pushdown automaton from a context-free gram-
mar. These parsers are often allowed to have a peek further than the next
input symbol, and are thus defined with a parameter k representing the
length of their lookahead window. In practice the parameter k is generally
set to one.



2.2 Scope 17

S′−→E, {$}

T−→F, {$, +, ∗}

F−→n, {$, +, ∗}

T−→T ∗ F, {$, +, ∗}

E−→E + T, {$, +}

n

(

+

∗

n

F
∗

F

T

F

T

n

T−→F, {), +, ∗}

F−→n, {), +, ∗}

E−→T, {), +}

T−→T ∗ F, {), +, ∗}

E−→E + T, {$, +}

+

∗

n

F
∗

F

T

F−→(E), {$, +})

E−→T, {$, +}

E

F

T

n

(

(

(

T

n

F

(

E

E F−→(E), {), +}
)+

1

2

3

4

0

6

7

5

8

9

10

11

12

13

14

15

16

17

18

19

20

21

n

(

(

Figure 2.5: LR(1) automaton for grammar G4 .

2.2.2.1 LR(k) Parsers

The most general classical deterministic parsing method is the LR(k) one
designed by Knuth (1965, see also Section A.2 on page 168). Its generation
algorithm outputs a DPDA-based parser if such a parser exists for the pro-
vided grammar. In this sense, the LR(k) construction predates any other



18 General Background

deterministic parser construction. We will often consider LR(k) parsers as
the best representatives of the classical deterministic parsing techniques.

The key concept behind LR(k) parsing is that the language of all the
correct stacks appearing during the operations of a shift-reduce parser is
a regular language, thus can be processed by the means of a deterministic
finite automaton (DFA, Definition A.9 on page 166). Depending on the
state of the DFA recognizing the stack contents, a decision to shift or to
reduce might be taken. A LR(k) parser infers its parsing decisions at each
parsing point from the entire left context of the point—through the state of
the DFA recognizing the stack contents—, and from the k next symbols of
the input. If all this information does not leave any choice open, then the
parser is deterministic.

Figure 2.5 on the previous page presents the underlying automaton of
the LR(1) parser for the grammar with rules

E−→T |E + T, T−→F |T ∗ F, F−→n |(E). (G4)

Grammar G4 is a grammar for arithmetic expressions. The reduction deci-
sions of the LR(1) parser are displayed in the figure with the correct looka-
head symbols for the reduction to occur. For instance E−→E + T, {$,+}
in state 8 indicates that a reduction of E + T to E can occur in state 8 if
the next input symbol is $ or +. Shifts are possible whenever a transition
labeled by a terminal symbol appears. This LR(1) parser is deterministic;
grammar G4 is LR(1). Table 2.2 presents how we can apply the automaton
to parse the sentence “n+n*n”.

2.2.2.2 Other Deterministic Parsers

LR(k) parsers tend to be exceedingly large, even by today’s standards, and
are seldom used in practice.

LL(k) Parsers It is therefore worth mentioning the top-down LL(k)
parsing method of Lewis II and Stearns (1968), and its variant the Strong
LL(k) method of Kurki-Suonio (1969) and Rosenkrantz and Stearns (1970).
Their popularity resides mostly in the ease of writing and reading such
parsers, which allows them to be programmed by hand. The parsing algo-
rithms are simple enough to be implemented as libraries (Leijen and Meijer,
2001; de Guzman, 2003), and are easier to extend with semantic treatment
(Lewis II et al., 1974).

SLR(k) and LALR(k) Parsers The LR(k) parsing method works bot-
tom-up, and we should mention its weaker variants Simple LR(k) and LookA-
head LR(k) proposed by DeRemer (1969, 1971) as alternatives yielding much
smaller parsers. Figure 2.6 on page 20 presents the underlying automaton



2.2 Scope 19

Table 2.2: Successful parse of “n+n*n” using the LR(1) automaton pre-
sented in Figure 2.5 on page 17.

parsing stack input rules
0© n + n ∗ n $ shift

The automaton is in the state 0 corresponding to an empty stack. A shift will bring

us to state 3. Notice that each LR(1) state has a unique entering symbol, thus we can

stack states instead of input symbols.

0© 3© + n ∗ n $ reduce F−→n
The reduction is correct since the next input symbol, +, is indicated as a valid lookahead

symbol. The reduction pops 3©, corresponding to n, from the top of the stack, and pushes

2©, corresponding to F .

0© 2© + n ∗ n $ reduce T−→F
0© 4© + n ∗ n $ reduce E−→T

Here we would have the choice between a shift to state 7 and the reduction using E−→T ;

since the next input symbol is +, we know we have to choose the reduction.

0© 1© + n ∗ n $ shift
0© 1© 6© n ∗ n $ shift

0© 1© 6© 3© ∗ n $ reduce F−→n
0© 1© 6© 2© ∗ n $ reduce T−→F
0© 1© 6© 8© ∗ n $ shift

This time the choice between shift and reduction is done in favor of a shift since the

lookahead symbol does not match the expected symbols for the reduction.

0© 1© 6© 8© 7© n $ shift
0© 1© 6© 8© 7© 3© $ reduce F−→n
0© 1© 6© 8© 7© 9© $ reduce T−→T ∗ F

0© 1© 6© 8© $ reduce E−→E + T
0© 1© $ reduce S′−→E

for the LALR(1) parser for grammar G4. The reduction decisions accept a
few more lookahead symbols than the LR(1) parser of Figure 2.5 on page 17,
and there are only twelve states instead of twenty-two. This LALR(1) parser
is also deterministic—a full LR(1) parser is unnecessary for G4. The parsing
steps of sentence “n+n*n” presented in Table 2.2 are exactly the same as
the steps using the LALR(1) automaton of Figure 2.6 on the next page since
the automata differ only on their treatment of parentheses.

According to a statistical study by Purdom (1974), the size of LALR(1)
parsers for practical grammars is linear, while they retain most of the power
of full LR(1) parsers. Their popularity is attested by the fame of the
LALR(1) parser generator YACC (Johnson, 1975) and of its free counterpart



20 General Background

S′−→E, {$}

T−→F, {$, +, ∗, )}

F−→n, {$, +, ∗, )}

E−→E + T, {$, +, )}

T−→T ∗ F, {$, +, ∗, )}

F−→(E), {$, +, )}

E

8

2

3

4

(

n

F

T

1

+

F

n

9
F

∗

∗

n

(

(E−→T, {$, +, (}

E

(

11+
)

F

n

T

10

T
6

7

5

0

Figure 2.6: LALR(1) automaton for grammar G4.

GNU Bison (Donnely and Stallman, 2006). Most programming languages
are distributed with a tool suite that includes a variant of YACC.

Left Corner, Precedence, Bounded Context, and Others Older bottom-
up methods like precedence parsers (Floyd, 1963; Wirth and Weber, 1966;
Ichbiah and Morse, 1970; McKeeman et al., 1970) or bounded context parsers
(Floyd, 1964; Graham, 1974) are seldom used. Nevertheless, like left corner
parsers (Rosenkrantz and Lewis II, 1970; Soisalon-Soininen and Ukkonen,
1979), their compactness makes them sometimes more suitable for pseudo
nondeterministic parsing than LR-based methods.

The size of full LR parsers can be contained by merging compatible states
(Pager, 1977), or more drastically by having states encode less information
and inspecting the stack (Kannapinn, 2001), down to the situation where
an arbitrarily deep stack inspection is allowed, in Discriminating Reverse
parsing (Fortes Gálvez, 1998).

2.2.2.3 Issues with Deterministic Parsers

Some of the mentioned parsers offer additional fall back mechanisms to deal
with nondeterminism, but when working in strict deterministic operation,
all process their input in linear time of the input size, and thus respect
requirements 2 and 3 on page 16. Quoting Aho and Ullman (1972, Chapter
5),



2.2 Scope 21

We shall have to pay a price for this efficiency, as none of the
classes of grammars for which we can construct these efficient
parsers generate all the context-free grammars.

Indeed, we will see that requirement 1 on page 16 is not enforced, and proof
that the next statement of Aho and Ullman is not quite true

However, there is strong evidence that the restricted classes of
grammars for which we can construct these efficient parsers are
adequate to specify all the syntactic features of programming
languages that are normally specified by context-free grammars.

2.2.3 Ambiguity in Programming Languages

The very first source of nondeterminism in parsers for programming lan-
guages is the presence of ambiguities in the context-free grammar.

As noted by Cantor (1962), an ambiguity issue was already plaguing
the ALGOL 60 specification (Naur, 1960), in the form of the now classical
dangling else ambiguity.

Example 2.1. Figure 2.7a and Figure 2.7b on the following page present
two possible parse trees for the same correct ALGOL 60 conditional state-
ment:5

if a then for i := 1 step 1 until N do if b then c:= 0 else k := k + 1

Should the “else k := k + 1” be part of the “ if a then” (high attachment)
or of the “ if b then” (low attachment) conditional statement?

The low attachment solution is clearly the one intended in the specifi-
cation. The grammar proposed in the specification attempts to enforce it
by distinguishing unconditional statements from the others, but fails in the
case of the for statements. A solution would be to split the for statement
derivations into two cases, with one allowing conditional statements and one
not allowing them.

Another solution is to provide some external requirements telling which
possibility should be preferred. This precedence scheme strategy is quite
popular since its proposal by Aho et al. (1975) and Earley (1975) indepen-
dently, and its implementation in YACC (Johnson, 1975). Ambiguous gram-
mars are smaller, easier to read and to maintain than their disambiguated
counterparts for the description of expressions and conditional statements,
as we can witness from the comparison between the ambiguous grammar G5

with rules
E−→E + E |E ∗ E |n |(E) (G5)

and its disambiguated version G4. The external requirements can specify

5Names between angle brackets denote nonterminal symbols.



22 General Background

if a then for i := 1 step 1 until N do if b then c := 0 else k := k + 1

〈ifstmt〉

〈condstmt〉

〈stmt〉〈forclause〉

〈forstmt〉

〈uncondstmt〉

〈ifstmt〉

〈ifclause〉

〈stmt〉

〈condstmt〉

(a) High attachment.

if a then for i := 1 step 1 until N do if b then c := 0 else k := k + 1

〈stmt〉〈ifstmt〉

〈condstmt〉

〈stmt〉〈forclause〉

〈forstmt〉

〈uncondstmt〉〈ifclause〉

〈ifstmt〉

〈condstmt〉

(b) Low attachment.

Figure 2.7: Ambiguity in ALGOL 60.

the associativity and level of precedence of operators, and the preference for
a low attachment in conditionals. They are directly enforced in the parsers.

In the case of G5, we need to specify that multiplication has higher
precedence than addition, and that both are left associative in order to
have the same parse trees as with G4. The LALR(1) automaton for G5 is
then smaller, as we can see in Figure 2.8 on the next page, and needs less
operations in order to parse the example sentence “n+n*n”.



2.2 Scope 23

E−→E ∗ E, {), +, ∗, $}

E−→(E), {), +, ∗, $}

S′−→E, {$}

E−→n, {), +, ∗, $}

0 1

2

3

4

5 6

7

8 9

(

E

+ ∗
(

n

nn

+ ∗

∗E E

E

)

( (n

E−→E + E, {), +, 6 ∗, $}

+ + ∗

Figure 2.8: LALR(1) automaton for G5. The precedence and associativity
requirements rule out the transitions and lookahead symbols in red.

This classical form of ambiguity is well understood; parsers for such
grammars are pseudo deterministic and satisfy our three requirements of
page 16.6 Precedence disambiguation has been further studied by Aasa
(1995), while a different pseudo deterministic scheme based on the rejection
of parse trees is described by Thorup (1994).

The recent popularity of parallel pseudo nondeterministic solutions has
accelerated the spread of the general disambiguation filters proposed by
Klint and Visser (1994)—at the cost of a violation of requirement 2 on
page 16. Van den Brand et al. (2003) present several ambiguous cases
motivating the use of filters: typedefs in C (Kernighan and Ritchie, 1988),
offside rules in Haskell (Peyton Jones, 2003), and dangling constructions in
COBOL (IBM, 1993; Lämmel and Verhoef, 2001). We will discuss these
techniques more thoroughly in Section 3.3.2 on page 41.

2.2.3.1 Further Nondeterminism Issues

Ambiguity does not account for all the nondeterminism issues in the syntax
of programming languages. The next most common issue is the need for a
lookahead of length longer than one symbol. Parr and Quong (1996) describe
several instances of the issue. Parser generators like ANTLR (Parr, 2007)

6There is a corner case with this disambiguation scheme than can lead to nontermi-
nating parsers (Soisalon-Soininen and Tarhio, 1988). All grammars cannot be handled
directly, but the case is quite unlikely to appear in any respectable grammar for a pro-
gramming language.



24 General Background

or Jikes (Charles, 1991) support user-set lookahead lengths in their SLL(k)
and LALR(k) parsers.

Lookahead issues are poorly handled by disambiguation schemes. Parser
developers are often forced to modify the grammar. While the algorithmic
techniques of Mickunas et al. (1976) could be applied to transform a LR(k)
grammar into a LR(1) or another suitable form, the transformation is often
considered unpractical, and does not handle unbounded lookahead cases.
The issue is thus solved by writing a grammar for a superset of the language,
and relying on post processing to reject the unwanted cases.

We will see several examples of syntax issues appearing in programming
languages that show the limitations of classical deterministic methods in
Section 3.1. Known solutions to these issues imply relaxing one or several
of the requirements enunciated on page 16.



Advanced Parsers and
their Issues 3

3.1 Case Studies (Java Modifiers, Standard ML Layered Patterns,

C++ Qualified Identifiers, Standard ML Case Expressions) •
3.2 Advanced Deterministic Parsing (Predicated Parsers, Regular

Lookahead Parsers, Noncanonical Parsers) • 3.3 General Parsing
(Families of General Parsers, Parse Forests)

Following the Golden Age of parsing research for programming languages
presented in Chapter 2, it has been widely acknowledged amongst computer
scientists that the issue was closed. Indeed, developing a small compiler
project with YACC is rather easy, and has been taught in many computer
science curricula.

Why parsing still gathers some research interest comes from the con-
frontation with real-life difficulties. As explained by Scott and Johnstone
(2006) in their introduction entitled The Death and Afterlife of Parsing
Research, many programming languages are challenging to parse using the
classical deterministic techniques.

We are going to sustain this claim by examining several cases in Sec-
tion 3.1. The issues presented there are symptomatic of the expressivity
gap between what can be specified using a context-free grammar, and what
can be actually parsed with a classical deterministic parser, like a YACC-
generated LALR(1) parser. Transforming a grammar until we can generate
a deterministic parser for it is arduous, and can obfuscate the attached se-
mantics. Moreover, as illustrated by these unbounded lookahead cases, some
languages are simply not deterministic. In short, requirement 1 is poorly
handled by traditional deterministic parsing methods.

We present then several advanced parsing techniques that give better
results in this regard. Two approaches are possible:

• Advanced deterministic parsing methods reduce the width of the ex-
pressivity gap, i.e. cases where requirement 1 is violated appear less
often, hopefully to the point where the only syntax issues remaining
in practice are always caused by ambiguities. The produced parsers
are still deterministic, but use more powerful models than DPDAs
(Section 3.2).



26 Advanced Parsers and their Issues

• Pseudo nondeterministic parsing methods can handle any context-free
grammar; therefore they are also called general methods. However,
they violate requirement 2 (Section 3.3).

3.1 Case Studies

We present four small case studies of difficulties with the syntax of program-
ming languages. All four instances present a LR conflict that requires an
unbounded lookahead for its resolution.

3.1.1 Java Modifiers

Programming language specifications usually provide a grammar already
acceptable for a LALR(1) parser generator, and not the “natural” grammar
they would have used if they had not been constrained. Gosling et al.
(1996) interestingly provide both versions of the grammar and present which
changes were undertaken in order to obtain a LALR(1) grammar in their
Section 19.1.

3.1.1.1 Grammar

Java classes, fields, methods, constructors and interfaces can be declared
using modifiers like “public” or “static”. Not all the modifiers can be ap-
plied in any declaration. The rules corresponding to the fields and methods
declarations in the Java specification are shown in Figure 3.1 on the next
page. Among other requirements, the rules explicitly forbid “abstract” as
a field modifier, while some modifiers are acceptable for fields and methods
alike, e.g. “public”.

3.1.1.2 Input Examples

Example 3.1. Consider now the partial Java input:

public class LookaheadIssue {
public static int length

When a deterministic parser sees the terminal string “public static int length”
in its lookahead window, it cannot tell whether ε should be reduced to a
〈FieldModifiers〉 as in:

public static int length = 1;

or to a 〈MethodModifiers〉 as in:

public static int length (String s) {
return s.length();

}

http://java.sun.com/docs/books/jls/first_edition/html/19.doc.html


3.1 Case Studies 27

〈FieldDeclaration〉 −→ 〈FieldModifiers〉 〈Type〉 〈VariableDeclarators〉 ;
〈FieldModifiers〉 −→ 〈FieldModifiers〉 〈FieldModifier〉

| ε
〈FieldModifier〉 −→ public

| protected

| private

| final

| static

| transient

| volatile

〈MethodHeader〉 −→ 〈MethodModifiers〉 〈ResultType〉 〈MethodDeclarator〉
〈MethodModifiers〉 −→ 〈MethodModifiers〉 〈MethodModifier〉

| ε
〈MethodModifier〉 −→ public

| protected

| private

| static

| abstract

| final

| native

| synchronized

〈ResultType〉 −→ 〈Type〉
| void

Figure 3.1: Fields and methods declarations in Java. 〈FieldDeclaration〉 and
〈MethodHeader〉 appear in the same context, and both 〈VariableDeclarators〉
and 〈MethodDeclarator〉 first derive identifiers.

The same happens for the reductions of “public” and “static”. A similar
problem happens after reading “int” and seeing the identifier “length” as
lookahead symbol, where the parser does not know whether to reduce to
〈Type〉 or to 〈ResultType〉.

This set of grammar productions is not LR(k) for any fixed k since we
could repeat the modifiers indefinitely, growing the inconclusive lookahead
string “public static int length” to an arbitrary length larger than the chosen
k length.



28 Advanced Parsers and their Issues

3.1.1.3 Resolution

The solution of Gosling et al. to this problem was to combine all kinds of
modifiers in a single 〈Modifier〉 nonterminal, and to check whether they
are allowed in their context at a later stage of compiler analysis. The
〈MethodHeader〉 production was then split into two rules to distinguish the
case of a “void” return type from a 〈Type〉 return type.

3.1.2 Standard ML Layered Patterns

Unlike the grammars sometimes provided in other programming language
references, the Standard ML grammar defined by Milner et al. (1997, Ap-
pendix B) is not put in LALR(1) form. In fact, it clearly values simplic-
ity over ease of implementation, and includes highly ambiguous rules like
〈dec〉−→〈dec〉 〈dec〉.

The definition of Standard ML was carefully reviewed by Kahrs (1993),
who presents in his Section 8.4 two issues with the syntax of the language.
We consider here the first of these two issues, which arises in the syntax of
layered patterns.

3.1.2.1 Grammar

The set of expunged grammar rules illustrating this first issue is quite small:

〈pat〉 −→ 〈atpat〉
| 〈pat〉 : 〈ty〉
| vid 〈tyop〉 as 〈pat〉

〈atpat〉 −→ vid
〈tyop〉 −→ : 〈ty〉

| ε

where 〈pat〉 denotes a pattern, 〈atpat〉 an atomic pattern, vid a value iden-
tifier and 〈ty〉 a type.

3.1.2.2 Input Examples

Example 3.2. We consider now the partial input

val f = fn triple : int∗int∗int

A deterministic parser cannot distinguish whether the vid “ triple ” is an
atomic pattern 〈atpat〉, with an associated type “int∗int∗int”, as in

val f = fn triple : int∗int∗int => triple

or is the start of a more complex layered pattern as in

val f = fn triple : int∗int∗int as ( , , z) => z + 1



3.1 Case Studies 29

ε

〈tyop〉

〈ty〉〈pat〉

〈pat〉

〈pat〉

〈pat〉

〈pat〉

〈pat〉

ε

〈tyop〉

〈ty〉

triple as ( , ,z ): int∗int∗int triple as ( , ,z ): int∗int∗int

Figure 3.2: Ambiguity in the pattern syntax of Standard ML.

Types 〈ty〉 in Standard ML can be quite involved expressions, of arbi-
trary length. The inconclusive lookahead string “int∗int∗int” can be longer
than the fixed k of a LR(k) parser. Further intricacy derives from the dan-
gling ambiguity of the syntax, where “ triple as ( , ,z ): int∗int∗int” can be
understood by attaching the type “int∗int∗int” to the pattern “( , ,z)” or to
the entire layered pattern “ triple as ( , ,z)”, as demonstrated in Figure 3.2.

3.1.2.3 Resolution

The solution often adopted by Standard ML compilers is to replace the rule
〈pat〉−→vid 〈tyop〉 as 〈pat〉 by 〈pat〉−→〈pat〉 〈tyop〉 as 〈pat〉, and exclude after
parsing the cases where the pattern is not a variable.

Example 3.3. As noted by Kahrs, the incorrect sentence

val f = fn (y) as z => z

is allowed by a few implementations because the pattern “(y)” is semantically
identical to the value identifier “y”. Nonetheless, almost all of the compilers
we tested correctly identified the problem and reported an error.

3.1.3 C++ Qualified Identifiers

Some of the renewed interest in parsing techniques came from the tricki-
ness of parsing C++. First designed as a preprocessor for C, the language
evolved into a complex standard (ISO, 1998). Its rather high level of syn-
tactic ambiguity calls for nondeterministic parsing methods, and therefore
the published grammar makes no attempt to fit in the LALR(1) class.



30 Advanced Parsers and their Issues

3.1.3.1 Grammar

We are interested in one particular issue with the syntax of qualified iden-
tifiers, corresponding to the (simplified) grammar rules

〈id expression〉 −→ 〈unqualified id〉
| 〈qualified id〉

〈unqualified id〉 −→ identifier
| 〈template id〉

〈qualified id〉 −→ 〈nested name specifier〉 〈unqualified id〉
〈nested name specifier〉 −→ 〈unqualified id〉::〈nested name specifier〉

| 〈unqualified id〉::
〈template id〉 −→ identifier <〈template argument〉>

〈template argument〉 −→ 〈id expression〉

Qualified identifiers 〈qualified id〉 are qualified through a sequence of un-
qualified identifiers 〈unqualified id〉 separated by double colons “ :: ”, before
the identifier itself. Moreover, each unqualified identifier can be a template
identifier 〈template id〉, where the argument of the template, between angle
brackets “<” and “>”, might be a 〈qualified id〉 as well.

3.1.3.2 Input Examples

Example 3.4. A LALR(1) shift/reduce conflict appears with this set of
rules. A parser fed with “A::”, and seeing an identifier “B” in its lookahead
window, has a nondeterministic choice between

• reducing “A::” to a single 〈nested name specifier〉, in the hope that
“B” will be the identifier qualified by “A::”, as in “A::B<C::D>”, and

• shifting, in the hope that “B” will be a specifier of the identifier actu-
ally qualified, for instance “E” in “A::B<C::D>::E”.

An informed decision requires an exploration of the specifier starting with
“B” in the search of a double colon symbol. The need for an unbounded
lookahead occurs if “B” is the start of an arbitrarily long template identifier.

Note that the double colon token might also appear inside a template
argument. Considering that the conflict could also arise there, as after
reading “A<B::” in “A<B::C<D::E>::F>::G”, we see that it can be arduous
to know whether a “ :: ” symbol is significant for the resolution of the conflict
or not.

3.1.3.3 Resolution

We can trivially amend the rules of 〈nested name specifier〉:

〈nested name specifier〉 −→ 〈nested name specifier〉〈unqualified id〉::
| 〈unqualified id〉::



3.1 Case Studies 31

〈dec〉 −→ fun 〈fvalbind〉
〈fvalbind〉 −→ 〈sfvalbind〉

| 〈fvalbind〉 ′|′ 〈sfvalbind〉
〈sfvalbind〉 −→ vid 〈atpats〉 = 〈exp〉

〈atpats〉 −→ 〈atpat〉
| 〈atpats〉 〈atpat〉

〈exp〉 −→ case 〈exp〉 of 〈match〉
| vid

〈match〉 −→ 〈mrule〉
| 〈match〉 ′|′ 〈mrule〉

〈mrule〉 −→ 〈pat〉 => 〈exp〉
〈pat〉 −→ vid 〈atpat〉

〈atpat〉 −→ vid

Figure 3.3: Standard ML function value binding and case expressions.

Switching to left recursion removes the conflict. This correction was made
by the Standards Committee in 2003.1 Interestingly, the C++ grammar of
the Elsa parser (McPeak and Necula, 2004) still employs a right recursion.

3.1.4 Standard ML Case Expressions

A second case where an unbounded lookahead is needed by a Standard ML
parser in order to make the correct decision is described by Kahrs. The issue
arises with alternatives in function value binding and case expressions.

3.1.4.1 Grammar

We consider the relevant rules given in Figure 3.3. The rules describe Stan-
dard ML declarations 〈dec〉 for functions, where each function name vid is
bound, for a sequence 〈atpats〉 of atomic patterns, to an expression 〈expr〉
using the rule 〈sfvalbind〉−→vid 〈atpats〉 = 〈exp〉. Different function value
bindings can be separated by alternation symbols “|”. Standard ML case

expressions associate an expression 〈exp〉 with a 〈match〉, which is a sequence
of matching rules 〈mrule〉 of form 〈pat〉 => 〈exp〉, separated by alternation
symbols “ |”.

1See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg defects.html#125. The
correction was not motivated by this conflict but by an ambiguity issue, and the fact that
the change eliminates the conflict seems to be a fortunate coincidence.

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#125


32 Advanced Parsers and their Issues

3.1.4.2 Input Examples

Example 3.5. Using mostly these rules, the filter function of the SML/NJ
Library could be written (Lee, 1997) as:

datatype ’a option = NONE | SOME of ’a

fun filter pred l =
let

fun filterP (x :: r , l ) =
case (pred x)

of SOME y => filterP(r, y::l)
| NONE => filterP(r, l )

| filterP ([], l ) = rev l
in

filterP ( l , [])
end

The Standard ML compilers consistently reject this correct input, often
pinpointing the error at the equal sign in “| filterP ([], l ) = rev l”.

If we implement our set of grammar rules in a traditional LALR(1) parser
generator like GNU Bison (Donnely and Stallman, 2006), it reports a single
shift/reduce conflict, a nondeterministic choice between two parsing actions:

state 20

6 exp: "case" exp "of" match .

8 match: match . ’|’ mrule

’|’ shift, and go to state 24

’|’ [reduce using rule 6 (exp)]

The conflict takes place just before “ | filterP ([], l ) = rev l” with the pro-
gram of Example 3.5.

If we choose one of the actions—shift or reduce—over the other, we
obtain the parses drawn in Figure 3.4 on the next page. The shift action is
chosen by default by Bison, and ends on a parse error when seeing the equal
sign where a double arrow was expected, exactly where the Standard ML
compilers report an error.

Example 3.6. To make matters worse, we also have to cope with a dangling
ambiguity:

case a of b => case b of c => c | d => d

In this expression, should the dangling “d => d” matching rule be attached
to “case b” or to “case a”? The Standard ML definition indicates that the
matching rule should be attached to “case b”. In this case, the shift should
be chosen rather than the reduction.



3.1 Case Studies 33

| NONE => filterP(r, l) | filterP ([], l ) = rev l

〈fvalbind 〉

〈exp〉

〈mrule〉

〈sfvalbind 〉

〈fvalbind 〉

. . .

〈pat〉

〈match〉

〈exp〉

〈exp〉〈atpats〉

〈sfvalbind 〉

(a) Correct parse tree when reducing.

| NONE => filterP(r, l) | filterP ([], l ) = rev l

〈match〉

〈exp〉

〈sfvalbind 〉

〈fvalbind 〉

〈exp〉

〈mrule〉 〈pat〉

〈mrule〉

error!

. . .

〈pat〉

〈match〉

〈pat〉

(b) Attempted parse when shifting.

Figure 3.4: Partial parse trees corresponding to the two actions in conflict
in Example 3.5 on the preceding page.

Our two examples show that we cannot blindly choose one particular
action over the other. Nonetheless, this puzzle is not totally inextricable: we
could make the correct decision if we had more information at our disposal.



34 Advanced Parsers and their Issues

The “=” sign in the lookahead string “ | filterP ([], l ) = rev l” indicates
that the alternative is at the topmost function value binding 〈fvalbind〉 level,
and not at the “case” level, or it would be a “=>” sign. But the sign can
be arbitrarily far away in the lookahead string: an atomic pattern 〈atpat〉
can derive a sequence of tokens of unbounded length. The conflict requires
an unbounded lookahead.

3.1.4.3 Resolution

As stated earlier, the Standard ML compilers uniformly reject any input
that exercises this syntax issue. The issue is one of the few major defects of
the Standard ML definition according to a survey by Rossberg (2006):

There is no comment on how to deal with the most annoying
problem in the full grammar, the infinite lookahead required to
parse combinations of function clauses and case expressions [...]
[Parsing] this would either require horrendous grammar transfor-
mations, backtracking, or some nasty and expensive lexer hack.

The solution called upon by the maintainers of Standard ML compilers and
by Rossberg is to correct the definition, by indicating explicitly that the
inputs currently rejected are indeed incorrect.

The previous syntax issues of our case studies were not extremely se-
rious. The solution of Gosling et al. to the Java modifiers issue hindered
the reliability of the front end since an ad hoc treatment was required. The
solution to the first Standard ML issue resulted in some incorrect inputs
to be accepted by a few compilers, but with no effect on the semantics.
This second Standard ML issue has a dire consequence: some Standard ML
programs matching the specification are rejected by the compilers.

3.2 Advanced Deterministic Parsing

In order to handle unbounded lookahead issues, advanced deterministic pars-
ing techniques depart from the DPDA model. We review next three families
of advanced deterministic parsing methods.

3.2.1 Predicated Parsers

The use of predicates to guide the parser first stemmed from attribute gram-
mars parsers (e.g. Ganapathi, 1989) and was thus concerned with semantics.
Syntactic predicates on the other hand were implemented in ANTLR by Parr
and Quong (1995). Such predicates are explicitly given by the grammar de-
veloper to impersonate an oracle that directs the parser in nondeterministic
cases.



3.2 Advanced Deterministic Parsing 35

For instance, the following ANTLR predicate distinguishes Java method
declarations:

((MethodModifier)* ResultType MethodDeclarator)?

Predicates can match a non regular context-free language, and can be used to
solve all our lookahead issues. Once the predicate is matched, normal parsing
resumes, potentially reparsing a large part of the input. Syntactic predicates
can be highly inefficient at parsing time, potentially yielding exponential
processing time, though the bad performance could probably be amended
using memoization techniques.

Rather than performance, which is after all our third and least important
requirement, our most serious concern is that syntactic predicates are error-
prone: the grammar writer manually interferes with the parser. Ideally, the
parser generator should infer such predicates directly from the context-free
grammar. This is exactly what the regular lookahead and noncanonical
constructions attempt.

3.2.2 Regular Lookahead Parsers

The LR-Regular parsers defined by Čulik and Cohen (1973) base their de-
cisions on the entire remaining input. Unbounded lookahead strings can
be discriminated as being part of distinct regular languages. If a finite set
of such disjoint regular lookahead languages—called a regular partition—is
enough to decide in all cases, then deterministic parsing is possible. LR(k)
parsing is then a special case of LRR, where the lookahead strings are par-
titioned according to their k first symbols.

The original idea of Čulik and Cohen relies on a two scan parsing algo-
rithm. The first scan is done right to left by a DFA and yields a string of
symbols identifying the blocks of the partition. The result of this first scan is
a sentence of a LR(0) grammar, which can be constructed from the original
grammar. The second scan is done left to right by a DPDA for this LR(0)
grammar. The overall process runs in linear time. The same generalization
can be applied to LL(k) parsing to yield LL-Regular parsers (Čulik, 1968;
Jarzabek and Krawczyk, 1975; Nijholt, 1976; Poplawski, 1979).

Regular Separability Problem The existence of a regular partition that
distinguishes the possible lookahead strings is known as the regular separa-
bility problem, and is undecidable (Hunt III, 1982). We cannot tell for an
arbitrary context-free grammar whether it is LRR (or LLR). The construc-
tion of regular lookahead parsers thus relies on heuristics in order to produce
a suitable regular partition, and even if one exists, it might fail to find it.
Moreover, the two scans parsing algorithm is rather unpractical. The LRR
method of Čulik and Cohen is mostly of theoretical interest.



36 Advanced Parsers and their Issues

int = , ;

(

〈FieldModifiers 〉

〈MethodModifiers 〉

void
synchronized

native
abstract

public
protected
private
static
final

transient
volatile

identifier

Figure 3.5: Discriminating lookahead DFA for the conflict between
〈MethodModifiers〉−→ε and 〈FieldModifiers〉−→ε in Java.

The conflict with C++ qualified identifiers we studied in Section 3.1.3 on
page 29 is an instance of a conflict with non regularly separable lookahead
languages. This particular example is therefore out of the grasp of LR-
Regular parsing.

Practical Implementations Nonetheless, there are practical implemen-
tations of the LRR principle: the SLR(k)-based method of Kron et al.
(1974), the XLR method of Baker (1981), the RLR method of Boullier
(1984), the method of Seité (1987), the LAR method of Bermudez and
Schimpf (1990) and the BCLRR method of Farré and Fortes Gálvez (2001).
They all rely on a DFA to explore the remaining input in an attempt to
discriminate between conflicting parsing actions. Figure 3.5 presents a DFA
solving the unbounded lookahead issue in Java presented earlier in Sec-
tion 3.1.1 on page 26. Parsing is done in a single sweep, but an unbounded
lookahead might be consulted in order to decide of some actions. The looka-
head DFA results from a regular approximation of the language expected
next by the parser, and its computation is the main difference between the
various practical LRR methods. A DFA exploration is also at the heart of
the LL(*) algorithm introduced in the upcoming version 3 of ANTLR (Parr,
2007).

Last of all, it is worth noting that a small performance issue can arise,
since the DFA-based implementations can be tricked into a quadratic parsing
time behavior (see Section 5.3.1 on page 115).

3.2.3 Noncanonical Parsers

Rather than relying on a DFA to explore the remaining input like a LRR
parser would do, a noncanonical parser can enter this remaining text and
parse it. When confronted with nondeterminism, a bottom-up noncanonical



3.2 Advanced Deterministic Parsing 37

parser is able to suspend a reduction decision, and to start parsing the re-
maining input. The parser performs some reductions there, and can resume
to the conflict point and use nonterminal symbols—resulting from the re-
duction of a possibly unbounded amount of input—in its lookahead window
to solve the initial nondeterministic choice.

Two-Stack Pushdown Automata The noncanonical parsing mechanism
is implemented by means of a two-stack pushdown automaton (2PDA, intro-
duced by Colmerauer (1970) for noncanonical parsing, and employed in some
older parsing methods, e.g. by Griffiths and Petrick (1965)): the first pars-
ing stack corresponds to the usual pushdown stack, while the second input
stack holds the initial input and partially reduced input when the parser re-
sumes to an earlier position. Different noncanonical parser generators build
different controls for the 2PDA, just like the different deterministic parser
generators do for PDA. The two stacks allow to return to a previously sus-
pended decision point and try to solve the conflict in the light of the newly
reduced symbols that just appeared in the lookahead window. Bounding
the distance to this suspended decision point guarantees that the parser will
run in linear time of the length of the input. Table 3.1 on the following page
presents the use of a 2PDA to parse a problematic Java input following the
grammar rules of Figure 3.1 on page 27.

History of Noncanonical Parsing The idea of noncanonical parsing
can be traced back to an ending remark of Knuth (1965), which gave later
birth to LR(k, t) parsing—meaning the parser can suspend up to t succes-
sive reduction decisions. Noncanonical parsing methods have been devised
as extensions to many bottom-up parsing methods since, starting with the
total precedence of Colmerauer (1970) extending precedence parsing, fol-
lowed by BCP(m, n) of Williams (1975) for bounded context, LR(k, ∞)
and FSPA(k) (Finite State Parsing Automaton) of Szymanski (1973) for
LR(k), and NSLR(1) of Tai (1979) for SLR(1).

Szymanski and Williams (1976) further studied a general framework for
noncanonical parsing, with a negative result: there is no algorithmic con-
struction for LR(k, ∞) and FSPA(k) parsers, which denote respectively
unconstrained noncanonical LR(k) parsing and noncanonical LR(k) parsing
with a finite control. LR(k, ∞) is clearly not computable, whereas FSPA(k)
can be compared to full LRR: in noncanonical parsing, we need an accurate
regular approximation of the parsing stack language, and thus we hit again
the wall of the undecidability of the regular separability problem.

Other Uses Noncanonical parsers can be constructed for random sen-
tential forms and not just for canonical right or left sentential forms. They
are thus appropriate for many parsing-related problems where more flexibil-



38 Advanced Parsers and their Issues

Table 3.1: Recognition of “private int n = 0;” by a noncanonical parser with
k = 2 symbols of lookahead.

parsing stack input stack rules

$ private int n=0; $ shift
We have the choice between the reductions 〈FMods〉−→ε and 〈MMods〉−→ε; in doubt, we

suspend this decision and shift in hope of finding the answer further in the input.

$ private int n=0; $ shift
$ private int n=0; $ reduce 〈IntegralType〉−→int

Though we are still in the dark regarding whether we are in a field or in a method

declaration, the “int” keyword can be reduced in the same way in both cases. The two

topmost symbols of the parsing stack are pushed onto the input stack where they form

the new 2-lookahead window.

$ private 〈IntegralType〉 n=0; $ shift
However, the 2-lookahead window does not provide enough information to decide any-

thing new, and we have to shift again. Let us fast-forward to the interesting case, where

we have just reduced “n = 0” to 〈VDecls〉. The 2-lookahead window now holds 〈Type〉,

which could appear for fields as well as for methods, followed by 〈VDecls〉, which is

specific of field declarations.

$ private 〈Type〉〈VDecls〉 ; $ reduce 〈FMod〉−→private

$ 〈FMod〉〈Type〉〈VDecls〉 ; $ reduce 〈FMods〉−→ε
The remaining parsing steps do not exhibit any noncanonical behavior, and the input is

successfully parsed.

ity comes handy: parallel parsing (Fischer, 1975; Schell, 1979), scannerless
parsing (Salomon and Cormack, 1989), multi-axiom grammars parsing (Rus
and Jones, 1998), robust parsing (Ruckert, 1999), or incremental parsing
(Overbey, 2006).

Comparison with LRR Parsing A comparison with practical LRR im-
plementations ends in a draw: while the “lookahead” exploration of non-
canonical parsers is more accurate since it recognizes context-free languages
instead of regular ones, a noncanonical parser is helpless if the lookahead
string cannot be reduced. In other words, noncanonical parsing is more
powerful on the language level, but incomparable on the grammar level.
Furthermore, the parse example of Table 3.1 illustrates the need for k = 2
symbols of reduced lookahead, while in practice noncanonical methods are
limited to a single symbol of lookahead. The two exceptions are the Gener-
alized Piecewise LR (GPLR, Schell, 1979) algorithm and the noncanonical
extension of Farré and Fortes Gálvez (2004) to DR(k) parsing: both emulate
an unbounded reduced lookahead length, but both can exhibit a quadratic



3.3 General Parsing 39

parsing time behavior. The ideal deterministic parsing technique remains
to be found; meanwhile, general parsing techniques might be the solution.

3.3 General Parsing

Backtracking (Brooker and Morris, 1960; Irons, 1961; Kuno, 1965) or recog-
nition matrix (Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965)
parsers are some of the oldest parsing algorithms. Pseudo nondeterminism
was then mandatory in order to palliate the shortcomings of naive parsing
techniques, like the shift reduce parser presented in Section 2.1.2. The intro-
duction of practical deterministic parsers then reduced the need for pseudo
nondeterminism, while offering much better performance.

Parallel pseudo nondeterminism was later investigated by Earley (1970)
and Lang (1974). The performance of their parsers makes them usable in
practice, since they work in linear time for deterministic portions of the
grammars and cubic time at worst. At first, parallel nondeterministic pars-
ing was not considered for programming languages, but found its niche in
natural language processing. Later, the quickly increasing computational
power has encouraged their adoption by a growing number of programming
languages parser developers.

3.3.1 Families of General Parsers

3.3.1.1 Backtracking Parsers

Both LL and LR algorithms can be easily extended with a backtracking
mechanism—in fact, most LL parsing tools implement a backtracking engine
(Breuer and Bowen, 1995; Leijen and Meijer, 2001; de Guzman, 2003; Parr,
2007), while there exist quite a few backtracking LR tools (Grosch, 2002;
Spencer, 2002; Dodd and Maslov, 2006; Thurston and Cordy, 2006).

Some backtracking engines work on a first-match basis on an ordered
grammar, and thus return the first possible parse of an ambiguous sentence.
The ordering principle for filtering retry points is pushed to the limit with
the backtracking technique of Birman and Ullman (1973) and Ford (2002).
Ensuring that the ordering corresponds to the desired disambiguated parse
can be arduous, while returning all parses is usually deemed too computa-
tionally expensive—see however Johnstone and Scott (1998).

3.3.1.2 Chart Parsers

The offspring of the Earley parsing algorithm can be found in the family
of chart or dynamic parsing algorithms (Kay, 1980; Graham et al., 1980;
Pereira and Warren, 1983; Sikkel, 1997), preeminent in the field of natural
language processing.



40 Advanced Parsers and their Issues

The chart contains collections of partial parses—or items—that corre-
spond to the input read so far. Table 3.2 on the next page presents the
item sets of an Earley parser (see the definitions in Section A.1.6) for
the ambiguous sentence “x as z: int”. The sentence is accepted in two
different ways, corresponding to the items (〈pat〉−→〈pat〉 : 〈ty〉·, 0, 5) and
(〈pat〉−→vid 〈tyop〉 as 〈pat〉·, 0, 5) that appear in the last set.

There are many implementations of the original Earley algorithm avail-
able for programming languages parsing, though they seem less popular than
GLR parsers.

3.3.1.3 Generalized LR Parsers

The parallel nondeterministic algorithm of Lang has found its practical re-
alization in the Generalized LR parsing algorithm of Tomita (1986). The
multiple parallel executions of the parser are merged into a so-called graph
structured stack (GSS) that allows to contain the running complexity. If
GLR parsing was originally aimed towards natural language processing, it
has since found an enthusiastic response in the field of programming lan-
guages parsing. The low amount of nondeterminism in most programming
languages makes them an ideal target for GLR parsing, avoiding the main-
tenance of too many parallel stacks. An example parse on the Standard ML
program of Section 3.1.4 is given in Table 3.3 on page 42.

Various variations of Tomita’s algorithm have been defined, correcting
some performance or ε rules issues; Scott and Johnstone (2006) present one
such variant and a nice survey of the GLR parsing history. Parsing per-
formance reported there, and also by McPeak and Necula (2004) for their
Elkhound parser generator, are within reasonable bounds when compared to
deterministic parsers. Besides Elkhound, there are many more implementa-
tions available, notably in the ASF+SDF framework (Heering et al., 1989)
and GNU Bison (Donnely and Stallman, 2006).

The distinction between chart parsers and GLR parsers is a bit artificial;
all exert some form of memoization (or tabulation) to store intermediate
results and obtain polynomial space and time complexity bounds (Nederhof
and Satta, 2004). Generalized LR parsers can thus be seen as Earley parsers
with a precomputed component. The distinction is further blurred when one
considers generalized left corner parsers (Nederhof, 1993; Moore, 2004).

General parsing is rather flexible, and is employed for various parsing
problems, including incremental parsing (Wagner and Graham, 1997), lexi-
cal ambiguity (Aycock and Horspool, 2001), or scannerless parsing (van den
Brand et al., 2002). Nevertheless, as hinted at the beginning of the section,
there remains one open issue with general parsing algorithms: they do not
shield the parser programmer from ambiguities.



3.3 General Parsing 41

Table 3.2: Earley item sets for the input “x as z: int” according to the
Standard ML grammar subset described in Section 3.1.2.1 on page 28.

〈pat〉−→·〈atpat〉, 0, 0
〈pat〉−→·〈pat〉 : 〈ty〉, 0, 0
〈pat〉−→·vid 〈tyop〉 as 〈pat〉, 0, 0
〈atpat〉−→·vid , 0, 0

x
〈pat〉−→vid·〈tyop〉 as 〈pat〉, 0, 1
〈atpat〉−→vid·, 0, 1
〈tyop〉−→·〈ty〉, 1, 1
〈tyop〉−→·, 1, 1
〈pat〉−→〈atpat〉·, 0, 1
〈pat〉−→〈pat〉· : 〈ty〉, 0, 1
〈pat〉−→vid 〈tyop〉·as 〈pat〉, 0, 1

as
〈pat〉−→vid 〈tyop〉 as·〈pat〉, 0, 2
〈pat〉−→·〈atpat〉, 2, 2
〈pat〉−→·〈pat〉 : 〈ty〉, 2, 2
〈pat〉−→·vid 〈tyop〉 as 〈pat〉, 2, 2
〈atpat〉−→·vid , 2, 2

z
〈pat〉−→vid·〈tyop〉 as 〈pat〉, 2, 3
〈atpat〉−→vid·, 2, 3
〈tyop〉−→·〈ty〉, 3, 3
〈tyop〉−→·, 3, 3
〈pat〉−→〈atpat〉·, 2, 3
〈pat〉−→〈pat〉· : 〈ty〉, 2, 3
〈pat〉−→vid 〈tyop〉 as 〈pat〉·, 0, 3
〈pat〉−→·〈pat〉· : 〈ty〉, 0, 3
〈pat〉−→vid 〈tyop〉·as 〈pat〉, 2, 3

:
〈pat〉−→〈pat〉 : ·〈ty〉, 2, 4
〈pat〉−→〈pat〉 : ·〈ty〉, 0, 4

int
〈pat〉−→〈pat〉 : 〈ty〉·, 2, 5
〈pat〉−→〈pat〉 : 〈ty〉·, 0, 5
〈pat〉−→vid 〈tyop〉 as 〈pat〉·, 0, 5
〈pat〉−→〈pat〉· : 〈ty〉, 0, 5
〈pat〉−→〈pat〉· : 〈ty〉, 2, 5

3.3.2 Parse Forests

The result of a general parser might be a collection of parse trees—a parse
forest—where a single parse tree was expected, hampering the reliability of



42 Advanced Parsers and their Issues

Table 3.3: Generalized LALR(1) parse of the Standard ML input from Ex-
ample 3.5 on page 32.

Let us start in the inconsistent state with a shift/reduce conflict: we performed the goto
to 〈match〉, and at this point, we have a single stack.

$\N{dec}$

fun vid 〈atpats〉 = case 〈exp〉 of 〈match〉

We need now to further perform all the possible reductions: the reduction in conflict
creates an new GSS node for the goto on 〈exp〉. Owing to the possibility of a shift, we
need to keep the nodes up to the 〈match〉 goto. The state in this node demands another
reduction using rule 〈sfvalbind〉−→vid 〈atpats〉 = 〈exp〉, and the previously created node
is made inactive, while we create a new node for the goto of 〈sfvalbind〉. Again, the
LALR(1) state in this new node demands yet another reduction, this time to 〈fvalbind〉,
and the node is made inactive, while we add a new node. We have thus two different stack
frontiers, filled in black in the following figure.

〈dec〉 〈sfvalbind〉
〈exp〉

〈fvalbind〉

fun vid 〈atpats〉 = case 〈exp〉 of 〈match〉

Both these nodes accept to shift the next tokens “ |”, vid , and vid . This last shift brings
us to a stack with a single frontier node.

〈dec〉

〈fvalbind〉

vid|

fun vid 〈atpats〉 = case 〈exp〉 of 〈match〉 | vidvid

Performing all the possible reductions from this node separates again the two cases; in
one, we end with a frontier node reached after a goto on 〈pat〉, whereas in the other, the
frontier node is reached after a goto on 〈atpats〉.

〈dec〉

fun vid 〈atpats〉 = case 〈exp〉 of 〈match〉 | vidvid

〈atpat〉

〈pat〉

〈atpats〉

〈fvalbind〉 〈atpat〉

vid|

Only the second of these two frontier nodes is compatible with the next shift of the equal

sign “=”. The other stack is discarded. The parser has now a single stack, as if it had

guessed the right parsing action in the conflict state.

〈dec〉

fun

〈fvalbind〉

vid|

=

〈atpats〉



3.3 General Parsing 43

a

a

a

S

X1

X2

Xn

ε

Figure 3.6: The set of parse trees for sentence an with respect to G6.

the computations that follow the parsing phase. With the spread of general
parsing tools, the need to handle parse forests arose.

3.3.2.1 Shared Forests

The number of distinct parses for a single sentence can be exponential in
the length of the sentence.2 For instance, the following grammar by Wich
(2005) allows exactly 2n parse trees for a sentence an:

S−→aS |aA |ε, A−→aS |aA |ε. (G6)

Each parse tree for the sentence an has the form shown in Figure 3.6, with the
X1, X2, . . . , Xn variables independently drawn from the set {S,A}, yielding
2n different trees.

Such an explosive upper bound is not unrealistic, at least for natural
languages: Moore (2004) reports a startling average number of 7.2 × 1027

different parses for sentences of 5.7 tokens on average, using a large coverage
English grammar (Marcus et al., 1993).

Sharing In order to restrain this complexity, we could share the nodes
of different trees in the parse forest that derive the same string from the same
nonterminal: in the case of G6, we would obtain a single tree as in Figure 3.6,
with each Xi variable replaced by two shared nodes for the trees rooted with
S and A and deriving ai. The shared forest now fits in a linear space.

Shared forests have in general a size bounded by O(np+1) with n the
length of the sentence and p the length of the longest rule rightpart in the

2In the case of a cyclic grammar, with a nonterminal A verifying A =⇒+ A, the number
of trees can even be unbounded. The tabulation and shared forest representations have
therefore to manage cycles in order to guarantee termination.



44 Advanced Parsers and their Issues

〈mrule〉〈exp〉

〈match〉

〈match〉

〈mrule〉

〈exp〉

〈exp〉〈mrule〉

〈match〉

〈pat〉 〈mrule〉

〈match〉

≡〈match〉

case a of b => case b of c => c | d => d

〈exp〉

〈exp〉

Figure 3.7: The shared parse forest for the input of Example 3.6.

grammar; one could further encode the forest in a binary form in order to
obtain a O(n3) bound (Billot and Lang, 1989). Figure 3.7 shows a shared
forest for the ambiguity of Example 3.6, with a topmost 〈match〉 node that
merges the two alternative interpretations of the input.

Grammar Forest A convenient way to generate a shared forest for a
given grammar G and input string w is to generate the rules of a gram-
mar forest Gw that derives only w, and furthermore whose parse trees are
isomorphic to the parse trees of the original grammar G.

Usually, the nonterminal symbols of Gw are then triples (A, i, j) such that
nonterminal A could derive the portion of w between position i and position
j. For instance, in the forest grammar of Figure 3.8 on the next page that
describes the shared forest of Figure 3.7, the nonterminal (〈match〉, 3, 15) has
two different rules corresponding to the shared 〈match〉 node in Figure 3.7.

Alternatively, the grammar forest can be encoded in binary form as well
by adding more nonterminals.

3.3.2.2 Disambiguation Filters

Klint and Visser (1994) developed the general notion of disambiguation fil-
ters that reject some of the trees of the parse forest, with the hope of ending
the selection process with a single tree. Such a mechanism is implemented in
one form or in another in many GLR tools, including SDF (van den Brand
et al., 2002), Elkhound (McPeak and Necula, 2004), and Bison (Donnely
and Stallman, 2006).



3.3 General Parsing 45

(〈exp〉, 0, 15) −→ (case, 0, 1) (〈exp〉, 1, 2) (of, 2, 3) (〈match〉, 3, 15)
(〈exp〉, 1, 2) =⇒∗ (a, 1, 2)

(〈match〉, 3, 15) −→ (〈mrule〉, 3, 15)
(〈match〉, 3, 15) −→ (〈match〉, 3, 11) ( |, 11, 12) (〈mrule〉, 12, 15)
(〈mrule〉, 3, 15) −→ (〈pat〉, 3, 4) (=>, 4, 5) (〈exp〉, 5, 15)
(〈match〉, 3, 11) −→ (〈mrule〉, 3, 11)

(〈mrule〉, 12, 15) =⇒∗ (d, 12, 13) (=>, 13, 14) (d, 14, 15)
(〈pat〉, 3, 4) =⇒∗ (b, 3, 4)

(〈exp〉, 5, 15) −→ (case, 5, 6) (〈exp〉, 6, 7) (of, 7, 8) (〈match〉, 8, 15)
(〈mrule〉, 3, 11) −→ (〈pat〉, 3, 4) (=>, 4, 5) (〈exp〉, 5, 11)

(〈exp〉, 6, 7) =⇒∗ (b, 6, 7)
(〈match〉, 8, 15) −→ (〈match〉, 8, 11) ( |, 11, 12) (〈mrule〉, 12, 15)

(〈exp〉, 5, 11) −→ (case, 5, 6) (〈exp〉, 6, 7) (of, 7, 8) (〈match〉, 8, 11)
(〈match〉, 8, 11) −→ (〈mrule〉, 8, 11)
(〈mrule〉, 8, 11) =⇒∗ (c, 8, 9) (=>, 9, 10) (c, 10, 11)

Figure 3.8: The grammar forest that describes the shared forest of Figure 3.7
on the facing page.

Unexpected ambiguities are acute with GLR parsers that compute se-
mantic attributes as they reduce partial trees. The GLR implementations
of GNU Bison (Donnely and Stallman, 2006) and of Elkhound (McPeak and
Necula, 2004) are in this situation. Attribute values are synthesized for each
parse tree node, and in a situation like the one depicted in Figure 3.7 on the
facing page, the values obtained for the two alternatives of a shared node
have to be merged into a single value for the shared node as a whole. The
user of these tools should thus provide a merge function that returns the
value of the shared node from the attributes of its competing alternatives.

Failure to provide a merge function where it is needed forces the parser to
choose arbitrarily between the possibilities, which is highly unsafe. Another
line of action is to abort parsing with a message exhibiting the ambiguity;
this can be set with an option in Elkhound, and it is the behavior of Bison.

Example 3.7. Let us suppose that the user has found out the ambigu-
ity of Example 3.6, and is using a disambiguation filter (in the form of a
merge function in Bison or Elkhound) that discards the dotted alternative
of Figure 3.7, leaving only the correct parse according to the Standard ML
definition. A simple way to achieve this is to check whether we are reduc-
ing using rule 〈match〉−→〈match〉′|′〈mrule〉 or with rule 〈match〉−→〈mrule〉.
Filters of this variety are quite common, and are given a specific dprec



46 Advanced Parsers and their Issues

directive in Bison, also corresponding to the prefer and avoid filters in
SDF2 (van den Brand et al., 2002).

The above solution is unfortunately unable to deal with yet another
form of ambiguity with 〈match〉, namely the ambiguity encountered with
the input:

case a of b => b | c => case c of d => d | e => e

Indeed, with this input, the two shared 〈match〉 nodes are obtained through
reductions using the same rule 〈match〉−→〈match〉′|′〈mrule〉. Had we trusted
our filter to handle all the ambiguities, we would be running our parser
under a sword of Damocles.

This last example shows that a precise knowledge of the ambiguous cases
is needed for the development of a reliable GLR parser. While the problem
of detecting ambiguities is undecidable, conservative answers could point
developers in the right direction.



Grammar
Approximations 4

4.1 Derivation Trees (Bracketed Grammars, Position Graphs) •
4.2 Position Automata (Quotients of Position Graphs, Parsing with

Position Automata, Approximating Languages) • 4.3 Recognizing
Derivation Trees (Tree Languages, Validating XML Streams, A

Characterization, Optimality) • 4.4 Related Models (Recognition

Graphs, Parsing Schemata, Regular Approximations, Abstract

Interpretation, Systems of Pushdown Automata, Item Grammars)

Be it for advanced deterministic parser generation or for ambiguity detec-
tion, a static analysis of the context-free grammar at hand is involved. Both
issues are rather challenging compared to e.g. the simple problem of identi-
fying useless symbols in the grammar: they require us to approximate the
grammar into a more convenient, finite state, representation. We describe in
this chapter a theoretical framework for grammar approximations, a ground-
work for the more practical considerations of the following chapters.

Such approximations should somehow preserve the structure of the orig-
inal grammar, and thus we start this chapter by considering the derivation
trees of context-free grammars (Section 4.1). Then, we define position graphs
as labeled transition systems (LTS) that describe depth-first traversals in-
side these trees (Section 4.1.2), and consider their quotients, the position
automata, for our grammar abstractions (Section 4.2). The investigation of
the properties of position automata brings us a bit farther than really needed
in the next chapters, but the questions it raises are not wholly abstruse: we
describe next a simple application of position automata that employs some of
the advanced results of the chapter: the recognition of parse trees by means
of finite state automata (Section 4.3). We end the chapter by examining a
few related models in Section 4.4.

4.1 Derivation Trees

Chomsky (1956) emphasized from the very beginning that phrase structure
grammars describe the structure of the language rather than merely its
sentences. The transformations he defined to yield a natural language in its



48 Grammar Approximations

full complexity act on derivation trees of a context-free backbone (Chomsky,
1961). This notion of tree language generated by a context-free grammar,
i.e. its set of derivation trees, was later studied in its own right by Thatcher
(1967), and is still an active research area, especially for XML applications
(Neven, 2002; Murata et al., 2005; Schwentick, 2007). Our own interest in
the subject stems from the two following facts:

1. the derivation trees are the desired result of a parsing process,

2. a grammar is ambiguous if and only if it derives more than one tree
with the same yield.

4.1.1 Bracketed Grammars

Considering the classical sentence “She saw the man with a telescope.”, a
simple English grammar G7= 〈N,T, P, S〉1 that generates this sentence could
have the rules in P

S
2
−→NP VP

NP
3
−→ d n

NP
4
−→ pn

NP
5
−→NP PP

VP
6
−→ v NP

VP
7
−→VP PP

PP
8
−→ pr NP ,

(G7)

where the nonterminals in N , namely S , NP , VP , and PP , stand respec-
tively for a sentence, a noun phrase, a verb phrase, and a preposition phrase,
whereas the terminals in T , namely d, n, v, pn, and pr , denote determi-
nants, nouns, verbs, pronouns, and prepositions. Two interpretations of our
sentence are possible: the preposition phrase “with a telescope” can be as-
sociated to “saw” or to “the man”, and thus there are two derivation trees,
shown in Figure 4.1 on the facing page.

The purpose of a parser is to retrieve the explicit structure of this sen-
tence. In the same way, an ambiguity verification algorithm should detect
that two different structures seem possible for it.

Tree structures are easier to handle in a flat representation, where the
structural information is described by a bracketing (Ginsburg and Harri-

son, 1967): each rule i = A−→α (also denoted A
i
−→α) of the grammar is

surrounded by a pair of opening and closing brackets di and ri.

1All our grammars G are context-free, reduced, and of form 〈N, T, P, S〉. Our notational
conventions are summed up in Section A.1.4 on page 165.



4.1 Derivation Trees 49

S

VPNP

pn

She

v

saw

NP

NP PP

NPpr

with

d n

telescopea

d n

manthe

PP

NPpr

with

d n

telescopea

S

VPNP

pn

She

v

saw

NP

d n

manthe

VP

Figure 4.1: Two trees yielding the sentence “She saw the man with a tele-
scope.” with G7.

Definition 4.1. The bracketed grammar of a grammar G is the context-free
grammar Gb = 〈N,Tb, Pb, S〉 where Tb = T ∪ Td ∪ Tr with Td = {di | i ∈ P}

and Tr = {ri | i ∈ P}, and Pb = {A
i
−→diαri | A

i
−→α ∈ P}. We denote

derivations in Gb by =⇒b.
We define the homomorphism h from V ∗

b to V ∗ by h(di) = ε and h(ri) = ε
for all i in P , and h(X) = X otherwise, and denote by δb (resp. wb) a string
in V ∗

b (resp. T ∗
b ) such that h(δb) = δ in V ∗ (resp. h(wb) = w in T ∗).

Using the rule indices as subscripts for the brackets, the two trees of
Figure 4.1 are represented by the following two sentences of the augmented
bracketed grammar for G7:

2

d1 d2 d4 pn r4 d6 v d5 d3 d n r3 d8 pr d3 d n r3 r8 r5 r6 r2 r1 (4.1)

d1 d2 d4 pn r4 d7 d6 v d3 d n r3 r6 d8 pr d3 d n r3 r8 r7 r2 r1. (4.2)

The existence of an ambiguity can be verified by checking that the image of
these two different sentences by h is the same string pn v d n pr d n.

Covers As a pleasant consequence of the unambiguity of bracketed
grammars—they are LL(1)—, the set of strings in V ∗

b that derives a given

string δb in V ∗
b has a minimal element d̂b with respect to the order induced

by =⇒∗
b . We call this minimal element a cover of δb, defined by

δ̂b = min=⇒∗
b
{γb | γb =⇒∗

b δb}. (4.3)

For instance, in G7, the minimal cover of d5 NP d8 pr d3 d n r3 r8 (note the
unmatched d5 symbol) is d5 NP PP : d5 NP PP =⇒∗

b d5 NP d8 pr d3 d n r3 r8
and there does not exist any string γ in V ∗

b such that γ =⇒∗
b d5 NP PP holds.

2In the case of bracketed grammars, the augmented bracketed grammar G′
b augments

the sets Td and Tr with the symbols d1 and r1 respectively, and augments the set of rules
with the rule S′−→d1Sr1. Symbols d1 and r1 act as beginning and end of sentence markers.



50 Grammar Approximations

A string δ in V ∗ might have many different bracketings δb, each with its
cover; accordingly, we define the set of covers of a string δ as

Covers(δ) = {δ̂b | h(δb) = δ}, (4.4)

and denote by δ̂ an element of Covers(δ). The following proposition moti-
vates the introduction of the previous definitions:

Proposition 4.2. Let G = 〈N,T, P, S〉 be a context-free grammar. A string
w in T ∗ belongs to L(G) if and only if S belongs to Covers(w).

Alternate Definitions Our definition of bracketed grammars diverges
from the standard one (Ginsburg and Harrison, 1967) on one point: we
enforce distinct opening and closing brackets for each rule, whereas a single
closing symbol would suffice. As a matter of fact, a single opening symbol
and a single closing one would have been enough in order to describe the tree
structure, i.e. we could have considered parenthesis grammars (McNaughton,
1967) instead. Nonetheless, the idea behind our brackets is that they also
represent parsing decisions: the di symbols represent predictions in top-down
or Earley parsing, whereas the ri ones represent reductions in bottom-up
parsing and completions in Earley parsing. Making these symbols explicit
allows us to preserve this behavior throughout our approximations; we will
devote more space to this topic in Section 4.2.2.

4.1.2 Position Graphs

Let us consider again the two sentences (4.1) and (4.2) and how we can read
them step by step on the trees of Figure 4.1 on the preceding page. This
process is akin to a left to right walk in the trees, between positions to the
immediate left or immediate right of a tree node. For instance, the dot in

d1 d2 d4 pn r4 d6 v d5 d3 d n r3·d8 pr d3 d n r3 r8 r5 r6 r2 r1 (4.5)

identifies the position between NP and PP in the middle of the left tree of
Figure 4.1 on the previous page.

Positions Although a dotted sentence of Gb like (4.5) suffices to iden-
tify a unique position in the derivation tree for that sentence, it is convenient
to know that this position is immediately surrounded by the NP and PP
symbols. We therefore denote by xbdi(

α
ub·α′

u′
b
)rix

′
b the position identified by

xbdiub·u′brix′b such that the derivations

S′ =⇒∗
b xbAx

′
b

i
=⇒b xbdiαα

′rix
′
b, α =⇒∗

b ub and α′ =⇒∗
b u

′
b (4.6)

hold in G′
b. The strings α and α′ in V ∗ are covers of ub and u′b. Likewise, it

is worth noting that x̂b is in d1(V ∪ Td)
∗ and x̂′b in (V ∪ Tr)

∗r1.



4.1 Derivation Trees 51

S

VPNP

pn

She

d2 r2

r4d4 r6d6

v

saw

NP

NP

NPpr

with

d n

telescopea

d3

d5

d8

r3

r8

r5

d n

manthe

r3

d3

PP PP

NP

with

d n

telescopea

d8

r3

r8r6d6

r3d3

d7
r7

S

VPNP

pn

She

d2 r2

r4d4

v

saw

NP

d n

manthe

VP

pr

d3

Figure 4.2: The two subgraphs of the position graph of G7 corresponding to
the two trees of Figure 4.1 on page 49.

Using this notation, the position identified by (4.5) is denoted by

d1 d2 d4 pn r4 d6 v d5(
NP

d3 d n r3· PP
d8 pr d3 d n r3 r8

)r5 r6 r2 r1. (4.7)

The parsing literature classically employs items to identify positions in

grammars; for instance, [NP
5
−→NP·PP ] is the LR(0) item (Knuth, 1965)

corresponding to position (4.7). There is a direct connection between these
two notions: items are equivalence classes of positions (Section 4.2).

Transitions Transitions from one position to the other can then be
performed upon reading the node label, or upon deriving from this node,
or upon returning from such a derivation. We have thus three types of

transitions: symbol transitions ֓
X
−→, derivation transitions ֓

di−→, and reduction
transitions ֓

ri−→. The set of all these positions in all parse trees along with
the transition relation is a position graph. Figure 4.2 presents two portions
of the position graph for G7; the position identified by the dot in (4.5) is
now a vertex in the left graph.

For instances of labeled transition relations, we can consider again posi-

tion (4.7), and see in Figure 4.2 that it is related by ֓
d8−→ to the position

d1 d2 d4 pn r4 d6 v d5 d3 d n r3 d8( · pr NP
pr d3 d n r3

)r8 r5 r6 r2 r1, (4.8)

and by ֓
PP
−−→ to the position

d1 d2 d4 pn r4 d6 v d5(
NP PP

d3 d n r3 d8 pr d3 d n r3 r8· )r5 r6 r2 r1. (4.9)

The latter is related in turn to the position

d1 d2 d4 pn r4 d6(
v NP

v d5 d3 d n r3 d8 pr d3 d n r3 r8 r5· )r6 r2 r1 (4.10)

by ֓
r5−→.



52 Grammar Approximations

Definition 4.3. The position graph Γ = 〈N , −֓→〉 of a grammar G associates
the set N of positions with the relation −֓→ labeled by elements of Vb, defined
by

xbdi(
α
ub·Xα′

vbu
′
b
)rix

′
b ֓

X
−→ xbdi(

αX
ubvb·α′

u′
b
)rix

′
b iff X ∈ V,X =⇒∗

b vb,

xbdi(
α
ub· Bα′

vbu
′
b
)rix

′
b ֓

dj
−→ xbdiubdj( · β

vb
)rju

′
brix

′
b iff B

j
−→β and β =⇒∗

b vb,

xbdiubdj(
β
vb· )rju

′
brix

′
b ֓

rj
−→ xbdi(

αB
ubvb·α′

u′
b
)rix

′
b

iff B
j
−→β, α =⇒∗

b ub and α′ =⇒∗
b u

′
b.

We label paths in Γ by the sequences of labels on the individual transitions.

Let us denote the two sets of positions at the beginning and end of the
sentences by µs = {d1( · S

wb
)r1 | S =⇒∗

b wb} and µf = {d1(
S
wb· )r1 | S =⇒∗

b wb}.

For each sentence wb of Gb, a νs in µs is related to a νf in µf by νs ֓
S
−→ νf .

Our position graph is thus an infinite collection of subgraphs, one for each
derivation tree of G, each with its own start and final position, like the two
subgraphs shown in Figure 4.2 on the previous page.

Paths in Derivation Trees Positions being defined with respect to a
unique derivation tree, paths between positions can be considered within
this tree. This gives rise to some simple results on the relations between the
various paths between two positions of the position graph and the possible
derivations in the original grammar.

Let us consider in the left tree of Figure 4.2 on the preceding page the
two positions (4.11) defined as follows

d1 d2 d4 pn r4 d6 v d5( · NP PP
d3 d n r3 d8 pr d3 d n r3 r8

)r5 r6 r2 r1 (4.11)

and (4.9) defined earlier. Lemma 4.4 shows that the existence of the path

NP d8 pr NP r8 (4.12)

between these positions and of the derivation NP PP =⇒∗
b NP d8pr NP r8

implies that NP PP is also a path between positions (4.11) and (4.9).

Lemma 4.4. Let ν and ν ′ be positions in N , and δb and γb be bracketed

strings in V ∗
b with ν ֓

δb−→ ν ′. If γb =⇒∗
b δb in Gb, then ν ֓

γb−→ ν ′.

Proof. Suppose γb =⇒n
b δb; we proceed by induction on n the number of

individual derivation steps. If n = 0, then δb = γb and the property holds.

Let now γb = ρbAσb
i
=⇒b ρbdiαriσb =⇒n−1

b δb; using the induction hypothesis,

ν ֓
ρb−→ ν1 ֓

di−→ ν3 ֓
α
−→ ν4 ֓

ri−→ ν2 ֓
σb−→ ν ′. By Definition 4.3, ν1 ֓

A
−→ ν2 and thus

ν ֓
γb−→ ν ′.



4.2 Position Automata 53

Conversely, note that the existence of path (4.12) and of the derivation
NP d8pr NP r8 =⇒∗

b d4 pn r4 d8pr NP r8 does not imply the existence of such
a path d4 pn r4 d8pr NP r8 between positions (4.11) and (4.9), as can be
checked on Figure 4.2 on page 51. Neither does the existence of the path
d3 d n r3 PP between our two positions imply a derivation relation with
(4.12). The only conclusive case appears if one considers a terminal path
between two positions, as demonstrated in the following lemma.

Lemma 4.5. Let ν and ν ′ be positions in N , δb be a bracketed string in
V ∗

b , and wb a terminal bracketed string in T ∗
b such that ν ֓

wb−→ ν ′. The path

ν ֓
δb−→ ν ′ holds in Γ if and only if δb =⇒∗

b wb.

Proof. Using path ν ֓
wb−→ ν ′ and δb =⇒∗

b wb with Lemma 4.4, we know that

the path ν ֓
δb−→ ν ′ exists in Γ. Conversely, if we suppose that ν ֓

δb−→ ν ′ holds
in Γ, then it is easy to check inductively that δb =⇒∗

b wb.

4.2 Position Automata

In order to perform static checks on our grammar, we are going to approxi-
mate its context-free language by a regular language. This shift brings us to
a domain where most problems (equivalence, containment, ambiguity, . . . )
become decidable.

In relation with the preceding section on position graphs, we want a
finite structure instead of our infinite position graph. The approximation is
the result of an equivalence relation applied to the positions of the graph,
such that the equivalence classes become the states of a position automaton
(PA), an operation known as quotienting. If the chosen equivalence relation
is of finite index, then our position automaton is a finite state automaton
(FSA, see Definition A.8 on page 166).

4.2.1 Quotients of Position Graphs

Definition 4.6. The (nondeterministic) position automaton (PA) Γ/≡ of a
grammar G using the equivalence relation ≡ on N is a LTS 〈Q,Vb, R,Qs, Qf 〉
where

• Q, the state alphabet, is the set N/≡ = {[ν]≡ | ν ∈ N} of non-empty
equivalence classes [ν]≡ over N modulo the equivalence relation ≡,

• Vb is the input alphabet,

• R in Q Vb ×Q is the set of rules

−֓→/≡ = {qχ ⊢ q′ | ∃ν ∈ q, ∃ν ′ ∈ q′, ν ֓
χ
−→ ν ′},



54 Grammar Approximations

NP−→d·n
d n

NP−→d n·NP−→·d n

pn
NP−→pn·NP−→·pn

VP−→·v NP VP−→v·NP VP−→v NP·
v NP

VP−→·VP PP VP−→VP·PP VP−→VP PP·
PPVP

PP−→·pr NP PP−→pr·NP PP−→pr NP·
pr NP

r4

d3 r3

r4

d4

d3

d5

r3
r5

d5 r7d7

r7
d6 r6

d7

r3
d5

d4

d3

r4

d4

d4

d5

d3

d6 r6

r5

d8 r8

r5

d8

r4
r3

r8
r5

S′−→·S S′−→S·
r2d2

S−→·NP VP S−→NP VP·S−→NP·VP

S

VPNP

NP−→NP·PPNP−→·NP PP NP−→NP PP·
NP PP

Figure 4.3: The nondeterministic position automaton for G7 using item0.
Dashed arrows denote di and ri transitions in the automaton, whereas plain
arrows denote transitions on symbols in V .

• Qs = µs/≡ = {[νs]≡ | νs ∈ µs} is the set of initial states, and

• Qf = µf/≡ = {[νf ]≡ | νf ∈ µf} is the set of final states.

4.2.1.1 The item0 Example

For instance, an equivalence relation that results in a FSA similar to a non-
deterministic LR(0) automaton (Hunt III et al., 1974, 1975)—the difference
being the presence of the ri transitions—is item0 defined by

xbdi(
α
ub·α′

u′
b
)rix

′
b item0 ybdj(

β
vb·β′

v′
b
)rjy

′
b iff i = j and α′ = β′. (4.13)

The equivalence classes in N/ item0 are the LR(0) items. Figure 4.3
presents the nondeterministic automaton for G7 resulting from the appli-
cation of item0 as equivalence relation. Our position (4.7) is now in the
equivalence class represented by the state labeled by NP−→NP·PP in this
figure. One can further see that position (4.8) in the left tree of Figure 4.2



4.2 Position Automata 55

NP−→·d n

NP−→d·n
d

n

NP−→d n·

S−→·NP VP S−→NP·VP S−→NP VP··S

·VP

VP−→·VP PP

VP−→VP·PP

VP−→VP PP·
VP·

VP−→·v NP

VP−→v·NP

VP−→v NP·

S′−→·S S′−→S·

·PP

PP−→·pr NP

PP−→pr·NP

PP−→pr NP·
PP·

·NP

NP·

ε

ε

ε

ε

ε

ε

ε

ε

ε

pr
v

d7

r7r8

d8

r6

d6

ε

r5

NP−→·NP PP

NP−→NP·PP

NP−→NP PP·

d5

ε

NP−→·pn
pn

NP−→pn·

d4

r4 ε

ε

ε

ε

S·
ε

ε

S

ε

PP VP

d3

r3

NP

r2d2

Figure 4.4: An alternate position automaton for G7 using item0; dotted
arrows denote the additional ε transitions.

and position

d1 d2 d4 pn r4 d7 d6 v d3 d n r3 r6 d8( · pr NP
pr d3 d n r3

)r8 r7 r2 r1 (4.14)

in the right one are equivalent by item0, and thus both belong to the equiv-
alence class labeled by PP−→·pr NP in Figure 4.3 on the facing page.

Example 4.7. The position automaton Γ/item0 for grammar G is then
constructed with

• state alphabet Q = N/item0= {[A−→α·α′] | A−→αα′ ∈ P},

• input alphabet Vb,

• set of rules R

{[A−→α·Xα′]X ⊢ [A−→αX·α′] | A−→αXα′ ∈ P}

∪{[A−→α·Bα′]di ⊢ [B−→·β] | i = B−→β ∈ P,A−→αBα′ ∈ P}

∪{[B−→β·]ri ⊢ [A−→αB·α′] | i = B−→β ∈ P,A−→αBα′ ∈ P},

• sets of initial and final states Qs = µs/item0= {[S′−→·S]} and Qf =
µf/item0= {[S′−→S·]} respectively.

Size Optimization Due to the wide use of items in parsing construc-
tions, item0 is of particular interest, and even deserves a glance at a practi-
cal optimization: A more compact construction for item0 position automata
adds intermediate states of form [·A] and [A·] to reduce the overall number



56 Grammar Approximations

of transitions. We will further discuss the topic of the size of position au-
tomata in Section 4.2.1.3 on page 58. Figure 4.4 shows the resulting position
automaton for G7.

Example 4.8. We construct an alternate position automaton Γ/item0
′ for

grammar G by redefining

• the state alphabet to Q = N/item0 ∪{[·A] | A ∈ N}∪ {[A·] | A ∈ N},
and

• the set of rules R to

{[A−→α·Xα′]X ⊢ [A−→αX·α′] | A−→αXα′ ∈ P}

∪{[A−→α·Bα′]ε ⊢ [·B] | B ∈ N,A−→αBα′ ∈ P}

∪{[·B]di ⊢ [B−→·β] | i = B−→β ∈ P}

∪{[B−→β·]ri ⊢ [B·] | i = B−→β ∈ P}

∪{[B·]ε ⊢ [A−→αB·α′] | B ∈ N,A−→αBα′ ∈ P}.

The sets Vb, Qs, and Qf remain unchanged.

The number of transitions in this variant construction is now bounded
by O(|G|). The equivalence of the two constructions is straightforward, and
the variant construction is the one typically used for nondeterministic LR
automata (Hunt III et al., 1974; Grune and Jacobs, 2007) or LC parsers
(Sikkel, 1997).

4.2.1.2 Languages Recognized by Position Automata

Position automata are in general labeled transition systems, but when their
number of states is finite—or equivalently when the position equivalence is
of finite index—, they end up being finite automata, and thus fulfill our
purpose of approximating our context-free grammar by a regular language.

We study here some of the properties of our approximated language,
which hold in both the finite and the infinite case. We will further con-
sider the classes of tree languages and nested word languages that position
automata define in Section 4.3.1 on page 65.

Regular Superlanguage We denote by � the relation between config-
urations of a LTS, such that qaw � q′w if and only if there exists a rule
qa ⊢ q′ in R.

Lemma 4.9. Let Γ = 〈N , −֓→〉 be a position graph and Γ/≡ its quotient by

≡. Let ν, ν ′ be positions in N and δb a bracketed string in V ∗
b . If ν ֓

δb−→ ν ′,
then [ν]≡δb �

∗ [ν ′]≡.



4.2 Position Automata 57

Proof. Straightforward induction on the number of individual steps in ν ֓
δb−→

ν ′.

We then obtain the counterpart of Lemma 4.4 for position automata,
with the restriction that the paths under study should be valid, i.e. they
should be possible between grammar positions.

Corollary 4.10. Let G be a grammar, Gb its bracketed grammar, and Γ/≡ =
〈Q,Vb, R,Qs, Qf 〉 its position automaton using ≡.

Let ν and ν ′ be positions in N , and δb and γb be bracketed strings in V ∗
b

with ν ֓
δb−→ ν ′. If γb =⇒∗

b δb in Gb, then [ν]≡γb �
∗ [ν ′]≡.

Let us recall that the language recognized by a LTS A = 〈Q,Σ, R,Qs, Qf 〉
is L(A) = {w ∈ Σ∗ | ∃qs ∈ Qs,∃qf ∈ Qf , qsw �

∗ qf}. In the finite case,
L(Γ/≡) is trivially a regular word language. We study how this language
can be related to the original grammar.

Theorem 4.11. Let G be a grammar, Gb its bracketed grammar, and Γ/≡ its
position automaton using ≡. The language of Gb is included in the terminal
language recognized by Γ/≡, i.e. L(Gb) ⊆ L(Γ/≡) ∩ T ∗

b .

Proof. Let wb be a sentence of Gb. We consider the positions νs = d1( · S
wb

)r1

and νf = d1(
S
wb· )r1 related by νs ֓

wb−→ νf . By Lemma 4.9, [νs]≡wb �
∗ [νf ]≡.

By Definition 4.6, [νs]≡ and [νf ]≡ are in Qs and Qf respectively, thus wb is
accepted by Γ/≡, i.e. wb is in L(Γ/≡) ∩ T ∗

b .

As witnessed when processing the incorrect input

d2 d4 pn r4 d6 v d3 d n r3 r6 d8 pr d3 d n r3 r8 r7 r2, (4.15)

with the position automaton of Figure 4.3 on page 54, there can be strings
in L(Γ/≡)∩T ∗

b that are not in L(Gb), i.e. this inclusion is proper in general.

Sentential Forms Let us denote the set of sentential forms generated
by a (reduced) context-free grammar G by SF(G) = {α ∈ V ∗ | S =⇒∗

α}. By Corollary 4.10 and Theorem 4.11, the language recognized by a
position automaton contains the set of sentential forms generated by the
corresponding bracketed grammar.

Corollary 4.12. Let G be a context-free grammar and Γ/≡ its position
automaton using ≡. The set of sentential forms generated by Gb is included
in the language recognized by Γ/≡, i.e. SF(Gb) ⊆ L(Γ/≡).



58 Grammar Approximations

4.2.1.3 Lattice of Equivalence Relations

As a pleasant consequence of employing equivalence relations and quotients
for position automata, many simple but powerful algebraic results can be
exercised to prove some properties of position automata.

For instance, an equivalence relation on N is a subset of N ×N , and as
such can be compared to other equivalence relations via set inclusion ⊆. The
set Eq(N ) of all the equivalence relations on N is then a complete lattice
when one employs set inclusion as partial order (Ore, 1942; Grätzer, 1978).

Bounds The largest (and coarsest) element in Eq(N ), denoted by ⊤,
always results in a single equivalence class, while the smallest (and finest)
equivalence relation, denoted by ⊥, is the identity on N :

xbdi(
α
ub·α′

u′
b
)rix

′
b ⊤ ybdj(

β
vb·β′

v′
b
)rjy

′
b (4.16)

xbdi(
α
ub·α′

u′
b
)rix

′
b ⊥ ybdj(

β
vb·β′

v′
b
)rjy

′
b iff xbdiub·u′brix′b = ybdjvb·v′brjy′b.

(4.17)

Of course, for most grammars—i.e. all the grammars that generate an in-
finite language—, ⊥ is not of finite index, and thus cannot be applied in
practice.

Lattice Operations The lattice structure provides two operations for
combining equivalence relations into new ones. Given a set E of equivalence
relations in Eq(N ), the least upper bound or join of these relations is the
equivalence relation defined by

ν
∨
E ν ′ iff ∃n ∈ N,∃ ≡0, . . . ,≡n∈ E,∃ν0, . . . , νn+1 ∈ N ,

ν = ν0, ν
′ = νn+1, and νi ≡i νi+1 for 0 ≤ i ≤ n. (4.18)

Conversely, the greatest lower bound or meet of E is the equivalence relation

ν
∧
E ν ′ iff ∀ ≡i ∈ E, ν ≡i ν

′. (4.19)

When E has only two elements ≡a and ≡b, we write more simply ≡a ∨ ≡b

and ≡a ∧ ≡b for their join and meet respectively.

This very ability to combine equivalence relations makes our grammat-
ical representation highly generic, and allows for various trade-offs. For
instance, finer equivalence relations are obtained when using the meet of
two equivalence relations.



4.2 Position Automata 59

Example 4.13. Let us define the lookahead position equivalence lookk for
k ≥ 0 by

xbdi(
α
ub·α′

u′
b
)rix

′
b lookk ybdj(

β
vb·β′

v′
b
)rjy

′
b iff k : x′ = k : y′. (4.20)

For k ≥ 0, we define itemk as a refinement of item0 by

itemk=item0 ∧ lookk . (4.21)

The lookk equivalence relation emulates a lookahead window of k terminal
symbols in the remaining context of the position, and itemk thus corresponds
to a LR(k) precision.

Position Equivalences The significant orderings between equivalence
relations are those orderings that remain true for all the position sets N of
all the context-free grammars G. Let us define a position equivalence as a
function ≡ that associates to a particular position set N an instance equiva-

lence relation
N

≡ in Eq(N ); item0, ⊤ and ⊥ are actually position equivalences
according to this definition.

We can define a partial order ⊆ on position equivalences by ≡a ⊆ ≡b if

and only if
N

≡a ⊆
N

≡b for all N , and observe that it also defines a complete
lattice by extending Equation 4.18 and Equation 4.19 in a natural way. The

context usually prevents mistaking
N

≡ with ≡, and in these situations, we

denote
N

≡ by ≡.

Position Automata Sizes Let us remark that our lattice of equivalence
relations is related to a lattice of nondeterministic position automata sizes:
if ≡a ⊆ ≡b, then the equivalence classes of ≡b are unions of equivalence
classes of ≡a, and thus |N/≡a | ≥ |N/≡b | holds on the equivalences’ index.

If we define the size of a FSA A = 〈Q,Σ, R,Qs, Qf 〉 by |A| = max(|Q|, |R|),
then, ≡a ⊆≡b implies |Γ/≡a| ≥ |Γ/≡b|. The function that maps an equiva-
lence relation ≡ of finite index in Eq(N ) to the size |Γ/≡| is thus antitone.

The smallest nondeterministic position automaton is therefore Γ/⊤, of
size exactly |Vb|, where |Vb| = |V | + 2|P |. More generally, the size of a
position automaton is bounded by

O(|N/≡ |2 |Vb|). (4.22)

Considering the case of item0, the number of equivalence classes is the size
of G |G| =

∑
A−→α∈P |Aα|, and the bound (4.22) becomes O(|G|2(|V |+2|P |)).

It can be tightened to
O(|G| |P |) (4.23)

by observing that a given state can only have a single transition over some
symbol in V , and can be further optimized to O(|G|) with the alternate
construction seen in Section 4.2.1.1 on page 54.



60 Grammar Approximations

4.2.2 Parsing with Position Automata

A first, simple, application of position automata is to provide a generaliza-
tion to the classical parsing algorithms. By translating grammar positions
A−→α·α′ into states of a position automaton, it is straightforward to adapt
the rules of a shift-reduce or Earley parser to employ position automata
instead.

4.2.2.1 Shift-Reduce Parsing

Context-free languages are characterized by PushDown Automata (PDA),
presented in Definition A.10 on page 166 and already introduced in Sec-
tion 2.1.2.1 on page 10. The classical constructions for pushdown automata
from a context-free grammar can be reworded to work from a position au-
tomaton. We present here the construction of a shift-reduce pushdown au-
tomaton, along the lines of Definition A.12 on page 167.

Definition 4.14. Let G = be a grammar and Γ/≡ = 〈Q,Vb, R,Qs, Qf 〉 its
position automaton for the equivalence relation ≡.

The shift-reduce recognizer for Γ/≡ is a pushdown automaton M(≡) of
form 〈Q,T,R′, Qs, {qq

′ | q ∈ Qs, q
′ ∈ Qf}, $, ‖〉 where the set of rules R′ is

the union of the

shift rules {q‖a ⊢− qq′‖ | a ∈ T, qa ⊢ q′ ∈ R},

reduce rules {qq0 . . . qn‖ ⊢− qq′‖ | ∃i = A−→X1 . . . Xn ∈ P, qA ⊢ q′, qnri ⊢
q′ ∈ R}, and

empty rules {q‖ ⊢− qq′‖ | ∃i ∈ P, qdi ⊢ q
′ ∈ R}.

A shift-reduce parser is obtained as usual from the recognizer by asso-
ciating an output effect τ ′ that maps reduce rules to grammar productions
and the other rules to the empty string.

The definition of M(≡) is a translation of the construction of a core
restricted shift-reduce parser: at reduction time, the stack contents are not
inspected, but we simply pop the length of the rightpart of the rule at hand.
Such parsers are known to be correct whenever ≡ ⊆ item0 (Heilbrunner,
1981).

4.2.2.2 Earley Parsing

Recognition We present here the case of the Earley recognizer, defined
in Section A.1.6 on page 167. The Earley items are now triples (q, i, j),
0 ≤ i ≤ j ≤ n, where q is a state of a position automaton Γ/≡. The set
of correct Earley items (or chart) IG,w

≡ for a string w = a1 · · · an is now



4.2 Position Automata 61

the deduction closure of the system comprising the deduction rules (Init’),
(Predict’), (Scan’), and (Complete’) instead of (Init), (Predict), (Scan), and
(Complete) respectively.

(qs, 0, 0)

{
qs ∈ Qs

}
(qs, 0, 0)−→ε (Init’)

(q, i, j)

(q′, j, j)

{
qdk ⊢ q′

}
(q′, j, j)−→ε (Predict’)

(q, i, j)

(q′, i, j + 1)

{
qb ⊢ q′

aj+1 = b

}
(q′, i, j + 1)−→(q, i, j) b (Scan’)

(q, i, j)
(q′, j, k)

(q′′, i, k)






q′rl ⊢ q
′′

l = A−→α
qA ⊢ q′′





(q′′, i, k)−→(q, i, j) (A, j, k)
(A, j, k)−→(q′, j, k)

(Complete’)

Recognition succeeds if an item (qf , 0, n) with qf in Qf belongs to IG,w
≡ .

Parsing The recognizer is turned into a parser by generating the rules
of a binary grammar forest Gw at each deduction step, as indicated on the
right end of the deduction rules (Init’), (Predict’), (Scan’), and (Complete’).
The correctness of the parser is clear if ≡ ⊆ item0: replacing the states q,
q′, etc. by the corresponding items, we see that our deduction rules are a
simple translation of the deduction rules given in Section A.1.6.

4.2.3 Approximating Languages

Position automata provide a framework for the static analysis of context-free
grammars. Thanks to the position equivalences, approximations of various
degrees can be used, making this framework fairly general.

We present here some formal arguments on how general it is: can any
language over-approximation be expressed in the framework? Not quite,
for we only allow approximations that retain some of the structure of the
grammar. But we are going to see two different ways to obtain partial
converses for Theorem 4.11 (resp. Corollary 4.12), i.e., given a language L
that over-approximates L(Gb) (resp. SF(Gb)), to find an equivalence relation
≡ such that L(Γ/≡) ∩ T ∗

b (resp. L(Γ/≡)) is “close” to L.

4.2.3.1 Galois Connection

Our first attempt at a converse relies on the lattice structure of the equiva-
lence relations on a given N . We consider for this the function g∗ that maps



62 Grammar Approximations

an equivalence relation ≡ in Eq(N ) to the language L(Γ/≡):

g∗(≡) = L(Γ/≡). (4.24)

It is straightforward to see that g∗(⊤) = V ∗
b , and that g∗(⊥) = SF(Gb).

Let us denote the set of the languages over Vb between SF(Gb) and V ∗
b

by [SF(Gb), V
∗
b ]. The interval [SF(Gb), V

∗
b ] is partially ordered by language

inclusion ⊆, and is also a complete lattice with union and intersection as
join and meet operations respectively.

Let us consider a set of equivalence relations E included in Eq(N ); then
g∗(

∧
E) is the language of Γ/

∧
E. Since the equivalence classes of

∧
E are

the intersections of the equivalence classes of the individual relations in E,
it is rather straightforward that

L(Γ/
∧
E) =

⋂

≡i ∈E

L(Γ/≡i), (4.25)

i.e. that g∗ preserves meets. Regarding joins, they are not preserved by g∗,
and all we can show is that

⋃
≡i ∈E L(Γ/≡i) ⊆ L(Γ/

∨
E).

Since Eq(N ) is a complete lattice and g∗ preserves meets, then g∗ has a
unique coadjoint g∗ such that for all equivalence relations ≡ in Eq(N ) and
for all languages L in [SF(Gb), V

∗
b ], g∗(L) ⊆ ≡ if and only if L ⊆ g∗(≡).

This unique coadjoint is defined by

g∗(L) =
∧

{≡| L ⊆ g∗(≡)}. (4.26)

Such a pair of functions was coined a Galois connection by Ore (1944),3 and
is usually written

[SF(Gb), V
∗
b ]

g∗

⇆
g∗

Eq(N ). (4.27)

As a consequence of this connection, we know that

• both g∗ and g∗ are monotone: for ≡a, ≡b in Eq(N ), ≡a ⊆ ≡b implies
L(Γ/≡a) ⊆ L(Γ/≡b) and for La, Lb in [SF(Gb), V

∗
b ], La ⊆ Lb implies

g∗(La) ⊆ g∗(Lb),

• g∗ and g∗ are mutual quasi-inverses: g∗◦g∗◦g
∗ = g∗ and g∗◦g

∗◦g∗ = g∗,

• g∗ ◦ g
∗ is decreasing: for ≡ in Eq(N ), g∗(L(Γ/≡)) ⊆≡, and

• g∗ ◦ g∗ is increasing: for L in [SF(Gb), V
∗
b ],

SF(Gb) ⊆ L ⊆ L(Γ/g∗(L)). (4.28)

3Ore (1944) and Birkhoff (1940) originally gave an equivalent, contravariant formula-
tion.



4.2 Position Automata 63

Equation 4.28 is a partial converse to Corollary 4.12. The Galois connec-
tion provides a very general means to obtain an equivalence relation from a
language that includes SF(Gb): no provision was made regarding the reg-
ularness, or even the context-freeness, of the languages in [SF(Gb), V

∗
b ]. A

similar connection holds if we consider the adjoint function g′∗ that maps an
equivalence relation ≡ in Eq(N ) to the language L(Γ/≡)∩T ∗

b in [L(Gb), T
∗
b ],

thus providing a partial converse to Theorem 4.11 instead.

4.2.3.2 Approximating with Position Automata

The previous attempt at finding a converse for Corollary 4.12 and Theo-
rem 4.11 is arguably too general: it is difficult to tell anything about g∗(L).
In particular, it is not clear whether g∗(L) is of finite index if L is a regular
language over Vb.

We present here a more pragmatic approach for this last case: if a lan-
guage L is regular, then it is recognized by a FSA A such that L = L(A).
We are going to see how to derive an equivalence relation from A. But first,
we proceed to issue some conditions on A.

Approximate Automata Let w = a1 · · · an be a sentence in the lan-
guage of a FSA A; if q0a1 · · · an � q1a2 · · · an � · · · � qn, q0 in Qs and qn in
Qf , then q0 · · · qn in Q∗ is an accepting computation of A on w. A sentence
w is ambiguous in A if it has at least two different accepting computations;
otherwise, it is unambiguous.

Definition 4.15. A FSA A = 〈Q,Vb, R,Qs, Qf 〉 approximates the grammar
G if

(i) L(Gb) ⊆ L(A) ∩ T ∗,

(ii) each wb in L(Gb) is unambiguous in A,

(iii) qδb �
∗ q′ in A and S =⇒∗

b αbγbβb =⇒∗
b αbδbβb in Gb imply that qγb �

∗ q′

in A, and

(iv) A is ε-free, i.e. R ⊆ Q Vb ×Q.

Clearly, any FSA obtained through the quotient construction of Defi-
nition 4.6 and unambiguous on L(Gb) approximates G according to Defini-
tion 4.15. Given a FSA A = 〈Q,Vb, R,Qs, Qf 〉 that approximates G, we
define the relation paA by

d1xb(
α
ub·α′

u′
b
)x′br1 paA d1yb(

β
vb·β′

v′
b
)y′br1 iff ∃qs, q

′
s ∈ Qs,∃qf , q

′
f ∈ Qf ,∃q ∈ Q,

qsxbubu
′
bx

′
b �

∗ qu′bx
′
b �

∗ qf
and q′sybvbv

′
by

′
b �

∗ qv′by
′
b �

∗ q′f . (4.29)



64 Grammar Approximations

That paA is an equivalence relation can be verified using the conditions
(ii) and (iv) of Definition 4.15 for proving transitivity; the reflexivity and
symmetry properties are obvious, and condition (i) is needed for paA to be
defined on all the positions of the grammar.

Theorem 4.16. Let G be a context-free grammar, and Γ/≡ a position au-
tomaton by quotienting with ≡ that approximates G. The relations ≡ and
paΓ/≡ are the same.

Proof. Let ν = d1xb(
α
ub·α′

u′
b
)x′br1 and ν ′ = d1yb(

β
vb·β′

v′
b
)y′br1 be two positions

in N . Then, there exist νs, ν
′
s in µs and νf , ν ′f in µf such that

νs ֓
xbub−−−→ ν ֓

u′
b
x′

b−−−→ νf and ν ′s ֓
ybvb−−→ ν ′ ֓

v′
b
y′

b−−→ ν ′f .

By Lemma 4.9,

[νs]≡xbubu
′
bx

′
b �

∗ [ν]≡u
′
bx

′
b �

∗ [νf ]≡ and [ν ′s]≡ybvbv
′
by

′
b �

∗ [ν ′]≡v
′
by

′
b �

∗ [ν ′f ]≡.

If ν ≡ ν ′, then let q = [ν]≡ = [ν ′]≡; the two previous paths comply with
the definition of paΓ/≡, and thus ν paΓ/≡ ν ′.

If ν paΓ/≡ ν ′, then there exist qs, q
′
s in Qs, qf , q′f in Qf and q in Q

that fulfill the conditions of Equation 4.29. If [νs]≡ 6= qs or [νf ]≡ 6= qf
or [ν]≡ 6= q, and in the absence of ε transitions, then there would be two
different accepting paths for xbubu

′
bx

′
b, in violation of condition (ii), and

similarly for ybvbv
′
by

′
b. Thus q = [ν]≡ = [ν ′]≡, and ν ≡ ν ′.

Theorem 4.16 does not mean that, given an approximate FSA A accord-
ing to Definition 4.15, then the position automaton obtained by quotienting
through paA will be the same; Γ/paA will rather be an expunged version of
A with respect to the grammar.

Partial Converses The non-empty equivalence classes of paA are the
states of A that appear in an accepting computation of a sentence of Gb,
and thus the set of states of Γ/paA is a subset of the set of states of A. In
particular, this inclusion also holds for the sets of initial and final states.
Last of all, the same inclusion holds for the terminal transitions.

Proposition 4.17. Let G be a context-free grammar and A a FSA that
approximates G.

(i) If q is a state of Γ/paA, then it is a state of A.

(ii) If qs (resp. qf ) is an initial state (resp. final state) of Γ/paA, then it
is an initial state (resp. final state) of A.



4.3 Recognizing Derivation Trees 65

(iii) Let q and q′ be two states of Γ/paA and χ a symbol in Tb. If a rule
qχ ⊢ q′ exists in Γ/paA, then it exists in A.

Condition (iii) of Definition 4.15 thus insures that all the transitions of
Γ/paA also exist in A. As a result, Corollary 4.18 provides a step towards a
partial converse to Corollary 4.12 for regular approximations of SF(Gb).

Corollary 4.18. Let G be a context-free grammar and A a FSA that ap-
proximates G. Then SF(Gb) ⊆ L(Γ/paA) ⊆ L(A).

A partial converse to Theorem 4.11 is easily obtained when we note that
condition (iii) of Definition 4.15 is not needed for paA to be an equivalence
relation on N . Therefore, pa is actually defined for any regular language
that includes L(Gb), so that (i) holds: we can always construct an ε-free
unambiguous FSA A for it, so that (iv) and (ii) hold. By Proposition 4.17,
we have the following corollary.

Corollary 4.19. Let G be a context-free grammar and L a regular language
over Tb such that L(Gb) ⊆ L. There exists an ε-free unambiguous FSA A
with L(A) = L such that L(Gb) ⊆ (L(Γ/paA) ∩ T ∗

b ) ⊆ L.

4.3 Recognizing Derivation Trees

The next two chapters are devoted to two important applications of position
automata: parser construction (Chapter 5) and ambiguity detection (Chap-
ter 6), where these subjects will be treated in depth. In this section, we
rather demonstrate the usefulness of position automata as regular approxi-
mations of context-free grammars, through the study of a simple problem:
recognizing well-bracketed sentences of G by means of a finite automaton.

Although the simple case we consider here is of limited practical in-
terest, it allows to use some of the results on the lattice of equivalence
relations (Section 4.2.1.3) and on the characterization of position automata
(Section 4.2.3.2) to obtain a complete characterization—in the position au-
tomata framework—of which grammars can be recognized by a prefix-correct
finite-state machine (Section 4.3.4).

But first we provide some general background on tree languages and
overview their relation with position automata.

4.3.1 Tree Languages

Besides regular word languages, finite position automata can define tree
languages and nested word languages. In this context, position automata
are limited by the absence of any pushdown mechanism, but could still be
considered, in particular for validating streaming XML documents (Segoufin



66 Grammar Approximations

b

b

a

c

d

(a) A tree generated by T .

<a>

<c>

<d/>

<b/>

</c>

<b/>

</a>

(b) An XML string generated by T .

Figure 4.5: A tree in the language of T and its XML yield.

and Vianu, 2002); we will consider a very simple case of this issue in Sec-
tion 4.3.2.

Regular Tree Languages A ranked4 regular tree language is generated
by a normalized regular tree grammar T = 〈S,N, T,R〉, where each rule
in R is of form A−→a(A1, . . . , An), n ≥ 0 (Comon et al., 2007). Terminals
label the nodes of the generated trees, while nonterminals denote node types:
according to the previous rule, a tree node labeled by a and with children
typed by A1, . . . , An in this order can in turn be typed by A. A tree is
generated by T if its root has type S.

Example 4.20. Consider for instance the regular tree grammar with root
A and rules

A−→ a(AB)
A−→ c(AB)
A−→ d
B−→ b.

(T )

The grammar generates, among others, the tree of Figure 4.5a, which cor-
responds to the XML string shown in Figure 4.5b.

We can construct from a regular tree grammar T = 〈S,N, T,R〉

1. a context-free grammar G = 〈N,T, P, S〉 with the set of productions
P = {A−→A1 . . . An | A−→a(A1, . . . , An) ∈ R} and

2. a labeling relation l in P × T defined by (i, a) ∈ l if and only if a rule

A−→a(A1, . . . , An) in R corresponds to the rule A
i
−→A1 . . . An in P .

The internal nodes of the derivation trees produced by G, labeled by non-
terminals, can be relabeled with l (by considering which production was
exercised) in order to obtain the trees in the language of T .

4It is straightforward to consider unranked tree languages by simply allowing extended
context-free grammars, where the rule rightparts are regular expressions over V ∗.



4.3 Recognizing Derivation Trees 67

In the case of Example 4.20 on the preceding page, we would define the
context-free grammar with rules

A
1
−→AB

A
2
−→ ε

B
3
−→ ε

(G8)

and the labeling

{(1, a), (1, c), (2, d), (3, b)}. (4.30)

Different classes of tree languages are obtained when one restricts the
form of the tree grammar, matching the languages defined by DTDs, XML
Schema or Relax NG grammars (Murata et al., 2005).

Position automata correspond to a restricted class of tree walking au-
tomata (Aho and Ullman, 1971), where the di and ri transitions denote
down and up moves on a symbol l(i), and the remaining terminal transi-
tions denote right moves on the given terminal symbol. A single nontermi-
nal transition on A in a position automaton is then mapped to several right
moves of the tree walking automaton, one for each symbol l(i) such that A
is the leftpart of the rule i = A−→α.

The resulting tree walking automaton is restricted since it is not allowed
any left move, nor to choose which child to visit in a down move—but
always selects the leftmost one—, and does not know which child number the
current tree node holds. Tree walking automata, with this last restriction
(Kamimura and Slutzki, 1981) or without it (Bojańczyk and Colcombet,
2005), do not recognize all the regular tree languages.

Nested Word Languages Nested word languages were introduced by
Alur and Madhusudan (2006) as a general model of the parenthesis languages
(Knuth, 1967) used in software verification and XML. In addition to a word
in Σ∗, a nested word over Σ contains hierarchical information in the form
of a matching relation about which of its letters are properly nested calls,
returns, or internal sites. Note that, in a nested word, the symbols at a call
site and at its matching return site are not necessarily the same.

The walk performed by a position automaton is identical to the one
performed by a nested word automaton. Let us define two labeling functions
d and r from P to T ; for i = A−→α, a di transition in a position automaton
corresponds to a call on symbol d(i), whereas an ri transition corresponds
to a return on r(i). A transition on nonterminal A then corresponds to a
transition on one of the possible d(i).

In the taxonomy of Alur (2007), position automata correspond to flat
nested word automata. As such, they fall short of being (nondeterministic)
descriptors for all nested word languages.



68 Grammar Approximations

4.3.2 Validating XML Streams

4.3.2.1 The XML Case

Segoufin and Vianu (2002) present the problem of validating an XML stream
against a DTD under memory constraints. The XML stream is assumed to
be the result of another application, for instance of an XSLT transformation,
that guarantees its well-formedness, i.e. such that its opening and closing
XML tags match.

Nonetheless, well-formedness is not enough to satisfy the constraints of
the XML dialect, and the stream should further be validated. Segoufin
and Vianu study under which conditions this validation can be performed
by a finite-state automaton: they present two necessary conditions for this
validation to be possible against a DTD. It is still open whether these condi-
tions are also sufficient (as conjectured by the authors), and which conditions
should be enunciated in the more general case of validation against a regular
tree language.

4.3.2.2 The Bracketed Case

We consider here a substantially simpler case of prefix-correct validation
against a bracketed grammar Gb. Given a well-bracketed string wb over T ∗

b ,
which could for instance represent a derivation tree obtained as the result
of a tree transduction, we want to check whether the sentence it yields
belongs to L(Gb) or not—we call this validating L(Gb)—by means of a FSA.
Furthermore, we want this validation to be prefix-correct, i.e. that during
the operation of the FSA, a prefix of a well-bracketed string is processed if
and only if it is the prefix of a sentence of Gb. Prefix correctness provides
precious information for error detection. It insures that processing ends as
soon as the input stops making sense, thus pinpointing a good candidate
position for the error. Let us illustrate the issue with a few examples.

Example 4.21. Consider the grammar with rules

S
2
−→A, S

3
−→ε, A

4
−→B, B

5
−→A, B

6
−→ε, (G9)

the regular language d2d4(d5d4)
∗d6r6(r4r5)

∗r4r2 | d3r3 contains a well-bracketed
string if and only if it belongs to the language of the bracketed grammar of
G9.

Example 4.22. Consider the grammar with rules

S
2
−→SS, S

3
−→ε, (G10)

the bracketed language of G10 cannot be validated by any regular language.
Intuitively, after having recognized the language of S, a regular language



4.3 Recognizing Derivation Trees 69

d2

d2

d3

r4

r2

d5 r5

r6d6

d4

d4d3

d2

d3

r3

Figure 4.6: A validating FSA for G11.

cannot remember whether it should match the language of a second S, or
consider that production 2 is finished.

Example 4.23. Consider the grammar with rules

S
2
−→SA, S

3
−→SB, S

4
−→ε, A

5
−→ε, B

6
−→ε, (G11)

the FSA of Figure 4.6 validates the bracketed language of G11. Nonetheless,
this FSA is not prefix-correct: we can match the prefix d2d4r4d6r6—although
it is not the prefix of any bracketed sentence of G11—before seeing r2 and
knowing that the input string is incorrect. Intuitively, no FSA can keep
track of whether it should accept d5 or d6 after an r4 symbol at an arbitrary
depth.

Our case of study is simpler than the general validation of an XML
stream in several ways:

• since each grammar production i is uniquely identified by the brack-
eting between di and ri, we are free from the labeling issues of regular
tree languages, which might lead to ambiguity in general;

• since we consider context-free grammars and not extended context-
free grammars, we are limited to ranked trees: each rule right part is
a finite string over V ∗;

• last of all, we consider prefix-correct recognition instead of recognition;
as demonstrated with G11, this is more restrictive.

4.3.3 A Characterization

We fully characterize which grammars are amenable to prefix-correct val-
idation in terms of equivalence relations in our framework. Our approach



70 Grammar Approximations

relies on a necessary and sufficient condition on equivalence relations that
enforces prefix correctness. We were not lucky enough for this condition to
define an equivalence relation for all grammars, and we have to accomodate
to this limitation. If an equivalence relation on grammar positions satis-
fies this condition and is of finite index, then it means that the grammar
can be validated by means of a prefix-correct finite state automaton, and
conversely.

Before we define our condition, we first define a recognitive device for
well-bracketed strings: bracket pushdown automata.

4.3.3.1 Well-bracketed Strings

We formalize the problem as a recognition problem for a special kind of
pushdown automaton (see Definition A.10 on page 166 for the definition
of a PDA): a bracket pushdown automaton B employs its stack solely to
remember which opening brackets it should close next. Bracket pushdown
automata provide a convenient notation for the processing of well-bracketed
strings by labeled transition systems (LTS).

Bracketed Pushdown Automaton We first solve a small technical point:
matching opening and closing brackets is not enough to ensure that a brack-
eted string is well-bracketed. For instance, d2 a r2 b d3 c r3 is well-balanced,
but it is not the yield of any derivation tree. The difference is the same as
the one between Dyck words and Dyck primes.

In order to handle this technicality, we augment our labeled transition
systems with an initial d1 and a final r1 transition.

Definition 4.24. Let A = 〈Q,Vb, R,Qs, Qf 〉 be a LTS over the bracketed
alphabet Vb. Its augmented version A′ = 〈Q′, V ′

b , R
′, {q′s}, {q

′
f}〉 where

• Q′ = Q ∪ {q′s, q
′
f} contains two fresh initial and final states q′s and q′f ,

and where

• the augmented set of rules R′ is the union

R ∪ {q′sd1 ⊢ qs | qs ∈ Qs} ∪ {qfr1 ⊢ q′f | qf ∈ Qf}.

Thus, an augmented position automaton Γ/≡′ now recognizes a superset
of the language of G′

b, the augmented bracketed grammar of G.

Definition 4.25. Let G be a grammar, A a LTS over the bracketed alphabet
Vb and A′ = 〈Q′, V ′

b , R
′, {q′s}, {q

′
f}〉 its augmented automaton. We define the

bracket pushdown automaton B(A) as the PDA 〈P ′
b∪Q

′, T ′
b, Rb, {q

′
s}, {q

′
f}, $, ‖〉



4.3 Recognizing Derivation Trees 71

where the set of rules Rb is defined as the union

{q‖a ⊢− q′‖ | qa ⊢ q′ ∈ R′}

∪ {q‖di ⊢− iq′‖ | qdi ⊢ q
′ ∈ R′}

∪ {iq‖ri ⊢− q′‖ | qri ⊢ q
′ ∈ R′}.

Clearly, B(A) accepts a string wb in (T ′
b)

∗ if and only if wb is well-
bracketed and is in d1 L(A) ∩ T ∗

b r1. Our general recognition problem can
thus be restated as finding A such that L(B(A)) = L(G′

b). We will consider
in particular finite position automata Γ/≡ such that L(B(Γ/≡)) = L(G′

b).
By Theorem 4.11, the inclusion

L(G′
b) ⊆ L(B(Γ/≡)) (4.31)

always holds.

Prefix Correctness An on-line formal machine recognizing a language
L is called prefix correct if whenever it reaches a configuration by processing
some string u, there exists a string v such that uv is in L. In terms of our
bracket PDAs, B(A) is prefix correct if the existence of q in Q′ and ϕ in P ′

b
∗

with
$q′s‖ubu

′
b$ �=∗ $ϕq‖u′b$, (4.32)

implies the existence of vb such that ubvb is in L(G′
b).

Since we took the precaution of delimitating our sentence by d1 and r1,
which are symbols not found in Tb, we know that L(B(A)) is prefix-free.
Thus the prefix correctness of B(A) implies its correctness.

Lemma 4.26. Let G be a grammar and A be a LTS over the bracketed alpha-
bet Vb such that L(G′

b) ⊆ L(A′). If B(A) is prefix correct, then L(B(A)) =
L(G′

b).

Proof. Let us first notice that, d1 and r1 being symbols not found in Tb, they
can only be opening and ending symbols of a sentence of L(B(A)). Thus
L(B(A)) is prefix-free, i.e. none of its sentences can be a proper prefix of
another.

Therefore, in an accepting computation

$q′s‖wb$ �=∗ $q′f‖$, (4.33)

the prefix correctness of B(A) implies that there exists a bracketed string
w′

b in V ′
b such that wbw

′
b is in L(G′

b). Since L(G′
b) ⊆ L(A′), and wbw

′
b being

well-bracketed (being the yield of a tree of G′
b), wbw

′
b is also in L(B(A)).

But having both wb and wbw
′
b in a prefix-free language implies that w′

b = ε.
Thus wb is in L(G′

b).



72 Grammar Approximations

4.3.3.2 The no-mismatch Relation

As seen with the examples of G10 and G11, the main issue for (prefix-correct)
validation is to know at all times what language is still acceptable or not.
We can afford to allow indifferently two return symbols ri and rj since
the stack of our bracket pushdown automaton will rule out the wrong one,
but otherwise we need to know exactly which symbols are legitimate. The
no-mismatch relation thus associates different positions if and only if their
expected right language differ first on return symbols, or do not differ at all.

Mismatches Two different symbols X and Y in Vb are in mismatch if
at least one of them is not a return symbol in Tr:

X mismatch Y iff X 6= Y and (X 6∈ Tr or Y 6∈ Tr). (4.34)

We define next the first mismatch of two bracketed strings as the pair of
suffixes of the two strings starting at the first mismatched symbols. Formally,

first-mismatch(δb, γb)

=






(Xδ′b, Y γ
′
b) if δb = Xδ′b, γb = Y γ′b, and X mismatch Y,

first-mismatch(δ′b, γ
′
b) if δb = Xδ′b, γb = Y γ′b, and X = Y,

(ε, ε) otherwise.

(4.35)

Relation We define the no-mismatch relation on N ×N by

xbdi(
α
ub·α′

u′
b
)rix

′
b no-mismatch ybdj(

β
vb·β′

v′
b
)rjy

′
b

iff first-mismatch(α′rix̂
′
b, β

′rj ŷ
′
b) = (ε, ε). (4.36)

In plain English, two positions are related if the covers (see page 49 for the
definition of covers) of their remaining input never mismatch. The relation
is symmetric and reflexive but not transitive; as a result, we are interested
in equivalence relations over N that verify the condition on the remaining
input, i.e. in equivalence relations that are included in no-mismatch.

Let us pause for a moment and consider what such position equivalences
entail for our example grammars G9, G10 and G11, and try to figure out
whether the equivalences’ index will be finite or not.

For first-mismatch(α′rix̂
′
b, β

′rj ŷ
′
b) to be empty, we need in particular α′ =

β′. Thus we obtain different equivalence classes for different remaining rule
right parts, like A−→·B and B−→·A in the case of Example 4.21. But there
is always a finite number of such cases, since there is a finite number of rules,
all with a finite string as right part.



4.3 Recognizing Derivation Trees 73

q′f

A
B

d5

d4

q′s

S

d2

d6

r2, r3, r4, r5, r6

r1

d1

d3

Figure 4.7: The augmented position automaton obtained for G9 using the
no-mismatch equivalence.

In the case where α′ = β′, but ri 6= rj , the first-mismatch is empty
as well. For instance, all the positions corresponding to items S−→·A and
B−→·A end in a single equivalence class. An infinite number of positions that
might end in different equivalence classes can thus only be obtained with
positions sharing α′ = β′ and ri = rj . In the case of G9 in Example 4.21,
the remaining languages x̂′b and ŷ′b are in T ∗

r , and thus cannot mismatch.
Therefore, in this case, no-mismatch is actually transitive, with a finite index.
Figure 4.7 shows the augmented position automaton Γ9/no-mismatch′.

Turning to G10 from Example 4.22, a position of form

d1 d
n
2 d3( · )r3 (S r2)

n r1, (4.37)

where we show the covers for the remaining context, is not related to any
other position of the same form for a different n. Thus no equivalence
relation included in no-mismatch can be of finite index.

Last of all, for G11 from Example 4.23, a position of form

d1 d2 d
n
3 d4( · )r4 (B r3)

n A r2 r1 (4.38)

for a given value of n is not related to a position of the same form for a
different value of n. Thus no equivalence relation included in no-mismatch

can be of finite index either.

Lemma 4.27. Let ≡ be an equivalence relation on N included in no-mismatch,
i = A−→α a rule in P , δ a string in V ∗, and q, q′ and q′′ three states of Γ/≡
with qdi ⊢ q

′.

(i) If q′δ �
∗ q′′, then there exists α′ in V ∗ such that α = δα′.

(ii) If q′δri �
∗ q′′, then α = δ.



74 Grammar Approximations

Proof. We first prove (i) by induction on the length of δ; obviously, if δ = ε,
then α = α′ fits our requirements. For the induction step, we suppose that
there exists a state q′′′ in Γ/≡ and a symbol X in V such that

q′δX �
∗ q′′X � q′′′. (4.39)

By induction hypothesis, α = δα′, and we need to prove that X = 1 : α′.
Since ≡ ⊆ no-mismatch, all the positions in q′′ are of form xbdi(

δ
ub·α′

u′
b
)rix

′
b

for some bracketed strings xb, ub, u
′
b and x′b in T ∗

b . Thus, for the transition
q′′X ⊢ q′′′ to be possible, we need X = 1 : α′.

We can replace X by ri in the previous argument to show that α′ = ε,
and thus that (ii) holds.

Theorem 4.28. Let ≡ be an equivalence relation on N . If ≡⊆no-mismatch,
then B(Γ/≡) is prefix correct.

Proof. Suppose that B(Γ/≡) is not prefix correct. Thus there exists a rewrite

$q′s‖ubXu
′
b$ �=∗ $ϕ′q2‖Xu

′
b$ �= $ϕq1‖u

′
b$ (4.40)

in B(Γ/≡) for some ϕ, ϕ′ in P ′
b
∗, and q1, q2 in Q′, such that there does not

exist any bracketed string in L(G′
b) with ubX as a prefix. We assume without

loss of generality that there is one such vb such that ubvb is in L(G′
b). We

can further assume that vb 6= ε, or the last symbol of ub would be r1, but q′f
is the only state of Γ/≡′ reachable by r1 and it has no outgoing transition,
thus recognition would have failed on ubX. Let us denote the first symbol
of vb by Y ; vb = Y v′b, and we have the rewrite

$q′s‖ubY v
′
b$ �=∗ $ϕ′p2‖Y v

′
b$ �= $ϕ′′p1‖v

′
b$ (4.41)

in B(Γ/≡) for some ϕ′′ in P ′
b
∗ and p1, p2 in Q′. Indeed, the configurations

$ϕ′q′2‖Xu
′
b$ and $ϕ′p2‖Y v

′
b$ are reached by the same string ub, thus they

have the same stack contents ϕ′.

We know that X 6= Y , or ubXv
′
b would be in L(G′

b). We further know
that at least one of X or Y is not in Tr, or X = ri and Y = rj with i 6= j,
but only one of i or j can be the last symbol of ϕ′, and one of the rewrites
(4.40) or (4.41) would be impossible in B(Γ/≡). Therefore,

X mismatch Y. (4.42)

Let di be the rightmost symbol of Td in ûb and let i = A−→α. One such
symbol di exists since d1 is the first symbol of ub, but remains unmatched
because ub is not in L(G′

b). We note ûb = x̂bdiŷb such that ub = xbdiyb and



4.3 Recognizing Derivation Trees 75

ŷb ∈ V ∗. We can then detail some steps of rewrites (4.40) and (4.41) by

$q′s‖xbdiybXu
′
b$ �=∗ $ψq3‖diybXu

′
b$

�= $ψ′q4‖ybXu
′
b$

�=∗ $ϕ′q2‖Xu
′
b$

�= $ϕq1‖u
′
b$

(4.43)

$q′s‖xbdiybY v
′
b$ �=∗ $ψp3‖diybY v

′
b$

�= $ψ′p4‖ybY v
′
b$

�=∗ $ϕ′p2‖Y v
′
b$

�= $ϕ′′p1‖v
′
b$

(4.44)

where q3, q4, p3, p4 are states of Γ/≡ and ψ and ψ′ are sequences of rules
in P ′

b
∗. By Corollary 4.10, q4yb �

∗ q2 and p4yb �
∗ p2 imply q4ŷb �

∗ q2
and p4ŷb �

∗ p2. We can thus apply Lemma 4.27 with ŷbX and ŷbY in the
role of δ or δri depending on whether one of X or Y belongs to Tr. In all
cases, we have two different, incompatible, expressions for α, and thus a
contradiction.

4.3.4 Optimality

In order to obtain a complete characterization of prefix-correct validation in
terms of equivalence relations on grammar positions, we first need to prove
the converse of Theorem 4.28.

Lemma 4.29. Let ≡ be an equivalence relation on N . If ≡* no-mismatch,
then B(Γ/≡) is not prefix correct.

Proof. Let ν = xbdi(
α
ub·α′

u′
b
)rix

′
b and ν ′ = ybdj(

β
vb·β′

v′
b
)rjy

′
b be two posi-

tions related by ≡ but not by no-mismatch: first-mismatch(α′rix̂
′
b, β

′rj ŷ
′
b) =

(Xẑb, Y ẑ
′
b) for some symbols X and Y with X mismatch Y and for some

bracketed strings ẑb and ẑ′b in (V ∪T ′
r)

∗. Thus α′rix̂
′
b = ŵbXẑb and β′rj ŷ

′
b =

ŵbY ẑ
′
b for some bracketed string ŵb in (V ∪ Tr)

∗.
At least one of the two symbols X or Y is not in Tr; we assume it is X

and we define χ as X if X is a terminal in T or dk if X is a nonterminal in
N and k one of its productions. Note that if Y is also a nonterminal in N ,
it cannot be the leftpart of rule k.

Since ν ≡ ν ′, there exists two states q = [ν]≡ = [ν ′]≡ and q′ in Γ/≡ and
two sequences of rules ϕ and ϕ′ in P ′∗ such that the rewrite

$q′s‖xbdiubwbχzb$ �=∗ $ϕϕ′q‖wbχzb$ �=∗ $ϕq′‖zb$ (4.45)

holds in B(Γ/≡). Observe that the sequence of rules in ϕ′ matches the
symbols of Tr in ŵb in reverse order. But then the rewrite

$q′s‖ybdjvbwbχzb$ �=∗ $ϕ′′ϕ′q‖wbχzb$ �=∗ $ϕ′′q′‖zb$ (4.46)



76 Grammar Approximations

is also possible for some sequence of rules ϕ′′ in P ′∗, although ybdjvbwbχ is
not the prefix of any sentence in L(G′

b).

Theorem 4.30. Let G be a grammar. There exists a FSA A over the
bracketed alphabet Vb such that B(A) is prefix correct and L(B(A)) = L(G′

b)
if and only if there exists an equivalence relation ≡ of finite index over N
with ≡ ⊆ no-mismatch.

Proof. Let A be a FSA such that L(B(A)) = L(G′
b); then L(Gb) ⊆ L(A)

or some sentences of Gb would be missing in L(B(A)). Let us consider paA,
which is of finite index. By Proposition 4.17, any path in Γ/paA is also
possible in A and thus B(Γ/paA) is prefix correct. By Lemma 4.29, we
conclude that paA ⊆ no-mismatch.

Conversely, if there exists ≡ of finite index with ≡ ⊆ no-mismatch, then
by Theorem 4.28, B(Γ/≡) is prefix correct. Finally, when we combine The-
orem 4.11 with Lemma 4.26, we obtain that L(B(Γ/≡)) = L(G′

b).

Theorem 4.30 illustrates how our framework can be employed to char-
acterize specific properties of formal machines. This general approach could
be used to find under which conditions an Earley parser or a shift-reduce
parser build from a position automaton (as in Section 4.2.2) would be cor-
rect. Furthermore, if we were fortunate enough for these conditions to be
met by a coarsest position equivalence ≡, one could show the optimality of
parsing with Γ/≡.

4.4 Related Models

The position automata we introduced in this chapter can be seen as a gen-
eralization of many similar representations defined in different contexts.
Several of these representations match Γ/item0 closely, for instance ∨C-
flow graphs (Gorn, 1963), transition diagrams (Conway, 1963) and net-
works (Woods, 1970), and item graphs (Farré and Fortes Gálvez, 2001).

We overview here some approaches that allow different levels of precision
in the approximation process, as we feel that this is the most important
feature of an approximation framework.

4.4.1 Recognition Graphs

Schöbel-Theuer (1994) presents an unifying theory of context-free pars-
ing, based on a recognition graph that recognizes the language of the left-
sentential forms of the grammar, i.e. of the sentential forms obtained through
leftmost derivations from the axiom. A recognition graph is, as one might
suspect, a recognitive device for the language of the grammar at hand, and



4.4 Related Models 77

different methods can be employed to generate such graphs that mimic clas-
sical parsing techniques like Earley recognition or shift-reduce recognition.

In order to generate finite recognition graphs, Schöbel-Theuer presents
a “compression theorem”, and indicates the possibility of using different
equivalence relations on the graphs’ nodes, corresponding to different item
models in chart parsing. Schöbel-Theuer further introduces “macros” as pre-
computed components on recognition graphs, thus allowing him to express
nondeterministic LR parsing in his framework. Macro graphs are quotiented
recognition graphs as well.

Above all, this work differs with our own on its motivation: recognition
graphs are always seen as recognitive devices and not as tools for the static
analysis of the grammar. For instance, the various compressions and macro
definitions match parsing strategies rather than attempt to produce differ-
ent levels of approximation. In the same way, the absence of bracketings
makes recognition graphs rather unfit for analysis purposes, because too
much information can be lost during quotienting.

4.4.2 Parsing Schemata

Sikkel (1997) presents a general model for chart parsing algorithms in the
form of deduction systems—the parsing schemata—similar to the Earley
one defined in Section A.1.6 on page 167. Items in such deduction systems
are defined formally as congruence classes of derivation trees that yield a
substring of the input to recognize. Parsing schemata can be manipulated
directly through refinements, generalizations and filterings, in ways similar
to the operations possible on position equivalences.

Parsing schemata are wholly dedicated to the specification of chart pars-
ing algorithms. Instantiated schema items are not sets of positions but sets
of partial trees, tied to a subrange of the input string: let w = a1 · · · an be
the input string, an Earley item (A−→α·α′, k, l) is seen as the set of all trees
rooted in A, with ak+1 · · · al as the yield of the α children, and with α′ as
the remaining children. This is similar in effect to the equivalence classes
defined by the position equivalence item0 ∧ earleyw, where earleyw is defined
by

xbdi(
α
ub·α′

u′
b
)rix

′
b earleyw ybdj(

β
vb·β′

v′
b
)rjy

′
b iff u = v = ak+1 · · · al. (4.47)

But if the tree sets of parsing schemata are defined in function of the
input string, our position equivalences are committed to a left-to-right pro-
cessing order. The greater flexibility of parsing schemata in this regard
allows Sikkel to describe parallel parsing algorithms, where the deduction
rules do not enforce any specific processing order.

Nevertheless, this flexibility comes with a price: in order for the parsing
schemata to be correct, items should be regular congruence classes for the



78 Grammar Approximations

deduction rules, and the schemata should define all the valid items (com-
pleteness) and only valid items (soundness). As explained by Sikkel (1998),
soundness can be proven by induction on the deduction rules, but proving
completeness is often less simple. With position equivalences however, com-
pleteness is usually straightforward as well because the deduction system
merely produces a correct bracketing for the sentences it runs through Γ/≡,
and L(Gb) ⊆ L(Γ/≡) is already known.

4.4.3 Regular Approximations

A series of articles (Nederhof, 2000a,b; Mohri and Nederhof, 2001) presents
grammatical transformations that result in right-linear grammars that gen-
erate a superlanguage of the language generated by the original grammar.
The approximation is roughly equivalent to that of item0, except that it
avoids the unnecessary approximation of the language of nonterminals that
are not mutually recursive with self-embedding. The approximations can be
refined by unfolding some self-embedded nonterminals (Nederhof, 2000b).

Regular approximations, using these grammar transformations or other
means, have been used for instance in two-pass parsing algorithms (Čulik
and Cohen, 1973; Nederhof, 1998; Boullier, 2003a) or for ambiguity detection
(Brabrand et al., 2007).

4.4.4 Abstract Interpretation

Abstract interpretation (Cousot and Cousot, 1977, 2003, 2007) is a unified
model for building approximations. The abstract interpretation framework
is based on an abstraction function α from a concrete domain to an abstract
domain, for instance from the domain of position graphs to the domain of
position automata:

α≡(Γ) = {[ν]≡χ ⊢ [ν ′]≡ | ν ֓
χ
−→ ν ′ ∈ Γ}. (4.48)

Concrete computations in the concrete domain, for instance L(Γ), can be
approached by abstract computations, for instance L(Γ/≡), that enforce
some soundness properties, for instance L(Γ) ⊆ L(Γ/≡). One can attempt
to find a best approximation among all the possible sound ones, just like
we can try to find a best position equivalence among all the possible sound
ones. Our framework for grammar approximations is a specialized form of
abstract interpretation.

4.4.5 Systems of Pushdown Automata

Systems of pushdown acceptors were defined by Kuich (1970) as a repre-
sentation of CFGs amenable to testing for quasi determinism. If a system



4.4 Related Models 79

is not immediately quasi deterministic, one of its language and ambiguity
preserving transformations can be tested instead. The quasi determinism
of a system or of one of its transformations implies the unambiguity of the
original grammar.

The approach of Kuich is very close to our own: systems of pushdown
acceptors are another interpretation of Γ/item0, and transformations provide
the same flexibility as the choice of an equivalence relation finer than item0

for us. Kuich presents extensive transformations, including determinization
and identification of which nonterminals display self embedding or not.

4.4.6 Item Grammars

Heilbrunner (1981) introduced LR(k) regular item grammars in his formal-
ization of LR(k) parsing. Such grammars were also used by Knuth (1965)
to compute the LR(k) contexts and in automata form by Hunt III et al.
(1974) to test whether a grammar is LR(k) or not. Heilbrunner (1983) pre-
sented later item grammars refined for LR-Regular testing. Item grammars
correspond to refinements of Γ/item0.



80 Grammar Approximations



Parser Generation 5
5.1 Parser Generation from Position Automata (Subset

Construction, Parsing Machine, Strict Deterministic Parsers) •
5.2 Noncanonical LALR(1) Parsers (Example Parser, Definition of

NLALR(1) Parsers, Efficient Construction, Alternative Definitions,

NLALR(1) Grammars and Languages, Practical Considerations) •
5.3 Shift-Resolve Parsers (Time Complexity Matters, Example Parser,

Generation, Shift-Resolve Grammars, Example: SML Case Expressions)

It had begun with a leaf caught in the wind, and it became a tree;
and the tree grew, sending innumerable branches, and thrusting
out the most fantastic roots.

J. R. R. Tolkien, Leaf by Niggle

As seen with the case studies of Chapter 3, the developments in parsing
techniques have not quite answered all the issues that a parser developer
has to face. Between the shortcomings of classical LALR(1) parser gener-
ators like YACC (Johnson, 1975) and the catch of general parsing (Earley,
1970; Tomita, 1986)—namely the absence of ambiguity detection—, possi-
bilities are pretty scarce. This thesis advocates an almost forgotten way
to deal with nondeterminism: the usage of noncanonical parsers (already
introduced in Section 3.2.3 on page 36). Noncanonical parsers have been
thoroughly investigated on a theoretical level by Szymanski and Williams
(1976).

Surprisingly, there are very few practical noncanonical parsing methods.
Indeed, the only one of clear practical interest is the extension to SLR(1)
parsing described by Tai (1979). Considering the three requirements on
parsers for programming languages we identified on page 16, noncanonical
parsers perform rather well. Two obstacles seem to prevent a wider adoption
of noncanonical parsing techniques:

1. there are very few usable noncanonical parser constructions, the Non-
canonical SLR(1) one excepted, and the latter is not sufficient even in
rather simple cases (see Section 5.2.6.2 on page 112);



82 Parser Generation

2. with a noncanonical parser, the lookahead length issues do not disap-
pear; they are replaced by reduced lookahead length issues, which are
just as frustrating (see Section 5.2.6.3 on page 113).

The two parsing methods we describe here target these two issues.

First, we present shortly how to generate classical, canonical, bottom-up
parsers from a position automaton (Section 5.1). The flexibility offered by
position automata allows for trade-offs between descriptional complexity on
the one hand, and robustness against nondeterminism on the other hand.

We consider thereafter how one such canonical parser can be mapped
to a noncanonical one in Section 5.2, through the example of Noncanonical
LALR(1) parsing. The formulation is general enough to embrace the cases
discussed in the first section. This generic NLALR(1) construction improves
on NSLR(1) but remains practicable; we detail an efficient construction
technique adapted from the LALR(1) construction technique of DeRemer
and Pennello (1982) in Section 5.2.3.

At last, we investigate an original parsing technique, shift-resolve pars-
ing, developed jointly with José Fortes Gálvez and Jacques Farré (Sec-
tion 5.3). Shift-resolve parsing is a novel parsing method with an attractive
combination of properties: the produced parsers are deterministic, they can
use an unbounded lookahead, and they run in linear time. Their generation
is highly generic as it relies on an underlying position automaton.

5.1 Parser Generation from Position Automata

Classical LR parsers are the product of an important observation (Knuth,
1965): the stack language associated with each correct reduction—or han-
dle—of the crude, nondeterministic, shift-reduce parser of Definition A.12
on page 167 is a regular language. For each handle, one can construct a
finite state automaton that recognizes the compatible stacks. The union
of all these automata, the canonical LR automaton, is a handle-finding au-
tomaton.

5.1.1 Subset Construction

We present in this section how reduction-finding automata can be generated
from position automata. A reduce action of the shift-reduce parser of Sec-
tion 4.2.2.1 on page 60 is triggered by a reduction transition on some symbol
ri in the position automaton. The generation of a reduction-finding automa-
ton thus corresponds to the determinization of the position automaton, up
to ri transitions.



5.1 Parser Generation from Position Automata 83

5.1.1.1 Sets of Reachable States

A deterministic automaton is classically obtained by a subset construction
(Rabin and Scott, 1959) that associates states of the position automa-
ton that can be reached by reading the same string in the same state
set. Let Reachb≡(δd) denote the set of states of a position automaton
Γ/≡ = 〈Q,Vb, R,Qs, Qf 〉 that can be reached from a state in Qs upon
reading a bracketed string δd in (V ∪ Td)

∗:

Reachb≡(δd) = {q ∈ Q | ∃qs ∈ Qs, qsδd �
∗ q}. (5.1)

We extend this function to take a string in V ∗ as argument by defining

Reach≡(δ) =
⋃

δd∈(V ∪Td)∗,h(δd)=δ

Reachb≡(δd). (5.2)

The reachable states can be computed inductively by

Kernel≡(ε) = Qs, (5.3)

Kernel≡(γX) = {q′ ∈ Q | ∃q ∈ Reach≡(γ), qX ⊢ q′}, (5.4)

Reach≡(γ) = Kernel≡(γ) ∪ {q′ ∈ Q | ∃q ∈ Reach≡(γ),∃i ∈ P, qdi ⊢ q
′}.
(5.5)

Observe that the Reach≡ function defines an equivalence relation between
strings in V ∗: according to this equivalence, two strings sharing the same
set of reachable states are related. We overload ≡ to denote this equivalence
relation over V ∗ by

δ ≡ γ iff Reach≡(δ) = Reach≡(γ). (5.6)

Equivalence classes of ≡ over V ∗ are thus sets of strings that can reach the
same states of Γ/≡; these equivalence classes in V ∗/≡, when non-empty,
make the gist of a reduction-finding automaton RFA(≡).

We therefore denote explicitly the states of a reduction-finding automa-
ton as [δ]≡, where δ is a string in V ∗ in the equivalence class [δ]≡. Each state
of form [δX]≡ has a unique accessing symbol X. A pair ([δ], X) in V ∗/≡ ×V
is a transition if and only if [δX]≡ is not the empty equivalence class. We
define the reduction-finding automaton RFA(≡) as a FSA with set of states
V ∗/≡, vocabulary V , set of rules {[δ]≡X ⊢ [δX]≡ | [δX]≡ 6= ∅}, initial states
set {[ε]≡}, and final states set {[δ]≡ | ∃q ∈ Reach≡(δ),∃q′ ∈ Q,∃i ∈ P, qri ⊢
q′}.

5.1.1.2 Canonical LR Automata

We show that the Reachitemk
sets are exactly the Validk sets of Defini-

tion A.13 on page 168 when one identifies each LR(k) item with an equiva-
lence class of itemk.



84 Parser Generation

Lemma 5.1. Let ν = xbdi(
α
ub·α′

u′
b
)rix

′
b be a position in N and γd a bracketed

string in (V ∪Td)
∗. If qsγd �

∗ [ν]itemk
in Γ/itemk, then [A

i
−→α·α′, k : x′] is a

valid LR(k) item for γ, i.e. S =⇒
rm

∗ δAz
i

=⇒
rm

δαα′z = γα′z with k : x′ = k : z

holds in G.

Proof. We proceed by induction on the length |γd|. If γd = ε, then [S−→·α′, ε]
is a valid LR(k) item for γ = ε. Let us consider for the induction step a

position ν ′ such that ν ֓
χ
−→ ν ′ with χ in V ∪ Td. Then, qsγχ �

∗ [ν]itemk
χ �

[ν ′]itemk
, and, by induction hypothesis, S =⇒

rm

∗ δAz
i

=⇒
rm

δαα′z = γα′z with

k : x′ = k : z holds in G.

If χ = dj, then α′ = Bα′′ and ν ′ is of form xbdiubdj( · β
vb

)rju
′′
brix

′
b with

u′b = vbu
′′
b for some j = B−→β in P . Then, γα′z = γBα′′z =⇒

rm

∗

γBu′′z
j

=⇒
rm

γβu′′z holds in G, and k : u′′x′ = k : u′′z. Thus, for any ν ′′

in [ν ′]itemk
, the corresponding item [B

j
−→·β, k : u′′x′] is a valid LR(k)

item for γ.

If χ = X is in V , then α′ = Xα′′ and ν ′ is of form xbdi(
αX
ubvb·α′′

u′′
b
)rix

′
b. Then,

γα′z = γXα′′z, and, for any ν ′′ in [ν ′]itemk
, the corresponding item

[A
i
−→αX·α′′, k : x′] is a valid LR(k) item for γX.

Theorem 5.2. Let ν = xbdi(
α
ub·α′

u′
b
)rix

′
b be a position in N and γ a string

in V ∗. The state [ν]itemk
is in Reachitemk

(γ) if and only if [A
i
−→α·α′, k : x′]

is in Validk(γ).

Proof. If S =⇒
rm

∗ δAz
i

=⇒
rm

δαα′z = γα′z with k : x′ = k : z holds in G,

then a similar derivation holds in Gb. Thus, by Corollary 4.10 on page 57,
qsδddiα �

∗ [ν ′]itemk
with ν ′ = ybdi(

α
vb·α′

v′
b
)rizb with δd =⇒∗

b yb. Then, ν itemk

ν ′ and therefore [ν]itemk
= [ν ′]itemk

.

If [ν]itemk
is in Reachitemk

(γ), then, by Lemma 5.1, [A
i
−→α·α′, k : x′] is a

valid LR(k) item for γ.

Thus, our reduction-finding automaton RFA(itemk) is a handle-finding
automaton, and thus it yields a correct parser.

5.1.2 Parsing Machine

Definition 5.3. Let G be a grammar and Γ/≡ = 〈Q,Vb, R,Qs, Qf 〉 its po-
sition automaton for the equivalence ≡. Let P (≡) = (V ∗/≡ ∪T ∪{$, ‖}, Rp)
be a rewriting system (see Definition A.4 on page 164) where $ and ‖ (the
end marker and the stack top, respectively) are not in V ∗/≡ nor in T (the



5.1 Parser Generation from Position Automata 85

set of states and the input alphabet, respectively). A configuration of P (≡)
is a string of the form

[ε]≡[X1]≡ . . . [X1 . . . Xn]≡‖x$ (5.7)

where X1 . . . Xn is a string in V ∗ and x a string in T ∗.
We say that P (≡) is a parsing machine for grammar G if its initial

configuration is [ε]≡‖w$ with w the input string in T ∗, its final configuration
is [ε]≡[S]≡‖$, and if each rewriting rule in Rp is of one of the forms

• shift a in state [δ]≡

[δ]≡‖ax ⊢
shift

[δ]≡[δa]≡‖x, (5.8)

defined if there are states q and q′ of Q with q in Reach≡(δ) and qa ⊢ q′

in R, and if [δa]≡ 6= ∅, or

• reduce by rule i = A−→X1 . . . Xn of P in state [δX1 . . . Xn]≡

[δX1]≡ . . . [δX1 . . . Xn]≡‖x ⊢
A−→X1 . . . Xn

[δA]≡‖x, (5.9)

defined if there are states q and q′ of Q with q in Reach≡(δX1 . . . Xn)
and qri ⊢ q

′ in R, and if [δA]≡ 6= ∅.

The corresponding parser for the context-free grammar G is the trans-
ducer 〈P (≡), τ〉 with output alphabet P where P (≡) is a parsing machine
for G and τ is defined by τ(⊢

shift
) = ε and τ(⊢

A−→X1 . . . Xn

) = A−→X1 . . . Xn.

This definition translates the definitions of Section A.2 on page 168 to the
realm of position automata. Note that, as a simplification, we did not employ
lookaheads in our definition. But they could be taken into account, by
defining the language of a FSA state q as L(q) = {w | ∃qf ∈ Qf , qw �

∗ qf},
and by adding the requisite k : x ∈ k : h(L(q′)) to the conditions of the rules
(5.8) and (5.9). We will not prove that the obtained parsing machine with
lookaheads are correct, but the results of Section 6.2.3.2 on page 143 seem
to indicate that it is the case.

5.1.3 Strict Deterministic Parsers

Geller and Harrison (1977a,b) describe a variant of LR(k) parsing where
LR(k) items of form [A−→·α, x] with x in Followk(A) can be arbitrarily
introduced during the construction of the parsing automaton. Observe that,
when we reach a state with [A−→α·, x] further in the construction, it cannot
result in a reduction unless both the lookahead window and the goto by A
are compatible with the current configuration of the parser. Some of the
precision of the canonical LR(k) parser, and the correct prefix property,



86 Parser Generation

can be relinquished in exchange of a more compact parser. The resulting
characteristic parsers are correct under the assumption that α 6= ε.

We do not attempt to reproduce this parameterized construction here,
but only show how one can construct parsers for strict deterministic gram-
mars.

5.1.3.1 Strict Deterministic Grammars

Geller and Harrison (1977b) describe a simpler class of characteristic parsers
build for strict deterministic grammars (Harrison and Havel, 1973). Such
grammars have a strict partition Π on V such that

1. T is an equivalence class of Π, and

2. for any A and B in N and α, β and β′ in V ∗, if A−→αβ and B−→αβ′

and A ≡ B (mod Π), then either

(a) both β and β′ are non null, and 1 : β ≡ 1 : β′ (mod Π), or

(b) β = β′ = ε and A = B.

Definition 5.4. [Geller and Harrison (1977b)] Let A be a nonterminal in
N . The string α in V ∗ is a production prefix of A if there exists some
production A−→αα′ in P for some α′ in V ∗. The definition is extended to
sets of nonterminals N ′ ⊆ N by saying that α is a production prefix of N ′

if there exists A in N ′ such that α is a production prefix of A.
Let G be a strict deterministic grammar with strict partition Π over

V . Then, the item [A−→α·α′] is a valid strict deterministic item for γα, if
there exist a number n ≥ 0, a decomposition γ = δ1 · · · δn, and nonterminals
A0,. . . ,An such that A0 ≡ S (mod Π), An ≡ A (mod Π), and

δ1A1 is a production prefix of [A0]Π
δ2A2 is a production prefix of [A1]Π

...
δnAn is a production prefix of [An−1]Π

α is a production prefix of [An]Π

(5.10)

If n = 0, this definition reduces to “α is a production prefix of [A0]Π.”

5.1.3.2 sdΠ Position Equivalence

As with LR(k) parsing, we define a position equivalence that mirrors the
behavior of strict deterministic characteristic parsers. Let sdΠ for Π a strict
partition of V be defined by

xbdi(
α
ub·α′

u′
b
)rix

′
b sdΠ ybdj(

β
vb·β′

v′
b
)rjy

′
b iff α = β and A ≡ B (mod Π), (5.11)



5.1 Parser Generation from Position Automata 87

where A and B are the leftparts of i = A−→αα′ and j = B−→ββ′.
We prove that we construct only valid strict deterministic items with

sdΠ in Lemma 5.5. Although the lemma is very similar to Lemma 5.1, a
difference is that several items correspond to a single state of Γ/sdΠ.

Lemma 5.5. Let ν = xbdi(
α
ub·α′

u′
b
)rix

′
b be a position in N and γd a bracketed

string in (V ∪ Td)
∗. If qsγd �

∗ [ν]sdΠ
in Γ/sdΠ, then [A

i
−→α·α′] is a valid

strict deterministic item for γ.

Proof. We proceed by induction on the length |γd|. In the base case, γd =
ε, and then α = ub = ε and i = S−→α′, thus we can choose n = 0 in
Definition 5.4: ε is a production prefix of [S]Π, and S ≡ S (mod Π) by
reflexivity.

For the induction step, we consider a position ν ′ such that ν ֓
χ
−→ ν ′ with

χ in V ∪ Td. Then, qsγχ �
∗ [ν]sdΠ

χ � [ν ′]sdΠ
, and, by induction hypoth-

esis, there exist n ≥ 0, a decomposition γ = δ1 · · · δnα, and nonterminals
A0,. . . ,An such that A0 ≡ S (mod Π), An ≡ A (mod Π) with i = A−→αα′,
and (5.10) hold.

If χ = dj, then α′ = Bα′′ and ν ′ is of form xbdiubdj( · β
vb

)rju
′′
brix

′
b with

u′b = vbu
′′
b for some j = B−→β in P . Then, let n′ = n + 1, An+1 = B;

αB is a production prefix for A, and ε is one for B. Thus, for any ν ′′

in [ν ′]sdΠ
, the corresponding item [C−→·δ] is such that C ≡ B (modΠ),

and is thus a valid strict deterministic item for γ.

If χ = X is in V , then α′ = Xα′′ and ν ′ is of form xbdi(
αX
ubvb·α′′

u′′
b
)rix

′
b. Then,

αX is also a production prefix for [An]Π, and, for any ν ′′ in [ν ′]itemk
,

the corresponding item [B−→αX·β] is such that B ≡ A (mod Π), and
is a valid strict deterministic item for γX.

Lemma 5.6. If [A
i
−→α·α′] is a valid strict deterministic item for a string γ

in V ∗, then there exist γd a bracketed string in (V ∪Td)
∗ with h(γd) = γ and

ν a position of form xbdi(
α
ub·α′

u′
b
)rix

′
b in N such that qsγd �

∗ [ν]sdΠ
holds in

Γ/sdΠ.

Proof. We sketch the induction on n+|γ|. If this number is 0, then α = ε and
any item such that A ≡ S (mod Π) is such that there exists a corresponding
position in qs the only initial state of Γ/sdΠ. For the induction step, we
can increase this number either by increasing n or |γ|. In the first case, it
corresponds to following a dj transition, and in the second to following an
X transition in Γ/sdΠ.

Combining Lemma 5.5 and Lemma 5.6, we see that our construction
of a reduction-finding automaton using sdΠ is correct in that it generates



88 Parser Generation

a handle-finding automaton if Π is a strict partition (Geller and Harrison,
1977b). A strict deterministic parser can be as much as exponentially smaller
than the LR(0) parser for the same grammar.

5.2 Noncanonical LALR(1) Parsers

We present in this section the construction of Noncanonical LALR(1) (there-
after NLALR(1)) parsers from a context-free grammar. LALR parsers were
introduced by DeRemer (1969) and Anderson (1972) as practical parsers
for deterministic languages. Rather than building an exponential number
of LR(k) states, LALR(k) parsers add lookahead sets to the actions of the
small LR(0) parser.

LALR(1) Parsing Compared to SLR(1) parsers, LALR(1) machines
base their decisions on the current LR(0) state, and thus on an approx-
imation of the input read so far, instead of on a Follow set regardless of
the context. They are therefore sensibly less prone to nondeterminism than
SLR(1) parsers; we will illustrate this in Section 5.2.6.2 on page 112.

The LALR(1) construction relies heavily on the LR(0) automaton. This
automaton provides a nice explanation for LALR lookahead sets: the sym-
bols in the lookahead set for some reduction are the symbols expected next
by the LR(0) parser, should it really perform this reduction. A formal defi-
nition of LALR(1) parsers can be found in Section A.2.3 on page 169.

Our specific choice of extending LALR(1) parsers is motivated by their
wide adoption, their practical relevance, and the existence of efficient and
broadly used algorithms for their generation, notably those by Kristensen
and Madsen (1981) and DeRemer and Pennello (1982). We express our
noncanonical computations in the latter framework and obtain a simple and
efficient practical construction.

The additional complexity of generating a NLALR(1) parser instead of
a LALR(1) or a NSLR(1) one, as well as the increase of the parser size and
the overhead on parsing performances are all quite small. Therefore, the
improved parsing power comes at a fairly reasonable price.

5.2.1 Example Parser

Consider for instance grammar G12 with rules

S−→BC |AD,A−→a,B−→a,C−→CA |A,D−→aD |b, (G12)

generating the language L(G12) = aa+ | aa∗b.
The state q1 in the automaton of Figure 5.1 on the facing page is inad-

equate: the parser is unable to decide between reductions A−→a and B−→a



5.2 Noncanonical LALR(1) Parsers 89

q1:

B−→a·{a}
A−→a·{b, a}

q5:

A−→a·

q4:

D−→·b
D−→·aD
S−→A·D

S−→AD·
q10:

S−→BC·{$}
C−→C·A
A−→·a

q6:

D−→a·D
D−→·aD

D−→·b

q8:

D

a

A

S

B

A

S′−→·S$

S−→·BC

S−→·AD

A−→·a
B−→·a

q11:q0:

a

C

q9:

S−→B·C
C−→·CA

C−→·A
A−→·a

q3:

C−→CA·

D−→b·

q12:

D−→aD·

q2:

S′−→S·$

accept

$

a

a
b

q7:

C−→A·

b

a

D

A

Figure 5.1: The LALR(1) automaton for G12.

S$

AD

aDa·

aD

b

S$

BC

CAa·
a

CA

A a

a

Figure 5.2: The conflict position of state q1 in the derivation trees of G12.

when the lookahead is a. We see on the derivation trees of Figure 5.2 that,
in order to choose between the two reductions, the parser has to know if
there is a b at the very end of the input. This need for an unbounded looka-
head makes G12 non-LR. A parser using a regular lookahead would solve the
conflict by associating the distinct regular lookaheads a∗b and a+$ with the
reductions to A and B respectively.



90 Parser Generation

5.2.1.1 Noncanonical Parsing

At the heart of a noncanonical parser for G12 is the observation that a single
lookahead symbol (D or C) is enough: if the parser is able to explore the
context on the right of the conflict, and to reduce some other phrases, then,
at some point, it will reduce this context to a D (or a C). When coming back
to the conflict point, it will see a D (resp. a C) in the lookahead window.
The grammar clearly allows an A (resp. a B) in front of an a in state q1
only if this a was itself produced by a D (resp. a C).

Table 5.1 on the facing page presents a noncanonical parse for a string
in L(G12). A bottom-up parser reverses the derivation steps which lead to
the terminal string it parses. The reversal of a derivation Aaa =⇒ aaa is
the reduction of the phrase a in the sentential form aaa to the nonterminal
A. For most bottom-up parsers, including LALR ones, these derivations are
rightmost, and therefore the reduced phrase is the leftmost one, called the
handle of the sentential form. Noncanonical parsers allow the reduction of
phrases which may not be handles (Aho and Ullman, 1972): in our example,
it reverses the derivation aaA =⇒ aaa.

The noncanonical machine is not very different from the canonical one,
except that it uses two stacks. The additional stack, the input stack , con-
tains the (possibly reduced) right context, whereas the other stack is the
classical parsing stack . Reductions push the reduced nonterminal on top of
the input stack. There is no goto operation per se: the nonterminal on top
of the input stack either allows a parsing decision which had been delayed,
or is simply shifted.

5.2.1.2 Construction Principles

Let us compute the lookahead set for the reduction A−→a in state q1. Should
the LR(0) parser decide to reduce A−→a, it would pop q1 from the parsing
stack (thus be in state q0), and then push q4. We read directly on Figure 5.1
on the previous page that three symbols are acceptable in q4: D, a and b.
Similarly, the reduction B−→a in q1 has {C,A, a} for lookahead set, read
directly from state q3.

The intersection of the lookahead sets for the reductions in q1 is not
empty: a appears in both, which means a conflict. Luckily enough, a is not
a totally reduced symbol : D and C are reduced symbols, read from kernel
items in q4 and q3. The conflicting lookahead symbol a could be reduced,
and later we might see a symbol on which we can make a decision instead.
Thus, we shift the lookahead symbol a in order to reduce it and solve the
conflict later. All the other symbols in the computed lookaheads allow to
make a decision, so we leave them in the lookaheads sets, but we remove a
from both sets.



5.2 Noncanonical LALR(1) Parsers 91

Table 5.1: The parse of the string aaa by the NLALR(1) parser for G12.

parsing stack input stack actions

q0 aaa$ shift
q0q1 aa$ shift

The inadequate state q1 is reached with lookahead a. The decision of reducing to A or

B can be restated as the decision of reducing the right context to D or C. In order to

perform the latter decision, we shift a and reach the state s1 of Equation 5.12 where we

now expect a∗b and a∗$. We are pretty much in the same situation as before: s1 is also

inadequate. But we know that in front of b or $ a decision can be made:

q0q1s1 a$ shift
There is a new conflict between the reduction A−→a and the shift of a to a position

D−→a·D. We also shift this a. The expected right contexts are still a∗b and a∗$, so the

shift brings us again to s1:

q0q1s1s1 $ reduce using A−→a
The decision is made in front of $. We reduce the a represented by s1 on top of the

parsing stack, and push the reduced symbol A on top of the input stack:

q0q1s1 A$ reduce using A−→a
Using this new lookahead, the parser is able to decide another reduction to A:

q0q1 AA$ reduce using B−→a
We are now back in state q1. Clearly, there is no need to wait until we see a completely

reduced symbol C in the lookahead window: A is already a symbol specific to the

reduction to B:

q0 BAA$ shift
q0q3 AA$ shift

q0q3q7 A$ reduce using C−→A
q0q3 CA$ shift

q0q3q6 A$ shift
q0q3q6q11 $ reduce using C−→CA

q0q3 C$ shift
q0q3q6 $ reduce using S−→BC

q0 S$ shift, and then accept

Shifting a puts us in the same situation we would have been in if we
had followed the transitions on a from both q3 and q4, since the noncanon-
ical generation simulates both reductions in q1. We create a noncanonical
transition from q1 on a to a noncanonical state

s1 = {q5, q8}, (5.12)

that behaves as the union of states q5 and q8. State s1 thus allows a reduction



92 Parser Generation

q9

q12
D

b

a

a

A−→a·{D, b}
B−→a·{C, A}

s1 = {q5, q8}:

q1: A−→a·{A, $}
D−→a·D
D−→·aD

D−→·b

Figure 5.3: State q1 extended for noncanonical parsing.

using A−→a inherited from q5, and the shifts of a, b and D inherited from
q8. We therefore need to compute the lookaheads for reduction using A−→a
in q5. Using again the LR(0) simulation technique, we see on Figure 5.1 on
page 89 that this reduction would lead us to either q7 or to q11. In both
cases, the LR(0) automaton would perform a reduction to C that would lead
next to q6. At this point, the LR(0) automaton expects either the end of
file symbol $, should a reduction to S occur, or an A or an a. The complete
lookahead set for the reduction A−→a in q5 is thus {A, a, $}.

The new state s1 is also inadequate: with an a in the lookahead window,
we cannot choose between the shift of a and the reduction A−→a. As before,
we create a new transition on a from s1 to a noncanonical state

s′1 = {q5, q8}. (5.13)

State q5 is the state accessed on a from q6. State q8 is the state accessed
from q8 if we simulate a shift of symbol a.

State s′1 is the same as state s1, and we merge them. The noncanonical
computation is now finished. Figure 5.3 sums up how state q1 has been
transformed and extended. Note that we just use the set {q5, q8} in a non-
canonical LALR(1) automaton; items represented in Figure 5.3 are only
there to ease understanding.

5.2.2 Definition of NLALR(1) Parsers

There is a number of differences between the LALR(1) and NLALR(1) defini-
tions. The most visible one is that we accept nonterminals in our lookahead
sets. We also want to know which lookahead symbols are totally reduced.
Finally, we are adding new states, which are sets of LR(0) states. Therefore,
the objects in most of our computations will be LR(0) states.

We denote the LR(0) state reached upon reading γ in the canonical
LR(0) handle-finding automaton by [γ] instead of [γ]0 or [γ]item0

. Similarly,
we denote the Kernel0 and Valid0 sets by Kernel and Valid respectively.



5.2 Noncanonical LALR(1) Parsers 93

5.2.2.1 Valid Covers

We have recalled in Section A.2 on page 168 that LR(0) states can be viewed
as collections of valid prefixes. A similar definition for NLALR(1) states
would be nice. However, due to the suspended parsing actions, the language
of all prefixes accepted by a noncanonical parser is no longer a regular lan-
guage. This means the parser only has a regular approximation of the exact
parsing stack language. The noncanonical states, being sets of LR(0) states,
i.e. sets of equivalence classes on valid prefixes, provide this approximation.
We therefore define valid covers as valid prefixes covering the parsing stack
language.

Definition 5.7. String γ is a valid cover in G for string δ if and only if
γ is a valid prefix and γ =⇒∗ δ. We write δ̂ to denote some cover of δ and
Cover(L) to denote the set of all valid covers for the set of strings L.

Remember for instance configuration q0q1‖aa$ from Table 5.1 on page 91.
This configuration leads to pushing state s1 = {q5, q8}, where both valid
prefixes (B|BC)a and Aa∗a of q5 and q8 are valid covers for the actual
parsing stack prefix aa. Thus in s1 we cover the parsing stack prefix by
(B | BC | Aa∗)a.

This definition would be replaced in the more general case of a reduction-
finding automaton RFA(≡) by approximated covers, strings in V ∪ Td that
allow to reach the same state in Γ/≡ as the covered string does.

5.2.2.2 Noncanonical Lookaheads

Noncanonical lookaheads are symbols in V ′. Adapting the computation
of the LALR(1) lookahead sets is simple, but a few points deserve some
explanations.

First of all, noncanonical lookahead symbols have to be non null , i.e. X
is non null if X =⇒∗ ax. Indeed, null symbols do not provide any additional
right context information—worse, they can hide it. If we consider that we
always perform a reduction at the earliest parsing stage possible, then they
never appear in a lookahead window.

Totally Reduced Lookaheads Totally reduced lookaheads form a subset
of the noncanonical lookahead set such that none of its elements can be
further reduced. A conflict with a totally reduced symbol as lookahead of
a reduction cannot be solved by a noncanonical exploration of the right
context, since there is no hope of ever reducing it any further.

We define here totally reduced lookaheads as non null symbols that can
follow the right part of the offending rule in a leftmost derivation.



94 Parser Generation

Definition 5.8. The set of totally reduced lookaheads for a reduction A−→α
in LR(0) state q is defined by

RLA(q, A−→α) = {X | S′=⇒
lm

∗zAγXω, γ =⇒∗ ε,X =⇒∗ ax, and q = [ẑα]}.

Derived Lookaheads The derived lookahead symbols are simply de-
fined by extending Equation A.5 to the set of all non null symbols in V .

Definition 5.9. The set of derived lookaheads for a reduction A−→α in LR(0)
state q is defined by

DLA(q, A−→α) = {X | S′ =⇒∗ δAXω,X =⇒∗ ax, and q = [δ̂α]}.

We obviously have that

LA(q, A−→α) = DLA(q, A−→α) ∩ T ′. (5.14)

Conflicting Lookahead Symbols At last, we need to compute which
lookahead symbols would make the state inadequate. A noncanonical ex-
ploration of the right context is required for these symbols. They appear in
the derived lookahead sets of several reductions and/or are transition labels.
However, the totally reduced lookaheads of a reduction are not part of this
lookahead set, for if they are involved in a conflict, then there is no hope of
being able to solve it.

Definition 5.10. The conflicts lookahead set for a reduction using A−→α in
set s of LR(0) states is defined as

CLA(s,A−→α) = {X ∈ DLA(q, A−→α) | q ∈ s,X 6∈ RLA(q, A−→α),
(q,X) or (∃p ∈ s,∃B−→β 6= A−→α ∈ P,X ∈ DLA(p,B−→β))}.

We then define the noncanonical lookahead set for a reduction using
A−→α in set s of LR(0) states as

NLA(s,A−→α) =
(⋃

q∈s

DLA(q, A−→α)
)
− CLA(s,A−→α).

We illustrate these definitions by computing the lookahead sets for the
reduction using A−→a in state s1 = {q5, q8} as in Section 5.2.1.2 on page 90:
RLA(q5, A−→a) = {A, $}, DLA(q5, A−→a) = {A, a, $}, CLA(s1, A−→a) = {a}
and NLA(s1, A−→a) = {A, $}.

5.2.2.3 Noncanonical States

We saw at the beginning of this section that states in the NLALR(1) au-
tomaton were in fact sets of LR(0) states. We denote by JδK the noncanonical
state accessed upon reading string δ in V ′∗.



5.2 Noncanonical LALR(1) Parsers 95

Definition 5.11. The noncanonical state JδK is the set of LR(0) states
defined by

JεK ={[ε]} and

JδXK = {[ ̂̂γAX] | X ∈ CLA(JδK, A−→α), [γ̂α] ∈ JδK} ∪ {[ϕX] | [ϕ] ∈ JδK}.

The noncanonical transition from JδK to JδXK on symbol X, denoted by
(JδK, X), exists if and only if JδXK 6= ∅. Reduction (JδK, A−→α) exists if and
only if there exists a reduction (q, A−→α) and q is in JδK.

Note that these definitions remain valid for plain LALR(1) states since,
in absence of a conflict, a noncanonical state is a singleton set containing
the corresponding LR(0) state.

A simple induction on the length of δ shows that the LR(0) states con-
sidered in the noncanonical state JδK provide a valid cover for any accessing
string of the noncanonical state. It basically means that the actions decided
in a given noncanonical state make sense at least for a cover of the real
sentential form prefix that is read.

The approximations done when covering the actual sentential form prefix
are made on top of the previous approximations: with each new conflict, we
need to find a new set of LR(0) states covering the parsing stack contents.

This stacking is made obvious in the above definition when we write ̂̂γAX.
It means that NLALR(1) parsers are not prefix correct, but prefix cover
correct.

Throughout this section, we use the LR(0) automaton to approximate
the prefix read so far. We could use more powerful methods—but it would
not really be in the spirit of LALR parsing any longer; see Section 5.2.4 on
page 103 for alternative methods.

5.2.2.4 NLALR(1) Automata

Here we formalize noncanonical LALR(1) parsing machines. They are a
special case of two-stack pushdown automata (2PDA). As explained before,
the additional stack serves as an input for the parser, and reductions push
the reduced nonterminal on top of this stack. This behavior of reductions
excepted, the definition of a NLALR(1) automaton is similar to the LALR(1)
one.

Definition 5.12. Let M = (Q ∪ V ∪ {$, ‖}, R) be a rewriting system. A
configuration of M is a string of the form

JεKJX1K . . . JX1 . . . XnK‖ω$

where X1 . . . Xn and ω are strings in V ∗. We say that M is a NLALR(1)
automaton if its initial configuration is JεK‖w$ with w the input string in



96 Parser Generation

T ∗, its final configuration is JεKJSK‖$, and if each rewriting rule in R is of
the form

• shift X in state JδK, defined if there is a transition (JδK, X)

JδK‖X ⊢
shift

JδKJδXK‖,

• or reduce by rule A−→X1 . . . Xn of P in state JδX1 . . . XnK with looka-
head X, defined if A−→X1 . . . Xn is a reduction in JδX1 . . . XnK and
lookahead X is in NLA(JδX1 . . . XnK, A−→X1 . . . Xn)

JδX1K . . . JδX1 . . . XnK‖X ⊢
A−→X1 . . . Xn

JδK‖AX.

The following rules illustrate Definition 5.12 on the previous page on
state s1 of the NLALR(1) automaton for G12:

s1‖a ⊢
shift

s1s1‖,
s1‖b ⊢

shift
s1{q9}‖,

s1‖D ⊢
shift

s1{q12}‖,
s1‖A ⊢

A−→a
‖AA, and

s1‖$ ⊢
A−→a

‖A$.

(5.15)

According to Definition 5.12, NLALR(1) automata are able to back-
track by a limited amount, corresponding to the length of their window, at
reduction time only. We know that noncanonical parsers using a bounded
lookahead window operate in linear time (Szymanski and Williams, 1976);
the following theorem precisely shows that the total number of rules in-
volved in the parsing of an input string is linear in respect with the number
of reductions performed, which itself is linear with the input string length.
This theorem uses an output effect τ that outputs the rules used for each
reduction performed by M ; we then call (M, τ) a NLALR(1) parser.

Theorem 5.13. Let G be a grammar and (M, τ) its NLALR(1) parser. If
π is a parse of w in M , then the number of parsing steps |π| is related to
the number |τ(π)| of derivation steps producing w in G and to the length |w|
of w by

|π| = 2|τ(π)| + |w|.

We start by proving the following lemma inspired by Lemma 5.17 from Sippu
and Soisalon-Soininen (1990). The proof of Theorem 5.13 is then immedi-
ate when choosing w for α, ε for X1 . . . Xn and β and S for Y1 . . . Ym in
Lemma 5.14.



5.2 Noncanonical LALR(1) Parsers 97

Lemma 5.14. Let G be a CFG and (M, τ) its NLALR(1) parser. Further,
let X1 . . . Xn, Y1 . . . Ym, α and β be strings in V ∗ and π an action string in
R∗ such that

JεKJX1K . . . JX1 . . . XnK‖α$ |=
π

JεKJY1K . . . JY1 . . . YmK‖β$. (5.16)

Then,
|π| = 2|τ(π)| + |α| − |β| and

Y1 . . . Ymβ
τ(π)R

=⇒ X1 . . . Xnα in G.
(5.17)

Proof. The proof is by induction on the length of action string π.
If π = ε, then Equation 5.17 clearly holds.
Let us prove the induction step. We assume that π = rπ′ where r is a

single reduce or a single shift action, and where the lemma holds for π′.
If r is a reduce action, then for some number p with 1 ≤ p ≤ n and rule

A−→Xp . . . Xn,

JεKJX1K . . . JX1 . . . XnK‖α$
|=
A−→Xp . . . Xn

JεKJX1K . . . JX1 . . . Xp−1K‖Aα$

|=
π′ JεKJY1K . . . JY1 . . . YmK‖β$ in M.

(5.18)

By induction hypothesis,

|π′| = |τ(π′)| + |Aα| − |β| and

Y1 . . . Ymβ
τ(π′)R

=⇒ X1 . . . Xp−1Aα in G.
(5.19)

Thus

|π| = |r| + |π′| = |r| + |A| + 2|τ(π′)| + |α| − |β| and

Y1 . . . Ymβ
τ(π′)R

=⇒ X1 . . . Xp−1Aα
A−→Xp...Xn

=⇒ X1 . . . Xnα in G,
(5.20)

i.e. Equation 5.17 holds.
If r is a shift action, then we rewrite α as Xω and

JεKJX1K . . . JX1 . . . XnK‖Xω$
|=
shift

JεKJX1K . . . JX1 . . . XnKJX1 . . . XnXK‖ω$
|=
π′ JεKJY1K . . . JY1 . . . YmK‖β$ in M.

(5.21)

By induction hypothesis,

|π′| = |τ(π′)| + |ω| − |β| and

Y1 . . . Ymβ
τ(π′)R

=⇒ X1 . . . XnXω in G.
(5.22)

Thus
|π| = |r| + |π′| = 2|τ(π′)| + |X| + |ω| − |β| and

Y1 . . . Ymβ
τ(π′)R

=⇒ X1 . . . XnXω = X1 . . . Xnα in G,
(5.23)

where |τ(r)| = 0 and |X| + |ω| = |α|, thus Equation 5.17 holds.



98 Parser Generation

Since all the conflict lookahead symbols are removed from the noncanoni-
cal lookahead sets NLA, the only possibility for the noncanonical automaton
to be nondeterministic would be to have a totally reduced symbol causing
a conflict. A context-free grammar G is NLALR(1) if its NLALR(1) au-
tomaton is deterministic, and thus if no totally reduced symbol can cause a
conflict.

5.2.3 Efficient Construction

The LALR(1) lookahead sets that are defined in Equation A.5 on page 169
can be efficiently expressed using the following definitions by DeRemer and
Pennello (1982), where lookback is a relation between reductions and non-
terminal LR(0) transitions, includes and reads are relations between nonter-
minal LR(0) transitions, and DR—standing for directly reads—is a function
from nonterminal LR(0) transitions to sets of lookahead symbols.

([δα], A−→α) lookback ([δ], A), (5.24)

([δβ], A) includes ([δ], B) iff B−→βAγ and γ =⇒∗ ε, (5.25)

([δ], A) reads ([δA], C) iff ([δA], C) and C =⇒∗ ε, (5.26)

DR([δ], A) = {a | ([δA], a)}. (5.27)

Using the above definitions, we can rewrite Equation A.5 as

LA(q, A−→α) =
⋃

(q,A−→α)lookback ◦ includes∗ ◦ reads∗(r,C)

DR(r, C). (5.28)

For instance, considering the reduction using A−→a in q5 as we did in
Section 5.2.1.2 on page 90, since

(q5, A−→a) lookback (q3, A) includes (q3, C) includes (q0, S) (5.29)

and since
DR(q0, S) = {$}, (5.30)

we find again that the end of file $ belongs to the LALR(1) lookahead set
for this reduction.

This computation for LALR(1) lookahead sets is highly efficient. It can
be entirely performed on the LR(0) automaton, and the union can be inter-
leaved with a fast transitive closure algorithm (Tarjan, 1972) on the includes

and reads relations.

5.2.3.1 Computing Lookaheads

Since we have a very efficient and widely adopted computation for the canon-
ical LALR(1) lookahead sets, why not try to use it for the noncanonical
ones?



5.2 Noncanonical LALR(1) Parsers 99

Theorem 5.15.

RLA(q, A−→α) = {X | X =⇒∗ ax, ψ =⇒∗ ε, [C−→ρB·ψXσ] ∈ Kernel(δρB) and
(q, A−→α) lookback ◦ includes∗ ([δρ], B)}.

Theorem 5.15 is an immediate application of Lemma 5.17, and provides
a computation for the totally reduced lookaheads. We first quote a technical
lemma proven by Sippu and Soisalon-Soininen (1990).

Lemma 5.16. [Sippu and Soisalon-Soininen (1990)] Let G = 〈V, T, P, S〉
be a grammar. Further, let A be a nonterminal, X and Y symbols in V , γ
and ψ strings in V ∗, y a string in T ∗, and π a rule string in P ∗ such that

A
π

=⇒
rm

γXψY y and ψ =⇒∗ ε. (5.31)

Then there are symbols X ′ and Y ′ in V , a rule r′ = B−→αX ′ψ′Y ′β in P ,
and strings γ′, α′, β′ in V ∗ and y′ in T ∗ such that

A
π′

=⇒
rm

γ′By′
r′

=⇒
rm

γ′αX ′ψ′Y ′βy′, γ′αα′ = γ,

X ′ =⇒
rm

∗ α′X, ψ′ =⇒∗ ε, and Y ′=⇒
lm

∗Y β′,
(5.32)

where π′r′ is a prefix of π.

Lemma 5.17. The non null symbol X belongs to RLA(q, A−→α) if and only
if there is a rule C−→ρBψXσ with ψ =⇒∗ ε and state [δρ] such that

(q, A−→α) lookback ◦ includes∗ ([δρ], B) and C−→ρ·BψXσ ∈ Valid(δρ).

Proof. This lemma is very similar to Lemma 7.15 from Sippu and Soisalon-
Soininen (1990). We first assume that X belongs to RLA(q, A−→α). Then

S′=⇒
lm

∗zAγXω, γ =⇒∗ ε,X =⇒∗ ax and q = [ẑα]; (5.33)

we transform this derivation into a rightmost derivation:

S′ =⇒
rm

∗ ẑAγXy =⇒
rm

∗ ẑAaxy where ω =⇒∗ y. (5.34)

Then, we can apply the previous lemma from Sippu and Soisalon-Soininen
(1990), hence there exists rule C−→ρBψX ′σ and strings δ, β, ϕ and u such
that

S′ =⇒
rm

∗ δCu =⇒
rm

δρBψX ′σu, δρβ = ẑ,

B =⇒
rm

∗ βA,ψ =⇒∗ ε and X ′=⇒
lm

∗Xϕ.
(5.35)



100 Parser Generation

Remember that X appeared in the leftmost derivation S′=⇒
lm

∗zAγXω, where

it could not be derived by X ′ in a leftmost order, thus

X ′ = X and ϕ = ε. (5.36)

Thus C−→ρ·BψXσ ∈ Valid(δρ) and

([ẑ], A) includes∗ ([δρ], B), where (5.37)

([ẑα], A−→α) lookback ([ẑ], A), (5.38)

from which we deduce the result.
Conversely, since C−→ρ·BψXσ ∈ Valid(δρ),

S′ =⇒
rm

∗ δρBψXσu, (5.39)

and since ([ẑα], A−→α) lookback ◦ includes∗ ([δρ], B),

B =⇒∗ βAγ with γ =⇒∗ ε. (5.40)

Therefore, converting to leftmost derivations,

S′=⇒
lm

∗yBψXσω where δρ =⇒∗ y and ω =⇒∗ u, (5.41)

=⇒
lm

∗zAγψXσω where γψ =⇒∗ ε and δρβ =⇒∗ z. (5.42)

The non null symbol X complies with the conditions of RLA([ẑα], A−→α).

This theorem is consistent with the description of Section 5.2.1.2 on
page 90, where we explained that C was a totally reduced lookahead for
reduction B−→a in q1: indeed, item S−→B·C is in the kernel of state q3
accessed by (q0, B), and (q1, B−→a) lookback (q0, B).

Theorem 5.18. Let us extend the directly reads function of Equation 5.27
to

DR([δ], A) = {X | ([δA], X) and X =⇒∗ ax}; then

DLA(q, A−→α) =
⋃

(q,A−→α)lookback ◦ includes∗ ◦ reads∗(r,C)

DR(r, C).

Proof. Let the non null symbol X =⇒∗ ax be in DLA(q, A−→α) with q = [δ̂α].
Let us show it is in the directly read set of some related transition. We have

S′ =⇒∗ δAXω, (5.43)



5.2 Noncanonical LALR(1) Parsers 101

thus

S′ =⇒
rm

∗ δ̂AXy with ω =⇒∗ y. (5.44)

Then, there exist a rule C−→βBXσ and strings γ and y′ such that

S′ =⇒
rm

∗ γCy′ =⇒
rm

γβBXσy′ =⇒
rm

∗ γβBXy =⇒
rm

∗ γβBaxy =⇒
rm

∗ δ̂Aaxy. (5.45)

Therefore, X ∈ DR([γβ], B) where γβB is a valid cover for δ̂A. By Theo-
rem 5.20, we get the desired result.

Conversely, if X is in DR([γ], C) where γC is a valid cover for δ̂A, then

S′ =⇒
rm

∗ γCXz =⇒∗ δ̂AXz =⇒∗ δAXz, (5.46)

and thus X is in DLA([δ̂α], A−→α).

We could have proven this theorem using Lemma 5.17 and the following
lemma inspired by Lemma 7.13 of Sippu and Soisalon-Soininen (1990):

Lemma 5.19. Let

DFirst(α) = {X | α =⇒∗ Xω =⇒∗ axω},

then X is in DR(r, C) with ([γ], A) reads∗ (r, C) if and only if Valid(γ)
contains an item B−→β·Aα and X is in DFirst(α).

The noncanonical lookaheads could then be derived from the totally
reduced lookaheads, making the computation of the reads∗ relation unnec-
essary. But we need to compute reads∗ in order to get the valid covers for
the noncanonical transitions. We might as well use this information for the
computation of the noncanonical lookaheads, and avoid the computation of
the DFirst sets.

We are still consistent with the description of Section 5.2.1.2 on page 90
since, using this new definition of the DR function, DR(q0, B) is {a,C,A}.

5.2.3.2 Finding the Valid Covers

To find the valid covers that approximate a sentential form prefix using the
LR(0) automaton and to find the LALR lookahead sets wind up being very
similar operations. As presented in Section 5.2.1.2 on page 90, both can
be viewed as simulating the LR(0) parser behavior. The following theorem
formalizes this resemblance.

Theorem 5.20. Let α be a phrase such that S′ =⇒∗ δAXω =⇒ δαXω, then1

Cover([δ̂]AX) = {γCX | ([δ̂α], A−→α) lookback ◦ includes∗ ◦ reads∗ ([γ], C)}.

1By [δ]α, we denote the set of strings {ωα | ω ∈ [δ]}.



102 Parser Generation

The proof is immediate using the following lemma.

Lemma 5.21. Let δA be a valid prefix; then

Cover([δ]A) = {γC | ([δ], A) includes∗ ◦ reads∗ ([γ], C)}.

Proof. Let ([δ], A) includes∗ ◦ reads∗ ([γ], C), and let us show that γC is a
valid cover for δA.

1. if ([ϕβ], A) includes ([ϕ], B) then, since ϕB =⇒ ϕβAγ =⇒ ϕβA, ϕB is a
valid cover for ϕβA, and

2. if ([ϕ], B) reads ([ϕB], C), then ϕBC is a valid cover for ϕB since
ϕBC =⇒ ϕB.

Conversely, let δA be a valid prefix and γC a valid cover for δA, and let
us show that ([δ], A) includes∗ ◦ reads∗ ([γ], C). Since δA is a valid prefix
and γC is a valid cover for δA,

S′ =⇒
rm

∗ γCz =⇒
rm

∗ δAz. (5.47)

Suppose C =⇒∗ ε. Then γC =⇒
rm

γ =⇒
rm

∗ δA, thus γ ends with a nonter-

minal and can be rewritten as γ′C ′, and ([γ′], C ′) reads ([γ], C) in this case.
This can be iterated over any nullable suffix of γC.

What remains to be proven is that if S′ =⇒
rm

∗ γCz =⇒
rm

∗ δAz with C 6=⇒∗ ε,

then ([δ], A) includes∗ ([γ], C). But in this case C =⇒
rm

∗ βA with δ = γβ,

and by Lemma 7.9 of Sippu and Soisalon-Soininen (1990), ([δ], A) includes∗

([γ], C).

The valid covers of a reduction can thus be found using relations (5.24),
(5.25) and (5.26). This allows us to reuse our lookahead sets computations
for the automaton construction itself, as illustrated by the following corol-
lary.

Corollary 5.22. Noncanonical state JδK is the set of LR(0) states defined
by

JεK ={[ε]} and

JδXK = {[γCX] | X ∈ CLA(JδK, A−→α), q ∈ JδK and
(q, A−→α) lookback ◦ includes∗ ◦ reads∗ ([γ], C)}

∪ {[ϕX] | [ϕ] ∈ JδK}.



5.2 Noncanonical LALR(1) Parsers 103

5.2.3.3 Practical Construction Steps

We present here a more informal construction, with the main steps leading
to the construction of a NLALR(1) parser, given the LR(0) automaton.

1. Associate a noncanonical state s = {q} with each LR(0) state q.

2. Iterate while there exists an inadequate2 state s:

(a) if it has not been done before, compute the RLA and DLA looka-
head sets for the reductions involved in the conflict; save their
values for the reduction and LR(0) state involved;

(b) compute the CLA and NLA lookahead sets for s;

(c) set the lookaheads to NLA for the reduction actions in s;

(d) • if the NLA lookahead sets leave the state inadequate, mean-
ing there is a conflict on a totally reduced lookahead, then
report the conflict, and use a conflict resolution policy or
terminate with an error;

• if CLA is not empty, create transitions on its symbols and
create new states if no fusion occurs. New states get new
transition and reduction sets computed from the LR(0) states
they contain. If these new states result from shift/reduce
conflicts, the transitions from s on the conflicting lookahead
symbol now lead to the new states.

This process always terminates since there is a bounded number of LR(0)
states and thus a bounded number of noncanonical states.

5.2.4 Alternative Definitions

We present here a few variants that also allow the construction of noncanon-
ical LALR-based parsers.

5.2.4.1 Leftmost LALR(1) Alternative

If, instead of deciding a reduction as early as possible, we waited until we
saw a totally reduced symbol in the lookahead window, then we would have
defined a variant called leftmost LALR(1) parsing by analogy with leftmost
SLR(1) parsing (Tai, 1979).

2We mean here inadequate in the LR(0) sense, thus no lookaheads need to be computed
yet.



104 Parser Generation

B−→·a
A−→·a

q1:
S−→c·ACb
S−→c·AA′

q3:

B−→a·
A−→a·

q5:

B′−→·fh
S−→cB·B′

d q8:
C−→d·

q9:
A′−→f·g

S−→c·BB′

q2:
S−→d·ADb
S−→d·AA′

S−→d·BB′

A−→·a
B−→·a

q0:

S′−→·S$

S−→·cACb
S−→·dADb
S−→·dAA′

S−→·cAA′

S−→·dBB′

S−→·cBB′

q7:

B′−→·fh
S−→dB·B′

q6:
S−→dA·Db
S−→dA·A′

A′−→·fg
D−→·d

a

d

c A

B

a

A

B

d

q4:
S−→cA·Cb
S−→cA·A′

C−→·d
A′−→·fg

f

f

q11:
B′−→f·h

q10:
D−→d·

f

f

Figure 5.4: Partial LR(0) automaton for G13.

In order to generate a Leftmost LALR(1) (LLALR(1)) parser, we have
to change the definition with

CLA(s,A−→α) = {X ∈ DLA(q, A−→α) | q ∈ s
and X 6∈ RLA(q, A−→α)} and

(5.48)

NLA(s,A−→α) =
⋃

q∈s

RLA(q, A−→α). (5.49)

LSLR(1) parsers are strictly weaker than NSLR(1) parsers (Tai, 1979).
The same is true for LLALR(1) parsers compared to NLALR(1) parsers.
The delayed resolution can cause a conflict. Grammar G13 with rules

S−→cACb |dADb |cAA′ |dAA′ |cBB′ |dBB′,
A−→a, B−→a, C−→d, D−→d, A′−→fg, B′−→fh

(G13)

illustrates this case. Figure 5.4 presents a portion of the LR(0) automaton
for G13.



5.2 Noncanonical LALR(1) Parsers 105

The noncanonical lookaheads for the reductions in state q3 are

RLA(q3, A−→a) = {C,D,A′},
DLA(q3, A−→a) = {C,D, d,A′, f},
RLA(q3, B−→a) = {B′} and
DLA(q3, B−→a) = {B′, f}.

In NLALR(1) parsing, noncanonical state {q3} has a transition on f to
noncanonical state {q9, q11}, where the conflict is then solved by shifting g
or h and reducing to A′ or B′.

In LLALR(1) parsing, we compute transitions for all the lookahead sym-
bols that are not completely reduced. With G13, this is the case of d, which
appears in DLA(q3, A−→a) but not in RLA(q3, A−→a). Then, there is a tran-
sition on d from {q3} to {q8, q10}. This new state has a reduce/reduce
conflict where both RLA(q8, C−→d) and RLA(q10, D−→d) contain symbol b.
Grammar G13 is not LLALR(1).

5.2.4.2 Item-based Alternative

In the item-based variant, noncanonical states are collections of valid LR(0)
items instead of sets of LR(0) states. This allows to merge states with
identical Kernel item sets as defined in (A.1–A.2), and to produce more
compact automata. There is however an impact on the power of the parsing
method. Consider grammar with rules

S−→AC |BDa |cCa |cD, A−→a, B−→a, C−→b, D−→b. (G14)

Figure 5.5 on the following page shows the LALR(1) automaton for G14.

Using the state-based NLALR(1) definition, we just add a transition on
b from noncanonical state {q1} to noncanonical state {q9, q11} where the
reductions of b to C and D are associated with lookahead symbols $ and a
respectively.

Using the item-based definition, the state reached by a transition on b
from state {A−→a·, B−→a·} = Valid(a) is state {C−→b·, D−→b·} = Valid(ab)
where both symbols a and $ are possible lookaheads for both reductions
using C−→b and D−→b. These symbols are totally reduced, and the generated
parser for G14 is nondeterministic.

A solution for combining the strength of the state-based approach with
the smaller automata of the item-based variant could be to consider the
lookahead sets associated with each reduction item. We would then merge
states with the same noncanonical LALR(1) item sets instead of the same
LR(0) item sets. Since this would be comparable to a state merge once the
construction is over, compression techniques for parsing tables seem a better
choice.



106 Parser Generation

q1:

A−→a·{b}
B−→a·{b}

q2:

S−→c·Ca
S−→c·D
C−→·b
D−→·b

q3:

S′−→S·$

q4:

S−→A·C
C−→·b

q0:

S′−→·S$

S−→·AC
S−→·BDa
S−→·cCa
S−→·cD
A−→·a
B−→·a

q12:

S−→BD·a

q11:

D−→b·

q10:

S−→AC·

q9:

C−→b·

q8:

S−→cD·

q7:

S−→cC·a

q6:

C−→b·{a}
D−→b·{$}

q5:

S−→B·Da
D−→·b

q13:

S−→cCa·

q14:

S−→BDa·

a

a

a

c

S

A

B

b

C

D

b

C

b

D

Figure 5.5: LALR(1) automaton for G14.

5.2.4.3 Transition-based Alternative

The two previous modifications we presented were weaker than the regular
definition. The transition-based definition is stronger, but the generated
noncanonical parsers are not isomorphic to LR(0) parsers on the conflict-
free portions of the parser.

In the transition-based alternative, noncanonical states are sets of LR(0)
transitions. All computations would then be based on LR(0) transitions
instead of LR(0) states. We express this alternative in terms of the relations
of Section 5.2.3 on page 98 because they involve LR(0) transitions.

First, we would augment our grammars with rule S′−→$S$ in order to
have an incoming transition to the initial LR(0) state [$].



5.2 Noncanonical LALR(1) Parsers 107

a

S

A

B

E

O

a

a

E

E

O

O

a

A

B

a

q1:

E−→a·{a}
O−→a·{a, $}

$
accept

q0:

S−→·A
S−→·B
A−→·EEA

A−→·EE

B−→·OOB

B−→·O
E−→·a
O−→·a

S′−→$·S$

q5:

A−→E·EA

A−→E·E
E−→·a

q6:

B−→O·OB

B−→O·{$}
O−→·a

q4:

S−→B·

q3:

S−→A·

q2:

S′−→$S·$

q8:

A−→·EE

A−→EE·{$}

E−→·a
A−→·EEA

A−→EE·A

q10:

B−→·OOB

B−→OO·B
B−→·O
O−→·a

q7:

E−→a·

q9:

O−→a·

q12:

B−→OOB·

q11:

A−→EEA·

$

Figure 5.6: The LALR(1) automaton for G15.

Then, we would redefine the lookback relation. For a reduction using
A−→α, instead of looking back from q to any transition ([δ], A) such that
there is a path accessing q on δα, we provide a transition (p, Y ) accessing q
and want to find transitions ([δ], A) with a path starting in [δ] and accessing
q on δα and ending by transition (p, Y ).

((p, Y ), A−→α) lookback (q, A) iff p = [ϕ], q = [δ] and δα = ϕY, (5.50)

where ([ϕY ], A−→α) is a reduction using A−→α in state [ϕY ]. All noncanon-
ical lookaheads computations would then be modified accordingly.

At last, we would redefine noncanonical states as sets of LR(0) transitions



108 Parser Generation

a

a

a

O−→a·{O, $}
E−→a·{E}

{(q8, a), (q10, a)}:

O−→a·{O, $}
E−→a·{E}

{(q0, a)}:

O−→a·{B, O}
E−→a·{A, $, E}

{(q5, a), (q6, a)}:

Figure 5.7: State q1 of G15 transformed and extended for noncanonical pars-
ing.

defined by

J$K = {([ε], $)} and
JδXK = {([γC], X) | X ∈ CLA(JδK, A−→α), (p, Y ) ∈ JδK and

((p, Y ), A−→α) lookback ◦ includes∗ ◦ reads∗ ([γ], C)}
∪ {([ϕY ], X) | ([ϕ], Y ) ∈ JδK}.

(5.51)

Let us illustrate these definitions on an example. Consider Grammar G15

with rules

S−→A |B, A−→EEA |EE, B−→OOB |O, E−→a, O−→a; (G15)

its LALR(1) automaton is presented in Figure 5.6 on the preceding page.
Using the state-based NLALR(1) construction, we would create a transition
on symbol a from state {q1} to state {q7, q9}, where totally reduced symbol
$ would appear in the lookahead window of both reductions using E−→a and
O−→a.

Using the transition-based construction, noncanonical state {(q0, a)} cor-
responding to the LR(0) state q1 would have a transition on symbol a to
{(q5, a), (q6, a)} where $ appears only in the lookahead window of reduction
using E−→a. Noncanonical state {(q5, a), (q6, a)} would also have a transition
on a to {(q8, a), (q10, a)} where $ appears only in the lookahead window of re-
duction using O−→a. At last, state {(q8, a), (q10, a)} would have a transition
on a back to {(q5, a), (q6, a)}. Figure 5.7 recapitulates these computations.

But we also notice that LR(0) state q5 would be split into noncanonical
states J$EK = {(q0, E)} and J$EE(EE)∗EK = {(q8, E)}. This construction
is not really LALR in spirit. In fact, it could be generalized by having n-
tuples of LR(0) transitions as noncanonical states, improving the precision
of the lookahead computations at the expense of an increased size for the
resulting automaton. One could also view these n-tuples of transitions as
(n+1)-tuples of states, in the line of the LR-Regular lookahead computations
of Boullier (1984) and Bermudez (1991).

5.2.5 NLALR(1) Grammars and Languages

We compare here the power of NLALR(1) parsing with the power of various
other parsing methods.



5.2 Noncanonical LALR(1) Parsers 109

UCFG

LR(1)

FSPA(1)
LRR

LL(1)

NLALR(1)

LALR(1)
NSLR(1)

SLR(1)

LR(0)

Figure 5.8: Lattice of inclusions between grammar classes.

A grammar class is a set of grammars, usually the set for which a de-
terministic parser can be generated by some construction. We denote by
CNLALR(1) the class of grammars accepted by a NLALR(1) parser; we com-
pare this class with other grammar classes. The lattice of Figure 5.8 sums
up this comparisons.

Unambiguous Grammars We told in Section 5.2.2.4 on page 95 that
a grammar was NLALR(1) if and only if no totally reduced symbol could
cause a conflict. As will be seen in the next comparison, NLALR(1) gram-
mars are all FSPA(1) grammars, which are all unambiguous. The class of
NLALR(1) grammars is thus included in the class of all unambiguous gram-
mars. Considering then the unambiguous and non-NLALR(1) palindrome
grammar with rules

S−→aSa |bSb |ε, (G16)

we get the proper inclusion

CNLALR(1) ⊂ CUCFG. (5.52)

FSPA(1) Grammars Grammars that are parsable using a finite-state
parsing automaton and k symbols of lookahead window have been intro-
duced in (Szymanski and Williams, 1976). Informally presented, a FSPA(k)
grammar can be parsed noncanonically using a regular approximation of the
parsing stack contents and k symbols of lookahead. This parsing method is
thus the most general noncanonical parsing method using a bounded looka-
head and a finite representation of the parsing stack language. However, the
problem of deciding whether a given grammar is FSPA(k), even for a given
k, is undecidable in general.



110 Parser Generation

Noncanonical LALR(1) parsing complies with this definition; moreover,
grammar G15 is FSPA(1) but not NLALR(1), hence the following proper
inclusion for grammars without any null nonterminal

CNLALR(1) ⊂ CFSPA(1). (5.53)

LALR(1) Grammars Equality 5.14 and Definition 5.11 together imply
that any LALR(1) grammar has a NLALR(1) automaton with singleton
noncanonical states and empty CLA lookahead sets.

Grammar G12 is an example of a non-LALR(1) and NLALR(1) grammar;
thus the proper inclusion

CLALR(1) ⊂ CNLALR(1). (5.54)

NSLR(1) Grammars Noncanonical SLR(1) parsers (Tai, 1979) are
built in a very similar way to NLALR(1) grammars, though they are item-
based. Their lookahead computation is however less precise as it uses the
noncanonical Follow sets instead of the RLA and DLA lookahead sets. Here
are the noncanonical Follow sets, corrected (Salomon and Cormack, 1989)
to exclude null symbols:

RFollow(A) = {X | S′=⇒
lm

∗zAγXω, γ =⇒∗ ε,X =⇒∗ ax} (5.55)

DFollow(A) = {X | S′ =⇒∗ δAXω,X =⇒∗ ax}. (5.56)

Given a LR(0) state q with a possible reduction using A−→α, clearly

RLA(q, A−→α) ⊆ RFollow(A), (5.57)

and thus any NSLR(1) grammar is also NLALR(1). Grammar G12 given on
page 88 is an example of a non-NSLR(1) and NLALR(1) grammar; hence
the proper inclusion

CNSLR(1) ⊂ CNLALR(1). (5.58)

LL(1) and LR(1) Grammars On one hand, Grammar G12 was shown
to be non-LR(k) and thus non-LL(k), but is NLALR(1). On the other hand,
many classical non-LALR grammars are not NLALR(1) either, since these
examples rely on a faulty approximation done in the construction of the
underlying LR(0) machine. For instance, the grammar with rules

S−→aA |bB, A−→Cc |Dd, B−→Cd |Dc,
C−→FE, D−→FH, E−→ε, F−→ε, H−→ε

(G17)

is SLL(1) and thus LL(1) and LR(1) but not LALR(k) for any k nor NLALR(1).
Grammar class CNLALR(1) is therefore incomparable with both grammar

classes CLL(1) and CLR(1).



5.2 Noncanonical LALR(1) Parsers 111

LRR Grammars LR-Regular parsers (defined by Čulik and Cohen
(1973), and previously mentioned in Section 3.2.2 on page 35) are able to
use a regular cover for an unbounded lookahead exploration. Like with
CFSPA(k), the membership in the grammar class is an undecidable problem.
However, some practical approximations have been developed (Bermudez
and Schimpf, 1990).

Grammar G17 being LR(1), it is a fortiori LRR. Grammar G18 with rules
shamelessly copied from Szymanski and Williams (1976)

S−→AC |BD, A−→a, B−→a, C−→bC |bD, D−→bDc |bc (G18)

is not LRR but is NLALR(1). Grammar class CNLALR(1) is therefore incom-
parable with grammar class CLRR.

Deterministic Languages The NLALR(1) language class is the set of
all languages for which there exists a NLALR(1) grammar.

All the deterministic languages can be recognized using a determinis-
tic SLR(1) machine; since CSLR(1) ⊂ CLALR(1), they can also be parsed by
a deterministic NLALR(1) machine. This inclusion is proper: Tai (1979)
presents several nondeterministic languages which are NSLR(1) and are thus
NLALR(1). Using a transformation in the line of Bermudez and Logothetis
(1989), we should be able to prove that any NLALR(1) language is NSLR(1)
as well.

LRR Languages Grammar G19 with rules

S−→ACD |A′C ′, A−→aAB |aB, B−→b, C−→F, D−→dD |d,
A′−→aA′B′ |aB′, B′−→bB′′, B′′−→b, C ′−→F, F−→cFd |cd,

(G19)

is NLALR(1) and even NSLR(1), but generates the non-LR-Regular lan-
guage (Čulik and Cohen, 1973)

{anbncmdm+l | n,m, l ≥ 1} ∪ {anb2ncmdm | n,m ≥ 1}. (L(G19))

Szymanski and Williams (1976) proved that any LR-Regular language is also
a BCP language, and we suspect that the class of BCP languages coincides
with the class of NLALR(1) languages.

5.2.6 Practical Considerations

5.2.6.1 Parser Size

Let us dedicate a few words to the size of the generated parsers. Since
NLALR(1) states are sets of LR(0) states, we find an exponential func-
tion of the size of the LR(0) automaton as an upper bound on the size of



112 Parser Generation

〈statement〉 −→ 〈labeled statement〉
| 〈expression statement〉 ;

〈labeled statement〉 −→ identifier : 〈statement〉
| case 〈constant expression〉 : 〈statement〉

〈expression statement〉 −→ 〈expression〉
〈expression〉 =⇒∗ 〈primary expression〉

〈primary expression〉 −→ identifier
〈conditional expression〉 −→ 〈logical or expression〉? 〈expression〉 :

〈conditional expression〉

Figure 5.9: The syntax of labeled statements in ANSI C.

the NLALR(1) automaton. This bound seems however pretty irrelevant in
practice. The NLALR(1) parser generator needs to create a new state for
each lookahead causing a conflict, which does not happen so often. All the
grammars we studied created transitions to canonical states very quickly af-
terwards. Experimental results with NSLR(1) parsers show that the increase
in size is negligible in practice (Tai, 1979).

Furthermore, noncanonical parsers can be exponentially more succinct
than canonical ones for the same grammar. Consider for instance the gram-
mar family with rules

S−→cSc |dSd |AA′ |BB′, A−→a, B−→a, A′−→ci−1a, B′−→ci−1b (Gi
20)

inspired by a grammar family designed for similar considerations by Bertsch
and Nederhof (2007). A conflict between the reductions by A−→a and B−→a
is avoided by a canonical LR(k) parser if and only if k ≥ i. But such a
parser contains a different state with an item [S−→cSc·, u] for each u in
{c, d}k, whereas the NLALR(1) parsers for Gi

20 contain a single such state
with item [S−→cSc·].

5.2.6.2 SLR Versus LALR

During our tests on ambiguity detection, we identified a number of cases
where a noncanonical SLR lookahead computation would bode worse than a
canonical LALR one. A case that recurs in the syntax of ANSI C (Kernighan
and Ritchie, 1988, Appendix A.13) and of Java (Gosling et al., 1996, Chapter
19) is a conflict in the syntax of labeled statements.

Labeled C Statements We present the relevant portions of the ANSI
C grammar in Figure 5.9. A shift/reduce conflict occurs when the LR(0)



5.2 Noncanonical LALR(1) Parsers 113

parser attempts to recognize a 〈statement〉 starting with an identifier . With
a colon symbol as the lookahead symbol, a SLR(1) parser cannot solve the
conflict. Indeed, a 〈primary expression〉 can appear before a colon symbol
“ :” in only two contexts: in a “case” labeled statement, or in a ternary
〈conditional expression〉.

Nevertheless, due to the presence of the “case” keyword or of the question
mark “?”, neither of these contexts can be mistaken with an identifier at
the beginning of a 〈statement〉, and hence a LALR(1) parser knows it can
shift safely.

Weakness of NLSR(1) Parsing Observe that the colon symbol is re-
duced and would thus appear in the RFollow(〈primary expression〉) looka-
head set of a NSLR(1) parser. This portion of the C syntax is NLALR(1)
but not NSLR(1).

We could devise a transformation of the grammar in the line of Bermudez
and Logothetis (1989), where the LR(0) automaton is effectively encoded in
the grammar, and the RFollow set would then coincide with the RLA set.
This transformation is meant as a simpler way to compute LALR lookahead
sets, and not as an explicit grammar rewrite, which would clearly impair
the grammar’s readability.

5.2.6.3 Need for More Lookahead

Let us consider again the syntax of Java modifiers presented in Section 3.1.1
on page 26. This excerpt of the Java specification grammar is NLALR(2),
but can be made NLALR(1) with the simple reassignment of the produc-
tions of 〈Type〉 to 〈NonVoidType〉, the addition of the unit production
〈Type〉−→〈NonVoidType〉, and the change from 〈Type〉 to 〈NonVoidType〉
in the derivation of 〈ResultType〉:

〈Type〉−→〈NonVoidType〉
〈ResultType〉−→〈NonVoidType〉 | void

We can generate a NLALR(1) parser for the modified set of grammar
productions. Figure 5.10 on the next page presents a small portion of the
NLALR(1) automaton. On the partial input “public static int length” pre-
sented in Section 3.1.1.2 on page 26, it will shift the “public” and “static”
tokens, shift “int” and reduce it to a 〈NonVoidType〉 and shift it, reduce
“length” and parts of what follows to either a 〈VariableDeclarator〉 or to a
〈MethodDeclarator〉. The parser will come back to this point later, but now
it is able to solve all pending conflicts. The nonterminal 〈NonVoidType〉
can be reduced to 〈Type〉 or 〈ResultType〉, and “static” followed by public

to a 〈FieldModifier〉 or a 〈MethodModifier〉 each. At last, ε and these two
nonterminals are reduced to a single 〈FieldModifiers〉 or 〈MethodModifiers〉.



114 Parser Generation

q′
0
:

〈FieldModifier 〉−→public·{〈FieldModifier 〉, transient, volatile, 〈Type〉}
〈MethodModifier 〉−→public·{〈MethodModifier 〉, abstract, native, synchronized, 〈ResultType〉, void}

public

〈Identifier〉

. . .

q0:
〈FieldDeclaration〉−→·〈FieldModifiers 〉〈Type〉〈VariableDeclarators〉 ;
〈FieldModifiers 〉−→·〈FieldModifiers 〉〈FieldModifier 〉

〈MethodHeader 〉−→·〈MethodModifiers 〉〈ResultType〉〈MethodDeclarator 〉〈Throws〉
〈MethodModifiers〉−→·〈MethodModifiers 〉〈MethodModifier 〉

〈FieldModifiers 〉−→·{〈FieldModifier 〉, transient, volatile, 〈Type〉}

〈MethodModifiers〉−→·{〈MethodModifier 〉, abstract, native, synchronized, 〈ResultType〉, void}

q′′′
0

:
〈Type〉−→〈NonVoidType〉·{〈VariableDeclarators〉}
〈ResultType〉−→〈NonVoidType〉·{〈MethodDeclarator 〉}

〈NonVoidType〉

static static

q′′
0
:

〈FieldModifier 〉−→static·{〈FieldModifier 〉, transient, volatile, 〈Type〉}
〈MethodModifier 〉−→static·{〈MethodModifier 〉, abstract, native, synchronized, 〈ResultType〉, void}

public

publicstatic 〈NonVoidType〉

〈NonVoidType〉

Figure 5.10: Partial NLALR(1) automaton for the Java fields and methods
declaration syntax of Figure 3.1 on page 27.

This real-life example should demonstrate the suitability of NLALR(1)
parsers for practical purposes. We notice in particular that the noncanonical
version of the automaton has only six more states, one for each common
modifier and one for 〈NonVoidType〉, than its canonical counterpart for the
modified grammar snippet. We would of course have preferred a solution
with greater lookahead capabilities, avoiding any modification to the original
specification grammar. There is consolation in the fact that the grammar
transformation is very simple when compared to the usual transformations
required in order to get canonical LALR(1) grammars, but we are going to
consider better solutions to this issue in the following section.

5.3 Shift-Resolve Parsers

As described in the previous section, noncanonical parsing allows to cir-
cumvent the limitation to bounded lookaheads in bottom-up parsers, but to
keep the unambiguity guarantee. However, as we noted in Section 5.2.6.3
on the previous page, the preset bound on the reduced lookahead length—
in practice the bound is k = 1—hampers the power of the noncanonical
methods.

Only two noncanonical parsing methods allowing unbounded right con-
text explorations are known: the Generalized Piecewise LR (GPLR) parsers
of Schell (1979) and Overbey (2006), and the Noncanonical Discriminat-



5.3 Shift-Resolve Parsers 115

ing Reverse (NDR) parsers of Farré and Fortes Gálvez (2004). In both
methods, parsing is performed in quadratic time at worst. The alternative
to noncanonical parsing is regular lookahead parsing, with a finite state au-
tomaton that explores an unbounded right context. Again, we lose the linear
parsing time guarantee with practical implementations (Section 5.3.1).

Following the requirements enunciated on page 16, we want to have our
cake and eat it too: we want linear time parsing, ambiguity detection, and
no user defined bound on the lookahead length. Shift-resolve parsing is a
new combination of the regular and noncanonical strategies that achieves all
these properties. The originality of shift-resolve parsing lies in the following
points.

• We propose a new parsing action, resolve (Section 5.3.2 on page 117),
which combines the classical reduction with a pushback, i.e. it rewinds
the stack down to the point where the reduction should take place.
The exact amount of pushback is not fixed, but computed for each
reduction as a minimal necessary length.

• By promoting the resolve action as a replacement for the reduce action,
our parsers properly integrate noncanonical resolutions in the right
context exploration. One could fear that a quadratic time complexity
would stem from this combination. We avoid it by ensuring that the
pushback lengths remain bounded.

• We present the construction of shift-resolve parsers as the determiniza-
tion of a position automaton (Section 5.3.3 on page 119). We thus
benefit from the flexibility of having a lattice of possible approxima-
tions (Section 4.2.1.3 on page 58). Hence, our method is highly generic
and allows for tradeoffs between descriptional complexity and classes
of accepted grammars.

5.3.1 Time Complexity Matters

We consider the LR(1) grammar with rules

S
2
−→ACa, S

3
−→BDb, A

4
−→AD,

A
5
−→a, B

6
−→BC, B

7
−→b, C

8
−→c, D

9
−→c,

(G21)

generating the regular language ac+a|bc+b.

Nondeterminism Grammar G21 can require an unbounded lookahead
if we consider LR(0)-based parsing methods, like for instance the LALR(1)
automaton shown in Figure 5.11 on the following page. The automaton has
a single inadequate state q6 with items C−→c· and D−→c·, reachable after



116 Parser Generation

q0
S′−→·S$

S−→·ACa
S−→·BDb
A−→·AD
A−→·a
B−→·BC
B−→·b q5

S−→B·Db
B−→B·C
C−→·c
D−→·c

q3
S′−→S·$ B−→BC·

q9

S−→BD·b
q10

A−→AD·
q8

q7
S−→AC·a

S−→BDb·
q12

S−→ACa·
q11

q4
S−→A·Ca
A−→A·D
C−→·c
D−→·c

q2
B−→b·

q1
A−→a·

D−→c·{c, b}
C−→c·{c, a}
q6

a

B

A

S

b

a

C

D

c

b

C

D

c

Figure 5.11: The LALR(1) automaton for G21.

reading both prefixes Ac and Bc. After reading Ac, the exact lookahead for
the reduction to C is a, while the one for the reduction to D is c+a. After
reading Bc, the lookaheads are c+b and b respectively. Thus, if we rely
on the LR(0) automaton, then we need an unbounded terminal lookahead
length in order to choose between the reduction to C or D, when seeing the
last input symbol a or b after a sequence c+.

Noncanonical Parsers Grammar G21 is not LALR(1). If we try to use
more advanced parsers, G21 is not NSLR(1) (Tai, 1979) nor NLALR(1)—
it is NSLR(2). Having to deal with such conflicts, which could almost be
treated, requiring only one additional symbol of lookahead, is a common
and frustrating issue. The example of the Java modifiers in Section 5.2.6.3
on page 113 was another instance of this phenomenon.

LR-Regular Parsers An implementation of unbounded regular looka-
head explorations based on LR(0) approximations, for instance a R(2)LR(0)



5.3 Shift-Resolve Parsers 117

machine (Boullier, 1984), can associate the lookaheads c+a | b with the re-
duction to D and a |c+b with the reduction to C.

If we feed such a LR-Regular parser with the valid input string accna, it
will first reduce the initial symbol a to A and shift the first c, thus reaching
the inadequate state q6. At this point, it will need to explore the entire
right context cna until the last a to decide the reduction of this first c to
D. After the reduction of AD to A and the shift of the next c symbol, the
parser has once more to resolve the same conflict in q6 with an exploration
of cn−1a until it reads the last a. The same phenomenon will happen until
exhaustion of all the c symbols in the input. Thus the time complexity of
parsing accna is quadratic.

More elaborated LR-Regular implementations (Boullier, 1984; Bermudez
and Schimpf, 1990; Farré and Fortes Gálvez, 2001) can be defeated by
slightly modified versions of G21 and present the same quadratic time com-
plexity. We can consider for instance the grammar family

S−→ACcia |BDcib, A−→AD |a, B−→BC |b, C−→c, D−→c, (Gi
21)

which is R(h)LR(k) for h ≥ 2 and all k, but for which the RLR parser runs
in quadratic time for k ≤ i.

The question whether practical LR-Regular parsers, that employ a FSA
for lookahead exploration, can work in quadratic time or not was not very
clear: Seité (1987) on one hand and Boullier (1984) and Farré and Fortes
Gálvez (2001) on the other hand claimed that their methods worked in
linear time, but relied on results by Čulik and Cohen (1973) and Heilbrunner
(1981) respectively that did not apply to their case. Grammar G21 and its
variants settle this issue.

5.3.2 Example Parser

Overview We make with shift-resolve parsing the simplifying choice of
always using completely reduced lookahead symbols: symbols as they appear
in the grammar rule we are exploring, and cannot be reduced without reduc-
ing the entire rule, as with Leftmost LALR(1) parsing (see Section 5.2.4.1
on page 103).

As usual in noncanonical parsing (Aho and Ullman, 1972), a determinis-
tic two-stack model is used to hold the current sentential form. The parsing
(or left) stack corresponds to the traditional LR stack, while the input (or
right) stack initially contains the input string. Two operations allow to
move symbols from the top of one stack to the top of the other: a shift of
a symbol from the input stack to the parsing stack, and a pushback of a
bounded number of symbols the other way around. A reduction using rule
A−→α removes the topmost |α| symbols from the parsing stack and pushes
A on top of the input stack.



118 Parser Generation

Table 5.2: Shift-resolve parsing table for G21.

$ a b c S A B C D

q0 s4 s5 s1 s2 s3
q1 r1’0
q2 s8 s6 s7
q3 s8 s9 s10
q4 s8 r5’0 r5’0
q5 s8 r7’0 r7’0
q6 s11 s8
q7 s8 r4’0 r4’0
q8 r8’0 r9’0 s8 s12 s13
q9 s8 r6’0 r6’0
q10 s14 s8
q11 r2’0
q12 r9’1 s8 r8’1 r8’1
q13 r8’1 s8 r9’1 r9’1
q14 r3’0

We compute, for each reduction, the minimal bounded reduced looka-
head length needed to discriminate it from other parsing actions. This
lookahead exploration is properly integrated in the parser. Once the parser
succeeds in telling which action should have been done, we either keep pars-
ing if it was a shift, or need to reduce at an earlier point. The pushback
brings the parser back at this point; we call the combination of a pushback
and a reduction a resolution.

No cost is paid in terms of computational complexity, since shift-resolve
parsers are linear in the length of the input text. A simple proof is that the
only re-explored symbols are those pushed back. Since pushback lengths
are bounded, and since each reduction gives place to a single pushback, the
time linearity is clear since the number of reductions is linear with the input
length.

Example Table 5.2 contains the parse table for shift-resolve parsing
according to G21; the state numbers it indicates are not related to the LR(0)
states of Figure 5.11 on page 116, but to the states in the shift-resolve
parser construction. The table is quite similar to a LR(1) table, with the
additional pushback length information, but describes a parser with much
more lookahead information. States are denoted by qi; shift entries are
denoted as si where i is the new state of the parser; resolve entries are
denoted as ri’j where i is the number of the rule for the reduction and j



5.3 Shift-Resolve Parsers 119

Table 5.3: The parse of the string acca by the shift-resolve parser for G21.

parsing stack input stack actions

q0 acca$ s4
q0aq4 cca$ s8

q0aq4cq8 ca$ s8
q0aq4cq8cq8 a$ r8’0

We have just reached the first phrase in acca$ that we can resolve with a completely

reduced lookahead. This lookahead is a, and indeed it cannot be reduced any further

in the rule S−→ACa. The lookahead allows the decision of resolving C−→c. The newly

reduced nonterminal is pushed on the input stack, as usual in noncanonical parsing.

q0aq4cq8 Ca$ s12
q0aq4cq8Cq12 a$ r9’1

We have here a non-null pushback: the resolve action r9’1, which would have needed an

unbounded terminal lookahead, is solved using the stacked C and the lookahead a. The

pushback of length 1 emulates a reduced lookahead inspection of length 2.

q0aq4 DCa$ r5’0
q0 ADCa$ s2

q0Aq2 DCa$ s7
q0Aq2Dq7 Ca$ r4’0

q0 AC$ s2
q0Aq2 Ca$ s6

q0Aq2Cq6 a$ s11
q0Aq2Cq6aq11 $ r2’0

q0 S$ s1
q0Sq1 $ r1’0, accept

the pushback length. The reduction according to rule S′ 1
−→S indicates that

the input is successfully parsed. Table 5.3 details the parsing steps on the
valid input acca. Symbols are interleaved with states in the parsing stack
in order to ease the reading, and are not actually used.

The originality of shift-resolve parsing resides in that Table 5.2 is not
the result of a very precise position equivalence; in fact, we used the worst
approximation we tolerate, namely item0. Still, the parsing time is linear
and no preset lookahead length was necessary.

5.3.3 Generation

We now describe how to extract a deterministic shift-resolve parser from a
position automaton Γ/≡ = 〈Q,Vb, R,Qs, Qf 〉. Figure 5.12 is not a Rorschach
test but the position automaton Γ21/ item0 for G21 using the equivalence



120 Parser Generation

·C·A ·D

A· D·
S·

S−→AC·a

S−→A·Ca

S−→·ACa S−→·BDb

S−→B·Db

S−→BD·b

ε

ε

εε

ε

ε

ε

ε

ε

C−→·c
c

C−→c·

C·

S−→BDb·

ε ε

A−→·a

A−→a·

A−→·AD

A−→A·D

D−→·c

D−→c·

A−→AD·
ε

ε

ε

a

C

A B

D

b

Aa

·S

S−→ACa·

ε

D

B−→·BC

B−→B·C
B

B−→BC·

B−→·b
b

B−→b·

·B

B·
C

ε

c

d9

d2 d3

r6

d6d8 d7

r4

d4d5

r3

r5 r9 r8 r7

r2

S′−→·S$

S′−→S·$

S

ε

ε
$

Figure 5.12: Position automaton for G21 using item0.

relation item0 between positions, more exactly the result of the variant con-
struction detailed in Example 4.8 on page 56. We augment this position
automaton with a cycle qf$ ⊢ qf for all qf in Qf .

The shift-resolve parser generation algorithm is based on a subset con-
struction that combines the states of the position automaton.

States of the Shift-Resolve Parser The states of the shift-resolve parser
are sets of items [p, sr , d], where

1. p is an equivalence class on N using ≡—i.e. a state in Γ/≡—,

2. sr a parsing action—either a production number or 0 to code a shift—,
and

3. d is a nonnegative integer to code the distance to the resolution point—
a pushback length.

By convention, we assume that d is null whenever sr denotes a shift.

The initial state’s item set is computed as Iq0
= close({[ps, 0, 0] | ps ∈

Qs}), where the closure C of an item set I is the minimal set such that

close(I) = I

∪ {[p′, 0, 0] | [p, sr , d] ∈ close(I), pdi ⊢ p
′}

∪ {ι | [p, sr , d] ∈ close(I), pri ⊢ p
′,¬(null(i) and null(I)),

((sr = 0 and ι = [p′, i, 0]) or (sr 6= 0 and ι = [p′, sr , d]))},

(5.59)



5.3 Shift-Resolve Parsers 121

q2

q3

q0

q12
B−→BC·, 8, 1
S−→AC·a, 9, 1
B−→B·C, 8, 1
S−→B·Db, 8, 1
C−→·c, 0, 0
D−→·c, 0, 0c

C

c

C−→c·, 0, 0
D−→c·, 0, 0
S−→AC·a, 8, 0
B−→BC·, 8, 0

q8

S−→BD·b, 9, 0
A−→AD·, 9, 0
S−→A·Ca, 9, 0

S−→B·Db, 8, 0
B−→B·C, 8, 0

C−→·c, 0, 0
D−→·c, 0, 0

A−→A·D, 9, 0

A

B

c

c

Figure 5.13: Item sets of some states of the shift-resolve parser for Gram-
mar G21.

where, by noting L the terminal language produced by a sequence of sym-
bols, we discard superfluous ε-reductions with the help of the conditions

null(i) iff A
i
−→α, L(α) = {ε} (5.60)

null(I) iff ∀[[xbdi(
αX
ub · β

u′
b
)rix

′
b]≡, sr, d] ∈ I, L(X) = {ε}. (5.61)

Transition from state item set I with symbol X in V is defined as follows.

∆(I,X) = close({[p′, sr , d′] | [p, sr , d] ∈ I, pX ⊢ p′,

((sr = 0 and d′ = 0) or (sr 6= 0 and d′ = d+ 1))}). (5.62)

Figure 5.13 presents the details of the item sets computations for states
q8 and q12 of the shift-resolve parser presented in Table 5.2. For instance,
in q8, the closure on item [C−→c·, 0, 0] adds the items [S−→AC·a, 8, 0]
and [B−→BC·, 8, 0] with the rule number of the reduction according to
C−→c. The closure on the latter item adds the items [S−→B·Db, 8, 0]
and [B−→B·C, 8, 0], and the closure on these two items adds the items
[D−→·c, 0, 0] and [C−→·c, 0, 0]. The transition on C to q12 leaves us with a
kernel set comprising [B−→BC·, 8, 1] and [S−→AC·a, 9, 1] with incremented
pushback lengths, on which we apply the same closure operations.

Parser Table Parser table entries, i.e. shifts and resolves, are com-
puted from the item set Iq of each state q as follows.

T (q,X) =






resolve r with pushback d
if ∀[p, sr , d] ∈ Iq with pX ⊢ p′, sr = r,

accept if ∀[p, sr , d] ∈ Iq with pX ⊢ p′, sr = 1 and d = 0,
shift to q′ such that Iq′ = ∆(Iq, X)

otherwise
(5.63)



122 Parser Generation

An experimental parser generator (with a much finer position equiva-
lence) was implemented by José Fortes Gálvez, and is currently available
from the Internet at the address: http://serdis.dis.ulpgc.es/∼ii-pl/

ftp/dr.

5.3.4 Shift-Resolve Grammars

Rejection Condition A grammar is ShRe(≡) if and only if there does
not exist two different states with identical item sets except for some push-
back length(s).

It follows that the worst-case space complexity of the shift-resolve parser
for G is O(2|Γ/≡||P |). More powerful shift-resolve parsers can be obtained
at the price of descriptional complexity if we add to the condition that one
such state should be ∆-reachable from the other.

Grammar Classes The classes of ShRe(itemk)—itemk is defined in
Equation 4.21 on page 59—grammars are not comparable with the classes
of LR(k) grammars. For instance, we can produce a shift-resolve parser for
the grammar with rules

S−→AC |BCb, A−→d, B−→d, C−→aCb |c (G22)

using item0, but G22 is not LR(k) for any value of k—as a matter of fact, it
is not LR-Regular either.

Conversely, for k > 0, we can put an unbounded number of null non-
terminals between a conflict and its resolution. For instance, the grammar
with rules

S−→Aa |Bb, A−→cAE |c, B−→cBE |c, E−→ε (G23)

is LR(1) but not ShRe(≡) for any equivalence ≡: once we reach the a or
b symbol allowing to resolve, we would need to pushback an unbounded
number of E symbols in order to have the c we intend to reduce on top of
the parsing stack.

A simplification we made in the shift-resolve construction makes it pos-
sible for a LR(0) grammar not to be ShRe(itemk). This is the case for the
grammar with rules

S
2
−→Sa, S

3
−→B, A

4
−→a, B

5
−→dBA, B

6
−→b. (G24)

Figure 5.14 shows how the resolution in a shift-resolve state with a single
possible reduction (here B−→b) can be tricked into a useless exploration of
the right context caused by the itemk approximations. The issue could be
tackled very simply on the subset construction level, if we tested whether
following ri transitions in the nondeterministic automaton was necessary for
a resolution, and if not, filled the entire parser table line with this resolution.

http://serdis.dis.ulpgc.es/~ii-pl/ftp/dr
http://serdis.dis.ulpgc.es/~ii-pl/ftp/dr


5.3 Shift-Resolve Parsers 123

B−→b·, 0, 0
S−→B·, 6, 0
S−→S·a, 6, 0
S′−→S·$, 6, 0
B−→dB·A, 6, 0
A−→·a, 0, 0

bq0

S−→Sa·, 6, 1
A−→a·, 0, 0
S−→S·a, 6, 1
S′−→S·$, 6, 1
B−→dBA·, 4, 0
S−→B·, 4, 0
S−→S·a, 4, 0
S′−→S·$, 4, 0
B−→dB·A, 4, 0
A−→·a, 0, 0

a

S−→Sa·, 6, 2
A−→a·, 0, 0
S−→S·a, 6, 2
S′−→S·$, 6, 2
B−→dBA·, 4, 0
S−→B·, 4, 0
S−→S·a, 4, 0
S′−→S·$, 4, 0
B−→dB·A, 4, 0
A−→·a, 0, 0

a

Figure 5.14: Item sets exhibiting the inadequacy of G24 using item0.

5.3.5 Example: SML Case Expressions

In order to better illustrate and motivate the generation of a shift-resolve
parser, we present its working on the conundrum of Standard ML case ex-
pressions, already described in Section 3.1.4 on page 31. For this, we con-
sider item0 approximations, and the construction of item sets starting with
a kernel containing the two items in conflict in the LALR case

[〈exp〉−→case 〈exp〉 of 〈match〉·, 0, 0] (5.64)

[〈match〉−→〈match〉·’|’ 〈mrule〉, 0, 0]. (5.65)

We apply the closure computation of Equation 5.59 to this set of items.
The state of (5.64) has an r5 transition to the state labeled by the dotted
rule 〈sfvalbind〉−→vid 〈atpats〉 = 〈exp〉·, in the position graph, and thus we
add the item

[〈sfvalbind〉−→vid 〈atpats〉 = 〈exp〉·, 5, 0] (5.66)

that commands a reduction with empty pushback length. This item adds

[〈fvalbind〉−→〈fvalbind〉 ’|’ 〈sfvalbind〉·, 5, 0] (5.67)

to the itemset. The new item keeps the same reduction action 5, since it has
to be performed before the reduction according to 〈sfvalbind〉−→vid 〈atpats〉 =
〈exp〉 can take place. In turn, we add the items

[〈fvalbind〉−→〈sfvalbind〉·, 5, 0] (5.68)

[〈fvalbind〉−→〈fvalbind〉·’|’ 〈sfvalbind〉, 5, 0] (5.69)

to the item set.

This last item (5.69) has a transition on the same symbol “ |” in the
position automaton as item (5.65), and thus we can apply the ∆ transition



124 Parser Generation

function of Equation 5.62 to a kernel of an item set containing

[〈match〉−→〈match〉 ’|’·〈mrule〉, 0, 0] (5.70)

[〈fvalbind〉−→〈fvalbind〉 ’|’·〈sfvalbind〉, 5, 1]. (5.71)

Note that the pushback length has increased. This new item set contains
further

[〈mrule〉−→·〈pat〉 => 〈exp〉, 0, 0] (5.72)

[〈pat〉−→·vid 〈atpat〉, 0, 0] (5.73)

and
[〈sfvalbind〉−→·vid 〈atpats〉 = 〈exp〉, 0, 0] (5.74)

reached by d-transitions in the position graph. Their associated actions and
pushback lengths are set to zero in order for them to recognize their rule
rightparts. Note that, in this item set, we have a single item with 〈sfvalbind〉
as next expected symbol. According to the parsing table computation of
Equation 5.63, there is a resolve r5’1 entry for this item set and symbol.
The initial conflict is solved in this case.

Let us return to the previous item set; the closure on item (5.64) produces
another item by r5:

[〈mrule〉−→〈pat〉 => 〈exp〉·, 5, 0], (5.75)

which in turn will bring two more items to the item set:

[〈match〉−→〈mrule〉·, 5, 0] (5.76)

[〈match〉−→〈match〉·’|’ 〈mrule〉, 5, 0]. (5.77)

This last item (5.77) shares its position with (5.65), but with different ac-
tions. Hence, we know that at some point, we are bound to find two item
sets differing only on the different pushback lengths. As we already know
from Section 3.1.4 on page 31, this portion of the syntax of Standard ML is
ambiguous, and bound to be rejected by the shift-resolve construction. Bet-
ter, we have now a first lead on how to design better ambiguity tests than
a standard LALR(1) construction, a subject we will treat in Chapter 6.



Ambiguity Detection 6
6.1 Regular Unambiguity (Regular Mutual Accessibility, Practical

Concerns, Comparisons) • 6.2 Noncanonical Unambiguity
(Common Prefixes with Conflicts, Accessibility Relations, Comparisons)

• 6.3 Practical Results (Example Test, Implementation,

Experimental Results, Current Limitations)

One especially desirable feature in a grammar for a programming
language is freedom from ambiguity.

Ginsburg and Ullian (1966)

Syntactic ambiguity allows a sentence to have more than one syntactic in-
terpretation. A classical example is the sentence “She saw the man with a
telescope.”, where the phrase “with a telescope” can be associated to “saw”
or to “the man”. The presence of ambiguities in a context-free grammar
can severely hamper the reliability or the performance of the tools built
from it. Sensitive fields, where CFGs are used to model the syntax, in-
clude for instance language acquisition (Cheung and Uzgalis, 1995), RNA
analysis (Reeder et al., 2005; Brabrand et al., 2007), or controlled natural
languages (ASD, 2005).

But our main interest in the issue stems from programming languages, as
illustrated with the case studies of Section 3.1.2 and Section 3.1.4. With the
recent popularity of general parsing methods, ambiguity issues tend to be
overlooked. If this might seem acceptable for well established languages, for
which the scrutiny of many implementors has pinpointed all ambiguous con-
structs, there always remains a risk of runtime exceptions if an unexpected
ambiguity appears. The avoidance of such problems is clearly a desirable
guarantee.

While proven undecidable by Cantor (1962), Chomsky and Schützen-
berger (1963) and Floyd (1962a), the problem of testing a context-free gram-
mar for ambiguity can still be tackled approximatively. The approximations
may result in two types of errors: false negatives if some ambiguities are left
undetected, or false positives if some detected “ambiguities” are not actual



126 Ambiguity Detection

ones.
In this chapter, we present an algorithm for the conservative detection

of ambiguities, only allowing false positives. Our general approach is that of
the verification of an infinite system: we build a finite position automaton
(as described in Chapter 4) to approximate the grammar, and check for
ambiguities in this abstract structure. Although the ambiguity of a position
automaton, when brackets are ignored, is already a conservative test for
ambiguities in the original grammar (Section 6.1), our verification improves
on this immediate approach by ignoring some spurious paths (Section 6.2).
We establish formal comparisons with several ambiguity checking methods,
namely

• the bounded-length detection schemes (Gorn, 1963; Cheung and Uz-
galis, 1995; Schröer, 2001; Jampana, 2005), which are not conservative
tests,

• the LR-Regular condition (Čulik and Cohen, 1973), and

• the horizontal and vertical ambiguity condition (Brabrand et al., 2007).

Such comparisons are possible thanks to the generality of the position au-
tomaton model.

Finally, we present succinctly the implementation of the noncanonical
unambiguity test in GNU Bison (Donnely and Stallman, 2006),1 and we
comment the experimental results we obtained in Section 6.3.

6.1 Regular Unambiguity

Ambiguity in a CFG is characterized as a property of its derivation trees:
if two different derivation trees yield the same sentence, then we are facing
an ambiguity.

In general, an ambiguity in a grammar G is thus the existence of two
different sentences wb and w′

b of Gb such that w = w′. For instance, we
can consider again grammar G7 from Chapter 4 and the ambiguous sentence
“She saw the man with a telescope.”, obtained by two different bracketed
sentences (repeated from page 49)

d1 d2 d4 pn r4 d6 v d5 d3 d n r3 d8 pr d3 d n r3 r8 r5 r6 r2 r1 (6.1)

d1 d2 d4 pn r4 d7 d6 v d3 d n r3 r6 d8 pr d3 d n r3 r8 r7 r2 r1. (6.2)

We can design a conservative ambiguity verification if we approximate
the language L(Gb) with a super language and look for such sentences in the

1The modified Bison source is available from the author’s web page, at the address
http://www.i3s.unice.fr/∼schmitz/.

http://www.i3s.unice.fr/~schmitz/


6.1 Regular Unambiguity 127

super language. By Theorem 4.11 on page 57, if such two sentences exist in
L(Gb), they also do in L(Γ/≡)∩T ∗

b , and thus we can look for their existence
in a finite position automaton Γ/≡. We call a CFG with no such pair of
sentences regular ≡-unambiguous, or RU(≡) for short.

6.1.1 Regular Mutual Accessibility

The basic way to detect ambiguity in a NFA is to consider a graph where
couples of states serve as vertices (Even, 1965). For consistency with the
treatment of noncanonical unambiguity in the next section, we overview a
method to find such sentences in Γ/≡ using an accessibility relation between
couples of states. This kind of relations were used for LR(k) testing by Sippu
and Soisalon-Soininen (1990, Chapter 10).

Definition 6.1. Let Γ/≡ = 〈Q,Vb, R,Qs, Qf 〉 be a position automaton for
a grammar G. The regular mutual accessibility relation rma is defined over
Q2 as the union mad ∪ mar ∪ mat, where the primitive accessibility relations
are

derivation mad=madl ∪ madr, where (q1, q2) madl (q3, q2) if and only if
there exists i in P such that q1di ⊢ q3, and symmetrically for madr,
(q1, q2) madr (q1, q4) if and only if there exists i in P such that q2di ⊢ q4,

reduction mar=marl ∪ marr, where (q1, q2) marl (q3, q2) if and only if
there exists i in P such that q1ri ⊢ q3, and symmetrically for marr,
(q1, q2) marr (q1, q4) if and only if there exists i in P such that q2ri ⊢ q4,

terminal mat, defined by (q1, q2) mat (q3, q4) if and only if there exists a
in T , q1a ⊢ q3 and q2a ⊢ q4.

Lemma 6.2. Let q1, q2, q3, q4 be states in Q, and ub and vb strings in T ∗
b

such that q1ub �
∗ q3, q2vb �

∗ q4. The relation (q1, q2) rma∗ (q3, q4) holds if
and only if u = v.

Only if part. We proceed by induction on the number of steps n in the
relation (q1, q2) rman (q3, q4). In the base case, q1 = q3 and q2 = q4, thus
ub = vb = ε and u = v = ε holds.

For the induction step, we suppose that (q1, q2) rman (q3, q4) rma (q5, q6)
for some states q5, q6 in Q and symbols χ, χ′ in Tb ∪ {ε} such that q3χ ⊢ q5
and q4χ

′ ⊢ q6. By induction hypothesis, u = v. Depending on the exact
relation used in the last step, we have the cases

derivation one of χ, χ′ is a symbol in Td and the other is ε, thus uh(χ) = u
and vh(χ′) = v;

reduction one of χ, χ′ is a symbol in Tr and the other is ε, thus uh(χ) = u
and vh(χ′) = v;



128 Ambiguity Detection

terminal χ = χ′ = a in T , thus uh(χ) = ua and vh(χ′) = va.

In all the three cases, uh(χ) = vh(χ′).

If part. We proceed by induction on the length |ub|+ |vb|. In the base case,
ub = vb = ε and thus q1 = q3 and q2 = q4. Hence (q1, q2) rma∗ (q3, q4) holds.

For the induction step, there are three atomic ways to increase the length
|ub|+|vb| while keeping u = v: add a derivation symbol di to one of ub, vb, add
a reduction symbol ri to one of ub, vb, or add a terminal symbol a to both ub

and vb. The three cases are handled by mad, mar and mat respectively.

The following theorem then holds when taking q1 and q2 in Qs, q3, q4 in
Qf , and ub, vb in L(Gb) in Lemma 6.2.

Theorem 6.3. Let Γ/≡ = 〈Q,Vb, R,Qs, Qf 〉 be a position automaton for a
grammar G. If G is ambiguous, then there exist qs, q

′
s in Qs and qf , q

′
f in

Qf such that (qs, q
′
s) rma∗ (qf , q

′
f ).

6.1.2 Practical Concerns

In order to detect ambiguities in G according to Theorem 6.3, the steps one
should follow are then:

1. Construct Γ/≡.

2. Compute the image of rma∗ ({(qs, q
′
s)}) for (qs, q

′
s) in Q2

s; this compu-
tation costs at worst O(|Γ/≡|2) (Tarjan, 1972).

3. Explore this image and find sequence of rma steps that denote different
bracketed strings, and report these sequences.

The issue with the report step of this algorithm is that the rma∗ relation
presents a lot of redundancies. For instance, the image rma∗ (Q2

s) is symmet-
ric and reflexive, and we could save half of the computations by using this
property. In general, we need to identify “equivalent” rma computations.

Right Bracketed Equality Case In practice, many position equivalences
include a right bracketed equality equivalence rightb= defined by

xbdi(
α
ub·α′

u′
b
)rix

′
b rightb= ybdj(

β
vb·β′

v′
b
)rjy

′
b iff u′bx

′
b = v′by

′
b. (6.3)

Let us consider now two different parse trees in G represented by two
different strings wb and w′

b in L(Gb) with w = w′. The sentences wb and
w′

b share a longest common suffix vb, such that wb = ubrivb and w′
b =

u′brjvb with i 6= j. If rightb= ⊆ ≡, then Qf is a singleton set {qf}, and
there is a single state q in Q such that qsubrivb �

∗ qirivb � qvb �
∗ qf and



6.1 Regular Unambiguity 129

q′su
′
brjvb �

∗ qjrjvb � qvb �
∗ qf for some qs, q

′
s in Qs and qi, qj in Q. By

Lemma 6.2, (qs, q
′
s) rma∗ (qi, qj) rma∗ (qf , qf ). But we have now some precise

information about where the ambiguity was detected. We state this variant
of the algorithm formally in the following proposition.

Proposition 6.4. Let Γ/≡ = 〈Q,Vb, R,Qs, Qf 〉 be a position automaton
for a grammar G obtained for an equivalence relation ≡ ⊇ rightb=. If G
is ambiguous, then there exist qs, q

′
s in Qs and qi, qj, q in Q such that

(qs, q
′
s) rma∗ (qi, qj), qiri ⊢ q, qjrj ⊢ q and i 6= j.

If we are only interested in verifying that a grammar is unambiguous,
and not in returning a report on the potential ambiguities, then we can stop
constructing the image rma∗ (Q2

s) as soon as we find a pair (qi, qj) matching
the conditions of Proposition 6.4.

Whether we stop prematurely or not, the overall complexity of the algo-
rithm is O(|Γ/≡|2), since all we have to do in the last step of the algorithm
is to find a (qi, qj) in the image rma∗ (Q2

s).

Merge Functions Using Proposition 6.4, we can report couples (qi, qj)
instead of the full sequences of rma steps. Furthermore, all the reductions
that should use merge actions appear in this set (see Section 3.3.2.2 on
page 44 about merge functions).

Indeed, let wb = α0a1α1a2 · · ·αn−1anαn and w′
b = β0a1β1a2 · · ·βn−1anβn

where the ak symbols are terminals in T and the αk and βk strings are
brackets in (Td ∪ Tr)

∗. A merge of productions i 6= j occurs between ri and
rj at position l, i.e.

αl = α′
lriα

′′
l and βl = β′lrjβ

′′
l (6.4)

if the matching di and dj symbols also occur at a single position k, i.e.

αk = α′
ldiα

′′
k and βk = β′kdjβ

′′
k . (6.5)

Such a pair of reduction symbols i and j implies the existence of a pair
(qi, qj) in rma∗ (Q2

s).

Example We consider the syntax of layered Standard ML patterns,

described in Section 3.1.2 on page 28. We add a rule 〈ty〉
8
−→tyvar to the

rules of Section 3.1.2.1, and we obtain the position automaton depicted in
Figure 6.1 on the next page with the alternate construction of Section 4.2.1.1
on page 54 for item0. Thanks to this construction, the regular ambiguity
detection algorithm runs in time O(|G|2) in the worst case.

The two bracketed sentences representing the trees shown in Figure 6.2
on the next page are

d3 d4 vid d7 r7 as d2 d5 vid r5 r2 r4 : d8 tyvar r8 r3

d4 vid d7 r7 as d3 d2 d5 vid r5 r2 : d8 tyvar r8 r3 r4



130 Ambiguity Detection

〈pat〉−→·〈pat〉 : 〈ty〉

〈pat〉−→〈pat〉· : 〈ty〉

〈pat〉−→〈pat〉 : ·〈ty〉

〈pat〉−→〈pat〉 : 〈ty〉·
〈ty〉

〈pat〉

:

〈pat〉−→·〈atpat〉

〈pat〉−→〈atpat〉·
〈atpat〉 ·〈ty〉

〈ty〉−→·tyvar

〈ty〉−→tyvar·
〈ty〉·

tyvar

d8

r8

·〈pat〉

〈pat〉·

·〈atpat〉

〈atpat〉−→·vid

〈atpat〉−→vid·
〈atpat〉·

〈pat〉−→vid·〈tyop〉 as 〈pat〉

〈pat〉−→vid 〈tyop〉·as 〈pat〉

〈pat〉−→vid 〈tyop〉 as·〈pat〉

〈tyop〉

〈pat〉

vid

as

vid

d2

r3

r5

r4

d3d4

r2

d5

ε

ε

ε

ε

ε

ε

〈pat〉−→·vid 〈tyop〉 as 〈pat〉

〈pat〉−→vid 〈tyop〉 as 〈pat〉·

ε

ε

Figure 6.1: A portion of the position automaton for SML layered patterns
using item0.

〈pat〉 〈ty〉

〈pat〉

tyvar

:

〈pat〉as〈tyop〉

ε

vid

〈pat〉

as〈tyop〉

ε

vid 〈pat〉

:〈pat〉 〈ty〉

tyvar〈atpat〉

vid

〈atpat〉

vid

Figure 6.2: An ambiguity in the syntax of layered patterns.

We can follow the paths in Figure 6.1 and see that

([·〈pat〉], [·〈pat〉]) rma∗ ([〈pat〉−→〈pat〉 〈ty〉·], [〈pat〉−→vid 〈tyop〉 as 〈pat〉·]).
Since furthermore [〈pat〉−→〈pat〉 〈ty〉·] and [〈pat〉−→vid 〈tyop〉 as 〈pat〉·] have
transitions to [〈pat〉·] on r3 and r4 respectively, we can conclude that it is
possible to have an ambiguity arising from the use of productions 3 and 4,
and we should devise a merge function to handle this case. Figure 6.2
confirms this potential ambiguity to be very real.

6.1.3 Comparisons

Being conservative is not enough for practical uses; after all, a program that
always answers that the tested grammar is ambiguous is a conservative test.
We compare here our regular unambiguity test with other means to prove
the unambiguity of a context-free grammar—and identify issues that we will
address in the next section.



6.1 Regular Unambiguity 131

6.1.3.1 Horizontal and Vertical Ambiguity

Brabrand et al. (2007) recently proposed an ambiguity detection scheme also
based on regular approximations of the grammar language. Its originality
lies in the decomposition of the ambiguity problem into two (also unde-
cidable) problems, namely the horizontal and vertical ambiguity problems.
The detection method then relies on the fact that a context-free grammar is
unambiguous if and only if it is horizontal and vertical unambiguous. The
latter tests are performed on a regular approximation of the grammar ob-
tained through the technique of Mohri and Nederhof (2001). We first recall
the definitions of horizontal and vertical ambiguity, and then translate them
in terms of position automata.

Definition 6.5. [Brabrand et al. (2007)] A context-free grammar is verti-
cally unambiguous if and only if, for allA inN with two different productions
A−→α1 and A−→α2 in P , L(α1) ∩ L(α2) = ∅.

It is horizontally unambiguous if and only if, for all productions A−→α
in P , and for all decompositions α = α1α2, L(α1) ∩∨ L(α2) = ∅, where ∩∨ is
the language overlap operator defined by L1 ∩∨ L2 = {xyz | x, xy ∈ L1, y ∈
T+, and yz, z ∈ L2}.

Definition 6.6. The automaton Γ/≡ is vertically ambiguous if and only
if there exist an A in N with two different productions i = A−→α1 and
j = A−→α2, and the bracketed strings xb, x

′
b, ub, u

′
b, wb, and w′

b in T ∗
b with

w = w′ such that

[xbdi( ·α1

ub
)rix

′
b]≡wb �

∗ [xbdi(
α1

ub · )rix
′
b]≡ and

[xbdj( ·α2

u′
b
)rjx

′
b]≡w

′
b �

∗ [xbdj(
α2

u′
b
· )rjx

′
b]≡.

The automaton Γ/≡ is horizontally ambiguous if and only if there is a pro-
duction i = A−→α in P , a decomposition α = α1α2, and the bracketed
strings ub, u

′
b, vb, v

′
b, wb, w

′
b, xb, x

′
b, yb, y

′
b, zb and z′b in T ∗

b with v = v′,
w = w′, y = y′, |y| ≥ 1 and vbybwb 6= v′by

′
bw

′
b such that

[xbdi( ·α1α2

ubu
′
b
)rix

′
b]≡vbybwb �

∗ [xbdi(
α1

ub ·α2

u′
b
)rix

′
b]≡ybwb �

∗ [xbdi(
α1α2

ubu
′
b
· )rix

′
b]≡

[xbdi( ·α1α2

zbz
′
b
)rix

′
b]≡v

′
by

′
bw

′
b �

∗ [xbdi(
α1

zb ·α2

z′
b
)rix

′
b]≡w

′
b �

∗ [xbdi(
α1α2

zbz
′
b
· )rix

′
b]≡.

Theorem 6.7. Let G be a context-free grammar and Γ/≡ its position au-
tomaton. If G is RU(≡), then Γ/≡ is horizontally and vertically unambigu-
ous.



132 Ambiguity Detection

Proof. If Γ/≡ is vertically ambiguous, then xbdiwbrix
′
b and xbdjw

′
brjx

′
b are

two different sentences in L(Γ/≡) ∩ T ∗
b with xwx′ = xw′x′, and thus G is

regular ≡-ambiguous. If Γ/≡ is horizontally ambiguous, then xbdivbybwbrix
′
b

and xbdiv
′
by

′
bw

′
brix

′
b are two different sentences in L(Γ/≡)∩T ∗

b with xvywx′ =
xv′y′w′x′, and thus G is regular ≡-ambiguous.

Theorem 6.7 shows that the horizontal and vertical ambiguity criteria
result in a better conservative ambiguity test than regular ≡-ambiguity,
although at a higher price: O(|G|5) in the worst case. Owing to these
criteria, the technique of Brabrand et al. accomplishes to show that the
palindrome grammar with rules

S−→aSa |bSb |a |b |ε (G25)

is unambiguous, which seems impossible with our scheme.

6.1.3.2 LL-Regular Testing

In spite of their popularity as an alternative to the bottom-up parsers of the
LR(k) family, top-down parser construction tests (Rosenkrantz and Stearns,
1970; Sippu and Soisalon-Soininen, 1982) would not be very relevant for
practical ambiguity detection: the class of LL(k) grammars is arguably not
large enough. The exception is the class of LL-Regular grammars (Jarz-
abek and Krawczyk, 1975; Nijholt, 1976; Poplawski, 1979), defined similarly
to LR-Regular grammars (already mentioned in Section 3.2.2 on page 35)
by generalizing the LL(k) condition. In particular, the Strong LL-Regular
condition (Poplawski, 1979) has given birth to the LL(*) algorithm of the
upcoming version 3 of ANTLR and to the ambiguity detection tool shipped
with its IDE, ANTLRWorks (Bovet and Parr, 2007).

LL-Regular Condition In this section, we explicit the (non) relation
between the LLR condition and the regular ambiguity test. Given a left
congruence ∼= —i.e. if x ∼= y then zx ∼= zy—that defines a finite regular
partition Π of T ∗—i.e. Π is a finite set {π1, . . . , πn} where each πi is a
regular set of strings in T ∗—, a grammar G is LL(Π) if and only if

S=⇒
lm

∗zAδ =⇒
lm

zαδ=⇒
lm

∗zx, S=⇒
lm

∗zAδ =⇒
lm

zβδ=⇒
lm

∗zy and x ∼= y (mod Π)

(6.6)

imply

α = β. (6.7)

This definition properly generalizes the LL(k) condition.



6.1 Regular Unambiguity 133

aa

ab

a aa

b

ba

bb

b

b

a

a

a

r4 r5

r4 r5

ε

a

b

d2 d3 d5

r2 r3a

d4 d5

d4

Figure 6.3: The terminal subautomaton of Γ27/right2.

Comparison We define accordingly

xbdi(
α
ub·α′

u′
b
)rix

′
b rightΠ ybdj(

β
vb·β′

v′
b
)rjy

′
b iff u′x′ ∼= v′y′ (mod Π). (6.8)

Special cases of rightΠ partition T ∗ by considering two strings x and y to
be congruent if and only if k : x = k : y, thus defining a rightk position
equivalence.

Let us consider the grammar with rules

S
2
−→BAb, A

3
−→a, A

4
−→aa, B

5
−→bBa, B

6
−→b. (G26)

It is SLL(2) and thus LL(2) but not RU(item0 ∧ right2), as witnessed by the
two different sentences d2d5 bd6 br6ar5d3ar3 br2 and d2d5 bd6 br6d4aar4 br2
recognized by Γ26/(item0 ∧ right2). On the other hand, the grammar with
rules

S
2
−→aAb, S

3
−→aAa, A

4
−→ab, A

5
−→a (G27)

is not LL(2), but is RU(right2) (see Figure 6.3).

On Using rightΠ The incomparability of the RU(rightΠ) grammar class
with the LL(Π) one is an issue with the RU criterion rather than with the
precision of rightΠ. We could design a LL(Π) test on Γ/rightΠ in the vein of
the test described by Heilbrunner (1983).

Lemma 6.8. Let ν = xbdi(
α
ub·α′

u′
b
)rix

′
b be a position in N , wb a bracketed

string in T ∗
b , and qf a final state of Γ/rightΠ. If [ν]rightΠ

wb �
∗ qf in Γ/rightΠ,

then wr1 ∼= u′x′ (mod Π).



134 Ambiguity Detection

Proof. We proceed by induction on n the number of steps in [ν]rightΠ
wb �

n

qf . If n = 0, then ν is in µf , wb = u′b = ε and x′b = r1. We consider
for the induction step the path [ν]rightΠ

χwb � qwb �
n qf , where χ is in Tb.

Using the induction hypothesis, any ν ′ = ybdj(
β
vb·β′

vb
)rjy

′b in q is such that

wr1 ∼= v′y′ (mod Π).

If χ ∈ Td, any ν ′ in q is such that β = vb = ε and v′y′ ∼= u′x′ (mod Π),
and the lemma holds trivially by transitivity of ∼=. If χ = a, then ν =
xbdi(

α
ub· aα′

au′
b
)rix

′
b and any ν ′ in q is such that v′y′ ∼= u′x′ (mod Π). Since Π

is a left congruence, wr1 ∼= u′x′ (mod Π) implies that awr1 ∼= au′x′ (mod Π)
and the lemma holds. If χ ∈ Tr, then ν = xbdi(

α
ub· )rix

′
b and any ν ′ in q is

such that v′y′ ∼= x′ (mod Π), and the lemma holds.

Theorem 6.9. Let G be a context-free grammar and Γ/rightΠ its position
automaton using rightΠ. If Γ/rightΠ is vertically ambiguous, then G is not
LL(Π).

Proof. By Definition 6.6, if Γ/rightΠ is vertically ambiguous, then there
exist an A in N with two different productions i = A−→α1 and j = A−→α2,
and the bracketed strings xb, x

′
b, ub, u

′
b, wb, and w′

b in T ∗
b with w = w′

such that the states q1 = [xbdi( ·α1

ub
)rix

′
b]rightΠ

, q2 = [xbdj( ·α2

u′
b
)rjx

′
b]rightΠ

,

q3 = [xbdi(
α1

ub · )rix
′
b]rightΠ

, and q4 = [xbdj(
α2

u′
b
· )rjx

′
b]rightΠ

verify

q1wb �
∗ q3 and q2w

′
b �

∗ q4. (6.9)

By Lemma 4.9 on page 56, there exist qf and q′f in Qf such that
q3rix

′
b/r1 �

∗ qf and q4rjx
′
b/r1 �

∗ q′f , and thus

q1wbrix
′
b/r1 �

∗ qf and q2w
′
brjx

′
b/r1 �

∗ q′f . (6.10)

By Lemma 6.8, w(x′/r1)r1 ∼= ux′ (mod Π) and w′(x′/r1)r1 ∼= u′x′ (mod Π).
Since w = w′ and by transitivity of ∼=, the conditions of Equation 6.6 are
verified, but α1 6= α2, and therefore G is not LL(Π).

6.1.3.3 Bounded Length Detection Schemes

Many algorithms specifically designed for ambiguity detection look for ambi-
guities in all sentences up to some length (Gorn, 1963; Cheung and Uzgalis,
1995; Schröer, 2001; Jampana, 2005). As such, they fail to detect ambi-
guities beyond that length: they allow false negatives. Nonetheless, these
detection schemes can vouch for the ambiguity of any string shorter than
the given length; this is valuable in applications where, in practice, the sen-
tences are of a small bounded length. The same guarantee is offered by the



6.1 Regular Unambiguity 135

equivalence relation prefixm defined for any fixed length m by2

xbdi(
α
ub·α′

u′
b
)rix

′
b prefixm ybdj(

β
vb·β′

v′
b
)rjy

′
b iff m :b xbub = m :b ybvb. (6.11)

Provided that G is not left-recursive, Γ/prefixm is finite.

Lemma 6.10. Let qs be a state in Qs, q a state in Q, and wb be a string in
T ∗

b such that qswb �
∗ q in Γ/prefixm. If |w| ≤ m, then for all ν in q, there

exists νs in qs such that νs ֓
wb−→ ν.

Proof. We proceed by induction on the number n of steps in qswb �
n q. If

n = 0, then wb = ε and the lemma holds.

For the induction step, we consider qswbχ �
n−1 qχ � q′ with χ in Tb. For

all ν ′ in q′, there exists a position ν such that ν ֓
χ
−→ ν ′. Since |h(wbχ)| ≤ m,

all the positions ν ′ in q′ share the same left context m :b wbχ = wbχ; thus
any position ν such that ν ֓

χ
−→ ν ′ has m :b wb = wb for left context, and

belongs to q. We only need to invoke the induction hypothesis in order to
find an appropriate νs in qs such that νs ֓

wb−→ ν ֓
χ
−→ ν ′.

Lemma 6.10 yields immediately Theorem 6.11, which implies that re-
ported potential ambiguities in sentences of lengths smaller than m are al-
ways actual ambiguities.

Theorem 6.11. Let wb and w′
b be two bracketed sentences in L(Γ/prefixm)∩

T ∗
b with w = w′ and |w| ≤ m. Then wb and w′

b are in L(Gb).

6.1.3.4 LR Grammars

For practical applications, an ambiguity detection algorithm should perform
better than the traditional tools in the line of YACC. Indeed, many avail-
able grammars for programming languages were coerced into the LALR(1)
grammar class (modulo precedence and associativity disambiguation), and
an ambiguity detection tool should not report any ambiguity for such gram-
mars.

In this regard, the regular ambiguity test presented above performs un-
satisfactorily: when using the item0 equivalence, it finds some LR(0) gram-
mars ambiguous, like for instance G28 with rules

S
2
−→aAa, S

3
−→bAa, A

4
−→c. (G28)

The sentences d2ad4cr4ar2 and d2ad4cr4ar3 are both in L(Γ28/item0)∩T
∗
b ,

as witnessed on Figure 6.4 on the next page.

2 We define the bracketed prefix m :b xb of a bracketed string xb as the longest string
in {yb | xb = ybzb and |y| = m} if |x| > m or simply xb if |x| ≤ m.



136 Ambiguity Detection

S−→·aAa

S ′−→S·

S−→a·Aa
a

S−→aA·a S−→aAa·
aA

S ′−→·S
c

S−→·bAa S−→b·Aa S−→bA·a S−→bAa·
aAb

S

A−→·c A−→c·
d2

d3 r3

r2

d4

d4

r4

r4

Figure 6.4: The position automaton Γ28/item0 for G28.

6.2 Noncanonical Unambiguity

The LR algorithm (Knuth, 1965) hints at a solution to the weakness of regu-
lar unambiguity testing: we could consider nonterminal symbols in our ver-
ification and thus avoid spurious paths in the position automaton. A single
direct step using a nonterminal symbol represents exactly the context-free
language derived from it, much more accurately than any regular approxi-
mation we could make for this language.

6.2.1 Common Prefixes with Conflicts

Let us consider again the two sentences (6.1) and (6.2), but let us dismiss
all the di symbols; the two sentences (6.12) and (6.13) we obtain are still
different:

pn r4 v d n r3 pr d n r3 r8 r5 r6 r2 r1 (6.12)

pn r4 v d n r3 r6 pr d n r3 r8 r7 r2 r1. (6.13)

They share a longest common prefix pn r4 v dnr3 before a conflict3 between
pr and r6.

Observe that the two positions in conflict could be reached more directly
in a PA by reading the prefix NP vNP . We obtain the two sentential forms

NP v NP pr d n r3 r8 r5 r6 r2 r1 (6.14)

NP v NP r6 pr d n r3 r8 r7 r2 r1. (6.15)

We cannot however reduce our two sentences to two identical sentential
forms: our common prefix with one conflict pn r4 v d n r3 r6 would reduce to
a different prefix NPVP , and thus we do not reduce the conflicting reduction
symbol r6.

3Our notion of conflict coincides with that of LR(0) conflicts when one employs item0.



6.2 Noncanonical Unambiguity 137

The remaining suffixes pr d n r3 r8 r5 r6 r2 r1 and pr d n r3 r8 r7 r2 r1
share again a longest common prefix pr d nr3 r8 before a conflict between r5
and r7; the common prefix reduces to PP , and we have the sentential forms

NP v NP PP r5 r6 r2 r1 (6.16)

NP v NP r6 PP r7 r2 r1. (6.17)

Keeping the successive conflicting reduction symbols r5, r6 and r7, we finally
reach a common suffix r2 r1 that cannot be reduced any further, since we
need to keep our conflicting reductions. The image of our two different
reduced sentential forms (6.16) and (6.17) by h is a common sentential form
NP v NP PP , which shows the existence of an ambiguity in our grammar.

We conclude from our small example that, in order to give preference to
the more accurate direct path over its terminal counterpart, we should only
follow the ri transitions in case of conflicts or in case of a common factor
that cannot be reduced due to the earlier conflicts. This general behavior is
also the one displayed by noncanonical parsers.

In general, we consider two different sentences wb and w′
b of Gb such

that w = w′. They share a longest common prefix ub with the di symbols
ignored such that wb = ubrivb,1 and w′

b = ubv
′
b,1 with ri 6= 1 : v′b,1. Let us call

ub,1 = ubri and u′b,1 = ub the shortest common prefixes with one conflict.
The remaining portions vb,1 and v′b,1, if different, also have a pair of shortest
common prefixes ub,2 and u′b,2 with one conflict, so that ub,1ub,2 and u′b,1u

′
b,2

are shortest common prefixes with two conflicts.
Using the previous example but keeping the di symbols, the pairs of

shortest common prefixes with one conflict are successively

ub,1 = d1d2d4 pn r4d6 v d5d3 d n r3 and u′b,1 = d1d2d4 pn r4d7d6 v d3 d n r3r6,

ub,2 = d8 pr d3 d n r3r8r5 and u′b,2 = d8 pr d3 d n r3r8,

ub,3 = r6 and u′b,3 = ε,

ub,4 = ε and u′b,4 = r7,

at which point there only remains a common suffix vb = r2 r1. With explicit
di symbols, one can verify that the d1 and d2 symbols matching the r1 and
r2 symbols of vb are not in vb, and thus that no reduction could occur inside
vb. Our initial sentences (6.1) and (6.2) are decomposed as ub,1ub,2ub,3ub,4vb

and u′b,1u
′
b,2u

′
b,3u

′
b,4vb.

The decomposition is not unique, but that does not hamper the sound-
ness of our algorithm. The following proposition formalizes the decomposi-
tion we just performed.

Proposition 6.12. Let w be a sentence of a context-free grammar G with
two different parse trees represented by strings wb and w′

b in V ∗
b : w = w′.



138 Ambiguity Detection

Then there exists t ≥ 1 such that wb = ub,1 · · ·ub,tvb and w′
b = u′b,1 · · ·u

′
b,tvb

where ub,1 · · ·ub,t and u′b,1 · · ·u
′
b,t are shortest common prefixes of wb and w′

b

with t conflicts, and vb is a common suffix of wb and w′
b.

6.2.2 Accessibility Relations

As in regular unambiguity testing, we implement the idea of common pre-
fixes with conflicts in the mutual accessibility relations classically used to
find common prefixes (Sippu and Soisalon-Soininen, 1990, Chapter 10). Mu-
tual accessibility relations are used to identify couples of states accessible
upon reading the same language from a starting couple (qs, q

′
s), which brings

the complexity of the test down to a quadratic function in the number of
transitions, and avoids the potential exponential blowup of a PA deter-
minization.

We first solve two technical points.

1. The case where reduction transitions should be followed after a conflict
is handled by considering pairs over B ×Q instead of Q: the boolean
tells whether we followed a di transition for some rule i since the last
conflict. In order to improve readability, we write qχ ⊢ q′ for q and q′

in B × Q if their states allow this transition to occur. The predicate
%q in B denotes that we are allowed to ignore a reduction transition.
Our starting couple (qs, q

′
s) has its boolean values initially set to true,

and is thus in (true ×Qs)
2.

2. At the heart of the technique is the idea that return transitions should
be followed only in case of a “conflict”. In order to define what con-
stitutes a conflict between two states (q1, q2) with q1ri ⊢ q3, we recast
the result of Theorem 5.9 by Aho and Ullman (1972) for the LR(0)
case into the position automata framework: we translate the EFF0

computation by a condition on the existence of a path q2z �
+ q4 with

z = yχ, y in T ∗
d , χ in T ∪ Tr and χ 6= ri. We define accordingly the

predicate

eff(q, i) = ∃q′ ∈ Q, y ∈ T ∗
d , χ ∈ T ∪ Tr s.t. qyχ �

+ q′ and χ 6= ri.
(6.18)

This definition corresponds to the notion of conflict employed in the
previous section, where symbols in Td were ignored.

Definition 6.13. The primitive mutual accessibility relations over (B×Q)2

are

shift mas defined by (q1, q2) mas (q3, q4) if and only if there exists X in V
such that q1X ⊢ q3 and q2X ⊢ q4



6.2 Noncanonical Unambiguity 139

derivation mad=madl ∪ madr where (q1, q2) madl (q3, q2) if and only if
q1di ⊢ q3 or q1ε ⊢ q3 and %q3 and symmetrically for madr, (q1, q2) madr

(q1, q4) if and only if q2di ⊢ q4 or q2ε ⊢ q4, and %q4,

reduction mar defined by (q1, q2) mar (q3, q4) if and only if there exists i in
P such that q1ri ⊢ q3 and q2ri ⊢ q4, and furthermore ¬ %q1 or ¬ %q2,
and then ¬ %q3 and ¬ %q4,

conflict mac=macl ∪ macr with (q1, q2) macl (q3, q2) if and only if there
exist i in P , such that q1ri ⊢ q3, eff(q2, i) and ¬ %q3, and symmetrically
for macr, (q1, q2) macr (q1, q4) if and only if there exist i in P such that
q2ri ⊢ q4, eff(q1, i), and ¬ %q4.

The global mutual accessibility relation ma is defined as mas ∪ mad ∪ mar

∪ mac.

These relations are akin to the item construction of a LR parser: the
relation mas corresponds to a shift, the relation mad to an item closure,
the relation mar to a goto, and the relation mac to a LR conflict. Note
that, instead of a single boolean value, we could have considered vectors
of boolean values, one for each possible rule i, or even bounded stacks of
such vectors, that would have recorded the last di transitions followed in
the accessibility relations. Then, the reduction relation mar could have op-
erated much more precisely by checking that the last di seen matches the
ri transition under consideration. In practice, spurious ambiguity reports
could be avoided when using these vectors. Observe however that, in order
to prove the soundness of our algorithm, we only need to consider correct
bracketed sentences, and thus upon reading a ri transition in one such sen-
tence, we know that the last dj transition we followed was such that i = j,
and the single boolean value suffices. Finally, let us point out that in our
implementation (Section 6.3.2 on page 149) we stop the ma∗ computation
before mar has a chance to occur, and thus we do not even need this single
boolean value.

Let us denote by map the union mas ∪ mad ∪ mar. We explicit the
relation between ma and common prefixes with t conflicts in the following
lemma.

Lemma 6.14. Let wb and w′
b be two different sentences of Gb with a pair

of shortest common prefixes with t conflicts ub,1 · · ·ub,t and u′b,1 · · ·u
′
b,t. Fur-

thermore, let νs and ν ′s be the corresponding starting positions in µs, and
ub,t = ubri and u′b,t = ub.

Then, there exist νr, νt and ν ′t in N with

(i) νs ֓
ub,1···ub,t−1ub
−−−−−−−−−→ νr ֓

ri−→ νt and ν ′s ֓
u′

b,1
···u′

b,t−1
ub

−−−−−−−−−→ ν ′t,



140 Ambiguity Detection

(ii) ([νs]≡, [ν
′
s]≡) (mas ∪ mad)∗ ◦ (mac ◦ map∗)t−1([νr]≡, [ν

′
t]≡), and

(iii) ([νr]≡, [ν
′
t]≡) mac ([νt]≡, [ν

′
t]≡).

Proof. We first note that (i) always holds in Γ, and that together with
the fact that ub,1 · · ·ub,t and u′b,1 · · ·u

′
b,t are longest common prefixes with t

conflicts, it implies that (iii) holds. Let us then prove (ii) by induction on
the number of conflicts t.

We can show using a simple induction on the length |ub| that, for t = 1,
the common prefix ub is such that ([νs]≡, [ν

′
s]≡) (mas ∪ mad)∗ ([νr]≡, [ν

′
1]≡).

If this length is zero, then ([νs]≡, [ν
′
s]≡) mad ([νr]≡, [ν

′
1]≡) and thus (ii)

holds. We then consider three atomic ways to increase this length while
keeping ub a common prefix: add an a symbol, a di, or an ri symbol. The
first two cases are clearly handled by mas and mad. In the third case,
using Lemma 4.4 on page 52, there exist νA and ν ′A in N such that νs ֓

vb−→

νA ֓
A
−→ νr and ν ′s ֓

vb−→ ν ′A ֓
A
−→ ν ′1. Applying the induction hypothesis, we

see that ([νs]≡, [ν
′
s]≡) (mas ∪ mad)∗ ([νA]≡, [ν

′
A]≡), and since furthermore

([νA]≡, [ν
′
A]≡) mas ([νr]≡, [ν

′
1]≡), (ii) holds for νr and ν ′1.

Let us now prove the induction step for t > 1. By induction hy-
pothesis and (iii), ([νs]≡, [ν

′
s]≡) (mas ∪ mad)∗ ◦ (mac ◦ map∗)t−2◦ mac

([νt−1]≡, [ν
′
t−1]≡), and we only need to prove that ([νt−1]≡, [ν

′
t−1]≡) map∗

([νr]≡, [ν
′
t]≡). We proceed again by induction on the length of the common

prefix ub. The initial step for |ub| = 0 is clear, and the induction step where
we add an a or a di symbol also. The case where we add an ri symbol trig-
gers the use of mar if at least one of the two states verifies ¬ %q. Otherwise,
we did not follow any ri transition since the last di one, and thus Lemma 4.4
on page 52 applies. In all cases, (ii) holds.

Let us call a grammar G such that (qs, q
′
s) (mad ∪ mas)∗◦ mac ◦ ma∗

(qf , q
′
f ) does not hold in Γ/≡ for any qs and q′s in Qs and qf and q′f in

Qf noncanonically ≡-unambiguous, or NU(≡) for short. We just need to
combine Lemma 6.14 with Proposition 6.12 in order to prove our main result:

Theorem 6.15. Let G be a context-free grammar and ≡ a position equiva-
lence relation. If G is ambiguous, then G is not NU(≡).

Complexity The complexity of our algorithm depends mostly on the
equivalence relation we choose to quotient the position graph. Supposing
that we choose an equivalence relation ≡ of finite index and of decidable
computation of complexity C(Γ/≡), then we need to build the image ma∗

({(qs, q
′
s)}). This step and the search for a conflict in this image can both

be performed in time O(|Γ/≡|2). The overall complexity of our algorithm
is thus O(C(Γ/≡) + |Γ/≡|2).

The complexity C(Γ/item0) of the construction of the position automaton
Γ/item0 is linear with the size of the resulting nondeterministic position



6.2 Noncanonical Unambiguity 141

NU(item0)

LALR(1)

LR(0)

HVRU(≡)NU(≡)

NU(itemΠ)

LR(Π)

UCFG

NU(itemk)

LR(k) LL(Π)

SLL(Π)LL(k)

SLL(k)

RU(≡)

Figure 6.5: Context-free grammar classes inclusions. The classes parameter-
ized by k, Π and ≡ denote the full classes for any fixed k, any finite regular
partition Π of T ∗, and any position equivalence relation ≡ with finite index
respectively.

automaton. The overall complexity of our ambiguity detection algorithm
when one uses item0 is therefore O(|G|2).

6.2.3 Comparisons

We compare here our ambiguity detection algorithm with some of the other
means to test a context-free grammar for ambiguity we are aware of. We
first establish the edge of our algorithm over the regular ambiguity test of
Section 6.1. Then, we show that our method performs better than LR-
Regular testing when using an appropriate position equivalence.

The lattice of context-free grammar classes inclusions presented in Fig-
ure 6.5 sums up the results of our comparisons. Practical results will be
discussed in Section 6.3.3.

6.2.3.1 Regular Ambiguity

Theorem 6.17, along with the example of G28, shows a strict improvement
of our method over the simple algorithm discussed in Section 6.1.

Lemma 6.16. Let q1, q2, q3 and q4 be states in Q such that (q1, q2) ma∗

(q3, q4). Then, there exist ub and u′b in T ∗
b such that u = u′, q1ub �

∗ q3 and
q2u

′
b �

∗ q4.



142 Ambiguity Detection

Proof. We proceed by induction on the number of steps n in (q1, q2) man

(q3, q4). If n = 0, then q1 = q3 and q2 = q4, hence ub = u′b = ε fit our
requirements.

Let us prove the induction step. Suppose we have two states q5 and
q6 such that (q3, q4) ma (q4, q6), and, using the induction hypothesis, two
strings ub and u′b in T ∗

b such that u = u′, q1ub �
∗ q3 and q2u

′
b �

∗ q4. Let us
find vb and v′b two strings in T ∗

b such that v = v′, q3vb �
∗ q5 and q4v

′
b �

∗ q6
for each of the primitive mutual accessibility relations. For mas, vb = v′b
such that X =⇒∗ vb in Gb fit; for mad, vb = v′b = di do; for mar, vb = v′b = ri
do; at last, for macl, vb = ri and v′b = ε do and symmetrically for macr.

Theorem 6.17. If G is RU(≡), then it is also NU(≡).

Proof. Since the relation (mad ∪ mas)∗◦ mac ◦ ma∗ that defines noncanoni-
cal ≡-ambiguity is included in ma∗, Lemma 6.16 also applies to it. Therefore,
if G is noncanonically ≡-ambiguous, then there are two strings ub and u′b in
T ∗

b such that u = u′ and qsub �
∗ qf and qsu

′
b �

∗ q′f , i.e. ub and u′b are in
L(Γ/≡) ∩ T ∗

b . Note that the presence of the first occurrence of mac in the
relation implies that the two bracketed strings ub and u′b are different, which
concludes the proof.

Horizontal and Vertical Ambiguity Owing to its strong criteria, the
technique of Brabrand et al. (noted HVRU(≡) in Figure 6.5 on the preceding
page) accomplishes to show that the palindrome grammar G25 is unambigu-
ous, which seems impossible with noncanonical unambiguity. On the other
hand, even when they employ unfolding techniques to refine their grammar
approximations, they are always limited to regular approximations, and fail
to see that the LR(0) grammar with rules

S−→AA, A−→aAa |b (G29)

is unambiguous. The two techniques are thus incomparable, and might
benefit from each other.

Bounded Length Detection Schemes Since noncanonical unambiguity
refines regular unambiguity, Theorem 6.11 shows that reported potential
ambiguities with Γ/prefixm in sentences of lengths smaller than m are always
actual ambiguities.

Outside of the specific situation of languages that are finite in practice,
bounded length detection schemes can be quite costly to use. The perfor-
mance issue can be witnessed with the two families of grammars Gn

30 and
Gn

31 with rules

S−→A |Bn, A−→Aaa |a, B1−→aa, B2−→B1B1, . . . , Bn−→Bn−1Bn−1 (Gn
30)



6.2 Noncanonical Unambiguity 143

S−→A |Bna, A−→Aaa |a, B1−→aa, B2−→B1B1, . . . , Bn−→Bn−1Bn−1, (Gn
31)

where n ≥ 1. In order to detect the ambiguity of Gn
31, a bounded length

algorithm would have to explore all strings in {a}∗ up to length 2n + 1.
Our algorithm correctly finds Gn

30 unambiguous and Gn
31 ambiguous in time

O(n2) using item0.

LL-Regular Testing The class of LL-Regular grammars considered in
Section 6.1.3.2 is a proper subset of the class of LR-Regular grammars we
consider next (Heilbrunner, 1983).

6.2.3.2 LR(k) and LR-Regular Testing

Conservative algorithms do exist in the programming language parsing com-
munity, though they are not primarily meant as ambiguity tests. Nonethe-
less, a full LALR or LR construction is often used as a practical test for
non ambiguity (Reeder et al., 2005). The LR(k) testing algorithms (Knuth,
1965; Hunt III et al., 1974, 1975) are much more efficient in the worst case
and provided our initial inspiration.

Our position automaton is a generalization of the item grammar or non-
deterministic automaton of these works, and our test looks for ambiguities
instead of LR conflicts, resulting in a much more efficient test. Let us con-
sider again Gn

30: it requires a LR(2n) test for proving its unambiguity, but it
is simply NU(item0).

LR-Regular Condition One of the strongest ambiguity tests available
is the LR-Regular condition (see Section 3.2.2 on page 35 for a presentation,
and the works of Čulik and Cohen (1973) and Heilbrunner (1983)): instead
of merely checking the k next symbols of lookahead, a LRR parser considers
regular equivalence classes on the entire remaining input to infer its deci-
sions. Given Π a finite regular partition of T ∗ that defines a left congruence
∼= for string concatenation (if this is not the case, a refinement of Π which
is also a left congruence can always be constructed and used instead), a
grammar G is LR(Π) if and only if

S =⇒
rm

∗ δAx =⇒
rm

δαx, S =⇒
rm

∗ γBy =⇒
rm

γβy = δαz and x ∼= z (mod Π) (6.19)

implies
A−→α = B−→β, δ = γ and y = z. (6.20)

This definition is a proper generalization of the LR(k) condition. Practical
implementations (Baker, 1981; Boullier, 1984; Seité, 1987; Bermudez and
Schimpf, 1990; Farré and Fortes Gálvez, 2001) of the LRR parsing method
actually compute, for each inadequate LR state, a finite state automaton
that attempts to discriminate between the x and z regular lookaheads. The
final states of this automaton act as the partitions of Π.



144 Ambiguity Detection

itemΠ equivalence Our test for ambiguity is strictly stronger than the
LR(Π) condition with the equivalence relation itemΠ=item0 ∩ lookΠ, where
lookΠ is defined by

xbdi(
α
ub·α′

u′
b
)rix

′
b lookΠ ybdj(

β
vb·β′

v′
b
)rjy

′
b iff x′ ∼= y′ (mod Π). (6.21)

This position equivalence generalizes itemk defined on page 59.
We first state properties of Γ/itemΠ in terms of left and right contexts

of its equivalence classes in the following two lemmas.

Lemma 6.18. Let Γ/itemΠ be a position automaton for G using itemΠ,
and qs be the initial state of Γ/itemΠ, q a state in Q and δb a bracketed
string in (V ∪ Td)

∗. If qsδb �
∗ q in Γ/itemΠ, then there exists a position

ν = xbdi(
α
ub·α′

u′
b
)rix

′
b such that d1δb = x̂bdiα.

Proof. We proceed by induction on the length |δb|. For the basis, δb = ε and
thus any ν in qs is of form d1( · S

wb
)r1 for some bracketed sentence wb, and

d1δb = d1 holds.
For the induction step, we consider the path qsδbχ �

∗ q′χ � q in Γ/itemΠ

for some χ in V ∪ Td. Since we are using itemΠ, we fix β′ in V ∗, j in P and
π in Π such that q′ = {ybdj(

β
vb·β′

v′
b
)rjy

′
b | y′ ∈ π}. By induction hypothesis,

there exists a position ν ′ in q′ such that d1δb = ŷbdjβ. In fact, since we are
using itemΠ, there are many positions of this form in q′.

Two possibilities arise, depending on whether χ is in Td or in V .
If χ = di in Td for i = A−→α, then the positions in q′ verify β′ = Aβ′′,

including the positions that verify the induction hypothesis. There exist
ν ′′ = zbdj(

β
wb· β′

w′
b
)rjz

′
b in q′ and ν = xbdi( ·α′

u′
b
)rix

′
b in q such that ν ′′ ֓

χ
−→ ν

and x′ ∼= w′z′ (mod Π).

There also exists ν ′ = ybdj(
β
vb·β′

v′
b
)rjy

′
b in q′ that verifies the induction

hypothesis d1δb = ŷbdjβ, and with v′b = w′
b derived from the same β′ as ν ′′,

and with y′ ∼= z′ (mod Π). Since ∼= is a left congruence, v′y′ ∼= w′z′ (mod Π),

and by transitivity v′y′ ∼= x′ (mod Π). The position ν ′′′ such that ν ′ ֓
χ
−→ ν ′′′

verifies ν ′′′ itemΠ ν, and thus also belongs to q. This position ν ′′′ has ybdjvb

for left context, with ŷbdjvbdi = ŷbdjβdi = d1δbdi = d1δbχ, and therefore ν ′′′

verifies the lemma’s condition.
If χ = X in V , then all the positions ν ′ in q′ verify βX = α, β′ = Xα′

and i = j, and there exists a position ν = xbdi(
α
ub·α′

u′
b
)rix

′
b in q such that

ν ′ ֓
χ
−→ ν for each one of them, with xb = yb and x′b = y′b, including for

the positions ν ′ that verify the induction hypothesis. In the latter case,
d1δbχ = ŷbdjβχ = ŷbdjβX = ŷbdjα = ŷbdiα = x̂bdiα.

Lemma 6.19. Let Γ/itemΠ be a position automaton for G using itemΠ, and

qf be the final state of Γ/itemΠ, ν = xbdi(
α
ub·α′

u′
b
)rix

′
b a position of N and



6.2 Noncanonical Unambiguity 145

wb a bracketed terminal string in T ∗
b . If [ν]itemΠ

wb �
∗ qf , then there exists

zb in T ∗
b such that α′rix̂

′
b =⇒∗

b zb and w ∼= z (mod Π).

Proof. We proceed by induction on the length |wb|. For the induction basis,
we consider wb = ε, thus ν in µf is of form d1(

S
ub· )r1, with lookahead r1

such that h(r1) = ε ∼= ε by reflexivity.

For the induction step, we consider a transition qχ ⊢ q′ with χ in Tb and
q and q′ two states of Γ/itemΠ. Any position ν in q has a transition on this
symbol χ to some position ν ′ (not necessarily in q′); in order to apply the
induction hypothesis, we examine the case where [ν ′]itemΠ

wb �
∗ qf . Then,

by induction hypothesis, ν ′ = ybdj(
β
vb·β′

v′
b
)rjy

′
b is such that there exists zb in

T ∗
b , β′rj ŷ

′
b =⇒∗

b zb and z ∼= w (mod Π). Three cases arise depending on χ.

If χ = a in T , then ν = ybdj(
α
ub·aβ′

av′
b
)rjy

′
b verifies aβ′rj ŷ

′
b =⇒∗

b azb and az ∼=

aw (mod Π) since ∼= is a left congruence.

If χ = dj in Td, then ν = xbdi(
α
ub· Bα′

djv′
b
rju′

b
)rix

′
b is such that y′b = u′brix

′
b, thus

Bα′rix̂
′
b =⇒b djβ

′rjα
′rix̂

′
b = djβ

′rj ŷ
′
b =⇒∗

b djzb with z ∼= w (mod Π).

If χ = ri in Tr, then ν = xbdi(
α
ub· )riv

′
brjy

′
b is such that riv̂′brjy

′
b = riβ

′rj ŷ
′
b =⇒∗

b

rizb with z ∼= w (mod Π).

Theorem 6.20. If G is LR(Π), then it is also NU(itemΠ).

Proof. Let us suppose that G is noncanonically itemΠ-ambiguous. We have
the relation

(qs, q
′
s) (mas ∪ mad)∗ (q1, q2) mac (q3, q2) ma∗ (qf , q

′
f ). (6.22)

The first part (qs, qs) (mas ∪ mad)∗ (q1, q2) of Equation 6.22 implies that
qsδddiα �

∗ q1 and qsγddjβ �
∗ q2 with δα = γβ for some δd and γd in (V ∪Td)

∗,
i and j in P , and α, β in V ∗ such that i = A−→αα′ and j = B−→ββ′. By
Lemma 6.18, there exist ν1 = xbdi(

α
ub·α′

u′
b
)rix

′
b in q1 and ν2 = ybdj(

β
vb·β′

v′
b
)rjy

′
b

in q2 such that

d1δddiα = x̂bdiα and d1γddjβ = ŷbdjβ. (6.23)

Furthermore, the relation (q1, q2) mac (q3, q2) indicates that q1ri ⊢ q3 for
some i in P : ν1 is necessarily of form xbdi(

α
ub· )rix

′
b. Among the various

possible positions ν2 in q2, there is at least one that verifies v′brj = y′′dχy
′′′
b

with y′′d in T ∗
d , χ in T ∪ Tr and y′′′b in T ∗

b , such that the predicate (q1, i) also
enforces χ 6= ri.

Let us now consider the second part (q1, q2) mac (q3, q2) ma∗ (qf , q
′
f ) of

Equation 6.22. By Lemma 6.16, there exist two bracketed strings wb and w′
b



146 Ambiguity Detection

with w = w′ such that q1wb �
∗ qf and q2w

′
b �

∗ q′f . By Lemma 6.19, there
exists zb and z′b in T ∗

b such that

rix̂
′
b =⇒∗

b zb and β′rj ŷ
′
b =⇒∗

b z
′
b, (6.24)

with w ∼= z (mod Π) and w′ ∼= z′ (mod Π). By transitivity of the congruence
relation,

z ∼= z′ (mod Π). (6.25)

We combine the equations (6.23) and (6.24) and obtain the derivations
in G

S =⇒
rm

∗ δAz
i

=⇒
rm

δαz and S =⇒
rm

∗ γBz′′ =⇒
rm

γββ′z′′ =⇒
rm

∗ δαz′, (6.26)

for some z′′ in T ∗.

We follow now the classical argument of Aho and Ullman (1972, Theo-
rem 5.9) and study the cases where β′ is ε, in T+, or contains a nonterminal
as a factor.

If β′ = ε, then our equations (6.26) and (6.25) fit the requirements of Equa-
tion 6.19. Nevertheless, v′ = ε and χ = rj 6= ri implies i 6= j, violating
the requirements of Equation 6.20.

If β′ = v′ is in T+, then once again we meet the conditions of Equation 6.19.
Nevertheless, in this case, z′ = v′z′′ 6= z′′, hence violating the require-
ments of Equation 6.20.

If there is at least one nonterminal C in β′, then

S′ =⇒
rm

∗ γβv1Cv3z
′′ =⇒

rm

∗ γβv1v2v3z
′′ = δαv1v2v3z

′′ = δαz′. (6.27)

Then, Equation 6.19 holds (with k = C−→ρ instead of B−→β). Re-
member that ri 6= χ, thus either v1v2 = ρ = ε, χ = rk but k 6= i
and Equation 6.20 cannot hold, or v1v2 6= ε, but the last condition of
Equation 6.20 would require v3z

′′ = z′.

Strictness Let us consider now the grammar with rules

S−→AC |BCb, A−→a, B−→a, C−→cCb |cb. (G32)

Grammar G32 is not LRR: the right contexts cnbn$ and cnbn+1$ of the re-
ductions using A−→a and B−→a cannot be distinguished by regular covering
sets. Nevertheless, our test on Γ32/item0 shows that G32 is not ambiguous.

Similarly, the portion of the ISO C++ grammar described in Section 3.1.3
on page 29 is not LR-Regular, but is proven unambiguous by our test with
item0 approximations.



6.3 Practical Results 147

6.3 Practical Results

We implemented a noncanonical ambiguity detection algorithm in C as a
new option in GNU Bison that triggers an ambiguity detection computation
instead of the parser generation. The output of this verification on the
subset of the Standard ML grammar given in Section 3.1.4 on page 31 is:

2 potential ambiguities with LR(0) precision detected:

(match -> mrule . , match -> match . ’|’ mrule )

(match -> match . ’|’ mrule , match -> match ’|’ mrule . )

From this ambiguity report, two things can be noted: that user-friendliness
is not a strong point of the tool in its current form, and that the two detected
ambiguities correspond to the two ambiguities of Example 3.6 on page 32
and Example 3.7 on page 45. Furthermore, the reported ambiguities do not
mention anything visibly related to the difficult conflict of Example 3.5 on
page 32.

6.3.1 Example Test

Our ambiguity checking algorithm attempts to find ambiguities as two differ-
ent parse trees describing the same sentence. Of course, there is in general
an infinite number of parse trees with an infinite number of derived sen-
tences, and we use a position automaton to approximate the possible walks
through the trees.

We detail here the algorithm on the relevant portion of our grammar,
and consider to this end item0 approximations: our equivalence classes are
LR(0) items. A dot in a grammar production A−→α·β can also be seen as a
position in an elementary tree—a tree of height one—with root A and leaves
labeled by αβ. When moving from item to item, we are also moving inside
all the syntax trees that contain the corresponding elementary trees. The
moves from item to item that we describe in the following can be checked on
the trees of Figure 3.4 on page 33 and Figure 3.7 on page 44. The resulting
ambiguity detection is very similar to the case study of Section 5.3.5 on
page 123.

Since we want to find two different trees, we work with pairs of concurrent
items, starting from a pair (S−→·〈dec〉 , S−→·〈dec〉 ) at the beginning of all
trees, and ending on a pair (S−→〈dec〉 ·, S−→〈dec〉 ·). Between these, we
pair items that could be reached upon reading a common sentence prefix,
hence following trees that derive the same sentence.

Example Run Let us start with the couple of items reported as being
in conflict by Bison; just like Bison, our algorithm has found out that the two
positions might be reached by reading a common prefix from the beginning



148 Ambiguity Detection

of the input:

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈exp〉−→case 〈exp〉 of 〈match〉·) (6.28)

Unlike Bison, the algorithm attempts to see whether we can keep reading
the same sentence until we reach the end of the input. Since we are at the
extreme right of the elementary tree for rule 〈exp〉−→case 〈exp〉 of 〈match〉,
we are also to the immediate right of the nonterminal 〈exp〉 in some rule
right part. Our algorithm explores all the possibilities, thus yielding the
three couples:

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈mrule〉−→〈pat〉=>〈exp〉·) (6.29)

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈exp〉−→case 〈exp〉·of 〈match〉) (6.30)

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈sfvalbind〉−→vid 〈atpats〉 = 〈exp〉·)
(6.31)

Applying the same idea to the pair (6.29), we should explore all the items
with the dot to the right of 〈mrule〉.

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈match〉−→〈mrule〉·) (6.32)

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈match〉−→〈match〉 ’|’ 〈mrule〉·) (6.33)

At this point, we find 〈match〉−→〈match〉· ’|’ 〈mrule〉, our competing item,
among the items with the dot to the right of 〈match〉: from our approxima-
tions, the strings we can expect to the right of the items in the pairs (6.32)
and (6.33) are the same, and we report the pairs as potential ambiguities.

Our ambiguity detection is not over yet: from (6.31), we could reach
successively (showing only the relevant possibilities):

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈fvalbind〉−→〈sfvalbind〉·) (6.34)

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈fvalbind〉−→〈fvalbind〉· ’|’ 〈sfvalbind〉)
(6.35)

In this last pair, the dot is to the left of the same symbol, meaning that the
following item pair might also be reached by reading the same string from
the beginning of the input:

(〈match〉−→〈match〉 ’|’ ·〈mrule〉, 〈fvalbind〉−→〈fvalbind〉 ’|’ ·〈sfvalbind〉)
(6.36)



6.3 Practical Results 149

The dot being to the left of a nonterminal symbol, it is also at the beginning
of all the right parts of the productions of this symbol, yielding successively:

(〈mrule〉−→·〈pat〉=>〈exp〉, 〈fvalbind〉−→〈fvalbind〉 ’|’ ·〈sfvalbind〉) (6.37)

(〈mrule〉−→·〈pat〉=>〈exp〉, 〈sfvalbind〉−→·vid 〈atpats〉 = 〈exp〉) (6.38)

(〈pat〉−→·vid 〈atpat〉, 〈sfvalbind〉−→·vid 〈atpats〉 = 〈exp〉) (6.39)

(〈pat〉−→vid·〈atpat〉, 〈sfvalbind〉−→vid·〈atpats〉 = 〈exp〉) (6.40)

(〈pat〉−→vid·〈atpat〉, 〈atpats〉−→·〈atpat〉) (6.41)

(〈pat〉−→vid〈atpat〉·, 〈atpats〉−→〈atpat〉·) (6.42)

(〈mrule〉−→〈pat〉·=>〈exp〉, 〈atpats〉−→〈atpat〉·) (6.43)

(〈mrule〉−→〈pat〉·=>〈exp〉, 〈sfvalbind〉−→vid 〈atpats〉· = 〈exp〉) (6.44)

Our exploration stops with this last item pair: its concurrent items expect
different terminal symbols, and thus cannot reach the end of the input upon
reading the same string. The algorithm has successfully found how to dis-
criminate the two possibilities in conflict in Example 3.5 on page 32.

6.3.2 Implementation

The example run detailed above relates couples of items. This relation is
the mutual accessibility relation ma of Definition 6.13 on page 138, defined
as the union of several primitive relations:

mas for terminal and nonterminal shifts, holding for instance between pairs
(6.35) and (6.36), but also between (6.41) and (6.42),

mad for downwards closures, holding for instance between pairs (6.36) and
(6.37),

mac for upwards closures in case of a conflict, i.e. when one of the items
in the pair has its dot to the extreme right of the rule right part and
the concurrent item is different from it, holding for instance between
pairs (6.29) and (6.32). Formally, our notion of a conflict coincides
with that of Aho and Ullman (1972, Theorem 5.9).

The algorithm constructs the image of the initial pair (S′−→·S, S′−→·S) by
the ma∗ relation. If at some point we reach a pair holding twice the same
item from a pair with different items, we report an ambiguity. Since this
occurs as soon as we find a mac relation that reaches the same item twice,
the mar relation and the boolean flag of Definition 6.13 are not needed.

The eligible single moves from item to item are in fact the transitions in
the position automaton for item0. The size of the ma relation is bounded by



150 Ambiguity Detection

the square of the size of this PA. Let |G| denote the size of the context-free
grammar G, i.e. the sum of the length of all the rules right parts, and |P |
denote the number of rules; then, in the LR(0) case, the algorithm time and
space complexity is bounded by O((|G| |P |)2).

Implementation Details The experimental tool currently implements
the algorithm with LR(0), SLR(1), and LR(1) items. Although the space
required by LR(1) item pairs is really large, we need this level of precision in
order to guarantee an improvement over the LALR(1) construction. Beyond
the NU test, the tool also implements a LR and a LRR test using the same
item pairing technique as our NU algorithm:

• the LR test simply computes the image of Q2
s by (mas ∪ mad)∗ and

reports a conflict for each couple in this image related to some couple
in Q2 by mac;

• the LRR test computes the image of Q2
s by (mas ∪ mad)∗◦ mac ◦ rma∗

and looks for conflicts in this image.

The implementation changes several details:

• We construct a position automaton using the alternative construction
of Section 4.2.1.1 on page 54, where states are either the items of form
A−→α·β, or some nonterminal items of form ·A or A·. For instance,
a nonterminal item would be used when computing the mutual acces-
sibility of (6.29) and before reaching (6.32):

(〈match〉−→〈match〉· ’|’ 〈mrule〉, 〈mrule〉·). (6.45)

The size of the PA then becomes bounded by O(|G|) in the LR(0) and
SLR(1) case, and O(|G||T |2)—where |T | is the number of terminal
symbols—in the LR(1) case, and the complexity of the algorithm is
thus bounded by the square of these numbers.

• We consider the associativity and static precedence directives (Aho
et al., 1975) of Bison and thus we do not report resolved ambiguities.

• Although we could use a pure notion of a conflict as in Section 6.2.3.2
and rely on the exploration to correctly employ lookaheads, we imple-
mented a more traditional notion of a conflict that integrates looka-
heads. The prime motivation for this is that it makes the implemen-
tation of static precedence and associativity rules straightforward.

• We order our items pairs to avoid redundancy in reduce/reduce con-
flicts. As mentioned in Section 6.2.1 for common prefixes with con-
flicts, our decomposition is not unique. In a reduce/reduce conflict, we
can choose to follow one reduction or the other, and we might find a



6.3 Practical Results 151

Table 6.1: Reported ambiguities several toy grammars.

Grammar actual class Bison HVRU NU(item0)

G25 non-LRR 6 0 9
G29 LR(0) 0 1 0
Gn

30 LR(2n) 1 0 0
Gn

31 ambiguous 1 1 1
G32 non-LRR 1 1 0

point of ambiguity sooner or later depending on this choice. The same
issue was met by McPeak and Necula (2004) with Elkhound, where a
strict bottom-up order was enforced using an ordering on the nonter-
minals and the portion of the input string covered by each reduction.

We solve our issue in a similar fashion, the difference being that we
do not have a finite input string at our disposal, and thus we adopt
a more conservative ordering using the right corner relation. We say
that A dominates B, noted A ∠B, if there is a rule A−→αB; our order
is then ∠

∗. In a reduce/reduce conflict between reductions to A and B,
we follow the reduction of A if A 6 ∠

∗ B or if both A ∠
∗ B and B ∠

∗ A.

6.3.3 Experimental Results

The choice of a conservative ambiguity detection algorithm is currently
rather limited. Several parsing techniques define subsets of the unambiguous
grammars, and beyond LR(k) parsing, two major parsing strategies exist:
LR-Regular parsing (Čulik and Cohen, 1973), which in practice explores
a regular cover of the right context of LR conflicts with a finite automa-
ton (Bermudez and Schimpf, 1990), and noncanonical parsing (Szymanski
and Williams, 1976), where the exploration is performed by the parser it-
self. Since we follow the latter principle with our algorithm, we call it a
noncanonical unambiguity (NU) test.

A different approach, unrelated to any parsing method, was proposed
by Brabrand et al. (2007) with their horizontal and vertical unambiguity
check (HVRU). Horizontal ambiguity appears with overlapping concate-
nated languages, and vertical ambiguity with non-disjoint unions; their
method thus follows exactly how the context-free grammar was formed.
Their intended application is to test grammars that describe RNA secondary
structures (Reeder et al., 2005).



152 Ambiguity Detection

Table 6.2: Reported potential ambiguities in the RNA grammars discussed
by Reeder et al. (2005).

Grammar actual class Bison HVRU NU(item1)

G1 ambiguous 30 6 14
G2 ambiguous 33 7 13
G3 non-LRR 4 0 2
G4 SLR(1) 0 0 0
G5 SLR(1) 0 0 0
G6 LALR(1) 0 0 0
G7 non-LRR 5 0 3
G8 LALR(1) 0 0 0

6.3.3.1 Toy Grammars

The formal comparisons of our algorithm with various other methods given
in Section 6.2.3 are sustained by several small grammars. Table 6.1 compiles
the results obtained on these grammars. The “Bison” column provides the
total number of conflicts (shift/reduce as well as reduce/reduce) reported by
Bison, the “HVRU” column the number of potential ambiguities (horizontal
or vertical) reported by the HVRU algorithm, and the “NU(item0)” column
the number of potential ambiguities reported by our algorithm with LR(0)
items.

For completeness, we also give the results of our tool on the RNA gram-
mars of Reeder et al. (2005) in Table 6.2.

6.3.3.2 Programming Languages Grammars

We ran the LR, LRR and NU tests on seven different ambiguous grammars
for programming languages:

Pascal an ISO-7185 Pascal grammar retrieved from the comp.compilers

FTP at ftp://ftp.iecc.com/pub/file/, LALR(1) except for a dan-
gling else ambiguity,

Mini C a simplified C grammar written by Jacques Farré for a compilers
course, LALR(1) except for a dangling else ambiguity,

ANSI C (Kernighan and Ritchie, 1988, Appendix A.13), also retrieved
from the comp.compilers FTP. The grammar is LALR(1), except
for a dangling else ambiguity. The ANSI C’ grammar is the same
grammar modified by setting typedef names to be a nonterminal, with
a single production 〈typedef -name〉−→identifier . The modification re-

ftp://ftp.iecc.com/pub/file/


6.3 Practical Results 153

Table 6.3: Number of initial LR(0) conflicting pairs remaining with the LR,
LRR and NU tests employing successively LR(0), SLR(1), LALR(1), and
LR(1) precision.

Precision LR(0) SLR(1) LALR(1) LR(1)
Test LR LRR NU LR LRR NU LR LR LRR NU
Pascal 119 55 55 5 5 5 1 1 1 1
Mini C 153 11 10 5 5 4 1 1 1 1
ANSI C 261 13 2 13 13 2 1 1 1 1
ANSI C’ 265 117 106 22 22 11 9 9 - -
Standard ML 306 163 158 130 129 124 109 109 107 107
Small Elsa C++ 509 285 239 25 22 22 24 24 - -
Elsa C++ 973 560 560 61 58 58 53 - - -

flects the fact that GLR parsers should not rely on the lexer hack for
disambiguation.

Standard ML, extracted from the language definition (Milner et al., 1997,
Appendix B). As mentioned in Section 3.1.2 on page 28, this is a highly
ambiguous grammar, and no effort whatsoever was made to ease its
implementation with a parser generator.

Elsa C++, developed with the Elkhound GLR parser generator (McPeak
and Necula, 2004), and a smaller version without class declarations
nor function bodies. Although this is a grammar written for a GLR
parser generator, it allows deterministic parsing whenever possible in
an attempt to improve performance.

In order to provide a better ground for comparisons between LR, LRR
and NU testing, we implemented an option that computes the number of
initial LR(0) item pairs in conflict—for instance pair (6.28)—that can reach
a point of ambiguity—for instance pair (6.32)—through the ma relation.
Table 6.3 presents the number of such initial conflicting pairs with our tests
when employing LR(0) items, SLR(1) items, and LR(1) items. We com-
pleted our implementation by counting conflicting LR(0) item pairs for the
LALR(1) conflicts in the parsing tables generated by Bison, which are shown
in the LALR(1) column of Table 6.3.

This measure of the initial LR(0) conflicts is far from perfect. In par-
ticular, our Standard ML subset has a single LR(0) conflict that mingles
an actual ambiguity with a conflict requiring an unbounded lookahead ex-
ploration: the measure would thus show no improvement when using our
test. The measure is not comparable with the numbers of potential ambi-



154 Ambiguity Detection

guities reported by NU; for instance, NU(item1) would report 89 potential
ambiguities for Standard ML, and 52 for ANSI C’.

Although we ran our tests on a machine equipped with a 3.2GHz Xeon
and 3GiB of physical memory, several tests employing LR(1) items ex-
hausted the memory. The explosive number of LR(1) items is also respon-
sible for a huge slowdown: for the small Elsa grammar, the NU test with
SLR(1) items ran in 0.22 seconds, against more than 2 minutes for the cor-
responding LR(1) test (and managed to return a better conflict report).

6.3.3.3 Micro-Benchmarks

Basten (2007) compared several means to detect ambiguities in context-
free grammars, including our own implementation in GNU Bison, the AM-
BER generative test (Schröer, 2001), and the MSTA LR(k) parser generator
(Makarov, 1999).

Initial Experiments Also confronted with the difficulty of measuring
ambiguity in a meaningful way, he opted for a micro-benchmark approach,
performing the tests on more than 36 small unambiguous grammars from
various sources. These grammars being small, and combining the results
returned by the tools, he was able to decide they were unambiguous. The
conservative accuracy ratios he obtained with our tool, computed as the
number of grammars correctly classified as unambiguous, divided by the
number of tested grammars, were of 61%, 69%, and 86% in LR(0), SLR(1),
and LR(1) mode respectively. This compares rather well to the LR(k) tests,
where the ratio drops to 75%, with attempted k values as high as 50. Inter-
estingly, our LRR test with LR(1) precision chokes on the same grammars
as the LR(k) tests, and obtains the same 75% ratio. Furthermore, the gram-
mars on which the NU(item1) test failed were all of the same mold (1-, 2-,
and 4-letters palindromes, and the RNA grammars G3 and G7 of Reeder
et al. (2005)).

The good results Basten obtained with AMBER on a second set of am-
biguous grammars emphasizes the interest for a mixed strategy, where the
paths to potential ambiguities in ma∗ could be employed to try to gener-
ate ambiguous sentential forms. The running time of AMBER on a full
programming language grammar is currently rather prohibitive; running a
generator on the portions of the grammar that might present an ambiguity
according to our tool could improve it drastically. The initial experiments
run by Basten in this direction are highly encouraging.

A Larger Collection We gathered a few more unambiguous grammars
from programming languages constructs in order to improve the represen-
tativity of Basten’s grammar collection. A first set of seven unambiguous



6.3 Practical Results 155

grammars was found in the comp.compilers archive when querying the word
“conflict” and after ruling out ambiguous grammars and LL-related con-
flicts:4

90-10-042 an excerpt of the YACC syntax, which has an optional semicolon
as end of rule marker that makes it LR(2);

98-05-030 a non LR excerpt of the Tiger syntax;

98-08-215 a LR(2) grammar;

03-02-124 a LR(2) excerpt of the C# grammar;

03-09-027 a LR(2) grammar;

03-09-081 a LR(3) grammar;

05-03-114 a LR(2) grammar (it seems like its author actually meant to
write a non LR grammar but mistyped it).

A second set of nine grammars was compiled using grammars from this thesis
and from the literature on LR-Regular and noncanonical parsing techniques:

Ada “is” a LR(2) snippet of the Ada syntax (ANSI, 1983), pointed out by
Baker (1981) and Boullier (1984);

Ada calls a non LR fragment of the Ada syntax, pointed out by Boullier
(1984);

C++ qualified identifiers a non LR-Regular portion of the C++ syntax
(ISO, 1998) that we described in Section 3.1.3 on page 29;

Java modifiers a non LR excerpt of the Java syntax that we described
in Section 3.1.1 on page 26, and that was detailed by Gosling et al.
(1996) in their Sections 19.1.2 and 19.1.3;

Java names a non LR excerpt given in their Section 19.1.1;

Java arrays a LR(2) excerpt given in their Section 19.1.4;

Java casts a LR(2) excerpt given in their Section 19.1.5;

Pascal typed a LR(2) grammar for Pascal variable declarations that en-
forces type correctness, given by Tai (1979);

Set expressions a non LR grammar that distinguishes between arithmetic
and set expressions, given by Čulik and Cohen (1973).

http://compilers.iecc.com
http://compilers.iecc.com/comparch/article/90-10-042
http://compilers.iecc.com/comparch/article/98-05-030
http://compilers.iecc.com/comparch/article/98-08-215
http://compilers.iecc.com/comparch/article/03-02-124
http://compilers.iecc.com/comparch/article/03-09-027
http://compilers.iecc.com/comparch/article/03-09-081
http://compilers.iecc.com/comparch/article/05-03-114
http://java.sun.com/docs/books/jls/first_edition/html/19.doc.html#44488
http://java.sun.com/docs/books/jls/first_edition/html/19.doc.html#44469
http://java.sun.com/docs/books/jls/first_edition/html/19.doc.html#44543
http://java.sun.com/docs/books/jls/first_edition/html/19.doc.html#44559


156 Ambiguity Detection

Table 6.4: Number of conflicts obtained with Bison, Brabrand et al.’s tool,
and our tool in LRR and NU mode with various precision settings. The
LR(k) column indicates instead the smallest value of k such that the gram-
mar is LR(k) or “non LR” if no such value exists. Improvement rates are
computed by only considering non-LALR(1) grammars.

Method LR HVRU LRR NU
Precision LALR(1) LR(k) LR(1) LR(0) SLR(1) LR(1)
90-10-042 2 LR(2) 0 14 7 7 6
98-05-030 1 non LR 10 26 0 0 0
98-08-215 1 LR(2) 0 0 0 0 0
03-02-124 1 LR(2) 0 0 0 0 0
03-09-027 2 LR(2) 0 0 0 0 0
03-09-081 2 LR(3) 0 0 0 0 0
05-03-114 1 LR(2) 0 0 0 0 0
Ada “is” 1 LR(2) 0 0 0 0 0
Ada calls 1 non LR 0 0 1 0 0
C++ qualified IDs 1 non LRR 5 21 0 0 0
Java modifiers 31 non LR 0 0 3 0 0
Java names 1 non LR 0 0 0 0 0
Java arrays 1 LR(2) 0 0 0 0 0
Java casts 1 LR(2) 0 0 0 0 0
Pascal typed 1 LR(2) 0 0 0 0 0
Set expressions 8 non LR 19 119 2 2 2
Accuracy/improvement 0% 62% 81% 75% 75% 87% 87%
Overall accuracy 50% 69% 69% 75% 65% 75% 87%
Overall improvement 0% 42% 69% 50% 58% 65% 73%

We ran several conservative ambiguity detection tests5 on Basten’s gram-
mar collection and on our small collection. Table 6.4 shows the results of
our micro-benchmarks. Our small collection contains only non-LALR(1)
grammars, and as such the accuracy of the various tools can also be seen
as an improvement ratio over LALR(1). The overall accuracy and improve-
ment scores take into account the complete collection of 53 grammars using
both our grammars and Basten’s; 26 grammars are not LALR(1) in this full
collection.

The ability to freely specify lookahead lengths in a LR(k) parser im-
proves over LALR(1) parsing, but much less than the other methods that
take an unbounded lookahead into account. An interesting point is that the

4The names xx-xx-xxx are the message identifiers on the archive, and are accessible
on the web at the adress http://compilers.iecc.com/comparch/article/xx-xx-xxx.

5The horizontal and vertical ambiguity check of Brabrand et al. was run as is, without
manual grammar unfolding, which would have improved its accuracy.



6.3 Practical Results 157

results of our tool in LR(1) precision with Brabrand et al.’s horizontal and
vertical ambiguity check are not highly correlated, and a simple conjunction
of the two tools would obtain an overall 88% improvement rate, or 94%
on our small collection only. Let us finally point out that a much larger
grammar collection would be needed in order to obtain more trustworthy
micro-benchmark results, and that such results might still not be very sig-
nificant for large, complex grammars, where the precision of a method seems
to be much more important than for our small grammars.

6.3.4 Current Limitations

Our implementation is still a prototype. We describe several planned im-
provements (Section 6.3.4.1 and Section 6.3.4.2), followed by a small account
on the difficulty of considering dynamic disambiguation filters and merge
functions in the algorithm (Section 6.3.4.3).

6.3.4.1 Ambiguity Report

As mentioned in the beginning of Section 6.3.1 on page 147, the ambiguity
report returned by our tool is hard to interpret.

A first solution, already partially supported by Brabrand et al. (2007), is
to attempt to generate actually ambiguous inputs that match the detected
ambiguities. The ambiguity report would then comprise of two parts, one
for proven ambiguities with examples of input, and one for the potential
ambiguities. The generation should only follow item pairs from which the
potential ambiguities are reachable through ma relations, and stop whenever
finding the ambiguity or after having explored a given number of paths.

Displaying the (potentially) ambiguous paths in the grammar in a graph-
ical form is a second possibility. This feature is implemented by ANTLR-
Works, the development environment for the upcoming version 3 of ANTLR
(Bovet and Parr, 2007).

6.3.4.2 Running Space

The complexity of our algorithm is a square function of the grammar size.
If, instead of item pairs, we considered deterministic states of items like
LALR(1) does, the worst-case complexity would rise to an exponential func-
tion. Our algorithm is thus more robust.

Nonetheless, practical computations seem likely to be faster with LALR(1)
item sets: a study of LALR(1) parsers sizes by Purdom (1974) showed that
the size of the LALR(1) parser was usually a linear function of the size of
the grammar. Therefore, all hope of analyzing large GLR grammars—like
the Cobol grammar recovered by Lämmel and Verhoef (2001)—is not lost.



158 Ambiguity Detection

a ba c

A

B

A≡

B

Figure 6.6: The shared parse forest for input aabc with grammar G33.

The theory behind noncanonical LALR parsing (Section 5.2 on page 88)
translates well into a special case of our algorithm for ambiguity detection,
and future versions of the tool should implement it.

6.3.4.3 Dynamic Disambiguation Filters

Our tool does not ignore potential ambiguities when the user has declared
a merge function that might solve the issue. The rationale is simple: we
do not know whether the merge function will actually solve the ambiguity.
Consider for instance the rules

A−→aBc |aaBc, B−→ab |b. (G33)

Our tool reports an ambiguity on the item pair (B−→ab·, B−→b·), and is
quite right: the input aabc is ambiguous. As shown in Figure 6.6, adding
a merge function on the rules of B would not resolve the ambiguity: the
merge function should be written for A.

If we consider arbitrary productions for B, a merge function might be
useful only if the languages of the alternatives for B are not disjoint. We
could thus improve our tool to detect some useless merge declarations. On
the other hand, if the two languages are not equivalent, then there are cases
where a merge function is needed on A—or even at a higher level. Ensuring
equivalence is difficult, but could be attempted in some decidable cases,
namely when we can detect that the languages of the alternatives of B are
finite or regular, or using bisimulation equivalence (Caucal, 1990).



Conclusion 7

I know nothing except the fact of my ignorance.
Socrates, by Diogenes Laertius, Lives of Eminent Philosophers

The nondeterminism of parsers for programming languages is the prime
reason behind the recent momentum of general parsing techniques, where
nondeterminism is handled by tabulation methods. Nevertheless, the non-
determinism issue is not eradicated, but appears in subtler ways, with the
new possibility of accepting ambiguous grammars.

In this thesis, we have shown two ways to better deal with nondeter-
minism while keeping the guarantee of unambiguity: the use of noncanoni-
cal parsers, through the examples of the Noncanonical LALR(1) and Shift-
Resolve constructions, and a conservative ambiguity detection algorithm. In
both cases, we relied on a simple approximation model of the paths in the
derivation trees of the grammar, allowing a better separation of concerns
between the precision of a method, in terms of the objects it manipulates—
the states of a position automaton in our framework—, and how it exploits
the information carried by these objects.

The two noncanonical parsing techniques that we have studied contribute
to the range of practical noncanonical parsing methods, until now mostly
reduced to Noncanonical SLR(1) parsing. Our Noncanonical LALR(1) con-
struction is more than just a step from simple lookaheads to contextual ones,
as it can be seen as a generic construction of a noncanonical parser from
a canonical one. The Shift-Resolve parsing construction further exploits
position automata to compute the reduced lookahead lengths it needs for
each parsing action, but keeps these lengths finite in order to preserve the
linear parsing time complexity. It solves a major drawback of noncanonical
parsers, which are either limited to a reduced lookahead window of fixed
length, or in contrary not limited at all but with a quadratic parsing time
complexity in the worst case.

Our conservative algorithm for ambiguity detection follows some of the
principles we designed in noncanonical parser constructions. But we are



160 Conclusion

relieved from the need to actually produce a parser, and thus we do not
need to keep track of where conflicts with pending resolutions lie. We exert
this freedom to explore in the right context of conflicts as far as needed.
Thanks to the generality of the position automata framework, other means
for ambiguity detection can be compared formally to our technique, and we
prove that it generalizes in particular the LR-Regular tests. The practical
experiments conducted so far support the adequacy of the algorithm, and
suggest several developments that should be undertaken.

Further Research

We mention here several points related to the work presented in the thesis
that seem worthy of further research.

Time Complexity Shift-Resolve parsers enforce a linear time parsing
bound by ensuring that pushback lengths remain bounded. Could a linear
time bound be enforced for a larger class of grammars by allowing unbounded
pushbacks in some cases?

A related question of interest is whether there exists a linear bound on
the parsing time for NU(≡) grammars. This holds true for variants of Earley
parsing when the grammar is LR(Π) (Leo, 1991), but the proof cannot be
translated as such to the noncanonical case.

Ambiguity Detection Many practical improvements to our procedure
are mentioned in Section 6.3.4, but we repeat here the two most important
ones:

1. switching to a NLALR(1)-like construction in order to avoid the space
explosion that was witnessed when using LR(1) items, and

2. generating examples of ambiguous sentences, from which refinements
of the position automaton could be constructed on the relevant parts.

Noncanonical Languages Let us call a language L(G) a noncanonical
language if there exists an equivalence relation ≡ of finite index on the po-
sitions of G such that G is NU(≡). Does the class of noncanonical languages
properly include the class of, for instance, the Leftmost SLR(1) languages
(Tai, 1979)? Or does the grammatical hierarchy collapse in language space?

A point worth investigating is the comparison with Church-Rosser lan-
guages (McNaughton et al., 1988), which are characterized by formal ma-
chines not so unlike the two stack model we use for noncanonical parsing:
shrinking two-pushdown automata (Niemann and Otto, 2005) and restart-
ing automata (Niemann and Otto, 1999). It seems that the class of non-
canonical languages would be strictly included in the class of Church-Rosser



161

languages. This would establish that palindrome languages, which are not
Church-Rosser (Jurdziński and Loryś, 2007), are indeed beyond the grasp
of our ambiguity detection technique.

Regular Approximations The search for good regular approximations
of context-free languages is a research domain on its own. The position
automaton framework provides a simple unifying theory for the various ap-
proximation methods. It is appealing to try to apply it to different for-
malisms. In this line of work, our initial results on the approximation of
XML languages should be completed to embrace the general case of reg-
ular tree languages. Another application would be the approximation for
formalisms employed in natural language processing, resulting in symbolic
supertaggers (Boullier, 2003b; Bonfante et al., 2004).



162 Conclusion



Formal Definitions A
A.1 Elements of Formal Language Theory (Formal Languages,

Rewriting Systems, Grammars, Notational Conventions, Automata,

Earley Recognizer) • A.2 LR(k) Parsing (Valid Items and Prefixes,

LR Automata, LALR Automata )

“When I use a word,” Humpty Dumpty said, in rather a scornful
tone, “it means just what I choose it to mean–neither more nor
less.”

Lewis Carroll, Through the Looking-Glass

A.1 Elements of Formal Language Theory

The reader is as always directed to reference books by Harrison (1978),
Hopcroft and Ullman (1979) and Sippu and Soisalon-Soininen (1988) for a
more thorough treatment.

A.1.1 Formal Languages

Definition A.1. The concatenation of two elements x and y of a set M ,
denoted by xy, is an associative binary operation. An element ε is the
identity for this operation if, for all x in V , εx = xε = x. The set M along
with the concatenation operation and its identity is a monoid . In a monoid
M , the n iterated applications of the concatenation operation with the same
element x, denoted by xn, is defined by x0 = ε and xn = xxn−1 for n > 0.

The concatenation operation can be extended to subsets of M : if A and
B are subsets of M , then AB = {xy | x ∈ A and y ∈ B}. The iterated
concatenation is defined accordingly. Then, the closure of a subset A is
defined as A∗ = ∪∞

n=0A
n. If A∗ = M , then A is a basis of M . The subset A

generates M freely if for all x of M there is exactly one sequence x1 · · ·xn of
elements of A such that x = x1 · · ·xn; A∗ = M is then called a free monoid .



164 Formal Definitions

Definition A.2. An alphabet or vocabulary is a finite nonempty set of sym-
bols.

Definition A.3. A formal language L over an alphabet Σ is any subset of
the free monoid Σ∗.

A.1.2 Rewriting Systems

Definition A.4. A rewriting system is a pair 〈V,R〉 where

• V is the alphabet and

• R a finite set of rules in V ∗ × V ∗.

A generative rewriting system 〈V,R, S〉 has a distinguished starting set
S included in V ∗. We denote its rules by α−→β for α and β in V ∗. The

derivation relation δαγ
i
=⇒ δβγ holds if the rule i = α−→β exists in R; we

drop the superscript i when irrelevant. We denote the transitive reflexive
closure of =⇒ by

ϕ
=⇒ with ϕ in R∗, or simply by =⇒∗ if the sequence of rule

applications is irrelevant. The language generated by 〈V,R, S〉 is L = {β |
∃α ∈ S, α =⇒∗ β}; more specialized generative rewriting systems will redefine
this language.

A recognitive rewriting system 〈V,R, F 〉 has a distinguished final set F
included in V ∗. We denote its rules by α ⊢− β for α and β in V ∗. The

rewrite relation δαγ
i

�= δβγ holds if the rule i = α ⊢− β exists in R; we
drop the superscript i when irrelevant. We denote the transitive reflexive

closure of �= by
ϕ

�= with ϕ in R∗, or simply by �=∗ if the sequence of rule
applications is irrelevant. The language recognized by 〈V,R, F 〉 is L = {α |
∃β ∈ F, α �=∗ β}; more specialized recognitive rewriting systems will redefine
this language.

A transducer with output alphabet Σ∗ is a pair 〈M, τ〉 where M is a
recognitive rewriting system 〈V,R, S〉 and τ a homomorphism from R∗ to
Σ∗. It produces output τ(ϕ) for input α if there exists β in F such that

α
ϕ

�= β in M .

A.1.3 Grammars

Definition A.5. A phrase structure grammar is a 4-tuple 〈N,T, P, S〉 where

• N is the nonterminal alphabet,

• T the terminal alphabet, T ∩N = ∅,

• V = N ∪ T is the vocabulary,

• P is a set of productions in V ∗ × V ∗, and



A.1 Elements of Formal Language Theory 165

• S in N is the start symbol or axiom.

A phrase structure grammar is a generative rewriting system 〈V, P, {S}〉 and
it generates the language L = {w ∈ T ∗ | S =⇒∗ w}.

Definition A.6. A right-linear grammar is a phrase structure grammar
G = 〈N,T, P, S〉 where P the set of productions is restricted to (N × T ∗) ∪
(N × T ∗N).

A left-linear grammar is defined similarly by having P restricted to (N×
T ∗) ∪ (N ×NT ∗).

A regular grammar is either a right-linear grammar or a left-linear gram-
mar. A language is regular language if it is generated by some regular gram-
mar.

Definition A.7. A context-free grammar (CFG) is a phrase structure gram-
mar G = 〈N,T, P, S〉 where P the set of productions is restricted to N ×V ∗.
A language is context-free if it is generated by some context-free grammar.

A grammar is reduced if for all symbols X in V , S =⇒∗ αXβ =⇒∗ w for
some α and β in V ∗ and w in T ∗. We always consider our grammars to be
reduced.

The augmented grammar of a context-free grammar G = 〈N,T, P, S〉 is
the context-free grammar G′ = 〈N ′, T ′, P ′, S′〉 where

• N ′ = N ∪ {S′} with S′ a new nonterminal symbol,

• T ′ = T ∪ {$} with $ a new terminal symbol, and

• P ′ = P ∪ {S′−→$S$}.

A rightmost derivation δAx
i

=⇒
rm

δαx holds if the production i = A−→α

exists in P and x is a terminal string in T ∗. Similarly, a leftmost derivation

xAδ
i

=⇒
lm

xαδ holds if the production i = A−→α exists in P and x is a terminal

string in T ∗.

A.1.4 Notational Conventions

We present here our notational conventions regarding context-free gram-
mars:

• terminal symbols in T are denoted by small case Latin letters of the
beginning of the alphabet a, b, c, d, or by names in small case letters,
as in term;

• nonterminal symbols in V are denoted by capital Latin letters of the
beginning of the alphabet A, B, C, D, or by names in capital letters
or between angle brackets, as in VP or 〈nonterminal〉;



166 Formal Definitions

• terminal strings in T ∗ are denoted by small case Latin letters of the
end of the alphabet u, v, w, x, y, z;

• nonterminal strings in V ∗ are denoted by small case Greek letters of
the beginning of the alphabet α, β, γ, δ, and further ρ and σ;

• individual rules are denoted by index letters i, j;

• rule sequences are denoted by ϕ, ψ, π;

• the length of a string w is denoted by |w|;

• the prefix of length k of a string w is denoted by k : w, and the suffix
by w : k; if |w| < k, then k : w = w : k = w;

• the first set of length k of a sequence α in V ∗ is Firstk = {k : w | α =⇒∗

w}.

A.1.5 Automata

Definition A.8. A finite state automaton (FSA) is a 5-tuple 〈Q,T,R,Qs, Qf 〉
where

• Q is the (finite) state set,

• T is the input alphabet,

• R is the (finite) set of rules in QT ∗ ×Q,

• Qs ⊆ Q is the set of initial states, and

• Qf ⊆ Q is the set of final states.

In the case where Q and R are not finite, we rather call 〈Q,T,R,Qs, Qf 〉 a
labeled transition system (LTS).

Finite state automata and labeled transition systems are recognitive
rewriting systems 〈Q ∪ T,R,Qf 〉 and recognize the language L = {w ∈
T ∗ | ∃qs ∈ Qs,∃qf ∈ F, qsw �=∗ qf}. In practice, one usually considers rules
in Q(T ∪ {ε}) ×Q.

Definition A.9. A deterministic finite automaton (DFA) is a finite-state
automaton 〈Q,T,R,Qs, Qf 〉 such that Qs = {qs} is a singleton and R does
not contain any two rules qx ⊢− q1 and qy ⊢− q2 with q1 different from q2 and
one of x, y a prefix of the other.

Definition A.10. A pushdown automaton (PDA) is a 6-tuple 〈Q,T,R, I, F, $, ‖〉
where

• Q is the set of stack symbols,



A.1 Elements of Formal Language Theory 167

• T is the input alphabet,

• R is the set of rules in (Q∗∪$Q∗)‖(T ∗∪T ∗$)× (Q∗∪$Q∗)‖(T ∗∪T ∗$),

• I is the set of initial stack content in 2Q∗

,

• F is the set of final stack contents in 2Q∗

,

• $ is the end marker, and

• ‖ is the stack delimiter.

A pushdown automaton is a recognitive rewriting system 〈Q∪T∪{$, ‖}, R, $F‖$〉
and it recognizes the language L = {w ∈ T ∗ | ∃γs ∈ I,∃γf ∈ F, $γs‖w$ �=∗

$γf‖$}. As with FSAs, the traditional definition employs a finite Q and R
sets, but we might want to consider the more general case as well.

Definition A.11. A deterministic pushdown automaton (DPDA) is a push-
down automaton 〈Q,T,R, {γs}, F, $, ‖〉 such that R does not contain any two
rules α‖x ⊢− α′‖x′ and β‖y ⊢− β′‖y′ with one of x, y a prefix of the other and
one of α, β a suffix of the other.

Definition A.12. The shift-reduce recognizer for the context-free grammar
G = 〈N,T, P, S〉 is a pushdown automaton 〈V, T,R, {ε}, {S}, $, ‖〉 where the
set of rules R is the union of the shift rules {‖a ⊢− a‖ | a ∈ T} and the reduce
rules {α‖ ⊢− A‖ | A−→α ∈ P}.

The shift-reduce parser for the context-free grammar G = 〈N,T, P, S〉 is
the transducer 〈M, τ〉 with output alphabet P where M is the shift-reduce
recognizer for G and τ is defined by τ(‖a ⊢− a‖) = ε and τ(α‖ ⊢− A‖) = A−→α.

A.1.6 Earley Recognizer

An elegant definition for the Earley recognizer (Earley, 1970) was given
among others by Pereira and Warren (1983) and Sikkel (1997) through de-
duction rules.

An Earley item is a triple (A−→α·β, i, j), 0 ≤ i ≤ j ≤ n, meaning that
the input w = a1 · · · an allows a derivation from A to start at ai, and that
α =⇒∗ ai · · · aj . The deduction steps allow to compute the set (or chart) of
all the correct Earley items IG,w as the deduction closure of the deduction
system, using as premises the existence of some other correct Earley items
in IG,w, and when some additional side conditions are met.

(S−→·α, 0, 0)

{
S−→α ∈ P (Init)

(A−→α·Bα′, i, j)

(B−→·β, j, j)
{
B−→β ∈ P (Predict)



168 Formal Definitions

(A−→α·bα′, i, j)

(A−→αb·α′, i, j + 1)

{
aj+1 = b (Scan)

(A−→α·Bα′, i, j)
(B−→β·, j, k)

(A−→αB·α′, i, k)
(Complete)

Recognition succeeds if (S−→α·, 0, n) appears in IG,w for some rule S−→α of
the axiom S.

A.2 LR(k) Parsing

The best resource on the formal aspects of LR(k) parsing is the reference
book by Sippu and Soisalon-Soininen (1990).

A.2.1 Valid Items and Prefixes

Definition A.13. A pair [A−→α·β, y] is a valid LR(k) item for string γ in
V ′∗ if

S′ =⇒
rm

∗ δAz =⇒
rm

δαβz = γβz and k : z = y.

If such a derivation holds in G, then γ in V ′∗ is a valid prefix .

The set of valid items for a given string γ in V ′∗ is denoted by Validk(γ).
Two strings δ and γ are equivalent if and only if they have the same valid
items.

The valid item sets are obtained through the following computations:

Kernelk(ε) = {[S′−→·S, $]}, (A.1)

Kernelk(γX) = {[A−→αX·β, y] | [A−→α·Xβ, y] ∈ Validk(γ)}, (A.2)

Validk(γ) = Kernelk(γ)

∪ {[B−→·ω, x] | [A−→α·Bβ, y] ∈ Validk(γ) and x ∈ Firstk(βy)}.

(A.3)

A.2.2 LR Automata

LR automata are pushdown automata that use equivalence classes on valid
prefixes as their stack alphabet Q. We therefore denote explicitly states of
a LR parser as q = [δ], where δ is some valid prefix in q the state reached
upon reading this prefix.



A.2 LR(k) Parsing 169

Let M = (Q ∪ T ∪ {$, ‖}, R) be a rewriting system where $ and ‖ (the
end marker and the stack top, respectively) are not in Q nor in T (the set
of states and the input alphabet, respectively). A configuration of M is a
string of the form

[ε][X1] . . . [X1 . . . Xn]‖x$ (A.4)

where X1 . . . Xn is a string in V ∗ and x a string in T ∗.

Definition A.14. We say that M is a LR(k) automaton for grammar G
if its initial configuration is [ε]‖w$ with w the input string in T ∗, its final
configuration is [ε][S]‖$, and if each rewriting rule in R is of one of the forms

• shift a in state [δ]
[δ]‖ax ⊢

shift
[δ][δa]‖x,

defined if there is an item of form [A−→α·aβ, y] in Validk(δ) with k :
ax ∈ Firstk(aβy), and if [δa] 6= ∅, or

• reduce by rule A−→X1 . . . Xn of P in state [δX1 . . . Xn]

[δX1] . . . [δX1 . . . Xn]‖x ⊢
A−→X1 . . . Xn

[δA]‖x,

defined if [A−→X1 . . . Xn·, k : x] is in Validk(δX1 . . . Xn), and if [δA] 6=
∅.

A.2.3 LALR Automata

In case of inadequate states in the LR(0) automaton, LALR(1) lookahead
sets are computed for each reduction in conflict in hope of yielding a deter-
ministic LALR(1) automaton. The LALR(1) lookahead set of a reduction
using A−→α in state q is

LA(q, A−→α) = {1 : z | S′ =⇒
rm

∗ δAz and q = [δα]}. (A.5)

The rewriting system M is a LALR(1) automaton for grammar G if it is
a LR(0) automaton with another possible form of rules

• reduce by rule A−→X1 . . . Xn of P in state [δX1 . . . Xn] with lookahead
a

[δX1] . . . [δX1 . . . Xn]‖a ⊢
A−→X1 . . . Xn

[δA]‖a, (A.6)

defined if A−→X1 . . . Xn· is in Valid0(δX1 . . . Xn), and lookahead a is
in LA([δX1 . . . Xn], A−→X1 . . . Xn).



170 Formal Definitions



Synthèse en français

Motivation

Les grammaires sont omniprésentes lors de tout développement logiciel
comportant une spécification syntaxique. À partir d’une grammaire algébri-
que, des composants logiciels comme des analyseurs syntaxiques, des tra-
ducteurs de programmes ou encore des enjoliveurs peuvent être générés au-
tomatiquement plutôt que programmés manuellement, avec une qualité et
une lisibilité bien supérieures. Le domaine de l’ingénierie des grammaires
et des logiciels les utilisant, baptisé grammarware par Klint et al. (2005),
bénéficie à la fois d’une littérature abondante et de nombreux outils pour
automatiser les tâches de programmation.

En dépit des nombreux services qu’ils ont pu rendre au cours des années,
les générateurs d’analyseurs syntaxiques classiques de la lignée de YACC
(Johnson, 1975) ont vu leur suprématie contestée par plusieurs auteurs, qui
ont relevé leur inadéquation avec les problèmes actuels de l’ingénierie des
grammaires (Parr et Quong, 1996; van den Brand et al., 1998; Aycock,
2001; Blasband, 2001). Par la suite, les praticiens ont pris en considération
de nouvelles techniques d’analyse syntaxique, et l’analyse LR Généralisée
(GLR) de Tomita, qui visait initialement le traitement des langues natu-
relles, a trouvé de nombreux adeptes. Grâce à l’utilisation de générateurs
d’analyseurs syntaxiques généralisés, comme SDF (Heering et al., 1989),
Elkhound (McPeak et Necula, 2004) ou GNU Bison (Donnely et Stall-

man, 2006), on pourrait penser que les luttes contre les décomptes de conflits
tels que

grammar.y: conflicts: 223 shift/reduce, 35 reduce/reduce

appartiennent maintenant au passé. Les analyseurs syntaxiques généralisés
simulent les différents choix non-déterministes en parallèle avec des bonnes
performances, et fournissent toutes les analyses valides du texte d’entrée.

L’exposé un peu näıf de la situation donné ci-dessus oublie le fait que
toutes les analyses valides selon la grammaire ne le sont pas toujours dans
le langage cible. Dans le cas des langages informatiques en particulier, un



172 Synthèse en français

programme est supposé n’avoir qu’une unique interprétation, et donc une
seule analyse syntaxique devrait être obtenue. Néanmoins, la grammaire
mise au point pour décrire le langage est souvent ambiguë : en effet, les
grammaires ambiguës sont plus concises et plus lisibles (Aho et al., 1975). De
ce fait, la définition d’un langage devrait inclure des règles de désambiguation
pour choisir quelle analyse est correcte (Klint et Visser, 1994). Mais l’on
ne peut pas toujours décider quand ces règles sont nécessaires (Cantor,
1962; Chomsky et Schützenberger, 1963; Floyd, 1962a).

McPeak et Necula (2004) ont reconnu les difficultés posées par les
ambigüıtés syntaxiques, et ils leur consacrent quelques lignes :

[Il y a] le risque que les ambigüıtés finissent par être plus diffi-
ciles à éliminer que les conflits. Après tout, les conflits sont au
moins décidables. Est-ce que l’attrait d’un développement ra-
pide pourrait nous piéger dans des fourrés d’épines sans limites
décidables ?

Fort heureusement, les ambigüıtés n’ont pas posé problème. En
signalant les conflits rencontrés, Elkhound donne des indices sur
les emplacements possibles des ambigüıtés, ce qui est utile pen-
dant le développement initial de la grammaire. Puis, alors que la
grammaire mûrit, nous trouvons des ambigüıtés en testant des
entrées, et nous les comprenons en imprimant les forêts d’analyse
(une option offerte par Elkhound).

Effectivement, beaucoup de conflits sont typiquement causés par des am-
bigüıtés, et en procédant à un examen attentif de ces nombreux cas de
conflit et à des tests intensifs, un utilisateur expérimenté devrait pouvoir
déterminer si un règle de désambiguation est nécessaire ou non. Mais aussi
longtemps qu’il reste un seul conflit, il n’y a aucune garantie formelle que
toutes les ambigüıtés ont bien été traitées. Pour citer Dijkstra (1972),

Tester des programmes peut se révéler très efficace pour révéler
des problèmes, mais est irrémédiablement inadéquat pour démon-
trer leur absence. Le seul moyen d’améliorer la confiance que
l’on peut placer dans un programme est de fournir une preuve
convaincante de sa validité.

Dans le cas d’une confrontation avec un fourré d’épines, nous recomman-
dons de porter des gants. Nous les proposons sous deux formes dans cette
thèse.

1. La première est la génération d’analyseurs non canoniques, moins su-
jets au non déterminisme, pour lesquels le long processus d’élimination
des conflits est moins difficile. On peut ainsi plus raisonnablement
espérer éliminer la totalité des conflits, et obtenir ainsi la garantie
qu’aucune ambigüıté ne peut subsister. Les analyseurs non canoniques



Synthèse en français 173

s’appuient sur la totalité du texte restant à traiter pour décider entre
plusieurs actions d’analyse. Ils sont capables d’analyser une partie de
ce contexte droit, avant de revenir aux points de conflit et d’utiliser
les informations ainsi obtenues pour les résoudre.

2. La seconde est la détection d’ambigüıtés en tant que telle. Ce problème
étant indécidable, des approximations, sous la forme de faux positifs
ou de faux négatifs, sont inévitables. Notre méthode est prudente dans
le sens qu’elle ne peut pas retourner de faux positifs, et il est donc
sans danger d’employer une grammaire qu’elle reconnâıt comme non
ambiguë.

Contenu de la thèse

Après un exposé des bases essentielles de l’analyse syntaxique (Cha-
pitre 2), nous décrivons dans la Section 3.1 quatre cas pratiques issus des
syntaxes de Java (Gosling et al., 1996), C++ (ISO, 1998) et Standard
ML (Milner et al., 1997) qui illustrent les limites de l’analyse tradition-
nelle LALR(1). Différentes approches permettant de traiter ces problèmes
sont présentées dans le reste du Chapitre 3, fournissant ainsi un aperçu
des développements ✭✭ récents ✮✮ des méthodes d’analyse syntaxique. Les
trois chapitres techniques de cette thèse, que nous présentons de manière
plus approfondie par la suite, sont dédiés à l’approximation de grammai-
res algébriques (Chapitre 4), la génération d’analyseurs syntaxiques (Cha-
pitre 5), et la détection d’ambigüıtés (Chapitre 6). Nous concluons la thèse
par quelques remarques et pistes de recherche dans les deux prochaines sec-
tions, et nous rappelons les définitions et conventions de notations usuelles
dans l’Appendice A.

Automates de positions La génération d’analyseurs syntaxiques non
canoniques et la détection d’ambigüıtés peuvent toutes deux être vues comme
le résultat d’une analyse statique de la grammaire. Guidés par l’intuition
que la plupart des techniques d’analyse syntaxique effectuent à un parcours
en profondeur de gauche à droite dans l’ensemble de tous les arbres de
dérivation de la grammaire, nous définissons le graphe de positions d’une
grammaire comme l’ensemble de ces parcours, et un automate de positions
comme le quotient d’un graphe de positions par une relation d’équivalence
entre positions des arbres de dérivation (Chapitre 4). Nous obtenons des ni-
veaux d’approximation arbitraires en choisissant des relations d’équivalence
plus fines ou plus grossières : les automates de positions fournissent un cadre
général pour approximer des grammaires, cadre dans lequel plusieurs tech-
niques classiques de génération d’analyseurs syntaxiques peuvent être ex-
primées. En particulier, les états d’un automate de positions généralisent les



174 Synthèse en français

items habituellement employés pour indiquer des positions dans une gram-
maire.

Outre la génération d’analyseurs syntaxiques non canoniques et la détection
d’ambigüıtés, nous appliquons les automates de positions à deux problèmes :

1. La reconnaissance d’arbres de dérivations par le biais d’un automate
à états finis (Section 4.3), un problème inspiré par le traitement de
flux XML (Segoufin et Vianu, 2002). Ce problème est assez révéla-
teur des possibilités des automates de positions, et le résultat de nos
recherches initiales est une caractérisation, en termes d’automates de
positions, de la famille de grammaires algébriques qui peuvent voir
leurs arbres de dérivation reconnus au moyen d’un automate à états
finis.

2. La génération d’analyseurs syntaxiques ascendants canoniques (Sec-
tion 5.1). Dans ce domaine nous montrons simplement comment générer
des analyseurs pour les grammaires LR(k) (Knuth, 1965) et stricte-
ment déterministes (Harrison et Havel, 1973) à partir d’automates
de positions.

Analyse syntaxique non canonique Nous présentons deux méthodes
d’analyse non canoniques différentes, à savoir l’analyse LALR(1) non cano-
nique en Section 5.2 et l’analyse par Décalage-Résolution en Section 5.3.

LALR(1) non canonique Avec l’analyse NLALR(1), nous explorons com-
ment obtenir un analyseur non canonique à partir d’un analyseur as-
cendant canonique. Les analyseurs générés généralisent l’unique autre
méthode d’analyse non canonique praticable, à savoir l’analyse SLR(1)
non canonique (Tai, 1979).

Décalage-Résolution Le principal défaut des techniques d’analyse non
canoniques est la limite qu’elles placent sur la longueur de leur fenêtre
d’exploration. Avec l’analyse par Décalage-Résolution, développée en
collaboration avec José Fortes Gálvez et Jacques Farré, nous ex-
ploitons le graphe de positions directement, et générons des analyseurs
où les longueurs des fenêtres d’exploration sont indépendantes et cal-
culées selon les besoins de chaque action d’analyse.

Détection d’ambigüıtés Au long du Chapitre 6, nous présentons un
algorithme prudent pour la détection d’ambigüıtés dans les grammaires
algébriques. L’algorithme fonctionne sur n’importe quel automate de po-
sitions, permettant ainsi des degrés de précision variés lors de la détection
en fonction de l’équivalence de positions choisie. Nous comparons formel-
lement notre procédure aux autres moyens de détecter des ambigüıtés, à
savoir la génération de phrases de longueur bornée (Gorn, 1963; Cheung

et Uzgalis, 1995; Schröer, 2001; Jampana, 2005) et les tests LR-Réguliers



Synthèse en français 175

(Čulik et Cohen, 1973; Heilbrunner, 1983), et nous rendons compte des
résultats expérimentaux que nous avons obtenus avec notre implémentation
de l’algorithme sous la forme d’une option dans GNU Bison.

Conclusion

La présence de choix non déterministes dans les analyseurs syntaxiques
pour les langages de programmation est la première raison de l’engoue-
ment récent pour les techniques d’analyse généralisée, dans lesquelles le non
déterminisme est traité par des méthodes tabulées. Néanmoins, le problème
du non déterminisme n’est pas éradiqué, mais réapparâıt plus subtilement
avec la nouvelle possibilité d’accepter des grammaires ambiguës.

Nous avons montré dans cette thèse deux moyens de mieux traiter le non
déterminisme tout en préservant la garantie d’une syntaxe non ambiguë :
l’emploi d’analyseurs syntaxiques non canoniques, au travers des construc-
tions des analyseurs LALR(1) non canoniques et à Décalage-Résolution, et
un algorithme prudent pour la détection d’ambigüıtés. Dans les deux cas,
nous nous sommes appuyés sur un modèle simple d’approximation des che-
mins dans les arbres de dérivation de la grammaire, permettant une meilleure
séparation des préoccupations entre la précision d’une méthode en termes
d’objets manipulés (les états d’un automate de positions dans notre cadre
théorique), et la manière qu’a la méthode d’exploiter l’information portée
par ces objets.

Les deux techniques d’analyse syntaxique non canonique que nous avons
étudiées contribuent au choix de méthodes d’analyse non canoniques pra-
ticables, choix qui était jusqu’à présent réduit à la seule analyse SLR(1)
non canonique. Notre construction LALR(1) non canonique est plus qu’une
simple évolution de fenêtres d’analyses simples vers des fenêtres contex-
tuelles, mais peut être vue comme la construction générique d’un analyseur
non canonique à partir d’un analyseur canonique. La construction d’analy-
seurs à Décalage-Résolution exploite de manière approfondie les automates
de positions pour calculer les longueurs de fenêtres nécessaires pour chaque
action d’analyse, mais garde ces longueurs finies afin de préserver une com-
plexité de traitement en temps linéaire. Cette méthode résout un défaut
majeur des analyseurs non canoniques, qui soit sont limités à des fenêtres
de symboles réduits d’une longueur fixée à l’avance, soit au contraire ne sont
pas limités du tout mais peuvent alors travailler en temps quadratique dans
le pire des cas.

Notre algorithme prudent pour la détection d’ambigüıtés applique cer-
tains principes mis au point pour l’analyse non canonique. Nous sommes
cependant libérés du besoin de construire un analyseur, et de ce fait nous
pouvons appliquer une exploration non limitée sans avoir à nous souvenir



176 Synthèse en français

des emplacements des conflits. Grâce à la flexibilité offerte par les auto-
mates de positions, les autres moyens de détecter les ambigüıtés peuvent
être comparés formellement à notre technique, et nous avons montré en
particulier qu’elle généralise les tests LR-Réguliers. Les expérimentations
menées jusqu’ici confirment l’intérêt de l’algorithme, et suggèrent plusieurs
améliorations.

Pistes de recherche

Nous mentionnons ici plusieurs points, liés au travail présenté dans la
thèse, qui semblent mériter une recherche approfondie.

Complexité en temps Les analyseurs par Décalage-Résolution garan-
tissent un traitement en temps linéaire en assurant que les longueurs de
résolution restent bornées. Est-ce qu’on pourrait préserver le temps linéaire
pour une plus grande classe de grammaires en acceptant des résolutions de
longueurs non bornées dans certains cas ?

Une question assez proche est de déterminer s’il existe une méthode
d’analyse syntaxique pour les grammaires NU(≡) qui garantisse un trai-
tement en temps linéaire. C’est le cas pour une analyse basée sur l’analyse
d’Earley quand la grammaire est LR(Π) (Leo, 1991), mais la démonstration
ne tient pas dans le cas non canonique.

Détection d’ambigüıtés Plusieurs améliorations pratiques de notre pro-
cédure sont mentionnées dans la Section 6.3.4, mais nous répétons ici les deux
plus importantes :

1. passer à une construction de style NLALR(1) afin d’éviter l’explosion
du nombre d’états constatée avec les items LR(1), et

2. générer des exemples de phrases ambiguës, à partir desquelles des raf-
finements de l’automate de positions pourraient être construits sur les
portions concernées par les ambigüıtés.

Langages non canoniques Définissons un langage L(G) comme non ca-
nonique s’il existe une relation d’équivalence ≡ d’index fini sur les positions
de G telle que G soit NU(≡). Est-ce que la classe des langages non canoniques
inclut proprement la classe, par exemple, des langages SLR(1) réduits (Tai,
1979) ? Ou bien est-ce que la hiérarchie de classes de grammaires se réduit
à une seule classe de langages ?

Un point méritant une investigation est la comparaison avec les langages
Church-Rosser (McNaughton et al., 1988), qui sont caractérisés par des
machines formelles déterministes assez semblables au modèles à deux piles
que nous utilisons pour l’analyse non canonique : les automates mincissants



Synthèse en français 177

à deux piles (Niemann et Otto, 2005) et les automates à redémarrage
(Niemann et Otto, 1999). Il semble que la classe des langages non cano-
niques soit strictement incluse dans la classe des langages Church-Rosser.
Ceci permettrait d’établir que les langages palindromes, qui ne sont pas
Church-Rosser (Jurdziński et Loryś, 2007), sont effectivement hors de
portée de notre technique de détection d’ambigüıtés.

Approximations rationnelles La recherche de bonnes approximations
rationnelles est un domaine qui a sa propre importance. Le cadre théorique
des automates de position offre une abstraction simple pour les méthodes
de sur-approximation. L’appliquer à d’autres formalismes que les grammai-
res algébriques est intéressant. Dans ce thème de recherche, nos résultats
préliminaires sur l’approximation des langages XML devraient être appro-
fondis pour porter sur le cas général des langages d’arbres rationnels. Une
autre application possible serait d’approximer les formalismes employés en
traitement automatique des langues naturelles, ce qui permettrait de pro-
duire des super étiqueteurs symboliques (Boullier, 2003b; Bonfante et al.,
2004).



178 Synthèse en français



Bibliography

Aasa, A., 1995. Precedences in specifications and implementations of pro-
gramming languages. Theoretical Computer Science, 142(1):3–26. doi:
10.1016/0304-3975(95)90680-J. Cited on page 23.

AeroSpace and Defence Industries Association of Europe, 2005. ASD Sim-
plified Technical English. Specification ASD-STE100. Cited on page 125.

Aho, A.V. and Ullman, J.D., 1971. Translations on a context-free gram-
mar. Information and Control, 19(5):439–475. doi: 10.1016/S0019-
9958(71)90706-6. Cited on page 67.

Aho, A.V. and Ullman, J.D., 1972. The Theory of Parsing, Translation,
and Compiling. Volume I: Parsing. Series in Automatic Computation.
Prentice Hall. ISBN 0-13-914556-7. Cited on pages 13, 20, 21, 90, 117,
138, 146, 149.

Aho, A.V., Johnson, S.C., and Ullman, J.D., 1975. Deterministic parsing
of ambiguous grammars. Communications of the ACM, 18(8):441–452. doi:
10.1145/360933.360969. Cited on pages 2, 21, 150, 172.

Alur, R. and Madhusudan, P., 2006. Adding nesting structure to words.
In Dang, Z. and Ibarra, O.H., editors, DLT’06, 10th International Confer-
ence on Developments in Language Theory, volume 4036 of Lecture Notes
in Computer Science, pages 1–13. Springer. ISBN 3-540-35428-X. doi:
10.1007/11779148 1. Cited on page 67.

Alur, R., 2007. Marrying words and trees. In PODS’07, 26th ACM Sympo-
sium on Principles of Database Systems, pages 233–242. ACM Press. ISBN
978-1-59593-685-1. doi: 10.1145/1265530.1265564. Cited on page 67.

Anderson, T., 1972. Syntactic Analysis of LR(k) Languages. PhD thesis,
Department of Computing Science, University of Newcastle upon Tyne.
Cited on page 88.

http://dx.doi.org/10.1016/0304-3975(95)90680-J
http://dx.doi.org/10.1016/0304-3975(95)90680-J
http://dx.doi.org/10.1016/S0019-9958(71)90706-6
http://dx.doi.org/10.1016/S0019-9958(71)90706-6
http://dx.doi.org/10.1145/360933.360969
http://dx.doi.org/10.1145/360933.360969
http://dx.doi.org/10.1007/11779148_1
http://dx.doi.org/10.1007/11779148_1
http://dx.doi.org/10.1145/1265530.1265564


180 Bibliography

ANSI, 1983. Reference Manual for the Ada Programming Language
ANSI/MIL-STD-1815A-1983. Springer. URL http://www.adahome.com/

Resources/refs/83.html. Cited on page 155.

Aycock, J., 2001. Why bison is becoming extinct. ACM Crossroads, 7(5):
3–3. doi: 10.1145/969637.969640. Cited on pages 1, 171.

Aycock, J. and Horspool, R.N., 2001. Schrödinger’s token. Software: Prac-
tice & Experience, 31(8):803–814. doi: 10.1002/spe.390. Cited on page 40.

Backus, J.W., 1959. The syntax and semantics of the proposed interna-
tional algebraic language of the Zürich ACM-GAMM Conference. In IFIP
Congress, pages 125–131. Cited on page 8.

Bailes, P.A. and Chorvat, T., 1993. Facet grammars: Towards static seman-
tic analysis by context-free parsing. Computer Languages, 18(4):251–271.
doi: 10.1016/0096-0551(93)90019-W. Cited on page 15.

Baker, T.P., 1981. Extending lookahead for LR parsers. Journal
of Computer and System Sciences, 22(2):243–259. doi: 10.1016/0022-
0000(81)90030-1. Cited on pages 36, 143, 155.

Basten, H.J.S., 2007. Ambiguity detection methods for context-free gram-
mars. Master’s thesis, Centrum voor Wiskunde en Informatica, Universiteit
van Amsterdam. Cited on pages 154, 156.

Bermudez, M.E. and Logothetis, G., 1989. Simple computation of LALR(1)
lookahead sets. Information Processing Letters, 31(5):233–238. doi:
10.1016/0020-0190(89)90079-3. Cited on pages 111, 113.

Bermudez, M.E. and Schimpf, K.M., 1990. Practical arbitrary lookahead
LR parsing. Journal of Computer and System Sciences, 41(2):230–250. doi:
10.1016/0022-0000(90)90037-L. Cited on pages 36, 111, 117, 143, 151.

Bermudez, M.E., 1991. A unifying model for lookahead LR parsing.
Computer Languages, 16(2):167–178. doi: 10.1016/0096-0551(91)90005-T.
Cited on page 108.

Bertsch, E. and Nederhof, M.J., 2007. Some observations on LR-like parsing
with delayed reduction. Information Processing Letters, 104(6):195–199.
doi: 10.1016/j.ipl.2007.07.003. Cited on pages 12, 112.

Billot, S. and Lang, B., 1989. The structure of shared forests in ambiguous
parsing. In ACL’89, 27th Annual Meeting of the Association for Computa-
tional Linguistics, pages 143–151. ACL Press. doi: 10.3115/981623.981641.
Cited on page 44.

http://www.adahome.com/Resources/refs/83.html
http://www.adahome.com/Resources/refs/83.html
http://dx.doi.org/10.1145/969637.969640
http://dx.doi.org/10.1002/spe.390
http://dx.doi.org/10.1016/0096-0551(93)90019-W
http://dx.doi.org/10.1016/0022-0000(81)90030-1
http://dx.doi.org/10.1016/0022-0000(81)90030-1
http://dx.doi.org/10.1016/0020-0190(89)90079-3
http://dx.doi.org/10.1016/0020-0190(89)90079-3
http://dx.doi.org/10.1016/0022-0000(90)90037-L
http://dx.doi.org/10.1016/0022-0000(90)90037-L
http://dx.doi.org/10.1016/0096-0551(91)90005-T
http://dx.doi.org/10.1016/j.ipl.2007.07.003
http://dx.doi.org/10.3115/981623.981641


Bibliography 181

Birkhoff, G., 1940. Lattice Theory, volume 25 of American Mathemati-
cal Society Colloquium Publications. AMS Press, first edition. Cited on
page 62.

Birman, A. and Ullman, J.D., 1973. Parsing algorithms with backtrack.
Information and Control, 23(1):1–34. doi: 10.1016/S0019-9958(73)90851-6.
Cited on pages 15, 39.

Blasband, D., 2001. Parsing in a hostile world. In WCRE’01, 8th Work-
ing Conference on Reverse Engineering, pages 291–300. IEEE Computer
Society. doi: 10.1109/WCRE.2001.957834. Cited on pages 1, 171.

Bojańczyk, M. and Colcombet, T., 2005. Tree-walking automata do not
recognize all regular languages. In STOC’05, thirty-seventh Symposium on
Theory of Computing, pages 234–243. ACM Press. ISBN 1-58113-960-8.
doi: 10.1145/1060590.1060626. Cited on page 67.

Bonfante, G., Guillaume, B., and Perrier, G., 2004. Polarization and ab-
straction of grammatical formalisms as methods for lexical disambiguation.
In COLING’04, 20th International Conference on Computational Linguis-
tics, pages 303–309. ACL Press. doi: 10.3115/1220355.1220399. Cited on
pages 161, 177.

Boullier, P., 1984. Contribution à la construction automatique d’analyseurs
lexicographiques et syntaxiques. Thèse d’État, Université d’Orléans. Cited
on pages 36, 108, 117, 143, 155.

Boullier, P., 2003a. Guided Earley parsing. In IWPT’03, 8th International
Workshop on Parsing Technologies, pages 43–54. URL ftp://ftp.inria.

fr/INRIA/Projects/Atoll/Pierre.Boullier/earley final.pdf. Cited
on page 78.

Boullier, P., 2003b. Supertagging: A non-statistical parsing-based ap-
proach. In IWPT’03, 8th International Workshop on Parsing Technolo-
gies, pages 55–65. URL ftp://ftp.inria.fr/INRIA/Projects/Atoll/

Pierre.Boullier/supertaggeur final.pdf. Cited on pages 161, 177.

Bovet, J. and Parr, T.J., 2007. ANTLRWorks: An ANTLR grammar
development environment. Software: Practice & Experience. To appear.
Cited on pages 132, 157.

Brabrand, C., Giegerich, R., and Møller, A., 2007. Analyzing ambiguity
of context-free grammars. In Holub, J. and Žd’árek, J., editors, CIAA’07,
12th International Conference on Implementation and Application of Au-
tomata, volume 4783 of Lecture Notes in Computer Science, pages 214–225.
Springer. ISBN 978-3-540-76335-2. doi: 10.1007/978-3-540-76336-9 21.
Cited on pages 78, 125, 126, 131, 132, 142, 151, 156, 157.

http://dx.doi.org/10.1016/S0019-9958(73)90851-6
http://dx.doi.org/10.1109/WCRE.2001.957834
http://dx.doi.org/10.1145/1060590.1060626
http://dx.doi.org/10.3115/1220355.1220399
ftp://ftp.inria.fr/INRIA/Projects/Atoll/Pierre.Boullier/earley_final.pdf
ftp://ftp.inria.fr/INRIA/Projects/Atoll/Pierre.Boullier/earley_final.pdf
ftp://ftp.inria.fr/INRIA/Projects/Atoll/Pierre.Boullier/supertaggeur_final.pdf
ftp://ftp.inria.fr/INRIA/Projects/Atoll/Pierre.Boullier/supertaggeur_final.pdf
http://dx.doi.org/10.1007/978-3-540-76336-9_21


182 Bibliography

Breuer, P.T. and Bowen, J.P., 1995. A PREttier Compiler-Compiler: gen-
erating higher-order parsers in C. Software: Practice & Experience, 25(11):
1263–1297. doi: 10.1002/spe.4380251106. Cited on page 39.

Brooker, R.A. and Morris, D., 1960. An assembly program for a
phrase structure language. The Computer Journal, 3(3):168–174. doi:
10.1093/comjnl/3.3.168. Cited on page 39.

Cantor, D.G., 1962. On the ambiguity problem of Backus systems. Journal
of the ACM, 9(4):477–479. doi: 10.1145/321138.321145. Cited on pages 2,
9, 15, 21, 125, 172.

Caucal, D., 1990. Graphes canoniques de graphes algébriques. RAIRO
- Theoretical Informatics and Applications, 24(4):339–352. URL http:

//www.inria.fr/rrrt/rr-0872.html. Cited on page 158.

Charles, P., 1991. A Practical method for Constructing Efficient LALR(k)
Parsers with Automatic Error Recovery. PhD thesis, New York University.
URL http://jikes.sourceforge.net/documents/thesis.pdf. Cited on
page 24.

Cheung, B.S.N. and Uzgalis, R.C., 1995. Ambiguity in context-free gram-
mars. In SAC’95, Symposium on Applied Computing, pages 272–276. ACM
Press. ISBN 0-89791-658-1. doi: 10.1145/315891.315991. Cited on pages 4,
125, 126, 134, 174.

Chomsky, N., 1956. Three models for the description of lan-
guage. IEEE Transactions on Information Theory, 2(3):113–124. doi:
10.1109/TIT.1956.1056813. Cited on pages 6, 47.

Chomsky, N., 1959. On certain formal properties of grammars. Information
and Control, 2(2):137–167. doi: 10.1016/S0019-9958(59)90362-6. Cited on
page 7.

Chomsky, N., 1961. On the notion “rule of grammar”. In Jakobson, R.,
editor, Structure of Language and its Mathematical Aspects, volume XII of
Proceedings of Symposia in Applied Mathematics, pages 6–24. AMS. ISBN
0-8218-1312-9. Cited on page 48.

Chomsky, N., 1962. Context-free grammars and pushdown storage. Quar-
terly Progress Report 65, Research Laboratory of Electronics, M.I.T. Cited
on page 10.

Chomsky, N. and Schützenberger, M.P., 1963. The algebraic theory of
context-free languages. In Braffort, P. and Hirshberg, D., editors, Computer
Programming and Formal Systems, Studies in Logic, pages 118–161. North-
Holland Publishing. Cited on pages 2, 9, 15, 125, 172.

http://dx.doi.org/10.1002/spe.4380251106
http://dx.doi.org/10.1093/comjnl/3.3.168
http://dx.doi.org/10.1093/comjnl/3.3.168
http://dx.doi.org/10.1145/321138.321145
http://www.inria.fr/rrrt/rr-0872.html
http://www.inria.fr/rrrt/rr-0872.html
http://jikes.sourceforge.net/documents/thesis.pdf
http://dx.doi.org/10.1145/315891.315991
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1016/S0019-9958(59)90362-6


Bibliography 183

Cocke, J. and Schwartz, J.T., 1970. Programming languages and their com-
pilers. Courant Institute of Mathematical Sciences, New York University.
Cited on page 39.

Colmerauer, A., 1970. Total precedence relations. Journal of the ACM, 17
(1):14–30. doi: 10.1145/321556.321559. Cited on page 37.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,
D., Tison, S., and Tommasi, M., 2007. Tree Automata Techniques and
Applications. URL http://www.grappa.univ-lille3.fr/tata. Cited on
page 66.

Conway, M.E., 1963. Design of a separable transition-diagram compiler.
Communications of the ACM, 6(7):396–408. doi: 10.1145/366663.366704.
Cited on page 76.

Cousot, P. and Cousot, R., 1977. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In POPL’77, 4th Annual Symposium on Principles of Program-
ming Languages, pages 238–252. ACM Press. doi: 10.1145/512950.512973.
Cited on page 78.

Cousot, P. and Cousot, R., 2003. Parsing as abstract interpretation of
grammar semantics. Theoretical Computer Science, 290(1):531–544. doi:
10.1016/S0304-3975(02)00034-8. Cited on page 78.

Cousot, P. and Cousot, R., 2007. Grammar analysis and parsing by ab-
stract interpretation. In Reps, T., Sagiv, M., and Bauer, J., editors, Pro-
gram Analysis and Compilation, Theory and Practice: Essays Dedicated
to Reinhard Wilhelm on the Occasion of His 60th Birthday, volume 4444
of Lecture Notes in Computer Science, pages 178–203. Springer. ISBN
978-3-540-71315-9. doi: 10.1007/978-3-540-71322-7 9. Cited on page 78.

Čulik, K., 1968. Contribution to deterministic top-down analysis of
context-free languages. Kybernetika, 4(5):422–431. Cited on page 35.

Čulik, K. and Cohen, R., 1973. LR-Regular grammars—an extension of
LR(k) grammars. Journal of Computer and System Sciences, 7(1):66–96.
doi: 10.1016/S0022-0000(73)80050-9. Cited on pages 4, 35, 78, 111, 117,
126, 143, 151, 155, 175.

de Guzman, J., 2003. Spirit User’s Guide. URL http://spirit.

sourceforge.net/. Cited on pages 18, 39.

DeRemer, F. and Pennello, T., 1982. Efficient computation of LALR(1)
look-ahead sets. ACM Transactions on Programming Languages and Sys-

http://dx.doi.org/10.1145/321556.321559
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/366663.366704
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1016/S0304-3975(02)00034-8
http://dx.doi.org/10.1016/S0304-3975(02)00034-8
http://dx.doi.org/10.1007/978-3-540-71322-7_9
http://dx.doi.org/10.1016/S0022-0000(73)80050-9
http://spirit.sourceforge.net/
http://spirit.sourceforge.net/


184 Bibliography

tems, 4(4):615–649. doi: 10.1145/69622.357187. Cited on pages 82, 88,
98.

DeRemer, F.L., 1969. Practical Translators for LR(k) Languages.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts. URL http://www.lcs.mit.edu/publications/pubs/pdf/

MIT-LCS-TR-065.pdf. Cited on pages 18, 88.

DeRemer, F.L., 1971. Simple LR(k) grammars. Communications of the
ACM, 14(7):453–460. doi: 10.1145/362619.362625. Cited on page 18.

Dijkstra, E.W., 1972. The humble programmer. Communications of the
ACM, 15(10):859–866. doi: 10.1145/355604.361591. ACM Turing Award
Lecture. Cited on pages 2, 172.

Dodd, C. and Maslov, V., 2006. BTYACC – backtracking YACC. Siber
Systems. URL http://www.siber.com/btyacc/. Cited on page 39.

Donnely, C. and Stallman, R., 2006. Bison version 2.3. URL http://www.

gnu.org/software/bison/manual/. Cited on pages 1, 20, 32, 40, 44, 45,
126, 171.

Earley, J., 1970. An efficient context-free parsing algorithm. Communi-
cations of the ACM, 13(2):94–102. doi: 10.1145/362007.362035. Cited on
pages 39, 40, 81, 167.

Earley, J., 1975. Ambiguity and precedence in syntax description. Acta
Informatica, 4(2):183–192. doi: 10.1007/BF00288747. Cited on page 21.

Even, S., 1965. On information lossless automata of finite order.
IEEE Transactions on Electronic Computers, EC-14(4):561–569. doi:
10.1109/PGEC.1965.263996. Cited on page 127.

Farré, J. and Fortes Gálvez, J., 2001. A bounded-connect construction
for LR-Regular parsers. In Wilhelm, R., editor, CC’01, 10th International
Conference on Compiler Construction, volume 2027 of Lecture Notes in
Computer Science, pages 244–258. Springer. URL http://springerlink.

com/content/e3e8g77kxevkyjfd. Cited on pages 36, 76, 117, 143.

Farré, J. and Fortes Gálvez, J., 2004. Bounded-connect noncanonical
discriminating-reverse parsers. Theoretical Computer Science, 313(1):73–
91. doi: 10.1016/j.tcs.2003.10.006. Cited on pages 38, 115.

Fischer, C.N., 1975. On Parsing Context Free Languages in Parallel En-
vironments. PhD thesis, Department of Computer Science, Cornell Uni-
versity, Ithaca, New York. URL http://historical.ncstrl.org/tr/ps/

cornellcs/TR75-237.ps. Cited on page 38.

http://dx.doi.org/10.1145/69622.357187
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-065.pdf
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-065.pdf
http://dx.doi.org/10.1145/362619.362625
http://dx.doi.org/10.1145/355604.361591
http://www.siber.com/btyacc/
http://www.gnu.org/software/bison/manual/
http://www.gnu.org/software/bison/manual/
http://dx.doi.org/10.1145/362007.362035
http://dx.doi.org/10.1007/BF00288747
http://dx.doi.org/10.1109/PGEC.1965.263996
http://dx.doi.org/10.1109/PGEC.1965.263996
http://springerlink.com/content/e3e8g77kxevkyjfd
http://springerlink.com/content/e3e8g77kxevkyjfd
http://dx.doi.org/10.1016/j.tcs.2003.10.006
http://historical.ncstrl.org/tr/ps/cornellcs/TR75-237.ps
http://historical.ncstrl.org/tr/ps/cornellcs/TR75-237.ps


Bibliography 185

Floyd, R.W., 1962a. On ambiguity in phrase structure languages. Com-
munications of the ACM, 5(10):526. doi: 10.1145/368959.368993. Cited on
pages 2, 9, 15, 125, 172.

Floyd, R.W., 1962b. On the nonexistence of a phrase structure gram-
mar for ALGOL 60. Communications of the ACM, 5(9):483–484. doi:
10.1145/368834.368898. Cited on page 14.

Floyd, R.W., 1963. Syntactic analysis and operator precedence. Journal of
the ACM, 10(3):316–333. doi: 10.1145/321172.321179. Cited on page 20.

Floyd, R.W., 1964. Bounded context syntactic analysis. Communications
of the ACM, 7(2):62–67. doi: 10.1145/363921.363927. Cited on page 20.

Ford, B., 2002. Packrat parsing: simple, powerful, lazy, linear time. In
ICFP’02, 7th International Conference on Functional Programming, pages
36–47. ACM Press. ISBN 1-58113-487-8. doi: 10.1145/581478.581483.
Cited on pages 15, 39.

Ford, B., 2004. Parsing expression grammars: a recognition-based syntactic
foundation. In POPL’04, 31st Annual Symposium on Principles of Pro-
gramming Languages, pages 111–122. ACM Press. ISBN 1-58113-729-X.
doi: 10.1145/964001.964011. Cited on page 15.

Fortes Gálvez, J., 1998. A Discriminating Reverse Approach to LR(k)
Parsing. PhD thesis, Universidad de Las Palmas de Gran Canaria and
Université de Nice-Sophia Antipolis. Cited on page 20.

Fortes Gálvez, J., Schmitz, S., and Farré, J., 2006. Shift-resolve pars-
ing: Simple, linear time, unbounded lookahead. In Ibarra, O.H. and
Yen, H.C., editors, CIAA’06, 11th International Conference on Imple-
mentation and Application of Automata, volume 4094 of Lecture Notes
in Computer Science, pages 253–264. Springer. ISBN 3-540-37213-X. doi:
10.1007/11812128 24. Cited on page ix.

Ganapathi, M., 1989. Semantic predicates in parser generators. Com-
puter Languages, 14(1):25–33. doi: 10.1016/0096-0551(89)90028-3. Cited
on page 34.

Geller, M.M. and Harrison, M.A., 1977a. Characteristic parsing: A frame-
work for producing compact deterministic parsers, I. Journal of Computer
and System Sciences, 14(3):265–317. doi: 10.1016/S0022-0000(77)80017-2.
Cited on page 85.

Geller, M.M. and Harrison, M.A., 1977b. Characteristic parsing: A frame-
work for producing compact deterministic parsers, II. Journal of Computer

http://dx.doi.org/10.1145/368959.368993
http://dx.doi.org/10.1145/368834.368898
http://dx.doi.org/10.1145/368834.368898
http://dx.doi.org/10.1145/321172.321179
http://dx.doi.org/10.1145/363921.363927
http://dx.doi.org/10.1145/581478.581483
http://dx.doi.org/10.1145/964001.964011
http://dx.doi.org/10.1007/11812128_24
http://dx.doi.org/10.1007/11812128_24
http://dx.doi.org/10.1016/0096-0551(89)90028-3
http://dx.doi.org/10.1016/S0022-0000(77)80017-2


186 Bibliography

and System Sciences, 14(3):318–343. doi: 10.1016/S0022-0000(77)80018-4.
Cited on pages 85, 86, 88.

Ginsburg, S. and Rice, H.G., 1962. Two families of languages related to
ALGOL. Journal of the ACM, 9(3):350–371. doi: 10.1145/321127.321132.
Cited on page 8.

Ginsburg, S. and Greibach, S., 1966. Deterministic context-free lan-
guages. Information and Control, 9(6):620–648. doi: 10.1016/S0019-
9958(66)80019-0. Cited on page 16.

Ginsburg, S. and Ullian, J., 1966. Ambiguity in context free languages.
Journal of the ACM, 13(1):62–89. doi: 10.1145/321312.321318. Cited on
page 125.

Ginsburg, S. and Harrison, M.A., 1967. Bracketed context-free languages.
Journal of Computer and System Sciences, 1:1–23. doi: 10.1016/S0022-
0000(67)80003-5. Cited on pages 48, 50.

Gorn, S., 1963. Detection of generative ambiguities in context-free
mechanical languages. Journal of the ACM, 10(2):196–208. doi:
10.1145/321160.321168. Cited on pages 4, 76, 126, 134, 174.

Gosling, J., Joy, B., and Steele, G., 1996. The JavaTM Language Spec-
ification. Addison-Wesley, first edition. ISBN 0-201-63451-1. URL
http://java.sun.com/docs/books/jls/. Cited on pages 3, 13, 26, 28,
34, 112, 155, 173.

Graham, S.L., 1974. On bounded right context languages and grammars.
SIAM Journal on Computing, 3(3):224–254. doi: 10.1137/0203019. Cited
on page 20.

Graham, S.L., Harrison, M., and Ruzzo, W.L., 1980. An improved context-
free recognizer. ACM Transactions on Programming Languages and Sys-
tems, 2(3):415–462. doi: 10.1145/357103.357112. Cited on page 39.

Grätzer, G., 1978. General Lattice Theory, volume 52 of Lehrbücher und
Monographien aus dem Gebiete der exakten Wissenschaften: Mathematis-
che Reihe. Birkhäuser. ISBN 3-7643-0813-3. Cited on page 58.

Griffiths, T.V. and Petrick, S.R., 1965. On the relative efficiencies of
context-free grammar recognizers. Communications of the ACM, 8(5):289–
300. doi: 10.1145/364914.364943. Cited on page 37.

Grimm, R., 2006. Better extensibility through modular syntax. In PLDI’06,
Conference on Programming Language Design and Implementation, pages
38–51. ACM Press. ISBN 1-59593-320-4. doi: 10.1145/1133981.1133987.
Cited on page 15.

http://dx.doi.org/10.1016/S0022-0000(77)80018-4
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1016/S0019-9958(66)80019-0
http://dx.doi.org/10.1016/S0019-9958(66)80019-0
http://dx.doi.org/10.1145/321312.321318
http://dx.doi.org/10.1016/S0022-0000(67)80003-5
http://dx.doi.org/10.1016/S0022-0000(67)80003-5
http://dx.doi.org/10.1145/321160.321168
http://dx.doi.org/10.1145/321160.321168
http://java.sun.com/docs/books/jls/
http://dx.doi.org/10.1137/0203019
http://dx.doi.org/10.1145/357103.357112
http://dx.doi.org/10.1145/364914.364943
http://dx.doi.org/10.1145/1133981.1133987


Bibliography 187

Grosch, J., 2002. Lark – an LALR(2) parser generator with backtrack-
ing. Document No. 32, CoCoLab - Datenverarbeitung. URL ftp://www.

cocolab.com/products/cocktail/doc.pdf/lark.pdf. Cited on page 39.

Grune, D. and Jacobs, C.J.H., 2007. Parsing Techniques. Monographs in
Computer Science. Springer, second edition. ISBN 0-387-20248-X. Cited
on pages 13, 56.

Harrison, M.A. and Havel, I.M., 1973. Strict deterministic grammars. Jour-
nal of Computer and System Sciences, 7(3):237–277. doi: 10.1016/S0022-
0000(73)80008-X. Cited on pages 4, 86, 174.

Harrison, M.A., 1978. Introduction to Formal Language Theory. Series in
Computer Science. Addison-Wesley. ISBN 0-201-02955-3. Cited on pages 5,
163.

Heering, J., Hendriks, P.R.H., Klint, P., and Rekers, J., 1989. The syntax
definition formalism SDF–Reference Manual—. ACM SIGPLAN Notices,
24(11):43–75. doi: 10.1145/71605.71607. Cited on pages 1, 40, 171.

Heilbrunner, S., 1981. A parsing automata approach to LR theory. Theoret-
ical Computer Science, 15(2):117–157. doi: 10.1016/0304-3975(81)90067-0.
Cited on pages 60, 79, 117.

Heilbrunner, S., 1983. Tests for the LR-, LL-, and LC-Regular conditions.
Journal of Computer and System Sciences, 27(1):1–13. doi: 10.1016/0022-
0000(83)90026-0. Cited on pages 4, 79, 133, 143, 175.

Hopcroft, J.E. and Ullman, J.D., 1979. Introduction to Automata Theory,
Languages, and Computation. Series in Computer Science. Addison-Wesley.
ISBN 0-201-02988-X. Cited on pages 5, 163.

Hunt III, H.B., Szymanski, T.G., and Ullman, J.D., 1974. Operations on
sparse relations and efficient algorithms for grammar problems. In 15th
Annual Symposium on Switching and Automata Theory, pages 127–132.
IEEE Computer Society. Cited on pages 54, 56, 79, 143.

Hunt III, H.B., Szymanski, T.G., and Ullman, J.D., 1975. On the complex-
ity of LR(k) testing. Communications of the ACM, 18(12):707–716. doi:
10.1145/361227.361232. Cited on pages 54, 143.

Hunt III, H.B., 1982. On the decidability of grammar problems. Journal of
the ACM, 29(2):429–447. doi: 10.1145/322307.322317. Cited on page 35.

IBM Corporation, 1993. VS COBOL II Application Programming Language
Reference, 4 edition. Document number GC26-4047-07. Cited on page 23.

ftp://www.cocolab.com/products/cocktail/doc.pdf/lark.pdf
ftp://www.cocolab.com/products/cocktail/doc.pdf/lark.pdf
http://dx.doi.org/10.1016/S0022-0000(73)80008-X
http://dx.doi.org/10.1016/S0022-0000(73)80008-X
http://dx.doi.org/10.1145/71605.71607
http://dx.doi.org/10.1016/0304-3975(81)90067-0
http://dx.doi.org/10.1016/0022-0000(83)90026-0
http://dx.doi.org/10.1016/0022-0000(83)90026-0
http://dx.doi.org/10.1145/361227.361232
http://dx.doi.org/10.1145/361227.361232
http://dx.doi.org/10.1145/322307.322317


188 Bibliography

Ichbiah, J.D. and Morse, S.P., 1970. A technique for generating almost
optimal Floyd-Evans productions for precedence grammars. Communica-
tions of the ACM, 13(8):501–508. doi: 10.1145/362705.362712. Cited on
page 20.

Irons, E.T., 1961. A syntax directed compiler for ALGOL 60. Commu-
nications of the ACM, 4(1):51–55. doi: 10.1145/366062.366083. Cited on
page 39.

ISO, 1998. ISO/IEC 14882:1998: Programming Languages — C++. In-
ternational Organization for Standardization, Geneva, Switzerland. Cited
on pages 3, 29, 155, 173.

ISO, 2003. ISO/IEC 9075-*:2003: Database Languages — SQL. Inter-
national Organization for Standardization, Geneva, Switzerland. Cited on
page 13.

Jampana, S., 2005. Exploring the problem of ambiguity in context-free
grammars. Master’s thesis, Oklahoma State University. URL http://

e-archive.library.okstate.edu/dissertations/AAI1427836/. Cited
on pages 4, 126, 134, 174.

Jarzabek, S. and Krawczyk, T., 1975. LL-Regular grammars. Information
Processing Letters, 4(2):31–37. doi: 10.1016/0020-0190(75)90009-5. Cited
on pages 35, 132.

Johnson, S.C., 1975. YACC — yet another compiler compiler. Computing
science technical report 32, AT&T Bell Laboratories, Murray Hill, New
Jersey. Cited on pages 1, 13, 19, 21, 81, 171.

Johnstone, A. and Scott, E., 1998. Generalised recursive descent parsing
and follow-determinism. In Koskimies, K., editor, CC’98, 7th International
Conference on Compiler Construction, volume 1383 of Lecture Notes in
Computer Science, pages 16–30. Springer. ISBN 978-3-540-64304-3. doi:
10.1007/BFb0026420. Cited on page 39.

Jurdziński, T. and Loryś, K., 2007. Lower bound technique for length-
reducing automata. Information and Computation, 205(9):1387–1412. doi:
10.1016/j.ic.2007.02.003. Cited on pages 161, 177.

Kahrs, S., 1993. Mistakes and ambiguities in the definition of Standard
ML. Technical Report ECS-LFCS-93-257, University of Edinburgh, LFCS.
URL http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-257/.
Cited on pages 28, 29, 31.

http://dx.doi.org/10.1145/362705.362712
http://dx.doi.org/10.1145/366062.366083
http://e-archive.library.okstate.edu/dissertations/AAI1427836/
http://e-archive.library.okstate.edu/dissertations/AAI1427836/
http://dx.doi.org/10.1016/0020-0190(75)90009-5
http://dx.doi.org/10.1007/BFb0026420
http://dx.doi.org/10.1007/BFb0026420
http://dx.doi.org/10.1016/j.ic.2007.02.003
http://dx.doi.org/10.1016/j.ic.2007.02.003
http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-257/


Bibliography 189

Kamimura, T. and Slutzki, G., 1981. Parallel and two-way automata on
directed ordered acyclic graphs. Information and Control, 49(1):10–51. doi:
10.1016/S0019-9958(81)90438-1. Cited on page 67.

Kannapinn, S., 2001. Reconstructing LR Theory to Eliminate Redundance,
with an Application to the Construction of ELR Parsers. PhD thesis,
Technical University of Berlin, Department of Computer Sciences. URL
http://edocs.tu-berlin.de/diss/2001/kannapinn soenke.htm. Cited
on page 20.

Kasami, T., 1965. An efficient recognition and syntax analysis algorithm for
context free languages. Scientific Report AF CRL-65-758, Air Force Cam-
bridge Research Laboratory, Bedford, Massachussetts. Cited on page 39.

Kay, M., 1980. Algorithm schemata and data structures in syntactic pro-
cessing. Technical Report CSL-80-12, Xerox Palo Alto Research Center.
Cited on page 39.

Kernighan, B.W. and Ritchie, D.M., 1988. The C Programming Language.
Prentice-Hall. ISBN 0-13-110362-8. Cited on pages 13, 23, 112, 152.

Klint, P. and Visser, E., 1994. Using filters for the disambiguation of
context-free grammars. In Pighizzini, G. and San Pietro, P., editors, AS-
MICS Workshop on Parsing Theory, Technical Report 126-1994, pages
89–100. Università di Milano. URL http://citeseer.ist.psu.edu/

klint94using.html. Cited on pages 2, 23, 44, 172.

Klint, P., Lämmel, R., and Verhoef, C., 2005. Toward an engineering
discipline for grammarware. ACM Transactions on Software Engineering
and Methodology, 14(3):331–380. doi: 10.1145/1072997.1073000. Cited on
pages 1, 171.

Knuth, D.E., 1965. On the translation of languages from left to right. In-
formation and Control, 8(6):607–639. doi: 10.1016/S0019-9958(65)90426-2.
Cited on pages 4, 17, 37, 51, 79, 82, 136, 143, 174.

Knuth, D.E., 1967. A characterization of parenthesis languages. Infor-
mation and Control, 11(3):269–289. doi: 10.1016/S0019-9958(67)90564-5.
Cited on page 67.

Knuth, D.E., 1968. Semantics of context-free languages. Theory of Com-
puting Systems, 2(2):127–145. doi: 10.1007/BF01692511. Cited on page 14.

Koster, C.H.A., 1971. Affix grammars. In Peck, J.E.L., editor, ALGOL 68
Implementation, pages 95–109. North-Holland. ISBN 0-7204-2045-8. Cited
on page 14.

http://dx.doi.org/10.1016/S0019-9958(81)90438-1
http://dx.doi.org/10.1016/S0019-9958(81)90438-1
http://edocs.tu-berlin.de/diss/2001/kannapinn_soenke.htm
http://citeseer.ist.psu.edu/klint94using.html
http://citeseer.ist.psu.edu/klint94using.html
http://dx.doi.org/10.1145/1072997.1073000
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://dx.doi.org/10.1016/S0019-9958(67)90564-5
http://dx.doi.org/10.1007/BF01692511


190 Bibliography

Kristensen, B.B. and Madsen, O.L., 1981. Methods for computing
LALR(k) lookahead. ACM Transactions on Programming Languages and
Systems, 3(1):60–82. doi: 10.1145/357121.357126. Cited on page 88.

Kron, H.H., Hoffmann, H.J., and Winkler, G., 1974. On a SLR(k)-based
parser system which accepts non-LR(k) grammars. In Siefkes, D., editor, 4
Jahrestagung der Gesellschaft für Informatik, volume 26 of Lecture Notes
in Computer Science, pages 214–223. Springer. ISBN 978-3-540-07141-9.
doi: 10.1007/3-540-07141-5 224. Cited on page 36.

Kuich, W., 1970. Systems of pushdown acceptors and context-free gram-
mars. Elektronische Informationsverarbeitung und Kybernetik, 6(2):95–114.
Cited on pages 78, 79.

Kuno, S., 1965. The predictive analyzer and a path elimination technique.
Communications of the ACM, 8(7):453–462. doi: 10.1145/364995.365689.
Cited on page 39.

Kurki-Suonio, R., 1969. Notes on top-down languages. BIT Numerical
Mathematics, 9(3):225–238. doi: 10.1007/BF01946814. Cited on page 18.

Lämmel, R. and Verhoef, C., 2001. Semi-automatic grammar recovery.
Software: Practice & Experience, 31:1395–1438. doi: 10.1002/spe.423.
Cited on pages 23, 157.

Lamport, L., 1994. LATEX: A Document Preparation System. Addison-
Wesley, second edition. ISBN 0-201-52983-1. Cited on page 13.

Lang, B., 1974. Deterministic techniques for efficient non-deterministic
parsers. In Loeckx, J., editor, ICALP’74, 2nd International Colloquium
on Automata, Languages and Programming, volume 14 of Lecture Notes
in Computer Science, pages 255–269. Springer. ISBN 3-540-06841-4. doi:
10.1007/3-540-06841-4 65. Cited on pages 39, 40.

Lee, P., 1997. Using the SML/NJ System. Carnegie Mellon University.
URL http://www.cs.cmu.edu/∼petel/smlguide/smlnj.htm. Cited on
page 32.

Leermakers, R., 1992. Recursive ascent parsing: from Earley to Mar-
cus. Theoretical Computer Science, 104(2):299–312. doi: 10.1016/0304-
3975(92)90127-2. Cited on page 12.

Leijen, D. and Meijer, E., 2001. Parsec: Direct style monadic parser com-
binators for the real world. Technical Report UU-CS-2001-27, Department
of Computer Science, Universiteit Utrecht. URL http://www.cs.uu.nl/
∼daan/parsec.html. Cited on pages 18, 39.

http://dx.doi.org/10.1145/357121.357126
http://dx.doi.org/10.1007/3-540-07141-5_224
http://dx.doi.org/10.1145/364995.365689
http://dx.doi.org/10.1007/BF01946814
http://dx.doi.org/10.1002/spe.423
http://dx.doi.org/10.1007/3-540-06841-4_65
http://dx.doi.org/10.1007/3-540-06841-4_65
http://www.cs.cmu.edu/~petel/smlguide/smlnj.htm
http://dx.doi.org/10.1016/0304-3975(92)90127-2
http://dx.doi.org/10.1016/0304-3975(92)90127-2
http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.uu.nl/~daan/parsec.html


Bibliography 191

Leo, J.M.I.M., 1991. A general context-free parsing algorithm running in
linear time on every LR(k) grammar without using lookahead. Theoreti-
cal Computer Science, 82(1):165–176. doi: 10.1016/0304-3975(91)90180-A.
Cited on pages 160, 176.

Lewis II, P.M. and Stearns, R.E., 1968. Syntax-directed transduction.
Journal of the ACM, 15(3):465–488. doi: 10.1145/321466.321477. Cited
on page 18.

Lewis II, P.M., Rosenkrantz, D.J., and Stearns, R.E., 1974. Attributed
translations. Journal of Computer and System Sciences, 9(3):279–307. doi:
10.1016/S0022-0000(74)80045-0. Cited on page 18.

Makarov, V., 1999. MSTA (syntax description translator). URL http:

//cocom.sourceforge.net/msta.html. Cited on page 154.

Marcus, M.P., 1980. A Theory of Syntactic Recognition for Natural Lan-
guage. Series in Artificial Intelligence. MIT Press. ISBN 0-262-13149-8.
Cited on page 12.

Marcus, M.P., Marcinkiewicz, M.A., and Santorini, B., 1993. Building a
large annotated corpus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330. URL http://www.aclweb.org/anthology/

J93-2004. Cited on page 43.

McKeeman, W.M., Horning, J.J., and Wortman, D.B., 1970. A Compiler
Generator. Series in Automatic Computation. Prenctice-Hall. ISBN 13-
155077-2. Cited on page 20.

McNaughton, R., 1967. Parenthesis grammars. Journal of the ACM, 14
(3):490–500. doi: 10.1145/321406.321411. Cited on page 50.

McNaughton, R., Narendran, P., and Otto, F., 1988. Church-Rosser Thue
systems and formal languages. Journal of the ACM, 35(2):324–344. doi:
10.1145/42282.42284. Cited on pages 160, 176.

McPeak, S. and Necula, G.C., 2004. Elkhound: A fast, practical GLR
parser generator. In Duesterwald, E., editor, CC’04, 13th International
Conference on Compiler Construction, volume 2985 of Lecture Notes in
Computer Science, pages 73–88. Springer. ISBN 3-540-21297-3. doi:
10.1007/b95956. Cited on pages 1, 2, 31, 40, 44, 45, 151, 153, 171, 172.

Megacz, A., 2006. Scannerless boolean parsing. In Boyland, J. and Sloane,
A., editors, LDTA’06, 6th Workshop on Language Descriptions, Tools and
Applications, volume 164(2) of Electronic Notes in Theoretical Computer
Science, pages 97–102. Elsevier. doi: 10.1016/j.entcs.2006.10.007. Cited on
page 15.

http://dx.doi.org/10.1016/0304-3975(91)90180-A
http://dx.doi.org/10.1145/321466.321477
http://dx.doi.org/10.1016/S0022-0000(74)80045-0
http://dx.doi.org/10.1016/S0022-0000(74)80045-0
http://cocom.sourceforge.net/msta.html
http://cocom.sourceforge.net/msta.html
http://www.aclweb.org/anthology/J93-2004
http://www.aclweb.org/anthology/J93-2004
http://dx.doi.org/10.1145/321406.321411
http://dx.doi.org/10.1145/42282.42284
http://dx.doi.org/10.1145/42282.42284
http://dx.doi.org/10.1007/b95956
http://dx.doi.org/10.1007/b95956
http://dx.doi.org/10.1016/j.entcs.2006.10.007


192 Bibliography

Mickunas, M.D., Lancaster, R.L., and Schneider, V.B., 1976. Trans-
forming LR(k) grammars to LR(1), SLR(1), and (1,1) Bounded Right-
Context grammars. Journal of the ACM, 23(3):511–533. doi:
10.1145/321958.321972. Cited on page 24.

Milner, R., Tofte, M., Harper, R., and MacQueen, D., 1997. The definition
of Standard ML. MIT Press, revised edition. ISBN 0-262-63181-4. Cited
on pages 3, 13, 28, 153, 173.

Mohri, M. and Nederhof, M.J., 2001. Regular approximations of context-
free grammars through transformation. In Junqua, J.C. and van Noord,
G., editors, Robustness in Language and Speech Technology, volume 17 of
Text, Speech and Language Technology, chapter 9, pages 153–163. Kluwer
Academic Publishers. ISBN 0-7923-6790-1. URL http://citeseer.ist.

psu.edu/mohri00regular.html. Cited on pages 78, 131.

Moore, R.C., 2004. Improved left-corner chart parsing for large context-free
grammars. In New Developments in Parsing Technology, pages 185–201.
Springer. ISBN 1-4020-2293-X. doi: 10.1007/1-4020-2295-6 9. Cited on
pages 40, 43.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K., 2005. Taxonomy
of XML schema languages using formal language theory. ACM Transac-
tions on Internet Technology, 5(4):660–704. doi: 10.1145/1111627.1111631.
Cited on pages 48, 67.

Naur, P., editor, 1960. Report on the algorithmic language ALGOL 60.
Communications of the ACM, 3(5):299–314. doi: 10.1145/367236.367262.
Cited on pages 8, 21.

Nederhof, M.J., 1993. Generalized left-corner parsing. In EACL’93,
6th conference of the European chapter of the Association for Computa-
tional Linguistics, pages 305–314. ACL Press. ISBN 90-5434-014-2. doi:
10.3115/976744.976780. Cited on page 40.

Nederhof, M.J., 1998. Context-free parsing through regular approximation.
In FSMNLP’98, 2nd International Workshop on Finite State Methods in
Natural Language Processing, pages 13–24. URL http://www.aclweb.

org/anthology/W98/W98-1302.pdf. Cited on page 78.

Nederhof, M.J., 2000a. Practical experiments with regular approximation
of context-free languages. Computational Linguistics, 26(1):17–44. doi:
10.1162/089120100561610. Cited on page 78.

Nederhof, M.J., 2000b. Regular approximation of CFLs: a grammatical
view. In Bunt, H. and Nijholt, A., editors, Advances in Probabilistic and

http://dx.doi.org/10.1145/321958.321972
http://dx.doi.org/10.1145/321958.321972
http://citeseer.ist.psu.edu/mohri00regular.html
http://citeseer.ist.psu.edu/mohri00regular.html
http://dx.doi.org/10.1007/1-4020-2295-6_9
http://dx.doi.org/10.1145/1111627.1111631
http://dx.doi.org/10.1145/367236.367262
http://dx.doi.org/10.3115/976744.976780
http://dx.doi.org/10.3115/976744.976780
http://www.aclweb.org/anthology/W98/W98-1302.pdf
http://www.aclweb.org/anthology/W98/W98-1302.pdf
http://dx.doi.org/10.1162/089120100561610
http://dx.doi.org/10.1162/089120100561610


Bibliography 193

other Parsing Technologies, volume 16 of Text, Speech and Language Tech-
nology, chapter 12, pages 221–241. Kluwer Academic Publishers. ISBN 0-
7923-6616-6. URL http://odur.let.rug.nl/∼markjan/publications/

2000d.pdf. Cited on page 78.

Nederhof, M.J. and Satta, G., 2004. Tabular parsing. In Mart́ın-Vide, C.,
Mitrana, V., and Păun, G., editors, Formal Languages and Applications,
volume 148 of Studies in Fuzziness and Soft Computing, pages 529–549.
Springer. ISBN 3-540-20907-7. arXiv:cs.CL/0404009. Cited on page 40.

Neven, F., 2002. Automata theory for XML researchers. SIGMOD Record,
31(3):39–46. doi: 10.1145/601858.601869. Cited on page 48.

Niemann, G. and Otto, F., 1999. Restarting automata, Church-Rosser lan-
guages, and representations of r.e. languages. In DLT’99, 4th International
Conference on Developments in Language Theory, pages 103–114. World
Scientific. ISBN 981-02-4380-4. Cited on pages 160, 177.

Niemann, G. and Otto, F., 2005. The Church-Rosser languages are the
deterministic variants of the growing context-sensitive languages. Informa-
tion and Control, 197(1–2):1–21. doi: 10.1016/j.ic.2004.09.003. Cited on
pages 160, 177.

Nijholt, A., 1976. On the parsing of LL-Regular grammars. In
Mazurkiewicz, A., editor, MFCS’76, 5th International Symposium on
Mathematical Foundations of Computer Science, volume 45 of Lecture
Notes in Computer Science, pages 446–452. Springer. ISBN 3-540-07854-1.
doi: 10.1007/3-540-07854-1 213. Cited on pages 35, 132.

Nozohoor-Farshi, R., 1986. On formalizations of Marcus’ parser. In
COLING’86, 11th International Conference on Computational Linguistics,
pages 533–535. ACL Press. doi: 10.3115/991365.991520. Cited on page 12.

Nozohoor-Farshi, R., 1987. Context-freeness of the language accepted
by Marcus’ parser. In ACL’87, 25th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 117–122. ACL Press. doi:
10.3115/981175.981192. Cited on page 12.

Okhotin, A., 2004. A boolean grammar for a simple programming
language. Technical Report 2004-478, Queen’s University, Kingston,
Ontario, Canada. URL http://www.cs.queensu.ca/TechReports/

Reports/2004-478.pdf. Also in AFL’05. Cited on page 15.

Ore, O., 1942. Theory of equivalence relations. Duke Mathematical Journal,
9(3):573–627. doi: 10.1215/S0012-7094-42-00942-6. Cited on page 58.

http://odur.let.rug.nl/~markjan/publications/2000d.pdf
http://odur.let.rug.nl/~markjan/publications/2000d.pdf
http://arxiv.org/abs/cs.CL/0404009
http://dx.doi.org/10.1145/601858.601869
http://dx.doi.org/10.1016/j.ic.2004.09.003
http://dx.doi.org/10.1007/3-540-07854-1_213
http://dx.doi.org/10.3115/991365.991520
http://dx.doi.org/10.3115/981175.981192
http://dx.doi.org/10.3115/981175.981192
http://www.cs.queensu.ca/TechReports/Reports/2004-478.pdf
http://www.cs.queensu.ca/TechReports/Reports/2004-478.pdf
http://dx.doi.org/10.1215/S0012-7094-42-00942-6


194 Bibliography

Ore, O., 1944. Galois connexions. Transactions of the American Mathe-
matical Society, 55(3):493–513. doi: 10.2307/1990305. Cited on page 62.

Overbey, J., 2006. Practical, incremental, noncanonical parsing: Celen-
tano’s method and the Generalized Piecewise LR parsing algorithm. Mas-
ter’s thesis, Department of Computer Science, University of Illinois. URL
http://jeff.over.bz/papers/2006/ms-thesis.pdf. Cited on pages 38,
114.

Pager, D., 1977. A practical general method for constructing LR(k) parsers.
Acta Informatica, 7(3):249–268. doi: 10.1007/BF00290336. Cited on
page 20.

Parr, T.J. and Quong, R.W., 1995. ANTLR: A predicated-LL(k)
parser generator. Software: Practice & Experience, 25(7):789–810. doi:
10.1002/spe.4380250705. Cited on page 34.

Parr, T.J. and Quong, R.W., 1996. LL and LR translators need k > 1 looka-
head. ACM SIGPLAN Notices, 31(2):27–34. doi: 10.1145/226060.226066.
Cited on pages 1, 23, 171.

Parr, T.J., 2007. The Definitive ANTLR Reference: Building Domain-
Specific Languages. The Pragmatic Programmers. ISBN 0-9787392-5-6.
Cited on pages 23, 36, 39.

Pereira, F.C.N. and Warren, D.H.D., 1983. Parsing as deduction. In
ACL’83, 21st Annual Meeting of the Association for Computational Lin-
guistics, pages 137–144. ACL Press. doi: 10.3115/981311.981338. Cited on
pages 39, 167.

Peyton Jones, S., editor, 2003. Haskell 98 Language and Libraries:
The Revised Report. Cambridge University Press. ISBN 0-521-82614-4.
URL http://haskell.org/definition/haskell98-report.pdf. Also in
Journal of Functional Programming, 13(1). Cited on page 23.

Poplawski, D.A., 1979. On LL-Regular grammars. Journal of Computer
and System Sciences, 18(3):218–227. doi: 10.1016/0022-0000(79)90031-X.
Cited on pages 35, 132.

Pritchett, B.L., 1992. Grammatical Competence and Parsing Performance.
The University of Chicago Press. ISBN 0-226-68441-5. Cited on page 12.

Purdom, P., 1974. The size of LALR(1) parsers. BIT Numerical Math-
ematics, 14(3):326–337. doi: 10.1007/BF01933232. Cited on pages 19,
157.

http://dx.doi.org/10.2307/1990305
http://jeff.over.bz/papers/2006/ms-thesis.pdf
http://dx.doi.org/10.1007/BF00290336
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1145/226060.226066
http://dx.doi.org/10.3115/981311.981338
http://haskell.org/definition/haskell98-report.pdf
http://dx.doi.org/10.1016/0022-0000(79)90031-X
http://dx.doi.org/10.1007/BF01933232


Bibliography 195

Rabin, M.O. and Scott, D., 1959. Finite automata and their de-
cision problems. IBM Journal of Research and Development, 3
(2):114–125. URL http://www.research.ibm.com/journal/rd/032/

ibmrd0302C.pdf. Cited on page 83.

Reeder, J., Steffen, P., and Giegerich, R., 2005. Effective ambigu-
ity checking in biosequence analysis. BMC Bioinformatics, 6:153. doi:
10.1186/1471-2105-6-153. Cited on pages 125, 143, 151, 152, 154.

Rosenkrantz, D.J. and Lewis II, P.M., 1970. Deterministic left corner pars-
ing. In 11th Annual Symposium on Switching and Automata Theory, pages
139–152. IEEE Computer Society. Cited on page 20.

Rosenkrantz, D.J. and Stearns, R.E., 1970. Properties of determinis-
tic top-down grammars. Information and Control, 17(3):226–256. doi:
10.1016/S0019-9958(70)90446-8. Cited on pages 18, 132.

Rossberg, A., 2006. Defects in the revised definition of Standard ML. Tech-
nical report, Saarland University, Saarbrücken, Germany. URL http://

ps.uni-sb.de/Papers/paper info.php?label=sml-defects. Cited on
page 34.

Ruckert, M., 1999. Continuous grammars. In POPL’99, 26th Annual
Symposium on Principles of Programming Languages, pages 303–310. ACM
Press. ISBN 1-58113-095-3. doi: 10.1145/292540.292568. Cited on page 38.

Rus, T. and Jones, J.S., 1998. PHRASE parsers from multi-axiom
grammars. Theoretical Computer Science, 199(1–2):199–229. doi:
10.1016/S0304-3975(97)00273-9. Cited on page 38.

Salomon, D.J. and Cormack, G.V., 1989. Scannerless NSLR(1) parsing of
programming languages. In PLDI’89, Conference on Programming Lan-
guage Design and Implementation, pages 170–178. ACM Press. ISBN 0-
89791-306-X. doi: 10.1145/73141.74833. Cited on pages 14, 38, 110.

Schell, R.M., 1979. Methods for constructing parallel compilers for use in a
multiprocessor environment. PhD thesis, Department of Computer Science,
University of Illinois, Urbana-Champaign. Cited on pages 38, 114.

Schmitz, S., 2006. Noncanonical LALR(1) parsing. In Dang, Z. and Ibarra,
O.H., editors, DLT’06, 10th International Conference on Developments
in Language Theory, volume 4036 of Lecture Notes in Computer Science,
pages 95–107. Springer. ISBN 3-540-35428-X. doi: 10.1007/11779148 10.
Cited on page ix.

http://www.research.ibm.com/journal/rd/032/ibmrd0302C.pdf
http://www.research.ibm.com/journal/rd/032/ibmrd0302C.pdf
http://dx.doi.org/10.1186/1471-2105-6-153
http://dx.doi.org/10.1186/1471-2105-6-153
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://ps.uni-sb.de/Papers/paper_info.php?label=sml-defects
http://ps.uni-sb.de/Papers/paper_info.php?label=sml-defects
http://dx.doi.org/10.1145/292540.292568
http://dx.doi.org/10.1016/S0304-3975(97)00273-9
http://dx.doi.org/10.1016/S0304-3975(97)00273-9
http://dx.doi.org/10.1145/73141.74833
http://dx.doi.org/10.1007/11779148_10


196 Bibliography

Schmitz, S., 2007a. Conservative ambiguity detection in context-free gram-
mars. In Arge, L., Cachin, C., Jurdziński, T., and Tarlecki, A., editors,
ICALP’07, 34th International Colloquium on Automata, Languages and
Programming, volume 4596 of Lecture Notes in Computer Science, pages
692–703. Springer. ISBN 978-3-540-73419-2. doi: 10.1007/978-3-540-73420-
8 60. Cited on page ix.

Schmitz, S., 2007b. An experimental ambiguity detection tool. In Sloane,
A. and Johnstone, A., editors, LDTA’07, 7th Workshop on Language De-
scriptions, Tools and Applications. URL http://www.i3s.unice.fr/∼mh/

RR/2006/RR-06.37-S.SCHMITZ.pdf. To appear in Electronic Notes in
Theoretical Computer Science. Cited on page ix.

Schöbel-Theuer, T., 1994. Towards a unifying theory of context-free pars-
ing. In Pighizzini, G. and San Pietro, P., editors, ASMICS Workshop on
Parsing Theory, Technical Report 126-1994, pages 89–100. Università di
Milano. URL http://citeseer.ist.psu.edu/117476.html. Cited on
pages 76, 77.

Schröer, F.W., 2001. AMBER, an ambiguity checker for context-free
grammars. Technical report, compilertools.net. URL http://accent.

compilertools.net/Amber.html. Cited on pages 4, 126, 134, 154, 174.

Schwentick, T., 2007. Automata for XML—a survey. Journal of Computer
and System Sciences, 73(3):289–315. doi: 10.1016/j.jcss.2006.10.003. Cited
on page 48.

Scott, E. and Johnstone, A., 2006. Right nulled GLR parsers. ACM
Transactions on Programming Languages and Systems, 28(4):577–618. doi:
10.1145/1146809.1146810. Cited on pages 25, 40.

Segoufin, L. and Vianu, V., 2002. Validating streaming XML docu-
ments. In PODS’02, twenty-first Symposium on Principles of Database
Systems, pages 53–64. ACM Press. ISBN 1-58113-507-6. doi:
10.1145/543613.543622. Cited on pages 3, 65, 68, 174.

Seité, B., 1987. A Yacc extension for LRR grammar parsing. Theoretical
Computer Science, 52:91–143. doi: 10.1016/0304-3975(87)90082-X. Cited
on pages 36, 117, 143.

Shieber, S.M., 1985. Evidence against the context-freeness of nat-
ural language. Linguistics and Philosophy, 8(3):333–343. doi:
10.1007/BF00630917. Cited on page 8.

Sikkel, K., 1997. Parsing Schemata - a framework for specification and
analysis of parsing algorithms. Texts in Theoretical Computer Science -

http://dx.doi.org/10.1007/978-3-540-73420-8_60
http://dx.doi.org/10.1007/978-3-540-73420-8_60
http://www.i3s.unice.fr/~mh/RR/2006/RR-06.37-S.SCHMITZ.pdf
http://www.i3s.unice.fr/~mh/RR/2006/RR-06.37-S.SCHMITZ.pdf
http://citeseer.ist.psu.edu/117476.html
http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Amber.html
http://dx.doi.org/10.1016/j.jcss.2006.10.003
http://dx.doi.org/10.1145/1146809.1146810
http://dx.doi.org/10.1145/1146809.1146810
http://dx.doi.org/10.1145/543613.543622
http://dx.doi.org/10.1145/543613.543622
http://dx.doi.org/10.1016/0304-3975(87)90082-X
http://dx.doi.org/10.1007/BF00630917
http://dx.doi.org/10.1007/BF00630917


Bibliography 197

An EATCS Series. Springer. ISBN 3-540-61650-0. Cited on pages 39, 56,
77, 167.

Sikkel, K., 1998. Parsing schemata and correctness of parsing algorithms.
Theoretical Computer Science, 199(1–2):87–103. doi: 10.1016/S0304-
3975(97)00269-7. Cited on page 78.

Sippu, S. and Soisalon-Soininen, E., 1982. On LL(k) parsing. Information
and Control, 53(3):141–164. doi: 10.1016/S0019-9958(82)91016-6. Cited
on page 132.

Sippu, S. and Soisalon-Soininen, E., 1988. Parsing Theory, Vol. I: Lan-
guages and Parsing, volume 15 of EATCS Monographs on Theoretical Com-
puter Science. Springer. ISBN 3-540-13720-3. Cited on pages 5, 163.

Sippu, S. and Soisalon-Soininen, E., 1990. Parsing Theory, Vol. II: LR(k)
and LL(k) Parsing, volume 20 of EATCS Monographs on Theoretical Com-
puter Science. Springer. ISBN 3-540-51732-4. Cited on pages 13, 96, 99,
101, 102, 127, 138, 168.

Soisalon-Soininen, E. and Ukkonen, E., 1979. A method for transform-
ing grammars into LL(k) form. Acta Informatica, 12(4):339–369. doi:
10.1007/BF00268320. Cited on page 20.

Soisalon-Soininen, E. and Tarhio, J., 1988. Looping LR parsers. Informa-
tion Processing Letters, 26(5):251–253. doi: 10.1016/0020-0190(88)90149-4.
Cited on page 23.

Spencer, M., 2002. Basil: A Backtracking LR(1) Parser Generator. URL
http://lazycplusplus.com/basil/. Cited on page 39.

Szymanski, T.G., 1973. Generalized Bottom-Up Parsing. PhD thesis, De-
partment of Computer Science, Cornell University, Ithaca, New York. URL
http://historical.ncstrl.org/tr/ps/cornellcs/TR73-168.ps. Cited
on page 37.

Szymanski, T.G. and Williams, J.H., 1976. Noncanonical extensions of
bottom-up parsing techniques. SIAM Journal on Computing, 5(2):231–
250. doi: 10.1137/0205019. Cited on pages 37, 81, 96, 109, 111, 151.

Tai, K.C., 1979. Noncanonical SLR(1) grammars. ACM Trans-
actions on Programming Languages and Systems, 1(2):295–320. doi:
10.1145/357073.357083. Cited on pages 4, 37, 81, 103, 104, 110, 111, 112,
116, 155, 160, 174, 176.

Tarjan, R.E., 1972. Depth first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160. doi: 10.1137/0201010. Cited on
pages 98, 128.

http://dx.doi.org/10.1016/S0304-3975(97)00269-7
http://dx.doi.org/10.1016/S0304-3975(97)00269-7
http://dx.doi.org/10.1016/S0019-9958(82)91016-6
http://dx.doi.org/10.1007/BF00268320
http://dx.doi.org/10.1007/BF00268320
http://dx.doi.org/10.1016/0020-0190(88)90149-4
http://lazycplusplus.com/basil/
http://historical.ncstrl.org/tr/ps/cornellcs/TR73-168.ps
http://dx.doi.org/10.1137/0205019
http://dx.doi.org/10.1145/357073.357083
http://dx.doi.org/10.1145/357073.357083
http://dx.doi.org/10.1137/0201010


198 Bibliography

Thatcher, J.W., 1967. Characterizing derivation trees of context-free
grammars through a generalization of finite automata theory. Journal
of Computer and System Sciences, 1(4):317–322. doi: 10.1016/S0022-
0000(67)80022-9. Cited on page 48.

Thorup, M., 1994. Controlled grammatic ambiguity. ACM Transac-
tions on Programming Languages and Systems, 16(3):1024–1050. doi:
10.1145/177492.177759. Cited on page 23.

Thurston, A.D. and Cordy, J.R., 2006. A backtracking LR algorithm
for parsing ambiguous context-dependent languages. In CASCON’06,
Centre for Advanced Studies on Collaborative research. IBM Press. doi:
10.1145/1188966.1188972. Cited on page 39.

Tomita, M., 1986. Efficient Parsing for Natural Language. Kluwer Aca-
demic Publishers. ISBN 0-89838-202-5. Cited on pages 1, 40, 81, 171.

van den Brand, M.G.J., Sellink, A., and Verhoef, C., 1998. Current parsing
techniques in software renovation considered harmful. In IWPC’98, 6th
International Workshop on Program Comprehension, pages 108–117. IEEE
Computer Society. ISBN 0-8186-8560-3. doi: 10.1109/WPC.1998.693325.
Cited on pages 1, 171.

van den Brand, M., Scheerder, J., Vinju, J.J., and Visser, E., 2002. Dis-
ambiguation filters for scannerless generalized LR parsers. In Horspool,
R.N., editor, CC’02, 11th International Conference on Compiler Construc-
tion, volume 2304 of Lecture Notes in Computer Science, pages 143–158.
Springer. ISBN 3-540-43369-4. URL http://www.springerlink.com/

content/03359k0cerupftfh/. Cited on pages 40, 44, 46.

van den Brand, M., Klusener, S., Moonen, L., and Vinju, J.J., 2003.
Generalized parsing and term rewriting: Semantics driven disambigua-
tion. In Bryant, B. and Saraiva, J., editors, LDTA’03, 3rd Workshop
on Language Descriptions, Tools and Applications, volume 82(3) of Elec-
tronic Notes in Theoretical Computer Science, pages 575–591. Elsevier. doi:
10.1016/S1571-0661(05)82629-5. Cited on page 23.

van Wijngaarden, A., editor, 1975. Revised report on the algo-
rithmic language ALGOL 68. Acta Informatica, 5(1–3):1–236. doi:
10.1007/BF00265077. Cited on page 14.

Visser, E., 1997. Scannerless generalized-LR parsing. Technical Report
P9707, University of Amsterdam. URL http://citeseer.ist.psu.edu/

visser97scannerles.html. Cited on page 14.

http://dx.doi.org/10.1016/S0022-0000(67)80022-9
http://dx.doi.org/10.1016/S0022-0000(67)80022-9
http://dx.doi.org/10.1145/177492.177759
http://dx.doi.org/10.1145/177492.177759
http://dx.doi.org/10.1145/1188966.1188972
http://dx.doi.org/10.1145/1188966.1188972
http://dx.doi.org/10.1109/WPC.1998.693325
http://www.springerlink.com/content/03359k0cerupftfh/
http://www.springerlink.com/content/03359k0cerupftfh/
http://dx.doi.org/10.1016/S1571-0661(05)82629-5
http://dx.doi.org/10.1016/S1571-0661(05)82629-5
http://dx.doi.org/10.1007/BF00265077
http://dx.doi.org/10.1007/BF00265077
http://citeseer.ist.psu.edu/visser97scannerles.html
http://citeseer.ist.psu.edu/visser97scannerles.html


Bibliography 199

Wagner, T.A. and Graham, S.L., 1997. Incremental analysis of real pro-
gramming languages. In PLDI’97, Conference on Programming Language
Design and Implementation, pages 31–43. ACM Press. ISBN 0-89791-907-
6. doi: 10.1145/258915.258920. Cited on page 40.

Watt, D.A., 1980. Rule splitting and attribute-directed parsing. In Jones,
N.D., editor, Workshop on Semantics-Directed Compiler Generation, vol-
ume 94 of Lecture Notes in Computer Science, pages 363–392. Springer.
ISBN 3-540-10250-7. doi: 10.1007/3-540-10250-7 29. Cited on page 14.

Wich, K., 2005. Ambiguity Functions of Context-Free Grammars and Lan-
guages. PhD thesis, Institut fur Formale Methoden der Informatik, Univer-
sität Stuttgart. URL ftp://ftp.informatik.uni-stuttgart.de/pub/

library/ncstrl.ustuttgart fi/DIS-2005-01/DIS-2005-01.pdf. Cited
on page 43.

Williams, J.H., 1975. Bounded context parsable grammars. Information
and Control, 28(4):314–334. doi: 10.1016/S0019-9958(75)90330-7. Cited
on page 37.

Wirth, N. and Weber, H., 1966. EULER: a generalization of ALGOL and
its formal definition. Communications of the ACM, 9(1):Part I: 13–25, and
Part II: 89–99. doi: 10.1145/365153.365162. Cited on page 20.

Woods, W.A., 1970. Transition network grammars for natural lan-
guage analysis. Communications of the ACM, 13(10):591–606. doi:
10.1145/355598.362773. Cited on page 76.

Yergeau, F., Cowan, J., Bray, T., Paoli, J., Sperberg-McQueen, C.M., and
Maler, E., 2004. Extensible markup language (XML) 1.1. Recommenda-
tion, W3C. URL http://www.w3.org/TR/xml11. Cited on page 13.

Younger, D.H., 1967. Recognition and parsing of context-free languages
in time n3. Information and Control, 10(2):189–208. doi: 10.1016/S0019-
9958(67)80007-X. Cited on page 39.

http://dx.doi.org/10.1145/258915.258920
http://dx.doi.org/10.1007/3-540-10250-7_29
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/DIS-2005-01/DIS-2005-01.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/DIS-2005-01/DIS-2005-01.pdf
http://dx.doi.org/10.1016/S0019-9958(75)90330-7
http://dx.doi.org/10.1145/365153.365162
http://dx.doi.org/10.1145/355598.362773
http://dx.doi.org/10.1145/355598.362773
http://www.w3.org/TR/xml11
http://dx.doi.org/10.1016/S0019-9958(67)80007-X
http://dx.doi.org/10.1016/S0019-9958(67)80007-X


200 Bibliography



Index

A
abstract interpretation, 78
accepting computation, 63
alphabet, 164
ambiguous

automaton, 63
grammar, 8, 49

ANTLR, 23, 34, 36
ASF+SDF, 40, 44
augmented grammar, 165
automaton, 169

finite state, 166
LALR(1), 169
LR(k), 169
nested word, 67
NLALR(1), 95
position, 53
pushdown, 10, 166
reduction-finding, 83
tree walking, 67
two-stack pushdown, 37

B
Backus-Naur Form, 8
bottom-up parser, 10
bounded context, 20

BCP(m, n), 37
bracket

pushdown automaton, 70

C
characteristic parser, 86
chart parser, 39
concatenation, 163

configuration, 85, 95, 169
conflict, 136
context-free

grammar, 7, 165
language, 165

core restricted, 60
correct

prefix, 71, 85, 95
cover, 49

valid, 93

D
dangling else, 21
derivation, 164

leftmost, 165
rightmost, 165

determinism hypothesis, 12
deterministic

finite automaton, 18, 166
pushdown automaton, 16, 167

disambiguation, 2
disambiguation filters, 23, 44
DR(k), 20

noncanonical, 38, 115

E
Earley, 60, 167

earleyw, 77
Elkhound, 40, 44
equivalence

⊥, 58
earleyw, 77
item0, 54
itemk, 59



202 Index

lookk, 59

paA, 63

⊤, 58

itemΠ, 144

lookΠ, 144

prefixm, 135

rightb=, 128

rightΠ, 133

sdΠ, 86

F

finite state automaton, 166

deterministic, 18, 166

forest

grammar, 44, 61

parse, 41

formal language, 6, 164

free monoid, 163

front end, 13

FSPA(k), 37

G

Galois connection, 62

garden path, 12

Generalized LR, 40

Generalized Piecewise LR, 38, 114

generative rewriting system, 164

GNU Bison, 20, 40, 44

grammar

augmented, 165

bracketed, 49

class, 109

context-free, 7, 165

extended, 66

cyclic, 43

forest, 44, 61

item grammar, 79

left-linear, 165

parenthesis, 50

phrase structure, 6, 164

reduced, 165

regular, 165

right-linear, 165

strict deterministic, 86
type 2, 7

graph
graph structured stack, 40
position graph, 52
recognition graph, 76

H
handle, 82, 90

I
identity, 163
inadequate, 88
includes, 98
input stack, 37, 90
item

item grammar, 79

J
Jikes, 24
join, 58

K
Kernel itemset, 92, 168

L
labeled transition system, 166
LALR(1)

automaton, 169
lookahead set, 169

language
context-free, 165
noncanonical, 160
parenthesis, 67
regular, 165
tree, 48

left congruence, 132
left-linear grammar, 165
leftmost derivation, 165
LL(k), 18

LL(*), 36
LL-Regular, 35

lookahead
conflicts, 94



Index 203

derived, 94
noncanonical, 94
totally reduced, 94

lookback, 98
LR(k), 17

automaton, 169
GLR, 40
GPLR, 38, 114
LookAhead LR(k), see LALR(1)
LR(k, ∞), 37
LR(k, t), 37
LR-Regular, 35
valid item, 168

M
meet, 58
merge, 45, 129
mismatch, 72

first-mismatch, 72
no-mismatch, 72

monoid, 163
free, 163

mutual accessibility
regular, 127

mutual accessibility relation, 139

N
nested word, 67
non null, 93
noncanonical

DR, 38, 115
language, 160
lookahead, 94
parser, 12
SLR(1), 37, 110
state, 95, 102
transition, 95
unambiguous, 140

nonterminal
alphabet, 164
symbol, 6, 165

O
overlap, 131

P
parenthesis

grammar, 50
language, 67

parse forest, 41
parser

bottom-up, 10
characteristic, 86
chart, 39
noncanonical, 12
shift-reduce, 10, 167
tabular, 40
top-down, 10

Parsifal, 12
parsing

machine, 85
parsing schemata, 77
parsing stack, 37, 90
phrase, 90

structure grammar, 6, 164
position, 50

automaton, 53
equivalence, 59
graph, 52

precedence, 20
total precedence, 37

prefix, 166
bracketed, 135
correct, 71, 85, 95
production, 86
valid, 168

production, 164
prefix, 86

pushdown automaton, 10, 166
bracket, 70
deterministic, 16, 167

R
reads, 98

directly, 98, 100
recognition graph, 76
recognitive rewriting system, 164
reduce, 10, 60, 96, 167, 169



204 Index

reduced grammar, 165

regular

grammar, 165

language, 165

partition, 35

separability problem, 35, 37

tree grammar, 66

tree language, 66

unambiguous, 127

resolve, 115

rewriting system, 6, 164

generative, 164

recognitive, 164

right-linear grammar, 165

rightmost derivation, 165

rule, 6, 164

S

sentential form, 57

shift, 10, 60, 96, 167

shift-reduce parser, 10, 167

Simple LR(k), 18

noncanonical, 37, 110

size

automaton, 59

grammar, 59

Strong LL(k), 18

subset construction, 83

symbol

accessing, 83

T

tabular parser, 40

terminal

alphabet, 164

symbol, 6, 165

top-down parser, 10

total precedence, 37

transducer, 164

transition, 83

tree language, 48

tree walking automaton, 67

two-stack pushdown automaton, 37

type 2 grammar, 7

U
unambiguous

horizontally, 131
noncanonically, 140
regular, 127
vertically, 131

V
valid

cover, 93
item

LR(k), 168
strict deterministic, 86

prefix, 168
Valid itemset, 83, 92, 168

vocabulary, 6, 164

Y
YACC, 13, 19, 21, 81



Cover art generated using the Context-Free Art software and the following
(ambiguous) weighted context-free grammar.

# $Id: bush.cfdg,v 1.5 2007/06/28 17:24:06 schmitz Exp $

# Thorn bush with roses.

#

# Adapted from demo1.cfdg, rose.cfdg and tangle.cfdg of the

# Context-Free Art software distribution, and as such is a derivative

# work of GPL’ed files. So you know the drill:

#

# Copyright (C) 2006, 2007 Sylvain Schmitz

#

# This file is free software; you can redistribute it and/or modify it

# under the terms of the GNU General Public License as published by

# the Free Software Foundation; either version 2 of the License, or

# (at your option) any later version.

#

# This file is distributed in the hope that it will be useful, but

# WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

# General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with this file; if not, write to the Free Software Foundation,

# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

startshape bush

rule bush {

seed {}

seed {rotate 20}

seed {rotate -30}

fork {}

seed {size 0.5}

}

rule seed {branch {}}

rule seed {branch {rotate 1}}

rule seed {branch {rotate -1}}

rule seed {branch {rotate 2}}

rule seed {branch {rotate -2}}

rule seed {fork {}}

rule branch {lbranch {flip 90}}

rule branch {lbranch {}}

rule lbranch 3 {wood {} lbranch {y 0.885 rotate 0.1 size 0.99}}

rule lbranch 3 {wood {} lbranch {y 0.885 rotate 0.2 size 0.99}}

rule lbranch 3 {wood {} lbranch {y 0.885 rotate 4 size 0.99}}

rule lbranch 1.2 {wood {} fork {}}

rule lbranch 0.02 {rose {size 6 b 1}}

http://www.contextfreeart.org/


rule wood {SQUARE {rotate 1} SQUARE {rotate -1} SQUARE {}}

rule wood 0.5 {

SQUARE {rotate 1}

SQUARE {rotate -1}

SQUARE {}

thorns { size 0.3 }

thorns { flip 90 size 0.3 }

}

rule fork {branch {} branch {size 0.5 rotate 40}}

rule fork {branch {} branch {size 0.5 rotate -40}}

rule fork {branch {size 0.5 rotate -20} branch {}}

rule fork {branch {size 0.5 rotate -50} branch {size 0.5 rotate 20}}

rule fork {

branch {size 0.7 y 0.1 rotate 30}

branch {size 0.7 y 0.1 rotate -30}

}

rule thorns {thorn {} thorn {rotate 70 size 0.8}}

rule thorns 0.8 {

thorn {size 0.7}

thorn {rotate 120}

thorn {rotate 190 size 0.9}

}

rule thorn {lthorn {}}

rule thorn {lthorn {flip 90}}

rule lthorn {SQUARE {} lthorn {y 0.9 size 0.9 rotate 1}}

rule rose {flower {}}

rule rose {flower {rotate 10}}

rule rose {flower {rotate -10}}

rule flower {

petal {}

petal {r 90}

petal {r 180}

petal {r 270}

flower {r 14 size 0.9 b 1}

}

rule petal {petal1 {r 15 x 0.9 s 0.9 1.8}}

rule petal {petal1 {r -15 x 0.9 s 0.9 1.8}}

rule petal1 {

CIRCLE {}

CIRCLE {s 0.975 x -0.025 b -0.8}

CIRCLE {s 0.95 x -0.05 b 1}

CIRCLE {s 0.925 x -0.075 b 0.01|}

}


	Abstract
	Résumé
	Foreword
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 General Background
	2.1 Topics
	2.1.1 Formal Syntax
	2.1.2 Parsing

	2.2 Scope
	2.2.1 Parsers for Programming Languages
	2.2.2 Deterministic Parsers
	2.2.3 Ambiguity in Programming Languages


	3 Advanced Parsers and their Issues
	3.1 Case Studies
	3.1.1 Java Modifiers
	3.1.2 Standard ML Layered Patterns
	3.1.3 C++ Qualified Identifiers
	3.1.4 Standard ML Case Expressions

	3.2 Advanced Deterministic Parsing
	3.2.1 Predicated Parsers
	3.2.2 Regular Lookahead Parsers
	3.2.3 Noncanonical Parsers

	3.3 General Parsing
	3.3.1 Families of General Parsers
	3.3.2 Parse Forests


	4 Grammar Approximations
	4.1 Derivation Trees
	4.1.1 Bracketed Grammars
	4.1.2 Position Graphs

	4.2 Position Automata
	4.2.1 Quotients of Position Graphs
	4.2.2 Parsing with Position Automata
	4.2.3 Approximating Languages

	4.3 Recognizing Derivation Trees
	4.3.1 Tree Languages
	4.3.2 Validating XML Streams
	4.3.3 A Characterization
	4.3.4 Optimality

	4.4 Related Models
	4.4.1 Recognition Graphs
	4.4.2 Parsing Schemata
	4.4.3 Regular Approximations
	4.4.4 Abstract Interpretation
	4.4.5 Systems of Pushdown Automata
	4.4.6 Item Grammars


	5 Parser Generation
	5.1 Parser Generation from Position Automata
	5.1.1 Subset Construction
	5.1.2 Parsing Machine
	5.1.3 Strict Deterministic Parsers

	5.2 Noncanonical LALR(1) Parsers
	5.2.1 Example Parser
	5.2.2 Definition of NLALR(1) Parsers
	5.2.3 Efficient Construction
	5.2.4 Alternative Definitions
	5.2.5 NLALR(1) Grammars and Languages
	5.2.6 Practical Considerations

	5.3 Shift-Resolve Parsers
	5.3.1 Time Complexity Matters
	5.3.2 Example Parser
	5.3.3 Generation
	5.3.4 Shift-Resolve Grammars
	5.3.5 Example: SML Case Expressions


	6 Ambiguity Detection
	6.1 Regular Unambiguity
	6.1.1 Regular Mutual Accessibility
	6.1.2 Practical Concerns
	6.1.3 Comparisons

	6.2 Noncanonical Unambiguity
	6.2.1 Common Prefixes with Conflicts
	6.2.2 Accessibility Relations
	6.2.3 Comparisons

	6.3 Practical Results
	6.3.1 Example Test
	6.3.2 Implementation
	6.3.3 Experimental Results
	6.3.4 Current Limitations


	7 Conclusion
	A Formal Definitions
	A.1 Elements of Formal Language Theory
	A.1.1 Formal Languages
	A.1.2 Rewriting Systems
	A.1.3 Grammars
	A.1.4 Notational Conventions
	A.1.5 Automata
	A.1.6 Earley Recognizer

	A.2 LR(k) Parsing
	A.2.1 Valid Items and Prefixes
	A.2.2 LR Automata
	A.2.3 LALR Automata


	Synthèse en français
	Motivation
	Contenu de la thèse
	Conclusion
	Pistes de recherche

	Bibliography
	Index

