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Direct problem

Microwave tomography

H Transverse magnetic (tm) polarization

H Electric field integral equation (efie)

H Method of moments (pulse basis, point matching)

e(i) = (INC
− GOC)e

e(s) = GRCe

}

e(s) = GRC(INC
− GOC)−1e(i)

C = diag(εr(ω))− j
diag(σ(ω))

ωε0
−
(
εNL

(ω)

ε0
− j

σNL
(ω)

ωε0

)
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Inverse problem (1/2)

Microwave tomography

H Cost functional:

J(εr,σ) ,

NF∑

f=1

NS∑

s=1

‖rf,s(εr,σ)‖2
LM

rf,s(εr,σ) = e
(s)
f,s
︸︷︷︸

reference

−GRC(εr,σ)
[
INC

− GOC(εr,σ)
]−1

e
(i)
f,s

︸ ︷︷ ︸
test

H Iterative minimization (biconjugate gradient)

εk+1
r = εk

r + αk
εr

ηk
εr

σk+1 = σk + αk
ση

k
σ
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Inverse problem (2/2)

Microwave tomography

H Ill-posed problem

I Existence?

I Unicity?

I Stability?

H Edge-preserving regularization

I Piece-wise constant profile

I Smooth below threshold

ζ2
εr

Nx∑

i=1

Ny∑

j=1

φ

(‖(∇εr)i,j‖
δεr

)

+ ζ2
σ

Nx∑

i=1

Ny∑

j=1

φ

(‖(∇σ)i,j‖
δσ

)
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Emitting antenna modeling

Extensions

× Plane wave
√

Simulated incident field

H SR3D, France Telecom Research Center, La Turbie

Bow-tie antenna (cells of 2.5 × 2.5 cm2):
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Measurement noise modeling

Extensions

H White, Gaussian, zero mean

H Add separately to real/imaginary part

H Fix snr; choose σ for each frequency/emitter

Esignal =
1

NM

NM∑

i=1

Re
[(

e
(s)
f,s

)

i

]2

real part

Esignal =
1

NM
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Im
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e
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i

]2

imaginary part

Enoise = σ2
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Test suite: the real object

Numerical results
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Robustness to noise (1/3)

Numerical results
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Robustness to noise (2/3)

Numerical results
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Robustness to noise (3/3)

Numerical results
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Number of measurement points

Numerical results
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Number of frequencies

Numerical results
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Stretch frequency band

Numerical results
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Conclusions

Numerical results

H Robustness to noise

H Quantity of information

H Optimum number of emitting/measurement points

H Frequencies used:

I Wide band

I Low: localization

I High: resolution

I Intrinsic frequency hopping

I Optimum number of frequencies: low
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Study of the three-dimensional extension
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Iterative algorithm (again)
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Contents II

H Direct problem

H Finite-Difference Frequency-Domain method

H Numerical results
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Total field equations

Direct problem

∇ · (ε̄ · E) = ρ

∇ · (µ̄ · H) = τ

∇ × E = − jω ¯̇µ · H − M

∇ × H = jω ¯̇ε · E + J

with

¯̇µ = µ̄ − j
σ̄∗

ω
, ¯̇ε = ε̄ − j

σ̄

ω
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Scattered field equations

Direct problem

E = E(i) + E(s)

H = H(i) + H(s)

(E(i), H(i) in ¯̇ε(b),
¯̇µ(b) with ρ(i), τ (i),J (i),M (i))

∇ · (ε̄ · E(s)) = ρ(ind) + ρ(s)

∇ · (µ̄ · H(s)) = τ (ind) + τ (s)

∇ × E(s) = − jω ¯̇µ · H(s) − M (ind) − M (s)

∇ × H(s) = jω ¯̇ε · E(s) + J (ind) + J (s)
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Definition of charge densities

Direct problem

Exclusively for scattered field:

ρ(s) , ρ− ρ(i)

τ (s) , τ − τ (i)

Induced from incident field:

ρ(ind) , −∇ ·
{

(ε̄ − ε̄(b)) · E(i)
}

= −∇ ·
(

c̄(ε) · E(i)
)

τ (ind) , −∇ ·
{

(µ̄ − µ̄(b)) · H(i)
}

= −∇ ·
(

c̄(µ) · H(i)
)
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Definition of current densities

Direct problem

Exclusively for scattered field:

J (s) , J − J (i)

M (s) , M − M (i)

Induced from incident field:

J (ind) , jω(¯̇ε − ¯̇ε(b)) · E(i) = jω¯̇c(e) · E(i)

M (ind) , jω( ¯̇µ − ¯̇µ(b)) · H(i) = jω¯̇c(m) · H(i)
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Similarity of equations

Direct problem

Total field −→ Scattered field:

E → E(s) H → H(s)

ρ→ ρ(ind) + ρ(s) τ → τ (ind) + τ (s)

J → J (ind) + J (s) M → M (ind) + M (s)

√
Equivalence between total / scattered field equations

√
Uniform treatment of electromagnetic problems

√
Pure scattered field formulation
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Finite-difference frequency-domain (1/2)

fdfd method

H Spatial derivatives −→ finite differences

∂f

∂xi

∣
∣
∣
∣
x0

=
f(x0 + hei) − f(x0 − hei)

2h
+ O(h2)

H Uniform cubic grid

Ei,j,k
x = Ex|i+ 1

2
,j,k H i,j,k

x = Hx|i,j+ 1

2
,k+ 1

2

Ei,j,k
y = Ey|i,j+ 1

2
,k H i,j,k

y = Hy|i+ 1

2
,j,k+ 1

2

Ei,j,k
z = Ez|i,j,k+ 1

2

H i,j,k
z = Hz|i+ 1

2
,j+ 1

2
,k

PSfrag replacements

dεr

dσ

30 dB

40 dB

∞

ExEy

Ez

(i, j, k)
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Finite-difference frequency-domain (2/2)

fdfd method

H Average adjacent cell properties

εxxEx
discretize−−−−−→

〈
εi,j,k
xx

〉
Ei,j,k

x

µxxHx
discretize−−−−−→

〈
µi,j,k

xx

〉
H i,j,k

x

with

〈
εi,j,k
xx

〉
,

1

4

(
εi,j,k
xx + εi,j−1,k

xx + εi,j−1,k−1
xx + εi,j,k−1

xx

)

〈
µi,j,k

xx

〉
,

1

2

(
µi,j,k

xx + µi−1,j,k
xx

)
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Faraday: ∇ × E = − jω ¯̇µ · H − M

fdfd method

H i,j,k
x =

Ei,j,k+1
y − Ei,j,k

y − Ei,j+1,k
z + Ei,j,k

z − hM i,j,k
x

h jω
〈

µ̇i,j,k
xx

〉

H i,j,k
y =

Ei+1,j,k
z − Ei,j,k

z − Ei,j,k+1
x + Ei,j,k

x − hM i,j,k
y

h jω
〈

µ̇i,j,k
yy

〉

H i,j,k
z =

Ei,j+1,k
x − Ei,j,k

x − Ei+1,j,k
y + Ei,j,k

y − hM i,j,k
z

h jω
〈

µ̇i,j,k
zz

〉

Aee = − jωdiag(〈µ̇〉)h − m
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Maxwell-Ampère: ∇ × H = jω ¯̇ε · E + J

fdfd method

Ei,j,k
x =

H i,j,k
z −H i,j−1,k

z −H i,j,k
y +H i,j,k−1

y − hJ i,j,k
x

h jω
〈

ε̇i,j,k
xx

〉

Ei,j,k
y =

H i,j,k
x −H i,j,k−1

x −H i,j,k
z +H i−1,j,k

z − hJ i,j,k
y

h jω
〈

ε̇i,j,k
yy

〉

Ei,j,k
z =

H i,j,k
y −H i−1,j,k

y −H i,j,k
x +H i,j−1,k

x − hJ i,j,k
z

h jω
〈

ε̇i,j,k
zz

〉

Ahh = jωdiag(〈ε̇〉)e + j , Ah = Ae
T
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Discretized wave equation (1/3)

fdfd method

The two matrix equations yield:
[
Ae

Tdiag(〈µ̇〉)−1Ae − ω2diag(〈ε̇〉)
]
e =

− jωj − Ae
Tdiag(〈µ̇〉)−1m

Compare with the continuous case:

∇ × ¯̇µ
−1 · ∇ × E − ω2 ¯̇ε · E = − jωJ − ∇ × ¯̇µ

−1 · M

Add gradient of Gauss’ law
∇∇ · (ε̄ · E) = ∇

(
ρ+ ρ(ind)

)
in discretized form:

Agdiag(〈ε〉)e = −Agdiag(〈cε〉)e
i − Aρ〈ρ〉
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Discretized wave equation (2/3)

fdfd method

Sparse linear system (N ×N):

Ax = b

N =







NxNy 2D-TM

2NxNy 2D-TE

3NxNyNz 3D
√

Common formulation for 2D-TM, 2D-TE, 3D

A = Ae
Tdiag(Vmµ̇)−1Ae+

(Ag − ω2I)diag(Veε) + jωdiag(Veσ)

Ve, Vm, Vρ: averaging matrices, e.g. 〈ε〉 = Veε
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Discretized wave equation (3/3)

fdfd method

H Closed-geometry and radiation problems
x = e

b = −
(
jωj + Ae

Tdiag(Vmµ̇)−1m + AρVρρ
)

H Scattering problems

x = es

b = −
(
jωjs + Ae

Tdiag(Vmµ̇)−1ms + AρVρρ
s+

[
(Ag − ω2I)diag(Vecε) + jωdiag(Vecσ)

]
ei+

jωAe
Tdiag(Vmµ̇)−1diag(Vmċm)hi

)
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Enforce boundary conditions

fdfd method

H Perfect electric conductor (∈, ‖): xn = 0 or xn = −e
i

n

H Applied voltage: xn = vn

A′ = IVMC + IVMCAIC b′ = IVMCb − IVIMei + v

H No Gauss ⊥ pec

A′
g = IMnCn

Ag A′
ρ = IMnCn

Aρ

H Condensed system








a11 a12 a13

0 1 0

a31 a32 a33

















x1

x2

x3









=









b1

b2

b3









→

(

a11 a13

a31 a33

)(

x1

x3

)

=

(

b1 − a12b2

b3 − a13b2

)

x2 = b2
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Enforce boundary conditions

fdfd method
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Perfectly Matched Layers

fdfd method

ε̄PML = ¯̇ε · Λ̄x

µ̄PML = ¯̇µ · Λ̄x

Λ̄x =






1/sx 0 0

0 sx 0

0 0 sx






Λ̄xz = Λ̄x · Λ̄z
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Perfectly Matched Layers

fdfd method

ε̄PML = ¯̇ε · Λ̄x

µ̄PML = ¯̇µ · Λ̄x

Λ̄x =






1/sx 0 0

0 sx 0

0 0 sx






Λ̄xz = Λ̄x · Λ̄z
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Near- to Far-Field Transform

fdfd method

Kirchhoff integral:

ψ(r)=− 1

4π

∮

S

e− j kR

R

[
∂ψ(r′)

∂η′
−
(

j k +
1

R

)
1

R
η̂′ ·Rψ(r′)

]

dr′

ψ any rectangular component of E or H

r far-field (observation) point
r′ near-field point

R = r − r′, R = |R|, k = ω
√
µ0ε0

H
∂

∂η′
→ finite differences

H
∮

S
→
∑

n

∑

mwnm . . . 4th order 2D integration
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Near- to Far-Field Transform: Validation (1/6)

fdfd method

Radiation of an elementary dipole (far-field):

Er(r, θ, φ) ≈ 0, Eθ(r, θ, φ) ∼ sinθ, Eφ(r, θ, φ) = 0

Compare:

H Analytical far-field Eth (directly calculated)

H Transformed far-field (from analytical near-field)

eθ =
(
Eθ(θ = 5◦) Eθ(θ = 10◦) · · · Eθ(θ = 175◦)

)T

Rθ =
‖eθ − ethθ‖2

‖ethθ‖2
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Near- to Far-Field Transform: Validation (2/6)

fdfd method

Size of the integration cube
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Near- to Far-Field Transform: Validation (3/6)

fdfd method

Position of the integration cube
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Near- to Far-Field Transform: Validation (4/6)

fdfd method

Coarseness of the discretization grid
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Near- to Far-Field Transform: Validation (5/6)

fdfd method

Grid: λ/20
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Near- to Far-Field Transform: Validation (6/6)

fdfd method

Grid: λ/120
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FDFD: numerical results

Numerical results

Closed-geometry problems

:
H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems

:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems

:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



FDFD: numerical results

Numerical results

Closed-geometry problems:

H 2D: waveguide modes

H 3D: cavity modes

H Ae = 0

H e ∈ nullspace A

H find eigenvector(s)
for zero eigenvalue

Open-geometry problems:

H 3D: elementary dipole

H Ae = b (sparse)

H iterative methods:
bicgstab, gmres

H preconditioning:
diagonal, lu, ilu

Ioannis Aliferis, Microwave imaging of buried objects, ntua – unsa – p. 44/52



Waveguide modes

Numerical results

H Dimensions: a/b = 3

H Non-degenerate modes: TEz
10 (1 GHz), TEz
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Cavity modes

Numerical results
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Elementary dipole radiation

Numerical results

H Electric current J(z) = ẑ at a single cell (1 GHz)
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Conclusion and future work
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Two-dimensional numerical modeling

Conclusion

H Enhanced microwave tomography method

I Near-field radiation pattern

I Measurement noise simulation for synthetic data

H Parametric studies

I Robustness to noise

I Measurement line

I Frequencies → wide band, few points, no hopping

H Input information → optimum quantity:
variety⇑ redundancy⇓
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Study of the three-dimensional extension

Conclusion

H Finite-difference frequency-domain method

I Closed-geometry, radiation and scattering

I 2D-TM, 2D-TE, 3D

I Explicit formulation

H Near- to Far-Field transform

H Validations: waveguide, cavity, elementary dipole

H fdfd grec (General-purpose Rectangular-mesh
Electromagnetic Code) 20k Matlab lines
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Perspectives

Future work

H Two-dimensional imaging

I Invert from real data (measurement
?−→ field)

I Quantify the notion of information

H Three-dimensional imaging

I Proceed to the inverse problem

Harder and easier to solve (a Zen statement)

I Combine with different approaches

H Use fdfd grec independently
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H 1 in book

H 7 in proceedings

H 2 citations in ieee Transactions
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