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L’écriture, mon travail noir, ne renvoyait 4 rien, et du coup, se prenait elle-méme pour fin. J’écrivais
pour écrire. Je ne regrette rien. Eussé-je été lu, je tentais de plaire, je redevenais merveilleux. Clandestin,

je fus vrai.

Jean-Paul Sartre, dans Les mots.

Mais c’est pas une raison pour plus vous laver les joues!

Jacques, dans La classe américaine.






Comment des brouillons illisibles
sont devenus une these

Paris, septembre 2005.

L’air de rien, cette partie est I'une des plus difficiles a écrire. Pour commencer, il va falloir dire je
tout le temps, ce qui est un exercice assez désagréable, dans la lignée des classiques rédactions de college
ou 'on est censé raconter ses vacances. On ne se rend pas compte a quel point c’est dur pour un enfant
de raconter ses vacances, alors qu’il s’est ennuyé pendant deux mois a attendre de retrouver I’école et les
copains. Du coup, il a été insupportable avec ses parents, mais il ne peut quand méme pas raconter ca.
Ses parents mériteraient pourtant d’étre les premiers remerciés, pour ’avoir supporté tout ce temps-1a,
ainsi, le cas échéant, que son petit frére, qui lui a passé un bon été, comme tous les étés, et comme le reste
de 'année d’ailleurs. De toute facon, maintenant que la rentrée est la et bien 1a, on se dit que finalement
les vacances avaient du bon.

En ce qui me concerne, les vacances qui viennent de s’écouler furent relativement idylliques. Mais si
je les raconte ici, je vais étre completement hors sujet. Ici, on s’attend plutot a ce que j’évoque ce qu’il
a fallu faire pour avoir enfin droit a ces vacances-la. Mais tout ca je le raconte déja dans les chapitres
qui suivent, quoique sous une forme un peu différente. Non, ce qu’il est vraiment important de dire ici,
c’est qu’il s’en est fallu de pas grand chose pour que les dites vacances ne fussent remises aux calendes
grecques, tant ces pages furent difficiles & écrire. Evidemment, quand on consacre trois ou quatre ans
a réfléchir a un probleme, on empiete pas mal sur le reste, et ¢a peut rendre les choses assez pénibles,
surtout pour ’entourage de celui qui tente de réfléchir. Fort heureusement, mon entourage & moi est
d’une qualité exceptionnelle. Mes parents par exemple, qui m’ont absolument tout donné. En plus ils
ont le sens de I’humour, ce qui fait que globalement, on s’entend bien, méme par-dela les mers et les
montagnes. Et puis mon frére, un grand gars tout tranquille qui me sourit tout le temps, méme quand je
I’ennuie avec mes histoires. Longtemps il a habité avec moi, et a donc eu la lourde tache de me supporter
au quotidien, tache qu’il a fini par confier & Hakim pour partir vivre avec une fille, la charmante Marie.
Apres deux ans de vie avec moi, Hakim est lui aussi parti vivre avec une fille (Béatrice); je commence
a me poser des questions sur mes qualités de colocataire. Pourtant j’ai bien essayé de convertir Hakim
et Béa au punk matiné de salsa et de vallenato mais rien n’y a fait, ils sont partis. Cela dit, sans
eux non plus rien de tout ceci n’etit été possible. Et puis il y a aussi tous mes amis, qui n’ont jamais
reculé devant le risque de me voir tirer une téte de dix mille pieds de long lorsqu’ils me demandaient
périodiquement : “alors, cette these, ca avance?”. Il faut dire que tous semblaient intéressés par mon sujet
parce que régulierement ils me demandaient de leur donner le titre de ma these, surtout lorsqu’on sortait
et qu’on rencontrait des gens nouveaux. Bizarrement, je n’ai que tres rarement revu les gens nouveaux
en question, peut-étre parce que tous étaient en général assez décus quand je leur annoncais qu’apres
plus de deux ans de travail je ne savais toujours pas quel titre j’allais bien pouvoir donner & ma these.
Malgré ¢a, mes amis a moi ont toujours été convaincus du fait que j’allais bien la soutenir un jour cette
these, ce qui a été réconfortant plus d’une fois, parce que personnellement, j’ai connu des moments ou je
n’y croyais vraiment plus. Ca fait du bien d’avoir des amis comme eux : Anis, Riwall, Thomas, Réda,
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Elodie, Michel, Adriana, Rémi, Frank, Gregory, et tous les autres, d’ici et d’ailleurs. A tous ces gens-la,
je peux ajouter ceux que j’ai rencontrés au cours de mes (longues) études de maths, et qui m’ont aussi
apporté beaucoup, pour les maths et parfois pour le reste : Pierre, Aurélien, Anne, et quelques autres,
mon interlocuteur privilégié pour toutes ces questions restant quand méme Hakim, parfois malgré lui,
personne d’autre n’étant disponible passé une heure du matin. Chose plus étonnante, il s’est également
trouvé une poignée (littéralement) de professeurs qui ont essayé, au cours de ma scolarité post-maitrise,
de me donner confiance en ma capacité a comprendre deux ou trois choses en maths. Jean-Pierre Marco
par exemple, qui a le premier accepté de guider mes pas dans cet univers parfois impitoyable, alors que
je n’avais que bien peu a lui proposer en retour, pour les maths comme pour beaucoup d’autres choses
qu’il m’a apprises. FElisha Falbel ensuite, qui a accepté de diriger ma these, et qui I'a fait avec une
patience infinie et une disponibilité constante, sachant a la fois me laisser une liberté totale et offrir un
regard critique et constructif sur mes balbutiements. D’autres ont été encourageants avec moi et je les
en remercie : Jiang-Hua Lu, Alan Weinstein, Pierre Lochak, Richard Wentworth, et autres gens dont
la gentillesse n’a d’égal que la quantité impressionnante des sujets qu’ils dominent. Comme je le disais
donc, mon entourage est d’'une qualité exceptionnelle, que ces seules lignes ne sauraient traduire. Tout
ce qui suit, et sans doute I’essentiel de ce qui suivra, n’aurait jamais vu le jour sans eux tous. Il y a en
outre des gens dont je n’ai pas parlé dans ces quelques lignes, mais j’espere qu’ils savent que je pense
quand méme a eux et que je les remercie pour leur soutien. Une personne en particulier m’a accompagné,
et supporté, durant une bonne partie de ce périple, parfois sans qu’elle le sache. Peut-étre qu'un jour je
trouverai les mots pour le lui dire directement. En attendant, je nous souhaite & tous de féeter comme il
se doit la fin d’'une époque intéressante mais heureusement révolue. La prochaine fois, je vous raconterai
mes vacances.
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1.1 French version

Le but de cette theése est de donner un exemple de sous-variété lagrangienne de ’espace des modules
Mc = Homc(w, U)/U

ot m:= m1(S?\{s1, ... ,5,}) est le groupe fondamental de la sphére privé de [ points (I > 1) et ott U
est un groupe de Lie compact connexe quelconque. Nous préciserons sous peu les notations utilisées
ci-dessus et nous verrons par la suite qu’il nous faudra par moments supposer que le groupe compact
connexe U est de plus simplement connexe. Nous reviendrons sur ces questions au fil de ce travail et plus
particulierement dans la conclusion. Pour ’heure, nous souhaiterions donner un bref apergu du domaine
d’étude dans lequel s’inscrit cette these et dresser un panorama succint des principaux themes qui fondent
la géométrie symplectique des espaces de modules.

On désigne communément par modules des coordonnées sur ’espace des orbites associé a une action de
groupe. Si l'on considere par exemple 1'action par conjugaison du groupe unitaire sur lui-méme, I’espace
des orbites est I'ensemble Conj(U(n)) des classes de conjugaison de U(n), et chacune de ces classes
est entierement déterminée par I’ensemble des valeurs propres de I'un quelconque de ses représentants,
comptées avec leurs multiplicités respectives :

Conj(U(n)) ~T"/&,

Les modules de cette action sont alors par définition les éléments de T"/&,,. De maniére plus élémentaire
encore, les modules de I’action par rotations de S* ~ SO(2) sur I’ensemble des droites du plan euclidien
sont les nombres réels appartenant & l'intervalle [0, 7], généralement appelés angles orientés. Les espaces
de modules auxquels nous nous intéresserons dans cette these sont les espaces (des classes d’équivalence) de
représentations du groupe fondamental 7, ; := 71 (X,,;) d'une surface de Riemann ¥, ; := Eg\{sl, ooy 81}
ol ¥, est une surface de Riemann compacte de genre g > 0, oli [ est un entier naturel [ > 0 (en convenant
que X450 1= Xy) et ol s1, ..., sont [ points distincts de X,. Ces variétés de représentations sont un
objet d’étude important depuis plusieurs décennies maintenant, et se situent a l'intersection de diverses
branches des mathématiques, toutes tres riches, qui apportent chacune un éclairage différent sur ces
espaces. Ainsi 'espace
Rep(mg,,U) := Hom(my,,U) /U

9



CHAPTER 1 1.1

des classes d’équivalence de représentations de my; dans un groupe de Lie U apparait-il de maniere na-
turelle en géométrie algébrique complexe car il s’identifie & I'espace des classes d’équivalence de fibrés
vectoriels holomorphes sur ¥,;, comme I’'ont montré Narasimhan et Seshadri dans les années 60 (voir
[NS65]). Au début des années 80, Atiyah et Bott ont donné une nouvelle impulsion (voir [AB83]) & I’étude
de ces espaces en les identifiant aux modules des connexions plates sur les fibrés principaux de groupe U
sur g1, révélant ainsi 'importance des variétés de représentations en théorie de jauge. Ces espaces appa-
raissent également en théorie de Galois différentielle et en théorie des algebres d’opérateurs. Enfin, il est
possible d’utiliser ces espaces pour construire des déformations de sous-groupes discrets de groupes de Lie
(voir par exemple [MG88]). La diversité des théories auxquelles sont reliées ces variétés de représentations
justifie I'étude de leur structure géométrique, dont la description est susceptible d’interprétation dans cha-
cun des domaines ci-dessus. On trouvera une introduction a ’étude de ces structures par exemple dans
[Gol88]. En ce qui nous concerne, nous privilégierons 1’étude de la structure symplectique de certains
de ces espaces de représentations. Cette structure symplectique peut étre obtenue et décrite de diverses
manieres (voir par exemple [GHIW97, AM95, AMMO98, MW99]), qui présentent toutes des avantages.
Une description particulierement bien adaptée a I’étude des représentations de 7y ; est celle donnée par
Alekseev, Malkin et Meinrenken dans [AMMO8]. Elle repose sur la notion d’espace quasi-hamiltonien,
qui permet notamment d’éviter le recours a des variétés de dimension infinie tout en se limitant a des
objets relativement simples pour construire une forme symplectique sur les variétés de représentations.
Nous verrons en détail les étapes de cette construction dans le chapitre 4 et nous poursuivrons 1’étude
de la géométrie symplectique de ces espaces de modules dans le chapitre 7. Pour ce qui est d’exhiber
une sous-variété lagrangienne, nous nous limiterons dans la suite au groupe fondamental de la sphere
épointée mais nous pensons que cet exemple et les méthodes utilisées dans cette these peuvent servir de
point de départ pour la recherche de sous-variétés lagrangiennes dans ’espace des modules associé a un
groupe de surface quelconque. En particulier, nous verrons que les résultats généraux sur les espaces
quasi-hamiltoniens obtenus ici (chapitres 7 et 8) s’appliquent indépendamment du groupe de surface con-
sidéré. Dans la suite, nous étudierons exclusivement les représentations de m = 71 (S%\{s1, ... ,s}) olt
lon a fixé la classe de conjugaison de chacun des générateurs. Afin de pouvoir étre plus précis, rappelons
que le groupe m = 1 (S?\{s1, ..., s;}) admet la présentation finie par générateurs et relations suivante :

=<1, =1>

On suppose donné un systeme de représentants v, ... ,7; des générateurs de m, et on se donne par ailleurs
l classes de conjugaison Cq, ... ,C; de U. On étudie alors ’ensemble

Home(m,U) :=={p: 7 —=U | Vje{1,...,1},p(y;) € C;}

qui est un sous-ensemble (éventuellement vide) de 'ensemble Hom(7, U) des morphismes de groupes de
7w dans U. Les éléments de Hom(7, U) sont également appelés représentations de m dans U. Remarquons
que grace au choix des générateurs vq, ..., de 7w, on a :

Hom(m,U) ~ {(uy, ... ,u;) €U x -+ x U |uy...uy =1}

et
Homc(ﬂ,U):{(ul,...ul)66’1><~~~><Cl |u1...ul:1}

Dans toute la suite, nous supposerons que les classes de conjugaison Cy, ... C; de U sont choisies de
maniere & ce que Home(m,U) # 0. Dans le cas ot U = SU(n), un ensemble de conditions nécessaires et
suffisantes portant sur les C; pour que ceci soit vrai a été donné par exemple par Agnihotri et Woodward
dans [AW98] (voir aussi [Bis98, Bis99, Bel01, JW92, Gal97, KM99]). Il s’agit d’inégalités linéaires portant
sur les arguments des valeurs propres qui définissent les C;. La forme générale de ces inégalités fait appel
a des outils sophistiqués mais nous verrons qu'il est possible, dans le cas particulier ou U = U(2) et | = 3,
de les obtenir par des méthodes géométriques élémentaires (voir corollaire 5.4.12).

Deux représentations p, p’ € Hom(w, U) de m dans U sont dites équivalentes s'il existe un élément ¢ € U
tel que @p(v;)e~ ' = p/(7;) pour tout j € {1,...,l} (en particulier, si U C GI(V) est un groupe de
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1.1 CHAPTER 1

transformations linéaires d’un espace vectoriel V', cette notion coincide bien avec la notion d’équivalence
pour les représentations linéaires : il existe un automorphisme ¢ de V' tel que Vy € 7 on ait ¢(p(vy).v) =
P’ (7). (v) pour tout v € V). Cette relation d’équivalence laisse stable la classe de conjugaison de chacun
des p(7y;) et induit donc une relation d’équivalence sur Home(w,U). Remarquons que si l'on utilise la
description de Hom(w,U) (resp. Home(w,U)) donnée plus haut, alors p = (uq, ... ,u;) est équivalent a
pl = (u}, ...,u;) siet seulement si (ug, ... ,u;) et (uf, ..., u)) sont dans une méme orbite de Paction

diagonale de U sur U x --- x U (resp. C1 X --- x C;) donnée par :

1

o.(ur, . w) = (puie ™, .. puph)

L’espace des classes d’équivalence pour cette relation est appelé l’espace des modules des représentations
de 7 dans U et est noté M (resp. Mc) :

M :=Hom(m,U)/U ={(u1, ... ,wg) €U X -+ x U |ur...uy =1}/U

Me = Homc(W,U)/U:{(ul, cesu) €ECL XX Cp | up .oy = 1}/U

Ces espaces ne sont pas des variétés lisses en général, mais ils possedent une structure stratifiée que
nous évoquerons au chapitre 4. Dans la suite, nous étudierons exclusivement ’espace M¢, dont I'une
des propriétés les plus remarquables est de porter une structure symplectique stratifiée. Pour nous, cela
signifiera simplement que M¢ est réunion disjointe de variétés lisses (de dimensions différentes) appelées
strates portant chacune une structure symplectique, et nous appellerons sous-variété lagrangienne de
M_¢ un sous-ensemble de M dont lintersection avec chaque strate est une sous-varité lagrangienne de
la strate considérée. Nous appellerons représentation de 7 aussi bien les éléments de Home (7, U) que les
éléments de M, sauf si le contexte ne permet pas de dire duquel de ces deux ensembles il est question.

La démarche suivie pour trouver une sous-variété lagrangienne de M = Home(mw, U) /U consiste a :
1. introduire une notion de représentation décomposable.

2. caractériser ces représentations comme les éléments du lieu des points fixes d’une involution définie

sur Me.

3. montrer que l'involution considérée est antisymplectique et que ’ensemble de ses points fixes est
non vide (formant ainsi une sous-variété lagrangienne de M¢).

Comme nous le verrons dans le chapitre 5, 'idée d’introduire une notion de représentation décomposable a
une origine géométrique tres simple. Cette origine géométrique nous conduira a étudier les configurations
de sous-espaces lagrangiens de C" et a définir une notion d’angle entre deux tels sous-espaces. Le fait
de vouloir ensuite caractériser I’ensemble des représentations décomposables comme le lieu des points
fixes d’une involution découlera alors d’une tentative de formulation d’une version infinitésimale de ce
probleme de configurations. L’autre mérite de cette version infinitésimale sera de montrer pourquoi ’on
doit s’attendre a ce que l'involution considérée sur M soit antisymplectique.

Le cadre de ce travail sera celui de la géométrie quasi-hamiltonienne, que nous utiliserons & la fois
pour décrire la structure symplectique de M¢ et pour étudier la notion de représentation décomposable
(caractérisation et existence). La structure symplectique de M¢ sera en effet obtenue par réduction
symplectique a partir de 'espace quasi-hamiltonien C; X - -+ x C; et I'involution permettant de caractériser
les représentations décomposables sera induite par une involution sur I'espace total C; x --- x C;. Nous
donnerons en particulier des conditions suffisantes pour qu’une involution construite sur un espace quasi-
hamiltonien induise une involution antisymplectique sur le quotient symplectique associé. Le point de
notre étude le plus difficile techniquement sera de montrer I'existence des représentations décomposables
(c’est-a-dire de montrer que I'involution construite sur M admet effectivement des points fixes). Comme
nous le verrons, cela découle d’un théoreme de convexité, dit théoreme de convexité réel, pour les ap-
plications moment a valeurs dans un groupe de Lie, dont la démonstration fait ’objet du chapitre 8, et
pour lequel nous supposerons de plus que le groupe compact connexe U est simplement connexe.
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CHAPTER 1 1.1

Nous pouvons désormais résumer la discussion ci-dessus de la maniére suivante, qui sera considérablement
détaillée par la suite. On se donne un groupe de Lie compact connexe quelconque U, muni d’un auto-
morphisme involutif 7 et d’un produit scalaire Ad-invariant (.|.) sur u = Lie(U). On note 7~ I'involution
77 :u €U +— 7(ut). Un élément w € U vérifiant 7~ (w) = w (soit 7(w) = w™!) est dit symétrigue. On
supposera de plus que le lieu des points fixes Fiz(77) de involution 7~ est un ensemble connexe. Cette
hypothese est par exemple vérifiée par le groupe U(n) muni de l'involution 7(u) := @ (voir les remarques
5.2.3 et 7.4.2 pour des commentaires sur cette hypothése) . On se donne enfin [ classes de conjugaison
Ci, ...,C; de U, choisies de maniére & ce que Home(m,U) # 0. L’espace C; x --- x C; est un espace
quasi-hamiltonien lorsqu’on le munit de 'action diagonale de U, d’une certaine 2-forme notée w, et de
I’application
w: Cix---xC — U
(U, ... ) +— up...u

appelée application moment. L’ensemble des représentations de m est alors la fibre du moment au-dessus
de1:
Home (m,U) = p*({1}) = {(u1, ... ) €Cy x -+ x Cy |uy ...up = 1}

et I'espace des modules M¢ est le quotient symplectique associé a I’espace quasi-hamiltonien C; x -+ - x Cj :
Me=Cix--xC//U=p*{1})/U

Donnons maintenant la définition d’une représentation décomposable. Nous verrons dans le chapitre 5
comment arriver & cette définition de nature algébrique par des considérations géométriques.

Définition (Représentation décomposable). Soit (U, 7) un groupe de Lie muni d’un automorphisme
involutif 7. Une représentation (ui, ...,u;) € p=*({1}) de m dans U est dite décomposable s’il existe [
éléments wy, ... ,w; de U vérifiant :

(1) T(wj) = w;l pour tout j (chaque w; est un élément symétrique de U au sens de I'involution 7).
(il) u; = wlwg_l, Uy = wzwgl, Lo, etu = wlwl_l.

Une représentation est dite og-décomposable si elle est décomposable avec w; = 1.

On définit alors I'involution suivante sur C; X --- x C; :

ﬁ : C1><---><Cl — Cl><---><Cl
(w, o) — (77 (w) . 7 (u2)T ()T () (W), e, T ()T (1) T (W), T (W)

Nous verrons au chapitre 6 comment cette involution est obtenue et nous démontrerons alors le théoreme
suivant :

Théoréeme 1 (Caractérisation des représentations décomposables). Une représentation u =
(1, ... ,u) € p=t({1}) est og-décomposable si et seulement si 3(u) = u. Elle est décomposable si et
seulement si B(u) ~ u en tant que représentations de .

Nous verrons par ailleurs que 'involution f vérifie Fiz(3) # 0, B(p.u) = 7(¢).B(u) pour tout u
Ci x---xCrettout p €U, et pof=7"opu. Ceci montre que [ induit une involution

B: [u] € Mc — [B(u)]

m

sur espace M¢ des classes d’équivalence de représentations de m dans U. On remarque que si u est
décomposable alors p.u est décomposable pour tout ¢ € U, et on a alors immédiatement :

Corollaire 2. [u] € M est décomposable si et seulement si 3([u]) = [u].

De plus, nous verrons au chapitre 7 que l'on a :
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Proposition 3. f*w = —w surCy x --- x C;, de sorte que B est antisymplectique sur Mec.

Il reste a montrer que B a effectivement des points fixes, ou, de maniere équivalente, que p~1({1}) N
Fiz(3) # 0. Ceci est un corollaire du théoréme suivant :

Théoréme 4 (Un théoréme de convexité réel pour les applications moment & valeurs dans
un groupe de Lie). Soit (U,(.|.),7) un groupe de Lie compact connexe et simplement connexe muni
d’un automorphisme involutif T tel que linvolution 7= : u+ 7(u™!) laisse un tore maximal T de U fize
point par point, et soit W C t = Lie(T) une alcove de Weyl fermée. Soit (M,w,pu: M — U) un U-espace
quasi-hamiltonien connexe tel que Uapplication moment p: M — U soit propre et soit §: M — M une
inwvolution sur M vérifiant :

(i) frw=-w

(i) B(u.x) = 7(u).B(z) pour tout x € M et tout u € U
(iii)) poB=1"op
(iv) MP := Fiz(B) # 0

Alors : o o
W(MP) 0 exp() = (M) (1 exp()
En particulier, n(M?) Nexp(WV) est un sous-polytope conveze de exp(W) ~ W C t, égal au polytope

moment u(M) Nexp(W) tout entier.
Corollaire 5 (Existence de points fixes pour 3). Si p~'({1}) # 0 alors p=*({1}) N Fixz(3) # 0.

L’existence des représentations décomposables est donc garantie des lors que Home (m,U) # (. On peut
alors conclure de la maniere suivante :

Théoréme 6 (Une sous-variété lagrangienne de Mc). L’ensemble des classes d’équivalence de
représentations décomposables du groupe m = w1 (S?\{s1, ... ,s1}) est une sous-variété lagrangienne de
Uespace symplectique stratifié Mc = Home (7,U) /U, égale au lieu des points fizes d’une involution anti-
symplectique B définie sur M.

Les chapitres 2 et 3 de cette these rappellent quelques notions et résultats sur les groupes de Lie qui
seront utiles par la suite et qui sont exposés en détail par exemple dans [Hel01] et [Loo69b]. Le chapitre 4
donne la définition et les principaux exemples d’espaces quasi-hamiltoniens, ainsi que les propriétés dont
nous aurons besoin ultérieurement. Il suit [AMMO8] de trés pres. Les chapitres 5 & 9 constituent quant &
eux le coeur de cette these. Les résultats énoncés ci-dessus y sont démontrés et ’on tente d’y exposer au
mieux les motivations et les idées qui ont permis de les obtenir. Outre les résultats principaux mentionnés
ci-dessus, on trouvera aussi dans cette these une formule, obtenue en collaboration avec Elisha Falbel et
Jean-Pierre Marco, pour calculer 'indice d’inertie d’un triplet de sous-espaces lagrangiens de C™ a partir
des angles mesurés deux a deux entre les lagrangiens considérés (voir proposition 5.5.10).

L’un des intéréts de ce travail de these me semble étre de donner, en plus d’un exemple explicite de
sous-variéte lagrangienne d'un espace de modules (voir aussi [Gol88] et [Ho04] ), une fagon d’en chercher
d’autres lorsque 1’on change le groupe de surface considéré initialement. Ainsi, pour peu que I'on sache
construire une involution § vérifiant certaines propriétés sur I’espace quasi-hamiltonien dont la réduction
symplectique donne ’espace de modules qui nous intéresse, les résultats obtenus ici garantissent 1’existence

IDans cet article, Ho construit une involution antisymplectique sur 1’espace
n
Mg, :={(a1,b1, ... ,ag,by) € SU() x -+ x SU(n) | []las,b:] =1}/SU(n)
i=1
des représentations du groupe fondamental d’une surface de Riemann compacte de genre g > 1.
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de points fixes pour 'involution ﬁ induite sur le quotient, et montrent que ’ensemble de ces points fixes
forme une sous-variété lagrangienne de cet espace de modules. Il reste & obtenir effectivement de telles
involutions [ dans le cas d’un groupe de surface m quelconque, et 'on peut penser que cela passe par la
définition d’une notion appropriée de représentation décomposable.

Les principales références ayant servi de point de départ a ce travail de these sont d’une part 'article
d’Alekseev, Meinrenken et Woodward ([AMWO1]) sur la conjecture de Thompson et l'article d’Alekseev,
Malkin et Meinrenken ([AMMY8]) sur la notion d’espace quasi-hamiltonien, et d’autre part larticle de
Hilgert, Neeb et Plank ([HNP94]) sur les propriétés de convexité du moment pour les espaces hamiltoniens
usuels et larticle de O’Shea et Sjamaar ([OS00]) donnant une version réelle de ces résultats dont nous
démontrons ici un analogue dans le cadre quasi-hamiltonien.

Une partie des résultats nouveaux contenus dans cette these a déja fait ’objet de publications. Ainsi le
chapitre 5 reprend-il les résultats obtenus en collaboration avec Elisha Falbel et Jean-Pierre Marco dans
[FMS04], tandis que les chapitres 6 et 9 contiennent les résultats publiés dans [Sch06].

La notion de représentation décomposable a été introduite dans le cas du groupe unitaire U = U(n)
par Elisha Falbel et Richard Wentworth, avec qui j’ai eu la chance de pouvoir beaucoup discuter de ces
questions, et que je remercie beaucoup pour 'aide qu’ils m’ont apportée lors de ces discussions. Le fait
que I'ensemble des représentations décomposables constitue une sous-variété lagrangienne de 1’espace des
modules dans le cas particulier U = U(n) a été obtenu simultanément et par des méthodes différentes
dans [FW] et dans [Sch06], ce dernier article utilisant le résultat principal de [FW] pour prouver la non-
vacuité de I'ensemble des représentations décomposables de 1 (S?\{s1, ... ,s;}) dans U(n). Dans cette
these, la notion de représentation décomposable est étendue a un groupe de Lie quelconque U muni d’une
involution 7, et la caractérisation de ces représentations décomposables obtenue dans le chapitre 6 est
valable pour tout groupe de Lie compact connexe (sous I’hypothese que Fixz(77) est connexe). L’existence
des représentations décomposables est quant a elle obtenue pour les groupes de Lie compacts connexes et
simplement connexes, ce qui ne permet donc pas de retrouver le résultat obtenu par Falbel et Wentworth
dans [FW] (voir & ce propos la section 9.3). Je souhaiterais également remercier Alan Weinstein pour
m’avoir encouragé dans l'idée d’aborder I’étude des représentations décomposables a ’aide de la notion
d’application moment et pour m’avoir suggéré 'approche infinitésimale développée dans la section 6.1,
ainsi que Johannes Huebschmann pour m’avoir aiguillé vers la notion d’espace quasi-hamiltonien. Enfin,
je remercie vivement Sam Evens et Jiang Hua Lu pour la discussion qui m’a conduit a écrire les sections
6.3 et 6.4, étapes cruciales vers la caractérisation des représentations décomposables obtenue dans le
chapitre 6.

1.2 English version
The purpose of this thesis is to give an example of a Lagrangian submanifold of the moduli space
Mc = Homc(ﬂ, U)/U

where 7 := 71 (S?\{s1, ... ,s:}) is the fundamental group of an [-punctured sphere (I > 1), and where
U is an arbitrary compact connected Lie group. We will specify the above notations shortly, and see
that it will sometimes be necessary to suppose that the compact connected group U is in addition simply
connected. We shall come back to these considerations later on in this work, notably in the last chapter.
For now, we would like to give an outline of the field which this thesis is attached to, and an overview of
the foundational material for the study of symplectic geometry of moduli spaces.

It is customary to call modules coordinates on the orbit space associated to a group action. For
instance, if we consider the conjugacy action of the unitary group on itself, then the orbit space is the set
Conj(U(n)) of conjugacy classes of U(n), and each of these conjugacy classes is completely determined
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1.2 CHAPTER 1

by the eigenvalues of any of its representatives, counted with their respective multiplicities :
Conj(U(n)) ~T"/6&,

Then by definition the modules of this action are the elements of T"/&,,. In an even more elementary
way, the modules of the rotation action of S ~ SO(2) on the set of lines of the Euclidean plane are the
real numbers in the interval [0, 7r[, usually called oriented angles. In this thesis, the moduli spaces that we
shall be interested in are the spaces of (equivalence classes of) representations of the fundamental group
g1 = m(Xg,1) of a Riemann surface ¥, := 3,\{s1, ..., s} where ¥/ is a compact Riemann surface
of genus g > 0, where [ is an integer { > 0 (with the convention that X, := X,) and where s1, ..., s
are | pairwise distinct points of 3,. These representations varieties have been an important object of
study for several decades now, and are located at the intersection of various areas of mathematics, each
of which is very rich and sheds interesting lightning on these spaces. Thus, the space

Rep(mg,,U) := Hom(my,,U) /U

of equivalence classes of representations of m,; in a Lie group U arises naturally in complex algebraic
geometry as it can be identified to the space of equivalence classes of holomorphic vector bundles on
Y,, as it was shown by Narasimhan and Seshadri in the 1960s (see [NS65]). At the beginning of the
1980s, Atiyah and Bott gave a new impulsion (see [AB83]) to the subject by identifying these spaces
as the moduli spaces of flat connections on principal bundles of group U on X, ;, thereby revealing the
importance of the representation varieties in gauge theory. These spaces also arise in differential Galois
theory and in operator algebra theory. Finally, it is possible to use these spaces to construct deformations
of discrete subgroups of Lie groups (see for instance [MG88]). The diversity of the fields which these
representation spaces are attached to justifies the fact that they are such an important object of study
and that their geometry should be investigated. One may for instance find an introduction to the study of
geometric structures of moduli spaces in [Gol88]. As for us, we shall focus our attention on studying the
symplectic structure of some of these representation spaces. This symplectic structure can be obtained and
described in a wide variety of ways (see for instance [GHIJW97, AM95, AMMO98, MW99]), each of which
has its own advantages. The description given by Alekseev, Malkin and Meinrenken in [AMMO98] is in our
sense particularly well-suited for studying representations of 7, ;. This description rests on the notion of
quasi-Hamiltonian space, which enables one to avoid infinite-dimensional manifolds while limiting oneself
to relatively simple objects to construct a symplectic form on representation varieties. We will get into
the details of each step of this construction in chapter 4 and carry on studying symplectic geometry
of moduli spaces in chapter 7. As for giving examples of Lagrangian submanifolds, we shall restrict
ourselves to the case of the fundamental group of a punctured sphere, but we think that this example
and the methods used in this thesis can be used as a starting point to find Lagrangian submanifolds in
the moduli space associated to an arbitrary surface group. In particular, we will see that the general
results on quasi-Hamiltonian spaces obtained here (chapters 7 and 8) can be applied regardless of the
considered surface group. In the following, we will study representations of 7 = m1(S?\{s1, ..., s})
whose generators lie in a prescribed conjugacy class exclusively. To be able to be more precise in our
statements, let us recall that the group m = 71 (S?\{s1, ..., s;}) admits the following finite presentation
by generators and relations :

=<7, n|m.m=1>
We start with a system of representatives 71, ... ,7; of generators of 7, and ! conjugacy classes C1, ... ,(C;
of U. We then study the set
Home(m,U) :=={p:mn—=U | Vje{l,... 1}, p(y) €C;}

which is a (possibly empty) subset of the set Hom(mw, U) of group morphisms of 7 into U. Elements of
Hom(m, U) are also called representations of m into U. Thanks to the choice of generators 71, ...,y of
7, one has :

Hom(m,U) ~ {(uy, ... ,w)) €U x -+ x U |uy...uy =1}
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and
Homc(ﬂ,U):{(ul, coouy) €ECL XX C |u1...ul:1}

In all of the following, we will assume that the conjugacy classes Cy, ... C; of U satisfy the condition
Home(m,U) # 0. In the case where U = SU(n), a set of necessary and sufficient conditions lying
on the C; for this to be true has been given for instance by Agnihotri and Woodward in [AW98] (see
also [Bis98, Bis99, Bel01, JW92, Gal97, KM99]). These conditions are linear inequalities satisfied by the
arguments of the eigenvalues defining the C;. The general form of these inequalities calls for sophisticated
tools, but we will see that in the case where U = U(2) and | = 3, it is possible to obtain them using only
elementary geometric methods (see corollary 5.4.12).

Two representations p, p’ € Hom(w,U) of 7 into U are said to be equivalent if there exists an element
¢ € U such that pp(y;)p~ = p'(v;) for all j € {1, ..., 1} (in particular, if U C GI(V) is a group of linear
transformations of a vector space V, this is indeed the same notion as equivalent linear representations :
there exists an automorphism ¢ of V such that Vv € 7 one has ¢(p(v).v) = p'(7).¢(v) for all v €
V). This equivalence relation preserves the conjugacy class of each of the p(v;), so that it induces an
equivalence relation on Home(w,U). Observe that if we use the above-given description of Hom(w, U)

(resp. Home(m,U)), then p = (u1, ... ,w) is equivalent to p = (u}, ... ,u}) if and only if (uq, ... ,u)
and (uf, ... ,u;) lie in a same orbit of the diagonal action of U on U x --- x U (resp. C1 X --- x C;) given
by :

o.(ur, .y w) = (puip™t, ... ouph)

The space of equivalence classes for this relation is called the moduli space of representations of 7 into U
and denoted by M (resp. M¢) :

M :=Hom(m,U)/U ={(u1, ... ,w) €U X+ xU |uy...uy =1}/U
Me ::Homc(W,U)/U:{(ul, o) €ECE X - xC ul...ulzl}/U

These spaces are generally not smooth manifolds but they carry a stratified structure that we shall evoke
in chapter 4. In the following, we will focus our attention on the space M, whose main remarkable
property is that it carries a stratified symplectic structure. To us, this will simply mean that Mg is
a disjoint union of smooth manifolds (of different dimensions) called strata, each of which carries a
symplectic structure. And we will call Lagrangian submanifold of M¢ a subset of M whose intersection
with each stratum is a Lagrangian submanifold of the considered stratum. Elements of Homeg (7, U) will
be called representations of w. We shall also call elements of M representations of 7, unless it is not
clear from the context which of these two sets we are precisely alluding to.

The path we shall follow to find a Lagrangian submanifold of M¢ = Home (7, U)/U consists in :
1. introducing a notion of decomposable representation.

2. characterizing these representations as the elements of the fixed-point set of an involution defined

on Me.

3. showing that this involution is anti-symplectic and that its fixed-point set is non-empty (being
therefore a Lagrangian submanifold of M¢).

As we shall see in chapter 5, the idea of introducing a notion of decomposable representation has a very
simple geometric origin, which will lead us to studying configurations of Lagrangian subspaces of C™ and
to defining a notion of angle between two such subspaces. The idea of trying to characterize the set of
decomposable representations as the fixed-point set of an in involution will then follow from an attempt
at giving an infinitesimal formulation of this configuration problem. Another upshot of this infinitesimal
formulation is to show why one should expect the involution at stake to be anti-symplectic on Mg.

The setting of this thesis will be quasi-Hamiltonian geometry. We shall encounter this geometry both
to describe the symplectic structure of M¢ and to study the notion of decomposable representation
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(characterization and existence). Indeed, the symplectic structure on M¢ will be obtained by symplectic
reduction from the quasi-Hamiltonian space C; x --- x C;, and the involution that shall enable us to
characterize decomposable representations will be induced by an involution on the total space C; x - - - x ;.
In particular, we will give sufficient conditions on an involution defined on a quasi-Hamiltonian space for
it to induce an anti-symplectic involution on the associated symplectic quotient. The most technically
difficult point of our study will be to prove the existence of decompoable representations (that is, to
prove that the fixed-point set of the involution constructed on M¢ is non-empty). As we shall see later
on, this will follow from a convexity theorem, more precisely from what is usually called a real convexity
theorem, for group-valued momentum maps, whose proof, for which we will suppose that the compact
connected Lie group U is in addition simply connected, will be presented in chapter 8.

We may now summarize the above discussion in a way that shall be considerably detailed in the following.
We start with a compact connected Lie group U, endowed with an involutive automorphism 7 and whose
Lie algebra u = Lie(U) is equipped with an Ad-invariant scalar product (.|.). We denote by 7~ the
involution 7~ : u € U — 7(u~!). An element w € U satisfying 7~ (w) = w (or equivalently, 7(w) = w™1!)
is said to be symmetric. We shall suppose additionally that the fixed-point set Fiz(77) of the involution
7~ is a connected set. This assumption is for instance satisfied by the unitary group U(n) endowed with
the involution 7(u) := @ (see remarks 5.2.3 and 7.4.2 for comments on this assumption). Finally, we
suppose given [ conjugacy classes Cy, ... ,C; of U, picked in a way that Home(mw,U) # (). The space
Cy X --- x C; is a quasi-Hamiltonian space when it is endowed with the diagonal action of U, a certain
2-form w, and the map
w: Cix---xC — U
(Ut, ..., u) +— up...y

called the momentum map. Then the set of representations of 7 is the fibre above 1 of the momentum
map :
Home (m,U) = p*({1}) = {(u1, ... ) €Cy x - x Cy |uy ...up = 1}

and the moduli space M¢ is the symplectic quotient associated to the quasi-Hamiltonian space C x- - -xC; :
Me=Cix---xC//U:=p ' ({1})/U

Let us now give the definition of a decomposable representation. We will see in chapter 5 how to reach
this definition using geometric considerations.

Definition (Decomposable representations). Let (U, 7) be a Lie group endowed with an involutive
automorphism 7. A representation (ug, ... ,u;) of 1 = 7 (S*\{s1, ... ,s;}) into U is called decomposable
if there exist [ elements wy, ..., w; € U satisfying :

(1) 7(wj) = wj_l for all j (each w; is a symmetric element of U with respect to 7).

e -1 -1 -1
(i) w1 =wiwy ", ug = wowsg *, ..., U = WW .

A representation will be called og-decomposable if it is decomposable with w; = 1.
We then define the following involution on C; X - -+ X C; :

ﬂ : C1><---><Cl — Cl><---><Cl
(wi, o) — (77 (w) . 7 (u2)T ()T () (W), -, T ()T (1) T (W), T (W)

We shall see in chapter 6 how this involution is obtained and we will then show the following result :

Theorem 1 (Characterization of decomposable representations). A representation v = (uq, ...,
w) € p~H({1}) is oo-decomposable if and only if B(u) = u. It is decomposable if and only if B(u) ~ u as
representations of m.
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We shall also see that the involution § satisfies Fix(8) # 0, 8(p.u) = 7(p).B(u) for all u € C; X -+ x C;
and all ¢ € U, and ppo =7~ o p. This shows that 5 induces an involution

B: [u] € Mc — [B(u)]

on the space M¢ of equivalence classes of representations of 7w in U. One then observes that if u is
decomposable then so is p.u for all ¢ € U, therefore one immediately has :

Corollary 2. [u] € Mc is decomposable if and only if B([u]) = [u].
Additionally, we shall see in chapter 7 that one has :
Proposition 3. 3*w = —w on Cy X --- x Cj, so that (3 is anti-symplectic on M.

It remains to show that 3 indeed has fixed points, or equivalently, that p~1({1}) N Fiz(3) # 0. This is
a corollary of the following theorem :

Theorem 4 (A real convexity theorem for group-valued momentum maps). Let (U,(.].),T) be
a compact connected simply connected Lie group endowed with an involutive automorphism T such that
the involution 7~ : u +— T(u™1) leaves a mazimal torus T of U pointwise fized and let W C t = Lie(T)
be a closed Weyl alcove. Let (M,w,pu : M — U) be a connected quasi-Hamiltonian U-space with proper
momentum map p: M — U and let 3: M — M be an involution on M such that :

(i) frw=—w

(ii) B(u.x) = 7(u).0(z) for all x € M and allu € U
(iii) poB=1"op
(iv) MP := Fiz(B) #0

Then :
p(MP) Nexp(W) = p(M) Nexp(W)

In particular, p(MP)Nexp(W) is a convex subpolytope of exp(W) ~ W C t, equal to the whole momentum

polytope (M) Nexp(W).
Corollary 5 (Existence of fixed points for 3). If u=*({1}) # 0 then p~*({1}) N Fixz(3) # 0.

Thus, the existence of decomposable representations is guaranteed as soon as Home (7, U) # 0. One may
then conclude in the following way :

Theorem 6 (A Lagrangian submanifold of Mc). The set of equivalence classes of decomposable
representations of the group m = w1 (S*\{s1, ... ,s1}) is a Lagrangian submanifold of the stratified sym-

plectic space M¢ = Home(m,U) /U, equal to the fixed-point set of an anti-symplectic involution 3 defined
on Me.

Chapters 2 and 3 of this thesis are devoted to recalling a few notions and results on Lie groupe that
are exposed in detail for instance in [Hel01] and [Loo69b]. In chapter 4, we give the definition and main
examples of quasi-Hamiltonian spaces, as well as the properties we shall need in the following. It follows
[AMMO8] closely. Chapters 5 to 9 constitute the heart of this thesis. The results announced above are
proved there, and we try to explain the motivation and ideas that led to them. In addition to the main
results mentioned above, this thesis contains a formula, obtained in collaboration with Elisha Falbel and
Jean-Pierre Marco, that enables ones to compute the inertia index of a Lagrangian triple of C™ from the
angles between them (see proposition 5.5.10).
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In addition to giving an explicit example of a Lagrangian submanifold in a moduli space (see also [Gol88]
and [Ho04] ?), one of the interests of this thesis work is, in my opinion, to give a way of finding others
when one changes the surface group considered initially. As a matter of fact, if one is able to obtain
an involution 3 satisfying certain properties on the quasi-Hamiltonian space whose symplectic reduction
is the moduli space one is interested in, the results contained in this work ensure that the involution
B induced on the associated quotient indeed has fixed points and that the set of such fixed points is a
Lagrangian submanifold of the moduli space at hand. And we would think that obtaining such involutions
in the case of an arbitrary surface group 7 is a matter of defining an appropriate notion of decomposable
representation.

The main references serving for starting point for this thesis work are on the one hand the article
of Alekseev, Meinrenken and Woodward on the Thompson conjecture ([AMWO1]) and the article of
Alekseev, Malkin and Meinrenken on quasi-Hamiltonian spaces ([AMM98]), and on the other hand the
article of Higert, Neeb an Plank on convexity properties of momentum maps in the usual Hamiltonian
setting and the article of O’shea and Sjamaar giving a real version of these results, which we prove here
a quasi-Hamiltonian analogue of.

Some of the results contained in this thesis has already been accepted for publication. Thus, chapter 5
is an expanded version of results obtained in collaboration with Elisha Falbel and Jean-Pierre Marco in
[FMS04], whereas chapters 6 and 9 contain the results published in [Sch06].

2In this paper, Ho constructs an antisymplectic involution on the space
n
Mg = {(a1,b1, ... ,ag,bg) € SU() x -+ x SU(n) | []las,b:] =1}/SU(n)
i=1

of representations of the fundamental group of a compact Riemann surface of genus g > 1.
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Chapter 2

Generalities on actions of compact
connected Lie groups

Contents

2.1 The action of a compact Lie group on an arbitrary manifold ... ... .. 21

2.2 The conjugacy action of a compact connected simply connected Lie group
onitself . . . . . e e e e e e e e e e e e e e e e e 23

In this chapter, we recall some properties of actions of compact Lie groups. In particular, we study
the conjugacy action of a compact connected simply connected Lie group on itself.

The sole purpose of this chapter is to serve as a reference for results that we shall need in the remainder
of this thesis. The properties we remind here are all standard, and proofs might be found in the books
indicated below. Whenever we need one of these results in the forthcoming chapters, a precise reference
will be made, so that one may for now skip the present chapter and come back to it when necessary.

2.1 The action of a compact Lie group on an arbitrary manifold

In this section, we recall a few facts about compact group actions that we will need in the forthcoming
chapters. We freely quote results from [GS84c|, [DKO00], [Bre72] and [Bou82], and begin with the notion
of manifold of symmetry :

Proposition 2.1.1. Let U be a compact Lie group acting on a manifold M and let K C U be a closed
subgroup of U. Let Mk denote the set of points of M whose stabilizer is exactly K :

Mg :={zeM|U, =K}

Then Mg is a submanifold of M, called the manifold of symmetry K, whose tangent space at any x € Mg
consists of K-fized vectors of T, M :

T.Mg ={veT,M|forall ke K, kv=uv}

We refer to [GS84c] (p.203) for a proof of this result. Observe that for z € M, the group K indeed acts
on T, M : since zx is fixed by any k € K, the tangent map to the diffeomorphism y € M — k.y sends
T,.M to itself. Also observe that the subgroup K is assumed to be closed because a stabilizer always is.

When studying the action of a Lie group U on a manifold M, it is often useful to understand what
the manifold M looks like in the neighbourhood of an orbit U.z of this action. One key notion in this
context is that of a slice through x € M (see for instance [DKO00], p.98) :
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Definition 2.1.2. Let U be a Lie group acting on a manifold M and let x € M be a point of M. A
submanifold § C M is called a slice through x if :

(i) zeS

(ii) S is Uy-stable

(iii) if w.SNS #0 then u € U,

(iv) T,M =T,(Ux) @ T,S and for ally € S, T,M = T,(U.y) + T, S

In particular, the set U.S = {u.y : y € S,u € U} is an open neighbourhood of the orbit U.z, and § is
closed in U.S.

We then have :

Proposition 2.1.3. If U is a compact Lie group acting on a manifold M, then for every x € M there
exists a slice through x. Furthermore, we can choose coordinates on S so that S is an open ball in a
vector space upon which U, acts linearly.

We refer to [GS84c] (p.201) for the proof. See also [DK00] for the case of proper actions of arbitrary Lie
groups. One very interesting consequence of the existence of slices is the possibility of establishing a local
normal form for compact group actions (see for instance [DK00], p.102) :

Proposition 2.1.4. Let U be a compact Lie group acting on a manifold M. Then any x € M possesses
a U-stable open neighbourhood V,, such that :

MoV, ~U xp, (TIM/TI(U.x))

where U xy, (T.M/T,(U.x)) =: U xy, V, is the quotient of the manifold U x V, by the free action of
the compact group U, given by u.(g,v) := (gu~t,u.v). Furthermore, if we denote by [g,v] the U,-orbit of
(g9,v) in U X V,, for this action, then the manifold U Xy, V,, inherits a U-action given by u.[g,v] = [ug, v]
and the above diffeomorphism between Vy and U X, Vy is equivariant.

This has the following consequence :

Corollary 2.1.5. Every x € M possesses a U-stable open neighbourhood V, such that the stabilizer of
any y € V, is conjugate to a subgroup of Uy. In particular, dim (U.y) > dim (U.x) for any y € V,.

Proof. Take y = [g,v] € U xy, Vi ~ V. Then u.y = y if and only if [ug, v] = [g,v], that is, if and only if
there exists k € U, such that ugk™' = g and k.v = v. In particular, u = gkg~' € gU,g~'. O

I would like to thank Pierre Sleewaegen for discussions on these topics, and refer to [Slea] for further
properties of compact group actions and a comprehensive study of convexity properties of momentum
maps for torus actions on symplectic manifolds.

Finally, we quote one last result on actions of compact Lie groups, for the proof of which we refer to
[DKO00] (p.118, see also [Bou82], pp.95-99).

Proposition 2.1.6. Let U be a compact Lie group acting on a manifold M and let N C M be a connected
subset of M such that N is the union of open connected pieces of U-orbits. Set :

¢ :=max{dim(U.x) : z€ N}

and :
Ny:={zeN | dimUx)=q}

Then Ny is an open, connected, and dense subset of N.
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2.2 The conjugacy action of a compact connected simply con-
nected Lie group on itself

In this section, we study the conjugacy action of a compact connected simply connected Lie group on
itself. More precisely, we investigate the geometry of a fundamental domain for this action. We freely
quote results from [Bou82], [Hum?78], [BtD95], [Ada69] and [Loo69b]. The material presented here will
be useful to us in chapter 8.

Let U be a compact connected Lie group and let 7' C U be a maximal torus of U. We denote by
N(T) the normalizer of T in U and by W(T) := N(T)/T (or simply W) the associated Weyl group,
which is a finite group operating on T'. The compact connected group U acts on itself by conjugation,
and we denote the orbit space by U/Int(U). We then have :

U/lnt(U) ~ T/W (2.1)

(see for instance [BtD95], p.166). If we additionally assume U to be simply connected, we can obtain
a fundamental domain D := exp(W) C U for the conjugacy action as the exponential of a convex
polyhedron W C t := Lie(T) C u:= Lie(U) called a closed Weyl alcove on which the exponential map is
injective. We will give a description of such a closed Weyl alcove in terms of roots of (U, T'). Let us first

recall the following definition :

Definition 2.2.1 (Fundamental domain). A subset D C X of a U-space X is called a fundamental
domain for the action of U if it intersects each U-orbit in exactly one point. Consequently, the map
D C X — X/U is a bijection from the fundamental domain D onto the orbit space X/U.

We now consider the adjoint action of the maximal torus 7' C U on the complexification u® of u = Lie(U),
and we denote by R the corresponding root system (see for instance [Loo69b], ch. 5) :

R:={aet |uf #{0}}
where for any linear form o : t — R we set :
uS = {y cu® | forall X € t,[X,Y] = 2ira(X) Y}

In the following, we will always assume that u = Lie(U) is equipped with an Ad-invariant positive definite
scalar product (.|.) . In particular, we may identify the co-adjoint action of U on u* with the adjoint
action of U on u. Since U is compact connected and simply connected, it is in particular semisimple,
and we may for instance take (.|.) to be minus the Killing form «(X,Y") = tr(ad X adY). To every root
a € R we associate the hyperplane

Ho={X€et]a(X)=0}=keraCt

Definition 2.2.2 (Weyl chamber). A connected component of t\ Uner Hq is called a Weyl chamber
of the root system R. By definition, it is an open cone of t. In particular, it is convex. A Weyl chamber
is commonly denoted by t} C t* ~t. We will denote its closure by E and call it a closed Weyl chamber.
It is a closed convex subset of t.

We now choose a Weyl chamber t7 C t and denote by R (t}) (or simply R,) the set of associated
positive roots :
R (t}):={a € R | a(X) >0 for one and therefore all X € ¢} }

A positive root o € Ry is then said to be decomposable if it can be written as a sum a = EB€R+ ng.B
where ng > 0 are integers. Otherwise it is called indecomposable, or simple. We denote by A(t} ) (or
simply A) the set of simple roots in R, also called a basis of R, since it can be shown that every root
a € R is of the form ;. \ ng.8 where ng € Z. As a matter of fact, bases of R and Weyl chambers are
in one-to-one correspondence (see for instance [BtD95], p.204). One of the interests of the notion of a
Weyl chamber is that it provides a fundamental domain for the (co-)adjoint action of U on u ~ u*.
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Proposition 2.2.3. The inclusion maps E — t — u induce homeomorphisms :
. — t/W(T) — u/AdU
We refer to [Bou82] (p.46) for a proof of this result.

The set of simple roots A associated to the choice of a Weyl chamber t enables one to give a very
nice description of the polyhedral structure of the closure E of the Weyl chamber, which we will recall
shortly. This description is key to the proof of the momentum convexity theorem presented in [HNP94].
By describing in a similar way the polyhedral structure of a fundamental domain for the conjugacy action
of U on itself, we lay the ground for the proof of the momentum convexity theorem that we will give in
chapter 8. Generalizing the definition of the hyperplanes H,,, we set, for all « € R and alln € Z :

Haon ={Xet|aX)=n}Ct

The set

D = U Haon

aER, n€Z

is called the (Stiefel) diagram of t. It is a family of affine hyperplanes of t.
Definition 2.2.4 (Weyl alcove). A connected component W of t\D is called a Weyl alcove of the root
system R. By definition, it is an open bounded convex polyhedron. For each choice of a Weyl chamber

t' C t (with associated set of positive roots Ry and set of simple roots A), there exists a unique Weyl
alcove W whose closure contains 0 € t :

W={Xect|VaecA aX)>0and Ya € R{\A,a(X) <1}

We call it the fundamental alcove associated to the Weyl chamber t7. Its closure W, called the closed
fundamental alcove, is a convex polytope of t.

We then have :

Proposition 2.2.5. Let U be a compact connected simply connected Lie group and let W C u = Lie(U)

be a Weyl alcove for U. Then the set exp(W) C U is a fundamental domain for the conjugacy action
of U on itself. Moreover, the exponential map exp : u — U induces a one-to-one map from the compact
convez polytope W onto the closed set exp(W) C U. Consequently, we have homeomorphisms :

W = exp(W) — U/Int(U)

exp

We refer to [Bou82] (p.45) or to [Loo69b] (p.37) for a proof of this result. We now wish to describe the
polyhedral structure of the convex polytope W C t. We begin with the polyhedral structure of the closed
Weyl chamber t7 (see [HNP94]). By definition of A C R4, we have :

L ={Xet|Vaec A aX)>0}

and : .
L ={Xet|VaecA aX)>0}

For each subset S C A, we set :
Fs:={X €t|Vae S,a(X)=0and Va € A\S,a(X) > 0} C t}
And we then have :
t)=F and © = || Fs
ScA
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One remarkable feature of the sets (Fs)sca, which we will call the cells of E, is that two elements
X,Y lying in a same Fs have the same stabilizer Ux = Uy for the (co-)adjoint action of U on u ~ u*
(see lemma 6.3 in [HNP94]). We will establish an analogous property for the closed fundamental alcove
W C 7 (see proposition 2.2.8). We first observe that W is also a union of cells. Instead of corresponding
to subsets S C A of the set of simple roots, these cells correspond to subset S C Ry of the whole set of
positive roots. More precisely, each subset S C Ry can be uniquely written S = S; U Se where S; C A
and Sy C Ry\A, and for such an S = 57 U Sa, we set :

. Vae S, a(X)=0 Vae Sy, a(X)=1
WS'—{X6” {VaeA\Si, o(X)>0 2nd {vae(m\m\sz, a(X) < 1 }

In particular :
W={Xet|VaeAaX)>0and Va € Ry\A,a(X) <1} =W,

and :
W={Xet|VaecAaX)>0andVaeR\Aa(X)<1} = | | Ws

As a matter of fact, by using the notion of highest root (see [Bou68], p.165), this description can be
simplified : there exists a unique positive root ap € R4 \A, called the highest root, such that for all
X e t}, ag(X) > a(X). In particular, if ag(X) < 1 then necessarily a(X) < 1. Then :

W={Xet|Vae A aX)>0and ap(X) < 1}

And in fact :
W={Xet|Vae A aX)>0and ap(X) <1}

and the cells of W correspond to subsets S C AU {ap} :

W= || Wws
SCAU{ao}

Definition 2.2.6. The sets (Ws)scau{a,} are called the cells of the closed fundamental alcove W.

We now write this down explicitly in the case where U = SU(4) (see [Loo69b] pp.16-18 for the case
U = SU(3)). We do so because in the SU(3) case there is only one positive root which is not simple,
so that it is automatically the highest root. In contrast, in the SU(4) case, there are three positive
roots which are not simple (see below) and we will see that it is enough for our purposes to consider the
highest one. Additionally, since SU(4) is of rank 3, it is still possible to draw the Weyl alcove explicitly,
which helps developing intuition on this object. This will be useful in chapter 8. We choose the following
Ad-invariant positive definite scalar product on su(4) :

(X]¥) = ~tr(XY) = =3 au(e(X,Y)

The 3-dimensional torus

T = { t2 ct; € SY titatsty = 1} c SU(4)
ta
is a maximal torus of SU(4), with Lie algebra
T
t:{ 2 Dz €1, m1+x2+x3+x4:0}csu(4)

T3
T4
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The associated set of roots is
R = {to2, too3, fass, a3, *as, *ais}

where
Z1

Tj — Tk xTo

(X)) = eR forany X =

24w T3
T4

A set of positive roots is
Ry ={a12, ao3, azs, 13, a2, 14}

The corresponding set of simple roots is
A = {aiz, ags, az}

and
Q14 = Q12 + a3 + age € RL\A

is the highest root. As in [Loo69b], we define the inverse roots {aYs, ays, a3} to be the following
elements of t :

T (age lagr)

where ajy, satisfies (o, | X) = a(X) for all X € t. Explicitly here :

1 0 0
Yy = 2im -1 0 , gy = 20T ) , and ay, = 2ir .
0 0 -1
Then ||aj),[| = 2m/2 and the angles between the inverse roots are :
2m 2m ™
(o3, 0133) = 3 (g3, a54) = 30 and (ajy, o) = 9

As a basis for the central lattice exp~(Z(SU(4))), we obtain, by inverting the Cartan matrix (see for
instance [Ada69)) :

X1 = 3(3041/2 + 203 + vy
X, = %(20&/2 +dags + 2ay,)
X3 = %(041/2 + 20133 + 3augy)
and the tetrahedron of t whose vertices are (Xo := 0, X3, X2, X3) is a closed fundamental alcove for

SU(4). In particular, {exp(X;)}o<j<s = {1,—i,—1,i} = Z(SU(4)). As all the aj;, have same norm,
we have oy, = aYy + ajs + ayy, and we can then represent the closed fundamental alcove of (SU(4), A)
as shown in figure 2.1. The cells of the alcove W in the sense of definition 2.2.6 are the cells of the
tetrahedron represented in figure 2.1. In particular, two elements X,Y € W lying in the same cell have
the same number of distinct eigenvalues with the same respective multiplicities, so that the conjugacy
classes of exp(X) and exp(Y’) have the same dimension (see proposition 2.2.8 for the general case).

We now go back to our general study of the conjugacy action of a compact connected simply connected
Lie group U on itself. First, we will show in all generality that the stabilizer, for the conjugacy action,
of an element exp(X) € T for some X € W only depends on the cell of W containing X.

26



2.2 CHAPTER 2

o
I

(0,0,

%
[=}
I

0.6
0.5
0.4

0.37

0.2 0.2
0.3 0.3
0.4 0.4
0.5 0.5

Xlz(%7§7 )

W = {(xayvz) € RB | alZ(Q:ava) Z 0; 0423(3752472) Z 0; 0434(3752472) Z 0 and 0414(3752472) S 1}

—
Nl

Figure 2.1: The closed fundamental alcove of (SU(4), A)

Lemma 2.2.7. Let U be a compact connected simply connected Lie group. Then for any u € U, the
centralizer U, = {v € U | vuv™! = u} is connected.

We refer to [Bou82| (p.48) for a proof of this result.

Proposition 2.2.8. Ifu,v € expW = Uscau{ao} eXp(Ws) lie in a same exp(Ws), then the centralizers
U, and U, are equal.

Proof. Since U is compact connected and simply connected, lemma 2.2.7 shows that U, and U, are
compact connected subgroups of U. Therefore U, = U, if and only if their Lie algebras are equal. We
then know from [Loo69b] (p.7) that the Lie algebra of U, is :

Lie(U,) = t @ Z unus

a | exp (i27Toz(X)):1
where X € t satisfies exp(X) = u. But for X € W, the set

{oc € AU{ap} | exp (i2ra(X)) = 1}

is equal to
{a e AU{ap} | a(X)=0or a(X) = 1}
so that it only depends on the cell Wg C W in which X lies, which prove the proposition. O

Definition 2.2.9. For any subset S C AU {ag}, we denote by Us the stabilizer of any element u €
exp(Ws).

Finally, if we consider, for any integer j, the set
Yj:={ueU]| dim Uu=j}

of points of U whose conjugacy class is of dimension j, we have :

Proposition 2.2.10. The intersection of ¥; with exp(W) is :

¥ Nexp(W) = L] exp(Ws)
S | dim Ug=dim U—j
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In addition to that, ¥; is a submanifold of U and so is every exp(Ws). For any u € exp(Ws), one has :
1.2 = T,(Uu) & T, exp(Ws)

Proof. This result is a consequence of the slice theorem (proposition 2.1.3) : for any slice S through u € U,
the set of elements whose conjugacy class has the same dimension as U.u consists of elements which are
fixed by U, (since the stabilizer of such an element y € S is a subgroup of U,, by (iii) in definition 2.1.2),
and for a linear action the set of such fixed points is a subspace, so that X; is a submanifold of U, and
it is U-invariant. Now for any S C AU {aop}, exp(Ws) is a submanifold of U (the chart is given by the
exponential map) and it follows from the fact that exp(W) = Uexp(Ws) is a fundamental domain for
the conjugacy action and from proposition 2.2.8 that

5 NexpW) = | | exp(Ws)

S | dim Ug=dim U—j

and that exp(Ws) is a slice through any u € exp(Ws), which concludes the proof. O
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A few facts about compact
connected Lie groups as compact
symmetric spaces
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In this chapter, we recall a few facts about symmetric spaces and symmetric pairs that will be useful to
us in the rest of this work. The standard references for these questions are [Hel01] and [Loo69a, Loo69b)
(see also appendix B in [OS00] for a summary of the theory of symmetric pairs with a view towards
symplectic geometry).

The sole purpose of this chapter is to serve as a reference for results that we shall need in the remainder
of this thesis. The properties we remind here are all standard, and proofs might be found in the books
indicated below. Whenever we need one of these results in the forthcoming chapters, a precise reference
will be made, so that one may for now skip the present chapter and come back to it when necessary.

3.1 Symmetric spaces and symmetric pairs

Here we briefly recall the definition and main examples of symmetric spaces, following [Loo69a, Loo69b].
Roughly speaking, a symmetric space is a manifold M on which there is a notion of symmetry (or
reflection) around each point x € M, the correct definition of a symmetry being that it is an involutive
transformation having x as an isolated fixed point and satisfying the composition rule depicted in figure
3.1.

Definition 3.1.1 (Symmetric space). A symmetric space (M, (Sy)zenm) is a manifold M endowed

with an application
s : M — Diff(M)

T — Sy

from M to the group of its diffeomorphisms, satisfying, for all z € M

(i) sz(x) ==
(ii) sz(sz(y)) =y foralye M
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(iii) sz 08y(2) = 5,,(y) ©82(2) for all y,z € M (see figure 3.1)

& el

50(2) s2(y) 820 8y(2) = Ss,(y) © 82(2)

Figure 3.1: Composition rules for symmetries on M

(iv) x possesses a neighbourhood V, such that if y € V,, satisfies s, (y) = y then y = z.

All the symmetric spaces (M, (s;)zen) that we shall consider henceforth will be supposed to be connected
(meaning that the underlying manifold M is connected). Basic examples of symmetric spaces are the
vector spaces R™, with central symmetry s, at each x € R™ :

s2(y) = —(y—x) o =22—y
(in particular so(y) = —y). More generally, any Lie group U becomes a symmetric space by setting :

s.(v) = u(u ) = ww Tty

(in particular s1(v) = v~1). Another example is the sphere of radius r in R : S, = {x € R" | (z|z) = r?}
with symmetry at x the transformation :

For any symmetric space (M, (sz)), the subgroup G of Diff (M) generated by all transformations of
the form s, s, (x,y € M) is called the group of displacements of M. It is a normal subgroup of Diff (M)
(since psy~! = s,(,)) and it is actually a (finite-dimensional) Lie group acting transitively on M. By
choosing a base point xg in M, one obtains the following homogeneous description of M :

M ~ G/Gy,
where Gy, is the stabilizer of the base-point 5. The map

c: G — G

g = Sz09Sx
is an involutive automorphism of G and G, lies between the group G of fixed-points of o and its neutral

component :
(G°)° C G,y C G°

(see [Loo69al, p.91). Conversely, if G is a Lie group and o is an involutive automorphism of G, then any
subgroup K C G satisfying (G°)? € K C G is necessarily closed and the coset space G/K endowed
with the transformations

st ([W]) = [zo (2™ )o(y)]
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(in particular, spi([y]) = [o(y)] for all y € G) is a symmetric space. As an example, when the sym-
metric space M is a compact connected Lie group U, one may consider the group G = U x U and the
automorphism o(u1,us) = (u2,u1). Then

G ={(u,u) :ueU}=:Ua
and the map

. UxU — U
(u1,u2) +— ulugl

induces an isomorphism of symmetric spaces
P :UxU/Ur —TU
(meaning that B(s()([y])) = sz (@([Y])))-

In the following, the only example of symmetric space that will be really useful to us is the space
M =U/U7, where U is a compact connected Lie group and 7 is an involutive automorphism of U. In
this case, the symmetric space U/U™ may in fact be thought of as a subspace of U :

Proposition 3.1.2. If U is a compact connected Lie group and T is an involutive automorphism of U,
the map
q: U — U
u — ur(u?t)
induces a homeomorphism
U/UT = {ur(u™") :uelU}CU
If one denotes by 7~ the map
™ : U — U
u — T(uh)
then the set {ur(u™') : uw € U} is the connected component of 1 in Fixz(t7). In particular, if Fiz(r™)
is connected then any w € Fix(t~) may be written w = ur(u~t) for some u € U.

We refer to [Loo69a] (pp.73 and 182) for a proof of this result. We will call such a pair (U, 7) a symmetric
pair. This definition is less general than that appearing in [Hel01] and [OS00] but it will be sufficient for
us.

Definition 3.1.3 (Symmetric pair). A compact connected Lie group (U, 7) endowed with an involutive
automorphism 7 will be called a symmetric pair.

As a matter of fact, we will now restrain ourselves even further by considering symmetric pairs of maximal
rank (see definition 3.2.1).

3.2 Symmetric pairs of maximal rank

As we did not go into enough detail in the general theory of symmetric spaces, we do not have a notion
of rank of a symmetric space, and therefore cannot define a symmetric space M of maximal rank the way
it should be, as a symmetric space whose rank is equal to the rank of its group of displacements. We
refer to [Loo69b] (pp.49-86) for this matter, and concentrate on the case where M = U/U7, where (U, 7)
is a symmetric pair. Following [Loo69b] (p.78), we may then set :

Definition 3.2.1 (Symmetric pair of maximal rank). A symmetric pair (U,7) is said to be of
maximal rank if one has :

1
dim U/U" = §(dim U+1kU)

(where rk U is the dimension of any maximal torus T' C U of U).
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As noted in [Loo69b] (p.80), compact semisimple symmetric spaces of maximal rank correspond to normal
(or split) real forms of complex semisimple Lie algebras. In particular :

Proposition 3.2.2. If U is a compact connected simply connected Lie group, there exists an involutive
automorphism 7 of U such that the symmetric pair (U,T) is of mazimal rank. Additionally, two such
automorphisms T and 7' are conjugate by an inner automorphism of U.

We refer to [Loo69b] (pp.78-81) for a proof of this result. To us, the most important feature of symmetric
pairs of maximal rank will be the existence of a mazimal torus T of U such that 7(t) =t~ for all t € T.

Proposition 3.2.3. If (U, 1) is a symmetric pair of maximal rank, then there exists a mazimal torus T
of U such that T(t) =t~ for allt € T. Equivalently, denoting by 7~ the involution 7~ (u) := T(u™1) on
U, one has 7~ (t) =t for allt € T.

We refer to [Loo69b] (pp.78-81) for a proof of this result. In the rest of this chapter, we shall assume
that the fixed-point set
Fiz(r7)={weU | r(w™") = w}

is connected, in which case proposition 3.1.2 shows that Fiz(t~) = {ur~(u) : v € U}. This assumption
is in particular satisfied for the Lie group SU(n) equipped with the involutive automorphism 7(u) := @ €
SU(n) (see proposition 5.1.3), which is of maximal rank since one has :

n(n—1)

dim SU(n)/SO(n) = (n* —1) - ———= =

1 5
- )
5 2(n +n—2)

and :

1 1 1

g(dim SU(n) +rk SU(n)) = 5((112 1)+ (n-1)) = 5(712 +n—2)
Observe that the same is true for the symmetric pair (U(n), 7(v) := ). These are the examples that we
will keep in mind throughout this work, as they motivated and inspired most of our results. We refer to

remarks 5.2.3 and 7.4.2 for additional comments on the assumption that Fiz(77) is connected.

We now quote a series of results that will be useful to us in the forthcoming chapters.

Lemma 3.2.4. Let (U,7) be a symmetric pair of mazimal rank and let T C U be a mazimal torus
of U fized pointwise by 7—. Then any element of the associated Weyl group W(T) := N(T)/T can be
represented by an element in the neutral component K° of the group K :=UT.

Proof. We need to prove that for any n € N(T), there exists k € K° such that for all t € T, ntn~! =
ktk=!. For all n € N(T), we have, for all t € T, ntn=! € T C Fixz(r7), so that 7(n)tr(n=!) = ntn=1,
hence (77 (n)n)t(r~(n)n)~t =t for all t € T. Therefore 7~ (n)n € Z(T) = T since a maximal torus is its
own centralizer (see for instance [Loo69b], p.4). Write 7~ (n)n = exp(X) for some X € t = Lie(T) and
set w = exp(%) (so that w € T C Fiz(r~) and w? = 7~ (n)n). Set now k := nw~'. Then :

k)™ = 7(n) 7(w Hw nt

so that k € Fiz(7). Since w™! € T acts trivially on T, one has, for all t € T :
ktk™' = nw™'twn™! = ntn™!

To prove that we may even choose k to lie in K°, we refer to lemma B.1 in the appendix of [OS00] :
K =U"™ = K°T[2], where T[2] := {t € T : t* = 1} = T7, so that our k above writes k = koa with
ko € K° and a € T[2]. Since a € T[2] C T, it acts trivially on T and ktk~' = kotk, ' for all t € T O
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Proposition 3.2.5. Let (U, 7) be a symmetric pair of mazimal rank and let T C U be a mazimal torus
of U fized pointwise by 7. Recall that we assume Fix(177) to be connected. Then for all w € Fixz(r™),
there exists k € K° (where K = UT ) such that kwk™ € T.

We refer to [Loo69b] (p.56) for a proof of this result (recall that we assumed Fiz(7~) to be connected
and see also proposition 5.1.3 for a proof of this result in the case where (U, 7) = (U(n), 7(u) = u)).

Corollary 3.2.6. Assume U to be simply connected. If exp(W) C T is a fundamental domain for the
conjugacy action of U on itself (see proposition 2.2.5) and if w € Fix(r~), then there exists k € K9 such
that kwk=! € exp(W).

Proof. By proposition 3.2.5, there exists k € K° such that kwk~! € T. Recall that exp(W) ~ T /W (T)
(see proposition 2.2.5 and relation (2.1) in section 2.2), so that by conjugating by an appropriate Weyl
group element, which may be taken in K according to lemma 3.2.4, we obtain k'w(k’)~! € exp(W) for
some k' € K°. O

Finally :

Proposition 3.2.7 (K x K-orbits in U). Let (U, 7) be a symmetric pair of mazimal rank and let T C U
be a maximal torus of U fized pointwise by 7. Take u,v € U. Then there exists (k1,ke) € K X K such
that v = kyuksy  if and only if 7~ (v)v and 7~ (u)u lie in a same conjugacy class of U.

Proof. The first implication is obvious. Conversely, suppose that A, := 77 (v)v is conjugate to A, :=
77 (u)u in U. Then, by proposition 3.2.5, there exists k1, ke € U™ such that klAukfl = kgAvkgl eT =
exp(t), where t = Lie(T). Write k1A, k; " = koAyky " = exp(X) for some X € t and set w := exp(%),
Oy = kflwkl and §, = k;lwkg. Set now ky, := ud, ! and k, := v, !. Then :

Tk )kt = T(w)T(6; )ou?

so that 7(k,) = k,. Likewise 7(k,) = k,. And we then have :

v = kyd,
= kyky twky
[ S O e
(koky 'kiky ') u (ky Tko)
—— ~——

eEK eK
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Chapter 4

Quasi-Hamiltonian spaces
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In this chapter, we give the definition of a quasi-Hamiltonian space, as well as the main examples of
manifolds carrying such a structure. The purpose of doing so is to obtain a fairly easy and convenient
description of the symplectic structure of moduli spaces of representations of surface groups (see section
4.6).

The notion of quasi-Hamiltonian space was derived from the definition of a usual Hamiltonian space
in [AMM98]. A related construction appeared before that in [GHIJW97], where it was noticed that the
Cartan 3-form x of a Lie group whose Lie algebra is equipped with an Ad-invariant non-degenerate
product, which is always closed, is exact when restricted to a conjugacy class. The resulting 2-form
w such that dw = x is, up to a sign, the form used in [AMMO98] to show that a conjugacy class of a
Lie group is a quasi-Hamiltonian space. A larger notion, the one of quasi-Poisson manifold, was later
on identified in [AKS00] and investigated in [AKSMO02]. Loosely speaking, a quasi-Poisson manifold is
a manifold endowed with an action of a Lie group G (whose Lie algebra is supposed to be equipped
with an Ad-invariant non-degenerate symmetric bilinear form) and an invariant bivector field satisfying
a compatibility condition with this group action. The basic example of a quasi-Poisson manifold is the
group G itself, endowed with the conjugacy action, in analogy with the dual of a Lie algebra being a
basic example of Poisson manifold (one should notice, though, that in the quasi-Poisson setting, the
quasi-Poisson structure is always defined with respect to a given group action, for instance the action of
G on itself by conjugation). Of particular interest are the Hamiltonian quasi-Poisson manifolds (that is,
those admitting a (group-valued) momentum map). Again, the basic example of a Hamiltonian quasi-
Poisson manifold is the group G itself, with momentum map the identity I'd : G — G. A large part of the
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theory of quasi-Poisson manifolds can then be derived from the analogy with usual Hamiltonian Poisson
manifolds :

- Hamiltonian quasi-Poisson manifolds are foliated by non-degenerate quasi-Poisson manifolds, cor-
responding to symplectic leaves of Poisson manifolds. When the quasi-Poisson manifold at hand
is a Lie group, its non-degenerate leaves are the conjugacy classes, in analogy with the co-adjoint
orbits being the symplectic leaves of the dual of a Lie algebra.

- non-degenerate quasi-Poisson manifolds correspond to quasi-Hamiltonian spaces in the sense of
[AMMO98].

- homogeneous non-degenerate Hamiltonian quasi-Poisson manifolds are coverings of conjugacy clas-
ses, just like homogeneous Hamiltonian symplectic manifolds are coverings of co-adjoint orbits.

All these properties are discussed in detail in [AKSMO02], along with many other very nice features
of quasi-Poisson manifolds, like reduction, products and cohomology. The framework of quasi-Poisson
geometry was made use of in [Tre02] to study the symplectic geometry of the space of polygons on the
sphere S® ~ SU(2), where a symplectic structure was obtained on the moduli space of polygons with
fixed sidelengths by reduction from the quasi-Hamiltonian space C; x --- x C; where C; is a conjugacy
class in SU(2).

Here, we will likewise obtain, given a surface group m and a Lie group U, a symplectic structure on
the moduli space M¢ = Home(m,U)/U (see section 4.6 for a precise definition) by reduction from a
quasi-Hamiltonian space, which is why we will present this notion only, without entering the broader
and richer notion of quasi-Poisson manifold. We will follow [AMMO98] very closely, except for the fact
that we do not assume the Lie group entering the definition of quasi-Hamiltonian space to be compact.
Indeed, the results of this part of the theory hold for non-compact groups as well, as we shall see in the
course of the proofs. So we start with a Lie group U, and we assume the existence of an Ad-invariant
non-degenerate symmetric bilinear form on its Lie algebra u (which could for instance be a Euclidean
scalar product obtained by averaging in the case a compact group, or the Killing form of a semi-simple
group, compact or not). We point this out now to stress the fact that there is probably little to be done to
generalize the results contained in this thesis to the case where U belongs to a large class of non-compact
groups (although more serious problems regarding this generalization will appear for example in chapter
8, where we shall prove a convexity theorem for momentum maps defined on a quasi-Hamiltonian space).

4.1 From Hamiltonian to quasi-Hamiltonian spaces

In this section, we will show how to derive the notion of quasi-Hamiltonian space from the notion of a
usual Hamiltonian space, following the process of [AMMO8], in which the aim was to develop a theory of
Lie-group valued momentum maps. Previous examples of such theories include the notion of momentum
maps for Poisson Lie groups (taking value in the Poisson dual of a Poisson Lie group acting on a given
symplectic manifold, see [Lu9l, LW90, Vai94]) and S'-valued momentum maps for actions of S! on
symplectic manifolds considered in [McD88, Wei93] (so that this time the target space for the momentum
map is the acting group itself). The Poisson Lie group setting provided a whole new series of examples
of symplectic manifolds, that were later related to Kostant’s famous nonlinear convexity theorems (see
[Kos74, LR91, FR96]) and to matrix spectral problems (see for instance the work on the Thompson
conjecture in [AMWO1, EL05]). A possible proof for both these applications is to show that the Poisson
Lie situation is equivalent to the usual Hamiltonian one (meaning that there exists another symplectic
form on the given manifold for which the group action admits a Lie-algebra valued momentum map,
see [Ale97, AMWO1]). On the contrary, the examples of symplectic manifolds laid forward in [McD88]
did not reduce to usual Hamiltonian manifolds. The starting point of [AMM98] is to study this same
situation in the case of non-abelian groups. The first consequence of this fact is that the manifolds at
hand are no longer symplectic : the 2-form defining the quasi-Hamiltonian structure is neither closed
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nor non-degenerate, except when the acting group is abelian, in which case one recovers the situation of
[McD8S].

Let us now proceed to defining quasi-Hamiltonian spaces. We will follow [AMMO98] closely (another
presentation of the notion of a quasi-Hamiltonian space, emphasizing the comparison with Hamiltonian
spaces, can be found in [Rac03]). Throughout this section, we shall designate by U a Lie group whose Lie
algebra u = Lie(U) = T1U is equipped with an Ad-invariant non-degenerate symmetric bilinear form (for
instance an invariant Euclidean product in the compact case, or the Killing form in the (non-necessarily
compact) semi-simple case) denoted by (.|.). We will call such a form an Ad-invariant scalar product
(or simply product). To fix notation right away, let x be (half) the Cartan 3-form of U, that is, the
left-invariant 3-form on U defined on u =T1U by :

(XY, 2) = S(X |V, 7)) = 5(X, Y]] 2)

where the last equality follows by derivation from the Ad-invariance property of (.|.). It is then a
consequence of the Jacobi identity that dxy = 0. Observe that, since (.|.) is Ad-invariant, y is also
right-invariant. Further, let us denote by @~ and 6% the respectively left-invariant and right-invariant
Maurer-Cartan 1-forms on U : they take value in u and are the identity on u, meaning that for any v € U
and any ¢ € T, U,

0L(€) =utE and 0R() = Eu~!

(where we denote by a point . the effect of translations on tangent vectors). In particular, by definition
of x, one has, for all € U and all &,&,&3 € T,U :

Xu(€1,€2,88) = (00 (&) ]105(&2), 00 (€3)]) (4.1)

N =

As earlier, it then follows from the Ad-invariance of (.|.) and from the fact that
Adu.(6L(€)) = u.(ul€).u~! = £ = 07(€)
that one has :

X6, . 6) = 5 (65(60) | 105(62), 05(64))

Finally, we denote by M a manifold on which the group U acts, and by X* the fundamental vector field
on M defined, for any X € u, by the action of U in the following way :

XE = 4]—o (exp(tX).z) (4.2)

for any # € M. In particular, we will denote by Xt the fundamental vector field on U associated to
X € u by the conjugacy action of U on itself :

b'dl

u

%h:o (exp(tX)uexp(—tX)) = Xu—uX (4.3)

One then has :
LX) = Adu ' . X — X and 0F(X))=X - Adu.X

The map X € u+— X# € ['(T'M) is an anti-homomorphism of Lie algebras from u to the Lie algebra
D(T M) of vector fields on M, meaning that it is linear and that it satisfies :

[X7 Y]# = —[X#,Y#]

Indeed, observe that, for any Z € u :

d
z# = Zl=o0 (exp(tZ).x) = T1®,.2Z

x
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where &, is the map :
b,: U — M

U = u.xr

so that (X +Y)# = X7 + Y and (\X)# = AX7 for all z € M. Further, the bracket of two vector
fields satisfies :

XY #, = — o (677).7%),

where %" : 2 € M — exp(tX).z is the local flow of X# (see for instance [Spi99], p.150). Hence, for a
given z € M

d
(X#,Y#), = — 7 li=o (Texp< 20 YR . )

i (S amo (0" (exp(sY) exp(-1X).2)))

iz (o zo (exp(1X) exp(s¥) exp(—1X) ) )

=P, ( exp(tX) exp(sY) exp(ftX))

d
= —=heo (71, 0 (Ad exp(tX)).Y )

:ead(tX)
= -Ti® (dt't -0 (et(adx).Y)) since T1 9P, is a linear map
= -1P,.(adXY)=-T19,.[X,Y]

Hence :
(X# Y#], = -T1®,.[X,Y] = —[X, Y]

Sometimes, a minus sign is introduced in the definition of fundamental vector fields
# d
X7 = Ehzo (exp(—tX).x)

in order to make the map X +— X# a homomorphism of Lie algebras. Indeed, if ¢ : u — g is an
anti-homomorphism of Lie algebras, then the map ¢(X) := ¢(—X) satisfies :

P(X,Y]) = o(-[X,Y])
= (Y, X])
= —[p(Y), p(X)]
= [p(X),p(Y)]
= [-¢(X),-o(Y)]
= [6(X),¢(Y)]

We shall nevertheless not use this definition and continue with the one introduced in (4.2). We will follow
the conventions in [Spi99] to compute exterior products and exterior differentials of differential forms.

We start by recalling the definition of a Hamiltonian space in the usual sense. Let (M,w) be a
symplectic manifold (that is to say, a manifold M equipped with a closed non-degenerate 2-form w).
Since w is non-degenerate, one can associate to each function f : M — R an unique vector field V; on M,
called the Hamiltonian vector field associated to f, satisfying vy, w = df, where ¢ designates the interior
product between a vector field and a differential form. If now the group U acts on M leaving w invariant
(that is, for all w € U, the corresponding diffeomorphism ¢, of M satisfies ¢} w = w) then, since w is
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closed, one sees from the Cartan homotopy formula (see for instance [Mor01], p.74) that for all X € u,
the 1-form ¢xsw is closed :

diixiw) = Lxsw — txs(dw) =0—-0=10

When this closed 1-form is exact, that is, when every fundamental vector field is a Hamiltonian vector
field, the action is called Hamiltonian. Actually, one usually asks for the following stronger definition
(see for instance [LM87] for a discussion on this).

Definition 4.1.1 (Hamiltonian space in the usual sense). A symplectic action of a Lie group U
on a symplectic manifold (M,w) is said to be Hamiltonian if there exists an U-equivariant map (with
respect to the co-adjoint action of U on u*) u: M — u*, called the momentum map, satisfying for all
X € u the relation :

ixtw = d<p,X > (4.4)

where <, > denotes the duality bracket between u and u* and < p, X > is the function on M defined
by x € M —< p(z), X >.

When u is endowed with an Ad-invariant scalar product (.|.), we can identify equivariantly u* with u
and write (u | X) instead of < p, X >, where p : M — u is equivariant with respect to the adjoint action
of U on u and (u|X) is the function on M defined by x € M — (u(z)| X). Now (.| X) is a (linear)
function on u and (p | X) is simply the pull-back of this function by the map p, so that one has, for all
Xeu:

ixrw = d(p|X)
= d(p(
= pr(d(
Since (.| X) is linear, the 1-form d(.| X) on u is :

d.]1X): u — T*u
Y — (Y+H — (H|X))

€Tyu=Y+u

If one identifies Tyu with u by translation from vector Y in the vector space u, one is led to introduce
the u-valued 1-form 6 on u defined by :

f: u — Tru®u
Y — Y +H— _H)
N—— ~

ETyu €u
and the R-valued 1-form (0| X) on u defined by :

@|X): u — T*u
Y — (Y+H»—>(H|X))

so that d(.| X) = (6| X), and we can therefore rewrite the momentum condition (4.4) under the form :
ew = (0] X) (4.5)

As a consequence of this point of view, one understands that to change the space where i takes its values
and still obtain a momentum condition similar to (4.5), one has to change the 1-form 6, which translates
vectors in Tyu = Y + u to vectors in u = Tou (translation of vector Y'). In the Lie group U, one has
a choice as how to translate tangent vectors from T, U to T1U for a given u € U. Namely, one can use
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either 8% or 6%, If the group U is abelian, then 87 = %, and one can define the a priori momentum map
condition to be, for all X € u :
xew = (0% | X) = (6% | X)

Of course, up to this point, we have not verified that this will indeed lead to a theory of group-valued
momentum maps, but is a first step. To complete this first step, let us consider the non-abelian case.
In this case, if one wants the relation w(X*, Y*) = —w(Y*, X*) (which is simply the antisymmetry of w
expressed on fundamental vector fields) to hold for all X,Y € u when one tries to define a momentum
map condition, one sees that the only possibility is to set :

1
iw = g (0% + 07| X) (4.6)
Indeed, if one asks p : M — U to be equivariant with respect to the conjugacy action of U on itself (which

is the analogue of the (co-) adjoint action in the usual Lie-algebra setting), one has, using equation (4.5)
with § = 0%, forallz € M :

we (X2, YH

x? x

(tx:w)2 (V)
(n* (6" 1 X)), (VP
= (9ﬁ<w)(Twu.Yg§) | X)

Since y is equivariant, T, sends the vector Y, to the value at u(z) of the fundamental vector field YT
(see (4.3)) on U. Indeed, for all x € M :

TuYF = Slieo (ulexp(ty).z)
= i (exp(tYle) exp(—1Y))

= V() - ple)Y
Il
Yo

One therefore has, for all x € M (setting u = p(z) € U) :
we(XLYH) = (v l(Yu-uwY)|X)
(Adu™'Y —Y | X)
= (Adu 'Y |X)—(Y|X)
= (Y|Adu.X)- (Y |X)
= —(YV|(Xu—uX)u")
- = (Y | HE(TMU-XE))
= —(u (")), (xi)

which would be equal to —w, (X%, Y#) if one had 67 = . Making the same computation with ¢ysw =

x? x

Tt (0F + 67 | X) gives indeed w(X*, Y¥) = —w(Y#, X¥).

Let us now try and understand the consequences of the momentum condition (4.6). If we still want
w to be invariant by the action of U, one has Lytw = 0 for all X € u, so that by the Cartan homotopy
formula, one has d(txtw) + txt (dw) = 0, which is then equivalent, using (4.6), to :

1
d(u (0% + 0| X)) + tx: (dw) = 0
that is :

u*(%d(@L O] X)) + s (dw) = 0 (4.7)
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Let us compute d(0* + 07| X) = (d(6F + 67) | X) = (d6* + dO® | X) on fundamental vector fields on U.
The structure equations for Lie groups (see for instance [Spi99], ch. 10 p.404) say that :

1 1
do*t = —5[0L A 0% and dO® = 5[91% N
where $[69 A 67] is the u-valued 2-form defined, for all u € U and all &1, &, € T,U, by :

(167,(61), 0%, (£2)] — [04(&2), 0,(&1)]) = [02(&1), 02,(&2)]

N~

S107 A6, ) =

This, together with the Ad-invariance of (.|.), shows that for all X, Y, Z € u, one has :

%(d(9L+eR|X))u(YJ,Zl) = %(—[HS(YJWL(ZZL)H[GE(YJWR(ZD”X)
_ %(([Adu*.Y—Y,Adu*l.Z—Z]|X)
+(IY = AdwY, Z - Adu.Z]| X))
= S((~Adu™ [y — AduY, Z - Adu.Z)| X)
+(IY - AduY, Z - Adu.Z]| X))
1

= 2([Y —Adu.Y,Z — Adu.Z]| X — Adu.X)

1
= 5(95()@) |65 (V). 05 (Z])])
= (wxi1(0), (Y. Z))
(where x is the Cartan 3-form, see (4.1)), whence we obtain :
1
§d(9L +07X) = 1x1(x)
Since p is equivariant, this yields :
* 1 * *
K (§d(9L +0% | X)) = p"(ext (X)) = ex(B7X)
so that by re-injecting in (4.7), we obtain :
txt(W'x +dw) =0, forall X eu

The easiest way to ensure this is to ask that dw = —p*x. In particular, one will not ask the 2-form w to
be closed.

We shall now see that the momentum condition (4.6) actually also implies that w is degenerate.
Indeed, let us compute w, (X%, v) for v € M, X € wand v € T, M (setting u = pu(z) and & = T,p.v) :

we(XEw) = (,LL*(GL+0R|X))$.U
(O (Tati) + 00y (Top) | X)

(W e+ EutX)

N RN~ DN =N -

(u | Adu.X + X)
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whence we see that if (Ad p(x) + Id).X = 0 then w,(X%,v) =0 for all v € T,,M, that is :
{X! . X € ker(Ad pu(x) + Id)} C kerw, for all z € M

One then asks this necessary degeneracy condition to be minimal in the sense that the above inclusion
is required to be an equality. We can now sum up the above discussion and give the definition of a
quasi-Hamiltonian space. What is truly remarkable is that although the last two conditions might seem
somewhat arbitrary (albeit derived from a quite reasonable momentum condition), we will see in the
following section that there are very natural examples of spaces satisfying the axioms appearing in the
following definition, and that these spaces are moreover very nice analogues of known Hamiltonian spaces.

Definition 4.1.2 (Quasi-Hamiltonian space). Let (M, w) be a manifold endowed with a 2-form w and
an action of the Lie group (U, (.]|.)) leaving the 2-form w invariant. Recall that (.|.) is an Ad-invariant
non-degenerate symmetric bilinear form on u = Lie(U), that y is the Cartan 3-form of U, and that 6~
and 6% are the Maurer-Cartan 1-forms of U. Let p: M — U be a U-equivariant map (for the conjugacy
action of U on itself).

Then (M,w,pu: M — U) is said to be a quasi-Hamiltonian space with respect to the action of U if the
map pu: M — U satisfies the following three conditions :

(i) dw = —p*x
(ii) for all z € M, kerw, = {X! : X € u|(Adu(x) + Id).X = 0}
(iii) for all X € u, tysw = $p*(6F + 67| X)

where (0% 4 67| X) is the real-valued 1-form defined on U for any X € u by (6% + 07| X),(¢) =
(0L(&) + 08(¢) | X) (where u € U and € € T,U).
In analogy with the usual Hamiltonian case, the map p is called the momentum map.

4.2 Fundamental examples of quasi-Hamiltonian spaces

There are two fundamental examples of quasi-Hamiltonian spaces : a conjugacy class of the Lie group
U and the manifold U x U endowed with a particular action of the product group U x U. Only the
first example will be really fundamental to us in this work, since the quasi-Hamiltonian space we are
mainly interested in is a product of conjugacy classes. Before entering considerations on products of
quasi-Hamiltonian spaces, let us describe these two examples explicitly.

4.2.1 Conjugacy classes of a Lie group

In the usual Hamiltonian setting, orbits O C u* of the co-adjoint action of U on u* are basic examples
of Hamiltonian spaces, with momentum map the inclusion ¢ : O < u*. Here, it is natural to study the
orbits of the conjugacy action of U on itself : the conjugacy classes of U. Let us consider a conjugacy
class C C U and the inclusion map

w:C—=U

and let us compute 4% (6% + 67| X) for all X € u. First, let us observe that, for each u € C, one can
describe C as a homogeneous space under U in the following way :

C={gug':gecU}
Consequently :
d 4 d
T.C = {ahzo (grug; ) lgo=1€eUt={Xu—-uX:X= %|t:09t cu="U}
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that is, a tangent vector to C at u € C is always the value of a fundamental vector field for the conjugacy
action of U on C :

d
Xu—uX= Eh:o (exp(tX)uexp(—tX)) = X{ forall X € u (see (4.3))

This is just a consequence of the fact that C is a homogeneous space under U. It will also be useful to
write :

Xu—uX=u(Adu ' X - X)=(X - Adu.X)u
In particular :
0L (Xu—uX)=Adu ' X - X and 0F(Xwu—uX)=X-Adu.X
Finally, another way to say the above is to say that the map

v,: u — T,
X — X/=Xu—-uX

is surjective with kernel ker ¥, = {X € u | Adu.X = X}. We may now compute 54 (0% + 67 | X) using
fundamental vector fields :

1
forall Y €u, i(u*(OL + 9R|X))U(YJ) = (95(YJ) +0R(YJ)|X)
(Adu ™Y =Y +Y — Adu.Y | X)

(V] Adu.X) - (Adu.Y | X))

N =N~ =

This expression defines a 2-form on T,C. Indeed, if YY" € u satisfy Y.ou —w.Y = Y'.u — w.Y’ (that is |
(Y -Y') €ker¥,), then Adu.Y —Y = Adu.Y’ — Y’ and one has :

(Adu.Y — Adu.Y'+Y' | Adu.X) — (Y + Adu.Y' =Y | X)
= (YV'|Adu.X)— (Adu.Y'| X)

(Y | Adu.X) — (Adu.Y | X)

whence we see that the expression

wu (X1, V1) =

u? u

(Adu.X|Y) = (Adu.Y | X))

N =

gives a well-defined 2-form w on C. The U-invariance of w follows from the fact that C is a homogeneous
space. By construction, the 2-form w satisfies :

1
Lxiw = §H*(9L +6%|X) forall X cu

It actually follows from the construction that such a 2-form is unique. Let us now consider X € kerw,,.
Then, for all Y € u, (Adu.X — Adu™t.X|Y) = 0, so that (Adu.X — Adu='.X) = 0 since (.].) is
non-degenerate. Equivalently, X € F, := ker((Adu)? — Id). But (Adu)|r, is diagonalizable (since the
polynom P = (X — 1)(X + 1) = X2 — 1 satisfies P((Adu)|r,) = 0 on F, = ker((Adu)? — Id)), and
therefore we have :

ker ((Adu)? — Id) = ker(Adu — Id) & ker(Adu + Id)

But for Xy € ker(Adu — Id), one has (X2)], = 0, so that X[ = (X1){,, with X; € ker(Adu+ Id). Hence :

kerw, = {X] : X € ker(Adu + Id)}
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Finally, let us compute dw. One has, for all X,Y,Z € u :

(o)X, Y1 2h) = Ly (¥, 20) = Lyt (w(XT, 20) + L (w(x T YT)
—w([XT, YT, Z0) +w([XT, Z1], Y1) —w([YT, ZT], XT)

where, for all u € U :

L+ (w(Y‘L, ZT))(u)

%hzo (¥, Z7)) (exp(tX)uexp(—tX))
- %(([X, Adu.Y]| Z) - (Adu.[X,Y]| Z)
—(IX, Adu.Z]|Y) + (Adu.[X, Z] |Y))
and for all u € U :
(w(XT Y1 20)) (@) = wu( = XYL 21)
= —%((Adu.[X, v]|2) - (Adu.Z|[X.Y]))
so that, all computations made, one obtains :

(dw)u (X1, Y1, 21 = %(([X Adu.Y]|Z) - (Y, Adu.X]| Z)
+(Adu.[Y,X]| Z) + ([Y, Adu.Z] | X)

~(Adu.[2,X]|Y) + (Adu[Z,Y]| X))

On the other hand, p being the inclusion map C — U

—_

(WXL 2D = S X Y Z))

ur U

N

— 5(Adu—l.X — X|[Adu™"Y - Y, Adu".Z — Z])

Expanding this expression and comparing it with the above using the Ad-invariance of (.|.) shows that :

dw = —p*x

Other proofs of this fact can be found for instance in [AMM98] and [GHIJW97]. We can then sum up the
above in the following proposition :

Proposition 4.2.1 ([AMMO98]). Let C C U be a conjugacy class of a Lie group (U,(.|.)). The tangent
space to C atu € C is T,C ={Xu—uX : X €u}. The 2-form w on C given at u € C by
1
wy(Xu—u.X,Yu—uY)= 5((Adu.X |Y) — (Adu.Y | X))

is well-defined and makes C a quasi-Hamiltonian space for the conjugacy action with momentum map the
inclusion p: C — U. Such a 2-form is actually unique.

4.2.2 The double of a Lie group

The second example of quasi-Hamiltonian space associated to a given Lie group (U, (.|.)) is the manifold
D(U) :=U x U equipped with the action of the product group U x U defined for all (a,b) € D(U) and all
(ul,u2) eU xUby:

(u1,uz).(a,b) := (urauy ', ugbuy*)
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Let us explain how this is obtained. This example is actually a first step in the construction of another
example of a quasi-Hamiltonian U-space, which we will denote later by ®(U) and which is obtained
from D(U) by internal fusion (see section 4.4 and particularly proposition 4.4.4, and observe that as
a manifold, D(U) is just U x U as well). This space D(U) comes into play when one wants to obtain
symplectic structures on spaces of representations of fundamental groups of surfaces of genus g > 1, which
shows its importance. To this end, the manifold ©(U) = U x U is equipped with the diagonal U-action
and the quasi-Hamiltonian structure is defined with respect to the momentum map :

w: DU)=UxU — U
(a,b) +— aba"b7!

The relevance of this map when it comes to describing symplectic structures on moduli spaces associated
to surface groups will become clearer later on (see section 4.6). We shall also see that the momentum
map p above is obtained from the momentum map pp : D(U) — U x U, defining the quasi-Hamiltonian
structure on the U x U-space D(U), by multiplication of its two components. This is a consequence of
the notion of fusion that we will study later (see section 4.4) and this explains that one is led to define :

up: DU)=UxU — UxU
(a,b) +—— (ab,a=1b71)

Then in order to obtain an equivariant map up (where the target space U x U acts on itself by conjuga-
tion), one has to set :
(uy,u2).(a.b) = (urauy*, ugbuyt)

So that indeed :

MD((ul,ug).(mb)) = (ulauglquufl,uchluflulbflu;l)

(ulabufl, U,QCL_lb_lU,;l)
= (u1,u2)pp(a,b)(uy, ug) ™"
We now want to determine an expression for a 2-form w? on D(U) satisfying, for all (X,Y) € ux u =
Lie(U x U) :

L,
L(X7Y)#(UD = §MD (HIL]XU + ang | (X, Y))UXU (48)
where the Lie algebra u x u = Lie(U x U) is equipped with the Ad-invariant scalar product

(X)X Y)), 0 = (X[ X))+ (Y ]Y)

uxu

the scalar product (.|.) being the given invariant product on u. Observe that, for all (X,Y) € u x u, one
has :
(X, V)E ) = (Xa—aY,Yb—b.X) € TuyDU) = T,U x T,U

And that for all (u1,u2) € U x U and all (&1,&2) € Ty, U x T, U -
(05 <) wrue) = (ug 61,0z &) and (07, r) (unua) (61, €2) = (Group ', E2ouy )
Further, since pp(a,b) = (ab,a™'b™"), one has, for all (v,w) € T(4»D(U) = T,U x T,U :
Tiapyp-(v,w) = (v.b+ aw, —(a” w).a™ b~ —a b7 (wb™h))

Therefore, by computing
1 *
B (,UD (06 xu + 00 v | (X, Y))uxu)

(v, w)

(a)
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we can rewrite equation (4.8) and obtain the expression of w” on tangent vectors which are values of
fundamental vector fields. Explicitly, we have :

1/,
(L(X,Y)#WD)(a,b)-(Ua w) = 5 (,UD (05><U + ang | (X, Y))uxu)

.(v,w)

(a,b)

- %((HL)wbxa—lb—l) (vb+aw, —(a " w).a” b7 — a7 (wb 7))
+(0R) (ab,a=1b=1) ('Ub + a.w, —(ail,v).aflbfl _ ailbil.(w.bfl))
[(xX,7))

- % ((Ad b (o w) + b L, —Adb.(v.at) — wb )

uxu

+(vat + Ada(wb™ ), —a v — Ada” (b7 w)) | (X, Y))

((a '] Adb.X)+ (b w|X) — (v.a ' [AdD™LY) — (wb™'|Y)
+wa ' X)+ (wb ! |Ada T X) = (a7t |Y) — (b7 w | AdY))

uxu

N =

((a '] Adb.X —Y)+ (b w| X — AdaY)

N =

—(v.a ALY = X) — (wb 'Y — Ada”' X))
1

= (@ (Xa-ay)wh ) — (o (Vb - bX)b7"))

+% (((X.a —aY).a b w) — (va b (Vb — b.X)))

Therefrom, one can guess the expression of the 2-form w? on tangent vectors which are not necessarily
values of fundamental vector fields and define, for all (a,b) € D(U) = UxU and all (v;, w;) € T(45D(U) =

T, U x TyU :

wio py (01, w1), (va, w2)) =

or more concisely :

D

wP = (a*HL/\ﬁ*OR)+%(a*0R/\6*9L)

N =

where :
a: DU) — U and 8: DU — U
(a,b) — a (a,b) — b
We then refer to [AMM98] for the proof of the following result :
Proposition 4.2.2 ([AMMO98]). The manifold D(U) = U x U, equipped with the U x U-action defined

by
(ur,uz).(a,b) = (wiauy , ugbuit)

the U x U invariant 2-form

wP = %(a*GL A BHOR) + %(a*GR N

and the equivariant momentum map

up: DU)=UxU — UxU
(a,b) —— (ab,a=1b71)

is a quasi-Hamiltonian space called the double of U.
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The term double alludes to the theory of quantum groups (see [AMMO98] for an explanation).

4.3 Properties of quasi-Hamiltonian spaces

We now give a few properties of quasi-Hamiltonian spaces that we shall need in the following, especially
when considering the reduction theory of quasi-Hamiltonian spaces (see section 4.5) and convexity prop-
erties of Lie-group valued momentum maps (see chapter 8). The results below are quasi-Hamiltonian
analogues of classical lemmas entering the reduction theory and momentum convexity properties for usual
Hamiltonian spaces (see for instance [GS84c] or [MS98]). For other results, specific to quasi-Hamiltonian
spaces, we refer to [AMM9S].

Proposition 4.3.1 ([AMMO98]). Let (M,w,pu: M — U) be a quasi-Hamiltonian U-space and let x € M.
Then :

(i) The map
Ay ker(Adu(z) +1Id) — kerw,
X — X =2]—0 (exp(tX).z)

is an isomorphism.
(i1) ker Tu Nkerw, = {0}

(iii) The left translation

u —  (u(x)) ~y

induces an isomorphism
1

x

Im T,p~u

where u, = {X € u | X7 = 0} is the Lie algebra of the stabilizer U, of x and u} denotes its
orthogonal with respect to (.|.). Equivalently, Im (u*0%), = ut (and likewise, Im (u*6%), = ul).

(iv) (ker Tpp)te = {X# : X € u}, where (ker T,u)*~ C T, M denotes the subspace of T.M orthogonal
to ker T, p with respect to wy.

(v) ker Tpp C (T, (U.z))* where U.x denotes the orbit of x in M under U.

We will need the following lemma, coming from the general theory of bilinear forms on vector spaces, in
the course of the proof.

Lemma 4.3.2. For every subspace F C E := T, M, one has dim E = dim F + dim Ftv: — dim (F N
ker wy).

Proof of lemma 4.3.2. The bilinear form w, : £ X E — R induces a non-degenerate bilinear form w; :
E/kerw, x E/kerw, — R and the map Ftv: «— E — E/kerw, sends F+«= onto

Loz
((F + kerww)/ kerww)
and its kernel is Ftvs Nkerw, = kerw, (since kerw, = B+« C Ftvs). Hence :
Loz
Fles /kerw, ~ ((F + kerwm)/ kerwx)

Since w, is non-degenerate, this yields :

dim Ftes —dim kerw, = dim E/kerw, —dim (F + kerw,)/ ker w,
dim F — dim ker w, — dim (F' + ker w,,) 4+ dim kerw,
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so that

dim Ftvs = dim FE — dim F — dim ker w,, + dim (F Nkerw,) + dim kerw,
O

Proof of proposition 4.3.1. (i) It follows from the definition of a quasi-Hamiltonian space that the map

A, is surjective. Now take X € ker(Ad pu(x) + Id) such that X7 = 0. Then T,u. X = 0 and, since
p is equivariant, this yields X;];(w) = T,pu. X7 = 0, that is X.u(z) — p(z).X = 0, or equivalently
Adp(x).X = X. But Adpu(z).X = —X by assumption, so that X = 0 and A, is injective.

Consider v € ker T, N kerw,. It follows from the definition of a quasi-Hamiltonian space that we
can write v = X7 for some X € ker(Ad u(x) + Id). Then T,p.v = 0 implies X;E(w) = 0 as above.
Hence, we have again : X € ker(Ad pu(x) — Id) Nker(Ad u(z) + Id) = {0}, so that v = 0.

Here we follow [Rac03]. Let us first show that Im (p*0%), C ur. Take v € T, M and X € u,. Then
X# =0 and as above one has X = 0, that is, Adpu(z).X = X. Therefore :

((")a0] X) = (Adp(@).((5"0%)00) | Ad (). X))
= ((u"0"),0| X)

hence :

* 1 * *
(0 ) v|X) = (0" +p 0%),0) | X)
= Wg (va U)
= 0 since X# =0
so that (u*6L),.v € ut.
Let us now consider X € ul and show that there exists a v € T, M such that X = (u*6%),.v. If
this is true then for all Y € u one has :

we (Y, 0) = ((N*HL +p*0%), 0] Y)
((Id + Adp(z)). (7 0")00) | Y)

_ %((m + Adp(x)) X |Y)

N~ N~

So in order to show the existence of v, we will show that the map
1
o Y — 3 ((Id + Ad p(z)). X | Y)

is a well-defined linear map on V,, := {Y, : Y € u} C T, M and that if one extends it to the whole
of T, M (for instance by choosing a complement W, to V, in T, M and deciding that a,|w, = 0)
then this extended «, can be represented by some v € T, M. To this end, it is enough to show
that o, is well-defined on V, and that ker w, (which is included in V. by (i)) satisfies o |kerw, = 0.
First, if Y,# = 0 (that is, Y € u,), then as usual Adpu(x).Y =Y, therefore :

%((Adu(x).X 1Y) + (X | Y))

- i)+ )

=Y

% ((Id + Ad (@) X | Y)

= (X]Y)
= 0 sinceY €u, and X € ut
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Thus, a, is well-defined on V, and can be extended linearly to T, M. Second, if w € ker w,, then
by (i), w = Z# with Ad u(x).Z = —Z. Hence :

ap(w) = %((Adu(x)+ld).X|Z)

= %(X| (Ad (u(2)) ™" + 1d).2)

=0

= 0

Therefore, there exists some v € T, M such that a, = w,(.,v), that is, for all Y € u, o, (Y,¥) =
w. (Y7, v). Hence, for all Y € u :

1
2

Since (.|.) is non-degenerate, this yields :

(Ad p(z) + 1d). X = (Ad p(z) + 1d) ((n*60")5v)

((Ad,u(x) +Id).X|Y) = %((Ad,u(x) + Id) (u*0")zv) |Y)

Therefore :
X' =X — (p*0"),v € ker (Ad p(x) + Id)
But ker(Ad pu(z) + Id) C Im (u*6%),. Indeed, if Y € u satisfies Ad u(x).Y = —Y then :

. 1 1

=Y, (z)

—%(Ad (w(x)) 'Y V)

=Y

=Y

so that Y € Im (u*0%),. and therefore X = X’ + (u*0%),.v € Im (u*0Y),, which proves that
ur C Im (u*0%),. Thus we have proved that Im (u*6%), = ut. The proof that Im (u*6%), = ut
is obtained similarly by writing (u*6% + p*60%),.v = (Ad (u(x))~1 + Id).((1*6%),.v) in the above
proof and proceeding accordingly.

Take X € uand v € ker T, u. Then :

1
wo (X7 v) = 5((9L +0%) 40y (Topv) | X) =0
=0
that is :
{X7# . X eu} C (ker Tpp)tes (4.9)

Further, {X7# : X € u} ~ u/u,, therefore its dimension is :
dim u — dim u, = dim uj =dim Im T, p
since Im T,y =~ ur by (iii). Therefore :
dim {X# : X € u} = dim T, M — dim ker T,,pu
But ker T, N kerw, = {0} by (ii), so that by lemma 4.3.2 :
dim (ker Tzu)L“I =dim T, M — dim ker T, ut

and the inclusion (4.9) above is therefore an equality by dimension count.
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(v) Observe first that :
d .
T,(U.x) = {_dt|t:0 (up.x) + up € Uug =1} ={X7 : X €u}

so that (iv) means that (ker T,u)*«s = T,(U.x). Therefore, ((ker Tpu)tee)tee = (T, (U.x))tee.
But ker Ty,pu C ((ker Typp)tw=)Lws  hence :

ker Tyt C (T (U.)) ™

In fact, one can show, using lemma 4.3.2, that ((ker Typu)+«=)+ws = ker T,pu + ker w,, and this last
sum is actually a direct sum since ker T4 N kerw, = {0} by (ii).
O

4.4 Products of quasi-Hamiltonian spaces

For now, given a Lie group (U, (.].)), we only have two examples of associated quasi-Hamiltonian spaces
at our disposal : a conjugacy class C C U and the U x U-space D(U) = U x U (see subsection 4.2). In
particular, only one of these two examples is a U-space. We now wish to construct new examples of quasi-
Hamiltonian U-spaces. Drawing from the usual Hamiltonian setting, one can for instance look for a quasi-
Hamiltonian structure on a product M; x M of two quasi-Hamiltonian U-spaces (M7, w1, pu1 : M7 — U)
and (Ma, wa, g : My — U). In the usual Hamiltonian framework, the product manifold is endowed with
the diagonal action of U, the direct symplectic form w; ¢ wo and the direct sum momentum map :

@ pe: My x My — u*
(x1,72) +—  pi(x1) + p2(r2)

Of particular interest in the Hamiltonian setting is the case of a product of two co-adjoint orbits (see for
instance [Knu00] for the relation of this with the Weyl-Horn problem). Here, it is therefore natural to
consider the diagonal action of U on a product of conjugacy classes. Further, since we are in a Lie group
setting, it seems reasonable to expect the map p; @ ps2 to be replaced by the map :

pi-pe: My x My — U
(z1,2) +—  pi(z1)p2(r2)

Observe that this map is U-equivariant. The question then is : which 2-form is appropriate on M7 x Ms
to obtain a quasi-Hamiltonian structure on this product manifold when endowed with the diagonal action
of U and the U-equivariant map g1 - po 7 We will see shortly that it is not the direct sum 2-form wy @ wo
but rather this 2-form plus a residual term w;,.s. To obtain an expression for the correct 2-form w on
My x Ms, one can try and guess it from the momentum map condition :

1
Lx#W = §H*(0L +0% X)

If one computes ¢ty # (w1 Bwa) — & (1 - p2)* (0% +6% | X), one obtains a non-zero term which turns out to be
of the form ¢ x#wyes, where wy.es is a 2-form on M7 x Ms. As a matter of fact, to obtain an expression for
Wres, 1t 18 even enough to compute this in the simple explicit case where M7 x My = C; X Cy is a product
of two conjugacy classes. To do so, take X € u, (u1,us) € C1 X Cy and (&1,&2) € Ty,C1 X Tyy,Co. Then
there exist Y7,Ys € u such that & = Yi.u1 — u.Y7 = YJl and & = Yo.us —uq.Yy = YJ2 (see proposition
4.2.1). We denote by w; the 2-form defining the quasi-Hamiltonian structure on C; (see proposition 4.2.1).
Since U acts diagonally on C; x Cs, one has :
x# = (x}i,xi)

(’LL1,’LL2) - u?
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Consequently, one has, on the one hand :

oy (6082 = (@1 © @) (XL XL, (00, 02)E,) )
= (W (XL, (VDL 4 (@2)us (X1, (2)1,)

AdulX | Yl) — (Adu1Y1 |X))

(Lx# (wr @ w2))

(
2

1
+§((Adu2.X |Ya) — (Adus.Y2 | X))
and on the other hand :

Twyuz) (1 - p12)-(61,82) = (Tuy pr1:61)-p2(uz) + pa (ur). (T, p2-62)
= &ug+wup.le since p;: C; — U
(Y1)f,, -z +u1.(Y2)],

and therefore :

(%(Ml : M?)*(GL + HR))(U w )'(51752) = %(HL + GR)uluz ((Yl)Ll'UQ + ul(}/?)LQ)
1

= 5((“1U2)_1~(Y1)21-U2+u;1.(Y2)LQ
F V)Lt s (Vo) (uug) ™t |X)
= %((UI1~(Y1)L | Adup.X) + (uz '.(Y2)l, | X)
(V)L | X) + (Ya)l, up | Adu;l.X))
= %((Adufl.Yl — Y1 | Adus. X) + (Aduy ' .Ys — Yo | X)
+(Yi — AdurYi | X) + (Yz = Adus Ya | Adui! X))
so that :

(Lx#(wl PDwsy) — %(Ml o) (OF 4 07 | X))(u1 u2).(§1,§2)
- %((Adul.X|Y)—(Aduz.}/g|X)—(Aduf1.Y1—Y1|Aduz.X)
H(Ya|X) = (Y1]X) — (Vs —AduQ.YQ|X))

((X14dur' Y1) = (AdwzYa | X) = (" (V)] | Ad uz. X)

N | =

(1 X) = ()], 05" | Adu; ! X))

((XTurt.0)],) + (2), 3| X)
~(ur (0], | Adus X) = (V2L [ Adur.X) )

N | =

((X — Adus. X |up L(VD)E ) — (V)b g | Adupt X — X))

(gl MO, — (()iz g X))

N =N =

This last quantity can be rewritten under the form :
1
5 (5 (xt)16E (02)1,)) = (65 (0L 162 (x1,)) (4.10)
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This expression defines a 2-form on C; x Co. To guess the expression of the appropriate 2-form on any
product My x Mo, denote by p; the map :
,[Zi : M1 X M2 — U
(x1,22) —  pa(s)

Then, by the equivariance of p;, one has T(zl,m)ﬁi'le v2) = X,I«i(ri)’ so that expression (4.10) transforms
into :
1 —~ % —~% —~% —~ %
(410) = = (((G0%)ar XF: | (270" )asiv2) — (0% )oy 01 | (72°0%).X2) )

1,
= —5(m 0 A" 0%) L (XL s (01,02))

= _(LX#WTES)(wl,wg)-(Ula v2)

where (v1,v2) € Ty, My x Ty, My is supposed to satisfy Ty, o,)ii-(v1,v2) = & € T, (2,)U and where
wres = (01 0% A pz"0%). In the following, we shall use the conventions of [AMM98] and write simply :

1 * *
Wres = 5(#19L A z0™)
That is :

(MTHL A /‘ZOR)(HELM) ((vl’ va), (wi, w2))
= (951(901)(T$1M1'U1) |952($2)(Tw2/1,2.U}2)) — (6‘51($1)(Tw1u1.w1) |952(w2)(T$2/L2.U2))

Observe that this expression coincides indeed with (4.10) when M7 x My = C1 XCs. The above calculations
then show that for all X € u :

1
Lx #((wl @WQ) +wres) = 5(,“1 . ,UQ)*(HL + GR | X)

The product space My x M endowed with the 2-form w := (w1 @ wa) + 1 (u10% A p36%) is called the
fusion product of My and Ms (it is denoted My ® My in [AMMO8]). The term fusion product alludes to
the theory of quantum groups (see [AMMO98] for an explanation and references).

Proposition 4.4.1 (Fusion product of quasi-Hamiltonian spaces, [AMMO98]). Let (M, w1, 1)
and (Ma, wa, p2) be two quasi-Hamiltonian U-spaces. Endow My x My with the diagonal action of U.
Then the 2-form
1
w:= (w1 Bwg) + i(l[lkoL A p0™)
makes M1 X My a quasi-Hamiltonian space with momentum map :

pi-pe: Myx My — U
($1,$2) — Ml(xl)uz(xz)

We refer to [AMMO8] for a complete proof of this result (one still has to verify that w is U-invariant and to
compute dw and kerw(,, 5,)). As a consequence of this result, every finite product of quasi-Hamiltonian
U-spaces is a quasi-Hamiltonian U-space for the diagonal action, with momentum map the product map

i My x---xM; — U
(1, ... 21) — pi(zr)...u(z)

In particular :

Corollary 4.4.2. The product C1 X --- x C; of | conjugacy classes of U is a quasi-Hamiltonian space for
the diagonal action of U, with momentum map the product p(uy, ... ,u) =uq...u.
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As pointed out in [AMMO8], the fusion product defined above is associative; meaning that the fusion
product form on (M7 x Ms) x Ms obtained by taking the product M; x My first and then the product
(My x M) x Ms is equal to the fusion product form obtained similarly on My x (My x Ms) :

(((wr @ wn) + H(u10% A ps6™)) @ ws) + & (1 - 12)"0% A p56%)
= (w1@ (w2 @ ws) + 330" A ps6R)) ) + 3 (10" A iz )07
To obtain an expression for the 2-form defining a quasi-Hamiltonian structure on a product M X - - - x M;

of | quasi-Hamiltonian U-spaces, we re-arrange the above expressions and proceed by induction using the
Ad-invariance of (.|.) :

- on My x M, the structural 2-form is :
= (1 B wa) (4105 A 0%) = (w0 @) + 5 (67 A (11 Ad).(136")
- on My x My x Ms, the structural 2-form is :
w = (w1BwBws)+ (07 A (u Ad).ps0™) + %(((,ul - p2)* Ad).0F A 1307)

= (wl @wz@w3)+

N =N =

* * 1 * *
(07 A (17 Ad).p30™) + 5(9R A ((p - p2)* Ad).u30™)

- on My X --- x M, the structural 2-form is :

-1

1
w=(@1®... 0w+ ; (0% A (o1 - i) Ad) gy, 67)

As one can see, these expressions might make computations somewhat long and intricate. In chapter 7,
we will need to compute the pull-back of the 2-form w on C; X --- x C; by a certain map (3. By using
certain properties of the map [, we will avoid the explicit computation of S*w (see lemma 7.3.3). See
also [Tre02] for expressions of fusion product forms on products of conjugacy classes.

Another interesting problem is to consider a product of two quasi-Hamiltonian spaces (M7,w1, 1 :
My, — U;p) and (Ma,wa, g : Mo — Us) acted on by different groups U; and Us. One then has the
following result, which is verified immediately from the definition of a quasi-Hamiltonian space (see
definition 4.1.2) :

Proposition 4.4.3 ([AMM98]). Let (My,wi,pu1 @ My — Uy) and (Ma,wa, pio : My — Us) be two
quasi-Hamiltonian spaces and endow My x My with the Uy x Us-action defined by :

(ul, u2).(x1 s {EQ) = (ul.xl, u2.x2)

P

the U-invariant 2-form w* = w1 @ wy and the equivariant map

ILLP: My x My — U; xUs;
(x1,22) +— (#1@1)7#2(332))

Then the triple (My x My, w®, u) is a quasi-Hamiltonian Uy x Us-space.

If now U; = U; = U, then one can embed U diagonally in U; x Uy and consider the induced U-action on
My x Mo, which is just the diagonal action. We can then recover the fusion product 2-form on M7 x My
obtained in proposition 4.4.1 by using the following lemma, the upshot being that this lemma applies to
U x U-spaces which are not necessarily product manifolds.
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Lemma 4.4.4 (Internal fusion of quasi-Hamiltonian U x U-spaces). [AMMO98] Let (M,w?, up =
(1, p2) : M — U x U) be a quasi-Hamiltonian U x U-space. Consider the action of U on M defined by
u.x := (u,u).x and the map
w: M — U
z o p(x)pe(z)
Then, the 2-form

1 * *
w:i=wp+ 5(#19L A p30"™)

makes M a quasi-Hamiltonian U -space with momentum map the map p.

When (M, w?, up) = (My x My, w® up : My x My — U x U), applying lemma 4.4.4 to this U x U-space,
we indeed obtain the fusion product space of proposition 4.4.1. But a more interesting feature of the
above lemma is the construction of a new quasi-Hamiltonian U-space associated to any given Lie group
(U, (.|.)) called the internally fused double of U : it is obtained by applying internal fusion to the double
D(U) =U x U constructed in proposition 4.2.2.

Proposition 4.4.5 ([AMMS98]). The manifold ®(U) := U x U equipped with the diagonal conjugacy
action of U, the U-invariant 2-form

W= %(Q*GL /\ﬂ*eR) + %(Q*GR/\ﬂ*eL) + %((aﬁ)*@L A (0471 .671)*9}%)

and the equivariant momentum map

w: DU)=UxU — U
(a,b) +—— aba"b7!

(where o and [ are the projections respectively on the first and second factors of D(U)) is a quasi-
Hamiltonian U-space, called the internally fused double of U.

This space plays a very important role in the description of symplectic structures on representation spaces
of fundamental groups of Riemann surfaces whose genus is greater or equal to 1 (see [AMM98] and section
4.6 below). Before concluding this section, we would like to point out the fact that, in [AMMOS], all the
above results concerning products of quasi-Hamiltonian spaces, including internal fusion, are presented
in a unified way. We chose to be more analytic here. Alekseev, Malkin and Meinrenken also prove in
[AMMO98] that the fusion product is commutative on isomorphism classes of quasi-Hamiltonian spaces
and relate fusion to reduction to reproduce the “shifting trick” for symplectic reduction in the usual
Hamiltonian setting. We refer to this paper for details.

4.5 Reduction theory of quasi-Hamiltonian spaces

In this section, we will show, mainly following [AMMO98], how to obtain a symplectic manifold from a
quasi-Hamiltonian space by a reduction procedure, that is to say, by taking the quotient of a fiber u=!({u})
of the momentum map by the action of the stabilizer group U,,, which preserves the fiber ;=1 ({u}) since
w is equivariant. We refer to [MWO1] for a historical account on the idea of reduction (which consists,
to try a physical picture, in diminishing the number of degrees of liberty of a Hamiltonian system, that
is, the dimension of a symplectic manifold called the phase space, by consideration of symmetry, that, is
by taking the quotient by a group action to obtain a smaller phase space). The modern formulation of
reduction that we will be dealing with in the following is due to Meyer and Marsden and Weinstein (see
respectively [Mey73] and [MWT74]).

Let us first recall how to obtain differential forms on an orbit space N/G where N is a manifold acted
on by a Lie group G. We will assume that the action is proper and free, so that N/G is a manifold
(and the submersion p : N — N/G is a locally trivial principal fibration with structural group G, see for
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instance [DKO00], pp.53-55). Let [z] denote the G-orbit of z € N. Then the tangent space Tjy(N/G) is
isomorphic to T, N/kerT,p (since p is surjective). And ker T, p consists exactly of the vectors tangent
to N at x which are actually tangent to the G-orbit of x in N. Those are exactly the values at x of
fundamental vector fields :

ker Tpp = To(G.x) = {XF# : X € g = Lie(G)}

Let then « be a differential form on N (say, a 2-form). Under what conditions does « define a 2-form @
on N/G verifying p*a = o ? This last condition amounts to saying that @, ([v], [w]) = a.(v,w) for all
x € N and all v,w € T, N. One then checks that the left-hand side term of this equation is well-defined
by this relation if and only if the 2-form « is G-invariant. Further, since X7 is sent to 0 in Tj,(N/G) by
the map T, p, the relation p*@ = « implies that tx#a = 0 for all X € g. These two conditions turn out
to be enough :

Lemma 4.5.1. Letp: N — B = N/G be a locally trivial principal fibration with structural group G and
let a be a differential form on N. If a satisfies

gfa=a forallge G (G-—invariance)
and
tx#a =0 forall X € g= Lie(G)

then there exists a unique differential form @ on B satisfying p*@ = «. In such a case, the 2-form « on
N s said to be basic.

Observe that if G is compact and connected (so that the exponential map is surjective), the condition
g*a = « for all ¢ € G may be replaced by Lxa = 0 for all X € g (which is always implied by the
G-invariance).

We can now use this result to construct differential forms on orbit spaces associated to level manifolds
of the momentum map. Let us start by considering the usual Hamiltonian case. Let (M, w) be a symplectic
manifold endowed with a Hamiltonian action of a Lie group U with momentum map p : M — u*, and
take N := p~1({¢}) where ¢ € u*. Because of the equivariance of y, the stabilizer G := U, of ¢ for the
co-adjoint action of U on u* acts on N = u~*({(}). Assuming that ( is a regular value of u and that U¢
acts freely and properly on 1~ ({¢}), we then have a principal fibre bundle p : p=*({¢}) — p*({¢})/Us
and the following diagram :

) M

pH{CH/Ue

where i : p=1({¢}) — M is the inclusion map. The 2-form w on M induces a 2-form i*w on u~1({¢}),
which turns out to be basic (see the proof of proposition 4.5.2 for similar reasoning). Therefore, by
lemma 4.5.1, there exists a unique 2-form w™? on p~1({¢})/U¢ such that m*w"*? = i*w. Since w is
closed, so is w™? (we may first check that if o is basic then do is basic, as follows from the Cartan
homotopy formula). And one may then notice that a vector v € T, N = ker T, is sent by T,p to a
vector in kerwfﬁd if and only if v is contained in (T, N)*« = (ker Tpp)*~ = {X# : X € u} as well. But
then v = X7 € ker T, N (ker T,p)*=, so that by the equivariance of y, one has, denoting by X' the
fundamental vector field on u* associated to X by the co-adjoint action of U : X g = X;E(r) =T, u. X7 =0,

so that X € us = Lie(Uc). We have thus proved that Typ.v € kerw{;]d if and only if v € {X7# : X € uc}.
Consequently, for such a v, one has Typ.v = 0, so that w"? is non-degenerate and p=*({¢})/U; is
a symplectic manifold. When ¢ = 0 € u*, U; = U and one usually denotes p~1({0})/U by M//U.

This manifold is called the symplectic quotient of M by U. Observe that in this case u~!({0}) is a
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co-isotropic submanifold of M, since, if p(z) = 0, then for all X € u, Tpu.X¥ = Xg = 0, so that
(ker Tppt)*= C ker Tpp. And the 2-form w™ is then symplectic because the leaves of the null-foliation of
w|n (that is, the foliation corresponding to the distribution z ~ ker(w|y)s = (TxN)*~ = (ker Tpu)*+)
are precisely the U-orbits. One may also define the reduced space at ¢ to be p=*(O¢)/U, where O¢ is the
co-adjoint orbit of (. We refer to [Mey73] and [MW74] for further details in that direction (in particular
for the shifting trick, that reduces the study of x~!(O¢) to the study of (M x O_¢)//U).

In [LS91] and in [BL97], the authors study the case where the regularity assumptions (0 is a regular
value of y and the action of U on p~'({0}) is free) are dropped. In the rest of this section, we will
restrict ourselves to the case where U is compact, so that the action is automatically proper. This
is the situation studied in [LS91]. We refer to [BL97] for proper actions of non-compact Lie groups
and references concerning singular symplectic quotients (notably the survey paper [AGJ90]). In [LS91],
Lerman and Sjamaar showed that when the above regularity assumptions are dropped, the reduced space
M//U is a union of symplectic manifolds which are the strata of a stratified space. Their proof relies
on a normal form theorem for the momentum map obtained by Marle in [Mar86] and by Guillemin and
Sternberg in [GS84b]. See subsection 4.5.2 for further comments.

4.5.1 The smooth case

Let us now come back to the quasi-Hamiltonian setting. In [AMMO8], Alekseev, Malkin and Meinrenken
showed how to construct new quasi-Hamiltonian spaces from a given quasi-Hamiltonian U-space (M, w, i :
M — U) by a reduction procedure, assuming that U is a product group U = Uy x Us (so that p has two
components = (i1, p12)). Their result says that the reduced space py *({u})/U, is a quasi-Hamiltonian
Us-space. In particular, when U; = {1}, they obtain a symplectic manifold. Since this is the case we
are interested in, we will state their result in this way and give a proof that is valid in this particular
situation. We refer to [AMMO8] for the general case. It is quite remarkable that one can obtain symplectic
manifolds from quasi-Hamiltonian spaces by a reduction procedure. As a matter of fact, this is one of the
nicest features of the notion of quasi-Hamiltonian spaces : it enables one to obtain symplectic structures
on quotient spaces (typically, moduli spaces) using simple finite dimensional objects as a total space. The
most important example in that respect is the moduli space of flat connections on a Riemann surface X,
first obtained (in the case of a compact surface) by Atiyah and Bott in [AB83] by symplectic reduction
of an infinite-dimensional symplectic manifold. We refer to [AMMO98] and to section 4.6 below to see how
one can recover these symplectic structures using quasi-Hamiltonian spaces. Let us now state and prove
the result we are interested in.

Proposition 4.5.2 (Symplectic reduction of quasi-Hamiltonian spaces, the smooth case,
[AMMO8]). Let (M,w,u: M — U) be a quasi-Hamiltonian U-space. Assume that 1 is a regular value
of i and that U acts freely on p=*({1}). Leti : p=1({1}) < M be the inclusion of the level manifold
pt({1}) in M and let p: p=1({1}) — p=1({1})/U be the projection on the orbit space. Then there exists
a unique symplectic form w™? on the reduced manifold M := p=*({1})/U such that p*w™? = i*w on

Pt ({1}).
Proof. The proof consists in showing that i*w is basic with respect to the principal fibration p and then

verifying that the unique 2-form w™? on p=1({1})/U such that p*w™*? = i*w is indeed symplectic.
Let us first show that ¢*w is basic :

u(*w) =4i*w forallueU
and

tx#t*w =0 forall X eu
The first condition is obvious since w is U-invariant. Consider now X € u. Then :
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*

Lx#W)

Lx#(i*w) = Z(
(Gu (07 + 07| X))

|
-.

(i* o ™ (0% + 61 | X))

(o) (6" + 67| X)

SN~ N

since p o i is constant on p~1({1}) and therefore T'(04) = 0, hence (po0i)* = 0. Then there exists, by
lemma 4.5.1, a unique 2-form w”*? on p~1({1})/U such that p*w"*? = i*w.
Let us now prove that w™? is a symplectic form. First :

p* (dwred)

I
.

= 0
so that dw™? = 0. Second, take [z] € p~'({1})/U, where z € p~'({1}), and [v] € kerw[7, where
v € Tep 1 ({1}) = ker Tppu. Then, for all w € T, ({1}) = ker T, 1, one has :

(" w)a (v, w) = (P*w"M)a (v, w) = wif([v], [w]) =0

2]
since [v] € kerwp . Hence :
veker(iw), = {se€kerTyu|VwekerTyu, wy(s,w)=0}
= kerT,unN (kerTgEu)J‘“ cT,M
But, by proposition 4.3.1, (ker T,,u)* = {X# : X € u}, sov = X} for some X € u. Hence :
[v] = Typv = sz.Xf =0

so that w"* is non-degenerate. O

4.5.2 The stratified case

What happens if we now drop the regularity assumptions of proposition 4.5.2 ? Following the techniques
used in [LS91] and [BL97] for usual Hamiltonian spaces, we will show that if we do not assume 1 to be
a regular value of y: M — U, nor that U acts freely on p=1({1}), then the orbit space u=1({1})/U is a
disjoint union, over subgroups K C U, of symplectic manifolds M}’fd :

/o= | Mg

KcCU

each M}fd being obtained by applying proposition 4.5.2 to a quasi-Hamiltonian space (Mg,wk, i :
Mg — Lg). Actually, the study conducted in [LS91] (and in [BLI7] for the case of proper actions of
non-compact groups) is far more precise and ensures that the reduced space M"*? := pu=1({1})/U is a
stratified space (in particular, there is a notion of smooth function on M™%, and the set C>°(M"¢%) of
smooth functions is an algebra over the field R, see [LS91] for a precise definition), with strata (Sk)xcu,
such that :
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- each stratum Sk is a symplectic manifold.
- C>®(M7e4) is a Poisson algebra.
- the restriction maps C>®(M"¢?) — C>(Sk) are Poisson maps.

A stratified space satisfying these additional three conditions is called a stratified symplectic space. In
[LS91], to show that M7"¢? is always a stratified symplectic space, Lerman and Sjamaar actually obtain
this space as a disjoint union of symplectic manifolds in two differents ways. The first one enhances the
stratified structure of M "¢ (the stratification being induced by the partition of M according to orbit types
for the action of U), and relies on a normal form theorem for the momentum map obtained by Marle in
[Mar86] and by Guillemin and Sternberg in [GS84b]. It also shows that each stratum carries a symplectic
structure. The second description of M7? as a disjoint union of symplectic manifolds then aims at
relating this reduction to the regular Marsden-Meyer-Weinstein procedure (see for instance [dS01]) : the
symplectic structure on each stratum is obtained by symplectic reduction from a submanifold of M.

Here, we shall not be dealing with the notion of stratified space and we will content ourselves with
a description of u=1({1})/U as a disjoint union of symplectic manifolds obtained by reduction from a
quasi-Hamiltonian space Mk C M. We will nonetheless call the case at hand the stratified case.

We start with a quasi-Hamiltonian space (M,w,u : M — U) and use the partition of M given by
what we may call the isotropy type :
M= || Mg
KCU

where K C U is a closed subgroup of U and M is the set of points of M whose stabilizer is exactly K :
Mg ={zeM|U,=K}

Observe that if one wants K to be the stabilizer of some x € M, one has to assume that K is closed,
since a stabilizer always is. If M is non-empty, it is a submanifold of M (see proposition 2.1.1), called
the manifold of symmetry K in [LS91], whose tangent space at some point € Mg consists of all vectors
in T, M which are fixed by K :

T.Mg ={veTyM | foral ke K, kv=uv}

where k € K acts on T, M as the tangent map of the diffeomorphism y € M — k.y which sends z to
itself by definition. The action of U does not preserve Mg but My is globally stable under the action of
elements n € N(K) C U, where N(K) denotes the normalizer of K in U :

N(K):={uecU|forall k€ K,uku™' € K}

It is actually the largest subgroup of U leaving M invariant, since the stabilizer of u.x for some x € Mg
and some u € U is still U, if and only if uU,u"! = U,, that is, uKu~! = K. Observe that we have :

Lie(N(K)) ={X eu|forall Y € £, [X,Y] € £}

That is, the Lie algebra of the normalizer of K in U is the normalizer of n(¥) of the Lie algebra ¢ := Lie(K)
inu = Lie(U). The subgroup K is normal in A'(K') and acts trivially on Mg by definition of the manifold
of symmetry K, so that M inherits an action of the quotient group N (K)/K. It actually follows from
the definition of M that this induced action is free : if n € N(K) stabilizes some z in Mk, then n € K
and so is the identity in N (K)/K. We now wish to show that My is a quasi-Hamiltonian space with
respect to this action. We need to find a momentum map pug : Mg — N(K)/K and a 2-form wg
satisfying the axioms of definition 4.1.2. The natural candidates are ux = p|p, and wi := w|a,, but
the problem is then that px does not take its values in N'(K)/K. We will now show that u(Mg) C N(K)
and that we can therefore consider the composed map jig = px o ux : Mg — N(K)/K, where pk is
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the projection map px : N(K) — N(K)/K. Denote then by Lk the group L := N(K)/K. As K
is closed in U, so is N(K), and since U is compact, N'(K) is compact. Therefore Lx = N (K)/K is a
compact Lie group. We will then show that (Mg, w|a, fix) is a quasi-Hamiltonian space. Moreover,
we will show that 1 € Ly is a regular value of iz and that Lx acts freely on g ' ({—1}), so that, by
proposition 4.5.2, the reduced space M54 := iz ' ({1})/Lx is a symplectic manifold.

To do so, we start by studying u(Mp). This whole analysis adapts the ideas of [LS91] to the quasi-
Hamiltonian setting. Let us denote wg = w|a, and px := plar, . First, since K acts trivially on Mg,
we have, for all z € My and all k € K :

prc(x) = pre (k.a) = kp (x)k™

so that u(x) belongs to the subgroup UX of points of U whose centralizer contains K :

UK :={ueU|foral k€ K, kuk™" = u} (4.11)
Thus : p(Mg) C UK, and therefore, for all x € M :

Im Typpe — Lie(UR) ={X cu|forall Y € ¢ [X,Y] =0}
(this is not strictly speaking an inclusion since Im T, ux C T}, (U, but it is true up to a translation :
Im (p30%), C Lie(UX), as in proposition 4.3.1). Observe that the Lie algebra of UX is the subalgebra
ut of elements of u whose centralizer in u contains € :
w:={Xcu|forall Y €¢[X,Y] =0}
Second, for all X € ¢, we have :
Lx#wi = 35 (08 + 67| X) (4.12)

(where 6% and 67 denote as usual the Maurer-Cartan 1-forms of U, so that the above relationship simply
follows from the fact that (M,w, u: M — U) is a quasi-Hamiltonian space). Hence, by proposition 4.3.1,
we have, for all x € Mg :

Im Tpopx CIm Tpp ~ ut = ¢t (4.13)

It follows from (4.11) and (4.13) that for all z € My :
Im Ty pug — utnet
(again, this could be written : Im (u%60%), C u* N€L). We then have :
Lemma 4.5.3. The Lie subalgebra u* M€+ C u is equal to the orthogonal of € in n(k) :
ufnet =gt
Proof. To prove the first inclusion, it suffices to show that any X € u®* N€t belongs to n(€). Since X € uf,
we have, for all Y € ¢, [X,Y] =0 € &, so that X € n(®).
To prove the converse inclusion, it is enough to show that any X € £=® belongs to uf, that is, to show
that for all Y € ¢, [X,Y] = 0. Take Y € ¢. Then for all Z € n(®) :
(X, Y][2) = (X|[Y,Z]) =0

since [V, Z] € € (because Z € n(t)) and X € e, Since the restriction (. | .),) is non-degenerate, this
implies that [X,Y] = 0. O
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Observe now that £ is an ideal in n(k) and that £1~® is therefore a Lie subalgebra of n(£) (hence a Lie
subalgebra of u) which is isomorphic to n(€)/¢. Moreover, we have just seen that, for all z € Mk :

Im Typg < ELneo (4.14)

(again, this could be written : Im (u}6%), C €+»®). In particular, for all z € Mg, Im Ty — n(E),
so that ux (Mg) C N(K). We can therefore consider the map jix := px o ux : Mgk — Lx = N(K)/K,
where px : N(K) — N(K)/K. Furthermore, we may identify the Lie algebra of Lx to n(t)/¢. Under
this identification, the Maurer-Cartan 1-forms 67 and 6 of L are obtained by restricting those of
U to N(K) (which gives n(€)-valued 1-forms) and composing by the projection n(t) — n(€)/t. It is then
immediate from relation (4.12), that for all X € Lie(Lk), one has :

1 —~ 3k
LXHWK = SR (07, +07, | X)

Likewise, the Cartan 3-form xr,, of Lk is obtained by restricting that of U to N'(K) and composing the
n(t)-valued 3-form thus obtained by the projection n(t) — n(€)/¢. Then, it follows from the fact that
dw = —p*x that we have :

dwg = —pgXIN () = =K XLk
Thus, we have almost proved that (Mg ,wk, iix) is a quasi-Hamiltonian Lx-space. In order to compute

ker(wg ), for all € Mg, we observe the following two facts, the first of which is classical in symplectic
geometry and the second of which is a quasi-Hamiltonian analogue :

Lemma 4.5.4. Let (V,w) be a symplectic vector space and let K be a compact group acting linearly on
V' preserving w. Then the subspace

Vk :={veV |foral keK,kv=uv}
of K -fized vectors in V is a symplectic subspace of V.

Proof. Since K is compact, there exists a K-invariant positive definite scalar product on V', that we shall
denote by (.|). Since w is non-degenerate, there exists, for any v € V', a unique vector Av € V satisfying

(v|w) = w(Av, w)

for all w € V, and the map A : V — V thus defined is an automorphism of V. Moreover, it satisfies
A(Vk) C Vk. Indeed, if v € Vi, then for all k € K, one has, for allw e V :

wk.Av,w) = w(Av, k™ w)
= (v|k tw)
= (kov|w)
= w(A(kw),w)
= w(Av,w)
and therefore k.Av = Av for all k € K (incidentally, if one forgets the last equality, which used the fact
that k.v = v, this also proves that Ak = kA for all k € K), hence Av € Vik. If now v € Vi satisfies

w(v,w) =0 for all w € Vi, then in particular for w = Aw, one obtains w(v, Av) = 0, that is, (v|v) =0,
hence v = 0, since (.|) is positive definite. O

Lemma 4.5.5. Let (V,w) be a vector space endowed with a possibly degenerate antisymmetric bilinear
form and let K be a compact group acting linearly on V preserving w. Then the 2-form wx = w|v,
defined on the subspace
Vk :={veV |foral keK,kv=nuv}
of K-fixed vectors of V has kernel :
kerwg = kerw N Vi

60



4.5 CHAPTER 4

Proof. If w is non-degenerate then this is simply lemma 4.5.4. Assume now that kerw # {0}. Observe
that kerwg = Vé‘” N Vg D kerw N V. We now consider the reduced vector space yred .— V/kerw.
The 2-form w induces a 2-form w"? on V"¢, which is non-degenerate by construction. The map Vi —
V — V/kerw induces an inclusion Vi /(kerw N V) < V/kerw. Further, the action of K on V induces
an action k.[v] := [k.v] on V" : this action is well-defined because K preserves w and therefore if
r € kerw then k.r € kerw. The subspace (V74)y of K-fixed vectors for this action can be identified
with Vi /(kerw N Vi ). Indeed, if [v] € V"¢ satisfies, for all k € K, [k.v] = [v], then set :

w = / (e.v)dA(R)
keK

where A is the Haar measure on the compact Lie group K (such that A(K) = 1, see for instance [BtD95],
p.46). Then for all ¥’ € K :

Faw = k’.(/kEK(k.v)dA(k))
/ (k) dA(k)
keK

/ (hv)dA(h)
heK

since the Haar measure on K is invariant by translation. Thus w € Vi and we have :

[/kEK(k.v)d/\(k)}
/k le.u]dA (k)

EKv[]

] x /k D\
= [v]

Thus [v] € Vi /(kerw N Vi) C V74 which proves that (V") x C Vi /(kerw N Vi), and therefore :

[w]

(Vred) i = Vi /(kerw N Vi)

(the converse inclusion being obvious). Consequently, since V"¢ is a symplectic space, lemma 4.5.4
applies and we obtain :
ker w4 (yrreay, = {0}

Now wr = wly, induces a 2-form (wg)™*? on Vi /(kerwNVx) = (V"4 k., whose kernel is, by definition :
ker(wg )" = kerwg /(kerw N Vi)

But, again by definition, (wx)™*" = w"®?|(yrea),, so that ker(wg)™*® = {0}, hence kerwg = kerw N Vg,
which proves the lemma. O

We then obtain a new class of examples of quasi-Hamiltonian spaces :

Proposition 4.5.6. For each closed subgroup K C U, the compact Lie group Lx := N(K)/K acts freely
on the manifold of symmetry
Mg={zxeM|U,=K}

In addition to that, u(Mk) C Nk and (Mk,wk = w|my, ik = Pk © ft|my ), where p is the projection
map pr : N(K) — N(K)/K = L, is a quasi-Hamiltonian space.
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Proof. The only thing left to prove is that, for all x € M :
ker(wi)e = {X# : X en(t)/t | Adig(z).X = -X}
Since Im Ty,ux — €Ln® (see (4.14)), this is equivalent to proving that :
ker(wi ) = {X# : X en(t) | Adpx(z).X = -X}

Further, for X € u, one has X € T, My if and only if X € n(£), so that what we really need to prove is
that :

ker(wg), = {X#:Xeu|Adu(z).X = -X}NT, Mg
= kerw, NT, Mg

But T, Mg = {v e T,M | for all k € K, k.v = v}, so that what we want follows from lemma 4.5.5. O
And we then observe that :

Corollary 4.5.7. 1 € Ly is a regular value of ig and the reduced space MEE? = ﬂ}_l({l})/LK is a
symplectic manifold.

Proof. By proposition 4.3.1, we have, for all z € Mg, Im T,fig ~ I, where [, is the Lie algebra of the
stabilizer of x in L. Since the action of Lx on M is free, we have [, = 0, and therefore jix : Mg — Lk
is a submersion. In particular, 1 € L is a regular value of jiz. The fact that M3 := i~ "({1})/Lx
is a symplectic manifold then follows from proposition 4.5.2. O

Observe that for a given K C U closed, either My or /I;\{*l({l}) may very well be empty. We are
obviously only interested in closed subgroups of U such that this is not the case, and we then have the
following description of the orbit space M"? := p=1({1})/U as a disjoint union of symplectic manifolds :

Proposition 4.5.8 (Symplectic reduction of quasi-Hamiltonian spaces, the stratified case).
Let (M,w,pu: M — U) be a quasi-Hamiltonian U-space. Then the orbit space M"*? := p=1({1})/U is
the disjoint union, over closed subgroups K C U, of the symplectic manifolds ME? := ﬂ;\(*l({l})/LK
introduced in proposition 4.5.6 and corollary 4.5.7 :

p /U= || ((ir 1) /Lk

KcU

Proof. This is purely set-theoretic. Let us write K € (U,) to say that K is conjugate to (U,) in U.
Then :

o= ] va
zep~t({1})

= U U U Ixy

zep~t({1}) Ke(Ues) yeMrnp~1({1})

- U U ke

KCUyepr—'({1})

= U (@& ') /Lx

KcU

To show that this union is disjoint, consider K, K’ such that there exists y € jig ' ({1}) satisfying
(Lx.y) € fig: "({1})/Lg+ . Then there exists y/ € ig: ({1}) such that Lg.y = Lg+.y’. In particular,
y' € Lg.y, hence Uy = nUyrf1 for some n € Lg. Since Uy = K and Lk normalizes K, one has
K'=U, =U, = K. Therefore iz' = firt, Lx» = Lc and pjr ({1})/Lrr = p* ({1})/Lxk. O
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Thus, for every quasi-Hamiltonian space (M,w,u: M — U), the reduced space M"*? := =1 ({1})/U is
a disjoint union of symplectic manifolds. We may then denote it by M//U, as in the usual Hamiltonian
case :

Definition 4.5.9 (Quasi-Hamiltonian quotient). The reduced space M//U := p=1({1})/U associ-
ated, by means of propositions 4.5.2 and 4.5.8, to a given quasi-Hamiltonian space (M,w,p: M — U) is
called the quasi-Hamiltonian quotient associated to M.

Remark 4.5.10. Observe that when the action of U on M is free, then 1 € U is necessarily a regular
value of p (see the proof of corollary 4.5.7) and the only subgroup K C U such that the manifold of
symmetry My is non-empty is K = {1}, so that the results of propositions 4.5.2 and 4.5.8 do coincide
in this case, which is the nicest case one can hope for.

As we shall see in section 4.6, representation spaces naturally arise as quasi-Hamiltonian quotients. Since
in this case it is known that representation spaces are stratified symplectic spaces in the sense of [LS91]
(see for instance [Hue95a]), it should be possible to obtain this stratified symplectic structure in the
quasi-Hamiltonian framework. Following [L.S91], the first step to do so should be a normal form for
momentum maps defined on quasi-Hamiltonian spaces.

4.6 Symplectic structure of the moduli space of representations
of a surface group : the quasi-Hamiltonian description

In this section, we wish to explain how the notion of quasi-Hamiltonian space provides a proof of the fact
that, for any Lie group (U, (.|)) endowed with an Ad-invariant non-degenerate product and any collection
C = {C;}1<j<i of | conjugacy classes of U, there exists a symplectic structure on the representation spaces

Homc(ﬂ'QJ, U)/U

(see 4.6.1 below for a precise definition). Here, m,; denotes the fundamental group of the surface £ ; :=
Yo\ {51, ... ,s1}, ¥y being a compact Riemann surface of genus g > 0, [ being an integer I > 1 and
S1, ..., 8 being | pairwise distinct points of ¥,. When | = 0, we set C := () and X, := X . Everything
we will say is valid for any ¢ > 0 and any [ > 0 but we will not always distinguish between the cases
l=0and ! >1, to lighten the presentation.

Before entering the description of the symplectic structure of Home(mg;,U)/U, we would like to say
that we will keep this description naive and elementary : first, we will not enter considerations about
the stratified structure of Home(mg,;,U)/U (meaning that we choose to forget that these spaces are not
smooth manifolds, even if U is assumed to be compact, see for instance [Wei95, Hue95a, Hue95b, Hue01b])
and second, we will not compare the symplectic structure we obtain with known symplectic structures on
representation spaces (see [AB83, Gol84, Kar92, Wei95, Hue95a, Hue95b, Jef94, Jef95, HJ94, GHIWI7,
AM95, MW99, FR93, FR97, BF99]), which are in fact one and the same. As briefly mentioned in the
introduction to this work, the description of symplectic structures on moduli spaces has a quite large
history and we refer to [AMMO98] for a comparison of the quasi-Hamiltonian description and the original
gauge-theoretic description of [AB83]. The point of keeping this description naive and elementary is to
hopefully make it easier to grasp the nice features of quasi-Hamiltonian spaces when it comes to obtaining
symplectic structures on representation spaces. The upshot of the quasi-Hamiltonian description of these
symplectic structures is, first, that it is fairly easy (insofar as it does not call for infinite-dimensional
manifolds nor tools of group cohomology) and second, that it seems very natural (insofar as the total
space M of the symplectic quotient M//U entering the description is a simple object appearing naturally
in the set-theoretic description of Home (7g,;, U)/U). Of course, all descriptions of the symplectic structure
of Home(mg, U)/U are interesting in their own right and they all have their own advantages, depending
on the motivation for studying these representation spaces. Here, we felt that the quasi-Hamiltonian
description was the most suited for our problem and we simply wish to explain why.
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Recall that the fundamental group of the surface ¥,; = ¥X,\{s1,...,s;} has the following finite
presentation :

l
7Tg’l:<A1,...,Ag,B1,... ’}/1,...,’71| HAZ’B H’yj:
= Jj=1

each v; being the homotopy class of a loop around the puncture s;. In particular, if [ > 1, it is a free
group on (2g+1—1) generators. As a consequence of this presentation, we see that giving a representation
of mg1 in the group U (that is, a group morphism from 7, ; to U) amounts to giving (2¢g + 1) elements
(CLZ‘, bi, uj)lgigg,lgjgl of U satisfying .

Two representations (a;, bi,u;);,; and (aj,b;,u}); ; are then called equivalent if there exists an element

’L7 ’L’
u € U such that a = uau™", b = ubju™", v} = wuju~" for all i,j. The original approach to describing
symplectic structures on spaces of representations (see [NS65, MS80, AB83|) shows that, in order to
obtain symplectic structures, one has to prescribe the conjugacy class of each u;, 1 < j <. Otherwise,
one may obtain Poisson structures, but we shall not enter these considerations and refer to [Hue0la] and
[AKSMO2] instead. We are then led to studying the space Home(mg,;, U) of representations of mg; in U

with prescribed conjugacy classes for the (u;)1<;<; :
Definition 4.6.1. We define the space Home (g1, U) to be the following set of group morphisms :
Home(mg,U) ={p:mg1 — U | p(7;) €C; forall j € {1, ...,1}}

Observe that this space may very well be empty, depending on the choice of the conjugacy classes
(Cj)i<j<i- As a matter of fact, conditions on the (C;) for this set to be non-empty are quite difficult to
obtain (see for instance [AW98] for the case g = 0 and U = SU(n), and [TWO03] for the case g = 0 and U
compact). As earlier, giving such a morphism p € Home(m,,;, U) amounts to giving appropriate elements
of U :

g l
Home(mg,1,U) >~ {(a1, ...,aq,b1, ..., bg,u1, ... 0) €U X -+ xUXCy x---xC | H[ai’bi]HuJ =

2g times

In particular, two representations (a;, b;,u;);; and (aj, b}, u});; are equivalent if and only if they are

(AR B

in a same orbit of the diagonal action of U on U x --- X U X C1 X --- x C;. The representation space
Repe(mg,1,U) is then defined to be the quotient space for this action :

Repe (7,1, U) := Home(mg1, U) /U

Following for instance [Hue95a], the idea to obtain a symplectic structure on the representation space, or
moduli space, Repg (g1, U) is then to see this quotient as a symplectic quotient, meaning that one wishes
to identify Home(my,;, U) with the fibre of a momentum map defined on an extended moduli space (the
expression comes from [Jef94, Hue95a]). The notion of quasi-Hamiltonian space then arises naturally
from the choice of

Ux---xUxCy x--x(

2g times

as an extended moduli space, and of the map

pgi(ar, ... aq,01, ..., bg,u1, ..., w) = [a1,b1].. [ag, bglui. . .

as U-valued momentum map, so that :

Repe (.1, U) = pigy ({13)/U
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Actually, because of the occurence of the commutators [a;, b;], it is more appropriate to re-arrange the
arguments of the map py; in the following way :

,ug,l(al, bl, ceey g, bg, sULy - - ,ul) = [al, bl] . .[ag, bg]ul. U = 1
and to write the extended moduli space :

(UxU)- - x(UxU)xCy x--xC

g times

In the case where g = 0, one simply has :

Mo, - C1><---><Cl — U
(U, ... u;)) — u1...ay

When g =1 and [ = 0, one has :

mo: UxU — U
(a,b) +— aba"b7!

These two particular cases correspond to the examples we have studied in propositions 4.4.2 and 4.4.5
and motivate the notion of quasi-Hamiltonian space. Thus, in general, the extended moduli space is the
following quasi-Hamiltonian space :

My, =DU)x - xDU) xCy x -+ xC

g times

(where ®(U) is the internally fused double of U of proposition 4.4.5) equipped with the diagonal U-action
and the momentum map

pgi: DU)x - xDU)xCi x---xC — U
(@1,b1, ... aq,bg,u1, ..., w) +—— [a1,b1]...[ag, bglui.. . w

The representation space Repe (g1, U) is then the associated quasi-Hamiltonian quotient (see definition
4.5.9) :

Repe (1.0, U) = Mg/ /U = (D(U) x -+ x DU) x Cy x -+ x C))/ /U

g times

In particular, in the case of an [-punctured sphere (g = 0), which is the one we are mainly interested in
in this work, we have :

HOmc(ﬂ'l(SQ\{Sl, cee S, )/U (C1 x---xC)/JU
For the record, we also spell out the case of torus :
Hom(m(T?),U) /U =D(U)//U
(there are no conjugacy classes necessary here, as the surface T? is closed) and of the punctured torus :
Home (m (T*\{s}),U) /U = ) xC)/JU

We then know from propositions 4.5.2 and 4.5.8 that these representation spaces Repe(7g,1, U) = Mg,/ /U
carry a symplectic structure, obtained by reduction from the quasi-Hamiltonian space M, ;. Observe
that one essential ingredient to obtain this symplectic structure was the fact that m,; admits a finite
presentation with a single relation, which was used as a momentum relation. We refer to [Hue95a] for
further comments on representations of groups which are not necessarily surface groups.
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One sees that the choice of the quasi-Hamiltonian description of the symplectic structure of the
representation space Repe(m(S?\{s1, ... ,s:}),U) was dictated by the very form of our problem :
as we were interested (see chapter 1) in characterizing decomposable representations (ui, ...,u;) of
m1(S?\{s1, ... ,s1}), which are elements of C; x --- x C; satisfying uj...u; = 1, it seemed appropriate to
favour a description using the space C; x --- x C; as an extended moduli space.

We now have all the theoretical prerequisites to prove the results announced in the introduction. In the
following two chapters, we shall define and study decomposable representations of w1 (S%\{s1, ... ,si}).
Chapter 5 is elementary in nature and provides nice applications of the notion of decomposable represen-
tation. In chapter 6, we use a Lie-theoretic point of view to obtain a characterization of decomposable
representations by reducing the problem to a fundamental class called og-decomposable representations.
These particular decomposable representations are then characterized as the elements of the fixed-point
set of an involution 8 defined on the quasi-Hamiltonian space C; X --- x C;. As a consequence, we shall
return to the general theory of quasi-Hamiltonian spaces in chapter 7. There, we will show how to obtain
an anti-symplectic involution ﬁ on a quasi-Hamiltonian quotient M//U starting from an involution
on the given quasi-Hamiltonian space (M,w,u : M — U). In particular, we will study the case where
the manifold M is a product space M = M; x Ms, in order to apply the results obtained there to the
quasi-Hamiltonian space C1 X --- X ;.
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Decomposable representations of
m1(S?\{s1, ... ,s;}) and configurations
of Lagrangian subspaces of C"
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In this chapter, we define and study decomposable representations of the fundamental group of an
[-punctured sphere (I > 1) :
7 =11 (S*\{s1, ... ,51})

This is the only surface group we will be dealing with in the rest of this work. Recall from section 4.6
that we are interested in representations of m with prescribed conjugacy classes of generators, that is, in
elements of Home(m, U) (see definition 4.6.1), where (U, (.|.)) is an arbitrary Lie group equipped with
an Ad-invariant non-degenerate product.
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First, we shall describe a geometric approach to the notion of decomposable representation, using the
unitary group U = U(n) as a prototype. This approach relies on the notion of Lagrangian involution oy,
associated to a Lagrangian subspace L of C™ (see definition 5.1.1)

Second, we shall investigate the notion of Lagrangian involution so as to obtain an algebraic definition
of decomposable representations, which will be easier to work with in chapter 6, and which is valid for
an arbitrary Lie group (U, 7) equipped with an involutive automorphism.

Third, we will see that this geometric viewpoint naturally leads to studying angles of Lagrangian
subspaces of C" : we will show that the orbit of a pair (L;, L) of Lagrangian subspaces of C™ under
the diagonal action of the unitary group U(n) is characterized by the spectrum of the transformation
oL, ©0L,, where or; is the Lagrangian involution associated to L; (see proposition 5.3.10). We shall
also verify that this classification result for pairs of Lagrangian subspaces is equivalent to known results
on this matter (see [Nic91] and propositions 5.3.4, 5.3.6 and 5.3.10). As they enter the definition of a
decomposable representation, it is important to acquire geometric intuition on Lagrangian involutions.
Indeed, in chapter 6, we will use this geometric intuition to obtain a characterization of decomposable
representations.

Fourth, we shall conduct an elementary study of decomposable representations in the case where
U =U(2) and I = 3. Our main concern will be to prove the existence of such decomposable represen-
tations. This difficulty arises from the fact that we have fixed the conjugacy classes of the generators.
Geometrically, this amounts to asking if there exists a triple (L1, Lo, L) of Lagrangian subspaces of C"
with prescribed angles (L1, L2), (L2, Ls) and (Ls, L1) (see section 5.3). To handle the case of arbitrary n
and arbitrary [ > 1, we will have to wait until chapter 8, where we shall prove the existence of decompos-
able representations of m = m1(S?\{s1, ... ,s;}) for an arbitrary compact connected Lie group (U, (.|))
and for any choice of [ > 1 conjugacy classes Cy, ... ,C; C U such that Home(m,U) # 0 . There, the
existence result will be a consequence of a general real convexity theorem for Lie-group valued momentum
maps (see theorems 8.3.9 and 8.3.14).

Finally, we shall give a nice application of the notion of angle between Lagrangian subspaces by
showing how it provides a way of computing the inertia index of a triple of Lagrangian subspaces of C".
The results stated in sections 5.4 and 5.5 have been obtained in collaboration with Elisha Falbel and
Jean-Pierre Marco and have been published in [FMS04].

5.1 A geometric approach to the notion of decomposable rep-

resentation
Recall that a decomposition of the fundamental group 71 (S?\{s1, ...,s}) into a given Lie group U
consists of [ elements w1, ... ,u; of U satisfying the relation w;...u; = 1. In this section, we shall use the

unitary group U = U(n) as a prototype to acquire geometric intuition on representations. In particular,
when n = 1, eah u; = 2%, 0; € [0, 7] is a rotation of the complex plane C ~ R2. Consequently, it can
be decomposed as a product of two orhtogonal symmetries u = o109 with respect to real lines of C ~ R?
and the direct angle between these two lines is §;. How does this situation extend to a unitary matrix
u € U(n) ? The appropriate orthogonal symmetries (also called reflections) to consider turn out to be
what we will call Lagrangian involutions in the following : they are orthogonal symmetries with respect
to a Lagrangian subspace of C". Let us now write this down with further details.

Recall that C" is endowed with the symplectic form w := —Im h where h is the canonical Hermitian
product h := Y.}'_, dz ® dzj, for which it is symplectomorphic to R*" endowed with the canonical
symplectic form w = >"}'_, dzy Adyy, . Multiplication by ¢ € C in C™ corresponds to an R-endomorphism
J of R?" satisfying J? = —Id. Denoting by g := Re h = >_,_, (dz), ® dzy + dyi @ dyy,) the canonical
Euclidean product on R?" we have g = w(., J.) (J is called a complex structure and is said to be compatible
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with w). A real subspace L of C" is said to be Lagrangian if w|rxr = 0 and if dimg L = n (that is,
L is maximal isotropic with respect to w). One may then check that L is Lagrangian if and only if its
g-orthognal complement is L*s = JL . We then have the following definition :

Definition 5.1.1 (Lagrangian involution). For any Lagrangian subspace L of C™, the R-linear map

or,: C'=LopJL — C"
z+Jy — x—Jy

is called the Lagrangian involution associated to L.

Observe that oy, is anti-holomorphic : o, 0o J = —J o 0. In the following, we denote by L£(n) the set
of all Lagrangian subspaces of C" (the Lagrangian Grassmannian of C™). Finally, recall that, under
the identification (C", h) ~ (R?", J,w), we have U(n) = O(2n) N Sp(n). As Lagrangian involutions are
orthogonal symmetries which are anti-holomorphic, they are elements of O(2n) which are not contained in
U(n). Furthermore, the action of U(n) on £(n) is transitive and the stabilizer of the horizontal Lagrangian
Lo :=R™ C C" is the orthogonal group O(n) C U(n), giving the usual homogeneous description £(n) =
U(n)/O(n) (see for instance [MS98], p.51). Observe that O(n) = Fiz(r) where 7 : u + U is complex
conjugation on U(n), so that £(n) is a compact symmetric space.

Proposition 5.1.2. Let L € L(n) be a Lagrangian subspace of C™. Then :
(i) There exists a unique anti-holomorphic map oy, whose fixed point set is exactly L.

(i1) If L' is a Lagrangian subspace such that o;, = o+ , then L = L’ : there is a one-to-one correspon-
dence between Lagrangian subspaces and Lagrangian involutions.

(iti) oy is anti-unitary : for all z,2" € C", h(op(2),0L(%")) = h(z, 7).

() For any ¢ € U(n), o,y = pore .

Proof. (i) Since L is Lagrangian, C" = L ® JL. Let o be an anti-holomorphic map leaving L pointwise
fixed. Let z = x 4+ Jy € C", where x,y € L. Then o(z) = o(z) — Jo(y) = x — Jy, so that o, is
uniquely defined. If z = x 4 Jy satisfies o1,(z) = z then 2Jy = z — o1,(2) = 0, hence y = 0 and
z € L. That is, the fixed-point set of o, is exactly L.

(ii) If now o, = o, then one has, for all x € L, o/ (z) = o (x) = z, therefore x € L’ by (i) above, so
that L ¢ L'. Likewise, L' C L, hence L = L.

(iii) For any z,y,2’,y’ € L, we have
hz —Jy,2' = Jy') = h(z,2") +h(y.y') - h(z, Jy') = h(Jy,2")

= gz, 2") + 9y, y) +ilg(z,y) — 9@, v))
= hlx+ Jy, o’ + Jy')

(iv) o™t is anti-holomorphic and leaves (L) pointwise fixed. By unicity of such a map, we then

have porp~! = To(L)-
O

We now recall an alternative description of the Lagrangian Grassmannian £(n) of C". The underlying
idea is that the elements of the compact symmetric space £L(n) = U(n)/O(n) can be identified with the
symmetric elements of U(n) (that is, elements of U(n) satisfying 7(u) = u™!, see chapter 3), all of them
being of the form 'y, where ¢ € U(n) and ¢! denotes the transpose of ¢ (so that the symmetric elements
of U(n) are indeed symmetric unitary matrices).

Proposition 5.1.3. Let W(n) :={w € U(n) | w' = w} be the set of symmetric unitary matrices.
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(i) Let uw € U(n). Then u € W(n) if and only if there exists k € O(n) such that kuk™! is diagonal.

Moreover, any w € W(n) may be written w = exp(iS) where S is a real symmetric matriz, which
shows in particular that W (n) is connected.

(ii) If w € W(n), then there exists ¢ € W(n) such that ¢* = w.

(iti) For any w € W(n), define L, := {2z € C" | z — wz = 0}. Then, if ¢ is any element in W(n) such

that o = w, we have ¢(Lo) = L,,. Consequently, L., is a Lagrangian subspace of C"*. Furthermore,
OLwOLy = W-

(iv) The map w € W(n) — L, € L(n) is a diffeomorphism whose inverse is the well-defined map

L(n)=U(n)/O(n) — W(n)
L=u(Ly) +—— uu

(v) For any L € L(n), we have o1, 01 = v'v, where v is any unitary map such that v(L) = Ly.

Proof. (i) Observe that, alternatively, W(n) = {w € U(n) | w™! = w}. Now take w € W (n) and write

(iv)

w = x + iy where z,y are real matrices. Then w! = w implies 2! = z and y* = y, and ww = Id
implies 22 + y?> = Id and 2y — yx = 0. Thus = and y are commuting real symmetric matrices,
so there exists k € O(n) such that d, := kzk™' and d, := kyk™! are both diagonal. Therefore,
kwk=! = d,+1id, is diagonal. The converse is obvious. Since d2 —l—di = k(2®+y?)k~! = Id, one has
dy +id, = exp(iS) where S is a real symmetric (diagonal) matrix. Consequently, w = exp(ik~'Sk)
with k~1Sk real and symmetric. In particular, W (n) is the continuous image of a vector space, and
therefore is connected.

is an immediate consequence of (i).

Take ¢ € W(n) | 9> =w. Then z —wz =0 iff 2 — p?Z =0, thatis, p 12—z =0. But o1 =7

so that z € L, is equivalent to ¢!z = ¢!z hence to o'z € Lo, hence to z € ¢(Lo), which
shows that L, = ¢(Lg) is a Lagrangian subspace of C". Furthermore, o1, 0L, = 90,0 ‘oL,-
But since oy, is complex conjugation in C" and since ¢ is both symmetric and unitary, we have

-1 _ _ t _ 2 2
o loL, = ¢'orn, = (OLo$' 0L, )L, = 0L, therefore o, 01, = poi © = p* =w.

Observe that if u, v are two unitary maps sending Lo to L € £(n) then v=!u € Stab(Lg) = O(n) so
that wu' = vv'. Then, if L = u(Lg) € L(n), one has L, = {z — uu'z = 0}. But z — wu'z = 0 iff
ulz =u 1%, that is, u='2 € Lo s0 Ly, = u(Lg). Conversely, we know that L,, = ¢(Lg) where

© € W(n) | ¢? = w so that indeed pp! = ¢? = w.

For a given L € L(n), take v € U(n) such that v(L) = Lo. Then L = v~1(Lg) and so we
know from (iii) and (iv) that L = {z — (v™})(v"1)'z = 0} and that ooz, = v~ !(v™!)". Hence
or,or = (opor,) "t = vlo.

o

Statement (v) may seem a bit useless at this point as it is just a way of rephrasing (ii), but it will prove
useful to us when formulating the centered Lagrangian problem (see section 6.2). We now obtain from
proposition 5.1.3 the following result, which when n = 1, boils down to saying that a rotation in the
complex plane is a product of two reflections.

Proposition 5.1.4. For any unitary matriz u € U(n), there exist two Lagrangian subspaces L1, Lo €
L(n) such that w=op,0p,.

Proof. Let d = diag (a1, ... , ) € U(n) be a diagonal matrix such that u = pd?p~! for some ¢ € U(n),
and set L := d(Lo). Then we know from statement (iii) of proposition 5.1.3 that oo, = d?, hence
U= QOLOLY ™ = Op(L)0p(Lo)- O
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Thus, any unitary matrix v € U(n) is a product u = 0102 of two orthogonal symmetries with respect to
Lagrangian subspaces of C* ~ R?". These symmetries are no longer unitary transformations (they are
anti-holomorphic) but are elements of order 2 in the orthogonal group O(2n). Consequently, one may

notice that if u; = 0109, us = 0203, ... and w; = 0;01, then one automatically has :
uy...u; = (0102)(0203)...(0101)
= (71(0'2(72). . .(0’303)0’1
1
That is : giving | Lagrangian subspaces L1, ... ,L; of C® automatically furnishes a representation of
71 (S?\{s1, ... ,81}). We call such a representation a Lagrangian representation. The natural question

to ask is then the following one : when is a given representation a Lagrangian one 7 We will give a
precise answer to this in this work (see corollary 6.6.5). Of particular interest will be the Lagrangian
representations (u; = o109, ... ,u; = 0;01) where o1 = o9 is the Lagrangian involution with respect to
the horizontal Lagrangian Ly = R™ C C". We will call this particular class of Lagrangian representa-
tions the class of og-Lagrangian representations. Recall finally that we are interested in representations
of m1(S?\{s1, ... ,s}) with prescribed conjugacy classes C1, ... ,C; C U(n) of generators, that is, in
elements of
Home (7, U(n)) = {(u1, ... ,w) €Cy x -+ xC | uy...up =1}

(see definition 4.6.1). Since Lagrangian representations are those for which generators decompose in a
good way as products of Lagrangian involutions, we shall also call them decomposable representations.

Definition 5.1.5 (Decomposable representations of 71 (S%\{sy, ... ,s}) into U = U(n)). A given
unitary representation (ui, ...,u;) € Home(m, U(n)) is said to be Lagrangian (or decomposable) if there
exist [ Lagrangian subspaces L1, ..., L; of C" such that u; = 0,041 for all j € {1, ... ,l}, where o; is

the Lagrangian involution associated to L; and where 0,41 = o7;.
A Lagrangian representation is said to be og-Lagrangian (or oo-decomposable) if in addition o1 = o (the
Lagrangian involution associated to the horizontal Lagrangian Ly = R™ C C™).

Observe that, as we have shown that any unitary matrix v € U(n) admits a decomposition u = o102 as
a product of two reflections, it is also natural to ask, in analogy with the n = 1 case, if this defines a
notion of angle between the Lagrangian subspaces L; and Ls. We postpone work on this question until
section 5.3. For now, we wish to work out additional properties of Lagrangian involutions in order to be
able to generalize the notion of decomposable representation to Lie groups other than U(n).

5.2 An algebraic definition of decomposable representations

Denote by LZnv(n) := {or : L € L(n)} the subset of O(2n) consisting of Lagrangian involutions.
Observe that it is not a subgroup, as it is not stable by composition of maps. Statement (iv) of proposition
5.1.2 then shows that the subgroup U(n) :=< U(n) U LInv(n) > C O(2n) generated by Lagrangian
involutions and unitary transformations is in fact generated by U(n) and o, : U(n) =< U(n)U{oL,} >.
Asaword in < U(n)U{oL,} > contains either an even or an odd number of occurrences of o, (depending
only on whether it represents a holomorphic or an anti-holomorphic transformation of (R?", .J) ~ C"), it
can be written uniquely under the reduced form ue where u € U(n) and € = 1 or € = or,,. Consequently,
we have < U(n)U{or,} >=U(n) UU(n)oL,, so that U(n) is a subgroup of index 2 of U(n). Further,
if we write Z/2Z = {1,01,} and consider the action of this group on U(n) given by or,.u := op,uop, =
u = 7(u), then the map
Un)xZ/2Z — U(n)UU(n)or,
(u,e) +—— ue
(where € = 1 or € = op,) is a group isomorphism. Finite subgroups of U(2) x Z/2Z generated by

Lagrangian involutions are studied in [Fal0l] and [FP04]. If one uses the description of U(n) as a
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semi-direct product given above, the notion of Lagrangian representation makes sense even when the
compact connected Lie group U at hand is not necessarily the unitary group U(n). Indeed, endow such
a Lie group U with an involutive automorphism 7 and define an action of Z/2Z = {1,0¢} on U by
oo-u := 7(u). We then consider the semi-direct product U x Z/2Z for this action. When U = U(n)

—

and 7(u) = u then we have indeed U(n) x Z/27Z = U(n) = U(n) UU(n)or,. Under this identification,
oo.u = T(u) = = op,uor, and the Lagrangian involutions are the elements o1, = 0,1, = ¢or, p =
(o, tor,)or, = (9@ YNor, = (pet)or, < (ppt,or,) € U(n) x Z/27. Observe that the element
! does not depend on the choice of ¢ € U(n) such that L = ¢(Lg), as was shown in proposition 5.1.3.
If Fiz(rt~) is connected (see remarks 5.2.3 and 7.4.2 for comments on this assumption), any symmetric
element of U (that is, an element w of U satisfying 7(w) = w™?!) can be written ur(u~!) for some
u € U (see proposition 3.1.2), and the elements of order 2 that we are interested in are the elements
(w,00) € U X Z/27 where w € U satisfies 7(w) = w™! (in particular, we see again that these elements of
order 2 are in one-to-one correspondence with the symmetric elements of U). The product of two such
elements is then of the form (w1, 0g).(we, 09) = (w1(00.w2),08) = (w1T(w2),1) € U C U xZ/27Z (observe
that when wy = wy, we indeed obtain 1 because 7(w;) = w; '). One can then say that a U-representation
(u1, ... ,u) of m = m (S?\{s1, ..., s}) is decomposable (or Lagrangian) if there exist w1, ...,w; € U such
that 7(w;) = wj_l for all j and u; = (w1, 00).(we,00),u2 = (we,0p).(ws,00), -..,u = (wy,00).(w1,00).
Observe that we then have indeed w;...u; = 1, for uy...u; = (wiT(we), 1).(war(ws), 1)...(wiT(wi),1) =
(w1 T(we)war(ws). . .wyT(wi),1) = 1 since 7(w;) = w;l. A representation will be called o¢-decomposable
if it is decomposable with w; = Id. Observe further that by definition of the semi-direct product we
have in fact : (wj,00).(Wjt1,00) = wjoow;+100 = w;T(Wjt1) = wjwjp1 in U. We can now define
decomposable representations of 71 (S?\{s1, ..., s;}) into an arbitrary Lie group (U, 7) equipped with an
involution.

Definition 5.2.1 (Decomposable representations of 71 (S?\{s1, ... ,s;})). Let (U, 7) be a Lie group
endowed with an involutive automorphism 7. A representation (ui, ... ,u;) of m = w1 (S?\{s1, ... ,s})
into U is called decomposable if there exist [ elements wy, ..., w; € U satisfying :

(i) 7(wj) = wj_1 for all j (each w; is a symmetric element of U with respect to 7).

" -1 -1 -1
(i) w1 =wiwy ", ug = wawz —, ... , U =wWW .

A representation will be called og-decomposable if it is decomposable with w; = 1.

In particular, for og-decomposable representations, the elements u; and w; are themselves symmetric.
We then observe the following fact :

Proposition 5.2.2. Let (u1, ...,u;) be a representation of m = w1 (S*\{s1, ... ,s1}) into U. Then
(u1, ...,u;) is decomposable if and only if the representation @.(uy, ..., u;) = (Quip™t, ..., oup~?t) is
decomposable for any ¢ € U.
Proof. If (u1, ..., ;) is decomposable, then there exist w1, ..., w; € Fiz(7™) satisfying u; = ijjjrll for
all j (with w41 = wy). Therefore :
pujp! pwjwi !
= pwr (@)T(P)wi et
_ _ -1

= (ow;7™(9)) (w7 ()
and each pw;7™ (¢) lies in Fiz(r~), so that the representation ¢.(u1, ...,u;) is indeed decomposable.
The converse implication is obvious. O

Observe that this result is clear in the case where U = U(n) since one has, by proposition 5.1.2 :

POLOL, ¢ = QoL 0L 0T = Op(1,)Tp(L)
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Remark 5.2.3. The above definition rests on the fact that Fiz(77) is assumed to be connected. If
this is not the case, condition (i) is to be replaced by the condition w; € {7~ (v)u : v € U}, which is
the connected component of 1 in Fiz(r~) (see proposition 3.1.2). We refer to remark 7.4.2 for further
comments on this assumption.

5.3 Pairs of Lagrangian subspaces

As mentioned at the end of section 5.1, introducing orthogonal symmetries with respect to Lagrangian
subspaces of C" leads to studying angles between two such subspaces. When n = 1 and ¢?’ = o7, 07,,
the direct angle between the lines Ly and Ly is 6 € [0, 7[. This means that given two pairs (L1, L2) and
(LY, LY) of real lines of C, there exists a unitary map ¢ sending L; to L] and Lo to L} if and only if
0L,0L, = 0r;0r;,. We will now see how this situation extends to the case of an arbitrary n by studying

the diagonal action of U(n) on L(n) x L(n).

Recall that the unitary group U(n) acts transitively on the Lagrangian Grassmannian £(n). Fixing a
Lagrangian L in £(n), its stabilizer can be identified to O(n), and £(n) is therefore a compact homogenous
space diffeomorphic to U(n)/O(n). We shall here be concerned with the diagonal action of U(n) on
L(n) x L(n). Observe that requiring ¢(L) to be Lagrangian when L is Lagrangian and ¢ € O(2n) is
equivalent to requiring that 1 be unitary (since L & JL = C", a g-orthogonal basis B of L over R is
a unitary basis of C™ over C, and if L is Lagrangian and ¢ orthogonal with (L) Lagrangian, then
¥(B) is also a unitary basis, so that ¢ is a unitary map). Equivalently, the orbit of a pair (L1, Lg) of
Lagrangian subspaces under the diagonal action of U(n) is the intersection with £(n) x £(n) of the orbit
of (L1, L2) under the diagonal action of O(2n). The orbit [Li, Lo] of the pair (L1, Lo) under the diagonal
action of U(n) may therefore be called the Lagrangian angle formed by L; and L. In the following, we
shall simply speak of the angle (L1, Lo) to designate the orbit [L1, Ls]. We now wish to find complete
numerical invariants for this action : to each angle (L1, Lo) we shall associate a measure, denoted by
meas(L1, Ly), in a way that two pairs (L1, Ly) and (L}, L}) lie in a same orbit of the action of U(n) if and
only if meas(L;, Lo) = meas(L}, L}). This can be done in three equivalent ways, which we shall describe
and compare (see propositions 5.3.4, 5.3.6 and 5.3.10).

5.3.1 Projective properties of Lagrangian subspaces of C"

A real subspace W of C™ is said to be totally real if h(u,v) € R for all u,v € W. Therefore, a real
subspace L of V is Lagrangian if and only if it is totally real and of maximal dimension with respect
to this property. Let p be the projection p : C"\{0} — CP"~! on the (n — 1)-dimensional complex
projective space, and for any real subspace W of C", let p(W) be the image of W\{0}. When L is
a Lagrangian subspace of C™, recall that we denote by o the only anti-holomorphic involution of C"
leaving L pointwise fixed (called the Lagrangian involution associated to L, see definition 5.1.1). The
map oy, being anti-holomorphic, it induces a map

gr: cpr! — (Cpr!
[z]  +— low(?)]

Further, oy, is anti-unitary so that, if we endow CP"~! with the Fubiny-Study metric (see for instance
[ABK194] p.40 or [K1i82] pp.106-108), 77, is an isometry, and p(L) is the fixed point set of this isometry.
Therefore, for any Lagrangian L of C", the subspace [ := p(L) of CP"~1, called a projective Lagrangian,
is a totally geodesic embedded submanifold of CP"~! (see for instance [K1i82] p.94). More generally,
every totally real subspace W of C™ is sent by p to a closed embedded submanifold of CP™~! which is
diffeomorphic to RP(W) (see [Nic91], p.73). These projective properties can be used to prove the first
diagonalization lemma (proposition 5.3.3), as shown in [Nic91]. They will also be important to us in the
study of projective Lagrangians of CP!.
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5.3.2 First diagonalization lemma and unitary classification of Lagrangian
pairs

We state here the results obtained by Nicas in [Nic91]. Let (L1, L2) be a pair of Lagrangian subspaces of
C™ and let By = (u1, ... ,up) and By = (v1, ... ,v,) be orthonormal bases of L; and Ls respectively.
Let A be the n x n complex matrix with coefficients A;; = h(v;,u;). Observe that A is the matrix of a
unitary transformation sending L1 to L.

Definition 5.3.1 (Souriau matrix, [Nic91]). The matrix AA’, where A’ is the transpose of A, is
called the Souriau matriz of the pair (L1, Ly) with respect to the bases By and Bs.

The matrix AA? is both unitary and symmetric. If B} = (u},...,u),) and By = (v{,...,v,,) are other
orthonormal bases of L; and Lo respectively, and A’A’ is the corresponding Souriau matrix where
Al = h(v},u}), let P and @ be the matrices with coefficients Pi; = h(u;,u);) and Q;; = h(v;,v}). Since
Ly and L, are Lagrangian, P and (Q are real orthogonal matrices. Furthermore A = PA’Q, hence
AA! = PA'QQ' A" Pt = P(A’A')Pt. Thus AA" is conjugate to A’ A’. Tt follows that the characteristic
polynomial of a Souriau matrix of the pair (L1, L) is independent of the choice of the orthonormal bases
Bl and Bg.

Definition 5.3.2 ([Nic91]). The characteristic polynomial of the pair (L1, L2), denoted by P(Ly, L),
is by definition the characteristic polynomial of any Souriau matrix of the pair (L1, Lo).

In particular, P(L1, L2) is a monic complex polynomial of degree n, and since a Souriau matrix is unitary,
the roots of P(Lq, Ls) lie in the unit circle of C.

Proposition 5.3.3 (First diagonalization lemma, [Nic91]). Let (L1, L3) be a pair of Lagrangian

subspaces of C™. Then there exists an orthonormal basis (u1, ... ,u,) of L1 and unit complex numbers
eM e such that (e”‘lul, .. .,e”‘”un) is an orthonormal basis of Lo. Furthermore, the squares
e\ e of these numbers are the roots of the characteristic polynomial of the pair (L1, L), counted

with their multiplicities.

We refer to [Nic91] for a proof of this result exploiting the positivity of the sectional curvature of the
complex projective space endowed with the Fubiny-Study metric. The name given to this result is justified
by the fact that the Souriau matrix of the pair (L, Lg) with respect to the bases provided by the lemma
is the diagonal matrix diag(e?*, ... ™M),

Proposition 5.3.4 (Unitary classification of Lagrangian pairs of C", [Nic91]). Let (L1, L2) and
(L4, LY) be two pairs of Lagrangian subspaces of C™. Then, there exists a unitary map v € U(n) such
that (L1) = L} and ¢¥(La) = L} if and only if the characteristic polynomials P(L1,L2) and P(L}, L})
are equal.

Proof. If such a v exists, let (u1, ... ,u,) be any orthonormal basis of L; and let (v1, ... ,v,) be any
orthonormal basis of Ly. Since the map 1 is unitary, (¢(u1),...,%(uy)) is an orthonormal basis of L} and
(¢(v1),...,¥(vy)) is an orthonormal basis of L5, and we have h(¢(v;), ¥ (u;)) = h(uj,vj). Therefore, the
Souriau matrices of (L1, L2) and (L}, L}) in the above bases are equal, so that P(L1, L2) and P(L}, L5)
have the same roots with the same multiplicities. Since both these polynomials are monic, we then have
P(Ly, L2) = P(Ly, LY).

Conversely, suppose that P(Li,Ls) = P(L}, L)) and let o2,...,a2 be the roots of this polynomial
counted with their multiplicities. By the first diagonalization lemma 5.3.3, there exists an orthonormal
basis (u1, ... ,u,) of Ly and an orthonormal basis (u}, ... ,ul) of L] such that (ajuq, ... ,au,) is an
orthonormal basis of Ly and (aqul, ..., ayul,) is an orthonormal basis of L}. Ly and L} being Lagrangian,
(u1, ... ,upn) and (u}, ... ,ul,) are unitary bases of C" over C. Let 1 be the C-linear map defined by

sending uy to vg. Then ¢ is unitary and sends o uy to aguj,. Therefore ¢(L1) = L} and ¢(Lo) = L5. O
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5.3.3 Second diagonalization lemma

It is possible to express the result of the first diagonalization lemma in terms of unitary maps sending L,
to Lo, in a way that generalizes the situation of real lines in C.

Proposition 5.3.5 (Second diagonalization lemma). Given two Lagrangian subspaces of L1 and
Lo of C™, there exists a unique unitary map w12 € U(n) sending L1 to Lo and verifying the following
diagonalization conditions :

(i) the eigenvalues of @12 are unit complex numbers et et satisfying m > M\ > ... >N\, >0

(ii) there exists an orthonormal basis (u1, ... ,un) of L1 such that uy is an eigenvector of 1o (with
eigenvalue er) .

Proof. The existence is a direct consequence of the first diagonalization lemma. As for unicity, observe
that two such unitary maps have the same eigenspaces and the same corresponding eigenvalues (see
subsection 5.3.6 to fully understand this : the eigenspaces of 149 as a map from L; to Ly are exactly the
Wy, of proposition 5.3.12), and are therefore equal. O

It is also possible to give a direct proof of this result, which then proves the first diagonalization lemma
5.3.3 without making use of projective geometry (see [Arn67] or [LMS03]). Observe that condition (i) is
essential for the unicity part: for any Lagrangian L, the two maps J and —J are both unitary, they both
send L to JL = (—J)L and satisfy condition (ii) for any orthonormal basis of L, but J is the only one of
these two maps whose eigenvalues are located in the upper half of the unit circle of C.

Observe that the Souriau matrix of the pair (L1, Lo) with respect to the bases (u1,...,u,) and
(e™Muq, ..., e"nu,) is the diagonal matrix diag(e?*, ..., e??*n). Therefore, the roots of the character-
istic polynomial P(Lq, L2) are the squares of the eigenvalues of ¢12.

Finally, observe that if (L1, Ls) and (L}, L%) lie in a same orbit of the diagonal action of U(n)
on L(n) x L(n), then the two associated unitary maps @12 and ¢/, are conjugate in U(n). Indeed, if
Y(Ly) = Ly and ¢(Ly) = L} with ¢» € U(n), then 1pop1201~ ! sends L to L} and satisfies the conditions
of the second diagonalization lemma 5.3.5, hence by unicity of such a map : 9 o 12 09 ~1 = ¢},. The
unitary maps 12 will be very useful in the study of the diagonal action of U(2) on triples of Lagrangian
subspaces of C? (see section 5.4). For now, we can already use them to reformulate the classification
result for pairs of Lagrangian subspaces (proposition 5.3.4) :

Proposition 5.3.6. Let (L1, L2) and (L}, L) be two pairs of Lagrangian subspaces of C™, and let @12
(resp. ©}s) be the only unitary map sending Ly (resp. L) to Lo (resp. LY) and satisfying the conditions
of the second diagonalization lemma 5.3.5. Let e e where m > A > ... > A\, > 0, be the
eigenvalues of 12 counted with their multiplicities, and let e“,l, . ,e“il, where m > XNy > ... >\, >0,
be the eigenvalues of @}, counted with their multiplicities.

Then, there exists a unitary map ¢ € U(n) such that (L1) = L} and ¢(L2) = L if and only if A\ = A},
fork=1, ... n.

Proof. Let (u1, ... ,u,) (resp. (u}, ... ,ul)) be an orthonormal basis of L; (resp. L}) formed by
cigenvectors of 12 (tesp. ¢)y). Then e uy = p1o(uy) € Ly and eMu), = i, (u'k) € Lb. The maps @12
and ¢/, being unitary, (¢ uy, ... ,e*mu,) is an orthonormal basis of Ly and (™14}, ..., enu/) is an
orthonormal basis of L}. The Souriau matrix of the pair (L1, Lo) (resp. (L}, L})) in the bases (u1, ..., uy)
and (€Muy, ... eMmuy) (resp. (v, ... u)) and (eMa), ... ePnul)) is diag(ei?, ... 2 ) (resp.
diag(e®M1, ..., ei?n)). Therefore, by proposition 5.3.4, (L1, Ly) and (L, L}) lie in a same orbit of the
action of U(n) if and only if the eigenvalues ¢’2* and €2 are the same up to permutation, and since
we forced 7 > A\ > ... >\, >0and 7 >\, > ... > )\, >0, this is equivalent to e’} = €2 for all k.

Since Ay, A, € [0, «[, this last condition is equivalent to Ay = A}, for all k. O
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Observe that this point of view indeed generalizes the classification result for pairs of real lines in C ~ R?
under the diagonal action of the unitary group U(1) ~ SO(2), A1 being in that case the measure of the
oriented Euclidean angle between the two real lines Ly and Lo.

5.3.4 Lagrangian involutions and angles of Lagrangian subspaces

The following result establishes a relation between Lagrangian involutions and angles of Lagrangian
subspaces.

Proposition 5.3.7. Let L1 and Lo be two Lagrangian subspaces of C™. The eigenvalues of the unitary
map or, o o, are the roots of the characteristic polynomial P(L1,Ls) of the pair (L1, Ls), with the
same multiplicity. Equivalently, since P(Ly, La) is monic, it is the characteristic polynomial of the map
0L, 00L,.-

Proof. By the first diagonalization lemma 5.3.3, there exists an orthonormal basis (u1, ... ,uy) of Ly
and unit complex numbers oy, ... ,a, € S! such that (ayuy, ... ,anuy,) is an orthonormal basis of Lo
and o2, ..., a2 are the roots of P(Ly, L), counted with their multiplicities. Let 1) be the unitary map
sending uy, to aguy for k=1, ... ,n. Then ¢ sends L; to Ly and o2, ..., a2 are the eigenvalues of 92,
counted with their multiplicities, and it is therefore sufficient to prove that o, o o, = %2, The map
ooy, o~ is anti-holomorphic and leaves Ly pointwise fixed, hence o7, = 1 oo, op~1. Furthermore,
forall j =1, ... ,n, we have or, o~ (u;) = aLl(a%uj) = ajor, (u;) = aju; = Y(uj) = Yoor,(uy), so

that o, =Yooz, o™t =0, o (¢p~1)2, hence o, o o, = 92, which is what we needed. O
In particular, setting ¢ = (12 in the above proof, we obtain the following corollary :

Corollary 5.3.8. Let p12 be the only unitary map sending Ly to Lo and satisfying the conditions of
proposition 5.3.5. Then @%2 =0p,00L,.-

5.3.5 Measure of a Lagrangian angle

In order to reformulate one more time the classification result of propositions 5.3.4 and 5.3.6, we introduce
the following notion :

Definition 5.3.9 (Measure of a Lagrangian angle). Let L; and Lo be two Lagrangians of C™ and
let €91, ... e be the eigenvalues of the unitary map oz, o oz, , counted with their multiplicities. The
symmetric group &,, acts on S' x --- x S! by permuting the elements of the n-tuples of unit complex
numbers, and we denote by [e®1, ... €] the equivalence class of (et ... ") € St x ... x S and
call it the measure of the angle formed by L, and Lo :

meas(Ly, Ly) = [¢, ... e € (ST x--- x §1) /6,

As oy1) =Yoo o™t for any unitary map ¢ € U(n), we have meas(¢(Ly), 1 (Lz)) = meas(Ly, Lz), so
this notion is well-defined. This definition of a measure does not extend the usual one (in the case n = 1,
we obtain e??*, where \ € [0, [ is the usual measure). It will nonetheless prove relevant.

Observe that, since oy, o or, = (01, 0 or,) 1, it would be equivalent to define meas(Ly, La) to be
the eigenvalues of the unitary map or, o or,, counted with their multiplicities. As a consequence, if
meas(Ly, Ly) = [e, ... €] then meas(La, L1) = [, ... ,e~%¥]. In particular, meas(Li, La) =
meas(L}, L) if and only if meas(Lq, L1) = meas(L5, L}).

In the following, we shall identify S* x --- x S! with the n-torus T" = R"/27Z", to which it is homeo-
morphic. The measure of the angle (Ly, Ly) will be denoted by meas(Ly, La) = [e?1, ... e"] € T"/&,,.
In view of proposition 5.3.7 above, we may now reformulate the classification result for Lagrangian pairs
of proposition 5.3.4 in the following way :
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Proposition 5.3.10. Given two pairs of Lagrangian subspaces (L1, Lo) and (L}, Ly) of Lagrangian sub-
spaces of C", there exists a unitary map 1 € U(n) such that ¢(L1) = L} and ¢(La) = LY if and only if
oL, ©0L, s conjugate to or; ooy . Equivalently, the map

xX: (L(n)xL(n)/Um) —  T"/6,
[L1, L] — meas(L1, Lo)

1 one-to-one.

The map x is in fact a bijection : given [e??M| ... e??*] € T"/&,,, consider any Lagrangian L; €
L(n), (u1, ... ,upn) an orthonormal basis of Ly and let Ly be the real subspace of C" generated by
(e™uy, ... e u,). Since (eMuy, ..., e nu,) is a unitary basis of C* over C, Ly is Lagrangian and
meas(Ly, L) = [ei?21, ... 2]

Corollary 5.3.11. The angle space (L(n) x L(n))/U(n), endowed with the quotient topology, is homeo-
morphic to the quotient space T"/&,,, both being Hausdorff and compact.

As afinal remark, observe that the corresponding symplectic problem admits a simple answer : a necessary
and sufficient condition for the existence of a symplectic map ¢ € Sp(n) such that (L;) = L} and
¥(L2) = LY is that dim (L1 N Lg) = dim (L] N L) that is, the measure of the symplectic angle formed by
two Lagrangian subspaces of C™ simply is the dimension of their intersection (see for instance [Vai87]).

5.3.6 Orthogonal decomposition of L; associated to meas(L;, L»)

The presentation given here follows that of [Nic91]. The notion of orthogonal decomposition will enable
us to classify triples of Lagrangian subspaces of C? (proposition 5.4.1).

Let (L1, Ly) be a pair of Lagrangian subspaces of C", and let (a2, ... ,a2) be a representative of
meas(Lq, Ly) € T"/&,,. By proposition 5.3.7, the unit complex numbers o, ... ,a2 then are the roots
of the characteristic polynomial P(Ly, Lg) of the pair (L, La). Let o3, ... ,aF be the distinct roots
of P(L1,Ls). For k =1, ... ,m, define the real subspace Wy, of Ly by Wi, = {u € L1 | aj,u € Lo}
Observe that Wp, is independent of the choice of the square root of a?k, and that W7 @ --- & W, is
independent, up to permutation of the subspaces, of the choice of the representative (a2, ... ,a2) of

meas(L1, Ly) € T"/&,,.

Proposition 5.3.12 ([Nic91]). Ly decomposes as an orthogonal direct sum : L1 = Wy @ --- & Wy, the
dimension of Wy, being the multiplicity of a?k as a root of P(Lq,Ls).

Proof. By the first diagonalization lemma 5.3.3, there exists an orthonormal basis (u1, ..., u,) of L such
that (cqu1, ..., anu,) is an orthonormal basis of Lo, so that u; belongs to Wy, if and only if a; = a;,.
Thus, {u; | a; = ¢, } is a basis of W}, which proves the proposition. O

Observe that Lo then also decomposes as an orthogonal direct sum : Lo = o Wi @ -+ @ a;,, Win.
Furthermore, by considering the representative (e??*, ..., e??*») of meas(L1, Ly), where e, ... ¢en
are the eigenvalues of the unitary map 12, we see that the subspace Wy, of L; is the intersection with L
of the eigenspace of @15 with respect to the eigenvalue e?*ix. Given a Lagrangian triple (L;, Lo, L3), the
unitary maps @12 and 13 therefore have the same eigenspaces if and only if the orthogonal decompositions
of Ly associated to meas(Li, Ly) and meas(L1, Ls) are the same (see definition 5.5.6).

5.4 The case where U = U(2) and | =3

In this section, we study decomposable representations of 71 (S?\{s1, ..., s;}) into U(2). Geometrically,
this amounts to studying configurations of triples of Lagrangian subspaces (L1, Lo, L3) of C2, or more
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precisely, to studying the diagonal action of U(2) on £(2) x £(2) x £(2). In particular, we will completely
describe the image of the map

R: L2)xL2)xL(2) — T?/6yxT?/6y x T?/G,
(Ll, LQ, Lg) — (meas(Ll, LQ), meas(Lg, Lg), meas(Lg, Ll))

and prove that it induces a homeomorphism & from the orbit space (£(2) x £(2) x £(2))/U(2) onto
a closed subset of T?/&, x T2/Gy x T?/G, (see proposition 5.4.7). As a consequence, we will obtain
necessary and sufficient conditions on three conjugacy classes C1,Ca,C3 C U(2) for the representation space
Home (71 (S%\{s1, s2,53}),U(2)) to be non-empty. This provides an alternative elementary description of
these conditions that were already known to Jeffrey and Weitsman (see [JW92]), to Gallitzer (see [Gal97])
and to Biswas (see [Bis98]), among others. For a description of these conditions for arbitrary dimension
n and arbitrary number of punctures [, we refer for instance to the work of Agnihotri and Woodward in
[AW98], Biswas in [Bis99], Kapovich and Millson in [KM99] and Belkale in [Bel01] (see also Teleman and
Woodward in [TWO03]).

5.4.1 A first classification result for triples of Lagrangian subspaces of C?

The following remark is valid for any n. If (L1, Lo, L3) and (L, L}, L) are two triples of Lagrangian
subspaces of C™ which lie in a same orbit of the diagonal action of U(n) on L(n) x L(n) x L(n), it
follows from section 5.3 that we have in particular meas(Lq, L2) = meas(L}, L)) and meas(Lq,L3) =
meas(L}, L). Let Ly = W1 @ - -®W,, be the orthogonal decomposition of L; associated to meas(Ly, La)
(see proposition 5.3.12) and let Ly = Z; & --- & Z, be the orthogonal decomposition of L; associated
to meas(Li, L3). Define L} = Wi @ --- @ W, and L} = Z] © - © Z, similarly. Since meas(L1, L2) =
meas(L}, L}) and meas(Lq, L) = meas(L), L}), the respective numbers of factors m and p in the above
decompositions are indeed pairwise the same. Furthermore, dim W), = dim W}, for ¥ = 1,...,m and
dim Z; = dim Zj for [ = 1,...,p. More specifically, if the unitary map ) € U(n) sends L; to L’ for
j = 1,2,3, then y(Wy) = W] for k = 1,...,m and ¥(Z;) = Z] for | = 1,...,p, as follows from the
definition of W}, and Z;. Since ¢ is unitary, we even have ¢(Wy & JWy) = W/ & JW], for all k and
WZy®JZ) =Z] & JZ] for all I.

When n = 2, the above remark admits an easy converse, which gives a first classification result for
triples of Lagrangians of C2. We shall use the following notations : given two triples (L1, Lo, L3) and
(L}, L, L) of Lagrangian subspaces of C2, let @12 be the only unitary map sending L1 to Ly and satis-
fying the conditions of the second diagonalization lemma (proposition 5.3.5), and let (e*12, e#12) be its
eigenvalues, where m > Ao > p12 > 0, and define @13, @y, @5 and (i1, #13) (eiMi2 eil2), (eMa | eihis)
similarly. As a preliminary remark to the statement of the classification result, observe that when both
@12 and @13 have two distinct eigenvalues, respectively denoted by (€12, e?12) and by (M3 ei13),
where m > Mg > g2 > 0 and m > Az > iz > 0, then Wi = {u € Ly | e?2u € Ly} and
Zy={u€e L] ey, € L3} are one-dimensional real subspaces of the Euclidean space Ly, and therefore
form a (non-oriented) angle measured by a real number ¢ € [0, 7], that will be denoted by meas(W1, Z1).
A real number 6’ may be defined similarly in L}, since W{ are Z] are also one-dimensional.

Proposition 5.4.1 (Unitary classification of Lagrangian triples of C2, first version). Given two
triples (L1, L2, L3) and (Ly, L, L) of Lagrangian subspaces of C?, there exists a unitary map ¢ € U(n)
such that ¥(L1) = L, ¥(La) = L} and ¢¥(Ls) = L% if and only if one either has :

(M2, 12) = (Ma: Hh2)
(A) A2 # pi2, A1z # s and ()\137M13z = éf\/m?//lg)
where 0 = meas(W1, Z1) € [0, 5] and 6’ = meas(W{, Z1) € [0, ] are defined as above, or :
(M2, p12) = (Mas ph2)
B) Ai2= Az = d
(B) A2 = pi2 or Az = 13, an { (M3, pas) = (Mg, 1))
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Observe that, in each case, the condition (Ajk, ptji) = (N4, 1j;,) is equivalent to the condition meas(Lj, L)
= meas(L};, Ly,).

Proof. Suppose that such a ¢ € U(2) exists. Then, as we have seen earlier, meas(L1, L) = meas(L}, L})
and meas(L1, L3) = meas(L], L}). Furthermore, ¥ (W1) = W] and ¥(Z1) = Zj, so that if ¢12 and
13 both have distinct eigenvalues (that is, we are in the situation (A) above), we have § = 6’ since
Y|r, : L1 — L is an orthogonal map.

Conversely, suppose first that conditions (A) are fulfilled. Let w; € Ly be a generator of Wi and let
w) € L} be a generator of W{. By choosing wy in L; orthogonal to w; and w) in L} orthogonal to
w}, we may define an orthogonal map v : Ly — L) sending Wy to W{ (and therefore Wy = Wit to
W4 = (W])+). Then the measure of the angle (W{,v(Z1)) = (v(W1),v(Z1)) is @ = €', so that there exists
an orthogonal map & € O(L}) satisfying £ o v(W1) = W] and £ ov(Z1) = Z;. The subspace L; being
Lagrangian, the orthogonal map £ ov can be extended C-linearly to a unitary transformation ¢ € U(2) of
C? = L1®JL; sending L, to L} by construction. But Ly = e"12W; @ e12 W, and L3 = €3 Z; @ett13 7,
(see proposition 5.3.12), hence 1(La) = e 12W| @ e#12 W} = L} and ¢(L3) = e 2} @ e13 7} = L},

If now the conditions (B) are fulfilled, then for instance Ly = ¢**L; and the result is a consequence of
the classification of pairs. O

Observe that, given real numbers (A2, p12, A13, p13,6) as in (A), it is always possible to find a triple
(L1, Lo, L3) such that meas(Li, Ly) = [e??*12, e?2M12] meas(L;, L3) = [e'?*13, ¢?2#13] and meas(W1, Z;) =
6. Indeed, let L; be any Lagrangian of C2 and let (u1,uz2) be an orthonormal basis of L1, let d; = Ruy,
d2 = Rus, and let d be the image of d; by the rotation of the Euclidean space L; with matrix

cosf) —sinf
sinf)  cosf

in the basis (u1,us2), and set Ly = eM2d; @ e*12dy and Lz = e13d @ e'#13d+. Given numbers (A1 =
f12 = A, A3, 13) as in (B), we only need to set Ly = ¢"*L; and L3 = e 13d; @ e*13d,.

Thus, the orbits of the diagonal action of U(2) on £(2) x £(2) x L(2) are generically characterized by
the five invariants \is, p112, A13, 13 and 6.

5.4.2 Geometric study of projective Lagrangians of CP!

The aim of this section is to study the space (L£(2) x £(2) x £(2))/U(2) of the orbits of the diagonal
action of U(2) on triples of Lagrangians subspaces of C2, and more specifically to describe it in terms of
the map

ke (L£(2) x L(2) x £(2)) — T2/62 x T?/Gy x T2/G,
[Ly, Lo, L] +— (meas(Ll, Ls), meas(Ls, L), meas(Ls, Ll))

which will enable us to obtain another classification result for Lagrangian triples of C? , and to state it
in a way (proposition 5.4.7) that is similar to the corresponding result for Lagrangian pairs (proposition
5.3.10). We shall see in subsection 5.4.3 that this way of doing things is equivalent to our previous
approach which consisted in considering orthogonal decompositions of one of the three subspaces (see
subsection 5.4.1). We are first going to describe the image of the map s and then prove that it is one-
to-one. This will also give a topological description of the orbit space. Our main tool to characterize the
image of x will be the study of projective Lagrangians of CP!.

5.4.2.1 Configurations of projective Lagrangians of CP!

In the following, we shall constantly identify the complex projective line CP!, endowed with the Fubini-
Study metric (see for instance [ABK*94] p.40 or [Kli82] pp.106-108), with the Euclidean sphere S? C R?
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endowed with its usual structure of oriented Riemannian manifold. We will denote by p the projection :

p: c:\{0} — cpP!
z=(21,22) — p(2) = [2] = [21, 2]

As seen in 5.3.1, the image of a Lagrangian subspace of C? is a totally geodesic submanifold of CP! ~ §2
that is diffeomorphic to RP! ~ S*. Therefore | = p(L) is a great circle of S2, and the isometry o of
CP!, induced by the Lagrangian involution oy, acts on S? as the reflexion with respect to the plane of R3
containing the great circle l = p(L). Recall that the unitary group U (2) acts transitively on the Lagrangian
Grassmannian £(2). The action of U(2) on CP! is the same as the action of the special unitary group
SU(2), which acts on S? by the 2-sheeted universal covering map h : SU(2) — SO(3) = SU(2)/{%1}.
The map L € £(2) — | = p(L) C CP! ~ S? is equivariant for these actions. For any ¢ € GL(2,C), we
shall denote by @ the induced map of CP! ~ S$? into itself : @.[2] = [¢p(2)]. If ¢ € U(2) then & acts
on S? as an element of SO(3) : indeed ¢ = €34, where ¢/ = detp and 1) € SU(2), and then ¢ = n
in Aut(CP?), the action on S? being obtained by considering h(z)), which we shall from now on simply

<

denote by .

In the following, let (L1, Lo, L3) be a triple of Lagrangian subspaces of C? and let (I1,l2,13) be the
triple of corresponding great circles of S? : [; = p(L;) for j = 1,2,3. As above, we denote by ¢, the
only unitary map sending L; to Lj and satisfying the conditions of the second diagonalization lemma
(proposition 5.3.5). Let (e*ik ek ) be its eigenvalues, where 7 > \ji > ujr > 0, and let (ujx,v;1) be an
orthonormal basis of L; formed by eigenvectors of i, : ¢,k (ujr) = €**ujy and ¢(vj) = e*i*vjk. Recall
that (e?2%ix, e?21ir) is then a representative of meas(L;, Ly) € T?/&,. We denote by Ly the Lagrangian
subspace Lo = {(z,y) € C? : 2,y € R} of C2. We denote its projection on CP! by Iy = p(Lo).

We are now going to relate the angles of projective Lagrangians of CP' ~ §? with the Lagrangian
angles defined in section 5.3. Furthermore, in order to study configurations of projective Lagrangians of
CP!, we are going to define a notion of sign of a projective Lagrangian triple. To do so, we shall first
define such a notion in a generic case and then extend it to the remaining cases. Finally, we shall see
that there is also a notion of sign for Lagrangian triples of C™ and that in the case n = 2, the triples
(L1, Lo, L3) and (ly,12,13) have same sign.

Proposition 5.4.2 (Projection of a Lagrangian pair). Let (L1, L2) be a pair of Lagrangian subspaces
of C% and let (6”12,6“”2) be the eigenvalues of p12. Then Iy = ls if and only if Ao = p12. Furthermore,
if M2 # p12, then ly is the image of Iy by the (direct) rotation of angle a1a = A2 — p12 €]0, 7| around the
point [v13] € CP ~ 52 C R3, [v15] = Cuv1z being the complex eigenline of p12 associated to the eigenvalue
it of lowest argument.

la

L

Figure 5.1: Two projective Lagrangians of CP!

Proof. If A\ja = p12 = A then Ly = "L, and therefore Iy = I; in CP.
If now A1 # ji12, suppose first that Ly = Lo and that (uj2,v12) is the standard basis of C2. Then Ly is
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the image of L1 by the unitary map whose matrix in the standard basis of C? is :

etAr 0
( 0 eiuu)

so that Ly = {(e™2x,e12y) : 2,y € R} and Iy = p(L2) = {[e2x,e12y] : 2,y € R}. Therefore,

in the chart [21, 22] — 2 of CP! containing [v12] = [0, 1], l2 is sent diffeomorphically onto the real line
{ei()‘”_“l?)% s x,y € R,y # 0} = efMazmm2) gy of the plane C ~ R?, where dj is the image of Iy = I,
in this same chart. Thus, I3 and [; intersect at a;2 = [u12] and b1z = [vi2], and I3 is the image of

l; by the rotation of angle ;2 = Aj2 — p12 €]0, 7] around the point bjo = v12, which means that the
oriented angle formed by [y and ls at b2 has measure a2 = A2 — p12. Note that the oriented angle
at a2 has measure m — a1o €]0, 7|, since in the chart [z, 29] — z—f, I is diffeomorphic to the real line
ei(#lz—hz)do - ei(ﬂ—(hz—#m))dO.

If now (u12,v12) is not the standard basis of C?, consider the unitary map 1 € U(2) sending the standard
basis (e, f) of C2 to (u1,v12). Then Lo = tp~*(Ly), and let L = ¢p~1(Ls). Then [v12] = .[f], Iz = ¢(1)
and [; = 12(10). Then, since meas(Lo, L) = meas(L1, L2), we deduce from the above paragraph that
I = p(L) is the image of ly by the rotation of angle a5 around the point [f]. Hence, since 1Z € SO(3),
the oriented angle between I; and Iy at bio = [v12] € I Nl also has measure aqs. O

Observe that this proof also provides an elementary way of seeing why Lo, and therefore every Lagrangian
subspace of C?, projects to a great circle of $2 ~ CP'. We shall state a converse to the above result later
(see proposition 5.4.5).

Note that the preceding result gives a complete description of the relative position of the projective
Lagrangians [; and le only by means of the unitary map ¢i2. In particular, the rotation described above
is no other than the map @12 of CP! ~ S? into itself : I = p12(l1). The axis of this rotation is the real
line of R? generated by any of the antipodal points a2 = [u12] and b1 = [v12] of 52, (u12,v12) being a
unitary basis of C? into which the matrix of (15 is diagonal.

We are now going to describe all possible configurations of the projective Lagrangians l1, 15 and I3 of
CP! ~ S? satisfying the following condition for (j, k) = (1,2),(2,3), (3,1) : if I; # lj; then [ is the image
of I; by the direct rotation @, of S? C R? of angle aj;, €]0, 7| around a specified point bj € I; N l.

First case : l1,l5 and [3 are pairwise distinct.

(a) Suppose first that the three points bja, bog, b1 are linearly independent in R? (that is, I, 12,13 do
not have a common diameter). We may then consider the spherical triangle (b1, bag, b31), whose sides
[b12, ba3), [b23, b31], [b31, b12] are respectively contained in the geodesics lg,l3,1;. Since lj, is the image of
l; by a direct rotation around b;, the only possible configurations are the ones shown in figure 5.2.

L

A"

A negative triple A positive triple

Figure 5.2: Triples of projective Lagrangians of CP! in general position
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On each sphere, we represent the angles o) around the point b;r and we shall continue to do so in
the following. We call the first triangle negative and the second triangle positive. Let us explain this
terminology and prove that these cases are indeed the only possible ones when the b;, are pairwise
distinct.

Let ¢ = 31 0 a3 0 w12 € U(2). Then ¢(L1) = Ly and therefore (1) = I3. There are only two possible
cases : either { preserves a given orientation on 1, or it reverses that orientation. But $ = p310pa30p13 is
the map obtained by composing the three rotations ;i around the b;;,. When § reverses the orientation
of l;, which we will call the negative case, then (a2, 23, a31) are the angles of the spherical triangle
(b12,b23,b31). When @ preserves the orientation of Iy, which we will call the positive case, the angles of
the triangle (b12, bas, bs1) are Bk, where B, = T—a;, €]0, . Observe that this gives a series of necessary
conditions for the existence of a triple (L1, Lo, L3) of Lagrangian subspaces of C? projecting onto a triple
(I1,12,13) of great circles of S? that do not have a common diameter. Indeed, assume for instance that the
triangle (b12, bas, b31) has angles o, (negative case), then we necessarily have the following conditions on
these angles :

Q12+ ooz +a3r > T
0[12+7T > a23+a31
A)  ag9, 03,31 €]0, 7] and
(A) 12, @23, az1 €0, 7| Qo3 +7 > Q31+ Qi2
a3l +7mT > ap2 + Qo3

since (a2, 23, a31) are the angles of a spherical triangle (see for instance [Ber], pp.396 sqq). In the
positive case, the same conditions apply to (f12, f23, 831). In the following we shall write (a2, a3, ag1)
€ A to say that (a2, a3, a31) satisfy this set of conditions. A is an open subset of R and its closure A
in R? is a tetrahedron (see figure 5.3). In the following, we will relate the set of equations and inequations
describing the faces, edges and vertices of this tetrahedron to the possible configurations of Lagrangian

subspaces of C™.

Figure 5.3: The tetrahedron (A)

(b) Suppose now that bis,bas and bs; are not linearly independent. Then I,ls,l3 have a common
diameter and we either have b1y = bag = bs; or, for instance, bjs = bag and bsy # b12. Since Iy, 2,13 are
still supposed to be pairwise distinct and satisfying I, = @;x(l;), the only possible configurations are the
ones shown in figure 5.4 (we indicate in each case the sign of the triple (I1,l2,13)).

These 4 cases correspond to degenerate spherical triangles, so that we respectively have the following
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ls lo la l3
ll ll
AVA A
"‘v
b12 = b23 = b31 b12 = b23 = b31
- +
ls lo la l3
ll 4 ll
VA ' Yy,

ﬁ!

bia = bag # b31 bi2 = bag # b3y
J’_ J—

Figure 5.4: Exceptional triples of pairwise distinct projective Lagrangians of CP!

necessary conditions :

12, 023, (31 S ]0,71'[ B2, B23, B31 € ]077T[
a2 + o3 + 31 = T B2 + Bz + P11 = ™
a2+ 7 > o3+ st Bi2 +m > Bz + B31
Qo3+ T > g1+ Qg Baz + > 31+ P12
az; +m > a1z + oo B3 +7 > Pi2 + fo3
B2, 823,831 € 10, 7| o1g,003,a31 € 10, 7|
Bi2 + Poz + P31 > T a2 + ooz +az > T
Br2 +m > oz + f31 Qg+ 7 > a3+ as;
Baz + > B31+ P2 Qo3 + T > a1+ aig
B3+ = Biz2+ Po3 az; +m = a1+ a3

This means that either the v or the 35, depending on the negativity or positivity of the triple (lh,12,13),
are located in an open face of the tetrahedron A (see figure 5.3). The remaining faces are obtained when
b23 = b31 and b12 7& b23, and when b31 = b12 and b23 75 b31.

Second case : l1,l; and [3 are not pairwise distinct.
(a) Suppose first, for instance, that {; = ls and I3 # ;. Since [ = l2, we may consider either that a1 =0
or that ;o = 7 and that it is the angle of a direct rotation around bz € ls N3 = I3 N3, so that the
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notion of negative and positive triples is still valid. Then the only possible configurations of I, 15,3 are
the ones shown in figure 5.5.

lg ZB
" ’ h=l .’ L=l

ajp =0 ajp =10
— +
lg ZB
=1 , I =1
!A 1 2 "é ! 2
\J
Q12 =T Qg =T
+ —

Figure 5.5: Triples of non pairwise distinct projective Lagrangians of CP!

Those configurations correspond to open edges of A (see figure 5.3) :

ap =0 a3, a3y €]0, 7| Bra=m B23, F31 €]0, 7|
Q12 + o3 +agr = ™ Bi2 + Boz + P11 > ™
ap+m = a3 + a3y Br2 +7 > B3 + P31
o3+ > az1 + g2 Bog + T = B31 + P12
az1 +m > a2 + Qo3 P31+ 7 = Bi2 + P23
B2 =0 P23, B31 €]0, 7] Qi =T a3, a3 €]0, 7|
Br2 + Paz + P31 = T a2 +ao3 + a3 > T
B2+ = B3 + B31 ap +7 > Q3 + a3y
Bog +m > Bs1 + Pi2 Qo3 + T = Qg1 + a2
Ba1+m > B2 + [o3 as +7 = a2 + ao3

The remaining edges are obtained when Iy = [3 and [y # [y and when I3 = [; and I3 # [3.

(b) Finally, suppose that [y = ly = l3. The notion of negative and positive triples remains valid by
considering either that o, = 0 or that a;; = 7, and that the b; all are a same b chosen arbitrarily in
l1 = Iy = I3. Then the possible configurations on S? correspond to vertices of A, that is, in the negative
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case, (@12, qo3,a31) = (m,0,0),(0,7,0),(0,0,7) or (m,7,7), and in the positive case : (012,823, 031) =
(m,0,0),(0,7,0),(0,0,7) or (m,m, 7). Observe that in the cases where the three rotations @;; occur
around a same point bj; or around two diametrically opposed points, then the negative case corresponds
to (12 + 23 +a31) = 7 (mod 27), and the positive case corresponds to (312 + 823 +631) = 7 (mod 27),
that is to (a2 + aes + as1) = 0 (mod 27). Also note that if [y, 13,15 are pairwise distinct great circles
of $? that do not have a common diameter, the pairwise intersections l; Nl determine 6 points on S2,
which in turn give rise to 8 spherical triangles, four of which are negative, the other four being positive.
Two triangles with a common edge have opposite sign, whereas two triangles with only a common vertex
have same sign.

From the study above, we deduce that a Lagrangian triple (L1, Lo, L) projects on a triple (I1,1s,13) of
great circles of S2, that is either positive with (a2, o3, @31) € A or negative with (812, B3, 831) € A.
In particular, these conditions are necessary conditions for ([e?2*12 ei2hi2] [ei2A2s ei2H23] [gi2Aa1 ¢i2u51])
to be the triple of measures of a Lagrangian triple. Before showing that these conditions are sufficient,
we shall give another way of determining if a triple (l1,l2,[3) is negative or positive.

Proposition 5.4.3. Let (L1, Lo, L3) be a triple of Lagrangian subspaces of C2, and set p = p3100230¢12.
Write det ¢ = €, where § = (M2 + p12) + (Aag + po3) + (A31 + p31). Then § =0 (mod 7), and (I1,12,13)
is megative if 6 = 7 (mod 27) and positive if § =0 (mod 27).
Proof. Suppose first that L; = Lo and that (ui2,v12) is the standard basis of C2. Write
Ajetegk
ik =€" 7 ik
where v;, € SU(2) and e!Nintiie) = det jk. Set 1 = 131 0 1ha3 0 P12, so that ¢ = eig@/}, where
6 =32 k(Ajk + pjk). Note that @y = 1 and @ = 1. In particular, 1(lo) = lo. But the matrix of ¢ in
the standard basis of C? is of the form _
A= (5 —t
o\t 3

where s,¢ € C and satisfy |s|2 + |¢|2 = 1. Since lo = {[z,y] € CP! : z,y € R}, 1(lo) = lo if and only if

a —b ia b
AZ(b a)orA:<ib —m)

where a,b € R and satisfy a? + b? = 1.

In the first case ¥(Lg) = Lo, so that Ly = ¢(Lg) = eig.Lo, and since Ly is totally real we have % =0

(mod ), that is § = 0 (mod 27). In the second case 1)(Lg) = i.Lo, so that Lo = ¢(Lo) = €2i.Lo and
therefore g =T (mod ), that is § = 7 (mod 27). Now recall that $(lp) = (Ip). When

2
a —b
12 preserves a given orientation on Iy (since, in the chart [z1,22] — %7 the map z € R —
increasing), so that the triple (lo, l2,l3) is positive. When

ia b
A= <ib —ia)
az+b

1 reverses a given orientation on ly (since, in the chart [21, 22] — 2L, themap x € R — §72
so that the triple (lo, l2,l3) is negative.

Suppose now that (u12,v12) is not the standard basis of C2, and define the unitary map v € U(2) sending
the standard basis to (u12,v12). Let Ly = v=1(Ly), Ly = v=1(L3), I = p(L}) and I = p(L3). Then the
map v~ oo sends Ly to Ly and det(v™' o p ov) = det ¢ = €. From the study above, the triple
(lo,15,15) is positive if and only if § = 0 (mod 27), and negative if and only if § = 7 (mod 27). But
since I1 = U(lp), lo = U(15) and I3 = D(I%) with U € SO(3), the triples (I1,12,13) and (If, 15, 1%) have same
sign. O

axr—b

bx+a 18

~

is decreasing),
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Remark 5.4.4. In particular, we have shown that we always have 6 = 0 (mod 7). Observe that when
0 =0 (mod 27), we have det ¢ = 1, so that we might also say that the triple (L1, Lo, L3) of Lagrangian
subspaces of C? is positive. Similarly, when § = 7 (mod 27), det ¢ = —1 and (L1, Lo, L3) will be said to
be negative. The above proposition then says that the triples (L1, Lo, L3) and (I3, l2,13) have same sign.
Note that the notion of sign of a Lagrangian triple (L1, Lo, L3) is also valid for Lagrangian subspaces
of C". Indeed, by corollary 5.3.8, we have gp?k =0, oor;. But (or,01,)(0r,0L,)(00,01,) = 1, hence
(det )2 = 1 (where ¢ = 31 0 23 0 012), so that €2 = 1. Consequently, 26 = 0 (mod 27) and therefore
0 =0 (mod w). When 6§ = 0 (mod 27), the triple (L1, Lo, L3) is said to be positive and when § = 7
(mod 27) it is said to be negative.

5.4.2.2 A second classification result for triples of Lagrangian subspaces of C?

As a converse to proposition 5.4.2, it is possible, given two distinct great circles I; # I of S? ~ CP!, to
describe the measure of the angle (L1, L2) between two Lagrangians of C? that project respectively to [
and lo. Recall that two distinct great circles I3 # I intersect along two antipodal points a,b, and that
a €]0, [ is said to be the measure of the oriented angle between I and Iy at b € [; Ny if I3 is the image
of I by the (direct) rotation of angle o around b.

Proposition 5.4.5 (Lifting lemma). Let [; # s be two distinct projective Lagrangians of CP! ~ §2,
let b € l1Nly and let o €]0, 7 be the measure of the oriented angle (I1,12) at b. Then, given X and p such
that m > X > p > 0, and given a Lagrangian subspace L1 € p~1(l1), there exists a unique Lagrangian
subspace Ly € p~1(l2) such that meas(Ly, La) = [e??*, e?2H].

Proof. Let v € Ly such that p(v) = b. We may choose v such that ||v|| = h(v,v) = 1. Then, take u € L,
such that (u,v) is an orthonormal basis of L1. Since L; is Lagrangian, (u,v) is a unitary basis of C2. Let
1 be the unitary transformation of C? whose matrix in the basis (u,v) is

er 0
0 e

and let L = v(L1). Then L is Lagrangian and meas(Ly, L) = [¢??*, €??#]. Therefore, by proposition 5.4.2,
I =p(L) is a great circle of S?, distinct of [; since A # pu, that intersects I; at p(v) = b and the measure
of the oriented angle between [; and [ at b is A — u = «, so that [ = [5.

As for unicity, if L' € p~!(l3), then, again by proposition 5.4.2, we know that L' = ¢?.L, where 6 €]0, 7[.
The unitary map €.+ then sends L; to L', and its matrix in the unitary basis (u,v), which is an

orthonormal basis of Ly is
ei(0+A) 0
0 et(0+1)

so that meas(Ly, L) = [¢2((0+2) mod m) oi((0+n) mod m)] with 7 > (§+\) mod 7 > (4 ) mod 7 > 0.
Since meas(Ly, L) = meas(Ly, L’), we have in particular (¢ + \) mod = = A, hence § mod 7 = 0 (and
s00=0)and L' =L = L. O

The next proposition completely describes the image of the map s and lays the ground for the second
classification result for triples of Lagrangian subspaces of C2.

Proposition 5.4.6 (Possible triples of measures for triples of Lagrangian subspaces of C?).
Given a triple of measures

([eiQAm , €i2u12]’ [ei2>\23 , €i2u23]’ [ei2>\31 , €i2u31])
satisfying the conditions ™ > A\jr > pik > 0, set ap, = A\jx — ik € [0, 7], Bjx =7 — aj, € [0, 7] and
0= (M2 + p2) + (A2z + p23) + (Ag1 + par)
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Then, there exists a triple (L1, Lo, L3) of Lagrangian subspaces of C* such that

meas(Ll, Lg) = ei2>\12 , ei2p,12]
meas(Lo, L3) = [eA2s ei2H2s]
meas(L3, Ly) = [e™Ms1 ei2Ha1]

if and only if :

§=7 (mod27) and (a2, 03, 0a31) €A (negative case)
or

0=0 (mod27) and (P12, Pe3,031) € A (positive case)
(Here we allow \j, = 7 so that we may have o, = 7 and 3;, = 0).

Proof. The study made in 5.4.2.1 shows that these conditions are necessary.

Conversely, suppose first that 6 = 7 (mod 27) and that (a2, aes, ag1) lie in the open set A. Then there
exists a negative triple (l1,l2,3) of pairwise distinct great circles of S? such that I is the image of I; by
the direct rotation of angle o, around a certain point b, € I; N for (5, k) = (1,2),(2,3),(3,1), and
we may suppose that I; = lg. Let Ly = Lg. Then, by proposition 5.4.5, there exists a unique Lagrangian
Ly € p~1(I2) such that meas(L1, La) = [e??*12, ¢i2#12]. Again by proposition 5.4.5, there exists a unique
Lagrangian L3 € p~!(I3) such that meas(La, L3) = [e??*22, e??/22], and a unique Lagrangian L4 € p~1(l;)
such that meas(Ls, Ly) = [eig)‘?’l,em“?’l]. Let (34 be the unique unitary map sending L3 to L,y and
satisfying the conditions of the second diagonalization lemma 5.3.5, and let ¢ = ¢34 © 23 0 p12. Then
@(L1) = Ly and det p = . Write ¢ = e'21), where 1) € SU(2). Then ¢ (I;) = Iy, and since (I, ls, l3)
is negative, we deduce from the study made in 5.4.2.1 that ¢(L;) = i.L1, hence, as § = 7 (mod 27), we
have Ly = (L) = €'3i.Ly = Ly.

Suppose now that (a2, g3, az1) € OA. If (a12, a3, az1) lay in an open face of A, there exists a negative
triple (11,12, 13) of pairwise distinct great circles of S? such that [, is the image of [; by the direct rotation
of angle ;) around a certain point bj, € I; NI for (j, k) = (1,2),(2,3),(3,1), and we can therefore
conclude as earlier. If now (a2, o3, as1) lay in an open edge of A, there exists a negative triple, for
instance of the form (I1,le = l1,1l3 # l3), such that I3 is the image of Iy by the rotation of angle ass
around bes € I N3 and such that [y is the image of I3 by the rotation of angle a3y around b3y € I3 N 5.
Since Iy = [y, a2 is either 0 or 7, and by setting b1 = bas (or b1z = bs1), we have that [y is the image
of 11 by the rotation of angle a5 around b1 € I3 Nl (see figure 5.5). Let L1 = Ly. If a12 = 0, then
A2 = p12 and we set Lo = ez L. If g = 7, then Ao = 7 and w12 = 0, and we set Lo = L. In
both cases Ly € p~1(la) = p~1(l1) and meas(Ly, La) = [e®2M2 ei2M12]. Since I; = Iy # I3, there exists,
by proposition 5.4.5, a unique Lagrangian Lz € p~!(I3) such that meas(La, L3) = [e??*23 e®223] and
a unique Lagrangian Ly € p~1(I1) such that meas(Ls, L4) = [e"?X31,e?231] As earlier, since the triple
(I1,12,13) is negative, we have Ly = ei%i.Ll =1.

Finally, if (12, ag3, a31) is a vertex of A, that is, if (a2, a2s, as1) = (7,0,0), (0,7,0), (0,0, 7) or (7,7, ),
then Ly = Lo = L3y = Lo meet the required conditions.

If now, § = 0 (mod 27), the condition (B12,/323,331) € A implies the existence of a positive triple
(I1,12,13) of pairwise distinct great circles of S?, with angles o5, as required. Reasoning the same way, we
find 4 Lagrangians Ly, L2, L3 and L4 with prescribed angles [¢?2%i* | e?2#ir] and since (l1,la, [3) is positive
we have: Ly = o(L1) = ¢'%.Ly, and therefore, as § = 0 (mod 27), Ly = L.

The other cases are treated identically. O

We now obtain the following classification result for triples of Lagrangian subspaces of C2.

Proposition 5.4.7 (Unitary classification of Lagrangian triples of C2, second version). Given
two triples (L1, Lo, L3) and (Ly, Ly, L) of Lagrangian subspaces of C?, there exists a unitary map ¢ €
U(2) such that o(L1) = L}, ¢(La) = L4 and ¢(Ls) = LY if and only if :

meas(L1, Ly) = meas(L], L5)
meas(Lo, L3) = meas(L}, L)
meas(Ls, L1) = meas(L}, L))
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Equivalently, the map
K (£(2) x £(2) x £(2)) — T?/65 x T? /&3 x T? /G5

is one-to-one and is therefore a homeomorphism from the orbit space (L(2) x L(2) x £(2))/U(2) onto a
closed subset of the measure space T? /Gy x T? /Gy x T?/Gs.

Proof. Tt only remains to prove that the above conditions are sufficient. Let (L1, Lo, L3) and (L}, L}, L%)
be two Lagrangian triples such that meas(Lj, L) = meas(L’, L}) for all j, k. Then, the (generalized)
triangles (b12, bag, bs1) and (b4, b3, b5, ) have the same angles, so that there exists a map ¢ € SU(2) such
that ¥(bji) = b, for all j, k. Since moreover § = ¢’, the triples (I1,ls,l3) and (I},15,13) have same sign
and we therefore even have 1(l;) = I for all j. Equivalently, p(¥(L;)) = v (p(L;)) = ¥(l;) = Iy = p(L}).
In particular, by proposition 5.4.2, we have L] = e?.4)(L;) for some 6 € [0,7[. Set ¢ = e?.1p € U(2).
Then ¢(L1) = Ly and p(p(L2)) = ¢(p(L2)) = ¢(l2) = l; and meas(Ly, p(Lg)) = meas(p(L), ¢(L2)) =
meas(L1, L) = meas(L}, L}), hence, by unicity in proposition 5.4.5, ¢(L2) = L}. Likewise, p(¢(L3)) =14
and meas(Lb, ¢(L3)) = meas(L,, L), therefore ¢(Lg) = L. O

5.4.3 Equivalence of the two classification results

We now wish to explain why the two classification results that we have obtained (propositions 5.4.1 and
5.4.7) are equivalent.

Let (L1, L2, L3) be a triple of Lagrangian subspaces of C2. If one of the unitary maps ;i is of the
form e**Id (for instance if Lo = e*.Ly), and if (L}, L}, L}) is a triple of Lagrangian subspaces such
that meas(L1, Ly) = meas(L), L)) and meas(Lq, L3) = meas(L}, L) (or equivalently meas(Ls, L1) =
meas(L%, L)), we necessarily have meas(Lq, L3) = meas(L}, L). Indeed, since

meas(L}, Ly) = meas(L1, Ly) = [}, ¢/}

one has L} = e**.L}. Therefore :

UL.% o UL’2 = UL.% o O-e“L’l = O'L/3 o (e”‘aylefw‘) = eii)‘(aLé o UL/I)eiiA
But meas(Ls, L1) = meas(Lg,L’l), so that, by proposition 5.3.10, o, o 0r, is conjugate to o, o or/.
Since we also have Lo = €**.L, the above computation shows that oL, © 0L, is conjugate to or, o0,
and this means that meas(La, Ls) = meas(L}, L;), which proves that in this case the two classification
results are indeed the same.

If now each unitary map ;; has two distinct eigenvalues e?** and ei*, where 7 > A\jr > p;r > 0,
set di2 = Ruja C Ly and dis = Ruqg C L1 (where w12 and uqs are defined as earlier by means of
12 and ¢13), and let 8 = meas(di2,d13) € [0, %] be the measure of the non-oriented angle formed by
the real lines di2 and di3 in the Euclidean space Li. Recall that L; = dia ® diy = di3 @© di3, where
di; = Rvyz and diz = Ruis, and observe that @ is also the measure of the angle (diy,ds3). As earlier,
define bj, = [vjx] € Ij N1, C CP! ~ S2. We then formulate the following remark :

Lemma 5.4.8. The measure of the non-oriented angle formed by the two vectors bya and biz of S C R3
is 20 € [0, 7). In particular, two orthogonal vectors of L1 project onto antipodal points of S*.

Proof. Suppose first that L; = Lo and that (u12,v12) is the standard basis of C2. Since meas(Ruv12, Ru;3)
= 0 and since v13 has norm 1, we either have v13 = (sin#,cosf) or v13 = (—sinf,cosf) in Ly. We
may assume 6 # 0, otherwise vi3 = v12, hence big = b2 and meas(b12,b13) = 0. If for instance vz =
(sinf,cosd) with 6 €]0; 2], then [v13] = [sin6,cos#] € CP! is sent by the diffeomorphism CP! — §2
to (—sin26, 0, — cos26). Since [v12] = [0;1] is sent to (0,0, —1), the measure of the non-oriented angle
between these two vectors of R? is indeed 26. The case v13 = (—sinf, cos ) is similar ([v13] is then sent
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to (sin 26,0, — cos 20)).

If now (u12,v12) is not the standard basis (e, f) of C2?, define the unitary map ¢ sending (e, f) to
(u12,v12). Since ¥|r, : Ly — L is an orthogonal map, meas(f,¥ 1(v13)) = meas(vi2,v13) = 0 and
since ¢ € SO(3), we deduce from the preceding case that meas(by2, bys) = meas(d([f]), P ([~ (v13)])) =
meas([f], [~ (v13)]) = 26. O

Observe now that bs; € I1 N3 is one of the two antipodal points a13 or b3 € {1 Nl3. Therefore, we have :

Lemma 5.4.9. If p13 = 0 then bsy = bis and therefore meas(bio, b31) = 26. If pis # 0 then bs1 = a3
and therefore meas(bia, bg1) = m — 26.

Proof. Recall that we have supposed that A13 # j13, and that we have : @13(u13) = e13u13, @13(vi3) =
6““31113, and ™ > )\13 > U13 Z 0. Similarly : @31(U31) = 6i>\31U31, @31(1131) = €i“31’U31, and, since
A3 # p1s, ™ > Azp > pzr > 0. Set wsgy = e”‘l?’ulg € Lz. Then ei(ﬂf)‘l?’)’w;;l = —u13 € L3, with
m— A3 €]0; w[. Therefore, w3 is an eigenvector of 31, so w31 € Rugy or wy; € Rusy. If py3 # 0, we have
T >m— 3 > T — A1z > 0, so that the eigenvalues of @31 are m — A\13 and ™ — p13, hence puz; =7 — Ai3

and w3 € Ruvz;. Consequently, [u13] = [ws1] = [vs1] in CPL, that is : a;3 = b3;. By lemma 5.4.8,
meas(blg, bgl) =m —26.

If now p15 = 0, then vy3 € Ly N L3, hence usz; = 0 and v3; = v13, so that bg; = [v31] = [v13] = b13, and
therefore meas(b12, b31) = 26. O

Let now (12, v23,731) be the measures of the angles of the spherical triangle (b1, bes, b31) (from the study
of projective Lagrangians of CP! conducted in 5.4.2.1, we know that either (v12,v23,731) = (12, @23, 31)
or (712,723, ¥31) = (B12, P23, B31), where ajr, = A\jr — ik and B = m—ay). Let n € [0, 7] be the measure
of the non-oriented angle (b12,bs1) (from the study above, we know that either n = 20 or n = © — 20).
Then we know from spherical trigonometry that :

COS Y23 = sin yj2 Sin Y31 COS7N — COS Y12 COS Y31

(see for instance [Ber], pp.396 sqq). The next proposition completes the explanation why our two classi-
fication results are indeed equivalent.

Y

n =20 orm—20

Figure 5.6: Relation between the two classification results

Proposition 5.4.10 (Equivalence of the two classification results). Let (L1, La, L3) be a triple
of Lagrangian subspaces of C? such that 12, pa3 and w31 have distinct eigenvalues. Let (L}, L}, L%)
be a triple of Lagrangian subspaces of C* such that meas(Ly, L) = meas(L}, L}) and meas(Ly, L3) =
meas(L}, L), this last condition being equivalent to meas(Ls, L1) = meas(L%, L}). Define 6 = meas(di2,
di3) € [0, 5] to be the measure of the non-oriented angle (di2,d13) in Ly and define §' = meas(d},, dy3) €
[0, Z] in L} similarly. Then meas(Lz, L3) = meas(Lj, Ly) if and only if 0 = 0'.
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Proof. Assume first that meas(Lq, L3) = meas(L}, L5). Since we also have meas(L1, Ls) = meas(L}, L})
and meas(Lq, L3) = meas(L}, L}), we get 6 = ¢ : the triples (I1,12,13) and (I1,15,1%) have same sign. As
a consequence, the spherical triangles (b12, b3, ba1) and (b},, b3, b51) have the same angles : v, = 7} €
10, [ for all j, k. Since meas(L1, L) = meas(L}, L) we have i3 = pf5, therefore, by lemma 5.4.9, either
bs1 = b1z and by, = b5 (when py3 and pf5 equal zero) or bgy = ajg and by = aly (when p13 = pis # 0),
so that either n = 20 and ' = 26’ or n = m — 26 and ' = 7 — 2¢’. But then from the relation from
spherical trigonometry recalled above, since siny;; # 0 for all j,k, we have cosn = cosn’, and since
n,m" € [0, 7] we get n = 1/, therefore § = ¢’.

Assume now that § = . Then, as in proposition 5.4.1, there exists a unitary map ¢ € U(2) such that
Y(Lj) = L} for j = 1,2,3, so that meas(Ly, L3) = meas(Lz, L3). O

5.4.4 Two-dimensional unitary representations of 7;(S?\{sy, sq, s3})

The purpose of this subsection is twofold :

- to show that when Cq,Cs,C3 C U(2) are three conjugacy classes of the unitary group U(2) such that
Home(m1(S?\{s1, s2,53}),U(2)) # 0 (that is, when there exist two-dimensional unitary represen-
tations of m1(S2\{s1, s2,s3}) with generators lying in the prescribed conjugacy classes) then there
exist two-dimensional Lagrangian representations for the same conjugacy classes (that is, there exist
three Lagrangian subspaces of C? with prescribed angles (L;, Lj11) ~ C;).

- to determine, using Lagrangian representations, explicit necessary and sufficient conditions on such
C1,Cq,C3 C U(2) for the representation space Home (1 (S?\{s1, s2, s3}), U(2)) to be non-empty.

The point of doing so is first to show that, in the very particular case where n = 2 and [ = 3, we can prove
the existence of Lagrangian representations by elementary methods, whereas for the general case of a
compact Lie group (U, (.|)) and arbitrary I > 1, we will need to prove a real convexity theorem for group-
valued momentum maps (see chapter 8). Second, the analysis of this particular situation will give a simple
and geometric interpretation of the conditions on C1,Ca,C3 C U(2) for Home (71 (S?\{s1, 52, 83}), U(2)) to
be non-empty, using spherical geometry and the results of subsection 5.4.2. This result is to be compared
with other answers to this question given for instance in [JW92], [Gal97] and [Bis98]. In particular, in
[Gal97], Gallitzer deals with the case of an arbitrary [ using spherical polygons.

Before entering the detailed statements and proofs, we would like to add one more comment. As it
turns out, we will prove that when n = 2 and [ = 3, every (two-dimensional) unitary representation (of
71(S?\ {51, 82, 83})) is in fact Lagrangian. This is a very special case, as we will see in chapter 9, where
we will prove that the set of Lagrangian representations is actually a Lagrangian submanifold of the
representation space Home (7, U) /U (in particular its dimension is half the dimension of the representation
space). To see why there is no contradiction in this, one has to notice that when n = 2 and [ = 3, this
representation space is zero-dimensional and actually reduces to a point as it is connected. This was for
instance proved in [FW], where dimensions of representation spaces for U = U(n) and arbitrary choice of
conjugacy classes C1, ... ,C; C U(n) were computed, and where the Lagrangian nature of decomposable
representations of m1(S?\{s1, ... ,s;}) in U = U(n) was also proved (see also [HL03] and[HL04] for a
study of connected components of representation varieties). We now have the following result :

Proposition 5.4.11 (Every two-dimensional unitary representation of m;(S?\{s1,s2,53}) is
decomposable). Let uy,us, us € U(2) be three unitary 2 x 2 matrices satisfying uiusus = 1. Then there
exist three Lagrangian subspaces Ly, Ly, Ly of C? such that u; = 0103, ug = 0203 and us = o301, where
o; is the Lagrangian involution associated to L;.

Proof. Denote by (€2, e?2#i) the eigenvalues of u; (where 7 > \; > p; > 0) and let (vj,w;) be a basis
of eigenvectors for u; : u;(vj) = eNv; and uj(w;) = e*iw; . Let I be a great circle of CP! ~ $?2
containing both [w;] and [w3] (such a great circle always exists). Define I3 to be unique great circle of
S? such that [y is the image of I3 by the rotation of angle A\3 — u3 € [0, 7] around [w3] and choose a

90



5.4 CHAPTER 5

Lagrangian subspace of Ly € p~1(l;) arbitrarily. Set L := Rvs @& Rws. Since (v3,ws) is a unitary basis
of C?, we have that L is Lagrangian. Set | := p(L). Then [w3] € [ and consequently [; is the image of
I by a rotation ¢ € SO(3) around [w3] for some ¢ € SU(2). Set L' = ¢(L). Then L’ is a Lagrangian
subspace of C? and p(L') = 1?(1) = I;. Therefore, by proposition 5.4.2, we have L; = e?.L’ for some
0 € [0,7[. Set v} :=e?v3 € Ly and w} := e®ws € L;. Then (v}, w}) is an orthonormal basis of L;. Set
L3 := Re™3vf @ Re#sw)j . Then Lj is Lagrangian (and one may check that, by proposition 5.4.2, p(L3)
is the image of p(L) = l; by the rotation of angle (A3 — p3) around [w}] = [ws], so that p(Ls) = l3).
Finally, denote by o; the Lagrangian involution associated to L; for j = 1 and j = 3. Then :

o3001(vy) = o3(vh)
= ogg(e”Paettag))
= Magg(ePanf)
— ei?)\gv/g
so that o301 (€?v3) = €2*3¢%03 and therefore o301 (v3) = €303 = uz(v3). Likewise, o301 (w3) = us(ws),
so that 0301 = U3.
Now, set Lo := Ru; @ Rw;. As earlier, Ly is Lagrangian and we set Iy := p(Lg). Then [wi] € lp, so
that I is the image of Iy by a rotation 1y € SO(3) around [w;], where ¢9 € SU(2) is a special unitary
map having v; and w; as eigenvectors (since 1)y is a rotation around [w1] = —[v1] € R?) : 9p(v1) = avy
and 1o(w1) = Bw; for some o, B € St . Set L) := Ravy & RBw; = 1o(Lo). Then L} is a Lagrangian
subspace of C? and p(Lj) = %0(10) =1{;. But Ll/e p~1(l1) so that, by proposition 5.4.2, L; = ew/L{) for
some @' € [0,7] . Set v} := e av; and w) := e Bw; . Then (v}, w}) is an orthonormal basis of L;. Set
Ly := Re7"1v] @ Re™"w). Then L, is Lagrangian (and one may check that p(Ls) is the image of
by the rotation of angle A\; — g around [w)] = [w;]). Finally, denote by o9 the Lagrangian involution
associated to La. Then one has :

ocrooa(v)) = orop(eMe o))
= gi(e”Ma(e” ™))

—i2X
Py

0'1(6

¢ (1)

612A1 ,Ui

so that o109(v1) = alag(e_w/oz_lv’l) = e_wloz_lalag(vi) = e‘ie,oz_lem)‘lv’l = My = uy(vy). Like-

wise, 0102(w;) = uy(wi), so that o109 = uy. Therefore : o903 = (0901)(0103) = uy 'uz' = uy since
Ui1U2U3z = 1. O

Corollary 5.4.12 (Inequalities for n = 2 and [ = 3). Let C1,C2,C3 C U(2) be three conjugacy classes
of the unitary group U(2) given by the respective eigenvalues (e¥?*1, 211, (7222 ei212) gnd (7223 e213),
where m > X\; > p; >0 . Set

0:= (A 4 p1) + Ao+ p2) + (A3 + us3)

as well as
a; =X —pj €[0,71] and B :=7—a; €[0,7]

Then, there exist three unitary matrices ui, us,us € C; X Co X C3 satisfying uyusus = 1 if and only if :
=7 (mod27m) and (ai,as,a3) €A
or

§=0 (mod27w) and (B1,0B2,33) €A

where A is the tetrahedron defined in 5.4.2.1 (see figure 5.3).
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Proof. By proposition 5.4.11, there exist three 2 x 2 unitary matrices uq, ug,us € U(2) satisfying u; €
C; and ujugus = 1 if and only if there exist three Lagrangian subspaces L1, Lo, L3 of C? satisfying
ojoj+1 € Cj, where o is the Lagrangian involution associated to L; for j = 1,2,3 and where 04 := 071.
By proposition 5.4.6, such a triple exists if and only if :

d=m (mod27) and (ai,as,a3)€ A
or

§=0 (mod27) and (Bi,[P2,03) €A

O

This result provides a set of necessary and sufficient conditions for Home (1 (S%\{s1, 52, s3}), U(2)) to be
non-empty. These conditions are linear inequalities to be satisfied by the arguments of the eigenvalues
defining the conjugacy classes C1,Cs2,C3 C U(2). They had already been obtained by Jeffrey and Weitsman
in [JW92], by Gallitzer in [Gal97] and by Biswas in [Bis98], among others. For the case of arbitrary !
and n, we refer for instance to [AW98, BelO1].

5.5 Angles of Lagrangian subspaces and computation of the in-
ertia index of a Lagrangian triple

In this section, we give a formula to compute the inertia index 7(Li, Lo, L3) of a triple (L1, Lo, L3) of
Lagrangian subspaces of a Hermitian vector space (see proposition 5.5.10). This formula relates the index
to the measures of the angles (L1, L), (Lo, Ls) and (L3, L1), as defined in section 5.3. The point of doing
this is to show how the additional structure provided in this case by a compatible complex structure gives
a new description of the symplectic invariant 7(Lq, L2, L3) .

5.5.1 Basic properties of the inertia index

In contrast with the corresponding situation for pairs of Lagrangian subspaces, the orbit of a triple
(L1, Lo, L3) of Lagrangian subspaces of a 2n-dimensional symplectic vector space (V, w) under the diagonal
action of the symplectic group Sp(V') is not characterized by the integers nio = dim (L1 N Lg), nog =
dim (Ly N L3), ngy = dim (Ls N L) and ng = dim (L3 N Le N L3), which are invariants of this action. To
classify the orbits, one introduces the notion of inertia index (sometimes called Maslov indez, or simply
index, or signature) of a Lagrangian triple (L1, Lo, L3). For the following definition and properties of the
inertia index, we refer to [KS90], pp.486 sqq (see also [LM87], [LV80] and [SouT76]).

Definition 5.5.1 (Inertia index). The inertia index of the Lagrangian triple (L1, Lo, L3), denoted
by 7(L1,La, L3), is the signature of the quadratic form ¢ defined on the 3n-dimensional vector space
Ll X L2 X L3 by : q(xl, X9, {E3) = w(xl, IEQ) + W(xg,x;),) + w((Eg, xl).

In a suitable basis of L; x Ly X L3, one can represent g by a diagonal matrix whose entries consist of
r terms equal to +1, s terms equal to —1 and 3n — r — s terms equal to 0, the integers r and s being
independent from the choice of the basis. What is called signature of g here, and denoted by sgn(q), is
the integer sgn(q) := r — s. From the definition, we see that for any symplectic map ¢ € Sp(n), we have
T(Y(L1),¢¥(La),¥(L3)) = 7(L1, L2, L3). We summarize here some of the properties of the inertia index
that we will need in the following.

Proposition 5.5.2 ([KS90]). The inertia index has the following properties :
(i) 7(L1, L2, L3) =n — (n12 + naz + nz1) (mod 2Z)

(11) |7(L1, Lo, L3)| < n+ 2ng — (n12 + nag + na1)

92



5.5 CHAPTER 5

We may now state the theorem of symplectic classification of triples of Lagrangian subspaces of (V,w),
which is due to Kashiwara. For d = (ng, n12, n23, n31,7) € N* x Z, we set :

dim (Ll NLyN Lg) = no,
dim (Ll n LQ) = N9,
O4 = (Ll, Lo, L3) S ﬁ(V) X E(V) X ﬁ(V) | dim (LQ N Lg) = N3,
(

dim (L3 N Ll) = nsi,
T(Ll, Lg, L3) =T

Proposition 5.5.3 (Symplectic classification of Lagrangian triples, [KS90], p.493)). Oy is
non-empty if and only if d = (ng, ni2,n23,n31,T) satisfies the conditions:

(i)  0<mng<ni,nznz<n

(1)  m12 +nag +ng1 < n+2ng

(#i7) |7| < n+ 2no — (n12 + nes + na1)
(iv) T=n-—(n12+mn23 +mn3) mod 2Z

If (L1, Lo, L3) and (L}, L%, Ls) are two triples of Lagrangian subspaces of V', there exists a symplectic
map ¢ € Sp(V) such that ¥(L1) = L, ¥(La) = LY and ¥(Ls) = LY if and only if ng = ng, n12 = nly,
No3 = Nhg, N31 = nhy and 7 =7,

Thus, the diagonal action of Sp(V') on L(V) x L(V') x L(V') has only finitely many orbits and these orbits
are the Og4, where d satisfies conditions (i) to (iv) of proposition 5.5.3. We now specialize to the case
where V' = C", that is, we endow the symplectic vector space (V,w) with a compatible complex structure
J and choose a unitary basis of (V,w, J), and we show how in this context it is possible to compute the
inertia index of a triple (L1, Lo, L3) from the angles (L1, L2), (L2, L3) and (L3, L1).

5.5.2 From angles to inertia index

We saw earlier (proposition 5.4.3) that the quantity 6 = (A2 + p12) + (A23 + p23) + (A31 + ps1) defined
for triples of Lagrangian subspaces of C?, satisfies 6 = 0 (mod 7) and contains information about the
triple (L1, Lo, L3). Namely, if 6 = 0 (mod 27) the triple (L1, Lo, L3) is positive (that is, setting ¢ =
031 0 a3 © P12, we have detp = e = 1 > 0), and if § = 7 (mod 27) the triple is negative (that is
det p = ¢ = —1 < 0). The interest of that notion was that the triple (I1,l2,13) of projective Lagrangians
of CP! had same sign as (L1, Lo, L3) : if 6 =0 (mod 27) the transformation ¢ = P31 o a3 0 P12 of CP?
preserves a given orientation on [y (the triple (l1,l2,[3) is then said to be positive), and if § = 7 (mod 27)
then @ reverses a given orientation (the triple (l1,l2,(3) is said to be negative), and this enabled us to
distinguish between positive and negative spherical triangles, which was essential in order to determine
the image of the map & : (£(2) x L(2) x L(2))/U(2) — T?/&3 x T?/G5 x T?/S,. But § can actually be
defined for a triple of Lagrangian subspaces of C™ for any integer n. Since O'%j = Id, we have, for such a
triple (L1, Lo, L3), the following relation : (o, oop,)o(0r,00L,)0 (0L, 00r,) = Id, and the determinant
of this unitary map is therefore of the form €??° with § = 0 (mod 7). When n = 2, the eigenvalues of the
unitary map oz, ooy, are ek and e™Mik | 50 that we have indeed § = (A12+p12)+( A2z +pu23)+ (31 +/i31).
In the following, we shall consider a triple (L1, Lo, L3) of Lagrangian subspaces of C", for arbitrary n. We
shall denote the measures of the angles (L1, La), (L2, L3) and (L3, L1) by meas(L1, Lg) = [e®2*1 .. ei2an],

meas(Ly, L3) = [P, ... ¢?0n] and meas(L3, L1) = [e”7,..., "], where m > a1 > ... > a, > 0,
>0 >...>20,>0andt >y >... >, > 0. WethenhaveézZ?Zl(aj—i—ﬁj—i—'yj),whereel%:1

is the determinant of the unitary map (o, oop,)o (0, cop,)o (o, oor,) = Id, so that 6 =0 (mod ).
Since ¢, which we shall also denote §(L1, Lo, L3) to avoid confusion, is defined by means of the measures
of the angles (L, Ly) (that is, up to permutation, the eigenvalues of the unitary maps or, o or,), ¢ is
invariant under the diagonal action of the unitary group U(n) on L(n) x L(n) x L(n) : if ¢ € U(n),
then 0(¢(L1),9(L2),o(Ls)) = d(L1, La, Ls). We now study properties of 6 and show that it is in fact a
symplectic invariant of (L, Lo, L3)
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Lemma 5.5.4. Ifc:t € [0,1] — (L1(¢), L2(t), Ls(t)) € L(n) x L(n) x L(n) is a continuous map such
that the dimensions nji(t) = dim (L;(t) N Li(t)) of the pairwise intersections are constant functions of t,
then the map 6 : t — (L1 (t), L2(t), Ls(t)) is a constant map.

Observe that this result is also true for the inertia index (see [KS90], pp.487-488).

Proof of lemma 5.5.4. Since the n;i’s remain constant along the deformation, the non-zero «;(t), 5;(t)
and ;(t) vary continuously. Therefore, 6(L1, Lo, L3) varies continuously. As 6(¢t) = 0 (mod ), ¢ is a
constant map. O

Proposition 5.5.5. Let (L1, Lo, L3) be a triple of Lagrangian subspaces of C" and let ¢ € Sp(n) be a
symplectic map. Then §(1p(L1), ¥ (La),¥(Ls)) = 0(L1, Lo, L), that is : § is a symplectic invariant.

Proof. Since the symplectic group is connected, there exists a continuous path ¢ € [0,1] — ¢ € Sp(n)
such that ¢ = Id and ¢ = 1. For all t € [0,1], set L;(t) = ¢(L;) for j = 1,2,3. As 1)y is invertible,
n12(t), n23(t) and nsq(t) are constant, and, by lemma 5.5.4, so is 6(¢), so that §(¢(L1), ¥ (L2),¥(L3)) =
d(1) = 6(0) = 6(L1, Lo, Ls).

Since we now know that § is a symplectic invariant of the triple (L1, Lg, L3), it is natural to try and
relate it to the inertia index 7. To be able to do so, we need to learn to compute § for a particular class
of Lagrangian triples called exceptional triples :

Definition 5.5.6. A triple (L1, Lo, L3) of Lagrangian subspaces of C™ is said to be an exceptional triple
if the unitary maps @12 and @13 (defined as in proposition 5.3.5) have the same eigenspaces.

As can be seen from the case n = 2, a triple (Ly, Lo, L3) is generically not exceptional (since being
exceptional in this case requires either that 12 and ¢13 have non-distinct eigenvalues or, in the notation
of proposition 5.4.1, that § = 0 (mod 7)), which justifies the terminology. Exceptional Lagrangian triples
of C? project to triples (I1,l2,13) of great circles of S? which have at least one common diameter (the
angles between any two of them may have measure 0, see figures 5.4 and 5.5).

The interest of the notion of exceptional Lagrangian triple is first that we know how to compute ¢ for
those triples (and we shall soon see that the inertia index is computed very similarly for such triples,
see lemmas 5.5.7 and 5.5.8), and second that every Lagrangian triple is symplectically equivalent to an
exceptional triple (which then has same ¢, see proposition 5.5.9).

Lemma 5.5.7. Let (L1, Lo, L) be an exceptional triple of Lagrangian subspaces of C™. Denote by
(u1, ... ,un) an orthonormal basis of L1 formed of eigenvectors of p1a : @i2(ux) = €' uy, where
[6120‘1 . 6120‘"] = meab(Ll,Lg) For all k, set C%) := Cuy, d¥ = LN Cc®), ds = LN Cc® gnd
dk = L3 ﬂ(C (k). Then d¥,d5 and d§ are real lines of C%) and, if one denotes by meas(dy,d5), meas(d3, d3)
and meas(d’:;f,dk) € [0, 7r[ the measures of the oriented angles (d¥,d5), (d5,d%) and (d5,d¥) in C*) one
has :

0(L1, La, L3) = Z meas(df, d5) + meas(d;, d}) + meas(df, df))
k=1

Proof. Set meas(Ly, L3) = [, ...,e">*"]. Observe first that L; intersects the complex line C*) = Cuy,
because ug € Li. Since (u1, ... ,u,) is a basis of L; formed of eigenvectors of 12, and since @15 and
13 have the same eigenspaces, there exists a permutation g € &,, such that, for all k& € {1,...,n},

©13(ug) = e¥9®uy, € Lz. Therefore, we have e’ uy, € Ly and e***uy € Ls, so that C*) also intersects
both Ly and Ls. But if u € C™*\{0} is contained in a Lagrangian subspace L of C" then L N Cu = Ru.
Indeed, if v € L N Cu then v = Au + pJu with A, € R, and since L is Lagrangian w(u,v) = 0. But
w(u,v) = Iw(u,u) + pw(u, Ju) = pg(u,u) with g(u,u) # 0, therefore v = Au € Ru. Therefore, since
p12(ug) = ey, € Lo, we have df = Ly N Cuy, = Ruy, and d2 = Ly N Cuy, = R(e'*uy) = e+ d¥, hence
meas(d¥,d5) = o € [0, 7[. Likewise, since e®s(yy, € Lz, we have d§ = e®®s»d¥, so that meas(d},d5) =
€4(k), hence, setting {x = m — g4y mod , meas(dy,d¥) = & € [0,7[. Setting wy, = e 9™ uy € Lg,
we have e®rwy, = et ("€a0)y, = +uy, € L. The (eig’c) therefore are the roots of the characteristic
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polynomial P(Ls, L) of the pair (L3, L1), hence [e??*%1, ... 24| = meas(L3, L) = [e"®,...,e7], and
since &,y € [0,7[, there exists a permutation g3 € &,, such that, for all k, { = 74, (k). Similarly,
setting vy, = e “*uy € Ly and ( = (€g(k) — @x) mod 7, we have ehy, = teatyy, € Ly, hence
[€261 ... e ] = meas(La, L3) = [e?P1, ..., e?Pn], and since (, Br € [0, 7], there exists go € &,, such
that, for all k, (v = By, ). Furthermore, since d’; = Ruvg and d’?f = Re® oy, = Rekyy, we have
meas(d2,d5) = ;. Hence :

Z meas(dy, dy) + meas(ds, d§) + meas(dt, dy)) = Zak + ZCk + Zék
k=1

k=1 k=1 k=1

= Dot Bum T Ve
k=1 k=1 k=1

= ) (ak+ B+
k=1

- 5(L17L2)L3)

O

Lemma 5.5.8. Let (L1, Lo, L) be an exceptional triple of Lagrangian subspaces of C". Define d¥,dk, d5
as in lemma 5.5.7 for k = 1,...,n. Let 7 be the inertia index of the Lagrangian triple (d¥,d5, d%) in the
complex line C*®). Then 1(Ly, Ly, L3) = S or Tk

Proof. Since, with the notations introduced in lemma 5.5.7, we have L1 = d1 &+ --®dL, Lo = d3&®- - Hd2
and Ly = d3@---@d2, and since C" = CM @ - - - @ C™ is the symplectic direct sum of the C™*), d¥, d5, d%
being Lagrangian in the symplectic space C*), we have, by definition of the index, 7(Ly, Lo, L3) =
Sk T(dY, d5,dE) = 300 T O

Proposition 5.5.9. Let (L1, Lo, L3) be a triple of Lagrangian subspaces of C™. Then there exists an
exceptional triple (Ly, Ly, Ly) and a symplectic map ¢ € Sp(n) such that L; = ¢(L;) for j =1,2,3. In
particular, by proposition 5.5.5, 6(L1, La, L3) = 6(LY, Lh, LY).

This means that each orbit O, of the diagonal action of the symplectic group Sp(n) on L(n) x L(n) x L(n)
contains at least one exceptional triple.

Proof of proposition 5.5.9. Set T = 7(L1, Lo, L3). We are now going to construct an exceptional triple
(LY, Ly, LY) such that 7(Ly, Lh, L5) = 7, and such that dim (L} N L, N LE) = dim (L3 N Ly N L3) and
dim (L; N L)) = dim(L; N L) for all j, k. By theorem 5.5.3, there will then exist a symplectic map
Y € Sp(n) such that ¢(L;) = L} for j = 1,2,3.

As earlier, set ng = dim (L1 NLsN Lg), Nk = dim (Lj n Lk) Recall that nis + nog + n31 < n + 2ng.
Let (ui, ... ,u,) be the standard basis of C™ over C and let L} be the Lagrangian subspace L] =
Ruy @ - - - & Ruy,.

for k € {1,...,n0}, set vy = wr = up
- for k€ {ng+1,...,n12}, set vp = ux, and wy, = e*Tuy

for k € {n1a+1,...,n12 + naz — ng}, set v = w, = €'z uy

for k € {n12 +nog —no +1,...,n12 + n23 + ng1 + 2no}, set wy, = ug and v, = €'% uy,

Since |7] < n+2ng— (n12 + neg +ns1) and 7 = n — (n12+nag +ns31) mod 2Z, 7 can be written as a sum

n

.- 3 -

k=ni2+naz+nz1—2no+1

of n 4 2ng — (n12 + neg + n31) summands 7, = £1. One then has :
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- for k such that 7, = —1, set vy, = e*Zuy, and wy = e*3uy,

- for k such that 71, = 1, set v = eFuy and wy = €' F uy,
Now set, for all k, d¥ = Ruy, d5 = Rui, and d5 = Rwy,. Then L) = di @& --- @ d} and we set
Ly=di® - -®dy and Ly =d. & --- @ d}. Since (v, ...,v,) and (wy,...,wy,) are unitary bases of C"

over C, Ly and Lj are Lagrangian. By construction, dim (Lj N L5 N L3) = ng and dim (L} N L},) = njp
for all j,k. For all k, set 7, = 7(d¥,d5,d5). For k € {1,...,n12 + naz + nz1 — 2ng} there are always
two non-distinct Lagrangians among the df, so that 7, = 0. For k € {n12 + naz + ng1 —2no +1,...,n},
we have by construction 7], = 73, with 7, defined as above. Since, for all k, there exist oy € [0, 7] and
e € [0, 7] such that e®*uy € L and e®xuy, € Lf, each uy is an eigenvector of both @15 and @13 and
since (u1, ...,uy) is a basis of L, these unitary maps have the same eigenspaces up to permutation, so
that (L}, L5, L%) is an exceptional triple. Therefore, by lemma 5.5.8 :

n

T(L/laL/%L/B) = ZTIQ = Z Te =T
k=1

k=ni2+n23+nz1—2no+1

This completes the proof, as indicated above. O
Incidentally, we have proved that O, is non-empty when d satisfies the conditions of proposition 5.5.3.

We now have all the material that we need to relate 6 to 7 and show that the inertia index can be
computed from the measures of the Lagrangian angles (L1, Lo), (Lo, Ls) and (Ls, L), that is, from the
eigenvalues of the unitary maps o, ooyr;, where o, is the Lagrangian involution associated to L;.

Proposition 5.5.10. Let (L1, Lo, L3) be a triple of Lagrangian subspaces of C*, and set nj, = dim (L;N
Lk), T = T(Ll, Lg, L3) and § = (S(Ll, Lg, L3) Then :

20
’7':371—? — (n12 + naz + na1)

In particular, when L; N Ly = {0} for all j,k, one has :

T=3n— —

T
Proof. By proposition 5.5.9, there exists a symplectic map ¥ € Sp(n) such that (¥(Lq1), ¥(Lsa), ¥(Ls))
is an exceptional triple. Since such a transformation leaves 7, § and the n; invariant, we may assume
that (L1, Lo, L3) is itself exceptional. Let us recall the notations meas(Lq, Ly) = [e2?1, ..., e®%"] and
meas(Lq, L3) = [, e®n] where 1 > a1 > ... > a, > 0and 7 > &1 > ... > &, > 0. Then,
since (L1, Lo, L3) is exceptional, there exists an orthonormal basis (u1, ..., u,) of L1 and a permutation
g € 6, such that (e"*uy,...,e"% u,) is an orthonormal basis of Ly and (eialug(l), .. .,eianug(n)) is an
orthonormal basis of Ls. By abandoning the condition 7 > ¢; > ... > &, > 0, we may suppose that
g = Id. Set d¥ = Ruy, d5 = e’ df, df = e***d¥, and 7, = 7(d¥,dk,d}) in the symplectic space Cuy,.
Set 8 = meas(d¥,ds) + meas(d, d) + meas(d}, df) and set, as in lemma 5.5.7, . = (e, — ax) mod 7
and ¢ = (7 — ¢1) mod T, so that & = ag + (¢ + &. Observe that 6 = d(d¥, d5, d%) in the symplectic
space Cuy. In particular, this implies that 6, = 0 mod 7. If df = d§ = d%, which happens ng times,
then 7, = 0 and 0 = 0. If either d¥ = d§ # d% or d§ = d§ # dF or d§ = d¥ # d, which happens
(n12 — ng) + (n2s — ng) + (n31 — ng) times, then 7, = 0 and 0 < 0 = ag + (x + & < 27 (since one of
these numbers is 0 and since all of them are < 7 and two of them are non-zero), but 6y = 0 mod 7 so
6 = m. If d} # d§ # df # dY, which happens n + 2ng — (n1a + nass + ng1) times, then either 7, = 1 and

0 = mor 7, = —1 and é,, = 27, so that 7, = 3 — % (see figure 5.7). To sum up :
number of occurences | ) | T
no 0 0
(n12 —ng) + (neg —no) + (ng1 —no) | o= 0
n+ 2ng — (n12 + na3 + n31) 0 = =1 3—%
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d2 d2
dg d3

a " (] ) 4

r=landé=r7 7=—1and § =27

Figure 5.7: Relation between § and 7 for exceptional triples of Lagrangians

Since (L1, L, L3) is an exceptional triple, we have, by proposition 5.5.7, § = >";'_, 0. Likewise, 7 =
> h_y Tk, SO that we have :

n+2ng—(ni2+n23+ns31)

T = Z (3— %)
k=1

n+2ng—(n12+n23+mn31)

>

k=1

= 3(n+2n9— (n12 + nog +ns31)) —

= 3(TL + 2ng — (nlg + nog + n31)) — ((5 — 7T((TL12 — no) + (n23 - no) + (TL31 — no)))

Sl 3w

2
3n — P (n12 + na3 + n31)
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Chapter 6

Decomposable representations of
7T1(52\{81, ...,5}) as fixed-point set
of an involution

Contents
6.1 The infinitesimal picture and the momentum map approach ... ... .. 100
6.2 The centered Lagrangian problem . .. ... .................. 100
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blem and the unitary problem. . . . . . ... ... ... .. .00 0000, 103

6.5 Seeing the Lagrangian problem as a real version of the unitary problem . 106

6.6 The set of ocp-decomposable representations . . ... ... ... ....... 110

In this chapter, we obtain a characterization of decomposable representations of the fundamental
group ™ = m1(S%\{s1, ... ,s}) in terms of the fixed-point set of an involution 3 defined on the quasi-
Hamiltonian space C; X --- x C;. More precisely, we show that the og-decomposable representations
(u1, ...,u;) € C1 X -+ x C; introduced in definition 5.2.1 are exactly the elements of the fixed-point set
of an involution . This enables us to characterize all decomposable representations in terms of 3 : they
are the elements u = (uq, ... ,u;) € Home(w, U) satisfying 3(u) ~ u as representations of 7.

To understand why an involution comes into play here, we use the geometric intuition on Lagrangian
involutions acquired in chapter 5. Indeed, by continuing to use the Lie group U = U(n) as a prototype,
we formulate an infinitesimal version of the problem of knowing whether or not a given representation is
decomposable (or in this case, Lagrangian, see definition 5.1.5). This will give us insight on why decom-
posable representations should be characterized using involutions, and even on why such an involution
should induce an anti-symplectic involution on the moduli space M¢ = Home(mw, U)/U, as we shall see
eventually in chapters 7 and 9.

The first five sections explain how these results (in particular the involution ) were obtained, but
may be skipped if one wants to go straight to the characterization results of propositions 6.6.2 and 6.6.5,
whose proofs may be read without knowledge of the previous sections.

Despite its relative short length, this chapter is really the core of this thesis work, around which
everything else revolves, the key step being to find the involution 5. The results obtained here and in
chapter 9 were accepted for publication in [Sch06].

99



CHAPTER 6 6.2

6.1 The infinitesimal picture and the momentum map approach

Let us recall our problem : given [ unitary matrices u1, ... ,u; € U(n) satisfying u; € C; and vy ... u; =1,
do there exist [ Lagrangian subspaces Ly, ... , L; of C" such that 0011 = u; (where o; is the Lagrangian
involution associated with L; and 0;41 = 01) ? As was shown in proposition 5.3.10, the condition
0joj+1 € Cj, which lies on the spectrum of the unitary map o;0;41, can be interpreted geometrically as
the measure of an angle between Lagrangian subspaces. The Lagrangian problem above can therefore be
thought of as a configuration problem in the Lagrangian Grassmannian £(n) of C" : given eigenvalues
exp(iA;), A; € R”, do there exist | Lagrangian subspaces L1, ... ,L; such that measure(L;, Lj11) =
exp(iA;) 7 Under this geometrical form, the Lagrangian problem is slightly more general than our original
representation theory problem. It is very much linked to the unitary problem studied for instance in
[JW92, Gal97, Bis98, AW98, KM99, Bis99, Bel01], which is the following : given A; € R", do there

exist [ unitary matrices uy, ... ,u; satisfying Specu; = exp(i);) and u;...u; =1 ? In fact, a solution
(L1, ..., L;) to the Lagrangian problem (second version) provides a solution u; = 00,41 to the unitary
problem.

The fact that the unitary problem admits a symplectic description (see for instance [AW9S8]) was our
first motivation to study the Lagrangian problem from a symplectic point of view. The second motivation
is derived from the above-given geometrical formulation of the problem. To better understand this, let us
try and formulate an infinitesimal version of the Lagrangian problem. Take three Lagrangian subspaces
Ly, Lo, L3 close enough so that we can think of these points in £(n) as tangent vectors to £(n) at some
point Ly representing the center of mass of Ly, Ly, L3. Tangent vectors to the Lagrangian Grassmannian
are identified with real symmetric matrices Sp, S2, S3 and the center of mass condition then turns into
S1+S52+ 53 = 0. It seems reasonable in this context to translate the angle condition measure(L;, Lj11) =
exp(iA;) (that is, Specojoj;1 = exp(i);)) into the spectral condition SpecS; = A; € R™. We then
recognize a real version (replacing complex Hermitian matrices with real symmetric ones) of a famous
problem in mathematics (see [Ful98] for a review of this problem and those related to it) : given A; € R,
do there exist Hermitian matrices Hy, H2, Hz such that Spec H; = A\; and Hi+Hy+Hs = 07 In fact, these
last two problems are equivalent (meaning that, for given (A;);, one of them has a solution if and only if
the other one does) and this can be shown in a purely symplectic framework (see [AMWO1] and section
6.5) using momentum maps to translate the condition Hy + Hy + Hs = 0 into (Hy, He, H3) € p=1({0}).
Therefrom, it seems promising to try to think of the Lagrangian problem as a real version, in a sense that
will be made precise in section 6.5, of the unitary problem (since a solution to the Lagrangian problem
provides an obvious solution to the unitary problem). We shall come back to the infinitesimal picture
later on in this work (see section 9.2), and formalize further the analogy between the Lagrangian problem
and the symmetric problem (that is, the real version of the Hermitian problem above).

6.2 The centered Lagrangian problem

As a consequence of the above infinitesimal picture, we replace our Lagrangian problem with a centered
problem, meaning that instead of measuring the angles (L;, L;11), we measure the angles (Lo, L;) where
Ly is the horizontal Lagrangian Ly = R™ C C" (playing the role of an origin in £(n)). Recall from
chapter 5 (proposition 5.3.10) that this angle is measured by the spectrum of ogo; = U§Uj, where u;
is any unitary map sending L; to Lo (see proposition 5.1.3 for this last statement). We then ask the
following question, which we will call the centered Lagrangian problem :

given [ conjugacy classes Cy, ... ,C; C U(n), does there exist ! unitary matrices uq, ... ,u; such
that u?uj ECJ' and uy...u; =17

The main observation here is then to see that the condition Specufu = exp(i)), for some A € R™ (that
is, u'u lies in some fixed conjugacy class of U(n)) means that u belongs to a fixed orbit of the action of
O(n) x O(n) on U(n) given by (k1, k2).u = kyuk; ', as is shown by the following result :
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6.3 CHAPTER 6

Lemma 6.2.1. For any u,v € U(n), Speculu = Spec vtv if and only if there exists (ki1, k) € O(n)xO(n)
such that v = kyuky *.

Proof. Take u,v € U(n) and suppose that Specuu = Specv'v and set A, := u'u and A, = v'v. Then,
A, and A, are symmetric unitary matrices with the same spectrum so that, by proposition 5.1.3 (and
the fact that the entries of a diagonal matrix can be permuted by conjugating by an appropriate SO(n)
element, see lemma 3.2.4), there exist orthogonal matrices k1, ks € O(n) such that klAukl_l = kgAvkz_l
is a diagonal unitary matrix. Now denote by v/A, (resp. v/A,) any symmetric unitary matrix satisfying
(VAL)? = A, (resp. (VA,)? = A,). Such matrices always exist since kA, k! is diagonal and is
therefore the exponential of ¢ times some real symmetric matrix : for instance k1 A, ky 1= exp(iS) where
S = diag(\1, -..,)\,) is a real diagonal matrix, and we set /A, := ki " exp(i5)k1, which is unitary and
symmetric. Since k1 Akt = kaAyky L, we then have VA, = kv/Ay k™! for k := k; 'ky € O(n). Set now
ky == u(v/Ay,) 7! and ky, := u(v/A,)"!. Then it is immediate that kfk, = 1 and k! k, = 1, and we then

have :
v =koV/Ay = kAT = (kokk, Do/ Ak™ = (kkk D) uw k71
—_——
€0(n) €0(n)
The converse implication is obvious. O

Remark 6.2.2 (Another proof of lemma 6.2.1, using Lagrangian subspaces). The proof of
lemma 6.2.1 is directly modelled on the proof of proposition 3.2.7. However, we can take advantage of
the fact that we are working with the unitary group to write a proof which is different in spirit. To
prove the non-obvious implication, set, as in proposition 5.1.3, L = u=(Lg) and L' = v~!(Lg). Then
one has u'u = op,0r and v'v = o, 0. Assuming that Specu'u = Specviv, proposition 5.3.10 then
shows that there exists ¢ € U(n) such that (Lo) = Lo and (L) = L’. Since ¢(Lg) = Lo, one actually
has ¢ € Stab(Lg) = O(n) and we set kg := 1. Then Lo = v(L') = vka(L) = vkou~!(Ly), and therefore
k1 == vkpu~! € Stab(Lo) = O(n), hence v = kyjuky ' with ki, ks € O(n).

Since we think of the above problem as a real version of some complex problem, we now wish to find this
complex version, which is done by abstracting a bit our situation to put it in the appropriate framework,
which turns out to be adopting a Lie-theoretic viewpoint.

6.3 Complexification of the centered Lagrangian problem

Let us formulate the centered Lagrangian problem in greater generality. For everything regarding the
theory of Lie groups and symmetric spaces, especially regarding real forms and duality, we refer to [Hel01]
(see also [Loo69b] and chapter 3).

We start with a real Lie group H. Let G = HC be its complexification and let 7 be the Cartan
involution on G associated to H, that is to say, the involutive automorphism of G such that Fiz(7) = H.
Let U be a compact connected real form of G such that the associated Cartan involution 6 satisfies
Ot = 76. Such a compact group always exists and is stable under 7. The group H is then stable under 6
and U and H are said to be dual to each other (when H is non-compact, they indeed define dual symmetric
spaces U/(UNH) and H/(UNH)). Moreover, because of the fact that 7 is the Cartan involution associated
to the non-compact dual H of U, the compact connected group U contains a maximal torus 7" such that
7(t) =t L forall t € T ((U,7) is said to be of maximal rank, see proposition 3.2.3). Let K := U N H.
Then K = Fiz(r|ly) C U and K = Fiz(f|g) C H. We consider the action of K x K on U given by
(k1,k2)u = klukgl. Notice that if H is compact to start with, then K = U = H and the above action
defines congruence in U. As for us though, we are interested in the case where H is non-compact. For
H = GIl(n,R), we have U = U(n) and K = O(n), and we are then led to asking the following question,
which is the abstract formulation of our centered Lagrangian problem: given [ orbits Dy, ... ,D; of the
action of K x K on U, do there exist w1, ... ,u; € U such that u; € Dj and uy ...u; = 17 This is a typical
Lie theory problem (see for instance [ELO05]), the goal being to find necessary and sufficient conditions
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on the D; for this question to admit a positive answer. Observe that, as a generalization of lemma 6.2.1,
these orbits are in one-to-one correspondence with the conjugacy classes in U of elements of the form
77 (u)u, where u is any element in a given orbit D and 77 (u) = 7(u~!). Indeed, this was recalled in
proposition 3.2.7 : given two elements u,v € U, there exists (k1,k2) € K x K such that v = kyuky ' if
and only if 77 (v)v and 77 (u)u lie in a same conjugacy class of U.

Now, to find the complex version of our problem, we apply the same construction to the complex Lie
group G = H® viewed as a real Lie group. Then G® = G x G is the complexification of G and
U=UxUC GxG = G is a compact real form of G®. Its non-compact dual (which needs to be
a subgroup of GC = G x @) is then H = {(g,6(g)) : g € G} =~ G where 0 is the Cartan involution
associated to U. The Cartan involution associated to U is 8 : (g1,¢2) € G — (6(g1),0(g2)) and the
Cartan involution associated to H is 7 : (g1,92) — (0(g2),0(g1)). Indeed, Fiz(d) = U, Fiz(7) = H and
67 = 70. We then define :

K::ﬁﬁ
,0(9)) 1 0(g.0 (DZ(%W@”

= {
{%99 )—g}
{(
(

(u,u) :uEU}

We will also use the notation Ua := {(u,u) : u € U} instead of K. We now consider the action of
KxK= UAxUAonU U x U defined by :

((ul,ul), (uQ,uQ)).(u, v) = (uluugl, ulvugl)

Our problem then states : given [ orbits 51, .. ,5; of the above action, do there exist { pairs (uy,v1), ...,
(u,v) € U = U x U such that (uj,v;) € D; and (ug,v1). ... .(w,v) = 1, that is, u; ... = 1 and
v1...v =17 We will call this problem the complezification of the centered Lagrangian problem.

Before passing on to the next section, we wish to point out that if we consider the action of K x K
not on U but rather on its dual H, then the orbits of this action are characterized by the singular
values (Singh := Spec (0~ (h)h) where h € H and 0= (h) = 0(h™!)) of any of their elements. As a
consequence, our (centered) Lagrangian problem appears as a compact version of the (real) Thompson
problem, replacing 6 with 7 in the latter to formulate the former (see [AMWO1] and [ELO05] for a proof
of the Thompson conjecture in the real case). To understand this better, we consider the simple original
case where H = Gl(n,R). Then U = U(n) and K = O(n). The O(n) x O(n)-orbits in Gl(n,R) are the
sets of matrices with fixed singular values :

O(n) x O(n).hg = {he€Gl(n,R) | Sing (h) = Sing (ho)}
{h € Gi(n,R) | Spec (h'h) = Spec (hbho)}

Observe that hfhg is a positive definite real symmetric matrix, so that it is conjugate to a diagonal matrix
d = exp(A) with A € R™. The (real) Thompson problem then asks : given A1, ..., N\ € R™  do there
exist [ invertible matrices hy, ..., € Gl(n,R) such that Spec (hjh;) = exp();) and hi...hy =17 Our
centered Lagrangian problem, as defined in section 6.2, asked : given A1, ..., \; € R", do there exist [
invertible matrices u1, ...,u; € U(n) such that Spec (ufu;) = exp(i);) and u;...u; = 1 7 We see here
that these two questions are formally the same, replacing the non-compact group H = Gl(n,R) by its
compact dual U = U(n), which is why we think of our problem as a compact version of the Thompson
problem. We shall come back upon this analogy in propositions 6.4.3 and 6.5.7. Further, if we consider
K x K-orbits in H instead of in U, we obtain :

KxK. (9,0(9)) = {(u1,u1)(g.0(9)) (u;l,ugl) D up,up €U}
{ulgug_1 D up,ug € U}

12
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since O(u;) = u;. And once again these orbits are characterized by the singular values of g, Sing (g) :=

Spec (6~ (g)g). In other words, the map g € H — 6~ (g)g sends a K x K-orbit in H onto a conjugacy
class in G. If H = Gl(n,R), then G = Gi(n,C), Sing (g) := Spec (¢*¢g), and we have :

g = u1gouy * for some (u,uz) € U(n) x U(n) if and only if Spec (¢*g) = Spec (g590)

As ghgo is a positive definite Hermitian matrix, it is conjugate to some diagonal matrix exp(A) with
A € R™. The Thompson problem then asks : given Aq, ..., \; € R™, do there exist [ invertible matrices
g1, ---,q1 € Gl(n,C) such that Spec(gg;) = exp(A;) and g1...¢1 = 1 7 We then have a Thompson
problem for both Gi(n,C) and Gi(n,R), the latter being in fact a real version of the former in a sense
that will be made precise in section 6.5. For an explanation of this fact and further reference on the
Thompson problem and the Thompson conjecture, we refer to [Kly00], [AMWO1] and [EL05], and we
recall the following result, first proved in [Kly00] and then proved using symplectic geometry in [AMWO1] :

Proposition 6.3.1. [Kly00, AMWO01] Consider A1, ...,N\; € R™. Then the following statements are
equivalent :

(i) There exist | invertible complex matrices g1, ..., g € Gl(n,C) such that :
Spec (g;g;) = exp(A;) and g1...q0=1
(ii) There exist | complex Hermitian matrices Hy, ... H; € H(n) such that :

Spech:/\j and Hy+---+H; =0

(iii) There exist  invertible real matrices hy, ..., h; € Gl(n,R) such that :

Spec (hz-hj) =exp(};) and hi...hy=1

(iv) There exist | real symmetric matrices Si, ...S;, € S(n) such that :

SpecS;=XA; and Si+---+5=0

The equivalence of (i) and (ii) is the Thompson conjecture, and the equivalence of (iii) and (iv) is the real
Thompson conjecture. We refer to [AMWO1] to see how the equivalence of (ii) and (iv) relies on a real
convexity result on Lie-algebra-valued momentum maps. Statements (iii) and (iv) are real versions of
statements (i) and (ii) respectively, and we refer to section 6.5 for further comments on that terminology.
Observe in particular that statement (iv) corresponds to the infinitesimal version of our Lagrangian
problem (see section 6.1, and subsection 9.2). Finally, we refer to [Kly98] for necessary and sufficient
conditions on the A; for problem (ii) (and therefore any of the other three) to have a solution. These
conditions are linear inequalities satisfied by the A;.

We now wish to relate the complexification of our centered Lagrangian problem to another know
problem.

6.4 Equivalence between the complexification of the centered
Lagrangian problem and the unitary problem
From now on, the initial data is a compact connected Lie group U. For such a group, we can formulate :

- the centered Lagrangian problem (concerning K X K-orbits in U, where K = U N H with H the
non-compact dual of U).

- a complex version of this (concerning Ua X Ua-orbits in U x U).
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- the unitary problem (concerning conjugacy classes in U).

We now claim that these last two problems are in fact equivalent, meaning that the first one has a solution
if and only if the second one does. To show that this is indeed the case, the main observation to make is
the following one :

Lemma 6.4.1. The map

n: UxU — U
1

(u,v) — u v
sends a Ua x Un-orbit D in U x U onto a conjugacy class C in U, and if n(u/,v') is conjugate to n(u,v)
in U then (u',v") and (u,v) lie in a same Upn X Un-orbit D in U x U.
Proof. Tf (u,v) = (uruouy ', uivouy *) then u='v = ug(ug 'vo)uy ' so that n(D) C C where C is a well-
defined conjugacy class in U. Further, let (u,v) € D and take any w € C. Then there exists us € U such
that w = ugu~'vuy ' so that :
1

L ugu L), (uQ,uQ)) . (u,v)
——

ceUaxUa €D

(1,w) = (1, upu"tvuy ') = ((ugu™

hence (1,w) € D, therefore w = 7(1,w) € n(D). Likewise, if n(u/,v') = uon(u, v)uy* for some uy € U,
then :

(u', ) oo (1, () ') = (Liuo(u w)ug')  ~  (u,0)

O

We now have the following result, which says that the complexification of the centered Lagrangian
problem has a solution if and only if the unitary problem has a solution (that is, these two problems are
equivalent) :

Proposition 6.4.2. Let 251, ,251 be | orbits of Un X Ua in U x U and let Cy, ... ,C;,_C U be the
corresponding conjugacy classes : C; = n(D;). Then there exists ((u1,v1), ..., (u,v)) € Dy X -+ x D
such that uy...up =1 and wvy...v; = 1 if and only if there exists (w, ... ,w;) € C1 X -+ x C; such
that wy... W = 1.

Proof. Setting (uj,v;) := (1,w;) for every j, we see that the second condition implies the first one.
Conversely, assume that ((u1,v1), ..., (u;,v)) € D1 X -+- X Dy satisty uy...u; = 1 and vy ...v9 = 1.
Then (uy...u;) tvy...v =1, hence ul_l . u;l(uflvl)vg ...y =1, with ul_lvl € C;. Hence :

-1 —1/, 1 —1 —1/, —1 -1
w Uy (uy v )ug g uy e ug (U v2)ug .y . (uy ) =1
eCy €Ca eCy
Setting w; = ul_l .. .u;l(uflvl)uQ LU, W = ul_l .. .ugl(uz_lvg)u;; cooug, ..., and wy = ul_lvl then
gives a solution (wq, ... ,w;) to the unitary problem. O

In analogy with a result on double cosets of U(n) in Gl(n,C) (which are characterized by the singular
values Sing g = Spec (0~ (g)g) of any of their elements) and dressing orbits of U(n) in (U(n))* = {b €
Gl(n,C) | bis upper triangular and diag(b) € (R*T)"} appearing in [AMWO1], the above proposition can
be formulated more precisely in the following way. Consider the action of U' on Dy x - x Dy given by

(‘plv R a‘pl)'((u’lvvl)v ce ,(U/l,’Ul)) = (gpl'(u’lavl)'(pgl 7‘)02'(u257]2)'(p3_17 cee (pl'(ulvvl)'(pl_l)
~—— —

=(prurpy p1v105 ")
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and the diagonal action of U on C; x --- X C; : @.(w1, ... ,w;) = (pwiep™ 1, ..., pwye~t). These actions
respectively preserve the relations uy...u; = v1...v; = 1 and wy...w; = 1. We may then define the
orbit spaces :

Mﬁzz{((uj,vj))jeﬁl><~-~><]51 |u1...ul:v1...vl:1}/Ul

and :

MCZ{(wj)jeclx---XCl|’w1...wl=1}/U
And we then have :

Proposition 6.4.3. The map

n® Dix-xD — Cix-xC
((ul,vl), ,(ul,vl)) — (u;l ...u;l(uflvl)uQ...ul, ey ufl(ulillvl_l)ul, uflvl)

induces a homeomorphism Mgz ~ Mc.

Proof. First, observe that if uy...u; =v1...vy =1 and w; = u; . ]+1( 1UJ)UJ+1 g, then wy. . .w; =
(uy...w) 1. ..o = 1. Second, the map n®) sends a U'-orbit in Dy x - - - x D into an orbit of the diagonal
actionof U onCy X -+ x C; :

ﬂ(l)((%, o) ((ur, o), -~7(Uz,vz))) = o1V ((wr, 1), ..., (w,v))

so that we indeed have a map Mz — Mc, that we shall still denote by n*). Take now ((u;,v;))1<;<; and
((uj,vj))1<1<l in D1 X - X Dl such that uy...u; = v1...vp = 1 and uj...u} = v{...v; = 1, and suppose
that there exists ¢ € U such that :

' ((uf,05)) = @@ ((ug.05))
Then for all j € {1, ...1}:
(up) 7" () T (W) T ) W = et g (g o ug ) (6.1)
Hence, using (6.1), we have for all j :
(uj,vf) = ((uﬂ’ ), (1, 1)).(1, (u;)ilvé)
= ((u;, J) (1, 1)) ( (u;-_H. . .uf(pul_l. . .uj_jl)(uj_lvj)(u;_,_l. . .uf(pul_l. . .uj_jl)fl)
= (((u’ ) (ug. )™t ), (W) e(ujen. )™t .)).(uj,vj)

So that, if we set @; := (uj...uj)p(u;. . .u)~", we have :

(cpl, ...,(pl).((ul,vl), ...,(ul,vl)) = ((u’l,vll), ,(uf,vl'))

which shows that the induced map n® : Mgz — Me is injective. Let us now show that it is surjective :

take (wy, ...,w;) € C1 X --- x C; satisfying w;...w; = 1, and set u; := 1 and v; := w;. Then lemma
6.4.1 shows that (u;,v;) € D; and we have indeed u;...u; = vy...v; = 1 and 0 ((uj,v;)) = (w1, ..., w),
which concludes the proof. O

We point out the fact that this result reinforces the analogy between our problem and the Thompson
problem. We now wish to explain in what precise sense the Lagrangian problem is a real version of these
two equivalent problems.
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6.5 Seeing the Lagrangian problem as a real version of the uni-
tary problem

The important idea of thinking of possible solutions to a real problem as the fixed point set of an
involution defined on the set of possible solutions to a corresponding complex problem is well-established
in symplectic geometry and is due to Michael Atiyah and Alan Weinstein (see [Ati82, Dui83] and [LR91]).
In fact, the idea is that the set of possible solutions to a complex problem carries a symplectic structure and
that the corresponding real problem is formulated for elements of the fixed point set of an anti-symplectic
involution defined on this symplectic manifold. Examples of results obtained using this idea include the
(linear and non-linear) real Kostant convexity theorems (see [Dui83, LR91]) and the real Thompson
conjecture (see [AMWO1, ELO05]). Although we will have to replace symplectic manifolds with quasi-
Hamiltonian spaces for technical considerations, the above idea plays a key role in our approach. Keeping
this in mind, we will eventually define an involution 3% on the quasi-Hamiltonian space C1 X -+ x (.
But, to explain how this involution is obtained, we will first work on the product Dy x --- x D; of [
Ua X Up-orbitsin U x U. N

The key here is to try and see the K x K-orbit of w € U as a subset of some Ua x Ua-orbit D C U x U.
This is done by observing the following fact :

Lemma 6.5.1. The condition (w € D) is equivalent to (1~ (w)w € C), where C is defined as the conjugacy
class of 7~ (wo)wo for any wy € D, which in turn is equivalent to (7(w),w) € D, where D is the Un X Ua-
orbit of (T(w),w).

Proof. The first equivalence is proposition 3.2.7. Then we know from lemma 6.4.1 that C = (D) where
D is the Ua x Ua-orbit of (1,77 (w)w) ~ (7(w),w), which gives the second equivalence. O

In order to obtain elements of the form (7(w),w) as fixed points of an involution, we set :

a: UxU — UxU
(u,0) +— (7(v),7(u))

Then o? = Id and Fiz(a) = {(7(v),v) | v € U} ~ U. In particular, Fiz(a) is always non-empty.
Moreover, we have :

Lemma 6.5.2. 04(75) = 5, so that o defines an involution on 75, whose fized point set is isomorphic to
D and therefore non-empty.

Proof. 1f (u,v) € D, we have n(a(u,v)) = 7~ (v)7(u) = 7(v"'u) = 7~ (v~ ). But if w € U, then 7~ (w)
is conjugate to w. Indeed, there exists a maximal torus of U which is pointwise fixed by 77, and w is
conjugate to an element in such a torus : w = pte~! with 77(¢) = t so that 7~ (w) = 7(p)tr(p~!) =
7(¢)p twpT(p~1) (observe that when U = U(n) then 7~ (w) = w' and all of this becomes clear). Thus,

n(a(u,v)) = 7(u~1v) and u=lv = n(u,v) lie in the same conjugacy class C = n(D), so, by lemma 6.4.1,
we have indeed o(u,v) € D. Further, by lemma 6.5.1 :

Fiz(alg) = { (r(v),v)) | (~(v)0) € ¢}
hence Fiz(alz) ~ D # 0. O
On the product 151 X oee X 251 of I Upn x Ua-orbits in U x U, we can therefore define the involution :
a® Dix---xD —s Dyx---xD

((u1,v1), - (w,v)) — ((T(Ul)aT(Ul))a 7(T(vl)77(ul)))

Observe that its fixed point set satisfies Fiz(a)) ~ Dy x --- x D; and is therefore non-empty. We then
have the following result, which says that the centered Lagrangian problem has a solution if and only if
there exists a solution of the complexified problem which is fixed by a® :
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Proposition 6.5.3. Let Dy, ... ,D; be | K x K-orbits in U. For every j € {1,...,1}, let C; be the
conjugacy class of T~ (w)w where w is any element in D;, and let D; be the corresponding Ua x Una-orbit

in U x U (i.e., such that n(D;) = C;, where n(u,v) = u~'v). Then there exists
(w1, ... ,w;) €Dy X -+- XDy
such that wy ... w; = 1 if and only there exists
((ut,01)s -, (ug,v)) €Dy x -+ x Dy
such that
...y =1, vi...op=1 and u; =7(vj)
forall j € {1, ... 1}, that is, ((u1,v1), - .., (u,v)) € Fiz(a®).
Proof. For a given (w1, ... ,w) € D1 X -+ x Dy [ wy...wy = 1, set (u;,v;) := (7(w;),w;). By lemma
6.4.1, (uj, v~j) then belongs to D; and we have indeed w1 ...w; = v ...v; = 1. Conversely, for ((uj,v;)); €

Dy x---XDyur...uy =wv1...v =1 and such that u; = 7(v;) for all j, set w; := v;. Then wy ... w; =1
and 77 (w;)w; = u;lvj € Cj, so that, by proposition 3.2.7, w; € D;. O

This type of result is exactly why some given problem (A) is called a real version of another problem (B) :
if Sc denotes the set of solutions to problem (B) (we assume that S¢ # () and Sg the set of solutions to
problem (A), then there exists an involution o on some space M O Sc¢, whose fixed point set is non-empty,
such that Sg # 0 if and only if S¢ N Fiz(a) # (. See for instance [Fot] for a more systematic treatment
of these questions.

The question then is : what is the real version of the unitary problem ? Given what we have done so
far, we see that giving an answer to this question amounts to defining an involution BW on Cy x -+ x
such that g® on(l) = n(l) oa®, where n(l) : Dy x---xDy — Cy x---x(C; is defined as in proposition 6.4.3,
so that n() (Fiz(a®)) ¢ Fiz(8W), which in particular implies that Fiz(3") # (. The only possibility
is then to set, for any (wq, ... ,w;) €Cy X --- X C; :

ﬂ(l)(wl, cowp) = (T_(wl) v (wo) T (wr)T(wa) T (wy)y ey T ()T (wi—r)T(wy), T (wl))
The fact that this map 3 is well-defined is a consequence of the following lemma :
Lemma 6.5.4. The involution 7~ : U — U sends a conjugacy class C C U into itself.

Proof. This follows from the fact that there exists a maximal torus T of U which is pointwise fixed by
7~ (see proposition 3.2.3). Indeed, if we take u € C, then u = vdv~! for some v € U and some d € T.
Then 7~ (u) = 7(v)7~ (d)7~ (v) = 7(v)dT~ (v) is conjugate to d and therefore to u. O

We now set :

Definition 6.5.5 (Definition of the involution ). Let Cy, ...,(; denote | conjugacy classes of U.
Let then [ denote the map :

ﬁ: C1><---><Cl — Cl><---><Cl

(ug, ... ,w) +— (7" (wp)...7  (u2)T™ (u1)T(ua) ... 7(ur), -y 7 (w)7 (wp—1)7(wy), 7~ (ul))
Proposition 6.5.6. (3 is a well-defined involution on the quasi-Hamiltonian space C1 X --- x C;, and
satisfies Fixz(B) # 0. Additionally, 3 is compatible with the diagonal action of U on C; x -+ X C; and
with the momentum map p : (u1, ...,u) € Cy X -+ X C — uy...u; € U in the sense that :

ﬁ(u.(ul, ...,ul)) =7(u).B(ur, ...,u) and pof=7"opu
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Proof. Lemma 6.5.4 shows that 3 is well-defined. Let us compute 3o B(uy, ..., u;). The j** element in
B(uy, ... ) is:
T (). 7 (wip)T (us)T(Wjg1)- - T (W)

So the j*" element of B o B(u1, ..., u;) is :

(77 (w). 7 (7 (W) T (uyg2) T (wia1) T (ujg2). (W)
T~ (’7’7 (w) .7 (wiq1)T (ui)7T(wjg1)- - .T(Ul))
X T(T_(ul). T (W) T (wyp1) T (Uj42). .T(ul)). . .7'(7'_ (ul))

—1 -1
= up. .Uy .. .uj+2uj+1uj+2. U

X

—1
X uy .- .uj+1UjUj+1. LU
-1 -1, -1 -1
XUy U U Uy Uy

so that 8o 8 = Id. Now, since there exists a maximal torus of T which is fixed pointwise by 77, each
conjugacy class C; contains an element d; € Fiz(7~) NT. We then have :

B(dy, ....d)) = (dy...dadvdy .. di Y, o didy—ady t dy) = (dy, -, dy)

as T is abelian. Hence Fiz(3) # (. Compatibility with the action of U and the momentum map p is a
simple verification, along the same lines (see section 7.2). O

We then have the following result (proposition 6.5.7), along the lines of proposition 6.4.3. As earlier, we
see that the group K acts on Fix(a(l)) and preserves the relations u; ...u; = vy ...v; = 1. Likewise, K
acts diagonally on Fiiz(3(1)), preserving the relation w; ...w; = 1. We may therefore define :

M3 = {((uj,vj))j €Dy x--xDy|up...uy=vy...0p =1 and ((uj,vj))j € Fix(a(l))}/Kl

and
MG ={(w;); €C1 %+ xCilwi...w =1and (w;); € Fix(ﬁ(l))}/K

We then have :

Proposition 6.5.7. The map n(l) : 751 X oo X 51 — Cy X - x Cy induces a homeomorphism ./\/l% ~ ./\/lé3 .

Proof. Since nV (Fiz(a®)) c Fiz(8®), the map n) induces a map Mg — MQ | that we still denote by

n). Take now ((u;,v;)); and ((u},v})) in Fiz(a®) (in particular u; = 7(v;) and v = 7(v})) satisfying
ui...up =vi...0 =1 and uf...u; = v]...v] =1, and suppose that there exists k € K such that :

0O (7)) = k@ ((uj,05))
Then for all j € {1, ...,1} :
7 (0). 7 (W) (7T (V) (W) () = k(T (o) (0i40) (77 (0)0) T(0j50) . o (0)) R
that is :
(ol kT (0 ) = (o )R (0. 00T (6.2)

And we have, as in the proof of proposition 6.4.3 :

((r(@)v)) = (21, - 00)- (7). 05)
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with ¢; = 7(v}.. .v))kT™ (vj...v1), so that for all j <1 :

T((Pj) - T(T(U;-. . .’Ul/)kT_ (Uj. . .Ul))
= T(U;T(U§+1- )kt (V41 .vl)) (using (6.2))
= 7(v))T(pj41)7 (v5)

Additionally :
o) = T(r(WDkT (w))

I
\]

|
3
I~
~—
3
\‘\
—~
=
~
&.
=}
o
@
3
—~
o~
~
Il
o~

so by induction (using (6.2) again), one has 7(¢p;) = ¢; for all j, which shows that (o1, ...,¢;) € K/,
thus that the induced map 7 : M% — /\/lg is injective.
Let us now show that it is surjective. Consider (wy, ...,w;) € C1 X -+ x C; such that wy...w; = 1 and
B(wi, ...,w;) = (w1, ...,w;). Then in particular 7~ (w;) = w;. As Fiz(r7) is connected, w; = 7~ (v;)y;
for some v; € U, and lemma 6.5.1 shows that (7(v;),v;) € D;. Further, since (w;); € Fiz(BWV), we also
have :
7 (w7 (wi—1)7(Wy) = wy—1
that is :
T (v)uT” (wl_l)vflr(vl) =w;_1
hence :
T (T(U[)wl,ﬂ'* (’Ul)) = T(’Ul)wl,ﬂ'i (Ul)
so that 7(v)wi—177 (v;) = 77 (vi—1)v;—1 for some v;—1 € U, and as earlier (7(v;—1,v;—1)) € D;_4. Con-
tinuing like this, we obtain for all j € {2, ...,1} :

T~ (vj)v; = T(Ujg1.. )W T (Vjg1...0r) (6.3)

In particular, (7(vj),v;) € ﬁj by lemma 6.5.1. We then set v1 := (v2...v;)"!. Then :

7 (vg...o)T (V)1 T(va. . v) = T (va...v)T(va. .0 (Ve . v) T T (V. . )
= (’7’7(’[}2. . va. . .vl)fl
= (wg...aw)”" (using (6.3))
Thus :
T (va... o)1 (v1)17(V2. . U;) = W (6.4)

and 7~ (v1)v is conjugate to wy € Ci, so that (7(v1),v1) € Dy by lemma 6.5.1. Further, relations (6.3)
and (6.4) show that we have, for all j :
T~ (Vjg1. . 0)T (V)0 T(Vj41. . .0) = wj
hence :
N ((7(v3),05)5) = (wn, - w)
Since (7(v;),v;); € Fiz(a® by definition of o), we have have shown that the map n(®) : ME — Mg is

indeed surjective. O

Again, this is an analogue of a result in [AMWO1], which justifies that we may consider our Lagrangian
problem a compact version of the Thompson problem. We may now move on the main results of this
chapter.
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6.6 The set of op-decomposable representations

Let Cq, ... ,C; be I conjugacy classes in U such that there exist (u1, ... ,u;) € C1 X -+ x C; satisfying
uy ... u; = 1. We denote by p the map

pw: Cix--xC — U
(U1, ... ,u) — up...1y

Recall that a representation (ug, ..., u;) of m1(S*\{s1, ..., s;}) is said to be decomposable if there exist
wi, ... w; € Fiz(r™) such that u; = ijjjrll (see definition 5.2.1). It is said to be og-decomposable if
it is decomposable with w; = 1. Also recall that two representations (uq, ... ,w;) and (v, ... ,v;) of
71 (S*\{s1, ... ,s}) are called equivalent if there exists an element ¢ € U such that u;o~! = v; for
all j € {1, ...,l}. Recall finally that Fiz(77) is assumed to be connected (see remark 5.2.3). We then
make the following observation :

Lemma 6.6.1. A representation (u1, ...,u;) of m1(S?\{s1, ... ,s1}) is decomposable if and only if it is
equivalent to a ogg-decomposable representation.

Proof. Assume first that (uq, ..., u;) is decomposable. Then there exist wy, ...,w; € Fiz(r~) such that

Uy = wlwgl, IR TIES wlwfl. Then, since Fiz(77) is connected, there exists, by proposition 3.1.2, an

element ¢ € U such that wy = 77 (). In particular, 7(@)wip™" = 1. If we set w := 7(p)wjp~", we
!

have w;- € Fiz(t7),as 7~ () =7 (o 17~ (w) T~ (1(p)) = T(<P)U’j'<?71

— .
; =wj, as well as :

/ /

wi(why )7t = T(e)wie ewi T () = T()wijwi T (@) = T(P)u T ()
and w] = 1 by definition, so that the representations 7(¢).(u1, ...,u;) is op-decomposable.
Conversely, if there exists u € U such that u.(u1, ..., u;) is op-decomposable, then there exist wy, ..., w; €

Fiz(r~) such that wy = 1 and wuju~' = wjwy}y. Set w} :=u'w;7~(u™"). Then wj € Fiz(r~), since

(W) =7 (r () ()T (uh) = twy T (uT ) = w), and

_ vy - _ i1
! u T () (u g (u )
uilerf(ufl)r(ufl)w;rllu
1

w; (w;+1)7

= u wj wjjrllu
so that the representation (u1, ...,u;) is decomposable. (]
Recall now that we have an involution 3 on C; X --- x C; defined by :

ﬂ: Cl><~-~><Cl — Cl><"'><Cl
(wi, o) — (77 (w) . 7 (u2)T ()T () (W), -, T ()T (1) T (W), T (W)

(see definition 6.5.5 and proposition 6.5.6). We may then state and prove the following characterization
of oy-decomposable representations :

Theorem 6.6.2 (Characterization of op-decomposable representations). Consider (u1, ...,u;) €
Cy X --+ x C; such that uy...u; = 1. Then, the representation of w1 (S?\{s1, ... ,s1}) corresponding to
(u1, ... ,uy) is og-decomposable if and only if B(ui, ... ,w) = (u1, ... ,u).

Remark 6.6.3. We could as well have defined 3 on U x --- x U and obtained a similar result but we
deliberately stated our result this way, as it will be more appropriate to work with the quasi-Hamiltonian
space C; X -+ x C; in the following.

We will give two proofs of theorem 6.6.2, the first of which is valid in the special case where U = U(n)
and emphasizes the geometric point of view that we have adopted to guide us in the earlier sections and
chapters. In this case, 7(u) = @, and we have :
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Proof of theorem 6.6.2 in the case where U = U(n). Let us start with (ug, ... ,u;) € Fiz(8), that is :
oty . T = w
Uy b = ug
=1  ——1 t— -
ul ...uj+1ujuj+1...ul = Uj
1 ¢t —
Uy Uy = Uj—1
uf = U
Then we have u! = w (so that @ = u; '), (w_1w)' = (@ vl mw)t = (uiul ) = w1, ...,
‘ R B s T S t o t\E
(wj...w)" = (@ ... 0w u )t = (g UG uG)t = U, ., and

(ur...ow)t = (@' Ty T T ) ww)t = (ubuad . ubud)t = ug . oug. To these I symmetric
unitary matrices we can associate, by proposition 5.1.3, [ Lagrangian subspaces :

Ly = {zeC"|z—(u1...u)z=0}

Ly = {z€C"|z—(ug...u)z=0}

Ly = {z€C"|z—(uj...w)z =0}

Li.y = {ze€C"|z— (w-1w)z =0}

L = {zeC"|z—wz=0}
and denote by o; the Lagrangian involution associated to L;. Let us now assume that (ui, ... ,w)
satisfy the full hypotheses of the theorem, that is, that we have uy ...u; = 1. Then Ly = L. Therefore,
by proposition 5.1.3, since L; = {z — w;Z = 0}, we have oj00 = uy, that is, 001 = u;. Further,
since Ly = {z — (uz2...w)Z = 0}, we have o900 = ua...u; = ul’l hence u; = o102. Finally, for
all j € {2,...,01 =1}, since (uj...w;)" = u;...u, there exists, by proposition 5.1.3, a unitary map

@; € U(n) | & = ¢; and go? = u;...u;, and we then have ¢;(Lo) = L;. Set L = ¢; (L;) = Lo and
1= <pj_1(Lj+1), and denote by o’ and 0}, the associated involutions. Then :

1= {zlei(2) € Ljpa}
{2 ¢j(2) —ujr1...wmp;j(z) =0}
= {z]¢i(z) —wjt1...w P (z) =0}
N

= {z]2— (¢ w1 ... wyp; )z =0}

but ((pj_lujﬂ...ulgpj_l)t = gpj_lujﬂgpj_l since (goj_l)t = (ph) ! = gpj_l and (ujq1...w)! = ujpr...u.

Therefore, by proposition 5.1.3, we have ag-ﬂa;- = @;lujﬂ . .um;l. Since go? = uj...u;, we then
have @;lujﬂ .. .um;l = @;1(u;1@?)@;1 = @;luglapj, therefore u;l = <pj0§+1a§g0;1 = 0jy10; since
Lj = ¢j(L), Lj+1 = (L)1) and o,y = porp—1. Hence uj = 00,41 and the representation of m
corresponding to (u1, ... ,u;) is op-Lagrangian.

Conversely, assume that a given representation (ui, ... ,u;) is op-Lagrangian. Then w; = 0,00. Now

observe that for any unitary map u, one has @ = oguog, therefore here uf = Ul_l = Uoul_lo'o =
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oo(0100) " Log = o0(000;)00 = 0100 = ;. Likewise :

w u_ = (oouy too)(oou; ! o0)(couoo)

= oo(u; uyw)oo

oo(0001)(o101-1)(0100)00

= 01-10]
= w1
and so on, until :
E;l .. .ﬂ;lutﬂg L o= 0'0(0'00'1) e (0'30'2)(0’20’1)(0’20’3) e (0'30'0)0'0
= 0102
= Ul
so that Buy, ... ,u) = (u1, ... ,w). O
Proof of theorem 6.6.2 in the general case. Let us start with (uq, ...,u;) € Fiz((), that is :
T (ug...u)7 (ur)7m(ue...y) = wp
T (u)T (w—1)T(w) = w1
T (ul) =
Then we have 77 () = wy, 77 (wi—1w) = w—17 (W) = w—1ug, ... , until 7= (ug...wy) = uq...u. Set
wj := uj...w. In particular, wy = u;...u; = 1. Then 7~ (w;) = wj for all j € {1, ...,l} and one has :
ijjjrll = (uj...w)(wjpr..w)”
so that the representation (ug, ..., u;) is ogp-decomposable. Observe that the algebraic definition of og-

decomposable representations indeed enabled us to write a simple proof of our characterization result.
Conversely, if u; = ijj_+11 with w; € Fiz(r™) for all j and wy = 1, then :

T (i) (u)(uga ) = 7 (wiaw DT (wjwy ) T(wiwy )
= 7 (wj41)T(wj41) 7 (wy)T(wjt1)
= ij;_:l
so that (u1, ..., w) € Fiz(0). O

Remark 6.6.4. Should we choose to work with U x --- x U instead of C; X - - - X C;, there is an interesting
“non-homogeneous” description of the involution 3. The map

: Ux---xU — Ux---xU
(ur, o yw) — (Up...u U .U, Uy, ) =: (U1, .., U))

is a diffeomorphism from U x --- x U on itself, whose inverse is the map
-1 -1 -1
O (vg, .. v) = (vivg T, UYL, )
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These maps are U-equivariant with respect to the diagonal action of U on U x --- x U. Using these
“non-homogeneous” coordinates on U X --- x U, the involution § takes the simpler form :

Pofodt: Ux---xU — Ux---xU
(Ul,...,vl) — (T_(vl)a"'77—_(vl))

This is to be related to the work of Treloar on the moduli space of polygons in S3 (see [Tre02]), where
the map ® is used to give a Lie group description of this moduli space.

We can then characterize those among representations of m (S?\{s1, ... ,s;}) which are Lagrangian in
the following way :

Corollary 6.6.5 (Characterization of decomposable representations). Consider (u1, ...,u;) €
Cy X -+ X Cy such that uy...u; = 1. Then the representation of w := w1 (S?\{s1, ... ,s1}) corresponding to
(u1, -..,uy) is decomposable if and only if B(u1, ..., u) ~ (u1, ..., u;) as representations of 7, that is, if

and only if there exists uw € U such that :
ﬂ(u’lv s 7U'l) = U-(Ul, s 7U'l)

Proof. We know from lemma 6.6.1 that if (uq, ..., ;) is decomposable, then there exists ¢ € U such that
7(¢).(u1, ..., u;) is og-decomposable, so that, by theorem 6.6.2, one has :

ﬁ(T(gp).(ul, ...7ul)) =71(p).(u1, ..., u)

Hence, from the compatibility of 5 and 7 :

e.0(u1, -, w) =7(p).(u1, ..., u)
That is :
Blu, -..,w) = (¢~ '7(9)). (w1, ..., w)

Conversely, assume that B(uq, ...,u;) = u.(u1, ...,u;) for some u € U. Observe then that, because of
the compatibility of 3 with 7 and p, the involution 8 induces an involution 3 on p=1({1})/U :

g p{HU — pT({1H/U

[(ul, e ,ul)] — [ﬁ(ul, . ,ul)}
And the condition B(u1, ...,u;) = u.(u1, ...,u;) means that B( [(u1, ... w]) = [(u1, ..., u;)]. We then

anticipate on a result from the general theory of quasi-Hamiltonian spaces that we will prove in chapter
7 : as Fixz(r™) is connected, proposition 7.4.5 shows that the map

ps : Fie(8) 0 p ({1}) — Fie() € p~H({11)/U

is surjective. Consequently, there exists (vi, ...,v) € Fiz(8) N u~'({1}) such that [(v1, ...,v)] =
[(u1,...,u;)] that is, (ug, ...,u;) is equivalent to a og-decomposable representation so that, by lemma
6.6.1, (u1, ...,u;) is decomposable. O

We shall now move on to the next chapter, where we will see that the involution [ that we have just
used to characterize decomposable representations of m = 71 (S?\{s1, ... ,s;}) induces an anti-symplectic
involution of the moduli space M¢ = Home (7, U)/U. This brings us back to studying general properties
of symplectic quotients associated to quasi-Hamiltonian spaces.
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Anti-symplectic involutions on
quasi-Hamiltonian quotients

Contents
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7.3 Constructing form-reversing involutions on product spaces . .. ... ... 119
7.4 Projection of the fixed-point set of a form-reversing involution . . . . . . . 126

In this chapter, we introduce the tools that we shall need in chapter 9 to show that the decompos-
able representations of m = m1(S?\{s1, ... ,s/}) which we have characterized in chapter 6 project to a
Lagrangian submanifold of the moduli space M¢ =Cy x --- xC;//U .

7.1 Motivation

Recall that the representations of m = w1 (S?\{s1, ... ,s;}) are the elements of yu~!({1}), where yu is the
map :
w: Cix---xC — U
(U1, ... ,u) = up...1y

As we have seen in the previous chapter, the op-decomposable representations of 7w are the elements
w = (ug, ...,u;) of u=*({1}) satisfying B(u) = u. Furthermore, the heuristic approach that we have
been following so far suggests that the set of equivalence classes of decomposable representations should
be obtained as the fixed-point set of an antisymplectic involution defined on the moduli space M (see
section 6.1). If we can prove that the involution 3, defined on Cy x - - - X C;, induces such an antisymplectic
involution B on M¢ =C; X -+ x C;//U which fixes equivalence classes of decomposable representations,
then the result we hope for (the Lagrangian nature of decomposable representations) will be a consequence
of the following result, which is classical in symplectic geometry :

Lemma 7.1.1. Let (N,w) be a symplectic manifold and let o be an antisymplectic involution on N
(meaning that c*w = —w and 0 = Idy ). Denote by N° := Fix(c) the fized-point set of o. Then : if
N° #£0, it is a Lagrangian submanifold of N.

Proof. There always exists a Riemannian metric go on M such that ¢ is an isometry for go (to obtain
it, simply average any Riemannian metric over the group {1,0}). We can then associate to the metric
go an almost complex structure J = r(go) (see [MS98], proposition 2.50, (ii), p.63, for a definition of the
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map 7) such that J is compatible with w (that is, such that ¢(.,.) := w(.,J.) is a Riemannian metric
on N). It then follows from the construction of J = r(go) (see [MS98], p.64), that the go-isometry o is
anti-holomorphic with respect to J (that is, To o J = —J o T'o). Consequently, o is an isometry for the
Riemannian metric g :

9o (Tpow, Trow) = we(Tpow, JTo.w)
= —wu(Tyow, Tpo.Jw)
= —(0"w)g(v, Jw)
= we(v, Jw)

9z (v, W)

and N? = Fiz(o) is therefore a totally geodesic submanifold of N whenever it is non-empty (see for
instance [Kli82] p.95).

Let us now show that for all x € N9, the subspace T, N° C TN is a Lagrangian subspace of T, N. For
all v € T,N?, Tyov = L|,—g (0(x¢)), where 2, € N7 for all ¢ (that is, o(z¢) = z; for all t), 29 = = and
%|t:0 x¢ = v, so that Tpo.v = v and T, N° = ker(T,0 — Id) (the inclusion D being a consequence of the
fact that N7 is totally geodesic). Further, since 7,0 is an involution on T, N, one has :

T.N =ker(T,o — Id) @ ker(Tyo + Id)

But ker(T,o + Id) = J(Ty;N?). Indeed, if v € T,N?, Tyo.(Jv) = —J(Tyov) = —Jv, so that Jv €
ker(T,o+Id) and conversely, if T,oc.w = —w, then Tyo.(Jw) = —J(Tpo.w) = Jw, so that w = J(—Jw) €
J(T:N?). Therefore :

T,N = T,N° & J(T,N°)

and consequently :
1
dim T, N° = 5 dim T, N

Finally, since T,0 is antisymplectic, T, N is isotropic. Indeed, for all v,w € T, N9, one has :
we(v,w) = —(0"Ww)z (V, W) = ~Wy(3)(Twov, TpoW) = —ws (v, w)
so that wg (v, w) = 0. O

Remark 7.1.2. Observe that an anti-symplectic involution does not necessarily have fixed points. For
instance, the map (—Idgs)|s> : (z,y,2) € S? — —(x,v, 2) reverses orientation on S? (so that it is anti-
symplectic with respect to the volume form xdy A dz — ydx A dz — zdx A dy on S?), and has no fixed
points on S2.

As a matter of fact, to apply the preceding lemma, what we really need to prove is that 8 induces
an involution B on Mg, which is antisymplectic, and which satisfies F' zx(ﬁ) # (). In the remaining
part of this chapter, we will give general sufficient conditions on an involution 3 defined on a quasi-
Hamiltonian space (M,w,u : M — U) for it to induce an antisymplectic involution on the associated
quasi-Hamiltonian quotient M//U (see proposition 7.2.2). Giving such conditions mainly consists in
carrying over a standard procedure for usual symplectic quotients (appearing for instance in [0S00]) to
the quasi-Hamiltonian setting. We will then show that the map 3 constructed in chapter 6 satisfies these
conditions. To do this, we will actually give a general way of obtaining such involutions on product
spaces, and apply this to C; X - - - x C; to prove the result for 8 (although the general result we shall state,
namely lemma 7.3.3, was of course really inspired by the form of 3 itself). As for the existence of fixed
points for B , we postpone work on this question until the next chapter, as it is technically more difficult
and calls for notions and methods which are very different from the ones we have encountered so far in
this work. It is true, though, that if § satisfies the hypotheses of proposition 7.2.2 then B necessarily has
fixed points (see corollary 8.3.11).
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7.2 Lagrangian submanifolds of a quasi-Hamiltonian quotient

The purpose of this section is to give a way of finding Lagrangian submanifolds in a symplectic manifold
M/ /U obtained by reduction from a quasi-Hamiltonian space (M,w, u : M — U) (see proposition 4.5.2).
As a matter of fact, we would like to apply lemma 7.1.1 to an antisymplectic involution o defined on the
symplectic manifold N = M//U. The idea is to obtain such a o from an involution 8 defined on the
whole quasi-Hamiltonian space M. We would then have to give sufficient conditions on § for it to induce
indeed an antisymplectic involution o = 3 on M//U = u~1({1})/U. To obtain these conditions, we draw
from the corresponding situation in the usual Hamiltonian setting, which is studied in [OS00]. If we want
(3 to induce a map on p~1({1})/U, it has to let p=1({1}) stable, and to map U-orbits to U-orbits. In
the usual Hamiltonian case, the appropriate conditions, given in [OS00], are the following ones. Let U
be a Lie group acting on a symplectic manifold (M, w) in a Hamiltonian fashion with momentum map
®: M — u*. Let 7 denote an involutive automorphism of U and still denote by 7 the involution :

(Thr)*: uw — u*
A — AoTiT

that it induces on the dual u* of the Lie algebrau =T U of U. Let (8 be an anti-symplectic involution on
M (that is, such that 3*w = —w and 3% = Idy;). In the above notations, 3 is said to be compatible with
the action of U if for all uw € U, for all z € M, B(u.z) = 7(u).8(x) and S is said to be compatible with
the momentum map ® : M — u* if for all z € M, ® o f(z) = —7 o (z). Since in the quasi-Hamiltonian
case the momentum map takes value in a group instead of a vector space, we are led to formulate the
following compatibility conditions :

Definition 7.2.1 (Compatible involutions). Let (M, w, pi : M — U) be a quasi-Hamiltonian space and
let 7 be an involutive automorphism of U. Denote by 7~ the involution on U defined by 7~ (u) = 7(u™1).
An involution 8 on M is said to be compatible with the action of U if f(u.x) = 7(u).B(x) for all x € M
and all u € U, and it is said to be compatible with the momentum map p if po S =7"o p.

Let us mention here that when U = T is a torus and 7 is the involutive automorphism 7(¢) = ¢~ of
the abelian group 7', compatibility with the momentum map amounts to saying that po 8 = u. This
condition, that one may recognize from the work of Duistermaat in [Dui83], will play an important role
in chapter 8, where we will study the image, under the momentum map g of the fixed-point set M? of
an involution § defined on M and satisfying the compatibility conditions of definition 7.2.1 above and
the additional condition f*w = —w.

Proposition 7.2.2. Let (M,w,u : M — U) be a quasi-Hamiltonian space and let 7 be an involutive
automorphism of U. Denote by 7~ the involution on U defined by 7~ (u) = 7(u™') and let B be an
involution on M such that :

(i) Yu e U, Ve € M, f(u.z) = 7(u).B(x)

(it) Yo € M, po B(x) =7~ o u(x)
(iti) [rw = —w
then 3 induces anAanti—symplectic involution 3 on the reduced space M7 = pw {1} /U . If 3 has fized
points, then Fix(3) is a Lagrangian submanifold of M™%,

Proof. We give a proof under the following regularity assumptions : 1 is a regular value of u and the
compact group U acts freely on the level manifold x~1({1}). The proof in the stratified case works
the same since, by proposition 4.5.8, the symplectic structure on each stratum of the reduced space
p~1({1})/U is obtained using the reduction procedure of the smooth case (see proposition 4.5.2). In

particular, Fiz(0) is a disjoint union of Lagrangian submanifolds.
Compatibility with the momentum map (condition (ii)) shows that 3 maps = *({1}) into p=*({1}) (since
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77(1) = 1). Compatibility with the action (condition (i)) then shows that G(u.z) and §(z) lie in the
same U-orbit, so that we have a map :

B pM{(IN/U — w1V
Uz — Up(x)

We know from quasi-Hamiltonian reduction (see proposition 4.5.2) that there exists a unique symplectic
form w™ on M"4 = ;=1({1})/U such that p*w™? = i*w where i : p=1({1}) — M and p: p=*({1}) —
M7ed. QObserve that, by definition of ﬁ, one has po 3 = ﬁ op. To show that ﬁ* red — _yred e first
prove that i*(8*w) is basic with respect to the fibration p. Then there will exist a unique 2-form v on
M7e? such that p*y = i*(8*w). Since both v = —w™? and v = B*wred satisfy this condition, they have to
be equal. The last part of the proposition then follows from lemma 7.1.1. Let us now write this explicitly.
Verifying that i*(5*w) is basic is easy since f*w = —w and i*w is basic (see proposition 4.5.2) but it is
actually true without this assumption so we prove it for 3 satisfying only conditions (i) and (ii) above. We
have to show that ¢*(6*w) is U-invariant and that for every X € u = Lie(U), we have tx:(i*(8*w)) =0
where X* is the fundamental vector field X5 = &|,—o(exp(tX).z) (for any z € M) associated to X € u
by the action of U on M. Let u € U and denote by ¢, the corresponding diffeomorphism of M. The
map p being equivariant ¢, sends p~1({1}) into itself, hence i o ¢, = @, oi on u~1({1}). Furthermore,
compatibility with the action yields o ¢, = @r(y4) 0 3. We then have, on p~'({1}) :

pu(i*(B7w)) = (
=

Boio @u)*w
Pr(w 0 Boi) w
(87 (07 yw))

-
where the very last equality follows from the U-invariance of w. Further, let X € u. Since [ is compatible
with the action, one has S(exp(tX).x) = 7(exp(tX)).0(x) = exp(t7(X)).0(x) (where we still denote by
7 the involution T} 7 on u = T} U), hence T,3.X% = (T(X))%(w), hence tx: (8*w) = B"(¢(r(x))w). Since
txt(1*(B*w)) = i*(1x1 (B*w)), we have, using the fact that 3 is compatible with p :

an(ﬂ*w)

B* ((r(x))tw)

= 6(% p (0% + 07| 7(X)))
1

= 5 (w0 By (65 +0" | 7(X))

% (t7 o ,u)*(HL +6F | T(X))
S () 0"+ 07 (X))

hence i*(tx:(B*w)) = 3i*op*(...) = 2 (poi)*(...). But poi: pu~'({1}) — U is a constant map,
therefore T'(uu 0 @), and consequently (u o 4)*, are zero, which completes the proof that i*(5*w) is basic.
Finally, let us show that p*(Bw"e?) = i*(3*w) = p*(—w"%) (this is where we really use *w = —w). We
have, on 1= ({1}), (3w = (B0 p)'w’™ = (po §)"wr™ = 5 (™) = B*(i%) = (i f)'w =
(Boi)w = i*(f*w) = i*(~w) = —i*w = —p*w™? = p*(—w"¥). This completes the proof, as indicated
above. (|

Remark 7.2.3 (On the assumption that Fiz(3) # (). The assumption that Fiz(3) # 0 in propo-
sition 7.2.2 is in fact automatically satisfied by an involution g satisfying the compatibility relations of
definition 7.2.1 and the additional condition Fiz(3) # (), as we shall see in corollary 8.3.11.

We now would like to apply this result to the involution 8 on C; X --- x C; that we constructed in chapter
6. To that end, we must show that § satisfies the conditions of proposition 7.2.2. Recall from definition
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6.5.5 that :

B : Cix---xC — Cix---xC
(wi, o) — (77 (w). 7 ()T ()T (u2). (W), -, T ()T (wim1) T (), T (W)

Here, the involution 7 on U is supposed to satisfy the following assumption, already used in chapter 6 :
the involution 7~ : u — 7(u~!) leaves a maximal torus of U pointwise fixed. In particular, this implies
that 7= leaves each conjugacy class C C U globally invariant, therefore the map 3 above is well-defined.
Let us then show that this map [ satisfies the compatibility conditions of definition 7.2.1 :

Blu.(ur, ..., w)) = Bluuiu™, ... uuwut)

(77 (™ ()™ ()7 (™) ()7 (w). 7 () T () T (u ),
ST (W ()T (u)

= T(U).(T (w). .7 (ur)...7(w), ..., 7 (w))

and :
poBlur, «ooyw) = p(r (w). .7 (u2)7 (u1)7(uz). . .7(w) T (w)
= 7 (w)...7 (u1)
= T_(ul ..’U,l)
= 7 op(ur, ...,u)
Thus, to apply proposition 7.2.2 to the involution [, it remains to show that §*w = —w, where w is

the 2-form defining the quasi-Hamiltonian structure on C; x --- x C;, and that B has fixed points. As
we mentioned earlier, we postpone work on this last question to chapter 8, and we shall only prove for
now that 0*w = —w (see proposition 7.3.4). To do so, we will show that g is constructed by induction
from the involution 7= : u € C — 7(u~!) on a single conjugacy class (see lemma 7.3.2), and that this
construction gives rise to form-reversing involutions on product spaces when starting from form-reversing
involutions on each factor (see lemma 7.3.3).

7.3 Constructing form-reversing involutions on product spaces

From now on, we make the further assumption that the involutive automorphism 7 of U is such that the
involution 717 of u = T1U is an isometry for the Ad-invariant scalar product (.|.) on u. In the following,
we shall still denote by 7 the map T17. Again, recall from definition 6.5.5, that :

ﬂ: Cl><~~~><Cl e Cl><"'><Cl
(ug, .. uy) +— (7'_ (wp). .77 (u2)7™ (ur)7m(u2). .7 (up), - ., 7 (w)7 (w—1)7(wp), T‘(ul))

In the rest of this section, to avoid confusion, we shall denote by S the involution 3 above defined
on a product of [ conjugacy classes. For instance, 3(2) designates the involution § on a product of two
conjugacy classes, regardless of whether this product space is C; X Cy or Cy X Cs. Likewise, we will denote
by p® the momentum map s : (u1, ..., u;) — uy...u; defined on a product of I conjugacy classes, and by
w® the 2-form defining the quasi-Hamiltonian structure on C; X - - - x C; with respect to the momentum
map p) (see corollary 4.4.2). Observe now that when [ = 1, we simply have 3 (u) = 7~ (u) on a single
conjugacy class C. The first thing to notice is then the following result :

Lemma 7.3.1. The involution 3V = 7= : u — 7(u~1), restricted to a single conjugacy class C of U,
reverses the 2-form wV) defining the quasi-Hamiltonian structure on C , that is : (8M)* 0™ = —w®),
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Proof. To lighten notations, we will denote w® by w and 3" by 8 in the course of this proof. First, recall
from proposition 6.5.4 that the involution 7~ on U sends any conjugacy class C C U to itself. Second,
recall from proposition 4.2.1 that we have, for any X,Y € u (denoting [X], = X.u —u.X € T,,C) :

(Adu.X |Y) = (Adu.Y | X))

N =

wu([Xu, [Y]u) =
Further, A(u) = r(u~") and T,3.[X]u = [r(X)],(u-1). Therefore :
(W) ((X]us [Y]a) = wpgw) (TuB[X]u, TuB[Y]u)
% ((Adr(@™)r(X) | 7(¥V)) = (Adr(u™).7(¥) | 7(X)))
- % ((T(Adu’l.X) |7(Y)) = (r(Adu~L.Y) |T(X)))

Since 7 is an isometry for (.|.), we then have :

(X1 V) = 5 (Adu™ X|¥) ~ (Adu™'¥| X))
= % ((X|Adu.Y) — (Y|Adu.X))
= —wu([X]us [Y]u)
O
When now [ = 2, the involution g writes :
ﬁ(z): C1 XCQ — C1 XC2
(ur,uz) +—— (T’(uz)rf (u1)7m(u2) , 7~ (uz))
So that :
5(2) (ul, ’U,g) = (Ti(UQ).’Tf (ul) , T (UQ)) (71)

where the action denoted by a point . is the conjugacy action of U on itself. The fruitful observation to
make is then to notice that :

B (s, uz) = (7~ 0 p (2)- 6D (1) , D (u2))
——
=u(Mop)
When pM) : Cy < U is the inclusion map, we indeed obtain expression (7.1). Likewise :
B (ur ugyuz) = (7 (ug)T (u) 7 (un)7(u)7(us) , 7 (uz)T (uz)7(us), 7 (u3))
(7 (uzuz).r (ur) , B2 (uz, u3))
= ((7'_ o 1® (ug,ug)).r~ () , B (UQ,U?,))
——

= 0f®

= ((,U(Q) © ﬂ(z) (uz,us))ﬂ(l)(ul) s ﬂ(z) (UQ,U,g))

In fact, the involution S is obtained in the same way from the involution 3¢~ on Cy x --- x C; and
the involution 3" on C;. More precisely, we can sum up the above discussion in the following way :

Lemma 7.3.2. Consider an integer 1 > 1 and let Cy, ... ,C; be | conjugacy classes in U. Let 3V be the
involution defined on Cy by
BY ¢ — G

up +— 7 (u1)
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and let B be the involution defined on the product Co x --- x C; of (I — 1) conjugacy classes by :

BUD: Cox---xC — Cox---X(C
(ug, .. w) — (77 (w)...7 (us)T (u2)7(us). .. 7(w), ..., 7 (w))

Let =Y be the map from Cy x C; to U defined by :

p=D: Cox o xC — Cox---%X(
(ug, ...,u) +— Uz...1

Finally, let Y be the involution defined on Ci X --- x C = Cy x (Cox - xCp) by

O Cix-oxC — Cix---XxX(
(wi, ooyw) — (77 (w). T (u)T ()T (u2). (W), .., T (w))

Then we have :
BO(uy, ... wy) = ((u(l_l)Oﬂ(l_l)(uQ, ceow) B (ur) B (ug, ,ul))

which we will write :

B0 — ((Mafl) o B1-DY g 5@71))

Now, to prove that (8())* w® = —w®, we will use the following lemma, which is general in nature and
gives a way of constructing form-reversing involutions on products of quasi-Hamiltonian spaces starting
from form-reversing involutions on each factor. It was inspired by the form of our involution 5.

Lemma 7.3.3. Let (My,wi,pu1 : My — U) and (Ma,wa, o : Ma — U) be two quasi-Hamiltonian
U-spaces. Let T be an involutive automorphism of (U, (.].)) and let 8; be an involution on M; satisfying :

(1) Biwi = —wi
(ii) Bi(u.z;) = 7(u).Bi(x;) for allu € U and all z; € M;
(iii) pioBi=7" o

Consider the quasi-Hamiltonian U-space (M := My x Ma,w 1= w1 @ wy + 5 (ui0% A p30%), 1 := py - po)
(with respect to the diagonal action of U) and the map :

3= ((p2 0 B2).B1, B2) : M — M
(z1,22) —  ((n20 Ba(x2)).B1(21), B2(22))

Then 8 is an involution on M satisfying :

(i) Bro=—w

(ii) B(u.x) = 7(u).B(x) for allu € U and all x € M
(iii) poB=1"ou

Proof. First, we have :

ﬁ(ﬁ(xlaxQ)) =

(uw@@mwm«mwmmmm»m@mw
= ( M2052(562))-51(51(%))),%2)
(

=T Op2

(,MQ $2 ,UQ xz))

= (21,7

L1, Z‘Q)
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so that (3 is indeed an involution. Second :

Bluzi,uzs) = (u2o0 Pa(u.xs).Br(umy),Bo(u.xs))

( (@) Baa) - (r(w)-Bi(e), T(w)ale2))
—_——

=7( ")#2([32(902))"'(U) L

(0 (12 & i) o)) () ()

= 7(u).B(x1,x2)

and :

po Bz, x2) = ((Hz o Ba(x2)).Ar (xl))uz (B2(22))
= (Mz o Ba(wa)pr 0 Bi(w1)(p2 0 52(562))71) (Mz o 52(962))

= 77 opug(x2)T o py(xy)
= 7 o(u1-pe)(zi,z2)

= 77 opu(ry,T2)

So the only thing left to prove is that *w = —w. Let us start by computing T'5. For all (z1,22) € M,
and all (vi,v2) := %|—o(z1(t),22(t)) (where 2;(0) = 2;), one has :

Tay20)B-(v1,v2) = %h:o((,@O52(@))-51(ml(t)),ﬂz(mz(t)))

= ((m o Ba(x2)). {(952052@2) (T, (12 © 52)~Uz))ﬁ + Twlﬂl-vl} 7Tw252~02)

Bi(z1)
Recall indeed that if a Lie group U acts on a manifold M then :

d d
E|t:0 (ug.ws) = uo-Xg%O + uo-(ah:o mt)

where X € u = Lie(U) is such that u; = ugexp(tX) for all ¢, that is :

X = ual.(%hzo ut) =0 (%h:o Ut)

Let us now compute 3* (w1 @ wz). We obtain, for all (z1,22) € M and all (v, v2), (w1, w2) € Ty, 25y M :

(B*(wr @ “’2))@1,9@) ((v1,v2), (w1, w2))

#
- (W1)(N2052(902))'51(901) <(M2 ° 62 (552)) (652052(002) (TM (Mg ° ﬁ2)~U2)) ) +%T$lﬁ/—/1'vl ’ (7.2)

Bi(z1
(4)
I #
(#2 o [ (xQ)) (0#2052(z2) (TIQ (:u? © 62).11)2))[31(951) + Tflﬁl'wl (73)
(4)
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+ (W2) 8y (20) (T, B2.v2, T, B2.w2)

(B)

Since wy is U-invariant, we can drop the terms psofs(x2) € U appearing on lines (7.2) and (7.3). Further,

since f*w; = —w; and *ws = —wy, we have, by the [ =1 case :
(A) + (B) = —(wi)a (v1,w1) — (w2)a, (v2, w2) (7.4)
= —((Ul @w2)(z1,12) ((’U]_,UQ),(U)]_,U)Q)) (75)

The remaining terms on lines (7.2) and (7.3) then are :

#
(wl)ﬁ1 (1) <(Gﬁoﬁg(w2) (TIQ (:uQ © 62)'1}2))6 ) 7T$161'w1> (76)

1(ZT1

#
+ (W1)gy(an) <Tw151.v1 ) (Hﬁoﬁz(m) (T (p2 0 62)'102))61(001)) (7.7)

¢ ¢
" (wl)ﬁl(“)<(eﬁ°52<12)(T"”2(“2 Oﬁg)m))ﬁl(m) ’ (95"52(“)(%2(“2 Oﬁz)wg))ﬁl(m)) (78)

and we notice that each of these three terms is of the form tyrwi = $p7 (6% + 6% | X) for some X € u.
To facilitate the computations, we set, for i = 1,2 :

gi = piofBi(x;) €U
G = Tp(pioBi)wi € TyopanU =Tg,U
ni = Tu(pioBi)wi € Tyop,anU = Tg,U

We can then rewrite lines (7.6), (7.7) and (7.8) under the form :

(0% (m) + 0% (m1) |05 (¢2)) (7.9)
(1) e}

A EATATS) (7.10)

(2 D

+% (951 (02, (n2).91 — 9165 (m2)) + 6.5 (05, (n2)-91 — 9105 (1m2)) 165, (Cz)) (7.11)

N =

where the expression for the last term follows from the equivariance of u; :

~

L

# ~
Tﬁl(wl)'ul'(ouwﬁb(b)(Tm (”2 © 62)-“72))61(901) = (9520[32(I2)(Tz2 ('uQ © ﬂQ)-'LUQ))MOBl(gEI) = (052 (n2))g2

(where X;” = X.u — u.X is the value at u of the fundamental vector field associated to X € u by the
action of U on itself by conjugation). We can simplify the expression in (7.11) further by using the
definition of ' and % and the Ad-invariance of (.|.) :

(111) = 5 (Adgy 0% (m2) — Adgr.0%, (n2) | 0% (C2)) (7.12)

(05, ()| Ad g 6%,(G2)) — 5 (Ad g1 0%, (m) | 0%, (G2) (713)

N =N =
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Let us now compute 3*(ui0% A u36%).

(B (116" A p30™)) 1, o ((01,02), (w1, w2)) (7.14)
= (/‘TGL /\M;GR)(uzoﬁz(wz)ﬂl(901),62(902)) (T(ﬂm,rg)ﬁ'(vlav?)aT(ml,rg)ﬁ'(th}Q)) (715)

- %(0/31(9251(551)(TQQ'ﬁl(“)m'(m OﬂQ(mQ))' {(052 (Cz))uﬁl(m) +Tzlﬁl'vl}) |0£ (772)> (7.16)
—_—

9211 (B1(21))95
1 :
3 (951(92.61(901) (ng.ﬂl<r1>ﬂl-(ﬂz ° Ba(x2)). {(952 (12)) g (2r) + Twlﬂbwl} ) |0, (C2)>
Since p1 is equivariant, we have, for any v € Tjg, (5,) M1 :

Ty et (0 Bo(2)) 0 = (0 B2 2) - (Thy oy )

where the action in the right side term is conjugation. We then have :

(7.16) = %(95291921 (92-(T51(x1)l£1-((9§2 (42))21(001) + Tzlﬁl-vl))-gz_l) 162 (772)>

_% (9529%1 (92- (Tfh(m)m- ((9ng (1)), oy + Tz161.’LU1)).g;1) 0% (gg)>

1 -1 _-1 L L -1 R 1 -1 -1 -1 R
- 3 (B5,(G2)-01 — 91.65,(G2)) 93 162 (1)) + 5 (92019 ' 92-C1 .95 162 (2))
2(9291 92 92 ( g2 g2 2 g2 2 1 72 2 g2
—fL
a1 (61)
—£(9291_192_192 (6% (12).91 — 91.6% (n2)) .95 " | 6% (42)) + l(9291_192_192 m.gy ' |0) (42))
2 "\"9g2 : g2 : g2 2 oA g2
=0L (n1)
1 -1 oL R 1 L R 1 L R
= 5 (AdgoAdgr 0, (G) 105 () — 5 (Ad 9205 (G2) 10 (1)) + 5 (Ad 9205 (G1) |05 (m2) )

5 (AdgnAd g 05, () |02(@)) + 5 (Ad o 05, m) 167(G2)) — 5 (Ad 928, () 1022(G2))

_ %(952 (C2) | Ad g1 0%, (772)) - %(052 (¢2) 16, (772)) + %(agﬁ ()] 0% (nz)) (7.17)

(3 (4) (2)

5 (05| Ad g1, 0%()) + 3 (05, 02) 105, (62)) — 5 (05 () 185, ()
(3" (47) 1)

(to obtain this last expression, one uses the Ad-invariance of (.|.) and the fact that Adg; ' o 08 = gL ).
Observe that (4) and (4') cancel in the above expression. Likewise, (1’), (2’) and (3') in (7.17) cancel
respectively with (1), (2) in (7.9) and (7.10) and with (7.13) when computing the sum §5*(w1 & ws) +
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B*(130% A p36%). The non-vanishing terms in this sum are therefore (A) and (B) from (7.4) and (C') and
(D) from (7.9) and (7.10), so that :

(8" w)z (v, w) (7.18)
(5" (@ & w2)) , (0,0) + (B (30" A 15307)) , (0, 0) (7.19)
(4)+ (B) + (C) + (D) (7.20)
= (@ we(v,w) — 5 (R () 104 () — (05 (m) | 94())) (7.21)

But p; o 8; = 7 o py, so that :

(05 () 105, (n2)) = (08 o, (o) (T (110 B1)01) 07, 5, () (T (12 © B2) w2 ) (7.22)
- (07 op,1(x1)( $1(7—7 © :ul)'vl) |0£—0M2(w2)(TI2 (T7 © :UQ)wz)) (723)

and 7~ = Inv o7, where Inv : u +— u~! is inversion on U, so T,,7~ . = —7~ (u).(T,7.€).7~ (u). Hence :
07’ (u) (T T f) = 97}_%7(“)( -7 (u’)(Tqu)T_ (u’))
= —Tf( )-(Tur€)
‘r(u ( uT- 5)

(and likewise @~ changes into 7). Since in addition to that 7 is a group automorphism and an isometry
for (.|.), the expression (7.23) becomes :

(7.23)

GL Nl(am)T (Tfllul'vl)) |0 ( (Ig))( N2($2)T( zo H2- wZ)))

(T H1 11)

T (0, (00) (T p1.01)) | Ta T (0 () (Tira - wz)))

07 (o) Loy i1 00) |07, (1) Ty pr2.02) )
( 9L $1 vl (/J‘QHR)$2(U}2))

(
(

so that we have :

(Bw)e(v,w) = (7.21)
= —(w1 B wa)y(v,w)

5 ((0")as (o0) 5307 2) — (0" () | 4367 (02)) )
= —(w1 ®wa)a(v,w) — (10" A p30%)s (v, w)
= —w(v,w)
which completes the proof of lemma 7.3.3. O
Let us now conclude by showing that lemma 7.3.3 indeed guarantees that (ﬁ(l))* w® = —u®,

Proposition 7.3.4. The involution § = B (see definition 6.5.5) reverses the 2-form w = w®) defining
the quasi-Hamiltonian structure on C; X --- x C; , that is : fw = —

Proof. We proceed by induction. For [ = 1, this is just lemma 7.3.1. Consider now [ > 2 and assume
that 301 reverses the 2-form w~1) on the product Cy X - -- x C; of (I — 1) conjugacy classes. Then we
know from lemma 7.3.2 that :

B0 — (( (1=1) 5 gu=D) g1 g~ 1>)
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where =V (ug, ... ,u;) = ug...u;. Since, by the induction hypothesis, (3¢~1)* w=1) = —u,(=1 on
Cy x --- x (;, and since, by lemma 7.3.1, (8M)* w® = —w® on C;, lemma 7.3.3 applies (the other
conditions of the lemma were verified at the end of section 7.2, and the fact that

w(l) — (w(l) @w(l—l)) + %((lu(l))*oL A (‘u(l—l))*oR)

follows from proposition 4.4.1, the map (") being the inclusion map ) : C; — U), which shows that
(B Wb = —wu®, O

Therefore, we have shown that the involution

ﬂ: Cl><~-~><Cl e Cl><"'><Cl
(wi, o) — (77 (w). 7 ()T ()T (u2). (W), - T ()T (wim1)T(w), T (W)

that we obtained in chapter 6 (see definition 6.5.5) is indeed an example of a map satisfying the conditions

of proposition 7.2.2. Consequently, it induces an anti-symplectic involution 8 on the quasi-Hamiltonian
quotient M//U = p=*({1})/U. We now wish to understand better the relation between Fiz(3) and the
projection of Fiz(8) N u~t({1}) under the map p: u=*({1}) — p=*({1})/U.

7.4 Projection of the fixed-point set of a form-reversing involu-
tion

The purpose of this section is to study the image, under the projection map p : p=1({1}) — p=1({1})/U,
of the fixed-point set Fiiz(8)Np~* ({1}) of the involution 3],-1({1}), where 3 is a form-reversing involution
on the quasi-Hamiltonian space (M,w,p : M — U). We assume that U is endowed with an involutive
automorphism 7 and that § is compatible with the action of (U,7) and the momentum map u of this
action, in the sense of definition 7.2.1. In this case, we have seen that 3 induces an anti-symplectic
involution 3 : M//U — M//U on the quasi-Hamiltonian quotient M//U = p~'({1}) (see proposition
7.2.2). By definition of 3, we see that if 2 € Fiz(8) N p~'({1}), then p(x) € Fixz(3). Here, we shall give
sufficient conditions for the projection map

Ps = Plriz@nu 1y ¢ Fie(8) N p~ ({1}) — Fiz(8) € M//U

to be surjective (here we implicitly assume that Fiz(8) N p~1({1}) is non-empty but, as we shall see in
chapter 8, this is always the case when [ satisfies the assumptions proposition 7.2.1 and has a non-empty
fixed-point set, see proposition 6.5.6). To prove the surjectivity of the map pg, we adapt the ideas of
[Fot] to the quasi-Hamiltonian setting (see also [GH04, Xu03]).

We begin with the case where the action of U on M is free, in which case we know from section 4.5
that 1 is a regular value of p and that M//U = p~1({1}) is a symplectic manifold (see proposition 4.5.2
and remark 4.5.10). Recall that we denote by 7~ the involution 7~ : u +— 7(u~!) on U.

Lemma 7.4.1. Assume that Fix(t—) C U is connected. Then, if U acts freely on M, the map
ps : Fia(8) N = ({1}) — Fia(3)
s surjective.

Proof. Take p(x) € Fiz(f) (where z € p~1({1})). This means that §(z) = u.z for some u € U. Hence,
by applying 5 we get :
z = Buz) =7(u).B(z) = (t(u)u).x

Since U acts freely, this yields 7(u)u = 1 that is, 77 (u) = u. As Fix(r7) is assumed to be connected,
proposition 3.1.2 shows that u € Fiz(7~) can be written u = 7~ (v)v for some v € U. Therefore :

B(z) =u.x =7 (v)v.x

126



7.4 CHAPTER 7

Hence 7(v).0(x) = v.z, that is :
Bv.x) =v.ax

so that v.z € Fiz(8) N p~1({1}) and pg(v.z) = p(v.z) = p(x), which shows that ps is surjective. O

Remark 7.4.2. We wish to make a few comments on the assumption that Fiz(77) is connected. On
the one hand, it is not always the case, even if U is assumed to be simply connected, that Fixz(r7) is
connected, as is pointed out in [Loo69b], p.77. On the other hand, we know from proposition 5.1.3 that
the set of symmetric elements of (U(n),7(u) = u) that is, the set W(n) = {u € U(n) | u* = u}, is
connected because each of its elements is of the form exp(iB), where B is a real symmetric matrix. The
same is true for SU(n). It is because of these two examples, which were ou main motivation and source of
inspiration for this work, that we made the simplifying assumption that Fiz:(77) is connected. One may
observe that the result that we prove here (namely, proposition 7.4.5), which uses the above assumption
on 7, is key to the proof of corollary 6.6.5.

If now the action of U on M is not free, let us recall from proposition 4.5.8 that we have :

M//U= || Mg//Lx

KcU

where the compact group Lx = N(K)/K (with K closed in U) acts freely on the quasi-Hamiltonian
space Mg = {x € M | U, = K}. The only closed subgroups K C U that we shall be interested in now

are those for which Mg N Fix(3) # (). For such a subgroup, we observe the following two facts :
Lemma 7.4.3. If K C U is a closed subgroup such that My N Fiz(3) # 0, then one has 7(K) C K.

Proof. Take © € Mg N Fiz(B). Then if k € K, one has k.x = z, so that 8(k.x) = B(z) = . Hence
7(k).B(x) = x that is, 7(k).x = z, hence 7(k) € U, = K. O

Lemma 7.4.4. If K C U is a closed subgroup such that My N Fix(3) # 0, then one has 3(Mg) C M.

Proof. Take y € My and let us show that Ug.) = K. A given u € U satisfies u.3(y) = B(y) if and
only if 8(7(u).y) = B(y) that is, by applying 8, 7(u).y = y. This means that 7(u) € U, = K, hence
u € 7(K) = K by lemma 7.4.3. O

It is then immediate, from the definition of (Mg, wx = w|my, fix : Mk — Li) (see subsection 4.5.2)
that the involution Bk := B|as, is compatible with the action of L and the momentum map jix of this
action, and that 8wk = —wgk. Since Lx acts freely on Mg, lemma 7.4.1 applies and one obtains :

Fiz(3) = | | Fiz(Bx) = | | pax (Fiz(Bx) njx " ({1}))

KcU KcU
Summarizing, we have proved :

Proposition 7.4.5. If (M,w,u : M — U) is a quasi-Hamiltonian (U, T)-space and if B : M — M s
involution on M satisfying 0*w = —w, B(u.x) = 7(u).6(x), and po S =7~ opu, then one has : if Fix(17)
is connected, the map .

ps : Fiz(f) N u~ ({1}) — Fiz(f) € p 1 ({1})/U

1S surjective.

If Fiz(7) is not assumed to be connected, it is possible, following [Fot], to obtain a description of Fiz(5)
as a disjoint union of quasi-Hamiltonian quotients indexed by the connected components of Fiz(r7).
When this set is connected, one then obtains proposition 7.4.5 above.

We shall now move on to the next chapter, where we will prove that the anti-symplectic involution B
induced by 3 on the reduced space C; x - -- x C;//U by means of proposition 7.2.2 always has fixed points.
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Observe that, by corollary 6.6.5, this amounts to saying that there exists decomposable representations of
7 =m(S?\{s1, ... ,5}). But we know from chapter 6 that this is equivalent to saying that there exists
og-decomposable representations, which are, by theorem 6.6.2, the elements u of u~1({1}) satisfying
B(u) = u, that is, the elements u of Fiz(3) N p~1({1}). Observe that we already know that Fixz(3) # ()
(see proposition 6.5.6). And we have now proved that :

Fiz(3)#0 if and only if Fiz(8) Nnp~t({1}) #0
This can also be written, denoting by M?# the fixed-point set M? := Fixz(3) of 3 :
Fiz(8) #0 if and only if 1€ u(M?)
This is why, in chapter 8, we will study the image under p of the fixed-point set M? of an involution 3

defined on the quasi-Hamiltonian space (M,w,u : M — U) and satisfying the conditions of proposition
7.2.2.
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Existence of decomposable
representations : a real convexity
theorem for group-valued
momentum maps
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In this chapter, we study convexity properties of group-valued momentum maps. From a general
point of view, this is motivated by the convexity properties of momentum maps in the usual Hamiltonian
setting, which we will recall in section 8.1, and of which we will prove analogues in the remainder of this
chapter. As for us though, the main motivation for this study is establishing the existence of decomposable
representations, as explained at the end of chapter 7 and upon which we will come back in subsection
8.3.3.

First, we will be interested in understanding the Alekseev-Malkin-Meinrenken convexity theorem !
(see [AMM98]), of which we will give a detailed proof, which will help us in the following. Our approach
is based on adapting the ideas presented in [CDMS88] and in [HNP94] to the quasi-Hamiltonian setting.

Second, we will give a real version of this convexity theorem, that is, a convexity result for the image
w(M?) under the momentum map of the fixed-point set of a form-reversing involution 3 defined on a

L Actually, this theorem is due to Meinrenken and Woodward (see [MW98]), as pointed out to me by Anton Alekseev,
whom I would like to thank. I apologize for this lack of care in the writing.
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quasi-Hamiltonian space (M,w,u : M — U). This will constitute a quasi-Hamiltonian analogue of the
O’Shea-Sjamaar convexity theorem (see [OS00]). To prove this result, we shall again follow the approach
of [HNP94], meaning that we shall not try to adapt the proof of [OS00] to the quasi-Hamiltonian setting.
As a matter of fact, as the techniques in [HNP94] only cover the case of Hamiltonian torus actions when
it comes to describing real convexity properties of momentum maps, the proof we shall give also suggests
a different proof of the O’Shea-Sjamaar theorem.

In this whole chapter, the Lie group U that we shall consider will always be assumed to be compact
connected and simply connected, unless stated otherwise explicitly. We shall explain this last topological
assumption later on (see remark 8.2.2).

8.1 Convexity results for Lie-algebra-valued momentum maps

In this section, we recall the convexity properties of momentum maps in usual Hamiltonian geometry.
The first two results we shall recall deal with Hamiltonian actions of tori. The original statements of these
theorems are due to Atiyah and Guillemin-Sternberg for the first one (see [Ati82, GS82, GS84a]) and
to Duistermaat for the second one (see [Dui83]). The Atiyah-Guillemin-Sternberg (AGS) theorem says
that whenever a compact connected symplectic manifold (M, w) is endowed with a Hamiltonian action
of a torus T with momentum map u : M — t* = (Lie(T))*, then u(M) is a convex polytope, whose
vertices are the images under p of the fixed points of the action. This polytope is sometimes called the
momentum polytope. The Duistermaat theorem then provides what is usually called a real version of this
convexity result : if 8 is an antisymplectic involution on M which is compatible with the action of 7" on
M and the momentum map g of this action, then u(M?) = u(M), that is, the image under p of the
fixed-point set M? of 3 (as a matter of fact, of any of its connected components) is a convex polytope,
which in this case is equal to the full momentum polytope. As an application of these symplectic geometry
results, one recovers known convexity results from linear algebra and Lie theory, namely the Schur-Horn
theorem, that says that the diagonal of a Hermitian matrix H is a convex combination of permutations
of the eigenvalues of H (see for instance [Knu00]), as well as the related Kostant convexity results for
semi-simple Lie groups (see [Kos74, LR91, FR96]). The convexity results for momentum maps that we
are about to quote are in fact improved versions of the AGS and Duistermaat theorems, in the sense that
they say that convexity of u(M) and u(M?) holds even if M is not assumed to be compact, provided
the momentum map p is a proper map (that is, the inverse image p~!(K) of any compact set K is itself
compact, this implies that u is closed). These improved results have been obtained by Hilgert, Neeb and
Plank in [HNP94] following the approach of Condevaux, Dazord and Molino in [CDMS88], and also by
Sjamaar in [Sja98], following an algebro-geometric approach. We refer to [HNP94] for the proofs of these
results as well as for prerequisites on proper maps and convex sets.

Theorem 8.1.1 (Momentum convexity for Hamiltonian torus actions). [HNP94] Let (M,w) be
a connected symplectic manifold endowed with a Hamiltonian action of a torus T with proper momentum
map p: M — t* = (Lie(T))*. Then :

(i) w(M) is a closed locally polyhedral convex set.
(ii) p: M — u(M) is an open map.
(iii) the fibre u=({v}) of u above any v € t* is a connected set.

(iv) if p(x) € p(M) is an extremal point of the convex set (M) then x is a fived point of the action :
forallteT, tx=x.

In particular, if M is compact, then pu(M) is a convex polytope and it is the convexr hull of the images
under p of the fixed points of the action.

Theorem 8.1.2 (A real convexity result for Hamiltonian torus actions). [HNP94] Suppose
additionally that 8 : M — M is an involution on M satisfying :
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(i) B = —w
(ii) B(t.x) =t"L.x for allz € M and allt € T
(iti) po B =p

(iv) MP = Fiz(3) # 0

Then, for every connected component Q C MP of the fized-point set of 3, u(Q) is a convex polytope and
one has : Q) = p(M).

Remark 8.1.3. Observe that, as T is abelian, the involution 7 : t — ¢t~! is a group automorphism of
T, whose tangent map at 1 € T' is —Id : t — t, so that the compatibility conditions (ii) and (iii) above
rewrite : B(t.z) = 7(¢).6(z) and po = —(TT)* o y1, as was recalled in the beginning of chapter 7.

The next two convexity results that we shall state deal with Hamiltonian actions of non-abelian compact
groups and may be obtained by reduction to the abelian case. Indeed, if U is a compact connected Lie
group acting in a Hamiltonian fashion on a compact connected symplectic manifold (M, w), convexity
results for the momentum map pu: M — u* = (Lie(U))* of the U-action are proved by reduction to the
action, which turns out to be Hamiltonian, of a maximal torus 7' C U on a T-stable symplectic connected
submanifold N C M satisfying UN = M and p(N) = p(M)Nt5, where t. C t* is a closed Weyl chamber
(see definition 2.2.2). Such a manifold N is called a symplectic cross-section. We refer to [HNP94] for
details on the proof of the following result, which was originally conjectured by Guillemin and Sternberg
in [GS82, GS84a] and proved by Kirwan in [Kir84] for compact connected symplectic manifolds, then
extended by Hilgert-Neeb-Plank and Sjamaar to the case of arbitrary connected symplectic manifolds
with proper momentum map. In the following, we assume that there is a given Ad-invariant product
(.].) on u = Lie(U), so that we can identify u* and u and, for any subalgebra t C u, think of t* as a
subset of u*.

Theorem 8.1.4 (Momentum convexity for Hamiltonian actions of compact groups). [HNP94]
Let (U,(.].)) be a compact Lie group acting on a connected symplectic manifold (M,w) in a Hamiltonian
fashion, with proper momentum map p : M — u* = (Lie(U))*. Then, for any choice of a Cartan

subalgebra t C u and any choice of a closed Weyl chamber t, C t* C u*, the set u(M) ﬂﬁ s a conver
subset of u*.

In section 8.2, we will give a proof of a quasi-Hamiltonian analogue, due to Alekseev, Malkin and Mein-
renken (see [AMMO98]), of the above result. Now, just as theorem 8.1.2 is a real version of theorem 8.1.1,
there exists a real version of theorem 8.1.4, which is due to O’Shea and Sjamaar (see [OS00]). The
setting is as follows : U is a compact Lie group acting on a connected symplectic manifold (M,w) with
proper momentum map pu : M — u*, and f : M — M is an involution on M satisfying f*w = —w,
B(u.x) = 7(u).B(x) and pro f = —7 o pu, where 7: U — U is an involutive automorphism of U and where
we still denote by 7 the involution (7'7)* : u* — u* that it induces on the dual of the Lie algebra of U.
Because of the compatibility relations between 3 and both the action of U and the momentum map u,
one has pu(M?) C (w*)™ where 77 : £ € u* +— —7(£), that is, u(M?) consists of points which are fixed
by 7. The result one hopes for is that u(M?) N E is a convex polytope, for some closed Weyl chamber
t C t* C u*, and to describe it as a subpolytope of p(M) NtL. As explained in [0S00], this is only
possible for an appropriate choice of a Cartan subalgebra t C u. Namely, one has to choose t in a way
that t* N (u*)” is of maximal possible dimension. One way to obtain such a Cartan subalgebra is to
start with an abelian subalgebra a C u such that a* C u* consists of 77 -fixed vectors and of maximal
dimension with respect to this property, and then to consider a Cartan subalgebra t C u containing a.
We refer to [OS00] for a description of a in terms of roots, in particular for the notion of Weyl chamber
a’ for the restricted root system corresponding to a (the important thing to understand being that E
is a fundamental domain for the action of the neutral component K° of K := U™ on the vector space
(u*)™ ). One then obtains the following result, for the proof of which we refer to [0S00] :

131



CHAPTER 8 8.2

Theorem 8.1.5 (A real convexity result for Hamiltonian actions of compact groups). [0S00]
Let (U,(.].),T) be a compact Lie group endowed with an involutive automorphism T acting in a Hamil-
tonian fashion on a connected symplectic manifold (M,w) with proper momentum map p : M — u* =
(Lie(U))*. Denote by 7~ the involution 7~ := (=T7)* : u* — u* and let  : M — M be an involution
on M satisfying :

(i) frw=-w

(i1) B(u.x) = 7(u).B(x) for allz € M and all w € U

(i) poB=71"op

(iv) MP := Fiz(B) # 0

Let t C u be a Cartan subalgebra of u >~ u* such that t* N (u*)Tf_is of mazimal possible dimension, and
let 7 C t* be any closed Weyl chamber. Then, the set u(MPB) N t is convez and one has :

n(MP) T = (u(M) N T) N ()™

that is, u(MP) N 5 is the subpolytope of (M) Nt obtained by intersecting the latter with the vector
space (u*)T  Cu*.

Observe that if a C u designates an abelian subalgebra of u ~ u* consisting of 7~ -fixed points and of
maximal dimension with respect to this property, and if t is a Cartan subalgebra of u containing a, then
tt N (u*)” =a’, where a7 is the Weyl chamber defined by the restricted root system corresponding to

a (see [0S00] for details). Therefore, since u(M”?) C (u*)™ because of the compatibility of 3 and , one
has :

WM AT = p(MO)NT N (W)

and theorem 8.1.5 above says that :
u(MP) N = p(M) N ot
We shall come back to this in subsection 8.3.2.

In the remainder of this chapter, we will state and prove a quasi-Hamiltonian analogue of theorem
8.1.5. The one truly remarkable feature of the proof we shall give for convexity properties of group-valued
momentum maps is that, just as in the usual Hamiltonian case, we will reduce the situation at hand to
that of a Hamiltonian torus action on a symplectic manifold N sitting inside the given quasi-Hamiltonian
space M. More precisely, we will prove the existence of a connected symplectic cross-section N C M for
every connected quasi-Hamiltonian space (M,w,u : M — U), where U is a compact connected simply
connected Lie group (see proposition 8.2.3).

Other results and possible approaches to convexity properties of momentum maps may be found in
[Sja98, LMTW98, MW99, Wei01, Sleb, Ben02, Del88, Zun, MT03, AL92, HN98, Nee94, Nee95, Brigd7,
BS00, Fot05].

8.2 A convexity theorem for momentum maps with value in a
compact connected simply connected Lie group

In this section, we give a proof of a convexity theorem for momentum maps defined on a quasi-Hamiltonian
space which is due to Alekseev, Malkin and Meinrenken (see also [AKSMO02]). More precisely, we consider

a compact connected simply connected Lie group U and a quasi-Hamiltonian U-space (M, w, pu: M — U),
and we study convexity properties of p(M).
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8.2.1 Making convexity make sense in a Lie group

The first issue is for convexity to make sense in a Lie group that is not, as it is compact, homeomorphic
to a vector space. In the usual Hamiltonian case, a convex set (M) Nt was obtained (see theorem
8.1.4) by intersecting the image of ;1 with the closure of a Weyl chamber t. € u* in the dual u* of the Lie
algebra of U, that is, with a fundamental domain for the co-adjoint action of U on u* (see proposition
2.2.3, recall that a fundamental domain is by definition a subset ® C X of some U-space X intersecting
each U-orbit in X in exactly one point). In the quasi-Hamiltonian case, the analogous approach consists
in intersecting u(M) with a fundamental domain for the conjugacy action of U on itself. Convexity
then makes sense because, when the compact connected Lie group U is in addition simply connected, this
fundamental domain may be identified with a convex subset of the vector space u = Lie(U). Let us recall
how.

Instead of intersecting p(M) with a fundamental domain for the conjugacy action of U, we could as
well consider the projection of (M) C U to the orbit space U/Int(U) for this action. This is indeed
equivalent because u(M) is a union of U-orbits (as p is an equivariant map) : if ® C X is a fundamental
domain for the action of U on some space X and Y C X is a U-stable subset of X, then the projection
p: X — X/U from X to the orbit space X/U induces a bijection from Y N'D to p(Y) =Y/U. In other
words, Y ND is a fundamental domain for the action of U on Y. Recall now that we have assumed the
compact connected Lie group U to be simply connected. In this case, the space U/Int(U) of conjugacy
classes of U is homeomorphic to the closure W of a Weyl alcove W C t = Lie(T) for any fixed maximal
torus 7' C U (see proposition 2.2.5). More precisely, exp(JV) is a fundamental domain for the conjugacy
action of U on itself and the homeomorphism between W and U/Int(U) is induced by the exponential
map in the sense that we have :

W ;i; exp(W) % U/Int(U)
This means that, for a simply connected U, the space U/Int(U) may be identified, topologically, to a
convex polyhedron W C t of a (finite-dimensional) vector space, so that it makes sense to speak of a
convex subset of U/Int(U) :

Definition 8.2.1 (Convex subsets of U/Int(U)). A subset C' C U/Int(U) is called convez if it is
mapped, under the identification U/Int(U) >~ W C t, to a convex subset of t C u.

Observe that if we use the same approach for a usual Lie-algebra valued momentum map p : M —
u*, we are led to considering subsets of the orbit space u*/Ad(U) for the co-adjoint action, which is
homeomorphic to the closure E C t* of a Weyl chamber t%, which is also a convex subset of a finite-
dimensional vector space.

Remark 8.2.2. When the compact connected Lie group U is not simply connected, the identification
U/Int(U) ~ W does not hold and has to be replaced by an identification U/Int(U) ~ W/ (U) (see
for instance [Loo69b] for an explanation of the action of 71(U) on W). In particular, U/Int(U) is not
necessarily simply connected anymore, and therefore cannot be homeomorphic to a convex subset of a
vector space. We refer to [Zun] for additional comments on this situation.

8.2.2 Constructing a symplectic cross-section in a quasi-Hamiltonian space
The purpose of this subsection is to prove the following result :

Proposition 8.2.3 (Existence of a connected symplectic cross-section). Let U be a compact
connected simply connected Lie group and let (M,w,pu : M — U) be a connected quasi-Hamiltonian U -
space. We assume the momentum map p to be proper.

Let T C U be a mazimal torus in U, let W C t = Lie(T) be the closure of a Weyl alcove, and let
p:U — U/Int(U) be the projection from U to the set of its conjugacy classes. Recall that the exponential
map exp : t — T induces a homeomorphism W — U/Int(U).

Then, there exists a submanifold N C M such that :
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(i) N is connected.
(ii) N is T-stable.
(iii) w|n is a symplectic form.
(iv) the action of T on N is Hamiltonian with momentum map the map

pi=populy: N —U/Int(U)~WCt

(v) The set UN :={u.x : x € Nyu € U} is dense in M, and the set i(N) is dense in ji(M).

The manifold N C M whose existence is guaranteed by proposition 8.2.3 is called a symplectic cross-
section because it is a symplectic manifold satisfying U.N = M (see [GS84c]).

Remark 8.2.4 (On the assumption of properness of the momentum map). The assumption
that p is proper is satisfied in the examples of quasi-Hamiltonian spaces that we are interested in. As
a matter of fact, when U is a compact Lie group, all the examples of quasi-Hamiltonian spaces that are
of interest to us (a conjugacy class of U, the double of U, and products of those, see chapter 4) are all
compact, so that u : M — U is automatically proper. The point of not assuming M to be compact in
proposition 8.2.3 is to hopefully be able to consider quasi-Hamiltonian spaces associated to non-compact
Lie groups G in the future, for this should be done by reducing the action of G to that of a maximal
compact subgroup U C G, as does Weinstein in [Wei01] for usual Hamiltonian spaces, in which case we
should be in the exact situation of proposition 8.2.3.

To prove proposition 8.2.3, we will in fact construct a submanifold N C M such that (N) C exp(W) C U,
so that the map g : N — W is no other than g = exp touly : N — t (recall that explyy is a
homeomorphism from W to exp(W)) and we will show that it is a smooth map from N to t.

We begin by describing points of u(M) whose conjugacy class in U is of maximal possible dimension
among points of p(M). This is a natural thing to do, as the set of such points is dense in pu(M) (see
proposition 2.1.6). Define g to be the maximal dimension of a conjugacy class of a point of p(M) and 3,
to be the set of points of U whose conjugacy class is of dimension ¢ :

q :=max {dim U.u(z) : v € M}

Y, ={ueU| dim Uu=gq}
Recall that ¥, is a submanifold of U (see proposition 2.2.10). Define then M, to be the set of points of
M whose image under p lies in ¥, :

My :={z e M| dim Up(z) = q} = p~(2)

so that p(M,) is exactly the set of points of p(M) whose conjugacy class in U is of maximal possible
dimension.

The first thing to observe is that M, is an open, connected, and dense subset of M. Let us first show
that it is open. For any z € M,, there exists an open neighbourhood V of u(z) in U such that for all
u €V, dim U > dim U.u(x) (see corollary 2.1.5). Since u is continuous, we have u(y) € V for all y in
some open set U of M containing . Since dim U.u(z) is maximal, we necessarily have dim U.u(y) = ¢
for all y € U, so that U C M,. We now want to prove that M, is dense and connected. To that end, we
introduce the set M,..4 of points of M whose orbit under U is of maximal possible dimension :

r:=max {dim Uz : © € M}
Myeg={zeM | dim Uz =r}
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Then it follows from proposition 2.1.6 that M,., is an open, connected, and dense subset of M. As M,
is open, the intersection M;.q 4 := Myeq N M, is a non-empty open set of M. In addition to that, since
(M,w,p: M — U) is a quasi-Hamiltonian space, M., enjoys the following remarkable property :

Myeg = {z € M | rk Tp is maximal}
Indeed, it follows from point (iii) of proposition 4.3.1 that :
max {dim Im T,p} = max {dim ul}

xeEM xEM
= dim u— min {dim u
rzeM { w}

= dim U — min {dim U,}
zeM
= max {dim U.z}

= r

In particular, p is of constant rank on M,.,. Now, to show that M, is dense and connected in M, since
we have Myeq 4 C My C M, it is enough to prove that M., , is dense and connected in M. First, we
observe that this is locally true in the following sense :

Lemma 8.2.5. For allx € M,.4, there exists an open neighbourhood V. of v € Mycq such that Mycq NV,
is a dense and connected subset of V.

Proof. Since p is of constant rank on M,.,, there exists an open connected neighbourhood V, of z
in Myeq such that (V) is a (connected) submanifold of U (of dimension equal to rk T, i) and such
that ply, : Vo — p(Vs) is a locally trivial submersion onto a connected manifold with connected fibres
(the constant rank theorem says that u is locally equivalent to the linear projection (z1, ... ,z,) —
(1, ... ,2,0, ... ,0), see for instance [Ave83], p.86). Since p is equivariant and continuous, we have
u.p(y) € u(Vy,) for y € V, and u sufficiently close to 1 in U. Therefore, 1(V,) is a union of connected
open pieces of conjugacy classes of U. Since in addition to that p(V,) is connected, we have, if we set

¢z :=max {dim U.z : z € u(V,)}
(observe that g, has no reason to be equal to dim U.u(z)) and

Qp = {p(y) € u(Vy) | dim U.p(y) = ¢z}

that €, is an open, connected, and dense subset of u(V,) (see proposition 2.1.6). Now, since €2, is an
open dense and connected subset of u(V,) and since ply, : Vi — u(Vy) is a locally trivial submersion with
connected fibres over the connected manifold u(V,), we have that (u|y,) 1(Q) = p=1(Q) NV, is an
open dense and connected subset of V, (recall that the submersion pu|y, is equivalent to (z1, ..., 2,) —
(x1, ..., 2,0, ...,0)). Moreover, if z,y € M,¢q, we can join them by a path ¢ : [0,1] — M;¢4. Denote
by ¢ the compact connected set é := ¢([0, 1]). For every z € ¢, there exists an open neighbourhood V, of
z in Myeq4 such that the set

R.:={weV.| dim Uu(z) =¢q.:= max {dim U.x}}
uepn(V;)

is open, connected, and dense in V,. By compactness, we can cover ¢ by a finite number of such V, :
=V, U ...uV,,

with 21 =z and 2z, = y. If V,, N V., # 0, then by density and openness, R., N R., # (). Therefore, for
w € R., N R, the conjugacy class of p(w) has dimension ¢., = ¢.,, whence we get ¢, = ¢y, so that g,
is the same for all z € M,eq. As Mycq N My # (), one necessarily has g, = ¢ for all € M,.4. Therefore
p N Q) NV, = M, eg,q N Vi, which proves the lemma. O
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We now go back to our global study :

Lemma 8.2.6. The subset Myegq := Mycqg N My is an open, connected, and dense subset of M. Conse-
quently, so is M.

Proof. Myeq,q is open as it is the intersection of two open sets. Since M., is dense in M, it suffices, in
order to prove that M,.q 4 is dense in M, to show that M, .y C M;cg 4. For any v € M,.4, there exists,
by lemma 8.2.5, an open neighbourhood V, of x in M,.4 such that M;.q, NV, is dense in V,, so that =
is the limit of a sequence of points of M,y 4, Which proves that M,eq C Mg q.

Let us now prove that Mg q is connected. Take x,y € Myeg q. As M4 is connected, there exists a path
¢ :]0,1] — M,¢q joining = to y in M,.q, and we set ¢ := ¢([0, 1]). Then, as in the proof of lemma 8.2.5,
there exists a finite open cover

E=V,U ..UV,

with z; = 2 and 2z, = y. Then V., NV,, # () for some i > 2 and by density one has Mycg,N(V., NV.,) # 0.
By connectedness of V,, N M,y 4, any S Myegq N (V2, NV;,) can be joined to z; by a path in Mg q.
Repeating this, we obtain a path from z; =z to 2z, = y in Mycg 4.

Finally, we have proved that M4, is connected and dense in M, and we have M,¢q 4 C My C M =
M, .cq,q, which proves that M, is connected and dense in M. O

Instead of describing all of u(M,), what we are really interested in is describing p(M,) N exp(W) C

¥, Nexp(W). Recall that W is a convex polyhedron of t, which can de described entirely in terms of
roots of (U,T) (see section 2.2). Moreover, we know from proposition 2.2.10 that the intersection of ¥;

with exp(W) is a finite disjoint union of submanifolds of U :

Yy Nexp(W) = | ] exp(Ws)
S | dim U—dim Us=j
= exp(Wgm)U ... Uexp(Wgm))

(where Ug is the stabilizer of any element in exp(Ws), see definition 2.2.9), so that we have :

p(Mq) Nexp(W) C exp(Wsmy) U ... Lexp(Wagim )

and we now want to study points in each exp(Wg) ) which lie in the image of . To that end, we set,
forallie {1, ...,m}:
MS(i) = Mil ( eXp(Ws(i) ))

By definition we have Mg C My, and since M, is U-stable, we have u.x € M, for all x € Mg and all
uel.

Lemma 8.2.7. If Mg # 0, it is a submanifold of M, and for every open set O of Mg, the set
U0 :={ux:uelUzecO}
s open in M.

Proof. Recall that exp(Wg) is a submanifold of ¥, and that for all v € exp(Wg ), one has (see
proposition 2.2.10) :
T,X, = Tu(U.u) &) Tu(exp(WSu)))

Moreover, Mg = p~t(exp(Wg))), where p is seen as a map p: M, — %,. Hence for all z € Mgq) :
Tu(@)Xa = Tt (Ut(x) © Ty (exp(Wso))

But :
e (Uu(x)) = TwM'(Tx(U.:E)) ClIm T, u
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(where the equality follows from the equivariance of p), so that, for all x € Mg :
Im Tpp + TN(JU) ( eXp(WS(i) )) = Tu(w)Eq

which means that the map p is transverse to the submanifold exp(Wge) ). By the transversality theorem
(see for instance [GP74], p.28), Mgu) = u~!(exp(Wg))) is therefore a submanifold of M,, hence of M,
and one has, for all x € Mg :

ToMgi = (Ton) ™ (T (expWso)) ) (8.1)
Moreover, since u(My) C ¥4, one has, for such an x € Mguy C M, :
T o © Ty g = Ty (U-l2)) & Tty (expWso))
Consequently, for all v € T, M = T, M, one has :

Twﬂ“v = 51 + 52

where :
& € Ty (Up()) = Top(To(U.z))  and & € Ty (exp(Ws)))
Hence & = Tppi.(v — 1) for some vy € T, (U.x). Set vo := v —wvy. Then Tpp.ve = & € Tz (exp(Ws) ),
therefore : .
Vg € (Tz ) (TM@)(GXP(WS(«;)))) = TzMs(i)
hence :
v=uv1 +ve € Tp(Uz) +Tp Mg

and therefore :
T.M =T,(U.z) + Ty Mg (8.2)

One may observe that this sum is generally not a direct sum, since if X € u satisfies X::(m) = 0, then

X7# € ker Typ C TyMgiy, and X7 may be non-zero in T, (U.z). The equality 8.2 shows that if O is an
open subset of Mguy containing z, then U.O contains an open subset V, of M containing . Then for all
u € U, u.V, is an open subset of M containing u.x and contained in U.Q, which shows that U.O is open
in M. O

In particular, U.Mg) is open in M. And we have :
Lemma 8.2.8. M, = | |", U.Mg

Proof. Let us prove that M, C U2, U.Mg, the other inclusion following from the facts that Mgu C
M, and that M, is U-invariant. Consider an element z € M,. Then u(x) € X, But there exists

u € U such that u.u(z) € exp(W), so that p(u.z) = u.p(z) € Xy Nexp(W) = U2, exp(Wg) ) hence
xr € H;ZIU.MS(I’). O

Lemmas 8.2.7 and 8.2.8 have the following remarkable consequence :

Lemma 8.2.9. Ezxactly one of the Mgu)y is non-empty.

Proof. My = U2, U.Mgu by lemma 8.2.8, and U.Mgq) is open in M, by lemma 8.2.7. But M, is
connected by lemma 8.2.6, so that only one of the U.Mg:), and consequently only one of the Mgy, can
be non-empty. O

Corollary 8.2.10. It follows from lemmas 8.2.8 and 8.2.9 that My = U.Mgu, for a unique i9 €
{1, ... ,m}. It then follows from lemma 8.2.6 that U.Mgiy is an open, connected, and dense subset of
M.
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From now on, we simply denote S() by S. The submanifold Mg := p~'(exp(Ws)) will end up being
our symplectic cross-section. We first prove the following result :

Lemma 8.2.11. Ifx € Mg and uw € U are such that u.x € Mg, then u € Us (where Ug is the stabilizer
of any element in exp(Ws), see definition 2.2.9).

Proof. If z € Mg and u € U are such that u.x € Mg, then pu(z) and u.u(z) = p(u.x) are both elements of

exp(Wsg) C exp(W), hence u(z) = u.pu(z) that is, u stabilizes some element of exp(Wg). Consequently,
u € Ug. O

Together with the fact that Ug is connected, being the centralizer of an element of a compact con-
nected simply connected Lie group (see proposition 2.2.7), lemma 8.2.11 has the following important
consequence :

Lemma 8.2.12. The manifold Mg is connected.

Proof. Assume that Mg = M él) UM g) is the disjoint union of two open subsets of Mg. Then, by lemma
8.2.7, U.Mg) is open in M. If (U.Mél)) N (U.Méz)) # (), there exist z1 € Mél), x9 € Méz) and uy,us € U
such that wi.27 = wus.x9, hence u;lul.xl = x2. But then, by lemma 8.2.11, u;lul € Ug, which is
connected by proposition 2.2.7. Therefore, there is a path (u;) joining 1 to uy 'u; in Us, hence us.z; is
a path joining x; to z2 in Mg, which contradicts the fact that z; and x5 lie in disjoint open subsets of
Msg. Therefore, (U.Mél)) N (U.MéQ)) =) and :

UMs = (UMP)u(U.MP)

with U.Mg) open in M. But U.Mg is open in M and connected by corollary 8.2.10, so that U.Méi) =0
for ¢ = 1 or ¢ = 2. Therefore, one of the M él) is empty, which proves the lemma. o

We now want to study precisely the relation between p(Mg) and p(M) Nexp(W), which was our initial

motivation. Recall that u(Mg) C exp(Ws) C exp(WV), the latter being closed in U.

Lemma 8.2.13. If i is a closed map (in particular, if p is proper), one has :

u(M) Nexp(W) = u(Ms)
Proof. Take u(z) € u(M) Nexp(W). Since M, = U.Mg is dense in M by corollary 8.2.10, there exist
a sequence (x;);jen of elements of M, and a sequence (u;);jen of elements of U such that z = lim z;
and u;.z; € Mg. Since U is compact, we may assume that (u;) is convergent and denote its limit by
u = lim u;. Then :

wp(z) = plux) = p(lim (uj.z;)) = lim p(u;.2;) € p(Ms)

In particular, u.u(z) € exp(W), so that u.u(x) = u(x), since exp(W) is a fundamental domain. Hence

(@) € p(Ms), so that p(M) Nexp(W) C u(Ms).

Conversely, since p is a closed map, pu(M) is closed in U and so is u(M) Nexp(W). But pu(Ms)

C
(M) Nexp(W), hence u(Mg) C p(M) Nexp(W). O

Observe that lemma 8.2.13 is a consequence of corollary 8.2.10 and of the fact that u(Mg) C exp(W).

This last point also means that under the identification U/Int(U) ~ W, the map
f=poplys : Mg — U/Int(U) ~ W C t = Lie(T)

is simply it = exp~!ou|ng. As a matter of fact, it follows from the definition of Mg that u(Mg) actually
lies in the submanifold exp(Ws) of U, which is diffeomorphic to Ws under exp~!, so that i = exp ! op|ass
is a smooth map from Mg to t:
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Ws

Mg —— exp(Ws)
wlarg

We now compute the differential of g, which is defined to be the composed map dji := pr o T of the
tangent map T : TMg — Tt~ t x t and the projection pr: Tt ~ t X t — t onto the second factor.

Lemma 8.2.14. The differential dii of i is equal to the t-valued 1-form p*@ on Mg, where 0 is the Maurer-
Cartan 1-form on T, that is, the t-valued 1-form defined fort € T and £ € TyT by 0,(§) =t L& =&Et7 1
dp = ™o
Proof. Recall that the tangent map to the exponential map exp : u — U is given, for all X € u and all

EeTxu=X+u, by:
1_67adX

Ty exp .€ = exp(X). (W (- X))

(see for instance [HelO1], p.105), where % is the endomorphism of u given, for all { € u, by :

1— —ad X = adX
Lo oy et
k=1

and where exp(X).¢ denotes the effect on tangent vectors { € u = T1U of the left translation of element
exp(X) in U. In the present case, we have to consider exp : t — T with T abelian, since for x € Mg, we
have u(x) € exp(Ws) C T, so that :

1_67adX
ad X L=
as (adX)k’l.C =0 assoonas k—1>1. Therefore, forall X etand all { € Txt=X+1:
Tx exp.§ = exp(X).({ — X)

Therefore, for all x € Mg and all v € T, Mg, we have :

Ty(expop).v = Ty expolypiv
=p
— exp (@) (Tuiv — ()
=(dit)z.v
so that :
Typu0 = exp (f(0))-(d)e2)
hence :
(i = (exp )71.@#.@)
0 XPou(r)( )
0,u(2) (T prv)
= (W0)v

We may now prove proposition 8.2.3 :
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Proof of proposition 8.2.3 (Existence of a connected symplectic cross-section). Set N := Mg, where Mg
= p~(exp(Ws)) is the submanifold of M constructed above.

(i)
(i)

(iii)

Lemma 8.2.12 shows that N is connected.

Since N = Mg = i~ (exp(Ws)) with p equivariant, and since the conjugacy action of 7' on exp(Ws)
is trivial (as T is abelian), we have that N is T-stable.

Let us show that w|pz, is a symplectic form. We denote by ¢ the inclusion map ¢ : Mg — M, so
that i*w = w|p,. First, we have :

d(i*w) = i*(dw) = i* (~p"x) = —(poi)"x

But poi = plyg is T-valued and x|r = 0 as T is abelian. Therefore, d(i*w) = 0. Second, let
us show that i*w is non-degenerate. Take x € Mg and v € T, Mg such that for all w € T, Mg,
wy(v,w) = 0. In particular, v € (T, Mg)*~ C T,,M. But we know from lemma 8.2.7 that :

T, Mg = (Top) ™ (Tua) exp(Ws))

(see (8.1)) hence :
ker Ty = T H({0}) C T Mg

and therefore :
(TpMs)™ C (ker Tpp)t

And we then know from proposition 4.3.1 that :
(ker Tpp)te = {X# : X cu} =T, (Ux)
Take now X € u such that v = X7. Then, by the equivariance of y :
Toppv = Tpp. X# .2 = Xl(z) € T2y (expWs)) N Ty (U.pa()) = {0}
(where XT denotes the fundamental vector field associated to X € u by the conjugacy action of U

on itself, and where the last equality follows from proposition 2.2.10). Hence v € ker T, . But by
proposition 4.3.1, one has ker T,u C (T, (U.z))*+, therefore :

ONS (Tz(U.x))Lw N (TzMS)L“
And we know from proposition 8.2.7 that :
T. Mg+ T, (Ux) =T, M

(see (8.2)). Therefore v € (T, M)*+ = kerw,. Then v € ker T,y N ker w,,, which is equal to {0} by
proposition 4.3.1.

Let us now show that the action of T on Mg is Hamiltonian with momentum map i = exp~lopu :

Mg — t. Take X € t. Since M is a quasi-Hamiltonian space, we have :
1
Lx#w = gu*(GL +07 | X)
Therefore, for all z € Mg and all v € T, Mg = (Tpp) ' (T} (0) exp(Ws)) :

N =

(tx#w)g.v =
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But T, p.v € T)yz) exp(Ws) with exp(Ws) C T, so that, since 7' is abelian :

95(1)(Tmu.v) = 95@)(Twu.v) = Opu(z)(Topv) = (1*0)z.v

where 0 is the Maurer-Cartan 1-form of T'. Hence :

(tx#w)ev = (00| X) = ((di)sv | X)
where the last equality follows from lemma 8.2.14. Denote by (| X) the function :

f|X): Ms — R
r — ()] X)

(where i = exp~! o 1 Mg — t). We then have :

(d(z]X)),-v = ((dp)sv] X)

Therefore, for all X € t:
ix#w = d(i] X)

that is : the Hamiltonian vector field associated to the function (i | X) is the fundamental vector
field X#, which shows that the action of T on Mg is Hamiltonian.

(v) Corollary 8.2.10 shows that U.N = M. Since u is a proper map, lemma 8.2.13 shows that u(N) =

w(M) Nexp(W), or equivalently : j(N) = u(M).
O

8.2.3 The convexity statement

We can now state and prove the following convexity result :

Theorem 8.2.15 (Momentum convexity for group-valued momentum maps). [AMMOI8] Let
(U,(-].)) be a compact connected simply connected Lie group and let (M,w,pu: M — U) be a connected
quasi-Hamiltonian space with proper momentum map p. Then, for any choice of a maximal torus T C U
and any choice of a closed Weyl alcove W C t = Lie(T), the set u(M) Nexp(W) C exp(W) is a convex
subpolytope of exp(W) ~ W, called the momentum polytope.

To prove this result, we will use the symplectic cross-section N C M whose existence is guaranteed by
proposition 8.2.3 and follow the strategy of [HNP94]. To that end, we recall the following results from
[HNP94].

Theorem 8.2.16 (Local convexity results for Hamiltonian torus actions). [HNP94] Let (N,w) be
a symplectic manifold endowed with a Hamiltonian action of a torus T with momentum map p: N — t*.
Then for every x € N, there exist an open neighbourhood V, of x € N and a polyhedral cone C,(,) C t*
with vertex p(x) such that :

(i) p: Ve — Cpuyy is an open map. In particular, u(Vy) is an open neighbourhood of p(x) in C, .
(ii) p=*({u(y)}) is connected for all y € V,.

If in addition B is an antisymplectic involution on N satisfying B(t.x) = t~1.6(z) and po B = u, then
assertion (i) above remains true for the manifold NP := Fiz(B3) and the same cones C,(y), € NP, that
18 :

(iti) p: Ve NNP — Cpy) is an open map. In particular, p(V, N NP) is an open neighbourhood of ji(x)
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For additional local properties, including a description of the cones C),(,) using the local normal form
of the action, we refer to [HNP94]. Conditions (ii) and (iii) above play a special role when it comes to
convexity considerations insofar as they make it possible to obtain a global result from a local one (see
theorem 8.2.18), which justifies the following definition :

Definition 8.2.17 (Local convexity data). Let X be a connected Hausdorff space, and let V' be a
finite dimensional vector space. Consider a continuous map ¥ : X — V. We will say that ¢ gives rise
to local convexity data (Vz, Cy(a))zex if for any 2 € X there exist an open neighbourhood V, of x in X
and a convex cone Cy () C V with vertex ¢(x) such that :

(0) 1 : Vo — Cyz) is an open map.
(LC) v~ 1({¥(y)}) NV, is connected for all y € V,.
A map ¢ : X — V satisying condition (LC) alone is said to be locally fibre-connected.
We then have :

Theorem 8.2.18 (Local-global principle). [HNP94] Let ¢) : X — V be a map giving rise to local
convexity data (Vz, Cpz))zex and assume that 1) is a proper map. Then (X)) is a closed locally polyhedral
convez subset of V, the fibres 1~ 1({v}) are connected for allv € V, ¢ : X — (X)) is an open map and

Cu(a) = ¥(x) + RE(P(X)\{Y(2)}).

In particular, we see that theorem 8.1.1 follows immediately from theorems 8.2.16 and 8.2.18. We also
state the following corollary of the local-global principle, which we will use in the proof of proposition
8.3.5.

Corollary 8.2.19. [HNP94] Let V be a finite dimensional vector space and let P C V be a closed
connected subset of V' such that for all x € P, there exists a neighbourhood O, of v in V and a cone
C, C V with vertex v such that O, NP = 0, NC,. Then P is a convex subset of V and for all v € V,
Cy =v+ Rt (P\{v}).

Going back to our case, we see that we have a symplectic cross-section (N, w|y) C (M,w) endowed with
a Hamiltonian torus action, and that u(N) = u(M) Nexp(W) (see proposition 8.2.3). In particular,
by theorem 8.2.16, the momentum map |y gives rise to local convexity data. But we cannot conclude
immediately that u(IV) is convex because u|y has no reason to be proper, as N = u~*(exp(Ws)) is in

general not closed in M. But we can use another result from [HNP94] :

Proposition 8.2.20. [HNP94] Let ¢ : X — V be a map giving rise to local convezity data (Ve, Cy(z))zex -
Consider any closed locally polyhedral convex subset D CV and setY :=~Y(D) C X. Then |y : Y —
V' gives rise to local convezity data (Vy, Cyuy NRT.(D\{(y)}))yey -

We then have :

Lemma 8.2.21. Let Mg := pu~t(exp(Ws)) be a connected symplectic cross-section for the connected
quasi-Hamiltonian space (M,w,pu: M — U). Then the set u(Mg) C exp(W) ~ W is a convex polytope.

Proof. By proposition 8.2.16, the map p|azs gives rise to local convexity data (V, Cy(q))zens. Write the
convex set Ws as an increasing sequence of closed locally polyhedral convex subsets (Dy,)nen. Then :

exp(Ws) = | J exp(Dn)
neN

Therefore, proposition 8.2.20 applies to the closed sets Y;, := pu~!(exp(D,,)) and puly, gives rise to local
convexity data (Vz, Cpz) NRT.(exp(Dpn)\{1(2)}))zey, . Additionally, since Y, is closed in Mg, uly, is a
proper map. Since Mg is connected and is an increasing union of closed subsets Mg = U,enY,, we can
find an ascending sequence (Z,)nen of connected components of the (Y, )nen such that Mg = UpenZ,.
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Each Z,, is closed in Y,,, so that y|z, is a proper map which gives rise to local convexity data (Vz, Cyyz) N
R+.(exp(Dn)\{1(x)}))zez,. Therefore, by theorem 8.2.18, u(Z,) is a convex polytope. We then have

that pu(Mg) is an increasing union pu(Mg) = Unenp(Zy) of convex subpolytopes of exp(W) ~ W, which
implies that it is a convex polytope. O

We can now prove theorem 8.2.15 :

Proof of the convexity theorem 8.2.15. We have pu(M)Nexp(W) = u(Mg) by proposition 8.2.3 and u(Mg)
is a convex polytope by lemma 8.2.21, hence so is u(Mg). O

Remark 8.2.22 (Addendum to theorem 8.2.15). As a matter of fact, a more complete statement
of convexity theorem 8.2.15 would be to say that, in addition to the conclusion that p(M) is a convex
polytope, one also has :

- the map g : M — (M) is an open map.
- the fibres of i are connected. In particular, p=1({1}) = =1 ({1}) is a connected subset of M.

To prove this, observe that these results are true for the symplectic cross-section Mg in virtue of theorem
8.1.1, whence one can deduce that they are also true for M = U.Mg. We refer for instance [Ben02] for a
proof of this in the usual Hamiltonian setting. As we will not need these results in the following, we do
not reproduce the proof here.

A slightly different strategy may be applied to prove the convexity of u(Mg), for which we refer to
[Ben02]. We now move on to establishing a real version of this convexity result.

8.3 A real convexity theorem for momentum maps with value
in a compact connected simply connected Lie group

In this section, we study the image, under the momentum map pu, of the fixed-point set M? of a form-
reversing involution 3 defined on the quasi-Hamiltonian space (M,w, i : M — U) and compatible with the
action of (U, 7) and the momentum map g of this action in the sense of definition 7.2.1. More precisely, we
will study the convexity properties of u(M?) Nexp(W) (or equivalently fz(M*?)) and show that when the
symmetric pair (U, 7) is of maximal rank (see definition 3.2.1) then the set u(M*?)Nexp(W) ~ a(M?) c W
is a convex polytope, which turns to be equal to the full polytope u(M)Nexp(W) ~ fi(M). As this result
is sufficient to prove the existence of decomposable representations (see subsection 8.3.3), we will not
prove any convexity result for u(M?)Nexp(W) in the case where (U, 7) is not of maximal rank. We shall
nonetheless say a few words on this situation in subsection 8.3.2.

8.3.1 The case where (U, 7) is of maximal rank

Recall that the symmetric pair (U, 7) is said to be of maximal rank if dim U/U"™ = 1(dim U + 1k U),
where U7 is the subgroup of U consisting of elements of U fixed by 7. In this case, there exists a maximal
torus T C U which is fixed pointwise by the involution 7= : u + 7(u~!) (see proposition 3.2.3). If
we choose such a maximal torus T C Fix(r~) C U (in particular 7(t) = ¢! for all t € T), then the
construction of the symplectic cross-section N C M of proposition 8.2.3 immediately implies that N is
B-stable. Indeed, recall that N = Mg := u~!(exp(Ws)) with exp(Ws) C T so that, if z € Mg, then :

poflx) =7 op(x) = p(z) € exp(Ws)

hence 3(x) € Mg. Therefore, 8 induces an involution 8g := |4 on the symplectic manifold (Mg, wg :=
w|pg), and this involution is antisymplectic since f*w = —w. Further, §g is compatible with the action
of (T,7) on Mg and with the momentum map fi. More precicely, B(t.z) = 7(t).8(x) = t~1.8(z) for all
x € Mgandallt € T, and io 3 = 1, whence we see that we are almost in the situation of the Duistermaat
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theorem (theorem 8.1.2). We shall now refine this analysis, and in particular relate the fixed-point sets
Mgs and M”, as was done for Mg and M in statement (v) of proposition 8.2.3.

Lemma 8.3.1. The involution (3 leaves the set My = {x € M | dim U.u(x) = ¢} C M invariant.

Proof. For any x € My, consider the element po S(x) = 7~ o u(z) € U. There exists an element u € U
such that ¢ := u(7~ o u(z))u~?! is an element of the maximal torus 7. Consequently, 7~ (t) = ¢, which
means that 7(u)u(z)7™ (u) = u(r~ o u(z))u~!, therefore that u(z) is conjugate to 7~ o p(x) = po B(x).
In particular, dim U.pu(8(z)) = dim U.u(z) = ¢, which proves the lemma. O

Observe then that the group K = U™ = Fiz(r) C U acts on M” since B(k.z) = 7(k).3(z) = k.x for all
x € MP and all k € K. We then have :

Lemma 8.3.2. Assume that MP # (). Then the set Mqﬁ ={z € Fiz(0) | dim U.u(x) = q} is non-empty,
open, and dense in MP.

Proof. Set :
¢ = max {dim K.u(z) : = € MP}

and :
MI[;q, = {x € Fiz(B) | dim K.u(z) =4’}

Then M I@ o Don-empty by definition and it is an open and dense subset of M? (apply proposition
2.1.6 to every connected component of M?). Take now z € M;[;q/- Then u(x) € Fix(t™) (since
7 (u(x)) = p(B(x)) = wu(x)), so that there exists, by corollary 3.2.6, an element k € K such that
ku(x)k=! € exp(W) C T. But if w € Fiz(r7), then dim K.w is maximal if and only if dim U.w
is maximal. Indeed, dim K.w = dim K — dim (Us/)” where S’ is the uniquely defined set such that
K.w Nexp(Ws:) # 0, and then dim Uw = dim U — dim Ugs for the same S’ since Uw D Kaw .
Therefore, here :

dim K.u(z) = ¢ if and only if dim U.u(z) = ¢
Hence Mlﬁ(’q, = Fiz(8) N My = J\Jqﬁ7 which proves the lemma. O
Consequently :
Lemma 8.3.3. If M”? #£ () then Mgs # 0, and one has : Mf = U".Mgs.

Proof. Since M? # () by assumption, lemma 8.3.2 shows that Mqﬁ # (). Take now z € Mqﬁ. Then
w(x) € Fixz(r7) and therefore there exists, by corollary 3.2.6, some k € Fix(7) = U™ such that :

ku(z)k~t € exp(WV) N u(M,) C exp(Ws)
where the last inclusion follows from lemma 8.2.9. Hence :
k€ p ! (exp(Ws)) = Ms

. Moreover, f(k.z) = 7(k).8(x) = k.x, hence k.x € Mgs, which is therefore non-empty, and we have
indeed Mf = UT.MS". O

We can now prove an analogue of statement (v) of proposition 8.2.3 (or equivalently, of lemma 8.2.13) :

Lemma 8.3.4. If yu is a closed map (in particular, if p is proper), then the set M(Mgs) is dense in
1(MP) Nexp(W).
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Proof. Assume that M” # () (otherwise there is nothing to prove) and take u(x) € pu(M?) N exp(W).
Then, by lemma 8.3.2, x = lim z; with z; € Mqﬁ and, by lemma 8.3.3, there exists, for all j, an element

k;j € UT such that k;.x; € Mgs. Since U7 is compact, we may assume that the sequence (k;) converges
to a certain k € U”. Then :

k() = p(k.a) = lim p(k; 2;) € p(MZ°)

In particular, k.u(z) € exp(W), so that k.u(x) = p(z). Hence u(x) € M(Mgs), so that u(M*?)Nexp(W) C

p(ME?). B
Conversely, since p is a closed map, u(M?) is closed in U and so is u(M?) Nexp(W). But u(MgS) C
w(MP) Nnexp(W), so that M(Mgs) C u(MP) Nexp(W). O

Thus, pu(M gs) is almost the whole of u(M#?) Nexp(W). This is interesting because we may now relate
,u(MgS) to u(Msg) (which is almost u(M) Nexp(W), by lemma 8.2.13) in the following way :

Proposition 8.3.5. Assume that MP? # () and that yu: M — U is a proper map (in particular, it is a
closed map). Then, in the above notations :

u(MEF) = u(Ms)

Recall that Mg C M is the symplectic cross-section from proposition 8.2.3, so that the above result
is very similar to Duistermaat’s theorem 8.1.2. However, as in the proof of lemma 8.2.21, we cannot
apply theorem 8.1.2 directly to Mg, since p|prs is in general not proper. But we may work with the
ascending sequence (Z,,)nen introduced in the proof of lemma 8.2.21 : W is an acending union of closed
convex subsets W = Upen Dy, and Mg := p~!(exp(Ws)) is an ascending union Mg = U,enZ, of closed
connected sets Z, C u~'(exp(D,)). The map fi|z, is a proper map which gives rise to local convexity
data (Vz, Cii(z))zez, and, by proposition 8.2.20 and theorem 8.2.18, the set 1i(Z,) C tis convex. We
then observe the following fact :

Lemma 8.3.6. Consider n € N such that Z, N MP # (). Then for any connected component Q C
(Z, N MP), the set i(Q) is conver.

Proof. First, observe that @ is closed in M, and since p : M — U is a closed map, i(Q) is a closed
connected subset of t. Second, take x € Q. It follows from point (iii) of the local convexity theorem
theorem 8.2.16 that there exists a neighbourhood V, of z in M and a neighbourhood Oy, of ji(z) in t
such that 1(V; N Q) = Cp(y) N Opi(yy- Further, i(Q) lies in the convex set 11(Zy), hence is contained in

fi(@) + R GUZO @) = Cao) (83)
where the equality follows from theorem 8.2.18. Hence :
Ciit) N Ofia) = 1(Q) N Opi(a)
so that (@) is convex by corollary 8.2.19. O

Remark 8.3.7. In fact, if we apply the full of corollary 8.2.19, we also obtain :

for all 7 € Q, Cray = jil) + BT -(HQ)\[(@)}) (8.4)
We then recall the following result from [HNP94] :

Lemma 8.3.8. [HNP94] If P, C P, is an inclusion between two convex subsets of a finite-dimensional
vector space satisfying, for all v € Py the condition v+ RT.(Pi\{v}) = v+ Rt.(P\{v}), then P = P;.
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Proof. A convex set is the intersection of cones containing it, so that :

Pr= ) (w+R.(P\{v}) = [ (0+RF(P\{v}) > [ (v +R¥.(P\{v})) = P»

veEP; vEP; vEP;
hence P, = Ps. O
And we may now prove proposition 8.3.5 :

Proof of proposition 8.3.5. Consider an n such that Z, N M” # () and let Q be a connected component
of Z, N MP. Then we know from lemma 8.3.6 that 1(Q) C fi(Z,) is an inclusion between two convex
sets of a finite-dimensional vector space. Additionally, by comparing (8.3) and (8.4), we obtain :

fi(z) + RT.(A(Q)\{fi(x)}) = A(2) + RF. (i Zn)\{7il(=)})

Therefore, lemma 8.3.8 applies and 1i(Q) = ji(Z,), hence fi(Z, N M?) = ji(Z,). Since Mg = UpenZn,
one has Mgs = Unen(Z, N MP) and therefore :

i(Ms) = | 7i(Zn) = | 1(Zn 0 MP) = fi(MP)
neN neN

Since pu(Mg) is contained in exp(Ws) and i = exp~! op ., the above equality is equivalent to u(Mg) =
Bs
n(Mg*). 0

We can now state our real convexity result in the case where the symmetric pair (U, 7) is of maximal
rank :

Theorem 8.3.9 (A real convexity result for group-valued momentum maps). Let (U,(.].),T)
be a compact connected simply connected Lie group endowed with an involutive automorphism T such that
the involution 7~ : u +— T(u™1) leaves a mazimal torus T of U pointwise fized and let W C t = Lie(T)
be a closed Weyl alcove. Let (M,w,pu: M — U) be a connected quasi-Hamiltonian U-space with proper
momentum map p: M — U and let 3: M — M be an involution on M such that :

(i) Brw=—w

(i) Blu.z) =7(u).B(z) for allz € M and all u € U
(iii) poB=71"op
(iv) MP := Fiz(B) # 0

Then :
u(MP) 1 exp() = (M) 1 exp(W)

In particular, u(M?®)Nexp(W) is a convex subpolytope of exp(W) ~ W C t, equal to the whole momentum

polytope (M) Nexp(W).

Proof. Since p is a proper map, lemmas 8.2.13 and 8.3.4 apply, as well as proposition 8.3.5. Therefore :

(M) N exp(W) = p(Ms) = p(MS%) = p(M?) 1 exp(W)
Corollary 8.3.10. For all t € exp(W), one has :
pr({t}) # 0 if and only if p T ({t}) N MP £

Proof. Assume that p=1({t}) # 0. Then t € u(M) Nexp(W) = u(M?) Nexp(W), so that there exists
y € M” satisfying u(y) = t. The converse implication is obvious. O
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In particular, 1 € pu(M) if and only if 1 € p(M#?), which we shall later relate to the existence of
decomposable representations (see subsection 8.3.3). We also point out the following consequence of
theorem 8.3.9 :

Corollary 8.3.11. IfB denotes the involution induced by 3 : M — M on the quasi-Hamiltonian quotient
M/ /U == p=*({1})/U (assumed to be non-empty), and if Fiz(3) # 0, then Fiz(3) # 0 .

Proof. The assumption M//U # () means that u=*({1}) # 0. As noted in corollary 8.3.10, we then

have = *({1}) N Fiz(8) # 0, which is equivalent to Fiz(3) # 0, as seen in chapter 7 (see in particular
proposition 7.4.5). O

These last results will be enough for us to prove the existence of decomposable representations in sub-
section 8.3.3. Before going into this, we would like to say a few words on what should happen if one does
not assume the symmetric pair (U, 7) to be of maximal rank. The next subsection may be skipped if one
wants to go straight to the proof of existence of decomposable representations.

8.3.2 The case where (U, 7) is not of maximal rank

In this subsection we conjecture, based on the work of O’Shea and Sjamaar in [OS00], a description
of the set u(M”?) Nexp(W) as a subpolytope of u(M) Nexp(W) in the case where the symmetric pair
(U, 7) is not assumed to be of maximal rank. We hope to return to this question in a future work. For
now, we would just like to stress the fact that the convexity result that we have obtained in subsection
8.3.1 (namely, theorem 8.3.9) is sufficient to guarantee the existence of decomposable representations
of m(S?\{s1, ... ,s1}), as we shall see in theorem 8.3.14. This is so because the proof of existence of
decomposable representations (as a matter of fact, of op-decomposable representations) relies on the fact
that they have been characterized as the elements of the fixed-point set of an involution, and that this
characterization was obtained under the assumption that (U, 7) was of maximal rank (that is, that there
existed a maximal torus T of U which was fixed pointwise by 7). See remark 8.3.17 for additional
comments on this.

Recall that (U,7) is a compact connected simply connected Lie group endowed with an involutive
automorphism 7, and that we denote by 7~ the involution 77 (u) := 7(u~!) on U. In the previous
subsection, we assumed that 77 left a mazimal torus T of U pointwise fixed, which is not always true.
Nonetheless, there always exists a torus 7/ C U such that 7" C Fiz(r~), and any maximal torus 7'
containing 7" is 7-stable (see for instance [Loo69b], pp.72-73). Consider such a torus 7" of maximal
possible dimension with respect to the property that 7|7 = Id, and a maximal torus T of U containing
T’. Then there is a corresponding Weyl alcove W C W C t = Lie(T) (and W' C t' = Lie(T")), such
that exp(Wl) is a fundamental domain for the action of U™ on Fiz(7~). Following [Loo69b] and [OS00],
it should be possible to give a description of W' in terms of the roots of (U, 7). We then expect the
following result to hold, in analogy to theorem 8.1.5 :

Conjecture 8.3.12. Let (U,(.|.),T) be a compact connected simply connected Lie group endowed with an
involutive automorphism 7. Let T be a mazximal torus of U such that T N Fixz(t7) is of maximal possible
dimension, and let W C t = Lie(T) be a closed Weyl alcove. Let (M,w,pu: M — U) be a connected
quasi-Hamiltonian U -space with proper momentum map p: M — U and let B: M — M be an involution
on M such that :

(i) Bw=—w

(it) B(u.x) = 1(u).0(z) for all x € M and allu € U
(iii) poB=1"op
(iv) MP := Fixz(B) # 0

147



CHAPTER 8 8.3

Then :
w(MP) N exp(W) = (n(M) Nexp(W)) N Fiz(t7)

In particular, p(M?) N exp(W) is a convex subpolytope of exp(W) ~ W C t obtained by intersecting the

momentum polytope (M) Nexp(W) with the vector space Fix (T |¢).

Remark 8.3.13. Observe that on the one hand u(M?) C Fiz(7~) because of the compatibility of 3
with p1, and on the other hand exp(W) N Fiz(17) = exp(W/), so that the above result rewrites :

p(MP) N exp(W') = (M) Nexp(V)

8.3.3 Relation to the existence of decomposable representations

In this subsection, we write down in detail why there always exist decomposable representations of the
fundamental group 7 := m1(S?\{s1, ..., s}) into an arbitrary compact connected simply connected Lie
group (U, 7) endowed with an involutive automorphism 7 such that the involution 7= : u + 7(u™!) leaves
a maximal torus of U pointwise fixed (such an involution always exists, see proposition 3.2.2). Recall
from chapter 5 that decomposable representations can be defined only in terms of 7 (see definition 5.2.1)
and we saw in chapter 6 that decomposable representations are the elements v € Home (7, U) = p~1({1})
satisfying B(u) ~ u as representations of 7, where 3 is a form-reversing involution defined on the quasi-
Hamiltonian space C1 x - - - xC; (each C; being a conjugacy class in U), compatible with the diagonal action
of U on Cy X -+ x C; and the momentum map p(uy, ... ,u;) = uy...u; of this action. As we announced
in chapter 7, this is enough to guarantee that Fiz(3) Npu~t({1}) # 0 (provided p~1({1}) # 0). The fact
that Fiz(3)Np~1({1}) # 0 means that there exist og-decomposable representations, which is equivalent,
by lemma 6.6.1, to the fact that there exist decomposable representations. And we then have :

Theorem 8.3.14 (Existence of decomposable representations of 1 (S%\{s1, ... ,s})). Let Ci,
..., C; be l conjugacy classes in a compact connected simply connected Lie group (U, T) satisfying :

Home (1 (S*\{s1, ... ,s1}),U) == {(u1, ... ,w) €Crx - xC | ug..yy =1} #0
then there exist wi, ..., w; € U such that 7~ (w;) = wj for allj € {1, ... 1} and such that w;T(w;+1) € C;.
Proof. The assumption of the theorem says that p=!({1}) # 0, where u is the momentum map

JT Cl><---><Cl — Cl><---><Cl

(U1, ... ,uy) +— up...u
Furthermore, saying that there exist wy, ... ,w; satisfying the prescribed conditions amounts to saying
that there exist decomposable representations of m1(S?\{s1, ..., s;}), in which case there also exist oo-

decomposable representations (see lemma 6.6.1). In turn, this is equivalent, by theorem 6.6.2, to saying
that there exist representations uy € Home(m, U) satisfying B(ug) = uo, which is exactly saying that
Fiz(B8) N~ ({1}) # 0. But this is guaranteed by corollary 8.3.10 once p~1({1}) # 0. O

Observe that to be able to apply theorem 6.6.2 and corollary 8.3.10 in the above proof we have to
assume that the symmetric pair (U, 7) is of maximal rank and that Fiz(77) is connected.

Remark 8.3.15 (The case where U=U(n)). As a matter of fact, theorem 8.3.14 remains true even
when the group U at hand is the unitary group U = U(n), as was shown by Falbel and Wentworth in [FW].
The strategy that we have adopted in this work to prove the existence of decomposable representations
does not apply to U(n) because the convexity result 8.3.9 does not hold, as U(n) is not simply connected.
Nonetheless, the fact that we still have Fiz(3) N p~1({1}) # 0 when U = U(n) pleads for a local result
that would be enough to ensure this (as opposed to studying the whole of u(M?)).
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We also point out the following consequence of corollary 8.3.10 which, in terms of the notation introduced
in sections 6.4 and 6.5, says that M% £ ) if and only if M¢ # (). The result as we formulate it may
seem a bit odd at first sight, but it is merely a reformulation of what we have obtained so far for the case
where U = U(n). It is a type of result analogous to that of proposition 6.3.1.

Proposition 8.3.16 (An application to a matrix problem). Consider A1, ..., \; € R™. Then the
following statements are equivalent :

(i) There exist I unitary matrices uy, ...,u; € U(n) such that :

Specu; =exp(id;) and up...uy =1

(ii) There exist | unitary matrices Ay, ... A; € U(n) such that :

Spec (A[A;) = exp(iA;) and A;...A =1

Proof. We refer to chapter 6 for notation. Condition (ii) says that M% # (). By proposition 6.5.7,
M~ /\/lg , S0 that M% # (0 if and only if /\/lg # (), which is by definition equivalent to saying that

p1({1}) N Fiz(B) # 0. By corollary 8.3.10, this last point is equivalent to saying that pu=({1}) # 0,
which is equivalent to saying that M¢ # ), which proves the result. O

Observe that we already knew from sections 6.4 and 6.5 that the condition M% # () implied M¢ # 0,

as we had a map n : M% Cc Mz = Me (see proposition 6.4.3). The above result then says that the
centered Lagrangian problem (which was, in our terminology, a real problem) has a solution if and only if
the unitary problem has a solution, the non-trivial implication being (the unitary problem has a solution)
= (the centered Lagrangian problem has a solution). Pictorially :

proposition 6.4.3
—

Complex centered Lagrangian problem (section 6.3) Unitary problem

ﬁproposition 6.5.3 Iltheorem 8.3.14

proposition 6.5.7
—

Centered Lagrangian problem (section 6.2) Lagrangian problem

Remark 8.3.17. Observe that the definition of decomposable representations, as well as the character-
ization that we obtained in chapter 6 depended on the facts that the involution 7~ : u +— 7(u™!) had a
connected fixed-point set and left a mazimal torus of U pointwise fixed. We used these assumptions to
guarantee that every symmetric element w € U (that is, an element w € U satisfying 7~ (w) = w) could
be written 77 (u)u for some u € U, that 3 indeed sent a conjugacy class C of U into itself, and that the
map Fiz(3) N p~1({1}) — Fiz(f) was surjective. All these facts were used to prove the characterization
of decomposable representations obtained in corollary 6.6.5.
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Chapter 9

The Lagrangian nature of
decomposable representations
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This chapter concludes this thesis work. We will carefully review the results announced in chapter 1
and see how the theorems that we have proved in the course of this work provide an answer to the problem
of finding a Lagrangian submanifold of the moduli space M¢ = Home (1 (S%\{s1, ... ,s:}),U)/U. We
shall also come back upon the infinitesimal formulation of our problem and see how the approach that
we adopted in section 6.1 is justified a posteriori. Finally, we shall try and give directions for future work
on these questions.

9.1 Decomposable representations in the moduli space

As announced in the introduction, the purpose of this thesis was to give an example of a Lagrangian
submanifold in the moduli space

Me = Home (71 (S?\{s1, ... ,s1}), U)/U
where U is an arbitrary compact connected Lie group. To do so, the path we followed consisted in :

1. introducing a notion of decomposable representation.

2. characterizing these representations as the elements of the fixed-point set of an involution defined

on Me.

3. showing that this involution is anti-symplectic and that its fixed-point set is non-empty (being
therefore a Lagrangian submanifold of M¢).

The definition of a decomposable representation we chose to work with was the following one :

Definition (Decomposable representations of 1(S?\{s1, ... ,s;})). Let (U,7) be a Lie group en-
dowed with an involutive automorphism 7. A representation (ui, ...,w) of @ = 71 (S?\{s1, ... ,s})
into U is called decomposable if there exist [ elements wy, ..., w; € U satisfying :
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(i) T(w;) = wj_1 for all j (each w; is a symmetric element of U with respect to 7).

(il) uy = wlwgl, Uy = wgwgl, e, U= wlwfl.
A representation will be called og-decomposable if it is decomposable with w; = 1.

We refer to chapter 5 to see how this definition was obtained. For this definition to make sense, we had
to endow the compact connected Lie group U with an involutive automorphism 7. It is a consequence
of the existence of real forms of U® that such an automorphism always exists. For the sake of simplicity,
we assumed that the fixed-point set of the involution 7= (defined by 77 (u) := 7(u™!) for any u € U)
was connected. This assumption is for instance satisfied by the involution 7(u) = @ on U = U(n) or
U = SU(n). If we drop this assumption, the correct definition of a decomposable representation should
be to ask that the w; lie in the set {7~ (u)u : w € U} C Fiz(r~), which coincides with Fiz(7~) when
the latter is connected (see proposition 3.1.2).

From then on, the idea that such decomposable representations should be characterized as elements of
the fixed-point set of an anti-symplectic involution was suggested by the infinitesimal formulation of our
problem, as explained in section 6.1. Chapter 6 was devoted to obtaining this involution. The choice
of the space we worked with for that matter was dictated by the description of the representation space
M = Home (m1(S?\{s1, ... ,5}),U)/U as a quasi-Hamiltonian quotient :

Me = p~ ({1})/U
where p is the momentum map

w: Cx---xC — U
(U, ... ,u) — ui...ay

defining the quasi-Hamiltonian structure on the product C; x --- x C; of I conjugacy classes of U. We
then defined the following involution on C; X - -+ x C; :

ﬂ : C1><---><Cl — Cl><---><Cl
(v, «ooyw) — (77 (W) 7 ()T (un) T (u2). (W), -, T ()T (wim1)T(w), T (W)

and we proved the following result (theorem 6.6.2 and corollary 6.6.5) :

Theorem 1 (Characterization of decomposable representations). A representation v = (uq, ... ,
w) € p~({1}) is oo-decomposable if and only if B(u) = u. It is decomposable if and only if B(u) ~ u as
representations of .

To prove this result, we had to make an additional assumption on the involution 7, namely that the
associated involution 7~ left a mazimal torus of the compact connected Lie group U pointwise fixed.
This assumption is in particular satisfied by the involution 7(u) =u on U = U(n) and U = SU(n), and
we saw in proposition 3.2.2 that such an involution always exists if U is a compact connected simply
connected Lie group (as a matter of fact, such an involution exists on any compact connected semisimple
Lie group, not just those which are simply connected, as explained in [Loo69b] pp. 78-81, but the
assumption of simple connectedness will be used again shortly, this time in a crucial way, so we make it
right away).

At this point, we are still working on the quasi-Hamiltonian space C; X - - - x C;, upon which [ is defined,
and not on the quasi-Hamiltonian quotient

Me=Cyx - xC/ /U = p  ({1})/U

But we saw in chapter 7 that the involution 8 was compatible with the diagonal action of U on Cy x - - - X C;
and with the momentum map g in the sense of definition 7.2.1, which proved that it induced an involution
B on Mg defined by :
B: Cix--xCJJU — Cix---xCJJU
(w1, ...,w)] — [Blu, ..., w)]
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Furthermore, we observed in proposition 5.2.2 that a representation (u1, ...,u;) of m1(S?\{s1, ... ,s})
is decomposable if and only if the representation ¢.(u1, ..., ;) is decomposable for any ¢ € U, so that
we may call an equivalence class [u] = [(u1, ..., u;)] € M¢ decomposable if any of its representatives is
decomposable. We then obtain the following result as a corollary of theorem 1 :

Corollary 2. [u] € Mc is decomposable if and only if 3([u]) = [u].

Proof. Assume first that [u] € Mc = p~*({1}) is decomposable. Then by proposition 5.2.2, u € u~({1})
is decomposable, so that by theorem 1, one has S(u) ~ u, hence by definition of 3 : B([u]) = [u]. The
argument reverses to prove the converse. O

We then notice the one truly remarkable feature of the involution 3 :
Proposition 3. f*w = —w on Cy X --- X C;, so that B is anti-symplectic on Me.

Although this was expected from the infinitesimal formulation, the analysis drawn in chapter 7 shows
that the fact that 5*w = —w is not obvious (see section 7.3 and proposition 7.3.4). The fact that it implies
that ﬁ is anti-symplectic on Mg is then a consequence of the construction of the symplectic structure of
M (see proposition 7.2.2).

We are now almost in a position to apply lemma 7.1.1. To do so, we still have to prove that F' zm(ﬁ) # 0,
or equivalently that Fixz(8) N pu~1({1}) # 0. To prove this, we chose to study the whole of u(Fix(3)).
This choice was motivated by the existence of convexity results for fixed-point sets of anti-symplectic
involutions defined on usual Hamiltonian spaces, and by the use of such convexity results to prove a
result similar to ours in [AMWO1]. For convexity to make sense in a Lie group, we had to assume that
the compact connected Lie group U was in addition simply connected (see subsection 8.2.1). We then
obtained the following result (theorem 8.3.9) :

Theorem 4 (A real convexity theorem for group-valued momentum maps). Let (U,(.].),T) be
a compact connected simply connected Lie group endowed with an involutive automorphism T such that
the involution 7~ : u — T(u~1) leaves a mawimal torus T of U pointwise fived and let W C t = Lie(T)
be a closed Weyl alcove. Let (M,w,u : M — U) be a connected quasi-Hamiltonian U-space with proper
momentum map p: M — U and let B : M — M be an involution on M such that :

(i) frw=-w

(ii) Bu.x) = 7(u).f(x) for allz € M and allu € U
(iii) poB=71"opu
(iv) MP := Fixz(B) #0

Then : o o
p(M?) N exp(W) = (M) Nexp(W)

In particular, u(M?®)Nexp(W) is a convex subpolytope of exp(W) ~ W C t, equal to the whole momentum

polytope (M) Nexp(W).

Observe that the assumption that 7~ leaves a maximal torus of U pointwise fixed is one we already made
to obtain theorem 1. We then have the following corollary :

Corollary 5 (Existence of fixed points for 8). If u=*({1}) # 0 then p~*({1}) N Fixz(3) # 0.

As explained earlier (see theorem 8.3.14 for details), this proves the existence of decomposable represen-
tations for any compact connected simply connected Lie group U and any choice of | conjugacy classes
Cy, ... , C; satisfying the assumption :

{(ul,...,ul)eclx---xcl|u1...ul=1}7$(2)

We are now in a position to prove the following result :
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Theorem 6. Let U be a compact connected simply connected Lie group endowed with an involutive
automorphism T satisfying :

(i) there exists a mazimal torus of U fized pointwise by the involution 7~ (u) == T(u™1).
(ii) the fixed-point set Fix(r~) of the involution T~ is connected.

Then the set of equivalence classes of decomposable representations of the group m:= w1 (S*\{s1, ... ,s1})
into U is a Lagrangian submanifold of the stratified symplectic space Mc := Home (7, U) /U (in particular
it is non-empty), equal to the fized-point set of an anti-symplectic involution B defined on Mc.

Proof. Corollary 2 shows that the set of equivalence classes of decomposable representations of 7 into

U is exactly Fiz(8), and we know from proposition 3 that § is anti-symplectic. Corollary 5 then shows

that Fiz(8) # 0. Consequently, lemma 7.1.1 applies, showing that the set of equivalence classes of
decomposable representations of w into U is a Lagrangian submanifold of the moduli space M. O

Therefore, we have obtained a Lagrangian submanifold of the moduli space M for a certain class of
compact connected Lie groups, keeping in mind the example of the Lie group U = SU(n) troughout
this work. As we mentioned a few times earlier, theorem 6 remains true for the compact connected non
simply connected Lie group U = U(n) endowed with the involution 7(u) = .

Remark 9.1.1 (The case where U = U(n)). As a matter of fact, theorem 1 is true for U = U(n),
as we have seen in chapter 6, and the only thing we cannot pove with our methods is the existence of
decomposable representations of 7 into U(n). But this was proved by Falbel and Wentworth in [FW], so
that theorem 6 is indeed true for U = U(n).

9.2 Back to the infinitesimal picture

In this section, we briefly indicate a way to see why the infinitesimal formulation of the Lagrangian
problem that we gave in section 6.1 was indeed a good one, in the sense that for sufficiently small initial
data (\j)i<j<i the Lagrangian problem admits a solution if and only if its infinitesimal counterpart has
a solution. Recall that we started off with [ elements A; € R™, 1 < j <. For such initial data (};), we
formulated the following two problems :

- the Lagrangian problem : do there exist | Lagrangian subspaces L1, ..., L; of C" satisfying the
condition Spec (o, 0r;,,) = exp(iA;) for all j, where o, is the Lagrangian involution associated
to L; and where L1 = Ly ?

- the symmetric problem, which we reached heuristically by trying to find an infinitesimal version of
the Lagrangian problem : do there exist / real symmetric matrices S1, ..., S; satisfying Spec S; = A;
and S14+---+5 =07

We will now show that for sufliciently small A\; the Lagrangian problem has a solution if and only if
the symmetric problem has a solution. This result is already mentioned in [Kly00], but our symplectic
approach rests on the following result proved by Jeffrey in [Jef94] (theorem 6.6) :

Theorem 9.2.1. [Jef94] For any A € R™, denote by Cy the conjugacy class of the unitary matriz exp(i\) €
U(n), and denote by Hy the (co-adjoint) orbit of the Hermitian matriz diag(\) € H(n) under U(n). Then
there exists an open neighbourhood V of 0 in R™ such that if A1, ... , Ny € V then the moduli spaces

Me = {(ul, o) ECL X - X Cp ul...ulzl}/U(n)

and
Mg i={(H1, ..., H;) € Ha, X - x Hx, | Hi+---+ H; =0} /U(n)

are symplectomorphic. In particular, one of them is non-empty if and only if the other one is.
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Corollary 9.2.2. If Ay, ... , A\ € V then the following two conditions are equivalent :

(i) there exist | Lagrangian subspaces Ly, ..., Ly of C" satisfying the condition or,0r,,, € C; for all j
(that is, Spec (or,0r,,,) = exp(il;)).

(ii) there exist | real symmetric matrices S, ..., S such that S; € Hy, (that is, SpecS; = X;j) and
Sy 4+ 8 =0.

Proof of the corollary. Condition (i) is by definition equivalent to saying that there exist decomposable
representations of 71 (S?\{s1, ..., s;}) into U(n), which is equivalent, by theorem 8.3.14, to saying that
the moduli space

Me={(u1,...,w) €CL x - xC |ur...up =} /U(n)

is non-empty (see remark 8.3.15). In turn, by theorem 9.2.1, this is equivalent, as the \; are assumed to
lie in V, to saying that the moduli space

My ={(Hy, ..., H)) €EHr, x - xHy | Hi 4+ +H =0}/U(n)

is non-empty. Then by proposition 6.3.1, this is equivalent to saying that there exist [ real symmetric
matrices S, ..., S such that Spec S; = Aj and Sy + --- +S; = 0, which proves the corollary. O

This result can be made more precise by showing that the symplectomorphism between the above two
moduli spaces actually carries the Lagrangian submanifold

{equivalence classes of decomposable representations of m1(S*\{s1, ..., s}) into U(n)} C Mc
onto the Lagrangian submanifold

{(Sl,...,SZ)ESM X-'-XSM |51—|—"'+Sl=0}/0(n)CMH

9.3 Directions for future work

We would like to conclude this thesis by an attempt at giving some possible directions for future work
on the matters we have been dealing with here. We begin with questions for which obtaining an answer
should simply be a matter of time and care, and then move on to questions that we deem to be a bit
harder :

- what happens if one drops the assumption that Fiz(77) is connected ? Then we already mentioned
in remark 5.2.3 that the definition of a decomposable representation should be slightly modified.
As a matter of fact, following [Fot], we see that there is an involution 7, of U associated to each
connected component of F'izz(7~), hence a notion of decomposable representations for each of these
connected components, and a corresponding involution s characterizing these representations. The
rest needs further investigation (particularly what happens when one descends to the moduli space,
where all the 3 should induce the same involution B)

- how can one interpret the results contained in this thesis in terms of the various equivalent formu-
lations of the unitary problem ? For instance, what does the notion of decomposable representation
become when one considers polygons on S® ? This corresponds to the case where U = SU(2) and it
was suggested to us by Philip Foth that polygons fixed by 3 should be those lying in an equatorial
S2 C 82 (see [FH]). Or again, how does the notion of decomposable representation carry over to
the vector bundle setting 7 etc.

- is it possible to adapt the proof of our real convexity result 8.3.9 to prove conjecture 8.3.12 7 In
the case where the symmetric pair (U, 7) is not of maximal rank, we think (in analogy with the
O’Shea-Sjamaar theorem in the usual Hamiltonian setting, see [OS00]) that one has :

u(MP) Nexp(W) = (u(M) Nexp(W)) N U™
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but we were unable to prove this result following our approach of reducing the action of U on M
to that of a torus T" C U on a symplectic cross-section N C M.

- what can one say about the notion of decomposable representation of m(S%\{s1, ... ,s}) if we
consider non-compact groups like U = SL(2,R) or U = SU(2,1) ? Limiting ourselves to semisimple
groups, we still have quasi-Hamiltonian structures on conjugacy classes of such groups (see chapter
4). For U = SU(n, 1) (n > 1), the notion of decomposable representation carries over immediately,
and so should the characterization in terms of [, even though one should pay attention to the
fact that not all elements in SU(n, 1) are diagonalizable. A much more serious problem is proving
the existence of decomposable representations in this case since, if we want to follow the approach
adopted in this thesis, we need a (real) convexity result for certain non-compact group actions,
along the lines of [Wei01].

- finally, what would be an appropriate notion of decomposable representation for instance for the
fundamental group of the punctured torus ? What about other surfaces 7 Work in this direction
can be found in [Wil], where representations of < a,b, ¢ | [a,blc =1 > into SU(2,1) are discussed.

We hope to come back to these questions in a not-so-distant future. Merci d’avoir lu ce travail.
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