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Chapitre 1

Introduction

Dans la présente these, nous étudions les orbites d’un sous-groupe de
Borel qui agit dans le produit direct de deux variétés grassmanniennes.

Soit V' un espace vectoriel de dimension n sur un corps algébriquement
clos. L’ensemble des sous-espaces vectoriels de V' de dimension fixée k < n
peut étre muni d'une structure de variété algébrique. Une telle variété est
dite grassmannienne; on va la noter par Gr(k,V'). Elle est homogene pour
I'action du groupe linéaire général GL(V'); on peut également s’intéresser a
'action d'un sous-groupe de Borel B C GL(V).

La décomposition de Gr(k, V') en orbites de B, ou décomposition de Schu-
bert, a beaucoup de propriétés intéressantes. Elle est apparue a la fin du
19ieme siecle, pour les besoins de la géométrie énumérative. On sait pa-
ramétrer les orbites (cellules de Schubert) et décrire leurs adhérences (variétés
de Schubert). La géométrie de ces dernieres a été beaucoup étudiée également.
En particulier, on peut démontrer que ces adhérences sont normales et de
Cohen—Macaulay, et que leurs singularités sont rationnelles (voir, par exemple,
[Br2] et [BrKu]). On connait aussi une résolution de leurs singularités, appa-
rue dans les travaux de Bott Samelson, Demazure et Hansen ([BS], [Dem],
[Han)), et on sait décrire leur lieu singulier.

La notion de décomposition de Schubert admet une généralisation di-
recte aux variétés de drapeaux G /P, ou G est un groupe algébrique réductif
et connexe, et P est un sous-groupe parabolique. Le cas « extréme » (et en
un certain sens le plus compliqué) est celui o P = B ; dans ce cas, la variété
G/ B s'appelle la variété de drapeaux complets. Pour les variétés de drapeaux,
on peut accomplir le méme programme que pour les grassmanniennes; ce-
pendant, la réponse a la question sur le lieu singulier d'une variété de Schu-
bert n’a été obtenue qu’en 2000, presque simultanément, dans les articles de
L. Manivel [Man2], A. Cortez [Cor]|, S. Billey et G. Warrington [BiW], et,
enfin, de C. Kassel, A. Lascoux et C. Reutenauer [KLR].



La motivation pour le présent travail est de double nature. Tout d’abord,
en 1998, P. Magyar, J. Weyman et A. Zelevinsky ont considéré le probleme
suivant (cf. [MWZ]). Soit G = GL(V); ils prennent une variété de drapeauz
multiple, ¢’est-a-dire, le produit direct d'un certain nombre r de variétés de
drapeaux (complets ou partiels) G/ P;, et considerent 'action diagonale de G
dans

G/P, % - x G/P,.

Dans quelles situations (sous quelles conditions portant sur r et P, ..., P,)
cette action n’a-t-elle qu'un nombre fini d’orbites? (De telles variétés sont
dites de type fini).

Evidemment, ceci équivaut au fait que 1'action de P, dans G/Py X « -+ X
G/P, n’a qu'un nombre fini d'orbites. Si P, = B, c¢’est la définition d'une
variété sphérique. Pour G semisimple quelconque, la réponse a cette question
est connue dans le cas ou P, P5 sont paraboliques maximaux; ce résultat
est due a P. Littelmann dans [Lit].

Dans le cas ou G = GL(V) et P; est quelconque, [MWZ] démontrent
que c’est possible seulement lorsque r < 3, et ils obtiennent une réponse
complete en termes de certains carquois, dont la classification est tres proche
(mais différente) de la classification des carquois de type de représentation
fini (cf. [Kac]). En outre, dans ces situations ils donnent une description
combinatoire de ces orbites, et obtiennent certains résultats partiels sur leurs
adhérences.

En particulier, la classification des variétés de drapeaux multiples de type
fini comprend des séries A, D et E. La série A correspond au cas r = 2, ¢’est-
a~dire a 'action de Py dans G/ P,. Comme cas particulier, on obtient I'action
de B dans G/P : c’est la situation classique de la décomposition de Schubert
d’une variété de drapeaux.

La série D (qui est dans un certain sens le cas « suivant ») correspond a
l'action de G dans G/P, x G/P, x G/Ps, ou P, P3 sont des sous-groupes
paraboliques maximaux, ou encore a 'action de P, dans Gr(k, V') x Gr({, V).
En particulier, cela contient le cas le plus intéressant, ou P, = B.

Ainsi, il serait intéressant de connaitre les réponses aux questions ana-
logues a celles sur les variétés de drapeaux. Comment peut-on paramétrer les
orbites de B agissant dans Gr(k, V) xGr(l, V') 7 Quelles sont les orbites conte-
nues dans 'adhérence d’une orbite donnée ? Que peut-on dire sur la géométrie
de ces adhérences 7 Quand sont-elles lisses 7 Si elles sont singulieres, comment
peut-on résoudre leurs singularités 7 Comment caractériser leur lieu singulier,
leurs singularités génériques?... Dans la présente these, nous répondrons a
une partie de ces questions.

Une autre série de questions concerne les anneaux de coordonnées des



variétés de Schubert et de leurs analogues. Hodge [Hod| a montré que, si on
prend le plongement de Pliicker

k
Gr(k,V) > P AV,

on peut obtenir les variétés de Schubert comme les sections de la grassman-
nienne par certains sous-espaces projectifs de P /\k V. Ceci est vrai méme
au sens « schématique », c’est-a-dire, les équations de ces sous-espaces en-
gendrent les idéaux des variétés de Schubert dans 'anneau des coordonnées
homogenes de la grassmannienne. Cet énoncé est essentiel pour décrire ces
anneaux de coordonnées homogenes. Il serait intéressant de généraliser ces
résultats a notre cas. Conjecturalement, les adhérences des B-orbites peuvent
étre obtenues comme sections linéaires du produit de deux grassmanniennes,
plongé dans 'espace projectif par Pliicker—Segre :

Gr(k, V) x Gr(1,V) %IP’/IC\VXP/Z\V%IP’(;\V®/[\V).

Par contre, la description des anneaux des coordonnées homogenes de ces
adhérences nous parait un probleme assez difficile.

Une motivation supplémentaire pour 'étude des B-orbites dans Gr(k, V') x
Gr(l, V) vient des travaux récents de G. Bobiiiski et G. Zwara. Ils ont découvert
des liens intéressants entre représentations des carquois et variétés de Schu-
bert. Dans leurs articles [BZ1], [BZ2], ils démontrent les résultats suivants.
Les singularités des adhérences des orbites dans les représentations des car-
quois de type A, sont équivalentes aux singularités des variétés de Schubert
dans la variété des drapeaux complets; et les singularités des adhérences
des orbites dans les représentations des carquois de type A, et D, sont
équivalentes aux singularités des variétés de Schubert dans les produits de
deux grassmanniennes.

Cette these est formée de deux parties. Dans la premiere, nous considérons
le groupe GL(V) qui agit dans une variété de drapeaux multiple de type D,

X = GL(V)/P x Gr(k,V) x Gr(l, V),

ou P C GL(V) est un sous-groupe parabolique. Autrement dit, nous considérons
les triplets qui consistent en deux sous-espaces et un drapeau partiel dans V,
a l'action de GL(V') pres. On s’intéresse a la question suivante : quand un tel
triplet peut-il étre dégénéré en un autre triplet 7 Nous obtenons un critere
pour cela, en termes des dimensions d’intersections et de sommes de cer-
tains sous-espaces. En outre, nous décrivons les dégénérescences minimales.
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Nos méthodes n’utilisent que de 'algebre lineaire et de la combinatoire des
graphes. Notre description combinatoire de ces triplets utilise le langage des
carquois d’Auslander—Reiten.

Dans la deuxieme partie, nous nous intéressons au cas o P = B, c¢’est-a-
dire, a I'action d’un sous-groupe de Borel dans le produit de deux grassman-
niennes. Nous introduisons une autre description combinatoire des orbites de
cette action, qui nous parait étre mieux adaptée a ce cas particulier. Cela
nous permet de décrire I'ordre partiel sur ces orbites, obtenu par 'action
des sous-groupes paraboliques minimaux (« ordre faible »). Cet ordre partiel
nous permet de construire des résolutions des singularités des adhérences des
orbites « a la Bott Samelson ».

A la fin de la deuxitme partie, nous mettons en lumiere certains liens
intéressants et inattendus entre la combinatoire de 1'ordre donné par les
adhérences des B-orbites dans Gr(k, V') x Gr({, V'), et 'ordre analogue sur les
orbites du sous-groupe de Borel B C GL(V) qui agit par conjugaison dans
les matrices triangulaires supérieures A € Mat(V), telles que A* = 0. Ce
dernier ordre apparait dans des travaux récents d’Anna Melnikov ([Mell],
[Mel2]) : ces B-orbites sont parametrées par les permutations involutives.
Dans notre cas, les B-orbites dans une (B x B)-orbite donnée peuvent aussi
étre paramétrées par un certain sous-ensemble des permutations involutives ;
on obtient ainsi un ordre partiel sur ce sous-ensemble. Miraculeusement, cet
ordre coincide avec celui de Melnikov, bien qu’ils apparaissent dans des si-
tuations tres différentes.



Chapter 2

Bruhat order for two subspaces
and a flag

2.1 Introduction

In this chapter we will consider certain configurations of subspaces in an
n-dimensional vector space V over an algebraically closed field K. These
configurations (U, W, V,) consist of two subspaces U and W of V of fixed
dimensions &k and [, and a partial flag Vi = (V3 C Vg, € --- C Vg, = V),
where dim V,, = d;.

Our goal is to describe such configurations up to a linear change of coor-
dinates in V' and the ways how configurations degenerate. In other words,
we consider the direct product X = Gr(k,V) x Gr(l, V) x Fl 4(V) of two
Grassmannians and a flag variety of type d = (di,...,d,,) in V, the group
GL(V) acting diagonally on this variety, and describe orbits of this action
and the inclusion relations between their closures.

One can easily show that the number of these orbits is finite. Such a
product X of flag varieties is said to be a multiple flag variety of finite type.
In the paper [MWZ] Magyar, Weyman and Zelevinsky list all such varieties
and describe a way of indexing the orbits of the general linear group acting
on them.

They also obtain a necessary condition for the closure of a GL(V')-orbit
on such a variety to contain another GL(V')-orbit. This condition comes
from the results by C. Riedtmann [Rie] on degenerations of representations
of quivers.

It is not always clear whether this condition provides a criterion. As is
mentioned in [MWZ], this is so in several cases, as follows from some general
results on quivers due to K. Bongartz ([Bonl, §4], [Bon2, §5.2]). One more



case is treated in the paper [Mag| by P. Magyar, where a similar criterion
is obtained for configurations of two flags and a line. Magyar’s approach is
elementary; it uses only combinatorics and linear algebra.

The case X = Gr(k, V) xGr(l, V) xF1 4(V) we are interested in is covered
by the results of Bongartz. However, in this case we provide a simpler crite-
rion for a configuration to degenerate to another one, in terms of dimensions
of certain subspaces obtained from U, W, and V, by taking sums and inter-
sections, and we give a completely elementary proof of this result. Along with
this criterion, we obtain an explicit description of minimal degenerations.

For this, we follow in general the approach of [Mag|. But the combina-
torics we use for indexing the orbits in X is quite different.

The structure of this chapter is as follows. In Section 2.2, we recall
some results from [MWZ] concerning classification of orbits in an arbitrary
multiple flag variety of finite type. In Section 2.3, we introduce an indexing of
orbits of GL(V') in X by multisets of vertices of a certain quiver. Section 2.4
is devoted to defining three partial orders on this set of orbits: the first order
is given by degenerations of orbits, the second one is given by conditions
on dimensions of certain subspaces, and the definition of the third order is
purely combinatorial, involving the description of orbits from Section 2.3.
The principal result of this chapter states that the three orders are the same;
this is proved in Section 2.5. The last subsection of Section 2.5 is devoted
to the proof of the theorem on minimal degenerations, also stated in the
beginning of this section.

2.2 Orbits and representations: a general ap-
proach

In this section, we consider the problem of classifying orbits of the general
linear group in a multiple flag variety in its general setting, after [MWZ].

Let V' be an n-dimensional vector space over a field K, which we suppose
to be arbitrary throughout this and the next Section. Let @, 4, be the three-
arm star-like quiver of the following form:

with p+ q+r — 2 vertices forming three arms of lengths p, ¢, and r, and with
all arrows leading to the center.

10



Let Rep(Qp,qr) denote the category of representations of this quiver.
Magyar, Weyman, and Zelevinsky [MWZ] consider the full subcategory Rep&émb(Q,.4.-)
in Rep(Qp.qr) Whose objects are those representations such that all the lin-
ear maps corresponding to the arrows are embeddings. The subcategory
Rep&mb(Qy.4.-) is closed under taking direct sums and subobjects (but not
quotients!), so one can introduce the notions of decomposition into direct
sums and indecomposable objects. The uniqueness of a decomposition into
a sum of indecomposables is guaranteed by the Krull-Schmidt theorem (see,
for instance, [Bal).

In particular, the set of indecomposables Ind(Repémb(Q,,-)) forms a
subset of Ind(Rep(Qp.q.r)), since it is closed under taking subobjects.

Fix a dimension vector (a,b,c) = (ay,...,ap;b1,...,b5¢1, ..., ¢ ), where
a, = b, = ¢, and take a representation

K - (‘/1; ey V;J; ‘/'1/7 R ‘/q/; 1”7 Tt V;”) € Repgmb<prq7T)

with dimension vector (a,b,c). This representation can be considered as
a triple of partial flags in V' =V, =V = V" with the given depths and
dimension vectors, defined up to GL(V)-action. And, vice versa, any such
triple of flags provides a representation from Rep&mb(Q, ). So, the orbits
of the diagonal action of GL(V') on the direct product of three partial flag
varieties

Fl ap.e) (V) =Fla(V) x F1,(V) x F1 (V)

are in one-to-one correspondence with the elements of Rep&mb(Q, ,.») with
dimension vector (a, b, c).

Kac’s theorem on indecomposable representations of a quiver (cf. [Kac])
implies that the category Repémb(Q,,,) has the following property: there
exists at most one indecomposable object with a given dimension vector.
This means that the GL(V')-orbits in F1 (ap¢)(V) correspond to the possible
decompositions of the dimension vector (a, b, c):

(aa b, C) - Z dim/,,

where I, are indecomposable objects. So, if the number of GL(V)-orbits in
F1 (ap.c)(V) is finite (in this case this multiple flag variety is said to be of finite
type), the classification of orbits is thus reduced to a purely combinatorial
problem.

So, knowing all the indecomposable objects in the category Repémb(Qp.4.)
for a given quiver @), allows us to describe the GL(V')-orbits in the multi-
ple flag variety Fl (a1,¢) (V) for an arbitrary dimension vector (a,b,c). The
complete list of all multiple flag varieties of finite type and indecomposable
objects in the corresponding categories is given in [MWZ, Theorem 2.3].

11



In particular, this list includes quivers @, ,1 (type A) and Q22 (type
D). The multiple flag varieties corresponding to these two series of quivers
will be the main objects of our interest throughout this paper.

2.3 Combinatorial enumeration of objects with
a specific dimension vector

Consider the Auslander—Reiten quiver (AR-quiver) for the category Rep(Q).
Its vertices correspond to indecomposable objects, and arrows represent “min-
imal” morphisms between indecomposables — i.e., morphisms

f:I—=1T
that cannot be presented as a composition of two morphisms
f=goh: I LIS,

where I, I’ and I” are pairwise non-isomorphic indecomposables.

Having the AR-quiver for Rep(Q), consider its subquiver defined as fol-
lows: we take all vertices that correspond to indecomposable objects from
Rep&émb(Q) and all arrows between these vertices. This is the Auslander—
Reiten quiver for the category Rep&mb(Q). We will refer to the latter quiver
(not to the former) as to the AR-quiver for the quiver Q; it will be denoted
by AR(Q).

For background on Auslander Reiten quivers, see the book [ARS].

Now let us pass to the explicit study of cases A and D.

2.3.1 Case A: two flags
Let @ equal @), 4. That is, @ is a linear quiver with p + ¢ — 1 vertices and

arrows oriented as follows: e >e. e >0 <00 <o

For all the indecomposable injective representations of this quiver, the
dimension of each subspace occuring in them equals 0 or 1. These represen-
tations are as follows:

Iij:(o ...... 0= K K-K~<KK=0- 0)’

where the first nonzero space has number 7, the last — the number p+ ¢ — 7,
and ¢ € [1,p], 7 € [1,q]. So, there are pg non-isomorphic indecomposable
objects.

12
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Figure 2.1: AR-quiver for Q431 (type A)

The AR-quiver for such a quiver is a rectangle of size (px ¢). The example
where p = 4, ¢ = 3 is given on Figure 2.1.

Given an object F' € Repémb(Q), we will say that an indecomposable ob-
ject I occurs in I, if it occurs with nonzero multiplicity in the decomposition
of F' into indecomposables.

Proposition 2.1. Let F' be an object in Repémb(Qp 1) corresponding to
a configuration of two flags, such that dimF = (ay,...,ap;b1,...,b,), a, =
b, =n, and let F' = € I;; be its decomposition into a sum of indecomposable
objects. Then there are n summands. On each path formed by the elements
Lo with @ fized, there are exactly a; — a;_1 indecomposable objects, counted
with multiplicities, occuring in F'. On each path formed by the elements I,;

with j fized, there are exactly b; —b;_1 indecomposable objects occuring in F'.
(We set formally ag = by = 0).

Proof. Since all the indecomposable summands are one-dimensional, there
are exactly n of them. As we have seen before,

dimZ; = (0,...,0,1,...,1,...,1,0,...,0,).
o ( 1 1
i—1 entry 7—1 entry

The resulting dimension is the sum of dimensions of the indecomposable
objects occuring in F':

dimF = " dim[;;.
Denote the dimension vector of a representation by

(@', b') = (a,...,a,; b, ..., 0)).

» Ypo
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For a given 4, the objects I;; are characterized by the equality a; = a;_; + 1.
For all other indecomposable objects, a; = a;_;. This means that there are
exactly a; — a;—; objects of the form I;; occuring in F'.

The fact that F' contains exactly b; — b;—; summands of the form I;; for
a given j is proved similarly. O

Corollary 2.2. Consider the particular casep = q=mn, (a,b) = (1,2...,n;1,2...,n).
Then for any two summands I;; and ILyj occuring in F, we have i # i' and

j # j'. So, objects with such dimension vector are in one-to-one correspon-

dence with the permutations of the set of n elements. In particular, there are

n! such non-isomorphic objects.

We will see in Section 3.3.2 that this description coincides with the well-
known indexing of B-orbits in a full flag variety by permutations.

2.3.2 Case D: two subspaces and a flag

Now let @ be the quiver Dy, with all arrows mapping to the center.
Having a representation

Kb
Kal Ka2 e Kap
KC
we denote its dimension vector by (ai, ..., ay;b;c).

Here is the complete list of indecomposable objects in Rep&mb(Q), taken
from [MWZ, Theorem 2.3]. There are four series with one-dimensional middle
spaces, which we present in the table below together with their dimension
vectors:

I¥ (0,...,0,1,...,1:1;0)
I7 (0,...,0,1,...,1;0;1)
Liw (0,...,0,1,...,1:0;0)
I;  (0,...,0,1,...,1:1;1)

(all the maps between one-dimensional spaces are nonzero, the dimension
jumps at the i-th step, ¢ € [1, p|), and one family of the following form:

K
yd

AN
K

14



where all the images of the three maps K — K? are distinct (this guarantees
indecomposability), and the dimension within the longest arm jumps at the
i-th and the j-th steps, ¢ < 7. Denote these objects by ;.

On Figure 2.2, we give an example of AR-quiver of type D, for p = 5.
Knowing the AR-quiver for Rep(D,42) with arrows oriented to the center,

AN

134 IQ3 112 ]01

IF Iy

VANWAN

1500 145
AN
I4oo

(D)

s
N
J

I35 IQ4 ]13 [02

4\

7
NS
7

IBoo 125 Il4 IOS

/NS
YN /N L
N /N

IQoo 115 IO4

NN
/N /4N
N/ N /N

oo Ios

Figure 2.2: AR-quiver Q522 (type D)

we restrict ourselves to its vertices corresponding to indecomposable objects
from Rep&émb(D,s). Construction of the AR-quiver for Rep(Q) with @
arbitrary is discussed, for instance, in [ARS, Chap. VII|

Notation. The two subsets of vertices {I3",..., ]} and {I;,..., I, } are
called zigzags. On the figure below the two zigzags are shown as follows: they
are formed by the vertices situated on the dashed and on the dotted lines,
respectively. Subsets of vertices of the following form, represented by white
circles on Figure 2.3, are said to be roads:

JAVAVA VAN

N N NN SN S
O [ J O ® [ ]
N N NSNS
® [ J (¢] [ ]
N Vi

NN
° ° o
NS

/
\
Figure 2.3: Roads and zigzags
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They are formed by the objects I;n, ..., [; it1. I;r, I L1, ..., Ly fora
given i. Each road starts on the left edge of the AR-quiver, at an object [;,
goes up, then passes through the “mountain range” formed by two upper
rows, bifurcates there and then goes down to the right edge, ending at the
object Ip;. This road is said to be the ¢-th one. So, there are exactly 2
different zigzags and p different roads.

Proposition 2.3. Let F' be an object in Repémb(Qp22), such that
dimF" = (a1, az, . . ., ap; k; 1),
and let F' = @ I, be its decomposition into a sum of indecomposables. Then:

(i) For the i-th road in AR(Qp22) there are exactly a; — a;—; objects oc-
curing in F situated on this road (as before, ag is set to be equal to

0);

(ii) The total number of 1, of the form I;;, 1 <i < j <n, and I}, equals
k;

(iii) The total number of I, of the form I;;, 1 <i < j <mn, and I;, equals
l.

Proof. Fix a road; let I, be its first element. From the description of inde-
composable objects given on Page 14, it follows that the dimension vectors
(a’;b'; ') of the indecomposable objects situated on this road are character-
ized by the equality a, = a, ; + 1. For all other elements, a, = a, ,. So, F
contains exactly a; — a;_1 indecomposable objects with dimension jump on
the ¢-th step. This proves the first part of the proposition.

(ii) and (iii) are proved similarly. O

So, an object with dimension vector (ay, ..., a,; k; 1) gives us a set of ver-
tices in AR(Dp42), satisfying the properties (i)—(iii). Obviously, the converse
is also true: each set of vertices determines an object, namely, the direct sum
of the corresponding indecomposables, and the properties (i)—(iii) guarantee
that the dimension vector of this object equals (aq, ..., apy; k; ).

2.4 Three orders

Throughout this section, @ is either the quiver Ay, 1 = @, 41 or the quiver
D, 19 = Qp22. Recall that throughout the rest of this paper, the ground field
K is supposed to be algebraically closed.

16



In this section we present three different ways to turn the set of objects
F € Repémb(Q) with a given dimension vector into a partially ordered set
(or shortly poset). We will show that these three orders are the same in the
next section.

2.4.1 Degeneration order

The first definition uses the bijection between objects with dimension vector
(a,b,c) and orbits in the corresponding multiple flag variety Fl ap.c)(V).
Given an object F', we denote the corresponding orbit by Op.

Definition. We say that F' is less or equal than F’ w.r.t. the degeneration
order, if there is an inclusion of the corresponding orbit closures (in the
Zariski topology):

de _
F Sg F' < OFQOF/.

2.4.2 Rank order

Another partial order is defined by means of dimensions of the homomor-
phism spaces between objects in the category Rep&émb(Q). For short, for
two elements F,G € Repémb(Q) we denote the dimension dim Hom(F,G)
by (F,G).

Definition. F' is less or equal than F’ w.r.t. the rank order (notation:

rk
F < F"), if for each indecomposable object I € Rep&mb(Q)
(I,Fy> (I, F').

(NB: the inequality is reversed!)

In our cases (Ap44—1 and Do) we shall give a simple geometric interpre-
tation of the numbers (7, F'). In general, this interpretation also exists (see
IMWZ, Prop. 4.1]), but it is not evident at all.

Proposition 2.4. 1. Let Q equal Qpq1, and let Vo = (V, C--- CV, =
V) and Vi = (Vy, C---CVy =V) be two flags of the same depth in a
vector space V. Then for the object F' corresponding to the configura-
tion (Ve, V) the following equalities hold:

— 3 /
(L, F) = dimVy, NV,

for each i € [1,p], j € [1,q]. (A description of the I;; is given on
Page 12.)
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2. Let Q equal Qpa2, and let Vo = (Vo € --- C Vo, =V), U and W be
a flag and two subspaces in V. Then for the object F' corresponding to
the configuration (U, W, V) the following equalities hold:

(Iino, ) dim V,, = a;;

(IY,F) = dimV, NU;

(I7,F) = dimV, NW; (2.1)
(In;, F') = dimV,,nUNW;

(I, F) = dimV,, NUNW +dimV,, N ((Vo, NU) + (Vo, NW)).

Proof. A first observation: these formulas are additive under taking direct
sums of objects and componentwise direct sums of corresponding configura-
tions of subspaces.

Next, the bracket (-,-) is bilinear, so

(ILFOF)=(I,F)+ (I, F).

Thus, it only suffices to prove these formulas for an indecomposable F. And
this is done by a direct verification. O

Definition. The numbers (I, F') are called rank numbers.

2.4.3 Move order

In the previous section we have obtained a combinatorial description of ob-
jects in Repémb(Q) with a given dimension vector. Objects are encoded
by multisets of vertices of a certain quiver, satisfying the properties (i)—(iii)
from Prop. 2.3.

To introduce the third partial order, we define some operations, called
elementary moves, that bring these subsets of vertices into other ones.

As usual, we begin with type A. In this case the definition of elementary
move is quite simple.

Take the decomposition of F' into indecomposables: F = € I,. Suppose
that among these I,’s there are two objects [;; and I, occuring in F' (proba-
bly with multiplicities), such that i < i’ and j < j'. Let us also suppose that
there is no other I;»;», such that ¢ <" <7 and j < j” < j'. Graphically,
this can be reformulated as follows: there is no other vertex occuring in F
and situated in the rectangle shown on Figure 2.4. If this is the case, this
rectangle is called admissible.

18



AR
/4.\ Lij
Iy o’
NS
[ ]

Figure 2.4: An admissible rectangle

Having this, we construct an object F” by replacing this pair of indecom-
posables I;; ® I;;; with the pair I;;; @ I;;. This means that the multiplicities
multz I of occurences of indecomposable objects I in F' are obtained from
mult I according to the following rule:

multp[;; = multpl;; —1;
multp [y = multply; —1;
multg Iy, = multply; + 1;
multp l;;; = multply + 1;
multy ] = multp] otherwise.

Informally, can be described as flipping the rectangle, whose “corners” I;;
and I occuring in I are replaced by I; and I;;, see Figure 2.5

[ Illj
/N AN
%.\ ]2] /. [ ]
I// < — @ \ /
] ) [ ]
NS N
[ I‘/

Figure 2.5: An elementary move

Let F' be obtained from F by an elementary move. We denote this as
follows: F' < F".

Now we are ready to give the definition of the third order.
Definition. An object F' is said to be less or equal than an object F” w.r.t.
the mowve order, if there exists a sequence of objects Fy, I, ..., F,, such that

F:F0<F1<"'<F5:F/.

This is denoted as follows: F Hg F'.
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Remark. Of course, each element is less or equal than itself. This corre-
sponds to the empty sequence.

So, given two vertices of the AR-quiver, we have at most one possibility
to perform an elementary move affecting them. As a result of this move, this
pair of vertices is replaced with another pair.

In type D everything is more complicated. As above, elementary moves
consist in replacing a pair of marked vertices, but now they can be replaced by
one, two or three other vertices. Moreover, the choice of an initial pair does
not uniquely define the move any more; there may be up to three different
possibilities.

To begin with, we introduce some convention that allows us to make the
description of elementary moves less bulky. Let us add a “fake vertex” in
the missing lowest corner, and the corresponding fake indecomposable object
Iy, equal to zero. So, the resulting quiver will be as shown on Figure 2.6

JAVAPAWATAY

NN N SN S
[ ] [ J [ ] [ ] [ J
NN N NS
[ J [ ] [ ] [ ]
N N SN S
[ J [ ] [ ]
N NS
[ ] [ ]
N
®

Figure 2.6: An AR~quiver of type D with the “fake vertex”

Now let us describe the moves explicitly.

Our general strategy will be as follows: first, we define regions, which are
analogues of rectangles in the case A,,.

A region is a triple (2, Init2(, Term2(), where 2 is a subquiver in our
AR-quiver of a certain form, described below. Each 2 has exactly one source
(vertex of incoming degree 0) and one sink (vertex of outcoming degree 0).
These two vertices are called initial vertices; we denote this two-elementary
set by Init 2[. There are also at least one and at most three vertices marked
as terminal ones, denoted Term 2 (they will be defined below in an ad hoc
way).

Remark. The uniqueness of a source and a sink implies, in particular, that
2 is connected and that there exists an (oriented) path joining the initial
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vertices.

Now let us describe regions explicitly. We distinguish between the follow-
ing six cases, denoted L.a)-I.e) and II.

The cases l.a)-l.e) are characterized by the following property: 2 consists
of those vertices that are situated on the paths joining the source of 2 with
its sink.

I.a) The initial vertices of a region of type L.a) are of the form I; = I,
I, = I, where i <4’ < j < j'. In this case we define an admissible region 2
of type La) as follows:

A={lyps|i<a<i,j<B<J}

It is a rectangle with corners in I; and I,. We define the terminal vertices as
the two other corners of this rectangle, I;; and Iy;

A region of this type is shown on Figure 2. 7 The initial vertices are
outlined by squares, the terminal ones — by circles.

I.b) The initial vertices of regions of this type are of form I} = I,
Iy, = I, such that 0 < i < j <4 < 7" < o0. For each such pair of vertices,
there are two regions of type 1.b), defined as follows:

AT =A" ={lop | i <a<ij<B<JYU{L[ [T ]j<y<i}
Each such region has three terminal vertices, defined by

Term AT = {1, ] ; Z,}
Term A~ = {j
These two regions are shown on Figure 2.8.

I.c) For regions of this type, the initial vertices are of the form 1 = I,
I, = I, such that i < 4’ < 5. In this case, we define 2 to be

A={los|i<a<i,B<YU{L I [i <y <dFU{T),

and Term 2 = {IF, I;7}, as shown on Figure 2.9.
I.d) The initial Vertlces are of the form [, = [jf, Iy =1;,and i < j<j.
Then

A={log|i<aj<B<jYU{If 1)<y <UL}

and Term A = {Iji, L}, see Figure 2.10.
I.e) The initial vertices are of the form I;° and I (signs are different),
i <i'. Then

A={lp|i<a<BiYU{l [T |i<y<d}U{IF IT}.

'Y"Y
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Figure 2.7: Region of type La)

AT

AAA

/\/\/\
\/\/\/
\/\/
N

m

/\%

I A/@\,
NN NS N
/ NN A
NN
N

Figure 2.8: Regions of type L.b)
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N

Figure 2.9: Region of type I.c)

AN A

\/\/\/\

i'j

Figure 2.10: Region of type 1.d)

/vvE

Rl

Figure 2.11: Region of type L.e)
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./ \./ \./ N
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. .
wa(

Figure 2.12: Region of type II

Then there is a unique terminal vertex: Term 2 = {I;; }, see Figure 2.11

IT. In this case, the initial vertices are of the form I;; and I;;, where
i < j <i < j'. The corresponding subquiver 2 is shown on Figure 2.12. It
is given by

A={lpli<a<i,j<B<jYU{I} I7|j<~y<i},

I; and I are its terminal vertices.

One can think of the obtained set of vertices as a “folded rectangle”, with
corners in the initial and the terminal vertices.

After having defined regions, we can go further and pass to the def-

inition of the move order. For the following definition, we fix an object
F € Rep&émb(Q,2.2)-
Definition. A region 2 is called admissible w.r.t. an object F', if for both
initial vertices of 2, the corresponding indecomposable objects occur in F'
with nonzero multiplicities. An admissible region 2 is called minimal, if any
non-initial vertex from 2 occurs in F' with multiplicity 0.

As in the case A, elementary moves that can be performed with an object
F' correspond to the minimal admissible regions:

Definition. We say that /" is obtained from F' by an elementary move
(notation: F' < F), if there is a minimal admissible region 2 w.r.t. F, such
that

multp I = multpl — 1 for I € InitA;
multp I = multpl +1 for I € TermA;

mult ] = multp] otherwise.

This means that, as a result of an elementary move, a pair of indecomposable
objects is replaced by one, two or three other indecomposable objects.
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Now the move order is defined as follows: F'is said to be less or equal

than F’ (notation: F I%V F'), if F’ is obtained from F by a sequence of
elementary moves.

It remains to show that the move order is well-defined, i.e., the graph of
the move order does not contain oriented cycles. This follows from the fact
that the move order implies the degeneration order (see Lemma 2.6 below)
and the latter order is well-defined.

2.5 The main result

Theorem 2.5. Let Q equal Qpo2. Then for all F, F' € Repémb(Q), such
that dimF = dim [,

deg rk mv
FL<F & F<F & F<<F.
So, all the three orders are the same.
This is proved in [Mag] for @ = @, 41. We follow the same strategy and
split the proof into three lemmas, corresponding to [Mag, Lemmas 5,6,7].
mv deg
Lemma 2.6. ' < ' =—= F < .
This will be proved in Subsection 2.5.1 by constructing an explicit degen-
eration of the larger of the corresponding orbits to the smaller one.
deg rk
Lemma 2.7. F < F' —= F < I,

This is a particular case of [Rie, Prop. 2.1]. However, in Subsection 2.5.2
we present an elementary geometric proof of this result.

mv

rk
Lemma 2.8. F < F'— F < F'.

rk
This will be proved in Subsection 2.5.3 as follows: given F' < F', we find

~ m ~ rk
an object I, such that F’ < F < F".
Another important result is that the elementary moves correspond to the
covers in the poset of orbits. More precisely, the following theorem holds.

Theorem 2.9 (Minimality Theorem). With the notation of Theorem 2.5,
deg mv
the relation F' < F' is a cover iff ' < F’

Its proof will be given in Subsection 2.5.4.
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2.5.1 DMove order implies degeneration order

First let us recall the description of “standard” representatives in GL(V')-
orbits, taken from [MWZ, Def. 2.8, Prop. 2.9]. As usual, this is described on
orbits Oy corresponding to indecomposable objects I, and then extended via
taking direct sums.

Let (U, W,V,) be a triple corresponding to an indecomposable object.
This means that V' =V, is of dimension 1 or 2. If dim V' = 1, each of U and
W is either equal to V' or to zero.

If I =1; 0<i<j<oo, then dimV = 2. Let (e;,e;) be an ordered

basis of V, such that V; = --- = V,_; = (e;). Then the triple (U, W, V,) with
U = (ej), W = (e; + ¢;) is called the standard representative of the orbit
Or,;-

Later on, we will deal with certain deformations of bases in our subspaces.
For this, the following notational convention will be useful. Introduce two
more “vectors”: eg and e,,. Set formally eg = 0 and each linear combination
of vectors involving e, be also equal to 0. Note that with this convention,
the definition of standard representatives for [;;, 0 < ¢ < j < oo, is ex-
tended to the cases of Ip; and I, so later we will consider these three cases
simultaneously.

Now we pass to the proof of Lemma 2.6.

Proof of Lemma 2.6. The main idea is as follows: for any two objects F
and F’, such that F' < F’, we take a specific representative (U, W, V,) of the
orbit O and present a one-parameter family (U(1), W (1), V4(7)) of subspace
configurations (7 runs over the ground field), such that (U(0), W (0), V4(0)) =
(U,W,V,), and (U(1), W(7),Va(7)) € Op when 7 # 0.

Since F”’ is obtained from F' by replacing exactly two indecomposable
summands with some other object (consisting of one, two or three inde-
composables), and all the other summands in F' remain unchanged, we can
assume that F' consists only of these two objects. It turns out to be conve-
nient to take the representative (U, W, V,) in its standard form, as indicated
in the beginning of this subsection.

Now consider all the cases listed in Section 2.4.3. We will consider an
initial pair of objects depending on numbers i, 7,7', j € [0, n]U{oco}, where n =
dim V; when we need to speak about linear combinations of vectors involving
€y OT €4, we follow the convention from the beginning of this subsection.
By V, we always denote the flag whose components are spanned by basis
vectors {eq,...,e,}, such that dimV,_,/V,, _, = 1iff a € {i,4,7,j'}, and 0
otherwise. This flag will always be invariant along the curves we are going
to construct: Vi(7) = V.
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I.a) F = Iij ) Ii’j’a I = i'j ®Iij’a where ¢/ <1 < j, <.
(U, W) = ({ej e5r), (i + €j, € + €50)),

(U(r), W(7)) = ((ej, €j), (€i + €j, ex + ej + Tej)).

The triple (U(7), W(7),V,) for each nonzero 7 corresponds to the object
F' = I;; @& I,;, as may be seen by calculating its rank numbers, or by the
decomposition of this configuration into a direct sum of two indecomposables.
Note that this deformation also works for the case when i = 0 or/and
7 = 00.
I.b) F = Iij @ Ii/]'/, F’ = Ii’j @ I;_ @ IJ_, or F’ = Iz"j @ Ii_ @ I;,_ Where
i’ < j' <i<j. In the first case the initial configuration

(U, W) = ({ejr,e5), (ew + ejr, e + €5)),
is deformed to
(U(T), W(T)) = ((6]'/ + TE;, €j>, <€i/ + €j/, €; + €j>).
and in the second one to
(U(1), W (1)) = ({ejr, €;), (eir + €jy + Te;, €; + €5)).
I.C) F:IZ]@I;—, F/:IZ—FEBIZI], Where 7:/ <Z<_]
(U, W) = ((er, ), (ei +¢€5)),

(U(), W(7)) = (e +Tes, €5), (e + €))-

Similarly, if F' = I;; @ I, for i’ < i < j, this object is transformed to
F' = I & Iy;: for the representative

(U, W) = ((j). (ex, &; + €;))
there is a curve
(U(T), W (1)) = ((e)). (ew + Tei, €; + €5)),

having the configuration type F”.
Id) F=1; & I;’ fori' < j' < j,and F' = I]T @ ;. Similarly,

(U W) = ({ej, €5), (e + €j1)),

and
(U(r), W(7)) = ({5, €5), (e + ej + Tej)).
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For F'= Ly @ I; ford' <j' <j, and F' = [, ® Iyj, we have
(Uv W) = ((6]-/), <ei’ + ej’7€j>)a

(U(r), W(7)) = ({ej + 7€;), (e + €50, €5)).
I.e) F = I7,+ b [ZT fOI' 7:/ < 7:, F/ = ]Z"L

(U, W) = ((ei), (ei)),
and
(U(r), W(r)) = ({&:). (exr + 7ei)).
The case F' = I; @ I;, I’ = I; for i < i is completely analogous.

And here comes the last case:

II. F =1;® Ly, where 0 <7 <5 <i < j <oo,and F' = L ® L;.
Then
(U W) = ((ejr, €5), (ex + ejr, e; + €;)),
and
(U(7), W(1)) = ((ej + Tei, €5), (en + ey + Tei, e; + €5))

So, for all the possible types of elementary moves we constructed curves
that are contained in the closure of the “larger” orbit and that intersect the
“smaller” orbit in exactly one point. This proves the lemma. O

2.5.2 Degeneration order implies rank order

Proof of Lemma 2.7. According to Proposition 2.4, it suffices to show that
all the inequalities of the form

dimV,, NU

dimV,, "W

dimV, NUNW

dim(((UNVy,) +(WNVy,)) NVy,) +dim(UNW N V)

vV IV IV IV
Qo8

(2.2)

define closed conditions on X = Gr(k, V) x Gr({,V) x F1 4(V).

For the first three families of inequalities this is clear — these conditions
define closed subvarieties in X cut out by vanishing of certain determinants
in the homogeneous coordinates on X. Let us show this for the last family
of inequalities.

Fix i and j, i < j, and take a configuration of subspaces (U, W, V,). Now
define a linear map

Pij : (Uﬂvaj) X (Wm‘/;lj) - V;lj/‘/;lz'
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by
(u,w) —u+w mod V,,.

The dimension of its kernel equals dim(((U N Vq;) + (W NVg,)) NVy,) +
dim(U N W NV, ). Indeed,

dim Ker(p;;) = dim(U N Vg,) + dim(W N V) — 1k oy =
dim(U NV,,) +dim(W NV,,) —dim((UNVy,) + (W NVy,))/Va,) =
dim(U N V,;) + dim(W NV,,) — dim((U NV,,) + (W NV,,))+
dim((UNVy,) +(WnNVy,))N V) =
dim((U NVg,) N (W N Vg,)) +dim((UNVg,) + (W NVg,))NV,,) =
dim(UNW NV,,) +dim((UNV,,) + (WNVy,)) N Va,).

Now let us prove that the condition dimKery;; > d defines a closed
condition on X. This will be done as follows. Consider the direct product
X of X and three copies of V = V;:

X =Gr(k, V) x Gr(l, V) x F1 (V) x V x V x V,

and take the subset Z;; C X formed by the sixtuples (U W, Ve, z,y,2) €Y
satisfying the following conditions:

z,y € Va3
r e U;
yeWw;
z € Vy;

x+y=2z2 (as vectorsin V).
Obviously, Z;; is closed in X. Moreover, Ker Dij 7Ti;1<(U, W, V4,)), where
m;; is the projection Z;; — X.
This means that the condition 2.2 is equivalent to the condition

dim (U, W.Va)) > d.

and the latter condition is closed on X. O

2.5.3 Rank order implies move order

Let us first establish two general facts about rank numbers.
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Proposition 2.10. The set of rank numbers uniquely defines the correspond-
ing object.

Proof. Assume the contrary: let F' and F’ correspond to the same set of rank
numbers. This means that (I, F') = (I, F’) for each indecomposable I.
Since the direct sums of objects correspond to the sums of their rank num-
bers, one can consider that no indecomposable objects appear in F' and F’
simultaneously. Now take two rightmost objects I and I’ (in the sense of AR-
quiver of type D) occuring in F and F’. Without loss of generality suppose
that [ is situated in the same column or to the right of I’, and, consequently,
(non-strictly) to the right of all indecomposable objects appearing in F’. This
means that (I, F’) = 0. Similarly, [ is situated non-strictly to the right of
all the indecomposables from F', except for I itself. So (I, F) = (I,I) =1, a
contradiction. O

Proposition 2.11. Let 2 be a region with initial vertices I (source) and
I (sink), and J the sum of the indecomposable objects corresponding to the
terminal vertices of A. Then for an arbitrary object F

(I, F) + (I, F) > (J, F).

Moreover, if A\ I contains no indecomposable subobject of F, the inequality
15 an equality.

Proof. By bilinearity of (-,-), one can assume F' to be indecomposable. So,
suppose F'= 1.

Let I’ and I” be two neighbor indecomposable objects in a horizontal line
(that is, I;; and I;4q 41, or IF and I ). Also denote by J the sum of the
objects corresponding to vertices situated on the paths from I’ to I” (J may
consist of at most three indecomposable objects). With (2.1) from Page 18,
one can see that

1Y+ (1" 1) > (J, 1), (2.3)

and the inequality is strict iff I’ = I.

Now, taking the sum of the inequalities (2.3) over all pairs (I’, I”), where
both I’ and I” belong to 2, we obtain the desired inequality. If all the
inequalities (2.3) are equalities, the latter is equality as well. O

Next, we need notions of the interior and the nucleus of a region.
Definition. Let 2 be a region. The interior and the nucleus of 2 (denoted
by Int A and Nuc 2, respectively) are sets of indecomposable objects, defined

30



as follows:

mt = {I| Y (IL.I'< > (1.

I’'eTerm 2 I'elnit A
Nuef = {I| > (LI)= > (I.I')-2}Cnt2
I’'eTerm 2A I'elnit A

A simple verification shows that Int 2 C 2 and that the difference between
(I, F) and (I, F) does not exceed 1 for regions of type I.a)-¢) and 2 for regions
of type II. (So, the nucleus is nonempty only for regions of type II).

On Figure 2.13 below, for a region of each type its nucleus is marked
with stars, and the interior is formed by the union of the nucleus with the
set of black dots. As before, the initial and terminal vertices are outlined by
squares and circles, respectively.

Now let us pass to the proof of Lemma 2.8.

Proof of Lemma 2.8. Let F and F' be two objects, such that dimF" = dimF”’

and I’ 2 F’. We have (I,F) > (I, F’) for all indecomposables I. For the
“fake vertex” lpoo We set (lpoo, F') = (Looo, F') = 0.

We begin with the following definition, which will be the last one in this
chapter.
Definition. A region B is said to be dominant w.r.t. F and F’ if the
following inequalities hold:

(I,F)y> (I,F'Y VI € IntB;

(I, Fy>(I,F')+1 VI € NucB.

(Of course, the second set of inequalities is trivial for regions of type I).
The following technical lemma is essential for the sequel.

Lemma 2.12. With the notation as above, take a rightmost object I, such
that the corresponding rank numbers for F and F" differ: (I,F) > (I, F').
Then there exists a dominant region B with sink I and an indecomposable
object J # I situated in B and occuring in F as a direct summand.

Proof. Take a maximal dominant region 8 with sink /. Assume the contrary:
no indecomposable summand of I’ other than [ is situated in 8.
1. First suppose that B is of type II, with sink I = I;; and source
I' = I;;;. We know that ¢ < j <’ < 7.
Since B is maximal dominant, there must exist two objects J; and J,
with the property
(Jr2,F) = (Jra, F'),
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Figure 2.13: Interiors and nuclei of admissible regions
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Figure 2.14: To the proof of Lemma 2.12: Case la

such that
Jl S {Iaj’ | o€ []7 Z/)}
and
Jo € {Igs | B e (i, ]} U{lsy | v e (@, 7))} u{ls}

(otherwise B would be contained in a larger dominant region).

According to the position of Js, three cases can occur:

la. J1 a]’7 J2 ]ﬁi’7 where a € [', 7;/), ﬁ S (L]]

Consider also two objects I;;;; and Ig,. These four objects determine a

region of type II, as shown on Figure 2.14: Apply Prop. 2.11 twice to this
region, taking into account that /g, € Int B:

<Ii’j’7F> = <J1>F> + <J27F> - <[ﬂmF>
< <‘]17F/> + <J2’F,> - <[/3&7F,> < <[i’j”F/>v
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Figure 2.16: Case 1c

that gives us a contradiction. This means that this smaller region, and hence
B, contain subobjects of F' different from 1.

1b. Jy = lajr, Jo = Iy, where o € [5,7'), v € (. 7).
In this case, we consider the objects Iy and I, shown on Figure 2.15:
and again apply the same Proposition:

Ty F) = (s F) + (o, F) = (T F)
< <<]1,F,> + <J2,F> <I F> <[i’j’7F/>7

ays
obtaining a contradiction with our assumption.

le. Jy =1y, a€j,i), and Jo = Ii.
We consider the pair of objects ([”/, IF) and again apply the same pro-
cedure, see Figure 2.16.

2. The region B is of type L.a)-I.c). This means that its source I’ is of
the form 7;;.
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Figure 2.17: Case 2a

The maximality of 28 implies the existence of at least two objects J € B,
such that (J, F) = (J, F’). We distinguish between the following subcases:

2a. There are two such objects of the form J; = Iy; and Jo = I,
j" € (i,j). Then we can consider the objects I;; and I ; (see Figure 2.17)
and apply Prop. 2.11 twice, writing

(Lij: F) = (J1, F) + (J2, F') = (L, F)
<<‘]17F/>+<‘]27F/>_<]Z'J'7F> §<I F>
This gives us a contradiction.

2b. Ji = I;, but for all vertices I;j;, where i < j' < j, the inequality

{Liy, F) > (Lijr, F')

15"y

holds. Then, by maximality of 9B, there exist two vertices J, = [ and
Jz = I3, (with different signs), such that I;= € Term B, and

<‘]27F> = <‘]2¢FI>
<‘]37F> = <J3’F/>

Let us take for J3 the leftmost element of form I situated in B and satisfying
the latter equality.
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Figure 2.18: Case 2b

If i" < ', we can consider region € of type Lc) with Init € = {I;;, I } and
Term € = {I”, ; } see Figure 2.18. Then we can again apply Prop. 2.11
and obtain

<I’L]7F> <IZ’J7F>+<I;E*F>_<I;—7F>
< <[i'j7F/> + <Izi*F/> <[+

i

FY) < (L, F).

2c. If ¢ > i'; we consider the region @ of type L.b), with Init @ =
{I;, Iisi»} and Term ¢ = {Iy;, [, I};}, as shown on Figure 2.19 Again we

’L]?
apply Prop. 2.11 to this region twice, obtaining

<[Z]7F> <Ii’j7F>+<IiiaF>+<I;37F>_<[l’l"7F>
< Ty ') + (IE Fy I3, ) = (T, ) < (T3, ).

3. The region B is of type I.d) or Le). Let its source be situated at the
vertex [ = I]i. The maximality of 8 means that there exists at least one
element I;;, such that (I;;, F) = (I;;, F"). Let I;; be the leftmost element
with this property. We distinguish between the following subcases:

3a. There exists an element I;,E, such that <I;,E, F) = (I;,E, F’), and i < j'.
In this case, take a leftmost such element and consider region € of type I.d),
defined by Init € = {I;E, I} and Term € = {Iji,, I;;}, see Figure 2.20. It does
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Figure 2.19: Case 2¢

not contain objects occuring in F', so proceed as usual:

(I}, F) = Iy, F) = (I5, F) = (I,;, F)

L) AR

<Ly, F') = (I, F') = (1, F') < (I} F),

a contradiction.

3b. For all elements I;?, such that ¢ < j' < 7, the inequality (Ijj,[, F) >
<I;,E, F') is strict, and the element I belongs to B. Then we consider € of
type Le), as on Figure 2.21, with Init € = {7, '} and Term € = {/;;}, and

RV

IZ/
\ N 7 "< L \

\],/ \\ Ve \ /
\/\/
\\./f

Figure 2.20: Case 3a
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Figure 2.21: Case 3b

apply the same method:
+ _ +
(I, F) = (IF F) = (I, F) < (IF, F') = (L, F") < (I}, F).

R R

3c. Here comes the last possibility: the equality of rank numbers holds
in I;;, but for all vertices IF € B, a # j, the inequality

K
(I3, F) > (I3, F")

is strict, and the vertex I does not belong to 8. The latter means that B
is of type I.d) (not I.e)). Denote its sink by I, ;,-

In this case, we claim that region € with Init& = {I; .1, [;,;,} and
Term € = {I;,;, [;4+1} is dominant (see Figure 2.22).

Since B is dominant and by the hypothesis of Case 3¢, we see that for
each [ € Int &, (I, F) > (I, F') + 1.

So, we have to show that for each vertex from Nuc &, that is, for each
vertex of the form I3, where jo < a < 8 < j — 1, the inequality

<IaﬁaF> 2 <IaﬂﬂFl> +1

is strict.

Let us prove this. Suppose that there exists an object I,,5,, where this
inequality is an equality. Then we can apply Prop. 2.11, in a slightly different
way than before:

<Ia0j7F> = <Ia0507F> + <Iot0j’F> - <Ii’ﬁan>
< <IaoﬁovF,> +1+ <Ia0ij,> - <Ii’ﬁovF,> < <[Oéoj’F/> + 17

that yields a contradiction.

So, having obtained a dominant region of type II, we proceed as in the
case 1.

The lemma is proved. ]
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Figure 2.22: Case 3c

Having such a region ‘B, let us take a minimal dominant region in it; that
is, a dominant region € satisfying the following properties:

1. The sink of € equals I, and its source occurs in F' as a direct summand;

2. € contains no subobjects of F' other that its source and its sink (mini-
mality).

The properties 1 and 2 imply that such a region € is minimal admissible.
So we may perform the elementary move corresponding to €, thus obtaining
an object F from F. The property of € to be dominant implies that (1, ]5> >
(I, F') for each indecomposable object I. So, we have found the desired
object F', such that

~ 1k
F<F<F.
This concludes the proof of Lemma 2.8. O

2.5.4 Proof of the Minimality Theorem

First note that for the “spherical case”, when dimF' = dimF’ = (1,...,n; k; 1),
the Minimality Theorem is implied by the following fact: all degenerations

that are given by an elementary move are of codimension 1, that is, F <
implies dim O% = dim O + 1. However, in general this is not true. Now we
shall prove this combinatorially in the general case.

Suppose we have a counterexample to the Minimality Theorem, an el-
ementary move relation that is not a cover. This means that the relation
I < F' can be obtained as a longer sequence of elementary moves:

F=F<F< --<F.=F.
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Our aim is to show that F} = F’.
Let 2 be the minimal admissible region which corresponds to the elemen-

tary move F'< F’, and let 8 be the region corresponding to the move F' < F}.
Since F' < F} < I, then

<[aF> > <17F1> > <17F/>
for each indecomposable I. This means that
Int A D Int B, Nuc® O Nuc’B. (2.4)

So, A O B. This means that both initial vertices of B belong to . Due to
the minimality of the admissible region 2, this means that Init 2l = Init B.

So, the initial vertices of the regions 2l and B coincide, and 2 D B. Two
cases may occur: either 2 is of type I.b), and B is of type II, or both 2 and
B are of type I.b), as shown on Figure 2.8. However, in each of the both
cases we obtain a contradiction with (2.4). In the first case, the inclusion
Nuc® O Nuc®B does not hold. In the second case, Int A 2 Int B.

The Minimality Theorem is thus proved.
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Chapter 3

Desingularizations of Schubert
varieties in double
Grassmannians

3.1 Introduction

In the previous chapter, we were considering orbits of GL(V') acting on the
variety X = GL(V)/P x Gr(k,V) x Gr(l,V), or, in other words, orbits of a
parabolic subgroup P C GL(V) acting on Y = Gr(k, V) x Gr(, V). In this
chapter we are going to focus on the case P = B.

For this case, we give another combinatorial description of orbits, which
is rather close to the classical indexing of B-orbits in Gr(k, V') by means of
Young diagrams. This is done in Section 3.2. It turns out that this descrip-
tion suits better for figuring out some combinatorial and geometric properties
of B-orbits than the one that was considered in the previous chapter. It also
does not refer to the results of [MWZ]; in the case P = B everything can
be done using only some elementary linear algebra. This is a generalization
of the description of orbits in the symmetric space GLgy;/(GLx x GL;), that
was obtained by Stéphane Pin in his thesis [Pin].

Further, we regard the closures of B-orbits in Y. They can be consid-
ered as analogues of Schubert varieties in Grassmannians. We are interested
in their singularities. The singularities of Schubert varieties are well-known
objects. They admit nice desingularizations, constructed by Bott and Samel-
son. They are normal, rational, their singular loci can be described explicitly.
Good references on this topic are, for instance, [Br2] and [Manl]. So, it is
natural to ask the same questions (resolutions of singularities, normality, ra-
tionality) for the case of B-orbit closures in Y. In this chapter we construct
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desingularizations of these varieties.

And finally, in Section 3.5 we provide a simple combinatorial criterion
for inclusion of the B-orbit closures for a pair of orbits belonging to the
same B x B-orbit. This construction gives us a partial order on the set of
involutive permutations. Quite unexpectedly, this order coincides with the
order on B-orbits in strictly upper-triangular matrices of order 2, appearing
in the recent papers [Mell] and [Mel2] by A. Melnikov.

3.2 Description of orbits

3.2.1 Notation

As before, let V' be an n-dimensional vector space over a field K. The results
of Section 3.2 are valid over an arbitrary ground field; however, starting from
Section 3.3 we assume K be algebraically closed.

Let k,l < n be positive integers. The direct product Gr(k, V') x Gr(l, V)
is denoted by Y. Usually we do not make any difference between points of Y’
and the corresponding configurations of subspaces (U, W), where U, W C V,
dimU =k, dimW = 1.

We fix a Borel subgroup B in GL(V). Let V, = (V4,...,V,, = V) be the
complete flag in V' stabilized by B.

3.2.2 Combinatorial description

In this section we will introduce some combinatorial objects that parametrize
pairs of subspaces up to B-action. Namely, orbits will be parametrized by
triples consisting of two Young diagrams contained in the rectangles of size
kx (n—k) and [ x (n—1), respectively, and an involutive permutation of S,,.

Together with constructing these data we will also construct some “canon-
ical” bases in subspaces U, W, and V, respectively.

Proposition 3.1. (i). There exist ordered bases (uy,...,ux), (wi,...,wy),
and (vy,...,v,) of U, W, and V, respectively, such that:

o V= (vy,...,v;) for each i € {1,...,n} (angle brackets stand for the
linear span of vectors);

o u; =v,,, wherei € {1,...,k}, and {aq,...,ap} C{1,...,n};

o The w; are either basic vectors of V' or vectors with two-element “sup-
port”: w; =vg, or w; = v, + vs,, where ; > 6;; moreover, in the latter
case v, € U (that is, {m,...,%} C{o1,...,ar}).
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o All the B;, v; and 6; are distinct; moreover, all the 6; are distinct from
the ;.

(ii). With the notation of (i), define a permutation o € S,, as the product
of all the transpositions (;, ;). Their supports do not intersect, so this
product does not depend of their order.

Then for the given pair (U, W) the subsets @ = {a1, ..., i}, B={B1,.... 08—},
=47, ---,%} of {1,...,n}, and the permutation o are independent of the
choice of bases in U, W, and V.

Proof. (i) We will prove this by induction over n.

If n = 1, there is nothing to prove.

For arbitrary n, take a nonzero vector v; € Vi, and consider the following
cases:

e v; ¢ U+ W. Take the quotient V = V/(v;) with the flag V, = V5 C
. C V,, consider the image of our configuration, that consists of
the subspaces U = U and W = W, and apply the induction hypoth-
esis to this configuration. Let us choose ordered bases {ay,...,us},
{wy,...,w;}, and {vy1,...,0,_1} in U, W, and V. Then we choose a
lift 2: V < V. Now take the pre-images of these basis vectors in V
in the following way: u; = 2(u;), w; = 1(w;), v; = 1(v;—1). We get the
required triple of bases.

e vy €U, vy ¢ W. Set u; = v; and again apply the induction hypothesis
to the quotient V = V/(v;) with the flag V, and the configuration
(U,W). The only difference is that in this case dimU = dimU — 1.
After that we take the pre-images of the bases of U, W, and V in V in
a similar way.

e The case when v; ¢ U, v; € W, is analogous to the previous one (we
set wy = vy).

o If vy €c UNW, let us set u; = wy; = vy and again apply the induction.

e The most interesting case is the last one: vy € U + W, but it does not,
belong to any of these two subspaces. Consider then the set of vectors
S ={v|veUwv+v e W} Since v; belongs to the sum U+ W, this set
is nonempty. Now let j be the minimal number such that V; contains
vectors from S, and v; € V; NS, Let us set u; = v, wy = v1 + v;.
Now apply the induction hypothesis to the (n — 2)-dimensional space
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V = V/{(vy,v;) and to the configuration of two subspaces U, W, and
the flag

Vo=W/ViC--C V1 /Vi =
= Vj/(v1,v5) C Vi /(v1,v5) C--- CVy/(v1,v5).

We take the pre-images of vectors from V to V as follows:
V; = Z<6i—1)7 if1 € [2,j - ]_L V; = Z(Q_]Z'_Q) if1 € [j + l,n],

where, as above, 7 is an embedding of V into V. We have already
defined the vectors v; and v;,.

(ii) Take a configuration (U, W) and assume that there exist two triples
of ordered bases ((u1,...,ug), (w1,...,wy), (v1,...,v,)) and ((uf,...,uL),
(wh,...,w)), (vi,...,v))), satisfying the conditions of (i), such that either

-y Un

the triples of sets (&,(3,%) and (&', 3,7'), or the permutations o and o,
corresponding to the first and the second triple of bases, respectively, are not,
equal.

The set @ can be described as follows. 7 € a iff dimUNV; > dimUNV,_;.
This means that @ = @'.

By the same argument we can prove that FU¥y = 3 U7,

Now let us prove that ¢ = ¢’. This will complete the proof, since § =
{sepuvlaly) =7}

Let 7 be the minimal number from 3U+, such that o(j) # o'(j). Suppose
that (7) < 0’(j). Two cases may occur:

a) i:=0'(j) # j. First observe that ¢ ¢ a. Consider the subspace

V=UnNV)+ Vi1 = (vs,00, | s <i— 1,0 €anli,j]) =
= (v, ), | s<i—1l,a; €@ N, J).

Let R and R’ denote respectively the sets {r € 3U~y | r,o(r) € [1,i —
1u(an[i,j)} and {re Uy |ro'(r) €[l,i—1]U(anlij])}. One can
easily see that

dmV NW = #R = #R'.

But o(r) = o'(r) for all r € [1, j—1], and j belongs to R and does not belong
to R'. That means that the cardinalities of these two sets are different, that
gives us the desired contradiction.

b) If 0'(j) = j, set i = o(j), and proceed as in a). O
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Remark. It is easy to see that, with such a choice of basis {vq,...,v,},
the subspaces U and W are exactly the “standard” representatives in their
normal form, as described in 2.5.1.

Let us now introduce a combinatorial construction that parametrizes con-
figuration types. Namely, having a configuration, we will construct a pair of
Young diagrams with some boxes distinguished.

Suppose we have a configuration (U, W) with bases (u1, ..., ug), (wq, ..., wy),
and (vy,...,v,), chosen as in Prop. 3.1, the sets a, 3, 7, and the involution
o corresponding to this configuration. Consider a rectangle of size k x (n—k)
and construct a path from its bottom-left to upper-right corner, such that
its j-th step is vertical if j belongs to a (that is, v; is equal to some wu;),
and horizontal otherwise. This path bounds (from below) the first Young
diagram.

The second diagram will be contained in the rectangle of size [ x (n — ).
Again, we will construct a path bounding it. Let the j-th step of this path
be vertical if j € 3U#, and horizontal otherwise.

If j € 7, then the o(j)-th step of this path is horizontal. This also means
that the j-th and o(j)-th steps of the path bounding the first diagram are also
vertical and horizontal, respectively. In each diagram, take the box located
above the o(j)-th step and to the left of the j-th step, and put a dot into
this box.

Let us call this pair of diagrams with dots a marked pair.

Example. Letn =9, k = 4, = 3. Suppose that a = {3,5,6,9}, 3 = {2, 5},
7 =49}, 0 = (7,9). Then the corresponding marked pair of diagrams is the
following;:

Remark. Note that the constructed diagrams (without dots) are the same
as the diagrams that correspond to the Schubert cells containing the points
U € Gr(k,V) and W € Gr(l,V). (The correspondence between Schubert
cells and Young diagrams is described, for example, in [Ful], [Manl], or any
other textbook on this subject).

So, we have a combinatorial parametrization of B-orbits in Gr(k, V') X
Gr(l, V). A natural question which arises is as follows: how to relate it with
the paramezation described in Section 2.2, where orbits are indexed by the
isomorphism classes of objects with the given dimension vector?

From Prop. 3.1 and the subsequent Remark, we can recover the decom-
position of the object corresponding to an orbit. So, if by an orbit O we
obtain the subsets a, 3, and 4 C [1,n], and the permutation ¢ € S,,, then
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the corresponding object Fn equals

Fo=@P e P LePLrePloe P

icanB i€a\(BUy) ieB\a 1€y igaupUo(7)

This description can be easily recovered from the marked pair of diagrams
corresponding to an orbit. To do this, consider the paths bounding both
diagrams from below as sequences of horizontal and vertical steps, numbered
from 1 to n, starting from the bottom-left to the upper-right corner. Now
the object F' corresponding to this marked pair is defined as follows:

e For each dot situated above the i-th step and to the left of the j-th
step, F' contains an indecomposable subobject I;;;

e For each 7, such that the i-steps in both diagrams are vertical and there
is no dot to the left of these steps, F' contains [;;

e For each ¢, such that the i-steps in both diagrams are horizontal and
there is no dot above these steps, F' contains Iy;;

e For each 7, such that the i-step in the first diagram is vertical, and the
i-th step in the second diagram is horizontal, F' contains I;';

e And vice versa, for each i, such that the i-step is horizontal in the first
diagram and vertical in the second one, F' contains I; .

Example. According to this rule, let us recover the decomposition of the
object F' which corresponds to the marked pair of diagrams, given in Example
on Page 45:

F=In®1; @ I ©Ios @ Iiee ® I & Iy & Ips.

3.2.3 Decomposition of Y into the union of GL(V)-
orbits

GL(V)-orbits in Y have a much simpler description: the GL(V)-orbit is
given only by one natural number, namely, the dimension of the intersection
of a k-plane and an [-plane. For this number (denote it by ¢) we have the
inequality

max{0,k + 1 —n} <i < min{k,[}.
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Denote the corresponding GL(V')-orbit by Y;:

Y = |_| '

1€[max(0,k+I—n),min(k,l)]

For each B-orbit the dimension of the intersection of the corresponding sub-
spaces is equal to #(a N G). This follows from our construction of the com-
binatorial data corresponding to an orbit.

3.2.4 Counting orbits

In this subsection we give explicit formulas for the total number #B(Y") of
B-orbits in Y and for the number of B-orbits #B(Y;) in each G-orbit.

To do this, let us count the number of orbits, such that the support of
the corresponding involution o € S,, has exactly 2r elements.

First choose a 2r-element subset Supp o in {1,...,n}. This can be done
in (Q”T ) ways. Then let us count the number of involutions with this support.
There are 2r — 1 possibilities for the first element of Supp o, 2r — 3 for the
second one, etc., so the total number equals (2r — Il =1-3----- (2r —1).
Let us also set by definition (—1)!! := 1.

After the permutation o is fixed, to determine the orbit we have to choose
the sets @\ 7 and 3, such that #(a\¥) equals to k —r, and #3 equals [ —r.
These subsets are chosen from {1,...,n} \ Supp o, so the total number of

possibilities equals (7;;_2:) (”l:ir) Finally, we get the following formula:
LB(Y) %é] n—2r\(n—2r\(n 2 !
= r— 1)
= kE—r [—r 2r

If we want to count those possibilities where the dimension of intersection
of our two subspaces #(a N B) equals some given i, then after fixing the
permutation choose the non-intersecting subsets @M 3, @\ (3U7) and 3\ a
from {1,...,n} \ Supp o, consisting of ¢, k —r — i and | — r — i respectively.
The resulting formula is as follows:

#B(Yi) = [nzi? <n ; QT) (7;__2:__;) (7::?:;) (;) (2r — 1)1

3.2.5 Stabilizers and dimensions of orbits

Now let us find the stabilizer GL(V')w,w for a given configuration.
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Proposition 3.2. With the notation of Prop. 3.1, the stabilizer of a con-
figuration (U, W) written w.r.t. basis (vq,...,v,), consists of the upper-
triangular matrices A = (a;;) € GL(n) satisfying the following conditions:

1. ayy = Qo(y)o(y) for each v € 7;

2. ajo =0 for each a € a, i ¢ a;

ajg =0 for each 3 € B3 and j ¢ BUFUo(7);
yg = o(y)s Jor each B € B and vy € 7, v < 3;

Qjy = —Qjy(y) for each j ¢ BUYU () and v € 7;

SN

for each v1,v2 € ¥, 71 < Y2, one of the following cases occurs:

® o(v2) < a(m) <M < V2! then ayyy = o) = Go(p)m =
Qo (y)o(r2) = U

o 0(1) < o(y2) <M < 72l then asiyyyy = Aoty = 0, Qypyp =
Qo (y1)o(v2)7

e o(n) <m < o(r) < Y then Uo(yiyye = 05 Oyiyy + Cyyo(r) =
Qo (y1)o(72)-

Corollary 3.3. The stabilizer of a configuration (U, W) is a semidirect prod-
uct of a toric and a unipotent part:

GLWV)ww) = Tww) x Uuw),

where Ty is the subgroup in the group of diagonal matrices defined by the
equations 1., so that dim Ty wy = n — #7, and Uy is the subgroup in the
group of unitriangular matrices, defined by the equations 2.—6.

Definition. The codimension of the toric part of the stabilizer is said to be
the rank of a configuration (or its corresponding orbit):

k(U W) :=n —dim Ty w) = #7.

Proof of the proposition. First of all, the stabilizer By is formed by upper-
triangular matrices, as a subgroup of B.

Next, it preserves the subspace U = (v4,,-..,Vqa,). This means that
a transformation A € Byw) maps each v,, into a linear combination of
Va;, 50 all the elements a;o, where a € a, ¢ ¢ a, vanish. (Note that the
zeros in A obtained in this way also form a Young diagram corresponding to
the subspace U, rotated 90° clockwise. This proves, in particular, that the
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dimension of a Schubert cell in a Grassmannian is equal to the number of
boxes in the corresponding diagram.)

So, the boxes of the first Young diagram are in a one-to-one correspon-
dence with the linear equations defining By as a subgroup of the group of
upper-triangular matrices: the box located above the i-th (horizontal) step
and to the left of the j-th (vertical) step of the corresponding path (denote
this box by (¢, 7)) corresponds to the equation a;; = 0.

Similarly, the stabilizer of our configuration preserves the subspace W.
This gives us a set of linear equations on the elements a;;, and the number
of them is equal to the number of boxes in the second diagram of the cor-
responding marked pair. Again, we establish a one-to-one correspondence
between the boxes of this diagram and these equations, denoting boxes as in
the previous paragraph. Here they are:

e aj3=0foreach 3 € B and j ¢ BNyNoc(y), j < B. The corresponding
box is (4, 8);

® aj, = —aj,( for each j ¢ BUFUo(§) and v € 7, j < 7. The
corresponding box is (7,7);

® Uy(y)y + Qyy — Ao(y)o(y) = 0 for each v € 4. The corresponding box is
((7),7);

® yp = Go(y) for each 3 € 3 and v € 5, v < 3. The corresponding box
is (0(7),8);

® Uo(y)o(vz) T Go(1)ys = Oyio(ys) T Qyny fOr €ach 1 < 75, This equation
corresponds to the box (a(v1),72).

Bringing all these equations together completes the proof of the proposi-
tion. U

Once we know the stabilizer of a configuration, we can calculate its di-
mension (and hence the dimension of the orbit B(U, W) C Y'). Analyzing the
equations above, one can deduce a combinatorial interpretation of dimension
in terms of Young diagrams with dots.

To do this, we have to introduce one more combinatorial notion. Suppose
we have two rectangles of size k x (n — k) and [ x (n — 1), respectively, and a
path in each of these rectangles bounding a Young diagram (so both paths
are of the length n). Consider the set of all numbers 4, such that the i-th steps
in the paths bounding both diagrams are horizontal, and take the columns
in the diagrams lying above these steps. After that let us do the same for
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those pairs of steps that are “simultancously vertical”, and take the rows to
the left of these steps.

The intersection of columns and rows we have taken also forms a Young
diagram. Let us call it a common diagram corresponding to the given pair
of diagrams.

Example. The pair of Young diagrams

has the following common diagram:

By our construction of marked pairs, dots can only be situated in the
boxes of the common diagram of a marked pair.

Corollary 3.4. Let (U, W) be a configuration of subspaces, and let (Y1, Vo)
be the corresponding marked pair of Young diagrams, with dots in some bozes
of its common diagram Y.om.

Now take the diagram Y.om. Take all its bozes with dots and consider all
the hooks with spikes in these boxes. Let H be the set of boxes that belong
to at least one of these hooks. Then the dimension of the B-orbit of (U, W)
equals

dlmB(U, W) — #yl + #yQ - #ycom + #Ha
where #Y denotes the number of bozxes in ).

Remark. #H equals the total number of boxes contained in all the hooks,
not the sum of all the hooks’ lengths. That means that a box included into
two hooks must be counted once, not twice!

Proof. In the proof of Prop. 3.2 we deal with two systems of linear equations
on the matrix entries (a;;), that correspond to stabilizing the subspaces U and
W and consist of #)4 and #)» equations, respectively. One can easily see
that the equations corresponding to the box (i, j) coincide in both systems iff
the box (7, ) of the common diagram does not belong to any hook, and also
that the system obtained by eliminating these “double” equations is linearly
independent. So, the codimension of By in B (that is, the dimension of
B(U,W)) equals #V1 + #YV2 — #Veom + #H. O
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Example. Let the common diagram for a marked pair be as follows:

* * * |
X |k |k | k| % | @

[ ] *

X | X | % | @

Then #Yeom = 26, #H = 15 (boxes belonging to H are the non-empty ones).
In particular, the dimension formula allows us to describe the minimal,
or the most special, and the maximal (open) orbit. The most special or-
bit is zero-dimensional and corresponds to Y; = )» = &. It is the point
((v1, . k), (v1,...,v)) € Y. Both Young diagrams corresponding to the
most generic orbit are rectangular, of size k X (n— k) and [ X (n —1), respec-
tively. So, their common diagram is also a rectangle of size min{k, [} x (n —
max{k,(}), with dots situated on a diagonal starting from the bottom-right
corner.
Example. For n =8, k = 3, and [ = 4, the combinatorial data correspond-
ing to the maximal orbit are as follows:

yl y2 ycom

3.3 The weak order on the set of orbits

Starting from this point, we work over an algebraically closed ground field
K.

In the previous section we described the set of B-orbits in Gr(k, V') x

Gr(l,V). There exist several partial order structures on this set. The first,
and the most natural one, is defined as follows:
Definition. Let O and O’ be two B-orbits in Gr(k, V) x Gr(l,V). We
say that O is less or equal than O w.r.t. the strong (or topological) order,
iff © c O'. (Saying “topological”, we speak about the Zariski topology).
Notation: O < O'.

There exists another order on this set, usually called the weak order. Here
notation and terminology are taken from [Brl].

Let W be the Weyl group for GL(n), and let A be the corresponding root
system. Denote the simple reflections by sq, ..., s,_1, and the corresponding
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simple roots by aq,...,a,_1. Let P, = B U Bs; B be the minimal parabolic
subgroup in GL(V) corresponding to the simple root «;.

We say that a; raises an orbit O to @', if O’ = PO # O. In this case,
dim @’ = dim O + 1. This notion allows us to define the weak order.
Definition. An orbit O is said to be less or equal than O" w.r.t. the weak
order (notation: O =< ('), if O’ can be obtained as the result of several
consecutive raisings of @ by minimal parabolic subgroups:

0O=<0 < Flir,...,i,): 0O =P, ...F0.

Let us represent this relation of order by an oriented graph. Consider a
graph I'(Y") with vertices indexed by B-orbits in Y. Join O and O’ with an
edge of label i, leading to @', if P; raises O to O'.

It is clear that the connected components of I'(Y') consist of the B-orbits
contained in the same GL(V')-orbit Y;, and that every connected component
has a unique maximal element (the B-orbit that is open in Yy).

Our next aim will be to describe minimal elements w.r.t. the weak order
in each connected component.

3.3.1 Combinatorial description of minimal parabolic
subgroup action

Consider an orbit O and the corresponding combinatorial data: the sets
a, B, 4, and the involution ¢ € S,,. Let the minimal parabolic subgroup
P, = B U Bs; B raise the orbit O to the orbit @ # O. Now we will describe
the combinatorial data (&, 3, 7/, o) of O'.

Denote the transposition (i,7 4+ 1) € S, by 7;.

The following cases may occur:

1. Suppose that
ica, i¢08, i+lda, i+1€ep,

or, vice versa,
i¢da, i€B, i+lca, i+1¢p.

These two variants correspond to two orbits that could be risen to O'.
In this case, the new combinatorial data is given as follows:

o = au{i+1}\{i}
B o= B\ {ii+1);
7 = yuli+1}
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Note that tk @' =1k O + 1, dim O’ = dim O + 1.

In the language of marked pairs of diagrams, this is represented as
follows. If the i-th and the ¢ + 1-th steps of the path bounding the
first diagram form a ravine (that is, the i-th step is horizontal, and the
i+ 1-th step is vertical), and the corresponding intervals of the second
diagram form a spike (vertical step is followed by a horizontal one) or,
vice versa, we have a spike in the first diagram and a ravine in the
second, both these pairs of steps can be replaced by spikes bounding a
marked box.

Example. Apply the minimal parabolic subgroup P, to the orbit
O C Gr(3,7) x Gr(4,7) defined by the following marked pair:

The orbit O obtained as the result of this raising is defined by the
marked pair

. In all the other cases & = 7;(a), 8 = 7(8), ¥ = 7:(7), and the
permutation & is the result of the conjugation of o by 7;:

0 = T;07T;.

The ranks of these orbits are equal: Tk O" = rk O.

3.3.2 The weak order from the quiver point of view

In this subsection we describe the weak order by means of the language of
Auslander Reiten quivers, developed in Chapter 2.

Let O and O be two B-orbits in Y, such that @’ is obtained from O by

the action of a minimal parabolic subgroup P;:

O =P-0. (3.1)

As we showed in Chapter 2, this means that for the corresponding GL(V)-
orbits Ox and O% in X =Y x FI (V), the latter can be obtained from the
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former by an elementary move. But the weak order and the strong order in
general do not coincide, so the converse is false. So, one would like to know
which elementary moves correspond to the action of a minimal parabolic
subgroup. The answer is given by the following proposition.

Proposition 3.5. The equality (3.1) holds iff for the objects F' and F', cor-
responding to O and O,

F < F',
and, moreover, the corresponding elementary move is of type La), I.c), 1.d),
Le), or 11, and the source and the sink of the corresponding admissible region
belong to neighbor roads.

Proof. Each minimal parabolic subgroup may be presented as the closure of
the product

Pi:UZ'_'Ba

where U = {E 4+ 7E;;1,; | 7 € K} is a one-dimensional unipotent sub-
group consisting of the matrices whose diagonal entries equal 1, and the only
nonzero non-diagonal entry, situated in the ¢ + 1-th line and ¢-th column,
equals 7.

For a pair of orbits @ and @ in Y, such that O’ = P,O, and a rep-
resentative (U, W) € O, the action of U;” gives us the curve U (U, W) =
{(U(r),W(7)} € O'. For a general 7, the point (U(7), W (7)) belongs to the
orbit O'.

We see that, for the canonical representative (U, W,V,) € Ox C X cor-
responding to O C Y, the curve (U(1), W(7),V,) C O is exactly the one
that was constructed in the proof of Lemma 2.6. The corresponding region
has its source and sink on the roads beginning at I; 11~ and ;o and is not
of type Lb).

Conversely, let F'< I'. Suppose that the elementary move transferring F'
to F” is not of type I.b), and that the source and the sink of the corresponding
minimal admissible region belong to the roads beginning in /., and ls
respectively, s < r. Then the curve constructed in the proof of Lemma 2.6
is of the form

Ulr) = Aps(m)U;

Wi(r) = Aq(m)W;

Vo(r) = Vi,
where A,(7) = E + 7E,s is again a matrix with one nonzero nondiagonal
entry. So, this action is given by the minimal parabolic subgroup P; iff s =1

and r =17+ 1.
O
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3.3.3 Minimal orbits

Lemma 3.6. All minimal B-orbits w.r.t. the weak order in a given GL(V)-
orbit have rank 0.

Proof. Assume the converse. Let O be a minimal orbit with a nonzero rank,
and let (@, 3,%, o) the corresponding combinatorial data, such that o # Id.
Let p € 7, p' = o(p). Without loss of generality we can suppose that there
is no other ¢ € 4, such that p’ < o(q) < g < p.

Let R; denote the set of ravines in the first diagram, situated between
p and p’ — that is, the set of indices 4, such that the ¢-th step in the first
diagram is horizontal, and the ¢ + 1-th is vertical. Similarly, let S; denote
the set of spikes, — that is, the set of i, such that the i-th step is vertical,
and the 7 + 1-st is horizontal. Denote the same sets for the second diagram
by Ry and S,. Note that #R; = #5171+ 1, and #Ry = #S,+1  since p'-th
steps in both diagrams are horizontal, and p-th steps are vertical.

Now take a j, such that j € (Ry\ S2) U(Ry\ S1). Let us show that there
exists an orbit @, such that O = Pj@’ . We describe the combinatorial data
for this orbit.

If the permutation o contains the transposition (j,j + 1), then the com-
binatorial data for O is as follows:

o = aU{ji\{j+1}
g = BU{jk
1 = Y\ {7 +1}

Otherwise a’' = 7;(a), B = 7;(3), ¥ = 7;(7), o' = 1j07;.
The calculation of the dimensions shows that dim @' =dim O — 1.
To complete the proof, we have to show that the set (Ry \ S2) U (Ra\ S)

is nonempty:

#((R1\ S2) U (R )\ S1)) > max(#(Ry \ Sa), #(R2 \ S1)) >
Z max(#R1 - #RQ + 1, #RQ - #Rl + 1) Z 1.
]

After that we can find all the minimal orbits in Y;. One can easily see
that each minimal orbit has the following combinatorial data:

auB = {1,....k+1—d};
anp {1,...,d};

7= 9

o = Id.



The dimension of all minimal orbits in Yy equals (k—d)(l—d). In particular,
that means that they all are closed in Y;. They correspond to decompositions
of the set {d+1,...,k+1—d} into two parts, a\ 3 and 8\ @, so their number
is equal to (k;l:;d).

Also note that the pair of Young diagrams that corresponds to a minimal
orbit is complementary: one can put these two diagrams together so that
they will fill a rectangle of size (k —d) x (I — d).

It is also clear that no other B-orbit corresponds to such pair of Young
diagrams. That means that all the minimal orbits are stable under the
(B x B)-action, that is, they are direct products of two Schubert cells in
two Grassmannians.

These results can be summarized as the following theorem.

Theorem 3.7. EachY,, whered € {max(k+(—n,0),..., min(k,1)}, contains
kzl:;d) minimal orbits. All these orbits are closed in Yy and have dimension
(k—d)(l —d). They are direct products of Schubert cells.

3.4 Desingularizations of the orbit closures

In this section we construct desingularizations for the B-orbit closures in Y.
Given a minimal parabolic subgroup P; and an orbit closure O, consider the

morphism
F;: P, x 80 — PO,

(p,z) = pz.

Knop [Kn] and Richardson Springer [RS] showed that the following three
cases may OCCUur:

e Type U: PO = O UQO, and F; is birational;
e Type N: PO =0 LUQO, and F; is of degree 2;

e Type T: PO = O'LUOUQO", and F; is birational. In this case dim 0" =
dim O.
It turns out that in our situation the case N never occurs.

Proposition 3.8. Let O be a B-orbit in'Y and let P; be a minimal parabolic
subgroup raising this orbit. Then the map Fy: Py x BO — PO is birational.

Proof. Choose the canonical representative x € O as in Prop. 3.1. A direct
calculation shows that the isotropy group of Y in P; equals the isotropy group
of Y in B, described in Prop. 3.2. This implies the birationality of F;. O
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Remark. The two remaining cases correspond to the two possible “raisings”
described in the subsection 3.3.1: (T) corresponds to (1), and (U) corresponds
to (2). In the first case, the rank of the orbit is increased by one, and in the
second case, it does not change. So, the weak order is compatible with the
rank function: if @ < @', then rkO < rk@’. This is true in general for
spherical varieties (cf., for instance, [Brl]). Note that the strong order is not
compatible with the rank function.

Proposition 3.8 together with Theorem 3.7 allows us to construct desin-
gularizations for O’s similar to Bott-Samelson desingularizations of Schubert
varieties in Grassmannians.

Given an orbit O, consider a minimal orbit O,,;, that is less that O
w.r.t. the weak order. That means that there exists a sequence of minimal
parabolic subgroups (P;,,..., P, ), such that

O=P,...P,0nn.

So, we can consider the map

) B B B A
F: P, x7.--x7 P, X7 Opin — O,

F: (Divy+ o+ 3 Pis, ) V& Piy oo Piy T
According to Proposition 3.8, it is birational. But this is not yet a desingu-
larization, because O,,;, can be singular.
The second step of the desingularization consists in constructing a B-
equivariant desingularization for O,,;,. We have already proved in Theo-
rem 3.7 that O,,;, can be presented as the direct product

Omin = Xy X X,
for some Schubert varieties X,, C Gr(k, V') and X, C Gr(l, V).

For X, and X, one can take Bott—Samelson desingularizations
F,: Z,— X, and F,:Z,— X,.
(Details can be found, for instance, in [Br2]). So, we get a desingularization
F, X FE,: Zy X Zy — X X Xy = Opin-

Having this, we can combine this map with the map F' and get the main
result of this chapter:

Theorem 3.9. The map

F=Fo(FyxF,): P xP...xBpP xP(Z,x2,)—0

is a desingularization of O.
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Proof. We have already seen that both maps F' and F,, X F, are birational
morphisms. Since all the considered varieties are projective, these morphisms
are proper. The space P;, xB ... xB P, xP (Z, x Z,) is a homogeneous B-
bundle over a nonsingular variety, hence it is nonsingular itself. O

3.5 Bruhat order in a B x B-orbit

Let Cy x C, C Gr(k,V) x Gr(l,V) be a B x B-orbit, that is, the direct
product of two Schubert cells in the Grassmannians. Let ()4,)%) be the
corresponding pair of Young diagrams. Take their common diagram Y,.,n,
as described in Section 3.2.2; as we showed above, B-orbits in (), x C,
correspond to rook placements in Y.,,, such that the rooks do not attack
each other. In this section, we describe the inclusion order on the closures of
these B-orbits.

Throughout this section, we fix C,, x ', and, thus, the Young diagrams
V1, Vo, and their common diagram V...
Definition. For a rook placement in the diagram Y.,, define an associated
Young tableau T of shape V.., as follows: to a box we assign the number of
rooks located (non-strictly) to the South-East of it. Obviously, in such a way
we obtain a tableau with the entries weakly decreasing by rows and columns.
Example. With a rook placement

|
[ J

[ ]

[ ]

we associate the following tableau:

3[2[212[1[1]0/0]
312(2/12]1]110
2/111]1/0
1]1]1]1
010

Thus, we obtain a map from the set of B-orbits in C,, x C, into Young
tableaux of shape Y..,: having an orbit, we construct a rook placement in
Y.om. and then we associate to the latter a tableau of shape Yeom.
Definition. Define a partial order on tableaux of given shape Y., as follows:
we shall say that T} < T, if for each box in ), the entry from 77 in this
box is less or equal than the corresponding entry from 7.
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We claim that this order is equal to the topological order on the set of
B-orbits:

Theorem 3.10. Let O, Oy C Cﬂx C, be two B-orbits, and let 11,15 be the
associated tableaux. Then O C Oy < T < Ts.

To prove the theorem, begin with a combinatorial lemma.

Lemma 3.11. Let Ry and Ry be two rook placements in Yeom, with the
corresponding tableaux Ty, T,. Then the inequality Ty < T holds if and only
if Ro can be obtained from Ri by a sequence of the following operations:

1. Adding a rook;
2. Moving a rook to SFE;

3. For a rectangle with two rooks situated in its NE and SW corners,
replacing them with the rooks in its NW and SE corners.

Proof. The “if” assertion is evident. Let us prove the converse.

We will proceed by induction on the number of rooks R such that R €
R1\Ra. If #(R1\ R2) = 0, there is nothing to prove: Rs is obtained by Ry
by adding rooks.

If #(R1\ R2) # 0, let us show how to find a rook placement R’, obtained
from Ry by an operation of type (ii) or (iii), and such that 7" < T5. To do
this, take a rightmost rook R; from R; \ Ra, and a rightmost rook Ry from
Ro \ Ri. Since T1 < Ty, the rook Ry is located to SE from R;. Three cases
can occur:

(1) Ry and Ry are in the same row. Then R’ is obtained from R; by
moving the rook R; into the position Rs. Obviously, for the tableaux 7" and
Ty corresponding to R' and Rs, the inequality 77 < T3 holds, and #(R' \
Ro) = #(R1\ Re) — 1.

(2) There is no rook from R; in the row occupied by R,. This case is
completely analogous to the prevoius one: again we move R; into the position
Rs.

(3) There is arook R’ € Ry, R’ # Ry, situated in the row occupied by Rs.
Since Ry is the rightmost rook from R;, R’ is situated to the SW from R;.
Then we can replace Ry and R’ by the two other corners of the corresponding
rectangle, as described in (iii). We obtain the rook placement R’, such that
its rightmost rook is in the same row with the rightmost rook Ry € Ro. The
situation is thus reduced to the case (1). O
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Proof of Theorem. In Section 2.4.3, we classify the minimal degenerations of
B-orbit closures. It can be easily seen that the operations (i)—(iii) on rook
placements correspond to the degenerations of type I.a). The degenerations
of this type take a B-orbit into another one, such that the both B-orbits are
situated in the same B X B-orbit.

So, if T < T3, then, due to Lemma, the rook placement R, can be
obtained from Ry by a sequence of operations (i)—(iii), and each of these
operations corresponds to a minimal degeneration of type I.a). Hence, O; C
Os. O

Remark. As described in Section 3.2, instead of considering rook placements
one can consider involutive permutations from S,,, where n = dim V. So, the
rook placements in a given Young diagram )., give us a certain subset
S2(Y) C S2 in the set of involutive permutations (or link patterns, see [Mell]
for details). In [Mell], [Mel2], Anna Melnikov studies B-orbits on strictly
upper-triangular matrices of the nilpotent order 2. They are indexed by the
set S? of involutive permutations, so one gets a partial order on S?, arising
from the topological order on the B-orbits.

As one can see from [Mell, 1.5], the restriction of this partial order onto
each set S2()) coincides with the ours. It would be interesting to investigate
any deeper relations between the situation considered by Melnikov and our
situation.
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Appendix A

Some examples

In the Appendix, we consider Gr(k,n) x Gr(l,n) for small n and give the
inclusion diagrams of B-orbit closures in these varieties.

Here we follow the notation from Section 3.2.2: orbits are parametrized
by marked pairs of Young diagrams.

The weak order is represented by solid edges. Two marked pairs are con-
nected with a solid edge labeled with an integer ¢ if and only if the orbit
corresponding to the upper marked pair can be obtained from the one cor-
responding to the lower marked pair by the action of the minimal parabolic
subgroup F;.

Dotted edges correspond to the pairs of orbits (O, 0’) of codimension
1, such that O C @', but @' cannot be obtained from O by action of any
parabolic.

Each horizontal level of the inclusion diagram contains the orbits of a
given dimension; the orbit of the maximal dimension is at the top of the
diagram, and the zero-dimensional orbit is at the bottom.

A1 P'xP'=Gr(1,2) x Gr(1,2)

oo
[ @ - U @ L
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A2 P? x P?
P* x P° = Gr(1,3) x Gr(1,3)
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A4 PP x PP =Gr(l,4) x Gr(1,4)

° \\
[of | | [of ||
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RESUME

Soit X le produit direct de deux grassmanniennes des sous-espaces
de dimensions k, [ d’un espace vectoriel V. Nous étudions les
orbites d'un sous-groupe de Borel B de GL(V) opérant diago-
nalement dans X, et les adhérences de Zariski de ces orbites,
en anagogie avec les cellules et les variétés de Schubert dans les
grassmanniennes. On vérifie sans peine que ces orbites sont en
nombre fini. Elles ont été décrites de fagon combinatoire par
P. Magyar, J. Weyman et A. Zelevinsky. Nous obtenons un critere
pour l'inclusion d’une orbite dans I’adhérence d’une autre orbite,
et nous construisons une résolution de ces adhérences d’orbites,
analogue aux désingularisations de Bott Samelson de variétés de
Schubert.

ABSTRACT

Let X be the direct product of two Grassmannians of k- and [-
planes in a finite-dimensional vector space V. We study the orbits
of a Borel subgroup B C GL(V') acting diagonally on X, as well as
their Zariski closures, in analogy with Schibert cells and Schubert
varieties in Grassmannians. One easily shows that the number
of these orbits is finite. Their combinatorial description was ob-
tained by P. Magyar, J. Weyman, and A. Zelevinsky. We obtain
a criterion to check whether one orbit lies in the closure of an-
other one. We also construct a resolution of singularities for the
closures of these orbits, which is analogous to the Bott—Samelson
desingularization of Schubert varieties.

MOTS-CLES

Variétés sphériques, grassmanniennes, variétés de drapeaux mul-
tiples, représentations de carquois, décomposition de Schubert,
désingularisation de Bott—Samelson, carquois d’Auslander—Reiten
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