

MODELISATION MACRO ET MICRO-MACRO DES MATERIAUX POLYCRISTALLINS ENDOMMAGEABLES AVEC COMPRESSIBILITE INDUITE

Présenté par :

Mohamed BOUDIFA Le 01 Mars 2006

LASMIS/UTT

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micromacro

> II. Modélisation numérique

II.1 Principe des PPV

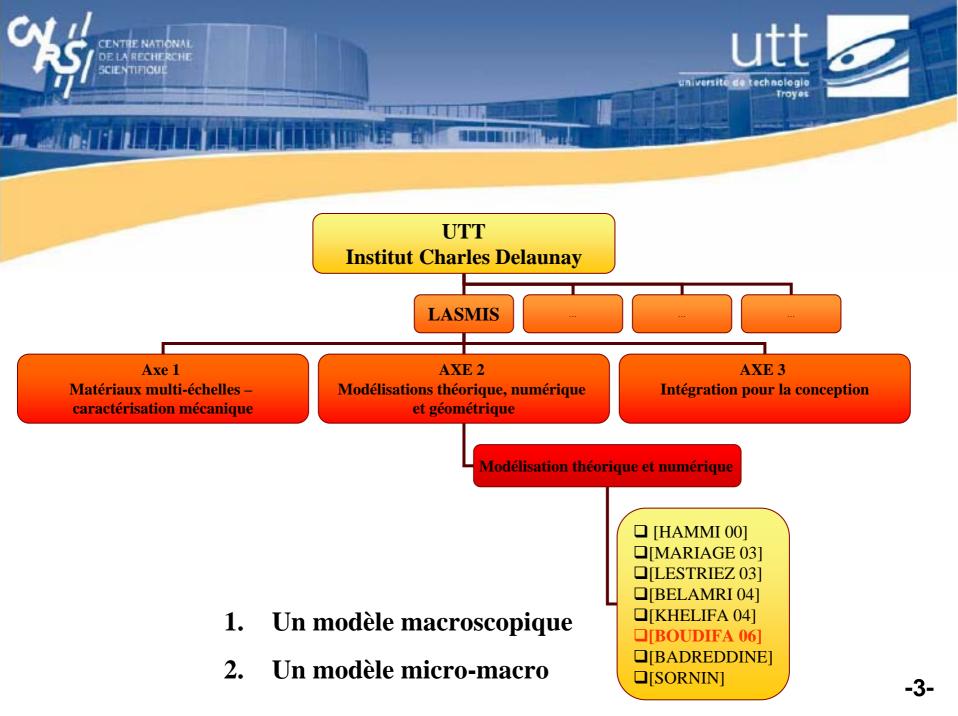
II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

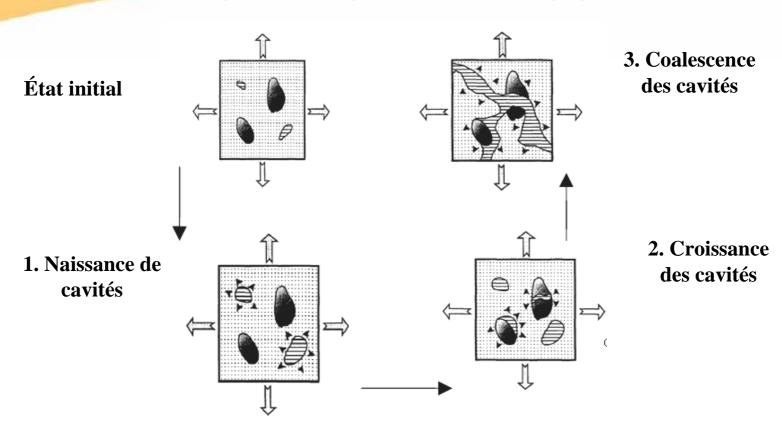
III. Quelques
Applications

Conclusions et Perspectives

INTRODUCTION



L'ENDOMMAGEMENT DUCTILE?



I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micromacro

> II. Modélisation numérique

II.1 Principe des PPV

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

III. Quelques

Applications

Conclusions et Perspectives

I. MODELISATION

I.1 Modélisation Macroscopique

Théorie de GURSON [Gurson 77]
Cinétique des cavités :

- -Nucleation
- Croissance
- -Coalescence

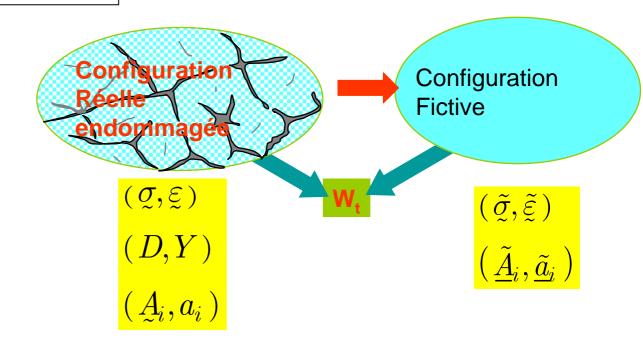
Variable d'endommagement : porosité f

Théorie CDM [Lemître85]
Effet Phénoménologique des
Défauts sur la
Réponse Mécanique

Variable d'Endommagement : D, D_i, D_{ij}, D_{ijkl}

-Principe d'équivalence en déformation [Chaboche 78]

-Principe d'équivalence en énergie [Cordebois 79], [Saanouni 88]



Formulation CDM du modèle macroscopique

Relations d'état

$$\sigma = (1 - D) \underbrace{L}_{\stackrel{\sim}{\mathcal{L}}} : \underline{\varepsilon}^{e}
D^{*} = D_{0} + D + D^{v}
\dot{\underline{\varepsilon}}^{p} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} \qquad \underline{n} = \underline{n} + \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}
\dot{\underline{c}} = \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n} - a \lambda \underline{\alpha}$$

$$\dot{\underline{c}} = \underline{\lambda} \underline{a} - a \lambda \underline{\alpha}$$

$$\dot{\underline{c}} = \underline{\lambda} \underline{a} - a \lambda \underline{\alpha}$$

$$\dot{\underline{c}} = \underline{\lambda} \underline{a} - \underline{\lambda} \underline{a} - \underline{\lambda} \underline{a} - \underline{\lambda} \underline{a}$$

$$\dot{\underline{c}} = \underline{\lambda} \underline{a} - \underline{\lambda} \underline{a} -$$

Variable d'Endommagement

$$D^* = D_0 + D + D^v$$

$$f = \frac{\|\underline{\sigma} - \underline{X}\| - R}{\sqrt{1 - \underline{D}^*}} - \sigma_y$$

Relations Complémentaires

$$\dot{\hat{z}}^p = \frac{\dot{\lambda}}{\sqrt{1 - D^*}} \, \bar{n} \qquad \bar{n} = \bar{n} + \bar{n}^s$$

$$\dot{\alpha} = \frac{\dot{\lambda}}{\sqrt{1 - D^*}} \, \bar{n} - a \dot{\lambda} \alpha$$

$$\dot{r} = \frac{\dot{\lambda}}{\sqrt{1 - D^*}} (1 - br\sqrt{1 - D^*})$$

$$\dot{D} = \dot{\lambda} (1 - D)^{-\beta} \left\langle \frac{Y - Y_0}{S} \right\rangle^s$$

$$\dot{D}^v = (1 - D^v) \operatorname{tr} (\dot{\varepsilon}^p)$$

$$\dot{f}_q = (1 - f) tr(\dot{\varepsilon}^p)$$

$$\left\| \sigma - X \right\| = \sqrt{\left(\sigma - X \right) : H : \left(\sigma - X \right) + \alpha D^* \left[tr \left(\sigma \right) \right]^2}$$

$$\underline{n} = \underbrace{\frac{\underline{H} : (\underline{\sigma} - \underline{X})}{\|\underline{\sigma} - \underline{X}\|}}_{\underline{\sigma} - \underline{X}} + \underbrace{\frac{\alpha D^* tr(\underline{\sigma})}{\|\underline{\sigma} - \underline{X}\|}}_{\underline{1}} \underline{1}$$

Version (GTN)

$$F = \left(\frac{\sigma_{eq}}{\sigma_y}\right)^2 + 2q_1 f^* \cosh\left(\frac{q_2 \operatorname{tr}(\underline{\sigma})}{2\sigma_y}\right) - 1 - \left(q_1 f^*\right)^2$$

$$\eta^{GTN} = \frac{\partial F}{\partial \tilde{g}} \left(\frac{3\tilde{s}}{\sigma_y^2} \right) \frac{q_1 q_2 f^* \operatorname{tr}(\tilde{g})}{2\sigma_y} \sinh \left(\frac{q_2 \operatorname{tr}(\tilde{g})}{2\sigma_y} \right) \frac{1}{2\sigma_y} d\tilde{g}$$

Ecoulement plastique
$$\dot{\lambda}^p = \frac{1}{H} \langle [(1 - D)_{\overset{\circ}{n}} : \overset{\smile}{\underline{\varepsilon}} : \dot{\underline{\varepsilon}}] \rangle$$

Ecoulement Viscoplastique

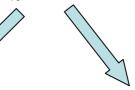
$$\dot{\lambda}^{vp} = \left\langle \frac{f}{K} \right\rangle^n$$

Généralisation aux transformations finies

Pour tout tenseur T
$$\underline{T}_Q = \underline{Q}^T \cdot \underline{T} \cdot \underline{Q}$$
 $\Longrightarrow \dot{\underline{Q}} = \underline{W}_Q \cdot \underline{Q}$ avec $\underline{Q} \ (t=0) = \underline{1}$

Jaumann

$$W_Q = \mathcal{L}^{AntySym} = \left\{\dot{F} \cdot F^{-1}\right\}^{AntySym}$$



Green-Naghdi

$$W_Q = \dot{R} \dot{R}^T$$

Taux de déformation
$$D = \mathcal{z}^{Sym} = \dot{\mathcal{z}}^{J} + D_{p}$$

Modélisation du comportement avec endommagement **ductile**

I.1 Modélisation Macroscopique

I.2 Modélisation micromacro

> II. Modélisation <u>numérique</u>

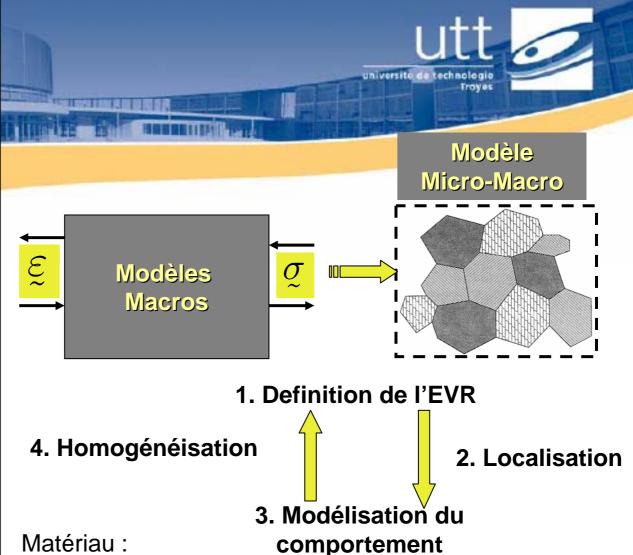
II.1 Principe des PPV

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

> III. Quelques **Applications**

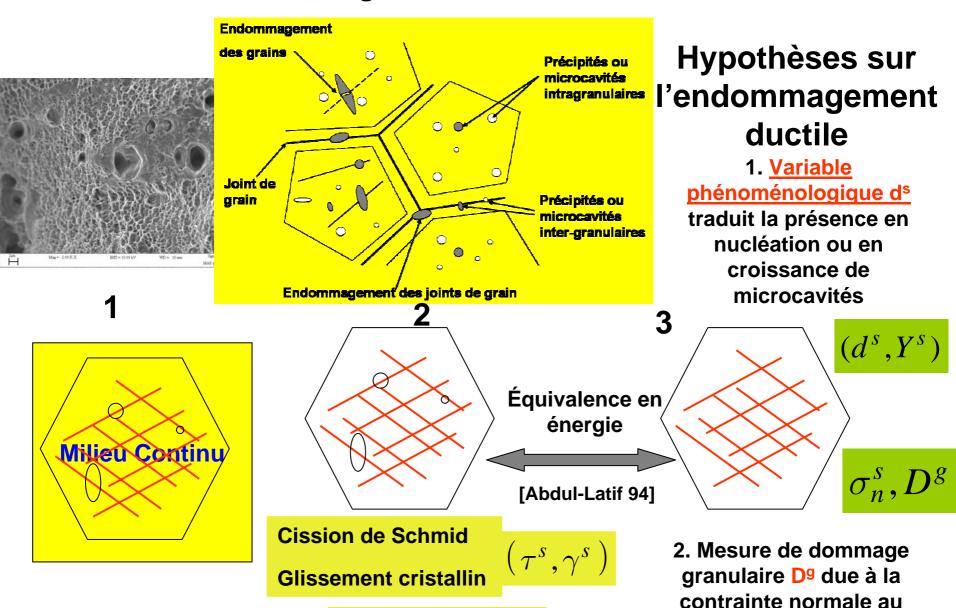
Conclusions et Perspectives



Matériau:

- -Métal polycristallin
- -Monophasique définit par des directions et plans cristallins

L'endommagement à l'échelle micro?

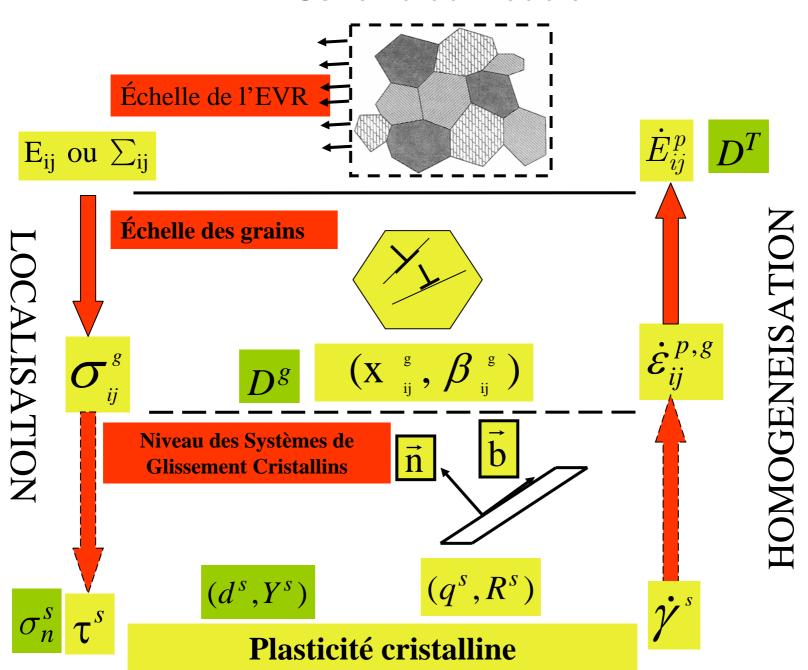


Plasticité cristalline

-10-

plan de glissement

Schéma du Modèle



Equations du modèle

1. Au Niveau SGC

$$f^{s} = \frac{|\tau^{s}| + \alpha D^{g} \langle \sigma_{n}^{s} \rangle - R^{s}}{\sqrt{1 - d^{s}}} - \tau_{0}$$

$$\tau^{s} = \underline{\sigma}^{g} : \underline{m}^{s}, \text{ avec } \underline{m}^{s} = \frac{1}{2} \left(\vec{n}^{s} \otimes \vec{b}^{s} + \vec{b}^{s} \otimes \vec{n}^{s} \right)$$
$$\sigma_{n}^{s} = \underline{\sigma}^{g} : \underline{\eta}^{s}, \text{ avec } \underline{\eta}^{s} = \vec{n}^{s} \otimes \vec{n}^{s}$$

Relations d'état

$$R^{s} = Q\sqrt{1 - d^{s}} \sum_{r}^{Ns} H^{sr} \sqrt{1 - d^{r}} q^{r}$$

$$Y^{s} = \frac{1}{2} \frac{R^{s} q^{s}}{(1 - d^{s})}$$

$f^s > 0$

Relations d'évolution

$$\dot{\gamma}^{s} = \frac{\dot{\lambda}^{s}}{\sqrt{1 - d^{s}}} sign(\tau^{s})$$

$$\dot{q}^{s} = \frac{\dot{\lambda}^{s}}{\sqrt{1 - d^{s}}} (1 - b\dot{\lambda}^{s})$$

$$\dot{d}^{s} = \dot{\lambda}^{s} \left\langle \frac{Y^{s} - Y_{0}}{S} \right\rangle^{\beta} \frac{1}{(1 - d^{s})^{m}}$$

$$\dot{\lambda}^{s} = \left\langle f^{s} / K \right\rangle^{n}$$

À l'échelle des grains

[KRÖNER 61] $\underline{\sigma}^g = \sum_{\tilde{z}} + C^g \left(\sum_{g=1}^{p} f^g \underline{\varepsilon}_g^p - \underline{\varepsilon}_g^p \right)$ Relation de localisation [CAILLETAUD 87]

$$\underline{\sigma}^g = \sum_{\tilde{c}} + C \left(\sum_{g=1}^{Ng} f^g \beta^g - \beta^g \right)$$

Relations d'évolution

Relation d'état

$$x^g = \frac{2}{3}C\beta^g$$

 $\dot{\underline{\varepsilon}}_{p}^{g} = \dot{\underline{\varepsilon}}_{p}^{g} + \dot{\underline{\varepsilon}}_{p}^{gH} \begin{cases} \dot{\underline{\varepsilon}}_{p}^{g} = \sum_{s=1}^{s=Ns} \frac{\dot{\lambda}^{s} sign(\tau^{s})}{\sqrt{1 - d^{s}}} \underline{m}^{s} \\ \dot{\underline{\varepsilon}}_{p}^{gH} = \sum_{s=1}^{s=Ns} \frac{\dot{\lambda}^{s} \alpha D^{g}}{\sqrt{1 - d^{s}}} \underline{\eta}^{s} \end{cases} D^{g} = \sum_{s=1}^{s=Ns} d^{s}$

$$\dot{\beta}^g = \dot{\varepsilon}_p^g - a\beta^g \sum_{1}^{Ns} \dot{\lambda}^s$$

Relation d'éta

$$\Sigma = (1 - D)$$

Relation d'état
$$\Sigma = (1-D^T) L : E^e$$
 $\dot{E}^e = \dot{E} - \dot{E}^p$ $\dot{D}^T = \sum^{Ng'} f^g \sum^{s=Ns} \dot{d}^s$

$$E^e \left| \stackrel{E^e}{\mathbb{Z}} \right| = \stackrel{Ng}{\mathbb{Z}}$$

$$\dot{\mathcal{D}}^T = \sum_{s=1}^{Ng'} f^g \sum_{s=Ns}^{s=Ns} \dot{d}$$

Relations d'évolution

$$f^g \dot{arepsilon}_p^g$$

$$o \sum_{i=1}^{s=Ns} \dot{d}$$

The spin deposition of the composition of the spin deposition of th

$$= \operatorname{tr} \left(\sum_{g=1}^{g=N^g} f^g \sum_{s=1}^{s=N_s} \frac{\dot{\lambda}^s \alpha D^g}{\sqrt{1 - d^s}} \right)$$

$$=\operatorname{tr}\left(\sum_{g=1}^{s} f^{g} \sum_{s=1}^{s} \frac{\lambda^{s} \alpha D^{g}}{\sqrt{1-d^{s}}}\right)$$

$$= \operatorname{tr}\left(\sum_{g=1}^{s} f^{g} \sum_{s=1}^{s} \frac{\lambda^{s} \alpha D^{g}}{\sqrt{1-d^{s}}}\right)$$

$$\frac{1}{s} \neq 0$$

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation

Macroscopique

I.2 Modélisation micromacro

II. Modélisation numérique

II.1 Principe des PPV

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

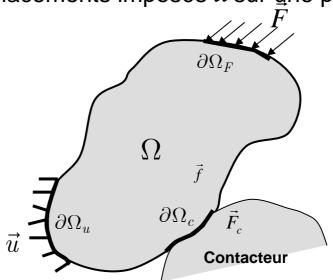
III. Quelques

Applications

Conclusions et Perspectives

II. Modélisation numérique

- \triangleright Une densité de forces volumiques \vec{f} dans Ω ,
- \triangleright Des efforts surfaciques \vec{F} sur une partie $\partial \Omega_f$ de $\partial \Omega$,
- \triangleright Des efforts de contact \vec{F}_c (avec un autre solide) sur une partie $\partial\Omega_c$ de $\partial\Omega$,
- \blacktriangleright Des déplacements imposés \vec{u} sur une partie $\partial\Omega_{...}$ de $\partial\Omega_{...}$



$$\int_{\Omega} \underline{\sigma} : \delta \underline{D} dV - \int_{\Omega} \vec{f} \delta \vec{u} dV - \int_{\partial \Omega_f} \vec{F} \delta \vec{u} dS - \int_{\partial \Omega_c} \vec{F}_c \delta \vec{u} dS = \int_{\Omega} \rho \vec{u} \delta \vec{u} dV$$

-14-

II.2 Méthodes incrémentales de résolution

Discrétisation Spatiale par E.F. du PPV

Élément e:

$$egin{align} u_e &= N_N u_e^N \,; \quad \dot{u}_e = N_N \dot{u}_e^N \,; \quad \ddot{u}_e = N_N \ddot{u}_e^N \,; \ \delta \dot{u}_e &= N_N \dot{u}_e^N \,; \ \delta \dot{u}^e &= N_N \dot{u}_e^N \,; \ \end{pmatrix}$$

(A)
$$[M]\{\ddot{U}\} + \{\Re\} = 0$$
 AVEC $\{\Re\} = \{F_{int}\} - \{F_{ext}\}$

Résolution Statique Implicite (Schéma itératif de Newton-Raphson)

$$\begin{aligned} & Convergence \\ & |\{\Re\}_{n+1}^{h}| = |\{F_{int}\}_{n+1}^{h} - \{F_{ext}\}_{n+1}^{h}| \le \varepsilon \\ & \{\Delta U\}_{n+1}^{h} = -[K]_{n+1}^{h} \{\Re\}_{n+1}^{h} \end{aligned} \approx \int_{V^{r}} \left[B_{(\eta)}^{el}\right]^{T} \left[\frac{L^{el}}{z^{e}}\right]_{n+1}^{h} \left[B_{(\eta)}^{el}\right] J_{V} dV^{r} + \dots \end{aligned}$$

$$\left[\underbrace{\underline{L}_{c}^{el}}_{n+1}^{h}\right]_{n+1}^{h} = \frac{\partial \left(\left\{\underline{\sigma}^{el}\right\}\right)_{n+1}^{h}}{\partial \left(\left\{\underline{\varepsilon}^{el}\right\}\right)_{n+1}^{h}}$$

Résolution Dynamique Explicite (POINT MILIEU)

$$\left\{ \ddot{U} \right\}_{n} = [M_{D}]_{n}^{-1} \left\{ \Re \right\}_{n}$$

$$\left\{ \dot{U} \right\}_{n+\frac{1}{2}} = \left\{ \dot{U} \right\}_{n-\frac{1}{2}} + \frac{\Delta t_{n} + \Delta t_{n+1}}{2} \left\{ \ddot{U} \right\}_{n}$$

$$\left\{ U \right\}_{n+1} = \left\{ U \right\}_{n} + \Delta t_{n} \left\{ \dot{U} \right\}_{n+\frac{1}{2}}$$

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micromacro

II. Modélisation numérique

II.1 Principe de résolution

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

III. Quelques

Applications

Conclusions et Perspectives Intégration du modèles macroscopique

$$\dot{\varepsilon}^{e} = \dot{\varepsilon} - \frac{\lambda}{\sqrt{1 - D^{*}}} \underline{n}$$

$$\dot{\xi}^{e} = \dot{\xi} - \dot{\xi} - \dot{\xi}$$

$$\dot{\xi}^{e} - \dot{\xi}^{e} - \dot{\xi}^{e} - \dot{\xi}^{e} - \dot{\xi}^{e} - \dot{\xi}^{e} - \dot{\xi}^{e} -$$

Prédiction élastique-Correction plastique

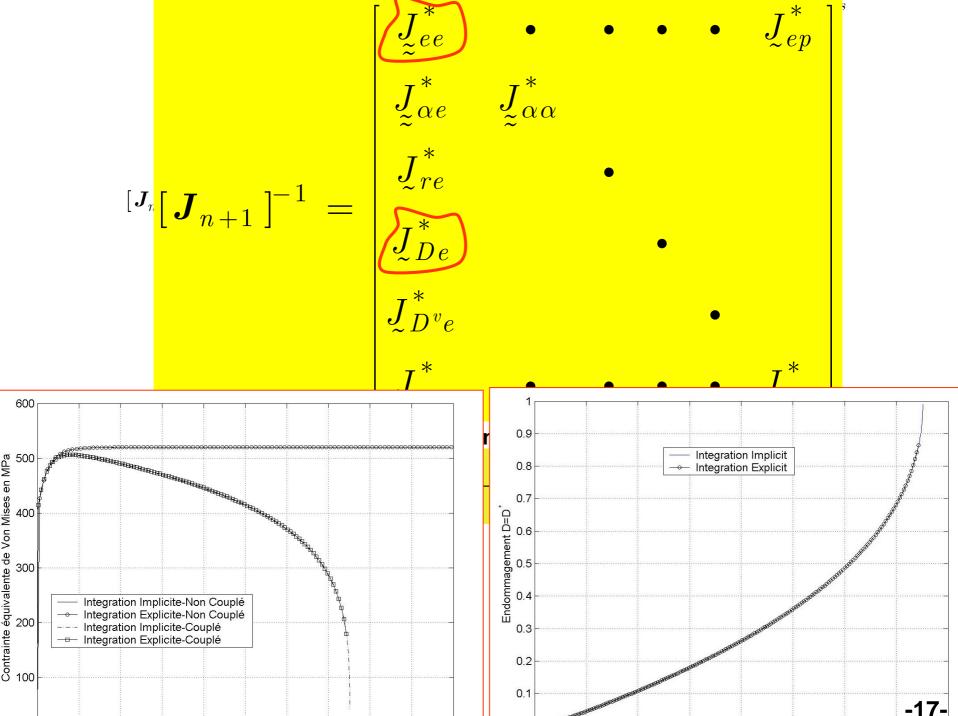
$$\Delta \underline{\varepsilon} = \Delta \underline{\varepsilon}^e$$
 SI $f_{n+1} \leq 0$ Solution élastique SINON

Correction plastique $\{H_{n+1}\}=0$

A convergence de l'itération s

$$\{\delta\Delta\underline{x}\}_{n+1}^{s} = -[\mathbf{J}^{-1}]_{n+1}^{s} \{H\}_{n+1}^{s}$$

$$\{\delta\Delta\underline{x}\}_{n+1}^{s} = \{\delta\Delta\underline{\varepsilon}^{e}, \delta\Delta\underline{\alpha}, \delta\Delta r, \delta\Delta D, \delta\Delta D^{v}, \delta\Delta p\}_{n+1}^{s}$$



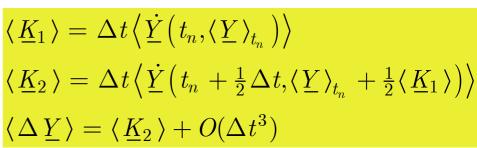
Intégration du modèle micro-macro

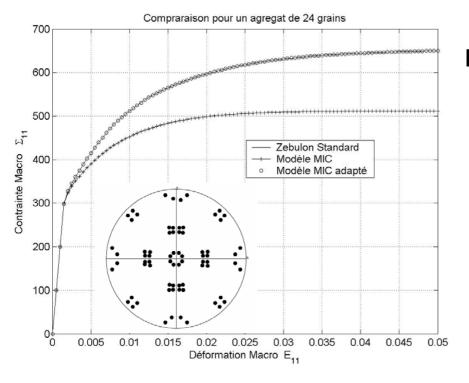
$$\left\langle \dot{Y} \right
angle = \left\langle \dot{E}^e, \dot{D}^T, \dot{\beta}^g, \dot{\lambda}^s, \dot{q}^s, \dot{d}^s \right
angle$$

CFC \rightarrow 12 systèmes cristallins \rightarrow 7+(6+3×12)×Ng EDO

$$\langle \underline{Y} \rangle_{n+1} = \langle \underline{Y} \rangle_n + \langle \Delta \, \underline{Y} \rangle$$
 Runge-Kutta $\langle \underline{Y} \rangle_0 = \langle \underline{Y}_0 \rangle$ d'ordre 2

d'ordre 2





Différence en entre Zébulon standard et le modèle MIC en Non Couplé

$$\dot{\beta}^g = \dot{\xi}_p^g - a\beta^g \|\dot{\xi}_p^g\|$$

- Zébulon Standard

$$\|\dot{\xi}_p^g\| = \sqrt{\frac{2}{3}\dot{\xi}_p^g : \dot{\xi}_p^g}$$

- Modèle MIC

$$\|\dot{\varepsilon}_p^g\| = \sum_{s=1}^{Ns} \dot{\lambda}^s$$

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micromacro

II. Modélisation numérique

II.1 Principe de résolution

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

III. Quelques
Applications

Conclusions et Perspectives

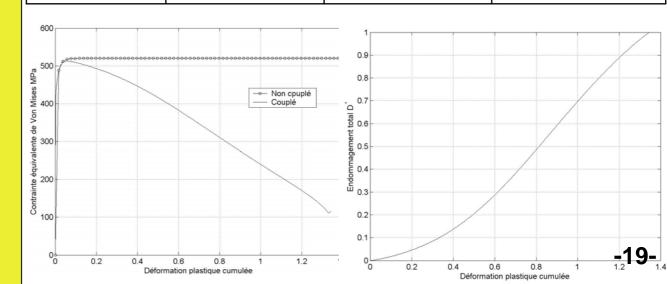
III.1 Application du modèle macroscopique

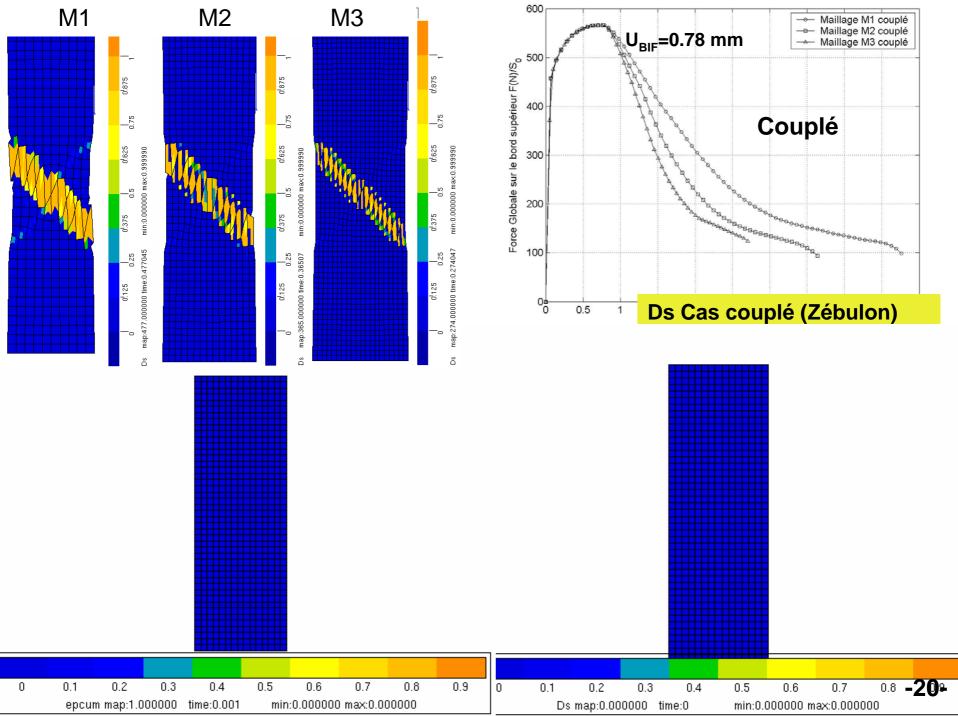
But : Comparaison avec le modèle de Gurson

- ➤ Modèle MAC1 avec endommagement mixte (couplage fort)
- ➤ Modèle MAC2 avec endommagement volumique D^v seulement
- ➤ Modèle GUR (GTN du modèle de Gurson).

Etude du Modèle MAC1 (Couplage Fort)

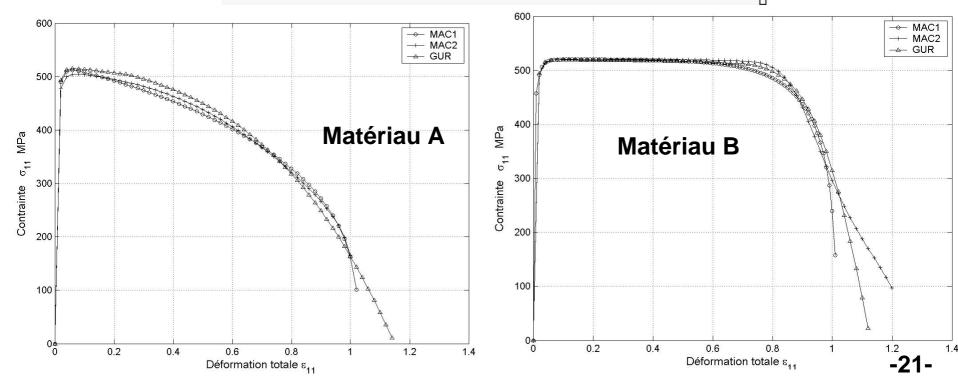
Elasticité	Ecrouissage	Endommagement volumique	Endommagement	
E=200000. MPa v=0.3	σ _Y =400. MPa Q=1000.0 MPa b=50.0 C=10000. MPa a=100.	D ₀ =0 α=1 δ=1 Dcrit=0.005	β=2, s=1, S=8.35 MPa Υ ₀ =0. MPa	

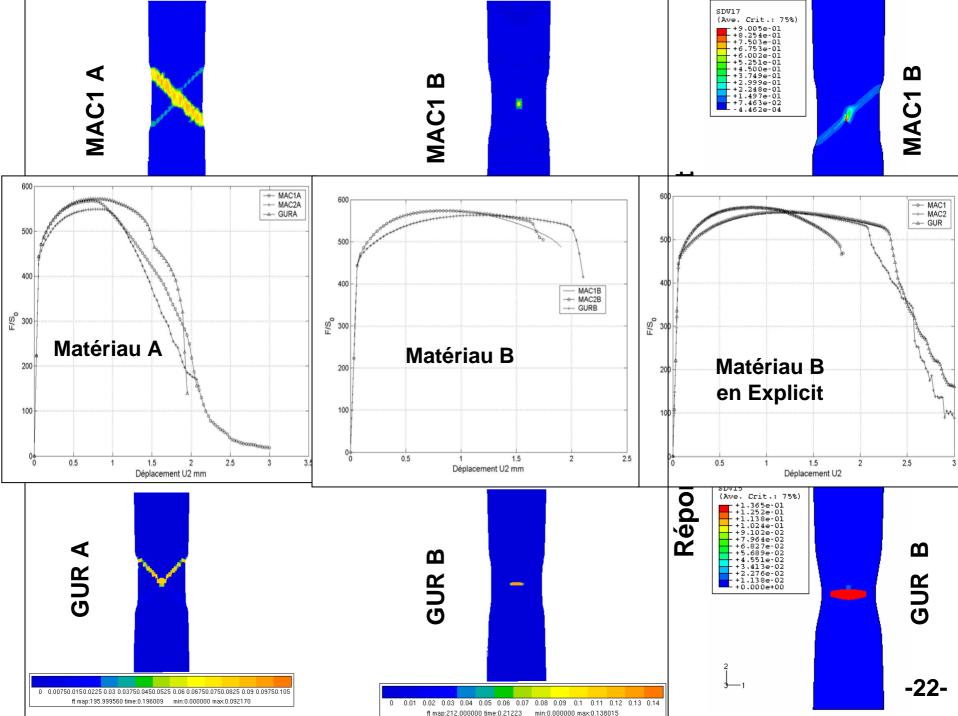




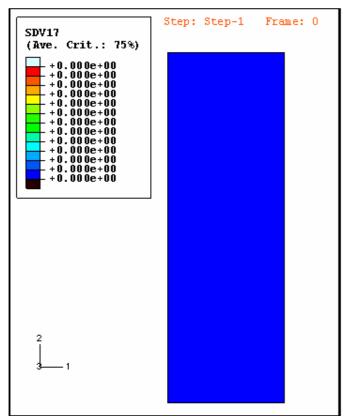
Comparaison MAC1, MAC2 et GUR

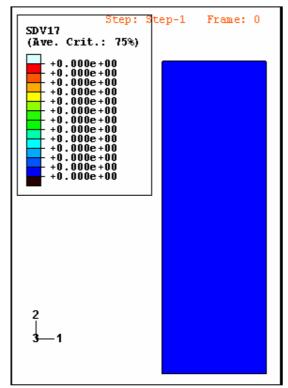
1				
	Endommagement	MAC1	MAC2	GUR
		β=2,, s=1., S=4. MPa Y0=0. MPa,	$D0=0.0322$ $\alpha=0.638$ $D_{crit}^{\theta}=0.005$	q1=2.5 q2=1.45 $f_c = 0.005, \delta = 3.$
	А	α =0,3, D_{crit}^{v} =0.005, et δ =1.	δ=2.02	A=0.001(nucléation constante
	В	β =0.7, s=1., S=0,1 MPa, Y0=1.375 MPa α =0.3, D_{cost}^{o} =0.005 et δ =1.	D0=1.e-6 α = 3. D_{crit}^{θ} = 0.005 δ =2.	q1=5.81 q2=0.58 $f_c = 0.005$, $\delta = 2$. A= 0.0172 (nucléation constante)

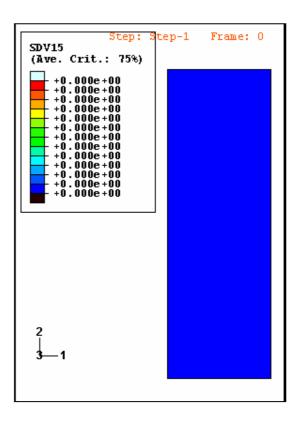




Animations sur les endommagements (Abaqus/explicit)





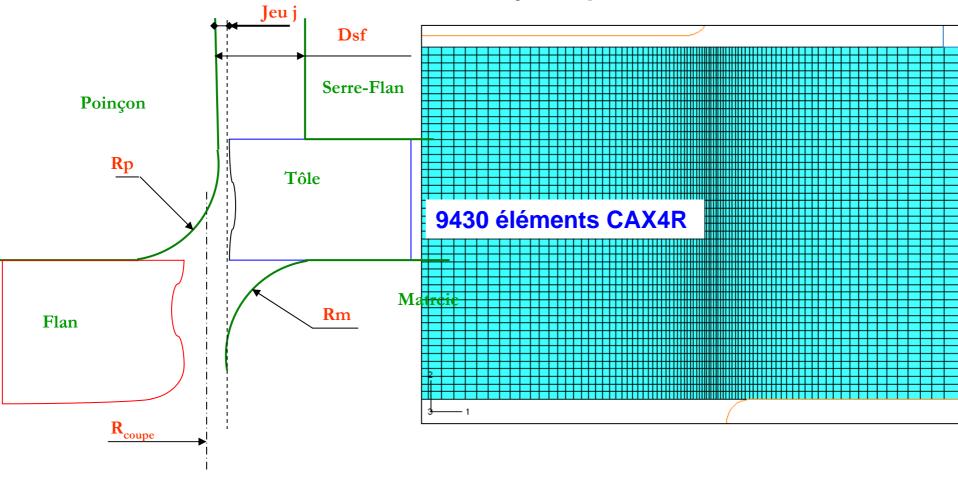


MAC1 B
Couplage fort D*

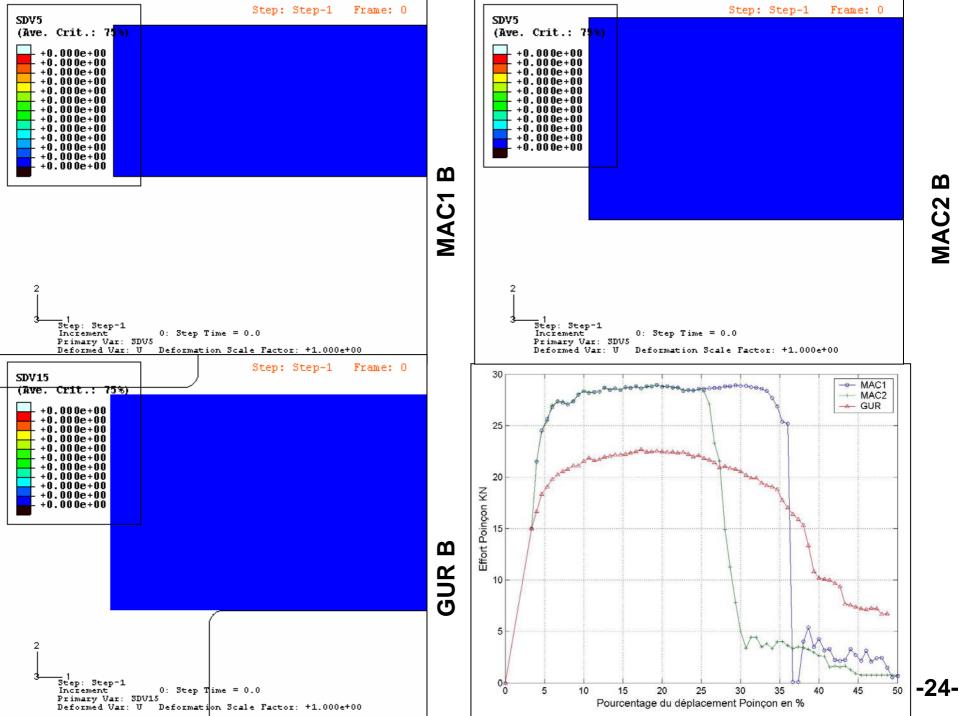
MAC2 B
Couplage avec D' seulement

GUR B Endommagement volumique

Comparaison des modèles sur un essai de poinçonnage



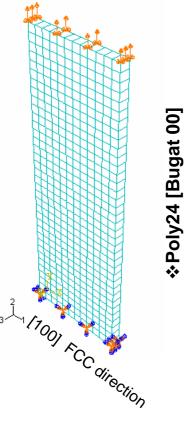
Jeu j (mm)	Rayon poinçon Rp (mm)	Rayon matriœ Rm (mm)	Distance serr-flan poinçon Dsf (mm)	Epaisseur de la tole	Rayon de la tôle initiale(mm)	Rayon de coupe R _{coupe} (mm)
0.075	0.1	0.1	1	1.5	30	10

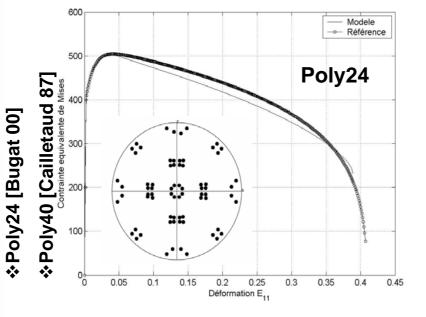




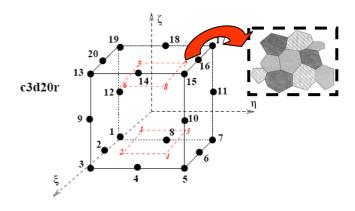
10 % pénétration poinçon

III.2 Application du modèle Micro-Macro





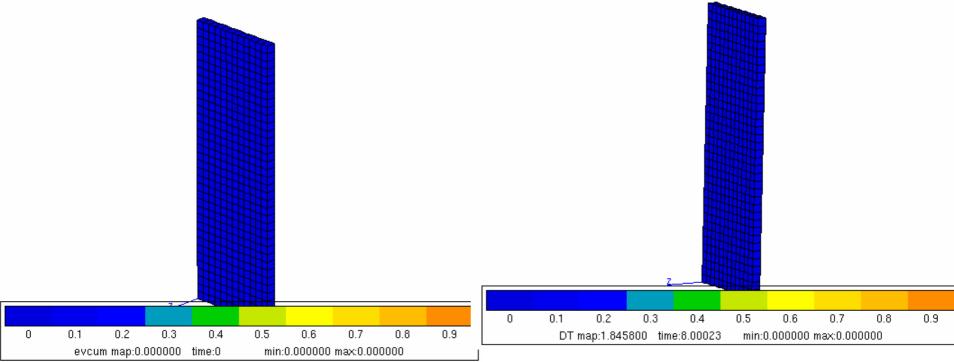
Éléments c3d20r → 8 Points Gauss



Coefficients du Poly24

Elasticité	Ecrouissage	Ecrouissage	Endommagement
macroscopique	intergranulaire	intragranulaire	
E=200 GPa v=0,3	C=30067,72 Mpa, a=26,74716	σ0=145.Mpa Q=50. MPa b=74,788 h1=1., h2=1., h3=2., h4=1.5, h5=1, h6=2,5 K=50 MPa, n=25.	S=1.2 MPa s=1,194 β=4,785 α=0,5 Y ₀ =0,03

Réponse du Poly24



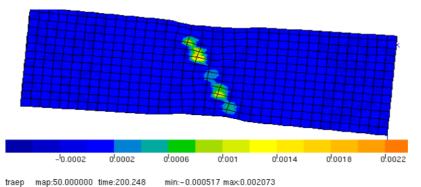
Cas Non Couplé (Calcul Zébulon)

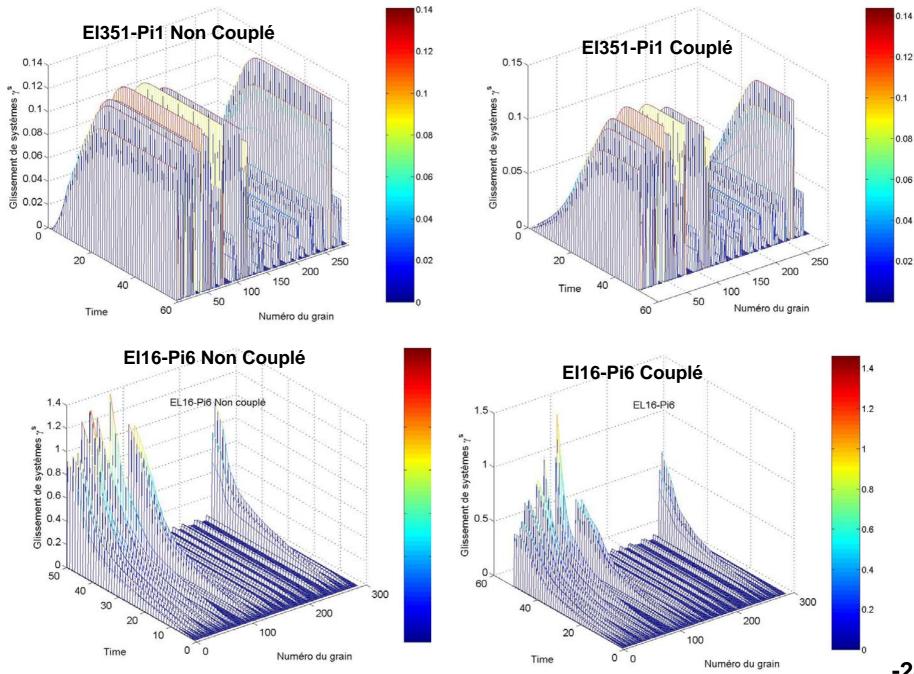
Déformation plastique cumulée macroscopique P

Cas Couplé (Calcul Zébulon)

Endommagement macroscopique D^T

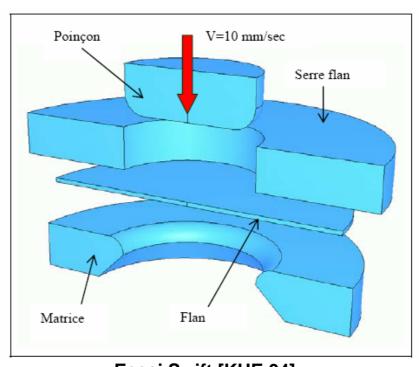
Déformation plastique volumique Tr(Ep)





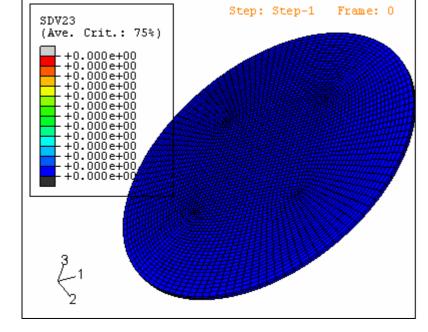
Comparaison du Poly24 et MAC1 sur un procédé d'Emboutissage

Diamètre extérieur matrice = 80 mm;
Diamètre intérieur matrice = 80 mm;
Hauteur matrice = 10.5 mm;
Petit rayon matrice = 4 mm;
Diamètre extérieur serre flan = 33.9 mm;
Diamètre intérieur serre flan = 90 mm;
Petit rayon poinçon = 5 mm;
Diamètre du flan = 73 mm;
Epaisseur du flan = 1 mm



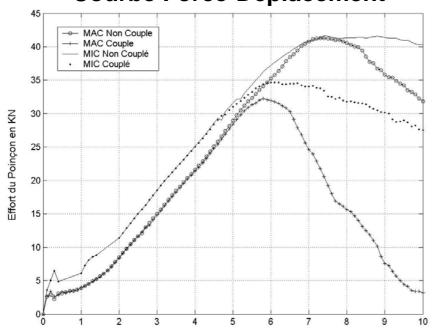
Matériaux
-Poly24
-Référence MAC1

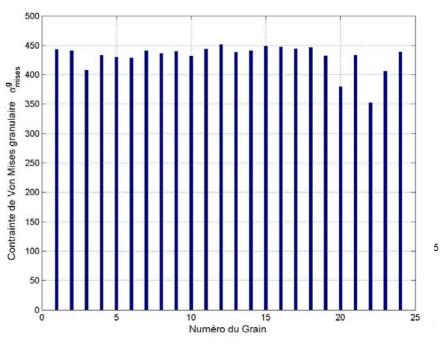
Essai Swift [KHE 04]



D* Modèle MAC1

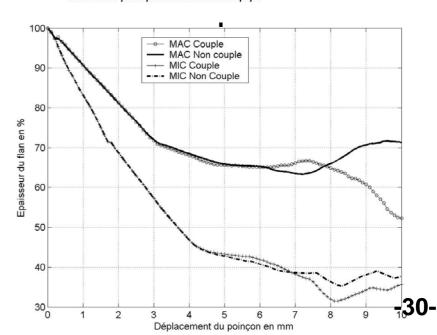
Courbe Force-Déplacement





0.6 0

Déformation plastique cumulée macroscopique



I. Modélisation du comportement avec endommagement ductile

<u>Modélisation</u> acroscopique

Modélisation microicro

II. Modélisation numérique

1 Principe de résolution

2 Méthodes incrémentales résolution

3 Intégration numérique s modèles de comportement

III. Quelques Applications

Conclusions et Perspectives

- ✓ Formulation de modèles : introduction d'une compressibilité plastique induite par l'endommagement ductile en MACRO et MICRO-MACRO
- ✓ Intégration numérique et implémentation des modèles de ces modèles de comportement.
- ✓ Application sur des cas de calcul de structures simples :
- Essai de traction : étude de la localisation
- Matériaux à endommagement fortement non linéaire!
- Réponses cohérentes des modèles micro-macros et macros.
- ✓ Applications à des essais de mise en forme
- Incapacité du modèle de Gurson à simuler les procédés de cisaillage.
- Bonne prédiction des modèles proposés pour la simulation des procédés de formage de tôles (emboutissage et poinçonnage).

PERSPECTIVES

- -Valoriser l'apport des modèles micro-macros : anisotropie de l'écoulement plastique avec endommagement, ...
- -Etude de l'influence de l'endommagement sur les évolutions texturales.
- -Etude expérimentale sur des matériaux réels (thèse en cours [Hfaiedh]) pour corrélation avec les deux familles de modèles (adaptation des modèles si nécessaire).
- Réaliser des études expérimentales afin d'alimenter les modèles
- -Calcul d'agrégats réels qui nécessite le développement de Techniques de maillage, Techniques de calcul parallèle ...

MERCI

$$\dot{\mathbf{d}}^{s} = \dot{\lambda}^{s} \left\langle \frac{\mathbf{Y}^{s} - \mathbf{Y}_{0}}{S} \right\rangle^{\beta} \frac{1}{(1 - \mathbf{d}^{s})^{m}}$$

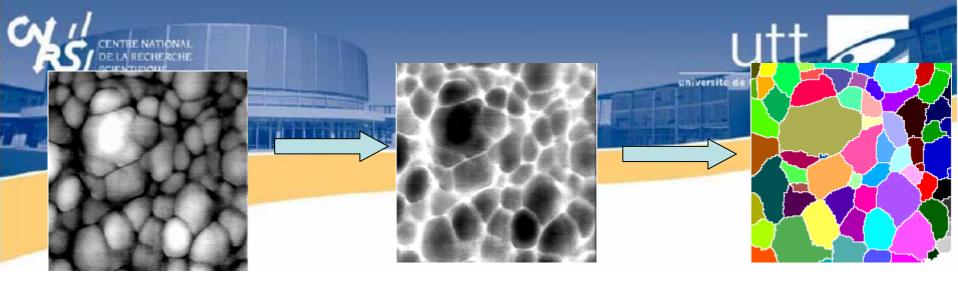
$$Y^{s} = \frac{1}{2} \frac{q^{s}}{(1 - \boldsymbol{d}^{s})} R^{s}$$

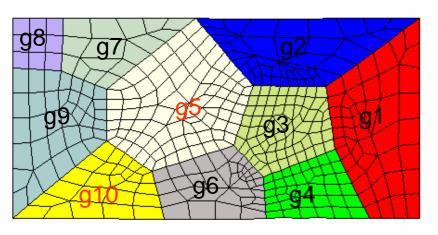
$$R^{s} = Q\sqrt{1 - d^{s}} \sum_{k=1}^{N_{s}} H^{sr} \sqrt{1 - d^{r}} q^{r}$$

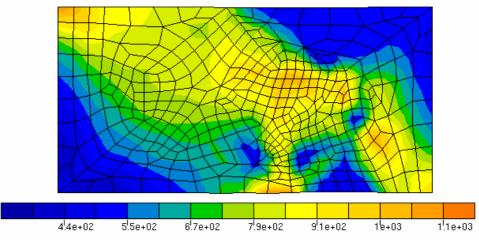
$$\frac{1}{\left|\left|\left[\sum_{s=1}^{N_g} f^g \beta^g - \beta^g\right]\right| \cdot m^s\right| + \alpha D^g \left\langle\left[\sum_{s=1}^{N_g} f^g \beta^g - \beta^g\right]\right| \cdot \eta^s\right\rangle - R^s}{\sqrt{1 - d^s}}$$

$$\dot{D}^T = \sum_{g=1}^{Ng'} f^g \sum_{s=1}^{s=Ns} \dot{d}^s$$

$$\int \dot{D}^{T} dt = \int \sum_{g=1}^{Ng'} f^{g} \sum_{s=1}^{s=Ns} \dot{d}^{s} dt = \int D^{T} = \sum_{g=1}^{Ng'} f^{g} \sum_{s=1}^{s=Ns} d^{s} dt$$







sigmises map:827.000000 time:55.25 min:378.284950 max:1140.963322