

MODELISATION MACRO ET MICRO-MACRO DES MATERIAUX POLYCRISTALLINS ENDOMMAGEABLES AVEC COMPRESSIBILITE INDUITE

Présenté par : Mohamed BOUDIFA Le 01 Mars 2006

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micro-

<u>macro</u>

II. Modélisation numérique

II.1 Principe des PPV

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

III. Quelques Applications

Conclusions et Perspectives

INTRODUCTION

-4-

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micro-

<u>macro</u>

II. Modélisation numérique

II.1 Principe des PPV

II.2 Méthodes incrémentales de résolution

<u>II.3 Intégration numérique des</u> modèles de comportement

> III. Quelques Applications

Conclusions et Perspectives

I. MODELISATION

I.1 Modélisation Macroscopique

Théorie de GURSON [Gurson 77] Cinétique des cavités : -Nucleation - Croissance -Coalescence Variable d'endommagement : porosité f Théorie CDM [Lemître85] Effet Phénoménologique des Défauts sur la Réponse Mécanique

Variable d'Endommagement : D, D_i, D_{ii}, D_{iikl}

-Principe d'équivalence en déformation [Chaboche 78]

-Principe d'équivalence en énergie [Cordebois 79], [Saanouni 88]

Formulation CDM du modèle macroscopique

Relations d'état

 $Y = \frac{1}{2} \varepsilon^e : \underbrace{L}_{\varepsilon} : \varepsilon^e + \frac{2}{3} C \alpha : \alpha + \frac{1}{2} Qr^2$

 $\underset{{}_{\sim}}{\sigma}=(1-D)\underset{{}_{\sim}}{L}:\underset{{}_{\sim}}{\varepsilon}^{e}$

 $X = (1 - D)\frac{2}{3}C\alpha$

R = (1 - D)Qr

 $=Y_e+Y_{an}$

Variable d'Endommagement

$$D^* = D_0 + \mathbf{D} + D^v$$

$$f = \frac{\|\underline{\sigma} - \underline{X}\| - R}{\sqrt{1 - D^*}} - \sigma_y$$

Relations Complémentaires

$$\begin{split} \dot{\varepsilon}^{p} &= \frac{\dot{\lambda}}{\sqrt{1 - D^{*}}} \,\tilde{n} \qquad \tilde{n} = \overline{n} + \tilde{n}^{s} \\ \dot{\alpha} &= \frac{\dot{\lambda}}{\sqrt{1 - D^{*}}} \,\overline{n} - a\dot{\lambda}\alpha \\ \dot{r} &= \frac{\dot{\lambda}}{\sqrt{1 - D^{*}}} (1 - br\sqrt{1 - D^{*}}) \\ \dot{D} &= \dot{\lambda}(1 - D)^{-\beta} \left\langle \frac{Y - Y_{0}}{S} \right\rangle^{s} \\ \overline{D^{v}} &= (1 - D^{v}) \operatorname{tr}(\dot{\varepsilon}^{p}) \end{split}$$

$$\dot{f}_{g} = (1-f)tr(\dot{\varepsilon}^{p})$$

$$\begin{aligned} Version (GTN) \\ Version (GTN) \\ F = \left(\frac{\sigma_{eq}}{\sigma_{y}}\right)^{2} + 2q_{1}f^{*}\cosh\left(\frac{q_{2}\operatorname{tr}(\sigma)}{2\sigma_{y}}\right) - 1 - \left(q_{1}f^{*}\right)^{2} \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + 2q_{1}f^{*}\cosh\left(\frac{q_{2}\operatorname{tr}(\sigma)}{2\sigma_{y}}\right) - 1 - \left(q_{1}f^{*}\right)^{2} \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + 2q_{1}f^{*}\cosh\left(\frac{q_{2}\operatorname{tr}(\sigma)}{2\sigma_{y}}\right) - 1 - \left(q_{1}f^{*}\right)^{2} \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + 2q_{1}f^{*}\cosh\left(\frac{q_{2}\operatorname{tr}(\sigma)}{2\sigma_{y}}\right) - 1 - \left(q_{1}f^{*}\right)^{2} \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}}\right) \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}}\right) \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}}\right) \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}}\right) \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}}\right) \\ R = \left(\frac{H}{\sigma_{y}}\right)^{2} + \frac{\alpha D^{*}tr(\sigma)}{\sigma_{y}} + \frac{\alpha D^{$$

$$\begin{aligned} & \underbrace{\mathsf{k}}_{p} = \underbrace{1}_{H} \langle [(1-D)\underline{n} : \underline{L} : \underline{\dot{\varepsilon}}] \rangle \\ & \text{Ecoulement plastique} \quad \dot{\lambda}^{p} = \frac{1}{H} \langle [(1-D)\underline{n} : \underline{L} : \underline{\dot{\varepsilon}}] \rangle \\ & \text{Ecoulement Viscoplastique} \quad \dot{\lambda}^{vp} = \left\langle \frac{f}{K} \right\rangle^{n} \\ & \underbrace{\mathsf{Genéralisation aux transformations finies}}_{\mathbf{Genéralisation aux transformations finies}} \\ & \mathsf{Pour tout tenseur T}_{Q} = \underline{Q}^{T} \cdot \underline{T} \cdot \underline{Q} \Longrightarrow \dot{\underline{Q}} = \underline{W}_{Q} \cdot \underline{Q} \quad \mathsf{cucc} \quad \underline{Q} \ (t=0) = 1 \\ & \mathbf{Jaumann} \\ & \underline{W}_{Q} = \underline{\mathcal{L}}^{AntySym} = \left\{ \underline{\dot{F}} \cdot \underline{F}^{-1} \right\}^{AntySym} \quad \begin{array}{c} \mathbf{Green-Naghdi} \\ & \underline{W}_{Q} = \underline{\dot{\mathcal{L}}}^{RT} \\ & \mathbf{Taux de déformation } \underline{D} = \underline{\mathcal{L}}^{Sym} = \dot{\underline{\xi}}_{e}^{J} + \underline{D}_{p} \end{aligned}$$

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

I. Modélisation du comportement avec endommagement ductile

<u>I.1 Modélisation</u> <u>Macroscopique</u>

I.2 Modélisation micromacro

II. Modélisation numérique

- II.1 Principe des PPV
- II.2 Méthodes incrémentales de résolution
- II.3 Intégration numérique des modèles de comportement

<u>III. Quelques</u> <u>Applications</u> <u>Conclusions et</u> <u>Perspectives</u>

L'endommagement à l'échelle micro?

-11-

Equations du modèle

1. Au Niveau SGC

$$f^{s} = \frac{|\tau^{s}| + \alpha D^{g} \langle \sigma_{n}^{s} \rangle - R^{s}}{\sqrt{1 - d^{s}}} - \tau_{0}$$

$$f^{s} = \sigma^{g} : m^{s}, \text{ avec } m^{s} = \frac{1}{2} \left(\vec{n}^{s} \otimes \vec{b}^{s} + \vec{b}^{s} \otimes \vec{n}^{s} \right)$$

 $f^{s}_{n} = \sigma^{g} : n^{s}, \text{ avec } n^{s} = \vec{n}^{s} \otimes \vec{n}^{s}$

Relations d'état

$$R^{s} = Q\sqrt{1-d^{s}} \sum_{r}^{Ns} H^{sr} \sqrt{1-d^{r}} q^{r}$$
$$Y^{s} = \frac{1}{2} \frac{R^{s} q^{s}}{(1-d^{s})}$$

Relations d'évolution

$$\dot{\gamma}^{s} = \frac{\dot{\lambda}^{s}}{\sqrt{1 - d^{s}}} sign(\tau^{s})$$
$$\dot{q}^{s} = \frac{\dot{\lambda}^{s}}{\sqrt{1 - d^{s}}} (1 - b\dot{\lambda}^{s})$$
$$\dot{d}^{s} = \dot{\lambda}^{s} \left\langle \frac{Y^{s} - Y_{0}}{S} \right\rangle^{\beta} \frac{1}{(1 - d^{s})^{m}}$$
$$\dot{\lambda}^{s} = \left\langle f^{s} / K \right\rangle^{n}$$

 $f^{s} > 0$

À l'échelle des grains

Relation de localisation [CAILLETAUD 87]

$$\sigma^g = \sum_{\tilde{e}} + C \left(\sum_{g=1}^{Ng} f^g \beta^g - \beta^g \right)$$

Relations d'évolution

Relation d'état
$$x^{g} = \frac{2}{3}C\beta^{g}_{\tilde{z}}$$

$$\begin{split} e_p^g &= \dot{\bar{\varepsilon}}_p^g + \dot{\varepsilon}_p^{gH} \begin{cases} \dot{\bar{\varepsilon}}_p^g &= \sum_{s=1}^{s=Ns} \frac{\dot{\lambda}^s sign\left(\tau^s\right)}{\sqrt{1-d^s}} \tilde{m}^s \\ \dot{\bar{\varepsilon}}_p^{gH} &= \sum_{s=1}^{s=Ns} \frac{\dot{\lambda}^s \alpha D^g}{\sqrt{1-d^s}} \tilde{\eta}^s \end{cases} \\ D^g &= \dot{\bar{\varepsilon}}_p^g - a \beta^g \sum_{s=1}^{Ns} \dot{\lambda}^s \end{cases} \end{split}$$

À l'échelle de l'EVR

Relation d'état

$$\Sigma = \left(1 - D^T\right) \stackrel{L}{\underset{\approx}{\Sigma}} : \stackrel{E^e}{\underset{\approx}{\Sigma}}$$

Relations d'évolution

$$\dot{E}^{p} = \sum_{g=1}^{g=N^{g}} f^{g} \dot{\varepsilon}_{p}^{g}$$

$$\dot{E}^{e} = \dot{E} - \dot{E}^{p}$$

$$\dot{D}^{T} = \sum_{g=1}^{Ng'} f^{g} \sum_{s=Ns}^{s=Ns} \dot{d}^{s}$$

s=1

q=1

Compressibilité plastique

$$\operatorname{tr}\left(\dot{E}^{p}\right) = \operatorname{tr}\left(\sum_{g=1}^{g=N^{g}} f^{g} \dot{\varepsilon}_{p}^{g}\right)$$
$$= \operatorname{tr}\left(\sum_{g=1}^{g=N^{g}} f^{g} \dot{\varepsilon}_{p}^{gH}\right)$$
$$= \operatorname{tr}\left(\sum_{g=1}^{g=N^{g}} f^{g} \sum_{s=1}^{s=Ns} \frac{\dot{\lambda}^{s} \alpha D^{g}}{\sqrt{1-d^{s}}} \eta^{s}\right)$$
$$= \sum_{g=1}^{g=N^{g}} f^{g} \sum_{s=1}^{s=Ns} \frac{\dot{\lambda}^{s} \alpha D^{g}}{\sqrt{1-d^{s}}} \neq 0 \quad -13-$$

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micromacro

> II. Modélisation numérique

II.1 Principe des PPV

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

> <u>III. Quelques</u> <u>Applications</u> <u>Conclusions et</u> Perspectives

II. Modélisation numérique

- > Une densité de forces volumiques \vec{f} dans Ω ,
- > Des efforts surfaciques \vec{F} sur une partie $\partial \Omega_{f}$ de $\partial \Omega_{f}$,

> Des efforts de contact \vec{F}_c (avec un autre solide) sur une partie $\partial \Omega_c$ de $\partial \Omega$,

 \searrow Des déplacements imposés \vec{u} sur une partie $\partial \Omega_{u}$ de $\partial \Omega$.

II.2 Méthodes incrémentales de résolution

Résolution Statique Implicite (Schéma itératif de Newton-Raphson)

$$Convergence [K]_{n+1}^{h} = \left[\frac{\{\partial\Re\}}{\{\partial U\}}\right]_{n+1}^{h} = \left[\frac{\{\partial\Re\}}{\{\partial U\}}\right]_{n+1}^{h} = \left[\frac{\{\partial\Re\}}{\{\partial U\}}\right]_{n+1}^{h} \approx \int_{V^{r}} \left[B_{(\eta)}^{el}\right]^{T} \left[\underline{L}_{\underline{\varepsilon}}^{el}\right]_{n+1}^{h} \left[B_{(\eta)}^{el}\right] J_{V} dV^{r} + \dots \\ \left[\underline{L}_{\underline{\varepsilon}}^{el}\right]_{n+1}^{h} = -\left[K\right]_{n+1}^{h} \left\{\Re\}_{n+1}^{h}\right] \approx \frac{\partial\left(\left\{\sigma^{el}\right\}\right)_{n+1}^{h}}{\partial\left(\left\{\varepsilon^{el}\right\}\right)_{n+1}^{h}} \\ Résolution Dynamique Explicite (POINT MILIEU) \\ \left\{\ddot{U}\right\}_{n} = \left[M_{D}\right]_{n}^{-1} \left\{\Re\right\}_{n} \\ \left\{\dot{U}\right\}_{n+1}^{h} = \left\{\dot{U}\right\}_{n+1}^{h} + \frac{\Delta t_{n} + \Delta t_{n+1}}{2} \left\{\ddot{U}\right\}_{n}$$

 $\{U\}_{n+1} = \{U\}_n + \Delta t_n \{\dot{U}\}_{n+\frac{1}{2}}$

-15-

I. Modélisation du comportement avec endommagement ductile

<u>I.1 Modélisation</u> <u>Macroscopique</u>

I.2 Modélisation micromacro

II. Modélisation numérique

II.1 Principe de résolution

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

III. Quelques Applications

Conclusions et Perspectives

Intégration du modèles macroscopique

$$\begin{split} H_{n+1}^{e} &= \Delta \varepsilon^{e} + \Delta p \eta_{n+1} - \Delta \varepsilon \\ H_{n+1}^{\alpha} &= \Delta \alpha \left(1 + a \sqrt{1 - D_{n+1}^{*}} \right) \\ \dot{\varphi}^{\alpha} &= \frac{\dot{\lambda}}{\sqrt{1 - D^{*}}} \bar{\eta} - a \dot{\lambda} \alpha \\ \dot{\varphi}^{\alpha} &= \frac{\dot{\lambda}}{\sqrt{1 - D^{*}}} \bar{\eta} - a \dot{\lambda} \alpha \\ \dot{\varphi}^{\alpha} &= \frac{\dot{\lambda}}{\sqrt{1 - D^{*}}} \bar{\eta} - a \dot{\lambda} \alpha \\ H_{n+1}^{r} &= \Delta \rho \left(\dot{\varphi}^{e}, \dot{\varphi}, \dot{r}, \dot{D}, \dot{D}^{v}, \dot{p} \right) \\ \dot{H}_{n+1}^{D} &= \Delta D - \Delta p \hat{Y}_{n+1}^{e} = 0 \\ H_{n+1}^{D^{v}} &= \Delta D^{v} - \Delta p \hat{Y}_{n+1}^{v} = 0 \\ H_{n+1}^{p} &= f_{n+1} = \| \sigma_{n+1} - X_{n+1} \| \\ \dot{D}^{v} &= (1 - D^{v}) \operatorname{tr} \left(\dot{\varepsilon}^{p} \right) \\ \dot{D}^{v} &= (1 - D^{v}) \operatorname{tr} \left(\dot{\varepsilon}^{p} \right) \\ f &= \frac{\| \sigma - X \| - R}{\sqrt{1 - D^{*}}} - \sigma_{y} = 0 \end{split}$$

Prédiction élastique-Correction plastique

 $\begin{array}{lll} \Delta_{\widehat{\varepsilon}} = \Delta_{\widehat{\varepsilon}^e} & \text{SI} \quad f_{n+1} \leq 0 & \text{Solution élastique} \\ & \text{SINON} & \\ & \text{Correction plastique} \left\{ H_{n+1} \right\} = 0 \\ & \text{A convergence de l'itération s} \end{array}$

$$\{\delta\Delta\underline{x}\}_{n+1}^s = -\left[\boldsymbol{J}^{-1}\right]_{n+1}^s \{H\}_{n+1}^s$$

 $\{\delta\Delta\underline{x}\}_{n+1}^{s} = \{\delta\Delta\underline{\varepsilon}^{e}, \delta\Delta\underline{\alpha}, \delta\Delta r, \delta\Delta D, \delta\Delta D^{v}, \delta\Delta p\}_{n+1}^{s}$ -16-

Intégration du modèle micro-macro

$$\left\langle \dot{\underline{Y}} \right
angle = \left\langle \dot{\underline{E}}^{e}, \dot{D}^{T}, \dot{\beta}^{g}, \dot{\lambda}^{s}, \dot{q}^{s}, \dot{d}^{s}
ight
angle$$

 $\langle \underline{Y} \rangle_0 = \langle \underline{Y}_0 \rangle$

CFC \rightarrow 12 systèmes cristallins \rightarrow 7+(6+3×12)×Ng EDO

 $\langle \underline{Y} \rangle_{n+1} = \langle \underline{Y} \rangle_n + \langle \Delta \underline{Y} \rangle$ Runge-Kutta d'ordre 2

$$\langle \underline{K}_1 \rangle = \Delta t \left\langle \underline{\dot{Y}} \left(t_n, \langle \underline{Y} \rangle_{t_n} \right) \right\rangle$$

$$\langle \underline{K}_2 \rangle = \Delta t \left\langle \underline{\dot{Y}} \left(t_n + \frac{1}{2} \Delta t, \langle \underline{Y} \rangle_{t_n} + \frac{1}{2} \langle \underline{K}_1 \rangle \right) \right\rangle$$

$$\langle \Delta \underline{Y} \rangle = \langle \underline{K}_2 \rangle + O(\Delta t^3)$$

Différence en entre Zébulon standard et le modèle MIC en Non Couplé

$$\dot{\beta}^g = \dot{\varepsilon}^g_p - a\beta^g \|\dot{\varepsilon}^g_p\|$$

- Zébulon Standard

$$\|\dot{\varepsilon}_p^g\| = \sqrt{\frac{2}{3}} \dot{\varepsilon}_p^g : \dot{\varepsilon}_p^g$$

- Modèle MIC

$$\left\|\dot{\varepsilon}_{p}^{g}\right\| = \sum_{s=1}^{Ns} \dot{\lambda}^{s}$$

I. Modélisation du comportement avec endommagement ductile

I.1 Modélisation Macroscopique

I.2 Modélisation micro-

<u>macro</u>

II. Modélisation numérique

II.1 Principe de résolution

II.2 Méthodes incrémentales de résolution

II.3 Intégration numérique des modèles de comportement

> III. Quelques Applications

<u>Conclusions et</u> <u>Perspectives</u>

III.1 Application du modèle macroscopique

But : Comparaison avec le modèle de Gurson

Modèle MAC1 avec endommagement mixte (couplage fort)
 Modèle MAC2 avec endommagement volumique D^v seulement
 Modèle GUR (GTN du modèle de Gurson).

Etude du Modèle MAC1 (Couplage Fort)

Elasticité	Ecrouissage	Endommagement volumique	Endommagement
E=200000. MPa ∨=0.3	σ _Y =400. MPa Q=1000.0 MPa b=50.0 C=10000. MPa a=100.	D ₀ =0 α=1 δ=1 Dcrit=0.005	β=2, s=1, S=8.35 MPa Y ₀ =0. MPa

Comparaison MAC1, MAC2 et GUR

Endommagement	MAC1	MAC2	GUR
	β=2,, s=1.,	D0=0.0322	q1=2.5
	S=4. MPa	α= 0.638	q2=1.45
	Y0=0. MPa,	$D_{crit=0.005}^{\prime}$	$f_{c} = 0.005, \delta = 3.$
А	α=0,3,	δ=2.02	A=0.001(nucléation
	D [*] onit = 0.005, et		constante
	δ=1.		
	β=0.7, s=1.,	D0=1.e-6	q1=5.81
в	S=0,1 MPa,	α= 3.	q2=0.58
	Y0=1.375 MPa	$D_{onit=0.005}^{\prime}$	$f_{c} = 0.005, \delta = 2.$
	α=0.3,	δ=2.	A= 0.0172 (nucléation
	$D_{onit=0.005}^{o}$ et		constante)
	δ=1.		

Animations sur les endommagements (Abaqus/explicit)

Jeu j (mm)	Rayon poinçon Rp (mm)	Rayon matri∞ Rm (mm)	Distanœ serr-flan poinçon Dsf (mm)	Epaisseur de la tole	Rayon de la tôle initiale(mm)	Rayon de coupe R _{eoupe} (mm)
0.075	0.1	0.1	1	1.5	30	10

10 % pénétration poinçon

III.2 Application du modèle Micro-Macro

Éléments c3d20r

→ 8 Points Gauss

Coefficients du Poly24

Elasticité	Ecrouissage	Ecrouissage	Endommagement
macroscopique	intergranulaire	intragranulaire	
E=200 GPa ν=0,3	C=30067,72 Mpa, a=26,74716	σ0=145.Mpa Q=50. MPa b=74,788 h1=1., h2=1., h3=2., h4=1.5, h5=1, h6=2,5 K=50 MPa, n=25.	S=1.2 MPa s=1,194 β=4,785 α=0,5 Y ₀ =0,03

Cas Non Couplé (Calcul Zébulon)

Cas Couplé (Calcul Zébulon)

Déformation plastique cumulée macroscopique P

Endommagement macroscopique D^T

-28-

Comparaison du Poly24 et MAC1 sur un procédé d'Emboutissage

Essai Swift [KHE 04]

I. Modélisation du comportement avec endommagement ductile

- <u>Modélisation</u> acroscopique
- Modélisation microacro

II. Modélisation numérique

- **1 Principe de résolution**
- <u>2 Méthodes incrémentales</u> résolution
- <u>3 Intégration numérique</u> <u>s modèles de comportement</u>

III. Quelques Applications

<u>Conclusions et</u> <u>Perspectives</u>

- Formulation de modèles : introduction d'une compressibilité plastique induite par l'endommagement ductile en MACRO et MICRO-MACRO
- Intégration numérique et implémentation des modèles de ces modèles de comportement.
- ✓ Application sur des cas de calcul de structures simples :
- Essai de traction : étude de la localisation
- Matériaux à endommagement fortement non linéaire !
- Réponses cohérentes des modèles micro-macros et macros.
- ✓ Applications à des essais de mise en forme
- Incapacité du modèle de Gurson à simuler les procédés de cisaillage.
- Bonne prédiction des modèles proposés pour la simulation des procédés de formage de tôles (emboutissage et poinçonnage).

Centre National De LA Recherche Scientifique

PERSPECTIVES

-Valoriser l'apport des modèles micro-macros : anisotropie de l'écoulement plastique avec endommagement, ...

-Etude de l'influence de l'endommagement sur les évolutions texturales.

-Etude expérimentale sur des matériaux réels (thèse en cours [Hfaiedh]) pour corrélation avec les deux familles de modèles (adaptation des modèles si nécessaire).

- Réaliser des études expérimentales afin d'alimenter les modèles

-Calcul d'agrégats réels qui nécessite le développement de Techniques de maillage, Techniques de calcul parallèle ...

MERCI

$$\begin{split} & \underbrace{\text{Upper line weights}}_{\text{prevents}} & \underbrace{\text{Upper line weights}}_{\text{pre$$

sigmises __map:827.000000 time:55.25 _min:378.284950 max:1140.963322