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Introduction

Cette these se divise en quatre chapitres correspondant a quatre publications ou
projets de publication. Les trois premiers sont consacrés a des questions d’existence,
de stabilité ou d’instabilité d’ondes stationnaires pour des équations de Schrédinger
non linéaires, tandis que le quatrieme traite d’instabilité pour des équations de
Klein-Gordon non linéaires. Le premier chapitre correspond a une version plus
détaillée d'un article co-signé avec Louis Jeanjean [18]. Le deuxiéme chapitre est
une prépublication [24] dans laquelle les questions analytiques ont été traitées en
collaboration avec Reika Fukuizumi; quant aux résultats numériques, ils sont dus a
Gadi Fibich et ses éleves Barush Ksherim et Yonatan Sivan. Je suis seul auteur du
troisieme chapitre [23] et le quatrieme chapitre est le fruit d'un travail commun avec
Louis Jeanjean [19].

Une équation de Schrédinger non linéaire est une équation de la forme
iug + Au+ f(z,u) =0 (1)

ot u:RxRY — Cet f:RY x RT — R est une non-linéarité étendue & RY x C en
posant quel que soit x € RY f(z,2) := f(,|z])z/|z| pour 2 € C\ {0} et f(z,0) = 0.

Sous certaines conditions sur f, le probleme de Cauchy pour est localement
bien posé dans H'(RY) (voir par exemple [6, chapitre 4]) et soit la solution du
probleme de Cauchy existe globalement, soit elle explose en temps fini (ce qu’on
désigne sous le nom de blow-up alternative). De plus, si on définit I’énergie E et la
charge Q pour v € H(RY) par

1
B(w) = 3IVelp~ [ Pl
2 RN
Q) = [l
ou F(x,s) = 0|s| f(x,0)do, alors ces deux quantités sont conservées au cours du

temps.

Pour de nombreuses équations non linéaires dispersives, on observe dans certaines
situations une compensation entre l'effet dispersif du laplacien et les effets non



INTRODUCTION

linéaires qui donne lieu a la génération d’ondes solitaires. 1l s’agit de solutions
de ces équations qui peuvent subir des modifications de phase ou des translations
en espace mais dont le profil reste intact au cours du temps. Concretement, la
premiere observation d'une onde solitaire remonte a 1834 : John Scott Russell
parcourt a cheval plusieurs kilometres le long d'un canal pour observer la propagation
a l'identique de l'onde créée par I'arrét brusque d’une barge. Cependant, il faut
attendre les travaux de Korteweg et de Vries en 1895 pour que le phénomene
trouve une premiere justification théorique et ce n’est qu’apres les années 1950 que
I’étude des ondes solitaires prendra véritablement son essor. Depuis, les équations
admettant des ondes solitaires ont connu un fort engouement aussi bien de la part
des mathématiciens que des physiciens (voir par exemple [6, 9 28, [33] pour une
revue de questions physiques et mathématiques autour des ondes solitaires et pour
une bibliographie détaillée).

Pour I’équation de Schrodinger, les ondes solitaires auxquelles nous nous intéres-

sons sont les ondes stationnaires. Ce sont des solutions de de la forme e“!p,,(z)
avec w € R et ¢, € H'(RY) qui vérifie
— Ay, +wp, — f(T,0,) = 0. (2)

La premiere étude mathématique de I'existence de solutions de en dimension
supérieure a 3 remonte a un article de Strauss [32] en 1977. Lorsque la non-linéarité
f est autonome (i.e. f(z,s) = f(s)), Berestycki et Lions [4] ont donné en 1983
des conditions quasi-optimales garantissant I'existence de solutions dans H'(RY)
pour lorsque N > 3 et N = 1. Le cas N = 2 fut traité peu de temps apres
par Berestycki, Gallouet et Kavian [3]. En particulier, si on définit la fonctionnelle
naturellement associée a par

1 w
S(0) = 5190l + ol = [ Pyt

alors sous les hypotheses de [3, 4] il existe des solutions ¢ vérifiant
S(p) =m = inf{S(v)|v € H'(RY)\ {0} est une solution de (2)}.

Ces solutions sont dites de plus petite énergie, ou états fondamentauz, et m est le
niveau de plus petite énergie.

Lorsque f est non-autonome, seuls des résultats partiels sont connus. Dans le
premier chapitre de cette these, on prouve un résultat d’existence pour lorsque
la non-linéarité f est de la forme f(z,s) = V(x)g(s). Ici, V désigne un potentiel réel
et g une non-linéarité vérifiant

(H1) V se comporte comme |x|~° & I'infini avec 0 < b < 2,

(H2) g se comporte comme s? en 0 avec 1 < p <1+ (4 —2b)/(N — 2).

_ 9.



INTRODUCTION

(voir le chapitre [1] pour un énoncé précis des hypotheses)

Théoréme 1. Pour une non-linéarité de la forme V(x)g(s) vérifiant (H1)-(H2), il
existe wy > 0 tel que (@ admet une solution non-triviale ¢, pour tout w € (0, wy).

Lors de la recherche de solutions pour des problemes non-autonomes du type ,
une des difficultés majeures auxquelles on est confronté est I’absence d’estimations
a priori sur les suites de Palais-Smale. De fait, la majorité des travaux sur le sujet
se restreignent a des situations ou la non-linéarité g satisfait des hypotheses fortes
du type condition de superquadraticité d’Ambrosetti et Rabinowitz. Dans notre cas,
nous surmontons cette difficulté en nous inspirant d’'une méthode introduite par
Berti et Bolle [5] en 2003 dans le contexte de 1’équation des ondes. On cherche
a obtenir les solutions de comme points critiques, au niveau du col, de la
fonctionnelle associée a

1 w
S(0) = 5IelE + 30l = [ V@G,

ou G(s) = O‘sl g(o)do. Cependant, s’il est vraisemblable que la fonctionnelle S
admet une géométrie de col, montrer directement que les suites de Palais-Smale
sont bornées semble hors de portée sous nos faibles hypotheses sur g. Pour surmonter
cette difficulté, notre méthode consiste a tronquer convenablement la fonctionnelle S
a Pextérieur d'une boule de H'(RY). On montre alors que la fonctionnelle tronquée
a une géométrie de col et que ses suites de Palais-Smale au niveau du col sont
a l'intérieur de la boule ou la fonctionnelle d’origine et la fonctionnelle tronquée
coincident. Montrer la convergence des suites de Palais-Smale permet alors d’obtenir
un point critique de .S, donc une solution de .

Une fois leur existence établie, I'une des questions majeures dans 1’étude des
ondes solitaires est leur stabilité ou leur instabilité. Déja dans son mémoire de 1844
[29], Russell mentionnait les remarquables propriétés de stabilité des ondes solitaires
qu’il avait pu observer. Néanmoins, le développement d’une théorie mathématique
rigoureuse de la stabilité ne commence qu’en 1972 avec les travaux de Benjamin
[1] sur I’équation de Korteweg-de Vries. La stabilité étudiée par Benjamin est dite
orbitale, c’est également ce type de stabilité que nous considérons dans le cadre de
cette these.

L’orbite d’une onde stationnaire est déterminée par les propriétés de symétrie de
I’équation. Par exemple, dans le cas ou la non-linéarité est de type puissance

i + Au+ [ufPfu =0 (3)
et si ¢ est une solution de

—Ap+wp— Pl =0, (4)

_ 3.



INTRODUCTION

alors e p(z—y) est également une solution de (4f) quelque soit € R et y € RY. Dans

cette situation, 'orbite d’une onde stationnaire u(t, z) = e“*yp, () est I'ensemble

O(Spw> = {ew(PuJ(' - y),e eR,ye RN}-

Pour H un espace de fonctions (en pratique H'(RY) ou son sous-espace des fonctions
radiales H! (RY)), on définit la stabilité orbitale dans H de I'onde e, (z) de la
facon suivante. Pour tout ¢ > 0 il existe § > 0 tel que pour tout ug € H vérifiant
l|ow — uol|g < on a
sup inf |jv —u(t)||lg <e,
te[0,400) V€O (#w)

ou u(t) est la solution de (3)) associée a wuy.

Pour I'équation (3)), Cazenave et Lions [7] ont montré en 1982 que les ondes
stationnaires associées aux états fondamentaux de sont stables dans H'(RY)
sil<p< 1+ ]%. Leur approche repose sur le fait que les états fondamentaux
peuvent, dans ce cas, étre caractérisés comme des minimiseurs de S sur une sphere
de L?(RY). Leur résultat est optimal, dans la mesure ol 'onde stationnaire est
instable si 1 + + < p < 1+ 5 (avec 15 = +oo si N = 1,2), voir [2, [34].
Cette approche s’est avérée efficace dans de nombreuses situations. Cependant, elle
présente deux inconvénients. D’une part, la stabilité obtenue par cette approche
correspond a une notion de stabilité potentiellement plus faible que celle de stabilité
orbitale. En effet, ce qu’on montre par cette méthode est la stabilité de I’ensemble des
états fondamentaux ; or cet ensemble ne coincide avec I'orbite de I’onde stationnaire
que s’il y a unicité de 1’état fondamental aux symétries de I’équation pres. D’autre
part, cette approche est intimement liée aux états fondamentaux et ne permet pas
de traiter d’autres états. En particulier, les solutions obtenues dans le Théoréme []]
ne sont ni forcément uniques, ni caractérisées comme des minimiseurs de S, et on
ne peut pas recourir a I’approche de Cazenave et Lions pour étudier leur stabilité.

A la méme période, en 1985, Shatah et Strauss [31] ont introduit une méthode
permettant d’étudier la stabilité et 'instabilité des équations non linéaires de Schro-
dinger et Klein-Gordon. Ils ont ensuite développé cette méthode en collaboration
avec Grillakis [14], [15] pour traiter de systémes hamiltoniens tres généraux. Dans le
cas de , cette théorie permet de déterminer si I'onde stationnaire ™'y, () est
stable ou instable en fonction de deux criteres :

(critére spectral) nombre de valeurs propres négatives de S” (),
(critére de pente) signe de 2 ||p,|13.

Cette théorie de Grillakis, Shatah et Strauss se révele étre tres efficace dans
des situations ot on connait explicitement la dépendance de la famille (p,,) dans le
parametre w. C’est notamment le cas lorsque la non-linéarité est de type puissance,
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éventuellement avec une dépendance en espace « simple », par exemple, lorsque
— | =bl|p—1
f@,s) = || 7|s|s.

Cependant, des que la dépendance de la famille (¢,,) dans le parametre w n’est
plus explicite, cette théorie devient tres difficile a mettre en ceuvre. De ce point
de vue, la situation du Théoreme [I] est tres défavorable, car la dépendance dans le
parametre w n’est méme pas nécessairement continue. Malgré tout, il est possible
de dériver des travaux de Grillakis, Shatah et Strauss un critere de stabilité basé
sur une forme de coercitivité pour S”(¢,, ). Ce critere sera plus difficile a vérifier en
pratique, mais vaudra dans des situations ou on ne peut pas obtenir le critere de
pente. Plus précisément, si pour v € H*(RY) telle que (v, ¢, )2 = (v,ip,)2 = 0 on a

(critére de coercivité)  (S"(p,)v,v) = C’||v||§I1(RN),

avec C' > ( indépendant de v, alors l'onde stationnaire !, (x) est stable dans
HY(RY). Dans le chapitre , on exploite ce critere pour prouver la stabilité des
solutions du Théoreme [l

Théoréme 2. On suppose que la non-linéarité est de la forme V(z)g(s) et vérifie
(H1)-(H2) avec 1 < p < 4522, Alors il existe 0 < wy < wy tel que pour w € (0,wr)
les ondes stationnaires ey, (x) obtenues dans le Théoréme |1 sont stables dans
H'(RY).

Notre point de départ pour prouver le Théoreme [2| est le travail de de Bouard
et Fukuizumi [8] en 2005. Dans cet article, les auteurs étudient le méme type
d’équations en se restreignant a des non-linéarités de type puissance et sous des
hypotheses plus fortes sur le potentiel V. Le plan d’étude de la stabilité est le suivant.
Tout d’abord, on montre un résultat de convergence des solutions obtenues dans le
Théoreme (1| vers 'unique solution positive ¥ du probleme limite

A+ - ﬁwlplw 0.

Puis, a 'aide d'une étude spectrale, on montre le critere de coercivité pour le
probleme limite. La partie difficile de cette étude spectrale consiste a prouver un
résultat de non-dégénérescence de I'opérateur S” (). Bien que ce résultat soit déja
énoncé dans [8], la preuve qui y est donnée comporte plusieurs lacunes. On donne
dans le chapitre [T] une preuve complete de ce résultat de non-dégénérescence. On
conclut en montrant que le critéere de coercivité est vérifié pour w petit.

Les méthodes développées dans le chapitre [l de cette these ont été employées
avec succes par Kikuchi [22] dans le contexte de 'équation de Schrédinger-Poisson-
Slater pour prouver un résultat d’existence et de stabilité d’ondes stationnaires.
D’autre part, Genoud et Stuart [12] ont également abordé des questions d’existence

-5
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et de stabilité pour des problemes du type avec une non-linéarité de la forme
V(z)|s|P~'s. Sous des hypotheses plus fortes sur V, ils obtiennent Pexistence de
solutions par une méthode de bifurcation et étudient leur stabilité ou instabilité.

Le deuxieme chapitre de cette these traite de la stabilité et de I'instabilité des
ondes stationnaires de 1’équation

104U + Oppui + yud + |ulPtu = 0, (5)

oux € R, § désigne la distribution de Dirac a ’origine et v un parametre réel. Ce type
d’équation intervient notamment en optique non linéaire ou dans la modélisation de
brins d’ADN comportant certains défauts. Si cette équation est utilisée des physiciens
depuis les années 1990, la premiere étude mathématique rigoureuse semble due
a Goodman, Holmes et Weinstein [13] et date de 2004. Méme si la question des
ondes stationnaires et de leur stabilité est évoquée dans cette étude, les auteurs se
concentrent surtout sur I'impact de la masse de Dirac sur I’évolution de la solution
de I'équation lorsque la donnée initiale est un état fondamental de 1’équation non
perturbée localisé loin de 0. Plusieurs autres études ont été réalisées dans le méme
esprit, notamment par Holmer, Marzuola et Zworski [16], [17].

L’équation stationnaire correspondant a est
—Opatt + wu — yud — [ulP"lu = 0.

Pour w > v%/4, cette équation admet une solution positive, explicite, unique, donnée
par (voir [10, 111, 13])

pute) = [ D (WD ()]

Puisque ¢, est connue explicitement, le calcul de la dérivée du carré de la norme
L*(RY) de ¢, en fonction de w est possible et la méthode de Grillakis, Shatah
et Strauss s’avere naturellement la plus adaptée pour I'étude de la stabilité ou de
I'instabilité des ondes stationnaires de . Néanmoins, dans la résolution de ce
probleme, un obstacle majeur demeure : déterminer le critere spectral, c’est a dire
de déterminer le nombre de valeurs propres négatives de S”(¢,,), ol

1 w v 1
S(0) = 01+ S0l = FO)F = — ol

Le travail présenté dans le chapitre [2| est motivé par les questions laissées ouvertes
dans I’étude récente de Fukuizumi et Jeanjean [10]. En particulier, dans [10], les
auteurs établissent une caractérisation variationnelle de ¢, comme minimiseur de
S(v) sur une certaine contrainte et s’en servent pour déterminer le critére spectral.
Dans le cas 7 > 0, leur méthode permet de retrouver de maniere simple les résultats

-6 -
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déja obtenus par Fukuizumi, Ohta et Ozawa [11]. Il n’en va pas de méme dans
le cas 7 < 0 ou ils sont contraints de considérer la stabilité uniquement pour des
perturbations radiales.

Dans le chapitre 2], nous abordons 1’étude du critére spectral sous un autre angle.
En s’appuyant sur le fait que le spectre de S”(¢,) est connu depuis les travaux
de Weinstein [35] quand v = 0, on analyse son comportement lorsqu’on perturbe
légerement vy en positif ou en négatif. Une partie centrale du travail consiste a prouver
que le spectre de 'opérateur S”(¢,,) varie en fonction de v de fagon suffisamment
réguliere pour pouvoir faire cette analyse. Ensuite, on étend ce résultat a tous les
parametres 7y en utilisant le fait que le noyau de l'opérateur S”(¢,,) est réduit a {0}
lorsque v # 0 et agit comme une barriere pour les valeurs propres. Combinée avec
le calcul de la dérivée du carré de la norme L*(RY) de ¢,,, cette analyse spectrale
permet de retrouver les résultats de [10, [11] et d’obtenir un tableau complet de la
stabilité ou de l'instabilité de 1'onde stationnaire en fonction des différentes valeurs
des parametres w et . En particulier, dans les cas qui étaient restés ouverts jusqu’a
présent, on obtient
Théoréme 3. Soit v < 0. Il existe wy > v%/4 tel que l'onde stationnaire ', (z)
est instable dans H'(R) pour tout w > 7?/4 si 1 < p < 3 et pour tout w > wy si
3 <p<h.

Il est naturel de vouloir en savoir plus sur la nature de 'instabilité mise en évi-
dence dans le Théoreme (3| et les travaux [10, [11]. Néanmoins, 'un des inconvénients
de la théorie de Grillakis, Shatah et Strauss est qu’elle donne tres peu d’éléments de
réponse a la question : comment se manifeste 'instabilité des ondes stationnaires ?
Une premiere étape pour répondre a cette question consiste a rechercher les cas o
I'onde stationnaire est instable par explosion. Précisément, on cherche a construire
une suite de données initiales (u,) convergeant vers ¢, dans H'(R) et telle que la
norme H'(R) de la solution de avec pour donnée initiale u, explose en temps
fini. Notre résultat est le suivant.

Théoréme 4. Soit v < 0, w > ~%*/4 et p > 5. Alors l'onde stationnaire ¢, (z)
solution de (@ est instable par explosion.

Comme beaucoup de résultats mettant en évidence un phénomene d’explosion,
la preuve du Théoreme [4] fait intervenir un résultat de type identité du viriel :

Ouellzu(t) ||z = 8Q(u(t)) (6)
ot Q(v) = 9.3 — Z|v(0)]* — 2(’;;11)\\1)]§ﬁ pour v € H'(R). Pour justifier les

calculs formels conduisant a @, la plupart des preuves font intervenir la régularité
H?*(R) du probleme d’évolution. Cependant, dans le cas de (5]), cette régularité fait

_7-
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défaut en raison de la présence de la masse de Dirac. Pour contourner cette difficulté,
nous prouvons @ par une méthode d’approximation de la masse de Dirac par des
potentiels plus réguliers pour lesquels le résultat de viriel est connu.

Pour la preuve du Théoreme [ on se base sur la méthode introduite en 1981
par Berestycki et Cazenave [2]. Il s’agit de définir un ensemble de données initiales
générant chacune une solution explosive de (5)) et de montrer qu’on peut prendre ces
données aussi proches de ¢, que désiré. Au cceur de la preuve de [2] est le fait que
I'état fondamental est un minimiseur de S sur la contrainte {Q(v) = 0}. Dans notre
cas, il est possible, mais long et délicat, de montrer que c’est encore vrai lorsque
5 < p < 400, mais le cas p = 5 semble hors de portée. Alternativement, notre
méthode, qui consiste a introduire une seconde contrainte, permet de contourner
aisément cette difficulté.

Le Théoreme [] donne une caractérisation du phénomeéne d’instabilité lorsque
p = 5. Néanmoins, lorsque 1 < p < 5, il n’est pas difficile de montrer en utilisant
I'inégalité de Gagliardo-Nirenberg et les lois de conservation que les solutions sont
globales. En particulier, cela interdit tout phénomene d’instabilité par explosion.
Pour compléter I'étude analytique de , des simulations numériques réalisées par
Gadi Fibich et son équipe sont présentées a la fin du chapitre [2] Les résultats qu’ils
ont obtenus montrent notamment que 'instabilité du Théoréme [4] peut se manifester
de deux manieres différentes, éventuellement combinées : par dérive de la solution
en s’éloignant de la masse de Dirac, ou bien par un début d’explosion suivi d’une
forme d’oscillation autour d’un état stable.

En analysant la preuve du Théoreme [} on s’apergoit que la méthode employée
n’est pas liée a la dimension 1 et simplifie pour une non-linéarité de type puissance
f(x,5) = |s[P~ts la preuve classique de [2] détaillée par Cazenave dans [6], section
8.2]. Or, dans [2], les auteurs ne se restreignent pas au cas des puissances et
considerent une large classe de non-linéarités. Il s’avere que I'approche de la preuve
du Théoremeld] peut également s’étendre & des situations ou la non-linéarité est
générale

iug + Au+ f(u) =0 (7)

avec 1’équation stationnaire correspondante
— Ap+wp = f(p). (8)

On retrouve alors de fagon plus simple le résultat de [2] en simplifiant 1égérement
ses hypotheses. C'est le résultat principal du chapitre [3]

Théoreme 5. On suppose que [ vérifie certaines hypotheses, notamment que
la fonction h(s) = (sf(s) — 2F(s))s~**4/N) est strictement croissante sur
[0, 4+00) et lims_h(s) = 0.
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Alors pour tout état fondamental ¢, de (@, l'onde stationnaire e¢“tp,,(x) solution

de (@ est instable par explosion.

Outre l'introduction d’une double contrainte, 'un des ingrédients principaux de
notre preuve est l'utilisation des résultats de Jeanjean et Tanaka [20, 21] en 2003.
Ces résultats disent que, pratiquement sous les hypotheses de [3], 4], la fonctionnelle

1 w
S(0) = 5IVol + Sl — [ Fe)ds

a une géométrie de col, c’est a dire que

I = {y € (0,1, H(RY)),7(0) = 0, S(v(1)) < 0} # 0, (9)
et c:= »lerllf“tem[Sa}ﬁ S(vy(t)) > 0.
De plus, on a l'identité
m=c

entre le niveau de moindre énergie m et le niveau de col c.

La particularité essentielle de notre preuve est que nous ne résolvons jamais
explicitement de probleme de minimisation. Nous utilisons juste les résultats de
Jeanjean et Tanaka pour faire le lien entre les différents problemes de minimisation
que nous sommes amenés a considérer.

En collaboration avec Louis Jeanjean, nous avons cherché a savoir si les tra-
vaux [20], 2I] ne pouvaient pas étre exploités dans d’autres contextes, c’est I'objet
du quatrieme chapitre de cette these. Ce chapitre est consacré a I'étude de ques-
tions d’instabilité pour ’équation de Klein-Gordon. Néanmoins, 'idée générale qui
traverse ce chapitre est que I’emploi de méthodes variationnelles récentes peut se
révéler fructueux dans les études de stabilité ou d’instabilité pour les équations de
Klein-Gordon ou Schrodinger comme pour d’autres équations « a ondes solitaires ».

Nous illustrons I'utilisation des résultats de [20], 21] dans deux situations. Dans la
premiére, motivés par des travaux récents sur I’équation de Klein-Gordon [25], 26] 27],
nous établissons une caractérisation variationnelle des états fondamentaux comme
minimiseurs de S sur une grande famille de contraintes. L’équation d’évolution
considérée est 1’équation de Klein-Gordon non linéaire avec une non-linéarité de
type puissance

uy — Au+u = |[ulPtu

et I’équation stationnaire correspondante, pour w? < 1, est

— Apy + (1= W, — ol = 0. (10)

- 9.
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Les travaux [25] 26 27] présentent différents résultats d’instabilité par explosion en
temps fini ou infini. Chacune des preuves fait intervenir une ou plusieurs caractéri-
sations variationnelles des états fondamentaux de comme minimiseurs de

1 — w? 1
5 H’Uﬂg - m”“”gﬂ

1
S(0) = 51 Vel3 +
sur certaines contraintes %, g. La définition de ces contraintes est semblable a chaque
fois : pour un couple de réel («, 3), on pose
Ko = {v e H(RY)\ {0} Kas(v) = 0}
olt Ko p5(v) :=ZS(A0(N-))pet = 0.
Bien qu’elles suivent des schémas similaires, les preuves des résultats de minimi-
sation dans [25, 26, 27] soulevent chacune des difficultés différentes, en particulier

pour I'élimination du parametre de Lagrange. Au contraire, notre méthode donne
une preuve unifiée et courte pour une grande gamme de parametres (o, [3).

Théoreme 6. Soit o, f € R tels que

<0, ap—1)—28=20et2a—F(N—-2)>0
ou 20, al(p—1)—262=20cet2a— BN >0.

Soit w € (—1,1) et @, un état fondamental de (10). Alors
S(pw) = min{S(v)|v € A, }.

L’idée de la preuve est la suivante : pour chaque v € %, g, on construit un
chemin v € T' (voir () pour la définition de I') tel que S atteint son maximum sur
~v en v. Cela permet d’en déduire que

¢ < min{S(v)|v € A, }.
On conclut en utilisant le fait que ¢ = m = S(p,) et v, € Hq 5.

Pour notre deuxieme illustration, on considere une équation de Klein-Gordon
avec une non-linéarité générale

uy — Au = g(u). (11)

En 1985, Shatah [30] a montré en dimension N > 3 l'instabilité par explosion des
solutions stationnaires de qui sont aussi des états fondamentaux de

— Ap = g(p). (12)

Les hypotheses sur g sont quasiment celles nécessaires pour assurer l’existence
d’un état fondamental de . Nous montrons que le méme type de résultat est
également valable lorsque N = 2.

- 10 -
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Théoreme 7. Pour N = 2, on suppose que g vérifie certaines hypothéses, notam-
ment celles garantissant ['existence d’un état fondamental @ de . Alors ¢ vu
comme une solution stationnaire de est instable par explosion.

L’une des différences principales entre le cas N = 2 et le cas N > 3 est lie a

I'identité de Pohozaev : toute solution v de ([12f) vérifie

N —2
N=2 902 :N/ G(v)dz.
2 ]RN

Lorsque N = 2, le membre de droite s’annule et on ne peut plus controler |[Vv|[3.
Notre preuve permet de surmonter cette difficulté.
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Chapitre 1

An existence and stability result
for standing waves of nonlinear
Schrodinger equations

Abstract. We consider a nonlinear Schrodinger equation with a
nonlinearity of the form V(z)g(u). Assuming that V(z) behaves like
|z|~% at infinity and g(s) like |s|P~!s around 0, we prove the existence
and orbital stability of travelling waves if 1 < p <1+ (4 —2b)/N.

AMS Subject Classifications : 35J60, 35Q55, 37TK45, 35B32

1.1 Introduction

This paper concerns the existence and orbital stability of standing waves for the
nonlinear Schrédinger equation

iug + Au+V(x)g(u) =0, (t,x) ERxRY, N >3. (1.1)

Here u(t) € HY(RY,C), V is a real-valued potential and g is a nonlinearity satisfying
g(e?s) = e¥q(s) for s € R.

A solution of the form u(t, z) = e*p(z) where A € R is called a standing wave.

For solutions of this type with ¢ € HY(RY,R), (1.1)) is equivalent to

—Ap+ X p =V(2)g(p), ¢ € H (RN R). (1.2)

- 15 -



1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

We are interested in the existence of positive solutions for (1.2) for small A > 0. In
addition we study the stability of the corresponding solutions of ([1.1)).

In the autonomous case, i.e. when V is a constant, we refer to the fundamental
paper of Berestycki and Lions [2] where sufficient and almost necessary conditions
are derived for the existence in H'(R™,R) of a solution of (1.2). When is non
autonomous, only partial results are known. A major difficulty to overcome is the
lack of a priori bounds for the solutions. In contrast to the autonomous case where
using dilations and taking advantage of Pohozaev identity is at the heart of the
results of [2], no such device is available when V' is non constant. Accordingly, most
of the works dealing with existence require g to be of power type, i.e. g(¢) = |¢|P" ¢y
for a p > 1, or to satisfy the so-called Ambrosetti-Rabinowitz superquadraticity
condition :

Ju > 2 such that 0 < uG(s) < g(s)s, Vs = 0, where G(s) = / g(t)dt.
0

In this paper we prove the existence of solutions of ([1.2)), for small A > 0, under

the following assumptions (H1)-(H4) where 0 <b<2and 1 <p <1+ %,

(H1) there exists v > 2N/{(N +2) — (N — 2)p} such that V € L] (RY);

loc

(H2) ‘ |lim V(2)zl® = 1;
T|—+00
(H3) there exists ¢ > 0 such that ¢ : [0,¢] — R is continuous;

(H4) lim 9(s)

s—0+ SP

=1.

Our approach is variational. Since only conditions around 0 are imposed on g,
a first step will be to suitably extend ¢ on all R. This leads to study a modified
problem but, as we shall see, the solutions we obtain for the modified problem have
the property to converge to zero in the L>®(R™)—norm as A decrease to zero. Thus,
for sufficiently small A > 0, they correspond to solutions of .

To get a solution of the modified equation we still face a lack of a priori bounds.
To overcome this difficulty we borrow and further develop a method introduced by
Berti and Bolle in a paper [3] which studies nonlinear wave equations. This method,
roughly, make it possible to show the boundedness of Palais-Smale sequences at the
mountain pass level for a class of functionals having a geometry sufficiently close
to the one of the functional corresponding to the case g(p) = |p[P"1p. It relies

- 16 -



1.1 INTRODUCTION

on penalizing the functional outside the region where one expects to find a critical
point. Our existence result is the following.

Theorem 1.1. Assume (H1)-(Hj). Then, there exists Ao > 0 such that for all
A€ (0, Ao, has a non-trivial solution py. Furthermore, @, has the following
properties.

1. For all z € RV, v\ = 0.

2. When X — 0, ||Vou||r2@yy — 0 and ||@x|]poomry — 0.

Since our solutions converge to zero in H'(RN,R) and L=(RN) as A — 0, 0 is a
bifurcation point of . With our approach we can (see Remark obtain sharp
estimates on the LP(RY)—bifurcation of our solutions as A — 0. We refer to [14} 21]
for previous bifurcations results.

Once the existence of solutions of is proved we consider the stability of
the associated travelling waves. The study of the orbital stability of solutions of
has seen the contributions of many authors. It is of particular significance
for physical reasons and we refer the reader to the introductions of [9) 20, 22] for
motivations of studying this problem. In the case V constant and g(u) = |ulP~lu,
Cazenave and Lions [5] proved the stability of the ground state solutions of
when 1 < p < 1—|—% and for any A > 0. On the contrary, when 1—|—% <p< 1—|—ﬁ,
Berestycki and Cazenave [1] showed the instability of bounded states of and
when p =1+ %, Weinstein [24] proved that instability also holds. We also mention

[12] for a general stability theory for solitary waves of Hamiltonian systems.

In [5] both the autonomous character of and the fact that g is homogeneous
are essential in the proofs. Also dealing with an homogeneous and to some extend
autonomous nonlinearity seems essential to use directly the results of [12] (see
nevertheless [1§]). When is non autonomous only partial results are known
so far (see [4, 8, [9] 13| 20, 22] and the references therein). Directly related to our
stability result is a recent work of de Bouard and Fukuizumi [6] where stability
of positive ground states of is obtain for g(u) = |u|’~'u under the following
conditions on V' :

(V) V. > 0, V. #£ 0, V € CRN \ {0},R), V e LY(Jx|] < 1), where
0" = 2N/{(N +2) = (N = 2)p},

(V2) There exists b € (0,2), C >0 and a > {(N +2) — (N — 2)p}/2 > b such that
|(V(z) = |2[7")| < Clz|™ for all z with |z| > 1.
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1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

Under these assumptions and if 1 < p < 1+ (4 — 2b)/(N — 2) the existence of
ground states solutions follows immediately from the existing literature. In [6] de

Bouard and Fukuizumi proved that the corresponding standing waves are stable if
1<p<1+(4—-2b)/N and X > 0 is small.

Our stability result, Theorem [1.2] extends the result of [6]. If we do borrow some
arguments from this paper, new ingredients are necessary to derive Theorem [I1.2] In
particular, the fact that we do not know if the solutions obtained in Theorem are
ground states is a new major difficulty. To state our stability result we need some
definitions and preliminary results. First, to check that the local Cauchy problem is

well posed for (1.1)), in addition to (H1)-(H4), we require on ¢

(H5) g € C'(R,R);

/
(H6) there exist C' > 0 and « € [0, 1) such that lim sup % <C.
|s|>too  |S|?
Clearly (H5)-(H6) are sufficient to guarantee that the condition
lg(v) — g(u)| < C(1+ |v|* + |u|*)|v —u| for all u,v € R

introduced in Remark 4.3.2 of [4] holds. By [4] we then know that the Cauchy
problem for (1.1)) is locally well posed.

For v € HY(RY,C) we write v = v; +ivs. The space H*(RY, C) will be equipped
with the norm

oll = /110l + 170

where ||v]|3 = |v1|3 + |v2]3 and ||[Vv||3 = |[Vui]3 + |[Vue|3. Here and elsewhere
| - |, denotes the usual norm on LP(RY R). We also define on L?*(R™,C) the scalar
product

(u,v)y = /RN Re(u(z)v(z))dz.

Finally, let the energy functional E and the charge Q on H'(RY,C) be given by

1

B() = 5lIVel— [ V@G and Q) = 5ol

||
where G(z) = / g(t)dt for all z € C. It follows from [4] that
0
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Proposition 1.1. Assume (H1)-(H6). Then, for every ug € H'(RY,C) there exist
Two > 0 and a unique solution u(t) € C([0, Ty, ), H (RN, C)) with u(0) = ug satisfying

E(u(t)) = E(up), Qu(t)) = Q(uyp), for allt € [0,T,,).

Finally we require a stronger version of (H4).

o AR

s—0+ psP~1

Now by stability we mean

Definition 1.2. Let ¢, be a solution of . We say that the travelling wave
u(x,t) = ey (x) associated to py is stable in HY(RYN, C) if for alle > 0 there exists
§ > 0 with the following property. If ug € H'(RY,C) is such that ||ug — ¢u|] < 9
and u(t) is a solution of in some interval [0, T,,) with u(0) = ug, then u(t) can
be continued to a solution in [0,400) and

sup inf [|u(t) — oyl < e.
te[0,4-00) bR

Our result is the following

Theorem 1.2. Assume (H1)-(H7), 1 <p <1+ 4_721’, and let (py) be the family of

solutions of obtained in Theorem . Then there exists A > 0 such that for
all X € (0, \] the travelling wave ey (x) is stable in H*(RY,C).

From Theorem we see that, for A > 0 small enough, stability only depends
on the behaviour of V' at infinity and of g around zero. Indeed, as it is shown in
[10], when V(z) = |2|™" instability occurs for g(u) = |u[P~ u if p > 1+ 252 To our
knowledge, Theorem [T.2]is the first result to enlighten this fact.

For v € HY(RY,C) and X > 0 let
1
Sa(v) = 5 (IIVollz + Allellz) - /RN V(z)G(v)de.

Under our assumptions it is standard to check that Sy is C2. Our proof of Theorem
relies on the following stability criterion established in [12].
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Proposition 1.3. Assume (H1)-(H7) and let @y be a solution of (1.2). If there exists
§ > 0 such that for every v € H'(RY,C) satisfying (¢, v), = 0 and (ipx,v), =0
we have

(Sx(px)v,v) = dl o],
then the standing wave ey (z) is stable in H(RY,C).

To check this criterion, following an approach laid down in [7], we first show, in
Subsection [1.3.1} that our solutions (¢,) properly rescaled converge in H'(RY) to
the unique positive solution 1 € H'(RY R) of the limit equation

—Au+u—| |b|u\p Yu, uwe HY(RY R). (1.3)

Then we derive, see Subsection some properties of ¢ € HY(RM R), in
particular we show that it is non-degenerate. Finally, in Subsection 3.3, we show
that the conclusion of Proposition [I.3] holds.

The paper is organized as follows. In Section we establish Theorem and
in Section we prove Theorem [I.2 An uniqueness result which is necessary for
the proof of Theorem is establish, using results of [26], in the Appendix.

Notations Throughout the article the letter C' will denote various positive
constants whose exact value may change from line to line but are not essential
to the analysis of the problem. Also we make the convention that when we take a
subsequence of a sequence (u,) we denote it again by (u,).

1.2 Existence

This section is devoted to the proof of Theorem For this we use a variational
approach and consequently a first step is to extend the nonlinearity g outside of
[0,¢]. Let H = H'Y(RY R) be equipped with its standard norm | - |. We consider
the modified problem

—Av+ v =V(zr)f(v), ve H (1.4)
where
gle) if s>
fls) =19 g(s) ifs€ [0 ]
0 if s <0.
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It is convenient to write (1.4]) as
—Av+ v =V(z) (W +r), ve H (1.5)
with v; = max{v,0} and r(s) = f(s) — si.

To develop our variational procedure we rescaled ((1.5)) in order to eliminate A > 0
from the linear part. For v € H, let v € H be such that

v(x) = )\2<2Pib1>17(\/x.7:). (1.6)
Clearly v € H satisfies (|1.5)) if and only if v € H satisfies
x
— A+ 0 =Vy(2)0 + V(—=)r(v 1.7
A@)oh + V| \/X) (0) (1.7)
where - -
7(s) = A\ 20 (AT s) and Vi(x) = A2V (2/VN). (1.8)

A solution of 1) will be obtained as a critical point of the functional Sy : H — R

given by
1

p+1
with Ry (v) = / A2V, () ( / . f(t)dt) dz.

By (H1) we can fix a p € (p,1 + (4 — 2b)/(N — 2)) such that
2N/{(N +2) — (N — 2)p'} < 7. The following estimate will be crucial through-
out the paper.

N 1 N
Sx(v) = 5lolE = » Va(a)o(2)i de — Ra(v)

Lemma 1.4. Assume (H1)-(H4). Then for any q € [1,p'] there ezists C > 0 such
that for any A > 0 sufficiently small and all v € H,

/ Va(@)[o(a)| ™ de| < Cloff™.
RN

Proof. By the assumptions (H1)-(H2) there exists R > 0 such that
[V (2)] < 2|z|™, V]z| > R and V € LY(B(R)). (1.9)
Here B(R) = {z € RY : |2| < R}. We have

'/ Vi(z)|v(x)|9  da

s @@
RV\B(R)

- 21 -
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1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

By Holder’s inequality,

| @@ de] < Vil ol (111)
B(R)
with 6 = 2N/{(N +2) — (N — 2)q}. But
0 _ 0 0
Valzos(r) = WA‘LO(B(\&R)) + ’VA’LG(B(R)\B(\AR)) (1.12)

and, since |V)‘|i9(3(ﬁR)) = XN VPNV Lo gryy with —b0/2 + N/2 > 0, we can
assume that

Also, from (1.9) it follows that Vi (z) < 2|z|~® on R\ B(vV/AR). Thus
2
VAlosrnB(vaR) < IW|L9(B(R)) <G, (1.14)
and
/ Va(@)lo(@)|*da| < CloftL. (1.15)
RN\B(R)
Now, combining ((1.10)-(1.15)) and using Sobolev’s embeddings we get the required
estimate. n

A first consequence of Lemma is the following estimate on the “rest” Ry of
the functional S).

Lemma 1.5. Assume (H1)-(Hj). Then there exist C' > 0 and a > 0 such that for
all a > 0 there exists A > 0 such that

[RA(0)] + [VRAWw)e] < Clalol + X Alof ) (1.16)

for all X > 0 sufficiently small and all v € H.

Proof. From the definition of r and (H4), we see that for any a > 0 there exists
A > 0 such that
Ir(s)| < als|” + Als|", Vs € R. (1.17)

This implies, see ((1.8)), that
7(s)| < A7%2a|s]P + \T2XAls]P, Vs € R (1.18)
(P —p)(2—)
2(p—1)

~ a

<
|R>\(U)| X Pt 1

with a =

> (0. As a consequence, for any v € H,

A*A /
[ m@li@pae+ 225 [ W@l s
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1.2 EXISTENCE

and using Lemma [1.4] we get that
Ry(v)| < C ava’L[l—l—)\aAvpflle . 1.19

Analogously, we can prove that

IV R\ (v)v| < Clalo5™ + X*Alo[5 ). (1.20)
Combining ((1.19)) and (|1.20]) finishes the proof. m

We shall obtain a critical point of Sy by a mountain pass type argument.
However, even though it is likely that Sy has a mountain pass geometry, showing
that the Palais-Smale sequences at the mountain pass level are bounded seems out
of reach under our weak assumptions on g. To overcome this difficulty we develop
an approach, inspired by [3], which consists in truncating the remainder term of Sy
outside of a ball centered at the origin and to show that, as A > 0 goes to zero,
all Palais-Smale sequences at the mountain-pass level lie in this ball. Precisely, let
T > 0 be the truncation radius (its value will be indicated later) and consider a
smooth function v : [0,4+00) — R such that

v(s)=1 for sel0,1],
0<v(s) <1 for se(l,2],
v(s)=0 for s€[2,+00),
Vo0 < 2
For v € H, we define
1 2 1 p+1
Sav) = sl — ——= [ Va(@)v(z)y" dz — Ri(v),

where Ry (v) = t(v)R\(v) with t(v) := v (ﬁ>

We have the following bounds on Ry (v) and VER\(v)v

Lemma 1.6. Assume (H1)-(Hj). Then there exists C' > 0 such that for all a > 0,
there exists A > 0, satisfying for allv € H

IRA(v)] < C(aTPt' 4+ N*ATP ), (1.21)
IVRy(v)v] < C(aTP+ + X ATV ). (1.22)

Proof. Since t(v) = 0 for |v|g > 2T, (1.21)) follows directly from Lemma [1.5] Also
R 3 - 2 2

VR (v) = t(v)VRx(v) + Ra(v)Vi(v) with Vi(v)v = 2V/(|;_7—|5)|;_‘—|§I and thus we also

have (|1.22]). O

- 93 -



1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

Lemma 1.7. Assume (H1)-(Hj). Then there ewists A\ > 0 such that for all
A€ (0,_], Sx has a mountain pass geometry. Also Sy admits al the mountain
pass level ¢(X) > 0 a critical point ¢, € H\ {0} which is also a critical point for S).

Moreover there exists C' > 0 such that |px|g < C, YA € (0, A].

small. Obviously, we have S5(0) = 0. Let a > 0. From Lemmal|l.4| (used with ¢ = p)
and Lemma [I.5] there exists A > 0 such that for v € H

Proof. Let us prove that §,\A has a mountain pass geometry for ai A > 0 sufficiently

1 ,
Sa(v) = S loff = C((+ a)lolly™ + A Afuli ™).

Thus, there exists ¢ > 0 small and m > 0 such that §>\(v) >m >0 forallve H
satisfying |v|g = §, uniformly in A if A is small enough.

Now let w € C°(RY) \ {0} with @ > 0 and @ = 0 on B(1). Because of (H2),
there exists R > 0 such that

1
2?

V(z) > if 2| > R.

Thus, for A > 0 small enough

/R Va(@)@(a) de > / L.

Defining wp := Bw we observe that for B > 0 large enough ﬁ)\(YDB) = 0. Thus
2
letting D = % and E =[5 ﬁw(x)pﬂdx we have, for B > 0 large enough,

S\(wp) < DB? — EBP™ < 0
for any A > 0 sufficiently small.

Since Sy has a mountain pass geometry, defining

¢(\) == inf sup Sy(v(s))

V€L 5¢(0,1]

where I' := {y € C([0,1], H) | v(0) = 0, g)\(v(l)) < 0}, Ekeland’s principle gives the
existence of a Palais-Smale sequence at the mountain pass level ¢(\). Namely of a
sequence (v,) C H such that

VSi(v,) — 0, (1.23)
Si(vn) — c(N). (1.24)
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1.2 EXISTENCE

Let us show that, if A > 0 small enough, this Palais-Smale sequence lies, for n € N
large, in the ball of H where S, and S, coincide. We begin by an estimate on the
mountain pass level. For every ¢ € [0, 1] we have

S\(twp) < DB** — EBP*'"*! 4 | R, (twp)).
Thanks to (1.21) and the definition of ¢(\) this gives
c(N) S W + C(aTPH + AXTPHY (1.25)

2 p+l
with W = D ( +1)E)p_l — F (ﬁ) "' Note that the constants W and C are

independent of 7" > 0 and of A > 0 sufficiently small.

To prove that limsup, . |va|lg < T we first show that (v,) is bounded
in H. Seeking a contradiction, we assume that, up to a subsequence,
[vn|n — +o0. Therefore, for n € N large enough, we have |vn|3; > 277 and thus

R)\(Un) VR,\(Un)vn = 0. It follows that

251 (vn) — VS (0n)n = (1 - L) /R V) )

p+1

Furthermore, since §,\(vn) — ¢()), we can assume that §,\(vn) < 2¢(A) and we get

()

Consequently we have

/ Va@) (0 (2))5" da < 4e(N) + V55 (0) | |vn -

-~

lvnl3, = VS\(vn)vn + Va(2) (vn () d

RN

p+1 p+1
< -
< <1—|—p ) HVS,\(vn)H\vn\H—i-4<p_1)c()\)

and therefore
+1 +1 _
ool < (14 2L 1980l + 4 (257 ) el

Since the right member tends to 0 as n — oo we have a contradiction. Thus (v,,)
stays bounded in H and, in particular, V.Sy(v,)v, — 0.

Let us now show that |v,|g < T for n € N large. Note that, since S, (and
thus (v,)) depends on T, the value of T' can not be changed. Still arguing by
contradiction, we assume that lim,, . |v,|g € [T, +00). We have

~ 1 ~ 1 1
S)\(Un)—mVSA<Un)Un—(§— +1>| n‘H R)\(Un)+—VR)\(Un) Un. (126)
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1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

Then using (1.21))-([1.25)) and passing to the limit in ([1.26)), we obtain

oot T? < W + C(aTP™ + ANT™).
2 p+1

At this point, choosing a > 0 sufficiently small, we see that if 72 > %W we
obtain a contradiction when A > 0 is small enough. This proves that (v,) lies in the
region where Sy and S) coincide.

Now since (v,) C H is bounded we can assume that v, — v, weakly in H. To
end the proof we just need to show that v, — v strongly in H. The condition
VSa(v,) — 0 is just

T N
— Avp, + v, — V() (v)f, — V(ﬁ)r(zjn) —0in H . (1.27)
Because of the decrease of V' to 0 at infinity we have, in a standard way, that
x

VA
Now let L : H — H~! be defined by

Va(z)(0n)f + V(—=)7(vn) — Va(2)(vee) + V(—=)7 (V) in H L (1.28)

o=

(Lu,v) = / (VuVov + wv)dz.
RN

The operator L is invertible, therefore, from (|1.27))-(1.28)),

X

vy — L1 (V,\(x)(voo)ﬁ +V( \/X)f(w) .

By uniqueness of the limit, we have v,, — v, in H and by continuity v is a solution
of (1.7) at the mountain pass level ¢(\). We set ¢ = vo. At this point the lemma
is proved. 0

Lemma 1.8. Assume (H1)-(H4). The solutions of (1.7), obtained in Lemma[1.7]
have, in addition, the following properties

(1) |@aloo < C, for a C > 0 independent of A € (0, ],
(ii) for all z € RN, @y\(z) > 0.

Proof. Starting from ({1.4]) and the change of variables (|1.6)) we see that our solutions
) satisfy

— APy + @y = A 20 V(=) f(AZD y). (1.29)

VA
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1.2 EXISTENCE

We see from (H4) that |f(s)| < C|s|P for a C' > 0, Vs € R. Thus
ATV (<2 FA T )| < CPVA() |8l (1.30)
o ox)| < CIValz)][on :

with a C' > 0, independent of A € (0,)\]. To obtain (i) we follow a bootstrap

argument. The crucial point is to insure that the estimates we get are independent
of A € (0, ).

Let § = 2N/{(N +2) — (N — 2)p}. Assuming that ¢, € LY(R") we claim that

(claim) E/,\|g5,\\p € L"(RY) with r = Gﬁ_iq and is bounded in L"(R") as a function
of |Px|, only.

To see this we choose R > 0 such that |V (z)| < 2|z|7% V|z] > R and we write
RN = B(vAR) U (B(R)\B(VAR)) U (RV\B(R)).

On RM\ B(R) since |Vj(z)| < C, for a C > 0 we directly have
VAll@al” € Lo (RM\B(R))
and thus, since Vi@, € LY(RY \ B(R)) and KN r, we have by interpolation
p

VAll@aAl” € L' (RY\B(R)).

On B(R)\B(VAR) we have |V)(z)| < 2|z|® with |z|~® € L?(B(R)). Thus

) 1 = ) o
/ V@) |el7de < ( / —badx) ( / wcza:)
B(R)\B(VAR) B(R || B(R)

)
Oqp

< Clgald™.

On B(VAR) we have

op

Q‘;IGLD q+6p
[ mariaras ([ paara) ™ ([ )
B(VAR) B(VAR) B(VR)

with

_ \—bO/2+N/2
|V)\ ) A

0 0
| LoB(v3R) VILosry — 0

and this proves our claim. Now since Vy|@,|P € L™(RY) we have ¢, € W2"(RY) and

thus ¢, € L'(RY) with t = A%
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1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

It is now easy to check that, choosing ¢ = 2*, we have ¢ > ¢ and that the boot-
strap will give, in a finite number of steps, r > & so that ¢, € W2"(RY) c L>(R").
In addition, since for a C' > 0, |§a|g < C,VA € (0,A] we have, for a C' > 0,
[

2+ < C,VA € (0,)] and by our claim the various constants of the Sobolev’s
embeddings are independent of A € (0, \]. This proves (i).

For (ii), we argue as follows. Let ¢ = ¢, — ¢_ where ¢, = max{p,0} and
¢_ = max{—,0} and suppose that ¢ satisfy

x
Apte=V <_)
e+ 7 f(e)
with f = 0 if s < 0. We know that w1,_ € H. Then, by multiplying by ¢_ and
integrating, we obtain
- [ Vep-gt =0
RN

Therefore p_ = 0. [l
Now we can give the

Proof of Theorem[1.1. Taking into account Lemmas [I.7] and [I.§ all that remains to
show is that |ox|g — 0 and || — 0, as A — 0, when ¢, is given by

ox(x) = AT @y (VAx),

—2(2,;_—1)1) > 0 we immediately get, from Lemma , that |pxlec — 0 and this

proves, in particular, that ¢, is solution of (1.2) when A > 0 is small enough. Now,
since p < 1+ 4_7% we see from direct calculations that |py|g — 0. O]
Remark 1.9. We deduce from the proof of Theorem [1.1| that (1.2]) admit solutions
@ € H which satisfy, for any A > 0 small enough,

Since

oale < CIAI073 i 1 < g < 00 and [ipale < CIAJTD.

These decay estimates should be compared with the ones obtained in Theorem 5.9
of [2I]. The comparison suggests that using a rescaling approach, as in the present
paper, is fruitful to get the sharpest bifurcation estimates.

1.3 Stability

In this section we prove Theorem [I.2] The proof is divided into three steps. First
we prove the convergence in H of the solutions (¢,) of the rescaled problem to the
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1.3 STABILITY

unique positive solution ¢ € H of the limit problem

1
—Ap+yp= WMH% p€H (1.31)
Existence for ([1.31]) is standard because of the compactness of the nonlinear term
and can, for example, be obtained by minimizing S under the constraint I(v) = 0

for v € H\{0} where

1 1 1
S = —p} - — — P 1.32
) = gl -7 [ pph@Pras (1.52)
1
Iv) = |v|§,—/ o) e (1.33)
gy |7[°

We know from [11] that positive solutions of (1.31)) are radial. They also decay
exponentially at infinity. The uniqueness of ¢ € H follows from [20].

Secondly, we establish some additional properties of the limit problem. In
particular we prove that ¢ € H is non degenerate.

In the third step, after having translated the stability criterion in the rescaled
variables, we prove that it holds.

Notation Since in addition to (H1)-(H4) we now assume (H5)-(H7), we are
somehow in the case of the modified problem, and therefore we will use the same
notations. In particular, » will be now defined by

r(s) =g(s) —[s]'s.

1.3.1 A convergence lemma

We start with a key technical result.

Lemma 1.10. Assume (H1)-(H4). Let (vy\) C H be a bounded sequence in H and
q € [1,p']. Then we have, as A\ — 0,

/ 1
RN

e~
Proof. For R > 0 we write

lo(2)]9  dz — 0.

1 1
[ |- ve)| @i < [ v @i
o [ o |1
1
Ny TR
RN\ B(VAR) ||
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1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

Let € > 0 be arbitrary. Fixing R > 0 large enough we have

(@) < S for 2 € RM\B(VAR).
| z[° |z[°
Thus
1 +1 1 +1
T~ Wa(@)] |ua(@)|*de < e T loa(@) | dx
EM\B(VAR) | 7] BON\B(AR) 7]

+ 5/ lox ()| dar
RN\B(1)

with, for § = 2N/{(N + 2) — (N — 2)q},

1 1
/( I\B(VAR) ’$‘b| /\( )|q+1dx\ |‘ |b|LG |U)\ <C
and
[ @l <ol <o
RN\B(1)
Now,
1 q+1
. W—VA( z)| Joa(x)["dr <
(|’x‘b‘L9(B(fR)) + ‘VA‘LG(B(ﬁR))>
and since

b0/2+N/2

|| |b|L9 (VAR)) — 0 and |V>\|L9 B(VAR)) — = A" |V|L9(B(R)) —0

as A — 0, this ends the proof.

Now the main result of this subsection is

Lemma 1.11. Assume (H1)-(H/). Then the solutions (Px)x of the rescaled equation

satisfy

lim |@x — ¢|g = 0.

Proof. We divide the proof into two steps. First, we prove that there exists

(1(X)) C R such that p(A) — 1 and (u(A)@,) is a minimizing sequence for

min{S(v),v € H \ {0}, I(v) = 0}. (1.34)
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1.3 STABILITY

Secondly, using this information, we prove the convergence of (¢,) to 1.

We begin by showing that limsup,_,S(®x) < S(¢). Let 70 : [0,1] — H be
such that 7o(t) := Cti, for a C' > 0. Then, fixing C' > 0 large enough, we have
S(10(1)) < 0 and S(v) = maxcjo1] S(10(t)) as it is easily seen from the simple
“radial” behaviour of S.

Let € > 0 be arbitrary. From Lemmas and we see that, for any A > 0
small enough,

[Sx(70(5)) = S(y(s)| < &, ¥s €[0,1]
and since S\(@x) = ¢(A) it follows that

~ -~

S3(2) = S\(@x) < max Si(70(s)) < max S(v(s)) + ¢ = S() + e

Thus lim sup S\($,) < S(¥). Now, using Lemmas [1.5{ and [1.10, we have

A—0

}\li% ‘S((ﬁ)\) - g)\(@)\) =0

and we deduce that limsup S(@y) < S(v).
A—0

Let us now show the existence of a sequence (u(A)) such that p(A) — 1 and
I(u(AN)@y) = 0. Since VSy(@r)@r = 0 we have

I(py) = — /RN (ﬁ - Vx(f)) AP dr + VRA($2) P

< 12 =
- ¥

Thus by Lemmas |1.5( and |1.10) I(®x) — 0. Let p(X) := (f iéﬁpﬂdm) .
RN |x|b

Then I(p(A\)@x) = 0 and we have

A
Jen ﬁkb,\v’“dx

Oy 1]

From the mountain pass geometry and since V.S A(@2)@x = 0 the denominator stays
bounded away from 0 and since I(9)) — 0 we deduce that limy_ou(A) = 1. Thus,
by continuity of .S, we have

lim sup 5 (H(N)@r) = lim sup 5 (2r) < S(®)

and since I(u(AN)@x) =0, (u(A)@y) is a minimizing sequence for (1.34)).
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Now, using this information, we show the convergence of (¢,) to ¢ in H. Since
((A)@y) is bounded, there exists @y such that, up to a subsequence, p(A)@y — Ko
weakly in H. Clearly, the minimizing sequences of are the minimizing
sequences of

min{Jv[3;, v € H\ {0}, I(v) = 0},
and since for v € H such that I(v) < 0 there exists 0 < t < 1 such that I(tv) = 0,
(1.34]) is also equivalent to

min{|v|3,v € H\ {0}, I(v) < 0}.

If we assume that
|Bol3; < 111118(1)11) (N @als = [¢1% (1.35)

since, as it can be prove in a standard way,

. 1
lim —
A=0 Jgn |zl

. I .
W@ dr = [ s

we get that

I(4o) < lim sup I(u(A\)gx) = 0.

Thus (1.35) contradicts the variational characterization of ¢» € H. We deduce that
(AP — o strongly in H. In particular ¢ is a minimizer of ((1.34]) and thus, by
uniqueness, Qg = 1. O]

1.3.2 Further properties of the limit problem

We define the self adjoint operator Ly : D(L;) C L*(RY) — L*(RY) by

1

Ll = —A"—l _p|aj’b

PP
where D(L;) = {v € H*RY) : |z|%yP~1v € L*(RN)}.
Proposition 1.12. Ifv € D(L,) satisfies Lyv = 0 then v = 0.

In the same spirit as Theorem 2.5 in [16], we performed a reduction of the problem
by proving that the kernel of L; contains only radial functions.

Lemma 1.13. If v € D(Ly) satisfies Lyv = 0 then v € H!

rad

(RY).
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Before proving Lemma [1.13] we introduce some notations and recall some
properties of spherical harmonics.

Let "Hp be the space of spherical harmonics of degree k

with dimH, = a, = <N—|—kl;—1) — (N]—{i—;2—3) for k > 2, a1 = N, ay = 1.

For each k let {Y,... .Y} be an orthonormal basis of Hj. It is known that any
function v € L*(RY) can be decomposed as follows

I (5)

k=0 =1

where vy, ;(r) == / v(rd) Y (6)do.

gN-1

Proof. Our proof follows a method due to [19] which has also been used in [15].

Let v € D(Ly) be such that Ljv = 0 and consider its decomposition by spherical
harmonics 3,20 S°% vy (|z]) Y (ﬁ) Since Lyv = 0, the functions vy ; satisfy

N -1

Vg + TU;H +( -1+ %¢p_l)vk,i -

ki =0 (1.36)

where p, = k(k+ N —2). It is standard to show that vy ; € C*(0, +00), lim, o vy ()
and lim, o 7v,,(r) exist and are finite, and both vy ; and v}, ; decay exponentially at
infinity.

To prove the lemma it suffices to show that v,; =0, Vk > 1.

The function ¥(r) := ¢(|z|) satisfies
N-1
r

thus 1 € C3(0, +00) and differentiating we get
N -1 N b

—1 P o,
¢/H + - w// . > w’ _ w’ + ﬁwp 117&/ — mwp =0. (138>

W+ W — 1+ %¢p =0, (1.37)

Let 0 < 71 < 75 < +00. Multiplying (1.36) by ¥/r¥~! and integrating over
(r1,72) it follows that

"2 N -1
/ O T (" + TW’ — ' + %wpil?ﬁ’) — U™ P dr + g(ry) — g(r1) =0
r1

- 33 -



1. EXISTENCE AND STABILITY FOR STANDING WAVES OF NLS

where g(r) == ¢'rN "oy — ¢"rV "ty Using (1 , we get

T2

(N -1 _,Uk)/ Uk,iTNgwldTﬂL/ Vg ! b+1¢pd7’+9(7°2) —g(r1) =0. (1.39)

T1 T1

Because ¢/, 1" decay exponentially at infinity (see the Appendix) we have g(r) — 0
as r — +o00. Since N > 3 we also have g(r) — 0 as r — 0.

Arguing by contradiction, we suppose v ; # 0. Then, considering —uvy; instead
of vy; if necessary, there exist 0 < a < 3 < 400 such that

(1) vgi(r) > 0in (o, B),
(i) vgi(a) =01if a # 0 and vy ;(8) = 0 if B # 400,

(iil) vy () = 0if a # 0 and vy ,(8) < 0 if 3 # +oo.

It is standard to show that ¢’ < 0 (see [11]), thus we have g(a) < 0 and g(3) > 0.
Therefore g(5) — g(a) > 0 and thanks to (1.39) we have

b b
(N—-1- ,uk)/ vk,irN_?’@//dr + / v;“ i 7,01’
However, since ¢/ < 0 and N — 1 — u;, < 0, we should have

b b
B . b
(N—-1- pk)/ vk,irN 39/ dr +/ vk,irN 1_rb+1¢b > 0.

This contradiction proves that vi; =0 for all k£ > 1. O
We are now in position to prove Proposition

Proof of Proposition[1.13. Our proof borrows some elements from [I5] and [16].
Thanks to Lemma [I.13] it is enough to prove Proposition [I.12] for radial functions,
therefore we work in H' ;(R").

For 6 > 0 small, we consider the following perturbation of (1.31))

o 1 -
— Av + (14 gelel —lalyp=1yy = <W + delel l") o, v e HEG(RY). (1.40)
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Solutions of (1.40]) are positive and can be obtained by minimizing the functional
Ss under the natural constraint I5(v) = 0 for v € HL ;(RY) \ {0}, where

1 1 1.
Ss(v) = 5]0\?{ — —/RN WQ}T_ dx

p+1
! el el gy L[ e 1,2
-0 —— e vy dr — < e PP vtdr |,
p+1 RN 2 RN
L i
) = ol = [ et

5 / e_$|1_x|vp+1dx—/ elellel 12, ) |
RN * RN

Here both S5 and I are defined on H_ ;(R"Y) and it is standard to show that they
are of class C%.

We shall see in the Appendix that (1.40) has a unique positive radial solution for
0 > 0 small, and since v € H satisfies ([1.40), it is this unique solution. In particular,
1 € H solves

minimize Ss(v) under the constraint Is(v) =0 for v € HL (RY)\ {0}.

We recall that the Morse index of Ss at 1 is given by

Index SY(¢)) = max{dim V :V C HL (R") is a subspace such that

(S5 ()h,h) <0 forallh €V \ {0}}.

We claim that Index SY (1) < 1. To see this let us show that (S (¢)v,v) > 0 on the
subspace of co-dimension one {v € H | VIs(¢))v = 0}.

Let v € HL,(RY) be such that VIs(¢))v = 0. Using the Implicit function
theorem, we see that there exist € > 0 and a C*-curve ¢ : (—¢,¢) — H. ;(RY) such
that

¢(0) = ¢, ¢'(0) = v and I5(¢(t)) = 0.

Thanks to the variational characterization of ¢, 0 is a local minimum of ¢ — Ss(¢(t)),
and therefore %Sg(gb(t))h:o > 0. But, since VS5(¢)) = 0, we have

0< Z3S0(0)limo = (S1W)e,0)

At this point our claim is establish. Now seeking a contradiction we assume the
existence of vg € HL ;(RY) \ {0} such that Lyvy = 0. Let V := span{vg,v}. Since
1

YpPHdr <0
~ |zl

(L) = —(p— 1) /
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and (Lyvg,v) = 0 for all v € HL (RY), we see that V is of dimension 2 and that,
for all h € V', (Lyh,h) < 0. Thus we have, for all h € V' \ {0},

(SUGE) = (Lahh) — 6(p— 1) / 2 < 0

RN

which implies that Index S§(¢)) > 2. This contradiction ends the proof. O

Lemma 1.14. [Spectral properties] The spectrum o(Ly) of L1 contains a simple
first eigenvalue —X\; < 0 and o(Ly) \ {\} C (0,+00). Thus if ey € H denote
an eigenvector associated to —\1, such that |e1|y = 1, then H can be decomposed
as H = FEy @ Ey where Ey = span{e,}, E, is the eigenspace corresponding to the
positive part of o(Ly) restricted to H and Ey L E, (where L denote the orthogonality
in L*>(RY)).

Proof. Since (L1, 1) < 0, the first eigenvalue —\; is negative, and it is standard to
show that —\; is simple. From Weyl’s theorem, we see that the essential spectrum
of Ly is in [1,400) and that the spectrum in (—Ay, 3] contains only a finite number
of eigenvalues. Thanks to Proposition [I.12] the null-space of L is empty. Therefore
to prove the lemma it just remains to show that Ay > 0 if it exists.

Arguing by contradiction, we suppose that the second eigenvalue is —Xy < 0
with an associated eigenvector ey and |ess = 1. Since Lj is selfadjoint, we have
(e1,€2)2 = 0. Let u, v € R. We have

(Li(per + vey), ey + veg) = —Ap? — Ar? < 0.

In other words, L; is negative on a subspace of dimension 2. But, arguing
as in Proposition [1.12] we can prove that L; is nonnegative on the subspace
{ve H|VI()v =0} of codimension 1, raising a contradiction. O

Lemma 1.15. If v € H satisfies (v,9)2 = 0 and (Lyv,v) < 0, then v = 0. Here
(-,-)2 is the standard scalar product on L*(RY).

Proof. We introduce vy, := AQ(i’:bl)l/)(\/Xx). Since 1) is solution of (1.31)), ¥\ € H

satisfies

1

Differentiating (|1.41)) with respect to A gives for A = 1

— Ay + My —

P, o 2-0 1
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Namely Liyw = —1.

Let v € H be such that v #Z 0 and (v,%)s = 0. To prove Lemma it suffices
to show that (Ljv,v) > 0.

Using the orthogonal spectral decomposition H = E; ¢ E, we write v and w as

vo= aep +¢§

~ Be +¢ where £,( € E.

Therefore we have
<L1U7 U> = —062>\1 + <L1§7 £>
<L1w7w> - _62A1 + <L1C7 C) .

If =0, then £ # 0 and (Lyv,v) > 0 is satisfied. In the sequel, we suppose a # 0.
From the expression of w, we have

(1.43)

1/2-b N
2\p—1 2

(Liw,w) = —= | —— — —) lv]5 < 0. (1.44)

Also from (1.42)) and (v,v)s = 0, it follows that

0= (1/1, U)Q = <L1UJ, U> = _Oéﬁ)\l + <L1C7£>

and therefore

(L1€, &) = aBAr. (1.45)
Consequently, ¢ # 0 since otherwise ([1.45)) would give 3 = 0, which leads to a con-
tradiction in (1.44). Since Ly > 0 on E,, the inequality (L;¢, &) < (L1(, ¢) (L€, €)
holds. Combining ([1.42)—(1.44)) we obtain

2
(Livyo) = —aPN + (LE€) > —at + 88

(Li€, Q)
BN
B2A1 + (Liw, w)
— (Lyw, w) a® )\

= T oo Y

This ends the proof. O

= —052)\1 +

Remark 1.16. Our proof of Lemma is inspired by the work [13], which was
indicated to us by R. Fukuizumi. In Lemma 2.1 of [6] (see also Proposition 2.7 of
[25]) an alternative proof of Lemma is given. Another proof of Lemma [1.15]
relying on the fact that 1 is a local minimum of S on the sphere of corresponding
L?-norm can also be performed [17].
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1.3.3 Verification of the stability criterion

To prove Theorem we shall use Proposition Since the convergence result
holds in the rescaled variables it is convenient to express Proposition [1.3]in these
variables. For v € HY(RY,C), let © € H' (R, C) be defined by

v(x) = )\2<2P1b1>17(\/Xx).
Then we have

(SH(ev,0) = NTEE(S(60)75,7),

2-b_ N
IVol3+ Aljols = A2 ||a)3,
2-b_N , _ -
(oa,0)y = ATT72 (3, D),

(ipnv)y = AT (ipy,0),,
where now by Sy we denote the extension of Sy from H to H'(RY;C). Therefore, if
there exists & > 0 such that for any v € H'(RY, C) satisfying (px, 0)y = (ipx, 0), =0
we have

CHENRERET (1.46)
we have, for any v € H'(RY,C) satisfying (¢x,v), = (ipx, v), =0,
(Sx(@x)v,v) = 8([IVllz + Allvll2). (1.47)

Clearly, for v € HY(RY,C) the norm +/||Vol|? + A|[v[|3 is equivalent to the norm
||v]| and thus proving (1.46) suffices to check the assumptions of Proposition [1.3]

For v € HY(RM,C), let v; = Rev and v, = Imv. Then we have, after some
calculations,

<S’£\/(¢/\)U7’U> = <E1,AU1>U1> + <E27,\’02,U2> ,

with
<I~11,,\U1,U1> = |U1|?-1 —p/N VA(£)@§71|U1|2dx
R
—/ VA@))\_HgT’ </\2(25_—b1>95/\> v P d,
RN
<E2,,\U2,U2> = |’02@1—/N VA(@@?\AW?‘ZCII'
R
_/ V)\(.CE))\% T‘(ip)\<$)>> ”Ug’Qd.fE.
RN oa(z)

In addition (Py,v), = (Px,v1)2 €t (i@, v), = (P, v2)2. Thus, to ends the proof of
Theorem [1.2] it is enough to prove the following lemma.
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Lemma 1.17. Assume (H1)-(H7). There exists X > 0 such that

(i) there exists 61 > 0 such that <I~/17)\v,v> > 61|v|% for all v € H satisfying
(v, 82)2 = 0, for all X € (0, \];

(ii) there exists 6o > 0 such that <I~12,)\v,v> > 8lv|% for all v € H satisfying
(v, 82)2 =0, for all X € (0, )].

Proof. Seeking a contradiction for part (i), we assume that there exist (\;) C Rt
with A\; — 0 and (v;) € H such that

hm <i17)\j1}j,ﬂj> < 0,

J—00

vl =1, (v5, Pa,)2 = 0.

Since (v;) C H is bounded, there exists v, € H such that v; — v, weakly in H.
Let us prove that

140 S2=b
lim Vi, (z)A e <)\?<p1) @Aj) lvj|*dx = 0, (1.48)

J—00 RN J J

lim V)\j(:v)géif1|vj|2dx = /
N J RN

Jj—00 R

1

|x|b¢p_1|voo|2dz. (1.49)

/
To prove (1.48)) let € > 0 be arbitrary. By (H7), we have lim Tp(sl) = 0.
s—0tT S¥

Moreover, ([¢y,]s) is bounded and therefore, for any A > 0 sufficiently small,

2o b
r’ ()\;(p_l)@,\j> < Ce); 7. Thus

_142 .
/RN Va, (@)X, 2 (/\J%1> 95*]') ol da

and we conclude by Lemma . Clearly proving (|1.49)) is equivalent to show that,
as A — 0,

<eC ‘/ Wy, (@) |v; [P da
RN

1N ol o
/RN <ij($) - W) Py, lvilFde — 0, (1.50)
1
/ — (@ﬁflmﬁ _ wpfl\vooﬁ) dz — 0. (1.51)
RN !

|z[?

Since (|@a, o) is bounded, Lemmal|l.10|shows that (1.50]) holds. Now since |z|* — 0
as || — oo to show (1.51)) it suffices to show that, VR > 0,

1
/ <¢§;1|va2 - ¢p*1|voo|2) dz — 0. (1.52)
B

(R) ||
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We write

1 1 .
/B(R), w8, Pl = /B( W(pl ) o, Pde
o et

Since Py, — ¢ in H, we have, up to a subsequence, |:17|*bg5§;1 — |z|7%¢P~1 a.e. and
since

o7 5 < Clal™ € L* (B(R)),
Lebesgue’s Theorem gives \x!‘bgéf(;l — |z PPt in LT (B(R)). Also we have
0] = |vso|? weakly in L7 (B(R)). At this point (1.52) follows easily.

Now, on one hand, from ((1.48])-(1.49) we have

lim <Z1,,\jvj,7fj> =1 —p/ z |bwp Moo Pdux. (1.53)

J—0o0
On the other hand, still by (|1.48))-(1.49) and the weak convergence v; — vy in H

we have (vs, 1) = 0 and,

(L1000, Voo) < lim <[~/17,\jvj,vj> < 0 (by assumption)

J]—00

which implies, according to Lemma [I.I5] that v, = 0. But this leads to a
contradiction in (1.53) and finishes the proof of (i). To prove (ii), since (i) holds, it
suffices to show that, for any € > 0,

[ i (M2 jopar <

when |v|g =1 and A > 0 is sufficiently small. Let € > 0 be arbitrary. Since (|Px|co)
is bounded, for A > 0 small enough, we have from ([1.8) that

r((p ) 6)\ 2|90)\|p 1
25
Thus
/ |V,\(x)|)\% (T(Ep’\)> lv[*dx < 50/ [Va(z)||v]*dz < eC
RN P RN
by Lemma and we conclude. O
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1.4 Appendix

Here, we prove the uniqueness of the non-zero solutions of ((1.40)). For this we use
results of [26].

It is known that solutions v of (1.40) are in C(R™) N C*(RYN \ {0}) and decay

exponentially at infinity. Also setting v = v(r), r = |z|, we have lim,_¢rv,(r) =0

(where v, = g”) and v satisfies the ordinary differential equation

N -1
/UT'I‘—I_

vy 4+ g(r)v + h(r)vh =0 (1.54)

where g(r) = —(1+de™" ~"(r)?"') and h(r) = r P +de™" =" For m € [0, N — 2]
we define

G(T’, m) = _rm+25fr - Oélrerl(l -+ (Sf) + OéQ?“mila
2b 2 1 1
H(r,m) = - (ﬁ + m) P p—_flrm(rz — e T — Brmtige T,

where f:= e TP oy := —2(N —3—m), ag ;== m(N —2—m)(2N —4 —m)/2
and 3:=2N —4—m —2(m+2)/(p+1).

According to Theorem 2.2 of [26] to establish the uniqueness of the positive
solution of ([1.54)) it suffices to check the following conditions.

A1) g and h are in C*((0, )),
A2) r*79g(r) — 0 and r*~°h(r) — 0 as r — 0™ for some o > 0,

C2

(A1)
(A2)
(C1) h(r) = 0 for all r € (0,00) and there exists 1o > 0 such that h(ry) > 0,
(C2) G(r, N —2) <0 for all r € (0, 0),

( )

C3) for each m € [0, N — 2), there exists a(m) € [0, 00| such that G(r,m) > 0 for
€ (0,a(m)) and G(r,m) < 0 for r € (a(m), ),

(C4) H(r,0) <0 for all r € (0, 00),

(C5) for each m € (0, N — 2], there exists 3(m) € [0, 00) such that H(r,m) > 0 for
r € (0,8(m)) and H(r,m) < 0 for r € (6(m), c0).

n (C3), by a(m) =0 and a(m) = co we mean that G(s,m) < 0 and G(s,m) > 0,
respectively, for all s € (0, 00). The analogous convention holds for (C5).
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The following lemma is useful to check (C1)-(C5). It was provided to us by K.
Tanaka [23].

Lemma 1.18. Let f(r) = e ~"(r)P~'. Then f(r), f,(r) and f..(r) are bounded
on (0,+00) and exponentially decaying at infinity.

Proof. First, we prove that there exist constants Ry > 0 and C' > 0 such that
0 < = (r) < Corp(r) for all r € [Ry, 00). (1.55)

Let W(r) =1 —r7%)(r)P~L. Then v (r) satisfies
N -1

r

- wrr (T)

and defining R(r) and 6(r) by

() + W(r)ip(r) =0 (1.56)

PN(r) = R(r)sin6(r),
rN Y (r) = R(r)cosf(r)

it follows that 6(r) verifies

0,.(r) = cos® O(r) — W (r)sin® 0(r) + Nl sin O(r) cos 6(r). (1.57)

”
It is standard (see [LI]) that ,.(r) < 0, Vr € (0,00). Thus 0(r) C [7/2,7]. In
addition, since W(r) — 1 as r — oo, the right hand side of is negative
in a neighbourhood of 7/2% and positive in a neighbourhood of 7=, for r > 0
sufficiently large. This shows that 0(r) stays, for r > 0 large, confined in a interval

la,b] C (w/2,7). This implies (1.55)). Now we have, for r > 0 large,

0
ST = (0= DY) e ()] < (0= D)
and we can easily deduce that f,.(r) is exponentially decaying. Also, we have
82
5 = (= DY) (r) + (p = (P = 2)9(r)P 4 (r)”

The term (p—1)(p—2)y(r)P=3,(r)? can be treated as previously and thanks ((1.56))

we have
D 2 rn(r) = =S 1)+ WY,

which allows us to conclude that f,.(r) is also exponentially decaying.
Finally, since ¢ € C([0,+00)) N C?((0,400)) and lim, 7, (r) = 0, it is clear

that f(r) and f,(r) are bounded on (0, +00), and using the equation for ), we also
see that f,,(r) is bounded on (0, +00). O
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The conditions (A1), (A2) and (C1) are clearly satisfied. For (C2), we have
G(r,N —2) = =V S(rf,(r) +2f(r)) + 2).

Thanks to Lemma t — (rf.(r) +2f(r)) is bounded on (0,+0o0), therefore,
for 6 > 0 small enough (C2) is verified. For (C3), we distinguish two cases. If
N —3—m >0, then a1 <0, ap > 0 and we have

G(r,m) =" (—r§f.(r) — b f(r) — ay) + agr™ L.

Thanks to Lemma [1.18, —rd f,.(r) — a10f(r) — a3 > 0 for § > 0 small enough, and
consequently G(r,m) > 0 for all » € (0,00). If N =3 —m < 0 then oy >0, ay >0
and thus we have

2 (G

or pmtl

) = —0f(r) =10 fr (1) — 10 f,(r) — 200772 < 0

for 6 > 0 sufficiently small. Thus (C3) also hold. Now

2b 26 “1 20 —1 —1
H(r.0) = — _ 1-b —r Tt —r _ 2 —r~t—r Se T
(r,0) (ﬁ+p+1>7” +p+16 p+17”e Broe

We remark that 3 > 0 and that, for 4 small enough,

20 1 2b 1—b
e" T« 4+ — 7,
p+1 (ﬁ p+1)

thus we see that (C4) holds. Let m € (0, N — 2]. We have

H(r,m) 20 2(r —rh) b o1
Tm+1b__<ﬂ+m)_5<pT+ﬁ r'e :

Since the function r — [2(r — 1) /(p + 1) + BlrPe ™ '~" is bounded, when
B+2b/(p+ 1) # 0 the sign of H(r,m) is constant for 6 > 0 small enough. When
B4 2b/(p+1) = 0 we see that there exists f(m) := (—b+ vb?> + 4)/2 such that the
function r — —]% (r24+b—1)r""'e~" "7 is positive on (0, 3(m)) and negative on
(B(m), 00). Therefore, in both cases H(r,m) satisfies (C5).
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Chapitre 2

Instability of bound states of a
nonlinear Schroédinger equation
with a Dirac potential

Abstract.  We study analytically and numerically the stability
of the standing waves for a nonlinear Schrédinger equation with a point
defect and a power type nonlinearity. A main difficulty is to compute
the number of negative eigenvalues of the linearized operator around the
standing waves, and it is overcome by a perturbation method and con-
tinuation arguments. Among others, in the case of a repulsive defect, we
show that the standing wave solution is stable in H, ;(R) and unstable in
H'(R) under subcritical nonlinearity. Further we investigate the nature
of instability: under critical or supercritical nonlinear interaction, we
prove the instability by blow-up in the repulsive case by showing a virial
theorem and using a minimization method involving two constraints. In
the subcritical radial case, unstable bound states cannot collapse, but
rather narrow down until they reach the stable regime (a finite-width in-
stability). In the non-radial repulsive case, all bound states are unstable,
and the instability is manifested by a lateral drift away from the defect,
sometimes in combination with a finite-width instability or a blowup
instability.
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2. INsTABILITY OF NLS WITH A DIRAC POTENTIAL

2.1 Introduction

We consider a nonlinear Schrodinger equation with a delta function potential

{ i0u(t, r) = —Oppu — yud(z) — |ulP~lu,

u(0,z) = uo, (2.1)

where v € R, 1 < p < 400 and (t,x) € Rt x R. Here, 4 is the Dirac distribution at
the origin. Namely, (4, v) = v(0) for v € H'(R).

When v = 0, this type of equations arises in various physical situations in the
description of nonlinear waves (see [36] and the references therein); especially in
nonlinear optics, it describes the propagation of a laser beam in a homogeneous
medium. When ~ # 0, equation models the nonlinear propagation of light
through optical waveguides with a localized defect (see [5l, 18, 21, 29] and the
references therein for more detailed considerations on the physical background). The
authors in [, [I8, 211, 22, 23], 32, [33] observed the phenomenon of soliton scattering
by the effect of the defect, namely, interactions between the defect and the soliton
(the standing wave solution of the case v = 0). For example, varying amplitude
and velocity of the soliton, they studied how the defect is separating the soliton into
two parts : one part is transmitted past the defect, the other one is captured at
the defect. Holmer, Marzuola and Zworski [21], 22] gave numerical simulations and
theoretical arguments on this subject. In this paper, we study the stability of the
standing wave solution of created by the Dirac delta.

A standing wave for (2.1 is a solution of the form u(t,z) = e¢“!p(z) where ¢ is
required to satisfy

—0Opatp + wp — Y0 (z)p — [P~ o =0,
{ o€ H'R)\ {0}, (22)

Before stating our results, we introduce some notations and recall some previous
results.

The space L"(R, C) will be denoted by L"(R) and its norm by || - ||,. When r = 2,
the space L?(R) will be endowed with the scalar product

(u,v)y = Re/ uvdz for u,v € L*(R).
R

The space H'(R, C) will be denoted by H'(R), its norm by || - || 1(r) and the duality
product between H'(R) and H'(R) by (-,-). We write H! ;(R) for the space of
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radial (even) functions of H'(R) :

HL,(R)={ve H'R); v(z) =v(-2), x€cR}L

rad

When v = 0, the set of solutions of has been known for a long time. In
particular, modulo translation and phase, there exists a unique positive solution,
which is explicitly known. This solution is even and is a ground state (see, for
example, [3, 6] for such results). When v # 0, an explicit solution of was
presented in [12] (18] and the following was proved in [11], [12].

Proposition 2.1. Let w > ~v%/4. Then there exists a unique positive solution ¢,
of (12.2). This solution is the unique positive minimizer of

i) = { I {80 0 € A0 o) =0} i >0
inf {S,(v): v € Hia®)\ {0}, Ln(0) =0} if <0,

where S, and 1, are defined for v e H'(R) by

1 w v 1 11

Sun®) = 5100015+ G0 = RO — —lollE
1
L) = 1003 + wllv]lz = vw(0) — [lvlp:.

Furthermore, we have an explicit formula for ¢, .,
1
1 -1 p=1
Yury(T) = {wsech2 (wm + tanh™! (%))} . (2.3)

The dependence of ¢, , on w and 7 can be seen in Figure 2.1} The parameter w
affects the width and height of ¢, : the larger w is, the narrower and higher ¢,, .,
becomes, and vice versa. The sign of v determines the profile of ¢, , near x = 0. It
has a “V” shape when v < 0, and a “A” shape when v > 0.

=
-5

FIGURE 2.1 - ¢, as a function of x for w = 4 (solid line)
and w = 0.5 (dashed line). (a) v = 1; (b) v = —1. Here,
p=4.
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Remark 2.2. (i) As it was stated in [I1, Remark 8 and Lemma 26], the set of

solutions of (12.2))
{ve H'(R) \ {0} such that — 9,,v + wv — yvé — [v[P v = 0}
is explicitely given by {¢?¢, |0 € R}.

(ii) There is no nontrivial solution in H*(R) for w < 72/4.

The local well-posedness of the Cauchy problem for (2.1)) is ensured by [6]
Theorem 4.6.1]. Indeed, the operator —d,, — ¢ is a self-adjoint operator on L?(R)
(see [I, Chapter 1.3.1] and Section [2.2] for details). Precisely, we have

Proposition 2.3. For any ug € H'(R), there exist T,, > 0 and a unique solution
u e C([0,Ty,), H'(R)NC'([0,Tuy), H(R)) of 1) such that limyr,, [|8zulls = +00
if Ty < +00. Furthermore, the conservation of energy and charge holds, that s, for
any t € [0,T,,) we have

lE(QLO)a

)
2 = Juoll, (25)

—~
N
S

E(u(t)
[[u(®)]]

where the energy E is defined by

1 ol 1
E(v) = 5’@:””3 - §\U(O)|2 - m”“”;ﬁiia for ve H'(R).

(see also a verification of this proposition in [12] Proposition 1]).

Remark 2.4. From the uniqueness result of Proposition [2.3| it follows that if an
initial data uy belongs to H! ;(R) then u(t) also belongs to H. ;(R) for all ¢ € [0, T, ).

rad rad

We consider the stability in the following sense.

Definition 2.5. Let ¢ be a solution of . We say that the standing wave
u(x,t) = e“'p(z) is (orbitally) stable in H'(R) (resp. HL 4 (R)) if for any e > 0
there exists n > 0 with the following property : if uy € H'(R) (resp. HL4(R))
satisfies |[ug — @|| gy < 1, then the solution u(t) of with u(0) = ug exists for
any t > 0 and
- i0
te[SOl}foo) égﬂg lutt) = " llrmy <

Otherwise, the standing wave u(z,t) = e“'o(z) is said to be (orbitally) unstable in
HY(R) (resp. Hyq(R)).
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Remark 2.6. With this definition and Remark [2.4] it is clear that stability in
H'(R) implies stability in H! ;(R) and conversely that instability in A}  (R) implies
instability in H*(R).

When v = 0, the orbital stability for has been extensively studied (see
[2, 6], 7, 36, B7] and the references therein). In particular, from [7] we know that
ey, o(x) is stable in H'(R) for any w > 0 if 1 < p < 5. On the other hand, it was
shown that e, o(z) is unstable in H*(R) for any w > 0if p > 5 (see [2] for p > 5
and [37] for p =5).

In [I§], Goodman, Holmes and Weinstein focused on the special case p = 3,
v > 0 and proved that the standing wave e“'p, . (z) is orbitally stable in H*(R).
When 7 > 0, the orbital stability and instability were completely studied in [12] :
the standing wave !, () is stable in H'(R) for any w > 7?/4if 1 < p < 5, and
if p > 5, there exists a critical frequency w; > 7?/4 such that e“*,, . (z) is stable in
H'(R) for any w € (v%/4,w;) and unstable in H'(R) for any w > wy.

When v < 0, Fukuizumi and Jeanjean showed the following result in [11].
Proposition 2.7. Let v < 0 and w > v%/4.
(i) If 1 < p < 3 the standing wave €', (x) is stable in H}

rad

(R).

(ii) If 3 < p <5, there exists wy > v%/4 such that the standing wave e“*p,, () is
stable in H! ;(R) when w > wy and unstable in H'(R) when v?/4 < w < wy.

(iii) If p > 5, then the standing wave ¢!, () is unstable in H'(R).

The critical frequency wo is given by

Jw)p=5 _ v (,_ 2 ~(p-3)/(p-1)
4(4)2

p—1 N

+o00
J(wa) = /A( )sech4/(p1)(y)dy, A(ws,7) = tanh™* (
w2,y

wm)

The results of stability of [11] recalled in Proposition assert only on stability
under radial perturbations. Furthermore, the nature of instability is not revealed. In
this paper, we prove that there is instability in the whole space when stability holds
under radial perturbation (see Theorem , and that, when p > 5, the instability
established in [I1] is strong instability (see Definition [2.9] and Theorem [2.2).

Our first main result is the following.
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2. INsTABILITY OF NLS WITH A DIRAC POTENTIAL

Theorem 2.1. Let v < 0 and w > v*/4.
(i) If 1 < p < 3 the standing wave '@, (x) is unstable in H'(R).

(it) If 3 < p < 5, the standing wave €', . (x) is unstable in H'(R) for any
w > way, where wy is defined in Proposition [2.7.

As in [T}, 12], our stability analysis relies on the abstract theory by Grillakis,
Shatah and Strauss [19, 20] for a Hamiltonian system which is invariant under a
one-parameter group of operators. In trying to follow this approach the main point
is to check the following two conditions.

1. The slope condition. The sign of 9, ||, /3.

2. The spectral condition. The number of negative eigenvalues of the linearized
operator
L] v = =040 + wv — 60 — pgl v,

We refer the reader to Section[2.2)for the precise criterion and a detailed explanation
on how L7, appears in the stability analysis. Making use of the explicit form (?2.3])
for .-, the sign of 9,,¢.~||3 was explicitly computed in [11], 12].

In [I1], a spectral analysis is performed to count the number of negative
eigenvalues, and it is proved that the number of negative eigenvalues of Liw
in H! (R) is one. This spectral analysis of L}, is relying on the variational
characterization of ¢, . However, since ¢, is a minimizer only in the space of
radial (even) functions H! ;(R), the result on the spectrum holds only in H! ,(R),
namely for even eigenfunctions. Therefore the number of negatives eigenvalues is
known only for L], considered in H 4(IR). With this approach, it is not possible to
see whether other negative eigenvalues appear when the problem is considered on

the whole space H'(R).

To overcome this difficulty, we develop a perturbation method. In the case
v = 0, the spectrum of L{ , is well known by the work of Weinstein [38] (see Lemma
2.21]) : there is only one negative eigenvalue, and 0 is a simple isolated eigenvalue
(to see that, one proves that the kernel of L%w is spanned by 0,¢,.0, that d,¢, 0
has only one zero, and apply the Sturm Oscillation Theorem). When -y is small,
L], can be considered as a holomorphic perturbation of L} ,. Using the theory of
holomorphic perturbations for linear operators, we prove that the spectrum of Llw
depends holomorphically on « (see Lemma . Then the use of Taylor expansion

for the second eigenvalue of L , allows us to get the sign of the second eigenvalue
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when v is small (see Lemma [2.23]). A continuity argument combined with the fact
that if 7 # 0 the nullspace of L] , is zero extends the result to all v € R (see the

proof of Lemma [2.18). See subsection for details. We will see that there are
two negative eigenvalues of L] , in H'(R) if v < 0.

Remark 2.8. (i) Our method can be applied as well in H'(R) or in H] ;(R), and
for v negative or positive (see subsections [2.2.4 and [2.2.5)). Thus we can give

another proof of the result of [12] in the case v > 0 and of Proposition [2.7]

(ii) The study of the spectrum of linearized operators is often a central point when
one wants to use the abstract theory of [19, 20]. See [9, [13], 14], 15, 24] among
many others for related results.

The results of instability given in Theorem [2.1] and Proposition 2.7 say only that
a certain solution which starts close to ¢, , will exit from a tubular neighborhood of
the orbit of the standing wave in finite time. However, as this might be of importance
for the applications, we want to understand further the nature of instability. For
that, we recall the concept of strong instability.

Definition 2.9. A standing wave e“'p(z) of 1$ said to be strongly unstable
in H'(R) if for any e > 0 there exist u. € H'(R) with |u. — ¢||mw) < € and
T,. < +oo such that limyg,_ ||Oyu(t)]|2 = +oo, where u(t) is the solution of
with w(0) = u,.

Our second main result is the following.

Theorem 2.2. Let v < 0, w >~*/4 and p > 5. Then the standing wave e, . (z)
is strongly unstable in H*(R).

Whether the perturbed standing wave blows up or not depends on the perturba-
tion. Indeed, in Remark [2.30] we define an invariant set of solutions and show that
if we consider an initial data in this set, then the solution exists globally even when
the standing wave e, () is strongly unstable.

We also point out that when 1 < p < 5, it is easy to prove using the
conservation laws and Gagliardo-Nirenberg inequality that the Cauchy problem in
H'(R) associated with is globally well posed. Accordingly, even if the standing
wave may be unstable when 1 < p <5 (see Theorem, a strong instability cannot
occur.

As in [2 B7], which deal with the classical case v = 0, we use the virial identity
for the proof of Theorem [2.2] However, even if the formal calculations are similar to
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2. INsTABILITY OF NLS WITH A DIRAC POTENTIAL

those of the case v = 0, a rigorous proof of the virial theorem does not immediately
follow from the approximation by regular solutions (e.g. see [6, Proposition 6.4.2],
or [16]). Indeed, the argument in [6] relies on the H?(R)-regularity of the solutions
of . Because of the defect term, we do not know if this H?(R)-regularity still
holds when v # 0. Thus we need another approach. We approximate the solutions
of by solutions of the same equation where the defect is approximated by a
Gaussian potential for which it is easy to have the virial theorem. Then we pass to
the limit in the virial identity to obtain :

Proposition 2.10. Let ug € H'(R) such that xug € L*(R) and u(t) be the solution
of (2.1) with u(0) = ug. Then the function f :tw— |zu(t)||3 is C* and

of(t) = 4Im/ﬂxaxudx, (2.6)
Ouf(t) = 8Qy(u(t)), (2.7)

where Q. is defined for v € H'(R) by

gl p—1 1
Q,(v) = [|0,v])3 — §|U(0)|2 - 2(p—+1)||v||§3:1~

Even if we benefit from the virial identity, the proofs given in [2, [37] for the
case 7 = 0 do not apply to the case v < 0. For example, the method of Weinstein
[37] in the case p = 5 requires in a crucial way an equality between 2E and @
which does not hold anymore when v < 0. Moreover, the heart of the proof of
[2] consists in minimizing the functional S, on the constraint @), (v) = 0, but the
standard variational methods to prove such results are not so easily applied to the
case 7 # 0. To get over these difficulties we introduce an approach based on a
minimization problem involving two constraints. Using this minimization problem,
we identify some invariant properties under the flow of . The combination of
these invariant properties with the conservation of energy and charge allows us to
prove strong instability. We mention that related techniques have been introduced
in [26] 27, 28 30, [39].

Remark 2.11. The case v < 0, w = ws and 3 < p < 5 cannot be treated with our
approach and is left open (see Remark. In light of Theorem , we believe that
the standing wave is unstable in this case, at least in H'(R) (see also [11, Remark
12]). When 7 > 0, the case w = w; and p > 5 is also open (see [12, Remark 1.5]).

Let us summarize the previously known and our new rigorous results on stability

in 1),
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(i) For both positive and negative 7, there is always only one negative eigenvalue
of the linearized operator in H' ;(R) ([L1], subsection 2.5). Hence, the standing
wave is stable in H! ;(R) if the slope is positive, and unstable if the slope is
negative.

(ii) v > 0. In this case the number of the negative eigenvalues of linearized operator
is always one in H'(R). Stability is determined by the slope condition, and
the standing wave is stable in H!  (R) if and only if it is stable in H'(R).

rad

Specifically ([11], 12], subsection 2.4),

(a) 1< p < 5: Stability in H'(R) for any w > ~%/4.

(b) 5 < p: Stability in H*(R) for 4?/4 < w < wy, instability in H}

rad(R) fOI‘
w > wi.

(iii) v < 0. In this case the number of negative eigenvalues is always two
(Lemma [2.18)) and all standing waves are unstable in H!(R) (Theorem
and Theorem [2.2)). Stability in H},(R) is determined by the slope condition
and is as follows ([L1]):

(a) 1 < p < 3: Stability in H]

rad

(b) 3 < p < 5: Stability in H.,(R) for w > ws, instability in H! (R) for
V)4 <w < ws.

(c) 5 < p: Strong instability in H! (R) (and in H*(R)) for any +*/4 < w
(Theorem [2.2).

(R) for any w > 7?/4.

There are, however, several important questions which are still open, and which
we explore using numerical simulations. Our simulations suggest the following:

(i) Although an attractive defect (y > 0) stabilizes the standing waves in the
critical case (p = 5), their stability is weaker than in the subcritical case, in
particular for 0 < v < 1.

(ii) Theorem shows that instability occurs by blow-up when v < 0 and p > 5.
In all other cases, however, it remains to understand the nature of instability.
Our simulations suggest the following:

(a) When v > 0, p > 5, and w > wy, instability can occur by blow-up.

(b) When v < 0, 3 < p <5, and 7?/4 < w < wo, the instability in H ,(R) is
a finite-width instability, i.e., the solution initially narrows down along a
CUIVE (u(t),y, Where w*(t) can be defined by the relation

mg?JX ¢w*(t),7($) = m;mx |U(27, t)|
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2. INsTABILITY OF NLS WITH A DIRAC POTENTIAL

As the solution narrows down, w*(t) increases and crosses from the
unstable region w < wy to the stable region w > wy. Subsequently, collapse
is arrested at some finite width.

(¢) When v < 0, the standing waves undergo a drift instability, away from the
(repulsive) defect, sometimes in combination with finite-width or blowup
instability. Specifically,

(c.i) When 1 < p < 3 and when 3 < p < 5 and w > wy (i.e., when the
standing waves are stable in H! ;(R)), the standing waves undergo a
drift instability.

(c.iil) When 3 < p < 5 and 72/4 < w < ws, the instability in H'(R) is a
combination of a drift instability and a finite-width instability.

(c.iii) When p > 5, the instability in H'(R) is a combination of a drift
instability and a blowup instability.

(iii) Although when p =5 and v > 0, and when p > 5, v > 0, and 7?/4 < w < w;
the standing wave is stable, it can collapse under a sufficiently large perturba-
tion.

We note that all of the above holds, more generally, for NLS equations with an
inhomogeneous nonlinearity [9] and with a linear potential [34].

The paper is organized as follows. In Section 2.2, we prove Theorem and
explain how our method allows us to recover the results of [11, [12]. In Section [2.3]

we establish Theorem and in Section |2.4] we prove Proposition [2.10l Numerical
results are given in Section [2.5]

Throughout the paper the letter C' will denote various positive constants whose
exact values may change from line to line but are not essential to the analysis of the
problem.

2.2 Instability with respect to non-radial pertur-
bations

We use the general theory of Grillakis, Shatah and Strauss [20] to prove Theorem
211

First, we explain how we derive a criterion for stability or instability for our
case from the theory of Grillakis, Shatah and Strauss. In our case, it is clear
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2.2 INSTABILITY

that Assumption 1 and Assumption 2 of [20] are satisfied. The last assumption,
Assumption 3, will be check in subsection [2.2.2l We consider the bilinear form

S () : HY(R) x HA(R) — C
as a linear operator H? : H'(R) — H~'(R). The spectrum of H is the set
{\ € C such that H]} — AI is not invertible},
where I denote the usual H'(R) — H~(R) isomorphism, and we denote
n(H)) := the number of negative eigenvalues of H_.

Having established the assumptions of [20], the next proposition follows from [20),
Instability Theorem and Stability Theorem].

Proposition 2.12. (1) The standing wave e*°tp,, . (z) is unstable if the integer
(n(HZ,) — p(d"(wo)) is odd, where

" 1 A OullpwunlE >0 at w=w,
p(d <w0))_{ 0 if ollpwrls <0 at w=uwp.

(2) The standing wave €', (x) is stable if (n(H,) — p(d”(wo)) = 0.

Let us now consider the case v < 0. It was proved in [11] that
Lemma 2.13. Let v < 0 and w > +*/4. We have :
(1) If 1 <p <3 and w > ~*/4 then d,|lpu~|15 > 0,

(1) If 3<p <5 and w > wy then O, w3 >0,

)
(iid) If3<p <5 and v*/4 < w < wy then d,|lvu~l3 <O,
() If p =5 and w > /4 then O,||pu,l3 < 0.

Thus Theorem [2.1] follows from Proposition 2.12] Lemma [2.13 and
Lemma 2.14. If v <0, then n(H]) = 2.

Remark 2.15. 1. Let v < 0. In the cases 3 < p < 5 and w < wy or p > 5 it
was proved in [11] that 9,[/¢w[|3 < 0. From Lemma [2.14] we know that the
number of negative eigenvalues of HY is n(H?) = 2 when H] is considered on
the whole space H'(R). Therefore n(H?) — p(d”(w)) = 2 and this correspond
to a case where the theory of [20] does not apply. However, if we consider H] in

H} 4(R), then it follows from [I1] that n(H) = 1, thus n(H)) — p(d’(w)) = 1.

Then, Proposition applies and allows to conclude to instability in H! ,(R)

(as it was done in [I1]). But, with Remark 2.6 we can conclude that instability

holds on the whole space H'(R). This shows that, sometimes, to introduce

artificially a symmetry can be useful when one faces a case left open in [20].
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2. INsTABILITY OF NLS WITH A DIRAC POTENTIAL

2. Note that the case w = wy corresponds to d,llpw,]l3 = 0 (3 < p < 5) and
will not be treated here. In view of Theorem [2.1 we believe that the standing
wave is unstable in this case, at least in H'(R).

We divide the rest of this section into five parts. In subsection 2.2.1| we introduce
the general setting to perform our proof. In subsection[2.2.2] we study the spectrum
of HY and prove that Assumption 3 of [20] is satisfied. Lemma will be proved
in subsection 2.2.3] Finally, we discuss the positive case and the radial case in

subsections 2.2.4] and 2.2.5

2.2.1 Setting for the spectral problem

To express H], it is convenient to split u in real and imaginary part : for
u € HYR,C) we write u = u; + iup where u; = Re(u) € H'(R,R) and
uy = Im(u) € H'(R,R). Now we set

Ty = I T
Hju = Lj uy +ilg us

where the operators L} , L3 , : H'(R,R) — H'(R) are defined for v € H'(R) by

1w
LI v = =0+ wv—yvd — ppPlu
1w T Y pgpw;y )
-1
Ly v = —0pv+wv—yv6 — b .

When we will work with L] , L3 ,, the functions considered will be understood to
be real valued.

For the spectral study of HY, it is convenient to view H] as an unbounded
operator on L?(R), thus we rewrite our spectral problem in this setting. First, we
redefine the two operators L], and L3, as unbounded operators on L*(R). We
begin by considering the bilinear forms on H'(R) associated with L , and Lj , by
setting for v,w € H*(R)

Blw(v,w) = <L'177wv,w> and B;w(v,w) = <Lg7wv,w>,
which are explicitly given by

BY,w(va U)) = fR azvag;WdZE+WIR del‘—fyv(())w([]) _fR pgof,fvlvwdx,

By, (v, w) Jg Qv wdr~+w [, vwdz—~yv(0)w(0)— [ ¥ lowdz. (2.8)

Let us now consider B], and Bj, as bilinear forms on L*(R) with do-
main D(B,) = D(B;,) = H'(R). It is clear that theses forms are bounded
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from below and closed. Then the theory of representation of forms by op-
erators (see [25, VI.§2.1]) implies that we define two self-adjoint operators

L], : D(L].) C IA(R) — IAR) and L], : D(L],) C I*(R) — L*(R) by set-
ting

D(L],) = {ve H'(R)Fw e L*R) st. Vz € H'(R), B} (v, 2) = (w,2)2},
D(L],) = {ve H'(R)Fw e L*(R) s.t. ¥z € H'(R), B}, (v,2) = (w,2)}.

and setting for v € D(Z/LI)) (resp. v € D(I?QY:,)) that l/ff:)v = w (resp. Z/L;’:Jv = w),
where w is the (unique) function of L?(R) which satisfies B] (v, 2) = (w, 2) (resp.
B, (v,2) = (w,2);) for all z € H'(R).

—_—

For notational simplicity, we drop the tilde over L], and IE:,

It turns out that we are able to describe explicitly L] , and Lj .

Lemma 2.16. The domain of L] , and of L3, in L*(R) is
D, ={ve H'(R)NH*(R\ {0}); 0,0(07) = 8,0(07) = —yv(0)}

and for v € D, the operators are given by

v _ -1
Li v = —0mv+wv—pph v,
L300 = =0+ wv— ¢l lv.

(2.9)

Proof. The proof for Lj, being similar to the one of L] & we only deal with
L{,  The form B, can be decomposed into B, = B, + BJ,, with
Bl :H'(R) x H'(R) — R and B/, : L*(R) x L*(R) — R defined by

Bl (v,2) = [ 0w0dszdr —y0(0)2(0),

BKZW(U,Z) = WIRUZdLI? — prSOf;yl’Ude. (210)

If we denote by T (resp. T5) the self-adjoint operator on L?*(R) associated with By,
(resp BY,,,), it is clear that D(T3) = L*(R) and

D(L{,) = D(T1).

Let v € D, and w € L*(R) be such that B}, (v,z) = (w, z); for any z € H'(R). If
z € H'(R) is such that 2(0) = 0, we have

Bl (v, 2) :/Qﬂﬁxzdx:/wzdx,
’ R R
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therefore v € H*(R \ {0}) and —0,,v = w. Let z € H'(R) be such that z(0) # 0.
On one hand, we have

B (v, 2) = / 0,00, zdx — yv(0)2(0).
R
And on other hand

BI/,I(U? Z) = (w7 2)27

0 +o0
0

—00

0 +00
= —2(0)0,v(0—) +/ 0,00, zdx + 2(0)0,v(0+) +/ 0,00, zdx,
oo 0
= / 0,00, zdx + z(0)(0,v(0+) — Jv(0—).
R
Therefore

9,v(07) — 0,v(07) = —y0(0),
which ends the proof. O

2.2.2 Verification of Assumption 3

To check [20, Assumption 3] is equivalent to check that the following lemma holds.
Lemma 2.17. Let v € R\ {0} and w > +?/4.

(i) The operator HY has only a finite number of negative eigenvalues,

(ii) The kernel of H) is span{ip, -},

(iii) The rest of the spectrum of H is positive and bounded away from 0.

Our proof of Lemma borrows some elements of [11]. In particular, (ii) in
Lemma corresponds to [11, Lemma 28 and Lemma 31].

Proof of Lemma[2.17. We start by showing that (i) and (iii) are satisfied. We work
on L{, and L3, The essential spectrum of T} (see the proof of Lemma
is 0ess(T1) = [0, 4+00). This is standard when v = 0 and a proof for 7 # 0 can be
found in [I, Theorem 1-3.1.4]. From Weyl’s theorem (see [25, Theorem IV-5.35]), the
essential spectrum of both operators L] , and L; , is [w, +00). Since both operators
are bounded from below, there can be only finitely many isolated eigenvalues (of
finite multiplicity) in (—oo,w’) for any w’ < w. Then (i) and (iii) follow easily.
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Next, we consider (ii). Since ¢, , satisfies Lj ., = 0 and ¢, > 0, the first
cigenvalue of Ly , is 0 and the rest of the spectrum is positive . This is classical for
~v = 0 and can be easily proved for v # 0, see [4, Chapter 2, Section 2.3, Paragraph
3]. Thus to ensure that the kernel of HY is reduced to span{iy,, -} it is enough to
prove that the kernel of L] , is {0}. It is equivalent to prove that 0 is the unique
solution of

Ly u=0,ue D(L],) (2.11)
To be more precise, the solutions of ([2.11)) satisfy
u € H*(R\ {0}) N H(R), (2.12)
— Ozl + WU — pgpf;wlu =0, (2.13)
O,u(0+) — O,u(0—) = —yu(0). (2.14)

Consider first (2.13]) on (0, +00). If we look at (2.2) only on (0, +00), we see that
Puw~ satisfies
— OzzPuy + WP~y — (Pf)’,y =0 on (0, +OO) (215)

If we differentiate with respect to « (which is possible because ¢, , is smooth
on (0,400)), we see that J,¢, ., satisfies on (0,400). Since we look for
solutions in L?*(R) (in fact solutions going to 0 at infinity), it is standard that every
solution of in (0,+o00) is of the form pd,p. -, pr € R (see, for example, [4
Chapter 2, Theorem 3.3]). A similar argument can be applied to on (—o00,0),
thus every solution of in (—o00,0) is of the form vd,¢, -, v € R.

Now, let u be a solution of (2.12))-(2.14)). Then there exists p € R and v € R
such that
u=1v0;p,, on (—o0,0),
U= p10y0u~ on (0,+00).
Since u € H*(R), u is continuous at 0, thus we must have gy = —v, that is, u is of
the form
U = —p0yp,~ on (—00,0),
u= 0y~ on (0,+00),
—H

U(O) = _/vbazgow,v(o_) = /ngcpwn(()"i_) = 7790@‘1,7(0)‘

Furthermore, u should satisfies the jump condition (2.14)). Since ¢,, , satisfies
OrzPu(0—) = 3m80w,w(0+) = w¢w,7(0> - 905,7(0)7
if we suppose p # 0 then (2.14) reduces to

_Aw— o
-—0

-1
@b (0)
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But from ([2.3)) we know that

_ p+1
o (0) = —=—(dw—77).
It is a contradiction, therefore © = 0. In conclusion, © = 0 on R, and the lemma is
proved. O]

2.2.3 Count of the number of negative eigenvalues

In this subsection, we prove Lemma [2.14] First, we remark that, as it was shown in
the proof of Lemma , 0 is the first eigenvalue of Ly . Thus n(H)) = n(L],),
where n(L7 ) is the number of negative eigenvalues of L] ,. Therefore, Lemma
follows from

Lemma 2.18. Let vy < 0 and w > 7*/4. Then n(L] ) = 2.

Our proof of Lemma [2.18)is divided into two steps. First, we use a perturbative
approach to prove that, if 7 is close to 0 and negative, L], has two negative
eigenvalues (Lemma [2.23)). To do this, we have to ensure that the eigenvalues and
the eigenvectors are regular enough with respect to v (Lemma to make use
of Taylor formula. It follows from the use of the analytic perturbation theory of
operators (see [25, [31]). The second step consists in extending the result of the first
step to any values of v < 0. Our argument relies on the continuity of the spectral
projections with respect to v and it is crucial, as it was proved in Lemma [2.17] that
0 can not be an eigenvalue of L] , (see [13, [14] for related arguments).

We fix w > 7?/4. For the sake of simplicity we denote L] , by L] and ¢, by
©~, and so on in this section.

Lemma 2.19. As a function of v, (L]) is a real-holomorphic family of self-adjoint
operators (of type (B) in the sense of Kato).

Proof. We recall that L] is defined with the help of a bilinear form B} (see (2.8)).
To prove the holomorphicity of (L7) it is enough to prove that (BY) is bounded from
below and closed, and that for any v € H'(R) the function B (v) : v — B (v,v)
is holomorphic (see [25, Theorem VII-4.2]). It is clear that B is bounded from
below and closed on the same domain H'(R) for all 7, thus we just have to check
the holomorphicity of B](v) : v — B{(v,v) for any v € H'(R). We recall the
decomposition of B} into B, and B}, (see (2.10)). We see that B}, (v) is clearly
holomorphic in 7. From the explicit form of ¢, (see ) it is clear that y — 2~ (x)
is holomorphic in  for any € R. It then also follows that v +— B,(v) is
holomorphic. O
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Remark 2.20. There exists another way to show that (L]) is a real-holomorphic
family with respect to v € R. We can use the explicit resolvent formula in [1J,

(Ty — k)7 = (=0, — k271 + 29k (—iy + 2k) " (Gr(), )Gr(4),

where k2 € p(T}), Imk > 0, Gi.(x) = (i/2k)e’*1?|| to verify the holomorphicity.

The following classical result of Weinstein [38] gives a precise description of the
spectrum of the operator we want to perturb.

Lemma 2.21. The operator LY has exactly one negative simple isolated first eigen-
value. The second eigenvalue is 0, and it s simple and isolated. The nullspace s
span{0, o}, and the rest of the spectrum is positive.

Combining Lemma [2.19 and Lemma [2.21} we can apply the theory of analytic
perturbations for linear operators (see [25, VII.§1.3]) to get the following lemma.
Actually, the perturbed eigenvalues are holomorphic since they are simple.

Lemma 2.22. There exist 7o > 0 and two functions A : (—v,%) +— R and
I (—=70,7) — L*(R) such that

(i) A(0) =0 and f(0) = dupo,

(il) For all v € (—v0,7%), A(7) is the simple isolated second eigenvalue of L] and
f(v) is an associated eigenvector,

(iii) A(vy) and f(~y) are holomorphic in (—vo,7o)-

Furthermore, v9 > 0 can be chosen small enough to ensure that, expect the two first
eigenvalues, the spectrum of L] is positive.

Now we investigate how the perturbed second eigenvalue moves depending on
the sign of ~.

Lemma 2.23. There exists 0 < 71 < 7y such that A\(y) < 0 for any —y; < v <0
and A\(y) > 0 for any 0 <y < .

Proof of Lemma[2.23. We develop the functions A(y) and f(y) of Lemma [2.22]
There exist A\g € R and f; € L?(R) such that for 7 close to 0 we have

A(Y) = Yo+ 00, (2.16)
f() = Owpo+7fo+ 0. (2.17)
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From the explicit expression (2.3) of ¢,, we deduce that there exists go € H'(R)
such that for v close to 0 we have

vy = 90 + 790 + O(7?). (2.18)
Furthermore, using (2.18) to substitute into (2.2)) and differentiating ([2.2) with
respect to 7, we obtain

<L(1)90,1/1> = ¢0(0)1(0), (2.19)

for any ¢ € H'(R).

To develop Ag with respect to 7, we compute (L] f(7),0:¢0)2 in two different
ways.

On one hand, using L] f(v) = A7) f(7), (2.16) and (2.17)) leads us to

(LT (7): wp0)2 = Ao [|0apolls + O(1?). (2.20)

On the other hand, since L] is self-adjoint, we get

(va( ), Oxtp0)2 = (f<7)7L¥8:c§00>2- (2.21)

Here we note that 0,00 € D(L]) : indeed, 0,000 € H*(R) and 9,00(0) = 0. We

compute the right hand side of ([2.21). We use (2.9), LY9,¢0 = 0, and (2.18) to
obtain

L{dspo = p(f" — " ")uipo,

= —p(p — Db 90000 + O(7?). (2.22)
Hence, it follows from (2.17)) that
(LYF (), Oap0)a = = (Bap0, Y900(p — 1)y “Oapo)a + O(77). (2.23)

Now, as it was remarked in [9, Lemma 28], it is easy to see that using (2.2)) with
v =0 we get

L(wpo — @b ) =p(p — )b " (8rp0)?, (2.24)
which combined with gives
(LYf(7), 0np0)2 = = (LY g0, wpo — @5 ) + O(7?). (2.25)
Finally, with we obtain from
(LI (7), Batp0)2 = —=7(wpo(0)* = 0 (0)"*) + O(v*). (2.26)
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Combining ([2.26)) and ([2.20]) we obtain
wio(0)? — o (0)7*
102013

It follows that Ag is positive for sufficiently small ||, which in view of (2.16) ends
the proof. O

/\0:—

+ O(7).

We are now in position to prove Lemma [2.18

Proof of Lemma[2.18 Let 74 be defined by
Yoo = Inf{# < 0; L] has exactly two negative eigenvalues for all v € (3,0)}.

From Lemma [2.23] we know that 7., is well defined and v, € [—00,0). Arguing by
contradiction, we suppose Y, > —00.

Let N be the number of negative eigenvalues of L]>. Denote the first eigenvalue
of LT™ by A,_. Let T' be defined by

I'={2€C; z=2+1iz, (21,2) € [-b,0] X [—a,ad], for some a > 0,b > |A,_[}.

From Lemma we know that L]* does not admit zero as eigenvalue. Thus
I' define a contour in C of the segment [A,_, 0] containing no positive part of the
spectrum of L], and without any intersection with the spectrum of L]>. Tt is easily
seen (for example, along the lines of the proof of |25 Theorem VII-1.7]) that there
exists a small v, > 0 such that for any v € [Yoo — V4, Yoo + V4], We can define a
holomorphic projection on the negative part of the spectrum of L] contained in I'

by
-1
I(y) = — [ (L] — 2)"dz.
() = g [ =) a:
Let us insist on the fact that we can choose I' independently of the parameter
because 0 is not an eigenvalue of L] for all ~.

Since II is holomorphic, II is continuous in v, then by a classical connectedness
argument (for example, see [25, Lemma I-4.10]), we know that dim(Ran TI(y)) = N
for any 7 € [Yoo — Vs, Voo + V&) Furthermore, N is exactly the number of negative
eigenvalues of L] when v € [Voo — 74, Yoo +74] ¢ indeed, if L] has a negative eigenvalue
outside of T" it suffice to enlarge I" (i.e., enlarge b) until it contains this eigenvalue to
raise a contradiction since then L]> would have, at least, N + 1 eigenvalues. Now
by the definition of Y., L7 has two negative eigenvalues and thus we see that
L] has two negative eigenvalues for all v € [y, — 7*, 0[ contradicting the definition
of Voo

Therefore v,, = —o0. O]
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Remark 2.24. In [IT, Lemma 32|, the authors proved that there are at most two
negative eigenvalues of L] in H'(R) using variational methods. In our present proof,
we can directly show that there are exactly two negative eigenvalues.

2.2.4 The case v >0

The proof of Lemma [2.18| can be easily adapted to the case v > 0, and with Lemma
we can infer that L] has only one simple negative eigenvalue when v > 0. Since

n(HY) = n(L7), it follows that (in Lemmas [2.25] and Proposition [2.27, there is

no omission of the parameter w)

Lemma 2.25. Lety > 0 and w > v*/4. Then the operator H) has only one negative
eigenvalue, that is n(H]) = 1.

When v > 0, the sign of 9,|/¢,~||3 was computed in [12]. Precisely :
Lemma 2.26. Let v > 0 and w > v*/4. We have :
(1) If 1 <p <5 andw >~%/4 then O, w3 > 0,
(1) If p>5 and v*/4 < w < wy then d,|vwl3 >0,
(1) If p>5 and w > wy then O,|lp,~ |3 < 0.

Here wy is defined as follows:

_5 2\ —(»=-3)/(»-1)
P2 o) = 51— 1= ,
p—1 2\/wq 4y

T = [ WYV () dy,  Alwy,y) =t h1<L).
(wr) /A (ww)sec (y)dy (w1,7) = tan N

Then, using Lemma [2.25] Lemma [2.26] and Proposition [2.12, we can give an
alternative proof of [I12, Theorem 1] (see also [11, Remark 33]). Precisely, we obtain :

Proposition 2.27. Let v > 0 and w > 2 /4.
(1) Let 1 < p < 5. Then e“'p, . (z) is stable in H'(R) for any w € (v*/4,+00).

(11) Let p > 5. Then e“'p, () is stable in H'(R) for any w € (y*/4,w1), and
unstable in H'(R) for any w € (wy, +00).
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2.2.5 The radial case

Before we start to discuss the stability in the radial case, we mention the following
remarkable fact.

Lemma 2.28. The function f(v) defined in Lemma and corresponding to
the second negative eigenvalue of L] can be extended to (—oo,+00). Furthermore,

f(v) € HY(R) is an odd function, for each v € (—o0, +00).

Proof. First, the extension of f to (—oo, 0] is easily deduce from the proof of Lemma
and [25], VIL.§3.2]. The details are left to the reader.

Secondly, as it was observed in [9] 1], the eigenvectors of L] are even or odd.
Indeed, let £ be an eigenvalue of L] with eigenvector v € D(L]). Then clearly ©
with 0(x) = v(—z) is also an eigenvector associated to . In particular, v and ©
satisfy both

_axxv + (w - 5)1} - pgps_lv =0 on [07 +OO)7

thus there exists 7 € R such that v = 1o on [0,400) (this is standard, see, for
example, [4, Chapter 2, Theorem 3.3]). If v(0) # 0, it is immediate that n = 1.
If v(0) = 0, then 0,v(0+) # 0 (otherwise the Cauchy-Lipschitz Theorem leads to
v =0), and it is also immediate that n = —1. Arguing in a same way on (—o0, 0],
we conclude that v is even or odd, and in particular v is even if and only if v(0) # 0.

Finally, we prove the last statement only for the case 7 < 0 since the case v > 0
is similar. We remark that 9,40 is odd. Since lim,_o(f(7), dz0)2 = [|0z¢0ll3 # 0,
we have (f(7), 0zp0)2 # 0 for 7 close to 0, thus f() cannot be even, and therefore
f(7) is odd. Let 4, be

Yoo = Inf{A < 0; f(v) is odd for any v € (¥,0]}.

We suppose that Y., > —o0. If f(74) is odd, by continuity in vy of f(7), there exists
¢ > 0 such that f(Js — €) is odd which is a contradiction with the definition of
Ao, thus f(Fs) is even. Now, f(7) is the limit of odd functions, thus is odd. The
only possibility to have f(9.) both even and odd is f(7,) = 0, which is impossible
because f(95) is an eigenvector. O

We can deduce the number of negative eigenvalues of L] in the radial case from
the result on the eigenvalues of L] considered in the whole space L?(R). Indeed,
Lemma ensures that the second eigenvalue of L] considered in the whole space
L*(R) is associated with an odd eigenvector, and thus disappears when the problem
is restricted to the subspace of radial functions. Furthermore, since ¢, € H} ,(R)
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and (L]p,,p,) < 0, we can infer that the first negative eigenvalue of L] is still
present when the problem is restricted to sets of radial functions. Recalling that
n(HY) = n(L7]), we obtain.

Lemma 2.29. Let v < 0. Then the operator H” considered on H}

ad(R) has only
one negative eigenvalue, that is n(HY) = 1.

Combining Lemma[2.29 Lemma[2.13|and Proposition[2.12], we recover the results
of [11] recalled in Proposition [2.7]

Alternatively, subsection [2.2.3| can be adapted to the radial case. All the function
spaces should be reduced to spaces of even functions, and Lemma [2.29| can also be
proved in this way.

2.3 Strong instability

This section is devoted to the proof of Theorem [2.2]

We begin by introducing some notations
M = {v € Hypy(R)\ {0} Q,(v) =0, L, (v) < 0},

d g = inf{S, ,(v);v € A},
where S, , and I, are defined in Proposition and @, in Proposition [2.10]

Our proof is divided in three steps.

STEP 1. We prove that ¢, is a minimizer of d_, .

Because of Pohozaev identity Q- (¢,~) = 0 (see [3]), it is clear that d , < d(w),
thus we only have to show d , > d(w). Let v € #. If I,,(v) = 0, we have
Sw~(v) = d(w), therefore we suppose I, ,(v) < 0. For o > 0, let v® be such that
v*(x) = a'?v(ax). We have

Lo (v%) = 020, + ol = 7alo(O) = /2 o],

thus lir% I~ (v*) = wlv]|3 > 0, and by continuity there exists 0 < ap < 1 such that
a—

I,,(v*) = 0. Therefore
Sy (V7)) = d(w). (2.27)
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—1
Consider now %Swﬁ(va) = a0z — %|v(0)|2 — ha“’_?’)pﬂvnﬁi Since
p =5 and Q,(v) = 0, we have for a € [0, 1]
9 v 2 0 2
Z ay > _ 1= - -
5o Jwa (V%) 2 aQy(v) = 5 (1 = a)|v(0)] 5 (1= a)[v(0)]

and thus aiSwﬁ(va) > 0 for all @ € [0,1], which leads to S, ,(v) = S, ,(v*). It
Q
follows by (2.27)) that S, ,(v) > d(w), which concludes d_, = d(w).

STEP 2. We construct a sequence of initial data ¢f . satistying the following
properties :
Sun(95,) < dw), L, (95 ,) < 0 and Q,(¥g ) < 0.
These properties are invariant under the flow of .

For v > 0, we define o2 by ¢2_(z) = a'/*p,,(az). Since p > 5, v < 0 and
Q+(¢u,y) = 0, easy computations permit to obtain

0 a 9 a 9 a
wsw,’y((pw,'y)\azl < 07 a_ajw,'y(gpw,»y)\azl < 0 and a_aQ’y((Pw;y)\a:I < 07

and thus for any a > 1 close enough to 1 we have

Sww(‘ﬁg,«,) < Swﬁ(‘:pwn/)v ]w,v(@g,w) < 0 and Qw(SDg,y) <0. (2.28)

Now fix a o > 1 such that is satisfied, and let u®(t, z) be the solution of
(2.1) with u®(0) = g . Since g is radial, u®(t) is also radial for all # > 0 (see
Remark . We claim that the properties described in are invariant under
the flow of (2.1)). Indeed, since from ([2.4) and we have for all ¢ > 0

Suwn(u(t) = Sun(¥s,) < Son(Pun); (2.29)

we infer that I, ,(u®(t)) # 0 for any ¢t > 0, and by continuity we have I, ,(u®(t)) < 0
for all t > 0. It follows that Q,(u®(t)) # 0 for any ¢t > 0 (if not u*(t) € .# and
thus S, (u*(t)) > S, (¢w,) which contradicts (2.29)), and by continuity we have
Q(u™(t)) < 0 for all t > 0.

STEP 3. We prove that @, (u®) stays negative and away from 0 for all ¢t > 0.

Let ¢ > 0 be arbitrary chosen, define v = u®(t) and for 3 > 0 let v” be such that
v?(x) = v(Bx). Then we have

Pl et
2(p+1)" Y

Q. (v") = Blowvl3 - S (O)F - 87!
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thus limg_ o @, (v°) = 400, and by continuity there exists [, such that
Q. (™) = 0. If I,,(v™) < 0, we keep fy unchanged; otherwise, we replace it
by S such that 1 < By < Bo, I, (V%) = 0 and Q,(v®) < 0. Thus in any case we
have S, ,(v%) > d(w). Now, we have

1 —fo

Sun(0) = Sua(0%) = —

_ w 1
o0l + 1 807 (S0l — 10121,
from the expression of (), and 3, > 1 it follows that

S (V) = S (07) 2 5(Q4(v) = Qy(v™)). (2.30)

1
2
Therefore, from (2.30), Q,(v™) < 0 and S, ,(v?) > d(w) we have

Q4(v) < —m =2(S,5(v) —d(w)) <0 (2.31)

where m is independent of ¢ since S, , is a conserved quantity.

CoNcCLUSION. Finally, thanks to (2.31) and Proposition [2.10] we have
o ()3 < —4me® + Ot + [l |3 (232

For t large, the right member of (2.32)) becomes negative, thus there exists T* < 400
such that
lim |0,u(t)]]3 = +o0.

Since it is clear that ¢f , — ¢, in H '(R) when o — 1, Theorem is proved.
Remark 2.30. It is not hard to see that the set
TZ={ve HR);S,,(v) <dw),1,(v) >0}

is invariant under the flow of , and that a solution with initial data belonging
to 7 is global. Thus using the minimizing character of ¢, , and performing an
analysis in the same way than in [19], it is possible to find a family of initial data
in Z approaching ¢, , in H*(R) and such that the associated solution of exists
globally but escaped in finite time from a tubular neighborhood of ¢, (see also
[10, 17] for an illustration of this approach on a related problem).

2.4 The virial theorem

This section is devoted to the proof of Proposition [2.10]
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For a € N\ {0}, we define V%(z) = yae ™*". It is clear that JeV*(x) =~ and
Ve — 4§ weak-x in H™!(R) when a — +o0.

We begin by the construction of approximate solutions : for

. - _ _ a,, p—1
{z@tu et — Vo — |ulP~tu, (2.33)

u(0) = wu,
and thanks to [0, Proposition 6.4.1], for every a € N\ {0} there exists 7% > 0 and

a unique maximal solution u® € C([0,7%), H(R)) N C*([0,T*), H '(R)) of (2.33)
which satisfies for all ¢ € [0, 7%)

E*(u’(t)) = E*(uo), (2.34)
[u* (@)l = luollz, (2.35)

1 :
||v|§il. Moreover, the function

1 1 1
where E%(v) = §||3xv||g - §/Va|v|2dx ~ oI
R p

fet— [pa?u’(t, z)|*dz is C* by [6, Proposition 6.4.2], and

ofr = 4Im/ﬁx8xu“da:, (2.36)
R
ouf® = 8Q%(u") (2.37)
where Q2 is defined for v € H'(R) by

1 p—1
a 2 a 2 +1
@30) = w01 + 5 [ a0V loPds = S ol

Then, we find estimates on (u®). Let M > [Juo||m1ry (an exact value of M will
be precise later). We define
t* = sup{t > 0; [|u(s)|| mr(r) < 2M for all s € [0,%)}. (2.38)
Since u® satisfies (2.33)), we have

sup |G| oo po.1e), 11 &) < €
aeN\{0}
and thus for all ¢ € [0,t*) and for all « € N\ {0} we get
t
|u®(t) — uoll3 = 2Re/ (u®(s) — ug, Oru’(s))2ds < Ct (2.39)
0

where C' depends only on M. Now we have

1 a 1 1 ! a a
el = Nl = [ Re [ (@ = st + (1 s)uolrazds
P+ 0 R
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which combined with Holder inequality, Sobolev embeddings, (2.38]) and (2.39)) gives
1 a
m(“u b = lluollbir) < C#2, (2.40)

Moreover, using (2.38)), Sobolev embeddings, Gagliardo-Nirenberg inequality and
(2.39) we obtain

/Va(]u“|2— uol?)| < C#/. (2.41)
R

Combining ([2.34)), (2.35)), (2.40) and (2.41)) leads to

||u“(t)||l2ql(R) < M? + C(tY* +-1/2) for all t € [0,%) and for all a € N\ {0},

and choosing Ty, (depending only on M) such that C' (TJ\IA,/4 —i—TJ\lf) = 3M? we obtain
for all a € N\ {0} the estimates

[ | owt0,700) 11 ) < 2M, (2.42)
10| oo o130, -1 ) < €

In particular, it follows from (2.42)) that Ty, < t* for all @ € N\ {0}.

Now we can pass to the limit :  thanks to (2.42) there exists
u € L>®([0,Ty), HY(R)) such that for all ¢ € [0,Th) we have

u®(t) — u(t) weakly in H'(R) when a — +o0, (2.43)
which immediately induces that when a — 400,
lu® () [P~ () — |u(t) [P u(t) weakly in H'(R). (2.44)
In particular, thanks to Sobolev embeddings, we have
u®(t,x) — u(t,z) a.e. and uniformly on the compact sets of R,
and it is not hard to see that it permit to show
Ve — uys§ weak-x in H™'(R). (2.45)

Since u® satisfies (2.33)), it follows from (2.43)), (2.44) and (2.45)) that u satisfies (2.1]).
Finally, by (2.5)) and ({2.35)), we have

u® — u in C([0, Ty), L*(R)),
thus, from Gagliardo-Nirenberg inequality and (2.42)), we have

u” — u in C([Oa TM)a Lp_'_l(R))?
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and by (2.4) and (2.34)) it follows that
u® — uin C([0,Ty), H'(R)). (2.46)

We have to prove that the time interval [0, 7)) can be extended as large as we
need. Let 0 < T < T, and

M = sup{||u(t)|| g (w). t € (0,17}

If Ty > T, there is nothing left to do, thus we suppose Ty < T. >From (2.46)
we have [[u®(Tar)||a1 ) < M for a large enough. By performing a shift of time of

length T}, in (2.1)) and (2.33)) and repeating the first steps of the proof we obtain
u® — u in C([Tar, 2Twn), H'(R)).

Now we reiterate this procedure a finite number of times until we covered the interval
[0, 7] to obtain
u® — u in C([0,T], H*(R)). (2.47)

To conclude, we remark that (2.6)) follows from the same proof than [6, Lemma
6.4.3] (computing with ||e~¢/*I*zu(t)||? and passing to the limit ¢ — 0), thus we have

t —
lzu(t)||2 = ||zuol3 +4/ Im/ u(s)x0yu(s)dzds. (2.48)
0 R

From ([2.36)), Cauchy-Schwartz inequality and (2.42)) we have
O (lzu()]3) < Cllau(®)])2,

which implies that

et (&)l < llzwolls + C.
Since in addition we have

zu(t,x) — zu(t,x) a.e.,
we infer that

zu®(t,z) — zu(t, z) weakly in L*(R).

Recalling that
Opu® — Oyu strongly in L*(R)

we can pass to the limit in (2.48)) to have
Jzu®(E)]l2 — [leut)]]2-
On the other side, since we have (2.37) and ([2.47), we get (2.7)).

Remark 2.31. Our method of approximation is inspired of the one developed in [§]
by Cazenave and Weissler to prove the local well-posedness of the Cauchy problem
for nonlinear Schrodinger equations. Actually, slight modifications in our proof of
Proposition [2.10] would permit to give an alternative proof of Proposition [2.3]
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2.5 Numerical results

In this Section, we use numerical simulations to complement the rigorous theory on
stability and instability of the standing waves of (2.1)). Our approach here is similar
to the one in [9]. In order to study stability under radial perturbations, we use the
initial condition

uo(@) = (14 8,) 0 (2). (2.49)

In order to study stability under non-radial (asymmetric) perturbations, we use the
initial condition
u0($) = ‘pw,'y(m - 6c)a (250)

when 6. is the lateral shift of the initial condition. In some cases (when the standing
wave has a negative slope and the linearized problem has two negative eigenvalues),
we use the initial condition

wo(@) = (14 6,)pur (z — 52). (2.51)

2.5.1 Stability in H! (R)
Strength of radial stability

When v > 0, the standing waves are known to be stable in A} (R) for 1 < p <5.
The rigorous theory, however, does not address the issue of the strength of radial
stability. This issue is of most interest in the case p = 5, which is unstable when
v =0.

For 6, > 0, it is useful to define

(2.52)

max, |u(z,t)] — max, @, }

maxy Qo v

F(5,) = max{

t>0

as a measure of the strength of radial stability. Figure [2.2] shows the normalized
values max, |u|/max, ¢, as a function of ¢, for the initial condition (2.49)) with
w =4 and v = 1. When p = 3, a perturbation of 6, = 0.01 induces small oscillations
and F(0.01) = 1.9%. Therefore, roughly speaking, a 1% perturbation of the initial
condition leads to a maximal deviation of 2%. A larger perturbation of J, = 0.08
causes the magnitude of the oscillations to increase approximately by the same ratio,
so that F'(0.08) = 15%. Using the same perturbations with p = 5, however, leads to
significantly larger deviations. Thus, F(0.01) = 8.8%, i.e., more than 4 times bigger
than for p = 3, and F(0.08) = 122%, i.e., more than 8 times than for p = 3.
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(a) (b)

2 2
max Ju/max,o, KW/\/\/\/\/\W

e 1 - --

0 0

FIGURE 2.2 - max,|u|/maxzp. as a function of t for
w=4,7=1, 6, = 0.01 (dashed line) and 9, = 0.08 (solid
line). (a) p=3 (b) p=>5.

In [9, B8], Fibich, Sivan and Weinstein observed that the strength of radial
stability is related to the magnitude of slope 9,,||¢w |3, so that the larger 0,||pw~|[3,
the "more stable” the solution is. Indeed, numerically we found that when w = 4,
Dul|Pw~]3 1s equal to 1.0 for p = 3 and 0.056 for p = 5.

Since when v = 0, the slope is positive for p < 5 but zero for p = 5, for v > 0
the slope is smaller in the critical case than in the subcritical case. Therefore, we
make the following informal observation:

Observation 2.1. Radial stability of the standing waves of (2.1) with v > 0 is
“weaker” in the critical case p =5 than in the subcritical case p < 5.

Clearly, this difference would be more dramatic at smaller (positive) values of 7.
Indeed, if in the simulation of Figure with ¢, = 0.01 we reduce 7 from 1 to 0.5
and then to 0.1, this has almost no effect when p = 3, where the value of F slightly
increases from 1.9% to 2.1% and to 2.5%, respectively, see Figure 2.3h. However, if
we repeat the same simulations with p = 5, then reducing the value of v has a much
larger effect, see Figure 2.3b, where F increases from 8.9% for v = 1 to 24% for
~v = 0.5. Moreover, when we further reduced ~ to 0.1, the solution seems to undergo
collapseﬂ This implies that when p =5 and v > 0, the standing wave is stable, yet
it can collapse under a sufficiently large perturbation.

1Clearly, one cannot use numerics to determine that a solution becomes singular, as it is always
possible that collapse would be arrested at some higher focusing levels.
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1.03 2

1.02f
max |ul/max ¢
X oy

1.01

1 1
0 5 0 5

FIGURE 2.3 - max,|u|/mazzp. as a function of t for
w =4, 6, =0.01, and v = 1 (solid line), v = 0.5 (dashed
line) and v = 0.1 (dots). (a) p=3 (b) p = 5.

Characterization of radial instability for 3 < p <5 and v < 0

We consider the subcritical repulsive case p = 4 and v = —1. In this case, there
is threshold wy such that ¢, - is stable for w > wy and unstable for w < wy. By
numerical calculation we found that we(p = 4,7 = —1) ~ 0.82. Accordingly, we

chose two representative values of w: w = 0.5 in the unstable regime, and w = 2 in
the stable regime.

1.5

max Julfmax 9, . NS LAY

0 0
0 20 40 0 20 40
t t

FIGURE 2.4 - max,|u|/maxzp. as a function of t for
p =4,7 = —1, §, = 0.001 (dashed line) and §, = 0.005
(solid line). (a) w =2; (b) w = 0.5.

Figure demonstrates the stability for w = 2. Indeed, reducing the pertur-
bation from ¢, = 0.005 to 0.001 results in reduction of the relative magnitude of the
oscillations by roughly five times, from F'(0.005) ~ 10% to F'(0.001) ~ 2%. The dy-
namics in the unstable case w = 0.5 is also oscillatory, see Figure 2.4b. However, in
this case F'(0.005) = 79%, i.e., eight times larger than for w = 2. More importantly,
unlike the stable case, a perturbation of §,, = 0.001 does not result in a reduction of
the relative magnitude of the oscillations by ~ 5. In fact, the relative magnitude of
the oscillations descreases only to £'(0.001) = 66%.

In the homogeneous NLS, unstable standing waves perturbed with 9, > 0 always
undergo collapse. Since, however, for p = 4 it is impossible to have collapse, an
interesting question is the nature of the instability in the unstable region w < ws.
In Figure we already saw that max|u(z,t)| undergoes oscillations. In order
to better understand the nature of this unstable oscillatory dynamics, we plot in
Figure [2.5| the spatial profile of |u(x,t)| at various values of ¢. In addition, at each ¢
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we plot ¢y (1)~(2), where w*(t) is determined from the relation
max Pur ()4 (T) = max lu(z, t)].

Since the two curves are nearly indistinguishable (especially in the central region),
this shows that the unstable dynamics corresponds to "movement along the curve

¢w*(t) 7.

In Figure we see that w*(¢) undergoes oscillations, in accordance with the
oscillations of max, |u|. Furthermore, as one may expect, collapse is arrested only
when w*(t) reaches a value (/ 2.86) which is in the stability region (i.e., above ws).

Observation 2.2. When v < 0 and 3 < p < 5, the instability in H! (R) is a
“finite width instability”, i.e., the solution narrows down along the curve @)
until it "reaches” a finite width in the stable region w > wq, at which point collapse
18 arrested.

Note that this behavior was already observed in [9], Fig 19. Therefore, more
generally, we conjecture that

Observation 2.3. When the slope is negative (i.e., O,llpw~|l3 < 0 ), then the
symmetric perturbation (2.49) with 0 < 6, < 1 leads to a finite-width instability
in the subcritical case, and to a finite-time collapse in the critical and supercritical
cases.

0 0 = 0
-7 7 -7 7 -7 7
X X X

FIGURE 2.5 - |u(z,t)| (solid line) and @,y (z) (dots) as a
function of x for the simulation of Fig. with d§,, = 0.005.
(a) t = 0 (w* = 0.508) (b) t = 9 (w* = 1.27) (c)
t = 1069 (* = 2.86) (d) ¢t = 12 (* = 1.43) (e)
t =15 (w* = 0.706) (£) ¢ = 20 (w* = 0.58).
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2.8

@3

0

0 20 40
t

FIGURE 2.6 - w* as a function of ¢t for the simulation of

Fig 2.5

Supercritical case (p > 5)

We recall that when v > 0 and p > 5, the standing wave is stable for v2/4 < w < w;
and unstable for w; < w. When v < 0 and p > 5 the standing wave is strongly
unstable under radial perturbations for any w, i.e., an infinitesimal perturbation can
lead to collapse.

Figure shows the behavior of perturbed solutions for p = 6 and w = 1. As
predicted by the theory, when 4, = 0.001, the solution blows up for v = —1 and
v = 0, but undergoes small oscillations (i.e., is stable) for v = 1. Indeed, we found
numerically that wi(p = 6,7 = 1) =~ 2.9, so that the standing wave is stable for
w = 1. However, when we increase the perturbation to ¢, = 0.1, the solution with
v = 1 also seems to undergo collapse. This implies that when p > 5,7 > 0 and
w < w; the standing wave is stable, yet it can collapse under a sufficiently large
perturbation. In order to find the type of instability for v > 0 and w > w;, we solve
the NLS with p =6, v = 1 and w = 4. In this case, §, = 0.001 seems to lead to
collapse, see Figure [2.8] suggesting a strong instability for p > 5, v > 0 and w > wy.
Therefore, we make the following informal observation:

Observation 2.4. If a standing wave of (2.1)) with p > 5 is unstable in H.,(R),
then the instability is strong.

|
|

|

|

max_|u|/ max_¢ [
X X oy |

|

|

|

1
0

0.7

FIGURE 2.7 - max, |u(z,t)|/ max, ¢, as a function of ¢ for
p=6,w=1andy = —1 (dashed line), v = 0 (dots), v = +1
(solid line). (a) 6, = 0.001 (b) 6, = 0.1.
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max Jul/ maqu»m”

1
0

0 1.6 2
t

FIGURE 2.8 - max; |u(x,t)|/ max, ¢, ~ as a function of ¢ for
p=6,w=4,v=1andd, =0.001.

2.5.2 Stability under non-radial perturbations
Stability for 1 <p <5 and v >0

Figure [2.9 shows the evolution of the solution when p = 3,7y =1,w =1 and . = 0.1.
The peak of the solution moves back towards x = 0 very quickly (around ¢ ~ 0.003)
and stays there at later times. Subsequently, the solution converges to the bound
state ¢ +—p.995. This convergence starts near x = 0 and spreads sideways, accom-
panied by radiation of the excess power ||ug||3 — ||¢u+=0.905][3 = 2.00 — 1.99 = 0.01.
In Fig we repeat this simulation with a larger shift of 6. = 0.5. The overall
dynamics is similar: The solution peak moves back to z = 0, and the solution con-
verges (from the center outwards) to ¢.«—g905. In this case, it takes longer for the
maximum to return to x = 0 (at ¢t &~ 0.11), and more power is radiated in the pro-
cess (|[uol|3 — ||dwr=0.905]3 = 2.00 — 1.81 = 0.19. We verified that the "non-smooth”
profiles (e.g., at ¢t = 0.2) are not numerical artifacts.

t=0 t=0.05 t=0.1

0 = 0 0
-5 0 5 -5 0 5 -5 0 5
X X X

FIGURE 2.9 - |u(x,t)| (solid line) and ¢,=0.995(z) (dashed
line) as a function of x. Here, p = 3,w = 1,7 = 1 and
0. = 0.1.
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I
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FIGURE 2.10 - Same as Fig[2.9|with 6, = 0.5 and w* = 0.905.
Drift instability for 1 <p <3 and v <0

Figure[2.11]shows the evolution of the solution for p = 3,7 = —1,w = 1 and 6, = 0.1.
Unlike the attractive case with the same parameters (Figure , as a result of this
small initial shift to the right, nearly all the power flows from the left side of the
defect (z < 0) to the right side (z > 0), see Figure 2.12h, so that by ¢ &~ 3, ~ 90%
of the power is in the right side. Subsequently, the right component moves to the
right at a constant speed (see Fig ) while assuming the sech profile of the
homogeneous NLS bound state (see Fig at t==8); the left component also drifts
away from the defect.

We thus see that

Observation 2.5. When 1 < p < 3, the standing waves are stable under shifts
in the attractive case, but undergo a drift instability away from the defect in the
repulsive case.

We note that a similar behavior was observed in the subcritical NLS with a
periodic nonlinearity, see [9], Section 5.1.
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t=1
2 2 2
lu‘ /v\\ 4/L }\>
0 0 0
-20 0 20 -20 0 20 -20 0 20
t=3 t=4 t=5
2 2 2
M %jk
0 0 0
-20 0 20 -20 0 20 -20 0 20
t=6 t=7 t=8
2 2 2
Jul
0 0 0
-20 0 20 -20 0 20 -20 0 20
X X X

FIGURE 2.11 - |u(z,t)| (solid line) as a function of x. Here
p=3,7y=—-1,w=1and §. = 0.1. Dotted line at t = 8 is
V2w*sech(vw*(x — x*)) with w* = 1.768 and z* ~ 7.

0.5
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t
Ficure 2.12 - (a) The normalized pow-
ers Jo5 ulPda/ [ Juolda (solid line) and

ffoo lul?dz/ [ |ug|*dz (dashed line), and (b) loca-
tion of maxo<y |u(x,t)| (solid line) and of maxg<g |u(z,t)]
(dashed line), for the simulation of Figure
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Drift and finite-width instability for 3 <p <5 and v <0

In Figure[2.4b, Figure 2.5, and Figure[2.6] we saw that when p =4, v = —1, w = 0.5,
and 6, = 0.005, the solution undergoes a finite-width instability in H.,(R). In
Figures and we show the dynamics (in H'(R)) when we add a small shift
of 6. = 0.1. In this case, the (larger) right component undergoes a combination of a
drift instability and a finite-width instability, whereas the (smaller) left component
undergoes a drift instability. Therefore, we make the following observation

Observation 2.6. When 3 <p <5, v?/4 <w < wq and v < 0, the standing waves
undergo a combined drift and finite-width instability.

0 0 0
-50 0 50 -50 0 50 -50 0 50
X X X

FIGURE 2.13 - u(z,t) as a function of . Herep =4, v = —1,
w=0.5, 5, = 0.005, and &, = 0.1
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peaks value

peaks location
o
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-15

o
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n
S

FIiGUurRE 2.14 - (a) The value, and (b) the location, of
the right peak maxg<g |u(x,t)| (solid line) and left peak
max,<o |u(x,t)| (dashed line), for the simulation of Fig-

ure 2131

Drift and strong instability for 5 < p and v < 0

In Figures and we show the solution of the NLS with p =6, v = —1
and w = 1, for the initial condition with . = 0.2 and ¢, = 0.001. As predicted
by the theory, this strongly unstable solution undergoes collapse. Note, however,
that, in parallel, the solution also undergoes a drift instability. We thus see that

Observation 2.7. In the critical and supercritical repulsive case, the standing waves

collapse while undergoing a drift instability away from the defect.

Note that a similar behavior was observed in [9], Section 5.2.
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t=0 t=0.05 t=0.08
3 3 3
Jul
1 1 1
0 0 0
-5 0 5 -5 0 5 -5 0 5
t=0.2 t=0.36 t=0.37
3 3
10
ul
5
1 1
0 0 0
-5 0 5 -5 0 5 -5 0 5
X X X

FIGURE 2.15 - |u(z,t)| as a function of z, at various values
of t. Here,p=6,v=—1,w=1, .= 0.2 and 6, = 0.001.
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FiGURE 2.16 - (a) max,|u(z,t)|/max, o, (b)
location of max, |u(xz,t)] and (c) The normal-
ized powers [;¥|uldx/ [ |uolPdx  (solid line) and
ono lul?dz/ [ |uo|*dz (dashed line), for the solution of

Fig. 2.15]
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2.5.3 Numerical Methods

We solve the NLS (2.1)) using fourth-order finite differences in x and second-order
implicit Crack-Nicholson scheme in time. Clearly, the main question is how to
discretize the delta potential at x = 0. Recall that in continuous case

lim J,u(x) — lim d,u(x) = —yu(0).

z—0t+ z—0~
Discretizing this relation with O(h?) accuracy gives

u(2h) — 4u(h) +3u(0)  —u(—2h) + 4u(—h) — 3u(0)
oh - 5 = —u(0),

when h is the spatial grid size. By rearrangement of the terms we get the equation
— u(2h) + 4u(h) + [2hy — 6]u(0) + 4u(—h) — u(—2h) = 0. (2.53)

When we simulate symmetric perturbations (section [2.5.1)), we enforce symmetry by
solving only on half space [0, +00). In this case, because of the symmetry condition

u(—z) = u(z), becomes
[2hy — 6]u(0) + 8u(h) — 2u(2h) = 0.
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Chapitre 3

A note on Berestycki-Cazenave’s
classical instability result for
nonlinear Schrodinger equations

Abstract. In this note we give an alternative, shorter proof of the
classical result of Berestycki and Cazenave on the instability by blow-up
for the standing waves of some nonlinear Schrédinger equations.

3.1 Introduction

In 1981, in a celebrated note [1], Berestycki and Cazenave studied the instability of
standing waves for the nonlinear Schrodinger equation

iy + Au+ [ufPru =0 (3.1)

where u = u(t,r) € C,t € R, x € RY and p > 1. A standing wave is a solution of
(3.1) of the form e“!p(x) with ¢ € HY(RY) and w > 0. Thus ¢ is solution of

—Ap+wp=plPTly, € H(RY) (3.2)
We say that ¢ € H(R") is a ground state solution of if it satisfies
S(p) = inf{S(v);v € H*(RY)\ {0} is a solution of }
where S is defined for v € HY(RN) by

N 1 w 1
S(U) = §HVUHS + 5”1)”% — m . |U|p+1d$-
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3. ON BERESTYCKI-CAZENAVE’S INSTABILITY RESULT FOR NLS

In [I] it is shown that if 1 + 3+ <p <1+ 5 when N >3 and 1 + 3 < p < +00
when N = 1,2, then any standing wave associated with a ground state solution ¢
of (3.2) is unstable by blow up. More precisely, there exists (y,) C H'(RY) such
that ¢, — ¢ in HY(RY) and the corresponding maximal solution wu, of (3.1} . with
u,(0) = ¢, blows up in finite time.

The result and perhaps more the methods introduced in [I] still have a deep
influence on the field of instability for nonlinear Schrédinger and related equations.
In particular the idea of defining appropriate invariant sets and how to use them
to establish the blow-up. We should mention that in [1] more general nonlinearities
were considered. The paper [1] is only a short note which contains the main ideas
but no proofs. For the special nonlinearity |u[P~'u these proofs can be found in
[5]. For the general case it seems that the extended version [2] of [I] has remained
unpublished so far.

The aim of the present note is to present an alternative, shorter proof of the
result of [I] for general nonlinearities. Also the instability of the standing waves
is proved under slightly weaker assumptions. Before stating our result we need to
introduce some notations. Let g : R +— R be an odd function extended to C by
setting g(z) = g(|z|)z/|z| for z € C\ {0}. Equation (3.1)) now becomes

iug + Au+ g(u) =0 (3.3)
and correspondingly for the ground states we have
— Ap+wp = g(p). (3.4)

For z € C let G(z) := 0|Z| g(s)ds. We assume

(Ao) The function g satisfies

(a) g € C(R,R).
(b) lim, o 22 =

N+2

(c) when N > 3, lims 00 g(s)s™ N2 = 0;

when N = 2, for any o > 0, there exists C,, > 0 such that |g(s)| < Che®’
for all s > 0.

(A;) The function h(s) := (sg(s) —2G(s))s~@+4/N) is strictly increasing on (0, +00)

and limg_o h(s) = 0.
(Az) There exist C >0 and a € [0, 5) if N >3, o € [0,00) if N = 2, such that

l9(s) = g(t)] < O+ [s|* + [t]*)[t — ]
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for all s,t € R. If N = 1 we assume that for every M > 0, there exists
L(M) > 0 such that

l9(s) — g(t)] < L(M)|s — ¢
for all s,¢ € R such that |s| + [t| < M.

Finally we define for v € H'(R") the functional

1 w
S(0) = 5190l + S0l — | Gyt

and set

m = inf{S(v);v € H (RY)\ {0} is a solution of }.

Our main result is

Theorem 3.1. Assume that (Ag) — (A2) hold and let ¢ be a ground state solution
of , i.e. a solution of such that S(¢) = m. Then for every e > 0 there
exists ug € H(RY) such that |[ug — ¢|| @~y < € and the solution u of with
u(0) = g satisfies

th%n |Vu(t)||2 = +oo with T, < +o0.
S “‘0

From [3, 4] we know that assumption (Ag) is almost necessary to guarantee
the existence of a solution for (3.4). Assumption (A;) is a weaker version of the
assumption (H.1) in [I]. An assumption of this type, on the growth of g, is necessary
since it is known from [6] that when g(u) = |u[P™'u with 1 < p < 1+ 3 the
standing waves associated with the ground states are, on the contrary, orbitally
stable. Assumption (Ajy) is purely technical and is aimed at ensuring the local
well-posedness of the Cauchy problem for (3.3). It replaces assumption (H.2)
in [I]. Indeed, in [I] the authors were using the results of Ginibre and Velo
[8] for that purpose. Since [I] has been published, advances have been done
in the study of the Cauchy problem (see [5, [7] and the references therein). In
particular, under our condition (Ay), for all ug € H'(R") there exist T,, > 0 and
a unique solution u € C([0,T,,), H'(R™))NCY([0,T,,), H Y(RY)) of such that
lim; 7, [[Vu(t)|]z = +oo if T,, < +oc0. Furthermore, the following conservation
properties hold : for all t € [0,T,,,) we have

S(u(t)) = S(uo), (3.5)
[u@®)ll2 = [luoll2. (3.6)

Finally, if zug € L*(RY), the function f : ¢ — |lzu(t)||3 is C* and we have the virial
identity
O f (1) = 8Q(u(?)), (3.7)
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3. ON BERESTYCKI-CAZENAVE’S INSTABILITY RESULT FOR NLS

where @ is defined for v € H'(R"Y) by

Q) =190l = 5 [ (allell — 260

The proofs of instability in [I] and here share some elements, in particular
the introduction of sets invariant under the flow. The main difference lies in the
variational characterization of the ground states which is used to define the invariant
sets and how to derive this characterization.

In [1] it is shown that a ground state of (3.4)) can be characterized as a minimizer
of S on the constraint

M = {v e H'(R")\ {0}, Q(v) = 0}.

To show this characterization, S is directly minimized on M. Additional assumptions
(see (H.1) in [I]) are necessary at this step to insure that the minimizing sequences
are bounded. Once the existence of a minimizer for S on M has been established,
one has to get rid of the Lagrange multiplier, namely to prove that it is zero. There,
a stronger version of (Ay), requiring in particular g € C*(R,R) and a control on ¢/(s)
at infinity, is necessary along with tedious calculations.

Having established that the ground states of (3.4)) minimize S on M, Berestycki
and Cazenave show that the set
K :={ve H(R"Y),S(v) <m and Q(v) < 0}
is invariant under the flow of (3.3) and that one can choose in K an initial data,

arbitrarily close to the ground state, for which the blow-up occurs.

In our approach we characterize the ground states as minimizers of .S on
M = {v e H'(RY)\ {0}:Q(v) = 0,1(v) < 0},
where I(v) is defined for v € H(R"™) by

I(v) = [|Voll3 + wllv]l; - /N g(jol)lvldx

R

and correspondingly our invariant set is

{ve H'RY),S(v) <m,Q(v) <0 and I(v) < 0}.

The dominant feature of our approach, which also explains why our assumptions
on g are weaker than in [I] is that we never explicitly solve a minimization problem.
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At the heart of our approach is an additional characterization of the ground states
as being at a mountain pass level for S. This characterization was derived in [10]
for N > 2 and in [II] for N = 1. We also strongly benefit from recent techniques
developed by several authors [12], 13, 14, [15] [16] 7] where minimization approches
using two constraints have been introduced.

3.2 Proof of Theorem [3.1]

We first prove the existence of ground states and the fact that they correspond to
minimizers of S on the Nehari manifold.

Lemma 3.1. Assume that (Ag) and (A1) hold. Then admits a ground state

solution. Furthermore, the ground states solutions of are minimizers for

d(w) == inf {S(v);v € H'(RY)\ {0}, 1(v) = 0}.

Before proving Lemma [3.1, we prove a technical result.

Lemma 3.2. Assume that (Ao) and (A;) hold. Then the nonlinearity g satisfies

g(s)

2= is increasing for s > 0. (3.8)
s

9s) — 400 as s — +00. (3.9)
s

Proof of Lemma (3.3 From the definition of h(s) we have

@ = s*Nh(s) + 2G§8).

(3.10)

Furthermore, for s > 0

0s 52 54

) (G(s)) _ slsg(s) —2G(s)) _ (3.11)

where the last inequality follows from (A;). Thus, combining (3.10)), (3.11)) and (A;)
we get (3.8)) and (3.9). O

Proof of Lemma([3.1]. Tt follows from Lemma [3.2] that

(P) There exists sg > 0 such that
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— if N > 2, then twsj < G(so);
— if N =1, then fws? > G(s) for s € (0, 59), s3ws3 = G(s0) and wsy < g(so).

Now, from [3, Théoreme 1] and [4, Theorem 1] we know that the conditions (Ay)
and (P) are sufficient to insure the existence of a ground state.

If v is a solution of (3.4), then S'(v)v = I(v) = 0; therefore, to prove the lemma
it is enough to show that d(w) > m. From [10] [I1] we know that under (Ay) and
(P) the functional S has a mountain pass geometry. More precisely, if we set

[ = {x € C((0, 1], H'(R™)); x(0) = 0, S(x(1)) < 0},
then I' # () and

f
= Inf max S (x(t)) > 0.

In addition it is shown[]in [10, 11] that

m = C.

Namely the mountain pass level ¢ corresponds to the ground state level m. Now
it is well-known that ensure that if v € H'(RY) satisfies I(v) = 0 then
t +— S(tv) achieves its unique maximum on [0,+oc) at ¢ = 1. Also shows
that limy_, o S(tv) = —oo. From the definition of ¢, it implies that ¢ < S(v) for all
v € HY(RY) such that I(v) = 0. Hence we have

and combined with the fact that m = ¢ it ends the proof. n

Now we investigate the behavior of the functionals under some rescaling

Lemma 3.3. Assume that (Ay) and (Ay) hold. For A > 0 and v € H'(RY), w
define v*(-) :== A2v(X-). We suppose Q(v) < 0. Then there exists Ay < 1 such that

(i) Q) =0,
ii) Ao = 1 if and only if Q(v) =
i) 2S(v*) >0 for A € (0,X) and a%sw) <0 for A € (\g, +00),
iv) A — S(v) is concave on (Ao, +00),

(v) axS(@Y) = 5Q(v).

n fact, the results of [10} [IT] are proved only for real valued functions; however, it is not hard
to see that they can be extended to the complex case (see [9, Lemma 14]).
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Proof of Lemma[3.3. Easy computations lead to

0 N A
55(0) = XQ(U)

N _ N N N
= (190l = 5 [ A (Ve - 2605 0) ),

and recalling from (A;) that the function h(s) := (sg(s) —2G(s))s~@t4/N) is strictly

increasing on [0, +00), (i), (ii), (iii) and (v) follow easily. To see (iv), we remark
that since

N
(kug -5 [ A (A%gu%m)\m . 2G<A%v>) dx) <0
RN

on (A, +00), we infer from (A;) that %S(v)‘) is strictly decreasing on (Ao, +00),
which implies (iv). O

Proof of Theorem[3.1. We recall that

M ={ve H'(RY)\ {0};Q(v) = 0,I(v) <0},

and define
dy =inf{S(v);v e . #}.

We proceed in three steps.

STEP 1. Let us prove d(w) = d,. Since the ground states ¢ satisfy
Q(¢) = I(p) = 0, we have ¢ € 4. Combined with S(¢) = d(w), this implies
dy < d(w). Conversely, let v € .. If I(v) = 0, then trivially S(v) > d(w), thus we
suppose I(v) < 0. We use the rescaling defined in Lemma : for A > 0 we have

I(v*) =A2\|Vv||§+w||v\|§—/ A2 o)) vl da.
RN

It follows from (Ag)-(b) that limy_o /(v*) = w||v||? and thus by continuity there
exists \; < 1 such that I(v*) = 0. Thus S(v) > d(w). Now, from Q(v) = 0 and
(iii) in Lemma (3.3 we have

S(v) = S(M) > d(w),

hence d 4, = d(w).

STEP 2. For A > 0, we set u* := ¢*. For A > 1 close to 1, we have

S(ut) < S(p) and Q(u*) < 0, (3.12)
I(u?) < 0. (3.13)
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Indeed, (3.12) follows from (iii) and (v) in Lemma [3.3, For (3.13), we write

2 2
1) = 2502 + QM) — Vel
2 2)\2
< 4 . _ A 2
< 25(0) + 2 Q0) — I(g) ~ Vel
2(1 — N2
< MDyggp <o

Let u(t) be the solution of (3.3 with u(0) = u*. We claim that the properties

described in (3.12)), (3.13)) are invariant under the flow of (3.3). Indeed, since from
(3.5) we have for all ¢ > 0

S(u(t)) = S(u*) < S(p), (3.14)

we infer that I(u(t)) # 0 for any ¢ > 0, and by continuity we have I(u(t)) < 0 for
all ¢ > 0. It follows that Q(u(t)) # 0 for any ¢t > 0 (if not u(t) € .# and thus
S(u(t)) = S(¢) which contradicts (3.14)), and by continuity we have Q(u(t)) < 0
for all ¢ > 0. Thus for all ¢ > 0 we have

S(u(t)) < S(p), I(u(t)) < 0 and Q(u(t)) < 0.

STEP 3. We fix ¢ > 0 and define v := u(t). For 8 > 0, let v%(z) := B2 v(Bx).
From STEP 2 we have Q(v) < 0, thus from Lemma [3.3|there exists 3, < 1 such that
Q(v%) = 0. If I(v) < 0, we keep 3, otherwise we replace it by By € (fo, 1) such
that [(v%) = 0. Thus in any case we have

S(v%) > d(w) (3.15)
and Q(v™®) < 0. Now from (iv) in Lemma we have

S(0) = S™) > (1= o) 350

Thus, from (v) in Lemma 3.3} Q(v) < 0 and §y < 1, we get
S(v) = S(W™) = Q(v).
Combined with , this gives
Qv) < S(v) —dw) :=-0<0 (3.16)

where ¢ is independent of ¢ since S is a conserved quantity.

To conclude, it suffices to observe that thanks to (3.7]) and (3.16) we have
lzu(t)|5 < —46t* + Ot + [lau|3, (3.17)

and since the right hand side of (3.17]) becomes negative when ¢ grows up, we easily
deduce that T;» < +00 and lim;_7 | Vu(t)||2 = +oo. ]
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Chapitre 4

Instability for standing waves of
nonlinear Klein-Gordon equations
via mountain-pass arguments

Abstract. We introduce mountain-pass type arguments in the
context of instability for Klein-Gordon equations. Our aim is to illustrate
on two examples how these arguments can be useful to simplify proofs
and derive new results of orbital stability /instability. For a power-type
nonlinearity, we prove that the ground states of the associated stationary
equation are minimizers of the functional action on a wide variety of
constraints. For a general nonlinearity, we extend to the dimension
N = 2 the classical instability result for stationary solutions of nonlinear
Klein-Gordon equations proved in 1985 by Shatah in dimension N > 3.

4.1 Introduction

The aim of the present paper is to show how recent methods and results concerning
the variational characterizations of the ground states for elliptic equations of the
form

—Ap=g(p), ¢cHR";C) (4.1)

can be used to study the orbital stability /instability of the standing waves of various
nonlinear equations such as Schrédinger equations, Klein-Gordon equations, gener-
alized Boussinesq equations, etc. Our work is motivated by recent developments (see
for instance [10} 16}, 17, 18, 2T, 22]) of the techniques introduced by Berestycki and
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Cazenave [2] to prove the instability of standing waves for nonlinear evolution equa-
tions. We present our approach on two examples involving nonlinear Klein-Gordon
equations of the form

uy — Au+ pu = f(u) (4.2)
where p > 0, u : Rx RY = C and f : (0,+00) — R is extended to C by setting
f(z) = f(|z])z/|z| for z € C\ {0} and f(0) = 0.

A standing wave of (4.2)) is a solution of the form e“!p,(z) for w € R and
¢, € HYRYN;C). Thus ¢, satisfies
— Ay, +(p — WQ)‘sz — f(pw) = 0. (4.3)

Clearly, (4.3)) is of the form (4.1)). From now on we write H'(R") for H*(R";C).
The least energy level m is defined by

m = inf{S(v)|v € H'(RV)\ {0}, v is a solution of (4.1} (4.4)
where S : HY(RY) — R is the natural functional (often called action) corresponding
to (1)

1
S = 5Ivel3 - [ Gyds,
RN
with G(s) = O‘S| g(t)dt. A solution p € HY(RY) of 1' is said to be a ground state,

or least energy solution, if
S(p) = m.

The study of the existence for solutions of (4.1)) goes back to the work of Strauss [25]
(see also [12]). The most general result in that direction is due to Berestycki and
Lions [5] for N =1 and N > 3 and Berestycki, Gallouet and Kavian [3] for N = 2.

The assumptions of [3, 5] when N > 2 are :

(g0) ¢ is continuous and odd,

(gl) if N >3, —00 < 1imiglf@ <lmsup 2 <0,
Ss— S s—0 S
if N =2, —oo<1in%@ = p <0,
55— S

(62) if N >3, 1im 2 g,

s—+00 g N1

if N =2, Vo> 03C, > 0 such that |g(s)| < Cne®” Vs > 0.

(g3) there exists £ > 0 such that G(&) > 0.
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It is known that the assumptions (g0)-(g3) are almost optimal to insure the existence
of a solution for (see [Bl, Section 2.2]). In [3] 5] it is proved that for N > 2 and
under (g0)-(g3) there exists a positive radial least energy solution ¢ of when
the infimum in is taken over the solutions belonging to H'(R",R). Moreover
it is easily deduce from the proofs in [3, 5] that this ¢ is still a least energy solution
of when the infimum is, as in (£.4), taken over the set of all complex valued
solutions. See [11] for a proof of this statement along with a description of the
ground states as being of the form U = €U where 6 € R and U is a real positive
ground state solution of .

In dimension N = 1, the assumptions in [5] are

(h0) g is locally Lipschitz continuous and ¢(0) = 0,
(h1) there exists 79 > 0 such that
G(s) < 0 for all s € (0,m9), G(n0) =0, g(no) >0

and it is proved in [5] that under (h0) the condition (hl) is necessary and sufficient
to guarantee the existence of a unique (up to translation) real positive solution of
(4.1)). Here also, it can be shown (see [I1]) that the least energy levels coincide for
complex and real valued solutions of .

Since the pioneer works [2, [9], it is known that the stability/instability of the
standing waves is closely linked to additional variational characterizations that the
associated ground states enjoy. Recently, in [13] for N > 2 and in [I4] for N = 1,
Jeanjean and Tanaka showed that, under the conditions (g0)-(g3) for N > 2 and
basically (h0)-(hl) for N = 1, the functional S admits a mountain pass geometry.
Precisely they show that setting

= {y€C([0,1], H'(R")),~7(0) =0, S(7(1)) < 0} (4.5)

one has I' # () and
¢ := inf max S(y(t)) > 0. (4.6)

Y€l te[0,1]
Furthermore, they proved that
c=m,

namely that the mountain pass value gives the least energy level. In fact, the results
of [13], [14] are proved within the space H!(RY R) but it is straightforward to show,
see Lemma [4.14] that this equality also holds in H'(R™Y).

In this paper, we will show, by studying two specific problems, how the ideas
and methods developed in [I3] 14] can be implemented in the context of instability
by blow-up for nonlinear Klein-Gordon equations.
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4. INSTABILITY VIA MOUNTAIN-PASS ARGUMENTS

First, working with a nonlinearity of power type (f(s) = |s[P~!s) we find a set of
constraints on which the ground states are minimizers of S. In particular, this gives
an alternative, much simpler proof of results in [I7, 21], 22] concerning the derivation
of an additional variational characterization of the ground states. Precisely, we prove

Theorem 4.1. Let o, 3 € R be such that

<0, alp—1)—28=>20 and2a — (N —2) >0 A7
or B0, alp—1)—28> 0 and 2a — BN > 0. (4.7)

Let w € (—1,1) and p, € H'(RY) be a ground state solution of

—Ap, + (1 = wH)p, — @’ i, = 0.

Then
S(¢w) = min{S(v)|v € H'(RY)\ {0}, Ko 5(v) = 0}
where
1 1 1
S() = SIvoli+ - — el
oa— — oa— —w2 «
Kaglv) i= 22Dy} 4 Qo) o3 ol Db o2,

The functional K, s is based on the rescaling vy (- ) := X*v(\? ) for v € HY(RY),
precisely, K, 3(v) = 86/\5(1},\)‘)\ 1. The main idea of the proof of Theorem {.1|is to
use rescaled functions to construct for any v € H'(RY) such that K, (v ) =0a
path in I' attaining his maximum at v.

It is also of interest to consider a limit case of Theorem (4.1l
Theorem 4.2. Let o, 5 € R be such that

6<0, a(p—1)—26=20and2a—F(N—-2)=0
or 3>0, alp—1)—20820 and 2a — N = 0.

Let w € (—1,1) and ¢, be a ground state solution of
—Apy + (1= w)pu — e Hew = 0.

Then
S(p.) = min{S(v)|v € H'(RV)\ {0}, Ko g(v) = 0}.

Remark 4.1. Looking to the proofs of Theorems [£.1] and [4.2] one see that our
Theorems remain unchanged when (1 — w?) is replaced by any m > 0. We choose
however to present our results in the setting of [17, 21, 22].
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For (a,f3) = (%,1), Theorem gives a simpler proof of a variational

characterization of the ground state proved by Berestycki and Cazenave [2] for
1+ % <p<l1l+ ﬁ and by Nawa [19, Proposition 2.5] for p = 1 + %. This
characterization is at the heart of the classical result of Berestycki and Cazenave [2]

dealing with the instability of the ground states of nonlinear Schrédinger equations.

For our second direction of application we consider the instability of the station-
ary solutions of

uy — Au = g(u). (4.9)

In 1985, Shatah established in [23] that under the conditions (g0)-(g3) the radial
ground states solutions associated with the standing waves corresponding to w = 0
are unstable when N > 3. Under stronger hypothesis, but in any dimension and for
non necessary radial solutions, Berestycki and Cazenave [2] had previously proved
that these ground states are unstable by blow up in finite time. In [23], instability
may occur by blow up in infinite time, in the sense that the H'(RY)-norm of a
solution starting close to a ground state goes to infinity when t — +o00. Here, we
show that the same result hold when N = 2.

We make the following hypothesis on the existence and properties of solutions

for (4.9)).

Assumption H. For all (ug,vo) € HL 4 (R?) x L2

2 (R?) there exist 0 < T < +00
and u : [0,T) x R* — C such that

o (u(0),u(0)) = (uo,vo),

(R?) (resp. L7,q(R?)),

u (resp. uy) is weakly continuous in H} 4

rad

u satisfies (@ in the sense of distributions,

E(u(t),u:(t)) < E(ug,vo) for allt € [0,T) (energy inequality),

if T < +o00, there ezists (t,) C [0,T) such that t, — T as n — +oo and
limy, 7 ||u(tn)| 1 2) = 400 (blow-up alternative),

The energy E is defined for u € H'(RY) and v € L?*(R") by

1 1
Bluv) = gl + 3IVul — [ Gud

(RY) (resp. L2 ,(RY)) for the space of radial

In what follows, as above, we write H! 2

rad

functions of HY(RY) (resp. L2(RY)).
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Remark 4.2. When N > 3, Shatah claims that Assumption H holds under (g0)-
(g3) without any additional restrictions. For others dimensions, Assumption H is
known to hold under stronger assumptions on g, see, for example, [8, Chapter 6].
From now on a solution of with initial data (ug,vg) will refer to a solution of
(4.9) with initial data (ug,vo) as given by Assumption H.

Our third main result is the following

Theorem 4.3. Assume N = 2, (g0)-(93) and Assumption H. Let ¢ be a radial
ground state of . Then ¢ viewed as a stationary solution of s strongly
unstable. Namely for all € > 0 there exist u. € H'(R?), T. € (0,4o00] and
(tn) C (0,T7) such that ||p — uc|| g wey < € and limy, 7. [|u(ty)| g1 w2y = +00, where
u(t) is a solution of with initial data (ue,0).

It is still an open question to describe what happen in dimension N = 1. Indeed,
the use of the radial compactness lemma of Strauss (see Lemma restricts our
proof to dimensions N > 2. A partial answer is given by the work of Berestycki and
Cazenave : for nonlinearities satisfying some additional assumptions (see [2, (H.3)]),
the stationary solutions are unstable.

We do hope that the methods developed in this paper will find other areas of
applications. In that direction, we mention the work [I5] in which the variational
characterization ¢ = m derived from [13] [14] is essential to get an alternative, more
general proof of the classical result of Berestycki and Cazenave [2] on the instability
by blow-up for nonlinear Schrodinger equations.

This paper is organized as follows. In Section [4.2] we prove Theorem and
Theorem [£.2] In Section [1.3) we prove Theorem [£.3] The proof that the results of
[13, [14] extend to the complex case along with a technical lemma are given in the
Appendix.

4.2 Variational characterizations of the ground
states

In this section, we consider (4.3) with a power type nonlinearity :
- ASOOJ + (1 - w2)90w - |90w|p_1§0w =0 (410)

where 1 < p < 1+4+4/(N —2) and |w| < 1. For this nonlinearity it is known (see
[7, Section 8.1] and the references therein) that there exists a unique positive radial
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ground state ¢, € HY(RY R) of (4.10) and that all ground states are of the form
iwt

e?p,(- — y) for some fixed § € R and y € RY. The standing waves ey, are
solutions of the nonlinear Klein-Gordon equation

uy — Au+u = |[ufPu (4.11)
and the natural functional associated with (4.10)) becomes

1 1—w? 1 .
S(w) = 5Vl + =5l — IR

Various results of instability for the standing waves of were recently proved
in [17, 21], 22]. For instance, it was proved in [2I] that for any 1 <p < 1+4+4/(N —2)
the standing wave associated with a ground state of is strongly unstable by
blow up if w? < (p—1)/(p—3) and N > 3. In [22], a result of strong instability was
showed for the optimal range of parameter w in dimension N > 2 (namely |w| < w,,
where w, was determined in [24]). In both cases, it is central in the proofs that the
ground states can be characterized as minimizers on constraints having all the form

Hop = {v € H'(RY)\ {0} Kap(v) = 0}
for some «a, 3 € R. Recall that the functional K, s is defined for v € H'(R") by

Kap®) = &SSO ))pot

20—[(N—2 200—3N)(1—w? 1)—8N 1
= 2| Vo + E=EE o — ST o).

For example, it is proved in [2I] that the ground states are minimizer of S on %, g
for (o, ) = (1,0) and (o, B) = (0, —1/N) (see [21} (2.1)]) whereas in [22], the values
of (a, B) considered are (o, ) = (N/2,1) if p > 1+ 4/N (see [22, (2.11)]) and
(a, ) = (2/(p—1),1) if p < 14+ 4/N (see [22, (2.18)]). Recently, Liu, Ohta and
Todorova [17] extended the approach of [21] to the dimensions N = 1,2. Once more,
a main feature of their proof is to minimize S on J#, 3, but this time with

(=1 = (p+3)?
2(p — 1)w?

76:_1

In [I7, 21\ 22], the proofs that the ground states are minimizers of S on JZ, g
follow similar schemes. First, one has to show the convergence of a minimizing
sequence to some function solving a Lagrange equation. After that, the difficulty is
to get rid of the Lagrange multiplier. For each choice of (o, 3), long computations
are involved to prove that the Lagrange multiplier is 0 and to conclude that the

obtained function is in fact a solution of (4.10)).

Our proof of Theorem relies on the following lemma. We recall that I' is
defined in (4.5)).
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Lemma 4.3. Let o, 3 € R satisfy . Then for all v € J, s we can construct a
path v in I' such that
max S(y(t)) = S(v).

te(0,1]

Proof. Let v € .3 For all A € (0,+00) we define vy € H'(RY) by
ua(+) == A0(N\.). The idea is to construct the path such that v(t) = vg,; for
some C > 0.

The first thing to check is that we can extend v at 0 by continuity. Namely, we
must show that under (4.7)) we have limy_q [[vs|| g1 @~y = 0. This is immediate if we
remark that

[orllZ vy = X2 PE=D Vo5 + XN o3,

and that (4.7) implies
2a — (N —2) > 0 and 2a — BN > 0.

The next step is to prove that A — S(vy) increases for A € (0, 1), attains its
maximum at A = 1 and decreases toward —oo on (1, 400). We have

)\QQ—B(N—2) 1 — w2)\2—BN )\(p—l—l)a—ﬂN
(ol + SO e AT e
2 2 2 2 p+ 1 p+1

S(vy) =

and from easy computations it comes
) (20 = BN)(1 —?)
2

2

\—(a—gn-1) O S(oy)

= I3 +

w3

_/\Oé(p—l)a(p +1) — ﬂN”v”p—&-l
p+ 1 p+1-

Therefore, if a and [ satisfy
B#0and a(p—1) =20 (4.12)
or f=0and a(p—1)>0 '

then 5
§S<UA) >0 for A € (0,1),
5559(ux) < 0 for A € (1, 400),
limy o0 S(vy) = —00.

Since aw > 0 when 3 = 0 in (4.7)) it is clear that (4.12) hold under (4.7).

Finally, choosing C large enough to have S(vc) < 0 and defining
v :[0,1] — HYRY) by
7(0) := 0 and (¢) := v

we have a path satisfying the conclusion of the lemma. O
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Proof of Theorem[{.1]. Let ¢, be a least energy solution of (4.10) for |w| < 1. From
Lemma [£.14] we know that
c=m

where m is the least energy level and ¢ the mountain pass value (see and
for the definitions of m and ¢). Since ¢, is a solution of , 0, € Ct and ¢,
V,, are exponentially decaying at infinity (see, for example, [7, Theorem 8.1.1]); in
particular, .V, € H*(RY), and

0
Ka,ﬁ(@w> = as()\a(pw()\ﬁ : ))})\:1 = <S/(90w)7 Py, + 5I-V%> = 0.

Thus ¢, € J, 3 and

min{S(v)|v € A5} < S(pw) =c. (4.13)

Conversely, it follows from Lemma [4.3| that
¢ < min{S(v)|v € A, 5}. (4.14)
To combine and finishes the proof. m

We now turn to the proof of Theorem [£.2] It follows the same lines as for
Theorem : find a path reaching its maximum on the constraint .%;, g and use the
equality ¢ = m. The main difference is in the way we construct the path : we still
want to use the rescaled functions vy, but their H'(R")—norm does not any more
converge to 0 as A — 0. This difficulty is overcome by gluing to {vy}r>y, & path
linking 0 to vy, for Ay suitably chosen. The lemma is

Lemma 4.4. Let , 3 € R satisfy @ Then for all v € J, g we can construct a
path v in I' such that
max S(y(t)) = S(v).

te(0,1]

Proof. Let v € K45 and vy, (-) := A3v(\J -) for some A € (0,1) whose value will
be fixed later. Let C' > 0 be such that S(v¢) < 0 and consider the curves

A = {u|A e X, O},

Ay = {toy |t €0, 1]}
To get a path as desired, we will glue the two curves A; and Ay. It is clear that as in

the proof of Lemma [£.3 S attained its maximum on A; at v. Thus the only thing
we have to check is that t — S(tv,,) is increasing on [0, 1].

We have
0

575(t03) = Vo 3+ (L= w)lfosg B = 0o 15D

- 107 -



4. INSTABILITY VIA MOUNTAIN-PASS ARGUMENTS

If >0 and a = BN/2 (see (4.8])), then A\g — ||v),]|2 is constant. If < 0 and
a = [(N —2)/2 then \g — ||Vv,,||2 is constant. Moreover, we have in any case

. 41
Jim{loxg [ = 0.
Therefore, if Ay € (0,1) is small enough we have

2S(tv,\o) >0 for t € (0,1).

ot

To define 7 : [0, 1] — HY(RY) by
1) = Lo, for t € [0, %)
v(t) = wey fort e [ 1]

gives us the desired path. O

Proof of Theorem[{.4. The proof is identical to the proof of Theorem with
Lemma [£.3| replaced by Lemma [4.4] O

4.3 Instability for a generalized nonlinear Klein-
Gordon equation

In this section, we consider the nonlinear Klein-Gordon equation with a general
nonlinearity

uy — Au = g(u). (4.15)

In [23], Shatah proved that for N > 3, under (g0)-(g3), the radial ground states
solutions of
—Ap=g(p), »eH'RY) (4.16)

viewed as stationary solutions of (4.15]) are unstable in the sense of Theorem
The restriction to N > 3 has its origin in, at least, two reasons.

First, one needs to control the decay in |z| of u(¢, x) uniformly in ¢. This appears
in the proofs of Proposition [.12] and Lemma [£.15] For this control, the following
compactness lemma due to Strauss [25] is used.

Lemma 4.5. Let N > 2 and v € H!

rad

(RN). Then

lv(z)| < C’|a:| ||U||H1(RN) a.e.
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with C independent of x and w. In particular, the following injection is compact

HL (RY) — LYRYN) for 2 < ¢ < 2%,

rad

whereQ*:% if N >3 and 2* = 400 if N = 2.

Actually, to use this lemma only N > 2 is necessary.

A second reason for the restriction N > 3 in [23] is found in the use of a constraint
based on Pohozaev’s identity to derive a variational characterization of the ground
states, to define an invariant set, and, most important, to choose suitable initial
data close to the ground states. Thanks to our approach, we arrive on this second
point to require only N > 2.

Our proof will make use of the following variational characterization of the ground
states.

Lemma 4.6. Let ¢ € HY(R?) be a ground state of ({{.16). Then

S(p) =m = min S(v) (4.17)

vEL

where

P :={ve H'(R*)\ {0}|P(v) =0}

with P(v) := / G(v)dz for v e H'(R?).

RQ

This lemma was proved in [3] when v € H'(RY,R). It can trivially be extended
to v € HY(RY), see [11].

Remark 4.7. The functional P is related to the so-called Pohozaev identity (see
[5, Proposition 1]) : for N > 1, any solution v € H'(RY) of (4.16)) satisfies

N -2
—vang—N/ G(v)dz = 0.
2 ]RN

A main feature of the dimension N = 2 is that we lose the control on the
L*(RY)—norm of V.

Remark 4.8. For N > 3, Shatah also showed that the radial ground states are
minimizers of S among all non trivial functions satisfying Pohozaev identity (see [23),
Proposition 1.5]). His method consists in proving that the minimization problem
has a solution and then to eliminate the Lagrange multiplier. In fact, as it is done
in [13, Lemma 3.1], a shorter proof can be performed by simply establishing a
correspondence with a minimization problem already solved in [5].
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The scheme of the proof is the following - first, define a set
I C H!, (R?) x L2,(R?) such that any solution of (4.15) with initial data in Z
stays in Z for all time and blows up, then prove that the ground states can be
approximated by functions in Z.

Let Z be defined by
- {U’ S rad(R2> \ {0} CIS Lrad R2)|E(U,U> < m,P(u) > O}
We begin by proving an equivalence between two variational problems.

Lemma 4.9. We have

m:f]ré%;lS() min{7T'(v)|v € H'(R?) \ {0}, P(v) > 0},

1
where T'(v) := §HVUH§

Proof. Let v € HY(R?). If v € &2, then v satisfies T(v) = S(v) and thanks to
Lemma [4.6] T'(v) > m. Suppose that P(v) > 0. For A > 0, define vy(-) := Av(X-).
We claim that there exists Ay < 1 such that P(v,,) = 0. Indeed, by (gl)-(g2), for
all & > 0 there exists C,, > 0 such that for s > 0

g(s) < —Ts + 250C, e

-1

We recall that p > 0 is given in (gl) by lim,_ g(s)s™' = —p. Therefore, for s > 0

we have
G(s) < _ZS + Cale™ — 1)
e foall
/R Glw) < % +C, /R 2<eavi —1)dx. (4.18)

We remark that ||vy||2 = ||v]|3 and

/ (eX — 1)dx = )\2/ (e — 1)dux.
R? R?

A2 (e 1) < @) _ 1 for all 2 € R?,

For A < 1 we have

and by Moser-Trudinger inequality (see [I, Theorem 8.25]) there exists a > 0 such
that (e*” —1) € L'(R?). Hence, Lebesgue’s Theorem gives

/ (e®X — 1)dz — 0 when A — 0.
R2
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Coming back to (4.18)) this means that
/ G(vy) < 0 for A > 0 small enough,
RQ
and by continuity of P this proves the claim.

Now, we have

inf S(u) < S(vy,) = T(vy,) = NT(v) < T(v),

ue

and the lemma is proved. O

Next we prove that the set Z is invariant under the flow of (4.15)).

Lemma 4.10. Let (ug,v0) € Z, 0 < T < +00 and u(t) a solution of on [0,7T)
with initial data (ug,ve). Then (u(t),us(t)) € T for allt € [0,T).

Proof. Let

to := inf [{t € [0,T)|P(u(t)) < 0} U {+oo}] .
Assume by contradiction that tg # +oo and consider (t,,) C (to,T') such that ¢, | to
with P(u(t,)) < 0. By Assumption H, u(t,) — u(to) weakly in H'(R?). Thus we

have
T(u(ty)) < liminf T'(u(t,)) < liminf [T'(u(t,)) — P(u(t,))] - (4.19)

n—-+o0o n—-40o

Moreover

liminf [T'(u(t,)) — P(u(t,))] = iminf S(u(t,)) < liminf E(u(t,), u(t,)) (4.20)

n—-+oo n—-+oo n—-+o0o

and by the energy inequality in Assumption H we get
ITILIEJlIOlOf E(u(ty), u(ty)) < E(ug,vo)- (4.21)
Recalling that (ug,vg) € Z, we have
E(ug,vp) < m. (4.22)
Combining — gives
T(u(to)) < m. (4.23)

Now, take (t,) C (0,ty) such that ¢, 1 ;. By Lemma [4.16, v — P(v) is upper
weakly semi-continuous, thus

P(u(ty)) > limsup P(u(t,)) > 0. (4.24)
n—-+o0o
Now together ([4.23) and ([4.24)) lead to a contradiction with Lemma [£.9] O
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The following lemma is a key step in the proof.

Lemma 4.11. Let (ug,v9) € Z and u(t) an associated solution of in [0,T).
Then there ezists 6 > 0 such that P(u(t)) > 0 for allt € [0,T).

Proof. Indeed, assume by contradiction that there exists a sequence (t,,) such that
P(u(t,)) — 0 as n — +o00. Then

T(u(t,)) = S(u(tn))+ P(u(ts))
< E(ulty), u(tn)) + Pu(ty,)).

By the energy inequality in Assumption H this implies
T(u(tn)) < E(uo,vo) + P(u(tn))

and thus
T(u(t,)) <m+ P(u(t,)) —v (4.25)

with v :=m — E(ug,vg) > 0 since (ug,v9) € Z. For n large enough we have
0< Plu(ty)) <v/2

and thus (4.25)) gives

T(u(ty)) < m — g

which contradicts the result of Lemma [4.0] O

The proof of Theorem relies on the following proposition.

Proposition 4.12. Let (ug,v9) € Z and u(t) an associated solution of on
[0,T). Then there exists (t,,) C (0,T) such that limy, 7 ||u(ty)| g1 @2y = +00,

Proof. The proof of Proposition is similar to the proof of Theorem 2.3 in [23],
thus we just indicate the main steps. First, if T' < 400, the assertion of Proposition
[4.12] is just the blow up alternative in Assumption H. Thus we suppose 7' = +oo
and, by contradiction, (||u(t)| g1 &~y) bounded. Following the line of the proof of
Theorem 2.3 in [23], it is not hard to see that there exists 0 < n < ¢ (where 9§ is
given by Lemma such that

2/ G(u)dxr —n < —gRe/ 0(t, x)uzr.Vudz (4.26)
R2 8t R2

where 6 : [0, +00) x R? — R is such that

0(t,z)| < Ct/n(t) (4.27)
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for all (,2) € [0,+00) x R2 To combine (4.26) and Lemma [4.11] gives

0 < —ﬁRe/ 0(t, x)uzr.Vudz. (4.28)
ot Jgre

Hence, by integrating (4.28) we find

at < —Re/ 0(t, v)upx.Vudr + Re/ 0(0, x)vg x.Vugdz. (4.29)
R? R

2

Now, by (4.27)) and (4.29) there exists C' > 0 such that
()0 < O+ [[Vu@)2[u(t)]]2)- (4.30)

But, thanks to the energy inequality |[u.(t)||2 is bounded, and ||Vu(t)||2 is bounded
by assumption, therefore, for ¢ large enough we reach a contradiction in (4.30). O

In dimension N > 3, it is easily seen that for A < 1 the dilatation of a ground state
©a(-) == o(5) gives a sequence of initial data in Z converging to this ground state.
This property, combined with the equivalent of Proposition 4.12] gives immediately
the instability of the ground states in [23]. This is not the case any more in dimension
N = 2 where the dilatation @5(-) := ¢(5) leaves & and T invariant. To overcome
this difficulty, we borrow and adapt an idea of [0, Proposition 2| which consists in
using separately (and successively) a dilatation and a rescaling to get initial data in
7 close to the ground states.

Lemma 4.13. Let p € H'(R?) be a ground state of {4.16). For all € > 0 there
exists . such that

e — ellmme) <€, S(e:) < S(¢), Ple:) > 0.

Proof. For A, 1t > 0 consider ¢y ,(-) := Ap(<). Then

;
0 _
555t = XIelE — i [ groyede.
o\ o

To multiply (4.16)) by @ and integrate gives us
IVelt = | slored.
RQ

Hence, for A = 1 we get

0

55(@%#”)\:1 = (1= )| Vells.
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Thus, for all ;1 > 1, there exists A, > 0 such that

%S(gow) <0Oforxe (1-X,14+A,)

and therefore

S(pau) < S(p) for X e (1, 1+ X,). (4.31)

Now,

0

0 plorit = i / g()pdr = 12| Ve|l2 > 0.
B\ -

Thus, for all ;1 > 0, there exists A, such that

EP(@)W) >0for\e(1-A, 1+A,)

oA
and therefore
P(pryu) >0for e (1,14 A,). (4.32)
Finally, from (4.31)-(4.32)), for A\, > 1 close enough to 1 we get the desired
result. O

Proof of Theorem[{.3 Let ¢ > 0 and ¢, given in Lemmad.13] Then (¢, 0) satisfies
E(p:,0) = S(¢p:) <m and P(p.) >0,

namely (¢.,0) € Z. Theorem [4.3] follows now from Proposition [£.12] O

4.4 Appendix

Lemma 4.14. Let m denote the least energy level defined in and c the
mountain pass level defined in @ Then m = c.

Proof. In [13, Theorem 0.2] for N > 2 and [14] Theorem 1.2] for N =1 it is shown
that when the class I' is replaced by

[i={y € C(0,1], H'(RY,R)),7(0) =0, S(v(1)) < 0}
one has

¢ := inf S(y(t) =n
¢ := Inf max (v(£)) = m
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where m is the least energy level among real valued solutions of (4.1)). From [3], 5, [11]
we know that m = m. Also trivially ¢ < ¢. Now for each v € I" we observe that
setting 5(t) = |y(t)| one has

N

I950IE <IVr@1 and [ GG = [ Gt

Thus 4 € T and S(3) < S(7). This show that & < ¢ and ends the proof. O

Now we prove the upper weakly semicontinuity of P. We begin by a convergence
lemma

Lemma 4.15. Let H € C(R,R) be such that
(H1) For all a > 0 there exists Co > 0 such that |H(s)| < Co(e®” —1) for all s > 1,
(H2) H(s) = o(s*) when s — 0.

Let (u,) C H]

1 1(R?) be a sequence bounded in H'(R?) such that u, — u a.e. Then
we have

H(u,) — H(u) in L*(R?).

This lemma was proved in J4, Lemma 5.2], the extended version of [3]. We recall
it here for the sake of completeness.

Proof of Lemma /.15 From the continuity of H we have H(u,) — H(u) a.e. By a
theorem of Vitali (see, for example, [20, p 380]), it is enough to prove

(i) for each € > 0 there exists R > 0 such that / H(up)dz < ¢ for all
R2\{|z| <R}
n € N,

(ii) for each ¢ > 0 there exists § > 0 such that / H(u,)dx < ¢ for all
{lz—yl<d}
y € {z € R? such that |z| < R} (equiintegrability).

Let € > 0 be arbitrary chosen. From (H1)-(H2), for a > 0 there exists C, > 0
such that for all s € R
|H(s)| < as® + Co(e” —1).

Thus, for any R > 0

2

/“ |Hmm<amm%4a/ (e — 1)d.
{lz|>R} {lz|>R}
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On one hand, since (u,,) is bounded in L?(R™) we can take a > 0 small enough such
that

€
allunlf < 5.

On the other hand, from Lemma [4.5 there exists C' such that

C’a/ (" — 1)dz < C’a/ (177" — 1) dx
{lz[>R} {|z|>R}

and for R > 0 chosen large enough we have

C’a/ (eC17 — Ddx < =
{|21>R} 2

Therefore, (i) is satisfied.

For (ii), we first remark that, by (H1) and Moser-Trudinger inequality, there
exists o > 0 and M > 0 such that

/ H (up)dz < / endr < M for all n € N
{lal<R) {lal<R)

In particular, then H(u,) is bounded in L"(|z| < R) for any 1 < r < +o0. Hence
(ii) holds by de La Vallée Poussin equiintegrability lemma. ]

Lemma 4.16. The functional P(v) = [,n G(v)dz is of class C' and upper weakly
semi-continuous in H'(RY).

Proof. Tt is standard to show that under (g2), P € C'(H'(RV),R). Now let v,, — v
in H'(RY). Using (g1)-(g2), we can decompose G in
G(s) = —ps* + H(s)

where H satisfies the hypothesis of Lemma [£.15] Hence

H(v,)dx — H(v)dx when n — +00.
RN RN

Since v — —||v||2 is upper weakly semicontinuous, this conclude the proof. O

- 116 -



BIBLIOGRAPHY

Bibliography

1]

2]

3]

R. A. AbpAMS, Sobolev spaces, vol. 65 of Pure and Applied Mathematics,
Academic Press, New York-London, 1975.

H. BERESTYCKI AND T. CAZENAVE, Instabilité des états stationnaires dans

les équations de Schrodinger et de Klein-Gordon non linéaires, C. R. Acad. Sci.
Paris, 293 (1981), pp. 489-492.

H. BERESTYCKI, T. GALLOUET, AND O. KAVIAN, Equatz’ons de champs
scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris, 297 (1983),

pp. 307-310.

4] —, Equations de champs scalaires euclidiens non linéaires dans le plan,

[11]

[12]

[13]

Publications du Laboratoire d’Analyse Numérique, Université Pierre et Marie
Curie, (1983).

H. BERESTYCKI AND P.-L. L1ONS, Nonlinear scalar field equations I, Arch.
Ration. Mech. Anal., 82 (1983), pp. 313-346.

J. BYEON, L. JEANJEAN, AND K. TANAKA, Standing waves for nonlinear
Schrodinger equations with a general nonlinearity: one and two dimensional
cases, Comm. Partial Differential Equations, to appear.

T. CAZENAVE, Semilinear Schrodinger equations, vol. 10 of Courant Lecture
Notes in Mathematics, New York University / Courant Institute of Mathemat-
ical Sciences, New York, 2003.

T. CAZENAVE AND A. HARAUX, An introduction to semilinear evolution

equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications,
Oxford University Press, New York, 1998.

T. CAZENAVE AND P.-L. LIONS, Orbital stability of standing waves for some
nonlinear Schréidinger equations, Comm. Math. Phys., 85 (1982), pp. 549-561.

J. CHEN AND B. Guo, Strong instability of standing waves for a nonlocal
Schradinger equation, Phys. D, 227 (2007), pp. 142-148.

S. CINGOLANI, L. JEANJEAN, AND S. SECCHI, Multi-peak solutions for
magnetic NLS equations without non-degeneracy condition, preprint.

S. COLEMAN, V. GLASER, AND A. MARTIN, Action minima among solutions
to a class of Fuclidean scalar field equations, Comm. Math. Phys., 58 (1978),
pp. 211-221.

L. JEANJEAN AND K. TANAKA, A note on a mountain pass characterization
of least energy solutions, Adv. Nonlinear Stud., 3 (2003), pp. 445-455.

- 117 -



4.

INSTABILITY VIA MOUNTAIN-PASS ARGUMENTS

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

—, A remark on least energy solutions in RY, Proc. Amer. Math. Soc., 131
(2003), pp. 2399-2408.

S. LE Coz, A note on Berestycki-Cazenave’s classical instability result for
nonlinear Schrédinger equations, preprint, (2007).

Y. Liu, Strong instability of solitary-wave solutions to a Kadomtsev-Petviashuvili
equation in three dimensions, J. Differential Equations, 180 (2002), pp. 153-170.

Y. Liu, M. OHTA, AND G. TODOROVA, Strong instability of solitary waves for
nonlinear Klein-Gordon equations and generalized Boussinesq equations, Ann.
Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), pp. 539-548.

Y. Liu, X.-P. WANG, AND K. WANG, Instability of standing waves of the
Schrodinger equation with inhomogeneous nonlinearity, Trans. Amer. Math.

Soc., 358 (2006), pp. 2105-2122.

H. NAwWA, Asymptotic profiles of blow-up solutions of the nonlinear Schrodinger
equation with critical power nonlinearity, J. Math. Soc. Japan, 46 (1994),
pp. 557-586.

O. A. NIELSEN, An introduction to integration and measure theory, Canadian
Mathematical Society Series of Monographs and Advanced Texts, John Wiley
& Sons Inc., New York, 1997.

M. OHTA AND G. TODOROVA, Strong instability of standing waves for nonlin-
ear Klein-Gordon equations, Discrete Contin. Dyn. Syst., 12 (2005), pp. 315
322.

M. OHTA AND G. TODOROVA, Strong instability of standing waves for the non-
linear Klein-Gordon equation and the Klein-Gordon-Zakharov system, SIAM J.
Math. Anal., 38 (2007), pp. 1912-1931.

J. SHATAH, Unstable ground state of nonlinear Klein-Gordon equations, Trans.
Amer. Math. Soc., 290 (1985), pp. 701-710.

J. SHATAH AND W. A. STRAUSS, Instability of nonlinear bound states, Comm.
Math. Phys., 100 (1985), pp. 173-190.

W. A. STRAUSS, Fxistence of solitary waves in higher dimensions, Comm.
Math. Phys., 55 (1977), pp. 149-162.

- 118 -






Résumé

Cette these porte sur 1’étude des ondes stationnaires d’équations dispersives non linéaires, en particulier
I’équation de Schrodinger, mais aussi celle de Klein-Gordon. Les travaux présentés s’articulent autour de deux
questions principales : ’existence et la stabilité orbitale de ces ondes stationnaires.

L’existence est étudiée par des méthodes essentiellement variationnelles. En plus de la simple existence, on
met en évidence différentes caractérisations variationnelles des ondes stationnaires, par exemple en tant que points
critiques d’une certaine fonctionnelle au niveau du col ou au niveau de moindre énergie, ou encore en tant que
minimiseurs d’une fonctionnelle sur différentes contraintes.

Selon la puissance de la non-linéarité et la forme de la dépendance en espace, on démontre que les ondes
stationnaires sont stables ou instables. Lorsqu’elles sont instables, on met en évidence que dans certaines situations
I'instabilité se manifeste par explosion, tandis que dans d’autres les solutions sont globalement bien posées. En
plus des différentes caractérisations variationnelles des ondes stationnaires, les preuves des résultats de stabilité et
d’instabilité nécessitent de dériver des informations de nature spectrale. En particulier, dans la premieére partie de
cette thése, on prouve un résultat de non-dégénérescence du linéarisé pour un probléme limite. Dans la deuxiéme
partie, on localise la deuxiéme valeur propre du linéarisé par la combinaison d’une méthode perturbative et

d’arguments de continuation.

Mots clés : ondes stationnaires, stabilité orbitale, instabilité, instabilité par explosion, existence pour
les problémes elliptiques, méthodes variationnelles, arguments de perturbation, méthodes spectrales, équation de

Schroédinger non linéaire, équation de Klein-Gordon non linéaire

Abstract

This thesis is devoted to the study of standing waves for nonlinear dispersive equations, in particular the
Schrédinger equation but also the Klein-Gordon equation. The works are organized around two main issues : existence
and orbital stability of standing waves.

The existence is essentially studied by the way of variational methods. We exhibit various variational
characterizations of standing waves, for example as critical points of some functional at the mountain pass level or
at the least energy level, or as minimizers of a functional under various constraints.

Depending on the strength of the nonlinearity and on the space dependency, we prove that stability or instability
holds for the standing waves. When instability holds, we show that, in some situations, instability occurs by blow
up, whereas in other cases the solutions are globally well-posed. In addition to the variational characterization of
waves, the study of stability leads us to derive spectral informations. In the first part of this thesis, we show a
nondegenerescence result for the linearized operator associated with a limit problem. In the second part, we localize

the second eigenvalue of the linearized by the mean of a combinaison of perturbation and continuation arguments.

Keywords . standing waves, orbital stability, instability, instability by blow up, existence for elliptic problems,
variational methods, perturbation arguments, spectral theory, nonlinear Schrddinger equation, nonlinear Klein-

Gordon equation
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