# Calcul prédictif du facteur de partage isotopique à l'équilibre entre minéraux dans le cadre de la théorie de la fonctionnelle de la densité

M. Méheut-Le Quéau,

IMPMC, Université Pierre et Marie Curie

25 janvier 2008

- Contexte
- 2 Méthodologie : calcul de  $\alpha$
- 3 Evaluation
- 4 Applications
- 6 Analyse structurale

- Contexte
  - Pourquoi mesurer les isotopes?
  - Le partage à l'équilibre
  - Obtention de la loi  $\alpha(T)$
- 2 Méthodologie : calcul de  $\alpha$
- 3 Evaluation
- 4 Applications
- 6 Analyse structurale



| Elément | Isotopes         | Abondance |
|---------|------------------|-----------|
| (Y)     | аY               | (%)       |
| Н       | $^{1}H$          | 99.985    |
|         | $^{2}H$          | 0.015     |
| 0       | <sup>16</sup> O  | 99.76     |
|         | <sup>17</sup> O  | 0.04      |
|         | <sup>18</sup> O  | 0.20      |
| Si      | <sup>28</sup> Si | 92.2      |
|         | <sup>29</sup> Si | 4.7       |
|         | <sup>30</sup> Si | 3.1       |

| Rapport isotopique                                       |  |  |
|----------------------------------------------------------|--|--|
| $R_A(Y) = \left[\frac{n_{Y^b}}{n_{Y^a}}\right]_A$        |  |  |
| Rapport isotopique de<br>l'élément Y dans la phase<br>A. |  |  |

Deux isotopes d'un même élément ont le même cortège électronique, mais une masse différente ils forment les mêmes phases, cependant leur rapport isotopique varie entre deux phases.

## Mesure relative de composition : le $\delta Y$ (unité : %)

$$\delta Y(A) = 1000 imes rac{R_A(Y) - R_{standard}(Y)}{R_{standard}(Y)}$$

| Couple                             | $\delta Y_{min}$ | $\delta Y_{max}$ | Variation |
|------------------------------------|------------------|------------------|-----------|
| $^{2}H/^{1}H$                      | -800‰            | 200‰             | 1000‰     |
| $^{18}O/^{16}O$                    | -60%             | 110%o            | 170%      |
| <sup>30</sup> Si/ <sup>28</sup> Si | -3.7%0           | 3.4%             | 7.1%      |

 L'amplitude des variations dépend beaucoup de l'élément considéré.

## Mesure relative de composition : le $\delta Y$ (unité : %)

$$\delta Y(A) = 1000 imes rac{R_A(Y) - R_{standard}(Y)}{R_{standard}(Y)}$$

| Couple                             | $\delta Y_{min}$ | $\delta Y_{max}$ | Variation |
|------------------------------------|------------------|------------------|-----------|
| $^{2}H/^{1}H$                      | -800‰            | 200‰             | 1000‰     |
| $^{18}O/^{16}O$                    | -60%             | 110%o            | 170%      |
| <sup>30</sup> Si/ <sup>28</sup> Si | -3.7%0           | 3.4%             | 7.1%      |

- L'amplitude des variations dépend beaucoup de l'élément considéré.
  - ⇒ La précision analytique est déterminante.

## Mesure relative de composition : le $\delta Y$ (unité : %)

$$\delta Y(A) = 1000 \times \frac{R_A(Y) - R_{standard}(Y)}{R_{standard}(Y)}$$

| Couple                             | $\delta Y_{min}$ | $\delta Y_{max}$ | Variation   |
|------------------------------------|------------------|------------------|-------------|
| $^{2}H/^{1}H$                      | -800‰            | 200‰             | 1000‰       |
| $^{18}O/^{16}O$                    | -60‰             | 110%o            | $170\%_{0}$ |
| <sup>30</sup> Si/ <sup>28</sup> Si | -3.7%0           | 3.4%             | 7.1%        |

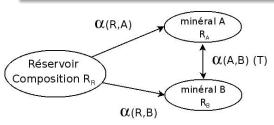
- L'amplitude des variations dépend beaucoup de l'élément considéré.
  - ⇒ La précision analytique est déterminante.
- Origine des variations : histoire de l'échantillon mécanismes d'enrichissement.



## Mesure de l'enrichissement entre les phases A et B : Le facteur de partage isotopique.

$$\alpha(A, B, Y) = \frac{R_A(Y)}{R_B(Y)}$$

$$1000 \ln \alpha(A, B, Y) \approx \delta Y(A) - \delta Y(B).$$



Utilisation des mesures isotopiques :

- Traceurs  $(R_A \rightarrow R_R)$
- Paléothermomètres  $(\alpha(A,B) \rightarrow T)$

 $\alpha$  dépend a priori de T,P,  $X_A/X_B$ , ...

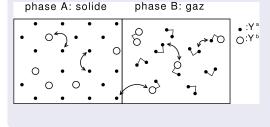
 $\implies$  importance de connaître la loi  $\alpha(T, P, ...)$ 



- Contexte
  - Pourquoi mesurer les isotopes?
  - Le partage à l'équilibre
  - Obtention de la loi  $\alpha(T)$
- 2 Méthodologie : calcul de lpha
- 3 Evaluation
- 4 Applications
- 6 Analyse structurale



## $L'\'{e} quilibration \ thermodynamique: un \ m\'{e} canisme \ essentiel.$

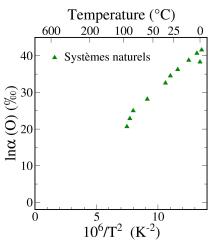


- Les isotopes sont libres de diffuser
- Le potentiel thermo. du système est minimal
- α (T,(P)) partage à l'équilibre.
- ⇒ intervient dans de nombreuses situations.
- $\implies$  nécessité d'un étalonnage de la loi  $\alpha(T)$  à l'équilibre.

- Contexte
  - Pourquoi mesurer les isotopes?
  - Le partage à l'équilibre
  - Obtention de la loi  $\alpha(T)$
- 2 Méthodologie : calcul de  $\alpha$
- 3 Evaluation
- 4 Applications
- 6 Analyse structurale

## Partage de l'oxygène entre le quartz et l'eau.

1000 ln 
$$\alpha$$
 (quartz,eau,O) =  $\delta$ O(quartz) -  $\delta$ O(eau) = ln  $\alpha$  (‰)

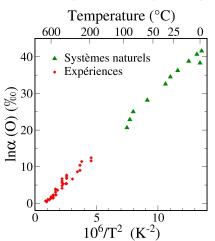


## Systèmes naturels : Mauvais contrôle des conditions physiques

Labeyrie 1974 *Nature* **248**, 40 Knauth & Epstein 1976 *GCA* **40**, 105 Kita & al. 1985 *Nature* **314**, 83

## Partage de l'oxygène entre le quartz et l'eau.

1000 ln 
$$\alpha$$
 (quartz,eau,O) =  $\delta$ O(quartz) -  $\delta$ O(eau) = ln  $\alpha$  (‰)

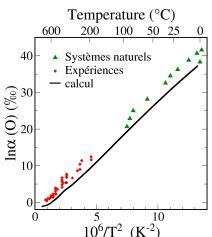


- Systèmes naturels :
   Mauvais contrôle des conditions
   physiques
- Expérimentation : équilibration et synthèse
   Bon contrôle - limité en température

Clayton 1972 *JGR* **77**, 3057 Matsuhisa & al. 1979 *Am. Min.* **64**, 232 Matthews & Beckinsale 79 *GCA* **43**, 1131

## Partage de l'oxygène entre le quartz et l'eau.

1000 ln 
$$\alpha$$
 (quartz,eau,O) =  $\delta$ O(quartz) -  $\delta$ O(eau) = ln  $\alpha$  (‰)



- Systèmes naturels :
   Mauvais contrôle des conditions
   physiques
- Expérimentation : équilibration et synthèse
   Bon contrôle - limité en température
- Calcul:
   Valable à toute température
   Equilibre avéré.
   Méheut & al. 2007 GCA 71, 3170

## Chronologie : calcul du partage à l'équilibre.

- Urey 1947 : calcite, H<sub>2</sub>O, fréquences expérimentales.
- Richet 1977 : partage (H,C,N,O,Cl) entre molécules.
- Kieffer 1982 : modèles vibrationnels simplifiés, partage solide-solide de l'oxygène (minéraux anhydres).
- aujourd'hui :
  - isotopes lourds (Fe,Si,Mg. . . ) : comment partagent-ils ?

    Basile-Doelsch & al. 2005, Robert & Chaussidon 2006, Georg & al. 2007
  - hydrogène : effet de la pression sur le partage? ногіта & al. 2002
  - partage intracristallin Girard & Savin 1996.
  - lien partage isotopique/structure cristalline zheng 1993.

⇒ Intérêt d'une méthode prédictive, indépendante des données expérimentales

Nécessité d'une étude systématique sur des systèmes très différents.



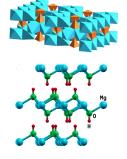
## Matériaux étudiés.

## quartz [SiO<sub>2</sub>]



kaolinite  $[Al_2Si_2O_5(OH)_4]$ 

forstérite [Mg<sub>2</sub>SiO<sub>4</sub>]



brucite  $[Mg(OH)_2]$ 

glace [H<sub>2</sub>O]



- compositions variées
- minéraux hydratés

Balan & al. 2001, 2002, 2006

- 1 Contexte
- 2 Méthodologie : calcul de  $\alpha$ 
  - Facteurs  $\beta$
  - Fonctions de partition.
  - Propriétés vibrationnelles.
  - Résumé.
- 3 Evaluation
- Applications
- 6 Analyse structurale

## Facteur $\beta(A,Y)$ d'une phase A

Facteur de partage de Y entre la phase A et un gaz monoatomique  $Y^a/Y^b$ .

$$\alpha(A, B, Y) = \beta(A, Y)/\beta(B, Y)$$

phase A: gaz moléculaire  $AY_4$  $R_{\alpha}$  $R_{\Delta}$ 

réservoir de gaz monoatomique

$$3(A,Y) = \frac{R_A}{R_A}$$

#### Raisonnement statistique : modèle grand canonique

Gaz moléculaire  $AY_N$ , N sites isotopiques

Espèces isotopiques :  $AY_N^a$ ,  $AY_N^b$ ,  $AY_{(i)}^bY_{N-1}^a$ 

Fonction de partition d'une espèce  $Q(AY_N^{a/b}) = \sum_I e^{-E_I/kT}$ .

Formule classique :

$$\beta(AY_N, Y) = \left[\frac{m_{Y^a}}{m_{Y^b}}\right]^{3/2} \left(\frac{Q(AY_N^b)}{Q(AY_N^a)}\right)^{1/N}$$

#### Problèmes:

- dérivé pour des sites équivalents
- non valable pour l'hydrogène

Urey, 1947



$$\Longrightarrow \beta(AY_N, Y) = \left[\frac{m_{Y^a}}{m_{Y^b}}\right]^{3/2} \frac{1}{N} \sum_{i=1}^N \frac{Q(AY_{(i)}^b Y_{N-1}^a)}{Q(AY_N^a)}$$

- Valide pour des sites non-équivalents et pour l'hydrogène
- Généralisable à une phase solide ( $AY_N$ =maille unitaire).
- ⇒ précise le domaine de validité de la formule classique :
  - pour O,Si : pas de différence
  - pour l'hydrogène, erreur de 10-20% (glace, eau) , 2% (brucite), 0.5% (kaolinite, lizardite, gibbsite) // précision expérimentale  $\approx 0.1\%$ .

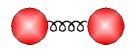
- Contexte
- 2 Méthodologie : calcul de  $\alpha$ 
  - $\bullet$  Facteurs  $\beta$
  - Fonctions de partition.
  - Propriétés vibrationnelles.
  - Résumé.
- 3 Evaluation
- 4 Applications
- Analyse structurale



$$eta \propto rac{Q(AY_N^b)}{Q(AY_N^a)}, \ \mathrm{Q} = \sum_I \mathrm{e}^{-E_I/kT}, \ E_I : \mathrm{niveaux} \ \mathrm{d'\acute{e}nergie} \ \mathrm{du} \ \mathrm{mat\acute{e}riau}.$$

### Origine vibrationnelle du partage

$$m_{Y^a} \neq m_{Y^b} \rightarrow \nu(AY_N^a) \neq \nu(AY_N^b)$$



Dans l'approximation harmonique :

Molécule :

$$Q_{vib} = \prod_{i} \frac{e^{-\frac{h\nu_{i}}{2kT}}}{1 - e^{-\frac{h\nu_{i}}{kT}}}$$

• Solide :

$$Q = \left[ \prod_{i} \prod_{\mathbf{q}} \frac{e^{-\frac{h\nu_{\mathbf{q},i}}{2kT}}}{1 - e^{-\frac{h\nu_{\mathbf{q},i}}{kT}}} \right]^{1/N_{\mathbf{q}}}$$



- 1 Contexte
- 2 Méthodologie : calcul de  $\alpha$ 
  - $\bullet$  Facteurs  $\beta$
  - Fonctions de partition.
  - Propriétés vibrationnelles.
  - Résumé.
- 3 Evaluation
- Applications
- 6 Analyse structurale



## Obtention des fréquences : calcul de structure électronique

- Matériau = N<sub>at</sub> noyaux/maille, positions R fixées + électrons, libres
- Calcul électronique (DFT, pseudopotentiels)  $\rightarrow$  n(R), E(R)
- Relaxation  $\rightarrow$  structure d'équilibre  $R_o$
- $\bullet$  Réponse linéaire  $\to$  calcul efficace de la matrice dynamique

$$rac{\partial^2 E(\mathsf{R})}{\partial au \partial au'} o D_q, ~~ 
u_q = \sqrt{rac{D_q}{m}}$$

au, au' déplacements d'ensemble des noyaux

⇒ calcul complet des propriétés vibrationnelles harmoniques.



## Fréquences calculées vs mesures spectroscopiques

#### Matériaux étudiés :

 Matériaux sans hydrogène : quartz (SiO<sub>2</sub>), enstatite (Mg<sub>2</sub>Si<sub>2</sub>O<sub>6</sub>), forstérite (Mg<sub>2</sub>SiO<sub>4</sub>)

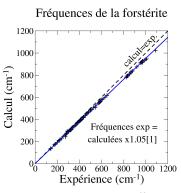
```
fréquences spectroscopiques \simeq fréquences harmoniques \Longrightarrow erreur DFT seule, d'environ -5% (rel.).
```

•  $H_2O(\text{vapeur})$ , glace, kaolinite  $(Al_2Si_2O_5(OH)_4)$ , lizardite  $(Mg_3Si_2O_5(OH)_4)$ , gibbsite  $(Al(OH)_3)$ , brucite  $(Mg(OH)_2)$ 

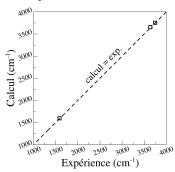
influence de l'anharmonicité (OH) même à basse température  $\implies$  comparaison des fréquences difficile  $\implies$  erreur supplémentaire sur  $\beta$ 

 $\implies$  Sources d'erreur : erreur DFT et approximation harmonique.

## Fréquences calculées vs mesures spectroscopiques



Fréquences de la molécule d'eau



Compensation entre l'erreur DFT et les effets anharmoniques sur les vibrations de l'eau.

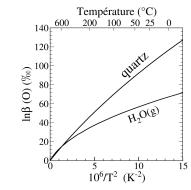
Autres groupes O-H (minéraux hydratés): Petit & al. 2004, Balan & al. 2007

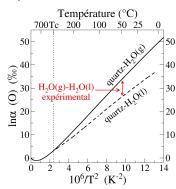


- 1 Contexte
- 2 Méthodologie : calcul de  $\alpha$ 
  - $\bullet$  Facteurs  $\beta$
  - Fonctions de partition.
  - Propriétés vibrationnelles.
  - Résumé.
- 3 Evaluation
- 4 Applications
- Analyse structurale



calcul des propriétés vibrationnelles  $\Longrightarrow$  calcul de  $\beta$  ln  $\alpha$  (A,B,O) = ln  $\beta$  (A,O) - ln  $\beta$  (B,O)



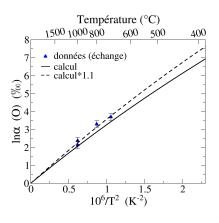


Partage minéral/eau (O et H) : au-dessous de  $T_c$  : combinaison minéral/vapeur calculé + vapeur/eau expérimental.

Au-dessus de  $T_c$ : partage minéral/vapeur.

- Contexte
- 2 Méthodologie : calcul de α
- - Comparaison à l'expérience
  - Erreur et correction
- 4 Applications
- 6 Analyse structurale

## Partage quartz-forstérite de l'oxygène

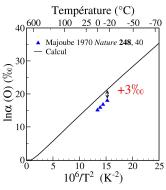


 $\implies \ln \alpha_{\rm exp.} \approx 1.1 * \ln \alpha_{\rm calc.}$  erreur  $\approx$  erreur relative constante

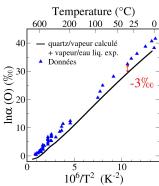
Chiba & al. 1989 *GCA* **53**, 2985 Clayton & al. 1989 *GCA* **53**, 725

## Partage minéral-vapeur et minéral-eau de l'oxygène

#### Partage glace/vapeur



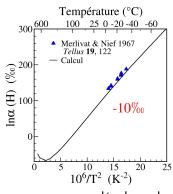
#### Partage quartz/eau



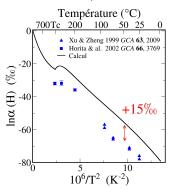
 $\Longrightarrow$  erreur pprox décalage de -5%0 o +3%0 à basse température

## Partage minéral-vapeur et minéral-eau de l'hydrogène

#### Partage glace/vapeur



### Partage brucite/eau

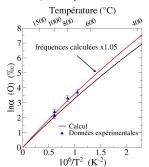


 $\Longrightarrow$  erreur pprox décalage de -10%0 ightarrow +15%0 à basse température.

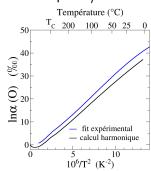
- Contexte
- 2 Méthodologie : calcul de  $\alpha$
- Second Second
  - Comparaison à l'expérience
  - Erreur et correction
- 4 Applications
- 6 Analyse structurale

- estimation approximative des sources d'erreur :
  - $\bullet$  erreur DFT : fréquences x1.05  $\rightarrow$  ln  $\alpha$  x1.05/1.1
  - anharmonicité : à 25°C, 3‰ pour la vapeur (O)
- tentative de correction : partages quartz/forstérite et quartz/eau de l'oxygène

#### quartz/forstérite

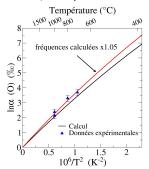


#### quartz/eau

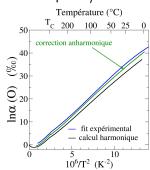


- estimation approximative des sources d'erreur :
  - ullet erreur DFT : fréquences x1.05 ightarrow ln lpha x1.05/1.1
  - anharmonicité : à 25°C, 3‰ pour la vapeur (O)
- tentative de correction : partages quartz/forstérite et quartz/eau de l'oxygène

#### quartz/forstérite

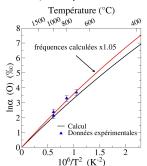


#### quartz/eau

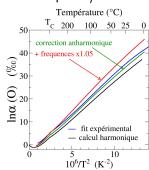


- estimation approximative des sources d'erreur :
  - ullet erreur DFT : fréquences x1.05 ightarrow ln lpha x1.05/1.1
  - anharmonicité : à 25°C, 3‰ pour la vapeur (O)
- tentative de correction : partages quartz/forstérite et quartz/eau de l'oxygène

#### quartz/forstérite



#### quartz/eau



#### Conclusions

#### Partage de l'oxygène :

- Correction globale des fréquences :
  - intéressant pour partage entre deux solides "harmoniques"
  - insuffisant pour partage minéral-vapeur

#### Conclusions

#### Partage de l'oxygène :

- Correction globale des fréquences :
  - intéressant pour partage entre deux solides "harmoniques"
  - insuffisant pour partage minéral-vapeur
- anharmonicité : explique bien le "décalage" entre calcul et expérience pour le partage minéral-vapeur.

#### Conclusions

#### Partage de l'oxygène :

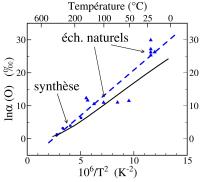
- Correction globale des fréquences :
  - intéressant pour partage entre deux solides "harmoniques"
  - insuffisant pour partage minéral-vapeur
- anharmonicité : explique bien le "décalage" entre calcul et expérience pour le partage minéral-vapeur.

Partage de l'hydrogène : effet de l'anharmonicité?

#### Plan

- 1 Contexte
- 2 Méthodologie : calcul de a
- 3 Evaluation
- 4 Applications
  - Partage de l'oxygène
  - Partage de l'hydrogène
  - Partage du silicium
- 6 Analyse structurale

# Partage Kaolinite-eau de l'oxygène



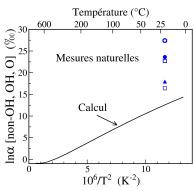
Sheppard & al. 1969, Savin & Epstein 1970, Lawrence & Taylor 1972, Kulla & Anderson 1978, Marumo & al. 1982, Sheppard & Gilg 1996

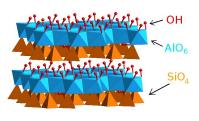
- bon accord avec expériences de synthèse
- décalage de -5‰ avec mesures naturelles à 25°C

Précise la forme de la loi.

# Partage interne de l'oxygène dans la kaolinite

Partage entre sites non-hydroxyle (non-OH) et hydroxyle (OH)





⇒ Evaluation de différentes méthodes de mesure.

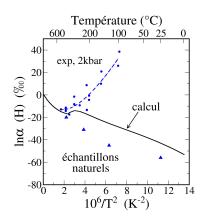
Savin 1967, Hamza & Epstein 1980, Bechtel & Hoernes 1990, Girard & Savin 1996



## Plan

- Contexte
- 2 Méthodologie : calcul de  $\alpha$
- 3 Evaluation
- 4 Applications
  - Partage de l'oxygène
  - Partage de l'hydrogène
  - Partage du silicium
- 6 Analyse structurale

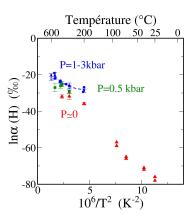
# Partage Lizardite-eau de l'hydrogène



Le calcul confirme l'étalonnage naturel

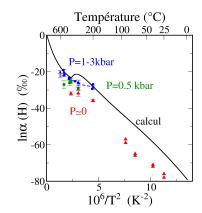
Etalonnage expérimental : effet de la pression ?

Wenner & Taylor 1973, Sakai & Tsutsumi 1978



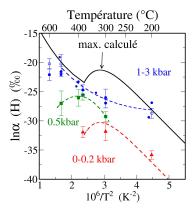
 A 1-3kbar : étalonnage. Ailleurs : incertitude sur les données.

Satake & Matsuo 1984, Xu & Zheng 1999, Horita & al. 2002



- A 1-3kbar : étalonnage. Ailleurs : incertitude sur les données.
- Calcul ( $P \simeq 0$ ) : loi complexe autour de  $\sim 300^{\circ}$ C, régulier ailleurs.

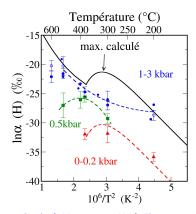
Satake & Matsuo 1984, Xu & Zheng 1999, Horita & al. 2002



- A 1-3kbar : étalonnage. Ailleurs : incertitude sur les données.
- Calcul (P≃0) : loi complexe autour de ~300°C, régulier ailleurs.
- A HT: on retrouve un maximum à toutes les pressions, mais il se déplace quand P /

Satake & Matsuo 1984, Xu & Zheng 1999, Horita & al. 2002





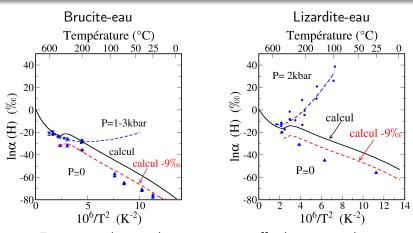
- A 1-3kbar : étalonnage. Ailleurs : incertitude sur les données.
- Calcul (P≥0) : loi complexe autour de ~300°C, régulier ailleurs.
- A HT: on retrouve un maximum à toutes les pressions, mais il se déplace quand P /

⇒ on peut extrapoler à basse température l'étalonnage à 1kbar

Satake & Matsuo 1984, Xu & Zheng 1999, Horita & al. 2002

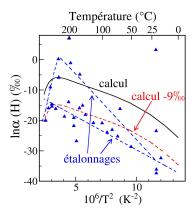


# Effet de la pression sur le partage de l'hydrogène.



⇒ Formes similaires à haute pression, effet beaucoup plus important pour la lizardite.

# Partage Kaolinite-eau de l'hydrogène.



Le calcul confirme l'étalonnage le plus récent

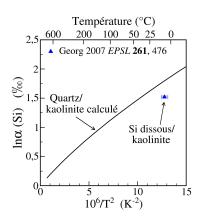
Toujours un décalage de 10-15% à basse température .

Sheppard & al. 1969, Savin & Epstein 1970, Lawrence & Taylor 1972, Marumo & al. 1980, Lambert & Epstein 1980, Liu & Epstein 1984, Gilg & Sheppard 1996

## Plan

- Contexte
- 2 Méthodologie : calcul de lpha
- 3 Evaluation
- 4 Applications
  - Partage de l'oxygène
  - Partage de l'hydrogène
  - Partage du silicium
- 6 Analyse structurale

# Partage acide silicique-kaolinite à basse température



- partage quartz/Si dissous = 0%  $\rightarrow$  on peut comparer
- Le partage à l'équilibre correspond à un mécanisme naturel à basse température
- dépendance en température : 0.3‰ entre 0 et 30° C.

# Partage du Si à haute température : lien structure-partage isotopique

- Très peu de données expérimentales à comparer 

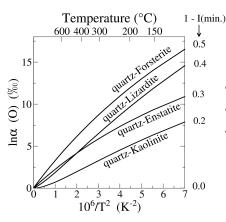
   on cherche des lois générales, reliant propriétés de partage et caractéristiques structurales des silicates.
- Composition des silicates étudiés :  $[SiO_2]$ ,  $[Mg_2Si_2O_6]$ ,  $[Mg_2SiO_4]$ ,  $[Al_2Si_2O_5(OH)_4]$ ,  $[Mg_3Si_2O_5(OH)_4]$
- Loi empirique proposée pour le partage de l'oxygène :

$$\ln \beta(O) \propto I = [Si] + 0.58[AI],$$
 [Garlick 1966 EPSL 1, 361]

⇒ lien entre composition chimique du minéral et partage isotopique.



# Partage quartz-silicate de l'oxygène.



- I(quartz)= [Si] =1
- $\ln \alpha (\text{quartz,min.}) \propto 1 I(\text{min.})$
- le partage calculé confirme la loi proposée

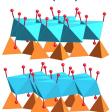
#### Lois proposées pour le silicium :

- In  $\beta(Si)$   $\nearrow$  avec le contenu en silicium ([Si])
- $\ln \beta(Si)$   $\nearrow$  avec le degré de polymérisation du réseau silicaté

quartz  $(Q^4)$ 

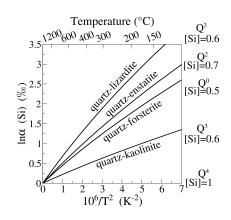


lizardite  $(Q^3)$ 



 $\implies Q^n$  réseau dont les tétraèdres partagent n sommets entre eux.

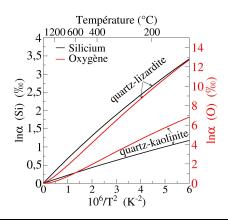
# Partage quartz-silicate du silicium



- quartz :  $[Si]=1, Q^4$
- quartz-silicate toujours positif
- mais:
  - pas de lien entre partage et degré de polymérisation
  - pas de lien avec le contenu en silicium
- lizardite ≠ kaolinite

# Effet de la substitution Al → Mg : oxygène vs. silicium.

$$\begin{array}{c} \text{kaolinite} & / \text{ lizardite} \\ [\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4] & / [\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4] \end{array}$$



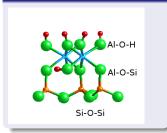
- I= [Si]+0.58[Al], [Si] fixé explique bien  $\alpha$ (Si)
- effet cationique "global" :
   affaiblissement des liaisons ?

#### Plan

- Contexte
- 2 Méthodologie : calcul de lpha
- 3 Evaluation
- 4 Applications
- 6 Analyse structurale

# Les modèles bond-type.

## Sites de l'oxygène dans la kaolinite



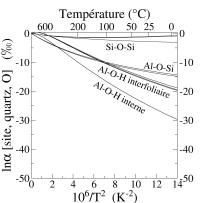
• On peut écrire :  $\ln \beta(min., O) = \frac{1}{N} \sum \ln \beta(site, O)$ site : site de l'oxygène : Si-O-Si . Al-O-Si . . . .

#### Bond-type models

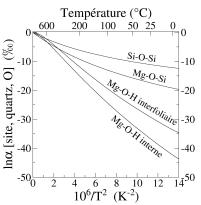
 $\beta(site, O)$  ne dépend que des liaisons de l'oxygène  $\Longrightarrow$  la composition d'un site Al-O-Si sera la même quelque soit le minéral  $\Longrightarrow$  ln  $\beta(O) \propto [Si] + 0.58[AI]$ .

# Calcul du partage site-quartz : kaolinite et lizardite

#### Partage sites de la kaolinite-quartz



#### Partage sites de la lizardite-quartz



Si-O-Si très différents dans les deux matériaux, différence OH interne/interfoliaire, et "effet global" de la substitution Mg→Al.

#### Conclusion

- Mise au point et validation d'une méthode de calcul ab initio, indépendante des données expérimentales.
- Etude systématique sur un grand nombre de systèmes : meilleure compréhension du lien calcul harmonique/réalité, et relations partage-structure.
- Première tentative de calcul du partage minéral-eau de l'hydrogène.
- Confirme certains étalonnages expérimentaux ou naturels et en remet d'autres en cause.

#### Perspectives:

- Nouveaux systèmes : calcite, diospide
- Calcul anharmonique complet : brucite
- Explorer le lien composition/partage : analyse structurale



Modèle grand-canonique : le système est en équilibre avec un réservoir de  $N_{tot}$  particules. Soit un état / d'énergie  $E_I$  du système, avec un nombre de particules  $N_I$ . La probabilité de l'état / vaut :

$$P_I^G = \frac{1}{\Xi} e^{-(E_I - \mu N_I)/kT}$$

La probabilité d'avoir N atomes vaudra donc :

$$P(N) = \sum_{I,N_I = N} \frac{1}{\Xi} e^{-(E_I - \mu N)/kT} = e^{-(F(N,T) - \mu N)/kT}$$

par définition de l'énergie libre.

Dans le cas du partage isotopique, dans notre système dans l'état l, on a  $N_{a,l}$  isotopes  $Y^a$ ,  $N_{b,l}$  isotopes  $Y^b$ , et une énergie  $E_l$ , et sa probabilité vaut :

$$P_{I}^{G} = \frac{1}{\Xi} e^{-(E_{I} - \mu_{a} N_{a,I} - \mu_{b} N_{b,I})/kT}$$

où  $\mu_a$  et  $\mu_b$  sont les potentiels des deux sous-réservoirs d'isotopes  $Y^a$  et  $Y^b$ .

On considère une configuration (u) où  $u_i = Y^a, Y^b$  est l'isotope présent sur le site i.  $(u)_l$  est la configuration correspondant à l'état l.

$$P(u) = \sum_{I,(u)_I = (u)} \frac{1}{\Xi} e^{-(E_I - \mu_a N_{a,I} - \mu_b N_{b,I})/kT}$$
(1)

$$= \frac{1}{\Xi} e^{(\mu_a N_{a,I} + \mu_b N_{b,I})/kT} \sum_{I,(u)_I = (u)} e^{-E_I/kT}$$
 (2)

$$= \frac{1}{\Xi} e^{-(F(u) - \mu_a N_{a,I} - \mu_b N_{b,I})/kT}$$
 (3)

On a par ailleurs  $N_{a,l} = N_a(u)$  et  $N_{b,l} = N_b(u)$  d'où :

$$P(u) = \frac{1}{\Xi} e^{-(F(u) - \mu_a N_a(u) - \mu_b N_b(u))/kT}$$



Pour un gaz parfait de densité n = N/V, on a :

$$\mu(N, \tau, V) = \tau \log \left(\frac{N}{Vn_q}\right) = \tau \log \left(\frac{n}{n_q}\right),$$

d'après Kittel & Kroemer, où  $n_q=\left(\frac{M\tau}{2\pi\hbar^2}\right)^{3/2}$ ,  $\tau=kT$ , n densité du gaz, M sa masse molaire.Donc :

$$P(u) = \frac{1}{\Xi} \left( \frac{n_b}{m_b^{3/2}} \right)^{N_b(u)} \left( \frac{n_a}{m_a^{3/2}} \right)^{N_a(u)} e^{-F(u)/kT}$$

Le problème de la discernabilité des sites : le cas de  $\beta(H_2O, H)$ . Dans le cas où tous mes sites sont discernables,

$$\beta = \frac{n_D}{n_H} R_g^{-1} = \frac{P(HDO) + P(DHO) + 2P(D_2O)}{2P(H_2O) + P(HDO) + P(DHO)} R_g^{-1}$$

Dans le cas où les deux sites sont indiscernables,

$$\beta = \frac{n_D}{n_H} R_g^{-1} = \frac{P(HDO) + 2P(D_2O)}{2P(H_2O) + P(DHO)} R_g^{-1}$$

où est l'erreur?

Si je considère que mes deux sites sont indiscernables, alors

$$F(HDO) = F(HDO)_{mol} + kT \ln 2$$

où  $F(HDO)_{mol}$  est l'énergie libre de la molécule HDO "seule".

- $\rightarrow P(HDO)_{indisc} = 2 \times P(HDO)_{disc}$
- → si je considère mes sites comme discernables, il n'y a pas d'effet entropique, une configuration est unique.

Facteur  $\beta$  d'un site :

$$\beta_{i} = \frac{\sum_{\{(\check{u})\}} P(Y_{i}^{b}, (\check{u}))}{\sum_{\{(\check{u})\}} P(Y_{i}^{a}, (\check{u}))} \times \frac{n_{a}}{n_{b}}.$$
(4)

$$\beta_{i} = \frac{\sum_{\{(\check{u})\}} P(Y_{i}^{a},(\check{u})) \times K_{i}(\check{u})}{\sum_{\{(\check{u})\}} P(Y_{i}^{a},(\check{u}))} = \sum_{\{(\check{u})\}} P'(\check{u})K_{i}(\check{u}) = \langle K_{i}(\check{u}) \rangle,$$
(5)

où  $\langle K_i(\check{u}) \rangle$  est la moyenne de  $K_i(\check{u})$  avec la probabilité

$$P'(\check{u}) = \frac{1}{Z} \left( \frac{n_b}{m_b^{3/2}} \right)^{N_b(\check{u})} \left( \frac{n_a}{m_a^{3/2}} \right)^{N - N_b(\check{u})} e^{-\frac{1}{\tau} F(Y_1^a, (\check{u}))}, \quad (6)$$

$$K_i(\check{u}) = \left(\frac{m_a}{m_b}\right)^{3/2} e^{-\frac{1}{\tau}\left(F(Y_i^b,(\check{u})) - F(Y_i^a,(\check{u}))\right)},$$

