Quelques problèmes d'homogénéisation à faible et fort contraste

D. Manceau

06 Décembre 2007

Problème:

Déterminer la loi de comportement d'un composite fortement hétérogène.

 \rightarrow On obtient, en gommant les hétérogénéités, un matériau homogénéisé (ou effectif) de loi de comportement équivalente.

Procédé:

On considère le composite à l'échelle microscopique (microstructure) puis on étudie son comportement asymptotique lorsque la taille ε des hétérogénéités tend vers 0.

- A_{ε} : loi de comportement du composite à l'échelle microscopique,
- $\Omega \subset \mathbb{R}^N$: ouvert borné régulier,
- *f* : terme de source.

Soit u_{ϵ} la solution de

$$\begin{cases} -\operatorname{div}(A_{\varepsilon}\nabla u_{\varepsilon}) = f & \operatorname{dans} \Omega, \\ u_{\varepsilon} = 0 & \operatorname{sur} \partial\Omega. \end{cases}$$
 $(P(A_{\varepsilon}))$

Problème : Est-ce que u_{ε} vérifie $u_{\varepsilon} \longrightarrow u_{*}$ où u_{*} est solution de

$$\begin{cases} -\operatorname{div}(A_*\nabla u_*) = f & \operatorname{dans} \Omega, \\ u_* = 0 & \operatorname{sur} \partial \Omega. \end{cases}$$
 $(P(A_*))$

A*: loi de comportement homogénéisée.

Si $A_{\varepsilon} \in M(\alpha, \beta; \Omega)$, i.e. $A_{\varepsilon}(x)\xi \cdot \xi \geq \alpha |\xi|^2$ et $A_{\varepsilon}(x)^{-1}\xi \cdot \xi \geq \beta^{-1}|\xi|^2$, on a l'existence de A_{ε} par H-convergence.

→ Présence d'un faible contraste dans le matériau initial :

- → Présence d'un faible contraste dans le matériau initial :
 - perturbation par un petit paramètre,
 - mélange des deux phases faiblement contrastées (Tartar 1991 - homogénéisation en petites amplitudes).
- *i.e.* Loi de comportement $A_{\varepsilon}:=A_{\varepsilon}(\delta)\in M(\alpha,\beta;\Omega)$ où δ petit paramètre.
- \Rightarrow Développement asymptotique de A_* en fonction de δ .

- → Présence d'un faible contraste dans le matériau initial :
 - perturbation par un petit paramètre,
 - mélange des deux phases faiblement contrastées (Tartar 1991 - homogénéisation en petites amplitudes).
- *i.e.* Loi de comportement $A_{\varepsilon}:=A_{\varepsilon}(\delta)\in M(\alpha,\beta;\Omega)$ où δ petit paramètre.
- \Rightarrow Développement asymptotique de A_* en fonction de δ .

Homogénéisation à fort contraste

- → Présence d'un faible contraste dans le matériau initial :
 - perturbation par un petit paramètre,
 - mélange des deux phases faiblement contrastées (Tartar 1991 - homogénéisation en petites amplitudes).
- *i.e.* Loi de comportement $A_{\varepsilon}:=A_{\varepsilon}(\delta)\in M(\alpha,\beta;\Omega)$ où δ petit paramètre.
- \Rightarrow Développement asymptotique de A_* en fonction de δ .

Homogénéisation à fort contraste

→ Problèmes dégénérés :

- → Présence d'un faible contraste dans le matériau initial :
 - perturbation par un petit paramètre,
 - mélange des deux phases faiblement contrastées (Tartar 1991 - homogénéisation en petites amplitudes).
- *i.e.* Loi de comportement $A_{\varepsilon}:=A_{\varepsilon}(\delta)\in M(\alpha,\beta;\Omega)$ où δ petit paramètre.
- \Rightarrow Développement asymptotique de A_* en fonction de δ .

Homogénéisation à fort contraste

- → Problèmes dégénérés :
 - présence d'une phase fortement conductrice (cas d'une suite A_ε non uniformément bornée),
 - présence d'une phase faiblement conductrice (cas d'une suite A_ε non équi-coercive).

Homogénéisation en faible champ magnétique de l'effet Hall bidimensionnel (avec M. Briane et G. Milton, accepté et à paraître dans J. Math. Ana. App.)

- Homogénéisation en faible champ magnétique de l'effet Hall bidimensionnel (avec M. Briane et G. Milton, accepté et à paraître dans J. Math. Ana. App.)
- 2 Homogénéisation bidimensionnelle à fort contraste (avec M. Briane, soumis)

- 1 Homogénéisation en faible champ magnétique de l'effet Hall bidimensionnel (avec M. Briane et G. Milton, accepté et à paraître dans J. Math. Ana. App.)
- 2 Homogénéisation bidimensionnelle à fort contraste (avec M. Briane, soumis)
- 3 Homogénéisation de matériaux fibrés non périodiques à faible contraste (accepté et à paraître dans M2AN)

- 1 Homogénéisation en faible champ magnétique de l'effet Hall bidimensionnel (avec M. Briane et G. Milton, accepté et à paraître dans J. Math. Ana. App.)
- Homogénéisation bidimensionnelle à fort contraste (avec M. Briane, soumis)
- 3 Homogénéisation de matériaux fibrés non périodiques à faible contraste (accepté et à paraître dans M2AN)

- Charges en mouvement dans un conducteur
- ullet Application d'un champ magnétique ${\color{blue}h}$ faible $oldsymbol{\perp}$ au conducteur

 \Rightarrow Champ électrique transverse \bot au courant.

- Charges en mouvement dans un conducteur
- Application d'un champ magnétique h faible \bot au conducteur

 \Rightarrow Champ électrique transverse \bot au courant.

Conséquence : en dimension 2 pour un conducteur de résistivité symétrique $\rho=\sigma^{-1}$ (inverse de la conductivité σ), l'effet Hall induit une résistivité perturbée

$$\rho(\mathbf{h}) = \rho + r\mathbf{h}J + o(\mathbf{h}),$$

où J est la matrice de rotation de 90° .

- Charges en mouvement dans un conducteur
- Application d'un champ magnétique h faible \bot au conducteur
- \Rightarrow Champ électrique transverse \bot au courant.

Conséquence : en dimension 2 pour un conducteur de résistivité symétrique $\rho=\sigma^{-1}$ (inverse de la conductivité σ), l'effet Hall induit une résistivité perturbée

$$\rho(\mathbf{h}) = \rho + r\mathbf{h}J + o(\mathbf{h}),$$

où J est la matrice de rotation de 90° .

Définition

La quantité r est appelée le coefficient de Hall du conducteur.

- Charges en mouvement dans un conducteur
- Application d'un champ magnétique h faible \bot au conducteur
- \Rightarrow Champ électrique transverse \bot au courant.

Conséquence : en dimension 2 pour un conducteur de résistivité symétrique $\rho=\sigma^{-1}$ (inverse de la conductivité σ), l'effet Hall induit une résistivité perturbée

$$\rho(h) = \rho + rhJ + o(h),$$

où J est la matrice de rotation de 90° .

Définition

La quantité r est appelée le coefficient de Hall du conducteur.

Soit $\sigma^{\varepsilon} \in M(\alpha, \beta; \Omega)$ symétriques. Le champ h induit une résistivité perturbée

$$\rho^{\varepsilon}(h) = (\sigma^{\varepsilon}(h))^{-1} = \rho^{\varepsilon} + r_{\varepsilon}hJ + o(h) \quad \text{où} \quad \rho^{\varepsilon} := (\sigma^{\varepsilon})^{-1}.$$

Problème : Déterminer le coefficient de Hall effectif associé.

On suppose $|\sigma^{\varepsilon}(h) - \sigma^{\varepsilon}(k)| \le c |h - k|$.

D'après Colombini & Spagnolo (1977), il existe $\sigma^*(h) \in M(\alpha, \beta; \Omega)$ telle que, à une sous-suite près,

$$\sigma^{\varepsilon}(h) \stackrel{H}{\longrightarrow} \sigma^{*}(h) := \sigma^{*} + h \sigma^{*}_{1} + o(h) \quad \text{où} \quad \sigma^{*} = \sigma^{*}(0).$$

On suppose $|\sigma^{\varepsilon}(h) - \sigma^{\varepsilon}(k)| \le c |h - k|$.

D'après Colombini & Spagnolo (1977), il existe $\sigma^*(h) \in M(\alpha, \beta; \Omega)$ telle que, à une sous-suite près,

$$\sigma^{\varepsilon}(h) \stackrel{H}{\longrightarrow} \sigma^{*}(h) := \sigma^{*} + h \ \sigma^{*}_{1} + o(h) \quad \text{où} \quad \sigma^{*} = \sigma^{*}(0).$$

Théorème (Briane, Milton, D.M.)

On a

$$\rho^*(h) := (\sigma^*(h))^{-1} = \rho^*(0) + r_*hJ + o(h),$$

où le coefficient de Hall effectif r* est donné par

$$\det(\sigma^{\varepsilon}P^{\varepsilon}) r_{\varepsilon} \longrightarrow \det(\sigma^{*}) r_{*} \quad dans \mathcal{D}'(\Omega),$$

avec $P^{arepsilon}:= DU^{arepsilon}$ le correcteur associé à $\sigma^{arepsilon}$ défini par

$$\left\{ \begin{array}{rcl} \operatorname{Div} \left(\sigma^{\varepsilon} D U^{\varepsilon} \right) & = & \operatorname{Div} \left(\sigma^{*} \right) & \textit{dans } \Omega, \\ U^{\varepsilon}(x) & = & x & \textit{sur } \partial \Omega. \end{array} \right.$$

On suppose $|\sigma^{\varepsilon}(h) - \sigma^{\varepsilon}(k)| \leq c |h - k|$.

D'après Colombini & Spagnolo (1977), il existe $\sigma^*(h) \in M(\alpha, \beta; \Omega)$ telle que, à une sous-suite près,

$$\sigma^{\varepsilon}(h) \stackrel{H}{\longrightarrow} \sigma^{*}(h) := \sigma^{*} + h \sigma^{*}_{1} + o(h) \quad \text{où} \quad \sigma^{*} = \sigma^{*}(0).$$

Théorème (Briane, Milton, D.M.)

$$\rho^*(h) := (\sigma^*(h))^{-1} = \rho^*(0) + r_*hJ + o(h),$$

où le coefficient de Hall effectif r* est donné par

$$\det(\sigma^{\varepsilon}P^{\varepsilon}) r_{\varepsilon} \longrightarrow \det(\sigma^{*}) r_{*} \quad dans \mathcal{D}'(\Omega),$$

avec $P^{\varepsilon} := DU^{\varepsilon}$ le correcteur associé à σ^{ε} .

Remarque

Généralisation du résultat de Bergman (1983) pour le cas périodique.

Supposons que r_1 , r_2 sont deux fonctions continues telles que $r_1 \le r_{\varepsilon} \le r_2$ p.p. dans Ω . Alors $r_1 \le r_* \le r_2$ p.p. dans Ω .

Supposons que r_1 , r_2 sont deux fonctions continues telles que $r_1 \le r_{\varepsilon} \le r_2$ p.p. dans Ω . Alors $r_1 \le r_* \le r_2$ p.p. dans Ω .

Remarque

En 3d, Briane et Milton ont montré que ce résultat est faux en général.

Supposons que r_1, r_2 sont deux fonctions continues telles que $r_1 \le r_\epsilon \le r_2$ p.p. dans Ω . Alors $r_1 \le r_* \le r_2$ p.p. dans Ω .

Remarque

En 3d, Briane et Milton ont montré que ce résultat est faux en général.

La preuve repose sur la combinaison suivante :

- toute H-limite comme $\sigma_*(h)$ s'écrit comme limite simple de H-limites périodiques (Raitums 2001),
- d'après Alessandrini & Nesi (2001), en 2d le déterminant d'un correcteur périodique est strictement positif p.p. dans \mathbb{R}^2 .

On a

$$\sigma^{\varepsilon}(h, x) = \sigma\left(h, \frac{x}{\varepsilon}\right)$$
 avec $\sigma(h, \cdot)$ Y-périodique,

alors $\sigma^{\varepsilon}(h)$ H-converge vers $\sigma^{*}(h)$ donnée par

$$\sigma^*(h) = \int_Y \sigma(h, y) DW(h, y) dy,$$

où $W \in H^1_{loc}(\mathbb{R}^2)^2$ est solution de

$$\begin{cases} \operatorname{Div} (\sigma(\textbf{h},y) \operatorname{D} W(\textbf{h},y)) = 0 & \text{dans } \mathcal{D}'(\mathbb{R}^2), \\ y \longmapsto W(\textbf{h},y) - y & \text{Y-p\'eriodique de moyenne nulle.} \end{cases}$$

Alors $DW(0, \frac{x}{\varepsilon})$ est le correcteur associé à $\sigma^{\varepsilon}(0)$ et donc

$$\det\left(\sigma^{\varepsilon}(0)\mathrm{D}W(0,\tfrac{x}{\varepsilon})\right)r_{\varepsilon}\,\longrightarrow\,\det\left(\sigma^{*}(0)\right)r_{*}\,\,\mathrm{dans}\,\,\mathcal{D}'(\Omega).$$

Or, par périodicité, on a la convergence $L^1(\Omega)$ faible

$$\det\left(\sigma^{\varepsilon}(0)\mathrm{D}W\left(0,\tfrac{x}{\varepsilon}\right)\right)r_{\varepsilon}\ \longrightarrow\ \int_{Y}r(y)\det\left(\sigma(0,y)\mathrm{D}W(0,y)\right)\ dy,$$

donc

$$\det\left(\sigma^*(0)\right)r_* = \int_Y r(y)\det\left(\sigma(0,y)\mathrm{D}W(0,y)\right)\,dy.$$

Continuité de $r_1, r_2 \Rightarrow$ on peut supposer r_1, r_2 constantes. On a $\sigma > 0$ et, d'après Alessandrini-Nesi (2001), $\det(DW) > 0$ donc

$$\det(\sigma^*(0)) r_* \leq r_2 \int_Y \det(\sigma(0, y) DW(0, y)) dy$$
$$= \det(\sigma^*(0)) r_2,$$

car det est quasi-affine et $\sigma(0, y)DW(0, y)$ à divergence nulle. \Box

Formules explicites

→ Milton (1988) : composites isotropes à deux phases.

- \rightarrow Milton (1988) : composites isotropes à deux phases.
- \rightarrow Briane, Milton & D.M. : composites anisotropes à deux phases interchangeables.

- \rightarrow Milton (1988) : composites isotropes à deux phases.
- \rightarrow Briane, Milton & D.M. : composites anisotropes à deux phases interchangeables.

Soient $A, B \in \mathbb{R}^{2 \times 2}$ définies positives.

Définition

Un composite est dit à phases A, B interchangeables si $\chi_{\varepsilon}A + (1 - \chi_{\varepsilon})B$ et $\chi_{\varepsilon}B + (1 - \chi_{\varepsilon})A$ H-convergent vers la même limite.

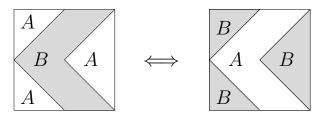
- \rightarrow Milton (1988) : composites isotropes à deux phases.
- \rightarrow Briane, Milton & D.M. : composites anisotropes à deux phases interchangeables.

Soient $A, B \in \mathbb{R}^{2 \times 2}$ définies positives.

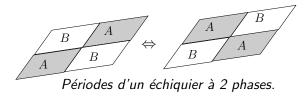
Définition

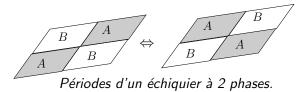
Un composite est dit à phases A, B interchangeables si $\chi_{\varepsilon}A + (1 - \chi_{\varepsilon})B$ et $\chi_{\varepsilon}B + (1 - \chi_{\varepsilon})A$ H-convergent vers la même limite.

Exemple:



Matériau périodique à 2 phases avec une structure en chevrons.





On considère un matériau à deux phases interchangeables ayant pour conductivité

$$\sigma^{\varepsilon} := \chi_{\varepsilon} \sigma + (1 - \chi_{\varepsilon}) \lambda \sigma, \quad o\dot{u} \quad \sigma \in \mathbb{R}^{2 \times 2}_{s}, \ \sigma > 0 \ et \ \lambda > 0,$$

et pour coefficient de Hall $r_{\varepsilon} := r_1 \chi_{\varepsilon} + r_2 (1 - \chi_{\varepsilon})$, avec $r_1, r_2 \in \mathbb{R}$. Alors le coefficient de Hall homogénéisé r_{ε} est donné par

$$r_* = \frac{\lambda r_2 + r_1}{1 + \lambda},$$

qui illustre la propriété de positivité.

- 1 Homogénéisation en faible champ magnétique de l'effet Hall bidimensionnel (avec M. Briane et G. Milton, accepté et à paraître dans J. Math. Ana. App.)
- Momogénéisation bidimensionnelle à fort contraste (avec M. Briane, soumis)
- 3 Homogénéisation de matériaux fibrés non périodiques à faible contraste (accepté et à paraître dans M2AN)

Définitions

On considère Ω un ouvert borné de \mathbb{R}^2 tel que $|\partial\Omega|=0$. Soit A_{ε} une suite de $M(\alpha_{\varepsilon},\beta_{\varepsilon};\Omega)$.

Définition

1 On dit que A_{ε} $H(\mathcal{M}(\Omega)^2)$ -converge vers A_* dans $M(\alpha, \beta; \Omega)$ si, pour toute $f \in H^{-1}(\Omega)$, la solution u_{ε} de $P(A_{\varepsilon})$ vérifie les convergences

$$u_{\varepsilon} \longrightarrow u_{*} \quad H_{0}^{1}(\Omega) \text{ faible } et \quad A_{\varepsilon} \nabla u_{\varepsilon} \longrightarrow A_{*} \nabla u_{*} \quad \mathcal{M}(\Omega)^{2} \text{ faible } *,$$
 où u_{*} est la solution de $P(A_{*})$.

② On dit que A_{ε} $H(L^2(\Omega)^2)$ -converge vers A_* dans $M(\alpha, \beta; \Omega)$ si pour toute fonction $f \in L^2(\Omega)$, la solution u_{ε} de $P(A_{\varepsilon})$ vérifie les convergences

$$u_{\varepsilon} \longrightarrow u_{*} \quad L^{2}(\Omega)$$
 fort $et \quad A_{\varepsilon} \nabla u_{\varepsilon} \longrightarrow A_{*} \nabla u_{*} \quad L^{2}(\Omega)^{2}$ faible, où u_{*} est la solution de $P(A_{*})$.

On obtient tout d'abord un raffinement d'un résultat de compacité de Briane & Casado-Dìaz (2006) :

On obtient tout d'abord un raffinement d'un résultat de compacité de Briane & Casado-Dìaz (2006) :

Théorème (Briane, D.M.)

Soit $A_{\varepsilon} = A_{\varepsilon}^{s} + a_{\varepsilon}J$ une suite de $M(\alpha, \beta_{\varepsilon}; \Omega)$ avec $\beta_{\varepsilon} \geq \alpha$ pour laquelle il existe $a \in L^{\infty}(\Omega)$ telle que

$$\frac{\det(A_{\varepsilon})}{\det(A_{\varepsilon}^{s})}|A_{\varepsilon}^{s}| \longrightarrow a \quad \mathcal{M}(\bar{\Omega}) \text{ faible } *. \tag{1}$$

On obtient tout d'abord un raffinement d'un résultat de compacité de Briane & Casado-Dìaz (2006) :

Théorème (Briane, D.M.)

Soit $A_{\varepsilon} = A_{\varepsilon}^{s} + a_{\varepsilon}J$ une suite de $M(\alpha, \beta_{\varepsilon}; \Omega)$ avec $\beta_{\varepsilon} \geq \alpha$ pour laquelle il existe $a \in L^{\infty}(\Omega)$ telle que

$$\frac{\det(A_{\varepsilon})}{\det(A_{\varepsilon}^{s})}|A_{\varepsilon}^{s}| \longrightarrow a \quad \mathcal{M}(\bar{\Omega}) \text{ faible } *. \tag{1}$$

Alors, à une sous-suite près, $A_{\varepsilon} \stackrel{H(\mathcal{M}(\Omega)^2)}{\longrightarrow} A_*$, où $A_* \in M(\alpha, \beta; \Omega)$, avec $\beta = 2 \|a\|_{L^{\infty}(\Omega)}$.

Théorème (Briane, D.M.)

Soit A_{ε} une suite de $M(\alpha, \beta_{\varepsilon}; \Omega)$ avec $\beta_{\varepsilon} \geq \alpha$ telle que la convergence (1) a lieu.

Théorème (Briane, D.M.)

Soit A_{ε} une suite de $M(\alpha, \beta_{\varepsilon}; \Omega)$ avec $\beta_{\varepsilon} \geq \alpha$ telle que la convergence (1) a lieu. S'il existe une constante $C_0 > 0$ telle que

$$\frac{\det(A_{\varepsilon})}{\det(A_{\varepsilon}^{s})} A_{\varepsilon}^{s} \leq C_{0} A_{\varepsilon} A_{\varepsilon}^{T} \quad p.p. \ dans \ \Omega, \tag{2}$$

Théorème (Briane, D.M.)

Soit A_{ε} une suite de $M(\alpha, \beta_{\varepsilon}; \Omega)$ avec $\beta_{\varepsilon} \geq \alpha$ telle que la convergence (1) a lieu. S'il existe une constante $C_0 > 0$ telle que

$$\frac{\det(A_{\varepsilon})}{\det(A_{\varepsilon}^{s})} A_{\varepsilon}^{s} \leq C_{0} A_{\varepsilon} A_{\varepsilon}^{T} \quad p.p. \ dans \ \Omega, \tag{2}$$

alors on a

$$rac{A_arepsilon^T}{\det(A_arepsilon)} \stackrel{H(L^2(\Omega)^2)}{
ightharpoons} rac{A_*^T}{\det(A_*)}.$$

Théorème (Briane, D.M.)

Soit A_{ε} une suite de $M(\alpha, \beta_{\varepsilon}; \Omega)$ avec $\beta_{\varepsilon} \geq \alpha$ telle que la convergence (1) a lieu. S'il existe une constante $C_0 > 0$ telle que

$$\frac{\det(A_{\varepsilon})}{\det(A_{\varepsilon}^{s})} A_{\varepsilon}^{s} \leq C_{0} A_{\varepsilon} A_{\varepsilon}^{T} \quad p.p. \ dans \ \Omega, \tag{2}$$

alors on a

$$\frac{A_{\varepsilon}^T}{\det(A_{\varepsilon})} \stackrel{H(L^2(\Omega)^2)}{\longrightarrow} \frac{A_{*}^T}{\det(A_{*})}.$$

Remarque

La condition (2) a lieu si A_{ε} est symétrique ou encore si $A_{\varepsilon}:=c_{\varepsilon}I+a_{\varepsilon}J$.

Soit B_{ε} une suite de $M(\alpha_{\varepsilon}, \beta; \Omega)$ avec $\alpha_{\varepsilon} \leq \beta$.

Soit B_{ε} une suite de $M(\alpha_{\varepsilon}, \beta; \Omega)$ avec $\alpha_{\varepsilon} \leq \beta$. Supposons qu'il existe $a \in L^{\infty}(\Omega)$ telle que

$$|(B_{\varepsilon}^{s})^{-1}| \longrightarrow a \quad \mathcal{M}(\bar{\Omega}) \text{ faible } *,$$

Soit B_{ε} une suite de $M(\alpha_{\varepsilon}, \beta; \Omega)$ avec $\alpha_{\varepsilon} \leq \beta$. Supposons qu'il existe $a \in L^{\infty}(\Omega)$ telle que

$$|(B_{\varepsilon}^s)^{-1}| \longrightarrow a \quad \mathcal{M}(\bar{\Omega}) \text{ faible } *,$$

et une constante $C_0 > 0$ telle que

$$B_{\varepsilon}^{\mathsf{T}}B_{\varepsilon} \leq C_0 B_{\varepsilon}^{\mathsf{s}} \quad \mathsf{p.p. \ dans} \ \Omega.$$

Soit B_{ε} une suite de $M(\alpha_{\varepsilon}, \beta; \Omega)$ avec $\alpha_{\varepsilon} \leq \beta$. Supposons qu'il existe $a \in L^{\infty}(\Omega)$ telle que

$$|(B_{\varepsilon}^s)^{-1}| \longrightarrow a \quad \mathcal{M}(\bar{\Omega}) \text{ faible } *,$$

et une constante $C_0 > 0$ telle que

$$B_{\varepsilon}^{\mathsf{T}}B_{\varepsilon} \leq C_0 B_{\varepsilon}^{\mathsf{s}} \quad \mathsf{p.p. \ dans} \ \Omega.$$

Alors, à une sous-suite près, on a

$$B_{\varepsilon} \stackrel{H(L^2(\Omega)^2)}{\longrightarrow} B_*,$$

où
$$B_* \in M(\alpha, \beta; \Omega)$$
 avec $\alpha := (2||a||_{L^{\infty}(\Omega)})^{-1}$.

18/34

$$A_\varepsilon:=\frac{B_\varepsilon'}{\det(B_\varepsilon)}=JB_\varepsilon^{-1}J^{-1}.$$
 On a
$$A_\varepsilon\xi\cdot\xi=B_\varepsilon^{-1}J\xi\cdot J\xi>\beta^{-1}|\xi|^2.$$

et

$$\left|(B_{\varepsilon}^{s})^{-1}\right| = \frac{\det(A_{\varepsilon})}{\det(A_{\varepsilon}^{s})} |A_{\varepsilon}^{s}| \longrightarrow a \quad \mathcal{M}(\Omega) \text{ faible } *.$$

D'après le Théorème du cas non uniformément borné, on a

$$A_{\varepsilon} \stackrel{H(\mathcal{M}(\Omega)^2)}{\longrightarrow} A_{*} \in M(\beta^{-1}, \alpha^{-1}; \Omega),$$

avec
$$\alpha:=(2||a||_{L^{\infty}(\Omega)})^{-1}$$
 et
$$B_{\varepsilon}=\frac{A_{\varepsilon}^{T}}{\det(A_{\varepsilon})}\stackrel{H(L^{2}(\Omega)^{2})}{\longrightarrow}\frac{A_{*}^{T}}{\det(A_{*})}\in M(\alpha,\beta;\Omega). \quad \Box$$

On considère une suite $A_{\varepsilon}(x) := A_{\varepsilon}^{\#}(\frac{x}{\varepsilon})$ avec $A_{\varepsilon}^{\#}$ Y-périodique non uniformément bornée.

Cas périodique

On considère une suite $A_{\varepsilon}(x) := A_{\varepsilon}^{\#}(\frac{x}{\varepsilon})$ avec $A_{\varepsilon}^{\#}$ Y-périodique non uniformément bornée.

Alors la convergence (3) est équivalente à

$$\int_{Y} \frac{\det A_{\varepsilon}^{\sharp}}{\det (A_{\varepsilon}^{\sharp})^{s}} \left| (A_{\varepsilon}^{\sharp})^{s} \right| dy \leq c,$$

Cas périodique

On considère une suite $A_{\varepsilon}(x) := A_{\varepsilon}^{\#}(\frac{x}{\varepsilon})$ avec $A_{\varepsilon}^{\#}$ Y-périodique non uniformément bornée.

Alors la convergence (3) est équivalente à

$$\int_{Y} \frac{\det A_{\varepsilon}^{\sharp}}{\det (A_{\varepsilon}^{\sharp})^{s}} \left| (A_{\varepsilon}^{\sharp})^{s} \right| dy \leq c,$$

et peut-être remplacée par la condition moins restrictive

$$\varepsilon^2 \int_{Y} \frac{\det A_{\varepsilon}^{\#}}{\det (A_{\varepsilon}^{\#})^s} |(A_{\varepsilon}^{\#})^s| dy \xrightarrow[\varepsilon \to 0]{} 0.$$

Cas périodique

On considère une suite $A_{\varepsilon}(x) := A_{\varepsilon}^{\#}(\frac{x}{\varepsilon})$ avec $A_{\varepsilon}^{\#}$ Y-périodique non uniformément bornée.

Alors la convergence (3) est équivalente à

$$\int_{Y} \frac{\det A_{\varepsilon}^{\sharp}}{\det (A_{\varepsilon}^{\sharp})^{s}} \left| (A_{\varepsilon}^{\sharp})^{s} \right| dy \leq c,$$

et peut-être remplacée par la condition moins restrictive

$$\varepsilon^2 \int_Y \frac{\det A_{\varepsilon}^{\#}}{\det (A_{\varepsilon}^{\#})^s} |(A_{\varepsilon}^{\#})^s| \ dy \ \underset{\varepsilon \to 0}{\longrightarrow} \ 0.$$

De plus, soit A_{ε}^* la H-limite constante (connue explicitement) de la suite oscillante $A_{\varepsilon}^{\#}(\frac{x}{\delta})$ lorsque δ tend vers 0.

Si la suite A_{ε}^* converge vers A_* dans $\mathbb{R}^{2\times 2}$ alors A_{ε} "H-converge" vers A_* .

Plan

- 1 Homogénéisation en faible champ magnétique de l'effet Hall bidimensionnel (avec M. Briane et G. Milton, accepté et à paraître dans J. Math. Ana. App.)
- Homogénéisation bidimensionnelle à fort contraste (avec M. Briane, soumis)
- 3 Homogénéisation de matériaux fibrés non périodiques à faible contraste (accepté et à paraître dans M2AN)

Modélisation des fibres cardiaques

21/34

→ Cylindres orientés baignant dans un milieu isotrope (collagène) avec une variation continue de l'orientation des fibres.

→ Cylindres orientés baignant dans un milieu isotrope (collagène) avec une variation continue de l'orientation des fibres.

Modèle de Peskin (1989) :

$$\sigma = \sigma_m + T \ (\tau \otimes \tau), \tag{3}$$

avec σ_m le tenseur isotrope des contraintes du milieu, T la tension des fibres et τ la direction des fibres.

Analogue en conduction :

$$A = \alpha I_3 + \beta (\tau \otimes \tau). \tag{4}$$

→ Cylindres orientés baignant dans un milieu isotrope (collagène) avec une variation continue de l'orientation des fibres.

Modèle de Peskin (1989) :

$$\sigma = \sigma_m + T \ (\tau \otimes \tau), \tag{3}$$

avec σ_m le tenseur isotrope des contraintes du milieu, T la tension des fibres et τ la direction des fibres.

Analogue en conduction :

$$A = \alpha I_3 + \beta (\tau \otimes \tau). \tag{4}$$

Défauts du modèle (3) :

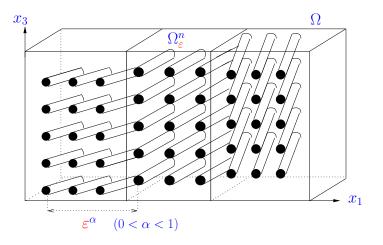
- fibres sans dimension,
- interaction fibres/milieu négligée.

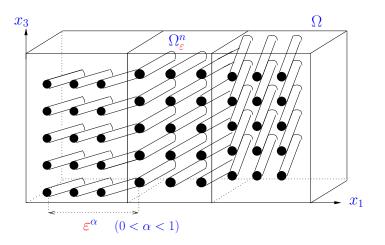
 \rightarrow Homogénéisation d'une microstructure fibrée non-périodique (Briane 1991).

 \rightarrow Homogénéisation d'une microstructure fibrée non-périodique (Briane 1991).

2 modèles considérés :

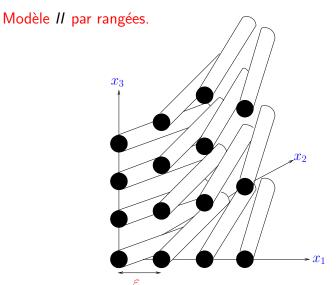
- ullet modèle I : microstructure constituée de couches de fibres périodiques,
- modèle *II* : microstructure constituée de rangées de fibres périodiques.

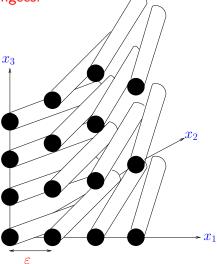




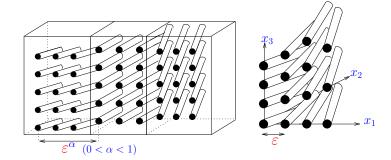
Réseau de fibres d'orientation localement constante

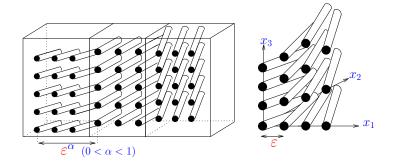
→ contradiction avec la représentation des fibres cardiaques.





Approche plus réaliste de la modélisation des fibres cardiaques (variation continue de l'orientation des fibres).





Problème:

Lois de comportement effectives non suffisamment explicites pour être comparées entre elles ou avec (3) (cas de l'élasticité) et (4) (cas de la conduction).

 \rightarrow Concept dû à Tartar (1991) basé sur la théorie des $\emph{H}\text{-}\text{mesures}.$

ightarrow Concept dû à Tartar (1991) basé sur la théorie des H-mesures.

Définition

Soit U^{ε} une suite de $L^{2}(\mathbb{R}^{N})^{p}$ convergeant vers 0 dans $L^{2}(\mathbb{R}^{N})^{p}$ faible. Alors, à une sous-suite près, il existe une famille $\mu := (\mu_{ij})_{1 \leq i,j \leq p}$ de mesures de Radon sur $\mathbb{R}^{N} \times S^{N-1}$ telles que

$$\forall \phi_{1}, \phi_{2} \in C_{0}(\mathbb{R}^{N}), \ \forall \psi \in C(S^{N-1}),$$

$$<\mu_{ij}, \phi_{1}\overline{\phi}_{2} \otimes \psi> = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{N}} \mathcal{F}(\phi_{1}U_{i}^{\varepsilon}) \overline{\mathcal{F}(\phi_{2}U_{j}^{\varepsilon})} \psi\left(\frac{\xi}{|\xi|}\right) d\xi.$$

La mesure matricielle μ est appelée la $extstyle{\mathsf{H}} extstyle{\mathsf{-mesure}}$ associée à la suite $extstyle{\mathsf{U}}^arepsilon$.

ightarrow Concept dû à Tartar (1991) basé sur la théorie des H-mesures.

Définition

Soit U^{ε} une suite de $L^{2}(\mathbb{R}^{N})^{p}$ convergeant vers 0 dans $L^{2}(\mathbb{R}^{N})^{p}$ faible. Alors, à une sous-suite près, il existe une famille $\mu := (\mu_{ij})_{1 \leq i,j \leq p}$ de mesures de Radon sur $\mathbb{R}^{N} \times S^{N-1}$ telles que

$$\forall \phi_{1}, \phi_{2} \in C_{0}(\mathbb{R}^{N}), \ \forall \psi \in C(S^{N-1}),$$

$$< \mu_{ij}, \phi_{1}\overline{\phi}_{2} \otimes \psi > = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^{N}} \mathcal{F}(\phi_{1}U_{i}^{\varepsilon}) \overline{\mathcal{F}(\phi_{2}U_{j}^{\varepsilon})} \psi\left(\frac{\xi}{|\xi|}\right) d\xi.$$

La mesure matricielle μ est appelée la H-mesure associée à la suite U^{ε} .

Remarque

La H-mesure μ mesure le défaut de compacité L^2 de la suite U^{ε} .

On pose:

$$A_{\varepsilon}^{I}:=\left(a(1-\chi_{\varepsilon}^{I})+b\chi_{\varepsilon}^{I}\right)I_{3}\quad \text{ et }\quad A_{\varepsilon}^{II}:=\left(a(1-\chi_{\varepsilon}^{I})+b\chi_{\varepsilon}^{II}\right)I_{3},$$

où χ_{ε}^{I} et χ_{ε}^{II} sont les fonctions caractéristiques des modèles I et II.

On pose :

$$A_{\varepsilon}^{I} := \left(a(1 - \chi_{\varepsilon}^{I}) + b\chi_{\varepsilon}^{I} \right) I_{3} \quad \text{ et } \quad A_{\varepsilon}^{II} := \left(a(1 - \chi_{\varepsilon}^{I}) + b\chi_{\varepsilon}^{II} \right) I_{3},$$

où χ_{ε}^{I} et χ_{ε}^{II} sont les fonctions caractéristiques des modèles I et II.

Théorème (D.M.)

Si $b = a + c\delta$ avec $c \in \mathbb{R}$, pour δ suffisamment petit, on a

$$A_{\varepsilon}^{I}(\delta) \stackrel{H}{\longrightarrow} A_{\varepsilon}^{I}(\delta) \quad et \quad A_{\varepsilon}^{II}(\delta) \stackrel{H}{\longrightarrow} A_{\varepsilon}^{II}(\delta),$$

On pose :

$$A_{\varepsilon}^{I} := \left(a(1 - \chi_{\varepsilon}^{I}) + b\chi_{\varepsilon}^{I} \right) I_{3} \quad \text{ et } \quad A_{\varepsilon}^{II} := \left(a(1 - \chi_{\varepsilon}^{I}) + b\chi_{\varepsilon}^{II} \right) I_{3},$$

où χ_{ε}^{I} et χ_{ε}^{II} sont les fonctions caractéristiques des modèles I et II.

Théorème (D.M.)

Si $b = a + c\delta$ avec $c \in \mathbb{R}$, pour δ suffisamment petit, on a

$$A_{\varepsilon}^{I}(\delta) \stackrel{H}{\longrightarrow} A_{\varepsilon}^{I}(\delta) \quad et \quad A_{\varepsilon}^{II}(\delta) \stackrel{H}{\longrightarrow} A_{\varepsilon}^{II}(\delta),$$

où $A_*^I(\delta)$ vérifie

$$A_*^I(\delta,x)=c_1(\delta)I_3+c_2(\delta)(\tau(x)\otimes\tau(x))+o(\delta^2),$$

On pose :

$$A_{\varepsilon}^{I} := (a(1-\chi_{\varepsilon}^{I}) + b\chi_{\varepsilon}^{I})I_{3}$$
 et $A_{\varepsilon}^{II} := (a(1-\chi_{\varepsilon}^{I}) + b\chi_{\varepsilon}^{II})I_{3}$,

où χ_{ε}^{I} et χ_{ε}^{II} sont les fonctions caractéristiques des modèles I et II.

Si
$$b = a + c\delta$$
 avec $c \in \mathbb{R}$, pour δ suffisamment petit, on a

$$A_{\varepsilon}^{I}(\delta) \stackrel{H}{\longrightarrow} A_{*}^{I}(\delta) \quad et \quad A_{\varepsilon}^{II}(\delta) \stackrel{H}{\longrightarrow} A_{*}^{II}(\delta),$$

où
$$A_*^I(\delta)$$
 vérifie

$$A_*^I(\delta,x) = c_1(\delta)I_3 + c_2(\delta)(\tau(x) \otimes \tau(x)) + o(\delta^2),$$

et
$$A_*^{II}(\delta)$$
 admet pour décomposition orthogonale sur l'espace $\{\alpha I_3 + \beta(\tau \otimes \tau) \mid \alpha, \beta \in \mathbb{R}\}$

$$A_*^{II}(\delta, x) = A_*^{I}(\delta, x) \oplus D^{II}(\delta, x) + o(\delta^2).$$

avec
$$D^{II}(\delta, x) = 0$$
 si $\gamma'(x) = 0$ (γ est l'angle des fibres).

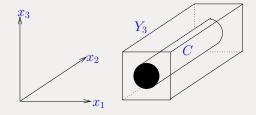
D'après Briane (1991), on a

$$A_*^{I}(x) = R(x)^T B_* R(x)$$
 avec $R(x)^T e_2 = \tau(x)$,

où B_* est la H-limite constante de la suite

$$B_{\varepsilon}(x) := \left(a(1-\chi_C^{\#}) + b\chi_C^{\#}\right)\left(\frac{x}{\varepsilon}\right)I_3,$$

avec $\chi_{C}^{\#}$ la fonction caractéristique du matériau $Y_{3}:=]0,1]^{3}$ périodique donné par



Démonstration

Soit $\chi_{\varepsilon}(x) := \chi_{C}^{\#}(\frac{x}{\varepsilon})$ et θ la limite $L^{\infty}(\Omega)$ faible * de χ_{ε} . D'après un résultat de Tartar (1991), on a

$$B_*(\delta) = (a + c\theta\delta)I_3 - \frac{c^2\delta^2}{a}M' + o(\delta^2),$$

οù $\langle M_{ii}^{I}, \phi \rangle = \langle \nu, \phi(x) \xi_{i} \xi_{i} \rangle \quad \forall \ \phi \in C_{c}^{\infty}(\Omega),$ avec u la H-mesure (mesure de Radon sur $\mathbb{R}^N imes S^{N-1}$) associée à la

avec
$$\nu$$
 la H -mesure (mesure de Radon sur $\mathbb{R}^N \times S^{N-1}$) associée à la suite $(\theta - \chi^{\varepsilon})$.

 $A_*'(\delta,x) = (a+c\theta\delta)I_3 - \frac{c^2\delta^2}{2a}\theta(1-\theta)(I_3-\tau(x)\otimes\tau(x)) + o(\delta^2). \quad \Box$

Périodicité + Symétrie $\Rightarrow M^{I} = (I_3 - e_2 \otimes e_2) \frac{\operatorname{tr}(M^{I})}{2} = \frac{\theta(1-\theta)}{2} (I_3 - e_2 \otimes e_2),$

$$\Rightarrow M^{I} = (I_3 - e_2 \otimes e_2) \frac{\operatorname{tr}(M^{I})}{2} = \frac{\theta(1 - \theta)}{2} (I_3 - e_2)$$

$$\left.\begin{array}{l}
+\\ \text{Symétrie}
\end{array}\right\} \Rightarrow M^{I} = (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} (I_{3} - e_{2} \otimes e_{2}) \frac{H(M)}{2} = \frac{\sigma(1 - \sigma)}{2} \frac{H$$

On pose

$$\mathbf{A}_{\varepsilon}(\delta) := \mathbf{A}_0 + \delta \mathbf{B}_{\varepsilon} + \delta^2 \mathbf{C}_{\varepsilon} + o(\delta^2),$$

οù

- $A_0 \in L^{\infty}(\Omega; M_4^N)$ est coercive et continue,
- $\mathbf{B}_{\varepsilon} \longrightarrow \mathbf{B}_{0} \quad L^{\infty}(\Omega; \mathbf{M}_{4}^{N}) \text{ faible } *,$
- $\mathbf{C}_{\varepsilon} \longrightarrow \mathbf{C}_{0} \quad L^{\infty}(\Omega; \mathbf{M}_{4}^{N}) \text{ faible } *.$

On désigne par μ la H-mesure associée à la suite $(B_{\varepsilon} - B_0)$.

On suppose A_0 isotrope de coefficients de Lamé λ_0 et μ_0 .

On suppose A_0 isotrope de coefficients de Lamé λ_0 et μ_0 . Alors, à une sous-suite près, on a, pour δ suffisamment petit,

$$\mathbf{A}_{\varepsilon}(\delta) \stackrel{H}{\longrightarrow} \mathbf{A}_{*}(\delta) = \mathbf{A}_{0} + \delta \mathbf{B}_{0} + \delta^{2}(\mathbf{C}_{0} - \mathbf{M}) + o(\delta^{2}),$$

On suppose A_0 isotrope de coefficients de Lamé λ_0 et μ_0 . Alors, à une sous-suite près, on a, pour δ suffisamment petit,

$$\mathbf{A}_{\varepsilon}(\delta) \stackrel{H}{\longrightarrow} \mathbf{A}_{*}(\delta) = \mathbf{A}_{0} + \delta \mathbf{B}_{0} + \delta^{2}(\mathbf{C}_{0} - \mathbf{M}) + o(\delta^{2}),$$

où, pour toute $\phi \in C_c(\Omega)$, les coefficients de M sont donnés par

$$\int_{\Omega} M_{ijkl}(x)\phi(x) dx = \sum_{m,p,q=1}^{N} \left\langle \mu_{ijpq,qmkl}, \frac{\xi_m \xi_p \phi}{\mu_0} \right\rangle - \sum_{m,n,p,q=1}^{N} \left\langle \mu_{ijpq,mnkl}, \frac{\mu_0 + \lambda_0}{\mu_0(2\mu_0 + \lambda_0)} \xi_m \xi_p \xi_q \phi \right\rangle.$$

On suppose A_0 isotrope de coefficients de Lamé λ_0 et μ_0 . Alors, à une sous-suite près, on a, pour δ suffisamment petit,

$$\mathbf{A}_{\varepsilon}(\delta) \stackrel{H}{\longrightarrow} \mathbf{A}_{*}(\delta) = \mathbf{A}_{0} + \delta \mathbf{B}_{0} + \delta^{2}(\mathbf{C}_{0} - \mathbf{M}) + o(\delta^{2}),$$

où, pour toute $\phi \in C_c(\Omega)$, les coefficients de M sont donnés par

$$\int_{\Omega} M_{ijkl}(x)\phi(x) dx = \sum_{m,p,q=1}^{N} \left\langle \mu_{ijpq,qmkl}, \frac{\xi_m \xi_p \phi}{\mu_0} \right\rangle - \sum_{m,n,p,q=1}^{N} \left\langle \mu_{ijpq,mnkl}, \frac{\mu_0 + \lambda_0}{\mu_0 (2\mu_0 + \lambda_0)} \xi_m \xi_n \xi_p \xi_q \phi \right\rangle.$$

Remarque

Cas complètement isotrope : Tartar (1991).

Modèle /// 31/34

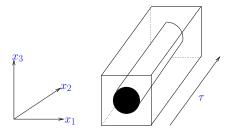
Réseau périodique de fibres d'orientation au constante.

Réseau périodique de fibres d'orientation au constante.

Soit χ la fonction caractéristique du réseau Y_3 -périodique de fibres de rayon r>0 centrées dans Y_3 et d'orientation τ .

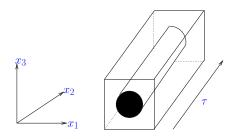
Réseau périodique de fibres d'orientation τ constante.

Soit χ la fonction caractéristique du réseau Y_3 -périodique de fibres de rayon r>0 centrées dans Y_3 et d'orientation τ .



Réseau périodique de fibres d'orientation τ constante.

Soit χ la fonction caractéristique du réseau Y_3 -périodique de fibres de rayon r > 0 centrées dans Y_3 et d'orientation τ .



On note $\chi_{\varepsilon}(x) := \chi(\frac{x}{\varepsilon})$ et

$$\mathbf{A}_{\varepsilon}^{III} := (1 - \chi_{\varepsilon})\mathbf{A}^1 + \chi_{\varepsilon}\mathbf{A}^2,$$

où $A^1, A^2 \in M_3^4$.

On suppose A^1 isotrope et A^2 donné pour toute $e \in \mathbb{R}_s^{3 \times 3}$ par

On suppose
$$\mathbf{A}^1$$
 isotrope et \mathbf{A}^2 donné pour toute $e \in \mathbb{R}^{3 imes 3}_s$ par $\mathbf{A}^2(\pmb{\delta})e := \mathbf{A}^1e + \pmb{\delta}(e au \cdot au)(au \otimes au).$

On suppose \mathbf{A}^1 isotrope et \mathbf{A}^2 donné pour toute $e \in \mathbb{R}^{3 \times 3}_s$ par $\mathbf{A}^2(\delta)e := \mathbf{A}^1e + \delta(e\tau \cdot \tau)(\tau \otimes \tau).$

Alors, pour
$$\delta$$
 suffisamment petit, $\mathbf{A}_{\varepsilon}^{III}(\delta) \stackrel{H}{\longrightarrow} \mathbf{A}_{*}^{III}(\delta)$ qui vérifie pour toute $\mathbf{a} \in \mathbb{R}^{3 \times 3}$

toute
$$e \in \mathbb{R}^{3 imes 3}_s$$

$$\mathbf{A}^{III}_*(\delta)e = \mathbf{A}^1 e + c(\delta,\mu)(\tau \otimes \tau) + o(\delta^2),$$

οù
$$\mu$$
 est la H-mesure associée à la suite $(\theta - \chi_{\varepsilon})$ et $c(\delta, \mu)$ est donnée par
$$c(\delta, \mu) = \theta(e\tau \cdot \tau)\delta - \kappa(\mu, \tau) \frac{\mu_1 + \lambda_1}{\mu_1(2\mu_1 + \lambda_1)} (e\tau \cdot \tau)\delta^2.$$

On suppose \mathbf{A}^1 isotrope et \mathbf{A}^2 donné pour toute $e \in \mathbb{R}^{3 \times 3}_s$ par $\mathbf{A}^2(\delta)e := \mathbf{A}^1e + \delta(e\tau \cdot \tau)(\tau \otimes \tau).$

Alors, pour δ suffisamment petit, $\mathbf{A}_{\varepsilon}^{III}(\delta) \stackrel{H}{\longrightarrow} \mathbf{A}_{*}^{III}(\delta)$ qui vérifie pour toute $e \in \mathbb{R}_{*}^{3 \times 3}$

$$\mathbf{A}_*^{III}(\boldsymbol{\delta})e = \mathbf{A}^1e + c(\boldsymbol{\delta},\mu)(\tau\otimes\tau) + o(\boldsymbol{\delta}^2),$$

où μ est la H-mesure associée à la suite $(\theta - \chi_{\varepsilon})$ et $c(\delta, \mu)$ est donnée par $c(\delta, \mu) = \theta(e\tau \cdot \tau)\delta - \kappa(\mu, \tau) \frac{\mu_1 + \lambda_1}{\mu_1(2\mu_1 + \lambda_1)} (e\tau \cdot \tau)\delta^2.$

La démonstration est basée sur la formule d'homogénéisation à faible contraste en élasticité et le résultat du modèle *I* simplifié en conduction.

- Les modèles *I* par couches et *II* par rangées coïncident lorsque l'orientation des fibres est localement constante,
- Le modèle / valide le modèle (4) (analogue en conduction du modèle de Peskin).

- Les modèles *I* par couches et *II* par rangées coïncident lorsque l'orientation des fibres est localement constante,
- Le modèle *I* valide le modèle (4) (analogue en conduction du modèle de Peskin).

Cas de l'élasticité.

- Les modèles / par couches et // par rangées coïncident lorsque l'orientation des fibres est localement constante,
- Le modèle *I* valide le modèle (4) (analogue en conduction du modèle de Peskin).

Cas de l'élasticité.

- Les modèles *I* par couches et *II* par rangées coïncident lorsque l'orientation des fibres est localement constante,
- Les modèles / et // ne valident pas le modèle de Peskin,
- Le modèle *III* périodique avec perturbation anisotrope permet de valider, par homogénéisation, le modèle de Peskin.

Perspectives

Perspectives

Dualité à fort contraste en élasticité :

Perspectives 34/34

Dualité à fort contraste en élasticité :

Extension de résultats de

- Helsing, Milton et Movchan (1997) pour des compliances particulières,
- Francfort et Suquet (2001) en élasticité incompressible.
- → Résultats possibles de compacité du cas non équi-coercif.

Perspectives 34/34

Dualité à fort contraste en élasticité :

Extension de résultats de

- Helsing, Milton et Movchan (1997) pour des compliances particulières,
- Francfort et Suquet (2001) en élasticité incompressible.
- \rightarrow Résultats possibles de compacité du cas non équi-coercif.

Homogénéisation à fort contraste du modèle II :

Perspectives 34/34

Dualité à fort contraste en élasticité :

Extension de résultats de

- Helsing, Milton et Movchan (1997) pour des compliances particulières,
- Francfort et Suquet (2001) en élasticité incompressible.
- \rightarrow Résultats possibles de compacité du cas non équi-coercif.

Homogénéisation à fort contraste du modèle II :

Cas de fibres baignant dans un milieu mou.

ightarrow Problème homogénéisé couplé avec un couplage dépendant de la dérivée de l'angle des fibres (contrairement au modèle I)