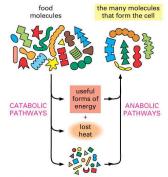
Motif Identification in Metabolic Networks

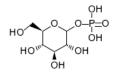
Vincent Lacroix


Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558 - INRIA Université Claude Bernard - Lyon 1

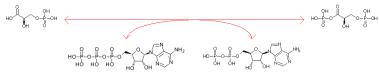
Research advisor: Marie-France Sagot

・ 同 ト ・ ヨ ト ・ ヨ ト

Metabolism


the many building blocks for biosynthesis

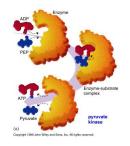
・ロン ・回と ・ヨン・


æ

Metabolites and reactions

Metabolites (compounds)

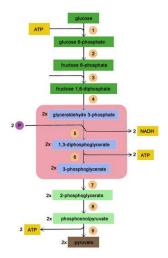
Reactions



(1日) (1日) (日)

• Enzymes catalyse reactions

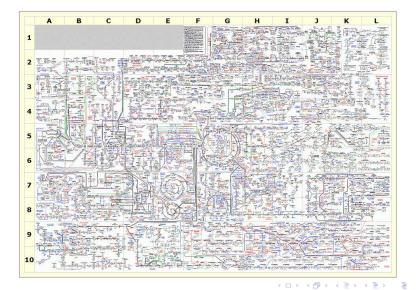
• The "EC" classification: Every enzyme is assigned a code


Every enzyme is assigned a code with 4 numbers expressing the chemistry of the reaction it catalyses Ex : 1.1.2.3

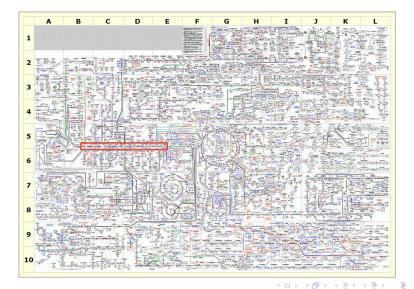
→ Ξ →

- ∢ ⊒ ⊳

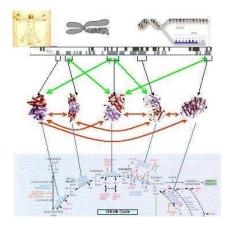
Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion


Metabolic Pathway: Glycolysis

・ロン ・回 と ・ヨン ・ヨン


э

Metabolic Network


Vincent Lacroix Motif Identification in Metabolic Networks

Metabolic Network

Vincent Lacroix Motif Identification in Metabolic Networks

Biological networks

Gene Regulatory Network

Protein Interaction Network

・ 同・ ・ ヨ・

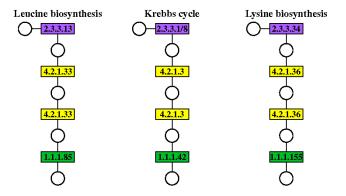
• 3 3

3

Metabolic Network

General motivation

General Motivation: understand the structure of the metabolic network, and the way it has been set up in the course of evolution


Question : can we define and identify functional and/or evolutionary units in a metabolic network ?

伺下 イヨト イヨト

э

Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

Repeated elements in metabolic networks

 Velasco, A.M., Leguina, J.I. and Lazcano, A. (2002) Molecular Evolution of the Lysine Biosynthetic Pathways, J. Mol. Evol., 55, 445-459.

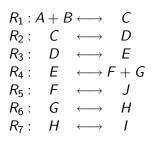
Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

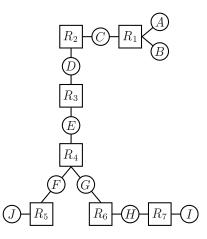
Repeated elements in metabolic networks

Can we detect such regularities in a systematic way ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Network models

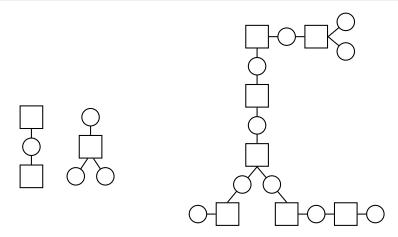

Several types of models have been proposed for metabolic networks:


- quantitative models (differential equations)
- constraint-based models, petri-Nets, π -calculus
- qualitative models (graphs)

伺下 イヨト イヨト

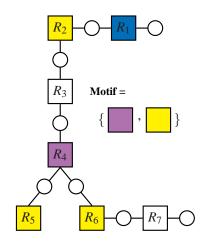
æ

Graph models



イロン イボン イヨン イヨン 三日

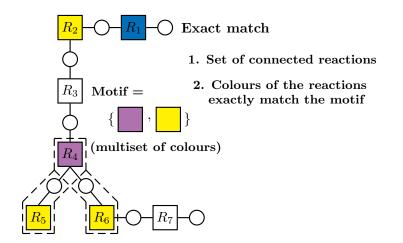
Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion


Motif models: Inadequacy of topological definition

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs : simple building blocks of complex networks. Science, 298(5594) :824-827, Oct 2002.

Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

Motif models: A topology-free definition

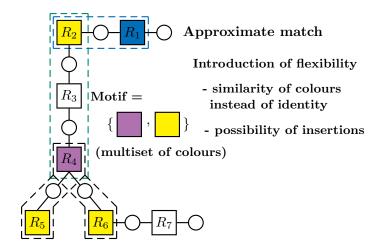


 $\mathsf{Motif} = \mathsf{multiset} \; \mathsf{of} \; \mathsf{colours}$

No constraint on the order nor on the topology.

3

Definition of occurrence



 3

< ∃ >

Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

Introduction of flexibility

Similarity between reactions

```
The "EC" classification:
```

Every enzyme is assigned a code with 4 numbers expressing the chemistry of the reaction it catalyses Ex : 1.1.2.3

Similarity measure:

Two enzymes are considered similar if their codes are identical down to a given depth

```
Ex : 1.1.2.3 is similar to 1.1.2.1 (for threshold 3)
```

Search problem formulation

Search problem: given a motif and a threshold for comparison, find all occurrences of that motif in the metabolic graph

・ 同 ト ・ ヨ ト ・ ヨ ト

Hardness Results

INPUT : Vertex-labelled graph G and a multiset of colours MQUESTION : Does G contain a connected subset of vertices with a bijection between its colours and M?

TYPE OF GRAPH	PATH	TREE	GRAPH
COMPLEXITY	polynomial	NP-complete, FPT in k	NP-complete

・ 同 ト ・ ヨ ト ・ ヨ ト

Exact Algorithm

Graphs considered are sparse ($|V| \sim 3000$, $|E| \sim 15000$), therefore an exact algorithm can run in acceptable time. (in practice, 8 μs for motifs of size 3 on AMD 64, 1.8 GHz, 2 Go)

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Exact Algorithm

Main ideas:

- **IFilter**: Only nodes with colours from the motif are kept.
- 2 Candidate generation:

For each node:

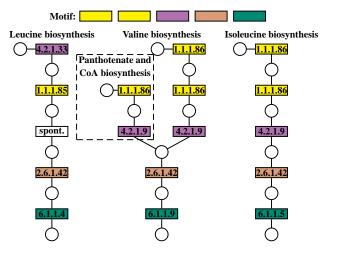
- Enumerate all sets of k connected nodes containing it (using breadth-first search (bfs) and backtrack) and test the colour condition.
- Eliminate the node.
- Speed-ups:
 - **Colour Pruning**: During candidate generation, if a set of nodes does not satisfy the colouring condition, then all sets containing this subset will not be tested.
 - Seed Choice: The bfs only starts from vertices with less frequent colours

(人間) システン イラン

Initial application to pathway evolution

イロン イヨン イヨン イヨン

Э


Introduction Modelling Results

s Initial application

Inference and statistics

Applications Software Conclusion

Application to pathway evolution

イロン イヨン イヨン イヨン

Conclusion - so far

Modelling:

A 'coloured motif' is a multiset of colours (reaction types)

Algorithmics:

Searching for all occurrences of such motifs is NP-complete but we implemented an exact algorithm which appears to be fast in practice

Application:

Occurrences of a motif can be given a biological interpretation in some cases (evolution of metabolic pathways, alternative pathways)

Lacroix V, Fernandes CG, Sagot M-F Reaction motifs in metabolic networks. Proceedings of WABI '05,

Springer-Verlag, Lecture Notes in Computer Science, 2005, vol. 3692, pp. 178-191.

Lacroix V, Fernandes CG, Sagot M-F, Motif search in graphs: application to metabolic networks. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 2006, vol. 3, pp. 360-368. 👩 5 (2006) (2007) (20

Inferring motifs

Question:

What happens if you do not know which motif to look for ?

Answer:

You can consider the inference problem: given a coloured graph, find all repeated motifs.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

Inference problem formulation

Inference problem: given a metabolic graph, a number k and a threshold σ , find all repeated motifs of size k with threshold σ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Inference algorithm

- Algorithm: The current implementation of the inference algorithm is merely a series of search of all possible motifs of a given size and threshold.
- **Speed-up**: If the motif $M = \{1.1, 2.3, 1.4\}$ has no occurrence then the motif $M' = \{1.1.1, 2.3.2, 1.4.2\}$ will have no occurrence either. Therefore the list of motifs to test can be pruned.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Dataset: Small molecule metabolism of Escherichia coli

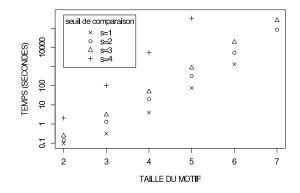
- Source: http://ecocyc.org/
- Pre-treatment:

For each reaction, remove side compounds

Characteristics

- number of reactions: 587
- number of compounds: 553
- number of EC numbers: 463
 - \diamond 428 (σ = 4), 91 (σ = 3), 40 (σ = 2), 6 (σ = 1)

・ 同 ト ・ ヨ ト ・ ヨ ト

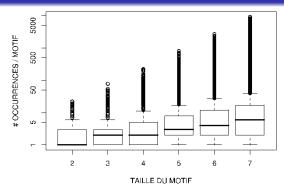

Applications Software Conclusion

3

3

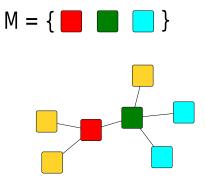
-

Inference - time results



- Time grows almost exponentially with motif size
- Motifs of size 6 can be inferred in 3 hours

Conclusion

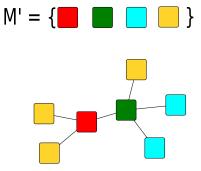

-

Inference - number of occurrences

- Many motifs with few occurrences and some with a great number of occurrences
- The number of occurrences per motif tends to grow with motif size (counter-intuitive)

Larger motifs may have more occurrences

Motif M has 2 occurrences


・回 ・ ・ ヨ ・ ・ ヨ ・

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Conclusion

How can longer motifs have more occurrences ?

Motif M' has 6 occurrences

Summary:

- Execution time is not our main limitation: motifs of size 7 can be inferred within hours
- Output size may become a problem for later interpretation: a motif of size 7 may have up to 10000 occurrences

Are all occurrences equally relevant ?

• Filter and/or group occurrences which share common features

Are all motifs equally relevant ?

• Propose a statistical criterion for over-representation

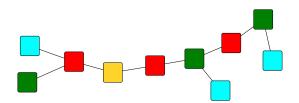
向下 イヨト イヨト

向下 イヨト イヨト

3

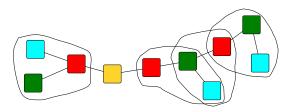
e Conclusion

Are all occurrences equally relevant ?


Two ways of grouping occurrences that we used:

- group occurrences which overlap (*i.e.* share a node)
- group occurrences which share the same topology

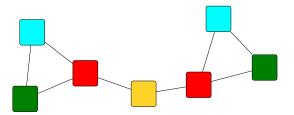
Group by overlap



・ロン ・聞と ・ほと ・ほと

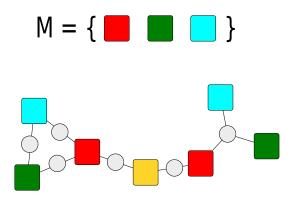
æ

Group by overlap


- 4 occurrences
- 2 clumps of occurrences

Overlapping occurrences may not be given the same biological interpretation as disjoint occurrences.

・ 同下 ・ ヨト ・ ヨト


Group by topology

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Group by topology

Need to use a bipartite graph model to discriminate more precisely

(4回) (4回) (日)

Are all motifs equally relevant ?

- Highly represented motifs are not necessarily over-represented motifs.
- An **over-represented** motif is a motif which occurs more than expected by chance.
- Need to define a null model: a random graph model

伺下 イヨト イヨト

Over-represented motifs

Which random graph model should we choose ? ... an open problem

- Erdös-Rényi: all nodes are connected with the same probability *p*. (not realistic in biology)
- Erdös-Rényi Mixture for Graphs (ERMG): nodes belong to groups. The probability for two nodes to be connected depends on the groups.
- **Fixed topology**: the topology of the real graph is fixed but the colours are shuffled.

Daudin JJ, Lacroix V, Mariadassou M, Miele V, Picard F, Robin S, Sagot M-F, Uncovering structure in biological networks. RIAMS'06 , 2006.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Over-represented motifs

Once a random graph model is chosen, two approaches can be adopted:

- Exact formulae: obtain a formula for the mean and variance of the motif count in a random graph model and derive a Z-score to assess motif over-representation. (on-going work for the Erdös-Rényi model)
- **Simulations**: generate random (or randomized) graphs and count the motif in each one of them. The real count can then be compared to this obtained count distribution.

伺下 イヨト イヨト

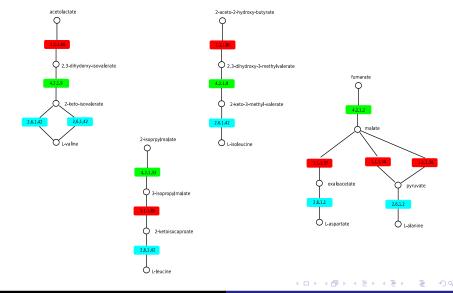
Applications

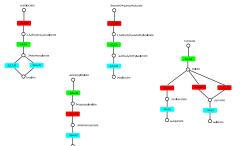
Question: what can we learn using our definition of motif ?

- Examine more deeply some examples
- Relate motifs to known functional structures

・ 同 ト ・ ヨ ト ・ ヨ ト …

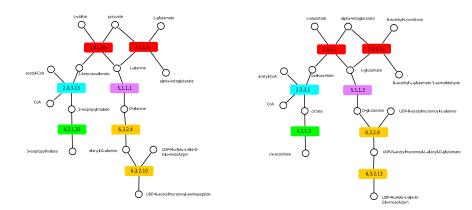
Examples: maximal motifs


Examples have been chosen using the following rules:


- 1 maximum number of clumps
 - 2 metabolic pathway of interest
 - 3 randomly

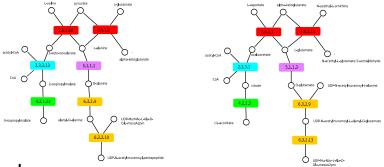
向下 イヨト イヨト

Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion


Example for n=3, s=3

- 7 occurrences, 4 clumps
- common to 4 amino-acid biosyntheses
- the last clump is made of inter-pathway occurrences

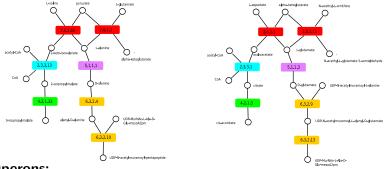
문 🕨 👘 문


・ロト ・回ト ・ヨト ・ヨト

Э

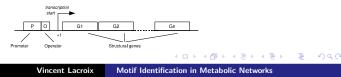
- 2 occurrences, 2 clumps
- key role of the transaminase connecting leucine biosynthesis, krebbs cycle and peptidoglycan biosynthesis

< ∃⇒



Paralogs:

- acnA (4.2.1.3) and leuC (4.2.1.33)
- leuB (1.1.1.85) and icd (1.1.1.42)
- murD (6.3.2.9), murE (6.3.2.13) and murF (6.3.2.10)


A ■

3

Operons:

- murD, murE and murF are part of the same operon
- murF and ddlA are part of the same operon in other organisms

Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

Relate motifs to known functional structures

Question: Are the genes involved in repeated motifs more clustered on the genome ?

向下 イヨト イヨト

Related works

Rison, S.C., Teichmann, S.A. and Thornton, J.M. (2002) Homology, pathway distance and chromosomal localization of the small molecule metabolism enzymes in *Escherichia coli. J. Mol. Biol.* **318**, 911-932.

- There is a positive correlation between pathway distance and chromosomal distance
- This correlation is not verified for long distances
- Short distance correlation is mainly explained by operon structures

・ 同 ト ・ ヨ ト ・ ヨ ト

Protocol

- We retrieved a set of known operons in *E. coli* from RegulonDB.
- **2** We identified the occurrences that were covered by an operon.
 - An occurrence is covered by an operon if all its reactions are covered.
 - A reaction is covered by an operon if the gene(s) coding for one of its enzymes is (are) in this operon.

・ 同 ト ・ ヨ ト ・ ヨ ト

Parameters: size=2, threshold=3

- 249 motifs
- 1379 occurrences

Counts:

	operon +	operon -	
several clumps	77	612	689
only one clump	45	645	690
	122	1257	1379

ヘロン 人間 とくほど くほとう

Motifs repeated in several clumps

Question: Are occurrences of motifs repeated in several clumps more covered by operons ?

Answer: Yes. (permutation test, p=0.003)

Quantification:

63.1% of occurrences covered by operons are occurrences of repeated motifs.

通 とう ほう ううせい

Conclusion

- Known result: neighbours in the network tend to be neighbours on the genome (operon structure)
- New result: This tendency is reinforced when reactions belong to repeated motifs (several clumps)

伺下 イヨト イヨト

Software

MOTUS:

http://pbil.univ-lyon1.fr/software/motus

Participants:

- Data: Ludovic Cottret (Baobab)
- Web: Odile Rogier (PRABI)
- Drawing: Fabien Jourdan (INRA toulouse)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Dataset selection

BBE	MOTUS	Pore	Helas
Baobab Team	Motif search in metabolic networks	\$ ANDS	BIOINFORMATION
Documentation Software			
Select an organism : Escherichia coli K12 💌	Statistics Download SBML data		
What mode of Motus do you want to use ? Search Inference (?)			
Fewer Parameters			
Remove Compounds Select types of compounds : Only primary compounds 🝸 ③			
Number of compounds to remove :			
Remove Reactions			
Remove reactions involving big molecules	s (proteins, tRNAs) as end products ?		
Remove the reactions that involve compou	inds of type class ?		

・ロン ・回 と ・ヨン ・ヨン

Э.

Introduct	ion Mo	delling	Results	Initial ap	plication Infe	rence and stat	tistics Ap	oplications	Software	Conclusion
Mot	if sea	arch								
	BBE	Baobab Team	Search Mode Sea	arch Results	MOT Motif search in met			BRI	<u>18</u> 4	
					Parame	ters				
					Selected Organism	Escherichia coli K12				
					Type of Compounds Coumpounds to remove	Only primary compounds				
					Remove reactions involving big molecules as end products ?	-				
					Remove compounds of type "clas	•" ? No				
					Number of simulations	1000				
					Motif	1.1.1 4.2.1 2.3.3				

Results								
Occurrences Number	7							
p-Value	0.038							

No		Occurrence	Pathway				
Occurrence	Reaction1	Reaction2	Reaction3	- Failway			
	2-ISOPROPYLMALATESYN-RXN [2.3.3.13]	3-ISOPROPYLMALISOM-RXN [4.2.1.33]	3-ISOPROPYLMALDEHYDROG-RXN [1.1.1.85]	superpatiway of leacine, value, and isoleucine biosynthesis leacine biosynthesis			
2	2-ISOPROPYLMALATESYN-RXN [2.3.3.13]	DHHYDROXYISOVALDEHYDRAT-RXN 14.2.1.91	ACETOLACIREDUCTOISOM-RXN ILLL861	superputhway of leucine, valine, and isoleucine biosynthesis			
3	ACONITATEDEHYDR-RXN [4.2.1.3]	CITSYN-RXN12.3.3.1]	MALATE-DEH-RXN11.1.1.371	respiration (anacrobic) supernatiway of glycolysis, pyrovate dehydrogenase, TCA, and glycoxylate bypass glycoxylate cycle supernatiway of glycoxylate bypass and TCA TCA cycle			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Motif inference

Decementation Software Inference Mede	ŀ	nferer	ice Re		f sear	MOT		c netv	vorks		PRAB	
						Paramo	ters		-			-
					Selected	Organism	Esch	erichia col	i K12			
					Type of C	ompounds	Only	primary c	ompounds			
				c	oumpoun	ds to remove	0					
						ns involving bij nd products ?	g Yes					
					Remove compounds of type "class" ?							
				1	Number of simulations		100	1000				
					Size o	f motif	2					
					Thre	shold	2					
The inference results can be visualized by <u>Motus View</u>	No Motif	м	stif	Number of Occurrences	p-Value	Connected Components	p-Value (CC)		of Pathways lecurrence	Number of Occurrences which are included		
	Moth	EC1	EC2	(Occ)	(<u>Occ</u>)	(<u>CC)</u>	au	Mean	Variance	in a single Pathway		
	1	1.2	2.2	10 More details	< 0.0005	1	0.3975	6.1	2,88	0		
	2	1.2	4.1	23 More details	< 0.0005		0.894	4.91	2.54	8		
	3	1.4	2.6	7 More details	< 0.0005		0,3093	4.71	1.38	1		
	4	1.4	<u>6.1</u>	8 More details	< 0.0005		0.1545	4.37	1.27	1		
	5	1.5	13	4 More details	< 0.0005		0,001	1.5	0.25	2		
	6	1.5	2.1	9 More details	< 0.0005	1	0.333	4.77	4.69	9		

æ

Motus Viewer

イロン イヨン イヨン イヨン

Conclusion

Motif Search

- Searching for a coloured motif in a coloured graph is NP-complete
- Metabolic networks are not so dense, which enables to run exact algorithms
- Coloured motifs may help in formulating hypotheses regarding pathway evolution

向下 イヨト イヨト

æ

Conclusion

Motif Inference

- Time is not a limitation but the number of occurrences may become one
- Occurrences may be grouped in different ways
- Over-representation may enable to select relevant motifs
- MOTUS: available software
- Some examples have been studied in detail and provide insight
- Motifs repeated in several clumps are enriched in operons

Lacroix V, Cottret L, Rogier O, Fernandes CG, Jourdan F, Sagot M-F MOTUS: a tool to detect coloured motifs in metabolic networks. in prep.

向下 イヨト イヨト

Perspectives

More modelling:

- Explore alternative ways of comparing reactions... towards RC numbers ?
- Number of occurrences, number of clumps ... maximum number of pairwise disjoint occurrences ?

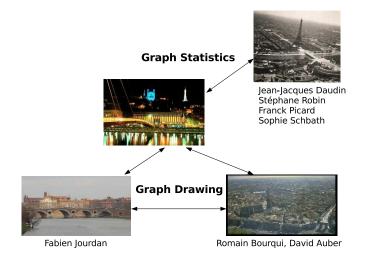
More algorithms:

- Inference algorithm
- Largest repeated motif

More statistics:

- Assess expected motif count in available random graph models (without using simulations)
- Open problem: what is a relevant random graph model ?

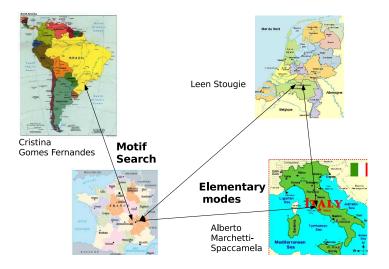
向下 イヨト イヨト


Perspectives - continued

More biology:

- Explore the link between genomic position and motifs
- Explore the link between paralogy and motifs
 - Are motifs repeated in several clumps enriched in duplicated genes ?
- Relate motifs to models of pathway evolution
- Compare motifs in different organisms
- Apply the concept of coloured motif to protein interaction networks

向下 イヨト イヨト


Collaborations

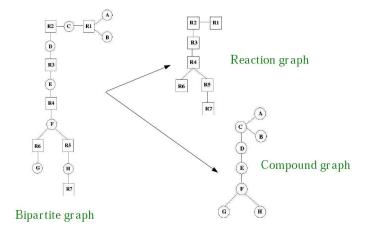
イロン イヨン イヨン イヨン

э

Collaborations

イロン イヨン イヨン イヨン

э


Thank you !

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

◆□→ ◆□→ ◆注→ ◆注→ □注□

Graph models

< (T) >

• 3 >

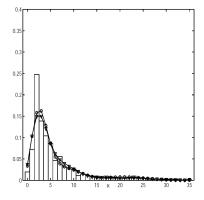
< ∃ >

æ

Inference - number of motifs

• The number of motifs grows exponentially with motif size

A 3 >


 э

ERMG model

- Erdös-Rényi graph do not model well the degree distribution of real networks
 - ER model: $K_i \sim P(\lambda)$
 - observed: $K_i \sim k^{-\gamma}$
- ERMG is a generalisation of ER
- Hypothesis: there exists a hidden structure into Q classes of connectivity

・ 同 ト ・ ヨ ト ・ ヨ ト …

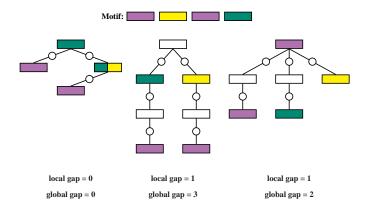
ERMG model



• The degree distribution is modelled correctly.

< ∃ >

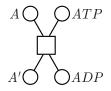
э


ERMG model

ヘロン 人間 とくほど くほとう

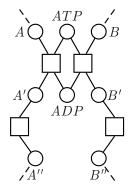
æ

Taking gaps into account



Managing local gap: first compute a transitive closure of the metabolic graph

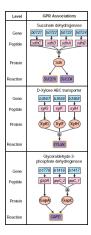
→ ∃ →


Introduction Modelling Results Initial application Inference and statistics Applications Software Conclusion

Are all metabolites equivalent?

(4回) (日) (日)

How to handle ubiquitous metabolites ?


Choice 1: withdraw ubiquitous metabolites

Choice 2: withdraw secondary metabolites

3

→ Ξ →

Gene-Protein-Reaction

• The correspondance between genes and reactions is not always 1 to 1.

イロト イポト イヨト イヨト

э