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1 ESTIMATION DE PERFORMANCE EN SYSTEMES 
MULTIPROCESSEURS MONOPUCES 

L’augmentation de la capacité d’intégration de transistors permet l’intégration des 

processeurs, composants matériel, mémoires, interface digitale e analogique sur une 

puce. Actuellement, on constate de plus en plus l’utilisation de plusieurs processeurs 

dans une seule puce, appelé MPSoC (multiprocessor system-on-chip). En comparaison 

avec des implémentations purement matérielles les processeurs donnent la flexibilité et 

hétérogénéité nécessaires dans les systèmes embarqués. 

La conception d’un système embarqué est imposée à des contraintes strictes. Le flot 

de conception d’un MPSoC demande des outils pour vérifier si les conditions sont 

suffisantes. La performance est normalement la principale contrainte pour guider 

l’exploitation de l’espace des solutions. Néanmoins, les autres aspects doivent être 

évalués dans les étapes initiales du projet, par exemple la puissance et l’énergie. 

L’exploration d’un énorme espace d’alternatives est appuyée par des outils 

d’estimation. 

L’estimation de performance est un processus continu et peut être utilisée aux 

différents niveaux d’abstraction comme montre la Figure 1.1. Pendant la spécification 

du système, l’estimation de performance aide dans le partitionnement du système en 

composants matériels et logiciels, la sélection du processeur, et le mapping des tâches 

sur les processeurs.  

L’architecture virtuelle est un modèle où le logiciel n’est pas compilé pour le 

processeur cible et la communication est faite par des canaux au niveau transactionnel. 

Comme l’interconnexion n’est pas encore définie, à ce niveau on exploite les différentes 

possibilités d’implémentation des canaux TLM (transaction level model) et de la 

structure de communication. 
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Au niveau du bus fonctionnel (bus functional model – BFM) les interfaces 

matérielles et logicielles sont déjà raffinés et le logiciel est compilé pour le processeur 

cible. A ce niveau, une analyse détaillée de la performance du matériel et du logiciel 

sont possibles. 

Architecture Virtuelle

Niveau bus fonctionnel

Intégration SoC

Niveau RTL

Outils d’estimation de performance

Raffinage des interfaces 
logiciel/matériel

Spécification du système

Exploration de 
l’architecture

Sélection du processeur

Partitionnement des 
interfaces logiciel/matériel

Mapping de la 
memóire

Estimation de retards

Domaine de 
ce travail

 

Figure 1.1- Estimation de performance et les niveaux d’abstraction dans la conception 

d’un MPSoC 

En raison de l’augmentation de la partie logicielle et du nombre des processeurs 

dans les systèmes embarqués, des outils pour l’estimation de performance sont 

nécessaires. Les outils d’estimation de performance sont divisées en deux groupes: 

basées sur la simulation et modèles abstraits (MEYEROWITZ, 2004). Les méthodes 

basées sur la simulation utilisent un simulateur précis au niveau du cycle pour estimer le 

temps d’exécution. De l’autre coté, des modèles abstraits ou analytiques utilisent des 

fonctions de coût pour calculer le temps d’exécution du logiciel. Les méthodes au 

niveau intermédiaire sont basées sur l’annotation du code avec les coûts d’exécution. 

Comme l’application exécute sur le poste de travail, la simulation est plus rapide. 

Cette thèse propose des méthodes pour l’estimation de performance, qui sont 

nécessaires en raison du grand espace de solutions qui ne peut pas être exploré 

manuellement ou vérifié juste quand un prototype matériel est disponible. Un modèle 
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analytique est proposé pour estimer la performance basé sur des réseaux neuronaux au 

niveau de la spécification. Des outils ont été développés pour l’analyse de performance 

au niveau du bus fonctionnel, en utilisant les prototypes virtuels pour valider d’une 

manière intégrée les composants matériels et logiciels. Le prototype virtuel est un 

modèle de simulation qui permet une analyse de performance intégrée des composants 

matériels et logiciels.  

1.1 L’intégration de l’estimation de performance dans le flot ROSES  

Cette thèse propose une méthodologie pour l’analyse et l’estimation de performance 

dans les systèmes multiprocesseurs monopuces (MPSoC). Le flot de conception ROSES 

développé au sein du groupe SLS est utilisé pour guider le flot d’estimation de 

performance. L’environnement ROSES permet la génération automatique des interfaces 

logicielles et matérielles dans un système MPSoC. Le flot de conception ROSES utilise 

comme point de départ pour la génération des interfaces une architecture virtuelle 

composée par des composants fonctionnels reliés par de canaux de communication au 

niveau transactionnel. Dans l’architecture virtuelle, les composants fonctionnels 

décrivent les composants matériels et logiciels du système. Les composants logiciels 

sont composés par des tâches, qui communiquent par des canaux logiques. 

Dans la cadre de cette thèse, des réseaux neuronaux sont utilisés pour guider la 

sélection du processeur pour chaque composant logiciel. Les réseaux neuronaux 

apportent une solution efficace pour modéliser le comportement non-linéaire du logiciel 

exécutant dans les processeurs avec des caractéristiques comme le pipeline, mémoires 

cache et prédiction de branchement. Dans les expériences, on a utilisé différents 

processeurs, comme le PowerPC750, l’ADSP, l’ARM946 et un processeur Java.  

Après la sélection du processeur, l’environnement ROSES est utilisé pour raffiner 

les interfaces matérielles et logicielles et générer un modèle au niveau du bus 

fonctionnel (bus functional model - BFM). Dans ce travail, on propose l’utilisation de 

prototypes virtuels pour créer des modèles globaux de simulation. La génération 

automatique du prototype virtuel à partir d’un modèle de bus fonctionnel généré par 

ROSES permet l’analyse de performance et la validation du système. 



 

 11

1.2 Estimation de performance basée sur des réseaux neuronaux 

Au niveau de la spécification, l’exploration de l’espace des solutions pour trouver 

une solution qui satisfait les contraintes peut être réalisée de différentes manières, par 

exemple en faisant la modification de l’architecture et le partitionnement des tâches.  

La sélection du processeur approprié pour l’exécution du logiciel est une partie 

importante de l’exploration de l’espace des solutions (voir la Figure 1.2). L’estimation 

de performance nécessaire pour la sélection du processeur devient de plus en plus 

complexe. L’utilisation des processeurs avancés exige des outils d’estimation de 

performance rapides et précis qui prennent en compte l’impact des mémoires cache, la 

prédiction de branches et les pipelines dans la performance de l’application.  

Architecture Virtuelle

Niveau bus fonctionnel

Intégration SoC

Niveau RTL

Outils d’estimation de performance

Raffinage des interfaces 
logiciel/matériel

Spécification du système

Exploration de 
l’architecture

Sélection du processeur

Partitionnement des 
interfaces logiciel/matériel

Mapping de la 
memóire

Estimation de retards

Code em langageC

Temps d’exécution estimé

 

Figure 1.2- Outil d’estimation de performance dans le flot de conception 

Les réseau neuronaux ont été choisis pour l’estimation de performance, parce qu’ils 

peuvent modéliser le comportement même quand le processus est non-linéaire. Dans ce 

travail un réseau du type « feed-forward » est utilisé, pour des raison de simplicité et 

adaptation au comportement non-linéaire nécessaire dans l’estimation de performance 

du logiciel. Notre réseau est composé par une couche d’entrée, une couche cachée, et 
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une couche de sortie. Chaque couche peut avoir différents nombres de neurones, et 

chaqu’une avoir une fonction de transfert différente. 

Notre méthode d’estimation suit deux étapes : entraînement et utilisation. Dans 

l’étape d’entraînement, un ensemble de benchmarks sont présentés au réseau neuronal. 

Dans cette étape, les entrées sont le nombre d’instructions exécutées classifiées par type 

(par exemple branches, arithmétiques et accès à la mémoire), et la sortie attendue est le 

nombre de cycles consommés par l’exécution de l’application. Un simulateur précis au 

niveau cycle est nécessaire pour obtenir le nombre d’instructions exécutées et les cycles 

consommés par l’application. Pour chaque processeur, on a choisi un petit nombre de 

classes d’instructions qui représentent le comportement temporel de tous les types 

d’instructions. 

La Figure 1.3 montre la phase d’entraînement en détail. Dans l’étape 1, un 

simulateur précis au niveau cycle est utilisé et les instructions exécutées sont classifiées 

par type (étape 2). Dans les étapes 3 et 4  un processus d’apprentissage, basé sur 

l’algorithme « back-propagation », permet de changer les poids, de façon à adapter le 

réseau pour sortir la valeur désirée. La phase d’entraînement est réalisée en utilisant le 

logiciel Matlab. 

 

Classification 
des 
instructions 

Type Nombre des 
exécutions 

LD/ST n1 

INT n2 

FLOAT n3 

BRANCH n4 

Comparer le
cycle estimé
avec la valeur
réelle et
changer les
poids 

 
Profilage 
d’un 
ensemble de
benchmarks 
avec un
simulateur 
précis au
niveau cycle 

1 
2 

3

4

 

Figure 1.3- Étapes d’entraînement du estimateur 

Après la phase d’entraînement, l’estimateur de performance est prêt pour être utilisé 

dans les projets postérieurs. La Figure 1.4 présente les principales étapes de la phase 

d’utilisation. Pour estimer la performance, il est nécessaire de compiler l’application 
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pour le processeur cible, et d’obtenir les instructions exécutées en utilisant un 

simulateur fonctionnel. Les instructions classifiées sont présentées comme entrée au 

réseau, de sorte qu’il peut estimer le nombre des cycles consommés par l’application. 

 

Cycles 
estimés 

Type Nombre des 
exécutions 

LD/ST n1 

INT n2 

FLOAT n3 

BRANCH n4 

Classification 
des instructions 

Comptage dynamique d’instructions 

mov R2, R1 
load R1, [R3] 
add R5, R4, R3 
.. 
.. 
.. 
.. 
.. 
.. 
store R1, [R3] 
.. 
..  

Figure 1.4- La phase d’utilisation de l’estimateur 

La Figure 1.5 montre le réseau neuronal utilisé pour estimer la performance dans le 

processeur PowerPC750. La couche d’entrée est composée par des neurones avec des 

fonctions de transfert linéaires et la couche cachée utilise 5 neurones avec des fonctions 

de transfert non-linéaires (tansig). La couche de sortie utilise aussi une fonction de 

transfert linéaire. On a utilisé ces neurones en raison de la non-linéarité nécessaire pour 

le processus d’estimation. Dans les expériences avec des autres configurations, celle-ci 

a donné de meilleurs résultats.  

  
 

Figure 1.5- Le réseau neuronal pour le processeur PowerPC750 et les fonctions de 

transfert 

Pour chaque architecture un estimateur différent est créé. Pour cette raison, la 

méthode proposée est adaptée pour l’exploration de l’espace de solutions de la partie 

logicielle, par exemple quand on veut évaluer les alternatives algorithmiques et de 

partionnement des tâches entre les processeurs, parce que des modifications 

architecturales demandent un nouveau entraînement.  
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1.3 L’analyse intégrée de performance des systèmes MPSoC 

Après le raffinement des interfaces matérielles et logicielles un modèle au niveau du 

bus fonctionnel est généré par l’environnent ROSES. Dans le modèle de bus 

fonctionnel, les composants matériels sont décrits par les modèles SystemC et les 

composants logiciels par tâches compilés pour l’architecture cible. La communication et 

synchronisation de la partie logicielle est implémentée par un système d’exploitation 

dédié.  

Pour analyser la performance d’un système au niveau BFM (voir la Figure 1.6), on 

propose l’intégration de deux outils dans le flot ROSES. Le premier est l’environnement 

FlexPerf développé chez STMicroelectronics pour l’analyse de performance de logiciel 

embarqué. Le deuxième outil est l’environnement MaxSim, utilisé dans le 

développement des prototypes virtuels.  

Architecture Virtuelle

Niveau bus fonctionnel

Intégration SoC

Niveau RTL

Outils d’estimation de performance

Raffinage des interfaces 
logiciel/matériel

Spécification du système

Exploration de 
l’architecture

Sélection du processeur

Partitionnement des 
interfaces logiciel/matériel

Mapping de la 
memóire

Estimation de retards

Modèle de 
simulation

Temps d’exécution en 
utilisant le prototype virtuel

 

Figure 1.6- Estimation de performance pour le projet de MPSoC 

 

L’environnement FlexPerf (PAOLI; GALIX; SANTANA, 2004) permet l’analyse 

de performance en utilisant une librairie de classes pour l’instrumentation et la 

génération des événements de performance. FlexPerf fournit un flot pour générer des 
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modèles de simulation des processeurs qui supportent l’analyse de performance de 

logiciel embarqué. L’intégration avec l’environnement ROSES a permis de générer des 

modèles de simulation multiprocesseurs en SystemC, avec le support de FlexPerf pour 

analyser la performance.  

L’environnement MaxSim (ARM, 2007) a été intégré dans le flot ROSES pour 

générer un prototype virtuel. La génération du prototype virtuel est réalisée de façon 

automatique à partir du modèle de bus fonctionnel utilisé dans l’environnement ROSES. 
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2 ÉTUDE DE CAS DE L’ENCODEUR MPEG4 

Dans cette section l’estimation de performance d’un encodeur MPEG4 sera 

présentée en utilisant les outils d’estimation développés dans cette thèse. L’architecture 

MPEG4 proposé par Bonaciu et al. (2006), est une implémentation parallèle développée 

pour fournir la flexibilité et le support à des différents profils. 

VLC

Fn

Coded
Image

VLC Task (SW)

DCT Quant

IDCT

Intra
Prediction

Image
Reconstruct

Motion
Estimation

Fn-1

Encoder Task (SW)

Motion
Comp.

Input
Combiner

Rate control

DMA

DeQuant

 

Figure 2.1- L’architecture de l’encodeur MPEG4 (Bonaciu et al., 2006) 

 L’encodeur MPEG4 est composé de cinq composants, comme montre la Figure 

2.1 :  

- Input: ce composant est responsable pour recevoir l’image d’entrée et 

l’envoyer à la tâche Encodeur ; 

- Encoder task : cette tâche exécute la partie principale de l’encodage 

MPEG4 ; 

- VLC task: cette tâche réalise la compression de l’image en utilisant 

l’algorithme d’Huffman ; 

- Combiner: ce composant prépare le résultat final de la compression de 

l’image; 
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- DMA (Direct memory access): ce composant matériel est responsable pour 

réaliser tous les transferts parmi les composants de l’architecture MPEG4. 

La Figure 2.1 montre l’encodeur MPEG4 avec deux processeurs. Le premier 

exécute la tâche d’encodage et le deuxième est responsable pour exécuter la tâche VLC. 

Le composant DMA fait les transferts parmi les composants de l’architecture. Le flot 

d’exécution de l’encodeur commence par le chargement de l’image dans le processeur 

Encoder par le composant Input. Après l’encodage, les données sont transférées au 

processeur VLC. Après la compression par la tâche VLC, les donnés compressées sont 

envoyées vers l’unité de stockage par le composant Combiner. 

2.1 Flot d’estimation et analyse de performance 

Dans l’analyse de l’encodeur MPEG4, le flot de conception montré dans la 

Figure 2.2 sera réalisé. A partir de la spécification du système décrit en langage C, 

l’estimation de performance sera réalisée en utilisant l’estimateur basé sur des réseaux 

neuronaux. Dans l’étude de cas seulement les composants logiciels Encoder et VLC 

seront utilisés dans l’analyse de performance. 

La première étape d’estimation est utilisée pour guider la sélection du processeur 

qui sera responsable pour l’exécution des composants logiciels. Dans cette étape, deux 

processeurs sont évalués : ARM946 et PowerPC750. L’objectif de cette étape est 

d’évaluer rapidement la performance telle que le processeur plus efficace soit utilisé.  

La sélection du processeur affecte les étapes subséquentes dans le flot de 

conception, car les interfaces matérielles et logicielles sont assemblées pour une 

architecture spécifique. Le raffinement des interfaces matérielles et logicielles est 

réalisé par l’environnement ROSES, où le modèle de bus fonctionnel est généré. Dans 

ce travail l’architecture virtuelle ne sera pas utilisée pour l’estimation de performance. 

D’autres travaux au sein du groupe TIMA, comme ceux proposés par Aimen 

Bouchhima (2005), utilisent l’architecture virtuelle pour faire l’estimation de 

performance en utilisant un modèle abstrait de processeur. 

Pour analyser la performance au niveau du bus fonctionnel, le prototype virtuel 

est généré automatiquement à partir de la description de ROSES. Pour la génération du 

prototype virtuel, on considère que les composants matériels sont décrits en SystemC au 



 

 18

niveau du cycle. Le logiciel est organisé en tâches et exécute sur un système 

d’exploitation spécifique pour l’application.  Le prototype virtuel est généré dans 

l’environnement MaxSim. 

Architecture virtuelle
(TLM)

CPU et matériel abstraits

Niveau bus fonctionnel

ROSES
Raffinage des 

Interfaces 

VM1 VM2

VM3 HW

Appl.

Adaptateur

CPU Matériel

Réseau d’interconnexion

CPU

Adaptateur Adaptateur 

Appl.

Système 
d’exploitation

Spécification du système

Exploration
de l’architecture

f1
f2

f3
f4 Sélection du 

processeur pour 
les composants 
logiciels en 
utilisant réseau 
neuronal

Prototype 
virtuel: 
Analyse de 
performance 
intégrée 
matériel et 
logiciel

(a)

(b)

(c)

Système 
d’exploitation

 

Figure 2.2 - Flot de conception et estimation de performance en systèmes MPSoC 

2.2 Estimation au niveau de la spécification 

Dans la première étape, on utilise l’estimateur haut niveau pour évaluer la 

performance des composants logiciels. Dans cette étude de cas, les tâches Encoder et 

VLC sont évaluées. Malgré la simplification de l’architecture avec deux processeurs, la 

sélection du processeur est un aspect important dans l’exploration de l’espace des 

solutions.  

Dans les expériences, deux processeurs sont utilisés: ARM946 et PowerPC750. 

Ceux-ci ont certaines caractéristiques comme pipeline et mémoire cache qui rendent 

difficile l’estimation de leurs performances.  

Le réseau neuronal nécessite un entraînement pour calibrer l’estimateur. Un 

ensemble de 41 benchmarks est utilisé pour entraîner et tester la précision de 

l’estimateur. La Figure 2.3 montre le réseau neuronal utilisé pour estimer la 
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performance du processeur ARM946, où les entrées sont le nombre d’instructions 

exécutées par l’application (classifiées par type).  

Input
Layer

Hidden
Layer

Output
Layer

Forward Branches

Backward Branches

Load/Store

Multiple Load/Store

ALU

Cycles

 

Figure 2.3- L’estimateur pour le processeur ARM946  

Pour chaque processeur, un ensemble de types d’instructions est choisi de telle 

façon qu’il représente la performance de l’application. Dans le cas du processeur 

PowerPC750, les instructions sont classifiées comme : branchement arrière, 

branchement avant, load/store, opérations entières et  opération flottantes, comme 

montre la Figure 2.4.  

Pour l’entraînement du réseau neuronal, un simulateur précis au niveau du cycle 

est nécessaire pour obtenir les instructions exécutées et les cycles consommés. Pour le 

processeur ARM946, le simulateur fournit dans l’environnement MaxSim (ARM, 2007) 

est utilisé, et pour le processeur PowerPC 750 on utilise le simulateur Microlib (2007). 

Input
Layer

Hidden
Layer

Output
Layer

Forward Branches

Backward Branches

Load/Store

Integer

Floats

Cycles

 

Figure 2.4- L’estimateur pour le processeur PowerPC750  

Le Tableau 2.1 résume les résultats de l’estimation obtenus par l’estimateur basé 

sur des réseaux neuronaux, pour les architectures PowerPC750 et ARM946. Le coût de 
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l’estimation est principalement du à l’obtention du nombre d’instructions exécutées. 

Dans ce travail, les instructions exécutées sont obtenues en utilisant les simulateurs 

fonctionnels disponibles dans l’environnement MaxSim et Microlib pour le processeur 

ARM946 et PowerPC750 respectivement. La méthode proposée permet une estimation 

rapide en raison de l’accélération fournie par des simulateurs fonctionnels. 

Tableau 2.1- Cycles estimés dans les processeurs ARM946 et PowerPC750 

 ARM (cycles) ARM (instructions) PowerPC (cycles) PowerPC (instructions)

Encoder Task 255250 128230 114230 155032

VLC task 52694 23497 31478 25153

 

Les résultats de l’estimation sont utilisés pour aider les décisions sur la sélection 

du processeur qui exécutera la partie logiciel. Après la sélection du processeur, cette 

décision est signalée a chaque composant logiciel de l’architecture virtuelle dans le 

modèle ROSES. Cette information sera utilisée pendant la génération des interfaces 

matérielles et logicielles qui sont assemblées à partir d’une librairie de composants. 

Dans notre étude de cas, on va démontrer la génération du prototype virtuel pour le 

processeur ARM946, et comparer la performance obtenue avec le prototype virtuel avec 

les résultats de l’estimation basée sur des réseaux neuronaux.  

2.3 Analyse de performance avec un prototype virtuel 

Après la génération des interfaces matérielles et logicielles on utilise un 

prototype virtuel pour valider et analyser la performance du système au niveau du bus 

fonctionnel. L’environnement MaxSim (ARM, 2007) est utilisé pour générer le 

prototype virtuel, permettant l’évaluation de performance. Les composants matériels 

sont considérés comme blocs IP (intellectual property) en SystemC. Les interfaces 

matérielles générées par ROSES sont déjà disponibles comme les blocs SystemC. Les 

composants SystemC  sont encapsulés dans les composants Maxsim, puisque les 

composants sont disponibles pour la simulation. Les composants logiciels avec le 

système d’exploitation sont compilés pour l’architecture cible et chargés dans la 

mémoire pendant l’initialisation de la simulation. 
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La Figure 2.5 montre l’architecture MPEG4 dans l’environnement MaxSim 

généré automatiquement  à partir de la description ROSES. L’architecture est composée 

par deux sous-systèmes CPU (VPROC et VVLC0) qui sont responsables pour 

l’exécution des tâches Encoder et VLC. Les composants matériels VINPUT, 

VCOMBINER et VDMA sont décrits en SystemC. Les composants VANTENNA et 

VSTORAGE sont utilisés pour envoyer l’image d’entrée et pour le stockage de l’image 

de sortie respectivement.  

La Figure 2.6 présente le sous-système CPU du composant VPROC0. Les 

interfaces matérielles générées par ROSES sont automatiquement importées dans 

MaxSim, comme les décodeurs d’adresse et le contrôleur mémoire (CMIMemCtrl). Le 

composant CMIarm7cc implémente les adaptateurs pour coordonner les transferts vers 

le DMA. 

Figure 2.5 – L’architecture de  l’encodeur MPEG4 dans l’environnement MaxSim 
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SystemC modules generated by ASAG

 
Figure 2.6– Sous-système CPU du composant VPROC0 

Pour simuler la CPU, un modèle de bus fonctionnel a été implémenté en utilisant 

des processeurs, des mémoires et le bus disponibles dans la librairie MaxSim. La Figure 

2.7 présente le modèle de bus fonctionnel basé sur un processeur ARM9. Le processeur 

est connecté à la mémoire en utilisant des interfaces TLM. L’intégration avec le reste du 

système est réalisée par un adaptateur (mem_adapter) qui permet la communication des 

interfaces TLM avec des interfaces au niveau des portes. 

 

Figure 2.7- Modèle de simulation du processeur 
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Figure 2.8- Écran de simulation de l’environnement MaxSim 

MaxSim Explorer est utilisé pour simuler le système. La Figure 2.8 montre 

l’écran de simulation. Pendant l’initialisation de la simulation, les fichiers avec les 

binaires de l’application et le système d’exploitation sont présentés.  

L’environnement MaxSim fournit un support pour la validation globale, en 

utilisant des points d’arrêt sur de code logiciel, registres, positions de mémoire et 

connections.  La Figure 2.9 présente l’écran avec le code assembleur du processeur 

VVLC0. L’environnement supporte le déboguage pour tous les processeurs, facilitant la 

validation des applications qui exécutent en architectures MPSoC. 

La Figure 2.10 montre le temps d’exécution du logiciel divisé par fonctions dans 

le processeur VPROC0. Ce type d’analyse permet la détection de points d’optimisations 

et quelles sont les fonctions qui prennent plus de temps dans l’exécution de 

l’application. 
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Figure 2.9-  Session de débogage logiciel dans l’environnement MaxSim 

 
Figure 2.10 – Temps d’exécution logiciel 
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Le Tableau 2.2 présente les résultats de l’estimation de performance avec réseau 

neuronal comparés avec ceux obtenus par le prototype virtuel. Pour le processeur 

PowerPC750, un simulateur SystemC précis au niveau du cycle a été utilisé. Bien que 

cette simplification limite l’analyse de performance, le simulateur permet de vérifier la 

précision de l’estimateur basé sur des réseaux neuronaux. Pour le processeur ARM946, 

l’erreur d’estimation a été de 4.26% pour la tâche Encoder et de -8.29% pour la tâche 

VLC. Pour le processeur PowerPC750 une erreur de 21% est obtenue pour la tâche 

Encodeur. L’erreur pour le processeur PowerPC750 est légèrement plus grande en 

raison de la complexité du processeur. 

On compare notre méthode avec l’estimation basée sur la régression linéaire 

proposée par Giusto et al. (2001). Dans le cas du processeur ARM946, la régression 

linéaire donne des erreurs d’estimation de 60.25% et 58.66% pour les tâches Encoder et 

VLC respectivement, ce qui démontre la flexibilité et la prédiction non linéaire de 

l’estimateur basé sur des réseaux neuronaux.  

Tableau 2.2- Comparaison de précision de l’estimateur de performance et le prototype 

virtuel 

  ARM946 PowerPC750 

  Estimé Cycle précis Erreur Estimé Cycle précis Erreur 

Encoder 

Task 
255250 266630 4.26% 114230 151960 24.8% 

VLC Task 52694 48659 -8.29% 31478 31064 1.33% 

 

Le Tableau 2.3 présente les temps nécessaires (en secondes) pour l’estimation et 

l’exécution du prototype virtuel. L’estimation basée sur des réseaux neuronaux permet 

une accélération considérable par rapport à la simulation en utilisant le prototype 

virtuel. Les réseaux neuronaux permettent une estimation rapide qui est important en 

raison de l’augmentation de la partie logicielle dans les systèmes embarqués. De l’autre 

coté, le prototype virtuel fournit une solution globale d’analyse intégrée des composants 

matériels et logiciel qui permet la confirmation des valeurs estimées au haut niveau 

d’abstraction. 
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Tableau 2.3 – Temps de simulation avec le prototype virtuel et l’estimateur des réseaux 

neuronaux 

  ARM946 PowerPC750 

  

Cycle 

précis(s) 

Estimation 

(s) 

Accélération Cycle 

précis (s) 

Estimation 

(s) 

Accélération 

Encoder Task 5.5 0.3 22.0 4.3 0.3 14.3

VLC Task 3.0 0.2 14.3 1.4 0.2 6.5
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3 CONCLUSIONS 

Dans cette thèse, on propose une méthodologie intégrée pour la conception et 

l’estimation de performance dans les systèmes multiprocesseurs monopuces (MPSoC), 

où le support pour l’estimation de performance est fournit pendant le flot de conception. 

L’environnement ROSES développé au sein du groupe TIMA est utilisé comme flot de 

conception et intégré avec les outils de performance proposés dans cette thèse. 

Au niveau de la spécification, on propose l’utilisation des estimateurs 

analytiques pour guider la sélection du processeur qui permettent une estimation rapide 

et précise. Les réseaux neuronaux sont utilisés comme estimateurs en raison de la 

flexibilité et l’adaptation non linéaire nécessaires pour l’estimation aux processeurs 

d’architectures complexes. Les résultats de l’utilisation des réseaux neuronaux comme 

estimateurs ont été présentés dans un article (OYAMADA et al., 2004) à la conférence 

SBCCI.  

On propose l’utilisation de méthodes basées sur la simulation pour analyser la 

performance au niveau de bus fonctionnel. Dans ce travail, deux outils de performance 

sont intégrés dans le flot de conception ROSES. 

Dans le premier, l’environnement FlexPerf développé pour l’analyse de 

performance des logiciels embarqués a été intégré dans le flot ROSES. Le simulateur de 

processeur avec le support à l’analyse de performance disponible dans l’environnement 

FlexPerf est intégré dans le modèle de simulation en SystemC généré par ROSES. Cette 

intégration a apportée le support à l’instrumentation et l’analyse de performance fournit 

par l’environnement FlexPerf. 

Le deuxième outil intégré dans le flot ROSES est l’environnement de prototype 

virtuel MaxSim. Pour créer le prototype virtuel, un outil a été implémenté qui génère 

automatiquement dans MaxSim un prototype virtuel a partir du modèle de bus 

fonctionnel. Pour l’exécution de la partie logicielle les simulateurs précis au niveau 
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cycle disponibles dans MaxSim sont utilisés. Le prototype virtuel fournit un modèle de 

validation global qui permet le débogage des applications dans l’architecture MPSoC.  

Pour valider les outils d’estimation de performance développés dans cette thèse 

une étude de cas d’un encodeur multiprocesseur MPEG4 a été démontrée. Cette plate-

forme impose quelques défis pour l’analyse de performance comme les multiples 

processeurs et des composants de propriété intellectuel. L’étude de cas a permis 

d’évaluer l’estimation de performance haut niveau et de comparer la précision avec le 

prototype virtuel. Ce travail a été publié dans la conférence ASPDAC (OYAMADA et 

al. 2007). 

3.1 Limitations des méthodes proposées et les perspectives 

À partir des résultats obtenus dans le développement de l’étude de cas, quelques 

limitations peuvent être identifiées :  

a) La précision du réseau neuronal est dépendante de la qualité des entrées utilisées 

dans l’étape d’entraînement. Dans ce travail, l’ensemble d’entraînement a été 

sélectionné pour favoriser la généralisation, en utilisant des applications de 

différentes tailles et domaines. 

b) Pour l’entraînement de l’estimateur, un simulateur précis au niveau du cycle est 

nécessaire. Pour l’étape d’utilisation, afin d’obtenir les instructions exécutées un 

simulateur fonctionnel est utilisé. L’accélération de la méthode proposée est 

dépendante de la vitesse du simulateur fonctionnel; 

c) Le prototype virtuel utilise la simulation qui a un coût élevé pour l’exécution de 

grandes architectures avec nombreux processeurs. Dans ce cas, le prototype 

virtuel peut être utilisé pour analyser l’initialisation ou seulement des parties 

spécifiques du code. 

Malgré les contributions obtenues dans ce travail, quelques perspectives potentielles 

sont identifiées : 

a) L’étude de l’application des réseaux neuronaux pour l’estimation de energie ; 

b) L’utilisation de paramètres architecturaux dans le réseau neuronal, comme 

proposé par Ipek (2006) ; 
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c) L’utilisation d’un outil de profilage générique et la traduction pour le processeur 

cible, pour remplacer le simulateur fonctionnel utilisé dans l’étape d’estimation 

du réseau neuronal ; 

d) L’intégration de la méthode d’estimation proposée dans ce travail avec autres 

langages de spécification comme UML et Simulink; 

e) La génération du prototype virtuel avec canaux au niveau transactionnel (TLM), 

pour fournir une simulation plus rapide. 
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1 ESTIMATIVA DE DESEMPENHO DO PROJETO DE 
MULTIPROCESSADORES INTEGRADOS EM CHIP  

O aumento na capacidade de integração de transistors permite o desenvolvimento 

de soluções compostas por vários processadores, componentes de aplicação específica e 

interfaces digitais e analógicas em um único chip. Atualmente, constata-se o aumento de 

soluções com vários processadores em um único chip, denominadas MPSoC (sistemas 

multiprocessados em único chip- multiprocessor system-on-chip). Em comparação com 

soluções puramente em hardware, a utilização de processadores fornece a flexibilidade e 

heterogeneidade necessária em sistemas embarcados. 

O projeto de um sistema embarcado é guiado por requisitos de projetos restritos. O 

fluxo de projeto de um MPSoC necessita de ferramentas para verificar se os requisitos 

estão sendo satisfeitos. O desempenho é normalmente o principal critério adotado para 

guiar a exploração da arquitetura. No entanto, outros aspectos precisam ser avaliados 

nos estágios iniciais do projeto, tais como potência consumida, energia e área.  

A estimativa de desempenho é um processo contínuo e pode ser aplicada em 

diferentes níveis de abstração como apresentado na Figura 1.1. Durante a especificação 

do sistema, a estimativa de desempenho auxilia no particionamento das funcionalidades 

em componentes de hardware e software, a seleção do processador, e a atribuição de 

tarefas entre os processadores.  

A arquitetura virtual é um modelo onde o software ainda não foi mapeado para o 

processador alvo e a comunicação é realizada utilizando transações. Como a 

interconexão ainda não está definida, neste nível é possível explorar as diferentes 

possibilidades de mapeamento dos canais no nível de transações (TLM - transaction 

level model), na estrutura de comunicação. 

No nível funcional do barramento (BFM- bus functional model) as interfaces de 

hardware e software já estão refinadas e o software é compilado para o processador 
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alvo. Neste nível, o detalhamento das interfaces e do sistema operacional possibilita 

uma análise precisa do desempenho do hardware e software. 

 

Virtual Architecture
Model at TLM Level

BFM Level

SoC Integration

RTL Level

Performance Estimation Tools

HW/SW interface refinement

System Specification

Architecture exploration

Processor Selection

HW/SW Interface
Partitioning

Memory mapping

Delay estimation

Scope of 
this work

 

Figura 1.1- Ferramentas de estimativa de desempenho nos diferentes níveis de 

apresentação 

Devido ao aumento na utilização de processadores nos projetos de MPSoC, e como 

conseqüência o crescimento da parte em software, ferramentas para estimativa de 

desempenho em software precisam ser desenvolvidas. Ferramentas de estimativa de 

desempenho podem ser divididas em três grupos: simulação, modelos abstratos e 

anotação do código (MEYEROWITZ, 2004). Métodos baseados em simulação utilizam 

simuladores com precisão de ciclos para estimar o tempo de execução. Modelos 

abstratos ou analíticos utilizam funções de custo para calcular o tempo de execução do 

software. Métodos no nível intermediário são baseados na anotação do código com 

custo de execução. Desta forma, a aplicação executa nativamente, sendo vantajoso em 

relação à simulação ciclo-a-ciclo devido a rapidez na obtenção dos ciclos consumidos 

pela aplicação. 
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Devido ao aumento do número de processadores e também as possíveis variações na 

interconexão entre os mesmos, a análise isolada do desempenho do software torna-se 

altamente imprecisa. Desta forma, um modelo de estimativa de desempenho integrado 

de hardware e software é necessário. 

Este trabalho propõe métodos para a estimativa de desempenho, que são necessários 

devido ao grande espaço de projeto que não pode ser explorado manualmente ou 

verificado somente quanto um protótipo de hardware esteja disponível. Considerando o 

aumento da complexidade dos processadores utilizados em sistemas embarcados, é 

necessário que as ferramentas de estimativa de desempenho possam estimar o 

desempenho neste tipo de arquitetura. Neste trabalho, um modelo analítico de 

estimativa de desempenho baseado em redes neurais é proposto. Por outro lado, 

ferramentas de estimativa de desempenho que considerem de forma integrada os 

componentes de hardware e software do sistema é necessário. Este trabalho apresenta a 

utilização de protótipos virtuais como forma de avaliar o desempenho do sistema no 

nível BFM, que provêem um modelo global de simulação, permitindo a avaliação 

conjunta do desempenho dos componentes de hardware e software. 

1.1 Integração de estimativa de desempenho no projeto de MPSoC 

Esta tese propõe uma metodologia para a análise e estimativa de desempenho em 

sistemas multiprocessados integrados em única pastilha (MPSoC- multiprocessor 

system-on-chip). Neste trabalho o ambiente ROSES é utilizado para guiar o fluxo de 

estimativa de desempenho. O ambiente ROSES utiliza um paradigma baseado em 

componentes para refinar as interfaces de hardware e software em um MPSoC, 

utilizando como entrada uma arquitetura virtual composta de módulos de hardware e 

software interconectada por canais TLM. Os componentes de hardware são 

considerados como caixa-preta, onde somente a interface é conhecida. Os componentes 

em software são modelados como um conjunto de tarefas, que são mapeadas para os 

processadores na arquitetura. 

Neste trabalho, um método para estimar rapidamente o desempenho do software 

baseado em redes neurais é proposto para guiar a seleção de processadores. Redes 

neurais se mostraram uma solução adequada para modelar o comportamento não linear 

do software executando em um processador com recursos avançados tais como pipeline, 
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caches, predição de desvios entre outros. Experimentos realizados com diferentes 

arquiteturas tais como PowerPC 750, DSP, ARM, e um processador Java, mostraram a 

flexibilidade de redes neurais para utilização na estimativa de estimativa de desempenho 

do software. 

Após a seleção do processador, o ambiente ROSES é utilizado para refinar as 

interfaces e gerar o modelo no nível funcional do barramento (BFM – bus functional 

model). Nesta tese, é proposta a geração de modelos globais de simulação a partir do 

modelo funcional do barramento (BFM), permitindo a análise integrada de desempenho 

de hardware e software. Com isso, um fluxo sistemático para gerar modelos de 

simulação com suporte para analise de desempenho é obtido, acelerando o tempo de 

projeto. 

1.2 Estimativas de desempenho baseadas em redes neurais 

No nível da especificação, a exploração do espaço de projeto visa encontrar uma 

solução que satisfaça os requisitos de projeto. A exploração do espaço de projeto pode 

ser realizada de diferentes maneiras, tais como a modificação da arquitetura (número de 

processadores ou elementos de aplicação de especifica) e o particionamento de tarefas. 

A seleção do processador apropriado para executar uma determinada tarefa em 

software é uma parte importante da exploração do espaço de projeto (Figura 1.2). A 

utilização de processadores complexos com recursos avançados tais como memórias 

cache, predição de desvios e pipeline tornam a estimativa de desempenho uma tarefa 

complexa. 
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Figura 1.2 – Integração da estimativa de desempenho no fluxo global de projeto 

Redes neurais foram escolhidas para a estimativa de desempenho devido a 

generalização do comportamento mesmo quando o processo a ser modelado é altamente 

não-linear. Neste trabalho, uma rede do tipo feed-forward é utilizada, devido a sua 

simplicidade e adaptação ao comportamento não-linear necessários na estimativa de 

desempenho de software. A rede utilizada neste trabalho é composta por uma camada de 

entrada, uma camada escondida, e uma camada de saída. Cada camada pode conter 

diferentes números de neurônios, sendo cada neurônio configurado com uma função de 

transferência. 

Nosso método de estimativa é dividido em duas etapas: treinamento e utilização. Na 

etapa de treinamento, um conjunto de benchmarks é apresentado para rede neural. Nessa 

etapa, a entrada são as instruções executadas pelas aplicações e classificadas por tipo 

(por exemplo desvios, operações aritméticas e acessos à memória).  

A Figura 1.3 apresenta a fase de treinamento em detalhes. Na etapa 1, um simulador 

ciclo-a-ciclo é utilizado e as instruções executadas são classificadas por tipo (etapa 2). 

Nas etapas 3 e 4 um processo de aprendizagem, baseado no algoritmo backpropagation, 
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altera os pesos dos neurônios, adaptando a rede neural para responder com o valor 

desejado. A fase de treinamento é realizada utilizando o software Matlab. 
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Figura 1.3- Treinamento da rede neural 

Após a fase de treinamento o estimador de desempenho está pronto para ser 

utilizado nos projetos subseqüentes. A Figura 1.4 apresenta as principais etapas da fase 

da utilização. Para estimar o desempenho, é necessário compilar a aplicação para o 

processador alvo, e obter as instruções executadas utilizando um simulador funcional. 

As instruções classificadas são apresentadas como entrada à rede neural para que a 

mesma possa estimar o número de ciclos consumidos pela aplicação. 

Type Number of 
occurrences 

LD/ST n1 

INT n2 

FLOAT n3 

BRANCH n4 

Instruction 
classification 

Estimated 
cycles 

Dynamic instruction count 

mov R2, R1 
load R1, [R3] 
add R5, R4, R3 
.. 
.. 
.. 
.. 
.. 
.. 
store R1, [R3] 
.. 
..  

Figura 1.4- Fase de utilização da rede neural 

A Figura 1.5 apresenta a rede neural utilizada para estimar os ciclos no processador 

PowerPC750. A camada de entrada é composta por neurônios com funções de 

transferência lineares e a camada escondida é composta por neurônios com funções de 

transferência não lineares (tansig). A camada de saída utiliza também uma função de 
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transferência linear. A escolha desses tipos de funções de transferência foi devido ao 

comportamento não linear a ser modelado. Os testes com outras configurações, esta 

arquitetura resultou nos melhores resultados. 

Input
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Hidden
Layer

Output
Layer

Forward Branches

Backward Branches

Load/Store

Integer

Floats

Cycles

 

 

 

(a) Rede neural (b) Função de transferência 

tansig 

(c) Função de transferência 

linear 

Figura 1.5- Rede neural para o processador PowerPC 750 (a), e as funções de 

transferência tansig(b) e linear (c) 

 

Para cada arquitetura um estimador diferente é criado. Devido a essa restrição, o 

método proposto é eficiente para a exploração do espaço de projeto da parte de 

software, com o objetivo para avaliar as alternativas de implementação de algoritmos e 

o particionamento de tarefas entre processadores de um conjunto pré-definido de 

arquiteturas, visto que modificações arquiteturais necessitam de um novo treinamento. 

1.3 Análise de desempenho integrada de hardware e software 
utilizando modelos de simulação 

Após o refinamento das interfaces de hardware e software um modelo no nível 

funcional do barramento (BFM) é gerado pelo ambiente ROSES. No modelo BFM, os 

componentes em hardware são modelados em SystemC e os componentes de software 

são tarefas compiladas para o processador alvo. A comunicação e sincronização das 

tarefas em software são realizadas através de um sistema operacional customizado para 

a aplicação. Para analisar o desempenho do sistema no nível BFM (Figura 1.6), é 

proposto a integração de duas ferramentas no fluxo de projeto ROSES: FlexPerf e 

MaxSim.  
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Figura 1.6- Integração de protótipos virtuais no ambiente ROSES 

 

O framework FlexPerf (PAOLI; GALIX; SANTANA, 2004), permite a análise de 

desempenho através de uma biblioteca que suporta a instrumentação e geração de 

eventos em um simulador. O framework provê um conjunto pré-implementado de 

módulos de análise de desempenho, possibilitando a extensão e customização das 

mesmas. O framework FlexPerf tem fluxo bem definido para gerar modelos de 

simulação de processadores utilizando a linguagem LISA, com todo o suporte 

necessário para a análise de desempenho do software embarcado. Desta forma, a 

integração com o ROSES permitiu a geração de modelos de simulação de uma 

arquitetura MPSoC, com suporte para a análise de desempenho. A ferramenta CosimX 

foi alterada para gerar modelos SystemC utilizando processadores disponibilizados pelo 

FlexPerf. Desta forma, uma arquitetura MPSoC pode ser simulada e o devido suporte 

para análise desempenho é fornecida. Neste trabalho, uma arquitetura multiprocessada 

de um codificador MPEG4 foi gerada e análise de desempenho do hardware e software 

realizada. 
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Uma outra forma de disponibilizar a análise de desempenho no nível funcional do 

barramento é a utilização de protótipos virtuais. Neste trabalho, a ferramenta MaxSim 

(ARM, 2005) foi integrada ao ambiente ROSES, de forma que um protótipo virtual 

possa ser gerado automaticamente a partir de uma descrição da arquitetura. O ambiente 

MaxSim provê uma biblioteca de processadores, memórias, barramentos e periféricos. 

Alguns desses componentes, tais como processadores e barramentos possuem recursos 

para análise de desempenho. O ambiente MaxSim suporta também a integração de 

componentes descritos em SystemC, facilitando assim a utilização de componentes pré-

existentes na biblioteca de componentes ROSES. 

2 ESTUDO DE CASO: CODIFICADOR MPEG4 

Nesta seção a estimativa de desempenho de uma arquitetura multiprocessada de um 

codificador MPEG4 será apresentada utilizando as ferramentas de estimativa de 

desempenho desenvolvidas nesta tese. A arquitetura MPEG4 proposta por Bonaciu et al. 

(2006) é uma implementação paralela desenvolvida para fornecer a flexibilidade suporte 

a diferentes esquemas (profile) de codificação. 

VLC
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DCT Quant

IDCT

Intra
Prediction

Image
Reconstruct

Motion
Estimation

Fn-1

Encoder Task (SW)

Motion
Comp.

Input
Combiner

Rate control

DMA

DeQuant

 

Figura 2.1- Arquitetura do codificador MPEG4(Bonaciu et al., 2006) 

 A arquitetura do codificador MPEG4 é composta por cinco componentes 

principais, como mostra a Figura 2.1 :  
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- Input: este componente é responsável por receber a imagem de entrada e 

enviar para a tarefa Encoder; 

- Encoder task: esta tarefa executa a parte principal da codificação MPEG4 ; 

- VLC task: esta tarefa realiza a compressão da imagem utilizando o algoritmo 

de Huffman; 

- Combiner: este componente prepara o resultado final da compressão da 

imagem; 

- DMA (Direct memory access): este componente de hardware é responsável 

por realizar todas as transferências entre os componentes da arquitetura 

MPEG4. 

A Figura 2.1 apresenta a arquitetura do codificador MPEG4 com dois 

processadores. O primeiro processador executa a tarefa Encoder, enquanto que o 

segundo processador é responsável por executar a tarefa VLC. O fluxo de execução do 

codificador inicia-se pela carga da imagem no processador Encoder pelo componente 

Input. Após a execução, os dados são transferidos para o processador VLC. Após a 

compressão da imagem realizada pela tarefa VLC, a imagem comprimida é enviada para 

a unidade de armazenamento pelo componente Combiner. 

2.1 Fluxo de estimativa e análise de desempenho 

Na análise do codificador MPEG4, o fluxo de projeto apresentado na Figura 2.2 será 

seguido. A partir da especificação do sistema descrito em linguagem C, a estimativa de 

desempenho será realizada utilizando o estimador baseado em redes neurais. No estudo 

de caso, somente os componentes de software Encoder e VLC serão utilizados na 

análise de desempenho. 

A primeira etapa da estimativa será utilizada para guiar a seleção do processador 

que será responsável pela execução dos componentes em software. Nesta etapa, dois 

processadores serão avaliados: ARM946 e PowerPC750. O objetivo desta etapa é 

avaliar rapidamente o desempenho e qual o processador mais adequado para ser 

utilizado. 

A seleção do processador afeta as etapas subseqüentes do fluxo de projeto, pois as 

interfaces de hardware e software são geradas para uma arquitetura específica. O 
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refinamento das interfaces de hardware e software é realizado pelo ambiente ROSES, 

onde o modelo funcional do barramento é gerado. Neste trabalho a arquitetura virtual 

não será utilizada para propósitos de estimativa de desempenho. Outros trabalhos 

desenvolvidos no grupo TIMA, como os propostos por Aimen Bouchhima 

(BOUCHHIMA, 2005) utilizam a arquitetura virtual para realizar a estimativa de 

desempenho utilizando um modelo abstrato do processador. 

Para analisar o desempenho do modelo no nível BFM, um protótipo virtual é gerado 

automaticamente a partir da descrição ROSES. Para a geração do protótipo, é 

considerado que os componentes de hardware serão disponibilizados em SystemC no 

nível ciclo-a-ciclo. O software e organizado em tarefas que executam sobre um sistema 

operacional gerado durante o refinamento das interfaces de software. O protótipo virtual 

é gerado no ambiente MaxSim. 
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Implicit CPU, abstract HW

BFM Level
Explicit CPU and OS, RTL hardware

ROSES
HW/SW interface

refinement

VM1 VM2

VM3 HW

Appl.
Tasks
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HW wrapper

CPU HW

Intercommunication Network

CPU

HW wrapper HW wrapper
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System Specification

Architecture exploration

f1
f2

f3
f4 Processor 

selection for SW 
components using 
NN estimator

Virtual prototype:
Integrated HW 
and SW 
performance 
analysis

(a)

(b)

 

Figura 2.2– Fluxo de projeto e estimativa de desempenho em MPSoC 

2.2 Estimativa no nível da especificação 

Na primeira etapa, foi utilizado um estimador de alto nível para avaliar o 

desempenho dos componentes de software. Neste estudo de caso, as tarefas Encoder e 

VLC são avaliadas. Apesar da simplificação da arquitetura com apenas dois 
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processadores, a seleção do processador é um aspecto importante na exploração do 

espaço de projeto. 

Nos experimentos, dois processadores são utilizados: ARM946 e PowerPC750. 

Estes processadores têm certas características como pipeline e memória cache que 

tornam a estimativa de desempenho difícil. 

A rede neural necessita de um conjunto de treinamento para calibrar o estimador. 

Um conjunto de 41 benchmarks é utilizado para treinar e testar a precisão do estimador. 

A Figura 2.3 apresenta a rede neural utilizada para estimar o desempenho do 

processador ARM, onde as entradas são o número de instruções executadas pela 

aplicação (classificadas por tipo). 

Input
Layer

Hidden
Layer

Output
Layer

Forward Branches

Backward Branches

Load/Store

Multiple Load/Store

ALU

Cycles

 

Figura 2.3- Estimador para o processador ARM946  

Para cada processador, um conjunto diferente de tipos de instrução é escolhido de tal 

forma que estes representem da melhor forma o desempenho da aplicação. No caso do 

processador PowerPC750, as instruções são classificadas como: desvio para um 

endereço à frente, desvio para trás, load/store, operações em inteiros e operações de 

ponto flutuante (Figura 2.4). 

Para o treinamento da rede neural, um simulador ciclo-a-ciclo é necessário para 

obter as instruções executadas e os ciclos consumidos. Para o processador ARM, o 

simulador fornecido no ambiente MaxSim (ARM, 2007) é utilizado, e para o 

processador PowerPC750 é utilizado o simulador Microlib (MICROLIB, 2007). 
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Figura 2.4- Estimador para o processador PowerPC750  

 

A Tabela 2.1 resume os resultados obtidos pelo estimador baseado em redes neurais 

para as arquiteturas ARM946 e PowerPC750. O custo principal da estimativa é 

relacionado à obtenção do número de instruções executadas. Neste trabalho, as 

instruções executadas são obtidas utilizando um simulador funcional disponível nos 

ambientes MaxSim e Microlib para os processadores ARM946 e PowerPC750 

respectivamente. O método proposto permite uma rápida estimativa comparado com a 

simulação ciclo-a-ciclo devido à aceleração fornecida pelos simuladores funcionais. 

Tabela 2.1- Ciclos estimados nos processadores ARM e PowerPC 

 ARM (ciclos) ARM (instruções) PowerPC (ciclos) PowerPC (instruções)

Encoder Task 255250 128230 114230 155032

VLC task 52694 23497 31478 25153

 

Os resultados da estimativa de desempenho são utilizados para auxiliar nas decisões 

sobre a escolha do processador que executará a parte em software. Após a seleção do 

processador, esta decisão é assinalada em cada componente de software na arquitetura 

virtual no modelo ROSES. Esta informação será utilizada durante a geração das 

interfaces de hardware e software que serão montadas a partir de uma biblioteca de 

componentes. Em nosso estudo de caso, serão apresentados o refinamento e geração do 

protótipo virtual utilizando processadores ARM946, e será comparado o desempenho 

obtido com o protótipo virtual com os resultados obtidos com as redes neurais. 
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2.3 Estimativa de desempenho utilizando protótipos virtuais 

Após a geração das interfaces de hardware e software é utilizado um protótipo 

virtual para validar e analisar o desempenho do sistema no nível funcional do 

barramento (BFM). O ambiente MaxSim(ARM, 2007) é utilizado para gerar o protótipo 

virtual, permitindo a avaliação do desempenho. Os componentes em hardware são 

considerados como blocos de propriedade intelectual (IP), disponibilizados em 

SystemC. As interfaces em hardware geradas pelo ambiente ROSES durante o 

refinamento também são disponíveis em SystemC. Os componentes SystemC são 

encapsulados em componentes MaxSim, para que os componentes sejam disponíveis 

para simulação. Os componentes de software juntamente com o sistema operacional são 

compilados para a arquitetura alvo e carregados no simulador do processador durante a 

inicialização da simulação. 

A Figura 2.5 apresenta o protótipo virtual do codificador MPEG4 no ambiente 

MaxSim. O protótipo virtual foi gerado automaticamente a partir da descrição ROSES. 

A arquitetura é composta por dois subsistemas contendo processadores (VPROC0 e 

VVLC0) que são responsáveis pela execução das tarefas Encoder e VLC. Os 

componentes em hardware VINPUT, VCOMBINER e VDMA são descritos em 

SystemC. Os componentes de simulação VANTENNA e VSTORAGE são utilizados 

para enviar a imagem de entrada e para armazenar a imagem de saída. 

A Figura 2.6 apresenta em detalhes o subsistema VPROC0. As interfaces de 

hardware geradas pelo ambiente ROSES são automaticamente importadas no ambiente 

MaxSim, como os decodificadores de endereço e o controlador de memória 

(CMIMemCtrl). O componente CMIarm7cc implementa os adaptadores utilizados para 

coordenar as transferências através do DMA. 
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Figura 2.5 – Protótipo virtual do codificador MPEG4 importada no ambiente MaxSim 

SystemC modules generated by ASAG

 
Figura 2.6– Subsistema do componente VPROC0 
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Para simular a CPU, um modelo funcional do barramento foi implementado 

utilizando processadores, memórias e os barramentos disponíveis na biblioteca 

MaxSim. A Figura 2.7 apresenta o modelo funcional do barramento para o processador 

ARM9. O processador é conectado a memória utilizando canais TLM. A interligação do 

processador com o resto do sistema é realizada por um adaptador (mem_adapter), que 

permite a comunicação das interfaces TLM com as interfaces no nível de portas. 

 

Figura 2.7- Modelo de simulação do processador ARM9 

 

Figura 2.8- Tela de inicialização da simulação 
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O ambiente MaxSim Explorer é utilizado para simular o sistema. A Figura 2.8 

apresenta a tela de inicialização da simulação. Durante a inicialização, os arquivos 

contendo os binários da aplicação e do sistema operacional são carregados na memória. 

O ambiente MaxSim fornece um suporte para a validação global, utilizando pontos 

de parada (breakpoints) no código da aplicação, registradores, posições da memória e 

conexões. A Figura 2.9 apresenta a tela com o código assembler da tarefa VLC. O 

ambiente suporta o debug de todos os processadores simultaneamente, facilitando a 

validação de aplicações concorrentes executando em arquiteturas MPSoC. 

A Figura 2.10 apresenta os tempos de execução do software dividido por funções no 

processador VPROC0 (tarefa Encoder). Este tipo de análise permite a detecção de 

pontos de otimização e quais são as funções que gastam mais ciclos durante a execução 

da aplicação. 

 
Figura 2.9- Sessão de debug do código fonte da tarefa VLC 
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Figura 2.10 – Tempos de execução das funções da tarefa Encoder 

 

A Tabela 2.2 apresenta os resultados da estimativa de desempenho com redes 

neurais comparadas com os valores obtidos utilizando o protótipo virtual. Para o 

processador PowerPC750, um simulador em SystemC ciclo-a-ciclo é utilizado. Mesmo 

que esta simplificação limita a análise de desempenho, o simulador permite a 

verificação da precisão do estimador baseado em redes neurais. Para o processador 

ARM946, o erro de estimativa foi de 4.26% para a tarefa Encoder e de –8.29% para a 

tarefa VLC. Para o processador PowerPC750 um erro de 21% é obtido para a tarefa 

Encoder. Os erros no processador PowerPC750 são ligeiramente maiores devido à 

complexidade do processador. 

Comparamos o nosso método de estimativa baseado em redes neurais com o da 

regressão linear proposto por Giusto et al. (2001). No caso do processador ARM946, a 

regressão linear resulta em erros de estimativa de 60,25% e 58,66% para as tarefas 

Encoder e VLC respectivamente, que demonstra a flexibilidade da precisão não linear 

do estimador baseado em redes neurais. 
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Tabela 2.2- Comparação entre a estimativa baseado em redes neurais e o protótipo 

virtual 

  ARM946 PowerPC750 

  Estimado Ciclo-a-ciclo Erro Estimado Ciclo-a-ciclo Erro 

Encoder 

Task 
255250 266630 4.26% 114230 151960 24.8% 

VLC Task 52694 48659 -8.29% 31478 31064 1.33% 

 

A Tabela 2.3 apresenta os tempos necessários (em segundos) para a estimativa e a 

execução do protótipo virtual. A estimativa baseada em redes neurais permite uma 

aceleração considerável comparado com a simulação utilizando protótipos virtuais. As 

redes neurais permitem uma rápida estimativa de desempenho. Tal característica é 

importante devido ao aumento da parte em software nos sistemas embarcados. Por outro 

lado, o protótipo virtual fornece uma solução global de análise integrada dos 

componentes de hardware e software que permite a confirmação dos valores obtidos na 

estimativa de alto nível. 

Tabela 2.3 – Tempos de simulação do protótipo virtual comparados com a estimativa 

baseada em redes neurais 

  ARM946 PowerPC750 

  

Ciclo-a-

ciclo(s) 

Estimativa 

(s) 

Aceleração Ciclo-a-

ciclo (s) 

Estimativa 

(s) 

Aceleração 

Encoder Task 5.5 0.3 22.0 4.3 0.3 14.3

VLC Task 3.0 0.2 14.3 1.4 0.2 6.5
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3 CONCLUSÃO 

Nesta tese, é proposta uma metodologia integrada para a concepção e estimativa de 

desempenho em sistemas multiprocessados em único chip (MPSoC), onde o suporte 

para a estimativa de desempenho é fornecido durante o fluxo de projeto. O ambiente 

ROSES desenvolvido no grupo TIMA é utilizado como fluxo de projeto e foi integrado 

com as ferramentas de estimativa de desempenho desenvolvidas nesta tese. 

No nível da especificação, é proposta a utilização de estimadores analíticos para 

guiar a seleção do processador, permitindo uma estimativa rápida e precisa. As redes 

neurais são utilizadas como estimadores devido à flexibilidade e adaptação não-linear 

necessária para a estimativa de desempenho em processadores complexos. Os resultados 

da utilização das redes neurais como estimadores foram apresentados em um artigo 

(OYAMADA et al., 2004), na conferência SBCCI. 

Métodos baseados em simulação são utilizados para analisar o desempenho do 

sistema no nível funcional do barramento (BFM). Neste trabalho, duas ferramentas 

(FlexPerf e MaxSim) são integradas no fluxo de projeto ROSES. 

A primeira ferramenta chamada FlexPerf, foi desenvolvida para a análise de 

desempenho do software embarcado. Esta ferramenta foi integrada ao fluxo de projeto 

ROSES possibilitando a análise de desempenho de arquiteturas geradas pelo ROSES. 

Na integração, os modelos de simulação de processador com suporte à análise de 

desempenho fornecidos pelo FlexPerf foram integrados ao modelo de simulação 

SystemC gerado pelo ambiente ROSES. Esta integração adicionou ao ROSES todo o 

suporte a instrumentação e análise de desempenho fornecidas pelo ambiente FlexPerf. 

A segunda ferramenta integrada ao ambiente ROSES foi a ferramenta para 

modelagem e simulação de protótipos virtuais MaxSim. Para criar um protótipo virtual, 
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uma ferramenta foi implementada para que o modelo ROSES no nível BFM seja gerado 

automaticamente no ambiente MaxSim. Para a execução da parte em software os 

simuladores ciclo-a-ciclo disponíveis no MaxSim são utilizados. O protótipo virtual 

fornece um modelo de validação global, permitindo o debug de aplicações concorrentes 

executando em arquiteturas MPSoC. 

Para validar as ferramentas de estimativa de desempenho desenvolvidas nesta tese 

um estudo de caso de um codificador MPEG4 baseado em uma arquitetura 

multiprocessada foi demonstrado. Esta plataforma apresenta alguns desafios para a 

análise de desempenho tais como a existência de múltiplos processadores e de 

componentes de propriedade intelectual. O estudo de caso permitiu a avaliação da 

estimativa de desempenho em alto nível e a comparação com os resultados obtidos na 

simulação ciclo-a-ciclo utilizando o protótipo virtual. Este trabalho foi apresentado na 

conferência ASPDAC (OYAMADA et al., 2007). 

3.1 Limitação dos métodos propostos e trabalhos futuros 

A partir dos resultados obtidos no desenvolvimento dos estudos de caso, algumas 

limitações podem ser identificadas: 

a) A precisão da rede neural é dependente da qualidade das entradas 

utilizadas durante a fase de treinamento. Neste trabalho, um conjunto 

de treinamento foi selecionado para favorecer a generalização, 

utilizando aplicações de diferentes tamanhos e domínios; 

b) Para o treinamento um estimador ciclo-a-ciclo é necessário. Para a 

etapa de utilização, a fim de obter as instruções executadas um 

simulador funcional é utilizado. A aceleração do método proposto 

neste trabalho é dependente da aceleração fornecida pelo simulador 

funcional em relação ao simulador ciclo-a-ciclo; 

c) O protótipo virtual utiliza a simulação que tem um custo elevado para 

a execução de grandes arquiteturas com vários processadores. Neste 

caso, o protótipo virtual poderá ser utilizado para analisar somente 

partes específicas do software como a inicialização ou o tratamento de 

interrupções. 
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Apesar das contribuições obtidas neste trabalho, algumas perspectivas potenciais 

podem ser identificadas: 

a) O estudo da aplicação de redes neurais para a estimativa da energia 

consumida pelo software; 

b) A utilização dos parâmetros arquiteturais na rede neural, como 

proposto por Ipek et al. (2006); 

c) A utilização de uma ferramenta de profile genérica e a posterior 

tradução para o processador alvo, com o objetivo de substituir o 

simulador funcional utilizado na etapa de utilização da rede neural; 

d) A integração dos métodos de estimativa propostos neste trabalho com 

outras linguagens de alto nível como UML e Simulink; 

e) A geração do protótipo virtual utilizando canais TLM, fornecendo 

assim uma simulação mais rápida. 
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ABSTRACT 

Nowadays, embedded system complexity requires new design methodologies. 
System-level methodologies are proposed to cope with this complexity, starting the 
design above the register-transfer level. Performance estimation tools are an important 
piece of system-level design methodologies, since they are used to aid design space 
exploration at an early design stage. The goal of this thesis is to define an integrated 
methodology for software performance estimation. Currently, embedded software usage 
is increasing, becoming multiprocessor system-on-chip a common solution to cope with 
flexibility, performance, and power requirements. The development of accurate 
software performance estimators is not trivial, due to the increased complexity of 
embedded processors. To drive processor selection at specification level, a novel 
analytic software performance estimator based on neural networks is proposed. The 
neural network enables a fast estimation at an early design stage. To target the software 
performance analysis at bus functional level, where mapping of the hardware and 
software components is already established, we use a global simulation model 
supporting performance profiling. The proposed software performance estimation 
methodology is linked to a hardware and software interface refinement environment 
named ROSES. The proposed methodology is evaluated through a case study of a 
multiprocessor MPEG4 encoder. 
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1 INTRODUCTION 

Increases in chip integration capacity and transistor number have allowed the development 
of solutions called System-on-Chip (SoC). An SoC solution integrates processors, application 
specific HW components, digital interfaces and, occasionally, analog interfaces.  

The convergence of various products, such as cellular phones with music players and 
PDAs with digital video capabilities makes these products more and more heterogeneous and 
requires high performance. 

Nowadays embedded systems are characterized by real-time requirements, power and 
energy constraints, as well as cost and time-to-market pressure. Multimedia functionalities 
impose real-time constraints in order to correctly execute behavior. Mobile devices powered 
by batteries require low-power and low-energy capabilities. On the one hand, time-to-market 
pressure calls for fast design but, on the other hand, such products are cost sensitive, thus 
requiring an optimized design. 

Flexibility is another important requirement. The design must be flexible enough to allow 
for new functionalities without needing to redesign. Microprocessors play an important role in 
providing the flexibility and heterogeneity needed in new embedded systems. Nowadays, SoC 
solutions with one or more processors are becoming more and more common. These 
solutions, called multiprocessor-on-chip (MPSoC), require new tools and programming 
models to cope with their complexity (JERRAYA, 2005). 

Figure 1.1 shows a typical MPSoC architecture composed of two processors and 
application-specific HW components. An intercommunication network connects the MPSoC 
components. A wrapper may be necessary to adapt the components’ interface to the 
intercommunication network. Usually, the application software is divided in tasks and a real-
time operating system provides execution and communication support through an application 
programming interface (API). 
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HW wrapper

CPU HW

Intercommunication Network

CPU

HW wrapper HW wrapper

Appl.
Tasks

OS

 

Figure 1.1- Typical MPSoC solution 
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MPSoC designs have to consider HW and SW components in an integrated way. 
Currently, the hardware and software integration is done after a hardware prototype is 
available. As a consequence, integration problems will be detected in a late design stage 
resulting in unacceptable delays. 

System-level design methodologies enable concurrent hardware and software design as 
presented in Figure 1.2. The key idea is to use a specification that models the hardware and 
software in a unified representation. The architecture exploration step uses the specification to 
partition the functionalities among hardware and software components. Architecture 
exploration results in a virtual architecture composed of functional hardware and software 
modules. Usually, transaction-level channels interconnect the components providing abstract 
HW/SW interfaces. From this virtual architecture, the traditional hardware and software 
development flow is followed with the refinement of the abstract hardware and software 
interfaces. Abstract interface refinement comprises mapping the communication API to a real-
time operating system and building HW adapters. Subsequently, the design flow resumes with 
the physical hardware design and the software design.  
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Figure 1.2- Concurrent HW/SW codesign (JERRAYA, 2005) 

1.1 Performance Estimation in MPSoC Design 

In order to obtain an optimized design, the MPSoC design flow needs estimation tools to 
drive architecture exploration and to verify if the design fulfills requirements. Performance is 
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normally the main criterion adopted to guide architecture exploration. However, other aspects, 
such as power, energy and area, need to be considered as early as possible in the design flow. 

Fast design space exploration strategies need to be developed in order to explore design 
alternatives at system-level. This requires high-level performance estimation tools integrated 
with exploration strategies in order to help the designer rank design alternatives. 

Performance estimation is a continuous process and can be applied at different abstraction 
levels throughout the design flow, as shown in Figure 1.3. At specification level, this includes 
HW/SW partitioning, processor selection, and assignment of tasks to processors. The 
interconnection structure can be explored at the virtual architecture level. At the bus-
functional level, the architecture is almost defined and includes the HW/SW interfaces as well 
as the software compiled for the target architecture. At this level, cycle-accurate models 
allows for precise evaluation of system performance. 

Virtual Architecture
Model at TLM Level

BFM Level

SoC Integration

RTL Level

Performance Estimation Tools

HW/SW interface refinement

System Specification

Architecture exploration

Processor Selection

HW/SW Interface
Partitioning

Memory mapping

Delay estimation

Scope of 
this work

 

Figure 1.3- Performance estimation tools and abstraction levels 

 

Due to the growing number of processors in MPSoC designs and, consequently, the 
increasing relevance of the software portion, high-level software performance estimation tools 
are needed. Monoprocessor software estimation tools can be divided in three groups: 
simulations, abstract models and hybrid methods (MEYEROWITZ, 2004). Simulation-based 
methods use cycle-accurate simulators to estimate software execution time, whereas analytic 
methods use abstract models and cost functions. Hybrid methods use code annotation (at 
instruction or basic block level) with execution cost. The application runs natively, thus 
avoiding the long simulation time of cycle-accurate simulators. 

For the MPSoC architecture, an integrated estimation method must consider the hardware 
and software components and the contribution of each individual component in the whole 
system performance. It requires integrated hardware and software estimation tools, which can 
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be classified as simulation, trace-based, or analytical-based methods. Simulation-based 
methods use instruction set simulators for the software part and hardware simulation models 
in order to obtain a system-level simulation model. Trace-based methods record access to 
system resources (for example, computation and communication elements) produced by a 
generic system simulation. An architecture is evaluated by mapping the trace onto the 
architecture resources. This idea is well known and applied in cache performance evaluation, 
where a trace of memory access is mapped and performance is evaluated for a given cache 
architecture and policy. Analytical methods are proposed to provide fast performance 
estimation and avoid exhaustive simulation, which is prohibitive. Usually, the system is 
modeled as a set of properties (for example, event rate and instruction usage), and abstract 
models calculate system performance based on these properties. Analytical methods are less 
accurate than simulation or trace-based methods, but they can quickly identify interesting 
solutions, which will later be subjected to a more detailed analysis. 

1.2 Need for Improvement 

This work deals with software performance estimation. Performance estimation tools are 
needed due to the large design space that cannot be manually explored or verified when only a 
hardware prototype is available. Advanced processor architectures and complex applications 
make simulation prohibitive for high-level performance estimation. Analytical methods have 
been proposed using databook or linear models that fail to precisely estimate the performance 
in advanced architectures. This work proposes a neural network-based software performance 
estimator. The estimator generates a fast estimation from descriptions in C code and is 
developed to be applied in high-level architecture exploration.  

An integrated hardware and software estimation tool is necessary, also, due to complex 
interaction and synchronization scenarios. Virtual prototypes can deal with this problem 
providing a single model to evaluate hardware and software performance after architecture 
exploration. In a virtual prototype, software is executed using a simulation model of the target 
processor and the hardware using functional models. This permits the generation of a global 
simulation model, where the hardware and software are simulated in a synchronized way. In 
this work, a virtual prototype environment is integrated to an MPSoC design environment, 
providing automatic generation model, which facilitates the design evaluation of complex 
MPSoCs.  

1.3 Integration in MPSoC Design Flow 

The main objective of this thesis is to provide a methodology for software performance 
estimation integrated in an MPSoC design flow. In this work, the ROSES design environment 
is used as a design flow to guide performance estimation. ROSES uses a component-based 
approach to refine the hardware and software interfaces in an MPSoC design. As input, it uses 
a virtual architecture composed of hardware and software modules interconnected by 
transaction-level model (TLM) channels. ROSES assumes that external tools are utilized to 
make the partitioning between hardware and software components at the functional level. 
Hardware components are considered black-box components. Software components are 
divided in tasks. To drive hardware and software interface refinement, each software module 
is mapped to a given processor. 

In this work, we propose a new high-level software estimation method based on neural 
networks (NN) to guide processor selection, as shown in Figure 1.4(a). In our experiments, 
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neural networks provided suitable accuracy and flexibility for software performance 
estimation, even in complex architectures. These experiments were carried out using five 
different architectures: PowerPC 750, AthlonXP, ARM946, ADSP, and a Java processor 
called FemtoJava.  
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Figure 1.4- Performance estimation design flow 

ROSES (CESARIO et al., 2002) refines the virtual architecture and generates a bus 
functional model (BFM), as shown in Figure 1.4(c). This bus functional model is composed 
of processors that execute the software and by hardware wrappers necessary to interconnect 
the hardware components. Software tasks execute under an application-specific operating 
system that implements the application programming interface (API) used in communication 
and synchronization between hardware and software components. 

The virtual architecture differs from the BFM model in terms of the components interface 
and the software. In the virtual architecture the interfaces are modeled as transaction-level 
channels, whereas in the BFM model the interfaces are refined to pin-level interfaces. The 
ROSES environment provides a tool called CosimX, which generates a SystemC simulation 
model for the virtual architecture and the BFM model. In the virtual architecture, software is 
compiled for the host machine, and only the functional behavior and communication is 
validated. On the other hand, in the BFM model, the software is compiled for the target 
architecture and validated using a processor simulator. At this level, the whole architecture, 
including the operating system and hardware wrappers generated during the interfaces 
refinement step are validated. 

In this work, we propose the generation of global simulation models using the BFM model 
to allow an integrated hardware and software performance analysis. This way, an automatic 
method to generate simulation models with performance analysis support is proposed, 
reducing design time and making performance analysis easier. These global simulation 
models, called virtual prototypes, are generated using two tools: FlexPerf(PAOLI; 
SANTANA; GALIX, 2004) and MaxSim(ARM, 2007). 
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The SystemC simulation model at BFM level, generated by CosimX, uses an instruction-
accurate simulator for the software execution and SystemC modules for the hardware 
components. However, in this model the instruction-accurate simulator (software part) 
synchronizes with the hardware modules only when a communication occurs between them. 
The performance estimation capabilities provided by the SystemC model are limited and 
include the tracing of signals and the debug of the assembler code. The integration of a virtual 
prototype to the ROSES environment extends the performance analysis capabilities for the 
BFM model. The virtual prototype generated in this work provides a global model with the 
software and hardware components synchronized cycle-by-cycle. The virtual prototype 
enables performance analysis resources like software execution timeline and communication 
tracing. Moreover, the virtual prototype provides the debug of concurrent software executing 
in MPSoC architectures, allowing breakpoints at signals, assembler code, and registers.  

The FlexPerf framework has a well-defined flow to generate a processor simulator using 
the LISA language, with all the necessary instrumentation support for performance analysis of 
embedded software. This method was used to integrate this stand-alone processor simulator in 
a global MPSoC simulation. A SystemC simulation model is generated to support the 
instrumentation using the FlexPerf framework. In this work, a multiprocessor MPEG4 
encoder platform was implemented, allowing an integrated performance analysis of software 
and hardware components. 

We also evaluate a virtual prototype environment called MaxSim. MaxSim provides a rich 
library of processors, memories, buses, and peripherals. Some components provide built-in 
performance analysis capabilities, such as cache performance and bus utilization. MaxSim 
supports custom SystemC modules, thus making integration with the ROSES environment 
easier. This integration is accomplished by automatically generating a MaxSim design from 
the ROSES architecture description. The same MPEG4 encoder platform used in the FlexPerf 
evaluation was simulated in the MaxSim evaluation. We mainly explored MaxSim’s 
performance analysis support functionality in the context of processor performance 
evaluation. The MaxSim profile interface was used to implement a custom performance 
analysis. In the case study (exposed in Chapter 6), an analysis of transfers handled by a DMA 
(direct memory access) IP component was implemented. 

Usually, MPSoC simulation environments provide fixed capabilities for performance 
analysis. The FlexPerf framework provides a more flexible approach, integrating custom 
performance analysis. Although the instrumentation is developed manually, the possibility of 
extending and reusing analysis modules does save time. Integration with ROSES enables 
consistent performance analysis and design, which is not normally supported by other 
simulation tools. Further, the integration between an analytical estimation method at the 
specification level and a simulation-based approach at the virtual architecture and BFM levels 
provides a good compromise between estimation speed and accuracy. 

For the virtual architecture level (Figure 1.4(b)), performance estimation is covered by 
other works developed in the TIMA laboratory. Bouchimma et al. (2005) propose an 
estimation method based on an abstract CPU model, in order to estimate software 
performance. The abstract CPU model executes the software natively but also represents 
resources like IO access and conflicts, providing a rapid, global validation. The virtual 
architecture model will not be directly used in this work.  

This thesis is organized as follows. Chapter 2 presents general concepts relating to 
MPSoCs. Chapter 3 describes our proposed integrated MPSoC design and performance 
analysis flow. Chapter 4 presents a software performance estimator based on neural networks. 
Chapter 5 exposes two MPSoC integrated hardware and software estimation solutions based 
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on simulation. Chapter 6 describes a case study of the MPEG4 encoder architecture using the 
estimation tools developed in this work. Chapter 7 presents final remarks and conclusions. 
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2 MPSOC DESIGN 

Short design time is important for MPSoCs that have particularly tight time-to-market and 
time window constraints. Complex applications such as game processors, cellular phones, 
digital televisions, and personal digital assistants (PDAs) must be designed quickly and 
efficiently. 

MPSoCs may use hundreds of thousands of lines of dedicated software and may be 
developed in complex software development environments. Design components for MPSoCs 
are heterogeneous: they come from different design domains, have different interfaces, are 
described using different languages at different levels of refinement, and have different 
granularities. A key issue for any MPSoC design methodology is to define a good system-
level model that is capable of representing all of these heterogeneous components along with 
local and global design constraints and metrics. 

MPSoC design is a complex process involving various steps at different abstraction levels. 
An MPSoC design flow must consider the system specification, design space exploration, and 
architecture design. The design space exploration includes HW/SW partitioning as well as 
processor and/or intellectual property (IP) component selection. Architecture design 
comprises the HW/SW component design, interface design, and their integration in a SoC 
solution. 

Strict requirements such as time-to-market, cost, performance, and power consumption 
require early estimation and verification tools. IP components play an important role, 
providing pre-designed components that speed up architecture design. These components may 
be supplied by various vendors, thus requiring an IP integration environment (WAGNER et 
al., 2004). A full system design flow that covers all MPSoC steps is complex. It is an active 
research domain, and many solutions are proposed for design space exploration and 
architecture design. 

This chapter presents the MPSoC abstraction levels and the proposed system-level 
approaches. Sections 2.2 and 2.3 present an analysis of architectural design possibilities in 
terms of hardware and software. Section 2.4 presents the ROSES environment developed to 
provide HW/SW interface refinement in MPSoC design. Section 2.5 discusses the software 
performance estimation and related work. Section 2.6 presents an integrated environment for 
design and performance estimation of MPSoC designs. 
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2.1 Design Methodologies 

2.1.1 Abstraction Levels 
Abstract descriptions provide a suitable way to manage design complexity, hiding 

implementation details that the designer may want to leave out at some point. In consequence, 
the description is short, making its understanding easier. 

The design flow must define different abstraction levels and refinement steps that lead to a 
final solution (EDWARDS et al., 1997). Ideally, the designer would have the benefit of 
automatic refinement from higher abstraction levels to system implementation. As mentioned, 
MPSoC design is quite complex and the available tools do not cover all design steps. 

Figure 2.1 shows abstraction levels usually applied to MPSoC design. The system 
specification describes the behavior of the system under development. Software engineers see 
the system specification as a document that describes the required functionalities, using 
abstract representations. For instance, using the UML notation, a system may be represented 
by class and use cases diagrams. Usually, in electronic design, an executable specification is 
used to represent system functionalities. Some languages have been proposed for electronic 
system specification, such as SystemC (2005) and SpecC (2007). These languages are 
extensions of existing imperative languages (for example, C++) and support hardware-
oriented descriptions. However, the research community is now focusing on the use of more 
abstract specification languages such as UML and Simulink. 

Virtual Architecture
Model at TLM Level
Implicit CPU, abstract HW

BFM Level
Explicit CPU and OS, RTL hardware

ROSES
HW/SW interface

refinement

SoC Integration

RTL Level
Explicit SW memory mapping

VM1 VM2

VM3 HW

Appl.
Tasks

OS

HW wrapper

CPU HW

Intercommunication Network

CPU
BFM

HW wrapper HW wrapper

Appl.
Tasks

OS

HW

Physical Network

CPU

MEM0MEM1

CPU

MEM0MEM1

System Specification

Architecture exploration

f1
f2

f3
f4

HW wrapper

 

Figure 2.1- MPSoC abstraction levels 
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Architecture exploration uses the specification to define the golden architecture that 
covers application requirements in terms of performance, power consumption, energy 
consumption, and area, among others. From the architecture exploration step, a virtual 
architecture that represents the system in terms of software and hardware components is 
obtained. Transaction-level channels abstract the HW/SW interfaces, making possible the 
development of the software using –an application-programming interface (API). Functional 
HW components are used at this level, providing high simulation speed. 

The virtual architecture is refined to a bus-functional level model, where the HW and SW 
interfaces are nearing final implementation. In the software interface refinement, an operating 
system, which includes a hardware abstraction layer (HAL) and low-level drivers, provides 
the API used by the application software. Communication protocols may require hardware 
components such as co-processors and channel adapters, which are responsible for adapting 
the internal component bus to the interconnection network.  

The BFM level hides certain details of the final MPSoC RT-level. For example, ISS 
(instruction set simulators) at BFM-level do not use memory mapping and do not consider 
low-level initialization code, such that for caches and fast memory configuration. The SoC 
integration step includes such considerations and the resulting RTL model is used in the 
physical design (PETKOV et al., 2006). 

2.1.2 Platform-based Design 
Platform-based design (KEUTZER et al., 2000) uses architecture templates to obtain a 

solution called a derivative, by tailoring the platform for a given application. Architecture 
templates are domain-specific hardware platforms composed of processors, memories, 
hardware blocks, and communication structures. Occasionally, these components have some 
degree of configurability, such as processor caches and memory sizes. 

Software is becoming the most important part of MPSoC platforms. An application-
programming interface (API) provides the means to abstract the communication between 
components. An operating system (OS) implements services such as task scheduling and 
inter-process communication. It also improves the reusability of software IP components 
because it builds an abstraction layer that makes application software portable to different 
hardware platforms.  

Platform-based design provides gains in terms of design time and cost. Application 
mapping to platform components must be efficient and handled by system-level design tools. 

2.1.3 Component-based Design 
In component-based design the architectural template is implemented by assembling 

hardware and software IP components available in a library or provided by third-party 
companies. Components should comply with a given protocol, thus making their integration 
into the platform possible. The reuse of pre-tested components reduces design time and 
facilitates the verification of the solution in terms of expected system functionality and 
requirements. 

Component-based design requires a well-defined process involving IP creation, 
qualification, and classification (WAGNER et al., 2004) on the IP provider side. On the client 
side, IP integration includes the search process, validation, and final integration with the 
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platform. The integration step is highly influenced by the IP distribution form. IP components 
may be distributed in hard form, when all gates and interconnects are placed and routed; soft 
form, with only an RTL representation; or, firm form, with an RTL description together with 
physical floorplanning or placement. Using hard IP components has the advantage of yielding 
more predictable estimations of performance, power, and area. However, they are less flexible 
and therefore less reusable than adaptable components. 

IP integration imposes problems due to the heterogeneous and hard IP components. The 
bus-based approach uses standard interconnection, to which the IP interface must comply, 
following a plug-and-play integration. AMBA and CoreConnect are examples of standard 
buses available in the market. When the source code is available, the IP component may be 
changed and adapted for the target platform. Another solution is to construct a wrapper 
around the component that adapts it to the bus or the interconnection network. Software IP 
components are standardized by the API and target OS. OSEK (for automotive systems) and 
ITRON (for consumer electronics) are examples of domain-specific APIs. 

2.2 MPSoC Architectures 

MPSoC design opens many possible solutions in terms of processor architectures, IP 
components, and interconnection structure. The next sections present the trade-offs, in terms 
of hardware and software, which come into play when designing MPSoC architectures. 

2.2.1 Processor 
Figure 2.2 shows the market share for each type of embedded 32-bit processor. In contrast 

to personal computer processors, the market, here, is shared among different architectures and 
manufacturers. These different architectures provide various options in terms of performance, 
power consumption, area, and cost. 

ARM
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PowerPC
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Other
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Figure 2.2- Market share of 32-bit embedded processors (IDC, 2007) 

Processor microarchitecture design has an important impact on MPSoC quality. 
Microarchitecture optimization for a given application includes pipeline configuration, branch 
prediction, and prefetch, among others. Processor data size is another design parameter, since 
embedded applications require a minimal size. Processor cores are available in different 
versions of 8, 16, and 32 bits. Currently, most embedded software remains unchanged after 
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product deployment, making it possible to tune architectural parameters according to system 
requirements. 

Application-specific processors (ASIP) optimize the architecture by creating new 
instructions to efficiently execute a given application. Commercial processors like Tensilica 
(2007) are sold with an environment to analyze the application C code, in order to configure 
and derive the optimized architecture. 

The multimedia domain is composed of processing-intensive applications and requires the 
use of more performance/power efficient architectures, such as digital signal processors 
(DSP). These processors optimize the execution of DSP algorithms using MAC (multiply and 
accumulate) units, address generators, and Harvard architecture, among other features. DSP 
processors efficiently execute digital signal processing algorithms and can run at low 
frequencies compared to general-purpose processors (GPP), consequently decreasing energy 
consumption. 

Very long instruction word (VLIW) processors also provide an efficient architecture to 
execute processing-intensive applications, exploiting instruction-level parallelism (ILP) at 
compilation-time. For this reason, VLIW processors do not require the complex dispatch units 
and speculative techniques used in general purpose processors, since ILP is statically 
extracted. 

The purpose of multithread architectures is to efficiently execute multithread applications 
by supporting fast context switch and concurrent execution. Fast context switch provides a 
way to hide memory latency by executing other threads when memory access occurs. 

Currently, processor architectures also include mechanisms to cope with the low-power 
requirements of embedded systems. Most embedded processors have some control in terms of 
frequency or voltage. Transmeta (2005) is a VLIW processor and provides frequency/voltage 
configuration. At minimum operational frequency (200Mhz), the Transmeta TM5400 
processor consumes only 12.70% of the power required at full frequency (700Mhz). 

The use of different operational states is another low-power technique used for embedded 
processors. This technique defines different states to turn off some of the components when 
they are not required. The StrongARM processor (BENINI, 2000) is an example of the use of 
this technique. The normal state provides for full processor operation and, in Idle state, the 
clock is enabled in the CPU but only the peripheral components are clocked. In Sleep state, 
CPU power is turned off, and only the real-time clock, interrupt handler, and I/O are enabled. 
Figure 2.3 shows the different states, power consumption at each state, and transition times. 

 

Figure 2.3- Operational states in StrongARM processor (BENINI, 2000) 

Low-power techniques such as frequency/voltage scaling or operation states need the OS 
or another supervisor component to control their use. Normally, for laptops, the processor 
dynamically adjusts the frequency/voltage based on application demand. However, these 
techniques impact on processor performance and system response. As a consequence, these 
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techniques require an integrated application and OS design in order to not disturb the real-
time behavior that is commonly required for embedded applications. 

2.2.2 Memory 
Memory design has an important impact on processor performance and power 

consumption. For embedded processors, cache design is important because its influence on 
system power consumption represents about 50% of core power consumption (see Figure 
2.4).  

 

> 50%

 

Figure 2.4- Processor power-consumption (ZHANG; VAHID; LYSECKY, 2004) 

Figure 2.5 presents work done by Zhang et al. (2004) showing the influence of cache size 
on global energy consumption. It can be seen that global energy is directly related to cache 
size. Initially, when cache size increases, global energy decreases because of fewer memory 
accesses. However, after a given point, the sheer influence of cache size dominates global 
energy consumption, despite a small number of memory accesses. The same scenario occurs 
for processor performance (HENNESSY, 2002). After a given point, an increase in cache size 
will not result in an increase in performance, because the application reaches a temporal and 
locality limit. 
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Figure 2.5- Cache size and its influence on system power consumption (ZHANG; VAHID; 

LYSECKY, 2004) 

Other techniques are available to decrease power consumption and execution time in 
memory hierarchies. Scratchpad or fast memories are small memories inside the processor 
core used to decrease access time and power consumption. The main difference with cache is 
that their contents are directly loaded by the application, making the programmer responsible 
for choosing which data and instructions are important in regards to fast memory. This 
technique makes execution time more predicable in comparison to caches, which can be 
polluted by other tasks. Jain et al. (2001) propose a technique to lock the cache lines, avoiding 
undesirable line substitution. In both techniques, knowledge of application behavior is 
necessary to optimize scratchpad and cache use. 

2.2.3 Interconnection 
SoC interconnection design complexity is increasing due to the number of components 

and sophisticated communication schemes. Ad-hoc solutions cannot deal with concerns 
regarding flexibility and design time, which can only be addressed by long-term solutions that 
can cope with future MPSoC requirements.  

Point-to-point connections, shown in Figure 2.6(a), enable designs customized in terms of 
performance and predictability. However, design time and low reuse make point-to-point 
interconnections impracticable in future MPSoC designs.  

Current MPSoC designs adopt bus-based (see Figure 2.6(b)) solutions (AMBA, 2007; 
CoreConnect, 2007). Due to scalability problems many variations, such as hierarchical buses 
and time-sliced arbitration, are proposed. 

The network-on-chip (NoC) approach represents a long-term solution for MPSoC design. 
A NoC, as shown in Figure 2.6(c), provides the scalability and reuse necessary to future 
MPSoC designs. Predictability and real-time requirements call for NoC solutions with 
quality-of-service (QoS) capabilities. Currently, NoCs are a subject of intense research. 
However few real designs exist, due to high latency and area overhead when compared to 
other interconnection solutions. 
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Figure 2.6- Communication topologies (a) point-to-point, (b) bus-based connection, and (c) 
network-on-chip 

To improve reusability, communication interconnection is provided in the form of IP 
components (AMBA, 2007; Sonics Backplane, 2007) that must be configured for a given 
application (for example, number of masters in a bus, switch buffer size in a NoC). This 
requires tools to explore the communication structure and to link application QoS 
requirements to the real implementation. 

2.2.4 SoC Platforms 
The design of a new architecture involves non-recurring engineering (NRE) costs that are 

not negligible in the overall cost of manufacturing and designing a SoC (MAGARSHACK, 
2003). Due to these costs, developing a new architecture from scratch for each new product 
becomes unacceptable. Consequently, platforms are proposed to cover an application domain, 
and then tailored to a specific product. 

Figure 2.7 shows the Nomadik (2007) platform targeted to mobile phones and multimedia 
PDAs. Nomadik is a multimedia platform composed of an ARM processor and audio and 
video accelerators (DSP processors). Many I/O interfaces, such as an LCD controller, USB, 
infrared, TV output, and flash card, are available. The memory organization is composed of 
embedded SRAM, secured RAM/ROM, and controllers for external Flash and DDR 
memories. The interconnection structure uses buses and bridges to decouple the main bus and 
to distribute communication. A DMA controller is available to manage the data transfers.  

 

Figure 2.7- Nomadik architecture (NOMADIK, 2007) 
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OMAP (2007) is another example of a platform targeted for use in multimedia mobile 
devices. The platform is composed of two processors: a general-purpose processor 
(ARM926), used to execute system-level tasks, and a DSP used for multimedia processing 
(see Figure 2.8). The SoC also integrates digital interfaces with external devices. An API 
called OMAPI is provided to access the multimedia resources available in the DSP processor, 
thus abstracting the hardware architecture. The OMAP platform leaves the programmer 
responsible for detecting code suitable for execution in the DSP. 

 

Figure 2.8- Platform OMAP 1610 (OMAP, 2007) 

 

Figure 2.9 shows the Phillips Nexperia (GOOSSENS et al., 2005) platform. Nexperia is a 
heterogeneous platform composed of a general-purpose processor (MIPS), DSP processors, 
and various hardware application-specific accelerators. The memory controller manages 
communication and is interconnected with different buses available in the platform. Bridges 
share communication among the subsystems, avoiding overload of the memory controller. 

Programming models for MPSoC platforms have become a major issue, due to the 
programming complexity of coordinating platform elements. UHAPI is Nexperia’s abstract 
programming model and is used for home applications based on use cases. UHAPI brings 
platform programming close to software engineering models such as UML, by providing 
high-level use cases for the most common needs of home applications. For instance, the API 
provides use cases to play DVDs, record movies, and so on. This represents an important 
tendency because the value of the platform is not only attributed to the hardware solution, but 
also to the API that is provided. 
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Figure 2.9- Phillips Nexperia PNX8550 (GOOSSENS et al., 2005) 

2.3 Software Design 

Software development is becoming more and more time-consuming and will thus come to 
occupy most of the time spent to develop embedded systems. The heterogeneous nature of 
embedded systems makes traditional parallel approaches inadequate for the development of 
embedded software. Further, distributed programming models have the objective of providing 
portability and average performance, and do not fit well with embedded system requirements. 
The following sections describe parallel and distributed programming models used in 
embedded software development. 

A programming model is a bridge between HW and SW. It abstracts the hardware for the 
software developer, using an API. An MPSoC requires programming models that provide the 
flexibility and heterogeneity of distributed systems, but also requires the intense processing of 
parallel applications and real-time constraints. 

Some applications provide explicit parallelism and enable automatic parallelism 
extraction. Fine-grained parallelism can be explored by vector and VLIW architectures, where 
ILP is statically extracted without speculation of data or control. Tasks or threads employ 
coarse-grained parallelism. These loosely coupled threads require less synchronization and 
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communication. For example, encoders and decoders provide parallelism that can be extracted 
at fine and coarse grain. 

The set of applications that can be automatically parallelized is limited. The research 
community claims that new programming paradigms are necessary to specify an application 
in a parallel manner. The heterogeneous nature of embedded systems, which entails a 
considerable amount of synchronization and communication, makes parallelization a difficult 
task. 

Application software layers improve software development by spreading complexity over 
the different layers, as presented in Figure 2.10. In this layered approach, a middleware 
provides the services used by the application. This middleware is implemented on top of an 
operating system that provides basic services such as scheduling and synchronization. The 
hardware abstraction layer implements the low-level code to access the interconnect and other 
system components.  

 

Applications Player, Game, Agenda 

Middleware Corba, MPI, libraries 

OS Scheduling, 
synchronization 

HAL Drivers 

Figure 2.10- Software application layers 

 

Software development for MPSoCs imposes the same problems as those addressed in the 
domains of parallel and distributed systems. These include: 

• Heterogeneity: different architectures have different ways of representing data (for 
instance, big and small endian architectures). The middleware and operating 
system need to deal with these low-level details. 

• Scalability and flexibility: support for new functionalities; this avoids centralized 
solutions that can become the system bottleneck. 

• Security: mobility and wireless communication capabilities are common in new 
products that require security features for data and communication. 

• Fault tolerance: critical embedded applications must include fault tolerance 
techniques in their design. 

• Concurrency: figuring out the details of data access and synchronization is a 
difficult and error-prone task that should not be left for the programmer. An 
adequate programming model addresses the problem of concurrency modeling. 

• Transparency: transparency is desirable for system resource access, leaving 
component addressing for lower levels. 

2.3.1 Programming Models 
Usually, the imperative programming model is extended to support parallelism and 

concurrency. Threads divide the applications into concurrently computing entities. Shared 
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memory and semaphores are explicitly used in threads for communication and 
synchronization. Symmetric multiprocessing (SMP) and multithreading architectures 
efficiently execute parallel multithread applications. Multithread models rely on the 
application developer to identify parallelism and synchronization needs. Some 
communication mechanisms with implicit synchronization, such as blocking message passing 
and mailboxes, may be used. The Posix Threads (Pthread) standard is an example of a thread 
library. Most commercial operating systems support it. 

OpenMP is an application-programming interface (API) for shared-memory architectures, 
developed to support multiplatform and parallel programming in C/C++ and Fortran. The 
OpenMP API only covers user-directed parallelization, where the user explicitly specifies the 
actions to be taken by the compiler and runtime system, in order to execute the program in 
parallel (see Figure 2.11). OpenMP-compliant implementations are not required to check for 
dependencies, conflicts, deadlocks, race conditions, or other problems that result from non-
conforming programs. The user is responsible for using OpenMP in his application, to 
produce a compliant program. Thread numbers used in a parallel section are fixed in the code 
or dynamically decided in run-time. This increases the portability and flexibility when an 
application runs on a different platform. 

 

void a1(int n, float *a, float *b) 

{ 

   int i; 

   #pragma omp parallel for 

      for (i=1; i<n; i++) /* i is private by default */ 

           b[i] = (a[i] + a[i-1]) / 2.0; 

} 

Figure 2.11- OpenMP parallel program example 
MPI (MPI, 2007) is a library that implements a message-passing programming model. 

With MPI, the application is explicitly parallelized and messages implement communication 
and synchronization. The programmer is responsible for data distribution and may use the 
shared memory facilities of the target architecture, or use the messages. MPI provides 
synchronization schemes, such as broadcasting, multicasting, and barriers. 

Distributed objects are a natural extension of the object-oriented (OO) programming 
model for distributed systems. Objects are self-contained computation entities that 
encapsulate data and behavior, and provide a clear interface, thus making application 
distribution easier. 
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Figure 2.12- Distributed objects components 

Figure 2.12 shows the typical composition of distributed objects. The proxy component 
for the client object and the skeleton&dispatcher for the server object implement 
communication between objects A and B. In Corba and Java/RMI (ORFALI, HARKEY, 
1998) technologies, a compiler automatically generates these components from an interface 
description language (IDL). The communication module, provided by an operating system, 
and the communication network carry out the request/reply protocol. 

The Task Transaction Level Interface (TTL), proposed by Phillips (VAN DER WOLF et 
al., 2004), is an interface-centric programming model for MPSoCs. It enables parallel 
application specification and support for platform integration of hardware and software tasks. 
TTL makes concurrency and communication explicit, focusing on stream processing 
applications. 

A TTL application is organized as a task graph. Each task uses the TTL interface API on 
its ports to communicate with other tasks using a channel. TTL provides 7 different interface 
types: 

a) Combined blocking (CB): this interface provides two primitives (write and read), 
and combines synchronization and communication in one primitive. 

b) Relative blocking (RB) / Relative non-blocking (RN): this interface separates 
synchronization (acquire/release) and data transfer (store/load) operations. 

c) Direct blocking in-order (DBI) / Direct non-blocking in-order (DNI): this interface 
also separates synchronization and data transfer operations and uses a pointer for 
direct access to data buffer. 

d) Direct blocking out-of-order (DBO) / Direct non-blocking out-of-order (DNO): 
compared to DBI and DNI interfaces, these add support for non-sequential access 
to data buffers. 

The TTL interface is available as a C++ API, C API, or hardware interface. For platform 
mapping, the implementation cost of each API primitive has to be considered. This cost is 
related to synchronization, buffer requirements, and address management. 

MultiFlex (PAULIN et al., 2004) is a multiprocessor SoC programming environment 
providing two programming models: a distributed system object model (DSOC) and a 
symmetrical multi-processing (SMP) model. Applications using these models are mapped 
onto the StepNP multi-processor SoC platform. 

The DSOC model is similar to the distributed object model, where object servers provide 
services to client objects. The main difference between DSOC and traditional OO approaches 
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such as Java/RMI and Corba is that hardware accelerators provide the support for message 
passing, resulting in low overhead. There are two hardware accelerators: a message passing 
engine (MPE) and an object request broker (ORB). The MPE is used to translate messages 
into a portable representation and to transmit the request through the NoC, as shown in Figure 
2.13. Scheduling requests to servers, the ORB component coordinates object communication. 
ORB supplies the load balancing over system resources, thus providing parallel execution and 
scalability. An interface description language called SIDL (SystemC interface description 
language) is used to generate software drivers to access the MPE for software components. 
For the HW components, a tool generates the data conversion hardware and links it to the 
NoC interface. 

 

Figure 2.13- DSOC model for platform mapping (PAULIN et al., 2004) 

The SMP model is based on the POSIX Threads model. It supports concurrent execution 
using shared memory. Monitors and signals are provided for communication and 
synchronization. The SMP model combines a lightweight software layer and a hardware 
concurrency engine (CE). The CE controls the monitors and signal implementation as well as 
the hardware context switch, thus yielding low cost implementation. 

The DSOC/SMP model proposes the hardware implementation of key components of a 
distributed and parallel programming model, resulting in low overhead. This enables the 
systematic mapping of the DSOC/SMP application to the StepNP platform. On the other 
hand, this hardware support decreases software portability, and mapping to another platform 
will necessitate a new hardware and software interface design.  

2.4 ROSES MPSoC Design Environment 

ROSES is a component-based environment for system-level design. It provides HW/SW 
interface abstraction, thus decreasing the complexity of MPSoC design.  
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The ROSES design flow starts with a virtual architecture model that corresponds to the 
“golden” architecture obtained from the architecture exploration step. This virtual architecture 
model allows automatic generation of communication coprocessors/controllers (wrappers), 
device drivers, operating systems, and application programming interfaces. 

The virtual architecture model is a set of virtual modules interconnected using point-to-
point virtual channels and/or a communication interconnect IP. The goal is to produce a 
synthesizable RTL model of the MPSoC platform that is composed of processor cores, IP 
cores, the communication interconnect, and HW/SW wrappers. Virtual component interfaces 
are used to automatically generate application-specific hardware and software wrappers (see 
Figure 2.14). Software written for the virtual architecture specification can run without 
modification on the implemented platform because the generated custom operating system 
provides the same APIs. 

 

 

Figure 2.14- ROSES design flow (CESARIO et al., 2002) 

The ROSES environment uses an extensible and multi-level design representation called 
COLIF. This design meta-model based on XML allows description of hierarchical 
components and abstract HW/SW interfaces at different design levels. All of the tools in the 
ROSES design flow use the COLIF meta-model. 

2.4.1 HW/SW Interface Abstraction 
The virtual architecture represents a system as an abstract netlist of virtual components 

(see Figure 2.15). A virtual component consists of an internal component (or module) and its 
wrapper. The internal component contains a set of software tasks or represents a hardware 
function. The wrapper adapts accesses from the internal component to the external channels 
connected to the virtual component. The internal component and external channel(s) can be 
different in terms of communication protocol, abstraction level, and specification language. 
The wrapper is a set of virtual ports that contain internal and external ports. The internal and 
external wrappers’ ports abstract the HW/SW interfaces that will be refined to generate the 
final implementation system. 
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A virtual architecture is specified using an extended SystemC library containing classes 
for virtual components with configuration parameters. It is composed of: 

a) A virtual module, which consists of a module and its wrapper. 

b) A virtual port, which groups certain internal and external ports that have a conversion 
relationship. The wrapper is the set of virtual ports for a given virtual module. 

c) A virtual channel, which groups several channels having a logical relationship (for 
example multiple channels belonging to the same communication protocol). 

 

 

Figure 2.15- Virtual architecture (CESARIO et al., 2002) 

Virtual channels hide many communication protocol details. For instance, FIFO (first-in 
first-out) communication uses high-level communication primitives (for example, put and 
get). In the system refinement, this model needs to be annotated with architecture 
configuration parameters (for example, the protocol and physical addresses of ports). 
Configuration parameters specify a unique way to map the virtual architecture to the final 
architecture, with hardware interfaces, operating systems, and drivers customized for the 
application. They are set directly in the module, task, port, and channel, as attributes: 

a) For a module, there is an attribute for the type of processor and a blackbox flag 
indicating an IP block. 

b) For a task, the user can set the operating system services that are needed, the task’s 
priority, and the files that store the description of its behavior. 

c) For a port, there is a set of attributes to configure: the type of data transmitted, the set of 
addresses needed, the interrupt allocation, and other parameters that depend on the 
communication protocol (for example, the size of the data packet that will be transferred each 
time). 

d) For a channel, most configuration parameters are the same as for a port. 

The main goal of the ROSES methodology is to enable automatic generation of the 
HW/SW wrappers, in order to produce a detailed architecture that can be both synthesized and 
simulated. 
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2.4.2 HW Wrapper Generation - ASAG 
Hardware wrapper generation assembles the hardware interface from a library of 

components, using the virtual architecture specification. Architecture configuration 
parameters are used to instantiate library components; they are the result of decisions made 
during system architecture exploration. The library contains generalized descriptions of 
hardware components in a macro language and is composed of two parts: the processor 
library and the protocol library. The former contains local template architectures for 
processors with four types of elements: processor cores, local buses, local IP components (for 
example local memory, address decoder, and coprocessors), and processor adapters. The latter 
consists of a list of channel adapters. Each channel adapter has simulation and synthesis 
models that are parameterized (by channel parameters such as direction, storage size, and data 
type), much like the elements in the processor library. 

 

 

 

Figure 2.16- Hardware wrapper architecture (CESARIO et al., 2002) 

Hardware wrappers are implemented as communication co-processors, as shown in Figure 
2.16. The processor adapter interconnects the processor bus with the channel adapters. This 
solution enables the separation between communication and computation, releasing the 
processor to execute in parallel with the communication. 

2.4.3 SW Wrapper Generation – ASOG 

The software wrapper generator produces an application-specific operating system tailored 
to the software module(s) that run(s) on each target processor (GAUTHIER et al., 2001). It 
uses an operating system library organized in three parts: APIs, communication/system 
services, and device drivers. Each part contains elements that will be used in a given software 
layer of the generated OS.  

The API implements the interface between the application and the OS services. The 
system services implement basic services such as scheduling, synchronization, and memory 
management. Device drivers contain the low level code used to access the system components 
(for example, memories and hardware IP components). 

The library is organized as services that have dependencies between them. For instance, 
communication services are dependent on the I/O services. The virtual architecture describes 
the services required by the application, and these dependencies are used to keep the size of 
the generated OS at a minimum. The generation flow is shown in Figure 2.17. 
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Figure 2.17- Application-specific OS generation flow (GAUTHIER et al., 2001) 

 

Most of the library components are written in C language, which makes porting to 
different architectures easier. Assembler code is used only in very specific codes, such as the 
boot code, context switch, and device drivers, which represent a small part of the whole 
library.  

2.4.4 Simulation Model Generation – CosimX 
The CosimX tool provides heterogeneous multi-level simulation generation 

(NICOLESCU et al., 2002; SARMENTO et al., 2004). For the interfaces, at different levels, it 
generates a simulation with wrappers (from a library) to adapt the protocol, as presented in 
Figure 2.18. 

CosimX produces an executable model that is used to validate the internal model. This 
executable model is composed of a SystemC simulator that acts as a master for other 
simulators. A variety of simulators can participate in this co-simulation: SystemC, VHDL, 
Verilog, and instruction-set simulators. Co-simulation wrappers have the same structure as 
hardware wrappers, with simulation adapters instead of processor adapters, and simulation 
models of channel adapters. In the co-simulation wrapper library, there are simulation 
adapters for the different simulators supported. There are also channel adapters that 
implement all supported communication protocols in different languages. 
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In terms of functionality, the co-simulation wrapper transforms channel access(es) via 
internal port(s) into channel access(es) via external port(s) using the following functional 
chain: channel interface, channel resolution, data conversion, and module communication 
behavior.  

 

Figure 2.18- Executable model generation in CosimX (SARMENTO et al., 2004) 

Internal ports use the communication API (for example, put and get in FIFO channels) to 
exchange the data. At virtual architecture level, the channel interface provides the 
implementation of these channel functions. Data conversion is required, since different 
abstraction levels can use different data types to represent the same data.  

At BFM-level, an operating system and hardware wrappers implement the communication 
API. In this case, the co-simulation wrappers implement the ISS integration in the co-
simulation environment. The co-simulation bus used for synchronization and data exchanges 
is implemented using inter-process communication (IPC). 

2.5 Performance Estimation 

The development of performance estimation and analysis tools is an active research area. 
Software performance estimation methods are used mainly for worst-case execution analysis 
(WCET), architecture exploration, and micro-architecture tuning. In MPSoC design, 
performance estimation becomes complex and requires system-level methods allowing an 
integrated analysis of different processors, hardware components, and interconnection.  

In Section 2.5.1, we will present methods for estimation of software performance in a 
given architecture. These tools are proposed to provide fast estimation in the context of design 
space exploration. Section 2.5.2 discusses related work in the area of integrated hardware and 
software performance estimation. These works aim to provide global estimation that considers 
multiprocessor and communication issues. 
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2.5.1 Software Performance Estimation 
This section presents estimation techniques for software running in a given processor. 

Simulation techniques offer accurate software performance estimation with high costs and 
considerable modeling efforts. Analytic models estimate software performance using abstract 
models. Although they are fast, the main challenge with analytic models is to derive an 
accurate model for advanced processor architectures. Complementary to simulation and 
analytic-based methods, worst-case execution analysis (WCET) techniques aim to 
automatically discover the worst execution path, which is important for real-time analysis. 

2.5.1.1 WCET Estimation 

Real-time system and scheduling analysis (PUSCHNER; BURNS, 2000) stimulates the 
development of worst-case execution time (WCET) solutions. Given a set of tasks T, 
described as a tuple {D, P, E} that represents the deadline, period, and execution time, 
respectively, the schedulability test determines if a schedule policy satisfies the temporal 
requirements. In this case, WCET tools give the task execution time (E). 

The application real-time analysis is validated in two phases. Initially, the WCET of each 
task is calculated, and, subsequently, the schedulability test determines the real-time 
properties. WCET may be obtained using cycle-accurate simulators of the target processor. 
For simple tasks, this technique is straightforward, but in complex applications, finding the 
inputs that will result in the worst-case execution time is difficult and error-prone. 

In worst-case execution time (WCET) calculation, it is necessary to find out the sequence 
of basic blocks that is responsible for the worst case. The static extraction of the execution 
flow allows the WCET calculation, even for applications where the execution behavior is 
dependent on the input data. 

Li and Malik (LI; MALIK, 1995) propose a static analysis method using a technique 
called implicit path enumeration, which determines the execution number of each basic block 
in the worst-case. These limits are calculated by linear equations obtained from structural and 
functional analysis. Structural restrictions are generated from a control flow graph (CFG) 
analysis. Functional restrictions are given by the user and describe the information that cannot 
be obtained from the CFG, such as loop limits and false paths. A linear programming method 
maximizes these equations and calculates the WCET. 

Figure 2.19 describes a C code example and shows its control flow graph. Equations 2.2 to 
2.5 represent structural and functional restrictions. Equation 2.2 represents a functional 
restriction that describes the maximum value of the while loop (in the example, the loop limit 
is 100). Using the associated cost of each basic block equation (ci), a linear programming 
technique is employed to maximize equation 2.1, using the functional and structural 
restrictions described by linear equations. 

Cycles= ∑
=

n

i
ii dc

0
*   (2.1) 

d2 <= 100    (2.2) 

x2= d1+ d7    (2.3) 

x3= d2= d3+ d4   (2.4) 

x6=d5+d6= d7+d9   (2.5) 
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The WCET calculation may be extremely pessimistic in cases where the functional 
restrictions were imprecisely defined. The programmer must know the application and 
provide precise functional restrictions. Moreover, the method can be pessimistic in an 
additional way, since it considers that the execution cost of a basic block (ci) is fixed. 

 S 
int counting(vector v,  int n,  int value) 
{ 

int i, j; 
i=0; j= 0; 
while (i < n)  
{ 

if ( v[i ] == value) 
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} 
else  
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j -- ;  
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} 
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Figure 2.19- Static WCET analysis 

Wolf and Ernst (WOLF; ERNST, 2000) present a method to reduce the linear (in) 
equations – thus reducing complexity – by trying to extract a single feasible path. A single 
feasible path can be extracted when the program execution is input-independent. Even though 
this is not the case for all programs, some subparts (such as kernels in digital signal 
processing algorithms) can be classified as a single path. Moreover, Wolf and Ernst’s work 
does not use the worst-case, but instead uses intervals that are calculated considering that a 
basic block execution cost varies. Intervals give more accurate results because they use an 
accurate basic block execution cost. 

Static analysis can supply other information that is also relevant for performance 
estimation in the presence of complex architectural features. In (LI; MALIK; WOLFE, 1995) 
and (HERGENHAN; ROSENSTIEL, 2000), the number of misses in the instruction cache is 
obtained by applying linear equations. Li et al. (2003) describe a method that models the 
impact of speculative execution based on the number of misses in the instruction cache. The 
number of misses of the branch predictor may also be statically obtained, as presented in 
(COLIN; PUAT, 2000). These predictions increase the precision of the execution time 
calculation of each basic block, since this calculation only uses local information. In this 
phase, cycle-accurate simulators may be used (LI; MALIK, 1995; WOLF, 2000), 
alternatively, but at a higher cost. Employing more abstract processor models reduces 
complexity and facilitates retargeting of the estimation method for different processors 
(ENGBLOM et al., 2001; SCHNEIDER; FERDINAND, 1999; LIM et al, 1998). 
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2.5.1.2 Simulation-based Performance Estimation 

Simplescalar (2007) is a flexible tool for performance analysis of processors. It can be 
used as an instruction-set simulator (ISS) or a cycle-accurate simulator. Simplescalar makes 
architecture optimization easier, providing means to configure the micro-architecture, such as 
a dispatch unit, registers, and cache. The Simplescalar tool set includes performance 
visualization tools, statistical analysis resources, and a debug infrastructure. 

Some tools use architecture description languages (ADL), such as LISA (HOFFMANN et 
al., 2001), Expression (MISHRA et al., 2004), and MIMOLA (LEUPERS, 1998), to describe 
the processor architecture. Tools supporting these languages produce the simulator, compiler, 
and sometimes the synthesizable hardware, from the architecture description. ADLs allow fast 
architecture exploration, due to the automatic generation of the toolchain that is necessary in a 
new processor. Some commercial tools, such as Lisatek (Coware, 2007) and MaxCore (ARM, 
2007), use the LISA ADL. 

SystemC-based simulators that facilitate integration in system-level simulation models 
have been developed. Microlib provides a PowerPC 750 (Microlib, 2004) model in SystemC. 
ArchC (ArchC, 2007) is an ADL that generates simulation models based on the SystemC 
library. 

Tensilica (2007) provides an environment for development of an application-specific 
processor based on a configurable instruction-set. The XPRES compiler automatically 
explores the design space for a given application described in C language. After the golden 
architecture definition, the environment generates the simulator, compiler, and the 
synthesizable processor. 

2.5.1.3 Analytic Performance Estimation  

Analytic software performance estimation methods are proposed to provide rapid 
estimation requiring little modeling and execution effort. This is useful for high-level design 
space exploration. Usually, application profiling is performed to extract the number of 
executed instructions of various types (LAJOLO et al., 1999; GIUSTO et al., 2001; 
BONTEMPI; KRUIJTZER, 2002). A method then maps these instructions to a performance 
model that calculates the execution time. 

Giusto et al. (2001) compile the application code into a virtual instruction-set (i.e., a 
simplified RISC set with 25 instructions). The estimation is performed evaluating the 
execution cost of the virtual instructions on the target architecture. They profile a set of 
benchmarks with 35 control-dominated automotive applications (considering the virtual 
instruction-set) and use a cycle-accurate simulator to obtain the number of cycles consumed 
by an application. Subsequently, statistical analysis based on linear regression is applied to 
these data to calculate the constant K and indexes Pi in equation 2.6, where Pi and Ni are the 
weight and number of executions of each instruction of type i, respectively. 

Cycles = K + ΣPi Ni  (2.6) 

As the authors demonstrate, since this approach uses a linear fitting method, it is adequate 
only when the training set is similar to the applications for which the estimation is required. 
The authors do not discuss details of the target architecture (such as cache and pipeline) for 
which estimations are obtained. 

Bontempi and Kruijtzer (2002) use a nonlinear method to estimate execution time. For a 
given benchmark set, a profiler extracts a functional signature vector for a virtual processor 
(with a set of 42 instructions). The function signature vector contains the instruction types that 
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appear in the code and the number of times each instruction type is executed. This functional 
signature is theoretically independent of the target architecture, so it can be reused for 
estimation with different processors. The authors, however, do not discuss the impact of using 
this functional signature to estimate performance for a processor of an architectural type that 
is different from the virtual processor upon which the profiler is based. Their estimation 
method is also based on the architectural signature of the target processor. They propose two 
parameters that define this signature: the number of memory wait cycles and the ratio between 
the CPU clock and bus clock. They present estimation results for a MIPS R3000. 

Bontempi and Kruijtzer use a training-and-test approach. In the test phase, they apply a 
modeling technique called lazy learning to choose an estimation function that is based on a 
criterion of neighborhood between the application and the training set. This function, which 
may be locally linear, only uses points of the training set that are near of the application 
estimation function. The inputs for this phase are the functional and architectural signatures, 
and the number of clock cycles needed to execute each application in the benchmark set. The 
number of clock cycles is obtained from a cycle-accurate simulation in the target processor. 
The authors propose a training method based on splitting the benchmarks into two disjoint 
sets for training and testing. They report a mean error of 8.8% in the estimations, for a set of 6 
benchmarks, each one executed with 15 different input data sets. However, they do not 
mention the size of the training and test sets. 

Bammi et al. (2000) compare an annotation technique that uses a virtual instruction-set 
with another annotation technique applied at object-code level. The former translates the C 
code to a virtual instruction (VI) set. Each instruction in VI has a cost associated to the target 
architecture that is obtained either by simulation or by a statistical method, as presented in 
Giusto’s work. The second method (that is, the one at object-code level) uses compiled 
simulation, where the assembler code is translated to a simulation code using delay annotation 
that will be executed in the host machine. The authors report that the object-based approach 
provides more accurate results because it can capture compiler optimizations. They report 
results using a MIPS R3000 processor for a producer/consumer application. The virtual 
instruction method results in errors between -0.29% to -80% compared to cycle-accurate 
simulation. The object-code method gives errors between -0.29% and -10.5%. 

Ipek et al. (2006) propose a neural network estimator used to explore application 
performance, when executing under different architecture configurations. The neural network 
inputs are the architectural parameters and the output is the cycles per instruction (CPI). The 
authors evaluate different memory hierarchy and processor. 

For memory hierarchy, the following parameters were evaluated: L1 DCache Size, L1 
DCache Block Size, L1 DCache Associativity, L1 Write Policy, L2 Cache Size, L2 Cache 
Block Size, L2 Cache Associativity, L2 Bus Width, and Front Side Bus Frequency. These 
different parameters require 20736 simulations per benchmark. The processor architecture 
was evaluated with respect to the following parameters: Fetch/Issue/Commit Width, 
Frequency, Branch Predictor, Branch Target Buffer, ALU/FPU unit number, Reorder Buffer 
Size, Register File, and LD/ST Queue. The combination of these parameters yields 20736 
different configurations; and consequently, that many cycle-accurate simulations are needed 
to explore the design space. 

In a case study with SPEC 2000 benchmarks, the authors obtained a mean error 
ranging from 2% to 4%, using just 4% of the total design space for the training set. Also, the 
training time was around 2 minutes, using a cluster with 10 nodes. In addition, the authors 
evaluated the technique in a multiprocessor architecture (CMP, in this case). The parameters 
evaluated were Core configuration (In-order, out-of-order), Issue width, Number of cores, 
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SMT contexts per core, Off-chip bandwidth, Frequency, L2 Cache Size, L2 Cache Block 
Size, and L2 Cache Associativity. For the case study, applications from the SPEC OMP and 
parallel NAS benchmarks were employed. With 1% of the total design space used for the 
training set, estimation errors of up to 6.4% were obtained. 

 

2.5.2 Integrated Hardware and Software Performance Estimation 
Aside from processor-level tools, new integrated hardware and software tools and methods 

are necessary to estimate performance of whole systems, including hardware components, 
software components, and their interfaces.  

2.5.2.1 Simulation-based Performance Estimation 

Virtual prototypes are simulation models that enable the integrated validation of hardware 
and software components. They integrate an instruction-set simulator with hardware 
simulation models such as memory, bus, peripheral, and IP components. Environments for 
modeling and simulation of virtual prototypes based on SystemC, such as MaxSim (ARM, 
2007), Coware ConvergenSC (Coware, 2007), and Synopsys System Studio (Synopsys, 
2007), provide a rich set of components that can be extended by user-defined SystemC 
modules. Some tools support the RTL synthesis for these library components, providing an 
automatic path to the silicon. For instance, Synopsys CoreAssembler generates the RTL 
interconnection structure from virtual prototypes described in MaxSim (GRUN et al., 2005). 

Other virtual prototype simulators, such as SIMICS (2007), use functional models for the 
processor, buses, and hardware components. Functional models provide reasonable speed to 
execute real workloads. Some works have proposed the integration of functional system 
simulators and cycle-accurate processor simulators such as Simplescalar (MAUER; HILL; 
WOOD, 2002). Chen et al. (2003) also integrated power estimators, providing integrated 
performance/power estimation. 

Fummi et al. (2004) present two methods for the integration of instruction-set simulators 
(ISS) in SystemC models. The authors use the GNU debbuger (gdb) as instruction set 
simulator together with SystemC simulation. The first method uses a breakpoint in SW to stop 
the execution and to synchronize with the SystemC kernel. The second uses the adapted OS 
drivers that stop software execution and communicate with SystemC when an I/O operation is 
made. In both cases, changes are necessary in the SystemC simulation kernel to support 
synchronization and data transfer. 

MPARM (BENINI et al., 2005) is an environment for MPSoC design exploration using 
SystemC. It is a complete platform solution for MPSoC simulation composed of processor 
models (ARM), bus models (AMBA), memory models, hardware support for SMP (hardware 
semaphores), and a software development toolset including a C compiler and an operating 
system (UCLinux). Hardware components, such as memories and the AMBA bus model, are 
all written in SystemC. The AMBA bus model allows multiple masters and slaves and can be 
configured in terms of arbitration policy. A cycle-accurate instruction-set ARM simulator 
developed in C++ is encapsulated in a SystemC wrapper and integrated into the platform. The 
wrapper realizes the interface and synchronization between the instruction-set simulator and 
SystemC simulation framework. This integration allows plugging the ISS into a system 
simulation activated by a common system clock, thus providing a consistent and synchronized 
hardware and software multiprocessor simulation. Figure 2.20 shows an architecture example 
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composed of two ARM processors, the AMBA bus, two memory modules, and hardware 
semaphores. 

 

Figure 2.20- MPARM system architecture example (BENINI et al., 2005) 

In MPARM, the software tool chain was extended to support multiprocessor execution. 
This includes special memory mapping for processor initialization, given that following 
initialization, each processor has to branch to its own initialization routine. The 
multiprocessor shared-memory architecture supports atomic memory operations (test&set 
instructions) implemented by hardware semaphores. These hardware semaphores affect 
operating system implementation; in the MPARM environment, a Linux-based OS 
(UCLinux) was adapted to support the multiprocessing architecture. 

MPARM provides support for performance analysis. The performance statistics include 
cache miss/hit rate, as well as bus contention and average transfer waiting time. These 
statistics are used to explore the bus arbitration policy in the AMBA bus. 

Meyr et al. (WIEFERINK et al., 2004) propose a link between simulation models 
generated with LISA and SystemC system-level simulation. The goal is to explore the 
processor and communication jointly, using a system-level approach. The integrated co-
verification environment provides a way to analyze software performance, for example CPU 
load and RTOS overhead. Furthermore, shared resources (e.g., memory and buses) directly 
affect SW performance, and isolated analysis of a single processor hides potential problems 
and bottlenecks. 

The processor simulator is modeled at instruction-accurate or cycle-accurate level. 
Instruction-accurate models execute the full instruction-set but ignore pipeline effects. In 
contrast, a cycle-accurate model fully simulates the pipeline stages and the stalls due to 
memory accesses. The processor generated from LISA is encapsulated in a SystemC wrapper 
and connected with the rest of the system using TLM or RTL interfaces. 

TLM channels provide high-speed simulation. Such channels may be modeled as 
functional or bus cycle-accurate (BCA). Functional TLM interfaces use read and write 
operations to access the SoC bus. Blocking interfaces can be used to simulate access latency. 
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Bus cycle-accurate (BCA) interfaces provide cycle level detail including bus requests, data 
transfer, and device latencies. 

The authors propose different combinations of processors and bus model abstraction levels 
(see Figure 2.21): 

a) Processor stand-alone simulator; 

b) Instruction-accurate processor and functional communication; 

c) Cycle-accurate processor model and functional communication; 

d) Cycle-accurate processor model and BCA communication; 

e) Cycle-accurate processor model and RTL pin-level communication; 

f) RTL processor and RTL pin-level communication. 

 

Figure 2.21- LISA simulation and SystemC integration levels (WIEFERINK et al., 2004) 

The stand-alone simulator (level 1) disregards communication and conflicts in shared 
resources, considering only the isolated software execution. Clearly this method is inaccurate 
for MPSoC designs. Level 2 already considers the system-level simulation, and the software 
uses the instruction-accurate simulators with functional interfaces with the rest of the system. 
These interfaces model the operations without considering timing concerns. In the next level, 
the instruction-accurate simulator is replaced by a cycle-accurate one (level 3), which 
precisely models the pipeline, branch predictors, and other effects. In level 4, communication 
is modeled as cycle-accurate using transaction channels called BCA (bus cycle-accurate). In 
the next level, the interfaces are refined using a full pin interface (level 5). The last step uses 
synthesizable component models using hardware description language simulators. 

Posadas et al. (2004) propose a performance estimation method (using SystemC) that is 
based on a performance-annotated library. The authors use code segments instead of basic 
blocks. A code segment is a set of basic blocks without wait statements or channel accesses. 
As such, the SystemC process does not interact with the simulation kernel. 

To consider the execution delay, the authors propose a method based on redefinition of 
C++ classes that contribute to the execution time with the performance annotation. The 



 

 104

redefined class executes the behavior normally and additionally calculates the execution delay 
(for instance, in the Integer class, the operator + realizes the sum and computes the delay of 
this operation). At the end of the segment, when the execution reaches a wait statement or a 
channel access, the accumulated delay is used as the execution time. For the hardware, the 
same method is used, but it can consider the concurrent segment execution. Channels also use 
annotation to compute operating system overhead. 

The authors consider that the platform vendor should provide performance values 
annotated in each object. Errors below 4.5% in the SW and 8.2% in the HW were obtained, 
experimentally, using a voice decoder for GSM applications composed of 4 processes mapped 
into a RISC processor and a hardware accelerator. The authors report a simulation speed gain 
of 142 times compared to ISS simulation. 

2.5.2.2 Analytical-based Performance Estimation 

Analytical and formal methods are proposed to find a way around long simulation time 
and to avoid building an executable model. Such tools are proposed to verify system 
performance and certain properties, such as the maximum throughput, maximum delays, and 
buffer utilization, among others. Usually, analytical methods are used in design space 
exploration where absolute precision is not required, and where one only seeks to obtain a 
good idea of the performance (in relative terms) of alternative architectures. 

Chakraborty et al. (2003) present a framework to analyze system properties modeled as 
event streams, based on real-time calculus. This framework has been applied to the design 
exploration of network processor architectures (THIELE et al., 2002), determining the 
cost/performance trade-off of different configurations of HW and SW components. 

Ritcher et al. (2003) propose a formal approach used to verify the schedulability properties 
of heterogeneous multiprocessors systems. The key idea is to use the current formalisms for 
individual components and extend them in a compositional model for global MPSoC analysis. 
The individual analysis methods include well-known scheduling analysis techniques such as 
RMS (rate monotonic scheduling), EDF (earliest deadline first), and TDMA (time-division 
multiple accesses). These analysis techniques model the task or communication activation as 
event streams. The authors describe that the main problem in the compositional model is that 
the output event models are usually not supported as input models. To solve this problem, a 
set of event model interfaces (EMIF) and event adaptation functions (EAF) is used to 
automatically adapt the output event stream to match up with an established input event 
model. 

Figure 2.22 presents two adaptations of an output event model to an input event model. In 
the example, C2 and C3 are accesses, through the interconnection, to an HW IP component 
and a DSP processor. In the DSP component, the well-established formalism uses the simple 
periodic model as input, which represents the processing execution when a given data 
quantity is available. Therefore, the output model from the interconnection is represented as a 
periodic event stream with jitter. To match both models, the interface (EMIF and EAF) adapts 
the periodic bursts using buffers and activates the DSP processor when the data quantity is 
sufficient. In this case, the formal model provides the execution bounds and helps optimize 
the buffer requirements. 
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Figure 2.22- Adaptation between event models in SymTA/S (RITCHER et al., 2003) 

Russell and Jacome (2003) present a method based on abstract performance models and 
application scenarios. An application scenario is a defined path in the control flow graph that 
expresses the most important application characteristics. The scenario is statically extracted 
from user input constraints. The input constraints are propagated to prune the nodes in the 
infeasible paths. From initial constraints, other constraints are derived and propagated in an 
iterative process. The iterative process may require user interaction to define manual 
constraints resulting in a unique CFG (control flow graph) path called ‘scenario’. A trace is 
generated using this scenario and the performance is evaluated using an abstract cost function 
for each component. Cost functions are determined from component properties, architecture 
features, and values supplied by the designer. For instance, the processor cost function 
calculates the cycles needed to execute a given instruction. To calculate memory access costs, 
the values are derived from the interconnection topology in combination with databook values 
(for example, access time). The structural architecture adds the influence of components that 
are traversed during an operation. For example, in a memory access, buses and memory 
controllers are used, and their influence is accounted for in the performance estimation. The 
authors present a case study of a network interface. The work analyzes two different memory 
organizations using the Intel i960 as target architecture. An estimation error of up to 20% is 
reported.  

2.5.2.3 Hybrid and Trace-based Performance Estimation 

In order to find a way around long simulation time, hybrid trace-based methods combining 
simulation and profiling are proposed. The profiling information obtained from a generic 
architecture is used to estimate the application performance without necessity of rerunning the 
simulation for each different configuration. 

The SPADE environment (LIEVERSE et al., 2001) proposes a trace-based performance 
estimation method with a clear separation between functionality and architecture. The 
application is modeled as Kahn networks. A Kahn model is composed of parallel processes 
that communicate via unbounded FIFO channels. The application-programming interface 
(API) is composed of three functions: read, write, and execute. During the Kahn model 
execution a trace is generated, taking into account communication workload (read and write 
operations) and computation workload (execute operations). The architecture is assembled 
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using blocks that model different resources such as processing, communication, and memory 
resources. A processing resource is composed of a trace-driven execution unit, which 
interprets trace entries and I/O interfaces that are connected to a specific communication 
resource. 

In the SPADE environment, following application and architecture definition, the mapping 
is realized. Each process is mapped onto a processing resource. The Kahn channels are 
mapped to a combination of communication and memory resources. The simulation is then 
performed and the application trace is applied to the architecture model. The performance 
data collected during simulation include the utilization and stall cycles that are due to I/O 
operations. For communication resources, the performance data include the amount of data 
sent over the bus, the utilization, and the wait cycles. The application trace may be reused for 
different architectures, enabling fast design exploration of different design points. 

Mohanty and Prasanna (2002) propose a high-level performance estimator called HiPerE 
to guide performance evaluation and mapping in SoC architectures. The input for the HiPerE 
simulator is an architecture and application described in GenM (Generic model). A GenM 
models the SoC architecture capabilities that will be used to optimize the application 
mapping. The SoC architecture consists of three components: a processor, reconfigurable 
logic, and memory. The GenM describes the different architecture configurations, such as 
voltage operations of the processor, power states for the memory, and reconfiguration cost for 
the reconfigurable logic. In GenM, an application is described as a task graph. For each task, a 
set of performance parameters is given by the designer, for instance, the amount of input and 
output data to/from memory, and the time and energy for executing the task at a given 
voltage. The initial estimations can be obtained by analytic methods. The authors show an 
example describing performance and energy as a function of operational frequency. This 
general function is derived just by using fewer benchmark runs, as proposed in (GIVARGIS; 
VAHID, 2002). 

To improve the accuracy of these initial estimations, the authors propose linking GenM 
with a simulation-based framework in order to estimate the performance of an individual task 
with more accuracy. This framework, called MILAN, takes the task description (in C) and 
generates the scripts as well as the configuration files necessary to launch the simulator and to 
obtain the performance and power estimation. The simulators used to obtain these data were 
SimpleScalar and Wattch (in this case, for the MIPS 3000 architecture). 

Using a symbolic simulator, HiPerE can verify the performance (latency in completing the 
task graph execution) and the energy for a given mapping. This fast symbolic simulation 
enables system optimization in terms of power consumption or performance. 

Lahiri et al. (2001) present a trace-based method to explore a communication architecture 
consisting of a network of shared and/or dedicated communication channels and hierarchical 
channels connected by bridges. 

The method comprises two steps, as shown in Figure 2.23. In the first step, HW/SW 
partitioning and processor selection is performed. Communication is modeled at an abstract 
level by the exchange of events or tokens. The HW/SW co-simulation generates timing 
inaccurate system execution traces that take into account the communication architecture. The 
execution trace is represented by a CAG (communication analysis graph) that captures 
computations, communications, and synchronization.  

In the second phase, the designer specifies the communication architecture and the 
proposed tool carries out the system performance analysis. The communication architecture is 
modeled as a set of parameterized shared buses (with parameters such as width, speed, and 
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latency) and dedicated channels. The model accepts arbitrary mapping of events to channels. 
This is employed for synchronization events that use dedicated signals. 

The system level performance estimation generates an augmented CAG with transfer 
latency annotations that help estimate the entire system performance. The analysis results also 
include the critical path as well as statistics regarding bus usage and conflicts, among others.  
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Figure 2.23- Lahiri’s method for communication architecture exploration (LAHIRI et al., 
2001) 

 

In a case study of a TCP/IP network interface subsystem responsible for calculating the 
checksum of IP packets, the authors report an increase in speed of 160 times compared to the 
entire HW/SW co-simulation. The case study consists in 4 tasks: (a) create_pack, (b) packet 
queue management, (c) IP_check, and (d) checksum calculation. Tasks (a) and (b) execute in 
an MIPS R3000 processor; two hardware modules implement tasks (c) and (d). A shared bus 
interconnects the components and the memory modules. The proposed tool is able to explore 
a design space comprising 36 different configurations of DMA block sizes and priorities, in 
less than 1s. 

Cai et al. (2004) propose a system-level estimation approach based on generic dynamic 
profiling and architecture mapping, in order to derive the performance estimation. This 
generic profile is obtained from the specification execution and stores the executed 
instructions (by type) and communication in the TLM channels. When evaluating a given 
solution, the specification is mapped to a particular architecture. For each architecture 
component, a table with weights is used to calculate the cost of execution of a given 
operation/communication in the component. The weights are obtained from the component 
datasheet or from simulations with selected codes. The authors present a case study of a JPEG 
encoder, where different implementations with hardware and software components are 
evaluated. The SW components are mapped to a Motorola DSP56600 processor, and the HW 
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component cost is obtained from the manually implemented RTL models. The estimation 
from the dynamic profiling gives a maximum error of 12.5% compared to the cycle-accurate 
simulation. 

The Platune environment (GIVARGIS; VAHID, 2001) is a platform tuning framework 
used to select appropriate architectural parameter values, for a given application mapped onto 
the parameterized SoC platform, in order to meet performance and power objectives. Platune 
is composed of the following components:  

• Tightly integrated simulation models for each of its SoC components (for example, 
processors, memories, interconnect buses, and peripherals). These simulation 
models capture dynamic information essential for computing power and 
performance metrics. 

• Power models for each of its SoC components. Every power model must be 
parameterized according to the parameterization of the respective SoC component. 

 

Figure 2.24- Platune SoC base platform (GIVARGIS; VAHID, 2001) 

 

Figure 2.24 describes the base SoC platform. The MIPS processor can be set to run at 32 
different voltage levels and thus at 32 different frequencies. Data and instruction cache 
configuration includes cache size, line-size settings, and set-associativity. The four 
interconnect buses (CPU-instruction-cache, CPU-data-cache, cache-memory, and peripheral 
bus) are, in turn, composed of a data bus and an address bus. Each one of the buses can be set 
to one of four different widths (4, 8, 16, or 32 wires) and one of three different encodings 
(binary, bus-invert, or gray). The UART peripheral’s transmitter and receiver buffer sizes can 
be set to one of four values (2, 4, 8, or 16 bytes). The DCT CODEC peripheral’s pixel 
resolution can be set to one of two widths (16 or 24 bits). The authors report a total of 26 
parameters and a configuration space of 104 configurations.  

Platune uses a cycle-accurate simulation to obtain the initial estimation and some platform 
variations are estimated using analytical methods. Equation 2.7 characterizes the general 
CMOS power model from which Platune derives all power models. The term C is the average 
capacitance of the switching element. The term A (a number between 0 and 1.0) is a measure 
of the switching activity of the element. The terms F and V are, respectively, the clock 
frequency and supply voltage applied to the switching element. The switching activity is 
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registered during the simulation, whereas different configurations for frequency/voltage 
operations can be calculated without simulation. 

P= ½ C.A.F.V2  (2.7) 

The processor simulator collects the consumed cycles and detailed statistics on internal 
activity. This collected data is used to compute power and performance metrics. The 
processor power model uses an instruction-based approach (Equation 2.8). The power 
consumption is calculated considering all executed instructions (Ei

instruction is the average 
energy consumption of the ith instruction) and register file accesses (Ei

reg-file is the average 
energy consumption of the ith access to the register file). The value of Ei

instruction is obtained 
from a gate-level simulation and is assumed to be constant and normalized for a supply 
voltage of 1 Volt. Ei

reg-file is assumed to be constant for any read or write access and is derived 
from gate-level simulation. The term T is the simulated time (in seconds), and V is the voltage 
operation. Equation 2.8 is used to calculate processor power consumption with different 
voltages and frequencies.  

Pcpu= (∑(Ei
instructionxV2)+ ∑(Ei

reg-filexV2))/T  (2.8) 

A parameterized simulator is used to simulate cache memories based on the stream of 
memory references generated by the processor simulator. Equation 2.9 describes the power 
consumption model for cache access. For instance, Estorage depends on cache line size, 
associativity, and total size. With this model, different cache configurations could also be 
evaluated without simulation. 

Pcache= ∑( Estorage + Eword-line + Ebit-line + Edecode)/T  (2.9) 

The design exploration result is represented as a Pareto-optimal set comprising the trade-
off between power consumption (in Watts) and performance (i.e., execution time in seconds). 

Kempf et al. (2006) propose a framework for early software development and verification 
in MPSoC design. In this framework the software is modeled as C tasks and the 
communication as TLM channels. In order to estimate software performance, the authors use 
an annotation method where a micro-profiler is utilized to instrument the software code. This 
micro-profiler instruments the software code by inserting the cost (cycle count) in each C 
statement. This cost is used to simulate execution time, and is consumed before each 
communication and synchronization. The cost of each instruction is configured by the 
designer who uses a datasheet or his own knowledge. The micro-profiler also instruments the 
intra-task memory access, forwarding the memory accesses to the TLM ports. The authors use 
an architecture composed of the MIPS 32 microprocessor connected with an AMBA bus. The 
results, for the Blowfish encryption algorithm and G.731, a speech compression standard, are 
errors of about 8% for the cycle count and up to 20% for memory accesses. The authors report 
an increase in speed of 9 times for the estimation time compared to the cycle-accurate 
simulation. 

2.6 Integrated MPSoC design and software performance estimation 

In this section, an integrated methodology for design and performance estimation of 
MPSoCs is presented. This methodology is proposed to support software performance 
estimation, using an analytic method for processor selection at functional level and a 
simulation-based method at bus functional model (BFM) level. Other tools necessary for 
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MPSoC architecture exploration, such as HW/SW partitioning or communication design, can 
be easily integrated to the methodology we propose. 
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Figure 2.25- Integrated MPSoC design and performance estimation flow 

 

Figure 2.25 shows the overall proposed design flow. After the partitioning of the system 
functionalities between hardware and software components, each software component needs 
to be mapped to a given processor. A neural network (NN) estimator supports the processor 
selection. An NN provides a fast estimation method, necessary for high-level exploration. 
Moreover, the neural network non-linear prediction provides the adaptability necessary to 
estimate software performance in complex architectures. The neural network solution is based 
on a training approach, where a set of benchmarks is necessary to calibrate the NN, requiring 
a cycle-accurate processor model to obtain initial values. The variability of benchmarks used 
to train the neural network is the key problem for the achievement of precise estimations. In 
this work, benchmarks with different characteristics are used to obtain the heterogeneity 
necessary for the NN training. For NN utilization, the executed instructions need to be 
counted and classified. In our approach, this instruction count is dynamically obtained using 
an instruction-accurate simulator, which is faster than a cycle-accurate one. 

After the architecture exploration, a “golden” virtual architecture model is obtained. This 
virtual architecture is composed of abstract hardware and software modules that communicate 
via transaction-level channels. The ROSES environment (see Section 2.4) uses this virtual 
architecture as input and refines the hardware and software interfaces, creating the necessary 
wrappers to connect these components.  

The CosimX tool provided in ROSES generates a simulation model of the virtual 
architecture, in SystemC. CosimX also adds simulation wrappers needed when two 
components have interfaces at different levels (for instance, a TLM channel connected to a 
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component with an RT-level interface). In the SystemC simulation model generated from the 
virtual architecture, software components execute in the host machine and hardware 
components are modeled as functional components. This model is used to validate functional 
behavior, but the performance cannot be evaluated precisely because software is executed in 
the host machine. 

After the refinement of hardware and software interfaces, a bus-functional (BFM) 
architecture model is derived. The hardware components are handled as black-boxes provided 
as cycle-accurate models. The software interfaces include all device drivers required to 
implement the communication API (application-programming interface), as well as a 
dedicated operating system for each processor. The hardware interfaces include the 
communication wrappers necessary to adapt the communication and protocol components 
(such as FIFO). These components are assembled based on the protocols and processors 
selected in the architecture exploration step. For estimation purposes, a virtual prototype is 
generated from the BFM model using instruction-set simulators as processor models and 
SystemC modules for hardware components.  

CosimX generates a simulation model for the BFM model using the inter-process 
communication (IPC) mechanism to connect the instruction-set simulator (ISS) with the 
SystemC simulator. The ISS and SystemC simulations are only synchronized when 
communication (e.g., data transfer, interrupt) occurs. Since the hardware and software 
simulators are not synchronized cycle-by-cycle, it is not possible to use this approach to 
determine the exact moment when an interrupt arrives at the processor, which would be 
required to obtain the response time for the interrupt request. 

In this work, we propose the utilization of two tools (FlexPerf and MaxSim) to generate a 
global and synchronized simulation model. These global simulation models are called virtual 
prototypes. In a virtual prototype, software executes in a processor model and hardware is 
modeled as SystemC components, and they are synchronized cycle-by-cycle. Additionally, 
the simulation model generated in both environments provides support for integrated 
performance analysis of hardware and software components. The performance analysis 
resources include the software timeline execution, bus access statistics, and cache 
performance. The debugging capabilities are extended with the support for breakpoints in the 
assembler code, registers, and signals. These functionalities are not available in the previous 
SystemC model generated by CosimX and were integrated to the ROSES environment. 

Currently, FlexPerf has a well-established methodology to describe a processor model in 
the LISA language. Additionally, it supports performance event generation and provides 
modules for performance analysis. Using FlexPerf’s capabilities and the expertise to generate 
an instrumented processor simulator, we extended the environment to support performance 
analysis in MPSoC architectures. This integration is accomplished using the CosimX tool 
available in ROSES. The integration is realized by means of a SystemC wrapper that 
encapsulates the processor simulator and implements the FlexPerf interface for performance 
event generation. This integration adds hardware and software performance analysis 
capabilities to SystemC simulations. The instrumentation is manual; on the other hand, the 
gain in using FlexPerf is flexibility and modularity. FlexPerf enables extended analysis and 
the reuse of existing analysis modules. This work is similar to (WIEFERINK et al., 2004; 
BENINI et al., 2005), where a global synchronized MPSoC simulation model is presented. 
These environments provide certain performance analysis capabilities related to processor and 
communication performance. However, it is not clear how one could customize these analysis 
features. In this work, the FlexPerf framework provides an infrastructure that facilitates the 
development of custom performance analysis and enables reuse of such custom analyses for 
future designs. 
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A second tool, called MaxSim (ARM, 2007), was employed to generate and simulate a 
virtual prototype. MaxSim provides a rich set of components (e.g., processors, buses, and 
memory) in a library used for the assembly of a virtual prototype. These library components 
have many built-in profiling and performance analysis capabilities. For instance, in processor 
models a set of performance analysis functionalities, such as a software timeline and cache 
performance measurement, is available. Moreover, processor models provide an interface to 
connect software debuggers, enabling synchronized multiprocessor debugging. 

MaxSim is based on SystemC, but its components use proprietary MaxSim interfaces to 
signals and transaction-level channels. A tool called Colif2MaxSim, which was developed in 
the context of this thesis, generates the virtual prototype, in MaxSim, from the ROSES design. 
Colif2MaxSim takes the ROSES design described in COLIF (CESARIO et al., 2001) – that 
is, a design meta-model used by all ROSES tools – and generates the design in MaxSim 
format. Furthermore, adapters are generated to convert the SystemC standard interface to a 
MaxSim interface. The virtual prototype provides all MaxSim simulation and debugging 
resources, such as a graphical interface, synchronized breakpoints in signals and software 
code, and multiprocessor debugging. For performance estimation, all of the performance 
analysis capabilities built into MaxSim components are used (for instance, software timeline 
execution, cache performance measurement, and bus usage statistics). For custom 
components, MaxSim provides a profiling interface to generate the performance events.  

The performance analysis functionalities at BFM level enable the designer to jointly verify 
the SW and HW. The designer may validate design decisions such as those determining 
scheduling policies, drivers, and buffer sizes. Using a virtual prototype, the designer can also 
verify the impact of different cache sizes and memory hierarchies on final performance. For 
code optimization, the execution time of each function makes it possible to detect 
optimization points in the software code. 

Usually, in virtual prototype environments, the design starts with virtual prototype 
modeling (ARM, 2007; Coware, 2007; Synopsys, 2007), and, consequently such 
environments do not provide a link to more abstract levels. ROSES integration enables system 
design at more abstract levels, supporting the automatic generation of the virtual prototype. 
Other environments propose simulation models for multiprocessor platforms (BENINI et al., 
2005; MAUER et al., 2002), but without a direct link to a design environment, as proposed in 
this work. 

The simulation-based methods used in the virtual architecture and BFM level have an 
inherent high-cost compared to analytical approaches. Because some design decisions were 
made in early design stages, less time was spent on simulation in this step. Furthermore, 
simulation provides a more detailed behavior analysis, including breakpoints and step-by-step 
execution, which makes multiprocessor design easier. 

2.6.1 Discussion 
Our proposed approach for high-level software performance estimation is similar to 

Giusto’s work (GIUSTO et al., 2001). However, instead of using a linear approach, we adopt 
a non-linear neural network solution. Linear methods provide satisfactory results when the 
target architecture is simple and has no advanced features. The neural network adaptation 
provides a way to estimate software execution time for a range of architectures. The non-
linear approach is also adopted in Bontempi (BONTEMPI; KRUIJTZER, 2002), but instead 
of using a virtual instruction-set, we use the target one. This allows better instruction 
classification, but requires a compiler for the target processor. 
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The neural network training and utilization approach is similar to Giusto and Bomtempi’s 
approach, and strongly depends on the training set. Using a training set similar to the 
estimated application results in an increase in accuracy. To improve accuracy, we propose a 
classification method based on a control flow graph (CFG) similar to the method presented by 
Sciuto (SCIUTO et al., 2002). The classification method divides the application into two 
domains: a control and a data-oriented application. In the utilization step (application 
estimation), an adequate neural network is used. Ipek et al. (2006) also utilize a neural 
network to estimate the performance of a given application with respect to different 
microarchitecture configurations. However, in our work the neural network is more generic 
and is trained for one architecture configuration, but for different applications.  

The integrated hardware and software simulation model we use is similar to that in the 
work proposed by (BENINI et al., 2005; WIEFERINK et al., 2004; BELANOVIC et al., 
2004). These global simulation environments, usually called ‘virtual prototypes’, integrate an 
instruction-accurate or cycle-accurate simulator of the target processor with a hardware 
simulator. This integration must consider the existence of multiple processors, peripherals, 
buses, and IP components. 

Usually, these global simulation environments are not linked with a design methodology; 
the virtual prototype model is manually created, thus resulting in an error prone task. In this 
work, ROSES was used as a design flow, and tools were developed to automatically generate 
a virtual prototype. As input, ROSES uses a virtual architecture which is composed of 
hardware and software modules connected by transaction-level channels (TLM). ROSES 
refines the TLM channels, generating a bus functional model composed of the necessary 
software and hardware wrappers. We integrated ROSES with the MaxSim and FlexPerf 
environments to generate the integrated hardware and software simulation models. The 
automatic generation of virtual prototypes presented in this work is similar to that presented 
by (BELANOVIC et al., 2004), but they use COSSAP descriptions and do not provide 
software wrapper generation. 

The main motivation for the integration of ROSES with FlexPerf and MaxSim is to 
provide simulation models with support for generation and analysis of performance events. In 
Benini et al. (2005), a multiprocessor platform based on the ARM processor provides the 
performance analysis of processor cache and bus contention. The integration between ROSES 
and FlexPerf is more general and allows the designer to perform his own custom performance 
analysis. ROSES provides a tool named CosimX for generation of heterogeneous SystemC 
simulation models at the TLM or BFM abstraction levels. However, the trace library provided 
in SystemC only supports the tracing of signals or ports. The integration of ROSES and 
FlexPerf will allow generation of complex and customizable performance events. 

At bus functional level, the embedded software and operating system run on top of a 
processor simulation model. The CosimX tool supports the generation of a global simulation 
model, where communication and synchronization between the hardware simulator and the 
instruction-set simulator (ISS) are made via inter-process communication (IPC). The 
synchronization between the ISS and the SystemC hardware simulation is accomplished only 
when a communication is realized. In the simulation models generated for FlexPerf and 
MaxSim in this work, the hardware and processor simulators are synchronized cycle-by-cycle, 
similarly to (BENINI et al., 2005; WIEFERINK et al., 2004). This enables the use of 
synchronized breakpoints, thus facilitating debugging in multiprocessor system-on-chip 
designs. 
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3 ANALYTIC SOFTWARE PERFORMANCE ESTIMATION 

Currently, SoC designs include one or more processors resulting in an increase of 
embedded software. The presence of various architectures with different trade-offs concerning 
factors such as performance and power consumption allows a large design space exploration. 
Estimation tools for software components are necessary, at a high abstraction level, to 
determine which is the best processor, in terms of cost, performance, and power, to execute a 
given application. Analytical methods are proposed to overcome the high cost of obtaining the 
application execution time using emulation or cycle-accurate simulation. 

Performance estimation may be applied in two contexts: worst-case execution time 
(WCET) evaluation and design space exploration. In WCET evaluation (ENGBLOM; 
ERMEDAHL; STAPPERT, 2001), one of the main requirements is to guarantee that there 
will be no underestimation of the execution time of a given application task, since this could 
cause deleterious effects when using the estimation in the schedulability analysis. 

The goal of software performance estimation for design space exploration is to obtain an 
approximation of the software execution time for a given architecture (GIUSTO et. al, 2001; 
BONTEMPI; KRUIJTZER, 2002). In this case, as in WCET calculation, precision is also 
required, although both underestimations and overestimations may be tolerated. In this case, 
techniques use application profiling, which extracts instructions executed by the application. 
An analytical or statistical model thus maps the executed instructions to the number of cycles, 
resulting in low estimation costs.  

High-level performance estimation is an interesting alternative, since it may combine low 
costs for obtaining the performance data with acceptable precision. This allows fast evaluation 
of different architectural alternatives in the early phases of the design cycle. The main 
problem in developing an estimation tool is obtaining an accurate performance model that 
considers advanced architectural features such as pipelines, caches, and branch predictors. 

At the functional level, different HW/SW partitions and assignments have to be explored. 
Software estimation enables rapid processor selection and helps HW/SW partitioning by 
estimating the SW partition cost. This first estimation is useful in the architecture exploration 
step (see Figure 3.1). 
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Figure 3.1- Performance estimation tool in a global design flow 

This chapter is divided as follows. Section 3.1 presents the neural network based 
performance estimation. Section 3.2 presents the experimental set, and Section 3.3 exposes 
the experiments and results. Section 3.4 presents a method to classify the application in 
domains resulting in more accurate results. Finally, Section 3.5 concludes this chapter. 

3.1 Neural Network Performance Estimation 

In the design of embedded systems, design space exploration can be performed to figure 
out a solution that satisfies the application requirements, for instance by changing 
architectural choices and task partitioning. Subsequently, the synthesis process generates the 
final solution composed of software (operating system, application tasks, drivers), hardware 
(processors, dedicated IP hardware), and the communication structure. An estimation process 
can be continuously applied to verify the proposed solution with regard to system 
requirements.  

In embedded software estimation, the use of advanced processors requires accurate and 
fast estimation tools that consider the performance impact of advanced features, such as 
caches, branch prediction, and pipelines.  

The exact number of cycles required by an application may be obtained using emulation or 
cycle-accurate simulation. These techniques, however, have an inherent high cost either for 
the development of the simulation or emulation setting. Table 3.1 presents the simulation and 
estimation times for 2 different processors, using our proposed method. An x86-based 
machine (Athlon XP 1500) was used to execute the simulation and estimation tools. A speed-
up between 5 and 357 times was achieved compared to cycle-accurate simulation. The 
estimation time corresponds to the dynamic instruction count and the neural network 
utilization. The dynamic instruction count uses instruction-accurate simulators to obtain the 
executed instructions, and its cost is proportional to the application size. An instruction-
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accurate simulator is faster than a cycle-accurate simulator, since it does not simulate the 
pipeline and microarchitecture details. Neural network utilization takes only 0.026 seconds 
with the advantage that its cost is always constant and independent of the application size. 

Table 3.1- Comparison between the cycle-accurate simulation and the proposed estimation 
method 

 PowerPC FemtoJava 

Benchmark Cycle-accurate 

(sec) 

Estimation 

(sec) 

Speed-up Cycle-accurate 

(sec) 

Estimation 

(sec) 

Speed-up 

Quicksort 0.183 0.036 5 5.600 0.266 21 

Matrix 
multiply 25.485 0.134 190 1929.030 5.396 357 

Matrix sum 14.904 0.093 160 1300.290 4.676 278 

 

Neural networks have been chosen for performance estimation, since they can generalize 
their behavior even when the process to be modeled is highly non-linear. In this work, a feed-
forward error back-propagation network was used (FREEMAN, 1992), due to its simplicity 
and adaptation to the non-linear behavior of software performance estimation. Our network is 
composed of an input layer, a hidden layer, and an output layer. Each layer may have a 
different number of neurons, and each neuron has a transfer function.  

In our case, the input layer has the same number of neurons as instruction types. For the 
hidden layer, we try to use as few hidden-layer units as possible, because each unit adds a 
load to the CPU during training and utilization. In our tests, we started the training using in 
the hidden layer the same number of neurons as in the input layer. Tests showed that the 
increase of the number of neurons accelerates the training time, but this results in a loss of 
generalization capability or even does not increase the accuracy. 

Figure 3.2 presents the two main steps of our estimation method: training and utilization. 
In the training phase, a set of samples is presented to the network. In this phase, the inputs are 
the number of executed instructions for each instruction type (like branches, integer 
arithmetic, floating point, memory, etc.), while the expected result is the number of cycles 
consumed by the embedded application. A cycle-accurate simulator is required to extract the 
number of executed instructions and the cycles consumed by application execution. For each 
different processor, we have selected a small number of instruction classes that are 
sufficiently representative of the timing behavior of all instruction types. For better precision, 
we have also extracted the number of backward and forward branches. All these numbers that 
relate to instruction count and architectural features could also be obtained statically, by 
methods already introduced in previous works (ENGBLOM et al., 2001; LI; MALIK, 1995; 
COLIN; PUAT, 2000). 
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Figure 3.2- Estimation tool development and utilization 

Figure 3.3 shows the training phase in detail. In step 1, a cycle-accurate simulator is used 
and the executed instructions are classified (step 2). In fact, the instruction classification is 
already performed during the simulation run, thus adding a small overhead to the cycle-
accurate simulation. At steps 3 and 4, an iterative learning process, based on the back-
propagation algorithm, modifies the weights of the input and output arcs of neurons in each 
layer, so the network presents an output that is as close as possible to the expected result. The 
training phase is realized using Matlab (2007).  
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Figure 3.3- Steps in the training phase of the estimator 
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After the training phase, the estimator tool is ready to be used in various designs. Figure 
3.4 presents the main steps in the utilization phase. An application is compiled for a given 
target processor, and the number of executed instructions of each type is obtained using a 
dynamic instruction count. The classified instructions are presented to the neural network so 
that it can estimate the number of cycles consumed by the application. 
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Figure 3.4- Estimator utilization phase 

 

Figure 3.5(a) presents the neural network used to estimate the cycles for the PowerPC 
processor, where the inputs are the number of instructions of different types. It is composed of 
an input layer, a hidden layer with 4 neurons containing a tansig transfer function, and an 
output layer with one neuron containing a linear transfer function. These transfer functions 
are available in the Matlab Neural Network Toolbox (MATLAB, 2007). This choice is related 
to the nonlinearity necessary for the estimation process and has been taken after experiments 
with different configurations. This neural network configuration resulted in an estimator with 
best precision.  
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(a) Neural network (b) Tansig transfer function (c) Linear transfer function 

Figure 3.5- The neural network and the transfer functions used in its hidden layer and output 
layer 

The training time may be long, depending on the inputs and complexity of the 
generalization. However, once the network is trained, the cost of its utilization is low; this 
cost is due to the dynamic instruction count of the application in addition to the neural 
network cost, which only requires multiplication of the inputs by the weights of the neurons. 
The dynamic instruction count consumes most of the utilization phase time. For example, in 
the Matrix multiplication the cycle-accurate simulation takes 25.438 seconds and the dynamic 
instruction count takes 0.134 seconds; as shown in Table 3.1, neural network execution is fast 
and only takes 0.026 seconds. This fast performance estimation enables a design space 
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exploration that would be difficult to accomplish if a cycle-accurate simulator were used, due 
to the time that it takes to evaluate each new software design. Also, the instruction count can 
be statically obtained using the methods described in (LI; MALIK, 1995; WOLF; ERNST, 
2000). 

For each target processor, a different estimator is created. This performance estimation 
method is adapted for design space exploration in the software domain, for instance by 
considering various algorithmic alternatives and various ways of partitioning tasks among 
processors, since architectural modifications in the processors would require a new training 
process, and thus a long turnaround time. 

3.2 Experimental Set 

A set of 32 benchmarks (STAPPERT, 2004), listed in Table 3.2, was used for training and 
testing. Some benchmarks were executed with different input data resulting in a total of 40 
samples. This set contained both control-dominated and data-dominated applications. The 
training process was performed with a mix of applications, and satisfactory estimations were 
obtained for applications from both domains, thus proving the robustness of the estimator. 

Table 3.2- Benchmarks used in experiments 
Sort and 
Search 

Quicksort, bubble sort, selection sort, 
sequential search, binary search  

Numerical Matrix multiplication, matrix inversion, 
matrix sum, matrix count, root computation, 
square root computation, LU decomposition, 
statistics (mean, variance, standard 
deviation), Fibonacci calculation, complex 
number arithmetic operations 

Data 
Processing 

FFT, FIR, data compress, DES 
cryptography, ADPCM (Adaptive 
Differential Pulse Code Modulation), DCT 
(Discrete Cosine Transform), CRC (Cyclic 
Redundancy Check), LMS (least-mean 
square) algorithm 

Synthetic 6 synthetic algorithms 

Statecharts Code automatically generated from 
Statechart descriptions 

 

Figure 3.6 presents the cycle and instruction counts of the benchmarks, considering the 
PowerPC 750 as the target processor. Benchmarks in the x-axis are ordered by increasing 
cycle counts. The y-axis is represented in logarithmic scale, which is appropriate for the wide 
range of applications used to train and test the estimator. The instruction count thus varies 
from 228 for short code (e.g., device drivers or operating system functions) to 14x106 for 
huge applications. 
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Figure 3.6- Cycle and instruction count distribution 

3.3 Generic Estimator 

This section presents the results of the neural network (NN) application with three 
different architectures: PowerPC, FemtoJava, and Athlon. 

3.3.1 PowerPC Generic Estimator 
The PowerPC 750 processor was used to evaluate the proposed estimation method. It is a 

RISC superscalar processor that may complete up to 2 instructions per cycle and contains 6 
functional units: a floating-point unit, a branch unit, a system register unit, a load/store unit, 
and two integer units. A cycle-accurate PowerPC simulator (MICROLIB, 2007) was used to 
profile each benchmark and to obtain the exact number of cycles consumed by each 
application. Additionally, the simulator also delivers the number of misses in the data and 
instruction caches as well as the number of misses in the branch prediction. 

In the first phase, a generic estimator was trained using benchmarks 1 to 10 and 30 to 39. 
They represent a mix of data-dominated and control-dominated applications that have very 
different sizes, as seen in Figure 3.6. The remaining 21 benchmarks were used to test 
estimation precision. Benchmarks 40 and 41 are executions of a Crane application with 
different execution times for the main loop of the control algorithm (MOSER; NEBEL, 1999). 

In order to build a first neural network estimator, instructions have been classified into 
four classes: branches, integer, floating point, and load/store. Table 3.3 presents the results 
obtained from the experiments and the mean estimation error, standard deviation, maximum 
underestimation, and maximum overestimation errors. For the neural network, using only four 
instruction classes, the maximum overestimation is 41.01%, and the maximum 
underestimation is 20.69%. In the experiments using four instruction classes and considering 
the training set only, the mean error obtained was 4.81% and the standard deviation was 
7.07%. Considering the test set only, we obtained a mean error of 13.30% and a standard 
deviation of 11.83%. The largest estimation error was obtained with benchmark expint 
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(41.01%). It is a synthetic benchmark, developed to stress the control features of the 
processor, and is not related to real applications. Disregarding this benchmark, the mean error 
and standard deviation for the test set are reduced to 12.46% and 10.90%, respectively. 

Since the PowerPC has a branch predictor, two new inputs were included in the neural 
network: the number of forward and backward branches. Backward branches are usually 
observed in loops and increase the effectiveness of the branch predictor. These counts can be 
easily obtained in the application profiling. Figure 3.7 presents the neural network used to 
estimate the cycles, where the inputs are the number of instructions classified into five types 
(forward branch, backward branch, load/store, integer, and float). This network is composed 
of an input layer, a hidden layer with 5 neurons containing a tansig transfer function, and an 
output layer with one neuron containing a linear transfer function. The time needed to train 
this neural network was about 5 hours, on a PC workstation (Athlon XP1500). 

Input
Layer

Hidden
Layer

Output
Layer

Forward Branches

Backward Branches

Load/Store

Integer

Floats

Cycles

 

Figure 3.7- NN for the PowerPC experiments 
 

Using the information about backward and forward branches results in an improvement of 
estimation accuracy, thus reducing the mean error from 9.26% to 7.90%, as shown in the last 
column of Table 4.3. Figure 3.8 presents the estimation error for each benchmark. The 
benchmarks are ordered on the x-axis according to the size of the application in number of 
cycles. 

Table 3.3- Estimation results for the 41-benchmark set 
 Branch, 

load/store, 

integer, float 

Backward branch, 

forward branch, 

load/store, integer, float 

Mean error 9.26% 7.90% 

Standard deviation 10.64% 9.11% 

Max overestimation 41.01% 33% 

Max underestimation -20.69% -31% 
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The experiments using the backward and forward branches with five instruction classes 
resulted in a mean error of 3.15% and a standard deviation of 4.22% for the training set, and a 
mean error of 12.23% and a standard deviation of 10.23% for the test set. 

 
Figure 3.8- Prediction errors using 5 input parameters: backward branch, forward branch, 

load/store, integer, and floating-point 

The error range varies from –31% to +33%. Larger errors were reported for benchmarks 
18 and 27. Benchmark 18 is the synthetic benchmark expint, with complex and artificial 
control characteristics. This results in poor branch prediction and thus in a large 
underestimation, since the estimator had been trained with a set of more realistic benchmarks. 
Benchmark 27 is a bubble sort with a very small input vector to be sorted, and this is highly 
favorable for the data cache, and it renders a large overestimation in this case. Considering the 
results without these 2 benchmarks, the error varies from –26% to 25%, with a mean error of 
6.50% and a standard deviation of 7.36%. These values were calculated using only the test set 
benchmarks. 

For the crane application, the estimation error changed from +37.9% to –25.4%. The main 
control loop of this application is executed only a few times. When a 10-fold increase in the 
execution count of this loop is implemented, thus minimizing the influence of the 
initialization phase of the application, the estimation error is reduced to only 9%. This result 
was expected, since a better estimation can be obtained when the influence of the branch 
predictor on the execution time is higher. 

To evaluate the influence of the training set, we interchanged 50% of the benchmarks in 
the training set with the test set. The mean error obtained is near to the original benchmark set 
(mean is 8.23% and standard deviation is 10.36%), demonstrating the flexibility of the neural 
network (NN) estimator in front of different benchmark sets. 

Using the same set of training benchmarks and applying linear regression, as proposed by 
Giusto et al. (2001), one obtains a mean error of 34% with a standard deviation of 33%. In 
this case, the maximum absolute error is 106%. This comparison shows the advantage of 
using neural networks, especially when applied to advanced architectures, since they can cope 
with the nonlinear impact of different features like cache, branch prediction and deep 
pipelines. 
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We also applied the training method based on the LOO (leave-one-out) technique used by 
Bontempi et al. (2002), to evaluate the estimator for a same application under different 
workloads. In this technique, N-1 runs of the same application with different input data are 
used for training, and one sample is left to evaluate the estimation accuracy, thus creating an 
application-specific estimator. Table 4 presents the results obtained for the Quicksort and 
Matrix Multiply algorithms running with 15 different data inputs. The results show that the 
neural network can highly adapt to estimate the performance of one application in front of 
new data, resulting in very small prediction errors. 

 

Table 3.4- Estimation performance using the LOO (leave-one-out) training technique 
Benchmark Mean error 

(%) 
Std deviation 

(%) 
Max error 

(%) 

Qsort 0.08 0.16 7.18 

Matrix multiply 0.12 0.19 7.63 

3.3.2 FemtoJava- a Java Microcontroller 
FemtoJava (ITO; CARRO; JACOBI, 2001) is a stack microcontroller with a Harvard 

architecture and Java bytecode execution capability. It has a very simple architecture without 
a pipeline, branch prediction, or cache. These characteristics make the performance estimation 
easier, since each instruction type always consumes the same number of cycles. A cycle-
accurate simulator (BECK et al., 2003) was used to provide information about the executed 
instructions and cycle count. For the neural network training, the instructions were divided 
into four classes; each one requires a constant number of cycles. 

In the utilization phase, where a dynamic instruction count is needed, a Java Virtual 
Machine with trace capabilities (Java, 2007) was used. It allows the execution of the Java 
application in the host machine, in order to obtain the number of executed instructions of the 
various classes. 

Figure 3.9 presents the errors obtained using a training set with 5 selected benchmarks (1, 
2, 11, 12, and 13). We tested different sets of benchmarks and obtained the same error ranges. 
As expected, errors below 0.001% were achieved due to the simple architecture of the target 
processor.  

 

Figure 3.9- Prediction errors for the FemtoJava microcontroller 
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In the experiments, the best results were obtained when linear transfer functions were used 
in each neuron. This result shows that simple architectures can be described precisely with 
linear functions, but our method can easily cope with this situation because of the flexibility 
of the neural network. Applying the linear regression approach, as proposed by Giusto et al. 
(2001), also gives error ranges below 0.1%.  

Table 5 presents the estimation time compared to the cycle-accurate simulation time. The 
estimation time includes both the dynamic instruction count and the classification.  

Table 3.5-  Estimation speed-up for the FemtoJava processor 
Benchmark Cycle-accurate 

simulation (sec) 
Estimation (sec) Speed-up 

Quicksort 5.60 0.266 21

Matrix multiply 1929.03 5.396 357

Matrix sum 1300.29 4.676 278

3.3.3 Athlon XP Generic Estimator 
In the practical experiments using the Athlon processor, we used only 27 of the 

benchmarks in the entire set of samples, due to the long simulation time and problems with 
the profile tool. In the first phase, a generic estimator was trained using 16 benchmarks. The 
remaining 11 benchmarks were used to test the estimation precision. In order to build a first 
neural network estimator, instructions were classified into five classes: branches, integer, 
floating point, system, and move. The neural network used in these experiments is composed 
of an input layer and a hidden layer (each with 5 neurons) as well as an output layer (with one 
neuron). The input layer uses a purelin transfer function, while the hidden layer uses a tansig 
transfer function. The output layer also uses a purelin transfer function. The time needed to 
train this neural network was about one hour, on a PC workstation (Athlon XP1500). 

Table 3.6 shows the results of the experiments in terms of mean estimation error, standard 
deviation, maximum underestimation, and maximum overestimation errors. The mean error 
for the training set itself was near 0, as expected, while a mean error of 32.33% and a standard 
deviation of 22.60% were obtained for the estimation of benchmarks from the test set.  

Table 3.6- Results with a generic estimator for the Athlon XP 
 Test and training set Test set only 

Mean error 13.17% 32.33% 

Standard deviation 21.41% 22.60% 

Max overestimation 51.15% 51.15% 

Max 
underestimation 

-65.46% -65.56% 

 

These less accurate results (compared to PowerPC and FemtoJava) are due to the irregular 
instruction set and deep pipeline. Using the same set of training benchmarks and applying 
linear regression, as proposed in (GIUSTO et al., 2001), one obtains a mean error of 49% with 
a standard deviation of 42%, and a maximum absolute error of 179%. 

The high estimation errors obtained with the Athon XP processor suggests the utilization 
of more inputs or different instruction classification in the neural network. For instance, a mov 
instruction may consume very different execution cycles, depending on the addressing mode 
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used in the operators (immediate, direct, and indirect). In this case, a sub-classification of mov 
instructions can result in a more accurate estimation. 

3.4 Automatic Domain Classification 

In order to improve accuracy, topological information is used to classify the applications 
and apply domain-specific estimators. We noted that the quality of the prediction was tightly 
linked to the training set. Indeed, when training set was mostly formed of dataflow 
benchmarks, the prediction error for a control-dominated application was large. When 
considering how to further improve the prediction process, the key issue was how to select the 
correct training set for a certain domain in an automatic way. 

The use of static metrics to characterize the application in a given domain was suggested 
in other works. Sciuto et al. (2002) propose a static method to characterize the application 
using data-oriented metrics, structural metrics, DSP-oriented metrics, and ASIC-like oriented 
metrics. The goal is to define the application affinity degree for a given processing element 
(e.g., a general purpose processor, a DSP processor, or an ASIC implementation) using these 
metrics.  

In our work we used a method based on the application control flow graph (CFG). This 
topological information is used to classify the applications and to improve the accuracy of 
estimations.  

The classification uses a CFG weight calculation method, based on the number of arcs 
connecting a given basic block. If a basic block has 2 output arcs, these arcs are assigned a 
weight of 2, reflecting the cost, in processor performance, of a control statement. The CFG 
weight is calculated by equation 4.1 and illustrated in Figure 3.10. 

 

_
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In this way, control-dominated applications will have a higher weight value than dataflow 
applications. The proposed classification method is fast and can be statically implemented 
without manual intervention. 

2
2

1

1

1

1

1

CFG_weight = = 1.8
                        5

 9 

1

22

1 1

1

CFG_weight = = 2
                  4 

 8 

 
Figure 3.10- CFG weight method 
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The key idea is that the processor features (e.g., cache, branch prediction) react differently 
depending on the application domain (control or dataflow), influencing the overall 
performance. Consequently, the selection and utilization of the most suitable neural network 
can be implemented without user knowledge. An adapted version of the GNU compiler gcc 
(GCC Compiler, 2007) was used to dump a file with information concerning the control flow 
graph (CFG). 

3.4.1 PowerPC 750 Domain-specific Estimator 
The CFG weight criterion has been used to classify the original benchmark set into two 

domains, as shown in the Figure 3.11. In domain CF, we have placed applications with high 
CFG weight and, consequently, with strong control-flow characteristics. Domain DF is 
composed of applications with low CFG weight, hence presenting dataflow characteristics. A 
threshold of 1.95 was used to classify the benchmarks; this threshold was defined based on 
the previous analysis of the benchmark set. The resulting domains are coherent with a 
classification performed manually, based on the designer’s knowledge. From the original 
benchmark set, domain CF is composed of 20 applications, and domain DF of 21 applications. 
From domain CF, we only kept 16 benchmarks, and removed 4 benchmarks (with floating-
point instructions) that represent a small set and could be detrimental to neural network 
generalization. To overcome this restriction, more benchmarks with floating-point instructions 
should be used, thus improving neural network precision. The domain DF is composed of 10 
benchmarks with floating-point instructions, enough for the neural network training. 
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Figure 3.11- Estimation process with automatic domain classification  

 

Table 3.7 shows the results obtained with the domain-specific estimators. As one can see, 
their use results in good performance prediction compared to generic estimators. In the DF 
(dataflow) domain, the mean error decreases from 7.90% in the generic estimator to 6.41% in 
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the domain-specific estimator. The error range is also smaller for the domain-specific 
estimator; it varies from –32.41% to 25.87%. 

In the CF (control flow) domain, the mean error is close to that obtained with the generic 
estimator. We notice that the benchmark with the largest error (49%) is expint. This is a 
synthetic benchmark specifically developed to stress control flow features, and it is not related 
to real applications. If we do not consider the expint, the error range varies from –17.81% to 
24.96%, resulting in a mean error of 4.63% and a standard deviation of 3.56% for the test set. 

We also analyzed performance prediction using a cross-test. That is, we utilized the CF 
domain estimator with the DF domain benchmarks, and vice versa. As one can observe in 
Table 3.7, the use of domain-specific estimators, for applications from an unrelated domain, 
results in much poorer estimation. This shows the validity of our classification method. 

 

Table 3.7- Estimation results using domain-specific estimators 
 CF domain DF domain Cross-test  

 (CF vs. DF)

Cross-test  

(DF vs. CF) 

Mean 7.62% 6.41% 17.65% 55.12% 

Std deviation 12.46% 9.45% 12.39% 38.25% 

Max overestimation 24.96% 25.87% 42.34% 163.78% 

Max underestimation -49.37% -32.41% -28.49% -95.70% 

3.4.2 Athlon XP Domain-specific Estimator 
The CFG weight criterion has been used to classify the original benchmark set, composed 

of 27 applications, into two domains. In the original benchmark set, the CF (control-flow) 
domain is composed of 15 applications and the DF (dataflow) domain is made up of 12 
applications. From the former, we kept 14 benchmarks and removed one benchmark with 
floating point instructions. 

Table 3.8 shows the results obtained with the domain-specific estimators. In domain CF, 
the mean error decreases to 9.9% and the error range varies from 6.44% to -53.82%. 

In domain DF (dataflow), the mean error decreases from 13.17%, in the generic estimator, 
to 6.26%, in the domain-specific estimator. This estimator also yielded a decrease in the error 
range, which varies here from –29.69% to 26.47%. 

 

Table 3.8- Estimation results using domain-specific estimators for an AthlonXP processor 
 Domain CF Domain DF 

Mean 9.9% 6.26%

Std deviation 17.34% 10.86%

Max overestimation 6.44% 26.47%

Max 
underestimation 

-53.82% -29.69%

 



 

 128

The prediction results for domain CF in the Athlon XP are not as good as those obtained 
for the PowerPC processor. Indeed, the architecture of the Athlon processor is more complex, 
resulting in an increase of the prediction error. 

Figure 3.12 summarizes the results for the generic estimator and domain-specific 
estimators, for the PowerPC, Athlon XP, and ADSP processors. They represent three distinct 
architectures. The first has a RISC architecture, while the second has a CISC architecture 
composed of nine functional units and other advanced features. The ADSP 218x is a digital 
signal processor from Analog Devices (ANALOG, 2007). The 218x family shares the same 
architectural base that is optimized for digital signal processing. It has three functional units 
(ALU, MAC, and shifter unit) that can operate in parallel. The ADSP is a CISC processor, but 
the execution cycles of each instruction does not vary much as the Athlon XP, thus increasing 
the performance estimation accuracy.  

In all cases, applying the automatic classification method and generating domain-specific 
estimators yields gains in estimation precision.  
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Figure 3.12- Comparison between generic and domain-specific estimators for 3 different 
architectures (Athlon XP, PowerPC, and ADSP) 

In general, we obtained the smallest errors in the DF domain, where we have applications 
with dataflow characteristics. In this type of application, the different processor components 
achieve the maximum performance (high hit rates in the cache and branch prediction), 
resulting in a more “predictable” system. On the other hand, the same reductions in error 
range cannot be obtained for the CF domain, which is composed of control flow applications. 
Clearly, for the Athlon XP, the error ranges suggest that other parameters are needed to obtain 
acceptable results with a neural network estimator. 

3.5 Conclusions  

This work aims at showing the applicability of neural networks use to improve embedded 
software performance estimation. Our results are more accurate than those previously 
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obtained with linear methods, even when using a more complex architecture. Bontempi and 
Kruijtzer (BONTEMPI; KRUIJTZER, 2002) report a mean error of 8.8% in the estimations 
using non-linear estimation methods, for a set of 6 benchmarks, each one executed with 15 
different input data sets. They do not report, however, the size of the training and of the test 
sets. In our case, with a benchmark set composed of 41 benchmarks, we obtained a mean error 
of 7.90%. Although the direct comparison of the two works cannot be made due to different 
benchmarks and architectures used in the experiments, the NN estimator obtained similar 
results even using a more heterogeneous benchmark set. 

Ipek (IPEK et al., 2006) also show another application of neural networks for software 
performance estimation. Differently from our work, they use the neural network to estimate 
application performance under different architecture configurations (e.g. cache size, cache 
line size, bus width, etc). The neural network inputs are the architectural parameters and the 
output is the number of cycles per instruction (CPI). 

The rapid and precise performance estimation enables selection of the processor in the 
architecture exploration phase. Even though the training time is long, neural network 
utilization is fast. The method requires getting an instruction count, which can be obtained 
using profiling or static methods. In this work, the dynamic instruction count was used. 
Results obtained attest that the dynamic instruction count is much faster than cycle-accurate 
simulation. 

In our experiments, 41 benchmarks and real applications from different domains (such as 
filters, matrix manipulations, sorting algorithms, and an embedded crane control) were used. 
The PowerPC 750 processor with advanced features (cache, superscalar pipelines, and branch 
prediction) was used to evaluate predictor precision, and a mean error of 7.90% was obtained. 

The control flow graph (CFG) information has been used to classify applications and 
create domain-specific estimators, increasing estimation accuracy. An adapted version of the 
GNU-gcc compiler was developed to statically provide the topological information, allowing 
classification without user intervention. This new method results in a decrease of mean and 
maximum errors. 
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4  PERFORMANCE ESTIMATION AND ANALYSIS USING AN 
INTEGRATED HARDWARE AND SOFTWARE 
SIMULATION MODEL 

Multiprocessor System-on-Chip (MPSoC) designs require estimation tools to jointly 
evaluate hardware and software performance. In a recent study with embedded software 
designers about development challenges and issues, Krauzer (2007) reports that 31% of 
designs failed to meet performance expectations, missing performance targets by 50% or 
more. The first cause indicated by designers was a limited vision of the global system. The 
second was the limited availability of tracing support. Early design estimation tools are 
necessary to detect problems as soon as possible in order to avoid or correct design failures. 

Traditionally, the mapping between the architecture and application is made in a late stage 
of the design flow, when a hardware prototype is available. For this reason, a design flow 
based on the existence of an RTL model can yield unacceptable delays.  

The rising complexity of software and architectures makes the implementation of precise 
performance tools harder. Electronic System-Level (ESL) methodologies have been 
developed to handle increasing design complexity. The key idea is to start design at an 
abstract level – that is, higher than RTL – to concurrently develop hardware and software. 
This chapter proposes the use of virtual prototypes for performance analysis at BFM level 
(Figure 4.1), providing a simulation model of the architecture before the RTL design. 
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Figure 4.1- Performance estimation tools in MPSoC design 
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Platform-based design (KEUTZER et al., 2000) proposes the use of a fixed platform in 
order to decrease complexity in the mapping step. With a fixed platform, a set of predefined 
estimations may be available, making the estimation process more precise. 

Component-based design (CESARIO et al., 2002) proposes that system development 
proceed from a set of predefined HW and SW components. This is a flexible solution, since 
the architectural solution can be composed of components from several IP vendors. 
Component-based design must include an environment to integrate these different 
components and, consequently, to perform interface design. 

Performance estimation may be applied at different abstraction levels in the design. The 
first step is the system specification – where the application is described in a functional way – 
that does not explicitly describe the hardware and software components. SystemC (2007) and 
SpecC (2007) are examples of specification languages proposed to deal with the problem of 
concurrently describing HW and SW. 

Estimation performance tools at specification level help the designer determine the 
partitioning between hardware and software. The increasing importance of the software part 
and the multiplicity of available options in terms of processor architectures call for tools to 
help the designer select the most suitable processor. 

After the HW/SW partitioning, the “golden” virtual architecture model is created, as 
shown in Figure 4.2(b). This model is composed of functional components, using transaction-
level channels to model the communication. It validates the software and the communication 
API for system components. The estimation tools can provide information for HW/SW 
interface design, determining how the TLM channels will be implemented in the architecture. 
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Figure 4.2- SoC design flow 
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In order to deal with virtual architecture level performance estimation, certain solutions 
have been developed by the TIMA group. Bouchhima (2005) provides an abstract CPU model 
that runs the software natively and integrates the hardware components using TLM channels. 

The abstract CPU model provides a hardware abstraction layer (Figure 4.3), in such a way 
that the API calls can be included in the SW code.  The CPU abstract model is made up of 
three main components: the Execution Unit, the Access Unit, and the Data Unit. One or more 
processing units (PU) form the Execution Unit and are modeled as SystemC threads 
(SC_THREADS). The Access Unit provides address resolution and synchronization with the 
memory. The Data Unit models the peripheral access and interrupts. In order to generate 
interrupts for the software processes (SystemC modules), the Data Unit uses the notify call 
available in SystemC. 
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Figure 4.3- Performance estimation using CPU abstract models (adapted from Bouchhima 
(2005)) 

The abstract CPU model does not execute the real operating system code, but simulates 
task serialization (scheduling) and address resolution. This is possible thanks to the Access 
Unit, which controls memory access conflicts and simulates communication delays.  

Software performance is modeled using the traditional annotation method in the code. For 
each basic block, a delay statement is placed with the number of cycles spent in the execution. 
The abstract CPU model provides an MPSoC simulation model, where the software is 
implemented using the target API. Because of the interface with the rest of the system, other 
hardware components may be used and simulated in an integrated way. 

The TLM channels from the virtual architecture have to be refined to obtain the bus 
functional model (BFM), as shown in Figure 4.2(c). An operating system implements the 
software communication API. Hardware wrappers adapt the interface between the processor 
and intellectual property (IP) components in the interconnection structure.  

The BFM model is quite different from the RTL model, therefore a SoC integration step is 
necessary. SoC integration generates software mapping customized for a given memory 
organization. In each step of the MPSoC design, performance estimation tools verify if the 
design conforms to the system requirements and, at the same time, provide the information 
needed for the next design steps, as shown in Figure 4.1. 
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This chapter presents two simulation-based MPSoC performance estimation tools 
(FlexPerf and MaxSim) for performance analysis at BFM level. These tools are integrated in 
an MPSoC design tool called ROSES, providing a global performance estimation solution. In 
order to validate the BFM architecture, the ROSES environment already generates a SystemC 
simulation model. However, this simulation model does not allow a synchronized cycle-by-
cycle execution of hardware and software components. Also, this model provides limited 
performance analysis resources, present in the SystemC library, such as signal tracing. The 
main motivation for integrating the FlexPerf and MaxSim environments to ROSES is to 
provide an extensible performance analysis environment, enabling the performance analysis 
of MPSoC architectures. 

The outline of this chapter is as follows. Section 4.1 describes the FlexPerf environment. 
Its integration in the ROSES environment is presented in Section 4.2. Section 4.3 presents the 
MaxSim electronic virtual prototype simulation environment, and Section 4.4 describes its 
integration with ROSES. Finally, Section 4.5 concludes the chapter. 

 

4.1 FlexPerf 

FlexPerf (PAOLI; SANTANA; GALIX, 2004) is a framework for system performance 
analysis based on the analysis of performance events. FlexPerf is composed of two parts: the 
instrumentation part, integrated in the simulator, and the profiling part. The designer has 
access to a pool of off-the-shelf profiling analysis algorithms that can be extended with 
custom analysis modules. The simulator instrumentation is explicit, so precision depends on 
the simulator and the instrumentation level. 

FlexPerf is organized in three layers of oriented-object software. The first layer is the 
framework, a collection of objects used to describe all of the SoC resources. This layer is 
based on a root library “FWlib” and provides mechanisms facilitating object persistency and 
manipulation, such as object serialization/de-serialization. 

The second layer, the analysis layer, is a collection of profiling algorithms. Algorithms 
depend on the framework, but they do not have any dependency from a given simulator. 
Consequently, if a simulator is instrumented to generate events using the framework format, a 
pool of profiling algorithms is available to be used.  

The third layer is the configuration layer. It contains all configuration resources for 
customization of the framework, including a graphical user interface (GUI). In the graphical 
user interface, shown in Figure 4.4, the information manipulated by FlexPerf is hierarchically 
classified in three levels corresponding to the system architecture view, the application view, 
and the analysis view. The GUI supports multiple system instances corresponding to different 
systems, or different versions, simultaneously. The application view also supports multiple 
instances of an application description. A session corresponds to a given simulation instance 
of a system using a specific application and input data set. Performance analyses are realized 
on the data collected during the simulation session. 

The extensibility and modularity of the framework allows the customization of 
performance analysis resources to user requirements. It includes the creation of new objects, 
needed for system description, by inheritance of existing ones.  
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Figure 4.4- FlexPerf graphical user interface (PAOLI; SANTANA; GALIX, 2004) 

Figure 4.5 presents the four main FlexPerf components: the ProcDesc agent responsible 
for reading the system architecture view; the ApplDesc agent, which generates the application 
view; the instrumented simulator; and the data analysis agent modules. These four 
components, called FlexPerf agents, are integrated in the FlexPerf GUI, but can be used as 
stand-alone applications. 
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Figure 4.5- FlexPerf framework components 
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4.1.1 System Architecture View 
The system architecture view describes all traceable resources of the system. FlexPerf 

already contains classes to describe processor pipelines, registers, and memories. For instance, 
an identifier, a name, and a size, define a register view. As another example, an identifier, a 
name, a width, a depth, and a minimum-addressable-unit, define a memory component. These 
classes can be extended to describe user-defined components. 

The simulator uses the system description as a database in the performance event 
generation. In the system description, each element has a unique identifier and signals in 
which component the event took place. 

The system description is stored in an XML format and can be read or generated at run-
time using an API included in the FlexPerf framework. The FlexPerf GUI launches the 
processor description agent that generates or reads the system description from an XML file.  

4.1.2 Application View 
The application view represents the software executing on the processor. A collection of 

objects supports the representation of program source files, variables, function and program 
blocks, as well as program instructions. 

A FlexPerf agent is responsible for reading the application in ELF (Executable and 
Linkable Format) and for generating the application view within the FlexPerf GUI. The 
application information is extracted using the debug-related data structure provided in ELF 
format. The software analysis module uses this application information to produce structured 
application views such as the function call tree. 

4.1.3 Analysis View 
The analysis agent implements the performance analysis algorithms based on the 

information generated from the simulation execution. In FlexPerf, a set of analysis agents for 
processor performance analysis is available and can be extended by the user. FlexPerf 
provides a set of off-the-shelf analysis algorithms falling into the following categories 
(PAOLI; SANTANA, GALIX; 2004): 

• Hardware resource oriented analyses: access counters (register and memory 
components); sequence of accesses (read/write) and derived analysis such as data-
life duration and event to event latency; instruction sequence extraction. 

• Processor instruction oriented analyses: instruction-set usage; NOP rate; branch 
analysis providing the number of taken, untaken, taken forward, and taken 
backward branches; parallelism degree (number of instructions executed in 
parallel). 

• Processor micro-oriented analyses: a pipe usage viewer, which provides a time-
chart with the pipe behavior; the bubble rate related to unoccupied pipe stages; 
instructions per cycle. 

• Application-oriented analyses: the memory data life duration, memory usage, code 
coverage, sequence of application events, and function call tree. 

The results of these analyses are represented in the FlexPerf GUI visual elements such as 
pie charts, bar charts, tree charts, and array types. Third party viewers are used to display 
time-chart results. 
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4.1.4 Simulator Instrumentation 
FlexPerf has a well-established flow to generate a processor instrumented model described 

in LISA (see Figure 4.6). The LISA language (HOFFMANN et al., 2001) is used to describe 
processor architectures. The language syntax allows a high level of flexibility in the 
description of the instruction-set of various processors such as SIMD, MIMD, and VLIW-
type architectures.  

The LISA processor model is instrumented to generate the appropriate events for 
performance analysis. The complexity of instrumentation depends on model complexity and 
on the required analysis. For processor models, instrumentation includes the events describing 
pipe updates, register accesses, and memory accesses. Performance events use a base class 
called EventRoot. This class contains the base attributes to describe an event and also 
implements the methods to serialize and deserialize the objects used in event generation and 
analysis. The EventRoot class can be extended to produce particular information necessary for 
performance analysis. 

The MaxCore tool (ARM, 2007) is employed to generate the software development tool-
set, using the LISA description. The software suite includes a cycle-accurate simulation 
model, a source-level debugger, and a disassembler. MaxCore also generates packages used in 
the retargeting of third party C compilers. 

After simulator generation, the simulator is encapsulated in a FlexPerf agent. The FlexPerf 
agent implements the base methods to start the simulation and initializes the streams used to 
send the events to analysis modules. 
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Figure 4.6- Simulator instrumentation from LISA processor description 

Figure 4.7 presents an example of instrumentation of a SystemC FIFO hardware channel. 
For each access to the FIFO component, a performance event is generated. The unique 
identifier represents the component where the event is occurring. This identifier is obtained 
from the system architecture description. The other parameters are used by analysis agents to 
generate performance analysis results. 
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void fifo_out::empile_depile(){ 
.... 
     else { 
         if (CPIMCLK.read()==0 ){  
 if ((CPIen_n_data==0) && (FIFO_FULL==0)) { 
    tmptail = ((tail+1) % FIFO_depth); 
    fifo[ tail ] = CPIdata_bus.read(); 
    tail = tmptail;    
#ifdef FW_PROFILER  
 //Component type, Id, cycle, OpType 

EventDesc->recordFifoAccess(fw_Component_type, ProcDesc->fifo_outID, 
sc_simulation_time(), FIFO_IN); 

#endif   
    if ((tmptail == head) && (data_defifo==0))   
  FIFO_FULL = 1; 
    else  
  FIFO_EMPTY = 0; 
    }      
    else status_check(); 
                      
   
    if ((data_defifo==1) && (FIFO_EMPTY==0)){ 
      ..       ..  

Figure 4.7- FIFO channel instrumentation example 

4.2 ROSES and FlexPerf Integration 

The CosimX tool integrates ROSES and FlexPerf, as shown in Figure 4.8. CosimX is a 
tool for generating heterogeneous simulation models that can be composed of components 
and interfaces at different abstraction levels. CosimX takes the architecture description from 
the ROSES design meta-model representation called Colif (CESARIO et al., 2001) and 
generates the SystemC simulation model. CosimX considers that SystemC models of the 
hardware interfaces are available in a library of components. 

The main motivation for ROSES and FlexPerf integration is the capability to generate 
more detailed performance events and analysis than are offered by the standard SystemC trace 
library. The FlexPerf analysis modules are developed for processor-level performance 
analysis, and their flexibility allows extending the analysis to other system components such 
as communication resources and peripheral components. 

As presented in Figure 4.8, the integration is realized at bus functional level (BFM). At 
virtual architecture level, the software runs natively and a processor simulation model is not 
necessary. The SystemC model generated from CosimX adds the FlexPerf interface, enabling 
support of SystemC module instrumentation and performance event generation. 

The bus functional model is generated using ROSES tools for hardware and software 
interface refinement. At this level, software is compiled to the target processor and runs under 
an operating system. The SystemC simulation model generated by CosimX uses the 
instrumented processor simulator generated from a LISA description (see Figure 4.6), 
resulting in a cycle-accurate model. This integration adds all the software performance 
analysis capabilities available in FlexPerf to the SystemC simulation. The integration is 
realized in two parts: 

a) A SystemC wrapper is manually implemented, encapsulating the simulator 
generated from the LISA language. 
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b) The SystemC model generated by CosimX implements the FlexPerf agent 
interface, making performance event generation possible. 

MaxCore produces the processor simulator either as a stand-alone simulator or a library 
object. This second alternative enables integration of the simulator to any C++ application. 
The SystemC wrapper uses this library object to encapsulate the simulator and externalizes 
the BFM signals to SoC simulation.  

CosimX supports the generation of simulation models at BFM level using an instruction-
set simulator (ISS) connected to SystemC via inter-process communication (IPC). The 
synchronization between SystemC and the ISS is realized when a communication is made 
(without a global system clock). The SystemC wrapper implemented in this work fires the 
processor simulator at each system clock cycle. As a consequence of this, a global 
synchronized simulation model is obtained. 
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Figure 4.8- ROSES and FlexPerf integration flow 

The system architecture agent has been changed to automatically generate the FlexPerf 
system architecture view from the Colif model. This agent is executed when the SystemC 
simulation is launched. The application view agent is unchanged, since it uses the standard 
ELF format produced in the compilation step. 

Two case studies were conducted to demonstrate the ROSES and FlexPerf integration. 
The first case study involves a monoprocessor application with FIFO interfaces. Here, 
FlexPerf integration was only realized at BFM level to validate the extension we proposed for 
hardware and software integrated analysis. In the second study, a multiprocessor 
implementation of an MPEG4 encoder was used, and the simulation instrumentation at virtual 
architecture and bus function model level was realized. 

In both cases, at BFM level, software runs in the XiRISC (CAMPI et al., 2001) processor, 
requiring its inclusion in the ROSES flow. Thus, the XiRISC processor was included in the 
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ASAG (see Section 2.4.2) library, enabling HW interface generation. The operating system 
generated by ASOG (see Section 2.4.3) was ported and included in the ASOG library, 
enabling automatic refinement of SW interfaces. 

4.2.1 Case Study- FIFO Analysis in a Monoprocessor System 
This experiment used only one processor. The processor adapter and FIFO (first-in first-

out) interfaces, generated by the ASAG tool, implement the communication co-processor. 
Figure 4.9 presents the simulation model and the instrumented components. 
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Figure 4.9- FIFO simulation model 

The processor adapter is responsible for controlling the communication interfaces and 
communication with the processor. Two SystemC models emulating peripheral components 
(Producer and Consumer) were implemented and used in the simulation. 

The purpose of this case study was to demonstrate the integrated performance analysis of 
hardware and software components. The software is composed of two processes producing 
and consuming data to/from the interface. 

Three analysis modules implement FIFO performance analysis using events generated 
during the simulation. Each module implements the following analyses concerning FIFO 
performance:  

a) FIFO utilization (which provides the utilization percentage of the FIFO throughout 
system execution), 

b) FIFO operation number and state, and 

c) interrupt handler activation interval. 

For instance, in Figure 4.10 the buffer utilization module analysis shows the percentage of 
execution time during which the FIFO buffer stores a given quantity of elements. In this case, 
the analysis illustrates that the maximum number of elements in the FIFO_OUT buffer was 25 
for 0.77% of the execution time. This analysis helps the designer evaluate if the hardware 
interfaces are well configured for the system application. The analysis also shows the number 
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of INPUT and OUTPUT operations and indicates when the FIFO was in EMPTY or FULL 
state. 

 

 
Figure 4.10- FIFO analysis results 

In order to accomplish the FIFO performance analysis, the agent module only requires the 
FIFO identifier number. For systems with many FIFO interfaces, the same performance 
analysis module can be reused to automatically analyze different instances of the FIFO 
component. 

4.2.2 Case Study- MPEG4 Encoder Multiprocessor System 

The second case study features an MPEG4 encoder. We used a flexible architecture 
presented in (BONACIU et al., 2006), which implements the encoder in two parts. The first is 
responsible for the motion estimation and DCT encoder, and the second implements the 
Huffman compression code (VLC). The architecture is flexible and allows the encoder and 
VLC task parallelization, as shown in Figure 4.11. The architecture includes three hardware 
components: an Input, a Combiner, and a direct memory access (DMA) component. The Input 
component divides a frame among the different Encoder processes. The Combiner is 
responsible for merging the results from the different VLC processes. The last hardware 
component, the DMA, is responsible for managing transfers among the components. 
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Figure 4.11- MPEG4 encoder architecture (BONACIU et al., 2006) 

In this case study, we used two processors: one to execute the Encoder task (VPROC0) 
and another one to execute the VLC (VVLC0) task. Figure 4.12 presents the architecture top-
level. VINPUT, VSTORAGE, and VDMA are hardware components. VANTENNA and 
VSTORAGE blocks are simulation components added to provide the video input and output. 

 

Figure 4.12- MPEG4 encoder top-level architecture 

 

The ROSES hardware interface refinement generates the CPU subsystem for each 
software component, based on an architecture template. The software interface refinement 
generates the application-specific operating system, based on the communication API. Figure 
4.13 presents the CPU subsystem of the VPROC0 component. The XiRISC processor 
executes the software. The memory control component (CMIMemCtrl) implements a double-
bank memory, enabling parallel processing and transfer of the next frame to the memory. 

The processing flow is as follows: VINPUT loads the image frame into memory and 
signals the VDMA that this has been done. The processor VPROC0 changes the bank 
memory, and VINPUT continues to load the next frame into memory. For each macroblock 
processed by VPROC0, it sends the data to the VVLC0 process. After frame encoding, the 
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VVLC0 transfers the compressed frame to the VCOMBINER component. The VDMA 
component is responsible for managing the following transfers: 

a) Transfer of the frame from VINPUT to the double memory-bank in VPROC0. 

b) Transfer of each processed macroblock from VPROC0 to VVLC0. 

c) Transfer of the compressed frame from VVLC0 to VCOMBINER. 

Counterevents are used to signal the VDMA that the processor is ready 
(VP_READY_EVENT) or to indicate that one processor has data to be transferred 
(VP_HAVE_DATA). These counterevents are implemented as hardware interfaces in the 
CPU subsystem. The DMA uses an interrupt to signal the end of a transfer. 

 

Figure 4.13- CPU subsystem for the VPROC0 component 

The purpose of this case study is to show an example of a multiprocessor performance 
analysis using the FlexPerf instrumented processor and DMA performance analysis. The 
DMA component was instrumented and produces the performance events when transfers are 
made.  

Figure 4.14 presents the DMA transfer analysis at BFM level. CosimX produces the 
SystemC simulation model that implements the FlexPerf agent interface. Software in the 
VPROC0 and VVLC0 components runs in the XiRISC processor. At this level, the designer 
can see the integrated hardware and software execution with precision, making it possible to 
detect synchronization and communication problems. The instrumented DMA model was 
used to analyze the transfers with a time segment of 100,000 cycles. 



 

 143

 

Figure 4.14- DMA transfer analysis at BFM Level 

The number of transfers for each time segment indicates low utilization of the DMA. At 
every 100.000 cycles, the maximum number of transfers managed by the DMA is below 
4200. Considering that each transfer takes one cycle, this gives a maximum activity of 4% of 
the execution time. 

4.3 MaxSim ESL Design 

MaxSim (ARM, 2007) is an environment for virtual prototype modeling and simulation 
based on SystemC. The designer can build a virtual prototype, assembling the system by 
drawing from a component library. This component library is composed of processors, buses, 
memories, and peripheral controllers, among others. The library can be extended with custom 
components described by the designer. 

The computational model of the MaxSim components is based on a cycle-based engine. 
For this kind of component, the behavior is evaluated only in the clock edges. Two methods 
describe the component behavior: communicate and update. In the communicate method, all 
communications between the components are performed, whereas in the update method the 
completed communications are committed in the shared resources. This modeling approach 
leads to high simulation speeds, enabling rapid validation of the architecture. 

In MaxSim, an interface called MxSI is used to interconnect the components. MaxSim 
also provides two other interfaces (Figure 4.15). The MxDI interface allows a debugger 
connection to the component and is mainly used in processor components. The MxPI 
interface is used to generate performance events, enabling component profiling. 
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Figure 4.15- MaxSim component interfaces (ARM, 2007) 

MaxSim components use two kinds of ports: signal and transaction. The signal-based 
connection uses the same semantic as RTL models. In a transaction-based connection, 
operations are described by two methods: read and write. Read and write operations are 
composed of three parameters: address, value, and control. These methods always return a 
flag that signals the access state (committed or resource not available). This is useful for 
modeling conflicts or operations that take more than one cycle, such as a memory access. 
Also, the control parameter encapsulates other information specific to the communication 
protocol. A component may use these two kinds of interfaces. As an example, Figure 4.16 
shows the ARM9 processor interface, composed of signal-level interfaces (fiq, irq, reset) and 
transaction-level interfaces (ahb, dtcm, itcm), used to connect the processor with memory 
modules.  

TLM Interfaces: Address 
map defined in the ports
TLM Interfaces: Address 
map defined in the ports

 

Figure 4.16- MaxSim model example 

The interconnection among the components uses explicit structures like bus components 
(see Figure 4.16). This enables the mapping of memory modules and IO components, defining 
the address space for software development. MaxSim also supports event-based SystemC 
modules. This can be accomplished by instantiating the SystemC component inside a MaxSim 
component. An interface adapter (shown in Figure 4.17) between the SystemC ports and 
MaxSim ports is necessary. 
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Figure 4.17- MaxSim SystemC wrapper 

For basic SystemC signal-level ports sc_in and sc_out, we have implemented generic 
adapters, thus facilitating the integration of SystemC component into MaxSim. These adapters 
are responsible for converting the SystemC signal-level interface into the MaxSim MxSI 
interface, as shown in Figure 4.18. MaxSim exchanges values as integers and the adapter 
makes the type conversion when necessary. This is useful to integrate RTL models, available 
in SystemC, into MaxSim simulations. 
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Figure 4.18- SystemC encapsulation in MaxSim components 

4.4 ROSES Integration 

As shown in Figure 4.19, the ROSES and MaxSim integration is accomplished at BFM 
level, following the refinement of hardware and software interfaces. A MaxSim simulation 
model is generated from the COLIF design meta-model. A MaxSim component encapsulates 
a SystemC component using the interface adapters. The MaxSim component is automatically 
generated. To do so, the following information is required: 

• port name, 

• port type, and 

• port direction. 

The Colif model provides these port characteristics, automating the generation of the 
MaxSim components and its inclusion in MaxLib. 
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Figure 4.19- MaxSim integration in the ROSES design flow 

The hierarchical COLIF model is preserved in MaxSim. Hierarchical components are 
described in MaxSim using a text format. They contain the subsystem components and their 
interconnections. This kind of component is also automatically generated from the COLIF 
model. 

MaxSim and ROSES integration enables the automatic virtual prototype generation. The 
virtual prototype generated from the ROSES architecture description provides all performance 
analysis resources available in MaxSim environment, such as software debuggers, software 
execution timeline, and communication analysis. These analyses performance resources are 
not available in the previous SystemC model generated by CosimX tool, provided by ROSES. 

In Chapter 6, a case study of an MPEG4 encoder is elaborated in order to evaluate a high 
performance estimation tool based on neural networks and the integration of MaxSim and 
ROSES. The case study will illustrate the resources of the MaxSim virtual prototype that are 
used to analyze the performance of MPSoC designs. 

4.5 Conclusions 

This chapter presented two different paths for system performance analysis at bus 
functional model level. First, a processor-centric approach (FlexPerf) was extended and 
integrated to ROSES, allowing integrated hardware and software performance analysis. 
Second, a virtual prototype modeling and simulation tool was integrated to the ROSES 
environment.  

The FlexPerf environment was extended to allow integrated hardware and software 
performance analysis. We generated a SystemC model, where wrappers are used to 
encapsulate the instrumented processor simulator generated from the LISA language. This 
provides an MPSoC global simulation model allowing a synchronized simulation of the 
hardware and software components. The instrumentation support provided by FlexPerf adds 
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more complex analysis resources than are available in SystemC, where the profile only 
supports the tracing of ports and signals.  

ROSES and FlexPerf integration was evaluated in two case studies: one involving a 
simple FIFO interface and the other one an MPEG4 encoder. The analysis modules were 
extended to provide FIFO and DMA performance analysis. FlexPerf’s flexibility and 
modularity were exploited to extend existing analysis capabilities and to develop new ones. 

On the other hand, a virtual prototype tool such as MaxSim seem promising. The support 
for SystemC custom modules is an important feature, since the MPSoC design always 
involves IP components that will not be available in the standard library. The SystemC 
support was used to integrate MaxSim to the ROSES design, with the automatic generation of 
the MaxSim simulation model from the COLIF design meta-model. The automatic virtual 
prototype generation enables the designer to spend time on performance analysis instead of on 
simulation model implementation. 

In the prior simulation model generated by CosimX, the ISS was connected with the 
SystemC simulation using inter-process communication (IPC), and the synchronization was 
made only at each communication. The integration of FlexPerf and MaxSim to the ROSES 
environment enabled the generation of a global simulation where the software part (processor 
simulator) is synchronized cycle-by-cycle with the hardware modules (SystemC). 

The simulation model generated in this work is similar to that in (BENINI et al., 2005; 
WIEFERINK et al., 2004), where a SystemC wrapper encapsulates a processor simulator and 
is then integrated with the rest of the SystemC simulation. These environments provide 
certain fixed processors and bus performance analysis resources, but there is no clear way to 
customize them. In this work, the FlexPerf framework allows instrumentation and 
performance analysis of SystemC simulation models to be accomplished in an easy and 
flexible way. Moreover, framework modularity enables reuse of developed analyses for future 
designs. FlexPerf’s off-the-shelf resources for instrumentation and performance analysis of 
stand-alone processors were extended to support SystemC MPSoC simulation models, 
providing a systematic path to integrated performance analysis. ROSES and MaxSim 
integration also allows the construction of a global simulation model with performance 
analysis capabilities. The graphical interface provides a comprehensive MPSoC simulation 
and validation tool allowing synchronized breakpoints in software code, connections, and 
hardware registers.  

Virtual prototype environments, such as ConvergenSC (Coware, 2007), Synopsys System 
Studio (Synopsys, 2007), and MaxSim (ARM, 2007) propose that architecture design starts 
from the virtual prototype. In the ROSES environment, design starts at the virtual architecture 
level and the automatic generation of the virtual prototype accelerates design and decreases 
error. Furthermore, such environments do not support the generation of software wrappers, as 
provided in the ROSES environment. 

The proposed method makes explicit instrumentation necessary, and, consequently, access 
to the component code is also required. Considering that the ROSES environment uses a 
component-based approach, the components in the library could be instrumented beforehand. 
This idea could be extended to SystemC channels, which can be pre-instrumented to 
automatically generate performance events.  

  



 

 148

5 CASE STUDY 

In this chapter, an MPEG4 case study, using the software performance tools developed in 
this thesis, is described. The MPEG4 architecture proposed by Bonaciu et al. (2006) was 
developed to provide flexibility and support for different video profiles using an MPSoC 
architecture.  
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Figure 5.1- MPEG4 encoder architecture (Bonaciu et al., 2006) 

As shown in Figure 5.1, the encoder is composed of five main components: 

- Input: this component receives the frame and sends it to the Encoder tasks. When 
two or more Encoder tasks are used, the Input component divides the frame, 
assigning a specific region to each Encoder task. 

- Encoder task: this task implements the core algorithm of the MPEG4 encoder. 

- VLC task: this task accomplishes the bitstream compression using the Huffman 
algorithm. 

- Combiner: this task prepares the final result of the frame compression. 

- DMA (Direct Memory Access): this hardware component carries out 
communication among the components in the MPEG4 architecture. 

Figure 5.1 presents the MPEG4 encoder base architecture with two processors: the 
first one executes the Encoder task and the second one is in charge of the VLC task. This base 
architecture may be changed to use more processors running in parallel. For instance, Figure 
5.2 presents the same architecture with 6 processors: four running the Encoder task and two 
executing the VLC task. Moreover, the architecture mapping may be changed: for instance, 
the Input and Combiner can be implemented as software components. 

The DMA carries out transfers among the components in the architecture. It manages 
the transfers between the Input component and Encoder task. After the execution of the core 
algorithm, the Encoder task sends the bitstream to the VLC task. The VLC task compresses the 
bitstream and sends it to the Combiner using the DMA. 
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While one frame is being processed, the next frame is loaded into the Encoder 
processor by the Input component. This concurrent access to the memory in the Encoder 
processor is accomplished using a double-bank memory. 
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Figure 5.2- MPEG4 architecture with four Encoder tasks and two VLC tasks 

 

 In this chapter, we will evaluate the proposed estimation methods, using the MPEG4 
encoder architecture shown in Figure 5.1, with one processor executing the Encoder task and 
another one executing the VLC task. The Input, Combiner, and DMA components are 
implemented in hardware. The main purposes of this case study is to estimate the performance 
requirements of the Encoder and VLC tasks and to explore the processors that could be used 
to execute these tasks. 

5.1 Performance Estimation and Analysis Flow 

In the MPEG4 encoder analysis, the design flow shown in Figure 5.3 will be followed. 
From the system specification in C, software performance will be estimated using a high-level 
estimator. In our case study, the Encoder and VLC software components are the targets for 
software performance analysis. 
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This first estimation step is carried out to guide processor selection for the software 
components. The neural network estimator developed in this work is utilized for fast 
estimation of software performance to select a suitable processor. 

Design space exploration results in a virtual architecture with explicit hardware and 
software mapping. In this work, the virtual architecture will not be used for performance 
estimation and analysis purposes. In other works by the SLS group, this model is employed to 
obtain the performance estimation, using an abstract CPU model (BOUCHHIMA et al., 
2005). 

Following processor selection, the virtual architecture is used in the ROSES environment 
to refine the hardware and software interfaces. Interface refinement depends on the target 
architecture selected in the exploration step, because certain parts of operating systems and 
hardware adapters are architecture-specific components. After the HW and SW refinement, a 
bus functional model (BFM) is generated.  

In order to analyze the performance of the BFM model, a virtual prototype is 
automatically generated using the ROSES architecture description. For generation of the 
virtual prototype, we consider that the HW components are available as SystemC cycle-
accurate models. The software is organized in tasks and runs on an operating system tailored 
to the application. The virtual prototype will be generated in the MaxSim environment 
described in Section 5.4.  

Virtual Architecture
Model at TLM Level
Implicit CPU, abstract HW

BFM Level
Explicit CPU and OS, RTL hardware

ROSES
HW/SW interface

refinement

VM1 VM2

VM3 HW

Appl.
Tasks

OS

HW wrapper

CPU HW

Intercommunication Network

CPU

HW wrapper HW wrapper

Appl.
Tasks

OS

System Specification

Architecture exploration

f1
f2

f3
f4 Processor 

selection for SW 
components using 
NN estimator

Virtual prototype:
Integrated HW 
and SW 
performance 
analysis

(a)

(b)

 
Figure 5.3- MPSoC performance estimation design flow 

5.2 High-level Estimation 

In the first step, we use neural networks to estimate software performance. In the case 
study, the Encoder and VLC tasks are evaluated. Despite the simplification of the 
architecture, with only two processors, processor selection and high-level performance 
estimation still are important aspects of architecture exploration.  

In the experiments, two processors are evaluated: the ARM946 and the PowerPC750. 
Both processors have advanced features commonly found in actual embedded processors, 
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such as pipelines and caches. These features have a non-linear impact on software execution 
time making performance estimation difficult. 

In order to estimate the performance of the Encoder and VLC tasks, these are 
implemented without the system calls used for communication and synchronization.  

The neural network estimator employed for the high-level estimation uses a training 
approach. This means that a training set is needed to calibrate the estimator. In order to train 
the ARM946 and PowerPC750 estimators, a set of 41 benchmarks was used to test their 
accuracy.  

Figure 5.4 presents the neural network used to estimate the application cycle count for the 
ARM946 processor, where the inputs are the number of instructions of different types. This 
neural network is composed of an input layer, a hidden layer with 5 neurons containing a 
tansig transfer function, and an output layer with one neuron containing a linear transfer 
function. These transfer functions are available in the Matlab Neural Network Toolbox 
(Matlab, 2007). We have selected a small number of instruction classes that are sufficiently 
representative of the timing behavior of all instruction types (forward branch, backward 
branch, load/store, multiple load/store, and ALU). 
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Multiple Load/Store
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Cycles

 
Figure 5.4- NN performance estimation for the ARM9 processor 

For each processor, a set of instruction types is chosen to best represent the application 
performance. In the case of the PowerPC750, the instruction types are forward branch, 
backward branch, load/store, integer, and float (see Figure 5.5). 

For neural network training, a cycle-accurate simulator is required to extract the number 
of executed instructions and the total number of cycles consumed. For the ARM946 
processor, a cycle-accurate simulator provided in the MaxSim environment was used to 
profile the benchmark set (ARM, 2007). For the PowerPC750, a cycle-accurate simulator 
from Microlib (2007) was used. 
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Figure 5.5- NN performance estimation for the PowerPC750 processor 
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The ARM946 is a five-stage pipeline processor. It was configured with 4 Kbytes of data 
cache and 4 Kbytes of instruction cache. The PowerPC 750 processor was configured with 16 
Kbytes of data cache and 16 Kbytes of instruction cache. It is a RISC superscalar processor 
that may complete up to 2 instructions per cycle and contains 6 functional units: a floating-
point unit, a branch unit, a system register unit, a load/store unit, and two integer units. 

 

Table 5.1- Estimation and instruction count for the ARM946 and PowerPC750 processors 
 ARM (cycles) ARM (instructions) PowerPC (cycles) PowerPC (instructions) 

Encoder Task 255250 128230 114230 155032

VLC task 52694 23497 31478 25153

 

Table 6.1 presents the estimation results obtained from the neural network estimator for 
the PowerPC750 and ARM946 architectures. The main cost associated with the estimation 
process is that of the dynamic instruction count used as input in the neural network. In this 
work, the executed instructions are obtained using an instruction-accurate simulator available 
in MaxSim for the ARM946 and in the Microlib package for the PowerPC750 processor. The 
proposed method allows rapid estimation due to the short simulation time of instruction-
accurate simulators compared to cycle-accurate simulators.  

The execution costs in Table 6.1 were obtained for one macroblock of 16x16 pixels. The 
cost of a total frame is calculated based on the image size. For instance, an image of 176x144 
pixels has 99 macroblocks, and the total cost of encoding a frame can be calculated based on 
the macroblock processing cost. For the ARM946 processor running at 100 Mhz, the 
processing time for each frame is about 250 milliseconds. Considering these results, an 
architecture with 4 processors running the Encoder task can process up to 16 frames/second. 

The estimated values show that the PowerPC750 achieves best results in terms of cycle 
count, due to the superscalar architecture. In the Encoder task, the gain is larger due to the 
task’s characteristics favorable to the PowerPC superscalar architecture. The PowerPC750 
gain in the VLC task is smaller due to frequent access to code tables without a sequential 
pattern present in the Huffman algorithm. This characteristic causes pipeline stalls and 
decreases the superscalar effectiveness. The smaller number of executed instructions in the 
ARM architecture can be explained because of the special instructions in the ARM946 
instruction set, like multiple load/store resulting in a compact code. 

Estimation results are used to guide designer decisions concerning software mapping and 
processor selection. After processor selection, this decision is annotated, for each software 
component, in the Colif model of the MPEG4 encoder architecture. This information will be 
used by ROSES during interface refinement in order to generate the operating system and 
hardware wrappers. In our case study, we will demonstrate virtual prototype generation for 
the ARM946 processor and compare the results with the high-level performance estimation.  

5.3 Virtual Prototype Performance Analysis 

Bus-functional model (BFM) performance is analyzed using a virtual prototype. In the bus 
functional model, the software part is composed of tasks that execute on top of an operating 
system in each target processor. The operating system is responsible for implementing the 
API used for communication between components. The evaluation of this virtual prototype, 
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which provides the designer with detailed information about overall system performance, 
needs to be carried out before the physical design can be realized. 

The MaxSim (ARM, 2005) environment is used to generate a virtual prototype model 
enabling performance evaluation. This simulation model is automatically generated from the 
ROSES architecture description at BFM level. The ROSES architecture describes the 
components, their interfaces, and the connections between them. 

Hardware components are regarded as IP blocks. We consider that the IP provider supplies 
a cycle-accurate model of the IP component. The hardware interface adapters generated in the 
HW/SW refinement step are also available as SystemC cycle-accurate models.  

5.3.1 MPEG4 Encoder Virtual Prototype 
Figure 5.6 shows the MaxSim top-level model generated by the Colif2Maxsim tool. The 

top level is composed of two CPU subsystems (the VPROC0 and VVLC0 components) 
responsible for executing the Encoder and VLC tasks. These components are hierarchical and 
are composed of other SystemC components. The VINPUT, VCOMBINER, and VDMA 
components represent the hardware modules described in SystemC. VANTENNA and 
VSTORAGE are simulation components, used to produce the input and to store the output 
image, respectively. 

Figure 5.7 presents a detailed view of the modules that compose the VPROC0 component, 
presented in the top-level architecture. As one can see, the SystemC components produced by 
the ASAG tool of ROSES – e.g., the double memory-bank (CMIMemCtrl), the address 
decoder (CMIarm7deco), and the timer (CMItimer) – are automatically imported into 
MaxSim. CMIarm7cc implements the processor adapter and event counters that control the 
DMA transfers. The component CMIarm7 represents the processor. 

CMIarm7 is also a hierarchical component, and Figure 5.8 presents the component in 
detail. An ARM9 processor available in MaxSim is used as processor simulator. The ARM9 
simulator model uses transaction-level interfaces in the connection to the memory 
components. Since the ROSES BFM model uses pin-level interfaces in the components’ 
connection, a bus functional model for the ARM9 processor was implemented using the 
processor, bus, and memory components available in MaxLib (see Figure 5.8). The processor 
is connected to the bus and memory with TLM interfaces. An adapter (mem_adapter) was 
implemented to translate the TLM operations to pin-level, integrating this model with the rest 
of the system. This BFM model is generic and could be reused in other designs generated by 
the ROSES environment. 
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Figure 5.6- Top-level model of the MPEG4 encoder 

 

SystemC modules generated by ASAG

 

Figure 5.7- CPU subsystem for the VPROC0 component 
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Figure 5.8- BFM model of the ARM9 processor in MaxSim 

Figure 5.9 shows the simulation’s initial screen. The MPEG4 encoder implemented in this 
case study uses two processors, and the binary code containing the application and OS is 
provided in the simulation initialization. 

MaxSim provides global validation support, enabling the use of breakpoints in software 
code, registers, memory position, and connections. Figure 5.10 presents the software 
debugging capabilities with the assembler code for the VVLC0 processor. Software 
debugging is available for all processor components. The global simulation provides a 
suitable tool for debugging concurrent applications executing in different processors. 

 

Figure 5.9- MaxSim Explorer initial screen 
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Figure 5.10- Software debugging support in MaxSim 

Figure 5.11 presents the timeline for software execution in the VPROC0 component. This 
analysis view enables the designer to find optimization points and analyze the cost of each 
function within the overall software execution. 

Performance analysis resources, such as assembler code debugging, register view, and 
software execution timeline, come already built-in in library components. Furthermore, for 
the processor at cycle-accurate level, the model also provides cache performance analysis. 

Figure 5.12 shows the communication analysis feature available for bus components. By 
conducting this analysis, one can verify communication performance, detecting bottlenecks 
between the processor and memory. This analysis shows the number of accumulated 
operations in the bus, classified by type (e.g., read, write, request and grant), for each time 
segment. In the example illustrated by Figure 5.12, the segment size is 10 cycles. 
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Figure 5.11- Software timeline execution 

In MaxSim, user components can be instrumented to produce performance events. This 
resource is provided by the MxPI interface available in the MaxSim components. This 
interface produces a stream where events are written. Visualization is always accomplished 
through XY graphics. 

Figure 5.13 shows the DMA transfer analysis. The graph plots the number of transfers 
handled by the DMA, as a function of time. This chart also uses the notion of time segment 
and, in this example, a size of 100,000 cycles was used. Here, black bars represent transfers 
between VINPUT and VPROC0, whereas white bars represent transfers between VPROC0 
and VVLC0. 
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Figure 5.12- Bus transfer analysis 

 

Figure 5.13- DMA transfer analysis 

 

The comparison of the performance estimation from the neural network to that obtained 
with the virtual prototype is shown in Table 5.2. For the PowerPC750 processor, a SystemC 
cycle-accurate simulation model was used, but without the operating system and hardware 
interfaces. Although this simplification limits the system performance analysis, the cycle-
accurate model enables the verification of the NN estimator accuracy. For the ARM946 
processor, the estimation error was 4.26% for the Encoder task and -8.29% for the VLC task. 
For the PowerPC750 processor, an error of 24.8% in the Encoder task was obtained. This was 
expected, however, given that the PowerPC750 processor is more complex, making 
estimation more difficult.  

If we apply linear regression for performance estimation, as proposed by Giusto et al. 
(2001), the estimation errors obtained for the ARM946 architecture were 60.25% and 58.66%, 
for the Encoder and VLC tasks, respectively. For the PowerPC750 processor, we observed 



 

 159

that linear regression also revealed higher estimation errors (87% for the Encoder task and 
44.42% for the VLC task). This demonstrates the neural network’s flexibility and capability 
for non-linear prediction. 

Table 5.2- High-level performance estimation (in cycles) compared to the cycle-accurate 
virtual prototype 

  ARM946 PowerPC750 
  Estimated Cycle-accurate Error Estimated Cycle-accurate Error 
Encoder Task 255250 266630 4.26% 114230 151960 24.8% 

VLC Task 52694 48659 -8.29% 31478 31064 1.33% 
 

Table 5.3 presents estimation and virtual prototype execution times for macroblock 
processing. As indicated, a speed-up between 6.5 and 22 times was achieved with the neural 
network with regard to the virtual prototype. Considering the increasing size of embedded 
software code, neural network estimation enables rapid evaluation of various solutions 
without high simulation costs. In turn, the virtual prototype enables global analysis of 
hardware and software components. This allows detailed system performance analysis and 
confirmation of numbers estimated at higher abstraction levels. 

 

Table 5.3- Estimation and cycle-accurate virtual prototype simulation times 
  ARM946 PowerPC750 

  
Cycle-accurate 

(s) 
Estimation (s) Speedup Cycle-accurate 

(s) 
Estimation (s) Speedup 

Encoder Task 5.5 0.3 22.0 4.3 0.3 14.3
VLC Task 3.0 0.2 14.3 1.4 0.2 6.5
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6 DISCUSSION AND FINAL REMARKS 

Early performance estimation and analysis tools have recently attracted the attention of the 
research community due to the complexity and heterogeneity of current and future embedded 
systems. Fast and accurate performance estimation tools are needed to help with design 
architecture exploration. 

In this work, we presented an integrated methodology for design and performance 
estimation of multiprocessor systems-on-chip (MPSoC), where performance estimation 
support is provided throughout the design flow to help guide design decisions. The ROSES 
environment, from the TIMA laboratory, was used as a design flow. ROSES is a component-
based hardware and software interface refinement tool and was integrated to the performance 
analysis tools. 

At specification level, this work proposed utilization of analytic estimators to drive 
processor selection. Analytical models are used in earlier design stages, providing fast and 
precise performance estimation. In this thesis, neural networks (NN) were used as estimators. 
NN characteristics such as flexibility and nonlinear adaptation were explored, yielding 
acceptable results for different architectures. A paper describing preliminary results was 
presented in the SBCCI conference (OYAMADA; ZSCHONARCK; WAGNER, 2004). 

We proposed the utilization of simulation-based methods at bus-functional model level, 
providing global simulation models that make performance analysis easier. In this work two 
different performance tools were integrated to the ROSES environment. The first one is 
FlexPerf, an environment developed for software embedded performance analysis of 
monoprocessor systems. The second is the MaxSim virtual prototype environment.  

ROSES and FlexPerf integration enabled SystemC simulation model generation with 
support for instrumentation and performance event generation. The ROSES environment 
includes CosimX, a tool that generates SystemC models at virtual architecture and bus-
functional model (BFM) level. CosimX was modified to generate SystemC models 
implementing the FlexPerf interface. At BFM level, we used the FlexPerf instrumented 
processor models to enable instrumentation and performance analysis with more complex 
capabilities than those provided by the SystemC trace library. CosimX uses these processor 
models, encapsulated in a SystemC wrapper, and generates a global simulation model, where 
software and hardware simulators run in a synchronized way. Using the FlexPerf 
instrumented processor model, we automatically make available a set of developed software 
performance analysis functionalities. 

The MaxSim virtual prototype modeling and simulation environment was also integrated 
to the ROSES design flow. Using the architecture design at BFM level, ROSES integration 
enabled the automatic generation of virtual prototypes using cycle-accurate instruction-set 
simulators for the software simulation and SystemC functional models for the hardware 
components. Virtual prototype environments have captured the attention of CAD developers, 
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because they provide a global simulation model allowing the debugging of concurrent 
software running in multiple processors. This detailed simulation model enables the analysis 
of low-level code such as operating systems and drivers. The virtual prototype extends the 
SystemC simulation model performance analysis resources, allowing the software execution 
time analysis, bus usage statistics, and custom hardware performance analysis. Moreover, the 
virtual prototype environments provide an extensible library of components and processors, 
making the virtual prototype generation easier. 

In order to evaluate the performance estimation tools proposed in this thesis, a case study 
involving a multiprocessor MPEG4 encoder was developed. The MPEG4 encoder platform 
imposes certain challenges to system performance analysis, such as the presence of multiple 
processors and IP components. This case study allowed us to compare the precision of high-
level performance estimation to that of a cycle-accurate virtual prototype. This work was 
presented at the ASPDAC conference (OYAMADA et al., 2007). 

The utilization of an analytic estimator at specification level and a simulation-based one 
for the refined designs provided an optimal trade-off between precision and speed, which is 
necessary throughout MPSoC design. 

6.1 Limitations of the Proposed Methods and Future Works 

From the results of the case study presented in Chapter 6, we have identified that the 
methods proposed here for software performance estimation have certain limitations: 

a) Neural network accuracy is dependent on the quality of the input used for training. 
In this work, the training set was selected in such a way that benchmarks from 
different domains and sizes are used, thus promoting NN generalization. 

b) In order to build a neural network estimator for a given processor, a cycle-accurate 
simulator is necessary in the training phase. 

c) The reduction of the neural network estimation time compared to the cycle-accurate 
simulation depends on the dynamic instruction count. 

d) Virtual prototypes are based on simulation methods, which have an inherent high 
cost. Although the virtual prototype provides detailed system performance analysis, 
this method will not scale well for MPSoCs with many processors. In such a case, 
the virtual prototype will be useful for analysis of initialization code or small 
application parts. 

Although this thesis has made valuable contributions, future works should endeavor to 
address the following topics and open issues: 

f) The application of neural networks to estimate power consumption. 

g) The use of architectural parameters in the neural network input, as proposed by Ipek 
(2006). 

h) The replacement of instruction-accurate simulators by a generic profiler and further 
translation to the target instruction set in the utilization phase of the neural network 
estimator. 

i) The integration of our estimation methods with other specification languages like 
UML and Simulink. 
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j) The generation of virtual prototypes using TLM channels, thus reducing simulation 
time. 
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TITLE: Performance estimation in MPSoC design 

ABSTRACT 

Nowadays, embedded system complexity requires new design methodologies. System-

level methodologies are proposed to cope with this complexity, starting the design above the 

register-transfer level. Performance estimation tools are an important piece of system-level 

design methodologies, since they are used to aid design space exploration at an early design 

stage. The goal of this thesis is to define an integrated methodology for software performance 

estimation. Currently, embedded software usage is increasing, becoming multiprocessor 

system-on-chip a common solution to cope with flexibility, performance, and power 

requirements. The development of accurate software performance estimators is not trivial, due 

to the increased complexity of embedded processors. To drive processor selection at 

specification level, a novel analytic software performance estimator based on neural networks 

is proposed. The neural network enables a fast estimation at an early design stage. To target 

the software performance analysis at bus functional level, where mapping of the hardware and 

software components is already established, we use a global simulation model supporting 

performance profiling. The proposed software performance estimation methodology is linked 

to a hardware and software interface refinement environment named ROSES. The proposed 

methodology is evaluated through a case study of a multiprocessor MPEG4 encoder. 
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TITRE: Estimation de performance du logiciel en systèmes multiprocesseur monopuces 

RESUME : 

Actuellement, la complexité des systèmes embarqués nécessite des nouvelles 

méthodologies de développement. Des méthodologies au niveau système sont proposées pour 

traiter la complexité, utilisant comme point de départ des descriptions de plus haut niveau qui 

au niveau transfert de registre (register transfer level - RTL). Les outils d’estimation de 

performance sont une importante partie des méthodologies au niveau système, parce qu’ils 

aident dans les décisions de projet dans les étapes initiales. Cette thèse propose des méthodes 

d’estimation de performance intégrées dans le flot de conception ROSES. En raison de 

l’augmentation du nombre des processeurs intégrés dans une puce, on nécessite de plus en 

plus des outils pour l’estimation de performance du logiciel. Pour guider la sélection du 

processeur au niveau de la spécification, on propose l’utilisation des réseaux neuronaux pour 

estimer rapidement la performance du logiciel. Après le raffinage des interfaces matériels et 

logiciels, on utilise des prototypes virtuels pour analyser la performance de l’architecture au 

niveau de bus fonctionnel. Le prototype virtuel est généré automatiquement a partir de la 

description ROSES, en permettent l’analyse de performance intégré des composants logiciel 

et matériel. La méthodologie proposée dans ce travail a été évalué par une étude de cas d’un 

encodeur MPEG4.  
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