N

HAL

open science

Software performance estimation in MPSoC design

Marcio Oyamada

» To cite this version:

Marcio Oyamada. Software performance estimation in MPSoC design.
gies/Microelectronics. Institut National Polytechnique de Grenoble - INPG, 2007. English. NNT: .

tel-00195230

HAL Id: tel-00195230
https://theses.hal.science/tel-00195230
Submitted on 10 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Micro and nanotechnolo-

https://theses.hal.science/tel-00195230
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

N° attribué par la bibliotheque
|

THESE EN COTUTELLE INTERNATIONALE

pour obtenir le grade de
DOCTEUR DE L'INP Grenoble
da Universidade Fede::tl do Rio Grande do Sul
Spécialité : Micro Electronique
préparée au laboratoire TIMA
dans le cadre de I’Ecole Doctorale « d’Electronique, Automatique et Traitement du
Signal »

et au laboratoire LSE

dans le cadre du «Programa de Pés-Graduacdao em Computagao »

présentée et soutenue publiquement

par
Marcio Seiji OYAMADA

le 05 décembre 2007
Estimation de performance du logiciel en systémes multiprocesseur monopuces

Directeur de thése : Ahmed Amine JERRAYA
Directeur de thése : Flavio Rech WAGNER

JURY
Mme. Florence MARANINCHI , Président
M. Luigi CARRO , Rapporteur
M. Guido Costa Souza de ARAUJO , Rapporteur
M. Ian O'CONNOR , Rapporteur
M. Ahmed Amine JERRAYA , Directeur de thése

M. Flavio Rech WAGNER , Directeur de thése

For my family

ACKNOWLEDGMENTS

I would like to thank, first and foremost, my advisors Mr. Flavio RECH WAGNER
from Universidade Federal do Rio Grande do Sul and Mr. Ahmed Amine JERRAYA
from TIMA Laboratory, for their support and encouraging discussions during the thesis
development.

I would also like to thank Dr. Florence MARANINCHI, Dr. Ian O’CONNOR and
Dr Guido ARAUJO for agreeing to be on my thesis committee and for their comments.
Special thanks go to Dr. Luigi CARRO for his encouraging discussions and inspiring
ideas.

I would like to acknowledge the students and other staff members in the TIMA
laboratory, especially the SLS members: Aimen, Wassin, luliana, YoungChul, Lobna,
Sang Il, Katalin, Marius, Sonya, Amin, Benaoumeur, Xi and Hao. Special thanks to my
“RU copains”: Ivan, Arif, Arnaud and Patrice. I would like to thank Wander, Adriano,
Joao and Lazzari for their support in France.

Gostaria de agradecer aos professores, funcionarios e alunos do Instituto de
Informadtica. Especialmente para os meus amigos nas horas alegres e também dificeis:
Julius, Caco, Fernando, Emerson, Gervini, Leomar, Felipe, Edgard, Mateus, Dalton,
Lisane, e os paranaenses Wronski, Jeysson, Luiz e Moratelli.

Agradego pelo apoio incondicional dos meus pais Hiroshi e Tomie, irmas Suely e
Lucia e irmdao Marcelo, aléem dos meus sobrinhos (trio de diabinhos): Bruno, Thais e
Erick. Agradeco também a minha esposa Giovanna, companheira em todos os
momentos.

I acknowledge the work of UNIOESTE for the financial support and CAPES for the
scholarship during my work in France.

TABLE DES MATIERES

1 ESTIMATION DE PERFORMANCE EN SYSTEMES

MULTIPROCESSEURS MONOPUCESco i 8
1.1 L’intégration de I’estimation de performance dans le flot ROSES 10
1.2 Estimation de performance basée sur des réseaux neuUroNaUX........ceeeeesveeene 11
1.3 L’analyse intégrée de performance des systémes MPSoCccoeuererrureccnnces 14
2 ETUDE DE CAS DE L’ENCODEUR MPEGHAccooeeerueemrmrncsnsnssesennens 16
2.1 Flot d’estimation et analyse de performanceccocceeeeeccnerccsccnneecsssnnnecsens 17
2.2 Estimation au niveau de la spécification...........cccvveicrvricsvnricscnnicssnncsssnressnnnes 18
2.3 Analyse de performance avec un prototype virtuel.........ccccececeereccccnerccscnnnee 20
3 CONCLUSIONS......cco i irrrrrrrssssssss s s s s s s snsssss s s s s s s s nnmn s s sssssssnnnnnnnnns 27
3.1 Limitations des méthodes proposées et les perspectivesc.ccceeeveeecsarecssanes 28

1 ESTIMATION DE PERFORMANCE EN SYSTEMES
MULTIPROCESSEURS MONOPUCES

L’augmentation de la capacité d’intégration de transistors permet I’intégration des
processeurs, composants matériel, mémoires, interface digitale e analogique sur une
puce. Actuellement, on constate de plus en plus I'utilisation de plusieurs processeurs
dans une seule puce, appelé MPSoC (multiprocessor system-on-chip). En comparaison
avec des implémentations purement matérielles les processeurs donnent la flexibilité et

hétérogénéité nécessaires dans les systemes embarqués.

La conception d’un systeéme embarqué est imposée a des contraintes strictes. Le flot
de conception d’'un MPSoC demande des outils pour vérifier si les conditions sont
suffisantes. La performance est normalement la principale contrainte pour guider
I’exploitation de 1’espace des solutions. Néanmoins, les autres aspects doivent étre
évalués dans les étapes initiales du projet, par exemple la puissance et 1’énergie.
L’exploration d’un ¢énorme espace d’alternatives est appuyée par des outils

d’estimation.

L’estimation de performance est un processus continu et peut &tre utilisée aux
différents niveaux d’abstraction comme montre la Figure 1.1. Pendant la spécification
du systéme, 1’estimation de performance aide dans le partitionnement du systéme en
composants matériels et logiciels, la sélection du processeur, et le mapping des tiches

sur les processcurs.

L’architecture virtuelle est un modele ou le logiciel n’est pas compilé pour le
processeur cible et la communication est faite par des canaux au niveau transactionnel.
Comme I’interconnexion n’est pas encore définie, a ce niveau on exploite les différentes
possibilités d’implémentation des canaux TLM (transaction level model) et de la

structure de communication.

Au niveau du bus fonctionnel (bus functional model — BFM) les interfaces
matérielles et logicielles sont déja raffinés et le logiciel est compilé pour le processeur
cible. A ce niveau, une analyse détaillée de la performance du matériel et du logiciel

sont possibles.

Outils d’estimation de performance

Spécification du systeme | —

Sélection du processeur

‘/

Exploration de
I'architecture

Architecture Virtuelle ./~ Partitionnement des

interfaces logiciel/matérie .
Domaine de
Raffinage des interfaces
logiciel/matériel

ce travail
Niveau bus fonctionnel Mapping de la

memoaire
Intégration SoC

Niveau RTL > Estimation de retards

)
I

/

\
'

J

Figure 1.1- Estimation de performance et les niveaux d’abstraction dans la conception

d’un MPSoC

En raison de I’augmentation de la partie logicielle et du nombre des processeurs
dans les systémes embarqués, des outils pour I’estimation de performance sont
nécessaires. Les outils d’estimation de performance sont divisées en deux groupes:
basées sur la simulation et mod¢les abstraits (MEYEROWITZ, 2004). Les méthodes
basées sur la simulation utilisent un simulateur précis au niveau du cycle pour estimer le
temps d’exécution. De 1’autre coté, des modeles abstraits ou analytiques utilisent des
fonctions de colit pour calculer le temps d’exécution du logiciel. Les méthodes au
niveau intermédiaire sont basées sur I’annotation du code avec les cofits d’exécution.

Comme I’application exécute sur le poste de travail, la simulation est plus rapide.

Cette thése propose des méthodes pour I’estimation de performance, qui sont
nécessaires en raison du grand espace de solutions qui ne peut pas étre exploré

manuellement ou vérifié juste quand un prototype matériel est disponible. Un mod¢le

O

analytique est proposé pour estimer la performance bas¢ sur des réseaux neuronaux au
niveau de la spécification. Des outils ont été développés pour ’analyse de performance
au niveau du bus fonctionnel, en utilisant les prototypes virtuels pour valider d’une
maniére intégrée les composants matériels et logiciels. Le prototype virtuel est un
modele de simulation qui permet une analyse de performance intégrée des composants

matériels et logiciels.

1.1 L’intégration de I’estimation de performance dans le flot ROSES

Cette thése propose une méthodologie pour 1’analyse et 1’estimation de performance
dans les systémes multiprocesseurs monopuces (MPSoC). Le flot de conception ROSES
développé au sein du groupe SLS est utilis¢ pour guider le flot d’estimation de
performance. L environnement ROSES permet la génération automatique des interfaces
logicielles et matérielles dans un systtme MPSoC. Le flot de conception ROSES utilise
comme point de départ pour la génération des interfaces une architecture virtuelle
composée par des composants fonctionnels reliés par de canaux de communication au
niveau transactionnel. Dans [D’architecture virtuelle, les composants fonctionnels
décrivent les composants matériels et logiciels du systéme. Les composants logiciels

sont composés par des taches, qui communiquent par des canaux logiques.

Dans la cadre de cette these, des réseaux neuronaux sont utilisés pour guider la
sélection du processeur pour chaque composant logiciel. Les réseaux neuronaux
apportent une solution efficace pour modéliser le comportement non-linéaire du logiciel
exécutant dans les processeurs avec des caractéristiques comme le pipeline, mémoires
cache et prédiction de branchement. Dans les expériences, on a utilisé différents

processeurs, comme le PowerPC750, I’ADSP, I’ARM946 et un processeur Java.

Apres la sélection du processeur, I’environnement ROSES est utilisé pour raffiner
les interfaces matérielles et logicielles et générer un modele au niveau du bus
fonctionnel (bus functional model - BFM). Dans ce travail, on propose l’utilisation de
prototypes virtuels pour créer des modeles globaux de simulation. La génération
automatique du prototype virtuel a partir d’un modéle de bus fonctionnel généré par

ROSES permet I’analyse de performance et la validation du systéme.

10

1.2 Estimation de performance basée sur des réseaux neuronaux

Au niveau de la spécification, 1’exploration de I’espace des solutions pour trouver
une solution qui satisfait les contraintes peut étre réalisée de différentes maniéres, par

exemple en faisant la modification de 1’architecture et le partitionnement des taches.

La sélection du processeur approprié pour ’exécution du logiciel est une partie
importante de I’exploration de 1’espace des solutions (voir la Figure 1.2). L’estimation
de performance nécessaire pour la sélection du processeur devient de plus en plus
complexe. L’utilisation des processeurs avancés exige des outils d’estimation de
performance rapides et précis qui prennent en compte 1’impact des mémoires cache, la

prédiction de branches et les pipelines dans la performance de 1’application.

Outils d’estimation de performance

Spécification du systéme \Wﬁageo
Sélection du processeur

« Temps d’exécution estimé

Exploration de
I'architecture

Partitionnement des
interfaces logiciel/matérie

Architecture Virtuelle

Raffinage des interfaces
logiciel/matériel

Niveau bus fonctionnel

Intégration SoC /

Niveau RTL

/

Mapping de la
memaoire

) 4

Estimation de retards

v

Figure 1.2- Outil d’estimation de performance dans le flot de conception

Les réseau neuronaux ont été choisis pour I’estimation de performance, parce qu’ils
peuvent modéliser le comportement méme quand le processus est non-linéaire. Dans ce
travail un réseau du type « feed-forward » est utilisé, pour des raison de simplicité et
adaptation au comportement non-linéaire nécessaire dans 1’estimation de performance

du logiciel. Notre réseau est composé par une couche d’entrée, une couche cachée, et

11

une couche de sortie. Chaque couche peut avoir différents nombres de neurones, et

chaqu’une avoir une fonction de transfert différente.

Notre méthode d’estimation suit deux étapes: entrainement et utilisation. Dans
I’étape d’entrainement, un ensemble de benchmarks sont présentés au réseau neuronal.
Dans cette étape, les entrées sont le nombre d’instructions exécutées classifiées par type
(par exemple branches, arithmétiques et acces a la mémoire), et la sortie attendue est le
nombre de cycles consommés par I’exécution de I’application. Un simulateur précis au
niveau cycle est nécessaire pour obtenir le nombre d’instructions exécutées et les cycles
consommeés par ’application. Pour chaque processeur, on a choisi un petit nombre de
classes d’instructions qui représentent le comportement temporel de tous les types

d’instructions.

La Figure 1.3 montre la phase d’entrainement en détail. Dans [’étape 1, un
simulateur précis au niveau cycle est utilisé et les instructions exécutées sont classifiées
par type (€tape 2). Dans les étapes 3 et 4 un processus d’apprentissage, basé sur
I’algorithme « back-propagation », permet de changer les poids, de fagon a adapter le
réseau pour sortir la valeur désirée. La phase d’entrainement est réalisée en utilisant le

logiciel Matlab.

@ Classification Type Nombre des m

Profilage Qes . LD/ST exem::ons

d’'un instructions Comparer
ensemble de INT na cycle estimé
benchmarks ————— avec la valeur
avec un FLOAT ns réelle
simulateur changer
précis au BRANCH N poids

niveau cycle

Figure 1.3- Etapes d’entrainement du estimateur

Apres la phase d’entrainement, 1’estimateur de performance est prét pour étre utilisé
dans les projets postérieurs. La Figure 1.4 présente les principales étapes de la phase

d’utilisation. Pour estimer la performance, il est nécessaire de compiler 1’application

12

pour le processeur cible, et d’obtenir les instructions exécutées en utilisant un
simulateur fonctionnel. Les instructions classifiées sont présentées comme entrée au

réseau, de sorte qu’il peut estimer le nombre des cycles consommés par 1’application.

Comptage dynamique d’instructions

mov R2, R1 Classification Type Nombre des
load R1, [R3] des instructions exécutions
add R5, R4, R3 LD/ST n4
- ——
INT N2 Cycles
FLOAT n estimés
ﬁtore R1, [R3] BRANCH na

Figure 1.4- La phase d’utilisation de I’estimateur
La Figure 1.5 montre le réseau neuronal utilisé pour estimer la performance dans le
processeur PowerPC750. La couche d’entrée est composée par des neurones avec des
fonctions de transfert linéaires et la couche cachée utilise 5 neurones avec des fonctions
de transfert non-linéaires (zansig). La couche de sortie utilise aussi une fonction de
transfert linéaire. On a utilisé ces neurones en raison de la non-linéarité nécessaire pour
le processus d’estimation. Dans les expériences avec des autres configurations, celle-ci

a donné de meilleurs résultats.

Forward Branches __.

Backward Branches __,.¢

Load/Store __.¢

Integer .

Floats

Input Hidden Output a = tansig(n) a = purelinfn)
Layer Layer Layer

Figure 1.5- Le réseau neuronal pour le processeur PowerPC750 et les fonctions de

transfert

Pour chaque architecture un estimateur différent est créé. Pour cette raison, la
méthode proposée est adaptée pour ’exploration de I’espace de solutions de la partie
logicielle, par exemple quand on veut évaluer les alternatives algorithmiques et de
partionnement des taches entre les processeurs, parce que des modifications

architecturales demandent un nouveau entrainement.

13

1.3 L’analyse intégrée de performance des systémes MPSoC

Apres le raffinement des interfaces matérielles et logicielles un modele au niveau du
bus fonctionnel est généré par l’environnent ROSES. Dans le modele de bus
fonctionnel, les composants matériels sont décrits par les modeles SystemC et les
composants logiciels par tiches compilés pour 1’architecture cible. La communication et
synchronisation de la partie logicielle est implémentée par un systéme d’exploitation
dédié.

Pour analyser la performance d’un systéme au niveau BFM (voir la Figure 1.6), on
propose I’intégration de deux outils dans le flot ROSES. Le premier est I’environnement
FlexPerf développé chez STMicroelectronics pour I’analyse de performance de logiciel
embarqué. Le deuxiéme outil est D’environnement MaxSim, utilis¢é dans le

développement des prototypes virtuels.

Outils d’estimation de performance

Spécification du systéme \\
Sélection du processeur

/

Exploration de
l'architecture

Architecture Virtuelle ./~ Partitionnement des
/ interfaces logiciel/matérie

/

Raffinage des interfaces
logiciel/matériel

Modele de
Niveau bus fonctionnel simulation Mapping de la
/ memélre
/ Temps d’exécution en
utilisant le prototype virtuel
Niveau RTL > Estimation de retards

Figure 1.6- Estimation de performance pour le projet de MPSoC

L’environnement FlexPerf (PAOLI; GALIX; SANTANA, 2004) permet 1’analyse
de performance en utilisant une librairie de classes pour I’instrumentation et la

génération des événements de performance. FlexPerf fournit un flot pour générer des

modeles de simulation des processeurs qui supportent I’analyse de performance de
logiciel embarqué. L’intégration avec I’environnement ROSES a permis de générer des
modeles de simulation multiprocesseurs en SystemC, avec le support de FlexPerf pour

analyser la performance.

L’environnement MaxSim (ARM, 2007) a été intégré dans le flot ROSES pour
générer un prototype virtuel. La génération du prototype virtuel est réalisée de fagcon

automatique a partir du modele de bus fonctionnel utilisé dans 1’environnement ROSES.

15

2 ETUDE DE CAS DE L'ENCODEUR MPEG4

Dans cette section 1’estimation de performance d’un encodeur MPEG4 sera
présentée en utilisant les outils d’estimation développés dans cette theése. L architecture
MPEG#4 proposé par Bonaciu et al. (2006), est une implémentation parallele développée

pour fournir la flexibilité et le support a des différents profils.

Rate control

Coded
Image

\4
7

43 Combiner

L4 > DCT
Fa Input L
Estimation| | Comp.

4
Prediction
Fn—1
Encoder Task (SW) VLC T??k (SW
v t |

DMA

Figure 2.1- L’architecture de I’encodeur MPEG4 (Bonaciu et al., 2006)

L’encodeur MPEG4 est composé de cing composants, comme montre la Figure
2.1:

- Input: ce composant est responsable pour recevoir I’image d’entrée et

I’envoyer a la tiche Encodeur ;

- Encoder task: cette tache exécute la partie principale de 1’encodage

MPEG4 ;

- VLC task: cette tache réalise la compression de I’image en utilisant

I’algorithme d’Huffman ;

- Combiner: ce composant prépare le résultat final de la compression de

I’image;

16

- DMA (Direct memory access): ce composant matériel est responsable pour

réaliser tous les transferts parmi les composants de 1’architecture MPEG4.

La Figure 2.1 montre ’encodeur MPEG4 avec deux processeurs. Le premier
exécute la tache d’encodage et le deuxiéme est responsable pour exécuter la tiche VLC.
Le composant DMA fait les transferts parmi les composants de ’architecture. Le flot
d’exécution de I’encodeur commence par le chargement de 1’image dans le processeur
Encoder par le composant Input. Aprés 1’encodage, les données sont transférées au
processeur VLC. Aprés la compression par la tdche VLC, les donnés compressées sont

envoyées vers 1’unité de stockage par le composant Combiner.

2.1 Flot d’estimation et analyse de performance

Dans I’analyse de 1I’encodeur MPEG4, le flot de conception montré dans la
Figure 2.2 sera réalisé. A partir de la spécification du systeéme décrit en langage C,
I’estimation de performance sera réalisée en utilisant I’estimateur basé sur des réseaux
neuronaux. Dans 1’étude de cas seulement les composants logiciels Encoder et VLC

seront utilisés dans I’analyse de performance.

La premiere étape d’estimation est utilisée pour guider la sélection du processeur
qui sera responsable pour I’exécution des composants logiciels. Dans cette étape, deux
processeurs sont évalués: ARM946 et PowerPC750. L’objectif de cette étape est

d’évaluer rapidement la performance telle que le processeur plus efficace soit utilisé.

La sélection du processeur affecte les étapes subséquentes dans le flot de
conception, car les interfaces matérielles et logicielles sont assemblées pour une
architecture spécifique. Le raffinement des interfaces matérielles et logicielles est
réalisé par I’environnement ROSES, ou le modéle de bus fonctionnel est généré. Dans
ce travail I’architecture virtuelle ne sera pas utilisée pour 1’estimation de performance.
D’autres travaux au sein du groupe TIMA, comme ceux proposés par Aimen
Bouchhima (2005), utilisent 1’architecture virtuelle pour faire I’estimation de

performance en utilisant un mode¢le abstrait de processeur.

Pour analyser la performance au niveau du bus fonctionnel, le prototype virtuel
est généré automatiquement a partir de la description de ROSES. Pour la génération du

prototype virtuel, on considére que les composants matériels sont décrits en SystemC au

17

niveau du cycle. Le logiciel est organis¢é en taches et exécute sur un systeme
d’exploitation spécifique pour ’application. Le prototype virtuel est généré dans

I’environnement MaxSim.

Spécification du systéme —— > @ <« Sélection du
i @ processeur pour
les composants
logiciels en
Exploration (a) 2. -
de l'architecture utilisant réseau
neuronal
- - VM1 VM2
Architecture virtuelle —>
(TLM)
CPU et matériel abstraits VM3 HW
b
ROSES (b)
Raffinage des Appl. Appl. - RrOtOtype
nterfaces e " virtuel:
steme steme
d’gxyp oitation d’eggloitation Analyse de
. performance
Niveau bus fonctionnel |——>| CPU CPU Matériel | intégrée
05 5 5 matériel et
Adap,tg|teur | | Adag‘ateur | | Adagta;teur ||Og|C|e|
T J J
Réseau d’interconnexion

()

Figure 2.2 - Flot de conception et estimation de performance en systémes MPSoC

2.2 Estimation au niveau de la spécification

Dans la premicre étape, on utilise 1’estimateur haut niveau pour évaluer la
performance des composants logiciels. Dans cette étude de cas, les tiches Encoder et
VLC sont évaluées. Malgré la simplification de ’architecture avec deux processeurs, la
sélection du processeur est un aspect important dans 1’exploration de 1’espace des

solutions.

Dans les expériences, deux processeurs sont utilisés: ARM946 et PowerPC750.
Ceux-ci ont certaines caractéristiques comme pipeline et mémoire cache qui rendent

difficile I’estimation de leurs performances.

Le réseau neuronal nécessite un entrainement pour calibrer 1’estimateur. Un
ensemble de 41 benchmarks est utilis€ pour entrainer et tester la précision de

I’estimateur. La Figure 2.3 montre le réseau neuronal utilis¢é pour estimer la

18

performance du processeur ARM946, ou les entrées sont le nombre d’instructions

exécutées par I’application (classifiées par type).

Forward Branche

Backward Branche

Load/Store —» Cycles
Multiple Load/Store ()
ALU Q
Input Hidden Output
Layer Layer Layer

Figure 2.3- L’estimateur pour le processeur ARM946

Pour chaque processeur, un ensemble de types d’instructions est choisi de telle
facon qu’il représente la performance de I’application. Dans le cas du processeur
PowerPC750, les instructions sont classifiées comme: branchement arriére,
branchement avant, load/store, opérations entieres et opération flottantes, comme

montre la Figure 2.4.

Pour I’entrainement du réseau neuronal, un simulateur précis au niveau du cycle
est nécessaire pour obtenir les instructions exécutées et les cycles consommés. Pour le
processeur ARM946, le simulateur fournit dans 1’environnement MaxSim (ARM, 2007)

est utilisé, et pour le processeur PowerPC 750 on utilise le simulateur Microlib (2007).

Forward Branche

Backward Branche

Load/Store Cycles
Integer
Floats
Input Hidden Output
Layer Layer Layer

Figure 2.4- L’estimateur pour le processeur PowerPC750

Le Tableau 2.1 résume les résultats de 1’estimation obtenus par I’estimateur basé

sur des réseaux neuronaux, pour les architectures PowerPC750 et ARM946. Le cott de

19

I’estimation est principalement du a I’obtention du nombre d’instructions exécutées.
Dans ce travail, les instructions exécutées sont obtenues en utilisant les simulateurs
fonctionnels disponibles dans I’environnement MaxSim et Microlib pour le processeur
ARM946 et PowerPC750 respectivement. La méthode proposée permet une estimation

rapide en raison de 1’accélération fournie par des simulateurs fonctionnels.

Tableau 2.1- Cycles estimés dans les processeurs ARM946 et PowerPC750

ARM (cycles)

ARM (instructions)

PowerPC (cycles)

PowerPC (instructions)

Encoder Task 255250

128230

114230

155032

VLC task 52694

23497

31478

25153

Les résultats de 1’estimation sont utilisés pour aider les décisions sur la sélection
du processeur qui exécutera la partie logiciel. Apres la sélection du processeur, cette
décision est signalée a chaque composant logiciel de 1’architecture virtuelle dans le
modele ROSES. Cette information sera utilisée pendant la génération des interfaces
matérielles et logicielles qui sont assemblées a partir d’une librairie de composants.
Dans notre ¢étude de cas, on va démontrer la génération du prototype virtuel pour le
processeur ARM946, et comparer la performance obtenue avec le prototype virtuel avec

les résultats de I’estimation basée sur des réseaux neuronaux.

2.3 Analyse de performance avec un prototype virtuel

Aprés la génération des interfaces matérielles et logicielles on utilise un
prototype virtuel pour valider et analyser la performance du systéme au niveau du bus
fonctionnel. L’environnement MaxSim (ARM, 2007) est utilis¢ pour générer le
prototype virtuel, permettant I’évaluation de performance. Les composants matériels
sont considérés comme blocs IP (intellectual property) en SystemC. Les interfaces
matérielles générées par ROSES sont déja disponibles comme les blocs SystemC. Les
composants SystemC sont encapsulés dans les composants Maxsim, puisque les
composants sont disponibles pour la simulation. Les composants logiciels avec le

systéme d’exploitation sont compilés pour 1’architecture cible et chargés dans la

mémoire pendant I’initialisation de la simulation.

20

La Figure 2.5 montre I’architecture MPEG4 dans I’environnement MaxSim

généré automatiquement a partir de la description ROSES. L’architecture est composée

par deux sous-systtmes CPU (VPROC et VVLCO) qui sont responsables pour

I’exécution des taches Encoder et VLC. Les composants matériels VINPUT,

VCOMBINER et VDMA sont décrits en SystemC. Les composants VANTENNA et

VSTORAGE sont utilisés pour envoyer I’image d’entrée et pour le stockage de I’image

de sortie respectivement.

La Figure 2.6 présente le sous-systtme CPU du composant VPROCO. Les

interfaces matérielles générées par ROSES sont automatiquement importées dans

MaxSim, comme les décodeurs d’adresse et le contréleur mémoire (CMIMemCitrl). Le

composant CMIarm7cc implémente les adaptateurs pour coordonner les transferts vers

le DMA.

B MaxSim Designer - [ColifTopi]

Fle Ecit Mew Insert Obiect Tools Simulstion Window Help

10D @ B9 B & %)= =k 5 [#® = a [T [@ o ? | o
| Wew Open Save | Cul Copy Faste Dol | Undo Fedo || Edit Connect | Comp Port Label || Clock | Signal | Trans | Grid In Ouwt 100% | Info |70 =
AHEZAHE AHBZM:
VINFUT VDMa
v data adtlr, s o VEOMBINER LJ AHBICMZ AHBICMI
pem ack ym data cs B data data in O data data out 0 v uanta
Hpm data v data. datah data ready O data en O F- v data
Lovm cuartps -, - oyovm data en —— —{fprrocd havedata event data rw OB —vm data adress
v redt i dlata. lencith B— procll ready event startd HH v dlata. :a;p—\
v et ym last datal— vieO data data in O startacob |y dats o ¥ GEjk AHBICKA AHBICMS
vm _target mosdule B vicO data ready 0 vicO data addr 0B wm data open vl
vicD havedata, eW—\wcqrdma data out OB wm rea A i Bus A Cere AN
vicD reacy evenf™ "% 7 EMCTT vieD data en OB v rst _ =]
i TH—ftrvm inout data addr vicO data rw OB Hierarchy Window = x|
wm inout data s wm eomb data adress b opatem
IR O Fim input data data wm comb data data
reseter[0] wm input data en wm comb data en B ST] 2 ;?VANTENNA (SystemC-
(’__:yvm ack B— ! Feset i v input data lencth v comb data open B S8 UCOMBINER (SysterC
e ot Lnlk—in i i input last data v st m_data ~
wn_rec — s _input_target module s rst_comb B —1 m\&ﬁ“rea VDM (ByatemC Mol
= il WINFUT (SystemC-Moc
II WPROCO {System)
- T E—— | = :.FVSTUHAGE (SystemC—
EHEEVLCD (System)
VA FAF MEMC CPldata bus out VA PAP SBML CPldata bus outh— i i reseter[0] {Other)
H CRIRRESET WA PAP MEMC CPldata ready b | CPIMRESET s PAP SBMC CPldata ready
s PAP INTM CPRint WP HAVEDATA EVENT CPlevnth1— WA PAP INTM CPint WP HAVEDATA EVENT CPlevnth =
s PAP MBMC CPladdr & READY EWENT CPlavnt] wa PAP SBMC CPladdr & READY EVENT CPlevnt —
it PaP MEMC CPldata w s PAP SBMC CPldata wn Farameter Window =]]
s PAP MEMC CFINEM e PAP SBMC CFIREM ety o e
Ly PAP MEBMC nRw WA PAP SBMC nRW

CalifTopi

[Ready

Figure 2.5 — L’architecture de I’encodeur MPEG4 dans I’environnement MaxSim

21

=

axs

SystemC modules generated by ASAG

opi¥PROCO

B

Hl= Edit Mew Insert DOhisct Tools Simulation MWindow Help
10 = =& |2 R I A (A = ol o KZ [| zoom:
| Mew Open Save | Cut Copy Paste Del | Undo fedo || Eeit Connect | Comp Port Label Tiock | sional fTrans | Grid in| out 1o00% | mre | 7o =
&1 =
Companent Window [== x|
AHEZAHE AHBZMx AHBICMZ
= i 1 1
i AHBICM3 AHBICM4 AHEICME
4 VP
[CPMGLR SERRTK 1l MTaraT T ‘L & & i
u! gg : D;' TQA CFl DEDPLII/'?
nFIG [AHE_Master AHB_Mast.. AHE_Slave
. CPInlRGEEECPIMAS CMIamTdeco
1 CPINWAIREE CPInEW 7|
Y CRINRW, CPIA CEIABORT & £ Bus A Core A Mem A Other
] / —F CPIMOCRIbanc select e
b CFINER InC SMemCirl R =
CFpEND IR REEram =
- CPINM CPInCSrom System]
CPINENIN B+ CMIMemCirl (SystemC—Moduls)
= CPIRWAIT B8k CMlarm? (System)
;/ 7 B-iddf CMlarmTee (System)
i CMlarmTdeco (SystemC —Module s =
CNIMCLR CNInRESET
B L G LEL Akt L] Ein = 0‘!“ | - = mln | B3 CMMtimer ¢ SystemC—Maclule)
CFI& CFIDATSB-H-H CFI& CFIDAT H r had T = B+E3 CHIMCLE (Qther)
CPIDOUT CPInWAITH-H Hp CPIDDRI@ata bus out B-E3 CIRRESET (Other)
ENT CPlevnt Hp CPIMATPIdata. ready
AL EVESE Crievntit— | L cPimcLr crimma— ?DF‘MELK (Surishe) 7|
CFinM L b CPladdr bus TRt ~— =
CPINRESET H CP Igate—toe.in ==
Ly CPInfv CPivogs TemeT || Parameter Window | x|
CPINEN -
BqEires Parameter % Value [= [we]mme |
[CPInRw
Lebane select
nRY
7]
] E

CaolifTopi ColifTopiVFROCO *

Figure 2.6— Sous-systeme CPU du composant VPROCO

Pour simuler la CPU, un modele de bus fonctionnel a été implémenté en utilisant

des processeurs, des mémoires et le bus disponibles dans la librairie MaxSim. La Figure

2.7 présente le modele de bus fonctionnel basé sur un processeur ARM9. Le processeur

est connecté a la mémoire en utilisant des interfaces TLM. L’intégration avec le reste du

systéme est réalisée par un adaptateur (mem_adapter) qui permet la communication des

interfaces TLM avec des interfaces au niveau des portes.

am9-cx[0] { ... | i | [mxanp1o) (Mx...| i mem_adapler...l i

CPIDATA

Y AmeA]
ARM fiq L I—’ mem

- clk-in

irg

irgotrd[0] vy ...

Irqiond ?—

k- clk-in ! Irgin g—

CPINYAIT

& CRIMAS &
i

| CRInWAIT

mxmem1[0] { ... | i

=P porto i elkin <

% CPINAG

Figure 2.7- Mode¢le de simulation du process

22

CPIRIRG

cur

le Wew Ohkject Control Debug Window Help

T T z o ATl A »woom M Hn L] 1 +* Stopped || n ‘ :| Zoom ?L:J
| Dpen sSave Close | Brkpts Frofle Trace | Fun Slop Slep Stepr | Fessl | AnimAL Sync Al [] Ui =
VINPUT (MXVINPUT) [+ VDMA (MXVDMA) [+ e
= (MXVCOMEINER)
wm_dlata_acidr [} data_acdcr_01
wm_ack vm_uata_cs# data_data_in_0 data_cata_out_0 ¥ _g|
win_tlata vm_data_dala# data_reacly_0 data_en_0 P vm_data
win_guanta. @Cm vmfdataﬁen# procd_havedata_event data_rw 0 wm_data acdress
B vm_req “wm_data_length fr— proci_ready_event startll wm_data_data /-—-—\
5 wrn_tst vm_last_dala# vloO_ciata_cata_in_0 startvicO wm_ciata_en SYSTEMC™
win_target_mnodule pr—i vloO_ciata_reach_0 wle0_clata_accir_0 wm_ciata_open
vle0_havedata_event /-—\ vle0_data_data_out_0 P ¥m_req
viel_ready_event SYSTEMC™ iell_data_en_0 b o _rst
Tl i gelect Application Files
g _
resetex]l] (Reseter) ‘ E Component Application Loack VSTORAC
&/ VPROCO.CMIarm? arm@-cx[0] [ARMI20T] Aocalioyamada/DIReEx46/ 05 GenfdRMT AP R OCOAPRO COaxT
vi_ack P B fizset 47 VWLCO.CMIarm7 arme —cx [0] [4RMIE -Cx] Aocalioyamada/DI48:48/ 05 GenfdRM7AAL COANVL CO 2t Ut Sl
data Pr— clk-in
c’:'nr:jeq — 6_
» Clear B Select File
VPROCO (ColifTapiVPROCH) Help |i
Wi FAE_WBIMC_CF Idata_bus_out | Wi AP _BBMC_CFlidata_bus_out
8 CPINRESET i, PAP_MBMC_CPldata_ready CPINRESET \ib,_PAP_SEMC_CPldata_ready J
VA _PAF_INTM_CFint WP _HAVEDATA _EVEMT_CFlevnt [VA&_PAF_INTM_CFint WP_HAVEDATA_EVENT_CPlevnt
(3 4s_PAP_MBMC_CFladdr_bus WP_READY_EVENT_CPlevnt | \4_PAP_SEMC_CFladdr_bus WP_READY_EWENT_CFlevnt
e PaF_MBMC_CPidata_bus_in 3 Vi&_FAP_SBEMC_CFidata_bus_in
B va_PAP_MBMC_CPIREN - va_PAP_SEMC_CPIREM
VA _PAF_MBMC_nRW L s PAP_SEMC_nRW
I =

T, <TOP>

Figure 2.8- Ecran de simulation de ’environnement MaxSim

MaxSim Explorer est utilisé pour simuler le systéme. La Figure 2.8 montre
I’écran de simulation. Pendant 1’initialisation de la simulation, les fichiers avec les

binaires de I’application et le systéme d’exploitation sont présentgs.

L’environnement MaxSim fournit un support pour la validation globale, en
utilisant des points d’arrét sur de code logiciel, registres, positions de mémoire et
connections. La Figure 2.9 présente I’écran avec le code assembleur du processeur
VVLCO. L’environnement supporte le déboguage pour tous les processeurs, facilitant la

validation des applications qui exécutent en architectures MPSoC.

La Figure 2.10 montre le temps d’exécution du logiciel divisé par fonctions dans
le processeur VPROCO. Ce type d’analyse permet la détection de points d’optimisations
et quelles sont les fonctions qui prennent plus de temps dans I’exécution de

I’application.

23

Fle Mew Ohisct Control Debug Window Help
H o B o = M b -
Open Save Close Brkpts Profile Trace Run Siop Step Stepn Anim Al Sync Al

- CPSR Dx00000043

Snoonin

Address

|0<000000B0 1300000
|0%000000B4 ¢ 1h0FD0E
| 0<0000008%
i 630002
s | 0x000000BC | ¢1217000
0+000000C0 +3a0ci340
‘0%000000C4 e3a000d3
|Dx000000CS 61217000
{D<000000CC 858034
:0x000000D0 ' 63300053
‘0%000000D4 1217000
:0x000000DS ebD0041 ¢
{0<000000DC $3a00018
< 0x000000ED e5971024
‘0%000000E4 ef1 23455
| D<O0DO0DES |
; 6580020
{0<000000EC 65501000

Current Banked

{0x000000FD £587001 ¢

NOF
MOVS PC, LR

 Start_Boot:

Start

MOV RO, #0xD2 >3 #0
M3k CPSA_g, RO

MOV 5P , #0xd0 2> #3
MOV RO, #0503 55> #0
M3k CPSA_e, RO

LDR 5P, [PC, 4+52]
MOV D, 40x53 >3 > 40
Mk CPSR_e, RO

BL C_Entry

MOV O, 4018 >3 > 40
LDFi Rl, [PC, #+36]
S #0x1 23458

LDFi RO, [PC, #+32]
LDFi Rl RO, #+0]
LDF; R, [PC, #+28]

ﬂﬂﬂﬂﬂ B

A

CPINRESET
iA_PAP_INTM_CFint
ib_PAP_MEMC_CFlaeidr_bus
iA_PAP_MBMC_CPldata_bus_in
“A_PAP_MEMC_CFIREN

., <TOP>

Wa_PAP_MEMC_CFPidata_bus_out
Wa_PAP_MBMC_CPldata_ready
WF_HAWVEDATS EWVENT_CFPlevnt
WF_READY_EWEMT_CFlevnt

CPINRESET
WiA_PAP_INTM_CFint
ib_PAP_SEMC_CPlador_bus

WA_PAP_SEMC_CPIEM

WA_PAP_SBMC_CPldata_bus_in

Wa_PaP_SBMC_CFPidata_bus_out
Wb_PAP_SBEMC_CFPidata_ready
WP _HAVEDATA_EWENT_CFlewnt
WF_READY_EWENT_CFlewnt

VCOMBINER (MXVCOMEINER)
Y
m_data_adress
m_data_data
e (AvsTERC™
m_data_open
B wm_recy
Hs om_rat
H f 1 [vsToRrac
! i | pmxvsTo
: LAY
id N

bt

Sirnulation Loaded

Simulation Reacy

BusMaster: Connecting slave-port <mem> to ColifTopi vWLCO. CMiarm? mxbus1 [0]—bus-master for acdress space 0x0 - Ox10EFFF

WARMNIMNG :: Cores supporting multiple application file extensions should have the property M3 _PROP_REFORT_FILE_EXT set t0 ves’

Commard >

arm@e-cx[0] (Current)

|i arm3e-cx[0]

ﬂCIlquez ici pour commencer FDP\VPHDCU 3 [System]

Figure 2.9- Session de débogage logiciel dans I’environnement MaxSim

Hile Mew Obiect Control Debug Winclow Help
= H o nooE N e [M [3 e 5o 188
Open Save Close | Brkpls Profle Trace | Run Siop Step Stepn | Resel | AnimAl Syno &1 L
VINPUT (MXVINPUT) | i VDMA (MXVDMA) ‘ i
YCOMEINER (MXVCOMEINER)
wn_dlata_addr data_addr_0 B,
8 vm_ack wm_data_cs data_data_in_0 data_data_out 0
[§ vm_tlata win_tlata_cata tata_reacly_0 data_en_0 . wm_data
—p vm_tuanta SyYysTeEMC™ f wm_data_adress
B vm_req wm_data_tata
(T8 vm_rat
v _t:
I 5,000 10,000 20,000 25 000 30,000
Funetion Humnber |
looohoonodoono oo b oo oo
Summary E] b4 v _memelr_w bind idet_int32_init
reseter[D] (Reseter) | 7 C-Eaty |
gl “ Fet proc_main_function 1
crmdata Br— clk=in —rt_memalr_w 1 4
vin_reg pi— ayspap_mbme_swit 1
" __trap_trap 1
pap_mbme_switch_ 1 ‘
init_processor__Spi 1
wvich _init 1
idct_int32_init 1
CFINRESET
W& PaF_INTM_CFint
Wa,_PAP_MBMC_CFladdr_bus
Wi _PAP MBMC_CPldata_bws_in
Wia_P&P_MBMC_CPIREN
KE——— T
2. Tops == =
& @la]
X simulation Loadec
"WARNING o Cores supporting multiple application file extensions should hawe the property ME_PROP_REPORT_FILE_EXT set to s
Simulation Feady
31,852 cycles, 7 45 sec, 4,278 46 cyclesiser
Command »|
‘@aﬁnﬂ—cx[ﬂ]

| Component: WWLED ¢ ColifTopiVyLED 3 [System |

Figure 2.10 — Temps d’exécution logiciel

24

Le Tableau 2.2 présente les résultats de 1’estimation de performance avec réseau
neuronal comparés avec ceux obtenus par le prototype virtuel. Pour le processeur
PowerPC750, un simulateur SystemC précis au niveau du cycle a été utilisé. Bien que
cette simplification limite ’analyse de performance, le simulateur permet de vérifier la
précision de I’estimateur basé sur des réseaux neuronaux. Pour le processeur ARM946,
I’erreur d’estimation a été de 4.26% pour la tache Encoder et de -8.29% pour la tiche
VLC. Pour le processeur PowerPC750 une erreur de 21% est obtenue pour la tiche
Encodeur. L’erreur pour le processeur PowerPC750 est légerement plus grande en

raison de la complexité du processeur.

On compare notre méthode avec 1’estimation basé€e sur la régression linéaire
proposée par Giusto et al. (2001). Dans le cas du processeur ARM946, la régression
linéaire donne des erreurs d’estimation de 60.25% et 58.66% pour les tiches Encoder et
VLC respectivement, ce qui démontre la flexibilité et la prédiction non linéaire de

I’estimateur basé sur des réseaux neuronaux.

Tableau 2.2- Comparaison de précision de I’estimateur de performance et le prototype

virtuel
ARM946 PowerPC750
Estimé Cycle précis | Erreur Estimé Cycle précis | Erreur
Encoder
255250 266630 4.26% 114230 151960 24.8%
Task
VLC Task 52694 48659 -8.29% 31478 31064 1.33%

Le Tableau 2.3 présente les temps nécessaires (en secondes) pour 1’estimation et
I’exécution du prototype virtuel. L’estimation basée sur des réseaux neuronaux permet
une accélération considérable par rapport a la simulation en utilisant le prototype
virtuel. Les réseaux neuronaux permettent une estimation rapide qui est important en
raison de I’augmentation de la partie logicielle dans les systémes embarqués. De 1’autre
coté, le prototype virtuel fournit une solution globale d’analyse intégrée des composants
matériels et logiciel qui permet la confirmation des valeurs estimées au haut niveau

d’abstraction.

25

Tableau 2.3 — Temps de simulation avec le prototype virtuel et I’estimateur des réseaux

neuronaux
ARM946 PowerPC750
Cycle Estimation | Accélération Cycle Estimation | Accélération
précis(s) (s) précis (s) (s)
Encoder Task 5.5 0.3 22.0 4.3 0.3 14.3
VLC Task 3.0 0.2 14.3 1.4 0.2 6.5

26

3 CONCLUSIONS

Dans cette thése, on propose une méthodologie intégrée pour la conception et
I’estimation de performance dans les systémes multiprocesseurs monopuces (MPSoC),
ou le support pour I’estimation de performance est fournit pendant le flot de conception.
L’environnement ROSES développé au sein du groupe TIMA est utilis¢é comme flot de

conception et intégré avec les outils de performance proposés dans cette these.

Au niveau de la spécification, on propose I’utilisation des estimateurs
analytiques pour guider la sélection du processeur qui permettent une estimation rapide
et précise. Les réseaux neuronaux sont utilisés comme estimateurs en raison de la
flexibilité et 1’adaptation non linéaire nécessaires pour l’estimation aux processeurs
d’architectures complexes. Les résultats de 1’utilisation des réseaux neuronaux comme
estimateurs ont €té présentés dans un article (OYAMADA et al., 2004) a la conférence

SBCCIL

On propose ’utilisation de méthodes basées sur la simulation pour analyser la
performance au niveau de bus fonctionnel. Dans ce travail, deux outils de performance

sont intégrés dans le flot de conception ROSES.

Dans le premier, I’environnement FlexPerf développé pour I’analyse de
performance des logiciels embarqués a été intégré dans le flot ROSES. Le simulateur de
processeur avec le support a I’analyse de performance disponible dans 1’environnement
FlexPerf est intégré dans le modéle de simulation en SystemC généré par ROSES. Cette
intégration a apportée le support a I’instrumentation et I’analyse de performance fournit

par I’environnement FlexPerf.

Le deuxiéme outil intégré dans le flot ROSES est I’environnement de prototype
virtuel MaxSim. Pour créer le prototype virtuel, un outil a été implémenté qui génere
automatiquement dans MaxSim un prototype virtuel a partir du modele de bus

fonctionnel. Pour I’exécution de la partie logicielle les simulateurs précis au niveau

27

cycle disponibles dans MaxSim sont utilisés. Le prototype virtuel fournit un modele de

validation global qui permet le débogage des applications dans I’architecture MPSoC.

Pour valider les outils d’estimation de performance développés dans cette thése
une ¢tude de cas d’un encodeur multiprocesseur MPEG4 a été démontrée. Cette plate-
forme impose quelques défis pour I’analyse de performance comme les multiples
processeurs et des composants de propriété intellectuel. L’¢étude de cas a permis
d’évaluer I’estimation de performance haut niveau et de comparer la précision avec le
prototype virtuel. Ce travail a été publié¢ dans la conférence ASPDAC (OYAMADA et
al. 2007).

3.1 Limitations des méthodes proposées et les perspectives

A partir des résultats obtenus dans le développement de ’étude de cas, quelques

limitations peuvent étre identifiées :

a) La précision du réseau neuronal est dépendante de la qualité des entrées utilisées
dans I’étape d’entrainement. Dans ce travail, I’ensemble d’entrainement a été
sélectionné¢ pour favoriser la généralisation, en utilisant des applications de

différentes tailles et domaines.

b) Pour ’entrainement de 1’estimateur, un simulateur précis au niveau du cycle est
nécessaire. Pour 1’étape d’utilisation, afin d’obtenir les instructions exécutées un
simulateur fonctionnel est utilisé. L’accélération de la méthode proposée est

dépendante de la vitesse du simulateur fonctionnel,

c) Le prototype virtuel utilise la simulation qui a un cofit élevé pour I’exécution de
grandes architectures avec nombreux processeurs. Dans ce cas, le prototype
virtuel peut étre utilisé pour analyser I’initialisation ou seulement des parties

spécifiques du code.

Malgré les contributions obtenues dans ce travail, quelques perspectives potentielles

sont identifiées :
a) L’étude de I’application des réseaux neuronaux pour I’estimation de energie ;

b) L’utilisation de paramétres architecturaux dans le réseau neuronal, comme

proposé par Ipek (2006) ;

28

¢) L’utilisation d’un outil de profilage générique et la traduction pour le processeur
cible, pour remplacer le simulateur fonctionnel utilisé dans 1’étape d’estimation

du réseau neuronal ;

d) L’intégration de la méthode d’estimation proposée dans ce travail avec autres

langages de spécification comme UML et Simulink;

e) La génération du prototype virtuel avec canaux au niveau transactionnel (TLM),

pour fournir une simulation plus rapide.

29

BIBLIOGRAPHIE

ARM — MaxCore. Disponible a <http://www.arm.com >, 2007.

BONACIU, M.; BOUCHHIMA, A.; YOUSSEF, W.; CHEN, X.; CESARIO, W.;
JERRAYA, A.A. High-Level Architecture Exploration for MPEG4 Encoder with
Custom Parameters. In: ASIAN AND SOUTH PACIFIC DESIGN AUTOMATION
CONFERENCE, ASP-DAC, 11th, 2006, Yokohama, Japan. Proceedings... New York:
ACM Press, 2006. p.372-377.

BOUCHHIMA, A.; BACIVAROV, I.; YOUSSEF, W.; BONACIU, M.; JERRAYA,
A.A. Using Abstract CPU Subsystem Simulation Model for High Level HW/SW
Architecture Exploration. In: ASIAN AND SOUTH PACIFIC DESIGN
AUTOMATION CONFERENCE, ASP-DAC, 10th, 2005, Shanghai, Chine.
Proceedings... New York: ACM Press, 2005. p.18-25.

GIUSTO, P.; MARTIN, G.; HARCOURT, E. Reliable Estimation of Execution
Time of Embedded Software. In: DESIGN AUTOMATION AND TEST IN EUROPE,
DATE, 2001, Munich, Germany. Proceedings...IEEE Computer Society Press, 2001.
p. 580-585.

IPEK; E. MACKKE; S. SUPINSKI; B. SCHULZ; M. CARUANA; R. Efficiently
Exploring Architecture Design Spaces via Predictive Modeling. In: INTERNATIONAL
CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING
LANGUAGES AND OPERATING SYSTEMS, ASPLOS, 2006, San Jose, USA.
Proceedings... ACM Press, 2006. p. 195-206.

MEYEROWITZ, T.; KISHINEVSKY, M.; KAM, T.; LAVAGNO, L
SANGIOVANNI-VINCENTELLI, A. Modeling Microarchitectural Performance using

30

Metropolis: Performance Estimation and Back-Annotation. Technical Report. July,

2004. http://www.eecs.berkeley.edu/~tcm/projects.html.

MicroLib —PPC 750. Disponible a <http://microlib.org>, 2007.

OYAMADA, M.S.; CESARIO, W.; BONACIU, M.; WAGNER, F.R.; JERRAYA,
A. Software Performance Estimation in MPSoC Design. In: ASIAN AND SOUTH
PACIFIC DESIGN AUTOMATION CONFERENCE. ASP-DAC, 12th, 2007,
Yokohama, Japan. Proceedings... IEEE Press, 2007. p. 38- 43.

OYAMADA, M.S.; ZSCHONARCK, F.; WAGNER, F.R. Accurate Software
Performance Estimation Using Domain Classification and Neural Networks. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN. SBCCI,
17th, 2004, Porto de Galinhas, Brazil. Proceedings... ACM Press, 2004. p. 175-180.

PAOLI, S.; GALIX, E.; SANTANA, M. FlexPerf: A performance evaluation
framework for embedded software and architectures. ST Journal of Research. v. 1, n.
2, p. 17- 31, September 2004.

31

ANNEXE A ESTIMATIVA DE DESEMPENHO DE
SOFTWARE EMBARCADO EM SISTEMAS
MULTIPROCESSADOS INTEGRADOS EM CHIP

Marcio Seiji OYAMADA
Laboratoire TIMA — INPG
LSE Lab - UFRGS

33

1 ESTIMATIVA DE DESEMPENHO DO PROJETO DE
MULTIPROCESSADORES INTEGRADOS EM CHIP

O aumento na capacidade de integracdo de tranmsistors permite o desenvolvimento
de solugdes compostas por varios processadores, componentes de aplicacdo especifica e
interfaces digitais e analdgicas em um tinico chip. Atualmente, constata-se o aumento de
solucdes com varios processadores em um unico chip, denominadas MPSoC (sistemas
multiprocessados em tnico chip- multiprocessor system-on-chip). Em compara¢do com
solugdes puramente em hardware, a utilizagdo de processadores fornece a flexibilidade e

heterogeneidade necessaria em sistemas embarcados.

O projeto de um sistema embarcado ¢ guiado por requisitos de projetos restritos. O
fluxo de projeto de um MPSoC necessita de ferramentas para verificar se os requisitos
estdo sendo satisfeitos. O desempenho ¢ normalmente o principal critério adotado para
guiar a exploragdo da arquitetura. No entanto, outros aspectos precisam ser avaliados

nos estagios iniciais do projeto, tais como poténcia consumida, energia e area.

A estimativa de desempenho ¢ um processo continuo e pode ser aplicada em
diferentes niveis de abstragdo como apresentado na Figura 1.1. Durante a especificagdo
do sistema, a estimativa de desempenho auxilia no particionamento das funcionalidades
em componentes de hardware e software, a selecdo do processador, ¢ a atribuicdo de

tarefas entre os processadores.

A arquitetura virtual ¢ um modelo onde o software ainda ndo foi mapeado para o
processador alvo e a comunicacdo ¢ realizada utilizando transagdes. Como a
interconexao ainda nao estd definida, neste nivel é possivel explorar as diferentes
possibilidades de mapeamento dos canais no nivel de transagdes (TLM - transaction

level model), na estrutura de comunicagao.

No nivel funcional do barramento (BFM- bus functional model) as interfaces de

hardware e software ja estdo refinadas e o software é compilado para o processador

34

alvo. Neste nivel, o detalhamento das interfaces e do sistema operacional possibilita

uma analise precisa do desempenho do hardware e software.

System Specification

Architecture exploration

Virtual Architecture
Model at TLM Level

Performance Estimation Tools

> Processor Selection

HW/SW Interface

HW/SW interface refinement

BFM Level

Partitioning

Memory mapping

SoC Integration

RTL Level

v

Delay estimation

”

Scope of
this work

Figura 1.1- Ferramentas de estimativa de desempenho nos diferentes niveis de

apresentacao

Devido ao aumento na utilizagdo de processadores nos projetos de MPSoC, e como

conseqiliéncia o crescimento da parte em software, ferramentas para estimativa de

desempenho em software precisam ser desenvolvidas. Ferramentas de estimativa de

desempenho podem ser divididas em trés grupos: simulacdo, modelos abstratos e

anotacdo do codigo (MEYEROWITZ, 2004). Métodos baseados em simulacdo utilizam

simuladores com precisdao de ciclos para estimar o tempo de execugdo. Modelos

abstratos ou analiticos utilizam fungdes de custo para calcular o tempo de execucao do

software. Métodos no nivel intermediario sdo baseados na anotacdo do codigo com

custo de execugdo. Desta forma, a aplicagdo executa nativamente, sendo vantajoso em

relacdo a simulacdo ciclo-a-ciclo devido a rapidez na obtengdo dos ciclos consumidos

pela aplicagao.

35

Devido ao aumento do nimero de processadores e também as possiveis variagdes na
interconexao entre os mesmos, a andlise isolada do desempenho do software torna-se
altamente imprecisa. Desta forma, um modelo de estimativa de desempenho integrado

de hardware e software ¢ necessario.

Este trabalho propde métodos para a estimativa de desempenho, que sdo necessarios
devido ao grande espaco de projeto que ndao pode ser explorado manualmente ou
verificado somente quanto um prototipo de hardware esteja disponivel. Considerando o
aumento da complexidade dos processadores utilizados em sistemas embarcados, ¢
necessario que as ferramentas de estimativa de desempenho possam estimar o
desempenho neste tipo de arquitetura. Neste trabalho, um modelo analitico de
estimativa de desempenho baseado em redes neurais ¢ proposto. Por outro lado,
ferramentas de estimativa de desempenho que considerem de forma integrada os
componentes de hardware e software do sistema ¢ necessario. Este trabalho apresenta a
utilizacao de prototipos virtuais como forma de avaliar o desempenho do sistema no
nivel BFM, que provéem um modelo global de simulagdo, permitindo a avalia¢do

conjunta do desempenho dos componentes de hardware e software.

1.1 Integracio de estimativa de desempenho no projeto de MPSoC

Esta tese propde uma metodologia para a analise e estimativa de desempenho em
sistemas multiprocessados integrados em unica pastilha (MPSoC- multiprocessor
system-on-chip). Neste trabalho o ambiente ROSES ¢ utilizado para guiar o fluxo de
estimativa de desempenho. O ambiente ROSES utiliza um paradigma baseado em
componentes para refinar as interfaces de hardware e software em um MPSoC,
utilizando como entrada uma arquitetura virtual composta de modulos de hardware e
software interconectada por canais TLM. Os componentes de hardware sdo
considerados como caixa-preta, onde somente a interface ¢ conhecida. Os componentes
em software sdo modelados como um conjunto de tarefas, que sdo mapeadas para os

processadores na arquitetura.

Neste trabalho, um método para estimar rapidamente o desempenho do software
baseado em redes neurais € proposto para guiar a selecdo de processadores. Redes
neurais se mostraram uma solu¢do adequada para modelar o comportamento nao linear

do software executando em um processador com recursos avangados tais como pipeline,

36

caches, predicdo de desvios entre outros. Experimentos realizados com diferentes
arquiteturas tais como PowerPC 750, DSP, ARM, e um processador Java, mostraram a
flexibilidade de redes neurais para utilizagdo na estimativa de estimativa de desempenho

do software.

Apoés a selecdo do processador, o ambiente ROSES ¢ utilizado para refinar as
interfaces e gerar o modelo no nivel funcional do barramento (BFM — bus functional
model). Nesta tese, ¢ proposta a geragdo de modelos globais de simulagdo a partir do
modelo funcional do barramento (BFM), permitindo a analise integrada de desempenho
de hardware e software. Com isso, um fluxo sistematico para gerar modelos de
simulacdo com suporte para analise de desempenho ¢ obtido, acelerando o tempo de

projeto.

1.2 Estimativas de desempenho baseadas em redes neurais

No nivel da especificagdo, a exploracao do espaco de projeto visa encontrar uma
solugdo que satisfaga os requisitos de projeto. A exploragdo do espaco de projeto pode
ser realizada de diferentes maneiras, tais como a modifica¢cdo da arquitetura (niimero de

processadores ou elementos de aplicagdo de especifica) e o particionamento de tarefas.

A selecao do processador apropriado para executar uma determinada tarefa em
software ¢ uma parte importante da exploracdo do espaco de projeto (Figura 1.2). A
utilizagdo de processadores complexos com recursos avangados tais como memorias
cache, predicdo de desvios e pipeline tornam a estimativa de desempenho uma tarefa

complexa.

37

Performance Estimation Tools

System Specification y Processor Selection

Estimated software execution time

Architecture exploration

Simulation model

Virtual Architecture . HW/SW Interface

Model at TLM Level Partitioning
Communication requirements

/ between the components

HW/SW interface refinement

OS overhead,
Memory mappin

BFM Level Simulation modeJ
/ mn time
in a cycle accurate
Synthetizable RTL

RTL Level model

v

Delay estimation

Figura 1.2 — Integragdo da estimativa de desempenho no fluxo global de projeto

Redes neurais foram escolhidas para a estimativa de desempenho devido a
generalizacdo do comportamento mesmo quando o processo a ser modelado ¢ altamente
ndo-linear. Neste trabalho, uma rede do tipo feed-forward ¢é utilizada, devido a sua
simplicidade e adaptacdo ao comportamento ndo-linear necessarios na estimativa de
desempenho de software. A rede utilizada neste trabalho ¢ composta por uma camada de
entrada, uma camada escondida, e uma camada de saida. Cada camada pode conter
diferentes nimeros de neuronios, sendo cada neurdnio configurado com uma fungao de

transferéncia.

Nosso método de estimativa ¢ dividido em duas etapas: treinamento e utilizacao. Na
etapa de treinamento, um conjunto de benchmarks ¢ apresentado para rede neural. Nessa
etapa, a entrada sdo as instrugdes executadas pelas aplicagdes e classificadas por tipo

(por exemplo desvios, operacdes aritméticas € acessos a memaria).

A Figura 1.3 apresenta a fase de treinamento em detalhes. Na etapa 1, um simulador
ciclo-a-ciclo ¢ utilizado e as instrugdes executadas sdo classificadas por tipo (etapa 2).

Nas etapas 3 e 4 um processo de aprendizagem, baseado no algoritmo backpropagation,

38

altera os pesos dos neurdnios, adaptando a rede neural para responder com o valor

desejado. A fase de treinamento € realizada utilizando o software Matlab.

)

Profile of
benchmark set
and extraction
of executed
instructions and
cycles

Instruction Type Number of m

o occurrences
classification [D/ST m
Compare number
——— INT e of estimgted
cycles with
number of real
FLOAT N3 cycles and adjust
the weights
BRANCH N4

Figura 1.3- Treinamento da rede neural

Apds a fase de treinamento o estimador de desempenho estd pronto para ser

utilizado nos projetos subseqiientes. A Figura 1.4 apresenta as principais etapas da fase

da utilizagdo. Para estimar o desempenho, € necessario compilar a aplicagdo para o

processador alvo, e obter as instru¢des executadas utilizando um simulador funcional.

As instrugdes classificadas sdo apresentadas como entrada a rede neural para que a

mesma possa estimar o numero de ciclos consumidos pela aplicagdo.

Dynamic instruction count

mov R2, R1
load R1, [R3]
add R5, R4, R3

store R1, [R3]

Instruction
e Type Number of

classification OCCUITEnces

LD/ST N4
 —
INT N2 Estimated
cycles

FLOAT n3
BRANCH o

Figura 1.4- Fase de utilizacdo da rede neural

A Figura 1.5 apresenta a rede neural utilizada para estimar os ciclos no processador

4

PowerPC750. A camada de entrada é composta por neurdnios com fungdes de

transferéncia lineares e a camada escondida ¢ composta por neurdnios com fungdes de

transferéncia ndo lineares (tansig). A camada de saida utiliza também uma funcio de

39

transferéncia linear. A escolha desses tipos de fun¢des de transferéncia foi devido ao
comportamento nao linear a ser modelado. Os testes com outras configuracdes, esta

arquitetura resultou nos melhores resultados.

Forward Branche

Backward Branche

Load/Store
] 0 -
Integer.
-1 -1
Floats . .))
a = tansig(n) a = purelin(n)
Input Hidden Output
Layer Layer Layer
(a) Rede neural (b) Fun¢do de transferéncia (c) Fungdo de transferéncia
tansig linear

Figura 1.5- Rede neural para o processador PowerPC 750 (a), e as fungdes de

transferéncia tansig(b) e linear (¢)

Para cada arquitetura um estimador diferente ¢ criado. Devido a essa restri¢do, o
método proposto ¢ eficiente para a exploragdo do espaco de projeto da parte de
software, com o objetivo para avaliar as alternativas de implementacao de algoritmos e
o particionamento de tarefas entre processadores de um conjunto pré-definido de

arquiteturas, visto que modificagdes arquiteturais necessitam de um novo treinamento.

1.3 Analise de desempenho integrada de hardware e software
utilizando modelos de simulacao

Apo6s o refinamento das interfaces de hardware e software um modelo no nivel
funcional do barramento (BFM) ¢ gerado pelo ambiente ROSES. No modelo BFM, os
componentes em hardware s3o modelados em SystemC e os componentes de software
sdo tarefas compiladas para o processador alvo. A comunicagdo e sincronizagdo das
tarefas em software sdo realizadas através de um sistema operacional customizado para
a aplicagdo. Para analisar o desempenho do sistema no nivel BFM (Figura 1.6), ¢
proposto a integracdo de duas ferramentas no fluxo de projeto ROSES: FlexPerf e

MaxSim.

40

Performance Estimation Tools

e C cod)
System Specification s > (_Processor Selection

Estimated software execution time

Architecture exploration

Virtual Architecture Simulation model ~HW/SW Interface
Model at TLM Level / Partitioning
C

ommunication requirements
/ between the components

HW/SW interface refinement

BFM Level Simulation modeJ OS overhead,
/ SW execution time
in a cycle accurate
Synthetizable RTL
model . .
RTL Level »(Delay estimation

Figura 1.6- Integracdo de prototipos virtuais no ambiente ROSES

O framework FlexPerf (PAOLI; GALIX; SANTANA, 2004), permite a andlise de
desempenho através de uma biblioteca que suporta a instrumentacdo e geragdo de
eventos em um simulador. O framework prové um conjunto pré-implementado de
modulos de analise de desempenho, possibilitando a extensdo e customizacao das
mesmas. O framework FlexPerf tem fluxo bem definido para gerar modelos de
simulagdo de processadores utilizando a linguagem LISA, com todo o suporte
necessario para a andlise de desempenho do software embarcado. Desta forma, a
integracdo com o ROSES permitiu a geragdo de modelos de simulagdo de uma
arquitetura MPSoC, com suporte para a analise de desempenho. A ferramenta CosimX
foi alterada para gerar modelos SystemC utilizando processadores disponibilizados pelo
FlexPerf. Desta forma, uma arquitetura MPSoC pode ser simulada e o devido suporte
para analise desempenho ¢ fornecida. Neste trabalho, uma arquitetura multiprocessada
de um codificador MPEG4 foi gerada e analise de desempenho do hardware e software

realizada.

41

Uma outra forma de disponibilizar a analise de desempenho no nivel funcional do
barramento ¢ a utilizacdo de protdtipos virtuais. Neste trabalho, a ferramenta MaxSim
(ARM, 2005) foi integrada ao ambiente ROSES, de forma que um protdtipo virtual
possa ser gerado automaticamente a partir de uma descri¢do da arquitetura. O ambiente
MaxSim prové uma biblioteca de processadores, memorias, barramentos e periféricos.
Alguns desses componentes, tais como processadores e barramentos possuem recursos
para analise de desempenho. O ambiente MaxSim suporta também a integragdo de
componentes descritos em SystemC, facilitando assim a utilizacdo de componentes pré-

existentes na biblioteca de componentes ROSES.

2 ESTUDO DE CASO: CODIFICADOR MPEG4

Nesta se¢do a estimativa de desempenho de uma arquitetura multiprocessada de um
codificador MPEG4 serd apresentada utilizando as ferramentas de estimativa de
desempenho desenvolvidas nesta tese. A arquitetura MPEG4 proposta por Bonaciu et al.
(2006) ¢ uma implementagao paralela desenvolvida para fornecer a flexibilidade suporte

a diferentes esquemas (profile) de codificagdo.

Rate control

. 2 |

Coded

<+ Combiner _’Image

F —> DCT
n Input

=
Estimation| | Comp.
Intra

Prediction

VLC

Reconstruct
Encoder Task (SW) VLC Task (SW

' ;]

DMA

Figura 2.1- Arquitetura do codificador MPEG4(Bonaciu et al., 2006)

A arquitetura do codificador MPEG4 ¢ composta por cinco componentes

principais, como mostra a Figura 2.1 :

42

- Input. este componente ¢ responsavel por receber a imagem de entrada e

enviar para a tarefa Encoder;
- Encoder task: esta tarefa executa a parte principal da codificagdo MPEG4 ;

- VLC task: esta tarefa realiza a compressao da imagem utilizando o algoritmo

de Huffman;

- Combiner: este componente prepara o resultado final da compressdo da

imagem;

- DMA (Direct memory access).: este componente de hardware ¢ responsavel
por realizar todas as transferéncias entre os componentes da arquitetura

MPEG4.

A Figura 2.1 apresenta a arquitetura do codificador MPEG4 com dois
processadores. O primeiro processador executa a tarefa Encoder, enquanto que o
segundo processador ¢ responsavel por executar a tarefa VLC. O fluxo de execugdo do
codificador inicia-se pela carga da imagem no processador Encoder pelo componente
Input. Apds a execucdo, os dados sdo transferidos para o processador VLC. Apoés a
compressao da imagem realizada pela tarefa VLC, a imagem comprimida ¢ enviada para

a unidade de armazenamento pelo componente Combiner.

2.1 Fluxo de estimativa e analise de desempenho

Na andlise do codificador MPEG4, o fluxo de projeto apresentado na Figura 2.2 sera
seguido. A partir da especificagdo do sistema descrito em linguagem C, a estimativa de
desempenho serd realizada utilizando o estimador baseado em redes neurais. No estudo
de caso, somente os componentes de software Encoder e VLC serdo utilizados na

analise de desempenho.

A primeira etapa da estimativa serd utilizada para guiar a sele¢do do processador
que serd responsavel pela execu¢do dos componentes em software. Nesta etapa, dois
processadores serdo avaliados: ARM946 e PowerPC750. O objetivo desta etapa ¢é
avaliar rapidamente o desempenho e qual o processador mais adequado para ser

utilizado.

A selecao do processador afeta as etapas subseqilientes do fluxo de projeto, pois as

interfaces de hardware e software sdo geradas para uma arquitetura especifica. O

43

refinamento das interfaces de hardware e software ¢ realizado pelo ambiente ROSES,
onde o modelo funcional do barramento ¢ gerado. Neste trabalho a arquitetura virtual
ndo serda utilizada para propodsitos de estimativa de desempenho. Outros trabalhos
desenvolvidos no grupo TIMA, como os propostos por Aimen Bouchhima
(BOUCHHIMA, 2005) utilizam a arquitetura virtual para realizar a estimativa de

desempenho utilizando um modelo abstrato do processador.

Para analisar o desempenho do modelo no nivel BFM, um prototipo virtual ¢ gerado
automaticamente a partir da descricdo ROSES. Para a geracdo do prototipo, ¢
considerado que os componentes de hardware serdo disponibilizados em SystemC no
nivel ciclo-a-ciclo. O software e organizado em tarefas que executam sobre um sistema
operacional gerado durante o refinamento das interfaces de software. O protdtipo virtual

¢ gerado no ambiente MaxSim.

selection for SW

System Specification [——> @ @ @ <«— Processor

components using

)) NN estimator
Virtual Architect ::> VM VM2
Irtiual Arcnitecuure
Model at TLM Level
Implicit CPU, abstract HW VM3 HW
ROSES)
HW/SW interface Appl Appl. <«— Virtual prototype:
efinemen Tasks ask Integrated HW
oS 0oSs and SW
performance
BFM Level ——>| cpu CPU HW | analysis

Explicit CPU and OS, RTL hardware

|- L [
HW V\ﬁ\pper| | HW ,\i,q'apperl |HW \Aﬁapper|

Intercommunication Network

Figura 2.2— Fluxo de projeto e estimativa de desempenho em MPSoC

2.2 Estimativa no nivel da especifica¢io

Na primeira etapa, foi utilizado um estimador de alto nivel para avaliar o
desempenho dos componentes de software. Neste estudo de caso, as tarefas Encoder e

VLC sao avaliadas. Apesar da simplificacdo da arquitetura com apenas dois

44

processadores, a selecdo do processador ¢ um aspecto importante na exploragdo do

espago de projeto.

Nos experimentos, dois processadores sdo utilizados: ARM946 e PowerPC750.
Estes processadores tém certas caracteristicas como pipeline ¢ memoria cache que

tornam a estimativa de desempenho dificil.

A rede neural necessita de um conjunto de treinamento para calibrar o estimador.
Um conjunto de 41 benchmarks ¢é utilizado para treinar e testar a precisdo do estimador.
A Figura 2.3 apresenta a rede neural utilizada para estimar o desempenho do
processador ARM, onde as entradas sdo o numero de instrugdes executadas pela

aplicacdo (classificadas por tipo).

Forward Branche

Backward Branche

Load/Store 5 Cycles
Multiple Load/Store “7
ALU O
Input Hidden Output
Layer Layer Layer

Figura 2.3- Estimador para o processador ARM946

Para cada processador, um conjunto diferente de tipos de instrugdo € escolhido de tal
forma que estes representem da melhor forma o desempenho da aplica¢do. No caso do
processador PowerPC750, as instrugdes sdo classificadas como: desvio para um
enderegco a frente, desvio para trés, load/store, operagdes em inteiros € operacdes de

ponto flutuante (Figura 2.4).

Para o treinamento da rede neural, um simulador ciclo-a-ciclo ¢ necessario para
obter as instrugdes executadas e os ciclos consumidos. Para o processador ARM, o
simulador fornecido no ambiente MaxSim (ARM, 2007) ¢ utilizado, e para o

processador PowerPC750 ¢ utilizado o simulador Microlib (MICROLIB, 2007).

45

Forward Branche

Backward Branche

Load/Store Cycles
Integer
Floats
Input Hidden Output
Layer Layer Layer

Figura 2.4- Estimador para o processador PowerPC750

A Tabela 2.1 resume os resultados obtidos pelo estimador baseado em redes neurais
para as arquiteturas ARM946 e PowerPC750. O custo principal da estimativa ¢
relacionado a obtencdo do numero de instrugdes executadas. Neste trabalho, as
instrugdes executadas sdo obtidas utilizando um simulador funcional disponivel nos
ambientes MaxSim e Microlib para os processadores ARM946 e PowerPC750
respectivamente. O método proposto permite uma rapida estimativa comparado com a

simulacao ciclo-a-ciclo devido a aceleracao fornecida pelos simuladores funcionais.

Tabela 2.1- Ciclos estimados nos processadores ARM e PowerPC

ARM (ciclos) | ARM (instrugdes) | PowerPC (ciclos) | PowerPC (instrugoes)
Encoder Task 255250 128230 114230 155032
VLC task 52694 23497 31478 25153

Os resultados da estimativa de desempenho sdo utilizados para auxiliar nas decisdes
sobre a escolha do processador que executara a parte em software. Apos a selecdo do
processador, esta decisdo ¢ assinalada em cada componente de software na arquitetura
virtual no modelo ROSES. Esta informacdo serd utilizada durante a geragdo das
interfaces de hardware e software que serdo montadas a partir de uma biblioteca de
componentes. Em nosso estudo de caso, serdo apresentados o refinamento e geracao do
prototipo virtual utilizando processadores ARM946, e sera comparado o desempenho

obtido com o prototipo virtual com os resultados obtidos com as redes neurais.

46

2.3 Estimativa de desempenho utilizando prototipos virtuais

Apobs a geracdo das interfaces de hardware e software ¢ utilizado um protétipo
virtual para validar e analisar o desempenho do sistema no nivel funcional do
barramento (BFM). O ambiente MaxSim(ARM, 2007) ¢ utilizado para gerar o prototipo
virtual, permitindo a avaliagdo do desempenho. Os componentes em hardware sdo
considerados como blocos de propriedade intelectual (IP), disponibilizados em
SystemC. As interfaces em hardware geradas pelo ambiente ROSES durante o
refinamento também sao disponiveis em SystemC. Os componentes SystemC sao
encapsulados em componentes MaxSim, para que os componentes sejam disponiveis
para simulagdo. Os componentes de software juntamente com o sistema operacional sdo
compilados para a arquitetura alvo e carregados no simulador do processador durante a

inicializag¢ao da simulacao.

A Figura 2.5 apresenta o prototipo virtual do codificador MPEG4 no ambiente
MaxSim. O protdtipo virtual foi gerado automaticamente a partir da descrigdo ROSES.
A arquitetura ¢ composta por dois subsistemas contendo processadores (VPROCO e
VVLCO) que sao responsaveis pela execugdo das tarefas Encoder e VLC. Os
componentes em hardware VINPUT, VCOMBINER e VDMA sdo descritos em
SystemC. Os componentes de simulagdo VANTENNA e VSTORAGE sao utilizados

para enviar a imagem de entrada e para armazenar a imagem de saida.

A Figura 2.6 apresenta em detalhes o subsistema VPROCO. As interfaces de
hardware geradas pelo ambiente ROSES sdo automaticamente importadas no ambiente
MaxSim, como os decodificadores de endere¢o e¢ o controlador de memoria
(CMIMemCtrl). O componente CMIarm7cc implementa os adaptadores utilizados para

coordenar as transferéncias através do DMA.

47

B MaxSim Designer - [ColifTopi]

Figura 2.6— Subsistema do componente VPROCO

48

Fle Edit Mew Insert Dbisct Iools Simuiation MWincow Help
0 o= E3 & FO SR F Top @ o :
Mew Open Save | [ut Copy Faste Del | Unde Fedo || Edit Connect | Comp Port Lebel || Clock | Signal | Trans | Grid I Out 100% | Info
x|
Companent Window - x|
AHEZAHE AHBZM:x
VINPUT YDMA | i
e data. addr B data addr OB VEOMBINER J AHEICHM2 AHBICMS
vm ack v data o3 data data in O data data out 0B vm auanta,
vm data vm data catap data ready 0 data en O pvm data
Lowm quantee, - - Cavcvm dala enf—— —ftperocd havedata event data rw 0 Fevm data adress
vm rea wm data lenath — prochl ready event start vm data ?—\ -
vm rst v last ciata l—— VIO data data in O startvlcOb | g ot EiC AHBICHE AHBICME
wm_tarcret module B— IO data ready 0 IO data addr 0B vm data open vl
Wil havediata e?gm—\y_lcnwdata data out OR ym rex Al Bus A Core Al |
IO ready everd =Y > " < 7" uicD data en DB vm rst =
it wm input data addr vicD data rw D Hierarchy Window -] x|
1 wm inpout data cs wmn comb data adress e
ANTENEA] (i vm inout date. data vm comb data data i
reseter] 0] wmn irput data en wmn comb data en R TS] B2 VANTENNAS (SysternC-
- vm input data lenath vm comb data open EH# VCOMBINER (SystemC,
wm input last data. wm rst m_datal
xm, B VDMA (SystemC-Mod
- vin_input_terset_ moduls m_rst comb R A (SystemC-tlacl)
- VINPUT (SystemC—Mor,
g VPROCD (System)
EHi# VSTORAGE (SystemC—
V¥PROCO L VVLCO L il
BHig WLCD (System)
VA FAP MBMC CFidata bus out A PAF SBMC CFldata bus outh B 1 reseter|a] {Other)
1+ CPINRESET WA PAP MBMC CPldata reav i | CPInRESET Ve, FAP SBMC CPldata reacyf—
fpua FAP INTM CRint WP HAVEDATA EVEMT CFlevntb{—! WA PAP INTM CPint WP HAVEDATA EVENT CPlevnth I
[UA FAP MBMC CPladdr READY EVEMT CPlevnt i WA PAP SBMC CFladr READY EVENT CPlavnth =
HpwA PAP MEMC CPidata. Wi, P&F SBMC CPldata ||| Parameter Wincow ==
[FaP MBMC CPIREN WA PAP SBMC CFIMEN Farameter [value
Lbua PAP MBMC nRw WA PAP SBMC nfw
4|
I = =
ColifToy
['Readv %
Figura 2.5 — Prototipo virtual do codificador MPEG4 importada no ambiente MaxSim
e <Sim Designe olifTopiVPROCO]
Hle Edit Mew lnsert Obiect Iools Simuation Window Help
0O = & & B x| = o Ly e A iy e L
Mew Open Gave | Cuf Copy Paste Dol | Undo Fedo || Edit Connect | Comp Port Label Tiock | signal /Trans | Gria | owt 100% | info |70 2
4 {1 x|
Component Window =
AHEZAHE AHBZMx AHEICMZ
= P 1 13
[_EEp AHBICMZ AHBICM4 AHEBICHS
LFdn
[P CPRITIE S EwTIRD Il KriTarms T ‘L g E !
CFIDATE CFIA
L CPInFIG, CPIDOUT]
1] AHB_aster AHB_hiast.. AHE_Slave
CPInIRGEEECPIMAS CMIsnn7deco
p CPInwal CPInEW v
{3 CPInfw SRl CEIABORT] Al A Bus A Core A Mem A Gther
- — CPIMCLRIbone select =i
t——b CPINEFING StemCtrl BT - x
PR | CPENE B o & =
=z CPInk CPInCSrom [T |
CRINENIN [ChilMemEtrl (SystemC -Hodule)
Y CF NI E CMlarm? (System)
[Chilarm7ee (System)
¥] L
[CHlarm7deco (SystemC-hadule)y
CMIanaZas L] CMIMemGtr L‘ |ENIMELE m‘“ | CHIMISEL i Chiltimer (SystemC ~horule)
CFIA CFIDATAR- CFIA CFIDATA)| H [b‘ﬂ hed B EJ CNIMCLE (Other)
CRIDOUT CPinwAITH-H | | Hp CPIDCRIBata bus out B E3 CNIRRESET (Other)
BMT CPlevnt HF CPIMAEPldata ready
Bz BT criemtH— Lp CPIMCLE CRinwaTh— [ECERMeLE -GSy vi
CFInM L CPladcr bus =
CPINRESET H CPIgade—trae. |
Ly CPInRw CPfiog: o= e | Parameter Window | x|
CFINEN
TLSEnet Farameter % [ssalue [= o[wvee
[+ CPInFw
Lpbane select
nEw
5
= P
Coliffopi | ColifTopivPROCO *
s 2

Para simular a CPU, um modelo funcional do barramento foi implementado

utilizando processadores, memorias € os barramentos disponiveis na biblioteca

MaxSim. A Figura 2.7 apresenta o modelo funcional do barramento para o processador

ARMDO. O processador ¢ conectado a memoria utilizando canais TLM. A interligacao do

processador com o resto do sistema ¢ realizada por um adaptador (mem_adapter), que

permite a comunicacao das interfaces TLM com as interfaces no nivel de portas.

arm9-cx[0] { ... | i

mzahb1[0] (M= ... | i

mem_adapler...l i |

CFRIDATA |

aht = bl g b,'!li’m P

k= clk-in
ARM
k= clk-in irg
irgetd[0] {Iry ... | i

k= clk-in ! Irqin g—

Irqc %—

Be CRIMAS

CRINYAAIT CPINYaIT

mxmem1[0] | ... | i

} portn

clk-in <4
icteial

% CRINFIG

CRInIRG

Figura 2.7- Modelo de simulagdo do processador ARM9

B AEH
Fle Mew Dbiest Control Debug Window Help]
I'e H O = T E T 5] i e Stopped | n | || Zoom =
Open Save Close Brkpts Profile Trace Aun Stop Step Stepn Feset Apirn Al S A L | u 100 :
VINPUT {(MXVINPUT) ‘ i VDMA (MXVDMA) i A
= VCOMBINER (MXVCOMEINER)
M _data_addr p dlata_accr_0
win_ack vm_cata_cs # data_data_in_0 cata_ciata_out_0 W _0]|
win_data win_data_data # data_reacy 0 data_en_0 B vm_data
vm_uanta % y g 7 g pheT™ Ym_tata_en P procl_havedata_event data_rw_il wm_data_adress
P ym_req wm_data_length Pr— procO_ready_event start0 wm_cata_cata /’—\
5 wrn_tst vm_laﬁt_dala# vloO_cata_data_in_0 startvicd wm_ciata_en SYSTEMC
win_target module pr— vle0_data_ready 0 wle0_cata_acdr 0 wm_data_open
vlcll_havedata_event /-—-\ violl_data_data_out_0 i vm_reg
vlcO_ready_event SYSTEMC wleO_clata_gn_0 T8 vm_rst
_—l E,“ Select Application Files
L]
Ci it lication Loaced
reseter]l] (Reseter) ‘] amponen Application Loacke oA
t\/\IPHDED Chlarm? armd-cx 0] [ARM320T] docalioyamadaiDIVx48:45/05GenfARMTAFROCONVPROCO axf (MXVSTO
vil_ack P m fieset &/ VWLCO.CMIarm? armde —cx [0 [SRMIE -CH] Aocalioyamada/DI e Ex48/0 5 GenfaRM7 AAL COAL COaxT
¢ data Pr— clle-in
® Clear W Select Fle |
o i L]
VPROCO (Colif Topi VPROCH) Help |
WB_PAP_MEBMC_LPldata_bus_out Wa_PAP_SBMC_CPldata_bus_aut
= CFINRESET b, PAF_MBMC_CPldata_ready CPINRESET b, PAP_SEMC_CPldata_ready J

Wib_PAF_INTM_CFint

Wi FAF_MBMC_CF laddr_bus
e PaP_MBMC_CPldata_bus_in
Wi _PAF_MBMC_CFIREN
Wib_Pa&P_MBMC_nRw

WP _HAVEDATA_EVEHT_CPlevnt ﬂ» I
WP_READY_EVEMT_CFlevnt B

Wd_PAP_INTM_CFint
Wi_FAF_SEMC_CPladdr_bus
[Vi&_PAP_SBMC_CPldata_bws_in
P VA&_PAF_SEMC_CFINEM

— \A_PAF_SBMC_nRwW

WP_HAVEDATA_EWVENT_CFPlevnt

WP _READY_EVENT_CPlevnt

R, <TOP

Figura 2.8- Tela de inicializacdo da simulacao

49

O ambiente MaxSim Explorer ¢ utilizado para simular o sistema. A Figura 2.8

apresenta a tela de inicializacdo da simulagdo. Durante a inicializacdo, os arquivos

contendo os binérios da aplicag¢do e do sistema operacional sdo carregados na memoria.

O ambiente MaxSim fornece um suporte para a validacao global, utilizando pontos

de parada (breakpoints) no codigo da aplicagdo, registradores, posi¢des da memoria e

conexodes. A Figura 2.9 apresenta a tela com o codigo assembler da tareta VLC. O

ambiente suporta o debug de todos os processadores simultaneamente, facilitando a

validagdo de aplicagdes concorrentes executando em arquiteturas MPSoC.

A Figura 2.10 apresenta os tempos de execugao do software dividido por fungdes no

processador VPROCO (tarefa Encoder). Este tipo de andlise permite a deteccao de

pontos de otimizacdo e quais sdo as fungdes que gastam mais ciclos durante a execugao

da aplicacao.

File

Mew Obiect Control Debug Window Help

BEI&S"}'

(2= S T

Run Stop Step Stepn

|] Fln 4

Brkpts Profile Trace

-R2 0x00000000
A3 Ox00000000
R4 0400000000
|-FAS Ox00000000
|- 0x00000000
|-R7 0x00000000
-FR& 0x00000000
|-RS 0x00000000
|-R10 0x00000000
Rl 0+00000000
-2 0x00000000
|-5F_ 0x00000000
LR 0x00000010
RIS 0x000000:0
-PC__ 0x000000ke
[CPSR 000000043

-

Apim &l Sync Al

Stopped

X ly for YVLCO.CMlarm 7. arm9e-cx[0] VCOMEINER (MXVCOMEINER) =
BpE (o e LCO) e
wm_d|
| Adiress: ’7 ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ g vm_data
Address DOpcode _D!ﬁa\ssemb_[y ﬂ vim_data_adress
000000060 | 21300000 HOF i dala dady h .
00000004 ' 1007008 MOVS PC, LR vmn_dataen (SYSTEMC
000000088 Start_Boot: vn_dlata_open
3300042 MOV RO, #0=D2 » 7> 40
= 0x000000BC &1211000 MSR CPSA_c, RO [P vm-red
0x000000C0 e3a0d540 MOV 5P, #0x40 555 49 T8 vm_rst
0x000000C4 33000013 MOV RO, #0=03 »>5> 40
0=000000C5 ¢1211000 MSR CPSR_e, AD |||
0=000000CC 55034 LDR 5P, [PC, #+52]
000000000 3300053 MOV RO, #0:53500 M| | Y
000000004 1211000 MSR CPSF_e, D = VSTORACG
00000000 eh00041 ¢ BL C_Entry (MXVSTO

0x0000000C e3a00018
0x000000E0 | e5971024
0x000000E4 ef123456
0x000000E3

&59f0020
0x000000EC, 5901000

Current Banked

0x000000F0 | e59f001¢

MOV RO, #0518 > »> 40
LDR RI, [PC, #+36]
W1 #0%123456

Start

LDR RO, [PC, #+32]
LDR A1, [RO, #+0]
LDR RO, [PC, #+26]

y]

L— CFINRESET

[WA_PAP_INTM_CPint

& WA_PAF_MEMC_CFladdr_bus
& VA_PAP_MBMC_CPldata_bus_in
— WA_PAP_MBMC_CPIREN

Ly iin oao wiokem eou

WA_FAP_MBMC_CFidata_bus_out
Wa_PAP_MBMC_CFldata_reacy
WP_HEWVEDATA_EVENT_CPlevnt
WP_READY_EVENT_CFlevnt

r

-P CPINRESET

A _PAP_INTM_CFint

i~ \ib_PAP_SBMC_CFladdr_bus

-1 Vi_PAP_SBMC_CFldata_bus_n
{-B \ia_PAP_SBMC_CPIREN

t b oan cowe cour

UA?’AFLSBMCfCPIdataﬁbustut
Ve_PAP_SBEMC_CFldata_ready
WP _HAEWVEDATA_EVENT_CPlevnt
WF_READY_EVENT_CFlevnt

<]

. <TOF>

Simulation Loaded

Simulation Reacdy

X Bustfaster: Connecting slave—port <mem: to ColifTopi WL CO. Chlarm? mibus 1 [1] -bus—master for address space 0x0 — 0x1DEFFF

WARMING :: Cores supporting multiple application file extensions should have the property MX_FROP_REPORT_FILE_EXT set to yes’

Commanl |

|® armBe—cx[0] { Current) | armde -cx[0]

ﬂCquuez ici pour commencer ITD;JIVPHEI CO) [System]

Figura 2.9- Sessdo de debug do codigo fonte da tarefa VLC

50

File Vew DObiest Confrol Debuy Window Help

cE B oo E W B »om o om0 I W Stopped | @ =
o Open Sawe Close Brkpts Profie Trace Fun Slop Step Stepn Reset Anim Al Syne Al L] L o0 :
VINPUT (MXVINFUT) B VDMA (MXVDMA} [[~
VCOMEINER (MXVCOMRBINER)
ym_dlata_acldr data_acldr_0 B -

[F vm_ack wm_ciata_ts - data_data_in_0 data_data_out 0 wrn_g
[vin_data win_slata_data < data_reacy_D data_en_0 - wm_elata,

LB vm_quanta /_h\ - (T data_ach

= sYysTEMC™ |25 wm_data_acress
B vm_req wm wm_data_data
¥ Frafiling Manarser
e vm_rat o) "
= Function Prefiling for VPROCO.CMlarm7.arm9-cx[0]
E Function Profiing for VPROCD.CMiarm?7 & CH|
0 5,000 10,000 15,000 20,000 25,000 30,000
—-—| Function Murnber ¢
Lo ool o
t Summary W rt_mremelr_w idlct_int32_init
C_Ent
resetex[0] (Reseter) [i i)
wm_req pi—! 3y3pap_tnbme _swit

_trap_trap

- Pagp_tnkbme _switch_
i init_processor_ S
VPROCO (Colif TopiVPROCD) vt _init

: Y
1|
wn_ack t Fesst M proc_main_function 1 J.l

v data pr— clk—in B __rt_memclr_w . 4
1
: EE
: .
1
1
1

idct_int32_init

i:l

'+-p CPIRRESET
i~pviA_PAP_INTM_CFint
-] vis_PAP_MBMEC_CPsddr_bus
i Wa_PaP_MBMC_CPldata_bws_in

|- vis_PAP_MBMC_CPINEN

. ors T [- | =
S | | @lal
X simulation Loadsd

"ARNING o2 Cores supporting multiple application file extensions should have the property ME_PROP_REPORT_FILE_ERXT set t0 es
| Simulation Ready
| 31,882 cycles, 7.45 sec, 4,279.46 oyclesisec

K

| command | |

‘ J———
[Component: $A/LCO { ColifToptA/LCD) T System |

Figura 2.10 — Tempos de execucao das fun¢des da tarefa Encoder

A Tabela 2.2 apresenta os resultados da estimativa de desempenho com redes
neurais comparadas com os valores obtidos utilizando o protétipo virtual. Para o
processador PowerPC750, um simulador em SystemC ciclo-a-ciclo ¢ utilizado. Mesmo
que esta simplificacdo limita a andlise de desempenho, o simulador permite a
verificagdo da precisdo do estimador baseado em redes neurais. Para o processador
ARMY946, o erro de estimativa foi de 4.26% para a tarefa Encoder e de —8.29% para a
tarefa VLC. Para o processador PowerPC750 um erro de 21% ¢ obtido para a tarefa
Encoder. Os erros no processador PowerPC750 sdo ligeiramente maiores devido a

complexidade do processador.

Comparamos o nosso método de estimativa baseado em redes neurais com o da
regressao linear proposto por Giusto et al. (2001). No caso do processador ARM946, a
regressdo linear resulta em erros de estimativa de 60,25% e 58,66% para as tarefas
Encoder e VLC respectivamente, que demonstra a flexibilidade da precisdo ndo linear

do estimador baseado em redes neurais.

51

Tabela 2.2- Comparacao entre a estimativa baseado em redes neurais e o prototipo

virtual
ARM946 PowerPC750
Estimado Ciclo-a-ciclo | Erro Estimado Ciclo-a-ciclo |Erro
Encoder
255250 266630 4.26% 114230 151960 24.8%
Task
VLC Task 52694 48659 -8.29% 31478 31064 1.33%

A Tabela 2.3 apresenta os tempos necessarios (em segundos) para a estimativa e a
execucdo do protétipo virtual. A estimativa baseada em redes neurais permite uma
aceleracdo consideravel comparado com a simulagdo utilizando protétipos virtuais. As
redes neurais permitem uma rapida estimativa de desempenho. Tal caracteristica ¢
importante devido ao aumento da parte em software nos sistemas embarcados. Por outro
lado, o protdtipo virtual fornece uma solucdo global de andlise integrada dos

componentes de hardware e software que permite a confirmacao dos valores obtidos na

estimativa de alto nivel.

Tabela 2.3 — Tempos de simulacdo do prototipo virtual comparados com a estimativa

baseada em redes neurais

ARM946 PowerPC750
Ciclo-a- | Estimativa | Aceleragao Ciclo-a- | Estimativa | Aceleragao
ciclo(s) (s) ciclo (s) (s)
Encoder Task 5.5 0.3 22.0 4.3 0.3 14.3
VLC Task 3.0 0.2 14.3 1.4 0.2 6.5

52

3 CONCLUSAO

Nesta tese, ¢ proposta uma metodologia integrada para a concepgao ¢ estimativa de
desempenho em sistemas multiprocessados em unico chip (MPSoC), onde o suporte
para a estimativa de desempenho ¢ fornecido durante o fluxo de projeto. O ambiente
ROSES desenvolvido no grupo TIMA ¢ utilizado como fluxo de projeto e foi integrado

com as ferramentas de estimativa de desempenho desenvolvidas nesta tese.

No nivel da especificagdo, ¢ proposta a utilizagdo de estimadores analiticos para
guiar a sele¢do do processador, permitindo uma estimativa rapida e precisa. As redes
neurais sdo utilizadas como estimadores devido a flexibilidade e adaptagdo nao-linear
necessaria para a estimativa de desempenho em processadores complexos. Os resultados
da utilizagdo das redes neurais como estimadores foram apresentados em um artigo

(OYAMADA et al., 2004), na conferéncia SBCCI.

Métodos baseados em simulacdo sdo utilizados para analisar o desempenho do
sistema no nivel funcional do barramento (BFM). Neste trabalho, duas ferramentas

(FlexPerf e MaxSim) sdo integradas no fluxo de projeto ROSES.

A primeira ferramenta chamada FlexPerf, foi desenvolvida para a andlise de
desempenho do software embarcado. Esta ferramenta foi integrada ao fluxo de projeto
ROSES possibilitando a analise de desempenho de arquiteturas geradas pelo ROSES.
Na integracdo, os modelos de simulagdo de processador com suporte a analise de
desempenho fornecidos pelo FlexPerf foram integrados ao modelo de simulagdo
SystemC gerado pelo ambiente ROSES. Esta integra¢do adicionou ao ROSES todo o

suporte a instrumentagdo e analise de desempenho fornecidas pelo ambiente FlexPerf.

A segunda ferramenta integrada ao ambiente ROSES foi a ferramenta para

modelagem e simulacao de prototipos virtuais MaxSim. Para criar um protétipo virtual,

53

uma ferramenta foi implementada para que o modelo ROSES no nivel BFM seja gerado
automaticamente no ambiente MaxSim. Para a execu¢do da parte em software os
simuladores ciclo-a-ciclo disponiveis no MaxSim sdo utilizados. O prototipo virtual
fornece um modelo de validagdo global, permitindo o debug de aplicagdes concorrentes

executando em arquiteturas MPSoC.

Para validar as ferramentas de estimativa de desempenho desenvolvidas nesta tese
um estudo de caso de um codificador MPEG4 baseado em uma arquitetura
multiprocessada foi demonstrado. Esta plataforma apresenta alguns desafios para a
analise de desempenho tais como a existéncia de multiplos processadores e de
componentes de propriedade intelectual. O estudo de caso permitiu a avaliagdo da
estimativa de desempenho em alto nivel e a comparagdo com os resultados obtidos na
simulacdo ciclo-a-ciclo utilizando o protdtipo virtual. Este trabalho foi apresentado na

conferéncia ASPDAC (OYAMADA et al., 2007).

3.1 Limitacdo dos métodos propostos e trabalhos futuros

A partir dos resultados obtidos no desenvolvimento dos estudos de caso, algumas

limitagdes podem ser identificadas:

a) A precisao da rede neural ¢ dependente da qualidade das entradas
utilizadas durante a fase de treinamento. Neste trabalho, um conjunto
de treinamento foi selecionado para favorecer a generalizagdo,

utilizando aplicac¢des de diferentes tamanhos e dominios;

b) Para o treinamento um estimador ciclo-a-ciclo ¢ necessario. Para a
etapa de utilizagdo, a fim de obter as instrugdes executadas um
simulador funcional ¢ utilizado. A aceleracdo do método proposto
neste trabalho ¢ dependente da aceleracdo fornecida pelo simulador

funcional em relacao ao simulador ciclo-a-ciclo;

C) O protdtipo virtual utiliza a simulagdo que tem um custo elevado para
a execu¢do de grandes arquiteturas com varios processadores. Neste
caso, o prototipo virtual podera ser utilizado para analisar somente
partes especificas do software como a inicializa¢ao ou o tratamento de

interrupgoes.

54

Apesar das contribui¢des obtidas neste trabalho, algumas perspectivas potenciais

podem ser identificadas:

a)

b)

d)

O estudo da aplicagdo de redes neurais para a estimativa da energia

consumida pelo software;

A utilizagdo dos parametros arquiteturais na rede neural, como

proposto por Ipek et al. (2006);

A utilizacdo de uma ferramenta de profile genérica e a posterior
tradu¢do para o processador alvo, com o objetivo de substituir o

simulador funcional utilizado na etapa de utilizacdo da rede neural;

A integragdo dos métodos de estimativa propostos neste trabalho com

outras linguagens de alto nivel como UML e Simulink;

A geragdo do protdtipo virtual utilizando canais TLM, fornecendo

assim uma simulag¢ao mais rapida.

55

56

ANNEXE B SOFTWARE PERFORMANCE
ESTIMATION IN MPSoC DESIGN

Marcio Seiji OYAMADA
Laboratoire TIMA — INPG
LSE Lab - UFRGS

57

58

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMSccccoiiinnnnnnnnnnnssssssssnnnnes 61
LIST OF FIGURES........ ot nm s 63
LIST OF TABLES e 67
ABSTRACT ...t s enn s s s s e e e e e nnmmn s 69
RESUMO.......cooiirreeecciinnrrrrnnemsssnns e ERRO! INDICADOR NAO DEFINIDO.
1 INTRODUCTION......coiiiiiriieeiiis s rrssssssss s s s s s s s s e s s s s nnmnssssssssssnnnns 7
1.1 Performance Estimation in MPS0C DeSignccicervvnericnisnnrecsscnnnncsssnnsecsans 72
1.2 Need for IMpProvementeeceecercssnrcssnnrcssssncssssncssssscsnsene 74
1.3 Integration in MPS0C DeSign FIOWccoovvueiiciicnniccsisnnricsssnnnccssnssecsssssssscans 74
2 MPSOC DESIGN ...t s s ssssssssss s s s s nnmsssssssss s s s s s snnnnnns 78
2.1 Design Methodologies......ccoueeieriinnniicnsssnnnecsssnsncsssssnsesssssssesssssssssssssssssssssssssess 79
2.1.1 ADSLraction LeVelS.......c.ooiiiiiiiiiiiieeeee e 79
2.1.2 Platform-based DESIZNcc.eevuiiiiiieiiieiieie ettt 80
2.1.3 Component-based DeSI@N.........ccecveiiiiiieiiiieeiie e 80
2.2 MPSOC ATCRILECTUTES ccuueerersueecssunrcssanecssneecssnnessssesssssnessssnesssssessssssssssscsssssssssaee 81
2.2.1 PrOCESSOT ...ttt et 81
222 IMEIMOTY ..ttt ettt et ettt et e s e et e et e et eeeabeesnbeesnneas 83
223 INtEICONNECTION ...ttt 84
22.4 SOC PlatfOrmS....cccuviiiieeiieeiiecit ettt ettt e 85
23 SOftWAre DESIZIN c.cccuueiiervericssericssnrissssnicsssnessssnesssnessssnssssssosssssosssssssssesssssessssssses 87
2.3.1 Programming MOdELScccuieriiiiiiiiiiieiiesie et 88
2.4 ROSES MPSoC Design EnVironmentcoeeeeccercscsencssnencsssnscssssecssssssanses 91
24.1 HW/SW Interface ADSIractionccceceeriieiiienieeniienieeiieeie et 92
2.4.2 HW Wrapper Generation - ASAG........coocvveeiieeeiiieeieeeee et eeiee e 94
243 SW Wrapper Generation — ASOGcooovieiiiiiiiniieiieeeeee e 94
244 Simulation Model Generation — CoSIMXcccueeiieriieneenieeiee e 95
2.5 Performance EStIMAtionccoeieineiiiieiiiisninnsnneinsnecsseecsssnecsssnecsssescsseecsssnes 96
2.5.1 Software Performance Estimation.............coocooiiiniiiiiiiiinniiiiecceeeee, 97
252 Integrated Hardware and Software Performance Estimation........................ 101
2.6 Integrated MPSoC design and software performance estimation............. 109
2.6.1 DISCUSSION. ...ttt ettt ettt et e et te et e tae e bt e ssaeebeesaeeenseensneenseas 112
3 ANALYTIC SOFTWARE PERFORMANCE ESTIMATION............ccceeeeee 114

59

3.1 Neural Network Performance EStIMAtion......ccccceeeuueerieeeereeeeeneeeseeccsseeenseeenes 115

3.2 EXPerimental Setcccoveieiveinisnninssnnisssnnesssnncsssnsssssssssssssssssssssssssssssssssassssnes 119
33 Generic EStIMAtorcccceeeeeeeeerereeceecerecerecesenenenesesesenene .. 120
3.3.1 PowerPC Generic EStIMator..........ooovvvvviiiiiiiiiiiiiiiieeeeee et e e 120
3.3.2 FemtoJava- a Java MicrocONntrollerooovvvviiiiiiiiieieiiiee e 123
333 Athlon XP Generic EStImMator..........coovvevviiiiiiiiiiiiiiiiiiieeeee et e e 124
34 Automatic Domain Classificationcccceeseeeseeens 125
3.4.1 PowerPC 750 Domain-specific EStimator..........ccccecevveneiiiiniencniicnceenne. 126
342 Athlon XP Domain-specific EStimator..........cccceeviiieeiiieniieenieeeieeeiee e 127
35 CONCIUSIONS ceeeeeeeeeeeeeerrrrrssneeeeececcssssonssnseeseescssssssassssssssessssssssanssssssssssssssansassssees 128
4 PERFORMANCE ESTIMATION AND ANALYSIS USING AN
INTEGRATED HARDWARE AND SOFTWARE SIMULATION MODEL....... 130
4.1 FIEXPEIT ...ueeeeeeeeeerereneneeeeeneeeneneeeeesesssesesesssesssssssssesssssesssssssssssssssssssssasssssasssssasans 133
4.1.1 System ArchiteCture VIEW......c..cccueriiriieniiriinieiieniceee sttt 135
4.1.2 APPLCAION VIEW....uiiiiiiiiiiiiecieeee ettt e 135
4.13 ANALYSIS VIEW .ottt st 135
4.1.4 Simulator INStrumentationcocveeeieiiiieeieeieeee e e 136
4.2 ROSES and FlexPerf Integration.........ceccvceicsseicssescssnnscsssnscssssssssssssssansses 137
4.2.1 Case Study- FIFO Analysis in a Monoprocessor System...........c.cceeeevennne. 139
422 Case Study- MPEG4 Encoder Multiprocessor Systemc...cocceveeeenneenne. 140
4.3 MaxSim ESL DeSi@N....coucinienreniseensenssnensaenssnesssenssnesssesssassssessssssssessssssssssssaee 143
4.4 ROSES Integration 145
4.5 CONCIUSIONS .eeeeeeerererereeeeeeeeeeeneeesesesssesssesesesssssesssesssesesssssssssssssssssssssssssssssssssasan 146
B CASE STUDYoiceiiiiiiiriirre s rses s rsasrrsns s rns s ssnas s s m s s rsn s s ennsssennsssennsnrs 148
5.1 Performance Estimation and Analysis FIOWcceivverenveicssnicsseccssenccnnns 149
5.2 High-level EStimationcceicinveiciivercissnncssnncssnncssnnicsssnssssssssssssssssssssssassssnns 150
5.3 Virtual Prototype Performance Analysiscccceeueee. . 152
5.3.1 MPEG4 Encoder Virtual Prototype.........ccccoeeeieniininiinieninicneeeeeeeenen 153
6 DISCUSSION AND FINAL REMARKS..........o e e er e 160
6.1 Limitations of the Proposed Methods and Future Works.........ccccceeeeuerene. 161
REFERENCES. ...ttt rrses s rsesress e s s s s s s e na s s e na s e nna s e nnnssennns 163

60

LIST OF ABBREVIATIONS AND ACRONYMS

ADL Architecture Description Language
API Application Programming Interface
ASIC Application-Specific Circuit

BFM Bus-Functional Model

CFG Control Flow Graph

CISC Complex Instruction Set Computer
CMOS Complementary metal-oxide semiconductor
CPU Central Processing Unit

CPI Cycles per instruction

DMA Direct Memory Access

DSP Digital Signal Processor

FIFO First-In First-Out

GPP General Purpose Processor

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HW Hardware

/O Input and Output

IP Intellectual Property

IPC Inter-Process Communication

ISS Instruction Set Simulator

MIMD Multiple Instruction Multiple Data
MPEG Moving Picture Experts Group
MPSoC Multiprocessor System-on-Chip
(O] Operating System

PDA Personal Digital Assistant

RISC Reduced Instruction Set Computer
RTL Register-transfer Level

RTOS Real-time Operating System
SIMD Single Instruction Multiple Data
SMP Symmetric Multiprocessing

SoC System-on-chip

SW Software

TLM Transaction-Level Model

UML Unified Modeling Language

VLC Variable Length Coding

VLIW Very Long Instruction Word
WCET Worst-Case Execution Time

XML Extended Markup Language

61

62

LIST OF FIGURES

Figure 1.1- Typical MPSOC SOIUtION.........eoiiiiiiieiieiieeiieeie ettt 71
Figure 1.2- Concurrent HW/SW codesign (JERRAY A, 2005)......cccocvvevieeeiieeniieennenn. 72
Figure 1.3- Performance estimation tools and abstraction levels............ccccooceeviriennnee. 73
Figure 1.4- Performance estimation design flowcccceeeviieeiiieeiiiecciee e, 75
Figure 2.1- MPSoC abstraction 1eVels...........ccccoeviiiiiiiieniieieie et 79
Figure 2.2- Market share of 32-bit embedded processors (IDC, 2007)........cccccecvveenneee. 81
Figure 2.3- Operational states in StrongARM processor (BENINI, 2000) 82
Figure 2.4- Processor power-consumption (ZHANG; VAHID; LYSECKY, 2004)...... 83
Figure 2.5- Cache size and its influence on system power consumption (ZHANG;

VAHID; LYSECKY, 2004)ueeiieiieeieeie ettt ettt 84
Figure 2.6- Communication topologies (a) point-to-point, (b) bus-based connection, and

(C) NEtWOTK-0N-CRIP ...viieiieeie e e e e e 85
Figure 2.7- Nomadik architecture (NOMADIK, 2007)......c.ccccveevieniieiienieeieenieeieeneeen 85
Figure 2.8- Platform OMAP 1610 (OMAP, 2007)....ccceeuerieieierieeieeieeeee e 86
Figure 2.9- Phillips Nexperia PNX8550 (GOOSSENS et al., 2005)cccceveevveriennenn. 87
Figure 2.10- Software application 1ayers...........cccveerciieeriiieeiiie e 88
Figure 2.11- OpenMP parallel program example..........ceecveerieeiiienieniieenieeieeiee e 89
Figure 2.12- Distributed objects COMPONENTS.........ccevveeerieeeriieeriieerieeerieeerveeeeeeeeeeeees 90
Figure 2.13- DSOC model for platform mapping (PAULIN et al., 2004) 91
Figure 2.14- ROSES design flow (CESARIO et al., 2002).......ccccceeevrieevcrieeniieeieeenen. 92
Figure 2.15- Virtual architecture (CESARIO et al., 2002).......ccccoeveeriiinieeiieiienieenen. 93
Figure 2.16- Hardware wrapper architecture (CESARIO et al., 2002)ccccevveennneen. 94
Figure 2.17- Application-specific OS generation flow (GAUTHIER et al., 2001)........ 95
Figure 2.18- Executable model generation in CosimX (SARMENTO et al., 2004)...... 96
Figure 2.19- Static WCET analysSiS.......ccceeviieiieiieiiieiieeie ettt 98
Figure 2.20- MPARM system architecture example (BENINI et al., 2005)................ 102
Figure 2.21- LISA simulation and SystemC integration levels (WIEFERINK et al.,

2004) ettt ettt et e s ae e bt enteeneeteeneesneeteenaens 103

Figure 2.22- Adaptation between event models in SymTA/S (RITCHER et al., 2003)

.. 105
Figure 2.23- Lahiri’s method for communication architecture exploration (LAHIRI et

ALy 2001 ettt bttt ettt ae 107
Figure 2.24- Platune SoC base platform (GIVARGIS; VAHID, 2001)........ccccceeuennee. 108
Figure 2.25- Integrated MPSoC design and performance estimation flow 110
Figure 3.1- Performance estimation tool in a global design flowccccccvverivennnn. 115
Figure 3.2- Estimation tool development and utilizationccccceevieeiiieniienienncnn. 117
Figure 3.3- Steps in the training phase of the estimator.............cccoeovvevviierieeiiienieennn. 117
Figure 3.4- Estimator utilization phasecoecieiieiiiiinieeiiee e 118
Figure 3.5- The neural network and the transfer functions used in its hidden layer and

OULPUL LAYCT ..ttt et ettt e et eseaeeaeeas 118
Figure 3.6- Cycle and instruction count distribution.............ccceeeeeevieniieenienieenieennns 120
Figure 3.7- NN for the PowerPC experimentsc.cccceveereeneniineeneniinecienienene 121
Figure 3.8- Prediction errors using 5 input parameters: backward branch, forward

branch, load/store, integer, and floating-point............cccceeveeriienienieenienieeee 122
Figure 3.9- Prediction errors for the FemtoJava microcontroller.............cccceveenienne. 123
Figure 3.10- CFG weight method............cooiiiiiiiiiiiiecceeeeeee 125
Figure 3.11- Estimation process with automatic domain classification 126
Figure 3.12- Comparison between generic and domain-specific estimators for 3

different architectures (Athlon XP, PowerPC, and ADSP).......cccceevvvciveriieneenen. 128
Figure 4.1- Performance estimation tools in MPSoC designcccccceevienienenicnnene 130
Figure 4.2- SOC design flOW........oooviiiiiiiiieiiieiiecie ettt ettt sve e ees 131
Figure 4.3- Performance estimation using CPU abstract models (adapted from

Bouchhima (2005))....cccuiiiiiiiieiiieiieeie ettt e be e ene 132
Figure 4.4- FlexPerf graphical user interface (PAOLIL; SANTANA; GALIX, 2004).. 134
Figure 4.5- FlexPerf framework components............ccccceevieeciienieeiiienieeeesieeiee e 134
Figure 4.6- Simulator instrumentation from LISA processor description.................... 136
Figure 4.7- FIFO channel instrumentation eXample.............cccceeeeveerieniieenienieeneeeneens 137
Figure 4.8- ROSES and FlexPerf integration flow..........ccccoeciniininiiniininiiniiicnes 138
Figure 4.9- FIFO simulation model...........ccccoooieriiiiieiiieieeiccee et 139
Figure 4.10- FIFO analysis reSUILSccoiiviiiiiiriiniiienecieccreeceeeeeee e 140
Figure 4.11- MPEG4 encoder architecture (BONACIU et al., 2000)ccceeuvennnen. 141
Figure 4.12- MPEG4 encoder top-level architecture.........c..ocevveniininiicniencncnennens 141
Figure 4.13- CPU subsystem for the VPROCO componentcceeeveerreeereennvennenn. 142
Figure 4.14- DMA transfer analysis at BFM Levelccccooooiiiiiiiniiiiiieeee 143

64

Figure 4.15- MaxSim component interfaces (ARM, 2007)cccvveevreeeviieeeieeenreenne 144

Figure 4.16- MaxSim model example.........ccccooerviiriiniiiiniiniiicncecceceece e 144
Figure 4.17- MaxSim SyStemMC WIAPPETceovieriieriieriieniieeieentieereesieeereessreeseessneens 145
Figure 4.18- SystemC encapsulation in MaxSim components............cccceeeevereenuennnens 145
Figure 4.19- MaxSim integration in the ROSES design flowccccoccevviniininnennnn. 146
Figure 5.1- MPEG4 encoder architecture (Bonaciu et al., 2006)...........ccccceceeeveennenne. 148
Figure 5.2- MPEG4 architecture with four Encoder tasks and two VLC tasks............ 149
Figure 5.3- MPSoC performance estimation design flowc..ccccvveeviiiiniincnncnnns 150
Figure 5.4- NN performance estimation for the ARM9 processor.........cc.cceceveeuennee 151
Figure 5.5- NN performance estimation for the PowerPC750 processor..................... 151
Figure 5.6- Top-level model of the MPEG4 encoder............cccoeevieviiniieniieniieieee, 154
Figure 5.7- CPU subsystem for the VPROCO componentc.ccoceeveevuericneeniennens 154
Figure 5.8- BFM model of the ARMO processor in MaxSimccccevceeveeienveniennnene 155
Figure 5.9- MaxSim Explorer initial SCIEeNc.cccuerieririiniinieiinieieeiceecieeienene 155
Figure 5.10- Software debugging support in MaxSimcccceeevieriieiieenieenieenieenenn. 156
Figure 5.11- Software timeline eXeCUtioNcoceevueriiriiiiieiienieieeiceeceeeseeeeees 157
Figure 5.12- Bus transfer analysisccceecieriiieriieeiiieriieeie et esee e sne e 158
Figure 5.13- DMA transfer analysis.........ccocceeriiieiiiiniiiiienieeicese et 158

65

66

LIST OF TABLES

Table 4.1- Comparison between the cycle-accurate simulation and the proposed

estimation MEthod ..o 116
Table 4.2- Benchmarks used in @Xperiments.ccoeeeeeueerieeiieenieeieenieeieesee e 119
Table 4.3- Estimation results for the 41-benchmark set............ccccocoiiiniiiiininnnn 121
Table 4.4- Estimation performance using the LOO (leave-one-out) training technique

.. 123
Table 4.5- Estimation speed-up for the FemtoJava processor............ccoeeveevveecveennnnne. 124
Table 4.6- Results with a generic estimator for the Athlon XP............cccceevvieinnnnnne. 124
Table 4.7- Estimation results using domain-specific estimatorsccceevveecveenennne. 127

Table 4.8- Estimation results using domain-specific estimators for an AthlonXP
PTOCESSOT ..eeiteeiiteeeutteesatteesiteeesatee e ateeeataeesteesnsseesnsseesnsteesnsaeesnsteesnseeesaseeennseesnnses 127

Table 6.1- Estimation and instruction count for the ARM and PowerPC processors.. 152

Table 6.2- High-level performance estimation (in cycles) compared to the cycle-
accurate Virtual PrOtOLYPEcccueeeiieeiiieeeiiee et e eiee e e et e steeesereeeeaeeeaaeeeanee e 159

Table 6.3- Estimation and cycle-accurate virtual prototype simulation times 159

67

68

ABSTRACT

Nowadays, embedded system complexity requires new design methodologies.
System-level methodologies are proposed to cope with this complexity, starting the
design above the register-transfer level. Performance estimation tools are an important
piece of system-level design methodologies, since they are used to aid design space
exploration at an early design stage. The goal of this thesis is to define an integrated
methodology for software performance estimation. Currently, embedded software usage
is increasing, becoming multiprocessor system-on-chip a common solution to cope with
flexibility, performance, and power requirements. The development of accurate
software performance estimators is not trivial, due to the increased complexity of
embedded processors. To drive processor selection at specification level, a novel
analytic software performance estimator based on neural networks is proposed. The
neural network enables a fast estimation at an early design stage. To target the software
performance analysis at bus functional level, where mapping of the hardware and
software components is already established, we use a global simulation model
supporting performance profiling. The proposed software performance estimation
methodology is linked to a hardware and software interface refinement environment
named ROSES. The proposed methodology is evaluated through a case study of a
multiprocessor MPEG4 encoder.

Keywords: Performance estimation, MPSoC design, design space exploration

69

70

1 INTRODUCTION

Increases in chip integration capacity and transistor number have allowed the development
of solutions called System-on-Chip (SoC). An SoC solution integrates processors, application
specific HW components, digital interfaces and, occasionally, analog interfaces.

The convergence of various products, such as cellular phones with music players and
PDAs with digital video capabilities makes these products more and more heterogeneous and
requires high performance.

Nowadays embedded systems are characterized by real-time requirements, power and
energy constraints, as well as cost and time-to-market pressure. Multimedia functionalities
impose real-time constraints in order to correctly execute behavior. Mobile devices powered
by batteries require low-power and low-energy capabilities. On the one hand, time-to-market
pressure calls for fast design but, on the other hand, such products are cost sensitive, thus
requiring an optimized design.

Flexibility is another important requirement. The design must be flexible enough to allow
for new functionalities without needing to redesign. Microprocessors play an important role in
providing the flexibility and heterogeneity needed in new embedded systems. Nowadays, SoC
solutions with one or more processors are becoming more and more common. These
solutions, called multiprocessor-on-chip (MPSoC), require new tools and programming
models to cope with their complexity (JERRAYA, 2005).

Figure 1.1 shows a typical MPSoC architecture composed of two processors and
application-specific HW components. An intercommunication network connects the MPSoC
components. A wrapper may be necessary to adapt the components’ interface to the
intercommunication network. Usually, the application software is divided in tasks and a real-
time operating system provides execution and communication support through an application
programming interface (API).

Appl|. Appl.
Task Task
oS OS
C,E|U C,E|U |',|_|W
~ o p
L LT L
HW wrapper| | HW wrappe HW wrappet
Intercommunication Network

Figure 1.1- Typical MPSoC solution

MPSoC designs have to consider HW and SW components in an integrated way.
Currently, the hardware and software integration is done after a hardware prototype is
available. As a consequence, integration problems will be detected in a late design stage
resulting in unacceptable delays.

System-level design methodologies enable concurrent hardware and software design as
presented in Figure 1.2. The key idea is to use a specification that models the hardware and
software in a unified representation. The architecture exploration step uses the specification to
partition the functionalities among hardware and software components. Architecture
exploration results in a virtual architecture composed of functional hardware and software
modules. Usually, transaction-level channels interconnect the components providing abstract
HW/SW interfaces. From this virtual architecture, the traditional hardware and software
development flow is followed with the refinement of the abstract hardware and software
interfaces. Abstract interface refinement comprises mapping the communication API to a real-
time operating system and building HW adapters. Subsequently, the design flow resumes with
the physical hardware design and the software design.

System specification

- Architecture exploration Fes

. Abstract HW-SW interface model
SW module - API for SW modules
specification - abstract interfaces for HW modules

- QoS specification

Embedded HW-SW codesign Hardware
software - CPU subsystem deS|gn_ modules
desi - HW dependent SW design desi
esign - SW dependent HW design esign

y

Back-end and hardware prototypes

A 4

Embedded system

Figure 1.2- Concurrent HW/SW codesign (JERRAYA, 2005)

1.1 Performance Estimation in MPSoC Design

In order to obtain an optimized design, the MPSoC design flow needs estimation tools to
drive architecture exploration and to verify if the design fulfills requirements. Performance is

72

normally the main criterion adopted to guide architecture exploration. However, other aspects,
such as power, energy and area, need to be considered as early as possible in the design flow.

Fast design space exploration strategies need to be developed in order to explore design
alternatives at system-level. This requires high-level performance estimation tools integrated
with exploration strategies in order to help the designer rank design alternatives.

Performance estimation is a continuous process and can be applied at different abstraction
levels throughout the design flow, as shown in Figure 1.3. At specification level, this includes
HW/SW partitioning, processor selection, and assignment of tasks to processors. The
interconnection structure can be explored at the virtual architecture level. At the bus-
functional level, the architecture is almost defined and includes the HW/SW interfaces as well
as the software compiled for the target architecture. At this level, cycle-accurate models
allows for precise evaluation of system performance.

Performance Estimation Tools

System Specification T Processor Selection A

Architecture exploration

HW/SW Interface
Partitioning

Virtual Architecture R

Model at TLM Level /

HW/SW interface refinement

Scope of
this work

BFM Level .~ Memory mapping

SoC Integration

RTL Level

/

v

Delay estimation

Figure 1.3- Performance estimation tools and abstraction levels

Due to the growing number of processors in MPSoC designs and, consequently, the
increasing relevance of the software portion, high-level software performance estimation tools
are needed. Monoprocessor software estimation tools can be divided in three groups:
simulations, abstract models and hybrid methods (MEYEROWITZ, 2004). Simulation-based
methods use cycle-accurate simulators to estimate software execution time, whereas analytic
methods use abstract models and cost functions. Hybrid methods use code annotation (at
instruction or basic block level) with execution cost. The application runs natively, thus
avoiding the long simulation time of cycle-accurate simulators.

For the MPSoC architecture, an integrated estimation method must consider the hardware
and software components and the contribution of each individual component in the whole
system performance. It requires integrated hardware and software estimation tools, which can

73

be classified as simulation, trace-based, or analytical-based methods. Simulation-based
methods use instruction set simulators for the software part and hardware simulation models
in order to obtain a system-level simulation model. Trace-based methods record access to
system resources (for example, computation and communication elements) produced by a
generic system simulation. An architecture is evaluated by mapping the trace onto the
architecture resources. This idea is well known and applied in cache performance evaluation,
where a trace of memory access is mapped and performance is evaluated for a given cache
architecture and policy. Analytical methods are proposed to provide fast performance
estimation and avoid exhaustive simulation, which is prohibitive. Usually, the system is
modeled as a set of properties (for example, event rate and instruction usage), and abstract
models calculate system performance based on these properties. Analytical methods are less
accurate than simulation or trace-based methods, but they can quickly identify interesting
solutions, which will later be subjected to a more detailed analysis.

1.2 Need for Improvement

This work deals with software performance estimation. Performance estimation tools are
needed due to the large design space that cannot be manually explored or verified when only a
hardware prototype is available. Advanced processor architectures and complex applications
make simulation prohibitive for high-level performance estimation. Analytical methods have
been proposed using databook or linear models that fail to precisely estimate the performance
in advanced architectures. This work proposes a neural network-based software performance
estimator. The estimator generates a fast estimation from descriptions in C code and is
developed to be applied in high-level architecture exploration.

An integrated hardware and software estimation tool is necessary, also, due to complex
interaction and synchronization scenarios. Virtual prototypes can deal with this problem
providing a single model to evaluate hardware and software performance after architecture
exploration. In a virtual prototype, software is executed using a simulation model of the target
processor and the hardware using functional models. This permits the generation of a global
simulation model, where the hardware and software are simulated in a synchronized way. In
this work, a virtual prototype environment is integrated to an MPSoC design environment,
providing automatic generation model, which facilitates the design evaluation of complex
MPSoCs.

1.3 Integration in MPSoC Design Flow

The main objective of this thesis is to provide a methodology for software performance
estimation integrated in an MPSoC design flow. In this work, the ROSES design environment
is used as a design flow to guide performance estimation. ROSES uses a component-based
approach to refine the hardware and software interfaces in an MPSoC design. As input, it uses
a virtual architecture composed of hardware and software modules interconnected by
transaction-level model (TLM) channels. ROSES assumes that external tools are utilized to
make the partitioning between hardware and software components at the functional level.
Hardware components are considered black-box components. Software components are
divided in tasks. To drive hardware and software interface refinement, each software module
is mapped to a given processor.

In this work, we propose a new high-level software estimation method based on neural
networks (NN) to guide processor selection, as shown in Figure 1.4(a). In our experiments,

74

neural networks provided suitable accuracy and flexibility for software performance
estimation, even in complex architectures. These experiments were carried out using five
different architectures: PowerPC 750, AthlonXP, ARM946, ADSP, and a Java processor
called FemtoJava.

System Specification —> @ @ @ <— Processor

selection for SW

components using

)) NN estimator
Architecture exploration (a)
- - VM1 VM2
Virtual Architecture —>
Model at TLM Level
Implicit CPU, abstract HW VM3 HW
ROSES ©)
HW/SW interface Appl ApPpl. <— Virtual prototype:
efinemen Tasks askis Integrated HW
0Ss (O] and SW
performance
BFM Level ——>| cpu GRU HW | analysis
Explicit CPU and OS, RTL hardware 0 0 E
HW \A‘L:?)pper| | HW ,wyapperl |HW wrapper |
J J J
Intercommunication Network

(©)

Figure 1.4- Performance estimation design flow

ROSES (CESARIO et al., 2002) refines the virtual architecture and generates a bus
functional model (BFM), as shown in Figure 1.4(c). This bus functional model is composed
of processors that execute the software and by hardware wrappers necessary to interconnect
the hardware components. Software tasks execute under an application-specific operating
system that implements the application programming interface (API) used in communication
and synchronization between hardware and software components.

The virtual architecture differs from the BFM model in terms of the components interface
and the software. In the virtual architecture the interfaces are modeled as transaction-level
channels, whereas in the BFM model the interfaces are refined to pin-level interfaces. The
ROSES environment provides a tool called CosimX, which generates a SystemC simulation
model for the virtual architecture and the BFM model. In the virtual architecture, software is
compiled for the host machine, and only the functional behavior and communication is
validated. On the other hand, in the BFM model, the software is compiled for the target
architecture and validated using a processor simulator. At this level, the whole architecture,
including the operating system and hardware wrappers generated during the interfaces
refinement step are validated.

In this work, we propose the generation of global simulation models using the BFM model
to allow an integrated hardware and software performance analysis. This way, an automatic
method to generate simulation models with performance analysis support is proposed,
reducing design time and making performance analysis easier. These global simulation
models, called virtual prototypes, are generated using two tools: FlexPerf(PAOLI;
SANTANA; GALIX, 2004) and MaxSim(ARM, 2007).

75

The SystemC simulation model at BFM level, generated by CosimX, uses an instruction-
accurate simulator for the software execution and SystemC modules for the hardware
components. However, in this model the instruction-accurate simulator (software part)
synchronizes with the hardware modules only when a communication occurs between them.
The performance estimation capabilities provided by the SystemC model are limited and
include the tracing of signals and the debug of the assembler code. The integration of a virtual
prototype to the ROSES environment extends the performance analysis capabilities for the
BFM model. The virtual prototype generated in this work provides a global model with the
software and hardware components synchronized cycle-by-cycle. The virtual prototype
enables performance analysis resources like software execution timeline and communication
tracing. Moreover, the virtual prototype provides the debug of concurrent software executing
in MPSoC architectures, allowing breakpoints at signals, assembler code, and registers.

The FlexPerf framework has a well-defined flow to generate a processor simulator using
the LISA language, with all the necessary instrumentation support for performance analysis of
embedded software. This method was used to integrate this stand-alone processor simulator in
a global MPSoC simulation. A SystemC simulation model is generated to support the
instrumentation using the FlexPerf framework. In this work, a multiprocessor MPEG4
encoder platform was implemented, allowing an integrated performance analysis of software
and hardware components.

We also evaluate a virtual prototype environment called MaxSim. MaxSim provides a rich
library of processors, memories, buses, and peripherals. Some components provide built-in
performance analysis capabilities, such as cache performance and bus utilization. MaxSim
supports custom SystemC modules, thus making integration with the ROSES environment
easier. This integration is accomplished by automatically generating a MaxSim design from
the ROSES architecture description. The same MPEG4 encoder platform used in the FlexPerf
evaluation was simulated in the MaxSim evaluation. We mainly explored MaxSim’s
performance analysis support functionality in the context of processor performance
evaluation. The MaxSim profile interface was used to implement a custom performance
analysis. In the case study (exposed in Chapter 6), an analysis of transfers handled by a DMA
(direct memory access) IP component was implemented.

Usually, MPSoC simulation environments provide fixed capabilities for performance
analysis. The FlexPerf framework provides a more flexible approach, integrating custom
performance analysis. Although the instrumentation is developed manually, the possibility of
extending and reusing analysis modules does save time. Integration with ROSES enables
consistent performance analysis and design, which is not normally supported by other
simulation tools. Further, the integration between an analytical estimation method at the
specification level and a simulation-based approach at the virtual architecture and BFM levels
provides a good compromise between estimation speed and accuracy.

For the virtual architecture level (Figure 1.4(b)), performance estimation is covered by
other works developed in the TIMA laboratory. Bouchimma et al. (2005) propose an
estimation method based on an abstract CPU model, in order to estimate software
performance. The abstract CPU model executes the software natively but also represents
resources like 10 access and conflicts, providing a rapid, global validation. The virtual
architecture model will not be directly used in this work.

This thesis is organized as follows. Chapter 2 presents general concepts relating to
MPSoCs. Chapter 3 describes our proposed integrated MPSoC design and performance
analysis flow. Chapter 4 presents a software performance estimator based on neural networks.
Chapter 5 exposes two MPSoC integrated hardware and software estimation solutions based

76

on simulation. Chapter 6 describes a case study of the MPEG4 encoder architecture using the
estimation tools developed in this work. Chapter 7 presents final remarks and conclusions.

77

2 MPSOC DESIGN

Short design time is important for MPSoCs that have particularly tight time-to-market and
time window constraints. Complex applications such as game processors, cellular phones,
digital televisions, and personal digital assistants (PDAs) must be designed quickly and
efficiently.

MPSoCs may use hundreds of thousands of lines of dedicated software and may be
developed in complex software development environments. Design components for MPSoCs
are heterogeneous: they come from different design domains, have different interfaces, are
described using different languages at different levels of refinement, and have different
granularities. A key issue for any MPSoC design methodology is to define a good system-
level model that is capable of representing all of these heterogeneous components along with
local and global design constraints and metrics.

MPSoC design is a complex process involving various steps at different abstraction levels.
An MPSoC design flow must consider the system specification, design space exploration, and
architecture design. The design space exploration includes HW/SW partitioning as well as
processor and/or intellectual property (IP) component selection. Architecture design
comprises the HW/SW component design, interface design, and their integration in a SoC
solution.

Strict requirements such as time-to-market, cost, performance, and power consumption
require early estimation and verification tools. IP components play an important role,
providing pre-designed components that speed up architecture design. These components may
be supplied by various vendors, thus requiring an IP integration environment (WAGNER et
al., 2004). A full system design flow that covers all MPSoC steps is complex. It is an active
research domain, and many solutions are proposed for design space exploration and
architecture design.

This chapter presents the MPSoC abstraction levels and the proposed system-level
approaches. Sections 2.2 and 2.3 present an analysis of architectural design possibilities in
terms of hardware and software. Section 2.4 presents the ROSES environment developed to
provide HW/SW interface refinement in MPSoC design. Section 2.5 discusses the software
performance estimation and related work. Section 2.6 presents an integrated environment for
design and performance estimation of MPSoC designs.

78

2.1 Design Methodologies

2.1.1 Abstraction Levels

Abstract descriptions provide a suitable way to manage design complexity, hiding
implementation details that the designer may want to leave out at some point. In consequence,
the description is short, making its understanding easier.

The design flow must define different abstraction levels and refinement steps that lead to a
final solution (EDWARDS et al., 1997). Ideally, the designer would have the benefit of
automatic refinement from higher abstraction levels to system implementation. As mentioned,
MPSoC design is quite complex and the available tools do not cover all design steps.

Figure 2.1 shows abstraction levels usually applied to MPSoC design. The system
specification describes the behavior of the system under development. Software engineers see
the system specification as a document that describes the required functionalities, using
abstract representations. For instance, using the UML notation, a system may be represented
by class and use cases diagrams. Usually, in electronic design, an executable specification is
used to represent system functionalities. Some languages have been proposed for electronic
system specification, such as SystemC (2005) and SpecC (2007). These languages are
extensions of existing imperative languages (for example, C++) and support hardware-
oriented descriptions. However, the research community is now focusing on the use of more
abstract specification languages such as UML and Simulink.

System Specification —> @ @ @

Architecture exploration

VM1 VM2
Virtual Architecture :>
Model at TLM Level
Implicit CPU, abstract HW VM3 HW
ROSES
HW/SW interface Appl Appl
refinement Tasks Tasks
0s oS

5PV Lovel —> e g i

Explicit CPU and OS, RTL hardware BFM/

[[[
HW wr@pper‘ ’ HW Mappe% ’HW wrapper ‘
T T | -

Intercommunication Network

SoC Integration

| Mmem1][Memo || || MEM1|[MEMO]
|

HW
E‘U CPU || |HW wrapper
r 1 1

RTL Level :> E I ET

-

Explicit SW memory mapping LJ
Physical Network

Figure 2.1- MPSoC abstraction levels

79

Architecture exploration uses the specification to define the golden architecture that
covers application requirements in terms of performance, power consumption, energy
consumption, and area, among others. From the architecture exploration step, a virtual
architecture that represents the system in terms of software and hardware components is
obtained. Transaction-level channels abstract the HW/SW interfaces, making possible the
development of the software using —an application-programming interface (API). Functional
HW components are used at this level, providing high simulation speed.

The virtual architecture is refined to a bus-functional level model, where the HW and SW
interfaces are nearing final implementation. In the software interface refinement, an operating
system, which includes a hardware abstraction layer (HAL) and low-level drivers, provides
the API used by the application software. Communication protocols may require hardware
components such as co-processors and channel adapters, which are responsible for adapting
the internal component bus to the interconnection network.

The BFM level hides certain details of the final MPSoC RT-level. For example, ISS
(instruction set simulators) at BFM-level do not use memory mapping and do not consider
low-level initialization code, such that for caches and fast memory configuration. The SoC

integration step includes such considerations and the resulting RTL model is used in the
physical design (PETKOV et al., 2006).

2.1.2 Platform-based Design

Platform-based design (KEUTZER et al., 2000) uses architecture templates to obtain a
solution called a derivative, by tailoring the platform for a given application. Architecture
templates are domain-specific hardware platforms composed of processors, memories,
hardware blocks, and communication structures. Occasionally, these components have some
degree of configurability, such as processor caches and memory sizes.

Software is becoming the most important part of MPSoC platforms. An application-
programming interface (API) provides the means to abstract the communication between
components. An operating system (OS) implements services such as task scheduling and
inter-process communication. It also improves the reusability of software IP components
because it builds an abstraction layer that makes application software portable to different
hardware platforms.

Platform-based design provides gains in terms of design time and cost. Application
mapping to platform components must be efficient and handled by system-level design tools.

2.1.3 Component-based Design

In component-based design the architectural template is implemented by assembling
hardware and software IP components available in a library or provided by third-party
companies. Components should comply with a given protocol, thus making their integration
into the platform possible. The reuse of pre-tested components reduces design time and
facilitates the verification of the solution in terms of expected system functionality and
requirements.

Component-based design requires a well-defined process involving IP creation,
qualification, and classification (WAGNER et al., 2004) on the IP provider side. On the client
side, IP integration includes the search process, validation, and final integration with the

80

platform. The integration step is highly influenced by the IP distribution form. IP components
may be distributed in hard form, when all gates and interconnects are placed and routed; soft
form, with only an RTL representation; or, firm form, with an RTL description together with
physical floorplanning or placement. Using hard IP components has the advantage of yielding
more predictable estimations of performance, power, and area. However, they are less flexible
and therefore less reusable than adaptable components.

IP integration imposes problems due to the heterogeneous and hard IP components. The
bus-based approach uses standard interconnection, to which the IP interface must comply,
following a plug-and-play integration. AMBA and CoreConnect are examples of standard
buses available in the market. When the source code is available, the IP component may be
changed and adapted for the target platform. Another solution is to construct a wrapper
around the component that adapts it to the bus or the interconnection network. Software IP
components are standardized by the API and target OS. OSEK (for automotive systems) and
ITRON (for consumer electronics) are examples of domain-specific APIs.

2.2 MPSoC Architectures

MPSoC design opens many possible solutions in terms of processor architectures, IP
components, and interconnection structure. The next sections present the trade-offs, in terms
of hardware and software, which come into play when designing MPSoC architectures.

2.2.1 Processor

Figure 2.2 shows the market share for each type of embedded 32-bit processor. In contrast
to personal computer processors, the market, here, is shared among different architectures and
manufacturers. These different architectures provide various options in terms of performance,
power consumption, area, and cost.

MIPS
12%

Other

ARM

SuperH 57%

2%
x86
3%

PowerPC

6% 68K

3%
Figure 2.2- Market share of 32-bit embedded processors (IDC, 2007)

Processor microarchitecture design has an important impact on MPSoC quality.
Microarchitecture optimization for a given application includes pipeline configuration, branch
prediction, and prefetch, among others. Processor data size is another design parameter, since
embedded applications require a minimal size. Processor cores are available in different
versions of 8, 16, and 32 bits. Currently, most embedded software remains unchanged after

81

product deployment, making it possible to tune architectural parameters according to system
requirements.

Application-specific processors (ASIP) optimize the architecture by creating new
instructions to efficiently execute a given application. Commercial processors like Tensilica
(2007) are sold with an environment to analyze the application C code, in order to configure
and derive the optimized architecture.

The multimedia domain is composed of processing-intensive applications and requires the
use of more performance/power efficient architectures, such as digital signal processors
(DSP). These processors optimize the execution of DSP algorithms using MAC (multiply and
accumulate) units, address generators, and Harvard architecture, among other features. DSP
processors efficiently execute digital signal processing algorithms and can run at low
frequencies compared to general-purpose processors (GPP), consequently decreasing energy
consumption.

Very long instruction word (VLIW) processors also provide an efficient architecture to
execute processing-intensive applications, exploiting instruction-level parallelism (ILP) at
compilation-time. For this reason, VLIW processors do not require the complex dispatch units
and speculative techniques used in general purpose processors, since ILP is statically
extracted.

The purpose of multithread architectures is to efficiently execute multithread applications
by supporting fast context switch and concurrent execution. Fast context switch provides a
way to hide memory latency by executing other threads when memory access occurs.

Currently, processor architectures also include mechanisms to cope with the low-power
requirements of embedded systems. Most embedded processors have some control in terms of
frequency or voltage. Transmeta (2005) is a VLIW processor and provides frequency/voltage
configuration. At minimum operational frequency (200Mhz), the Transmeta TMS5400
processor consumes only 12.70% of the power required at full frequency (700Mhz).

The use of different operational states is another low-power technique used for embedded
processors. This technique defines different states to turn off some of the components when
they are not required. The StrongARM processor (BENINI, 2000) is an example of the use of
this technique. The normal state provides for full processor operation and, in I/dle state, the
clock is enabled in the CPU but only the peripheral components are clocked. In Sleep state,
CPU power is turned off, and only the real-time clock, interrupt handler, and I/O are enabled.
Figure 2.3 shows the different states, power consumption at each state, and transition times.

P=400mW

~10us

P=50mW P=0.16mW

Wait for interrupt Wait for wake-up event

Figure 2.3- Operational states in StrongARM processor (BENINI, 2000)

Low-power techniques such as frequency/voltage scaling or operation states need the OS
or another supervisor component to control their use. Normally, for laptops, the processor
dynamically adjusts the frequency/voltage based on application demand. However, these
techniques impact on processor performance and system response. As a consequence, these

82

techniques require an integrated application and OS design in order to not disturb the real-
time behavior that is commonly required for embedded applications.

2.2.2 Memory

Memory design has an important impact on processor performance and power
consumption. For embedded processors, cache design is important because its influence on

system power consumption represents about 50% of core power consumption (see Figure
2.4).

Clocks
4%

D Cache
19%

SysCtl
3%
BIU
cp1s 8%
2%

PATag RAM
1%

| Cache
25%

MU DMMU
4% 5%

Figure 2.4- Processor power-consumption (ZHANG; VAHID; LYSECKY, 2004)

Figure 2.5 presents work done by Zhang et al. (2004) showing the influence of cache size
on global energy consumption. It can be seen that global energy is directly related to cache
size. Initially, when cache size increases, global energy decreases because of fewer memory
accesses. However, after a given point, the sheer influence of cache size dominates global
energy consumption, despite a small number of memory accesses. The same scenario occurs
for processor performance (HENNESSY, 2002). After a given point, an increase in cache size
will not result in an increase in performance, because the application reaches a temporal and
locality limit.

&3

—&— Cache —— Memory —&— Total ’

Mm m M M M MM MMM MM
MM M M M M M M M M S
— N ¥ o © a4 Y oo © o =
— N O O n @ —
— AN n

Cache Size

Figure 2.5- Cache size and its influence on system power consumption (ZHANG; VAHID;
LYSECKY, 2004)

Other techniques are available to decrease power consumption and execution time in
memory hierarchies. Scratchpad or fast memories are small memories inside the processor
core used to decrease access time and power consumption. The main difference with cache is
that their contents are directly loaded by the application, making the programmer responsible
for choosing which data and instructions are important in regards to fast memory. This
technique makes execution time more predicable in comparison to caches, which can be
polluted by other tasks. Jain et al. (2001) propose a technique to lock the cache lines, avoiding
undesirable line substitution. In both techniques, knowledge of application behavior is
necessary to optimize scratchpad and cache use.

2.2.3 Interconnection

SoC interconnection design complexity is increasing due to the number of components
and sophisticated communication schemes. Ad-hoc solutions cannot deal with concerns
regarding flexibility and design time, which can only be addressed by long-term solutions that
can cope with future MPSoC requirements.

Point-to-point connections, shown in Figure 2.6(a), enable designs customized in terms of
performance and predictability. However, design time and low reuse make point-to-point
interconnections impracticable in future MPSoC designs.

Current MPSoC designs adopt bus-based (see Figure 2.6(b)) solutions (AMBA, 2007;
CoreConnect, 2007). Due to scalability problems many variations, such as hierarchical buses
and time-sliced arbitration, are proposed.

The network-on-chip (NoC) approach represents a long-term solution for MPSoC design.
A NoC, as shown in Figure 2.6(c), provides the scalability and reuse necessary to future
MPSoC designs. Predictability and real-time requirements call for NoC solutions with
quality-of-service (QoS) capabilities. Currently, NoCs are a subject of intense research.
However few real designs exist, due to high latency and area overhead when compared to
other interconnection solutions.

84

uP M E/S| [uP M

uP

<

uP

P uP M

(@) (o) ()
Figure 2.6- Communication topologies (a) point-to-point, (b) bus-based connection, and (c)
network-on-chip

To improve reusability, communication interconnection is provided in the form of IP
components (AMBA, 2007; Sonics Backplane, 2007) that must be configured for a given
application (for example, number of masters in a bus, switch buffer size in a NoC). This
requires tools to explore the communication structure and to link application QoS
requirements to the real implementation.

2.2.4 SoC Platforms

The design of a new architecture involves non-recurring engineering (NRE) costs that are
not negligible in the overall cost of manufacturing and designing a SoC (MAGARSHACK,
2003). Due to these costs, developing a new architecture from scratch for each new product
becomes unacceptable. Consequently, platforms are proposed to cover an application domain,
and then tailored to a specific product.

Figure 2.7 shows the Nomadik (2007) platform targeted to mobile phones and multimedia
PDAs. Nomadik is a multimedia platform composed of an ARM processor and audio and
video accelerators (DSP processors). Many I/O interfaces, such as an LCD controller, USB,
infrared, TV output, and flash card, are available. The memory organization is composed of
embedded SRAM, secured RAM/ROM, and controllers for external Flash and DDR
memories. The interconnection structure uses buses and bridges to decouple the main bus and
to distribute communication. A DMA controller is available to manage the data transfers.

Multichannel DMA Secured
controller RAWROM Smart audio Smart video

USB-OTG

Camera interface

accelerator accelerator

olor LCD controlle

eSHAM Display interface

buffer

: TV output
NAND/NOR Flash Eridge -
controller [2Cs

DOR SDRAM Bridge Flash-card interface

JULL

controller (I-cache) (D-cache) FlrDA
Watchdog
managerment ABRME28E !
Sytem
controller
(PLLS) (Security toolbo:a (JTAG/trace) Interrunt
controller GPI0s
Madem interface

Figure 2.7- Nomadik architecture (NOMADIK, 2007)

85

OMAP (2007) is another example of a platform targeted for use in multimedia mobile
devices. The platform is composed of two processors: a general-purpose processor
(ARMD926), used to execute system-level tasks, and a DSP used for multimedia processing
(see Figure 2.8). The SoC also integrates digital interfaces with external devices. An API
called OMAPI is provided to access the multimedia resources available in the DSP processor,
thus abstracting the hardware architecture. The OMAP platform leaves the programmer
responsible for detecting code suitable for execution in the DSP.

Compact
Flash | | .
. =
MAND Fast
Emudator Flash Mobile oA
Pod Flash |— | _DOR

ITAGT UART/IrDA 2 I°C Peripheral
Emulation —

IfF

Debug Message
i
Serial :

! TM5320C554™ ARMS26] & LD
s'wu:::l‘:;t { q Y] Buzzer

Technol I — Db
B Voice Shared Memory Controller/DMA ~ BN 7 ... rLoeugger

Antenna

" CMOS Sensor
Antenna 2D Graphic Accelerator :
Valce Memory Stick | Memory Stick Card,
TCS _ MMC-5D LI MMC-5D Card
MMC-5D L MMC-5D Card

Chipset

Security: SHA-1/MD5 DES/2DES RNG - .
HDQM Wire Il Battary
—_—

& 32 kHz
USB OTG i

Controller & o Reset

LCD Light
Lo l Controller

Speaker (ji|]

LEGEMD
W ARM peripherals

T5C2301 Audie Codec —on
Touch Screen Contraller [FTTIu | FIRg
Audio Amplifier

Speaker ‘

11 W D5P
& = M Shared
Ini Quk M Tl Products

Figure 2.8- Platform OMAP 1610 (OMAP, 2007)

Figure 2.9 shows the Phillips Nexperia (GOOSSENS et al., 2005) platform. Nexperia is a
heterogeneous platform composed of a general-purpose processor (MIPS), DSP processors,
and various hardware application-specific accelerators. The memory controller manages
communication and is interconnected with different buses available in the platform. Bridges
share communication among the subsystems, avoiding overload of the memory controller.

Programming models for MPSoC platforms have become a major issue, due to the
programming complexity of coordinating platform elements. UHAPI is Nexperia’s abstract
programming model and is used for home applications based on use cases. UHAPI brings
platform programming close to software engineering models such as UML, by providing
high-level use cases for the most common needs of home applications. For instance, the API
provides use cases to play DVDs, record movies, and so on. This represents an important
tendency because the value of the platform is not only attributed to the hardware solution, but
also to the API that is provided.

86

MIPS Mamorny
PR4450 Controller 32 a2
(=T AW | I i s | O s
[|]
—
pes-secsh— DCs-SECs s|ocs-cTR
PMA
DCS-CTR|s 5[PMA-MO ~ —Hs| TM1PC
e IRGERE
MGIC |s s|PMA-SEC R vweo | —-|5 TM1-GIC
—H 0 ovoD s
M-PC |5 5|PMA-ARE —-|5 TMZIPC
| gl —H [} EDmA |= 5
CLOCKS [SH— L —{5[Tme-aic
= =1 - — B v s
GLOBAL |3 M Poinao [H— —s| penc
R| averz g

f

RESET (5

MBS1 (5

SPDIS

[5]
[==] [==]
[
e —
LT 1
nim
I
]
]

TM1-DBEG|S 5 c I H=—

MEBSZ2 |5

AlO1

L] o
CIE
o
m

(=] [==] [==] [==]

TM2Z-DBG|S

QTHR |5

[1

I
[[on] [] o=]
==l [==] [==]

LART1 |8 s| nca Aoz

avCPT |8 —TF
UaRTZ |8 AlD3

—
[T1
[=]
=
L
i

GRIO

I
[[on][oo]
!!

e |.,H.,- v e [|
v [sf—] wser [T
o e oo e o]
C-Bridge A
M-DCs T-DCS

Figure 2.9- Phillips Nexperia PNX8550 (GOOSSENS et al., 2005)

2.3 Software Design

Software development is becoming more and more time-consuming and will thus come to
occupy most of the time spent to develop embedded systems. The heterogeneous nature of
embedded systems makes traditional parallel approaches inadequate for the development of
embedded software. Further, distributed programming models have the objective of providing
portability and average performance, and do not fit well with embedded system requirements.
The following sections describe parallel and distributed programming models used in
embedded software development.

A programming model is a bridge between HW and SW. It abstracts the hardware for the
software developer, using an API. An MPSoC requires programming models that provide the
flexibility and heterogeneity of distributed systems, but also requires the intense processing of
parallel applications and real-time constraints.

Some applications provide explicit parallelism and enable automatic parallelism
extraction. Fine-grained parallelism can be explored by vector and VLIW architectures, where
ILP is statically extracted without speculation of data or control. Tasks or threads employ
coarse-grained parallelism. These loosely coupled threads require less synchronization and

87

communication. For example, encoders and decoders provide parallelism that can be extracted
at fine and coarse grain.

The set of applications that can be automatically parallelized is limited. The research
community claims that new programming paradigms are necessary to specify an application
in a parallel manner. The heterogeneous nature of embedded systems, which entails a
considerable amount of synchronization and communication, makes parallelization a difficult
task.

Application software layers improve software development by spreading complexity over
the different layers, as presented in Figure 2.10. In this layered approach, a middleware
provides the services used by the application. This middleware is implemented on top of an
operating system that provides basic services such as scheduling and synchronization. The
hardware abstraction layer implements the low-level code to access the interconnect and other
system components.

Applications Player, Game, Agenda

Middleware Corba, MPI, libraries

Scheduling,
OS synchronization

H AL Drivers

Figure 2.10- Software application layers

Software development for MPSoCs imposes the same problems as those addressed in the
domains of parallel and distributed systems. These include:

e Heterogeneity: different architectures have different ways of representing data (for
instance, big and small endian architectures). The middleware and operating
system need to deal with these low-level details.

e Scalability and flexibility: support for new functionalities; this avoids centralized
solutions that can become the system bottleneck.

e Security: mobility and wireless communication capabilities are common in new
products that require security features for data and communication.

e Fault tolerance: critical embedded applications must include fault tolerance
techniques in their design.

e Concurrency: figuring out the details of data access and synchronization is a
difficult and error-prone task that should not be left for the programmer. An
adequate programming model addresses the problem of concurrency modeling.

e Transparency: transparency is desirable for system resource access, leaving
component addressing for lower levels.

2.3.1 Programming Models

Usually, the imperative programming model is extended to support parallelism and
concurrency. Threads divide the applications into concurrently computing entities. Shared

88

memory and semaphores are explicitly used in threads for communication and
synchronization. Symmetric multiprocessing (SMP) and multithreading architectures
efficiently execute parallel multithread applications. Multithread models rely on the
application developer to identify parallelism and synchronization needs. Some
communication mechanisms with implicit synchronization, such as blocking message passing
and mailboxes, may be used. The Posix Threads (Pthread) standard is an example of a thread
library. Most commercial operating systems support it.

OpenMP is an application-programming interface (API) for shared-memory architectures,
developed to support multiplatform and parallel programming in C/C++ and Fortran. The
OpenMP API only covers user-directed parallelization, where the user explicitly specifies the
actions to be taken by the compiler and runtime system, in order to execute the program in
parallel (see Figure 2.11). OpenMP-compliant implementations are not required to check for
dependencies, conflicts, deadlocks, race conditions, or other problems that result from non-
conforming programs. The user is responsible for using OpenMP in his application, to
produce a compliant program. Thread numbers used in a parallel section are fixed in the code
or dynamically decided in run-time. This increases the portability and flexibility when an
application runs on a different platform.

void al(int n, float *a, float *b)
{
int 1i;
#pragma omp parallel for
for (i=1; i<n; i++) /* 1 is private by default */

bli]l] = (alil + ali-11) / 2.0;

Figure 2.11- OpenMP parallel program example

MPI (MPI, 2007) is a library that implements a message-passing programming model.
With MPI, the application is explicitly parallelized and messages implement communication
and synchronization. The programmer is responsible for data distribution and may use the
shared memory facilities of the target architecture, or use the messages. MPI provides
synchronization schemes, such as broadcasting, multicasting, and barriers.

Distributed objects are a natural extension of the object-oriented (OO) programming
model for distributed systems. Objects are self-contained computation entities that
encapsulate data and behavior, and provide a clear interface, thus making application
distribution easier.

89

client

object A proxy for B
9 8 Request >

Reply

remote
object B

skeleton
& dispatcher

3

for B’s class

Communication Communication
module module

Figure 2.12- Distributed objects components

Figure 2.12 shows the typical composition of distributed objects. The proxy component
for the client object and the skeleton&dispatcher for the server object implement
communication between objects A and B. In Corba and Java/RMI (ORFALI, HARKEY,
1998) technologies, a compiler automatically generates these components from an interface
description language (IDL). The communication module, provided by an operating system,
and the communication network carry out the request/reply protocol.

The Task Transaction Level Interface (TTL), proposed by Phillips (VAN DER WOLF et
al., 2004), is an interface-centric programming model for MPSoCs. It enables parallel
application specification and support for platform integration of hardware and software tasks.
TTL makes concurrency and communication explicit, focusing on stream processing
applications.

A TTL application is organized as a task graph. Each task uses the TTL interface API on
its ports to communicate with other tasks using a channel. TTL provides 7 different interface

types:

a) Combined blocking (CB): this interface provides two primitives (write and read),
and combines synchronization and communication in one primitive.

b) Relative blocking (RB) / Relative non-blocking (RN): this interface separates
synchronization (acquire/release) and data transfer (store/load) operations.

c) Direct blocking in-order (DBI) / Direct non-blocking in-order (DNI): this interface
also separates synchronization and data transfer operations and uses a pointer for
direct access to data buffer.

d) Direct blocking out-of-order (DBO) / Direct non-blocking out-of-order (DNO):
compared to DBI and DNI interfaces, these add support for non-sequential access
to data buffers.

The TTL interface is available as a C++ API, C APIL, or hardware interface. For platform
mapping, the implementation cost of each API primitive has to be considered. This cost is
related to synchronization, buffer requirements, and address management.

MultiFlex (PAULIN et al., 2004) is a multiprocessor SoC programming environment
providing two programming models: a distributed system object model (DSOC) and a
symmetrical multi-processing (SMP) model. Applications using these models are mapped
onto the StepNP multi-processor SoC platform.

The DSOC model is similar to the distributed object model, where object servers provide
services to client objects. The main difference between DSOC and traditional OO approaches

90

such as Java/RMI and Corba is that hardware accelerators provide the support for message
passing, resulting in low overhead. There are two hardware accelerators: a message passing
engine (MPE) and an object request broker (ORB). The MPE is used to translate messages
into a portable representation and to transmit the request through the NoC, as shown in Figure
2.13. Scheduling requests to servers, the ORB component coordinates object communication.
ORB supplies the load balancing over system resources, thus providing parallel execution and
scalability. An interface description language called SIDL (SystemC interface description
language) is used to generate software drivers to access the MPE for software components.
For the HW components, a tool generates the data conversion hardware and links it to the
NoC interface.

[] S/W-S/W com
[I] S/W-HW com e

-

Meé-'é.age
passing
wrapper

HW Object
Request Broker

(Tnput |

Figure 2.13- DSOC model for platform mapping (PAULIN et al., 2004)

The SMP model is based on the POSIX Threads model. It supports concurrent execution
using shared memory. Monitors and signals are provided for communication and
synchronization. The SMP model combines a lightweight software layer and a hardware
concurrency engine (CE). The CE controls the monitors and signal implementation as well as
the hardware context switch, thus yielding low cost implementation.

The DSOC/SMP model proposes the hardware implementation of key components of a
distributed and parallel programming model, resulting in low overhead. This enables the
systematic mapping of the DSOC/SMP application to the StepNP platform. On the other
hand, this hardware support decreases software portability, and mapping to another platform
will necessitate a new hardware and software interface design.

2.4 ROSES MPSoC Design Environment

ROSES is a component-based environment for system-level design. It provides HW/SW
interface abstraction, thus decreasing the complexity of MPSoC design.

91

The ROSES design flow starts with a virtual architecture model that corresponds to the
“golden” architecture obtained from the architecture exploration step. This virtual architecture
model allows automatic generation of communication coprocessors/controllers (wrappers),
device drivers, operating systems, and application programming interfaces.

The virtual architecture model is a set of virtual modules interconnected using point-to-
point virtual channels and/or a communication interconnect IP. The goal is to produce a
synthesizable RTL model of the MPSoC platform that is composed of processor cores, IP
cores, the communication interconnect, and HW/SW wrappers. Virtual component interfaces
are used to automatically generate application-specific hardware and software wrappers (see
Figure 2.14). Software written for the virtual architecture specification can run without
modification on the implemented platform because the generated custom operating system
provides the same APIs.

Extended
SystemC

OS library

T
APls HW wrapper library

processor library

CPUx
cPUy

protocal library

custom OS5 HW wrapper

put
Wakelp
<o tel
- —] e -

round-robin generation generation

device drives J
_———
S e —————— .
ISR RTL Architecture %
core

|

Co-simulation
library

simulator library
S —

VHDL
ARMT 155

RTL synthesis & Co-simulation 1 channel library
compilation wrapper generation —

ynct
HndShk
HndShk+FIFO
HndShi+Frames.
. Executable
Emulation platform co-simulation
model

Figure 2.14- ROSES design flow (CESARIO et al., 2002)

The ROSES environment uses an extensible and multi-level design representation called
COLIF. This design meta-model based on XML allows description of hierarchical
components and abstract HW/SW interfaces at different design levels. All of the tools in the
ROSES design flow use the COLIF meta-model.

2.4.1 HW/SW Interface Abstraction

The virtual architecture represents a system as an abstract netlist of virtual components
(see Figure 2.15). A virtual component consists of an internal component (or module) and its
wrapper. The internal component contains a set of software tasks or represents a hardware
function. The wrapper adapts accesses from the internal component to the external channels
connected to the virtual component. The internal component and external channel(s) can be
different in terms of communication protocol, abstraction level, and specification language.
The wrapper is a set of virtual ports that contain internal and external ports. The internal and
external wrappers’ ports abstract the HW/SW interfaces that will be refined to generate the
final implementation system.

92

A virtual architecture is specified using an extended SystemC library containing classes
for virtual components with configuration parameters. It is composed of:

a) A virtual module, which consists of a module and its wrapper.

b) A virtual port, which groups certain internal and external ports that have a conversion
relationship. The wrapper is the set of virtual ports for a given virtual module.

c) A virtual channel, which groups several channels having a logical relationship (for
example multiple channels belonging to the same communication protocol).

L
H
DU N
i
H
NN

g

QLLLERRRRRRRN

2077777/

VA : wrapper

[:] : module @ : virtual component
: task : virtual port

% : configuration parameters E : virtual channel

Figure 2.15- Virtual architecture (CESARIO et al., 2002)

Virtual channels hide many communication protocol details. For instance, FIFO (first-in
first-out) communication uses high-level communication primitives (for example, put and
get). In the system refinement, this model needs to be annotated with architecture
configuration parameters (for example, the protocol and physical addresses of ports).
Configuration parameters specify a unique way to map the virtual architecture to the final
architecture, with hardware interfaces, operating systems, and drivers customized for the
application. They are set directly in the module, task, port, and channel, as attributes:

a) For a module, there is an attribute for the type of processor and a blackbox flag
indicating an IP block.

b) For a task, the user can set the operating system services that are needed, the task’s
priority, and the files that store the description of its behavior.

c) For a port, there is a set of attributes to configure: the type of data transmitted, the set of
addresses needed, the interrupt allocation, and other parameters that depend on the
communication protocol (for example, the size of the data packet that will be transferred each

time).
d) For a channel, most configuration parameters are the same as for a port.

The main goal of the ROSES methodology is to enable automatic generation of the
HW/SW wrappers, in order to produce a detailed architecture that can be both synthesized and

simulated.

93

2.4.2 HW Wrapper Generation - ASAG

Hardware wrapper generation assembles the hardware interface from a library of
components, using the virtual architecture specification. Architecture configuration
parameters are used to instantiate library components; they are the result of decisions made
during system architecture exploration. The library contains generalized descriptions of
hardware components in a macro language and is composed of two parts: the processor
library and the protocol library. The former contains local template architectures for
processors with four types of elements: processor cores, local buses, local IP components (for
example local memory, address decoder, and coprocessors), and processor adapters. The latter
consists of a list of channel adapters. Each channel adapter has simulation and synthesis
models that are parameterized (by channel parameters such as direction, storage size, and data
type), much like the elements in the processor library.

processor adapter

Figure 2.16- Hardware wrapper architecture (CESARIO et al., 2002)

Hardware wrappers are implemented as communication co-processors, as shown in Figure
2.16. The processor adapter interconnects the processor bus with the channel adapters. This
solution enables the separation between communication and computation, releasing the
processor to execute in parallel with the communication.

2.4.3 SW Wrapper Generation — ASOG

The software wrapper generator produces an application-specific operating system tailored
to the software module(s) that run(s) on each target processor (GAUTHIER et al., 2001). It
uses an operating system library organized in three parts: APIs, communication/system
services, and device drivers. Each part contains elements that will be used in a given software
layer of the generated OS.

The API implements the interface between the application and the OS services. The
system services implement basic services such as scheduling, synchronization, and memory
management. Device drivers contain the low level code used to access the system components
(for example, memories and hardware [P components).

The library is organized as services that have dependencies between them. For instance,
communication services are dependent on the I/O services. The virtual architecture describes
the services required by the application, and these dependencies are used to keep the size of
the generated OS at a minimum. The generation flow is shown in Figure 2.17.

94

Architecturedescription Allocation table High level tasks description

void task1()
?\\ fifo_portA : 0x9000 {
2 T3 .
@I)/ shm_B :0xA000 val=read_port(portA);

.»;rite_port{ PORTB,val);
}
Operating system

Existing code

void IN_FIFO_1(struct FIFO_16 “port) Architecture
{ shortres; analyser
if (port->head==port->queue)
sleep(port->signal);
res=port->data[port->queue];
port->queue=(port->queue-1)&FIFOSIZE;
return res; Code
) selector
Adaptable code
I* Ports declaration */
@DEFINE PORTS= Task code
@ FOR i FROM 0 TO IONUM n
@po Code Makefile adaptor
@ IOTYPE[] " " IONAMEIi] expanser generator
@ "=" IOADR[""
@ ENDFOR
(@ENDDEFINE
Targeted Makefile Targeted task description
operating systemcode
CC=m68k-coff-gce void task1()
I* Ports declaration */ CFLAGS=-03 {
FIFQ fifo_port_A=0x3000; LDFLAGS=-nostdlib

void* shm_B=0xA000; val=read_FIFO_16(fifo_port_A);

OBJS=boot.o FIFQ.0 ...

write_SHM_1&((shm_B+10),val);

Figure 2.17- Application-specific OS generation flow (GAUTHIER et al., 2001)

Most of the library components are written in C language, which makes porting to
different architectures easier. Assembler code is used only in very specific codes, such as the
boot code, context switch, and device drivers, which represent a small part of the whole
library.

2.4.4 Simulation Model Generation — CosimX

The CosimX tool provides heterogencous multi-level simulation generation
(NICOLESCU et al., 2002; SARMENTO et al., 2004). For the interfaces, at different levels, it
generates a simulation with wrappers (from a library) to adapt the protocol, as presented in
Figure 2.18.

CosimX produces an executable model that is used to validate the internal model. This
executable model is composed of a SystemC simulator that acts as a master for other
simulators. A variety of simulators can participate in this co-simulation: SystemC, VHDL,
Verilog, and instruction-set simulators. Co-simulation wrappers have the same structure as
hardware wrappers, with simulation adapters instead of processor adapters, and simulation
models of channel adapters. In the co-simulation wrapper library, there are simulation
adapters for the different simulators supported. There are also channel adapters that
implement all supported communication protocols in different languages.

95

In terms of functionality, the co-simulation wrapper transforms channel access(es) via
internal port(s) into channel access(es) via external port(s) using the following functional
chain: channel interface, channel resolution, data conversion, and module communication
behavior.

MVirtual Architecturey

.

HwiSw wrapper

generation Simulation
wrappers
} generation

l%”lljl T Nae SIM. | "HOL sim. IE I I . I
| = ,
= L B e

[Comm. Network] [Comm. Network] Comm. Network

Figure 2.18- Executable model generation in CosimX (SARMENTO et al., 2004)

Internal ports use the communication API (for example, put and get in FIFO channels) to
exchange the data. At virtual architecture level, the channel interface provides the
implementation of these channel functions. Data conversion is required, since different
abstraction levels can use different data types to represent the same data.

At BFM-level, an operating system and hardware wrappers implement the communication
APIL In this case, the co-simulation wrappers implement the ISS integration in the co-
simulation environment. The co-simulation bus used for synchronization and data exchanges
is implemented using inter-process communication (IPC).

2.5 Performance Estimation

The development of performance estimation and analysis tools is an active research area.
Software performance estimation methods are used mainly for worst-case execution analysis
(WCET), architecture exploration, and micro-architecture tuning. In MPSoC design,
performance estimation becomes complex and requires system-level methods allowing an
integrated analysis of different processors, hardware components, and interconnection.

In Section 2.5.1, we will present methods for estimation of software performance in a
given architecture. These tools are proposed to provide fast estimation in the context of design
space exploration. Section 2.5.2 discusses related work in the area of integrated hardware and
software performance estimation. These works aim to provide global estimation that considers
multiprocessor and communication issues.

96

2.5.1 Software Performance Estimation

This section presents estimation techniques for software running in a given processor.
Simulation techniques offer accurate software performance estimation with high costs and
considerable modeling efforts. Analytic models estimate software performance using abstract
models. Although they are fast, the main challenge with analytic models is to derive an
accurate model for advanced processor architectures. Complementary to simulation and
analytic-based methods, worst-case execution analysis (WCET) techniques aim to
automatically discover the worst execution path, which is important for real-time analysis.

2.5.1.1 WCET Estimation

Real-time system and scheduling analysis (PUSCHNER; BURNS, 2000) stimulates the
development of worst-case execution time (WCET) solutions. Given a set of tasks T,
described as a tuple {D, P, E} that represents the deadline, period, and execution time,
respectively, the schedulability test determines if a schedule policy satisfies the temporal
requirements. In this case, WCET tools give the task execution time (E).

The application real-time analysis is validated in two phases. Initially, the WCET of each
task is calculated, and, subsequently, the schedulability test determines the real-time
properties. WCET may be obtained using cycle-accurate simulators of the target processor.
For simple tasks, this technique is straightforward, but in complex applications, finding the
inputs that will result in the worst-case execution time is difficult and error-prone.

In worst-case execution time (WCET) calculation, it is necessary to find out the sequence
of basic blocks that is responsible for the worst case. The static extraction of the execution
flow allows the WCET calculation, even for applications where the execution behavior is
dependent on the input data.

Li and Malik (LI; MALIK, 1995) propose a static analysis method using a technique
called implicit path enumeration, which determines the execution number of each basic block
in the worst-case. These limits are calculated by linear equations obtained from structural and
functional analysis. Structural restrictions are generated from a control flow graph (CFG)
analysis. Functional restrictions are given by the user and describe the information that cannot
be obtained from the CFG, such as loop limits and false paths. A linear programming method
maximizes these equations and calculates the WCET.

Figure 2.19 describes a C code example and shows its control flow graph. Equations 2.2 to
2.5 represent structural and functional restrictions. Equation 2.2 represents a functional
restriction that describes the maximum value of the while loop (in the example, the loop limit
is 100). Using the associated cost of each basic block equation (c;j), a linear programming
technique is employed to maximize equation 2.1, using the functional and structural
restrictions described by linear equations.

n

Cycles= Y ¢, *d, 2.1
i=0

dp <= 100 (22)

Xo= dq+ d7 (23)

X3= do= ds+ d4 (2.4)

Xe=ds+de= d7+dg (2.5)

97

The WCET calculation may be extremely pessimistic in cases where the functional
restrictions were imprecisely defined. The programmer must know the application and
provide precise functional restrictions. Moreover, the method can be pessimistic in an
additional way, since it considers that the execution cost of a basic block (c;) is fixed.

int counting(vectorv, int n, int value) ?
{ —
it i, ; Xi [=0 =0
i=0; j= 0; x, Y g
\{Nhne (i<n) 2["while (i < n)
d
if (v[i] == value) 2
{ X3 |if (v[j]==value d
j++; ds ds dg !
} X4 j++ Xs j__
else
{ ds ds
j"; X6 i++
} do
i++; X7

) return
return j; Qé
}

Figure 2.19- Static WCET analysis

Wolf and Ernst (WOLF; ERNST, 2000) present a method to reduce the linear (in)
equations — thus reducing complexity — by trying to extract a single feasible path. A single
feasible path can be extracted when the program execution is input-independent. Even though
this is not the case for all programs, some subparts (such as kernels in digital signal
processing algorithms) can be classified as a single path. Moreover, Wolf and Ernst’s work
does not use the worst-case, but instead uses intervals that are calculated considering that a
basic block execution cost varies. Intervals give more accurate results because they use an
accurate basic block execution cost.

Static analysis can supply other information that is also relevant for performance
estimation in the presence of complex architectural features. In (LI; MALIK; WOLFE, 1995)
and (HERGENHAN; ROSENSTIEL, 2000), the number of misses in the instruction cache is
obtained by applying linear equations. Li et al. (2003) describe a method that models the
impact of speculative execution based on the number of misses in the instruction cache. The
number of misses of the branch predictor may also be statically obtained, as presented in
(COLIN; PUAT, 2000). These predictions increase the precision of the execution time
calculation of each basic block, since this calculation only uses local information. In this
phase, cycle-accurate simulators may be used (LI; MALIK, 1995; WOLF, 2000),
alternatively, but at a higher cost. Employing more abstract processor models reduces
complexity and facilitates retargeting of the estimation method for different processors
(ENGBLOM et al., 2001; SCHNEIDER; FERDINAND, 1999; LIM et al, 1998).

98

2.5.1.2 Simulation-based Performance Estimation

Simplescalar (2007) is a flexible tool for performance analysis of processors. It can be
used as an instruction-set simulator (ISS) or a cycle-accurate simulator. Simplescalar makes
architecture optimization easier, providing means to configure the micro-architecture, such as
a dispatch unit, registers, and cache. The Simplescalar tool set includes performance
visualization tools, statistical analysis resources, and a debug infrastructure.

Some tools use architecture description languages (ADL), such as LISA (HOFFMANN et
al., 2001), Expression (MISHRA et al., 2004), and MIMOLA (LEUPERS, 1998), to describe
the processor architecture. Tools supporting these languages produce the simulator, compiler,
and sometimes the synthesizable hardware, from the architecture description. ADLs allow fast
architecture exploration, due to the automatic generation of the toolchain that is necessary in a

new processor. Some commercial tools, such as Lisatek (Coware, 2007) and MaxCore (ARM,
2007), use the LISA ADL.

SystemC-based simulators that facilitate integration in system-level simulation models
have been developed. Microlib provides a PowerPC 750 (Microlib, 2004) model in SystemC.
ArchC (ArchC, 2007) is an ADL that generates simulation models based on the SystemC
library.

Tensilica (2007) provides an environment for development of an application-specific
processor based on a configurable instruction-set. The XPRES compiler automatically
explores the design space for a given application described in C language. After the golden
architecture definition, the environment generates the simulator, compiler, and the
synthesizable processor.

2.5.1.3 Analytic Performance Estimation

Analytic software performance estimation methods are proposed to provide rapid
estimation requiring little modeling and execution effort. This is useful for high-level design
space exploration. Usually, application profiling is performed to extract the number of
executed instructions of various types (LAJOLO et al., 1999; GIUSTO et al.,, 2001;
BONTEMPI; KRUIJTZER, 2002). A method then maps these instructions to a performance
model that calculates the execution time.

Giusto et al. (2001) compile the application code into a virtual instruction-set (i.e., a
simplified RISC set with 25 instructions). The estimation is performed evaluating the
execution cost of the virtual instructions on the target architecture. They profile a set of
benchmarks with 35 control-dominated automotive applications (considering the virtual
instruction-set) and use a cycle-accurate simulator to obtain the number of cycles consumed
by an application. Subsequently, statistical analysis based on linear regression is applied to
these data to calculate the constant K and indexes P; in equation 2.6, where P; and N; are the
weight and number of executions of each instruction of type i, respectively.

Cycles =K + ZP; N; (2.6)

As the authors demonstrate, since this approach uses a linear fitting method, it is adequate
only when the training set is similar to the applications for which the estimation is required.
The authors do not discuss details of the target architecture (such as cache and pipeline) for
which estimations are obtained.

Bontempi and Kruijtzer (2002) use a nonlinear method to estimate execution time. For a
given benchmark set, a profiler extracts a functional signature vector for a virtual processor
(with a set of 42 instructions). The function signature vector contains the instruction types that

99

appear in the code and the number of times each instruction type is executed. This functional
signature is theoretically independent of the target architecture, so it can be reused for
estimation with different processors. The authors, however, do not discuss the impact of using
this functional signature to estimate performance for a processor of an architectural type that
is different from the virtual processor upon which the profiler is based. Their estimation
method is also based on the architectural signature of the target processor. They propose two
parameters that define this signature: the number of memory wait cycles and the ratio between
the CPU clock and bus clock. They present estimation results for a MIPS R3000.

Bontempi and Kruijtzer use a training-and-test approach. In the test phase, they apply a
modeling technique called lazy learning to choose an estimation function that is based on a
criterion of neighborhood between the application and the training set. This function, which
may be locally linear, only uses points of the training set that are near of the application
estimation function. The inputs for this phase are the functional and architectural signatures,
and the number of clock cycles needed to execute each application in the benchmark set. The
number of clock cycles is obtained from a cycle-accurate simulation in the target processor.
The authors propose a training method based on splitting the benchmarks into two disjoint
sets for training and testing. They report a mean error of 8.8% in the estimations, for a set of 6
benchmarks, each one executed with 15 different input data sets. However, they do not
mention the size of the training and test sets.

Bammi et al. (2000) compare an annotation technique that uses a virtual instruction-set
with another annotation technique applied at object-code level. The former translates the C
code to a virtual instruction (VI) set. Each instruction in VI has a cost associated to the target
architecture that is obtained either by simulation or by a statistical method, as presented in
Giusto’s work. The second method (that is, the one at object-code level) uses compiled
simulation, where the assembler code is translated to a simulation code using delay annotation
that will be executed in the host machine. The authors report that the object-based approach
provides more accurate results because it can capture compiler optimizations. They report
results using a MIPS R3000 processor for a producer/consumer application. The virtual
instruction method results in errors between -0.29% to -80% compared to cycle-accurate
simulation. The object-code method gives errors between -0.29% and -10.5%.

Ipek et al. (2006) propose a neural network estimator used to explore application
performance, when executing under different architecture configurations. The neural network
inputs are the architectural parameters and the output is the cycles per instruction (CPI). The
authors evaluate different memory hierarchy and processor.

For memory hierarchy, the following parameters were evaluated: L1 DCache Size, L1
DCache Block Size, L1 DCache Associativity, L1 Write Policy, L2 Cache Size, L2 Cache
Block Size, L2 Cache Associativity, L2 Bus Width, and Front Side Bus Frequency. These
different parameters require 20736 simulations per benchmark. The processor architecture
was evaluated with respect to the following parameters: Fetch/Issue/Commit Width,
Frequency, Branch Predictor, Branch Target Buffer, ALU/FPU unit number, Reorder Buffer
Size, Register File, and LD/ST Queue. The combination of these parameters yields 20736
different configurations; and consequently, that many cycle-accurate simulations are needed
to explore the design space.

In a case study with SPEC 2000 benchmarks, the authors obtained a mean error
ranging from 2% to 4%, using just 4% of the total design space for the training set. Also, the
training time was around 2 minutes, using a cluster with 10 nodes. In addition, the authors
evaluated the technique in a multiprocessor architecture (CMP, in this case). The parameters
evaluated were Core configuration (In-order, out-of-order), Issue width, Number of cores,

100

SMT contexts per core, Off-chip bandwidth, Frequency, L2 Cache Size, L2 Cache Block
Size, and L2 Cache Associativity. For the case study, applications from the SPEC OMP and
parallel NAS benchmarks were employed. With 1% of the total design space used for the
training set, estimation errors of up to 6.4% were obtained.

2.5.2 Integrated Hardware and Software Performance Estimation

Aside from processor-level tools, new integrated hardware and software tools and methods
are necessary to estimate performance of whole systems, including hardware components,
software components, and their interfaces.

2.5.2.1 Simulation-based Performance Estimation

Virtual prototypes are simulation models that enable the integrated validation of hardware
and software components. They integrate an instruction-set simulator with hardware
simulation models such as memory, bus, peripheral, and IP components. Environments for
modeling and simulation of virtual prototypes based on SystemC, such as MaxSim (ARM,
2007), Coware ConvergenSC (Coware, 2007), and Synopsys System Studio (Synopsys,
2007), provide a rich set of components that can be extended by user-defined SystemC
modules. Some tools support the RTL synthesis for these library components, providing an
automatic path to the silicon. For instance, Synopsys CoreAssembler generates the RTL
interconnection structure from virtual prototypes described in MaxSim (GRUN et al., 2005).

Other virtual prototype simulators, such as SIMICS (2007), use functional models for the
processor, buses, and hardware components. Functional models provide reasonable speed to
execute real workloads. Some works have proposed the integration of functional system
simulators and cycle-accurate processor simulators such as Simplescalar (MAUER; HILL;
WOOD, 2002). Chen et al. (2003) also integrated power estimators, providing integrated
performance/power estimation.

Fummi et al. (2004) present two methods for the integration of instruction-set simulators
(ISS) in SystemC models. The authors use the GNU debbuger (gdb) as instruction set
simulator together with SystemC simulation. The first method uses a breakpoint in SW to stop
the execution and to synchronize with the SystemC kernel. The second uses the adapted OS
drivers that stop software execution and communicate with SystemC when an I/O operation is
made. In both cases, changes are necessary in the SystemC simulation kernel to support
synchronization and data transfer.

MPARM (BENINI et al., 2005) is an environment for MPSoC design exploration using
SystemC. It is a complete platform solution for MPSoC simulation composed of processor
models (ARM), bus models (AMBA), memory models, hardware support for SMP (hardware
semaphores), and a software development toolset including a C compiler and an operating
system (UCLinux). Hardware components, such as memories and the AMBA bus model, are
all written in SystemC. The AMBA bus model allows multiple masters and slaves and can be
configured in terms of arbitration policy. A cycle-accurate instruction-set ARM simulator
developed in C++ is encapsulated in a SystemC wrapper and integrated into the platform. The
wrapper realizes the interface and synchronization between the instruction-set simulator and
SystemC simulation framework. This integration allows plugging the ISS into a system
simulation activated by a common system clock, thus providing a consistent and synchronized
hardware and software multiprocessor simulation. Figure 2.20 shows an architecture example

101

composed of two ARM processors, the AMBA bus, two memory modules, and hardware
semaphores.

W IR NI NSNS NN IS
-

-
-
-
-
-
-
-
-
-

ARM7 Local Irstruction
- Bus of o0
Data

Arbiter| @YTT-T.\ AMBA

Memory

Cache -
=

Interupt N

Controller ﬁ

Timer [[*] UART

AMBA SLAVE #1

Sssssssssssssssnnnsnnnnnnnnnnsnnnnnd

SystemC module (wrapper)

AMBA MASTER #1

=7\ AMBA

=/| AHB |/F ¥ Memory

ARM7 N Local Instruction
- Bus [
it Data
|

Cache

Interrupt &
cototer o E——

Timer Y [* UART

AMBA Semaph
AHB I/F registers | =
;

Decoder

SystemC module (wrapper)

AMBA MASTER #2

AMBA SLAVE #3

-~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
=
-
-
=
-
-
-

: AMBA AHB

Figure 2.20- MPARM system architecture example (BENINI et al., 2005)

In MPARM, the software tool chain was extended to support multiprocessor execution.
This includes special memory mapping for processor initialization, given that following
initialization, each processor has to branch to its own initialization routine. The
multiprocessor shared-memory architecture supports atomic memory operations (test&set
instructions) implemented by hardware semaphores. These hardware semaphores affect
operating system implementation; in the MPARM environment, a Linux-based OS
(UCLinux) was adapted to support the multiprocessing architecture.

MPARM provides support for performance analysis. The performance statistics include
cache miss/hit rate, as well as bus contention and average transfer waiting time. These
statistics are used to explore the bus arbitration policy in the AMBA bus.

Meyr et al. (WIEFERINK et al., 2004) propose a link between simulation models
generated with LISA and SystemC system-level simulation. The goal is to explore the
processor and communication jointly, using a system-level approach. The integrated co-
verification environment provides a way to analyze software performance, for example CPU
load and RTOS overhead. Furthermore, shared resources (e.g., memory and buses) directly
affect SW performance, and isolated analysis of a single processor hides potential problems
and bottlenecks.

The processor simulator is modeled at instruction-accurate or cycle-accurate level.
Instruction-accurate models execute the full instruction-set but ignore pipeline effects. In
contrast, a cycle-accurate model fully simulates the pipeline stages and the stalls due to
memory accesses. The processor generated from LISA is encapsulated in a SystemC wrapper
and connected with the rest of the system using TLM or RTL interfaces.

TLM channels provide high-speed simulation. Such channels may be modeled as
functional or bus cycle-accurate (BCA). Functional TLM interfaces use read and write
operations to access the SoC bus. Blocking interfaces can be used to simulate access latency.

102

Bus cycle-accurate (BCA) interfaces provide cycle level detail including bus requests, data
transfer, and device latencies.

The authors propose different combinations of processors and bus model abstraction levels
(see Figure 2.21):

a) Processor stand-alone simulator;

b) Instruction-accurate processor and functional communication;

c) Cycle-accurate processor model and functional communication;

d) Cycle-accurate processor model and BCA communication;

e) Cycle-accurate processor model and RTL pin-level communication;

f) RTL processor and RTL pin-level communication.

LISA core Bus interface SystemC Phase
bus
Instruction 1
Accurate
........ (I2) ; T
model § .| LISA2TLM alial 2
........ IU; % Functional API * § §
4 E converter E a
B+ TLM 3
........ Cycle e - model od Leeeerees
Accurate % LISA2TLM &
(ca) ﬂ 5 | CA API ﬁé & 4
model Bus 9 E converter &
........ Cycle 8 g 0 [secessee
Accur .|| 8 | LISA2RIL NN 5
(BCA) o converter o 'E RTL
RTL a E model 6
model & 3

Figure 2.21- LISA simulation and SystemC integration levels (WIEFERINK et al., 2004)

The stand-alone simulator (level 1) disregards communication and conflicts in shared
resources, considering only the isolated software execution. Clearly this method is inaccurate
for MPSoC designs. Level 2 already considers the system-level simulation, and the software
uses the instruction-accurate simulators with functional interfaces with the rest of the system.
These interfaces model the operations without considering timing concerns. In the next level,
the instruction-accurate simulator is replaced by a cycle-accurate one (level 3), which
precisely models the pipeline, branch predictors, and other effects. In level 4, communication
is modeled as cycle-accurate using transaction channels called BCA (bus cycle-accurate). In
the next level, the interfaces are refined using a full pin interface (level 5). The last step uses
synthesizable component models using hardware description language simulators.

Posadas et al. (2004) propose a performance estimation method (using SystemC) that is
based on a performance-annotated library. The authors use code segments instead of basic
blocks. A code segment is a set of basic blocks without wait statements or channel accesses.
As such, the SystemC process does not interact with the simulation kernel.

To consider the execution delay, the authors propose a method based on redefinition of
C++ classes that contribute to the execution time with the performance annotation. The

103

redefined class executes the behavior normally and additionally calculates the execution delay
(for instance, in the Integer class, the operator + realizes the sum and computes the delay of
this operation). At the end of the segment, when the execution reaches a wait statement or a
channel access, the accumulated delay is used as the execution time. For the hardware, the
same method is used, but it can consider the concurrent segment execution. Channels also use
annotation to compute operating system overhead.

The authors consider that the platform vendor should provide performance values
annotated in each object. Errors below 4.5% in the SW and 8.2% in the HW were obtained,
experimentally, using a voice decoder for GSM applications composed of 4 processes mapped
into a RISC processor and a hardware accelerator. The authors report a simulation speed gain
of 142 times compared to ISS simulation.

2.5.2.2 Analytical-based Performance Estimation

Analytical and formal methods are proposed to find a way around long simulation time
and to avoid building an executable model. Such tools are proposed to verify system
performance and certain properties, such as the maximum throughput, maximum delays, and
buffer utilization, among others. Usually, analytical methods are used in design space
exploration where absolute precision is not required, and where one only seeks to obtain a
good idea of the performance (in relative terms) of alternative architectures.

Chakraborty et al. (2003) present a framework to analyze system properties modeled as
event streams, based on real-time calculus. This framework has been applied to the design
exploration of network processor architectures (THIELE et al., 2002), determining the
cost/performance trade-off of different configurations of HW and SW components.

Ritcher et al. (2003) propose a formal approach used to verify the schedulability properties
of heterogeneous multiprocessors systems. The key idea is to use the current formalisms for
individual components and extend them in a compositional model for global MPSoC analysis.
The individual analysis methods include well-known scheduling analysis techniques such as
RMS (rate monotonic scheduling), EDF (earliest deadline first), and TDMA (time-division
multiple accesses). These analysis techniques model the task or communication activation as
event streams. The authors describe that the main problem in the compositional model is that
the output event models are usually not supported as input models. To solve this problem, a
set of event model interfaces (EMIF) and event adaptation functions (EAF) is used to
automatically adapt the output event stream to match up with an established input event
model.

Figure 2.22 presents two adaptations of an output event model to an input event model. In
the example, C2 and C3 are accesses, through the interconnection, to an HW IP component
and a DSP processor. In the DSP component, the well-established formalism uses the simple
periodic model as input, which represents the processing execution when a given data
quantity is available. Therefore, the output model from the interconnection is represented as a
periodic event stream with jitter. To match both models, the interface (EMIF and EAF) adapts
the periodic bursts using buffers and activates the DSP processor when the data quantity is
sufficient. In this case, the formal model provides the execution bounds and helps optimize
the buffer requirements.

104

< simple
% sporadic

%= periodic
= W jitter

periodic
w/ hurs(z

EMIF|
wl EAF

—~

) -
simple —
periodic 25

Figure 2.22- Adaptation between event models in SymTA/S (RITCHER et al., 2003)

Russell and Jacome (2003) present a method based on abstract performance models and
application scenarios. An application scenario is a defined path in the control flow graph that
expresses the most important application characteristics. The scenario is statically extracted
from user input constraints. The input constraints are propagated to prune the nodes in the
infeasible paths. From initial constraints, other constraints are derived and propagated in an
iterative process. The iterative process may require user interaction to define manual
constraints resulting in a unique CFG (control flow graph) path called ‘scenario’. A trace is
generated using this scenario and the performance is evaluated using an abstract cost function
for each component. Cost functions are determined from component properties, architecture
features, and values supplied by the designer. For instance, the processor cost function
calculates the cycles needed to execute a given instruction. To calculate memory access costs,
the values are derived from the interconnection topology in combination with databook values
(for example, access time). The structural architecture adds the influence of components that
are traversed during an operation. For example, in a memory access, buses and memory
controllers are used, and their influence is accounted for in the performance estimation. The
authors present a case study of a network interface. The work analyzes two different memory
organizations using the Intel 1960 as target architecture. An estimation error of up to 20% is
reported.

2.5.2.3 Hybrid and Trace-based Performance Estimation

In order to find a way around long simulation time, hybrid trace-based methods combining
simulation and profiling are proposed. The profiling information obtained from a generic
architecture is used to estimate the application performance without necessity of rerunning the
simulation for each different configuration.

The SPADE environment (LIEVERSE et al., 2001) proposes a trace-based performance
estimation method with a clear separation between functionality and architecture. The
application is modeled as Kahn networks. A Kahn model is composed of parallel processes
that communicate via unbounded FIFO channels. The application-programming interface
(API) is composed of three functions: read, write, and execute. During the Kahn model
execution a trace is generated, taking into account communication workload (read and write
operations) and computation workload (execute operations). The architecture is assembled

105

using blocks that model different resources such as processing, communication, and memory
resources. A processing resource is composed of a trace-driven execution unit, which
interprets trace entries and I/O interfaces that are connected to a specific communication
resource.

In the SPADE environment, following application and architecture definition, the mapping
is realized. Each process is mapped onto a processing resource. The Kahn channels are
mapped to a combination of communication and memory resources. The simulation is then
performed and the application trace is applied to the architecture model. The performance
data collected during simulation include the utilization and stall cycles that are due to I/O
operations. For communication resources, the performance data include the amount of data
sent over the bus, the utilization, and the wait cycles. The application trace may be reused for
different architectures, enabling fast design exploration of different design points.

Mohanty and Prasanna (2002) propose a high-level performance estimator called HiPerE
to guide performance evaluation and mapping in SoC architectures. The input for the HiPerE
simulator is an architecture and application described in GenM (Generic model). A GenM
models the SoC architecture capabilities that will be used to optimize the application
mapping. The SoC architecture consists of three components: a processor, reconfigurable
logic, and memory. The GenM describes the different architecture configurations, such as
voltage operations of the processor, power states for the memory, and reconfiguration cost for
the reconfigurable logic. In GenM, an application is described as a task graph. For each task, a
set of performance parameters is given by the designer, for instance, the amount of input and
output data to/from memory, and the time and energy for executing the task at a given
voltage. The initial estimations can be obtained by analytic methods. The authors show an
example describing performance and energy as a function of operational frequency. This
general function is derived just by using fewer benchmark runs, as proposed in (GIVARGIS;
VAHID, 2002).

To improve the accuracy of these initial estimations, the authors propose linking GenM
with a simulation-based framework in order to estimate the performance of an individual task
with more accuracy. This framework, called MILAN, takes the task description (in C) and
generates the scripts as well as the configuration files necessary to launch the simulator and to
obtain the performance and power estimation. The simulators used to obtain these data were
SimpleScalar and Wattch (in this case, for the MIPS 3000 architecture).

Using a symbolic simulator, HiPerE can verify the performance (latency in completing the
task graph execution) and the energy for a given mapping. This fast symbolic simulation
enables system optimization in terms of power consumption or performance.

Lahiri et al. (2001) present a trace-based method to explore a communication architecture
consisting of a network of shared and/or dedicated communication channels and hierarchical
channels connected by bridges.

The method comprises two steps, as shown in Figure 2.23. In the first step, HW/SW
partitioning and processor selection is performed. Communication is modeled at an abstract
level by the exchange of events or tokens. The HW/SW co-simulation generates timing
inaccurate system execution traces that take into account the communication architecture. The
execution trace is represented by a CAG (communication analysis graph) that captures
computations, communications, and synchronization.

In the second phase, the designer specifies the communication architecture and the
proposed tool carries out the system performance analysis. The communication architecture is
modeled as a set of parameterized shared buses (with parameters such as width, speed, and

106

latency) and dedicated channels. The model accepts arbitrary mapping of events to channels.
This is employed for synchronization events that use dedicated signals.

The system level performance estimation generates an augmented CAG with transfer
latency annotations that help estimate the entire system performance. The analysis results also
include the critical path as well as statistics regarding bus usage and conflicts, among others.

System
Specification

*Topology of communication
Partitioning architecture

— N «Characteristics of each

—] Pl‘006§801‘ comm.channel
o selection | | «Mapping from communication

HW/SW events to channels

Co-simulation %
/// \\\

/! Extract CAG Specify
l communication

architecture
System level performance
analysis inclufing effects
of communication
architecture

~

Figure 2.23- Lahiri’s method for communication architecture exploration (LAHIRI et al.,
2001)

In a case study of a TCP/IP network interface subsystem responsible for calculating the
checksum of IP packets, the authors report an increase in speed of 160 times compared to the
entire HW/SW co-simulation. The case study consists in 4 tasks: (a) create pack, (b) packet
queue management, (¢) IP_check, and (d) checksum calculation. Tasks (a) and (b) execute in
an MIPS R3000 processor; two hardware modules implement tasks (c) and (d). A shared bus
interconnects the components and the memory modules. The proposed tool is able to explore
a design space comprising 36 different configurations of DMA block sizes and priorities, in
less than Is.

Cai et al. (2004) propose a system-level estimation approach based on generic dynamic
profiling and architecture mapping, in order to derive the performance estimation. This
generic profile is obtained from the specification execution and stores the executed
instructions (by type) and communication in the TLM channels. When evaluating a given
solution, the specification is mapped to a particular architecture. For each architecture
component, a table with weights is used to calculate the cost of execution of a given
operation/communication in the component. The weights are obtained from the component
datasheet or from simulations with selected codes. The authors present a case study of a JPEG
encoder, where different implementations with hardware and software components are
evaluated. The SW components are mapped to a Motorola DSP56600 processor, and the HW

107

component cost is obtained from the manually implemented RTL models. The estimation
from the dynamic profiling gives a maximum error of 12.5% compared to the cycle-accurate
simulation.

The Platune environment (GIVARGIS; VAHID, 2001) is a platform tuning framework
used to select appropriate architectural parameter values, for a given application mapped onto
the parameterized SoC platform, in order to meet performance and power objectives. Platune
is composed of the following components:

e Tightly integrated simulation models for each of its SoC components (for example,
processors, memories, interconnect buses, and peripherals). These simulation
models capture dynamic information essential for computing power and
performance metrics.

e Power models for each of its SoC components. Every power model must be
parameterized according to the parameterization of the respective SoC component.

CPU-I$ Bus

I
MIPS $ MEM
$-MEM Bus
< D$
)
Peripheral Bus l
«
l I
U AR DCT CODEC

7 FTT T 777 7T rrrr7i7rrrrrry 7T Ty rrrryd rrrr7 FTTTTITrI77 FTTTITI VI T ITIrT

Figure 2.24- Platune SoC base platform (GIVARGIS; VAHID, 2001)

Figure 2.24 describes the base SoC platform. The MIPS processor can be set to run at 32
different voltage levels and thus at 32 different frequencies. Data and instruction cache
configuration includes cache size, line-size settings, and set-associativity. The four
interconnect buses (CPU-instruction-cache, CPU-data-cache, cache-memory, and peripheral
bus) are, in turn, composed of a data bus and an address bus. Each one of the buses can be set
to one of four different widths (4, 8, 16, or 32 wires) and one of three different encodings
(binary, bus-invert, or gray). The UART peripheral’s transmitter and receiver buffer sizes can
be set to one of four values (2, 4, 8, or 16 bytes). The DCT CODEC peripheral’s pixel
resolution can be set to one of two widths (16 or 24 bits). The authors report a total of 26
parameters and a configuration space of 10* configurations.

Platune uses a cycle-accurate simulation to obtain the initial estimation and some platform
variations are estimated using analytical methods. Equation 2.7 characterizes the general
CMOS power model from which Platune derives all power models. The term C is the average
capacitance of the switching element. The term A4 (a number between 0 and 1.0) is a measure
of the switching activity of the element. The terms F and V are, respectively, the clock
frequency and supply voltage applied to the switching element. The switching activity is

108

registered during the simulation, whereas different configurations for frequency/voltage
operations can be calculated without simulation.

P=1Y% C.A.F.V* (2.7)

The processor simulator collects the consumed cycles and detailed statistics on internal
activity. This collected data is used to compute power and performance metrics. The
processor power model uses an instruction-based approach (Equation 2.8). The power
consumption is calculated considering all executed instructions (E'isruction iS the average
energy consumption of the ith instruction) and register file accesses (E'r.ie is the average
energy consumption of the ith access to the register file). The value of E'jystruction 1S obtained
from a gate-level simulation and is assumed to be constant and normalized for a supply
voltage of 1 Volt. E'reefile is assumed to be constant for any read or write access and is derived
from gate-level simulation. The term T is the simulated time (in seconds), and V is the voltage
operation. Equation 2.8 is used to calculate processor power consumption with different
voltages and frequencies.

Pcpu: (Z(EiinstmctionXV2)+ Z(Eireg-ﬁlexvz))/ T (2 . 8)

A parameterized simulator is used to simulate cache memories based on the stream of
memory references generated by the processor simulator. Equation 2.9 describes the power
consumption model for cache access. For instance, Egorage depends on cache line size,
associativity, and total size. With this model, different cache configurations could also be
evaluated without simulation.

Pcache: Z(Estorage + Eword—line + Ebit—line + Edecode)/T (29)

The design exploration result is represented as a Pareto-optimal set comprising the trade-
off between power consumption (in Watts) and performance (i.e., execution time in seconds).

Kempf et al. (2006) propose a framework for early software development and verification
in MPSoC design. In this framework the software is modeled as C tasks and the
communication as TLM channels. In order to estimate software performance, the authors use
an annotation method where a micro-profiler is utilized to instrument the software code. This
micro-profiler instruments the software code by inserting the cost (cycle count) in each C
statement. This cost is used to simulate execution time, and is consumed before each
communication and synchronization. The cost of each instruction is configured by the
designer who uses a datasheet or his own knowledge. The micro-profiler also instruments the
intra-task memory access, forwarding the memory accesses to the TLM ports. The authors use
an architecture composed of the MIPS 32 microprocessor connected with an AMBA bus. The
results, for the Blowfish encryption algorithm and G.731, a speech compression standard, are
errors of about 8% for the cycle count and up to 20% for memory accesses. The authors report
an increase in speed of 9 times for the estimation time compared to the cycle-accurate
simulation.

2.6 Integrated MPSoC design and software performance estimation

In this section, an integrated methodology for design and performance estimation of
MPSoCs is presented. This methodology is proposed to support software performance
estimation, using an analytic method for processor selection at functional level and a
simulation-based method at bus functional model (BFM) level. Other tools necessary for

109

MPSoC architecture exploration, such as HW/SW partitioning or communication design, can
be easily integrated to the methodology we propose.

Performance Estimation Tools

c
System Specification code > (Processor Selection) (a)
/

stimated software execution time

Architecture exploration

Virtual Architecture simulation model | ~“HW/SW Interface ™ p _
Model at TLM Level / Partitioning > Scope of this
work
e

quirements for communication
/ between the components

HW/SW interface refinement

BFM Level Simulation model oS overhead, ©

SW execution time J

/ in a cycle accurate
Synthesizable RTL
model . .
RTL Level »(_ Delay estimation

simulator
Figure 2.25- Integrated MPSoC design and performance estimation flow

Figure 2.25 shows the overall proposed design flow. After the partitioning of the system
functionalities between hardware and software components, each software component needs
to be mapped to a given processor. A neural network (NN) estimator supports the processor
selection. An NN provides a fast estimation method, necessary for high-level exploration.
Moreover, the neural network non-linear prediction provides the adaptability necessary to
estimate software performance in complex architectures. The neural network solution is based
on a training approach, where a set of benchmarks is necessary to calibrate the NN, requiring
a cycle-accurate processor model to obtain initial values. The variability of benchmarks used
to train the neural network is the key problem for the achievement of precise estimations. In
this work, benchmarks with different characteristics are used to obtain the heterogeneity
necessary for the NN training. For NN utilization, the executed instructions need to be
counted and classified. In our approach, this instruction count is dynamically obtained using
an instruction-accurate simulator, which is faster than a cycle-accurate one.

After the architecture exploration, a “golden” virtual architecture model is obtained. This
virtual architecture is composed of abstract hardware and software modules that communicate
via transaction-level channels. The ROSES environment (see Section 2.4) uses this virtual
architecture as input and refines the hardware and software interfaces, creating the necessary
wrappers to connect these components.

The CosimX tool provided in ROSES generates a simulation model of the virtual
architecture, in SystemC. CosimX also adds simulation wrappers needed when two
components have interfaces at different levels (for instance, a TLM channel connected to a

110

component with an RT-level interface). In the SystemC simulation model generated from the
virtual architecture, software components execute in the host machine and hardware
components are modeled as functional components. This model is used to validate functional
behavior, but the performance cannot be evaluated precisely because software is executed in
the host machine.

After the refinement of hardware and software interfaces, a bus-functional (BFM)
architecture model is derived. The hardware components are handled as black-boxes provided
as cycle-accurate models. The software interfaces include all device drivers required to
implement the communication API (application-programming interface), as well as a
dedicated operating system for each processor. The hardware interfaces include the
communication wrappers necessary to adapt the communication and protocol components
(such as FIFO). These components are assembled based on the protocols and processors
selected in the architecture exploration step. For estimation purposes, a virtual prototype is
generated from the BFM model using instruction-set simulators as processor models and
SystemC modules for hardware components.

CosimX generates a simulation model for the BFM model using the inter-process
communication (IPC) mechanism to connect the instruction-set simulator (ISS) with the
SystemC simulator. The ISS and SystemC simulations are only synchronized when
communication (e.g., data transfer, interrupt) occurs. Since the hardware and software
simulators are not synchronized cycle-by-cycle, it is not possible to use this approach to
determine the exact moment when an interrupt arrives at the processor, which would be
required to obtain the response time for the interrupt request.

In this work, we propose the utilization of two tools (FlexPerf and MaxSim) to generate a
global and synchronized simulation model. These global simulation models are called virtual
prototypes. In a virtual prototype, software executes in a processor model and hardware is
modeled as SystemC components, and they are synchronized cycle-by-cycle. Additionally,
the simulation model generated in both environments provides support for integrated
performance analysis of hardware and software components. The performance analysis
resources include the software timeline execution, bus access statistics, and cache
performance. The debugging capabilities are extended with the support for breakpoints in the
assembler code, registers, and signals. These functionalities are not available in the previous
SystemC model generated by CosimX and were integrated to the ROSES environment.

Currently, FlexPerf has a well-established methodology to describe a processor model in
the LISA language. Additionally, it supports performance event generation and provides
modules for performance analysis. Using FlexPerf’s capabilities and the expertise to generate
an instrumented processor simulator, we extended the environment to support performance
analysis in MPSoC architectures. This integration is accomplished using the CosimX tool
available in ROSES. The integration is realized by means of a SystemC wrapper that
encapsulates the processor simulator and implements the FlexPerf interface for performance
event generation. This integration adds hardware and software performance analysis
capabilities to SystemC simulations. The instrumentation is manual; on the other hand, the
gain in using FlexPerf is flexibility and modularity. FlexPerf enables extended analysis and
the reuse of existing analysis modules. This work is similar to (WIEFERINK et al., 2004;
BENINI et al., 2005), where a global synchronized MPSoC simulation model is presented.
These environments provide certain performance analysis capabilities related to processor and
communication performance. However, it is not clear how one could customize these analysis
features. In this work, the FlexPerf framework provides an infrastructure that facilitates the
development of custom performance analysis and enables reuse of such custom analyses for
future designs.

111

A second tool, called MaxSim (ARM, 2007), was employed to generate and simulate a
virtual prototype. MaxSim provides a rich set of components (e.g., processors, buses, and
memory) in a library used for the assembly of a virtual prototype. These library components
have many built-in profiling and performance analysis capabilities. For instance, in processor
models a set of performance analysis functionalities, such as a software timeline and cache
performance measurement, is available. Moreover, processor models provide an interface to
connect software debuggers, enabling synchronized multiprocessor debugging.

MaxSim is based on SystemC, but its components use proprietary MaxSim interfaces to
signals and transaction-level channels. A tool called Colif2MaxSim, which was developed in
the context of this thesis, generates the virtual prototype, in MaxSim, from the ROSES design.
Colif2MaxSim takes the ROSES design described in COLIF (CESARIO et al., 2001) — that
is, a design meta-model used by all ROSES tools — and generates the design in MaxSim
format. Furthermore, adapters are generated to convert the SystemC standard interface to a
MaxSim interface. The virtual prototype provides all MaxSim simulation and debugging
resources, such as a graphical interface, synchronized breakpoints in signals and software
code, and multiprocessor debugging. For performance estimation, all of the performance
analysis capabilities built into MaxSim components are used (for instance, software timeline
execution, cache performance measurement, and bus usage statistics). For custom
components, MaxSim provides a profiling interface to generate the performance events.

The performance analysis functionalities at BFM level enable the designer to jointly verify
the SW and HW. The designer may validate design decisions such as those determining
scheduling policies, drivers, and buffer sizes. Using a virtual prototype, the designer can also
verify the impact of different cache sizes and memory hierarchies on final performance. For
code optimization, the execution time of each function makes it possible to detect
optimization points in the software code.

Usually, in virtual prototype environments, the design starts with virtual prototype
modeling (ARM, 2007; Coware, 2007; Synopsys, 2007), and, consequently such
environments do not provide a link to more abstract levels. ROSES integration enables system
design at more abstract levels, supporting the automatic generation of the virtual prototype.
Other environments propose simulation models for multiprocessor platforms (BENINI et al.,
2005; MAUER et al., 2002), but without a direct link to a design environment, as proposed in
this work.

The simulation-based methods used in the virtual architecture and BFM level have an
inherent high-cost compared to analytical approaches. Because some design decisions were
made in early design stages, less time was spent on simulation in this step. Furthermore,
simulation provides a more detailed behavior analysis, including breakpoints and step-by-step
execution, which makes multiprocessor design easier.

2.6.1 Discussion

Our proposed approach for high-level software performance estimation is similar to
Giusto’s work (GIUSTO et al., 2001). However, instead of using a linear approach, we adopt
a non-linear neural network solution. Linear methods provide satisfactory results when the
target architecture is simple and has no advanced features. The neural network adaptation
provides a way to estimate software execution time for a range of architectures. The non-
linear approach is also adopted in Bontempi (BONTEMPI; KRUIJITZER, 2002), but instead
of using a virtual instruction-set, we use the target one. This allows better instruction
classification, but requires a compiler for the target processor.

112

The neural network training and utilization approach is similar to Giusto and Bomtempi’s
approach, and strongly depends on the training set. Using a training set similar to the
estimated application results in an increase in accuracy. To improve accuracy, we propose a
classification method based on a control flow graph (CFG) similar to the method presented by
Sciuto (SCIUTO et al., 2002). The classification method divides the application into two
domains: a control and a data-oriented application. In the utilization step (application
estimation), an adequate neural network is used. Ipek et al. (2006) also utilize a neural
network to estimate the performance of a given application with respect to different
microarchitecture configurations. However, in our work the neural network is more generic
and is trained for one architecture configuration, but for different applications.

The integrated hardware and software simulation model we use is similar to that in the
work proposed by (BENINI et al., 2005; WIEFERINK et al., 2004; BELANOVIC et al.,
2004). These global simulation environments, usually called ‘virtual prototypes’, integrate an
instruction-accurate or cycle-accurate simulator of the target processor with a hardware
simulator. This integration must consider the existence of multiple processors, peripherals,
buses, and IP components.

Usually, these global simulation environments are not linked with a design methodology;
the virtual prototype model is manually created, thus resulting in an error prone task. In this
work, ROSES was used as a design flow, and tools were developed to automatically generate
a virtual prototype. As input, ROSES uses a virtual architecture which is composed of
hardware and software modules connected by transaction-level channels (TLM). ROSES
refines the TLM channels, generating a bus functional model composed of the necessary
software and hardware wrappers. We integrated ROSES with the MaxSim and FlexPerf
environments to generate the integrated hardware and software simulation models. The
automatic generation of virtual prototypes presented in this work is similar to that presented
by (BELANOVIC et al., 2004), but they use COSSAP descriptions and do not provide
software wrapper generation.

The main motivation for the integration of ROSES with FlexPerf and MaxSim is to
provide simulation models with support for generation and analysis of performance events. In
Benini et al. (2005), a multiprocessor platform based on the ARM processor provides the
performance analysis of processor cache and bus contention. The integration between ROSES
and FlexPerf is more general and allows the designer to perform his own custom performance
analysis. ROSES provides a tool named CosimX for generation of heterogeneous SystemC
simulation models at the TLM or BFM abstraction levels. However, the trace library provided
in SystemC only supports the tracing of signals or ports. The integration of ROSES and
FlexPerf will allow generation of complex and customizable performance events.

At bus functional level, the embedded software and operating system run on top of a
processor simulation model. The CosimX tool supports the generation of a global simulation
model, where communication and synchronization between the hardware simulator and the
instruction-set simulator (ISS) are made via inter-process communication (IPC). The
synchronization between the ISS and the SystemC hardware simulation is accomplished only
when a communication is realized. In the simulation models generated for FlexPerf and
MaxSim in this work, the hardware and processor simulators are synchronized cycle-by-cycle,
similarly to (BENINI et al., 2005; WIEFERINK et al., 2004). This enables the use of
synchronized breakpoints, thus facilitating debugging in multiprocessor system-on-chip
designs.

113

3 ANALYTIC SOFTWARE PERFORMANCE ESTIMATION

Currently, SoC designs include one or more processors resulting in an increase of
embedded software. The presence of various architectures with different trade-offs concerning
factors such as performance and power consumption allows a large design space exploration.
Estimation tools for software components are necessary, at a high abstraction level, to
determine which is the best processor, in terms of cost, performance, and power, to execute a
given application. Analytical methods are proposed to overcome the high cost of obtaining the
application execution time using emulation or cycle-accurate simulation.

Performance estimation may be applied in two contexts: worst-case execution time
(WCET) evaluation and design space exploration. In WCET evaluation (ENGBLOM,;
ERMEDAHL; STAPPERT, 2001), one of the main requirements is to guarantee that there
will be no underestimation of the execution time of a given application task, since this could
cause deleterious effects when using the estimation in the schedulability analysis.

The goal of software performance estimation for design space exploration is to obtain an
approximation of the software execution time for a given architecture (GIUSTO et. al, 2001;
BONTEMPI; KRUIJTZER, 2002). In this case, as in WCET calculation, precision is also
required, although both underestimations and overestimations may be tolerated. In this case,
techniques use application profiling, which extracts instructions executed by the application.
An analytical or statistical model thus maps the executed instructions to the number of cycles,
resulting in low estimation costs.

High-level performance estimation is an interesting alternative, since it may combine low
costs for obtaining the performance data with acceptable precision. This allows fast evaluation
of different architectural alternatives in the early phases of the design cycle. The main
problem in developing an estimation tool is obtaining an accurate performance model that
considers advanced architectural features such as pipelines, caches, and branch predictors.

At the functional level, different HW/SW partitions and assignments have to be explored.
Software estimation enables rapid processor selection and helps HW/SW partitioning by
estimating the SW partition cost. This first estimation is useful in the architecture exploration
step (see Figure 3.1).

114

Performance Estimation Tools

System Specification I Processor Selection \

Architecture exploration

Virtual Architecture . HW/SW Interface
Model at TLM Level / Partitioning > Scope of

this work

HW/SW interface refinement

BFM Level Memory mapping

RTL Level »(_ Delay estimation

Figure 3.1- Performance estimation tool in a global design flow

J

This chapter is divided as follows. Section 3.1 presents the neural network based
performance estimation. Section 3.2 presents the experimental set, and Section 3.3 exposes
the experiments and results. Section 3.4 presents a method to classify the application in
domains resulting in more accurate results. Finally, Section 3.5 concludes this chapter.

3.1 Neural Network Performance Estimation

In the design of embedded systems, design space exploration can be performed to figure
out a solution that satisfies the application requirements, for instance by changing
architectural choices and task partitioning. Subsequently, the synthesis process generates the
final solution composed of software (operating system, application tasks, drivers), hardware
(processors, dedicated IP hardware), and the communication structure. An estimation process
can be continuously applied to verify the proposed solution with regard to system
requirements.

In embedded software estimation, the use of advanced processors requires accurate and
fast estimation tools that consider the performance impact of advanced features, such as
caches, branch prediction, and pipelines.

The exact number of cycles required by an application may be obtained using emulation or
cycle-accurate simulation. These techniques, however, have an inherent high cost either for
the development of the simulation or emulation setting. Table 3.1 presents the simulation and
estimation times for 2 different processors, using our proposed method. An x86-based
machine (Athlon XP 1500) was used to execute the simulation and estimation tools. A speed-
up between 5 and 357 times was achieved compared to cycle-accurate simulation. The
estimation time corresponds to the dynamic instruction count and the neural network
utilization. The dynamic instruction count uses instruction-accurate simulators to obtain the
executed instructions, and its cost is proportional to the application size. An instruction-

115

accurate simulator is faster than a cycle-accurate simulator, since it does not simulate the
pipeline and microarchitecture details. Neural network utilization takes only 0.026 seconds
with the advantage that its cost is always constant and independent of the application size.

Table 3.1- Comparison between the cycle-accurate simulation and the proposed estimation

method
PowerPC FemtoJava
Benchmark | Cycle-accurate Estimation Speed-up | Cycle-accurate Estimation Speed-up
(sec) (sec) (sec) (sec)
Quicksort 0.183 0.036 5 5.600 0.266 21
Matrix
multiply 25.485 0.134 190 1929.030 5.396 357
Matrix sum 14.904 0.093 160 1300.290 4.676 278

Neural networks have been chosen for performance estimation, since they can generalize
their behavior even when the process to be modeled is highly non-linear. In this work, a feed-
forward error back-propagation network was used (FREEMAN, 1992), due to its simplicity
and adaptation to the non-linear behavior of software performance estimation. Our network is
composed of an input layer, a hidden layer, and an output layer. Each layer may have a
different number of neurons, and each neuron has a transfer function.

In our case, the input layer has the same number of neurons as instruction types. For the
hidden layer, we try to use as few hidden-layer units as possible, because each unit adds a
load to the CPU during training and utilization. In our tests, we started the training using in
the hidden layer the same number of neurons as in the input layer. Tests showed that the
increase of the number of neurons accelerates the training time, but this results in a loss of
generalization capability or even does not increase the accuracy.

Figure 3.2 presents the two main steps of our estimation method: training and utilization.
In the training phase, a set of samples is presented to the network. In this phase, the inputs are
the number of executed instructions for each instruction type (like branches, integer
arithmetic, floating point, memory, etc.), while the expected result is the number of cycles
consumed by the embedded application. A cycle-accurate simulator is required to extract the
number of executed instructions and the cycles consumed by application execution. For each
different processor, we have selected a small number of instruction classes that are
sufficiently representative of the timing behavior of all instruction types. For better precision,
we have also extracted the number of backward and forward branches. All these numbers that
relate to instruction count and architectural features could also be obtained statically, by
methods already introduced in previous works (ENGBLOM et al., 2001; LI; MALIK, 1995;
COLIN; PUAT, 2000).

116

Training Set

architecturV

\l‘rchitecture B

Neural Network
Backpropagation
Training Algorithm

\ 4

Neural Network

Backpropagation
Training Algorithm

compiler compiler
cycle-accurate simulator cycle-accurate simulator
simulation simulation
data data

Training
Phase
esign Space
Exploration Application
P I
compiler

compiler
Ei\ynamic instruction count

dynamic instruction cou

o

Trained
Neural Network|
[

\ instruction
L count

instruction
count \ 4

Trained
Neural Network
[

estimated
cycles

Figure 3.2- Estimation tool development and utilization

estimated
cycles

Figure 3.3 shows the training phase in detail. In step 1, a cycle-accurate simulator is used
and the executed instructions are classified (step 2). In fact, the instruction classification is
already performed during the simulation run, thus adding a small overhead to the cycle-
accurate simulation. At steps 3 and 4, an iterative learning process, based on the back-
propagation algorithm, modifies the weights of the input and output arcs of neurons in each
layer, so the network presents an output that is as close as possible to the expected result. The
training phase is realized using Matlab (2007).

©)

Profile of
benchmark set
and extraction
of executed
instructions and
cycles

Instruction Type c’:::LcJ:Tr?:r: (c:);s

classification DT -

= INT ™
FLOAT Ns
BRANCH Na

Figure 3.3- Steps in the training phase of the estimator

117

Compare number
of estimated
cycles with
number of real
cycles and adjust
the weights

After the training phase, the estimator tool is ready to be used in various designs. Figure
3.4 presents the main steps in the utilization phase. An application is compiled for a given
target processor, and the number of executed instructions of each type is obtained using a
dynamic instruction count. The classified instructions are presented to the neural network so
that it can estimate the number of cycles consumed by the application.

Dynamic instruction count

mov R2, R1 Instruction Type Number of
load R1, [R3] classification occurrences
add R5, R4, R3 LD/ST n1
INT o
Estimated
FLOAT N cycles
store R1, [R3] BRANCH o™

Figure 3.4- Estimator utilization phase

Figure 3.5(a) presents the neural network used to estimate the cycles for the PowerPC
processor, where the inputs are the number of instructions of different types. It is composed of
an input layer, a hidden layer with 4 neurons containing a tansig transfer function, and an
output layer with one neuron containing a linear transfer function. These transfer functions
are available in the Matlab Neural Network Toolbox (MATLAB, 2007). This choice is related
to the nonlinearity necessary for the estimation process and has been taken after experiments
with different configurations. This neural network configuration resulted in an estimator with
best precision.

Forward Branche

Backward Branche

Load/Store
0 0 -
Integer
-1 -1
Floats . .))
a = tansig(n) a = purelin(n)
Input Hidden Output
Layer Layer Layer
(a) Neural network (b) Tansig transfer function (c¢) Linear transfer function

Figure 3.5- The neural network and the transfer functions used in its hidden layer and output
layer

The training time may be long, depending on the inputs and complexity of the
generalization. However, once the network is trained, the cost of its utilization is low; this
cost is due to the dynamic instruction count of the application in addition to the neural
network cost, which only requires multiplication of the inputs by the weights of the neurons.
The dynamic instruction count consumes most of the utilization phase time. For example, in
the Matrix multiplication the cycle-accurate simulation takes 25.438 seconds and the dynamic
instruction count takes 0.134 seconds; as shown in Table 3.1, neural network execution is fast
and only takes 0.026 seconds. This fast performance estimation enables a design space

118

exploration that would be difficult to accomplish if a cycle-accurate simulator were used, due
to the time that it takes to evaluate each new software design. Also, the instruction count can
be statically obtained using the methods described in (LI; MALIK, 1995; WOLF; ERNST,
2000).

For each target processor, a different estimator is created. This performance estimation
method is adapted for design space exploration in the software domain, for instance by
considering various algorithmic alternatives and various ways of partitioning tasks among
processors, since architectural modifications in the processors would require a new training
process, and thus a long turnaround time.

3.2 Experimental Set

A set of 32 benchmarks (STAPPERT, 2004), listed in Table 3.2, was used for training and
testing. Some benchmarks were executed with different input data resulting in a total of 40
samples. This set contained both control-dominated and data-dominated applications. The
training process was performed with a mix of applications, and satisfactory estimations were
obtained for applications from both domains, thus proving the robustness of the estimator.

Table 3.2- Benchmarks used in experiments

Sort and Quicksort, bubble sort, selection sort,
Search sequential search, binary search

Numerical | Matrix multiplication, matrix inversion,
matrix sum, matrix count, root computation,
square root computation, LU decomposition,
statistics ~ (mean, variance, standard
deviation), Fibonacci calculation, complex
number arithmetic operations

Data FFT, FIR, data compress, DES
Processing | cryptography, ADPCM (Adaptive
Differential Pulse Code Modulation), DCT
(Discrete Cosine Transform), CRC (Cyclic
Redundancy Check), LMS (least-mean
square) algorithm

Synthetic 6 synthetic algorithms

Statecharts |Code automatically generated from
Statechart descriptions

Figure 3.6 presents the cycle and instruction counts of the benchmarks, considering the
PowerPC 750 as the target processor. Benchmarks in the x-axis are ordered by increasing
cycle counts. The y-axis is represented in logarithmic scale, which is appropriate for the wide
range of applications used to train and test the estimator. The instruction count thus varies
from 228 for short code (e.g., device drivers or operating system functions) to 14x10° for
huge applications.

119

1,00E+08

1,00E+07 -
1,00E+06 -
1,00E+05 -

[
N1,00E+04 -
[72]

1,00E+03
1,00E+02 -
—&— Cycles Count
1,00E+01 —{— Instruction Count
1{0EFO+——7-+—7F7" "7 =—&787"+7"7"-"-+5-+-—"T—"=-"—-—"-"+"¥"—""—"""""""F"" """ T

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Benchmark

Figure 3.6- Cycle and instruction count distribution

3.3 Generic Estimator

This section presents the results of the neural network (NN) application with three
different architectures: PowerPC, FemtoJava, and Athlon.

3.3.1 PowerPC Generic Estimator

The PowerPC 750 processor was used to evaluate the proposed estimation method. It is a
RISC superscalar processor that may complete up to 2 instructions per cycle and contains 6
functional units: a floating-point unit, a branch unit, a system register unit, a load/store unit,
and two integer units. A cycle-accurate PowerPC simulator (MICROLIB, 2007) was used to
profile each benchmark and to obtain the exact number of cycles consumed by each
application. Additionally, the simulator also delivers the number of misses in the data and
instruction caches as well as the number of misses in the branch prediction.

In the first phase, a generic estimator was trained using benchmarks 1 to 10 and 30 to 39.
They represent a mix of data-dominated and control-dominated applications that have very
different sizes, as seen in Figure 3.6. The remaining 21 benchmarks were used to test
estimation precision. Benchmarks 40 and 41 are executions of a Crane application with
different execution times for the main loop of the control algorithm (MOSER; NEBEL, 1999).

In order to build a first neural network estimator, instructions have been classified into
four classes: branches, integer, floating point, and load/store. Table 3.3 presents the results
obtained from the experiments and the mean estimation error, standard deviation, maximum
underestimation, and maximum overestimation errors. For the neural network, using only four
instruction classes, the maximum overestimation is 41.01%, and the maximum
underestimation is 20.69%. In the experiments using four instruction classes and considering
the training set only, the mean error obtained was 4.81% and the standard deviation was
7.07%. Considering the test set only, we obtained a mean error of 13.30% and a standard
deviation of 11.83%. The largest estimation error was obtained with benchmark expint

120

(41.01%). It is a synthetic benchmark, developed to stress the control features of the
processor, and is not related to real applications. Disregarding this benchmark, the mean error
and standard deviation for the test set are reduced to 12.46% and 10.90%, respectively.

Since the PowerPC has a branch predictor, two new inputs were included in the neural
network: the number of forward and backward branches. Backward branches are usually
observed in loops and increase the effectiveness of the branch predictor. These counts can be
easily obtained in the application profiling. Figure 3.7 presents the neural network used to
estimate the cycles, where the inputs are the number of instructions classified into five types
(forward branch, backward branch, load/store, integer, and float). This network is composed
of an input layer, a hidden layer with 5 neurons containing a tansig transfer function, and an
output layer with one neuron containing a linear transfer function. The time needed to train
this neural network was about 5 hours, on a PC workstation (Athlon XP1500).

Forward Branche

Backward Branche

Load/Store 5 Cycles
Integer Q
Floats Q
Input Hidden Output
Layer Layer Layer

Figure 3.7- NN for the PowerPC experiments

Using the information about backward and forward branches results in an improvement of
estimation accuracy, thus reducing the mean error from 9.26% to 7.90%, as shown in the last
column of Table 4.3. Figure 3.8 presents the estimation error for each benchmark. The
benchmarks are ordered on the x-axis according to the size of the application in number of
cycles.

Table 3.3- Estimation results for the 41-benchmark set

Branch, Backward branch,

load/store, forward branch,

integer, float load/store, integer, float
Mean error 9.26% 7.90%
Standard deviation 10.64% 9.11%
Max overestimation 41.01% 33%
Max underestimation -20.69% -31%

121

The experiments using the backward and forward branches with five instruction classes
resulted in a mean error of 3.15% and a standard deviation of 4.22% for the training set, and a
mean error of 12.23% and a standard deviation of 10.23% for the test set.

40 -
30

20F

Errar %

o

T
e
G_
G_
G_
G—
e
G_
G—
G_
G—

20

a0

.40 I 1 1 1 1 I I I |
a 5 10 14 20 24 3a 35 40 45

Benchmark

Figure 3.8- Prediction errors using 5 input parameters: backward branch, forward branch,
load/store, integer, and floating-point

The error range varies from —31% to +33%. Larger errors were reported for benchmarks
18 and 27. Benchmark 18 is the synthetic benchmark expint, with complex and artificial
control characteristics. This results in poor branch prediction and thus in a large
underestimation, since the estimator had been trained with a set of more realistic benchmarks.
Benchmark 27 is a bubble sort with a very small input vector to be sorted, and this is highly
favorable for the data cache, and it renders a large overestimation in this case. Considering the
results without these 2 benchmarks, the error varies from —26% to 25%, with a mean error of
6.50% and a standard deviation of 7.36%. These values were calculated using only the test set
benchmarks.

For the crane application, the estimation error changed from +37.9% to —25.4%. The main
control loop of this application is executed only a few times. When a 10-fold increase in the
execution count of this loop is implemented, thus minimizing the influence of the
initialization phase of the application, the estimation error is reduced to only 9%. This result
was expected, since a better estimation can be obtained when the influence of the branch
predictor on the execution time is higher.

To evaluate the influence of the training set, we interchanged 50% of the benchmarks in
the training set with the test set. The mean error obtained is near to the original benchmark set
(mean is 8.23% and standard deviation is 10.36%), demonstrating the flexibility of the neural
network (NN) estimator in front of different benchmark sets.

Using the same set of training benchmarks and applying linear regression, as proposed by
Giusto et al. (2001), one obtains a mean error of 34% with a standard deviation of 33%. In
this case, the maximum absolute error is 106%. This comparison shows the advantage of
using neural networks, especially when applied to advanced architectures, since they can cope
with the nonlinear impact of different features like cache, branch prediction and deep
pipelines.

122

We also applied the training method based on the LOO (leave-one-out) technique used by
Bontempi et al. (2002), to evaluate the estimator for a same application under different
workloads. In this technique, N-1 runs of the same application with different input data are
used for training, and one sample is left to evaluate the estimation accuracy, thus creating an
application-specific estimator. Table 4 presents the results obtained for the Quicksort and
Matrix Multiply algorithms running with 15 different data inputs. The results show that the
neural network can highly adapt to estimate the performance of one application in front of
new data, resulting in very small prediction errors.

Table 3.4- Estimation performance using the LOO (leave-one-out) training technique

Benchmark Mean error Std deviation Max error
(%) (%) (%)
Qsort 0.08 0.16 7.18
Matrix multiply 0.12 0.19 7.63

3.3.2 FemtoJava- a Java Microcontroller

FemtoJava (ITO; CARRO; JACOBI, 2001) is a stack microcontroller with a Harvard
architecture and Java bytecode execution capability. It has a very simple architecture without
a pipeline, branch prediction, or cache. These characteristics make the performance estimation
easier, since each instruction type always consumes the same number of cycles. A cycle-
accurate simulator (BECK et al., 2003) was used to provide information about the executed
instructions and cycle count. For the neural network training, the instructions were divided
into four classes; each one requires a constant number of cycles.

In the utilization phase, where a dynamic instruction count is needed, a Java Virtual
Machine with trace capabilities (Java, 2007) was used. It allows the execution of the Java

application in the host machine, in order to obtain the number of executed instructions of the
various classes.

Figure 3.9 presents the errors obtained using a training set with 5 selected benchmarks (1,
2,11, 12, and 13). We tested different sets of benchmarks and obtained the same error ranges.
As expected, errors below 0.001% were achieved due to the simple architecture of the target
processor.

w10t

Error %
[
[
[
fh
[
[
[
[

D 2 4 B) 10 12 14
Benchmark

Figure 3.9- Prediction errors for the FemtoJava microcontroller

123

In the experiments, the best results were obtained when linear transfer functions were used
in each neuron. This result shows that simple architectures can be described precisely with
linear functions, but our method can easily cope with this situation because of the flexibility
of the neural network. Applying the linear regression approach, as proposed by Giusto et al.

(2001), also gives error ranges below 0.1%.

Table 5 presents the estimation time compared to the cycle-accurate simulation time. The
estimation time includes both the dynamic instruction count and the classification.

Table 3.5- Estimation speed-up for the FemtoJava processor

Benchmark Cycle-accurate Estimation (sec)| Speed-up
simulation (sec)
Quicksort 5.60 0.266 21
Matrix multiply 1929.03 5.396 357
Matrix sum 1300.29 4.676 278

3.3.3 Athlon XP Generic Estimator

In the practical experiments using the Athlon processor, we used only 27 of the
benchmarks in the entire set of samples, due to the long simulation time and problems with
the profile tool. In the first phase, a generic estimator was trained using 16 benchmarks. The
remaining 11 benchmarks were used to test the estimation precision. In order to build a first
neural network estimator, instructions were classified into five classes: branches, integer,
floating point, system, and move. The neural network used in these experiments is composed
of an input layer and a hidden layer (each with 5 neurons) as well as an output layer (with one
neuron). The input layer uses a purelin transfer function, while the hidden layer uses a tansig
transfer function. The output layer also uses a purelin transfer function. The time needed to
train this neural network was about one hour, on a PC workstation (Athlon XP1500).

Table 3.6 shows the results of the experiments in terms of mean estimation error, standard
deviation, maximum underestimation, and maximum overestimation errors. The mean error
for the training set itself was near 0, as expected, while a mean error of 32.33% and a standard
deviation of 22.60% were obtained for the estimation of benchmarks from the test set.

Table 3.6- Results with a generic estimator for the Athlon XP

Test and training set Test set only
Mean error 13.17% 32.33%
Standard deviation 21.41% 22.60%
Max overestimation 51.15% 51.15%
Max -65.46% -65.56%
underestimation

These less accurate results (compared to PowerPC and FemtoJava) are due to the irregular
instruction set and deep pipeline. Using the same set of training benchmarks and applying
linear regression, as proposed in (GIUSTO et al., 2001), one obtains a mean error of 49% with
a standard deviation of 42%, and a maximum absolute error of 179%.

The high estimation errors obtained with the Athon XP processor suggests the utilization
of more inputs or different instruction classification in the neural network. For instance, a mov
instruction may consume very different execution cycles, depending on the addressing mode

124

used in the operators (immediate, direct, and indirect). In this case, a sub-classification of mov
instructions can result in a more accurate estimation.

3.4 Automatic Domain Classification

In order to improve accuracy, topological information is used to classify the applications
and apply domain-specific estimators. We noted that the quality of the prediction was tightly
linked to the training set. Indeed, when training set was mostly formed of dataflow
benchmarks, the prediction error for a control-dominated application was large. When
considering how to further improve the prediction process, the key issue was how to select the
correct training set for a certain domain in an automatic way.

The use of static metrics to characterize the application in a given domain was suggested
in other works. Sciuto et al. (2002) propose a static method to characterize the application
using data-oriented metrics, structural metrics, DSP-oriented metrics, and ASIC-like oriented
metrics. The goal is to define the application affinity degree for a given processing element
(e.g., a general purpose processor, a DSP processor, or an ASIC implementation) using these
metrics.

In our work we used a method based on the application control flow graph (CFG). This
topological information is used to classify the applications and to improve the accuracy of
estimations.

The classification uses a CFG weight calculation method, based on the number of arcs
connecting a given basic block. If a basic block has 2 output arcs, these arcs are assigned a
weight of 2, reflecting the cost, in processor performance, of a control statement. The CFG
weight is calculated by equation 4.1 and illustrated in Figure 3.10.

z weighted _arcs

CFG _weight = (4.1)

num _nodes

In this way, control-dominated applications will have a higher weight value than dataflow
applications. The proposed classification method is fast and can be statically implemented
without manual intervention.

%

E/ 2
O
1\ 1

;

CFG_weight=8 =2
4

1

CFG_weight=9 =1.8
5

Figure 3.10- CFG weight method

125

The key idea is that the processor features (e.g., cache, branch prediction) react differently
depending on the application domain (control or dataflow), influencing the overall
performance. Consequently, the selection and utilization of the most suitable neural network
can be implemented without user knowledge. An adapted version of the GNU compiler gcc
(GCC Compiler, 2007) was used to dump a file with information concerning the control flow
graph (CFQG).

3.4.1 PowerPC 750 Domain-specific Estimator

The CFG weight criterion has been used to classify the original benchmark set into two
domains, as shown in the Figure 3.11. In domain CF, we have placed applications with high
CFG weight and, consequently, with strong control-flow characteristics. Domain DF is
composed of applications with low CFG weight, hence presenting dataflow characteristics. A
threshold of 1.95 was used to classify the benchmarks; this threshold was defined based on
the previous analysis of the benchmark set. The resulting domains are coherent with a
classification performed manually, based on the designer’s knowledge. From the original
benchmark set, domain CF is composed of 20 applications, and domain DF of 21 applications.
From domain CF, we only kept 16 benchmarks, and removed 4 benchmarks (with floating-
point instructions) that represent a small set and could be detrimental to neural network
generalization. To overcome this restriction, more benchmarks with floating-point instructions
should be used, thus improving neural network precision. The domain DF is composed of 10
benchmarks with floating-point instructions, enough for the neural network training.

Training Set
Classification

v v v v
Architecture A Architecture B Architecture A Architecture B
Compiler Compiler Compiler Compiler
Cycle-accurate simulator Cycle-accurate simulator Cycle-accurate simulator Cycle-accurate simulator
Neural network Neural network Neural network Neural network
Training Backpropagation training Backpropagation training Backpropagation training Backpropagation training
Phase

Application

Design Space

Exploration
Classification
or
v v L7 v
Architecture A Architecture B Architecture A Architecture B
Compiler Compiler Compiler Compiler
Dynamic Instruction Count| Dynamic Instruction Count Dynamic Instruction Count| Dynamic Instruction Count
Trained Neural network Trained Neural network Trained Neural network Trained Neural network
| | | |
v v v
Estimated Estimated Estimated Estimated
cycles cycles cycles cycles

Figure 3.11- Estimation process with automatic domain classification

Table 3.7 shows the results obtained with the domain-specific estimators. As one can see,
their use results in good performance prediction compared to generic estimators. In the DF
(dataflow) domain, the mean error decreases from 7.90% in the generic estimator to 6.41% in

126

the domain-specific estimator. The error range is also smaller for the domain-specific
estimator; it varies from —32.41% to 25.87%.

In the CF (control flow) domain, the mean error is close to that obtained with the generic
estimator. We notice that the benchmark with the largest error (49%) is expint. This is a
synthetic benchmark specifically developed to stress control flow features, and it is not related
to real applications. If we do not consider the expint, the error range varies from —17.81% to
24.96%, resulting in a mean error of 4.63% and a standard deviation of 3.56% for the test set.

We also analyzed performance prediction using a cross-test. That is, we utilized the CF
domain estimator with the DF domain benchmarks, and vice versa. As one can observe in
Table 3.7, the use of domain-specific estimators, for applications from an unrelated domain,
results in much poorer estimation. This shows the validity of our classification method.

Table 3.7- Estimation results using domain-specific estimators

CF domain | DF domain | Cross-test Cross-test
(CF vs. DF) | (DF vs. CF)
Mean 7.62% 6.41% 17.65% 55.12%
Std deviation 12.46% 9.45% 12.39% 38.25%
Max overestimation 24.96% 25.87% 42.34% 163.78%
Max underestimation -49.37% -32.41% -28.49% -95.70%

3.4.2 Athlon XP Domain-specific Estimator

The CFG weight criterion has been used to classify the original benchmark set, composed
of 27 applications, into two domains. In the original benchmark set, the CF (control-flow)
domain is composed of 15 applications and the DF (dataflow) domain is made up of 12
applications. From the former, we kept 14 benchmarks and removed one benchmark with
floating point instructions.

Table 3.8 shows the results obtained with the domain-specific estimators. In domain CF,
the mean error decreases to 9.9% and the error range varies from 6.44% to -53.82%.

In domain DF (dataflow), the mean error decreases from 13.17%, in the generic estimator,
to 6.26%, in the domain-specific estimator. This estimator also yielded a decrease in the error
range, which varies here from —29.69% to 26.47%.

Table 3.8- Estimation results using domain-specific estimators for an AthlonXP processor

Domain CF | Domain DF
Mean 9.9% 6.26%
Std deviation 17.34% 10.86%
Max overestimation 6.44% 26.47%
Max -53.82% -29.69%
underestimation

127

The prediction results for domain CF in the Athlon XP are not as good as those obtained
for the PowerPC processor. Indeed, the architecture of the Athlon processor is more complex,
resulting in an increase of the prediction error.

Figure 3.12 summarizes the results for the generic estimator and domain-specific
estimators, for the PowerPC, Athlon XP, and ADSP processors. They represent three distinct
architectures. The first has a RISC architecture, while the second has a CISC architecture
composed of nine functional units and other advanced features. The ADSP 218x is a digital
signal processor from Analog Devices (ANALOG, 2007). The 218x family shares the same
architectural base that is optimized for digital signal processing. It has three functional units
(ALU, MAC, and shifter unit) that can operate in parallel. The ADSP is a CISC processor, but
the execution cycles of each instruction does not vary much as the Athlon XP, thus increasing
the performance estimation accuracy.

In all cases, applying the automatic classification method and generating domain-specific
estimators yields gains in estimation precision.

14

12 A

10 A
S
g 8 1 @ Generic
5 m Domain CF
5 61 o0 Domain DF
[}
=

4 4 |

0

Athlon PowerPC ADSP
Processors

Figure 3.12- Comparison between generic and domain-specific estimators for 3 different
architectures (Athlon XP, PowerPC, and ADSP)

In general, we obtained the smallest errors in the DF domain, where we have applications
with dataflow characteristics. In this type of application, the different processor components
achieve the maximum performance (high hit rates in the cache and branch prediction),
resulting in a more “predictable” system. On the other hand, the same reductions in error
range cannot be obtained for the CF domain, which is composed of control flow applications.
Clearly, for the Athlon XP, the error ranges suggest that other parameters are needed to obtain
acceptable results with a neural network estimator.

3.5 Conclusions

This work aims at showing the applicability of neural networks use to improve embedded
software performance estimation. Our results are more accurate than those previously

128

obtained with linear methods, even when using a more complex architecture. Bontempi and
Kruijtzer (BONTEMPI; KRUIJTZER, 2002) report a mean error of 8.8% in the estimations
using non-linear estimation methods, for a set of 6 benchmarks, each one executed with 15
different input data sets. They do not report, however, the size of the training and of the test
sets. In our case, with a benchmark set composed of 41 benchmarks, we obtained a mean error
of 7.90%. Although the direct comparison of the two works cannot be made due to different
benchmarks and architectures used in the experiments, the NN estimator obtained similar
results even using a more heterogeneous benchmark set.

Ipek (IPEK et al., 2006) also show another application of neural networks for software
performance estimation. Differently from our work, they use the neural network to estimate
application performance under different architecture configurations (e.g. cache size, cache
line size, bus width, etc). The neural network inputs are the architectural parameters and the
output is the number of cycles per instruction (CPI).

The rapid and precise performance estimation enables selection of the processor in the
architecture exploration phase. Even though the training time is long, neural network
utilization is fast. The method requires getting an instruction count, which can be obtained
using profiling or static methods. In this work, the dynamic instruction count was used.
Results obtained attest that the dynamic instruction count is much faster than cycle-accurate
simulation.

In our experiments, 41 benchmarks and real applications from different domains (such as
filters, matrix manipulations, sorting algorithms, and an embedded crane control) were used.
The PowerPC 750 processor with advanced features (cache, superscalar pipelines, and branch
prediction) was used to evaluate predictor precision, and a mean error of 7.90% was obtained.

The control flow graph (CFG) information has been used to classify applications and
create domain-specific estimators, increasing estimation accuracy. An adapted version of the
GNU-gcc compiler was developed to statically provide the topological information, allowing
classification without user intervention. This new method results in a decrease of mean and
maximum errors.

129

4 PERFORMANCE ESTIMATION AND ANALYSIS USING AN
INTEGRATED HARDWARE AND SOFTWARE
SIMULATION MODEL

Multiprocessor System-on-Chip (MPSoC) designs require estimation tools to jointly
evaluate hardware and software performance. In a recent study with embedded software
designers about development challenges and issues, Krauzer (2007) reports that 31% of
designs failed to meet performance expectations, missing performance targets by 50% or
more. The first cause indicated by designers was a limited vision of the global system. The
second was the limited availability of tracing support. Early design estimation tools are
necessary to detect problems as soon as possible in order to avoid or correct design failures.

Traditionally, the mapping between the architecture and application is made in a late stage
of the design flow, when a hardware prototype is available. For this reason, a design flow
based on the existence of an RTL model can yield unacceptable delays.

The rising complexity of software and architectures makes the implementation of precise
performance tools harder. Electronic System-Level (ESL) methodologies have been
developed to handle increasing design complexity. The key idea is to start design at an
abstract level — that is, higher than RTL — to concurrently develop hardware and software.
This chapter proposes the use of virtual prototypes for performance analysis at BFM level
(Figure 4.1), providing a simulation model of the architecture before the RTL design.

Performance Estimation Tools

I Ccode
System Specification —=2%———» (Processor Selection

Estimated software execution time

Architecture exploration

Virtual Architecture Simulation model ~“HW/SW Interface™
Model at TLM Level Partitioning

Communication requirements
/ between the components

HW/SW interface refinement

Simulation model
BFM Level (Virtual prototype OS overhead, Scope of this

/ Memory mapping chapter
SW execution time
coc . / in a cycle accurate

oC Integration simulator

Synthetizable RTL
model . .
RTL Level »(_ Delay estimation

Figure 4.1- Performance estimation tools in MPSoC design

130

Platform-based design (KEUTZER et al., 2000) proposes the use of a fixed platform in
order to decrease complexity in the mapping step. With a fixed platform, a set of predefined
estimations may be available, making the estimation process more precise.

Component-based design (CESARIO et al.,, 2002) proposes that system development
proceed from a set of predefined HW and SW components. This is a flexible solution, since
the architectural solution can be composed of components from several IP vendors.
Component-based design must include an environment to integrate these different
components and, consequently, to perform interface design.

Performance estimation may be applied at different abstraction levels in the design. The
first step is the system specification — where the application is described in a functional way —
that does not explicitly describe the hardware and software components. SystemC (2007) and
SpecC (2007) are examples of specification languages proposed to deal with the problem of
concurrently describing HW and SW.

Estimation performance tools at specification level help the designer determine the
partitioning between hardware and software. The increasing importance of the software part
and the multiplicity of available options in terms of processor architectures call for tools to
help the designer select the most suitable processor.

After the HW/SW partitioning, the “golden” virtual architecture model is created, as
shown in Figure 4.2(b). This model is composed of functional components, using transaction-
level channels to model the communication. It validates the software and the communication
API for system components. The estimation tools can provide information for HW/SW
interface design, determining how the TLM channels will be implemented in the architecture.

System Specification —> @ @ @ (a)

v

Architecture exploration

VM1 VM2
Virtual Architecture : >
Model at TLM Level (b)
Implicit CPU, abstract HW VM3 HW
ROSES
HW/SW interface APpIL ppIL
refinement Tasks ask
| 0os (O
BFM Level ——>| cpu CPU HW
Explicit CPU and OS, RTL hardware, BEM—"" E E 5 (c)
HW V\Eapper‘ ‘ HW Happe){ ‘HW \ﬁapper ‘

Intercommunication Network ‘

SoC Integration

| MEM1][MEMO]| || MEM1HMEI\/‘IO‘ oW

E‘U CPU || |HW wrapper
m 1 il (d)

RTL Level |:> i i ET

Explicit SW memory mapping L L
Physical Network

Figure 4.2- SoC design flow

131

In order to deal with virtual architecture level performance estimation, certain solutions
have been developed by the TIMA group. Bouchhima (2005) provides an abstract CPU model
that runs the software natively and integrates the hardware components using TLM channels.

The abstract CPU model provides a hardware abstraction layer (Figure 4.3), in such a way
that the API calls can be included in the SW code. The CPU abstract model is made up of
three main components: the Execution Unit, the Access Unit, and the Data Unit. One or more
processing units (PU) form the Execution Unit and are modeled as SystemC threads
(SC_THREADS). The Access Unit provides address resolution and synchronization with the
memory. The Data Unit models the peripheral access and interrupts. In order to generate
interrupts for the software processes (SystemC modules), the Data Unit uses the notify call
available in SystemC.

Application SW

HAL API
Native CPU subsystem
compilation / {TTTTTTTTTTTT
HAL API
Native binary i | Abstract CPU
(library) > subsystem
HAL API / ; model
linking HW services
TLM channel—>1
Rest of system
model

Figure 4.3- Performance estimation using CPU abstract models (adapted from Bouchhima
(2005))

The abstract CPU model does not execute the real operating system code, but simulates
task serialization (scheduling) and address resolution. This is possible thanks to the Access
Unit, which controls memory access conflicts and simulates communication delays.

Software performance is modeled using the traditional annotation method in the code. For
each basic block, a delay statement is placed with the number of cycles spent in the execution.
The abstract CPU model provides an MPSoC simulation model, where the software is
implemented using the target API. Because of the interface with the rest of the system, other
hardware components may be used and simulated in an integrated way.

The TLM channels from the virtual architecture have to be refined to obtain the bus
functional model (BFM), as shown in Figure 4.2(c). An operating system implements the
software communication API. Hardware wrappers adapt the interface between the processor
and intellectual property (IP) components in the interconnection structure.

The BFM model is quite different from the RTL model, therefore a SoC integration step is
necessary. SoC integration generates software mapping customized for a given memory
organization. In each step of the MPSoC design, performance estimation tools verify if the
design conforms to the system requirements and, at the same time, provide the information
needed for the next design steps, as shown in Figure 4.1.

132

This chapter presents two simulation-based MPSoC performance estimation tools
(FlexPerf and MaxSim) for performance analysis at BFM level. These tools are integrated in
an MPSoC design tool called ROSES, providing a global performance estimation solution. In
order to validate the BFM architecture, the ROSES environment already generates a SystemC
simulation model. However, this simulation model does not allow a synchronized cycle-by-
cycle execution of hardware and software components. Also, this model provides limited
performance analysis resources, present in the SystemC library, such as signal tracing. The
main motivation for integrating the FlexPerf and MaxSim environments to ROSES is to
provide an extensible performance analysis environment, enabling the performance analysis
of MPSoC architectures.

The outline of this chapter is as follows. Section 4.1 describes the FlexPerf environment.
Its integration in the ROSES environment is presented in Section 4.2. Section 4.3 presents the
MaxSim electronic virtual prototype simulation environment, and Section 4.4 describes its
integration with ROSES. Finally, Section 4.5 concludes the chapter.

4.1 FlexPerf

FlexPerf (PAOLI; SANTANA; GALIX, 2004) is a framework for system performance
analysis based on the analysis of performance events. FlexPerf is composed of two parts: the
instrumentation part, integrated in the simulator, and the profiling part. The designer has
access to a pool of off-the-shelf profiling analysis algorithms that can be extended with
custom analysis modules. The simulator instrumentation is explicit, so precision depends on
the simulator and the instrumentation level.

FlexPerf is organized in three layers of oriented-object software. The first layer is the
framework, a collection of objects used to describe all of the SoC resources. This layer is
based on a root library “FWIib” and provides mechanisms facilitating object persistency and
manipulation, such as object serialization/de-serialization.

The second layer, the analysis layer, is a collection of profiling algorithms. Algorithms
depend on the framework, but they do not have any dependency from a given simulator.
Consequently, if a simulator is instrumented to generate events using the framework format, a
pool of profiling algorithms is available to be used.

The third layer is the configuration layer. It contains all configuration resources for
customization of the framework, including a graphical user interface (GUI). In the graphical
user interface, shown in Figure 4.4, the information manipulated by FlexPerf is hierarchically
classified in three levels corresponding to the system architecture view, the application view,
and the analysis view. The GUI supports multiple system instances corresponding to different
systems, or different versions, simultaneously. The application view also supports multiple
instances of an application description. A session corresponds to a given simulation instance
of a system using a specific application and input data set. Performance analyses are realized
on the data collected during the simulation session.

The extensibility and modularity of the framework allows the customization of
performance analysis resources to user requirements. It includes the creation of new objects,
needed for system description, by inheritance of existing ones.

133

-~ FlexPerf2 [« Ol[x

File Edit Tools Help

S & @
| (D workspaces | [] Code | {§ Instructions | @ Analyses | [Results |
Workspace explorer : Properies
o “Application ssfir
o a B Exec2Perf parameters
(3 FlexPerfWorkspaces = : | Execution File Cormponents to trace |

O @ lusersfds2SiFlexPerf
@ @ /projectfperfdevids2a/FP2
@ [mrdsp+
@ 3Q st120ca
@ I VoD
@ S Applications
sefir
@ S Sessions
ssfir

one entry required

519 File

© 3 adk
P I;:;: R

loading /project/

fperf/dev/ds25/F PZBASE/St120ca/V00/ I groups_ST100 xml ... ok [F742ms] w l ‘

1

Figure 4.4- FlexPerf graphical user interface (PAOLI; SANTANA; GALIX, 2004)

Figure 4.5 presents the four main FlexPerf components: the ProcDesc agent responsible
for reading the system architecture view; the ApplDesc agent, which generates the application
view; the instrumented simulator; and the data analysis agent modules. These four
components, called FlexPerf agents, are integrated in the FlexPerf GUI, but can be used as
stand-alone applications.

1- Processor

2 - Application

Description Input: (elf prog)
(xml) application
\
,: N
. <parser> <disassembler> EventDesc: Event
Whole Description grocDesc: gpplDeSC: Event generation generation
enerates the CPU enerates the support
(CPU + APPLI) description Application
description
| —
Instrumentation plug-ins [
Instrumented
Simulator

Data analysis
FlexPerf «

Figure 4.5- FlexPerf framework components

134

4.1.1 System Architecture View

The system architecture view describes all traceable resources of the system. FlexPerf
already contains classes to describe processor pipelines, registers, and memories. For instance,
an identifier, a name, and a size, define a register view. As another example, an identifier, a
name, a width, a depth, and a minimum-addressable-unit, define a memory component. These
classes can be extended to describe user-defined components.

The simulator uses the system description as a database in the performance event
generation. In the system description, each element has a unique identifier and signals in
which component the event took place.

The system description is stored in an XML format and can be read or generated at run-
time using an API included in the FlexPerf framework. The FlexPerf GUI launches the
processor description agent that generates or reads the system description from an XML file.

4.1.2 Application View

The application view represents the software executing on the processor. A collection of
objects supports the representation of program source files, variables, function and program
blocks, as well as program instructions.

A FlexPerf agent is responsible for reading the application in ELF (Executable and
Linkable Format) and for generating the application view within the FlexPerf GUI. The
application information is extracted using the debug-related data structure provided in ELF
format. The software analysis module uses this application information to produce structured
application views such as the function call tree.

4.1.3 Analysis View

The analysis agent implements the performance analysis algorithms based on the
information generated from the simulation execution. In FlexPerf, a set of analysis agents for
processor performance analysis is available and can be extended by the user. FlexPerf
provides a set of off-the-shelf analysis algorithms falling into the following categories
(PAOLI; SANTANA, GALIX; 2004):

e Hardware resource oriented analyses: access counters (register and memory
components); sequence of accesses (read/write) and derived analysis such as data-
life duration and event to event latency; instruction sequence extraction.

e Processor instruction oriented analyses: instruction-set usage; NOP rate; branch
analysis providing the number of taken, untaken, taken forward, and taken
backward branches; parallelism degree (number of instructions executed in
parallel).

e Processor micro-oriented analyses: a pipe usage viewer, which provides a time-
chart with the pipe behavior; the bubble rate related to unoccupied pipe stages;
instructions per cycle.

e Application-oriented analyses: the memory data life duration, memory usage, code
coverage, sequence of application events, and function call tree.

The results of these analyses are represented in the FlexPerf GUI visual elements such as
pie charts, bar charts, tree charts, and array types. Third party viewers are used to display
time-chart results.

135

4.1.4 Simulator Instrumentation

FlexPerf has a well-established flow to generate a processor instrumented model described
in LISA (see Figure 4.6). The LISA language (HOFFMANN et al., 2001) is used to describe
processor architectures. The language syntax allows a high level of flexibility in the
description of the instruction-set of various processors such as SIMD, MIMD, and VLIW-
type architectures.

The LISA processor model is instrumented to generate the appropriate events for
performance analysis. The complexity of instrumentation depends on model complexity and
on the required analysis. For processor models, instrumentation includes the events describing
pipe updates, register accesses, and memory accesses. Performance events use a base class
called EventRoot. This class contains the base attributes to describe an event and also
implements the methods to serialize and deserialize the objects used in event generation and
analysis. The EventRoot class can be extended to produce particular information necessary for
performance analysis.

The MaxCore tool (ARM, 2007) is employed to generate the software development tool-
set, using the LISA description. The software suite includes a cycle-accurate simulation
model, a source-level debugger, and a disassembler. MaxCore also generates packages used in
the retargeting of third party C compilers.

After simulator generation, the simulator is encapsulated in a FlexPerf agent. The FlexPerf
agent implements the base methods to start the simulation and initializes the streams used to
send the events to analysis modules.

Processor description
in LISA (instrumented)

Simulator and compiler
generation

Simulator
(standalone/C++ object)

W — J
- FlexPerf
v
Executable
application

—> Performance Analysis

Figure 4.6- Simulator instrumentation from LISA processor description

Application | | C Compiler

FlexPerf Agent

Figure 4.7 presents an example of instrumentation of a SystemC FIFO hardware channel.
For each access to the FIFO component, a performance event is generated. The unique
identifier represents the component where the event is occurring. This identifier is obtained
from the system architecture description. The other parameters are used by analysis agents to
generate performance analysis results.

136

void fifo out::empile depile() {

else {
if (CPIMCLK.read()==0) {
if ((CPIen_n data==0) && (FIFO FULL==0)) {
tmptail = ((tail+l) % FIFO_depth);
fifo[tail] = CPIdata bus.read();

tail = tmptail;
#ifdef FW_PROFILER
//Component type, Id, cycle, OpType
EventDesc->recordFifoAccess (fw_Component_ type, ProcDesc->fifo outID,
sc_simulation_time(), FIFO_IN);

#endif
if ((tmptail == head) && (data defifo==0))

FIFO _FULL = 1;

else
FIFO EMPTY = 0;

}

else status_check () ;

if ((data defifo==1) && (FIFO EMPTY==0)) {

Figure 4.7- FIFO channel instrumentation example

4.2 ROSES and FlexPerf Integration

The CosimX tool integrates ROSES and FlexPerf, as shown in Figure 4.8. CosimX is a
tool for generating heterogeneous simulation models that can be composed of components
and interfaces at different abstraction levels. CosimX takes the architecture description from
the ROSES design meta-model representation called Colif (CESARIO et al., 2001) and
generates the SystemC simulation model. CosimX considers that SystemC models of the
hardware interfaces are available in a library of components.

The main motivation for ROSES and FlexPerf integration is the capability to generate
more detailed performance events and analysis than are offered by the standard SystemC trace
library. The FlexPerf analysis modules are developed for processor-level performance
analysis, and their flexibility allows extending the analysis to other system components such
as communication resources and peripheral components.

As presented in Figure 4.8, the integration is realized at bus functional level (BFM). At
virtual architecture level, the software runs natively and a processor simulation model is not
necessary. The SystemC model generated from CosimX adds the FlexPerf interface, enabling
support of SystemC module instrumentation and performance event generation.

The bus functional model is generated using ROSES tools for hardware and software
interface refinement. At this level, software is compiled to the target processor and runs under
an operating system. The SystemC simulation model generated by CosimX uses the
instrumented processor simulator generated from a LISA description (see Figure 4.6),
resulting in a cycle-accurate model. This integration adds all the software performance
analysis capabilities available in FlexPerf to the SystemC simulation. The integration is
realized in two parts:

a) A SystemC wrapper is manually implemented, encapsulating the simulator
generated from the LISA language.

137

b) The SystemC model generated by CosimX implements the FlexPerf agent
interface, making performance event generation possible.

MaxCore produces the processor simulator either as a stand-alone simulator or a library
object. This second alternative enables integration of the simulator to any C++ application.
The SystemC wrapper uses this library object to encapsulate the simulator and externalizes
the BFM signals to SoC simulation.

CosimX supports the generation of simulation models at BFM level using an instruction-
set simulator (ISS) connected to SystemC via inter-process communication (IPC). The
synchronization between SystemC and the ISS is realized when a communication is made
(without a global system clock). The SystemC wrapper implemented in this work fires the
processor simulator at each system clock cycle. As a consequence of this, a global
synchronized simulation model is obtained.

Performance Estimation Tools

System Specification

Architecture exploration

Virtual Architecture
Model at TLM Level

ROSES
HW/SW interface refinemen

Architecture SystemC simulation

meta-model i model
BEM Lovel Colif CosimX + S_..ystenr_lC

FlexPert simulation
FlexPerf performance
y events
SoC Integration FlexPerf
exre
Performance Analysis

RTL Level

Figure 4.8- ROSES and FlexPerf integration flow

The system architecture agent has been changed to automatically generate the FlexPerf
system architecture view from the Colif model. This agent is executed when the SystemC
simulation is launched. The application view agent is unchanged, since it uses the standard
ELF format produced in the compilation step.

Two case studies were conducted to demonstrate the ROSES and FlexPerf integration.
The first case study involves a monoprocessor application with FIFO interfaces. Here,
FlexPerf integration was only realized at BFM level to validate the extension we proposed for
hardware and software integrated analysis. In the second study, a multiprocessor
implementation of an MPEG4 encoder was used, and the simulation instrumentation at virtual
architecture and bus function model level was realized.

In both cases, at BFM level, software runs in the XiRISC (CAMPI et al., 2001) processor,
requiring its inclusion in the ROSES flow. Thus, the XiRISC processor was included in the

138

ASAG (see Section 2.4.2) library, enabling HW interface generation. The operating system
generated by ASOG (see Section 2.4.3) was ported and included in the ASOG library,
enabling automatic refinement of SW interfaces.

4.2.1 Case Study- FIFO Analysis in a Monoprocessor System

This experiment used only one processor. The processor adapter and FIFO (first-in first-
out) interfaces, generated by the ASAG tool, implement the communication co-processor.
Figure 4.9 presents the simulation model and the instrumented components.

XiRisc CPU events
(instrumented)

Processor Adapter

vYyvy

Data Analysis

FlexPerf

FIFO IN FIFO OUT
(instrumented) (instrumented)

Producer Consumer

Figure 4.9- FIFO simulation model

The processor adapter is responsible for controlling the communication interfaces and
communication with the processor. Two SystemC models emulating peripheral components
(Producer and Consumer) were implemented and used in the simulation.

The purpose of this case study was to demonstrate the integrated performance analysis of
hardware and software components. The software is composed of two processes producing
and consuming data to/from the interface.

Three analysis modules implement FIFO performance analysis using events generated
during the simulation. Each module implements the following analyses concerning FIFO
performance:

a) FIFO utilization (which provides the utilization percentage of the FIFO throughout
system execution),

b) FIFO operation number and state, and
c) interrupt handler activation interval.

For instance, in Figure 4.10 the buffer utilization module analysis shows the percentage of
execution time during which the FIFO buffer stores a given quantity of elements. In this case,
the analysis illustrates that the maximum number of elements in the FIFO_OUT buffer was 25
for 0.77% of the execution time. This analysis helps the designer evaluate if the hardware
interfaces are well configured for the system application. The analysis also shows the number

139

of INPUT and OUTPUT operations and indicates when the FIFO was in EMPTY or FULL
state.

= FlexPerf2 [T
File Edit Tools Help
3 & @
| (O workspaces | [] Cocle | i Instuctions | @ Analyses | [z Results
a 8 & 2 5 o ©
Data : Graphics |
= Results Al 9 £1: demoFifoanalysis_18:Fifo_out buffer utilization el |Z|H
L2 : — - =
@ [cemorrasnaysis_ta | || 4 P Eh & @ f1::demoFifosnalysis_16:Result |
Fifo_out buffer utilig Size
Result 0(3.18 %) 4 Dv H Ik & @
Ml 433 %) 2
FIFO Necew
@ [cemoFifoanalysis_15 3 3.80 %) Result
Fifo_out buffer utilig 24 (3.87 %)
Result |5 504 %) B access
6 (3.80 %)
FIEQ M7 2809
: .80 %%
® [cemorinanaysis_16 | g3 a0) e EulEiug 30
[Fifo_out buffer utilig 19 (3.98 %)
7 Resut M0 (2.0 %)
1 || (ENEENED]
tj FrFo M= 80 %)
[ERE Ml a.67 % . INFUT | 30
|4 1410 %) g
MsEs % =
M6 (2.80 %)]
M7 280 %) §
Me 80 % g
Mo @eow FIFO_FULL{p
20 280 %)
Mz 509 %)
Moz 3.82 %)
M2z 280 %)
Mza 380 %) FIFO_EMPTY | 3
M5 077 %)
26 (0.00 %)
M7 000 % } | |
Mliz8 (0.00 %) o 10 20 30
29 (0.00 %)
- ol 0 (0.00 %) numher of accesses
oading Jpmjectikiisc/usars/d s25/ Tima Soc/xiRiscPen_0405607 /01 2.8 -goc2 | RISC_S.: HFPZAgentDescxml ... ok [3ms] b ” |
-] — —

Figure 4.10- FIFO analysis results

In order to accomplish the FIFO performance analysis, the agent module only requires the
FIFO identifier number. For systems with many FIFO interfaces, the same performance
analysis module can be reused to automatically analyze different instances of the FIFO
component.

4.2.2 Case Study- MPEG4 Encoder Multiprocessor System

The second case study features an MPEG4 encoder. We used a flexible architecture
presented in (BONACIU et al., 2006), which implements the encoder in two parts. The first is
responsible for the motion estimation and DCT encoder, and the second implements the
Huffman compression code (VLC). The architecture is flexible and allows the encoder and
VLC task parallelization, as shown in Figure 4.11. The architecture includes three hardware
components: an Input, a Combiner, and a direct memory access (DMA) component. The Input
component divides a frame among the different Encoder processes. The Combiner is
responsible for merging the results from the different VLC processes. The last hardware
component, the DMA, is responsible for managing transfers among the components.

140

Rate control

. [

L] : Coded

— ——»&———»| DCT [»| Quant ¥ Combiner | —» o
Motion Motion

Estimation| | Comp.

“
Prediction

=]
Reconstruct

. Encoder Task (SW) VLC Tzk (SW

DMA

VLC

Figure 4.11- MPEG4 encoder architecture (BONACIU et al., 2006)

In this case study, we used two processors: one to execute the Encoder task (VPROCO)
and another one to execute the VLC (VVLCO) task. Figure 4.12 presents the architecture top-
level. VINPUT, VSTORAGE, and VDMA are hardware components. VANTENNA and
VSTORAGE blocks are simulation components added to provide the video input and output.

ColifTopi
L COMETHER DME

WDMA

VA_SAP_SYNCHRO W _THFLIT_DATA
YCOMEINER
CENTENE o RESET_INPUT YP_COMB_DATA
45 WA_SAP_SYNCHRO YP_STORAGE_DATA [{=H EESET—CUEE \P_FROCA_READY_EVENT [d=—
VA_SAP_SYNCHRO WP _DATA_TO_INFUT WP_DMA_DATA YP_START
YP_PROCE_HAVEDATA_EVENT [=r—t—
VE_QUANTA WL VRE_PAR
I PG VWP_VLCA_READY_EVENT

WP _VYLCE_HAYEDATA_EVENT

VLCB_PAF

C _INPUT RESET
WG INPUT DA

L OUENTE
C_FROCA FEADY EVENT
C_START PROCE
VG PROCE HAVEDATH EVENT
C_MEMC PROCA
YPROCE
VINPUT
VSTORAGE CPIMCLK
\VA_SAP_SYMCHRD vE_TNPUT_HGTE! HFUT " i CPTARESET WA_PAP_INTH
FINP ViA_SAP_SYNCHRO yp_sToRAGE BiTh
QUANTA EESHD it VA_PAP_MEMC
YP_HAYEDATA_EVENT

Y YLCH READY EVENT

YO START YLCH
G _YLCA HAVEDATA EVENT
i SEMC WLCE
YYLCA
CPIMCLK YA_PAP_INTH
CPINRESET
YP_READY_EVENT
WP _HAYEDATA_EYENT R

Figure 4.12- MPEG4 encoder top-level architecture

The ROSES hardware interface refinement generates the CPU subsystem for each
software component, based on an architecture template. The software interface refinement
generates the application-specific operating system, based on the communication API. Figure
4.13 presents the CPU subsystem of the VPROCO component. The XiRISC processor
executes the software. The memory control component (CMIMemCitrl) implements a double-
bank memory, enabling parallel processing and transfer of the next frame to the memory.

The processing flow is as follows: VINPUT loads the image frame into memory and
signals the VDMA that this has been done. The processor VPROCO changes the bank
memory, and VINPUT continues to load the next frame into memory. For each macroblock
processed by VPROCO, it sends the data to the VVLCO process. After frame encoding, the

141

VVLCO transfers the compressed frame to the VCOMBINER component. The VDMA
component is responsible for managing the following transfers:

a) Transfer of the frame from VINPUT to the double memory-bank in VPROCO.
b) Transfer of each processed macroblock from VPROCO to VVLCO.
¢) Transfer of the compressed frame from VVLCO to VCOMBINER.

Counterevents are used to signal the VDMA that the processor is ready
(VP_READY EVENT) or to indicate that one processor has data to be transferred
(VP_HAVE DATA). These counterevents are implemented as hardware interfaces in the
CPU subsystem. The DMA uses an interrupt to signal the end of a transfer.

WPROLH]
CHINIRQD
ENTOTRQT
- TRTFARISCRANdECo .
TRTRIRISE CPIRHALT CPLNCSHan T Eimer
— £ CPIHIRTSC CPIbanc_select, CPINCLK CPINTIK,
CFlncLKE}‘:a D_ADDR_OUTEUS CPInC3HemCtr]
CALCPInRH
CATCFInEN
CHTFCLR
CHIDOUT
THTDRIA CHIDATA Ld] w_pAp_IMTH
1 qnmiz{rr
l THTCHATT
CRInCEran
erinResETE) m—1 %
TRLRIRTSCrand_z oI CHIAIRISLCE
o flamats o
CFIHCLK CPIHCLE
CFInfH CPIDATA CPInEH CPINHAIT|
e EbnEET
LSS et
CPInEN = — vP,HﬂvEun‘rFLEvErrrT
CHIARE
cmnﬁm T
VP_READY_EVENT [ENThanf._select
CHIdata buz in
TRTdata_buz_out
THTqddr_buz
CHIdata_ready]
THTRER il
CHITRHenCEr L m
SREE= va_Pap_nenc
THT e tr L
CPIA
CPIDATA CPIDOUT!
CPIHCLE
EPInRH
VP_HAVEDRTR_EVENT [} e CPINHATT
EPTnRESET
PN ect CPLdata_bus_out
& cFldata_bus_in
i i addrbus CPIdata_ready
-

Figure 4.13- CPU subsystem for the VPROCO component

The purpose of this case study is to show an example of a multiprocessor performance
analysis using the FlexPerf instrumented processor and DMA performance analysis. The
DMA component was instrumented and produces the performance events when transfers are
made.

Figure 4.14 presents the DMA transfer analysis at BFM level. CosimX produces the
SystemC simulation model that implements the FlexPerf agent interface. Software in the
VPROCO and VVLCO components runs in the XiRISC processor. At this level, the designer
can see the integrated hardware and software execution with precision, making it possible to
detect synchronization and communication problems. The instrumented DMA model was
used to analyze the transfers with a time segment of 100,000 cycles.

142

E RTL_3frame:DMAANalysis_1:Result -

‘e [

A Ehe e
Result [sample]
Input2Proc
. Proc2Vic
B vic2Combiner

Time Segment 100000

1,000 2,000 3,000 4000
number of transfers

Figure 4.14- DMA transfer analysis at BFM Level

The number of transfers for each time segment indicates low utilization of the DMA. At
every 100.000 cycles, the maximum number of transfers managed by the DMA is below
4200. Considering that each transfer takes one cycle, this gives a maximum activity of 4% of
the execution time.

4.3 MaxSim ESL Design

MaxSim (ARM, 2007) is an environment for virtual prototype modeling and simulation
based on SystemC. The designer can build a virtual prototype, assembling the system by
drawing from a component library. This component library is composed of processors, buses,
memories, and peripheral controllers, among others. The library can be extended with custom
components described by the designer.

The computational model of the MaxSim components is based on a cycle-based engine.
For this kind of component, the behavior is evaluated only in the clock edges. Two methods
describe the component behavior: communicate and update. In the communicate method, all
communications between the components are performed, whereas in the update method the
completed communications are committed in the shared resources. This modeling approach
leads to high simulation speeds, enabling rapid validation of the architecture.

In MaxSim, an interface called MxSI is used to interconnect the components. MaxSim
also provides two other interfaces (Figure 4.15). The MxDI interface allows a debugger
connection to the component and is mainly used in processor components. The MxPI
interface is used to generate performance events, enabling component profiling.

143

Debug Window(s) Debug Window(s)

MaxSim — MaxSim
Component Component

:

| Profile Windowi(s) I MaxSim Profile Window(s) I

Figure 4.15- MaxSim component interfaces (ARM, 2007)

MaxSim components use two kinds of ports: signal and transaction. The signal-based
connection uses the same semantic as RTL models. In a transaction-based connection,
operations are described by two methods: read and write. Read and write operations are
composed of three parameters: address, value, and control. These methods always return a
flag that signals the access state (committed or resource not available). This is useful for
modeling conflicts or operations that take more than one cycle, such as a memory access.
Also, the control parameter encapsulates other information specific to the communication
protocol. A component may use these two kinds of interfaces. As an example, Figure 4.16
shows the ARMO processor interface, composed of signal-level interfaces (fig, irg, reset) and
transaction-level interfaces (ahb, dtcm, itcm), used to connect the processor with memory
modules.

mxmem1[0] (MxMeml) |—,

TLM Interfaces: Address

. . tD
map defined in the ports o i |
clk=in
aph_timex[0] 7]
{APE_Timer)
mxalb1[0] (MxAHEI) L] belave ! inte -
amddbe-s[0] (ARMYM ... | § ‘mxaph[0] (MxAPE) E B clk—in
ahb: ! :Iiljf:ﬂ Ambmmter: ! ::';b_i_:lavamﬂ_master>
stom W intctrl[0] (IntCtrl) B
reset -
ARM \tcm’ aph isrc H—
iy figy !
irg i clk-in <]
E clk—in

Figure 4.16- MaxSim model example

The interconnection among the components uses explicit structures like bus components
(see Figure 4.16). This enables the mapping of memory modules and IO components, defining
the address space for software development. MaxSim also supports event-based SystemC
modules. This can be accomplished by instantiating the SystemC component inside a MaxSim
component. An interface adapter (shown in Figure 4.17) between the SystemC ports and
MaxSim ports is necessary.

144

Interface
adapter

MxSI Interface

SystemC
Interface

Interface
adapter

SystemC component

Figure 4.17- MaxSim SystemC wrapper

For basic SystemC signal-level ports sc in and sc_out, we have implemented generic
adapters, thus facilitating the integration of SystemC component into MaxSim. These adapters
are responsible for converting the SystemC signal-level interface into the MaxSim MxSI
interface, as shown in Figure 4.18. MaxSim exchanges values as integers and the adapter
makes the type conversion when necessary. This is useful to integrate RTL models, available
in SystemC, into MaxSim simulations.

Adapts the
driveSignal() to the
SystemC
signal

MxSignalSlave MxSignalMaster

sc_in [] outp->driveSignal(X)

driveSignal()

sc_out

—
SystemC module -_E driveSignal()

MaxSim Component $ MaxSim Component

Adapts a write from SystemC port
to a driveSignal() in the MxSignalMaster port

Figure 4.18- SystemC encapsulation in MaxSim components

4.4 ROSES Integration

As shown in Figure 4.19, the ROSES and MaxSim integration is accomplished at BFM
level, following the refinement of hardware and software interfaces. A MaxSim simulation
model is generated from the COLIF design meta-model. A MaxSim component encapsulates
a SystemC component using the interface adapters. The MaxSim component is automatically
generated. To do so, the following information is required:

e port name,
e port type, and
e port direction.

The Colif model provides these port characteristics, automating the generation of the
MaxSim components and its inclusion in MaxLib.

145

Performance Estimation Tools

System Specification

Architecture exploration

Virtual Architecture
Model at TLM Level

ROSES
HW/SW interface refinemen Architect
renitecture MaxSim Virtual

meta-model i
) Prototype .
BFM Level | Colf MaxSim
simulation

i Performance
SoC Integration

events
RTL Level

MaxSim
Performance Analysis

Figure 4.19- MaxSim integration in the ROSES design flow

The hierarchical COLIF model is preserved in MaxSim. Hierarchical components are
described in MaxSim using a text format. They contain the subsystem components and their
interconnections. This kind of component is also automatically generated from the COLIF
model.

MaxSim and ROSES integration enables the automatic virtual prototype generation. The
virtual prototype generated from the ROSES architecture description provides all performance
analysis resources available in MaxSim environment, such as software debuggers, software
execution timeline, and communication analysis. These analyses performance resources are
not available in the previous SystemC model generated by CosimX tool, provided by ROSES.

In Chapter 6, a case study of an MPEG4 encoder is elaborated in order to evaluate a high
performance estimation tool based on neural networks and the integration of MaxSim and
ROSES. The case study will illustrate the resources of the MaxSim virtual prototype that are
used to analyze the performance of MPSoC designs.

4.5 Conclusions

This chapter presented two different paths for system performance analysis at bus
functional model level. First, a processor-centric approach (FlexPerf) was extended and
integrated to ROSES, allowing integrated hardware and software performance analysis.
Second, a virtual prototype modeling and simulation tool was integrated to the ROSES
environment.

The FlexPerf environment was extended to allow integrated hardware and software
performance analysis. We generated a SystemC model, where wrappers are used to
encapsulate the instrumented processor simulator generated from the LISA language. This
provides an MPSoC global simulation model allowing a synchronized simulation of the
hardware and software components. The instrumentation support provided by FlexPerf adds

146

more complex analysis resources than are available in SystemC, where the profile only
supports the tracing of ports and signals.

ROSES and FlexPerf integration was evaluated in two case studies: one involving a
simple FIFO interface and the other one an MPEG4 encoder. The analysis modules were
extended to provide FIFO and DMA performance analysis. FlexPerf’s flexibility and
modularity were exploited to extend existing analysis capabilities and to develop new ones.

On the other hand, a virtual prototype tool such as MaxSim seem promising. The support
for SystemC custom modules is an important feature, since the MPSoC design always
involves IP components that will not be available in the standard library. The SystemC
support was used to integrate MaxSim to the ROSES design, with the automatic generation of
the MaxSim simulation model from the COLIF design meta-model. The automatic virtual
prototype generation enables the designer to spend time on performance analysis instead of on
simulation model implementation.

In the prior simulation model generated by CosimX, the ISS was connected with the
SystemC simulation using inter-process communication (IPC), and the synchronization was
made only at each communication. The integration of FlexPerf and MaxSim to the ROSES
environment enabled the generation of a global simulation where the software part (processor
simulator) is synchronized cycle-by-cycle with the hardware modules (SystemC).

The simulation model generated in this work is similar to that in (BENINI et al., 2005;
WIEFERINK et al., 2004), where a SystemC wrapper encapsulates a processor simulator and
is then integrated with the rest of the SystemC simulation. These environments provide
certain fixed processors and bus performance analysis resources, but there is no clear way to
customize them. In this work, the FlexPerf framework allows instrumentation and
performance analysis of SystemC simulation models to be accomplished in an easy and
flexible way. Moreover, framework modularity enables reuse of developed analyses for future
designs. FlexPerf’s off-the-shelf resources for instrumentation and performance analysis of
stand-alone processors were extended to support SystemC MPSoC simulation models,
providing a systematic path to integrated performance analysis. ROSES and MaxSim
integration also allows the construction of a global simulation model with performance
analysis capabilities. The graphical interface provides a comprehensive MPSoC simulation
and validation tool allowing synchronized breakpoints in software code, connections, and
hardware registers.

Virtual prototype environments, such as ConvergenSC (Coware, 2007), Synopsys System
Studio (Synopsys, 2007), and MaxSim (ARM, 2007) propose that architecture design starts
from the virtual prototype. In the ROSES environment, design starts at the virtual architecture
level and the automatic generation of the virtual prototype accelerates design and decreases
error. Furthermore, such environments do not support the generation of software wrappers, as
provided in the ROSES environment.

The proposed method makes explicit instrumentation necessary, and, consequently, access
to the component code is also required. Considering that the ROSES environment uses a
component-based approach, the components in the library could be instrumented beforehand.
This idea could be extended to SystemC channels, which can be pre-instrumented to
automatically generate performance events.

147

5 CASE STUDY

In this chapter, an MPEG4 case study, using the software performance tools developed in
this thesis, is described. The MPEG4 architecture proposed by Bonaciu et al. (2006) was
developed to provide flexibility and support for different video profiles using an MPSoC
architecture.

Rate control
. 4 [
Coded
. o——»)
Inpot e DCT |"| Quant | 15 Combiner |—» Image
Estimation| | Comp. 1
VLC
Encoder Task (SW) Yie T?f‘k (swW
v t A 4

DMA

Figure 5.1- MPEG4 encoder architecture (Bonaciu et al., 2006)
As shown in Figure 5.1, the encoder is composed of five main components:

- Input: this component receives the frame and sends it to the Encoder tasks. When
two or more Encoder tasks are used, the /mput component divides the frame,
assigning a specific region to each Encoder task.

- Encoder task: this task implements the core algorithm of the MPEG4 encoder.

- VLC task: this task accomplishes the bitstream compression using the Huffman
algorithm.

- Combiner: this task prepares the final result of the frame compression.

- DMA (Direct Memory Access): this hardware component -carries out
communication among the components in the MPEG4 architecture.

Figure 5.1 presents the MPEG4 encoder base architecture with two processors: the
first one executes the Encoder task and the second one is in charge of the VLC task. This base
architecture may be changed to use more processors running in parallel. For instance, Figure
5.2 presents the same architecture with 6 processors: four running the Encoder task and two
executing the VLC task. Moreover, the architecture mapping may be changed: for instance,
the Input and Combiner can be implemented as software components.

The DMA carries out transfers among the components in the architecture. It manages
the transfers between the Input component and Encoder task. After the execution of the core
algorithm, the Encoder task sends the bitstream to the VLC task. The VLC task compresses the
bitstream and sends it to the Combiner using the DMA.

148

While one frame is being processed, the next frame is loaded into the Encoder
processor by the Input component. This concurrent access to the memory in the Encoder
processor is accomplished using a double-bank memory.

> o——>{bcr | quant |

Motion
Comp.
Intra
Prediction

Motion
Estimation|

Encoder Task (SW)

o—{ocr | Quant |

Estimation| | Comp.
DeQuant||

Encoder Task (SW)

VLC
Rate control —

—s o> DCT | Quant |

Motion
Comp

Prediction

VLC Task (SW)[*™]

|DeQuant|

| Input

Coded

Combiner Image

Encoder Task (SW)

Rate control 4
VLC

>
—

Estimation| [Comp.

VLC Task (SW)

Encoder Task (SW)

DMA

Figure 5.2- MPEG4 architecture with four Encoder tasks and two VLC tasks

In this chapter, we will evaluate the proposed estimation methods, using the MPEG4
encoder architecture shown in Figure 5.1, with one processor executing the Encoder task and
another one executing the VLC task. The Input, Combiner, and DMA components are
implemented in hardware. The main purposes of this case study is to estimate the performance
requirements of the Encoder and VLC tasks and to explore the processors that could be used
to execute these tasks.

5.1 Performance Estimation and Analysis Flow

In the MPEG4 encoder analysis, the design flow shown in Figure 5.3 will be followed.
From the system specification in C, software performance will be estimated using a high-level
estimator. In our case study, the Encoder and VLC software components are the targets for
software performance analysis.

149

This first estimation step is carried out to guide processor selection for the software
components. The neural network estimator developed in this work is utilized for fast
estimation of software performance to select a suitable processor.

Design space exploration results in a virtual architecture with explicit hardware and
software mapping. In this work, the virtual architecture will not be used for performance
estimation and analysis purposes. In other works by the SLS group, this model is employed to
obtain the performance estimation, using an abstract CPU model (BOUCHHIMA et al.,
2005).

Following processor selection, the virtual architecture is used in the ROSES environment
to refine the hardware and software interfaces. Interface refinement depends on the target
architecture selected in the exploration step, because certain parts of operating systems and
hardware adapters are architecture-specific components. After the HW and SW refinement, a
bus functional model (BFM) is generated.

In order to analyze the performance of the BFM model, a virtual prototype is
automatically generated using the ROSES architecture description. For generation of the
virtual prototype, we consider that the HW components are available as SystemC cycle-
accurate models. The software is organized in tasks and runs on an operating system tailored
to the application. The virtual prototype will be generated in the MaxSim environment
described in Section 5.4.

System Specification ~ |[——> @ @ : <« Processor

selection for SW

components using
i) NN estimator
Architecture exploration (a)

Virtual Architect ::> vt VM2
Ircual Arcnitectuure
Model at TLM Level
Implicit CPU, abstract HW VM3 HW
ROSES)
HW/SW interface nppl Appl. <— Virtual prototype:
efinemen Tasks asks Integrated HW
0Ss OoSs and SW
performance
BFM Level ——>| cpu GPU HW | analysis

Explicit CPU and OS, RTL hardware

[L |-
HW V\ﬁ)pper| | HW ,\ﬂapperl |HW \pﬁapper |

Intercommunication Network

Figure 5.3- MPSoC performance estimation design flow

5.2 High-level Estimation

In the first step, we use neural networks to estimate software performance. In the case
study, the Encoder and VLC tasks are evaluated. Despite the simplification of the
architecture, with only two processors, processor selection and high-level performance
estimation still are important aspects of architecture exploration.

In the experiments, two processors are evaluated: the ARM946 and the PowerPC750.
Both processors have advanced features commonly found in actual embedded processors,

150

such as pipelines and caches. These features have a non-linear impact on software execution
time making performance estimation difficult.

In order to estimate the performance of the Encoder and VLC tasks, these are
implemented without the system calls used for communication and synchronization.

The neural network estimator employed for the high-level estimation uses a training
approach. This means that a training set is needed to calibrate the estimator. In order to train
the ARM946 and PowerPC750 estimators, a set of 41 benchmarks was used to test their
accuracy.

Figure 5.4 presents the neural network used to estimate the application cycle count for the
ARMY946 processor, where the inputs are the number of instructions of different types. This
neural network is composed of an input layer, a hidden layer with 5 neurons containing a
tansig transfer function, and an output layer with one neuron containing a linear transfer
function. These transfer functions are available in the Matlab Neural Network Toolbox
(Matlab, 2007). We have selected a small number of instruction classes that are sufficiently
representative of the timing behavior of all instruction types (forward branch, backward
branch, load/store, multiple load/store, and ALU).

Forward Branche

Backward Branche

Load/Store __ 5 Cycles

Multiple Load/Store

ALU

Input Hidden Output
Layer Layer Layer

Figure 5.4- NN performance estimation for the ARM9 processor

For each processor, a set of instruction types is chosen to best represent the application
performance. In the case of the PowerPC750, the instruction types are forward branch,
backward branch, load/store, integer, and float (see Figure 5.5).

For neural network training, a cycle-accurate simulator is required to extract the number
of executed instructions and the total number of cycles consumed. For the ARM946
processor, a cycle-accurate simulator provided in the MaxSim environment was used to
profile the benchmark set (ARM, 2007). For the PowerPC750, a cycle-accurate simulator
from Microlib (2007) was used.

Forward Branches)

Load/Store__,.(, Cycles
Integer .
Floats .
Input Hidden Output
Layer Layer Layer

Figure 5.5- NN performance estimation for the PowerPC750 processor

151

The ARM946 is a five-stage pipeline processor. It was configured with 4 Kbytes of data
cache and 4 Kbytes of instruction cache. The PowerPC 750 processor was configured with 16
Kbytes of data cache and 16 Kbytes of instruction cache. It is a RISC superscalar processor
that may complete up to 2 instructions per cycle and contains 6 functional units: a floating-
point unit, a branch unit, a system register unit, a load/store unit, and two integer units.

Table 5.1- Estimation and instruction count for the ARM946 and PowerPC750 processors

ARM (cycles) | ARM (instructions)| PowerPC (cycles) | PowerPC (instructions)
Encoder Task 255250 128230 114230 155032
VLC task 52694 23497 31478 25153

Table 6.1 presents the estimation results obtained from the neural network estimator for
the PowerPC750 and ARM946 architectures. The main cost associated with the estimation
process is that of the dynamic instruction count used as input in the neural network. In this
work, the executed instructions are obtained using an instruction-accurate simulator available
in MaxSim for the ARM946 and in the Microlib package for the PowerPC750 processor. The
proposed method allows rapid estimation due to the short simulation time of instruction-
accurate simulators compared to cycle-accurate simulators.

The execution costs in Table 6.1 were obtained for one macroblock of 16x16 pixels. The
cost of a total frame is calculated based on the image size. For instance, an image of 176x144
pixels has 99 macroblocks, and the total cost of encoding a frame can be calculated based on
the macroblock processing cost. For the ARM946 processor running at 100 Mhz, the
processing time for each frame is about 250 milliseconds. Considering these results, an
architecture with 4 processors running the Encoder task can process up to 16 frames/second.

The estimated values show that the PowerPC750 achieves best results in terms of cycle
count, due to the superscalar architecture. In the Encoder task, the gain is larger due to the
task’s characteristics favorable to the PowerPC superscalar architecture. The PowerPC750
gain in the VLC task is smaller due to frequent access to code tables without a sequential
pattern present in the Huffman algorithm. This characteristic causes pipeline stalls and
decreases the superscalar effectiveness. The smaller number of executed instructions in the
ARM architecture can be explained because of the special instructions in the ARM946
instruction set, like multiple load/store resulting in a compact code.

Estimation results are used to guide designer decisions concerning software mapping and
processor selection. After processor selection, this decision is annotated, for each software
component, in the Colif model of the MPEG4 encoder architecture. This information will be
used by ROSES during interface refinement in order to generate the operating system and
hardware wrappers. In our case study, we will demonstrate virtual prototype generation for
the ARM946 processor and compare the results with the high-level performance estimation.

5.3 Virtual Prototype Performance Analysis

Bus-functional model (BFM) performance is analyzed using a virtual prototype. In the bus
functional model, the software part is composed of tasks that execute on top of an operating
system in each target processor. The operating system is responsible for implementing the
API used for communication between components. The evaluation of this virtual prototype,

152

which provides the designer with detailed information about overall system performance,
needs to be carried out before the physical design can be realized.

The MaxSim (ARM, 2005) environment is used to generate a virtual prototype model
enabling performance evaluation. This simulation model is automatically generated from the
ROSES architecture description at BFM level. The ROSES architecture describes the
components, their interfaces, and the connections between them.

Hardware components are regarded as IP blocks. We consider that the IP provider supplies
a cycle-accurate model of the IP component. The hardware interface adapters generated in the
HW/SW refinement step are also available as SystemC cycle-accurate models.

5.3.1 MPEG4 Encoder Virtual Prototype

Figure 5.6 shows the MaxSim top-level model generated by the Colif2Maxsim tool. The
top level is composed of two CPU subsystems (the VPROCO and VVLCO components)
responsible for executing the Encoder and VLC tasks. These components are hierarchical and
are composed of other SystemC components. The VINPUT, VCOMBINER, and VDMA
components represent the hardware modules described in SystemC. VANTENNA and
VSTORAGE are simulation components, used to produce the input and to store the output
image, respectively.

Figure 5.7 presents a detailed view of the modules that compose the VPROCO component,
presented in the top-level architecture. As one can see, the SystemC components produced by
the ASAG tool of ROSES — e.g., the double memory-bank (CMIMemCtrl), the address
decoder (CMIlarm7deco), and the timer (CMltimer) — are automatically imported into
MaxSim. CMIarm7cc implements the processor adapter and event counters that control the
DMA transfers. The component CMIarm7 represents the processor.

CMlIarm7 1is also a hierarchical component, and Figure 5.8 presents the component in
detail. An ARM9 processor available in MaxSim is used as processor simulator. The ARM9
simulator model uses transaction-level interfaces in the connection to the memory
components. Since the ROSES BFM model uses pin-level interfaces in the components’
connection, a bus functional model for the ARM9 processor was implemented using the
processor, bus, and memory components available in MaxLib (see Figure 5.8). The processor
is connected to the bus and memory with TLM interfaces. An adapter (mem_adapter) was
implemented to translate the TLM operations to pin-level, integrating this model with the rest
of the system. This BFM model is generic and could be reused in other designs generated by
the ROSES environment.

153

B MaxSim Designer - [ColifTopi]

Fle Ecit Mew Insert Object Tools Simulation Window Help
0 = H | & B B %[= e a0 o | B A (| By |y a o a L3
Mew (Open Save | Cul Copy Fasle Dol | Undo Fedo || Edit Conneet | Comp Fort Label || Clock | Signal | Trans | Grid In Ouwt 100% | Info
Al
Component Window
AHE2AHE AHBZMx
VIRFUT VOMA T] *
v data addr B s sadr Df- VEOMBINER J AHBICMZ AHBICMS
Fpum ack ym data cs data data in O data data out Ok i guarta
Hpum data v data. data data ready 0 data sn O R rpum data
Lovm cuants, . o prevm data en b—— TP procd havedata event data rw OB —pum data adress *
v reg v dlata. lencith B— proc ready everit start0 i
v st ym last datalt—— Vich data data in O startvk0 b | AHBICMA - AHBICMG
vm_target mosdule — vicO data ready 0 Vil data addr 0B vm data open vl
VIcD havedata, ew\cqrdm data out O vm rea A B A Care AR]
vicO reay evenf= "% 7 EMCTT yieD data en OB vm _rst _ =
i vm inout data. addr vicD data rw 0B Hisrarchy Window By
vm inout data. ¢ vm eomb data. adress B E—
VANTENNA] Hvm inout data. data v comb data data yster
reseter0] wm input data en wm comb data en WANTEMNA, (SystemC -
Vi ack B i Fieset B v input data lenath vm comb data open B8 VCOMBINER (SystemC
e o rddata B pelke-in Wi input st data vm rsthy B8 VDM ¢ SystemChiody
win_rec b wrn_input_target_module vmn_r3t_comb BHT -
H a8 | B VINPUT (SystemC-Moc
| BHEFWPROCD ¢ System)
- WSTORAGE {SystemC—
VFROCO L VVLCO L i Lo
-8 WLCD (Spstem)
VA FAF MEMC CPldata bus out WA FAF SBMC CFldata bus outh W3- B reseter(o] (Other)
1 CRIRRESET WA PAP MBMC CPldata ready b | CPIMRESET \ia, PAP SBMC CPldata reay b—)
[V PAP INTM CPint WP HAVEDATA EVENT CPlevitf1— WA PAP INTM CPint WP HAMEDATA EVENT CPlevnty [~
v PAP MEMC CPladdr READY EVENT CPlevnt - VA PAP SBMC CPladdr READY EWENT CPlevnt iy —
[va PAP MEMC CPldata WA, PAP SEMC CFldata | || Parameter Yindow x|
s PAP MEMC CPInEM Wi PAP SEMC CPINEN C T [[alue
Lpwa, PAF MEMC nRw Wi PAP SEMC nRw
I o : -
CalifTopi
|"Reachy -
% MaxSim Desig 0 opiVPROCO [
Fle Ecit Wiew Insert DObiect Tooks Simulation Window Help
O o MW % B B X | < o [Ty B A | A4 Ty | o
Mew Dpen Save | Cul Copy Fesie Dol | Undo Fedo || Edit Connect | Comp Fort Label Tlock | Signal fTrans | Grid ;| 0wt 100% | info
Byl x
Component Window x|
#HEZAHE AHBZM: AHEICM2
AHBICM3 AHBICM4 AHBICME
P CF PR SEEITIKY 1 Mlarm? I L
1 CPIDATA CFI&] \
7L GEINEIG, (CRIDOUT O AHB_Master AHE_Mast.. AHE_Slave
CRINIRGEMECPIMAS CMIamm7aeca
CRInwal CFINBEW| Al
CFi& CFIAB0RT|
Al KB c H Cith
/ Ry —P CPIMCLRIbare select et =
b CRINERINCShem Cirl T
CPHRENDIIFIESram
CFint CRInCSrom |Ehia W
CRIRENIN [: ChiiMemCtrl (System C-Module)
CPInWAIT B CMlarm? (System)
4 [Chilarm7ec (System)
»
E Chilarm7deco {System(C—Mocule s =
[CHItELi [CHInRESET -
EMIanats) = EMIE St U | G mlu | L = Eult B8 Chltimer (SystemC —Madule)
CPla CPIDATAR CFla CFIDATA T = BI-EA CHIMCLE (Other)
CPIDOUT CRInWAITHH Hp CPIDCRIBata bus out B3 CNIRRESET (Other)
SPAMBLENT. CFlevnt Hb CPIMAE Pldata. reay
CFlewnt f— Lib CRIMELK SR InwaITH— '_\':P'M':"K <claneistae) 7l
CPink b CPladdr bus ToTeneeT R =
CPIRRESET H T—
Ly CPInAw [/ Parameter Window - x|
[CrinRESET Parameter " ‘alue \g |»|Type ‘
[CPInFiw
Lbbanc select
v
il
£l I =

" CoiitTapi ColifTopit/PROCO *

Figure 5.7- CPU subsystem for the VPROCO component

154

arm9-cs[0] { ... | i | | m=ahb10] (M= | i mem_adapter...| ; |

whe prp bsbﬂmﬂjmb- CRIDATA
ARM B clk-in CPI& ?

CRIDATA

fiq 1h} mem

B> clk-in irg

QCPIMAS?
irqetni[o] (iry .. | ;

Irqoud %—
ke clk-in Irqin g—

CPINMAS

CRINAIT € CRINWAIT

mExmemd[0] { ... | i

P portn o clkvin <4

@ CRInAQ

Figure 5.8- BFM model of the ARM9 processor in MaxSim

Figure 5.9 shows the simulation’s initial screen. The MPEG4 encoder implemented in this
case study uses two processors, and the binary code containing the application and OS is
provided in the simulation initialization.

MaxSim provides global validation support, enabling the use of breakpoints in software
code, registers, memory position, and connections. Figure 5.10 presents the software
debugging capabilities with the assembler code for the VVLCO processor. Software
debugging is available for all processor components. The global simulation provides a
suitable tool for debugging concurrent applications executing in different processors.

e Mew Ohiect Control Debug Wndow Help

= B oo 2 W B> = W W [’s3 I 4 Stopped ‘5; n ||| Zoom
Open Save Close | Brkpts Frofle Trase | Fun Stop Step Stepn | Fesel | Animal Gyne 20 [] i W oo =
VINPUT (MXVINPUT) I VDMA (MXVDMA) [1 [~
VCOMEBINER {MXVCOMEINER)
wrn_data_addr data_addr 0
- vm_ack wm_data_ca data_data_in_fl data_data_out_0 m_g
T vm_data wm_data_data ’— data_ready_0 data_en_0 ¢ vm_data
=P vmn_ouanta SysTEMC™ win_data_en procd_havedata_event cata_rw_0 win_dlata_adress
g vm_req wimn_data_lenath Pr— proc_ready_event startd win_data_data /-—\
A vm_rst wm_last_data icll_data_data_in_0 startvied vin_dataen (SYSTEMC
vm_target_mocule Pr—r wlcO_clata_reacy_0 wle0_data_addr _0 win_data_open
wlcO_haveciata_event /-—\ wlcO_clata_clata_out_0 T Win_ted
T
wicO_ready_event SYSTEMC vlcO_data_en 0 T v _rst
_"—| i galect Application Files
L]
reseter[0] (Reseter) | E Component fpplication Loaded VSTORAC
4 WPROCO.CMlarm? arm@-cx[0] [SAMIZ0T] Aocalioyamada/DIy Ka845/05 GenARMPAPROCOAPROCO axf (MXVSTO
vm_ack Pr—r & Fieset 4 VWLCD CMIarm? arm@e-cx[0] [ARMIE-Cx] Aocalioyamara/ DIy R46x48/05 GenfARMZ AL COAALCO axf
cnn“_data — olk=in /‘
wm_req P— S
® Clear B Select Flle L
[| L]
VPROCO (ColifTopiVEROCD) Hely ‘
e] =]
b, FF_MBMC. CFldata,bus_out | WA, PAP_GBMC_CPldata_bus_out
8 CFINRESET Wis_PAF_MEBMGC_CFIdata_ready CFINRESET Wid_PAP_SBMC_CFIdata_ready J
[Wa_PAP_INTM_CPint WP_HAVEDATA_EVENT_CPlevnt [Ma_PAP_INTM_CPint VF‘_HA\/EDATA_E\/ENT_CF‘IeVnt#
> v, PAP_MEMC_CPladdr_bus VP_READY_EVENT_CFlevnt 5 i _PAP_SBMC_CFlacdr_bus WF_READY_EVENT CFlevnt
> W4_PAP_MEMC_CFidata_bus_in [Wa_PAP_SBME_CFldata_bus_in
B vity_PAF_MEBMC_CPINEM B v _PAF_SBMC_CFINEN
Ly v paP_MEMC_nRw L v _PaP_SBMC_nRW
4
I =

B 0P

Figure 5.9- MaxSim Explorer initial screen

155

Fle View Obiect Control Debug Window Help

ams}!

E W |

Brkpts Profile Trace

Run Siop Step Stepn

Mo b I

»* Stopped
Apim Al Sync Al n

A
YCOMEINER (MXYCOMEINER)
WM
Airess: 2 0| om WD B vm_data
Address DOpeode Disqssemﬁ_ly ﬂ om;dlata aolress,
Rz 0=00000000 000000080 © 1200000 HOP vi_data_data /—\ o
A3 0x00000000 0400000084 ' 107008 MOVS PC, LR vm_datan [SYSTEMC
—h4 __ 0=00000000 000000085 Start_Boot
! - wi_data_open
RS 0=00000000 £3a000ci2 MOV RO, #0502 > 40 b
_2? .g‘gggggggg o | 0x0000008C 121000 MSR CPSR_c, RO [P vm.rea
= 1]
o t
By 0x000000C0 ' ¢3a00940 MOV 5P, #0540 >>> 43 ym_rsf
L Fa ™ Tstnonnnon 0x000000C4 ' £3300043 MOV RO, #0503 »5>> 40
Lr10 oxo0000000 0x000000C8 ' ¢121000 MSR CPSA_e, RO | ||
R11_0-00000000 0x000000CC e58fd034 LDR 5P, [PC, #+52]
—FR12 0=00000000 000000000 ' e300053 MOV RO, #0553 >35> #0
Sk __ 10=<00000000 000000004 ' 0121000 M3R CPSR_c, RO B | || YSTORAC
*;:‘5 .gxgggggg‘g 0XD0000005 | eh00041 5 BL C_Entry ! || MXVSTO
i Il Il
g s 00000000 C 8330001 5 MOV RO, #0515 222 #0 /.
B CP&R Bx00000065 0:000000ED ' 85971024 LDFR Rl, [PC, #+38] Gy
0x000000E4 ' ef123456 swisxizasss 0 S 000 |
0:000000ES stwrt: =8 o
530020 LDR RO, [PC, #+32]
0x000000EC ' £5901000 LDR A1, RO, #+0]
(Bt || 0x000000FD | £59M001¢ LDR RO, [PC, #+28] 7 |;
ad
L \ii_PAP_MBEMC_CPldata_bus_out | ! \i_PAP_SEMC_CPldata_bus_out Pr-——t-/
P CPINRESET ia_FAP_MBEMC_CPldata_ready L +-B CPINRESET Wihs_PAP_SBMC_CFldata_ready
[wias_PAP_INTM_CPirt WP_HAVEDATA_EVENT_CPlevnt - VA_PAP_INTM_CPint WP _HAVEDATA_EVENT_CPlevrt P~
[Wih_FAP_MEMC_CPladdr_bus WF_READY_EVENT_CFlevnt B Ua_PAP_SBMC_CPladdr_bus VF_READY_EVENT_CFlevnt P’
[P via_FAP_MEMC_CPldata_bus_in B A _PAP_SBMC_CPldata_bus_in
P Wa_PAP_MBMC_CFInEN - WA_PAP_SEMC_CPINEN
Lbrn oao wiowie eou: 1A DAD oOMm D " |
I S
R <TOP>
=
X RusMaster: Connecting skve-port <mem> 10 CalifTapi LCA Chlarmn? meust [1] -bus—master for address space 00 - 01 EFFF i
Simulation Loaded
WARNIMG :: Cores supporting multiple application file extensions should hawve the property MX_FROP_REPORT_FILE_EXT set to yes’ J
Simulation Reacly v
Commanel »| ‘
“E armSe-cx[0] (Current) | arm3e—cx[0]
ﬂCquuEz ici pour commencer an\\f’PHEIED) [Bystem | v

Figure 5.10- Software debugging support in MaxSim

Figure 5.11 presents the timeline for software execution in the VPROCO component. This
analysis view enables the designer to find optimization points and analyze the cost of each

function within the overall software execution.

Performance analysis resources, such as assembler code debugging, register view, and
software execution timeline, come already built-in in library components. Furthermore, for
the processor at cycle-accurate level, the model also provides cache performance analysis.

Figure 5.12 shows the communication analysis feature available for bus components. By
conducting this analysis, one can verify communication performance, detecting bottlenecks
between the processor and memory. This analysis shows the number of accumulated
operations in the bus, classified by type (e.g., read, write, request and grant), for each time
segment. In the example illustrated by Figure 5.12, the segment size is 10 cycles.

156

‘T

Fle ‘few Ohicct Control Debug Window Help

e Wl oo B ow m W M 1 »* Stopped | 3 ¢ Zoom %
Open Save Close Brkpts Profile Trace Fun Siop Step Stepn Fieset Anim Al Sync Al | i L 100 :
VINPUT (MXVINPUT) [VDMA (MXVDMA) [=
= VCOMEINER (MXYCOMEINER)
win_clata_adclr B dlata_addr_0 g -
i v _ack wm_data_cs [} - P data_data_in_0 data_data_out_0 [p{-} wm_g
B wm_data wm_data_data [} | data_reacy_D data_en_0 P{-{ vm_data
= i ,/—-_‘\ [5 lat,_arh
vmauanta Sy s TEMC i ;i wm_data,_adress
B wm_teq | wm_data_data
T# wm_rst
- Mlarm7.arm%-cx[0]
0 5,000 10,000 15,000 20,000 25,000 30,000
___‘ Function Mumber ¢
Loondbo oo oo beogeo b b
|_r. Summary a X vt _memelr_w T iddot_int32_nit
C_Entr
reseter[0] (Resetex) ‘ i et 1 4
ek P & Hgma faro:_rain_function 1
v data pr— cl-in e 1 4
um_req syspap_mbme_swit |
_trap_trap 1
pap_mbme_switch_ 1 .
11 init_processor__Sm 1
i | | VPROCO (Colif Topi VPROCD) sovicd_init 1
| idet_int32_init |
it CRINRESET
B it_PAP _INTM_CPint
B v _PAP_MBMC_CPladdr_bus
-l uis_PAF_MBMC_CFidata_bus_in
B vis_FAP_MBMC_CPINEN
tho oao wiokas oo
3 5T [< - < =
T, <TOP> o
=@l
X sirmulation Loaded
WARMING - Cores supporting multiple application file extensions should have the property Ms_FROF_REPORT_FILE_EXT sat to yes’
Sirnulation Reac I
31,802 cycles, 7.45 sec, 4,279.46 cycles/sec 7|
Command »| |
|@arm9—cx[0]

| Component: VWLCO ¢ CalifTopivAdLCO 3T System 1

Figure 5.11- Software timeline execution

In MaxSim, user components can be instrumented to produce performance events. This
resource is provided by the MxPI interface available in the MaxSim components. This
interface produces a stream where events are written. Visualization is always accomplished
through XY graphics.

Figure 5.13 shows the DMA transfer analysis. The graph plots the number of transfers
handled by the DMA, as a function of time. This chart also uses the notion of time segment
and, in this example, a size of 100,000 cycles was used. Here, black bars represent transfers
between VINPUT and VPROCO, whereas white bars represent transfers between VPROCO
and VVLCO.

157

== (7 1
= - [B]X]
Fle Vew Dbiect Control Debug Window Hel |
e Moo e 1] [o= M Bin [5] dig - Stopped | 19252 | :| Zoom %
Open Sawe Close Brkpts Profile Trace Run Stop Step Stepn Reset | Anim Al Sync Al [] |3 L 1 100 =
soamenm 1[0] (MxMeml) | i
= 10 b P B
smd-caf0] (ARMI20T) | + mhus1[0] (MxBus1) I P por e b cria |
& clk—in
fiy _I—)hslaven § brmaster P :
irg mem Py clk_in }
CFIDATA
i ARM) C
clk—in
&% profiling VPROCO.CMlarm7.mxbus1[0] - bslave0 (Cycle 136,548 - 329, ...
irqetrl[0] (IrqCtrl) : .
aculf0] (rqCul) [M Frofilng WP RO CO.CMiarm?.mesbus1 0] - & Cyele 136,5 2] [~ [~]x]
Irgin E‘ Irq0ut
clk-in Legend Total
v M Req Aoc — Denied 1] &l
[. [w [Req Acc - OK o 40
|v Bl Check Grant - Denisd 0 30
[v Bl Check Grant - DK 22645 zn _
v Ml React — Wait i} 10
MLt o | v Ml Fiead — OK 21445 0
vl Vite - Vit 4
= sxtialns = .[—- 200,000 300,000
= DxODI0FD0Z: exty 0200000000 = [v Il Write - OK 1828 EL =
= 0x0010F00E: extyw 000000000 |
- 0x0010PODB: exty 000000000 oo | @ o] : Cyck | | Segment size:
v Lo e s ot | ElEeE]) o .
atlar or|| | ¥ mumber of Events e | e £
Elapsed Cyclea | JHSZCH | sstivitvicyoies | 0% B =
" d
|
#.<TOP> | £, WPROCO | Eq, WFROCO.Chilarm? ‘
|
| Trarsaction BreakPoint hit on connection <mxhus 1 [D]:Bmaster < - —>Mem_adapter [0):mem> g+
Cyele 186830
| Transaction BreakFoint hit on connection <misbust [0]:bmaster < - —»mem_adagter [3] mem> -
| TR0 cecles 1 G2 cer 3 GR4 R cuclealean o

Figure 5.12- Bus transfer analysis

m] Frofiing VDMA = Transf
Legend Total 500
[v M Input2Proc 16673 o
[w! Proc2uic 4326 LS
[v = Mc2Combiner 1} 300
200 |
100 |
0 T T A S A S
0 2,000,000 4,000,000 6,000,000 8,000,
Bl =
EI E @E X: Cycle #® Fixed size segments Segment size:
gl 91‘ +_{-‘ ir‘, V. Tranafer) Function based segmenta 100000 Y
A

Figure 5.13- DMA transfer analysis

The comparison of the performance estimation from the neural network to that obtained
with the virtual prototype is shown in Table 5.2. For the PowerPC750 processor, a SystemC
cycle-accurate simulation model was used, but without the operating system and hardware
interfaces. Although this simplification limits the system performance analysis, the cycle-
accurate model enables the verification of the NN estimator accuracy. For the ARM946
processor, the estimation error was 4.26% for the Encoder task and -8.29% for the VLC task.
For the PowerPC750 processor, an error of 24.8% in the Encoder task was obtained. This was
expected, however, given that the PowerPC750 processor is more complex, making
estimation more difficult.

If we apply linear regression for performance estimation, as proposed by Giusto et al.
(2001), the estimation errors obtained for the ARM946 architecture were 60.25% and 58.66%,
for the Encoder and VLC tasks, respectively. For the PowerPC750 processor, we observed

158

that linear regression also revealed higher estimation errors (87% for the Encoder task and
44.42% for the VLC task). This demonstrates the neural network’s flexibility and capability
for non-linear prediction.

Table 5.2- High-level performance estimation (in cycles) compared to the cycle-accurate

virtual prototype
ARM946 PowerPC750
Estimated Cycle-accurate Error Estimated Cycle-accurate Error
Encoder Task 255250 266630 4.26% 114230 151960 24.8%
VLC Task 52694 48659 -8.29% 31478 31064 1.33%

Table 5.3 presents estimation and virtual prototype execution times for macroblock
processing. As indicated, a speed-up between 6.5 and 22 times was achieved with the neural
network with regard to the virtual prototype. Considering the increasing size of embedded
software code, neural network estimation enables rapid evaluation of various solutions
without high simulation costs. In turn, the virtual prototype enables global analysis of
hardware and software components. This allows detailed system performance analysis and
confirmation of numbers estimated at higher abstraction levels.

Table 5.3- Estimation and cycle-accurate virtual prototype simulation times

ARM946 PowerPC750
Cycle-accurate | Estimation (s) | Speedup | Cycle-accurate | Estimation (s) | Speedup
(s) (s)
Encoder Task 5.5 0.3 22.0 4.3 0.3 14.3
VLC Task 3.0 0.2 14.3 1.4 0.2 6.5

159

6 DISCUSSION AND FINAL REMARKS

Early performance estimation and analysis tools have recently attracted the attention of the
research community due to the complexity and heterogeneity of current and future embedded
systems. Fast and accurate performance estimation tools are needed to help with design
architecture exploration.

In this work, we presented an integrated methodology for design and performance
estimation of multiprocessor systems-on-chip (MPSoC), where performance estimation
support is provided throughout the design flow to help guide design decisions. The ROSES
environment, from the TIMA laboratory, was used as a design flow. ROSES is a component-
based hardware and software interface refinement tool and was integrated to the performance
analysis tools.

At specification level, this work proposed utilization of analytic estimators to drive
processor selection. Analytical models are used in earlier design stages, providing fast and
precise performance estimation. In this thesis, neural networks (NN) were used as estimators.
NN characteristics such as flexibility and nonlinear adaptation were explored, yielding
acceptable results for different architectures. A paper describing preliminary results was
presented in the SBCCI conference (OYAMADA; ZSCHONARCK; WAGNER, 2004).

We proposed the utilization of simulation-based methods at bus-functional model level,
providing global simulation models that make performance analysis easier. In this work two
different performance tools were integrated to the ROSES environment. The first one is
FlexPerf, an environment developed for software embedded performance analysis of
monoprocessor systems. The second is the MaxSim virtual prototype environment.

ROSES and FlexPerf integration enabled SystemC simulation model generation with
support for instrumentation and performance event generation. The ROSES environment
includes CosimX, a tool that generates SystemC models at virtual architecture and bus-
functional model (BFM) level. CosimX was modified to generate SystemC models
implementing the FlexPerf interface. At BFM level, we used the FlexPerf instrumented
processor models to enable instrumentation and performance analysis with more complex
capabilities than those provided by the SystemC trace library. CosimX uses these processor
models, encapsulated in a SystemC wrapper, and generates a global simulation model, where
software and hardware simulators run in a synchronized way. Using the FlexPerf
instrumented processor model, we automatically make available a set of developed software
performance analysis functionalities.

The MaxSim virtual prototype modeling and simulation environment was also integrated
to the ROSES design flow. Using the architecture design at BFM level, ROSES integration
enabled the automatic generation of virtual prototypes using cycle-accurate instruction-set
simulators for the software simulation and SystemC functional models for the hardware
components. Virtual prototype environments have captured the attention of CAD developers,

160

because they provide a global simulation model allowing the debugging of concurrent
software running in multiple processors. This detailed simulation model enables the analysis
of low-level code such as operating systems and drivers. The virtual prototype extends the
SystemC simulation model performance analysis resources, allowing the software execution
time analysis, bus usage statistics, and custom hardware performance analysis. Moreover, the
virtual prototype environments provide an extensible library of components and processors,
making the virtual prototype generation easier.

In order to evaluate the performance estimation tools proposed in this thesis, a case study
involving a multiprocessor MPEG4 encoder was developed. The MPEG4 encoder platform
imposes certain challenges to system performance analysis, such as the presence of multiple
processors and IP components. This case study allowed us to compare the precision of high-
level performance estimation to that of a cycle-accurate virtual prototype. This work was
presented at the ASPDAC conference (OYAMADA et al., 2007).

The utilization of an analytic estimator at specification level and a simulation-based one
for the refined designs provided an optimal trade-off between precision and speed, which is
necessary throughout MPSoC design.

6.1 Limitations of the Proposed Methods and Future Works

From the results of the case study presented in Chapter 6, we have identified that the
methods proposed here for software performance estimation have certain limitations:

a) Neural network accuracy is dependent on the quality of the input used for training.
In this work, the training set was selected in such a way that benchmarks from
different domains and sizes are used, thus promoting NN generalization.

b) In order to build a neural network estimator for a given processor, a cycle-accurate
simulator is necessary in the training phase.

c) The reduction of the neural network estimation time compared to the cycle-accurate
simulation depends on the dynamic instruction count.

d) Virtual prototypes are based on simulation methods, which have an inherent high
cost. Although the virtual prototype provides detailed system performance analysis,
this method will not scale well for MPSoCs with many processors. In such a case,
the virtual prototype will be useful for analysis of initialization code or small
application parts.

Although this thesis has made valuable contributions, future works should endeavor to
address the following topics and open issues:

f) The application of neural networks to estimate power consumption.

g) The use of architectural parameters in the neural network input, as proposed by Ipek
(2006).

h) The replacement of instruction-accurate simulators by a generic profiler and further
translation to the target instruction set in the utilization phase of the neural network
estimator.

1) The integration of our estimation methods with other specification languages like
UML and Simulink.

161

j) The generation of virtual prototypes using TLM channels, thus reducing simulation
time.

162

References

AMBA. Available at <http://www.arm.com/products/solutions/ AMBAHomePage.html >
Accessed in: June 2007.

ANALOG DEVICES, ADSP Processor. <http://www.analog.com> Accessed in: June
2007.

ArchC — Architecture Description Language. Available at <http://www.archc.org >
Accessed in: June 2007.

ARM — MaxCore. Avaliable at <http://www.arm.com > Accessed in: June 2007.

BAMMI, J.; HARCOURT, E.; KRUUTZER, W.; LAVAGNO, L.; LAZARESCU, M.
Software performance estimation strategies in a system-level design tool. In:
INTERNATIONAL WORKSHOP ON HARDWARE/SOFTWARE CODESIGN, CODES,
8th, 2000, San Diego, USA. Proceedings... ACM Press, 2000, p. 82-87.

BECK, A.C.; MATTOS, J.C.B.; WAGNER, F.R.; CARRO, L. Caco-ps: A General
Purpose Cycle-Accurate Configurable Processor Simulator. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN. SBCCI, 16th, 2003, Sao Paulo,
Brazil. Proceedings... Los Alamitos: IEEE Computer Society Press, 2003. p. 349-354.

BELANOVIC, P.; HOLZER, M.; KNERR, B.; RUPP, M.; G. SAUZON. “Automatic
Generation of Virtual Prototypes”. In: IEEE International Workshop on Rapid System
Prototyping, RSP, 15th, Geneve, Switzerland, 2004. Proceedings... Washington, IEEE
Computer Society, 2004. p. 114-118.

BENINI, L.; BERTOZZI, A.; MENICHELLIL F.; OLIVIERL, M. MPARM: Exploring the
Multi-Processor SoC Design Space with SystemC. Journal of VLSI Signal Processing, v.
41, n. 2, p. 169-182, June 2005.

BENINI, L.; BOGLIOLO, A.; DE MICHELI, G. A Survey of Design Techniques for
System-Level Dynamic Power Management. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, v.8, n. 3, p. 299-316, June 2000.

BONACIU, M.; BOUCHHIMA, A.; YOUSSEF, W.;. CHEN, X.; CESARIO, W.;
JERRAYA, A.A. High-Level Architecture Exploration for MPEG4 Encoder with Custom
Parameters. In: ASIAN AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE,
ASP-DAC, 11th, 2006, Yokohama, Japan. Proceedings... New York: ACM Press, 2006.
p.372-377.

163

BONTEMPI, G.; KRUITZER, W. A Data Analysis Method for Software Performance
Prediction. In: DESIGN AUTOMATION AND TEST IN EUROPE, DATE, 2002, Paris,
France. Proceedings... [IEEE Computer Society Press, 2002. p 971-976.

BOUCHHIMA, A.; BACIVAROV, I.; YOUSSEF, W.; BONACIU, M.; JERRAYA, A.A.
Using Abstract CPU Subsystem Simulation Model for High Level HW/SW Architecture
Exploration. In: ASTAN AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE,
ASP-DAC, 10th, 2005, Shanghai, Chine. Proceedings... New York: ACM Press, 2005. p.18-
25.

CAIL, L.; GERSTLAUER, A; GAJSKI, D. Retargetable Profiling for Rapid, Early
SystemLevel Design Space Exploration. In: DESIGN AUTOMATION CONFERENCE,
DAC, 41th, 2004, San Diego, USA. Proceedings... [IEEE Computer Society Press, 2004. p
281-286.

CAMPI, F.; CANEGALLO, R.; GUERRIERI, R. IP-reusable 32-bit VLIW Risc Core.In:
EUROPEAN SOLID-STATE CONFERENCE, ESSCIRC, 21th, 2001, Villach, Austria.
Proceedings...IEEE Computer Society Press, 2001. p. 445-448.

CESARIO, W.; LYONNARD, D.; NICOLESCU, G.; PAVIOT, Y.; YOO, S,;
GAUTHIER, L.; DIAZ-NAVA, M.; JERRAYA, A.A. Multiprocessor SoC Platforms: A
Component-Based Design Approach. IEEE Design & Test of Computers,v. 19, n. 6, p. 52-
63, Nov-Dec 2002

CESARIO, W.; NICOLESCU, G.; GAUTHIER, L.; LYONNARD, D.; JERRAYA, A. A.
Colif: A Design Representation for Application-Specific Multiprocessor SOCs. IEEE Design
& Test of Computers, v. 18 n. 5, p. 8-20, Sept/Oct 2001.

CHAKRABORTY, S.; KUENZLI, S.; THIELE. L. A General framework for analyzing
system properties. In: DESIGN AUTOMATION AND TEST IN EUROPE, DATE, 2003,
Munich, Germany. Proceedings...IEEE Computer Society Press, 2003. p. 190-195.

CHEN, J.; DUBOIS, M.; STENSTROM, P. Integrating Complete-System and User-Level
Performance/Power Simulators: the SimWatcch Approach. In: INTERNATIONAL
SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE, 2003,
Austin, USA. Proceedings... IEEE Computer Society Press, 2003. p. 1-10.

COLIN, A.; PUAT. I. Worst-Case Execution Time Analysis for a Processor With Branch
Prediction. Journal of Real-Time Systems, v.18, n:2/3, p. 249-274, April 2000.

CoreConnect. Available at <http://http://www-03.ibm.com/chips/ products/coreconnect>
Accessed in: June 2007.

Coware —LisaTek. Available at <http://www.coware.com/products/processordesigner>
Accessed in: June 2007.

EDWARDS, S.; LAVAGNO, L.; LEE, E.A.; SANGIOVANNI-VINCENTELLI, A.
Embedded Systems Design: Formal Models, Validation, and Synthesis. Proceedings of the
IEEE, v. 85, n. 3, p. 366-390, March 1997.

164

ENGBLOM, J.; EMERDAHL, A.; STAPPERT, F. A Worst-Case Execution-Time
Analysis Tool Prototype For Embedded Real-Time Systems. In: WORKSHOP ON REAL-
TIME TOOLS, RTTOOLS, 2001, Aalborg, Denmark. Proceedings... 2001.

FREEMAN, J.; SKAPURA, D. Neural networks: Algorithms, Applications and
Programming Techniques. Boston: Addison-Wesley Publisher, 1992.

FUMMI, F.; MARTINI, S.; PARBELLINI, G.; PONCINO, M. Native ISS-SystemC
Integration for the Co-simulation of Multi-processor SoC. In: DESIGN AUTOMATION
AND TEST IN EUROPE, DATE, 2004, Paris, France. Proceedings... IEEE Computer
Society Press, 2004. p 564-569.

GAUTHIER, L.; YOO, S.; JERRAYA, A. A. Automatic Generation and Targeting of
Application Specific Operating Systems and Embedded Systems Software. In: DESIGN
AUTOMATION AND TEST IN EUROPE, DATE, 2001, Munich, Germany.
Proceedings...IEEE Computer Society Press, 2001. p. 679-685.

GCC Compiler. Available at <http://www.gnu.org > Accessed in: June 2007.

GIUSTO, P.; MARTIN, G.; HARCOURT, E. Reliable Estimation of Execution Time of
Embedded Software. In: DESIGN AUTOMATION AND TEST IN EUROPE, DATE, 2001,
Munich, Germany. Proceedings...IEEE Computer Society Press, 2001. p. 580-585.

GIVARGIS, T.; VAHID, F. Platune: A Tuning Framework for System-on-a-Chip
Platforms. IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems, vol. 21, no. 11, p.1317-1327, November 2002.

GIVARGIS, T.; VAHID, F.; HENKEL, J. Evaluating Power Consumption of
Parameterized Cache and Bus Architectures in System-on-a-Chip Designs. TEEE
Transactions on Very Large Scale Integration (VLSI) Systems, v. 9, n. 4, p. 500-508,
August 2001.

GOOSSENS, K.; GONZALEZ PESTANA, S.; DIELISSEN, J. GANGWAL, O.P.; VAN
MEERBERGEN, J.; RADULESCU, A.; RIJPKEMA, E.; WIELAGE, P. Service-Based
Design of Systems on Chip and Networks on Chip. In: VAN DER STOK, P. (Editor),
Dynamic and Robust Streaming In And Between Connected Consumer-Electronics
Devices. Springer, 2005. p. 37-60.

GRUN, P.; SHIN, C.; BAXTER, C.; LENNARD, C.; NOLL, M.; MADL. G. Integrating a
Multi-Vendor ESL-to-Silicon Design Flow Using Spirit. In: IP Based SoC Design, IP/SoC,
14th, 2005, Grenoble, France. Available at http://www.us.design-reuse.com/articles
/article12331.html > Accessed 1 February 2006.

HENNESSY, J.; PATTERSON, D. Computer Architecture: A Quantitative Approach. 3th
Edition, San Francisco: Morgan Kauffman, 2002.

HERGENHAN, A.; ROSENSTIEL, W. Static timing analysis of embedded software on
advanced processor architectures. In: DESIGN, AUTOMATION AND TEST IN EUROPE
DATE , 2000, Paris, March 2000. Proceedings. . . IEEE Press, 2000. p.552—-559.

HOFFMANN, A.; SCHLIEBUSCH, O.; NOHL, A.; BRAUN, G.; WAHLEN, O.; MEYR,
H. A Methodology for the Design of Application Specific Instruction Set Processors (ASIP)

165

Using the Machine Description Language LISA. In: INTERNATIONAL CONFERENCE ON
COMPUTER AIDED DESIGN, ICCAD, 2001, San Jose, USA. Proceedings... ACM Press,
2001. p. 625-630.

IDC — Embedded processors market. Available at <http://www.idc.com > Accessed in:
June 2007.

IPEK; E. MACKKE; S. SUPINSKI; B. SCHULZ; M. CARUANA; R. Efficiently
Exploring Architecture Design Spaces via Predictive Modeling. In: INTERNATIONAL
CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING
LANGUAGES AND OPERATING SYSTEMS, ASPLOS, 2006, San Jose, USA.
Proceedings... ACM Press, 2006. p. 195-206.

ITO, S.; CARRO, L.; JACOBI, R. Making Java work for microcontroller applications.
IEEE Design and Test of Computers, v. 18, n. 5, p. 100-110, September/October 2001.

JAIN, P.; DEVADAS, S.; ENGELS, D.; RUDOLPH, L. Software-assisted cache
replacement mechanisms for embedded systems. In: INTERNATIONAL CONFERENCE ON
COMPUTER AIDED DESIGN, ICCAD, 2001, San Jose, USA. Proceedings... ACM Press,
2001. p. 119-126.

JAVA Virtual Machine —version 1.1.4. Available at: <http://java.sun.com> Accessed in:
May, 2007.

JERRAYA, A.A. Long Term Trends for Embedded System Design. In:
INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, MIXDES, 12" 2005, Krakow, Poland. Proceedings...2005.

KEMPF, T.; KARURI, K.; WALLENTOWITZ, S.; ACHEID, G.; LEUPERS, R.; MEYR,
H. A SW Performance Estimation Framework for Early System-Level-Design Using Fine-
Grained Instrumentation, In: DESIGN AUTOMATION AND TEST IN EUROPEAN, DATE,
2006, Munich, Germany. Proceedings... European Design and Automation Association,
2006, p. 468-473.

KEUTZER, K.; MALIK, S.; NEWTON, R.; RABAEY, J; SANGIOVANNI-
VINCENTELLI, A. System Level Design: Orthogonalization of Concerns and Platform-
Based Design. IEEE Transactions on Computer-Aided Design of Circuits and Systems,
Vol. 19, No. 12, p. 1523-1543, December 2000.

KRAUZER, J. Embedded Software Development Issues and Challenges. Available at
<http://www.embeddedforecast.com > Accessed in: June 2007.

LAHIRI, K.; RAGHUNATHAN, A.; DEY, S. System-Level Performance Analysis for
designing on-chip communication architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. Vo120, no. 6, p. 768-783, June 2001.

LAJOLO, M.; LAZARESCU, M.; SANGIOVANNI-VINCENTELLI, A. A Compilation
Based Software Estimation Scheme for Hardware/Software Co-simulation. In: SYMPOSIUM
ON HARDWARE/SOFTWARE CODESIGN, CODES, 7th, 1999, Rome, Italy.
Proceedings... ACM Press, 1999. p. 85-89.

166

LEUPERS, R. HDL-based Modeling of Embedded Processor Behavior for Retargetable
Compilation. In: INTERNATIONAL SYMPOSIUM ON SYSTEM SYNTHESIS, ISSS,
1998, Hsinchu, Taiwan. Proceedings...IEEE Computer Society Press, 1998. p. 51-54.

LI, X.; MITRA, T.; ROYCHOUDHURY, A. Accurate Timing Analysis by Modeling
Caches, Speculation and their Interaction. In: DESIGN AUTOMATION CONFERENCE,
DAC, 40", 2003, Anaheim, USA. Proceedings... ACM Press, 2003. p. 466-471.

LI, Y.-T. S.; MALIK, S.; WOLFE, A. Performance Estimation of Embedded Software
with Instruction Cache Modeling. In: INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, ICCAD, 1995, San Jose, USA. Proceedings... IEEE Computer Society
Press. p. 380-387.

LL Y.-T.S.; MALIK, S. Performance Analysis of Embedded Software Using Implicit Path
Enumeration. In: DESIGN AUTOMATION CONFERENCE, DAC, 32th, 1995, San
Francisco, USA. Proceedings...ACM Press, 1995. p. 456-461

LIEVERSE, P.; VAN DER WOLF, P.; VISSERS, K.; DEPRETTERE, E. A Methodology
for Architecture Exploration of Heterogeneous Signal Processing Systems. The Journal of
VLSI Signal Processing. v. 29, n. 3, p. 197-207, November 2001.

LIM, S.; HAN, J.J.; KIM, J.; MIN, S. A Worst Case Timing Analysis Technique for
Multiple-Issue Machines. In: REAL-TIME SYSTEMS SYMPOSIUM, 19th, 1998, Madrid,
Spain. Proceedings... IEEE Computer Society Press, 1998. p. 334-345.

MAGARSHACK, P.; PAULIN, P. System-on-Chip Beyond the Nanometer Wall. In:
DESIGN AUTOMATION CONFERENCE, DAC, 40" 2003, Anaheim, USA.
Proceedings... ACM Press, 2003. p. 419-424.

Matlab Neural Network Toolbox. Available at: <http://www.mathworks.com > Accessed
in: June 2007.

MAUER, C.; HILL, M.; WOOD, D. Full-System Timing-First Simulation. In:
SIGMETRICS CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER
SYSTEMS, 2002, Marina del Rey, USA. Proceedings... ACM Press, 2002.p 108-116.

MEYEROWITZ, T.; KISHINEVSKY, M.; KAM, T.; LAVAGNO, L.; SANGIOVANNI-
VINCENTELLI, A. Modeling Microarchitectural Performance wusing Metropolis:
Performance Estimation and Back-Annotation. Technical Report. July, 2004.
http://www.eecs.berkeley.edu/~tcm/projects.html.

MicroLib —PPC 750. Available at <http://microlib.org> Accessed in: June 2007.

MISHRA, P.; MAMIDIPAKA, M.; DUTT, N. Processor-Memory Coexploration Using an
Architecture Description Language. ACM Transactions on Embedded Computing
Systems, v. 3, n. 1, p. 140-162, February 2004.

MOHANTY, S.; PRASANNA, V. Rapid System-Level Performance Evaluation and
Optimization for Application Mapping onto SOC Architectures. In: IEEE International
ASIC/SOC Conference, 15th , 2002, Rochester, USA. Proceedings... IEEE Press, 2002. p.
160-167.

167

MOSER, E.; NEBEL, W. Case study — System model of crane and embedded control. In:
DESIGN AUTOMATION AND TEST IN EUROPE, DATE, 1999, Munich, Germany.
Proceedings...IEEE Computer Society Press, 1999. p. 721-724.

MPI — Message passing Interface. Available at <http://www-unix.mcs.anl.gov/mpi>
Accessed in: June 2007.

NICOLESCU, G.; YOO, S.; BOUCHHIMA, A.; JERRAYA, A.A. Validation in a
Component-Based Design Flow for Multicore SoCs. In: INTERNATIONAL SYMPOSIUM
ON SYSTEM SYNTHESIS, ISSS, 15th, 2002, Kyoto, Japan. Proceedings... IEEE Computer
Society Press, 2002. p. 162-167.

Nomadik Architecture. Available at <http://www.st.com/nomadik> Accessed in: June
2007.

OMAP Architecture. Available at <http://www.ti.com/omap> Accessed in: June 2007.

ORFALI, R.; HARKEY, D. Client/Server Programming with Java and CORBA. New
Jersey: John Wiley, 1998.

OYAMADA, M.S.; CESARIO, W.; BONACIU, M.; WAGNER, F.R.; JERRAYA, A.
Software Performance Estimation in MPSoC Design. In: ASIAN AND SOUTH PACIFIC
DESIGN AUTOMATION CONFERENCE. ASP-DAC, 12th, 2007, Yokohama, Japan.
Proceedings... IEEE Press, 2007. p. 38- 43.

OYAMADA, M.S.; ZSCHONARCK, F.;, WAGNER, F.R. Accurate Software
Performance Estimation Using Domain Classification and Neural Networks. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN. SBCCI, 17th,
2004, Porto de Galinhas, Brazil. Proceedings... ACM Press, 2004. p. 175-180.

PAOLI S.; GALIX, E.; SANTANA, M. FlexPerf: A performance evaluation framework
for embedded software and architectures. ST Journal of Research. v. 1, n. 2, p. 17- 31,
September 2004.

PAULIN, P.; PILKINGTON, C.; LANGEVIN, M.; BENSOUDANE, E.; NICOLESCU,
G. Parallel programming models for a multi-processor SoC platform applied to high-speed
traffic management. In: International Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS, 2004, Stockholm, Sweden. Proceedings... ACM Press,
2004. p. 48-53.

PETKOV, I.; OYAMADA, M. S. ; AMBLARD, P. ; JERRAYA, A. ; HRISTOV, M. .
Hardware prototyping of ARM based system on chip. In: INTERNATIONAL SCIENTIFIC
AND APPLIED SCIENCE CONFERENCE, 2005, Sozopol, Bulgary. ELECTRONICS, 2005.
v. 4. p. 41-45.

POSADAS, H.; HERRERA, F.; SANCHEZ, P.; VILLAR, E.; BLASCO, F. System-Level
Performance Analysis in SystemC. In: DESIGN AUTOMATION AND TEST IN EUROPE,
DATE, 2004, Paris, France. Proceedings... IEEE Computer Society Press, 2004. p 378-383.

PUSCHNER, P.; BURNS, A. A Review of Worst-Case Execution-Time Analysis
(editorial). Real-Time Systems, v.18, n.2/3, p.115-128, 2000.

168

RICHTER, K.; JERSAK, M.; ERNST, R. A Formal Approach to MPSoC Performance
Verification. IEEE Computer, v. 36, n. 4, p. 60-67, April 2003.

RUSSELL, J.; JACOME, M. Architecture-Level Performance Evaluation of Component-
Based Embedded Systems. In: DESIGN AUTOMATION CONFERENCE, DAC, 40th, 2003,
Anaheim, USA. Proceedings... ACM Press, 2003. p. 396-401.

SARMENTO, A.; CESARIO, W.; JERRAYA, A.A. Automatic Building of Executable
Models from Abstract SoC Architecture. In IEEE International Workshop on Rapid System

Prototyping, RSP, 15", 2004, Geneva , Switzerland. Proceedings... IEEE Computer Society
Press, 2004. p. 88-95.

SCHNEIDER, J.; FERDINAND, C.. Pipeline Behavior Prediction for Superscalar
Processors by Abstract Interpretation. In: WORKSHOP ON LANGUAGES, COMPILERS
AND TOOLS FOR EMBEDDED SYSTEMS, 1999, Atlanta, USA. Proceedings...ACM
Press, 1999. p. 35-44.

SCIUTO, D.; SALICE, F.; POMANTE, L.; FORNACIARI, W. Metrics for design space
exploration of heterogeneous multiprocessor embedded system. In: INTERNATIONAL
WORKSHOP ON HARDWARE/SOFTWARE CODESIGN, CODES, 10th, 2002, San
Diego, USA. Proceedings... ACM Press, 2002, p. 55-60.

SIMICS. Available at <http://www.simics.com> Accessed in: June 2007.
Simplescalar. Available at <http://www.simplescalar.com> Accessed in: June 2007.

Sonics SiliconBackplane II1. Available at <http://www.sonicsinc.com> Accessed in: June
2007.

SpecC. Available at <http://www.cecs.uci.edu/~SpecC/> Accessed in: June 2007.

STAPPERT, F. WCET-Benchmarks. Available at: <http://c-lab.de/home/en/
download.html /#wcet> Accessed in: June 2004.

Synopsys System Studio. Available at <http://www.synopsys.com> Accessed in: June
2007.

SystemC. Available at <http://www.systemc.org> Accessed in: June 2007.

Tensilica XPRES Compiler. Available at <http://www.tensilica.com> Accessed in: June
2007.

THIELE, L., CHAKRABORTY, S.; GRIES, M.; KUNZLI, S. A Framework for
evaluating design tradeoffs in packet processing architectures. In: Design Automation
Conference, DAC, 38th, 2002, New Orleans, USA. Proceedings... IEEE Computer Society
Press, 2002. p 880-885.

Transmeta Processor. <http://www.transmeta.com > Accessed in: July 2005.

VAN DER WOLF, P.; KOCK, E.D.; HENRIKSSON, T.; KRUIJTZER, W.; ESSINK, G.
Design and programming of Embedded Multiprocessors: an Interface-Centric Approach. In:

169

International Conference on Hardware/Software Codesign and System Synthesis,
CODESHISSS, 2004, Stockholm, Sweden. Proceedings... ACM Press, 2004. p. 206-217.

WAGNER, F.R.; CESARIO, W.0O.; CARRO, L.; JERRAYA, A.A. Strategies for the
Integration of Hardware and Software IP Components in Embedded Systems-on-Chip.
Integration - the VLSI Journal. v. 37, n. 4, p. 223-252, September 2004.

WIEFERINK, A.; KOGEL, T.; LEUPERS, R.; ASCHEID, G.; MEYR, H.; BRAUN, G;
NOHL, A. A System Level Processor/Communication co-exploration methodology for multi-
processor system-on-chip platforms. In: DESIGN AUTOMATION AND TEST IN EUROPE,
DATE, 2004, Paris, France. Proceedings... IEEE Computer Society Press, 2004. p. 1256-
1263.

WOLF, F.; ERNST, R. Intervals in software execution cost analysis. In:
INTERNATIONAL SYMPOSIUM ON SYSTEM SYNTHESIS, ISSS, 13", 2000, Madrid,
Spain. Proceedings... IEEE Computer Society Press, 2000. p. 130-136.

ZHANG, C.; VAHID, F.; LYSECKY, R.L. A Self-Tuning Cache Architecture for
Embedded Systems. In: DESIGN AUTOMATION AND TEST IN EUROPE, DATE, 2004,
Paris, France. Proceedings... IEEE Computer Society Press, 2004. p. 142-147.

170

TITLE: Performance estimation in MPSoC design
ABSTRACT

Nowadays, embedded system complexity requires new design methodologies. System-
level methodologies are proposed to cope with this complexity, starting the design above the
register-transfer level. Performance estimation tools are an important piece of system-level
design methodologies, since they are used to aid design space exploration at an early design
stage. The goal of this thesis is to define an integrated methodology for software performance
estimation. Currently, embedded software usage is increasing, becoming multiprocessor
system-on-chip a common solution to cope with flexibility, performance, and power
requirements. The development of accurate software performance estimators is not trivial, due
to the increased complexity of embedded processors. To drive processor selection at
specification level, a novel analytic software performance estimator based on neural networks
is proposed. The neural network enables a fast estimation at an early design stage. To target
the software performance analysis at bus functional level, where mapping of the hardware and
software components is already established, we use a global simulation model supporting
performance profiling. The proposed software performance estimation methodology is linked
to a hardware and software interface refinement environment named ROSES. The proposed

methodology is evaluated through a case study of a multiprocessor MPEG4 encoder.

Keywords: Performance estimation, MPSoC design, design space exploration

171

TITRE: Estimation de performance du logiciel en systémes multiprocesseur monopuces
RESUME :

Actuellement, la complexité des systémes embarqués nécessite des nouvelles
méthodologies de développement. Des méthodologies au niveau systéme sont proposées pour
traiter la complexité, utilisant comme point de départ des descriptions de plus haut niveau qui
au niveau transfert de registre (register transfer level - RTL). Les outils d’estimation de
performance sont une importante partie des méthodologies au niveau systéme, parce qu’ils
aident dans les décisions de projet dans les étapes initiales. Cette thése propose des méthodes
d’estimation de performance intégrées dans le flot de conception ROSES. En raison de
I’augmentation du nombre des processeurs intégrés dans une puce, on nécessite de plus en
plus des outils pour I’estimation de performance du logiciel. Pour guider la sélection du
processeur au niveau de la spécification, on propose 1’utilisation des réseaux neuronaux pour
estimer rapidement la performance du logiciel. Apres le raffinage des interfaces matériels et
logiciels, on utilise des prototypes virtuels pour analyser la performance de ’architecture au
niveau de bus fonctionnel. Le prototype virtuel est généré automatiquement a partir de la
description ROSES, en permettent I’analyse de performance intégré des composants logiciel
et matériel. La méthodologie proposée dans ce travail a été¢ évalué par une étude de cas d’un

encodeur MPEG4.

Mots-clés : Estimation de performance, Conception de systémes multiprocesseurs monopuces,

exploration de I’espace de solutions

INTITULE E ADRESSE DU LABORATOIRE
Laboratoire TIMA, 46 avenue Félix Viallet, 38031 Grenoble CEDEX, France.

ISBN 978-2-84813-112-2
ISBNE 978-2-84813-112-2

172

