Modèles bayésiens hiérarchiques pour le traitement multi-capteur

Nicolas DOBIGEON

Thèse de Doctorat dirigée par Jean-Yves TOURNERET effectuée au laboratoire IRIT – Equipe SC

Vendredi 19 Octobre 2007

Contexte scientifique

- ▶ progrès technologiques (e.g. micro-électronique),
- multiplication des capteurs,
- ▶ masse d'information croissante.

Domaines d'application

- ▶ industriel : qualité,
- environmental : protection,
- ▶ médical : diagnostic,

...

▶ militaire : surveillance,

The second de proposer de nouvelles méthodes de traitement

Contexte scientifique

- ▶ progrès technologiques (e.g. micro-électronique),
- multiplication des capteurs,
- ▶ masse d'information croissante.

Domaines d'application

- ▶ industriel : qualité,
- environmental : protection,
- ▶ médical : diagnostic,

...

▶ militaire : surveillance,

« nécessité de proposer de nouvelles méthodes de traitement !

Problèmes d'estimation en contexte multi-capteur

Formulation bayésienne

- ▶ analyse statistique du phénomène à l'origine des observations,
- ▶ choix de lois *a priori* décrivant les paramètres inconnus,
- ▶ estimation de ces paramètres à partir de leurs lois *a posteriori*.

Difficultés

- ► complexité des lois *a posteriori*,

 - *choix difficile des hyperparametre modèles hiérarchiques*

Problèmes d'estimation en contexte multi-capteur

Formulation bayésienne

- ▶ analyse statistique du phénomène à l'origine des observations,
- ▶ choix de lois *a priori* décrivant les paramètres inconnus,
- ▶ estimation de ces paramètres à partir de leurs lois *a posteriori*.

Difficultés

- complexité des lois a posteriori,
 willisation de méthodes de simulation
- choix difficile des hyperparamètres
 modèles hiérarchiques

Problèmes d'estimation en contexte multi-capteur

Formulation bayésienne

- ▶ analyse statistique du phénomène à l'origine des observations,
- ▶ choix de lois *a priori* décrivant les paramètres inconnus,
- ▶ estimation de ces paramètres à partir de leurs lois *a posteriori*.

Difficultés

- complexité des lois a posteriori,
 a utilisation de méthodes de simulation
- choix difficile des hyperparamètres
 ¬modèles hiérarchiques

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques

Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélange

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème

Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélang

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Generalitien du problème

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème

Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélang

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Generalité du problème

Introduction : données astronomiques

Module BATSE

Burst And Transient Source Experiment

Observatoire CGR

Compton γ -Ray

Introduction : données astronomiques

Mise en forme des données

- ▶ Le nombre de photons comptés dans des intervalles de temps de longueurs égales est distribué suivant une loi de Poisson.
- ▶ Le paramètre de la loi de Poisson définit la brillance de la source de rayons Gamma (GRB).
- Source Modélisation stationnaire par morceaux.

Données multi-dimensionnelles

▶ Les photons sont captés par BATSE dans quatre bandes d'énergie : 25 - 60 keV, 60 - 110 keV, 110 - 325 keV et > 325 keV.

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques — Formulation du problème

Un exemple simple (J = 2 bandes ou séquences)

Introduction : données astronomiques

Mise en forme des données

- ▶ Le nombre de photons comptés dans des intervalles de temps de longueurs égales est distribué suivant une loi de Poisson.
- ▶ Le paramètre de la loi de Poisson définit la brillance de la source de rayons Gamma (GRB).
- Source Modélisation stationnaire par morceaux.

Données multi-dimensionnelles

▶ Les photons sont captés par BATSE dans quatre bandes d'énergie : 25 - 60 keV, 60 - 110 keV, 110 - 325 keV et > 325 keV.

Objectif

Segmenter conjointement les signaux pour caractériser l'intensité de la source dans chaque canal.

Modélisation

Statistique des données observées (nombre de photons par intervalle de temps) dans les diverses bandes énergétiques :

$$y_{j,i} \sim \mathcal{P}\left(\lambda_{j,k}\right),$$

où $j = 1, \dots, J, k = 1, \dots, K_j, i \in \mathcal{I}_{j,k} = [l_{j,k-1} + 1, l_{j,k}],$ et :

- $\mathcal{P}(\lambda)$ désigne une loi de Poisson de paramètre λ ,
- \blacktriangleright J est le nombre de signaux à segmenter,
- ▶ K_j est le nombre de segments dans la $j^{\text{ième}}$ séquence observée,
- ► $l_{j,k}$ correspond à la $k^{\text{ième}}$ rupture dans la $j^{\text{ième}}$ séquence (par convention $l_{j,0} = 0$ et $l_{j,K} = n$ où n est la taille de l'échantillon).

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques — Formulation du problème

Un exemple simple (J = 2 bandes ou séquences)

Problème Estimation de $\{l_{i,k}, \lambda_{i,k}\}$ d'après les données $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_J]^\mathsf{T}$. Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques — Formulation du problème

Un exemple simple (J = 2 bandes ou séquences)

Problème Estimation de $\{l_{j,k}, \lambda_{j,k}\}$ d'après les données $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_J]^\mathsf{T}$.

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélang

Un reparamétrage classique Introduction d'indicatrices : $r_{j,i}$, $j \in \{1, ..., J\}$, $i \in \{1, ..., n\}$

 $\left\{ \begin{array}{l} r_{j,i}=1 \text{ s'il y a une rupture à l'instant } i \text{ dans le signal } j, \\ r_{j,i}=0 \text{ sinon.} \end{array} \right.$

Un reparamétrage classique Introduction d'indicatrices : $r_{j,i}$, $j \in \{1, ..., J\}$, $i \in \{1, ..., n\}$

 $\left\{ \begin{array}{l} r_{j,i} = 1 \text{ s'il y a une rupture à l'instant } i \text{ dans le signal } j, \\ r_{j,i} = 0 \text{ sinon.} \end{array} \right.$

Vecteur des paramètres inconnus

$$\Theta = \{\Theta_1, \dots, \Theta_J\} \in \Theta = \{0, 1\}^{J \times n} \times \prod_{j=1}^J \mathbb{R}_+^{K_j} \text{ où }:$$

$$\Theta_j = \{\mathbf{r}_j, \boldsymbol{\lambda}_j\},$$

$$\mathbf{r}_j = [r_{j,1}, \dots, r_{j,n}] \text{ avec } r_{j,n} = 1 \text{ et } K_j = \sum_{i=1}^N r_{j,i}$$

Inférence bayésienne Théorème de Bayes: $f(\mathbf{\Theta}|\mathbf{Y}) \propto f(\mathbf{Y}|\mathbf{\Theta})f(\mathbf{\Theta})$ avec :

 \checkmark Vraisemblance : $f(\mathbf{Y}|\mathbf{\Theta})$,

 \mathfrak{P} Loi *a priori* des paramètres : $f(\mathbf{\Theta})$.

Vecteur des paramètres inconnus

$$\Theta = \{\Theta_1, \dots, \Theta_J\} \in \Theta = \{0, 1\}^{J \times n} \times \prod_{j=1}^J \mathbb{R}_+^{K_j} \text{ où }:$$

$$\Theta_j = \{\mathbf{r}_j, \boldsymbol{\lambda}_j\},$$

$$\mathbf{r}_j = [r_{j,1}, \dots, r_{j,n}] \text{ avec } r_{j,n} = 1 \text{ et } K_j = \sum_{i=1}^N r_{j,i}$$

Inférence bayésienne Théorème de Bayes: $f(\Theta|\mathbf{Y}) \propto f(\mathbf{Y}|\Theta)f(\Theta)$ avec :

 $rightarrow Vraisemblance : f(\mathbf{Y}|\boldsymbol{\Theta}),$

 \ll Loi *a priori* des paramètres : $f(\Theta)$.

Fonction de vraisemblance

Sous l'hypothèse d'indépendance des segments :

$$f(\mathbf{Y}|\boldsymbol{\Theta}) = \prod_{j=1}^{J} \prod_{k=1}^{K_j} \prod_{i \in I_{j,k}} \frac{\lambda_{j,k}^{y_{j,i}} \exp\left(-\lambda_{j,k}\right)}{y_{j,i}!}$$
$$= \frac{1}{\prod_{j=1}^{J} \prod_{i=1}^{n} y_{j,i}!} \prod_{j=1}^{J} \prod_{k=1}^{K_j} \lambda_{j,k}^{s_{j,k}(\mathbf{r}_j)} \exp\left(-\lambda_{j,k} n_{j,k}\left(\mathbf{r}_j\right)\right)$$
$$\propto \prod_{j=1}^{J} \prod_{k=1}^{K_j} \lambda_{j,k}^{s_{j,k}(\mathbf{r}_j)} \exp\left(-\lambda_{j,k} n_{j,k}\left(\mathbf{r}_j\right)\right),$$

▶
$$s_{j,k}(\mathbf{r}_j) = \sum_{i \in I_{j,k}} y_{j,i},$$

▶ $n_{j,k}(\mathbf{r}_j) = l_{j,k} - l_{j,k-1}.$

Lois a priori : indicatrices (J = 2)

Hypothèses

- \blacktriangleright configurations de ruptures : $\epsilon \in \{(0,0), (0,1), (1,0), (1,1)\},$
- ► la probabilité d'avoir $[r_{1,i}, r_{2,i}]^{\mathsf{T}} = \boldsymbol{\epsilon}$ ne dépend pas de *i*: $\mathbf{P}_{00} = \mathbf{P}[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (0,0)], \quad \mathbf{P}_{01} = \mathbf{P}[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (0,1)],$ $\mathbf{P}_{10} = \mathbf{P}[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (1,0)], \quad \mathbf{P}_{11} = \mathbf{P}[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (1,1)],$
- ▶ $[r_{1,i}, r_{2,i}]^{\mathsf{T}}$ et $[r_{1,i'}, r_{2,i'}]^{\mathsf{T}}$ supposés indépendants pour $i \neq i'$.

Lois a priori des indicatrices

Sous ces hypothèses : $f(\mathbf{R}|\mathbf{P}) = P_{00}^{S_{00}(\mathbf{R})} P_{01}^{S_{01}(\mathbf{R})} P_{10}^{S_{10}(\mathbf{R})} P_{11}^{S_{11}(\mathbf{R})}$ où $S_{\epsilon}(\mathbf{R})$ est le nombre d'instants *i* tels que $[r_{1,i}, r_{2,i}]^{\mathsf{T}} = \epsilon$.

Introduction d'une corrélation entre les ruptures

- Grande valeur de $P_{00} \Rightarrow$ absence de ruptures simultanées
- Grande valeur de $P_{11} \Rightarrow$ présence de ruptures simultanées

Lois a priori : indicatrices (J = 2)

Hypothèses

- \blacktriangleright configurations de ruptures : $\epsilon \in \{(0,0), (0,1), (1,0), (1,1)\},$
- ► la probabilité d'avoir $[r_{1,i}, r_{2,i}]^{\mathsf{T}} = \epsilon$ ne dépend pas de *i*: $P_{00} = P[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (0, 0)], \quad P_{01} = P[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (0, 1)],$ $P_{10} = P[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (1, 0)], \quad P_{11} = P[[r_{1,i}, r_{2,i}]^{\mathsf{T}} = (1, 1)],$
- ▶ $[r_{1,i}, r_{2,i}]^{\mathsf{T}}$ et $[r_{1,i'}, r_{2,i'}]^{\mathsf{T}}$ supposés indépendants pour $i \neq i'$.

Lois *a priori* des indicatrices

Sous ces hypothèses : $f(\mathbf{R}|\mathbf{P}) = P_{00}^{S_{00}(\mathbf{R})} P_{01}^{S_{01}(\mathbf{R})} P_{10}^{S_{10}(\mathbf{R})} P_{11}^{S_{11}(\mathbf{R})}$ où $S_{\epsilon}(\mathbf{R})$ est le nombre d'instants *i* tels que $[r_{1,i}, r_{2,i}]^{\mathsf{T}} = \epsilon$.

Introduction d'une corrélation entre les ruptures

- Grande valeur de $P_{00} \Rightarrow$ absence de ruptures simultanées
- Grande valeur de $P_{11} \Rightarrow$ présence de ruptures simultanées

Lois a priori : paramètres de Poisson

Hypothèses

- ▶ Paramètres $\lambda_{j,k}$ supposés *a priori* indépendants,
- ▶ Lois exponentielles conjuguées choisies comme lois *a priori* :

$$\lambda_{j,k}|\gamma \sim \mathcal{E}(\gamma),$$

où γ est un hyperparamètre.

Loi *a priori* des paramètres de Poisson

Sous ces hypothèses, la loi *a priori* de $\mathbf{\Lambda} = \{\mathbf{\lambda}_1, \dots, \mathbf{\lambda}_J\}$ s'écrit :

$$f(\mathbf{\Lambda}|\gamma) = \prod_{j=1}^{J} \prod_{k=1}^{K_j} f(\lambda_{j,k}|\gamma)$$
$$= \prod_{j=1}^{J} \left[\gamma^{K_j} e^{-\gamma \sum_{k=1}^{K_j} \lambda_{j,k}} \prod_{k=1}^{K_j} \mathbf{1}_{\mathbb{R}^+} (\lambda_{j,k}) \right]$$

Estimation des hyperparamètres

Vecteur des hyperparamètres inconnus : $\mathbf{\Phi} = \{\mathbf{P}, \gamma\}$

Approche fréquentiste

Par exemple, coupler des méthodes MCMC avec avec un algorithme EM (*expectation-maximization*). Approche bayésienne

Introduire un deuxième niveau de hiérarchie d'inférence bayésienne : $f(\Phi) = f(\gamma) f(\mathbf{P})$

Inférence bayésienne hiérarchique

 $f\left(\mathbf{\Theta}|\mathbf{Y}
ight) \propto \int f\left(\mathbf{Y}|\mathbf{\Theta}
ight) f\left(\mathbf{\Theta}|\mathbf{\Phi}
ight) f\left(\mathbf{\Phi}
ight) d\mathbf{\Phi}$

Estimation des hyperparamètres

Vecteur des hyperparamètres inconnus : $\mathbf{\Phi} = \{\mathbf{P}, \gamma\}$

Approche fréquentiste

Par exemple, coupler des méthodes MCMC avec avec un algorithme EM (*expectation-maximization*). Approche bayésienne

Introduire un deuxième niveau de hiérarchie d'inférence bayésienne : $f\left(\mathbf{\Phi}\right) = f\left(\gamma\right)f\left(\mathbf{P}\right)$

Inférence bayésienne hiérarchique

 $f\left(\boldsymbol{\Theta}|\mathbf{Y}\right) \propto \int f\left(\mathbf{Y}|\boldsymbol{\Theta}\right) f\left(\boldsymbol{\Theta}|\boldsymbol{\Phi}\right) f\left(\boldsymbol{\Phi}\right) d\boldsymbol{\Phi}$

Loi *a posteriori* des instants de ruptures Après intégration des paramètres de nuisance Λ et **P** :

$$\frac{f(\mathbf{R},\gamma|\mathbf{Y})}{C(\mathbf{R}|\mathbf{Y})} \propto \frac{1}{\gamma} \prod_{j=1}^{J} \left[\gamma^{K_j} \prod_{k=1}^{K_j} \frac{\Gamma(s_{j,k}+1)}{(n_{j,k}+\gamma)^{s_{j,k}+1}} \right] \mathbf{1}_{\mathbb{R}^+}(\gamma),$$

avec

$$C(\mathbf{R}|\mathbf{Y}) = \frac{\prod_{\epsilon \in \mathcal{E}} \Gamma\left(S_{\epsilon}\left(\mathbf{R}\right) + \alpha_{\epsilon}\right)}{\Gamma\left(\sum_{\epsilon \in \mathcal{E}} \left(S_{\epsilon}\left(\mathbf{R}\right) + \alpha_{\epsilon}\right)\right)}.$$

où $\Gamma(t)$ est la fonction Gamma.

Une loi a posteriori trop complexe Simulation d'échantillons distribués suivant $f(\mathbf{R}, \gamma | \mathbf{Y})$ à l'aide de méthodes MCMC.

Loi *a posteriori* des instants de ruptures Après intégration des paramètres de nuisance Λ et **P** :

$$\frac{f(\mathbf{R},\gamma|\mathbf{Y})}{C(\mathbf{R}|\mathbf{Y})} \propto \frac{1}{\gamma} \prod_{j=1}^{J} \left[\gamma^{K_j} \prod_{k=1}^{K_j} \frac{\Gamma(s_{j,k}+1)}{(n_{j,k}+\gamma)^{s_{j,k}+1}} \right] \mathbf{1}_{\mathbb{R}^+}(\gamma),$$

avec

$$C(\mathbf{R}|\mathbf{Y}) = \frac{\prod_{\epsilon \in \mathcal{E}} \Gamma\left(S_{\epsilon}\left(\mathbf{R}\right) + \alpha_{\epsilon}\right)}{\Gamma\left(\sum_{\epsilon \in \mathcal{E}} \left(S_{\epsilon}\left(\mathbf{R}\right) + \alpha_{\epsilon}\right)\right)}.$$

où $\Gamma(t)$ est la fonction Gamma.

Une loi a posteriori trop complexe Simulation d'échantillons distribués suivant $f(\mathbf{R}, \gamma | \mathbf{Y})$ à l'aide de méthodes MCMC. Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques ÉÉchantillonneur de Gibbs

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques

Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiqu

Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélang

Échantillonneur de Gibbs

Génération d'échantillons distribués suivant $f(\mathbf{R}|\boldsymbol{\gamma},\mathbf{Y})$

▶ n-1 tirages de Bernoulli :

$$P\left(\left[r_{1,i},\ldots,r_{J,i}\right]^{\mathsf{T}}=\boldsymbol{\epsilon}\mid\mathbf{R}_{-i},\gamma,\mathbf{Y}\right)\propto f\left(\mathbf{R}_{i}(\boldsymbol{\epsilon}),\gamma|\mathbf{Y}\right),$$

Génération d'échantillons distribués suivant $f(\gamma|\mathbf{R},\mathbf{Y})$

• Génération d'échantillons distribués suivant $f(\mathbf{\Lambda}|\mathbf{R},\gamma,\mathbf{Y})$:

 $\lambda_{j,k} \mid \mathbf{R}, \gamma, \mathbf{Y} \sim \mathcal{G}\left(s_{j,k}\left(\mathbf{r}_{j}\right) + 1, n_{j,k}\left(\mathbf{r}_{j}\right) + \gamma\right).$

• Génération d'échantillons distribués suivant $f(\gamma | \mathbf{R}, \mathbf{\Lambda}, \mathbf{Y})$:

$$\gamma \mid \mathbf{R}, \mathbf{\Lambda} \sim \mathcal{G}\left(\sum_{j=1}^{J} K_j, \sum_{j=1}^{J} \sum_{k=1}^{K_j} \lambda_{j,k}\right)$$

Mise à jour de ${\bf P}$

$$\mathbf{P} \mid \mathbf{R}, \mathbf{Y}, \boldsymbol{\alpha} \sim \mathcal{D}_{2^J}(\alpha_{\boldsymbol{\epsilon}} + S_{\boldsymbol{\epsilon}}(\mathbf{R})).$$

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Simulations : données synthétiques

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques

Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs

Simulations : données synthétiques

Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélang

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques — Simulations : données synthétiques

Résultats de simulations

Paramètres de simulation

- ▶ Paramètres des signaux : J = 2, n = 120, $l_1 = (20, 50, 100, 120)$ et $l_2 = (50, 120)$, $\lambda_1 = [19, 9, 16, 6]^{\mathsf{T}}$ et $\lambda_2 = [8, 11]^{\mathsf{T}}$,
- ▶ Algorithme : $N_{bi} = 50$ itérations de chauffage, $N_r = 350$ itérations pour effectuer les estimations.

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques — Simulations : données synthétiques

Résultats de simulations

Paramètres de simulation

- ▶ Paramètres des signaux : J = 2, n = 120, $l_1 = (20, 50, 100, 120)$ et $l_2 = (50, 120)$, $\lambda_1 = [19, 9, 16, 6]^{\mathsf{T}}$ et $\lambda_2 = [8, 11]^{\mathsf{T}}$,
- ▶ Algorithme : $N_{bi} = 50$ itérations de chauffage, $N_r = 350$ itérations pour effectuer les estimations.

Segmentation 1D

Modèles bayésiens hiérarchiques pour le traitement multi-capteur — Segmentation conjointe de données astronomiques — Simulations : données synthétiques

Résultats de simulations

Paramètres de simulation

- ▶ Paramètres des signaux : J = 2, n = 120, $l_1 = (20, 50, 100, 120)$ et $l_2 = (50, 120)$, $\lambda_1 = [19, 9, 16, 6]^{\mathsf{T}}$ et $\lambda_2 = [8, 11]^{\mathsf{T}}$,
- ▶ Algorithme : $N_{bi} = 50$ itérations de chauffage, $N_r = 350$ itérations pour effectuer les estimations.

Segmentation 1D

Segmentation conjointe

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques — Simulations : données synthétiques

Résultats de simulations

Loi *a posteriori* de K_1 et K_2

Loi a posteriori de ${\bf R}$

En accord avec les résultats théoriques...
Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Simulations : données synthétiques

Résultats de simulations

Loi a posteriori de ${\bf P}$

Loi a posteriori de $\lambda_{j,k}$

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Simulations : données synthétiques

Résultats de simulations : modèle non hiérarchique

 γ estimé $P_{00}, P_{10}, P_{01}, P_{11}$ estimées

$$\begin{split} \gamma &= 0.05 \\ P_{00} &= P_{10} = P_{01} = P_{11} = \frac{1}{4} \end{split}$$

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Simulations : données synthétiques

Résultats de simulations : modèle non hiérarchique

 γ estimé $P_{00}, P_{10}, P_{01}, P_{11}$ estimées

$$\begin{split} \gamma &= 5 \\ P_{00} &= P_{10} = P_{01} = P_{11} = \frac{1}{4} \end{split}$$

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Application à des données BATSE

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques

Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélang

Conclusions et perspectives

Application à des données BATSE [Dobigeon, Tourneret, Scargle, *IEEE Trans. SP*, 2006]

Paramètres de simulation

- Paramètres des signaux : 29000 photons, 256 intervalles de temps de longueur 3.68ms, J = 4 bandes d'énergie,
- ▶ Algorithme : $N_{bi} = 200$ itérations de chauffage, $N_r = 3300$ itérations pour effectuer les estimations.

Application à des données BATSE [Dobigeon, Tourneret, Scargle, *IEEE Trans. SP*, 2006]

Paramètres de simulation

- Paramètres des signaux : 29000 photons, 256 intervalles de temps de longueur 3.68ms, J = 4 bandes d'énergie,
- ▶ Algorithme : $N_{bi} = 200$ itérations de chauffage, $N_r = 3300$ itérations pour effectuer les estimations.

Segmentation 1D

Application à des données BATSE [Dobigeon, Tourneret, Scargle, *IEEE Trans. SP*, 2006]

Paramètres de simulation

- Paramètres des signaux : 29000 photons, 256 intervalles de temps de longueur 3.68ms, J = 4 bandes d'énergie,
- ▶ Algorithme : $N_{bi} = 200$ itérations de chauffage, $N_r = 3300$ itérations pour effectuer les estimations.

Segmentation 1D

Segmentation conjointe

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Segmentation conjointe de données astronomiques Application à des données BATSE

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques

Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélange

Conclusions et perspectives

Segmentation conjointe de signaux multiples Autres applications envisagées

Segmentation conjointe de processus auto-régressifs

- recours à des méthodes à sauts réversibles,
- ▶ applications à des signaux réels :
 - segmentation de parole stéréo,
 - détection d'arc-tracking,

[Dobigeon, Tourneret, Davy, IEEE Trans SP, 2006]

Segmentation conjointe de signaux multiples Données aéronautiques : détection d'arc-tracking

Câbles endommagés

Détection des transitoires

Segmentation conjointe de signaux multiples Autres applications envisagées

Segmentation conjointe de processus auto-régressifs

- ▶ recours à des méthodes à sauts réversibles,
- ▶ applications à des signaux réels :
 - segmentation de parole stéréo,
 - détection d'arc-tracking,

[Dobigeon, Tourneret, Davy, IEEE Trans SP, 2006]

Segmentation conjointe de la direction et de la vitesse du vent

 deux séries temporelles de statistiques différentes (Von Mises, log-normale),
[Dobigeon, Tourneret, Comput. Stat. & Data Analysis, 2007]

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélange

Conclusions et perspectives

Images hyperspectrales

▶ même scène observée à différentes longueurs d'onde,

Images hyperspectrales

▶ même scène observée à différentes longueurs d'onde,

Cube hyperspectral

Images hyperspectrales

- ▶ même scène observée à différentes longueurs d'onde,
- ▶ pixel représenté par un vecteur d'une centaine de mesures.

Images hyperspectrales

- ▶ même scène observée à différentes longueurs d'onde,
- ▶ pixel représenté par un vecteur d'une centaine de mesures.

Cube hyperspectral

Démélange spectral

Modèle de mélange linéaire (MML) : $\mathbf{y} = \sum_{r=1}^{R} \mathbf{m}_{r} \alpha_{r} + \mathbf{n}$

Référence : IEEE Signal Proc. Magazine, Jan. 2002.

Démélange spectral

Modèle de mélange linéaire (MML) : $\mathbf{y} = \sum_{r=1}^{R} \mathbf{m}_{r} \alpha_{r} + \mathbf{n}$

► L = 825(0.4µm → 2.5µm),

•
$$R = 3$$
:

- béton (trait plein),
- herbe verte (tirets),
- terre grasse (pointillés),

•
$$\alpha^+ = [0.3, 0.6, 0.1]^{\mathsf{T}},$$

▶ SNR ≈ 20 dB.

Problème Estimation de α^+ sous des contraintes de *positivité* et *additivité*.

Démélange spectral

Modèle de mélange linéaire (MML) : $\mathbf{y} = \sum_{r=1}^{R} \mathbf{m}_{r} \alpha_{r} + \mathbf{n}$

► L = 825(0.4µm → 2.5µm),

•
$$R = 3$$
:

- béton (trait plein),
- herbe verte (tirets),
- terre grasse (pointillés),

•
$$\alpha^+ = [0.3, 0.6, 0.1]^{\mathsf{T}},$$

▶ SNR ≈ 20 dB.

Problème Estimation de α^+ sous des contraintes de *positivité* et *additivité*.

Démélange spectral

Problème de régression linéaire sous contraintes

▶ Contraintes de monotonie : *a priori* gaussien,

M.-H. Chen and J. J. Deely, J. of. Agri. Bio. and Env. Stat., 1996

▶ Contraintes de parcimonie : *a priori* de Student,

C. Févotte and S. J. Godsill, IEEE Trans. Signal Processing, 2006

Contraintes de positivité : a priori Gamma.

S. Moussaoui et al., IEEE Trans. Signal Processing, 2006

Contraintes physiques pour l'imagerie hyperspectrale Le vecteur de concentration $\boldsymbol{\alpha}^+ = [\alpha_1, \dots, \alpha_R]^{\mathsf{T}}$ satisfait :

$$\begin{cases} \alpha_r \ge 0, \ \forall r = 1, \dots, R \quad \text{(positivité)} \\ \sum_{r=1}^R \alpha_r = 1 \quad \text{(additivité)} \end{cases}$$

Démélange spectral

Problème de régression linéaire sous contraintes

▶ Contraintes de monotonie : *a priori* gaussien,

M.-H. Chen and J. J. Deely, J. of. Agri. Bio. and Env. Stat., 1996

▶ Contraintes de parcimonie : *a priori* de Student,

C. Févotte and S. J. Godsill, IEEE Trans. Signal Processing, 2006

Contraintes de positivité : a priori Gamma.

S. Moussaoui et al., IEEE Trans. Signal Processing, 2006

Contraintes physiques pour l'imagerie hyperspectrale Le vecteur de concentration $\boldsymbol{\alpha}^+ = [\alpha_1, \dots, \alpha_R]^{\mathsf{T}}$ satisfait :

$$\begin{cases} \alpha_r \ge 0, \ \forall r = 1, \dots, R \quad \text{(positivité)} \\ \sum_{r=1}^R \alpha_r = 1 \quad \text{(additivité)} \end{cases}$$

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélange

Conclusions et perspectives

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique

Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélange

Conclusions et perspectives

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique

Inférence bayésienne

Paramètres inconnus :

- $\boldsymbol{\alpha}^+ = [\alpha_1, \dots, \alpha_R]^\mathsf{T}$: vecteur des abondances,
- ▶ σ^2 : variance du bruit,

Vecteur des paramètres inconnus : $\boldsymbol{\Theta} = \{\boldsymbol{\alpha}, \sigma^2\}.$

Inférence bayésienne Théorème de Bayes: $f(\boldsymbol{\Theta}|\mathbf{y}) \propto f(\mathbf{y}|\boldsymbol{\Theta})f(\boldsymbol{\Theta})$ avec :

- \Leftrightarrow Vraisemblance : $f(\mathbf{y}|\mathbf{\Theta})$,
- < Lois *a priori* des paramètres : $f(\Theta)$.

Modèle bayésien hiérarchique

Vraisemblance

D'après le MML et les propriétés gaussiennes du vecteur de bruit \mathbf{n} :

$$\mathbf{y} \mid \boldsymbol{\alpha}^+, \sigma^2 \sim \mathcal{N}(\mathbf{M}^+ \boldsymbol{\alpha}^+, \sigma^2 \mathbf{I}_L),$$

où $\mathbf{M}^+ = [\mathbf{m}_1, \dots, \mathbf{m}_R]$ et \mathbf{I}_L est la matrice identité $L \times L$.

Lois a priori des abondances

Loi uniforme sur le simplexe pour $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_{R-1}]^{\mathsf{T}}$: $f(\boldsymbol{\alpha}) = \mathbf{1}_{\mathsf{C}}(\boldsymbol{\alpha})$

où
$$\mathbb{S} = \left\{ \boldsymbol{\alpha} \middle| \alpha_r \ge 0, \ \forall r = 1, \dots, R-1, \ \sum_{r=1}^{R-1} \alpha_r \le 1 \right\}.$$

Loi *a priori* de la variance du bruit Loi conjuguée inverse Gamma :

$$\sigma^2 \mid \gamma \sim \mathcal{IG}\left(\frac{\nu}{2}, \frac{\gamma}{2}\right).$$

Modèle bayésien hiérarchique

Lois a priori de l'hyperparamètre

► Loi non-informative de Jeffrey pour γ : $f(\gamma) \propto \frac{1}{\gamma} \mathbf{1}_{\mathbb{R}^+}(\gamma)$.

Loi *a posteriori* de $\Theta = \{\alpha, \sigma^2\}$ Après intégration de γ dans la loi jointe $f(\Theta, \gamma | \mathbf{y})$:

$$f\left(\boldsymbol{lpha}, \sigma^2 | \mathbf{y}\right) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{L}{2}+1} \exp\left[-\frac{\|\mathbf{y}-\mathbf{M}^+\boldsymbol{lpha}^+\|^2}{2\sigma^2}\right] \mathbf{1}_{\mathbb{S}}(\boldsymbol{lpha}).$$

Une loi a posteriori trop complexe...

Simulation d'échantillons distribués suivant $f(\boldsymbol{\alpha}, \sigma^2 | \mathbf{y})$ à l'aide de méthodes MCMC.

Modèle bayésien hiérarchique

Lois a priori de l'hyperparamètre

► Loi non-informative de Jeffrey pour γ : $f(\gamma) \propto \frac{1}{\gamma} \mathbf{1}_{\mathbb{R}^+}(\gamma)$.

Loi *a posteriori* de $\Theta = \{\alpha, \sigma^2\}$ Après intégration de γ dans la loi jointe $f(\Theta, \gamma | \mathbf{y})$:

$$f\left(\boldsymbol{\alpha},\sigma^{2}|\mathbf{y}\right)\propto\left(\frac{1}{\sigma^{2}}\right)^{\frac{L}{2}+1}\exp\left[-\frac{\|\mathbf{y}-\mathbf{M}^{+}\boldsymbol{\alpha}^{+}\|^{2}}{2\sigma^{2}}\right]\mathbf{1}_{\mathbb{S}}(\boldsymbol{\alpha}).$$

Une loi a posteriori trop complexe...

Simulation d'échantillons distribués suivant $f(\boldsymbol{\alpha}, \sigma^2 | \mathbf{y})$ à l'aide de méthodes MCMC.

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Démélange linéaire d'images hyperspectrales Échantillonneur de Gibbs

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs

Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélange

Conclusions et perspectives

Échantillonneur de Gibbs

Génération d'échantillons distribués suivant $f(\boldsymbol{\alpha}|\sigma^2, \mathbf{y})$

$$\boldsymbol{\alpha} \left| \sigma^2, \mathbf{y} \sim \mathcal{N}_{\mathbb{S}} \left(\boldsymbol{\mu}, \boldsymbol{\Lambda} \right),$$
 (1)

grâce à :

- une procédure d'acceptation/rejet,
- ▶ un échantillonneur de Gibbs (voir [Robert, 1995]),

Génération d'échantillons distribués suivant $f\left(\sigma^2|\boldsymbol{\alpha},\mathbf{y}\right)$

$$\sigma^{2} | \boldsymbol{\alpha}, \mathbf{y} \sim \mathcal{IG}\left(\frac{L}{2}, \frac{\|\mathbf{y} - \mathbf{M}^{+}\boldsymbol{\alpha}^{+}\|^{2}}{2}\right).$$
(2)

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Démélange linéaire d'images hyperspectrales Simulations : données synthétiques

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique

Echantillonneur de Gibbs

Simulations : données synthétiques

Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mo

Conclusions et perspectives

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

Démélange linéaire d'images hyperspectrales

Simulations : données synthétiques

Résultats de simulations

Paramètres de simulation

- Pixel : R = 3, L = 825, $\alpha^+ = [0.3, 0.6, 0.1]$ et $\sigma^2 = 0.025$ (SNR = 20dB),
- ▶ Algorithme : $N_{\rm bi} = 100$ itérations de chauffage, $N_r = 500$ itérations d'intérêt.

Pixel synthétique

Lois *a posteriori* des abondances

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

Démélange linéaire d'images hyperspectrales

Simulations : données synthétiques

Résultats de simulations

Paramètres de simulation

- Pixel : R = 3, L = 825, $\alpha^+ = [0.3, 0.6, 0.1]$ et $\sigma^2 = 0.025$ (SNR = 20dB),
- ▶ Algorithme : $N_{\rm bi} = 100$ itérations de chauffage, $N_r = 500$ itérations d'intérêt.

Pixel synthétique

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

 $\sqsubseteq Simulations: données synthétiques$

Étude de la convergence des chaînes

Problème

▶ Comment sait-on que l'échantillonneur a convergé ?

Étude de la convergence des chaînes

Problème

▶ Comment sait-on que l'échantillonneur a convergé ?

Évaluation graphique : sorties de l'échantillonneur (Paramètre $\sigma^2)$

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Démélange linéaire d'images hyperspectrales — Simulations : données synthétiques

Étude de la convergence des chaînes

Problème

Comment sait-on que l'échantillonneur a convergé ?

Facteur d'échelle

Variance inter-chaîne B:

$$B = \frac{N_r}{M-1} \sum_{m=1}^{M} \left(\overline{\kappa}_m - \overline{\kappa}\right)^2,$$

Variance intra-chaîne W:

$$W = \frac{1}{M} \sum_{m=1}^{M} \frac{1}{N_r} \sum_{t=1}^{N_r} \left(\kappa_m^{(t)} - \overline{\kappa}_m \right)^2,$$

avec

$$\overline{\kappa}_m = \frac{1}{N_r} \sum_{t=1}^{N_r} \kappa_m^{(t)}, \quad \overline{\kappa} = \frac{1}{M} \sum_{m=1}^M \overline{\kappa}_m,$$

Facteur d'échelle :

$$\sqrt{\hat{\rho}} = \sqrt{\frac{1}{W} \left(\frac{N_r - 1}{N_r} W + \frac{1}{N_r} B \right)}.$$

Règle de décision:

 $\sqrt{\hat{\rho}} < 1.2$

Étude de la convergence des chaînes

Problème

- ▶ Comment sait-on que l'échantillonneur a convergé ?
- ▶ Combien d'échantillons utilisés pour obtenir des estimations correctes ?
Étude de la convergence des chaînes

Problème

- ▶ Comment sait-on que l'échantillonneur a convergé ?
- ▶ Combien d'échantillons utilisés pour obtenir des estimations correctes ?

Évaluation graphique : distance à la loi cible

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Démélange linéaire d'images hyperspectrales — Analyse d'une image réelle AVIRIS

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales

Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélan

Conclusions et perspectives

Paramètres de simulation

- ▶ Image : 50×50 pixels (Moffett field), L = 224 bandes spectrales, pôles de mélange préalablement estimés par l'algorithme N-FINDR,
- ▶ Algorithme : $N_{\rm bi} = 10$ itérations de chauffage, $N_r = 800$ itérations d'intérêt.

Paramètres de simulation

- ▶ Image : 50×50 pixels (Moffett field), L = 224 bandes spectrales, pôles de mélange préalablement estimés par l'algorithme N-FINDR,
- ▶ Algorithme : $N_{\rm bi} = 10$ itérations de chauffage, $N_r = 800$ itérations d'intérêt.

Spectres des pôles de mélange et cartes d'abondances estimées

Méthode proposée (en haut) vs. procédure déterministe (ENVI, en bas)

Intervalles de confiance pour les estimations grâce aux lois a posteriori !

Méthode proposée (en haut) vs. procédure déterministe (ENVI, en bas)

Intervalles de confiance pour les estimations grâce aux lois a posteriori !

Modèles bayésiens hiérarchiques pour le traitement multi-capteur Démélange linéaire d'images hyperspectrales — Analyse d'une image réelle AVIRIS

> Résultats de simulation : données réelles [Dobigeon, Tourneret, Chang, soumis à *IEEE Trans. SP*, 2007]

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales

Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS

Extension : estimation du nombre de pôles de mélange

Conclusions et perspectives

Estimer le nombre de pôles de mélange via une méthode MCMC à sauts réversibles

Bibliothèque spectrale connue ${\mathcal S}$

Estimer le nombre de pôles de mélange via une méthode MCMC à sauts réversibles

Loi a priori des paramètres inconnus

nombre de composants dans le mélange :

$$f(R) = \frac{1}{R_{\max} - 1}, \quad R = 2, \dots, R_{\max}.$$

▶ spectres participants au mélange : conditionnellement à R, toutes les combinaisons de R composants de S pour \mathbf{M}^+ sont équiprobables.

Loi *a posteriori* Vecteur de paramètres inconnus : $[\boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R] \in \mathbb{S}_R \times \mathcal{S}^R \times \mathbb{R}^+ \times \{2, \dots, R_{\max}\}:$ $f(\boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R | \mathbf{y}) \propto f(\mathbf{y} | \boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R) f(\boldsymbol{\alpha} | R) f(\mathbf{M}^+ | R) f(\sigma^2) f(R).$

Une stratégie de choix de modèles est nécessaire : MCMC à sauts réversibles.

Estimer le nombre de pôles de mélange via une méthode MCMC à sauts réversibles

Loi a priori des paramètres inconnus

nombre de composants dans le mélange :

$$f(R) = \frac{1}{R_{\max} - 1}, \quad R = 2, \dots, R_{\max}.$$

▶ spectres participants au mélange : conditionnellement à R, toutes les combinaisons de R composants de S pour \mathbf{M}^+ sont équiprobables.

Loi a posteriori Vecteur de paramètres inconnus : $[\boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R] \in \mathbb{S}_R \times \mathcal{S}^R \times \mathbb{R}^+ \times \{2, \dots, R_{\max}\}$: $f(\boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R | \mathbf{y}) \propto f(\mathbf{y} | \boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R) f(\boldsymbol{\alpha} | R) f(\mathbf{M}^+ | R) f(\sigma^2) f(R)$.

Une stratégie de choix de modèles est nécessaire : MCMC à sauts réversibles.

Estimer le nombre de pôles de mélange via une méthode MCMC à sauts réversibles

Loi a priori des paramètres inconnus

▶ nombre de composants dans le mélange :

$$f(R) = \frac{1}{R_{\max} - 1}, \quad R = 2, \dots, R_{\max}.$$

▶ spectres participants au mélange : conditionnellement à R, toutes les combinaisons de R composants de S pour \mathbf{M}^+ sont équiprobables.

Loi a posteriori Vecteur de paramètres inconnus : $[\boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R] \in \mathbb{S}_R \times \mathcal{S}^R \times \mathbb{R}^+ \times \{2, \dots, R_{\max}\}$: $f(\boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R | \mathbf{y}) \propto f(\mathbf{y} | \boldsymbol{\alpha}, \mathbf{M}^+, \sigma^2, R) f(\boldsymbol{\alpha} | R) f(\mathbf{M}^+ | R) f(\sigma^2) f(R)$.

 $\label{eq:constraint} Une\ stratégie\ de\ choix\ de\ modèles\ est\ nécessaire\ :\ MCMC\ à\ sauts\ réversibles.$

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

Démélange linéaire d'images hyperspectrales

Extension : estimation du nombre de pôles de mélange

Échantillonneur de Gibbs hybride

Mise à jour de \mathbf{M}^+

- ► NAISSANCE
- Mort
- Échange

Génération d'échantillons distribués suivant $f(\boldsymbol{\alpha}|R, \mathbf{M}^+, \sigma^2, \mathbf{y})$

Génération d'échantillons distribués suivant $f\left(\sigma^2|R,\mathbf{M}^+,\boldsymbol{\alpha},\mathbf{y}\right)$

Estimer le nombre de pôles de mélange via une méthode MCMC à sauts réversibles

Paramètres de simulation

- Pixel : R = 3, L = 825, $\alpha^+ = [0.3, 0.6, 0.1]$ et $\sigma^2 = 0.025$,
- ▶ Algorithme : $N_{\rm bi} = 100$ itérations de chauffage, $N_r = 19900$.

Pixel synthétique

Bibliothèque spectrale \mathcal{S}

Estimer le nombre de pôles de mélange via une méthode MCMC à sauts réversibles

Paramètres de simulation

- Pixel : R = 3, L = 825, $\alpha^+ = [0.3, 0.6, 0.1]$ et $\sigma^2 = 0.025$,
- ▶ Algorithme : $N_{\rm bi} = 100$ itérations de chauffage, $N_r = 19900$.

Pixel synthétique

Estimer le nombre de pôles de mélange via une méthode MCMC à sauts réversibles

Loi a posteriori de R

Plan de la présentation

Introduction

Segmentation conjointe de données astronomiques Formulation du problème Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Application à des données BATSE

Démélange linéaire d'images hyperspectrales Modèle bayésien hiérarchique Échantillonneur de Gibbs Simulations : données synthétiques Analyse d'une image réelle AVIRIS Extension : estimation du nombre de pôles de mélang

Conclusions et perspectives

Inférence bayésienne hiérarchique

- modélisation statistique de l'ensemble des données délivrées par les capteurs,
- choix de lois a priori appropriées pour les paramètres et hyperparamètres inconnus,
- ▶ simulation d'échantillons distribués suivant la loi *a posteriori* à l'aide de méthodes MCMC,
- ▶ vérification de la convergence des algorithmes proposés.

Segmentation conjointe de signaux stationnaires par morceaux

Résumé

- ▶ pas de règle d'arrêt,
- ▶ solution exploitant le caractère multi-capteur des données,
- introduction d'indicatrices évitant le recours coûteux d'algorithme à sauts réversibles,

Extensions envisagées

signaux de dynamiques différentes,

Segmentation conjointe de signaux stationnaires par morceaux

Résumé

- ▶ pas de règle d'arrêt,
- ▶ solution exploitant le caractère multi-capteur des données,
- introduction d'indicatrices évitant le recours coûteux d'algorithme à sauts réversibles,

Extensions envisagées

signaux de dynamiques différentes,

Segmentation conjointe de signaux stationnaires par morceaux

Résumé

- ▶ pas de règle d'arrêt,
- ▶ solution exploitant le caractère multi-capteur des données,
- introduction d'indicatrices évitant le recours coûteux d'algorithme à sauts réversibles,

Extensions envisagées

- signaux de dynamiques différentes,
- ▶ modèle markovien imposant des segments de longueur minimale.

Démélange linéaire d'images hyperspectrales

Résumé

- ▶ lois *a priori* respectant les contraintes inhérentes au modèle,
- algorithme semi-supervisé pour l'estimation des spectres du mélange.

Extension envisagée

▶ cas de bruits colorés plus complexes.

Démélange linéaire d'images hyperspectrales

Résumé

- ▶ lois *a priori* respectant les contraintes inhérentes au modèle,
- algorithme semi-supervisé pour l'estimation des spectres du mélange.

Extension envisagée

▶ cas de bruits colorés plus complexes.

Perspectives

Segmentation conjointe de signaux stationnaires par morceaux

cas d'un délai entre les ruptures dans des signaux différents,
application aux données BATSE,

segmentation « en ligne »,

Techniques de filtrage (voir [Fearnhead, 2007]),

réduire le coût calculatoire des algorithmes MCMC,
[®] méthodes variationnelles.

Démélange linéaire de données spectrales

estimation conjointe des spectres du mélange et des proportions,

 © séparation aveugle de sources (projet J-C GdR-ISIS).

Perspectives

Segmentation conjointe de signaux stationnaires par morceaux

cas d'un délai entre les ruptures dans des signaux différents,
application aux données BATSE,

segmentation « en ligne »,

Techniques de filtrage (voir [Fearnhead, 2007]),

réduire le coût calculatoire des algorithmes MCMC,
[®] méthodes variationnelles.

Démélange linéaire de données spectrales

estimation conjointe des spectres du mélange et des proportions,

 Séparation aveugle de sources (projet J-C GdR-ISIS).

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

Nicolas DOBIGEON

Thèse de Doctorat dirigée par Jean-Yves TOURNERET effectuée au laboratoire IRIT – Equipe SC

Vendredi 19 Octobre 2007

Publications

Articles de journaux (3 articles publiés, 1 soumis)

- N. Dobigeon, J.-Y. Tourneret and C.-I Chang, "Semi-supervised linear spectral using a hierarchical Bayesian model for hyperspectral imagery," *IEEE Trans. SP*, soumis, 2007.
- N. Dobigeon and J.-Y. Tourneret, "Joint segmentation of wind speed and direction using a hierarchical model," Computational Statistics & Data Analysis, vol. 51, no. 12, pp. 5603–5621, Aug. 2007.
- N. Dobigeon, J.-Y. Tourneret and M. Davy, "Joint segmentation of piecewise constant autoregressive processes processes by using a hierarchical model and a Bayesian sampling approach," *IEEE Trans. SP*, vol. 55, no. 4, pp. 1251–1263, April 2007.
- N. Dobigeon, J.-Y. Tourneret and J. D. Scargle, "Joint segmentation of multivariate astronomical time series: Bayesian sampling with a hierarchical model," *IEEE Trans. SP*, vol. 55, no. 2, pp. 414–423, Feb. 2007.

Articles de conférences (8 publiés, 1 soumis)

- ▶ IEEE ICASSP 2008 (soumis), IEEE ICASSP 2007, IEEE ICASSP 2006,
- ▶ IEEE SSP 2007, IEEE SSP 2005,
- ▶ EUSIPCO 2006,
- ▶ SPIE 2005,
- ▶ GRETSI 2007, GRETSI 2005.

Collaborations

Internationales

- ▶ C.-I Chang, University of Maryland,
 - $<\!\!\! < \!\!\! = 1$ article de journal soumis,
- ▶ J. D. Scargle, NASA,
 - $<\!\!\! < \!\!\! > 1$ article de journal et 2 articles de conférences publiés,
- ▶ A. O. Hero III, University of Michigan,
 - ☞ 1 article de conférence soumis,
 - $<\!\!\! < \!\!\!$ séjour post-doctoral.

Nationales

- ▶ M. Davy, INRIA Futurs,
 - ☞ 1 article de journal et 1 article de conférence publiés,
- ▶ J.-F. Cardoso, ENST Paris,
 - ☞ visite au LTCI,
- ▶ S. Moussaoui, IRCCyN,
 - ☞ projet « Jeunes Chercheurs » du GdR-ISIS,
 - $<\!\!\! < \!\!\! < \!\!\! > 2$ articles de conférences publiés,
 - $<\!\! < \!\! = 1$ article de journal en préparation.

Segmentation conjointe de signaux stationnaires par morceaux

Segmentation conjointe de signaux stationnaires par morceaux

-MALMAN

300

300

250

250

250

250

200

200

200

200

Univilla

Démélange linéaire d'images hyperspectrales

Imagerie hyperspectrale

Modèles bayésiens hiérarchiques pour le traitement multi-capteur

Nicolas DOBIGEON

Thèse de Doctorat dirigée par Jean-Yves TOURNERET effectuée au laboratoire IRIT – Equipe SC

Vendredi 19 Octobre 2007