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A b s t r a c t  

 

The focused electron beam induced deposition process is a promising technique for nano 
and micro patterning. Electrons can be focused in sub-angström dimensions, which allows 
atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be 
used in controlled applications, the precise nature of the deposition mechanism must be 
described and modelled. The aim of this research work is to present a physical and chemical 
description of the focused electron beam induced deposition process. 

As an introduction, a review of the literature, up to the present day, shows how this 
process was first identified as the origin of contamination in electron microscopes. Then the 
modifications made to a scanning electron microscope for deposition experiments are described. 
Gas supply systems and gas cryo-trapping devices were set up. Electrical and optical systems 
were constructed for an in-situ monitoring of the process. The experiment procedure was carried 
out in several phases, with the first being the deposition of flat films of carbon, copper-
containing carbon composites, and pure gold for the study of the physics of the process. By 
measuring the fraction of the probe current that was absorbed in the sample, an accurate 
description could be made of the propagation of electrons. The backscattered electrons clearly 
influenced the deposition rate of Cu-containing films. A physical model for scanning deposition 
was created. The second phase is the deposition of metal-matrix composite tips from a 
stationary beam. Forward electron scattering was discovered to be responsible for tip formation 
and shape. A physical model of electron trajectories is included. The third phase is the 
construction of three-dimensional micro-structures by moving the beam during deposition. The 
deposited shapes result from an electron range that is larger than the structure size. 

Further investigation into the chemistry of the process involved the analysis of carbon 
films by micro-beam techniques. Regardless of the precursor used, the resulting films had a 
composition as C9H2±xO1±x (x<1). The C phase hybridization was 90% sp2. The elements H, N, 
O, F, and Cl were volatilized from the precursor during precursor fixation. Further parameters 
of deposition rate, temperature of the sample, vapour pressure, and the dipole moment of the 
precursors were examined. Electrically conductive metal-containing focused electron beam 
induced deposits were used for constructing micro-devices, a nanotube-based contact and a 
magnetic field sensor with 500x500 nm2 active area. 



R é s u m é  

 

La technique de croissance assistée par faisceau focalisé d’électrons offre des perspectives 
attrayantes pour la nano et micro-fabrication en trois dimensions. Les faisceaux d’électrons 
peuvent être focalisés sur des dimensions inférieures à 1 Å, ce qui permet l’observation, l’analyse 
et la modification d’objets à l’échelle atomique. De nombreuses applications peuvent être 
envisagées, mais supposent une description précise des mécanismes physico-chimiques mis en 
jeu. 

Une étude bibliographique montre d’abord que cette technique est dérivée du phénomène 
de contamination observé en microscopie électronique. Puis, afin d’en faire un outil 
expérimental efficace, un microscope électronique à balayage a été muni de systèmes 
d’approvisionnement en gaz précurseur et de condensation. De nouvelles méthodes électriques 
et optiques ont été mises au point pour le suivi in-situ du procédé. La démarche scientifique s’est 
déroulée en deux phases. La physique du phénomène a d’abord été étudiée, en déposant des 
films minces de carbone, d’un composite cuivre-carbone, puis d’or pur. La propagation des 
électrons dans ces films a été décrite grâce à la mesure en continu de la fraction du courant de 
sonde absorbée dans l’échantillon. Les effets des électrons diffusés sur le taux de croissance ont 
été étudiés. Un modèle physique a été développé pour rendre compte des résultats. La deuxième 
phase a été la croissance de pointes composites sous un faisceau immobile. La forme des pointes 
est déterminée par la diffusion des électrons. Un modèle physique décrivant les trajectoires des 
électrons à l’intérieur et autour des pointes a été mis au point. La troisième phase a été la 
construction de micro-structures tridimensionnelles, dont la forme illustre les effets de la 
profondeur de pénétration des électrons, qui est plus grande que l’épaisseur des dépôts. 

Pour comprendre la chimie du phénomène, les dépôts de carbone obtenus ont été 
analysés par plusieurs techniques de micro-sonde. Tous les dépôts obtenus à partir de 
précurseurs pourtant différents avaient la composition C9H2±xO1±x (x<1). La fraction 
d’hybridation sp2 de la phase carbone amorphe est de 90%. Le taux de croissance augmente avec 
la pression de vapeur, le moment dipolaire et la masse moléculaire du précurseur. Il diminue 
avec la température de l’échantillon. La réaction de fixation du précurseur adsorbé est une 
ionisation, suivie de la perte des éléments volatils H, N, O, F et Cl. L’analyse des dépôts 
composites de métaux a montré qu’ils peuvent être conducteurs. Des micro-dispositifs ont été 
démontrés, comme un contact électrique à un nanotube et un capteur de champ magnétique 
présentant une surface active de 500 x 500 nm2. 
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C h a p t e r  1  –  I n t r o d u c t i o n  

 
 
 
 
 
 
 
 
 
 

Focused Electron Beam induced deposition is a nanofabrication method using a local, 

site-selective chemical vapour deposition process. Adsorbed molecules are decomposed under 

the focused probe of an electron microscope. The beam, which can be as narrow as 1 Å in 

modern electron microscopes, deposits nano- to micrometer-wide structures. Thin over-layers 

are continuously fixed on to existing shapes resulting in two and three-dimensional 

nanostructures. Micro-devices can be rapidly prototyped. The location of the deposit on the 

substrate is precisely chosen because the deposition machine is also a high-resolution imaging 

tool. Understanding how the deposition process works opens the way to a variety of advances in 

the fields of microelectronics, physics, chemistry, and engineering. Applications have already 

been found as a quality control tool for finding and repairing defects in computer chips and 

lithography masks. Other applications are electrical contacts between single bio-molecules or 

nano-wires for basic research, and fabricating miniaturized 3D devices and high-resolution 

contact scanning probes.[1-6] 

 

Chapter 2 is a survey of the relevant literature and history. Electron-induced 

contamination was first observed as a problem in electron beam systems. Residual gas-phase 

hydrocarbons were fixed on to the samples under electron microscopic observation. The 

physical origins of contamination were first studied with the aim of reducing it. Researchers then 

used it for micro patterning processes, and optimised it for larger growth rates by deliberately 

injecting precursor gases on to substrates in vacuum chambers. New materials were deposited at 

nano-scale, but without an understanding of the deposition process. More research was needed 
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to answer such questions as: Is the process thermal? Is it directly triggered by the incident high-

energy electrons, or by secondary processes? Is the adsorbed layer replenished by the gas phase 

or by surface diffusion? What are the effects of temperature, electron flux, or precursor 

pressure? How can pure elements, such as metals, be deposited? If the deposited material is not 

a pure crystalline element, what is it and how can it be characterized? What is the resolution 

limit? What can the process be used for? Can functional nano-devices be designed and 

constructed? Numerous researchers have studied the process and have attempted to answer 

these questions. Interdisciplinary investigations from neighbouring research fields such as 

electron-beam lithography, scanning probe microscopy, and focused ion beam induced 

processing, have also provided new information about the process. 

 

The experimental setup is described in Chapter 3. Several modifications and 

improvements were made on a Cambridge S100 Scanning Electron Microscope for its use as an 

efficient deposition machine. The improvements to the continuous in-situ monitoring of the 

process included physical, electrical, and optical measurement setups. 

 

The effects of electron range on the deposition process are presented in Chapter 4. The 

incident electrons cross the adsorbed precursor layer and penetrate into the underlying solids, 

and become scattered by atoms. The number of electrons that cross the interfaces and 

decompose the precursor molecules depends on the scattering processes that take place in the 

bulk of the solids. The scattering effect was first demonstrated on large-area deposits, and 

incited the following questions: What is the relation between film thickness and deposition rate? 

Does the composition of the film have an influence on the deposition rate?  To answer these 

questions I used the beam to deposit low, intermediate and high atomic number elements, at 

several electron energies, and on different substrates. Thus I was able to describe the effects of 

electron scattering. In order to control the process precisely, an in-situ monitoring method was 

developed. This showed that the propagation of electrons in the growing films was 

quantitatively revealed by the backscattering yield and the collected sample current. 
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When the electron beam is kept at the same place, vertical tips are deposited. Why do tips 

form? Is electron scattering responsible? And if the electrons are scattered, then how does 

deposition take place in the surrounding environment? The effects of several parameters were 

investigated: precursor composition, tip diameter, accuracy of focusing, nature of the substrate, 

role of obstacles on the substrate, and acceleration voltage. Through this research I was able to 

develop a physical model of electron scattering in and around deposited tips. 

A higher deposit complexity was reached by moving the beam during deposition. Is it 

possible to deposit any 3D structure? Electron scattering in the growing structures is shown to 

have consequences on the final structure shape. The effects of electron scattering were 

measured and interpreted through a series of 3D model microstructures. 

 

The challenging question of how to chemically characterize such small deposits is 

addressed in Chapter 5. If the composition of the deposits is measurable, then it may be possible 

to manipulate the process in order to deposit different ratios of elements, nanostructures, and 

crystalline states. First, deposition from purely organic precursors is described. From the wide 

range of compounds available, a few were selected for their deposition efficiency in order to 

discover the exact composition of the deposited materials. Through several micro-beam analysis 

techniques, slight variations were seen in the composition of the deposits. The deposited 

material was found to be hydrogenated amorphous C, with some incorporated oxygen. Given 

the difference between the crystalline and amorphous states of C, is it possible to locally deposit 

diamond under FEB-induced growth conditions? 

Organometallic compounds contain both metals and ligands, most of which contain 

carbon. In the search for a way to deposit a pure metal, the composition of the deposits from 

organometallic precursors was analysed. Selected experiments showed that, depending on the 

nature of the precursor and on the electronic interactions with the adsorbed layer and the 

growing structure, the deposits had a varying atomic content of metal. Examples of micro-

devices based on electrical conduction in these metal-containing deposits were developed and 

are described. 
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In Chapter 6, the study is summarized and future directions of research are proposed. 

Solutions for successful focused electron beam induced deposition of diamond are discussed. 

The optical properties of deposited nano-composites also offer a promising route for future 

applications. The conclusions drawn from the analysis of the deposition mechanism will allow 

developing new focused electron beam induced processes, with possible applications for high-

resolution metal etching. 
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C h a p t e r  2  –  L i t e r a t u r e  s u r v e y  

 
 
 

Mais il ne faut pas toujours tellement épuiser 
un sujet, qu’on ne laisse rien à faire au lecteur. 

Il ne s’agit pas de faire lire, mais de faire penser. 
 

Montesquieu, de l’Esprit des Lois, ch. XX, livre XI 
 
 
 
 
 
 

The aim of this chapter is to present the context in which the present study was 

undertaken. In Section 2-1, electron-induced contamination is described. This side effect of 

electron interactions on surfaces, observed since the early studies of ‘cathodic rays’, was 

satisfactorily understood in the 1960s. When applied in electron microscopes, it found 

applications to 2D and 3D micropatterning. In Section 2-2, its evolution in the 1980s into 

“focused electron beam induced deposition” is described. The deliberate introduction of gases 

in electron microscopes turned contamination into a versatile nanofabrication process. In 

Section 2-3 the mechanisms of electron-beam induced chemistry in solids and at surfaces are 

commented on. A formal parallel exists between electron-beam lithography and electron-beam 

induced deposition. Finally, the possibilities offered by alternative nanofabrication methods are 

discussed in Section 2-4. This literature overview proved very helpful in the design and 

interpretation of the experiments presented in the next chapters, and resulted in a physical 

understanding of the focused electron beam induced deposition process. 
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2-1 Electron-induced contamination 

2-1-1 Nature of the phenomenon 

2-1-1-A) Observation of electron-induced contamination 

Reports in literature of electron-induced surface deposition occurred as early as 1913, and 

intermittently until 1939.[1-6] A solid deposit formed when an electron beam crossed a rarefied 

vapour of a room-temperature-condensable element and impinged upon a screen. When the 

rarefied medium contained a gaseous carbon compound, the gas molecules were decomposed 

by collisions with the electrons, leaving a surface contamination of C. Between 10 eV and 

1 MeV, the contamination rate decreased with increasing beam acceleration. This was attributed 

to the decreasing ionizing power of the primary beam.[7-10] The phenomenon was used to pseudo 

photographically record the electron beam distribution on metallic substrates. The exposed areas 

resisted acid etching and electroplating.[10, 11] The insulating deposited films were made 

conductive by heating in vacuo.[12, 13] After the construction of the first electron microscopes in 

the 1930’s and improvements in the 1940’s, it was reported that the examination of carbon black 

particles in a TEM increased their diameters (by ~100 Å in 3 minutes), which was attributed to 

electron-induced contamination.[14-16] 3D replicas of template particles were built by 

contamination (see fig. 2-1-1).[17-19] The shells remained stable upon annealing in a vacuum at 

500°C, but were burnt away in air. 

 

Figure 2-1-1. Contamination in electron microscopy. a) NaCl crystals irradiated in TEM. b) 
After dissolution in water, only contamination shells remained. ZnO needles were added for 

scaling.[18] 
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2-1-1-B) Understanding and reducing contamination 

Contamination was understood as a beam-induced polymerization of carbon.[20] Free 

organic radicals form in an adsorbed layer and polymerize into stable long-chain molecules with 

occasional H atoms.[21-23] The adsorbed layer sources were diffusion pump oil, hot vacuum 

grease, rubber gaskets, and dirty metal surfaces.[24] A specimen bias up to ± 1000 V, or a 

magnetic beam deflection close to the substrate, did not affect the process. It was inversely 

proportional to the spot size and slightly increased with the atomic number of the substrate.[25-28] 

The process was not thermal because it left heat-sensitive samples unchanged.[29] Contamination 

films were shown to change the electronic properties of surfaces.[30-34] 40 keV electrons yielded 

400x smaller contamination rates than 40 kV Li ions, each of which fixed ~9 C atoms at RT.[35-39] 

Between 6 and 25 eV the growth rate was acceleration voltage-dependent and the deposits were 

electrically photosensitive.[40] X-Ray analyses indicated a deposit composition of C19O1Si0.5H1 

(from silicone oils), confirmed by IR absorption spectra (see fig. 2-1-2a).[9, 41] 

 

Figure 2-1-2. a) FTIR analysis of contaminated films. b) Contamination vs. temperature.[9] 

Heating the sample at 250°C eliminated contamination (see fig. 2-1-2b).[9, 23] A gentle flow 

of air towards the bombarded area reduced the contamination rate and even etched previously 

deposited carbon.[42-47] During the 1960’s using liquid N2 cold traps reduced contamination.[48-52] 

The contamination rate in TEM was determined by the time the sample spent in the vacuum 

outside the cryo-pumped regions.[53] At 10-5 Torr, the vacuum chamber residual gases were 

composed of water vapour (8.10-6 Torr), CO, N2 and O2 (5.10-7 to 10-6 Torr each). All carbon 

species reached 10-6 Torr.[54-56] The residual gases could be fixed to the chamber walls by a glow 
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discharge.[57] Fomblin oil (a perfluoro-polyether) was recommended for reducing contamination 

as it fragments without polymerizing.[58, 59] The sample could also be “electron-flooded” with a 

large spot size before observation.[60-65] In 1979, all these methods were still not capable of 

avoiding contamination completely and routinely in X-ray chambers.[66] 

 

2-1-2 Rationalizations and applications 

2-1-2-A) Theoretical models and physical observations 

By the early 1960s, contamination was no longer considered a negative side effect, but a 

new area of research. Applications were found for micro patterning.[67, 68] Christy proposed a 

model based on the electron-induced fixation of adsorbed molecules, as shown in fig. 2-1-3.[69] 

 

Figure 2-1-3. Christy’s model of electron-beam-induced deposition.[69] 

R: deposition rate. v: molecular volume. F: precursor flow. σ: cross-section of electron-
induced fixation. τ: precursor residence time at the surface. f: electron flow. a: molecule 

area. N: precursor surface density. 

This model described correctly the experiments made at different temperatures (T) and current 

densities (f). At high f or at low T (when στf>>1), the growth rate was vF. The oil vapour 

pressure was determinant. At very low f or at high T, the growth rate was approximately στfvF. 

It depended on current density and temperature, through τ and F (as shown in eq. 2-1). 
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p
F

2 TBmk

α
π

=  (2-1) 

Precursor flow F vs. temperature T. α : fraction of the incident molecules that stick to the 
surface. p : local pressure; m : molecular mass; kB : Boltzmann’s constant. 

Fixing one silicone oil molecule required ~100 electrons.[70] Ageing in air increased the resistivity 

(about 104 Ω.cm for contamination deposits) and reduced the dielectric constant, indicating the 

presence of free radicals.[71-76] 

Interesting results were obtained when weighing contamination in-situ on a Ni-coated 

quartz crystal microbalance.[77] Between 10 eV and 4 keV, the contamination rate and the SE 

emission depended similarly on the PE energy, reaching a maximum at 200 eV (compare fig. 2-

1-4a and b) and having a similar evolution during deposition (see fig. 2-1-4c). Recapturing or 

pushing away the low-energy SE did not alter the growth rate. A subtle mechanism was 

proposed: the PE ionized the adsorbed molecules as efficiently as they ejected SE from the 

substrate, so that the process was similar to SE emission in all aspects, but the SE themselves 

were not involved. Although the recollected SE probably played a role by cross-linking the 

deposited films, this interpretation was satisfactory.[22, 78] 

 

Figure 2-1-4. a,b) Contamination rate and SE yield dependence on PE energy. c) 
Evolution of growth rate and SE yield during film growth.[77] 
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2-1-2-B) Role of surface diffusion 

Some complex spot profiles were obtained (see fig. 2-1-5a,b).[53, 79, 80] The scan frequency 

influenced contamination rates.[81] Were these effects due to the surface diffusion of adsorbates? 

 

Figure 2-1-5. Experimental contamination spot profiles.[53, 80] 

Müller introduced a surface diffusion component into Christy’s model.[82, 83] The balance of 

contributions to the local concentration of reactive species N(r, t) was summarized in the 

following differential equation (retaining Christy’s symbol names): 

 

(2-2) 

λ: diffusion constant; e0 = 1.6 10-19 C. 

In equilibrium the balance was at zero. Solving the equation with a homogeneous circular beam 

with current f0 and diameter D, led Müller to: 

 
2

0

.
N

.D
≈irradiated

const

f
 (2-3) 
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This relation agreed with his experimental results. The qualitative theoretical profiles showed a 

depletion of the adsorbed layer coverage under irradiation, as shown in fig. 2-1-6a-d. 

 

Figure 2-1-6: a-d) Qualitative contamination rate k and precursor concentration profiles 
(cylindrical symmetry).[82] e) Growth rate vs. spot size. On the left scale, ϕ(D/2ρ) is the 
probability for a molecule of being hit by an electron. Curve 1, calculated dependence. 

Curve 2, experimental values.[84] 

The average time τ1 between two adsorbate-electron collisions was estimated as 10% of the 

residence time τ (at f=0.1 A/cm2).[84] The reduced diffusion length ρ was defined as: 

1

14( )

aυττρ
τ τ

=
+

 (2-4) 

τ1 is defined by 1τ
σ

= e

f
. At the surface, molecules “hop” from one adsorption site to 

another during time τ : a is the average hop distance and υ  the average speed. 

The contamination rate was a function of the ratio D/ρ (see eq. Z1 in fig. 2-1-6e). Physically, if 

the beam radius was smaller than ρ the molecules rapidly diffused to the beam, so its exact 



Chapter 2 : Literature survey – Contamination 

12 

dimension had no effect. From ρ to 10ρ, the contamination was significantly reduced because 

the molecules were fixed on the edge of the beam. Above 10ρ, the effects of surface diffusion 

were less pronounced while the effects of temperature became important. A value of ρ~0.1 µm 

fitted the experiments. The same value was obtained by another approach. The average time 

spent on the surface by an adsorbed molecule was calculated as 3 µs, during which the molecule 

travelled on average 2 µm distance in a random walk.[85] This corresponds to an area of 0.1 µm 

diameter. As a conclusion, the range of surface migration of 100 nm was too short to explain the 

spot profiles shown in fig. 2-1-5.[9] Other effects are involved, such as electron-flux-dependent 

density of the deposited material or beam-induced heating, as shown in the next paragraph. 

 

2-1-2-C) Two-dimensional applications: deposition and etching 

Examples of 2D applications of contamination deposits are shown in the next figures. 

Using the deposits as etch masks, the 80 Å line resolution (see fig. 2-1-7b) was not limited by the 

electron-beam process but by the grain size of the supporting metal film.[86-88] 

 

Figure 2-1-7. 2D applications of contamination (1970’s).[83, 86, 89] 

A grayscale picture with pixel size of 300 Å on a 5 x 5 µm2 area was recorded in 10 minutes (see 

fig. 2-1-7c).[83] The performances were improved (10 x 10 µm2 in 16 s, with pixel size 250 Å) by 

using fluxes of volatile organics.[90-94] Carbonaceous spots served as pattern stitching marks. 

Contamination “darning” was used to repair hole defects in lithography masks.[95] 



Chapter 2 : Literature survey – Contamination 

13 

Cooling the sample reduced contamination. The condensed water etched C away when 

activated by the electron beam, as shown in fig. 2-1-8c.[96, 97] 

 

Figure 2-1-8. a, b, c) Schematic single-spot contamination possible profiles and residual 
water effects. d) 2.2 µm-pitch array in C film by H2O-assisted parallel e-beam etching.[98] 

Competing with C build-up and temperature effects, it yielded complex deposit cross-sections 

(see fig. 2-1-8a,b), offering an interpretation to the profiles shown in fig. 2-1-5.[80]. Grids were 

etched in C films down to 0.1 µm pitch, by parallel 20 kV irradiation (see fig. 2-1-8d).[98] 

 

2-1-3 Three-dimensional micro-deposits 

2-1-3-A) Contamination tips 

By reducing the spot size, the deposits developed 3-dimensionally (see fig. 2-1-9a). 

Heights of 1 µm were reached in minutes.[99-102] Observing the deposits from a side view 

revealed a conical shape grown on both sides of thin films (see fig. 2-1-9b).[103] The lower part of 

the deposit was rounded due to PE scattering in the upper part. The cone sharpness depended 

on focusing accuracy.[104] 
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Figure 2-1-9. From large spot deposits to 3D contamination cones with a narrow beam. a) 
Schematic transition and graphical summary of some involved effects.[99] b) Tilted-view of 
4 pA, 25 kV contamination spots on a thin film.[104] c) Diameter and height vs. time.[105] 

The growth rate decreased beyond 1 µm height (see fig. 2-1-9c).[105] Material was also deposited 

around the main deposits, in regions that were not exposed to the beam. 

 
2-1-3-B) Contamination rods and fingers 

In 1965, freestanding carbonaceous rods were built by moving the beam across a metallic 

edge at 30 nm/s in the presence of added organic vapours.[106] Isolated 3 µm-long rods were as 

fine as 65 nm, but gratings showed proximity effects attributed to secondary, Auger, and 

scattered primary electrons (see fig. 2-1-10).[107] 

 

Figure 2-1-10. Freestanding contamination rods and proximity effects.[107] 

Side effects were observed during rod deposition. At 50°C the incident beam simultaneously 

deposited several thin, parallel, separated filaments.[108, 109] Deposits were formed on a metal wire 

when a 1 nm diameter FEB was spotted in the vacuum up to 35 nm away (see fig. 2-1-11b).[110] 
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Figure 2-1-11. Freestanding contamination deposits by single-slow-scanning.[108, 110, 111] 

This long-range interaction was assigned to 18 eV plasmons, remotely excited at the substrate 

surface by the passing electron beam. Rods grew more rapidly when the beam intersected a solid 

material, and were used as 3D templates for evaporation of metallic nanowires.[63, 111-113] 

Electrodes with sub-5 nm spacing were produced with this template method.[114] 

 

2-1-3-C) Applications 

Contamination deposits are used as supertips for scanning probe microscopy (also see 

below, fig. 2-2-3).[115-118] They penetrate into deep groves with less angular limitations than 

standard Si tips.[119, 120] The small apex diameters allow supertips to have a 10 nm resolution.[121, 

122] They were sharpened in O2 plasmas for higher resolutions.[123] They have low enough 

resistivities to be used in STM, but can also be metal-coated.[124-127] High-resolution contact 

lithography with such probes was demonstrated.[128-131] For high deposition rates, it was advised 

to place a piece of carbon adhesive tape in a microscope chamber, but “C blocks” (~50 mm3) 

and paraffine traces were also satisfactory.[132, 133] Supplying oil vapors to the reaction site allowed 

the deposition of C markers as reference points for AFM imaging studies of surface 

modifications.[134, 135] Contamination “soldering” was used to join C nanotubes in a TEM.[136] 

Carbon fibers deposited by a 10 kV FEB can be used as field emission tips. Higher 

growth rates than “natural” contamination are obtained from methane-hydrogen mixtures but 

give conducting deposits only above 50% CH4.[137] The nature of the carbonaceous deposits 

obtained at 30 kV was investigated by Raman spectroscopy, revealing a typical spectrum of 
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amorphous C.[138] This material was used as an insulator in diodes,[139] in single-electron-

transistors,[140] and as a mask for 60 nm planar electrode gaps.[141] A “diamond-like carbon” 

spectrum reported from a contamination deposit obtained at 5 kV, was actually a spectrum of a-

C, with a different D/G ratio.[142] FEB-induced deposition of a diamond phase was claimed 

from a 1% CH4 in H2 mixture with a high-current probe, but from a noisy Raman spectrum.[143] 

 
2-1-3-D) Electrical effects 

Electrostatic effects under the electron beam and their consequences on contamination 

are controversial subjects. The intense electric fields generated around the impingement point of 

the FEB on the substrate were claimed to enhance the surface diffusion of molecules towards 

the contaminating spot by induced polarization.[144] Most authors did not share this opinion 

because of poorly reproducible results,[80] or did not see a need to add electrical effects in their 

interpretations ([65], p.19; [63, 97]). Yet charge effects seemed to take place when deliberately 

contaminating with large beams on insulating samples like BN.[145] In this case, fractal filament 

growth took place (see fig. 2-1-12a,b). This “Laplacian” growth was of a non-diffusion-limited 

type, hinting at an electrostatic origin.[146] These results were reproduced on polymers, metals and 

ceramics, even from organometallic compounds.[147-150] 

 

Figure 2-1-12. Charging effects lead to fractal contamination growth modes. 1) Growth 
sequence on BN. 2) Detail of morphology, from compact (centre) to fractal (borders) 

aggregate. 3) Growth sequence on a contamination freestanding rod.[145, 146, 149] 
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2-1-4 Summary 

The contamination process is an electron-assisted cracking of hydrocarbons at an 

interface. The probable mechanism is the ionization of an adsorbed hydrocarbon layer by 

inelastic collisions with the primary electrons. The reactant is supplied mainly by the gas phase. 

The range of the surface migration of adsorbed species is on the order of 100 nm. Heating and 

charging effects are involved. The deposited material is amorphous and contains mostly (>80%) 

carbon. The process allows for deposition of a wide range of customized 2D and 3D 

nanostructures. Despite side effects it is satisfactory from an engineering point of view. Its speed 

was remarkably increased by the deliberate introduction of fluxes of volatile hydrocarbons. 

However, mostly partial characterizations were reported, and many properties of the deposited 

materials (mechanical, chemical, optical or electrical properties…) are still unknown. 

 

2-2 Focused electron beam induced deposition 

Instead of “contaminating” under an electron beam from the residual hydrocarbons, the 

process can be used for 2D or 3D construction of functional nanostructures. Organometallic 

precursors containing the desired chemical elements were deliberately introduced in the 

chamber and decomposed by an electron beam. 

2-2-1 Historical development 

As early as 1961, vapors of volatile tin derivatives (Sn(CH3)4, Sn(C4H9)4, SnCl2) were fixed 

on substrates by large electron beams with energies ranging from 50 eV to 1 keV.[151-153] Highly 

reflective superconducting Sn films were obtained. Good film quality and large metal content 

required low growth rates and a heated substrate (> 50°C). 

The volatile metal carbonyls were then used for deposition. W(CO)6 led to resistive 

deposits with a composition of W11C6O3.[154-156] Carbonyls of Mo, Re, Cr, and Fe, and ferrocene 

also deposited carbides.[157-163] At 125°C autocatalytic effects were observed.[164-166] The actual 

deposition mechanism is complex. Mass spectrometry indicated incomplete electron-induced 

fragmentations and mixtures of decarboxylated ions (see fig. 2-2-1).[167-176] Direct electron-
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induced CO desorption was observed from adsorbed W(CO)6.[177] The total ionization cross-

sections σ by electron impact, determined for simple gases, reached a maximum σmax between 

100 and 300 eV and decreased by a factor 2 until 1 keV.[178] They were larger when the gases 

contained larger amounts of heavier elements. For instance, σmax(NO2)=4.10-16 cm2, while 

σmax(CCl2F2)=8.10-16 cm2, and σmax(CCl4)=16.10-16 cm2.[179-181] 

 

Figure 2-2-1. Mass spectrometry studies of the electron-induced fragmentations of metal-
carbonyls. a) “Clastograms” of positive ions. Notice the successive energy thresholds.[167] b) 

Simultaneously produced negative ions.[168] c) Mechanism inferred.[169] 

New applications, such as high-resolution deposition without contact masks, renewed the 

interest in the process when using the focused beams from modified electron microscopes (see 

fig. 2-2-2a).[182, 183] Heating the precursor reservoir and optimizing the gas supply increased the 

growth rate to 15 nm/s (see fig. 2-2-2b).[184, 185] 3D structures were built in reasonable time 

frames.[186, 187] A 15 nm wide W-containing rod with crystalline clusters was constructed in a 

TEM (see fig. 2-2-2c).[188, 189] A 150 nm wide line containing Cr was deposited in a SEM.[182] The 

nano-deposits were smooth. 
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Figure 2-2-2. Focused electron beam induced deposition. a) Detailed setup.[155] b) Precursor 
supply by an optimized gas nozzle.[184] c) Constructed 3D nano-rod.[188] 

The halogenides WF6, WCl6, SiH2Cl2, SnCl4 or TiCl4 appeared promising for FEB-induced pure 

element deposition, but at low temperatures halogen atoms were co-deposited.[190-195] Upon 

substrate heating, F was liberated and etched the Si substrate. Post-deposition electron 

irradiation incompletely desorbed Cl.[194, 196] Auger analysis revealed impurity incorporation from 

residual gases (WCl6 deposited W7Cl2C1O2 while Cr(C6H6)2 deposited Cr2C9O3, H not measured). 

Parallel deposition was achieved by masking the wide beam from a TEM. The decomposition of 

a Ru3(CO)12 molecule required 280±110 electrons at 40 keV. The decomposition cross-section, 

0.2±0.15 Å2, was similar to the molecular inelastic scattering cross-section.[183] At high electron 

flux, the precursor was thermally decomposed into pure metal, but without area selectivity.[197] 

 
2-2-2 Improvements and applications 

New FEB-induced chemistries appeared with new CVD precursors. Al(Me)3 deposited 

Al:C alloys.[198] Ga(Me)3-AsH3 mixtures deposited GaAs:C.[199, 200] Heating the substrates lowered 

the C content.[201] Smooth deposits with 25 to 40% Au content but low conductivity were 

obtained from Me2AuIII(tfac). These were used as etch resists and X-ray absorbers,[155, 202] as well 

as for customized AFM and STM supertips (see fig. 2-2-3).[203-206] The principle was the same as 

with contamination supertips (see §2-1-3C), but the growth rates were higher. 
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Figure 2-2-3. FEB deposited SPM supertips. a) Principle of penetration in deep narrow 
grooves.[124] b) Principle of STM scanning of vertical walls.[125] c) Customized tips.[121, 126, 204] 

During the 1990’s, the deposition mechanism was studied in depth. Pulsing the beam to 

5 kHz brought a twofold increase by letting the adsorbed layer “refresh”.[207] Tip geometry was 

similar to that of contamination tips, i.e. a cone on top of a cylinder. The conical tip shape was 

attributed to PE scattering. The fraction of energy deposited as heat in the tips was usually less 

than 20%.[211, 212] The apex curvature radii decreased with increasing beam energy.[208] The growth 

rate decreased with tip height, affecting the growth of nano-coils.[209, 210] In spite of previous 

results (see fig. 2-1-4), the emitted SE were proposed to play the major role in precursor fixation 

because the energy dependence of the dissociation cross-section of small molecules overlaps the 

SE spectrum (see fig. 2-2-4a).[213] Controlling the primary beam energy showed a maximum 

deposition yield from W(CO)6 at 100 eV, but the lowest resistivity obtained (6.10-4 Ω.cm) was 

still 100 times larger than that of pure W.[214] In-situ sample cleaning (O2 plasma + 300°C anneal) 

and deposition from WF6 reproducibly led to 300 µΩ.cm.[215] Deposits with low resistivities 

(3.6 µΩ.cm, twice the value of bulk Cu) were created from (hfac)Cu(VTMS), despite low 

(~10%) Cu contents.[216] In an attempt to deposit tunnel junctions for single electron transport 

devices, higher growth rates were obtained at constant dose by slow scanning.[217-219] Because the 

calculated heat was too low to account for the phenomenon, it was attributed to SE emission at 

the deposit walls.[220] The number of molecules fixed from each electron (the deposition “yield”) 

depends on the geometry of the 3D structures on which the beam impinges.[221] 
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Figure 2-2-4. Advances in electron-beam induced deposition. a) Proposed mechanism.[213] b) 
TEM shows the deposit nanostructures.[222] c) Functional 3D device grown by FEBID.[223] 

Functional nanodevices such as electrical contacts, field-emission tips,[224] sensors,[222], and 

photonic crystals,[225, 226] required a detailed knowledge of the deposit composition and 

nanostructure. TEM observation (see fig. 2-2-4b) revealed that 2 to 10 nm metallic clusters were 

embedded in a carbonaceous matrix. The metallic content in the deposits was increased by up to 

75 % through depositing with larger beam currents,[227] on heated substrates,[228] or in reactive 

environments (H2O, O2).[229, 230] “Hopping” electrical conduction between the percolating 

clusters accounted for the electrical properties.[231] Annealing produced efficient, and bright, cold 

field emission tips.[232-234] Designs of miniature electrical devices appeared soon after these 

discoveries (see fig. 2-2-4c).[223, 235-242] 

Two strategies were developed to improve the purity of the deposits. The use of simple 

precursors like Si2H6 or Ge2H6 yielded crystalline, partially hydrogenated Si or Ge films.[243-245] 

Insulating SiO2 was obtained by adding O2.[246] “Smart” precursor choice allowed purer deposits. 

FEB deposition from (ethyl)Au(PMe3) in a TEM, between 125 and 200°C, produced crystalline 

Au films.[247] Depositing from the carbon-free inorganic precursor AuPF3Cl, at room 

temperature, yielded pure Au films with facetted grains and low resistivity (down to only 10 

times the value for bulk Au, partially due to grain boundaries).[248-250] With C-containing 

precursors, only smooth deposits were obtained, with a polymeric matrix between the grains, 

although Au optical plasmon effects were observed.[251] Adding water vapor led to polycrystalline 

Au cores,[252] which allowed for local soldering.[253, 254] Replacing the C-containing ligands by 
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phosphines did not allow direct pure metal deposition, as shown in the case of Rh.[255] 

Deposition from [RhCl(PF3)2]2 led to a Rh-P nanocomposite[256] with 60% Rh content, 19% P 

and 7% Cl, according to Auger spectroscopy.[257] 

Recently, the deposition of magnetic materials, mainly from cobalt-containing precursors, 

has attracted some attention.[258, 259] An application was found in super-tips for magnetic contact 

probe sensing (“magnetic force microscopy”[260]). As the probe size in electron microscopes 

continues to shrink,[261] the final process resolution became a relevant issue.[262, 263] W-containing 

dots, as small as 1 nm, were produced in TEMs with 0.8 nm probe size,[264-267] as well as Fe-Si 

nanorods.[268] 

 

2-2-3 Summary 

The deliberate introduction of organometallic vapors into electron microscopes turned 

contamination into a versatile nanofabrication process. The principles of both processes are 

similar. A wide choice of chemical elements can be deposited thanks to the numerous CVD 

precursors available. The deposits usually contain C, either because organometallic precursors 

are incompletely decomposed at low temperatures, or because C incorporation from the 

background gases takes place. Numerous applications of the process were found in 3D micro-

patterning. It is widely used but its mechanism is still under investigation. 

 

2-3 Electron beam induced chemistry 

I found useful to summarize here results from the well-documented field of electron-

induced chemistry. The technologically important field of electron beam lithography has 

attracted a wide scientific interest. 

2-3-1 Electron beam induced bulk processes – “Radiation damage” 

Electron beams damage organic and inorganic compounds.[269-272] There are two ways a 

reaction may be provoked by electron beam interaction with a sample: electron excitation or 

direct atomic displacement. The cross-section of electron excitation decreases with the square 
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root of the electron velocity. Direct atomic displacement can occur in materials when the kinetic 

energy transferred to each atom exceeds an energy threshold.[273, 274] Beam damage usually 

involves mass loss by removing the volatile elements (H, N, O, F, Cl), loss of crystalline 

structures and clustering of the remaining atoms.[275] Electron-induced dissociation and 

desorption require low electron energies (a few eV only).[276] Knock-on momentum transfer can 

sputter unvolatile elements, especially the lighter of them.[277-280] 

 

2-3-2 Applications to nanometer-scale lithography 

Electron-beam lithography is based upon the chemical transformation of a “resist” layer, 

which is then developed. In “positive” resists the developer solvent removes the exposed area, 

which is made more soluble. In “negative” resists the exposed area is cross-linked and only 

unexposed areas are dissolved. The resolution, sensitivities and chemistries of numerous resists 

were studied and reviewed.[281-287] In PMMA used as a positive resist, the sensitivity at 50 keV is 

10 µC/cm2 and the resolution is between 5 and 10 nm. It is not limited by the electron beam 

diameter but by the electron interaction range and the polymer chain size. The exposure 

mechanism involves the formation of radicals. Competing chain breakage and cross-linking 

occur. The thickness of the resist can be reduced down to a single monolayer.[288-294] 

Direct-write lithography processes were developed on inorganic compounds. Selected 

compounds used as inorganic resists are listed in table 2-3-1. This table shows that removal of a 

volatile element (H, N, O, F, Cl) and clustering of non-volatile elements are usual phenomena 

under electron beams. The high-resolution studies were made at high electron energy and may 

have involved knock-on mechanisms, but the phenomena occurred similarly at the lower 

electron energies, indicating that momentum transfer was not the only mechanism involved. In 

many of these experiments, atomic ionization due to inelastic collisions is the rate-limiting step. 

Electron-beam contamination and deposition are actually “dynamic” lithographic 

processes. They involve the exposure of a renewing adsorbed layer. Depending on the 

precursors used, electron-induced volatile element removal and cross-linking of fragments occur 

in the same way as in thick resist layers.  
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2-4 Alternative direct nanofabrication techniques 

2-4-1 Light-induced chemical vapour deposition 

Laser beams decomposed organometallic compounds.[364, 365] The decomposition 

processes were thermal or photolytic depending on the photon energy and substrate 

temperature. Films and 3D objects were directly deposited from focused beams or by image 

projection.[366-371] The best lateral resolutions obtained were typically 0.5 µm. The resolution was 

limited by the wavelength. Among the shorter wavelengths used was synchrotron radiation, but 

on large areas.[372-377] Photoelectrons and secondary electrons cracked the adsorbed species.[378, 379] 

Under photolytic decomposition conditions, the compositions were similar to those obtained by 

FEB deposition. 

 

2-4-2 Scanning probe deposition 

10-nm metal-containing features were deposited under STM tips.[380-387] The mechanism of 

deposition from the adsorbed precursor (hfac)CuVTMS involved fragmentation upon impact 

with low-energy tunnel electrons and field-induced dissociation.[388, 389] Deposition occurred 

simultaneously on the STM tip,[390] which was used to deposit self-aligned supertips.[391] Other 

mechanical surface modifications involved ploughing resists or depositing from the liquid 

phase.[128, 129, 392] Parallel versions were developed.[131] 

 

2-4-3 Focused ion beam induced deposition 

Precursors supplied in vacuum chambers were decomposed by focused ion beams (FIBs) 

similarly as by FEBs.[393, 394] The main used ions were protons, ionized noble gases, and especially 

Ga+ because of the high brightness liquid metal ion sources available.[395] The larger ions had 

higher energy deposition rates. The resolution was thought to be limited by the emitted SE 

(10 nm) and elastic recoil ion ranges (30 nm).[396] The smaller 3D deposits from 10 nm probe 

diameters were typically 100 nm.[397, 398] The main deposited materials were Au, Pt and Cu.[399-407] 

The metal contents and the growth rates were usually higher than by FEB. Sputtering by nuclear 
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collisions removed the lighter elements. Carbon was deposited as contamination or from 

deliberately injected organics.[408-413] 

2-4-4 New methods 

New nanofabrication methods are under development.[414] Among them, parallel imprint 

lithography is promising for mass replication at the sub-micrometer scale.[415] Many of these 

methods involve the replication of a micro- or nanopatterned structure, still making the pattern 

generation by conventional methods necessary. Most of the developments in these fields are 

driven by the microelectronics industry. Its famous “Moore’s law” states that the computer 

performances should be able to double on average every 18 months. Pushing towards smaller 

feature sizes and cheaper lithography processes is required in this competitive and rapidly 

renewing context. 
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C h a p t e r  3  –  S e t u p  d e s c r i p t i o n  

 
 

(…) A cette cause, le commerce des hommes y est 
merveilleusement propre, et la visite des pays étrangers, 

pour en rapporter principalement les humeurs de ces 
nations et leurs façons, et pour frotter et limer notre 

cervelle contre celle d’autrui. 
 

Montaigne, De l’éducation des enfants, Essais, ch. 26 
 
 
 
 

A previously modified Cambridge Stereoscan 100 (fabrication date 1980) was used for our 

focused electron beam induced deposition experiments.[1] The main features of this apparatus 

are described in Section 3-1. Several technical improvements are presented. Several in-situ 

analysis procedures for the monitoring of deposition are detailed. The external characterizations 

techniques are described in Section 3-2. 

 



Chapter 3 – Setup description 

28 

3-1 Electron microscope S100 

3-1-1 Setup overview 

The organization of the laboratory is shown in figure 3-1-1. 

 

Figure 3-1-1. Complete setup overview. From left to right: optical table, electron microscope 
and control board, and computers used for the controlled beam scanning and monitoring 

A detailed view of the electron microscope is shown in fig. 3-1-2.  

 

Figure 3-1-2. Outer view of the S100. a) Complete system. b) Front door. c) Controls. 
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The electron column and vacuum chamber are under a secondary vacuum. The 

background pressure was 10-6 mbar. The higher pressure allowed in the chamber for stable 

electron emission was 5.10-4 mbar. An oil-free membrane pump, fitted with a cold trap for 

condensing all organic vapours, backed the turbo-pump (see fig. 3-1-3a). 

 

Figure 3-1-3. Pumping system. a) Primary pump setup. b) Rear-view of the microscope, with 
pressure gauge and homemade liquid N2 container. 

At the rear of the microscope, a liquid N2 container (see fig. 3-1-3b) was connected to a 

thermally isolated 2-tube vacuum feed-through. A cryo-shielding tube was built in the chamber 

for condensing the effusing precursor vapours (see fig. 3-1-4a). When using for instance formic 

acid as precursor, with this system the working pressure was reduced from 10-3 to 8.10-5 mbar. 

 

Figure 3-1-4. Inside the vacuum chamber. a) Front-view. b) Inner side of the front door. 
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The holder for the precursor needle keeps the supply tubes in place (see fig. 3-1-4b). Once the 

chamber door is closed, the needle is fixed with respect to the FEB (see fig. 3-1-5a,b). The 

needle must be positioned so that precursor effusion takes place at 100 µm of the centre of the 

image (see fig. 3-1-5c). The angle between the needle direction and the FEB was 45° to 60°. 

 

Figure 3-1-5. a,b) Internal organization in the closed chamber. c) S100 screen snapshot 
showing an overview of the needle alignment. 

 
3-1-2 Precursor supply 

Internal reservoirs were built from surgical stainless steel pieces, purchased from Unimed 

SA, Lausanne (see fig. 3-1-6). They were filled by liquid or solid precursors under N2 in a glove 

box. The reservoirs were weighed before and after effusion. Typically, 50 mg of (hfac)CuVTMS 

evaporated in 6 h. The average flux was obtained by dividing the corresponding number of 

evaporated molecules by the effusion time and the needle area. The organometallics were 

purchased from Strem, ABCR, or Schumacher, or were synthesized by a partner research team.[2] 

 

Figure 3-1-6. Internal precursor reservoir system. a) Separate pieces. b) Assembled system. 
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The external precursor supply (see fig. 3-1-2b) was used for compounds with vapour pressures 

at RT larger than 1 mbar (they evaporated too quickly from the internal reservoir). The reservoir 

was surrounded by a beaker of water at room temperature in order to avoid evaporative cooling. 

The organic compounds were purchased from Sigma-Aldrich. 

 

3-1-3 Sample and holder; specimen movement control 

The main substrate used was naturally oxidized p-doped silicon. Pieces were cut from a 

wafer down to 6x6 mm2. They were laid horizontally and held to the Al stub by thin flexible Cu 

lamellas. The sample height was controlled with 100 µm resolution. The sample tilt was 

manually adjustable with 10° accuracy. A motorized stage allowed rapid horizontal (x and y) 

movements of the sample under the fixed needle and the FEB (see fig. 3-1-2b). The length of 

manual steps was 5 µm. The slower continuous speed available was 2.5 µm/s. A customized x-y 

micrometric table using stick-slip piezoelectric actuation was constructed for the S100 (see fig. 3-

1-5b).[3, 4] The step resolution was 100 nm and the slower continuous speed measured was 

140 nm/s. A compact resistively heating sample holder was obtained from the flat W filament of 

a halogen light bulb, on which the sample and a ceramic plate were directly laid. This setup 

heated the sample up to 120°C. 

 

3-1-4 Electron beam deflection control 

Among the microscope built-in TV scans, only the standard rate was used for large-area 

exposure. It consisted of a standard 50 Hz TV scan, with 625 lines per frame, and aspect ratio 

1.27 at all magnifications (from 25x to 240000x at 25 kV and 15 mm working distance, in 15 

coarse steps). To deposit tips the beam scan was switched off and the beam was spotted. The 

spot position was manually chosen. It was usually at the centre of the screen at 4000x (4kx). 

A beam control software was adapted to this microscope. Named NPGS for Nanometer 

Pattern Generation System (version 7.6), it was developed for electron lithography and 

commercially available from J.C. Nabity, Bozeman, MT59717, USA. The design of complex 
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beam patterns was possible with this system. To define the scan speed, continuous lines were 

interpreted as series of points. The smaller distance d allowed by the program hardware, typically 

4.8 Å at magnification 4 kx, was used to separate the points. The points were exposed for a 

“dwell time” τ. For a scan speed of 30 nm/s, τ=16000 µs. It was checked experimentally that as 

long as the point-to-point spacing was below 10% of the electron probe diameter, the structures 

obtained at a given speed (ratio d/τ) were independent of the exact value of d or τ. Beam 

alignment on patterned marks before deposition was possible with NPGS. 

 

3-1-5 Image quality and recording 

The image was formed in a standard Everhart-Thornley secondary electron (SE) detector, 

behind a +400 V biased grid. No backscattered electron (BSE) imaging was available. A 

computer acquired screen snapshots through a Mirovideo DC20 image acquisition card (see 

fig. 3-1-7). This feature was limited to coarse geometries. In the S100, observing at higher 

resolution required using lower probe currents, which decreased the signal-to-noise ratio (SNR). 

Satisfactory images could be taken only above 100 pA probe current. At 10 pA, the SNR was so 

low that even focusing was difficult. Structures could be deposited but not observed. 

 

Figure 3-1-7. Imaging quality in the S100 at two magnifications (500 pA, screen snapshots). 
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3-1-6 Focused Electron Beam parameters 

The electron source was a W filament heated to 2500-2800 K. The typical filament 

lifetime was one week, occasionally less when using certain precursors. The filaments were 

routinely replaced and realigned. They were slowly heated to saturation in 20 min before each 

first use. As acceleration energies 2, 3, 5, 10, 15, and 25 keV were available. Using one of the 

three lower energies required changing the anode in the electron extraction system. The working 

distance was imposed by the size of the precursor reservoir. It was at least 15 mm. The diameter 

of the diaphragm at the end of the electron column was either 50 or 70 µm. 

The electron probe diameter was measured at 25 keV, at a working distance (WD) of 

17 mm, with a diaphragm of 50 µm diameter, by imaging an Au on C resolution standard and 

applying Rayleigh’s criterion.[1] The probe current and the probe diameter at 4σ varied together: 

6 2.547
,42.10 σ

−=p pi d  (3-1) 

Probe current ip (in nA) as a function of the probe diameter dp,4σ (in nm).  

According to this formula, at 500 pA probe current the probe diameter at 4σ was 132 nm. A 

knife-edge profiling method was applied to measure the electron distribution and convergence 

angle (see fig. 3-1-8a).  

 

Figure 3-1-8. Knife-edge profiling. a) Experimental principle. b) Results. c) σ vs. height. 

The conditions used were 25 keV, WD 45 mm, 70 µm diameter diaphragm, 430 pA. The beam 

was scanned at 20 nm/s across the edge of a cleaved Si sample. The un-intersected probe was 
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collected and measured in a Faraday cup through a 13 µm diameter opening in a Cu foil placed 

400 µm below the Si edge. The electrons laterally scattered into angles larger than 16 mrad hit 

the grounded Cu foil and were not measured. The knife-edge curves were symmetrical, and their 

derivative showed the Gaussian beam distribution (see inset of fig. 3-1-8b). The beam profile 

was defined as: 

2

2 2
( ) exp

2 2πσ σ
 

= − 
 

pi r
I r  (3-2) 

The parameter σ was calculated from the knife-edge curves by the formula 3-3, in which W10-90% 

was the width, defined graphically in fig. 3-1-8b, between the points where the signal reached 10 

and 90% of its full value.[5] 

10 90%0.39σ −= W  (3-3) 

The beam convergence angle was 0.8 ± 0.2 mrad (see fig. 3-1-8c). The values obtained at this 

sample height were larger (see fig. 3-1-8c) than those measured previously by using Rayleigh’s 

criterion (eq. 3-1). The shorter working distance and the smaller diaphragm conditions were 

chosen in the deposition experiments. 

 

3-1-7 In-situ sample current monitoring during deposition 

During operation of the S100, the sample was grounded through a Keithley 485 

autoranging pico-amperemeter (shown in fig. 3-1-2c), which measured continuously the current 

absorbed by the sample. A computer acquired the measured value through a DAQ card and a 

Labview (v6.1, National Instruments) visual interface (see fig. 3-1-9). It was possible to acquire 

simultaneously either the SE detector signal, which modulated the intensity on the CRT screen 

of the electron microscope, or the photodiode signal (see below, §3-1-8). During deposition the 

sampling rate was 20 Hz. The values were averaged on 1 or 2 s. The actual number of electrons 

emitted by the filament could not be measured. In all the presented results where the sample 

current changed during deposition, the initial and final values of the probe current were checked 
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to be equal, either on the bare substrate or in the Faraday cup. As a consequence, the measured 

variations corresponded to a modification of the electron absorption efficiency of the sample. 

 

Figure 3-1-9. Principle of the in-situ monitoring of signals. 

For clarity, only the absolute measured values, with their sign, are reported in the entire text. The 

sample current was usually negative at 25 keV, but positive sample currents were occasionally 

measured.  

 

3-1-8 Co-focused laser beam 

An Ar+ ion laser emitting at 514 nm was co-focused with the FEB. The saturated SE 

scintillator was switched off while operating the laser inside the chamber. Coupling the laser into 

a monomode optical fibre (core diameter 4 µm) brought 40% of the laser power at a fixed point 

in front of a focusing optical system mounted across the chamber wall (see fig. 3-1-10a). The 

alignment was stable. The divergent beam exiting the optical fibre was made parallel by passing 

through Lens 1 (focal length f1=2 cm). Lens 2 (focal length f2=5 cm) focused it onto the sample 

(see fig. 3-1-10b). The beam on the sample was the image through a telescope of the beam at the 

fibre exit. A knife-edge measurement across the sharp edge of a Cr film on quartz revealed an 

elliptical laser spot with lateral dimensions 50 x 70 µm2. The beam incidence angle on the 

substrate was 45°. 
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Figure 3-1-10. Laser co-focusing setup. a) Beam path outside the chamber. b) Example of 
beam path inside the chamber. c) Home-made holder for optical parts.  

The fine co-focusing was achieved by marking the sample with red or black pen spots (2-3 mm 

wide). At 1 W power, the laser locally melted the thick (~200 µm) ink marks, resulting in a small 

pit visible in the SEM. The x-y fine positioning of the fibre exit moved the laser beam to the 

right horizontal position on the SEM screen. The vertical position was adjusted by moving the 

sample up or down. After reflection on the sample, the beam was sent to a photodiode (see fig. 

3-1-4b) by a reflection on a horizontal mirror fixed to the last electron lens. The reflectivity of 

large growing deposits (at magnification 1 kx) was monitored in-situ with usually 200 mW laser 

power. The power incident on the sample was 10 mW due to the coupling and the multiple 

reflections. The temperature increase induced by the relatively large spot was at most 5°C.[6] 

 

3-1-9 In-situ resistance measurements 

Resistivity measurements were performed on deposited lines. To avoid oxidation effects 

and electrical breakdowns upon contacting, the resistance was monitored in-situ during the 

deposition of conductive deposits. The principle of the measurement is shown in fig. 3-1-11a. 
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The gain of the operational amplifiers varies with the resistance to be measured. A miniaturized 

electrical system was designed and realized for use in the S100 chamber (see fig. 3-1-11b,c).[7] 

Typically, Us=0.1V and Rd=1 MΩ were measured with R1=120 kΩ, R2=620 Ω, and Vb=1V. 

 

Figure 3-1-11. In-situ resistance measurement. a) Electrical scheme. b) Optical micrograph of 
the electrode pattern used. c) Ready-to-use system. 

 

3-2 Ex-situ characterization 

After deposition the samples were taken out of the S100 chamber. No precautions were 

taken against air exposure. They were imaged in a field-emission-gun Philips XL30 scanning 

electron microscope (FEG-SEM). This SEM was equipped for SE and BSE imaging, and had an 

Oxford LEAP detector for electron dispersive X-ray spectroscopy (EDXS) microanalysis. 

Routine transmission electron microscopy (TEM) analyses were made in a Philips CM-20 

operated at 200 kV. Higher-resolution TEM, scanning TEM and EELS analyses were 

performed in a Hitachi HF-2000 operated at 200 kV, with the help of an operator. TEM 

analyses with a heated sample holder were performed in a Philips EM-430 TEM operated at 

300 kV. All electron microscopy observations were made at CIME, EPFL. 

Optical imaging was performed up to magnification 500x in an optical microscope (Zeiss 

Axiotech Vario 25 HD) equipped with a CCD camera for image acquisition (see fig. 3-1-12a). A 

system was constructed for micro-spectrophotometry by coupling the light from this 

microscope into an Optical Spectrum Analyzer (Ando AQ-6315B) through an optical fibre (see 

fig. 3-1-12b).[8] A compromise was made between resolution and signal-to-noise ratio by 
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selecting a 380 µm diameter fibre. Spectral information in the 400 to 800 nm wavelength range 

was available on spots of 10 µm diameter with this system. 

 

Figure 3-1-12. Ex-situ optical microscopy and AFM. a,b) Optical microscope used and part 
modified for micro-spectrophotometry. c) Compact AFM system used. 

The sample profile was measured along lines by profilometry using a Tencor Alphastep. 

The stylus diameter was 50 µm. The smaller lateral range was 80 µm. For 2D mappings at 

higher resolution, a Nanosurf Easyscan atomic force microscope (AFM) was used (see fig. 3-1-

12c). The larger lateral range was 80 µm. The samples were aligned with micrometric screws. 

Microscopic Fourier Transform Infrared Spectroscopy (µ-FTIR) was performed in a 

Perkin-Elmer Spotlight 300 infrared microscope (LTP, DMX, EPFL). The deposits on Si 

substrates were analyzed in transmission. Square window areas with 20 µm side length were 

selected. The signal transmitted through the bare Si substrate was defined as background. The 

measured spectra were averaged on 64 to 1024 scans. Microscopic Raman spectroscopy (µ-

Raman) was performed in a Renishaw RM1000 spectrometer with a 50x objective (IPS, UNIL). 

The excitation wavelength was 514 nm. The measured spectra were averaged on 2 to 10 scans. 
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C h a p t e r  4  –  E l e c t r o n  r a n g e  e f f e c t s  

i n  f o c u s e d  e l e c t r o n  b e a m  

i n d u c e d  d e p o s i t i o n  

 
 

Il n’est pas de brouillards, comme il n’est point d’algèbres, 
Qui résistent, au fond des nombres ou des cieux, 

A la fixité calme et profonde des yeux. 
 

Victor Hugo, la Légende des Siècles, 0, 40 
 
 
 

In the usual beam energy range used for electron microscopes (1-50 keV in SEMs, 

30 keV-a few MeV in TEMs), the penetration of electrons into solids takes place at larger scales 

(typically > 100 nm) than the lateral beam diameter (down to ~1 nm in SEMs, ~1 Å in TEMs). 

This chapter presents the propagation of electrons in materials and its evolution during Focused 

Electron Beam induced deposition (FEBID). The deposition process, which consists of a 

surface reaction, is linked to the scattering of electrons that takes place in bulk matter. Three 

types of deposits are considered, in an increasing order of complexity. In Section 4-1, the simple 

case of deposition of large-area films is presented. The principle of in-situ monitoring of the 

sample current, and to a lesser extent of the SE detector signal, is demonstrated. Several beam 

energies and deposit compositions are investigated and interpreted to show the scope of the 

method. Monte-Carlo simulations illustrate the physical origin of the phenomenon. A relation is 

defined between the growth rate and the numbers of electrons through interfaces. In Section 4-

2, the deposition of sharp tips is studied. Systematic in-situ sample current monitoring allowed 

developing a more detailed model of electron scattering. In Section 4-3, the electron range 

effects during deposition of complex 3D microstructures are presented. Fundamental aspects of 

the deposition process were discovered and interpreted during this study. 
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4-1 Large-area deposits 

Numerous parameters are involved in the focused electron beam induced deposition 

process (see fig. 4-1-1). Several parameters are linked together by physical relations. During 

deposition of a simple structure like a large-area flat film on a substrate, the target upon which 

the electron beam impinges is modified. This section shows how electron propagation evolves 

during deposition, and what are the consequences on the film deposition rate. 

 

Figure 4-1-1. Schematic diagram of the process parameters 

The deposition of low-atomic number (carbonaceous) films is first addressed. The effects of 

several experimental parameters are studied, namely the deposition substrate, acceleration 

voltage, probe current, exposed area, and distance to the gas effusion needle. Then the 

deposition of an intermediate atomic number material, a Cu-containing carbonaceous film, is 

described at several acceleration voltages and on two different substrates. The deposition of high 

atomic number Au films is then studied. In the discussion of the results, Monte-Carlo 

simulations describe common features of the three deposited materials. Finally, physical 

interpretations of the results are proposed. 
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4-1-1 Definition 

A “large-area deposit” has lateral dimensions that exceed the electron backscattering range 

(see fig. 4-1-2a) and the electron probe diameter, as shown in fig. 4-1-2b. 

 

Figure 4-1-2. “Large-area deposit” definition. a) Graphical definition of electron ranges in a 
solid target (Rm: maximum range; rB: backscattering (BSE) range; xC, D: characteristic 

depths).[1] b) Large-area deposit writing sequence. r: edge radius. 

The backscattering range rB is the larger distance from the incidence point up to which a 

backscattered electron (BSE) can exit a solid target after a series of collisions (see fig. 4-1-2a).[1] 

rB increases with the beam energy and decreases with the target atomic number. It ranges from 

30 nm in Au at 3 keV to 2.5 µm in C at 25 keV (see Annexes 1 and 2 for further details). The 

larger probe diameter dp used was 1.05 ± 0.1 µm at 100 nA probe current. Both dp and rB 

convolute the rectangular beam scan (see fig. 4-1-2b). The scan areas were considered “large” 

when the central areas exposed by both primary electrons (PE) and BSE were at least equal to 

the exposed edge areas. In the presence of a precursor, the scans resulted in the local deposition 

of films having large lateral dimensions as compared to their thickness. 
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4-1-2 Low atomic number deposits 

The deposition of C films on light (Si) and heavy (Au) substrates is compared at several 

beam energies. The film thicknesses were measured by profilometry. The SE and BSE contrasts 

of ex-situ SEM images were compared to the in-situ evolutions of the SE and sample current 

monitored during deposition. The sample current indicated the amounts of BSE with a small SE 

contribution. The monitoring made thickness and growth rate information available during 

deposition. It was used to study the effect of several parameters of the process. The results are 

interpreted in paragraphs 4-1-5 and 4-1-6. 

Large-area C films were deposited from acrylic acid (H2C=CH-COOH) as a precursor. 

The precursor flux, estimated by a volume reduction of 0.2 mL in 6 h through a 600 µm 

diameter needle, was (3 ± 1).1019 molecules/cm2.s. The PE energy was varied from 5 to 25 keV, 

at a probe current of 100 nA. At magnification 2 kx, the 50 Hz TV scan exposed a 50x60 µm2 

area at a constant distance of 100 µm from the needle. The sample was naturally oxidized p-

doped Si. Deposition was performed across the edge of a 500 nm thick Au film evaporated prior 

to deposition, in order to measure the effect of the substrate in strictly identical conditions. 

4-1-2-A) Intermediate acceleration energy – 10 keV 

The thickness of large-area deposits increased linearly with the deposition time.  

 

Figure 4-1-3. Ex-situ characterization of large-area deposits from acrylic acid, TV scan at 
magnification 2 kx across a Si-Au film edge, 10 keV, 100 nA. a) Optical micrographs 
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(reflection, bright field) with deposition times (minutes). b) Example of measured cross-
section (Alphastep; note the different scales). c) Measured deposit thickness on Si and Au vs. 

deposition time and electron dose. 

Interference colors were seen in the optical micrographs of films thinner than 1 µm (see fig. 4-1-

3a). They clearly showed the homogeneous thickness in the central part of the scanned 

rectangles, as compared to their edges. The film thicknesses (at most 2 µm) were always smaller 

than their lateral dimensions (see fig. 4-1-3b). The constant growth rate of 67 ≤ 3 nm/min was 

independent of the substrate (see fig. 4-1-3c). 

The deposited films were observed ex-situ in a higher-resolution SEM (XL30 SFEG) at 

10 kV (see fig. 4-1-4a). Both the SE and BSE signals from the films decreased with increasing 

thickness before saturating after 8 minutes (see fig. 4-1-4b,c). The variations were larger on Au 

than on Si but the final values were identical. 

 

Figure 4-1-4. Ex-situ 10 kV SEM pictures. a) SE and BSE images of the 8 min. deposit. 
Insets: contrast profiles. b) BSE contrast profiles on successive deposits. c) Evolution of SE 

and BSE contrasts of successive deposits on Si and Au. Dotted lines are first-order 
exponential fits (see below, §4-1-5B,C). 
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During deposition of the films shown in figs. 4-1-3 and 4-1-4, the sample current and SE 

signal of the SEM used for deposition were monitored and recorded by a computer. The 

recorded signals are shown in fig. 4-1-5. 

 

Figure 4-1-5. In-situ monitoring of signals from acrylic acid at 10 kV, 100 nA, TV scan at 
magnification 2kx. a) Sample current vs. time (2 s per point). b) SE detector signal vs. time. 

Inset, close-up on the beginning of the process on Au. 

The in-situ monitored SE signals decreased with the same time constants as the ex-situ SEM 

contrasts, but they offered continuous information. Slope variations occurred at 13 ± 3 nm 

deposit thickness, then the signals decreased linearly (see inset in fig. 4-1-5b). Saturation 

occurred after 900 ± 90 s, on a 1 ± 0.1 µm thick deposit, to a substrate-independent value, 

which corresponded to reductions of 67% and 50% from the signals on Au and Si, respectively 

(see fig. 4-1-5b). The absolute values of the negative sample currents were initially imposed by 

the substrates (see fig. 4-1-5a). They linearly increased in correspondence to the film thickness. 

Saturation occurred at 91% of the probe current after 900 ± 90 s, on all substrates. After 

saturation was reached, no more information on film thickness or growth rate was obtained. 

The signals across the Si-Au edge were weighted sums of the evolutions on Si and Au. The 

sample current had two advantages over the SE signal. First, it was less noisy. Second, the 

indicated value was absolute, while only relative variations were measured with the SE detector. 

The following hypothesis was formulated: the variation of the sample current could be 

due mainly to the evolution of the BSE yield, because they were linked by a simple relation: 
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( )1pi i η δ= − −  (4-1-1) 

Sample current balance from probe current ip, BSE yield η, and SE yield δ. 

At 10 keV η is larger than δ (see Annexes 3 and 4). The fraction of incident electrons absorbed 

in the sample increased when η decreased. In order to test by experimental proofs, deposition 

was performed at different beam energies with a systematic monitoring of the signals. 

 

4-1-2-B) Lower acceleration energy – 5 keV 

The films deposited at 5 keV on Au were similar in optical microscopy (not shown). The 

successive thicknesses measured by profilometry showed that the growth rate was not constant 

(see fig. 4-1-6). It decreased from 53 to 41 nm/min after 8 min. 

 

Figure 4-1-6. Ex-situ profilometry measurements of large-area deposit thickness vs. time 
from acrylic acid on Au, TV scan at magn. 2 kx, 5 keV, 100 nA. 

During deposition the sample current and SE were monitored in-situ. After a slope 

variation at 9 ± 2 s (see inset in fig. 4-1-7b), the SE signal lost 60% of its value and saturated (see 

fig. 4-1-7b). A slope variation also occurred at 9 ± 2 s on the sample current curve (see inset in 

fig. 4-1-7a), then the absolute value of the sample current increased and saturated at 95% of the 

probe current (see fig. 4-1-7a). Both saturations occurred in 8 minutes, when the film was 

350 nm thick, coinciding with the time at which the growth rate decreased. 
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Figure 4-1-7. In-situ monitoring of signals from acrylic acid at 5 keV, 100 nA, TV scan at 
magn. 2 kx. Left, sample current vs. time. Right, SE detector signal vs. time. Insets, close-ups 

on the beginning of the process. 

The initial slope variations (see insets in fig. 4-1-7a,b) were due to a change in SE emission 

properties of the sample. The beam current was lowered to 10 nA, which lowered the growth 

rate to 7.5 ± 2 nm/min. Detailed initial slope variations reproducibly occurred (see fig. 4-1-8a) at 

12 ± 3 nm film thickness, which is of the order of the SE escape depth.[2] By recollecting the SE 

in the substrate with a +9 V sample bias, the initial slope variations disappeared from the sample 

current and were strongly attenuated in the SE curve (see insets in fig. 4-1-8b). 

 

Figure 4-1-8. Detailed in-situ observation of the initial slope variation from acrylic acid at 
5 keV, 10 nA. a) Monitoring across an Au-Si edge (repeated on several deposits, 2 to 8 min.; 
curves shifted for comparison). b) Monitoring on Au with and without +9 V sample bias. 



4-1 Low atomic number large-area deposits 

47 

With the bias the signals evolved at the same rate, but the sample current was 10 % larger and 

the SE signal 10 % smaller (see fig. 4-1-8b). The sample recollected all the SE emitted from the 

sample at energies lower than 9 eV. Although by definition all electrons emitted at energies 

below 50 eV are called “secondary”, most of the SE emission spectrum is contained below 

10 eV.[3-8] The remaining SE signal was probably due to third-generation SE, emitted by the BSE 

on the chamber walls. The initial slope variation in the sample current curve indicated a partial 

SE contribution to this signal. 

The rapid initial SE decrease with film thickness was confirmed by SEM imaging at 5 kV 

(see fig. 4-1-9a). The successive SE intensities showed a quick initial decrease on the thinner 

films, while the BSE initial decrease was linear (see fig. 4-1-9b and compare to fig. 4-1-8b). 

 

Figure 4-1-9. Ex-situ 5 kV SEM imaging confirms the SE contribution to initial slope 
variation. a) 5 kV SE (top) and BSE (bottom) images of a deposit across an Au-Si(-Au again) 

edge. Insets, contrast profiles. b) Successive SE and BSE intensities, on Au and Si. 

These measurements confirmed the hypothesis: the sample current depended mainly on 

the BSE yield. The SE, BSE and sample current evolved in correspondence to the film 

thickness, with a higher sensitivity in the first deposited nanometers. After 10 nm thickness, the 

SE emitted from the sample decreased the measured sample current by only 10%. The 
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simultaneous sample current and BSE evolutions occurred on thinner films than at 10 keV due 

to lower electron penetration. 

 

4-1-2-C) Higher acceleration energy – 25 keV 

At 25 keV the average growth rate of 25 nm/min was halved as compared to the lower 

energies. The substrate had almost no effect on the growth rate, which had an inflexion point at 

15 min (375 ± 50 nm, see fig. 4-1-10b). 

 

Figure 4-1-10. Films deposited at 25 keV, 100 nA. a) Ex-situ 25 keV SEM images (SE and 
BSE). Insets, contrast profiles. b) Film thickness vs. time (Alphastep), on the two substrates. 

The 25 keV SEM contrasts between the film and the substrates were low (see fig. 4-1-10a). The 

monitored signals (not shown) evolved much more slowly (from 66 to 72 nA in ½ h for the 

sample current) and did not saturate during the investigated time span. Saturation was reached 

by depositing on smaller areas (see §5-1-3). The slow decrease of the BSE yield and sample 

current were due to the larger electron penetration, which makes the electron probe less 

sensitive to surface layers. As a conclusion, 25 keV energy was not recommended to study the 

dependence of the deposition rate on the process parameters, as compared to lower energies. 
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4-1-2-D) Growth rate dependence on process parameters and mapping 

The sample current was a useful tool to monitor the film deposition rate, since it was less 

noisy than the SE signal. Monitoring was used to investigate the effect of several process 

parameters on the deposition rate. A compromise had to be made between the higher sample 

current sensitivity to film thickness at lower beam energy and the higher growth rate at 

intermediate beam energy. The deposition conditions were chosen as 10 keV and 100 nA on Au.  

When keeping the exposed area constant, the growth rate (R) depended on the probe 

current (ip). The relative growth rates were deduced by scaling the time bases so that the 

monitored curves superimposed on one another, as shown in fig. 4-1-11a. 

 

Figure 4-1-11. Growth rate (R) vs. probe current (ip) from acrylic acid on Au, 10 keV, TV 
scan at magn. 2 kx. a) Curves superimposed by adapting the time bases. b) Log-log plot of 

the relative growth rates, normalized at 100 nA, and deduced power law. 

All curves were superimposed on the same values around saturation, or around the initial slope 

variation (see inset in fig. 4-1-11a) if, for technical reasons, saturation was not possible. Each 

reduction of the probe current by a factor of 10 decreased the growth rate by 3.5. The growth 

rate varied as the power 0,58 of the probe current (see fig. 4-1-11b).  

By following the same time base scaling procedure, monitoring was used to study the 

growth rate dependence upon the scan area (S). The large-area deposits obtained at different 

magnifications are shown in fig. 4-1-12a. The effective surfaces on which the deposits formed 

were measured from the optical micrographs. 
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Figure 4-1-12. Growth rate vs. exposed area from acrylic acid on Au, 10 keV, 100 nA, TV 
scan. a) Optical micrographs (dotted lines: schematic beam size and path). b) Log-log plot of 

the relative growth rate, normalized at 6 kx, and deduced power law. 

Each reduction of the exposed area by a factor of 3 increased the growth rate by 30% (see fig. 4-

1-12b). The growth rate varied as the inverse power 0,32 of the surface. The two power laws 

give information on the deposition rate dependence on the electron flux, as shown in §4-1-7. 

Monitoring was used to map the relative growth rate decrease vs. distance to the needle. 

 

Figure 4-1-13. In-situ growth rate mapping (acrylic acid on Au, 10 keV, 100 nA). S100 screen 
snapshot after deposition. Deposit positions and relative growth rates highlighted. 
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In the direction of effusion, a 70% deposition rate decrease occurred at 600 µm (see fig. 4-1-13). 

The lateral reduction was 60% at only 300 µm. Both were due to a lower local precursor 

supply.[9, 10] At the needle exit, the gaseous precursor flux was 3.1019 molecules/cm2.s. According 

to the kinetic theory of gases, the corresponding local pressure was 0.4 mbar, i.e. 10% of the 

precursor vapor pressure of 3.8 mbar.[11] The collision mean-free-path was 50 µm. The gas then 

expanded and its internal pressure dropped down to the pressure in the vacuum chamber, 

measured as 1.3.10-5 mbar with this precursor. This agreed with Monte-Carlo simulations of the 

gaseous flow in the molecular regime.[12] The deposition regime was thus precursor-limited.  

To study the effects of the three parameters, the advantage of monitoring was a rapid, 

precise and continuous access to the growth rates. Profilometry or AFM would have required 

several deposits, thus been more time-consuming and not as accurate. 

 

4-1-2-E) Summary of the results 

- The SE and BSE contrasts of C films deposited on Si and Au, observed ex-situ by 

SEM at the same energy, decreased and saturated at substrate-independent values 

with similar time constants. Saturation occurred on thinner films at lower energies. 

- Similar and simultaneous variations were continuously monitored during 

deposition in the signals of the emitted SE and of the sample current. 

- The larger growth rate was measured at 10 keV. It was constant with deposition 

time. The 30% lower growth rate measured at 5 keV on Au decreased when the 

sample current saturated. A much lower growth rate with a complex evolution 

during growth was measured at 25 keV. 

- Initial slope variations occurred in the monitored signals at 12 nm deposit 

thickness due to the emitted SE. A +9 V sample bias suppressed them without 

affecting the growth rate. The SE contribution to the sample current was limited 

to 10%. During deposition, the sample current variation was due mainly to a 

change in BSE yield of the structure on which the electron probe impinges. 
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- The substrate had no important effect on the growth rate, contrary to what was 

observed by contamination.[13] 

- Monitoring of the sample current was used to study the effects of the process 

parameters. The growth rate was mapped as a function of the distance to the 

needle. It varied as the power 0,58 of the probe current at constant exposed area, 

and as the inverse power 0,32 of the exposed area at constant probe current. 

In order to observe the dependence of sample current on the average atomic number of the 

deposit, monitoring was applied when depositing films with heavier elements, Cu and Au. 

 

 

4-1-3 Intermediate atomic number deposits 

Deposition was performed from the copper CVD precursor hexafluoro-acetylacetonato-

copper(I)-vinyltrimethylsilane ((hfac)CuVTMS, CAS n°[139566-53-3]) at several accelerations. A 

probe current of 10 nA was used in order to avoid heating. As determined by EDX, all the film 

deposits showed the same composition, Cu1C3O1F1 (see §5-2-2). 

 

Figure 4-1-14. Deposition from (hfac)CuVTMS at several energies, 10 nA, TV scan, 2 kx. a) 
Thicknesses (Alphastep) on Si vs time t. b) Ratios of the linear growth rates (ND: not defined 

at 3 keV; see below, fig. 4-1-15). c) Thicknesses on Au, plotted at the same scale as in (a). 

The growth rates increased with the decreasing beam energy (see fig. 4-1-14a,c). During 

deposition all growth rates were constant except at 3 keV, and were higher on Au than on Si by 

a factor 1.5 to 1.8 (see fig. 4-1-14b). Only the 3 keV films BSE contrasts saturated at 40 ≤ 5 nm 
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thickness in ex-situ SEM imaging at the same energy as deposition (see fig. 4-1-15). Due to the 

high C content in the films the contrasts were very similar to those of the previous section 

(compare figs. 4-1-15 and 4-1-9). 

 

Figure 4-1-15. a) Ex-situ 3 keV SEM images of films deposited at 3 keV. The thicker left and 
upper deposit lines were due to the built-in TV scan .b) Successive BSE profiles.  

The initial growth rate variations seen in fig. 4-1-14c at deposition energy 3 keV coincided with a 

decrease in BSE and SE (see fig. 4-1-16a). 

 

Figure 4-1-16. Simultaneous evolutions from (hfac)CuVTMS on Au at 3 keV. a) Growth 
rate, ex-situ SE and BSE contrasts vs. deposit thickness. b) In-situ sample current monitoring. 

A simultaneous decrease in the absorbed sample current was measured, after a sharp slope 

variation at 7 ≤ 2 nm deposit thickness (see fig. 4-1-16b). The sample current saturated at 56% 

of the total probe current on a 45 ≤ 5 nm thick film, following the same trend as the BSE yield. 
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As a conclusion, the deposition regime for this precursor was substrate-dependent. The growth 

rate evolved at the same speed as the numbers of electrons passing through the interface. 

 

 

4-1-4 High atomic number deposits 

Most precursors used for FEB-induced deposition contained C, which was also present in 

the deposits. In order to deposit on a Si substrate a film with a much higher average atomic 

number, the inorganic precursor AuPF3Cl was used. This is the only compound that had been 

reported to deposit a pure crystalline metal by FEB.[14] Lines with only half the conductivity of 

bulk Au had been deposited. Au has atomic number ZAu=79, in comparison to ZSi=14. The 

experimental conditions for pure Au deposition were similar as those used in the last 

paragraphs: at room temperature, without any other gas. At 5 keV, the growth rate was constant 

and remained at 1 ≤ 0.2 nm/min (see fig. 4-1-17a). SEM showed 50 nm pure Au grains and the 

AFM roughness was 10 nm (see fig. 4-1-17b). 

 

Figure 4-1-17. Au film on Si. a) In-situ monitoring from AuPF3Cl on Si, at 5 kV, 100 nA, 
2 kx. b) 10 keV EDX spectrum. Inset, ex-situ SEM top view of the film (scale bar 200 nm). 

During deposition, the monitored SE increased by 50% (see fig. 4-1-17a). The sample current 

increased and saturated to 25% of the probe current when the film was 50 nm thick. Initial slope 

variations were probably due to the nucleation of islands. Since the substrate on which the film 

was being deposited changed from Si to pure Au as the film got thicker, but the growth rate 

remained constant, this precursor led to a substrate-independent growth rate, contrarily to the 
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organometallic Cu precursor (see §4-1-3) but in the same way as the purely organic precursor did 

(see §4-1-2). 

At 10 keV the growth rate was still constant during growth but at a slightly higher value, at 

1.3 ≤ 0.2 nm/min (see fig. 4-1-18a). 

 

Figure 4-1-18. Au deposition from AuPF3Cl on Si at 10 keV, 100 nA, 2 kx. a) In-situ 
monitoring. b) Ex-situ BSE contrasts from 10 kV SEM images (Inset, BSE top view of 1 h 

deposit, scale bar 20 µm). 

The initial slope variations still occurred. Saturation was reached on 60 nm thick films, at 50% of 

the probe current and twice the initial SE signal, respectively (see fig. 4-1-18a). The ex-situ BSE 

and SE signals on the deposits in 10 kV SEM images simultaneously increased (see fig. 4-1-18b). 

These results confirmed that the measured sample currents evolved in the opposite way as 

the BSE yields did, since these were much higher on heavy films than on the C-containing 

deposits. The value reached at saturation depended on the chemical compositions of the films. 

The film thickness, at which the saturation was reached, was also linked to the film composition. 

When the films contain heavier elements, saturation occurs on thinner films than if the deposits 

contain light elements. 
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4-1-5 Discussion of the results 

4-1-5-A) Monte-Carlo simulations 

Electron trajectories were simulated with the Monte-Carlo algorithm Mocasim (L. Reimer, 

Plano GmbH, 1999) developed for electron microscopy. This program computes series of 

individual trajectories of electrons scattered in solids by using elastic and inelastic cross-sections 

(see Annex 1). It counts the numbers of BSE or SE from customized 2D or 3D structures. It 

gave satisfactory results for the BSE yields of bulk substrates (BSE yields measured in previous 

works are summarized in Annex 3). The BSE from a large-area deposit were computed using 

the film thickness, its composition, and the PE energy as parameters. For the pictures 

100 trajectories were used. For the absolute BSE yield calculations 10000 trajectories were used. 

The statistical uncertainty was 3%. The electron range in Au is at most 260 nm at 10 kV (see 

Annex 1), so the 500 nm thick Au film used in the experiments was modeled as bulk Au. 

 

4-1-5-A-α) Illustrated electronic trajectories 

The composition of the amorphous deposit from acrylic acid was C9H2O1 (see chp. 5). It 

was modeled as pure C. The deposit from (hfac)CuVTMS, approximately Cu1C7, led to similar 

results. Selected simulation results are shown in the following figures. 

 

Figure 4-1-19. Monte-Carlo simulations of 100 electronic trajectories (C film on Au, 10 keV). 
Selected deposit thicknesses during 10 kV exposures on Au (see fig. 4-1-2), increasing from 

left to right. The white arrow represents the punctual primary beam. 

Electron penetration in C was deeper than in Au. The electrons were transmitted through thin C 

films (see fig. 4-1-19). Most of the backscattering occurred from the substrate. Scattering and 

energy loss increased in thicker C films. More electrons reflected at the interface were absorbed. 
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The computed BSE yield decreased from the value on bulk Au (46 ± 2%), and became 

independent upon C film thickness and equal to the value on bulk C (5 ± 2%) above 1 µm. 

The picture was different when considering C films on a Si substrate. Electron penetration 

was not as different between C and Si as between C and Au. The trajectories were hardly 

affected at the interface (see fig. 4-1-20). The excitation volume slightly increased when the 

electrons propagated in thicker films. The computed BSE yields decreased from the value on 

bulk Si (16%) to the bulk C (5%), with saturation above 1 µm C film thickness. 

 

Figure 4-1-20. Monte-Carlo simulations of 100 electronic trajectories (C film on Si, 10 keV). 
Selected thicknesses from 10 kV exposures on Si (see fig. 4-1-2), increasing from left to right. 

Trajectories at increasing acceleration voltages E0 were compared on a 375 nm thick film. 

 

Figure 4-1-21. Monte-Carlo simulations at several energies (C on Au, 5, 10 and 25 keV from 
left to right). Legend: experimental deposition times required for 375 nm C film thickness 

and computed numbers of BSE. 
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The interaction volume and the BSE yield increased with E0. (see fig. 4-1-21) At 5 keV the film 

contained the whole interaction volume and the BSE yield was that of bulk C. At 10 keV the 

thickness was still intermediate. At 25 keV the electron transmission through the C film was still 

quantitative and the BSE yield was not far below that of bulk Au. 

In the case of a high-Z material deposited on a lighter substrate (Au on Si), the interaction 

volume was much smaller in the depositing film than in the substrate (see fig. 4-1-22). 

 

Figure 4-1-22. Monte-Carlo simulations of 100 electronic trajectories in model structures. 
Selected deposit thicknesses during 5 kV deposition of Au on Si (see fig. 4-1-17), increasing 

from left to right. The white arrow represents the punctual primary beam. 

The electrons that reached the substrate had a low probability to cross the heavy film again. The 

BSE yield increased as the interaction volume was increasingly restricted to the film. 

 

4-1-5-A-β) Quantitative results 

The evolutions of the computed BSE yields of the deposits matched the successive BSE 

contrasts measured in SEM. The BSE yield of C films saturated at 5% independently of the 

substrate (see fig. 4-1-23a). The film thickness at saturation scaled with the electron range Rm. At 

5 keV, saturation at 250 nm occurred at 60% of Rm (418 nm, see Annex 2). At 10 keV, 

saturation at 900 nm thickness occurred at 64% of Rm (1322 nm). The increase in BSE yields in 

the case of deposition of Au on Si was also predicted correctly (see fig. 4-1-23b). In this case, the 

thicknesses of the Au films at saturation (30 nm at 5 keV and 80 nm at 10 keV) were only 30% 

of the corresponding electron range in Au (83 and 263 nm, respectively). 
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Figure 4-1-23. Quantitative BSE simulation results (10000 electronic trajectories per point). 
a) Simulated BSE yields vs. film thickness (C on Si or Au, at 5 and 10 keV). b) Simulated BSE 

yields vs. Au film thickness on Si (5 and 10 keV) and experimental contrasts. 

The BSE contrasts and the simulations could not be quantitatively compared because the image 

settings (contrast and brightness in the imaging SEM) converted the absolute signal, measured 

by the BSE detector, into a non-linear scale. Both the angular distributions and the energies of 

the exiting BSE depended on the analyzed element.[15] The detector collected different fractions 

of these distributions.([16], p. 138) Absolute measurements would require a device optimized for 

the collection of all BSE. 

In conclusion, an illustrated view of the varying electron propagation was obtained. The 

simulations satisfactorily described the experimental BSE contrasts and agreed with published 

BSE yields on bulk materials (see Annex 3). The BSE fractions during deposition of the films 

were predicted correctly in all cases (C on Au or Au on Si, at different electron energies). The 

results agreed with previous works from several authors.[17-19] 

 

4-1-5-B) Secondary electrons 

The SE contributed to 10% of the measured sample current, as shown in fig. 4-1-8b. This 

is in agreement with the SE yields for C at 10 keV measured in previous works (see Annex 4). 

The slope variations in the initial stages of deposition (see fig. 4-1-8 for the case of C on Au, fig. 

4-1-16 for Cu-C on Au, and fig. 4-1-17,18 for Au on Si) corresponded to changes in SE 
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emission. This was similar to a result obtained during 20 kV electron-beam induced 

contamination of Al surfaces.[20] The SE emission changed once the thickness of the over-layer 

was larger than the SE escape depth, which was typically 50 Å.[2] Once this thickness was 

deposited, the SE emission originated from the deposit only, depending upon the number of 

rapid electrons that crossed the film surface. These were the constant number of incident PE 

(nPE), plus the variable number of BSE (nBSE), as shown by eqs. (4-1-2) to (4-1-4).[21] 

 ( )SE substrate SE BSEn n nδ β= +  (4-1-2) 

Deposit thickness t < λ, (1 )SE substrate substrate substrate PEn nδ β η= + (4-1-3) 

t > λ (1 )δ βη += +SE film film substrate PEn n  (4-1-4) 

SE emission from the depositing film. λ: SE escape depth; nSE: number of emitted SE. 
δsubstrate, film: intrinsic SE yields (in the absence of BSE, as measured on a thin film) of the 

substrate and deposit, respectively; η: backscattering yields. β: see text below. 

The parameter β in eq. (4-1-2) integrates the effects of the BSE energy spectrum and angular 

distributions on SE emission. Its value goes from 3 to 5 depending on the substrate.[5] Equation 

(4-1-4) explains why the variations in BSE and SE yields were simultaneous once the first 10 nm 

were deposited. 

 
4-1-5-C) Monitored sample current 

4-1-5-C-α) Weighing of the SE and BSE contributions 

As already stated in eq. 4-1-1, the same time constants of the BSE contrasts and sample 

current signals were due to a simple relationship ([16], p. 256): 

 

(4-1-5) 

Sample current balance from probe current iPE, BSE yield η, SE yield δPE, and parameter β. 
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The sample current is the probe current diminished by the BSE and SE yields. The SE 

contribution to all the monitored sample currents was observed in the initial stages of growth as 

a slope variation. Once it was suppressed by a substrate bias, the simulated BSE yields then 

correctly described the evolution of the monitored signal (see fig. 4-1-24). 

 

Figure 4-1-24. Comparison of the monitored sample current with Monte-Carlo simulations. 
Left, experimental curves from acrylic acid, at 5 keV, 10 nA, 2 kx on Au, with and without 
+9 V sample bias, compared to computed BSE yields. Right, schematic effects of BSE and 

SE on the sample current, on the bare substrate and at saturation. 

Lower BSE yields corresponded to larger sample currents. At 5 keV, the SE were responsible 

for a decrease of the measured sample current of 10% of the probe current on Au and 5% on C. 

4-1-5-C-β) Mathematical curve fitting 

The sample current offered a direct measurement of the instantaneous BSE yield. The 

curves in fig. 4-1-5 were fitted by a second-order exponential function.[18] 

( ) ( )1 ( ) ( )δ η += − −p film substratei t i t t , (4-1-6) 

with ( )( ) 1 ( )film substrate filmt tδ βη δ+= +  (4-1-7) 
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and ( ) ( ) ( )1η η η η η+ = + −  film substrate substrate tr film trt t t  (4-1-8) 

where ( ) 2

η − −= bt ct
tr t e , with b and c = constants > 0 (4-1-9) 

Here ηtr(t) is the fraction of electrons transmitted through the film of thickness t. The linear 

exponent originates from Lenard’s law of electron transmission through a thin film.[22] The 

second-order term was required for satisfactory fittings. δfilm is the “intrinsic” SE yield of the 

considered material, as in eq. (4-1-3). The function used for the mathematical description of the 

sample current curves was: 

( ) ( ) ( ) ( )( )2 2

1 1 exp 1 expδ βδ η η− − − − = − − + + −  
bt ct bt ct

p film film substrate filmi t i  (4-1-10)

As the growth rate from acrylic acid at 10 keV was constant with time, the thickness increased 

linearly so the curve of current vs. time was fitted directly. The results are as follows: 

 

Figure 4-1-25. Mathematical fits of the sample current curves monitored in-situ from acrylic 
acid, at 10 keV, 100 nA, TV scan at magn. 2 kx.  

The parameters ηfilm and δfilm were kept constant for all three fittings since they represent the 

properties of a single type of deposited film. The other parameters ip, b and c showed a small 

dispersion. Only the parameter ηsub, which represented the BSE yield of the substrate, varied 
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significantly between Si, Au and the Si-Au edge (see fig. 4-1-25). The values correspond to those 

shown in Annex 3. For the low values of time (t), the almost linear variation observed in the 

experiment agreed with the mathematical description proposed here. 

The results from the two other precursors used were also fitted (see fig. 4-1-26). 

 

Figure 4-1-26. Fits of the sample current curves monitored in-situ from a) (hfac)CuVTMS, 
at 3 keV, 10 nA, magn. 2 kx on Si; and b) AuPF3Cl, at 5 keV, 100 nA, magn. 2 kx on Si. 

The initial slope variations were deliberately excluded from the fits. In the deposition from 

(hfac)CuVTMS, the saturation occurred at a larger fraction of the sample current because at 

3 keV the deposit BSE yield and SE emission were larger (see fig. 4-1-26a). For the curve of Au 

on Si, the saturation value was larger than the value obtained on the flat evaporated Au films 

(see fig. 4-1-26b). The high film roughness, as compared to the electron range, probably 

enhanced both the BSE yield and SE emission. 

 

4-1-5-C-γ) Generalization 

Thanks to eq. (4-1-10), the sample current evolution can be predicted during deposition of 

films on substrates as is shown in fig. 4-1-27. Only films thicker than the SE escape depth 

(~10 nm) were considered. The saturation thicknesses, 60% of Rm on C films and 30% of Rm on 

Au films, allowed for an estimation of the parameter b. By solving exp(-bt)=10-3 in the two 

cases, it was found bC=5/Rm (=3.8.10-3 at 10 keV) and bAu=10/Rm (=0.038 at 10 keV). For the 

intermediate elements, the values bTi=7/Rm=8.3.10-3 nm-1 and bCu=1.3.10-2 nm-1 were used. 
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Figure 4-1-27. Ideal variations of the monitored sample current when depositing films of 4 
different pure elements, at 10 keV, on a) Si and b) Ag substrates. 

In an ideal experiment, the saturation values and the thicknesses at which they are reached 

depend on the pure material deposited. The amplitude of current variation until saturation 

depends on the difference in atomic number between the substrate and the film (compare fig. 4-

1-27a and b). When depositing mixtures of elements, the relevant parameter is the average 

atomic number. The primary beam energy determines the saturation thickness. The physics of 

electron backscattering provide thickness information on the depositing films. No more 

information is available when the film thickness reaches between 30 and 60% of the electron 

range, depending on the deposited material. 

 

 

4-1-6 Deposition regimes 

The previous paragraph interpreted the electrons propagation in the bulk of the 

depositing films, without considering the deposition rate. Two different regimes were observed. 

The substrate-dependent growth rate from the Cu precursor is commented on in §4-1-6-A. The 

substrate-independent growth rate from acrylic acid and the more detailed study of the growth 

rate dependence on the deposition conditions is interpreted in §4-1-6-B. The elementary 

electron-induced precursor fixation step is modeled. 
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4-1-6-A) From the Cu precursor 

The growth rate from (hfac)CuVTMS increased with decreasing beam energy and was 

higher on heavier substrates (see fig. 4-1-14). During deposition on Au at 3 keV, the growth rate 

decreased with film thickness at the same rate as the total electron flux ϕ(t) through the film 

surface decreased (see fig. 4-1-16). The BSE contributed to the electron flux on the whole 

central area of the deposit (see fig. 4-1-28). Each point at the surface was exposed by the entire 

BSE fraction coming from the neighboring points. 

 

Figure 4-1-28. Surface electron flux  

Total electron flux through the surface:  

( ) ( ) ( )( )1ϕ δ η= + +pt i t t  

 

(4-1-11) 

The following hypotheses were made: 

- The precursor decomposition cross-section σ depends on electron energy. For 

deposition, the three electronic fluxes through the surface (PE, SE, BSE) must be 

weighed by their respective decomposition cross-sections (σPE, σSE, σBSE). The 

resulting growth rate is:  

( )( ) ( )α σ δ σ η σ= + +p PE SE BSER i t t  (4-1-12)

- The value of σ is independent of the direction in which the electron crosses the 

interface: into the solid (PE) or outwards (SE, BSE). 

- The BSE energies are close enough to E0, so that σBSE~σPE at normal incidence. 

- The probability for the SE and BSE to decompose a molecule depends on their 

exit angle θ through the surface (σSE, BSE=σSE, BSE(θ)). Precursor decomposition and 

SE generation are supposed to be influenced similarly by the electron exit angle. 

The effective SE and BSE fluxes increase by the factor β (defined in eq. 4-1-4): 
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( ) ( )( )( , ) 1
θ

σ δ θ σ θ θ σ δ βη σ= ⇒ = +∫SE SE SE film SEt d t  (4-1-13) 

( ) ( ) ,( , )
θ

σ η θ σ θ θ σ βη σ ⊥= ⇒ =∫BSE BSE BSE BSEt d t  (4-1-14) 

The precursor decomposition rate is thus deduced as:  

( ) ( )( ) ( )( )1α σ δ βη σ βη σ= ⋅ + + +p PE film SE PER t i t t   (4-1-15) 

which simplifies into ( ) ( )( ) ( )1α βη σ δ σ = ⋅ + ⋅ + p PE film SER t i t  (4-1-16) 

Once the deposit thickness reaches 10 nm, precursor molecules are adsorbed on the same 

surfaces, regardless of the substrate. SE are emitted entirely from the deposit. The growth rates 

ratios on the substrates depend only on the backscattering yields of the bulk solids: 

1

1

βη
βη

+=
+

Au Au

Si Si

R

R
,  (4-1-17) 

With the values ηAu=0.48 and ηSi=0.18, values for β between 2 and 4 led to growth rate ratios 

between 1.5 and 1.8. This described perfectly the 5 to 25 keV experimental results in fig. 4-1-14. 

It also explained the variation of the growth rate during deposition at low energy (see figs. 4-1-

14 and 4-1-16a). The deposition rate depended on the BSE yield. The SE and BSE 

contributions, however, could not be separated by this approach. 

The deposition yield was estimated as follows. At 10 nA, the primary electron flux 

integrated over the whole area of 50x60 µm2 was 2.1.1015 e-/cm2.s. The growth rate of 1 to 

4 nm/min over this area corresponded to the fixation of a volume of ~1.6.10-2 nm3/e-. In 

amorphous C, which is the main constituent of the deposited mixture of elements, the nearest 

neighbors are at 1.45 and 2.5 Å.[23] A lower limit of the C atomic volume was estimated as 

~4.9 Å3/atom. With an atomic radius of 1.28 Å, the atomic volume of Cu was estimated as 

6.8 Å3. The yield was deduced as 3 atoms/e-. Each (hfac)CuVTMS molecule had 33 atoms, but 

only 5 to 8 of the atoms present in the molecule were non-volatile (1 Cu + 3 C + 1 Si plus the 
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O, H and F measured by microanalysis) and remained, the others were desorbed upon further 

electron exposure. So it was as if every 2 electrons fixed one precursor molecule. 

 
4-1-6-B) From acrylic acid 

The deposition rate when using acrylic acid as the precursor was substrate-independent 

and constant with film thickness. At 10 keV and 2 kx the growth rate (R) depended on the 

power 0.58 of the probe current (ip): R α ip0.58 (see fig. 4-1-11b). The growth rate at 100 nA also 

depended on the inverse power 0.26 of the exposed area (S): R α S-0,32 (see fig. 4-1-12). In the 

case of static exposure, Christy’s model predicted a linear dependence between the growth rate 

and the electron current density (f, see §2-1-2A).[24] The current density depends on the power ¼ 

of the probe current, as shown in fig. 4-1-29 and eqs. (4-1-18) to (4-1-20). The results of the 

experiment were that the growth rate was proportional neither to f (the power law would have 

been R α ip0.25), nor to the electron dose integrated over the complete exposed area (the power 

law would have been R α ip/S). Christy’s model was adapted to the case of a scanning beam. 

 

Figure 4-1-29. Electron probe current (ip) vs. probe 
diameter (dp), for different electron sources.[16] 
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The following model is proposed for scanning deposition: 

- At each point the growth rate followed Christy’s model, and was proportional to 

the current density f and to the adsorbed precursor concentration (see fig. 2-1-3);  

- On each individual scan line the time τp, during which a point was exposed, 

depended on the beam size (see fig. 4-1-30a). The number n of successive lines, by 

which each point was exposed, depended upon the beam size and upon the 

magnification. The TV scan consisted of a 50 Hz image rate. Each image was 

scanned in 20 ms and had 625 lines. Each line was scanned in 32 µs; 

- During the exposure of each point on the sample, the balance between precursor 

depletion and replenishment exponentially decreased the growth rate with the 

time constant τ1 (see fig. 4-1-30b). 

 

Figure 4-1-30. TV scan model. a) Successive line distances vs. beam size (in the case of 2 kx, 
1 nA). b) Plot of the effect of the hypothesis of precursor depletion during line scan. 

The last hypothesis was derived from the adsorbed precursor balance (see eq. (4-1-21) and 

compare it to eq. (2-2) in §2-1-2-B), by not taking into account surface diffusion: 

σ
τ

= − −dN N f
F N

dt e
 (4-1-21) 

N: adsorbed precursor concentration; F: precursor flux; τ: residence 
time; f: electron flux; σ: fixation cross-section; e=1.6.10-19C. 
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The concentration of adsorbed precursor is: 

0

1
exp σ

τ
  = − −    

f
N N F t

e
 (4-1-22) 

So the growth rate under a stationary beam decreases exponentially with the exposure time: 

max
1

expσ
τ

 
= = − 

 

f t
R N R

e
 (4-1-23) 

Where 1
1

1 f
F

e

τ
σ

τ

=
− −

 (4-1-24) 

During scanning, the growth rate at each point resulted from the exposure by n overlapping 

lines, each time during the time τp, and with the current density f: 

max
1

exp
τ
τ

  
= × × −  

  

pR n f R  (4-1-25) 

τp was calculated as 32 µs*(line length)/dp. The scan parameters during all the experiments were 

summarized as follows. 

 

Table 4-1-I. Scan parameters at different probe currents (magnification 2 kx). 
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Table 4-1-II. Scan parameters at different magnifications (probe current 100 nA). 

The growth rates variations with the probe current and the exposed area were calculated from 

the data shown in tables 4-1-I and 4-1-II. The values obtained by calculating them with different 

characteristic times τ1 were fitted as power laws, as shown in the next figure. 

 

Figure 4-1-31. Model of growth rate variations with scan parameters, from acrylic acid at 
10 keV. a) Calculated relative growth rate vs. probe current at magnification 2 kx. b) 

Calculated relative growth rate vs. magnification at probe current 100 nA. 

τ1 had little effect on the growth rate dependence on the probe current, which was already well 

described by the product n * f (see fig. 4-1-31a). This is due to the power dependence of both 

parameters upon ip. With n proportional to ip3/8 and f proportional to ip1/4, then n * f is 

proportional to ip5/8. The exponent 5/8 (=0.62) is close to the experimental value of 0.58. At 

constant ip, the current density f was constant. The exponent of the power laws obtained with 

τ1=1.7 µs fitted the experimental result correctly (see fig. 4-1-31b). By taking into account only 
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the variation of n, R would have depended on the inverse of the square root of the area, i.e. the 

scan length (see fig. 4-1-31b). τ1 was required to obtain the correct power law. Physically, 

τ1~2 µs was similar to the precursor residence time at the surface (also see §4-3-4-C and §5-1-4). 

The modified scanning deposition model offered a satisfactory explanation of the 

observed power law dependences. However, the reason why the growth rate can be 

simultaneously substrate-independent and proportional to the current density remains unclear. 

Whatever the physical origin of precursor fixation, a SE- or high-energy-electron induced 

reaction, the BSE contribute to the total current density, as seen above in the case of the Cu 

precursor. An alternative mechanism is a deposit-assisted precursor fixation (see fig. 4-1-32a).[25, 

26] Radicals or ions formed in the carbonaceous material by the incoming beam (see fig. 4-1-32b 

for the case of a di-radical formation from a conjugated double bond) are mobile and reactive 

with the double bond of the acrylic acid precursor (see fig. 4-1-32c). They could be more 

efficient in precursor grafting than direct primary-beam-induced fixation. 

 

Figure 4-1-32. Schematic radical-assisted mechanism in carbonaceous material. a) Overview. 
b) Electron-induced radical formation. c) Radical-assisted precursor fixation. 

The advantage of this mechanism is to explain why the growth rate is higher, at 25 keV, on an 

already deposited thin film than on the bare substrate (see fig. 4-1-10b). A non-linear radical 

formation dependence on the concentration of electrons (the current density) could explain why 

the growth rate depends mainly on the current density of the primary electrons, and not on the 

more diffused BSE. Resistance measurements were another hint at beam-induced formation of 

radicals or ion pairs and gave information on the charge carrier mobility and decay (see §5-2-3). 
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The deposition yield was estimated as follows. At 100 nA, the electron flux integrated 

over the whole area of 50x60 µm2 was 2.1.1016 e-/cm2.s. The growth rate of 63 nm/min over 

this area corresponded to the fixation of a volume of 4.7.10-3 nm3/e-. With a C atomic volume of 

~4.9 Å3/atom, the yield was deduced as 0.96 atom/e-. Each molecule had 9 atoms, but only 3 C 

atoms per molecule were non-volatile (plus O and H up to 20% atomic content, see §5-1). This 

was as if every 3 electrons fixed one precursor molecule. However, the fraction of fixed 

molecules was small. The precursor flow at the needle exit was 3.1019 molecules/cm2.s, and at 

the deposition site it was around 10 times smaller, 3.1018 molecules/cm2.s. A growth rate of 

63 nm/min (~1 nm/s) corresponded, taking into account a volume of ~15 Å3/molecule, to the 

fixation of 60 molecules/nm2.s, which was 6.1015 molecules/cm2.s. Only one out of 500 

incoming molecules was thus fixed under the electron beam. 

 

 

4-1-7 Summary 

Electron interactions with bulk samples were shown to evolve during large-area film 

deposition. The variations of the BSE yield and SE emission were accessed both by in-situ 

(sample current and SE detector monitoring) and ex-situ (SEM imaging) measurements. Extreme 

systems were selected for large variations (pure C on Au, and pure Au on Si) but the principle 

was also demonstrated in intermediate cases (Cu-C mixture on Si and Au). The scope of the 

sample current monitoring method (only used occasionally for imaging[27-30]) was extended to the 

in-situ control of deposition. Excellent agreement was found between experimental 

measurements, previously reported BSE measurements, and Monte-Carlo simulation results. 

The dual use of the depositing focused-electron-beam as an analysis tool was applied to 

fundamental studies of the FEB-induced process. The parameters accessed by this method were 

the growth rate and, to some extent, the chemical compositions of the deposited films. 
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4-2 Tip deposits 

In this section, the tip deposits obtained by keeping the focused electron beam at the 

same place are described. Three successive growth regimes are encountered, which are clearly 

observed by in-situ monitoring. Electron scattering follows a different behaviour due to the small 

tip diameters compared to the electron range. The effect of several deposition parameters on the 

monitoring was investigated. The results are synthesized in a physical model. The origin of the 

tip shape is attributed to the distribution of scattered electrons. 

 

4-2-1 Definition 

Tip deposits were formed under a narrow stationary beam. Tall tips were created by 

continuously fixing the precursor in a given place, so that the deposit grew vertically and 

coaxially. Tips grew faster from organometallic than from purely organic compounds. 

 

4-2-2 Growth sequence 

A typical tip growth sequence from (hfac)CuVTMS is shown in fig. 4-2-1. 

 

Figure 4-2-1. Typical tip growth sequence (from (hfac)CuVTMS on Si, 25 keV, 500 pA). a) 
Superposition of ex-situ SEM pictures (tilt 73°) of deposits obtained from 5 to 120 s 
deposition times. b) Schematic growth stages: base, cone, and cylinder growth mode. 
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Three growth modes were observed. The base growth mode showed a hill-like structure with 

lateral dimensions similar to that of the primary Gaussian beam. In the cone growth mode, the 

deposits grew upwards from a short base. The curvature radius at the top of the cone 

maintained the same width as the incoming beam (130 nm). The cone profile was described by a 

polynomial in which the main parameters involved were of order 2 and 4 (see fig. 4-2-2). 

 

Figure 4-2-2. 4th order polynomial fit of experimental cone profile. 

No other fit, including Gaussian functions, matched the entire cone profile as perfectly. The 

Gaussian incident beam distribution was not solely responsible for the deposit profile. 

The third growth mode, or cylinder growth mode, occurred after a transition from the 

cone shaped deposit to a cylindrical form topped by a cone (see fig. 4-2-3). It started once the 

cone reached 1,8 µm. The cylindrical part of the deposit grew in height, even though deposition 

occurred on the cone-shaped top. The cylinder diameter was 600 nm. Higher deposits were 

obtained by depositing for longer periods of time. As the deposit height increased the vertical 

growth rate decreased. After 10 µm the growth rate was reduced by a factor of five. The cone-

cylinder transition did not have any effect on the growth rate decrease. Similar reductions were 

reported in electron-beam contamination and when depositing from organometallic compounds 

of Au and Cu.[31-33] Thin layers were also visible around the bases of the higher tips.[34, 35] The 

higher cylinder had a rough aspect, which will be described later (see §5-2-2). 
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Figure 4-2-3. Cylinder growth mode. a) Ex-situ SEM pictures (tilt 73°) of tips deposited at 
increasing intervals (3 to 60 min). b) Plotted heights and growth rates. 

The rate at which the tip volume increases per time unit was calculated from the SEM pictures: 

 

Figure 4-2-4. Volume growth rate vs. time elapsed, from figs. 4-2-1 and 4-2-3. 

Not only did the tip volume increase during cone growth, but also the volume deposited per 

time unit, which was maximal when the cone was complete (see fig. 4-2-4). As the cylinder grew, 

less and less volume was deposited per time unit as the vertical growth rate decreased. From a 

constant probe current, the incident electrons fixed ~4 times more precursor molecules when 

impinging on the complete cone, than on the flat substrate or on the same cone on top of a high 

cylinder. 
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4-2-3 In-situ monitoring 

4-2-3-A) Observation of the phenomenon 

The sample current and SE detector signals were monitored while depositing the 

consecutive tip series (see fig. 4-2-5). 

 

Figure 4-2-5. In-situ monitoring of sample current and SE detector signal during deposition 
of 4 consecutive tips shown in fig. 4-2-3 (except the 5 min. tip).  

The signals followed simple first-order decays, as shown in fig. 4-2-6. 

 

Figure 4-2-6. First-order exponential fits of the in-situ monitored electron signals during 
deposition of the 13 min. tip in fig. 4-2-3 (precursor (hfac)CuVTMS on Si, 25 keV, 500 pA). 

is, current measured on the bare substrate. SEs, SE signal on the substrate. 
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These results were summarized as follows: 

( ) 1 exps plateau
i

t
i t i i

τ
  

= − − +  
  

 (4-2-1) 

( ) 1 exps plateau
SE

t
SE t SE SE

τ
  

= − − +  
  

 (4-2-2) 

Empirical formulas for first-order evolutions of the monitored sample current and SE. 

Slight deviations were noticed at the very beginning of the sample current curve and in the 90-

120 s region, just before saturation. The confidence value on the SE curve was lower due to 

noise. The apparent time constants were almost identical. The sample current decreased in 

absolute value and the SE signal increased during deposition. The curves presented 

characteristic features: 

a) The substrate values is and SEs were detected at all new deposition sites (see 

fig. 4-2-5). Electron emission was stable during the series of experiments. 

b) The current saturated in ~3 min. at a reproducible plateau value (see fig. 4-2-6). 

Only slightly more than 40% of ip were then collected by the sample. 

c) In a similar time span, the noisier SE detector signal increased and saturated at a 

value representing a 300% increase with respect to the signal on the substrate. 

d) The signals saturated shortly after the beginning of the cylinder growth mode. 

e) Once saturation was reached, the evolutions of the signals did not transmit more 

information on tip height. In particular, no growth rate decrease was noticed. 

 

4-2-3-B) Role of the precursor and focus accuracy 

Deposition from the Rhodium precursor [RhCl(PF3)2]2 at 25 keV was monitored.[36] The 

growth rates were higher than from the Cu precursor. The deposited material has been 
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examined previously.[37] With a probe current of ~100 pA, narrower cylinders were produced 

during a more detailed consecutive tip series. The similar SE evolutions were omitted for clarity. 

 

Figure 4-2-7. Detailed in-situ sample current monitoring (from [RhCl(PF3)2]2 on Si, 25 keV, 
91 pA). Top, corresponding ex-situ SEM pictures (top views, scale 200 nm; tilted views 75°). 

The vertical growth rate was 20 ± 4 nm/s, and 7 pA were “lost” in 10 s on a 200 nm high cone: 

the initial current decrease rate vs. tip height was 0.035 pA/nm (see fig. 4-2-7). The 

picoamperemeter had a resolution of only 1 pA. A more precise device may monitor the 

deposition from the first nanometers on. After 60 s, saturation occurred at 45% of the probe 

current. The cone diameter reached a constant value and cylinder growth began. The SE 

detector signal (not shown) also increased during deposition, with a similar time constant. In the 

SEM top-views of the successive tips, in which a perfect cylindrical symmetry was observed, 

increasingly bright contrasts were obtained until the cone was completely formed. This indicates 

that saturation of the signals and cone formation were closely linked. 

The monitored signals evolved more slowly when the beam was un-focused. Large blunt 

tips were produced by stepwise un-focusing (see fig. 4-2-8). 
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Figure 4-2-8. Monitoring of deposition with un-focused beams ([RhCl(PF3)2]2 on Si, 
25 keV, 100 pA). Top, SEM tilted views (75°) of the obtained tips. Increasing defocus from 
left to right. Bottom, monitored signals (left, sample current; right, SE) and time constants 

from exponential fits. 

Bigger current drops at saturation were observed on the larger deposits. Although the top-right 

tip in fig. 4-2-8 was longer to deposit and had a larger volume than the top-left one, it appears as 

a short blunt cone. The signals still saturated when the cylinder growth mode began. The value 

depended on the shape of the cone and the cylinder diameter. From a practical point of view, 

monitoring was useful to check for focus accuracy. 

 

4-2-3-C) Quantitative role of the deposit chemical composition and diameter 

Systematic series of tips were deposited from several precursors and at several probe 

diameters. The current drop depended on tip composition and cylinder diameter. For each 

condition the results were averaged on 2 to 5 tips. 
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Figure 4-2-9. Total current drop at saturation vs. cylinder diameter and precursor used. Top, 
tilted (85°) SEM overview of a series of Rh tips with varying diameters. The value 

extrapolated at 0 cylinder diameter is that measured on the bare substrate (Si, at 25 keV). 

From a given precursor, the current drop was larger when depositing tips with larger diameters 

(see fig. 4-2-9). The comparison of 330 nm diameter tips obtained at 90 pA is as follows: 

 

Table 4-2-I. Tip monitoring vs. precursor and deposit properties (25 keV, 90 pA on Si). All 
deposit cylinder and apex diameters were 330 ± 30 nm and 80 ± 10 nm, respectively. 

At constant diameter, the current drops were larger on tips with heavier elements (Ir, Au) or 

higher metal contents (Rh). The time constants were shorter for the precursors with the higher 

growth rates. Sample current monitoring allows monitoring the cone growth rate. 
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4-2-3-D) Partial physical interpretation based on Monte-Carlo simulations 

TEM micrographs of tips from [RhCl(PF3)2]2 revealed tip structures of Rh nanocrystallites 

in an amorphous P matrix (see fig. 4-2-10), as observed in a previous work.[38] 

 

Figure 4-2-10. Nanostructure of a tip deposit. TEM micrographs of a tip on a membrane 
(Precursor [RhCl(PF3)2]2 on 70 nm thich Si3N4 film, 25 keV, 20 pA, 60 s; tilt 30°). 

The thin and smooth “skin”, possibly due to air exposure before observation, was not taken into 

account. The tip material was considered as homogeneous since the crystallites were smaller 

than the collision mean-free-path at 25 keV (see Annex 1). An average density of 8.8 was 

calculated from the measured EDX compositions. The tip structures were modeled (see fig. 4-2-

11a) and used for Monte-Carlo simulations of the electronic trajectories (see fig. 4-2-11b). 

 

Figure 4-2-11. Monte-Carlo simulations in tips. a) Overview of successive simulated tip 
structures (cylinder-cone-apex, from fig. 4-2-7, with MOCASIM code). b) 50 electron 

trajectories (25 keV), at abscissa 300, on the 2 min. model tip. 
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Electrons were not absorbed in the tips because the diameters are narrower than the electron 

range (see fig. 4-2-11b). They were scattered in the cone and escaped through its sides. Some 

were directly backscattered. Most electrons were still oriented towards the substrate with an 

angle (fig. 4-2-11b is a planar projection of the 3D simulation). Their BSE yield was higher than 

at normal incidence. The SE emission increase during tip growth was qualitatively explained by 

an “edge effect”. As a forward scattered PE crossed each interface, SE were liberated, thus 

increasing the SE emission beyond the level found at normal incidence on the substrate surface. 

The numbers of BSE and SE were computed from all tips. The sample current being 

taken as the probe current and diminished by the escaping electron currents (see eq. 4-1-5), the 

simulations were compared with the experiments. The results were in excellent agreement (see 

fig. 4-2-12). The evolutions were predicted at the right times and at correct values. 

 

Figure 4-2-12. Comparison of the Monte-Carlo simulations with the experiment. 

The current drop and SE increase were due to the tip geometries. This was checked after 

deposition. The SE and sample current were monitored during a top-view line scan across a 

deposited tip. The bright contrast seen in ex-situ SEM observation was also due to the increased 

SE emission. 
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Figure 4-2-13. Measured and simulated signals during a line scan of the 2 min tip. Inset, 
FEG-SEM 25 keV top-view (scale bar: 200 nm). 

The SE contrast in ex-situ imaging (see fig. 4-2-13) corresponded to a lower sample current. 

Electrons reached the substrate at increasingly grazing incidences when scattered by heavy 

elements. The precursor [IrCl(PF3)2]2 fortuitously led to a direct experimental proof: 

 

Figure 4-2-14. “Electronic shadow effects” around a tip from [IrCl(PF3)2]2, 25 keV, 500 pA, 
on Si, 17 minutes. a) SEM tilted view (50°). b) optical micrograph, topview. 

Deposition was performed in the centre of a substrate area covered by small Si particles. Radial 

bright-contrasted “shadows” appeared behind them in SEM observation (see fig. 4-2-14a). A 

dark area extended several tenths of µm around the tip. Optical microscopy revealed an 
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interferentially-colored halo (see fig. 4-2-14b). This was due to a thin Ir-containing film, formed 

by the forward-scattered electrons that reached the substrate at high angles and large distances. 

This explained the shadows behind the particles, and proved that many widely deflected 

electrons escaped the tips. The film thickness decreased with distance, as the substrate contrast 

was gradually recovered. Only thicknesses above 20 nm were optically visible, so only a thin 

layer of deposited material was responsible for the SEM contrast. 

This observation and the early interpretation of the sample current evolution during tip 

deposition have been reported and published.[39, 40] 

 

4-2-3-E) Role of the substrate 

A special sample was constructed to study the role of the substrate when depositing from 

a given precursor, without varying other parameters such as beam focus or needle distance. This 

“multi-stub” consists of stacked, 10 to 100 µm thick metal sheets, held together and polished on 

the side, as shown in fig. 4-2-15. Deposition was carried out successively on each of the metals. 

  

Figure 4-2-15. Multistub sample. Top, SEM top view (SE, 8 kV), identification of the 
materials and corresponding EDX spectra (excitation at 8 kV). Bottom, 25 keV BSE image. 
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Smooth and homogeneous surfaces and quantitative EDXS purities, were obtained for all 

metals except Pb, which was probably damaged due to its softness as compared to the 

neighboring harder metals Mo and W. The BSE contrasts increased monotonically with the 

atomic number (see Annex 3).[18] 

4-2-3-E-α) - Low atomic number tips from (hfac)CuVTMS 

In the investigated ranges, deposition occurred identically on all these materials (as well as 

on Si, shown in fig. 4-2-3). Tips deposited in 15 min had similar growth rates and morphologies. 

 

Figure 4-2-16. Analysis of tips deposited on different substrates. a) Ex-situ SEM views (70° 
tilt, and top-views, scale bars 2 µm). b) EDXS analyses, normalized on the CuL peak. 

Slight height differences between the tips (shown here in chronological order of deposition) 

were due to a slight focus drift during the experiment, which became apparent and was 

corrected only when reaching Pb (see fig. 4-2-16a). All the measured compositions (excluding 

the tip on Cu, where the substrate peak overlapped) corresponded to Cu1C3O1F1 (see fig. 4-2-
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16b). Only slight variations in the relative content of oxygen were noticed, which could be due 

to the substrates. For further details on the positions of X-Ray peaks, see Annex 5. 

The signals were monitored during deposition. To mimic the absence of a substrate, 

deposition was performed on 30 nm thick Si3N4 commercial membranes (Agar Ltd.). These 

membranes do not contain C and are chemically similar to naturally oxidized Si. The films were 

held above a Faraday cup for quantitative collection of the transmitted electrons. 

 

Figure 4-2-17. In-situ monitoring of the signals on the different substrates. a) Sample current 
monitoring. b) Simultaneous monitoring of the SE detector signal. 

 

Table 4-2-II. Measured sample current and SE detector signal values, initial and at 
saturation, during 500 pA, 25 keV deposition from (hfac)CuVTMS on the multistub. 

The monitored signals evolved with similar time constants but between substrate-dependent 

values (see fig. 4-2-17a). The initial sample current values increased with the increasing BSE 

yields of the substrates. At saturation the currents followed the same order. On W, the collected 

sample current at saturation was only 12% of the probe current (see Table 4-2-II). On the 
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transparent film it was 84% of the probe current. The evolutions of the detected SE are similar. 

These signals increase between 2.4 (W) and 4 (Al) times until saturation (see fig. 4-2-17b). 

To compare the SE and BSE yields from the tips, SEM images were taken with constant 

contrast and brightness settings (instead of looking for well-balanced images as in fig. 4-2-16): 

 

Figure 4-2-18. Absolute ex-situ SEM contrasts of tips at 25 keV. a) SE detector. b) BSE 
detector. Top: two selected series of images. 

The difference in SE signals between the tip and substrate was constant (see fig. 4-2-18a). On 

the heavier substrates, the BSE signals from the tips were less than the values on the substrate. 

Dark BSE contrasts appeared around the tips (see fig. 4-2-18b). For this precursor, most of the 

current drop on heavy substrates seemed to be due to the SE increase. 

 

4-2-3-E-β) - High atomic number tips from [IrCl(PF3)2]2 

Tips with large amounts of the heavy element Ir (ZIr=77) were deposited on the multistub from 

the non-commercial precursor [IrCl(PF3)2]2.[36, 41] The composition measured by EDX was 

IrClPF (see fig. 4-2-19a). All spectra were comparable but they overlapped with substrate peaks, 

on all substrates but Ti, either in the 1.5 to 3 keV range or around 9 keV (see fig. 4-2-19a). The 

high-energy IrLa,Lb peaks were present in all tips. The IrMa peak overlapped the PKa peak and 

entailed a large uncertainty on the Ir/P ratio. All the deposited tips had similar aspects (see fig. 



4-2 Tip deposits – In-situ monitoring 

88 

4-2-19b). The substrate thus had little influence on the tip growth rates, compositions, and 

geometries. 

 

Figure 4-2-19. Deposition from Ir precursor (25 keV, 500 pA). a) EDX spectrum on Ti. b) 
Ex-situ SEM images of the tips on the different metals. 

The monitored sample current had larger variations than from the Cu precursor. 

  

Figure 4-2-20. Examples of in-situ monitoring from 
Ir precursor (25 keV, 500 pA) on Cu and W. 

Table 4-2-III. Initial and final monitored 
values from Ir precursor on the multistub. 

The saturation current on W was positive (see fig. 4-2-20). This demonstrated that the SE 

contributed to the sample current during tip deposition, since the BSE yield cannot be above 1. 

On all other substrates it was negative but close to zero. The SE signals increased between 2.7 

(W) and 5.6 times (Al). As was observed on Si, the “current drop” was larger when the tips 

contained heavier elements (see Table 4-2-III). 
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The vapor pressure of the Ir precursor was measured as a function of temperature. It was 

2.10-2 mbar at RT and obeyed the relation log(Pvap)=5.8-1.5.103T, showing a sublimation 

enthalpy of 28.7 kJ.mol-1. Its flux was lower than from the Cu precursor, due to a lower vapor 

pressure (Pvap((hfac)CuVTMS)=0.1 mbar). However, the cone growth rates remained close 

(20 nm/s from (hfac)CuVTMS and 14 nm/s from [IrCl(PF3)2]2). The compensation was due to 

a larger electron decomposition cross-section, because with its molecular weight of 807 g.mol-1 

the bimetallic Ir compound was heavier than (hfac)CuVTMS (370 g.mol-1). 

 

4-2-3-F) Role of distant obstacles on the substrate 

Until now, no information on the tip growth rate was available after saturation had been 

reached. Experiments were designed, so that monitoring would yield information on the height 

of the growing cylinders. From the Monte-Carlo simulations (see fig. 4-2-11), it was postulated 

that electrons were forward scattered between the angles Φmin and Φmax and followed a diffused 

conical distribution (see 4-2-21a). Tips were deposited on patterned substrates. 

 

Figure 4-2-21. Forward-scattered electron cone on a patterned substrate. a) schematic 
principle. b) Current monitoring of tips deposited at different distances d from film edge. 

Arrows indicate inflexion points on the curves and recall the corresponding distances. 

The deposition site was at a given distance from the edge of a 400 nm thick Au film. A plateau 

was reached once the tip cone was formed and the cylinder growth mode began. The BSE yield 

increased when the cone of forward-scattered electrons intersected the Au film, from a tip 

height that depended on the distance to the edge (see fig. 4-2-21b). An inflexion point then 
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appeared on the current curve. The curve asymptotically tended towards the constant value 

obtained from the tip deposited on the edge. The inflexion times were converted into heights as 

seen in the previous series in fig. 4-2-3. The ratio of edge distance to tip height was tan(Φmax). 

This gave Φmax=60±5° (1030±70 mrad). 

Cone obstacles, prepared by the deposition process, were used to evaluate Φmin: 

 

Figure 4-2-22. Tips deposited at the center of pre-deposited cones. a) Sample current 
monitoring. b) Corresponding tilted (64°) SEM images (scale bars 2 µm). 

The measured sample current first decreased beyond the single tip saturation value, and then 

returned (see fig. 4-2-22a). The overshoot was larger when the cones were closer (1 µm vs. 1.5), 

or with more cones (8 vs. 4). This was due to the interaction of the forward-scattered electrons 

with the pillars, which was more important (and results in more BSE, thus lower sample current) 

when the pillars occupied larger solid angles (see fig. 4-2-22b). The signals turned back to the 

single tip value (~500 s) when the whole forward-scattered cone reached the substrate beyond 

the pillars. The corresponding height (~5.5 µm) gave Φmin=15±5° (260±80 mrad). 
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4-2-3-G) Role of the acceleration voltage 

The effect of the acceleration voltage on the current drop was studied in another 

deposition machine, a commercial FEI Dual-beam system, in which smaller spots were obtained 

at lower energies. This also demonstrated that the current dropped similarly when depositing 

from a field emission gun (FEG). Deposition was performed from the organometallic precursor 

Methylcyclopentadienyl-trimethyl-Platinum (MeCpPtMe3), from a reservoir heated at 45°C. The 

growth rates were higher than in the S100. Only the deposition of tip arrays allowed for reliable 

measurements: 

 

Figure 4-2-23. Effect of acceleration voltage on sample current monitoring in a FEG-SEM. 
a) In-situ monitoring. b) Selected top and tilted (30°) ex-situ SEM views (scale bars 200 nm). 

At all accelerations, the currents were selected to produce tip-like deposits in SEM tilted view. 

Higher accelerations gave sharper tips (see fig. 4-2-23b).[35, 42] The monitored curves saturated in 

the same way as in the S100 (see fig. 4-2-23a). Only tips with similar cylinder diameters (130 to 

200 nm) were compared. EDX analysis revealed compositions close to Pt2C7O1 for all tips, 

although the morphologies were sometimes different. At the lower acceleration voltages (2 and 

5 kV) positive sample currents were routinely measured on thin tips due to the increased SE 

emission at lower electron energy.[21] The tips bent during SEM observation. These structures 

can probably still change shape, morphology and composition under the analysis probe. 

A series of Monte-Carlo simulations was computed on these tips. The forward-scattered 

electron cone widens at decreasing energy (see fig. 4-2-24). Under 5 keV, most electrons are 

backscattered or absorbed directly in the tips. 
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Figure 4-2-24. Monte-Carlo simulations of electron trajectories in 130 nm diameter tips 
deposited at different energies. From left to right: model tip with code, and 100 trajectories 

at 30, 10, 5, and 2 keV.  

 

4-2-3-H) Summary of the influence of the parameters in the monitoring 

Tip growth occurred through three successive regimes: base, cone, and cylinder. The 

monitored sample current and SE saturated at the transition between the cone and cylinder 

growth modes. 

The saturation values were more distant from the probe current when: 

a) the tips consisted of heavier elements, 

b) the cylinder diameters were larger, 

c) the substrate was heavier, and  

d) when the beam had lower energy. 

Even positive sample currents were occasionally measured at saturation. Monte-Carlo 

simulations indicated that the electrons were forward scattered by the tips. The electron 

distribution escaping from the tips had a conical shape. Information on the tip height was 

obtained by intersecting the forward-scattered electron distribution with scattering obstacles. 
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4-2-4 Physical model 

4-2-4-A) Qualitative tip scattering model for a single electron 

The incidence of a single electron on a tip with a complete cone was considered. The 

principles of electron scattering by atoms, used in this model, can be found in Annex 1. In the 

FEB-deposited carbonaceous mixtures, the collision mean-free-paths were typically 5 to 10 nm. 

 

Figure 4-2-25. Schematic physical model of the sample current drop and SE emission 
increase during deposition. Right-hand side, trajectory of a single primary electron. Left-

hand side, resulting SE emission at each crossed interface. 

If the electron was not submitted to a large-angle scattering event that rapidly drove it out of the 

tip (see 1, at the right of fig. 4-2-25), it reached a tip sidewall after M collisions (2). The escape 

angle in relation to the vertical axis of the tip, named Φ, is the numerical result of all the 

collisions. Φ is also the incidence angle on the substrate (3). If θav represents the most probable 

scattering angle for each initial scattering process, then Φ would be statistically close to M*θav. 

According to Arnal’s formula (see eq. 4-2-3), the probability ηΖ,Φ of being backscattered by the 

substrate increases with Φ.[43] This empirical law was recognized to quantitatively describe 

experimental measurements:[18] 



4-2 Tip deposits – Physical model 

94 

( )

9

, ,
2

1 cos

Z

Z Zη ηΦ ⊥

 
=  + Φ 

 (4-2-3) 

Arnal’s formula: ηZ,Φ is the backscattering yield under the angle of incidence Φ on a 
substrate with atomic number Z. 

The probability of electron absorption by the substrate (4, in fig. 4-2-25) is lower than at normal 

incidence. This explained the measured drop in the sample current when the electron impinged 

on the tip. The increased SE emission is the result of the PE crossing several interfaces before 

getting absorbed or backscattered, instead of generating SE only from the substrate (see SE1 - 4 

on the left side of fig. 4-2-25). For a quantitative calculation, each interface crossed was weighed 

by an angular factor. SE emission was almost Lambertian, even when the primary beam crossed 

interfaces with angles as high as 60°.[44] The substrate collected roughly half of the SE emitted 

from the tip walls. 

The formation of the cylinder is due to the lateral escape of the electron through the cone 

surface. Statistically, no electron could travel deep enough inside the deposit, to reach the 

surface and fix precursor at the level of the cylinder. The signals saturated for the same reason: 

once the cone was formed, the angular distribution of the laterally scattered electrons was 

constant. This is also why the growth rate was maximal at complete cone formation, as observed 

in fig. 4-2-4. The cone was the shape from which all electrons escaped laterally, meaning that 

each electron crossed more interfaces than ever before, and at each interface had the same 

probability of decomposing adsorbed precursor. This had been already observed, but was 

attributed to SE generation for smaller structures.[45] The efficiency of deposition then decreased 

due to tip heating, as discussed later (see §5-2).  

At each interface the electrons decomposed the adsorbed precursor molecules. The 

surface layers, which generated the SE, were rapidly formed from deposited material. The 

absorbed sample current was expressed by the following equation. 

sample p p pi i i iη δΦ= − −  (4-2-4) 

Expressing the BSE and SE currents according to fig. 4-2-25 leads to: 
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(4-2-5) 

Collected sample current according to fig. 4-2-25. First approach, supposing all electrons 
escape the tip identically.η⊥  : BSE yield of the substrate at normal incidence; δtip : SE yield 

of the deposited material; β: SE generation efficiency of the BSE. 

A thin layer (> 10 nm) of deposited material was assumed to cover each interface crossed by the 

PE, so all SE were emitted from the deposit. Physically, at energies above 10 keV the BSE term 

was predominant over the SE terms, since η > δ (see Annexes 3 & 4). The sample current 

predicted by eq. (4-2-5) was plotted as a function of Φ in fig. 4-2-26. 

 

Figure 4-2-26. Plot of the collected sample current as a function of single electron exit 
angle Φ, according to eq. 4-2-5. Parameters used for calculation: δtip=0.05, β=3. 
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Beyond exit angles of 0.4 rad on the solid substrates, the electron balance increased towards 

positive currents with increasing Φ, and was positive beyond substrate-dependent values. This 

explained its dependence on the tip parameters: 

- More collisions occurred in tips with larger diameters. The resulting Φ was larger and 

less current was absorbed in the sample (as shown in fig. 4-2-9). 

- In tips with identical diameters, the higher average atomic numbers gave rise to larger 

average deflection angles θav. The resulting angles Φ and the current drops were larger. 

- On tips deposited on different substrates, the BSE yields followed the order of the BSE 

yields of the substrates, increasing with the atomic number (see figs. 4-2-17, 4-2-20). 

- At lower electron energies, the elementary deflection angles were larger: the resulting Φ 

and current drops were also larger, as long as the electrons were scattered forward (see 

figs. 4-2-23 and 4-2-24). 

This single-electron model was satisfactory, but to accurately describe the actual phenomenon, 

the angular distribution of the forward-scattered electrons needed to be determined. 

 

4-2-4-B) Physical effects of the angular electron distribution 

The cone shape resulted from the convolution of several factors (see fig. 4-2-27). The 

angular electron distribution N(Φ) at the surface of the existing cone, weighed by its 

decomposition efficiency dependence on the on escape angle ζ(θ), decomposed the local 

precursor concentration W(r,h,t) (see inset in fig. 4-2-27). The cone geometry was stable under 

the conditions of the experiment. In principle, this schematic drawing was valid for both the 

electron- or precursor-flux-limited regimes. The final tip profile may depend upon the regime. If 

the PE density was high then a regime transition may have occurred between the PE incidence 

site (precursor-limited) and the tip sidewalls (electron-limited). 
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Figure 4-2-27. Schematic relation between cone shape and scattered PE distribution. N(Φ): 
angular distribution of forward-scattered electrons; Φmax: angle at which N(Φ) is larger. ζ(θ): 
efficiency of decomposition of a precursor molecule by an electron crossing the interface at 

an angle θ. W(r,h,t): precursor coverage at radius r, height h and time t. 

This explained why the tip shapes and compositions were similar when depositing on the 

multistub. Soon after starting deposition, precursor adsorption and fixation occurred on the 

smooth layer of decomposed precursor. Equation (4-2-5) was refined by including N(Φ): 
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 (4-2-6) 

Collected sample current – complete approach. ηdir : Fraction of electrons exiting the tip 
with angles Φ larger than 90°. 

The multistub experiments (figs. 4-2-16 to -20) showed a variation between η and Z, while ηdir, 

δtip, and N(Φ) remained constant. To simplify, β was supposed to be independent of Φ and Z. 
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4-2-4-C) Derivation of an analytical expression for the 

forward scattered electron distribution 

Multiple scattering resulted in broadening the beam but initially created little electron 

absorption, so that the total number of traveling electrons was constant.[46] When an electron 

beam passes through a flat film, the large numbers of randomly oriented collisions create a 

Gaussian distribution of the transmitted electrons.[47-50] The root-mean-square width increases 

with the power 3/2 of the film thickness.[51] The following dependency on the material 

parameters was found to agree with measurements obtained on Cu, Ag, and Au:[46] 

3
2

2 3 30.44.10
ρσ  =  

 
Z

t
E A

 (4-2-7) 

Spatial beam broadening. Parameter σ (in nm) of the Gaussian distribution of an electron 
beam of energy E (in eV) transmitted by a slab of thickness t (in nm) of a material with 

density ρ (in g.cm-3), atomic mass A (in g.mol-1), and atomic number Z. a: scaling constant. 

This equation was interpreted as a probabilistic law, which applied to individual electronic 

trajectories in the scattering film. The mathematical shape of all trajectories in the scattering 

medium was r=aCh3/2. The scaling constant a was given by writing eq. (4-2-7) as σ2=at3. The 

parameter C follows a normal Gaussian distribution ((0,1), see fig. 4-2-28a). 

 

Figure 4-2-28. Analytical electron trajectories in solids. a) Beam broadening by scattering 
through a thin film (probabilistic approach). b) Application to the case of a tip. 
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In order to determine the distribution N(Φ), the outline of the calculation was as follows: 

the number dN of electrons, which impinged on the substrate at point M (see fig. 4-2-28b) 

between r and r+dr, was evaluated by expressing rM as a function of the parameter C. Inverting 

the obtained relation yielded C(r). The desired 2D distribution was obtained by inserting C(r) in: 

21 exp
2 2

C
dN dC

π
 = − 
 

 (4-2-8) 

As can be seen, this gave the correct result for a thin film. 

The expression of the electron trajectory in the tip is given in fig. 4-2-28. At each point and at 

the exit point P, the tangent to the trajectory is given by: 
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The radius rP was calculated by taking P as the intersection of the electron trajectory with the tip 

surface, expressed analytically by the polynomial in fig. 4-2-2: 

The system 
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leads to: 
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The tip surface was not reasonably described by a purely 2nd order or 4th order polynomial. But 

the 2nd order term was dominant at small rP (the tip apex), while the 4th order dominated at large 

rP: these two regions were treated separately. The dependence of C on rP was thus made simpler. 

Hence, 
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In both regions, the coordinate rP remained a simple function of C after inversion. 

The electron impinged on the substrate at M, the coordinates of M are given by trigonometry:  

tanM P Pr r h= + Φ  (4-2-13) 

An exact solution required numerical inversion (see below). For now, an approximate but 

analytical solution was derived. As soon as the cone was complete, or at large a Φ, the distance 

OP was small compared to PM. The points O, P and M were considered as aligned (O’~O). 

' 0Approximating : tan tanM OOM OP r h h= Φ Φ  (4-2-14) 

Combining equations (4-2-14), (4-2-12), and (4-2-9) led to rM: 
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These expressions were inverted: 
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(4-2-16) 

 

(4-2-17) 

The constants K1 and K2 depended on the tip height, composition and profile. By differentiation 

and insertion into (4-2-8), the following relations were obtained: 
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(4-2-18) 

 

(4-2-19) 

From a practical point of view, these distributions were similar to one another. The following 

parameters were used for plotting, in the case of a 600 nm diameter tip from (hfac)CuVTMS at 

two successive heights. The averaged atomic number (Zav) and atomic mass (Aav) of the 

deposits, according to the EDXS measurements, were used to calculate the scaling constant a. 

The values Zav=11 and Aav=22 g.mol-1 did not take into account the possible H content in the 

deposits. The density ρ=3.3 g.cm-3 was used, and the acceleration energy was at 25 keV. 
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The expression from eq. (4-2-18) was plotted in figure 4-2-29. The second part of the curves, 

given by eq. (4-2-19), represents only a slightly faster decay, and was omitted for simplicity. The 

forward-scattered electron distributions reached maxima at different distances on the substrate. 

This confirmed the existence of the most probable electron exit angle Φmax postulated in 

paragraph 4-2-3-F. The maximum widened and went away from the centre as the tip height 

increased. When the tip reached a height of 3 µm, the electrons were forward scattered up to a 

distance of 5 µm, creating the flat disk that surrounds the tip (see fig. 4-2-3). 
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Figure 4-2-29. Analytical electron distributions impinging on the substrate after forward 
scattering in the tips, according to eq. (4-2-18). Position (0,0) is the tip center. 

The angular distribution N(Φ) was obtained from equations (4-2-14) and (4-2-18). Taking 

into consideration only the 4th order term of the tip profile, yielded the following law: 
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4-2-4-D) Numerical inversion 

 The expression in eq. (4-2-11) was inverted numerically, without the simplifying 

approximations (eqs. 4-2-12 and 4-2-14). 

The function g was introduced as: 
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g is a monotonous, decreasing function of rP, and could thus be inverted. 

Hence ( ) ( )( )
1 1

2 2 1 2 23 33 3tan ( )
2 2Pr a C g C a C f C−Φ = = ≡  (4-2-22) 

The function g-1 was monotonous and increasing. f was also inverted and differentiated: 
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(4-2-23) 

(4-2-24) 

The expression (4-2-8) was evaluated numerically thanks to these relations. 

 

4-2-4-E) Comparison with Monte-Carlo simulations 

The obtained results were checked against the Monte-Carlo approach. The designed 

structures consisted of “free-standing tips”, without a substrate, as shown in fig. 4-2-30a. The 

number of electrons scattered from this structure into successive annular regions were 

computed. The angular distributions predicted by the three approaches (analytical inversion, 

numerical inversion, and simulations) were compared in fig. 4-2-30b. 

 

Figure 4-2-30. Forward angular distributions of electrons scattered in tips. a) Example of 
Monte-Carlo simulation used for the transmitted electron distribution (planar projection of 
100 trajectories from a cylindrically symmetrical “free-standing tip” with no substrate). b) 
Compared results from the numerical inversion of eq. (4-2-24), the analytical eq. (4-2-20), 

and simulations (10000 trajectories per point). 
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A good agreement was found. The simplified analytical expression slightly overestimated the 

position of the density maximum and the electron fraction behind it, as compared to the 

numerical inversion. Both approaches underestimated the numbers of electrons scattered at high 

angles, as compared to the Monte-Carlo simulation. This was probably due to large-angle single 

scattering (see the resulting trajectories in fig. 4-2-30a). The multiple-scattering regime, which 

was responsible for the Gaussian beam broadening, was valid only after the electrons crossed a 

deposit with a mass-thickness of 125 µg/cm2.[46] This fails to take into account the electrons 

which escaped from the tip after a single large-angle scattering event. However, the discrepancy 

was small, confirming that the approximations made in the analytical derivation were justified. 

The advantage of the Monte-Carlo approach is its versatility concerning the shapes of the 

structures. Exact structures were designed based on the experimental results. This allowed 

visualization of the evolution of the transmitted angular distribution during cone formation: 

 

Figure 4-2-31. Monte-Carlo simulations of the evolution of electron angular distributions 
during tip growth (Cylindrical symmetry, Cu1C7, density 3.3, 25 keV, no substrate). 

The angular distribution widened as the tip grew (see fig. 4-2-31). Quantitative results 

were computed but software artifacts arose on thin structures (<500 nm). They were compared 

with the results of the numerical inversion, obtained by determining separately the “transmitted” 

(through the cone base) and “laterally scattered” distributions, as shown in fig. 4-2-32. 
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Figure 4-2-32. Comparisons of predicted distributions during cone growth. a) Simulation 
results on the 60 s tip, as compared to the numerical inversion results on a 1 µm cone. b) 

Evolution of numerically inverted angular distributions during tip growth. 

For the 1 µm high cone, the Monte-Carlo simulations predicted a shoulder where the analytical 

model indicated a peak (see fig. 4-2-32a). The analytical model underestimated the fractions of 

electrons scattered at wide angles. The evolutions of the smoother numerically inverted 

distributions were comparable to the Monte-Carlo results. 

 

4-2-4-F) Calculation of the absorbed sample current 

The following integrals can now be numerically evaluated: 
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The complete equation of the sample current as a function of N(Φ) (eq. 4-2-6) was rewritten as: 
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( ) ( ) ( )(1 ) 1 1 1η η η η βη δ⊥ ⊥= − − − + + − + +  sample P dir Z dir dir Z tip pi i I F G I i  (4-2-28) 

The parameters of the calculation and the obtained results were compared with the multistub 

experiment results in fig. 4-2-33. For the tip from (hfac)CuVTMS, the scattering factor a was 

low. The electrons escaped the tip mainly from the lower part of the cone and eq. (4-2-18) was 

applied to calculate dN. Conversely, on the tip containing Ir, factor a was larger due to the heavy 

atom content. The electrons escaped the cone mainly through the upper part and hit the 

substrate at wide angles, as seen in fig. 4-2-14. The relevant expression is eq. (4-2-19). 

 

Figure 4-2-33. Comparison of the calculated sample current at tip saturation on several 
substrates with the experiment. 

The analytical model correctly described the experiment. The amount of directly backscattered 

electrons (ηdir) and SE emissions (δtip) required in the calculations were satisfactory. The results 

at different energies were also compared to the model (see fig. 4-2-34). The increase in the 

parameter a at lower energies required using the large-angle eq. 4-2-19 below 10 keV. As noticed 

in the Monte-Carlo simulations, the model was not valid at 2 keV (see above, fig. 4-2-24). 
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Figure 4-2-34. Comparison of the calculated sample current at tip saturation and at several 
energies with the experiment. 

The calculated and measured values were in good agreement. The fit parameters η, δdeposit and 

ηdir corresponded to a C-containing material. The physical model in fig. 4-2-26 and the forward 

scattered electron distributions given by eqs. 4-2-18 and 4-2-19 were confirmed. 

 

4-2-5 Summary 

Tip deposition follows three successive growth regimes: base, cone, and cylinder growth. 

The transition from cone to cylinder growth occurs when all the primary electrons are scattered 

sideways. The consequence is that the cone adopts a 4th-order polynomial profile. The 

monitored sample current decreases and saturates, contrary to what has been observed when 

depositing large-area films. This is an indication of an enhanced BSE yield on the tips. The tip 

shape is a function of the beam energy and tip chemical composition. The substrate did not 

influence the growth, but depositing on different substrates led to different monitored sample 

current curves. An analytical description of the angular distribution of the forward-scattered 

electrons was proposed by interpreting these curves. A good agreement of the analytical 

approach, as based on the physical principles of electron scattering, was found with Monte-

Carlo simulations and with the results of the experiment. 

Monitoring offered not only an immediate indication of the vertical tip deposition rate, 

but also an integrated information on electron scattering in simple protruding structures. In the 

next section, information will be gathered on more complex 3D shapes. 
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4-3 Three-dimensional deposits 

In this section, the effects of beam scanning during deposition are described. Electron 

penetration is shown to be responsible for the deposition of complex periodic structures by 

simple line scanning. More complex 3D deposits are then described and commented on. The 

effects of beam scan direction are presented. The scope of the deposition process for the 

successful design of complex 3D nanostructures is discussed. 

4-3-1 Definition 

The “three-dimensional deposits” presented here are structures obtained by a lateral 

displacement of the primary beam during the deposition process. 

4-3-2 Linear beam scanning 

Large scan speeds (at least 10 nm/s) were chosen so that the effect of occasional beam 

drifts was comparatively small, requiring the use of precursors with large deposition rates. 

Unless mentioned otherwise, all experiments were performed from the precursor 

(hfac)CuVTMS, at 25 keV and 500 pA, on naturally-oxidised silicon. The scan direction was 

always towards the precursor supply. All side-views are shown with the needle to the right. 

4-3-2-A) Construction and observation of the deposits 

The results obtained during single scans at constant speed are shown in figure 4-3-1. Walls with 

increasing thicknesses and heights were deposited when the scan speed was decreased from 

50 nm/s to 35 nm/s. During the scan the walls widths and heights increased until constant 

values were reached. After 4 µm the 40 nm/s line reached a height of 650 ± 50 nm. The cross-

section of this line was a rounded triangle, 280 ± 20 nm wide at the base. The triangle base 

width and the final height increased with decreasing speed. Below 30 nm/s, the deposited lines 

rose up and a gap periodically appeared between the structures and the substrate. Complex 

fence-like structures were obtained at lower speeds. 
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Figure 4-3-1. Deposits obtained by lateral beam scanning at constant speed. Ex-situ SEM 
views of 10 µm (except the top line, 15-µm) long (hfac)Cu(VTMS) lines written (from left to 

right on the picture) at 600 pA and constant lateral speeds (as indicated in left column). a) 
Side views, tilt 73°; b) Front views, tilt 82°. 

The periodicity was maintained for long lines (see fig. 4-3-2).  

 

Figure 4-3-2. Long-distance periodicity, even on patterned substrate. A) Ex-situ tilted SEM 
side view, tilt 75°. Inset, starting point. B) SEM front view, tilt 82°. 
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The deposits remained periodic and followed the height variations of patterned substrates.[33] 

Other precursor-substrate couples showed the same behaviour on long distances (see fig. 4-3-3). 

 

Figure 4-3-3. Periodicity effect from a Rh precursor, on thin film (left) and on bulk Si 
substrate (right). Ex-situ SEM sideviews, tilt 75°, scan speeds and lengths indicated. 

Periodic regimes were previously reported during line scans by laser- and FIB-induced 

CVD.[52-54] The reason why it arises in FEB-induced CVD was investigated. Lines with increasing 

lengths from (hfac)CuVTMS were deposited at an intermediate scan speed, as shown in the 

following figure. Marker lines were deposited at the initial and final positions of the primary 

beam. After the first 1 µm of scanning, the deposit divides. A bottom line continues on the 

substrate and a pillar rises upwards. This upward pillar is called the primary arch. After 3 µm 

scan length, the primary arch growth direction progressively becomes parallel to the substrate 

(see fig. 4-3-4). At 5 µm scan length, the bottom line grows thicker, divides and rises up. This is 

the “secondary arch.” A thin bottom line continues to be deposited on the substrate. At 7-µm 

scan length, the two arches meet and merge. This is the first “junction.” From that point, the 

growth proceeds from the junction and the bottom line. A new secondary arch forms at 8.5 µm, 

and the periodicity is continued. 
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Figure 4-3-4. Periodicity initiation sequence. 25 keV, 500 pA lines deposited at 15 nm/s with 
increasing scan lengths (1.5 to 10 µm, as indicated in left column). Thin perpendicular lines 

(1.2 µm long, 50 nm/s) mark the initial and final beam positions. (a) Ex-situ SEM side views, 
tilt 73°. (b) Selected front views, tilt 82°. Inset: detail of the 9 µm secondary arch. 

The period was defined as the distance between two successive secondary arches. The 60 µm 

long periodic line of fig. 4-3-2 has a constant period of 2.9 ± 0.3 µm. According to figs. 4-3-1 

and 4-3-3, the period increases with decreasing speed. The primary arch growth angle, and the 

scan speed at which the periodic growth mode appears, are determined by the ratio of the initial 

tip vertical growth rate to the lateral scan speed. 
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The markers in fig. 4-3-4 showed that the final beam position was where the primary arch 

curvature diameter was smaller (150 ± 20 nm, so close to the probe size of 132 ± 8 nm at ± 2 σ, 

with σ the beam standard deviation). This was confirmed by the following “jumped-line” series: 

 

Figure 4-3-5. "Jumped line” series and beam position relatively to the deposits. a) Ex-situ 
SEM sideviews (tilt 73°). 5 µm beam scan (25 keV, 500 pA, 15 nm/s), then forward-shift 

(“jump”). Scale bar, 5 µm. b) Writing sequence. c) Schematic beam position at jump point. 
Dash dotted lines: beam diameter at ± 2σ  is 132 nm (σ: beam standard deviation). 

After a 5 µm long scan at 15 nm/s the beam reached the “jump point”, as marked by the middle 

markers (see fig. 4-3-5b). The beam was then instantaneously shifted forward by a multiple of 

50 nm. The point reached after the jump was named the arrival point. From the arrival point, 

the 15 nm/s scan was continued until the structure was 6.5 µm long. The 5 µm length for the 

jump point was chosen because it is where the bottom line thickens and the growth of the 

secondary arch begins. If, after having jumped, the beam still intersected the deposit, then the 

growth of the primary arch proceeded (see fig. 4-3-5a). This held true for the 50- and 100 nm 

jumps. The resulting primary arches, however, were thinner at the jump points. A smaller 

intersection of the beam with the deposit decreased the growth rate. The primary arch was 
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interrupted shortly after 150-nm jump, but the front edge was sharper than if the jump was 

200 nm or more. This result showed that immediately after the jump, the tail of the electron 

beam was still intersecting the primary arch. At the jump point, the beam was thus centred at 

least at (150 - 132/2 =) 84 ± 5 nm behind the arch edge, as shown in fig. 4-3-5c. The entire 

primary beam intersected the primary arch. 

The scan speed could also be changed during the process. 

 

Figure 4-3-6. Speed variation during scan ((hfac)CuVTMS, 25 keV, 700 pA on Si). First 
6 µm at scan speed 15 nm/s. Next 5 µm (except the 15 nm/s reference deposit) at 10, 20 or 

25 nm/s. SEM micrographs, 25 keV, side- (tilt 57°) and front-views (tilt 83°). 

The direction of growth for both primary and secondary arches depended on the scan speed 

(see fig. 4-3-6). If the scan speed became too fast (see bottom deposit) for the deposit to follow, 

then the growth of the primary arch was interrupted. This was similar to previous observations 

on freestanding rods, which were limited in length due to a growth rate decrease.[55] 
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In order to investigate the structures of the two types of arches, a TEM analysis was 

performed. A 9-µm-long line was written at 15 nm/s on a thin silicon nitride support film: 

 

Figure 4-3-7. Surrounding deposits and nano-composite structure of arches. Ex-situ TEM 
sideviews (tilt 30°) of a scanned deposit on a 30-nm-thick Si3N4 membrane (500 pA, 9-µm 

long, 15 nm/s). a) Structure overview. Inset, close-up on the bottom line. b) Junction. Inset, 
close-up on the nanostructure at the top of the secondary arch. 

Around the edge of the bottom line a thin contrasted deposit was observed (see fig. 4-3-7a). It 

was wider (~2 µm) around the first complete secondary arch and narrower (~1 µm) where the 

growth of the new secondary arch began. The junction area was smooth on a 10-nm scale. The 

primary and secondary arches had a similar nano-crystalline structure (see fig. 4-3-7b). Dark 

grains of up to 10-nm diameter were embedded in an amorphous matrix and were visible on the 

upper surfaces. On the lower sides of both arches, the grains were less visible. The primary and 

secondary arches consisted of the same material. 
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4-3-2-B) In-situ monitoring of the signals 

Selected in-situ monitored signals during the series at varying scan speeds were plotted vs. 

time and compared with the evolutions of a vertical tip (see fig. 4-3-8a). The series of the 

successive scan lengths (shown in fig. 4-3-4) allowed detailed observation of all the features of 

the obtained curves, and how these related to successive shape changes (see fig. 4-3-8b). 

 

Figure 4-3-8. In-situ monitoring during line deposition showed periodicity evidence before 
tilted observation. a) Selected time evolutions from the fig. 4-3-1, compared to a vertical tip. 

b) Signals vs. length evolution of the 8-µm line of fig. 4-3-4, correlated to the deposit 
geometry. Inset, ex-situ 25 keV SEM top- and tilted side-views. 

On thick walls, the current saturated at constant values, but the periodic line currents had 

regularly spaced minima (see fig. 4-3-8a). This indicated a periodic structure, without having to 

tilt the sample, and was clearer than top-view observation. A minimum was reached when the 

primary arch divided (see fig. 4-3-8b). The current then slowly increased until the secondary arch 

started to grow. Two local minima corresponded to the secondary arch division and to the 

junction. The 4 minima of the 30 nm/s line in fig. 4-3-8a thus correspond to the primary arch 

take-off and to 3 junctions. 

To summarize, the larger the local deposit thickness (base, junctions) upon which the 

beam impinged, the larger the current drop. The result also applied to thick walls like those in 

fig. 4-3-1. The thicker the wall, the larger the current drop, at a constant height. 
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4-3-2-C) Interpretation 

A physical schematic drawing of electron propagation was compared to Monte-Carlo 

simulations. The deposited material, with the composition Cu1C3O1F1, was described by its 

average atomic number Zav = 11 and atomic mass Aav = 22 g/mol. These figures were 

overestimated because some H from the precursor was probably present, but not detected. The 

average deposit density ρ was measured as 3.3 ± 0.3 g/cm3 using a cantilever frequency-shift 

method. The deposits were similar to Al (Z = 13, ρ = 2.7). The thicker arch cross-section was 

1 µm, representing a mass-thickness of 330 µg/cm2. All electrons followed a multiple-scattering 

regime with little absorption (as in Al up to 450 µg/cm2 at 20 keV).[50] 

 

Figure 4-3-9. Electron propagation in 3D deposits. a) Monte-Carlo simulations show 
quantitative electron transmission through the primary arch. (model structure: planar, 

Cu1C3O1F1 with density 3.3 on Si, 25 keV). b) Schematic electron paths. The respective 
contributions of several electrons’ trajectories to the measured current are highlighted. 

Most electrons were “para-transmitted” through the primary arch (see fig. 4-3-9a).[56] SE were 

emitted with a cosine law distribution from the lower side of the primary arch, and were 

collected at the nearest interface.[44] The main contribution to current drop and SE emission 

came from the deflected electrons (see fig. 4-3-9b). The larger current drops and SE emission 

measured from the larger interaction volumes were due to more numerous collisions. The 

resulting incidence angles on the substrate were wider. This is similar to what was observed in 

the monitoring of tip deposits, where the current drop was larger on bigger tips (see §4-2-4A). 
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4-3-2-D) Deposited volume vs. time – “Efficiency effect” 

The instantaneous volume growth rate reached a maximum. Instead of occurring at the 

cone-cylinder transition as on tips (see fig. 4-2-4), it occurred at primary arch division. 

 

Figure 4-3-10. Maximum deposition efficiency at take-off. Volume deposited per time unit 
(nm3/s) vs. time, compared between 3D structures and tips (inset, SEM 73° tilted side-views; 

(hfac)CuVTMS, 25 keV, 500 pA on Si; 20, 60, 120, 300, and 660 s; scale bar 1 µm). 

The primary electron “efficiency” depended on the geometry of the pre-existing deposit (see 

fig. 4-3-10). The growth rate decreased with increasing distance from the deposit edge to the 

substrate. The influence on the primary arch was twofold: firstly, the growth direction was 

inflected, secondly the arch became thinner and narrower along the scan. The distribution of the 

electrons transmitted through the primary arch also varied along the scan. 

 

4-3-2-E) Analytical model 

As shown in fig. 4-3-5, the secondary arch grew while the electron beam was still entirely 

intersected by the primary arch. The electrons transmitted through the primary arch deposited 

the bottom line and the secondary arch. The transmitted distribution through a thin film is 

Gaussian, with a standard deviation (in cm2) after the thickness t (in cm) given by:[16] 
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E0: beam energy (eV); ρ: density (g/cm3); Aav effective atomic weight (g/mol). 

The primary arch was modelled as a thin film of homogeneous thickness (t) suspended at height 

(h) above the next interface (substrate or secondary arch), as shown in fig. 4-3-11. 

 

Figure 4-3-11. Transmitted electron distribution schematic model.  

The transmitted electrons were projected onto the next interface. For simplicity, it was supposed 

that they had travelled straight from the incidence, so that x/t = r/h. After convolution by the 

Gaussian primary beam of standard deviation σ, the electron distribution on the substrate was: 
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After simplification the insertion of (4-3-1) into (4-3-2) gave: 

2

2 5 2 2 5 2

1
( ) exp( )

2 ( 2.8.10 ) 2( 2.8.10 )

r
N r

h t h tπ σ σ− −= −
+ +

 (4-3-3) 

(r, σ, h, and t in nm; the pre-factor includes the values for the deposit 
from (hfac)CuVTMS, given in §4-3-2-C) 
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The resulting standard deviation of the projected distribution was a function of the product h2t. 

The values of t and h vs. line length l, measured from the deposits in fig. 4-3-4, at the final beam 

positions given by the markers, are summarized in table 4-3-I (t, h, l in nm; all values ± 50 nm). 

 

Table 4-3-I. Geometric parameters of the primary arch. 

The arch thickness t decreased linearly with l. The height h first increased, reached a maximum 

and decreased again. The transmitted electron distributions were calculated. 

 

Figure 4-3-12. Calculated distributions of electrons incident on the secondary arch (at the 
positions marked by the dots). The Gaussian curves appear distorted because of the different 

scales. Inset, integrated profile. 

From 1 to 3 µm, the distribution became flat and widened (see fig. 4-3-12). The primary arch 

grew higher so the projection was made from an increasing distance. This explained the slight 

decrease of the bottom-line thickness, and predicted the increasing thickness of the surrounding 
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deposit seen in fig. 4-3-7. After 3 µm the transmitted distribution narrowed and sharpened due 

to the growth direction of the primary arch, now parallel to the substrate, and to its decreasing 

thickness. At 5 µm, the distribution was the same as when the primary arch divided. As the 

bottom line thickened, the electron efficiency increased through scattering. The secondary arch 

growth thus started. The distance of the primary arch to the next interface also decreased. As a 

result, the calculated central intensity was then increased threefold between 5 and 5.5 µm. 

This deliberately simple model was sufficient for explaining the formation of the 

secondary arch. More realistic geometries merely resulted in complex but similar expressions. 

The integrated point electron dose, as seen in the inset of fig. 4-3-12, showed a parallel 

evolution. The widths of the obtained distributions were probably overestimated, because the 

actual Zav was smaller and the eq. (4-3-1) emphasised elastic scattering. Inelastic collisions lead to 

smaller angles, especially in lower-Z materials. The distribution is mainly controlled by the h2t 

term anyway. The secondary arch arises because of the narrowing of the transmitted electron 

distribution that occurs as the primary arch advances. This result is an indirect consequence of 

the decrease in the deposited volume per time unit on the primary arch during deposition, 

combined with the constant electron flux. 

 

4-3-2-F) Summary 

A periodic growth regime was obtained by line-scanned FEB deposition. The period was 

tuned by changing the scan speed. The initiation sequence of periodicity was investigated. The 

periodicity was interpreted as the result of two main factors: a growth rate decrease when the 

deposition site gets away from the substrate, and a large electron range at 25 keV compared to 

the deposits sizes. The electron-induced secondary arch growth must be considered when 

designing 3D structures. The easy FEB-induced formation of periodic structures could be used 

in future micro-optical or micro-mechanical devices. 

These results have been published in the Journal of Vacuum Science and Technology, under the 

title “Periodic structure formation by focused electron-beam-induced deposition”.[57] 
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4-3-3 Electron scattering in model 3D structures 

The evolution of the absorbed sample current on a series of model 3D structures (from 

(hfac)CuVTMS on Si at 25 keV) summarized the effects of electron scattering during deposition. 

4-3-3-A) Thick wall 

Instead of a low speed, single scan, a rapid multiple scan was used to deposit a thick wall 

(see fig. 4-3-13a). The monitored current was compared to that of a vertical tip (see fig. 4-3-13b). 

 

Figure 4-3-13. Thick wall obtained by multiple-scanning, and monitoring. Left, ex-situ SEM 
tilted views. Right, in-situ monitoring compared to a reference tip. 

The sample current decreased at each new scan. It saturated at a lower value than that of a single 

tip, indicating a larger interaction volume. The reason is explained schematically in the following 

figure. In tips, all directions are similar, so laterally scattered electrons rapidly exit the tips (see 

fig. 4-3-14a). The electrons penetrate deeper in the wall, due to lateral (out-of-plane in the 

Monte-Carlo simulation) scattering in the deposit (see fig. 4-3-14b). The Monte-Carlo 

simulations confirm this physical explanation (observe the deeper range of the electrons in the 

wall as compared to the tip in the simulations of figs. 4-3-14a and b) and indicate a 5 % larger 

BSE yield from the wall. This value is similar to the measured difference of 30 pA out of 500 pA 

probe current. 
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Figure 4-3-14. Comparison of electron propagations in tip and wall. a) Scattering from a tip, 
and Monte-Carlo simulation with 100 trajectories. b) Idem for a wall. The simulations show 

the projection of 3D electron trajectories on a cross-section of the protruding shapes.[58] 

 

4-3-3-B) Tip deposits on suspended arch or rod 

Tips were deposited by spotting the beam on the edge of high primary arches. 

 

Figure 4-3-15. Tip on arch. a) Ex-situ SEM views (top+tilt) of the structures. The dotted 
lines of the final beam positions, deduced from the markers and tip angle, indicate a slightly 

non-normal beam incidence during deposition. b) In-situ sample current monitoring. 
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The primary arch could be deposited in a single slow scan (see fig. 4-3-15a). Tip monitoring (see 

fig. 4-3-15b) saturated more slowly than the current had decreased during the construction of 

the primary arch base. The tip deposited for 10 minutes was short but with a complete cone. 

The primary arch could also be a horizontal rod deposited from a tip (see fig. 4-3-16a). 

 

Figure 4-3-16. Tip on horizontal rod. Left, SEM views of the deposited structure. Right, 
writing sequence used and monitored signals.  

The horizontal rod was narrower than the tip diameter, as seen from the top-view. Its thickness 

slowly decreased, letting a secondary arch grow. On the 3.6 µm high tip 1 deposited in 6 min the 

sample current saturated (see fig. 4-3-16b). Some deposition took place on the lower side of the 

rod under tip 2, but no tip appeared on the secondary arch. The transmitted electron 

distribution widened as the rod thickened with tip 2, so that the current density on the 

secondary arch quickly decreased. Tip 2 was only 2 µm high, even though the deposition time 

was the same as for tip 1. The monitored current saturated more slowly and at a slightly lower 

value than on tip 1 (see fig. 4-3-16b). The interaction volume was larger because the rod 

occupied part of the cone into which the electrons were forward scattered. For tip 2 the average 

growth rate was 5.6 nm/s. This was equal to the deposition rate measured on 7 µm-high vertical 

tips (see fig. 4-2-3), indicating that the distance to the substrate, not the tip height or shape, is 

the main parameter for the decreasing growth rate. 
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4-3-3-C) Rods and secondary arches 

A series of deposits illustrated how rod height influences secondary arch growth. 

 

Figure 4-3-17. Rod on tip deposition and monitoring. a) Ex-situ SEM views of the resulting 
structure. b) In-situ monitored signals and writing sequence used. 

Horizontal rods, initially 300 nm wide and 400 nm thick, grew thinner from higher tips (see 

fig. 4-3-17). Secondary arches appeared sooner. The thinner rods probably did not intersect the 

entire beam. The secondary arches may have formed partially under the direct incidence of a 

fraction of the primary beam. Monitoring indicated when the beam moved away from the tips. 

The monitored current remained lower on the rods than on the bulk sample (see fig. 4-3-17b). 

 

4-3-3-D) Secondary arch initiation 

Several causes were invoked to explain the secondary arch growth: the transmitted 

electrons, the growth rate reduction with the distance to the substrate, and the larger electron 

efficiency on protruding deposits. This last point was checked in a series of deposits. A 200 nm 

thick wall was deposited on the substrate before depositing the main structure (see fig. 4-3-18b). 

After deposition it was incorporated into the bottom line or the secondary arch (see fig. 4-3-

18a). The monitored curves clearly witnessed the geometrical effects (see fig. 4-3-18c). The 

“efficiency effect” played a clear, but minor role in the formation of the secondary arch. 
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Figure 4-3-18. Secondary arch initiation by a pre-deposited thin wall. a) Ex-situ SEM tilted 
views of the deposits. b) Deposition sequence. c) In-situ monitoring (offset for clarity). 

When the thick wall was deposited too close to the primary arch division, a higher arch resulted 

and the secondary arch was delayed (see fig. 4-3-18a). At 4 or 5 µm from start, it created a bump 

in the bottom line but the process returned to its natural evolution. At 5.5 µm from start the 

wall initiated the secondary arch growth, which was closer to the junction after the 8 µm scan 

length than in all the other structures. At 6 µm from start, the secondary arch was already 

developing, so the wall had a smaller effect. 

 

4-3-3-E) “Stool base” and “Djenné Mosque” 

Other simple model structures were realized by adding tips and/or straight scans. The 

rods grown horizontally (15 nm/s, 2.8 µm-long) to deposit a “stool base” were narrower than 

their supporting tips (7 min. 20 s), and slightly bent downwards (see fig. 4-3-19a). The 

monitoring was formally similar to that in figs. 4-3-16 and 4-3-17 (see fig. 4-3-19b). 



4-3 Three-dimensional deposits – Model 3D structures 

126 

 

Figure 4-3-19. “Stool base”. a) Ex-situ SEM views. b) Deposition sequence and in-situ monitoring. 

A vertical wall could also be constructed of closely spaced tips. The following structure was 

named the “Djenné Mosque”, after a famous earthen building in Mali (Africa):[59] 

 

Figure 4-3-20. “Djenné Mosque”. a) Ex-situ SEM views. b) Writing sequence and in-situ monitoring. 

The top view revealed that the inside of the walls was thicker than the outside, with respect to 

the top of the walls (see fig. 4-3-20a). The electrons scattered from each wall exposed the 

opposite walls. No depth information was available at the centre of the structure in the SEM 
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picture, but it is highly probable that the “floor” level was above the substrate level, and was not 

flat. The “outwards” scattering deposited flakes on the nearby substrate. Monitoring indicated a 

larger interaction volume by saturating at a lower level than on a single tip (see fig. 4-3-20b). It 

also indicated that the 4 walls had different thicknesses (see the last sequences). This was 

probably due to different orientations with respect to the precursor flux. 

 

4-3-3-F) “Nanoheart” 

The primary beam can move in a curve. Monitoring indicated when successive scans 

overlapped previously deposited branches (see fig. 4-3-21b). Despite some filament fluctuations, 

two similar branches were successfully deposited to yield the structure in fig. 4-3-21a. 

 

Figure 4-3-21. “Nanoheart”. a) Ex-situ SEM views. b) Deposition sequence (24 nm/s) and in-situ 
monitoring. 

Initially deposited on 2003 Valentine’s Day, later it was realized that this “nanoheart” structure 

was useful for quick demonstration of 3D nanofabrication by FEB-induced deposition. It was 

subsequently included for pedagogical purposes on the EPFL web site. 
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4-3-4 Influence of beam scan direction on 3D structure growth 

Molecules are brought to the reaction site by a gas-phase transport process, but the actual 

reactants are adsorbates. The role of surface diffusion is still unclear. I bring here a partial 

answer by showing that surface diffusion did not have an influence on the deposition of a series 

of structures when scanning the beam in other directions than towards the needle. Shadowing 

effects are evidenced and the molecular regime of the gas flow is discussed. 

4-3-4-A) Principle of the study 

Deposition was performed from the precursor (hfac)CuVTMS on Si, at 25 keV, following 

a “star-shaped” writing sequence, at three different scan speeds (see fig. 4-3-22a). 

 

Figure 4-3-22. a) Schematic drawing of the writing sequence. b,c,d) Ex-situ SEM tilted views 
(70°) of the structures deposited at 30, 20, and 15 nm/s. Left, front-views. Right, side-views. 

The deposits depended both on scan speed and scan direction (see fig. 4-3-22b,c,d). The writing 

order was chosen so that the already existing structures would not influence the growth of the 

following ones. At 30 nm/s only thick walls were deposited (see fig. 4-3-22b), but they were 

thicker when scanning towards the needle. At 20 nm/s the deposits towards the needle divided, 

but in the opposite direction thick walls were still obtained (see fig. 4-3-22c). At 15 nm/s all 

deposits divided, with angles depending on the scan direction (see fig. 4-3-22d). Secondary 

arches appeared on all divided deposits. Scanning towards constant directions, the effect of 

decreasing the speed was to grow arches with wider division angles (compare the deposits 
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named 3 to 5 between fig. 4-3-22b and d). The primary arch growth angles depended on the 

ratios of scan speed to the vertical growth rates. At constant speed but towards different 

directions, the arches grew lower when scanning away from the syringe. The line n°1 in fig. 4-3-

22d had a slightly larger volume than line n°7 of fig. 4-3-22b. The growth rate varied twofold 

between these directions. Thus the system was not cylinder-symmetrical. A similar behaviour 

was qualitatively mentioned in FIB induced deposition.[60] 

 

4-3-4-B) Electron scattering effects 

The deposition rate was higher when the beam impinged on larger structures (as shown in 

figs. 4-2-4 and 4-3-10). To estimate the ratio of growth rates between the two extreme directions 

only the scan speeds that deposit similar volumes can be compared. The lower growth rates 

when scanning away from the beam appeared from a new series, where electron scattering 

effects were initially identical. 

 

Figure 4-3-23. Lines deposited on pre-existing tips. Ex-situ SEM tilted views (75°). Outer 
columns: front-views. Intermediate columns: side-views. a) Line scan away from the needle, 

length 2.5 µm. b) Pre-existing tips. c) Line scan towards the needle, length 3 µm).  
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A spot was first deposited for a given time (0 to 120 s, see fig. 4-3-23b). Then the beam was 

scanned at constant speed either towards the needle, or away from it. The obtained structures 

covered the tip (see fig. 4-3-23a,c). Towards one scan direction, after a transitory phase, all lines 

ended as thick walls. The structures were not linear superpositions of a tip and the line deposited 

on the bare substrate because of the “efficiency effect”. Less volume was deposited and the 

transitory phase was shorter when scanning the beam away from the needle. The growth rate 

was smaller when adding deposit overlays on a surface not oriented towards the precursor flux. 

The monitoring clearly witnessed the varying interaction volumes: 

 

Figure 4-3-24. a) In-situ monitoring curves during deposition of the series in fig. 4-3-23. b) 
Monte-Carlo simulations on a model structure (planar symmetry) of the 90 s - tip deposit. 

When the beam scan began, the current increased from a value reached on a partially completed 

tip cone, to the value on a thin wall (close to that of the bare substrate, see fig. 4-3-24a). The 

regain was slower when scanning towards the syringe than away from it, indicating that more 

volume was being deposited. On the 120 s tip + line deposit curve in fig. 4-3-24a, a shoulder 

(marked by a star) corresponded to the formation of the opening shown as inset in fig. 4-3-23c. 

Monte-Carlo simulations illustrated the enhanced backscattering on the larger volumes than on 

the thin walls (see fig. 4-3-24b). 
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In these conditions (40 nm/s, 400 nm diameter tips, 130 nm beam FWHM), without 

deposition of the line, the collected current in fig. 4-3-24a would have turned back to the value 

on the substrate in 7 s. The current curve slopes would have been 16.10-3 nA/s. In the transitory 

phase, the slopes of the signals were 4.10-3 nA/s when moving away from the syringe. In the 

opposite direction, they were 2,1.10-3 nA/s (see fig. 4-3-24a). The ratio between the slopes was 

1.9. At each deposition stage, the beam spent twice as much time in the transitory phase when 

hitting the side of the tip exposed to the flux, than when hitting the unexposed side. This 

confirmed the twofold ratio of the growth rates between areas exposed to the flux and 

“shadowed” areas, measured from fig. 4-3-22. With still one-half the growth rate of the flux-

exposed side, the shadowing of the unexposed areas was only partial. 

 

4-3-4-C) Interpretation 

The different growth rates were due to the different precursor coverage on differently 

oriented surfaces against the precursor flux. The flow was in the molecular regime (see fig. 4-3-

25a). The number of particles hitting a surface decreases as the cosine of the surface normal 

with the flux direction. Some surfaces were shadowed. However, precursor molecules did reach 

them, from several sources, as shown schematically in figure 4-3-25b. 

 

Figure 4-3-25. Schematic summary of the possible reasons for shadowed face coverage. a) 
Overview of the molecular precursor flux around tip. b) Detailed view around tip. 
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The precursor flow was in the molecular regime because at the needle exit the precursor flux 

was 1.4.1018 molecules/cm2.s. According to the kinetic theory of gases, the local pressure was 

2.10-2 mbar, i.e. 1/5 of the precursor vapor pressure of 0.1 mbar.[11, 61] The molecular mean-free 

path (MFP) was 1 mm. The Knudsen number, as the ratio of the MFP to the needle diameter, 

was above 1. Assuming a slow pressure drop due to effusion, the pressure 500 µm away from 

the needle (see fig. 4-3-22a) at the deposition site was 10-2 mbar. At equilibrium, the 

corresponding coverage was 105 molecules/µm2 (i.e. 10% of a monolayer).[62] In molecular flow, 

the areas behind the deposited tips were shadowed (see fig. 4-3-25a). However, isotropic 

collisions occurred in the gas. The fraction of molecules traveling without encountering a 

collision decreased exponentially. The half-life was the MFP of 1 mm. After 500 µm, 40% of the 

molecules had collided and flew towards random directions (20% to the forward hemisphere, 

20% backward), so 80% of the molecules still traveled “forward” (marked (1) in fig. 4-3-25b). 

The remaining 60% flew beyond the deposit plane, and eventually collided, so that half of them 

statistically flew towards the shadow (2 in fig. 4-3-25b). The coverage ratio between a surface 

perpendicular to the flux and a shadowed area thus did not exceed 80 to 30. Second, molecular 

desorption followed a cosine-law probability.[63] A molecule adsorbed on the substrate desorbed 

with up to 50% chance towards a vertical surface, depending on its distance (3, in fig. 4-3-25b). 

The relative substrate coverage around the deposit was 62 (60 x cos(45°) = 42 from the 

intersected flux + 20 due to isotropic collisions): half of it was 31. This concerned all vertical 

surfaces equally, so the maximum coverage ratio was then 111 to 61. This was very close to the 

twofold ratio measured above. Finally, surface diffusion locally homogenized the coverage (4, in 

fig. 4-3-25b). However, the total path length of an adsorbed organic molecule is 2 µm in random 

walk, so this effect is short-ranged (<100 nm distance).[64] It contributed to a lesser extent than 

the gas-phase phenomena. Its effect would probably appear with smaller probe sizes. 

This physical approach gave a satisfactory order of magnitude (a precursor coverage ratio 

of 1.8 between exposed and shadowed areas). More accurate weighing of the contributions 

would require computational gas flow dynamics. Depositing at different pressures would also 

influence the coverage ratio by affecting the collision MFP and the isotropic part of the flux at 

the deposition site. Both these topics are proposed for future studies. 
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4-3-4-D) Practical consequences on complex structures 

Complex shapes appeared from simple scans, as shown in fig. 4-3-26. 

 

Figure 4-3-26. a) Simple writing sequence. b-d) Ex-situ SEM views of the resulting structure. 

The expected elliptical corkscrew was not observed in the tilted views. A primary arch divided at 

arrow 1 but its growth rate decreased, reaching a maximum height at the closest distance to the 

needle (arrow 2 in fig. 4-3-26d). The growth direction then oriented towards the substrate and 

secondary arches appeared. As the growth rate increased again, the main arch grew straight 

(arrow 3). A very different structure was deposited by beginning the scan at another place: 

 

Figure 4-3-27. a-d) The deposit resulting from the elliptical scan depended on the start 
point. e) In-situ monitoring (squares), compared to that of the structure in fig. 4-3-26 (circles). 
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The same effects as in fig. 4-3-26 took place to build a complex structure (compare the 

heights at arrows 1 to 3 in fig. 4-3-27 with the corresponding positions in fig. 4-3-26). 

Monitoring (see fig. 4-3-27e) also clearly indicated that the structures were different. For the 

successful deposition of a corkscrew, the coverage effects were partially avoided by scanning 

more slowly (see fig. 4-3-28a). 

 

Figure 4-3-28. Successful corkscrew depositions at wider primary arch growth angles. a) 
Writing sequence. b) 500 pA probe current, c) 100 pA probe current avoids a secondary arch. 

These vertical structures developed like bent tips. Hence, the primary beam always impinged at 

the top of a cone-like shape, which maintained a constant exposure to the flux. A secondary 

arch appeared at the point where the growth rate increased with the scan direction (see fig. 4-3-

28b). By decreasing the probe current the growth of a secondary arch was avoided (although a 

bottom line was still deposited, see fig. 4-3-28c). 

In order to avoid the flux effect and successfully deposit 3D structures, a closed-loop 

process may help avoid side effects by adapting the instantaneous scan speed to the depositing 

volume. This could be a useful implementation to the beam scan control software. A 

micrometric sample positioner with rotational degrees of freedom is another possibility.[65-67] A 

more symmetrical precursor supply could be another alternative solution. 

These results have been published in the scientific journal Microelectronic Engineering, under 

the title “Influence of the beam scan direction during focused electron beam induced 

deposition of 3D nanostructures”.[68] 
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4-3-5 Summary 

When the electron range is larger than the structure sizes, it influences the shapes and 

sizes of the deposited three-dimensional structures. Secondary arches are formed and cross-

deposition is induced between parts of a same structure. Monitoring the sample current 

summarized the electron scattering phenomena on these complex geometries. Several model 

structures were deposited and interpreted. The process lacked cylindrical symmetry because of 

the directionality of the precursor flow. The shape of the 3D structures was affected. By taking 

this effect into account desired shapes were successfully deposited. Solutions were proposed to 

overcome this limitation. 



4-4 Conclusions 

136 

4-4 Conclusions 

In Section 4-1 the propagation of electrons was shown to change when depositing 

structures larger than the electron range. The monitoring method was introduced in this simple 

case. The sample current was shown to evolve mainly in parallel to the BSE yield, with a small 

contribution from the emitted SE. The deposition rate dependence on deposition parameters 

was shown to follow Christy’s model in the precursor-limited regime. Precursor depletion in 

1 µs was observed. Two deposition behaviors were observed: a substrate-independent behavior, 

which could be due to a radical-assisted mechanism or to autocatalysis, and a substrate-

dependent behavior, in which the deposition rate depends on the numbers of PE, BSE and SE. 

When reducing the size of the structures below the electron range, tip deposition 

occurred, as shown in Section 4-2. The tip shape was due to electron scattering from a fixed 

beam. Systematic monitoring allowed developing a comprehensive model of electron 

propagation and tip deposition. Several effects observed in the experiments were interpreted. 

The sample current offered integrated information on the distribution of electronic trajectories 

in the growing micro- and nanostructures. 

By moving the beam during deposition, 3D microstructures were deposited and described 

in Section 4-3. Their shapes were determined by electron scattering, which took place in the 

bulk of the structures but resulted in precursor fixation at surfaces. Precursor coverage on 

complex shapes was shown to influence the deposition rate. The scope and limitations of the 

deposition method because of scattering appeared through the study of a series of model 

structures. 

A compromise must be found, when choosing parameters for the deposition of a 

structure, between the lower electron range at lower energy, and the increased forward 

penetration at higher energy. Sharp tips require high-energy (> 10 keV) electrons but deposition 

will take place in large areas around the tips due to forward-scattered or transmitted electrons. 

Secondary arches are avoided in 3D microstructures by using low currents of low energy 

electrons (< 5 keV) but the obtained shapes are rounded. The design of complex 3D 

microstructures may include several deposition steps at different electron energies. 
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C h a p t e r  5  –  C h e m i c a l  a n a l y s e s  o f  

f o c u s e d  e l e c t r o n  b e a m  

i n d u c e d  d e p o s i t s  

 
 

On se persuade mieux, pour l’ordinaire, 
par les raisons qu’on a soi-même trouvées, 

que par celles qui sont venues dans l’esprit des autres 
 

Pascal, Pensées, 10-737 
 
 
 
 

 

The previous chapter dealt with the physical effects involved during FEB-induced 

deposition of structures, now the chemical outcome of the process is examined. If functional 

structures or applications are to be designed for 3D micro-deposits, then their precise 

composition must be known. The difficulty lies in the small volume of the deposits, which does 

not allow usual chemical analysis methods (such as X-ray diffraction analysis, Nuclear Magnetic 

Resonance Spectroscopy, Chromatography…). Micro-beam characterization methods are 

required. In Section 5-1 the deposits obtained from volatile organic compounds are described. 

All the microanalysis methods gave coherent and complementary results. The deposited material 

is C9H2O1, in which the carbon is amorphous and 90% sp2. The properties of this material 

(density, refractive index, chemical bonding) were investigated. In Section 5-2 the metal-

containing deposits from organometallic precursors are studied. The metal content, which 

depended on the deposition conditions, could be improved by thermal treatments. Metal-

containing carbonaceous mixtures were electrically conductive. 
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5-1 Deposits from purely organic precursors 

5-1-1 Why study the deposition of carbon? 

The study of carbon is an immense field of research.[1, 2] Depending on how the element is 

chemically bonded, it can be used as a hard coating with high chemical inertness and high 

thermal conductivity, as a wide-bandgap semiconductor, or as a solid lubricant. The study of the 

amorphous or nanocrystalline phases of carbon has attracted much attention.[3] The discovery of 

fullerenes and carbon nanotubes has opened the way to new materials and applications. 

Most commercially available organometallic CVD precursors contain carbon, as do most 

of the resulting FEB deposits.[4] Depositing only C and analyzing the deposited material is useful 

for understanding the properties of the matrix around the metallic grains. It also opens the 

possibility of locally depositing diamond with the FEB. 

Different precursors were screened to investigate the mechanism of deposition. An 

analysis procedure was defined. It showed that the composition and bonding of the deposits are 

independent of the precursor used: C9H2O1 with 90% sp2 carbon. The growth rates and deposit 

morphologies depend on the precursor used. This added knowledge sets the basis for successful 

future FEB induced deposition of diamond. 

 

5-1-2 Precursor screening 

A few volatile organic compounds were previously tested and reported as carbon 

“precursors”, such as styrene, methane, and resist developer solvents.[5-8] The same precursors 

were used for FIB-induced deposition.[9] A reaction mechanism was proposed based on the 

experimental observations, but apparently without considering the different adsorption 

behaviors of the used compounds.[10, 11] 

The characterization of deposits requires a few cubic µm as the lower limit of the analysis 

volume. From the large selection of carbon-containing compounds available, pure compounds 

with the following properties were tested: 
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- High vapor pressure. This is the case for most common organic solvents. Volatile 

solid organic compounds also exist, such as menthol, camphor or naphthalene. 

- Stable and easy to handle in normal conditions, non-toxic and commercially available 

at low cost. Solids and liquids were preferred over gases (such as CO2 or CH4…). 

- A permanent dipole moment or a possibility of H-bonding. As stated in Christy’s 

model, (see §2-1-2), the deposition rate is proportional to the residence time τ of the 

adsorbed molecules. Since τ increases exponentially with the adsorption energy,[12] 

increasing this energy by using molecules that give rise to strong Van der Waals 

interactions or H bonds should lead to higher growth rates. 

- With as few other elements other than C as possible. Since C itself is not volatile, it 

must be combined with other elements like H, O, N, or F. The relative C content in 

the precursor was kept as high as possible. The effect of each of the other elements 

was studied as separately as possible. 

- Lack of “condensable” elements else than C. Elements such as S, P, or Si lead to solid 

compounds at room temperatures. 

The following table 5-1-I summarizes the series of tests on molecules selected according to 

these criteria. Moderate probe currents (5 to 10 nA) were used. No cryo-condensation of the 

precursor fluxes was used during these experiments. 
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Compound 
name 

Chemical 
formula 

Physical 
properties 

Supplya Irradiation 
conditions 

(all at 25 keV) 

Resulting deposit 
(thickness + SEM 

and/or optical image,
constant 

magnification) 
Camphor 

 
C10H16O 

Solid 
(Tm=177°C; 
Teb=207°C; 
Pvap(RT)= 
1.8 mbar) 

Int. P=3.10-5 
mbar, 
5 nA, 
1h10 

90 nm 

 
Menthol 

 
C10H20O 

Solid 
(Tm=122°C; 
Teb=249°C; 

Pvap(122°C)= 
1.3 mbar) 

Int. P=2.10-5 
mbar, 
3 nA, 

25 min. 

20 nm 

Benzoic 
acid 

 
C7H6O2 

Solid 
(Tm=122°C; 
Teb=249°C; 

Pvap(122°C)= 
1.3 mbar) 

Int. P=1.5.10-5 
mbar 

5 nA, 1h 

<30 nm 

 
DMSO 

 
 

C2H6SO 

Liquid 
(Tm=18°C; 
Teb=189°C; 
Pvap(RT)= 
0.6 mbar; 
µ=4.0 D) 

Ext. P=3.10-5 
mbar 

5 nA, 4h30 

150 nm 

 
Cyclo-
hexane 

C6H12 Liquid 
(Tm=6.5°C; 
Teb=81°C; 
Pvap(RT)= 
100 mbar) 

Ext. P=7.10-4 
mbar 
3 nA, 
1h50 

25 nm 

 
Cyclo-

hexanone C6H10O 

Liquid 
(Tm=-31°C; 
Teb=155°C; 

Ext. P=10-4 mbar 
5 nA, 
1h30 

<30 nm 
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Pvap(RT)= 
6.6 mbar; 
µ=2.9 D) 

 
Cyano-
nonane 

C9H17CN Liquid Ext. P=7.10-5 
mbar 
5 nA, 

1h 

<30 nm 

 
Dichloro-
methane 

CH2Cl2 Liquid 
(Tm=-95°C; 
Teb=40°C; 
Pvap(RT)= 
447 mbar ; 
µ=1.6 D) 

Ext. P=7.10-4 
mbar 
5 nA, 

2h 

90 nm 

 

Acetone 

C3H6O 

Liquid 
(Tm=-95°C; 
Teb=56.5°C; 
Pvap(RT)= 
526 mbar; 
µ=2.9 D) 

Ext. P=7.10-4 
mbar 
5 nA, 

25 min. 

40 nm 

Methanol CH3OH Liquid 
(Tm=-98°C; 
Teb=64.5°C; 
Pvap(RT)= 
128 mbar; 
µ=1.7 D) 

Ext. P=7.10-4 
mbar 
5 nA, 
2h40 

90 nm 

 

Aceto-
nitrile 

CH3CN Liquid 
(Tm=-46°C; 
Teb=81.6°C; 
Pvap(RT)= 
96 mbar; 
µ=3.9 D) 

Ext. P=7.10-4 
mbar 
5 nA, 

1h 

80 nm 
 

Nitro-
methane 

CH3NO2 Liquid 
(Tm=-29°C; 
Teb=100°C; 
Pvap(RT)= 
37 mbar; 
µ=3.5 D) 

Ext. P=8.10-4 
mbar 
5 nA, 
1 h. 

80 nm 

 
Formic 

acid 
HCOOH Liquid 

(Tm=8.4°C; 
Teb=101°C; 
Pvap(RT)= 

Ext. P=8.10-4 
mbar 
5 nA, 

100 min. 

80 nm 
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46 mbar ; 
µ=1.4 D) 

Acetic acid CH3COOH Liquid 
(Tm=17°C; 
Teb=118°C; 
Pvap(RT)= 
15 mbar ; 
µ=1.7 D) 

Ext. P=8.10-4 
mbar 
5 nA, 
2 h 

100 nm 

 
Acrylic 

acid 
CH3CH2-
COOH 

Liquid 
(Tm=13°C; 
Teb=141°C; 
Pvap(RT)= 
3.8 mbar) 

Ext. P=4.10-5 
mbar 
5 nA, 

50 min. 

150 nm 

 
Table 5-1-I. Precursor screening for deposition of Carbon. Physical properties from the 

CRC Handbook of Chemistry and Physics, 85th edition. 

 a(Int.: internal; Ext. : external)  

In figure 5-1-1, a synthetic view of Table 5-1-I is proposed. As the “deposition yield”, the 

volume of the deposits, divided by the deposition time and the probe current, was reported. 

 

Figure 5-1-1. “Deposition yield” from the data in Table 5-1-I. vs. a) precursor vapour 
pressure, b) Working pressure during deposition. The points around parentheses in (a) 

indicate precursors for which the leak valve was opened only partially, thus not using as high 
precursor fluxes as possible. 
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The more volatile precursors led to higher working pressures, but not to higher growth rates 

because in most cases the pressure was limited to 7.10-4 mbar (see fig. 5-1-1a). If the fluxes and 

the working pressures were similar, then a difference in growth rate arose between polar and 

non-polar compounds (compare, for instance, the results from cyclohexane, dichloromethane 

and acetonitrile in fig. 5-1-1b). The cryo-condensation system shown in fig. 3-1-4 was built to 

allow using the precursor with the higher vapour pressures. 

 

5-1-3 Chemical micro-analysis of the deposits 

Did the different precursors lead to the same material? Was it possible to compare only 

the growth rates? In order to answer these questions, the deposits from the carboxylic acids 

were chemically characterized. Styrene was used for comparison. The chemical micro-analysis 

required deposit volumes of ~100 µm3 (see fig. 5-1-2a,b,c). Large probe currents and long 

exposure times were chosen. Sharp tips were also deposited (see fig. 5-1-2d) but not analyzed. 

 

Figure 5-1-2. Examples of C deposits from acrylic acid. a) Thick deposit for micro-analysis. 
Ex-situ SEM tilted view (25 keV, 72°). b) AFM picture (derivative of the height signal, 

arbitrary units). c) AFM line profile. d) Tip deposit, SEM tilted view (25 keV, 72°). 

During deposition of these structures, the monitoring indicated how the growth took place: 
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Figure 5-1-3. In-situ monitoring of the structures in fig. 5-1-2. a) Thick square deposited at 
25 keV, 100 nA. b) Tip deposited at 100 pA, with regular checks for the filament stability. 

The collected sample current increased during film deposition (compare figs. 5-1-3a and 4-1-4). 

During tip growth, the current slowly decreased and saturated (compare figs. 5-1-3b and 4-2-5). 

The ratio between the apex curvature radius and the cylinder diameter was much larger than in 

tips from organometallic compounds (described in Section 4-2). The electron penetration is 

larger in carbonaceous materials as compared to metals or metal-containing composites.[13] The 

inner tip structure may also contribute to the outer shape (see below, §5-1-3G). 

The results of large-area deposition from 5 precursors are compared in table 5-1-II. 

 

Table 5-1-II. Working conditions and deposition output from five carbon precursors 
(a) Chamber pressure during effusion using liquid N2 condensation system. 

(b) Working pressure without condensation. 
(c) High dose unnecessary: 60 µm3 spots are obtained in 1 h at 5 nA. 
(d) High dose unnecessary: 750 µm3 spots are obtained in 1 h at 5 nA. 

(e) Signs of a non-dense inner structure appear in SEM/TEM, see §5-1-3G. 
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Although styrene and acrylic acid lead to comparable effusion fluxes, the deposition rate was 

five times higher when using acrylic acid (see table 5-1-II). Although the flux from propionic 

acid was smaller than the flux from styrene, the deposit obtained was equally as thick. By 

reducing the length of the C chain to a methyl group (acetic acid) or to a single H atom (formic 

acid), the fluxes increased along with the deposition rates. 

To analyse the obtained micro-deposits, only micro-characterization techniques could be 

used. The analyses involved 2 purely elemental particle-microprobe techniques (EDX and 

ERDA/RBS) and 3 optical micro-spectroscopy techniques (FTIR, Raman, and reflectometry). 

 
5-1-3-A) EDX microanalysis 

The volume required for EDX microanalysis is typically 1 µm3. I chose 3keV analysis 

energy to excite the K peaks of Si, C, N and O. The absence of a Si signal showed that the 

substrate was below the information depth.  

 

Figure 5-1-4. The C/O ratio is independant on the precursor used. Ex-situ EDX spectra 
(energy 3 keV) of deposits from three precursors (normalization at C Kα peak). The spectra 

of the bare substrate and of the solid compound adamantanol are included as references. 

The substrate reference spectrum showed almost no O (native oxide only), so all the oxygen 

detected was in the deposit (see fig. 5-1-4). High atomic C/O ratios of 9 to 1 (± 10%) were 

detected in deposits from formic acid, acrylic acid and styrene. The spectrum of the solid 

compound adamantanol (C10H16O, CAS n° [768-98-6], Sigma-Aldrich), used as a reference, 
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confirmed the quantification. Among the precursors, formic acid had a C/O ratio of 1 to 2, 

acrylic acid 3 to 2, but styrene had no O at all. A possible mechanism involved, during or after 

precursor fixation, a quantitative electron-induced O desorption.[14] Losing O by desorbing only 

CO or CO2 was less probable since no deposit would have been obtained from HCOOH. 

Conversely, the deposit from styrene also contained O. Oxygen incorporation occurred, up to 

10% of the atomic content, either from the residual background gas during deposition or after 

breaking the vacuum. This was similar to what was observed when irradiating solid films of 

organic compounds in the electron microscope.[15, 16] 

 

5-1-3-B) Micro-FTIR analysis 

Fourier Transform Infra-red Micro-Spectroscopy (µ-FTIR) gives access to the H content, 

which is not measurable by EDX. Several chemical bonds, such as C-H or C=O, can be used as 

IR chromophores since they present intense absorption peaks separate from the absorption of 

most other functional groups.[17] Crystalline graphite has two weak absorption bands at 1588 and 

868 cm-1.[18] Crystalline diamond has no IR-active vibration for symmetry reasons, but some 

absorption can be due to defects (type I, type II) or impurities.[19-21] Hydrogenated diamond-like 

carbon phases present a variety of absorption bands.[22-26] IR micro-spectroscopy can be 

performed on volumes as small as a few µm3.  

The spectra of liquid HCOOH and of the deposit obtained from it are compared in the 

next figure. In the deposit, several bands disappeared with respect to the liquid formic acid (the 

huge O-H band and the C-O single bond vibrations), and a new band appeared at 1620 cm-1, 

indicating C=C double bonds (see fig. 5-1-5). The Si-O peak was due to Si oxide, appearing here 

because this transmission spectrum was taken across the whole substrate. The C-H band was 

still present, indicating the presence of H in the deposit. The strong carbonyl band also 

remained, although shifted (1720 to 1710 cm-1, from a dimerized carboxylic acid to a ketone 

peak position). This spectrum showed that most of the O present in the deposit was bonded to 

C by double bonds. 
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Figure 5-1-5. µ-FTIR absorption spectra of formic acid and of its resulting FEB deposit. 
Band extinction coefficients shown as strong or variable. Two scales (top: IR wavelength in 

µm; bottom: IR wavenumber in cm-1). 

The very similar spectra of deposits obtained from three precursors were compared in 

fig. 5-1-6, with a detailed view of the C-H and C=O bands. The spectrum from acetic acid (not 

shown) was strictly identical to that from acrylic acid, in the 1400-3400 cm-1 region. 

 

Figure 5-1-6. a) Comparison of µ-FTIR absorption spectra of deposits from three 
precursors (baseline offset for clarity). b,c) Two characteristic bands magnified (see text). 
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The spectra had two main features. First, the C-H vibrations band was present from 2800 to 

3000 cm-1 (see fig. 5-1-6c). This band was typical of amorphous hydrogenated carbon. It 

indicated that the H present in the deposits was mainly bonded to sp3 C atoms, less to olefinic 

sp2 C atoms, and negligibly to aromatic sp2 C (which absorb only above 3000 cm-1).[27] The 

second band, from 1500 to 1800 cm-1, resulted from overlapping C=O (1713 cm-1) and C=C 

(conjugated, 1660; isolated, 1625 cm-1) vibrations (see fig 5-1-6b). The C=O peak was larger for 

the carboxylic acids deposits than for styrene, indicating a slightly larger oxygen content. The 

styrene spectrum was noisier because this precursor led to smaller growth rates than the two 

others, so the sampled volume was smaller. No C-O peaks were visible. A small band at 

3400 cm-1, in the deposit from formic acid, corresponded to the absorption from O-H bonds. 

As ketones are subject to a rapid equilibrium between a keto and enol form, this did not indicate 

a quantitative content of alcohol groups in the deposits, so it was not considered here. 

Difficulties in background correction for this spectral range may also lead to over-interpretation. 

The spectra in fig. 5-1-6 allowed for an estimation of the H content in the deposits, using 

the C/O ratio determined by EDX. Relative IR extinction coefficients of the C-H and C=O 

vibrators were obtained from the (tabulated[28]) spectra of simpler compounds containing 

aliphatic C-H bonds, ketone and alkene groups (see fig. 5-1-7).  

 

Figure 5-1-7. FTIR spectra of solid reference compounds, used to evaluate the ratio of 
sensitivity to the C-H, C=O and C=C chromophores. MVK: methyl-vinyl-ketone. 
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Although, in principle, IR extinction coefficients differ from one compound to another, in the 

spectra of liquids like tert-butyl-methyl-ketone (pinacolone), 3-hexanone, and butanone, the 

intensity ratio of one C=O vibrator to one C-H vibrator equals 6 (by treating the C-H band as a 

whole, for simplicity). In the spectra of solid polymers like poly(methyl vinyl ketone) (MVK, see 

fig. 5-1-7) this ratio equals 10. By deconvoluting the C=O peaks in fig. 5-1-6 with Lorentzians, 

the intensity ratios of the C=O peak / C-H band were found as 4.3, 4.8 and 2.8 for the deposits 

from acrylic acid, formic acid and styrene, respectively. The ratio of the numbers of C-H and 

C=O vibrators in the deposits was thus between 1 and 2, based on the sensitivity ratio obtained 

on the reference compounds. The H content was at least equal to, and at most twice the oxygen 

content. Combining these measurements with the EDXS results while considering the precision 

limits of both techniques, it was concluded that all these deposits have compositions close to 

C9H2O1. The fact that the precursors styrene and acrylic acid had a lower H/C ratio (1/1) than 

formic acid (2/1) had practically no effect on the H content in the deposits. 

In the spectrum of solid poly-isoprene, which contains C-H and C=C vibrators, the 

absorption by the C-H bonds dominates because the C=C vibrators have much smaller 

extinction coefficients (see fig. 5-1-7). The relatively intense C=C peak in the spectra of the 

deposits showed that much of the carbon-carbon bonding consisted of sp2 bonds, conjugated 

with olefinic or aromatic units.[29] According to the C-H band position, H-bearing sp3 C atoms 

were present. Random network theory indicated that the 15% H and 10% O fractions allowed 

for only 5 to 10% C sp3 compared to sp2, which meant that most sp3 C were bonded to H 

atoms.[30] A more precise average deposit composition could be synthetically written as 

C(sp2)7(C(sp3)H2)(C=O). 

These results agreed with former studies of the effects of electron irradiation. The FTIR 

spectra obtained from several polymers, irradiated at doses above 0.5 C/cm2 (at 70 keV), gave 

similar results (see fig. 5-1-8a).[31, 32] The electron dose used to obtain the deposits as in fig. 5-1-2 

was 80 C/cm2. The FTIR spectra of irradiated polymers shown in fig. 5-1-8a have the same 

structures as those of the deposits (compare fig. 5-1-8a with fig, 5-1-6a), with broad C-H, C=O 

and C=C bands, a weaker O-H band, and a loss of structure, in comparison to the sharp peaks 

which correspond to well-defined vibrations. As the polymers were cross-linked, irradiation also 

removed part of the volatile elements (see fig. 5-1-8b). 
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Figure 5-1-8. Former studies of electron irradiation effects on polymers. a) FTIR spectra of 
irradiated polystyrene.[31] Notice the inverted abscissa scale as compared to the spectra in 

fig. 5-1-6. b) Irradiation of a long-chain protein, gelatin.[32] 

 
5-1-3-C) Micro-ERDA analysis 

Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS) are 

complementary analysis methods performed with energetic ion beams (typically, H+ or He2+ in 

the MeV range).[33, 34] ERDA allows for a quantification of the H content. Small areas can be 

analysed by electromagnetically focusing the ion probe on a 3 µm spot.[35] These non-standard 

analyses were made at the Centre d’Analyse par Faisceau Ionique, Le Locle, NE. The analysis 

confirmed the C, H and O content in (120 µm side) square film deposits from acrylic acid. 

Individual elements were mapped by these techniques, as shown in the next figure: 

 

Figure 5-1-9. Element maps by 1.9 MeV He+ microbeam analysis of a square film deposit 
from acrylic acid (25 keV on Si, 100 nA, magn. 1 kx, 41 min., thickness 650 nm). 
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The positive contrast on the H-map confirmed the presence of H in the deposit (see fig. 5-1-9). 

The Si, C, and O-maps confirmed the presence of more C than O in the deposits. In RBS maps, 

the signals represented the numbers of ions detected in selected energy ranges. Backscattered 

ions could have the same energy after hitting either the considered element in a surface layer, or 

a heavier atom deeper in the film. A Si signal thus appeared as a background around the deposit. 

The absence of a signal from the film area in the Si map showed that the film was thick enough 

to avoid ion transmission. If a signal was measured, as was the case on the O and C maps, it was 

due to backscattering by an atom of the film. The low signal to noise ratios (SNRs) were due to 

the low ion beam currents and short exposure times used in order to avoid beam damage. 

The relative contents were quantified by fitting the experimental energy spectra with 

reference curves and cross-sections (RBS and ERDA were recorded simultaneously): 

 

Figure 5-1-10. µ-RBS and µ-ERDA results. a) RBS spectrum at normal incidence gives the 
C/O ratio. b) and c) The simultaneously acquired spectra of Rutherford Back-Scattered (BS) 

and Elastic Recoil (ER) ions confirm the C/O ratio and give the H content. 

The average composition C9.3H2.6O1 was found. Including the large uncertainties due to the low 

SNRs, it may rather be written C7-11H2-3.3O0.7-1.3 (see fig. 5-1-10a,c). This was in good agreement 
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with the values found by the EDX and µ-FTIR measurements. The spectra also gave a film 

thickness of 2.3.1018 at.cm-2. By comparing this value to the geometric thickness of 230 nm 

measured by profilometry, a value of 1.7 ±0.2 g.cm-3 was obtained as the deposit density. This 

value corresponded to the density of an amorphous hydrogenated C of medium hardness: 

Form of carbon Density (g.cm-3) 

Diamond crystal (cubic) 3.52 

Graphite single crystal 2.26 

Graphite, polygranular 1.57-1.73 (depending on grain texture) 

C60 1.72 

Glassy C 1.3-1.55 

Evaporated C 1.9 

Sputtered C 2.2 

Amorphous hydrogenated C, hard 1.6-2.2 

Amorphous hydrogenated C, soft 1.2-1.6 

Polyethylene 0.92 
Table 5-1-III: Typical densities of different forms of pure and hydrogenated carbon.[3, 36] 

This demonstrated the performances of the ion micro-beam technique. Though only 

semi-quantitatively because of the low SNRs, it confirmed the deposit composition. The 

technique is proposed for further H content measurements or as a complementary tool with 

EDX in the case of ambiguous compositions (overlapping peaks, electron beam effects). 

 

5-1-3-D) Micro-Raman analysis 

Raman spectroscopy is an optical technique that uses a monochromatic light beam 

(usually between 200 and 1000 nm) to excite the sample. The light, re-emitted at slightly 

different wavelengths due to Raman scattering, can be collected and analysed to give 

information on the crystalline structure and composition of the sample. A powerful tool for the 

analysis of carbon phases,[37-41] it can be used in an optical microscope, to analyse volumes down 
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to 1 µm3.[42] In the next figure, the micro-Raman spectra obtained on the deposits are compared, 

after subtraction of a smooth background: 

 

Figure 5-1-11. Comparison of µ-Raman spectra of the deposits from three precursors with 
reference spectra.[3] The two characteristic bands of amorphous C obtained are highlighted. 

The wide signal between 1000 and 1800 cm-1 was characteristic of hydrogenated amorphous 

Carbon (compare figs. 5-1-11a and b). It consisted of two bands, named “D” for “disorder”, 

around 1350 cm-1, and “G” for “graphite”, around 1580 cm-1.[43] The involved network 

vibrations were schematically represented (see fig. 5-1-11b).[44] The spectra of the deposits from 

acrylic acid and styrene were very similar (as the spectrum from acetic acid, not shown). A 

previously published spectrum from a contamination deposit had a similar shape.[45] The 

spectrum from formic acid has a larger D band, with the G band located at a higher Raman 

shift. The positions and intensity ratios of the D and G bands gave indications on the degree of 

disorder of amorphized carbon (see fig. 5-1-12). The ratio of D and G bands (by Lorentzian fits) 

close to 2 in the spectra of fig. 5-1-11b, with a G band at 1580 cm-1, indicated nanocrystalline 

graphite, with cluster size around 2 nm and sp2 fraction above 90%,[3] consistent with the FTIR 

results. The larger values for the G band position and the D/G ratio obtained from formic acid 

indicated a higher density of small aromatic rings. The volatile element fractions were, 

respectively, C/(O+H) = ¼ in formic acid, C/(O+H) = 3/5 in acrylic acid, and C/H = 1 in 

styrene. A larger volatile element fraction was stripped from the formic acid during FEB-

induced fixation, than from the other two precursors. The remaining C atoms reorganized 

better, forming a different nanostructure. The Raman analysis showed that the structure of the 

deposited material resembled a dense network of small-cluster model structures, like these 
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shown as the central part of fig. 5-1-12, and less resembled the large polycyclic, graphite-like 

ribbons or sheets.[46, 47] 

 

Figure 5-1-12. Model structures for different non-crystalline carbons. Left, graphitic-ribbon 
structure of a pyrolysed polymer, defining a correlation length LC.[48, 49] Centre: with smaller 
LC, molecular structures were proposed for the clusters, containing both the sp3 (tetrahedral) 

and sp2 (trigonal) forms of C. H can be present in molecules adsorbed in pores,[50] or 
attached to the backbone.[3] Right, Raman spectra evolve during graphite “tetrahedralization” 

(nc: nanocrystalline; a-C amorphous C; ta-C tetrahedral amorphous C).[44] 

 

5-1-3-E) Micro-reflectometry 

As already noted in Section 4-1, thin carbonaceous films display interferential colours in 

optical microscopy. Two micro-reflectometry techniques were developed to characterize the 

optical properties of the deposits in the visible range of the optical spectrum. As the first 

technique, the intensity of the signal of the co-focused laser beam reflected on the sample was 

monitored during film growth. This was a new in-situ monitoring tool for the large-area film 

growth rate.[51] Optical interferences take place in thin films (see fig. 5-1-13a). As the film grew 

the intensity of a reflected monochromatic beam periodically varied and was attenuated. The 

period of the variation and the attenuation rate depended on the refractive index of the thin 

film, as shown by the equation in fig. 5-1-13b. The intensity depended on the Fresnel 

coefficients at the interfaces, which were linked to the refractive index of the film and substrate, 

but also to the polarization state of the incident beam ([52], pp. 61-70, 281-288 & 615-633). The 

second technique was ex-situ spectral micro-reflectometry, as described in §3-2. 
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Figure 5-1-13. Interferences on a thin film. a) Schematic principle. r,t,rs: Fresnel reflection 
and transmission coefficients on the film and substrate, respectively. b) Intensity (with I0=a02) 

as a function of film thickness e, refractive index n+ik, and incidence angle θ. 

The co-focused laser beam at 514 nm was incident at 45° (see fig. 5-1-14a). 

 

Figure 5-1-14. In-situ reflectometry. a) Schematic principle. b) Measured light intensity, with 
the ex-situ optical micrographs (normal incidence, reflection, bright field) of successive films. 

The intensity measured at the photodiode varied slowly. It reproducibly reached a minimum at a 

film thickness of 85 nm, than a maximum a 150 nm, and a second minimum at 230 nm (see fig. 

5-1-14b). The values they reached were indicated as red dots in fig. 5-1-14b. Colours were visible 

under the white light of the optical microscope. As an application, high-resolution multicolour 

patterns were realized (see fig. 5-1-15a).[53] 
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Figure 5-1-15. a) Optical micrograph of multicolour pattern (colour and thickness match). b) 
Ex-situ micro-spectrophotometric measurements on the deposits shown in fig. 5-1-14b. 

As expected, the reflectivity spectra showed a broad maximum at wavelengths that increased 

with the film thickness (see fig. 5-1-15b). The second interferential order was reached at 260 nm 

thickness, as observed in a second maximum at 460 nm wavelength. The curves were noisy 

below 450 nm and above 750 nm because of the lower power of the illumination lamp in these 

spectral ranges. The ex-situ spectra of the thinner films were correctly described by the equation 

shown in fig. 5-1-13a, as shown in fig. 5-1-16a. 

 

Figure 5-1-16. Mathematical fittings with the equation given in fig. 5-1-13b. a) Ex-situ 
spectra. Variable: λ, at fixed thicknesses. b) In-situ curve. Variable: film thickness, at fixed λ. 
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The initial part of the in-situ monitored curves was also fitted by the same equation by keeping all 

parameters constant including the wavelength, and varying only the film thickness (see fig. 5-1-

16b). The films had an index of refraction of 1.45 ± 0.1 according to the good fits. This is lower 

than the values between 1.65 and 2 usually reported for a-C:H, which vary with the H content.[54] 

It is also lower than the values for diamond (purely real index, n=2.43 at 2.5 eV) and graphite 

(1.36+2i parallel to the c-axis, 2.65 + 1.3i perpendicular, at 2.5 eV).[55, 56] Measuring on thin films 

induced a large dispersion on the absorption coefficient, but the imaginary refractive index of 

the deposited films was low, between 4.5.10-4 and 6.5.10-2. The optical absorption coefficients of 

the deposits depended on the precursor, as seen in the optical micrographs in Table 5-1-I. 

 

5-1-3-F) Precursors containing Fluorine, Nitrogen and Chlorine 

Other polar compounds were used as precursors to investigate how electron-induced 

fixation affected other elements. Trifluoroacetic acid (CF3COOH) yielded the following results: 

 

Figure 5-1-17. Analyses of deposits from trifluoroacetic acid. a) Deposition conditions, 
optical micrograph and cross-sectional profile of a deposited film. b) EDX analysis at 3 keV 

(notice the absence of signal from the Si substrate). c) µ-FTIR analysis. 

A large growth rate was obtained from this strongly polar compound (see fig. 5-1-17a). The C:F 

ratio was 8:1 in the deposit (see fig. 5-1-17b), as compared to the C:F ratio of 2:3 in the 

precursor, so more than 90% of the F was lost during deposition. This loss may occur during 

precursor fixation or by electron-induced desorption during exposure of the already deposited 

material.[57-60] The O content was slightly lower than what was measured on the hydrogenated 

series. The possible O incorporation from the residual gas prevents further conclusions. 
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In the FTIR spectrum, similar bands are obtained for C=O, C=C and C-H vibrations, like 

from acetic acid (see fig. 5-1-17c). The C-H band is much smaller than the C=O band. New 

bands appear. The absorption between 2700 and 3700 cm-1 is an OH band. The band at 

1825 cm-1 is most probably the absorption of a C=O vibrator, either in a very strained 

configuration or bonded to F-bearing C atoms, as compared with reference compounds: 

Compound 
or group 

Absorption 
band (cm-1) Reference Compound or 

group 
Absorption 
band (cm-1) Reference

Acyl 
fluoride 

R-C(F)=O  
1885 [61] 

Benzoyl fluoride 

C6H5-CF=O 
1812 [62] 

Formyl 
fluoride 

CH3-
CF=O 

1869 [62] F2C=O gas 1939 and 
1908 

[63] 

Acetone 
CH3-CO-

CH3 
1712 [28] 

Trifluoro-acetone 

CF3-CO-CH3 
1778 [28] 

Trifluoro-
acetic acid 

CF3-
COOH 

1778 [28] 

Hexafluoro-
acetylacetone (hfac) 

 

1632, 1693 
and 1792 

[28] 

Perfluoro-
alcene 

R-CF=CF2 
1780 [64] 

Cyclo-propanone 

 

1822 [62] 

Table 5-1-IV: IR Absorption bands of reference fluorinated and ketone compounds. 

The hypothesis of a reactive conjugated acyl fluoride cannot be excluded (see Table 5-1-IV), as 

this functional group was previously obtained by irradiating fluorinated polymers with 

electrons.[63] A large absorption peak at 1179 cm-1 was due to C-F bonds (the substrate 

contribution in this area was subtracted as background). Most of the remaining hydrogen was 

bonded to oxygen: few C-H bonds were created during deposition. The Raman spectrum of this 

deposit (not shown) revealed a large fluorescence background upon which the amorphous C 

bands were barely visible. The origin of this fluorescence was not investigated further. 
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The polar and oxygen-free compound acetonitrile (CH3CN) yielded the following results: 

 

Figure 5-1-18. Analyses of deposits from acetonitrile. a) Deposition conditions, optical 
micrograph and cross-sectional profile of a deposited film. b) EDX analysis at 3 keV (notice 

the absence of signal from the Si substrate). c) µ-FTIR analysis. 

The growth rate was a little higher than from acetic acid (see fig. 5-1-18a). EDX revealed the 

oxygen incorporation into the deposit. Nitrogen was present in the deposit, as observed by the 

small N peak overlapping the bottom of the large C peak (see fig. 5-1-18b). The high C:N ratio 

of 18:1, as compared to the C:N ratio of 2:1 in the precursor, indicated that at least 90% of the 

N was lost during deposition. In the FTIR spectrum, the clear C-H, C=O and C=C bands 

appeared the same as in the previous results (see fig. 5-1-18c). Small deformation (δC-H) vibration 

peaks were observed at 1378 and 1450 cm-1. A weak nitrile band at 2212 cm-1 indicated that 

most of the N present was bonded by triple bonds to sp1 C. These nitrile end groups were 

bonded to sp2 C atoms. A large O-H (and possibly N-H) band was present between 3000 and 

3700 cm-1, making H quantification difficult. 

The Raman spectrum (not shown) presented the same characteristic D and G bands as 

the spectrum of the deposit from acetic acid. The deposit consisted of hydrogenated amorphous 

carbon, and did not constitute an exception to the general behaviour discussed in §5-1-3D. 

The Chlorine-containing precursor CCl4 was used. This non-polar compound resulted in 

much lower deposition rates. The composition measured by EDX (not shown) indicated a 

C:O:Cl ratio of 12:2:1. Chlorine was also lost during the deposition process. No FTIR or Raman 

spectrum could be taken on the thin films that were deposited. 
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5-1-3-G) Morphological (SEM, TEM) and EELS analysis 

More detailed SEM, TEM and EELS analyses were made in order to characterize the 

deposits. Formic acid was chosen as the precursor, at 25 keV and 5 nA probe current, on Si. 

 
Figure 5-1-19. Preparation of a tip series from formic acid for SEM analysis. a) SEM views 

(25 keV, tilt 73°) of the successive growth stages of a tip deposited at 5 nA (notice the 
varying scales in the last row). b) Monitored signals (bottom, sample current; top, SE). 

This precursor behaved differently than the organometallics and other organics (compare with 

the 100 pA tip from acrylic acid, in fig. 5-1-2). Before 50 s, only a doughnut shape was deposited 

(see fig. 5-1-19a). Spherical growth suddenly began at 50 s and was witnessed in the monitoring 

(see fig. 5-1-19b). Then, the 3D deposition mode changed from spherical growth to a pear-like 

growth regime. The pear appeared grainy in the SEM at 25 keV. A round deposit due to 

forward-scattered electrons was clearly visible on the substrate, around the higher deposit. 

This deposition sequence was repeated on a thin membrane for TEM observation. A 

white contrast in TEM at the centre of the deposits, and a corresponding black contrast in 

DSTEM, indicated a hollow core surrounded by a denser crust (see fig. 5-1-20). Both were 

formed from the start, with the first deposits consisting of isolated denser grains, 200 nm in size, 

which were then covered by further material depositing and appeared to coalesce. Both the 

deposit outer diameter and the size of the inner structure increased with the deposition time. 
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Figure 5-1-20. TEM analysis of a series of deposits from formic acid. Top, transmission 
bright field topview pictures. Scale bar 500 nm. Bottom, same structures viewed in dark field 

(SE detector) scanning TEM, at a slightly different magnification. Scale bar 750 nm. 

Higher magnification TEM observations revealed only amorphous carbon (see fig. 5-1-21). 

 

Figure 5-1-21. High-resolution TEM bright-field analysis of carbonaceous deposits. Left, 
TEM image of the side of a freestanding rod deposited from formic acid, at 25 keV, 100 pA, 
5 nm/s on a Cu holding grid. Scale bar 100 nm. Right, higher magnification. Scale bar 10 nm. 

EELS analysis was performed on the edges of the deposits. The EELS spectra of the 

deposits from acetic and formic acid were similar, except above 310 eV, and confirmed the 

presence of the partially tetrahedral a-C with a π*(C=C) transition at 285 eV (see fig. 5-1-22b). A 

reference diamond sample graphitized under the beam, showed some σ*(C=O) and did not lead 

to the expected results (see fig. 5-1-22b): further quantification was not undertaken. 
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Figure 5-1-22. Comparison of EELS spectra of the deposits from two precursors and a 
reference sample with reference spectra,[3] with transition assignments.[65] 

The core/crust phenomenon influenced the deposition of more complex structures.  

 

Figure 5-1-23. Influence of the core/crust structure on other deposition sequences. a) SEM 
top-view of a high current deposit. b) Line deposit in the same conditions. Top, SEM top-

view. Bottom, optical micrograph. Thickness differences appear as different colours. c) SEM 
views (top and 73° tilt) of a taking-off line deposit, scanned at 500 pA and 5 nm/s. 

The random positions of the deposited grains made 3D shapes irreproducible. Spots deposited 

at higher currents remained flat and doughnut-shaped (see fig. 5-1-23a). The scanned line 

showed that the centre of the beam was responsible for the low height at the centre of the 

deposit (see fig. 5-1-23b). At lower currents, the primary arches of 3D scanned line deposits 

showed erratic thickness variations due to the random formation of grains (see fig. 5-1-23c). 
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Figure 5-1-24. Temperature-induced deposit breakage. SEM top-views of a 30 min. pear-
shaped spot deposit, before and after heating it to 900°C. 

Heating pear-shaped spot deposits revealed a hollow interior (see fig. 5-1-24). The 

protuberances were the outer envelopes of cauliflower-like radial structures formed in the 

deposits, typically 1 µm long. The deposit boundary was a 200 nm-thick smooth crust, in good 

agreement with the TEM pictures. The deposit density was clearly inhomogeneous. 

 

5-1-3-H) Effects of temperature 

Thin smooth films were deposited from formic acid (see fig. 5-1-25). They had low 

roughness and showed no trapped bubbles up to at least 600 nm thick. A post-deposition 

annealing in vacuum reduced their thickness and altered their composition: 

 

Figure 5-1-25. Thinning of film deposits by annealing. AFM cross-sectional profiles and 
pictures of the signal derivatives (left, as deposited; right, annealed). 
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The film remained flat but the thickness was halved (dust particles kept the same heights, see 

fig. 5-1-25). EDX reveals a loss of O compared to C, down to 98:2 C:O (see fig. 5-1-26a). 

 

Figure 5-1-26. Chemical analyses of the effects of annealing. a) EDX spectra indicate a 
quantitative loss of Oxygen. b) Raman spectra indicate a further graphitization. 

A featureless FTIR spectrum (not shown) indicated an almost total loss of C-bonded O and H. 

Raman spectra still correspond to amorphous carbon but with a reduced fluorescence 

background, an increased Raman intensity of the characteristic D and G bands despite the 

volume loss, and an increased D/G ratio by Lorentzian 2-peak fitting after background 

subtraction (see fig. 5-1-26b). The sp2 fraction increased. Upon annealing, the H-bearing sp3 C 

atoms lost H and were inserted into the amorphous material with an sp2-hybridization. 

Depositing on a heated substrate altered the deposition rate and the sp2 content: 

  

Figure 5-1-27. Deposition on a heated substrate. a) Compared thicknesses of films deposited 
in the same conditions, at various temperatures. b) Raman spectra of these films. 
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Raising the substrate temperature to 40°C slightly increased the deposition rate. At higher 

temperatures the deposition rate was gradually reduced, by a factor of 2 for each additional 20 to 

30°C (see fig. 5-1-27a). The films deposited at higher temperatures had more intense Raman 

signals, indicating an increased optical absorption. The D/G ratio decreased from 1.69 to 1.2 

between the films deposited at 25 and 40°C, respectively (see fig. 5-1-27b). At higher 

temperatures it increased regularly from 1.2 to 1.7. The G band regularly shifted towards higher 

wavenumbers, from 1592 to 1601 cm-1 between 25 and 120°C. These were clear indications that 

the deposited material had increasing sp2 content when increasing the temperature (compare 

with fig. 5-1-26). Optical micrographs (not shown) indicated increasing absorption coefficients. 

The chemical vapour deposition of diamond is usually realized at higher temperatures.[66-68] 

The resistive heating system used here did not allow such high temperatures and made in-situ 

sample current monitoring impossible. Improving the heating system for higher temperatures 

should bring to new evolutions in the nanostructure of the deposited material, as already 

indicated by the Raman spectra, and is proposed for further studies. 

 

 

5-1-4 Discussion 

5-1-4-A) Influence of the precursor of the growth rate 

All the organic compounds in this family led to deposits with the same compositions. 

According to the Raman measurements, the nanostructures depended slightly upon the ratio of 

volatile elements to C in the precursors. As a consequence, the deposition rate depended only 

on the precursors used. 

According to Christy’s model (see §2-1-2),[69] the amount of fixed precursor (R) depends 

on the electron current density (f), the precursor flux (F), the molecular volume (v), the electron 

interaction cross-section (σ), and the surface residence time (τ): 

F
1

1
fστ

=
+

v
R  

(5-1) 

Film growth rate according to Christy’s model, in the precursor-limited regime. 
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The molecular volumes and the electron interaction cross-sections of all the precursors tested 

stayed within a limited range. The precursor fluxes F of acrylic acid and styrene were similar. 

Constant current densities f were used. They were high for large growth rates (see §4-1-2D). 

 Conjugated molecules resist radiation better than aliphatic chains.[70-72] Both styrene and 

acrylic acid have conjugated electrons, making their resistance to ionizing radiation similar. The 

difference in growth rate cannot be due to a different resistance to ionizing radiation. The 

residence time seems to be responsible for the main difference in growth rates between 

precursors, depending on the adsorption enthalpy: 

0τ τ
∆

=
adsorption

B

H

k Te  (5-2) 

τ0: characteristic vibration time; kB: Boltzmann’s constant; T :temperature 

The time τ0 is a typical vibration time of molecules adsorbed at surfaces. Previous measurements 

give an estimated range of 10-16 < τ0 < 10-13 s.[12] The adsorption enthalpy depends on the 

adsorbed gas and the surface chemistry. The following table lists typical values: 

Adsorption enthalpy Comments Typical values of τ at 
room temperature 

24 J/mol Close to τ0 1.2 . 10-13 s 

360 J/mol  1.3 . 10-12 s 

840 J/mol 4 . 10-11 s 

960 J/mol 

Simple gases like Ar, 
Ne, O2, N2, CO…, on 

surfaces like glass 1 . 10-10 s 

2.4 kJ/mol 3.2 . 10-6 s 

3.6 kJ/mol 

Many organic 
substances 1.8 . 10-2 s 

4.8 kJ/mol  1 . 102 s 

6 kJ/mol  6 . 105 s (~ 1 week) 

7.2 kJ/mol  4 . 109 s (~1 century) 

35 kJ/mol Oxygen on W 1095 s (~forever) 

Table 5-1-V: typical values of adsorption enthalpies and residence times, at RT.[12] 
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A slight variation in adsorption enthalpy (less than 1 kJ/mol) among the typical values for 

organic substances (around 2.4 kJ/mol), resulted in changes of the residence times by several 

orders of magnitude. An increase in the substrate temperature exponentially decreased the 

growth rate, as observed in fig. 5-1-27a. 

Acrylic acid had a permanent dipole moment due to the carboxylic group (its value is not 

listed in the tables, but it is close to propanoic acid, µ=1.7 D). It also has the ability of forming 

H-bonds. Styrene lacks both these properties. The specific and non-specific attractive van der 

Waals forces from the surface are stronger on acrylic acid than on styrene, with larger adsorption 

enthalpy. These effects, in turn, increase the residence time. Selecting polar molecules with high 

vapour pressures leads to higher deposition rates. 

Some of the results presented in this section were published in the scientific journal 

Microelectronic Engineering, under the title “Characterization of focused electron beam induced 

carbon deposits from organic precursors”, in 2005.[73] 

 

5-1-4-B) Proposed deposition mechanism 

H and O were eliminated from the precursors during the deposition process. Two 

mechanisms may be responsible for the initial precursor fixation step. For the first hypothesis, 

the beam disintegrates the precursor molecules into their atomic constituents so only non-

volatile fragments remain bound at the surface. This interprets deposition as a purely surface 

level process. As it does not explain the observed crusts, I suggest a second mechanism with a 

two-step process: 

1) Electron-induced precursor fixation at the surface 

The precursor molecules are electronically excited or ionized by inelastic collisions with 

the primary beam (80% of all the collisions in low-atomic-number materials).[74] Typically, 

this involves energies between 10 and 40 eV (the C and O outer-shell L levels, known in 

EELS analysis as the plasmon peaks), and between 300 and 600 eV (the C and O inner-

shell K edges).[75-77] Among other desexcitation pathways, the molecules can decay by 
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cross-linking or ejection of a fragment.[71] In both cases, a non-volatile species is formed at 

the surface, and further excitation-decay events take place before the next layer is 

deposited. A small number of bonds are broken in the precursor molecule and a small 

number of bonds are created with the substrate or the already deposited material. 

2) Electron exposure of the previously deposited material 

This is analogous to high-dose electron-beam lithography. Radiation damage transforms 

the deposited material into a cross-linked, partially dehydrogenated and deoxygenated 

amorphous carbon.[16, 72, 78-86] This step takes place in the bulk deposit: the newly deposited 

precursor layers act as a crust or a gas barrier. The stable gases (H2, O2, H2O, and to a 

lesser extent CO, CO2, CH4…) liberated by the exposure remain trapped as bubbles in the 

deposit (see fig. 5-1-27).[87, 88] These areas of trapped gas create the hollow deposits. By 

heating, the internal pressure rises, exploding the crust so the trapped gases escape. The 

quantity of contained gas depends on the ratio between the volatile and solid elements in 

the precursor. This is why the effect is more pronounced with formic acid, which has only 

one out of the 5 precursor atoms that is not volatile. The elemental loss during deposition 

of the main part of the elements that are gaseous at room temperature (H, O, N, F, Cl) is 

very similar to what is observed during the electron irradiation of polymers.[15, 63, 89-92] 

 

Figure 5-1-27. Schematic two-step mechanism proposed for film formation. Simultaneous 
precursor fixation and exposure of the deposited film occur. 
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The chemistry of carbonaceous materials under electron irradiation has been studied in 

depth. Numerous and complex structures of pure carbon are found at nanoscale.[93] Electron 

irradiation introduces “structural fluidity”. At room temperature, a metastable phase of Carbon 

under a high-energy (>100 keV), high-density (>10 A/cm2) electron flux is the “graphitic 

onion”, consisting of successive spherical shells. It can be obtained by irradiating amorphous 

Carbon,[94, 95] electron-induced contamination deposits,[96] graphite,[97, 98] carbon nanotubes,[99, 100] 

fullerenes,[101] and diamond nanoparticles.[102, 103] Lower doses disorder and stress the crystalline 

structures by turning random sp2 C atoms into sp3.[104-110] 

At higher temperatures (600°C), the trend is reversed because the electron-induced 

interstitial defects become mobile. Graphitic onions turn into diamond.[111-115] This electron-

induced phase transition is due to the local compressive stress inside the carbon onions. The 

system is slowly driven towards the more stable diamond state.[116, 117] Irradiation drives metal 

atoms out of graphitic shells.[118] Carbon nanotubes can also be healed,[116, 119] coalesced,[120, 121] and 

even created under the electron beam by incorporation of C atoms.[122, 123] 

Under the irradiation conditions used, the incident electron energy was not high enough 

to displace carbon atoms by a “knock-on” mechanism. The comparatively low temperature 

prevents atomic mobility, so the amorphous phase is stable. Diamond crystallites, which would 

have been occasionally formed in the deposit, rapidly become amorphized under the electron 

beam. Depositing a diamond-containing material requires higher deposition temperatures for 

this phase to be stable under irradiation. 
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5-1-5 Summary 

Complementary micro-characterization methods were applied consistently. The material 

deposited from carbonaceous precursors consisted of amorphous carbon with up to 10% 

oxygen and 20% hydrogen. The C phase deposited up to 120°C is 90% sp2. Slight variations in 

O and H content, as well as in C bonding and nanostructure, appeared between different 

precursors. The density of deposits obtained from acrylic acid was 1.7 ± 0.2 g.cm-3, and their 

index of refraction in the visible was 1.45 ± 0.1 with a small imaginary part of 6.10-4 to 4.10-2. 

Oxygen was incorporated from the gas phase, either during deposition or upon exposure of the 

deposits to air before characterization. Most of the volatile elements (H, O, N, F, Cl) were 

stripped from the precursors during deposition. The observation of hollow deposits hinted at a 

two-step mechanism, in which the precursor was first fixed by the electron beam without much 

elemental change, and then reduced to almost pure C by further electron exposure. The use of 

polar compounds allowed for higher growth rates because of higher residence times as 

compared to non-polar compounds. 

The analysis showed that the deposition process did not allow for deposition of a 

diamond phase in the investigated conditions. Increasing the deposition temperature, although it 

will decrease the growth rate, should allow for increased sp3 contents. Thanks to the 

characterization methodology and reproducible conditions described in the present study, FEB-

induced deposition of diamond should be possible in the near future. 
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5-2 Deposits from organometallic precursors 

5-2-1 Why depositing from organometallics? 

Area-selective deposition of pure metals at the 10 nm scale would be a powerful tool for 

microcircuit repair. If deposition could be accurately applied in a parallel fashion, it would be a 

single-step direct-write tool. On the lab scale, easy electrical contact to single nano-objects such 

as DNA strands or nanotubes may open new opportunities. The miniaturization of 3D electrical 

devices may also have considerable applications. Magnetic, optical and chemical aspects also 

make the controlled deposition of pure elements and nanocomposites attractive at the sub-

micrometer scale. Many volatile organometallic precursors are available from the field of CVD. 

How to select or design a precursor for efficient focused electron beam induced metal 

deposition? Which conditions to use? Which are the parameters involved? 

First the effects of temperature are described during and after deposition from a Cu 

precursor. The outcome of the process was tuned from Cu-containing a-C to a crystalline 

material with mainly Cu. Applications of electrically conducting FEB deposits are then 

described. 

5-2-2 Thermal effects on Cu-containing deposits 

Several Cu precursors used in CVD were screened for the deposition of pure Cu (see 

fig. 5-2-1). They all had a hexa-fluoro-acetylacetonate (hfac) ligand. The vapor pressures and 

deposition rates were different but all the similar deposit compositions indicated mainly C. [124] 

 

Figure 5-2-1. Several Cu precursor at RT leads to similar deposit compositions. The large 
beam currents used for the Auger electron spectroscopy analyses affected some deposits. 
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The fixation mechanism at RT polymerized all the C-containing ligands. Probably due to a 

beam-induced damage, no F was detected in Auger Electron Spectroscopy. 

The effect of heat on a rod deposit from (hfac)CuVTMS was observed under a TEM. 

  

Figure 5-2-2. Heating sequence of a Cu-containing deposit apex in TEM. 

Crystallites appeared and grew in the initially smooth tips (see fig. 5-2-2). They had darker 

contrasts in bright field. Although most of the transformation occurred at 140°C, the final shape 

was stable at 600°C. The skin observed at the tip apex was not systematically present. 

 

Figure 5-2-3. The cylinder was similarly affected upon heating, but the skin thickness varied. 
The crystallites were pure Cu. Experimental diffraction patterns compared to simulations 

from crystallographic data (software JEMS, camera length 829 mm, voltage 300 kV). 



5-2 Deposits from organometallic precursors – thermal effects 

173 

In the nanocomposite most of the diffraction spots were from randomly oriented Cu crystallites 

(see fig. 5-2-3). Some spots, attributed to a copper oxide (cuprite, Cu2O), disappeared upon 

heating. The diffraction patterns of the crystallites with geometric shapes indicated pure Cu. 

A similar effect was observed under SEM observation of tips at large probe currents. 

 

Figure 5-2-4. High vertical tips became rough and shortened under SEM observation. 

Under tilted SEM observation at large spot currents, vertical tips roughened and shortened (see 

fig. 5-2-4). This was either a radiolytic effect or a consequence of electron-induced heating. Only 

the top was irradiated but the whole tip was affected, so heating was more probable. The energy 

deposited by the electron probe at the top was not easily dissipated through the narrow 

carbonaceous tip. A temperature gradient was established along the tip. 

The grainy aspects of the tips deposited in longer time frames (see fig. 4-2-3) were 

explained by this effect. EDX analysis showed a larger Cu content, with respect to the other 

elements C, O, and F, in the grainy parts than in the smooth parts (see fig. 5-2-5). 
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Figure 5-2-5. EDXS-measured Cu content (8 keV excitation) changes with morphology on 
the 1 h tip from fig. 4-2-3. The Si peak, mainly due to the substrate, was excluded. 

Electron scattering and energy deposition in the tip were constant as soon as the tip cone was 

formed. On higher tips, the resulting temperature gradients between the top of the pillar and the 

substrate were larger. As a consequence, the precursor residence time decreased on the hot tip, 

and so did the growth rate. The previously deposited material was affected. 

The following temperature estimation was made. In the carbon-rich material, the electron 

collision mean-free-path was 10 nm. As shown in §4-2, each electron traveled on average 1 µm 

in the tip cone before being scattered out, so it was submitted to 100 collisions. Approximately 

2/3 of these were inelastic and transferred energy to the tip. The average energy losses were 

considered to be 280 and 40 eV for the C K and L-edges, respectively, and the corresponding 

collision cross-sections σC,K=6.10-4 Å2 and σC,L=1.2.10-2 Å2.[125] Each electron thus lost 3.3 keV in 

the tips. From a probe current of 500 pA, this corresponded to an average deposited power 

P = 1.7 µW. The temperature difference ∆T between the substrate and the top of the tip of 

surface S, height h, and thermal conductivity κ, was given by: 

.
.κ

∆ = P h
T

S
 (5-2-1) 

The value for κ was closer to the value for amorphous CVD carbon (~1 W/m.K) than to the 

value for pure Cu (395 W/m.K).[126, 127] For a tip diameter of 500 nm, at a height of 12 µm, 

κ=1 W/m.K led to ∆T=100°K. This explained why the Cu grains grew only on tips higher than 

12 µm, after ½ h deposition. 
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Depositing tips with larger cylinders increased the temperature gradient. Tips deposited at 

higher probe currents were rough at lower heights and their Cu contents were higher.[128] 

Thermal effects were seen only after a certain deposit height (see fig. 5-2-6). 

 

Figure 5-2-6. The transition height from smooth to rough tips depend on the probe current. 
Left, SEM views (tilt 72°) of tips deposited on an Au-coated TEM grid. Right, EDX analyses. 

The Cu content in the deposits depended on the electron beam parameters, as observed with 

large beams.[129] A similar smooth-to-rough, polymeric-to-metallic transition was observed from 

Co2(CO)8.[130] From (hfac)CuVTMS, deposition of facetted Cu crystallites occurred when using 

as substrate a free-standing rod, which dissipates heat unefficiently.[131, 132] 

Local heating thanks to a co-focused laser beam similarly induced the transition. The 

deposition regime was reversibly modified from smooth to rough (see fig. 5-2-7). The deposited 

tip diameter was larger when the tip was heated. In the conditions used (~100 mW incident on 

the substrate, 5 µm diameter spot), the laser-induced temperature increase was estimated to 

90 ± 20°C.[133] The current monitoring directly indicated the transition to a larger tip diameter, 

and then returned to the saturation value reached on smooth tips. Unselective deposition, 

unnoticed in the S100, then recovered the whole tip and substrate during the rest of the 

experimental series. 
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Figure 5-2-7. Reversible smooth-rough transition induced by a co-focused laser beam. Laser 
output 200 mW, direct injection into the vacuum chamber (no optical fibre). Left, SEM view 
(tilt 75°) of tip aspect when the laser is switched on or off. Right, sample current monitoring. 

 

 

5-2-3 Electrical conduction in metal-containing deposits 

Functional electrical nanodevices were created thanks to the FEB-induced deposition of 

metal-containing materials. As an example, single-wall C nanotubes were electrically contacted 

with the use of the inorganic gold precursor described in §4-1-4 (see fig. 5-2-8). 

 

Figure 5-2-8. FEB line contacts to a single-wall C nanotube. SEM top views (2 and 10 kV). 
Deposition from AuPF3Cl, at 25 keV, 100 nA, magn. 1kx, ½  h multiple line-scans. 
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The FEB line resistivities were measured as 43 ±8 µΩ.cm. This was 20 times larger than the 

value for bulk Au, probably because the conduction between percolating grains in the deposits 

was not as good as in bulk Au. Electrostatic force microscopy measured the resistance of the 

nanotube portion shown in inset as 430 kΩ (i.e. 10-15 kΩ/µm). The contact resistances were 

small in comparison. Nanoelectrical applications were envisioned.[134] 

Co-containing FEB deposits were used to realize a miniaturized Hall sensor.[135, 136] 

 

Figure 5-2-9. Sub-µm Hall device by FEB-induced deposition from Co2(CO)8. a) SEM top 
view (5 keV, scale bar 5 µm). b) AFM profile of the active area. c,d) Schematic principles. 

The main thick lines were continuous thanks to the carbonaceous matrix (see fig. 5-2-9a). A thin 

halo was deposited around them. It was wider on Si than on Au. Since a thin probe (500 pA, 

132 nm at 4σ, 25 keV) was used for deposition, the halo resulted from the BSE exposure. Other 

authors observed it but its origin had been misinterpreted.[137] Its contribution to electrical 

conduction was measured to be negligible. The active area was restricted to the overlap between 

the two lines and was 500x500 nm2 (see fig. 5-2-9b). The electrical resistance of each of the lines 

was 2 kΩ, which corresponded to a resistivity of 7 µΩ.m (100 times the resistivity of pure Co, 

6.2 µΩ.cm). Their composition was Co3C6O1. The Co was present as nanocrystals.[130] The 

deposited material had a non-zero magnetic susceptibility.[138] The effect of a magnetic field was 

to induce a Hall voltage when a current flew through the device (see fig. 5-2-9d). The sensitivity 

was 0.9 V/AT. The active area thickness being 50 nm, the Hall coefficient was calculated as 

RH=5.10-8 Ω.m/T, similar to that reported for Fe-Pt or Fe-Si thin films. This device was among 
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the smaller magnetic field sensors. Using a deposition machine with a smaller probe diameter 

could almost certainly increase its resolution further. 

As the lines fused at currents above 1 mA, many devices were damaged between the FEB 

deposition and the electrical measurements, even by careful handling. More reliable 

measurements were obtained by monitoring in-situ the resistances (R) of depositing lines. 

 

Figure 5-2-10. In-situ monitoring of the resistance of a depositing line. a) Line deposition. b) 
Resistance monitoring upon exposure to air. c) Ex-situ characterization of the deposit. 

The resistance decreased over 5 decades during deposition (see fig. 5-2-10a). The 

measurement started at 300 MΩ and the final resistance of the 60 nm thick line (see fig. 5-2-10d) 

was 1.18 kΩ. The line was 5 µm long and 3 µm wide because of a slow but continuous beam 

drift (see fig. 5-2-10c). After an initially exponential decrease, the measured resistance decreased 

as the inverse power of the deposition time. The three successive decrease rates were due to 
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experimental realignments on the electrodes because of the drift. Supposing an ohmic 

conduction, the deposit resistance (Rdeposit) and thickness (hdep) were linked by: 

ρ ρ
= =dep contact dep contact

deposit
dep dep dep

l l
R

S w h
 (5-2-2) 

with ρdep: deposit resistivity; lcontact: effective resistor length between the electrodes; 
Sdep: deposit cross-sectional surface; wdep: deposit width; hdep: deposit thickness. 

The line had a constant width and was deposited between two fixed electrodes. Only its 

thicknesses increased with time. A linear thickness increase (h=h0+αt) from a couple of values 

(R, h0) explained the observed dependence: 

0

1
:

ρ
α

= =
+ +

dep contact
deposit

dep dep

l
R

w h w t a bt
 (5-2-3) 

In the last deposited section in fig. 5-2-10a, the deduced resistivity was ρdep=14 µΩ.m. It was 

similar but slightly larger than the value calculated on the whole device. The resistance was 

constant when deposition ceased. Opening the chamber to air increased the deposit resistance 

by a factor 2 (see fig. 5-2-10b). As the venting with N2 had no effect, it was either an effect of O2 

or of moisture. Two mechanisms were imagined. The resistance increase was either due to an 

oxidation of the Co nanocrystals or to the O2-induced quenching of free radicals in the 

carbonaceous matrix. 

To study the role of the Co content, the experiment was repeated on a line containing 

only the carbonaceous matrix, as deposited from acrylic acid (see fig. 5-2-11c). The 700 nm thick 

resulting film had a resistance of 180 kΩ after deposition (see fig. 5-2-11a). Its resistivity was 

0.94 Ω.m. In the former case, the conduction was thus mainly due to the Co nanocrystals and 

not to the C matrix. Interestingly, the resistance of the C-containing line increased every time 

that the beam was switched off (see fig. 5-2-11a). The 180 kΩ resistance of the deposited line 

increased overnight up to 430 kΩ. 
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Figure 5-2-11. a) In-situ resistance monitoring during deposition, post-irradiation, and 
exposure to air of a C deposit. b) Detailed view and fit of a resistance increase when 

irradiation is interrupted. c) Optical micrographs, bright-field (an initial beam drift occurred). 

The resistance increase was fitted by an exponential of the square root of the time (see fig. 5-2-

11b). This indicated a diffusion-limited charge carrier recombination pathway (see fig. 5-2-12). 

 

Figure 5-2-12. Charge carrier recombination model in carbonaceous materials, based on the 
decay rate observed in fig. 5-2-11. a) Proposed carrier recombination mechanism. b) The 

kinetics of reaction describes the experiment correctly. 

When irradiating this line again without precursor, its resistance dropped down to 10 kΩ (see 

fig. 5-2-11a). The resistivity under irradiation was only 6.10-3 Ω.m. This was attributed to the 

breakage of C-C bonds under irradiation. The generated free radicals increased the low 
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concentration of charge carriers in the deposited amorphous carbon, as observed previously on 

silicone films.[139] Comparatively, the effect of turning off the beam from the Co-containing 

deposits was weak. As a conclusion, upon exposure to air, the oxidation of the Co nanocrystals 

was more probable to explain the decrease in conductivity. 

 

5-2-4 Summary 

At room temperature carbon-containing deposits were obtained from most of the C-containing 

organometallic precursors. Electron-induced polymerization appeared as the most probable 

mechanism. The deposited nanocomposites were unstable upon heating. Depositing on locally 

heated substrates, either by the electron beam or by a co-focused laser beam, yielded materials 

with higher metal contents. They had rougher aspects. Electrical applications of the metal-

containing deposits were presented. Contacting single-wall carbon nanotubes was realized with 

the inorganic Au precursor. Sub-micrometric Hall sensors were realized with the polymeric Co-

C mixture deposited from a cobalt carbonyl. The C matrix around the Co clusters contributed 

negligibly to conduction but prevented their complete oxidation. 
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C h a p t e r  6  –  C o n c l u s i o n  a n d  f u t u r e  

r e s e a r c h  

 
Les yeux d’une lumière invisible noyés, 

Pensif, vous souhaitez déjà la bienvenue, 
Dans notre gouffre d’ombre à l’immense inconnue ! 

Vous savez le total quand Dieu jette les dés ! 
 

Victor Hugo, la Légende des Siècles, XLVI, 106 
 
 
 
 

The main results obtained during this study are summarized in Section 6-1. In Section 6-2, 

future research directions are proposed. 

 

6-1 Conclusion 

The Focused Electron Beam induced deposition process was successfully applied and 

studied in a dedicated setup.  

 

6-1-A) Electron scattering in solids was demonstrated to have a profound effect on the 

outcome of the process. 

- Carbon films were deposited from acrylic acid on Si and Au. At 10 keV with 

100 nA probe current, the deposition rate of 67 nm/min over an exposed area of 

3000 µm2 was substrate-independent. Monitoring the sample current allowed for 

controlling in-situ the deposition rate at 5 and 10 keV, with increased sensitivity in 

the first nanometers due to a change in SE yield. The sample current continuously 

increased, mainly because of a decreasing BSE yield, and reached saturation when 

the film was thicker than 60% of the electron range. The deposition rate 
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depended on the power 0.58 of the probe current and on the power -0.32 of the 

exposed area. Christy’s static deposition model was then adapted to fit a scanning 

deposition model. A radical-assisted mechanism is probable. 

- Films with a composition Cu1C3O1F1 were deposited from (hfac)CuVTMS, at 3 to 

25 keV and 10 nA, with different growth rates on different substrates, typically 

2 nm/min over an exposed area of 3000 µm2. The different growth rates were 

attributed to the differences in BSE yield and SE emission from the substrates, 

but the relative rôles of the high-energy electrons and the low-energy SE in the 

precursor fixation process could not be determined. 

- Pure Au films were deposited from AuPF3Cl with a constant growth rate of 

1 nm/min. over an exposed area of 3000 µm2 on Si, at 5 and 10 keV. Monitoring 

indicated a decrease in the absorbed sample current, consistent with the increasing 

BSE and SE yields on heavier elements. 

 

6-1-B) With a fixed beam, vertical tips were deposited from several organometallic 

compounds. 

- Tips show three successive growth regimes: base, cone, and cylinder. 

- Electron scattering is responsible for the tip shape and growth rate, which depend 

upon the precursor, but are independent of the substrate. 

- The sample current monitors the tip growth rates from all the precursors, at all 

acceleration voltages, at all beam sizes and focusing conditions, and on all 

substrates, including patterned substrates. The obtained results were used to 

create a model of the forward scattered electron distribution. 

 

6-1-C) By slowly moving the beam, 3D microstructures were built. 
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- When the structures were smaller than the electron range, the scattered electrons 

fixed the adsorbed precursor at each of interface crossed. 

- The transmitted electrons were responsible for the deposition of secondary 

structures or caused nearby existing shapes to become thickened. 

- The precursor flux was in the molecular flow regime. Deposition occurred 

symmetrically on both sides of the plane, which was defined by the direction of 

the needle and the vertical axis of the FEB. 

- Surface diffusion was so small, as compared to gas-phase effects, that it could not 

be observed at the investigated scales. 

 

6-1-D) The FEB-induced deposits were chemically analysed by micro-beam techniques 

(EDX, µ-ERDA, µ-FTIR, µ-Raman, µ-Reflectometry, and EELS). 

- All organic compounds containing only C, H and/or O, deposited an amorphous 

material with a composition of C9H2±xO1±x (x<1). The C phase was 90% sp2. 

- Almost all of the volatile atoms (H, N, O, F, Cl), which were present in the 

precursor, were removed during deposition. An electron-induced desorption 

mechanism is probable. 

- The deposits from acrylic acid had a density of 1.7 ± 0.2 g.cm-3 and an index of 

refraction of 1.45 ± 0.1, with an imaginary part of 6.10-4 to 4.10-2. 

- The growth rate was higher when using compounds with higher dipole moments 

because of the longer residence time of adsorbed molecules on surfaces. 

- The C sp2 fraction and the growth rate depended on the deposition temperature. 
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6-1-E) The metal content in deposits from organometallic compounds varied with the 

precursor composition and the deposition conditions. 

- The atomic Cu content in deposits from (hfac)CuVTMS was increased from 16% 

to 50% by depositing on substrates locally heated to 100°C. 

- The tip growth rate decreased during deposition because of beam-induced heating 

of the cone. High tips were annealed up to 100°C during deposition. 

- Electrical micro-devices were built with Au- and Co-containing deposits. 

 

6-2 Future research 

Focused electron beam induced deposition of diamond should be possible at higher 

temperatures. For high deposition rates, the precursor needs to be acrylic, formic, or 

trifluoroacetic acid. Heating with the co-focused laser beam has two advantages. The non-

resistive heating allows for sample current monitoring, making certain enough material is 

deposited for analysis. The in-situ reflectometry offers a second simultaneous measurement of 

the growth rate. With a 1W Ar+ laser power in a 10 µm diameter spot on an Au substrate, it 

should be possible to investigate the effect of temperature up to 1000°C. Micro-Raman 

spectroscopy is the best analysis technique for measuring the sp3 fraction. A possible application 

for the deposits could be wear-resistant coatings or tips. 

The optical properties of the obtained nanocomposites (in particular the Rh-containing 

deposits, which have a non-absorbing P matrix) could be examined in depth with the in-situ 

reflectometry and the micro-spectrophotometric setup. Bright colours were seen in a series of 

deposits, indicating a large index of refraction and a small absorption coefficient. This is 

probably due to the high metal content (60% Rh) in this material. 

The effects of metal content on the electrical conductivity of the deposits can be studied 

with the help of the in-situ resistance measurements. A rapid optimization of the deposition 

conditions, including co-focused laser heating for depositing pure metals, should be possible. 
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The electron-induced stripping of volatile elements was seen on simple compounds. 

Precursor polarity played an important role in the surface residence time of the adsorbed 

species. The choice of the precursors for future focused electron beam induced processes, such 

as area-selective particle beam-assisted metal etching, will need to consider these factors for 

increased efficiency. 

Several chemical compounds may prove to be interesting for deposition. Among the 

options, samarium compounds could be used for strong magnetic deposits. Titanium and nickel 

compounds may prove useful for memory shape alloy deposits. Doped alumina garnets could be 

deposited from mixtures of rare-earth CVD precursors. The methodology developed in this 

study will hopefully contribute to future practical nanofabrication tools. 
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A n n e x e s  

 

ANNEX 1: PRINCIPLES OF ELECTRON SCATTERING 

 

The principles of electron scattering by atoms are briefly recalled. Consider that a single 

electron impinges on a solid material: scattering begins as the electron crosses the surface. The 

average deflection angle at each collision depends on the deposit composition and on the 

electron energy according to the following laws.[1] Most of the electrons are scattered inside the 

characteristic angles θ0 (by elastic scattering) or θE (by inelastic scattering): 

 

Figure A-1. Screened Rutherford scattering of electrons by atoms. σél, inél: cross-sections for 
elastic and inelastic scattering, respectively; Ω: solid angle corresponding to the angle θ; e, 

electron charge; Z, atomic number of the scattering atom; ε0, electrical permittivity of 
vacuum; m, electron mass; v, electron speed; aH the Bohr radius; J, mean ionization energy 

of the scattering atom; E, kinetic energy of the incident electron. 
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For instance, for 10 keV electrons scattered by C atoms θ0 = 3.57°, and by Au atoms θ0 = 8.44°. 

Inelastic scattering concerns narrower angles: θE = 0.08° on C and θE = 1.14° on Au.[1] 

The incoming electron occasionally escapes the solid directly by experiencing a large-angle 

single-scattering event. In the most probable contrary case, it penetrates further and rapidly 

(≤ 30 nm) enters a multiple-scattering regime with a succession of collisions.[2] Typical mean-

free-path (MFP) lengths are recalled in the following table ([3], p. 83): 

 

Table A-I. Elastic cross-sections σél, elastic mean-free-path lengths Λél, and total MFP 
lengths including inelastic collisions Λt, for different elements and electron energies. 

The collision MFP decreases with the increasing atomic number of the material and with the 

decreasing electron energy. Inelastic collisions dominate in light elements. Elastic collisions are 

dominant in heavy elements. 
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ANNEX 2: ELECTRON RANGE AND BACKSCATTERING RANGE 

 

The backscattering range rB is the larger distance from the incidence point at which a 

backscattered electron (BSE) can exit. It obeys the following relation:[4] 

1

γ
γ

=
+

m
B

CR
r  (A-2-1) 

Backscattering range rB (in nm) as a function of maximum range R, a constant C 

empirically fixed as 1.1, and the parameter
2
30.19γ = ⋅ Z . 

The maximum range Rm is the larger depth down to which a PE can travel. It is given by: 
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Maximum electron range Rm (in nm) as a function of primary beam energy E0 (in eV), 
substrate atomic mass A (g), atomic number Z, and density ρ (in g/cm3). 

 
Table A-2-I. Maximum ranges Rm (in nm) calculated from eq. (A-2-2), vs. beam energy. 

With the values shown in the above table, the following BSE ranges were calculated: 
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Table A-2-II. Corresponding backscattering ranges rB (in nm) calculated from eq. (A-2-1). 

For a single element, both Rm and rB increase with energy. No simple evolution is seen between 

different elements because of the number of parameters involved. rB is always smaller than Rm. 

They have closer values in heavier elements, due to the reducting “diffusion depth” (xD in fig. 4-

1-1a, the depth at which all electrons propagate isotropically in the solid) with increasing Z. 
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ANNEX 3: BACKSCATTERING YIELDS 

 

The following table summarizes the dependence of the BSE yields at several energies on 

usual materials. The values were compiled from D.C. Joy’s “Database of Electron-Solid 

interactions”.[5] This database compiles results published until 2001.1 

 

Table A-3. Average values and standard deviations of BSE yield data (in %). 

The BSE yield η increases monotonically with the atomic number Z at all energies. Under 

normal incidence at 20 keV it obeys the following empirical relation: 

4 2 7 30.0254 0.016 1.8.10 8.3.10η − −= − + − +Z Z Z  (A-3) 

 

Several authors have studied the BSE yields in dedicated setups (see fig. A-3a), on evaporated 

films with increasing thicknesses and at various acceleration energies (see fig. A-3c,d).[2, 6, 7] 

                                                 

1 It was also available on the Internet at http://web.utk.edu/~srcutk/htm/interact.htm or graphically at 
http://www.napchan.com/bse/mat_list.htm#TOC1. 
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Figure A-3. BSE yields of evaporated films on substrates. a) Experimental setup.[6] b) 
Schematic evolution of scattering. c) BSE results for Al films (free-standing, bottom; on Pt, 

top) at several energies. d) Idem for Au films (free-standing, bottom; on Al, top).[2]  

The BSE yield of thin films increases with increasing thickness, until reaching saturation at a 

thickness that depends on the electron energy (see fig. A-3c,d). The angular distribution of BSE 

also varies (see fig. A-3b). When deposited on a substrate, the BSE yield of the layered structure 

evolves with increasing film thickness from the BSE yield of the substrate to that of the bulk 

film, with the same characteristic thickness as on the free-standing films. 

A good review of the physical models and practical consequences of electron 

backscattering can be found in [2]. 
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ANNEX 4: SECONDARY ELECTRON EMISSION YIELDS 

 

The absolute SE yield is difficult to measure accurately. Due to the influence of a number 

of poorly-controlled effects (surface contamination, oxidation, charging, second- or third 

generation SE emission…), values available from the literature show considerable dispersion.[5, 8] 

But on such different materials as C (or Si) and Au, the SE yield is higher on the heavier element 

whatever the energy. Above 3 keV, the SE yield decreases with the increasing electron energy. 

 

Table A-4. Average values and standard deviations of SE yield data (in %). NA: not 
available. Numbers without error margin are from a single experimental result. The plotted 

points were offset for readability. 

SE are emitted only from the topmost layers of the sample, but they are released both by PE 

and BSE. Good reviews of the physics of SE emission can be found in [9, 10]. 
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 ANNEX 5: X-RAY TRANSITION ENERGIES 

 

The excitation of heavier elements requires higher primary beam energies ([11], p. 276). 

 

Figure A-5. X-Ray edge energies of the elements in the 0-10 keV range. 
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ANNEX 6: MOLECULAR STRUCTURES OF THE PRECURSORS USED 

 

The precursors used in this study have the following molecular formulae. 

 

Figure A-6-1. Cu, Rh, Ir, Au, Pt precursors and a carbon precursor used. 
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ANNEX 7: LIST OF ABBREVIATIONS USED 

 

The following abbreviations were used. 

Acac Acetylacetonate ligand 

a-C:H Hydrogenated amorphous Carbon 

AES Auger electron spectroscopy 

AFM Atomic force microscopy 

BSE Backscattered electron 

Cp Cyclopentadienyl ligand 

CVD Chemical vapour deposition 

EBL Electron-beam lithography 

EDX Electron-dispersive X-ray spectroscopy 

EELS Electron energy loss spectroscopy 

EM Electron Microscopy 

ERDA Elastic recoil detection analysis 

FEB Focused electron beam 

FEG Field-emission gun 

FIB Focused ion beam 

FTIR Fourier transform infrared 

hfac Hexafluoroacetylacetonate 

HRTEM High-resolution TEM 

Me Methyl group 
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NPGS Nanometer pattern generating system 

PE Primary Electron 

RBS Rutherford backscattering 

RHEED Reflection high-energy electron diffraction 

RT Room Temperature 

SE Secondary Electron 

SEM Scanning electron microscope 

STM Scanning tunneling microscopy 

TEM Transmission Electron Microscope 

TEOS Tetraethyl orthosilicate 

tfac Trifluoroacetylacetonate 

VTMS Vinyl-trimethylsilane 
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