

Structures et propriétés d'agrégats de silicium dopés avec des alcalins

Cristina SPOREA

Groupe physico-chimie théorique: Franck RABILLOUD, Monique FRÉCON

Laboratoire de Spectrométrie Ionique et Moléculaire

Le 12 Septembre 2007

Introduction

Un sujet d'intérêt: microélectronique

Un sujet actuel: les études d'agrégat silicium-métaux (plusieurs centaines de publications depuis 2004)

Si_n-alcalin: Exp PI(Si_nNa_p), Kaya et al., J. Chem. Phys., **1997**, 107, 3056.

Le but: • l'étude de la géométrie des petits agrégats siliciumalcalin (neutres et cations) de type Si_nM_p(n≤6, p≤2) et pour les agrégats plus gros de type cage Si_nM (10≤n≤20);

> la stabilité et les propriétés électroniques et structurales.
> M=Li,Na ou K

Sommaire

Méthode

Les résultats

- I. Petits agrégats
 - 1. Les structures optimisées
 - 2. Les propriétés physico-chimiques
 - Transfert de charge
 - Potentiel d'ionisation
 - Énergie de liaison
 - Moment dipolaire

II. Cages: Les structures optimisées - stabilité et propriétés

Conclusions

Perspectives

Approche théorique

Méthodes de calculs envisagées: MP2 et DFT

• Tests sur les diatomiques Si₂, SiM...

✓ Distances internucléaires d'équilibre: R_e(Å)
 ✓ Potentiel d'ionisation: PI(eV)
 ✓ Énergie de liaison: E_b(eV)

Approche théorique

/			$R_e(z)$	4)		
Molécule		MP2/6-311+G(d)	BPW91/6-31+G(d)	B3LYP/6-31+G(d)	B3LYP/6-311+G(d)	Exp.
Si2	(³∑g⁻)	2.164	2.303	2.171	2.166	2.246
Li ₂	$(^{1}\Sigma_{g}^{+})$	2.747	2.771	2.725	2.705	2.673
SiNa	(⁴∑`)	2.708	2.903	2.724	2.725	2.70 2.68
			PI _v (e	2V)	LL	
Mol écule		MP2/6-311+G(d)	BPW91/6-31+G(d)	B3LYP/6-31+G(d)	B3LYP/6-311+G(d)	Exp.
Si ₂	(³∑g⁻)	10.164	7.834	7.856	7.882	7.9
Li ₂	(¹∑g*)	4.335	5.133	5.254	5.322	5.113
			E _b (e	V)	II	
Molécule		MP2/6-311+G(d)	BPW91/6-31+G(d)	B3LYP/6-31+G(d)	B3LYP/6-311+G(d)	Exp.
SiLi	(⁴∑g`)	1.689	-	1.57	1.580	1.539
SiLi+	(¹∑g*)	1.15		0.75	0.716	0.73
SiNa	(⁴∑ [•])			1.19	1.11	1.45

Le compromis acceptable entre précision et coût du calcul B3LYP/6-31G(d)

Outils

Les calculs ab initio avec GAUSSIAN 98 et GABEDIT (interface graphique)

6	Gabedit)_ O X
Eile ⊑dit Insert ⊻iew	Geometry <u>T</u> ools <u>R</u> un <u>S</u> ettings <u>W</u> indow <u>H</u> elp	
Ġ 🌢 🦄 👁 🗲	🕫 🕼 🎯 🏈 🐓 階 🕸 🛱 🔯 🚛 🙀 🏶 🛛 OB 🗙 🚺 🏚	
Recent Projects	Si5K2+d7.com Si5K2+d7.log	
GAUSSIAN	Integral delivatives from forsit, fritm(stst).	1
Si5K2_s2	Symmetry not used in FoFDir.	Local
Si6K2_s2	MinBra= 0 MaxBra= 2 Meth= 1.	Update
🖹 Si6K_d	IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0 J	Cataond
🗋 Si5K_d	Leave Link 703 at Tue Jun 14 20:36:30 2005, MaxMem= 6291456 cpu:	Go to end
🗋 Si4K_d1	(Enter /data/logiciels/Gaussian/g98/1716.exe)	Update/end
🗋 Si3K_d52	Dipole =-3.40812564D-03-3.28864175D+00-8.83778078D-02	Geom, Conv.
Si2K_d2	Polarizability= 2.10170289D+02 1.07587529D-01 1.84455317D+02	
🖹 SiK_q 💠	2.17782566D-01-5.88721651D-01 1.94010425D+02	Dens. Orb.
🗋 SiNa_q	Full mass-weighted force constant matrix:	
🖹 Si2Na_d	Low frequencies8.4839 0.0012 0.0021 0.0029 1.7859	Got All filos
🖹 Si3Na_d	Low frequencies 9.3040 16.0324 35.4459	Ger Annies
🖹 Si4Na_d	Harmonic froguencies (mtt-1) IP intensities (NM/Mole)	Get log file
🖹 Si5Na_d	Baman scattering activities (A**4/AMN) Baman depolarizat	tals/Density/V _
🖹 Si6Na_d_kis	reduced masses (AMU), force constants (mDyne/A) and norma	
🗋 Si6Li_doubl		
🗋 Si5Li_d1	?A ?A &	
🗋 Si3Li_dcosson 🚽	Frequencies5.4340 15.2421	
🖺 SiLi_q	Red. masses 29.8463 31.7823	
Si12Li_d131	Frc consts 0.0005 0.0044	
🗎 Si13Li_d45	IR Inten 0.0465 11.4361	
🗋 Si3K2_s21	Pameta	
Si5K2+d7	Hot : File File	// Geo // Mol.
MOLCAS	Output Lo csporea Grid	// IsoS // Righ
MOLPRO	Error Di /home/theochem/csporea/gaussian/B3LYP/SiK_6-31G+ Directory :	Ca

Structures optimisées de petits agrégats Si_nM (n= 1-6)

La structure électronique correspond à $Si_n^2 + Li^+$

Structures optimisées de petits agrégats Si_nM⁽⁺⁾ (n= 1-6)

C. Sporea, F. Rabilloud, A.R. Allouche, M. Frécon, J. Phys. Chem. A, 110, 1046 (2006).

Structures optimisées d'agrégats Si_nM₂ (n= 1-6)

Propriétés électroniques

Potentiel d'ionisation adiabatique et vertical

Énergies de liaison

Moment dipolaire

Potentiel d'ionisation adiabatique et vertical Si_nNa

R. Kishi, S. Iwata, A. Nakajima, K. Kaya, J. Chem. Phys. **107**, 3056 (1997). C. Sporea, F. Rabilloud, A.R. Allouche, M. Frécon, J. Phys. Chem. A, **110** (2006) 6032.

Potentiel d'ionisation Si_nNa₂

R. Kishi, S. Iwata, A. Nakajima, K. Kaya, J. Chem. Phys. 107, 3056 (1997).
R. Kishi, A. Nakajima S. Iwata, K. Kaya, Chem. Phys.Lett. 224, 200 (1994).
S. Wei, R. N. Barnett, U. Landman, Phys. Rev. B, 55, 7935, (1997)
C. Sporea, F. Rabilloud, A.R. Allouche, M. Frécon, J. Phys. Chem. A, 110 (2006) 6032.

Comparaison de potentiel d'ionisation pour $Si_n M_p$

Énergie de liaison de l'alcalin dans Si_nM

 $E_{liaison}(Si_nLi) > E_{liaison}(Si_nNa, Si_nK) \Leftrightarrow d(Si-Li) < d (Si-Na, Si-K) \rightarrow$ l'interaction électrostatique entre Si_n⁻ et Li⁺ est plus grande

Moment Dipolaire Électrique

Le transfert de charge crée un moment dipolaire μ .

Structures de type cage

M@Si_n (n=10-20)

 $Si_{12}W$

Prisme hexagonale avec W in centre <u>Référence:</u>

- Hiura et al. PRL 86, 1733 (2001)
- Kumar et al., PRL 87, 045503 (2001)
- K. Jackson and B. Nellermoe, Chem. Phys. Lett. 254, 249 (1996)

Formation de M@Si_n dans les expériences

- E. Janssen, P. Gruene, G. Meijer, L. Wöste, P. Lievens, A. Fielicke, PRL, 99, 063401, 2007.
- K. Koyasu, J. Atobe, M. Akutsu, M. Mitsui, and A. Nakajima, J. Phys. Chem. A 111, 42 2007
- S.Neukermans, X. Wang, N. Veldeman, E. Janssens, R.E. Silverans, P. Lievens, Int. J. of Mass Spect. 252, 145, 2006.
- * J. B. Jaeger, T. D. Jaeger, and M. A. Duncan, J. Phys. Chem. A 110, 9310 (2006).
- N. Uchida, L. Bolotov, T. Miyazaki, and T. Kanayama, J. Phys. D: Apll. Phys. 36, L43 (2003).
- M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya, Chem. Phys. Lett. 371, 490 (2003).
- * H. Hiura, T. Miyazaki, and T. Kanayama, Phys. Rev. Lett. 86, 1733 (2001).

B3LYP/6-31+G(d) avec Gaussian 98 et Q-Chem

 Optimisation de la géométrie à partir des structures issues de la littérature

M@Si₁₂

• D. Hossain, F. Hagelberg, C.U. Pittman, S Saebo, J.Phys. Chem C, A paraître, Publié web: 29.08.2007

• Calculs B3LYP/ 6-311+G(d)

(a) Li@Si₁₂

(b) Li⁺@Si₁₂

(c) Li⁻@Si₁₂

(d) Na@Si12

Notre étude B3LYP

Étude semi empirique

N.A. Borshch, N.S. Pereslavtseva,S.I. Kurganskii, Semiconductors,40, 1423, 2006

Localisation de l'alcalin en surface ?

Si₅Li

Si₆Li

Recherche d'isomères pour LiSi_n n>10 à partir des structures DFT de Si_n connues

Structures les plus stables de type cages et adsorbé Si_nLi (n=10,12,14)

Si₁₀Li (0.0) C_{3v}

Si₁₄Li (0.00) C_{2v}

Si₁₂Li (+0.65eV) C_i

Si₁₀Li (+1.39eV) D_{4h}

Potentiel de ionisation s-Si_nLi et c-Li@Si_n

Cages Conclusion

 Cages de silicium stabilisées avec un alcalin à l'intérieur

- Difficulté de les produire expérimentalement
- Expt pour Si_nAg, Si_nCu, n<12 le métal est en surface
 - M. A. Duncan et al., J. Phys. Chem. A 110, 9310 (2006).
 - S.Neukermans, X. Wang, N. Veldeman, E. Janssens, R.E. Silverans, P. Lievens, Int. J. of Mass Spect. **252**, 145, 2006.

Perspectives

Envisager des études similaires avec Rb, Cs...

Augmenter le nombre d'atomes d'alcalin sur la surface et dans une cage