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Introduction

The main aim of this thesis is to present some recent results concerning the existence
and the multiplicity of positive solutions of systems of nonlinear elliptic differential
equations involving the (p, q)−Laplacian operator of the following form:{

∆pu = f(x, u, v), in Ω
∆qv = g(x, u, v), in Ω

(0.1)

and systems of anisotropic differential equations of the form:

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= f(x, u, v), in Ω

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi
∣∣∣∣qi−2

∂v

∂xi

)
= g(x, u, v), in Ω

(0.2)

where ∆pu = ∇ · (|∇u|p−2∇u) and ∆qv = ∇ · (|∇v|p−2∇v) with p > 1, q > 1,
pi, qi > 1 and Ω an open nonempty subset of RN . Here, both f and g are functions
of Caratheodory type submitted to certain growth conditions in order to guarantee
that the Euler-Lagrange functional associated is well defined in a specific space.
Systems of nonlinear elliptic and anisotropic differential equations present some
new and interesting phenomenons that are not present in study of a scalar equation.
In general, the systems are coupled, or even strongly coupled, in the dependent
variables. So, the notions of superlinearity or sublinearity, and that of criticality
have to take into consideration such a coupling.
Notice that p−Laplacian operator appears in pure mathematics such as problems
of curves as well as in applied mathematics. Indeed, it intervenes in numerous
fields in experimental sciences: nonlinear reaction-diffusion problems, dynamics of
populations, non-Newtonian fluids flows, flows through porous medias, nonlinear
elasticity and petroleum extraction [23], torsional creep problems etc.
In literature, there exists numerous papers dedicated to the study of such equations
and systems. In fact, the study of scalar equations had really started in the middle
of 80s by M. Ôtani [50] in one dimension then in dimension N by F. de Thélin [58]
who obtained the first results on the equation of the form: −∆pu = λuγ−1. The
last author and W. M. Ni. Serrin [57] have showed independently the existence and
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the uniqueness of radial solutions in RN . Lately, this result has been generalized
by M. Ôtani [49] to any arbitrary open subset of RN . In 1987, F. de Thélin [59]
has extended these results to the equation of the type ∆pu = g(x, u) where g is
a function controlled by polynomial functions in u. Among the forerunners of the
analysis of eigenvalue problems, one can cite G. Barles [10], S. Sakaguchi [56] and
A. Anane [8], who studied the equations of the type:

−∆pu = λ|u|p−2u in a bounded domain Ω.

Lately in 1990, P. Lindqvist [43] established numerous results on this type of equation
which follow the article of A. Anane [8]. Furthermore, there are other results on
the uniqueness were stated by J. I. Dìaz and J. E. Saa [24] in 1987 for the equation
−∆pu = f(x, u) under the condition that the function r 7→ f(x,u)

rp−1 is decreasing for
every x ∈ Ω. The bifurcation problem from the first eigenvalue has been discussed
by R. F. Manásevich and M. A. del Pino [46], while the non-resonance problems
involving the p−Laplacian was studied by A. Anane and J. P. Gossez [9]. Later,
the unbounded case of these equations was studied by P. Drábek [25], P. Drábek
and Y. X. Huang [26] and A. Bechah, K. Chaïb and F. de Thélin [11], where the
questions of existence and uniqueness were solved for eigenvalue problem as well as
for nonlinear problems.

The case of systems presents a new challenge and leads to tremendous complications
related to the coupling. The variational systems could be treated by using the
theory of critical points as the solutions of these systems are precisely critical points
of the functional from where are originate (for more details about critical point
theory, see the introduction of this thesis and the book of O. Kavian [42]). The
spaces where these functionals are studied depend on boundary conditions that
these solutions must satisfy. This method called direct method of the calculus of
variations whose origins go back to Gauss and Thomson in the middle of the 19th

century and had been used Dirichlet and Riemann to solve the Dirichlet problem
for the Laplace equation. However, there were gaps in the proof, mathematical
rigour needed, as pointed out by Weierstrass in the 1870’s. So this procedure had
to wait until the begining of the 20th century, when D. Hilbert revived the method
and put in the right tracks what was since called the Dirichlet principle. Today,
the same sort of ideas is still used to other boundary problems for more general
elliptic equations and systems. In the simpler case of Dirichlet problem for the
Laplace equation, the critical point is a minimum of the associated functional. As
a consequence, some new critical point theory had to be developed. Already in the
1930’s, Ljusternik and Schnierelman developed a theory of critical points of the min-
max type for functionals presenting a Z2 symmetry. In the 1970’s A. Ambrosetti and
P. H. Rabinowitz [7] established several results on critical points of the min-max type
for functionals without symmetry. The class of variational systems can be split into
two classes: the class of gradient type if there exists a function F : Ω×R×R −→ R



of class C1 such that:
∂F

∂u
= f et

∂F

∂v
= g, (0.3)

and the class of Hamiltonian type if there exists a function H : Ω×R×R −→ R of
class C1 such that:

∂H

∂v
= f and

∂H

∂u
= g, (0.4)

where the functions f and g are defined as in (0.1) and (0.2).

Concerning the gradient system (0.1)-(0.3), we look for the critical points of the
Euler-Lagrange functional associated

I(u, v) =
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇v|qdx−
∫

Ω

F (x, u, v)dx

which are the weak solutions of the system (0.1). The functional I is defined in the
product space W = W 1,p

0 (Ω)×W 1,q
0 (Ω). We require that the functional derivatives

F satisfies the following growth conditions

|Fu(x, u, v)| ≤ C(|u|γ + |u|α|v|β+1) a.e. in Ω (0.5)
|Fv(x, u, v)| ≤ C(|v|δ + |u|α+1|v|β) a.e. in Ω (0.6)

where p∗ = Np
N−p , q

∗ = Nq
N−q and 1 < p, q < N the critical exponents of Sobolev’s

embeddings W 1,p
0 (Ω) ⊂ Lp

∗
(Ω) and W 1,q

0 (Ω) ⊂ Lq
∗
(Ω). The exponents γ and δ

satisfy 1 < γ < p∗ − 1 and 1 < δ < q∗ − 1. Remark that when we impose that F
be of class C1 and satisfy the conditions (0.5) and (0.6) imply that I also is of class
C1.

In 1990, it was F. de Thélin [60] who first instigated the studies on systems involving
the p−Laplacian operator where he proved a result of existence and uniqueness of
the first eigenvalue to the following system{

−∆pu = λ|u|α−1u|v|β+1 in Ω
−∆qv = λ|u|α+1|v|β−1v in Ω

under the condition α+1
p

+ β+1
q

= 1. The case of a variational system was discussed by
P. Felmer, R. F. Manásevich and F. de Thélin [34] where they studied the existence
and uniqueness of positive solutions of a variational system of the type:

−∆pu =
∂H

∂u
(x, u, v) dans Ω

−∆qv =
∂H

∂v
(x, u, v) dans Ω,

generalizing therefore the results obtained in the scalar case by J. I. Dìaz and J. E.
Saa [24]. Later, these results were extended to a system deriving from a potential



by F. de Thélin and J. Vélin [62], J. Chabrowski [19] and L. Boccardo and D. G.
de Figueiredo [14] and started an approach of the non-variational case by imposing
growth conditions on the nonlinearities.
In the preceding, authors studied only systems on bounded domains of RN while the
unbounded case was discussed by J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis
and F. de Thélin [34] and A. Bechah, K. Chaïb and F. de Thélin [11]. Notice that
the study of the systems involving the p−Laplacian operator in RN was inspired
by the general study made by M. F. Bidaut-Véron [13] on the classical Laplacians
and by P. Clément, J. Fleckinger, R. F. Manásevich and F. de Thélin [21] and P.
Clément, R. Manásevich and E. Mitidieri [22] who studied the existence question
of the solutions for the systems (p, q)−Laplacien purely non-variational of the type
(0.1).

Currently, several recent research papers are studying systems, particularly the four
chapters of the present thesis [1, 2, 3, 4]. Notice that the historic I have drawn up
here is far to be exhaustive.

One of the motivations of this thesis is the fact that certain results concerning
elliptic systems involving the p−Laplacian either in bounded or unbounded domains
deserve to be completed and so far in some papers we seemingly impose "nonnatural"
conditions on the exponents to guarantee the existence or the nonexistence of the
solutions.
Our second work was motivated by the difficulty to prove multiplicity results of
positive solutions in the critical case in unbounded domain. The third motivation
is to generalize some results obtained by T. Aubin et H. Brézis & L. Nirenberg
concerning the critical level where we can affirm the compactness of the minimizing
sequences of Palais-Smale type to more general scalar equations and then to elliptic
systems involving the (p, q)−Laplacian operator. Our last work was motivated by
a important recent result due to A. El Hamidi & J. M. Rakotoson [32] where they
generalized the famous concentration-compactness principle of P. L. Lions to the
case of anisotropic operators.

In the sequel of this concise introduction, we briefly describe the main papers figuring
in this thesis.

Chapter 2: In their article [6], A. Ambrosetti, H. Brézis and G. Cerami studied the
existence and multiplicity of the following equation:{

−∆u = fλ(u), x ∈ Ω
u = 0 x ∈ ∂Ω,

where fλ is a function presenting a concave-convex nonlinearity for example fλ(u) =
λ|u|p−1u + |u|q−1u under the assumption 1 < p < 2 < q < 2∗. They showed, by



using an argument of sub and super solutions, the existence of a positive solution
corresponding to a small value of 0 < λ < λ∗. Moreover, they proved the existence
of infinity of solutions if the function fλ is odd. These result was generalized and
improved by A. El Hamidi [29] to the problem involving p−Laplacian with Dirichlet
or mixed conditions on the boundary ∂Ω:

−∆pu = λ|u|q−1u+ |u|r−1u, x ∈ Ω

ε|∇u|p−2 ∂u
∂ν

+ a(x)|u|p−2u = 0, x ∈ ∂Ω,
(0.7)

with 1 < q < p < r < p∗ and ε ∈ {0, 1}. Using the fibering method, introduced and
developed by S. I. Pohozaev [27], A. El Hamidi [29] studied the modified functional
energy Ẽλ defined on R×W 1,p

Γ (Ω) by:

Ẽλ(t, u) := Eλ(tu),

where Eλ(u) is the Euler-Lagrange functional associated with Problem (0.7). He
studied the restriction E1

λ and E2
λ of Eλ on the Nehari manifold Nλ, which is split

into two disjoint subsets N 1
λ and N 2

λ as 0 < λ < λ̂. E1
λ and E2

λ are both bounded
from below on S, the unit sphere of W 1,p

Γ (Ω), and then one can apply the Ekeland
variational principle [28] and prove the existence of two different positive Palais-
Smale sequences of W 1,p

Γ (Ω). These sequences converge to different solutions such
that the first one has a negative energy however the second changes the sign of its
energy at λ0 ∈ (0, λ̂).

In the article [1], we have studied the following subcritical variational elliptic system:
−∆pu = λ|u|p1−2u+ (α + 1)|u|α−1u|v|β+1 dans Ω,

−∆qv = µ|v|q−2v + (β + 1)|u|α+1|v|β−1v dans Ω,
(0.8)

together with Dirichlet or mixed boundary conditions
u|Γ1 = 0 and ∂u

∂ν
|Σ1 = 0,

v|Γ2 = 0 and ∂v
∂ν
|Σ2 = 0,

(0.9)

with 1 < p1 < p < N , 1 < β + 1 < q < N , α+1
p

+ β+1
q
> 1 and α+1

p∗
+ β+1

q∗
< 1. The

argument adopted here is of A. El Hamidi in his article [29]. As developed by Y.
Bozhkov and E. Mitidieri [16], we introduce the modified energy functional defined
by:

Ĩλ,µ(s, u, t, v) = Iλ,µ(su, tv)

where Iλ,µ is Euler-Lagrange functional associated with System (0.8). Exploring the
Nehari manifold Nλ,µ associated with Iλ,µ defined by all couples (su, tv) 6= (0, 0)

satifying ∂Ĩλ,µ(s, u, t, v)/∂s = ∂Ĩλ,µ(s, u, t, v)/∂t = 0, we proved that this manifold



is also composed of two disjoint subsets N 1
λ,µ and N 2

λ,µ since the couple (λ, µ) belongs
to a subset D of R2. The study of the restriction of the functional Iλ,µ on N 1

λ,µ and
N 2
λ,µ showed that Iλ,µ is bounded from below et then one can prove the existence

of two positive Palais-Smale belonging to Nehari manifold and converge to two
different solutions of System (0.8). Furthermore, we prove that the first solution
has a negative energy however there exists a continuous function µ 7→ λ0(µ), whose
graph is included in D, such that the energy of the second solution of System (0.8)
changes its signs according to the function λ0(µ).

Chapter 3: In this part, we deal with System (??), in the unbounded case and
under the condition α+1

p∗
+ β+1

q∗
= 1. This step is perilous because we lose the

compactness of the injections W 1,p(Ω) ⊂ Lp
∗
(Ω) and W 1,q(Ω) ⊂ Lq

∗
(Ω). Notice

that in this case, the compactness-concentration principle of P. L. Lions [45] is not
valid any longer in the unbounded domains. In the literature, this principle and
the concentration-compactness principle of G. Bianchi et al. [12] are widely used
to overcome the difficulty due to the loss of the compactness of the Palais-Smale
sequences. Notice that Struwe decomposition [61] is useful as well in the bounded
domains and compact manifolds. In the article [62], J. Vélin and F. de Thélin
studied the following problem:

−∆p = u|u|α−1|v|β+1 in Ω

−∆q = |u|α+1|v|β−1v in Ω.

They proved an existence result of solutions under the hypothesis α+1
p∗

+ β+1
q∗

< 1

and a nonexistence result in the case α+1
p∗

+ β+1
q∗

= 1 and Ω is strictly star-shaped by
using Pohozaev identity [53]. Next, the following system

−∆p = u|u|α−1|v|β+1 + f, in Ω

−∆q = |u|α+1|v|β−1v + g, in Ω.

u = v = 0, on ∂Ω

with α+1
p∗

+ β+1
q∗

= 1, was studied by J. Chabrowski [19] in the case when p = q and
lately by J. Vélin [63] if p 6= q. They proved the existence of at least one positive
solution under the hypothesis f ∈ W−1,p′(Ω) \ {0} and g ∈ W−1,q′(Ω) \ {0} and
‖f‖−1,p′ , ‖g‖−1,q′ < k. In our article [3], we were interested in the following system

−∆pu = a(x)|u|p1−2u+ u|u|α−1|v|β+1, in RN

−∆qv = b(x)|v|q−2v + |u|α+1|v|β−1v, in RN

lim
‖x‖→+∞

u(x) = lim
‖x‖→+∞

v(x) = 0,



where α+1
p∗

+ β+1
q∗

= 1. We proved the existence of at least one solution but in the
contrary of our article [1], where we have got two solutions, in this case we have
lost the second solution and succeeded to recover it only for 0 ≤ µ < µ1 (µ1 is the
first eigenvalue of −∆p in W 1,p(RN)) and λ is sufficiently close to 0. These results
was obtained by using a gradient convergence theorem of minimizing sequences of
Palais-Smale developed by A. El Hamidi and J. M. Rakotoson [31].

Chapter 4: One of the major difficulties in the analysis of nonlinear elliptic varia-
tional problems involving critical nonlinearities is the recovering of the compactness
of Palais-Smale sequences of the Euler-Lagrange associated. This problem was dis-
cussed by H. Brézis and L. Nirenberg in their pioneering article [17]. The compact-
ness by concentration principle due to P. L. Lions is widely used to overcome this
type of problems. In the literature, there exists a lot of methods trying to recover
the compactness based on the almost everywhere convergence of the gradient of the
Palais-Smale sequences. One can cite for example the article of L. Boccardo and F.
Murat [15], J. M. Rakotoson [55] for bounded domains and A. El Hamidi and J. M.
Rakotoson [31] for arbitrary domains.

The authors in [17], studied the eigenvalue problem with a critical perturbation:
−∆u = λu+ u2∗−1, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

with Ω is a bounded domain of RN , N ≥ 3 with a smooth boundary ∂Ω, 2∗ = 2N
N−2

is the critical exponent of Sobolev injection W 1,2(Ω) ⊂ Lp(Ω) and λ is positive
parameter. The authors also introduced a critical level corresponding to the energy
of the limit of the Palais-Smale sequences guaranteeing their relative compactness.
Indeed, let (un) be a Palais-Smale sequence for corresponding the Euler-Lagrange
functional:

Iλ(u) =
1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

|∇u|2 − 1

2∗

∫
Ω

|∇u|2∗ .

They proved that if a sequence (un) of (PS)c satisfying:

c := lim
n→+∞

Iλ(un) <
1

N
S
N
2 , (0.10)

then (un) is relatively compact. In this case, this implies the existence of nontrivial
critical points of Iλ. Here, S is the best Sobolev constant of the injection W 1,2

0 (Ω) ⊂
L2∗(Ω). In this chapter, we give a generalization of Condition (0.10) for the following
equation involving the p−Laplacian:

(Pλ)


−∆pu = λf(x, u) + |u|p∗−2u, in Ω,

u|Γ = 0, and ∂u
∂ν
|Σ = 0,

(0.11)



where Ω is a bounded domain of RN , N ≥ 3 with smooth boundary such that
∂Ω = Γ̄ ∪ Σ̄ et Γ Σ are smooth submanifolds of ∂Ω of dimension (N − 1) with
positive measures such that Γ ∩Σ = ∅. Here, ∂

∂ν
is the outward normal vector to Ω

and f is a subcritical perturbation of |u|p∗−1. We proved a similar condition, that if
(un) is a (PS)c such that

c < c∗ ≡ inf
u∈N0

I0(u) + inf
v∈Nλ∪{0}

Iλ(v), (0.12)

then (un) is relatively compact. The level c∗ is critical because we succeeded in
constructing a (PS)c∗ but not relatively compact. Nλ and N0 denote respectively
the Nehari manifolds relative to Problems (Pλ) and (P0).

In the second part of this chapter, we deal with the following critical system

(Pλ,µ)


−∆p = λf(x, u) + u|u|α−1|v|β+1, in Ω

−∆q = µg(x, v) + |u|α+1|v|β−1v, in Ω

where α+1
p∗

+ β+1
q∗

= 1 and boundary conditions are of Dirichlet or mixted, with f

and g are respectively subcritical perturbations of |u|p∗−1 and |v|q∗−1. We denote by
p∗ = Np

N−p and q∗ = Nq
N−q the critical exponents relative to the injections de Sobolev

W 1,p(Ω) ⊂ Lr(Ω) and W 1,q(Ω) ⊂ Lr(Ω) respectively. Our approach provides a
general condition based on the properties of the Nehari manifold, which can be
extended to a more general class of nonlinear elliptic systems. The optimality of
our condition was established only for the special case p = q and obtained by the
construction of a Palais-Smale condition non relatively compact relative to the level
c∗. However, the question for p 6= q is still open because we ignore the maximal
functions relative to Problem (P0,0) for p 6= q. For more general system classes, one
can refer to D. G. de Figueiredo [35], D. G. de Figueiredo and P. Felmer [36] and L.
Boccardo and D. G. de Figueiredo [14].

Chapter 6: This chapter is motivated by the recent results of I. Fragalà et al. [38],
C. O. Alves and A. El Hamidi [5] and A. El Hamidi and J. M. Rakotoson [30, 31]
concerning the study of scalar anisotropic equation. In fact, the authors in [38]
considered the scalar problem and established some existence and regularity results
in the subcritical case as well as a nonexistence result in star-shaped domains.

This chapter is devoted to the study of a critical nonlinear anisotropic system of the
following form:





N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= λa(x)|u|p−2u+ u|u|α−1|v|β+1 in Ω

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi
∣∣∣∣qi−2

∂v

∂xi

)
= µb(x)|v|q−2v + |u|α+1|v|β−1v in Ω,

u = v = 0 on ∂Ω

(0.13)

with

1 < p < pi, 1 < q < qi,

N∑
i=1

1

pi
> 1,

N∑
i=1

1

qi
> 1 et

α + 1

p∗
+
β + 1

q∗
= 1

where
p∗ =

N
N∑
i=1

1

pi
− 1

, et q∗ =
N

N∑
i=1

1

qi
− 1

.

Here, p∗ and q∗ designate respectively the effective critical exponents associated with
the operators

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂∂xi
∣∣∣∣pi−2

∂

∂xi

)
and

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂∂xi
∣∣∣∣qi−2

∂

∂xi

)
.

The authors in [31, 32] generalized the concentration-compactness principle of P.
L. Lions [45] in the anisotropic case. Using this generalized principle, they proved
that the best Sobolev constant in the critical case is attained. In the article [4], we
generalize the existence and regularity of positive solutions results obtained by C. O.
Alves and A. El Hamidi [5]. By using this generalized principle, They showed that
Sobolev’s best constant in a certain critical case critique is attained. In our paper
[4], we generalize the existence and regularity results of positive solutions obtained
by C. O. Alves and A. El Hamidi [5] to the case of System (0.13) in a bounded
domain of RN , using mini-max methods.
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Chapter 1

The Nehari manifold for systems of
nonlinear elliptic equations

Abstract
This paper deals with existence and multiplicity results of nonlocal positive solutions
to the following system

−∆pu = λ|u|p1−2u+ (α + 1)u|u|α−1|v|β+1,

−∆qv = µ|v|q−2v + (β + 1)|u|α+1|v|β−1v,

together with Dirichlet or mixed boundary conditions, under some hypotheses on the
parameters p, p1, α, β and q. More precisely, the system considered corresponds to
a perturbed eigenvalue equation combined with a second equation having concave and
convex nonlinearities. The study is based on the extraction of Palais-Smale sequences
in the Nehari manifold. The behaviour of the energy corresponding to these positive
solutions, with respect to the real parameters λ and µ, is established.

1.1 Introduction
In this work, we consider the system of quasilinear elliptic equations

−∆pu = λ|u|p1−2u+ (α + 1)u|u|α−1|v|β+1,

−∆qv = µ|v|q−2v + (β + 1)|u|α+1|v|β−1v,
(1.1)

together with Dirichlet or mixed boundary conditions
u|Γ1 = 0 and ∂u

∂ν
|Σ1 = 0,

v|Γ2 = 0 and ∂v
∂ν
|Σ2 = 0,

(1.2)

where, Ω is a bounded domain in RN , with smooth boundary ∂Ω = Γi∩Σi, where Γi
are smooth (N−1)-dimensional submanifolds of ∂Ω with positive measures such that

18
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Γi ∩Σi = ∅, i ∈ {1, 2}. ∆p is the p-Laplacian and ∂
∂ν

is the outer normal derivative.
It is clear that when Γ1 = Γ2 = ∂Ω, one deals with homogeneous Dirichlet boundary
conditions.
Our aim here is to establish nonlocal existence and multiplicity results, with respect
to the real parameters λ and µ, for Problem (1.1). Along this work, the following
assumptions will hold

1 < p1 < p < N, q > 1, α > 1, β > 1, (1.3)

α + 1

p∗
+
β + 1

q∗
< 1, (1.4)

α + 1

p
+
β + 1

q
> 1 and

β + 1

q
< 1, (1.5)

where
p∗ =

Np

N − p
, q∗ =

Nq

N − q
are the critical exponents for the p-Laplacian and q-Laplacian respectively. These
assumptions mean that we are concerned with a subcritical and super-homogeneous
system where the first equation is concave-convex and the second equation is only a
perturbation of an eigenvalue equation. Also, the following assumptions concerning
the real parameters λ and µ will hold

λ > 0, µ < µ1,

where µ1 is the first eigenvalue of −∆q in Ω.
Problem (1.1), together with (1.2), is posed in the framework of the Sobolev space
W = W 1,p

Γ1
(Ω)×W 1,q

Γ2
(Ω), where

W 1,p
Γ1

(Ω) = {u ∈ W 1,p(Ω) : u|Γ1 = 0}, W 1,q
Γ2

(Ω) = {u ∈ W 1,q(Ω) : u|Γ2 = 0},

are respectively the closure of C1
0(Ω∩Γ1,R) with respect to the norm ofW 1,p(Ω) and

C1
0(Ω ∩ Γ2,R) with respect to the norm of W 1,q(Ω). We can refer the reader to [9]

for a complete description of this space in the case p = 2. Notice that meas(Γi) > 0,
i = 1, 2, imply that the Poincaré inequality is still available inW 1,p

Γ1
(Ω) andW 1,q

Γ2
(Ω),

so W can be endowed with the norm

||(u, v)|| = ||∇u||p + ||∇v||q

and (W, || . ||) is a reflexive and separable Banach space.
Semilinear and quasilinear scalar elliptic equations with concave and convex nonlin-
earities are widely studied, we can refer the reader to [1, 4, 10, 18] and to the survey
article [5]. For the nonlinear elliptic systems, we refer to [2, 3, 6, 8, 11, 14, 20, 21]
and to the survey article [13]. In [15], the authors studied the existence of positive
solutions to a perturbed eigenvalue problem involving the p-Laplacian operator. In
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[6], the authors have generalized the results of [15] to a perturbed eigenvalue sys-
tem involving p and q-Laplacian operators. Recently, in [10] the first author has
considered a semilinear elliptic equation with concave and convex nolinearities, and
showed nonlocal existence and multiplicity results with respect to the parameter via
the extraction of Palais-Smale sequences in the Nehari manifold.
In this paper, we extend this method to the system (1.1) where one equation contains
concave and convex nonlinearities and the other one is simply a perturbation of an
eigenvalue equation. We show that Problem (1.1) has at least two positive solutions
when the pair of parameters (λ, µ) belongs to a subset of R2 which will be specified
below.
For solutions of (1.1) we understand critical points of the Euler-Lagrange functional
I ∈ C1(W,R) given by

I(u, v) =
1

p
P (u)− λ

p1

P1(u) +
1

q
(Q(v)− µQ1(v))−R(u, v),

where P (u) = ||∇u||pp, P1(u) = ||u||p1
p1
, Q(v) = ||∇v||qq, Q1(v) = ||v||qq and R(u, v) =∫

Ω
|u|α+1|v|β+1dx.

Consider the "Nehari" manifold [16] associated to Problem (1.1) given by

N = {(u, v) ∈ (W 1,p
Γ1

(Ω) \ {0})×W 1,q
Γ2

(Ω) \ {0}) / D1I(u, v)(u) = D2I(u, v)(v) = 0},

where D1I and D2I are the derivatives of I with respect to the first variable and
the second variable respectively.
An interesting and useful characterization of N , [15, 18, 22, 10, 7] is the following

N = {(su, tv) / (s, u, t, v) ∈ Z∗ and ∂sI(su, tv) = ∂tI(su, tv) = 0},

where Z∗ = (R\{0})×(W 1,p
Γ1

(Ω)\{0})×(R\{0})×(W 1,q
Γ2

(Ω)\{0}) and I is considered
as a functional of four variables (s, u, t, v) in Z := R×W 1,p

Γ1
(Ω)×R×W 1,q

Γ2
(Ω). For

this reason, we introduce the modified Euler-Lagrange functional Ĩ defined on Z by

Ĩ(s, u, t, v) := I(su, tv).

1.2 Preliminary results
In this work, we are interested by nontrivial positive solutions u 6= 0 and v 6= 0
to Problem (1.1). Since the functional Ĩ is even in s and t, we limit our study for
s > 0, t > 0 and for (u, v) ∈ (W 1,p

Γ1
(Ω) \ {0})× (W 1,q

Γ2
(Ω) \ {0}).

Lemma 1.2.1. For every (u, v) ∈ (W 1,p
Γ1

(Ω) \ {0})× (W 1,q
Γ2

(Ω) \ {0}) there exists a
unique λ(u, v) > 0 such that the real-valued function (s, t) ∈ (0,+∞)2 7→ Ĩ(s, u, t, v)
has exactly two critical points (resp. one critical point) for 0 < λ < λ(u, v) (resp.
λ = λ(u, v)). This functional has no critical point for λ > λ(u, v).
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Proof. Let (u, v) be an arbitrary element in (W 1,p
Γ1

(Ω) \ {0}) × (W 1,q
Γ2

(Ω) \ {0}).
Then

Ĩ(s, u, t, v) =
sp

p
P (u)− λ

p1

sp1P1(u) +
tq

q
(Q(v)− µQ1(v))− sα+1tβ+1R(u, v).

A direct computation gives ∂tĨ(s, u, t, v) = 0 if and only if

t = t(s) =

[
(β + 1)

R(u, v)

Q(v)− µQ1(v)

] 1
q−(β+1)

s
α+1

q−(β+1) , (2.6)

and
Ĩ(s, u, t(s), v) =

sp

p
P (u)− λ

p1

sp1P1(u)− sr

r
A(u, v),

where

A(u, v) = (α + 1)(β + 1)
α+1

q−(β+1)
R(u, v)

q
q−(β+1)

(Q(v)− µQ1(v))
β+1

q−(β+1)

and r = (α+1)q
q−(β+1)

. It is easy to verify that r > p. Now consider the function s ∈
(0,+∞) 7→ Ĩ(s, u, t(s), v) and let us write

∂sĨ(s, u, t(s), v) := sp1−1Fλ,µ(s, u, v).

where Fλ,µ(s, u, v) := P (u)sp−p1−λP1(u)−A(u, v)sr−p1 . The function s ∈ (0,+∞) 7→
Fλ,µ(s, u, v) is increasing on (0, sµ(u, v)), decreasing on (sµ(u, v),+∞) and attains
its unique maximum for s = sµ(u, v), where

sµ(u, v) =

[
p− p1

r − p1

P (u)

A(u, v)

] 1
r−p

. (2.7)

So, the function s ∈ (0,+∞) 7→ Fλ,µ(s, u, v) has two positive zeros (resp. one
positive zero) if Fλ,µ(sµ(u, v), u, v) > 0 (resp. Fλ,µ(sµ(u, v), u, v) = 0) and has no
zero if Fλ,µ(sµ(u, v), u, v) < 0. On the other hand, a direct computation leads to

Fλ,µ(sµ(u, v), u, v) =
r − p
r − p1

[
p− p1

r − p1

P (u)

A(u, v)

] p−p1
r−p1

P (u)− λP1(u).

Then, Fλ,µ(sµ(u, v), u, v) > 0 (resp. Fλ,µ(sµ(u, v), u, v) < 0) if λ < λ(u, v) (resp.
λ > λ(u, v)) and Fλ(u,v),µ(sµ(u, v), u, v) = 0, where

λ(u, v) = ĉ
P (u)

r−p1
r−p

P1(u)A(u, v)
p−p1
r−p

and ĉ =
r − p
r − p1

[
p− p1

r − p1

] p−p1
r−p

. (2.8)

Therefore, if λ ∈ (0, λ(u, v)), the function s ∈ (0,+∞) 7→ ∂sĨ(s, u, t(s), v) has two
positive zeros denoted by s1(u, v, λ, µ) and s2(u, v, λ, µ) verifying 0 < s1(u, v, λ, µ) <
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sµ(u, v) < s2(u, v, λ, µ). Since Fλ,µ(s1(u, v, λ, µ), u, v) = Fλ,µ(s2(u, v, λ, µ), u, v) = 0,
∂sFλ,µ(s, u, v) > 0 for 0 < s < sµ(u, v) and ∂sFλ,µ(s, u, v) < 0 for s > sµ(u, v) it
follows that

∂ssĨ(s1(u, v, λ, µ), u, t(s1(u, v, λ, µ)), v) > 0, (2.9)
∂ssĨ(s2(u, v, λ, µ), u, t(s2(u, v, λ, µ)), v) < 0. (2.10)

This implies that the real-valued function s ∈ (0,+∞) 7→ Ĩ(s, u, t(s), v) achieves
its unique local minimum at s = s1(u, v, λ, µ) and its unique local maximum at
s = s2(u, v, λ, µ), which ends the proof. �

Hereafter, we will denote ti(u, v, λ, µ) := t(si(u, v, λ, µ)), i = 1, 2. At this stage, we
introduce the characteristic value

λ̂(µ) := inf{λ(u, v), (u, v) ∈ (W 1,p
Γ1

(Ω) \ {0})× (W 1,q
Γ2

(Ω) \ {0}) }.

We claim that λ̂(µ) is great than a positive constant which depends only on µ, p,
p1, q, α, β and Ω. Indeed, using the Hölder inequality, we get

R(u, v) ≤ |Ω|δ||u||α+1
p∗ ||v||

β+1
q∗ ,

where δ > 1 is such that 1
p∗

+ 1
q∗

+ 1
δ

= 1. Using the continuous embeddingW 1,q
Γ2

(Ω) ⊂
Lq
∗
(Ω) we get

A(u, v) ≤ c1
P∗(u)

r
p∗

(µ1 − µ)
β+1

q−(β+1)

,

where P∗(u) = ||u||p
∗

p∗ and c1 = c1(p, p1, q, α, β,Ω). Using again the continuous
embeddings W 1,p

Γ1
(Ω) ⊂ Lp1(Ω) and W 1,p

Γ1
(Ω) ⊂ Lp

∗
(Ω) we obtain

λ(u, v) ≥ c2(µ1 − µ)
β+1

q−(β+1)
p−p1
r−p ,

where c2 = c2(p, p1, q, α, β,Ω) and then

λ̂(µ) ≥ c2(µ1 − µ)
β+1

q−(β+1)
p−p1
r−p ,

which achieves the claim. Now let us introduce

D := {(λ, µ) ∈ (0,+∞)× (−∞, µ1) : λ < λ̂(µ)}.

For every (λ, µ) ∈ D, the functionals (u, v) ∈ (W 1,p
Γ1

(Ω) \ {0})× (W 1,q
Γ2

(Ω) \ {0}) 7→
Ĩ(si(u, v, λ, µ), u, ti(u, v, λ, µ), v) i = 1, 2, are well defined and one can show easily
that they are bounded below. Hence, for every (λ, µ) ∈ D, we define

α1(λ, µ) := inf{Ĩ(s1(u, v, λ, µ), u, t1(u, v, λ, µ), v), (u, v) ∈ W̃} (2.11)

α2(λ, µ) := inf{Ĩ(s2(u, v, λ, µ), u, t2(u, v, λ, µ), v), (u, v) ∈ W̃} (2.12)
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where
W̃ := (W 1,p

Γ1
(Ω) \ {0})× (W 1,q

Γ2
(Ω) \ {0}).

Our aim in the sequel is to show that α1(λ, µ) and α2(λ, µ) are in fact critical values
of the Euler-Lagrange functional I for every (λ, µ) ∈ D. We start with the following

Lemma 1.2.2. Let (un, vn) ∈ W̃ be a minimizing sequence of (2.11) (resp. of
(2.12)) and let (U1

n, V
1
n ) := (s1(un, vn, λ, µ)un, t1(un, vn, λ, µ)vn)

(resp. (U2
n, V

2
n ) := (s2(un, vn, λ, µ)un, t2(un, vn, λ, µ)vn)). Then it holds:

(i) lim sup
n→+∞

||(U1
n, V

1
n )|| <∞ (resp. lim sup

n→+∞
||(U2

n, V
2
n )|| <∞).

(ii) lim inf
n→+∞

||(U1
n, V

1
n )|| > 0 (resp. lim inf

n→+∞
||(U2

n, V
2
n )|| > 0).

Proof. We show the assertion (i), let (un, vn) ∈ W̃ be a minimizing sequence of
(2.11). Since ∂sĨ(s1(un, vn, λ, µ), un, t1(un, vn, λ, µ), vn) = 0 and
∂tĨ(s1(un, vn, λ, µ), un, t1(un, vn, λ, µ), vn) = 0, it follows that

P (U1
n)− λP1(U1

n)− (α + 1)R(U1
n, V

1
n ) = 0, (2.13)

Q(V 1
n )− µQ1(V 1

n )− (β + 1)R(U1
n, V

1
n ) = 0. (2.14)

Suppose that there is a subsequence, still denoted by (U1
n, V

1
n ), such that

limn→+∞ ||(U1
n, V

1
n )|| =∞. We will distinguish three cases:

Case a) limn→+∞ ||∇U1
n||p = ∞ and ||∇V 1

n ||q is bounded. By (2.14) we get
that R(U1

n, V
1
n ) is bounded. On the other hand, using the continuous embed-

ding W 1,p
Γ1

(Ω) ⊂ Lp1(Ω), we have P1(U1
n) = on (P (U1

n)) , as n goes to +∞. By
(2.13) we get R(U1

n, V
1
n ) = 1

α+1
(1 + on(1))P (U1

n) as n goes to +∞ and hence
limn→+∞R(U1

n, V
1
n ) = +∞, which cannot hold true.

Case b) limn→+∞ ||∇V 1
n ||q = ∞ and ||∇U1

n||p is bounded. By (2.13) we get
R(U1

n, V
1
n ) bounded. If 0 < µ < µ1, using the Sobolev and Young inequalities,

for every ε ∈ (0, 1), there is a positive constant Cε such that

||V 1
n ||qq ≤

ε

µ
||∇V 1

n ||qq + Cε,

which gives (β + 1)R(U1
n, V

1
n ) + µCε ≥ (1 − ε)Q(V 1

n ). Then limn→+∞R(U1
n, V

1
n ) =

+∞, which is impossible. If µ < 0, then Q(V 1
n ) − µQ1(V 1

n ) = (β + 1)R(U1
n, V

1
n ) ≥

Q(V 1
n ) so limn→+∞R(U1

n, V
1
n ) = +∞, which is also impossible.

Case c) limn→+∞ ||∇U1
n||p = limn→+∞ ||∇V 1

n ||q =∞. As in the first case, we have

R(U1
n, V

1
n ) =

1

α + 1
(1 + on(1))P (U1

n), as n goes to +∞.

Then I(U1
n, V

1
n ) = 1

α+1

(
α+1
p

+ β+1
q
− 1 + on(1)

)
P (U1

n) as n goes to +∞. Hence,
using the hypothese (1.5), limn→+∞ I(U1

n, V
1
n ) = +∞, which is impossible. Conse-

quently, lim supn→+∞ ||(U1
n, V

1
n )|| <∞. We show in the same way that lim supn→+∞

||(U2
n, V

2
n )|| <∞.
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Now, we show the assertion (ii), let (un, vn) ∈ W̃ be a minimizing sequence of
(2.11). Suppose that there is a subsequence, still denoted by (U1

n, V
1
n ), such that

limn→+∞ ||(U1
n, V

1
n )|| = 0. By (2.13) we get limn→+∞ I(U1

n, V
1
n ) = 0 and this can not

hold true because I(U1
n, V

1
n ) < 0 for every n.

Similarly, let (un, vn) ∈ W̃ be a minimizing sequence of (2.12). Suppose that there
is a subsequence, still denoted by (U2

n, V
2
n ), such that

limn→+∞ ||(U2
n, V

2
n )|| = 0. If p > α + 1, by (2.10) , we have

∂ssI(U2
n, V

2
n ) = (p− 1)P (U2

n)− λ(p1 − 1)P1(U2
n)− α(α + 1)R(U2

n, V
2
n ) < 0

Then (p−1)P (U2
n)−λ(p−1)P1(U2

n)−αpR(U2
n, V

2
n ) < 0, which implies that (p−(α+

1))R(U2
n, V

2
n ) < 0 and this is impossible. Finally, if p ≤ α+ 1, then (p− p1)P (U2

n) <
(α + 1)2R(U2

n, V
2
n ). Since α+1

p∗
+ β+1

q∗
< 1 and α+1

p
+ β+1

q
> 1, then there exist p̃ and

q̃ satisfying p < p̃ < p∗, q < q̃ < q∗ and

α + 1

p̃
+
β + 1

q̃
= 1. (2.15)

Therefore,

R(U2
n, V

2
n ) ≤ c(Ω, p, q)||U2

n||α+1
p̃ ||V 2

n ||
β+1
q̃

≤ c′(Ω, p, q)||∇U2
n||α+1

p ||∇V 2
n ||β+1

q

and consequently, (p − p1) ≤ c′(Ω, p, q)(α + 1)2||∇U2
n||α+1−p

p ||∇V 2
n ||β+1

q which con-
verges to 0 as n goes to +∞. This contradicts the fact p > p1, which ends the proof.
�

1.3 Palais-Smale sequences in the Nehari Manifold
It is interesting to notice that for every γ > 0, δ > 0, it holds

Ĩ

(
γs,

u

γ
, δt,

v

δ

)
= Ĩ(s, u, t, v),

∂tĨ

(
γs,

u

γ
, δt,

v

δ

)
=

1

δ
∂tĨ(s, u, t, v),

∂sĨ

(
γs,

u

γ
, δt,

v

δ

)
=

1

γ
∂sĨ(s, u, t, v),

∂ssĨ

(
γs,

u

γ
, δt,

v

δ

)
=

1

γ2
∂ssĨ(s, u, t, v).
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This implies that

s1(u, v, λ, µ) =
1

γ
s1

(
u

γ
,
v

δ
, λ, µ

)
, ∀ δ > 0, (3.16)

s2(u, v, λ, µ) =
1

γ
s2

(
u

γ
,
v

δ
, λ, µ

)
, ∀ δ > 0, (3.17)

t1(u, v, λ, µ) =
1

δ
t1

(
u

γ
,
v

δ
, λ, µ

)
, ∀ γ > 0, (3.18)

t2(u, v, λ, µ) =
1

δ
t2

(
u

γ
,
v

δ
, λ, µ

)
, ∀ γ > 0. (3.19)

It follows that

α1(λ, µ) = inf
(u,v)∈Sp×Sq

{Ĩ(s1(u, v, λ, µ), u, t1(u, v, λ, µ), v)}, (3.20)

α2(λ, µ) = inf
(u,v)∈Sp×Sq

{Ĩ(s2(u, v, λ, µ), u, t2(u, v, λ, µ), v)}, (3.21)

where Sp and Sq are the unit spheres of W 1,p
Γ1

(Ω) and W 1,q
Γ2

(Ω) respectively. Make
precise that Sp × Sq is a 2-codimensional and complete submanifold of W , we will
denote it in the sequel by S.

Lemma 1.3.1. Let (λ, µ) ∈ D and let (un, vn) ∈ S be a minimizing sequence of
(3.20) (resp. of (3.21)). Then (s1(un, vn, λ, µ)un, t1(un, vn, λ, µ)vn),
(resp. (s2(un, vn, λ, µ)un, t2(un, vn, λ, µ)vn)) is a Palais-Smale sequence for the func-
tional I.

Proof. Let (λ, µ) ∈ D and consider a minimizing sequence (un, vn) ∈ S of (3.20).
Let us set

Un = s1(un, vn, λ, µ)un,

Vn = t1(un, vn, λ, µ)vn.

The sequence (Un, Vn) is clearly bounded in W . On the other hand, the gra-
dient (resp. the Hessian determinant) of Ĩ with respect to s and t at (s, t) =
(s1(un, vn, λ, µ),
t1(un, vn, λ, µ)) is equal to zero (resp. is strictly negative). So, the implicit function
theorem implies that that s1(un, vn, λ, µ) and t1(un, vn, λ, µ) are C1 with respect to
(u, v), since Ĩ is.
We introduce now the functional I defined on S by

I(u, v) = Ĩ(s1(u, v, λ, µ), u, t1(u, v, λ, µ), v),

then
α1(λ, µ) = inf

(u,v)∈S
I(u, v) = lim

n→+∞
I(un, vn).
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Applying the Ekeland variational principle [12, 17, 19, 22] on the complete manifold
(S, || . ||) to the functional I we get

I ′(un, vn)(ϕn, ψn) ≤ 1

n
||(ϕn, ψn)||, ∀(ϕn, ψn) ∈ T(un,vn)S,

where T(un,vn)S denotes the tangent space to S at the point (un, vn). Recall that
T(un,vn)S = TunSp × TvnSq, where TunSp (resp. TvnSq) is the tangent space to Sp
(resp. Sq) at the point un (resp. vn).
Set

An := (un, vn, λ, µ), and Bn := (s1(un, vn, λ, µ), un, t1(un, vn, λ, µ), vn).

For every (ϕn, ψn) ∈ TunSp × TvnSq, one has

I ′(un, vn)(ϕn, ψn) = D1Ĩ(Bn)(ϕn) +D2Ĩ(Bn)(ψn)

where

D1Ĩ(Bn)(ϕn) = ∂us1(An)(ϕn)∂sĨ(Bn) + ∂uĨ(Bn)(ϕn) + ∂ut1(An)(ϕn)∂tĨ(Bn)

= ∂uĨ(Bn)(ϕn).

Similarly, one has
D2Ĩ(Bn)(ψn) = ∂v Ĩ(Bn)(ψn).

Furthermore, consider the "fiber" maps

π : W 1,p
Γ1

(Ω) \ {0} −→ R× Sp
u 7−→

(
||∇u||p, u

||∇u||p

)
:= (π1(u), π2(u)),

π̃ : W 1,q
Γ2

(Ω) \ {0} −→ R× Sq
v 7−→

(
||∇v||q, v

||∇v||q

)
:= (π̃1(v), π̃2(v)).

Applying the Hölder inequality we get, for every (u, ϕ) ∈ (W 1,p
Γ1

(Ω) \ {0})×W 1,p
Γ1

(Ω)

and (v, ψ) ∈ (W 1,q
Γ2

(Ω) \ {0})×W 1,q
Γ2

(Ω), the following estimates

|π′1(u)(ϕ)| ≤ ||∇ϕ||p, |π′2(u)(ϕ)| ≤ 2
||∇ϕ||p
||∇u||p

,

|π̃′1(v)(ψ)| ≤ ||∇ψ||q, |π̃′2(v)(ψ)| ≤ 2
||∇ψ||q
||∇v||q

.

On one hand, from Lemma (1.2.2), there is a positive constantK such that s1(An) ≥
K and t1(An) ≥ K, for every integer n. On the other hand, for every (ϕ, ψ) ∈ W ,

D1I(Un, Vn)(ϕ) = ϕ1
n∂sĨ(Bn) + ∂uĨ(Bn)(ϕ2

n) + ϕ1
n∂tĨ(Bn)

= ∂uĨ(Bn)(ϕ2
n).
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where ϕ1
n = π′1(un)(ϕ) and ϕ2

n = π′2(un)(ϕ). Then the following estimates hold true:
|ϕ1
n| ≤ ||∇ϕ||p and ||∇ϕ2

n||p ≤ 2
K
||∇ϕ||p. In the same manner, we get

D2I(Un, Vn)(ψ) = ψ1
n∂sĨ(Bn) + ∂v Ĩ(Bn)(ψ2

n) + ψ1
n∂tĨ(Bn)

= ∂v Ĩ(Bn)(ψ2
n).

where ψ1
n = π̃′1(vn)(ψ) and ψ2

n = π̃′2(vn)(ψ), with the estimates |ψ1
n| ≤ ||∇ψ||q and

||∇ψ2
n||q ≤ 2

K
||∇ψ||q. Therefore

|D1I(Un, Vn)(ϕ)| ≤ 1

n
||∇ϕ2

n||p

≤ 2

nK
||∇ϕ||p

and

|D2I(Un, Vn)(ψ)| ≤ 1

n
||∇ψ2

n||q

≤ 2

nK
||∇ψ||q.

We conclude easily that
lim

n→+∞
||I ′(Un, Vn)||∗ = 0,

where I ′(Un, Vn)(ϕ, ψ) = D1I(Un, Vn)(ϕ) +D2I(Un, Vn)(ψ) and || ||∗ is the norm on
the dual space of W .
The arguments are similar if (un, vn) ∈ S is a minimizing sequence of (3.21). Hence,
the lemma is proved. �
Remark. For every (u, v) ∈ W̃ and (λ, µ) ∈ D, one has Ĩ(s, u, t, v) = Ĩ(s, |u|, t, |v|),
si(|u|, |v|, λ, µ) = si(u, v, λ, µ), i ∈ {1, 2} and consequently ti(|u|, |v|, λ, µ) = ti(u, v, λ, µ),
i ∈ {1, 2}. Therefore, every minimizing sequence (un, vn) ∈ Sp×Sq of (3.20) or (3.21)
can be considered as a sequence satisfying un ≥ 0 and vn ≥ 0 in Ω.

1.4 Positive solutions and the behaviour of their en-
ergy

Theorem 1.4.1. Let (λ, µ) ∈ D. Then Problem (1.1) has at least two nontrivial
solutions (U i, V i), i ∈ {1, 2}, such that U i ≥ 0 and V i ≥ 0 in Ω and U i 6= 0, V i 6= 0,
for i ∈ {1, 2}.
Proof. We will use the notations of the previous lemmas. Let (λ, µ) ∈ D and
consider a nonnegative minimizing sequence (un, vn) ∈ S of (3.20). It is known from
Lemma (1.3.1) that

lim
n→+∞

I(Un, Vn) = α1(λ, µ),

lim
n→+∞

||I ′(Un, Vn)||∗ = 0
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and that (Un, Vn) is bounded in W . Passing if necessary to a subsequence, there are
U1 ∈ W 1,p

Γ1
(Ω) and V 1 ∈ W 1,q

Γ2
(Ω) such that

Un ⇀ U1 in W 1,p
Γ1

(Ω),

Un → U1 in Lp1(Ω) and Lp̃(Ω),

Vn ⇀ V 1 in W 1,q
Γ2

(Ω),

Vn → V 1 in Lq1(Ω) and Lq̃(Ω),

where p̃ and q̃ are specified in (2.15). At this stage, we use the well known inequal-
ities: ∀(x, y) ∈ RN

|x− y|γ ≤ C
(
|x|γ−2x− |y|γ−2y

)
· (x− y), if γ ≥ 2,

|x− y|2 ≤ C(|x| − |y|)2−γ (|x|γ−2x− |y|γ−2y
)
· (x− y), if γ < 2.

where · denotes the scalar product in RN .
In the case p ≥ 2, we obtain

P (Un − U1) ≤ C

∫
Ω

(
|∇Un|p−2∇Un − |∇U1|p−2∇U1

)
· (∇Un −∇U1)

= C(D1I(Un, Vn)(Un − U1)−D1I(U1, V 1)(Un − U1) +

Cλ

∫
Ω

(
|Un|p1−2Un − |U1|p1−2U

)
(Un − U1) +

C(α + 1)

∫
Ω

(
Un|Un|α−1|Vn|β+1 − U1|U1|α−1|V 1|β+1

)
(Un − U1).

Since limn→+∞ ||I ′(Un, Vn)||∗ = 0, (Vn) is bounded, and using the fact that Un → U1

in Lp1(Ω) and in Lp̃(Ω), Vn → V 1 in in Lq̃(Ω), we conclude, by the Hölder inequality,
that P (Un − U1)→ 0, as n goes to +∞, which means that

Un −→ U1 in W 1,p
Γ1

(Ω).

In the case p < 2, a direct computation gives

||∇Un −∇U1||2p ≤ C
(
||∇Un||2−pp + ||∇U1||2−pp

)
×∫

Ω

(
|∇Un|p−2∇Un − |∇U1|p−2∇U1

)
· (∇Un −∇U1).

Since ||∇Un −∇U1||p is bounded, the same arguments used above show that Un →
U1 in W 1,p

Γ1
(Ω), as n goes to +∞. In a similar way we get Vn → V 1 in W 1,q

Γ2
(Ω),

as n goes to +∞.
Moreover, it is clear that (U1, V 1) is a nontrivial solution of Problem (1.1) verifying
U1 ≥ 0 and V 1 ≥ 0 in Ω and U1 6= 0, V 1 6= 0. On the other hand, there is a
subsequence of (un, vn), still denoted by (un, vn) such that

Un := s1(un, vn, λ, µ)un −→ U1 in W 1,p
Γ1

(Ω),

Vn := t1(un, vn, λ, µ)vn −→ V 1 in W 1,q
Γ2

(Ω).
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According to Lemma (1.2.2), let (s1, t1) ∈ (0,+∞)2 such that

s1(un, vn, λ, µ) −→ s1 in R,

t1(un, vn, λ, µ) −→ t1 in R,

un −→ u1 = U1

s1
in W 1,p

Γ1
(Ω),

vn −→ v1 = V 1

t1
in W 1,q

Γ2
(Ω),

with u1 = U1

s1
∈ Sp, v1 = V 1

t1
∈ Sq, s1 = s1(u1, v1, λ, µ) and t1 = t1(u1, v1, λ, µ).

Therefore, ∂ssĨ(s1(u1, v1, λ, µ), u1, t1(u1, v1, λ, µ), v1) > 0.
Proceeding in the same manner with a nonnegative minimizing sequence (ũn, ṽn) ∈ S
of (3.21), we obtain a second nontrivial solution (U2, V 2) of (1.1) verifying U2 ≥ 0
and V 2 ≥ 0 in Ω and U2 6= 0, V 2 6= 0.
Now, we have to show that (U1, V 1) 6= (U2, V 2). Let (s2, t2) ∈ (0,+∞)2 such that

s2(ũn, ṽn, λ, µ) −→ s2 in R,

t2(ũn, ṽn, λ, µ) −→ t2 in R,

ũn −→ u2 = U2

s2
in W 1,p

Γ1
(Ω),

ṽn −→ v2 = V 2

t2
in W 1,q

Γ2
(Ω),

with u2 = U2

s2
∈ Sp, v2 = V 2

t2
∈ Sq, s2 = s2(u2, v2, λ, µ) and t2 = t2(u2, v2, λ, µ).

Therefore, ∂ssĨ(s2(u2, v2, λ, µ), u2, t2(u2, v2, λ, µ), v2) < 0. Hence (U1, V 1) 6= (U2, V 2),
which ends the proof. �

In the sequel, for every (λ, µ) ∈ D, the functions (u1, v1) and (u2, v2) will be denoted
by (u1(λ, µ), v1(λ, µ)) and (u2(λ, µ), v2(λ, µ)) respectively. Similarly, the solutions
(U i, V i), i ∈ {1, 2}, will be denoted by (U i(λ, µ), V i(λ, µ)), i ∈ {1, 2}.

Theorem 1.4.2. Let (λ, µ) ∈ D. Then

(i) I(U1, V 1) < 0 for λ ∈]0, λ̂(µ)[,

(ii)

{
I(U2, V 2) > 0 for λ ∈ ]0, λ0(µ)[,

I(U2, V 2) < 0 for λ ∈ ]λ0(µ), λ̂(µ)[,

where

λ0(µ) :=
p1

r

(
r

p

) r−p1
r−p

λ̂(µ).
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Proof. In this proof, µ will be fixed in (−∞, µ1), so we will omit the dependence
on µ in the expressions which will follow. However, the dependece on λ will be
specified. In particular, the Euler-Lagrange functional I will be denoted by Iλ.
(ii) Let (u, v) be an arbitrary element of W̃ . We denote

Ĩλ(s, u, t(s), v) =
sp

p
P (u)− λ

p1

sp1P1(u)− sr

r
A(u, v),

and write
Ĩλ(s, u, t(s), v) = sp1G̃λ(s, u, v),

where
G̃λ(s, u, v) = sp−p1

P (u)

p
− λP1(u)

p1

− sr−p1
A(u, v)

r
.

It follows that

∂sĨλ(s, u, t(s), v) = p1s
p1−1G̃λ(s, u, v) + sp1∂sG̃λ(s, u, v),

with
∂sG̃λ(s, u, v) = sp−p1−1

{
p− p1

p
P (u)− r − p1

r
sr−pA(u, v)

}
.

The real valued function s 7−→ G̃λ(s, u, v) is increasing on ]0, s0(u, v)[, decreasing
on ]s0(u, v),+∞[ and attains its unique maximum for s = s0(u, v), where

s0(u, v) =

(
r

p

) 1
r−p

sµ(u, v), (4.22)

and sµ(u, v) is defined in (2.7). On the other hand, a direct computation gives

G̃λ(s0(u, v), u, v) =

(
p− p1

r − p1

P (u)

A(u, v)

) r−p1
r−p

R(u, v)− λP1(u).

Similarly, G̃λ(s0(u, v), u, v) > 0 (resp. G̃λ(s0(u, v), u, v) < 0) if λ < λ0(u, v) (resp.
λ > λ0(u, v)) and G̃λ0(u,v)(s0(u, v), u, v) = 0, where

λ0(u, v) =
p1

r

(
r

p

) r−p1
r−p

λ(u, v), (4.23)

with λ(u, v) given by (2.8). Thus, we get
Ĩλ(s0(u, v), u, t(s0(u, v)), v) > 0 if λ < λ0(u, v),

Ĩλ(s0(u, v), u, t(s0(u, v)), v) = 0 if λ = λ0(u, v),

Ĩλ(s0(u, v), u, t(s0(u, v)), v) < 0 if λ > λ0(u, v).

(4.24)
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First, since the function
]0, 1[ −→ R
t 7−→ ln t

1−t

is increasing, then for every real numbers x, y such that 0 < x < y < 1, one has

ln

[
1

x

]
>

1− x
1− y

ln

[
1

y

]
= ln

[(
1

y

) 1−x
1−y
]
,

and consequently

0 < x

(
1

y

) 1−x
1−y

< 1.

In the particular case x = p1/r and y = p/r we get

0 <
p1

r

(
r

p

) r−p1
r−p

< 1,

and therfore 0 < λ0(u, v) < λ(u, v).
Moreover, for every (u, v) ∈ W̃ , one has G̃λ0(u,v)(s, u, v) < 0 for s ∈]0,+∞[\{s0(u, v)}
and G̃λ0(u,v)(s0(u, v), u, v) = 0. Hence, the real valued function s 7−→ Ĩλ0(u,v)(s, u, t(s), v),
(s > 0), attains its unique maximum at s = s0(u, v) and we obtain the following
interesting identity

s2(u, v, λ0(u, v), µ) = s0(u, v). (4.25)

We will set
t0(u, v) := t2(u, v, λ0(u, v), µ).

On the other hand, it is clear that the functional λ0(u, v) is weakly lower semi-
continuous on W̃ . Thus, the value

λ̂0 := inf
(u,v)∈W̃

λ0(u, v) (4.26)

is achieved on W̃ . Since λ0(u, v) is 0-homogeneous in u and v, we can assume that
there is some (u∗, v∗) ∈ Sp × Sq such that λ̂0 = λ0(u∗, v∗).
Now, let λ be such that 0 < λ < λ̂0. Then, for every (u, v) ∈ W̃ one has 0 < λ <

λ0(u, v) and consequently Ĩλ(s0(u, v), u, t(s0(u, v)), v) > 0 holds from (4.24). But,
s 7−→ Ĩλ(s, u, t(s), v), (s > 0) attains its unique maximum for s = s2(u, v, λ), hence
Ĩλ(s2(u, v, λ), u, t2(u, v, λ), v) > 0, for every (u, v) ∈ W̃ . In particular, we have

Ĩλ(s2(u2(λ), v2(λ), λ), u2(λ), t2(u2(λ), v2(λ), λ), v2(λ)) > 0,

i.e. Iλ(U2(λ), V 2(λ)) > 0.
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If λ = λ̂0, then

Iλ̂0
(U2(λ̂0), V 2(λ̂0)) = Ĩλ̂0

(s2(u2(λ̂0), v2(λ̂0), λ̂0), u2(λ̂0), t2(u2(λ̂0), v2(λ̂0), λ̂0), v2(λ̂0))

= inf
(u,v)∈Sp×Sq

Ĩλ̂0
(s2(u, v, λ̂0), u, t2(u, v, λ̂0), v)

≤ Ĩλ̂0
(s2(u∗, v∗), u∗, t2(u∗, v∗), v∗)

= Ĩλ0(u∗,v∗)(s0(u∗, v∗), u∗, t0(u∗, v∗), v∗)

= 0

which implies that Iλ̂0
(U2(λ̂0), V 2(λ̂0)) ≤ 0. In addition, it is known from (4.24)

that

Ĩλ̂0
(s0(u, v), u, t0(u, v), v) ≥ 0,

Ĩλ̂0
(s1(u, v, λ̂0), u, t1(u, v, λ̂0), v) < 0,

for every (u, v) ∈ W̃ . Then

s0(u, v) > s1(u, v, λ̂0), ∀(u, v) ∈ W̃ .

It follows that

Ĩλ̂0
(s2(u2(λ̂0), v2(λ̂0), λ̂0), u2(λ̂0), t2(u2(λ̂0), v2(λ̂0), λ̂0), v2(λ̂0)) ≥

Ĩλ̂0
(s0(u1(λ̂0), v1(λ̂0)), u1(λ̂0), t0(u1(λ̂0), v1(λ̂0)), v1(λ̂0)) ≥ 0.

Hence,

Iλ̂0
(U2(λ̂0), V 2(λ̂0)) = Ĩλ̂0

(s2(u2(λ̂0), v2(λ̂0), λ̂0), u2(λ̂0), t2(u2(λ̂0), v2(λ̂0), λ̂0), v2(λ̂0))

= 0.

Finally, assume that λ̂0 < λ < λ̂. Since, for every s ∈]0,+∞[ and (u, v) ∈ W̃ , the
real valued function λ 7−→ Ĩλ(s, u, t(s), v) is decreasing, it follows that

Ĩλ(s, u, t(s), v) < Ĩλ̂0
(s, u, t(s), v), for every s > 0 and (u, v) ∈ W̃ . (4.27)

In addition, we have

Ĩλ(s2(u2(λ), v2(λ), λ), u2(λ), t2(u2(λ), v2(λ), λ), v2(λ)) =

inf
(u,v)∈Sp×Sq

Ĩλ(s2(u, v, λ), u, t2(u, v, λ), v) ≤

Ĩλ(s2(u∗, v∗, λ), u∗, t2(u∗, v∗, λ), v∗) <

Ĩλ̂0
(s2(u∗, v∗, λ), u∗, t2(u∗, v∗, λ), v∗)
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where the last inequality follows from (4.27). Moreover, the real valued function
s 7−→ Ĩλ̂0

(s, u∗, t(s), v∗), (s > 0), achieves its unique maximum at s = s0(u∗, v∗).
Thus,

Ĩλ̂0
(s2(u∗, v∗, λ), u∗, t2(u∗, v∗, λ), v∗) ≤ Ĩλ̂0

(s0(u∗, v∗), u∗, t0(u∗, v∗), v∗)

= Ĩλ0(u∗,v∗)(s0(u∗, v∗), u∗, t0(u∗, v∗), v∗)

= 0.

Hence Ĩλ(s2(u2(λ), v2(λ), λ), u2(λ), t2(u2(λ), v2(λ), λ), v2(λ)) < 0, which ends the
proof. �

The following result shows the subtle link existing between the characteristic value
λ̂0 defined by (4.26) and Problem (1.1).

Theorem 1.4.3. If (u, v) is a solution of (4.26) then (s0(u, v)u, t0(u, v)v) is a so-
lution of the system (1.1) when λ = λ̂0.

Proof. Let (u, v) be a solution of (4.26). In order to simplify the notations, we set
U := s0(u, v)u and V := t0(u, v)v. Thus, for λ = λ̂0 = λ0(u, v) we have:

Iλ̂0,µ
(U, V ) =

s0(u, v)p

p
P (u)− λ̂0

s0(u, v)p1

p1

P1(u)− s0(u, v)r

r
A(u, v)

and for every ϕ ∈ W 1,p
0 (Ω):

D1Iλ̂0,µ
(U, V )(ϕ) =

1

p
P ′(U)(ϕ)− λ̂0

p1

P ′1(U)(ϕ)− 1

r
D1A(U, V )(ϕ),

where 
P ′(U)(ϕ) = s0(u, v)p−1P ′(u)(ϕ),
P ′1(U)(ϕ) = s0(u, v)p1−1P ′1(u)(ϕ),
D1A(U, V )(ϕ) = s0(u, v)r−1D1A(u, v)(ϕ).

We calculate now,

λ̂0P
′
1(U)(ϕ) = λ0(u, v)s0(u, v)p1−1P ′1(u)(ϕ)

=
p1

r

(
r

p

) r−p1
r−p

(
p− p1

r − p1

) p−p1
r−p P (u)

P1(u)

(
P (u)

A(u, v)

) p−1
r−p

× r − p
r − p1

(
r

p

) p1−1
r−p

(
p− p1

r − p1

P (u)

A((u, v)

) p1−1
r−p

P ′1(u)(ϕ)

=
r − p
r − p1

p1

r

r

p

(
p− p1

r − p1

) p−1
r−p
(
r

p

) p−1
r−p P (u)

P1(u)

P (u)

A(u, v)

p−1
r−p

P ′1(u)(ϕ)

=
r − p
r − p1

p1

p

P (u)

P1(u)

((
r

p

) 1
r−p
(
p− p1

r − p1

) 1
r−p P (u)

A(u, v)

)p−1

P ′1(u)(ϕ)

=
p1

p

r − p
r − p1

P (u)s0(u, v)p−1P
′
1(u)(ϕ)

P1(u)
.
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In addition, one has

D1A(U, V )(ϕ) = s0(u, v)r−1D1(u, v)(ϕ)

=

(
r

p

p− p1

r − p1

P (u)

A(u, v)

) p−1
r−p r

p

p− p1

r − p1

P (u)

A(u, v)
D1A(u, v)(ϕ)

=
r

p

p− p1

r − p1

P (u)s0(u, v)p−1D1A(u, v)(ϕ)

A(u, v)
.

Consequently, we obtain

D1Iλ̂0,µ
(U, V )(ϕ) =

[
P ′(u)(ϕ)

P (u)
− r − p
r − p1

P ′1(u)(ϕ)

P1(u)
− p− p1

r − p1

D1A(u, v)(ϕ)

A(u, v)

]
× P (u)s0(u, v)p−1

p

= K

(
r − p1

r − p
P ′(u)(ϕ)

P (u)
− P ′1(u)(ϕ)

P1(u)
− p− p1

r − p
D1A(u, v)(ϕ)

A(u, v)

)
,

where K := r−p
r−p1

P (u)
p
s0(u, v)p−1. On the other hand, a direct computation gives:

D1λ0(u, v)(ϕ) = λ̂0

(
r − p1

r − p
P ′(u)(ϕ)

P (u)
− P ′1(u)(ϕ)

P1(u)
− p− p1

r − p
D1A(u, v)(ϕ)

A(u, v)

)
,

which is equal to zero by assumption. Hence D1Iλ̂0,µ
(U, V )(ϕ) = 0 since it is pro-

portional to D1λ0(u, v)(ϕ).
Moreover, for every ψ ∈ W 1,q

0 (Ω), we get

D2λ0(u, v)(ψ) = −p− p1

r − p1

λ0(u, v)
D2A(u, v)(ψ)

A(u, v)
,

which is also equal to zero by assumption. This implies that D2A(u, v)(ψ) = 0, since
λ0(u, v) = λ̂0 6= 0. Then

D2Iλ̂0,µ
(U, V )(ψ) = −s0(u, v)r

r
D2A(u, v)(ψ) = 0.

which implies that (s0(u, v)u, t0(u, v)v) is well a solution of the problem (1.1) with
λ = λ̂0. �
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Chapter 2

Nehari manifold for a critical system
in RN

Abstract
In this paper, we are interested in existence and multiplicity results of non local
solutions to the following critical system:{

−∆pu = λa(x)|u|p1−2u+ u|u|α−1|v|β+1 in RN ,
−∆qv = µb(x)|v|q−2v + |u|α+1|v|β−1v in RN ,

under some conditions for the parameters a , b , p, p1, α, β, q, λ and µ in the critical
case: α+1

p∗
+ β+1

q∗
= 1. We show these results by developing variational tools. The

study consists in the extraction of Palais-Smale sequences in the Nehari manifold. A
compactness principle due to A. El Hamidi and J-M. Rokotoson allows us to obtain
convergence results for the gradients in our unbounded case.

2.1 Introduction
We consider the system of quasilinear elliptic equations:{

−∆pu = λa(x)|u|p1−2u+ u|u|α−1|v|β+1 in RN ,
−∆qv = µb(x)|v|q−2v + |u|α+1|v|β−1v in RN ,

(1.1)

We are interested in establishing nonlocal existence and multiplicity results for Prob-
lem (1.1). Of course nonlocal solutions means with respect to the real parameters λ
and µ. Throughout this paper, the following assumptions will hold:

a ≥ 0, a 6≡ 0, a ∈ L
p∗

p∗−p1 (RN) and b ≥ 0, b 6≡ 0, b ∈ L
N
q (RN), (1.2)

1 < p1 < p < N, 1 < q < N, α > −1, β > −1, (1.3)

α + 1

p∗
+
β + 1

q∗
= 1, (1.4)

37



§ 2 Nehari manifold for a critical system in RN 38

q > β + 1, (1.5)

where
p∗ =

Np

N − p
, q∗ =

Nq

N − q
,

are the critical exponents for the p-Laplacian and q-Laplacian respectively. These
assumptions mean that we are concerned with a critical system where the first equa-
tion is concave-convex and the second equation is only a critical perturbation of an
eigenvalue equation. Also, the following assumptions concerning the real parameters
λ and µ will hold

λ > 0, µ < µ1,

where µ1 is the first eigenvalue of the equation

−∆qv = µb(x)v|v|q−2 in RN .

Thus

µ1 = inf
ψ∈D1,q(RN )\{0}

∫
RN |∇ψ|

q dx∫
RN b(x)|ψ|q dx

,

where the space D1,q(RN) is the closure of D(RN) with respect to the norm

‖u‖D1,q(RN ) :=

(∫
RN
|∇u|qdx

) 1
q

.

One can prove that µ1 > 0 and µ1 is achieved. Indeed, on one hand, by integrability
of b, we claim that the functional

Qb : D1,q(RN) −→ R

v 7−→
∫

RN
b(x)|v|q dx·

is weakly continuous. It is clear that the functional Qb is well defined since q∗/q and
N/q are conjugate exponents. Now, let un ⇀ u in D1,q(RN) weakly. We are going
to prove that |un|q ⇀ |u|q in Lq∗/q(RN). Since ‖ |un|q ‖q∗/q = ‖un‖qq∗ is bounded we
can assume, up to a subsequence, that |un|q ⇀ v in Lq∗/q(RN). The claim is complete
if we show that v = |u|q because then the limit does not depend of the subsequence.
Choose any increasing sequence (Kn)n∈N of open relatively subsets, with regular
boundaries, of RN covering RN : RN = ∪∞n=0Kn. By using the compact/continuous
embeddings

D1,q(Kn) ↪→ Lq(Kn) ⊂ L1(Kn)

un ⇀ u =⇒ un −→ u =⇒ |un|q −→ |u|q

and
Lq
∗/q(Kn) ⊂ L1(Kn)
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|un|q ⇀ v =⇒ |un|q ⇀ v.

Thus, v = |u|q a.e. on each Kn. Using the diagonal process of Cantor, we conclude
that v = |u|q a.e. in RN and the claim is achieved.
On the other hand, let (ψn) be a minimizing nonnegative sequence of µ1, (with
Qb(ψn) = 1, which is possible by homogeneity arguments), there is a nonnegative
function ψ ∈ D1,q(RN) such that, up to a subsequence,

ψn ⇀ ψ in D1,q(RN) weakly.

Using the claim proved above, we get as n→ +∞

Qb(ψn)→ Qb(ψ) = 1.

But, ∫
RN
|∇ψ|q dx ≤ lim inf

n→+∞

∫
RN
|∇ψn|q dx = µ1

then µ1 is acicheied by ψ. Finally, suppose that µ1 = 0, then
∫

R |∇ψ|
q dx = 0 wich

implies that ψ is a constant function which is positive since Qb(ψ) = 1. But positive
constant functions do not belong to D1,q(RN). Notice that ψ satisfies, in the weak
sense, the equation

−∆qψ = µ1b(x)ψ|ψ|q−2 in RN .

We denote by Sp (resp. Sq) the best Sobolev’s constant for the continuous embedding
D1,p(RN) ↪→ Lp

∗
(RN) (resp. D1,q(RN) ↪→ Lq

∗
(RN)).

Problem (1.1) is well posed in the framework of the spaceW := D1,p(RN)×D1,q(RN),
where

D1,p(RN) = {u ∈ Lp∗(RN) : |∇u| ∈ Lp(RN)},
D1,q(RN) = {v ∈ Lq∗(RN) : |∇v| ∈ Lq(RN)},

which are, as mentioned above, respectively the closure of D(RN) with respect to
the norms of

‖u‖1,p : =

(∫
RN
|∇u|pdx

) 1
p

,

‖v‖1,q : =

(∫
RN
|∇u|qdx

) 1
q

.

The space W is endowed by the following norm:

‖(u, v)‖ = ‖u‖1,p + ‖v‖1,q

which gives to (W, ‖.‖) Banach space properties, reflexivity and separability.
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For solutions of (1.1) we mean critical points of the Euler-Lagrange functional I ∈
C1(W,R) given by

I(u, v) := (α + 1)

(
1

p
P (u)− λ

p1

P1,a(u)

)
+
β + 1

q
{Q(v)− µQb(v)} −R(u, v),

where

P (u) = ‖u‖pp, P1,a(u) =

∫
RN
a(x)|u|p1dx,

Q(v) = ‖v‖qq, Qb(v) =

∫
RN
b(x)|v|qdx,

R(u, v) =

∫
RN
|u|α+1|v|β+1dx.

Remark that the functional I is bounded neither above nor below on W . For this
reason we introduce the Nehari manifold corresponding to I, which contains all
critical points of I and on which I is bounded below, as we will see in the sequel.
For each (u, v) ∈ (D1,p(RN)\{0})×(D1,q(RN)\{0}), the Nehari manifold associated
to the functional I is defined by

Nλ,µ := {(u, v) ∈ (D1,p(RN) \ {0})× (D1,p(RN) \ {0}) : I ′(u, v)(u, v) = 0}.

This manifold can be characterized as follows

Nλ,µ = {(s, u, t, v) ∈ Z∗ : ∂sI(su, tv) = 0 and ∂tI(su, tv) = 0},

where Z∗ = (R \ {0}) ×
(
D1,p(RN) \ {0}

)
× (R \ {0}) ×

(
D1,q(RN) \ {0}

)
and I is

considered as a functional of four variables (s, u, t, v) ∈ Z := R × D1,p(RN) × R ×
D1,q(RN). This suggests the introduction of the modified Euler-Lagrange functional
Ĩ defined on Z by

Ĩ(s, u, t, v) := I(su, tv).

2.2 Some properties of minimizing sequences
Troughout this paper, we will be interested by positive solutions; u > 0 and v > 0
to the problem (1.1). As the functional Ĩ is even in s and t we can limit our study
for s > 0, t > 0 and (u, v) ∈ W̃ := (D1,p(RN) \ {0})× (D1,q(RN) \ {0}). In the first
lemma, we establish some properties of the modified functional (s, t) 7→ Ĩ(s, ., t, .):

Lemma 2.2.1. For every (u, v) ∈ W̃ , and for all µ < µ1 there exists a unique
λ(u, v, µ) > 0 such that the real-valued function (s, t) ∈ (0,+∞)2 7→ Ĩ(s, u, t, v) has
exactly two critical points (resp. one critical point) for 0 < λ < λ(u, v, µ) (resp.
λ = λ(u, v, µ)). This functional has no critical point for λ > λ(u, v, µ).
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Proof. Let (u, v) ∈ W̃ , (s, t) ∈ (0,+∞)2 and µ < µ1 be arbitrary elements. We
have

Ĩ(s, u, t, v) = (α + 1)

(
sp

p
P (u)− λ

p1

sp1P1,a(u)

)
− sα+1tβ+1R(u, v)

+ (β + 1)
tq

q
(Q(v)− µQb(v))

Then ∂tĨ(s, u, t, v) = 0 if and only if

t = t(s) =

[
R(u, v)

Q(v)− µQb(v)

] 1
q−(β+1)

s
α+1

q−(β+1) , (2.6)

and consequently

Ĩ(s, u, t(s), v) = (α + 1)

(
sp

p
P (u)− λ

p1

sp1P1,a(u)− sr

r
A(u, v)

)
,

where

A(u, v) =
R(u, v)

q
q−(β+1)

(Q(v)− µQb(v))
β+1

q−(β+1)

and r = (α+1)q
q−(β+1)

> p. Let us write ∂sĨ(s, u, t(s), v) = sp1−1F (s, u, v), where F (s, u, v) :=

P (u)sp−p1 − λP1,a(u) − A(u, v)sr−p1 . The function s ∈ (0,+∞) 7→ Fλ,µ(s, u, v) is
increasing on (sµ(u, v),+∞) and attains its unique maximum for s = sµ(u, v), where

sµ(u, v) =

[
p− p1

r − p1

P (u)

A(u, v)

] 1
r−p

. (2.7)

Thus, the function s ∈ (0,+∞) 7→ Fλ,µ(s, u, v) has two positive zeros (resp. one
positive zero) if Fλ,µ(sµ(u, v), u, v) > 0 (resp. Fλ,µ(sµ(u, v), u, v) = 0) and has no
zero if Fλ,µ(sµ(u, v), u, v) < 0. On the other hand, a direct computation leads to

Fλ,µ(sµ(u, v), u, v) =
r − p
r − p1

[
p− p1

r − p1

P (u)

A(u, v)

] p−p1
r−p1

P (u)− λP1,a(u).

Then, Fλ,µ(sµ(u, v), u, v) > 0 (resp. Fλ,µ(sµ(u, v), u, v) < 0) if λ < λ(u, v) (resp.
λ > λ(u, v)) and Fλ(u,v),µ(sµ(u, v), u, v) = 0, where

λ(u, v) = ĉ
P (u)

r−p1
r−p

P1,a(u)A(u, v)
p−p1
r−p

and ĉ =
r − p
r − p1

[
p− p1

r − p1

] p−p1
r−p

. (2.8)

Therefore, if λ ∈ (0, λ(u, v)), the function s ∈ (0,+∞) 7→ ∂sĨ(s, u, t(s), v) has two
positive zeros denoted by s1(u, v, λ, µ) and s2(u, v, λ, µ) verifying 0 < s1(u, v, λ, µ) <
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sµ(u, v) < s2(u, v, λ, µ). Since Fλ,µ(s1(u, v, λ, µ), u, v) = Fλ,µ(s2(u, v, λ, µ), u, v) = 0,
∂sFλ,µ(s, u, v) > 0 for 0 < s < sµ(u, v) and ∂sFλ,µ(s, u, v) < 0 for s > sµ(u, v) it
follows that

∂ssĨ(s1(u, v, λ, µ)u, t1(u, v, λ, µ), v) > 0, (2.9)
∂ssĨ(s2(u, v, λ, µ), u, t2(u, v, λ, µ), v) < 0. (2.10)

This implies that the real-valued function s ∈ (0,+∞) 7→ Ĩ(s, u, t(s), v) achieves
its unique local minimum at s = s1(u, v, λ, µ) and its unique local maximum at
s = s2(u, v, λ, µ), which ends the proof. �
Hereafter, we will denote ti(u, v, λ, µ) = t(si(u, v, λ, µ)), i = 1, 2. Notice that for ev-
ery (u, v) ∈ W̃ , µ < µ1 and λ ∈ (0, λ(u, v, µ)), the points (s1(u, v, λ, µ), u, t1(u, v, λ, µ), v)
and (s2(u, v, λ, µ), u, t2(u, v, λ, µ), v) belong to the Nehari manifold Nλ,µ.
At this stage, we introduce the characteristic value, for all µ < µ1,

λ̂(µ) := inf
(u, v) ∈ W
u 6= 0, v 6= 0

λ(u, v, µ).

We consider the spaces

Lp1
a (RN) :=

{
u : RN −→ R, measurable :

∫
RN a(x)|u(x)|p1dx < +∞

}
,

Lqb(RN) :=
{
u : RN −→ R, measurable :

∫
RN b(x)|u(x)|qdx < +∞

}
,

endowed with their seminorms

‖u‖p1,a :=
(∫

RN a(x)|u(x)|p1dx
)1/p1

‖u‖q,b :=
(∫

RN b(x)|u(x)|qdx
)1/q

.

It is clear that, under these notations, the embeddings D1,p(RN) ⊂ Lp1
a (RN) and

D1,q(RN) ⊂ Lqb(RN) are continuous.

Remark 2.2.1. Let (un)n be a sequence in D1,p(RN), then we have the assertion:

un ⇀ u in D1,p(RN) weakly =⇒ lim
n→+∞

‖un − u‖p1,a = 0.

We will write this property by

un ⇀ u in D1,p(RN) weakly =⇒ un → u in Lp1
a (RN) strongly,

and that the embedding D1,p(RN) ↪→ Lp1
a (RN) is compact.

Similarly,

vn ⇀ v in D1,q(RN) weakly =⇒ vn → v in Lqb(R
N) strongly,

that is, the embedding D1,q(RN) ↪→ Lqb(RN) is compact.
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Indeed, fix (un)n ⊂ D1,p(RN) and a real number ε > 0. It is clear that there is a

constant C > 0 such that ‖un − u‖p∗ ≤ C, for every n ∈ N. Since a ∈ L
p∗

p∗−p1 (RN),
there is a compact K(a, ε,N) ⊂ RN such that

‖a‖
L

p∗
p∗−p1 (RN\K)

≤ (ε/C)p1 .

On the other hand, by standard compact Sobolev embeddings, there is n1 ∈ N such
that ∫

K

a(x)|un − u|p1dx ≤ εp1 , ∀n ≥ n1.

Therefore, using the Hölder inequality, we get∫
RN
a(x)|un − u|p1dx ≤ 2εp1 , ∀n ≥ n1,

which ends the claim. The argumentation is the same for the sequence (vn)n ⊂
D1,q(RN).

We prove that λ̂(µ) is greater than a nonnegative constant which depends only on
µ, p, p1, q, α and β. Indeed, using the Hölder inequality, we get

R(u, v) ≤ ‖u‖α+1
p∗ ‖v‖

β+1
q∗ .

On the other hand we have, also by the Hölder inequality

P1,a(u) :=

∫
RN
a(x)|u|p1dx ≤ ‖a‖ p∗

p∗−p1
‖u‖p1

p∗ .

Using the continuous embedding D1,q(RN) ⊂ Lq
∗
(RN), we obtain

A(u, v) ≤ c1
P∗(u)

r
p∗

(µ− µ1)
β+1

q−(β+1)

,

where P∗(u) = ‖u‖p
∗

p∗ and c1 = c1(b, p, p1, q, α, β). Then, using the continuous em-
beddings D1,p(RN) ⊂ Lp1

a (RN) and D1,p(RN) ⊂ Lp
∗
(RN) we obtain

λ(u, v, µ) ≥ c2(µ− µ1)
β+1

q−(β+1)
p−p1
r−p ,

where c2 = c(a, b, p, p1, q, α, β) and Lp1
a (RN) := {u measurable / a|u|p1 ∈ L1(RN)}.

Consequently
λ̂(µ) ≥ c2(µ− µ1)

β+1
q−(β+1)

p−p1
r−p ,

which achieves the claim. We now introduce the subset of R2 defined by

D := {(λ, µ) ∈ (0,+∞)× (−∞, µ1) : λ < λ̂(µ)}.
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For every (λ, µ) ∈ D and (u, v) ∈ (D1,p(RN) \ {0}) × (D1,q(RN) \ {0}), we have
∂sĨ(s1(u, v), u, t1(u, v), v) = 0 and (resp. ∂sĨ(s2(u, v), u, t2(u, v), v) = 0) , it follows
that the functional (u, v) 7→ Ĩ(s1(u, v), u, t1(u, v), v) (resp. (u, v) 7→ Ĩ(s2(u, v), u, t2(u, v), v))
is bounded below on (u, v) ∈ (D1,p(RN) \ {0}) × (D1,q(RN) \ {0}). Thus, for every
(λ, µ) ∈ D, we define

α1(λ, µ) = inf{Ĩ(s1(u, v), u, t1(u, v), v) : (u, v) ∈ W̃}, (2.11)

α2(λ, µ) = inf{Ĩ(s2(u, v), u, t2(u, v), v) : (u, v) ∈ W̃}. (2.12)

Remark 2.2.2. It is interesting to notice that for every γ > 0, and δ > 0, it holds
that

Ĩ(γs,
u

γ
, δt,

v

δ
) = Ĩ(s, u, t, v),

∂tĨ(γs,
u

γ
, δt,

v

δ
) =

1

δ
∂tĨ(s, u, t, v),

∂sĨ(γs,
u

γ
, δt,

v

δ
) =

1

γ
∂sĨ(s, u, t, v) and

∂ssĨ(γs,
u

γ
, δt,

v

δ
) =

1

γ2
∂ssĨ(s, u, t, v).

It follows that

s1(u, v, λ, µ) =
1

γ
s1

(
u

γ
,
v

δ
, λ, µ

)
, ∀ δ > 0, (2.13)

s2(u, v, λ, µ) =
1

γ
s2

(
u

γ
,
v

δ
, λ, µ

)
, ∀ δ > 0, (2.14)

t1(u, v, λ, µ) =
1

δ
t1

(
u

γ
,
v

δ
, λ, µ

)
, ∀ γ > 0, (2.15)

t2(u, v, λ, µ) =
1

δ
t2

(
u

γ
,
v

δ
, λ, µ

)
, ∀ γ > 0. (2.16)

Therefore,

α1(λ, µ) = inf
(u, v) ∈ Sp × Sq

Ĩ(s1(u, v), u, t1(u, v), v), (2.17)

α2(λ, µ) = inf
(u, v) ∈ Sp × Sq

Ĩ(s2(u, v), u, t2(u, v), v), (2.18)

where Sp and Sq are the unit spheres of D1,p(RN) and D1,q(RN) respectively. Specify
that Sp×Sq is a 2-codimensional and complete submanifold of W , and we will denote
it by S.

Our aim in this part is to show that α1(λ, µ) is in fact a critical value of the Euler-
Lagrange functional I for every (λ, µ) ∈ D. We start with characterizing the mini-
mizing sequences of α1(λ, µ) and α2(λ, µ), for every (λ, µ) ∈ D.
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Lemma 2.2.2. Let (un, vn) ∈ S be a minimizing sequence of (2.17) (resp. of (2.18))
and let (U1

n, V
1
n ) := (s1(un, vn, λ, µ)un, t1(un, vn, λ, µ)vn)

(resp. (U2
n, V

2
n ) := (s2(un, vn, λ, µ)un, t2(un, vn, λ, µ)vn)). Then it holds:

(i) lim sup
n→+∞

||(U1
n, V

1
n )|| <∞ (resp. lim sup

n→+∞
||(U2

n, V
2
n )|| <∞).

(ii) lim inf
n→+∞

||(U1
n, V

1
n )|| > 0 (resp. lim inf

n→+∞
||(U2

n, V
2
n )|| > 0).

Proof. We start by checking the point (i), let (un, vn) ∈ S be a minimizing sequence
of (2.17). Since ∂sĨ(s1(un, vn, λ, µ), un, t1(un, vn, λ, µ), vn)

= 0 and ∂tĨ(s1(un, vn, λ, µ), un, t1(un, vn, λ, µ), vn) = 0, it follows that

P (U1
n)− λP1,a(U

1
n)−R(U1

n, V
1
n ) = 0,

Q(V 1
n )− µQb(V

1
n )−R(U1

n, V
1
n ) = 0.

Suppose that there exists a subsequence of (U1
n, V

1
n ), still denoted by (U1

n, V
1
n ), such

that
lim

n→+∞
‖(U1

n, V
1
n )‖ =∞.

We can distinguish three cases:
case a) limn→+∞ ‖∇U1

n‖p =∞ and ‖∇V 1
n ‖q is bounded. By (2.19) we get R(U1

n, V
1
n )

is bounded. On the other hand, the continuous embedding of D1,p(RN) ⊂ Lp1
a (RN)

enables us to have P1,a(U
1
n) = o(P (U1

n)), as n goes to +∞. By (2.19) we get
R(U1

n, V
1
n ) = (1+o(1))P (U1

n), as n goes to +∞ and consequently limn→+∞R(U1
n, V

1
n ) =

+∞, which leads to a contradiction.
case b) limn→+∞ ‖∇V 1

n ‖q = ∞ and ‖∇U1
n‖p is bounded. We obtain by (2.19) the

fact R(U1
n, V

1
n ) is bounded. On the other hand, if 0 < µ < µ1, by Sobolev and

Young’s inequalities, for ε ∈ (0, 1), there is a constant Cε > 0 such that

‖V 1
n ‖qq ≤

ε

µ
‖∇V 1

n ‖qq + Cε

which gives R(U1
n, V

1
n ) + µCε ≥ (1 − ε)Q(V 1

n ). Then limn→+∞R(U1
n, V

1
n ) = +∞,

which is impossible. If µ ≤ 0, then Q(V 1
n ) − µQb(V

1
n ) = R(U1

n, V
1
n ) ≥ Q(V 1

n ) so
limn→+∞R(U1

n, V
1
n ) = +∞, which can not hold not.

case c) limn→+∞ ‖∇U1
n‖p = limn→+∞ ‖∇V 1

n ‖q =∞. As in the first case, we have

R(U1
n, V

1
n ) = (1 + o(1))P (U1

n), asn goes to +∞.

Then I(U1
n, V

1
n ) = (α+1

p
+ β+1

q
− 1 + on(1))P (U1

n) as n goes to +∞. Hence, limn→+∞

I(U1
n, V

1
n ) = +∞, which contradicts the hypothesis I(U1

n, V
1
n ) ≤ 0 for every n ∈ N.

The first assertion for (2.18) follows by the same arguments.
Now, let us show the second assertion of the lemma. Let (un, vn) ∈ S be a minimizing
sequence of (2.17). Suppose that there is a a subsequence, still denoted by (U1

n, V
1
n ),
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such that limn→+∞ ‖(U1
n, V

1
n )‖ = 0. By (2.19), we get limn→+∞ I(U1

n, V
1
n ) = 0 and

this can not hold true because I(U1
n, V

1
n ) ≤ 0 for every n ∈ N.

Similarly, let (un, vn) ∈ S be a minimizing sequence of (2.18). Suppose that there
is a subsequence, still denoted by (U2

n, V
2
n ), such that limn→+∞ ‖(U2

n, V
2
n )‖ = 0. If

p > α + 1, by (2.10), we have

∂ssĨ(U2
n, V

2
n ) = (α + 1)((p− 1)P (U2

n)− λ(p1 − 1)P1,a(U
2
n)− αR(U2

n, V
2
n )) < 0.

Then (p − 1)P (U2
n) − λ(p1 − 1)P1,a(U

2
n) − αpR(U2

n, V
2
n ) < 0, which implies that

(p − (α + 1))R(U2
n, V

2
n ) < 0 and this is impossible. Finally, if p ≤ α + 1, then

(p− p1)P (U2
n) < (α + 1 + p)R(U2

n, V
2
n ). Since α+1

p∗
+ β+1

q∗
= 1, then

R(U2
n, V

2
n ) ≤ ‖U2

n‖α+1
p∗ ‖V 2

n ‖
β+1
q∗

≤ c(p, q)‖∇U2
n‖α+1

p ‖∇V 2
n ‖β+1

q ,

and consequently, (p− p1) ≤ c(α, p, q)‖∇U2
n‖α+1−p

p ‖∇V 2
n ‖β+1

q , which converges to 0
s n goes to +∞. This contradicts the fact p > p1, which ends the proof. �

Lemma 2.2.3. Let (un, vn) ⊂ S be a minimizing sequence of α1(λ, µ) (resp. for
α2(λ, µ)), then the sequences (U1

n, V
1
n ) and (resp. (U2

n, V
2
n )) is a Palais-Smale for

the functional I, where (U1
n, V

1
n ) and (U2

n, V
2
n ) are defined bellow.

Proof. Let (λ, µ) ∈ D and (un, vn) ∈ S be a minimizing sequence of (2.17). Let us
set

Un = s1(un, vn, λ, µ)un,

Vn = t1(un, vn, λ, µ)vn.

By the previous lemma, it is clear that the sequence (Un, Vn) is bounded in W . On
the other hand, the functional (s, t) 7→ Ĩ(., s, ., t) has null gradient and its Hessian
determinant is strictly positive. So, the implicit functions theorem allows to confirm
that the functions (u, v) 7→ s1(u, v, λ, µ) and (u, v) 7→ t1(u, v, λ, µ) are C1(W,R),
since (u, v) 7→ Ĩ(., u, ., v) is.
We introduce now the functional I defined on S by

I(u, v) = Ĩ(s1(u, v, λ, µ), u, t1(u, v, λ, µ), v),

Then
α1(λ, µ) = inf

(u,v)∈S
I(u, v) = lim

n→+∞
I(un, vn).

By the Ekland variational principle on the complete manifold (S, ‖.‖) to the func-
tional I we get

I ′(un, vn)(ϕn, ψn) ≤ 1

n
‖(ϕn, ψn)‖, ∀(ϕn, ψn) ∈ T(un,vn)S,
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where T(un,vn)S designs the tangent space to S at the point (un, vn). We know that
the space T(un,vn)S = TunSp × TvnSq where TunSp and TvnSq are respectively the
tangent spaces to Sp and Sq at the respective points un and vn.
In order to reduce the notations, we set

An := (un, vn, λ, µ), and Bn := (s1(un, vn, λ, µ), un, t1(un, vn, λ, µ), vn).

For every (ϕn, ψn) ∈ TunSp × TvnSq, one has

I ′(un, vn)(ϕn, ψn) = D1Ĩ(Bn)(ϕn) +D2Ĩ(Bn)(ψn)

where

D1Ĩ(Bn)(ϕn) = ∂ss1(An)(ϕn)∂sĨ(Bn) + ∂uĨ(Bn)(ϕn) + ∂ut1(An)(ϕn)∂tĨ(Bn)

= ∂uĨ(Bn)(ϕn).

With the same manner, one has

D2Ĩ(Bn)(ψn) = ∂v Ĩ(Bn)(ψn).

Furthermore, consider the following "fiber" maps

π : D1,p(RN) \ {0} → R× Sp

u 7→
(
‖u‖p,

u

‖u‖p

)
:= (π1(u), π2(u)),

π̃ : D1,q(RN) \ {0} → R× Sq

v 7→
(
‖v‖q,

v

‖v‖q

)
:= (π̃1(v), π̃2(v)).

Applying the Hölder inequality we get

|π′1(u)(ϕ)| ≤ ‖ϕ‖p, |π′2(u)(ϕ)| ≤ 2
‖ϕ‖p
‖u‖p

, ∀(u, ϕ) ∈
(
D1,p(RN) \ {0}

)
×D1,p(RN)

and

|π̃′1(v)(ψ)| ≤ ‖ψ‖q, |π̃′2(v)(ψ)| ≤ 2
‖ψ‖q
‖v‖q

, ∀(v, ψ) ∈
(
D1,q(RN) \ {0}

)
×D1,q(RN).

From Lemma 2.2.2, there exists a nonnegative constant K such that s1(An) ≥ K
and t1(An) ≥ K for any integer n. On the other hand, for every (ϕ, ψ) ∈ W

D1I(Un, Vn)(ϕ) = ϕ1
n∂sĨ(Bn) + ∂uĨ(Bn)(ϕ2

n) + ϕ1
n∂tĨ(Bn)

= ∂uĨ(Bn)(ϕ2
n),
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where ϕ1
n = π′1(un)(ϕ) and ϕ2

n = π′2(un)(ϕ). Then we have the following estimates
|ϕ1
n| ≤ ‖ϕ‖p and ‖ϕ2

n‖p ≤ 2
K
‖ϕ‖p. In the same way, we get

D2I(Un, Vn)(ψ) = ψ1
n∂sĨ(Bn) + ∂v Ĩ(Bn)(ψ2

n) + ψ1
n∂tĨ(Bn)

= ∂v Ĩ(Bn)(ψ2
n),

where ψ1
n = π̃′2(vn)(ψ) and ψ2

n = π̃′1(vn)(ψ). Then we have the following estimates
|ψ1
n| ≤ ‖ψ‖p and ‖ψ2

n‖p ≤ 2
K
‖ψ‖q. Therefore

|D1I(Un, Vn)(ϕ)| ≤ 1

n
‖ϕ2

n‖p

≤ 2

nK
‖ϕ‖p

and

|D2I(Un, Vn)(ψ)| ≤ 1

n
‖ψ2

n‖p

≤ 2

nK
‖ψ‖q

Finally, we have
lim

n→+∞
‖I ′(Un, Vn)‖W ∗ = 0,

where I ′(Un, Vn)(ϕ, ψ) = D1I(Un, Vn)(ϕ) + D2I(Un, Vn)(ψ) and ‖ ‖W ∗ designs the
norm of the dual space of W , which achieves the first claim. The second one follows
with similar arguments. �

2.3 Existence and multiplicity results of solutions
to the problem

In this section, we will show that there is at least one solution to the system (1.1)
and two solutions in the case p = q obtained by considering minimizing sequences
of (2.17) and (2.18) under some supplementary conditions on (λ, µ) which belongs
to D. We begin by stating the following lemma, due to A. El Hamidi and J.M.
Rakotoson [8]

Lemma 2.3.1. [8] Let Ψ̂ be a Caratheodory function from RN × R × RN into RN

satisfying the usual Leray-Lions growth and monotonicity conditions. Let (un) be a
bounded sequence of W 1,p

loc (RN) =
{
v ∈ Lploc(RN), |∇v| ∈ Lploc(RN)

}
, with 1 < p <

+∞, (fn) be a bounded sequence of L1
loc(RN) and (gn) be a sequence of W−1,p′

loc (RN)
tending strongly to zero.
Assume that (un) satisfies:

(H1)

∫
RN

Ψ̂
(
x, un(x),∇un(x)

)
· ∇ϕdx =

∫
RN
fnϕdx+ < gn, ϕ >,
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∀ϕ ∈ W 1,p
comp(RN) =

{
v ∈ W 1,p(RN), with compact support

}
, ϕ bounded.

Then

1. there exists a function u such that un(x)→ u(x) a.e. in RN ,

2. u ∈ W 1,p
loc (RN),

3. there exists a subsequence, still denoted (un), such that

∇un(x)→ ∇u(x) a.e. in RN .

At this stage, we state and show the following

Lemma 2.3.2. Let (λ, µ) ∈ D and (un, vn)n ⊂ W be a (P.S)c sequences of I such
that

c := lim
n∈+∞

I(un, vn) < inf
(u,v)∈N0,0

I0,0(u, v) + α1(λ, µ). (3.19)

Then the sequence (un, vn) is relatively compact.

Proof. Let (λ, µ) ∈ D and (un, vn)n ⊂ W be a (P.S)c sequence of I satisfying the
condition (3.19).
On one hand, We claim that (un, vn) is bounded inW . Since (un, vn) is Palais-Smale
sequence of I, then we have

I(un, vn) = c+ on(1) (3.20)
P (un)− λP1,a(un) = R(un, vn) + o(‖un‖p∗) (3.21)
Q(vn)− µQb(vn) = R(un, vn) + o(‖vn‖q∗) (3.22)

Then we can apply the result of the lemma 2.2.2 to prove that (un, vn) is bounded
in W . At this stage, we can assume, up to a subsequence, that

un ⇀ u in D1,p(RN),

vn ⇀ v in D1,q(RN),

un → u a.e. in RN ,

vn → v a.e. in RN .

It is clear that (u, v) ∈ Nλ,µ ∪ {(0, 0)}.
Notice that I ′(un, vn)(ϕ, 0) −→ 0 and I ′(un, vn)(0, ψ) −→ 0 for every (ϕ, ψ) ∈
D1,p(RN)×D1,q(RN) imply the hypothesis (H1) for the sequences (un)n and (vn)n,
in the special case where Ψ̂ corresponds to the p−Laplacian or the q−Laplacian
respectively. Consequently, Lemma 2.3.1 show that, up to subsequences:

∇un −→ ∇u a.e. in RN ,

∇vn −→ ∇v a.e. in RN .
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Let us set xn := un − u and yn := vn − v. Using the Brézis-Lieb lemma [4], so we
obtain the following decompositions

P (xn) = P (un)− P (u) + on(1),

Q(yn) = Q(vn)−Q(v) + on(1),

P1,a(xn) = P1,a(un)− P1,a(u) + on(1),

Qb(yn) = Qb(vn)−Qb(v) + on(1),

R(xn, yn) = R(un, vn)−R(u, v) + on(1).

Using the compactness of the embeddings D1,p(RN) ↪→ Lp1
a (RN), and D1,q(RN) ↪→

Lqb(RN) we get P1,a(xn) = on(1) and Qb(yn) = on(1).
It follows that

P (xn) = R(xn, yn) + on(1),

Q(yn) = R(xn, yn) + on(1),

I0,0(xn, yn) = c− I(u, v) + on(1).

Notice that the Nehari Manifold associated to I0,0 is given by

N0,0 = {(s0(u, v)u, t0(u, v)v); (u, v) ∈ W, u 6= 0, v 6= 0} ,

where

s0(u, v) =

[
P (u)Q(v)

r(β+1)
q(α+1)

R(u, v)
r

α+1

] 1
r−p

and t0(u, v) = t(s0(u, v)),

and s → t(s) is defined by (2.6). Let l be the common limit of P (xn), Q(yn) and
R(xn, yn). Suppose that l 6= 0, we get then

I0,0(s0(xn, yn)xn, t0(xn, yn)yn) = (α + 1)

(
1

p
− 1

r

)
K(xn, yn) (3.23)

≥ inf
(u,v)∈N0,0

I0,0(u, v), (3.24)

where

K(xn, yn) =

[
P (xn)(α+1)Q(yn)(β+1) p

q

R(xn, yn)p

] r
(α+1)(r−p)

,

which tends to l as n tends to +∞.
Therefore

lim
n→+∞

I0,0(s0(xn, yn)xn, t0(xn, yn)yn) = l(α + 1)

(
1

p
− 1

r

)
.

On the other hand,

lim
n→+∞

Iλ,µ(xn, yn) = l

(
α + 1

p
+
β + 1

q
− 1

)
= l(α + 1)

(
1

p
− 1

r

)
.
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Hence, we obtain

l(α + 1)

(
1

p
− 1

r

)
= c− I(u, v),

and consequently

c ≥ inf
(u,v)∈N0,0

I(u, v) + I(u, v)

≥ inf
(u,v)∈N0,0

I0,0(u, v) + α1(λ, µ),

which contradicts the hypothesis (3.19), then l = 0, which achieves the proof. �

Theorem 2.3.1. The system (1.1) has at least one solution, for every (λ, µ) ∈ D.

Proof. Using the Hölder inequality in R(u, v), we get

inf
(u,v)∈N0,0

I0,0(u, v) = inf
(u,v)∈S

(α + 1)

(
1

p
− 1

r

)[
P (u)(α+1)Q(v)(β+1) p

q

R(u, v)p

] r
(α+1)(r−p)

≥ (α + 1)

(
1

p
− 1

r

)[
SpS

p(β+1)
q(α+1)
q

] r
r−p

> 0, (3.25)

where Sp and Sq are the best Sobolev constants in the embeddings D1,p(RN) ⊂
Lp
∗
(RN) and D1,q(RN) ⊂ Lq

∗
(RN) respectively. Consequently,

∀ (λ, µ) ∈ D, α1(λ, µ) < inf
(u,v)∈N0,0

I(u, v) + α1(λ, µ)

We set U1
n := s1(un, vn, λ, µ)un and V 1

n := t1(un, vn, λ, µ)vn, where (un, vn) is a
minimizing sequence of (2.11). By Lemma 2.2.3 the sequence (U1

n, V
1
n ) is of Palais-

smale type whose level is α1(λ, µ)). Then, according to Lemma 2.3.2 there is a
subsequence, still denoted (U1

n, V
1
n ), and (U1, V 1) such that

(U1
n, V

1
n ) −→ (U1, V 1) strongly in W.

Now, since limn→+∞ ‖I ′(U1
n, V

1
n )‖W ∗ = 0, we have for every (ϕ, ψ) ∈ W

∫
RN |∇U

1
n|p−2∇U1

n.∇ϕdx = λ
∫

RN Anϕdx+
∫

RN X
1
nϕdx+ on(1),∫

RN |∇V
1
n |q−2∇V 1

n .∇ψ dx = µ
∫

RN Bnψ dx+
∫

RN Y
1
nψ dx+ on(1),

(3.26)

where An := a |U1
n|p1−2U1

n, Bn := b |V 1
n |q−2V 1

n , X1
n := |U1

n|α−1U1
n|V 1

n |β+1 and Y 1
n :=

|U1
n|α+1|V 1

n |β−1V 1
n . On one hand, the continuity of the embeddings D1,p(RN) ⊂

Lp1
a (RN) and D1,q(RN) ⊂ Lqb(RN) implies that

∫
RN Anϕdx −→

∫
RN a|U

1|p1−2U1ϕdx
and

∫
RN Bnψ dx −→

∫
RN b|V

1|q−2V 1ψ dx as n tends to +∞. On the other hand, since
Anϕ −→ a|U1|p1−2U1ϕ and Bnψ −→ b|V 1|q−2V 1ψ a.e. in RN as n goes to +∞, the
inequalities

∫
RN Anϕdx ≤ ‖un‖

α
p∗‖vn‖

β+1
q∗ ‖ϕ‖p∗ ,

∫
RN Bnψ dx ≤ ‖un‖α+1

p∗ ‖vn‖
β
q∗‖ψ‖q∗



§ 2 Nehari manifold for a critical system in RN 52

and the Lebesgue theorem imply that we can pass to the limit under integral sign
in (3.26) to obtain for all (ϕ, ψ) ∈ W

∫
RN |∇U

1|p−2∇U1.∇ϕdx = λ
∫

RN a|U
1|p1−2U1ϕdx+

∫
RN X

1ϕdx,∫
RN b|∇V

1|q−2∇V 1.∇ψ dx = µ
∫

RN b|V
1|q−2V 1ψ dx+

∫
RN Y

1ψ dx,

where X1 := |U1|α−1U1|V 1|β+1 and Y 1 := |U1|α+1|V 1|β−1V 1. Hence (U1, V 1) is a
weak solution to the problem (1.1). �

Remark 2.3.1. In the scalar case, we obtain the analogous of Theorem 2.3.2 with
the same arguments. We note here in this special case, direct computations give

inf
u∈N0

I0(u) =
1

N
S
N
p
p and inf

u∈Nλ∪{0}
Iλ(u) = 0,

which generalize the famous Brézis-Nirenberg condition for the entire space.

Proposition 2.3.1. Let p = q > 1 and (λ, µ) be in D. Then,

inf
(u,v)∈N0,0

I0,0(u, v) =
p

N − p
S
N
p
p .

Proof. Assume that p = q > 1, then

p∗ = α + β + 2 and (α + 1)

(
1

p
− 1

r

)
=

p

N − p
.

By the inequality (3.25), we conclude that

inf
(u,v)∈N0,0

I0,0(u, v) ≥ p

N − p
S
N
p
p .

On the other hand, let (un) ⊂ D1,p(RN) be a minimizing sequence of Sp. Then using
the identity (3.23), we get

inf
(u,v)∈N0,0

I0,0(u, v) ≤ I0,0(s0(un, un)un, t0(un, un)un)

=
p

N − p

[
P (un)

P∗(un)
p
p∗

] rp∗
(α+1)(r−p)

=
p

N − p

[
P (un)

P∗(un)
p
p∗

]N
p

,

making tend n to +∞ the right hand of the last quantity goes to p
N−pS

N
p
p , which

achieves the proof. �
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Theorem 2.3.2. If p = q > 1, the system (1.1) has another nontrivial nonnegative
solution different from the solution established in Theorem 2.3.1.

We start by stating and showing the following

Lemma 2.3.3. Let p > 1, q > 1, (λ, µ) ∈ D and (un, vn) in W be a Palais-Smale
sequence for Iλ,µ such that (un, vn) ⇀ (u, v). Then there exists a constant K > 0
depending on p, p1, a and N such that

I(u, v) ≥ −Kλ
p

p−p1 .

Proof. Let (un, vn) ∈ W be a Palais-Smale sequence for I converging weakly to
(u, v) in W . It is clear that (u, v) ∈ Nλ,µ ∪ {(0, 0)} and if u = 0 or v = 0 then
(u, v) = (0, 0). If (u, v) = (0, 0), the proof is achieved. We assume now that
(u, v) ∈ Nλ,µ.
Since (un, vn) is a Palais-Smale sequence, then{

P (un)− λP1,a(un) = R(un, vn) + on(1),
Q(vn)− µQb(vn) = R(un, vn) + on(1).

It follows that

I(un, vn) = (α + 1)

((
1

p
− 1

r

)
P (un)− λ

(
1

p1

− 1

r

)
P1,a(un)

)
+ on(1).

We introduce the following function

f(t, u) := (α + 1)

(
tp
(

1

p
− 1

r

)
P (u)− tp1λ

(
1

p1

− 1

r

)
P1,a(u)

)
.

Then

∂f

∂t
(t, u) = 0⇐⇒ t = t(u) :=

λp1(
(

1
p1
− 1

r

)
p(
(

1
p
− 1

r

) P1,a(u)

P (u)


1

p−p1

,

and

f(t(u), u) = −λ
p

p−p1

(
1− p1

p

)(
p1

p

) p1
p−p1

(
1
p1
− 1

r

) p1
p−p1(

1
p
− 1

r

) p
p−p1

P1,a(u)
p

p−p1

P (u)
p1
p−p1

.

If Sp1 denotes the best constant of the continuous embedding D1,p(RN) ⊂ Lp1
a (RN),

we get

∀u ∈ D1,p(RN) \ {0}, P1,a(u)
p

p−p1

P (u)
p1
p−p1

≤ ‖a‖
p

p−p1

L
p∗

p∗−p1

S
pp1
p−p1
p .
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So there exists a constant K > 0 such that

∀u ∈ D1,p(RN) \ {0}, f(t, u) ≥ f(t(u), u) ≥ −Kλ
p

p−p1 .

Therefore, for every (u, v) ∈ Nλ,µ, one has

I(u, v) = f(t(u), u) ≥ −Kλ
p

p−p1 + on(1),

which ends the proof. �

Lemma 2.3.4. If p = q > 1 and (λ, µ) ∈ D, then the functional I satisfies the

Palais-Smale condition on the interval
(
−∞, N

p∗
S
N
p
p −Kλ

p
p−p1

)
.

Proof. Let (un, vn) be a Palais-Smale sequence such that

lim
n→∞

I(un, vn) = c <
N

p∗
S
N
p
p −Kλ

p
p−p1 .

By Standard arguments one can prove that (un, vn) is bounded in W , so one can
extract a subsequence of (un, vn), still denoted (un, vn), such that

(un, vn) ⇀ (u, v) in W,
un → u in Lp1

a (RN),

vn → v in Lqb(R
N),

un(x) → u(x) a.e x in RN

vn(x) → v(x) a.e x in RN .

Let xn := un − u and yn =: vn − v, applying again Lemma 2.3.1, we get ∇xn → 0
and ∇yn → 0 almost everywhere in RN . So by Brézis-Lieb lemma, it follows

P (xn) = P (un)− P (u) + on(1),

Q(yn) = Q(vn)−Q(v) + on(1),

R(xn, yn) = R(un, vn)−R(u, v) + on(1).

So

P (xn) = R(xn, yn) + on(1),

Q(yn) = R(xn, yn) + on(1),

I0,0(xn, yn) = c− I(u, v) + on(1).

Let l be the common limit of P (xn), P (yn) and R(xn, yn). If l 6= 0, we get

I0,0(s0(xn, yn)xn, t0(xn, yn)yn) =
N

p∗
K(xn, yn),

≥ inf
w∈N0,0

I0,0(w),
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where

K(xn, yn) =

[
P (xn)

α+1
p P (yn)

β+1
p

R(xn, yn)

]N
p

.

Direct computations show that

K(xn, yn)→ l,

so
lim
n→∞

I0,0(s0(xn, yn)xn, t0(xn, yn)yn) =
N

p∗
l.

On the other hand we have

lim
n→+∞

I0,0(xn, yn) = l

(
α + 1

p
+
β + 1

p
− 1

)
,

=
N

p∗
l.

Hence, we obtain
N

p∗
l = c− I(u, v).

Using the lemma 2.3.3 , we have

c =
N

p∗
l + I(u, v),

≥ N

p∗
l −Kλ

p
p−p1 ,

which cannot hold true, and l = 0. �

Lemma 2.3.5. Let p = q > 1. There exists v ∈ W 1,p(RN) and λ∗ > 0 such that for
(λ, µ) ∈ (0, λ∗)× (0,+∞), we have

sup
s≥0

Iλ,µ(sv, sv) <
N

p∗
l −Kλ

p
p−p1 .

In particular,

α2(λ, µ) <
N

p∗
l −Kλ

p
p−p1 .

Proof. Let’s consider the following family of functions given by

wε = CNε
(N−p)/p2

(ε+ |x|p′)(p−N)/p
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which attains the best constant Sp of the Sobolev embedding W 1,p(RN) ⊂ Lp
∗
(RN).

Let φ ∈ C∞0 (RN) such that φ(x) = 1 in a neighborhood of the origin. We define
uε(x) = φ(x)wε(x). Taking vε = uε

‖uε‖p∗
and using the following estimates

P (vε) =


Sp

2p/N
− Cε(p−1)/p + o(ε(p−1)/p) +O(ε(N−p)/p) if N ≥ p2,

Sp
2p/N
− Cε(p−1)/pf(ε) +O(ε(N−p)/p) if N < p2,

where C is a positive constant and limε→0 f(ε) = +∞. Let δ2 > 0 be such that

N

p∗
S
N
p
p −Kλ

p
p−p1 > 0, ∀λ ∈ (0, δ2).

Iλ,µ(svε, svε) =
sp

p
(p∗P (vε)− (β + 1)µQb(vε))−

α + 1

p1

λsp1P1,a(vε)− sp
∗
P∗(vε),

≤ sp
p∗

p
P (vε)−

α + 1

p1

λsp1P1,a(vε)− sp
∗
P∗(vε),

≤ sp
p∗

p
P (vε)−

α + 1

p1

λsp1P1,a(vε)− sp
∗ ≡ J(s, vε).

As the function s 7→ J(s, vε) is continuous, lims→+∞ J(s, vε) = −∞, and

sup
s≥0

{
sp
p∗

p
P (vε)−

α + 1

p1

λsp1P1,a(vε)− sp
∗
}
> 0,

then there exists s0 ∈ (0,+∞) such that:

sup
0≤s≤s0

J(s, vε) <
N

p∗
S
N
p
p −Kλ

p
p−p1 , ∀λ ∈ (0, δ2).

If N ≥ p2, we have

J(s, vε) ≤ P (vε)s
p − sp∗ − α + 1

p1

λsp1

0 P1,a(vε),

≤ Sp

2
p
N

sp − sp∗ − Cε(p−1)/p + o(ε(p−1)/p) +O(ε(N−p)/p)

− α + 1

p1

λsp1

0 P1,a(vε).

Therefore, for all λ ∈ (0, δ3)

sup
s≥s0

J(s, vε) ≤
N

2p∗
S
N
p
p − Cε(p−1)/p + o(ε(p−1)/p) +O(ε(N−p)/p)−Kλ

p
p−p1 ,
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where δ3 =
(

(α+1)s
p1
0 P1,a(vε)

2Kp1

) p−p1
p1 .

As
N − p
p
− p− 1

p
≥ (p− 1)2

p
> 0,

one can fix ε > 0 such that

−Cε(p−1)/p + o(ε(p−1)/p) +O(ε(N−p)/p) < 0.

If we set λ∗ = min{δ2, δ3}, we obtain

sup
s≥0

Iλ,µ(svε, svε) ≤ sup
s≥0

J(s, vε) <
N

p∗
S
N
p
p −Kλ

p
p−p1 , ∀λ ∈ (0, λ∗),

and finally

α2(λ, µ) <
N

p∗
S
N
p
p −Kλ

p
p−p1 , ∀λ ∈ (0, λ∗).

The case N < p2 can be proved by following the same steps. �

Theorem 2.3.3. If p = q > 1 and (λ, µ) ∈ D+ ≡ D ∩ ((0, λ∗)× (0,+∞)). Then
Problem (1.1) has at least two nonnegative solutions.

Proof. The first solution (U1, V 1) corresponding to the level α1(λ, µ) has been
proved in the above. Now, to obtain the second solution, we take the minimizing
sequence (U2

n, V
2
n ) ≡ (s2(un, vn, λ, µ))un, t2(un, vn, λ, µ))vn) such that

I(U2
n, V

2
n )→ α2(λ, µ), ‖I ′(U2

n, V
2
n )‖∗ → 0 as n→ +∞.

Notice that If (λ, µ) ∈ D+, one has

α2(λ, µ) <
N

p∗
S
N
p
p −Kλ

p
p−p1 .

Then, we can extract a subsequence of (U2
n, V

2
n ), still denoted (U2

n, V
2
n ), and two

nonnegative and nontrivial functions belonging to W such that

U2
n → U2 in W 1,p(Ω), as n→ +∞

V 2
n → V 2 in W 1,q(Ω), as n→ +∞.

So (U2, V 2) is a solution of Problem (1.1) satisfying

∂ssĨ(U2, V 2) < 0 and ∂ssĨ(U1, V 1) > 0,

which imply (U1, V 1) 6= (U2, V 2). �
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Chapter 3

On local compactness in quasilinear
elliptic problems

Abstract
One of the major difficulties in nonlinear elliptic problems involving critical nonlin-
earities is the compactness of Palais-Smale sequences. In their celebrated work [7],
Brézis and Nirenberg introduced the notion of critical level for these sequences in
the case of a critical perturbation of the Laplacian homogeneous eigenvalue problem.
In this paper, we give a natural and general formula of the critical level for a large
class of nonlinear elliptic critical problems. The sharpness of our formula is estab-
lished by the construction of suitable Palais-Smale sequences which are not relatively
compact.

3.1 Introduction
In nonlinear elliptic variational problems involving critical nonlinearities, one of
the major difficulties is to recover the compactness of Palais-Smale sequences of
the associated Euler-Lagrange functional. Such questions were first studied, in our
knowledge, by Brézis and Nirenberg in their well-known work [7]. The concentration-
compactness principle due to Lions [12] is widely used to overcome these difficulties.
Other methods, based on the convergence almost everywhere of the gradients of
Palais-Smale sequences, can be also used to recover the compactness. We refer
the reader to the papers by Boccardo and Murat [5] and by J. M. Rakotoson [14]
for bounded domains. For arbitray domains, we refer to the recent work by A. El
Hamidi and J. M. Rakotoson [9].
In [7], the authors studied the critical perturbation of the eigenvalue problem:

−∆u = λu+ u2∗−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)
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where Ω is a bounded domain in RN , N ≥ 3, with smooth boundary, 2∗ = 2N
N−2

is the
Sobolev critical exponent of the embeddingW 1,2(Ω) ⊂ Lp(Ω), and λ is a positive pa-
rameter. The authors introduced an important condition on the level corresponding
to the energy of Palais-Smale sequences which guarantees their relative compactness.
Indeed, let (un) be a Palais-Smale sequence for the Euler-Lagrange functional

Iλ(u) =
1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

|u|2 − 1

2∗

∫
Ω

|u|2∗ .

More precisely, the authors showed that if

lim
n→+∞

Iλ(un) <
1

N
S
N
2 (1.2)

then (un) est relatively compact, which implies the existence of nontrivial critical
points of Iλ. Here, S denotes the best Sobolev constant in the embeddingW 1,2

0 (Ω) ⊂
L2∗(Ω). In this work, we begin by giving the generalization of condition (1.2) for
the quasilinear equation

−∆pu = λf(x, u) + |u|p∗−2u in Ω,

u|Γ = 0 and ∂u
∂ν
|Σ = 0,

(1.3)

where Ω is a bounded domain in RN , N ≥ 3, with smooth boundary ∂Ω = Γ ∪ Σ,
where Γ and Σ are smooth (N − 1)-dimensional submanifolds of ∂Ω with positive
measures such that Γ ∩ Σ = ∅. ∆p is the p-Laplacian and ∂

∂ν
is the outer normal

derivative. Here, f is a subcritical perturbation of |u|p∗−1.
The sharpness of our result is estabished by the construction of suitable Palais-Smale
sequences (corresponding to the critical level) which are not relatively compact.
Then we give the analogous condition to (1.2) for a general system with critical
exponents 

−∆pu = λf(x, u) + u|u|α−1|v|β+1 in Ω

−∆qv = µg(x, v) + |u|α+1|v|β−1v in Ω

together with Dirichlet or mixed boundary conditions, where f and g are subcritical
perturbations of |u|p∗−1 and |v|q∗−1 respectively, p∗ = Np

N−p (resp. q∗ = Nq
N−q ) is the

critical exponent of the Sobolev embedding W 1,p(Ω) ⊂ Lr(Ω) (resp. W 1,q(Ω) ⊂
Lr(Ω)). Our approach provides a general condition based on the Nehari manifold,
which can be extended to a large class of critical nonlinear problems. In this work,
we confine ourselves to systems involving (p, q)−Laplacian operators and critical
nonlinearities. The sharpness of our result is estabished, in the special case p = q, by
the construction of suitable Palais-Smale sequences which are not relatively compact.
The question of sharpness corresponding to the case p 6= q is still open.
For a more complete description of nonlinear elliptic systems, we refer the reader
to the papers by De Figueiredo [10] and by De Figueiredo & Felmer [11] and the
references therein.
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3.2 A general local compactness result
For the reader’s convenience, we start with the scalar case and to render the paper
selfcontained we will recall or show some well-known facts.

3.2.1 The scalar case

Let Ω ⊂ RN , N ≥ 3, be a bounded domain with smooth boundary ∂Ω. Let f(x, u) :
Ω× R → R be a function which is measurable in x, continuous in u and satisfying
the growth condition at infinity

|f(x, u)| = o(up
∗−1) as u→ +∞, uniformly in x. (2.4)

This situation occurs, for example, in the special cases f(x, u) = u or f(x, u) = uq−1,
1 < q < p∗.
Consider the problem

−∆pu = λf(x, u) + |u|p∗−2u in Ω,

u|Γ = 0 and ∂u
∂ν
|Σ = 0,

(2.5)

where Ω is a bounded domain in RN , N ≥ 3, with smooth boundary ∂Ω = Γ ∪ Σ,
where Γ and Σ are smooth (N − 1)-dimensional submanifolds of ∂Ω with positive
measures such that Γ ∩ Σ = ∅. Problem (2.5) is posed in the framework of the
Sobolev space

W 1,p
Γ (Ω) = {u ∈ W 1,p(Ω) : u|Γ = 0},

which is the closure of C1
0(Ω ∩ Γ,R) with respect to the norm of W 1,p(Ω). Notice

that meas(Γ) > 0 implies that the Poincaré inequality is still available in W 1,p
Γ (Ω),

so it can be endowed with the norm

||u|| = ||∇u||p

and (W 1,p
Γ (Ω), || . ||) is a reflexive and separable Banach space. The associated Euler-

Lagrange functional is given by

Jλ(u) :=
1

p
||∇u||pp −

1

p∗
||u||p

∗

p∗ − λ
∫

Ω

F (x, u(x)) dx

the corresponding Euler-Lagrange functional, where F (x, u) :=
∫ u

0
f(x, s) ds.

We recall here that the Nahari manifold associated to the functional Jλ is given by:

NJλ = {u ∈ W 1,p
Γ (Ω) \ {0} : J ′λ(u)(u) = 0},

and it is clear that NJλ contains all nontrivial critical points of Jλ. This manifold
can be characterized more explicitely by the following

NJλ =

{
tu, (t, u) ∈ (R \ {0})× (W 1,p

Γ (Ω) \ {0}) :
d

dt
Jλ(tu) = 0

}
,



§ 3. On local compactness in quasilinear elliptic problems 63

where t 7→ Jλ(tu) is a function defined from R to itself, for every u given inW 1,p
Γ (Ω)\

{0}. We define the critical level associated to Problem (2.5) by:

c∗(λ) := inf
w∈NJ0

J0(w) + inf
w∈NJλ∪{0}

Jλ(w). (2.6)

At this stage, we can state and show our first result

Theorem 3.2.1. Let λ ∈ R and (un) be a Palais-Smale sequence of Jλ such that

lim
n→+∞

Jλ(un) < c∗(λ). (2.7)

Then (un) is relatively compact.

Proof. Let λ ∈ R and (un) be a Palais-Smale sequence for Jλ of level c ∈ R ((PS)c
for short) satisfying the condition (2.7). We claim that (un) is bounded in W 1,p

Γ (Ω).
Indeed, on has one hand

1

p
||∇un||pp −

1

p∗
||un||p

∗

p∗ − λ
∫

Ω

F (x, un) dx = c+ on(1), (2.8)

and
||∇un||pp − ||un||

p∗

p∗ − λ
∫

Ω

f(x, un)un dx = on(||∇un||p). (2.9)

Then,(
1

p
− 1

p∗

)
||un||p

∗

p∗+
λ

p

∫
Ω

f(x, un)un dx−λ
∫

Ω

F (x, un) dx = c+on(1)+on(||∇un||p).

Now, let ε > 0, using the growth condition (2.4), there exists c1(ε) > 0 such that

|f(x, u)| ≤ ε|u|p∗−1+c1 and |F (x, u)| ≤ ε

p∗
|u|p∗+c1, a.e. x ∈ Ω and for every u ∈ R.

Applying the Hölder and the Young inequalities to the last relations, it follows

||un||p
∗

p∗ ≤ ε||∇un||p + c2(|Ω|, λ, ε). (2.10)

Combining (2.10) and (2.8), we deduce that (un) is in fact bounded in W 1,p
Γ (Ω). So

passing, if necessary to a subsequence, we can consider that

un ⇀ u in W 1,p
Γ (Ω),

un → u a.e. in Ω.

On the other hand, the growth condition (2.4) implies also that, for almost every
x ∈ Ω, the functions s 7→ F (x, s) and s 7→ sf(x, s) satisfy the conditions of the
Brézis-Lieb Lemma (see Theorem 2 in [6]). Thus, we get the identities∫

Ω

F (x, vn) dx =

∫
Ω

F (x, un)−
∫

Ω

F (x, u) + on(1),∫
Ω

f(x, vn)vn dx =

∫
Ω

f(x, un)un −
∫

Ω

f(x, u)u+ on(1).
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Moreover, let ε > 0, there is c1(ε) > 0 such that∣∣∣∣∫
Ω

f(x, vn)vn dx

∣∣∣∣ ≤ ε||vn||p
∗

p∗ + c1||vn||1.

Let C > 0 (which is independent of n and ε), such that ||vn||p
∗

p∗ ≤ C. Since (vn)
converges strongly to 0 in L1(Ω), there is n0(ε) ∈ N such that ||vn||1 ≤ ε/c1, for
every n ≥ n0(ε), and consequently

|
∫

Ω

f(x, vn)vn dx| ≤ ε(1 + C), ∀n ≥ n0(ε).

In the same way, rewriting F (x, vn) =
∫ vn

0
f(x, s) ds and using the same arguments

as above, we deduce that ∫
Ω

F (x, vn) dx = on(1) (2.11)∫
Ω

f(x, vn)vn dx = on(1). (2.12)

Applying once again the Brézis-Lieb Lemma, we conclude that u ∈ NJλ ∪ {0} and

||vn||p − ||vn||p
∗

p∗ = on(1), (2.13)

J0(vn) :=
1

p
||vn||p −

1

p∗
||vn||p

∗

p∗ = c− Jλ(u) + on(1). (2.14)

A direct computation gives

NJ0 =
{
t0(u)u : u ∈ W 1,p

Γ (Ω) \ {0}
}
,

where

t0(u) :=

(
||u||p

||u||p∗p∗

) 1
p∗−p

.

Now, let b be the common limit of ||vn||p and ||vn||p
∗

p∗ . Suppose that b 6= 0. On one
hand we have

J0(t0(vn)vn) =

(
1

p
− 1

p∗

)(
||vn||p

||vn||pp∗

) p∗
p∗−p

≥ inf
w∈NJ0

J0(w).

Then
lim

n→+∞
J0(t0(vn)vn) =

b

N
≥ inf

w∈NJ0

J0(w).
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On the other hand, the identity (2.14) leads to

b

N
= c− Jλ(u).

It follows then

c ≥ inf
w∈NJ0

J0(w) + Jλ(u)

≥ inf
w∈NJ0

J0(w) + inf
w∈NJλ∪{0}

Jλ(w),

which contradicts the condition (2.7). This achives the proof. �

3.2.2 Sharpness of the critical level formula in the scalar case

To show the sharpness of the critical level formula (2.7), it suffices to carry out
a Palais-Smale sequence for Jλ of level c∗(λ) which contains no convergent subse-
quence.
Consider, for a given ε > 0, the extremal function

Φε(x) = CNε
N−p
p2

(
ε+ |x|

p
p−1

) p−N
p with CN :=

(
N

(
N − p
p− 1

)p−1
)(N−p)/p2

which attains the best constant S of the Sobolev embedding

D1,p(RN) ↪→ Lp
∗
(RN).

Without loss of generality, we can consider that 0 ∈ Σ. Moreover, the set ∂Ω sat-
isfies the following property (see more details in Adimurthi, Pacella and Yadava [1]):
There exist δ > 0, an open neighborhood V of 0 and a diffeomorphism
Ψ : Bδ(0) −→ V which has a jacobian determinant equal to one at 0, with
Ψ(B+

δ ) = V ∩ Ω, where B+
δ = Bδ(0) ∩ {x ∈ RN : xN > 0}.

Let ϕ ∈ C∞0 (RN) such that ϕ ≡ 1 in a neighborhood of the origin.
We define the sequence defined by

ψn(x) := ϕ(x)Φ1/n(x), for n ∈ N∗. (2.15)

It is well known that the sequence (ψn) ⊂ W 1,p
Γ (Ω) is a Palais-Smale sequence for

J0 of level infw∈NJ0
J0(w), which satisfies

ψn → 0 a.e. in Ω,

∇ψn → 0 a.e. in Ω,

||ψn||p
∗

p∗ −→
[
N inf

w∈NJ0

J0(w)

]p/N
:= ` as n −→ +∞,

||∇ψn||pp −→
[
N inf

w∈NJ0

J0(w)

]p/N
:= ` as n −→ +∞.
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Now, let (un) be a Palais-Smale sequence of Jλ of level infw∈NJλ∪{0} Jλ(w). We
will not go into further details concerning which subcritical terms f(u) allow the
existence of such sequences, but in the litterature, this occurs for various classes of
subcritical terms. Applying Theorem 3.2.1, there exists a subsequence, still denoted
by (un), which converges to some u ∈ W 1,p

Γ (Ω). Then

||un + ψn||p∗ ≤ C,

un + ψn → u a.e. in Ω,

||∇un +∇ψn||p ≤ C,

∇un +∇ψn → ∇u a.e. in Ω.

where C a positive constant independent of n. We apply the Brézis-Lieb Lemma to
the sequence (un + ψn) and get

||un + ψn||p
∗

p∗ = ||(un − u) + ψn||p
∗

p∗ + ||u||p
∗

p∗ + on(1).

Moreover, one has

−||un−u||p∗+||ψn||p∗−`1/p∗ ≤ ||(un−u)+ψn||p∗−`1/p∗ ≤ ||un−u||p∗+||ψn||p∗−`1/p∗

which implies that
||(un − u) + ψn||p∗ − `1/p∗ = on(1).

Therefore, we conclude that

||un + ψn||p
∗

p∗ = ||u||p
∗

p∗ + `+ on(1).

The same argumets applied to the sequence (∇un +∇ψn) give

||∇un +∇ψn||pp = ||∇u||pp + `+ on(1).

Finally, using the fact that

|ψn|p
∗ ∗
⇀ `δ0 weakly ∗ in M+(Ω) (2.16)

|∇ψn|p
∗
⇀ `δ0 weakly ∗ in M+(Ω) (2.17)

where δ0 is the Dirac measure concentrated at the origin andM+(Ω) is the space of
positive finite measures [20]), we get that the sequence (un + ψn) is a Palais-Smale
sequence of Jλ of level c∗(λ).
We hence constructed a Palais-Smale sequence (un + ψn) of Jλ of level c∗(λ) which
can not be relatively compact in W 1,p

Γ (Ω). This justifies the sharpness of the critical
level formula (2.7).

Remark 3.2.1. If we are interested by the homogeneous Dirichlet conditions, i.e.
if Σ = ∅, the same arguments developed above are still valid, it suffices to assume
that the origin 0 ∈ Ω and consider ϕ ∈ C∞0 (Ω) such that ϕ ≡ 1 in a neighborhood
of the origin.
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3.2.3 The system case

Now, consider the system
−∆pu = λf(x, u) + u|u|α−1|v|β+1,

−∆qv = µg(x, v) + |u|α+1|v|β−1v,
(2.18)

together with Dirichlet or mixed boundary conditions
u|Γ1 = 0 and ∂u

∂ν
|Σ1 = 0,

v|Γ2 = 0 and ∂v
∂ν
|Σ2 = 0,

(2.19)

where, Ω is a bounded domain in RN , N ≥ 3, with smooth boundary ∂Ω = Γi ∪Σi,
where Γi and Σi are smooth (N − 1)-dimensional submanifolds of ∂Ω with positive
measures such that Γi ∩ Σi = ∅, i ∈ {1, 2}. ∆p is the p-Laplacian and ∂

∂ν
is the

outer normal derivative. Also, it is clear that when Γ1 = Γ2 = ∂Ω, one deals with
homogeneous Dirichlet boundary conditions. We assume here that

1 < p < N, 1 < q < N, (2.20)

and the critical condition
α + 1

p∗
+
β + 1

q∗
= 1. (2.21)

Indeed, this condition represents the maximal growth such that the integrability of
the product term |u|α+1|v|β+1 (which will appear in the Euler-Lagrange functional)
can be guaranteed by suitable Hölder estimates.
The functions f and g are two caratheodory functions which satisfy the growth
conditions

|f(x, u)| = o(up
∗−1) as u→ +∞, uniformly in x, (2.22)

|g(x, v)| = o(vq
∗−1) as v → +∞, uniformly in x. (2.23)

Problem (2.18), together with (2.19), is posed in the framework of the Sobolev space
W = W 1,p

Γ1
(Ω)×W 1,q

Γ2
(Ω), where

W 1,p
Γ1

(Ω) = {u ∈ W 1,p(Ω) : u|Γ1 = 0}, W 1,q
Γ2

(Ω) = {u ∈ W 1,q(Ω) : u|Γ2 = 0},

which are respectively the closure of C1
0(Ω ∩ Γ1,R) with respect to the norm of

W 1,p(Ω) and C1
0(Ω ∩ Γ2,R) with respect to the norm of W 1,q(Ω). Notice that

meas(Γi) > 0, i = 1, 2, imply that the Poincaré inequality is still available in
W 1,p

Γ1
(Ω) and W 1,q

Γ2
(Ω), so W can be endowed with the norm

||(u, v)|| = ||∇u||p + ||∇v||q
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and (W, || . ||) is a reflexive and separable Banach space. The associated Euler-
Lagrange functional Iλ,µ ∈ C1(W,R) is given by

Iλ,µ(u, v) = (α+1)

(
P (u)

p
− λ

∫
Ω

F (x, u)

)
+(β+1)

(
Q(v)

q
− µ

∫
Ω

G(x, v)

)
−R(u, v),

where P (u) = ||∇u||pp, Q(v) = ||∇v||qq, F (x, u) =
∫ u

0
f(x, s) ds, G(x, v) =

∫ v
0
g(x, t) dt,

and R(u, v) =
∫

Ω
|u|α+1|v|β+1dx. Notice that R(u, v) ≤ ||u||α+1

p∗ ||v||
β+1
q∗ < +∞.

Consider the Nehari manifold associated to Problem (2.18) given by

Nλ,µ = {(u, v) ∈ W \ {(0, 0)} / D1Iλ,µ(u, v)(u) = D2Iλ,µ(u, v)(v) = 0},

where D1Iλ,µ and D2Iλ,µ are the derivative of Iλ,µ with respect to the first variable
and the second variable respectively.
An interesting and useful characterization of Nλ,µ is the following

Nλ,µ = {(su, tv) / (s, u, t, v) ∈ Z∗ and ∂sIλ,µ(su, tv) = ∂tIλ,µ(su, tv) = 0},

where

Z∗ = {(s, u, t, v); (s, t) ∈ R2, (u, v) ∈ W 1,p
Γ1

(Ω)×W 1,q
Γ2

(Ω), (su, tv) 6= (0, 0)}

and Iλ,µ is considered as a functional of four variables (s, u, t, v) in Z := R ×
W 1,p

Γ1
(Ω)× R×W 1,q

Γ2
(Ω).

Definition 3.2.1. Let λ and µ be two real parameters. A sequence (un, vn) ∈ W is
a Palais-Smale sequence of the functional Iλ,µ if

• there exists c ∈ R such that lim
n→+∞

Iλ,µ(un, vn) = c (2.24)

• DIλ,µ(un, vn) converges strongly in the dual W ′ of W (2.25)

where DIλ,µ(un, vn) denotes the Gâteaux derivative of Iλ,µ.

The last condition (2.25) implies that

D1Iλ,µ(un, vn)(un) = o (||un||p∗) (2.26)
D2Iλ,µ(un, vn)(vn) = o (||vn||q∗). (2.27)

where D1Iλ,µ(un, vn) (resp. D2Iλ,µ(un, vn)) denotes the Gâteaux derivative of Iλ,µ
with respect to its first (resp. second) variable.

We introduce the critical level corresponding to Problem (2.18) by

c∗(λ, µ) := inf
w∈N0,0

I0,0(w) + inf
w∈Nλ,µ∪{(0,0)}

Iλ,µ(w). (2.28)

Then we have the following
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Theorem 3.2.2. Let λ and µ be two real parameters and (un, vn) be a Palais-Smale
sequence of Iλ,µ such that

c := lim
n→+∞

Iλ,µ(un, vn) < c∗(λ, µ). (2.29)

Then (un, vn) relatively compact.

Proof. Let λ and µ be two real parameters and (un, vn) be a Palais-Smale
sequence of Iλ,µ satisfying the condition (2.29). We claim that (un, vn) is bounded
in W . Indeed, on one hand conditions (2.24), (2.26) and (2.27) can be rewritten as
the following

Iλ,µ(un, vn) = c+ on(1) (2.30)

P (un)− λ
∫

Ω

f(x, un)un dx = R(un, vn) + o (||un||p∗) (2.31)

Q(vn)− µ
∫

Ω

f(x, vn)vn dx = R(un, vn) + o (||vn||q∗). (2.32)

Using (2.21), one gets

R(un, vn) =
α + 1

p∗

(
P (un)− λ

∫
Ω

f(x, un)un

)
+ o (||un||p∗)

+
β + 1

q∗

(
Q(vn)− µ

∫
Ω

g(x, vn)vn

)
+ o (||vn||q∗). (2.33)

Suppose that there is a subsequence, still denoted by (un, vn) in W which is un-
bounded, i.e. ||∇un||p + ||∇vn||q tends to +∞ as n goes to +∞.
If

lim
n→+∞

||∇un||p = +∞,

then using (2.22) one has ∫
Ω

|f(x, un)un| = o (P (un)),∫
Ω

|F (x, un)| = o (P (un)),

since (2.22) implies that for every ε > 0, there exists c1(ε) > 0 such that

|f(x, s)| ≤ ε|s|p∗−1 + c1 and |F (x, s)| ≤ ε

p∗
|s|p∗ + c1, a.e. x ∈ Ω, ∀ s ∈ R.

Similarly, if
lim

n→+∞
||∇vn||q = +∞,
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then using (2.23) it follows∫
Ω

|g(x, vn)vn| = o (Q(vn)),∫
Ω

|G(x, vn)| = o (Q(vn)).

On one hand, suppose that

lim
n→+∞

||∇un||p = lim
n→+∞

||∇vn||q = +∞.

Substituting (2.33) in (2.30), we obtain

c+ on(1) = (α + 1)

(
1

p
− 1

p∗
+ o (P (un))

p∗−p
p

)
P (un)

+ (β + 1)

(
1

q
− 1

q∗
+ o (Q(vn))

q∗−q
q

)
Q(vn) −→n→+∞ +∞

which can not hold true. On the other hand, suppose that

lim
n→+∞

||∇un||p = +∞ and the sequence ||∇vn||q is bounded,

then (2.31) implies that R(un, vn) is unbounded while (2.32) implies, on the contrary,
that R(un, vn) is bounded. The case

lim
n→+∞

||∇vn||q = +∞ and the sequence ||∇un||p is bounded,

leads to a contradiction with the same argument, which achieves the claim.
At this stage, we can assume, up to a subsequence, that

un ⇀ u in W 1,p
Γ1

(Ω),

vn ⇀ v in W 1,q
Γ2

(Ω),

un → u a.e. in Ω,

vn → v a.e. in Ω.

It is clear that
(u, v) ∈ Nλ,µ ∪ {(0, 0)}.

Let us set
Xn = un − u and Yn = vn − v.

Using again the growth conditions (2.22) and (2.23), we show easily that the func-
tions, which are defined on Ω × R: (x, s) 7→ sf(x, s), (x, s) 7→ sg(x, s), (x, s) 7→
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F (x, s) and (x, s) 7→ G(x, s) satisfy the conditions of the Brézis-Lieb lemma [6].
Then, we have the decompositions∫

Ω

F (x,Xn) =

∫
Ω

F (x, un)−
∫

Ω

F (x, u) + on(1),∫
Ω

f(x,Xn)Xn =

∫
Ω

f(x, un)un −
∫

Ω

f(x, u)u+ on(1),∫
Ω

G(x, Yn) =

∫
Ω

G(x, vn)−
∫

Ω

G(x, v) + on(1),∫
Ω

g(x, Yn)Yn =

∫
Ω

g(x, vn)vn −
∫

Ω

g(x, v)v + on(1).

Moreover, let ε > 0, then there is c1(ε) > 0 such that∣∣∣∣∫
Ω

f(x,Xn)Xn dx

∣∣∣∣ ≤ ε||Xn||p
∗

p∗ + c1||Xn||1.

Let C be a positive constant such that ||Xn||p
∗

p∗ ≤ C. Since Xn converges to 0 in
L1(Ω), there exists n0(ε) ∈ N verifying ||Xn||1 ≤ ε/c1, for every n ≥ n0(ε), thus∣∣∣∣∫

Ω

f(x,Xn)Xn dx

∣∣∣∣ ≤ ε(1 + C), ∀n ≥ n0(ε).

In the same manner, writing F (x,Xn) =
∫ Xn

0
f(x, s) ds and using the same argu-

ments as above, we get∫
Ω

F (x,Xn) = on(1) and
∫

Ω

f(x,Xn)Xn = on(1).

Similarly, it follows that∫
Ω

G(x, Yn) = on(1) and
∫

Ω

g(x, Yn)Yn = on(1).

Applying a slightly modified version of the Brézis-Lieb lemma [13], one has

R(Xn, Yn) = R(un, vn)−R(u, v) + on(1).

It follows that

P (Xn)−R(Xn, Yn) = on(1),

Q(Yn)−R(Xn, Yn) = on(1),

I0,0(Xn, Yn) = c− Iλ,µ(u, v) + on(1).

Notice that the Nehari manifold associated to I0,0 is given by

N0,0 =
{

(s0(u, v)u, t0(u, v)v); (u, v) ∈ W 1,p
Γ1

(Ω)×W 1,q
Γ2

(Ω), u 6≡ 0, v 6≡ 0
}
,
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where

s0(u, v) =

[
P (u)Q(v)

r(β+1)
q(α+1)

R(u, v)
r

α+1

] 1
r−p

, t0(u, v) = t(s0(u, v)),

and

r =
(α + 1)q

q − (β + 1)
> p, t(s) =

[
R(u, v)

Q(v)

] r
q(α+1)

s
r
q .

Let ` be the common limit of P (Xn), Q(Yn) and R(Xn, Yn). We claim that ` = 0.
By contradiction, suppose that ` 6= 0, then on one hand we get

I0,0(s0(Xn, Yn)Xn, t0(Xn, Yn)Yn) = (α + 1)

(
1

p
− 1

r

)
K(Xn, Yn), (2.34)

≥ inf
w∈N0,0

I0,0(w),

where

K(Xn, Yn) =

[
P (Xn)(α+1)Q(Yn)(β+1) p

q

R(Xn, Yn)p

] r
(α+1)(r−p)

.

A direct computation shows that

lim
n→+∞

K(Xn, Yn) = `,

therefore

lim
n→+∞

I0,0(s0(Xn, Yn)Xn, t0(Xn, Yn)Yn) = `(α + 1)

(
1

p
− 1

r

)
.

On the other hand,

lim
n→+∞

I0,0(Xn, Yn) = `

(
α + 1

p
+
β + 1

q
− 1

)
= `(α + 1)

(
1

p
− 1

r

)
.

Hence, we obtain

`(α + 1)

(
1

p
− 1

r

)
= c− Iλ,µ(u, v),

and consequently

c ≥ inf
w∈N0,0

I0,0(w) + Iλ,µ(u, v)

≥ inf
w∈N0,0

I0,0(w) + inf
w∈Nλ,µ∪{(0,0)}

Iλ,µ(w).

This leads to a contradiction with (2.29), then ` = 0, which achieves the proof. �
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Remark 3.2.2. 1) In the scalar case, we obtain the analogous of Theorem 3.2.2,
the proof follows easily with the same arguments. We note here that if we consider
the special case (1.1), direct computations show that

inf
w∈N0

I0(w) =
1

N
S
N
2 and inf

w∈Nλ∪{0}
Iλ(w) = 0,

which recovers the famous Brézis-Nirenberg condition (1.2).
2) It is clear that our condition (2.7) or (2.29) can be extended to a large class of
quasilinear or semilinear differential operators: Leray-Lions type operators, fourth-
order operators.
3) Using the Hölder inequality in the denominator R(u, v), we get

inf
(u,v)∈N0,0

I0,0(u, v) ≥ (α + 1)

(
1

p
− 1

r

)[
SpS

p(β+1)
q(α+1)
q

] r
r−p

, (2.35)

where Sp (resp. Sq) denotes the best Sobolev constant in the embedding W 1,p
Γ1

(Ω) ⊂
Lp
∗
(Ω) (resp. W 1,q

Γ2
(Ω) ⊂ Lq

∗
(Ω)).

We end this note by the following interesting relation arising in the special case
p = q and Γ1 = Γ2.

Proposition 3.2.1. Assume that p = q > 1. Then,

inf
(u,v)∈N0,0

I0,0(u, v) =
p

N − p
S
N
p
p .

Proof. In the special case p = q, direct computations give

p∗ = α + β + 2 and (α + 1)

(
1

p
− 1

r

)
=

p

N − p
.

Then, using (2.35), we conclude that

inf
(u,v)∈N0,0

I0,0(u, v) ≥ p

N − p
S
N
p
p .

On the other hand, let (un) ⊂ W 1,p
Γ1

(Ω) be a minimizing sequence of Sp. Then using
the identity (2.34), we get

inf
w∈N0,0

I0,0(w) ≤ I0,0(s0(un, un)un, t0(un, un)un) =
p

N − p

[ ||∇un||pp
||un||pp∗

] rp∗
(α+1)(r−p)

=
p

N − p

[ ||∇un||pp
||un||pp∗

]N
p

.

It is clear that the last quantity goes to
p

N − p
S
N
p
p as n +∞, which achieves the

proof. �
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Remark 3.2.3. For the sharpness of the critical level (2.29), we define the sequence
ψn(x) := ϕ(x)Φ1/n(x) as in (2.15). We consider then a Palais-Smale sequence
(un, vn) for Jλ,µ of level infw∈Nλ,µ∪{(0,0)} Iλ,µ(w). Following the same argumets de-
veloped in the scalar case and using Proposition 3.2.1, we prove that the sequence
(un + ψn, vn + ψn) is a Palais-Smale sequence for Jλ,µ of level c∗(λ, µ) and which
can not be relatively compact in W . This implies the sharpness of the critical level
formula (2.29).
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Chapter 4

Existence and Regularity Results for
an anisotropic system involving
critical exponents

Abstract
In this paper, we establish some existence and regularity results of positive solutions
of a critical anisotropic system by using variational methods

(Pλ,µ)



−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= λa(x)|u|p−2u+ u|u|α−1|v|β+1 in Ω,

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi
∣∣∣∣qi−2

∂v

∂xi

)
= µb(x)|v|q−2v + |u|α+1v|v|β−1 in Ω,

u ≥ 0 and v ≥ 0 in Ω,
u = 0 and v = 0 on ∂Ω

where Ω is a bounded open domain of RN , λ and µ are positive parameters, p∗ and
q∗ are respectively the critical exponents for these classes of problem. The functions
a and b belong to spaces which will be specified later.
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4.1 Introduction
In this paper, we are interested in existence results of nonlocal solutions to the
following critical system:

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= λa(x)|u|p−2u+ u|u|α−1|v|β+1 in Ω,

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi
∣∣∣∣qi−2

∂v

∂xi

)
= µb(x)|v|q−2v + |u|α+1v|v|β−1 in Ω,

u ≥ 0 and v ≥ 0 in Ω,
u = 0 and v = 0 on ∂Ω

(1.1)

where Ω is a bounded domain in RN , λ ≥ 0, µ ≥ 0 are real parameters and the
exponents pi, α, qi, β satisfy the following conditions

pi > 1, qi > 1,
N∑
i=1

1

pi
> 1,

N∑
i=1

1

qi
> 1

and
α + 1

p∗
+
β + 1

q∗
= 1,

where p∗ and q∗ are defined by

p∗ :=
N

N∑
i=1

1

pi
− 1

and q∗ :=
N

N∑
i=1

1

qi
− 1

.

We assume in the sequel that

max{p1, p2, · · · , pN} < p∗ and max{q1, q2, · · · , qN} < q∗,

p∗ and q∗ are the effective critical exponents associated to the operators
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂∂xi
∣∣∣∣pi−2

∂

∂xi

)
and

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂∂xi
∣∣∣∣qi−2

∂

∂xi

)
,

respectively [8, 7].
The functions a and b are assumed to be nontrivial, nonnegative , a ∈ L

p∗
p∗−p (Ω) and

b ∈ L
q∗
q∗−q (Ω).

In this work, we deal with the nonlocal existence, with respect to λ and µ, of
nonnegative, nontrivial solutions to Problem (1.1). Consider the Euler-Lagrange
functional associated to Problem (1.1) defined by

I(u, v) := (α + 1)

(
N∑
i=1

Pi(u)

pi
− λ

p
Pa(u)

)
+ (β + 1)

(
N∑
i=1

Qi(v)

qi
− µ

q
Qb(v)

)
−R(u, v),
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where Pi(u) :=

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx, Pa(u) :=

∫
Ω

a(x)|u|pdx, Qi(v) :=

∫
Ω

∣∣∣∣ ∂v∂xi
∣∣∣∣qi dx,

Qb(v) :=

∫
Ω

b(x)|v|qdx and R(u, v) :=

∫
Ω

|u|α+1|v|β+1dx.

The functional I is of class C1 (W ; R), where W := W 1,~p
0 (Ω) ×W 1,~q

0 (Ω), W 1,~p
0 (Ω)

and W 1,~q
0 (Ω) are respectively the completions of the space D(Ω) with respect of the

norms :

‖u‖~p :=
N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
pi

and ‖v‖~q :=
N∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥
qi

.

The spaces W 1,~p
0 (Ω) and W 1,~q

0 (Ω) can also be seen as

W 1,~p
0 (Ω) =

{
u ∈ Lp+(Ω) :

∣∣∣∣ ∂u∂xi
∣∣∣∣ ∈ Lpi(Ω), i = 1, · · · , N, u|∂Ω

= 0,

}
,

W 1,~q
0 (Ω) =

{
v ∈ Lq+(Ω) :

∣∣∣∣ ∂v∂xi
∣∣∣∣ ∈ Lqi(Ω), i = 1, · · · , N, v|∂Ω

= 0

}
,

where ~p := (p1, p2, · · · , pN) and ~q := (q1, q2, · · · , qN), the space W is endowed with
norm

‖(u, v)‖ := ‖u‖~p + ‖v‖~q.

We introduce the modified Euler-Lagrange functional Ĩ defined on Z := R ×
W 1,~p

0 (Ω)× R×W 1,~q
0 (Ω) by

Ĩ(s, u, t, v) := I(su, tv).

In the sequel, we set p− = min{p1, p2, · · · , pN} = pi0 , p+ = max{p1, p2, · · · , pN} =
pi1 , q− = min{q1, q2, · · · , qN} = qj0 , q+ = max{q1, q2, · · · , qN} = qj1 , P−(u) = Pi0(u),
P+(u) = Pi1(u), Q−(v) = Qj0(v) and Q+(v) = Qj1(v).

4.2 Preliminary results
Under the following assumptions


p < p− ≤ p+ < α + 1,
q < q− ≤ q+ < β + 1,
λ > 0,
µ > 0.

(2.2)

We have the following lemmas

Lemma 4.2.1. There exist λ∗ > 0, µ∗ > 0 and r > 0, ρ > 0 such that

I(u, v) ≥ r, ∀(λ, µ) ∈ (0, λ∗)× (0, µ∗), ∀ (u, v) ∈ W, such that ‖(u, v)‖ = ρ.
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Proof. Let (u, v) ∈ W such that∥∥∥∥ ∂u∂xi
∥∥∥∥
pi

≤ 1 and
∥∥∥∥ ∂v∂xi

∥∥∥∥
qi

≤ 1, ∀ i ∈ {1, · · · , N}.

Let ε > 0 fixed, by Young’s inequality, there exists a positive constant Cε such that

R(u, v) ≤ (α + 1)ε‖u‖α+1
p∗ + (β + 1)Cε‖v‖β+1

q∗ .

Since

I(u, v) = (α+ 1)

(
N∑
i=1

Pi(u)

pi
− λPa(u)

p

)
+ (β+ 1)

(
N∑
i=1

Qi(v)

qi
− µQb(v)

q

)
−R(u, v)

it follows that

I(u, v) ≥ (α + 1)

((
1

p1

+ · · · 1

pN

) N∑
i=1

Pi(u)p+/pi − λPa(u)

p
− ε‖u‖α+1

p∗

)

+(β + 1)

((
1

q1

+ · · · 1

qN

) N∑
i=1

Qi(v)q+/qi − µQb(v)

q
− Cε‖v‖β+1

q∗

)
.

Now, we calculate, for a fixed j ∈ {1, · · · , N}

1

p∗
− 1

p∗j
=

1

N

(
N∑
i=1

1

pi
− 1

)
−
(

1

pj
− 1

N

)

=
N∑
i=1
i 6=j

1

pi
> 0,

then p∗ < p∗j for all j ∈ {1, · · · , N}, where p∗j := pjN/(N − pj) is the critical
exponent of the compact embedding W 1,pj(Ω) ↪→ Lr(Ω). As p∗ < p∗j , we use then
Sobolev inequalities;

‖u‖p∗ ≤ c1,j ‖∇u‖pj
and then

‖u‖p∗ ≤ c1 ‖u‖~p .
By the same way

‖v‖q∗ ≤ c2 ‖v‖~q .
Consequently, there exist positive constants h1, h2, h3, k1, k2 and k3 such that

I(u, v) ≥
(
h1‖u‖p+

~p − h2λ‖u‖p~p − h3‖u‖α+1
~p

)
+
(
k1‖v‖q+~q − k2µ‖v‖q~q − k3‖v‖α+1

~q

)
.

Since 1 < p < p+ < α + 1, there exist λ∗ > 0, r1 > 0 and ρ1 > 0 and such that

h1‖u‖p+

~p − h2λ‖u‖p~p − h3‖u‖α+1
~p ≥ r1, ∀u ∈ W 1,~p

0 (Ω) : ‖u‖~p = ρ1, ∀λ ∈ (0, λ∗).
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Similarly, Since 1 < q < q+ < β + 1, there exist µ∗ > 0, r2 > 0 and ρ2 > 0 and such
that

k1‖v‖q+~q − k2µ‖v‖q~q − k3‖v‖β+1
~q ≥ r2, ∀ v ∈ W 1,~q

0 (Ω) : ‖v‖~q = ρ2, ∀µ ∈ (0, µ∗).

Therefore, for all (u, v) ∈ W such that ‖(u, v)‖ = ρ := ρ1 + ρ2 and for all (λ, µ) ∈
(0, λ∗)× (0, µ∗), one has

I(u, v) ≥ r := r1 + r2 > 0,

which achieves the proof. �

Lemma 4.2.2. The functional I is bounded from below in

Bρ(0) = {(u, v) ∈ W ; ‖(u, v)‖ ≤ ρ}.

Moreover,
inf

(u,v)∈Bρ(0)
I(u, v) < 0, ∀(λ, µ) ∈ (0, λ∗)× (0, µ∗). (2.3)

Proof. It is easy to check that I is bounded from below in Bρ(0). To prove (2.3),
fix (φ, ψ) ∈ W̃ and let s > 0 and t > 0. Then

I(sφ, tψ) ≤ (α+1)

(
N∑
i=1

spi
Pi(φ)

pi
− λspPa(φ)

p

)
+(β+1)

(
N∑
i=1

tqi
Qi(ψ)

qi
− µtpQb(ψ)

q

)
.

As p < p− and q < q−, the last inequality implies for s0 and t0 sufficiently small

I(s0φ, t0ψ) < 0 and (s0φ, t0ψ) ∈ B̄ρ(0)

from where follows the lemma. �
For every (λ, µ) ∈ (0, λ∗)× (0, µ∗), we introduce

α(λ, µ) := inf
(u,v)∈Bρ(0)

I(u, v).

Applying Ekeland’s principle to the functional I on the metric space (Bρ(0), d)
endowed with the metric d given by

d ((u1, v1), (u2, v2)) = ‖(u1 − u2, v1 − v2)‖ = ‖u1 − u2‖~p + ‖v1 − v2‖~q,

there exists a sequence (un, vn) ⊂ Bρ(0) such that

I(un, vn) −→ α(λ, µ) as n→ +∞ (2.4)

and

I(u, v)− I(un, vn) ≤ 1

n
‖(u− un, v − vn)‖, for all (u, v) 6= (un, vn). (2.5)
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Using the differentiability of I over W , from the previous inequality it follows that

I ′(un, vn) −→ 0, as n→ +∞. (2.6)

From (2.5) and (2.6)

I(un, vn) −→ α(λ, µ) and I ′(un, vn) −→ 0, as n→ +∞, (2.7)

then (un, vn) is a bounded (PS)α(λ,µ) sequence to I. Hereafter, we will denote by
(u∗, v∗) ∈ W the weak limit of (un, vn), up to a subsequence. Moreover, by definition
of I we can assume that the sequence (un, vn) is a sequence of nonnegative functions.

Theorem 4.2.1. The weak limit (u∗, v∗) of (un, vn) satisfies

I ′(u∗, v∗) = 0 and (u∗, v∗) ∈ W̃ , for all (λ, µ) ∈ (0, λ∗)× (0, µ∗).

Proof. Using the properties of (un, vn), one can easily show that

I(un, vn)− 1

p∗
D1I(un, vn)un −

1

q∗
D1I(un, vn)vn = α(λ, µ) + on(1),

where D1I(un, vn) and D2I(un, vn) are respectively the first and second partial
Gâteaux derivatives in u and v of the functional I. Thus

α(λ, µ) + on(1) = (α + 1)

(
N∑
i=1

(
1

pi
− 1

p∗

)
Pi(un)− λ

(
1

p
− 1

p∗

)
Pa(un)

)

+(β + 1)

(
N∑
i=1

(
1

qi
− 1

q∗

)
Qi(vn)− µ

(
1

q
− 1

q∗

)
Qb(vn)

)
. (2.8)

As it is said befeore, one has

un ⇀ u∗ in W 1,~p
0 (Ω),

un −→ u∗ in Lp(Ω),

vn ⇀ v∗ in W 1,~q
0 (Ω),

vn −→ v∗ in Lq(Ω).

By the relation (2.8) and using the compact embeddings of W 1,~p
0 (Ω) ↪→ Lp(Ω) and

W 1,~q
0 (Ω) ↪→ Lq(Ω), we obtain

α(λ, µ) + on(1) ≥ −K1‖un‖pp −K2‖vn‖qq

where K1 and K2 are two positive constants. Then we get, as n goes to +∞:

0 > α(λ, µ) > −K1‖u∗‖pp −K2‖v∗‖qq,
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and consequently u∗ 6= 0 and v∗ 6= 0. Finally, we use the result due to El Hamidi
and Rakotoson [6] and obtain

∇un(x) −→ ∇u∗(x) a.e. in Ω,

∇vn(x) −→ ∇v∗(x) a.e. in Ω.

Therefore, the weak limit (u∗, v∗) is a nonnegative and nontrivial solution to (1.1). �

Under the following assumptions


p < α + 1
q < β + 1

max{p+, q+} < min{p, q}
λ ≥ 0
µ ≥ 0

(2.9)

We have the following lemmas

Lemma 4.2.3. For every λ > 0 and µ > 0, the functional I satisfies the following
properties:

a) There exist r > 0 and ρ > 0 such that

I(u, v) ≥ r, ∀ (u, v) ∈ W, such that ‖(u, v)‖ = ρ.

b) There exists (eλ,µ, fλ,µ) ∈ W such that ‖(eλ,µ, fλ,µ)‖ ≥ ρ such that

I(eλ,µ, fλ,µ) < 0.

Proof.

a) Using the same arguments in the proof of Lemma 4.2.1, we have for every
(u, v) ∈ W and ‖(u, v)‖ ≤ 1, there exist positive constants h1, h2, h3, k1, k2

and k3 such that

I(u, v) ≥
(
h1‖u‖p+

~p − h2λ‖u‖p~p − h3‖u‖α+1
~p

)
+
(
k1‖v‖q+~q − k2µ‖v‖q~q − k3‖v‖α+1

~q

)
.

As p+ < p < α + 1 and q+ < q < β + 1, there exist r1, r2, ρ1 > 0 and ρ2 > 0
such that

h1‖u‖p+

~p − h2λ‖u‖p~p − h3‖u‖α+1
~p ≥ r1, for all ‖u‖~p ≤ ρ1

and
k1‖v‖q+~q − k2µ‖v‖q~q − k3‖v‖α+1

~q ≥ r2, for all ‖v‖~q ≤ ρ2.

Let us introduce ρ := min{ρ1, ρ2}, so if ‖(u, v)‖ = ρ then we have either
‖u‖~p ≤ ρ ≤ ρ1 and ‖v‖~q ≤ ρ ≤ ρ2. Consequently, if ‖(u, v)‖ = ρ we have
I(u, v) ≥ r := r1 + r2.
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b) Let (ϕ, ψ) ∈ W such that ϕ 6= 0, ψ 6= 0 and R(ϕ, ψ) 6= 0 then

I(sϕ, sψ) = (α + 1)

(
N∑
i=1

spi

pi
Pi(ϕ)− λs

p

p
Pa(ϕ)

)
− sα+β+2R(ϕ, ψ)

+ (β + 1)

(
N∑
i=1

sqi

qi
Qi(ψ)− µs

q

q
Qb(ψ)

)
.

We know that α+ β + 2 > max{p+, q+}, then for s sufficiently large, we have

I(sϕ, sψ) < 0.

By a lemma in [6], the equation
∂I

∂s
(su, sv) = 0 has only one solution sλ,µ > 0

such that
∂I

∂s
(sλ,µu, sλ,µv) = 0. and sλ,µ satisfies the condition

I(sλ,µϕ, sλ,µψ) = max
s≥0

I(sϕ, sψ).

By considering (uλ,µ, vλ,µ) := (sλ,µϕ, sλ,µψ) we have the following results:

(i) I(uλ,µ, vλ,µ) = max
s≥0

I(suλ,µ, svλ,µ)

(ii) I(uλ,µ, vλ,µ) −→ 0 as λ→ +∞ or µ→ +∞.

Let us show (i). The function I(suλ,µ, svλ,µ) has a unique maximum value at
some point s0 > 0. Since uλ,µ 6= 0 and vλ,µ 6= 0, we have

(α + 1)λsp0Pa(uλ,µ) + (β + 1)µsq0Qb(vλ,µ) + (α + β + 2)sα+β+2
0 R(uλ,µ, vλ,µ)

N∑
i=1

[(α + 1)Pi(uλ,µ)spi0 + (β + 1)Qi(vλ,µ)sqi0 ]

= 1.

On the other hand (uλ,µ, vλ,µ) satisfies

(α + 1)λPa(uλ,µ) + (β + 1)µQb(vλ,µ) + (α + β + 2)R(uλ,µ, vλ,µ)
N∑
i=1

[(α + 1)Pi(uλ,µ) + (β + 1)Qi(vλ,µ)]

= 1.

We study the variation of the function

θ : s 7→ (α + 1)λspPa(uλ,µ) + (β + 1)µsqQb(vλ,µ) + (α + β + 2)sα+β+2R(uλ,µ, vλ,µ)
N∑
i=1

[(α + 1)Pi(uλ,µ)spi + (β + 1)Qi(vλ,µ)sqi ]
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The function θ is of the form θ(s) = sa

Bsb+Csc
with B > 0, C > 0, a > b > 0

and a > c > 0. For every s > 0 we have

θ′(s) =
B(a− b)sa+b−1 + C(a− c)sa+c−1

(Bsb + Csc)2
> 0,

then the function θ is increasing on (0,+∞). Therefore it follows that s0 = 1.

We show the claim (ii), notice that

spλ,µPa(ϕ)
N∑
i=1

[(α + 1)Pi(ϕ)spiλ,µ + (β + 1)Qi(ψ)sqiλ,µ]

≤ 1

λ
,

and
sqλ,µQb(ψ)

N∑
i=1

[(α + 1)Pi(ϕ)spiλ,µ + (β + 1)Qi(ψ)sqiλ,µ]

≤ 1

µ
.

Thus,

spλ,µPa(ϕ)
N∑
i=1

[(α + 1)Pi(ϕ)spiλ,µ + (β + 1)Qi(ψ)sqiλ,µ]

−→ 0 as λ −→ +∞

and

sqλ,µQb(ψ)
N∑
i=1

[(α + 1)Pi(ϕ)spiλ,µ + (β + 1)Qi(ψ)sqiλ,µ]

−→ 0 as µ −→ +∞,

as the function θ satisfies: θ(0) = 0, θ is continuous on R+ and increasing then
θ(s)→ 0⇐⇒ s→ 0. Thus, we have either

sλ,µ −→ 0 as λ→ +∞ or µ→ +∞.

Recalling that

0 ≤ I(uλ,µ, vλ,µ) ≤ (α + 1)
N∑
i=1

spiλ,µ
pi
Pi(ϕ) + (β + 1)

sqiλ,µ
qi
Qi(ψ)− sα+β+2

λ,µ R(ϕ, ψ)

it follows that

I(uλ,µ, vλ,µ) −→ 0 as λ→ +∞ or µ→ +∞,
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which proves the claim. �

Hereafter, we fix (eλ,µ, fλ,µ) with eλ,µ = s∗λ,µuλ,µ and fλ,µ = s∗λ,µvλ,µ such that

‖(eλ,µ, fλ,µ)‖ ≥ r and I(eλ,µ, fλ,µ) < 0.

Lemma 4.2.4. If cλ,µ is the minimax value obtained by the Mountain Pass Theorem
applied to the functional I, then we get

cλ,µ −→ 0 as λ −→ +∞ or µ −→ +∞.

Proof. The maximum value cλ,µ is given by

cλ,µ = inf
(γ,ξ)∈Γ

max
s∈[0,1]

I(γ(s), ξ(s)),

where the set of all paths linking (0, 0) and (eλ,µ, fλ,µ) is defined by

Γ =
{

(γ, ξ) ∈ C(W ; R), (γ(0), ξ(0)) = (0, 0) and (γ(1), ξ(1)) = (eλ,µ, fλ,µ)
}
.

Let’s consider γ(s) = seλ,µ and ξ(s) = sfλ,µ, so then (γ, ξ) ∈ Γ and

max
s∈[0,1]

I(γ(s), ξ(s)) = max
s≥0

I(suλ,µ, svλ,µ) = I(uλ,µ, vλ,µ)

then
0 ≤ cλ,µ ≤ I(uλ,µ, vλ,µ),

from where
cλ,µ −→ 0 as λ −→ +∞ or µ −→ +∞,

which ends the proof. �

Hereafter, we shall denote by S~p > 0 and S~q > 0 the positive constants, see [7]:

S~p = inf
u∈D1,~p(RN ),‖u‖p∗=1

{
N∑
i=1

1

pi

∥∥∥∥ ∂u∂xi
∥∥∥∥pi
pi

}

and

S~q = inf
v∈D1,~q(RN ),‖v‖q∗=1

{
N∑
i=1

1

qi

∥∥∥∥ ∂v∂xi
∥∥∥∥qi
qi

}
.

The following lemma is an immediate consequence of the last one, that is,
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Lemma 4.2.5. There exists λ∗ > 0 and µ∗ > 0 such that for all (λ, µ) ∈ [λ∗,+∞[×[µ∗,+∞[
we have

0 < cλ,µ < d1 min

{(
S
α+1
p+

~p S
β+1
q+

~q

) 1
d1

,

(
S
α+1
p+

~p S
β+1
q−
~q

) 1
d2

,

(
S
α+1
p−
~p S

β+1
q+

~q

) 1
d3

,

(
S
α+1
p−
~p S

β+1
q−
~q

) 1
d4

}

where d1 = α+1
p+

+β+1
q+
−1, d2 = α+1

p+
+β+1

q−
−1, d3 = α+1

p−
+β+1

q+
−1 and d4 = α+1

p−
+β+1

q−
−1.

Related to the Mountain Pass level cλ,µ, there exists a sequence (un, vn) ⊂ W satis-
fying

I(un, vn) −→ cλ,µ and I ′(un, vn) −→ 0 in W ∗.

Using standard arguments, we have that (un, vn) is bounded in W , hence we can
assume that there exists (u, v) ∈ W such that

un ⇀ u in W 1,~p
0 (Ω)

and
vn ⇀ v in W 1,~q

0 (Ω).

Lemma 4.2.6. The weak limit (u, v) is such that u 6= 0 and v 6= 0.

Proof. By applying the result of A. El Hamidi and Rakotoson in [5], we prove
that we can extract a subsequence of (un, vn), still denoted (un, vn), such that

∇un(x) −→ ∇u(x) a.e. in Ω,

and
∇vn(x) −→ ∇v(x) a.e. in Ω,

then I ′(u, v) = 0.
To prove now that u 6= 0 and v 6= 0, we assume by contradiction that u = 0 and we
set xn := un and yn := vn − v. Using similar arguments as above, we get

N∑
i=1

Pi(un)− λPa(un) = R(un, vn) + on(1)

N∑
i=1

Qi(vn)− µQb(vn) = R(un, vn) + on(1).

(2.10)

Using Brézis-Lieb Lemma [3], we obtain

N∑
i=1

Pi(xn) = R(xn, yn) + on(1), (2.11)

N∑
i=1

Qi(yn) = R(xn, yn) + on(1), (2.12)

I0,0(xn, yn) = cλ,µ − I(0, v) + on(1). (2.13)
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On the other hand, we have

I(0, v) = (β + 1)

(
N∑
i=1

1

qi
Qi(v)− µ1

q
Qb(v)

)
,

with
N∑
i=1

Qi(v)− µQb(v) = 0.

Therefore

I(0, v) = (β + 1)
N∑
i=1

(
1

qi
− 1

q

)
Qi(v),

and consequently I(0, v) ≥ 0, since q+ < q. Now, if lim
n→+∞

R(xn, yn) = L then it

follows by (2.11) and (2.12) that

N∑
i=1

Pi(xn) −→ L and
N∑
i=1

Qi(yn) −→ L.

Then

I0,0(xn, yn) = (α+ 1)
N∑
i=1

(
1

pi
− 1

p∗

)
Pi(xn) + (β + 1)

N∑
i=1

(
1

qi
− 1

q∗

)
Qi(yn) + on(1),

and
lim

n→+∞
I0,0(xn, yn) ≥

[
(α + 1)

(
1

p+

− 1

p∗

)
+ (β + 1)

(
1

q+

− 1

q∗

)]
L.

By the relation (2.13) we get

cλ,µ = lim
n→+∞

I0,0(xn, yn) + I(0, v)

≥ lim
n→+∞

I0,0(xn, yn)

≥
[
(α + 1)

(
1

p+

− 1

p∗

)
+ (β + 1)

(
1

q+

− 1

q∗

)]
L

=

(
α + 1

p+

+
β + 1

q+

− 1

)
L.

We use the same arguments as in [2] and [7], to prove that we have either

S~p‖xn‖p+

p∗ ≤
N∑
i=1

∥∥∥∥∂xn∂xi

∥∥∥∥pi
pi

if ‖xn‖p∗ ≤ 1 (2.14)

S~q‖yn‖q+q∗ ≤
N∑
i=1

∥∥∥∥∂yn∂xi

∥∥∥∥qi
qi

if ‖yn‖p∗ ≤ 1 (2.15)
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or

S~p‖xn‖p−p∗ ≤
N∑
i=1

∥∥∥∥∂xn∂xi

∥∥∥∥pi
pi

if ‖xn‖p∗ ≥ 1

S~q‖yn‖q−q∗ ≤
N∑
i=1

∥∥∥∥∂yn∂xi

∥∥∥∥qi
qi

if ‖yn‖p∗ ≥ 1.

From the previous inequalities, if ‖xn‖p∗ ≤ 1 and ‖yn‖p∗ ≤ 1 we obtain

R(xn, yn) ≤ ‖xn‖α+1
p∗ ‖yn‖

β+1
q∗

≤

(
1

S~p

N∑
i=1

Pi(xn)

)α+1
p+
(

1

S~q

N∑
i=1

Qi(yn)

)β+1
q+

as n→ +∞ we have

L ≥
(
S
α+1
p+

~p S
β+1
q+

~q

) 1
α+1
p+

+
β+1
q+
−1

and

cλ,µ ≥ (
α + 1

p+

+
β + 1

q+

− 1)

(
S
α+1
p+

~p S
β+1
q+

~q

) 1
α+1
p+

+
β+1
q+
−1

.

Then

cλ,µ ≥ d1 min

{(
S
α+1
p+

~p S
β+1
q+

~q

) 1
d1

,

(
S
α+1
p+

~p S
β+1
q−
~q

) 1
d2

,

(
S
α+1
p−
~p S

β+1
q+

~q

) 1
d3

,

(
S
α+1
p−
~p S

β+1
q−
~q

) 1
d4

}
,

which cannot hold true. Thus L = 0 and cλ,µ = I(0, v) > 0, in this case lim
λ→+∞

cλ,µ =

I(0, v) > 0 which leads to a contradiction with the fact that lim
λ→+∞

cλ,µ = 0. Then
u 6= 0 and v 6= 0. �

4.3 Regularity of Weak Solutions

In this section, we show that every weak solution (u, v) ∈ W 1,~p
0 (Ω)×W 1,~q

0 (Ω) of the
following problem

(P )



−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= f(x, u, v) in Ω,

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi
∣∣∣∣qi−2

∂v

∂xi

)
= g(x, u, v) in Ω,

u ≥ 0 and v ≥ 0 in Ω,
u = 0 and v = 0 on ∂Ω

is a a strong solution, under some hypothesis on the functions f and g.
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Lemma 4.3.1. Suppose that the functions f and g satisfy the following growth
conditions:
(h1) There exist c1, c2 ≥ 0 and p ∈ (1, p∗) such that

|f(x, u, v)| ≤ c1u
p−1 + c2u

αvβ+1, ∀u ≥ 0 and v ≥ 0,

(h2) There exist c′1, c′2 ≥ 0 and q ∈ (1, p∗) such that

|g(x, u, v)| ≤ c′1v
q−1 + c′2u

α+1vβ, ∀u ≥ 0 and v ≥ 0.

Then every weak solution (u, v) ∈ W 1,~p
0 (Ω) ×W 1,~q

0 (Ω) of (Pλ,µ) belongs to Lr(Ω) ×
Ls(Ω) for all 1 ≤ r < +∞ and 1 ≤ s < +∞.

Proof. We will use similar arguments developed by Fragala, Gazzola and Kawohl
[8].
Let (u, v) be a weak solution to (P ). The assertion that (u, v) ∈ Lr(Ω)× Ls(Ω) for
all 1 ≤ r < +∞ and 1 ≤ s < +∞ may be equivalently reformulated as

(u, v) ∈ L(1+a)p∗(Ω)× L(1+b)q∗(Ω) for all (a, b) ∈ R+
∗ × R+

∗ . (3.16)

To prove (3.16) it is enough to show that (ua+1, vb+1) ∈ W 1,~p
0 (Ω) ×W 1,~q

0 (Ω), which
is equivalent to

lim
L→+∞

N∑
i=1

(∫
Ω

|∂xi(umin[ua, L]|pidx
) 1

pi

< +∞, (3.17)

lim
L→+∞

N∑
i=1

(∫
Ω

|∂xi(vmin[vb, L]|qidx
) 1

qi

< +∞. (3.18)

For each L there exist indexes j and k such that

N∑
i=1

(∫
Ω

|∂i(u ·min[ua, L]|pi dx
) 1

pi

≤ C

(∫
Ω

|∂j(u ·min[ua, L]|pjdx
) 1

pj

, (3.19)

N∑
i=1

(∫
Ω

|∂i(v ·min[vb, L]|qidx
) 1

qi

≤ C ′
(∫

Ω

|∂k(v ·min[vb, L]|qkdx
) 1

qk

(3.20)

where C and C ′ are positive constants independent of L.
For these indexes j and k, and for every L > 0, set φL := min[uapj , Lpj ] and ψL :=
vmin[vbqk , Lqk ] such that (φL, ψL) ∈ W 1,~p

0 (Ω) ×W 1,~q
0 (Ω). Note that for every 1 ≤

i ≤ N and for almost every x ∈ Ω,

|∂iu|pi−2∂iu∂iφL ≥ min[uapj , Lpj ]|∂iu|pi ,

|∂iv|qi−2∂iv∂iψL ≥ min[vbqk , Lqk ]|∂iv|qi ,
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|∂i(u ·min[ua, L])|pi ≤ (a+ 1) min[uapi , Lpi ]|∂iu|pi , (3.21)

and
|∂i(v ·min[vb, L])|qi ≤ (b+ 1) min[vbqi , Lqi ]|∂iv|qi . (3.22)

As (u, v) is a weak solution to (P ), we rewrite, for every k ≥ 1, Ω ≡ Ω1,k ∪ Ω2,k ∪
Ω3,k ∪ Ω4,k, where

Ω1,k := {x ∈ Ω such that u < k and v < k},

Ω2,k := {x ∈ Ω such that u < k and v ≥ k},

Ω3,k := {x ∈ Ω such that u ≥ k and v < k},

Ω4,k := {x ∈ Ω such that u ≥ k and v ≥ k}.

Then we have

N∑
i=1

∫
Ω

min[uapj , Lpj ]|∂iu|pidx ≤
N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iφLdx =

∫
Ω

f(x, u, v)φLdx,

and

N∑
i=1

∫
Ω

min[vbqk , Lqk ]|∂iv|qidx ≤
N∑
i=1

∫
Ω

|∂iv|qi−2∂iv∂iψLdx =

∫
Ω

g(x, u, v)ψLdx.

Using (h1), for L ≥ ka ≥ 1, it follows that

|f(x, u, v)|φL ≤ C̃k,1 in Ω1 (3.23)
|g(x, u, v)|ψL ≤ C̃k,2 in Ω1 (3.24)

hence ∫
Ω1

f(x, u, v)φLdx ≤ Ck,1 = C̃k,1|Ω|,

∫
Ω2,k

f(x, u, v)φLdx ≤
∫

Ω2

[
c1u

p + c2u
α+1vβ+1

]
min[uapj , Lpj ]dx,

≤ C2,k + c2

∫
Ω2

uα+1vβ+1 min[uapj , Lpj ]dx,

≤ C2,k + c2

(∫
Ω2,k

(uα+1 min[uapj , Lpj ])p
∗/(α+1)dx

)α+1
p∗

×

×

(∫
Ω2,k

vq
∗
dx

)β+1
q∗

≤ C2,k + εkC
′
2,k
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where εk tends to 0 as k tends to +∞.∫
Ω3,k

f(x, u, v)φLdx ≤ c1

∫
Ω3,k

up
∗

min[uapj , Lpj ]dx+

∫
Ω3,k

uα+1vβ+1 min[uapj , Lpj ]dx

≤ c1

(∫
Ω3,k

up
∗
dx

) p∗−pj
p∗

·
∫

Ω3,k

(upj ·min[uapj , Lpj ])p
∗/pjdx

+ c2

∫
Ω3,k

up
∗

min[uapj , Lpj ]vβ+1dx

≤ ε′k

(∫
Ω

(u ·min[ua, L])p
∗
dx

)pj/p∗

+ c2

(∫
Ω3,k

up
∗−pjupj · (min[uapj , Lpj ])p

∗/(α+1)dx

)α+1
p∗

×

(∫
Ω3,k

vq
∗
dx

)β+1
q∗

≤ ε′k

(∫
Ω

(u ·min[ua, L])p
∗
dx

)pj/p∗
+ c2‖u‖

(α+1)(p∗−pj)/p∗
p∗,Ω3,k

‖v‖β+1
q∗,Ω3,k

×

×

(∫
Ω3,k

(
upj · (min[uapj , Lpj ])p

∗/(α+1)
) p∗
pj dx

) (α+1)pj

p∗2

≤ ε′k

(∫
Ω

(u ·min[ua, L])p
∗
dx

)pj/p∗
+ ε′′k‖v‖

β+1
q∗ ×

×
(∫

Ω

(u ·min[ua, L])p
∗
dx

) (α+1)pj

p∗2

≤ ε′k

[
N∑
i=1

(∫
Ω

|∂i(u ·min[ua, L])|pidx
)1/pi

]pj

+ ε′′k

[
N∑
i=1

(∫
Ω

|∂i (u ·min[ua, L]) |pidx
) 1

pi

](α+1)pi/p
∗
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where ε′k and ε′′k tend to 0 as k goes to +∞.∫
Ω4,k

f(x, u, v)φLdx ≤
∫

Ω4,k

[
c1u

p + c2u
α+1vβ+1

]
min[uapj , Lpj ]dx

≤ ε′k

(∫
Ω

(u ·min[ua, L])p
∗
dx

)pj/p∗
+ c2‖u‖

(α+1)(p∗−pj)/p∗
p∗,Ω4,k

×

× ‖v‖β+1
q∗,Ω4,k

(∫
Ω3,k

(
upj · (min[uapj , Lpj ])p

∗/(α+1)
) p∗
pj dx

) (α+1)pj

p∗2

≤ ε1
k

(∫
Ω

(u ·min[ua, L])p
∗
dx

)pj/p∗
+

+ ε2
k

(∫
Ω

(u ·min[ua, L])p
∗
dx

) (α+1)pj

p∗2

≤ ε1
k

[
N∑
i=1

(∫
Ω

|∂i(u ·min[ua, L])|pidx
)1/pi

]pj
+

+ ε2
k

[
N∑
i=1

(∫
Ω

|∂i (u ·min[ua, L]) |pidx
) 1

pi

](α+1)pi/p
∗

where ε1
k and ε2

k tend to 0 as k goes to +∞.
Inserting (3.19) and (3.20) in the last inequalities, we then obtain,∫

Ω

|∂j(u ·min[ua, L])|pjdx ≤ C ′k + εk,1

∫
Ω

|∂j(u ·min[ua, L])|pjdx

+ εk,2

[∫
Ω

|∂i (u ·min[ua, L]) |pidx
](α+1)/p∗

.

Choosing k sufficiently large, that are εk,1 and εk,2 sufficiently small, the last in-

equality ensures that the integral
∫

Ω

|∂j(u ·min[ua, L])|pjdx is bounded for L large

enough, from where follows (3.17). By the same way we can prove (3.18), and we can
conclude then that every weak solution (u, v) ∈ W 1,~p

0 (Ω) ×W 1,~q
0 (Ω) of (P ) belongs

to Lr(Ω)× Ls(Ω), for all r ≥ 1 and s ≥ 1. �

Proposition 4.3.1. Under the conditions (h1) and (h2), every nonnegative solution
(u, v) ∈ W 1,~p

0 (Ω)×W 1,~q
0 (Ω) of (P ) belongs to L∞(Ω)× L∞(Ω).

Proof. For u ≥ 0 and v ≥ 0 such that (u, v) is a solution of (P), we set Aτ =
{x ∈ Ω, u(x) ≥ τ} and Bτ = {x ∈ Ω, v(x) ≥ τ}, |Aτ | and |Bτ | their Lebesgue
measures. Recall that Cavalieri principle, based on Fubini theorem, gives:∫ +∞

k

|Aτ |dτ =

∫
Ω

(u− k)+dx, for all k ≥ 0
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and ∫ +∞

k

|Bτ |dτ =

∫
Ω

(v − k)+dx, for all k ≥ 0.

Let ϕk = (u − k)+, for k > 0 fixed. Choosing this function as a test function,
combining the Cavalieri principle and Hölder inequality, one gets

N∑
i=1

Pi(ϕk) =

∫
Ω

(λaup−1 + uαvβ+1)ϕkdx

≤ c1λ

∫
Ω

|u|p−1ϕkdx+ c2

∫
Ω

|u|α|v|β+1ϕkdx

≤ c

(∫
[u≤1]

ϕkdx+

∫
[u≤1]

|v|β+1ϕkdx+

∫
[u≥1]

|u|α|v|β+1ϕkdx

)
,

≤ c
(
|Ak|1−

1
p∗ + |Ak|(1−α+1

p∗ )(1− 1
p∗ )
)
‖ϕk‖p∗ . (3.25)

Since lim
n→+∞

‖ϕk‖p∗ = 0, then for k ≥ k0 > 0, ‖ϕk‖p∗ ≤ 1. Relations (2.14) and

(3.25) give

S~p‖ϕk‖p
+

p∗ ≤
N∑
i=1

Pi(ϕk)

≤ c
(
|Ak|1−

1
p∗ + |Ak|(1−α+1

p∗ )(1− 1
p∗ )
)
‖ϕk‖p∗ .

Thus, for every k ≤ k0, we have:

‖ϕk‖p∗ ≤ c
(
|Ak|1−

1
p∗ + |Ak|(1−α+1

p∗ )(1− 1
p∗ )
) 1
p+−1

≤ c
(
|Ak|(

1− 1
p∗ )

1
p+−1 + |Ak|(

1−α+1
p∗ )(1− 1

p∗ )
1

p+−1

)
. (3.26)

Using Cavalieri’s principle, Hölder inequality and Relation (3.26), one has for all
k ≥ k0: ∫ +∞

k

|Aτ |dτ =

∫
Ω

(u− k)+dx

≤ |Ak|1−
1
p∗ ‖ϕk‖p∗

≤ c

(
|Ak|

1+ 1
p∗

p∗−1

p+−1 + |Ak|1+θ

)
, (3.27)

where θ := − 1

p∗
+

(
1− α + 1

p∗

)(
1− 1

p∗

)
1

p+ − 1
> 0.

Since
γ :=

1

p∗
p∗ − 1

p+ − 1
≥ θ,
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then ∫ +∞

k

|Aτ |dτ ≤ c+ |Ak|1+γ.

This inequality is of Gronwall type, which shows that there exists cλ > 0 such that

‖u‖∞ ≤ cλ.

One can prove by exactly the same way the fact that there exists cµ > 0 such that
‖v‖∞ ≤ cµ. �

4.4 On the weak sub and supersolutions
In this section, we will use some classical tools concerning sub and super solutions
for a class of systems involving the anisotropic operators considered above. No-
tice that the standard laplacian operator and the anisotropic operator were studied
respectively in [12] and [2].
Let us consider the following problem

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
= f(x, u, v) in Ω

−
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂v∂xi
∣∣∣∣qi−2

∂v

∂xi

)
= g(x, u, v) in Ω,

u ≥ 0 and v ≥ 0 in Ω,
u = 0 and v = 0 on ∂Ω

(4.28)

where Ω is a smooth and bounded domain in RN , both f , g : Ω × R × R→ R are
Carathéodory satisfying the following property that for each fixed A > 0, there exist
C1 > 0 and C2 > 0 such that

(H)

{
|f(x, s, t)| ≤ C1, ∀ (x, s, t) ∈ Ω× [−A,A]× [−A,A]
|g(x, s, t)| ≤ C2, ∀ (x, s, t) ∈ Ω× [−A,A]× [−A,A].

Definition 4.4.1. The couple (u, v) ∈ W is a (weak) sub-solution to (4.28) if u ≤ 0
and v ≤ 0 on ∂Ω and for all (ϕ, ψ) ∈ D(Ω)×D(Ω) with ϕ(x) ≥ 0 and ψ(x) ≥ 0 for
all x ∈ Ω, we have simultaneously

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

∂ϕ

∂xi
dx−

∫
Ω

f(x, u, v)ϕdx ≤ 0

N∑
i=1

∫
Ω

∣∣∣∣ ∂v∂xi
∣∣∣∣pi−2

∂v

∂xi

∂ψ

∂xi
dx−

∫
Ω

g(x, u, v)ψdx ≤ 0.

Similarly, (u, v) ∈ W is a (weak) super-solution to (4.28) if in the above the reverse
inequalities hold.
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Theorem 4.4.1. Suppose (H) holds, (u, v) ∈ W is sub-solution while (ū, v̄) ∈ W is
a super-solution to Problem (4.28) and assume that there exist c, c̄, c′, c̄′ ∈ R there
holds c ≤ u ≤ ū ≤ c̄ and c′ ≤ v ≤ v̄ ≤ c̄′ almost everywhere in Ω. Then, there
exists a weak solution (u, v) ∈ W 1,~p

0 (Ω)×W 1,~q
0 (Ω) of (4.28), satisfying the condition

u ≤ u ≤ ū and v ≤ v ≤ v̄ almost everywhere in Ω.

Proof. Let F (x, u, v) =
∫ u

0
f(x, s, v)ds and G(x, u, v) =

∫ v
0
g(x, u, t)dt denote re-

spectively primitives of f and g. Let us define J : W 1,~p
0 (Ω) ×W 1,~q

0 (Ω) → R the
Euler-Lagrange functional associated to (4.28) given by

J(u, v) :=
N∑
i=1

∫
Ω

(
1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣pi +

1

qi

∣∣∣∣ ∂v∂xi
∣∣∣∣qi) dx− ∫

Ω

(F (x, u, v) +G(x, u, v)dx

We introduce the closed and convex subsetM of W 1,~p
0 (Ω)×W 1,~q

0 (Ω) defined by

M =
{

(u, v) ∈ W 1,~p
0 (Ω)×W 1,~q

0 (Ω) : u ≤ u ≤ ū and v ≤ v ≤ v̄ a.e. in Ω
}
.

Since u, v, ū and v̄ ∈ L∞ by assumption, alsoM∈ L∞×L∞ and consequently there
exists c > 0 and c > 0 such that |F (x, u(x), v(x)| ≤ c and |G(x, u(x), v(x)) ≤ c| for
all (u, v) ∈M and for almost all x ∈ Ω. Consequently

J(u, v) ≥
N∑
i=1

∫
Ω

(
1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣pi +

1

qi

∣∣∣∣ ∂v∂xi
∣∣∣∣qi) dx− 2cmeas(Ω)

onM, which implies that J is coercive onM. We claim now that the functional J
is weakly lower semi-continuous on M. Indeed, let (un, vn), (u, v) ⊂ M such that
un ⇀ u in W 1,~p

0 (Ω) and vn ⇀ W 1,~q
0 (Ω). We may assume that, up to a subsequence,

un → u and vn → v pointwise almost everywhere; moreover |F (x, un(x)vn(x)| ≤ c
and|G(x, un(x)vn(x)| ≤ c uniformly. Hence we may appeal to Lebesgue’s theorem
on dominated convergence which implies that

∫
Ω

F (x, un, vn)dx −→
∫

Ω

F (x, u, v)dx and∫
Ω

G(x, un, vn)dx −→
∫

Ω

G(x, u, v)dx, as n tends to +∞,

these end the claim, since the functionals

u ∈ W 1,~p
0 (Ω) 7→

N∑
i=1

∫
Ω

1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx

and

v ∈ W 1,~q
0 (Ω) 7→

N∑
i=1

∫
Ω

1

qi

∣∣∣∣ ∂v∂xi
∣∣∣∣pi dx
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are clearly weakly lower semi-continuous on the whole space. As the space W is
reflexive then there exists (u, v) ∈ M such that J(u, v) = inf

(w,s)∈M
J(w, s). We

claim that (u, v) solves weakly Problem (4.28), that is J ′(u, v) = 0. Indeed, fix
(ϕ, ψ) ∈ D(Ω)×D(Ω) and ε > 0 and consider the couple (uε, vε) ∈M defined on Ω
by:

uε(x) =


ū(x) if u(x) + εϕ(x) ≥ ū(x),
u(x) + εϕ(x) if u(x) ≤ u(x) + εϕ(x) ≤ ū(x),
u(x) if u(x) + εϕ(x) ≤ u(x).

and

vε(x) =


v̄(x) if v(x) + εψ(x) ≥ v̄(x),
v(x) + εψ(x) if v(x) ≤ v(x) + εψ(x) ≤ v̄(x),
v(x) if v(x) + εψ(x) ≤ v(x).

The functions uε and vε can be characterised by uε = (u + εϕ) − (ϕ̄ε − ϕ
ε
) and

vε = (v + εψ)− (ψ̄ε − ψε), where ϕ̄ε = max{0, u+ εϕ− ū} ≥ 0, ϕ
ε

= −min{0, u+

εϕ − u} ≥ 0, ψ̄ε = max{0, v + εψ − v̄} ≥ 0 and ψ
ε

= −min{0, v + εψ − v} ≥ 0.
Note that ϕ̄ε, ϕε, ψ̄ε and ψ

ε
∈ W ∩ L∞(Ω) × L∞(Ω). Since (u, v) minimizes J on

M and J is differentiable, then

0 ≤ D1(u, v)(uε − u) = εD1J(u, v)(ϕ) +D1J(u, v)(ϕ
ε
)−D1J(u, v)(ϕ̄ε),

where D1J(u, v) denotes the first derivative in u of J , so that

D1J(u, v)(ϕ) ≤ 1

ε

(
D1J(u, v)(ϕ̄ε)−D1J(u, v)(ϕ

ε
)
)
. (4.29)

Using the fact that (ū, v̄) is a super-solution to (4.28), we get

D1J(u, v)(ϕ̄ε) = D1J(ū, v̄)(ϕ̄ε) + [D1J(u, v)−D1J(ū, v̄)] (ϕ̄ε)

≥ [D1J(u, v)−D1J(ū, v̄)] (ϕ̄ε)

=
N∑
i=1

∫
Ωε

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi
−
∣∣∣∣ ∂ū∂xi

∣∣∣∣pi−2
∂ū

∂xi

)
∂

∂xi
(u− ū+ εϕ)dx−

−
∫

Ωε

[
f(x, u, v)− f(x, ū, v̄)

]
(u− ū+ εϕ)dx

≥ ε
N∑
i=1

∫
Ωε

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi
−
∣∣∣∣ ∂ū∂xi

∣∣∣∣pi−2
∂ū

∂xi

)
∂

∂xi
(ϕ)dx−

− ε

∫
Ωε

|f(x, u, v)− f(x, ū, v̄)| |ϕ|dx

where Ωε = {x ∈ Ω : u(x) + εϕ(x) ≥ ū(x) and v(x) + εψ(x) ≥ v̄(x)}. Notice
that meas(Ωε) −→ 0 as ε→ 0. Thus,

D1J(u, v)(ϕ̄ε) ≥ o(ε),
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where o(ε)/ε −→ 0 as ε→ 0. Similarly, we conclude that

D1J(u, v)(ϕ
ε
) ≤ o(ε),

and consequently, with (4.29), we get

D1J(u, v)(ϕ) ≥ 0

for every ϕ ∈ D(Ω). This implies, by reversing the sign of ϕ, that D1J(u, v)(ϕ) =
0 for every ϕ ∈ D(Ω). Using the density of D(Ω) in W 1,~p

0 (Ω). The proof of
D2J(u, v)(ψ) = 0 where D2J(u, v) is the seconde derivative of J in the seconde
variable, follows the same steps as in the above. �
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Chapter 5

Appendix

In this part, we will recall some definitions, theorems and essential tools we used in
the precedent chapters.

5.1 Palais-Smale Condition
In order to express the compactness of certain minimizing sequences, or in general
of sequences converging to a point that it would probably be a critical point, we
usually have recourse to the Palais-Smale condition (for short (PS)).

Definition 5.1.1. Let W be a Banach space and J : W → R functional of class
C1. If c ∈ R, we say that J satisfies the Palais-Smale condition (at the level c) and
we denote (PS)c, if every sequence (un)n of W such that

J(un)→ c in R and J ′(un)→ 0 in W ′

contains a convergent subsequence (unk)k.

Intuitively, what we require is the compactness of sequences which could realize a
critical value. However, even if a functional is bounded from below and c := inf J ,
it is not always obvious that when J(un) → c then J ′(un) → 0. We generally
have two important theorems permitting the construction of Palais-Smale sequences:
Mountain Pass theorem due to Ambrosetti-Rabinowitz and Ekeland’s Variational
principle.

5.2 Mountain-Pass Geometry and Mountain-Pass
Theorem

The simplest geometric situation for the construction of "almost critical" points by
the min-max process is the mountain pass theorem. If the value of ϕ at 0 and at
sme point e (valleys) are strictly smaller that the infimum of the values of ϕ on the

101
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sphere of centre ϕ and radius r < ‖e‖ (range of mountains), one can expect that, by
taking the infinmum over all the paths joining 0 to e of the supremum of ϕ over such
a path, one will obtain the value of ϕ at some critical point of mountain pass type.
This is not always true, but gives points almost critique. Suitable Palais-Smale
conditions over ϕ lead then to the existence of a critical point having the mointain
pass critical value.
The following theorem is due to Ambrosetti-Rabinowitz:

Theorem 5.2.1. Let W be a Banach space and I ∈ C1(W,R). Assume that there
exist u0 ∈ W , u1 ∈ W and an open neighborhood Ω of u0 such that u1 /∈ Ω̄ and

c0 := max{I(u0), I(u1)} < c1 := max
∂Ω

I(v).

Let
H = {h ∈ C([0, 1],W ) : h(0) = u0, h(1) = u1},

c := inf
h∈H

sup
s∈[0,1]

I(h(s)).

Then,
inf
∂Ω
I(v) ≤ c < +∞,

and for all ε ∈ (0, c1 − c0] and for each h ∈ H such that

max
s∈[0,1]

I(h(s)) ≤ c+ ε,

there exists v ∈ W satisfying:

i) c− ε ≤ I(v) ≤ c+ ε

ii) dist(v, h([0, 1]) ≤
√
ε

iii) ‖I ′(v)‖ ≤
√
ε.

Another minimax theorem of geometrical type showed by P. H. Rabinowitz.

Theorem 5.2.2. (Geometrical Saddle Point)
Suppose that W = U⊕V is a Banach space and U and V two closed subspaces, such
that dimU < +∞. For all ρ > 0, one consideres the following sets:

M := {u ∈ U : ‖u‖ ≤ ρ} , M0 := {u ∈ U : ‖u‖ = ρ} .

We define the following space

H := {h ∈ C(M,W ) : h|M0 = id} ,



§ 5. Appendix: Minimax Theorems 103

and I ∈ C1(W,R) such that

c0 := max
u∈M0

I(u) < c1 := inf
v∈V

I(v).

Let
c := inf

h∈H
max
s∈M

I(h(s)).

If c1 ≤ c, then for all ε ∈]0, c1 − c0] and for all h ∈ H such that

max
s∈M

I(h(s)) ≤ c+ ε,

there exists u ∈ W such that

(i) c− ε ≤ I(u) ≤ max
s∈M

I(h(s))

(ii) dist
(
u, h(M)

)
≤
√
ε

(iii) ‖I ′(u)‖ ≤
√
ε.

Ekeland’s Variational Principle
In general, it is not clear that a bounded and lower semi-continuous functional J
attains its infimum. For instance, the analytic function f(x) = arctanx does not
attain its minimum nor its maximum over the real line.
The advantage of this principle is the existence Palais-Smale sequences is insured
even if the functional is not bounded from below over the whole space but only over
closed subset of it.

Theorem 5.2.3. Let (M,d) a complete metric space with d its metric and let J :
M → R ∪ +∞ lower semi-continuous, bounded from below and 6≡ +∞. Then for
each ε, δ > 0 and every u ∈M with

J(u) ≤ inf
M

+ε,

there exists an element v ∈M minimizing strictly the functional

Jv(w) ≡ J(w) +
ε

δ
d(v, w).

Moreover, one has

J(v) ≤ J(u) whenever d(u, v) ≤ δ.

Proposition 5.2.1. Let W be a Banach space and J ∈ C1(W ) bounded from below,
then there exists a minimizing sequence (vn) for J on W such that

J(vn) −→ inf
W
J, DJ(vn) −→ 0 in W ′ in n→∞.
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Critical Level
In order to solve Yamabe’s problem in Riemannian geometry, Thierry Aubin in-
troduced the notion of critical level associated to Yamabe’s problem , noticed c∗,
showed that if a minimizing sequence of the corresponding energy has a level lower
than the critical level then the Yamabe’s problem possesses solutions.
In a paper of Brézis and Nirenberg, the authors showed that if (un) ⊂ W is Palais-
Smale sequence of the functional J such that J(un) −→ c < c∗ as n tends to +∞,
therefore (un) is relatively compact. The level c∗ is called critical in the sense where
one can construct a Palais-Smale sequence (wn) ⊂ W such that J(wn)→ c∗ but we
could not extract any convergent subsequence in W .

5.3 Concentration-Compactness Theorem
This method introduced by P. L. Lions is the more general method for treating
problems of minimization which they intervene in more varied domains (PDEs,
calculus of variations, harmonic analysis, etc...)

Definition 5.3.1. Let Ω be an open subset of RN , we define the following sets:

K(Ω) := {u ∈ C(Ω) : u of compact support Ω}

BC(Ω) :=

{
u ∈ C(Ω) ‖u‖∞ := sup

x∈Ω
|u(x)| <∞

}
.

The space C0(Ω) is the cloture de K(Ω) with respect to the uniform norm. A finite
measure defined on Ω is a linear continuous application on C0(Ω). The norm of a
finite measure µ is defined by

‖µ‖ := sup
u ∈ C0(Ω)
‖u‖∞ = 1

| < µ, u > |.

We denote by M(Ω) (resp. M+(Ω)) the space of finite measures (resp. positive
finite measures) on Ω. A sequence of finite measures (µn) converges weakly to µ in
M(Ω), we write in this case

µn ⇀ µ,

if one has
< µn, u >−→< µ, u >, ∀ u ∈ C0(Ω).

Theorem 5.3.1. (Concentration Compactness lemma)
Let (un) ⊂ D1,2(RN) a sequence such that

un ⇀ u in D1,2(RN),

|∇(un − u)|2 ⇀ µ in M(RN),

|un − u|2
∗
⇀ ν in M(RN),

un → u a.e. in RN



§ 5. Appendix: Minimax Theorems 105

et on définit

µ∞ := lim
R→∞

lim
n→∞

∫
|x|≥R

|∇un|2, ν∞ := lim
R→∞

lim
n→∞

∫
|x|>R

|un|2
∗
.

On a alors

• ‖ν‖2/2∗ ≤ S−1‖µ‖,

• ν2/2∗
∞ ≤ S−1µ∞,

• lim
n→∞
‖∇un‖2

2 = ‖∇u‖2
2 + ‖µ‖+ µ∞

• lim
n→∞
‖un‖2∗

2∗ = ‖u‖2∗

2∗ + ‖ν‖+ ν∞.

Furthermore, if u = 0 and ‖ν‖2/2∗ = S−1‖µ‖, then µ and ν are concentrated at a
single point.

5.4 Brézis-Lieb Lemma
Théorème 5.1. (Brézis-Lieb Lemma) Let j : C −→ C be a continuous function
such that j(0) = 0 and satisfy the following condition:
For every ε > 0 small sufficiently, there exist two continuous and positive functions
ϕε and ψε such that

(P ) ∀ a, b ∈ C, |j(a+ b)− j(a)| ≤ εϕε(a) + ψε(b).

Suppose that j satisfies the above hypothesis and let fn = f + gn be a sequence of
measurable functions from Ω into C such that:

(i) gn → 0 a.e. in Ω,

(ii) j(f) ∈ L1,

(iii) there exist C independent from ε and n such that
∫
ϕε(gn(x))dµ(x) ≤ C <∞,

(iv)
∫
ψε(f(x)) dµ(x) <∞ for all ε > 0, where µ is the Lebesgue’s measure in RN .

Then as n→∞, ∫
|j(f + gn)− j(gn)− j(f)| dµ→ 0.

Proposition 5.4.1. The functional considered in precedent chapters § ??, 1, 2 and
3 of the form s 7→ sf(x, s) and s 7→ F (x, s) =

∫ s
0
f(x, t)dt satisfy the conditions

of Brézis-Lieb lemma where f is a fonctional of Carathéodory type and satisfy for
every ε > 0 there exists Cε > 0 satisfying

|f(x, u)| ≤ ε|u|p∗−1 + Cε,

uniformly in x ∈ RN .
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Preuve. Let ε > 0, then

|(a+ b)f(x, a+ b)− af(x, a)| ≤ |(a+ b)f(x, a+ b)|+ |af(x, a)|
< ε|a+ b|p∗ + Cε|a+ b|+ ε|a|p∗ + Cε|a|
< εc(p)

[
|a|p∗ + |b|p∗

]
+ ε|a|p∗ + 2Cε|a|+ Cε|b|

< ε
[
(c(p) + 1)|a|p∗ + (2Cε/ε)|a|

]
+ ε|b|p∗ + Cε|b|.

With the same notions as in the Brézis-Lieb lemma , we take

ϕε(a) = (c(p) + 1)|a|p∗ + (2Cε/ε)|a|
ψε(b) = ε|b|p∗ + Cε|b|,

Frme where the relation (P ) Brézis-Lieb lemma. In the other hand, for every ε > 0

|F (x, a+ b)− F (x, a)| =

∣∣∣∣∫ a+b

a

f(x, t)dt

∣∣∣∣
≤

∫ a+b

a

[
ε|t|p∗−1 + Cε

]
dt

<
ε

p∗
∣∣|a+ b|p∗ − |a|p∗

∣∣+ Cε|b|

<
ε

p∗
(c(p) + 1)|a|p∗ +

εc(p)

p∗
|b|p∗ + Cε|b|.

Thus

ϕε(a) =
1

p∗
(c(p) + 1)|a|p∗

and ψε(b) =
εc(p)

p∗
|b|p∗ + Cε|b|.


