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Introduction

Whereas the international community of computational geometry is often tempted to
plunge into essentially theoretical research, in particular of a combinatorial nature, the
main originality of the work at INRIA resided, already when I started, in the concern of
experimental validation and applicability.

The field globally evolved in this direction, in particular after the Impact Task Force Report
[CT96, CT99]. But our lead on this topic still stays: our interest for technologic and
industrial transfer, and for setting up a platform for research, became even more concrete
with our strong implication in the CGAL project [CGA] for which our group is one of the
leaders.

This document choses to present the work from the point of view of this practical concern.

The long chain, that leads algorithms to largely distributed and
used software

The list of ingredients that allow to obtain a library of the quality and impact of CGAL is
long. They are all important, none of them must be minimized.

Nothing can be done without a good mathematical formalism, that forms the founda-
tions, essential to the structure. The geometric data structures, such as Delaunay trian-
gulations, already stand on good bases and their mathematical properties are known. A
few new studies still must be often performed to help the adaptation of these bases to a
rigorous programming.

Then, an algorithmic and combinatorial study of the geometric structures to be com-
puted, of the data structures and the complexity of the algorithms is necessary. It is well
known that the best algorithms in theory are not always possible to code, and even when
they are, they are not always the best in practice. Still, an algorithm that is easy to code
and is getting good running times in practice must be validated by a theoretical study that
will allow to certify its behavior in the worst case or in an expected case, its capacity of
scaling, and sometimes to correctly define its conditions of use.

The choices of representation of the objects and the geometric structures are mostly
guided by the combinatorial study. They often result from a compromise between acces
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time, memory space, richness of offered functionalities. These choices are an important
preliminary when settling geometric software.

Robustness issues appear quickly. They can be divided into two main categories. Han-
dling degenerate cases cannot be neglected, since real data provided by industrial part-
ners very often contain cases like coplanar or cospherical 3D points. Dealing with numer-
ical issues is perhaps even more crucial, since rounding errors can very frequently make
programs to crash [KMPT04]. We work here in the model of exact geometric computa-
tion, in which geometric predicates, that are the tests on which the algorithms base their
decisions, are in particular evaluated in an exact way (see Section 1.4).

Efficiency of programs complete the set. For obvious reasons, a program will never be
used in a company if it does not have good performances, whatever its stabibilty may be.
Filtering methods, both of arithmetic and geometric natures, allow more and more often
the exact geometric computation to get performances comparing with those of non certified
computation.

Of course, the quality of the programming itself has a large influence on the quality of
the final software. CGAL additionnally demands code genericity, reusability, flexibility. To
answer this demand, the software design choices must be done in a very careful way.

CGAL

I won’t spend time here on the technical aspects of C++ programming, of which I am
certainly not the best specialist. basic ideas can be found in the following chapter:

[44] Generic programming and the CGAL library.

In Jean-Daniel Boissonnat and Monique Teillaud, editors, Effective Computational
Geometry for Curves and Surfaces, pages 313-320. Springer-Verlag, Mathematics
and Visualization, 2006.

Avec Efi Fogel.

I only describe here in a few lines the CGAL specifities. The project site! gives more infor-
mation. The CGAL project formally started in 1996 under the initiative of a consortium
of a few European teams (including our group) and was supported by the European Com-
munity for three years. It evolved to an Open Source project, allowing other researchers
to participate. An INRIA start-up, GEOMETRYFACTORY?, was created in january 2003,
and is selling commercial licenses, support and specific developments based on CGAL.
The project goal is to promote research in computational geometry and to translate results
into robust programs for industrial applications.

1Www.cgal.org

Zhttp://www.geometryfactory.com/
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At the same period, the Computational Geometry Impact Task Force Report coordinated
by Bernard Chazelle insisted on a few recommendations [C196, C*99]. The production
of useful and usable geometric software was a key recommendation, and came with the
need for creating a rewarding structure for implementations in the academic world. CGAL
answers these two recommendations as well as possible.

CGAL shows a strong demand in terms of quality, and quality is ensured by different means.
A complete manual (more than 3000 pages now) is available on-line. Tests are running
every night on internal versions. Finally, an editorial board was crated in 2001; we are
currently 12 persons in the committee (two of them were recently elected, on july 2nd, 2007)
in charge of making technical decisions and coordinating CGAL promotion; the committee
evaluates new submitted packages and reviews them, in a process that is similar to the
submission of papers to journals and conferences. In this way, the committee plays an
important role not only in the quality of the library, but also in the reward of the packages
authors, who can take advantage of having gone through this deep review process before
being able to “publish” their package in CGAL.

CGAL hides neither the merits nor the work on its contributors by attributing them to
some mysterious superior entity; on the contrary, the important visibility of CGAL reflects
on the project participants. The gratitude of the community for the contributors is also
sensitive in many occasions.

CGAL qualifies as a premiere in a community that is originally mostly theoretical. The
impact of CGAL is difficult to measure, due to its principal means of distribution, but all
clues (roughly 1000 downloads per month, more than 800 registered people on the public
mailing list, and an important activity on this list) let us think that this impact is huge,
both in the community and even more outside.

This impact somehow legitimates research in computational geometry, by proving that it
does not boil down to an intellectual game of a handful of researchers, and it shows that
the small size of the community (the field is sometimes called “pin head” by sceptical
colleagues) must be relativized against its impact.

CGAL, Research or not?

If programming, in particular programming in CGAL with its strong demands, does not
pay in terms of publications, keeping this question in mind as time goes allows to sharpen
guidelines that naturally integrate the CGAL work in a research framework.

CGAL is useful for research. many research works are possible because some basic
CGAL packages exist, like the 3D triangulation package that is widely used for research in
meshing and reconstruction, like for instance in the following two references taken from a

large set [DGO1, ORY05].

CGAL raises new questions. Some questions would obviously never have been raised
without the work on libraries such as CGAL and CORE. In particular, many studies on
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robustness, on the arithmetic side [Pio99, BEPP97, PY06] as on a more algorithmic side
(see Section 1.4) would never have been done. Some work on simpler and more efficient
algorithms is also motivated by programming.

CGAL reconciles C++4 concepts and mathematic concepts. This is the thesis I am
supporting in particular. This conceptualization is the aspect that makes the CGAL work
really interesting, and objectively infinitely more interesting than just writing programs
that work. Of course this work does not come without efforts, efforts both in terms of
research (see for instance Section 2.3) and in terms of communication and persuasion.

Document Overview

This document consists of two main chapters: the first one gathers work on triangulations,
the second presents work on curved objects. These two chapters are concluded by a set of
open directions. The third chapter quickly surveys other results.



Chapter 1

Triangulations Made Practical

A Fundamental Structure

The practical usefulness of triangulations, especially Delaunay triangulations, does not
need to be proved, neither does their theoretical interest.

The mathematic foundations of Delaunay triangulations and Voronoi diagrams of point
sets are well known, as well as their combinatorial properties and the complexity bounds
of their computations in the worst case and for random distributions. The different other
links of the chain leading to software were left to study.

1.1 Randomization, the First Link of the Chain

Most of this work was already presented in my PhD thesis [60] and in the monograph that
followed [61]. A more complete state of the art is available in the literature [Dev96].

This section summarizes the following papers:

[60] Vers des algorithmes randomisés dynamiques en géométrie algorithmique.
These de doctorat en sciences, Université Paris-Sud, Orsay, France, 1991.

[61] Towards dynamic randomized algorithms in computational geometry,
volume 758 of Lecture Notes Comput. Sci. Springer-Verlag, 1993.

[17] A hierarchical representation of objects: the Delaunay tree.

In Proc. 2nd Annual ACM Symposium on Computational Geometry, pages 260—268,
1986.

With Jean-Daniel Boissonnat.

[18] On the randomized construction of the Delaunay tree.
Theoretical Computer Science, 112:339-354, 1993.
With Jean-Daniel Boissonnat.
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[15, 14] A semidynamic construction of higher-order Voronoi diagrams and its ran-
domized analysis.

Algorithmica, 9:329-356, 1993.

Preceded by a short version: An on-line construction of higher-order Voronoi dia-
grams and its randomized analysis.

In Proc. 2nd Canad. Conf. Comput. Geom., pages 278-281, 1990.

With Jean-Daniel Boissonnat and Olivier Devillers.

[34, 33| Fully dynamic Delaunay triangulation in logarithmic expected time per op-
eration.

Computational Geometry: Theory and Applications, 2(2):55-80, 1992.

Preceded by a short version: In Proc. 2nd Workshop on Algorithms and Data Struc-
tures, volume 519 of Lecture Notes Comput. Sci., pages 42-53. Springer-Verlag,
1991.

With Olivier Devillers and Stefan Meiser.

[13, 12] Applications of random sampling to on-line algorithms in computational ge-
ometry.

Discrete and Computational Geometry, 8:51-71, 1992.

Preceded by a short version: On-line geometric algorithms with good expected be-
haviours.

In Proc. 13th World Congress on Computation and Applied Math., pages 137139,
1991.

With Jean-Daniel Boissonnat, Olivier Devillers, René Schott and Mariette Yvinec.

as well as to a study performed after the PhD:

[66, 62] Union and split operations on dynamic trapezoidal maps.

Computational Geometry: Theory and Applications, 17:153-163, 2000.

Preceded by a short version: In Proc. 7th Canad. Conf. Comput. Geom., pages
181-186, 1995.

After some studies limited to Delaunay triangulations, we could abstract the essential un-
derlying principle, that contains in maintaining the history of the construction throughout
the incremental algorithm. We thus obtained and analyzed a general structure: the IDAG
(Influence Directed Acyclic Graph), also known as History DAG.

This work became so classic that the IDAG is presented in the chapter Randomization
and derandomization of the famous Handbook of Discrete and Computational Geometry,
Second Edition [GO04] without any citation!

After the PhD, the structure was enriched with the possibility to perform union and split
operations on a trapezoidal map, which was an attempt to adapt the work to parallel
machines.

In addition to the exciting chance to participate to research on some “hot” topic, the
interest of these advances was in the practical aspect of the randomized algorithms, in
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particular the incremental algorithms: they are easy to code, efficient, and their complexity
analysis is very realistic, since it does not rely on any hypothesis on the data distribution.
Let us remark that this structure later inspired a more efficient one, the Delaunay hierarchy
[Dev02], still used in CGAL.

The motivation of the above work has an important practical aspect. This is not true
for some other studies. Indeed, the technique also allows to solve other kinds of more
theoretical problems:

[20, 19] Splitting a Delaunay triangulation in linear time.

Algorithmica, 34:39-46, 2002.

Preceded by a short version:

In Proc. 9th. European Symposium on Algorithms, volume 2161 of Lecture Notes
Comput. Sci., pages 312-320. Springer-Verlag, 2001.

With Bernard Chazelle, Olivier Devillers, Ferran Hurtado, Merce Mora and Vera
Sacristan.

Computing the Delaunay triangulation of n points in the plane admits a Q(nlogn) lower
bound. However, when additional information is available, more efficient algorithms can
be obtained. Here, we show that given two sets of points, when the Delaunay triangulation
of their union is known, the Delaunay triangulation of each set can be computed by a
randomized algorithm of linear size, which is just an apparent contradiction with the lower
bound.

1.2 Representation of Triangulations

This section summarizes the following papers:

[63] Three dimensional triangulations in CGAL.
In Abstracts 15th European Workshop on Computational Geometry, pages 175-178.
INRIA Sophia-Antipolis, 1999.

[6] Programming with cGAL: The example of triangulations.

In Proc. 15th Annual ACM Symposium on Computational Geometry, pages 421-423,
1999.

With Jean-Daniel Boissonnat, Frédéric Cazals, Frank Da, Olivier Devillers, Sylvain
Pion, Francois Rebufat and Mariette Yvinec.

[11, 16] Triangulations in CGAL.
Computational Geometry: Theory and Applications, 22:5-19, 2002.
With Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion and Mariette Yvinec.
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Preceded by a short version: In Proc. 16th Annual ACM Symposium on Computa-
tional Geometry, pages 11-18, 2000.
With Jean-Daniel Boissonnat, Olivier Devillers and Mariette Yvinec.

I started to work on the cGAL 3D triangulation package in 1997. Global design choices for
the packages and classes had already been made by the first CGAL developers. A package
of 2D triangulations already existed [Yvi06] and was a solid source of inspiration for the
3D. However, going to 3D raised new problems, and some of the preliminary choices made
for the 2D had to be questioned. Very lively discussions happened within the PRISME
group, yielding choices that are still valid today.

Let us summarize these decisions:

e Adding an infinite vertex to R? and R3, which solves the problem of handling the
unbounded face/cell of the triangulation. The triangulation is thus a combinatorial
triangulation of the sphere S? in R? (resp. S® in R*).

e Reinforcing the separation between the combinatorial triangulation and its geometric
embedding.!

Also, ¢GAL handles all degenerate configurations. In particular in 3D, the changes of
dimension when dealing when degenerate dimensions (when points are all collinear, or all
coplanar) are performed in a mathematically sound way [63].

The first 3D triangulations package was released in 2000 [65, 64].

The later improvements in this package, consisting in optimizations or new functionalities,
raised new questions presented in the next sections.

1.3 Location in a Triangulation

This section summarizes the following papers:

[38, 37] Walking in a triangulation.

International Journal on Foundations of Computer Science, 13:181-199, 2002.
Preceded by a short version: In Proc. 17th Annu. ACM Symposium on Computa-
tional Geometry, pages 106-114, 2001.

With Olivier Devillers and Sylvain Pion.

The point location problem is a fundamental question. Several sophisticated structures can
answer the question in optimal time [Pre90, Kir83| but they are often difficult to code. It is

Lin particular under the impulsion of Lutz Kettner, one of the cGAL “dinosaurs”, who developed the
3D Polyhedron package and its underlying combinatorial Half edge data structure.
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often judicious to replace them by simpler techniques such as traversals using adjacencies
between triangles.

We have studied the performances of different walking techniques:

- walking along a line,

- walking in the directions of coordinate axes,

- walking using visibility relations,

- a variant of the visibility walk, using random decisions in the case of cyclic triangulations
for which the visibility relation has cycles,

from both theoretical and practical points of view. We counted not only the number of
visited simplices but also the cost of visiting a simplex. Based on this study, we finally
decided to implement the last strategy, since it has a little bit better performance than
the others (up to 10%), and because it is easy to code and does not suffer from degenerate
cases.

Let us remark that, whereas the complexiy of the line walk in a 2D Delaunay triangulation
is known for a random distribution of points,? the question is still open for visibility walks.

1.4 The Famous Degenerate Cases

[39] Perturbations and Vertex Removal in a 3D Delaunay Triangulation.

In Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 313-
319, 2003.

With Olivier Devillers.

[40] Perturbations and vertex removal in Delaunay and regular 3D triangulations.
Research Report INRIA 5968, 2006.
With Olivier Devillers.

Classical literature of computational geometry assumes that

- numerical computations are exact,

- input data are in general position,

two hypotheses in general not satisfied in practice.

This work lies in the framework of the exact geometric computation paradigm pioneered
by C. Yap [YD95]. This model consists in ensuring that geometric predicates (the tests on
which algorithms base their decisions) are evaluated exactly, and allows to guarantee the
correctness of the results of the algorithms.

Note that exact geometric computation should not be assimilated to exact arithmetic.
Filtering techniques allow to use fast approximate algorithms most of the time and to
combine exactness and efficiency [BBP01, DP03].

2the number of visited triangles to reach ¢ from p is O(|pg|/n) [BD9S]
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In the exact geometric computation framework, degenerate cases can be detected: they
correspond to cases where some predicates vanish. CGAL handles degenerate cases ex-
plicitely.

Perturbation techniques can be divided into two categories: Symbolic perturbations [Yap90,
EMO0, Sei98] and controlled perturbations [HS98, FKMS05]. We use symbolic perturba-
tions.

In fact, when some points are cospherical, the Delaunay triangulation is not uniquely
defined. The problem consists in giving a unique definition.

Note that using perturbation techniques that perturb the input data [ADS00] may have
major drawbacks: tetrahedra can become flat , which is unacceptable both from a practical
point of view for users and from a theoretical point of view, since the sphere circumscribing
a flat tetrahedron is not even defined.

Edelsbrunner and Miicke write that using their technique for Delaunay triangulations is
“a real pain” and suggest to use the transformation into a convex hull in higher dimension
and to perturb the computation of this convex hull [EM9O0].

We propose a variant, that perturbs only the fourth coordinate of the 3D points projected
on the unit paraboloid in 4D. The 3D points themselves are not perturbed, which avoids
creating flat tetrahedra since the orientation predicate is not modified. The perturbed
cosphericity predicate amounts to computing the sign of the determinant

1 1 1 1 1
ZT; X T X1 Tm
Det.(si, 55, 5k, 51, 5m) = Yi Yj Yk Ui Ym
Zi Zj Zk Z] Zm
tHe™t e e R et e

where

t, =2+ 192+ 22 pour x = 1,5, k,l,m

Det. is a polynomial in €, and it can be shown that it never vanishes as soon as the points
are not all coplanar.
The method was recently generalized to the case of the additively weighted Delaunay trian-
gulation (or regular triangulation). The proof is more tricky since new kinds of degeneracies
must be considered.

This method, that does not seem to be a special case of any general scheme known up
to now, is extremely simple to code, and has the advantage of not introducing any other
predicate. Also, it can be observed that the result only depends on an indexing of the
points, and that this choice is free. The indexing was initially in CGAL the insertion order
of the points, it was later replaced by the lexicographic ordering, which is intrinsecal.
This work allowed to deterministically define and compute a unique Delaunay triangulation
in all cases, which is crucial in particular for removing vertices. To our knowledge, CGAL
is the only publicly avalaible software offering this functionality for the 3D Delaunay and
weighted Delaunay triangulations.
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1.5 cGAL Packages

CGAL is the natural output of our research, and also raises new research questions: before
trying to code vertex removal in a 3D Delaunay triangulation, I had not thought that
there was any new question to solve, and I thought I would only have to achieve a tedious
programming work. This continuous exchange between programming and research, one
feeding the other and reciprocally, is a remarquable feature of CGAL.

The work described in this chapter led to the following CGAL packages:

[65] 3D triangulations.
In ccAL Editorial Board, editor, cGAL User and Reference Manual. 2.1 and 2.2
edition, 2000.

[64] 3D triangulation data structure.
In cGAL Editorial Board, editor, CGAL User and Reference Manual. 2.1 and 2.2
edition, 2000.

[51] 3D triangulations.

In ccaL Editorial Board, editor, cGAL User and Reference Manual. 2.3, 2.4, 3.0, 3.1,
3.2 and 3.3 edition, 2001, 2002, 2003, 2004, 2006 and 2007.

With Sylvain Pion, whose skills in C++ are precious, and who made the code more
efficient in particular by his important work on arithmetic filtering, and an improve-
ment of memory management.

[50] 3D triangulation data structure.

In ccaL Editorial Board, editor, cGAL User and Reference Manual. 2.3, 2.4, 3.0, 3.1,
3.2 and 3.3 edition, 2001, 2002, 2003, 2004, 2006 and 2007.

With Sylvain Pion.

The impact of this work is difficult to precisely evaluate, since CGAL is distributed under
an Open Source license.? and can be downloaded on the projet web site (that registers
roughly 14000 downloads per release). Still, the volumes of discussions on the public
mailing list (about 800 subscribers) and users sending feedback (sometimes to ask for new
functionalities) allow us to understand the real importance of the impact in particular in
the academic world, in computational geometry (surface reconstruction, meshing;...) and
outside (computer graphics, fluid mechanics, structural biology, topology,...).* Note that
the 3D triangulation packages are the foundation of the CGAL meshing packages [RY06]
and are used for instance by Tamal Dey for his reconstruction software® [DGO1] as well
as Deok-Soo Kim®. Also, commercial licenses were sold via GEOMETRYFACTORY to the

3QPL for triangulations and more generally almost all combinatorial structures, whereas the basic
functionalities (the “kernels”) are under LGPL

4The page Projects using CGAL http://www.cgal.org/projects.html tries to list users.

Shttp://www.cse.ohio-state.edu/~tamaldey/cocone.html

Shttp://voronoi.hanyang.ac.kr/
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petroleum companies Midland Valley Exploration (United Kingdom) and Total (France),
as well as to BSAP (Switzerlan) for tunnel drilling and France Télécom and British Telecom
for antenna placement.

1.6 Towards Other Geometries

1.6.1 Space of Spheres and Hyperbolic Geometry

The general motivation of this work was to generalize to the case of non-parallel planes
the algorithm computing the Delaunay triangulation of a set S of points measured in two
parallel sections of an object. This algorithm is optimal and consists in superimposing the
two respective Voronoi diagrams of the sets [Boi88].

The algorithm generalizes in fact by replacing the Euclidean Voronoi diagrams by Voronoi
diagrams for an hyperbolic metric.

[8, 7] Output-sensitive construction of the Delaunay triangulation of points lying in
two planes.

International Journal of Computational Geometry and Applications, 6(1):1-14, 1996.
Preceded by a short version: Output-sensitive construction of the 3-d Delaunay tri-
angulation of constrained sets of points.

In Proc. 3rd Canad. Conf. Comput. Geom., pages 110-113, 1991.

With Jean-Daniel Boissonnat, André Cérézo and Olivier Devillers.

We introduced the space of spheres, that is not a revolutionary notion in mathematics
since it is already present in the reference books by Berger [Ber77, Ber87], but allowed a
new vision in computational geometry. In the Euclidean plane, a circle of radius r centered
at (x,y) is associated in the space of circles to the point (z,y, 2> + y? — r?). in this space,
pencils of circles are lines, and points in the plane (circles of radius 0) are associated with
points of the unit paraboloid.

[35, 36] The space of spheres, a geometric tool to unify duality results on Voronoi
diagrams.

In Proc. 4th Canad. Conf. Comput. Geom., pages 263-268, 1992.

Long version: Research Report INRIA 1620, 1992.

With Olivier Devillers and Stefan Meiser.

This mathematic vision allowed us to give a unified framework to all known results on the
various generalizations of Voronoi diagrams and the projections of levels in arrangements
of higher dimensions [ES86].



1.6. TOWARDS OTHER GEOMETRIES 13

We also showed that the Voronoi diagram in the hyperbolic plane could be easily deduced
from a Voronoi diagram in the Euclidean plane.

In the Poincaré half-plane model, the hyperbolic plane is represented by the half-plane
{z € C,Imz > 0} (Imz denotes the imaginary part of the complex z) limited by the
infinite line Imz = 0. In this model, the hyperbolic lines are half-circles (in the Euclidean
sense) orthogonal to the infinite line.

In the space of spheres, a line parallel to a given direction represents a pencil of circles
of given radical axis. This is the essential argument for proving that a Fuclidean Voronoi
diagram is the vertical projection of the lower envelope of planes that are tangent to the
unit paraboloid. The same argument shows that, if this lower envelope is projected onto
the paraboloid in the direction corresponding to the infinite line of the Poincaré half-plane,
then vertically onto the plane, then the hyperbolic Voronoi diagram is obtained.

This work was the opportunity (this is too rare) to dream on hyperbolic geometry in front
of a blackboard. These dreams were written by André Cérézo in a pedagogic publication
[Cér91] (section IV-E: “beyond the mirror”), with his thin writing that we don’t forget.
The construction of a bisecting line can in fact continue outside the Poincaré half-plane
(thus, “beyond the mirror”). The curved is then an arc of an hyperbola, that is the
imaginary extension of the bisecting line of the two points.

These works on the space of spheres and hyperbolic geometry ware unfortunately never
published, but they would certainly deserve to be exploited in CGAL.

1.6.2 New Questions

Apart from the previous section, all work presented in this chapter takes place in the
Euclidean space R3. This is in fact the case in roughly all the literature in computational
geometry. Still, other spaces are necessary for applications. For instance, the case of a
periodic parameter space like [0, 1] x [0, 1] x [0, 1] is very important for simulations in fluid
mechanisms and astrophysics, among other fields.

In these application fields, it is usual to duplicate a certain number of points (it seems
that roughly 20% of the points must be duplicated in general) around the boundaries of
the reference domain, in order to simulate periodicity. This results in overheads both in
running times and memory.

Developing data structures and algorithms able to represent and compute directly trian-
gulations in a space having the topology of the torus T® in R* is thus a very important
issue.

Let us notice here that triangulations in such spaces are not always cellular complexes,
since a cell can have several times the same vertex and the same neighbor. Sampling
conditions can guarantee that the triangulation is a cellular complex.

This work will lead to a complete reorganization of the architecture of the CGAL packages
and to some publications. It was started during the 6 months” post-doctoral stay of Nico

"Nico was also completing his work on Skin surfaces
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Kruithof in 2006 and is currently being studied further by Manuel Caroli who is starting
his PhD thesis.

Let us also mention that we also started, during Mridul Aanjaneya’s internship, to work
on computing triangulations in the projective plane [1], while studies in computational
geometry were limited to the oriented projective plane [Sto91].

No more detail is given in this document.



Chapter 2

Curved Objects

Geometric algorithms traditionally limit their framework to manipulating linear objects
(points, segments, triangles) in affine Euclidean space, curved objects being discretized by
linear elements.

Handling directly curved objects, which would allow not to increase tremendoussly the
number of manipulated objects, is one of the important challenges in computational ge-
ometry.

Its is still rather usual to find in the best literature short sentences quickly claiming that the
presented algorithm can easily be adapted to the case of curves, followed by a theoretical
complexity analysis. The crucial problem is then ignored: how are the geometric primitives
used by the algorithm evaluated? let us recall here that the algorithms we are interested
in assume primitives to be evaluated exactly.

As will be seen in this chapter, a large part of this work up to now focuses on the study of
circles, spheres and circular arcs in dimensions two and three.

These cases did not seem to be a goal at the beginning. However, as the work progressed
(see Section 2.3), several applications appeared, justifying to consider them not only as a
step to design an test methods before studying more general cases, but as an important
topic in itself. Indeed, robust and efficient manipulations of circular arcs in the plane
are of capital importance in some industrial domains like manufacturing and printed or
integrated circuits design. Manipulations of spheres, and circular arcs in 3D, are central
in geometric aspects of structural biology.

The recent increasing interest in the community for approximationss of curves by circular
arcs [DRS06, AAH'07] also confirms that this research direction was well chosen, which
was not so obvious for everybody at the beginning.

This chapter will also mention more prospective work on more general objects.

The work on arrangements of quadrics, algebraic and geometric primitives, and CGAL
kernels, is mentioned in the following book chapter:

[42] Arrangements.
In Jean-Daniel Boissonnat and Monique Teillaud, editors, Effective Computational

15
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Geometry for Curves and Surfaces, pages 1-66. Springer-Verlag, Mathematics and
Visualization, 2006.
With Efi Fogel, Dan Halperin, Lutz Kettner, Ron Wein and Nicola Wolpert.

2.1 Circular Arcs

Great challenge, but humble start. Already in 1997, in the PRISME project-team at that
time, I started a working group gathering a few members of FIABLE! (INRIA incentive
action). We worked on the evaluation of primitives on circular arcs, and more precisely, as
a start, the comparision of abscissae of two points each defined as the intersection of two
circular arcs, which is one of the most interesting predicates for computing an arrangement
of circular arcs (the predicates for computing Voronoi diagrams of circles being far from
reachable at that time).

This section summarizes the following publications:

[32, 30, 31] Algebraic methods and arithmetic filtering for exact predicates on circle
arcs.

Computational Geometry: Theory and Applications, 22:119-142, 2002.

Preceded by short versions:

- In Abstracts 16th FEuropean Workshop on Computational Geometry, pages 117—-120.
Ben-Gurion University of the Negev, 2000.

- Exact predicates for circle arcs arrangements. In Proc. 16th Annual ACM Sympo-
sium on Computational Geometry, pages 139-147, 2000.

With Olivier Devillers, Alexandra Fronville ans Bernard Mourrain.

The restriction of the problem to the case of circular arcs may seem to make it trivial:
it reduces to comparisons of chosen roots of two degree two equations. A manual (still,
careful) elimination of radicals in the roots expressions, allowing rational computations,
seems to solve the question. However, some interesting questions still arise.

The first question is the representation of circles which has an important impact on the size
and the degree of algebraic expressions, and on the length of numbers that are manipulated.
Also, our goal was to draw methods that could be generalized to higher degree objects in
the future. We used several algebraic ingredients [Yap93|: resultants, invariants, Descartes
rule, which allowed us to reduce the problem to the evaluation of signs of polynomial
expressions of maximal degree 12. Then usual filtering methods can be used, to get an
efficient exact evaluation of these signs.

'http://www-sop.inria.fr/prisme/fiable/
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An interesting aspect of this work is also the geometric interpretation of these polynomial
expressions, even if it is not concretely used in the computations. Quantities appear, like
differences of abscissae between the circles centers, widths of the circular arcs, powers of
some points with respect to the circles, a cross-ratio between the projections of intersection
points.

This interpretation confirms, if necessary, that algebra and geometry are intimately related,
but I also think that going deeper would allow to better understand this kind of questions,
and to establish mechanisms for geometric reasoning that could complete algebraic meth-
ods. This direction was not explored.

Our goal of drawing general methods that could apply to higher degree curves was men-
tioned earlier. Unfortunately, we have not been able to do so even for conics, that lead to
manipulations of algebraic numbers of degree four. Sturm sequences were shown later to
be more adapted to these questions [KE03, EK06, ET04].

Still, in the case of circles, the methods based on Sturm sequences yield to the same
polynomial expressions as ours in the case of circles. This is not surprising at all since
these expressions do have an intrinsic geometric meaning.

The results of this work are the basis of the CGAL implementation presented in Section 2.3.

2.2 Arrangements of Quadrics in the Space

This section summarizes the following publications:

[47, 46] On the computation of an arrangement of quadrics in 3D.

Computational Geometry: Theory and Applications, 30:145-164, 2005.

Preceded by a short version: Sweeping an Arrangement of Quadrics in 3D. In Proc.
19th European Workshop on Computational Geometry, pages 31-34, 2003.

With Bernard Mourrain and Jean-Pierre Técourt.

While implementations of arrangements of 2D curves are now starting to be rather well
mastered [BEH'05, WFZHO07] (for easy curves, regarding the algebraic questions), it is not
the case for surfaces in 3D. The topology of the arrangement is then very complex. Some
work define and analyze spatial decompositions, like the cylindrical algebraic decomposition
[Col75], a stratification [CEGS91], or the vertical decomposition [SA95], but they do not
always come with algorithms for construction. More concrete results were given, even
reaching an experimental study for triangles in 3D, with a complexity analysis still valid
for general well-behaved algebraic surfaces [SH02].

A complete implementation of arrangements of quadrics can only be considered in the long
term. Most work in this domain chose surfacic representation of the arrangements, i.e. a
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description by its faces of dimension no more than two [GHSO01]. A near-optimal parameter-
ization, in terms of radicals, of the intersections of two quadrics was proposed [DLLP03] and
the computation of these intersections was implemented [LPP04, qi]. A complete classifi-
cation of the intersections of quadrics was recently given [DLLP05a, DLLP05b, DLLP05c].
We proposed a sweeping algorithm that follows a volumic approach instead, since the 3D
cells are described. More precisely, like in [SHO2], the algorithm computes the vertical
decomposition of the arrangement. We took a particular care of the algebraic aspects,
which is the deadlock for this construction. The algorithm requires comparisons of algebraic
numbers of degree up to 16, so, it requires computations in an extension of degree 256. . .
In the case of spheres, the algebraic numbers are only of degree 4, which allows to be more
optimistic about an implementation.

Moreover, in an on-going work with Daniel Russel, we propose a new decomposition of the
space, using only algebraic numbers of degree two. This result allows an implementation,
which is in progress.

Though particular, the case of spheres is important since it allows to hope future uses in
structural biology: knowing the cells of the arrangement, an additional computation of
their volume allows to estimate energies in molecules [EM86].

2.3 A Curved Kernel for CGAL

This section summarizes the research on designing a curved kernel for CGAL.

[41, 52, 67] Towards an Open Curved Kernel.

In Proc. 20th Annual ACM Symposium on Computational Geometry, pages 438—446,
2004.

With Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion and Elias P. Tsigaridas.
Preceded by preliminary studies:

- Towards a ccaL-like kernel for curves.

Research Report ECG-TR-302206-01, 2003.

With Sylvain Pion.

- First prototype of a CGAL geometric kernel with circular arcs.

Research Report ECG-TR-182203-01, 2002.

This research yielded packages:

[53] 2D Circular Kernel.

In ccaL Editorial Board, editor, CGAL User and Reference Manual. 3.2 and 3.3
edition, 2006 and 2007.

With Sylvain Pion.

[69] 3D Circular Kernel.
In ccAL Editorial Board, editor, CGAL User and Reference Manual. Submitted.
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This package was also the topic of a report:
[68] Specifications of the cGAL 3D Circular Kernel.
Research Report ACS-TR-243302-01, 2007.

The following paper contains recent complements:

[25] Design of the cGAL 3D spherical kernel and application to arrangements of circles
on a sphere.

Submitted.

With Pedro Machado Manhéaes de Castro, Frédéric Cazals ans Sébastien Loriot.

The CcGAL kernel gathers elementary objects with rational coordinates and that are mostly
linear. Circles are defined in this kernel but hardly any functionality is offered. The work
mentioned above settled the bases for programming new types of objects in CGAL: circular
arcs, together with points having algebraic coordinates (of degree two).
Introducing computations on circular arcs showed the limits of the current design of the
CGAL kernel, since for instance it is not allowed to manipulate different point types with
different coordinate types. But it offers the possibility of beeing extended [HHK™01], which
allowed us to design a kernel offering computations on circular arcs.
The key idea in this design is to clearly separate the geometric and the algebraic aspects.
This separation can be seen as a separation between polynomials or algebraic curves (cir-
cles, lines) on one hand, and semi-algebraic curves (arcs, segments) on the other hand.
This separation algebra/geometry is made concrete in the code by the introduction of a
template parameter:

template < class LinearKernel, class AlgebraicKernel >

struct Circular_kernel 2
The implementation led to the sumbission of a new package to the CGAL editorial board,
and its integration in release 3.2 of the library [53].

As said earlier, the goal was first more general, but interesting applications showed up,
and justified a deeper study to improve the implementation. Indeed, a printed circuit
company, in contact with the GEOMETRYFACTORY start-up, was interested by this work,
since industrial software fail on some data sets because of robustness problems. We could
use some industrial data sets for our experiments. Moreover, Dassault-Systemes bought a
research license of this package.

An interface with the CGAL arrangement package developed in Tel-Aviv [WFZHO06] allowed
us to experiment our kernel on these industrial data.

[45] An Empirical Comparison of Software for Constructing Arrangements of Curved
Arcs (preliminary version).

Research Report ECG-TR-361200-01, 2004.

With Efraim Fogel, Dan Halperin, Ron Wein, Sylvain Pion, loannis Emiris, Athana-
sios Kakargias, Elias Tsigaridas, Eric Berberich, Arno Eigenwillig, Michael Hemmer,
Lutz Kettner, Kurt Mehlhorn, Elmar Schomer and Nicola Wolpert.
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[48, 49] Benchmarking of different arrangement traits. Research Report ACS-TR-
123110-01, 2006.

On the evaluation of 2D curved kernels. Research Report ACS-TR-123104-01, 2006.
With Sylvain Pion and Ilya Suslov.

[54] Geometric filtering of primitives on circular arcs.
Research Report ACS-TR-121105-01, 2006.
With Sylvain Pion and Constantinos P. Tsirogiannis.

[27, 26] Exact and efficient computations on circles in CGAL and applications to VLSI
design.

In Abstracts 25rd European Workshop on Computational Geometry, pages 219-222.
Graz University, 2007.

Full version: Research Report INRIA 6091, 2007.

With Pedro Machado Manhaes de Castro and Sylvain Pion.

This works also raised two reports:

[28] Benchmarks and evaluation of algebraic kernels for circles. Research Report
ACS-TR-243306-01, 2007.

[29] cGAL package for 2d filtered circular kernel. Research Report ACS-TR-243404-
02, 2007.

With Pedro Machado Manhaes de Castro and Sylvain Pion.

Several methods were explored, in particular different representations of algebraic numbers,
and led to important improvements in both running times and memory, which are available
in the release 3.3 of CGAL.

The new representation of algebraic numbers also allowed us to code without new difficulties
a kernel for manipulating circular arcs in 3D [69], which will naturally be used with the
code of arrangements of spheres (Section 2.2).

This work was done with two objectives: handle circular arcs, and draw methods and
techniques generalizing to higher degree. In this way, the main algebraic concepts? drawn
for circular arcs are still central for any algebraic curves: comparisons of roots of systems,
evaluation of the sign of a polynomial at the roots of a system.

This basis being given, precise specifications must still be written, which is in progress as
a collaboration with our European ACS partners.

[3] Interface specification of algebraic kernel.

Research Report ACS-TR-123101-01, 2006.

With Eric Berberich, Michael Hemmer, Menelaos Karavelas, Sylvain Pion and Elias
Tsigaridas.

2in the computerese C++ Standard Template Library: set of properties anfd funtionalities that a type
must provide
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[4] Prototype implementation of the algebraic kernel.

Research Report ACS-TR-123101-01, 2006.

With Eric Berberich, Michael Hemmer, Menelaos Karavelas, Sylvain Pion and Elias
Tsigaridas.

[5] Revision of Interface specification of algebraic kernel.

Research Report ACS-TR-243300-01, 2007.
With Eric Berberich, Michael Hemmer and Menelaos Karavelas.

Let us emphasize that in fact the central concepts are still valid for non algebraic implicit
functions, which opens many new directions in the future. ..

In parallel, I cooperate with Fabrice Rouillier, Sylvain Petitjean and Sylvain Lazard about
an implementation of an algebraic kernel based on FGb/RS [fgb], whose main author will
be Luis Mariano Penaranda.

2.4 Open Questions on Predicates

Underlying questions, which seem fundamental to me, are left open. They are quickly
raised in Sections 2.4.2 and 2.4.3.

2.4.1 Degree of geometric objects

Before opening these questions, let us quickly mention some work on the degree of offsets
of plane algebraic curves. This question is well posed, which is not the case of the questions
quickly brushed in the following sections.

[2] The offset to an algebraic curve and an application to conics.

In Proc. International Conference on Computational Science and its Applications,
volume 3480 of Lecture Notes Comput. Sci., pages 683—696. Springer-Verlag, 2005.
With Frangois Anton, Ioannis Emiris and Bernard Mourrain.

We obtained an exact expression of the degree of the generalized offset® of an algebraic
curve, using the multiplicities of infinite components and singular locii. In the simple case
of conics, the offset has degree 8 for ellipses and hyperbolas, 6 for parabolas, and 4 for
circles and pairs of lines, and an implicit equation of the offset can be computed.

3locus of the centers of the circles of given radius and tangent to the curve
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2.4.2 Minimality of the Set of Predicates

While it is well known that predicates orientation and in_sphere are necessary and sufficient
to compute a Delaunay triangulation, the question is not solved for some other geometric
structures.

Two questions arise: predicates required to define and compute a structure, and predicates
required for a given algorithm.

The answers would have a practical importance, especially for generic implementations
like in CGAL [44]. Indeed each generic class computing a structure is templated by a
Traits_class providing the algorithms with elementary geometric computations. Every user
may implement his own model of the traits class concept. It is important not to require
useless requirements from users.

Moreover, minimizing the complexity of the predicates is essential for efficiency. That’s
what I insisted on in a cooperation with Tel-Aviv, in order to remove some expensive
predicates from the list of predicates required by CGAL arrangements. The authors write
“Reducing the requirements from the geometric traits-class and minimizing the number
of invocations of traits-class functions has a dramatic effect on the performance of our
arrangement operations” [WFZHO07].

[44] Generic programming and the CGAL library.

In Jean-Daniel Boissonnat and Monique Teillaud, editors, Effective Computational
Geometry for Curves and Surfaces. Springer-Verlag, Mathematics and Visualization,
2006.

With Efi Fogel.

[43] Specification of the traits classes for CGAL arrangements of curves.

Research Report ECG-TR-241200-01, 2003.

With Efi Fogel, Dan Halperin, Ron Wein, Eric Berberich, Arno Eigenwillig, Susan
Hert and Lutz Kettner.

2.4.3 Algebraic Degree of the Predicates

As seen in section 2.2 or the previous section, the degree of predicates is an important
measure of complexity. It is also a measure of the precision of the computations, or of
the length of multiprecision numbers used, if the computations are performed exactly on
integers. Still, this question is “fuid”. It can be declined in several versions:

- Degree of a given predicate. This is the simplest question since the predicate often reduce
to the sign of a polynomial, more precisely a resultant. The resultant is the polynomial of
minimal degree that expresses a necessary and sufficient condition for a system to have a
solution, so, we could imagine that the degree of the resultant is the degree of the predicate.
However this would be wrong: first, knowing the degree of the resultant is not trivial, since
methods computing it in fact often compute a multiple; then, the resultant can sometimes
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be factorized, and the degree of the predicates would more likely be the maximum degree
of its factors; finally, since a factor can have the shape of P?+@Q?, which has constant sign,
the degree of polynomials does not have a clear meaning.

- Degree of an algorithm. Thos notion is extremely badly defined, because it depends
on the way geometric predicates required by the algorithms are translated into algebraic
terms. A recent example shows that these expressions are far from being canonical: for
the Voronoi diagram of circles, predicates supposed to have degree 16 [KE03, EK06] were
translated into rational expressions [DM].

- Degree of a problem. This sounds even more complicated. However, the degree necessary
to describe a structure is a lower bound for its computation. Still, this bounds remains
difficult to obtain.

Furthermore, let us remark that this measure is not necessarily related to the running time
that can be expected in practice: indeed, the running time depends more on the number
of arithmetic expressions to evaluate the predicate. The CGAL implementation of Voronoi
diagram of circles [KY06] uses predicates of degree 20, because predicates of degree 16 (first
considered to be optimal, see above) require 100 times as many arithmetic operations.

To summarize, everything is still to be done regarding a formalization of this question and
a result of an definition intrinsic to the geometric nature of the computed objects.t.

41 tried to vehicle this idea at the European Workshop on Computational Geometry in march 2006 http:
//cgi.di.uoa.gr/ ewcg06/ in my invited talk http://www-sop.inria.fr/geometrica/team/Monique.
Teillaud/talks/EWCG.pdf
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Chapter 3

Other Geometric Works and
Applications

This chapter just presents shorts abstracts of the cited papers.

3.1 Minkowski Sums and Satellite Layout

[10, 9] Slicing Minkowski sums for satellite antenna layout.

Computer-Aided Design, 30(4):255-265, 1998. Special Issue on Computational Ge-
ometry and Computer-Aided Design and Manufacturing.

Preceded by a short version: Minkowski operations for satellite antenna layout.

In Proc. 13th Annual ACM Symposium on Computational Geometry, pages 6776,
1997.

With Jean-Daniel Boissonnat and Eelco de Lange.

This study was performed in the framework of an industrial contract with Matra Marconi
Space. Eelco de Lange worked during his PhD 3/4th of his time at Matra Marconi Space
in Toulouse, communicating by e-mail and visiting us regularly [dL.98].

Satellite layout is a very hard task because available space for the instruments is small
and the physical constraints on the layout are strong. In this article, we show how some
physical layout constraints can be modeled geometrically and how Minkowski operations
can be used to place instruments, and in particular antennas.

The crucial step consists in placing an antenna by translation onto a satellite wall. The ad-
missible space is therefore two-dimensional, although the instrument is three-dimensional.
We propose an algorithm to efficiently compute the admissible space and describe its im-
plementation. Experimental results on realistic examples are given.

25
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3.2 Matching Polygonal Objects

[21, 22] Computing the maximum overlap of two convex polygons under translations.
Theory of Computing Systems, 31:613-628, 1998.

Preceded by a short version: In Proc. 7th Annu. Internat. Sympos. Algorithms
Comput., volume 1178 of Lecture Notes Comput. Sci., pages 126-135. Springer-
Verlag, 1996.

With Mark de Berg, Otfried Cheong, Olivier Devillers and Marc van Kreveld.

Let P be a convex polygon in the plane with n vertices and let () be a convex polygon with
m vertices. We prove that the maximum number of combinatorially distinct placements
of Q with respect to P under translations is O(n? + m? + min(nm? + n?m)), and we give
an example showing that this bound is tight in the worst case. Second, we present an
O((n + m)log(n + m)) algorithm for determining a translation of ) that maximizes the
area of overlap of P and Q).

We also prove that the placement of () that makes the centroids of () and P coincide
realizes an overlap of at least 9/25 of the maximum possible overlap. As an upper bound,
we show an example where the overlap in this placement is 4/9 of the maximum possible
overlap.

3.3 Cones and Motion Planning

[24, 23] Reaching a goal with directional uncertainty.

Theoretical Computer Science, 140:301-317, 1995.

Preceded by a short version: In Proc. 4th Annu. Internat. Sympos. Algorithms
Comput., volume 762 of Lecture Notes Comput. Sci., pages 1-10. Springer-Verlag,
1993.

With Mark de Berg, Leonidas Guibas, Dan Halperin, Mark Overmars, Otfried Schwarzkopf
(/Cheong) and Micha Sharir.

We study two problems related to planar motion planning for robots with imperfect control,
where, if the robot starts a linear movement in a certain commanded direction, we only
know that its actual movement will be confined in a cone of angle o centered around the
specified direction.

First, we consider a single goal region, namely the “region at infinity”, and a set of polyg-
onal obstacles, modeled as a set S of n line segments. We are interested in the region
Ra(S) from where we can reach infinity with a directional uncertainty of a. We prove
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that the maximum complexity of R,(S) is O(n/a®). Second, we consider a collection of
k polygonal goal regions of total complexity m, but without any obstacles. Here we prove
an O(k*m) bound on the complexity of the region from where we can reach a goal region
with a directional uncertainty of a. For both situations we also prove lower bounds on the
maximum complexity, and we give efficient algorithms for computing the regions.

3.4 More Spheres, and Robots

[59] Application de la géométrie synthétique au probleme de modélisation géométrique
directe des robots paralleles.

Mechanism and Machine Theory, 34:255-269, 1999.

With Luc Tancredi.

[58] Forward kinematics of a parallel manipulator with additional rotary sensors
measuring the position of platform joints.

In J-P. Merlet and B. Ravani, editors, Computational Kinematics, pages 261-270.
Kluwer Academic Publishers, 1995.

With Luc Tancredi and Jean-Pierre Merlet.

[57] Extra sensors for solving the forward kinematics problem of parallel manipula-
tors.

In 9th World Congress on the Theory of Machines and Mechanisms, volume 3, pages
2122-2126, Milan, 1995. TFToMM.

With Luc Tancredi and Jean-Pierre Merlet.

[56] Symbolic elimination for parallel manipulators.

Communication at 4th Internat. Sympos. on Effective Methods in Algebraic Geom-
etry (MEGA), 1996.

With Luc Tancredi and Olivier Devillers.

The forward kinematics problem of parallel manipulators consists in determining the posi-
tion and the orientation of the platform when the values of the articular variables, which
are used to command the robot, are known. When lengths of legs are known, the problem
relates to intersections of spheres.

We considered several methods: the so-called synthetic geometry (which consists in a few
words in computing the algebraic degrees of the geometric locii of points), and symbolic
elimination. Measures of additional sensors are also used. This work allowed us to obtain
bounds on the numbers of solutions of several variants of the problem.

3.5 Projective Geometry and Camera Calibration
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[55] On the absolute quadratic complex and its application to autocalibration.

In Proc. IEEE International Conference on Computer Vision and Pattern Recogni-
tion, volume 1, pages 780 — 787, 2005.

With Jean Ponce, Kenton McHenry, Théo Papadopoulo and Bill Triggs.

I worked on this paper during a visit at Urbana-Champaign. It introduces the absolute
quadratic complex formed by all lines that intersect the absolute conic. If w denotes the
3 x 3 symmetric matrix representing the image of that conic under the action of a camera
with projection matrix P, it is shown that w =~ ﬁﬁfT, where P is the 3 x 6 line projection
matrix associated with P, and  is a 6 x 6 symmetric matrix of rank 3 representing the
absolute quadratic complex. This simple relation between a camera’s intrinsic parameters,
its projection matrix expressed in a projective coordinate frame, and the metric upgrade
separating this frame from a metric one —as respectively captured by the matrices w,
P, and 2— provides a new framework for autocalibration, particularly well suited to
typical digital cameras with rectangular or square pixels since the skew and aspect ratio
are decoupled from the other intrinsic parameters in w.
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Of course, far be it from me the idea of comparing this work to a beautiful mathematical
theory. .. Still, in due proportion, I can see some “beauty” in some axes of this research.
Working for the cGAL library, or in the CGAL project, is interesting by several ways. While
for me, programming is not a pleasure in itself, CGAL still provides some satisfactions: the
demand for quality that can look like a constraint is in fact a profit, the construction
of something that actually works is gratifying, as well as the practical usefulness for the
numerous users (writing a non-used code would look like a pure waste of time to me). And
of course, the visibility and the impact that the CGAL project gives to its participants must
not be neglected.

Even more, the interest of a certain form of abstraction appears, lying every day in the
definition of concepts (in the sense of the STL (standard template library)), but that
goes closer ro revealing underlying mathematical concepts when studied deeper. I am
far from opposing them, like some communities of programmers unfortunately use to, on
the contrary I insist to show their convergences in the CGAL community.

As a matter of interest, I will mention a conversation with Daniel Lazard in may 2006.
A caricaturist would show us, me talking about programs (programming elementary func-
tionalities on circular arcs), and him of mathematics; but in a short time, I saw with
pleasure that, even though our starting points were different, our conversations were per-
fectly converging: solve and sign_at are the heart of the solution!® Such dialogues are not
only reassuring but also very rewarding and constructive, much more than claims some-
times heard (“The requirements for a type to be model of Kernel::Point_2 is basically to
be CopyConstructible. Nothing more.”), that seem to me to be on the wrong track in
occulting the mathematical semantics of manipulated objects.

ISee Section 2.3
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The more I code, and the more I am convinced that choosing the right mathematical
concepts is crucial to obtain good code, in particular code aiming at some perennity.
Programming mathematical concepts sounds to me like the source of a lot of good research
topics.

The interest of this topic is far from being only related with the taste of a researcher for a
nice formalism. The needs are currently important in many fields: the computation of tri-
angulations in periodic domains (3D torii or cylinders in R?*) are necessary for simulations?
(Section 1.6.2), computations in hyperbolic spaces are used for studying cristalline struc-
tures®, projective geometry gives a natural framework to many computer vision problems
(multi-camera geometry and calibration for instance), etc

Various mathematical and computer science fields must intervene in this wide topic. We
talked in this document of algebraic geometry, combinatorics, projective geometry, pro-
gramming, computer arithmetic, hyperbolic geometry, algorithmic, algebraic topology. .. This
multi-disciplinarity makes the topic particularly attractive, both by its scientific interest
and the multiple collaborations it implies.

The algorithmic and programming techniques are now ready to allow important advances
in providing useful and efficient mathematical tools.

Zsee for instance http://xxx.lanl.gov/abs/cond-mat/0301378
3see for instance http://wwwrsphysse.anu.edu.au/~vbr110/index.php
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