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Chapter 1

Introduction

Given a mathematical problem, the corresponding inverse problem is one where
the roles of the data and the unknown are reversed. The study of inverse
problems had a great development in the last twenty years, in connection with
applied sciences and technology. Indeed the analysis of a phenomenon arising
in mathematical physics requires the knowledge of parameters, which in the
classical model, described by the direct problem, are usually assumed to be
given, whereas in practice they are not available. Thus the models need a
preliminary treatment in which parameters are recovered by the measurements
on the fields, which in theory are considered as unknown. It often happens that
the quantities of main interest are the parameters rather than the fields, indeed
they are related to the internal properties of the material subject to those fields,
or remote objects, that are out of reach. The direct problem consists in finding
the fields when the parameters are known, whereas the corresponding inverse
problem is to determine the parameters from the measurements on the fields.
On the other hand, a common difficulty which occurs in treating most of inverse
problems and which characterizes them, is due to their ill-posedness, that means,
in the classical Hadamard sense, that the solution either does not exists, is not
unique or does not depend continuously on the data. In many inverse problems
the availability of some additional informations on the solutions, as for instance
bounds on the size, knowledge on the smoothness or on the shape may reduce
the range of admissible parameters. One of the main topic addressed by inverse
problems is to establish when such additional information enable to restore for
instance the continuous dependence on the data and to quantify the rate of such
a dependence. The main issues for an accurate discussion of inverse problems
are uniqueness and stability, indeed uniqueness and stability results constitute a
fundamental step in treating these problems, since they provide informations to
establish whether or not a reconstruction procedure is applicable or a parameter
can be recovered in a stable manner.
A fundamental example of inverse problem is given by the inverse conductivity
problem, which is related with the Electrical Impedance Tomography, an imag-
ing technique that has applications in medical imagining, underground prospec-
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tion and non destructing testing. The aim is to detect the internal electrical
conductivity of a conductor body by taking repeated electrical measurements
from its surface. The corresponding direct problem consists in a well posed
Dirichlet problem for a linear elliptic partial differential equation. Namely, if
the conductivity is known, then for every voltage potential on the boundary
one can determine the current density at the boundary. In other terms, one
can recover the so-called Dirichlet to Neumann map which associates to every
boundary voltage the corresponding current density. The inverse conductivity
problem consists in determining the conductivity from the electrical measure-
ments taken from the boundary, that is from the knowledge of the Dirichlet
to Neumann map. Contrary to the direct problem this is an highly non linear
problem. The mathematical model of such a problem has been introduced by
Calderon [22] and developed with uniqueness results by Kohn and Vogelius [47],
Sylvester and Uhlmann [67] and later by Nachman [62]. The stability issue was
resolved by Alessandrini [7] and, more recently, Mandache in [59] has proved
that the logarithmic type of stability obtained in [7] is optimal.
Among the variety of inverse problems present in the literature, let us examine
in more detail two problems concerning the determination of inaccessible bound-
ary terms. Such type of problem arise in non-destructive testing. Indeed they
are related, for instance, to the phenomenon of corrosion in metals. In applied
contexts the surface portion of the metal specimen where the corrosion takes
place in not accessible. Thus to investigate whether the material is corroded or
not one has to solve the inverse problem of recovering an unknown boundary
term, which models the presence of corrosion, by the available measurements.
The study of such a problem has been discussed by many authors, among them
let us mention the following Alessandrini, Del Piero, Rondi [9], Chaabane, Fel-
lah, Jaoua, Leblond [23, 24], Bryan, Kavian, Vogelius, Xu [18, 45, 70], Fasino,
Inglese [35]. The same boundary value problem models also the phenomenon of
the stationary heat conduction, as introduced by Chaabane and Jaoua in [25].
Moreover, the inverse problem of detecting unknown boundary terms arises also
in the inverse scattering literature. Indeed, it often happens that hostile objects
are coated by a material with unknown surface impedance. This phenomenon
is modeled by a boundary condition where the boundary impedance plays the
role of the unknown. The main contributions to this problem are due to Cakoni,
Colton, Kress, Monk, Piana [6, 20, 21, 29, 30].
In this framework we shall treat two kinds of inverse problems, concerning the
determination of unknown boundary terms.
We shall focus our attention on the stability issue, that is the continuous de-
pendence of the unknown boundary term upon the measurements. Actually, we
shall deal with the conditional stability, that means to study such a dependence
under some additional assumptions on the data of the problems and especially
under the a priori information on the boundary terms themselves. For a general
theoretical setting on conditional stability, see for example, [55]. Let us also
stress that we are interested not only in a qualitative stability analysis, but also
in a quantitative one. In fact we shall exhibit an explicit evaluation of the mod-
ulus of continuity of such a dependence, which will turn out to be of logarithmic
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type.
Furthermore, as a consequent step of the stability analysis, we shall discuss the
reconstruction issue, that is the approximate identification of the boundary term
by the approximate measurements.

An inverse corrosion problem

We shall discuss an inverse boundary value problem arising in corrosion detec-
tion. The aim of such a problem is to determine a nonlinear term in a boundary
condition, which models the possible presence of corrosion damage, by perform-
ing a finite number of current and voltage measurements on the boundary. This
means to apply a nontrivial current density on a suitable portion of the bound-
ary of the conductor and to measure the corresponding voltage potential on the
same portion.
In Chapter 3 and Chapter 4 we shall discuss respectively the stability and the
reconstruction issues for this inverse problem, obtaining a stability result and
proposing a reconstruction method under some suitable a priori assumptions on
the data of the problem, which are the conductor and the prescribed current
density and under a priori bounds on the nonlinear term itself.
Before discussing the details of this topic, let us overview the main contribu-
tions to this kind of problem given in recent years, pointing out their common
formulation as well as the different choices of the boundary term which models
the electrochemical phenomenon of surface corrosion in metals.
The physical problem is modeled as follows. A bounded Lipschitz domain Ω in
Rn represents the region occupied by the electrostatic conductor which contains
no sources and no sinks and this is modeled by the Laplace operator, so that
the voltage potential u satisfies

∆u = 0 in Ω. (1.1)

The simplified model of corrosion appearance reduces to the problem of recov-
ering a coefficient ϕ = ϕ(x) in a linear boundary condition of the type

∂u

∂ν
= −ϕu, (1.2)

where ν is the outward unit normal at the boundary and ϕ ≥ 0 is the so-
called Robin coefficient. The study of such a problem has been developed by
many authors, among them, let us illustrate the following. Alessandrini, Del
Piero, Rondi [9] and Chaabane, Fellah, Jaoua, Leblond [23] have established a
stability result for the Robin problem in a two dimensional setting using tools
of analytic function theory and quasiconformal mappings. Chaabane, Jaoua
and Leblond [24] have provided a constructive procedure in order to solve the
Robin problem by means of complex analysis. Chaabane and Jaoua [25] have
obtained a Lipschitz stability estimate provided the Robin coefficient depends
on a scalar parameter only. Let us also refer to Fasino and Inglese [35, 36, 37],
who have introduced numerical methods relied on the thin-plate approximation
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and the Galerkin method, beyond a logarithmic stability estimate and results
concerning the relation between stability of the solution and thickness of the
domain.
A more accurate model of corrosion requires a nonlinear relationship between
voltage and current density on the corroded surface. A model of this kind,
known as the Butler and Volmer model, postulates the boundary condition

∂u

∂ν
= λ(exp(αu)− exp(−(1− α)u)). (1.3)

Such a nonlinear boundary value problem, has been recently discussed by Bryan,
Kavian, Vogelius and Xu in [18, 45, 70]. The authors have examined the ques-
tions of the existence and the uniqueness of the solution of the problem with a
given nonlinearity of the type (1.3). Namely, they have assumed to know the
nonlinearity (1.3), by prescribing the coefficients λ and α in suitable ranges,
and they have discussed the existence and the uniqueness issues for the direct
problem.
In this thesis, motivated by these studies, we have considered a more general
choice of the nonlinear profile, namely of the form

∂u

∂ν
= f(u) , (1.4)

and we have dealt with the inverse problem. In other terms, we have considered
the issue of the identification of the nonlinearity f , which is indeed unknown in
practical applications.
Let us also observe that a further aspect arising in the study of the corrosion
phenomenon consists in the recovery of the shape of the boundary where cor-
rosion occurs. In this respect our results on the determination of the boundary
coefficients involved in the corrosion model, can be read as one step in the pro-
cess of the treatment of the full inverse problem. Indeed the main steps of such
a treatment can be outlined as follows. The first one relies in the determination
of the nonlinearity f when the geometry of the conductor is prescribed, which
is indeed one of the topics discussed in this thesis. Once the nonlinearity f has
been recovered, the second step consists in the determination of the shape and
the location of the defect by the knowledge of the boundary condition satisfied
by the potential on the unknown surface. For instance such type of problems
have been discussed by Alessandrini and Rondi in [13, 14, 65, 64] for the iden-
tification of cracks, cavities and material losses at the boundary.
Let us now give the formulation of our problem. We assume that the boundary of
the conductor, which is modeled by the domain Ω, is decomposed in three open,
nonempty and disjoint portions Γ1,Γ2,ΓD, one of which, say Γ2, is accessible
to the electrostatic measurements, whereas the portion Γ1, where the corrosion
takes place, is out of reach. The remaining portion ΓD, which separates Γ1 from
Γ2, is assumed to be grounded.
We prescribe a current density on the accessible part of the boundary Γ2, given
by an Hölder function g ∈ C0,α(Γ2) with Hölder exponent α, 0 < α < 1,
satisfying furthermore a lower bound to be stated later on. Moreover, as already
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remarked, the possible presence of corrosion damage is modeled by a nonlinear
term in a boundary condition of the form (1.4), such that the profile f satisfies
an a priori bound on its Lipschitz continuity as well as a compatibility condition
to be specified in the sequel.
Then the direct problem amounts to find the harmonic potential u in the metal
specimen Ω, given the current density g and the nonlinear profile f , from the
following mixed boundary value problem

∆u = 0 , in Ω ,
∂u

∂ν
= g , on Γ2 ,

∂u

∂ν
= f(u) , on Γ1 ,

u = 0 , on ΓD .

(1.5)

Let us observe that, according with the result in [18, 45, 70], we have that also
under the previous mild assumption on the nonlinearity f , the direct problem
(1.5) might not be well-posed. This is, for instance, the case when f(u) = pu
where p > 0 is an eigenvalue for the Steklov type eigenvalue problem

∆v = 0 , in Ω ,
∂v

∂ν
= 0 , on Γ2 ,

∂v

∂ν
= pv , on Γ1 ,

v = 0 , on ΓD .

(1.6)

The inverse problem reads as follows. We assume that the conductor, modeled
by the domain Ω, and the decomposition into the three portions Γ1,Γ2,ΓD,
are given. We impose a non trivial current density g on the accessible part of
the conductor Γ2 and we measure the corresponding electrostatic potential u,
solution to the problem (1.5) upon the same portion of the boundary. By the
pair of boundary measurements {u|Γ2 ,

∂u
∂ν |Γ2}, we want to recover the unknown

nonlinear profile f on the inaccessible portion Γ1 of the conductor.

An inverse scattering problem

In Chapter 5 an inverse scattering problem arising in target identification is
considered. Indeed, in order to avoid detection by radar, hostile targets are
typically coated by some material on a portion of the boundary designed to
reduced the radar cross section of the scattered wave. We want to recover the
surface impedance of a partially coated obstacle by collecting a finite number of
measurements of the far field pattern. In practice, this corresponds to prescribe
an incoming plane wave which is scattered by an obstacle and to measure the
amplitude of the corresponding scattered wave.
We are concerned with the stability issue for this problem, limiting our study to
the three dimensional case. Indeed we shall prove a stability result up to assume
some a priori hypothesis on the data of the problem, which are the obstacle, the
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wave number and the incident direction of the incoming wave, beyond some a
priori assumptions on the unknown surface impedance.
Such a problem has been already discussed by many authors, among them, let us
cite Akduman, Cakoni, Colton, Kress, Piana [6, 20, 29, 30], who have extensively
developed the reconstruction issue. Such a problem, in two dimensions, has
been recently studied by Cakoni and Colton in [20]. The authors have provided
a variational method for the determination of the essential supremum of the
surface impedance when the far field data are available. Moreover, they have
extended such a result to the vector case of the Maxwell’s equation, beyond
considering several numerical examples when the surface impedance is constant.
Moreover, Colton, Kress and Piana [29, 30] have considered the problem of
determining lower bounds for the surface impedance, while in [6] Akduman
and Kress have introduced a potential theoretic method for determining the
surface impedance when the obstacle is completely coated. On the contrary the
stability issue under mild a priori assumptions, as far as we know, has not yet
been studied.
Let us now illustrate the mathematical model which describes the phenomenon
of the scattering of an incident wave by a partially coated obstacle. A bounded
Lipschitz domain D in R3 represents the region occupied by the impenetrable
object. We consider the scattering of a given acoustic incident time-harmonic
plane wave, at a given wave number k > 0 and at a given incident direction ω ∈
S2, by the obstacle D. The total field u, given as the sum of the scattered wave
us and the incident plane wave exp (ikx · ω), satisfies the Helmholtz equation
in the exterior of the domain D. Moreover, we assume that the boundary has
a Lipschitz dissection in two open, connected and disjoint portions ΓI and ΓD,
such that on ΓI the total field satisfies an impedance boundary condition of the
form

∂u

∂ν
+ iλ(x)u = 0 , (1.7)

which characterizes obstacle for which the normal velocity on the boundary is
proportional to the excess of pressure on the boundary. The surface impedance
λ satisfies an a priori bound on its Lipschitz continuity and a technical condition
that will be specified in the course of the exposition. On the remaining part of
the boundary the tangential component of the total field vanishes.
Then the direct problem is to find the total field u = us +exp (ikx · ω) from the
following mixed boundary value problem for the Helmholtz equation

∆u+ k2u = 0, in R3 \D,
u = 0, on ΓD,
∂u

∂ν
+ iλ(x)u = 0, on ΓI .

(1.8)

Moreover, the scattered field us is required to satisfy the so-called Sommerfeld
radiation condition

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, r = ‖x‖, (1.9)
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which guarantees that the scattered wave is outgoing. The well-posedness of
the direct problem (1.8) has been proved, in two dimensions and for a constant
λ, by Cakoni, Colton and Monk in [21]. However, we shall observe in the sequel
that the arguments of potential theory developed in [21], can be adapted to our
setting.
It is well-known that the radiation condition (1.9) yields the following asymp-
totic behavior

us(x) =
exp (ikr)

r

{
u∞(x̂) +O

(
1
r

)}
, (1.10)

as r tends to∞, uniformly with respect to x̂ = x
‖x‖ and where u∞ is the so-called

far field pattern of the scattered wave, (see for instance [32]).
The inverse problem is the following. We assume that the scatterer, modeled
by the domain D with boundary decomposed in two portions ΓI and ΓD, is
given. We prescribe an incident plane wave and we measure the corresponding
scattering amplitude u∞. Our aim is to recover the unknown surface impedance
λ by using this additional measurement on u∞.

Stability and reconstruction results for the inverse corrosion problem

In Chapter 3 and Chapter 4 we shall collect the stability and reconstruction
results for the inverse corrosion problem obtained in [15] and in [16]. Let us
start the analysis of such a problem by discussing the stability issue. As already
pointed out, in the context of Inverse Problems stability means the continuous
dependence of the unknown boundary terms upon the electrostatic measure-
ments.
The main cause of ill-posedness of the present problem consists in the solution of
a Cauchy problem, which, as it is well-known by the work of Hadamard (see for
instance [40]), is severely ill-posed. Indeed, in the inverse corrosion problem, the
knowledge of the solution is restricted to the Cauchy data {u|Γ2 ,

∂u
∂ν |Γ2} on the

accessible portion Γ2 of the conductor, thus, to recover the needed information,
first in the interior of the domain and consequently on the inaccessible portion
Γ1, a Cauchy problem has to be solved.
Hence to restore stability we have to require some suitable additional assump-
tions on the data of the problems and particularly we have to assume some a
priori information on the unknown boundary terms that we wish to recover.
Infact, since the direct problem (1.5) might not be well-posed, it seems natural
to require an a priori energy bound on the electrostatic potential u within the
conductor, ∫

Ω

|∇u(x)|2 ≤ E2 . (1.11)

Next, we require an a priori bound of the Lipschitz continuity of f , namely

|f(u)− f(v)| ≤ L|u− v| , for every u, v ∈ R . (1.12)
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Moreover, in order to treat this inverse problem, we shall assume the knowl-
edge of some additional information on the measured current density g on the
accessible part of the boundary Γ2. More precisely, we assume a bound on the
Hölder continuity of g

‖g‖C0,α(Γ2) ≤ G . (1.13)

Also, we shall require a lower bound on the same current density g. Namely, we
shall prescribe that, for a given inner portion Γ2r0

2 of Γ2, and a given number
m > 0, we have

‖g‖
L∞(Γ

2r0
2 )

≥ m > 0 . (1.14)

Let us now overview the main features of the inverse corrosion problem , focusing
our attention on the main difficulties that arise as well as the methods used to
overcome them.
The reasons of the ill-posedness are essentially two and they can be summarized
as follows.

i) The first one, that, as already observed, embodies one of the main causes of
their ill-posedness, consists in the solution of a severely ill-posed Cauchy
problem;

ii) the other cause of ill-posedness is due to the problem of determining f and
the domain on which it is defined.

Our stability estimates will be mainly achieved by combining the results ob-
tained treating step i) and step ii).
We shall approach the issue of step i) by considering a stability estimate near the
boundary for a Cauchy problem. Infact, since we have access only to the Cauchy
data on Γ2 for a solution u to the problem (1.5), we shall need to evaluate how
much the error on such data can affect the interior values of u near Γ2. We
obtain such an evaluation by handling an inequality due to Payne [63] and then
developed by Trytten [69]. As a consequent step, we shall study the propagation
of the error in the interior of the domain. Such a study leads to an Hölder type
stability result, which will be obtained by means of quantitative estimates of
unique continuation as the iterated use of the three spheres inequality. Such
an Hölder stability estimate holds, as long as we consider interior values of the
solution in the domain. Hence to obtain a stability result up to the boundary
we shall deal with a minimization argument, that, of course, makes worse the
estimate leading to a logarithmic type one. Let us also stress that the minimal
Lipschitz assumption on the regularity of the domain Ω is actually needed since
it ensures the uniform cone condition which will play a crucial role in the proof of
the stability result up to the boundary. Let us also remark, that as a preliminary
analysis on the direct problem, we shall prove by means of the Moser iteration
techniques, that the solution is Hölder continuous with its first order derivatives
in a suitable neighborhood of the inaccessible portion Γ1 of the boundary.
For what concerns step ii), it has to be noticed that, since one can expect to
identify the corrosion profile f only on the range of values taken by the voltage
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potential u on the corroded part of the boundary and since it is not a priori
given, it follows that the unknown of the problem are indeed the domain upon
which f may be determined, beyond the profile f on such a domain. Thus as
preliminary step of the treatment of this inverse problem, we shall prove a lower
bound on the oscillation of u on Γ1, namely

osc
Γ1
u ≥ const. exp

(
−
(
const. m

)−γ
)
, (1.15)

where γ is a positive exponent such that γ > 1. The proof of such a result
shares the same spirit of the one used in treating step i).
By the lower bound on the oscillation we obtain a quantitative control from
below of the tangential gradient of the solution along its steepest descent di-
rection. Such a control will allow us to state a local monotonicity property for
the solution along a suitable curve on Γ1, as well as an evaluation of its length.
The set of the images of the solution on such a curve will constitute the range
of values where the nonlinearity f will be identify. Infact we will show that if
u1 and u2 are two potentials corresponding to nonlinearities f1 and f2 whose
Cauchy data are close

‖u1 − u2‖L2(Γ2) ≤ ε ,∥∥∥∥∂u1

∂ν
− ∂u1

∂ν

∥∥∥∥
L2(Γ2)

≤ ε ,

then the ranges of u1 and u2 on Γ1 agree on an interval V , such that

length of V ∼ exp
[
−
(
m

c

)−γ]
. (1.16)

As a consequence of the above result and the local monotonicity property, we
shall consider the inverse functions of u1 and u2 restricted to the interval V of
the common values of u1 and u2. Hence, by inverting u1 and u2 respectively we
can pass from a value u in V to a point x1 and x2 on Γ1 and viceversa. This
connection shall provide us a useful tool to express the difference between the
scalar functions f1 and f2 defined on the real interval V in terms of the difference
between the normal derivatives of u1 and u2 evaluated in the points x1 and x2

on Γ1. By this relation, we will be able to prove that the nonlinearities f1 and
f2 agree up to an error of the type∣∣∣∣log

(
1
ε

)∣∣∣∣−θ

, (1.17)

where 0 < θ < 1.

For what concerns the reconstruction issue, let us recall that we shall term
reconstruction the inverse problem of the approximate identification of the non-
linear term f by the approximate electrostatic measurements {u|Γ2 ,

∂u
∂ν |Γ2}, u
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being the solution to (1.5), under some suitable a priori assumptions on the
data of the problem and some a priori bounds on the nonlinearity f . Indeed
the Cauchy data will be affected by errors since they are given by finitely many
samples. Thus, as a consequence, we can expect to recover the nonlinearity f
only in an approximate manner.
In this setting the stability analysis just discussed, can be understood as a
preliminary result for the reliability of the reconstruction procedure.
As already observed, the main cause of the ill-posedness of such an inverse
problem relies on the solution of a the severely ill-posed Cauchy problem with
Cauchy data {u|Γ2 ,

∂u
∂ν |Γ2}. Hence to ensure the feasibility of the reconstruction

procedure we shall keep the same assumptions on the data and the same a priori
bounds on the nonlinearity required for the stability analysis.
The aim of Chapter 4 is to suggest a method to reconstruct the nonlinear profile
f in terms of the Cauchy data on the accessible portion Γ2 of the domain Ω.
This will be achieved in two steps that can be outlined as follows.

i) The first step is to solve the Cauchy problem for u with Cauchy data on
Γ2, determining the corresponding Cauchy data for u on the inaccessible
portion of the boundary Γ1;

ii) the second step consists in proposing a procedure for the identification of
the nonlinear term f by the Cauchy data on Γ1 provided by the step i).

Before discussing our approach in treating step i), let us mention the most re-
cent contributions to the approximate solution of the Cauchy problem due to
Berntsson, Cheng, Eldén, Elliott, Engl, Fomin, Hào, Heggs, Hon, Ingham, Ka-
banikhin, Karchevskĭi, Kozlov, Marin, Maz’ya, Leit˜ao, Lesnic, Maz’ya, Wei,
[17], [27], [33], [41], [44], [49], [50], [56], [60], [61]. The method that we shall
propose is based on the reformulation of the Cauchy problem to a regularized
inversion of a suitable compact operator, fitting our problem in the widely de-
veloped theory of regularization for equations of the first kind. Indeed, with
appropriate reductions of the problem, we will prove that the operator that
maps the unknown Cauchy data on Γ1 into the Cauchy data on Γ2, is compact.
Such a compactness result is strongly based on well-known regularity property
for solution of elliptic equations. This reformulation allows the method of sin-
gular value decomposition and the approximate inversion by the technique of
Tikhonov regularization.
In step ii), we shall suggest an approximate expression of the nonlinearity f .
Indeed by a formal computation we shall select a candidate minimizer of the so-
called best-fit functional (4.72). Moreover, as a novelty with respect the results
achieved in [16], we shall add the proof of the pointwise convergence of such
candidate minimizers to the exact nonlinearity f . The proof shall need some
further a priori assumptions on the solution u to (1.5), see Section (4.5).

The stability result for the inverse scattering problem

In Chapter 5 we shall discuss the result contained in [66] concerning the stability
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issue for the inverse scattering problem.
The major cause of ill-posedness consists in estimating how the error on the
interior values of the solution propagates up to the boundary. Such an evaluation
can be read as a step of the solution of a Cauchy problem, which, as it has been
already pointed out in the previous section, is severely ill-posed. It turns out
then, that the inverse scattering problem and the inverse corrosion one share
some common features that will be outlined in the course of exposition.
In order to recover stability, we shall make use of some a priori assumptions on
the unknown surface impedance. The additional a priori information that we
shall require on the unknown surface impedance λ, is an a priori bound on its
Lipschitz continuity, that is we shall assume that for a given positive constant
Λ, the following holds

‖λ‖C0,1(ΓI) ≤ Λ. (1.18)

Moreover, we shall prescribe the following uniform lower bound

λ(x) ≥ λ0, for every x ∈ ΓI , (1.19)

where λ0 is a given positive constant.
The treatment of the inverse scattering problem shall need an accurate prelim-
inary analysis of the direct one. Indeed, following the arguments of potential
theory developed in [21], we shall observe that the direct scattering problem is
well posed. The proof relies on the fact that the mixed boundary value problem
(1.8) can be reformulated as a system of boundary integral equations. Moreover,
in analogy with the inverse corrosion problem, also for the inverse scattering one
we shall prove a regularity result showing that the solution and their first order
derivatives are Hölder continuous in a neighborhood of the portion ΓI , where
the impedance takes place. As a final step of this preliminary analysis, we shall
obtain a uniform lower bound for the total field u on sets away from the obstacle.
Let us now illustrate the underlying ideas and the main tools that shall lead
to the stability result. The reasons why such a problem lacks of well-posedness
can be outlined as follows.

i) The first one consists in evaluating how much the error on the far field can
affect the values of the field near the scatterer;

ii) the second one concerns a stability estimate of the field at the boundary in
terms of the near field;

iii) finally, the last one relies on the problem of determining the impedance λ
by the values of the field at the boundary.

Let us start the analysis of the inverse problem illustrating the arguments in-
troduced in the step iii) of the list above.
By the impedance condition in (1.8) we can formally compute λ as

λ(x) =
i

u(x)
∂u(x)
∂ν(x)

. (1.20)
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Since u may vanish in some points of ΓI , it follows that the quotient in (1.20)
may be undetermined. In this respect, we shall evaluate the local vanishing
rate of the solution on the boundary. To establish such a control we shall
make use of quantitative estimates of unique continuation, of the form of the
doubling inequality, which have been first introduced by Garofalo and Lin [38]
for the unique continuation in the interior. Here we need estimates of the same
sort, but which allow to evaluate the unique continuation property at boundary
points where some kind of homogeneous boundary condition holds. For Dirichlet
and Neumann homogeneous boundary conditions, results of this kind are due to
Adolfsson, Escauriaza, Kukavica, Kenig and Nyström [3, 51, 52]. Here, assuming
the impedance boundary condition in (1.8), we first obtain a volume doubling
inequality at the boundary, namely∫

ΓI,2ρ(x0)

|u|2 ≤ const.
∫

ΓI,ρ(x0)

|u|2 , (1.21)

where ΓI,ρ(x0) and ΓI,2ρ(x0) are the portions of the balls centered at the bound-
ary point x0 of radius ρ and 2ρ respectively, contained in R3 \D.
In order to obtain the formula in (1.21), we shall adapt the arguments developed
by Adolfsson and Escauriaza in [2] for the more general setting of complex valued
solutions which is required by the boundary value problem (1.8).
A further difficulty that will arise in dealing with such arguments is due to the
fact that the techniques used in [2] apply to an homogeneous Neumann boundary
condition. We shall overcome such a difficulty by performing a suitable change of
the independent variable, that fits our problem under the assumptions required
in [2]. Moreover, well-known stability estimates for the Cauchy problem [69],
will allow us to reformulate the volume doubling inequality at the boundary
deriving a new one on the boundary, that is a surface doubling inequality∫

∆I,2ρ(x0)

|u|2 ≤ const.
∫

∆I,ρ(x0)

|u|2 , (1.22)

where ∆I,ρ(x0) and ∆I,2ρ(x0) are the portions of the boundary of ΓI,ρ(x0) and
ΓI,2ρ(x0) respectively, which have non empty intersection with ∂D.
The surface doubling inequality will allow us to apply the theory of Muckenhoupt
weights [28] which, in particular, implies the existence of some exponent p > 1
such that |u|−

2
p−1 is integrable on an inner portion of ΓI . This integrability

property, as well as the Hölder continuity of the normal derivative, justifies the
computation made in (1.20) in the L

2
p−1 sense.

Let us carry over our analysis by discussing the evaluation introduced in the step
i). Such an evaluation, introduced by V. Isakov [42, 43], and then developed by
I. Bushuyev [19], concerns a stability estimate for the near field in terms of the
measurements of the far field.
It means that if u1 and u2 are two acoustic fields corresponding to impedances
λ1 and λ2 such that their scattering amplitudes, u1,∞ and u2,∞ respectively,
are close

‖u1,∞ − u2,∞‖L2(∂B1(0)) ≤ ε, (1.23)
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then u1 and u2 satisfy

‖u1 − u2‖L2(BR1+1(0)\BR1 (0)) ≤ const.εα(ε), (1.24)

where R1 > 0 is a suitable radius such that BR1(0) ⊃ D and α(ε) is the following
function

α(ε) =
1

1 + log(log(ε−1) + e)
. (1.25)

As last step of this treatment we provide the stability estimate introduced in ii).
The proof is based on the same arguments of quantitative unique continuation,
as the iterated use of the three spheres inequality, that we have yet outlined
for the case of the inverse corrosion problem. This procedure shall lead to the
following estimate

‖u1 − u2‖C1(Γρ
I ) ≤ const.| log (‖u1 − u2‖−1

L2(BR1+1(0)\BR1 (0)))|
−2θ, (1.26)

where θ > 0 and where Γρ
I is a given inner portion of ΓI .

By combining the stability estimates listed in i) and ii), we shall obtain a sta-
bility result for the total field at the boundary in terms of the measurements of
the far field.
Finally, as a consequence of the previous achievements, we shall formulate the
main result of Chapter 5, that consists in a stability estimate of the surface
impedance by the far field measurements. Assuming that (1.23) holds, we have
shown that the impedances λ1, λ2 agree up to an error∣∣ log(ε)

∣∣−θ
. (1.27)

For a sake of completeness, let us point out that Labreuche [53] has proved a
stability result for this inverse problem under the much stronger assumption of
analyticity of the boundary, whereas in the present thesis we shall deal with the
more concrete case of a priori bounds on finitely many derivatives, that is we
shall assume that ΓI is a C1,1 portion of ∂D.
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Chapter 2

Quantitative estimates of
unique continuation

The aim of this chapter is to collect the main tools and the methods on which
are based the proofs of the stability results contained in this thesis. Here and in
the sequel we shall refer to those techniques as quantitative estimates of unique
continuation.
In Section 2.1 we shall introduce the quantitative notions of smoothness of the
geometry that we shall consider. Moreover, we shall fix some notations that will
be used throughout the thesis.
In Section 2.2 we shall deal with the stability issue for the following Cauchy
problem  div(σ∇u) = 0 in Ω,

u = ψ on Σ,
σ∇u · ν = g on Σ .

(2.1)

The proof of the stability Theorem 2.7 will be obtained by combining the results
contained in each one of the three subsections.
We will start the analysis of the problem by formulating the main hypothesis.
We shall assume that the domain Ω is of Lipschitz class and we will require that
the Cauchy surface Σ is C1,α smooth. Moreover, we will specify the space where
the Cauchy data are taken and we will require that the background conductivity
σ satisfies an ellipticity condition as well a Lipschitz continuity assumption. We
prescribe also an a priori energy bound on the solution u itself.
In Subsection 2.2.1 we shall approach the treatment of the solution of the Cauchy
problem by stating an inequality, see Lemma 2.3, first discussed by Payne [63]
and then developed by Trytten [69]. This inequality consists in an upper bound
for the solution to the Cauchy problem (2.1) near the boundary in terms of the
L2 norm of u and its gradient on the Cauchy surface Σ.
By handling the inequality provided by Lemma 2.3, we will derive in Theorem
2.4 a stability estimate for the solution u to (2.1) near the boundary in terms
of the Cauchy data. Indeed, we shall make use of the regularity assumptions
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on the Cauchy data, as well as those made on the portion Σ, to reformulate the
stability estimate due to Trytten in a new version, where, roughly speaking, the
L2 norm of the gradient is replaced by the L2 norm of the normal derivative.
In Subsection 2.2.2 we shall discuss estimates of unique continuation from the
interior as the three spheres inequality, see Lemma 2.5. This is a classic tool
arising in unique continuation, which generalizes the Hadamard’s three circles
theorem. We recall the proof by Landis [54] based on Carlemann estimates
and Agmon [4] relying on arguments of logarithmic convexity. We shall refer
also to Garofalo and Lin [38] and to Kukaviza [51]. In Theorem 2.6 we will
exhibit a useful application of the three spheres inequality based on an iterative
procedure. Such a theorem will allow us to evaluate how much the error on the
solution propagates in the interior.
Finally, we will conclude the study of the Cauchy problem by providing in
Subsection 2.2.3 a stability result of logarithmic type up to the portion of the
boundary Γ, being Γ = ∂Ω \ Σ̄. In order to prove such a result, we shall
need to require some further a priori assumptions on the solution u itself, as
the Hölder regularity of the solution together with its first order derivatives in a
neighborhood of Γ as well a further regularity assumption on the portion Γ. The
proof of Theorem 2.7 mostly relies on the techniques introduced in the previous
two subsections, beyond the use of the cone condition which is guaranteed by
the Lipschitz regularity of the boundary. Such a condition will allow us to carry
over the iterated techniques of the three spheres inequality within the cone. By
this trick, we will prove that the rate of stability is of log type.
In Section 2.3 we shall treat a quite recent tool of unique continuation as the
doubling inequality. In Proposition 2.8 we shall state a doubling inequality in
the interior, that has been introduced by Garofalo and Lin [38], whereas in
Proposition 2.9, we shall state a doubling inequality at the boundary when an
homogeneous Neumann boundary condition applies. The study of this tool has
been introduced by Adolfsson, Escauriaza and Kenig [3], developed by Kukavika
and Nyström [52] and Adolfsson and Escauriaza [2], to whom we shall refer.
Let us also stress that these kinds of inequalities shall provide a useful tool to
evaluate the local vanishing rate of a solution, and as its consequence allows to
apply the theory of the Muckenhoupt weights [28].

2.1 Definitions and notations

We shall make a repeated use throughout the thesis of quantitative notions of
smoothness for the boundary of the domain Ω. Let us introduce the following
notations and definitions.
In several places it will be useful to isolate one privilege coordinate direction,
to this purpose, we shall use the following notions for points x ∈ Rn, x′ ∈
Rn−1, n ≥ 2, x = (x′, xn), x′ = (x′′, xn−1), with x′′ ∈ Rn−2 and xn, xn−1 ∈ R.
Moreover, given a point x ∈ Rn, we shall denote with Br(x), B

′

r(x), B
′′

r (x) the
ball in Rn, Rn−1, Rn−2 respectively, centered in x with radius r.

Definition 2.1. Let Ω be a bounded domain in Rn with n ≥ 2. We shall say
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that the boundary ∂Ω of Ω is of Lipschitz class with constants r0, M > 0 if, for
every x0 ∈ ∂Ω, there exists a rigid transformation of coordinates under which,

Ω ∩Br0(x0) = {(x′, xn) : xn > γ(x′)} (2.2)

where
γ : B

′

r0
(x0) ⊂ Rn−1 → R ,

satisfying γ(0) = 0 and

‖γ‖C0,1(B′
r0

(x0))
≤Mr0 ,

where we denote by

‖γ‖C0,1(B′
r0

(x0))
= ‖γ‖L∞(B′

r0
(x0))

+ r0 sup
x,y∈B

′
r0

(z0)

x6=y

|γ(x)− γ(y)|
|x− y|

.

Definition 2.2. Given an integer k ≥ 1 and α, 0 < α ≤ 1, we shall say that a
portion S of ∂Ω is of class Ck,α with constants r0, M > 0 if for any z0 ∈ S,
there exists a rigid transformation of coordinates under which,

Ω ∩Br0(z0) = {(x′, xn) : xn > ϕ(x′)} (2.3)

where

ϕ : B
′

r0
(z0) ⊂ Rn−1 → R (2.4)

is a Ck,α function satisfying for every multi-index 0 ≤ |β| ≤ k

|Dβϕ(0)| = 0 and ‖ϕ‖Ck,α(B′
r0

(z0))
≤Mr0 , (2.5)

where we denote

‖ϕ‖Ck,α(B′
r0

(z0))
=

k∑
j=0

r0
j
∑
|β|=j

‖Dβϕ‖L∞(B′
r0

(z0))
+ (2.6)

+ r0
k+α

∑
|β|=j

sup
x,y∈B

′
r0

(z0)

x6=y

|Dβϕ(x)−Dβϕ(y)|
|x− y|α

.

We introduce some notations that we shall use in the present chapter as well as
in Chapter 3 and Chapter 4.
Let S be a portion of ∂Ω, then for every ρ > 0, we set

US
ρ = {x ∈ Ω̄ : dist(x, ∂Ω \ S) > ρ} , (2.7)

Sρ = US
ρ ∩ S , (2.8)

Ωρ = {x ∈ Ω : dist(x, ∂Ω) > ρ} , (2.9)
H1

0 (Ω, S) = {η ∈ H1(Ω) : η|S = 0}. (2.10)
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2.2 Stability for the Cauchy problem

In this section we shall deal with the stability issue for the Cauchy problem
(2.1). We shall prove that, under suitable a priori assumptions, the dependence
of the solution to (2.1) upon the Cauchy data is of logarithmic type.
Let us formulate the main hypothesis.

Assumptions on the domain

Given D > 0, we assume that

the diameter of Ω is bounded by D. (2.11)

Given r0, M > 0 we assume that

Ω is of Lipschitz class with constants r0,M. (2.12)

Moreover, given 0 < α ≤ 1, we assume that the portion of the boundary

Σ is of class C1,α with constants r0,M. (2.13)

Assumptions on the Cauchy data

We shall assume the following on the Dirichlet datum ψ

ψ ∈ H 1
2 (Σ) , (2.14)

where H
1
2 (Σ) is the interpolation space [H1(Σ), L2(Σ)] 1

2
see [58, Chap. 1] for

details.
Concerning the Neumann datum g we shall assume

g ∈ L2(Σ). (2.15)

Assumptions on the conductivity

We shall assume that the conductivity σ is a function from Rn with values in an
n× n symmetric matrix σ(x) = (σij(x))n

i,j=1 satisfying the ellipticity condition

µ−1|ξ|2 ≤
n∑

i,j=1

σij(x)ξiξj ≤ µ|ξ|2, for all x ∈ Ω and ξ ∈ Rn, (2.16)

and the Lipschitz condition

|σij(x)− σij(y)| ≤ K|x− y|, for all i, j = 1, . . . , n and x, y ∈ Ω, (2.17)

where K > 0, µ ≥ 1 are prescribed constants.
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A priori bound on the energy

Given E > 0, we assume that∫
Ω

u2 +
∫

Ω

|∇u|2 ≤ E . (2.18)

In the course of the chapter the constants r0,M,D, α, µ,K,E will be referred
as the a priori data.
Let us recall that, given ψ ∈ H

1
2 (Σ) and g ∈ L2(Σ), a weak solution to the

Cauchy problem (2.1) is a function u ∈ H1(Ω) such that u|Σ = ψ in the trace
sense and ∫

Ω

σ∇u · ∇η =
∫

Σ

gη , (2.19)

for every η ∈ H1
0 (Ω,Γ), where

Γ = ∂Ω \ Σ̄. (2.20)

2.2.1 Stability estimates of continuation from Cauchy data

We state below a classical estimate of continuation from the boundary due to
Trytten [69]. We also outline a sketch of the proof.

Lemma 2.3 (Trytten). Let Ω be a domain satisfying (2.12). Let u ∈ H1(Ω)
be a weak solution to (2.1) and let (2.14)-(2.17) be satisfied.
Then, for every P1 ∈ Σr0

‖u‖L2(Bρ(P0)∩UΣ
r0

) ≤ C1

(
‖ψ‖L2(Σρ) + ‖∇u‖L2(Σρ) + ‖u‖H1(Ω)

)1−η ·

·
(
‖ψ‖L2(Σρ) + ‖∇u‖L2(Σρ)

)η (2.21)

where ρ ∈
(

M
4
√

1+M2 r0,
3M

4
√

1+M2 r0

)
and P0 = P1 + M

4
√

1+M2 r0 · ν, where ν is the
outer unit normal to Ω at P1 and C1 > 0, 0 < η < 1 are constants depending
on the a priori data and on ρ only.

Proof. We shall give a sketch of the proof using the stability estimate for
the Cauchy problem for elliptic equations in divergence form with Lipschitz
coefficients proved by Trytten [69], see also Payne [63].
Let us define

ρ1 =
M

4
√

1 +M2
r0, (2.22)

ρ2 =
3M

4
√

1 +M2
r0. (2.23)

We can deduce from [69] that, for every ρ ∈ (ρ1, ρ2), there exists an exponent
p > 1 and a constant K̃ depending on the a priori data and on ρ only, such that

F
(ρ

2

)
≤ C

r0p

(∫
Σρ

u2 + r20

∫
Σρ

|∇u|2
)η

·

(∫
Σρ

u2 + r20

∫
Σρ

|∇u|2 + r0

∫
UΣ

r0

σ∇u · ∇u

)1−η

(2.24)
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where

F (ρ) =
∫ ρ

ρ1

r−p

∫
Br(P0)∩UΣ

2r0

σ∇u · ∇u+
K̃

rp
0

(∫
Σρ1

u2 + r20

∫
Σρ1

|∇u|2
)
, (2.25)

with η, 0 < η < 1 and C > 0 constants depending only on the a priori data
and on ρ only.
On the other hand the arguments in [69, p. 226] ensures the existence of a
constant c1 > 0 only depending on on the a priori data and on ρ such that

F
(ρ

2

)
≥ c1

∫
Bρ(P0)∩UΣ

r0

u2. (2.26)

Thus, combining (2.24) and (2.26) the thesis follows. �

In the following theorem, we shall elaborate the inequality (2.21) obtaining a
stability estimate of continuation from Cauchy data.

Theorem 2.4 (Stability near the boundary). Let Ω and Σ be a domain
and a portion of its boundary satisfying (2.12) and (2.13) respectively. Let
u ∈ H1(Ω) be a weak solution to (2.1) and let (2.14)-(2.17) be satisfied.
Then, we have that for every P1 ∈ Σ2r0 , u satisfies the following estimate

‖u‖L2(Bρ(P0)∩UΣ
2r0

) ≤ C
(
‖ψ‖L2(Σρ) + ‖g‖L2(Σρ) + ‖u‖H1(Ω)

)1−δ ·

·
(
‖ψ‖L2(Σρ) + ‖g‖L2(Σρ)

)δ
where ρ ∈

(
M

4
√

1+M2 r0,
3M

4
√

1+M2 r0

)
, P0 = P1 + M

4
√

1+M2 r0 · ν, ν is the outer unit
normal to Ω at P1 and C > 0, 0 < δ < 1 are constants depending on the a priori
data and on ρ only.

Proof. Let us define the function g̃ ∈ L2(∂Ω) as follows

g̃(x) =


g(x), for a.e. x ∈ Σr0 ,

− 1
|∂Ω \ Σ|

∫
Σr0

g , for a.e. x ∈ ∂Ω \ Σ ,

0 , otherwise .

Let us consider the following Neumann problem{
div(σ∇z) = 0, in Ω ,
σ∇z · ν = g̃, on ∂Ω . (2.27)

Note that
∫

∂Ω
g̃ = 0, hence a weak solution z ∈ H1(Ω) exists and it is unique

up to an additive constant. We select the solution z of (2.27) with zero average,
it is well-known that for such a z the following holds

‖z‖H1(Ω) ≤ C2‖g̃‖L2(∂Ω) ≤ C3‖g‖L2(Σr0 )
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where C2 and C3 are positive constants depending on the a priori data only.
Let us set w = u− z, thus w solves the following Cauchy problem div(σ∇w) = 0, in Ω,

w = ψ − z, on Σr0 ,
σ∇w · ν = 0, on Σr0 .

(2.28)

By a standard boundary regularity estimate (see for instance [5, p.667]), we
have that w ∈ C1,β(UΣ

3
2 r0

) and the following holds

‖w‖C1,β(UΣ
3
2 r0

) ≤ C4‖w‖H1(Ω), (2.29)

where 0 < β < 1 and C4 > 0 are constants depending on the a priori data only.
By an interpolation inequality, (see for instance [8, p.777]) we have that

‖∇w‖L2(Σ2r0 ) ≤ C5‖w‖1−γ

C1,β(UΣ
3
2 r0

)
‖w‖γ

L2(Σ2r0 )
, (2.30)

where C5 > 0 and 0 < γ < 1 are constants depending on the a priori data only.
Moreover,

‖w‖H1(Ω) ≤ ‖u‖H1(Ω) + ‖z‖H1(Ω) ≤ C6

(
‖u‖H1(Ω) + ‖g‖L2(Σr0 )

)
, (2.31)

where C6 = max{1, C3}. From (2.29),(2.30) and (2.31) it follows that

‖∇w‖L2(Σ2r0 ) ≤ C7

(
‖u‖H1(Ω) + ‖g‖L2(Σr0))

)1−γ

·(
‖ψ‖L2(Σ2r0 ) + ‖z‖L2(Σ2r0 )

)γ
. (2.32)

Applying (2.21) to w and using (2.32) we obtain

‖u‖L2(Bρ(P0)∩UΣ
2r0

) ≤ C
(
‖ψ‖L2(Σr0 ) + ‖g‖L2(Σr0 ) + ‖u‖H1(Ω)

)1−γη ·

·
(
‖ψ‖L2(Σr0 ) + ‖g‖L2(Σr0 )

)γη
.

And the thesis follows with δ = γη. �

2.2.2 The three spheres inequality

In this subsection we shall consider a solution u to the elliptic equation

div(σ∇u) = 0 in Ω. (2.33)

We state the following classical inequality in connection with unique continua-
tion.
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Lemma 2.5 (Three spheres inequality). Let Ω be a bounded domain sat-
isfying (2.11),(2.12) and let the conductivity tensor σ satisfies the ellipticity
condition (2.16) and the Lipschitz regularity assumption (2.17).
Let u be a solution to (2.33). Then for every r1, r2, r3, r̄, 0 < r1 < r2 < r3 ≤ r̄
and for every x0 ∈ Ωr̄, we have that∫

Br2 (x0)

u2 ≤ C

(∫
Br1 (x0)

u2

)τ

·

(∫
Br3 (x0)

u2

)1−τ

, (2.34)

where C > 0 and τ, 0 < τ < 1 only depending on µ,K, r1
r3
, r2

r3
.

Proof. For the proof we refer to Kukavika [51] and also to Korevaar and
Meyers [48]. �

By the iterated use of the three spheres inequality we obtain a stability estimate
of continuation from the interior, as follows.

Theorem 2.6. Let the hypothesis of Lemma 2.5 be satisfied. Let ρ0 > 0 and
let x0, y0 ∈ Ω4ρ0 , then∫

Bρ0 (y0)

u2 ≤ C

(∫
B3ρ0 (x0)

u2

)τs

· E(1−τs) . (2.35)

where C > 0 and τ, 0 < τ < 1 are constants only depending on µ,K, whereas
s is a positive constant such that s < |Ω|

ωnρn
0
.

Proof. Following Lieberman [57], we introduce a regularized distance d̃ from
the boundary of Ω. We have that there exists d̃ such that d̃ ∈ C2(Ω)∩C0,1(Ω̄),
satisfying the following properties

i) γ0 ≤
dist(x, ∂Ω)

d̃(x)
≤ γ1,

ii) |∇d̃(x)| ≥ c1, for every x such that dist(x, ∂Ω) ≤ br0,

iii) ‖d̃‖C0,1 ≤ c2r0,

where γ0, γ1, c1, c2, b are positive constants depending on M only, (see also [8,
Lemma 5.2]).
Let us define for every ρ > 0

Ω̃ρ = {x ∈ Ω : d̃(x) > ρ} .

It follows that, there exists a, 0 < a ≤ 1, only depending on M such that for
every ρ, 0 < ρ ≤ ar0, Ω̃ρ is connected with boundary of class C1 and

c̃1ρ ≤ dist(x, ∂Ω) ≤ c̃2ρ for every x ∈ ∂Ω̃ρ ∩ Ω, (2.36)

where c̃1, c̃2 are positive constants depending on M only. By (2.36) it follows
that

Ωc̃2ρ ⊂ Ω̃ρ ⊂ Ωc̃1ρ .
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Let γ be a path in Ω̃ 4ρ0
c̃1

joining x0 to y0 and let us define {yi}, i = 0, . . . , s as

follows, yi+1 = γ(ti), where ti = max{t : |γ(t) − yi| = 2ρ0} if |x0 − yi| > 2ρ0

otherwise let i = s and stop the process. Now by Lemma (2.5) we have that∫
B3ρ0 (y0)

u2 ≤ C

(∫
Bρ0 (y0)

u2

)τ

·

(∫
B4ρ0 (y0)

u2

)1−τ

.

Now since Bρ0(y0) ⊂ B3ρ0(y1) and by (2.18), we have that∫
Bρ0 (y0)

u2 ≤ C

(∫
B3ρ0 (y1)

u2

)τ

· E(1−τ) .

An iterated application of the three spheres inequality leads to∫
Bρ0 (y0)

u2 ≤ C

(∫
Bρ0 (ys)

u2

)τs

· E(1−τs) .

Finally observing that Bρ0(ys) ⊂ B3ρ0(x0) the theorem follows. �

2.2.3 Stability estimate up to the boundary

In this subsection we give the proof of the stability estimate up to the portion of
the boundary Γ for the solution u to the problem (2.1) in terms of the Cauchy
data.
In order to obtain such an estimate we need to make use of some a priori bounds
on a weak solution u ∈ H1(Ω) to the Cauchy problem (2.1), as well as a further
regularity assumption on the portion Γ.
Let us require the following.

A regularity assumption on Γ

Given α, 0 < α ≤ 1, we shall require that the portion of the boundary

Γ is C1,α smooth with constants r0,M. (2.37)

A priori bound on the C1,α regularity at the boundary

Given α, 0 < α ≤ 1, we shall assume that, for every ρ ∈ (0, r0), u ∈ C1,α(UΓ
ρ )

and that there exists a constant Cρ depending on ρ, such that

‖u‖C1,α(UΓ
ρ ) ≤ Cρ. (2.38)

Let us stress that in the treatment of the inverse corrosion problem and of the
inverse scattering one we will not need to a priori require a bound of the type
(2.38). Indeed, in Theorem (3.4) and in Theorem (5.3), we will prove a property
of this sort by making use of the boundary condition and of the a priori bounds
on the unknown boundary terms.
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Theorem 2.7 (Stability for the Cauchy problem). Let Ω, Σ and Γ be such
that (2.11),(2.12),(2.13) and (2.37) are satisfied. Let (2.14)-(2.17) be satisfied.
Let ui ∈ H1(Ω), i = 1, 2 be weak solutions to the Cauchy problem (2.1) with
ψ = ψi and g = gi respectively, such that (2.18) and (2.38) hold for each ui.
Suppose that

‖ψ1 − ψ2‖L2(Σ) ≤ ε, (2.39)
‖g1 − g2‖L2(Σ) ≤ ε, (2.40)

then, for every ρ ∈ (0, r0) there exists a constant cρ > 0 depending on the a
priori data and on ρ only, such that

‖u1 − u2‖C1(Γρ) ≤ cρ| log (ε)|−θ, (2.41)

where θ, 0 < θ < 1 is a constant depending on a priori data only.

Proof. Since the boundary of Ω is of Lipschitz class, then it satisfies the cone
property. More precisely, if Q is a point of ∂Ω, then there exists a rigid trans-
formation of coordinates under which we have Q = 0. Moreover, considering
the finite cone

C =
{
x : |x| < r0,

x · ξ
|x|

> cos θ
}

with axis in the direction ξ and width 2θ, where θ = arctan 1
M , we have that

C ⊂ Ω. Let us consider now a point Q ∈ Γ and let Q0 be a point lying on the
axis ξ of the cone with vertex in Q = 0 such that d0 = dist(Q0, 0) < r0

2 . Let us
define u = u1 − u2.
Using the notation introduced in the Proposition 2.4, we define the point P =
P0 − 1

2
√

1+M2 r0 · ν, ρ0 = min{ 1
128M

√
1+M2 r0,

r0
4 sin θ}. By Theorem 2.6 with

x0 = P and y0 = Q0 and by (2.18), we have that

∫
Bρ0 (Q0)

u2 ≤ C

(∫
B3ρ0 (P )

u2

)τs

· E(1−τs) . (2.42)

Moreover, since B3ρ0(P ) ⊂ B 3M

4
√

1+M2
r0

(P0) ∩ UΣ
2r0

, then by Proposition 2.4,

(2.18) and the bounds on the error (2.39) and (2.40), we can infer that∫
Bρ0 (Q0)

u2 ≤ C
{
(ε+ E)1−δ · (ε)δ

}τs

.

We shall construct a chain of balls Bρk
(Qk) centered on the axis of the cone,

pairwise tangent to each other and all contained in the cone

C′ =
{
x : |x| < r0,

x · ξ
|x|

> cos θ′
}
,
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where θ′ = arcsin
(

ρ0
d0

)
. Let Bρ0(Q0) be the first of them, the following are

defined by induction in such a way

Qk+1 = Qk − (1 + µ̃)ρkξ ,
ρk+1 = µ̃ρk ,
dk+1 = µ̃dk ,

with

µ̃ =
1− sin θ′

1 + sin θ′
.

Hence, with this choice, we have ρk = µ̃kρ0 and Bρk+1(Qk+1) ⊂ B3ρk
(Qk).

Arguing with analogous arguments to those developed in Theorem (2.6), we
have that

‖u‖L2(Bρk
(Qk)) ≤ ‖u‖L2(B3ρk−1 (Qk−1)) ≤

≤ ‖u‖τ
L2(Bρk−1 (Qk−1))

‖u‖1−τ
L2(B4ρl−1 (Qk−1))

≤ C‖u‖τk

L2(Bρ0 (Q0))
≤ C

{[
(ε+ E)1−δ · (ε)δ

]τs}τk

.(2.43)

For every r, 0 < r < d0, let k(r) be the smallest positive integer such that
dk ≤ r then, since dk = µ̃kd0, it follows

| log( r
d0

)|
log µ̃

≤ k(r) ≤
| log( r

d0
)|

log µ̃
+ 1 , (2.44)

and by (2.43) we deduce

‖u‖L2(Bρk(r)(Qk(r))) ≤ C
{[

(ε+ E)1−δ · (ε)δ
]τs}τk(r)

. (2.45)

Let x̄ ∈ Γ
ρ
2 with ρ ∈ (0, r0) and let x ∈ B ρk(r)−1

2
(Qk(r)−1). By the a priori

assumption (2.38) we have, in particular, that u ∈ C1,α(UΓ
ρ
4
) with

‖u‖C1,α(UΓ
ρ
4
) ≤ Cρ. (2.46)

Then (2.46) yields to

|u(x̄)| ≤ |u(x)|+ Cρ|x− x̄|α ≤ |u(x)|+ Cρ

(
2
µ̃
r

)α

.

Integrating this inequality over B ρk(r)−1
2

(Qk(r)−1), we have that

|u(x̄)|2 ≤ 2
ωn(ρk−1

2 )n

∫
B ρk(r)−1

2

(
Qk(r)−1

) |u(x)|2dx+ 2C2
ρ

(
4r2

µ̃2

)α

. (2.47)
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Being k the smallest integer such that dk ≤ r, then dk−1 > r and thus (2.47)
yields to

|u(x̄)|2 ≤ C(
r sin θ′

)n ∫
Bρk(r)−1 (Qk(r)−1)

|u(x)|2dx+ Cρr
2α .

By (2.45) we have that

|u(x̄)|2 ≤ C

rn

{[
(ε+ E)1−δ · (ε)δ

]τs}τk(r)−1

+ Cρr
2α . (2.48)

By the bound (2.46) we deduce also that∣∣∣∣∂u(x̄)∂ν

∣∣∣∣ ≤ ∣∣∣∣∂u(x)∂ν

∣∣∣∣+ Cρ

(
2
µ̃
r

)α

.

Integrating over B ρk(r)−1
2

(Qk(r)−1) we obtain that

∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ 2
ωn(ρk−1

2 )n

∫
B ρk(r)−1

2

(
Qk(r)−1

) ∣∣∣∣∂u(x)∂ν

∣∣∣∣2dx+ 2C2
ρ

(
4r2

µ̃2

)α

≤

≤ 2
ωn(ρk−1

2 )n

∫
B ρk(r)−1

2

(
Qk(r)−1

) |∇u(x)|2dx+ 2C2
ρ

(
4r2

µ̃2

)α

.

Applying the Caccioppoli inequality, we have∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ C(
ρk−1

)n+2

∫
Bρk(r)−1 (Qk(r)−1)

u(x)2dx+ Cρr
2α .

Rephrasing the arguments that have led to (2.48), we obtain that∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ C

rn+2

{[
(ε+ E)1−δ · (ε)δ

]τs}τk(r)−1

+ Cρr
2α . (2.49)

The choice in (2.44) guarantees that

τk(r)−1 ≥
(
r

d0

)ν

,

where ν = − log
(

1
µ̃

)
log τ . Thus, by (2.48) and by (2.49), it follows that

|u(x̄)| ≤ Cρ

{
r−

n
2

[(
(ε+ E)1−δ · (ε)δ

)τs] rν

2
+ rα

}
, (2.50)∣∣∣∣∂u(x̄)∂ν

∣∣∣∣ ≤ Cρ

{
r−

n
2

[(
(ε+ E)1−δ · (ε)δ

)τs] rν

2
+ rα

}
. (2.51)
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Minimizing the right hand sides of the above inequalities with respect to r, with
r ∈ (0, r0

4 ), we deduce

|u(x̄)| ≤ Cρ| log (ε)|−
2α

ν+2 , (2.52)∣∣∣∣∂u(x̄)∂ν

∣∣∣∣ ≤ Cρ| log (ε)|−
2α

ν+2 , (2.53)

where Cρ > 0 is a constant depending on the a priori data and on ρ only. Thus,
since x̄ is an arbitrary point in Γ

ρ
2 , by (2.52) and (2.53) we have that

‖u(x̄)‖
L∞(Γ

ρ
2 )
≤ Cρ| log (ε)|−

2α
ν+2 , (2.54)∥∥∥∥∂u(x̄)∂ν

∥∥∥∥
L∞(Γ

ρ
2 )

≤ Cρ| log (ε)|−
2α

ν+2 . (2.55)

By an interpolation inequality we have

‖∇t(u)‖L∞(Γρ) ≤ cρ‖u‖β

L∞(Γ
ρ
2 )
‖u‖C1,α(Γρ)

1−β
,

where β = α
α+1 and cρ > 0 depends on the a priori data and on ρ only. Thus,

by (2.46), we obtain

‖∇t(u)‖L∞(Γρ) ≤ cρ‖u‖β

L∞(Γ
ρ
2 )
Cρ

1−β .

It follows that for every ε < ε0, with ε0 depending only on the a priori data,

‖∇(u)‖L∞(Γρ) ≤
∥∥∥∥∂u∂ν

∥∥∥∥
L∞(Γρ)

+ ‖∇t(u)‖L∞(Γρ) ≤

≤ cρ| log (ε)|−
2αβ
ν+2 , (2.56)

where cρ > 0 depends on the a priori data and on ρ only. Hence, by a possible
replacing of ε0 with a smaller one depending on the a priori data only, we have
that

‖u1 − u2‖C1(Γρ) ≤ cρ| log (ε)|−
2αβ
ν+2 for every ε, 0 < ε < ε0. (2.57)

Thus the thesis follows with θ = 2αβ
ν+2 . �

2.3 Doubling inequalities

In this section we list two versions of doubling inequalities. The first one is the
following doubling inequality in the interior.
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Proposition 2.8 (Doubling inequality in the interior). Let the conductiv-
ity σ satisfies (2.16), (2.17). Let u ∈ H1(Ω) be a weak solution to the equation
(2.33). For every r̄ > 0 and for every x0 ∈ Ωr̄,∫

Bβr(x0)

u2 ≤ CβK̃

∫
Br(x0)

u2 (2.58)

for every r, β such that 1 ≤ β and 0 < βr ≤ r̄, where C only depends on µ and
K, whereas K̃ only depends on µ,K and increasingly on

N(r̄) = r̄2

∫
Br̄(x0)

|∇u|2∫
Br̄(x0)

|u|2
. (2.59)

Proof. For the proof we refer to Garofalo and Lin [38]. See also, for a more
recent proof, Kukavica [51]. �

We state below the following doubling inequality at the boundary.

Proposition 2.9 (Doubling inequality at the boundary). Let Ω be a
domain satisfying (2.12) and let x0 ∈ ∂Ω. Let v be a solution to

div(σ′∇v) = 0 in Ω ∩BR0(x0) (2.60)
σ′∇v · ν = 0 in ∂Ω ∩BR0(x0), (2.61)

for some R0 > 0, where σ′ is a function from Rn with values in an n × n
symmetric matrix σ′(x) = (σ′ij(x))

n
i,j=1 satisfying the following assumptions,

for given positive constants µ0, α and C,

i)

µ0
−1|ξ|2 ≤

n∑
i,j=1

σ′ij(x)ξiξj ≤ µ0|ξ|2, for all x ∈ Ω and ξ ∈ Rn, (2.62)

ii)

σ′(0) = Id, (2.63)

iii)

σ′(x)x · ν = 0, for a.e. x ∈ ∂Ω ∩BR0(x0), (2.64)

iv)

|∇σ′(x)| ≤ C

r0α
|x|α−1, |σ′(x)− σ′(x0)| ≤

C

r0α
|x|α, for every x ∈ BR0(x0).(2.65)
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Then there exists R, 0 < R < R0, depending on µ0, α and C only, such that∫
Ω∩Bβr(x0)

u2 ≤ cβK̃

∫
Ω∩Br(x0)

u2 (2.66)

for every r, β such that 1 ≤ β and 0 < βr ≤ R, where c > 0 only depends on
µ0, α, C, whereas K̃ only depends on µ0, α, C and increasingly on

N(R0) = R0
2

∫
Ω∩BR0 (x0)

|∇v|2∫
∂BR0 (x0)∩Ω

|v|2
. (2.67)

Proof. For the proof we refer to [2, Theorem 1.3]. �
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Chapter 3

Stability for the inverse
corrosion problem

In this chapter we shall discuss the stability issue for the determination of the
nonlinear term f in the boundary value problem (1.5). Before stating the main
results of this chapter let us formulate the main hypothesis on the data of the
problem and on the a priori assumptions on the unknown nonlinear term under
which we shall prove the stability estimate.

Assumptions on the domain

Given positive constants D, r0,M, we assume throughout this chapter that the
assumptions (2.11) and (2.12) are satisfied.
We suppose that Γ1,Γ2 are two mutually disjoint, nonempty, connected, open
subsets of ∂Ω and

ΓD = ∂Ω \ (Γ1 ∪ Γ2) and Γ1 ∩ ΓD 6= ∅. (3.1)

Moreover, given 0 < α ≤ 1, we assume that the portions of the boundary Γi

are contained respectively into surfaces Si, i = 1, 2 which are C1,α smooth with
constants r0,M .
More precisely, for any x0 ∈ Si, i = 1, 2, we have that up to a rigid change of
coordinates,

Si ∩Br0(x0) = {(x′, xn) : xn = ϕi(x′)} , (3.2)

with ϕi i = 1, 2 satisfying (2.4)-(2.6) with ϕ = ϕi and k = 1.
In particular it follows that if

x0 ∈ Γi and dist(x0,ΓD) > r0 ,

then

Ω ∩Br0(x0) = {(x′, xn) ∈ Br0(x0) : xn > ϕi(x′)} , (3.3)
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where ϕi is the Lipschitz function whose graph locally represents ∂Ω. Moreover,
since Ω ∩ Br0(x0) ∩ ΓD = ∅, ϕi must also be the C1,α function whose graph
locally represents Si. We also suppose that the boundary of Γi, within Si, is of
C1,α class with constants r0,M , namely, for any x0 ∈ ∂Γi, there exists a rigid
transformation of coordinates under which

∂Γi ∩Br0(x0) = {(x′, xn) ∈ Br0(x0) : xn = ϕi(x′), xn−1 = ψi(x′′)} (3.4)

and

ψi : B
′′

r0
(x0) ⊂ Rn−2 −→ R (3.5)

satisfying ψi(0) = |∇ψi(0)| = 0 and ‖ψi‖C1,α(B′′
r0

(x0))
≤M .

Assumptions on the boundary data

Given G,m positive constants, we assume that the current flux g is a prescribed
function such that

‖g‖C0,α(Γ2) ≤ G , (3.6)

and furthermore
‖g‖

L∞(Γ
2r0
2 )

≥ m > 0 . (3.7)

A priori bound on the energy

Given E > 0, we assume that the voltage potential u satisfies the a priori bound
(2.18).

A priori information on the nonlinear term

Given L > 0 given positive constant, we assume that the function f belongs to
C0,1(R,R) and, in particular,

f(0) = 0 and |f(u)− f(v)| ≤ L|u− v| for every u, v ∈ R . (3.8)

Let us recall that a weak solution to the problem (1.5) is a function u ∈
H1

0 (Ω,ΓD), such that∫
Ω

∇u · ∇ρ =
∫

Γ2

gρ+
∫

Γ1

f(u)ρ for all ρ ∈ H1
0 (Ω,ΓD). (3.9)

We shall refer in the sequel to the a priori data as to the set of quantities
r0,M, α, L,G,E,D.
Before stating the main theorems of this chapter let us recall that we shall
denote with η(t) and ω(t), two positive increasing functions defined on (0,+∞),
that satisfy

η(t) ≥ exp
[
−
(
t

c

)−γ]
, for every 0 < t ≤ G , (3.10)
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ω(t) ≤ C |log(t)|−ϑ
, for every 0 < t < 1 , (3.11)

where c > 0, C > 0, γ > 1, 0 < θ < 1 are constants depending on the a priori
data only.
The statements of the main results are the following.

Theorem 3.1 (Lower bound for the oscillation). Let Ω, g satisfying the
a priori assumptions. Let u be a weak solution of (1.5) satisfying the a priori
bound (2.18) then

osc
Γ1
u ≥ η(‖g‖

L∞(Γ
2r0
2 )

)

where η satisfies (3.10).

Theorem 3.2 (Stability for the nonlinear term f). Let ui ∈ H1
0 (Ω,ΓD),

i = 1, 2 be weak solutions of the problem (1.5), with f = fi and g = gi respec-
tively and such that (2.18) holds for each ui. Let us also assume that, for some
positive number m, the following holds

‖g1‖L∞(Γ
2r0
2 )

≥ m > 0 . (3.12)

Moreover, let ψi = ui

∣∣
Γ2
, i = 1, 2. There exist C > 0, ε0 > 0 only depending

on the a priori data and on m such that, if, for some ε, 0 < ε < ε0, we have

‖ψ1 − ψ2‖L2(Γ2) ≤ ε ,

‖g1 − g2‖L2(Γ2) ≤ ε ,

then
‖f1 − f2‖L∞(V ) ≤ ω(ε) ,

where
V = (α, β) ⊆ [−CE,CE] ,

is such that

β − α >
η(m)

2
and η, ω satisfy (3.10), (3.11) respectively.

3.1 The regularity results

Lemma 3.3 (Hölder regularity at the boundary). Let u be a solution to
(1.5), satisfying the a priori bound (2.18) then there exists a constant C > 0,
depending on the a priori data only, such that

‖u‖L∞(B r0
4

(z0)∩Ω) ≤ CE, for every z0 ∈ Γ1 (3.13)

and

‖u‖C0,α(Γ1) ≤ CE (3.14)

where 0 < α < 1 is a constant depending on r0,M, n only.
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Proof. For any z0 ∈ Γ1 and for any ρ > 0, we shall denote

Γρ(z0) = Ω ∩Bρ(z0) , (3.15)
∆ρ(z0) = Γρ(z0) ∩ ∂Ω. (3.16)

Let 0 < ρ1 < ρ2 ≤ r0 and let us consider a test function ϕ ∈ C1(Ω) such that

i) 0 ≤ ϕ ≤ 1;

ii) ϕ = 1 in Γρ1(z0) and ϕ = 0 in Ω \ Γρ2(z0);

iii) |∇ϕ| ≤ 2
ρ2 − ρ1

.

For any integer s ≥ 2, let us define the function ψ = |u|s−2uϕ2. Hence, choosing
ψ as test function in the weak formulation of the problem (3.9) we have that∫

Γρ2 (z0)

(s− 1)|∇u|2|u|s−2ϕ2 +
∫

Γρ2 (z0)

2∇u · ∇ϕ|u|s−2uϕ =∫
∆ρ2 (z0)

f(u)|u|s−2uϕ2. (3.17)

Hence,∫
Γρ2 (z0)

(s− 1)|∇u|2|u|s−2ϕ2 ≤
∣∣∣ ∫

Γρ2 (z0)

2∇u · ∇ϕ|u|s−2uϕ
∣∣∣+ (3.18)

+
∣∣∣ ∫

∆ρ2 (z0)

f(u)|u|s−2uϕ2
∣∣∣.

By applying the Hölder inequality to the first term on the right hand side of
(3.18), we obtain

∣∣∣ ∫
Γρ2 (z0)

2∇u · ∇ϕ|u|s−2uϕ
∣∣∣ ≤ 4

ρ2 − ρ1

(∫
Γρ2 (z0)

|∇u|2|u|s−2ϕ2

) 1
2
(∫

Γρ2 (z0)

|u|s
) 1

2

By the Schwartz inequality, it then follows that for every ε > 0∣∣∣ ∫
Γρ2 (z0)

2∇u · ∇ϕ|u|s−2uϕ
∣∣∣ ≤ (3.19)

≤ ε

(∫
Γρ2 (z0)

|∇u|2|u|s−2ϕ2

)
+

16
(ρ2 − ρ1)2ε

(∫
Γρ2 (z0)

|u|s
)

Let us now consider the second term on the right hand side of (3.18). The
assumption (3.8) yields∣∣∣ ∫

∆ρ2 (z0)

f(u)|u|s−2uϕ2
∣∣∣ ≤ L

∫
∆ρ2 (z0)

|u|sϕ2. (3.20)
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Furthermore by a trace inequality, see for instance [1, Theorem 5.22], we infer
that ∣∣∣ ∫

∆ρ2 (z0)

f(u)|u|s−2uϕ2
∣∣∣ ≤ CL

∫
Γρ2 (z0)

|∇(|u|sϕ2)| (3.21)

where C > 0 is a constant depending on the a priori data only. Hence by the
Schwartz inequality, it then follows that for every ε > 0∣∣∣ ∫

∆ρ2 (z0)

f(u)|u|s−2uϕ2
∣∣∣ ≤ (3.22)

≤ ε

∫
Γρ2 (z0)

|u|s−2|∇u|2ϕ2 +
s2C2L2

ε

∫
Γρ2 (z0)

|u|s +
4CL
ρ2 − ρ1

∫
Γρ2 (z0)

|u|s

Inserting (3.19) and (3.22) in (3.18), we obtain

(1− 2ε)

(∫
Γρ2 (z0)

|u|s−2|∇u|2ϕ2

)
≤

≤
(

16
(ρ2 − ρ1)2ε

+
L2s2C2

ε
+

4CL
ρ2 − ρ1

)(∫
Γρ2 (z0)

|u|s
)

Choosing ε = 1
4 in the above inequality we have that∫

Γρ1 (z0)

|u|s−2|∇u|2 ≤
(

32
(ρ2 − ρ1)2ε

+
2L2s2C2

ε
+

2CL
ρ2 − ρ1

)(∫
Γρ2 (z0)

|u|s
)

By the Sobolev inequality, see for instance [1, Chap. 5], we have that(∫
Γρ1 (z0)

|u|
n̂s

n̂−2

) n̂−2
n̂s

≤
(
C(1 + s)
ρ2 − ρ1

) 2
s

(∫
Γρ2 (z0)

|u|s
) 1

s

,

where n̂ = n for n > 2, 2̂ > 2 and C > 0 is a constant depending on the a priori
data only.
Now, dealing as in [39, Chap. 8], we observe that the above inequality can be

iterated. Indeed, setting s = sm = 2
(

n̂
n̂−2

)m

and ρm = r0
4 + 2−m r0

4 , m =
0, 1, . . . , by (3.23) it follows

‖u‖
Lsm

(
Γ r0

4
(z0)
) ≤ (C n̂

n̂− 2

)∑
4m( n̂

n̂−2 )−m

‖u‖
L2
(
Γ r0

2
(z0)
). (3.23)

Letting m tends to ∞ in (3.23), we can infer that

‖u‖
L∞
(
Γ r0

4
(z0)
) ≤ C‖u‖

L2
(
Γ r0

2
(z0)
), (3.24)

where C > 0 is a constant depending on the a priori data only.
Hence combining (2.18) and (3.24) the inequality (3.13) follows.
Let us now prove the inequality (3.14).
Let 0 < r1 < r2 ≤ r0

4 and let us consider a test function η ∈ C1(Ω) such that
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i) 0 ≤ η ≤ 1;

ii) η = 1 in Γr1(z0) and η = 0 in Ω \ Γr2(z0);

iii) |∇η| ≤ 2
r2 − r1

.

By (3.13), we have that

M2 = sup
x∈Γr2 (z0)

u(x) < +∞. (3.25)

Let us define the following non-negative function

v(x) = M2 − u(x), for every x ∈ Γr2(z0). (3.26)

Let us introduce the following quantities.
For every ρ ∈ (0, r0

4 ), let

i) b = 2LC,

ii) h = bM2;

iii) k = k(ρ) = ρδh,

iv) b̄ = b2 + k−2h2;

v) v̄ = v + k.

where C > 0 is the constant appearing in the inequality (3.21) and δ is such
that 0 < δ < 1.
Let us define, for β ∈ R \ {0} the function χ = η2v̄β . Hence choosing χ as test
function in the weak formulation (3.9), it follows that∫

Γr2 (z0)

|∇v|2v̄β−1η2 +
2
β

∫
Γr2 (z0)

∇v · ∇ηηv̄β = − 1
β

∫
∆r2 (z0)

f(M2 − v)η2v̄β .(3.27)

By the hypothesis (3.8) and by (3.27), we can infer that∫
Γr2 (z0)

|∇v|2v̄β−1η2 +
2
β

∫
Γr2 (z0)

∇v · ∇ηηv̄β ≤ 1
|β|

∫
∆r2 (z0)

L|M2 − v|η2v̄β . (3.28)

Furthermore by the trace inequality used in (3.21), we have that∫
Γr2

|∇v|2v̄β−1η2 +
2
β

∫
Γr2

∇v · ∇ηηv̄β ≤ LC

|β|

∫
Γr2 (z0)

|∇[(M2 − v)η2v̄β ]|.

After straightforward calculations, we have that∫
Γr2 (z0)

|∇v|2v̄β−1η2 − LC

∫
Γr2 (z0)

|M2 − v||∇v|v̄β−1η2 ≤

≤ 2
|β|

∫
Γr2 (z0)

|∇v||∇η|ηv̄β +
2LC
|β|

∫
Γr2 (z0)

|M2 − v||∇η|ηv̄β +

+
LC

|β|

∫
Γr2 (z0)

|∇v|η2v̄β . (3.29)



3.1 The regularity results 43

By the Schwartz inequality it follows that for every ε > 0

LC

∫
Γr2 (z0)

|M2 − v||∇v|v̄β−1η2 ≤ ε

∫
Γr2 (z0)

|∇v|2v̄β−1η2 + (3.30)

+
L2C2

ε

∫
Γr2 (z0)

|M2 − v|2v̄β−1η2.

Hence choosing ε = 1
2 in (3.30), we obtain∫

Γr2 (z0)

|∇v|2v̄β−1η2 − LC

∫
Γr2 (z0)

|M2 − v||∇v|v̄β−1η2 ≥ (3.31)

≥ 1
2

∫
Γr2 (z0)

|∇v|2v̄β−1η2 − 2L2C2

∫
Γr2 (z0)

|M2 − v|2v̄β−1η2 ≥

≥ 1
2

∫
Γr2 (z0)

|∇v|2v̄β−1η2 − b2
∫

Γr2 (z0)

v2v̄β−1η2 − h2

∫
Γr2 (z0)

v̄β−1η2.

Moreover, observing that b2v2 + h2 ≤ b̄v̄2, by (3.31) we can infer that∫
Γr2 (z0)

|∇v|2v̄β−1η2 − LC

∫
Γr2 (z0)

|M2 − v||∇v|v̄β−1η2 ≥ (3.32)

≥ 1
2

(∫
Γr2 (z0)

|∇v|2v̄β−1η2 − 2b̄
∫

Γr2 (z0)

v̄β+1η2

)
On the other hand we have also that∫

Γr2 (z0)

|∇v||∇η|ηv̄β + LC

∫
Γr2 (z0)

|M2 − v||∇η|ηv̄β =

≤
∫

Γr2 (z0)

1
2

(2|∇v|+ bv + h) |∇η|ηv̄β . (3.33)

Noticing that bv + h ≤ 2
√
b̄v̄, we have that (3.33) yields∫

Γr2 (z0)

|∇v||∇η|ηv̄β + LC

∫
Γr2 (z0)

|M2 − v||∇η|ηv̄β ≤

≤
∫

Γr2 (z0)

(
|∇v|+

√
b̄v̄
)
|∇η|ηv̄β . (3.34)

Hence inserting (3.32) and (3.34) in (3.29) we obtain

1
2

(∫
Γr2 (z0)

|∇v|2v̄β−1η2 − 2b̄
∫

Γr2 (z0)

v̄β+1η2

)
≤ (3.35)

≤ 1
|β|

∫
Γr2 (z0)

ηv̄β |∇η||∇v|+ 1
|β|

∫
Γr2 (z0)

ηv̄β+1
√
b̄|∇η|+

+
LC

|β|

∫
Γr2 (z0)

|∇v|η2v̄β .
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Moreover, by the Schwartz inequality and by (3.35) we obtain that for every
ε > 0

1
2

(∫
Γr2 (z0)

|∇v|2v̄β−1η2 − 2b̄
∫

Γr2 (z0)

v̄β+1η2

)
≤ (3.36)

≤ ε

|β|

∫
Γr2 (z0)

|∇v|2η2v̄β−1 +
1
ε|β|

∫
Γr2 (z0)

|∇η|2v̄β+1 +

+
1

2|β|

∫
Γr2 (z0)

|∇η|2v̄β+1 +
b̄

2|β|

∫
Γr2 (z0)

η2v̄β+1 +

+ ε

∫
Γr2 (z0)

|∇v|2v̄β−1η2 +
L2C2

ε|β|2

∫
Γr2 (z0)

η2v̄β+1.

From the above inequality it follows that(
1
2
− ε

|β|
− ε

)∫
Γr2 (z0)

|∇v|2v̄β−1η2 ≤

≤
∫

Γr2 (z0)

(
2b̄+

b̄

2|β|
+
L2C2

ε|β|

)
η2v̄β+1 +

∫
Γr2 (z0)

(
1

2|β|
+

1
ε|β|

)
|∇η|2v̄β+1. (3.37)

Thus, choosing ε = min{ 1
8 ,

|β|
8 }, we have that∫

Γr2 (z0)

|∇v|2v̄β−1η2 ≤ Ĉ

∫
Γr2 (z0)

(
η2 + |∇η|2

)
v̄β+1 , (3.38)

where Ĉ is a positive constant depending on |β|, L, C,M2, ρ, δ.
Let w be a function defined as follows

w =
{

v̄
β+1
2 , if β 6= −1,

log v̄, if β = −1.

Hence we can reformulate (3.38) as follows

∫
Γr2 (z0)

|η∇w|2 ≤


(β + 1)2Ĉ

∫
Γr2 (z0)

[
η2 + |∇η|2

]
w2, if β 6= −1 ,

Ĉ

∫
Γr2 (z0)

[
η2 + |∇η|2

]
, if β = −1.

(3.39)

By the Sobolev inequality, see for instance [1, Chap. 5], we have that

‖ηw‖2

L
2n̂

n̂−2 (Γr2 (z0))
≤ C

∫
Γr2 (z0)

(
|η∇w|2 + |w∇η|2

)
(3.40)

where n̂ = n for n > 2, 2̂ > 2 and C > 0 is a constant depending on the a priori
data only. Combining (3.39) and (3.40) we obtain

‖ηw‖2

L
2n̂

n̂−2 (Γr2 (z0))
≤ c(β + 1)2

∫
Γr2 (z0)

(η2 + |∇η|2)w2 , (3.41)
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where c > 0, depending on the a priori data, on ρ, on |β| and on δ only, is
bounded when |β| is bounded away from zero.
Hence from (3.41) we obtain

‖w‖2

L
2n̂

n̂−2 (Γr1 (z0))
≤ c′

(|β + 1|+ 1)
r2 − r1

‖w‖L2(Γr2 (z0)) (3.42)

where c > 0, depending on the a priori data, on ρ and on δ only.
At this stage arguing as in [39, Theorem 8.18], we obtain the following weak
Harnack inequality for the function v.
For every 0 < ρ < r0

16 , we have that

ρ−n‖v‖L1(Γ2ρ(z0)) ≤ C

(
inf

Γρ(z0)
v + ρδ|M2|

)
, (3.43)

where C > 0 is a constant only depending on the a priori data .
On the other hand by (3.13) we have also that,

m2 = inf
x∈Γr2 (z0)

u(x) < +∞. (3.44)

Then, we define the following non-negative function

z(x) = u(x)−m2 for every x ∈ Γr2(z0). (3.45)

Hence, by analogous arguments to those developed for the function v, we find
also the following weak Harnack inequality for the function z.
For every 0 < ρ < r0

16 , we have that

ρ−n‖z‖L1(Γ2ρ(z0)) ≤ C

(
inf

Γρ(z0)
z + ρδ|m2|

)
, (3.46)

where C > 0 is a constant only depending on the a priori data .
For every ρ ∈ (0, r0

16 ), let us denote

M(ρ) = sup
Γρ(z0)

u , (3.47)

m(ρ) = inf
Γρ(z0)

u. (3.48)

By (3.13),(3.43) and (3.46), we have that there exists a constant K > 0 depend-
ing on the a priori data only, such that

ρ−n

∫
Γ2ρ(z0)

(M2 − u) ≤ K
(
M2 −M + ρδ

)
, (3.49)

ρ−n

∫
Γ2ρ(z0)

(u−m2) ≤ K
(
m−m2 + ρδ

)
. (3.50)
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Moreover, let us observe that being the boundary ∂Ω of Lipschitz class, we have
that there exists a constant c1 > 0, depending on r0,M only, such that for every
ρ ∈ (0, r0

16 )

ρ−n|Γ2ρ(z0)| ≥ c1. (3.51)

Hence adding (3.49) and (3.50), we obtain

M −m ≤
(
1− c1

K

)
(M2 −m2) + 2Kρδ. (3.52)

Denoting by ω(ρ) = osc
Γρ(z0)

u, we have that by (3.52) it follows

ω(ρ) ≤ γω(4ρ) + c2ρ
δ , (3.53)

where c2 = 2K and γ = 1− c1
K .

By the arguments in [39, Lemma 8.23], it follows that for any µ ∈ (0, 1) and
any 0 < ρ ≤ ρ0 ≤ r0

16

ω(ρ) ≤ C

((
ρ

ρ 0

)α

ω(ρ0) + c2ρ
µδρ0

(1−µ)δ

)
, (3.54)

where C is a constant depending on the a priori data only, whereas α is such
that α = (1 − µ)( log(γ)

log( 1
4 )

). Hence choosing µ such that (1 − µ) log(γ)

log( 1
4 )
< µδ, we

have that (3.54) leads to

ω(ρ)
ρα

≤ c
(
ρ0
−αω(ρ0) + ρβ

)
, (3.55)

where c is a constant depending on the a priori data only and β is such that
β = µ(δ − 1)− α+ 1 > 0. Furthermore, we have that the above inequality and
(3.13) lead to

ω(ρ)
ρα

≤ c
(
ρ0
−α2CE + ρβ

)
, (3.56)

where C is a constant depending on the a priori data only.
Hence we can infer that for any z0 ∈ Γ1

‖u‖
C0,α

(
Γ r0

16
(z0)
) ≤ CE. (3.57)

where C > 0, 0 < α < 1 are constants depending on the a priori data only.
Thus the lemma follows. �

Theorem 3.4 (C1,α regularity at the boundary). Let u be a solution
of (1.5), satisfying the a priori bound (2.18), then for any ρ ∈ (0, r0), u ∈
C1,α(UΓ1

ρ ) and there exists a constant Cρ > 0, depending on the a priori data
and on ρ only, such that the following estimate holds

‖u‖
C1,α(U

Γ1
ρ )

≤ CρE. (3.58)
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Proof. Since, by Lemma 3.3, we know that u ∈ C0,α(Γ1), by the Lipschitz
regularity of f we have that

∂u

∂ν
(x) = f(u(x)) ∈ C0,α(Γ1) .

By well-known regularity bounds for the Neumann problem (see for instance [5,
p.667]) it follows that u ∈ C1,α(UΓ1

ρ ) and the following estimate holds

‖u‖C1,α(U1
ρ ) ≤ C

(
‖u‖

C0,α(Γ
ρ
2
1 )

+
∥∥∥∥∂u∂ν

∥∥∥∥
C0,α(Γ

ρ
2
1 )

+ ‖∇u‖L2(Ω)

)
≤

≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥

C0,α(Γ
ρ
2
1 )

+ E

)
(3.59)

where C > 0 depends on the a priori data and on ρ only. Moreover, we can

estimate the C0,α norm of
∂u

∂ν
in terms of E, in fact

∥∥∥∥∂u∂ν
∥∥∥∥

C0,α(Γ
ρ
2
1 )

= sup
x∈Γ

ρ
2
1

∣∣∣∣∂u(x)∂ν

∣∣∣∣+ (ρ2)α

sup
x,y∈Γ

ρ
2
1

∣∣∣∂u(x)
∂ν − ∂u(y)

∂ν

∣∣∣
|x− y|α

=

= sup
x∈Γ

ρ
2
1

|f(u(x))|+
(ρ

2

)α

sup
x,y∈Γ

ρ
2
1

|f(u(x))− f(u(y))|
|x− y|α

.

By the Lipschitz bound (3.8) on f and by Lemma 3.3 we obtain∥∥∥∥∂u∂ν
∥∥∥∥

C0,α(Γ
ρ
2
1 )

≤ L sup
x∈Γ

ρ
2
1

|u(x)|+ L
(ρ

2

)α

sup
x,y∈Γ

ρ
2
1

|u(x)− u(y)|
|x− y|α

≤

≤ L‖u‖C0,α(Γ1) ≤ CE . (3.60)

So inserting this estimate in (3.59) we have the thesis. �

Corollary 3.5. Let u be as above, then, for every ρ > 0, the function ∂u
∂ν belongs

to C0,1(Γρ
1), with Lipschitz constant L̃ depending on the a a priori data and on

ρ only.

Proof. Let x and y be two points in Γρ
1 then, by the assumption (3.8) and

by Theorem 3.4, it follows that∣∣∣∣∂u(x)∂ν
− ∂u(y)

∂ν

∣∣∣∣ = |f(u(x))− f(u(y))| ≤ L|u(x)− u(y)| ≤

≤ LCρE|x− y| .

The thesis follows with L̃ = LCρE. �
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3.2 The lower bound for the oscillation

Proposition 3.6 (Stability near the boundary). Let Ω satisfies the a priori
assumptions and let v ∈ H1(Ω) be a solution of the following Cauchy problem

∆v = 0 , in Ω,
v = ϕ , on Γ1,
∂v

∂ν
= h, on Γ1,

(3.61)

where ϕ, h ∈ L2(Γ1) and the boundary conditions are considered in the weak
sense.
Then, for every P1 ∈ Γ2r0

1 , v satisfies the following estimate

‖v‖L2(Bρ(P0)∩U1
2r0

) ≤ C
(
‖ϕ‖L2(Γρ

1) + ‖h‖L2(Γρ
1) + ‖v‖H1(Ω)

)1−δ

·

·
(
‖ϕ‖L2(Γρ

1) + ‖h‖L2(Γρ
1)

)δ

where ρ ∈
(

M
4
√

1+M2 r0,
3M

4
√

1+M2 r0

)
, P0 = P1 + M

4
√

1+M2 r0 · ν, ν is the outer unit
normal to Ω at P1 and C > 0, 0 < δ < 1 are constants depending on ρ, r0, n,M
only.

Proof. The proposition follows by applying the same arguments introduced
in Theorem 2.4 with σ = Id and Σ = Γ1. �

Proof of Theorem 3.1. Let ε = osc u
Γ1

> 0, since u = 0 on ΓD we have that

0 ∈ [min
Γ1

u,max
Γ1

u] (3.62)

and hence ‖u‖L∞(Γ1) ≤ ε and also

‖u‖L2(Γ
r0
1 ) ≤ C1ε (3.63)

where C1 is a positive constant depending on the a priori data only. By the a
priori assumption (3.8) on f , we have that |f(u)| ≤ L|u|, moreover, since∣∣∣∣∂u(x)∂ν

∣∣∣∣ = |f(u(x))| on Γ1,

then ∥∥∥∥∂u∂ν
∥∥∥∥

L2(Γ
r0
1 )

≤ C1Lε . (3.64)

By Proposition 3.6, it follows

‖u‖L2(Bρ(P0)∩U1
2r0

) ≤ C(ε+ E)1−δ · εδ (3.65)
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where C is a constant depending on the a priori data only. Since the boundary
of Ω is of Lipschitz class, then it satisfies the cone property. More precisely, if
Q is a point of ∂Ω, then there exists a rigid transformation of coordinates under
which we have Q = 0. Moreover, considering the finite cone

C =
{
x : |x| < r0,

x · ξ
|x|

> cos θ
}

with axis in the direction ξ and width 2θ, where θ = arctan 1
M , we have that C ⊂

Ω. Let us consider now a point Q ∈ Γr0
2 and let Q0 be a point lying on the axis

ξ of the cone with vertex in Q = 0 such that d0 = dist(Q0, 0) < r0
2 . Following

Lieberman [57], we introduce a regularized distance d̃ from the boundary of
Ω. We have that there exists d̃ such that d̃ ∈ C2(Ω) ∩ C0,1(Ω̄), satisfying the
following properties

i) γ0 ≤
dist(x, ∂Ω)

d̃(x)
≤ γ1,

ii) |∇d̃(x)| ≥ c1, for every x such that dist(x, ∂Ω) ≤ br0,

iii) ‖d̃‖C0,1 ≤ c2r0,

where γ0, γ1, c1, c2, b are positive constants depending on M only, (see also [8,
Lemma 5.2]).
Let us define for every ρ > 0

Ω̃ρ = {x ∈ Ω : d̃(x) > ρ} .

It follows that, there exists a, 0 < a ≤ 1, only depending on M such that for
every ρ, 0 < ρ ≤ ar0, Ω̃ρ is connected with boundary of class C1 and

c̃1ρ ≤ dist(x, ∂Ω) ≤ c̃2ρ for every x ∈ ∂Ω̃ρ ∩ Ω (3.66)

where c̃1, c̃2 are positive constants depending on M,α only. By (3.66) it follows
that

Ωc̃2ρ ⊂ Ω̃ρ ⊂ Ωc̃1ρ .

Using the notation introduced in the Proposition 3.6, we define the point P =
P0 − 1

4
√

1+M2 r0 · ν and ρ0 = min{ 1
32M

√
1+M2 r0,

r0
4 sin θ}. Moreover, let γ be

a path in Ω̃ ρ0
c̃1

joining P to Q0 and let us define {yi}, i = 0, . . . , s as follows
y0 = Q0, yi+1 = γ(ti), where ti = max{t : |γ(t) − yi| = 2ρ0} if |P − yi| > 2ρ0

otherwise let i = s and stop the process.
Now, we will use the three spheres inequality for harmonic functions (see for
instance [48] or [10, Appendix E]) that is

∫
B3ρ0 (y0)

u2 ≤

(∫
Bρ0 (y0)

u2

)τ

·

(∫
B4ρ0 (y0)

u2

)1−τ
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where 0 < τ < 1 is an absolute constant. Now since Bρ0(y0) ⊂ B3ρ0(y1) and
since, by hypothesis ‖u‖H1(Ω) ≤ E, then we have∫

Bρ0 (y0)

u2 ≤

(∫
B3ρ0 (y1)

u2

)τ

· E1−τ .

An iterated application of the three spheres inequality leads to∫
Bρ0 (y0)

u2 ≤

(∫
Bρ0 (ys)

u2

)τs

· E1−τs

.

Finally, since we have Bρ0(ys) ⊂ B 3M

4
√

1+M2
r0

(P0)∩UΓ1
2r0

, then by the Proposition

3.6 it follows ∫
Bρ0 (y0)

u2 ≤ C
{
(ε+ E)1−δ · (ε)δ

}τs

.

We shall construct a chain of balls Bρk
(Qk) centered on the axis of the cone,

pairwise tangent to each other and all contained in the cone

C′ =
{
x : |x| < r0,

x · ξ
|x|

> cos θ′
}

where θ′ = arcsin
(

ρ0
d0

)
. Let Bρ0(Q0) be the first of them, the following are

defined by induction in such a way

Qk+1 = Qk − (1 + µ)ρkξ ,
ρk+1 = µρk ,
dk+1 = µdk ,

with

µ =
1− sin θ′

1 + sin θ′
.

Hence, with this choice, we have ρk = µkρ0 and Bρk+1(Qk+1) ⊂ B3ρk
(Qk).

Let us now consider the following estimate obtained by a repeated application
of the three spheres inequality

‖u‖L2(Bρk
(Qk)) ≤ ‖u‖L2(B3ρk−1 (Qk−1)) ≤

≤ ‖u‖τ
L2(Bρk−1 (Qk−1))

‖u‖1−τ
L2(B4ρl−1 (Qk−1))

≤ C‖u‖τk

L2(Bρ0 (Q0))
≤

≤ C
{[

(ε+ E)1−δ · (ε)δ
]τs}τk

. (3.67)

For every r, 0 < r < d0, let k(r) be the smallest positive integer such that
dk ≤ r, then since dk = µkd0, it follows

| log( r
d0

)|
logµ

≤ k(r) ≤
| log( r

d0
)|

logµ
+ 1 (3.68)



3.2 The lower bound for the oscillation 51

and by (3.67), we have

‖u‖L2(Bρk(r)(Qk(r))) ≤ C
{[

(ε+ E)1−δ · (ε)δ
]τs}τk(r)

. (3.69)

Since, by hypothesis, Γ2 is contained in a C1,α surface and by the regularity
assumption (3.6) on g, it follows, by the same argument used in Theorem 3.4,
that u ∈ C1,α(UΓ2

2r0
).

Let x̄ ∈ Γ2r0
2 , x ∈ B ρk(r)−1

2
(Qk(r)−1), since u ∈ C1,α(UΓ2

2r0
) we have∣∣∣∣∂u(x̄)∂ν

∣∣∣∣ ≤ ∣∣∣∣∂u(x)∂ν

∣∣∣∣+ C|x− x̄|α ≤
∣∣∣∣∂u(x)∂ν

∣∣∣∣+ C

(
2
µ
r

)α

.

Integrating over B ρk(r)−1
2

(Qk(r)−1), we deduce that

∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ 2
ωn(ρk−1

2 )n

∫
B ρk(r)−1

2

(
Qk(r)−1

) ∣∣∣∣∂u(x)∂ν

∣∣∣∣2dx+ 2C2

(
4r2

µ2

)α

≤

≤ 2
ωn(ρk−1

2 )n

∫
B ρk(r)−1

2

(
Qk(r)−1

) |∇u(x)|2dx+ 2C2

(
4r2

µ2

)α

.

Applying the Caccioppoli inequality, we have∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ C(
ρk−1

)n+2

∫
Bρk(r)−1 (Qk(r)−1)

u(x)2dx+ Cr2α

and since k is the smallest integer such that dk ≤ r, then dk−1 > r, it follows∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ C(
r sin θ′

)n+2

∫
Bρk(r)−1 (Qk(r)−1)

u(x)2dx+ Cr2α .

From (3.69), we deduce∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ C

rn+2

{[
(ε+ E)1−δ · (ε)δ

]τs}τk(r)−1

+ Cr2α .

Let us define
σ(ε) =

[
(ε+ E)1−δ · (ε)δ

]τs

,

thus the previous inequality becomes∣∣∣∣∂u(x̄)∂ν

∣∣∣∣2 ≤ C

rn+2

{
σ(ε)

}τk(r)−1

+ Cr2α .

Now, using (3.68), we have

τk(r)−1 ≥
(
r

d0

)ν



52 Stability for the inverse corrosion problem

where ν = − log
(

1
µ

)
log τ . We have∣∣∣∣∂u(x̄)∂ν

∣∣∣∣ ≤ C

{
r−

n+2
2

[
σ(ε)

] rν

2
+ rα

}
.

Now minimizing the function on the right hand side, with respect to r, with
r ∈ (0, r0

4 ), we deduce ∣∣∣∣∂u(x̄)∂ν

∣∣∣∣ ≤ C

(
log

1
σ(ε)

)− 2α
ν+2

.

Since this estimate holds for every x̄ ∈ Γ2r0
2 , we infer∥∥∥∂u

∂ν

∥∥∥
L∞(Γ

2r0
2 )

≤ C
(

log
1

σ(ε)

)− 2α
ν+2

where C is a constant depending on the a priori data only. Hence, solving for
ε, we can compute

ε ≥ C exp
{
−
∥∥∥∂u
∂ν

∥∥∥
L∞(Γ

2r0
2 )

− ν+2
2α }

.

Note that, recalling the a priori bound (3.6), and choosing c = 2(1 − logCGγ)
and γ = ν+2

2α one trivially obtains

ε ≥ exp
[
−
(
t

c

)−γ]
, for every t ∈ (0, G] .

�

3.3 The stability result

Theorem 3.7 (Stability for a Cauchy problem). Let Ω, fi i = 1, 2 and gi

satisfy the a priori assumptions described above. Let ui ∈ H1
0 (Ω,ΓD), i = 1, 2

be weak solutions of the problem (1.5), with f = fi and g = gi respectively and
such that (2.18) holds for each ui.
Moreover, let ψi = ui

∣∣
Γ2
, i = 1, 2. Suppose that

‖ψ1 − ψ2‖L2(Γ2) ≤ ε ,

‖g1 − g2‖L2(Γ2) ≤ ε ,

then, for every ρ ∈ (0, r0)

‖u1 − u2‖C1(Γρ
1) ≤ ω(ε) (3.70)

where ω is given by (3.11) with a constant C > 0 which depends on the a priori
data and on ρ only.
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Proof. The proof follows by considering the procedure developed in Theo-
rem 2.7 with σ = Id and Σ = Γ2. �

Proposition 3.8 (Local monotonicity). Let u be a solution of (1.5) satis-
fying (2.18), then there exist a point x̄ ∈ Γτ

1 and a direction ξ ∈ Rn−1, |ξ| = 1
such that, in the representation (2.3) of Γ1 near x̄, the following holds

|∇x′u(x′, ϕ1(x′)) · ξ| ≥ η
(
‖g‖

L∞(Γ
2r0
2 )

)
, x′ ∈ Ux̄′ = {x′ = t · ξ + x̄′, |t| ≤ τ}(3.71)

with

τ = min
{
r0
4
,
ac̃1r0

4
, η(‖g‖

L∞(Γ
2r0
2 )

)
}

(3.72)

where 0 < a < 1, c̃1 > 0 are constants depending on the a priori data only and
η satisfies (3.10).

Proof. Arguing as in Theorem 3.1, we can introduce a regularized distance,
in the sense of Lieberman, on S1 from the boundary of Γ1 and consequently
construct connected sets Γ̃ρ

1 for every ρ, 0 < ρ ≤ ar0, which satisfy

Γc̃2h
1 ⊂ Γ̃h

1 ⊂ Γc̃1h
1 (3.73)

where 0 < a < 1, c̃2 > c̃1 > 0 are constants depending on M,α only.
Since, by Lemma 3.3, u ∈ C0,α(Γ1), we have that by (3.73) it follows

osc
Γ̃

ρ
c̃1
1

u ≥ osc
Γ

c̃2ρ
c̃1

1

u ≥ osc
Γ1
u− 2CE

(
ρ

c̃1

)α

c̃2
α .

Moreover by Theorem 3.1, we infer that

osc
Γ̃

ρ
c̃1
1

u ≥ η(‖g‖
L∞(Γ

2r0
2 )

)− 2CE
(
ρ

c̃1

)α

c̃2
α .

Possibly replacing c by a larger constant in (3.10) and taking

r1 = min
{
η(‖g‖

L∞(Γ
2r0
2 )

), ac̃1r0, r0
}

we have that

osc
Γ̃

r1
c̃1
1

u ≥ η(‖g‖
L∞(Γ

2r0
2 )

) . (3.74)

Let us set, for simplicity, η = η
(
‖g‖

L∞(Γ
2r0
2 )

)
. Since in the a priori assumptions

we have assumed that the portion Γ1 of the boundary is of C1,α class, then we
can locally represent the restriction of u (the solution to (1.5)) to Γ1, as a
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function of n − 1 variables, more precisely, for every x0 ∈ Γ1, up to a rigid
change of coordinates, we denote

w(x′) = u(x′, ϕ1(x′)) for all x ∈ Γ1 ∩Br0(x0). (3.75)

By (3.74), it follows that exist two points x and y in Γ̃
r1
c̃1
1 , such that

η ≤ u(x)− u(y) . (3.76)

Let us consider a continuous path σ ⊂ Γ̃
r1
c̃1
1 joining x to y and let us define a

sequence {xi}i=0,...,l as follows x0 = x, xi = σ(si) where si = max{s , |σ(s) −
xi| = r1

4 } if |y − xi| > r1
4 otherwise let i = l and otherwise stop the process.

The number l of balls is bounded from above by CM
(

D
r1

)n−1

, where C > 0 is
a constant depending on n only.
Let us define

Mi = max
B r1

4
(xi)∩Γ1

|∇tu(x)|

where ∇t denotes the tangential gradient on Γ1. Let M̄, ı̄, x̄ be such that
x̄ ∈ B r1

4
(xī) ∩ Γ1 and

M̄ = max
i=1,...,l

{Mi} = |∇tu(x̄)|. (3.77)

By (3.76) and the mean value Theorem, it follows that

η ≤ |u(x)− u(x1)|+ · · ·+ |u(xl)− u(y)| ≤

≤
∑

i=1,...,l

Mi
r1
4
≤ M̄C1

where C1 > 0 is a constant depending on the a priori data only. Thus we have

M̄ ≥ η

C1
> 0 . (3.78)

Now we use the local representation of u as a function of n− 1 variables (3.75),
within Γ1∩B r1

4
(xī). Let us define the direction ξ = ∇x′w

|∇x′w|
(x̄′). We shall further

restrict the function w to the segment t · ξ + x̄′, with

v(t) = w(t · ξ + x̄′) .

Now, we look for a neighborhood U0 of t = 0 such that

|v′(t)| ≥ η

2C1
for every t ∈ U0 . (3.79)

It follows that for every |t| < r1
4

|v′(0)− v′(t)| ≤ C2|t|α
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where C2 > 0 is a constant depending on the a priori data only.
Thus we have

M̄ = |v′(0)| ≤ |v′(t)|+ C2|t|α .

Hence by (3.78),
η

C1
− C2|t|α ≤ |v′(t)| .

Let us choose t in such a way

C2|t|α ≤
η

2C1
.

Hence (3.79) holds with U0 = [−τ, τ ], where τ = min

{
r1
4 ,

(
η

2C1C2

) 1
α

}
. The

thesis follows, observing that v′(t) = ∂w(x′)
∂ξ = ∇x′u(x′, ϕ(x′)) · ξ and, possibly,

by a further adjustment of the constant c in (3.10). �

Proof of Theorem 3.2. Let x̄ ∈ Γτ1
1 , τ1, ξ ∈ Rn−1 be the point, the length

and the direction introduced in Proposition 3.8, with u replaced with u1. Up
to a change of coordinates, we assume ξ = e1. Let

vi(t) = ui(t · ξ + x̄′, ϕ1(t · ξ + x̄′)) , i = 1, 2 ,

where x = (x′, ϕ1(x′)) is the local representation of Γ1 near x̄.
By Proposition 3.8 and assumption (3.12), we have that

|v′1(t)| ≥ η(m) , for every t ∈ U0 = [−τ1, τ1] . (3.80)

We shall denote by η1 = η(‖g1‖L∞(Γ
2r0
2 )

). By the stability estimate (3.70) of
Theorem 3.7, we have that

v′2(t) ≥ η1 − ω(ε) , for every t ∈ U0 .

Thus choosing ε0 such that
ω(ε0) ≤

η1
2

we have

|v′2(t)| ≥
η1
2
, for every t ∈ U0 . (3.81)

Thus the functions vi are invertible on U0, let us denote by Vi their respective
images and by

si : Vi → U0 , i = 1, 2 , (3.82)

their inverse functions. Let us observe that the intervals V1 and V2 overlap on a
sufficiently large interval V . In fact, by (3.80) and (3.81) it follows that vi are



56 Stability for the inverse corrosion problem

monotone.Without loss of generality, let us assume they are both increasing.
We have that, taken

a = −τ1
2
, b =

τ1
2
,

the following hold

vi(a) < vi(t) < vi(b) , for every t ∈ (a, b) , i = 1, 2 .

Moreover, since by the Theorem 3.7 we have

‖u1 − u2‖L∞(Γ1,
r1
2

) ≤ ω(ε)

then, it follows that, for ε < ε0, setting V = (v1(a) + 2ω(ε), v1(b)− 2ω(ε)), for
every u ∈ V , there exists t ∈ (a, b) such that v2(t) = u.

Let us estimate from below the length of the interval V . By the mean value
Theorem, (3.80) and (3.72), it follows that

|v1(a)− v1(b)| = |v′1(ξ)||b− a| ≥ η1τ1 .

Thus the length L of V is bounded from below by

L ≥ τ1η1 − ω(ε) .

Hence, possibly adjusting the constant c in the definition (3.10) of η, we have
that

L ≥ η(m)− ω(ε0) ≥
1
2
η(m) > 0 .

Let us consider any value u ∈ V , then using the inverse function si, we have

u = v1(s1(u)) = v2(s2(u)) .

Let us estimate

|f1(u)− f2(u)| =∣∣∣∣∂u1

∂ν
(s1(u)e1, ϕ1(s1(u)e1))−

∂u2

∂ν
(s2(u)e1, ϕ1(s2(u)e1))

∣∣∣∣ ≤∣∣∣∣∂u1

∂ν
(s1(u)e1, ϕ1(s1(u)e1))−

∂u2

∂ν
(s1(u)e1, ϕ1(s1(u)e1))

∣∣∣∣+∣∣∣∣∂u2

∂ν
(s1(u)e1, ϕ1(s1(u)e1))−

∂u2

∂ν
(s2(u)e1, ϕ1(s2(u)e1))

∣∣∣∣
where e1 = (1, 0, · · · , 0) ∈ Rn−1. By Theorem 3.7 it follows that, for all u ∈ V ,∣∣∣∣∂u1

∂ν
(s1(u)e1, ϕ1(s1(u)e1))−

∂u2

∂ν
(s1(u)e1, ϕ1(s1(u)e1))

∣∣∣∣ ≤ ω(ε) . (3.83)
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By Corollary 3.5, we infer that∣∣∣∣∂u2

∂ν
(s1(u)e1, ϕ1(s1(u)e1))−

∂u2

∂ν
(s2(u)e1, ϕ1(s2(u)e1))

∣∣∣∣ ≤
L̃
(
|s1(u)− s2(u)|+ |ϕ1(s1(u)e1)− ϕ1(s2(u)e1)|

)
≤

L̃(1 +M)|s1(u)− s2(u)| .

By the mean value Theorem, we find

v2(s2(u)) = v2(s1(u)) + v′2(s̄)(s
2(u)− s1(u))

where s̄ is a point between s2(u) and s1(u). Since

v2(s2(u)) = v1(s1(u)) ,

by (3.81) and by Theorem 3.7, it follows that

|s1(u)− s2(u)| ≤ 2
η1
|v2(s1(u))− v1(s1(u))| ≤

≤ 2
η1
ω(ε) , for every u ∈ V .

Finally, we infer that

|f1(u)− f2(u)| ≤ ω(ε) , for every u ∈ V ,

possibly by a further adjustment of the constant C in (3.11). �
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Chapter 4

Resolution of elliptic
Cauchy problems and
reconstruction of the
nonlinear corrosion

In this chapter we shall study the issue of solving the Cauchy problem for
elliptic equations in divergence form (2.1) as well as the reconstruction issue for
the nonlinearity f in the boundary value problem (1.5). First we shall solve the
Cauchy problem by means of regularization techniques, then we shall propose a
reconstruction procedure for the identification of the nonlinear corrosion under
some additional a priori assumptions on the solution of the problem.
Before discussing the main results of this chapter, let us introduce the notion
of regularization strategy and collect some reconstruction techniques, that we
shall apply in the course of the exposition.

4.1 Regularization theory for compact operators

A lot of inverse problems can be formulated as operator equations of the form

Kx = y , (4.1)

where K is a linear compact operator between Hilbert spaces X and Y .
For a sake of simplicity let us assume that the compact operator K is injective.
Let us now introduce the notion of regularization strategy.

Definition 4.1. A regularization strategy is a family of linear and bounded
operators

Rα : X → Y, α > 0 (4.2)



60
Resolution of elliptic Cauchy problems and reconstruction of the

nonlinear corrosion

such that

lim
α→0

RαKx = x, for every x ∈ X , (4.3)

i.e. the operators RαK converge pointwise to the identity.

As a consequence of the compactness of the operator K, we state the following
theorem.

Theorem 4.2. Let Rα be a regularization strategy for (4.1), where dimX = ∞.
Then we have

i) The operators Rα are not uniformly bounded.

ii) There is no convergence RαK to the identity I in the operator norm.

Proof. See [46, Chap.2]. �

Let us observe that the definition of a regularization strategy is based on un-
perturbed data. Indeed, let us assume that there exists a solution x ∈ X of the
unperturbed equation (4.1). However, in practice, the right hand-side of (4.1),
will be affected by errors and thus it is never known exactly, but only up to an
error ε > 0. Hence, let us assume to know the measured data yε with

‖y − yε‖Y ≤ ε. (4.4)

Let us define

xα,ε = Rαyε. (4.5)

Thus, xα,ε can be thought as an approximate solution of the exact one x.
By a trivial application of the triangle inequality, we can split the error in two
parts, as follows.

‖x− xα,ε‖X ≤ ‖Rαyε −Rαy‖X + ‖Rαy − x‖X ≤ (4.6)
≤ ‖Rα‖‖yε − y‖Y + ‖RαKx− x‖X . (4.7)

Hence by (4.4), we have

‖x− xα,ε‖X ≤ ε‖Rα‖+ ‖RαKx− x‖X . (4.8)

Our aim now is to choose the regularization parameter α, dependent upon ε,
so that the approximate solutions xα,ε actually converge to the exact solution
x. In this respect, let us observe that the first term in the right-hand side of
(4.8) might diverge as α tends to zero, whereas the second term tends to zero as
α tends to zero. Hence we have to balance these two behaviors by minimizing
(4.8) with respect to α.
We introduce the following notion.
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Definition 4.3. A regularization strategy α = α(ε) is called admissible if

α(ε) → 0 and sup{‖Rαεyε−x‖ : ‖Kx− yε‖ ≤ ε} → 0, ε→ 0, (4.9)

for every x ∈ X.

Before introducing a regularization strategy for the problem (4.1), let us recall
the following property of the compact operators.

Proposition 4.4. Let K : X → Y be a compact operator between Hilbert
spaces X and Y . Then there exists a triple {σj , xj , yj}∞j=1 called singular value
decomposition, such that {σj}∞j=1 is a non increasing infinitesimal sequence
of nonnegative numbers, {xj}∞j=1,{yj}∞j=1 are orthonormal bases for X and Y
respectively, such that

Kyj = σjxj , for every j = 1, 2 . . . , (4.10)
K∗xj = σjyj , for every j = 1, 2 . . . , (4.11)

where K∗ denotes the adjoint operator to K.

Proof. See [46, Appendix A]. �

Let us now state the following regularization theorem.

Theorem 4.5. Let K : X → Y be a compact operator with singular value
decomposition {σj , xj , yj}∞j=1 and

q : (0,∞)× (0, ‖K‖] → R

be a function with the following properties

i) |q(α, σ)| ≤ 1 for every α > 0 and 0 < σ ≤ ‖K‖;

ii) for every α > 0 there exists c(α) such that

|q(α, σ)| ≤ c(α)σ for every 0 < σ ≤ ‖K‖;

iii) lim
α→0

q(α, σ) = 1 for every 0 < σ ≤ ‖K‖.

Then the operator Rα : Y → X, α > 0 defined by

Rαy =
∞∑

j=1

q(α, σj)
σj

(y, yj)xj , y ∈ Y

is a regularization strategy with ‖Rα‖ ≤ c(α).
A choice α = α(ε) is admissible if α(ε) → 0 and εc(α(ε)) → 0 as ε → 0. The
function q is called a regularizing filter for K.
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Proof. See [46, Chap. 2]. �

Let us note that the cut-off function q defined as follows

q(α, σ) =
{

1 if σ2 ≥ α ,
0 if σ2 < α ,

(4.12)

is a regularization filter, since it satisfies the properties i),ii),iii) of Theorem 4.5.

Corollary 4.6. The operator Rα : Y → X, α > 0 defined by

Rαy =
∑

σj≥α

1
σj

(y, yj)xj , y ∈ Y

is a regularization strategy.
Moreover, every choice

α(ε) = ε2(1−γ) (4.13)

for the regularization parameter, with γ, 0 < γ < 1, is admissible.

In the course of the present chapter we shall recall, when needed, some quan-
titative formulations of the a priori assumptions made in Chapter 2 and in
Chapter 3. Hence, shall refer to the a priori data as the set of quantities
r0,M, α, L,G,E,D,m, µ,K, previously introduced in Chapter 2 and in Chap-
ter 3.

4.2 Solving the Cauchy problem

In this section we return to the study of the Cauchy problem (2.1) for variable
coefficients elliptic equations, started in Chapter 2 with the stability analysis.
Now we are concerned with the reconstruction issue for the same problem.
Before discussing the reconstruction techniques developed in this chapter, let us
recall the main assumptions and briefly outline the trace space setting needed
in this context.
We shall assume that the hypothesis (2.11)-(2.18) are satisfied.

We introduce the trace spaces H
1
2 (Σ), H

1
2
00(Σ) as the interpolation spaces

[H1(Σ), L2(Σ)] 1
2
, [H1

0 (Σ), L2(Σ)] 1
2

respectively, see [58, Chap. 1] for details.

We shall denote the corresponding dual spaces by H
1
2 (Σ)∗, H

1
2
00(Σ)∗, respec-

tively.
We recall that there exists a linear extension operator

E : H
1
2 (Σ) → H

1
2 (∂Ω) , such that E(ψ) = ψ on Σ and

‖E(ψ)‖
H

1
2 (∂Ω)

≤ C‖ψ‖
H

1
2 (Σ)

for every ψ ∈ H 1
2 (Σ), (4.14)
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where C > 0 is a constant depending on the a priori data only, see for instance
[1, Lemma 7.45]. Also we recall that the operator E0 of continuation to zero
outside Σ,

E0(ϕ) =
{
ϕ, in Σ,
0, in ∂Ω \ Σ, (4.15)

is bounded from H
1
2
00(Σ) into H

1
2 (∂Ω). Note that, by such an extension, H

1
2
00(Σ)

can be identified with the closed subspace of H
1
2 (∂Ω) of functions supported

in Σ ⊂ ∂Ω. More precisely, recalling the notations (2.10) and (2.20) we can

identify H
1
2
00(Σ) with the trace space of H1

0 (Ω,Γ) on ∂Ω. See [58, Chap. 1] and
also, for more details, [68].

Given ψ ∈ H
1
2 (Σ) and g ∈ H

1
2
00(Σ)∗ we shall say that u ∈ H1(Ω) is a weak

solution to (2.1) if u|Σ = ψ in the trace sense and also∫
Ω

σ∇u · ∇η =< g, η|Σ > (4.16)

for every η ∈ H1
0 (Ω,Γ). Here < ·, · > denotes the pairing between H

1
2
00(Σ)∗ and

H
1
2
00(Σ) based on the L2(Σ) scalar product. Our first step in the solution of the

Cauchy problem (2.1) is the reduction to the case when ψ = 0. To this purpose
we consider the weak solution W ∈ H1(Ω) to the well-posed Dirichlet problem{

div(σ∇W ) = 0 in Ω,
W = Eψ on ∂Ω. (4.17)

Setting U = u−W and G = g − σ∇W · ν|
H

1
2
00(Σ)

∈ H
1
2
00(Σ)∗, we have that U is

a weak solution to the Cauchy problem div(σ∇U) = 0 in Ω,
U = 0 on Σ,
σ∇U · ν = G on Σ.

(4.18)

For every h ∈ H
1
2
00(Γ)∗ let us consider the mixed boundary value problem div(σ∇v) = 0 in Ω,

v = 0 on Σ,
σ∇v · ν = h on Γ .

(4.19)

A function v ∈ H1
0 (Ω,Σ) is said to be a weak solution to (4.19) if∫

Ω

σ∇v · ∇η =< h, η|Γ > for every η ∈ H1
0 (Ω,Σ). (4.20)

It is readily seen, by the Lax-Milgram Theorem, that such mixed boundary value
problem (4.19) is well-posed. It is also evident that, finding the appropriate

h ∈ H
1
2
00(Γ)∗ such that σ∇v · ν|

H
1
2
00(Γ)

= G, would imply that v = U and provide
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us with the solution to (4.18). We note however, that given ρ0 > 0 such that
Σρ0 has nonempty interior, it would suffice to check that for some ρ, 0 < ρ < ρ0,
σ∇v · ν = G when both functionals are restricted to H

1
2
00(Σ

ρ). In fact, this is
a consequence of the uniqueness of the solution of the Cauchy problem when
the Cauchy data are prescribed on Σρ (instead than on all of Σ). Thus, having
fixed ρ, 0 < ρ < ρ0, the solution of the Cauchy problem (4.18) amounts to find

h ∈ H
1
2
00(Γ)∗ such that σ∇v · ν = G on H

1
2
00(Σ

ρ).
We prove the following.

Theorem 4.7. For any ρ, 0 < ρ < ρ0, let Tρ be the operator

Tρ : H
1
2
00(Γ)∗ → H

1
2
00(Σ

ρ)∗ (4.21)
h 7→ σ∇v · ν|Σρ

where v ∈ H1
0 (Ω,Σ) solves the mixed problem (4.19). The operator Tρ is com-

pact.

Proof. By the well posedness of the mixed boundary value problem (4.19),
the linear operator

S : H
1
2
00(Γ)∗ → H1

0 (Ω,Σ)
h 7→ v

is bounded.
Moreover, by a standard result of regularity at the boundary, it follows that for
every ρ > 0, v ∈ C1,α(UΣ

ρ ) and there exists a constant Cρ > 0 depending on
the a priori data and on ρ only, such that

‖v‖C1,α(Σρ) ≤ Cρ‖v‖H1
0 (Ω).

Thus the operator
Dρ : H1(Ω) → C0,α(Σρ)

v 7→ σ∇v · ν|Σρ

is bounded. Finally, since the inclusion

iρ : C0,α(Σρ) ↪→ H
1
2
00(Σ

ρ)∗

is compact and Tρ can be factored as Tρ = iρ ◦Dρ ◦ S, the thesis follows. �

Being Tρ a compact operator between Hilbert spaces, then it admits a singular
value decomposition {σρ

j , hj , g
ρ
j }∞j=1

By Corollary 4.6, we have that, denoting with (·, ·)
H

1
2
00(Σ

ρ)∗
the scalar product

for the Hilbert space H
1
2
00(Σ

ρ)∗, the family of operators Rα, α > 0

Rα : H
1
2
00(Σ

ρ)∗ → H
1
2
00(Γ)∗

g 7→
∑

σρ
k≥α

1
σρ

k
(g, gρ

k)
H

1
2
00(Σ

ρ)∗
hk

(4.22)
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is a regularization strategy for Tρ, namely

lim
α→0

RαTρh = h , for every h ∈ H
1
2
00(Γ)∗. (4.23)

Moreover, we recall that the choice (4.13) where γ is a fixed number, 0 < γ < 1,

is an admissible one, this means that if given, for every ε > 0, g, gε ∈ H
1
2
00(Σ

ρ)∗

and h ∈ H
1
2
00(Γ)∗ such that

g = Tρh and ‖g − gε‖
H

1
2
00(Σ

ρ)∗
≤ ε , (4.24)

then it follows that

lim
ε→0

‖Rα(ε)gε − h‖
H

1
2
00(Γ)∗

= 0 . (4.25)

We can return now to the Cauchy problem (2.1), when ψ is arbitrary in H
1
2 (Σ).

Let us suppose that, for every ε > 0, ψε ∈ H
1
2 (Σ), gε ∈ H

1
2
00(Σ

ρ)∗, and let
Wε ∈ H1(Ω) be the weak solution of (4.17), with ψ = ψε. Let us denote by

Rε = Rα(ε)(gε − σ∇Wε · ν|Σρ) + σ∇Wε · ν|Γ ∈ H
1
2
00(Γ)∗, where Rα and α(ε)

are the regularization strategy and the regularization parameter introduced in
(4.22) and (4.13), respectively. We propose as approximate regularized solution
to the problem (2.1) the function uε ∈ H1(Ω) which is a weak solution of the
mixed boundary value problem div(σ∇uε) = 0 in Ω,

uε = ψε on Σ,
σ∇uε · ν = Rε on Γ.

(4.26)

In analogy to (4.19) and (4.20), we shall call weak solution of the problem (4.26),
a function uε ∈ H1(Ω) such that uε|Σ = ψε in the trace sense and such that∫

Ω

σ∇uε · ∇η =< Rε, η|Γ > for every η ∈ H1
0 (Ω,Σ). (4.27)

The well-posedness of problem (4.26) is again a consequence of the Lax-Milgram
Theorem. The following Theorem provides a convergence results for the pro-
cedure of regularized inversion of the Cauchy problem (2.1) that we have just
outlined, when we start with approximate Cauchy data ψε, gε close to the exact
Cauchy data ψ, g.

Theorem 4.8. Let ψ ∈ H
1
2 (Σ) and g ∈ H

1
2
00(Σ)∗ be such that there exists

u ∈ H1(Ω), which is a weak solution to the Cauchy problem (2.1). If, given

ε > 0, we have that ψε ∈ H
1
2 (Σ) and gε ∈ H

1
2
00(Σ

ρ)∗

‖ψ − ψε‖
H

1
2 (Σ)

≤ ε , (4.28)

‖g − gε‖
H

1
2
00(Σ

ρ)∗
≤ ε , (4.29)
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then

lim
ε→0

uε|Γ = u|Γ in H
1
2 (Γ) , (4.30)

lim
ε→0

σ∇uε · ν|Γ = σ∇u · ν|Γ in H
1
2
00(Γ)

∗
. (4.31)

Proof. Let us observe that given S any open and connected portion of ∂Ω,
the following holds

‖σ∇Wε · ν|S − σ∇W · ν|S‖
H

1
2
00(S)∗

≤ c1‖W −Wε‖H1(Ω) ≤ c2‖Eψε − Eψ‖
H

1
2 (∂Ω)

then replacing in (4.14) ψ with ψε − ψ, we have by (4.28) that

‖σ∇Wε · ν|S − σ∇W · ν|S‖
H

1
2
00(S)∗

≤ c3ε , (4.32)

where c1, c2, c3 > 0 are constants depending on the a priori data and on S only.
Thus by (4.32), with S = Σρ, and by (4.29), we have that

lim
ε→0

‖g − gε + σ∇Wε · ν|Σρ − σ∇W · ν|Σρ‖
H

1
2
00(Σ

ρ)∗
= 0 (4.33)

Moreover, we have that (4.31) follows by applying (4.32) with S = Γ, (4.25)
with gε replaced with gε − σ∇Wε · ν|Σρ and (4.33). Indeed, we have

‖σ∇u · ν|Γ − σ∇uε · ν|Γ‖
H

1
2
00(Γ)∗

≤

≤
∥∥Rα(ε) (gε − σ∇Wε · ν|Σρ) + σ∇W · ν|Γ − σ∇u · ν|Γ

∥∥
H

1
2
00(Γ)∗

+

+ ‖σ∇W · ν|Γ − σ∇Wε · ν|Γ‖
H

1
2
00(Γ)∗

.

Finally, by a standard trace inequality

‖u|Γ − uε|Γ‖
H

1
2 (Γ)

≤ c4‖u− uε‖H1(Ω) ≤

≤ c5

(
‖σ∇u · ν|Γ − σ∇uε · ν|Γ‖

H
1
2
00(Γ)∗

+ ‖ψ − ψε‖
H

1
2 (Σ)

)
(4.34)

where c4, c5 > 0 are constants depending on the a priori data only, then (4.30)
follows by recalling (4.31) and from (4.28). �

4.3 A special case

The aim of this section is to specialize the approach of the previous section to
the Laplace equation in a domain with a singular geometry, which might be well-
suited to a reference conductor specimen, and to the model of electrochemical
corrosion.
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Let D be a bounded domain in Rn−1, with Lipschitz boundary ∂D with con-
stants r0,M . From now on we shall consider this special choice of Ω

Ω = D × (0, 1) , Γ2 = D × {0} , Γ1 = D × {1} , ΓD = ∂D × (0, 1).

In the following we will denote by λk, ϕk, k = 1, 2, . . . , the Dirichlet eigenvalues
and eigenfunctions of −∆ on D, namely{

−∆ϕk = λkϕk in D,
ϕk ∈ H1

0 (D) . (4.35)

We recall that the family {ϕk}∞k=1 is an orthogonal basis in L2(D) and also in
H1

0 (D). In the following we shall refer to the {ϕk}∞k=1 as the basis normalized in

the L2(D) norm. We have that ψ ∈ H
1
2
00(D) if and only if its Fourier coefficients

ψk =
∫

D

ψϕk (4.36)

satisfy

∞∑
k=1

λk
1
2ψk

2 <∞ (4.37)

and that, as a norm on H
1
2
00(D) we can choose

‖ψ‖
H

1
2
00(D)

=

( ∞∑
k=1

λk
1
2ψk

2

) 1
2

. (4.38)

Moreover, h ∈ H
1
2
00(D)∗ if and only if, its Fourier coefficients

hk =< h,ϕk > , (4.39)

satisfy

∞∑
k=1

λk
− 1

2hk
2 <∞ (4.40)

and the norm on H
1
2
00(D)∗ turns out to be

‖h‖
H

1
2
00(D)∗

=

( ∞∑
k=1

λk
− 1

2hk
2

) 1
2

. (4.41)

Here < ·, · > denotes the pairing between H
1
2
00(D)∗ and H

1
2
00(D) based on the

L2(D) scalar product. Note also that {λk
− 1

4ϕk} and {λk
1
4ϕk} constitute or-

thonormal bases for H
1
2
00(D) and H

1
2
00(D)∗ respectively.



68
Resolution of elliptic Cauchy problems and reconstruction of the

nonlinear corrosion

Due to the cylindrical geometry of Ω, we remark that we can identify the spaces
H

1
2
00(Γi), H

1
2
00(Γi)∗, i = 1, 2, with H

1
2
00(D), H

1
2
00(D)∗ respectively. Furthermore,

as noted in Section 4, we can identify H
1
2
00(Γ1) with the trace space on ∂Ω of

H1
0 (Ω,Γ) when Γ =

◦
(Γ2 ∪ ΓD), and the same holds when the roles of Γ1 and Γ2

are exchanged.
Let ψ ∈ H

1
2
00(Γ2), g ∈ H

1
2
00(Γ2)∗ and let us consider the following Cauchy

problem with auxiliary homogeneous condition on ΓD
∆u = 0 in Ω,
u = ψ on Γ2,
∂u

∂ν
= g on Γ2,

u = 0 on ΓD.

(4.42)

We shall say that u is a weak solution to the problem (4.42) if u| ◦
(Γ2∪ΓD)

= E0(ψ)

in the trace sense and if∫
Ω

∇u · ∇η =< g, η|Γ2 > for every η ∈ H1
0 (Ω,

◦
(Γ1 ∪ ΓD)).

Here E0(ψ) denotes the extension of ψ by zero outside Γ2 and < ·, · > denotes

the pairing between H
1
2
00(Γ2)∗ and H

1
2
00(Γ2) based on the L2(Γ2) scalar product.

We shall use a strategy similar to the one discussed in Section 4, but with some
slight variations, suggested by the presence of the portion ΓD of the boundary
where u = 0. As before, we reduce the problem (4.42) to the special case when
ψ = 0 and introduce the well-posed Dirichlet problem

∆v = 0 in Ω,
v = ξ on Γ1,

v = 0 on
◦

(Γ2 ∪ ΓD),

(4.43)

where ξ is a prescribed function in H
1
2
00(Γ1). To this purpose, in analogy with

(4.17), we consider W ∈ H1(Rn \ D) as the weak solution to the Dirichlet
problem 

∆W = 0 in Ω,
W = ψ on Γ2,

W = 0 on
◦

(Γ1 ∪ ΓD) .

(4.44)

The difference U = u −W shall satisfy (4.42) with ψ = 0 and g replaced with
G = g − ∂W

∂ν |H
1
2
00(Γ2)

.

Note that the well posed boundary value problem (4.43), will take the place of
(4.19). We intend to invert the map

T : ξ → ∂v

∂ν

∣∣∣∣
Γ2

(4.45)
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in order to solve the Cauchy problem. It is convenient at this stage to recall the
identification of the trace spaces on Γi, i = 1, 2 with the corresponding ones on
D.

Lemma 4.9. Let T be the operator

T : H
1
2
00(D) → H

1
2
00(D)∗ (4.46)

ξ 7→ ∂v

∂ν

∣∣∣∣
Γ2

(4.47)

where v is the weak solution of the problem (4.43). Then T extends to a compact

and self-adjoint operator on L2(D), such that
{
−λk

1
2 (sinh(λk

1
2 ))−1, ϕk

}∞
k=1

are
its eigenvalues and eigenfunctions respectively. The singular value decomposi-
tion of T : H

1
2
00(D) → H

1
2
00(D)∗ is given by

{−(sinh(λk
1
2 ))−1, λk

− 1
4ϕk, λk

1
4ϕk}∞k=1 . (4.48)

Proof. Let us first observe that the operator T is well defined since the
problem (4.43) is well-posed. In this special setting we can represent the solution
v of (4.43) by separation of variables, namely

v(x′, xn) =
∞∑

k=1

ξk

sinh(λk
1
2 )

sinh(λk
1
2xn)ϕk(x′) (4.49)

where {ξk}∞k=1 are the Fourier coefficients of ξ with respect to the L2(D) basis
{ϕk}∞k=1. After straightforward calculations we have that

T

( ∞∑
k=1

ξkϕk

)
=

∞∑
k=1

(
− ξkλk

1
2

sinh(λk
1
2 )

)
ϕk (4.50)

thus the operator extends to a self-adjoint operator on L2(D) and since the
eigenvalues are infinitesimal we conclude that T is compact as an operator from
L2(D) into L2(D). Moreover, since H

1
2
00(D) is continuously embedded in L2(D)

and L2(D) is continuously embedded in H
1
2
00(D)∗, also T : H

1
2
00(D) → H

1
2
00(D)∗

is compact and its SVD turns out to be (4.48). �

As a consequence of the above Lemma 4.9, we obtain that the family of operators

Rα : H
1
2
00(D)∗ −→ H

1
2
00(D), such that

Rα(G) =
∑

µk≥α

(−sinh(λk
1
2 ))(G,ϕk)

H
1
2
00(D)∗

ϕk (4.51)
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where µk = (sinh(λk
1
2 ))−1, is a regularization strategy for T and the choice

(4.13) for the parameter α is still admissible. We are in the position now to
present the regularized approximate solution for the following special case of
the problem (4.42). That is, given G ∈ H

1
2
00(Γ2),

∆U = 0 in Ω,
U = 0 on Γ2,
∂U

∂ν
= G on Γ2,

U = 0 on ΓD.

(4.52)

In this section we shall denote by [r] the integral part of the real number r.

Theorem 4.10. For every ε > 0, let Gε ∈ H
1
2
00(Γ2)∗ and let G ∈ H

1
2
00(Γ2)∗

be such that there exists U ∈ H1(Ω), which is a weak solution of the problem
(4.52). If we have

‖Gε −G‖
H

1
2
00(Γ2)∗

≤ ε

then for every choice of γ, 0 < γ < 1, the function

Uε(x′, xn) =
[log(εγ−1)]n−1∑

k=1

(−λk
− 1

2Gk,ε) sinh(λk
1
2xn)ϕ(x′) (4.53)

where {Gk,ε}∞k=1 are the L2(D) Fourier coefficients of Gε (according to the
formula (4.39)), satisfies

lim
ε7→0

Uε|Γ1 = U |Γ1 in H
1
2
00(Γ1) . (4.54)

Proof. Since the one defined in (4.51) is a family of regularizing operators
and since the choice (4.13) is admissible, we have that

lim
ε→0

‖Rα(ε)(Gε)− U |Γ1‖
H

1
2
00(D)

= 0 . (4.55)

By the asymptotic bounds of the eigenvalues of the Laplace operator (see for
instance [26, Chap. 12]) we have that there exist constants c, C > 0 depending
on the a priori data only, such that

ck
2

n−1 ≤ λk ≤ Ck
2

n−1 , k = 1, 2, . . . .

Thus it follows that the integer k such that µk ≥ α(ε) is of the order [log (εγ−1)]n−1.
Moreover, since

(Gε, ϕk)
H

1
2
00(Γ2)∗

= Gk,ελk
− 1

2 ,

the thesis follows immediately by (4.55). �

The following Corollary 4.11 provides us with the approximate regularized so-
lution to the Cauchy problem (4.42).
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Corollary 4.11. For every ε > 0, let ψε ∈ H
1
2
00(Γ2), gε ∈ H

1
2
00(Γ2)∗ and suppose

that there exists u ∈ H1(Ω) which is a weak solution of the problem (4.42), with

exact Cauchy data ψ ∈ H
1
2
00(Γ2), g ∈ H

1
2
00(Γ2)∗. If we have

‖ψε − ψ‖
H

1
2
00(Γ2)

≤ ε (4.56)

‖gε − g‖
H

1
2
00(Γ2)∗

≤ ε (4.57)

then for every choice of γ, 0 < γ < 1, the function

uε(x′, xn) =
[log(εγ−1)]n−1∑

k=1

(−λk
− 1

2Gk,ε) sinh(λk
1
2xn)ϕk(x′) + (4.58)

+
∞∑

k=1

ψk,ε
sinh(λk

1
2 (1− xn))

sinh(λk
1
2 )

ϕk(x′),

where

Gk,ε = gk,ε − ψk,ελk
1
2 coth (λk

1
2 ), k = 1, 2, . . . (4.59)

{ψk,ε}∞k=1, {gk,ε}∞k=1 are the L2(D)-Fourier coefficients of ψε and gε respec-
tively, is an approximate regularized solution of (4.42). Moreover, we have

lim
ε7→0

uε|Γ1 = u|Γ1 in H
1
2
00(Γ1) , (4.60)

lim
ε7→0

∂uε

∂ν

∣∣∣∣
Γ1

=
∂u

∂ν

∣∣∣∣
Γ1

in H
1
2
00(Γ1)∗. (4.61)

Proof. Let Wε be the solution of (4.44) with ψ = ψε, respectively. Thus we
can decompose u = U+W where U is the solution of (4.52) with G = g− ∂W

∂ν |Γ2 .
Moreover, by (4.56) we have∥∥∥∥∂Wε

∂ν
− ∂W

∂ν

∥∥∥∥
H

1
2
00(Γ2)∗

≤ C1‖Wε −W‖H1(Ω) ≤ C2‖E0ψε − E0ψ‖
H

1
2 (∂Ω)

≤

≤ C3‖ψε − ψ‖
H

1
2
00(Γ2)

≤ C3ε , (4.62)

where Ci > 0, i = 1, 2, 3, are constants depending on the a priori data only.
Thus denoting with Gε = gε − ∂Wε

∂ν |Γ2 , (4.57) and (4.62) leads to

‖Gε −G‖
H

1
2
00(Γ2)∗

≤ ‖gε − g‖
H

1
2
00(Γ2)∗

+
∥∥∥∥∂Wε

∂ν
− ∂W

∂ν

∥∥∥∥
H

1
2
00(Γ2)∗

≤ Cε

where C > 0 is a constant depending on the a priori data only. By (4.55) in
the proof of Theorem 4.10 and recalling that W = 0 on Γ1, we have

lim
ε→0

‖Rα(ε)(Gε)− u|Γ1‖
H

1
2
00(Γ1)

= 0 . (4.63)
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Finally, let us consider the following Dirichlet problem
∆uε = 0 in Ω,
uε = Rα(ε)(Gε) on Γ1,
uε = ψε on Γ2,
uε = 0 on ΓD,

(4.64)

we have that∥∥∥∥∂uε

∂ν
− ∂u

∂ν

∥∥∥∥
H

1
2
00(Γ1)∗

≤ C4‖uε − u‖H1(Ω) ≤

≤ C5

(
‖Rα(ε)(Gε)− u|Γ1‖

H
1
2
00(Γ1)

+ ‖ψε − ψ‖
H

1
2
00(Γ2)

)
where C4, C5 > 0 are constants depending on the a priori data only, thus by
(4.63) and by (4.56)

lim
ε→0

∥∥∥∥∂uε

∂ν
− ∂u

∂ν

∥∥∥∥
H

1
2
00(Γ1)∗

= 0.

After straightforward calculations, (4.60) and (4.61) follow. �

Thus, for a given error level ε > 0, the regularized solution of the Cauchy
problem (4.42) is given by (4.58) and in particular we obtain the following
formulas for the Cauchy data on Γ1 as follows

uε|Γ1 =
[log(εγ−1)]n−1∑

k=1

(λk
− 1

2ψk,ε coth (λk
− 1

2 )− gk,ε)λk
− 1

2 sinh(λk
1
2 )ϕ(x′) (4.65)

∂uε

∂ν

∣∣∣∣
Γ1

=
[log(εγ−1)]n−1∑

k=1

(λk
− 1

2ψk,ε coth (λk
− 1

2 )− gk,ε) cosh(λk
1
2 )ϕ(x′) +

+
∞∑

k=1

(
− ψk,ελk

1
2

sinh(λk
1
2 )

)
ϕk(x′) (4.66)

where the coefficients ψk,ε and gk,ε, with k = 1, 2, . . . , are the Fourier coefficients
of ψε and gε, with respect to the L2(D) basis {ϕk}∞k=1.

4.4 A procedure for reconstruction

In this section we briefly discuss a procedure for the determination of the non-
linearity f in (1.5) when the measurement u|Γ2 = ψ is available for a given
Neumann data g. First, we use the methods described in Section (4.2) and in
Section (4.3). We shall assume that the assumptions (2.11),(2.12),(2.18),(3.1)-
(3.8) are satisfied. In Subsection 4.4.1, we outline the adaptations to the method
of Section (4.2) needed for our corrosion problem. In Subsection 4.4.2 we pro-
pose a method for the identification of the nonlinearity f from approximate
values of u|Γ1 ,

∂u
∂ν |Γ1 .
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4.4.1 Solving the Cauchy problem

• We need to solve a Cauchy problem of the form
∆u = 0 in Ω,
u = ψ on Γ2,
∂u

∂ν
= g on Γ2,

u = 0 on ΓD,

(4.67)

where u ∈ H1(Ω), and where in this special setting we choose ψ ∈ H
1
2
00(Γ2)

and we have g ∈ L2(Γ2) ⊂ H
1
2
00(Γ2)∗. The procedure introduced in Section

4 can be applied by considering σ = Id, Σ = Γ2, Γ =
◦

(Γ1 ∪ ΓD). Note

that in this case, we have ψ ∈ H
1
2
00(Γ2). Therefore, it is convenient, in

the formulation of the Dirichlet problem (4.17), to replace the Dirichlet
data E(ψ) with E0(ψ). We consider W as the solution to (4.17) with such
modified Dirichlet data, that is{

∆W = 0 in Ω,
W = E0(ψ) on ∂Ω. (4.68)

Performing as before the decomposition u = U +W , we obtain that U is
the solution to the following variant of the Cauchy problem (4.18)

∆U = 0 in Ω,
U = 0 on Γ2,
∂U

∂ν
= g − ∂W

∂ν

∣∣∣∣
Γ2

on Γ2,

U = 0 on ΓD .

(4.69)

• We can use the regularization strategy used in (4.22). Note that here
Σρ = Γρ

2 and v turns out to be the solution of the following problem
∆v = 0 in Ω,
v = 0 on Γ2,
∂v

∂ν
= h on Γ1,

v = 0 on ΓD.

(4.70)

According to (4.22), we obtain a regularized inversion procedure for Tρ.

• We obtain an approximate regularized solution to (4.67) by solving the
analogue of the mixed boundary value problem (4.26), which in detail,
takes the form

∆uε = 0 in Ω,
uε = ψε on Γ2,
∂uε

∂ν
= Rα(ε)(gε − ∂Wε

∂ν

∣∣
Γρ

2
) + ∂Wε

∂ν

∣∣
Γ1

on Γ1,

uε = 0 on ΓD,

(4.71)
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where ψε ∈ H
1
2
00(Γ2), gε ∈ H

1
2
00(Γ

ρ
2)
∗ are the approximate Cauchy data and

where Wε ∈ H1(Ω) is the weak solution of (4.17), with σ(x) = Id and
with E(ψ) replaced by E0(ψε). Having solved (4.71) we can determine the
approximate regularized values of u|Γ1 ,

∂u
∂ν |Γ1 according to Theorem 4.8.

We observe that if the conducting specimen has the special geometry intro-
duced in Section (4.3), that is Ω = D× (0, 1), then the above described scheme
simplifies to the formulas (4.65) and (4.66).

4.4.2 Solving the algebraic equation f(u) = ∂u
∂ν

We cannot expect that, for the regularized solution uε, the Neumann data ∂uε

∂ν
on Γ1 is precisely constant on each level set of uε|Γ1 , as it should happen for
the exact solution u to (1.5). Therefore, it is necessary to extract an approxi-
mate expression of the nonlinearity f = f(u) when uε|Γ1 and ∂uε

∂ν |Γ1 may have
different level sets. We propose to obtain such approximate nonlinear term by
minimizing the best fit functional defined as follows,

Fε[f ] =
∫

Γ1

(
f(uε)−

∂uε

∂ν

)2

dσn−1. (4.72)

By the Coarea formula, (see for instance [34, Chap.3] ), we have that we can
express Fε[f ] as follows

Fε[f ] =
∫

R
dt
∫

uε=t

(f(t)− ∂uε

∂ν )2

|∇x′uε|
dσn−2,

here, by σn−2 we denote the (n− 2)-dimensional Hausdorff measure. Thus, by
formal differentiation it follows that

DFε[f ](g) =
d
ds
Fε[f + sg]

∣∣∣∣
s=0

=
∫

R
g(t)dt

∫
uε=t

2
(f(t)− ∂uε

∂ν )
|∇x′uε|

dσn−2.

Hence a candidate minimizer for Fε is given by the following weighted average
of ∂uε

∂ν |Γ1 on the level sets of uε|Γ1 , that is

fε(t) =
1∫

uε=t

1
|∇x′uε|

dσn−2

∫
uε=t

∂uε

∂ν

|∇x′uε|
dσn−2. (4.73)

We note the consistency of this formula in the limiting case when uε is replaced
by the exact solution u. In fact, in this case, the above formula leads to the
correct values of f for every regular value t of u|Γ1 .

4.5 Reconstruction of the nonlinear corrosion

In the present section we shall obtain a reconstruction result for the nonlinearity
f under suitable a priori assumptions.
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Indeed in order to recover the nonlinearity f we shall require a further regularity
assumption on the smoothness of the portion Γ1, namely we shall assume that
given α, 0 < α ≤ 1

Γ1 is of class Cm+ 1
2 ,α with constants r0,M, (4.74)

with

m =
[n
2

+ 2
]

+
1
2
. (4.75)

In the sequel we shall make use of fractional order spaces, in this respect let us
introduce the trace space Hm

00(Γ1), with m given by (4.75), as the interpolation
space [H2m

0 (Γ1), L2(Γ1)] 1
2
. Moreover we shall denote with Hm

00(Γ1)∗ its dual
space.
We now outline a procedure, based on a slight modification of the arguments
developed in Section (4.2), to obtain a convergence result for the solution to
the Cauchy problem (2.1). The new feature consists in an improvement of such
a convergence due to the stronger assumption (4.74) made on the portion Γ1,
as well as a further a priori assumption on the solution u to (2.1), namely we
suppose that

u|Γ1 ∈ Hm
00(Γ1). (4.76)

Remark 4.12. Let us observe that the assumption (4.76) can be achieved by
imposing a stronger regularity assumption on the nonlinearity f and by limiting
ourselves to a particular geometry, for instance to a cylinder one or considering
a geometry such that Γ1 is a connected component of the boundary ∂Ω.

For every ξ ∈ H
1
2
00(Γ1) let us consider the following Dirichlet problem{

∆v = 0 in Ω,
v = E0(ξ) on ∂Ω, (4.77)

where E0 is the operator of continuation to zero defined in (4.15) with Σ replaced
by Γ1.
By the Lax-Milgram theorem, it follows that the above Dirichlet problem is well
posed.

Theorem 4.13. For any ρ, 0 < ρ < ρ0, let T̃ρ be the operator

T̃ρ : Hm
00(Γ1) → H

1
2
00(Γ

ρ
2)
∗ (4.78)

ξ 7→ ∂v

∂ν

∣∣∣∣
Γρ

2

where v ∈ H1
0 (Ω,

◦
Γ2 ∪ ΓD) solves the mixed problem (4.77). The operator T̃ρ is

compact.



76
Resolution of elliptic Cauchy problems and reconstruction of the

nonlinear corrosion

Proof. Noticing that the space Hm
00(Γ1) is continuously embedded into

H
1
2
00(Γ1) and recalling that the problem (4.77) is well-posed, we have that the

linear operator

S̃ : Hm
00(Γ1) → H1

0 (Ω,
◦

Γ2 ∪ ΓD)
ξ 7→ v

is bounded.
At this stage the proof follows using analogous arguments to those developed in
Theorem 4.7. �

Let us denote with {σ̃ρ
j , ξ̃j , g̃

ρ
j }∞j=1 the singular value decomposition admitted

by the the compact operator T̃ρ.
By Theorem 4.13 we can conclude that the family of operators

R̃α : H
1
2
00(Γ

ρ
2)
∗ → Hm

00(Γ1)
g 7→

∑
σ̃ρ

k≥α
1

σ̃ρ
k
(g, g̃ρ

k)
H

1
2
00(Γ

ρ
2)∗
ξ̃k

(4.79)

is a regularization strategy for T̃ρ and the choice (4.13) for the parameter α is
still admissible.
Let us suppose that for every ε > 0, ψε ∈ H

1
2
00(Γ2) and gε ∈ H

1
2
00(Γ

ρ
2)
∗ and let

Wε ∈ H1
0 (Ω,

◦
Γ1 ∪ ΓD) be the solution to the problem (4.68) with ψ replaced by

ψε.
For every ε > 0, let uε ∈ H1(Ω,ΓD) be the weak solution to the problem

∆uε = 0 in Ω,
uε = ψε on Γ2,

uε = R̃α(ε)(gε − ∂Wε

∂ν

∣∣
Γρ

2
) on Γ1,

uε = 0 on ΓD.

(4.80)

We are now in position to state the following convergence theorem.

Theorem 4.14. Let ψ ∈ H
1
2
00(Γ2) and g ∈ H

1
2
00(Γ

ρ
2)
∗ be such that there exists

u ∈ H1(Ω), which is a weak solution to the Cauchy problem (2.1) and let the

assumption (4.76) be satisfied. If, given ε > 0, we have that ψε ∈ H
1
2
00(Γ2) and

gε ∈ H
1
2
00(Γ

ρ
2)
∗

‖ψ − ψε‖
H

1
2
00(Γ2)

≤ ε , (4.81)

‖g − gε‖
H

1
2
00(Γ

ρ
2)∗

≤ ε , (4.82)

then

‖uε − u‖C1(Γ1)
→ 0, as ε→ 0, (4.83)

‖uε − u‖H1
0 (Ω) → 0, as ε→ 0, (4.84)

where for every ε > 0, uε is the solution to the Dirichlet problem (4.80).
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Proof. Let us observe that dealing with an analogous procedure to the one
introduced in Section (4.2) and in Section (4.3), it follows that

‖uε − u‖Hm
00(Γ1) → 0, as ε→ 0 (4.85)

‖uε − u‖H1
0 (Ω) → 0, as ε→ 0. (4.86)

Moreover, we conclude that the convergence (4.83) holds noticing that Hm
00(Γ1)

is continuously embedded into C1(Γ1), (see for instance [58, Chap.1]). �

Let τ be the length introduced in Proposition 3.8 and let for every ε > 0,
uε ∈ H1(Ω) be the solution to the problem (4.80). Let us now propose the
following function

fτ
ε (t) =

1∫
{x∈Γ

τ
2
1 :uε=t}

|∇x′uε|−1dσn−2

∫
{x∈Γ

τ
2
1 :uε=t}

∂uε

∂ν
|∇x′uε|−1dσn−2 ,(4.87)

as an approximation of the exact nonlinearity f .
In the following theorem we will show that the sequence {fτ

ε }ε>0 introduced in
(4.87) actually converges to the nonlinearity f . Before stating the convergence
result, let us recall that for every k > 0 we shall denote with fτ

1
k

the function

introduced in (4.87) with ε = 1
k .

Theorem 4.15. Let the hypothesis of Theorem 4.14 be satisfied. Then there
exist an interval V and an integer k0 > 0 depending on the a priori data only
such for a.e. t ∈ V

fτ
1
k
(t) → f(t) as k →∞ , (4.88)

where k ≥ k0 .

Proof. Let x̄ ∈ Γτ
1 , τ, ξ ∈ Rn−1 be the point, the length and the direction

introduced in Proposition 3.8. For every ε > 0, let

v(s) = u(s · ξ + x̄′, ϕ1(s · ξ + x̄′)) , (4.89)
vε(s) = uε(s · ξ + x̄′, ϕ1(s · ξ + x̄′)) , (4.90)

where x = (x′, ϕ1(x′)) is the local representation of Γ1 near x̄.
By Proposition 3.8 and assumption (3.12), we have that

|v′(s)| ≥ η(m) , for every s ∈ U0 = [−τ, τ ] . (4.91)

By the convergence result (4.83) achieved in Theorem 4.14, we have that there
exists an ε0 > 0 only depending on the a priori data, such that for every
ε, 0 < ε < ε0, we have

|v′ε(s)| ≥
η(m)

2
, for every s ∈ U0 = [−τ, τ ] . (4.92)
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Let

V0 = {t ∈ R : ∃ s ∈ U0 : v(s) = t}, (4.93)

then arguing as in the proof of Theorem 3.2, we can infer that, by a possible
replacement of ε0, there exists an interval V ⊂ V0, such that for every t ∈ V
and for every ε, 0 < ε < ε0, there exist s0, sε ∈

(
− τ

2 ,
τ
2

)
such that v(s0) = t and

vε(sε) = t.
In other words we have found an interval V of common values of u and {uε}ε>0.
By a consequence of the Coarea formula we have that

σn−2({x ∈ Γ
τ
2
1 : |∇x′uε(x)| = 0} ∩ {x ∈ Γ

τ
2
1 : uε(x) = t}) = 0 , (4.94)

for every t ∈ R \Aε, with L1(Aε) = 0. And analogously

σn−2({x ∈ Γ
τ
2
1 : |∇x′u(x)| = 0} ∩ {x ∈ Γ

τ
2
1 : u(x) = t}) = 0 , (4.95)

for every t ∈ R \A0, with L1(A0) = 0.
Let us set ε = 1

k and define the set of measure zero A =
⋃∞

k=1A 1
k
∪A0.

Let

x0 ∈ {x ∈ Γ
τ
2
1 : u(x) = t} , (4.96)

where t is a value in V \A.
We consider now the following local representations of u and uε near x0

w(x′) = u(x′, ϕ1(x′)), for all x′ ∈ B′
r1

(x0
′), (4.97)

wε(x′) = uε(x′, ϕ1(x′)), for all x′ ∈ B′
r1

(x0
′), (4.98)

where r1 = r0(
√

1 +M2 )
−1

.
Let U be the function defined as follows

U : B′
r1

(x0
′)× (−ε0, ε0) → R , (4.99)

such that for every ε, 0 < ε < ε0

U(x′, 0) = w(x′)− t , (4.100)
U(x′, ε) = U(x′,−ε) = wε(x′)− t . (4.101)

By the choice (4.96), we have that

U(x0
′, 0) = 0 , (4.102)

and furthermore, being t a regular value of u, up to a change of coordinates, we
have that

dU
dxn−1

(x′0, 0) 6= 0. (4.103)
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Hence by the Implicit Function Theorem it follows that there exist δ0, ε̃0, η0 > 0
and a function Ψ

Ψ : B′′
δ0

(x0
′′)× (−ε̃0, ε̃0) → (x0n−1 − η0, x0n−1 + η0) , (4.104)

such that for every (x′′, ε) ∈ B′′
δ0

(x0
′′)× (−ε̃0, ε̃0)

U(x′′,Ψ(x′′, ε), ε) = 0 . (4.105)

Moreover, the function Ψ is continuous with respect to (x′′, ε), differentiable
with respect to x′′ with partial derivatives

∂Ψ
∂xi

(x′′, ε) = − Uxi
(x′′,Ψ(x′′, ε), ε)

Uxn−1(x′′,Ψ(x′′, ε), ε)
, i = 1, . . . n− 2 (4.106)

continuous with respect to (x′′, ε). And furthermore, we have that

Ψ(x0
′′, 0) = x0n−1 . (4.107)

Let us define for every ε, 0 < ε < ε̃0 the functions

ψε, ψ : B′′
δ0

(x0
′′) → (x0n−1 − η0, x0n−1 + η0) , (4.108)

as

ψε(x′′) = Ψ(x′′, ε) , (4.109)
ψ(x′′) = Ψ(x′′, 0). (4.110)

Hence we have that

‖ψε − ψ‖C1(B′′
δ0
2

(x0′′)) → 0 , as ε→ 0 , (4.111)

and moreover for every ε, 0 < ε < ε̃0, (4.105) yields

w(x′′, ψ(x′′)) = t , for every x′′ ∈ B′′
δ0

(x0
′′) , (4.112)

wε(x′′, ψε(x′′)) = t , for every x′′ ∈ B′′
δ0

(x0
′′). (4.113)

Repeating the arguments introduced above for every point

x0 ∈ {x ∈ Γ
τ
2
1 : u(x) = t} (4.114)

we can extract a finite covering

{B′′
δj
2

(xj
′′)× (xjn−1 − ηj , xjn−1 + ηj)}J

j=1 , (4.115)

of the sets {x ∈ Γ
τ
2
1 : u(x) = t},{x ∈ Γ

τ
2
1 : uε(x) = t} with 0 < ε < ε̃0 and a

finite numbers of functions

ψj
ε, ψ

j : B′′
δj

(xj
′′) → (xjn−1 − ηj , xjn−1 + ηj) j = 1 . . . , J , (4.116)
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verifying (4.111),(4.112) and (4.113) with x0 = xj , ψ = ψj , ψε = ψj
ε, δ0 = δj

and η0 = ηj .
Denoting for every j = 1, . . . , J

Uj = B′′
δj
2

(xj
′′)× (xjn−1 − ηj , xjn−1 + ηj) , (4.117)

let {αj}J
j=1 be a smooth partition of unity subordinate to the open sets {Uj}J

j=1,
namely suppose that

i) 0 ≤ αj ≤ 1 , αj ∈ C∞c (Uj) ;

ii)
∑J

j=1 αj = 1, on ∪J
j=1{Uj}.

Let us consider the sequence {u 1
k
} obtained by setting ε = 1

k for every integer
k > 0.
By the change of variables formula we have that for any function h ∈ L1(Γ

τ
2
1 )

the following holds∫
{u 1

k
=t}

h(x′)|∇x′u 1
k
(x′)|−1dσn−2 =

J∑
j=1

∫
{u 1

k
=t}

αj(x′) h(x′)|∇x′u 1
k
(x′)|−1dσn−2 =

J∑
j=1

∫
B′′

δj
2

(xj
′′)

αj(x′′, ψ
j
1
k

(x′′))h(x′′, ψj
1
k

(x′′))|∇x′u 1
k
(x′′, ψj

1
k

(x′′))|−1
√

1 + |∇x′′ψ 1
k
(x′′)|2dx′′

Letting k tends to ∞ we obtain by (4.111) with ε = 1
k that∫

{u 1
k

=t}
h(x′)|∇x′u 1

k
(x′)|−1dσn−2 −

∫
{u=t}
h(x′)|∇x′u 1

k
(x′)|−1dσn−2

→ 0 .(4.118)

In particular, the above convergence implies that there exists a constant c0 > 0
and an integer k0 > 0 depending on the a priori data only such that for every
k ≥ k0 ∣∣∣∣∣∣

∫
{u 1

k
=t}
|∇x′u 1

k
(x′)|−1dσn−2

∣∣∣∣∣∣ ≥ c0 . (4.119)

Let us notice that by the arguments in [12, Proposition 5.1], we have that there
exists a constant C > 0 depending on the a priori data only, such that∫
Γ

τ
2
1

∣∣∣∣∂u 1
k

∂ν
− ∂u

∂ν

∣∣∣∣ dσn−1 ≤ C

(∫
Γ

τ
4
1

|∇x′u 1
k
−∇x′u|2dσn−1 +

∫
Ω

|∇u 1
k
−∇u|2dx

)
.

Hence by (4.83) and (4.84), it follows that∫
Γ

τ
2
1

∣∣∣∣∂u 1
k

∂ν
− ∂u

∂ν

∣∣∣∣ dσn−1 → 0, as k →∞. (4.120)
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By a further application of the Coarea formula we have that for every k ≥ k0∫
Γ

τ
2
1

∣∣∣∣∂u 1
k

∂ν
− ∂u

∂ν

∣∣∣∣ dσn−1 =
∫

R
dt
∫
{u 1

k
=t}

∣∣∣∣∂u 1
k

∂ν
− ∂u

∂ν

∣∣∣∣ |∇x′u 1
k
|−1dσn−2. (4.121)

Hence by (4.121) and by (4.120) we have that, up to extract a subsequence∫
{u 1

k
=t}

∣∣∣∣∂u 1
k

∂ν
− ∂u

∂ν

∣∣∣∣ |∇x′u 1
k
|−1dσn−2 → 0 , as k →∞ , (4.122)

for a.e. t ∈ V .
Let fτ

1
k

be defined as in (4.87), then we have that for a.e. t ∈ V the following
holds

|fτ
1
k
(t)− f(t)| ≤ (4.123)∣∣∣∣∣∣

( ∫
u 1

k
=t

|∇x′u 1
k
|−1

)−1
∫

u 1
k

=t

∂u 1
k

∂ν
|∇x′u 1

k
|−1dσn−2 −

∫
u 1

k
=t

∂u

∂ν
|∇x′u 1

k
|−1dσn−2

∣∣∣∣∣∣+∣∣∣∣∣∣
( ∫

u 1
k

=t

|∇x′u 1
k
|−1

)−1
∫

u 1
k

=t

∂u

∂ν
|∇x′u 1

k
|−1dσn−2 −

∫
u=t

∂u

∂ν
|∇x′u|−1dσn−2

∣∣∣∣∣∣+∣∣∣∣∣∣
(∫

u 1
k

=t

|∇x′u 1
k
|−1

)−1

−
(∫

u=t

|∇x′u|−1

)−1
∫

u=t

∂u

∂ν
|∇x′u|−1dσn−2

∣∣∣∣∣∣ .

Let us observe that, by (4.119) and (4.122), the first term on the right hand
side of the above inequality tends to zero as k tends to ∞. On the other hand,
by (4.119) and (4.118) with h = ∂u

∂ν the second term on the right hand side of
(4.123) tends to zero as k tends to ∞. Finally, we have that by (4.118) with
h = 1 and by (3.58), the third term on the right hand side of (4.123) tends to
zero as well. Hence the theorem follows.

�
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Chapter 5

Stability for the inverse
scattering problem

In this chapter we shall treat the stability issue for the determination of the
surface impedance λ in the boundary value problem (1.8). As usual, let us start
the discussion by stating the main assumptions on the data and the a priori
conditions on the unknown impedance term.

Assumptions on the obstacle

Given positive constants D, r0,M , we assume throughout this chapter that the
obstacle D is a bounded domain satisfying the assumptions (2.11) and (2.12)
with Ω replaced by D.
We suppose that ΓI ,ΓD are two disjoint, nonempty, connected, open subsets of
∂D such that

∂D = ΓI ∪ ΓD. (5.1)

Moreover, we assume that the portion of the boundary

ΓI is of class C1,1 with constants r0,M. (5.2)

We recall that by the above assumption it follows that there exists a function
ϕI , satisfying (2.3)-(2.6) with ϕ = ϕI and S = ΓI .

A priori informations on the impedance term

We assume that the impedance coefficient λ belongs to C0,1(ΓI ,R) and is such
that

λ(x) ≥ λ0 > 0 (5.3)

for every x ∈ ΓI .
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Moreover we assume that, for a given constant Λ > 0, we have that

‖λ‖C0,1(ΓI) ≤ Λ. (5.4)

Let us introduce some notations that we shall use in the course of the present
chapter.
For a sake of simplicity we shall assume that 0 ∈ D.
Fixed R > d, ρ ∈ (0, r0) and x0 ∈ ΓI , let us define the following sets

D+ = R3 \D, (5.5)
D+

R = BR(0) ∩D+, (5.6)

D+
R,ρ = {x ∈ D+

R : dist(x,ΓD) > ρ}, (5.7)

Γρ
I = ∂D+

R,ρ ∩ ΓI , (5.8)

ΓI,ρ(x0) = Bρ(x0) \D, (5.9)

∆I,ρ(x0) = ΓI,ρ(x0) ∩ ∂D. (5.10)
H1

loc(D
+) = {v ∈ D∗(D+) : v|D+

R
∈ H1(D+

R), ∀ R > 0 s.t. D ⊂ BR(0)} (5.11)

where D∗(D+) is the space of distribution on D+. (5.12)

Let us present the statement of the main result.

Theorem 5.1 (Stability for λ). Let ui, i = 1, 2, be the weak solutions to the
problem (1.8) with λ = λi respectively and let ui,∞ be their respectively far field
patterns. There exists ε0 > 0 constant only depending on the a priori data, such
that, if for some ε, 0 < ε < ε0, we have

‖u1,∞ − u2,∞‖L2(∂B1(0)) ≤ ε, (5.13)

then

‖λ1 − λ2‖L∞(Γ
r0
I ) ≤ ω(ε), (5.14)

where ω is given by (3.11).

5.1 The direct scattering problem

A weak solution to the problem (1.8) is a function u = exp (ikω · x)+us, where
us ∈ H1

loc(D
+) is a weak solution to the problem

∆us + k2us = 0, in D+,
us = − exp (ikω · x), on ΓD,
∂us

∂ν
+ iλ(x)us = − ∂

∂ν
exp (ikω · x)− iλ(x) exp (ikω · x), on ΓI ,

limr→∞ r

(
∂us

∂r
(rx̂)− ikus(rx̂)

)
= 0, uniformly in x̂.

(5.15)
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Let us recall that a weak solution of (5.15) is a function us ∈ H1
loc(D

+), with
us|ΓD

= − exp (ikω · x) in the trace sense, such that, for all test functions η ∈
H1(D+) with compact support in R3 and η|ΓD

= 0, the following holds∫
D+

∇us · ∇η − k2

∫
D+

usη =
∫

ΓI

(
∂

∂ν
exp (ikω · x) + iλ(x) exp (ikω · x)

)
η +

+
∫

ΓI

ikλusη . (5.16)

Furthermore, us satisfies the asymptotic condition (1.9).

Lemma 5.2 (Well-posedness). The problem (5.15) has one and only one
weak solution us. Moreover, for every R > d, there exists a constant CR > 0
depending on the a priori data and on R only, such that the following holds

‖us‖H1(D+
R) ≤ CR . (5.17)

Proof. For the proof we refer to [21, Theorem 2.5], in which the authors,
among various results, show that the exterior mixed boundary value problem
(5.15) can be reformulated as a 2× 2 system of boundary integral equations. In
[21], Theorem 2.5 has been proved in two dimensions for a constant λ, however
it can be verified that the same techniques can be carried over in three dimen-
sions and with λ = λ(x) ∈ C0,1(ΓI). �

Theorem 5.3 (C1,α regularity at the boundary). Let u be the weak solution
to (1.8), then there exists a constant α, 0 < α < 1, such that for every R > d
and ρ ∈ (0, r0), u ∈ C1,α(D+

R,ρ). Moreover, there exists a constant CR,ρ > 0
depending on the a priori data, on R and on ρ only, such that

‖u‖C1,α(D+
R,ρ) ≤ CR,ρ . (5.18)

Proof. From the weak formulation (5.16), it follows that the total field u
satisfies ∫

Γ
I,

r0
2

(x0)

∇u · ∇η̄ − k2

∫
Γ

I,
r0
2

(x0)

uη̄ = −i
∫

∆
I,

r0
2

(x0)

λ(x)uη̄ ,

where x0 ∈ ΓI and η is any test function such that suppη ⊂ ΓI,
r0
2

(x0).
By (5.4) we have that∣∣∣∣ ∫

Γ
I,

r0
2

(x0)

∇u · ∇η̄
∣∣∣∣ ≤ k2

∫
Γ

I,
r0
2

(x0)

|uη̄|+ Λ
∫

∆
I,

r0
2

(x0)

|uη̄| (5.19)

and by a trace inequality (see [1, p.114]) it follows that∣∣∣∣ ∫
Γ

I,
r0
2

(x0)

∇u · ∇η̄
∣∣∣∣ ≤ k2

∫
Γ

I,
r0
2

(x0)

|uη̄|+ CΛ
∫

Γ
I,

r0
2

(x0)

|∇(uη̄)| , (5.20)
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where C > 0 is a constant depending on the a priori data only.
By the standard iteration techniques due to Moser (see for instance [39]), we
obtain the following local bound for u

‖u‖L∞(Γ
I,

r0
4

(x0)) ≤ C‖u‖
H1
(
Γ

I,
r0
2

(x0)
) , (5.21)

where C > 0 is a constant depending on the a priori data only.
Let us denote by u1 and u2 the real and the imaginary part of u respectively.
Thus by the elliptic equations in weak form satisfied by u1 and u2, it follows
that ∫

Γ
I,

r0
2

(x0)

∇u1 · ∇η − k2

∫
Γ

I,
r0
2

(x0)

u1η =
∫

∆
I,

r0
2

(x0)

λ(x)u2η , (5.22)∫
Γ

I,
r0
2

(x0)

∇u2 · ∇η − k2

∫
Γ

I,
r0
2

(x0)

u2η = −
∫

∆
I,

r0
2

(x0)

λ(x)u1η , (5.23)

where η is any real valued test function such that suppη ⊂ ΓI,
r0
2

(x0).
By applying again the Moser method to the weak formulations (5.22) and (5.23),
we obtain the following bounds of the Hölder continuity of u1 and u2, namely

‖u1‖C0,α(Γ
I,

r0
8

(x0)) ≤ C(‖u1‖L∞(Γ
I,

r0
4

(x0)) + ‖u2‖L∞(Γ
I,

r0
4

(x0))) , (5.24)

‖u2‖C0,α(Γ
I,

r0
8

(x0)) ≤ C(‖u2‖L∞(Γ
I,

r0
4

(x0)) + ‖u1‖L∞(Γ
I,

r0
4

(x0))) , (5.25)

where α, 0 < α < 1, C > 0 are constants depending on the a priori data only.
Combining the two last inequalities with (5.21), we obtain

‖u‖C0,α(ΓI) ≤ C‖u‖H1(D+
R) , (5.26)

where C > 0 are constants depending on the a priori data only and R = d+ r0.
By (5.17) we have that

‖us‖H1(D+
R) ≤ C, (5.27)

where C is a constant depending on the a priori data only. Moreover, since
u = exp (ikω · x) + us, by (5.26) and (5.27), we have that

‖u‖C0,α(ΓI) ≤ C, (5.28)

where C is a constant depending on the a priori data only. By (5.28) and by
(5.4), we have that

∂u

∂ν
(x) = −iλ(x)u(x) ∈ C0,α(ΓI). (5.29)

By well-known regularity bounds for the Neumann problem (see for instance [5,
p.667] ) it follows that, for every R > d, ρ ∈ (0, r0), u ∈ C1,α(D+

R,ρ) and the
following estimate holds

‖u‖C1,α(D+
R,ρ) ≤ CR,ρ

(
‖u‖

C0,α(Γ
ρ
2
I )

+
∥∥∥∥∂u∂ν

∥∥∥∥
C0,α(Γ

ρ
2
I )

+ ‖u‖H1(D+
2R)

)
, (5.30)



5.1 The direct scattering problem 87

where CR,ρ > 0 is a constant depending on the a priori data, on R and on ρ

only. We shall estimate the C0,α norm of
∂u

∂ν
in terms of the a priori data,

indeed

∥∥∥∥∂u∂ν
∥∥∥∥

C0,α(Γ
ρ
2
I ))

= sup
x∈Γ

ρ
2
I

∣∣∣∣∂u(x)∂ν

∣∣∣∣+ (ρ2)α

sup
x,y∈Γ

ρ
2
I

∣∣∣∣∂u(x)∂ν
− ∂u(y)

∂ν

∣∣∣∣
|x− y|α

=

≤ sup
x∈Γ

ρ
2
I

|λ(x)u(x)|+
(ρ

2

)α

sup
x,y∈Γ

ρ
2
I

|λ(x)||u(x)− u(y)|
|x− y|α

+

+
(ρ

2

)α

sup
x,y∈Γ

ρ
2
I

|u(y)||λ(x)− λ(y)|
|x− y|α

.

Combining (5.4) and (5.28) we obtain∥∥∥∥∂u∂ν
∥∥∥∥

C0,α(Γ
ρ
2
I )

≤ Λ sup
x∈Γ

ρ
2
I

|u(x)|+ Λ
(ρ

2

)α

sup
x,y∈Γ

ρ
2
I

|u(x)− u(y)|
|x− y|α

+

+
(ρ

2

)α

|ΓI |1−α‖u‖C0,α(ΓI) sup
x,y∈Γ

ρ
2
I

|λ(x)− λ(y)|
|x− y|

≤

≤ C̄ρ

where C̄ρ > 0 is a constant depending on the a priori data and on ρ only.
Moreover, since u = exp (ikω · x) + us, we have that (5.17) yields to

‖u‖H1(D+
2R) ≤ CR, (5.31)

where CR > 0 is a constant depending on the a priori data and on R only.
Thus, inserting (5.28), (5.31) and (5.31) in (5.30), we obtain that

‖u‖C1,α(D+
R,ρ) ≤ CR,ρ, (5.32)

where CR,ρ > 0 is a constant depending on the a priori data, on R and on ρ
only. �

Corollary 5.4 (Lower bound). Let u be the weak solution to (1.8), then there
exists a radius R0 > 0 depending on the a priori data only, such that

|u(x)| > 1
2

for every x, |x| > R0 . (5.33)

Proof. Let us choose R = 4d + 4r0. By Theorem 5.3 it follows that there
exists a constant C > 0 depending on the a priori data only, such that

‖u‖
C1,α

(
D+

2R,
r0
2

) ≤ C . (5.34)



88 Stability for the inverse scattering problem

In particular, by (5.34), it follows that

|us| ≤ C1 ,

∣∣∣∣∂us

∂ν

∣∣∣∣ ≤ C1 on ∂BR(0), (5.35)

where C1 > 0 is a constant depending on the a priori data only.
By the Green’s formula for the scattered wave us (see for instance [32, p.18]),
we have that

us(x) =
∫

∂BR(0)

(
us(y)

∂φ(x, y)
∂ν(y)

− ∂us(y)
∂ν(y)

φ(x, y)
)

ds(y), |x| > R, (5.36)

where

φ(x, y) =
1
4π

exp (ik|x− y|)
|x− y|

, x 6= y ,

is the fundamental solution to the Helmholtz equation in R3 .
Thus, by (5.36) and by (5.35) it follows that

|us(x)| ≤ C1

∫
∂BR(0)

∣∣∣∣∂φ(x, y)
∂ν(y)

∣∣∣∣+ |φ(x, y)|ds(y) ≤ (5.37)

≤ C1R
2

(
kR

||x| −R|2
+

R

||x| −R|3
+

1
||x| −R|

)
. (5.38)

Straightforward calculations show that

|us| < 1
2
, for every x, |x| > R0, (5.39)

where R0 = (k + 1)8R3C1 + 2R .
The thesis follows observing that |u| ≥ 1− |us|. �

5.2 The inverse scattering problem

Lemma 5.5 (From the far field to the near field). Let ui, ui,∞, i = 1, 2,
be as in Theorem 5.1. Suppose that, for some ε, 0 < ε < 1, (5.13) holds, then
there exist a radius R1 > 0 and a constant C > 0, depending on the a priori
data only, such that

‖u1 − u2‖L2(BR1+1(0)\BR1 (0)) ≤ Cεα(ε), (5.40)

where the function α(ε) is defined as follows

α(ε) =
1

1 + log(log(ε−1) + e)
. (5.41)
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Proof. Let us choose R = 4d + 4r0 and let us denote by us
i , i = 1, 2, the

scattered wave of the problem (1.8) with λ = λi respectively. By (5.35) it follows
that

‖us
1 − us

2‖L2(∂BR(0)) ≤ C , (5.42)

where C > 0 is a constant depending on the a priori data only.
By the argument in [43] (see also [19]), it follows that there exists a constant
C > 0 depending on the a priori data only, such that, for every r ∈ (4R, 4R+1),
the following holds

‖us
1 − us

2‖L2(∂Br(0)) ≤ Cεα(ε). (5.43)

Integrating (5.43) with respect to r over (4R, 4R+ 1), we obtain that

‖us
1 − us

2‖L2(B4R+1(0)\B4R(0)) ≤ Cεα(ε) , (5.44)

where C > 0 is a constant depending on the a priori data only.
Thus the thesis follows with R1 = 16d+ 16r0 and by observing that us

1 − us
2 =

u1 − u2.
Let us stress, that Hölder stability doesn’t hold, indeed, in [19, Section 4], it
has been proved that it is not possible to choose α independently on ε. �

Theorem 5.6 (Stability at the boundary). Let ui, ui,∞, i = 1, 2, be as in
Theorem 5.1. We have that there exists ε0 > 0 depending on the a priori data
only, such that, if for some ε, 0 < ε < ε0, (5.13) holds, then for every ρ ∈ (0, r0)
we have

‖u1 − u2‖C1(Γρ
I ) ≤ ω(ε) , (5.45)

where ω is given by (3.11), with a constant C > 0 depending on the a priori
data and on ρ only.

Proof. By the Lipschitz regularity of the boundary ∂D, it follows that the
cone property holds. Namely, for every point Q ∈ ∂D, there exists a rigid
transformation of coordinates under which we have Q = 0 and the finite cone

C =
{
x : |x| < r0,

x · ξ
|x|

> cos θ
}

with axis in the direction ξ and width 2θ, where θ = arctan 1
M , is such that

C ⊂ D+.
Let Q be a point such that Q ∈ Γr0

I and let Q0 be a point lying on the axis ξ of
the cone with vertex in Q = 0 such that d0 = dist(Q0, 0) < r0

2 .
Let us define R2 = 2R1+2, where R1 is the radius introduced in the statement of
Lemma 5.5. Dealing as in Lieberman [57], we consider a regularized distance d̃
from the boundary of ∂D such that, d̃ ∈ C2(D+

R2
)∩C0,1(D+

R2
) and furthermore

the following properties hold
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• γ0 ≤
dist(x, ∂D)

d̃(x)
≤ γ1,

• |∇d̃(x)| ≥ c1, for every x such that dist(x, ∂D) ≤ br0,

• ‖d̃‖C0,1 ≤ c2r0,

where γ0, γ1, c1, c2, b are positive constants depending on M only, (see also [8,
Lemma 5.2]).
Let us define for every ρ > 0

Dρ = {x ∈ D+
R2

: dist(x, ∂D) > ρ} , (5.46)

D̃ρ = {x ∈ D+
R2

: d̃(x) > ρ} . (5.47)

It follows that there exists a, 0 < a ≤ 1, only depending on M such that for
every ρ, 0 < ρ ≤ ar0, D̃ρ is connected with boundary of class C1 and

c̃1ρ ≤ dist(x, ∂D) ≤ c̃2ρ for every x ∈ ∂D̃ρ, (5.48)

where c̃1, c̃2 , are positive constants depending on M only. By(5.48) we deduce
that

Dc̃2ρ ⊂ D̃ρ ⊂ Dc̃1ρ .

Let us now define ρ0 = min{ 1
16 ,

r0
4 sin θ} and let P be a point in the annulus

BR1+1(0) \BR1(0)), such that B4ρ0(P ) ⊂ BR1+1(0) \BR1(0)). Furthermore, let
γ be a path in D̃

ρ0
c̃1 joining P to Q0 and let us define {yi}, i = 0, . . . , s as follows

y0 = Q0, yi+1 = γ(ti), where ti = max{t s.t. |γ(t)−yi| = 2ρ0} if |P −yi| > 2ρ0,
otherwise let i = s and stop the process.
Let us introduce the function U ∈ H1

loc(D
+) defined as follows

U(x) = u1(x)− u2(x). (5.49)

We shall denote with U1 and U2 the real and the imaginary part of U respec-
tively. Namely

U(x) = U1(x) + iU2(x).

It immediately follows that U1, U2, are both real valued solutions to the Helmholtz
equation in D+.
Thus, by the three spheres inequalities for elliptic system with Laplacian prin-
cipal part, (see [11, Theorem 3.1]), we have that for every β1, β2, 1 < β1 < β2,
there exist r̄ > 0, τ, 0 < τ < 1 and C > 0 depending on the a priori data and
on β1, β2 only, such that for every x ∈ Dβ2ρ the following holds∫

Bβ1ρ(x)

|U |2 ≤ C

(∫
Bρ(x)

|U |2
)τ

·

(∫
Bβ2ρ(x)

|U |2
)1−τ

(5.50)

for every ρ ∈ (0, r̄). By a possible replacement of ρ0 with r̄ if ρ0 > r̄ and
choosing in (5.50) β1 = 3, β2 = 4, ρ = ρ0, x = y0, we infer that∫

B3ρ0 (y0)

|U |2 ≤ C

(∫
Bρ0 (y0)

|U |2
)τ

·

(∫
B4ρ0 (y0)

|U |2
)1−τ

. (5.51)
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As a consequence of Lemma 5.2, we have that

‖U‖H1(D+
R2

) ≤ C, (5.52)

where C > 0 is a constant depending on the a priori data only.
Let us observe that B4ρ0(y0) ⊂ D+

R2
and Bρ0(y0) ⊂ B3ρ0(y1). Thus by (5.51)

and (5.52) we deduce that∫
Bρ0 (y0)

|U |2 ≤ C

(∫
B3ρ0 (y1)

|U |2
)τ

· C1−τ .

An iterated application of the three spheres inequality leads to

∫
Bρ0 (y0)

|U |2 ≤

(∫
Bρ0 (ys)

|U |2
)τs

· C1−τs

.

Finally, since Bρ(ys) ⊂ BR1+1(0) \BR1(0)), by (5.40) we obtain that∫
Bρ0 (y0)

|U |2 ≤ C
{
εα(ε)

}τs

.

We shall construct a chain of balls Bρk
(Qk) centered on the axis of the cone,

pairwise tangent to each other and all contained in the cone

C′ =
{
x : |x| < r0,

x · ξ
|x|

> cos θ′
}
,

where θ′ = arcsin
(

ρ0
d0

)
. Let Bρ0(Q0) be the first of them, the following are

defined by induction in such a way

Qk+1 = Qk − (1 + µ)ρkξ ,
ρk+1 = µρk ,
dk+1 = µdk ,

with

µ =
1− sin θ′

1 + sin θ′
.

Hence, with this choice, we have ρk = µkρ0 and Bρk+1(Qk+1) ⊂ B3ρk
(Qk).

Considering the following estimate obtained by a repeated application of the
three spheres inequality, we have that

‖U‖L2(Bρk
(Qk)) ≤ ‖U‖L2(B3ρk−1 (Qk−1)) ≤

≤ ‖U‖τ
L2(Bρk−1 (Qk−1))

‖U‖1−τ
L2(B4ρl−1 (Qk−1))

≤ C‖U‖τk

L2(Bρ0 (Q0))
≤ C

{[
εα(ε)

]τs}τk

. (5.53)
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For every r, 0 < r < d0, let k(r) be the smallest positive integer such that
dk ≤ r then, since dk = µkd0, it follows

| log( r
d0

)|
logµ

≤ k(r) ≤
| log( r

d0
)|

logµ
+ 1 , (5.54)

and by (5.53) we deduce

‖U‖L2(Bρk(r)(Qk(r))) ≤ C
{[
εα(ε)

]τs}τk(r)

. (5.55)

Let x̄ ∈ Γ
ρ
2
I with ρ ∈ (0, r0) and let x ∈ B ρk(r)−1

2
(Qk(r)−1). By Theorem 5.3, in

particular, it follows that U ∈ C1,α(D+
R2, ρ

4
) with

‖U‖C1,α(D+
R2,

ρ
4
) ≤ Cρ, (5.56)

where Cρ > 0 is a constant depending on the a priori data and on ρ only. Then
(5.56) yields to

|U(x̄)| ≤ |U(x)|+ Cρ|x− x̄|α ≤ |U(x)|+ Cρ

(
2
µ
r

)α

.

Integrating this inequality over B ρk(r)−1
2

(Qk(r)−1), we have that

|U(x̄)|2 ≤ 2

ω3(
ρk−1

2 )3

∫
B ρk(r)−1

2

(
Qk(r)−1

) |U(x)|2dx+ 2C2
ρ

(
4r2

µ2

)α

. (5.57)

Being k the smallest integer such that dk ≤ r, then dk−1 > r and thus (5.57)
yields to

|U(x̄)|2 ≤ C(
r sin θ′

)3 ∫
Bρk(r)−1 (Qk(r)−1)

|U(x)|2dx+ Cρr
2α .

By (5.55) we deduce that

|U(x̄)|2 ≤ C

r3

{[
εα(ε)

]τs}τk(r)−1

+ Cρr
2α . (5.58)

The estimate (5.56) also provides us that∣∣∣∣∂U(x̄)
∂ν

∣∣∣∣ ≤ ∣∣∣∣∂U(x)
∂ν

∣∣∣∣+ Cρ

(
2
µ
r

)α

.

Integrating over B ρk(r)−1
2

(Qk(r)−1) we deduce that∣∣∣∣∂U(x̄)
∂ν

∣∣∣∣2 ≤ 2

ω3(
ρk−1

2 )3

∫
B ρk(r)−1

2

(
Qk(r)−1

) ∣∣∣∣∂U(x)
∂ν

∣∣∣∣2dx+ 2C2
ρ

(
4r2

µ2

)α

≤

≤ 2

ω3(
ρk−1

2 )3

∫
B ρk(r)−1

2

(
Qk(r)−1

) |∇U(x)|2dx+ 2C2
ρ

(
4r2

µ2

)α

.
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Applying the Caccioppoli inequality, we have∣∣∣∣∂U(x̄)
∂ν

∣∣∣∣2 ≤ C(
ρk−1

)5 ∫
Bρk(r)−1 (Qk(r)−1)

U(x)2dx+ Cρr
2α .

Dealing with the same arguments that lead to (5.58), we obtain that∣∣∣∣∂U(x̄)
∂ν

∣∣∣∣2 ≤ C

r5

{[
εα(ε)

]τs}τk(r)−1

+ Cρr
2α . (5.59)

The choice in (5.54) guarantees that

τk(r)−1 ≥
(
r

d0

)ν

,

where ν = − log
(

1
µ

)
log τ . Thus, by (5.58) and by (5.59), it follows that

|U(x̄)| ≤ Cρ

{
r−

3
2

[(
εα(ε)

)τs] rν

2
+ rα

}
, (5.60)∣∣∣∣∂U(x̄)

∂ν

∣∣∣∣ ≤ Cρ

{
r−

5
2

[(
εα(ε)

)τs] rν

2
+ rα

}
. (5.61)

Minimizing the right hand sides of the above inequalities with respect to r, with
r ∈ (0, r0

4 ), we deduce

|U(x̄)| ≤ Cρ

(
log (ε−α(ε))

)− 2α
ν+2 , (5.62)∣∣∣∣∂U(x̄)

∂ν

∣∣∣∣ ≤ Cρ

(
log (ε−α(ε))

)− 2α
ν+2 , (5.63)

where Cρ > 0 is a constant depending on the a priori data and on ρ only. Thus,
since x̄ is an arbitrary point in Γ

ρ
2
I , by (5.62) and (5.63) we have that

‖U(x̄)‖
L∞(Γ

ρ
2
I )
≤ Cρ

(
log (ε−α(ε))

)− 2α
ν+2 , (5.64)∥∥∥∥∂U(x̄)

∂ν

∥∥∥∥
L∞(Γ

ρ
2
I )

≤ Cρ

(
log (ε−α(ε))

)− 2α
ν+2 . (5.65)

By an interpolation inequality we have

‖∇t(U)‖L∞(Γ1,ρ) ≤ cρ‖U‖β
L∞(Γ1,

ρ
2
)‖U‖C1,α(Γ1,ρ)

1−β
,

where β = α
α+1 and cρ > 0 depends on the a priori data and on ρ only. Thus,

by (5.56), we obtain

‖∇t(U)‖L∞(Γ1,ρ) ≤ cρ‖U‖β
L∞(Γ1,

ρ
2
)Cρ

1−β .



94 Stability for the inverse scattering problem

It follows that for every ε < ε0, with ε0 depending only on the a priori data,

‖∇(U)‖L∞(Γ1,ρ) ≤
∥∥∥∥∂U∂ν

∥∥∥∥
L∞(Γ1,ρ)

+ ‖∇t(U)‖L∞(Γ1,ρ) ≤

≤ Cρ

(
log (ε−α(ε))

)− 2αβ
ν+2 , (5.66)

where Cρ > 0 depends on the a priori data and on ρ only.
After straightforward calculations and by a possible replacing of ε0 with a
smaller one depending on the a priori data only we have that

‖u1 − u2‖C1(Γ1,ρ) ≤ Cρ

(
| log(ε)|

)− αβ
ν+2 for every ε, 0 < ε < ε0. (5.67)

Thus the thesis follows replacing in (3.11) C with Cρ and θ with αβ
ν+2 . �

Proposition 5.7. There exists a radius r1 > 0 depending on the a priori data
only such that, for every x0 ∈ Γr0

I , the problem{
∆ψ + k2ψ = 0, in ΓI,r1(x0),
∂ψ

∂ν
+ iλ(x)ψ = 0, on ∆I,r1(x0),

(5.68)

admits a solution ψ ∈ H1(ΓI,r1(x0)) satisfying

|ψ(x)| ≥ 1 for every x ∈ ΓI,r1(x0). (5.69)

Moreover, there exists a constant ψ̄ > 0 depending on the a priori data only,
such that for every x0 ∈ Γr0

I

‖ψ‖C1(ΓI,r1 (x0)) ≤ ψ̄. (5.70)

Proof. Let us consider a point x0 ∈ Γr0
I . After a translation we may assume

that x0 = 0 and, fixing local coordinates, we can represent the boundary as a
graph of a C1,1 function. Namely, we have that

D+ ∩Br0(0) = {(x′, x3) ∈ Br0(0) : x3 < ϕI(x′)} , (5.71)

where ϕI is the C1,1 function satisfying (2.4)-(2.6) with ϕ = ϕi and k = α = 1.
Let Φ ∈ C1,1(B r0

4M
,R3) be the map defined as follows

Φ(y′, y3) = (y′, y3 + ϕI(y′)) . (5.72)

We have that there exist θ1, θ2, θ1 > 1 > θ2 > 0, constants depending on M and
r0 only, such that, for every r ∈ (0, r0

4M ), it follows that

ΓI,θ2r(0) ⊂ Φ(B−
r (0)) ⊂ ΓI,θ1r(0) , (5.73)
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where B−
r (0) = {y ∈ R3 : |y| < r, y3 < 0} and furthermore we have

|det DΦ | = 1 . (5.74)

The inverse map Φ−1 ∈ C1,1(ΓI,r0(0),R3) and is defined by

Φ−1(x′, x3) = (x′, x3 − ϕI(x′)) . (5.75)

Denoting by

σ(y) = (σi,j(y))3i,j=1 = (DΦ−1)(Φ(y)) · (DΦ−1)T (Φ(y)) , (5.76)

λ′(y) = λ(Φ(y)) , (5.77)

λ0
′ = λ′(0) , (5.78)

it follows that

σ(0) = I, (5.79)

‖σi,j‖C0,1(ΓI,r0 ) ≤ Σ, for i, j = 1, 2, 3, (5.80)

1
2
|ξ|2 ≤ σ(y)ξ · ξ ≤ C1|ξ|2, for every y ∈ B−

(
r0
4M )

(0) and every ξ ∈ R3, (5.81)

‖λ′‖C0,1(B′
r0
4M

(0)) ≤ Λ′ , (5.82)

where Σ > 0, C1 > 0,Λ′ > 0 are constants depending on M, r0,Λ only.

Claim 5.8. There exists a radius r2, 0 < r2 < r0
4M and a solution ψ′ ∈

H1(B−
r2

(0)) to the problem{
div(σ∇ψ′) + k2ψ′ = 0 , in B−

r2
(0) ,

σ∇ψ′ · ν′ + iλ′ψ′ = 0 , on B′
r2

(0), (5.83)

where ν′ = (0, 0, 1) such that

|ψ′| ≥ 1 in B−
r2

(0).

Proof. of Claim 5.8.
We look for a radius r2 > 0 and for a solution of the form ψ′ = ψ0 − s such
that, ψ0 ∈ H1(B−

r2
(0)) is a weak solution to the problem{

∆ψ0 + k2ψ0 = 0 , in B−
r2

(0),
∂ψ0

∂ν
+ iλ0

′ψ0 = 0 , on B′
r2

(0),
(5.84)
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satisfying |ψ0| ≥ 2 in B−
r2

(0) .
Whereas s ∈ H1(B−

r2
(0)) is a weak solution to the problem div(σ∇s) + k2s = div((σ − I)∇ψ0) , in B−

r2
(0),

σ∇s · ν + iλ′s = (σ − I)∇ψ0 · ν + i(λ′ − λ0
′)ψ0 , on B′

r2
(0),

s = 0 , on |y| = r2,
(5.85)

such that s(y) = O(|y|2) near the origin.
We can construct ψ0 explicitly as follows

ψ0(y1, y2, y3) = 8 cosh
(
|λ0

′2 − k2| 12 y1
)[

sin
(
λ0

′y3
)

+ i cos
(
λ0

′y3
)]
, if k2 < λ0

′2,

ψ0(y1, y2, y3) = 8 cos
(
|k2 − λ0

′2| 12 y1
)[

sin
(
λ0

′y3
)

+ i cos
(
λ0

′y3
)]
, if k2 > λ0

′2,

ψ0(y1, y2, y3) = 8 sin
(
λ0

′y3
)

+ i8 cos
(
λ0

′y3
)
, if k2 = λ0

′2.

Denoting by

r̃ =
π

4
min

 1√
|k2 − λ0

′2|
,

1
λ0

′

 , (5.86)

it follows, by straightforward calculations, that ψ0 ∈ H1(B−
r̃ (0)) is a weak

solution of (5.84) with r2 = r̃ and |ψ0| ≥ 2 in B−
r̃ (0).

Let us now look for a solution s to the problem (5.85).
Fixed r ∈ (0, r0

8M ), let us define the space

H1
0−(B−

r (0)) = {η ∈ H1(B−
r (0)) such that η(y) = 0 on |y| = r}, (5.87)

endowed with the usual ‖ · ‖H1
0 (B−

r (0)) norm. Thus the weak formulation of the
problem (5.85) reads in this way: find s ∈ H1

0−(B−
r (0)) such that, for every

η ∈ H1
0−(B−

r (0)), the following holds

∫
B−

r (0)

σ∇s · ∇η̄ −
∫

B−
r (0)

k2sη̄ −
∫

B′
r(0)

iλ′sη̄ =
∫

B−
r (0)

(σ − I)∇ψ0 · ∇η̄ +

+i
∫

B′
r(0)

(λ′ − λ0
′)ψ0η̄.(5.88)

Let us introduce the following bilinear form

A : H1
0−(B−

r (0))×H1
0−(B−

r (0)) → C (5.89)

such that

A(η1, η2) =
∫

B−
r (0)

σ∇η1 · ∇η̄2 −
∫

B−
r (0)

k2η1η̄2 −
∫

B′
r(0)

iλ′η1η̄2 (5.90)

and the following functional

F : H1
0−(B−

r (0)) → C (5.91)
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such that

F (η) =
∫

B−
r (0)

(σ − I)∇ψ0 · ∇η̄ + i

∫
B′

r(0)

(λ′ − λ0
′)ψ0η̄ . (5.92)

It immediately follows that A and F are continuous on H1
0−(B−

r (0)) as bilinear
form and as a functional respectively.
Moreover, dealing as in [39, Lemma 8.4], we have that, by the Hölder inequality,
it follows that for every η ∈ H1

0−(B−
r (0))∫

B−
r (0)

|η|2 ≤ c̃1r
2
(∫

B−
r (0)

|η|6
) 1

3
, (5.93)

where c̃1 > 0 is a constant depending on the a priori data only. Hence by the
Sobolev Embedding Theorem, (see [1, Chap.4]), and by (5.93), we have that∫

B−
r (0)

|η|2 ≤ c1r
2

∫
B−

r (0)

|∇η|2, (5.94)

where c1 > 0 is a constant depending on the a priori data only.
Analogously, by the Hölder inequality on the boundary, it follows that∫

B′
r(0)

|η|2 ≤ c̃2r
(∫

B′
r(0)

|η|4
) 1

2
, (5.95)

where c̃2 > 0 is a constant depending on the a priori data only. By a trace
inequality (see for instance [1], Chap.5), it follows that∫

B′
r(0)

|η|2 ≤ c2r

∫
B−

r (0)

|∇η|2, (5.96)

where c2 > 0 is a constant depending on the a priori data only.
Thus, by (5.81),(5.94) and (5.96), we deduce that

|A(η, η)| ≥ (
1
2
− c1r

2k2 − c2rΛ′)
∫

B−
r (0)

|∇η|2.

Denoting by

r3 = min
{

1,
1
8
(c1k2 + c2Λ),

r0
8M

}
, (5.97)

we have that for every r ∈ (0, r3)

|A(η, η)| ≥ 1
4

∫
B−

r (0)

|∇η|2. (5.98)

Thus it follows that, for every r ∈ (0, r3), the bilinear form A is coercive on
H1

0−(B−
r (0)). Hence by the Lax-Milgram theorem we can infer that, for every

r ∈ (0, r3), there exists a unique solution s ∈ H1
0−(B−

r (0)) to the problem (5.85).
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Fixing r ∈ (0, r3) and choosing η = s as test function in the weak formulation
(5.88), we obtain∫

B−
r (0)

σ∇s · ∇s̄−
∫

B−
r (0)

k2|s|2 −
∫

B′
r(0)

iλ′|s|2 =
∫

B−
r (0)

(σ − I)∇ψ0 · ∇s̄+

+ i

∫
B′

r(0)

(λ′ − λ0
′)ψ0s̄. (5.99)

By (5.98), we have that

1
4

∫
B−

r (0)

|∇s|2 ≤
∣∣∣ ∫

B−
r (0)

(σ − I)∇ψ0 · ∇s̄
∣∣∣+ ∣∣∣ ∫

B′
r(0)

(λ′ − λ0
′)ψ0s̄

∣∣∣. (5.100)

By the Schwartz inequality, by (5.79) and by (5.80) we have that∣∣∣ ∫
B−

r (0)

(σ − I)∇ψ0 · ∇s̄
∣∣∣ ≤ 16Σr2

∫
B−

r (0)

|∇ψ0|2 +
1
16

∫
B−

r (0)

|∇s|2 . (5.101)

Analogously, we have that, by the Schwartz inequality, by (5.78) and by (5.82)
it follows that∣∣∣ ∫

B′
r(0)

(λ′ − λ0
′)ψ0s̄

∣∣∣ ≤ 16c2Λ′r2
∫

B′
r(0)

|ψ0|2 +
1

16c2

∫
B′

r(0)

|s|2 . (5.102)

Moreover, by the inequality (5.96) and by (5.102) we deduce∣∣∣ ∫
B′

r(0)

(λ′ − λ0
′)ψ0s̄

∣∣∣ ≤ c22r
416Λ′

∫
B−

r (0)

|∇ψ0|2 +
1
16
r

∫
B−

r (0)

|∇s|2 . (5.103)

Hence inserting (5.101) and (5.103) in (5.100) we obtain that

1
8

∫
B−

r (0)

|∇s|2 ≤ (16Σ + c2216Λ′)r2
∫

B−
r (0)

|∇ψ0|2 . (5.104)

Denoting by
Q = sup

B−
r0
8M

(0)

|∇ψ0|2,

we have that

1
8

∫
B−

r (0)

|∇s|2 ≤ 4
3
π(16Σ + c2116Λ′)r5Q . (5.105)

By standard estimates for solutions of elliptic equations (see for instance [39],
Chap.8) and observing that Q > 0 depends on the a priori data only, we can
infer that for every r ∈ (0, r3

2 )

‖s‖L∞(B−
r (0)) ≤ c4r

2,
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where c4 > 0 is a constant depending on the a priori data only.
Hence the Claim follows choosing r2 = min{r̃, r3

2 ,
1√
c4
} and observing that

|ψ′| ≥ |ψ0| − |s| ≥ 1 in B−
r2

(0) .

�

Let us notice that choosing r1 = θ2r2 and ψ(x′, x3) = ψ′(Φ−1(x′, x3)), we have
that ψ ∈ H1(ΓI,r1(0)) is a weak solution to the problem (5.68) and is such that
|ψ| ≥ 1 in ΓI,r1(0).
Finally, we conclude the proof of Proposition 5.7 observing that (5.70) follows
dealing with the same argument used in the proof of Theorem 5.3. �

Lemma 5.9 (Volume doubling inequality). Let u be the solution to the
problem (1.8), then there exists a radius r̄ > 0 such that for every x0 ∈ Γr0

I the
following holds ∫

ΓI,βr

|u|2 ≤ CβK

∫
ΓI,r

|u|2 (5.106)

for every r, β such that β > 1 and 0 < βr < r̄, where C > 0,K > 0 are constants
depending on the a priori data only.

Proof. Let x0 ∈ Γr0
I and let r1 and ψ be, respectively, the radius and the

function, introduced in Proposition 5.7. Denoting by

z =
u

ψ
, (5.107)

it follows that z ∈ H1(ΓI,r1(x0)) is a weak solution to the problem
∆z + 2

∇ψ
ψ

· ∇z = 0, in ΓI,r1(x0),

∂z

∂ν
= 0, on ∆I,r1(x0).

(5.108)

Dealing as in Proposition 5.7, we may assume that, up to a rigid transformation
of coordinates, x0 = 0 and, by local coordinates, we can locally represent the
boundary as a graph of a C1,1 function as in (5.71).
Following [2, Theorem 0.8], (see also [8, Proposition 3.5]), we have that there
exists a map Ψ ∈ C1,1(Bρ2(0),R3) such that

Ψ(Bρ2(0)) ⊂ Bρ1(0), (5.109)

Ψ(y′, 0) = (y′, ϕI(y′)), for every y′ ∈ B′
ρ2

(0), (5.110)

ΓI, ρ
2
⊂ Ψ(B−

ρ (0)) ⊂ ΓI,c1ρ, for every ρ ∈ (0, ρ2), (5.111)
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1
8
≤ |detDΨ| ≤ c2, (5.112)

where ρ1, 0 < ρ1 < r0, ρ2 > 0, c1 > 0, c2 > 0 are constants depending on r0,M,Λ
only. Denoting by

A(y) = |detDΨ(y)|(DΨ−1)(Ψ(y))(DΨ−1)T (Ψ(y)), (5.113)

B(y) = 2|detDΨ(y)|(DΨ−1)(Ψ(y))
∇ψ(Ψ(y))
ψ(Ψ(y))

, (5.114)

v(y) = z(Ψ(y)), (5.115)

it follows that

A(0) = I , (5.116)

A(y′, 0)(y′, 0) · e3 = 0, for every y′, |y′| ≤ ρ2, (5.117)

c3|ξ|2 ≤ A(y)ξ · ξ ≤ c4|ξ|2, for every y ∈ B−
ρ2

(0) and for every ξ ∈ R3,(5.118)

|A(y1)−A(y2)| ≤ c5|y1 − y2|, for every y1, y2 ∈ B−
ρ2

(0), (5.119)

|B(y)| ≤ c6, for every y ∈ B−
ρ2

(0), (5.120)

where c4 > 0, c5 > 0, c6 > 0 are constants depending on r0,M,Λ only.
Let us observe that v ∈ H1(B−

ρ2
(0)) is a weak solution to the problem{

div(A∇v) +B∇v = 0, in B−
ρ2

(0),
A(y′, 0)∇v · ν′ = 0, on B′

ρ2
(0). (5.121)

Hence we are under the assumptions of Theorem 1.3 in [2] and thus we can infer
that there exists a radius ρ3, 0 < ρ3 < ρ2, depending on the a priori data only,
such that

∫
B−

βρ(0)

|v|2 ≤ cβK

∫
B−

ρ (0)

|v|2 , (5.122)

for every ρ, β such that β > 1 and 0 < βρ ≤ ρ3, where c > 0 is constant
depending on the a priori data only, and K > 0 depends on the a priori data
and increasingly on

N(ρ3) = ρ3

∫
B−

ρ3 (0)
A∇v · ∇v̄ +Re(v̄ div(A∇v))∫

∂B−
ρ3 (0)\B′

ρ3(0)
µ|v|2

, (5.123)
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where we denote

µ(x) =
A(x)x · x
|x|2

, for every x ∈ B−
ρ2

(0). (5.124)

By (5.118) it follows that

c3 ≤ µ(x) ≤ c4, for every x ∈ B−
ρ2

(0). (5.125)

Let us observe that the proof of Theorem 1.3 in [2] needs, in this context, a
slight modification due to the fact that we deal with complex valued functions.
We omit the details.
Denoting by

Ñ(ρ3) =

∫
B−

ρ3 (0)
ρ2
3|∇v|2 + |v|2∫

B−
ρ3 (0)

|v|2
, (5.126)

we notice, following the arguments in [11, Lemma 3.3], that

N(ρ3) ≤ CÑ(ρ3), (5.127)

where C > 0 is a constant depending on the a priori data only.
By (5.111), it follows, that for every r and β > 1 such that 0 < r < βr < ρ3

2∫
ΓI,βr(0)

|z|2 ≤ C

∫
B−

2βr(0)

|v|2 , (5.128)

where C > 0 is a constant depending on r0,M,Λ only. Moreover, by (5.122)
and by (5.111) we have that∫

B−
2βr(0)

|v|2 ≤ C(2βc1)K

∫
B−

r
c1

(0)

|v|2 ≤ C(2βc1)K

∫
ΓI,r(0)

|z|2, (5.129)

where C > 0 is a constant depending on r0,M,Λ only.
Combining (5.128) and (5.129), we have that∫

ΓI,βr

|z|2 ≤ C(2βc1)K

∫
ΓI,r(0)

|z|2 . (5.130)

Finally the last inequality, (5.69),(5.70) imply that∫
ΓI,βr

|u|2 ≤ C(β)K

∫
ΓI,r(0)

|u|2 , (5.131)

where C > 0,K > 0 are constants depending on a priori data and on Ñ(ρ3)
only. Thus the Lemma follows with

r̄ =
ρ3

2
. (5.132)
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It only remains to majorize the quantity (5.126) by a constant depending on
the a priori data only. Let us observe that by (5.111), by (5.69) and by (5.70),
we have that ∫

B−
ρ3 (0)

|∇v|2 + |v|2 ≤ C

∫
ΓI,ρ3c1 (0)

|∇u|2 + |u|2, (5.133)

where C > 0 is a constant depending on the a priori data only. Moreover, by
the above inequality and by (5.18), we can conclude that∫

B−
ρ3 (0)

|∇v|2 + |v|2 ≤ C, (5.134)

where C > 0 is a constant depending on a priori data only.
On the other hand, we have that choosing P0 = M

8
√

1+M2ρ3
ν and ρ4 = 1

32
M√

1+M2 ρ3,
where ν is the outer unit normal to D at 0, it follows that Bρ4(P0) ⊂ ΓI,

ρ3
2

(0).
Thus, by (5.111) and by (5.70) it follows that∫

B−
ρ3 (0)

|v|2 ≥ C

∫
Γ

I,
ρ3
2

(0)

|u|2 ≥ C

∫
Bρ4 (P0)

|u|2 , (5.135)

where C > 0 is a constant depending on the a priori data only.
Let us consider a point Q ∈ R3 \D+

2R0
such that

B4ρ4(Q) ⊂ R3 \D+

2R0
, (5.136)

where R0 is the radius introduced in Corollary 5.4. Dealing as in the proof of
Theorem 5.6, we cover a path joining P0 to Q by a chain of balls of radius ρ4

pairwise tangent to each other. Hence, by an iterated use of the three spheres
inequality, we have that the following holds

‖u‖L2(B ρ4
4 (Q))

≤ C‖u‖τs

L2(Bρ4(P0))
, (5.137)

where C > 0, s > 0 and τ, 0 < τ < 1 are constants depending on the a priori
data only. By the last inequality, by (5.136) and by (5.33), we can infer that

‖u‖L2(Bρ4(P0)) ≥
(
πρ3

4

C48

) 1
τs

. (5.138)

Hence, by (5.138) and by (5.135), we have that∫
B−

ρ3 (0)

|v|2 ≥ C, (5.139)

where C > 0 is a constant depending on a priori data only. Hence, by (5.134)
and by (5.139), we can majorize Ñ(ρ3) by a constant depending on the a priori
data only and thus the Lemma follows. �
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Theorem 5.10 (Surface doubling inequality). Let u be the solution to the
problem (1.8), then there exists a constant C > 0 depending on the a priori data
only such that, for every x0 ∈ Γr0

I and for every r ∈ (0, r̄
4 ), the following holds∫

∆I,2r(x0)

|u|2dσ ≤ C

∫
∆I,r(x0)

|u|2dσ . (5.140)

Proof. Let x0 ∈ Γr0
I and let z ∈ H1(ΓI,r1(x0)) and r̄ be, respectively, the

solution to the problem (5.108) defined by (5.107) and the radius introduced in
(5.132). By a regularity estimate at the boundary, (see for instance [8, p.777])
we have that, for any r ∈ (0, r̄

4 ), the following holds∫
∆I,r(x0)

|∇tz|2 ≤ C

(
1
r

∫
ΓI,2r(x0)

|∇z|2
)1−γ (

1
r2

∫
∆I,r(x0)

|z|2
)γ

, (5.141)

where C > 0 and 0 < γ < 1 are constants depending on the a priori data only
and where ∇tz represents the tangential gradient.
Thus, by the Young inequality we have that for every ε > 0 the following holds∫

∆I,r(x0)

|∇tz|2 ≤
Cε

1
1−γ

r

∫
ΓI,2r(x0)

|∇z|2 +
C

ε
1
γ r2

∫
∆I,r(x0)

|z|2, (5.142)

where C > 0 is a constant depending on the a priori data only.
Moreover, by a well-known estimate of stability for the Cauchy problem (see for
instance [69]), we have that∫

ΓI, r
2
(x0)

|z|2 ≤ Cr

(∫
∆I,r(x0)

|z|2 + r2
∫

∆I,r(x0)

|∇tz|2
)1−δ

· (5.143)

·

(∫
∆I,r(x0)

|z|2 + r2
∫

∆I,r(x0)

|∇tz|2 + r

∫
ΓI,r(x0)

|∇z|2
)δ

,

where C > 0 and 0 < δ < 1 are constants depending on the a priori data only.
Hence, by (5.143) and by the Young inequality, we have that for every β > 0
the following holds∫

ΓI, r
2
(x0)

|z|2 ≤ C

ε
β

1−δ

(
r

∫
∆I,r(x0)

|z|2 + r3
∫

∆I,r(x0)

|∇tz|2
)

+ (5.144)

+Cε
β
δ

(
r

∫
∆I,r(x0)

|z|2 + r3
∫

∆I,r(x0)

|∇tz|2 + r2
∫

ΓI,r(x0)

|∇z|2
)
,

where C > 0 is a constant depending on the a priori data only.
Choosing β in (5.144) such that β = 1−δ

1−γ γ and inserting (5.142) in (5.144), we
obtain ∫

ΓI, r
2
(x0)

|z|2 ≤ Cr

ε
γ2+1−γ
γ(1−γ)

∫
∆I,r(x0)

|z|2 + Cεr2
∫

ΓI,2r(x0)

|∇z|2,
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where C > 0 is a constant depending on the a priori data only. By the Cac-
cioppoli inequality we have that∫

ΓI, r
2
(x0)

|z|2 ≤ Cr

ε
γ2+1−γ
γ(1−γ)

∫
∆I,r(x0)

|z|2 + Cε

∫
ΓI,4r(x0)

|z|2,

where C > 0 is a constant depending on the a priori data only.
Thus by (5.69) and (5.70) we can infer that∫

ΓI,r(x0)

|u|2 ≤ Cr

ε
γ2+1−γ
γ(1−γ)

∫
∆I,2r(x0)

|u|2 + Cε

∫
ΓI,8r(x0)

|u|2,

where C > 0 is a constant depending on the a priori data only.
By (5.106) it follows that∫

ΓI, r
2
(x0)

|u|2 ≤ Cr

ε
γ2+1−γ
γ(1−γ)

∫
∆I,r(x0)

|u|2 + C(8)Kε

∫
ΓI, r

2
(x0)

|u|2, (5.145)

where C > 0 is a constant depending on the a priori data only.
Hence, choosing ε in (5.145) such that ε = 1

2C(8)K , we obtain that∫
ΓI, r

2
(x0)

|u|2 ≤ Cr

∫
∆I,r(x0)

|u|2, (5.146)

where C > 0 is a constant depending on the a priori data only.
By applying again (5.106) on the left hand side of (5.146), we obtain that∫

ΓI,2r(x0)

|u|2 ≤ Cr

∫
∆I,r(x0)

|u|2, (5.147)

where C > 0 is a constant depending on the a priori data only.
Moreover, by a standard Dirichlet trace inequality, we have that∫

∆I,2r(x0)

|u|2 ≤ C

∫
∆I,r(x0)

|u|2, (5.148)

where C > 0 is a constant depending on the a priori data only.
�

Corollary 5.11 (Ap property on the boundary). Let u be the solution to
the problem (1.8), then there exist p > 1, A > 0 constants depending on the a
priori data only, such that, for every x0 ∈ Γr0

I and every r ∈ (0, r̄
4 ), the following

holds(
1

|∆I,r(x0)|

∫
∆I,r(x0)

|u|2dσ

)(
1

|∆I,r(x0)|

∫
∆I,r(x0)

|u|−
2

p−1 dσ

)p−1

≤ A. (5.149)
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Proof. Let x0 ∈ Γr0
I and let r ∈ (0, r̄

4 ), then by a trace inequality, (see for
instance [1], Chap. 5), it follows that

‖u‖L4(∆I,r(x0)) ≤ C‖u‖H1(ΓI,r(x0)), (5.150)

where C > 0 is a constant depending on the a priori data only. By the Cac-
cioppoli inequality we deduce that

‖u‖L4(∆I,r(x0)) ≤
C

r
‖u‖L2(ΓI,2r(x0)). (5.151)

Applying the Doubling inequality (5.106) on the right hand side of (5.151), we
obtain that

‖u‖L4(∆I,r(x0)) ≤
C

r
‖u‖L2(ΓI,r(x0)), (5.152)

where C > 0 is a constant depending on the a priori data only. Combining
(5.146) and (5.152) we have that

‖u‖L4(∆I,r(x0)) ≤
C√
r
‖u‖L2(∆I,2r(x0)), (5.153)

where C > 0 is a constant depending on the a priori data only. Thus by the
doubling inequality (5.140) we have

‖u‖L4(∆I,r(x0)) ≤
C√
r
‖u‖L2(∆I,r(x0)). (5.154)

Hence, we infer that for every r ∈ (0, r̄
4 ) and for every x0 ∈ Γr0

I , the following
holds (

1
r2

∫
∆I,r

|u|4
) 1

4

≤

(
C

r2

∫
∆I,r

|u|2
) 1

2

,

obtaining a reverse Hölder inequality.
The result in [28] assures the existence of some p > 1 and A > 0 depending on
the a priori data only such that (5.149) holds. �

Proof of Theorem 5.1. Let x0 be a point in Γr0
I . Let us pick r = r̄

8 , thus
by (5.146) with u = u2 it follows that∫

∆I, r̄
8
(x0)

|u2|2dσ ≥ C

∫
ΓI, r̄

16 (x0)

|u2|2dx, (5.155)

where C > 0 is a constant depending on the a priori data only.
Let P0 and ρ4 > 0 be, respectively a point and a radius, such that Bρ4(P0) ⊂
ΓI, r̄

16 (x0). By rephrasing the argument leading to (5.138) we deduce by (5.155)
that ∫

∆I, r̄
8
(x0)

|u2|2dσ ≥ C, (5.156)
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where C > 0 is a constant depending on the a priori data only.
Combining (5.149) and (5.156), we have that for every x0 ∈ Γr0

I the following
holds ∫

∆I, r̄
8
(x0)

|u2|−
2

p−1 dσ

p−1

≤ C, (5.157)

where C > 0 is a constant depending on the a priori data only.
Let us now consider x ∈ ∆I, r̄

8
(x0), then it follows that

|λ1(x)− λ2(x)| =
∣∣∣∣−λ1(x)

u1(x)− u2(x)
u2(x)

+
1

iu2(x)

(
∂u2(x)
∂ν

− ∂u1(x)
∂ν

)∣∣∣∣ ≤
≤ |λ1(x)|

|u1(x)− u2(x)|
|u2(x)|

+
1

|u2(x)|

∣∣∣∣∂u2(x)
∂ν

− ∂u1(x)
∂ν

∣∣∣∣
.

Then by Theorem 5.6 and by (5.4) we have that, if 0 < ε < ε0, then

|λ1(x)− λ2(x)| ≤ (Λ + 1)ω(ε)
1

|u2(x)|
. (5.158)

Hence denoting by δ = 2
p−1 , (5.158) yields to∫

∆I, r̄
8 (x0)

|λ1(x)− λ2(x)|δ
 1

δ

≤ (Λ + 1)ω(ε)

∫
∆I, r̄

8 (x0)

1
|u2(x)|δ

 1
δ

.(5.159)

By (5.157) and by a possible replacement of the constant C in (3.11), we have
that ∫

∆I, r̄
8 (x0)

|λ1(x)− λ2(x)|δ
 1

δ

≤ ω(ε). (5.160)

By the a priori bound (5.4), we can infer that

|λ1(x)− λ2(x)| ≤ |λ1(x)− λ2(x)|
δ
2 (2Λ)1−

δ
2 . (5.161)

Integrating the above inequality with respect to x over ∆I, r̄
8 (x0) we have

‖λ1(x)− λ2(x)‖L2(∆I, r̄
8 (x0))

≤ (2Λ)1−
δ
2

∫
∆I, r̄

8 (x0)

|λ1(x)− λ2(x)|δ
 1

2

.(5.162)

Hence, by a possible further replacement of the constants C, θ in (3.11), we can
infer that the last inequality and (5.160) yield to

‖λ1(x)− λ2(x)‖L2(∆I, r̄
8 (x0))

≤ ω(ε) . (5.163)
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By an interpolation inequality, see for instance [8, p.777], we have that

‖λ1 − λ2‖L∞(∆I, r̄
8 (x0))

≤ C‖λ1 − λ2‖
1
2
L2(∆I, r̄

8 (x0))
‖λ1 − λ2‖

1
2
C0,1(∆I, r̄

8 (x0))
,(5.164)

where C > 0 is a constant depending on the a priori data only. Hence by (5.4),
it follows that

‖λ1 − λ2‖L∞(∆I, r̄
8 (x0))

≤ C(2Λ)
1
2 ‖λ1 − λ2‖

1
2
L2(∆I, r̄

8 (x0))
. (5.165)

Combining (5.163) with (5.165) we obtain, by a possible further replacement of
the constants C, θ in (3.11), that

‖λ1 − λ2‖L∞(∆I, r̄
8 (x0))

≤ ω(ε). (5.166)

Let us cover Γr0
I with the sets ∆I, r̄

8
(xj), j = 1, . . . , J , with xj ∈ Γr0

I .
Let i be an index such that

‖λ1 − λ2‖L∞(∆I, r̄
8 (xi)

) = ‖λ1 − λ2‖L∞(Γ
r0
I ). (5.167)

Thus, by a further possible replacement of the constant C, θ in (3.11), we deduce
(5.14) by combining (5.167) and (5.166) with x0 = xi. �
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