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Time Series Analysis

Time Series

Let (Xt)tez (€ E) be a stationary time series. We observe (X;)1<t<n.

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Time Series Analysis

Time Series

Let (Xt)tez (€ E) be a stationary time series. We observe (X;)1<t<n.

-0.02- 4

-0.04} E

-0.06 1

-0.08- q

0.1 L L L L
0 200 400 600 800 1000

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Time Series Analysis

Classical Models

r Wintenberge! ersity Paris 1



Time Series Analysis

Classical Models

o ARMA(1,1) Xe=b+ biXe—1+ ae—1+ &
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Time Series Analysis

Classical Models

o ARMA(1,1) Xe=b+ biXe—1+ ae—1+ &
Xe = 0¢s,
® GARCH(1,1), Engle (1982) { Uf = b+ b1Xt271 + Claffl, b, by, c; > 0.
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Time Series Analysis

Classical Models

o ARMA(1,1) Xe=b+ biXe—1+ ae—1+ &

o GARCH(1,1), Engle (1982) { Xe = aide,

2 2
oy = b+b1Xt71+C10't71, b, bl,Cl > 0.

10 30
20

5
10

0
0

-5
-10

10
-20
-15 -30

0 200 400 600 800 1000 0 200 400 600 800 1000

ARMA(L,1) GARCH(1,1)

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Time Series Analysis

Classical Models

o ARMA(1,1) Xe=b+ biXe—1+ ae—1+ &
X = 0y,
@ GARCH(1,1), Engle (1982) { 02 = b+ b X2, +co?,, bbi,c>0.
ARMA(1,1) GARCH(1,1)

@ TGARCH(1,1), Zakoian (1994)

Xe = 0,
or = b+ b max(X;_1,0) — b min(X;-1,0) + c10t-1.
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Time Series Analysis

Causality

ARMA(1,1) Xe=b+biXe—1+ ae—1+ &

The stationary solution could be expressed as MA(o0) Xe = Z dife—j.
jz0

Causality: X; depends of the past values &, &1, .- ..
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Time Series Analysis

Causality

ARMA(1,1) Xe=b+biXe—1+ ae—1+ &

The stationary solution could be expressed as MA(o0) Xe = Z dife—j.
jz0

Causality: X; depends of the past values &, &1, .- ..

Linear Models: A noncausal generalization is  X; = E dit—j.
JEL

It appears as solutions of NonCausal AR models

Xe=b+ by Xe—1+b_1Xep1 + &
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Weak Dependence Notions

Independence

Here, the main question is how to weaken the relation

P(AN B) = P(A)P(B) ?

Independence of A € o(P) and B € o(F)
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Weak Dependence Notions

Independence

Here, the main question is how to weaken the relation

P(AN B) = P(A)P(B) ?

Independence of A € o(P) and B € o(F) is also written as:

Cov(f(P),8(F)) =0,  Vf g, |[flloc,llgllec <1
(The variables P and F stand for Past and Future)
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Independence
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Cov(f(P),8(F)) =0,  Vf g, |[flloc,llgllec <1
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Weak Dependence Notions

Bradley (1983), Doukhan (1994), Rio (2000), Shao (1993)

a(o(P),a(F)) = sup  [Cov(f(P),g(F))l
1£locllg oo <1
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Weak Dependence Notions

Bradley (1983), Doukhan (1994), Rio (2000), Shao (1993)

a(o(P),a(F)) = sup  [Cov(f(P),g(F))l
1£locllg oo <1
X=Xeez:  P=Xspsoo s Xs,)y  F=(Xes-o o Xs),

S1<Ss, < Sty r=ty—s,.
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Weak Dependence Notions

Bradley (1983), Doukhan (1994), Rio (2000), Shao (1993)

a(o(P),a(F)) = sup  [Cov(f(P),g(F))l
1£locllg oo <1
X=Xeez:  P=Xspsoo s Xs,)y  F=(Xes-o o Xs),

S1<Ss, < Sty r=ty—s,.

a(r) = sup max a(o(P),0(F)) —=r—c0 0 (Rosenblatt)
u,v St S e S Sy
h<---<t
r=t —s,>0
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Weak Dependence Notions

Bradley (1983), Doukhan (1994), Rio (2000), Shao (1993)

a(o(P),a(F)) = sup  [Cov(f(P),g(F))l
1£locllg oo <1
X=Xeez:  P=Xspsoo s Xs,)y  F=(Xes-o o Xs),

S1<Ss, < Sty r=ty—s,.

a(r) = sup max a(o(P),0(F)) —=r—c0 0 (Rosenblatt)
u,v St S e S Sy
h<---<t
r=t —s,>0

Example of non-mixing models

X, = % (Xee1 + &), &~ b (;) iid (Andrews-Rosenblatt, 1984).
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Weak Dependence Notions

Noncausal Coefficients Doukhan & Louhichi (1999) Doukhan & W. (2007)

(PP s COUAPLEF)
1o lglle <1 W(u, v, Lipf, Lipg)
where f, g are Lipschitz functions and
Lipf = sup Fyas - y) = Fla, - %))
(V155 Yu) (X1 5Xu) lyr = xall + -+ [lyu — xull
X = (Xe)eer : P=(Xe,. .., X)), F= (X Xe,),
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Weak Dependence Notions

Noncausal Coefficients Doukhan & Louhichi (1999) Doukhan & W. (2007)

Cov(f(P F
(PP wp  1CUAPLEEN
[Flloo- gl <1 W(u, v, Lipf,Lip g)
where f, g are Lipschitz functions and

s yu) = Fas -5 X))

Lipf = sup
(V155 Yu) (X1 5Xu) lyr = xall + -+ [lyu — xull
X = (Xe)tez : P=(Xsy. s Xs,)s F = (Xpp, ..., Xy,),
e(r) = sup max e(P,F) —/— 0.
u,v St S e S Sy
<<ty

r=t—s,>0
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Weak Dependence Notions

Noncausal Coefficients Doukhan & Louhichi (1999) Doukhan & W. (2007)

Cov(f(P F
(PP wp  1CUAPLEEN
[Flloo- gl <1 W(u, v, Lipf,Lip g)
where f, g are Lipschitz functions and

s yu) = Fas -5 X))

Lipf = sup
(V155 Yu) (X1 5Xu) lyr = xall + -+ [lyu — xull
X = (Xe)tez : P=(Xsy. s Xs,)s F = (Xpp, ..., Xy,),
e(r) = sup max e(P,F) —/— 0.
u,v St S e S Sy
<<ty

r=t—s,>0

Choices of W (symmetric) yield different noncausal coefficients.
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Weak Dependence Notions

Noncausal Coefficients Doukhan & Louhichi (1999) Doukhan & W. (2007)

Cov(f(P F
(PP wp  1CUAPLEEN
[Flloo- gl <1 W(u, v, Lipf,Lip g)
where f, g are Lipschitz functions and

s yu) = Fas -5 X))

Lipf = sup
(V155 Yu) (X1 5Xu) lyr = xall + -+ [lyu — xull
X = (Xe)tez : P=(Xsy. s Xs,)s F = (Xpp, ..., Xy,),
e(r) = sup max e(P,F) —/— 0.
u,v St S e S Sy
<<ty

r=t —s, >0
Choices of W (symmetric) yield different noncausal coefficients.

V(u,v,Lipf,Lipg) = uLipf + vLipg, e(r) =n(r),
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Weak Dependence Notions

Noncausal Coefficients Doukhan & Louhichi (1999) Doukhan & W. (2007)

Cov(f(P F
(PP wp  1CUAPLEEN
[Flloo- gl <1 W(u, v, Lipf,Lip g)
where f, g are Lipschitz functions and

s yu) = Fas -5 X))

Lipf = sup
(V155 Yu) (X1 5Xu) lyr = xall + -+ [lyu — xull
X = (Xe)tez : P=(Xsy. s Xs,)s F = (Xpp, ..., Xy,),
e(r) = sup max e(P,F) —/— 0.
u,v St S e S Sy
<<ty

r=t —s, >0
Choices of W (symmetric) yield different noncausal coefficients.

V(u,v,Lipf,Lipg) = uLipf + vLipg, e(r) =n(r),
W(u,v,Lipf,Lipg) = ulLipf+vLipg+uvlipfLipg, €(r)= A(r).
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Weak Dependence Notions

First Examples

° Xe = H((&t—j)jez), with (&¢)tez (€ R) iid (£ ~ p).
If H € LY(R%, 1) and for (¢;)tez and (&;)iez iid,
E|H(&.j € Z) — H (&1)j<, + Gl € Z)| <6, 10 (r 1 o0)

then 77(/’) < 25[,/2]

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Weak Dependence Notions

First Examples

° Xe = H((&e—j)jez)s with (§¢)eez (€ R) iid (§ ~ p).

If He LI(RZ,,U/) and for (Ct)fEZ and (ft)teZ ||d,

E|H(&.j € Z) — H (&1)j<, + Gl € Z)| <6, 10 (r 1 o0)

then 77(/’) < 25[,/2]
Application
For the Linear Model X: = 3", di&e—;, n(r) < 2E[&| Z\J’\Zr d;.
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Weak Dependence Notions

First Examples

° Xe = H((&e—j)jez)s with (§¢)eez (€ R) iid (§ ~ p).

If He LI(RZ,,U/) and for (Ct)fEZ and (ft)teZ ||d,

E|H(&.j € Z) — H (&1)j<, + Gl € Z)| <6, 10 (r 1 o0)

then 77(/’) < 25[,/2]
Application
For the Linear Model X: = 3", di&e—;, n(r) < 2E[&| Z\J’\Zr d;.

o If (X¢)tez is Gaussian or associated (Cov (f(P),g(F)) > 0if f,g 1) then

A(r) < sup|Cov(Xp, Xj)|.

jzr
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Weak Dependence Notions

Causal Coefficient (Coupling) Dedecker & Prieur (2004)

Here P = O-(Xt7Xt_17 o ) and X C F = {Xt+r7Xt+r+17 .. }
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Weak Dependence Notions

Causal Coefficient (Coupling) Dedecker & Prieur (2004)

Here P = O-(Xt7Xt_17 o ) and X C F = {Xt+r7Xt+r+17 .. }

7(P,X)=E

sup  {[E(g(X)[P) — IE(g(X))I}H ;
Lipg<1
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Weak Dependence Notions

Causal Coefficient (Coupling) Dedecker & Prieur (2004)

Here P = O-(Xt7Xt_17 o ) and X C F = {Xt+r7Xt+r+17 .. }

7(P,X)=E

sup  {[E(g(X)[P) — IE(g(X))I}H ;
Lipg<1

1
7(r) = sup = sup 7(P, (X, ., Xt,)) =r—o0 0.

v>0 V <y <<t
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Weak Dependence Notions

Causal Coefficient (Coupling) Dedecker & Prieur (2004)

Here P = O-(Xt7Xt_17 o ) and X C F = {Xt+r7Xt+r+17 .. }

7(P,X)=E

sup  {[E(g(X)[P) — IE(g(X))I}H ;
Lipg<1

1
7(r) = sup = sup 7(P, (X, ., Xt,)) =r—o0 0.

v>0 Vo t4r< <<t
Coupling: for Y distributed as X and independent of P then
(P, X) <E|X =Y.

There exists Y* such that T(P,X) =E| X - Y*|.
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Examples
Causal Case Applications

Processes with Infinite Memory Doukhan & W. (submitted)

Xe = F(Xe—1, Xe—2, Xe—3,...1&) ass.
(fl’)tEZ Ild, F . EN X E’ — E
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Examples
Causal Case Applications

Processes with Infinite Memory Doukhan & W. (submitted)

Xe = F(Xe—1, Xe—2, Xe—3,...1&) ass.
(Ef)tEZ Ild, F . EN X El — E

Existence, Moment and Weak Dependence
If pm = ||F(0,0,0,...;%)|l,, < oo, m>1,
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Examples
Causal Case Applications

Processes with Infinite Memory Doukhan & W. (submitted)

Xe = F(Xe—1, Xe—2, Xe—3,...1&) ass.
(Ef)tEZ Ild, F . EN X El — E
Existence, Moment and Weak Dependence

If pm = ||F(0,0,0,...;%)|l,, < oo, m>1,
and (xj)jen, (¥))jen finitely non-zero sequences

oo
IF(xt, %0, 35,1 €&6) = F(y1,y2,¥3, 1€l < D 3l — yil
j=1

with a =37 a2 <1
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Examples
Causal Case Applications

Processes with Infinite Memory Doukhan & W. (submitted)

Xe = F(Xe—1, X2, Xi—3,...; &) as.
(&)tez iid, F: EN x E' — E.
Existence, Moment and Weak Dependence

If pm = ||F(0,0,0,...;%)|l,, < oo, m>1,
and (xj)jen, (¥))jen finitely non-zero sequences

oo
IF(xt, %0, 35,1 €&6) = F(y1,y2,¥3, 1€l < D 3l — yil

with a = Zf; aj < 1 then existence in L™ of a (essentially) unique stationarity
solution and weak dependence hold with:

T(r) <2 inf Zaj+a | =, 0.

1—aN>0
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Examples
Causal Case Applications

Classical Models

Applications
o ARMA(1,1) Xe=b+ b Xi—1+ &1+ &
If |b1], |c1] < 1, ||€ollm < oo, existence in L™,
and 7(r) < Ce=Vabr, { a z In(1 -+ Cl,) l;(';()bl +a),
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Examples
Causal Case Applications

Classical Models

Applications
o ARMA(1,1) Xe=b+ b1 X1+ a&e—1+ &

If |b1], |c1] < 1, ||€ollm < oo, existence in L™,

_ JaBr a = In(l+ca)—In(bs + 1),
and 7(r) < Ce Vapr { 5 = I—In(cl).l 1

Xt = Ufgta
@ GARCH(1,1) { 02 = b+ X2, +co’y, bbic >0.
If |[€ollmv/b1 4+ /C1 < 1, existence in L™
—Vapr a = In(l-ya)—In(|llmvbr),
and 7(r) < Ce , { 5 — @)/
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Examples
Causal Case Applications

General NonMarkov Nonlinear Models
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Examples
Causal Case Applications

General NonMarkov Nonlinear Models

@ LARCH(o0) Process, Doukhan et al. (2006)
Xe=t(at Y bXey) as
>t

exists, belongs in L™ and is 7-weakly dependent if ||&o|m > _; bi|| < 1.
j=21 0%
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Examples
Causal Case Applications

General NonMarkov Nonlinear Models

@ LARCH(o0) Process, Doukhan et al. (2006)

Xi =& (a + Z ijt,j) a.s.

jz1

exists, belongs in L™ and is 7-weakly dependent if [|$ol|m > ;5 ||l < 1.
o Affine Models

Xt = M(Xt_17 Xt—27 .. ) . ft + f(Xt—17Xt—2; .. .), a.s.

exists, belongs in L™ and is 7-weakly dependent if

Zaj(f) + ||§0Hm<ZOéJ'(M)> =a<1
Jj=1 j=1

with for all finitely non-zero sequences x = (x;)j>1, ¥ = (¥j)j>1
)= fWIl < Z,:% a;(F)lx; = yjll,
IM(x) =MW < 372 (M)lx — yl-
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Examples
Causal Case Applications

Some Applications
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Some Applications

@ Parametric Estimation for Affine Models,
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Examples
Causal Case Applications

Some Applications

@ Parametric Estimation for Affine Models,

@ Limit Results similar to the independent case.
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Examples
Causal Case Applications

Parametric Estimation

The true parameter 6 € C compact C RY.

Xt - MOO(Xt717Xt72> .. ) . ft + 7f00(Xt717Xt727 .. ')7 a.s.
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Examples
Causal Case Applications

Parametric Estimation

The true parameter 6 € C compact C RY.
Xe = Moy (Xi—1, Xe—2,...) - & + foo (Ke—1, Xe—2, .. .), ass.
I {175(0,0, .. )llc +[Ms(0,0, .. .)l[c < oo (|- llc =supc| -[) and
> ai() + lollm( - aj(M)) < 1
j=1 j=1
with for all finitely non-zero sequences (x;j)j>1, (¥j)j>1

() = follc < 2= (Al — i,
IMo(x) = Mo(y)llc < 327% i(M)llx; =yl

Applications of the Notions of Weak Dependence in Statistic
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Examples
Causal Case Applications

Quasi Maximum Likelihood Estimator

0, = arg max L, (0)
where
~ 1 < ot~ ~ 1 ~
L0) == —5 D [(Xe = B) () 7 (e = B) — 5 In (det (B))]-
t=1
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Examples
Causal Case Applications

Quasi Maximum Likelihood Estimator

0, = arg max L, (0)
where
~ 1 < ot~ ~ 1 ~
L(0) = =5 D [(X =5 () ™ (X =) = 5 In (det (F5))]
t=1

First prove that (F; = (X, Xi—1,.-.))

R P

fgt;) = )%O(Xt_l,...,Xl,(),...) tjo; ]E(Xt/ff)v

R P

Hj, = Mpy(Xem1,- - X0, 0, Mg (Xemr, ., X1,0,..) — Var(X,/F).

Olivier Wintenberger, Samos, University Paris 1
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Examples
Causal Case Applications

Quasi Maximum Likelihood Estimator

0, = arg max L, (0)
where

S

o [ () X~ ) — 5 I (det (B)) -

=1
First prove that (F; = o(X¢, Xe—1,...))

~ P
fgt;) = féo(Xt—la"'7X1707"') tjo:) ]E(Xt/ft),

~ P

Hi, = Mip(Xemrso o X0, 0, )My (X, X0,0,.0) - — Var (Xe/Fe).
Then, under infgec det (Hg(x1,...)) > H > 0, using Ergodic Arguments

La(9)
P Lx,/7,(0) awd 0, if & is a Gaussian random variable.
C

Olivier Wintenberger, Samos, University Paris 1
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Examples
Causal Case Applications

Asymptotic Behavior of the QMLE Bardet & W. (in preparation)

Strong Consistency
If m > 2, identifiability of the model and

ai(F) +a;(M) = O(j ) with ¢>3/2, (1)

then

o a.s.
6,7 — 90.
n— oo

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Examples
Causal Case Applications

Asymptotic Behavior of the QMLE Bardet & W. (in preparation)

Strong Consistency
If m > 2, identifiability of the model and

ai(F) +a;(M) = O(j ) with ¢>3/2, (1)

then

Asymptotic Normality (using Central Limit Theorem for Martingale Differences)

Moreover, if m > 4 and under conditions on 2-first derivatives of f and M,

V(6 —60) > Na(0.T(60),

where the matrix '(6) exists.

More general but less sharp than results of Berkes et al (2003).

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Examples
Causal Case Applications

Limit Theorems Dedecker & Doukhan (2003), Dedecker & Prieur (2004)

oo
IF (a2, x5, 60) = Fynyasyae -1 €l < D ajllxg — -
j=1

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Examples
Causal Case Applications

Limit Theorems Dedecker & Doukhan (2003), Dedecker & Prieur (2004)

o0
||F(X17X27X37"';£f) - F(YlaY27Y37~-- 1§t)Hm S ZajHXJ 7.yj||
Jj=1

Limit Theorems when a; < ¢j=# with 8 > 1

l n
lfm=1and 8> 2, = 37X — EX 0, as
m and 8 > ",':1( o) —2 a.s
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Examples
Causal Case Applications

Limit Theorems Dedecker & Doukhan (2003), Dedecker & Prieur (2004)

o0
||F(X17X27X37"';£f) - F(YlaY27Y37~-- 1§t)Hm S ZajHXJ 7.yj||
Jj=1

Limit Theorems when a; < ¢j=# with 8 > 1

l n
If m=1 2 =37 (X —EX, 0, s,
m and (3 > 2, - i:l( o) —2 a.s

—1)(m-1 4
If2>m>p>landﬂ>l+w,n_%§ (X —EX;) — 0, as.

m=p i=1
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Examples
Causal Case Applications

Limit Theorems Dedecker & Doukhan (2003), Dedecker & Prieur (2004)

[F(x1, %2, x5, .1 &e) = Fy,y2,¥3, -5 <ZaJHXJ yill-

Limit Theorems when a; < ¢j=# with 8 > 1

l n

lfm=1and 3> 2, =3 (X — EX 0, s.

m and ¢ > n;( 0) = a.s
—1)(m—1 "

If2>m>p>landﬂ>l+w,n_l§ (X —EX;) — 0, as.
m—p e n—oo

.
lfm>2and 8>2+1/(m—2) \[E Xi = o W, for some 02 > 0,
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Limit Theorems Dedecker & Doukhan (2003), Dedecker & Prieur (2004)

[F(x1, %2, x5, .1 &e) = Fy,y2,¥3, -5 <ZaJHXJ yill-

Limit Theorems when a; < ¢j=# with 8 > 1

l n
If m=1 2 2N (X — EX 0, s.
m and > 2, ”Z( 0) = a.s

n

C1)(m—1
If2>m>p>landﬂ>l+w,n_lZ(X EX,) — 0, a.s.
m—=p i=1 e
[nt]

D
lfm>2and 8>2+1/(m—2) \[ZX = o W, for some 02 > 0,

Z(X,- —Yi)=o(Vnlnlnn), a.s. where (Y;):ez iid Gaussian random variables.

i=1
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Noncausal Bernoulli Shifts Doukhan & W. (2007)

Xe = H((§e-j)jez),
with (&¢)tez (€ R) iid (€ ~ p) = (Xt)tez m—weakly dependent.
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Noncausal Bernoulli Shifts Doukhan & W. (2007)

Xe = H((§e-j)jez),
with (&¢)tez (€ R) iid (€ ~ p) = (Xt)tez m—weakly dependent.

Xt = H((&—))jez),
with (&t)ecz (€ R) ne¢ or A¢-weakly dependent.
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Noncausal Bernoulli Shifts Doukhan & W. (2007)

Xe = H((&e—j)jez),
with (&¢)tez (€ R) iid (€ ~ p) = (Xt)tez m—weakly dependent.

Xt = H((&—))jez),
with (&t)ecz (€ R) ne¢ or A¢-weakly dependent.

Heredity
If E|&|™ < oo, and x; = y; for j # s,

|H ((%)jez) — H ((%))jez)| < bs(sip Ixi1° V 1) |xs — ys
j#s

then > sbs < oo, implies existence in L™, if {m+1 < m'.
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Noncausal Bernoulli Shifts Doukhan & W. (2007)

Xe = H((&e—j)jez),
with (&¢)tez (€ R) iid (€ ~ p) = (Xt)tez m—weakly dependent.

Xt = H((&—))jez),
with (&t)ecz (€ R) ne¢ or A¢-weakly dependent.

Heredity

If E|&|™ < oo, and x; = y; for j # s,

|H ((%)jez) — H ((%))jez)| < bs(sip Ixi1° V 1) |xs — ys
j#s

then > sbs < oo, implies existence in L™, if {m+1 < m'.
If by < Cs—?,
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Some Applications

Due to the complexity of our models, a main problem is how to identify them 7
Parametric methods on the dynamic do not work. We work on the marginal law.
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Some Applications

Due to the complexity of our models, a main problem is how to identify them 7
Parametric methods on the dynamic do not work. We work on the marginal law.

@ Moment Estimation (Central Limit Theorem, CLT),
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Some Applications

Due to the complexity of our models, a main problem is how to identify them 7
Parametric methods on the dynamic do not work. We work on the marginal law.

@ Moment Estimation (Central Limit Theorem, CLT),

@ Kernel Density Estimation,

Olivier Wintenberger, Samos, University Paris 1 Applications of the Notions of Weak Dependence in Statistic



Examples
Applications
Noncausal Case

Some Applications

Due to the complexity of our models, a main problem is how to identify them 7
Parametric methods on the dynamic do not work. We work on the marginal law.

@ Moment Estimation (Central Limit Theorem, CLT),
@ Kernel Density Estimation,

@ Functional Thresholded Estimation.
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Lindeberg CLT Doukhan & W. (2007)

A C.L.T. is proved by using Bernstein blocks
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Lindeberg CLT Doukhan & W. (2007)

A C.L.T. is proved by using Bernstein blocks

(Xt)tez stationary 0-mean, with m-order moments (m > 2). If (X;)tez is A\-weakly

dependent with A(r) = O(r=*) when r — oo, with A > 4 + 5 then

[nt]

1

i E Xi 25 oW, for some o2 > 0.
n n— o0

i

Under 7-weak dependence, conditions m > 2 and 7(r) = O(r~7) with
7> 1+ 1/(m— 2) are sufficient.
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Kernel Density Estimation Tsybakov (2004)

(Xt)tez stationary with marginal density f. K : R — R bounded, Lipschitz function
with compact support, [ K(t)dt =1

hn n—oo

- 11 - X
fn(x):nth(X ) for x e R, h, . 0,nh, — o0
i=1 "
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Kernel Density Estimation Ragache & W. (2006)

Rates of Convergence

If |f| < o0, sup;; [Ifijllec < 00 (joint marginal densities) and f € Cs. If (X;)iez is
n-weakly dependent with 7(r) = O(r~") when r — oo, with
n>max(l+2/d+(d+1)/p,2+1/d). If K satisfies a moment condition, then
h, can be chosen (depending on s) such that

E|f(x) — f(x)|™ = O (n—ms/<2s+d>) forall 0 < m < mo=2[(n—1)/2].
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Kernel Density Estimation Ragache & W. (2006)

Rates of Convergence

If |f| < o0, sup;; [Ifijllec < 00 (joint marginal densities) and f € Cs. If (X;)iez is
n-weakly dependent with 7(r) = O(r~") when r — oo, with
n>max(l+2/d+(d+1)/p,2+1/d). If K satisfies a moment condition, then
h, can be chosen (depending on s) such that

E|f(x) — f(x)|™ = O (n—ms/<2s+d>) forall 0 < m < mo=2[(n—1)/2].

If (X¢)cez is n-weakly dependent with n(r) = O(exp(—nr)) (0 < n) when r — oo,

s/(d+2s)
n 2(b+1)/b
sup |fa(x) — f(x)| = O In(n)) a.s. orin L™,
[Ix]I<1 n
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Adaptive Estimator Donoho et al. (1996)

A function f € L?([0,1]) can be decomposed as

200 -1 oo 2—1
f= E , O‘Jmk(éjo,k + E E Bjo7kwjo,k7
Jj=jo k=0

where a; , = fol f(x)ojk(x)dx, Bjx = fo X)j ke (x) dx
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Adaptive Estimator Donoho et al. (1996)

A function f € L?([0,1]) can be decomposed as

200 -1 oo 2—1
f= E , O‘Jmk(éjo,k + E E Bjo7kwjo,k7
Jj=jo k=0

where a; , = fol f(x)ojk(x)dx, Bjx = fo X)j ke (x) dx

The thresholded estimator is

20 —1 a 2-1
f - Z O‘Jo)kquok—’_zz TA ﬂj 1/01«
Jj=jo k=0

where & = 1/n>""_; ¢ «(X;) and Bix=1/n S0 ¥jk(X;) are the empirical
estimators of the coefficients a; x and 3; x and T\(8) = B1 5> for A > 0.
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Quasi Optimality of the Estimator Gannaz & W. (submitted)

Quasi Optimality

Suppose that f € B; (M) and that (X;):cz is n-weakly dependent with
n(r) = O(exp(—nr?)) (0 < n) when r — co.
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Quasi Optimality of the Estimator Gannaz & W. (submitted)

Quasi Optimality
Suppose that f € B; (M) and that (X;):cz is n-weakly dependent with

n(r) = O(exp(—nrb)) (0 < 1) when r — oco. Then there exists a constant C such
that

2(b+1)/b mex

In .
. - ife£0
E {/ |f(x) — f(X)|de] <C 26076 o\ ™
0 () e o

where the optimal rate « and € are given

a_{s/(l—i—Zs) e >0,

(s—1/n+1/m)/(L+25—2/r) e<o, e o(mom/z
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The Threshold Level Gannaz & W. (submitted)

b~ nl/(+N)
0~ n/ log n,
A= Kj”l/b/ﬁ, for a well chosen constant K > 0.
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The Threshold Level Gannaz & W. (submitted)

b~ nl/(+N)
0~ n/ log n,
A= Kj”l/b/ﬁ, for a well chosen constant K > 0.

Donoho Johnstone Kerkyacharian Picard (1996): \; = K\/j//n.

= The same rates with In n instead of In?(1+1/2) .
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Available on my web page http://wintenberger.fr
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