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Résumé

Ce travail rassemble quatre essais consacrés a I’étude de ’hétérogénénité et des dy-
namiques individuelles sur le marché du travail. Le premier chapitre met en évidence
le lien entre mobilité (ou inertie) salariale et le degré de persistence des inégalités.
Nous employons une méthode statistique simple et originale pour étudier les trajec-
toires individuelles de salaires, et ’appliquons a des données francaises couvrant la
période 1990-2002. Nous trouvons que la récession du début des années 1990 a été
associée a une augmentation sensible des inégalités longitudinales.

Dans le deuxieme chapitre, nous étudions I’effet de la mobilité entre emplois sur
les corrélations entre salaires et caractéristiques non salariales. Dans notre modele,
de fortes préférences pour ces caractéristiques ne se traduisent pas nécessairement
en corrélations négatives si les frictions de mobilité sont importantes. Sur données
européennes, nous estimons de fortes préférences pour certaines caractéristiques telles
que le type de travail ou la sécurité de ’emploi, ainsi que des differentiels de salaires
tres faibles entre niveaux d’aménités.

Les chapitres 3 et 4 introduisent une méthode de modélisation de I’hétérogénéité
inobservée: I’analyse en composantes indépendantes. Celle-ci differe de I'analyse en
composantes principales en ce que les facteurs ne sont pas supposés simplement non
corrélés, mais statistiquement indépendants. Cette hypothese permet d’identifier les
facteurs de maniere non ambigué. Nous appliquons notre méthode a des données
de salaire de d’éducation en France pour 'année 1995. Nos résultats suggerent une
relation complexe et multidimensionnelle entre le niveau d’études et son rendement

sur le marché du travail.

Mots clefs: Inegalité, mobilité, dynamique salariale, copules, différences com-
pensatrices, salaires hédoniques, mobilité entre emplois, aménités, hétérogénéité in-
observée, modeles a facteurs, moments d’ordre élevé, analyse en composantes indépen-

dantes, estimation nonparamétrique, deconvolution, transformation de Fourier.



Abstract

This dissertation contains three essays devoted to the study of the heterogeneity
and the dynamics of individuals on the labor market. The first chapter highlights
the link between wage (im-)mobility and the persistence of wage inequality. We use
a simple and original statistical method to analyze wage trajectories. We estimate
the model on French data for the period 1990-2002. We find that the recession of the
early nineties was associated to an increase in the level of longitudinal inequality.

In the second chapter, we study the effect of job-to-job mobility on the correlation
between wages and non-wage job characteristics. In the model, strong preferences
for these amenities do not necessarily translate into negative correlations if mobility
costs are highly heterogeneous. On European data, we estimate strong preferences
for some amenities such as the type of work or job security, together with small wage
differentials between different levels of amenities.

In chapters 3 and 4, we introduce a method to model unobserved heterogeneity: In-
dependent Component Analysis. The latter differ from Principal Component Analysis
in that factors are assumed statistically independent, and not merely uncorrelated.
This additional assumption yields unambiguous identification of factor loadings. We
apply the method to French data on wage and education. Our results suggest that

the relation between wages and education is complex and multidimensional.

Keywords: Inequality, mobility, earnings dynamics, copulas, compensating dif-
ferentials, hedonic wages, job mobility, amenities, unobserved heterogeneity, factor
models, high-order moments, Independent Component Analysis, nonparametric esti-

mation, deconvolution, Fourier transform.

JEL codes: C13, C14, C33-35, D30, D63, J22, J31-33, J63, J64 and J81.



Introduction

La littérature microéconométrique contemporaine décrit le marché du travail comme
un lieu ou les dynamiques sont complexes et ’hétérogénéité omniprésente. Une image
de I'économie 2 un moment donné est la résultante de choix intertemporels contraints
effectués par des individus différents. Depuis une trentaine d’années, le recueil et
I’exploitation de nouvelles données microéconométriques ont permis de dégager ces
enseignements et de montrer leur pertinence empirique (voir Heckman, 2001, pour
une synthese). Les quatre textes rassemblés ici retiennent ce cadre général pour point
de départ.

Les deux premiers chapitres soulignent I'importance de la mobilité, définie comme
changement d’état au cours du temps, dans I’étude des inégalités. Dans le premier
chapitre, la mobilité des salaires est mise en évidence comme un facteur affectant la
persistence des inégalités salariales. Dans le chapitre 2, il est montré que la mobilité
entre emplois peut avoir une forte influence sur le lien entre salaires et caractéristiques
non salariales, et partant sur les inégalités en emploi.

Ces deux études insistent sur la nécessité de prendre en compte ’hétérogénéité
inobservée, que les données habituellement utilisées ne permettent pas de mesurer.
Dans les chapitres 3 et 4, une méthode de modélisation de I'hétérogénéité est intro-
duite et analysée. L’application a des données de salaire et d’éducation suggere une
relation complexe et multidimensionnelle entre le niveau d’études et son rendement

sur le marché du travail.



Chapitre 1 : Mobilité des salaires et persistence des
inégalités

Dans le premier chapitre, coécrit avec Jean-Marc Robin, nous explorons I'impact
de la mobilité salariale sur les inégalités. Pour cela, nous introduisons une nouvelle
méthodologie qui nous permet d’analyser inégalité et mobilité dans un cadre commun.
Nous appliquons notre méthode aux données de I’Enquéte-Emploi de 'INSEE pour
la période 1990-2002.

Inégalité et mobilité

Depuis la fin des années 1970 et 1’explosion des inégalités de salaire aux Etats-Unis,
les publications académiques consacrées aux inégalités se sont multipliées (voir Levy
et Murnane, 1992, et Katz et Autor, 2001). Cet effort de recherche, associé a des
données de meilleure qualité, a permis de documenter avec précision les différences
d’inégalité entre pays : les pays anglo-saxons (Angleterre, Canada) suivant I’évolution
américaine, les pays d’Europe continentale (France, Allemagne) connaissant une cer-
taine constance de inégalités au cours des dernieres décennies. De plus, de nombreux
travaux ont décrit les “gagnants” et les “perdants” de I’évolution des inégalités, et
plusieurs explications ont été proposées et contrastées.! Dans leur majorité pourtant,
les mesures d’inégalités utilisées habituellement dans ces travaux sont statiques. En
effet, dans la plupart des articles consacrés aux inégalités de salaires ou de revenus,
celles-ci sont mesurées a un instant donné. En conséquence, le degré de persistence

des inégalités n’est pas pris en compte.

Des distributions de coupe...

Prenons ’exemple des inégalités salariales. Le graphique 1 représente la densité de

distribution des salaires mensuels des hommes en emploi, mesurée pour la France et

Voir par exemple, sur la question du rendement des caractéristiques individuelles inobservées,
Juhn, Murphy et Pierce (1993) ainsi que le récent article de Lémieux (2006).
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Figure 1: Densité de salaires (en log(Francs)), hommes en emploi, Enquéte-Emploi
1995

I’année 1995.2 Sur I’axe horizontal sont reportés les logarithmes des salaires, sur 1’axe
vertical leur densité de probabilité. Pour étudier les inégalités de salaires, I’économetre
cherchera le plus souvent a décrire une telle distribution. Par exemple, il estimera
I'importance relative des classes moyennes (salaires autour du salaire médian) par
rapport aux “riches” et “pauvres”. Il mesurera le niveau d’inégalité en calculant un ou
plusieurs indices (Gini, variance...) qui quantifient la dispersion de cette distribution.
Puis il utilisera ces indices pour documenter des évolutions, ou des différences entre

pays ou régions par exemple.

... aux distributions longitudinales...

Pourtant, les conclusions fondées sur ces distributions de coupe peuvent étre incom-
pletes, voire trompeuses. Imaginons, a titre d’illustration, deux économies, A et B,
dont la distribution de salaires de coupe est invariante dans le temps, égale a celle

représentée sur le graphique 1. Supposons que dans I’économie A, les individus gar-

2Les données de I'Enquéte-Emploi, décrites dans le chapitre 1, ont servi & construire ce graphe
ainsi que le graphique 3 plus bas.
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Figure 2: Inégalité et mobilité

dent le méme salaire d’une date a I’autre. A 'opposé, dans I’économie B, les riches a
I’année t deviennent pauvres a 'année ¢+ 1, puis de nouveau riches a ¢+ 2, de maniere
a ce qu’il y ait, d’'une année a ’autre, alternance des positions relatives dans 1’échelle
des salaires. Ces deux situations sont représentées sur le graphique 2.

Il est intuitif que ’économie B est plus égale que A, méme si son niveau d’inégalités
de coupe est le méme. Une maniere d’illustrer cette intuition est de considérer la
moyenne des revenus individuels sur une longue période. Dans I’économie B, chacun
a le méme revenu de long terme, ce qui signifie qu’il n’y a pas d’inégalités (intertem-
porelles) dans cette économie! La situation est tres différente dans I’économie A, ot

le niveau longitudinal d’inégalités est égal au niveau de coupe.

... via la mesure de la mobilité

Le graphique 2 illustre le fait qu'une économie ol la mobilité salariale est forte peut
etre intertemporellement moins inégale qu’une autre, a niveau d’inégalités de coupe
identique. En d’autres termes, la mobilité des salaires affecte le degré de persistence

des inégalités.?

311 est & noter que cet argument suppose des individus neutres au risque. Voir sur ce point
Gottschalk et Spolaore (2002).



Ces considérations prennent un relief particulier dans le cas de la France dans les
années 1990-2000. En effet, sur cette période comme sur le siecle (Piketty, 2001),
les inégalités salariales de coupe varient peu. Cette relative stabilité cache-t-elle une
crise plus profonde, autour de la récession— exceptionnellement sévere— de 1993 7
L’évolution de la mobilité et des inégalités longitudinales sur la période révele-t-elle

une tendance plus marquée 7

Un outil : les copules

Pour tenter de répondre a ces questions, nous modélisons les trajectoires individuelles
de salaires. Nous prenons en compte le niveau et les changements de salaire, ainsi
que les épisodes de chomage. Ce dernier point est important pour décrire la situation
d’un pays comme la France. Un ingrédient essentiel dans le cadre que nous proposons

est la modélisation de la mobilité salariale.

Mobilité absolue et relative

Deux approches de la mobilité sont habituellement distinguées (Fields et Ok, 1999).
La premiere modélise le lien entre les niveaux absolus de salaire a différentes dates.
Une mesure habituelle de ce type de mobilité est la corrélation entre salaires a ¢ et
t+1. La deuxieme approche, fréquemment utilisée en sociologie (par ex. McClendon,
1977) et en économie (Shorrocks, 1978, Buchinsky et Hunt, 1999), considere le lien
entre niveaux relatifs de salaires. Formellement, notons Y; le salaire a la date ¢ pour
un individu donné, et Y, son salaire a t+1. L’approche relative de la mobilité étudie
le lien entre Fy (Y;) et Fyyq (Yiy1), ou Fy et Fyyq sont les fonctions de répartition de
Y; et Y41 respectivement. Les quantités F; (Y;) et Fyiq (Yis1), comprises entre 0 et 1,
s’interpretent comme les rangs d’un individu dans les deux distributions de salaire.
Dans notre contexte, cette seconde approche est plus naturelle que la modélisation
des niveaux de salaires Y; et Y., puisqu’elle permet de séparer la modélisation des

inégalités de coupes de celle de la mobilité relative.



Modéliser la mobilité relative

Le graphique 3 présente les revenus relatifs en 1995 et 1996. Chaque point sur le
graphique correspond a un individu. Sa position relative en 1995 est reportée sur
I’axe horizontal, sa position en 1996 sur I'axe vertical. Autrement dit, le rang en
1995, Figos (Yio95), est reporté en abscisse, le rang en 1996, Flggs (Yig96), en ordon-
née. Par exemple, un individu situé sur la premiere diagonale a la méme position
dans I’échelle des salaires, relativement aux autres,* en 1995 et 1996. Une maniére
de résumer 'information contenue dans le graphique 3 est de diviser I'ensemble des
positions relatives (l'intervalle entre 0 et 1) en quintiles ou déciles, et de calculer une
matrices de transition entre ces états. Cette approche a été souvent appliquée pour
étudier la mobilité relative. Les matrices de transition ont ’avantage de permettre une
modélisation fine (non nécessairement linéaire) des corrélations. Lorsque le nombre
d’états tend vers I'infini, la description des données est parfaite. L’objet statistique

que 'on obtient alors est appelé une copule.
Qu’est-ce qu’une copule?

Une copule décrit la densité jointe des positions relatives. Cet outil est souvent utilisé
en finances pour modéliser une dépendance fine entre risques de défaut (Nelsen, 1998).
Une des contributions du chapitre 1 est de montrer que les copules peuvent étre utiles
pour modéliser la mobilité relative des salaires en économie du travail. En effet,
la densité des niveaux de salaires est par définition égale au produit des densités
marginales et de la copule des positions relatives. Formellement, si f; ;.1 dénote la
densité du couple de salaires (Y3, Yy 1), et f; et fii 1 dénotent les densités marginales,

alors :
ft,t+1 (yta yt+1) = ft(yt)ft+1(yt+1)0t,t+1 (Ft (Yt) P (Yt+1)) )

ol ¢ 441 est la (densité de copule) associée au couple de salaires. Une maniere de

traduire ce résulat est de dire que pour décrire une trajectoire absolue de salaires, il

40n a contrdlé de I'effet de I’Age pour tracer le graphique 3.
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suffit de décrire une trajectoire relative, une fois les distributions de coupe prises en
compte. Ceci implique que les inégalités de coupe et la mobilité relative peuvent étre
modélisées indépendemment les unes des autres. Cette propriété donne au chercheur
une grande flexibilité dans son choix de formes fonctionnelles.

La littérature donne des indications claires sur la maniere de modéliser les dis-
tributions marginales (log-normale, Pareto...). Quelle forme choisir pour la copule?
Le graphique 3 présente une structure caractéristique : les observations tendent a se
concentrer autour de la premiere diagonale, et le carré semble, en premiere approx-
imation, symmétrique par rapport a ses deux diagonales. Ce résultat qualitatif est
remarquablement constant, que ’on varie la période d’étude ou que ’on conditionne
par des caractéristiques individuelles comme 1’éducation. Ces régularités suggerent
que la structure de la mobilité entre ¢ et ¢ + 1 peut étre capturée par une spécifica-
tion tres simple. De fait, nous testons plusieurs familles paramétriques de copules, et
trouvons qu’'un parametre est suffisant pour décrire la mobilité. La famille de copule
que nous utilisons est due a Plackett (1965). Nous obtenons ainsi une modele des
trajectoires salariales a trois parametres : deux parametres décrivent la moyenne et
la variance des salaires en coupe, et un unique parametre décrit la mobilité relative
au sein de ces échelles salariales. Nous complétons le modele en introduisant 1’état

chomage.

Tenir compte de ’hétérogénéité inobservée

Le modele de base suppose que les individus sont homogenes, dans la mesure ou
ils font face aux meémes chocs de salaires et d’emploi. Cependant, pour modéliser
finement les trajectoires sur le marché du travail, il est nécessaire de prendre en
compte 'hétérogénéité individuelle.

Inégalité, mobilité et hétérogénéité

Une premiere maniere d’introduire ’hétérogénéité individuelle dans le modele est de

considérer certaines caractéristiques renseignées dans les données, comme le niveau

11



rang en 1996

4 .6
rang en 1995

Figure 3: Mobilité relative entre 1995 et 1996, hommes en emploi, Enquéte-Emploi

d’éducation et ’age. Il est aussi important de tenir compte de différences individu-
elles qui ne sont pas renseignées dans les données, comme ’ont montré de nombreux
travaux microéconométriques en économie du travail. Des notions comme I’“habileté”
ou la “motivation”, de meme que des chocs permanents subits par les individus avant
leur entrée sur le marché du travail, sont difficiles a quantifier, et sont absents des
données auxquelles les chercheurs ont acces. Ces dimensions de I’hétérogénéité in-
dividuelle sont rassemblées sous le nom d’“hétérogénéité inobservée”. L’acces a des
données de panel, longitudinales, permet de la modéliser.

Le lien entre hétérogénéité inobservée et inégalités a été rarement souligné. Dans
un article important, Gottschalk et Moffit (1994) tentent de mesurer les parts “per-
manentes” et “transitoires” des inégalités. Leur mesure de “revenu permanent” est une
moyenne des salaires sur une période de dix ans. Autrement dit, la part “permanente”
du salaire est la contribution d’un effet fixe individuel, c’est a dire de I’hétérogénéité
individuelle. La part “transitoire” est la différence entre cet effet fixe et le salaire
courant. Gottschalk et Moffit décomposent ensuite des indices usuels d’inégalité, et
trouvent que deux tiers des inégalités mesurées en coupe sont permanentes, le dernier

tiers étant transitoire. L’article de Gottschalk et Moffit montre qu'une modélisation
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fine des inégalités, qui souligne le degré de persistence des différences salariales, doit
prendre en compte ’hétérogénéité inobservée.

D’autre part, la mobilité individuelle est elle aussi hétérogene. Dans le modele
a trois parametres présenté plus haut, les trajectoires sont supposées markoviennes
d’ordre 1. En d’autres termes, deux individus ayant les mémes salaires a la période
t font face a la méme distribution de salaires en ¢ 4+ 1, indépendemment de leur
salaire en ¢t — 1. Cette remarque vaut également pour la dynamique emploi/chomage.
Cependant, de nombreux travaux sur données longitudinales ont montré que cette
hypothése n’est le plus souvent pas satisfaite (par ex. Fougere et Kamionka, 1992).
Une maniere de modéliser cette dépendance additionnelle au niveau agrégé est de
supposer la présence d’hétérogénéité au niveau individuel. Dans notre travail, nous
nous inspirons du modele dit du Mover-Stayer de Blumen, Kogan et McCarthy (1955),
qui distingue des individus “mobiles” et des individus “stables”, pour modéliser des

différences dans les trajectoires relatives de salaires.
Modéliser I’hétérogénéité par des mélanges

Nous modélisons deux types d’hétérogénéité. Le premier type affecte les salaires
et leur dynamique. Le second type affecte uniquement la mobilité relative. Tech-
niquement, introduire une hétérogénéité bivariée dans le modele peut compliquer
singulierement 1’estimation des parametres. Dans notre contexte, cependant, ce n’est
pas le cas. En effet, le modele a trois parametres se généralise quasi trivialement a un
mélange discret. Ainsi, nous distinguons plusieurs groupes d’individus, dont chacun
possede son propre ensemble de parametres : deux parametres pour la distribution
des salaire de coupe dans laquelle la trajectoire s’inscrit, et un parametre pour la
mobilité relative au sein de cette distribution particuliere. L’algorithme séquentiel
d’estimation que nous développons est simple a programmer et tres rapide. Cette
simplicité d’utilisation fournit, a notre sens, une autre motivation pour utiliser les

copules afin de modéliser des trajectoires individuelles.

13



La France dans les années 1990-2002

Nous estimons le modele sur les données de I’Enquéte-Emploi de 'INSEE, pour les

années 1990-2002.

Les données : un panel court

Pour analyser la question des inégalités longitudinales, nous avons besoin de données
satisfaisant deux criteres a prior: difficilement conciliables. Premierement, la dimen-
sion de panel est essentielle, pour prendre en compte la dynamique et 1’hétérogénéité
inobservée. Deuxiemement, les données doivent étre représentatives de la population,
si 'on veut pouvoir décrire les inégalités longitudinales pour toute une population, de
la méme maniere que dans les études de coupe. L’Enquéte-Emploi remplit dans une
certaine mesure ces deux conditions. C’est un panel rotatif d’'une durée de trois ans.
Chaque année, un tiers de ’échantillon est remplacé. Cette caractéristique permet au
panel de rester représentatif de la population, tout en suivant les individus sur une
certaine durée. Le prix a payer pour la représentativité est la faible dimension longi-
tudinale des données, trois observations annuelles permettant tout juste de prendre

en compte I'hétérogénéité inobservée et la dynamique salariale.

Résultats

Dans l'estimation, nous distinguons trois groupes d’hétérogénéité du premier type
(distributions de salaire) et deux groupes d’hétérogénéité du deuxieme type (mobilité
relative). La premiere hétérogénéité est fortement corrélée a 1'éducation.” Cette
hétérogénéité affecte les salaires ainsi que la probabilité de chomage. Le second type
d’hétérogénéité, qui classe les individus en “mobiles” et “stables”, est en revanche peu
corrélé aux autres variables de I'Enquéte-Emploi, indiquant que cette hétérogénéité

est essentiellement inobservée.

5Nous montrons que cette hétérogénéité est aussi trés corrélée au croisement entre éducation et
cohorte, en cohérence avec I’augmentation massive du nombre de diplémés depuis cinquante ans.
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Un fort impact du chomage : Pour mesurer, en premiere approximation, le
poids du chomage dans les inégalités, nous attribuons un revenu virtuel a chaque
chomeur, égal & 60% du salaire qu’il aurait regu s’il avait été employé (ratio de rem-
placement), ce dernier étant calculé & partir du modele. Nous calculons ensuite le
degré d’inégalité salariale de coupe, et le comparons au niveau d’inégalité prenant en
compte ces “revenus virtuels” percus au chomage. Nous trouvons que l'introduction
du chomage a un effet dramatique sur les inégalités, qui augmentent de plus de 20%
en niveau. De plus, la récession de 1993 a un effet plus prononcé lorsque le chomage

est pris en compte, ’augmentation des inégalités étant de 20% apres cette date.

Evolution de la mobilité relative : Nous calculons aussi un indice de mobilité
relative, la corrélation de Spearman. Nos résultats témoignent d’une baisse de la

mobilité simultanée a la hausse des inégalités de coupe, apres 1993.

Persistence des inégalités : Nous mesurons ensuite I'impact de ’évolution des
inégalités de coupe et de la mobilité sur les inégalités longitudinales. Nous trou-
vons une hausse plus prononcée qu’en coupe apres 1993, 25% d’augmentation contre
10% en coupe. Apres 1995, comme en coupe, les inégalités longitudinales revien-
nent progressivement a leur niveau de 1990. En niveau, les inégalités longitudinales
représentent 80% de leur niveau de coupe. Nous décomposons aussi ces inégalités
en trois composantes : “permanente” (hétérogénéité individuelle), “transitoire” (chocs
sans effet durable) et “persistente” (effets durables des chocs de salaires et d’emploi).
Nous trouvons que 60% des inégalités longitudinales est de nature permanente, le
reste étant la résultante des chocs passés.

Ces résultats illustrent 'importance de la prise en compte des dynamiques sous-

jacentes aux inégalités, et particulierement du poids et de la persistence du chomage.
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Chapitre 2 : Pertinence des caractéristiques
non-salariales

Dans le deuxieme chapitre, coécrit avec Grégory Jolivet, nous tentons de mesurer
I'importance que les travailleurs attachent aux caractéristiques non salariales, ou
aménités, de leur emploi. Notre approche exploite les changements volontaires d’un
emploi a 'autre pour identifier ces préférences. Notre analyse est appliquée aux don-

nées du Panel Européen des Ménages (ECHP) pour la période 1994-2001.

Comment révéler les préférences individuelles pour les aménités?

Salaires et conditions de travail sont-ils positivement ou négativement corrélés? Inter-
prétée a la lumiere des discussions du premier chapitre sur la pertinence des indices
d’inégalités usuels, cette question peut se reformuler ainsi : Les inégalités salariales
sous-estiment ou surestiment-elles le niveau d’inégalités dans ’emploi (Hamermesh,

1999)?

Différences compensatrices et prix hédoniques La théorie des différences com-
pensatrices énoncée par Adam Smith (1776) fournit un cadre pour penser cette ques-
tion. Selon Smith le travail d’'un mineur, pénible et salissant, doit étre mieux payé
toutes choses égales par ailleurs. L’argument repose sur 1'offre et la demande : si le
prix du travail de mineur est trop faible, a cause des mauvaises conditions de travail
et d’un salaire insuffisant, alors l'offre de travail diminuera, ce qui contraindra les
entreprises minieres a augmenter les salaires.

Une maniere de formaliser cette intuition est introduite par Rosen (1974). Dans
son modele de prix hédoniques, consommateurs et producteurs sont hétérogenes et
s’apparient suivant leur degré de préférence pour les caractéristiques des biens. Ap-
pliqué au marché du travail, ce modele a deux implications principales qui rejoignent
celles de la théorie des différences compensatrices : premierement, salaires et aménités

sont négativement corrélés a l’equilibre; deuxiemement, 'intensité de la corrélation
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permet de mesurer les préférences individuelles pour les aménités. En conséquence, les
préférences pour les caractéristiques des emplois peuvent étre identifiées et quantifiées

a partir de données de salaires et d’aménités.

Régressions hédoniques de salaires L’approche initiée par Rosen a motivé de
nombreux travaux empiriques ayant pour but de mesurer les differences compen-
satrices pour certaines aménités ainsi que les Proportions Marginales a Payer des
travailleurs pour ces caractéristiques. Dans le cadre de la théorie, ces deux quantités
sont égales, et peuvent étre mesurées par de simples régressions de salaires. A partir
des travaux de Thaler et Rosen (1975), cette approche a été tres souvent appliquée.
Dans I’ensemble, pourtant, les résultats obtenus ne sont pas completement convain-
quants. Les corrélations entre salaire et aménité sont souvent faibles, de 'ordre de

5%, et souvent du signe contraire a celui prédit par la théorie (Brown, 1980).

Une approche complémentaire : exploiter les changements d’emplois volon-
taires

Des problemes de données et de méthode ont été invoqués pour expliquer ces résultats
(Duncan et Holmlund, 1983). Une seconde explication, liée aux imperfections du

marché du travail, a été proposée plus récemment.

Frictions sur le marché du travail : Les conclusions du modele hédonique de
Rosen dépendent de maniere cruciale de I’hypothése d’un marché du travail parfaite-
ment concurrentiel. En présence de frictions, en effet, les préférences ne se traduisent
pas nécessaire-ment en coupe. En d’autres termes, il se peut que ’on n’observe pas
de différences compensatrices pour une certaine aménité, alors méme que le prix que
les travailleurs attachent a celle-ci est élevé. Hwang, Mortensen et Reed (1998), et
Lang et Majumdar (2004) contruisent des modeles ol I'on peut méme observer une

corrélation positive entre salaire et aménité, a I’'opposé de la prédiction de la théorie.
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Notre approche : Dans le chapitre 2, nous tentons de mesurer les préférences indi-
viduelles pour diverses caractéristiques non salariales en tenant compte des imperfec-
tions du marché du travail. Nous insistons en particulier sur 'importance des cotts
de mobilité. En effet, si la mobilité est couteuse il n’est plus clair que les préférences
puissent étre mesurées a partir d’une coupe de salaires et d’aménités. Dans ce cas,
d’autres données sont nécessaires. Notre approche exploite les transitions volontaires
d’emploi a emploi. L[’idée est la suivante : si les travailleurs attachent une valeur
élevée a leurs conditions de travail, par exemple, alors on doit observer qu’ils arbi-
trent entre salaire et aménité lorsqu’ils décident de changer d’emploi. Par exemple,
certains emplois offrant un salaire plus faible peuvent étre acceptés parce qu’ils offrent
de meilleures conditions de travail.

Nous utilisons des données sur la durée des emplois d’origine, ainsi que sur les
caractéristiques (salariales et non salariales) des emplois de destination. Ainsi, nous
sommes en mesure de quantifier ’effet du salaire et des aménités sur la probabilité
de changer d’emploi, mais aussi de mesurer les contraintes sur la mobilité et leur
effet sur la corrélation entre salaires et aménités dans les nouveaux emplois. Nous
pouvons ainsi réconcilier les résultats des régressions de salaires hédoniques (faibles
corrélations en coupe) avec les fortes préférences estimées directement a partir de la
durée des emplois (Gronberg et Reed, 1994). Dans le cadre que nous proposons, une
forte Proportion Marginale a Payer pour une aménité n’est pas incompatible avec
des corrélations non significatives en coupe, si les cotits de mobilité sont élevés et

hétérogenes.

Un modele dynamique des transitions

Pour quantifier ces effets, nous construisons un modele dynamique du marché du tra-
vail. Les trajectoires de salaires et d’aménités sont modélisées, ainsi que la dynamique
emploi-chomage. De plus, nous distinguons entre changements d’emplois volontaires
(le travailleur dit avoir trouvé un meilleur emploi) et contraints (par exemple : licen-

ciements).
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Hétérogénéité inobservée : Notre modele tient compte de I'hétérogénéité in-
observée. La littérature insiste sur les différences de productivité entre travaileurs
(Hwang, Reed et Hubbard, 1992). Nous modélisons cette hétérogénéité comme un ef-
fet fixe, constant sur la durée de ’emploi, qui intervient dans les équations de salaires
et d’aménités. L’idée est que les appariements entre firmes et travailleurs les plus
productifs seront caractérisés par des salaires plus élevés et de meilleures aménités.
D’autre part, les données d’aménités que nous utilisons se présentent sous une forme
subjective. Il s’agit, pour le travailleur, de dire s’il ou elle est satisfait(e) de son emploi
dans telle ou telle dimension (conditions de travail, sécurité de I’emploi, etc...). De
telles données sont vraisemblablement entachées d’un “biais de subjectivité” (Duncan
et Holmlund, 1983). Par exemple, différents individus peuvent attacher des sens dif-
férents aux termes “satisfait” ou “tres satisfait”. Pour cette raison, nous introduisons
une seconde hétérogénéité, elle aussi constante sur la durée de ’emploi, qui intervient

uniquement dans les équations d’aménités.

Modéliser les changements d’emploi volontaires

Dans ce chapitre, nous identifions les préférences individuelles pour les aménités a
partir des changements d’emploi volontaires. Notre modélisation suppose que les
travailleurs en emploi recoivent une offre qu’ils peuvent accepter ou refuser. Ces of-
fres sont composées d’un salaire et de plusieurs caractéristiques non salariales. Nous
permettons a ces différentes composantes d’étre corrélées entre elles. Ensuite, le tra-
vailleur arbitre entre les avantages de ’offre qui lui est proposée et les caractéristiques
de son emploi présent. Dans sa décision, le poids relatif qu’il attache a ’offre d’aménité
vis-a-vis du salaire offert est notre mesure de sa Proportion Marginale & Payer (PMP)
pour cette aménité.

Dans ce cadre, nous distinguons trois éléments cruciaux dans I’analyse. Premiere-
ment, la PMP, qui est une mesure des préférences individuelles. Deuxiemement, la
corrélation entre salaire et aménité dans les offres d’emploi, qui représente un effet

“demande de travail”. Par exemple, une corrélation négative peut refléter le fait que
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I’aménité est couteuse a produire pour I'entreprise. Le dernier élément reflete les con-
traintes sur la mobilité. Nous mesurons ce dernier terme comme le poids, en termes
de variance, des offres de salaire dans la décision de changer d’emploi. Intuitivement,

si la mobilité individuelle est couteuse, alors ce terme est faible.

Différences compensatrices et coiits de mobilité

Le graphique 4 illustre le lien statistique entre salaire et aménité dans deux économies
différentes. Les deux courbes sur chaque graphique représentent les densités de
salaires associées a de “bonnes” (a = 1) et “mauvaises”(a = 0) aménités, apres un
changement d’emploi volontaire. Dans les deux cas, les préférences individuelles pour
I’aménité sont fortes. Mais les deux économies different relativement a leur mobilité.
Le graphique de droite présente un cas ot la mobilité emploi-emploi est peu cotiteuse,
ou le salaire a un fort pouvoir explicatif, en termes de variance, sur la decision de
changer d’emploi. Dans ce cas, la courbe correspondant a de “bonnes” aménités est
clairement décalée vers la gauche par rapport a la deuxieme courbe. Ceci signifie que,
du fait de ’arbitrage individuel entre salaire et aménité lors du changement d’emploi,
les “mauvaises” aménités sont associées a une différence compensatrice. La situation
est tres différente sur le graphique de gauche, ot la mobilité est associée a des cotits
élevés et hétérogenes. Dans ce cas, les deux courbes sont pratiquement confondues et

salaire et aménité ne sont pas corrélés.

Le probléme de sélection

Modéliser les changements d’emploi volontaires permet d’une part de mesurer les
préférences des travailleurs pour les aménités, et d’autre part de mettre en évidence
le lien entre ces préférences et les corrélations de coupe. Cependant, la nature par
définition endogene de la mobilité, décidée en fonction d’offres de salaires qui ne sont
observables que si elles sont acceptées, rend l'identification du modele délicate. En
d’autres termes, cette approche se heurte a un probleme de sélection (Manski, 1989).

Pour résoudre ce probleme, nous utilisons d’autres transitions sur le marché du
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a: Colts tres hétérogenes b: Codts peu hétérogenes
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Figure 4: Différences compensatrices et couts de mobilité

travail, avec I'idée qu’elles sont informatives sur les offres recues par les travailleurs.
Idéalement, si ceux-ci étaient contraints d’accepter certaines de ces offres, alors nous
pourrions utiliser ces transitions exogenes pour identifier la distribution des offres.
Cette information pourrait ensuite permettre de mesurer les préférences des tra-
vailleurs et le reste des parametres intervenant dans la decision de mobilité. Claire-
ment, les données utilisées habituellement en microéconométrie— et 'ECHP ne fait
pas exception —ne sont pas assez précises pour isoler de telles transitions.
Néanmoins, nos données nous permettent de distinguer plusieurs types de transi-
tions associés a différents types de contraintes. Par exemple, la cause déclarée (par le
travailleur) d’un changement d’emploi peut étre la fin d’un contrat de travail ou un
licenciement, mais aussi la naissance d’un enfant. Notre approche consiste a estimer
le modele sous I’hypotheése qu'un certain type de transitions est exogene du point du
vue du travailleur, et permet d’identifer la distribution des offres d’emploi qu’il recoit.
Nous testons plusieurs types de transitions et vérifions que les résultats obtenus vari-

ent peu. Cette méthode s’apparente a 'utilisation de plusieurs groupes de contoles
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dans la littérature sur les effets de traitement, ou varier la définition du groupe de

controle permet de tester la robustesse des résultats (Meyer, 1995).

Evidence en Europe : similitudes et contrastes

Nous estimons le modele sur les données de 'ECHP, pour neuf pays et la période
1994-2001. Les pays que nous incluons dans I'analyse couvrent un large spectre en
termes de types de marché du travail. Les taux bruts de mobilité emploi-emploi, par
exemple, varient entre 4% en France et en Italie, jusqu’a 7% en Irlande et Pays Bas
et 10% au Danemark. Nous considérons cing aménités (binaires) : “type de travail”,
“conditions de travail”, “horaires de travail”, “distance au lieu de travail” et “sécurité

de 'emploi”.
De fortes préférences pour les aménités...

Les statistiques descriptives montrent que les changements d’emploi volontaires sont
en moyenne associés a une augmentation de salaire. Cependant, entre 30% et 40%
des transitions se traduisent par des baisses de salaires. D’autre part, les transitions
volontaires sont en moyenne associées a une amélioration du niveau d’aménité. Cette
évidence suggere que les aménités, comme le salaire, interviennent dans la décision de
changer d’emploi. Nos résultats confirment cette intuition. Plus précisément, nous
estimons des Proportions Marginales a Payer positives pour la plupart des aménités.
Une exception est 'aménité “horaires de travail” pour laquelle nous ne trouvons pas
de préférences significatives. Les PMP les plus élévées sont obtenues pour le “type
de travail” et la “sécurité de ’emploi”. Au Danemark, par exemple, nous trouvons
des PMP de l'ordre de 30% pour ces deux aménités. De plus, ces conclusions sont
qualitativement similaires lorsqu’on varie le type de transition choisi pour résoudre le

probleme de sélection.
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... mais des frictions importantes

Simultanément, nous estimons le pouvoir explicatif des salaires dans la décision de
mobilité, que nous interprétons comme reflétant ’intensité des contraintes sur la mo-
bilité individuelle. Nous obtenons des résultats tres faibles, de I'ordre de 5% ou moins
dans tous les pays (12% en Autriche). Ces résultats indiquent la présence de fortes
contraintes sur les décisions de mobilité. Notre analyse implique qu’en ce cas les
préférences individuelles pour les aménités peuvent étre invisibles en coupe. En ef-
fet, nous estimons simultanément des corrélations tres faibles entre salaire et aménités
pour les individus ayant changé d’emploi volontairement. Malgré de fortes préférences
pour certaines aménités, qui induisent des arbitrages entre salaire et aménités lors des
changements d’emploi, nos résultats indiquent une quasi absence de différences com-

pensatrices en coupe.

Pays latins versus pays nordiques?

Trois conclusions émergent : nous constatons de fortes préférences pour au moins deux
des aménités que I'on considere (type de travail et sécurité), de fortes contraintes sur
la mobilité emploi-emploi, et de faibles différences compensatrices. Ces conclusions
ne sont pas sensibles aux tests de robustesse que nous avons effectués. De plus, elles
sont remarquablement constantes entre les pays. En affinant I'analyse, néanmoins,
nous distinguons clairement deux groupes de pays : les pays “nordiques” (Danemark,
Pays Bas, Finlande, Autriche, Irlande) et “latins” (France, Italie, Espagne, Portugal).
Ces derniers se caractérisent par des frictions de mobilité plus importantes, ainsi que
par des préférences pour les aménités tres élevées dans certains cas (PMP supérieures
a 50%) et mal estimées.

Nous trouvons deux raisons a ces différences. La premiere est liée a la méthode
que nous utilisons pour traiter le probleme de sélection. Il apparait que, dans les pays
“latins”; les transitions contraintes décidées par 1'employeur (tels les licenciements)
sont de pauvres groupes de controle. Lorsque nous excluons ces transitions des tran-

sitions contraintes de référence, nous obtenons des résultats beacoup plus comparables
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entre pays “latins” et “nordiques”. La seconde raison renvoie aux différences de sexe :
estimer le modele sur les sous-échantillons d’hommes et de femmes ne produit pas de
différences notables dans les pays “nordiques”. En revanche, l'effet sur les résultats
dans les pays “latins” est fort, et tend une fois encore a rapprocher les estimations des

PMP entre les deux groupes de pays.
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Chapitres 3 et 4 : L’analyse factorielle en com-
posantes indépendantes, une approche méthodologique

Les troisieme et quatrieme chapitres, tous deux coécrits avec Jean-Marc Robin, présen-
tent une contribution de type méthodologique. Nous étudions l'identification des
modeles linéaires a facteurs indépendants, et développons des méthodes simples et
générales d’estimation. Nous appliquons notre méthode a un modele simple de ren-

dements de 1’éducation.

Un outil pour décrire et interpréter les données

Les chercheurs en sciences humaines et sociales ont tres souvent recours a des modeles
a facteurs linéaires pour décrire et interpréter les données. Les premiers modeles de ce
type sont apparus avec Spearman au début du siecle. Spearman (1904) suppose que
I’intelligence humaine est gouvernée par une composante, qu’il appelle le facteur “g”.
Cette composante étant par nature inobservable, il construit un modele simple ot le
facteur “g” intervient dans plusieurs tests de mesure de l'intelligence (Quotient Intel-
lectuel, tests verbaux...). Disposer de mesures répétées dont chacune est informative
relativement au facteur sous-jacent permet de mesurer celui-ci. Cette approche a en-
suite été généralisée a des modeles multi-facteurs, a partir des travaux de Thurstone
arguant de la nature multidimensionnelle de I’intelligence.

L utilité principale de I’analyse factorielle est sa capacité a résumer 'information
contenue dans les données, et a en aider I'interprétation. Une méthode souvent utilisée
est I’Analyse en Composantes Principales (ACP) ou la matrice de variance-covariance
des données est décrite par un faible nombre de facteurs. Ez-post, on peut reconstruire
ces facteurs inobservés et les corréler avec d’autres variables, ce qui permet de les
interpréter. Cette approche est tres largement utilisée en finance dans le cadre des
modeles fondés sur la théorie des prix arbitrés (Arbitrage Pricing Theory ou APT)

de Ross (1976) pour modéliser 1’évolution de cours de titres. Elle est aussi tres

présente dans I’étude de la structure a terme des taux d’intérét (par exemple Piazzesi,
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2003). En macroéconomie, I’analyse factorielle est utilisée pour prédire 1’évolution de
lactivité économique (Stock et Watson, 2002). Un autre domaine d’application est
celui des modeles VAR structurels (par ex. Blanchard et Quah, 1989).

En microéconométrie, les modeles linéaires a erreur de mesure sont des exemples
de modeles a facteur unique. Les modeles a facteurs sont aussi souvent utilisés pour
modéliser ’hétérogénéité inobservée. Un exemple est fourni par les modeles a effets
aléatoires en données de panel. Dans une récente application, Carneiro, Hansen et
Heckman (2003) estiment un modele de choix d’éducation dans lequel I'hétérogénéité
inobservée joue un role central, puisqu’elle permet de justifier I’hypothese classique
d’indépendance entre revenus potentiels et traitement. Ces auteurs utilisent une struc-

ture factorielle pour modéliser cette hétérogénéité.

Limites de I’analyse en composantes principales

Dans ces nombreux exemples, I'identification et I’estimation des parametres du mod-
eles, ou facteurs de pondérations (factor loadings en anglais), repose sur la matrice
de variance-covariance des données. Comme ’ont montré Anderson et Rubin (1956),

cette caractéristique a deux conséquences sur l'identification de ces modeles.

L’ambiguité liée au choix d’une rotation: Premierement, les facteurs de pondéra-
tion sont en général non identifiés de maniere unique. Considérons a titre d’illustration

un modele du type :

Y = AX,

ou il y a L facteurs Yi,...,Yy, K facteurs Xi,..., Xg et une matrice A de L x K

facteurs de pondération. La matrice de variance covariance des données s’écrit :
Var (V) = A Var (X) AT = AAT,

\ . T . . , . N
ou nous adoptons la notation ()° pour indiquer la transposée d’une matrice, et ou
les facteurs sont supposés non corrélés et de variance 1. Il est clair que la matrice A

des facteurs de pondération n’est en général pas définie de maniere unique, puisqu’on
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peut la multiplier par une matrice orthogonale sans changer I’expression de la matrice
de variance-covariance des données.

Ainsi, en général il est nécessaire de fixer une telle matrice orthogonale, appelée
rotation dans la littérature, pour définir les coefficients de maniere non ambigué.
Par exemple, on peut prendre A égale a la décomposition de Cholesky de la matrice
Var (Y), ce qui revient a supposer A triangulaire. Cette convention est souvent adop-
tée dans la littérature sur les modeles VAR structurels. En statistique, d’autres choix
de matrices de rotation ont été proposés (Darton, 1980). Pourtant, la nature arbi-
traire du choix de la rotation peut sembler insatisfaisante, sachant que l'interprétation

des facteurs dépend dans une tres large mesure de ce choix.

Le nombre de facteurs : Une seconde limite de ’analyse factorielle traditionnelle
est liée a la présence de facteurs spécifiques, ou erreurs, dans le modele. Ainsi, si on

suppose

Y = AX + T, (1)

ou a chaque Y} correspond une erreur Uy, et les erreurs sont non corrélées entre elles
et non corrélées aux facteurs, alors un simple calcul montre que le nombre de facteurs
X, identifiables est séverement limité. Par exemple, il faut au moins trois mesures

(observées) pour identifier un unique facteur dans ce modele.

Une approche alternative : ’analyse en composantes indépendantes

Dans les chapitres 3 et 4, nous considérons des modeles a facteurs linéaires du type
(1) ou les facteurs et les erreurs sont non seulement non corrélés, mais statistique-
ment indépendants. Nous montrons que I’hypothese d’indépendance permet, sous des
hypothese générales, d’obtenir 'identification non ambigué de la matrice A des fac-
teurs de pondération. D’autre part, elle nous permet aussi d’identifier les densités de

distribution des facteurs et erreurs. Tous les éléments du modele sont alors explicités.
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Des antécédents en économétrie : Un cas particulier du modeéle que nous consid-
érons est le sujet de deux articles historiques, de Geary (1942) et Reiersol (1950). Ces
deux auteurs se placent dans le cadre d’un modele a erreur de mesure indépendant,
qui s’écrit comme un modele a facteur unique. Reiersol prouve que deux mesures
sont en générale suffisantes pour identifier les facteurs de pondération, et permettre
de corriger de l'erreur de mesure sans utiliser d’instrument auxiliaire. L’hypothese
fondamentale, outre I'indépendance, est la non-normalité du facteur. Il est a noter
qu’aucune autre hypothese n’est faite sur la forme fonctionnelle des densités de dis-
tribution des facteurs et erreurs. Dans ce sens, les résultats de Reiersol, ainsi que
ceux que nous présentons dans le chapitre 3, sont semi-paramétriques. L’intuition
derriere 'hypothese de non normalité est la suivante : les restrictions sur les covari-
ances impliquées par le modele ne sont pas suffisantes pour obtenir I'identification.
Nous sommes alors dans le cas de ’analyse factorielle traditionnelle, oli une troisieme
mesure est nécessaire pour identifier les parametres d’intérét. De plus, dans le cas
ou le facteur est normal, les restrictions sur les moments d’ordre élevé ne sont pas
informatives. D’ou la non identification dans ce cas. Si le facteur n’est pas normal,
en revanche, alors les moments d’ordre supérieur a trois fournissent une information
supplémentaire qui permet 'identification. Geary (1942) construit plusieurs estima-
teurs explicites des facteurs de pondération qui s’écrivent comme une combinaison de

moments d’ordre 2, 3 et 4 des données.

Une littérature récente : L’idée originale de Geary et Reiersol a été utilisée a
plusieurs reprise en économétrie, dans le cas de modeles a erreur de mesure. Dans le
chapitre 3, nous généralisons cette idée au cas de modeles multi-facteurs. Notre ap-
proche est reliée a une littérature en rapide expansion dans le domaine de I’extraction
des signaux, I’Analyse en Composantes Indépendantes (ACI). Formellement, le type
de modele considéré dans cette littérature est le méme que celui que nous considérons
ici. De nombreuses méthodes ont été développées dans le cadre de I’ACI pour estimer

les coefficients de la matrice A dans un modele sans erreurs. Une telle hypothese

28



représente une limite sérieuse en sciences sociales ou il est important de tenir compte
des erreurs de mesures ainsi que des facteurs spécifiques a chaque mesure. Dans le
chapitre 3, nous généralisons une méthode tres utilisée en ACI au cas ou les erreurs
ne sont pas négligeables. L’algorithme d’estimation de la matrice A que nous intro-
duisons, que nous appelons quasi-JADE, est construit comme une généralisation de
'algorithme JADE de Cardoso et Souloumiac (1993). Il est a noter que les résultats
que nous démontrons sont nouveaux, y compris relativement a la littérature consacrée

a 'ACL

Quelques travaux sur les distributions : Dans le chapitre 4, nous considérons
le probleme de l'identification et I'estimation non-paramétriques des densités de dis-
tribution des facteurs et erreurs. Ici encore, le cas d’un unique facteur a été traité
dans la littérature comme une généralisation relativement directe des méthodes de
déconvolution de Carroll et Hall (1988) et Stefanski et Carroll (1990) par exemple.
Ainsi, Li et Vuong (1998) s’inspirent d’un résultat de Kotlarski (1967) pour construire

des estimateurs convergents des densités de X, U; et U; dans le modele

}/1 = X+U17
Yo = X +Us.

Nous contribuons a cette littérature en étendant 1’estimateur de Li et Vuong au cas
de modeles multi-facteurs généraux. A notre connaissance, la littérature consacrée a
I’ACT n’a pas jusqu’ici proposé de méthode non-paramétrique d’estimation des den-

sités.
Méthodes pour l’identification et estimation

Les méthodes que nous mettons en oeuvre pour d’une part démontrer I’identification
des parametres et des densités, et d’autre part en construire des estimateurs, font
intervenir des techniques assez complexes. Je donne ici juste les idées principales, et

renvoie le lecteur intéressé aux textes eux-meémes.
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Les facteurs de pondération

Dans le troisieme chapitre, nous développons des méthodes algébriques pour estimer
la matrice A, fondées sur les moments d’ordre 2, 3 et 4 des données, comme dans
'article original de Geary (1942). Nous montrons qu’en utilisant les nombreuses
restrictions suridentifiantes impliquées par ’hypothese d’indépendance statistique,
I'imprécision bien connue de I’estimation de ces moments en échantillon fini diminue
fortement. Nous obtenons un algorithme aux performances encourageantes sur de

grands échantillons (plus de 1000 observations).

Moments d’ordre élevés et décompositions algébriques Notre approche re-
pose sur une réécriture des restrictions de moments sous forme matricielle. Précisé-
ment, nous considérons certaines matrices de moments des données, que 'on peut
estimer directement par moyennes empiriques, dont la structure factorielle implique
qu’elles s’écrivent comme la somme de deux composantes.

e La premiére composante fait intervenir les moments (d’ordre 2 & 4) des erreurs.
Nous montrons qu’elle satisfait une restriction linéaire en fonction des moments des
données. Ainsi, elle peut étre estimée par moindres carrés ordinaires. La premiere
étape de l'algorithme quasi-JADE que nous proposons consiste & estimer les premiers
moments des erreurs.

e Une fois la premiere composante estimée, la seconde se calcule directement par
différence avec la matrice de moments des données. La structure factorielle implique
alors que la matrice A, qui intervient dans la seconde composante, est solution d’un
probleme de diagonalisation jointe. Nous utilisons 1’algorithme proposé par Cardoso
et Souloumiac (1993) pour effecuer cette diagonalisation dans la deuxieme étape de
notre algorithme et estimer A.

Il est a noter que nous estimons la matrice de facteurs de pondération sous
I’hypotheése que le nombre de facteurs est connu. Nous montrons aussi comment

estimer ce dernier, en testant le rang de certaines matrices de moments des données.
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Propriétés asymptotiques et simulations de Monte-Carlo : Notre algorithme
utilise la linéarité et I'indépendance du modele a facteurs pour obtenir une solution
simple a un probleme extrémement non-linéaire. D’autre part, il est a noter que notre
approche utilise tous les moments d’ordre 2,3 et 4 des données. Techniquement, les
restrictions suridentifiantes se traduisent en un grand nombre de matrices a diago-
naliser simultanément. Nous montrons que cette propriété tend a diminuer la variance
asymptotique, et en particulier la probabilité que la solution soit proche d’un cas de
racines multiples.

Nous étudions en détail les propriétés de notre algorithme a distance finie. Nous
obtenons des résultats remarquablement précis, comparés a 'imprécision des moments
emipiques des moments d’ordre 4 sur lesquels sont fondés les calculs. Nous trouvons
aussi que les performances de 1’algorithme sont tres sensibles a la non-normalité des
données : si les facteurs ont des moments d’ordre 3 et 4 proches de ceux de la distri-

bution normale, alors les estimations deviennent tres bruitées.

Les densités

Dans le quatrieme chapitre, nous supposons la matrice A connue. Nous construisons
un estimateur des densités fondé sur des déconvolutions et intégrations. Nous étudions

certaines de ses propriétés asymptotiques.

Généraliser les méthodes de déconvolution : L’idée centrale est d’utiliser les
restrictions que la structure factorielle implique sur la fonction caractéristique (FC)
des données. Précisément, nous considérons la fonction génératrice des cumulants
(FGC), qui est égale au logarithme de la FC. La FGC des données s’écrit comme
une fonction linéaire des FGC des facteurs et erreurs évaluées en certains points.
Nous différentions deux fois ces restrictions et obtenons un systeme matriciel que
I’on peut en général inverser, si le nombre de facteurs n’est pas trop grand. Nous
estimons ensuite les FC des facteurs et erreurs par double intégration, et leur densité

par déconvolution.
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Propriétés de ’estimateur : La derniére étape (déconvolution) requiert le choix
d’un parametre de troncature, car I'intégrale ne converge pas en général. Pour cette
raison, ce parametre —qui doit tendre vers l'infini avec la taille de 1’échantillon —
ne doit pas tendre trop vite. Cette caractéristique de I'estimateur produit un taux
de convergence qui peut étre extrémement lent dans certains cas (Carroll et Hall,
1988, et Fan, 1991). Nous démontrons la convergence de notre estimateur sous des
hypotheses générales, en particulier concernant le support des distributions. Nous
dérivons le taux de convergence dans certains cas, et trouvons effectivement qu’il
peut étre logarithmique (Horowitz et Markatou, 1996).

Nos simulations de Monte Carlo confirment qu’en général la convergence est lente.
D’autre part, nous trouvons que la forme de la densité a estimer a un fort impact sur
les performances de I’estimateur, au moins dans les exemples que nous considérons. En
particulier, des densités tres asymétriques ou tres kurtiques semblent particulierement
difficiles a estimer. Il est intéressant de considérer ce résultat a la lumiere des analyses
du chapitre trois, o nous montrons que des moments d’ordre 3 et 4 élevés sont

cruciaux pour bien estimer la matrice A.

Une application aux rendements de I’éducation

Les dernieres sections des chapitres 3 et 4 présentent une application des estimateurs
a un exemple simple de rendements de ’éducation. Nous utilisons I’Enquéte-Emploi
pour 'année 1995. Les salaires horaires sont notés Y, et le nombre d’année d’études
est D. Les travaux cherchant a mesurer 'effet (causal) de D sur Y sont innombrables

dans la littérature (Griliches, 1977 et Card, 2001, sont deux revues classiques).

Une seconde mesure de I’éducation comme instrument : Nous construisons
une seconde mesure de niveau d’éducation, que nous notons D*. Pour cela, nous
considérons une variable qui indique qualitativement le plus haut niveau obtenu (par
exemple : baccalauréat), et nous rendons cette variable continue en faisant corre-

spondre a chaque catégorie le nombre d’années d’études médian qui a été nécessaire
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pour 'atteindre. Ainsi, la différence entre cette variable continue, D*, et le nombre
d’années d’études D reflete en particulier les redoublements, mais aussi les change-
ments d’orientation, etc...

Régresser directement le salaire horaire Y sur le nombre d’années d’études D
par moindres carrés donne un rendement de 4.4%. Si le régresseur D est mesuré
avec erreur, il est connu que ce coefficient ne reflete pas le “vrai” rendement des
études. Disposer d’une seconde mesure D* permet d’estimer ce dernier par variables
instrumentales. Nous obtenons un coefficient de 6.6% par cette méthode. Ce résul-
tat indique que les moindres carrés sous-estiment le rendement de I’éducation. De
nombreuses études, utilisant d’autres types d’instruments comme des variations dans

loffre d’éducation, obtiennent une conclusion similaire.

Un deuxiéme facteur : Nous interprétons le modele a erreur de mesure comme
un modele a facteur unique. En imposant I'indépendance des erreurs et du fac-
teur, nous pouvons appliquer les méthodes développées dans les chapitres 3 et 4
pour estimer ce modele. Nous trouvons des résultats tres semblables a ceux obtenus
par variables instrumentales. Nous testons ensuite la présence d’un second facteur.
L’analyse factorielle classique peut au plus identifier un facteur dans la relation entre
le salaire horaire Y et les deux mesures d’éducation D et D*. nous montrons que
sous I’hypothese d’indépendance, un second facteur est identifié. Nous estimons ce
dernier par quasi-JADE, et trouvons que le second facteur est positivement corrélé au
nombre d’années d’études et négativement a I’éducation. Ce résultat suggere qu’un
certain type d’investissement en éducation est associé a un rendement négatif sur le
marché du travail. Nous utilisons ensuite les méthodes du chapitre 4 pour estimer les
densités des deux facteurs, que nous trouvons significativement non-normales. Ces
estimations nous permettent de prédire la valeur des deux facteurs pour chaque in-
dividu dans I’échantillon. Nous trouvons que le facteur positivement relié au salaire,

de loin le facteur dominant en terme de variance, est aussi positivement corrélé a

plusieurs autres variables comme le fait de travailler dans le secteur public, la caté-
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gorie socio-professionnelle (CSP) de 'individu ainsi que la CSP du pére. Le second

facteur, en revanche, est négativement corrélé aux deux premieres de ces variables.
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1.1 Introduction

In this chapter, we propose a methodology for decomposing life-time earnings inequal-
ity into permanent, persistent and transitory components, which can be applied when
individual earnings are recorded over short periods of time. Short panels severely limit
the possibilities for identifying the stochastic processes governing individual earnings
mobility together with the vast amount of individual heterogeneity that mixes the
earnings processes. However, if short panels render the identification of models with
many parameters difficult, compared to long panel surveys as the PSID, which are
anyway rare, they offer large sample sizes and limited attrition. It is therefore useful
to develop methodologies that can be applied to rotating panels such as the French
Labour Force Survey that we use in this chapter. This is the very first aim of this
chapter.

To complete this goal, we exploit advances in the statistical literature on the
parametric specification of copulas. If X; and X, are two consecutive earnings with
marginal distributions F; and Fy,;, the copula function (respectively, copula density)
of (X4, Xi41) is the cdf (resp. pdf) of (F} (X), Fir1 (Xi41)), that is the distribution of
the ranks of X; and X, in their respective marginal distributions. The joint density
of (X, Xy41) is then the product of the marginal densities of X; and X;,; and the
copula density. The applied statistical literature offers many parsimonious parametric
specifications; some of them, we shall see, fit the data exceptionally well.

This way of modelling earnings processes differs from the more familiar linear
decomposition of individual log wages into a fixed effect, a deterministic trend, a ran-
dom walk and a moving average.! This is hardly feasible if only three or four years of

individual-temporal data are available, as one must first difference out the fixed effect

!See for example the survey of Alvarez, Browning and Ejrnaes (2001).
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and use IV for estimation with lagged values of right-hand side variables as instru-
ments. Moreover, if linear models admittedly provide a good description of earnings
dynamics on average, there is currently no evidence that the autoregressive corre-
lations are well rendered throughout the entire distribution. Meghir and Pistaferri
(2004) is one of the very few attempts at improving the description of higher-order
earnings dynamics in such models and they provide definite evidence of autoregressive
heteroskedasticity.

The need for better statistical measures of association between two random vari-
ables (usually different stock returns) and the fact that stock returns usually exhibit
second order dynamics precisely explain why copulas are so popular in financial econo-
metrics. But to our knowledge, copulas have not been used in labour economics so far.
One objective of this chapter is to investigate the use of copulas to model earnings
dynamics.

Once the problem of fitting earnings mobility has been reduced to reasonable
dimension, it becomes possible to address the question of how much mixing—that
is how much heterogeneity, observed and unobserved—there is in the data. Since
the seminal work of Gottshalk and Moffitt (1994), we know that earnings inequality
reflects more than persistent shocks. Genuine non ergodicity calls for additional mix-
ing. Moreover, there is clear evidence that a large share of individual heterogeneity in
earnings processes is driven by unobserved individual characteristics. Yet, most of the
papers on relative earnings mobility base inference on transition probability matrices
and rule out unobserved heterogeneity. Furthermore, if one believes that the study
of earnings inequality can be pursued independently of the study of relative earnings
mobility, this means that one is willing to assume that the unobserved heterogeneity

that is driving cross-sectional distributions is independent of the heterogeneity in the
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dynamics. This is obviously questionable. Constructing and estimating a model of
earnings dynamics with lots of unobserved heterogeneity—i.e. the individual hetero-
geneity that remains once education and experience and gender and cohort have been
accounted for—constitutes the second aim of this chapter.

Using the copula technology to reduce dimensionality, the model can be nonpara-
metric as far as unobserved heterogeneity is concerned. We therefore use a discrete
mixture approach as in Heckman and Singer (1984). The population is composed of
several groups, each group facing a specific earnings process. By proceeding this way,
we do not a priori specify which parameter is heterogenous.

We apply our methodology to the French Labour Force Survey data between 1990
and 2002.2 A third of the surveyed individuals being replaced every year, we can con-
struct 10 samples of three-year individual employment/earnings trajectories. This
allows us to study how earnings inequality and earnings mobility have changed over
the last decade of the twentieth century in France. We find rather small changes
in earnings inequality over that period. Earnings inequality, unemployment risk and
immobility seem to increase in business cycle busts and to decrease in booms. Alto-
gether, these three risks are driving a 25% rise in the variance of lifecycle log-earnings
between 1990 (a boom) and 1995 (a bust). This is significantly more than the 10%
rise in the cross-sectional earnings variance that occurs between 1990 and 1995. Im-
portantly, we show how to decompose earnings inequality into separate permanent,
transitory and persistent components in this setup. We find that the variance of in-
tertemporal log-earnings remains a very significant share of the variance of one-year

log-earnings, whatever the horizon over which they are computed (80% in the limit).

2Before 1990, earnings were not precisely recorded. Moreover, we use the Labor Force Survey
instead of administrative earnings data because we need to precisely monitor the sequence of em-
ployment and unemployment spells to analyse earnings inequality over the lifecycle.
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Moreover, about 60% of the variance of intertemporal log-earnings is due to individ-
ual heterogeneity (permanent inequality) and 33% is persistent, leaving a mere 7% to
residual transitory variance.

The remainder of the chapter is organized as follows. Section 1.2 is devoted
to the construction of the model. We first introduce the concept of copula. We
then review several popular parametric families of copulas and test their ability to
fit earnings data. Section 1.3 develops a particular specification of the model and
presents estimates using data drawn from the French Labour Force Survey, 1990-
2002. Section 1.4 analyzes the time changes and the anatomy of earnings inequality
and relative mobility in France over the last decade of the twentieth century. Section
1.5 simulates individual trajectories and studies the inequality of individual sums of

log-earnings flows. The last section concludes.

1.2 Copula models for earnings dynamics

The studies of earnings inequality document changes in the sequence of marginal earn-
ings distributions and the studies of earnings mobility usually focus on the dynamics
of individual relative positions in this sequence of marginal distributions. Although
it is never referred to under this name, the statistical notion of copula is thus at the

very heart of the literature on earnings inequality and mobility.

1.2.1 Copulas

Let X and Y be two random variables with cdf’s FX and FY, respectively, and
let F' be the cdf of (X,Y), the copula of (X,Y) is the cdf (denote it as C') of
(FY(X), FY(Y)):

F(z,y)=C[F*(x),F"(y)], V(). (1.1)
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The copula C is unique if the marginal cdf’s F'X, FY are continuous. One can also

define the copula density of (X,Y) as c(u,v) = 32%;;«;). Because FX(X) and FY (Y)

have uniform distributions, c¢(u,v) is the density of (FX(X), FY(Y)) at (u,v) and it
is also the conditional density of F'Y (V) at point v given FX(X) = w.
Differentiation of equation (1.1) splits the joint density of X and Y, f(z,y), into

the product of marginal densities f*(x) and f (y) and of the copula density, c(u,v):

fla,y) = @) " (y)e [F* (), FY (y)] - (1.2)

Let (Y3, Y1) be a couple of subsequent earnings. The above theory implies that
the joint density of (Y, Y;11) can be decomposed into the product of marginal den-
sities times the copula density. Compared to standard earnings dynamics models
(e.g. ARMA models), the copula approach does not impose parametric restrictions
on cross-sectional variances and covariances across time, as marginal distributions and
copula densities are parametrically independent. Whether or not this characteristic
is supported by economic theory requires additional research. Yet, one can think of
a market equilibrium which time path is determined by exogenous aggregate shocks.
Individuals are heterogenous and the distribution of heterogeneity is time-invariant.
It is then likely that individuals’ positions will not change if the cross-sectional dis-
tribution is modified by an aggregate shock. Moreover, any dynamics of individual
positions within the equilibrium distributions, which may reflect individual-specific
shocks or other market imperfections at the source of random individual instability
(search-matching frictions, asymmetric information, etc.), could be exogenous to the
process of macroeconomic shocks on the steady-state equilibrium distributions.

Lastly, most studies of relative earnings mobility start by categorizing earnings into
quantile intervals and then compute the probabilities of transitions between quantile

intervals. These transition probability matrices are nonparametric approximations
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of the underlying true copula. It is of course possible to obtain smooth nonpara-
metric estimates. Unfortunately, the nonparametric estimation of bivariate density
functions requires large amounts of data which may be available for applications in
finance but are usually not available in labour economics. Furthermore, the curse of
dimensionality makes it almost infeasible to incorporate observed—not to mention

unobserved—heterogeneity in practice.

1.2.2 Parametric copulas

The statistical literature offers a large choice of parametric specifications of copulas.
Does there exist one that fits the dynamics of earnings ranks well? We now investigate
this question using earnings data drawn from the French Labour Force Surveys of 1990
and 1991. Appendix A.1 details the copula families that we consider.

To remain as much agnostic as possible as far as the form of the marginal distri-
butions is concerned, we first regress log-earnings on education and experience sepa-
rately for 1990 and 1991 and compute the empirical cumulative distribution functions
of the residuals. Then, we estimate the different copula parameters by maximizing
the likelihood of the empirical ranks. Finally, we categorize the residuals by quintiles
and compare the empirical transition probability matrix to the predictions from the
different copula estimates.

Table 1.1 shows the actual and predicted transition probability matrices for the
Gaussian, Plackett, Frank, Gumbel, Joe, Clayton, FGM and Log copulas. Several
specifications are able to capture the general form of the observed transition matrix.
In particular, there should be more inertia at the top and bottom of the distributions
of ranks than in the middle. Plackett’s (1965) one-parameter family of copulas fits

transition probabilities better than all other families.* The Euclidian distance d

3We refer to Appendix A.2 for a presentation of the Plackett copula and its properties.
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between predicted and actual matrices is .08 for this copula, while the Gaussian has:
d = .30. We checked the robustness of this result by varying samples and controls.

Plackett’s copula always provided the best fit.

Observed Gaussian  (d = .30) Plackett (d = .08)

.68 .21 .08 .03 .00 .66 .25 .08 .01 .00 7320 .04 .02 .01
20 .50 .22 .06 .02 25 37 .26 .11 .01 20 .52 .21 .05 .02
07 .21 47 20 .05 08 .26 .32 .26 .08 .04 .21 .50 .21 .04
.03 .06 .19 .53 .19 01 .11 .26 .37 .25 02 .05 .21 .52 .20
.02 .02 .04 .18 .74 .00 .01 .08 .25 .66 01 .02 .04 .20 .73

Frank (d = .19) Gumbel (d = .22) Joe (d = .41)
68 .26 .05 .01 .00 .63 .26 .09 .02 .00 46 .31 .17 .06 .00
26 .45 .23 .05 .01 26 .39 .25 .09 .01 S1 .34 .24 .10 .01
05 .23 44 23 .05 09 .25 37 .25 .04 A7 .24 .32 .23 .04
.01 .05 .23 45 .26 02 .09 .25 45 .19 06 .10 .23 .43 .18
.00 .01 .05 .26 .68 .00 .01 .04 .19 .76 .00 .01 .04 .18 .77

Clayton (d = .50) FGM (d = .83) Log-Copula (d = .17)
73 .19 .05 .02 .01 33 .26 .20 .14 .07 .66 .25 .07 .02 .00
19 .39 .24 .12 .06 26 .23 20 .17 14 25 .42 25 .07 .01
05 .24 30 .24 .17 20 .20 .20 .20 .20 07 .25 .40 .24 .04
02 12 24 31 .31 14 .17 20 .23 .26 02 .07 .24 47 .20
.01 .06 .17 .31 .45 07 .14 20 .26 .33 .00 .01 .04 .20 .75

Table 1.1: Fit of some parametric families of copulas to earnings data

In particular, the Gaussian copula, which is implied by an AR(1) model for log-
earnings levels if their marginal distribution is normal,* does not provide as good
a description of autocorrelations throughout the entire distribution as the Plackett

copula. One will argue that this does not prove that the familiar linear time-series

Tet r, = F, (y¢) be the rank of y; in the marginal earnings distribution at time ¢. The Gaussian
copula postulates the following relation between ryy; and r:

O Hripr) =@ ) + V1 — 124,

with &; white noise. If Iny; is normal N (0,07), then ®~'(r,) = Jitln y¢, but this is not true
otherwise.
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models of log-earnings are invalidated, in particular because innovations usually ex-
hibit moving-average components, which are here ruled out by the Markov assump-
tion. More work is needed to determine which approach provides the best trade-off
between good fit and parametric parsimony. The aim of the current research is not
to make the case that copulas are better than linear time-series models of earnings
levels, but to take advantage of the capacity of simple parametric versions of copulas

to fit the dynamics of ranks.

1.2.3 Heterogeneity

The first-order Markov assumption is rejected by earnings data. This assumption
implies that the transition probability matrix of a given discrete mobility process
between two non consecutive dates t and t + 2 is the product of the (¢,¢+ 1) and
(t + 1,¢+ 2) transition matrices. In practice, the product matrix thus obtained usu-
ally presents more mobility than the true transition matrix between ¢ and ¢ 4 2.5
We give an illustration using the French Labour Force Survey data of 1990-1992.
The product matrix obtained from the observed mobility between 1990 and 1991 and

the actual transition matrix between 1990 and 1992 are

ST .26 .11 .05 .01 .67 .22 .08 .02 .01
27 38 .22 .10 .03 24 49 22 .04 .01
PL=| .11 24 37 22 .06 |, Pyp=1 .06 .24 .50 .18 .02
.04 .10 .24 42 .20 02 .04 .18 .59 .17
.01 .02 .06 .21 .70 .01 .01 .02 .17 .79

As the other studies, we find more mobility between quantiles in the predicted ma-

trix than in the actual 1990-1992 matrix of transition frequencies.® The discrepancy

See for instance Blumen et al. (1955), Shorrocks (1976) and Singer and Spilerman (1976).
Empirical evidence shows that earnings ranks are more persistent than what they should be if they
were first-order Markov processes. For example, using PSID data, Gottschalk (1997) finds that being
in the first quintile of the earnings distribution in 1970, there is more than 50% chances of being in
the same quintile 20 years later. Guillotin and Bigard (1992), for France, obtain similar orders of
magnitude.

6In this chapter, “more mobility” is to be understood in terms of the concordance ordering =..
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persists whatever control variable we use to condition the 1990-1991 transition prob-
ability matrix. Controlling for education, experience, etc., somewhat reduces the
discrepancy but not all of it.

One way of explaining state dependence, without abandoning the first-order Markov
assumption, is to postulate the existence of unobserved heterogeneity as in the mover-
stayer model of Blumen, Kogan and McCarthy (1955). Allowing for unobserved het-
erogeneity should generate enough additional autocorrelation in individual earnings
trajectories to fill the remaining gap. However, allowing for unobserved heterogeneity
requires a model with a simple parametric form. This is another advantage of using
parametric copulas. This parametric parsimony will even let us be nonparametric in
the way we model unobserved heterogeneity. We shall thus assume a discrete mix-
ture model, i.e. there exist at most K types of earnings processes differing in the
values of the parameters, the number of groups, K, being estimated by penalizing the

estimation criterion for the number of parameters (see Heckman and Singer, 1984).

1.3 Application to French individual earnings and
employment dynamics, 1990-2002

We now turn to the study of earnings (and employment) dynamics in France, using
data covering the period 1990-2002. We first introduce the data and present the
empirical specification of our model. We then detail the estimation results and, lastly,

we describe how the model fits the data.

1.3.1 The French Labour Force Survey, 1990-2002

The data we use come from the 1990-2002 French Labour Force Survey (LFS), con-

ducted by INSEE, the French Statistical Institute. We use the LFS data instead of

See Appendix A.2 for details.
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administrative earnings data (DADS), as in Alvarez, Browning and Erjnaes (2001),
because the DADS data do not follow individuals across states which are not private
jobs. The French LFS is a rotating panel, a third of the sampling units (dwellings)
being replaced, every year, by an equivalent number of newly sampled units. Large
samples of about 150,000 individuals aged 15 or more, in 75,000 households, can thus
be interviewed three times, in March of three subsequent years, about various aspects
of their employment histories. Note that a panel length of three years is intuitively
barely enough to ensure identification: two years are necessary to characterize the
first-order Markov dynamics, one additional year is required in case of unobserved
heterogeneity. Yet the short panel length is compensated by the fact that the LFS
provides large, nationally representative samples for every year.

As is usually the case for this sort of survey based on individuals’ responses to
interviews, hours worked are badly reported. For instance, we noticed that many
individuals alternatively reported 39 hours worked in one week (the legal working time
in the 1990’s), and 40 hours in another. To limit the influence of hour measurement
errors on our results, we chose to use monthly salaries, which is what the questionnaire
asks for, rather than hourly wages. Monthly earnings were finally divided by the retail
price index that is provided by INSEE.

We dropped all observations for students, retired persons and self-employed, and
kept only male labour trajectories, removing female trajectories from the sample to
limit the role of labour supply as a determinant of earnings dispersion. We also
trimmed the data below the first and above the ninety ninth percentiles of the wage
distribution.

Complete trajectories (ys, Ys11, Yrr2), where ¢ is the date of the first recorded ob-

servation, account for 53% of the sample. Two-year trajectories (y;, y;11) account for
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25% ;and 22% of individuals drop out after the first year. There is thus a certain

amount of attrition which we assume exogenous to the employment-earnings process.

1.3.2 Model specification

In this application, we introduce unemployment as a specific state. This is important
for any reasonable description of labour market trajectories in the Euro area, where
unemployment rates are between 8 and 10%. We also allow for observed and unob-
served heterogeneity. The parametric specification is detailed in Appendix A.4. We

here only summarize its main characteristics.

Heterogeneity. After trying various specifications, we decided to introduce two
latent unobserved heterogeneity variables: one variable, z; € {1, ..., K3}, conditions
every parameter of the model, marginal distributions of earnings and employment
states as well as copulas, and a second variable, z, € {1, ..., K5}, specifically con-
ditions the mobility process. Individual employment-earnings trajectories are also
conditioned by a set of time-varying covariates, denoted as x;. In our application, x;
only comprises labour market experience (age minus age at the end of school) and
squared experience. Lastly, covariates (z, z;) are determined by some vector z, of

non time-varying individual attributes:

e Education (Fd), classified into five categories according to the highest degree

obtained: “no degree,” “junior high-school,” “senior high-school,” “less than three

years of university” and “more than three years.”

e The year of entry in the labour market (b), defining a “cohort.” Given calendar

time ¢, experience is equal to t — b and x; is thus deterministic conditional on b.
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e Because a baccalauréat (high-school diploma in France) obtained in 1950 had
more market value than a baccalauréat obtained in 1990, we also allow for

education and cohort interactions (Ed * b).

Therefore, education conditions the earnings process only via the latent heterogeneity
variables z; and zy, which may thus be understood as two different components of
the human capital an individual possesses when entering the labour market. Latent
variables z; and z, are like unobserved factors which are measured by education and

cohort with error.

Stochastic parameterization. Let e, € {0,1} denote the employment state at
calendar time ¢ (e, = 1 if employed, = 0 otherwise). Let y; denote the logarithm of em-
ployees’ wages. We write the joint density of individual data (s, yii1, Yiro, €1, €441, €112, 21, 22)

(with respect to the appropriate measure) conditional on z, as the following product:

f(yta Yi+1, Yt+2, €ty €t+1, €142, 21, Z2|$ta Ty, $t+2,2’0) =Pr {21|ZO} Pr {22|z1, ZO} (1-3)
x Pr{e|z, 21} Pr{eiles, xi, 21, 22} Prieo|eiir, Tig1, 21, 22}

Xf(yt|xt, Zl)etf(yt+1|xt+1a Zl)et+1f(yt+2|xt+2a Zl)etJr2

XC[F(ytmt’zl)’}71(y1t+1|351t+1,21)|35t,2’1,2:2]8“%+1

]et+let+2

Xc [F(yt+1|$t+1, 2’1), F(yt+2|$t+2, Z1)|$t+1, 21y 22 )

where each component is specified as follows:
e Distribution of unobserved heterogeneity. The probability distribution

of the latent variable z; given 2y, Pr{z1|2}, and the conditional probability of

29 given z; and zg, Pr{zs|z1, 20}, are modelled as Multinomial LOGIT.

"In 1980-1985 only 35% of a student cohort would attain an education level assimilable to a
high school diploma. Between 1985 and 1995 a voluntarist educational policy doubled that number:
since 1995 about 70% of a student cohort reach grade 12 (terminale)-80% of them obtaining the
baccalauréat.
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e Cross-sectional distributions. The cross-section log-wage density, f(y:|z, 21),
is assumed Gaussian conditional on experience x; and heterogeneity z;. We let
both the cross-section mean and the cross-section variance depend on z; as in
Moffit and Gottschalk (2002). We also allow the intercept and the returns to
experience in both first and second order moments to be group-specific (z;-
dependent). The unconditional unemployment probability, Pr{e; = 0|z, 21 },
follows a PROBIT model. With unobserved heterogeneity, it is indeed impor-
tant to specify this probability in order to compute the likelihood component
corresponding to the first observation period of each individual trajectory (Heck-

man, 1981).

e Mobility. Employment/unemployment mobility and earnings mobility are
both assumed first-order Markov. We model the conditional unemployment-
unemployment probability, i.e. Pr{e;.; = 0|e; =0, x4, 21,20}, and the condi-
tional employment-unemployment probability, i.e. Pr{e;,; = 0le; = 1, x4, 21, 22},
using two PROBIT models.® Lastly, we use the Plackett copula to model the
likelihood of earnings ranks, conditional on employment, c(u, v|xy, 21, 29). All
parameters of the PROBIT and Plackett models specifically depend on unob-

served heterogeneity (2, 22).

1.3.3 Estimation methodology

Because of unobserved heterogeneity, the log of the expected likelihood (with respect
to the latent variable z) will not change the products in (1.3) into sums and because
products are numerically instable the EM algorithm is usually thought as being the

best way to maximize the likelihood. To estimate the parameter vector we use the

8 Alternatively modelling the latent variables of the Probit models as autoregressive processes
would make the estimation much more complicated.
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sequential EM algorithm that is described in details in Appendix A.3 and we bootstrap
the estimation sample to compute standard errors.

We estimate the model assuming that every three-year panel identifies a specific set
of cross-section and mobility parameters. However, we force the parameters of the dis-
tribution of unobserved heterogeneity (z1, z2) conditional on zy (Pr {21|20} Pr{22|21, 20 })
to remain the same across the different panels. We impose this constraint because we
believe that there is too little information in three years of panel data to identify both
the distribution of earnings processes given heterogeneity (z1, z3) and the distribution
of unobserved heterogeneity (21, 22) given observed heterogeneity z, (education and
cohort). The way the parameters of marginal distributions and copulas vary across
three-year panels (1990-1992 to 2000-2002) thus tells us how much of the changes in
earnings distributions is not explained by observed composition effects (i.e. changes
in the distribution of education and cohort) and by experience, assuming that there
is no unobserved composition effect.

Note that, by proceeding this way, we allow three individuals from three different
three-year panels to face different parameter sets at the same calendar year. This
may seem undesirable but it is well known that time, cohort and experience effects
are not separately identified. Alternatively, we could estimate parameters assuming
they remained fixed over a certain period of time. For example, we could contrast
the periods 1990-1993, 1994-1998 and 1999-2002. This is the strategy followed by
Gottshalk and Moffit (1994) who estimate different models for the 1970’s and the

1980’s. Our approach avoids the arbitrary choice of different time intervals.
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1.3.4 Estimation results

In this section, we present the estimates of the distribution of heterogeneity and the
estimates of the cross-section and mobility parameters corresponding to the 1990-
1992 three-year panel, as the results for the other three-year panels are qualitatively
similar. The parameter estimates are displayed in the various tables in Appendix A.7.
Because they are numerous, we tried as much as possible to represent these results in

the more accessible form of figures and frequency or mean summaries.

Number of unobserved individual types. The number of heterogeneity groups
is likely to influence the interpretation. We used two popular criteria based on pe-
nalized likelihood to select these numbers. We found (K; = 2, K, = 2) optimal
using the Bayesian Information Criterion (BIC) and (K = 3, K, = 2) using Akaike’s
(1969) criterion.” For expositional convenience, we shall present the parameters for
the minimal number of groups, (K; = 2, K, = 2). We shall then analyze the fit for
(K1 =3,Ky =2).

Cross-sectional earnings distribution and unemployment risk. The first
group of cross-section heterogeneity (z; = 1) collects about 25% of the whole popula-
tion. It gathers individuals with, on average, higher (aggregate mean of 9.33 vs 8.75)
and more dispersed (aggregate standard deviation of 0.39 vs 0.28) monthly earnings
than those in the second group. Figure 2.1 brings a visual confirmation that one
component of the earnings mixture is both to the left of the other one and less dis-

persed.'® The probability of being unemployed is found significantly lower for Group

9Let £ be the log-likelihood of a given sample of size N, and K be the number of parameters in a
given model. BIC maximizes £ — L K In(N) with respect to K. Akaike maximizes £— K. Obviously,
the optimal number of parameters is larger for Akaike than for BIC.

10Tn this figure, the area below each density component is equal to the group’s relative frequency,
so that the sum of all components is the aggregate density.
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Figure 1.1: Components of the cross-sectional log-earnings density in 1990 (K; = 2)

1 than for Group 2 (aggregate probability of 3.1% vs 11.2%).

When a third group of heterogeneity is allowed for then a small third group of
even poorer and more often unemployed workers is selected out of the second group
(about 15% of them). The other two components of the earnings distribution mixture
do not change much (Figure 1.2).

We also find that the experience-earnings profile is concave and the effect of ex-

perience on unemployment probabilities is U-shaped (Table F1 in Appendix A.7).

Cross-section heterogeneity. Table F2 in Appendix A.7 gives a full account of
the estimates of the parameters of the (LOGIT) probability of 2z, = 1 (versus z; = 2)
given the set 2z of individual characteristics (education, cohort and interactions). To
make the interaction of the cohort and education variables more easily interpretable,
we compute in Table 1.2 the proportion of type-1 individuals by education and cohort

(date of entry into the labour market).
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Figure 1.2: Components of the cross-sectional log-earnings density in 1990 (K; = 3)

First, one remarks that there is no direct cohort effect: all three cohorts have
about the same probability of being in the first group (25%). By contrast, higher
education unambiguously increases the probability of belonging to Group 1. But this
effect is not uniform: only the top education group (“college +,” i.e. more than three
years of university) is guaranteed to belong to the top earnings group whatever the
date of entry into the labour market. For the other education groups, older means
better. This result is consistent with the accelerated democratization of the French
education system between 1985 and 1995. The value of an education degree such as
the baccalauréat (high school diploma) was much higher 20 or 30 years ago because
bacheliers (high school graduates) were much fewer. This explains why 70% of the
HS graduates of the oldest cohort belong to Group 1 when only 11% of the youngest
HS graduates are classified in Group 1.

It is useful to know how the different individuals in the sample are reallocated
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Education
Cohort None Junior HS Senior HS Some college College + Overall

< 1970 .03 11 .70 .90 .99 .24
1970 - 1985 .01 .05 .38 .86 .95 .25
> 1985 .01 .01 A1 .60 .97 27
Overall .01 .06 .30 72 97 .25

Table 1.2: Probability of being a high-wage earner (z; = 1) by education and cohort
(model with 2 groups of cross-section heterogeneity)

when one allows for a third group of cross-section heterogeneity. For a given value
of the postulated number of groups (K;) and each individual in the sample, the
posterior probability of belonging to one group given the individual’s observations
can be estimated. The group with the highest probability is the best predictor of
individual types. Comparing the classification obtained for K; = 2 to the one obtained
for K = 3, ordering groups according to mean earnings, 83% of the individuals
classified in Group 1 for Ky = 2 remain classified in this group when a third group
is allowed for and that about 16% move to Group 2. Only 1% move to Group 3.
Moreover, 75% of type-2 individuals remain in Group 2 but 17% move to the third

group and 8% to the first group.

Earnings mobility. Table F3 in Appendix A.7 displays the estimates of the group-
specific parameters of the Plackett copulas used to model the transition process of
marginal earnings ranks. The sign of the experience coefficient implies that wage mo-
bility decreases with experience among low-wage earners (z; = 2) and increases with
experience among high-wage earners (z; = 1). To give a better idea of the magnitude
of wage mobility differentials across worker types, we display in Table 1.3 the pre-
dicted quintile-to-quintile probability transition matrices for the four combinations of

(21, 22) and three levels of experience: 5 years, 20 years and 35 years.
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21 = 1
Experience zo =1 29 = 2

92 .07 .01 .00 .00 87 .11 .01 .01 .00
07 .83 .09 .01 .00 A1 .74 .13 .01 .01
D years 01 .09 .82 .09 .01 01 .13 .72 .13 .01
.00 .01 .09 .83 .07 01 .01 .13 .74 .11
.00 .00 .01 .07 .92 .00 .01 .01 .11 .87
91 .08 .01 .00 .00 82 .15 .02 .01 .00
08 .82 .09 .01 .00 A5 .65 .17 .02 .01
20 years .01 .09 .80 .09 .01 02 17 .62 .17 .02
.00 .01 .09 .82 .08 01 .02 .17 .65 .15
.00 .00 .01 .08 .91 .00 .01 .02 .15 .82
90 .09 .01 .00 .00 75 .19 .04 .01 .01
.09 .80 .10 .01 .00 19 56 .20 .04 .01
35 years .01 .10 .78 .10 .01 .04 .20 .52 .20 .04
.00 .01 .10 .80 .09 01 .04 .20 .56 .19
.00 .00 .01 .09 .90 .01 .01 .04 .19 .75
21:2
ZQZ]_ 22:2
74 .20 .04 .02 .00 41 .26 .16 .10 .07
20 .53 .21 .04 .02 26 .27 .22 .15 .10
D years .04 .21 .50 .21 .04 A6 .22 .24 22 .16
02 .04 21 .53 .20 A0 .15 .22 .27 .26
.00 .02 .04 20 .74 07 .10 .16 .26 .41
81 .16 .02 .01 .00 Sl .26 .12 .07 .04
16 .63 .18 .02 .01 26 .32 .23 12 .07
20 years 02 .18 .60 .18 .02 A2 .23 .30 .23 .12
.01 .02 .18 .63 .16 07 12 .23 .32 .26
.00 .01 .02 .16 .81 .04 .07 .12 .26 .51
86 .12 .01 .01 .00 .60 .25 .09 .04 .02
A2 .72 14 .01 .01 25 .39 .23 .09 .04
35 years 01 .14 .70 .14 .01 09 .23 .36 .23 .09
01 .01 .14 72 .12 .04 .09 .23 39 .25
.00 .01 .01 .12 .86 02 .04 .09 .25 .60

Table 1.3: Predicted transition probability matrices (across quintiles) by experience
and unobserved heterogeneity
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The six featured matrices unambiguously designate individuals with 2o = 1 as a
group of “stayers” and those with zo = 2 as a group of “movers”: the numbers in the
first diagonal of the matrices corresponding to the second group are indeed smaller
and the off-diagonal ones larger, irrespective of the cohort of origin. Note that there is
less heterogeneity among high-wage individuals (i.e. those with z; = 1) than among
low-wage individuals (z; = 2). Moreover, the effect of experience is more pronounced

for low-wage workers than for high-wage workers.

Employment dynamics. Table F4in Appendix A.7 presents the parameters of the
PROBIT probabilities of unemployment at t+1 conditional on employment at ¢ and of
unemployment at £+ 1 conditional on unemployment at ¢, and Table 1.4 below shows
the implied levels of these transition probabilities for the four combinations of (zy, 25)
and the same three levels of experience as before. Compared to individuals with 2o = 2
(movers), individuals with z; = 1 (stayers) clearly have very little chance of becoming
unemployed. Yet, when they become unemployed they tend to remain unemployed
longer. Being both a low-wage worker (2; = 2) and a mover (z; = 2) maximizes the
chance of becoming unemployed. Older workers tend to remain unemployed longer

while the risk of becoming unemployed decreases with experience.!!

Mobility-specific heterogeneity. Table F5 in Appendix A.7 describes the prob-
ability of zo = 1 (versus z; = 2), conditional on cross-section heterogeneity z; and
other covariates in zy. As before, these parameters are more easily interpreted after
computing the predicted probability of z3 = 1 by education, cohort and cross-section
heterogeneity (Table 1.5). There are slightly fewer stayers among high-wage earners

(21 = 1) than among low-wage earners: about 50% and 60%, respectively. Moreover,

"For all but high-wage workers (z; = 1). But, high-wage workers have a very low risk of unem-
ployment.
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21:1

29 = 1 29 = 2
year t + 1
Experience empl. unempl. empl. unempl.
year t
5 years empl. 1.00 .00 97 .03
unempl. .73 27 .99 .01
20 years empl. 1.00 .00 97 .03
unempl. .02 .98 .87 13
35 years empl. .99 .01 97 .03
unempl. .00 1.00 A7 .53
21 = 2
29 = 1 29 = 2
empl. unempl. empl. unempl.
5 years empl. .89 A1 91 .09
unempl. .36 .64 91 .09
20 years empl. .99 .01 .93 .07
unempl. .19 .81 .68 .32
35 years empl. 1.00 .00 .94 .06
unempl. .08 .92 .33 .67

Table 1.4: Transition probabilities across employment and unemployment by experi-
ence and unobserved heterogeneity
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younger cohorts of high-wage earners are more mobile than older ones. The opposite
conclusion applies to low-wage earners. Notice that the pseudo R? of the PROBIT
regressions of unobserved heterogeneity variables z; and z; on observed covariates zg
(50% vs less than 4%; see Table F2 and F5) indicate that education and cohort do

not determine z, as much as they determine z;.

Cross-section heterogeneity: z; =1

Education
Cohort None Junior HS Senior HS Some college College + Overall
< 1970 n.s. .58 .56 73 .60 .61
1970 - 1985 n.s. .40 53 .58 .53 .54
> 1985 n.s. .33 31 AT .45 44
Overall n.s. .50 .50 .55 .50 .52

Cross-section heterogeneity: z; = 2

Education
Cohort None Junior HS Senior HS Some college College + Overall
< 1970 44 .50 .60 72 n.s. 49
1970 - 1985 .60 .61 .65 .52 n.s. .61
> 1985 .75 73 .69 .65 n.s. 71
Overall .60 .61 .67 .63 n.s. .62

Table 1.5: Conditional probability of being a stayer (z; = 1)

1.3.5 Model fit

In this subsection, we analyze the ability of the model to fit the data for the choice
of the pair (K7, K3) = (3,2). Again, we focus on the years 1990-1992, because the

results are very similar for the other periods.

Cross-Sections. Usual autoregressive specifications of earnings dynamics have trou-
bles fitting marginal densities because their estimation interferes with the estimation
of the dynamic parameters. For instance, the however rich model of Geweke and

Keane (2000) underestimates the mode of the marginal distributions. This is clearly
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Figure 1.3: Cross-sectional earnings fit for K| = 3

not the case of our model. Figure 1.3 shows that a simple three-component mixture

of normal distributions achieves a remarkable fit.

Earnings Mobility. We then analyze the capacity of the model to fit earnings
mobility as characterized by the yearly dynamics of earnings quintiles. To this end,
we use the estimated model to simulate individual states at dates t + 1 and ¢ + 2
conditional on the observed state at ¢ (=1990). Appendix A.5 details our simulation
procedure. We then compare actual and predicted aggregate transition probability
matrices.

The actual aggregate 1990-1991 transition probability matrix and the predicted

matrix are as follows:

72 .19 .06 .02 .01 70 .20 .07 .02 .01
21 54 .19 .05 .01 ~ 21 54 .20 .04 .01
Pp=1| .06 21 53 18 02 |: Py=| .06 21 53 .18 .02
01 .05 .20 .61 .13 02 .04 .18 .62 .14
00 .01 .02 .14 .83 01 .01 .02 .14 .82
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These two matrices are very close indeed, confirming the ability of the Plackett family
to fit empirical earnings data.

Over two years, unobserved heterogeneity is also found to account properly for
most of the non first-order-Markov state dependence. The actual 1990-1992 transition

probability matrix and the predicted one are, respectively:

.67 .22 .08 .02 .01 63 .24 .09 .03 .01
24 49 22 .04 .01 R 24 43 22 .09 .02
Pyp=1 06 24 50 .18 .02 |; PFPp=| .08 24 43 21 .04
02 .04 .18 .59 .17 .04 .08 .22 .50 .16
.01 .01 .02 .17 .79 .01 .01 .04 17 .77

The fit is slightly worse than before but considerably better than with the homoge-

neous model (i.e. when predicting Py, by Pg; see subsection 1.2.3).

Three-year averages of individual earnings. In this paragraph, we test the
ability of the model to fit the distribution of individual log-earnings averaged over
the three panel dates (we here only use the balanced panel of individuals with non
missing earnings at all three dates). This is a way of analyzing the capacity of the
model to fit the dynamics of earnings levels instead of earnings ranks.

We simulate individual trajectories over years ¢+ 1 and ¢ + 2 conditional on year-¢
earnings. The actual distribution of three-year log-earnings means and its prediction
using simulated data are displayed in Figure 1.4. The model fit is only slightly worse
than for one single cross-section (Figure 1.3).

Moreover, to show the importance of taking mobility into account when simulat-
ing earnings sequences, we also provide in this figure the distribution of three-year
earnings means simulated under the assumption of independence.'> Omitting earn-

ings dynamics has dramatic effects on the distribution of three-year averages. With a

12This corresponds to the use of the independent copula: C*(u,v) = uwv, which is a particular
case of the Plackett copula with parameter n approaching zero. See Appendix A.2.

64



g
B
(=
[+7]
©
w2 N *x,
) X\
’ Qe X
WJ('Z(X‘ e e
(=% o R S R
T T T T
7 8 10
mean log wage
actval 0 ———- predicted
----------- predicted, independent

Figure 1.4: Effect of mobility on the distribution of 3-year log-earnings means (K; =
3)

single cross-section the different components of the earnings mixture are not separate
enough to create multiple modes. When one follows individuals over time, however,
low-wage and high-wage earners accumulate in different intervals with sufficient den-

sities for different modes to appear.

1.4 Changes and composition of earnings inequal-
ity and mobility in France over 1990-2002

Having shown that our model fits individual employment trajectories well, we now use
it to decompose inequality and mobility indices into various components of interest.
We shall compare two alternative specifications: The first specification conditions
earnings and employment dynamics on experience (x;), education and cohort (zy) but
assumes away any other source of individual heterogeneity. The second specification

conditions individual dynamics on experience and unobserved heterogeneity (z; and
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29). Comparing both specifications will tell us how useful it is to allow for unobserved

heterogeneity.

1.4.1 Cross-sectional inequality

Let Y be a random variable and let X, Z be two vectors of conditioning variables.

The variance of Y can be decomposed as follows:

V() = V(EI]X))+E(V(Y]X))
= V(E(Y|X))+E[V(E(Y|X,Z)|X) +E(V(Y|X, Z) |X)]

— VEY|X)+E[V(E(Y|X,2) | X)]+EV(Y|X,2).  (1.4)

Equation (1.4) generically decomposes V(Y) into three components: V(E(Y]X))
is the variance of Y between the individual groups defined by the values of X,
E[V(E(Y|X,Z)|X)] is the variance of Y within individual groups with the same
value of X and between groups defined by Z, and E(V (Y'|X, Z)) is the residual vari-
ance of Y within both X and Z groups. In the application below, X is experience
and 7 is individual heterogeneity. Notice that if X = 1 and Z = z;, the variance
decomposition degenerates into the one computed by Gottschalk and Moffit (1994)
who interpret the between term as the “permanent” component of earnings shocks

and the within term as reflecting the contribution of “transitory” shocks.

Labour earnings. The evolution of cross-sectional earnings inequality over 1990-
2000 is hump-shaped, with a peak around 1995 (the solid line in Figure 1.5; the
interpretation of the dotted curve will be given below). The log-earnings variance
and the ninety-ten percentile ratio both follow the same evolution. Between 1990 and
1995 the variance of employees’ log-earnings increases from .166 to .183 in 1995, that

is a 10% rise.
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Figure 1.5: Evolution of log-earnings cross-section variance (K; = 3; replacement
ratio of 60%)

Table 1.6 provides the log-earnings variance analyses of five estimation samples:
1990-92, 1993-95, 1995-97, 1997-99 and 2000-2002,'3 and Figure 1.6 plots the evolu-
tion of the shares of various between components. First, education explains signifi-
cantly less aggregate variance than unobserved heterogeneity: about a quarter of the
variance is explained by education whereas three groups of unobserved cross-section
heterogeneity explain 50%. Experience alone explains about 7% and 43% remain
unexplained.!* This result clearly shows that allowing for unobserved heterogeneity
can strongly affect the study of earnings inequality, since more heterogeneity implies

that a larger share of cross-section earnings inequality will be transmitted to life-cycle

13D9/D1 is the ninety-ten percentile ratio.

MNotice that thanks to the quasi-independence of z; and z; and to the assumption that the
distribution of log-earnings, ¥, is Gaussian conditional on z; and 2z, the order of the variance
decomposition (X first, Z second or wvice versa) does not matter. The log-earnings variance is
therefore approximately equal to the sum of the variance “explained” by experience plus the variance
explained by heterogeneity plus the residual variance.
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Figure 1.6: Cross-sectional log-earnings variance decomposition (K; = 3)

income inequality. Second, there is a clear decreasing trend in the share explained by
education whereas this declining pattern is less marked for unobserved heterogeneity

(z1). Lastly, business cycle fluctuations does not affect these shares much.

Unemployment propensity. For unemployment risk we repeat the variance de-
composition exercise on the latent variable implicit in the PROBIT model of unem-
ployment probability, forcing the residual variance to be equal to one.!® The results
are displayed in Table 1.7.

The peak of inequality is attained in 1993, which corresponds to the bottom of

15We write Pr{e; = 0|zs,21} = Pr{y; > O|zt, 21} with y} = 2}5., + us and u; ~ N (0,1). We
then compute the different variance components as follows:

V(E(yz|ze)) V (30,) ,
E[V(E(y; |z, 21) [2)] = E[V(230]1))
E(V(yflze,21)) = V(u) =1
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1990 1993 1995 1997 2000

Mean 891 893 891 892 893
D9/D1 2.85 295 3.02 3.02 288
Variance 166 177 183 184 170

Observed heterogeneity model

Between experience .010 .010 .012 .014 .011
Within experience/ Between 2z, .053 .054 .060 .058 .054
Between 2 046 .045 .050 .045 .040
Within z,/Between experience  .017 .019 .022 .027 .025
Within (experience, z) 103 113 111 112 105
Unobserved heterogeneity model, K; = 2
Between experience .009 .010 .013 .014 .012
Within experience/ Between z; .068 .066 .070 .070 .064
Between z; 068 .066 .070 .067 .062
Within z;/Between experience  .009 .010 .013 .017 .014
Within (experience, z;) .089 .101 .100 .100 .094
Unobserved heterogeneity model, K; = 3
Between experience .008 .009 .011 .013 .011
Within experience/ Between 2z; .081 .086 .094 .089 .080
Between z; .081 .086 .093 .088 .079
Within z;/Between experience .009 .008 .012 .014 .012
Within (experience, z;) 077 .082 .079 .082 .078

Notes: zp = education, cohorts, interactions education/cohorts;
z1 = unobserved heterogeneity in cross-sections;
2o = unobserved heterogeneity in copulas.

Table 1.6: Variance analysis of log-earnings cross-sections (employees only)
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the French business cycle bust of the 1990’s. Moreover, there is little difference
between the observed heterogeneity model, and the model with two cross-section
groups (K; = 2): for both specifications, the model explains around ten percent of
the aggregate variance of unemployment risk.

Allowing for a third cross-section group (K; = 3) improves the prediction signif-
icantly: the model now explains almost one third of the unemployment propensity
variance. Furthermore, three groups of unobserved heterogeneity (z;) explain about
20% of the total variance. This is considerably more than the 4-5% two groups can ex-
plain, thereby showing that the third group of cross-section heterogeneity is composed

of workers who have a high propensity of being unemployed.

Labour earnings and unemployment compensation. In the final step of our
analysis of cross-section earnings inequality we intend to measure the potential impact
of unemployment on inequality. To this end, we simulate cross-sections of individual
earnings and unemployment compensation income (with three groups of unobserved
cross-section heterogeneity). For given parameter values (e.g. estimated on the 1993-
1995 panel) we assign to each individual in the panel his most probable unobserved
type (z1,22) given his observations, using the posterior probabilities estimated by
the EM algorithm. Then, we draw an initial employment state and an initial wage
given state variables (experience, education, cohort and unobserved heterogeneity).
If unemployed, we impute a compensation income equal to a fraction of his previous
wage (observed or drawn from the estimated distribution if unobserved).

The dotted line in Figure 1.5 (above) shows the level and the evolution of the vari-
ance of all workers’ log-earnings using a replacement ratio of 60% for unemployment
compensation income, a value close to the ratio computed in OECD publications for

France (Martin, 1996). The solid line plots the series of log-earnings variances for
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1990 1993 1995 1997 2000
Observed heterogeneity model

Total Variance 1.125 1.138 1.124 1.143 1.113
Between experience 053 .070 .071 .072 .040
Within experience/ Between z, .075 .071 .052 .058 .072
Between z 072 .059 .043 .061 .056
Within z,/Between experience  .056  .078 .079 .082  .056
Within (experience, zp) 1 1 1 1 1

Unobserved heterogeneity model, K = 2

Total Variance 1.154 1.125 1.137 1.111 1.094
Between experience 048 .070 .075 .074  .046
Within experience/ Between z; .106  .055 .062 .038  .047
Between z; 092 .058 .050 .053  .046
Within z; /Between experience  .062  .066 .087 .058  .047
Within (experience, z1) 1 1 1 1 1

Unobserved heterogeneity model, K; = 3

Total Variance 1.352 1.468 1.395 1.359 1.334
Between experience 067 119 114 114  .083
Within experience/ Between z; .284  .349 245 .32 .251
Between z; 246 311 249 228  .233
Within z; /Between experience ~ .105 .157  .146  .131  .101
Within (experience, z;) 1 1 1 1 1

Table 1.7: Cross-sectional variance analysis of the latent unemployment propensity
variable

employees. As expected, unemployment risk increases inequality a lot. The evolution
of this (static) measure of employed and unemployed workers’ earnings inequality
is also humped-shaped and shows no trend over the 1990-2002 period. The rise in
inequality between 1990 and 1995 is however more pronounced: with three groups
of unobserved heterogeneity z; and a replacement ratio of 60% the rise in earnings
inequality between 1990 and 1995 is around 23%. Unemployment risk increases in

business cycle busts and therefore contributes more to earnings inequality in busts
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than in booms.'®

1.4.2 Relative earnings mobility

Among the many possible mobility indicators proposed in the literature,'” we se-

lected Spearman’s rho for being both natural in the current framework and simple
to compute. Let X and Y be two random variables with marginal cdf’s FX and FY,

then the Spearman rho between X and Y is the correlation coefficient between ranks

U=FX(X)and V =FY(Y), ie.

ps(X.Y) = p(UV) = \/Viil()lﬁ)U{/‘cj:(V).

We compute a Spearman rho for different values of the heterogeneity vector z =
(20, 21, 22) using the procedure described in Appendix A.6. Table 1.8 shows that the
dispersion of pg essentially originates from differences in unobserved heterogeneity
(21, 22). Education generates very little mobility differences. Experience generally has
a increasing effect on pg of moderate size when compared to unobserved heterogeneity,
but of significant size when compared to education. Besides, Table 1.8 confirms the
analysis of Section 2.5. Higher 25 is unambiguously associated with being a mover,
and thus with more mobility. The effect of z; is less clear as there are more movers
among high-wage individuals (z; = 1) but these individuals are less mobile than
low-wage movers (z; = 2).

The evolution of Spearman rho’s over the nineties displays the same hump-shaped

16To evaluate the sensitivity of this effect to the replacement ratio, we computed the contribu-
tion of unemployment risk to total earnings inequality, for three different replacement ratios: 40%,
60% and 80%. This contribution is computed as the cross-section variance of unemployed workers’
replacement income in proportion to the variance of employees’ earnings and unemployed workers’
replacement income (in log). Unemployment risk explains about 40-50% of the overall log-earnings
variance for a replacement ratio of 40%, about 30% for a ratio of 60% and less than 20% for a ratio
of 80%. This emphasizes how misleading international comparisons of earnings inequality can be if
they do not properly account for unemployment risk.

17See Fields and Ok (1999) for a comprehensive survey on mobility indices.
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1990 1993 1995 1997 2000

Observed heterogeneity model

Overall 861 .903 915 914 .890
Education =1 857 906 911  .909 .890
Education = 2 854 904 919 919 .885
Education = 3 879 895 915 913 .898
Education = 4 870 .893 900 913 .895
Education =5 867 .915 918  .902 .887
Experience =5  .826 .875 .886 .880 .850
Experience =20 .854 .904 912 913 .885
Experience = 35 .889 .913 .934 .929 917

Unobserved heterogeneity model, K = 2

Overall 798 861 .866 .875 847
21 =1 827 866 .863 .848 835
21 =2 707 .859  .868  .887 851
29 =1 919 907 960 911 .886
29 =2 631 794 717 .823 790

Experience =5  .822 .844 .836 .852 .819
Experience = 20 .804 .876 .889 .888 .866
Experience = 35 .846 .866 .879 .882 .894

Unobserved heterogeneity model, K; = 3

Overall 799 828 .829 .844 812
z1=1 803 .851 .860 .839 .822
21 =2 97 825 832 .863 .822
21 =3 554 700 .67  .627 .630
zog =1 900 885 .950 .894 .839
29 = 2 D89 752 662 .TT72 742

Experience =5 .771 .779 716 .753 746
Experience =20 .774 .837 .823 .847 .828
Experience =35 .820 .823 .863 .855 .838

Note: Education code is 1 = “no degree”, 2 = “junior HS”,
3 = “senior HS”, 4 = “some college”, 5 = “college graduate”

Table 1.8: Relative mobility measured by Spearman rho
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form as before. In the context of the French recession of 1993, higher wage inequality
appears positively associated with more inequality in unemployment risk and less
relative wage mobility: there is more cross-section inequality in busts than in booms
and less mobility. This results does not depend on which specification of the empirical

model we use.

1.5 Longitudinal inequality

The aim of this section is to complete the static picture of earnings inequality dis-
played in the preceding section by incorporating into the analysis unemployment risk,
relative mobility and unobserved heterogeneity. To this end, we simulate individual
trajectories over a fixed horizon and compute an intertemporal income utility of the

form
X () URY
ZtT:1 (1+ T)_t

where r is the discount rate, arbitrarily set equal to 10%, R; is year-t labour earnings

v

level or unemployment compensation income, and U is an increasing function (we
use a logarithmic utility in the sequel). The distribution of intertemporal utility then
yields new inequality indices.

A detailed presentation of our simulation strategy is given in Appendix A.5. For
a given set of parameter estimates and for each individual in a three-year panel, we
draw a couple of heterogeneity types (z1,22), an initial employment state and an
initial replacement income for unemployed workers, as indicated in 1.4.1. Then, we
draw subsequent states and earnings using the estimated employment-unemployment

transition probability matrices and copula parameters.
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Figure 1.7: The equalizing effect of income mobility

1.5.1 Evolution

In Figure 1.7, we compare and contrast the evolution of the intertemporal log-earnings
variance for four different specifications of the empirical model: a first version in which
the only variable conditioning the earnings/employment process is experience and the
only dispersion factor is therefore the individual date of entry into the labour market
(the “homogeneous” model); a second version adds education to cohort in the list of
conditioning variables (the “observed heterogeneity” model); lastly, we consider both
versions of the unobserved heterogeneity model with K; = 2 or K; = 3 and with
Ky = 2. We use the parameters estimated from the 1990-1992 panel as they are
representative of all other panels’ estimates.

The first observation we draw from Figure 1.7 is that the more heterogeneity we
allow for the more intertemporal inequality there is. The model with 3 groups of

cross-section unobserved heterogeneity (K; = 3) generates far more inequality than
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the models with observed heterogeneity or the model with only two groups of cross-
section unobserved heterogeneity (K; = 2). Interestingly, we again observe that
setting z; = zp is approximatively the same as constraining the support of z; to
two mass points. This clearly illustrates the importance of allowing for unobserved
heterogeneity in a flexible way.

The dispersion of intertemporal log-earnings decreases with the horizon over which
we average future log-earnings. This is the well-known equalizing effect of mobility.
However, even over very long horizons, there remains a substantial amount of inequal-
ity. For instance, the variance of the discounted sum of log-earnings over a horizon of
twenty years is 70% of the variance of one-year log-earnings when we condition indi-
vidual trajectories on experience and education only (“observed heterogeneity”) and
it is still 80% of the one-year variance for the unobserved-heterogeneity model with
K, = 3 and K, = 2 (see Figure 1.8). In comparison, Gottschalk and Moffit (1994),
who construct permanent income measures by averaging earnings over ten years, find
that the “permanent” earnings variance is equal to two-third of the total log-earnings
variance. The numbers we obtain are robust to changes in the discount rate and the
replacement ratio for unemployed workers’ earnings. Setting the discount rate to zero,
varying the replacement ratio had little effect on the size of the variance reduction for
various horizons. Therefore, mobility might have a weaker equalizing role in France
than in the US.

Lastly, the equalizing effect of mobility does not seem to vary much over the
period. Intertemporal log-earnings inequality changes over time in a similar way
as in cross-section, once unemployment is taken into account (see Figure 1.8). In
particular, intertemporal earnings inequality also shows a peak around 1995. This

was to be expected as we already saw that earnings inequality, unemployment risk

76



w

&
o]
(&)
c
=
& /\/\/\/\
> o
c
(=] S~
k3] /0N 7 N

~
$ // \\ // \\// \\\ /// \\
8 /// N nd » >SS -
e ==
o w
u— 00 7
5 R
@ e
] P .
< el
) BaN S T e .
sy,'
@ oo
T T T T T T
1990 1992 1994 1996 1998 2000
year
3years ——e—- 5 years
----------- 10 years

Figure 1.8: Intertemporal log-earnings variance evolution in proportion to one-year
log- earnings variance computed for various time horizons (unobserved-heterogeneity
model with K; = 3, K, = 2). The variance of one-year log-earnings is obtained by
simulation, imputing a compensation income equal to 60% of previous earnings to the
unemployed.

and immobility increase in business cycle busts. Note that more heterogeneity changes
the level of inequality but does not affect time changes: for example, for a ten-year
horizon, all models find about 20-25% rise in variance and about 10% rise in the 90-10

percentile ratio between 1990 and 1995.

1.5.2 Variance analysis

We now address the issue of the respective importance of each dispersion factor

(20, 21, 22) in determining the variance of intertemporal income utility. Let Z denote
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a dispersion factor. One can write:

SEEEAY _ 5 UR)
(m m> M V(;m) (1.5)

~ U(R) —~ U(R)
- V(E@(w”))+E<V(§<l+r>t'z>>

~”

between-Z within-Z

_ (2; U(R,) |Z )j

between 7

t=1

L V[U(R,)|Z] Cov [U(R,),U(Ry)|Z]
%(ZW)J”E(Z (1) )

£t
-~

S

~”

within-Z, cross-section within-Z, dynamics
Equation (1.5) shows that the intertemporal log-earnings variance V(1) is the sum
of three components. The first component (between) reflects permanent inequality
determined by the dispersion of individual heterogeneity (Z). The residual variance
(within) is itself the sum of two terms. One term is the contribution of cross-section
inequality, or the part of the variance within homogeneous groups which would subsist,
were there be no autocorrelation in individual ranks. This term does not vanish for
large T because of the non-zero discount rate.'® Yet, for reasonable values of discount
rates and sufficiently large horizon values, this effect should be small. We call it
residual transitory. The second term is the pure contribution of earnings dynamics.
We call it persistent.

Notice that, if Z comprises all dispersion factors, i.e. Z = (x420,21,22), then

8We use a 10% discount rate. The Law of Large Numbers does not apply and the limiting
intertemporal utility is a non degenerate random variable. Indeed, let (a:t)tT:l be an i.i.d. sequence
S ptw

of r.v.’s, then
’ ZT=1 pt

converges a.s. to a r.v. with mean Ex; and variance

T + _
Km V<2t=1”t> _ 1=ty

T=00 EtT:1 pt 1+p
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E[U(R:)|Z] = E[U(R:)|vt,21) and V[U(R,)|Z] = V][U(R:)|x4, 21]. Hence, pure mobil-
ity heterogeneity (23) does not contribute to permanent and residual transitory effects.
The influence of z; on intertemporal inequality is thus embodied in the persistent term

of the above decomposition.

Results. Table 1.9 displays the results of the preceding intertemporal log-earnings
variance analysis. First, one remarks that the between-cohort component of the vari-
ance of the discounted sum of log-earnings over ten years accounts for less than five
percent of the aggregate variance. This term is the only source of “permanent” inequal-
ity in the homogeneous model (experience is the only covariate). In this specification,
the main part (around 75%) of intertemporal log-earnings inequality is therefore per-
sistent. As before, the model with observed heterogeneity and the model with unob-
served heterogeneity and K; = Ky, = 2 give similar results. For these two models,
heterogeneity explains about 40% of the intertemporal variance, the rest being divided
into persistent (around 45%) and residual transitory inequality (around 10%). If a
third group of cross-section heterogeneity is allowed for, 60% of the variance is now
permanent (explained by unobserved heterogeneity), showing again the importance
of not constraining too much the support of the distribution of z;.

However, despite a long horizon and a relatively low discount rate, heterogene-
ity still explains a relatively small fraction of the intertemporal log-earnings variance
(60% wversus 50% in the case of a cross-section of log-earnings). Without being non-
stationary, the estimated process thus shows a high level of persistence. The “residual
transitory” component rapidly wears out, as illustrated by Figure 1.9. However, since
we allow for a non-zero discount rate, this effect never vanishes completely and even-
tually levels off to 7%. When increasing the time horizon, the “persistent” component

of the intertemporal variance rapidly substitutes for this “residual transitory” com-
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ponent of inequality. After ten years, the “persistent” component (the last term of

equation (1.5)) amounts to one third of the variance.

1990 1993 1995 1997 2000

Homogeneous model (only experience matters)

Variance 125 142 150 145 130
Between cohort .004 .004 .005 .004 .004
Within cohort/Residual transitory 021 .022 .023 .022 .020
Within cohort/Persistent 100 116 .122 119 .106
Observed heterogeneity model
Variance 148 166 175 172 (155
Between cohort .006 .006 .006 .006 .004
Within cohort/Between education 059 .063 .066 .062 .058
Within z,/Residual transitory .016 .017 .017 .017 .015
Within z,/Persistent .067 .080 .086 .087 .078
Unobserved heterogeneity model, K| = 2
Variance A56 0 173 182 174 156
Between cohort .006 .006 .007 .007 .005
Within cohort/ Between z; 068 .066 .072 .072 .066
Within cohort/Within z; /Residual transitory .013 .016 .016 .015 .014
Within cohort/ Within z; /Persistent .069 .08 .087 .080 .071
Unobserved heterogeneity model, K; = 3
Variance A78 0 .220 0 226 219 185
Between cohort .007 .006 .008 .008 .005
Within cohort/Between z; 101 136 135 133 111
Within cohort/Within z; /Residual transitory .012 .012 .014 .013 .013
Within cohort/ Within z; /Persistent 058 .067 .069 .065 .056

Table 1.9: Variance decomposition of intertemporal log-earnings over a 10-year hori-
zon

1.5.3 Counterfactual analysis

To complete our understanding of the influence of unobserved heterogeneity on lon-

gitudinal inequality, we simulate individual trajectories under various heterogeneity
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Figure 1.9: Intertemporal log-earnings variance decomposition (unobserved hetero-
geneity, K; = 3)

assumptions. The different panels in Table 1.10 correspond to different horizons
(from one to fifteen years). In each panel, the first row displays the intertemporal
log-earnings variances obtained for the homogeneous model (the only source of het-
erogeneity is experience). The three other rows display the variances resulting from
three counterfactual simulations: first, we allow for unobserved heterogeneity (with
K, = 3, Ky = 2) in the employment-unemployment process, then, in the marginal
distribution of employees’ earnings and, lastly, in relative earnings mobility.

We find that unobserved heterogeneity increases earnings inequality essentially
through marginal earnings distributions. This is especially true for short horizons.
For example, over one year, using the parameters estimated from the 1995-97 panel
instead, we find that the difference between the variance obtained from the homo-
geneous model and the one obtained in the model with unobserved heterogeneity

(20%) is almost entirely due to heterogeneous marginal earnings distributions. Over
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15 years, the overall variance increase due to unobserved heterogeneity is of 60%.
This overall effect is decomposed as follows. Allowing for unobserved heterogeneity
in the employment-unemployment process increases longitudinal inequality by 13%.
On the top of that, adding unobserved heterogeneity in marginal earnings distribu-
tions increases inequality by an additional 35% (60% of overall), and relative mobility

yields an increment of 12%.

1990 1993 1995 1997 2000

1 year
Homogeneous 194 214 223 222 199
+Unemployment .196 .214 .224 .224 .200
+Cross-section 222 .264 269 267 231

-+Mobility 222264 269 267 231
D years
Homogeneous 150 170 176 171 155

+Unemployment .153 .173 .182 .179 .161
+Cross-section A88 224 230 227 195

-+Mobility 191 234 240 231 .198
10 years
Homogeneous A25 0 142 150 145 130

+Unemployment .132 .149 .163 .156 .138
+Cross-section A74 0 207 211 212 180

-+Mobility A78 220 226 219 185
15 years
Homogeneous A11 0 1260 136 131 116

+Unemployment .123 .136 .153 .144 .126
+Cross-section 166 197 200 206 172
+Mobility 72 212 216 217 180

Table 1.10: Counterfactual effect of heterogeneity on longitudinal inequality

Lastly, in order to determine which component of the various parameters is instru-
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mental in determining inequality changes over time, we perform a series of dynamic
counterfactuals, simulating the model with unobserved heterogeneity (K; = 3, Ky =
2) for different dates, imposing some of the parameters to be equal to their 1990-92
value.

In Table 1.11, each panel corresponds to a different horizon. In each panel, the
first row shows the variance of intertemporal log-earnings when individual trajectories
are simulated using the actual distribution of zy for each year and with all other pa-
rameters fixed at their 1990-92 value. Remember that the distribution of unobserved
heterogeneity (21, 22) conditional on 2y was constrained, in the estimation, to be the
same throughout the decade. The only composition effects are thus those embodied
in changes in the distribution of education and age in the population. The second
row uses the correct parameters of the employment-unemployment process. The third
row adds the correct parameters of cross-section earnings distributions. The fourth
row corresponds to a simulation using all estimated parameters in every year.

For all horizons, we detect very little composition effects. The other effects are
of small size and are thus difficult to measure precisely. Yet, marginal earnings dis-
tributions seem to be driving the main part of time changes. For example, over
one year, progressively substituting the parameters estimated with the 1995-97 panel
for those estimated with the 1990-92 panel, we find that changing the employment-
unemployment process increases longitudinal log-earnings inequality from .226 (after
accounting for composition effects) to .238, i.e. by 5%. On the top of that, chang-
ing marginal earnings distributions increases inequality by an additional 14%, and
relative mobility contributes to virtually nothing. Overall, the 1995-97 parameters
augment the variance by 19%. Over 15 years, we find, respectively, 5%, 8% and 4%

and an overall effect of 17%.
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1990 1993 1995 1997 2000
1 year
Composition 222224 226 .230 .228
+Unemployment .222 .236 .238 .245 .228
+Cross-section 222 .264 269 267 .231
+Mobility 222 .264 269 267 231
D years
Composition 191 195 191 198 .193
+Unemployment .191 .202 .196 .206 .194
+Cross-section 191 221 237 231 .201
+Mobility 191 234 240 231 198
10 years
Composition A78 179 7T 183 17T
+Unemployment .178 .184 .18 .192 .178
+Cross-section A78 211 218 215 187
+Mobility A78 220 226 219 185
15 years
Composition A72 0 172 170 176 171
+Unemployment .172 174 178 .185 .171
+Cross-section A720 204 209 209 182
+Mobility A72 0 212 216 217 180

1.6 Conclusion
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Table 1.11: Counterfactual effect of structural change in the model parameters -
Model with unobserved heterogeneity (K; = 3)

In this chapter, we develop a new methodology to analyze earnings inequality in a
dynamic context. We construct a model of earnings dynamics with unobserved het-
erogeneity which is consistent with the literature on earnings mobility as we model the
dynamics of individuals’ positions or ranks within cross-section distributions instead
of the dynamics of earnings levels. To make this approach tractable when only short
panel data are available to the researcher and in the presence of unobserved hetero-

geneity, we use the statistical tool of copula. Since we model unobserved heterogeneity



in a discrete way, the EM algorithm becomes a natural device for estimation. We es-
timate the model using this technique on data drawn from the French Labour Force
Survey. The model is found to fit the data very well.

We use our model to study earnings and employment inequality in France over
the 1990-2002 period. We find rather small changes in earnings inequality over that
period. Earnings inequality, unemployment risk and immobility seem to increase in
business cycle busts and to decrease in booms. These three risks together generate
a 25% rise in the variance of intertemporal log-earnings between 1990 and 1995,
compared to a 10% rise in the cross-section variance.

We also show how to decompose earnings inequality into separate permanent,
transitory and persistent components. The variance of intertemporal log-earnings
remains a very significant share of the variance of one-year log-earnings, whatever
the horizon over which they are computed (80% in the limit). Moreover, about 60%
of the variance of intertemporal log-earnings is due to individual heterogeneity (per-
manent inequality) and 33% is persistent, leaving a mere 7% to residual transitory
variance. Counterfactual analysis allows to dissect the role of heterogeneity in deter-
mining longitudinal log-earnings inequality. By comparing a virtual economy with no
other individual heterogeneity but age differences to different economies with various
degrees of heterogeneity, we find that heterogeneity in cross-sectional log-earnings dis-
tributions accounts for 60% of the computed rise in longitudinal inequality and that
the remaining 40% are evenly split between unemployment risk and relative earnings
mobility.

Copulas thus seem to play well the role we assigned them, i.e. reducing the
dimension of the vector of parameters necessary to fit earnings dynamics. It remains

to evaluate if they outperform or not the classical linear ARIMA models. The data
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we use do not permit the comparison and we therefore leave this evaluation to further
study. But it would be useful to know, in particular, whether the MA(1) error that
is usually detected in autoregressive models of log-earnings levels does not come from
misspecifying the nonlinear transformation of earnings (namely, the logarithm) or
whether it really is in the data. In the absence of clear empirical evidence for linearity,

copula models offer an appealing alternative.
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Chapter 2

The Pervasive Absence of
Compensating Differentials
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2.1 Introduction

In theory, non wage job characteristics (e.g. type of work, working conditions, job
security) are potential determinants of wage dispersion and labor market turnover (see
Rosen, 1986). However, these insights lack empirical support as their confrontation
with the data has not led to clear-cut conclusions. A prominent example is the mixed
and sometimes conflicting estimates of Marginal Willingness to Pay (MWP hereafter)
for these amenities. The first purpose of this chapter is to estimate workers” MWP
for job attributes by an original method based on job-to-job transitions. Our second
goal is to provide an explanation for the conflicting results found in the literature on
compensating wage differentials.

In a perfectly competitive labor market, there must exist positive wage differen-
tials for disamenities (Smith, 1976). The literature on hedonic models, initiated by
Rosen (1974, 1986), provides a relevant theoretical framework for the analysis of these
compensating differentials. In these models, perfect competition implies that work-
ers’ preferences for job attributes translate one-to-one into wage differences. Thus,
MWP can be estimated by cross-sectional hedonic wage regressions, as Rosen (1974)
proposes.? However, this method has not yielded strong empirical evidence of com-
pensating differentials. Typical estimates in this literature, starting with Thaler and

Rosen (1975), are of small order of magnitude, often less than five percent of the

I'We should here mention that these issues are not specific to labor economics. For instance,
estimating the willingness-to pay for environmental amenities (such as air quality) has also motivated
many articles in urban economics (e.g. Roback, 1982, or more recently Chay and Greenstone, 2005).
In the conclusion, we shortly discuss the parallel between some recent developments in this literature
(Bayer et al., 2005) and our approach.

2Rosen’s complete proposal involves a two-step method, in which workers’ preferences and firms’
technology are estimated in a second step. Full identification of general equilibrium hedonic models
under perfect competition faces many obstacles (Brown and Rosen, 1982). This task has been
recently tackled by Ekeland et al. (2002, 2004) and Heckman et al. (2005). In this chapter, we
do not pursue full identification of the model as we are mainly interested in workers’ MWP for
amenities.
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wage, if not insignificantly different from zero or wrong-signed. Correcting for en-
dogeneity and heterogeneity biases using cross-sectional (Goddeeris, 1988, Kostiuk,
1990, Daniel and Sofer, 1998) or panel data (Brown, 1980), several studies have found
compensating differentials in some specific cases.® Still, the general picture of the liter-
ature based on hedonic regressions is not one of systematic evidence of wage/amenity
compensation.

Labor market frictions can provide an explanation for the rather inconclusive
findings of hedonic wage regressions. If searching for job offers is costly and sub-
ject to incomplete information, hedonic prices and workers” MWP need not coincide.
Therefore, low wage/amenity correlations must not be interpreted as reflecting weak
preferences for job attributes. Hwang et al. (1998) emphasize this insight in the con-
text of an on-the-job search model with heterogeneous firms. Lang and Majumdar
(2004) reach the same conclusion within a non sequential search framework where
firms and workers are homogeneous. This concern has triggered a new empirical ap-
proach to estimate workers” MWP, which has led to strikingly different results. In an
innovative study, Gronberg and Reed (1994) derive a simple relation between work-
ers’ MWP and job hazard rates. Using job duration data, they estimate high and
significant MWP for two non wage attributes— measuring several aspects of working
conditions —out of four.* Subsequently, Van Ommeren et al. (2000) and Dale-Olsen
(2005) obtain MWP estimates ranging around one third of the wage, for commuting
and safety respectively. Moreover, hedonic regression estimates based on the same

data yield a much smaller wage/amenity correlation, in line with previous evidence.

3For instance Goddeeris (1988) looks at lawyers’ choice to work in the public or private sector,
Kostiuk (1990) studies workers’ compensation for working on a night shift, and Daniel and Sofer
(1998) focus on several job attributes for unionized and non unionized workers.

4An early contribution by Herzog and Schlottmann (1990) makes use of workers’ mobility between
industries to estimate workers’ MWP for safety.
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Although search frictions are a likely explanation for the contrast between cross-
section and job duration results, there has been no attempt to analyze these differences
in a single framework. We here intend to reconcile the pervasive absence of compen-
sating differentials in cross section with high MWP for amenities, as estimated from
workers’ job mobility decisions.

To do so, we write and estimate a dynamic model of wages, amenities and indi-
vidual labor market transitions. Job-to-job transitions and their wage and amenity
outcomes play a key role in our analysis. The main ingredient is the modelling of work-
ers’ voluntary decisions to move to a new job or stay in their current job. Individuals
value jobs according to their wages and non wage characteristics. Consequently, when
taking their job change decisions, they trade off wage and amenity offers according
to their MWP for the various amenities. This behavior tends to create a negative
wage/amenity correlation posterior to job change.

However, workers’ mobility decisions are subject to partly stochastic transition
costs, that we model as a random term in the job change equation. This term aims at
capturing differences in “true” mobility costs among workers as well as heterogeneity
in opportunities to change job and search behavior. Therefore in the model workers
cannot move “freely” across jobs. We show that this feature implies that workers’
MWP for amenities do not necessarily translate into compensating wage differences
posterior to job change. The link between workers’ preferences and the observed
wage/amenity correlation is made explicit in a structural relation which emphasizes
the role of heterogeneity in mobility costs. This relation also involves the correlation
between wage and amenity offers, generated at the firm’s level. In the model, this
demand-side effect is exogenous. Estimating a general equilibrium model is out of the

scope of this chapter.
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The model thus rationalizes the evidence found in the literature. Even if workers
value job characteristics significantly (if MWP are high), there can be no compensat-
ing wage differences between jobs with distinct amenities if mobility costs are highly
heterogeneous. Then, if the demand-side effect reflecting wage/amenity correlation
in job offers is not sufficiently negative, regressing wages on amenities for a sample of
job changers will yield a correlation very far from the true MWP.

The identification and estimation of the model’s parameters is challenging. First,
we need mobility decisions to be as little constrained as possible, so that they reveal
individual preferences. Second, as rejected job offers are not observed, we have to
deal with selection issues. We use different types of labor market transitions to treat
these two problems. Our data allow us to isolate transitions to a “better or more
suitable job”, which we assume to be voluntary and to reveal individual preferences.’®
Then, to identify the wage/amenity offer distribution, we use one or several types of
constrained transitions. Doing so, we adopt a method inspired from the treatment
effects literature, where the endogeneity of a “treatment” (here voluntary mobility)
is corrected for by using suitable control groups. Our approach depends on the exo-
geneity of constrained mobility. As our data do not permit to precisely discriminate
among constrained transitions, we address the concern that the exogeneity assump-
tion might be violated. In the absence of a convincing instrument for job mobility,
we proceed to several changes in the definition of constrained mobility and check the
robustness of the results with respect to these variations.

We complete the picture by incorporating two sources of unobserved heterogene-

°In a recent contribution, Villanueva (2005) uses a similar definition of voluntary mobility to
derive bounds on the “market price” of non wage attributes, correcting for the endogeneity of volun-
tary transitions. The main difference with our work lies in the considering of workers’ selection into
jobs. While Villanueva treats selection as a source of bias, we claim workers’ mobility choices to be
informative on their preferences.
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ity. Past literature has argued that if workers are heterogeneous with respect to
their productive characteristics, then hedonic regression coefficients can be strongly
biased (Hwang et al., 1992). We make use of the panel dimension of our data and
extend Brown’s (1980) approach in order to control for job, rather than individual,
fixed effects. We model the wage process as depending on unobserved (“productive”)
job specific characteristics. We also incorporate a job-specific effect common to all
amenities and independent of the wage. This second heterogeneity is motivated by
the nature of the amenity variables we use, which consist of self-reported measures of
satisfaction with several dimensions of the job. In line with Duncan and Holmlund
(1983), we think that such indicators may suffer from substantial biases, of a more
“subjective” nature.

We then estimate the model on European data from the European Community
Household Panel (ECHP) for the years 1994-2001. We study nine countries (Austria,
Denmark, Spain, Finland, France, Ireland, Italy, the Netherlands and Portugal) and
allow for five amenities simultaneously. The empirical results neatly illustrate our
discussion of the relationships between wages, amenities and job mobility. We find
positive MWP for most job attributes in all countries. Our estimates are systemati-
cally significant for at least two amenities: type of work and job security. The MWP
for these characteristics even range around one third of the wage. However, both the
wage and amenities account for a small share of the variance of mobility decisions. We
interpret this result as evidence of heterogeneity in mobility costs. When combined
with the MWP, we find very small wage differentials posterior to job change. These
findings are robust to changes in the model’s assumptions.

The outline of the chapter is as follows: we first present our data and compute

several descriptive statistics in Section 2.2. In Section 2.3, we present the model and
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emphasize the link between MWP and hedonic prices. Identification and estimation
are discussed in Section 3.2 while Section 2.5 is devoted to estimation results and

robustness checks. Lastly, Section 2.6 concludes.

2.2 Job mobility, wages and amenities: First em-
pirical evidence

In this section, we conduct a simple descriptive analysis of a multi-country sample
of individual transitions on the labor market. This allows us to emphasize a number
of salient facts about workers’ mobility, wages and non wage job characteristics that
will motivate our study. First, we present the data and describe the specific variables

we will use for the analysis of job mobility and amenities.

2.2.1 The ECHP

We use the European Community Household Panel (ECHP). The ECHP is a panel of
ex-ante homogenized individual data covering 15 countries from 1994 to 2001. Each
household is interviewed once a year and every individual present in the initial sample
is followed over the eight waves. Each observation consists of a rich set of individual
characteristics, such as age and gender, together with standard information on the
present job: wage, date of start, etc... Two groups of variables are especially relevant
to our analysis: the nature of job-to-job transitions, and satisfaction variables with

various non wage characteristics.

Classifying job mobility: Our approach uses job-to-job transitions to identify
workers’ preferences. As emphasized in the introduction, constrained job change may
imperfectly reveal these preferences. To discriminate between various degrees of mo-

bility constraints, we use a variable which presents the reason why the individual has
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stopped working in her previous job. The twelve possible answers are the following:

1 obtained better/ more suitable job | 7 looking after old, sick, disabled persons

2 obliged to stop by employer 8 partner’s job required move to another place
3 end of contract/ temporary job 9 study, national service

4 sale/ closure of own or family business | 10 own illness or disability

D marriage 11 wanted to retire or live off private means

6

child birth/ need to look after children | 12 other

Every answer, except 2, 3 and 4, could be thought of as a voluntary quit since the
worker has not been laid off. However we consider answers 5 to 12 (when job-to-job
mobility is caused e.g. by a marriage or the birth of a child) as a sort of constrained
mobility which may not reveal the individual’s preferences over jobs. In this chapter,
we define voluntary mobility as the transitions from one job to a “better or more
suitable” one (answer 1). All the other transitions (answers 2 to 12) are constrained.

It is apparent from the twelve answers that a constrained transition can corre-
spond to very different economic events. We define displacements to be transitions
corresponding to answers 2 to 4, and cluster all the other answers (5 to 12) into
the category of partially constrained mobility. Athough imperfect, the disaggrega-
tion of constrained transitions into these two subcategories will allow us to test the

robustness of our results.

Amenities: Among the numerous job characteristics available in the ECHP is a set
of job amenities. These variables give the subjective valuation of the worker with a

given aspect of her job. The typical question is:
How satisfied are you with your present job in terms of (amenity)?

and individuals use a scale from 1 (“not satisfied at all”) to 6 (“fully satisfied”) to

indicate their degree of satisfaction. The question remains the same for the following
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job characteristics:

-TY . type of work

- CD : working conditions

-WT : working times

-DI  : distance to job/ commuting
-SE  : job security

For the analysis to be clearer and the estimation to be more tractable, we will cluster
the answers into two levels of satisfaction: an amenity equal to 1 (answers 5 and 6) will
mean that individuals are actually satisfied and 0 (answers 1 to 4) that they are either
unsatisfied or neutral. This clustering is consistent with the literature following Rosen
(1986) where amenities take two values: zero for “bad” jobs, one for “good” jobs.®

The interpretation of these subjective variables calls for prudence. In the next
section, we model each satisfaction variable as a noisy measure of the true amenity
on the job. More precisely, we assume that a worker claims to be satisfied with an
amenity if the true amenity exceeds a job-specific threshold. We let this threshold
depend on observable and unobservable characteristics in order to account for the
subjective nature of the data. This approach is close to Clark and Oswald (1996),
where workers’ satisfaction with their job results from the comparison of their wage
with a reference, or “comparison”, level. However, contrary to Clark and Oswald
(1996), our goal is not to model overall job satisfaction, but satisfaction with specific
dimensions of the job.

Even though the ECHP is an ex-ante harmonized panel, some variables (especially
amenities) may not be available in every wave and/or country. In particular, the

survey only lasts three years in Germany and the United Kingdom. Therefore we

6Tt is common practice in the analysis of subjective data to estimate ordered models, such as
ordered PROBIT (see Senick, 2003, and the references therein). Still these methods often involve
the arbitrary clustering of some categories (typically the lowest levels of satisfaction). We also
estimated our model for “good” amenities corresponding to levels 4, 5 and 6. The results remained
qualitatively similar.
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restrict our analysis to countries where amenities are available and rarely missing (the
non-response rate is less than 1%). In this version of the chapter, we focus on Austria,
(AUS), Denmark (DNK), Spain (ESP), Finland (FIN), France (FRA), Ireland (IRL),
Italy (ITA), the Netherlands (NLD) and Portugal (PRT). These nine countries cover
the scope of the different mobility patterns one can encounter in Europe, from rather
static labor markets in some Latin countries (France, Italy and Portugal) to markets

with a high turnover (Denmark).

Individual Characteristics: We lastly present the individual characteristics we
use in the subsequent analysis: “age” and “age®” are continuous variables; “male” is a
gender dummy, which equals 1 for men; “married” indicates whether the individual
is married (= 1) or not; and “kid” equals 1 if the individual has children under 12.
Finally, “education” is a variable taking three values, from 1 (less than second stage

of secondary education) to 3 (third level education).

2.2.2 Sample description

We merge every two consecutive waves of the ECHP and append the seven resulting
tables in order to have a sample containing an ez-ante and an ez-post situation (re-
spectively denoted as ¢ and t + 1) for every individual/year in the survey. Thus, a
worker present in the eight waves is associated with seven observations, each observa-
tion containing her job status (employment, wage,” amenities, etc...) and individual
characteristics (age, marital status, etc...) both at date ¢ and ¢ + 1. Therefore an
individual appears up to seven times in the data and for each observation she can

experience one of the following transitions:

"We use the logarithm of monthly wages detrended on year dummies.
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stay employed in the same job

stay non employed

make an non employment-to-job transition
make a job-to-non employment transition
make a constrained job-to-job transition
make a voluntary job-to-job transition

Since we do not focus on labor participation, we cluster unemployment and in-
activity. Moreover we define employment as paid jobs that last more than 15 hours
per week.® We explain in Appendix B.1 how we constructed the samples (one per
country).

Table 1 shows the main descriptive statistics on our samples. The first two rows
present the number of individuals and the number of actual ez-ante/ez-post obser-
vations. The next six rows give the proportions of each type of transition (except
the ones from non employment to non employment). We note that individuals tend
to stay in their job. The corresponding probability ranges around two thirds in all
countries, which leads to an average job duration of three years. Yet, there is more
dispersion across countries in the probability of making a job-to-job transition, which
ranges between four and ten percent of total transitions. In particular, voluntary
job-to-job mobility is significantly more frequent in Denmark (4.2%) than in Italy
(1.3%). In all cases, though, these amount to a small proportion of transitions on the
labor market.

The last three rows of Table 1 are important motivations for our analysis. We
can see that most voluntary job changes are associated with a wage gain whereas
job stayers and constrained job movers more frequently experience a wage cut. This
suggests that the wage influences job change decisions. Yet, the proportion of wage

increases ranges from only 60% (in France) to 73% (in the Netherlands) of voluntary

8Self-employed people are likely to differ from other workers in many ways. In particular, lower
risk aversion can cause much different career profiles. In this chapter we assume away this issue,
and drop the self-employed from our samples.
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job-to-job transitions. Up to 40% of voluntary job movers experience a wage cut
even if the new job is said to be “better or more suitable” than the previous one.
If at least part of these transitions with wage cuts are not spuriously generated by
measurement error, these statistics suggest that the wage is not the only characteristic

workers value, and we should look at other job characteristics to explain voluntary

mobility.?>10
Table 1: Sample description
AUS DNK ESP FIN FRA IRL ITA NLD PRT
individuals 4100 4010 7531 4430 7513 370 7799 6492 6124
observations 18 455 20025 37683 16 786 35571 16 127 42527 31892 32 877
Transitions :
in % of all obs.
- non emp.-to-job 959 1306 3798 1511 2464 1565 2713 2053 2211
5.2% 6.5% 10.1% 9.0% 6.9% 9.7% 6.4% 6.4% 6.7%
- job-to-non emp. 1 002 1133 2685 1083 2214 959 2289 1321 1560
5.4% 5.7% 7.1% 6.5% 6.2% 5.9% 5.4% 4.1% 4.7%
- stay in same job || 13 382 13 070 20349 11028 24233 9683 27889 21534 22624
72.5% 65.3% 54.0% 65.7% 68.1% 60.0% 65.6% 67.5% 68.8%
- job-to-job 933 2058 2677 962 1429 1140 1558 2296 1646
5.1% 10.3% 7.1% 5.7% 4.0% 7.1% 3.7% 7.2% 5.0%
- voluntary j-t-j 436 849 754 419 603 544 541 988 672
2.4% 4.2% 2.0% 2.5% 1.7% 3.4% 1.3% 3.1% 2.0%
- constrained j-t-j 497 1209 1923 543 826 596 1017 1308 974
2.7% 6.0% 5.1% 3.2% 2.3% 3.7% 2.4% 4.1% 3.0%
% of wage
increases among:
- vol. j-t-j 63.3% 61.2% 64.5% 69.7% 60.5% 68.8% 60.4% 73.3% 66.1%
- constr. j-t-j 54.2% 51.4% 54.6% 54.3% 53.2% 53.9% 47.1% 64.8% 51.6%
- stay in same job || 52.1% 47.2% 53.5% 52.2% 54.5% 52.1% 48.2% 59.7%  48.1%

To investigate further this issue, we report in Table 2 the conditional transition
probabilities for the various amenities and types of transitions (voluntary, constrained
or within-job). To save space, we show the probabilities for Denmark only, the results

being qualitatively similar in all countries. For every amenity and transition type,

9Changes in hours worked provide a possible explanation for voluntary quits associated with wage
cuts. However, less than 10% of these transitions correspond to changes from full-time (defined as
more than 30 hours per week) to part-time work in the three countries we consider.

10This chapter focuses on non wage characteristics. Wage growth expectations are an alternative
explanation for job transitions associated with wage cuts (e.g. Postel-Vinay and Robin, 2002).
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the number on the left (P(1|0)) is the probability that a transition starting with a
low level of satisfaction with the amenity is associated with an increase in satisfac-
tion. Conversely, the number on the right (P(0]1)) is the probability that a transition
starting with a high level of satisaction goes with a fall in satisfaction. As seen in
Table 2, P(1]0) is higher for voluntary job changers than for constrained ones while
the converse is true for P(0|1) (although the difference between the two probabili-
ties is smaller). This suggests that voluntary job change is associated with greater
average gains in satisfaction than constrained mobility. Job stayers show a marked
contrast with job changers, as they present both fewer increases and fewer decreases
in satisfaction with the various amenities.

Table 2: Conditional probabilities ( P(1{0) P(0|1) ) in Denmark

Amenities TY CD WT DI SE
vol j-t-j (68 .15) (61 .27) (.63 .24) (.50 .32) (.54 .25)

constr. j-t-j || (57 .29) (.51 .29) (57 .24) (50 .32) (43 .32)

stay in job | (.37 .18) (.39 .21) (42 .13) (.25 .11) (44 .15)

These few descriptive statistics tend to confirm the idea that the wage is not the
only determinant of workers’ voluntary mobility and that non wage characteristics

are likely to enter job valuation. We now proceed to a formal test of this intuition.

2.3 A model of wages, amenities, and job mobility

This section is divided into two parts. First, we develop a model of individual tran-
sitions on the labor market where workers” Marginal Willingness to Pay for job char-
acteristics can influence their job change decisions. Then we focus on the part of the
model which links workers” MWP to the correlation between wages and amenities

posterior to job change, emphasizing the key role played by mobility costs.
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2.3.1 The model

Voluntary job mobility is the keystone of the model. Still, we also allow for transitions
into and out of non employment, together with constrained job changes. In the
next section, we shall argue that these transitions can be informative to deal with
the endogeneity of voluntary job mobility. We here present the model with a single
amenity, for clarity. The extension to multiple amenities, which we use for estimation,
is given in the Appendix. Also, for reading convenience, we summarize in Figure 1
the sequence of shocks faced by workers between two consecutive periods, which we
now present in detail.

In the model, every match between a worker and a job is described by a pair
0 = (0, 05), where 6, is a productive characteristic and 65 is a non productive aspect
of the match, standing for the worker’s subjective satisfaction with her job. Vector x

represents individual characteristics.

Wages and amenities within jobs: Let a worker be employed at datet = 0,1, ...,
and let 0 be the characteristics of the worker/job match. We assume that the match
has already lasted for at least one period. The special case of starting jobs will be
addressed at the end of this subsection together with the realization of new matches’
characteristics. At the beginning of period ¢, the wage y; and the binary non wage
characteristics a; € {0, 1} of the job are drawn, given § and z. The amenity is drawn
according to:

a; = Hagz + 51,01 + 8oy + ug > 0} (2.1)

Simultaneously, the (logarithm of the) wage ¥, follows from the hedonic equation:

Yi = pag + oy + [,01 + Uy, (2.2)
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Figure 2.1: The worker’s sequence of decisions between ¢ and ¢ 4 1
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It is convenient to think of equation (2.1) as a reduced form. The “objective” at-
tributes of a given job are supposed to depend on common characteristics (6, x), and
transitory shocks (uy:, ug). Then, amenities are evaluated by the worker in terms
of satisfaction, by comparison with a subjective threshold above (resp. under) which
a; = 1 (resp. a; = 0). This threshold depends on z, #;, and on the second (non
productive) component of the quality of the worker/job match 6,. Then, equation
(2.1) mixes the “objective” amenity and the “subjective” interpretation of the amenity
in terms of satisfaction. Moreover, as shocks u,; are transitory, amenities are i.i.d.
within jobs.

Then, parameter p in the hedonic equation (2.2) is the implicit price of the amenity.
Equations (2.1)-(2.2) can follow from the negotiation of the employment contract
between the worker and the firm, given the characteristics of the match. We do not
model this process and thus treat the parameters in (2.1)-(2.2) as exogenous.

Once drawn, the wage and amenity are valued by the worker, according to the
instantaneous indirect utility function v(y;, a;, ). Then she can experience several

types of transitions.

Adverse shocks: First, the worker can be constrained to move to another job, or
forced back to non employment. Both events happen with exogenous probabilities
depending on x and 6.

If the worker has experienced a constrained transition, her new wage/amenity pair
(y©, a) is drawn from a specific distribution given # and z, similar to (2.1)-(2.2) but
with different parameters indexed by the (¢) superscript. These parameters result
from the new firm’s technological choices, rather than from contract negotiation with
the worker. In particular, the compensating differential for the amenity posterior to

constrained job change (p¢) is a priori different from the within-job compensating
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differential (p).

Job offers: If the worker has experienced no adverse shock, then she gets an offer
from an outside firm that she can either accept or turn down.'! Amenity offers a* are

drawn from a specific distribution:
a" = Waix + p1,01 + 55,00 + u, >0}, (2.3)
and wages are given by another hedonic equation:
y* = pta’ +ayx + B,01 + uy. (2.4)

Note that wage and amenity offers depend on the characteristics of the current match,
as firms are assumed to direct their search on groups of workers with given individual
() and match () characteristics.

Equation (2.4) reflects the trade-off between wages and (possibly costly) amenities
at the firm’s level, and p* is the compensating differential for the amenity in job offers.
We allow the three hedonic equations— corresponding to continuing jobs, constrained
job change and outside offers —not to be the same. Different wage and amenity offers
can arise if firms can condition their job offer on the labor market status of the appli-
cant. Then, an employer might not offer the same amenities, say working conditions,
to a displaced worker whose alternative is non employment than to a worker who
will remain in her job if she rejects the offer. This would be the case in a model
where the current employer could make a counter offer to prevent the worker from
going to the poaching firm, as in Postel-Vinay and Robin (2002). Our identification

strategy will be based on the similarity between outside job offers and offers received

"'The assumption of a systematic arrival of outside job offers is balanced by our modeling of
stochastic mobility costs. We discuss this in more details in the next subsection, after having
introduced mobility costs.
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by some constrained workers. Letting the offer parameters to differ between types
of constrained transitions will provide some flexibility to test the robustness of the

results.

Voluntary mobility rule: Let V(y;, a4, 6, x) be the present value, at the beginning
of period t, of a job with characteristics f and (instantaneous) wage/amenity values
(yt, a;). Future periods are discounted at a constant rate. Note that V(y;, as, 0, x)
takes into account possible future spells of non employment, associated with a con-
stant instantaneous utility.

The worker bases her decision whether or not to change job on the comparison of
the job offer she has just received to the expected present value of her current job.
The latter is given by: Vi (0,2) = By, a0y [V (Yeg1, aig1,0,2)|0, 2] . Note that, as
shocks ug and u, in (2.1)-(2.2) are transitory, this expression does not depend on
past wage/amenity values (v, s, Y1, Gr_1, ---)-

When the worker takes her decision, the characteristics of the new match are not
yet realized. The decision is thus based on the expected value of the proposed job,
given wage and amenity offers: V., (y*,a*,0,2) = Ep- [V (y*, a*, 0", x)|y*, a*, 0, z],
where 0" stands for the characteristics of the offered worker/job match, unknown to
the worker at time t.

Let z; be the dummy variable indicating if the individual has changed job volun-

tarily between periods ¢ and ¢ + 1. The mobility decision reads:
2t = 1 {Vmove (y*a Cl,*, 97 :C) > %tay (0; l') + 0(97 ZU)} ) (25)

where ¢(f, z) are transition costs.!? We adopt a linear specification for this relation-

12Examples of mobility costs correlated with # could be housing and children’s education expenses.
Van den Berg (1992) estimates an on-the-job search model where mobility costs depend on the current
wage, constant within job.
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ship, and assume:
ze =1{y" +6"a* > a,x + 3,01 + By,0s + u.}. (2.6)

The parameter ¢* in this equation reflects the trade off between wage and amenity
in the mobility decision. Precisely, ¢* is the wage differential that has to be paid
to make a job offer associated with a low degree of satisfaction with the amenity
equivalent to a job offer giving high satisfaction. As, in the model, the value of an
offer incorporates all future outcomes, we shall refer to 6" as the dynamic Marginal
Willingness to Pay for the amenity. Note in contrast that, since x and 6 intervene in
both Vi, and Vi,epe, the interpretation of their associated parameters in (2.6) calls
for prudence.

The Right-Hand Side inside the index in equation (2.6):
7(x,0) = a,x + (1,01 + Bo,02 + u, (2.7)

is a combination of the value of staying in the present job and transition costs. In
this chapter, we do not intend to disentangle these two dimensions. Moreover, the
random shock u, renders 7 (; x) stochastic conditional on observed and unobserved
characteristics. Although many models of transitions assume deterministic reservation
wages (see e.g. Flinn and Heckman, 1982), our results will demonstrate that, in the

context of job-to-job mobility, it is important to allow for variability in 7.

Then, the voluntary job change decision has two potential outcomes. If the worker
accepts the offer, she gets (y411,a411) = (v*,a*) at the beginning of the next period

t + 1. If not, she draws a new pair (y;11, as41) in (2.1)-(2.2).

Match characteristics: If the worker has remained in the same job between ¢ and

t + 1, then the characteristics of the match stay the same. Match characteristics are
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thus constant within-job. Moreover, non employed individuals are assumed to “keep”
the # of their previous match, using 0 as a signal (for instance in their vita) when
applying for a new job.

If the worker has started to work at a new job at the next period t+1 with starting
wage and amenities (y41, asy1), then the productive and non productive characteris-
tics of the match are realized. We assume that the new match characteristics 6% are
drawn from a distribution depending on the starting wage/amenity values. Doing so,
we intend to capture both a worker and a firm effect on the formation of the match.
Indeed, the starting wage and amenities at a job depend on the characteristics of the
previous match () and individual characteristics (z), as well as non worker-specific
components, represented by the residuals in the starting wage/amenity equations as
(2.3)-(2.4). Decomposing further between the worker and the firm effect on the match

characteristics would require matched employer/employee data.

So far, the worker has been assumed to be employed in a continuing job at time .
We now focus on the two cases when she is either non employed at time ¢, or starting

to work in a new job.

Non employment-to-job transitions: If the worker is non employed at the be-
ginning of period ¢, then we assume that she can find a job with exogenous probability
depending on the 6 of her previous job.'* Then, at the beginning of the next period,
she draws a wage/amenity pair (y",a") from a distribution similar to (2.1)-(2.2) but
with different parameters, in particular another p™ (as we discussed in the paragraph
on job offers). Subsequently, the characteristics of the new match are realized. Hence

non employed individuals draw from different wage/amenity distributions than em-

13Tn the estimation, if an individual is non employed in the first wave (1994), we wait until she
gets a job to start modelling her transitions. Hence every observation will be associated to a 6.
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ployed ones when finding a job. This can reflect a loss of human capital associated
with the period of non employment. However, as individuals keep the € of their pre-
vious jobs, the loss of human capital is supposed not to depend on the length of the

non employment spell.

Starting jobs: Lastly, consider a worker employed in a new job at the beginning of
period ¢t. Her starting wage and amenity are either equal to (y*, a*) (if she has changed
job voluntarily at the end of period t — 1), to (y¢, a®) (if she has been constrained to
change job), or to (y",a™) (if she has was previously non employed). The new match
characteristics are then drawn given these starting values, and condition the arrival

rates of adverse shocks and the offers she might receive from an outside firm.

Additional specifications: In the econometric model, all variables are indexed by
individual 7 and time period ¢. Individual characteristics x;; can be time-varying (e.g.
age), or not (sex, education). All residuals in the model are i.i.d, independent of
covariates, independent of one another and normally distributed with zero means.
All types of transitions— but voluntary ones —are modeled according to a common

pattern. For instance, the occurence of constrained job change is specified as:
2¢ = 1{alz + 51,01 + 55,02 + ul > 0}. (2.8)

The variance of all residuals in the transition equations, such as u¢, are normalized to
one. We adopt the same normalization for the residuals in the amenity equations. In
contrast, the variance of u, in the voluntary mobility equation (2.6) can be identified,
as the coefficient of wage offers in equation (2.6) is set to one by assumption. The
variance of u,, which we denote as o2, will play a key role in our analysis.

In the econometric model, characteristics #; and #, are unobserved match-specific
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effects. Their identification comes from within-job repetitions (see 2.4.1). We model
0, and 65 as discrete random variables, following the approach of Heckman and Singer
(1984).

After a transition out of non employment, a constrained or a voluntary job-to-job
transition, new match characteristics are drawn. We model the conditional distrib-
utions of these characteristics, given starting wage and amenities at the new job, by
Ordered PROBIT specifications. In addition, we assume that the conditional distri-
bution of 6" given starting wage and amenities is identical for every individual and
independent of the type of the last transition. In other words, we assume that starting
wage/amenity values, which do depend on the worker’s previous labor market status,
are sufficient statistics for the match characteristics, and we neglect state dependence
beyond these starting conditions.

We adopt a similar approach to model initial conditions. Namely, we assume that
all individuals are initially employed, and condition the worker’s likelihood on her
starting wage and amenity. The match characteristics in the initial job are modeled
by Ordered PROBIT specifications conditional on the initial wage and amenities (see
Appendix B.2 for details). This choice is motivated by the complex dynamics of the
model. As match characteristics are job-specific, the characteristics corresponding
to the first observations in the sample will be correlated to individual covariates
such as age. Computing the conditional distribution requires integrating over past
wages, amenities and match characteristics. We found this approach computationally
intractable. Our solution involves conditioning on initial wages and amenities. We
also tried an alternative specification, modelling directly the distribution of initial
match characteristics on individual covariates such as age and education, with little

influence on the results.
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2.3.2 Hedonic wage regressions and job mobility

In this subsection, we derive some of the model’s implications. In particular we
emphasize the key role of mobility costs in the relation between workers” MWP and
cross-sectional wage differences between amenity levels.

The wage/amenity offer equations (2.3)-(2.4) and the rule of voluntary mobility
(2.6) form the core of the model. The two parameters p* and §* represent specific
trade-offs between wages and amenities: at the firm’s level, p* reflects substitution
between two costs while at the worker’s level, §* represents the trade-off between two
goods. When workers take their mobility decisions, both effects are at play. Posterior
to job change, these “demand” and “supply” effects can a prior: strengthen or weaken
the correlation between wages and amenities.

One of the main insights of the theory of compensating differentials is that the two
trade-offs, at the firm’s and the worker’s levels, tend to create a negative correlation.
In the model, this correlation depends on parameters p* and 6%, as well as on a third
parameter measuring the extent of transition costs. We now derive the structural
relation linking these different parameters.

Let us define:
A, = Eyla"=1,z=1,0,2) —E(y*|a* =0,2, = 1,0, x).

A, is the wage differential between the two amenity levels, for voluntary job changers.
It could be estimated by a hedonic wage regression on the subsample of job changers,
controlling for unobserved heterogeneity.

Using the specification of the hedonic curve (2.4), the differential can be written

as:

109



In equation (2.9), A, has been written as the combination of a “demand” and a
“supply” effect. The first effect, p*, is taken as given in the model. Then, the “supply”
effect is likely to be negative, consistently with the intuition that workers can accept
lower (higher) wage in exchange of better (worse) amenity when moving to another

job. To see why, note that the mobility rule (2.6) implies that

Al = E(uy [, —uy < —p+ p" +0%) — E(uy [u, — uy < —p),

z

where we have defined for compactness:

p=(az = ay)r — (B, — B1,)01 + Ba. 0.

As uy and u, are normally distributed and uncorrelated by assumption, we can

write:

ap = [2 (—W)—%(—g)], 2.10)

2
z

where ¢ (respectively ®) denotes the standard normal pdf (resp. cdf), and (0}), o

*

2 . .
y) + o2 are the variances of Uy, u, and u; — u,, respectively.

and 0% = (o

Then it follows from (2.10) that A has the same sign as —(5* + p*).1 In
the benchmark case when there is no correlation in wage/amenity offers (p* = 0),
the worker’s trade-off between wage and amenity leads to a negative wage/amenity
correlation posterior to job change. Even in the absence of negative correlation on

the demand-side of the market, this supply effect is enough to create “compensating”

wage differences between jobs with distinct amenities.

Order of magnitude: In the model, workers are constrained on their mobility, as
we assume job-to-job transitions to be costly. This feature can have a strong effect

on the wage differential posterior to job change A,, as we now illustrate.

14This is because the inverse Mills ratio % is strictly decreasing on the real line. The normality

of u; and uy, is not essential for this result to hold, however.

110



To proceed, let us suppose that the probability of job change is small, conditional
on “good” or “bad” amenity offers, and conditional on individual and job characteris-
tics. This assumption is consistent with the descriptive evidence in 2.2.2, where the
aggregate probability of voluntary job change was found to be less than five per cent

in the three countries we study. Precisely, for all z, 6 and a*, we suppose:

@(—“_(5 +p)a><<1.

o

This assumption permits to approximate A% as:!5
(@) (=6 —p 1 ot \?
A(s) ~ y _ (_) — _ (¥ 5* )
: > > > ) (@0 +p)

We then define:
*\ 2
R, = <ﬂ> . (2.11)

Hence AY) can be approximated as:

AW~ —R,. (6" +p"). (2.12)

z

The key parameter I?,, measures the weight of wage offers in mobility decisions.
We interpret this ratio as a measure of the heterogeneity in mobility costs. If costs
are homogeneous, then the variance of wage offers accounts for a large share of o2 and
R, is close to 1. On the contrary, if mobility decisions involve many factors other
than the wage, I?,, is small. These mobility costs represent restrictions that labor
market imperfections can impose on individual mobility. They can consist of three
types of costs: true transition costs of moving to another job, costs of searching for

jobs, as well as costs of having access to outside offers.

5The inverse Mills ratio has the property that 2(z) = —z + o(z) when  — —oco. Hence,
for probability p close to zero, 2(®~!(p)) is close to —®~'(p). Note that, unlike in the previous
paragraph, the assumption of normally distributed residuals is here critical.
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We do not model the probability of receiving an outside offer, since we assume that
every worker who has not faced an adverse shock gets an alternative offer. However,
the stochastic mobility costs we have introduced make this assumption immaterial.
In the model, not having access to an alternative job (i.e. receiving no job offer) is
interpreted as facing a high mobility cost, i.e. drawing a large u,. It is thus clear
that I?,, represents also the heterogeneity in opportunities to change job.

Equation (2.12) shows that, the larger the MWP for the amenity, the more neg-
ative the correlation posterior to job change. However, in the case where mobility
costs are heterogeneous, large MWP for job attributes (i.e. large and positive ¢*) can
translate into very weak wage/amenity correlation (if R,, is low).

Now if we go back to the wage differential for job changers and still assume a low

probability of job change, we can write, combining (2.9) and (2.12):
A, ~(1—Ry,)p"+ Ry, (—07). (2.13)

According to (2.13), the wage/amenity correlation posterior to job change combines
the two parameters p* and 0%, in a proportion determined by the heterogeneity in
mobility costs R,,. In the limit, when R,, is close to zero, then the worker’s trade-off
between wages and amenities has no impact on the correlation posterior to job change.
Equation (2.13) involves the three key parameters of the model: wage/amenity sub-
stitution on the demand (p*) and supply (") sides, together with an indicator of
mobility costs (R,,). Identifying and estimating these parameters is one of our main

purposes.

2.4 Identification and estimation issues

In this section, we address the identification and estimation of the model’s parameters.

We first focus on the identification problem arising from workers’ selection into jobs.
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We then discuss the identification of unobserved match characteristics. Lastly, we

outline the estimation method.

2.4.1 Identification of the key parameters

We here assume that match characteristics are observed by the econometrician. Next
subsection will deal with their identification.

If job offers were observed for all workers, not only actual job changers, then the
model’s key parameters would be identified without further assumption. Indeed p*
follows directly from the hedonic curve (2.4). Moreover, all parameters ruling job
offer equations would be identified in that case, including oy, the standard deviation

of uy. As for 6%, it follows from equation (2.6) that:

1 5
(I)il []P) (Zt - 1|y*,a*,9,x)] = _y* + _a’* - %l' - Blz 91 - 52z
O, O, O, (0% Oz

0. (2.14)

Equation (2.14) shows that, along with data on job turnover, data on wage offers
would permit to identify all parameters in (2.6), including the standard deviation of

Uy, Oy.

The selection problem: The absence of data on job offers in the ECHP com-
plicates the researcher’s task. As wage and amenity offers are not observed for job
stayers, we face a selection problem.

Identification of selection models is often achieved by the use of exclusion restric-
tions. In the case of job-to-job mobility, however, it seems difficult to find a covariate
that both significantly influences the job change probability and is uncorrelated with
job offers. Potential candidates in the ECHP are the indicators of being married and
having young children. However, their effect on job change propensity turns out to

be small.
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Therefore we here take a different route. Our approach builds on the remark that
observing the realizations of job offers (y*, a*) is not strictly necessary for the parame-
ters to be identified. For this purpose, knowing their distribution is sufficient. This is
straightforward for the parameters appearing in (2.3)-(2.4). For mobility parameters
in (2.6), the argument makes use of Bayes’ rule. Namely, if the wage/amenity offer

distribution is known (given characteristics), with density ¢*, then:

Cly*,a*|z, = 1,0,x)
+(y*, a*|0, x)

P(z = 1|y*,a*,0,2) = P(z =10, 2), (2.15)

where /* denotes the density of wages and amenities accepted by voluntary job chang-
ers. As ¢ and P (z; = 1|6, z) involve observed quantities, the Left-Hand Side in (2.15)
is identified as soon as ¢* is known. Then, using (2.14), the parameters appearing in

the mobility equation can be recovered.

Finding proxies for the distribution of wage/amenity offers: For the model’s
parameters to be identified, a sufficient condition is thus that the distribution of job

offers be itself identified. We propose to augment the model by the following identity:
o= r°, (2.16)

where /¢ is the density of wages and amenities drawn by constrained job changers.
For (2.16) to be satisfied, two conditions need to hold: First, constrained job
change has to be exogenous from the worker’s perspective. If this is the case, then £¢
can also be interpreted as the density of “offers” received by constrained job changers—
offers which cannot be turned down by the worker. Second, constrained and voluntary
job changers need to draw from the same distribution of job offers.
The first condition, exogeneity, could be violated for two reasons: workers can self-

select with respect to their unobserved characteristics (ability bias) or with respect
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to the characteristics of the current and offered jobs (selection). We may argue that
we control for the first source of endogeneity, as the probability of job change is
conditional on @ in equation (2.8). However, we do not control for the endogeneity
possibly arising from selection with respect to job offers. As for the second condition,
equality of job offers, it could be violated if, say, experiencing a constrained transition
were seen by employers as a signal of low productivity. This argument could well hold
in the case of lay-offs, as suggested in Gibbons and Katz (1991).

To guarantee the exogeneity of constrained job change, Gibbons and Katz (1992)
consider displaced workers consecutive to plant closure. They claim that such dis-
placements approximate the natural experiment of exogenous job loss, and use this
insight to correct for ability bias in inter-industry wage differentials. A recent em-
pirical analysis of returns to tenure by Dustmann and Meghir (2005) builds on the
same idea. In our case, however, this approach is not directly applicable because the
ECHP data are not precise enough to identify “true” displacements, exogenous from
workers’ perspective. We are not aware of a data set providing information on ameni-
ties and voluntary mobility (as in the ECHP) together with “true” displacements (as
in firm level data). Still, the ECHP data allow to distinguish between different types
of constrained job transitions. This feature permits to develop informal robustness

checks.

An informal test of robustness. To address the concern that the above con-
ditions might be violated, we test the robustness of our results to variations in as-
sumption (2.16). Our approach consists in substituting three other wage/amenity
distributions for the original distribution of reference (constrained transitions). First,
we decompose constrained transitions into displacements and partially-constrained

transitions, as explained in 2.2.1. We take the wage/amenity distributions of either
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of the two types as a reference. For instance, replacing identity (2.16) by: ¢* = (4,
where ¢? denotes the density of wages and amenities drawn by displaced workers, a
different set of parameters ruling voluntary job mobility can be derived. We proceed
similarly in the case of partially constrained transitions.

Lastly, we also try a third specification, taking wages and amenities posterior to
non employment as the reference for job offers. In this case, the identity becomes: ¢* =
(™. This restriction has been widely used in the job search literature, as an assumption
permitting the job offer distribution to be identified. In these models, a subpopulation
of workers (usually unemployed) draw their jobs in the offer distribution and are forced
to accept the offer because their alternative is not preferable. Hence the observed
distribution of jobs drawn by these workers is the same as the actual offer distribution
(see e.g. Christensen et al., 2005).

These different types of constrained transitions provide imperfect proxies for job
offers. By comparing the results obtained using these different proxies, we expect em-
pirical regularities to emerge. We will see in section 5.3 that the MWP and correlation

estimates turn out to be qualitatively similar between specifications.

2.4.2 Identification of match characteristics

In practice, match characteristics are unobserved by the econometrician. However,
since f; and 6, are constant within-job, they are identified by wage and amenity
repetitions provided that jobs last more than two periods with positive probability.
For 6, the argument comes e.g. from a theorem by Kotlarski (1967). In that case,
the density of #; is identified nonparametrically. As for 5, one also needs that the
regressors vary sufficiently over time. For instance, if one of the regressors has large

support in all its dimensions as in Manski (1988) then the latent distributions are
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identified and Kotlarski’s result applies.

Properly speaking, we do not dispose of such a regressor in amenity equation (2.1),
but unobserved heterogeneity distributions are modeled as discrete random variables,
allowing for a parsimonious number of groups. For this specification, we found no

evidence of identification problems.

2.4.3 Estimation: EM with a Sequential M-step (ESM)

We here briefly present the estimation of the model’s parameters. The details of the
procedure are given in Appendix B.2. We model #; and 6, as follows. Let N denote
the number of individuals in the sample. We assume that there exist two integers K;

and K5, a mapping:

(1.N} = {1..K} x {1}

i = (kv ko),

and parameters (911, ...01x,), (Va1, ...02k,) such that (0y;,09;) = (91x,,, Vok,, )-

We use the EM algorithm of Dempster et al. (1977) to estimate the model’s
parameters. This amounts to treating ky; and ko; as random variables. Starting with
initial guesses for the parameters, one computes, in the expectation (E) step, the
posterior probabilities that (ki;, k2;) = (k1, k2) given the data, for all k; in {1, ..., K/},
J = 1,2 and for all individuals. Then in the maximization (M) step one maximizes
the likelihood of the observations, weighted by the posterior probabilities.

As for the choice of K; and K5 there is a trade-off between the accuracy of the
description of the unobserved heterogeneity distributions and the tractability of the
estimation due to the small number of voluntary job-to-job transitions. We found

K; = 4 and Ky = 2 to be a convenient choice for the countries we study. In the
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empirical analysis, we shall test the robustness of our conclusions to variations in K;
and K.

The estimation of the model takes the form of simple steps. In the M-stage of
the algorithm, all parameters— except the ones ruling voluntary job-to-job mobility,
given by equations (2.3)-(2.4) and (2.6) —are estimated either by PROBIT, Ordered
PROBIT or OLS- weighted by the posterior probabilities. Then, equations (2.3)-(2.4)
and (2.6) form a censored regression model with endogenous threshold. Theoretically,
one could estimate the model under the constraint (2.16). However, in the empiri-
cal analysis, we allow for five amenities and a bivariate distribution of unobserved
heterogeneity, so the joint estimation turns out to be impractical.

Instead, within each M-step of the algorithm, we proceed in two steps: First,
we estimate the wage/amenity distribution posterior to constrained job change (£°).
Second, we estimate the parameters ruling the voluntary mobility decision setting
¢* = (°. Appendix B.2.2 details the mathematical expression of the second-step
likelihood. The resulting algorithm follows the pattern introduced in Arcidiacono
and Jones (2003) of EM with a sequential M-step (ESM). Therefore, our method
provides consistent estimates of the parameters. However, it is not as efficient as
FIML.

To compute asymptotic standard errors, we write the First-Order Conditions of the
algorithm as population moment conditions. Arcidiacono and Jones (2003) propose
to compute the asymptotic variance-covariance matrix by the usual GMM formula. In
our case, we found that second derivatives of the type-conditional likelihoods could
be very long to compute. In Appendix B.2.3, we propose a generalization of the
information matrix identity that allows to significantly reduce computing time, by up

to a factor 100 in our case.

118



2.5 Estimation results

In this Section, we first present the parameter estimates. We then contrast the es-
timated MWP with the wage/amenity correlations in cross-section, interpreting the
results in light of section 2.3.2. Lastly, we check the robustness of our findings to

several changes in the model’s specification.

2.5.1 Parameter estimates

As the model presented in 2.3.1 contains many parameters, we here give a partial
account of the results, focusing on the parameters of interest. Additional estimates

are available from the authors upon request.

Wage and amenity equations: Table 3 presents the parameter estimates of
wage/amenity equations (2.1)-(2.2) for Denmark. The results for other countries are
qualitatively similar. Recall that all five amenities have been simultaneously included
in the estimation. Parameters p,, ..., p5, which represent the within-job compensating
differentials for each of the five amenities, are reported separately in Table 4.

Table 3 shows that human capital determinants and unobserved match characterit-
ics have very different effects on the wage and the amenities. The wage is concave
in age, and is higher for males and educated workers. In constast, all amenities but
distance to job are convex in age, yet no clear pattern arises from the effects of gender
and education. In addition, 65 has a significant effect on all the amenities, whereas
it is independent of the wage by construction (See Appendix B.2 for details). Inter-
estingly, this effect has the same sign and roughly the same magnitude for the five
different amenities. This finding could suggest that workers differ in their understand-

ing of the 1 to 6 ranking given in the ECHP. High-, and low-0, workers could attach
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different meanings to words such as “very satisfied” or “satisfied”, consistently with a

“subjective” interpretation of 6.

Table 3: Wage and amenities within job (Denmark)

Wage TY CD WT DI SE

Observed heterogeneity x

age .0272 —.00512 —.0244 —.0256 .0369 —.0726
(.00081) (.010) (.0096) (.0098) (.011) (.010)
age2 —.000316 .000116 .000333 .000454 —.000188 .000851
(.00001) (.00012) (.00011) (.00012) (.00013) (.00012)
male 120 .0707 .0871 .00445 —.0958 —.0929
(.0028) (.027) (.026) (.027) (.030) (.027)
edu= 2"¢ level .07160 .0135 .0264  .000929 177 .0747
(.0035) (.037) (.036) (.036) (.041) (.036)
edu> 3% level .146 .0362 .0192 —.0419 —.223 .193
(.0038) (.040) (.039) (.039) (.044) (.039)
constant 8.989 .348 .798 1.0379 —1.427 1.820
(.017) (.21) (.20) (.21) (:23) (.:21)

Unobserved heterogeneity (61, 62)

=1 —.986 —.319 —.522 —.651 .632 —.372
(.0052) (.083) (.079) (.082) (.086) (.078)

0, =2 —.568 —.603 —.823 —.613 .563 —.389
(.0038) (.053) (.052) (.056) (.055) (.051)

0 =3 —.326 —.263 —.456 —.359 .356 —.05617
(.0036) (.050) (.049) (.053) (.050) (.048)
0, =1 - 1.0190 .981 .684 1.390 .825
(.029) (.028) (.029) (.033) (.029)

We also proceeded to a variance decomposition in Denmark (not shown here).
Observed covariates account for 33% of the wage variance,'® and unobserved het-
erogeneity 0, accounts for 44%. In contrast, both regressors have little explanatory
power in amenity equations. For instance, for the amenity “type of work”, both x
and 6, account for 3% of the variance, while 0, accounts for 26%. Similar orders of

magnitude are obtained for the other amenities. Therefore, while observed and unob-

16To compute this variance decomposition, we first regressed the wage on z, then on z and ;.
This last regression was weighted by the groups’ posterior probabilities computed at the parameter
estimates (see Appendix B.2). We proceeded similarly for the latent variables of amenities.
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served characteristics account for a large part of the wage variance, the determinants
of amenity variables seem essentially unobserved.

The patterns found in Table 3 are qualitatively similar for the wage/amenity
equations posterior to constrained job change and posterior to non employment (not
shown here). Moreover, the estimates of the parameters of the Ordered PROBIT
linking the characteristics of a new match to the starting wage/amenity values in a
job are consistent with the patterns of Table 3: higher wages are associated with high

f,. Then, a high starting satisfaction with any amenity yields a higher 6.

Table 4: Within-job compensating differentials, p

AUS DNK ESP FIN FRA IRL ITA NLD PRT
TY .0142 —.00328 .0197 .000724 .0188 .00561 .00242  —.00319 .0154
(.0046) (.0033) (.0035) (.0038) (.0031) (.0062) (.0027) (.0030) (.0044)
CD || —.00162 —.00976 .00672 —.0176  —.00643 —.0102 —.00422 —.0110 —.0101
(.0046) (.0032) (.0035) (.0037) (.0029) (.0063) (.0027) (.0027) (.0043)
WT || —.00278 —.0383 —.00544 —.0246 —.0167 .000235 —.0149 —.0123 —.0219
(.0044) (.0033) (.0034) (.0036) (.0027) (:0062) (.0026) (.0029) (.0045)
DI .0456 .0158 .00931 .0556 .00896  —.00615  .00197 0171 —.000334
(.0038) (.0031) (.0032) (.0037) (.0027) (.0059) (.0023) (.0029) (.0037)
SE .0203 —.0102 .0161 —.00584  .00922 .0497 .00705 .00933 .0190
(.0040) (.0030) (.0035) (.0038) (.0027) (.0062) (.0026) (.0029) (.0044)
We now turn to parameters p,, ..., ps that give the within job wage/amenity

correlation for various amenities. As shown by Table 4, the estimates are very close
to zero and, in some cases, insignificant at conventional levels. Moreover, there is no
clear pattern in their sign. For instance, in the Netherlands “working conditions” and
“working times” are associated to negative wage differentials, while the correlation
is positive for “distance to job” and “job security”. In all four cases the estimates
are significant at the five percent level, yet their order of magnitude is of less than
2%.

We also computed p estimates without unobserved heterogeneity (the results

are not shown here). Comparing these estimates with those displayed in Table 4,
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we found that controlling for the ability bias, through 6, tends to create or increase
compensating differentials for disamenities. Even with this correction, though, the p
point estimates remain low.

Compensating differentials in job offers p* are especially relevant to our analysis.
Recall that in this section, restriction (2.16) is imposed, so that job offer parameters
are those corresponding to constrained job change. We shall try other hypotheses at
the end of this section. The p* estimates displayed in Table 5 are close to zero, roughly
of the same order of magnitude as the p estimates reported in Table 4. Moreover, as
there are fewer constrained job changers than job stayers, standard errors are higher,
resulting in mostly insignificant estimates. Interpreting these results in the light of
2.3.2 suggests that, for most amenities, the correlation on the demand side might not

be sufficiently negative to create large “compensating” wage differences posterior to

job change.
Table 5: Wage/amenity correlation in job offers, p*
AUS DNK ESP FIN FRA IRL ITA NLD PRT
TY .0134 .0261 .0205 .0365  —.000838 .0503 .0446 .0317 .1056
(.045) (.018) (.020) (.036) (.027) (.042) (.028) (.019) (.033)
CD || —.0217 —.00337 —.00561 .00150 —.0222 —.0106 —.0433 —.0332 .0756
(.044) (.019) (.020) (.035) (.027) (.051) (.031) (.018) (.029)
WT || —.0786 —.00139 —.0110 —.0278 .0105 —.123 .0114 —.00351 —.0815
(.043) (.018) (.019) (.037) (.024) (.0452) (.029) (.019) (.034)
DI —.0208 —-.0215 —.0315 —.0151 .00314 —.00109 .0228 —.0389 —.0216
(.037) (.016) (.019) (.034) (.022) (.045) (.024) (.020) (.027)
SE .0228  —.00726 .0556 —.0172  —.0142 .0352 —.000783 .0268 .00520
(.034) (.017) (.022) (.035) (.023) (.039) (.031) (.018) (.041)

Voluntary mobility: We here focus on the determinants of voluntary mobility.
In the model, job change decisions are based on the comparison of value functions
and mobility costs. Therefore, if costs depend on job characteristics, the parameter

estimates featured in equation (2.6) will be a mixture of these two elements. In this
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chapter we make no attempt to separate the value of a job from true transition costs.

Instead, we report in Table 6 the results of an OLS regression of E[7 (6, z)], where

7 (0, x) is defined by (2.7), on individual covariates and the last wage/amenity values

in the current job.!'” We interpret these coefficients as the weights of different factors

in voluntary mobility decisions.

Table 6: Weight of several covariates in E[7 (6, z)]

AUS DNK ESP FIN FRA IRL ITA NLD PRT
age —.0125 —.0513 —.02056 —.0326 .0956 .0389 —.137 —.0423 .0986
(.018) (.022) (.023) (.058) (.073) (.039) (.077) (.024) (.050)
age? .000611 .00119 .000619 .00165 .00019 .000168 .00292 .00117 —.0000791
(.00026)  (.00031)  (.00032)  (.00087)  (.00089)  (.00050) (.0013)  (.00035) (.00054)
male —.0260 —.119 —.157 —-1.211 —-1.075 —.257 —.784 —.0916 —.924
(.041) (.050) (.060) (.31) (.38) (.10) (:27) (.050) (.22)
edu= 2"¢ level —.258 —.139 .00277 274 770 —.195 .0893 .550 224
(.054) (.069) (.085) (.19) (.30) (.12) (.14) (.086) (.17)
edu> 374 level —.151 —.163 —.195 .0639 —.388 —.519 .149 4005 .199
(.089) (.077) (.098) (.17) (.22) (.16) (:27) (.079) (.22)
married .0383 .00702 .0387 .2694 287 —.0974 475 .0737 —.233
(.047) (.051) (.057) (.18) (.18) (.13) (.22) (.053) (.14)
kid —.0564 .0792 .123 —.186 —.188 197 .154 .0323 124
(.041) (.050) (.061) (.14) (.17) (.11) (.17) (.052) (.11)
constant 4.843 6.244 4.218 —8.324  3.056 —1.323  2.258 3.815 —7.228
(.31) (.51) (.52) (2.219) (2.19) (.83) (3.35) (.51) (1.41)
Wage .656 .560 725 2.230 1.168 1.488 1.881 .754 1.90
(.00053) (.0066) (.0063) (.039 (.029) (.0019) (.057) (.0037) (.026)
TY .166 .102 .120 .375 372 .286 307 112 271
(.016) (.016) (.021) (.091) (.12) (.045) (.044) (.015) (.040)
CD .152 .0905 .120 .200 410 217 128 .0887 .244
(.017) (.013) (.020) (.077)) (.15) (.046) (.054) (.013) (.054)
WT .0811 .0842 .0987 .236 .303 .101 .166 .0968 .263
(.010) (.0082) (.014) (.065) (.10) (.034) (.061) (.014) (.039)
DI .00959 .135 —.0178 .267 231 .158 .0852 .154 .238
(.010) (.031) (.020) (.075) (.093) (.043) (.047) (.030) (.063)
SE .140 .0988 .0913 374 .486 172 .376 .0652 315
(.015) (.014) (.0092) (.075) (.15) (.030) (.046) (.011) (.057)

The signs and significance of the estimates are rather intuitive. In particular, Ta-

ble 6 shows that the total effect of age and/or age? on E[7 (0, z)] is positive. Age thus

17 Again, OLS regressions were weighted by the groups’ posterior probabilities. Standard errors
are conditional on z,y;,a;. Yet, they do account for the variability of the parameters entering

E[7 (0, z)].
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reduces significantly the probability of job change. Being a woman is also associated
with a lower propensity to change job. These effects have been already noted in the
literature (e.g. Groot and Verbene, 1997, and Xenogiani, 2003). Having children
and being married generally have a similar, though weaker, influence. The effect of
education on voluntary mobility seems non-monotonic. Then, the higher the current
wage, the lower the probability to quit voluntarily (the estimates range between .56 in
Denmark and 2.2 in Finland). Lastly, the coefficients of amenities on the current job
are also positive and significant. These findings, common to all countries and ameni-
ties, suggest that being satisfied either with one’s wage or non wage characteristics
deters one from quitting. This result is consistent with the literature starting with
Freeman (1978) which studies the effects of job satisfaction on the quit probability.
Then, we divide the coefficients of current amenities by the coefficient of the
wage. We interpret the estimates reported in Table 7 as the relative weight of each
amenity in the decision to change job. Unsurprinsingly, we find positive and significant
estimates for virtually all amenities in every country, ranging around .20. The smallest
coefficients are obtained for “distance to job”, for which the estimates are insignificant
at the 95% level in Austria, Finland and Ttaly. Note that the estimates are on average

both higher and less precisely estimated in France than in the other countries.

Table 7: Weight of current amenities in the mobility decision, relative to the current wage

AUS DNK ESP FIN FRA IRL ITA NLD PRT

TY || .252 .182 .143 .165 .318 .192  .163  .148 .143
(.024)  (.032) (.023)  (.030)  (.11)  (.030)  (.028)  (.021)  (.023)

CD 231 162 128 .166 351 146 .0683 .118  .128
(.026)  (.026) (.030)  (.029)  (.13)  (.031)  (.031)  (.017)  (.030)

WT || .124 .150 .138 .136  .260 .0678 .0885 .128  .138
(.015)  (.016)  (.023)  (.021)  (.093)  (.023)  (.035)  (.020)  (.023)

DI 0146 .241 .126 —.025 .198 .106 .0453 .205 .125
(.016)  (.058)  (.035)  (.028)  (.085)  (.029)  (.026)  (.041)  (.035)

SE 214 176 .166 .126 416 .116 .20 .0865 .166
(.024)  (.026)  (032)  (.014)  (.14)  (.020) (.031)  (.015)  (.032)
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The results in Table 7 are close in spirit to the methodology introduced by Gron-
berg and Reed (1994), who estimate the “Marginal Willingness to Pay” for an amenity
as the ratio of the elasticities of the hazard rate of job duration with respect to the
amenity and the wage, respectively. We obtain comparable results: Gronberg and
Reed find that two amenities out of four— measuring several dimensions of “objective”
working conditions ~have a positive and significant effect on job duration. In the case
where they are significant, the relative weights are close to one third of the wage.
Van Ommeren et al. (2000) obtain similar orders of magnitude in their analysis of

commuting.

Heterogeneity in mobility costs. Table 8 reports the estimates of the standard
deviation of the stochastic shocks on mobility costs u,, together with estimates of the

weight of wage offers in voluntary job change R,,, defined by (2.11).

Table 8: Heterogeneity in mobility costs

AUS DNK ESP FIN FRA IRL ITA NLD PRT

o, 689 1.122  3.22  .898  3.597 1.81 3.22 1.245 2.52
(052)  (.13) (.83) (.12) (1.19) (32)  (1.01)  (.15) (.61)

Ry, || .122 .0422 .0058 .0688 .00455 .0296 .0058 .0326 .00930
(.018)  (.0097) (.0030)  (.018)  (.0030)  (.011)  (.0036) (.0078)  (.0045)

We note that the estimates of the standard deviation o, range between .69 in
Austria and 3.6 in France. The second row in Table 8 illustrates the magnitude of
these standard errors by reporting the estimates of R,,. As explained in section 2.3.2,
we interpret this quantity as a measure of heterogeneity in mobility costs. Estimates
of R, are strikingly low in the nine countries, suggesting that many other factors than
wage offers might influence the decision to quit. Moreover, voluntary mobility seems

much more heterogeneous in the Latin countries (Spain, France, Italy and Portugal)
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with a ratio R,, of less than one percent and insignificant from zero at the 95% level.
This could indicate that individual mobility is highly constrained in these countries,
which would be in accordance with the descriptive statistics featured in Table 1.
The explanatory power of both the wage and the amenity variables in voluntary
mobility decisions thus appears to be weak, suggesting that mobility costs are highly
heterogeneous. Such a low explanatory power is one of our main findings, and has
strong implications on the order of magnitude of wage/amenity correlation. At the
end of this section we shall investigate the robustness of this result to variations in

the model’s specifications.

MWP for amenities: We lastly turn to the estimates of the key parameters, the
MWP §* in job offers. Most estimates in Table 9 are positive, and several are signifi-
cant. In particular, the type of work and job security are associated to large MWP,
around .30 in Denmark and the Netherlands.

The point estimates for 6* in Latin countries deserve a few specific comments.
In France for instance, the MWP for job security is very high. However, although
significant, this MWP is not precisely estimated (1.1 with a standard error of .4).
This remark carries out to all other amenities in the Latin countries (Spain, France,
Italy and Portugal), for which standard errors are much higher than in the other
countries. Note that, for these countries, imprecise estimates of MWP are associated
with low R,, estimates (see Table 8). Hence, for these four countries only, we should
consider estimation results as qualitative findings rather than focusing on the point
estimates. At the end of this section, we shall isolate two factors explaining the
different results between Latin and non Latin countries: constrained transitions seem
more heterogeneous in Latin countries, and men and women have more contrasted

mobility behaviors. We shall see that taking these factors into account yields more
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comparable results between the two groups of countries.

The most notable exception to the general pattern drawn from Table 9 is “working
times” in all countries, insignificantly different from zero in most cases. This non intu-
itive result could be due to the fact that wage rates and hours worked are aggregated
in the model (into monthly wages), resulting in a crude modeling of hours worked

13

in workers’ preferences. Other exceptions are “working conditions” in the Nether-
lands and “distance to job ” in Finland and the Netherlands, the latter amenity being

associated to a negative and significant MWP.

Table 9: MWP for amenities in job offers, §*

AUS DNK ESP FIN FRA IRL ITA NLD PRT
TY 191 275 .512 191 .792 .248 877 271 .893
(.058)  (.067) (.21) (.062) (.32) (.13) (.34) (.067) (.27)
CD 225 .0798  .203 .0834 172 .0313 318 00712  .319
(.059)  (.053) (.18) (.057) (.18) (.13) (.20) (.049) (.16)
WT | .162 .0225 —.196 .0654 —.0395 —.180 —.0371 .00882 .0988
(.052) (.053) (.18) (.056) (.15) (.11) (.19) (.052) (.16)
DI .0553 .0614 .126 —.0833  .0886 134 317 —.190  .336
(.041)  (.048) (.16) (.052) (.15) (.11) (.17) (.055) (.15)
SE 254 .273 .720 .348 1.133 426 .994 .265 .868
(.046)  (.056) (.26) (.070) (.40) (.14) (.35) (.057) (.26)

Nevertheless, the general impression that emerges from Table 9 is one where MWP
in job offers can be large. This result can be contrasted with Tables 4 and 5, showing
compensating differentials for job stayers and in job offers, respectively. Thus, both
the wage and non wage characteristics seem to influence voluntary mobility decisions,
suggesting that non wage characteristics do enter individual preferences. In terms of
variance, though, the influence appears quite weak, as both the wage and amenities
have a low explanatory power in job change decisions. In the next section, we intend to
quantify the impact of these two findings on the presence/absence of “compensating”

wage differences in cross-section.
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2.5.2 MWP and wage differentials

The analysis in 2.3.2 shows that the actual wage differential posterior to job change—
between two jobs of different levels of amenities — combines the model’s three key
parameters: the correlation in wage/amenity offers p*, the MWP for the amenity 0*
and the heterogeneity of mobility costs R,,. We here report the estimates of the
various wage differentials, and of their decomposition in terms of the demand and
supply effects introduced in 2.3.2.

For a given amenity, the demand effect AW s equal to the compensating dif-
ferential p* in job offers corresponding to this amenity. Estimates of this effect can
be found in Table 5. The supply term, A,(Zs), arises from workers’ trade-offs between
wages and amenities when deciding to change job. In the upper half of Table 10, we
report the estimates of A for all countries and amenities.'8

Estimates of AY) are mostly negative, consistently with wage/amenity compen-
sation on the supply side, as MWP " are mostly positive (see Table 9). However,
heterogenity in mobility costs significantly reduces the magnitude of this effect. Com-
paring Table 10 with Table 9 shows that MWP of .30 translate into correlations of
less than .02.!% Then, the lower half of Table 10 shows the sum of the demand and
supply effects A, = AW+ AY . Tt is clearly apparent from the table that, when

heterogeneous mobility costs and non zero correlation in job offers are taken into ac-

18To estimate the latter, we computed the RHS in (2.10) for every individual in the sample, and
averaged over x, weighted by the groups’ posterior probabilities. In theory, the delta-method is not
sufficient to compute standard errors in this case, as one has to account also for the estimation of
the expectation in (2.10) by a sample mean. As this latter source of variation turned out to be
negligible relative to the variation in the model’s parameters, however, the delta-method was used
as yielding a very good approximation of true standard errors.

9Note that the approximation of the wage differential AL given in (2.13) works here very well.
Indeed, combining the results in Tables 8, 9 and 10 it is easy to check that compensating differentials
are roughly the product of MWP §7 (net of p*, which is close to zero in most cases) and heterogeneity
in mobility costs R,..
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count, the resulting wage/amenity correlation posterior to job change does not reflect

workers’” underlying preferences for non wage attributes.

Table 10: Wage differentials for voluntary job changers

AUS DNK ESP FIN FRA IRL ITA NLD PRT
A
TY —.0231 —.0112 —.00279 —.0141 —.00327 —.00781 —.00483 —.00871 —.00832
(.0084) (.0027) (.0012) (.0048) (.00129) (.0035) (.0017) (.0020) (.0024)
CD —.0230 —.00286 —.00104 —.00528 —.000621 —.000544 —.00145 .000758 —.00331
(.0086) (.0021) (.00093) (.0041) (.000738) (.0036) (.0010) (.0015) (.0015)
WT || —.00943 —.000791 .00109 —.00233  .000120 .00801 .000135 —.000154 —.000146
(.0076) (.0021) (.00089) (.0042) (.000651) (.0038) (.00099) (.0016) (.0014)
DI —.00392 —.00150 —.000497 .00614  —.000381 —.00349 —.00179 .00670 —.00264
(.0063) (.0019) (.00086) (.0038) (.000626) (.0033) (.0010) (.0017) (.0013)
SE —.0312 —.00990 —.00405 —.0204 —.00461 —.0121 —.00520 —.00840 —.00728
(.0069) (.0023) (.0013]) (.0049) (.00166) (.0037) (.0019) (.0019) (.0023)
A=A+ AP
TY | —.00970 .0149 0177 .0224 —.00411 .0425 .0398 .0230 .0973
(.040) (.018) (.020) (.034) (.027) (.041) (.028) (.018) (.033)
CD —.0447 —.00624 —.00665 —.00377 —.0228 —.0112 —.0447 —.0325 .0722
(.039) (.019) (.020) (.033) (.027) (.049) (.031) (.018) (.029)
WT || —.0880 —.00218 —.00987 —.0302 .0106 —.115 .0115 —.00366 —.0817
(.039) (.017) (.019) (.035) (.024) (.044) (.029) (.019) (.033)
DI —.0247 —.0230 —.0320 —.00893 .00276 —.00458 .0210 —.0322 —.0242
(.033) (.016) (.019) (.032) (.022) (.044) (.024) (.020) (.027)
SE —.00845 —.0171 .0516 —.0377 —.0188 .0231 —.00598 .0184 —.00208
(.031) (.017) (.022) (.033) (.023) (.038) (.031) (.017) (.041)

Thus, evidence of “compensating” wage differences is rather weak in cross-section,
although workers seem to value non wage characteristics. Workers’ trade-offs between
wages and amenities translate into a very small, possibly still negative, correlation.
This section has emphasized two key elements in this mechanism: the low explana-
tory power of the wage and amenities in job mobility decisions (low R,.), and the
often insignificant correlation in job offers (low |p*|). Our results thus shed light on
the difficulty of finding compensating differentials in cross-section, even conditional

on unobserved heterogeneity, and even if individuals value non wage characteristics

129



significantly relatively to the wage.

2.5.3 Robustness checks

We here check the robustness of the parameter estimates reported in 2.5.1 to changes
in the model’s specification. We start by checking whether changes in the distribu-
tion of reference for job offers leads to empirical regularities supporting the results
displayed in section 2.5.1. Then we see how results might be affected if mobility be-
haviors differ greatly with respect to gender. Lastly, we proceed to additional checks
by changing the number of groups of heterogeneity and introducing measurement

error in wages.

Changing the distribution of reference. First, we disaggregate constrained
transitions into partially constrained transitions and displacements, and model each
process separately. We do so to address the concern that constrained transitions, as
defined in this chapter, may recover different phenomena. For instance, family-related
job mobility is an example of partially constrained transition. However, employer-
related job changes (firm closure, layoff...), that we call displacements, could be more
exogenous from the worker’s perspective.

We model partially constrained transitions and displacements as in equation (2.8),
with different sets of parameters. Likewise, wage and amenity equations follow the
pattern of (2.1)-(2.2), again with different parameters. The sequence of events is the
following: between ¢ and ¢ + 1 employed individuals can experience a job to non
employment transition. If they do not, they can still lose their job and get a new one
before the next interview. Then, if they are not displaced, they can quit their present
job for personal reasons and make a partially constrained transition to a new job. All

the probabilities and corresponding wage/amenity distributions are conditional on z
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and 6. Lastly, if the worker has experienced none of these shocks, she receives a job

offer that she can accept or turn down, as in 2.3.1.

Table 11: MWP (6*) and Ry, estimates for various transitions of reference

AUS DNK ESP FIN FRA TIRL ITA NLD PRT
Displacements
TY .263 .193 .659 77 725 .143 1.569 .208 437
(.051) (.055) (.31) (.065) (.29) (.083) (1.11) (.038) (.10)
CD .162 .0366 223 .0676 .0951 .0779 .645 —.0169 .130
(.050) (.045) (.24) (.059) (.16) (.088) (.55) (.030) (.081)
WT | .178 —.0670 —.348 .0114 —.111 —.206 —.470  —.00579 .0526
(.045) (.047) (.25) (:059) (.15) (.082) (.50) (.032) (.089)
DI .0482 116 .0735 —.102  .0245 .0146 1.012 —.122 221
(.036) (.042) (:21) (.055) (.14) (.080) (.68) (.032) (.079)
SE .378 418 1.033 .370 1.323 401 3.020 .3296 .758
(.046) (.057) (.43) (.076) (.43) (.095) (1.96) (.036) (.13)
R, A17 .0489  .00338  .0446  .00555  .0517 .00150 .0806 .0289
(.023) (.010) (.0023) (.019) (.0035) (.014) (.0019) (.012) (.0080)
Partially constrained transitions
TY 157 423 171 .165 411 227 434 .301 725
(.077) (.092) (.053) (.041) (.077) (.099) (.11) (.075) (.20)
CD .428 .156 .146 —.0374 117  —.0490 .308 .0451 183
(.082) (.067) (.054) (.041) (.064) (.10) (.093) (.052) (.14)
WT || .134 .130 .0181 10 185 —.0185 .0418 .0402 —.00932
(.069) (.065) (.055) (.040) (.060) (.086) (.086) (.056) (.15)
DI .0899  .00902 .152 —.0243  .143 .261 .0624 —.206 .0953
(.053) (.058) (.060) (.035) (.056) (.092) (.067) (.060) (.12)
SE .222 131 —.0409 .305 .0895 237 .235 .156 467
(.059) (.063) (.050) (.047) (.056) (.095) (.083) (.056) (.16)
R, || .0772 .031 .0591 174 .0242 .046 .0217 .0241 .0108
(.017)  (.0088) (.015) (.046) (.0068) (.014) (.0068) (.0063) (.0049)
Out-of-non employment
TY .902 154 —.0155 .209 .454 .405 .292 401 125
(.25) (.070) (.059) (.10) (.11) (.14) (.088) (.065) (.048)
CD .759 127 .0445 175 .b18 —.179  —.0536 .0241 .202
(:22) (.061) (.060) (.099) (-11) (.15) (.080) (.045) (.053)
WT || —.046  .173 —.0469 —.0525 .119 —.369 —.00877 .109 —.0088
(.17) (.062) (.058) (.094) (.073) (.14) (.082) (.049) (.053)
DI 228 —.0918  .0723 -.310 .204 .332 —.0537 —.0598 .0944
(.13) (.057) (.055)) (.11) (.074) (.13) (.066) (.045) (.047)
SE .b97 317 .0931 .b80 .354 .0402 .363 227 .0845
(.17) (.066) (.058) (.14) (.088) (.12) (.086) (.048) (.052)
R,, || .0104  .0281 .0516 .0104  .0106  .00949  .00581 .0635 .05631
(.0044)  (.0071) (.0082) (.0044)  (.0032)  (.0035) (.0017) (.012) (.0092)
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Within this framework, we try three different specifications for job offers. Subse-
quently, job offer parameters are assumed equal to the ones in displacements, partially

t.20 Table 11 presents

constrained transitions and transitions out of non employmen
the estimation results for MWP in job offers 6" and heterogeneity in mobility costs
R,..

Table 11 reinforces the two main qualitative findings of 2.5.1. First, MWP for
amenities are mostly positive, and can be large for some amenities. Thus, the type of
work and job security are associated with positive and significant MWP for almost all
countries and every choice of transition of reference. Moreover, many MWP amount to
a large share of the wage, up to 40% in non Latin countries. Second, every specification
shows large heterogeneity in mobility costs. For instance, in the Netherlands wage
offers account for less than 8% of the variation in voluntary mobility, irrespective of
the type of transitions chosen as a reference.

The main results of 2.5.1 thus appear robust to changes in the reference distribu-
tion. Still, a closer look at Table 11 reveals several interesting features. First, we note
that the choice of the distribution of reference rarely influences the sign or significance
of the MWP estimates. However, it can alter their ranking in a given country. For in-
stance, the type of work and job security are associated with the highest MWP in any
country when using either constrained transitions or displacements as the reference.
In contrast, when partially constrained job change is used, the MWP for job security
strongly decreases. For instance, in Denmark the MWP estimate for this amenity is
.42 when using displacements as the reference, and .13 (yet still significant at the 95%

level) when using partially constrained transitions. An intuitive explanation could be

20Tn several cases (5 out of 27), there was not enough information in the data to identify K; = 4
groups of heterogeneity #;. We have thus retained (K7, Ks) = (3,2) for the following crossings:
displacements and out-of-non employment in Ireland and partially constrained transitions in Spain,
Ireland and Portugal.
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that such transitions are experienced by workers who change jobs for personal reasons
(marriage, geographic mobility...) but whose alternative is not non employment. In
this interpretation, MWP estimates for job security based on the use of displacements
are higher, because they incorporate the risk of non employment— possibly correlated
with the aversion to job insecurity.

A second interesting feature of Table 11 concerns the grouping of countries which
emerged from Tables 8 and 9. In the Latin countries, indeed, in the two cases where
displacements are not part of the transitions of reference, heterogeneity in mobility
costs is reduced. In Spain, France, Italy and Portugal, the R, estimates for these two
specifications are higher, and significantly different from zero. Simultaneously, MWP
estimates are more in line with the results for non Latin countries, ranging around one
third of the wage for the type of work and job security. Moreover, when restricting
constrained transitions to partially constrained or out-of non employment transitions,
standard errors of MWP estimates are lower, indicating that MWP are better esti-
mated. These findings suggest that displacements (as defined in this chapter) are not

a satisfying control group in Latin countries.

Testing for the robustness of the estimates with respect to changes in the distribu-
tion of reference was essential to our approach and we view these empirical regularities
as supportive of our results and interpretation. Still, one can question other features
of the model than the identification assumption discussed in 2.4.1. We thus proceeded

to a series of alternative robustness checks.?!

Separate analyses with respect to gender: In the model, voluntary mobility

depends on individual covariates in a parametric way, as shown by (2.6). However, it

2Tn the rest of this section, constrained transitions are taken as reference and restriction (2.16)
is imposed, as in 2.5.1.
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could be that women and men, have very different mobility behaviors, which could not
be well captured by a parametric specification. Moreover, this problem could affect
some countries more than others. For instance, in Table 6, we see that, compared to
other covariates, being a man has a large positive effect on the probability of changing
job voluntarily in France, Italy or Portugal. To address this issue, we proceeded to the
estimation of the model on the subsamples of men. We found that the heterogeneity
in mobility costs remains practically similar in non Latin countries, except in the
Netherlands where o, increases to 1.6. In Latin countries, o, decreases but stays at
rather high levels. For instance, the o, estimate goes down to 2.8 in Spain, to 2.4 in
France and to 2.6 in Ttaly (the o, estimates are 3.2, 3.6 and 3.2, respectively, when
pooling men and women, see Table 8). Moreover, if the MWP for amenities are not
qualitatively affected, their order of magnitude is somewhat closer to the one obtained
for non Latin countries. For instance, in Italy the MWP for “type of work” is reduced
from .90 (men and women) to .58 (men only), the MWP for “job security” from .99 to
.63. The highest estimate reported in Table 9, the MWP for “job security” in France,
goes down from 1.13 to a still high— yet more reasonable- .76. To save space, we
do not report the corresponding results in the present version but they are available

upon request.

Additional checks: Lastly, we varied the number of groups for #; or 65 and tried
the following (K, K5) pairs: (1,1), (2,2), (3,2), (5,2) and (4,3). The results, as far
as MWP and R,, estimates are concerned, are qualitatively similar when allowing
for more than K; = 2 and Ky = 2 groups. In some countries such as Denmark and
Ireland, this is also the case when no heterogeneity is allowed for. In the Netherlands
or Portugal, however, results differ greatly in the homogeneous case, with o, estimates

of 3.9 and 11.0, respectively, and large and badly estimated MWP. Also, we modified
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the wage observations by adding an i.i.d. perturbation, normally distributed with
standard error equal to 10% of that of the observed wage. We found the estimates

strongly robust to this kind of measurement error.

To summarize the main results of this section, we find large and significant MWP
in many cases, especially for two amenities: the type of work and job security. We
also find, under every specification, high heterogeneity in mobility costs. An intrigu-
ing finding is the contrast between Latin and non Latin countries, the former being
associated with even higher measures of heterogeneity in mobility costs, together
with imprecise MWP estimates. In the end of this section, we have emphasized two
possible explanations: the greater heterogeneity in mobility behavior between men
and women in Latin countries, and the greater heterogeneity in types of constrained

transitions (displacements versus partially constrained).

2.6 Conclusion

The theory of compensating differentials builds on Adam Smith’s original statement:2
“The whole of the advantages and disadvantages of the different employments of labour
and stock must, in the same neighborhood, be either perfectly equal or continually
tending to equality.”

On the labor market, this implies that “bad” non-monetary characteristics of one’s
job must be compensated by higher wages. However, hedonic wage regressions lead to
weak or even wrong-signed wage/amenity correlations. In this chapter, we show that
these results must not be interpreted as reflecting individual preferences for non wage

amenities. Smith had indeed pointed out the conditions under which the “equality of

22 An Inquiry Into the Nature and Causes of the Wealth of Nations, Book 1, Chapter 10, Intro-
duction.
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advantages and disadvantages” was to be expected:

“This at least would be the case in a society where things were left to follow their
natural course, where there was perfect liberty, and where every man was perfectly
free both to choose what occupation he thought proper, and to change it as often as he
thought proper.”

In modern European economies, very low rates of voluntary mobility suggest that
workers are far from being “perfectly free” to change jobs. Consequently, the predic-
tions of the theory of compensating differentials are unlikely to hold.

Our estimation results show significant valuation of several non wage character-
istics, mostly the type of work and job security, in spite of low wage/amenity corre-
lations. However, the low explanatory power of both the wage and amenities in job
mobility, and the small correlation in job offers, imply that workers’ preferences do
not translate into significant negative correlation.

The method advocated in this chapter makes use of the difference in the degree
of constraints in mobility decisions to reveal individual preferences: constrained tran-
sitions allow to estimate the available alternatives, then voluntary ones permit to
measure the true effects of individual choice. This approach could be applied to other
fields where hedonic methods are widely used. An example is the estimation of MWP
for air quality in environmental economics. In a recent paper, Bayer et al. (2005)
estimate a model of residential sorting allowing for mobility costs. Their MWP esti-
mates are larger than usual hedonic regression estimates. The method and results of
the present chapter suggest that, in such a field, distinguishing between the reasons
to migrate could prove fruitful to deal with endogeneity problems.

Lastly, on the labor market, our results shed light on the empirical content of non

wage job characteristics, showing that they are part of workers’ preferences. This
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evidence could be seen as a motivation for labor economists to incorporate other job
attributes than the wage into their models. We note that there have recently been
several attempts at broadening the analysis of earnings inequality to that of monetary
compensation inequality (Pierce, 2001) or, more generally, inequality in the returns
to work (Hamermesh, 1999). In a different field, dynamic structural models of the
labor market are just starting to take amenities into account. For instance, Dey
and Flinn (2005) write and estimate an equilibrium job search model where firms
can also provide health insurance to their employees. We view our results and their
implications as supportive of these multi dimensional analyses of the labor market,
for which the availability of more informative data sets now seems to be the main

obstacle.
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Chapter 3

Using High-Order Moments to
Estimate Linear Independent
Factor Models
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3.1 Introduction

[P

Linear factor models are routinely used in social sciences. Spearman’s (1904) “g
factor is one of the earliest applications in psychology. Principal component analysis
(PCA) is a leading technique in sociology to construct social indices and to uncover
hidden causes of individual actions. Econometric applications include measurement
error models, error component models for panel data, structural VAR models in
macroeconomics, and multifactor asset pricing models in empirical finance. Linear
factor models have also been used in nonlinear empirical microeconomic models. For
example, Carneiro, Hansen and Heckman’s (2003) Roy model of educational choice
is a successful application of factor models for estimating treatment effects and other
policy parameters using microdata.!

Despite these empirical successes, it is usually thought that the interest of linear
multifactor models for structural applications is severely hampered by a fundamental
lack of identification. Suppose that a vector of L observed measurements, Y, be
related to a vector of K unobserved factors, X, by a noisy linear relationship: ¥V =
AX+U, where A is a matrix of parameters (factor loadings) and U is a vector of errors.
In ordinary Factor Analysis, the identification of factor loadings rests on covariance
restrictions, and it is well known that matrix A is identified only up to a multiplicative
orthogonal matrix (Anderson and Rubin, 1956). Parametric restrictions, often in the
form of exclusion restrictions, are usually added for identification. In VAR models, for
example, the identification of structural shocks is achieved by assuming a particular

triangular form for A. In the same spirit, Carneiro, Hansen and Heckman (2003)

! Continuous instruments with large supports allow to identify the distribution of latent variables
and a linear factor structure is used to model the effect of unobserved heterogeneity on latent
variables. See Cunha etf. al (2005) and Heckman and Navarro (2005) for other applications of this
idea.
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assume that there is at least two specific measurements for each factor.

In this chapter, we show that these exclusion restrictions are unnecessary if two
key conditions are satisfied: First, factors and errors are independent, not just un-
correlated. Second, the third and/or fourth-order moments of the vector of observed
measurements are informative, which implies that factors are not Gaussian. If K < L,
we show that the matrix of factor loadings A is generically identified from second,
third and fourth-order moments of the data. Then, if K < L, we show that A is
identified from second and third-order moments only. In both cases, identification
is unambiguously defined up to multiplication of each column by +1 and column
permutations.

The importance of the assumptions of independence and non normality for the
identification of one-factor models is well known in the measurement-error literature.
Since the seminal contributions of Geary (1942) and Reiersol (1950) a long series
of papers have proposed different ways of using third and fourth-order moments to
correct estimators for measurement errors in the regressors.? The class of estima-
tors introduced in this chapter can be seen as a generalization of this approach to
multifactor structures.

In a different branch of statistics, signal processing, linear factor models are com-
monly used to separate the components of linear mixtures of signals. Since its in-
troduction at the beginning of the 1990’s, Independent Component Analysis (ICA)

has rapidly become a leading technique for blind signal separation.® In this vast lit-

2Relevant contributions include Madanski (1959), Pal (1980), Dagenais and Dagenais (1997),
Cragg (1997), Lewbel (1997), and Erickson and Whitted (2002). Less directly related to our work
are the papers of Spiegelman (1979) and Van Montfort et al. (1989), using more of the information
contained in the characteristic function of measurements than the value at zero of its first few
derivatives. Lastly, Lewbel (2004) and Doz and Renault (2005) use heteroskedasticity as a source of
identification.

3The designation “Independent Component Analysis” was first proposed par Comon (1994). See
Hyvirinen et al. (2001) and Cardoso (1999) for surveys.
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erature, one of the most popular methods is Cardoso and Souloumiac’s (1993) JADE
algorithm. This is a joint diagonalization algorithm of a set of well chosen matrices
of fourth-order cumulants of measurements. In the past ten years, the ICA problem
has also become an important topic in the neural networks literature and Hyvérinen’s
(1999) FastICA algorithm has become another very popular algorithm.?

One serious drawback of ICA, at least for econometric applications, is that it
rules out measurement errors. The estimated model is Y = AX, with K = L, not
Y = AX + U. Neglecting noise can be a source of severe biases, as we shall show.
All existing extensions of ICA allowing for noise make parametric assumptions on the
distributions of errors (usually Gaussian) and factors (usually Gaussian mixtures).’
As far as we know, this chapter is the first attempt, out of a long list of contributions,
at proposing a semiparametric statistical procedure for consistently estimating a K x
K matrix of factor loadings from data moments in a linear factor model with error
distributions of unknown form.

We develop an algebraic procedure that builds on Cardoso and Souloumiac’s JADE
algorithm. Our quasi-JADE algorithm proceeds in two stages: First, we estimate the
second, third and fourth-order error moments, which we use to “remove” the noise
component from the second, third and fourth-order moments of the data (“whitening”
stage). Then, we straightforwardly apply Cardoso and Souloumiac’s joint diagonal-
ization algorithm to the “whitened” data. Notice that we therefore do not need to
assume full independence between factor and error components, only that they are

orthogonal up to third or fourth order.

4See Xu, 2003, for a survey of Bayesian learning applications to ICA.

SFor example, Moulines et al. (1997) and Attias (1999) use a ML approach and the EM algorithm.
Xu (2000, 2001) allows for non-Gaussian errors and uses Bayesian learning algorithms. Ikeda and
Toyama (2000) adopt a two-stage method which combines PCA and JADE to reduce the size of the
noise. As such, the estimator they propose is still inconsistent in the presence of noise.
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The outline of the paper is as follows. In Section 3.2, we study the semiparametric
identification of factor loadings. Section 3.3 deals with estimation issues. We first
discuss the estimation of the number of common factors using Robin and Smith’s
(2000) rank test. We then present Cardoso and Souloumiac’s (1993) JADE algorithm
and study its asymptotic properties. Lastly, we introduce the quasi-JADE algorithm.
In Section 4.6, we investigate the finite-sample properties of quasi-JADE by means
of Monte-Carlo simulations.

In Section 3.5, we apply our methodology to estimating returns to schooling in
France, using microdata from the French Labor Force Survey. Our method allows
to identify two factors of individual wages and education. Interestingly, while the
first factor has a positive effect on wages, the second factor is positively related to
education, yet negatively to wages. This is evidence that there exist individual char-
acteristics which are valued by the education institution but not by the labor market.
Moreover, the exhibited factor structure is consistent with the standard model of
education returns if one allows measurement errors on the education measure and
unobserved heterogeneity.

Lastly, Section 3.6 concludes.

3.2 Identification of linear independent
factor models

Let Y = (Y7, ..., YL)T be a vector of L > 2 zero-mean, real-valued random variables
(measurements). Let X = (Xi,..., Xg)" be a random vector of K > 1 zero-mean,
real valued, non degenerate random variables (factors). Let U = (U, ...,Uz)" be a
vector of L zero-mean, real-valued random variables (errors). Both factors and errors

are unobserved.
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Assumption Al (Linearity) There exists a L x K matriz of scalar parameters

(factor loadings), A, such that Y = AX +U.

The difference between factors and errors is a matter of definition. A given co-
variate is called a factor if it enters at least two measurement equations (i.e. every
column Ag, & = 1,..., K, of A has at least two non-zero entries). Otherwise, it is
called an error.

In ordinary Factor Analysis (FA), factors and errors are uncorrelated and identi-

fication rests on the following covariance restrictions:
Yy = AXx AT + 2y, (3.1)

where Y7 denotes the variance-covariance matrix of any random vector Z. Obviously
parameters A, ¥x and ¥ are not identified from second-order restrictions (see An-
derson and Rubin, 1956). First, restrictions are needed on the correlations between
errors and it is usually assumed that ¥y is diagonal. Second, ¥y is not separately
identified from A. If (A, Xx) satisfies (3.1), then so does (AQ, Ix), where QQ” = Y.
The variance-covariance matrix of X is usually normalized to the identity matrix I.
Thirdly, even if ¥x = Ix and Xy is diagonal, A is identified only up to an orthogonal
matrix; that is, if A satisfies the covariance restrictions, then so does AP, for any

orthonormal matrix P. Principal Component Analysis is the least-squares version of

FA.S

6Given a sample Y = (Y1, ..., Yr) of observations, Principal Component Analysis estimates both
A and factor realizations X = (X1, ..., Xn) by non linear least squares under the constraint %XXT =

Ik . Principal components X are the first K eigenvectors of the N x N matrix Y'Y (corresponding
to the K largest eigenvalues), and factor loadings are estimated by regressing Y on X by OLS.
Common factors AX,,, n =1,..., N, are identified if matrix Var (Y") has no multiple eigenvalue but
identifying factors X,, from factor loadings requires the arbitrary choice of a rotation P, even under
the normalization Var (X) = Ix. The asymptotic theory of principal components usually assumes
a fixed number of measurements L but a large sample size N (see Anderson, 1984, and Lawley and
Maxwell, 1971). In two recent papers, Bai and Ng (2002) and Bai (2003) study the case where both
L and N tend to infinity.
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In this chapter, we maintain the assumptions that >y = Ix and Yy is diagonal and
we intensify the absence of correlations between factors, between errors and between
factors and errors by making them independent. Moreover we assume that factors

are non Gaussian with finite third and fourth-order moments.
Assumption A2 (Normalization) Factors have unit variances.

Assumption A3 (Independence) All factor and error variables are mutually in-

dependent.

Assumption A4 (Non gaussianity) Factor variables X, k=1,..., K, are non

Gaussian with finite third and fourth-order moments.

In addition, in order to prove the semi-parametric identification results below,
we shall require characteristic functions and cumulant generating functions to exist
and to be smooth on all R and not only locally around the origin, as implied by
Assumption A4. This assumption is yet not necessary for the parametric estimation

procedures that we shall later develop.

Assumption A5 (Characteristic functions) The characteristic functions of

factors and errors are of class C* on R, and are nonvanishing almost everywhere.

We shall say that a representation (A, X, U) is regular if it satisfies all previously

listed assumptions.

3.2.1 Definitions

For all K, let us define the set of sign-permutation matrices as the set Sk of all
products DP, where D is a diagonal matrix with diagonal components equal to 1 or

—1 and P is a permutation matrix. For given values of L and K, let (A, X,U) be

144



a regular representation. Clearly, for all S € Sk, (AS, STX, U) is another regular
representation. Hence, identification has to be defined modulo the set Sk.

Note that the group Sk is a finite subgroup of the infinite orthogonal group Ok,
up to which identification is defined in ordinary or orthogonal Factor Analysis. The
quotient group Ok /Sk is thus also infinite. Proving identification results modulo
Sk, instead of modulo O, will result in a considerable reduction of the model’s
indeterminacy.

We define semi-parametric identification as follows.

Definition 1 (Semiparametric identification) A regular representation (A, X,U)
s said identifiable if for every other regular representation (K,f(,ﬁ) there exists a
matriz S in Sk such that: A= AS, X< STX, and UL U, where 2 means “equal

n distribution.”

Semiparametric identification draws information on the finite-dimensional para-
meter A and the infinite-dimensional parameters that are the distributions of X and
U from the whole distribution of observed measurements. For practical reasons, it is
useful to understand how much of the model’s structure can be identified from a finite
set of parameters of this distribution. We thus also define parametric identification

as follows.

Definition 2 (Parametric identification) A reqular representation (A, X,U)
is said to be parametrically identified if their exists a finite vector of moments M(Z),
defined for a wvector of r.v. Z, such that, for every other reqular representation
(K,X’,ﬁ), moment equality: M(AX +U) = M(K)? + [7), implies that there ezists

a sign-permutation matrix S € Sy such that A= AS, M(j(v) = M(STX), and
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Unless otherwise specified, we shall simply say that the factor model is paramet-
rically identified if it is identified from second, third and fourth-order moments of

observed measurements.

3.2.2 Identifying restrictions

In this subsection, we develop some implications of the regularity assumptions in

terms of cumulant generating functions and their derivatives.

Cumulant generating function. Denote the cumulant generating functions (the
log of characteristic functions) of Y, X and U; as ky, kx, and ky,. The independence
assumptions and the linear factor structure imply that, for almost all t = (¢4, ..., tL)T €
R

Y

Hy(t) =In []Eexp (\/—_1 . tTY)] = Z/ﬁ)xk (Agt) + ZHU[ (tg) s (32)

where In denotes the principal branch of the logarithm.

Then, define the following sets of multi-indices:

AL, = {a = (o, ...,ar) € {0, ...,p}L Sal=ar + .o+ ap = p} ,

A, = {a = (o1, eyp) €{0,p— 1} ol = a1 + ... + oy :p} :

Let #Ap, (resp. #Ar,) be the number of elements in Ay, (resp. Ay ,). For p =2

. #ZLQ = @ and #AL,Q = L(L2—1)‘7

"Multi-indices are convenient ways to select p components of a vector of size L with repetition,
via the following bijection

where ({1, ...,£p) is such that ¢; < .. < ¢, and iry, + ... +iLe, = «, vector i, denoting the

¢th column of the identity matrix of dimension L. For example, a = (2,1,1) € Az 4 corresponds
to variable indices (1,02,03,04) = (1,1,2,3), a = (0,2,2) to (l1,4a,03,01) = (2,2,3,3), etc. To
simplify the notation, we shall also denote as Ay, , and Ay, , their image by ¥y, ,.

146



Let a = (ay,...,ar) € Ap,. For any vector x = (1y,...,21) € RE, define the

monomial z% = z{" - - - 7%, Then, assuming that derivatives exist, we have
() 0 ky (t) T - (p)
K (1) = Bakiy (1) = T at% Zxk K (L) + ) dapkily (), (3.3)
=1

where /ﬁgﬁ’i and K(LZ) are the pth derivative of kx, and kg, and ;5 is the Kronecker

delta (= 1if i =j and = 0 if i # j).

Cumulants. For any multi-index «, one defines a multivariate cumulant as

K5 (0)
(\/_—1) Ip|

Let i, ¢ € {0,...,L}, be the ¢th column of the L x L identity matrix. For any

ko (Y) =

ptuple (¢1,...,6,) € {0,..., L}, we denote as Cum (Yy,,...,Y,) = Kig, ..+, (Y) the
multivariate cumulant of (Ygl, vy ng).
The second-order cumulants of zero-mean random variables are equal to their

covariances:

Cum (Y, Y,) = E(Y2, V2,), (3.4)

Third-order cumulants are:
Cum (Y, Ye,, Ye,) = E(Y2, Y2,Yy, ). (3.5)
And fourth-order cumulants:

Cum (Yélv Yém Y€3v Y€4) = E(Yh Y& Yﬁ:’,Y&) o E(Yﬁl Yﬂz)E(Y& Y€4) (3'6)

_]E(Yél Yé3)]E(YZ2 }/&) - ]E(n2 n3)E(nl Yé4)'

Taking ¢ = 0 in equation (4.11) yields a set of restrictions on cumulants of factors
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and measurements:

K P
Cum (Yp,,...Ys,) = > (H AM> kp (X3) + Cum (Up,, ..., Uy,)

k=1 \i=1
K p
= >y (H /\éi,k> Kp (Xk) + 00y e,k (Us,) (3.7)
k=1 \i=1
where 0y, ., = 1if {1 = ... = £, and = 0 otherwise, and &, (Z) denotes the pth

cumulant of a univariate random variable Z. If Z has zero mean,

ko (Z) = Cum (Z,Z) = Var(Z) =EZ?,
k3 (Z) = Cum (Z,7,7)=EZ°,
ki (Z) = Cum(Z,2,7,7) =E(Z*) - 3E(Z2?)".
Moment restrictions. It will prove convenient to write moment restrictions in

matrix form, provided that the corresponding moments exist. Using (3.7) with p = 2,

second-order restrictions are equivalently rewritten as
Yy = AAT + 3y, (3.8)

where ¥y and Yy denote the variance-covariances matrices of Y and U.

Next, define the following matrices of third-order cumulants
Ty (¢) = [Cum (V;,Y,Y)) 5 (i,5) € {1,..., L}*] e R, v e {1..L}. (3.9)
Third-order restrictions (p = 3) imply that
'y (¢) = ADs diag (Ag) A" + k3 (Up) Spy 4, (3.10)

where A] € RE*! is the (th row of A, Dj is the diagonal matrix with k3 (X}) in the
kth entry of the diagonal, and Sp; , is the L X L sparse matrix with only one 1 in

position (¢, ).
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Let us also define the following matrices of fourth-order cumulants

Qy (£,m) = [Cum (Y;, Yy, Vi, V5) 5 (3,5) € {1, ..., LY*] € R®E) (4,m) € Ay .
(3.11)

Fourth-order restrictions (p = 4) imply that
Qy (¢,m) = ADydiag (Ay ® Ap) AT + Sgmria (Us) Spy s (3.12)

where D, is the diagonal matrix with x4 (X}) in the kth entry of the diagonal, and

® is the Hadamard (element by element) matrix product.

3.2.3 Semiparametric identification

We now use restrictions (3.3) to derive necessary and sufficient conditions for the semi-
parametric identification of independent factor models. The next theorem, proved in

the mathematical appendix, gives sufficient conditions for identification.

Theorem 3 (Sufficient conditions for semiparametric identification) Let
(A, X,U) be a regular representation. Let (K,)A(:, [7) be an alternative reqular repre-

sentation. The following two propositions hold true:

1. Every column of A is a scalar multiple of a column of A.

2. If the @ x K matriz Q(A) = [AaxAmis -, e Ami; (6,m) € Ay o], where rows
are stacked by increasing order of (¢,m), £ < m, is full column rank, then

(A, X, U) is identified.

If factor variables are not normally distributed, then the matrix of factor loadings
is identified whatever the number of factors. This result is well-known in the ICA

literature, at least since Comon (1994). Moreover, it suffices that rank(Q(A)) = K for
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the distributions of factors and errors to be identified. A model with @ factors is
thus potentially identifiable when factors and errors are assumed independent instead
of uncorrelated.

Theorem 3 is a straightforward generalisation of Eriksson and Koivunen’s (2003)
identification result for non noisy ICA. Proposition (i) of Theorem 3 follows from
factor nongaussianity by a straightforward application of a result due to Kagan, Linnik
and Rao (1973) that is stated in the mathematical appendix. Proposition (ii) of
Theorem 3 easily follows from proposition (i).

We now show that the rank condition in proposition (ii) is generically necessary,
that is: for a class of distribution functions dense in the set of continuous distribution

functions. As far as we know, this is a new result. Let us first define the class of

distributions divisible by a normal distribution.

Definition 4 (Distribution divisible by a normal) Let X be a continuous
random variable with density f and characteristic function ¢. The distribution of
X s divisible by a normal distribution if there exists o> > 0 such that p(t) =

©(t) exp (#) 15 the characteristic function of a random variable X.

The distribution of a variable X is divisible by a normal if and only if X 2
X + N (0,0%), where N (0,02) is a normal r.v. with mean 0 and variance o2. The
set, of distributions divisible by a normal is dense in the set of continuous distribution
functions.®
For a representation (A, X,U) to be identifiable, the next theorem shows that

either Q(A) is full-column-rank or it is not, but then at least some of the factor and

error variables must not be divisible by a normal distribution.

8Let X be a continuous random variable. Let X, = X + A(0,02). Then X,, % X when o2 — 0.
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Theorem 5 (Necessary condition for semiparametric identification) Let
(A, X,U) be a representation. Suppose that Q(A) is not full-column-rank and that
the distributions of factors and errors are divisible by normal distributions. Then

(A, X, U) is not identifiable.

We refer the reader to the mathematical appendix for a proof of Theorem 5. We
show that under the assumptions of Theorem 5, for any representation (A, X, U) such
that Q(A) is not full-column-rank and the distributions of factors X and errors U
are divisible by normal distributions, then one can construct another representation
(K,X’, (7) that is not equal to (A, X,U) up to a sign-permutation matrix and that

still verifies the equality AX + U LAX +U.

3.2.4 Parametric identification of factor loadings in the noise-
free case (U = 0)
We here derive parametric identification results based on the first four moments of
the data. The identification proofs are constructive, and will be used for estimation
in the next section.
We first consider the case of factor models without errors. In this case, second,

third and fourth-order restrictions (3.8), (3.10), (3.12) imply that matrix A satisfies

simultaneously
Sy = AAT, (3.13)
Ty (/) = ADsdiag(A,) AT, (€ {1..L}, (3.14)
Qy (6,m) = ADydiag(A,® Ay) AT, (6,m) € Aps. (3.15)

Left and right-multiplying (3.13), (3.14) and (3.15) by E;I/Q and E;T/Q, respec-

151



tively, where Z;l/ZZyE;T/Z = Ik, one obtains:

SUPTy (05577 = VDydiag (M) VT, €€ {1..L},

5720y (6,m) 717 = VDydiag (A @ An) VT, (6m) € K.

where V = E;I/ZA is orthogonal; that is: VV7T = Ix. Therefore, V solves a joint
diagonalization problem. Theorem 6 below gives conditions for the solution to this

joint diagonalization problem to be unique.

Theorem 6 (Parametric identification in the noise-free case) Assume (i)
U=0, (ii) K <L and (iii) A has rank K.

If (iv) at most one factor variable has zero kurtosis excess, then factor loadings
are identified from second and fourth-order moment restrictions (3.13) and (3.15).

If (iv’) at most one factor variable has zero skewness, then factor loadings are
identified from second and third-order moment restrictions (3.13) and (3.14).

If (iv”) for any couple of factors indices (k, k'), (k3 (X), k3 (Xir) , k4 (Xg) , kg (X)) #
0, then factor loadings are identified from second, third and fourth-order moment re-

strictions (3.13), (3.14) and (3.15).

The proof is in the mathematical appendix. Theorem 6 shows that high order
moments are a source of identification in noise-free factor models. This insight has
been widely used in the ICA literature. For instance, Cardoso and Souloumiac (1993)
use restrictions (3.13) and (3.15) as the basis of their JADE algorithm. In usual
applications of ICA methods, factors are thought to be symmetric. For this reason,
third-order information is a priori neglected in this literature. However, there is no
strong argument in favour of discarding third-order moments of the data in economet-
rics. It is yet true that the variables of interest are often transformed to make them

as much Gaussian as possible. For instance, by taking the logarithm of income, one
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obtains a distribution which is close to being normal, at least as far as the skewness
and kurtosis are concerned. However, there can still be enough non normality in the
multivariate distribution of the data for factor loadings and factor moments to be well

identified. The application in Section 3.5 will provide an illustration of this remark.

3.2.5 Parametric identification of error moments

In the “noisy” case (U # 0), the previous identification results apply, provided that the
first moments of error variables are identified. We here give conditions under which
these moments are identified. Two cases are distinguished, depending on whether all

fourth-order cumulants of factors are zero or not.
First case: all factor distributions are kurtotic

Let Qy be the @ X @ matrix of all fourth-order cumulants of the data, defined

by

L(L+1)  L(L—1)
7 XT3,

Qy = [Cum (Y;,Y;, Y0, Vi) ; (i, 5) € Apo, (6,m) € Ary] €R (3.16)

The rows of Qy are indexed by (i, j) € Ap 5 and the columns are indexed by (¢,m) €
Apo, le. (i,)) € {1,...,L}2, i < j,and ({,m) € {1,...,L}2, ¢ < m. The factor

structure implies that

Qy = QD,Q", (3.17)

where
Q = QA) = Dadau (m) € Ao k€ {1, . K} e R-FT2XK (3.18)
Q = Q) = Dadn; (Lm) € Apo k€ {1,.., K} € R“EXK (3.19)

We first show that, under the assumption that all factors have kurtosis excess, it
suffices that ) be full column rank for the first four error moments to be identified

from the first four moments of the data.

153



Lemma 7 Assume that (i) K < 222 (i) Q has rank K and (iii) factor variables

have non zero kurtosis excess. Then the following propositions hold true.

1. Matriz Qy has rank K.

L(L+1) % (L(L2+1) —K)

2. Let C € R 2~ be a basis of the null space of QL; that is: the
columns of C are linearly independent and QL.C = 0. The first four moments

of Up, ¢ € {1, ..., L}, satisfy the linear restrictions:

L
C'vech (Sy) = > Var(Up) Cieo, (3.20)
C" vech Ty (0)) = k3 (Ur) Cirpy, (3.21)
C' vech (Qy (6,0)) = k4 (Us) Cen, (3.22)

where C, (0,0) denotes the (£, £)th row of C, when the LH) rows of C' are indezed

] L L+1)

by Ap 2, and where vech is the linear matriz operator stacking al non

redundant elements of a symmetric matriz.”

3. Matriz [5(1,1), ...,U(L,L)] is full rank and Var (Uy), k3 (Up) and k4 (Up) are uniquely
defined by identification restrictions (3.20), (3.21) and (3.22).

The proofisin Section C.1.4 of the mathematical appendix. The following theorem

then follows straightforwardly.

Theorem 8 (Sufficient conditions for parametric identification when K <

L) Assume that (i) K < min{L, L(L2_1)}, (1) A is full column rank, (iii) Q has
rank K, and (iv) factor variables have non zero kurtosis excess. Then, factor loadings

are identified from second and fourth-order moments.

L(L41
(L41)

%Let A = [a;j] be a L x L matrix. Then vech (A4) = [a;;;i < j] € R
(,7) by increasing order.

, ordering couples
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Theorem 6 shows that the maximal number of factors for which A can be identified

(up to column sign and permutation) is K =1if L =2, and K = L if L > 3.
Second case: all factor distributions are either skewed or kurtotic

We now consider the problem of identifying factor loadings, in the “noisy” factor
model, when some or all factor distributions have zero kurtosis excess.

Let

(L=1)

Oy (j) = [Cum (Y3, Y}, V5, Vi) 1i € {1, L}, (6,m) € Ay € RE* 2 (3.23)

The rows of 0y are indexed by i € {1,..., L} and the columns are indexed by (¢, m) €

Aprg, i.e. £ <m. The factor structure implies that
Qy (j) = Ading (A;) D,Q". (3.24)

Let also I'y be the L x @ matrix of third-order cumulants of the data defined

by

L(L-1)

Ty = [Cum (V;, Y}, V,,) ;i € {1,..., L}, ({,m) € Apy) € RE* 2 (3.25)

The rows of I'y are indexed by i € {1, ..., L} and the columns are indexed by (¢, m) €

Apo, ie (6,m) € {1,.., L}Q, ¢ < m. The factor structure implies that
Iy = ADsQ". (3.26)

Lastly, let =y be the L x % matrix of al/ third and fourth-order cumulants

of the data, obtained by stacking matrices T'y, Qy(1),..., Qy (L) columnwise:
Zy =Ty, Qy (1), ..., Qy(L)]. (3.27)

We first establish a set of linear restrictions on error moments.
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Lemma 9 Assume that (i) K < min {L, L(L;l) }, (ii) A and Q are full column rank
K and (iii) every factor distribution is either skewed or kurtotic. Then the following

propositions hold true.

1. Zy has rank K.

2. Let C € RF(E=K) e q basis of the null space of Z1; that is: the columns of C
are linearly independent, and ZLC = 0. Let CF denote the (th row of C. The
second, third and fourth-order moments of Uy, for all ¢ € {1,..., L}, satisfy the

linear restrictions:

E (YY)
cr : = Var (Uy) Cy, (3.28)
E(Y.Yy)
E(Y1Yy)
o : = k3 (Up) C. (3.29)
E(YLY?)

and
E(Y1Y}) = 3E(Y1Y,) E(Y7)

cT = k4 (U,) Cy. (3.30)

E(Y7Y)) = 3E(Y1Yy) E(Y7)
Lemma 9 is not sufficient to identify error moments if K = L, as in this case

matrix C' is zero. We thus require additional assumptions on A.

Lemma 10 Assume, in addition to the conditions of Lemma 9, that (i) K < L —1,
and (ii) every submatriz of A made of a selection of L — 1 rows has rank K. Then,

no column of C is nil (Cy # 0, ¥) and Var (Uy), k3 (Uy) and k4 (Uy) are identified.

The proofs are in Section C.1.5 of the mathematical appendix. The following

theorem then follows immediately.
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Theorem 11 (Sufficient conditions for parametric identification when K <
L —1) Assume that (i) K < L — 1, (ii) every submatriz of A made of a selection
of L — 1 rows has rank K, (iii) matriz Q has rank K, (iv) every factor distribution
is either skewed or kurtotic. Then, factor loadings are parametrically identified from

second, third and fourth-order moments.

As a special case, if all factors are skewed then factor loadings are parametrically

identified from second and third-order moments.

Corollary 12 (Sufficient conditions for parametric identification from sec-
ond and third-order moments when K < L —1) Assume that (i) K < L—1,
(ii) every submatriz of A made of a selection of L — 1 rows has rank K, (iii) matriz
Q has rank K, and (iv) all factor distributions are skewed. Then, factor loadings are

parametrically identified from second and third-order moments.

For example, consider the case of L = 2 and K = 1 and factor X; has a non

symmetric distribution:

Yi= 1 Xy + U4,
Yo = A1 Xy + Uy,

and E (X?}) # 0. One easily finds:

E(Y; Y Y5
At = \/IE(YIYZ)¥

E(Y;Y5Y5
Aoy = \/]E(yl%)ﬂ_

Interestingly, the ratio of the two factor loadings is then

Az _ E(M1Y5Y5)

= . 3.31
M EVViY) (3.31)

Replacing expectations by sample means, we obtain a consistent estimator of i—ﬁ

which is the coefficient of the regression Y5 on Y] with no intercept, by 2SLS, using
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Y1Y, as an instrument for Y;. This is the estimator of the measurement error model
that was proposed by Geary (1942). Interestingly, the quasi-JADE estimator that
we shall propose in the next section also satisfies equation (3.31). The estimators
introduced in this chapter can thus be interpreted as a generalization of Geary’s IV

estimator.

3.3 Estimation

We start by discussing the issue of estimating the number of factors.

3.3.1 Estimating the number of factors K

Estimating K when K < @ and all factors are kurtotic. Assuming that
@ is full column rank and that factor variables show kurtosis excess, then matrix 2y
has rank K (see Lemma 7). For any i.i.d. sample, let Qy be the empirical counterpart
of Qy, obtained by replacing expectations by sample means. We use the sequential
testing procedure developed by Robin and Smith (2000) to estimate the rank of (y-.!°
Monte Carlo simulations show that the rank test, applied to matrix 2y alone,
suffers from substantial size distortions (see the simulations in the next section).
Assuming K < L, the factor structure provides additional rank conditions that can
be used to improve the test’s properties. We propose the following refinement.
Consider matrices Qy (¢,m) for all (¢,m) € Aps (¢ < m). They satisfy the

restrictions:

Qy (f, m) = AD4 d1ag (Ag ® Am) AT.

Let w = (w12, ...,wr—1,1,) be a vector of @ positive weights. Then,
Qyw= Y. wemQy (£, m) = AD,diag (Q"w) A”. (3.32)
(E,m)EAL,z

1ORobin and Smith’s rank test is described in Appendix C.4.
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As no column of () is identically zero, matrix Qy,, has rank K for almost all w.

It seems natural to weight cumulant matrices more if they are more precise. We
therefore suggest to choose wy,, equal to the inverse of the average of asymptotic
variances of the components of the empirical estimate Qy (¢, m) of Qy (¢, m). These

variances can be computed by standard bootstrap.

Estimating K’ when K < L and all factors are skewed or kurtotic. Assuming
that A and @ are full column rank and that factor variables have non zero skewness,
then matrix I'y has rank K (see Lemma 9). One can thus apply the rank test to any
root-N estimator fy.

More generally, one can use the following version of the rank test, which uses third
and fourth-order information of the data. Lemma 9 shows that, assuming that A and
@ are full column rank (so that K < L) and that each factor distribution is either
skewed or kurtotic, matrix =y has rank K. One can thus test the rank of any root-N

consistent estimator =y-.

Again, one can refine the test and account for moments’ variability, as matrix

L
Zvw =Ty + Y w;Qy (j) = A [Ds + Dy diag (ATw)] Q7 (3.33)

=1
has rank K, for almost all weight w = (wy, ...,w;)" € RE.' We suggest to set w;

equal to the average of the variances of the components of fy divided by the average

of the variances of the components of Qy (5).

' This is because the set
L
{w e R, kg(Xp) + ra(Xp) [ D widje | =0}
j=1

has measure zero in R”, for all k = 1...K.
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3.3.2 Cardoso and Souloumiac’s JADE procedure

Assuming no noise, factor loadings satisfy the following system of matrix equations:

Qy (f, m) = AD, (f, m) AT, (f, m) S ZL,Q, (334)

Yy = AAT, (3.35)

for diagonal matrices Dy (¢, m) (see Section 3.2.4).
In an influential paper, Cardoso and Souloumiac (1993) propose the following

procedure to estimate A using this system of restrictions.

1. “Whiten” the data, i.e. compute Y = P~Y, where P is a L x L such that
PPT = %y (for example, a Cholesky decomposition) and A~ is a generalized

inverse of P, e.g. P~ = [PTPT1 PT.
2. Compute Qg (¢,m), for all (¢,m) € Ay 5. These matrices satisfy the restrictions:
VIQg (6, m)V = Dy (¢, m),
where V' = P~ A is an orthonormal matrix of dimensions K.

3. Compute V as an orthonormal matrix minimizing the sum of squares of the off-
diagonal elements of matrices V7'Qs (¢,m) V. Cardoso and Souloumiac (1993)
develop a simple and efficient algorithm to perform this optimisation (using

Jacobi rotations), that is detailed in Section C.2 of the Appendix.!'?

To apply this algorithm on a sample {Y3,..., Yy} of i.i.d. observations, replace
expectations by sample means. The theoretical restrictions then only hold approxi-

mately but the joint diagonalisation algorithm still delivers an orthonormal matrix v

12A MATLAB code of the JADE algorithm is available on Cardoso’s web page:
http://www.tsi.enst.fr/ cardoso/Algo/Jade/jadeR.m.
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such that all matrices ‘A/Tﬁg (¢, m) V are approximately diagonal. An estimate of A
is then simply obtained as A = PV. Cardoso and Souloumiac (1993) call JADE this
empirical procedure (Joint Approximate Diagonalisation of Eigenmatrices).

The JADE algorithm has several attractive properties. As it uses all fourth-order
cumulants of the data, it is much less sensitive to spectrum degeneracy than single
diagonalization algorithms (see Cardoso, 1999). Moreover, the cost to pay for these
efficiency gains is reasonable, as Jacobi rotation-based algorithms are fast to converge.
Lastly, JADE is equivariant in the sense that changing Y into WY, for any invertible

matrix W, changes A into WA.

3.3.3 Asymptotic theory for JADE

As far as we know, there is no derivation of the asymptotic properties of JADE in
the ICA literature. This section aims at filling this gap.

To proceed, let 121\1, ,121\ J be root-N consistent and asymptotically normal esti-
mators of JJ symmetric K x K matrices Ay, ..., A;. Construct A= [;1\1, ...,EJ] and
A =[A4,..., Aj] by concatenation. Let V4 be the asymptotic variance of N'/2 vec(A).

The JADE estimator is
A~ ] Pl
V = arg min off(VTA;V),

VeOk <
Jj=1

where off(M) = 37, m?; and Ok is the set of orthonormal K x K matrices.
Assume that there exists V' € Ok such that, for all j = 1,...,J, VT A,V = D;,
where D is the diagonal matrix with diagonal elements d;, ..., d;x. Define the K x K
matrices:
(djr. — djm)

R(D;) = Z}-]le(dj'k — dj/m)Q; (k,m) € {1,..,K}*|.
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Lastly, let W be the following K2 x JK? matrix:
W = [diag(vec(R(D,))), ..., diag(vec(R(Dy)))] -
We show the following result in Appendix C.3.
Theorem 13 Assume that Z]‘.]:l(djk — djm)? #0 for all k #m. Then

N'/2 (Vec(‘7) - V€C(V)> L N(0,Vy),

N—o00

where:
Vy =(Ig @ VWL V@V VA(I; @ Ve V)W (Ix @ V). (3.36)

Let us consider the particular case of J = 1. In this case, (3.36) yields the
well-known expression for the variance-covariance matrix of the eigenvectors of a
symmetric matrix (e.g. Anderson, 1963). The diagonal coefficients of matrix W are
equal to 1/(dyg — dyy), for k # m. The variance of eigenvectors thus increases when
two eigenvalues of A; get close to each other.

In the general case of more than one matrix (J > 1), a precise estimation requires
>;(djk — djin)? not to be close to zero, for all indices (k,m). Now, the larger J
and the less likely it is that dj; = dj,, for all j. Cardoso (1999) already noted that
joint diagonalisation algorithms seemed less sensitive to the presence of multiple roots
than usual diagonalisation techniques.'® Theorem 13 allows to better understand the
conditions granting a good precision.

Basing identification on fourth-order moments, indices are j = (¢, m), and matrices
A; and D; are of the form: Qy (¢,m) and D,diag (A; ® A,), respectively. If there

exist k, k' such that dj;, = dj for all j, it must be that

Ak Amkka (Xk) = Ao A 64 (X )

13Gee also the asymptotic distribution of estimators of common principal components derived by
Flury (1984, 1986).
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for all /,m. This cannot happen if at most one factor has zero kurtosis excess and
the columns of A are not proportional to each other.

This result is not surprising, as the variance of eigenvector estimators blows up
when the model is not identified. Non identification arises in PCA when the variance
of the vector of measurements has multiple eigenvalues (there are then obviously many
possible choices for a basis of the corresponding eigenspace). In ICA this happens
when two columns of the matrix of factor loadings are proportional or when factor
distributions lack skewness and/or kurtosis excess. We shall produce Monte-Carlo

simulations to illustrate this point.

Practical remark. In practice, we do not recommend to use formula (3.36) to
compute standard errors. Instead, we suggest to compute standard errors or cover-
age intervals by standard bootstrap (with appropriate recentering). The reason is
that the expression in (3.36) involves second moments of third and/or fourth-order
moments of the data, which are difficult to estimate precisely. Our simulations show
extremely imprecise estimates of matrix V4, even with very large samples (more than
10,000 observations). In contrast, bootstrap provides good approximations of the

true variance-covariance matrix of the JADE estimator.

3.3.4 The quasi-JADE algorithm

The JADE algorithm is only valid if there is no noise (U = 0). However, Lemmas 7 and
9 show that the first four moments of error variables can be estimated independently
of factor loadings. Given error moments, one can then apply JADE.

We call quasi-JADE the following procedure.

1. Estimate matrices C' and/or C of Lemmas 7 and 9. These matrices are easily

obtained by Singular Value Decomposition of matrices {2y and Zy-.
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2. Estimate error variances Var (Uy), third-order cumulants k3 (U;) and/or fourth-
order cumulants 4 (Uy) using the restrictions in Lemmas 7 and 9. One should
impose the non negativity of error variances, as well as the positive semi-

definiteness of matrix Yy — Y.

3. Proceed to the joint diagonalisation (i.e. steps 2 and 3 of the JADE algorithm)

of matrices
P [FY (0) — k3 (Up) SpL,g] p~T and/or P~ [Qy (L,m) — dpmkyg (Up) SpL,g] pT

where P is a full column rank L x K matrix such that ¥y — ¥y = PPT. We
suggest to compute P as the first K columns of the Cholesky decomposition of

matrix Xy — Y. Let V' be the orthonormal matrix of joint eigenvectors. Then

A=PV.
4. Estimate factor cumulants k3 (X}) and k4 (X) by OLS from restrictions:

VTP [Ty (6) =53 (U) Spre] PT7V] 0 = Aas (Xa)

[VTP~ [Qy (¢, m) = Sumka (Ur) Spy,] P_TV]M = AopAmrka (Xi),

where [A]; ; denotes the (i, j) entry of matrix A.

Quasi-JADE is only marginally more complicated to implement than JADE,'* and
is almost as fast to converge. However, allowing for errors has a cost. Whereas JADE
is equivariant, quasi-JADE is not. In practice, we suggest to apply quasi-JADE to

normalized measurements, by dividing each Y, by its standard error.

Efficiency improvements. As the original JADE algorithm, quasi-JADE is ob-

viously not efficient. First, it operates a sequence of minimum distance estimations

14GAUSS codes for quasi-JADE are given in the Appendix to this chapter.
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instead of estimating all parameters jointly. Second, it does not use the optimal metric
in these minimum distance problems. Third, it does not use all the structural moment
restrictions. For example, the diagonal matrices Dy (¢, m) in (3.12) are related to A
but we do not use this restriction.

A natural alternative to our approach would be to use all cumulant restrictions
(3.8)-(3.10)-(3.12) in estimation. However, these restrictions are highly nonlinear
polynomial equations, which are difficult to solve using standard gradient algorithms
or any other general-purpose solving technique. We shall make this point more precise
in the simulation section. Second, there is considerable evidence that the optimal
metric does not outperform the identity metric in finite samples (see Altonji and
Segal, 1994, 1996).

Nevertheless, there is scope for efficiency improvements. For instance, one can use
Generalised Least Squares instead of OLS to estimate error cumulants in Step 2 of the
algorithm. Likewise, one can weight the matrices to diagonalise in Step 3. Weights
can be some measure of estimation precision, as outlined in 3.3.1. In simulations,
we found that this method yielded little efficiency gains. On real data, however, we
found slightly different results that we shall present in section 3.5. Note that this
weighting procedure is ad hoc. Issues regarding the optimal weighting of cumulant

matrices, based on asymptotic results such as (3.36), are left for future research.

3.4 Monte-Carlo simulations

In this section, we study the finite-sample properties of our estimators by numerical
simulations. We first consider the estimation of A given the true value of K, the

number of factors. Then, we present simulations for estimating K.
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N | 500 1000 5000 10000

A1 | 2.03(28) 203 (.17) 2.01 (.09) 2.01 (.06)
Aot 95 (23) .99 (.14) 1.00 (.07) 1.00 (.05)
st 95 (23) .99 (.15) .99 (.07) 1.00 (.05)
A1z 98 (.23) .98 (.15) 1.00 (.06) 1.00 (.05)
Az || 2.05 (:27) 2.03 (.19) 2.01 (.08) 2.01 (.07)
A3 97 (.23) .98 (.17) 1.00 (.06) 1.00 (.05)
A1 97 (23) .98 (.15) .99 (.06) 1.00 (.05)
Ao 97 (.23) .98 (.16) 1.00 (.06) 1.00 (.05)
Ass || 2.06 (:227) 2.02 (.19) 2.01 (.09) 2.00 (.05)
Var(Uy) | .77 ((59) .87 (43) .96 (.20) .98 (.16)
Var(Us) | .76 (.57) .87 (43) .98 (.20) .98 (.17)
Var(Us) | .74 (.56) .86 (.42) .96 (.20) .98 (.16)

Table 3.1: Quasi-JADE based on the 2nd, 3rd and 4th moment restrictions of Lemma,
7 (log-normal factors, standard normal errors, A = Ay)

3.4.1 Estimation of factor loadings

Table 3.1 presents the results of 1000 simulations of the model with centered and

standardized log-normal factors, standard normal errors and A equal to
2 11
A= 1 2 1
11 2
Results are given for various sample sizes N. Monte Carlo standard deviations of
estimates are given between brackets. Estimation is based on all second, third and
fourth-order moments of the data and uses the restrictions of Lemma 7.

Table 3.1 shows some evidence of finite sample bias. However, in general the bias
is small and rapidly decreases as N increases. By comparison, small sample biases
are much larger and convergence is much slower for empirical cumulants. Table 3.2
shows the means and standard deviations of the empirical skewness and kurtosis of

a standardised log-normal variate, for various sample sizes.!”> The striking contrast

between Tables 3.1 and 3.2 suggests that our algorithm does a good job at extracting

15Means and variances were computed from 1000 independent drawings, for each sample size N.
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N | 500 1000 5000 10000 00

451 (1.98) 5.01 (2.36) 5.73 (2.65) 5.89 (2.02) 6.18
36.1 (38.4) 48.6 (62.4) 77.0 (132.3) 83.3 (104.7) 110.9

K3
R4

Table 3.2: Empirical skewness and excess kurtosis of a log-normal random variable

the relevant information from higher-order moments of the data, while being relatively
immune to the imprecision of their estimation in finite samples.

We then study the robustness of our algorithm to the magnitude of the noise. In
Table 3.3, we compare the performance of quasi-JADE to standard JADE. We run
the simulations with normal errors, log-normal factors, a sample size of N = 1000
and A = Ay. The standard deviation of errors can take four values: 0.1, 0.5, 1 and 2.
We see that the performances of quasi-JADE deteriorate as the signal-to-noise ratio
decreases. However, the bias remains limited even for rather large error variances.
By comparison, JADE presents much larger biases. In particular, while our quasi-
JADE algorithm yields consistent estimates of factor loadings, the inconsistency of
ordinary (noise-free) ICA is severe, even when the magnitude of the error variances
is not especially large (for example for a variance of one; which here implies that
Var(Uy)/ Var(Y;) = 20%).

Next, we compare these results with Minimum Distance based on the complete
set of moment restrictions. The estimation is based on second and fourth-order re-

strictions:
{ Yy = AAT + 3y,
QY - QD4QT7

where Qy is the 6 x 3 matrix of fourth-order cumulants of Y given by (3.16) and
where () and ) depend on A.
In all the simulations that we performed, Full Minimum Distance proved to be

highly unstable. Maximisation with respect to the whole set of parameters (A, X¢7, Dy)
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A || 2-00 (.07) (.08) 2.36 (.12) 2.81 (.46)
Aor || 1.00 ((11) 1.00 (.12) .95 (.24) .72 (.86)
Azt |[ 1.00 (.11) 1.03 (.14) 1.08 (.22) 1.05 (.77)
A1z || 1.00 (.11) 1.00 (.12) .97 (.24) .78 (.86)
Aop |[ 2.00 (.07) 2.11 (.07) 2.37 (.12) 2.86 (.32)
As2 || 1.00 (.12) 1.03 (.13) 1.08 (.22) 1.08 (.76)
Az || 1.00 (.11) .87 (.13) .61 (.20) .16 (.69)
Aos || 1.00 (.11) .87 (.12) .62 (.20) .15 (.67)
Asz || 2.00 (.08) 2.02 (.09) 2.13 (.16) 2.52 (.43)
quasi-JADE
Var(Up) | .01 25 1 4
A [ 1.98 (12)  2.01(.13) 2.03 (.17) 2.02 (.44)
Aor || 1.00 ((15) .99 (.12) .99 (.14) .95 (.31)
Azt || 1.00 (.16) .99 (.13) .99 (.15) .95 (.32)
A1z || 1.00 (.16) .99 (.13) .98 (.15) .97 (.33)
Ao |[ 1.97 (11)  2.02 (.11) 2.03 (.19) 2.02 (.41)
As2 99 (.16) .99 (.13) .98 (.17) .97 (.32)
Az || 1.00 (.16) 1.00 (.14) .98 (.15) .96 (.32)
Aoz || 1.00 (.16) 1.00 (.13) .98 (.16) .96 (.32)
11

As3 || 1.98 ((11) 2,02 (11) 2.02 (.19) 2.01 (.42)
Var(U) || .04 (11) .18 (.22) .87 (.43) 3.77 (.98)
Var(Uy) || .04 (11) .17 (.23) .87 (43) 3.77 (.94)
Var(Us) | .04 (11) .17 (.22) .86 (.42) 3.77 (.97)

Table 3.3: Robustness to noise of JADE and quasi-JADE (log-normal factors, stan-
dard normal errors, N = 1000, A = A,)
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converged (numerically) in none of the cases that we considered. To obtain a more
stable algorithm, admittedly at the cost of lower efficiency, we treated the coefficients
of D, as nuisance parameters. Precisely, we minimised the Minimum Distance norm,
evaluated at (A, Xy, Dy(A)), with respect to (A, Xpy) alone and where Dy(A) is such

that

vec [Dy(A)] = (Q ® Q) vec(Qy).

Note that using the optimal metric to estimate D4(A) from restriction Qy = QD4§T
given A yielded even greater instability. Incorporating third-order moment restrictions
into the algorithm had the same effect.

Table 3.4 presents simulation results with log-normal factors, normal errors and

6 Starting

A = A;. Results are presented conditional on numerical convergence.!
values were chosen equal to the true parameters. First, we find that, conditional
on numerical convergence, Full Minimum Distance is slightly more efficient than our
algorithm in finite sample. This result was to be expected, as our algorithm uses
only a subset of the moment conditions implied by the factor model. However, the
difference in variances is not large, especially when looking at factor loadings. Second,
this efficiency gain is obtained at two costs. The first one is numerical instability,
which is illustrated by the final row of Table 3.4. When error variances are larger
(Var(U;) = 4), maximisation failed to converge in 157 cases out of 1000. The second
cost is computing time, which increases rapidly with the number of factors.

Next, we investigate the sensitivity of our algorithm to the amount of factor kur-
tosis. The sample size is N = 1000. Errors are standard normal variables. To

vary the kurtosis, we generate factors as mixtures of two independent normals. Let

Wy ~ N(0,1/2), and let p €]0,1[. Define Wy ~ N(0,(2 — p)/(2 — 2p)), indepen-

16We declared numerical convergence achieved when the gradient of the GMM criterion was inferior
to 1072 in absolute value after 5000 GMM iterations.
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Var(U;) || .01 25 1 4

M 2.03 (.12) 2.04 (.14) 2.04 (17) 2.02 (43)
Ao 98 (.10) .98 (.10) .98 (.12) .97 (.28)
At 98 (10) .98 (11) .99 (.13) .98 (.28)
Ao 99 (10) .99 (11) .99 (.13) .96 (.26)
oo 2.04 (.13) 2. 04 (12) 2.03 (17) 2.04 (.44)
s 99 (10) .99 (.11) .99 (.13) .96 (.27)
A3 99 (11) 98 (.11) .98 (13) .96 (.28)
Aas 98 (10) .99 (.10) .99 (.13) .95 (.27)
A 2.04 (.13) 204 (.13) 203 (.18) 2.00 (.42)
Var(U) || -.09 (:32) .11 (37) .86 (.44) 3.75 (1.28)
Var(Us) || -11(:33) .11 (:34) .87 (42) 3.63 (2.27)
Var(Us) || -12 (.34) .12 (.35) .88 (45) 3.78 (1.09)
% convergence || 99.9% 100.0% 99.8% 84.3%

Table 3.4: Minimum Distance estimator based on 2nd and 4th order moments (K = 3,
log-normal factors, normal errors, V(U) = .25)

dent of W;. Then, it is straightforward to see that X, defined as W; with proba-
bility p and W5 with probability 1 — p, has variance one and its kurtosis excess is
ke(p) = 3p/(4(1 — p)). Table 3.5 displays Monte Carlo simulation results for values of
p yielding kurtosis equal to 1 , 2, 5, 10 and 100. In the first column of Table 3.5, we
report the results corresponding to factors following a (standardised) uniform distrib-
ution over [—1, 1]. The uniform distribution is platykurtic, with x4 = —6/5. The last
column shows the results for (standardised) log-normal factors, the kurtosis excess of
which is equal to e* +2e? +3e2 — 6 ~ 110. Overall, we find that the impact of kurtosis
on the performance of the algorithm is far from negligible. The closer the kurtosis
excess is to zero, the greater the estimator’s bias and the lower its precision.

We now set K < L and compare the quasi-JADE procedures based on the restric-
tions of Lemma 7 and 9. The estimator based on the restrictions of Lemma 7 uses
all second, third and fourth-order moment restrictions while the estimator based on

the restrictions of Lemma 9 only uses second and third-order moments and assumes
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p (Uniform)  2/5 4/7 20,23 40/43  400/403 (Lognormal)
Ka 6/5 1/2 1 5 10 100 ~110
A1 || 1.94 (48) 1.66 (.78) 1.76 (.74) 2.03 (:33) 2.01 (:26) 2.01 (.19)  2.03 (20)
Aot 91 (48) .97 (.71) .94 (.63) .97 (.30) .98 (21) .99 (.16) .98 (.15)
Asi 92 (48)  1.00 (.69) .96 (.65) .97 (.29) .97 (21) .98 (.17) .98 (.16)
A1z 97 (49)  1.00 (.71) .98 (.65) .96 (.30) .98 (.21) .99 (.19) .98 (.16)
Ap2 | 1.98 (44) 1.71 (.69) 1.83 (.64) 2.02 (.35) 2.02 (.26) 2.01 (.18)  2.03 (.18)
A3 98 (.49)  1.00 (.72) .95 (.66) .97 (.30) .98 (.20) .99 (.18) .98 (.16)
A1 96 (.49) 112 (.74) 1.05 (.70) .97 (.29) .99 (20) .99 (.17) .98 (.15)
Ao 94 (49) 112 (.75) 1.05(.69) .97 (.29) .98 (.19) .99 (.18) .98 (.15)
As3 || 1.97 (43) 1.83 (.57) 1.89 (.56) 2.03 (.32) 2.03 (.25) 2.02 (.18)  2.03 (.20)
Var(Uy) || .71 (.65) .92 (.84) .76 (.79) .77 (.63) .88 (.53) .92 (40) .86 (.44)
Var(Us) | .75 (.65) .89 (.83) .69 (.78) .75 (.64) .83 (.55) .93 (40) .87 (.43)
Var(Us) | .74 (66) .93 (.82) .76 (.80) .77 (.64) .84 (.53) .91 (40) .86 (.44)

Table 3.5: Quasi-Jade with factors of increasing kurtosis (factors are normal mixtures,
standard normal errors, N = 1000, A = A;)

that all factors are skewed. Table 3.6 reports simulations with log-normal factors,

standard normal errors with variance 1, and matrix A is equal to:

Ay = (3.37)

— =D
— N =

Table 3.6 shows, quite surprisingly, that fourth-order moments yield rather small
additional efficiency gains. This illustrative table suggests that an algorithm based
on third-order moments only could do well in practice, provided that there is enough
skewness in the data. On the other hand, adding moment restrictions (and there
can be a lot of fourth-order moment restrictions) does not seem to increase the bias,
which is reassuring.

Lastly, we investigate the finite-sample performance of our algorithm when the
number of measurements and factors increases. Table 3.7 illustrates the cases L =

K =5 and L = K = 10, respectively. In both cases, A has entries equal to 2

everywhere on the diagonal, and equal to one everywhere else. We only report the
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N 500 500 1000 1000 5000 5000
Cumulants | 2,34 2,3 23,4 2,3 2,34 2,3
A1 1.95 (28) 1.93 (.32) | 1.98 (.19) 1.97 (.24) | 2.00 (.08) 2.00 (.08)
Aot 1.96 (.30) 1.91 (.37) | 1.99 (.16) 1.96 (.23) | 1.00 (.09) 2.00 (.05)
st 97 (.23) .98 (.25) | .98 (.17) .98 (.20) | 1.00 (.08) 1.00 (.08)
Ar2 2.02 (24) 2.03 (.27) [ 2.01 (.17) 2.01 (.20) | 1.00 (.08) 2.00 (.08)
Aoz 1.02 (.28) 1.05 (.32) | 1.00 (.18) 1.02 (.22) | 2.00 (.09) 1.00 (.08)
A3 2.01 (.12) 1.99 (.14) | 2.01 (.:10) 2.00 (.11) | 1.00 (.05) 2.00 (.05)
Var(Uy) || .98 (21) 1.01 (.16) | .98 (.15) 1.00 (.13) | .97 (.09) 1.00 (.06)
Var(Up) || .94 (21) .99 (.20) | .96 (.15) 1.00 (.15) | .97 (.08) 1.00 (.07)
Var(Us) || .94 (:22) 1.00 (.20) | .96 (.15) 1.00 (.15) | .98 (.09) 1.00 (.07)

Table 3.6: Comparing the two quasi-JADE algorithms based on Lemma 7 and 9
(log-normal factors, standard normal errors, A = A,)

estimates of the first column of A and the variance of the first error, the other estimates
being qualitatively similar. These simulations show that the performances of our
algorithm are only moderately affected by the number of factors/measurements. We
view this as quite remarkable a result as a hundred of factor loadings is certainly a
significant number of parameters to estimate given that no explanatory variable is
observed. In comparison, the Minimum Distance algorithm discussed above turned
out to be infeasible in practice for L as low as five, the computing time becoming

prohibitive.

3.4.2 Estimation of the number of factors

We here report a Monte-Carlo study of the rank tests detailed in 3.3.1.

We first compute the empirical size of the test based on matrix 2y for various
values of factor kurtosis. The simulation scheme is the same as for the results reported
in Table 3.5. The true value of A is Ay (asin (3.37)) and we test K = 2 against K = 3.

Table 3.8 shows substantial size distortion. This especially happens when the

kurtosis excess is low (in absolute value) — that is, when fourth-order cumulants
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| L=K=5 L=K=10
N 500 1000 5000 500 1000 5000
A1 2.06 (.41) 2. 03 (.28) 2.01 (.13) | 1.85 (.72) 1. 97 (.56) 2.00 (.27)
Aoy 95 (.35) 98 (.25) .99 (.12) | .89 (.52) 90 (.43) .98 (.22)
As1 95 (.34) 98 (.24) 1.00 (.12) | .88 (.53) 90 (.45) .98 (.23)
Aa1 95 (.35) 98 (.24) .99 (.11) | .88 (.53) .92 (.43) .98 (.22)
As1 95 (.34) 98 (.24) .99 (.12) | .88 (.53) .90 (.43) .98 (.22)
61 88 (.54) .91 (.43) .98 (.22)
A71 .89 (.53) .90 (.44) .98 (.22)
A1 88 (.52) .90 (.44) .98 (.23)
Aot 87 (.53) .91 (.44) .98 (.23)
Ato,1 88 (.52) .89 (.44) .98 (.22)
Var(Uy) | .58 (.56) .81 (.44) .95 (.20) | .40 (.55) .49 (.53) .88 (.28)
Table 3.7: Increasing the number of factors and measurements (log-normal factors,

standard normal errors)

P - 2/5 4/7 20/23 40/43 400/403
ke(p) || -6/5 1/2 1 5 10 100
a=.10| 90 .73 .82 87 .85 .62
a=20| .79 b7 .67 .74 .69 43
a=30| .67 .44 54 .61 D7 .29
a=40| .58 .33 .42 .50 45 19
a=.50| 47 24 32 .40 .35 A1
a=.60| .37 .16 .22 32 .26 .05
a=70| .27 .10 .13 24 19 .02
a=.80]| .20 .05 .08 15 A1 .01
a=.90| .10 .02 .04 .06 .04 .00

Table 3.8: Size of the rank test based on €y for increasing kurtosis (factors of normal
mixtures, errors are Gaussian, N = 1000, A = A,)
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contain very little information on the factor structure — or large — that is, when
fourth-order moments are imprecisely estimated. However, for reasonable values of
kurtosis excess,'” the risk of misestimating the number of factors exists but remains
limited.

Fourth-order moments of unbounded distributions are imprecisely estimated be-
cause there is a non negligible probability of drawing values that are much higher
than the mode of the distribution, around which most of the distribution is concen-
trated (peakedness). For the lognormal distribution, for example, drawing one very
large value displaces the fourth-order moment to the right of its theoretical value.
However, the lognormal distribution is positively skewed and there is thus a bigger
probability of drawing small values, so that most of the time the fourth-order mo-
ment is underestimated. Since an excessively long tail yields imprecise estimates of
higher-order moments, one may be willing to trade a bit of bias against increased
precision. We thus experimented with trimming and effectively found that a certain
amount of trimming (of measurement variables) improved the size of the test, but
too much trimming deteriorated it. As it is impossible to say what is the “optimal”
amount of trimming without knowing the model, data trimming is hardly advisable
in practice.

In Section 3.3.1, we proposed to improve the size properties of the rank test by
considering a weighted average of cumulant matrices Qy (¢,m) —i.e. Qy,, in equation
(3.32) —instead of Qy. Table 3.9 provides a comparison of rank tests based on different

cumulant matrices. We focus on the most difficult case of log-normal factors, normal

17Stock returns are well-known for presenting high kurtosis. The S&P 500 daily returns for 1986
to 1996 have an extremely high kurtosis of about 111. This can be ascribed to the October 1987
stock market crash (Duffie and Pan, 1997). However, between January 1969-December 2004, Lin
and Hung (2005), report, for daily 1-, 30-, 100- and 300-day return data on the S&P 500 index,
kurtosis values of 36.02, 5.80, 3.77 and 2.99.
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Matrix H Qy Zé m wngy (E, m) Fy

o =.10 | .56 87 .90
a=.20 | .34 71 .79
a =30 | .20 .H6 .69
a =40 .12 44 .H8
a =50 | .08 32 48
a =.60 | .05 21 38
a=.70 || .02 13 .29
a=.80 | .01 .06 .16
a =.90 | .00 .01 .07

Table 3.9: Size of the rank test applied to various matrices: Qy, >, . wemQy (¢,m)
and T'y (log-normal factors, standard normal errors, N = 1000, A = A,)

errors and a sample size of 1000. The first column reports the size of the rank test
based on 2y, the second column corresponds to matrix €2y, and the third and last
column refers to matrix I'y (third-order cumulants). The weighting scheme definitely
improves the size of the test of K = 2 against K = 3. However, the rank test still
underrejects noticeably, in particular when the theoretical probability of rejection is
low. Finally, third-order moments are more precisely estimated and, consequently,
the empirical size of the rank test based on T'y is close to the nominal size (third
column).

This confirms that applying the characteristic root test to matrices of higher-order
cumulants should be done with care. However, the results in Tables 3.8 and 3.9 show
that, for reasonable magnitudes of skewness and kurtosis excess, the size properties
of the CR test based on third and fourth-order cumulant matrices are satisfactory.

We end this section by a study of the power of the rank test based on y,,. Table
3.10 display empirical power computations for various levels of kurtosis. The true
value of A is A; and we test K = 2 against K = 3. For low significance values (« less
than 10%) the power of the test is good even if factors are excessively leptokurtic. For

intermediate values of the kurtosis excess, the power is good whatever the « level.
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P - 2/5 4/7 20/23 40/43 400/403
ki(p) || -6/5 1/2 1 5 10 100
a=.101] 99 .81 .81 1.00 1.00 .89
a=201] 99 .63 .66 1.00 1.00 .80
a=.30| 98 .68 .51 .99 1.00 72
a=40| 97 .36 .39 .99 1.00 .64
a=.50 96 .26 .29 98 99 .56
a=.60| 94 .18 .22 .96 98 AT
a=.70| 93 .11 .16 92 .96 .35
a=.80| .89 .06 .10 .86 .90 22
a=.90| 83 .02 .04 .72 7 A2

Table 3.10: Power of the improved rank test, €2y, Factors with increasing Kurtosis
(standard normal errors, N = 1000, A = A,)

3.5 Application to the returns to schooling

In this section, we apply our methodology to the estimation of the returns to school-
ing. We consider the relationship between wage and education. Chamberlain and
Grilliches (1975, 1977) provide insightful examples of the use of factor models in this
context. We first construct a second measure of educational attainment, and we es-
timate a one-factor model to correct for measurement error in the first education

measure. We then apply the methods of this paper and estimate a second factor.

3.5.1 The data

We use data from the French Labor Force Survey of 1995. This is a large and repre-
sentative cross-section of the French labor force which provides detailed information
on individual education. We exclude women, out-of-employment individuals, and
workers with missing data for either (monthly) wages, hours worked or education.
We trim the sample of the first and last percentiles of the wage, hour and education
data. We finally obtain a sample of 21,794 workers.

We divide monthly wages by hours worked to obtain wage rates. We define Y as
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H Wage Y Years of Schooling D Diploma D*

Mean 0 17.7 17.6
Standard error .29 2.64 2.17
Skewness .29 .61 .61
Kurtosis .079 -.015 18
Covariances

Y 0.086 0.304 0.284

D 0.304 6.95 4.33

D* 0.284 4.33 4.71

Table 3.11: Moments of the variables

the residual of the regression of wage rates on a set of regressors, including a quartic
in age. We construct two education variables. The first one is the “age at the end of
school”, which broadly corresponds to the number of years of schooling (minus 6) in
France. This variable, denoted as D, is the usual regression variable in most studies
of the returns to schooling. The second one (say “diploma”) codes the highest diploma
obtained by the individual into 16 categories (no diploma, elementary level, middle
school, high school, college, plus various declinations of these different levels into
vocational and non vocational). To make this variable continuous and comparable to
D, we construct a new variable, D*, equal to the median value of D by diploma.

Table 3.11 shows the moments of the three variables of interest. The correlation
between D and D* is only 0.76, indicating that both measures of education are cor-
related, yet not perfectly. The OLS coefficients of the separate regressions of Y on
D and on D* are 0.044 and 0.060, respectively. The second measure yields a slightly
higher return.

The two education variables are only slightly negatively skewed and exhibit lit-
tle kurtosis excess. Yet, the joint distribution of (Y, D, D*) displays a statistically

significant amount of skewness and kurtosis. To check that, we estimate the three
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H I'y Oy Qyy
Rank 0 0 0
Statistic 29994 3646 20.2
Critical value .05 || 57.40 386.1 2.20
p-value .00 .00 .00
Rank 1 1 1
Statistic 114.0 491.0 2.34
Critical value .05 || 7.74 454 12
p-value .00 .00 .00
Rank 2 2 2
Statistic 1.10 36.0 .185
Critical value .05 || 1.32 7.62 .0091
p-value 072 .00 .00

Table 3.12: Rank tests

characteristic roots of matrices I'y and €2y, as well as their bootstrap standard er-
rors.'® These estimates are: 1.17 (1.14,1.20), .07 (.06,.08) and .007 (.001,.014) for
the three CRs of I'y, and .38 (.28,.49), .15 (.12,.18) and .04 (.03,.05) for those of
Qy. These results are confirmed by the CR test applied to matrices I'y and €y and
reported in Table 3.12. The null hypothesis that ['y has rank 2 is not rejected by the
data at the 5% level. The test rejects the hypothesis that the rank of Qy is less than
3 at the 1% level. There is thus evidence that the joint distribution of (Y, D, D*) is

not normal.

3.5.2 Estimation results

We start by estimating the matrix of factor loadings under the assumption that K = 1.
Factor loadings can then be estimated from covariance calculations only. We report

the PCA estimates in the first column of Table 3.13 (PCA). The implied return to

18As in the rest of this section, 5%-95% confidence intervals are computed by 500 bootstrap
replications with appropriate recentering. Confidence intervals are given between brackets.
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K=1
PCA

K=1
quasi-JADE(4)

K=1
quasi-JADE(3,4)

K=2
quasi-JADE(4

K=2
quasi-JADE(3,4)

)

A1 || 141 (.138,.145) .154 (.136,166)  .142 (.137,.148) | .172 (.146,200)  .166 (.145,.182)

Do || 215 (2.12,2.19)  2.09 (2.02,2.18)  2.13 (2.09,2.20) | 2.05 (1.96,2.16)  2.09 (2.02,2.19)

Asp || 201 (1.98,2.03) 2.05 (1.952.14) 203 (1.96,2.11) | 2.02 (1932.12)  2.02 (1.93,2.10)

%—i 6.6% 7.4% 6.7% 8.5% 7.9%

A2 - - - ~138 (-.212,-.067) -.136 (-.209,-.040)

X2 - - - 360 (.009,.561)  .316 (.091,.459)

Xs2 - - - 475 (.310,.660) 381 (.131,.484)
V(Uy) || .066 (.065,.067) .052 (.041,.070) .066 (.060,.069) | .038 (.000,.060)  .040 (.010,.063)
V() || 2.31 (2.22,2.40) 2.56 (2.06,2.90) 2.43 (2.04,2.65) | 2.61 (1.85,3.04)  2.50 (1.92,2.84)
V(Us) || .672 (.604,.745) .426 (.000,.850) .586 (.177,.867) | .385 (.000,.766)  .500 (.089,.889)

Table 3.13: Factor loadings and error variances (quasi-JADE(4): uses second and
fourth-order moments; quasi-JADE(3,4): uses second, third and fourth-order mo-
ments)

education, as measured by i—;i is .066, higher than the return estimated by OLS but

comparable to the OLS estimate of the regression of Y on D*. We find that X;
accounts for 23% of the variance of wages, 67% of the variance of D but 86% of the
variance of D*. These results are consistent with D* being a “better” measure of
educational attainment than D.'

We then estimate the one-factor model using high-order moments of the data.
Columns 2 and 3 of Table 3.13 present the estimates of the vector of factor loadings
using the quasi-JADE algorithm. In column 2, we report the results for the version of
the algorithm using second and fourth-order cumulants and the restrictions of Lemma
7. In column 3, second, third and fourth-order cumulants are used and the restrictions
of Lemmas 7 and 9 are combined. The results of all three columns are remarkably
similar.

Next, we turn to the estimation of the two-factor model, reported in the last two

YNote that PCA yields the same estimate of i—; as instrumenting D by D* in the 2SLS regression
of Y on D.
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K=1 K=1 K=2 K=2
quasi-JADE(4) quasi-JADE(3,4) | quasi-JADE(4) quasi-JADE(3,4)
k3 (X1) - 1.34 (1.29,1.39) - 1.17 (1.08,1.30)
s (X) ; ; ; 087 (-.709,6.10)
ke(X1) || 612 (.391,.854) .741 (.354,1.02) | .627 (.439,.768) .665 (.445,.841)
ka(Xs) ; ; 13.6 (3.58,196)  15.5 (4.28,580)

Table 3.14: Factor cumulants (quasi-JADE(4): uses second and fourth-order mo-
ments; quasi-JADE(3,4): uses second, third and fourth-order moments)

columns of Table 3.13. The estimates of factor loadings associated to the first factor
are very close to the values estimated using the one-factor model. The second factor
is positively correlated with the number of years of schooling D and is negatively
correlated with the wage Y.

We then performed a test of overidentifying restrictions, based on the JADE crite-
rion (sum of squares of the off-diagonal elements of the jointly diagonalized matrices).
We bootstrapped the test statistic 500 times to compute p-values. We found p-values
of 26% and 27% for the two versions of quasi-JADE, when K = 2 was assumed.
Thus, according to this criterion, at all conventional levels, the data do not reject the
validity of the overidentifying restrictions imposed in quasi-JADE.

Notice that, using third-order moments only, we obtained very imprecise estimates
(not reported). This is because the second factor is found to have a nearly symmetric
distribution. We report in Table 3.14 the estimates of factor cumulants. The results
show that the first factor is skewed to the left, with rather small kurtosis. Moreover,
the second factor shows little skewness but displays much kurtosis excess. This implies
that the second factor is essentially identified from fourth-order moments of the data.

Finally, we tried to investigate the existence of a third factor without success. The
estimates were far too imprecise. In any case, if a third factor exists, it has very little

explanatory power on individual earnings.
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3.5.3 Interpretation

The factor structure is consistent with the interpretation that overspecialization in
education is counterproductive as far as market value is concerned.
Another way of interpreting these results is as follows. We obtain the following
factor structure:
Y =.17X; — 14X, + U,

D =2X, + .4X, + U, (3.38)
D* = 2X, + 4X, + Us

Let EF = 2X; + .4X,. View E as the “true” education measure and Uy and Us as
measurement, errors. The number of years of education, D, faces large measurement
error (Var (Uy) = 2.6 and Var (E) = 5.6) in comparison to the other education mea-
sure based on the highest diploma obtained (Var (Uz) = .4).2° This explains why the
OLS estimate of the regression of Y on D* is less biased toward zero than the OLS
estimator of the regression of Y on D (6% vs 4.4%).

Now, rewrite the wage equation as

E — 4X
Y = 17 (%)-.W(ﬁm

= 0.085F — 0.174X, + Uy, (3.39)

Factor X, can be interpreted as the unobserved factor correlating £ and the error
term in the wage equation (—0.174X, + U;). The negative correlation may result
from marginal costs of education increasing faster than returns to education across
individuals. Now this correlation is small (about 7%). This explains why the returns
to education is about 8.5% when we introduce a second factor, and is about 7%

when we only control for measurement error (the one-factor model) whereas the OLS

20These results are in line with previous evidence for graduate students. Ashenfelter and Mooney
(1968) stress that the number of years of education completed is a very incomplete indicator of the
education level for this population. Recently, Hamermesh and Donald (2004) find highly significant
differences in returns accross majors, even after controling for non-response bias.
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estimate is 4.4%. Most of the OLS bias is due to measurement error. Still, a fraction
of the bias (about 20%) is due to unobserved heterogeneity. Interestingly, in this case
unobserved heterogeneity and measurement error biases point in the same direction.

Of course, equation (3.39) results from changing (X3, X3) into (E, X3), which is
only one possible rotation, among many others, of (X7, X5). There are thus other
possible structural interpretations. For example, one can also change (X7, X3) into
(E,V) where V is chosen orthogonal (to the second order) to E, for example: V' =
X; — 5X5. In which case

Y = 0.068E + 0.033V + Uj.

This equation yields a returns of 6.8%, which exactly corresponds to the PCA estimate

(regress Y on D, instrumenting D by D*).

3.6 Conclusion

It is well known that non normality is an important source of identification in lin-
ear measurement error models. In this chapter, we extend this insight to general
linear independent factor models. We prove that L(L — 1)/2 factors can be generi-
cally identified from a set of L measurement. Contrary to ordinary Factor Analysis,
identification is unambiguously defined up to sign and permutation normalisations.
We also prove that second, third and/or fourth-order moments of the data provide
sufficient information to identify and estimate the first four moments of at most L
factors. We then extend and adapt a well-known technique of Independent Compo-
nent Analysis (ICA), Cardoso and Souloumiac’s (1993) JADE algorithm, to construct
estimators of factor loadings in the case where errors are not negligible. We propose

a multi-step procedure (quasi-JADE) in which we estimate error moments in a first
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stage, and then apply Cardoso and Souloumiac’s approximate joint diagonalisation
algorithm.

The independent factor structure generates many overidentifying restrictions on
higher-order moments. This may explain the encouraging Monte Carlo simulation re-
sults that we obtained. In contrast with previous evidence on the use of higher-order
moments for estimation,?! we find, for sufficiently non symmetric and/or kurtotic
data, small biases and precise estimates, even in relatively small samples. The es-
timation methodology is then applied to earnings and education data. Besides the
common factor that IV and PCA estimates already reveal (explaining the bias to-
ward zero of the OLS estimate of the returns to the number of years of education
on individual earnings), quasi-ICA reveals an interesting second factor that is neg-
atively correlated with earnings and positively correlated with education. This is
evidence that there exist individual characteristics which are valued by the education
institution but not by the labour market.

In the future, we plan to pursue two directions of research. First, this chapter
leaves many methodological questions unanswered. In particular, efficiency issues
concerning the quasi-JADE estimators, as well as the properties of the tests of the
number of factors, seem worth investigating further. Moreover, it would be interesting
to extend existing algorithms to deal with more factors than measurements (K > L).
In the ICA literature, this case is referred to as overcomplete ICA. De Lathauwer
(2003) presents an algorithm comparable to JADE that works for K > L in the case
of complex measurements. In the real case, the one of interest in econometrics, we
are not aware of similar semi-parametric methods.

The second direction of research concerns the extension of the method of this

21Gee the results reported in Madansky (1959), and the survey by Aigner et al. (1984).
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paper to the case of a very large number of measurements. Bai and Ng (2002) and
Bai (2003) provide extensive analyses of the PCA estimator in this case. Financial
and macroeconomic applications motivate the need to extend ICA methods in this

direction.
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Chapter 4

Nonparametric Estimation of
Factor Distributions in Linear
Independent Factor Models
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4.1 Introduction
In this chapter, we consider linear factor models of the form:
Y =AX+U, (4.1)

where Y is a vector of L observed outcomes, X is a vector of K unobservable common
factors, U is a vector of L independent errors and A is a L x K matrix of parameters
(factor loadings). The critical assumption is that all components of X and U are
mutually independent.

In econometrics, linear factor models are widely used as a dimensionality-reduction
device. In particular, unobserved heterogeneity is often assumed to follow a linear

factor structure, as in the case of the one-factor error component model:
Y = 2rb4u; +vy, i=1,.,N, t=1,.. L, (4.2)

where v;; is an i.i.d. error independent of the individual factor u;.

This chapter focuses on the nonparametric identification estimation of the distri-
butions of factors and errors in (4.1). Throughout the chapter, we assume that a
root-N consistent estimator of the matrix of factor loadings A is available, and focus
on the identification and estimation of factor and error distributions. Under suitable
assumptions, estimators of A can be derived from covariance restrictions only, as in
orthogonal factor analysis. In addition, higher-order information can be used to relax
some of the limitations of the traditional approach (as in chapter 3).

One possibility to estimate factor densities is to use flexible distributional families,
as the family of normal mixtures. This is the approach followed by Carneiro, Hansen
and Heckman (2003) in the context of a structural Roy model of education choice.

There are two main difficulties with this method: First, it is difficult to estimate the
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degree of mixing (the number of components in a mixture model). Second, estimation
along these lines involves multiple integrations, and computer-intensive techniques
such as MCMC.

The alternative approach we adopt in this chapter uses deconvolution methods
(e.g. Stefanski and Caroll, 1990). The idea of deconvolution is to proceed in two
steps: estimate the characteritic function of the variable of interest, then recover
its density by inverse Fourier transform. Linear independent factor models imply
particularly simple relationships between the characteristic functions of factors and
measurements. Thus, it is natural to use deconvolution in this context.

The original deconvolution approach deals with the simple case with one factor
and one error, the distribution function of which is known. Subsequently, several
generalizations have been proposed in the literature. Horowitz and Markatou (1996),
Li and Vuong (1998) and Hall and Yao (2003) have proposed estimators to deal with
one-factor models of the form (4.2). Related methods have been applied by Li (2002),
Schennach (2004) and Hu and Ridder (2005) to the problem of estimating nonlin-
ear models with measurement error, and by Linton and Whang (2002) to estimation
with aggregated data. To our knowledge, however, there is no readily available re-
sult allowing to deal with the more general case of a multidimensional structure of

individual heterogeneity of the form:
) . . .
Yit = T30 + QU1 + QUi + ... + Uy
This framework includes as particular case moving average error structures like:
— Tb
Yit = T30 + Uy + AUy + Vi,

which have L — 1 common factors w;i, ..., u;,—1 and L errors au;y + v;1, Vo, ..., Vi n—1

and u;;, + v;r.. It is to be noted that there is even no general identification result in
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this case.

Our contribution is twofold: Firstly, we show that factor and error distributions
are nonparametrically identified, under general conditions. Secondly, we propose a
class of estimators based on the identification proof. Our estimators rely on the second
derivative of the cumulant generating function (c.g.f.) of the data, and can be used
to recover factor and error densities by integration and deconvolution. It can be seen
as a generalization of Li and Vuong’s (1998) estimator to the multi-factor case.

We then address two main issues. The general asymptotic theory of deconvolution
estimators being an extremely difficult topic (e.g. Fan, 1991), we do not derive the
asymptotic distribution of our estimator. Still, we prove that our estimator converges
uniformly to the true density when the sample size tends to infinity. Moreover, we
provide some upper bounds for the convergence rates in special cases.

Our proof of convergence builds on results from statistical learning theory. We
show how to prove the convergence of second derivatives of empirical characteristic
functions to their means, extending the Glivenko-Cantelli Theorem. Our approach is
conceptually simpler than Li and Vuong’s (1998). Moreover, it is not clear how to
extend their use of Von Mises differential calculus to our case.

Then, we study the practical behavior of the estimator. As the assumption of
independence yields many overidentifying restrictions, one has to choose among a
large class of estimators. We provide intuitions to pick up one special estimator in
this class. We also discuss the choice of the amount of smoothing in practice.

Our findings are consistent with the ones of the deconvolution literature. Con-
vergence rates are slower than root-/N, and can be very slow in special cases. We
also illustrate our approach by means of Monte Carlo simulations. We find that the

shape of factor distributions strongly influences the finite-sample performance of the
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estimator. As a special case, worse performance is achieved when the distributions
are skewed or kurtotic.

We lastly apply our methodology to the two-factor model of returns to schooling
discussed in chpater 3. Estimating the distributions allows us to assign two factor
means to each individual in the sample, thus allowing to correlate the unobserved
factors to observed covariates.

The outline of the chapter is as follows. First, we provide a short review of the
literature. In Section 2, we discuss identification. In Section 3, we propose a class
of nonparametric estimators and we study their asymptotic properties in Section 4.
Sections 5 and 6 present some simulations and the application. Lastly, Section 7

concludes.

4.2 Review of the literature

The deconvolution problem. One aims at estimating the distribution of X given
the distribution of U and a sample of i.i.d. observations of a random variable Y
such that Y = X + U. It is assumed that X and U are independent and absolutely
continuous. Let ¢y, ¢y and ¢, denote the characteristic functions (c.f.’s) of Y, X

and U. Assume that ¢ is nonvanishing everywhere. Then,

and the probability density function (pdf) of X, say fx, follows as the inverse Fourier

transform of py:

fx(z) = %/exp(—itx)gox(t)dt,




As noted by several authors (e.g. Horowitz, 1998), this argument proves identifi-
cation, but cannot be directly used for estimation since the above integral does not
necessarily converge when the characteristic functions are replaced by their empirical
analogs. Consistent estimation of fx therefore requires some smoothing, resulting in
low convergence rates.

Generalizing the results of Carroll and Hall (1988), Fan (1991) shows that the
convergence rate of the deconvolution estimator crucially depends on the smoothness
of the distributions of X and U; that is: on the tails of their characteristic functions.

In particular, slow rates can be achieved in the case of normally distributed error.

Repeated measurements. Now, let there be two measurements of X:

1/1:)(—’_[]17
}/2:X+U27

with X, U; and U, independent. Let us also assume that measuremnts are centered,
and X, U; and U, have zero mean. Kotlarski (1967) shows that the distributions of
all three variables X, U; and U, are identified by the distribution of Y = (Y7, Y3).

Various proofs of Kotlarski’s result can be found in the literature (see Rao, 1992,
p.21). Relying on these proofs, several authors have proposed consistent estimators
of the factor and error distributions. Horowitz and Markatou (1996) focus on the
case where the d.f.’s of U; and U, are identical and symmetric. Then, the information
contained in the three univariate distributions of Y;, Y5 and Y5 — Y] is enough to
construct consistent estimators of fx and fy;, = fr,. Li and Vuong (1998) consider
the more general case of nonsymmetric distributions for U; and Us.

We now describe Li and Vuong’s estimator in some details as this chapter extends

their approach to the multi-factor case. The c.f. of Y = (V7,Y5) is

Py (t1, t2) = px (t + t2) oy, (1) ey, (t2)- (4.4)
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Hence,

01ln gy (0,1) B ,
on (Inpx) (1),

as (In ngl)l (0) =iEU; = 0. Li and Vuong estimate ¢ () as

t ~
~ dln (0, u
R e (45)
0 1
where 3y (t) = &SN e is a consistent estimate of ¢y (t) from an ii.d. sample

(y1, -, yn). The pdf of X is recovered by inverse Fourier transform, as in the decon-
volution problem. Li and Vuong derive the convergence rate of their estimator in
several cases, depending on the smoothness of the distributions. Li (2002) uses this
estimator in the context of nonlinear errors-in-variables models.

In a recent paper, Hall and Yao (2003) build an alternative uniformly consistent
estimator of fy from the distributions of Y, Y5 and Y; + Y5. Condition (4.4) indeed

implies the following restriction:!

QOY (ta t) — (pYI—l—YQ (t) _ (10X(2t) (4 6)
ey (1, 0)py (0, 1) Py, (t)%@ (t) px(t)?
Function h (t) = @ has an immediate empirical counterpart and fx can be

ey, (O)py, (1)

estimated either as a discrete approximation verifying restriction (4.6) or by inverse
Fourier transform of the analytical solution to equation (4.6), that is:
£\ ™ t\Y
]:
We shall not follow this route in this chapter as it is not easy to see how to extend

this approach to the multi-factor case.

IThis restriction is not exactly identical to the one exploited by Hall and Yao. The difference is
not essential however.
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4.3 Identification

In this section, we study the identification of factor densities. Next section will be
devoted to their estimation. We shall most of the time eliminate the distinction
between factors and errors, because, as far the identification and estimation of their

distribution is concerned, the distinction is not essential. So, we now consider the

case of DGPs of the form: Y = AX, where

1. Y = (Yy,..,Y2)" is a vector of I > 2 zero-mean real-valued random variables

(where T denotes the matrix transpose operator),

2. X = (X, ...,XK)T is a random vector of K real valued, mutually independent

and non degenerate random variables with zero means and finite variances,

3. A = [a;] is a known L x K matrix of scalar parameters such that any two

columns are linearly independent,

4. the characteristic functions of factors are non vanishing and two times differen-

tiable everywhere.

In the factor analysis literature, variables Y; are called “measurements”, and pa-
rameters a;; are called “factor loadings”. If the kth column of A (say, A ) contains
only one nonzero element, variable X} is called an “error” and otherwise, it is called
a “factor”. In the various examples that we shall consider, we use Uy, ..., Uy, to denote

error variables, reserving the notation X for common factors and A is of the form

A = (A,IL)

Without any restriction on A, we have shown in chapter 3 that K = L(L;l) is the

maximal number of factor distributions that can be identified in a linear independent
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factor model with I measurements and L errors, if factor and error distributions are
divisible by the normal. We shall show that this limit is not binding if A is restricted.
If two columns of A are proportional, say A} 3 = oAy j, then Ap 1y X + Al 3 X; =
Ar 1 (@X) + X;) and there is obviously no way to separately identify the distribution
of X from the distribution of X;.
Lastly, instead of assuming A known, we can only assume that a root-/V consistent

estimator of A is available.

4.3.1 Identifying restrictions

Under assumption 4, cumulant generating functions are well defined and two times
differentiable everywhere. Let us denote the characteristic functions of Y and X} as
¢y and @y, , and their cumulant generating functions as ky = In ¢y and kx, = Ingpy, .
The independence assumptions and the linear factor structure imply that, for all

t=(t,...,t) € RE,
K
ky(t) =In [Eexp (it"Y)] = mek (t" Apg) - (4.8)
k=1

Next, let us denote as dyry (t) the fth partial derivative of rky (t) and as 93 ky (t)

the second-order partial derivative of ky (t) with respect to ¢, and t,:

E |:Y'£€itTY:|

Oy (1) = ima (4.9)
) E |:Y'£YmeitTY:| E |:Y'£€itTY:| E [YmeitTY]
Oty (1) = — E [e#7Y] T [e™] E[e™] (4.10)

Let Apy = {(¢,m) € {1,..,L}* £ <m} be a set of L(L + 1)/2 bidimensional in-
dices. Let Vry (t) denote the L-dimensional gradient vector and let V*ky- (t) denote
L(L+1)

the vector of all ==— non redundant second-order partial derivatives arranged in
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lexicographic order of (¢,m) in Ay . Lastly, for any 7 = (74, ..., 7x) € RF | denote as

kx (7) = (kx;, (T1) 50 Bxg (TK))Ta
K’IX (T) = ('%le (Tl) ) "{,XK (TK))Ta
K’I),( (T) = ('%I)I(l (Tl) ) "{,)I(K (TK))Ta

the K-dimensional vectors of factor cumulant generating functions and corresponding
first and second derivatives.
First differentiating equation (4.8) yields:

K
VKJY (t) = AK‘,IX (ATt) = Z KJIXk (tTA[.’k}) A[.’k}. (4.11)

k=1

In general, K > L as there are L errors and at least one common factor. So there are
more function s’ than dyky. To obtain an invertible system, we differentiate one
more time:

Vy () = Q (A) &k (ATt), (4.12)

where @Q (A) is the matrix operator that changes A = [a;;] € RF*E into the @ X K
matrix which generic element is aga,,, when the row index is (¢,m) € Ay 5 and the
column index is k£ € {1,..., L}. In the sequel, we write @) for @) (A) to simplify the
notations.

If system (4.12) is invertible for all ¢ in R*, then identification is guaranteed as
we now explain. However, it can be that the system is not invertible for given ¢, and
yet that (4.12) has a unique solution as a system of functional equations. We shall

give an example at the end of this section.
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4.3.2 Regular case: ) full column rank

L(L+1)
—5. We can

Assume @ full column rank. This requires in particular that K <
invert equation (4.12) as

k' (ATt) = Q Vky (1), (4.13)
where )~ is a generalised inverse of (.2

This equation provides a set of overidentifying restrictions which can be exploited
to yield an expression for %, and kx,.

Let T, = {t € RF|tT A4 = 1}. Ty is not empty as there is at least one non zero
element in Ay ;. Let (Q_)[k’_] denote the kth row of Q—. Then, for all ¢ € 7, and
Tr € R,

K, (Th) = (Q_)[M V2ky (Tit).
integrating with respect to 7y, using the constants of integration: 'y, (0) = /EX}, =0

and ky, (0) =0, yields

kx, (Tk) = /OTk /Ou (Q’)[k’_] Viky (vt) dvdu. (4.14)

It then follows from (4.14) that factor cuamulant generating functions are identified.
This in turn implies that factor characteristic functions, and hence factor densities,
are identified. Moreover, equation (4.14) can be used for estimation, as we shall

explain in the next section.

Example: the measurement error model. Consider the measurement error

model:

Yi=X+U;
}/QZGX_*_UQ)

2That is: Q~ = (QTVVQ)_1 QTW, for a symmetric, positive definitive matrix .

195



with a # 0 and X € R. A root-N consistent estimator of a could be obtained using

third-order moments of Y by regressing Y5 on Y; using Y;Y5 as instrument, provided

that the distribution of X is skewed (Reiersol, 1950). We here assume that a is known.
Then,

ry (t1,t2) = kx (ty + aty) + Ky, (1) + ko, (t2),

and
8%1,%5/ (tl, tg) 1 10 KJI),( (t1 + atg)
8%2/{)/ (tl, tg) = a 0 0 HL,LI]I (tl) ;
8%2:%1/ (tl, tg) Cl2 01 I{,LI;Q (tg)
or
/ﬁ)l),( (tl + atg) 0 % 0 8%1/'?}1/ (tl, tg)
I{ILITI (tl) 1 —% 0 8%2:%1/ (tl, tg)
Ky, (t2) 0 —a 1

O3k (t1,12)
The restriction:

1
HLI)I( (tl + at2) = aaf2ny (tl, tg) ,\V/ (tl, t2) s

implies that, for all 7 and ¢4,

1 1 1
n _ —62 oSy
Ky (T) a 12hYy ( 1s aT . 1) ;
and
1 T u 1 1
kx () = —/ / Ofyky <t1, —U — —t1> dvdu,
@ Jo Jo a a
T 1 1 1
/ |:81I€Y (tl, —u — —t1> — 81I€Y (tl, ——t1>:| du.
0 a a a

Setting ¢; = 0 yields Li and Vuong’s (1998) solution:

kx (7) :/ 01Ky (0, 2u> du.
0

So, Li and Vuong’s estimator is particular for two reasons: First, in general, the

double integrals of second-order derivatives of ky in (4.14) will not simplify into a
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simple integral of first derivatives. Second, the choice of which component of ¢ to fix
a priori is arbitrary. It does not matter if one is only interested to show identification.

Yet, overidentifying restrictions could be used to improve the estimation.

4.3.3 Irregular case: () not full column rank

As A is known, matrix () being full column rank is not a necessary condition for
identification. For example, consider the following factor model with two factors and

two measurements:

Yi=X1+Xo+ U,
Yo = Xy +aXy + Uy,

with a # 1 and a # 0 for the columns of

1 1 10
A= ( 1 a 01 )
L(L+1)

not to be two-by-two proportional. In this example, K = 4 > ==— = 3. So
Q € R** cannot be full column rank.

The cumulant generating function of V" is
Ky (t1,t2) = kx, (f1 + t2) + kx, (f1 + atz) + Ky, (f1) + Ky, (T2)

and
a%lliy (tl,tQ) = Hl)l(l (tl + t2) + /‘i}g(2 (tl + Cbt2) + /‘i?lrljl (tl)
0%ky (t1,12) = K%, (t1 + t2) + 2ak, (t + ata) + K7, (t2)
Oaky (t1,t2) = K%, (t1 +t2) + akly, (t1 + aty) .

We now show that one can recover kx, and kx, from the third restriction if the
factor variances are known. Constraining either ¢, 4+ t5 or ¢; + ats to be equal to zero

yields the following expressions for 'y, and s, :

{ K, (T1) = Ofky (—42 1) —ak’t, (0)

where k% (0) = — Var (X}).
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Assume that these variances are known equal to 1. Note that this assumption was
not needed in the regular case, as factor variances are identified from (4.13), taking
t = 0. Using the fact that factors have zero mean, x'y, (0) = &'y, (0) = 0 and one has

FI;XI (Tl) — 07'1 fou 8%2[{1/ (2’1}, —U) dvdu - a;
Kx, (T2) = 072 fou O ky (—v,v) dvdu — %T‘ )

N’Lvlv

4.4 Estimation

We first introduce the estimator of factor densities, and then discuss issues linked to

its practical implementation.

4.4.1 The estimator

First step: Following most of the literature on deconvolution, given an i.i.d. sample
of size N, we first estimate ky and its derivatives by empirical analogs, replacing the

mathematical expectations in (4.8), (4.9) and (4.10) by arithmetic means:

Fy(t) = In (]EN [e“TYD , (4.15)
- Ey [Yz eitTY]
Opky (t) = im = OfRy (t), (4.16)
and
- Ey [YéymeitTY] Ey [Yg eitTY] Ey [YmeitTY]
gty (t) = — + =0} Ry (t), (4.17)

Eyx [eitTY] Eyx [eitTY] Eyx [eitTY]

where Ey denotes the empirical expectation.

Second step: As the choice of t in T, = {t c RF |tTA[.,k] = 1}, along which to per-

form the integration yielding rx, (7x), is arbitrary, one can estimate rx, by averaging

198



solution (4.14) over a distribution of points in 7, that is,

Rx, (1) = /OT /Ou (Q—)[k,-] (/ Viky (vt) dW (t)) dvdu
_ /0 ' /0 ' Q) (zp;wjv%y (vtj)> dvdu, (4.18)

where W = Z§:1 w;dy; is a symmetric, discrete probability distribution on 7.

Third step: We then estimate the factor distribution functions by inverse Fourier

transform:
—~ 1 [Ty _
fx, (%) Py Dx, (1) exp(—iTz)dr (4.19)
T ) 7y
1 [Ty
N -, R d
o | exp(—itz + kx, (7))dT,

where Ty tends to infinity at a rate to be specified.

4.4.2 Practical issues

We here discuss two issues: the choice of Ty in practice, and the choice of the estimator

of factor characteristic functions in the class of estimators given by (4.18).

Choice of Ty: To estimate Ty in practice, we apply the methodology in Diggle
and Hall (1993) that we now present. In the context of a deconvolution problem
Y = X +U with X and U independent and (Y, U) observed, Diggle and Hall consider

the choice of the trimming parameter Ty in

N _ 1 T Py (t)
fx(x) = py 7TNeXp(—ztx)§5U(t)dt.

Approximating the Mean Integrated Squared Error [ |fX(x) — fx(z)’dz for large

N and maximizing the expression with respect to T, they find that the optimal

199



trimming parameter has to satisfy:

oy (Tn) = N7'72. (4.20)

/2. One thus cannot replace the

For given ¢, |y (t) — ¢y (t)| is also of order N~
unknown c.f. in (4.20) by its estimated counterpart. Assuming that ¢y-(t) = at=?
for large enough |t|, Diggle and Hall then propose to proceed in three steps. First,
estimate o and ( by linear regression of In |y (¢)| on In|t| on a range where this
relationship is approximately linear. Then, substitute aT]§B into (4.20) to get Ty.
Lastly, perform the integration by multiplying the c.f in the inverse Fourier transform
by a “damping factor”. This last step aims at reducing the oscillations that often
characterize estimated c.f.’s in their tails.

In the case of model Y = AX | we propose to proceed analogously. Let k € {1...K},

-T A

Y = tTAX = Xp + > 1T A X, (4.21)
m#£k

We suggest to proceed as if the d.f. of 37, t" Af Xy, in (4.21) were known. In this
case, estimating the density of factor X reduces to a classical deconvolution problem,
and the approach in Diggle and Hall (1993) can be applied.?

In practice, cumulant generating functions are approximately linear in In |¢| over a
wide range around zero, yet badly estimated in the tails. An illustration is provided
by Figure 4.1, which plots the logarithm of the characteristic function (in absolute
value) of the wage data used in the empirical section. Index In [t| is plotted on the

X-axis.

3In particular, the “damping factor” we choose is given by:
1
d(v) =1{Jv] < (1= )TN} + 1{(1 - w)Tx < |o| <Tn}- m [1 = Jol/Tn],

where we set p = .05.
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Figure 4.1: Cumulant generating function, wage data

Figure 4.1 is representative of many c.f.’s that we encountered in the simulations
and in the application. The graph is approximately linear in In |¢t| over [1, 3], and
becomes more erratic afterwards. For distributions of this sort we found the Diggle
and Hall method very reliable given its simplicity.

Of course, some standard characteristic functions have tails decaying at a rate
slower than polynomial. This is the case of the normal. For these distributions,
we adapted the previous method by estimatating the c.g.f. on a range where it is
approximately linear, and “close enough” to the erratic region. So doing, the estimate
of 5 gets larger in absolute value than in the polynomial case, and the optimal Ty is
smaller. As the original method, this approach involves the subjective judgement of
the researcher. In practice, however, we found that it yielded fairly good results.

It is to be noted that we chose this method for its practical convenience. Indeed,
the trimming parameter T is analogous to a bandwidth in nonparametric density
estimation. Many alternative methods exist, such as cross validation or minimization

of a suitable criterion.
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Choice of the estimator: Formula (4.18) gives many possible way of estimating
factor characteristic functions. We start by discussing the issue related to the choice
of the direction(s) of integration, then turn to the weighting of different estimators.
From a practical point of view, the choice of which direction ¢ along which to
perform the integration is not irrelevant. Indeed, let us choose t € T,. Then one
can estimate the second derivatibve of the c.g.f. of factor X, by using the empirical

counterpart of:
K, (Th) = (Q_)[M V2ky (Tit),

for each 7, € R.

In practice, as illustrated by Figure 4.1, emprirical characteristic functions are
well estimated around the origin and badly estimated in the tails. Moreover, when
c.f’s are close to zero, cumulant generating functions and their derivatives are also
extremely badly estimated.

It thus makes sense to choose ¢ such that
Vky (Txt)

is well estimated on a maximal interval. A natural choice is to minimize the euclidian

norm of:
t
tTAp g’

which yields, by Cauchy-Schwartz inequality:

Al

_ Atk (4.22)
AT AL m

t= (A[J"}) -

The simulation section will provide evidence that choosing ¢ as in (4.22) can result
in better estimation properties. This method could be improved. For instance, if ma-

trix A is not known but a consistent estimator is available, then one could weight the
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generalized inverses of () and A[ ;) by the inverse of their precision, as in Generalized
Least Squares estimation.

Lastly, one could also use (4.18) to weight estimators corresponding to different
indices t € T;. Our experiments on simulated data did not show any improvement
over the simple case where ¢ is chosen according to (4.22). The explanation for this
result could come from the fact that different estimators corresponding to different

indices are very correlated over the range where they are precisely estimated. In that

case (for fixed 7), averaging is known to yield little efficiency gains.

4.5 Asymptotic properties
4.5.1 Consistency theorem

We now proceed to show that ka is a uniformly convergent estimator of fx,, for & =
1...K, provided that the characteristic functions of factors and errors are nonvanishing
everywhere. In addition, Li and Vuong (1998) and Hall and Yao (2003) assume
bounded supports.*

However, as recently emphasized by Hu and Ridder (2005), the two assumptions
of bounded support and nonvanishing characteristic functions are mutually exclusive.
As the c.f.’s of most standard distributions are never zero, and as economic variables
often have unbounded support, we relax the assumption of support boundedness. We
refer to Hu and Ridder (2005) for insights on how to deal with the case where c.f.’s
are nonvanishing almost-everywhere.

To prove the consistency of our estimators in the case of unbounded support,
we extend Hu and Ridder’s Lemma 1, which proves a uniform consistency result for

the empirical characteristic function, to the case of the empirical mean of functions

4Horowitz and Markatou (1996) do not assume support boundedness. However, as pointed out
by Hu and Ridder (2005), their proofs implicitely require this hypothesis.
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X, exp(it"Y,), for a sample of N i.i.d. couples (X,,,Y,), where Y, is a random vector
and X,, a scalar random variable.
To proceed, let us denote by |t| = max; |t,|, for a vector t € R, In the Appendix,

we prove the following lemma.

Lemma 14 Let X be a scalar random wvariable and let Y be a vector of L scalar
random variables. Let 7 = (X, YT)T. Let F denote the c.d.f. of Z (E denotes the
corresponding expectation operator) and let Fy (resp. Ey ) denote the empirical c.d.f.
(resp. mean) corresponding to a sample Zy = (Z1,...,Zy) of N i.i.d. draws from
F. Assume that EX? < M, < oo and that E|Y|" < oo for all i € {1,...,L}. Define
fi(z,y) = wexp(itTy) for t € RL. Lastly, assume that there exists a constant M > 0

and a positive and decreasing function k (¢) such that for ¢ > 0 small enough
E[[X1{[X]> Mk (e)}] <e.

Then,

sup |Ey fi —Efi| =O(en) a.s., (4.23)

[t|<Tn

for all e, Tn such that

EN N 7_%
— Ty = O (N"
= (mzv) and Ty = O (N'),

for all 0 < v < 1/2 close enough to zero, and all r > 0.

Lemma 14 shows that the rate of convergence of the empirical mean of f; depends
on the tails of the distribution of X: the slower the rate at which |X| decays to zero,
the slower the rate of convergence. For example, if X is Gaussian:

1 /OO 12 1 K2
re 22dy = oe” 27,
2no JK V2T
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and one can take k (¢) =1In (1/g). If X is Pareto:

/Ooxaba dr = ab? L a>1.
x xotl a— 1KoV
In which case, k (¢) = (1/¢)*"" works.

We now apply Lemma 14 to the first two derivatives of the c.f. of a vector of
random variables Y: E (Yyexp(it"Y')) and E (Y;Y,, exp(itTY)), for ¢,m = 1...L. This

allows us to prove the following uniform consistency result for factor characteristic

functions.

Theorem 15 Suppose that there exists an integrable, decreasing function gy : Rt —
[0, 1], such that |y ()] > gy (|t]) as [t| = oo. Then, there exists ey | 0 and Ty — oo
such that
X
sup @y, (T) — ox. (T)| = ———=0(en) = 0(1) a.s.,
s (2, () 05, (7)| = s Olen) = o)
where e 1s the minimum convergence rate satisfying the conditions of Lemma 1/ for

all functions f; of the form exp (itTY), Y, exp (itTY) and YyY,, exp (itTY), l,m €

{1,...,L}, and Tx satisfies two constraints: Tn = O (N") for some r > 0, and

2
witayrey = o(1).

Note that assuming the existence of gy such that |py-(£)] > gy (|t]) is a simple
implication of assuming the existence of gx, mapping R* onto [0, 1], decreasing and
integrable, such that |py(7)| > gx(|7|) as |7| — oo. It suffices to take gy (|t|) =
gx (L |A] |t]) for |A| = max;; |a;;|. Indeed,

0 = B[] e
= |ox (A1)
gX(‘ATt‘)

> gx(L|A[]t]),

Y

V
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where |A| = max;; (Ja;;|). Function gy inherits gx’s properties: it maps R onto
[0,1], it is decreasing and it is integrable, so that in particular gy (|t|) — 0 when
|t| = oo.

Therefore, to guarantee the existence of gy, it suffices to assume that the tails of
factor c.f.’s are bounded from below.

The following theorem states that ka converges uniformly to fx, when the sample

size tends to infinity. It is proved in the Appendix.

Theorem 16 Suppose that there exists an integrable, decreasing function gx : Rt —
[0,1] such that |ox(T)| > gx(|7]) as |7| — oo. Suppose also that there exist K
integrable functions hx, : Rt — [0,1] such that hx, (|7]) > |ex, (7)| as |7| = oc.
Then, ka is a uniformly convergent estimator of the d.f. fx, of X, i.e.

3

~ TN +oo B
sup | T, () = £, (+) :m()@NHo(/TN th(v)dv> —o(l) as |
(4.24)

where ex and Ty are given by Theorem 15 applied to gy (t|) = gx (L |A||t]).

4.5.2 Convergence rates

Theorem 16 shows that the convergence rate of our estimator depends on the shape of
factor and measurement distributions in two different ways. Firstly, as emphasized by
Lemma 14, the rate of convergence of derivatives of factor c.f.’s depends on the tails
of factor distribution functions. Secondly, the rate of convergence of factor densities
varies with the tail of factor characteristic functions, controled by functions ¢gx and
hx,.
In the rest of this section, we illustrate the second type of dependence, with respect

to the smoothness of factor distributions. For simplicity, we assume that the tails of

the measurement d.f.’s do not affect the rate of convergence; as shown above, this is
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the case if factor tails decay at a faster than polynomial rate (which would correspond
to Pareto tails).

Fan (1991) distinguishes two kinds of distributions according to the tails of their
c.f. Smooth distributions correspond to polynomial gx and hx, functions. Examples
are the uniform, gamma or Laplace. In contrast, the tails of characteristic functions
of supersmooth distributions decay at a faster, exponential, rate. For instance, normal
distributions are supersmooth.

To illustrate how the rate of convergence vary with the degree of smoothness, we
now derive the convergence rate of our estimator in some simple cases. We start by
noticing that equation (4.24) yields a trade-off for choosing Tx: The larger T the
smaller the weight of factor density outside the interval [—T, Tx]|, hence the smaller
the second term on the RHS of (4.24). However, the larger Ty the more imprecise
the estimation of the characteristic function, hence the larger the first term in (4.24).
It thus makes sense to look for an “optimal” trimming parameter Ty .

To proceed, let us assume that the term in O(ey) in (4.24) is known, and call it
Ap. Then we propose to choose T minimizing:

T3 +00
N

2
under the constraint: Wsj\; = o(1).

Let us now suppose that the d.f. of all factors X}, are smooth, so that the tails of

their c.f. decay at a polynomial rate. One can suppose, for all k € {1...K}:
717 < Jox, (D] < I717%, || = o0,

Let k € {1..K}. One can take hx, (|7]) = || . Moreover, as factors Xj, are
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mutually independent:
K K .
|(10X(T)| = H ‘(PXk(Tk)‘ > H |Tk|7o"“ > |t|_2k:1 o
k=1 k=1

One thus can take gx(|7]) = |7]7%, with a = Z,le .

Then the convergence rate (4.25) becomes:

1
BTNy + ﬁT}V 7 (4.26)

Minimizing (4.26) with respect to T yields:
Tn = (3(1+ @)Ay) V/EHt0),

Now, Lemma 14 shows that, for all distribution functions but the ones with very

fat tails (e.g. Pareto) one can choose

In N\ Y277
AN:<n > )
N

where 0 < v < 1/2 is close enough to zero. In this case:

1/2—

/2=
N 2+3a+8
Ty =0 ((W) ) . (4.27)

Note that Ty tends to infinity with V.

Let us evaluate (4.25) at Tiy given by (4.27). Then, up to a multiplicative constant:

T3 Av = N rraang (1/2— 7)X In N\ /27
gx(Tn)? N In N N )

In N 2+3a+6
- (%)

As this last term is o(1), so is

(1/2=7)

T Ay M
—— T . T I
gx (LIA[Ty)3 =N oreove

/+oo |t|_ﬁd 1 Tl_’B In N 2+3a+g (1/2—)
= — — ‘
T, 5 -1 N N

N
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This implies that:

~ stz (1/2-7)
aup ka(x>—ka<x>\=o((%) ﬁ ) ws.  (428)

Note that, as 8 > 1 this quantity is o(1).

Two remarks are in order. First, the convergence rate in (4.28) is polynomial in
N. This is typical in deconvolution problems when both factor and error densities
are smooth.

Second, the convergence rate increases with 3, and decreases with «. This is also
consistent with the findings of the deconvolution literature: the convergence rate is
higher, the fatter the tail of the factor distribution relative to the tail of the error
distribution.

When the tail of the error characteristic function is considerably thiner than the
tail of the factor c.f., the deconvolution literature shows that the convergence rate of
the density estimator can be extremely slow. See Caroll and Hall (1988) and Horowitz
and Markatou (1996) for estimators with logarithmic rates of convergence. We now
show that this undesirable property carries over to our estimator.

We consider a case where factor X is smooth, and there exits one supersmooth
factor other than Xj. So that hy, (|7]) = |7|7P* is still a valid higher bound for the
c.f. of Xy, but gy is no longer polynomial. In the supersmooth case, one can take
gx(|7|) = exp (—|7|*), with a > 0.

Now, maximizing (4.25) with respect to T yields:
(372 + 3T ) eap(3TS) Ay — Ty = 0.
Taking Ay = (mTN)1/2_7 as before, the “optimal” Ty satisfies:
Ty = O ((InN)Yem),
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for all n > 0 close enough to zero.?

Then the second term in (4.25) is logarithmic in N, and so is the convergence rate

of Px, .

Remark: It is tempting to use (4.27) as a guideline to choose Ty in practice. How-
evever, our experiments suggest that doing so, ones underestimates 7. The reason
might be that to choose the “optimal” Ty one maximizes an upper bound for the
convergence rate. In practice, this upper bound may overestimate the true rate. We
found much better estimation results by using the simple method outlined in 4.4.2 to
choose T'y. Refining the bound further is an interesting issue that we leave for future

research.

4.6 Monte-Carlo simulations

In this section, we study the finite-sample behavior of our density estimators.

Characteristic functions: We first consider the estimation of factor characteristic
functions. We illustrate the approach presented in 4.4.2 by means of the measurement

error model:

}/1 - X1+U17

}/2 = X1+U27

where (X, Uy, Us) € N (0, I3). Figure 4.2, panels a) and b), presents estimates of the

logarithm of the empirical characteristic function of Y:

In [y (5] = In [Ex [¢"7]

Y

2
°In this case, the constraint g(g,—x)gAN = o(1) is binding. One has thus to redefine T even

further as O ((ln N) 1/2«;7).
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Figure 4.2: Estimation of characteristic functions, measurement error model

evaluated at (t1,t) = (0,7) and (ty,t2) = (7/2,7/2), respectively, where 72, for

7 € R", is reported on the x-axis of the figure.

For each simulation in this section, we draw 100 independent realizations of Y.

The thick line is the true factor characteristic function and the dashed line is the

pointwise median of the 100 estimates. The dotted lines correspond to the pointwise

first and ninth estimate deciles.

Here, the true value for the c.f. is represented by a line with slope —1 in panel a),

and —3/4 in panel b). This is because the c.f. of the standard normal is exp(—t?/2).



Figure 4.2 show that the true c.f.’s are well estimated over a wide range. However,
the precision of the estimation in the tails is lower. This feature has important
consequences in practice, as we now illustrate.

Then, in Figure 4.2, panel c¢), we report estimates the c.f. of X;, obtained by the
Li and Vuong method; that is: integrating along the direction (0, 7), for 7 € R. Panel
d) of the same figure presents the estimate of factr c.f. obtained by the method of
this chapter, where the direction of integration is (7/2,7/2).

We draw two conclusions from the figure. First, the estimation of the c.f. of X;
is much lower than that of the c.f. of Y. The reason is that small errors in the
estimation of the tail of a c.f. translate into large errors for its derivative.

Second, the c.f. of X is somewhat better estimated by the second method, using
as direction of integration the vector of minimal euclidian norm. This observation is

in line with the discussion in 4.4.2.

The normal case: Let us now consider the factor model: Y = AX + U, with
Y e R (L =3), X € R? is the vector of common factors and U € R? is the vector of

errors. We set,

A=

— =N

11
2 11,
1 2
and assume that both factors and errors follow the same distribution. For reasons of
symmetry, we shall present the estimation results for the first factor and first error
component only.

In all figures, the left panel corresponds to the first factor X;, and the right panel
to the first error U;. The thick line is the true factor (resp. error) distribution and

the dashed line is the pointwise median of 100 estimates. As before, the dotted lines

correspond to the pointwise first and ninth estimate deciles. Lastly, sample size is
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Figure 4.3: Density estimation in the normal case, factor model with L =3, K =6
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N =1000.

In this paragraph, factors follow the standard normal distribution, and errors are
normally distrinbuted with different standard deviations oy. Figure 4.3 presents the
estimation results for oy equal .5, 2 and 4, respectively.

The results illustrate that the estimation of the factor density is poorer, the larger
the size of the noise. Note that for moderate error size (e.g. oy = 2) there is
little finite sample bias. However, confidence bands are rather large. This result is

consistent with the fact that the convergence rate of our estimator is a prior: slower

than root-N (see 4.5).

Smooth and supersmooth distributions: In Figure 4.4, both factors and errors
follow the double exponential (Laplace) distribution with parameter 1, the density of
which is fx(z) = 1/v/2exp(—v/2|z|). The error standard deviation is 2.

The characteristic function of the Laplace distribution is ¢ (¢) = 1/(1 + 3¢%). It
is an example of a smooth distribution, as defined by Fan (1991).

Figure 4.4 shows that in this case the general shape of the double exponential is
well reproduced, albeit not perfectly. In particular, the curvature of the d.f. around
zero is fitted somewhat imprecisely.

In the two bottom panels of Figure 4.4, factors are still Laplace, and errors are
normally distributed with a standard deviation of 2. In this case, factors are smooth
and errors supersmooth. Therefore, we expect the convergence rate of our estimator
to be extremely low (see Section 4.5).

Figure 4.4 suggests that the finite sample results are not so different from the
previous case (smooth factors and errors). Thus, in our simulations the well-known
problem of deconvoluting a d.f. in the presence of a smoother distribution does not

seem to affect the estimation results very much.
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Figure 4.4: Density estimation in the Laplace/Laplace and Laplace/normal cases,
factor model with L =3, K =6, oy = 2
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Skewness and kurtosis: In the rest of this section, we study the ability of our esti-
mator to deal with skewed and/or kurtotic distributions. In all remaining simulations,
factors and errors follow the same distribution up to scale, and oy is 2.

In the four upper panels of Figure 4.5, factors are (standardized) gamma distrib-
uted, with parameters (5,1) and (2,1), respectively. For these values of the parameters,
factor skewness is 2/ V5 &~ .89 and v/2, respectively, and factor kurtosis excess is 1.2
and 3.

The results suggest that our estimator captures skewness reasonably well. How-
ever, the estimation is less precise when skewness is larger (the second row of Figure
4.5).

Next, we turn to the impact of kurtosis. In the third row of Figure 4.5, factors are
mixtures of independent normals.® The kurtosis excess of factor densities is: £ = 100.7

Factor densities are still globally well estimated in this case. However, neither the
mode nor the tails of factor density is precisely estimated.

Lastly, we report in the last row of Figure 4.5 the simulation results for log-
normally distributed factors. Their skewness and kurtosis excess are approximately
6.2 and 110, respectively. It is clear from the figure that factor densities are badly
estimated in this case. In particular, the estimated tails present very large oscillations.

We conclude from this exercise that the finite-sample performance of our estimator
critically depends on the shape of the distributions to be estimated.

Better finite-sample properties could certainly be achieved at the cost of compli-

cating the calculation of the estimator, for instance by using splines or wavelets to

6More precisely, we construct factors as mixtures of two independent normals. Let W; ~
N(0,1/2), and let p €]0,1[. Define W2 ~ N(0,(2 — p)/(2 — 2p)), independent of Wy. Then it
is straightforward to see that X define as the mixture of (W7, p) and (W>,1 — p) has variance one,
and kurtosis excess k4(p) = 3p/(4(1 — p)).

"That is: p = 400/403.
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smoothen the estimator (e.g. Fan and Koo, 2002). We leave the comparison of these

improvements to future research.

4.7 Application: a two-factor model of the returns
to schooling

In this section, we apply our methodology to a linear factor model of three individ-
ual variables: wages and two measures of education. We use data from the French
Labor Force Survey for 1995. This is a large and representative cross-section of the
French labor force which provides detailed information on individual education. We
exclude women, out-of-employment individuals, and workers with missing data for ei-
ther (monthly) wages, hours worked or education. We trim the sample of the first and
last percentiles of the wage, hour and education data. We finally obtain a sample of
21,794 workers. We divide monthly wages by hours worked to obtain wage rates. We
define Y as the residual of the regression of wage rates on a quartic in age. The first
education variable is the “age at the end of school”, which broadly corresponds to the
number of years of schooling (minus 6) in France. This variable, denoted as D, is the
usual regression variable in most studies of the returns to schooling. The second one
codes the highest diploma obtained by the individual into 16 categories (no diploma,
elementary level, middle school, high school, college, plus various declinations of these
different levels into vocational and non vocational). To make this variable continuous
and comparable to D, we construct the variable D* equal to the median value of D by
diploma. Doing so, we obtain a variable that has a lower mean than D, the negative
wedge corresponding to class repetition, hesitations about education tracks, etc.

In chapter 3, we have shown that the data can be described by the two factor
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model:
Y = 17X, — .14X5 + Uy,

D = 21X, + .40X5 + Us,
D* = 2.0X, +.40X, + Us,

where the standard errors of Uy, Uy, Uz are .040, 2.5 and .50, respectively. We also find
that X; has skewness 1.2 and kurtosis .70 and that X, has skewness .10 (insignificant
from zero) and kurtosis 16.

The upper panel in Figure 4.6 shows the estimated density of the two factors X;
and X,. The thick line is the standard normal density. The dotted lines delimit the
bootstrapped 10% — 90% confidence band.

The density of X; is well estimated, and seems signifiantly skewed. In contrast,
the density of X5 is imprecisly estimated. The very large oscillation in the left tail is of
particular concern. This bad estimation is in line with our Monte-Carlo results, as the
second factor represents around 1% of the total variance of Y. On the contrary, the
first factor represents 57% of total variance. However, despite the lack of precision,
the estimation result suggests that X5 is significantly peaked. This is not inconsistent
with the estimates of skewness and kurtosis reported above.

Then, in the second row of Figure 4.6 we plot the three error densities. The first
and second error seem close to normally distributed. In contrast, the third error is
badly estimated with large oscillations in the two tails. This is not surprising, as this
variable is constructed from D* which takes discrete values.

We now use these results to predict the values of the two factors for each individual
in the sample. This allows us to correlate the unobserved factors with other (observed)

labor market outcomes than the wage. To do so, we estimate:
E(X,|Y,D,D*), and E(X,|Y,D,D"), (4.29)
and then correlate these quantities with three covariates:
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1. A dummy variable indicating if the individual works or not in the public sector

(PUB).

2. A variable indicating the economic status of the son (CS): manual worker (1),

intermediate profession (2) or manager (3).

3. A variable indicating the economic status of the father (CF), classified similarly

as CS.8

The conditional expectations in (4.29) are functions of the whole distributions of
factors and errors, not only of their first two moments as the following expressions

show. For all integrable bivariate function g:

) *\1 __ Ig(l‘lal‘2)fU(yvda d*|m17mQ)le(ml)fX?(l‘2)dl‘ldl‘2
Elg(X0, X (¥, D, D7) = (g, dy d)] = e o lor, ) o, (20) oy () iy

where:

fU(ya d, d*|x1, 5U2) = fU1 (y—)\uﬂh —)\12$2)fU2(d—)\215U1 —)\22«T2)fU3(d*—)\31$1 —)\32352)-

To estimate (4.29), we replace the factor and error densities by their nonparametric
estimates and set g(z,y) = x and g(x,y) = y for the two conditional expectations,
respectively.

Having computed the expectations in (4.29), we correlate them with variables CS,
CF and PUB. Table 4.1 displays the results. Overall, the public sector and high
skill occupations attract individuals with higher X; and lower X,. Moreover, public
employees and high skill workers have on average higher wages and higher education
(as measured by both D and D*). As far as father’s occupation is concerned, we find

the usual human capital transfer effects: children of managers have on average higher

8The father’s wage would have been another possible choice. However, it is not available in the
French Labor Force Survey.
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Table 4.1: Means of observed and unobserved covariates for various categories of
individuals

N Y D D Xy X

Private 16270 -.03 176 17.5 -.06 .05

Public 5524 .09 180 179 .17 -.14

Low skill 14253 -.11 169 16.9 -36 .13
Intermediate skill 5271 .14 18.6 185 .43 -.15
High skill 2070 .39 20.5 20.5 1.34 -.50

Low skill father 13024 -.02 172 173 -16 -.02
Intermediate skill father 4090 .05 18.5 183 .29 .04
High skill father 1551 .18 20.3 199 1.02 .04

X, than children of manual workers. They also have higher wages and are bettter

educated. Father’s occupation is not correlated with Xs.

4.8 Conclusion

This chapter provides a generalization of the nonparametric estimator of Li and Vuong
(1998) to the case of a general linear independent factor structure, allowing for any
number of measurements, L, and at most @ factors (including errors). The main
lessons of the standard deconvolution literature carry over into the more general
context that we consider in this paper. Convergence rates are slow; it is easier to
identify the distribution of a smooth factor; and it is easier to identify the distribution
of one factor if the other factor distributions are not smooth.

Our Monte Carlo results yield interesting insights. First, our simple trimming
procedure manages to reduce the Gibbs oscillations in the tails of the estimated
densities. Second, the finite-sample performance of our estimator critically depends

on the shape of the distributions to be estimated (smoothness and tails properties).

We also find that it is easier to identify smooth distributions with little kurtosis
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excess. In Chapter 3, we have shown that skewness and peakedness are required for the
matrix of factor loadings to be identified from higher-order moments. There is thus a
tension between obtaining a precise estimate of factor loadings and a precise estimate
of the distribution of factors. However, identifying the distributions of three factors
and three errors from a panel of 3 observations for 1,000 individuals should be viewed
as a considerably more complicated problem than the prototypical measurement error
problem. Given the difficulty of the problem at hand, we view these simulation results
as a confirmation that the nonparametric deconvolution approach can be successfully

applied to a wide range of distributions.
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Appendix A

Appendix of Chapter 1

A.1 Parametric copulas

In this appendix, we review the copulas mentioned in subsection 1.2.2. We refer the in-
terested reader to Joe (1997), Nelsen (1999) and Drouet-Mari and Kotz (2001) for further
reading.

Genest and MacKay (1986) introduce the Archimedean family of copulas. Let ¢ be
a convex decreasing function from 0, 1] to Ry such that ¢(1) = 0. Then the bivariate
function:

Clu,v) = ¢ ($(u) + ¢(v))
is a copula. Such Archimedean copulas are useful, to the extent that they reduce the study

of bivariate distributions to the research of univariate functions, their generator ¢. Below,
we list the Archimedean copulas we use in the chapter:

e Frank: .
— e T
¢(’U,,’T) = ll'l (m) y T > 0
e Gumbel:
$(u;7) = (= In(uw))”, 72>1.
e Clayton:
1 T
d(u;T) = <—> -1, 7>0.
U
e Joe:

;) =—-In(1—(1—-w)"), 7>1

Log-copula (Genest and Rivest, 1993):

In(u)

T1+1
> -1, 7=(r1,79), 11 >0, T9>0.
T1T2

= (1

This is the only two-parameter family we present in this chapter.
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We also consider three non Archimedean copulas:

e Gaussian:
Clu,v;7) = By (& (u), @ H(v);7)

where @5 (z, y; 7) is the cdf of a couple of normal random variables N (( 8 > , (

e FGM (Farlie, Gumbel, Morgenstern):

Clu,v;7) =uv(l+7(1 —u)(l —v)), —-1<7<1
o Plackett:

Clu,v;7) = %T_l {1 + 7(u4v) = [(1 4 7(u +v))? — 47(r + 1)uv]1/2} , T>-—1

A.2 The Plackett Copula

Plackett (1965) generalizes the independence condition for contingency tables. He shows
that, if U and V are uniform r.v. on [0, 1], then the following equation:

PU <u,V <0)P(U > u,V >v)

= 1V A.21
PU<u,V>v)PU >u,V <w) n+ (u,0), ( )

where n > —1 is a given constant, has one single solution. This solution is a copula, and
writes:

1
Cusvin) = 50" {1+ n(u+v) = [(1+n(u+v))? = 4n(n + ur]'/2}
>From (A.21), n is a natural mobility index. More precisely, let us define the following

ordering <. on copulas, called the concordance ordering (e.g. Joe, 1997):
Cy 3. Cy iff Ci(u,v) < Cy(u,v), V(u,v).

= is the first-order stochastic dominance ordering. It measures relative mobility: the ranks
process governed by copula C; will be said more mobile than the ranks process governed by
Cy if C; =3¢ Co. Moreover, the concordance ordering possesses a lower and a upper bound
(Fréchet, 1935). The lower bound C}, satisfies: Cpr(u,v) = max(u + v —1,0). The upper
bound Cy satisfies: Cy(u,v) = min(u,v).

The Plackett copula satisfies the following properties (Joe, 1997):

L C(.,5m) Ze C(.y-3mg) for all ny > 0.

(.
2. C(.,;n) = Cr, when n — —1.
3. C(.,.;n) = Cy when n — oo.

(.

4. C(.,;n) — C* when n — 0, where C*(u,v) = uv is the independent copula.
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Therefore, the Plackett copula is mobility decreasing with respect to its parameter,
and the Plackett family covers the whole range of bivariate dependence, from immobility
(Cy) to independence (C+) and perfect mobility (Cr). These properties are shared by the
Gaussian and the Frank copulas for instance, which makes these families good candidates
for modelling empirical ranks processes.

A.3 A sequential EM algorithm for copula models

We consider finite discrete mixtures of latent distributions for first-order Markov earnings
trajectories (yn = (ynt,t=1,....,T),n=1,...., N). Let z, € {1,..., K} be a latent variable
indicating which group individual n belongs to. The density of y,, given z, = k is

T T—1
Fn; Bos k) = L1 @nts B6) - T ¢[F (Wi Br)s F(Yn.tvr; Br)i 7h] - (A.32)
t=1 t=1

We denote as 7, the proportion of individuals in Group £ in the population and §;, and 7y,
are parameter vectors.
We start by making the following assumptions:

Assumptions:
1. The parameter space, i.e. the set of possible values of 8 and T, is compact.
2. True weights are positive, 7r2 >0, forallk=1,..., K.

3. The true values of the parameters, 8° = (ﬁ?,...,ﬁ(}(), 0 = (T?,...,T(}() and 7¥ =
(7'('(1), - 71'9(), belong to the interior of the parameter space.

4. The marginal densities f(y; ) are continuously differentiable with respect to 8 and
so are the copula densities ¢(u, v; 7) with respect to 7.

5. The unknown latent parameters 8 = (8, ..., Bx) of the marginal densities f(yns; B)
are identified, up to a permutation, from cross-section clusters, i.e. for all &,

f(y; BY) = f(y; 1), Yy = BL = By
6. The whole set of unknown latent parameters 8 = (8y,...,8x) and T = (71, ..., TK)

and the weights w=(71,...,mx) are identified, up to a permutation, from couples of
cross-sections, i.e.

K K
S omfyiBhT) = Y mf(yiBETh), Yy = (W1, yr)
k=1 k=1

= =g =7l =7l
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A sequential EM algorithm for discrete mixtures of copulas To estimate the
parameter vector 0 = {f,, Tk, Tk, k=1,...., K} we apply the following (modified) EM
algorithm.

1. (Expectation- or E-stage) For an initial value 8 of § and all k € {1,...,K},
compute the posterior probability of z, = k given y, and 6%) ag

0 _ S yni B 7)

Pip = s s s)y (A33)
S fyns B, 78
2. (Maximization- or M- stage) Successively update B,(j), 7',(5) and 71'](:) as
X N T
/Bl(cs+ ) arg r%aprsjrz Zlnf(?/nt;ﬁk), (A.34)
kop=1 t=1

N T-1
Tl(cs+1) — arg Hﬁxzpl(:g Z Ine [F (ynt; BJ(cSH)) ,F (yn,t+1;,6](€5+1)> ;7k1A.35)
n=1 t=1

N
s 1 s
n=1

This algorithm differs from the standard EM algorithm since ﬁ,(cs) and T](Cs) are not

simultaneously updated by maximizing 25:1 pgfg In f(yn; Bi, Tk) jointly with respect to
both B, and 7k, but sequentially. Proceeding this way renders the maximization stage
considerably more tractable. This is because the copula part of In f(yy; 8y, 7k) depends on
B, through the marginal cdf’s F' (yns; 6;) and F (yp,¢+1; B)), and therefore in general in a
very non linear way. The algorithm is easier to implement and also much faster.! This idea
has been used many times under various forms to simplify the practical implementation of
fixed-point algorithms. In particular, another type of sequential EM algorithm has recently
been used in the context of finite mixtures of distributions by Arcidiacono and Jones (2003).

Notice that, unlike the standard case considered by Dempster et al. (1977), the sample
likelihood does not increase at each new iteration of the sequential algorithm. This caveat
has two important consequences. First, the numerical convergence of the sequential estima-
tor is not guaranteed. However, the usual sufficient conditions for convergence are strong
(Dempster et al, Wu 1983) and rarely verified in practice. Numerical convergence is rather
assumed than formally proved in most cases. Second, the sequential estimator differs from
the MLE.

!The slow numerical convergence of EM is usually thought to be the main drawback of the
algorithm (see e.g. Redner and Walker, 1984). However, we found our sequential modification very
fast to converge, even with large datasets.
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The numerical limit of the algorithm. The sequential EM algorithm writes as a
set of first-order equations:

N T 9
Z (pk (yna ) Z % lnf Ynt; S+1))> =0

n=1
T-1

i (pk (y"’ ) agT [ (?/nt, (SH))  F (yn e B ) ;T,(CSH)]) =0

=1 1 N
7r](:,+1) == Zpk <yn;9(s))
n=1

o~

where (5 () ()
o f(yas B 7))
pi (s 00)) = et P (A-37)
Zm mf(yn;ﬁma'rm)
We suppose that the sequence ) = (ﬁ,(c ), 7'568), 71'](:), k =1,..., K) converges numerically
to the sequential estimator 8" = (85 7, T, k=1,..., K), solution to the following system
of equations:

%i ( (yn; 0 XT: i In f (ynt; By, )) =0, (A.38)
1 N nle 1 9
an::l (Pk (yn: 67) 2 50 [F (ynis B)  F (yna15 B7) ;T}CV]) =0, (A.39)
1 N
=N lek (yn; 67). (A.310)

Pseudo-true value. The observations are i.i.d.. By the Weak Law of Large Numbers,

the sample averages in (A.38), (A.39), (A.310) therefore converge to their theoretical ex-

pectation analogs uniformly in the parameters. The set of parameters to which 8" belongs

is compact. One can thus extract from (67V) a sub-sequence which converges to some limit
= (B, 7, 7>), solution to the limiting system of equations:

( YTL7 Z lnf yntaﬁk )) = 03 (A311)

~ 9|
E (pk (Yn; 0°°) E nc[F (Ynt; B) s F (Yn,ta1; BE) ;TS?]) =0, (A.312)

t=1

H

i = E[pk (yn; 0°)]. (A.313)

Denoting as 0y the true set of DGP parameters, we now prove the consistency of 6%
by proving that 8°° = 6y. Root-N consistency and asymptotic normality will follow from
standard arguments once consistency has been proven (Hansen, 1982). We shall thus not
develop this point further.
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Consistency. Because we shall not be concerned here by non parametric identification
issues, we take T' = 2 for all trajectories. Allowing for greater values of T' only makes the
estimation more efficient but does not affect consistency given the identifying assumptions
we have made.

>From assumption (6), we deduce that the true value 6y = (,30, 70, 7r0) of the parame-
ters is the unique maximizer of the incomplete log-likelihood:

K
E <lnz e f (Y1, Ya; By, Tk)> (A.314)
k=1

subject to the constraint Zszl T = 1.

The likelihood being continuously differentiable and the true value 6y belonging to the
interior of the parameter space, the first-order conditions of the Lagrangian are necessary
for 8%, 70, 70 to be the optimum. Writing the condition for 7r2 we obtain:

= ]E( ;rif(YhYQ;ﬁ%,T%) )
S ™ f (Y1, Ye; BY,TY)
= Epk(YIaYQ;IBOaTOaFO) (A315)

and differentiating (A.314) with respect to 7, yields

Oln f(Y1,Yo; B2, 79\
oty B

E<pk(YlaY2;IBOaT0a7r0) 0

r

Olnc[F(Yy;87), F (Ya; BY) ;72]> _ 0 (A.316)

E(pk(YhYQ;BUaTOaTrU) 87—]@

It follows that 7° and #° satisfy conditions (A.312) and (A.313) if B8° = B.
The first-order condition for g,:

alnf(YlaYQ; ﬁgﬂ%)) =0
OBy

does not yield a similar equation as condition (A.311) as ¢ [F(Yl;ﬁg), F (Yg; Bk) Tk] also
depends on ﬁg:

E <pk(Y17 Y2;B07 Toaﬂ-o)

Oln f(Y1,Ya; 8%, 79)

Oln f(Y1; 87) n oln f(Ya; BY)
By, '

0Bk 9By,

#*

But, for t =1, 2:

0
= /ﬂ-kf(ylay%ﬁka k)%dyldm

= 7T/c/f Y; By) aln]{;(g:ﬁk)dyt

91n f(Vi; ﬁ%))

E<pk(Y17Y2;B077-077T0) aﬁ
k
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Hence: )

0ln f(Y3; B7)
Z 0By,

Moreover, by assumption 5, £ is the unique solution to (A.317) if T # 0.

We have thus shown that 8%, 70, 70 are the unique solution to the limiting equations
(A.311), (A.312) and (A.313). The sequential EM estimator is therefore consistent.

Note that maximum likelihood in the M-stage of the algorithm can be replaced by
pseudo maximum likelihood, so as to make the algorithm even more user-friendly, without
hampering the consistency of the estimator. It is indeed easy to see that the consistency
proof works just as fine if the ML programs in the sequential EM algorithm are replaced by
Pseudo-ML programs using linear-exponential distributions instead of the true distribution.
For example, weighted OLS regressions can be used to update group-specific means.

E <pk(Y1aY2;;BOaTOa 770) [

) =0. (A.317)

t=1

A.4 Detailed specification and estimation proce-
dure

We here consider the problem of estimating the empirical model over each three-year panel
separately. The data consist of NV independent observations of employment states e, =
(ent, t = 1,...,T), earnings y, = (yns, t = 1,...,T) (with y,; = - if e, = 0), time-
varying exogenous attributes x, = (z,¢, t = 1,...,T) and observed heterogeneity zg,, for
n=1,..,N.

The parameters to be estimated are:

o o= (ay,...,ag, ), the parameters of the probability distribution of latent variable z;:

!/
€XPp 2y, Oy

N KL exp o
0=1 8XP 20, Q1

Pr{z = ki|z0} = 7, (zon; @) , kie{l,..,Ki},

with the normalization: o = 0.

o For every ki € {1..K1}, B, = (ﬁl\kl’ ...,ﬁKz‘kl), the parameters of the probability
distribution of variable zo, conditional on z; = ky:

/
exp ZOanQ |k1

T K
Z[:Ql €xp z(l)nﬁﬁ‘kl

Pr{z = kalz1 = k1, 20} = Tpy i, (2005 By, ) , ke e{l,.., Ko},

with the normalization: f;, = 0.

® fig,, Wk, k1 € {1,..., K;} the parameters of cross-section earnings distributions,

_ !
Fy (yilae, 21 = k1) = @ (M) '

V Wi,
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® 0r,, k1 € {1,..., K1} the parameters of the unconditional unemployment probability,

Pr{e; = 0|zy, 21 = k1 } = ® (20, ) -

® Xikiks § €{0,1}, k1 € {1,..., K1}, ko € {1,..., K2}, the parameters of the conditional
unemployment probability,

Pr{eis1 =0|e; =i,m4,21 = k1,20 = ko} =@ (l‘;inkle) .

® Niky k1 €{L, ..., K1}, k2 € {1,..., K3}, the parameters of the Plackett copula densi-
ties:

c(u,v|zy, 21 = k1,20 = ko) = ¢ (u, v;exp (20,1, ))

M8

— ([1 + (u+v)exp (x;nkle)]Q —4dexp ($;nk1k2) [1 +exp ($;77k1k2)] “U)
x [1+exp (zhng,)] [1+ (u+ v — 2uv) exp (zimg,p, )] -

Note that we restrict the parameter of the Plackett copula, i.e. exp (xinkl]w), to be
higher than zero, to exclude mean reversion.?

Let 0 gather all parameters in one single vector. If all heterogeneity variables were
observed one would maximize the following conditional likelihood (omitting the individual

index n):
fle.ylx,z0,21,22;0) = Prie; =0z, 21} ' [L —Pr{e; = 0]z, 21}
T
x Hft (yelze, 21)”
t=1
T—1
X H Pri{e; 1 = 0|et,$t,zl,z2}lfet+1 [1 — Pr{esr1 = Oleg, x4, 21, 22 14!
t=1

T-1
< I [e (B (welae, 21) s Frgr (yer |z, 21) [, 21, 22)] 04
=1

The estimation algorithm updates the step-s value 0%) of the parameter vector 6 by going
through the following steps:

1. Forall k € {1, ..., K1 }, compute the posterior probability of z1,, = ki given y,, X, 2on
and 60 as

Ko
pill (Ynaxna 20m; 9(8)) = ZPE’,’? <Ynaxna 20m; 9(5)> )
=1

20n the issue of negative dependence, see Shorrocks (1978).
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where
pzllﬁgz (Yna Xns Z0n; 9(8))
71'5682)‘]61 (20n; /8](:1))71'](:1) (20n; a(s))f(en, YnlXn, Zons 21n = k1, 22n, = k2; 9(5))

S K S 1) (2003 BN T (20m; ) f (€0 Y Xy Z0ms 21n = Ky 220 = £;00))

is the posterior probability of zy, = k1 and 29, = ko given y,, X,, 2o, and 0(s).

. Update parameters ju; , k1 € {1,...,K1}, by regressing y,; on z,; using OLS and
weighting each observation by pzll (yn, X, 20n; 9(5)). Then, update wy, , by regressing
squared residuals on z,¢, again using weighted least squares.

. Update 0g,, k1 € {1, ..., K1}, as in the preceding step: estimate the PROBIT model of

whether 4; = 0 or not conditional on x;, weighting each observation by pill (yn, X, 200 9(5)) .

. Update the parameters x;x x,, ¢ € {0,1}, k1 € {1,..., K1}, k2 € {1,..., K2}, of the con-
ditional unemployment transition probabilities, Pr {e; 11 = Ole; = i, x4, 21 = k1,29 = ko} =
d (xgxikl k2), by running two PROBIT estimations weighting each observation by

21,22

Piy ks (Yn, Xpy Z0n; 9(5))-

. Update ny,, as:

N T-1
+1 , +1 +1
Ul(cslk2) = argfrila;cx ZP;II,ZZ (ynaxnaz0n;9(5)> Z Inc [Ft (yt|$t,z1 = kl;M;(:l ),wl(jl )> )
1%k2 — _
" i 7,
et417£0

1 1
Fia (yt+1|36t+1,21 = k1;,u§:1+ ),w;(:lJr )> ;eXp(x;nklkz)] }

Due to the mathematical simplicity of the Plackett copula, this maximization is easy
to perform.

. Update a by solving the program

N K

alsth = arg mc?,x Z szl (Yna Xny Z0n; 9(8)) In 7y, (2005 )
n=1k=1

Ky
s.t. Zﬂ'k(ZUn;O() =1,
k=1

In practice, we did not solve this ML program. To benefit from standard algorithms
available in most statistical softwares (as STATA), we instead simulated for each n
a set of D draws z&), - zg? of the latent group indicator zi, from the multinomial

distribution

M (p’il (yn,xn,zon;0(5>) - (yn,xn,ZOn;9<s>>>
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7.

and computed the standard ML estimate:

N D K

ot = arg max Z Z Z (zln = ) In 7! (zon; ).

n=1d=1 k=1

Various experiments showed that D = 1 already gave a good approximation of the
exact ML estimator.

Update 3y, , for all ki, by solving the program

N K>

(s+1) R
/6 ’ = arg maxz szll,zz <YTL7XTL7207L; 9(8)) In 7Tl|k1 (zUna Bkl)
Pry n=1 (=1

Z Tk, (20n; Br,) = 1,

by using the same simulation method.

A.5 Simulation

In this section of the appendix, we present our method to simulate earnings trajectories
from date ¢y to date ¢;. We proceed in six steps. For every individual in the sample:

1.

Predict a group z; and a group 29, based on the individual’s permanent characteristics
o (education and cohort).

Predict an employment status at %y, conditional on 2z; and z;,. For all {y <t < {4,
predict the sequence of employment status, based on 21, zo and xy.

Compute a wage by drawing from a log-normal distribution, conditional on z; and

t,- For unemployed individual, assign a virtual wage equal to the former value times
a replacement ratio 0 < A < 1. If the individual is employed, then compute his rank
at tp (conditional on employment).

Proceed recursively. For all g < ¢ < ¢; compute, if the individual is employed at ¢t —1
and ¢, a rank at ¢ by drawing from distribution C' (-, -3 exp (mgn,ﬂ,@)), the Plackett
copula with parameter exp (x;nkle). To achieve this task, note that for a given
ue0,1], 2 9€ (u,v) is uniform(0,1). Therefore, for all u, draw a uniform(0,1) variable
w and solve B—C(u,v) = w with respect to v. For the Plackett copula, this implicit
equation writes as a quadratic polynomial equation with two roots in [0, 1]. Choose
the highest or the lowest root with probability % The result is the individual’s rank
at ¢, ry. If the individual is employed at ¢ but was unemployed at ¢ — 1 draw r; in a
uniform(0,1) distribution.

For all ty < t < #;: if the individual is employed at ¢, draw a wage by computing
yr = Fy 1(w) where F; is the cross-section cdf, conditional on z; and z;.
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6. For all ty5 < t < t1: if the individual is unemployed at ¢ and was employed at ¢ — 1,
assign a virtual wage equal to the replacement ratio times his previous wage. If he
was also unemployed at ¢ — 1 keep his virtual wage equal to its past value.

We then compute weighted means of the simulated log-earnings sequences, weighting

1 t—to
1+r

Various parameters are critical in the simulation, and especially the replacement ratio
A. We take A = .60 (Martin, 1996). Varying A between .40 and .80 had a strong effect on
the level of one-to-fifteen-year inequalities, but little influence on the evolution of inequality
indices. Note that we neglect several important features, such as heterogeneity in the re-
placement ratio, nonstationary Ul schemes and specific disutility of unemployment. Lastly,
we take r = .10. Varying r between 0 and .20 had little effect on the results.

time-t earnings, ¢t € {to,t1}, by (

A.6 Estimation of conditional Spearman rho

Let C(-,+|z) denote the copula of (y;, yi+1) conditional on some variable Z = z. C(-,-|z) is
the cdf of the couple of r.v.’s (F(ynt|2), F'(yYn,t+1]|2)). To estimate p (C(,|z)) from a sample
(yn) of i.i.d. observations, we use Hoeffding’s formula:

p(C(:]2)) = 12E[F (ynt|2) F (yn,i4112)|Z = 2] = 3,

and we replace the conditional expectation by the sample mean of F(yu¢|2)F (yn,i+1|2). If
z is unobserved heterogeneity, then we draw a value of z for each individual in the sample
using the posterior probability that Z, = z conditional on the individual observation data.
These posterior probabilities are obtained as a by-product of the estimation of the empirical
model by the EM algorithm.

This procedure yields consistent estimates for the following reason. Let y, denote the

complete set of observations for individual n and let the posterior probability be p,(y,) =
f(y}zIZ)l)D(Z)_ Then:

Yn

St St Fon2) P G| 200 n) _ BLE(Yarl2) For (Y| Z)p ()
—00 -

27]27:1 Pz (Yn) E[pz (Yn)]
— th(ynt|z)Ft+1 (yn,t+1|z)pz (yn)f(yn)d}’n
S 0:(yn) f (yn)dyn
= E[F(Ynt|2) Frp1 (Ynur1|2)|Z = 2],

as P(z) = Ep.(Yn)] = [0:(yn) f(Yn)dyn-

A.7 Parameter estimates
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Cross-section heterogeneity

Z1 = 1 Z9 = 2
Earnings
experience .034 .030
(.00091) (.00046)
Mean squared experience —.00068 —.00053
(.000020) (.0000097)
intercept 8.99 8.43
(.16) (.0045)
experience —.0041 .00095
(.00060) (.00026)
Variance squared experience .00011 —.000015
(.000013) (.0000053)
intercept .16 .058
(.063) (.0027)
Unemployment probability
experience —.042 —.084
(.0060) (.0032)
squared experience .0012 .0017
(.00012) (.000069)
intercept —1.77 —.046
(.066) (.029)

Table F1: Cross-sectional earnings distribution - Parameter estimates

Independent variable Estimate
Intercept 90
(8.4)
Education
Junior high-school 72
(9.4)
Senior high-school 116
(11.1)
Some college 76
(14.6)
College + -39
(34.0)
Cohort (year of entry into the labour market) — —.048
(.0043)
Cohort*Education
Junior high-school —.036
(.0048)
Senior high-school —.057
(.0056)
Some college —.035
(.0074)
College + .024
(.017)
Pseudo-R? .b3

Table F2: Distribution of cross-section heterogeneity given exogenous controls
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Mobility heterogeneity

zZ9 = 1 Z9 = 2
zZ1 = 1
experience —.015 —.051
(.0025) (.0056)
intercept 6.44 5.58
(.14) (.16)
zZ1 = 2
experience  .049 .048
(.0050) (.0065)
intercept 3.43 .87
(.092) (:32)

Table F3: Parameter 1 of the earnings copula (greater if less mobility) conditional on
experience and unobserved heterogeneity)

empl. to unempl. unempl. to unempl.
2’2:1 2’2:2 22:1 Z2:2
zZ1 = 1
experience  .043  —.00017 178 .079
(.0044) (.0043) (.011) (:54)
intercept —3.82 —1.89 —1.50 —2.71
(.13) (.11) (:27) (23.4)
zZ1 = 2
experience —.084 —.0070 .033 .060
(.0039) (.0018) (.0026) (.028)
intercept —.82 —1.34 .20 —1.66
(.057) (.048) (.059) (.070)

Table F4: Conditional employment-unemployment transition probabilities
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Independent variable Cross-section heterogeneity

zZ1 = 1 zZ1 = 2
Intercept 27 —-91
(16.7) (3.4)
Education
Junior high-school 38 22
(18.5) (4.4)
Senior high-school 50 65
(17.4) (8.2)
Some college 38 71
(18.8) (40.7)
College + 35 —14
(19.8) (95.4)
Cohort —.014 .046
(.0085) (.0018)
Cohort*Education
Junior high-school —.019 —.011
(.0094) (.0022)
Senior high-school —.025 —.033
(.0089) (.0042)
Some college —.019 —.036
(.0096) (.021)
College + —.018 .0062
(.10) (.0048)
Pseudo-R? 025 036

Table F5: Distribution of cross-section heterogeneity given exogenous controls
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Appendix B

Appendix of Chapter 2

B.1 Data

The definition of jobs: We let individuals be in either one of the two following labor
market states: employed or unemployed. Unemployment comprises self declared unemploy-
ment, inactivity, employment during less than 15 hours per week or with wages lower than
the first percentile (which, for example, is around 235 Euros per month in France, that is
25% of the median wage). We drop every individual who experiences a self employment
spell since we assume her trajectory (and especially her job mobility decisions) not to be
governed by the same processes as those of workers in paid employment.

Attrition: Some of the observation periods are right censored, i.e. individuals do not
always stay in the ECHP during the eight waves. We assume this right censoring to be
exogenous to the wage, amenity and job mobility process.

Missing data: The problem of missing data is twofold: there can be non reported
variables for a given wave where the individual is present or the individual can “disappear”
from the survey during a year within his observation period and come back one year later.
When it is possible, we impute missing data on wages and/ or amenity using the previous or
following wave if the individual is still in the same job: we substitute the missing wage for the
mean of the previous and following wage and draw the amenity from a binomial distribution
weighting both the previous and following amenity with probability 0.5 (the amenity can
change within a job). These substitutions affect less than a thousand observations (over
e.g. more than 30 000 in France). For the few observations that still show missing data, we
create two individuals out of one. This rather arbitrary treatment of less than 1% of our
sample does not affect the consistency of the estimates and the loss of efficiency is likely to
be small.
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B.2 The estimation procedure

In this section of the Appendix, we detail the estimation procedure of the model presented
in 2.3.1. We start by setting the notations. We let i € {1...N} denote individuals, and
t € {1...T'} denote time periods. Let e;; be the dummy variable indicating if individual 4
is employed at time ¢. The model allows for multivariate amenities a;; € {0, 1}‘7 . In the
empirical analysis, we take J = 5. As outlined in 2.3.1, the dynamics of employment, wages
and amenities follow:

(€it+1,Yit+1,@iry1leir = 1) = (0,0,0) if zf; =1,

= (1,vy5,a5,) ifz;,=0andzj =1,
= (Lyj,aj) ifz;=0,z;=0and z; =1,
= (1,y5,aj) ifz,=0,z;,=0and z; =0,

1 yztv zt) if errbf =1,
0,0,0) if zj; =0,

(

(

(

(

(€it+1, Yit+1, Qit+1leir = 0) = (

=

where z;; indicates voluntary mobility, and (¢), (") and (°) superscripts refer to constrained

job-to-job mobility, non employment-to-job and job-to-non employment transitions, respec-

tively. Moreover, to avoid confusions we have used superscript (") to index within-job wage
and amenity distributions, which appear in equations (2.1)-(2.2) in 2.3.1.

All equations in section 2.3.1 are easily adapted to the case of multivariate amenities.

For instance, wage and amenity offers (2.3)-(2.4) become:

afirr = V1{&f @i+ 5514010 + B a0t + U 4iq >0} Vi€ {1.T},
Yier1 = P &y +oyi+ B 000 + Uy (B.21)

In (B.21), p* = (p], ..., p}) is the vector of compensating differentials in job offers associated
to the J amenities.

B.2.1 The EM algorithm

Consider an individual 4, and a given job which lasts from t;5 to ¢;; — 1. Unobserved
match characteristics are assumed constant on [tjo + 1,¢;1]. Moreover, they are realized
after the individual has started to work in the new job. It is thus convenient to estimate the
incomplete likelihood (Dempster et al., 1977) of the individual observation between ;o + 1
and t;1, conditional on wage/amenity realizations at t;o:

ti1—1

> 70000 (1, @)its0;01) [ £y @)itg1s €itsrs 255, zitlein, 01,02, i, Tiggr; O2).
01,02 t=tio

In this expression, ©; and ©2 are sets of parameters. In the rest of this section we shall
denote as ® = (01, ©3) the set of parameters with respect to which the incomplete likelihood
is to be maximized. Then, 7y, , are the prior probabilities P(61; = k1, 02;t = k2|(y, @)it;, )
conditional on the wage and amenities at ¢;9. It is implicitly assumed that both #; and 6,
are independent of x;,,, conditional on the wage and amenities at ;9.
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We model 0; and 02 as two independent random variables (conditional on (y,a)i,)
following the Ordered PROBIT specification. Precisely, we assume that there exist two
latent variables:

7l _ init, init init

01 = Qyy Yityo + /Bly Qitiy T ULty (B.22)
n _ init init

02i - ﬁZy Qit; + U’Qitio’ (B23)

and K1 + K2 — 2 thresholds S1,15+--3S1,K1—1,52,15--+952 Ko—15 such that:
01, =1if01; <s11, 01, =21ifs11 <01 <s12, 01 =K1 if sy -1 <04,
and:

Oo; = 1 if Og; < 591, O =2 if 597 <02 <529, b2 =Ko if sy, 1 <60y
Residuals ulﬁgo and ulﬂfo are independent of each other and covariates, and follow standard
normal distributions. We allow the parameters in (B.22)-(B.23) to be different, in the case
where t;y corresponds to the first date of observation for individual 7 (initial conditions).

Let us partition ©5 into subsets corresponding to different transitions. For instance, ©4"
corresponds to the parameters in the hedonic equation (2.2) of 2.3.1, including the standard
z

deviation of uw. Similarly, ©3 is defined as the set of parameters ruling voluntary mobility
decisions, see equation (2.6) in the same section.
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Then we can factorize f((y,a)it11,€it+1, 25 Zitleit, 01,02, Tig, Tig1; O2) into:
[ (€itg1leir = 1,01,00, 255 05) = - f (eis1]ei = 0,01, 02, z4; OF)

n
zitfl

; .
[ (irrlaier1, 2 = 1,01, 23, 05") - T, f (aj,it+1|zgg = 1,601,062, zi; @%an>
f (z1,ct|z3 = 07 Eit = ]-7 017 027 Tit; G)g)zn

_ _ _ . Qve
I Wit laire1, 25 = 1,2 = 0,e50 = 1,01, 24 03")

n — Cc —
253 =0,z5,=1

J .QJjac
[T f (aj,it+1|zz'ct =1,2{; = 0,e; = 1,601,062, 71; 03 )

n —,C — L, —
)Zit—zit—07zlt—1
J

f <Zz't =1, (y,a)it1|25 = 20 = 0,e; = 1,01, 02, 24; 03,057, {@%a*}

L\ A=
. _ _ _ . y* .70‘*
f (Zz't =0[zf, = 2} = 0,e; = 1,601,02,24; 03, 05 3{62 })
j

e _on _ _ . QYT
 Witg1 |1, zie = 25, = 2y = 0,5 = 1,01, Tj441; 03 )

n _—,C —,., —
2y =25 =2it=0

szl f (aj,z't+1|2z't =z =z = 0,e; = 1,01,02, Ti41; @%ar)
We can thus rewrite:
I ((y, @)its1, €ity1, 253, Zitl€its 01,02, Tit, Tir11; O2)
= 9 ((y,@)it41, €itt1, 25, zitlewr, 01, 02, Tit, Tir115 05 °)
0

_ c _ n _ o . P —z 2l =28 =z =
f (zit — 0|zzt — Zit — anit — 17017027$ita 627@2 ) e

=1 11126 = 2 = 0, = 1,01, 0y, w5 O3, ©57) - F =05
f (zzt_ 7(y7a)lt+1|zit_zit_ ,€it = 1,U1,02,%45; 95,0, )

. —Z
= 9 ((y,a)it41, €ity1, 25, Zitler, 01, 02, Tit, Tir115057)
. —Z
b (Zits (s @)ie1]25 = 20 = 0,6 = 1,01, 02, 43 03,05 %)
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where ©5° is the subset of ©y containing all the parameters in O but those in ©3, and ¢
is a product of conditional likelihoods.
The joint maximization of the likelihood being cumbersome, we take advantage of this

factorization to estimate the model’s parameters sequentially. We do so in each M-step of

the EM algorithm, as we now explain. Given initial values for the parameters, G)gs) and

G)és), the two steps of the sequential EM write as follows.

E-Step: Compute the posterior probabilities of (01, 602) given the data
Xi. = {(y7 a)it+17 €it+1, zz'cta zit}ti0+1§t§t“ )
and X;0. = (y,@)it;, and conditional on x;, = {@y }r;g+1<i<t;, » a8t
0,05 (Xio.;@gs)) f (Xi.|91,02,xi.;®§s))
D key ks Tht o (Xz'o.; @gs)) f (Xz'.|k1,k2,l“z‘.; 955))

o, .0,(Xi | Xi0; ©)) =

M-step: Update the parameters as follows:

oY = Arg@maxz > 010, (Xi. | Xio; ©)) Inmg, g, (Xio.;01), (B.24)
! i 01,02

@gsﬂ)’_z = Argmaz Z Z |:p91’92(Xi_|Xi0_;®(s))
©y°  ,J(i) 01,02
ti—1
Z Ing ((y, )itt1, €it+1, 25 zit|€its 01, 02, Tit, Tis1; Oy %) ]a
t=t;o
(B.25)

®§S+1),z = Argrznam Z Z [p91,02(Xi.|Xio_;®(s))
O 016010
tii—1
1).—
Z Inh (Zita (y,a)it+1]25 = 25, = 0, e = 1,01, 09, Tit; gj@gﬁ ), z) },
t=tio

(B.26)

where J(7) indexes the jobs held by individual s.

The M-step of this algorithm differs from the maximization of the complete likelihood
as maximization with respect to O, is achieved sequentially, maximizing the part of the
complete likelihood corresponding to voluntary mobility given previous estimates of the
offer parameters. This sequential EM algorithm is considered by Arcidiacono and Jones
(2003), who prove that it yields consistent estimates of the parameters. They also show
that, as this estimator differs from ML, it is not asymptotically efficient. It is to be noted
that Arcidiacono and Jones (2003) focus on unconditional EM. The extension of their
analysis to the case where prior probabilities are conditional on some covariates is however
straightforward.
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The calculations in the M-step are as follows. In (B.24), we estimate the two components
of ©; by ordered PROBIT. The dependent variable is the indicator of the sample number,
where the modified dataset is the original one duplicated Ky Ko times. The maximization is
weighted by the groups’ posterior probabilities. In (B.25), we estimate all sets of parameters
corresponding to wage equations, like ©4° for instance, by OLS. We estimate parameters
corresponding to amenity equations, like ©1%¢, by PROBIT. Lastly, we estimate the set of
parameters corresponding to shocks or decisions, like ©%, also by PROBIT. All regressions
are weighted by the posterior probabilities.

To update the parameters ruling voluntary mobility (0©%), we maximize a likelihood
that we present in the next section. The maximization of this likelihood being somewhat
longer than the rest of the E and M steps, we proceeded in two stages. In a first stage, we
estimated the global model assuming no selection effects in the voluntary mobility process,
i.e. we replaced (2.6) with:

2z = 1 {&zx + B1,01 + Bo,02 + €, > 0} ,

where ¢, is normally distributed, i.i.d., and independent of covariates. We then computed
the posterior probabilities for every individual in the sample, and maximized the likelihood
corresponding to the voluntary mobility rule, weighted by these probabilities. We finally
runned a second sequential EM, allowing for selection in voluntary mobility, and taking
the latter estimates as initial conditions for the maximization of the corresponding likeli-
hood. Our experiments showed that the number of iterations necessary for EM to converge
numerically was much reduced by proceeding this way.

B.2.2 Voluntary mobility

The likelihood corresponding to the voluntary mobility rule, for one transition ¢/t + 1,
conditional on (x4, 2, = 2]y = 0,e = 1,015 = 61,02 = 02) writes:

£ = I rGe=1(ya)u1;050;7) x [ flzu = 0,035,057,
1,250 =1 2,244 =0
= I f(wa)u:07%) x I flzie =1, 2)ies1;05,057) x [ flzie = 0;05,057).
1,250 =1 1,250 =1 2,244 =0

(B.27)
Note that the first term in (B.27) depends on ©;“ only, namely on parameters oy, p*... As

the maximization in (B.26) is with respect to ©3 only, it is equivalent to maximize only the
two last terms in (B.27).
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From equation (2.6) the latter read:

£ = ]I fGi=1@a)im;050,%) x ] flze=0;035,0,7),
bzir=1 1,2;t=0
_ H > (yit-l-l + 0% a1 — azy — B,01 — 52292>
1,2i0=1 g

J
I [ X (TI0 (0% @i+ Biath + 060))

i,2it=0 be{0,1}Y \Jj=1
o (ag’;wit + 8,01+ (p* +6") b — amir — By,01 — /62z02> }

Oz

where we dropped the conditioning variables for simplicity. Recall that the parameters of
wage and amenity offers are supposedly known at this stage of the EM algorithm. For
instance, they are equal to the parameters of the wage and amenity equations posterior to
constrained job change. Lastly, to find initial conditions in the first M-step of the algorithm
we performed a PROBIT regression of z; on z, weighted by the posterior probabilities.

B.2.3 Inference

Lastly, we turn to the estimation of asymptotic standard errors. Slightly modifying the mo-
ment conditions derived by Arcidiacono and Jones (2003) to account for the conditionning,
we obtain, from (B.24)-(B.26):

0
E Zp91,92(X|(yaa)to;®)%1n7r91,92((y7a)t0;®1) = 0,
01,02 1
9 c —z
E Zpﬂl,ﬂg(XKy,a)to;@)Wlng ((yaa)aeaz ,Z|6,01,02,$;®2 ) = 07
01,02 2
E Zpg 0, (X |(y,a); '@)ilnh(z (y,a)]z =2z =0,e=1,01,0,,2;035,0,7) = 0.
1,V2 ) 0 8@% 9 ) ) 9 I PR I 2

01,02

Arcidiacono and Jones (2003) propose to estimate the asymptotic variance-covariance
matrix by using the usual GMM formula. However, this formula involves first-order deriv-
atives of the moment conditions; that is: second derivatives of the (sequential) likelihood.
In models allowing for many parameters, the calculation of these quantities can be cum-
bersome. In our case, indeed, we found second derivatives of the likelihoods to be long to
compute. With more than 200 parameters in the model, the computation of the matrix
of second derivatives requires 20000 evaluations (numerical evaluations of the likelihood, or
analytical computations of second derivatives).

To circumvent this problem, we use the generalized information matriz equality derived
by Newey and McFadden (1994), p. 2163. To see how this works in the case of a mixture
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of sequential likelihoods, let us rewrite the above system of moment equations in compact
form:

alnﬁk
E = B.2
(n?5) o (329
Oln gy,
E = B.2
(nlpe) -0 (329

dln hk>
E(S p — 0, (B.210)
(=5

where:

f(y|$, T, &, ﬁ) = Z ﬂ'k(x; 7T)gk(y|',1;’ Ck)hk(y|flf, «a, ﬁ)a
k
is the incomplete likelihood, and

(@5 ™) gr (ylz; a) by (y|z; o, B)
fylz; =, a, B) ’

is the posterior probability of group £ given the data. Vector parameters «, 3, w are mutually
exclusive.

As f is a mixture of sequential, or partial likelihoods in the sense of Cox (1975), the
following equality holds:

pr = plkly, 27,0, B) =

/ 91 (yl; 00 ) (] a2, )y = 1, (B.211)

for all k, all z and for all (a1, a9, ). This point is crucial, as it is used in the consistency
proof of the partial likelihood estimator. Moreover, it implies that the moment conditions
(B.28)-(B.210) are satisfied over the whole parameter space, as noticed by Newey and Mc-
Fadden (1994) in the general context of GMM estimators.

To see why, let us consider (B.29). Differentiating (B.211) with respect to «y yields, for
all parameters, and under suitable regularity conditions:

/Olngk(y|x;a1)
80(1

0 T
gk (Ylz; a1)he(y|z; o, B)dy = /%11)

0

= B gk (ylz; ar) hy (y|z; e, B)dy,

= 0.

hk(y|x7 Qg, /B)dya

It follows that:

Odln T«
[ Sty a0, ) I iy, )y =
k

0ln xT;a
S i) [ PRI syl oo, D)y =,
k
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for all parameters, at not only at true values.
The same argument applies to (B.210). Moreover, for all parameters:

0lInm(x;
/Zp(k|y,l‘;7T,0[1,0[2,B)$f(y|$;ﬂ',al,a2,ﬁ)dy
k

o .
k

B 0> . mk(z;m) _0
- or -

Let us now consider the first term in the matrix of second derivatives. From the previous
argument we obtain:

0 = %(/Zpkagf’“f(wdy),
k
. 0 alnﬁk alnﬂ'kaf )
B
o I lnmy Olnmy, dln f(y)’
(i (S5 oo (i )

where from now on all functions and derivatives are evaluated at true values. Now, notice

that:
9f(y) 0
o o Zﬁkgkhk )

81n7r
= Z kﬂkgkhk,

(9ln Th
= < ) f(y).
It thus follows that:

(e pr) - () (o))

We can derive similar expressions for the eight other terms by using the same methodology.
Namely, we find after some calculation:

R e ]
() - () (5
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) (2n75))

It is clear from these expressions that the information matrix equality is not satisfied
if hy depends in a non-trivial manner on «, i.e. if the sequential EM is not equivalent to
ML. However, the computation of the matrix of cross-products of first derivatives involves
roughly the same number of calculations as the computation of the matrix composed of the
above terms.

In problems where the number of parameters is large and the (sequential) likelihood
is not straightforward to compute, this idea provides a fast alternative way to compute
standard errors.

=
7\
o5}
2|
]
ol
Q
@P—'
=2
=
N——
N——
|
&=
Y
N
d\g
ol
o5}
@P—'
=2
=

247



Appendix C

Appendix of Chapter 3

C.1 Mathematical proofs

C.1.1 Proof of Theorem 3

The proof of proposition (i) is a straightforward consequence of Theorem 10.3.1 in Kagan,
Linnik and Rao (1973).

Theorem 17 (Theorem 10.3.1, Kagan, Linnik and Rao, 1973) Let A and B be
two non-stochastic matrices and let S = (s1,...,sm)7 and R = (ry,...,m,)T be two random
vectors with independent components. Assume that AS and BR have the same distribution.
If s;, for some © < m, is not normal, then the ith column of A is the multiple of a column
of B.

Assume that AX + U and AX + U have the same distribution. The components of
vectors (XT,UT) and ()A(:T,ﬁT), respectively, are independent. Let k < K. Since X is
not normal, Kagan et al.’s result applies to show that the k’s column of A, say Ay, is the
multiple of a column of the L x (K + L) matrix (A, I1,), where I is the L x L identity
matrix. Since every column of matrices A and A has at least two non-zero coefficients, it
must be that Aj, is the multiple of a column of A. This shows proposition (i).

To show proposition (ii) let kY (t) = (mgf) (1), € ALQ), for t € R, be the #Ar o x 1

vector of second-order partial cross-derivatives of ky (t). Let also

K’X(t) = (,{Xl(tl)7"‘7’{XK(tK))T
Ki(t) = (K, (t1), o By (t)) T
k() = (W% (b)), k% (t)) t= (f1, . ) € RE.

Equation (4.11) implies the following restrictions on factor cumulant generating functions:

K5-() = QM) (A7) (C.11)
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To show the second proposition, remark that it must be that
QA)RY (t7A) = Q(R)R": (tT“A’) : (C.12)

By proposition (i), every column of A is a scalar multiple of a column of A. Since rank(Q(A)) =
K, it follows that there exists no couple of columns of A which are proportional. Therefore,
there exist a permutation matrix P and a diagonal matrix D with non zero entries in the
diagonal such that A = ADP. Now, since ker(Q(A)) = 0, (C.12) implies:

K (tTA) = n'j'jpf( (tTA) . (C.13)

Taking this equation at ¢ = 0 and using the normalization assumption A2 yields:
D? = Var(DPX) = Var(X) = Ig.

Moreover, integrating the differential equation (C.13) shows that kx and k¢ differ by
an affine function. By definition, kx(0) = £, 5(0) = 0. By assumption, since the factor
distributions have zero mean: k' (0) = K’DP)?(O) = 0. This shows that the d.f. of X
and DPX are equal. Lastly, the d.f. of U and U are equal by deconvolution, since the
characteristic functions of the factors are nonvanishing everywhere.

This ends the proof.

C.1.2 Proof of Theorem 5

Let 2 = (z1,...,2x)" € ker (Q(A)) such that 2 # 0. Forallk =1,...,K,and all ¢ =1, ..., L,
define

2
.
V() = ﬁxk(Tk)—xkgk, V7 € R,
2

t
Colte) = Ky, (te) + (Ae @ Ag) xf, Vi, € R,

where Ay = (Ap1, ..., \eg) is the £th row of A and ® is the Kronecker product ((Ay ® Ay) z =
ZkK:1 TpA2,). If 2 > 0, 1p,is the the cumulant generating function (c.g.f.) of the convolution
of the distribution of X and the normal distribution N’ (0, \/@) Now, suppose that z; < 0.
The distribution of X}, is divisible by a normal distribution, say A (0, Uz). If O'z + x>0,
then 1, is the c.g.f. of some random variable that is the sum of the random variable with
cgf kx, (Tr)+ it and of the normal variable N/ (0, Uz + mk) The same argument applies
to ¢p. If (Ay ® Ap)z <0, then (, is the c.g.f. of Uy + N (0, — (Ay ® Ap) z). Otherwise, U,
is divisible by a normal distribution, say N (O,wi). If w% — (A¢®Ay)z > 0, then ¢, is
the c.g.f. og some random variable that is the sum of the random variable whose c.g.f. is
K/Ul (tg) + wy

th and the normal variable N (O,wf — (A ® Ay) :E) Rescale z if necessary so
that z, > —o7, forall k =1,..., K, and w? > (A, ® Ag) 7, for all £ = 1,..., L. One can thus
construct K + L non degenerate, independent random variables with zero mean and finite
variance: 7y, ..., Zx,Uy,...,Ur, with given c.g.f’s ¢, ..., %, (y, - (-
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Next, for all t = (ty,...,t1,)", define

L
K(t) = Zwk (AL ) +ch

K 2
)\ t
= § :K’Xk(AZ’t)_ E $I~c i )
k=1

k=1

L 42
E E é
+ 2 K/Ul (té + v Ag ® Aé 5

As Q(A)z =0, Zszl TpAggAme = 0 for all £ # m in {1, ..., L}. Hence,

K ) L L K
> e (ALL) Te Y Atr =D > TeAipt;
k=1 =

1 /=1 (=1 k=1

|
M=

m

(Ag X Ag) It%;

I
M=

Iy
)

and, therefore,

K L
= kxR + >k, (t) = Ky (1)
k=1 =1

Now, define D as the diagonal of order K with diagonal entries: d; = y/1 — xi. Rescale
x if necessary such that D is invertible. Then:

Var(D 1Z) = D 'diag(l — z;)D ! = I.

It follows that (AD, D717, (7) is an alternative representation to (A, X,U).
Lastly, we have to show that these two representations are different. Note that, by the
above construction, one can find an infinity of alternative representations (A,X , U) by

appropriately rescaling x. Since the cardinal of Sk is finite, it follows that (A, X, U) is not
identified. This ends the proof.

C.1.3 Proof of Theorem 6

To prove Theorem 6, we first prove the following lemma giving conditions under which the
joint eigenvectors of a set of matrices is uniquely defined (up to sign and permutation).

Lemma 18 Let K and L be any integers. Let Ay, ..., Ar, be matrices of REXK . Suppose
that there exist zF = (x’f, ...,x]z)T eRF and v* e RX, v, #0, k=1,..., K + 1, solutions to
the joint diagonalization problem:

xév = Apk, wve=1,..,L.

Assume that the set {vl, ...,vK} is linearly independent, that all v, k =1,..., K + 1, have

norm one, and that % # = for all (k, k') € {1,..., K}2. Then there exists k € {1,..., K}
such that UK+1 ok,

250



Proof. Since {v!,...,v"} is a basis of RF, there exists ¢ = (c1,...,cx) # 0 such that
vEFT = ol + ..+ cxgv®. Then, forall /=1, ..., L,

K K
Z ckvak = Z cp ApvF
k=1 =1

K
= Ag Z ckvk
(=1

— A[UK+1
xl{(-l-viJrl

K
k=1
As (v',...,v%) is linearly independent, it follows from the last equality that:

Ck.’L‘g = Ck(L‘f-'_l,

for all (k,£). Hence, for all k:

ckxk = ¢t

As ¢ # 0, there exists k such that ¢, # 0. For this k: ¥ = K+, Moreover, as 2% # z*" for
all ' # k in {1,..., K}, it follows that ¢; = 0 for all ¥’ # k. Hence

oEH = ook

As both v* and v¥*! have norm one, ¢ = £1. The result follows. m
The proof of Theorem 6 easily follows.

Fourth-order moments. In the case where U = 0, second and fourth-order cumulant
restrictions (3.8)-(3.12) yield:

Qy (¢,m) = ADydiag(Ar ® Ay) AT, (6,m) € Ay,
Sy = AAT.
To show that A is identified from this system, let P be the Cholesky decomposition of
Yy, such that PPT = %y — 3y, and P is a lower triangular L x K full-column rank matrix.

Then P~A, where P~ is a generalized inverse of P (e.g. P~ = [PTP]f1 PT), is a
matrix of joint orthonormal eigenvectors of:

P=Qy (4,m) P~" = P~AD,diag (Ay © Ap) ATP™T (£,m) € Ap».

In general, there can be infinitely many joint eigenvectors to a set of matrices if all
matrices have multiple roots. Lemma 18 shows that the problem of diagonalizing matrices
P=Qy (4,m) P71, (¢,m) € ZL,Q, has a unique solution up to column sign and permutation
if for all (k,k') € {1...K}?, k # k', there exists (¢,m) € Ay, 5 such that

)\gkAmka (Xk) 7& )\gk/ )\mklli4 (Xk/) .
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As either k4 (Xj) # 0 or k4 (Xi/) # 0, and as any two columns of A are linearly independent,
this condition is always satisfied. It follows that V', and thus A = PV, are identified (up to
column sign and permutation).

Third-order moments. The same argument applies to third-order cumulant matrices
I'y (£). Indeed, in the noise-free case third-order restrictions (3.10) become

Ty (¢) = AD3diag (A)) AT, (e {1..L},

where 'y (¢), for all £ € {1...L}, is a L x L matrix of third-order cumulants of the data, and
Ds is the diagonal matrix of factor cumulants.

In this case, Lemma 18 shows that the problem of diagonalizing matrices P~Ty (¢) P71,
¢ € {1...L}, has a unique solution up to column sign and permutation if for all (k,k') €

{1..K}2, k #K', there exists £ € {1...L} such that

Aekks (Xk) # Aowrrs (Xpr)

As before, this condition is always satisfied.

Third and fourth-order moments. The proof is almost identical to the two previ-
ous ones. Lemma 18 shows that the problem of diagonalizing matrices P~y (¢,m) P71,
(¢,m) € AL, and P~Ty (¢) P~T ¢ € {1...L}, has a unique solution up to column sign and
permutation if for all (k, k') € {1...K}?, k # K/, there exists (¢/,m) € Ay, 2 such that

>\Ek>‘mk’{4 (Xk) ;é >\£kl Amk”{ﬁl (Xk’) s

or there exists ¢ € {1...L} such that

Aepi3 (Xg) 7# Aewr ks (Xr)

As one of the four moments k3 (Xi), k3 (Xg), k4 (Xi) and k4 (Xp) is non zero, it follows
from the assumptions on A that this condition is always satisfied.

C.1.4 Proof of Lemma 7

1. Let Qy be defined by (3.16). As @ has rank K and Dy is non singular, restrictions (3.17)
imply that
Qy = QDsQ",

has rank K. It follows that there exists C € R#AL2x(#A0.2-K ), full column rank, such that
UTQY = 0. Since D4Q" has rank K, it must also be that 6T§ =0.

2. Let vech be the operator stacking all elements on and below the main diagonal of a

L x L symmetric matrix column by column into a M—vector. Then,

vech (Qy (£,m)) = vech (AD,diag (Ap ® Ap) AT + Spmkia (U7) SpL,g) ,
= QD4 (A ® Ap) + Spmtia (Up) vech (Spr, )
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where Sp;, , is the sparse matrix of dimension (L, L) with only one 1 in position (¢,£). Tt
follows that .
C" vech (Qy (¢,m)) = demka (Ur) Cgp),
where 6(&@) is the (4, ¢)th column of 6T, and the columns of C (the rows of C) are indexed
by (27]) € AL,Z-
Moreover, the second-order restrictions are equivalently written as
vech (Zy) = vech (AAT + %),
= Qlk + vech (Zp),

where 1g is a K-dimensional vector of ones. Hence,
T T L
C" vech (Zy) = C" vech (Zy) = ZVar (Ue) Ca)-
=1

Lastly, consider

vech (I'y (£)) = [Cum (Ye, Y, Y}) ,(4,7) € ZL,Z]
= vech (ADs diag (A¢) AT + k3 (Uy) Spr.) -

This vector of third-order moments of Y satisfies the equality
vech (Ty (£)) = QD3A; + k3 (Uy) vech (SPL,Z) .

It follows that o B
C" vech (Fy (f)) = K3 (Ug) C(g’g).

3. Lastly, we show that the submatrix [6(1,1),...,€(L7L)]T € REX (#BL.2-K) of C is

full-row rank. To show this assertion, partition C as

= Cu Cio ]
C = Val Val )
[ Ca1 Co

with 611 € R#AL’2X(#AL’2_K), 612 € R#AL’2XL, 621 € RLX(#AL’2_K) and 622 e RIXL,
To simplify the notations, suppose that rows 6{171), ...,U{L’L) are located at the bottom of

C, so that [621,622] = [6(1’1), ...,6(L’L)]T. Without loss of generality, one can assume
that Cy; = 0 and that C1; is a basis of the null space of Q7. Now, suppose that Cyy is
singular. Then there exists a linear combination of the columns of Cy that is equal to zero.
The same linear combination of the columns of C is both linearly independent of C'i1, as
C is full-column rank, and orthogonal to the columns of ). This contradicts the assumption
that @ has rank K. Consequently, Cso is non singular and [621,622] is full-row rank.

As matrix [6(171), ...,U( L, L)]T is full-row rank, it follows that error variances are iden-
tified. Moreover, it also follows that U(U) # 0. So, k3 (Uy) and k4 (Uy) are identified.

This ends the proof of Lemma 7.
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C.1.5 Proof of Lemma 9

1. The factor structure implies that

Ey = [Ty, Q% (1),...Qy (L)],
= A [DSQTa Dy dla’g (Al) QT7 ) Dy dla‘g (AL) QT] .

Let v € RE such that
v [DsQT, Dy diag (A1) QT ..., Dy diag (Ar) Q7] = 0.

As @Q has rank K, it follows that ¥/ D3 = 0 and " D, diag (A;) = 0 for all £ € {1...L}.
Then, as A is full column rank, this implies that v Dy = 0. Lastly, as for all k either
kg (Xi) # 0 or k4 (Xj) # 0, it follows that v = 0.

Therefore: [DgQT,D4 diag (A1) QT ..., Dy diag (A1) QT] as rank K. As A has rank K
by assumption, Zy has also rank K.

Then, let C' € REX(L=K) guch that

CT=y =0.
As [DgQT, Dy diag (A1) QT, ..., Dy diag (A1) QT] is full row rank, it must also be that CTA =
0.
2. One thus has
CcTsy = CTAAT + Ty,
= Ty
= [Var (U,)C4,...,Var (Ur) CL]

or

Cov (Yl,Y'Z)
c’ : =Var (U, Cy, £=1,...,L,
Cov (YL,YZ)

where CET is the Zth row of C.
Moreover, matrices I'y (£) defined by (3.9) satisfy the equality:

Ty (£) = AD3 diag (Ag) AT + k3 (Ug) Spy, -
Hence
C'Ty (¢) = CTADszdiag(A¢) A" + k3 (Us) C7 Spy g,
= k3 (U C" Spyy,

or
Cum (Yla lea le)
CT = K3 (Ug) Cg.
Cum (YLa lea er)
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Lastly,
Oy (¢,0) = ADy diag (A © Ag) A" + k4 (Ur) Spr

implies that
CTQy (£,8) = k4 (Uy) CT Spp 4

and
Cum (Yla }ffa }ffa }ff)
c’ : = kyq (Up) Cy.

Cum (Y, Y, Y4, Y7)

3. Let A_y be matrix A without its ¢th row. As A_, has rank K by assumption, it
follows from equality CTA = 0 that C; # 0. Otherwise, one would have CZ’EA_E = 0 for
a full (L —1) x (L — K) matrix C_y, contradicting the assumption that rank(A_,) = K.
Hence Var (Uy), k3 (Uy) and k4 (Up) are identified.

This ends the proof of Lemmas 9 and 10.

C.2 The JADE algorithm

Let A= {Ay, k = 1...K} a set of real symmetric L x L matrices. Let us define the function:
OH(A) = Z 0’1,2]'7
i#]
for all A = [a;;]. Then joint diagonalization of A is achieved by minimizing

K
> off(UAUT), (C.24)
k=1

with respect to U orthonormal.
Let 0 € [—m, 7], let (i,5) € {1...L}* and let R;;(6) be the L x L matrix equal to zero
everywhere except at the (i,4), (i,7), (7,4) and (4, ) entries where it is equal to:

(o e,

Let 7 # 7, and let us define:

Lastly, let h; j(A) = (ai — aij, ajj + aj;), and let:
K
Gij= Z hg:j(Ak)hi,j(Ak) = (gij)i,j:LQ-
k=1
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Then, Cardoso and Souloumiac (1996) show that 6y such that:

z+r . / Y
cos(fo) = o sin(fp) = ma

where = g11 — g22, ¥y = g12 + g21 and r = y/22 + y2, minimizes O; ;(6).
This closed-form expression for fj allows to minimize (C.24) by the following algorithm:

1. Start with U(0) = Ir.

2. Begin loop on step s.

3. Begin loop on (i, 7).

4. Compute G; ;.

5. Compute 6.

6. If 0y is different enough from zero, continue. Else stop.
7. Compute Rij(Hg)AkRij(Ho)T and modify A consequently.
8. Update U(s) as U(s + 1) = R;;(6o)U (s).

9. End loop on (3, j).

10. End loop on s.

C.3 Asymptotic theory of the JADE estimator

First-order conditions. The JADE estimator solves
A J A

V= i T(VTAV).

argvrgbnkalo (VIA;V)

The Lagrangian associated with the minimization problem is:
J —~
LWVyy) = Y off(VTA;V) + 7" vec (VIV —Ik),
j=1
= 3> 0 An) + D vk (0o = 1) + D Yk v,
k

where + is a vector of K? Lagrange multipliers 7,,;, and vy, is the kth column of matrix V.
Differentiating the Lagrangian with respect to vy, for £ = 1...K, yields:

oL (V.7) L
¢ 7 kAl Py,
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Then, multiplying this equation by ¥, for m # £, gives:
2D (0 Aj0e) oy, A0k + Ty = 0.
J kAL
Using that ¥,,, = 7;,,, by symmetry, it follows that

SOS G Avon A = S S (6F Ajiom)o] A

J ke i k#m

or, equivalently, as A\j is symmetric for all 7:

~NT R ~ N T~ ~NTR ~ N T~
sz Aj VRV | Ajom = vaAj Z VUL | Ajve.
j k£l j k£m

Then, as Y0 50F = VVT = Iy we obtain
5T A, (I — 07) Ao = S50, (I — 0%) A
Vg Aj (Ik =007 ) Ajom = ) Aj (Ik — Omlp,) Aj0,
J J
which we write after rearranging:
S 07 Ajom (01 Ay — 7 Aj) = 0. (C.35)
J

Equation (C.35) holds for all £ < m. The JADE estimator V solves these K (K —1)/2 non
redundant equations, together with the K (K + 1)/2 orthogonality constraints:

D} Om = Ogm, for all £ < m.

Identification and consistency. Let V= (01, ...,Ux) € Ok be such that

J
V = arg Vrgé)nK 2 off(VT A; V).

Then, as: Vmé)n 2;21 off (VT A;V) = 0 at the true value, it follows that YN/TAJ-‘N/ = 1~7j is
€0k

diagonal for all j. As for all k& # m there exists j € {1...J} such that dj; # djm, one can
apply Lemma 18 to show that Vis equal to the true V', up to column sign and permutation.
This shows the identification of V. Consistency follows from classical arguments, as the
parameter space O is compact.
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Asymptotic distribution. A first-order Taylor expansion of (C.35) around the true
value V yields:

J J
Z’UTY;LAJ"U]c (’UEA]'U]{, — UZ;lAj’Um> + Z (UZ;AJ"Uk - ’UTY;LAJ'Um) (’UTY;LA]' (i)\k - ’Uk) + UZ;A]' (@\m — ’l)m))
J J

+ ZUTTnA\]vk (vk A (O — vg) — Zj(ﬁm - vm)> =0p (N_I/Q) .

As plim A; = A; for all j, and as v Aju,, = 0 for all k # m, this yields:

N—x0

J J
> (dik = djm) v, (A — A ) vk + Y (djk — djm) (v Aj (@ — vi) + vF Aj (T — vim)) = 0, (N—m) ,
J

J

where djj, = vaAjvk are the diagonal elements of VTAjV.
At this stage, it is convenient to define Z,,;, = v (Up — vi). As Q)ZLA]' = djmv,:g, one has:

J

D (i (A —4; ) Uk Z (djk — djm) (djmZTmk + djkTm) = 0p (N’1/2> .

J

Now, a Taylor expansion of the orthogonality constraints yields:
Tk + Thm = v,j;l(i)\k — o) + va(ﬁm — V) =0, for all m, k.

Thus we have:

J J
Z (djk: — djm)2 Tk = — Z (d]‘k — djm) UZ; (A\] — A]> Vi + 0p (N_1/2> . (C.36)
J J

Let X = VT (V — V). Then equation (C.36) is equivalently written, in matrix form,
as:

vec ()?) = -W (IJ VT ® VT) (vec (;1\) — vec (A)) + op (N*I/Z) ,

where W, A and A have been defined in the text. Note that W is provided that Zj (djr — djm)2 #
0 for all k£ # m.
Then, as:
vec ()?) =(Ixg® VT) (vec (V) — vec (V)) ,

it follows that

A

N3 (vec (17) — vec (V)) = —UxeV)W (L oV eVT)N: (vec (A) — vec (A)) +o, (1),

from which

~

N (vec(V) - vec(V)) e N(0,Vy),

where the expression of Vy is given by (3.36).
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C.4 Robin and Smith’s (2000) rank test

Let B be a root-N consistent estimator of a (p,q), p > q, matrix B, such that
N'2vec (B = B) 4N (0,5, ()

where Evec(é) is definite and rank (Evec(é)) =35,0<s<pq! Let ivec(é) be a consistent
estimate of X vee(B)" Let B = CDET be the singular value decomposition of B, where

C and E are (p,p) and (g, q) orthogonal matrices and Disa (¢,p) diagonal matrix. Let
d1 . > d, x denote the diagonal entries of D2 (the eigenvalues of BTB) For a given null
hypothe51s. H{j : K =r, the statistics

q
CRT.=N Z c?z

=r+1

has the same limiting distribution as 25:1 dr Z?2, where d} > ... > dj, t < min{s, (p—7)(q—
r)}, are the non-zero ordered eigenvalues of the matrix

(Eqr ® Opfr)Tzvec(E) (Eq—r ® Cpr),

where Eq_,ﬂ and 6,,_, are the last ¢ — r and p — r columns of E and 6, respectively, and
{Z;}t_, are independent standard normal variates.

To estimate K, we apply the following procedure. Start with » = 0. Test H& against
fI& K >0. If H& is rejected, test Hg against fNIg : K > 1. And so on until one accepts Hj
against ﬁ 0 : K > r. The test p-values can be approximated by drawing many independent
values of the limiting statistics Zl ,drZ?2. This procedure delivers a consistent estimate
of K if the asymptotic sizes oy used for the sequential tests are such that oy = o(1) and

—N~lIna%, = o(1).

'Note that s < dim (V) because of the symmetry properties of I'y and Qy.
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Appendix D

Appendix of Chapter 4

D.1 Proof of Lemma 14

1. First, remark that
Ey fi — Efi = Ex Re(fi) — ERe(f:) + 1 [En Im(f;) — EIm(f4)]
and, for any T' > 0,

sup |En f; — Ef;| < sup |[Ey Re(f;) — ERe(fy)| + sup |Ex Im(f;) — EIm(f;)|.
< < <

It will thus suffice to show that the proposition is true for the family of functions Re(f;)(z,y) =
zcos(tTy), t € R, for it to be true for functions Im(f;) and f;. So, without loss of generality,
we prove the result for real functions f;(x,y) = x cos(t’y), using the same notation for f;
and its real part. The proof uses the techniques exposed in Chapter IT of Pollard (1984).

2. Firstly, the integrability of X allows us to choose a constant K, for any ¢ > 0, such
that E[|X|1{|X| > K}] <e. Then, writing Ey f; for the sample mean + SN (X, V),

sup [Ex fy —Ef| < sup [Ey [fi1{|X] < K}] - E[fi1{|X] < K}]|

o< t<T
+ sup En [|fe 1{[X] > K}] + sup E[[fs| 1 {|X] > K}]
t<T t<T
< ‘Zlg%“EN [fel {IX] < K} - E[fi1 {|X] < K}]]

+Ey [[X[1{X] > K} + E[|X[1{|X]> K}].
The last two terms converge almost surely to 2E[|X|1{|X| > K}], which is less than 2e.

3. From now on, one may as well consider that the support of X is absolutely bounded
by K (i.e. |X| < K almost surely). Let Zy = (Z1,..., Zn) be an i.i.d. sample of random
variables with distribution F'. The two symmetrisation steps of the proof of the Glivenko-
Cantelli Theorem provide a first bound. The first symmetrisation step replaces Fy — F
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by Fx — F);, where F); (resp. Ey ) is the empirical distribution (resp. the empirical mean
operator) of another i.i.d. sample Z'y = (Z1, ..., Z};) of random variables with distribution
F, independent of Zy. Specifically, the symmetrisation lemma in section 3 of chapter II of
Pollard (1984) shows that

1
Pr{ sup |[Exfi —Efi| >ep <2Pr< sup ‘]Eth—IE'th‘ > —c, (D.11)
[t]<T [t|<T 2

if Pr{|En f, —Ef;| < 3¢} > 3 for all |t| < T. Chebyshev inequality shows that the latter
inequality holds whenever N > w. As

Var f,(X,,Y,) = Var [X,, cos (t' Yy)] <EX? < M;,
inequality (D.11) is true for N > %.
4. The second symmetrisation step uses an i.i.d. sample of Rademacher random vari-
ables oy = (01,...,0n), where 0,, = 1 or —1 with the same probability %, n=1,..,N,

independent of Zy and Z’y. The sequence of random variables oy, [f:(Zy,) — fi(Z},)] then
has the same joint distribution as the original sequence fi(Z,) — fi(Z],). It follows that

N N
1 1 1
Pr 4 sup ‘Eth—]Elet‘Z§6 = Prq sup ﬁzgnft(zn)_ﬁzgnft(zn) 258 ;
|t|<T <7 | <Y ;=1 n=1
1 & 1
< Pr{sw | =3 oufi(Za)| > Le
{tiﬂ N Zl R I
1 & 1
+Pr{ sup ﬁZanft(Zn) 216 ,
‘t|ST n=1
1 & 1
= 2Pr{sup |= ) onfi(Zn)| > €,
{ltl<T N z::l T
al 1
= ZEPr{ sup —ZUnft(Zn) > € ZN}. (D.12)
[t|<T n=1

5. A maximal inequality then follows from the following finite-covering argument. For
any couple (t1,19),

|z(t]y — 13 y)|

< Y lmye (tie — tar)|
‘

> lzyel - [t — o]
‘

< Liallyl - [ty — tal.

‘x cos(ty) — x cos(tly) ‘

IN

IN
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SLKMQ,N)L
€

Fix Zy, and define My = + 5, |Yy|- Partition [T, T)" into ry = <2T
adjacent hypercubes of side length m. Lastly, let {tx;k =1,...,rn} be the set of all
cube corners. Then, for any ¢ € [T, T]" there exists k such that
= =
ﬁz (fr, — fo) (Zn)| < NZKftk = f1) (Zn)|

n=1 n=1
< LKM,y |t; — 1|

3 1

< LKMyy—0 ==
= 2NSLKMyy 8"

as |X,| < K. Hence, for all t € [—T,T]" such that ‘% SN onfi(Zn)

1
Z Z&

1 & 1 & 1 &
ﬁzgnftk(zn) = ﬁzgnft(zn) _‘ﬁ ZUTL (ftk_ft) (Zn) )
n=1 n=1 n=1
S 1
= g&

One can thus refine the bound further as:

N N
1 1 1
Pr {;g} N;Unft(zn) > 16 ZN} <Pr {m]?,x —nz::lanftk(Zn) > ga ZN}
& 1 & 1
< zpr{ LS oz > ke zN} ,
k=1 n=1
1 & 1
<7"NmaxPr{‘an_:lanftk(Zn) > g€ ZN}. (D.13)
6. Lastly, applying Hoeffding’s inequality to the sequence [0y, f1, (Z,)], bounded by K,
yields:
1 Ne?
—e|Z < - . .
{sup Zanftk 8 N} < 2exp [ 128K2] (D.14)

7. At this stage, we have thus shown that, for N > 8?;[1,

LKT\" Ne?
r{f&% N fi ft|_5} < (Mn) - P\ TisKe |
KT N¢?
— Tm+3LLE AiL L1 —
(Myy) exp | Lin ( — 128K2
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Assuming that E|Yn|" < 400 for all i < {1...L}, then one can find My < +oc0 such that
E|Yn[" < M3, Vi < L. Since (Yy) is an i.i.d. sequence we thus have

E (%iw)L

n=1

]E(MQLJV)

< (Mp)".
Let (en) be a sequence of positive numbers converging to zero and let (Tv) be a diverging
sequence of positive numbers. If e tends to zero slowly enough for 8?\] > % and so that

N 2
YN exp [L In (K]EVNTN> — 128}%} < 00, then

ZPr{ sup |En fi —Ef| > 6N} < 00.
N

[t|<Tn

The Borel-Cantelli Lemma then implies that only a finite number of events are such that
supjy<ry [En ft — Eft| > en. Hence,

sup |En fi —Efi| = O(en), a.s..
[t|I<Tn

8. The last step of the proof characterises T, Ky and ey further. Let K X| (e) be
implicitly defined by the equality:

BIXIL{1X] > K = [ uf () du =
Let M > 0 and k(e) positive and decreasing such that
E[[X]1{|X[> Mk (e)}] <.
It follows from the monotonicity of E[|X |1 {|X]| > z}] as a function of z that
Kx () < ME(e) .
Let now 0 <y < 1/2 and r > 0, and let ey, T such that

7,l
EN :(N> Y Ty = OV,

k (8N) In N
Then %, > % for N large enough. Moreover:
KnT Ne3 Mk T Ne3
Lln( N N)_ 6N2 < Lln< (en) N>_ EN )
EN 128Ky, EN 128 M2k (en)

1
InN\""2 1 N
< M| —— N | —

< —N"4+0(nN),

2

for N large enough. It follows that the series )\ exp [L In (K]E"NTN ) — 1;\;2"]2\] } converges.

This achieves to prove Lemma, 14.
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D.2 Proof of Theorem 15

(i) Fix any ¢ € Rl let o(t) = oy (t) = E[eitTY], b(t) = E[YgeitTY} and &, (1) =
E [YgYmeitTY], for any /,m =1, ..., L. Then, Lemma 14 defines ey | 0 and Ty — oo such

that (all convergence statements are implicitly holding almost surely)

sup [p(t) — o(t)| = O(en),

[tI<Tn
sup [,(t) —,(1)] = O(ew),
[tI<Tn
Sup. {Em (6) = &4 (®)] = Olen),
[tI<Tn

hold simultaneously. One can take the largest ey and the smallest T .
2
In addition, we shall require below that ;(”%—;];3 =o0(l). Ash(t) = g(t:)3 is an increasing

function, one can redefine T —if necessary— as Ty = h ™" (67\]_1>, with 0 <y < 1.

(ii) Removing the subscript Y from ¢y- and gy to simplify the notations, as [¢(t)| > g(|¢|)
when |t| — 0o, and as ¢ is nonvanishing everywhere, then for T large enough

inf )| > g(T
|t‘1£TN|<p( )| > g(Twn),

and

B(t) — (1) ‘ _ O(ew)
o | 9Ty

TJ%IEN > _EN
9(Tn)® = 9(Twn)

sup =o0(1).

[t|I<TN

The last equality follows from the fact that for N large enough.

(iii) We have
oy (t) _ ety _ B[V

Oty o(t) ' E[efV]

and

Det) _%e®) _ %el®) ) | Bt ()
Y Y

() () ) A(t) oD o)
z,Ab (1) w(t)zc)ﬂ(t) Lo
- goé(t) @(t)—i(tt) 1 + o) [W(t) — ()] -

One can bound @é(t) as follows:

sup [Be(®)] < sup |Polt) =)+ sup ()]

[tI<Tw [tI<Tw te[-Tn,Ty]
< sup [dt) = w(t)] + B[V = O(1),
[tI<Tn

264



as E|Yy| < o0 ifIEYZ2 < M < 0.
It follows that

Bt _v®]_ Oen) _
<ty | () (t) | g(Tn)?
The same argument applies to show that
En®)  Em(®)| _ Olen)
ap e e | gy W

for all 2, m.

(iv) It is easy to extend these results to second derivatives of cumulant generating
functions:

Py
a0t
E|Y, meitTY citTY meitTY
] el s
E[ezt Y] E[ezt Y] ]E[ezt Y]
__am® |, 9l® ¥n®)
et)  plt) et)

Cém (t) =

5 &) En(®)
Cém(t) Cﬁm(t) - a(t) (p(t) ]
[0 @] 9@ | [Pt ()] $elt)
20 e ]| v B0 e | v
) e [ )
(20 @) | [ B0 e
Since bul) E|Y
L 4
w500 <

for all £, it follows that

sup |Cpn (1) _gl_,m(t)‘ _ Of(en) + O(en) +<

O(en) )2 _ Olen)

t|<T 9(Tn)?  g(Tn)? 9(Tn)?) — g(Tn)?
because )
EN &‘N EN
> S1> —
g(Tn)? = g(Tn)* 9(Tn)

for N large enough.
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(v) For any vector t = (t1,...,t,)" € RL and 7 € R, then

2]
Bo(t) = Sup Q/M W( )du‘
[Twn,Tn] 0 ut

< sup T sup zéi_

rel-Tw1w] \ <ty | P(2)
ho(t)

<Tn sup A———
Yery |86 0
Tn

= 0]
g(TN)2 (gN)

Similarly,
Com (t) = sup //Zém(vt)dvdu—/ / C o (vt)dvdu
T€[-Tn,TN] 0o Jo

< sup (7 sup ‘Clm <lm(t)‘>
TE[—TN,TN] |t‘<TN

<T% sup [Con(®) = Con(®)
t<Tn

TR
g(Tn)?

Moreover, for any distribution W on T,

0(6]\7).

[Biwaw @) < swp B [ aw 0 =~ 0

[t|I<TN

and
2

/ Com (1) AW (1) < sup Cipm () - / AW (1) = ﬁow).

[t|<Tn

(vi) It easily follows from the previous step that:

_ T2
sup kx, (1) —kx, (T)| = O(en) = o(1).
TG[—TN,TN}| x5, (1) = fix (7)] Ty )? (en) = o(1)

In particular, sup,c;_7, ] lFx, (T) — kx, (7)| <1 for N large enough. Therefore, for
N large enough

sup [P, (1) — wx, (7)] sup  lexp (kx, (7)) — exp (kx, (7))|,
TE[*TN ,TN] TE[*TN ,TN}

< sup [Rx, (7) = kx (T)]
TE[*TN,TN}
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from which it follows that
Ty
sup Py, (1) —¢x, (T)| = O(en).
TE[*TN,TN}‘ X x (7] g(Tn)3

This ends the proof of Theorem 15.

D.3 Proof of Theorem 16

For all z in the support of Xj:

IN

Frl) ~ fr@)] < ( / i Px,0) — px, @] o+ [ Y o, () dv + / " lox, 0] dv)

2T 00 TN

IN

Tw R 1 +00
= sup ‘(pXk (1) — px, (7')‘ + —/ hx, (v)dv.
™ ‘T‘STN ™ TN

Hence, Theorem 15 implies:

R 3

sup | Fi ) = )] = ~Ds0(ew) +0 ([ o))

Tn

where g (|t|) = gx (L |A] |t]) and f;voo hx(v)dv = o(Ty), as hy, is integrable. This ends
the proof of Theorem 16.
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