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Spécialité Sciences et Génie des Matériaux

présentée et soutenue publiquement par

Andrey MUSIENKO

le 17 Mars 2005
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Centre des Matériaux P.M. FOURT de l’Ecole des Mines de Paris,
B.P. 87, 91003 EVRY Cedex

—————————–



Résumé

Ce travail s’inscrit dans le cadre de la plasticité cristalline. Sa première motivation est le
développement d’une approche couplée, capable de prendre en compte l’interaction entre la
plasticité et l’environnement dans les tubes de zircaloy des centrales nucléaires. La première
étude sur la plasticité du zircaloy, influencée par l’environnement, a été menée par (O.Diard,
G.Cailletaud, ENSMP). Les conditions d’interaction y sont bien caractérisées, et un premier
modèle représentant l’endommagement des joints de grains suite à l’interaction avec l’iode y
est proposé. Il restait à améliorer l’intégration numérique, et à utiliser le modèle pour des
structures plus réalistes. Par ailleurs, il s’agit désormais de représenter l’endommagement
intergranulaire, suivi de l’écrouissage transgranulaire, observé expérimentalement.

Afin d’atteindre ces objectifs, plusieurs points ont du être abordés. Une modélisation
plus pertinente est ici utilisée pour les joints de grains, et une formulation du modèle en
transformations finies est proposée. L’objectif initial a donc été élargi. En dehors des calculs
d’agrégats endommagés du zircaloy, on trouvera les calculs d’une éprouvette de cuivre, maillée
en 3d. C’est une étape indispensable pour tester la méthode numérique dans le cas de
déformations modérées. Quelques résultats concernant la méthode numérique sont également
présentés.

Le manuscrit est organisé en trois parties. Tout d’abord, la partie A est consacrée à la
description des modèles. Les outils numériques sont ensuite expliqués dans la partie B. Enfin,
la partie C présente les resultats numériques.

Dans la première partie, la formulation initiale d’un modèle du monocristal (section 1) est
tout d’abord exposée ; puis vient le nouveau modèle DOS (Damage, Opening and Sliding)
proposé pour une description de joints de grains (section 2) ; enfin la dernière section est
consacrée aux algorithmes en transformations finies (section 3). L’élasticité, la plasticité
J2, la plasticité cristalline, et finalement le modèle DOS, sont successivement examinés. Le
schéma implicite est utilisé pour l’intégration numérique.

Dans la Partie B, une méthode de génération de maillages particuliers, comportant une
représentation explicite des joints de grains, avec de véritables éléments finis, est exposée.
Cette procédure est développée de façon systématique, dans le cas 2d et 3d (section 4). Puis,
le principe de calculs avec couplage est expliqué (section 5).

Les modèles du matériau et les outils numériques sont appliqués aux calculs d’aggrégats
de zircaloy dans la section 7 de la partie C : une simulation de l’effet de corrosion sous
contraintes des tubes du zircaloy dans l’environement de l’iode est proposée. Afin de montrer
les possibilités de notre algorithme et d’avoir une comparaison avec l’expérience, la section
6 montre les résultats de calcul de l’état contrainte-déformation d’une éprouvette de cuivre,
testée à l’Université de Leoben (O.Kolednik, et al.).
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Abstract

This work addresses several problems in the framework of crystal plasticity. Its main
motivation is the development of a coupled approach able to account for the interaction
between environment, inelastic deformation and damage in a zircaloy alloy used for the
cladding tubes in nuclear power plants. A first study was previously made by O.Diard on
the same subject, and a preliminary numerical procedure was developed for performing the
simulation.

Our purpose was to improve this first attempt, and to reach a quantitative agreement
with the experimental data. The main modification to the initial model is a new geometrical
representation of the ”grain boundary”. In fact, instead of having a special material for the
grain boundary, we introduce a specific zone in each grain near the grain boundary. In this
area, we still have the normal slip systems, corresponding to the grain it belongs to, but
also specific systems to allow the boundary to slip and open. The resulting model (DOS)
successfully represents damage, opening and sliding, and can be calibrated using experimental
information on tubes submitted to complex load histories. A finite strain formulation is also
provided. Finally, a model describing cleavage is in competition with intergranular damage,
so that we are able to predict the transition from intergranular to transgranular cracking.
These new features are implemented using a robust integration algorithm in the finite element
code Zebulon.

A simulation of stress corrosion cracking of Zircaloy tubes in iodine environment (which
appears as a result of pellet-cladding interaction in the core of nuclear pressurized-water
reactors) is proposed. The predictions of the model are in good agreement with the
experimental data describing the crack propagation rate.

The following points are obtained as sub-products of the study:

• Elasticity, J2 plasticity, crystal plasticity, and the DOS model are successively studied,
in the framework of small perturbation and large strain. The implicit Euler scheme is
applied to the numerical integration of the single crystal under large strains. A special
attention is payed to the problem of slip system activation.

• A method is proposed for generating specific finite element meshes, introducing an
explicit representation of the grain boundaries with real elements. This procedure is
systematically developed, in 2D and 3D cases.

A series of computations have also been performed on copper specimens, previously tested
at the University of Leoben, Austria. The interesting point of the experimental study is that
a true 3D microstructure is available, after successive polishing operation of the specimen
(six slices are available, and the 3D mesh respects the real geometry). Various meshes are
considered. This allows us to demonstrate that a really large number of elements are necessary
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to have a good representation of the local stress and strain fields. The comparison with the
experiment is made on several levels: macroscopic curve, intragranular strain fields, slip
system activity.
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Introduction

This work addresses several problems in the framework of crystal plasticity. Its first
motivation is the development of a coupled approach able to account for the interaction
between environment and plasticity in zircaloy tubes of a nuclear power plant. Assemblies
of such a tubes – examples can be seen in fig. .1 – is a core of a nuclear reactor. Each tube
contain a number of fuel pellets (see fig. .2-b), that forms a fuel rod (see fig. .2-a). A first
study on the environmentally influenced plasticity of zircaloy had been made (Diard, 2001).
The conditions of the interactions were then well characterized, and a first model has been
proposed to represent the damage of grain boundaries, due to iodine interaction. After this
initial attempt, it was still necessary to improve the quality of the numerical integration, and
to use the model with more realistic microstructures. On the other hand, the new challenge
was to represent the sequence of intergranular damage followed by transgranular hardening,
as observed in the experiments.

In order to achieve these goals, a series of problems have been revisited. In the present
work, a more careful modeling of the grain boundary area is used, a finite strain formulation
of the model is proposed. As a result, the initial objective has been enlarged. Beside the
computation of damaged zircaloy aggregates, the reader will find some computations of a
copper specimen which has been fully meshed in 3D. This was a critical step to test the
numerical method in the case of moderate strain. We will also show several results concerning
the numerical method.

The manuscript is organized in three parts. Part A is devoted to the description of the
models. Numerical tools are explained in part B. Part C contains the simulation results.

Part A starts with the formulation of the initial single crystal model (section 1), followed
by the new Damage, Opening and Sliding (DOS) model proposed for the description of the
grain boundaries (section 2). Section 3 is devoted to algorithms for finite transformation.
We will successively examine elasticity, J2 plasticity, crystal plasticity, and finally the DOS
model. The implicit Euler scheme is applied to the numerical integration of the single crystal
under large strains.

In part B, we show a method for generating specific meshes introducing an explicit
representation of the grain boundaries with real elements. This procedure is systematically
developed, in 2D and 3D case (section 4). Then, a coupled computation principle is explained
(section 5).

Both material models and numerical tool will be applied for the computation of our
zircaloy aggregates in section 7 of part C : a simulation of stress corrosion cracking of
Zircaloy tubes in iodine environment (which appears as a result of pellet-cladding interaction
in the core of nuclear pressurized-water reactors) is proposed. In order to demonstrate the
capabilities of our algorithms and to have a comparison with experiment, section 6 shows
the results of the computation of the stress-strain state of OFHC copper specimens tested at
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University of Leoben (Tatschl and Kolednik, 2002a).

(a) Russia (b) France

Figure .1 : Fuel assembly

(a) (b)

Figure .2 : (a) - fuel rods, (b) - fuel pellets
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Basic crystal plasticity model

Contents
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I.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
I.3 Model extension for the cleavage representation . . . . . . . . . . 5

I.1 Known experimental results

Very complex theories have been developed in the framework of crystal plasticity (Budiansky
and Wu, 1962)(Hutchinson, 1964)(Asaro, 1983)(Asaro and Needleman, 1985)(Jordan and
Walker, 1985) They are designed to take into account several microscales, the presence of
heterogeneities, the various population of dislocations, etc. . .

The purpose of the model considered here is to capture the specificities related to the
main mechanisms. It will then consider:
1. Slip planes and directions. Plastic deformation of single crystals happens by shear of
one part of crystal on another one. This shear occurs in specific planes (called slip planes),
and directions (slip directions). Slip planes and directions are defined by the crystallography
of the given crystal.

There are several types of crystallographic structures. In the present work, only FCC
(face centered cubic) and HCP (hexagonal close-packed) were used, respectively for copper
and zircaloy.

These results are usually first referenced to (Schmid and Boas, 1935). Now they are
classical and one can find slip planes and directions in (Kocks, 1970)(FCC) and (Tome and
Kocks, 1985)(HCP) for instance.
2. Schmid law. Tension tests on single crystals show, that differently oriented single crystals
of a given metal start slipping when different stresses are applied to the cross section, but
that the stresses resolved on the slip plane and in the slip direction are always the same. It
was first found by Schmid (Schmid and Boas, 1935), and later verified by (Jillson, 1950).
Results of (Jillson, 1950) – on Zinc – are presented in fig.I.1. One can see that critical stress
depend on crystal orientation in such a manner, that σ sinχ cosλ = const.
3. Latent hardening. Experiments on the secondary specimens, cut from the primary
loaded parent crystal, have shown that these secondary specimens represent higher yield
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limit, than the primary ones. Classical results for Aluminium and Copper can be found in
(Kocks and Brown, 1966) and (Franciosi et al., 1980) –see fig.I.2–. These results are usually
interpreted as a presence of latent hardening, i.e. the effect of hardening of nonactive slip
systems due to plastic slip on others active slip systems.

(a) specimen orientation (b) critical stress

Figure I.1 : Experimental evidence of Schmid law (Jillson, 1950)

I.2 Model formulation

The model is formulated here as proposed in (Cailletaud, 1991) and (Meric et al., 1991),
following the small strains assumption. Additive decomposition of a strain rate into an
elastic and a plastic part is used –eq. I.1–. The plastic deformation rate is calculated as
a sum of elementary slips on all the crystalline slip systems –eq. I.4–. Slip systems are
geometrically defined by means of m∼ s tensors –eq. I.2–. Here ns is the normal to the slip
plane, and ls is the slip direction. Following the Schmid law, each elementary slip rate , γ̇s,
depends on the resolved shear stress, τs. A fully phenomenological Norton-like viscoplastic
relation is proposed –eq. I.5–. Isotropic and kinematic hardening (in a classical Ishlinsky-
Prager manner) are taken into account by means of the internal variables rs and xs –eq. I.3–.
In order to represent the effect of latent hardening, the resulting isotropic hardenings for
different slip systems are interconnected by means of an interaction matrix hsr .

ε̇∼ = ε̇∼
e + ε̇∼

p (I.1)

τs = σ∼ :m∼ s =
1
2
σ∼ : (ns ⊗ ls + ls ⊗ ns) (I.2)
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(a) specimens
(b) results

Figure I.2 : Experimental evidence of lateral hardening (Franciosi et al., 1980)

xs = c αs ; rs = R0 + bQ
∑

r

hsrqr = R0 +Q
∑

r

hsr

{
1 − e−bvr

}
(I.3)

γ̇s = v̇ssign (τs − xs) ; ε̇∼
p =

∑
s

m∼ sγ̇s (I.4)

v̇s =
〈 |τs − xs| − rs

K

〉n

with 〈x〉 = Max(x, 0) and vs(t = 0) = 0 (I.5)

fs = |τs − xs| − rs (I.6)

α̇s = γ̇s − d αsv̇s with αs(t = 0) = 0 ; q̇s = (1 − b qs)v̇s (I.7)

After its initial implementation (Meric et al., 1991) in the Finite Element code
ZSeT/ZéBuLoN, it has been used in a series of computations, for industrial applications,
like turbine blades (Cailletaud et al., 2003a), or polycrystalline aggregates –see, for instance,
(Barbe et al., 2001a)–.

I.3 Model extension for the cleavage representation

Cleavage of crystallized substances is the result of a splitting readily in one or more definite
directions, in which the cohesive attraction is a minimum, affording more or less smooth
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surfaces; the direction of the dividing plane is the cleavage plane. This type of fracture
happens as a separation of a single crystal into two parts following some crystallographic
plane, because external loading exceeds interatomic forces. For the case of Zircaloy in iodine
environment, studied in present work, the plane of transgranular fracture is the basal plane
{0001} – see Fig.II.5–.

Cleavage modeling can be seen as an extension of the single crystal model. Let n to be
a normal vector to the cleavage plane (basal plane in our case). Assuming that the critical
variable for cleavage supposed is the normal stress σcleav = n · σ∼ · n and Rcleav the cleavage
limit, the crystal behavior will be purely plastic provided σcleav < Rcleav.

The cleavage failure will take place when the stress will reach Rcleav. In the present work,
instead of a pure time independent formalism, a time dependence is introduced, in order to
regularize the solution, so that the stress will decrease progressively. This is computationally
more convenient, and can be adapted by changing the values of K and n. A cleavage related
inelastic strain is used :

ε̇∼
cleav = δ̇cleavn ⊗ n

δ̇cleav =
〈
σcleav −Rcleav −Q(1 − exp(−bδcleav))

K

〉n

Parameter Q should be chosen less then zero, in order to have softening behavior.

Figure I.3 : Transgranular crack micrographs (Kubo et al., 1985)
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Intergranular model
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II.1 Damage, Opening and Sliding model . . . . . . . . . . . . . . . . . 19

II.2 A new strategy for grain boundary modeling . . . . . . . . . . . . 24

When a solid forms from the liquid, small randomly oriented crystallites nucleate and
grow. The crystals grow until they meet each other, and, in general, they will not be of exactly
the same orientation. The boundary where they meet becomes a surface, and the mismatch
in their orientation is accommodated by distortion and gaps in atomic arrangements. Grain
boundaries can be seen on the polished surface of metal, by means of optical or electronic
microscope. Examples for the materials studied in this work – oxygen free high conductivity
(OFHC) copper and Zircaloy-4 – are presented in fig.II.1.

(a) OFHC copper (Tatschl, 2000) (b) Zircaloy-4 (Fregonese, 1997)

Figure II.1 : Experimental observations of polycrystalline materials

Grain boundary is believed now to be a two-dimensional defect of crystalline cell (Flewitt
and R.K.Wild, 2001), with the thickness of 2-3 atom size. The value of 8Å is reported for the
grain boundary thickness in (Budai et al., 1979), as a result of X-ray diffraction experiments
on gold.
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Grain boundary sliding. The previous observations were made on pure metals, at very
small strains. The conclusions are not the same on real alloys, submitted to realistic loadings.
Due to the high level of incompatibility of the deformation field, grain boundaries are highly
perturbated areas. Unexpected slip systems (secondary slip) happens in this location, so that
a non negligeable zone can affect a specific behavior. On the other hand, slip can happen at
grain interfaces (grain boundary sliding). This effect has been observed experimentally (see
for instance (Miura et al., 2000; Parker and Wilshire, 1977; Yoshida et al., 2004). In fig. II.2,
one can see a particle of B2O3 liquid at the grain boundary of a copper bi-crystal after the
deformation. This particle was of circular shape before the deformation, and in the figure
one can see a result of the two half-spheres relative motion.

(a) copper GB (Miura et al., 2000) (b) Zircaloy-4 (Fregonese, 1997)

Figure II.2 : (a) - Experimental evidence of grain boundary sliding; (b) - fracture surface
of Zircaloy-4 in iodine environment (Fregonese, 1997)

Grain boundary fracture, stress corrosion cracking(SCC) of Zircaloy
A bibliographical study on the subject of damage of Zircaloy cladding, and the methods

to model this damage, was done in (Diard, 2001). The present work in based on the
conclusions of this bibliography. We will repeat here the most important facts, necessary
for the understanding of the model choice.

1. Iodine and Cesium were found in cracked claddings. They were also found necessary
for the fracture. Review on the subject can be found in (Cox, 1990). Recent review
on iodine chemistry for the cracking of Zircaloy reactor cladding can be found in
(Sidky, 1998). Stress corrosion cracking by iodine or metal vapour embrittlement by
cesium/cadmium vapours is believed to happen(Cox et al., ).

2. There is an oxide layer inside the Zircaloy tube, which protects Zircaloy from the stress
corrosion. But failure occurs at 0.5 % strain. This is the reason why it is not taken into
account in the present study.

3. Iodine influences the fracture process as a gas, even if rigid compounds of iodine and
Zircaloy can appear, due to chemical reactions.

4. Typical rupture surface of Zircaloy in iodine environment represent two zones :
intergranular and transgranular. This basic result was obtained experimentally by
(Fregonese, 1997) for instance, as shown in fig. II.2. Depending on the loading
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conditions, either intergranular fracture happens first, and then transgranular, or the
other way round –see fig. II.4–. (i ) for (Fregonese, 1997),(Farina et al., 2003),(Kubo
et al., 1985), the tests are performed under prescribed strain rate, in an aggressive
environment. As a consequence, the first stage of cracking happens for relatively small
stress levels, without plastic strain, and it is intergranular. As the crack goes on, the
effective cross section of the specimen decreases, and the stress level goes up. After some
critical stress (or plastic strain) value, the fracture type changes into transgranular. (ii )
On the other hand, in (Knorr and Pelloux, 1982), the experiment was made on DCB
(double cantilever beam) specimen, which was first loaded (by inserting a wedge into
the machined notch) and then put into aggressive atmosphere. In that case, maximal
loading takes place at the beginning of the test. This fact produces transgranular
fracture as a first stage, then intergranular failure, followed by a crack arrest. (iii )
Fracture can be purely transgranular if the load is high and permanent (Woo Seog Ryu
et al., 1988), or in the case of single crystal (Haddad and Dorado, 1994). (iv ) Fracture
also can be purely intergranular, if the specimen is first kept in iodine environment: a
one-millimeter rod was kept for 40 hours, and then loaded (Duffo and Farina, 2005).

All these experimental facts are in accordance with the schematic process proposed
in (Mori et al., 2005) for Copper –see figII.4-c –.

5. Intergranular. Number and depth of intergranular cracks increase with the deformation.
It was observed in imposed strain test on Zircaloy-2 in iodine environment by (Kubo
et al., 1985) –see fig. II.3.a–. The conditions were: constant strain rate 4.4 · 10−5s−1,
temperature 350�, iodine concentration 1.3 · 103 Pa. Stress–strain tension curves for
Zircaloy-4 without iodine at 350�under different strain rates are presented in fig. II.8-
a.

6. Intergranular. In a tension test for Zirconium Z1 in Argon (i.e. inert atmosphere) at
350�(imposed strain rate between 3.3 ·10−4s−1 and 5.0 ·10−6s−1), grain boundary slip
was observed (Jacques, 1994) – see fig. II.3-b –.

Creep fracture of alpha-iron tin alloy at 973 K is reported to happen by grain boundary
sliding and fracture (Watanabe, 1983). One can note intergranular character of both
creep fracture and stress corrosion cracking of Zircaloy – see fig.II.7–.

7. Intergranular. A texture effect exists. It is not introduced in our study, nevertheless
there is no difficulty to account for it in the framework of the proposed methodology.

8. Transgranular

It was shown that transgranular cracks initiate near the grain boundary –see Fig.II.5.a–
. The upper grain (1), which is oriented favorably for prismatic slip to occur, shows
large plastic deformation, while grain (2) which is oriented unfavorably does not. The
initiation sites of the transgranular cracks generally coincide with the intersections of
coarse slip bands and the grain boundary. Cracks always extend into the neighboring
grain, which is oriented unfavorably for prismatic slip operation. The scheme of
a transgranular crack initiation, proposed in (Kubo et al., 1985), is presented in
Fig. II.6.b–. As reported in (Kubo et al., 1985), transgranular microcracks initiated
preferentially at intersections of coarse slip bands and grain boundaries. They extended
along basal planes into grains which are oriented less favorably for prismatic slip. Once
initiated, the crack propagates in the basal plane {0001} –see Fig.II.5.b–.

More detailed studies (Fregonese, 1997)(Farina et al., 2003) show, that the transgranular
crack propagation is rather the result of a competition between quasi-cleavage (brittle
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fracture) and fluting in the prismatic planes (ductile fracture). It can be seen in Fig.II.6-
a. In the present study, only cleavage in basal planes will be considered.

9. Explanations of SCC mechanism. (Jones, 1985) Transgranular SCC is explained as
divacancies appearance and redistribution, followed by cleavage.

10. Explanations of SCC mechanism. (Flanagan et al., 1991) Transgranular SCC cracking
in FCC is studied. Dog-leg crack is explained. We do not study it.

11. Explanations of SCC mechanism. (Lynch, 1988)(Lynch, 1989) Transgranular and
intergranular SCC are not distinguished. TEM observations for different materials
show small dimples on fracture surface under SCC conditions, while relatively large,
deep dimples with small dimples within and between then appear for ductile fracture.
Example for Al-Zn-Mg bicrystals is shown in fig. II.10-a. An adsorbtion-induced
localized slip mechanism of fracture is then proposed. It is illustrated in fig.II.10-b,c.

12. Explanations of SCC mechanism. (Magnin et al., 1990) The model was initially
proposed to explain SCC of 316 steel in MgCl2 –see fig. II.11-a–.

(a) (b)

Figure II.3 : (a) - Experimental results of crack number and crack length increase with
plastic deformation, Zircaloy-2 in iodine (Kubo et al., 1985); (b) - Experimental evidence of
grain boundary sliding in Zirconium (Jacques, 1994)
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(a) (b)

(c)

Figure II.4 : Fracture surface of Zircaloy-4 in aggressive environment : (a) - Intergranular,
transgranular, ductile (Farina et al., 2003), (b) - Transgranular, intergranular, ductile (Knorr
and Pelloux, 1982), (c) - Schematic view of influence of applied stress level on cracking
morphology for semi-hard DHP-Cu (Mori et al., 2005)



12 Chapter II. Intergranular model

(a) (b)

Figure II.5 : TG crack photos (Kubo et al., 1985) : (a) - Crack initiation, (b)- Crack
propagation

(a) (b)

Figure II.6 : (a) - Transgranular zone fragment, F - Fluting region, PB - Basal cleavage
planes (Farina et al., 2003), (b) - TG crack initiation scheme (Kubo et al., 1985)



13

(a) (b)

Figure II.7 : (a) - Intergranular stress corrosion cracking, Zircaloy-2 in iodine (Kubo et al.,
1985); (b) - Intergranular creep fracture in alpha iron-tin alloy at 973 K (Watanabe, 1983)

(a) (b)

Figure II.8 : (a) - Tension curves of Zircaloy-4 (Geyer, 1999); (b) - Scheme of vacancies
redistribution at the crack tip (Jones, 1985)
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(a) (b)

Figure II.9 : Mechanism of transgranular crack propagation (a), and corresponding example
of Cu-Al alloy fracture surface (b) –(Flanagan et al., 1991)–

(a) (b)

(c)

Figure II.10 : (a) - Intercrystalline fracture surfaces produced in Al-Zn-Mg bicrystals
(Lynch, 1988); (b) - Scheme of ductile cracking, (c) - Scheme of SCC
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(a) (b)

(c)

Figure II.11 : (a) - Discontinuous cleavage for 316 steel in MgCl2 solution (Magnin et al.,
1990); (b)(c) - Schema
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Intergranular (interface) modeling
A lot of papers dealing with intergranular damage can be found in the literature. They can
be divided into the following groups :

1. Asymptotic analysis of the thin layer between two materials. This approach is applied in
(Suquet, 1987)(Michel et al., 1994) (Lebon et al., 2004) (Mishuris and Ochsner, 2004).
These authors study a plane strain state of two infinite elastic bodies, separated by a
thin elasto-visco-plastic layer (of depth δ) –see fig. II.12–.

The stress-strain state of this structure is studied by an asymptotic method. The basic
idea of this method is a presentation of the solution as a series of a small parameter.
(layer width in our case). Then some first coefficients of the series have to be found.
Usually it is more simple, then to find a whole solution. Keeping only the members of
δ1, it was found that :

• The stress can be considered as constant in the layer

• The stress is linearly connected with a displacement jump. The coefficient is
defined by the layer material properties. In particular, for elastic-plastic Hencky
type material, the following equations were obtained (Mishuris and Ochsner, 2004):

[Ux] =
2δ
µ̃
σxy [Uy] =

2δ
λ̃+ 2µ̃

σy

Here µ̃ and λ̃ - generalized Lamé coefficients. A similar type of equations was
obtained for elasto-viscous material in (Lebon et al., 2004) :

σ∼ · n =
KL

δ
[U ] +

Kθ

δ
[U̇ ]

KL =

(
µ 0
0 λ+ 2µ

)
Kθ =

(
µθµ 0
0 λθλ + 2µθµ

)

where θλ and θµ are characteristic times.

A generalized material model is used by (Suquet, 1987) as

σ∼ = kδ|ε∼|p−2ε∼ = kδϕ
′(ε∼)

kδ = Kδα ϕ(e∼) =
|e∼|p
p

This author demonstrates that the solution (σ∼
δ,uδ) converges toward (σ∼

0,u0), with

σ∼
0 = a∼∼

: ε∼(u0) in Ω+ ∪ Ω−

∇ · σ∼0 + f = 0 in Ω

σ∼
0 · n = 0 on S if α > p− 1

σ∼
0 · n = Kj′([[u0]]) on S if α = p− 1

Here the potential j(λ) is defined on S as :

j(λ) = ϕ({λ⊗ n})

j′(λ) =
1
2
|{λ⊗ n}|p−2(λ+ λ · nn)
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Figure II.12 : Schema of thin layer between two infinite half-spaces. Illustration of the
asymptotic approach (Suquet, 1987)

2. Zero-width grain boundary interface. In (Onck and van der Giessen, 1997), the grain
boundary is seen as a fictitious layer of linear elastic springs against opening and sliding:

σ̇n = kn(δ̇ − δ̇c)

τ̇n = ks(γ̇ − γ̇s)

Here kn and ks - are the elastic stiffnesses of the normal and shearing spring layers,
respectively. δc is an average grain separation due to cavity growth.

δc =
V

πb2
δ̇c =

V̇

πb2
− 2V
πb2

ḃ

b

Grain boundary sliding can be seen as a viscous process :

γ̇s = w
τ

η

with w - grain boundary width, and η - viscosity coefficient. Sliding was neglected in
(Onck and van der Giessen, 1997).

In (Needleman, 1987), a nonlinear cohesive law is proposed. The idea comes from
classical fracture mechanics works due to Dugdale and Barenblatt. Let T be a force
per unit surface on the interface, with

Tn = n · T
Tt = t · T
Tb = b · T

Let A and B be two points initially on the opposite sides of the interface, and

un = n · ∆uAB

ut = t · ∆uAB

ub = b · ∆uAB

The connection between T and uAB are then specified using a potential Φ:

Tn =
∂φ

∂un
Tt =

∂φ

∂ut
Tb =

∂φ

∂ub
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φ(un ut ub) =
27
4
σmaxδ

{
1
2

(un

δ

)2
[
1 − 4

3

(un

δ

)
+

1
2

(un

δ

)2
]

+
1
2
α
(ut

δ

)2 [
1 − un

δ

]2

+
1
2
α
(ub

δ

)2 [
1 − un

δ

]2
}

3. Viscous regularization.

As pointed out in (Chaboche et al., 2001), a problem of a jump in the solution can occur
while using a rate independent cohesion law. Let us consider a simple 2D example
with one interface element and one elastic plate element. Let us consider the total
displacement control at the position of BB′. The total displacement U is a sum of the
interface separation u and the elastic elongation of a plate element :

U = u+
L

U0
T

Here T denotes the applied stress, E0 – Young’s modulus, L the length of the elastic
part. The behavior of the interface is described as

T = E · F (u/δ) · u/δ
If the stiffness k = E0/L is high enough, one can expect the solution jump from ua to
ub –see fig. II.13–.

One of the possibilities to avoid this problem is to use a rate-dependent interface model.
This introduces a so-called viscous regularization, which is used in different branches
of mathematical analysis –see for instance (Attouch, 1996) for a review-. In particular,
a creep damage equation was used in (Chaboche et al., 1997) to simulate the interface
behavior. The corresponding interface model can be written as follows:

Ṫ = E(1 − d)
u

δ

ḋ =
1
τ0

(
T

A

)r

(1 − d)−s

Figure II.13 : Illustration for the jump in the solution (Chaboche et al., 2001)

The choice made in the present study, consists in accepting the continuous formalism of
damage mechanics (Lemaitre, 1996), written in terms of stress and strain, keeping in mind
that the grain boundary is a highly anisotropic area. It will be modeled in a finite element
(FE) mesh by classical elements, with a specific local behavior.
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II.1 Damage, Opening and Sliding model

1. Model formulation. The grain boundary (GB) is supposed to be a regular surface.
The constitutive equations of the GB will be expressed in a local framework, with the
axis x1 normal to the plane, and axes x2 and x3 in the plane of the GB. The constitutive
equations should take into account the anisotropy, namely, the GB material should resist to
a normal stress, applied in 1 direction, but not in 2 or 3. In the initial implementation, we
considered that the material must be very stiff in the normal direction, so that the grains
remain pasted in absence of damage. Following the same idea, the moduli must be low in
the transverse direction, so that the boundaries do not carry any load and do not perturb
the grain equilibrium. As well, GB should accept in-plane shear (12 and 13), but not the 23
shear. These ideas are actually consistent with the ”springs” of (Onck and van der Giessen,
1997). Such an anisotropy leads to the special elastic tensor form:

Λ∼∼
= diag(E, η, η, µ, η, µ) (II.1)

where the terms η remain small. Their effect will be neglected in the following, to let the GB
just follow the grain behavior for 22, 33 and 23 stress components. Having this anisotropy
in mind, the scheme of damage mechanics must be adapted. Introducing only one variable
D figuring scalar damage, the classical approach (Lemaitre, 1985)(Lemaitre, 1996) proposes
a modification of the elasticity related part of the free energy, so that:

ρψe =
1
2
(1 −D)ε∼e : Λ∼∼

: ε∼e (II.2)

The variable Y energetically conjugated with D is obtained by taking the opposite of the
partial derivative of ρψe with respect to D. Using the previously defined elastic tensor, and
preserving only the three predominant terms, it comes:

Y = −∂ρψe

∂D
=

1
2
ε∼e : Λ∼∼

: ε∼e =
1

2(1 −D)2
σ∼ : Λ∼∼

−1 : σ∼

=
1

2(1 −D)2

(
σ2

11

E
+
σ2

12 + σ2
13

µ

)
=

1
2(1 −D)2

(
σ2

n

E
+
τ2

µ

)
As expected, GB opening δ and GB sliding γ will respectively correspond to σn and τ , and
D will correspond to Y . In the following, a new variable σd will be considered instead of Y :

σd =
√
σ2

n + βτ2 = (1 −D)
√

2EY (II.3)

In this variable, which is derived from Y , the coefficient β characterizes the ratio E/µ. For
a zero value of β, damage will be driven by the normal stress only.

The evolution equations for D, δ and γ are defined in the framework of a viscoplastic
multipotential approach, since all the phenomena are rate-dependent. To get correct
constitutive equations, respecting the second principle of thermodynamics, it is enough to
chose convex potentials for all three variables. These potentials should be dependent on the
associated stresses. Norton-like viscous potentials with a threshold are chosen. The potential
driving the normal flow depends on the positive part of σn, and shear depends on the absolute
value of τ :

Fn =
Kn

nn + 1

〈
fn

Kn

〉nn+1

with: fn =
< σn >

1 −D
−Rn (II.4)

Ft =
Kt

nt + 1

〈
ft

Kt

〉nt+1

with: ft =
|τ |

1 −D
−Rt (II.5)

Fd =
Kd

nd + 1

〈
fd

Kd

〉nd+1

with: fd = Y −Rd (II.6)
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Derivation with respect to the conjugate stresses will immediately give us the flow rules:

ε̇∼n
=
∂Fn

∂σ∼
=

〈
< σn > /(1 −D) −Rn

Kn

〉nn

(1 −D)−1n ⊗ n = δ̇N∼ (II.7)

ε̇∼t
=
∂Ft

∂σ∼
=

〈 |τ |/(1 −D) −Rt

Kt

〉nt

(1 −D)−1{n ⊗ t} = γ̇T∼ (II.8)

ḋ =
∂Fd

∂Y
=

〈
Y −Rd

Kd

〉nd

(II.9)

The internal variable d can be seen as equal to damage D. We will suppose, more generally,

ḋ = (1 −D)k−rḊ (II.10)

One can mention, that with Rd ≡ 0, 2nd ≡ r, Kd

√
2E ≡ A, using D instead of d and

σd instead of Y , the equation II.9 becomes the classical Kachanov-Rabotnov law for creep
damage :

Ḋ =
(σd

A

)r
(1 −D)−k (II.11)

In the described model, inelastic flow can start without any damage, provided the
corresponding stress becomes higher than the threshold. Opening and shear are not coupled
as long as no damage exists. On the other hand, either a positive normal stress or a shear
stress can develop damage, and have an influence on the sliding and opening rate.

2. Typical stress-strain response of the model. A few results for the stress-strain
response of DOS-model are presented here, in order to illustrate the capabilities of the model.

First, typical results of the tension and shear stress components contribution are shown.
Strain was imposed, with a few unloadings. In fig. II.14, the loading is an axial strain
perpendicular to the grain boundary. As expected, the stress level decreases as damage
increases. One can also see from the three unloadings, that the elastic modulus decreases
during the tension. In fig. II.15, the previous result is compared with a combined tension-
shear loading case. One can see, that the addition of shear makes damage accumulation
faster. This is normal, since damage in the model is driven by σd , which is a combination of
normal and shear stress. Fig. II.16 demonstrates that the roles of σ12 and σ13 in the model
are equivalent. One has now a pure shear test, the first period being with σ12 shear, and the
second one with σ13 shear. The memory of the first loading period is kept during the second
period.

3. Evaluation of the energy dissipation. In order to check the relative importance
of opening, sliding and damage contribution into the failure mechanism, this section shows
the evolution of the energy dissipated by opening during a tension perpendicular to the grain
boundary. The energy is computed as

∫
(σnδ̇ + τ γ̇)dt .

Figure II.17 shows the response for a set of material parameters (A = 100000.; r = 4.; k
= 3; Rn = 900; Kn = 200; n = 8) which suppress damage. The energy starts growing when
the applied stress reaches Rn . The stress reaches the higher level then Rn = 900, because
of the viscosity effect. With the parameter set used in the computations of Chapter VII (A
= 1000.; r = 4.; k = 3; Rn = 900; Kn = 200; n = 8) damage starts early, so that the energy
associated with opening remains low – see Fig.II.18 – . On the other hand, for the alternative
set (A = 5000.; r = 2.; k = 3; Rn = 10; Kn = 750; n = 8) the energy starts growing at
low values of damage –see fig.II.19– The model is then quite sensitive to the physics of the
deformation phenomenon. It could be then calibrated by means of experimental data dealing
with interface energy.
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Figure II.14 : DOS model response - tension only
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Figure II.15 : DOS model response - tension and shear
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is absent
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II.2 A new strategy for grain boundary modeling

For all the approaches listed in the preceding section, the authors have considered the grain
boundary as an interface with distinct material properties. Giving a certain thickness to
the grain boundary, as made in (Diard, 2001), offers a possibility for introducing specific
mechanisms. Nevertheless, the question of the mechanical properties –even the elastic ones–
remains an open problem. A series of difficulties can arise if quantitative data are to be
produced by the model. This is why the present work wants to explore a new way of modeling
this critical area. The grain boundary will be considered as two layers, one in each grain.
Figure II.20 illustrates the important difference originating from this concept. Each grain has
now its core region, and its grain boundary region. This idea can be found in (Evers et al.,
2002) – see fig.II.21 – . In the work of (Evers et al., 2002), the idea is used for a polycrystal
type of model. Intoducing of the idea into the direct finite element modelling with real-shaped
grains seem to be the priority of the present work. This is a first step toward a more complete
modeling, in which the grain could be represented by an ”onion-type” mesh, allowing it to
present a series of disturbed areas near the boundaries. Having such long and ill-conditioned
elements can of course be a problem. Nevertheless, the problem will be reduced when finer
and finer meshes are possible. On the other hand, from a numerical point of view, the present
strategy offers the opportunity to have several Gauss points not far from the critical area,
which is not the case for a cohesive zone model. In the grain boundary element, the behavior is
obtained by superposition of several deformation mechanisms. Each half grain boundary has
the attributes of the grain it belongs to, plus the DOS model. Two important consequences
of this choice will be that :

• non-damaged grain boundaries will naturally give the same results as the classical
approach with ideal grain interfaces;

• since the grains are not ”equal” with respect to damage, the model will be able to
make a difference between damage developing on the one or the other side of the grain
boundary.
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Figure II.20 : Two visions of the grain boundary : (a) - the grain boundary is a layer of
special properties between two grains ; (b) - each grain has its core and its grain boundary
region

Figure II.21 : Scheme with grain core and bicrystals at grain boundary (Evers et al., 2002)
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Since large deformations are present, at least locally, during the failure of the aggregate,
it is now necessary to revisit the numerical strategies used in our code. It is then well known
that, according to the formalism, curious behaviors can be obtained, as shown for instance in
a recent study by (Semenov et al., 2003). A comprehensive description is shown, starting from
elasticity and J2 plasticity. An implicit scheme was successfully applied to this last case; the
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algorithm is detailed here as well as some computational examples. A crystal plasticity model
is then considered. The application of the implicit scheme is detailed. Typical computation
results are shown. The final purpose is to apply the chosen formalism –the implicit Euler
scheme– to the single crystal model including DOS capabilities.

Notations used under large strains are first defined.

III.1 Notations

- Identity tensor of 2nd order : I∼ such that Iij = δij
- Identity tensor of 4th order : I∼∼

such that Iijkl = 1
2(δikδjl + δilδjk)

Kinematics :
- Initial coordinates : X
- Actual coordinates : x
- Deformation gradient tensor : F∼ = ∂x

∂X

- Inversed tensor, transposed tensor, inversed and transposed tensor : F∼
−1 F∼

T F∼
−T

- Volume change factor : J = detF∼ = ρo/ρ
- Right Cauchy–Green tensor : C∼ = F∼

TF∼ (with dx1 · dx2 = dX1 · C∼ · dX2)
- Left Cauchy–Green tensor : b∼ = F∼F∼

T

- Velocity gradient tensor : L∼ = grad
∼

v = Ḟ∼F∼
−1 (with dẋ = L∼dx = Ḟ∼F∼

−1dx = Ḟ∼dX)

- Strain rate tensor : D∼ = {L∼
} (with d

dt(dx1.dx2) = 2dx1.D∼ .dx2 = dX1.Ċ∼ .dX2)
- Spin tensor : Ω∼ = }L∼

{

- Polar decomposition : F∼ = R∼ U∼ (R∼ - rotation, U∼ - stretch tensor; one has C∼ = U∼
TU∼ )

Strains :
- Green–Lagrange : E∼ = 1

2(C∼ − I∼)
- Logarithmic : E∼ o = log U∼
- In the case of plasticity, the multiplicative decomposition of the deformation gradient :

F∼ = F∼
eF∼

p

The derivative of the deformation gradient tensor can be represented as follows :

Ḟ∼=Ḟ∼
eF∼

p + F∼
eḞ∼

p

L∼=Ḟ∼F∼
−1 = Ḟ∼

eF∼
pF∼

p−1F∼
e−1 + F∼

eḞ∼
pF∼

p−1F∼
e−1

L∼=Ḟ∼
eF∼

e−1 + F∼
eḞ∼

pF∼
p−1F∼

e−1

- one can keep the following definition for velocity gradient in plasticity : L∼
p = Ḟ∼

pF∼
p−1

Stresses :
- Stress tensor of Cauchy : σ∼
- Stress tensor of Piola–Kirchhoff PK2 : S∼ = JF∼

−1σ∼F∼
−T

- Stress tensor of Piola–Kirchhoff PK1 : Π∼ = J σ∼F∼
−T

- Stress tensor of Hencky : T∼ = JR∼
Tσ∼R∼

The power by mass unit can be written as

1
ρ
σ∼ : D∼ =

1
ρo

S∼ : Ė∼ =
1
ρo

Π∼ : Ḟ∼ =
1
ρ
T∼ : Ėo∼

Stress rates :
- Jauman rate: T∼

J = Ṫ∼ + T∼Ω∼ − Ω∼T∼
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- Truesdell rate: T∼
∇ = Ṫ∼ − L∼T∼ − T∼L∼

T + T∼TrL∼
The matrices [ML] et [MR] are introduced, to perform left and right multiplication, so that:

{
a∼.b∼

}
=

[
ML(a∼)

]
.
{
b∼
}

(III.1){
b∼.a∼

}
=

[
MR(a∼)

]
.
{
b∼
}

(III.2)

Here a∼ and b∼ – the arbitrary 2nd order tensors. The matrices [ML] and [MR] are linear with
respect to tensor a∼. The matrix [ML] (resp. [ML]) is such that the result of the multiplication
by the tensor b∼ in Voigt notation, provides the tensor a∼.b∼ (resp. b∼.a∼) in Voigt notation. One
has the following relations:

(1)
[
ML(a∼

T )
]T

=
[
ML(a∼)

]
(III.3)

(2)
[
MR(a∼

T )
]T

=
[
MR(a∼)

]
(III.4)

(3) [T ]T = [T ] (III.5)

(4) if a∼ = a∼
T then

[
ML(a∼)

]T =
[
ML(a∼)

]
(III.6)

(5) if a∼ = a∼
T then

[
MR(a∼)

]T =
[
MR(a∼)

]
(III.7)

Virtual power principle : In the absolute (Galilean) space at any time for any system,
the virtual power of all the loads (internal and external) is equal to zero for any virtual
displacement.

It can be written in different terms and for different configurations of the deformed body,
in particular:

−
∫

Ω
σ∼ : D∼ dΩ +

∫
Ω

f · VdΩ +
∫

∂Ω
T · VdS = 0

−
∫

Ω0

Π∼ : Ḟ∼dΩ0 +
∫

Ω0

f0 · VdΩ0 +
∫

∂Ω0

T0 · VdS0 = 0

−
∫

Ω0

S∼ : Ė∼dΩ0 +
∫

Ω0

f0 · VdΩ0 +
∫

∂Ω0

T0 · VdS0 = 0

−
∫

Ωt

S∼
t+∆t
t : ˙E∼

t+∆t
t dΩt +

∫
Ωt

f t · VdΩt +
∫

∂Ωt

Tt · VdSt = 0

Depending on the reference used for the material behavior, the correspondent finite
element formulation differs (Bathe, 1996). The formulation is called total lagrangian, if the
initial reference is used. On the other hand, if the reference at the beginning of the current
intergration step is used, the formulation is called updated lagrangian.
First principle of thermodynamics or the law of energy conservation.

Ė + K̇ = P e +Q

Here E - internal energy, K - kinetic energy, Q - rate of incoming heat, P e - power of external
forces (surface or volumetric).

K =
1
2

∫
Ω

V · VdΩ

E =
∫

Ω
ρedΩ =

∫
Ω0

ρ0edΩ0

Q =
∫

Ω
ρrdΩ −

∫
∂Ω

q · ndS
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Finally, using the result of the virtual power principle, one has :

ρė = σ∼ : D∼ + ρr −∇ · q

Second principle of thermodynamics : the rate of change of the internal entropy is not less
than the rate of entropy supplied by external heat sources.

Ṡ ≥
∫
ρr

T
dΩ −

∫ q · n
T

dS

The local form of this Clausius-Duhem inequality is

ρṡ ≥ r

T
− 1
T
∇ · q

Combination of the first and second laws of thermodynamics gives :

−ρ(ė− T ṡ) − q
T

· ∇T + σ∼ : D∼ ≥ 0

Let us introduce the free energy, by Ψ = e− Ts . The inequality can be rewritten as :

−ρ(Ψ̇ + sṪ ) + σ∼ : D∼ − q
T

· ∇T ≥ 0

The following combination is called internal dissipation :

Φ = σ∼ : D∼ − ρ(Ψ̇ + sṪ )

Let us suppose now, Ψ = Ψ(E∼
∗
e;αi;T ) with E∼

∗
e - any elastic strain measure, αi - internal

variables. It comes,

σ∼ : D∼ − ρ
∂Ψ
∂E∼

∗ Ė∼
∗ − ρ(s+

∂Ψ
∂T

)Ṫ − ρ
∂Ψ
∂αi

α̇i −
q
T

· ∇T ≥ 0

Let us see two particular choices of strain measure : Green-Lagrange strain (E∼ = 1
2(F∼

TF∼−
I∼) and logarithmic Hencky strain (H∼ = lnU∼ ).

1. Green-Lagrange strain. The development is rather well-known – see for instance (Besson
et al., 2001) –

Let us introduce S∼
e = JF∼

−1
e σ∼F∼

−T
e . Let us also suppose the multiplicative strain

decomposition F∼ = F∼
eF∼

p . The stress energy can be written as :

1
ρ
σ∼ : D∼ =

1
ρ0

(S∼
e : Ė∼ e + (F∼

T
e F∼eS∼

e) : (Ḟ∼pF∼
−1
p ))

Let us introduce the free energy as Ψ = Ψ(E∼ e;αi;T ) . The Clausius-Duhem inequality
can be rewritten as :

ρ(
S∼

e

ρ0
− ∂Ψ
∂E∼ e

) : Ė∼ e − ρ(s+
∂Ψ
∂T

)Ṫ −−ρ ∂Ψ
∂αi

α̇i + ρ(F∼
T
e F∼e

S∼
e

ρ0
) : (Ḟ∼pF∼

−1
p ) − q

T
· ∇T ≥ 0

It follows :
S∼

e

ρ0
− ∂Ψ
∂E∼ e

= 0

s+
∂Ψ
∂T

= 0
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Σ∼ : (Ḟ∼pF∼
−1
p ) +Xi · α̇i ≥ 0

Here Σ∼ = 1
iρ0

(F∼
T
e F∼eS∼

e) - is the Mandel stress tensor. The last inequality is
automatically met, if there exists a potential Ω(Σ∼ ;Xi), such that

Ḟ∼pF∼
−1
p =

∂Ω
∂Σ∼

α̇i =
∂Ω
∂Xi

2. Logarithmic strain. One can suppose that

Ḣ∼ = P∼∼
: Ḟ∼ T∼ = Π∼ : P∼∼

−1

Under such a condition, the stress energy can be rewritten :

σ∼ : D∼ = T∼ : Ḣ∼

One can also suppose that

H∼
e =

1
2
lnC∼ − H∼

p

Ψ = Ψ(H∼
e;αi;T )

Under these assumptions one can proceed in a similar manner as in the Green-Lagrange
strain case, in order to obtain a thermodynamically consistent fully anisotropic elasto-
plasticity theory.

Two points should be mentioned :

• The logarithmic decomposition1 is – generally speaking – not the same, as the
multiplicative decomposition F∼ = F∼

eF∼
p . Nevertheless, for the special case

of coaxial total and plastic deformations (i.e. R∼
e = 0; such a model is seen

below, in section III.3) the multiplicative and logarithmic additive decompositions
are equivalent. In this sense logarithmic ansatz can be seen as ”close” to the
multiplicative one.

• The representation of the stress T∼ , conjugate to the logarithmic strain measure, is
quite complex. But it is already done in (Hoger, 1987) or (Miehe and Lambrecht,
2001).

The logarithmic framework was successfully used for computations in (Papadopoulos
and Lu, 1998)(Papadopoulos and Lu, 2001)(Miehe et al., 2002) The results have been
found close to those obtained by the use of the multiplicative ansatz.

1let us also use the term ”ansatz” instead – it can be found in (Miehe et al., 2002) for instance – Strictly
speaking, ”ansatz” is more general, then ”decomposition”, but it is more compact.
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III.2 Elasticity

The theory of finite elastic deformations is quite well developed at the moment. There are
a lot of models, even with the condition for each theory to become the classical Hooke’s
law under small strains. Theoretical frameworks will be found in monographs like (Lurie,
1990)(Truesdell, 1972)(Marsden and Hughes, 1983). Computational aspects are discussed for
instance in (Bonet and Wood, 1997) (Belytschko et al., 2000). The purpose of the section
is to check the validity of various implementation, and to tests them into ZéBuLoN. It can
be seen as an exercise, known from the literature, but necessary for understanding the code
possibilities and the way to use them. Note that all the models will use an hyperelastic
formulation. The hypoelastic formulation using Jauman derivative in the corotational frame
was already available in ZéBuLoN.

III.2.1 Models

Three models, rather well known from the literature, were taken: Neo–Hooke, Green–
Lagrange, and Hencky (logarithmic) elasticity. They were chosen as simple, and known
to be convenient for metals (Anand, 1979)(Anand, 1986). Green–Lagrange is classically used
for single crystal, and Hencky is more popular for polycrystals.

• Neo-Hooke compressible law

The following formulations can be found –see for instance (Bonet and Wood,
1997)(Belytschko et al., 2000):

S∼ = µ(I∼− C∼
−1) + λlnJC∼

−1

σ∼ =
µ

J (b∼ − I∼) +
λ

J lnJ I∼

Different examples are given in (Simo and Hughes, 1997):

S∼ = µ(I∼− C∼
−1) + λ

J 2 − 1
2

C∼
−1

τ∼ = µ(b∼ − I∼) + λ
J 2 − 1

2
I∼

• Green-Lagrange
S∼ = L∼∼

: E∼

• Logarithmic (Hencky)

σ∼ =
1
J L∼∼

: logV∼

III.2.2 Consistent tangent matrix

As mentioned in (Belytschko et al., 2000), for updated Lagrangian formulation the material
tangent stiffness is nothing but the Truesdell tangent, C∼∼ Tru, connecting Truesdell stress rate
and strain rate tensors:

τ∼
∇ = C∼∼ Tru : D∼

For total Lagrangian formulation, the same role is played by C∼∼ SE ,
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Ṡ∼ = C∼∼ SE : Ė∼

One can mention the relation between them (Belytschko et al., 2000)

C∼∼ Tru =
1
J FimFjnFkpFlqC

SE
mnpq

It is then enough to know just one of them, to easily develop both updated and total
Lagrangian integration schemes.

For the three just mentioned laws the tangent modulus formulae can be found in literature
((Bonet and Wood, 1997)(Simo and Hughes, 1997)). They are as follows:

C∼∼ Tru =
λ

J I∼⊗ I∼ +
2
J (µ− λlnJ )I∼∼

C∼∼ Tru =
λ

J I∼⊗ I∼ +
1
J (2µ+ λ(1 − J 2))I∼∼

C∼∼ SE = L∼∼

C∼∼ Tru =
1
J L∼∼

:
∂lnV∼
∂b∼

:
∂b∼
∂D∼

− M∼∼ L(σ∼) − M∼∼ R(σ∼)

III.2.3 Results

The present model have been implemented as plugins of the ZéBuLoN code. The source code
is self explanatory; it is shown in Appendix B . Force displacement curves of tension test
till 100% for isotropic material (E=200000 MPa, ν = 0.33) are presented in fig. III.1. The
computations can be done in quite a few steps (10 steps, or even 1). Typical convergence was
as follows:

seq: 1 incr: 1 dt:10 t:10
iter: 1 | R |/| Fext |= 2.452e-02 | Fext |=11125.345426
iter: 2 | R |/| Fext |= 3.512e-06 | Fext |=11273.790976
iter: 3 | R |/| Fext |= 7.494e-14 | Fext |=11273.768911

The ratio of global residual to external loading ( | R |/| Fext |) is seen to converge to zero
with a quadratic rate of convergence2.

III.3 J2 plasticity

The theories of elasto-(visco)-plasticity in finite strains are still being in discussion, as seen
for example in (Idesman, 2003)(Nedjar, 2002a)(Nedjar, 2002b)(Xiao et al., 2000). On the
other hand, effective numerical algorithms for some particular theories are already available
since (Weber and Anand, 1990),(Moran et al., 1990) and (Eterovic and Bathe, 1990). The
purpose of this section is –just as in the previous exercise with elasticity– to implement up-to-
date solution methods in large strain elasto-plastic modelling. For that purpose, a particular
model of J2-plasticity and the appropriate numerical approach were taken from (Weber and
Anand, 1990) and implemented into finite element code ZéBuLoN. A series of numerical tests,
taken from the literature, are performed to show the formulation effectiveness.

2Variable xi is said to have convergence of order p to the limit x , if there is c, 0<c<1, such as

||xi+1 − x|| ≤ c||xk − x||p k = 0, 1, ..i

If p = 1, convergence is linear, for p = 2 – quadratic
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Figure III.1 : Elastic tension test. Force-elongation curves.

III.3.1 Model

The multiplicative decomposition of strain gradient is used,

F∼ = F∼eF∼p

For elastic part, the elastic strain is calculated

F∼e = R∼ eU∼ e

E∼ e = lnU∼ e

The elastic strain is connected to the energetically conjugated stress T∼ by Hook’s law:

T∼ = L∼∼
: E∼ e

T∼ = JR∼
Tσ∼R∼

Once the yield criterion
f(T∼ ) = J (T∼ ) −R(p)

is satisfied, the plastic part appears

L∼p = Ḟ∼pF∼
−1
p

Only the symmetric part is preserved, which is as follows :

D∼ p = ṗN∼

N∼ =
3
2
devT∼
σ

=
∂J
∂T∼

J 2 =
3
2
devT∼ : devT∼
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III.3.2 Stress update algorithm

According to the expression of Ḟ∼p
= L∼pF∼p, the result of the integration is

F∼p = exp(∆tL∼p)F∼p(t)

We state :
F∼ tr = F∼F∼

−1
p (t)

The elastic part of gradient transformation is then :

F∼e = F∼F∼
−1
p = F∼ trexp(−∆tD∼ p)

The polar decomposition of F∼ tr gives :

F∼ tr = R∼ trU∼ tr

On the other hand,
F∼ tr = F∼eexp(∆tD∼ p) = R∼ eU∼ eexp(∆tD∼ p)

The comparison of the last two equations provides then

R∼ e = R∼ tr

and
U∼ tr = U∼ eexp(∆tD∼ p)

Taking the logarithm from both sides, one gets

E∼ tr = E∼ e + ∆tD∼ p

or the following equivalent expression:

E∼ tr = E∼ e + ∆pN∼

Such a formulation can be found for instance in (Weber and Anand, 1990). The originality
of our approach is that we use a unique iterative process to solve the system formed by the
two nonlinear equations, the unknowns of which are E∼ e and ∆p. A Newton method is used,
so the Jacobian matrix has to be calculated. The residuals are:

Fe = E∼ e + ∆pN∼ − E∼ tr

Fp = J (σ∼) −R(p)

Jacobian is as follows:

∂Fe

∂∆E∼ e
= I∼∼

+ ∆p
∂N∼
∂∆E∼ e

∂Fe

∂∆p
= N∼

∂Fp

∂∆E∼ e
= N∼ : L∼∼

∂Fp

∂∆p
= −∂R(p)

∂∆p

Here
∂N∼
∂∆E∼ e

=
3
2σ

J∼∼
: L∼∼

− 1
σ
N∼ ⊗ N∼ : L∼∼
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III.3.3 Consistent tangent matrix

As for the elastic case, the Truesdell elastoplastic modulus should be found:

σ∼
∇ = C∼∼

: D∼

One can note, that
J σ∼∇ = τ̇∼ − L∼ · τ∼ − τ∼ · L∼T

τ̇∼ =
∂R∼ T∼R∼

T

∂t
= Ṙ∼ R∼

T τ∼ + τ∼R∼ Ṙ∼
T + R∼ Ṫ∼R∼

T

J σ∼∇ = R∼ Ṫ∼R∼
T − (L∼ − Ṙ∼ R∼

T ) · τ∼ − τ∼ · (L∼T − R∼ Ṙ∼
T )

Let us suppose that3

D∼ ≈ L∼ − Ṙ∼ R∼
T

If so,

σ∇ =
1
J R∼ Ṫ∼R∼

T − D∼ · σ∼ − σ∼ · D∼
It is enough now to find

Ṫ∼ = Ĉ∼∼
: D̄∼

D̄∼ = R∼
TD∼ R∼

Ṫ∼ = L∼∼
: Ė∼ e = L∼∼

:
∂Ė∼ e

∂Ė∼ tr

:
∂Ė∼ tr

∂D̄∼
: D̄∼

Easy to see, that
D̄∼ = {∆U∼ trU∼

−1
tr

}

On the other hand,
E∼ tr = logU∼ tr

Let us suppose, that
∂∆logU∼ tr

∂∆U∼ trU∼
−1
tr

≈ I∼∼

Finally,

σ∇ =

(
1
J φ

R∼
fw

[
L∼∼

:
(
∂Fe

∂∆E∼ e

)−1
]
− M∼∼ L(σ∼) − M∼∼ R(σ∼)

)
: D∼

III.3.4 Preparation for single crystal

Single crystal in large deformations is usually treated according to Mandel’s F∼ = F∼eF∼p

decomposition, using the so called isoclinic configuration (Mandel, 1973). This implies
naturally an other type of elasticity, as observed in (Anand and Kothari, 1996)(Miehe, 1996b).
The Green strain measure is introduced

E∼ =
1
2
(U∼

2 − I∼)

Due to exponential integration, one can write:

F∼p = exp(∆tL∼p)F∼p(t)

3It is exactly true for the case R∼ = I∼, but not correct in general. We will, nevertheless, keep this idea, as
it simplifies the formula, and leads to acceptable numerical convergence.
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We state:
F∼ tr = F∼F∼

−1
p (t)

If so,
F∼ tr = F∼eexp(∆tL∼p) ≈ F∼e(I∼ + ∆tL∼p)

Having in mind the type of chosen elastic strain, we construct

F∼
T
trF∼ tr = (I∼ + ∆tL∼p)TF∼

T
e F∼e(I∼ + ∆tL∼p)

First order development gives:

C∼ tr = C∼ e + 2∆t{L∼pC∼ e
}

Or, in terms of Lagrangian strains,

E∼ tr = E∼ e + ∆t{L∼pC∼ e
}

Note that, with the same precision, one can write

E∼ tr = E∼ e + ∆t{L∼pC∼ tr
}

The nonlinear system obtained with log measures can be effectively resolved by Newton
method. One can have mathematically the same system here. It is enough to suppose:

L∼pC∼ e = ṗ
3
2σ
devS∼e

σ2 =
3
2
devS∼e : devS∼e

with S∼e = L∼∼
: E∼ e.

The problem of this approach is that it may not preserve plastic incompressibility, i.e.
detF∼p �= 1 after such an algorithm.

Different types of corrections are then proposed by the authors (Anand and Kothari,
1996)(Miehe, 1996b). On the other hand, in (Miehe, 1996a) an exponential map is applied
(which automatically preserve detF∼p = 1).

Here, the correction of (Miehe, 1996b) was implemented on the just explained simple
model. The resulting stress update algorithm is listed below. The name of each item
corresponds to the module in ZéBuLoN code. @Prestep is applied before the iteration
process, @CalcGradF is the section that is called during the Newton iterations, @StrainPart
is computed after the convergence of the Newton method.

1. (@PreStep) Normalize F∼ as
F̂∼ = J −1/3F∼

2. (@PreStep) Compute trial state as

F∼ tr = F̂∼F∼
−1
p (t)

F∼ tr = R∼ trU∼ tr

E∼ tr =
1
2
(U∼

2
tr − I∼)
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3. (@CalcGradF) Calculate the residuals and Jacobian matrix as follows.

{
Fe = E∼ e + ∆pN∼ − E∼ tr

Fp = σ −R(p)
(III.8)

∂Fe

∂∆E∼ e
= I∼∼

+ ∆p
∂N∼
∂∆E∼ e

(III.9)

∂Fe

∂∆p
= N∼ (III.10)

∂Fp

∂∆E∼ e
= N∼ : L∼∼

(III.11)

∂Fp

∂∆p
= −∂R(p)

∂∆p
(III.12)

4. (@CalcGradF) Find new estimation for E∼ e and p variables and restart CalcGradF.

5. (@StrainPart) Find
C∼ e = 2E∼ e + I∼

6. (@StrainPart) Consider, that devC∼ e is good. Correct the trace of C∼ e so that

det(devC∼ e + fI∼) = 1

For that purpose solve the scalar equation

f3 − J2(devC∼ e) · f − (1 − det(devC∼ e)) = 0

7. (@StrainPart) Compute F∼e as
F̂∼e = R∼ trU∼

corr
e

F∼p = F̂∼
−1
e F̂∼

F∼e = F∼F∼
−1
p

8. (@StrainPart) Compute Cauchy stress:

E∼
corr
e =

1
2
(F∼

T
e F∼e − I∼)

T̄∼ = L∼∼
: E∼

corr
e

σ∼ =
1
J F∼eT̄∼F∼

T
e

After such a correction, the following tangent was found convenient for the computations.

σ∇ =

(
1
J
φ
F∼ e

fw

[
L∼∼

:
(
∂Fe

∂∆E∼ e

)−1
]
− M∼∼ L(σ∼) − M∼∼ R(σ∼)

)
: D∼
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E 200000 MPa
ν 0.3
R0 100 MPa
H 200 MPa

Table III.1 : Material parameters for J2 plasticity tension test

III.3.5 Uniaxial tension test

A tension test till 200% for one 3D eight-node finite element is presented here. The material
parameters are shown in tab.III.1.

The resulting stress-strain curve is presented in fig.III.2. This is a typical almost bilinear
response of a elastoplastic model with linear isotropic hardening. On the other hand, the
force-time curve is shown in fig.III.3. A softening behavior is observed, due to geometrical
effect of large strain formalism application. The computation was done with 10 integration
steps, and only two local iterations were necessary for each increment.

It is interesting to note that, for this test, the terms of M∼∼ L(σ∼) and M∼∼ R(σ∼) in material
tangent were of several orders smaller, compared to the rest. They were, so far, not
significant. But, for more complex stress states (as in the billet upsetting example) they
become important.

The volume change factor, J, is quite important for convergence. Forgetting J in material
tangent may lead to poor global convergence even in tension test.

Correction of plastic incompressibility - as in section III.3.4 - is important for the
convergence. Formally the same material tangent gives much worse convergence without
such a correction.
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Figure III.2 : J2 plasticity tension test. Stress strain curve.

III.3.6 Billet upsetting test

This test is a classical severe test for large strain elastoplasticity numerical procedure. It is
used, for instance, in (Taylor and Becker, 1983)(Weber and Anand, 1990).
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Figure III.3 : J2 plasticity tension test. Force curve.

A cylindrical billet of 10 mm radius and 30 mm hight is compressed by 2 rigid planes till
60% of height reduction.

E 200000 MPa
ν 0.3
R0 100 MPa
H 300 MPa

Table III.2 : Material parameters for J2 plasticity billet upsetting test

x

y

z

Figure III.4 : J2 plasticity billet upsetting. FE meshes (mesh1 and mesh2).

Material parameters are presented in table III.2 . Two finite element meshes are shown
in fig III.4 (due to the symmetry, only a quarter of the specimen is meshed)

Von Mises stress maps at 30 and 60% of compression can be seen in fig. III.5,III.6. One
can note the similar deformed shape with those, known from the literature (see fig. III.7,III.8,
III.9).

The computation was done in 35 steps. The convergence is quadratic, as shown by the
following sequence

seq: 1 incr: 34 dt:0.02299 t:0.9989
iter: 1 | R |/| Fext |= 1.370e-01 | Fext |=712992.217769
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Figure III.5 : J2 plasticity billet upsetting - mesh1. Von Mises stress at 30% and 60%
deflection.
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Figure III.6 : J2 plasticity billet upsetting - mesh2 . Von Mises stress at 30% and 60%
deflection.

Figure III.7 : J2 plasticity billet upsetting. Deformed shape from (Kudo and Matsubara,
1979)
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Figure III.8 : J2 plasticity billet upsetting. Deformed shape from (Simo and Hughes, 1997)

Figure III.9 : J2 plasticity billet upsetting. Deformed shape from (Weber and Anand, 1990)

iter: 2 | R |/| Fext |= 5.729e-02 | Fext |=705010.017456
iter: 3 | R |/| Fext |= 1.690e-04 | Fext |=706224.783687
iter: 4 | R |/| Fext |= 2.972e-07 | Fext |=706255.898038
iter: 5 | R |/| Fext |= 1.025e-10 | Fext |=706255.839341
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III.4 Crystal plasticity

III.4.1 Model

The finite strain formalism of the basic crystalline model presented in section I is taken from
(Cailletaud et al., 2003b). A multiplicative decomposition of the strain gradient is used, as

F∼ = F∼eF∼p

For the elastic part, the elastic strain is calculated

C∼ e = F∼
T
e F∼e

E∼ e =
1
2
(C∼ e − I∼)

The second Piola-Kirchhoff stress is obtained

S∼e = JF∼
−1
e σ∼F∼

−T
e

S∼e = L∼∼
: E∼ e

Plastic part is computed as a sum over all active slip systems:

L∼p = Ḟ∼pF∼
−1
p =

∑
γ̇sN∼

0
s

Here N∼
0
s is the tensor which describes the slip system geometry. Index ’0’ means the relaxed

configuration. It is obtained from the slip direction ls and the normal to the slip plane ns:

N∼
0
s = l0s ⊗ n0

s

Is can be also written in current configuration,

ls = F∼e · l0s

ns = F∼
−T
e · n0

s

Slip rate for any system, γ̇s is defined by a Norton-type law, similar to the small strain case
of the chapter I.2:

γ̇s =
〈 |τs − xs| − rs

K

〉n

sign(τs − xs)

For the present section, we neglect the kinematic hardening xs, and simplify the isotropic
hardening Rs as:

rs = Rs = R0 +Q · vs

The resolved shear stress, τs is

τs = σ∼ : N∼ s = (C∼ e · S∼e) : N∼
0
s ≈ S∼e : N∼

0
s
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III.4.2 Numerical implementation problems

To implement such a kind of model by means of implicit integration scheme, some points of
difficulty should be discussed.

1. Rate dependent or rate-independent model ?
The difficulty attached to the rate-independent model is known. Authors use to claim
that this is due to the problem of the choice of the active slip systems. In fact, the
choice of the set of active slip system does not relate exactly to the rate-independent or
viscous character of the flow. It depends rather on the presence of elastic region. As a
matter of fact, it is mandatory for a rate-independent model to have an elastic region,
and, in the literature, viscoplastic models do not have any threshold.

2. Elastic region

• R0 = 0
One can refuse to have an elastic region at all, as classically done in (Asaro,
1983),(Asaro and Needleman, 1985),(Kalidindi and Anand, 1994)(Anand, 2004),
for instance.
Advantage: all the slip systems are always active, there is not need to choose
them. A time-independent behavior may be recovered with very high values of the
viscosity exponent. Nevertheless, this introduces an artificial regularization near
the corners of the yield surface, which can influence the direction of the inelastic
flow.

• R0 �= 0
Problem: one needs to choose active slip systems. There are two solutions to
this problem. The first type of solution comes from the physical analysis of
the deformation process, the second one is an algorithmic solution. In the first
type of approach, the references are the papers by Bishop and Hill (Bishop and
Hill, 1951), and Chin and Mammel (Chin and Mammel, 1969), which propose
a maximization of the plastic work. On the other hand, a series of algorithmic
solutions are proposed (Simo and Hughes, 1997) (Miehe, 1996b) (Cuitino and
Ortiz, 1992) (Anand and Kothari, 1996) (Schmidt-Baldassari, 2003).

3. Slip residual
The system built for an implicit formulation of the problem contains first the tensorial
relation between stresses and strains, and also a set of scalar equations for expressing
the hardening on each slip system. This last type of equation can be expressed in terms
of strain rate, or in terms of stresses:

• ∆vs = ( |τs|−...
... )n

Problem: for large steps, (τtrial)n can be too big, that causes local divergence. In
(Kalidindi and Anand, 1994) the condition |T∼ | < η · s0 must be verified to accept
the Newton correction. The heuristic parameter η is usually chosen equal to 2/3.

• τs −Rs − (vs)1/n = 0
Advantage: if it converges, it converges in 2-3 iterations, as mentioned in (Cuitino
and Ortiz, 1992).
Problem: this residual can not be computed if vs < 0. Something should be done
to avoid that. This problem may disappear if a preliminary operation to determine
the active slip system is applied.



III.4. CRYSTAL PLASTICITY 45

4. Numerical decomposition
The decomposition is unique under small strains. Under finite strains, two possibilities
are known from the literature.

• exponential map
One can enlarge the approach of (Weber and Anand, 1990) on the crystal plasticity
model. Such an example can be found in (Miehe, 1996a).
Advantage : the algorithm automatically respects plastic incompressibility.
Problem : the application of the approach is practically restricted to elastically
isotropic materials – the Neo-Hooke law is used in (Miehe, 1996a) –

• Green strain
In this work we want to have an anisotropic elastic law. In such a case, a numerical
scheme like (Kalidindi and Anand, 1994) is the most convenient.
Problem: the numerical algorithm does not preserve plastic incompressibility, i.e.
detF∼p �= 1. A correction is then needed. Several correction techniques are found
in the literature (Kalidindi and Anand, 1994), (Miehe, 1996b). One of them was
tested in chap.III.3.4.

In this work, we have tested a series of new solutions for integrating crystal plasticity.
These attempts will be shown below. On the other hand, we have pre-existing methods in
ZéBuLoN :

• θ-method, which implements Simo’s ideas (Simo and Hughes, 1997) for the small strain
formalism (Foerch, 1996).

• Runge-Kutta technique, which can be efficient with viscoplastic model formulations

A brief description of these methods is given in Appendix A.

III.4.3 Stress update algorithm

One can try basically the same idea as for the J2 plasticity case. Due to the exponential
approximation one can write:

F∼p = exp(∆tL∼p)F∼p(t)

We state:
F∼ tr = F∼F∼

−1
p (t)

If so,
F∼ tr = F∼eexp(∆tL∼p) ≈ F∼e(I∼ +

∑
∆γsN∼

0
s)

Having in mind the type of chosen elastic strain, we construct

F∼
T
trF∼ tr = (I∼ +

∑
∆γsN∼

0
s)

TF∼
T
e F∼e(I∼ +

∑
∆γsN∼

0
s)

A first order development gives:

C∼ tr = C∼ e + 2
∑

∆γs
{N∼

0
sC∼ e

}

Or, in Lagrangian strains,
E∼ tr = E∼ e +

∑
∆γs

{N∼
0
sC∼ e

}

We add then the equations for elementary slip rates, as

∆γs =
〈 |τs| −Rs

K

〉n

sign(τs)



46 Chapter III. Finite strains

Finally the residuals are:

{ Fe = E∼ e +
∑

∆vssign(τs){N∼
0
sC∼ e

} − E∼ tr

Fv = ∆vs −
〈 |τs|−Rs

K

〉n

We solve this system for the unknowns E∼ e (or may be C∼ e) and ∆vs by means of the
Newton method. The Jacobian is then needed, which is as follows

∂Fe

∂∆E∼ e
= I∼∼

+
∑

∆vssign(τs)
[
M∼∼ l(N∼ s) + M∼∼ r(N∼

T
s )

]
∂Fe

∂∆vs
= sign(τs){N∼ sC∼ e

}

∂Fv

∂∆E∼ e
= − n

K

〈 |τs| −Rs

K

〉n−1

sign(τs)N∼ s : L∼∼

∂Fv

∂∆vs
= 1 +

n

K

〈 |τs| −Rs

K

〉n−1

Q

There is, in fact, another possibility for the slip solution. One can invert the slip equation,
in order to have:

Fv = |τs| −Rs −K

(
∆vs

∆t

)1/n

In such a formulation ηFv with η = 0.01..0.0001 is used, to have a similar order of magnitude
with Fe.

The derivatives are
∂Fv

∂∆E∼ e
= sign(τs)N∼ s : L∼∼

∂Fv

∂∆vs
= − ∂Rs

∂∆vs
− K

n∆t

(
∆vs

∆t

)1/n−1

Note, that it is not possible to calculate such a residual for ∆vs < 0. It can be avoided by
means of a slight correction, as

Fv = |τs| −Rs −K

((
∆vs

∆t
+ 1

)1/n

− 1

)

III.4.4 Consistent tangent matrix

Some ideas for the tangent matrix are presented here. Truesdell’s elastoplastic modulus
should be found,

σ∼
∇ = C∼∼

: D∼

One can note, that
J σ∼∇ = τ̇∼ − L∼ · τ∼ − τ∼ · L∼T

φe
back(J σ∼∇) = Ṡ∼e − L∼p · S∼e − S∼e · L∼T

p

So, it is enough to find
φe

back(J σ∼∇) = C̄∼∼
: D̄∼

where
D̄∼ = φe

back(D∼ ) = F∼
T
e D∼ F∼

e
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and then
C∼∼

=
1
J φe

fw(C̄∼∼
)

Let us calculate C̄∼∼
. One can check that

C̄∼∼
= C̄∼∼ 1 − C̄∼∼ 2

Ṡ∼e = C̄∼∼ 1 : D̄∼

L∼p · S∼e + S∼e · L∼T
p = C̄∼∼ 2 : D̄∼

Then
D̄∼ = F∼

T
e
{Ḟ∼F∼

−1}F∼e =

F∼
T
e
{Ḟ∼eF∼

−1
e + F∼eḞ∼pF∼

−1
p F∼

−1
e

}F∼e =

{F∼
T
e Ḟ∼e

} + {C∼ eL∼p
} = ∆E∼ e + {C∼ eL∼p

} = ∆E∼ tr

if so,

C̄∼∼ 1 =
∂∆S∼e

∂∆E∼ tr
= L∼∼

:
∂∆E∼ e

∂∆E∼ tr
= L∼∼

:
[
∂Fe

∂∆E∼ e

]−1

it is then easy to see that

L∼p · S∼e + S∼e · L∼T
p =

∑
s

∆vssign(τs)(N∼ sS∼e + S∼eN∼
T
s ) = 2

∑
s

∆vssign(τs){N∼ sS∼e
}

As
∆E∼ tr = ∆E∼ e +

∑
s

∆vssign(τs){N∼ sC∼ e
}

then

∂(•)
∂∆E∼ tr

=
∂(•)
∂∆E∼ e

∂∆E∼ e

∂∆E∼ tr
+

∑
s

∂(•)
∂∆vs

∂∆vs

∂∆E∼ tr
=

∂(•)
∂∆E∼ e

[
∂Fe

∂∆E∼ e

]−1

+
∑

s

∂(•)
∂∆vs

[
∂Fe

∂∆vs

]−1

Application of this rule finally gives

C̄∼∼ 2 = 2
∑

s

sign(τs){N∼ sS∼e
}
[
∂Fe

∂∆vs

]−1

III.4.5 Single crystal tension test

A tension test till 200% for 1 finite element has been performed here. The material parameters
are presented in table III.3. The stress strain curve is presented in fig. III.10 . One can see
that the computation was done in a quite small (10) number of time steps. The tension axis
was parallel to the [001] crystallographic direction, so that among twelve slip systems, four
were non active, and eight were active with the same absolute slip value.

y1111 y1122 y1212 K n R0 Q b
250000.0 200000.0 200000.0 10.0 10.0 100. 35. 7.

Table III.3 : Material parameters for single crystal tension test
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III.4.6 Polycrystal compression test

A cube-shaped finite element mesh was taken first, with 343 elements. Each element was then
associated with a grain of a given crystallographic orientation. Then, a 20-grain aggregate
made of tetrahedral elements was taken. Both meshes are presented in fig.III.11

The material parameters are presented in tab. III.4. Compression was applied, by means
of imposed displacements (Uz=0 for all the nodes with z=0; Uz = -0.5*meshsize for all the
nodes with z=meshsize). The contour of the cumulated slip is shown on the deformed shape
of the aggregates after 50% deformation in fig. III.12. Force - displacement curves for the
compression test of 343-grain aggregate are shown in fig.III.13. Three numerical realizations
are compared: pre-existing small strain and explicit finite strain, with newly developed
implicit finite strain. One can see, that the finite strain curves differ significantly from the
small strain one, due to geometrical effect. The results for both finite strain realizations –
explicit and implicit– are similar. The implicit algorithm represent less time steps for this
test (29 time steps compared to 48 steps of explicit realization till 25% global strain). This
is because the higher rate of global convergence for the implicit scheme. Typical convergence
for implicit method was as follows :

seq: 1 incr: 21 dt:1.786 t:18.86
iter: 1 | R |/| Fext |= 3.192e-02 | Fext |=15722.905922
iter: 2 | R |/| Fext |= 1.489e-03 | Fext |=15651.792045
iter: 3 | R |/| Fext |= 4.857e-05 | Fext |=15649.551795

On the other hand, explicit method gives:

seq: 1 incr: 25 dt:1.447 t:18.76
iter: 1 | R |/| Fext |= 5.418e-03 | Fext |=15948.628690
iter: 2 | R |/| Fext |= 3.141e-03 | Fext |=15936.654610
iter: 3 | R |/| Fext |= 2.205e-03 | Fext |=15935.853274
iter: 4 | R |/| Fext |= 1.627e-03 | Fext |=15935.908450
iter: 5 | R |/| Fext |= 1.235e-03 | Fext |=15936.028576
iter: 6 | R |/| Fext |= 9.556e-04 | Fext |=15936.134151

One can note that convergence of the implicit scheme is better then linear.

y1111 y1122 y1212 K n R0 Q b
250000.0 200000.0 200000.0 1000.0 5.0 100. 350. 7.

Table III.4 : Material parameters for polycrystal compression test
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Figure III.10 : Crystal 1 element tension stress-strain curve
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(a) (b)

Figure III.11 : Finite element meshes used for crystal plasticity tests under finite strains: (a)
343-grain aggregate with cube-shaped 1 element grains; (b) 20-grain aggregate with realistic
shaped grains (10326 tetrahedric elements)

(a) (b)

Figure III.12 : Cumulated plastic shear at finite strains after 50% compression: (a) 343-
grain aggregate , (b) 20-grain aggregate
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Figure III.13 : Force-displacement curves for compression of a 343-grain aggregate. Pre-
existing small strain, explicit finite strain and newly developed implicit finite strain are
compared.

III.5 Damage, Opening and Sliding

III.5.1 Model

The Clausius-Duhem inequality under finite strains for isothermal processes in the initial
reference frame can be written as (Besson et al., 2001)

−ρ0Ψ̇ + S∼ : Ė∼ ≥ 0

−ρΨ̇ + σ∼ : D∼ ≥ 0

Let us suppose that there is no direct coupling between damage and plasticity. In that case,
at the elastically unloaded (isoclinic) configuration, one can write:

ρ0Ψ = ρ0Ψe(E∼
e, D, T ) + ρ0Ψp(δ, γ, T )

Formally following the classical approach of damage mechanics(Lemaitre, 1996), let us also
suppose that

ρ0Ψe(E∼
e, D, T ) =

1
2
(1 −D)E∼ e : Λ∼∼

: E∼ e

With E∼
e the Green tensor, and σ∼ the Cauchy stress, and denoting S∼ = JF∼

e−1σ∼F∼
e−T and

Σ∼ = JF∼
eTσ∼F∼

e−T , the dissipation is

(S∼ − ρ0
∂Ψ
∂E∼

e
)Ė∼

e
+ ρ0Σ∼ : L∼

p − ρ0
∂Ψ
∂δ

δ̇ − ρ0
∂Ψ
∂γ

γ̇ − ρ0
∂Ψ
∂D

Ḋ ≥ 0

L∼
p = (usually Ḟ∼

p
F∼

p) = δ̇N∼ + γ̇T∼

Rn = ρ0
∂Ψ
∂δ

; Rt = ρ0
∂Ψ
∂γ

; Y = −ρ0
∂Ψ
∂D

S∼ = ρ0
∂Ψ
∂E∼

e

ρ0

(
Σ∼ : N∼ −Rn

)
δ̇ + ρ0

(
Σ∼ : T∼ −Rt

)
γ̇ + ρ0Y Ḋ ≥ 0

S∼ classically associated to E∼
e

Σ∼ used to compute σn = Σ∼ : N∼ and τ = Σ∼ : T∼ Choosing the same potentials, as in small
deformation case, the equations for D, δ, γ can be kept.
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III.5.2 Stress update algorithm

Following the J2 plasticity example, an implicit numerical scheme can be formally rewritten.

L∼
p = Ḟp

∼ F∼
p = δ̇N∼ + γ̇T∼

Ḟp
∼ = (δ̇N∼ + γ̇T∼ )F∼

p−1

F∼
p
n+1 = F∼

p
n exp(∆δN∼ n+1 + ∆γT∼ n+1)

F∼
∗ = F∼n+1F∼

p
n
−1 ; F∼

e
n+1 = F∼n+1F∼

p
n+1

−1

F∼
∗ = F∼

e
n+1 exp(∆δN∼ n+1 + ∆γT∼ n+1)

≈ F∼
e
n+1(I∼ + ∆δN∼ n+1 + ∆γT∼ n+1)

F∼
∗TF∼

∗ = (I∼ + ∆δN∼ n+1 + ∆γT∼ n+1)TF∼
eT
n+1F∼

e
n+1(I∼ + ∆δN∼ n+1 + ∆γT∼ n+1)

= F∼
eT
n+1F∼

e
n+1 + 2{(∆δN∼ n+1 + ∆γT∼ n+1)T )C∼

e
n+1

}

The new Fe equation in the nonlinear system is:

E∼
∗ = E∼

e
n+1 + {(∆δN∼ n+1 + ∆γT∼ n+1)T )C∼

e
n+1

}

III.5.3 Note on damaged body kinematics under finite strains

Under small strains all body configurations: initial, deformed, damaged - are the same.
For finite strains this is no longer true. Thus, one should be able to define damaged body
configuration, compared to the initial and deformed ones. Different ways to see the damaged
configuration can be found in the literature. For instance, a scheme with fictitious effective
configuration is proposed in (Voyiadjis and Deliktas, 2000). A multiscale point of view,
based on classical ideas of defects in elastic bodies (Eliseev, 1999), is proposed in (Clayton
and McDowell, 2003)(Clayton and McDowell, 2004). DOS model formulation in finite strains,
proposed above, is a correct formal extension of the small deformation formalism. It can be
seen as using a fictitious undeformed but damaged configuration.

III.6 Conclusion and Perspectives

The final goal of this chapter was to create an efficient implicit integration scheme for a
crystal model with damage under finite strains. To do so, it was found necessary to perform
a systematical study of more simple models. A number of elastic and J2-plastic models
were then implemented into ZéBuLoN. Resulting algorithms were proved to have quadratic
convergence. These exercises gave the possibility to find an appropriate shape for the global
consistent tangent matrix. It was also found, that even with a multiplicative finite strain
formalism, numerical manipulations allow to recover an additive form for the elastic-plastic
strain partition. The shape of this equation depends on the type of elasticity, which is used.
Then, an implicit integration scheme was applied to the crystal plasticity model. First results
for polycrystalline aggregates were obtained with reasonable computation time (about 1 day
for the large mesh of fig. III.12-b). Global convergence of the method was then shown to be
better, than for a pre-existing explicit integration scheme. Still it is believed to be possible to
have better numerical convergence. Proper plastic volume correction, or a slip system choice
are to be added to the numerical scheme.
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(a) (Voyiadjis and Deliktas, 2000) (b) (Clayton and McDowell, 2003)

Figure III.14 : Possible schemes of damaged body kinematics
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This chapter describes the developments made to ”open grain boundaries” in realistic
synthetic aggregates which are obtained by Voronöı tessellation. Both 2D and 3D cases are
treated. The new elements are inserted by an automatic procedure as a thin layer between
two grains in the finite element mesh. The triple points have a specific numerical treatment.

IV.1 Introduction

When creating a real like finite element mesh, three methods are known from the literature.

1. regular mesh, single phase elements

2. regular mesh, multiphase elements

3. free mesh

The idea of the first one is as follows. Finite element mesh is regular. Realistic grain image
is then imposed, and grains represented as the sets of finite elements. It makes meshing
problem quite simple, but provides stair-like grain interfaces. One can find examples in
(Bhattacharyya et al., 2001) (Clayton and McDowell, 2004)

The second method can be seen as an extension of the previous one. The finite element
mesh is still regular, but grains are now presented as sets of Gauss integration points. So
that one finite element can be shared by several grains. Grain interfaces are more accurate,
but still stair-like. This method was promoted in (Lippmann et al., 1997), an application for
crystalline aggregates can be found in (Barbe et al., 2001a).
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In the third method, grain regions are meshed directly, with any free mesh techniques.
This approach needs an advanced FE meshing procedure, but seems the most natural. It
represents exactly the grain interfaces. An example can be found in (Espinosa and Zavattieri,
2003a) (Espinosa and Zavattieri, 2003b).

Which of the three methods can be used to proceed with the grain boundaries ? Actually,
the three solutions can be found in the literature. For the first one, (Clayton and McDowell,
2004) can be cited. Successful computations are shown there. One can note, however, some
strange periodicity in the resulting cavitation process, which seems to be related to the FE
mesh. As for the second one, (Roberts and Garboczi, 2001) can be cited. The paper deals
with foam modeling, but one can easily use the same method for a polycrystal. The advantage
of the method is that one can easily play with the (grain boundary/grain core) volume ratio.

We choose anyway the third one. An example of its application can be found in (Zhang
et al., 2004).

IV.1.1 Grain boundaries - how to mesh them ?

Once we have chosen the free mesh method to construct an aggregate, another question comes
: how to mesh grain boundaries ? Several approaches can be found in the literature:

1. zero-width GB,

2. one element width GB,

3. remeshing near GB,

4. no grain boundaries as special interface between grains, but each grain has its core and
boundary layer.

The first approach is developed in works of (Tvergaard, 1984)(Tvergaard, 1990)(Needle-
man, 1987).

Examples of second approach can be found in (Diard et al., 2002).
For the third approach one can note a work of (Weyer et al., 2002). But in (Cizelj and

Riesch-Oppermann, 2002) of the same authors, the remeshing is used only to get better
precision near grain boundaries.

The idea of the fourth approach can be found in (Evers et al., 2002). A polycrystal model
is proposed there, so there is no ”real” mesh for the grain boundaries. Nevertheless, in their
model they suppose each grain to have its core region and its grain boundary layer.

In the present document, we will show a comparison between the second and the third
solution, to chose the third approach for the computations.

IV.2 Voronoi tessellation to represent grains

Voronoi polyhedra approach is widely used in material science to represent real-
like polycrystals –see for instance (Cizelj and Riesch-Oppermann, 2002)(Barbe et al.,
2001a)(Barbe et al., 2001b)–.

The method of the aggregate creation is based on the space(plane) division by the Voronoi
polyhedra. They were formally identified - for instance - by (Decker and Jeulin, 2000), by
means of the influence zones. Let D ⊂ R2(R3) to be a real domain, and E = {Ai} - a number
N of random points, so that Ai ∈ D. Let also d(P1, P2) to be a euclidean distance between
any points P1 and P2. If so, the influence zone of the center Ai can be defined as:



IV.3. WHAT IS DONE ? 59

zi(Ai) = {P ∈ D | d(P,Ai) < d(P,Aj)∀j �= i}
The polyhedra centers can be distributed in the space, following any random law. In this

work, the method using a repulsion distance (like in O.Diard’s thesis) is used. This allows to
control a minimum size of the grains and to obtain a regular grain size distribution.

IV.3 What is done ?

2D and 3D cases are distinguished. Basically, any aggregate mesh generation, 2D or 3D,
consists of two stages. In the first stage, the aggregate itself is generated, without grain
boundaries. And then, the grain interfaces are opened to insert the grain boundary finite
elements.

The generation of aggregates is a pre-existing capability of the code ZéBuLoN. 2D
generation is straightforward with the classical tools of the code. 3D generation respecting the
grain boundary is a more difficult problem. Several procedures are under development at the
present time. 20-grain and 100-grain 3D meshes were available (Mounoury, 2002)(Cailletaud
et al., 2003b).

The generation of grain boundaries for 2D meshes was developed in the framework of
O. Diard’s thesis (Diard, 2001). Nevertheless, the procedure was reconstructed in the frame
of this work, since the developments were no longer adapted to the current version of the
code. On the other hand, a better modularity was necessary to produce either one or two
interface finite elements in the width of grain boundary.

The procedure for adding one or two elements in 3D grain boundaries was completely
developed in the framework of this study.

IV.3.1 2D

As already mentioned, the aggregate creation in 2D is based on the plane division by the
Voronoi triangulation. A typical polyhedra structure is shown in Fig.IV.1. This structure is
then meshed by quadratic or linear triangular elements. GB lines are respected exactly, a
typical result is given in Fig. IV.2 .

A ZéBuLoN module was developed to add the grain boundary elements between the
grains. It has to create the elements, and to generate the normal directions defining the grain
boundary frame. A typical result is given in Fig.IV.3. Each grain boundary is represented
now as a independent element set (elset) –see Fig.IV.5–.

The 2D procedure was also adopted to insert two elements in the GB width –see fig.IV.8–
instead of one. It will allow us to use a GB material behavior, based on the relevant grain
properties. It will also allow to check the FE mesh density effect.

As any grain –in reality– has 3D anisotropy, this should be taken into account. The 2D
meshes are thus extended in the third direction, in order to use a full 3D crystal plasticity
model without any additional restrictions on the type of slip system. For the tests of the
present work, the mesh of 100 grains was created, with and without grain boundaries. The
mesh size (39904 nodes, 7890 elements - with GB ) was chosen to be able to perform easy
computations on a single processor. This mesh is presented, without GB, in Fig.IV.6 and
with the inserted GB structure, in the Fig.IV.7.

IV.3.2 3D

The aggregate creation in the 3D case is also based on the space division by the Voronoi
polyhedra. These regions are then meshed with tetrahedral linear (or quadratic) finite
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elements. As mentioned above, only 20 grain (Fig.IV.9) and 100 grain (Fig.IV.11) meshes
are available at the moment.

The automatic procedure was newly developed, to add grain boundary elements in
(nearly) arbitrary 3D crystalline aggregate FE mesh. For the grain boundary introduction,
in-between any 2 grains, prismatic elements are inserted, while prisms and tetrahedra are
needed for the triple lines and quadruple points.

This procedure input is a crystalline aggregate finite element mesh (like in Fig.IV.9).
From the geometrical point of view, there are some restrictions for the input.

1. It is quite clear that only 2 grains can have a common plane. But, already a line can
be - in principle - sheared by 3 (at least), and also 4, 5 etc grains. This is the restriction of
the tool: the input mesh should have only triple lines. In other words, 3 and only 3 grains
can have one common line in the mesh.

2. Another important restriction: all the grains are supposed to be convex polyhedra.
3. As for the joints in the multiple points, the procedure is general. Geometrically, even

with triple lines only, one can have 4 grains (at least) having one common point, but one can
find also 6 grains, 8 grains, and, probably, more. Up to now, only 4, 6 and 8 cases were met
in the examples. The proposed procedure can deal with any multiple point, of any topology.

The procedure consists of four basic stages. First stage : remesh to avoid too close points.
The main idea of this stage, is to avoid multiple points of the grain structure to be in the same
finite element. A typical situation before and after this remeshing can be seen in Fig.IV.12.
Second stage : remesh to avoid too close points –continue–. The idea of this stage is to avoid
multiple points to be in one finite element with an opposite triple line. It is quite similar,
but not the same, as the first stage. It is probably a field for improvement to glue these
2 stages. Third stage : remesh multiple points. The program finds all the finite elements,
touching a given multiple point - all these elements are thetrahedra. And then, the program
cuts all these elements 2 times, with a radius h and 2h. The parameter h has a given value.
Typical result after remeshing can be seen in Fig.IV.14-a. So, each initial tetrahedron is now
made of three finite elements: a small tetrahedron, and two prisms. Each multiple point is
now surrounded by two spheres, of radius h and 2h. Fourth stage : add GB lines and planes.
This last procedure adds triple line prismatic elements, GB plane prismatic elements, and
connects them with the multiple point spheres and initial grains. Line–point connection can
be seen in the Fig.IV.13-b. Plane connection is shown in Fig.IV.13-a. The connection of the
multipoint to the grain can be seen in Fig.IV.14-b. In principle, any number of grains can be
modified by the procedure. Up to now, 20 grain and 100 grain aggregates were made. The
CPU time for a 100-grain aggregate (38752 nodes, 127745 linear finite elements) modification
is about 4 hours on 3 GHz PC processor. In fact, the CPU is mostly used to paste the various
sets of nodes and elements. This procedure is needed to glue the duplicate nodes, which have
the same coordinates. The standard ZéBuLoN procedure is used at this stage. It is not
well adapted for a large number of elements and sets. This is totally independent from our
procedure, and will be improved in the near future.

IV.4 Perspectives

Once the automatic grain boundary insertion procedure is developed, it can be easily modified
for the different types of finite elements. Namely, the 3D case was done for linear finite
elements only. One can adopt the procedure for the quadratic elements, or the semi-quadratic
ones (the elements, which have linear interpolation in grain boundary width direction, but
quadratic in grain boundary plane).
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Figure IV.1 : Typical image of Voronoi polyhedra

Figure IV.2 : Typical result of 2D mesh generation procedure after step 2
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Figure IV.3 : Typical result of 2D mesh generation procedure after step 3

Figure IV.4 : Typical final result of 2D mesh generation procedure
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Figure IV.5 : Definition of grain boundary as a set of finite elements

Figure IV.6 : 2d extended mesh of 100 grains, used for computations
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Figure IV.7 : Grain boundaries for 100 grain mesh

Figure IV.8 : Grain boundaries, two elements by width
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a b

Figure IV.9 : 3D finite element mesh without grain boundaries, (a) - elsets view, (b) - one
nset example

a b

Figure IV.10 : 3D finite element mesh with grain boundaries, (a) - outside view of the
20-grain aggregate, (b) - GB only for the same aggregate
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a b

Figure IV.11 : 3D finite element mesh with grain boundaries, (a) - outside view of the
100-grain aggregate, (b) - GB only for the same aggregate

a b

Figure IV.12 : Remeshing for two close multiple points

a

b

Figure IV.13 : (a) - Four GB planes with a multiple point, (b) - Two multiple points
connected with a triple line
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a

b

Figure IV.14 : (a) - Remeshing near a multiple point, (b) - multiple point and triple lines
FE structure with a grain

(a) all (b) detail

Figure IV.15 : Two element per width grain boundaries for 3D case



68 Chapter IV. Finite element meshes

Table IV.1 : List of actual FE meshes, used in the computations

Notation Dimension With/without GB Quad/Lin Grains Nodes Elements

100gr2dext extended 2da no GB quadratic 115 30551 6679

100gr2dextGB extended 2d GBb quadratic 115 38693 7890

100gr2dextGBlin extended 2d GB linear 115 9166 7890

100gr2dextGB2ele extended 2d GB: 2 FE/widthc quadratic 115 48473 9465

100gr2dextGB2eleLin extended 2d GB: 2 FE/width linear 115 11818 9465

20gr3d 3d no GB linear 20 2129 10326

20gr3dGB 3d GB linear 20 4763 14934

20gr3dGB2ele 3d GB quadratic 20 36114 18081

100gr3d 3d no GB linear 100 15940 86751

100gr3dGB 3d GB linear 100 38752 127745

a2d mesh, extended in the third direction for 1 element depth
bgrain boundaries with 1 element per width
cgrain boundaries with 2 elements per width
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Coupled computation principle

The method of weak coupling was used to take into account the environmental effect. This
method is a pre-existing tool of the code ZéBuLoN. The principle of the method is presented
in the schema – see fig.V.1 – .

Iodine adsorption is simulated by the solution of a diffusional problem, based on classical
Fick’s laws:

J = D · ∇C
∂C

∂t
= D · ∆C

Here C - concentration, D - diffusion coefficient, J - material flux.
The diffusion coefficient strongly depends on damage. Consequently, iodine propagation

follows damage front in the GB. From a numerical point of view, the coupling is obtained by
running two simultaneous problems, which are coupled at each time step. For each integration
step, the diffusion problem is solved first. Iodine concentration is then exported to the
mechanical problem to compute concentration dependent parameters. With these newly
obtained parameters, the mechanical problem is solved. It provides stress, strain and damage
fields. Damage is then exported to the diffusion problem, to compute damage dependent
parameters, and recompute the same time step. For each time step, a fixed point algorithm
is then introduced. At least two loops are performed for each time step (diffusion-mechanics-
diffusion-mechanics).
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Figure V.1 : Schema, illustrating the coupled computation principle
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One of the interesting possibilities of crystal plasticity approach is to simulate real 3D
microstructures, in order to check the validity of the model.

The earliest work of that type was done on brass in 1983 (Hashimoto and Margolin,
1983a)(Hashimoto and Margolin, 1983b). Since then, number of works were done
on copper (Teodosiu et al., 1993) (Delaire et al., 2000), aluminum (Becker and
Panchanadeeswaran, 1995)(Bhattacharyya et al., 2001) (Sachtleber et al., 2002) and IF steel
(Erieau and Rey, 2004). Let us also mention the purely experimental works, which could
serve as a basis for the computations (Schroeter and McDowell, 2003) (Zhang and Tong,
2004).

The single crystal model used in this work was shown to give good results when
compared to tests on single crystal tension-compression specimens, and also on more
complex configurations, like copper bicrystals (Meric et al., 1991)(Meric et al., 1994), or
multicrystalline specimens with large grain size (Eberl, 2000).

The present study has two purposes:

• Check the single crystal model possibilities to predict the local behavior of real
multicrystal with fully 3D grain morphology

• Check the influence of 3D grain morphology on the surface strain field predictions of
the theory.
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In what follows, experiments on OFHC (oxygen free high conductivity) polycrystalline
copper are described first. Then the finite element mesh is treated, as well as the parameter
identification procedure. Computational results are presented for surface strain fields and the
average stress-strain curve.

VI.1 Experiments

The material testing procedure shown in the study was developed at the Erich Schmid
Institute of Material Science in Leoben, Austria by O.Kolednik and co-authors (see for
inst. (Tatschl and Kolednik, 2002a) (Tatschl and Kolednik, 2002b)). Tension tests on
polycrystalline OFHC (oxygen-free high conductivity) copper polycrystalline specimens were
made (Tatschl, 2000). Specimens with a cross section at 2x2 mm and a gauge length of 10
mm were used. In steps of about 1% SEM-micrographs were taken; the maximum global
tensile strain was 10 %. An image comparison system is used to process the micrographs
and compute the local strain fields. The key part of the system is a digital image analysis
system to find homologue points on two micrographs taken at different loading stages, i.e.
points in the images that belong to the same physical point on the specimen. The homologue
points form a displacement field which is derived numerically to determine the local in-plane
strain increments of the considered deformation step. The analyzed area was 250x350 µm.
Orientation Image Microscopy (OIM) analyses were conducted to measure the local grain
orientation before the loading, then at 5 and 10% strain. Since the real geometry of the
grain is supposed to have a large influence on the observed results, a huge effort was made
to characterize the 3D geometry of the grains (Schmidegg, 2000). After the test, six layers of
material were successively removed by an electropolishing process, and an OIM-analysis was
made after each removal. As a result, we get the local crystal orientation at the depth of 20,
35, 53, 64, 82, and 100 µm below the initial surface from which the three-dimensional (3D)
grain structure of the near-surface region can be reconstructed.

The following experimental results were obtained:

• the macroscopic stress-strain curve for the whole specimen (Fig.VI.1)

• SEM-micrographs after different loading stages (typical images are presented in
Fig.VI.2)

• surface strain fields (presented in Fig.VI.3), derived numerically from the displacement
field. The last one, not presented here, was obtained by digital image analysis from
SEM-micrographs.

• OIM analysis results, presented as an inverse pole figure maps (typical images presented
in Fig.VI.4).

VI.2 Finite element meshes

Starting from the OIM-analyses of the different layers, two 3D finite element meshes were
created (Schmidegg, 2000). Namely, one mesh with 30000 nodes (”small”) and a refined mesh
with 130000 nodes (”big”). They are presented in Fig. VI.5. In total, the core region consists
of about 100 grains.

In order to check the influence of 3D morphology, another mesh was added to this
collection. It is built by means of a simple extrusion of the surface of the specimen. Its
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thickness is the same as the thickness of the normal aggregate. Since the geometry is much
simpler (columnar grains), the size of the mesh is much smaller (14076 nodes). It will be
called ”extended small” mesh –see fig. VI.6–. In figure VI.7, EBSD-micrographs, ”small” and
”extended small” meshes view are presented for the specimen outside surface and for the last
cut with an EBSD measurement (about 100 µm far from the external surface). Both ”small”
and ”extended small”meshes follow EBSD-micrograph on the specimen surface. In the depth,
the ”small” mesh still follows EBSD-micrograph, which changes significantly. On the other
hand, the view of ”extended small” mesh remains the same, as on the surface.

In order to check if a better result can be used by embedding the mesh in an other
equivalent material to regularize the boundary conditions, an other type of mesh was
generated. In this last case, both core region meshes (”small” and ”big”) were extended
laterally and into the depth: each near-surface mesh was automatically embedded into a
second mesh as shown in Fig.VI.6. Two combined meshes, the ”modified small” (54690
nodes) and the ”modified big” (185258 nodes) were so obtained.

Figure VI.1 : Macroscopic strain-stress curve

Figure VI.2 : SEM micrographs at 0% and 10% macrostrains

VI.3 Material Parameter identification

The single crystal model, explained in Chapter 1, was applied.
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Figure VI.3 : Strains in tensile and transverse directions at 5% macrostrain (exp.)

Figure VI.4 : Inversed pole figure maps for the tensile and normal directions at 5%
macrostrain

Figure VI.5 : ”Small” and ”big” finite element meshes
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Figure VI.6 : ”Modified small” and ”extended small” finite element meshes

a b c

d e f

Figure VI.7 : Surface views (a,b,c) and cut at 100 µm (d,e,f); comparisons between the 2D
extended mesh (no change between a and d), the EBSD microsgraph (real structure in b and
e) and the 3D mesh (mesh update in agreement with experiment, in c and f)
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Elastic material parameters for copper crystals were taken from the literature. Parameters
from three literature sources (Shtremel, 1997) (Meric et al., 1994) (Kalidindi and Anand,
1994) were compared and they were found to be quite close to each other. The parameters
from (Meric et al., 1994) were taken for our modeling, namely

L1111 = 159300 MPa L1122 = 121900 MPa L1212 = 80900 MPa

The plasticity parameters were initially identified for a cyclic loading test of copper single
crystals (Meric et al., 1994). The maximal strain in these tests was 0.1-0.5 %.

For the present tension test, the maximal strain is 10%. The material parameters were
adapted to fit with this new range, specially those which define isotropic (Q,b) and kinematic
(C,D) hardening (Schmidegg, 2000). The interaction matrix (hij) and viscosity parameters
(K,n) were kept from (Meric et al., 1994). The final parameter set, used in computations is
as follows.

K=5MPa ·s 1
n n = 10 C=4500MPa D=600.0

R0=1.8MPa Q=6MPa b=15

h1 = 1.0 h2 = 4.4 h3 = 4.75 h4 = 4.75 h5 = 4.75 h6 = 5.0

VI.4 Note on the grain orientations

Crystallographic orientation should be given for each grain to simulate its physical anisotropy.
Numerical values of grain orientations are known from OIM-experimental results. But one
has to take care about the correct application of these measurements in the simulations. One
should verify the coincidence of the following terms between finite element simulation and
EBSD measurements:

1. the Euler angle formalism,

2. the rotation applied from the specimen coordinates to the crystal coordinates,

3. the specimen coordinate system.

In the present case, both ZéBuLoN and EBSD follow the so-called Bunge type of Euler
angles. It means, that the transformation happens by means of three sequential rotations,
around Z axe first, than about new X, and then about new Z. The angles are named φ1, ψ, φ2

respectively. Appropriate rotations are shown in fig.VI.4 It was also found, that this rotation
transforms vectors from specimen coordinates to the crystal coordinates.

It means, that to get actual vector va one has to multiply the original vector vo by the
rotation matrix R∼ .

va = R∼ · vo

The rotation matrix R∼ , also called Bunge matrix, is as follows:

R∼ =




c1c2 − s1s2cg s1c2 + c1s2cg s2sg

−c1s2 − s1c2cg −s1s2 + c1c2cg c2sg

s1sg −c1sg cg


 (VI.1)

with c1 = cosφ1 s1 = sinφ1 c2 = cosφ2 s2 = sinφ2 cg = cosψ sg = sinψ
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On the other hand, the specimen coordinate system for EBSD measurements and finite
element mesh is not the same. If fig. VI.9 the EBSD results and finite element mesh are
presented as seen with appropriate software. One can note that to get EBSD reference from
ZéBuLoN reference, one has to add a 180◦rotation around Z-axis.

Finally, if (φ1 ψ φ2) are the EBSD measured angles, one should take for ZéBuLoN
computation (φ1 + π ψ φ2) 1.

VI.5 Boundary conditions

The displacements were prescribed for all the surfaces except the top surface, which was free.
The given displacements values were as follows.

u = ε∼ · x

ε∼ = (0.10,−0.04933,−0.04933)

VI.6 Results

The average stress σ11 (sig11) versus average strain ε11 (eto11) curve for the whole structure
can be obtained by means of a self-consistent approach, using the single crystal material
parameters and a material without any texture. The result can then be compared with the
experimental macroscopic curve. This is made in Fig.VI.12. One can mention than these
two curves are in agreement. Interestingly, they coincide also with the results obtained with
the FE aggregates: this demonstrates that the 100-grain sampling is not far from being a
Representative Volume Element, and that the mesh is reasonably fine to accommodate the
local strain gradients.

A qualitative comparison of the local strain components (ε11 and ε22) is now made for
the specimen surface. The strain fields are presented in figs.VI.14, VI.15. A good agreement
is found for the positions of low (blue color) and high (red color) strain zones.

1This last artefact was finally exhibited and solved by Thomas Dick, who is gratefully acknowledged here

Figure VI.8 : Euler angles rotation
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Figure VI.9 : Grain orientation references for experiment and simulation
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Figure VI.10 : Displacement field –Ux component– experiment and computation
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A more quantitative comparison is made, by plotting a strain profile (Profile 1 in fig.
VI.11) from both numerical simulation and experiment –see Fig. VI.13–. The results are
then quite satisfactory.

If the ”extended small” mesh is now used, one can observe important differences between
this solution and the full 3D case –see fig.VI.16, VI.17–. A better agreement with experiment
is found with the 3D mesh.

VI.7 Discussion and Perspectives

Let us list here assumptions made to achieve the just explained result:

• The finite element mesh used in the analysis remains coarse (30000 nodes for about 100
grains, i.e. 300 nodes/grain. As a reference, to reach 0.1% precision 114375 nodes for
52 grains, i.e. 2200 nodes/grain were taken in (Zeghadi et al., 2005); while changing
a cubic mesh from 12x12x12 elements, 8000 nodes to 24x24x24 - 60000 nodes for 200
grains, 10 % of local field change reported in (Barbe et al., 2001a)). Some small grains
were therefore neglected in the present computation.

• The material parameters set is probably not unique. Since the amount of experimental
data is reduced, one could consider for instance other values for the interaction matrix.
A still open discussion concerns the cross-hardening terms. They were taken around
1.4 in (Kalidindi and Anand, 1994). This is also the value proposed by Kocks on
aluminium (Kocks and Brown, 1966) or Franciosi (Franciosi, 1985). After Méric, we
have a value of about 5. Let us note first that these values are inputs of different
expressions for describing latent hardening, so that the values cannot be compared
directly. On the other hand, recent simulations by discrete dislocation dynamics tend
to demonstrate that values smaller than 1 should be preferable – see for instance (Madec,
2001) – Anyway, it would be interesting to check the sensitivity of the results to this
term.

• Boundary conditions are not absolutely realistic. Figure VI.10 shows a comparison
of the displacement contours taken from computation and experiment. For the sake of
simplicity, the imposed displacement was uniform on the left and right side of the mesh.
Nevertheless, the experimental profile is rather diagonal. This can be interpreted as a
presence of a local bending applied by the surrounding on the set of grains.

Despite all these approximations, the computational results of the full 3D mesh are in good
agreement with experimental data. On the other hand, results for 2D extended mesh were
found to be different from the 3D case, but still with some traces of experimental behavior.

Therefore, the following perspectives are open for this part of the study:

1. Improvement of the obtained computational results : use a refined finite element mesh,
like the already existing ”big” mesh; verify material parameters; apply measured
displacements as boundary conditions;

2. Improve comparison between experimental and computational results : in order to find
a tolerance of finite element predictions compared to experiment;

3. Improve comparison between 3D, extended 2D computations and experimental data : one
should be able to judge, what is true and what is wrong in extended 2D computation
compared to 3D;
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Figure VI.11 : SEM image (fragment) at 0% and 10% macrostrain, with profiles to plot
local behavior (Tatschl, 2000)

Figure VI.12 : Total average ε11 − σ11 curves

4. Formulate relations between surface measurements and 3D strain fields;

5. Create a procedure of 3D morphology reconstruction : starting from surface field
measurements;

6. Use the field information to identify the single crystal model parameters from the whole
experimental data : such a procedure is proposed for instance in (Hoc et al., 2003).
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Figure VI.13 : Local strains for Profile1
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Figure VI.14 : Comparison for ε11 at 5% macrostrain (”small” mesh and experiment)
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Figure VI.15 : Comparison for ε22 at 5% macrostrain (”small” mesh and experiment)
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Figure VI.16 : Comparison for ε11 at 5% macrostrain (”2D extended small” and ”3D small”
mesh)
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Figure VI.17 : Comparison for ε22 at 5% macrostrain (”2D extended small” and ”3D small”
mesh)



88 Chapter VI. FE simulation of multicrystals at large strains



Chapter -VII-

Zircaloy computations

Contents

VII.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

VII.2 Damaged grain boundaries versus perfect interface . . . . . . . . 90

VII.2.1 Crystal parameters and texture . . . . . . . . . . . . . . . . . . . . 90
VII.2.2 GB material parameters . . . . . . . . . . . . . . . . . . . . . . . . 90
VII.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 94
VII.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 94
VII.2.5 Local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
VII.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

VII.3 Uncoupled intergranular fracture . . . . . . . . . . . . . . . . . . . 97

VII.4 Iodine influenced intergranular fracture . . . . . . . . . . . . . . . 98

VII.4.1 Diffusion-damage coupling parameters . . . . . . . . . . . . . . . . 98
VII.4.2 Quasi-2D computational results . . . . . . . . . . . . . . . . . . . . 99
VII.4.3 3D computational results . . . . . . . . . . . . . . . . . . . . . . . . 100
VII.4.4 Crack propagation rate . . . . . . . . . . . . . . . . . . . . . . . . . 100

VII.5 Iodine-influenced inter-transgranular fracture . . . . . . . . . . . . 100

VII.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VII.1 Introduction

Preliminary results for iodine-induced intergranular cracking were obtained in (Diard, 2001).
It was done for quasi-2D case, for quite a few number of grains (10 grains).

The present study represent a step forward in the solution of this problem, since its
purpose is to:

• perform simulations for a larger number of grains,

• perform simulations in 3D case,

• simulate a mixed inter-transgranular fracture mode.
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The chapter is organized as follows. A series of computations with non-damaged
grain boundaries are shown first. Different possibilities for grain boundary behavior were
tested (weak or strong elastic, J2 elasto-plastic). The comparison of these results with a
classical aggregate computation with perfect grain interfaces shows the necessity to represent
grain boundaries with no damage as two layers, having the material properties of the two
neighboring grains.

An example of intergranular fracture for a quasi-2D aggregate is then presented. It shows
crack initiation for all the grain boundaries normal to tension direction. Finally, only some
of them form two main cracks. Similar results can be found in recent papers of (Clayton and
McDowell, 2004)(Clayton, 2005)(Wei and Anand, 2004).

Iodine influenced intergranular cracking is then presented for quasi-2D and 3D cases.
Crack initiation now happens on the iodine affected surface of the aggregate, then one main
crack propagates into the depth of the aggregate.

Finally, mixed inter-transgranular corrosion-affected cracking is presented. Two
computations are shown. In both of them intergranular material behavior was environment
dependent. For transgranular material behavior, two possibilities were studied: either
uncoupled, or coupled with corrosion. The second one, fully iodine coupled formulation
is shown to give an intergranular crack propagation, immediately followed by transgranular
one.

VII.2 Damaged grain boundaries versus perfect interface

Let us assume that the grain boundaries are not damaged yet. Let us have two computations
in hand:

• without GB , a reference computation for a finite element mesh like 100gr2dext (see
tab.IV.3.2), with a crystal material model for the grains, and a given texture,

• with GB , computation for the same mesh with added GB - 100gr2dextGB - the same
material model and texture for the grains, and some unknown behavior for GB

The question of this chapter is: What is the material behavior for the GB to make
the two results similar to each other ?

VII.2.1 Crystal parameters and texture

The parameters for the single crystal model proposed in (Cailletaud, 1991) were already
identified by O.Diard in the case of Zircaloy (Diard, 2001). Namely, the proposed parameters
are presented in table VII.1.

For the present work, only the most active prismatic slip systems will be taken into
account, with kinematic hardening only, and without recovery effect (M and m parameters
are supposed to be zero).

Numerically generated random orientations were taken for 115 grains of the aggregate.

VII.2.2 GB material parameters

a) Anisotropic elasticity with high stiffness

A special orthotropic elasticity is chosen, for the grain boundaries, as follows:
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Slip system Prismatic Pyramidal π1 < a > Basal Pyramidal π1 < c+ a >

τ0(MPa) 20. 107. 132. 195.

K(MPa·s1/n) 198. 500 90. 55.

n 9.5 7.5 5.5 11.3

d 170. 170.

c(MPa) 22100. 6120.

M(MPa·s1/m) 500. 55.

m 9.5 9.5

Table VII.1 : Material parameters for Zircaloy

**elasticity orthotropic
y3333 1. y2222 1. y1122 0. y2233 0. y3311 0. y2323 1.
y1111 100000000.
y1212 100000000.
y3131 100000000.

The direction 1 was supposed to be normal to the GB plane. One can see quite elevated
values of Y1111 and Y1212, Y3131, that means high resistance of the GB material to the normal
tension and in-plane shear. The aim of this first computation is to be totally invisible in the
aggregate.

b) Average elasticity - Voigt-Reuss-Hill estimation

A lot of approaches are developed up to now, to estimate the properties of a polycrystal,
starting from the single crystal properties.

Let us suppose, that the polycristal is elastically isotropic. If so, only two moduli, K –
the bulk modulus–, and G –the shear modulus–, characterize the mechanical response. The
most simple (but quite effective) approach is known under the names of Voigt-Reuss-Hill. It
is based on a number of postulates.

1. Voigt postulate : all the grains have the same deformation, the stresses can be
discontinuous

2. Reuss postulate : all the grains have the same stresses, deformations can be
discontinuous

3. Hill postulate : geometrical average of the Voigt and Reuss estimations is used:

KH =
1
2
(KR +KV )

GH =
1
2
(GR +GV )

For some particular crystal symmetries, analytical formulae for the Voigt and Reuss
estimations are available. Namely, for the case of HCP material, these formulae are as
follows.

KV =
1
9
(2(C11 + C12) + C33 + 4C13)

GV =
1
30

(M + 12C44 + 12C66)
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M = C11 + C12 + 2C33 − 4C13

C66 =
1
2
(C11 − C12)

KR =
c2

M

GR =
5
2
· c2C44C66

3KV C44C66 + c2(C44 + C66)

c2 = (C11 + C12)C33 − 2C2
13

One can easily check, that for isotropic elasticity with a stiffness tensor like

Λ∼∼
= 2µI∼∼

+ (K − 2
3
µ)I∼⊗ I∼

Λ∼∼
=




C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C44 = 1

2(C11 − C12) 0 0
symm C66 0

C66




=




K + 4
3µ K − 2

3µ K − 2
3µ 0 0 0

K + 4
3µ K − 2

3µ 0 0 0
K + 4

3µ 0 0 0
µ 0 0

symm µ 0
µ




(VII.1)
both Voigt and Reuss estimations are equivalent:

KV = KR = K

GV = GR = µ

As a first estimation for the GB elasticity one can then propose the isotropic elasticity,
calculated by means of the Hill approach, starting from the crystal parameters for Zircaloy:



103210. 51605. 46590. 0 0 0
103210. 46590. 0 0 0

118260. 0 0 0
25800. 0 0

symm 23010. 0
23010.




(VII.2)

Using the formulae above, the elasticity estimations are: KV = 68250MPa KR =
68140MPa, KH = 68195.4MPa, GV = 26357.5MPa, GR = 25806.5MPa, GH =
26082.0MPa .

Young modulus E and Poisson ratio ν connected with the volume modulus K and shear
modulus G as follows :

E =
9KG

3K +G

ν =
3K − 2G
6K + 2G

The values calculated on the basis of Hill estimation are: EHill = 69398.7MPa, νHill = 0.33
The values of E = 70000MPa, ν = 0.33 were taken for the computations. These values

give K = E
3(1−2ν) = 68627MPa, which is formally outside the Voigt-Reuss bounds. But,

K−KH
KH

does not exceed 1%, which is acceptable for our qualitative computations.
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c) Weak elasticity

Isotropic elasticity was taken here, with E = 700MPa, ν = 0.33

d) High stiffness isotropic elasticity

Isotropic elasticity was taken here, with E = 700000MPa –which is ten times the average
Zircaloy value– and ν = 0.33.

e) Average elastoplasticity

An elasto-plastic model with isotropic hardening was taken. Isotropic elasticity was taken
as E = 70000MPa, ν = 0.33, the plastic parameters are defined by means of ZeBuLoN’s
optimization procedure, so that the model response follows the results of the computation
without GB (see fig.VII.1). The parameters were identified as follows:

***behavior gen_evp
**elasticity isotropic
young 70000. poisson 0.33
**potential gen_evp ep
*flow norton
K 200.
n 9.
*isotropic nonlinear
R0 278.
Q 498.
b 107.
***return

0
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100gr2dext
optimized J2 plasticity simulator

Figure VII.1 : Stress–strain curve for optimized J2 theory parameters

f) Attached grain properties

In order to have such a possibility, the finite element mesh procedure was specially adopted.
A two-layer GB mesh was made, as shown in fig.IV.8. Attached crystal properties (with
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appropriate orientation) was taken for each layer of grain boundary, so that two layers of GB
have two different material properties.

VII.2.3 Boundary conditions

An uniaxial tension (in the direction Y) till 5% strain was performed. Some node sets (nsets)
were defined, as shown in the fig. VII.2

Displacements were then imposed as follows:

• x=0: free

• xmax: Ux = 0

• y=0: Uy = 0

• ymax: Uy = (0..0.05)·meshsize in 1000s

• z=0: Uz = 0

(a)

xy

z

(b)

Figure VII.2 : Mesh coordinate systems to illustrate boundary conditions: (a) 100gr2dext;
(b) 20gr3d

VII.2.4 Results and discussion

a) Average stress-strain curve

In the fig.VII.3 the average stress versus average strain for entire aggregate are plotted for
all the computations of the table VII.2.3. The tension direction (”y” or 22 in our case) is
presented.

Several points could be noted:
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Table VII.2 : List of FE computations

Notation Mesh crystal material GB material CPU time, s

100gr2dext 100gr2dexta VII.2.1 - -

100gr2dextGB-rigid 100gr2dextGB VII.2.1 section a) -

100gr2dextGB-iso 100gr2dextGB VII.2.1 section b) -

100gr2dextGB-faible 100gr2dextGB VII.2.1 section c) 6200.

100gr2dextGB-dur 100gr2dextGB VII.2.1 section d) -

100gr2dextGB-plast 100gr2dextGB VII.2.1 section e) 11070.

100gr2dextGB2ele-crystal 100gr2dextGB2ele VII.2.1 section f) 9230.

asee tab.IV.3.2

• Curve 100gr2dextGB2ele-crystal is close to, but below the curve 100gr2dext. It is
consistent with a well-known fact, that finite element mesh refinement causes a softer
response of the polycrystalline aggregate.

• 100gr2dextGB-faible is much softer, and 100gr2dextGB-dur is much more rigid, then
the others. It is natural, because of weak (or rigid) GB elasticity. Nevertheless, one can
note similar dσ/dε for 100gr2dextGB-faible and 100gr2dext for quite developped plastic
strains (say, at 2..5% of macrostrain). That is not the case for 100gr2dextGB-dur.

• 100gr2dextGB-iso represents the highest average stresses. It seems normal, compared
to 100gr2dextGB2ele-crystal, 100gr2dextGB-faible and 100gr2dextGB-plast.

• One would expect 100gr2dextGB-plast to be closer to 100gr2dext. Apparently, the
response is surprisingly soft, compared to 100gr2dext.

• 100gr2dextGB-rigid is quite close to 100gr2dext. It is not an evident result. One could
expect to have something different from 100gr2dext, because of the anisotropic GB
elasticity.

b) Average normal stress in GB, versus GB angle to tension direction

In this section, stress component in GB, normal to GB plane is calculated first. Then, the
average value is found for corresponding GB elset (set of finite elements). Finally this average
stress is plotted as a function of GB plane angle with the tension direction (”y” axe in our
case). It was done twice, for second and 30th computation increments (see figs. VII.4, VII.5),
that corresponds to negligibly small, or quite developed plastic deformation.

One can note the following:

• the dependence (in both map2 and map30) for 100gr2dextGB-rigid is quite complex,
and not monotonous.

• 100gr2dextGB-iso, 100gr2dextGB-plast, 100gr2dextGB-faible and 100gr2dextGB2ele-
crystal represent a quite linear angle dependence, specially for map2.

• for map30 the resulting points have a larger scatter about average line than for map2
(100gr2dextGB-iso, 100gr2dextGB-plast, 100gr2dextGB-faible, 100gr2dextGB2ele-
crystal).
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• It seems that the scatter for 100gr2dextGB-faible –at map 30– is less than for the others.

• For map 2, the scatter is quite similar for 100gr2dextGB-iso, 100gr2dextGB-plast,
100gr2dextGB-faible, 100gr2dextGB2ele-crystal, 100gr2dext.

c) Local stress state

For the local stress study, the easily accessible line y = 0 is taken –see fig.VII.2–. Stress
component σ22 (sig22, corresponding to the tension direction) is then plotted versus y-
coordinate at 1% of applied strain (fig.VII.6).

One can note the following:

• 100gr2dextGB-rigid is quite perturbed, in comparison with the reference solution
100gr2dext,

• 100gr2dextGB-iso, 100gr2dextGB-plast and 100gr2dextGB2ele-crystal, are in rather
good agreement with 100gr2dext,

• 100gr2dextGB-faible is approximatively two times lower than 100gr2dext. 100gr2dextGB-
faible is not always similar to 100gr2dext, one can find some grains with opposite signs
for sig22(y).

VII.2.5 Local fields

Local stress and strain fields are presented below. Namely, cumulated plastic strain (fig.VII.8)
and von Mises stress (fig. VII.7) are presented. One can note that the fields for 100gr2dextGB-
iso, 100gr2dextGB-plast and 100gr2dextGB2ele-crystal are similar to 100gr2dext. The stress
and plastic strain values for 100gr2dextGB-faible are lower. The stresses for 100gr2dextGB-
rigid form more explicit maximum and minimum zones. One can also mention that the stress
”bands” (zones of relatively high stress) are oriented rather in vertical direction, while plastic
strain bands make rather 45◦angle with tension direction.

VII.2.6 Conclusion

1. The question of this chapter was: What is the GB material behavior, to get similar
results with and without GB ? One can conclude, that the best results are obtained
with the GB as attached grains (100gr2dextGB2ele-crystal computation). Average
elasto-plasticity, or even average elasticity (for the entire aggregate) seems to give quite
acceptable results as well. It seems that weak or strong isotropic behavior, as well as
strongly anisotropic behavior are not good candidates for the basis of GB model.

2. Under relatively small plastic strains, the normal stress in GB versus GB angle to the
tension direction (for some of investigated GB properties) can be approximated by a
linear function. The maximum appears for the GB, normal to the tension direction.
But for quite developed plastic strains the dispersion of normal stresses is higher.

So, if the failure of GB is supposed to be stress-driven, one can expect the GB, normal
to the tension direction, to be the less resistive. And, this fact does not depend on
the isotropic behavior of GB. But, it can only be expected for relatively small plastic
strains. Even at 5% of global tensile strain, this effect seems to be much less significant.
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The conclusions above were made after extended 2d computations. Because of the time
limits, 3d validation was not done for this particular part of the study. Nevertheless, this
study was a motivation to chose the strategy of grain boundary modeling, as explained in
chap.II.2.

VII.3 Uncoupled intergranular fracture

Let us have a test with intergranular fracture possibility only, without iodine influence. The
same extended 2D aggregate of 115 grains was used. The basic crystal model was used for the
grain core, with parameters from table VII.1. Parameters for the grain boundary material,
corresponding to damage, are given in table VII.3. Node sets used for boundary conditions
are shown in the fig. VII.2 Displacements were imposed as follows:

• x=0: free

• xmax: Ux = 0

• y=0: Uy = 0

• ymax: Uy = (0..0.05)·meshsize in 250

• z=0: Uz = 0

Rn Kn nn Rt Kt nt A k r β

900. 200. 8. 900. 200. 8. 2000. 3. 4. 0.01

Table VII.3 : Damage parameters for DOS only test

Rn Kn nn Rt Kt nt A k r β

10. 750. 8. 10. 750. 8. 5000. 3. 2. 0.01

Table VII.4 : Damage parameters for DOS only test –alternative set–

In fig. VII.9 one can see the consequence of Mises stress and damage distributions. One
can note that grain boundaries normal to the tension direction are damaged first, then they
link together in longer cracks, and finally one has two big cracks able to separate the aggregate
into two parts. A progressive stress drop is produced by the opening of the crack.

One of the ”bad” results is also presented here. In fig.VII.11 one can see damage
and inelastic opening fields from two computations, with grain boundary parameters from
(tab.VII.3 and tab.VII.4 respectively). They are called then ”wanted”and ”unwanted”results.
For the ”unwanted” map one can see all the grain boundaries, normal to tension direction,
to be damaged in the same manner. Hence in ”wanted” result a preferential crack path can
be remarked. The DOS model responses for both ”wanted” and ”unwanted” parameter sets
were presented above – see figs.II.18, II.19–. From these results one can establish a principle
: if you want the deformation to be localized in one crack, the GB material should damage
first, and then get inelastic opening.
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VII.4 Iodine influenced intergranular fracture

VII.4.1 Diffusion-damage coupling parameters

Notations: Both damage and diffusion coefficient are usually denoted as D. We need to
distinguish them here. That is why the diffusion coefficient will be written in bold.
D − damage
D − diffusion coefficient

Non-damaged state: Diffusion of iodine in the non-damaged Zircaloy-4 is known to be
non-significant. In (Fregonese, 1997), the difference between the iodine profiles was found to
be about 100nm after 16 hours of the experiment. An appropriate diffusion coefficient was
then estimated as

D < 2 · 10−19m2s−1 = 2 · 10−13mm2s−1

The inter-transgranular fracture, studied here, happens in about 10 min in the Zircaloy
tube wall of 600 mm width, with 0.1 µm/s rate for intergranular crack, and 1 to 20 µm/s
rate for transgranular crack.

It means that, for our process, pure diffusion does not happen at all. One can take any
small value for the grains as well as the grain boundaries diffusion coefficient D (even if grain
boundaries are usually known to have higher D, than the grain core –see (Mishin and Herzig,
1999)–). The chosen value in absence of damage will then be

Dnd = 2 · 10−13mm2s−1

If there is no iodine, damage should not happen during the computation time. Let us
repeat the damage law:

Ḋ =
(σd

A

)r
(1 −D)−k

One could want to have D = 10−5 after 1000s of computation. With r = 4 it approximately
gives:

∆D
1000s

≈
(σd

A

)4

(σd

A

)
≈ 10−2

A ≈ 100 · σd

A typical average stress in tension test for Zircaloy-4 is 500 MPa. The local maximum
eigenstress, obtained from the aggregate computations, is higher – the reached level is about
1000 MPa. So, in a non-damaged state, one can take

And = 100 · 1000MPa = 105MPa

Damaged state: In a damaged grain boundary, the ”diffusion” is believed to happen faster.
Here we will make D dependent on the material damage, and the damage parameter - A -
dependent on the iodine concentration. This coupling can be regulated in order to have given
intergranular crack propagation rate (0.1µm/s).

As mentioned in (Adda and Philibert, 1977), the penetration of a given concentration
value is time-dependent, following the relation

y ≈ K
√
Dgb(t1/4)
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A value of Dgb = 10−4m2s−1 was found enough for the diffusion to traverse the mesh of
100 µm in 1000 s. The computation in 4000 s and (0.5 · Dgb) gives approximately the same
result. This demonstrates that the kinetics really depends on t1/4.

Now a law has to be chosen to raise the diffusion coefficient from its initial value of 10−13

(damage = 0) till effective value Deff (damage = 1). The following function was found
convenient:

D = Deff · (1 − e−b1·D) + 10−13

Since the problem is fully coupled, the damage evolution will depend on iodine
concentration C:

A = Aeff + 105 · e−b2·C

The parameters Deff , Aeff , b1 and b2 will define the crack propagation rate. As a final
choice, two sets were defined, as shown below:

D = 10−13 + 10−4 · (1 − e−12·D)

A = 1000 + 105 · e−12·C

Rn Kn nn Rt Kt nt A k r β

900. 200. 8. 900. 200. 8. 1000 + 105 · e−12.·C 3. 4. 0.01

Table VII.5 : Damage parameters for coupled IG test

Rn Kn nn Rt Kt nt A k r β

- - - - - - 1000 + 105 · e−10.·C 3. 2. 0.0

Table VII.6 : Damage parameters for coupled IG test - alternative set

VII.4.2 Quasi-2D computational results

The material parameters for the grain boundary material presented in table VII.5 are used
here. The finite element mesh 100gr2dextGB2eleLin – see tab.IV.3.2 and fig. IV.6 – was
used. Displacements were prescribed in order to have a tensile strain rate of 2 · 10−41/s .
Node sets (nsets) used for boundary conditions are shown in the fig. VII.2 Displacements
were imposed as follows:

• x=0: free

• xmax: Ux = 0

• y=0: Uy = 0

• ymax: Uy = (0..0.20)·meshsize in 1000s

• z=0: Uz = 0



100 Chapter VII. Zircaloy computations

As a result, one can see progressive crack propagation from the left side (fig. VII.12,
which is influenced by iodine. There is a stress drop, due the presence of the crack. The
iodine ”diffusion” map is in accordance with the crack path, as seen in fig.VII.13.

On the other hand, the choice of the model itself does not guarantee the results. In
fig.VII.13, the example of an ”unwanted” result is presented, with GB parameters from
table VII.6. Damage happens in all the GB touched by diffusion, without any preferential
path.

VII.4.3 3D computational results

The material parameters are still taken from table VII.5. The finite element mesh
20gr3dGB2ele was used – see tab.IV.3.2 and fig. IV.15 – . The coordinate axes for the
mesh are shown in the fig. VII.2. Displacements were imposed as follows:

• x=0: free

• xmax: Ux = 0

• y=0: Uy = 0

• z=0: Uz = 0

• ymax: Uy = (0..0.20)·meshsize in 1000s

The Iodine was applied on the face x=0.
In fig. VII.14, the von Mises stress and the damage fields are shown for three stages of

intergranular crack propagation. One can note that crack appears at the grain boundary,
which is the most perpendicular to the tensile axis. As a crack appears, a local unloading is
observed. Damage on the grain boundary structure is shown in fig. VII.15.

VII.4.4 Crack propagation rate

In fig. VII.21, the crack projection length as a function of time is presented, for the three
iodine influenced intergranular fracture computations. In fact, for all the computations the
iodine influenced area corresponds to the aggregate surface x=0. Thus the crack length
was found as a maximum x-coordinate of all the integration points, having damage value
higher, then a given threshold (0.9 was taken here). The results for 2d –2d IG slow– and 3d
computations (with parameters from table VII.5, and diffusion coefficient D = 10−13 + 4 ·
10−6 · (1− e−12·D)) are presented. One can mention, that 2d and 3d results are quite close to
each other. On the other hand, these results are in agreement with the typical experimental
crack propagation rate of 0.1 µm/s . In order to illustrate the model capabilities, one more
2d computation result is presented –2d IG fast–. Parameters corresponding to diffusion are
different here (D = 10−13 + 10−4 · (1 − e−12·D))

VII.5 Iodine-influenced inter-transgranular fracture

In addition to the intergranular damage mechanism, transgranular type of fracture is added
here. As explained in Chapter 1, it is modelled by a deformation normal to the basal plane
(with a n ⊗ n tensor) to represent the opening due to cleavage. This cleavage strain is
supposed to appear only if the resolved stress on the cleavage plane becomes higher then a
given threshold. For this threshold, two approaches were used here.
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• uncoupled. The threshold was concstant during the computation (Rcleav = 1000MPa).

• corrosion–coupled. The threshold was given as a function of the iodine concentration
(Rcleav = 1000 + 105 · e−20·CMPa). The presence of iodine will then promote the
possibility of cleavage.

The extended 2d mesh of 100 grains and the boundary conditions were the same as for
the purely intergranular test.

A general view of the results is presented in fig. VII.16. The first intergranular stage of
fracture is similar for both approaches. On the other hand, a critical difference is observed
for the transgranular initiation. With the uncoupled approach, the transgranular crack starts
independently from the intergranular crack, as shown by fig. VII.17. On the other hand, the
fully coupled approach gives a continuous passage from intergranular to transgranular crack
propagation as shown in fig. VII.18. Analysis of the plastic strain field near the crack tip at
the moment of transgranular crack initiation is shown in figs.VII.19, VII.20. Here the grain
(gr59) - the upper one on the computed map is better oriented for prismatic or basal slip.
It can be seen on the colored map or on the average slip curve. The other grain (gr53) has
significantly less prismatic + basal slip. To follow the deformation of the neighboring grain,
it represent more pyramidal slip. But, it is not enough, and another mode of ”deformation”
is needed – transgranular crack in basal plane.

VII.6 Conclusions

The main results obtained in this chapter are the following:

1. Quasi-2D inter-transgranular computations for a relatively high number of grains (100
grains), become rather standard and relatively fast (2 to 3 days for a reasonable mesh).
It opens possibilities to get the ideas about material parameter choice.

2. A simulation of 3D corrosion-driven intergranular damage was performed. With the
available algorithm, the CPU time is still huge (about one month), so that the
computation is unique. It can be done only for validation purposes, once material
parameters are chosen.

3. In our numerical simulation, it was possible to reproduce the switch from inter to
transgranular fracture mode which is observed experimentally. An analysis of the
interaction between crack and plastic strain can provide interesting information and
prove the consistence of chosen material parameters.
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Figure VII.3 : Global average stress-strain curves
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Figure VII.4 : Average normal stress in GB versus GB angle to tension direction. Relatively
small plastic strains
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Figure VII.5 : Average normal stress in GB versus GB angle to tension direction. Developed
plastic strains
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Figure VII.6 : sig22 dependence on Y coordinate for Y=0 line
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(a) 100gr2dext (b) 100gr2dextGBiso

(c) 100gr2dextGBplast (d) 100gr2dextGBrigid

(e) 100gr2dextGBfaible (f) 100gr2dextGB2ele-crystal

Figure VII.7 : Von Mises stress fields at 2% macrostrain
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(c) 100gr2dextGBplast (d) 100gr2dextGBrigid

(e) 100gr2dextGBfaible (f) 100gr2dextGB2ele-crystal

Figure VII.8 : Cumulated plastic strain fields at 2% macrostrain
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Figure VII.9 : Von Mises stress and damage fields evolution for non-coupled test
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Figure VII.10 : Von Mises stress and damage fields evolution for non-coupled test - end
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(a) wanted opening (b) unwanted opening

(c) wanted damage (d) unwanted damage

0 1

Figure VII.11 : Two parameter sets - wanted and unwanted damage and inelastic opening
strain (δ) distributions
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Figure VII.12 : Von Mises stress and damage fields evolution for coupled test
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(a) wanted damage (b) wanted concentration
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Figure VII.13 : Two parameter sets - wanted and unwanted iodine profile and damage field
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Figure VII.14 : Von Mises stress and damage fields evolution for coupled test - 3d
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(a) fragment - skin of a grain number 10 (b) all grain boundaries

0 1

Figure VII.15 : Damage fields on grain boundary structure - 3d
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(a) intergranular (b) intergranular

(c) transgranular initiation (d) transgranular initiation

(e) rupture

Figure VII.16 : Inter-transgranular fracture transition
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Figure VII.17 : Aggregate fragment, iodine coupled intergranular and uncoupled
transgranular material behavior. One can see iodine coupled intergranular crack - on the
left (IG), and transgranular crack initiation near the grain boundary, which then enters a
neighboor grain - on the right (TG)

Figure VII.18 : Aggregate fragment, iodine-coupled intergranular and transgranular
material behavior. One can see intergranular (IG) crack, followed by transgranular (TG)
one
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Figure VII.19 : Transgranular crack initiation, qualitative comparison of typical
computation result and known literature image; computation field of cumulated
prismatic+basal slip versus experimental micrograph from (Kubo et al., 1985). Here : 1
- grain, preferably oriented for prismatic or basal slip, gr59 in the computation ; 2 - grain
with less prismatic+basal, but more pyramidal slip, gr53 in the computation; 3 - transgranular
crack initiation
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Figure VII.20 : Average slips for 2 grains near transgranular crack initiation
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Figure VII.21 : Crack projection length as a function of time for iodine coupled
intergranular fracture.



Chapter -VIII-

Conclusions and perspectives

The main purpose of this thesis was to contribute to the development of improved crystal
plasticity algorithms, in order to allow for the large deformations and damage in finite element
computations, and to present 2D and 3D calculations with crack propagation in intergranular
and transgranular regime.

A series of results have been obtained concerning the algorithm development. The results
obtained are perfectly clear for the case of elasticity and classical plasticity. Concerning
the implementation of single crystal models, a review of the literature has shown that the
discussion on the better algorithm is still open, specially for the problem related to the choice
of the active slip systems. Several strategies have been tested. They allow us in some cases to
present an improved performance, if compared with the preexisting algorithm in ZéBuLoN.

A copper specimen has been computed. A 3D mesh representing the real 3D grain
microstructure was available. The code was then able to correctly simulate the high degree
of heterogeneity present in the grains.

Crack propagation has been simulated using a new concept for the description of the grain
boundary, which is now made of two elements. This type of approach allows us to propose a
flexible modeling of any kind of interaction between mechanics and environment. In order to
achieve this simulations, an automatic mesh generation procedure has been developed. The
grain boundary elements can then be introduced in any real-like 2D or 3D polycrystalline
aggregate.

After this work, 2D crack propagation becomes rather easy, even if it remains time
consuming. 2D simulations with a relatively large number of grains (100) have been
performed. Mechanics and environment are coupled, and the results are quite realistic.
On the other hand, it was possible to reproduce the experimentally known transition from
integranular to transgranular failure.

3D simulations are also available. A first 3D case has been shown. It was limited to 20
grains, due to the lack of time, but can be run in parallel, in order to improve the CPU time.

Some results of the thesis were published in (Musienko et al., 2002)(Musienko et al., 2003).
The results were presented at a number of french and international summits:

• Algorithmes implicites en grandes transformation pour des modeles de plasticite
classique et cristalline. Colloq. MECAMAT - Aussois (France) 21-25 janvier 2002

• FE simulation of multicrystals at large strains. A. Musienko, K. Schmidegg, O.
Kolednik, R. Pippan, G. Cailletaud. 1st French-Russian Symposium ’Physics and
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Mechanics of large plastic strains’, St-Petersburg, Russia, 4-7 June 2002, Organized
by CRISM ”Prometey” (Russia) and LPMTM/CNRS (France)

• Computational aspects of crystal plasticity. Seminar at Laboratoire des Proprietes
Mecanique et Thermiques des Materiaux, Univ. Paris XIII (France), 9 July 2002

• Computational aspects of finite strain crystal plasticity. Seminar at LMR, INSA, Rouen
(France), 23 January 2003

• Micromechanical approach for stress corrosion cracking in Zircaloy tubes: a volumetric
description of damage, opening and sliding of grain boundaries. A.Musienko,
G.Cailletaud, O.Diard, S.Leclercq, G.Rousselier. Int.Conf. ”Plasticity 2003”, Quebec
City (Canada), July 7-11, 2003

• Transgranular failure model, A.Musienko, G.Cailletaud - 5th Int Conf. ”Scientific-
technical problems of safety and lifetime prediction and methods of their solution”,
Russia, St-Petersburg, St-Petersburg State Tech.Univ. 14-17 Oct. 2003

VIII.1 Perspectives

There are still improvements and open questions.

• One should continue the systematic approach to finite strain algorithms. An improved
tangent matrix is highly desirable, and a more efficient procedure for choosing the active
slip systems.

• The meshes created in the framework of this study are also available for other types of
applications. One could for instance imagine to apply the procedure to superplasticity
effect, 2-phase materials with one phase as thin layers between the grains of the other,
etc...

• Two types of perspectives are possible for copper computations: the results could
probably be improved by using finer meshes, adapted material parameters, different
boundary conditions, effect of crystal rotation; the importance of choosing a realistic
3D shape for the grains could be better demonstrated by using other type of grain
geometries in our simulations (we tried extended 2D computations, but random grain
morphology reconstruction from the 2D surface image could be investigated too).

• Having in hand the numerical procedure for iodine-coupled inter-transgranular fracture
analysis, we could easily generate a series of results with complex sequences of
interaction, like applying load first, then the effect of environment (for tests with
delayed iodine interaction), or sequences with action of environment only, followed by
a mechanical loading... This would allow to have a stronger idea about the values of
the material parameters.

• Possible scenarii of real tube fracture can be simulated.
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Pre-existing algorithm of ZéBuLoN
for single crystal model

A.1 Stress update algorithm

A.1.1 Possible numerical methods

Let us consider a problem to numerically resolve differential equation, as follows:

v̇ = f(v), v(t0) = v0

Let us look at one time step, from time t till t + ∆t . The value of the variable at time t –
i.e. vt – supposed to be known. The value at the end of time step – vt+∆t – should be found.

Two strategies are classically known.

1. Explicit methods. The most simple of them is called ”Forward Euler scheme”. The
increment of the unknown variable ∆v is calculated in the explicit manner, starting
from the value at the beginnnig of time step vt. The expression is as follows :

∆v = f(vt)∆t

2. Implicit methods. The most simple of them is called ”Backward Euler scheme”. The
increment of the unknown variable ∆v is now found as a solution of a nonlinear algebraic
equation, as follows :

∆v = f(vt+∆t)∆t

In other words, the residual R should be made equal to zero.

R = ∆v − f(vt+∆t)∆t

This equation is solved by the Newton method. For this method, the Jacobian has to
be calculated :

J =
∂R
∂∆v
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A.1.2 Implicit integration for the single crystal model

For the case of a single crystal model, the residuals are as follows.

Fe = ∆ε∼− ∆ε∼
e −

∑
∆vs · sign τsm∼ s

Fvs = ∆vs −
〈 |τ t+∆t

s − xt+∆t
s | − rt+∆t

s

K

〉n

∆t

∆xs = C∆αs

∆αs = ∆vs(sign (τs − xs) −D(αt
s))/(1 +D∆vs)

∆rs = Q
∑

hrs∆ρr

∆ρr =
(1 − bρt

r)∆vr

1 + b∆vr

The Jacobian matrix is found as a derivative of all the residuals by all the unknowns. It
comes:

∂Fe

∂∆ε∼e
= I∼∼

∂Fe

∂∆vs
=

{
− sign τsm∼ s active
0 nonactive

∂Fvs

∂∆ε∼e
=


 − n

K ∆t
〈 |τ t+∆t

s −xt+∆t
s |−rt+∆t

s

K

〉n−1
sign τsm∼ s : L∼∼

active

0 nonactive

∂Fvs

∂∆vr
= δrs +

n

K

〈 |τ t+∆t
s − xt+∆t

s | − rt+∆t
s

K

〉n−1

·
[
sign (τs − xs)

∂∆xs

∂∆vr
+
∂∆rs
∂∆vr

]
∆t

A.2 Algorithmic elasto-plastic moduli

The developement for consistent elasto-plastic tangent moduli is presented here. Similar
results can be found in (Miehe and Schröder, 2001).

It is known, that

C∼∼
ep =

∂∆σ∼
∂∆ε∼

Additive elasto plastic decomposition for crystalline model is as follows :

∆σ∼ = C∼∼
: ∆ε∼−

∑
s

∆γsC∼∼
: m∼ s

∆τr = m∼ r : ∆σ∼ = m∼ r : C∼∼
: ∆ε∼−

∑
s

∆γsm∼ r : C∼∼
: m∼ s

On the other hand, for active slip systems

Rr = R0 +Q ·
∑

p

hrpvp
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∆Rr = Q ·
∑

p

hrp∆vp

|τr| = Rr ⇒ sign τrτr = Rr ⇒ sign τr∆τr = ∆Rr

We consider here, that sign does not change on the increment.
Putting the 2 expressions for ∆τr together, one can get :

Q ·
∑

p

hrp∆vp = sign τr

[
m∼ r : C∼∼

: ∆ε∼−
∑

s

∆γsm∼ r : C∼∼
: m∼ s

]

One can use p=s, so

sign τr(m∼ r : C∼∼
: ∆ε∼) =

∑
s

[
sign τr∆γsm∼ r : C∼∼

: m∼ s +Q · hrs∆vs

]

sign τr(m∼ r : C∼∼
: ∆ε∼) =

∑
s

[
(sign τs sign τr)m∼ r : C∼∼

: m∼ s +Q · hrs

]
∆vs

One can see the last expression in matrix form, as


sign τactive1(m∼ active1 : C∼∼
: ∆ε∼)

...

sign τactiveN (m∼ activeN : C∼∼
: ∆ε∼)


 =




D11 ... D1N

... ... ...

DN1 ... DNN


 ·




∆vactive1

...

∆vactiveN




Here

Dij = (sign τactivei sign τactivej )m∼ activei : C∼∼
: m∼ activej +Q · hactiveiactivej

Taking the inverse of D-matrix, one have :




∆vactive1

...

∆vactiveN


 = [D]−1 ·




sign τactive1m∼ active1 : C∼∼
: ∆ε∼

...

sign τactiveNm∼ activeN : C∼∼
: ∆ε∼




In other words,

∆vα =
∑
β

[D]−1
αβ sign τβm∼ β : C∼∼

: ∆ε∼

∂∆vα

∂∆ε∼
=

∑
β

[D]−1
αβ sign τβm∼ β : C∼∼

Algorithmic tangent will finally take form :

∂∆σ∼
∂∆ε∼

= C∼∼
−

∑
α

∑
β

[D]−1
αβ sign τα sign τβ(C∼∼

: m∼ α) ⊗ (m∼ β : C∼∼
)

And again, we consider, that signum τ does not change.
For the case of elastic isotropic material,

C∼∼
= 2µI∼∼

+ (k − 2
3
µ)I∼⊗ I∼

As Trm∼ s = 0, one gets
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C∼∼
: m∼ s = 2µm∼ s

∂∆σ∼
∂∆ε∼

= C∼∼
− 4µ2 ·

∑
α

∑
β

[D]−1
αβ sign τα sign τβm∼ α ⊗ m∼ β

For D-matrix one will have :

Dij = 2µ(sign τactivei sign τactivej )m∼ activei : m∼ activej +Q · hactiveiactivej

With just 1 slip system, matrix would be a scalar, as

D = 2µm∼ 
 : m∼ 
 +Q ≈ µ

D−1 = 1/µ

Then, tangent will be

∂∆σ∼
∂∆ε∼

= C∼∼
− 4µ(m∼ 
 ⊗ m∼ 
)

In particular, for active slip number 7,

4µ(m∼ 7 ⊗ m∼ 7) =
4
6
µ




0 0.5 −0.5
−1 0

sym 1


⊗




0 0.5 −0.5
−1 0

sym 1


 =

=
2
3
µ




0 0 0 0 0 0
0 1 −1 −0.707107 0 0.707107
0 −1 1 0.707107 0 −0.707107
0 −0.707107 0.707107 0.5 0 −0.5
0 0 0 0 0 0
0 0.707107 −0.707107 −0.5 −0 0.5






A.3. CHECK THE NATURE OF MATRIX D 125

A.3 Check the nature of matrix D
Let us check the values of m∼ i : m∼ j .

m∼ i : m∼ i =
1
6
· 3

m∼ i : m∼ j =
1
6
·




3 1.5 1.5 1 0.5 −0.5 0.5 1.5 2 0.5 −2 −1.5
1.5 3 −1.5 0.5 2 1.5 1 −0.5 0.5 −0.5 −1.5 −2
1.5 −1.5 3 0.5 −1.5 −2 −0.5 2 1.5 1 −0.5 0.5
1 0.5 0.5 3 1.5 −1.5 1.5 0.5 2 1.5 −2 −0.5

0.5 2 −1.5 1.5 3 1.5 2 −0.5 1.5 −0.5 −0.5 −1
−0.5 1.5 −2 −1.5 1.5 3 0.5 −1 −0.5 −2 1.5 −0.5
0.5 1 −0.5 1.5 2 0.5 3 −1.5 1.5 −1.5 −0.5 −2
1.5 −0.5 2 0.5 −0.5 −1 −1.5 3 1.5 2 −0.5 1.5
2 0.5 1.5 2 1.5 −0.5 1.5 1.5 3 0.5 −1 −0.5

0.5 −0.5 1 1.5 −0.5 −2 −1.5 2 0.5 3 −1.5 1.5
−2 −1.5 −0.5 −2 −0.5 1.5 −0.5 −0.5 −1 −1.5 3 1.5
−1.5 −2 0.5 −0.5 −1 −0.5 −2 1.5 −0.5 1.5 1.5 3




=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.5 0.25 0.25 0.166 0.0833 −0.0833 0.0833 0.25 0.333 0.0833 −0.333 −0.25

0.25 0.5 −0.25 0.0833 0.333 0.25 0.166 −0.0833 0.0833 −0.0833 −0.25 −0.333

0.25 −0.25 0.5 0.0833 −0.25 −0.333 −0.0833 0.333 0.25 0.166 −0.0833 0.0833

0.166 0.0833 0.0833 0.5 0.25 −0.25 0.25 0.0833 0.333 0.25 −0.333 −0.0833

0.0833 0.333 −0.25 0.25 0.5 0.25 0.333 −0.0833 0.25 −0.0833 −0.0833 −0.166

−0.0833 0.25 −0.333 −0.25 0.25 0.5 0.0833 −0.166 −0.0833 −0.333 0.25 −0.0833

0.0833 0.166 −0.0833 0.25 0.333 0.0833 0.5 −0.25 0.25 −0.25 −0.0833 −0.333

0.25 −0.0833 0.333 0.0833 −0.0833 −0.166 −0.25 0.5 0.25 0.333 −0.0833 0.25

0.333 0.0833 0.25 0.333 0.25 −0.0833 0.25 0.25 0.5 0.0833 −0.166 −0.0833

0.0833 −0.0833 0.166 0.25 −0.0833 −0.333 −0.25 0.333 0.0833 0.5 −0.25 0.25

−0.333 −0.25 −0.0833 −0.333 −0.0833 0.25 −0.0833 −0.0833 −0.166 −0.25 0.5 0.25

−0.25 −0.333 0.0833 −0.0833 −0.166 −0.0833 −0.333 0.25 −0.0833 0.25 0.25 0.5

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Note, that a block of this matrix can have a determinant equal to zero. Example – top
left 3 by 3 block.
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Examples of the source code for
integration procedures of material

behavior models

B.1 Elasticity

// ============================================================================
// NeoHookean compressible elasticity
// ============================================================================
@Class NEO_HOOKE : BASIC_NL_BEHAVIOR {

@Name neo_hooke1;
@Grad usz F;
@Coefs mu, lam;

};

@StrainPart {

TENSOR2 one = TENSOR2::unity(tsz());
TENSOR2 Ft = transpose(F);
TENSOR2 b = syme(F*Ft);
double J = F.determin();

double ko = mu/J;
sig = ko * (b - kronecker);
double ko1 = lam/J*log(J);
sig += ko1 * one;

TENSOR4 spacial_elasticity = lam/J * (one ^ one);
double coef = 2./J * (mu - lam * log(J));
spacial_elasticity += coef * (TENSOR4::I(tsz()));
//--------- tg_matrix...

m_tg_matrix = spacial_elasticity;
}
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B.2 J2 plasticity

// ============================================================================
// Finite strain J2 plasticity with implicit integration
// ============================================================================

#include <Elasticity.h>

@Class anand1 : BASIC_NL_BEHAVIOR {
@Name anand1;
@SubClass ELASTICITY elasticity;
@Coefs R0, Q;
@Grad usz F;
@tVarInt eel;
@sVarInt epcum;
@uVarAux Fp;
@uVarUtil Fe, Fe_tr,R_tr;
@tVarUtil U_tr,Ue, T_bar, T, U;
@tVarUtil norm, eel_tr;
SMATRIX ds_deel;
@Implicit

};

@PreStep {
Fe_tr = F* inverse(Fp);
Fe_tr.strain_partion(R_tr, U_tr);
eel_tr = U_tr.log_tensor();

}

@StrainPart {
double Jac = 1./F.determin();
Ue = eel.exp_tensor();
Fe = R_tr * Ue;
Fp = inverse(Fe)*F;
T_bar = *elasticity*eel;
T = rotate_tensor(T_bar,R_tr);
sig = T*Jac;

SMATRIX tmp(psz,f_grad,0,0);
SMATRIX H = *elasticity*tmp;
SMATRIX Cstar = expand_in(TENSOR4::Ml(to_5_9(sig)) + TENSOR4::Mr(to_5_9(sig)));
m_tg_matrix =Jac*rotate_matrix(H, R_tr);
m_tg_matrix -= Cstar;

}

@CalcGradF {
sig = *elasticity*eel;

double radius = R0 + Q*epcum;
TENSOR2 devT = deviator(sig);
double sigeff = sqrt(1.5*(devT|devT));
double yld = sigeff - radius;

f_vec_eel = eel - eel_tr;
ds_deel = *elasticity;

if ( (yld>(double)0.0 && depcum>=0) || (depcum>(double)0.0) ) {
norm = (1.5/sigeff)*devT;

SMATRIX dn_ds = (1.5/sigeff)* TENSOR4::J(tsz());
dn_ds -= (1./sigeff) * (norm^norm);
SMATRIX dn_deel = dn_ds*ds_deel;
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f_vec_eel += norm*depcum;
deel_deel = TENSOR4::I(tsz()) + depcum*dn_deel;
deel_depcum = norm;

f_vec_epcum = 0.01*yld;
depcum_depcum = (-0.01)*Q;
depcum_deel = 0.01*(norm*ds_deel);

}
}
// ============================================================================
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B.3 Crystal plasticity

// ============================================================================
// Implicit integration of the single crystal
// with multiplicative decomposition
// ============================================================================
#include <Elasticity.h>

@Class FS_SS1 : BASIC_NL_BEHAVIOR {
@Name fs_ss1;
@SubClass ELASTICITY elasticity;
@SubClass CRYSTAL_ORIENTATION orientation;
@Coefs Q, b, R0, K, n;
@Grad usz F;
@tVarInt eel;
@sVarInt v [num_systems(1)];
@uVarAux Fp;
@uVarAux Fe;
@tVarUtil Ce,Ctr, eel_tr;
@sVarUtil norm [num_systems(1)];
@sVarUtil v_ini [num_systems(1)];
int num_systems(int);
@Implicit

};

@PreStep {
TENSOR2 Fe_tr = F*inverse(Fp);
TENSOR2 Ft = transpose(Fe_tr);
eel_tr = 0.5*(syme(Ft*Fe_tr) - TENSOR2::unity(tsz()));
int i, Nsyst = num_systems(1);
for(i=0;i<Nsyst;i++) v_ini[i] = v[i];

}
//--------------------------------------------------------
@StrainPart {
double Jac = (double)1./F.determin();
double dv;
int c=0;
int Nsyst = num_systems(1);

MARRAY<TENSOR2>& uloc1 = orientation->give_u_loc();
MARRAY<TENSOR2>& mloc1 = orientation->give_m_loc();

//-----------update Fp
TENSOR2 deltafp;
deltafp.resize(usz); deltafp=0.;
for (c=0;c<Nsyst;c++)
{
dv = v[c]-v_ini[c];
deltafp += dv * norm[c] * (uloc1[c]+to_5_9(mloc1[c]));
}
TENSOR2 exp_deltafp = deltafp.exp_tensor();
Fp = exp_deltafp * Fp;

//-----------check det Fp = 1
if (Fp.determin()<=(double)0.0) { Fp=(double)0.0; Fp[0]=Fp[1]=Fp[2]=(double)1.0; }
Fp *= (double)1.0/(pow(Fp.determin(),((double)1./(double)3.)));
//----------update Fe
Fe = F * inverse(Fp);
TENSOR2 Fet = transpose(Fe);
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//------update Cauchy stress
Ce = 2.*eel + TENSOR2::unity(tsz());
TENSOR2 sigm = *elasticity * eel;
sig = syme((Fe*to_5_9(sigm)*Fet))/Fe.determin();

//---------global tg_matrix, to be updated later...
MATRIX tmp(psz, psz,f_grad,0,0);
SMATRIX H = *elasticity*tmp;
SMATRIX Cstar = expand_in(TENSOR4::Ml(to_5_9(sig)) + TENSOR4::Mr(to_5_9(sig)));
m_tg_matrix = Jac*rotate_matrix(H, Fe)-Cstar;

}
//----------------------------------------------------------
@CalcGradF {
//---stress
Ce = 2.*eel + TENSOR2::unity(tsz());
Ctr = 2.*eel_tr + TENSOR2::unity(tsz());
TENSOR2 sigm = *elasticity*eel;

f_vec_eel = eel - eel_tr;
deel_deel = TENSOR4::I(tsz());
int c=0;
int ns1 = num_systems(1);

//---orientation tensors...
MARRAY<TENSOR2>& mloc1 = orientation->give_m_loc();
MARRAY<TENSOR2>& uloc1 = orientation->give_u_loc();

//-----------------------------------------------------------
for (c=0;c<ns1;c++) {

TENSOR2 loc = uloc1[c]+to_5_9(mloc1[c]);
//---formulate f_vecs starts

double tau = (to_5_9(sigm))|loc;
norm[c] = sign (tau);

double R = R0 + Q*((double)1. - exp(-b*v[c]));
double overstress = fabs(tau) - R;

if (overstress>(double)0.0)
{

TENSOR2 epl_c = syme(loc*to_5_9(Ctr));
f_vec_eel += epl_c*(norm[c]*dv[c]);
double deriv = (n/K) * pow(overstress/K,n-(double)1.)*dt;

f_vec_v[c] = dv[c]- dt*pow(overstress/K,n);
//---derivatives for local Jacobian

deel_dv[c] = epl_c*norm[c];
dv_deel[c] = ((-1.)*deriv*norm[c])*syme(loc * expand_out(*elasticity));
dv_dv(c,c) = 1.0 + deriv * (Q * b * exp(-b*v[c]));
}}}

//----------------------------------------------------
int FS_SS1::num_systems(int n)
{ if (orientation.if_null())

ERROR("One orientation MUST be given with **orientation");
if (n==1) return orientation->num_systems();
else return 0;

}
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