
HAL Id: tel-00156809
https://theses.hal.science/tel-00156809

Submitted on 22 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agglomerative 2-3 Hierarchical Classification:
Theoretical and Applicative Study

Sergiu Theodor Chelcea

To cite this version:
Sergiu Theodor Chelcea. Agglomerative 2-3 Hierarchical Classification: Theoretical and Applicative
Study. Human-Computer Interaction [cs.HC]. Université Nice Sophia Antipolis, 2007. English. �NNT :
�. �tel-00156809�

https://theses.hal.science/tel-00156809
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS – UFR Sciences

Ecole Doctorale des Sciences et Technologies de l’Information et
de la Communication

THÈSE

pour obtenir le titre de

Docteur en Sciences

Spécialité Informatique

présentée et soutenue par

Sergiu Theodor Chelcea

Agglomerative 2-3 Hierarchical Classification:

Theoretical and Applicative Study

Thèse dirigée par Jacques LEMAIRE et Brigitte TROUSSE

et préparée à l’INRIA Sophia Antipolis, projet AxIS

Rapporteurs: Mlle. Maria Paula BRITO
M. Djamel A. ZIGHED

soutenue le 23 Mars 2007

Jury :

M. Patrice BERTRAND Mâıtre de Conférences Examinateur
Mlle. Maria Paula BRITO Professeur Associé Rapporteur

M. Jacques LEMAIRE Professeur Co-Directeur de thèse
M. Michel RUEHER Professeur Président

Mlle. Brigitte TROUSSE Chargée de recherche Co-Directeur de thèse
M. Djamel A. ZIGHED Professeur Rapporteur
M. Yves LECHEVALLIER Directeur de recherche Invité

UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS – UFR Sciences

Ecole Doctorale des Sciences et Technologies de l’Information et
de la Communication

THÈSE

pour obtenir le titre de

Docteur en Sciences

Spécialité Informatique

présentée et soutenue par

Sergiu Theodor Chelcea

Classification Ascendante 2-3 Hiérarchique :

étude théorique et applicative

Thèse dirigée par Jacques LEMAIRE et Brigitte TROUSSE

et préparée à l’INRIA Sophia Antipolis, projet AxIS

Rapporteurs: Mlle. Maria Paula BRITO
M. Djamel A. ZIGHED

soutenue le 23 Mars 2007

Jury :

M. Patrice BERTRAND Mâıtre de Conférences Examinateur
Mlle. Maria Paula BRITO Professeur Associé Rapporteur

M. Jacques LEMAIRE Professeur Co-Directeur de thèse
M. Michel RUEHER Professeur Président

Mlle. Brigitte TROUSSE Chargée de recherche Co-Directeur de thèse
M. Djamel A. ZIGHED Professeur Rapporteur
M. Yves LECHEVALLIER Directeur de recherche Invité

Abstract

Classification is one of the many fields in Data Mining which aims at extracting informa-

tion from large data volumes by using different computational techniques from machine

learning, statistics and pattern recognition. One of the two common approaches in the

unsupervised classification (or clustering) is the hierarchical clustering. Its purpose is

to produce a tree in which the nodes represent clusters of the initial analyzed data.

One of the main drawbacks of the most known and used hierarchical agglomerative

method, the Agglomerative Hierarchical Classification (AHC), is the fact that it can-

not highlight groups of objects with characteristics from two or more classes, property

found for example in overlapping clusters.

This thesis deals with a recent extension of the Agglomerative Hierarchical Classi-

fication, the Agglomerative 2-3 Hierarchical Classification (2-3 AHC), proposed by P.

Bertrand in 2002, with a focus on its application to the Data Mining fields. The three

major contributions of this thesis are: the theoretical study of the 2-3 hierarchies (also

called paired hierarchies), the new 2-3 AHC algorithm and its implementation, and the

first applicative study of this method in two Data Mining fields.

Our theoretical study includes the discovery of four new theoretical properties of

the 2-3 hierarchies and the definition of the aggregation links between clusters for this

type of structure. This allowed us to highlight a special case of clusters merging and

to introduce an intermediate step in the 2-3 hierarchies’ construction. The systematic

and exhaustive study of possible cases leads us to formulate the best choices in term of

linkage and structure indexing, in order to improve the quality of the 2-3 hierarchies.

Next, based on our theoretical study and contributions, we proposed a new general

Agglomerative 2-3 Hierarchical Classification algorithm. This represents the result of

our previous study: a powerful algorithm exploring the multiple possibilities of the

2-3 hierarchical model. A theoretical complexity analysis of our 2-3 AHC algorithm,

showed a reduced complexity from O(n3) in the initial algorithm, to O(n2 log n) for our

algorithm. The tests on different datasets (real and generated) confirmed our theoreti-

6 Abstract

cal complexity study. Very satisfying results were obtained by analyzing the ”quality”

of the 2-3 hierarchies compared with the traditional hierarchies: up to 50% additional

created clusters and a maximal gain of 84% using the Stress index.

We also proposed an object-oriented model of our algorithm that was integrated

in the “Hierarchical Clustering Toolbox” (HCT), a toolbox that we developed for the

visualization of the agglomerative hierarchical classification methods. We also inte-

grated this model as a method of case indexing in the Case Based Reasoning platform,

CBR*Tools, developed at INRIA Sophia Antipolis, and used it to design recommender

systems.

Our last contribution lies in the first study of the applicability of the 2-3 AHC on

real data from two Data Mining fields: Web Mining and XML Document Clustering.

This study leads to interesting results and was based on the comparison of the 2-3 hier-

archical clustering of INRIA’s research teams using either the users’ behavior on their

Web sites, or their XML annual reports, with the existing structure of the research

themes organization.

Finally, to conclude, we show that this subject is far from being exhausted and

we propose several research perspectives related to the Agglomerative 2-3 Hierarchical

Classification and to our HCT toolbox, developed during this thesis.

Keywords: 2-3 hierarchy, paired hierarchy, Agglomerative 2-3 Hierarchical Classifica-

tion, Clustering, linkage, index, HCT toolbox, Web Mining, XML Document Clustering

Résume

La classification est l’un des nombreux domaines de la Fouille de Données qui vise

à extraire l’information à partir de grands volumes de données en utilisant différentes

techniques computationnelles de l’apprentissage, des statistiques et de la reconnaissance

des formes. Une des deux approches fondamentales de la classification non supervisée

(ou clustering) est la classification hiérarchique. Son but est de produire un arbre dans

lequel les nœuds représentent des classes des objets analysés. L’un des inconvénients

principaux de la méthode ascendante hiérarchique la plus connue et la plus utilisée,

la Classification Ascendante Hiérarchique (CAH), est le fait qu’on ne peut pas mettre

en évidence de classes d’objets ayant des caractéristiques communes. Cette propriété

se trouve par exemple dans les classes qui se recouvrent et qui ont été introduites et

étudiées dans les extensions de la CAH.

Cette thèse porte sur une extension récente de la Classification Ascendante Hiérar-

chique, appelée Classification Ascendante 2-3 Hiérarchique et proposée par P. Bertrand

en 2002, avec en vue son application au domaine de la Fouille de Données. Les trois con-

tributions majeures de cette thèse résident dans l’étude théorique des 2-3 hiérarchies

(appelées aussi paired hierarchies), dans le nouvel algorithme de 2-3 CAH avec son

implémentation, et dans la première étude applicative de cette méthode dans deux do-

maines de la Fouille de Données.

Notre étude théorique inclut la découverte de quatre nouvelles propriétés théoriques

des 2-3 hiérarchies et les définitions des liens d’agrégation entre les classes pour ce type

de structure. Ceci nous a aussi permis de mettre en évidence un cas spécial de fusion des

classes et d’introduire une étape intermédiaire dans la construction des 2-3 hiérarchies.

L’étude exhaustive et systématique des cas possibles nous a permis de formuler les

meilleurs choix concernant le lien d’agrégation et l’indexation de la structure, avec en

vue l’amélioration de la qualité des 2-3 hiérarchies.

Dans un deuxième temps, basé sur notre étude et contributions théoriques, nous

proposons un nouvel algorithme général de Classification Ascendante 2-3 Hiérarchique.

8 Résume

Ceci représente la concrétisation de notre travail précédent, aboutissant à un algorithme

performant, qui explore plusieurs possibilités du modèle 2-3 hiérarchique. Une anal-

yse théorique de la complexité de notre algorithme a montré que la complexité a été

réduite de O(n3) dans l’algorithme initial de 2-3 CAH à O(n2 log n) pour notre algo-

rithme. Les comparaisons des 2-3 hiérarchies avec les hiérarchies classiques obtenues

sur différents ensembles de données (réels et simulés), ont validé l’analyse de complexité

par les temps d’exécution. En plus, des résultats très satisfaisants ont été obtenus en

analysant la ”qualité” des 2-3 hiérarchies comparées aux hiérarchies classiques : jusqu’à

50% de classes en plus, et un gain maximum de 84% en utilisant l’indice de Stress. Nous

avons ensuite proposé un modèle orienté-objet de notre algorithme de 2-3 CAH, qui

a été intégré dans une boite à outils “Hierarchical Clustering Toolbox” (HCT) que

nous avons développée pour la visualisation des méthodes ascendantes hiérarchiques de

classification. Ce modèle a été également intégré comme méthode d’indexation des cas

dans la plateforme de Raisonnement à Partir de Cas (RàPC), CBR*Tools, développé

à l’INRIA Sophia Antipolis, et utilisé pour la conception des systèmes de recomman-

dations.

Notre dernière contribution concerne une toute première étude de l’utilisation de

notre algorithme de 2-3 CAH sur des données réelles relevant de deux domaines de la

Fouille des Données : le Web Mining et la Classification de Documents XML. Celle-ci a

donné lieu à des résultats intéressants et portait sur la comparaison de la classification

2-3 hiérarchique des équipes de recherche de l’INRIA en utilisant soit le comportement

des utilisateurs sur leur sites Web, soit leur rapport annuel d’activité écrit en XML,

par rapport à la structure organisationnelle existante en thèmes de recherche.

Pour conclure, nous montrons que ce sujet est loin d’être épuisé et nous pro-

posons plusieurs pistes de recherche future relatives à la Classification Ascendante 2-3

Hiérarchique ainsi qu’à notre boite à outils HCT, développée pendant cette thèse.

Mots Clefs: 2-3 hiérarchie, paired hierarchy, Classification Ascendante 2-3 Hiérarchique,

Classification, lien, indice, boite à outils HCT, Web Mining, Classification de Docu-

ments XML

I dedicate this thesis to my parents, Cristiana and Ion Chelcea.

Acknowledgements

I would like to thank, first and foremost, my advisors, Professor Jacques Lemaire and

Brigitte Trousse, for providing me with the unique opportunity to work in the research

area of classification in the AxIS team. My sincere gratitude and appreciation goes

to Brigitte Trousse, for her guidance and mentorship, and for her encouragement and

support during the completion of this thesis. She helped me a lot in clarifying many

uncertain points, in suggesting interesting and fruitful research directions and in cre-

ating a comfortable work environment for me and the other members of our team.

I am especially grateful to Patrice Bertrand for supervising a major part of the

theoretical study of this thesis, for the long discussions on the 2-3 hierarchies, his

availability and fruitful advices. This work would have been less complete without his

precious collaboration.

Special thanks go to Maria Paula de Pinho de Brito Duarte Silva and Djamel Ab-

delkader Zighed for their careful reading of this thesis and thoughtful comments and

for agreeing to examinate my thesis despite their busy schedule.

I would like to express my sincere gratitude to Michel Rueher for accepting to be

the President of the jury for my thesis defense.

I would like to thank Yves Lechevallier for his input and assistance on the tests and

for his interest in this research.

I would like to thank Doru for the interesting discussions we had in the coffee corner,

Mihai for his help on the Hierarchical Clustering Toolbox development, Semi for his

”man and google” help and all other colleagues in the AxIS research team, including

Florent, Hicham, Alice, Calin, Sophie and Bernard for their friendship and companion-

ship.

On a personal note, the love and encouragement of my entire family and Florina

12 Acknowledgements

kept me going through it all. I dedicate this thesis with all my heart to my parents,

Mica and Ta’anelu. I also would like to thank Ilie for his valuable support in the diffi-

cult moments.

I would finally like to thank all of my friends for their company and support, and

for making me laugh when I needed to.

Table of Contents

1 Introduction 3

1.1 Classical Agglomerative Hierarchical Classification (AHC) 5

1.2 Extensions of the Classical AHC . 7

1.2.1 Pyramidal Classification . 7

1.2.2 Weak Hierarchies . 9

1.2.3 Agglomerative 2-3 Hierarchical Classification (2-3 AHC) 10

1.2.4 Summary . 11

1.3 Motivations and Thesis Objectives . 12

1.4 Thesis Document Structure . 13

I Contributions to Hierarchical Clustering 17

2 Theoretical Study of the 2-3 AHC 19

2.1 Classical AHC: Method and Algorithm 20

2.1.1 Definitions and Properties . 24

2.1.2 Examples . 25

2.2 Agglomerative 2-3 Hierarchical Classification (2-3 AHC) 26

2.2.1 Definitions and Properties . 26

2.2.2 Examples . 29

2.2.3 2-3 AHC Initial Algorithm . 31

2.3 Four New 2-3 AHC Properties . 33

2.3.1 The case of two clusters that properly intersect 33

2.3.2 Candidate Clusters Elimination 35

2.3.3 Intermediate Merging . 36

2.3.4 Integrating the Refinement Step into the Merging Step 39

2.4 Aggregation Index . 42

2.4.1 Context . 43

2.4.2 Link . 44

2.5 2-3 Hierarchy Indexing . 47

i

ii Table of Contents

2.6 Proper Intersection Analysis . 49

2.6.1 Inversion problem . 49

2.6.2 Blind Merging . 50

2.7 2-3 AHC Algorithm Execution . 51

2.7.1 Proper Intersection During Algorithm Execution 51

2.7.2 Blind Merging’s Influence . 53

2.8 Complete Link Definitions . 54

2.9 Discussion and Perspectives . 55

3 A New 2-3AHC Algorithm 57

3.1 Initial 2-3 AHC Algorithm . 58

3.2 Using the New Theoretical Properties 60

3.2.1 Adding an Intermediate Merge at the End of each β Merging . . 60

3.2.2 2-3 AHC Algorithm’s New Formulation 61

3.2.3 Reformulating the Update of the SetMi of Candidates 63

3.2.4 Facts . 65

3.2.5 Integration of the Refinement Step into the Merging Step 65

3.3 Proposition of a New 2-3 AHC Algorithm 66

3.4 Complexity Analysis of our 2-3 AHC Algorithm 69

3.4.1 Data Matrix Indexing . 69

3.4.2 Theoretical Complexity Calculus 72

3.4.3 Experimental Validation . 73

3.5 Experimental Qualitative Comparison between AHC and 2-3 AHC . . . 75

3.5.1 Ruspini Dataset . 76

3.5.2 Urban Itineraries . 79

3.5.3 Artificially Generated Data . 85

3.5.4 Abalone Dataset . 87

3.6 Comparison between 2-3 AHC and APC 90

3.7 Discussion and Perspectives . 93

4 Toolbox for Hierarchical Clustering Methods and CBR*Tools Inte-

gration 95

4.1 Design of an Object-Oriented Model . 95

4.1.1 Notion of an Object-Oriented Framework 96

4.1.2 Object-Oriented Model . 97

4.2 Toolbox for Hierarchical Clustering Methods 99

4.2.1 Data Selection and Representation 99

4.2.2 Methods Selection and Execution 101

4.2.3 Results Visualization and Analysis 102

4.3 Integration of the 2-3 AHC in the CBR*Tools Framework 105

Table of Contents iii

4.3.1 CBR*Tools: a Framework for Case Based Reasoning 105

4.3.2 HAC23Index Integration for Memory Organization 106

4.4 Applications . 109

4.5 Discussion and Perspectives . 112

II Study of applying the 2-3 AHC in the Web Mining and Docu-
ment Clustering Fields 113

5 Web Mining Application 119

5.1 Introduction . 120

5.1.1 WUM Terms . 120

5.1.2 Log Files . 121

5.1.3 WUM steps . 122

5.2 Data Description and Motivations . 123

5.3 Extended Relational DB Model for Data Preprocessing 125

5.3.1 Data Preprocessing . 125

5.3.2 Extension of the Relational DB Model 127

5.4 Research Teams Clustering Based on Web Users Behaviours 133

5.4.1 Advanced Data Preprocessing . 133

5.4.2 Analyses and Results . 136

5.5 Discussion and Perspectives . 143

6 XML Document Clustering Application 145

6.1 Introduction . 145

6.2 INRIA’s Activity Reports Analysis . 147

6.2.1 Data Description and Motivations 147

6.2.2 Data Preprocessing . 148

6.2.3 Dissimilarity Matrix Generation 150

6.2.4 Analyses and Results . 151

6.3 Other Applications . 156

6.4 Discussion and Perspectives . 156

7 Conclusions and Perspectives 161

7.1 Main Contributions of this Thesis . 161

7.1.1 Theoretical Study of the 2-3 AHC 162

7.1.2 A New 2-3 AHC Algorithm . 162

7.1.3 2-3 AHC Applications . 164

7.2 Future Works and Perspectives . 165

Bibliography 167

iv Table of Contents

A Example of the Blind Merging’s Influence 179

B Single Link and “Normal” Execution of 2-3 AHC Algorithm 183

C Tests on Simulated Data 187

C.1 Execution Times and Complexity . 187

C.2 Stress Gain . 190

D Use of HAC23Index as Part of the CBR*Tools in an CBR Application197

D.1 Reasoning System Construction . 198

D.2 Case Representation . 198

D.3 Memory organization . 199

D.4 Object oriented implementation . 200

E INRIA Research Teams Organization 203

F Be-TRIP Recommender System 207

List of Figures

1.1 Example of a classical hierarchy . 6

1.2 Pyramid . 8

1.3 Classical Hierarchy . 8

1.4 Non-closed weak hierarchy . 9

1.5 Quasi-hierarchy . 9

1.6 Example of a 2-3 hierarchy . 11

1.7 Classical Hierarchies Extensions . 11

2.1 Dendrogram . 23

2.2 Horizontal dendrogram of a hierarchy representation 24

2.3 Dissimilarity matrix example . 25

2.4 Hierarchy partitioning . 25

2.5 Example of a 2-3 hierarchy . 26

2.6 Example of a proper intersection: Xp∩Y = Z 27

2.7 Example of levels inversion . 29

2.8 Using the double single-link . 29

2.9 Example of an 2-3 Hierarchy . 30

2.10 AHC and 2-3 AHC . 30

2.11 Dataset . 30

2.12 Single-link levels inversion . 31

2.13 The double single link . 31

2.14 Complete-link levels inversion . 31

2.15 Extended indexing formula . 31

2.16 The γ condition . 32

2.17 α and β merging when X and Y properly intersect each other 34

2.18 f value for β case . 35

2.19 f value for α case . 35

2.20 Successor candidates elimination . 36

2.21 Successor case of a proper intersection 37

2.22 Predecessor case of a proper intersection 38

v

vi List of Figures

2.23 Evolution in the common successor case 39

2.24 Refinement influence . 40

2.25 f(X) < f(Y) < f(Z) . 41

2.26 f(X) = f(Y) ≤ f(Z) . 41

2.27 f(X) = f(Y) = f(Z) . 41

2.28 f(X) < f(Y) = f(Z) . 42

2.29 Clusters on the same level in a 2-3 hierarchy 44

2.30 No intersection . 46

2.31 Proper intersection . 46

2.32 Levels inversion . 46

2.33 Average-link and 2-3 AHC algorithm 47

2.34 Using the extended indexing formula . 48

2.35 Using the double single-link . 48

2.36 Proper intersection in a 2-3 hierarchy . 50

3.1 Intermediate merging . 60

3.2 Intermediate merging . 61

3.3 α merging of Xi and Yi, with Xi ∩ Yi = ∅ 63

3.4 α merging of Xi and Yi, with Xi ∩ Yi 6= ∅ 64

3.5 β merging of Xi and Yi . 64

3.6 Refinement example (Fact 3.2.5) . 65

3.7 Data structure example . 70

3.8 2D Points . 71

3.9 Classical AHC . 71

3.10 2-3 AHC V3 avoiding BM diss . 71

3.11 2-3 AHC V3 avoiding BM all . 71

3.12 SL average execution times . 74

3.13 SL average complexity . 74

3.14 CL average execution times . 74

3.15 CL average complexity . 74

3.16 Ruspini dataset . 78

3.17 The 2-3 hierarchy on the selected points from Figure 3.16 78

3.18 The classical hierarchy on the selected points from Figure 3.16 78

3.19 Classical AHC on the 40 urban itineraries 81

3.20 2-3 AHC with intermediate merging (2-3 AHC V2) on the 40 itineraries 82

3.21 2-3 AHC avoiding blind merging (2-3 AHC V3) on the 40 urban itineraries 83

3.22 Initial 2-3 AHC (2-3 AHC ini) on the 40 urban itineraries 84

3.23 CL avg. created clusters number . 86

3.24 SL avg. created clusters number . 86

3.25 SL avg. Stress gain with confidence intervals 87

List of Figures vii

3.26 SL max. Stress gain . 87

3.27 CL avg. Stress gain . 88

3.28 CL min. Stress gain . 88

3.29 Single link’s average Stress gain on the Abalone dataset samples 88

3.30 CL avg. Stress gain on the Abalone dataset 89

3.31 CL min. Stress gain on the Abalone dataset 89

3.32 CL max. Stress gain on the Abalone dataset 89

3.33 Pyramid on 40 urban itineraries . 91

3.34 2-3 AHC with intermediate merging (2-3 AHC V2) on 40 urban itineraries 92

4.1 Object oriented model of the agglomerative hierarchical algorithms . . . 98

4.2 HCT: Data matrix generation from DB 100

4.3 HCT: DB server selection . 100

4.4 Hierarchical Clustering Toolbox: Input Data Representation 101

4.5 HCT: Choosing the linkage and the algorithm to execute 102

4.6 HCT: Output Structure Graphical Representation 103

4.7 HCT: Selection of a clustering partition 104

4.8 HCT: Induced dissimilarites and initial data matrices analysis 104

4.9 Case Based Reasoning . 106

4.10 HAC23Index hot-spots and their integration in CBR*Tools 108

4.11 Urban Itinerary Creation and Visualization 111

5.1 A Web Request from INRIA’s Web Server Log (ECLF Format) 122

5.2 Schema of a General WUM Process . 123

5.3 The data preprocessing steps . 125

5.4 DB Relational Model for Log Files from [Tan05a] 128

5.5 Extended DB Relational Model for Log Files 129

5.6 URL Generalization . 130

5.7 2-3 Hierarchy on theme 3 projects during Per1 139

5.8 2-3 hierarchy on theme 3 projects during Per2 140

5.9 2-3 hierarchy on theme Cog projects during Per2 141

5.10 Classical hierarchy on theme 3 projects in Per1 142

5.11 2-3 hierarchy on theme 3 projects in Per1 143

6.1 AxIS team in K-all analysis . 151

6.2 AxIS team in T-PF analysis . 151

6.3 Atypical teams in T-P experiment . 152

6.4 Atypical teams in K-all experiment . 152

6.5 Atypical teams in T-C experiment . 152

6.6 AHC in T-P experiment . 155

6.7 2-3 AHC in T-P experiment . 155

viii List of Figures

A.1 The data set . 179

A.2 AHC dissimilarities . 179

A.3 The classical hierarchy . 179

A.4 2-3 AHC dissimilarities . 180

A.5 The created 2-3 hierarchy . 180

A.6 The resulting ultrametric . 180

A.7 The resulting 2-3 ultrametric . 180

B.1 The data set . 183

B.2 Initial steps . 183

B.3 Double indexing formula and the normal execution (i) 183

B.4 Levels inversion for normal execution (i) of the 2-3 AHC algorithm . . . 184

B.5 2-3 AHC algorithm with integrated refinement (ii) 184

C.1 SL maximum execution times . 188

C.2 SL maximum complexity . 188

C.3 CL maximum execution times . 188

C.4 CL maximum complexity . 188

D.1 CBR reasoning cycle in the CAR sample application 198

List of Tables

2.1 Coefficients values for different links . 22

2.2 Dissimilarity matrix example for α and β case 35

3.1 Example of lexicographical criteria influence 71

3.2 The single-link results on the Ruspini dataset 77

3.3 The complete-link results on the Ruspini dataset 77

3.4 Complete link results on the professional itineraries classification 85

5.1 Most Visited Topics on INRIA’s Web Sites on Per1 130

5.2 Data preprocessing . 133

5.3 Summary of data preprocessing . 134

5.4 Binary table for Per1 describing the navigations using the visited topics 135

5.5 Quantities used for topics similarity computation 136

5.6 INRIA’s Web site topics clustering using 2-3 AHC for Per1 138

6.1 Size of the data for the five experiments 150

6.2 Documents (teams) representation using words frequency 150

6.3 2-3 AHC V3 clustering in T-C experiment using Jaccard and CL 154

6.4 Complete-link Stress gains of 2-3 AHC using the simple distance 155

E.1 National Web pages presenting the research themes organization 204

E.2 Teams from theme 3 in the old and new research themes 205

ix

List of Abbreviations and

Terminology

Some of the abbreviations and acronyms used throughout this thesis are listed below:

2-3 AHC Agglomerative 2-3 Hierarchical Classification

AHC Agglomerative Hierarchical Classification

APC Ascendent Pyramidal Classification

SL Single Link

CL Complete Link

CBR Case-Based Reasoning

DM Data Mining

HCT Hierarchical Clustering Toolbox

BM Blind Merging

GIS Geographical Information System

DB Database

DS Data Structure

HTTP Hypertext Transfer Protocol

INRIA The French National Institute for Research in Computer Science and

Control

IP IP Address

KDD Knowledge Discovery in Databases

LCS Longest Common Substring

UA User Agent

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WUM Web Usage Mining

WWW World Wide Web

xi

Introduction

1

Chapter 1

Introduction

“... le seul moyen de faire une méthode instructive et naturelle,

c’est de mettre ensemble les choses qui se ressemblent,

et de séparer celles qui diffèrent les unes des autres.”

Georges Louis Leclerc, Comte de Buffon, Histoire Naturelle, 1749

(“... the only way to have an instructive and natural method,

is to put together things that resemble,

and to separate from each other the things that are differents.”)

Sometimes it is difficult to imagine how revolutionary an idea was, especially when

that idea is today accepted as common knowledge. One of these, is the above well-

known phrase of the famous naturalist Georges Louis Leclerc (1707-1788), which is

known today as one of the first known definitions of the classification concept.

Today, classification is one of the many fields in Data Mining (DM), also known

as Knowledge Discovery in Databases (KDD) [FPSSU96], which aims at extracting

information from large data volumes. In order to achieve this, data mining uses different

computational techniques from machine learning, statistics and pattern recognition.

Unsupervised classification or clustering [Gor99, JMF99, Ber02a] is one of the most

important fields in Data Mining and, as said before, consists in grouping together

similar items into same groups while the dissimilar ones are asserted to different groups,

without any apriori knowledge on the obtained groups. Alternatively, when the prior

knowledge on the data is present, the technique is called supervised classification or

discriminant analysis. These groups of objects are usually called clusters or classes

and are used to synthesize the information contained in the initial data. In this case

one can say that simplification is preferred to the details in the data.

Clustering has found lately a wide spread of applications in a large variety of fields,

from archaeology and natural sciences, to bioinformatics, psychology and economics to

3

4 Chapter 1. Introduction

name only a few. Therefore, clustering merges and combines different techniques from

different disciplines: statistics, computer science, mathematics, artificial intelligence,

databases, etc. For instance, the continuous growth of the World Wide Web (WWW),

has lead to the emergence of new applications domains, such as the Web Mining, that

is: the application of DM techniques on Web data. This new field and some of its

classification techniques are discussed later in Part II of this thesis.

The two common approaches in statistical clustering are partitioning clustering and

hierarchical clustering [YKM99].

In the partitioning clustering one starts with the whole initial analyzed dataset,

which is then split into k clusters. Usually the number k has to be specified before

the analysis and is influencing the result of the clustering. There are also techniques

to determine the most appropriate values of k, based usually on the selection of the

“optimal” result (partition) for a range of values of k [MC85, Dub87].

The partitioning methods usually produce clusters by optimizing a criterion func-

tion, and sometimes due to the combinatorial number of possibilities, the algorithm

is run repeatedly. Example of used criterion in this case include: the squared error

criterion, the diameter, the sum of distances, etc.

Among the most known partitioning methods, we remind the k-means [Mac67], the

dynamic clustering [Did73], the minimum spanning trees [GH85], etc. Interested reader

can refer to [Gor99] for more details.

The hierarchical clustering methods can also be divided into agglomerative, divisive

and incremental methods. The purpose of these types of classification is to produce a

tree in which the nodes represent clusters of the initial analyzed set. In particular, the

initial set is the root of the tree while the leaves represent the singletons (clusters with

one element). This type of structure gives thus an enhanced visual representation than

the partitioning methods. The investigator can then select the suitable partitioning

from its point of view, by making a trade off between the number of clusters and their

homogeneity degree.

In the incremental hierarchical methods, an already constructed classification of

objects is augmented by successively inserting new objects into the classification [Sib73,

BHT05]. The interest of these kind of methods lie in their capacity to analyze very

large datasets. BIRCH [ZRL96], is a well-known incremental hierarchical classification

algorithm having an overall complexity of O(n).

In the hierarchical divisive methods, starting from a single cluster (of all objects),

successive splits of clusters are performed to obtain smaller clusters [Rao71, GHJ91].

The two main problems of this methodology are: which cluster to split?, and how to

split it?. Casual strategies in this case are the followings: split the highest cardinality

cluster, split each cluster at a given level or split the one with the largest intra-cluster

variance.

1.1. Classical Agglomerative Hierarchical Classification (AHC) 5

In the agglomerative hierarchical methods, starting from the initial elements (the

singletons), the clusters are successively merged into higher level clusters, until the

entire set of analyzed objects becomes a cluster. These resulting hierarchical structures

contain a number of partitions which can be then easily visualized using a graphic.

By far, the most known and used hierarchical agglomerative method is the Ag-

glomerative Hierarchical Classification. Sometimes in different studies this method is

also called the Ascending Hierarchical Classification. In the rest of this document we

will denote it as the classical Agglomerative Hierarchical Classification or simply the

classical AHC method. This method has been extensively studied [SS63, Ben73, JD98]

during the last decades and has a wide number of applications in many different fields,

as bioinformatics, signal processing, web mining, etc.

In AHC, the iterative merging of clusters is made by minimizing a cost function

between clusters. This cost function is usually known as the aggregation index or the

linkage. But sometimes multiple pairs of clusters can minimize this cost function,

and choosing between them can have a big influence on the result [Har83]. The main

characteristic of this technique is that a succession of nested partitions is obtained.

This means that all clusters are either disjoint or included one in another, during the

final result interpretation.

But sometimes data can contain objects with characteristics from two or more

classes, property found for example in overlapping clusters. For instance, a work can

often belong to two different genres in document classification. Obtaining such clusters

using the classical AHC is not possible, and thus extensions of the classical AHC have

been lately proposed: the pyramids [Did73], the weak-hierarchies [BD89], the k-weak

hierarchies [Dia97] or more recently the 2-3 hierarchies [Ber02d] to name a few. Over-

lapping clusters present in these types of structures, can provide far more information

for the investigator’s analysis compared to the disjoint clusters in the classical hierar-

chies, but sometimes these structures can become very difficult to interpret especially

on larger datasets.

We resume next the classical AHC technique and its AHC algorithm in Section 1.1,

while the aforementioned extensions of the AHC are briefly presented and analyzed in

the following Section 1.2.

1.1 Classical Agglomerative Hierarchical Classification (AHC)

Generally speaking, the main goal of the classical Agglomerative Hierarchical Classifi-

cation, is to create a hierarchy of nested partitions over an initial set of elements. The

set of elements can be a set of individuals or a set of variables, which are two-by-two

comparable.

6 Chapter 1. Introduction

Definition 1 : A collection C of non-empty parts of a finite set E is called a hierar-

chy if:

1. E ∈ C;

2. ∀x ∈ E we have that {x} ∈ C (terminal nodes or singletons);

3. ∀(X,Y) ∈ C × C we have that X ∩ Y ∈ {∅, X, Y } (we say that X and Y are

hierarchical).

2

Sokal and Sneath proposed in 1963 [SS63] the first version of the classical AHC

algorithm, consisting in two phases: initialization and merging.

During the first phase, the singletons dissimilarity matrix is computed using a

chosen dissimilarity measure, while the singletons represent the initial set of clus-

ters. We remind that a dissimilarity is a non-negative mapping δ defined on the

couples of analyzed elements satisfying the reflexivity (∀x : δ(x, x) = 0) and sym-

metry (∀x, y : δ(x, y) = δ(y, x)) conditions. A distance is a dissimilarity satisfying the

triangular condition: ∀x, y, z : δ(x, y) ≤ δ(x, y) + δ(y, z).

In the second phase of the algorithm, successive mergings are performed between

the two closest clusters, until the initial objects are all merged into a final cluster.

The two clusters are closest in the sense of a chosen aggregation link, (i.e. single link,

complete link, average link, etc.).

At the end of the second phase, the resulting structure is a sequence of nested

partitions which can be visualized using a graphic called dendrogram.

A small example of a classical hierarchy is presented in Figure 1.1.

Figure 1.1: Example of a classical hierarchy

A hierarchy will induce a new dissimilarity matrix over the initial elements based on

the dissimilarity at which they were first regrouped in a cluster in the hierarchy. This

induced dissimilarity matrix is an ultrametric. Formally, an ultrametric is a distance

satisfying the ultrametric inequality: d(x, z) < max{d(x, y), d(y, z)}. This inequality is

also referred as the strong triangle inequality.

The induced matrix can be then compared with the initial matrix or with the

induced matrices of other hierarchical methods, for quality analysis [SS73a].

The AHC algorithm has an O(n2 log n) complexity and usually uses as input a

dissimilarity matrix on the initial elements. More details on the classical AHC and its

1.2. Extensions of the Classical AHC 7

algorithm are presented in Section 2.1.

1.2 Extensions of the Classical AHC

As we saw, the classical hierarchies consist in sequence of nested clusters, which are

strictly included or disjoint. But usually the clusters contained within the analyzed

data can also have common parts (properties) that are not emphasized within the

classical hierarchies. For this, different classification methods providing overlapping

clusters have been proposed: the additive clustering [SA79] and the Bk method [JS68]

as non-hierarchical methods, while the pyramids [Did84], the weak hierarchies [BD89],

the k-weak hierarchies [Dia97] and the 2-3 hierarchies [Ber02d] are all extensions of the

classical AHC.

In the following we will make a short analysis of the methods that extend the

hierarchical framework.

1.2.1 Pyramidal Classification

The Ascendent Pyramidal Classification (denoted APC in the rest of the text) was

proposed in 1984 by Diday [Did84] in order to generalize the classical AHC. The result

in this case is a pyramid, a structure containing “overlapping” clusters (non-disjoint or

non-hierarchical clusters). In a pyramid a cluster can overlap at most two other clusters.

A pyramid is also denoted as a pseudo-hierarchy [Fic84]. This type of structure is richer

than a classical hierarchy, and represents better the initial analyzed data.

Definition 2 : Let be E a finite set and C a set of non-empty parts of E (called nodes

or clusters), C is a pyramid if it has the following properties:

1. E ∈ C;

2. ∀x ∈ E we have that {x} ∈ C (terminal nodes or singletons);

3. ∀(X,Y) ∈ C × C we have that X ∩ Y ∈ C or X ∩ Y = ∅;

4. A total order θ exists in E compatible with C. 2

The pyramidal model was introduced in order to achieve the notion of compatibility

between a dissimilarity d and an order θ. We say that d and θ are compatible iif ∀

ordered triplet xi θ xj θ xk, we have: d(xi, xk) ≥ max{d(xi, xj), d(xj , xk)}. The clusters

in a pyramid are intervals of the order θ, and can have common elements (individuals).

In a pyramid the number of linear orders on the initial set E can be 2 or more, compared

to the 2n−1 compatible orders for a classical hierarchy.

Knowing that clusters in a pyramid can not have more than two predecessors

[Did84], the maximal number of non-singleton clusters is n(n−1)
2 compared to n − 1

in a classical hierarchy (n = |E|).

8 Chapter 1. Introduction

As in the case of the hierarchies, an indexing value f can be associated to each

cluster in a pyramid, to obtain an indexed pyramid, for which:

• f(x) = 0 where x ∈ E;

• ∀X,Y ∈ C, X ⊂ Y ⇒ f(X) ≤ f(Y).

A weakly indexed pyramid is a indexed pyramid in which if X ⊂ Y and f(X) = f(Y)

implies that X has two predecessors. Also, a pyramid is strictly indexed if X ⊂ Y

implies that f(X) < f(Y).

The hierarchies are a particular case of pyramids, that is: when no cluster “overlaps”

another cluster.

Different APC algorithms have been proposed lately, as a result of the different stud-

ies on the pyramidal classification [Ber86, Did86, Bri91, GS94, BJ97, Mfo98, GCA98,

DBM01, RD05].

An example of a pyramid is presented in Figure 1.2. Compared with the classical

hierarchy on the same dataset from Figure 1.3 the pyramid contains more clusters and

gives a more accurate representation of the initial data. But for large datasets, the

pyramids can become difficult to interpret [Did86], due to the big number of created

clusters or to the investigators unfamiliarity with the pyramids.

As in the classical hierarchical case, by selecting an indexing level, a pyramid can

be sectioned in order to obtain a clusters partition. The obtained clusters can be

overlapped, highlighting thus common characteristics of different groups of individuals.

This is no longer a partitioning, and we say that we obtain a covering or overlapping

of the initial elements.

To ease the interpretation, different techniques of refining a pyramid based on the

clusters indexing values have been proposed [RD04, RD05].

Figure 1.2: Pyramid Figure 1.3: Classical Hierarchy

The APC algorithm [Did84, Ber86, Bri91, Mfo98] is more complex that the classical

AHC one since at each step an “order” on the candidates clusters must be maintained,

which implies additional tests and conditions. Its complexity is in O(n3). The APC

algorithm has been integrated into the European software, SODAS [EUR], which aims

at extending the Statistics, the Data Mining and the Analysis of classic or complex

data to concepts (symbolic data [Did87, BD00]).

1.2. Extensions of the Classical AHC 9

The pyramidal classification has been applied in different fields, such as the bioin-

formatics [ADLCR99, Aud99] (genome analysis), or more generally in symbolic data

analysis [BPZKC00].

1.2.2 Weak Hierarchies

The weak hierarchies were introduced in 1989 by Bandelt and Dress [BD89] and they

generalized the classical hierarchies and also the pyramids. The main characteristics of

a weak hierarchy is the fact that the intersection of any three clusters is the intersection

of two of them. The same notion was also introduced in 1988 by Babedat [Bat88], under

the name of maximum medinclus.

Definition 3 : A weak hierarchy is a set C of non-empty parts of a finite set E such

that:

1. E ∈ C;

2. ∀x ∈ E we have that {x} ∈ C (terminal nodes or singletons);

3. ∀X,Y,Z ∈ C ⇒ X ∩ Y ∩ Z ∈ {X ∩ Y,X ∩ Z, Y ∩ Z}. 2

A weak hierarchy C is said to be closed [Ban92, DF94] if it is closed under non-

empty intersections: ∀X,Y ∈ C and X ∩Y 6= ∅ ⇒ X ∩Y ∈ C. A closed weak hierarchy

is also called an quasi-hierarchy.

a b c d

Figure 1.4: Non-closed weak hierarchy

Figure 1.5: Quasi-hierarchy

An example of a non-closed weak hierarchy is given in Figure 1.4: the intersection of

{abc} with {bcd} is {bc} which is not a cluster of the weak hierarchy. A quasi-hierarchy

is presented in Figure 1.5.

As in the case of the pyramids, the weak hierarchies contain more internal clusters

(non-singletons), maximum O(n2) [BD89, Bru01], than a classical hierarchy, giving

10 Chapter 1. Introduction

thus a better data representation. But in this case the visual representation of a weak

hierarchy can be difficult to interpret due to the large number of clusters and due to

the edges intersection (see Figure 1.4).

The mathematical properties of the weak hierarchies have been widely studied in the

literature [BD94, Dia96, BJ97, Bru01, BBO04] and concern mainly the mathematical

relations between the different types of weak hierarchies (closed, k-weak, etc) and the

induced dissimilarity matrices (i.e. the quasi-ultrametrics, the weak k-ultrametrics).

As in the case of pyramids, the induced dissimilarities are obtained from the different

types of indexed weak hierarchies.

A generalization of the weak hierarchies to k intersections, has been proposed in

[Dia97] and studied in [BJ03]. This kind of structure is called a k-weak hierarchy.

Definition 4 : A k-weak hierarchy is a set C of non-empty parts of a finite set E

such that:

1. E ∈ C;

2. ∀x ∈ E we have that {x} ∈ C (terminal nodes or singletons);

3. ∀X1, X2, ..., Xk+1 ∈ C ⇒ ∩i∈{1,...,k+1}Xi ∈ {∩i∈{{1,...,k+1}−j}Xi|1 ≤ j ≤ k+1}.

2

The algorithm to construct such weak hierarchies has a complexity of O(n4) [Bru05].

1.2.3 Agglomerative 2-3 Hierarchical Classification (2-3 AHC)

The Agglomerative 2-3 Hierarchical Classification (2-3 AHC) was recently proposed

[Ber02d] by P. Bertrand∗, and as in the pyramids and weak hierarchies case, it gener-

alizes the classical Agglomerative Hierarchical Classification. The resulting structure

is called a 2-3 hierarchy† and it also allows overlapping clusters.

The main difference is that in a 2-3 hierarchy, a cluster can overlap only one other

cluster. This restricts the number of internal clusters in a 2-3 hierarchy compared with

the pyramids, but still gives a richer structure than a classical hierarchy.

Definition 5 : A 2-3 hierarchy is a set C of non-empty parts of a finite set E and

closed under non-empty intersections such that:

1. E ∈ C;

2. ∀x ∈ E we have that {x} ∈ C (singletons);

3. ∀X ∈ C we have |{Y ∈ C : X ∩ Y /∈ {X,Y, ∅}}| ≤ 1. 2

∗Paris-IX Dauphine University & AxIS INRIA Rocquencourt
†A 2-3 hierarchy will be called in the future a paired hierarchy [Ber], but in the rest of this document

we will use the initial terminology of 2-3 hierarchy introduced in [Ber02d]

1.2. Extensions of the Classical AHC 11

An example of a 2-3 hierarchy is given in Figure 1.6.

Figure 1.6: Example of a 2-3 hierarchy

The maximal number of internal clusters in a 2-3 hierarchy is b 3
2 (n − 1)c, which

represents 50% more than a classical hierarchy. This kind of structure is clearly gen-

eralized by the pyramids and the weak hierarchies, but its smaller number of internal

clusters allows a smoother interpretation of the 2-3 AHC results.

The 2-3 AHC algorithm proposed in [Ber02d] has a O(n3) complexity. Due to its

recent nature, no additional study of these structures was made and no implementation

of the 2-3 AHC algorithm was realized.

1.2.4 Summary

Figure 1.7 illustrates the extensions of the classical hierarchies presented so far and

their inclusion. As we can see, the hierarchies are a particular case of 2-3 hierarchies,

which in turn are a particular case of pyramids and so on.

Hierarchies

Pyramids

k−Weak Hierarchies

Weak Hierarchies

2−3 Hierarchies

Figure 1.7: Classical Hierarchies Extensions

12 Chapter 1. Introduction

1.3 Motivations and Thesis Objectives

As we saw, extensions of the classical AHC technique have been proposed in the last

decades to improve the data representation by allowing cluster overlapping. Such ex-

tensions include: the pyramids, the k-weak hierarchies, the 2-3 hierarchies etc. But

their main drawbacks are the high complexity and the difficulty to interpret the re-

sults on larger datasets. Indeed, the number of created clusters is sometimes in O(n2)

(pyramids, k-weak hierarchies).

In the case of the most recent extension, the Agglomerative 2-3 Hierarchical Classi-

fication [Ber02d], the number of created clusters is relatively smaller, b 3
2(n− 1)c, while

its complexity is O(n3) compared to the O(n2 log n) of the classical AHC. This could

make the 2-3 hierarchies easier to interpret, although the structure refinement might

also be required when analyzing large datasets.

As we said in Section 1.2, the newly proposed 2-3 hierarchical structures are the

only one with no additional theoretical study realized. Therefore some questions might

arise:

• are there any other theoretical properties of the 2-3 hierarchies?

• can the complexity of the 2-3 AHC algorithm be reduced?

Moreover, the 2-3 AHC algorithm proposed in [Ber02d] was not implemented so

far, which means that there are no applications of the 2-3 AHC whatsoever.

In this context, the objectives of this thesis are as follows:

• a theoretical study of the Agglomerative 2-3 Hierarchical Classification:

– new properties of the 2-3 hierarchical structure;

– a new 2-3 AHC algorithm based on the properties of the 2-3 hierarchies;

– a complexity reduction of the 2-3 AHC algorithm;

– a first implementation of a 2-3 AHC algorithm.

• an empirical study of the 2-3 AHC including:

– the complexity validation;

– comparison with the classical AHC.

• a first study of the applicability of the 2-3 AHC in Data Mining fields and in

a recommender system context. From the DM fields, we chosen the recent re-

search field of Web Mining, while the chosen recommender system is the Be-TRIP

mobility recommender system that we proposed.

1.4. Thesis Document Structure 13

1.4 Thesis Document Structure

In this section we present the thesis document structure with a brief description of the

different chapters according to our theoretical and applicative study:

Part I: Contributions to Hierarchical Clustering

In the first part of the thesis we will present our contribution related to the Agglomer-

ative 2-3 Hierarchical Classification from the methodological and algorithmic point of

view:

• Chapter 2: Theoretical Study of the Agglomerative 2-3 Hierarchical

Classification

In Chapter 2 we begin by presenting some used notions followed by the Agglomer-

ative 2-3 Hierarchical Classification introduced in [Ber02d]. Next, the theoretical

study of the 2-3 AHC will reveal three properties used later to propose a new

2-3 AHC algorithm. Also a study of the clusters dissimilarity measure (the ag-

gregation link) is performed to define the single link and the complete link for

the properly intersecting clusters. A special case of merging denoted the blind

merging is described and studied.

• Chapter 3: A New Agglomerative 2-3 Hierarchical Classification Algo-

rithm

In Chapter 3 we propose a new Agglomerative 2-3 Hierarchical Classification

general algorithm based on our previous theoretical study and contributions from

Chapter 2. The main characteristic of this algorithm is an added intermediate

merging step. Other optional steps include the integrated refinement and the blind

merging avoidance. These optional steps give us four 2-3 AHC algorithm variants,

which can create different 2-3 hierarchies on same the dataset.

A theoretical complexity analysis of our 2-3 AHC algorithm proved that the com-

plexity was reduced from O(n3) in the initial 2-3 AHC algorithm to O(n2 log n)

for our algorithm.

Next, we tested the obtained 2-3 hierarchies and the classical hierarchy on different

datasets (Ruspini [Rus69], urban itineraries [Bus05], simulated data, Abalone

[Sam95]) for complexity execution times and structure quality. The obtained

execution times verified our theoretical complexity of O(n2 log n). To determine

the created structures quality, we have chosen the Stress coefficient [JW82] for

comparing the initial data and the induced dissimilarity matrices. Using the

complete link, we obtained an average gain of 23% (for the Stress) while the

maximum gain was around 84% on the Abalone dataset.

14 Chapter 1. Introduction

• Chapter 4: Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

In Chapter 4 of this thesis we present our object-oriented model of our 2-3 AHC

algorithm which was implemented in Java. To better visualize, compare and

analyze the hierarchies and the 2-3 hierarchies created on a same dataset, we

developed the Hierarchical Clustering Toolbox. A brief presentation of the

toolbox is then provided.

Next, we integrated our 2-3 AHC algorithm in the Case-Based Reasoning (CBR)

software library, CBR*Tools [Jac98], developed in our team. The purpose of

this integration was the use of our method as a case indexing method in a CBR

application, or more precisely in a recommender system to support information

retrieval in a mobility context.

As a part of the MobiVIP∗ project, we proposed a specification of such a sys-

tem, the Be-TRIP mobility recommender system [CGT04, TCG04], based on the

CBR*Tools library and using the Broadway approach [TJK99]. Details on the

Be-TRIP system are presented in Appendix F while the details on the CBR*Tools

integration of our 2-3 AHC algorithm are given in Section 4.3.

To validate the use of the 2-3 AHC algorithms in the mobility context, some tests

were performed on a small generated dataset of urban itineraries in Section 3.5.2.

Part II: Study of applying the 2-3 AHC in the Web Mining and Document

Clustering Fields

In the second part of the thesis we will present two first studies of evaluating the interest

of applying the Agglomerative 2-3 Hierarchical Classification algorithm in Web Mining

and Document Clustering fields.

• Chapter 5: Web Usage Mining Application

The first study consists of applying our 2-3 AHC algorithm to cluster INRIA’s

research teams visited topics based on the Web users behaviours.

The goal of the application was to analyze the impact of the site structure (the

research themes especially) on the Web users navigations.

The analysis was performed on two time periods, before and after the research

teams reorganization into research themes.

∗http://www-sop.inria.fr/mobivip/

1.4. Thesis Document Structure 15

Our results show the impact of the site structure on users navigations, whilst

this study is, according to our knowledge, the first one to apply a hierarchical

classification method on Web Usage data.

• Chapter 6: XML Documents Clustering Application

In this Chapter, we applied our 2-3 AHC algorithm on homogeneous XML doc-

uments issued from the 2003 activity reports of INRIA’s research teams. The

goal of the application was the validation of an existing organizational structure

using our classification. Our second objective was to compare different 2-3 AHC

algorithms using as “reference” the classical AHC one.

Comparing the semi-structured XML documents is based on their structure only

or their structure and content. The following hypothesis is tested here: different

parts of the analyzed XML documents correspond to different dimensions of the

document collection and might play different roles in the performed classification.

We found that the best results are obtained with the 2-3 AHC algorithm avoiding

the blind merging (V3), which was the only one to always have a positive Stress

gain compared to the classical AHC.

Conclusions and Perspectives

Finally in this last Chapter of the thesis document, we will present the contributions,

the interests and the limitations of our work. Then, we will point out the future work

perspectives related to our study of the 2-3 AHC in the end of this thesis.

Part I

Contributions to Hierarchical

Clustering

17

Chapter 2

Theoretical Study of the

Agglomerative 2-3 Hierarchical

Classification

Being the newest extension of the classical hierarchies, the 2-3 hierarchies [Ber02d]

have been less studied. In this context we begin with a theoretical study of this type

of structure, study closely related to the initial 2-3 AHC algorithm from [Ber02d].

In order to present the 2-3 Agglomerative Hierarchical Classification [Ber02d], we

first need to present the classical Agglomerative Hierarchical Classification method and

its algorithm [SS63] (see Section 2.1) introduced in 1963 by Sokal and Sneath. Based on

its concepts and definitions, we will then present in Section 2.2 the 2-3 hierarchy concept

and the initial 2-3 AHC pseudo-algorithm proposed in 2002 by P. Bertrand [Ber02d].

As we said before, the interest of the 2-3 hierarchies is that they generalize the classical

hierarchies and have a richer structure. As in the case of the other extensions of the

classical hierarchies (see. Section 1.7), the 2-3 hierarchies allow clusters to overlap.

The theoretical study that we carried out on the Agglomerative 2-3 Hierarchical

Classification in this Chapter has revealed four properties (cf. Section 2.3). These

properties are used to analyze the algorithm execution influence on the created 2-3

hierarchy (cf. Section 2.6) and then later to propose a new 2-3 AHC algorithm (cf.

Chapter 3).

Next we studied different ways of defining an aggregation index (cf. Section 2.4)

which is the cluster dissimilarity measure used as an input in the classical AHC and

2-3 AHC algorithms. We thus decided which definition of the aggregation index (called

also link) would be more appropriate in the context of the 2-3 hierarchies especially for

the complete and single link. Being closely related to the aggregation index, we studied

in Section 2.5 the 2-3 hierarchies indexing. A special type of merging called the blind

merging is revealed (cf. Section 2.6) and analyzed (cf. Section 2.7).

19

20 Chapter 2. Theoretical Study of the 2-3 AHC

Before concluding in Section 2.9, we first analyze (cf. Section 2.8) which one of the

complete link definitions is better from the complexity execution point of view.

Next, in Chapter 3 and based on the study presented in this Chapter, we will

first propose a new 2-3 AHC pseudo-algorithm followed by a proposition and first

implementation of a 2-3 AHC detailed algorithm version. The advantages of this new

algorithm are its reduced complexity (from O(n3) to O(n2 log n)) and a principle similar

to the classical AHC algorithm. Another variants of the 2-3 AHC algorithm are also

proposed to integrate the refinement step into the merging step and to avoid a special

merging case, denoted blind merging.

In the rest of the thesis we will denote the Agglomerative 2-3 Hierarchical Classi-

fication as the 2-3 AHC, whilst the classical Agglomerative Hierarchical Classification

will be denoted as the classical AHC, or simply the AHC.

2.1 Classical AHC: Method and Algorithm

We begin by introducing some basic notations that will be used in the rest of the

document.

We denote as E the set of objects that are to be analyzed and we assume that there

is a total of n objects in this set: E = {xi : i = 1, n}. Each object xi from this set is

described by m variables: xi = (x1
i , x

2
i , ..., x

m
i) where xi ∈ E and i = 1, n. We suppose

that the analyzed set E is described by a dissimilarity, say δ, where δ(x, y) indicates

the degree of dissimilarity between two arbitrary objects x and y of E.

Sokal and Sneath proposed in 1963 in [SS63], a very general algorithm which can

be considered as the first version of the well known AHC algorithm. It is a very

simple classification algorithm based on a distance/dissimilarity matrix between initial

elements, denoted δ.

For example, the initial distance measure between the initial elements may be the

Euclidean distance:

de(x, y) =

√
√
√
√

m∑

i=1

(xi − yi)2 (2.1)

or any other distance such as the rectangular distance, the Minkowski metric, the chi-2

distance, etc. Choosing the distance in also influenced by the type of variables that

characterize the individuals (numerical, nominal, symbolic, etc.).

A set of elements is called a class or cluster and can contain at least one element

and at most all the elements.

Besides this distance/dissimilarity measure on the initial elements, the AHC algo-

rithm uses a similarity measure between clusters and a measure of the heterogeneity

degree of these clusters. The former is known as the aggregation index, merging index,

2.1. Classical AHC: Method and Algorithm 21

cluster dissimilarity measure or simply link, is based on the initial elements distance

and is a symmetric mapping:

µ : P(E) ×P(E)→ [0,∞), with µ({x}, {y}) = δ(x, y) ∀x, y ∈ E (2.2)

The later is called the indexing measure or the indexing function and assigns to each

cluster an real positive value corresponding to its heterogeneity degree.

The AHC algorithm consists of an initialization phase, a recursive regrouping (merg-

ing) phase, and an ending condition. In the initialization phase, the initial elements

to be analyzed are put into single-elements clusters, called the singletons. Their in-

dexing value f (representing the heterogeneity degree), is then set to 0 for all of them:

f({x}) = 0, ∀x ∈ E.

Next, the recursive regrouping/merging phase is performed. Basically, at each step

the two nearest elements in the sense of the chosen aggregation index, are selected

from the distance/dissimilarity matrix and regrouped into a single cluster. Then the

dissimilarities µ between the new cluster and the rest of the clusters are computed

using one of the following aggregation indexes:

• single linkage - the closest neighbor:

µsl(X,Y) = min{δ(x, y) : x ∈ X, y ∈ Y } (2.3)

• complete linkage - farthest neighbor, (also known as the total linkage):

µcl(X,Y) = max{δ(x, y) : x ∈ X, y ∈ Y } (2.4)

• average linkage - average distance between elements:

µal(X,Y) =

∑
δ(x, y)

|X| × |Y |
, with x ∈ X, y ∈ Y (2.5)

• and when possible to compute (spaces with numerical dimensions):

– the distance between gravity centers,

– the Ward’s criterion [War63]:

µwl(X,Y) =
|X| × |Y |

|X|+ |Y |
×

∑

δ2(X,Y) with x ∈ X, y ∈ Y and X,Y

the (gravity) centers of X and Y (2.6)

– the weighted pair-group method using averages (WPGMA) [SS73a], etc.

22 Chapter 2. Theoretical Study of the 2-3 AHC

The choice of the distance (dissimilarity) measure between clusters has a big influ-

ence on the resulting structure. The average-link, complete-link, and Ward’s methods

tend to favor spherical clusters, while single-link clustering resembles to density based

methods and can produce “elongated” clusters [Fas99].

Generally speaking for all algorithms, the main issue is the computation of these

formulas during their execution. Indeed, for each created cluster X ∪ Y one must

compute the link between him and every other existing cluster Z that can be still

merged. The single link and the complete link use the minimum and the maximum

between µ(X,Z) and µ(Y,Z), but for others the computation could be a problem. But

the other links can also be easily computed using different combinations of the existing

link values µ(X,Y) and µ(X,Z).

For this, Lance and Williams introduced in 1967 [LW67] a general formula:

µ(X ∪ Y,Z) = αxµ(X,Z) + αyµ(Y,Z) + βµ(X,Y) + γ|µ(X,Z) − µ(Y,Z)| (2.7)

Table 2.1 bellow presents the parameters values for the most common linkages,

where nx, ny and nz are the cardinals of the sets X, Y and Z.

XXXXXXXXXXXX
Link

Coefficients
αx αy β γ

Single 1
2

1
2 0 −1

2

Complete 1
2

1
2 0 1

2

UPGMA (group average) nx

nx+ny

ny

nx+ny
0 0

WPGME (weighted average) 1
2

1
2 0 0

UPGMC (unweighted centroid) nx

nx+ny

ny

nx+ny
-

nx×ny

(nx+ny)2 0

WPGMC (weighted centroid) 1
2

1
2 -1

4 0

Ward’s criterion nx+nz

nx+ny+nz

ny+nz

nx+ny+nz
- nz

nx+ny+nz
0

Table 2.1: Coefficients values for different links

When two clusters are merged, the dissimilarity between them is associated to

the new cluster and it represents the “degree” (dissimilarity) at which the elements

in the two clusters were regrouped (the heterogeneity degree, f). Usually we have:

f(X ∪ Y) = µ(X,Y). Also the relations between the new cluster and the merged ones,

are stored for each of them.

2.1. Classical AHC: Method and Algorithm 23

The algorithm stops when we have merged the last two remaining clusters and the

resulting cluster thus contains all the elements of E.

The result is sequence of nested partitions, that can be visualized using a graphic,

called dendrogram or classification tree (see Figure 2.1).

Figure 2.1: Dendrogram

This indexed hierarchy will induce a new distance matrix which is an ultrametric

over the initial elements, based on the distances at which they were first regrouped.

For example, the induced distance δ ′ between two elements x and y has the value of

the indexing function f of the cluster in which they are first regrouped together:

δ′(x, y) = f(A) where x, y ∈ A and @B ⊂ A such that x, y ∈ B. (2.8)

The induced ultrametric can be then compared to the initial distance/dissimilarity

matrix for quality analysis, by using different indices like the Stress formula [JW82],

the Pearson correlation coefficient, etc.

Information from the indexed hierarchy and its nested partitions can also be used

to generate clusterings of the initial elements. These clusterings are actually the nested

partitions that form the hierarchy. To select a partitioning, one can chose an indexing

level and then select in the hierarchy all the maximal clusters below that level. The level

is selected by analyzing the indexing levels of the clusters in an hierarchy to detect if

there are any important gaps (distances) between them. As the indexing level represents

the cluster heterogeneity degree, it means that the partitioning corresponding to the

lower cluster level is more homogeneous. A trade off between the approximate number

of desired clusters in a partition and the heterogeneity degree (the clusters levels) must

be made however. This partitioning technique is sometimes referred as “cutting” the

hierarchy.

The dendrogram can be also analyzed from the singletons proximity (grouping)

point of view. This kind of analysis is especially used in bioinformatics by the genome

researchers who are trying to find meaningful clusters in DNA microarray data, also

known as gene arrays or gene chips. Finding clusters of genes with similar expression

24 Chapter 2. Theoretical Study of the 2-3 AHC

patterns could lead to better understanding of the functions those genes. One of the

most studied cases is the human genom, which contains approximately 40,000 genes.

The dendrogram can be horizontally displayed (see Figure 2.2 presenting a small hierar-

chy of INRIA’s research teams), while individuals are visually depicted (colors, labels)

to ease the interpretation: Hierarchical Clustering Explorer [SS02], dChip [LW03], CAP

[ADLCR99], Bioinfomatics toolbox [Mat].

Figure 2.2: Horizontal dendrogram of a hierarchy representation

One of the main characteristics of the hierarchies, produced by the AHC algorithm,

is the fact that once grouped, the elements rest together all the time. We will see that

this is the main difference between hierarchies and the 2-3 hierarchies introduced in

[Ber02d], which allows the clusters to intersect each other and use a slightly modified

aggregation indexes.

2.1.1 Definitions and Properties

We start with definitions from a general setting point of view that extends the frame-

work of hierarchies.

A set system on E is a nonempty collection of nonempty subsets of E having E

as one of its elements. We consider a collection C of nonempty subsets of E, often

called clusters in the rest of the text. We will say that the collection C is hierarchical

if X ∩ Y ∈ {∅, X, Y }, ∀X,Y ∈ C (see also Definition 1). Let us recall that a hierarchy

on E is a hierarchical collection which contains E and its singletons.

Definition 6 : A successor of X ∈ C is any maximum element of {Y ∈ C : Y ⊂ X}

ordered by the set inclusion order. If Y is a successor of X, then X is said to be a

predecessor of Y . 2

The set of all successors (resp. predecessors) of X ∈ C is noted succ(X) (resp.

pred(X)). If F ⊆ C is also a collection of non-empty subsets of E, then succ(F) (resp.

pred(F)) represents the collection of clusters that are successors (resp. predecessors)

of at least a set from F .

2.1. Classical AHC: Method and Algorithm 25

Definition 7 : A collection C is said to be pre-indexed if there is a isotone mapping

f : C → R+ such that f is defined ∀x ∈ C and:

- for all X,Y ∈ C with X ⊂ Y we have f(X) ≤ f(Y). 2

When f is strict (meaning f strict isotone) the collection C is said to be strictly

indexed:

- for all X,Y ∈ C with X ⊂ Y we have f(X) < f(Y).

Definition 8 : The collection C is weakly indexed by a map f : C → R+, if X ⊂ Y

implies f(X) ≤ f(Y) and if f(X) = f(Y) with X ⊂ Y , implies that X is equal to the

intersection of its predecessors. 2

In the following, expressions as “maximal cluster” and “noncomparable clusters”

will be used in the sense of the set inclusion order.

2.1.2 Examples

A small example of a dissimilarity matrix on seven individuals and used as input for

the classical AHC algorithm is presented in Table 2.3. Given n individuals (initial

elements) to cluster, the size of the input matrix is n(n−1)
2 . This can be difficult to

manipulate for larger n.

a b c d e f
b 2

c 3 3

d 5 4 9

e 6 5 8 1

f 4 7 7 1 1

g 8 9 7 8 5 6

Figure 2.3: Dissimilarity matrix example

P
1

P
2

b e gfda c

Figure 2.4: Hierarchy partitioning

Using the complete-linkage, we obtain the indexed classical hierarchy from Fig-

ure 2.4. Here a and b are successors of {ab} while {ab} is their predecessor for example.

As we mentioned before, in order to chose a partition from the resulting hierarchy, the

differences between the f level of the created clusters are analyzed. Usually the parti-

tioning level is chosen whenever there’s a “big” difference between the created cluster’s

levels. For example in Figure 2.4, the first partition {{a, b, c}, {d, e, f}, {g}} generated

by the level P1 = 3, is more appropriate than the second one {{a, b, c}, {d, e, f, g}}

generated by P2 = 8, since the clusters are more homogeneous.

26 Chapter 2. Theoretical Study of the 2-3 AHC

2.2 Agglomerative 2-3 Hierarchical Classification (2-3 AHC)

In this section we present the 2-3 hierarchy concept along with the 2-3 Agglomerative

Hierarchical Classification method introduced both in [Ber02d] in order to generalize

and to make more flexible the classical AHC.

As we saw before, the AHC generates disjoint clusters or clusters included one in

the other. The 2-3 Agglomerative Hierarchical Classification method gives each cluster

the possibility of intersecting at most another cluster, when the obtained intersection

is distinct from the two clusters (see Figure 2.5).

Figure 2.5: Example of a 2-3 hierarchy

This characteristic allows the obtained cluster structure to highlight groups of ob-

jects having the common characteristics of two other groups (not possible with the

AHC).

The resulting cluster structure is called an 2-3 hierarchy, term justified by the

following property equivalent with the aforementioned characteristic:

Property: Given any three clusters, at least two out of the three

possible clusters pairs are hierarchical (nested

or disjoint).

The term 2-3 hierarchy specifies how the set of 2-3 hierarchies is an extension of

the hierarchies set - indeed, from the definition above it clearly results that a hierarchy

is a particular case of 2-3 hierarchy. This happens when all three possible cluster pairs

are hierarchical, thus leading to a classical hierarchy.

2.2.1 Definitions and Properties

In the following, E will designate a nonempty finite set of size n, and C will be a

collection of nonempty subsets of E.

Denoting X and Y as two sets, we will say that a subset Y of X is proper when it’s

both nonempty and distinct from X. Also Y is a trivial subset of X if Y is not proper

or reduced to some singleton of X.

2.2. Agglomerative 2-3 Hierarchical Classification (2-3 AHC) 27

Definition 9 : If two subsets X and Y of E satisfy X∩Y /∈ {∅,X,Y}, or in other words

if the pair {X,Y} is not hierarchical, then we will say that X properly intersect Y,

denoted Xp∩Y . 2

For example in Figure 2.6, X properly intersects Y and Xp∩Y = Z.

Figure 2.6: Example of a proper intersection: Xp∩Y = Z

We present now the 2-3 hierarchy definition as given in [Ber02d] (equivalent to

Definition 5):

Definition 10 : A 2-3 hierarchy on E is a collection C that:

• contains E and its singletons,

• is closed under nonempty intersections,

• and such that each element of C properly intersects no more than one other ele-

ment of C.

2

Also, the following concept of 2-3 hierarchical collection was introduced by P.

Bertrand in [Ber02d]:

Definition 11 : A collection C of subsets of E is called 2-3 hierarchical if each element

of C properly intersect no more than one other element of C, or in other words if for

all X ∈ C, we have | {Y ∈ C : X ∩ Y /∈ {∅, X, Y }} |≤ 1. 2

Two main properties of this type of collection are: first, a 2-3 hierarchy on E

is a family of intervals of at least a linear order defined on E (cf. Theorem 4.6 in

[Ber02d]). This property allows to represent graphically a 2-3 hierarchy as a pyramidal

classification (cf. the Figure 2.5). Secondly, according to Theorem 3.3 in [Ber02d], any

28 Chapter 2. Theoretical Study of the 2-3 AHC

2-3 hierarchy on E has a maximum number of elements of b 3
2 (n − 1)c, excluding the

singletons of E.

The main advantage of the 2-3 hierarchies compared to the classical hierarchies

is their richer structure. Indeed, since the 2-3 hierarchies allow clusters to properly

intersect themselves, their structures are richer compared with the classical hierarchies

obtained on same datasets [CBT04]. For example the maximal number of created

clusters by the classical AHC is (n − 1), compared with [3
2(n − 1)] for the 2-3 AHC

[Ber02d], where n is the initial number of elements.

This information gain can also be noticed in the case of the properly intersecting

clusters: we know which one of the successors made the merging possible. Or in other

words, we can see which part of a cluster is closer to the other cluster. For example in

Figure 2.6 we can say that Z is closer to Y ′ than to X ′.

As concerning the aggregation index, it is clearly that we need new definitions for

the special case of properly intersecting clusters. We can thus use the single linkage

distance, as defined in [Ber02d], to compute the dissimilarity between two sets that

might intersects each other or not.

µsl(X,Y) = min{δ(x, y) : x ∈ X − Y, y ∈ Y −X} (2.9)

For the complete linkage, the dissimilarity between two sets is the same as in the

case of the AHC (formule 2.4) even for the clusters that are not disjoint:

µcl(X,Y) = max{δ(x, y) : x ∈ X, y ∈ Y } (2.10)

Also the indexing formula will be changed for the 2-3 hierarchical case, to take into

account the properly intersecting clusters and the cluster inversions (see below). Thus,

the chosen aggregation index is used to determine f , the degree of heterogeneity inside

a newly formed cluster, with the next formula:

f(X ∪ Y) = max{f(X), f(Y), µ(X,Y)} (2.11)

In the rest of the text we will refer to this formula as the extended indexing formula,

while f(X ∪ Y) = µ(X,Y) will be called the normal indexing formula.

For the single link, an extension of the normal indexing formula was proposed in

[Jul02a]. It was called the double single-link formula, and was introduced in order to

avoid inversions in the resulting 2-3 hierarchy for the single-link when using the afore

mentioned indexing formula. An inversion (see Figure 2.7 and Section 2.4.2.2) appears

when a successor of a cluster has a bigger indexing value f , than the one of the cluster

itself:

2.2. Agglomerative 2-3 Hierarchical Classification (2-3 AHC) 29

X
Y

X∪Y

X' Y'Z T

Figure 2.7: Example of levels inversion

f(X ∪ Y) > f(X ∪ Y ∪ T) = µ(X ∪ Y, T).

For this, the normal indexing formula was slightly altered in order to have a pre-indexed

2-3 hierarchy. This new indexing formula is called the double single-link and is defined

as follows (refer to the example from Figure 2.7 for notations):

f(X ∪ Y) = µ(X,Y) for disjoint clusters,

f(X ∪ Y) = min{µ(X ′, Y ′), µ(X ∪ Y, T)} where T is the closest candidate

cluster to X ∪ Y , for clusters that properly intersects

themselves. (2.12)

This is illustrated on the example from Figure 2.8 bellow.

Figure 2.8: Using the double single-link

The inversions are sometimes refered as crossovers or reversals [JD98].

2.2.2 Examples

A small 2-3 hierarchy example is presented in Figure 2.9 bellow. Here the cluster {ba}

properly intersects {ac}, while the clusters {ba}, {bac} and {de} are hierarchical when

compared one to each other.

30 Chapter 2. Theoretical Study of the 2-3 AHC

a cb d
0

1

2

3

e

Figure 2.9: Example of an 2-3 Hierarchy

As we mentioned before, the 2-3 hierarchies are richer than the classical hierarchies

obtained on same datasets. This can be observed for example on the number of created

clusters by the two methods. Figure 2.10 illustrates this by a small example of created

hierarchy and 2-3 hierarchy on a three points dataset.

b c
a 1 2

3b ab c ab c

1
2

0

3

Figure 2.10: AHC and 2-3 AHC

As it can be clearly seen, the 2-3 hierarchy contains more clusters and it better

represents the initial dataset compared to the classical hierarchy.

2.2.2.1 Example of Levels Inversion

We present here an example of a small dataset (Figure 2.11) and the created 2-3 hi-

erarchy using the single-link (cf. Figure 2.12) and the complete-link (cf. Figure 2.14).

The normal indexing formula is used.

The dataset is a set of four points with the distance matrix presented in Figure

2.11.

b c
a
b

1 5

c

d
3
42
3

Figure 2.11: Dataset

To avoid such levels inversions (cf. Figures 2.12 and 2.14), one can use for the

single-link the double indexing formula (cf. Figure 2.13) whilst for the complete-link,

the extended indexing formula (cf. Figure 2.15).

2.2. Agglomerative 2-3 Hierarchical Classification (2-3 AHC) 31

a cb d
0

1

2

3

4

5

Figure 2.12: Single-link levels inversion
Figure 2.13: The double single link

a cb d
0

1

2

3

4

5

Figure 2.14: Complete-link levels inversion Figure 2.15: Extended indexing formula

2.2.3 2-3 AHC Initial Algorithm

In this subsection we present the first 2-3 AHC algorithm proposed in [Ber02d] in order

to generalize the classical AHC algorithm. This algorithm has a O(n3) time complexity

(see Prop. 5.5 in [Ber02d]), and it was not implemented.

It is this first algorithm that we used as a base for our theoretical study and for the

proposal of a new 2-3 AHC algorithm in Chapter 3.

Initial Algorithm of the 2-3 AHC:

1. Initialization: i = 0; The set of clusters and the set of candidate

clusters Mi coincide with the set of singletons of E; f({x}) = 0, ∀x ∈ E.

2. Merge: i = i + 1; Merge a pair {Xi, Yi} such that

µ(Xi, Yi) ≤ µ(X,Y), among the pairs {X,Y } ⊆Mi−1, which are

noncomparable and satisfy α or β :

(α) X and Y are maximal, and X (resp. Y) is the only cluster

susceptible to properly intersect Y (resp. X).

(β) One of X or Y is maximal, and the other admits a single

predecessor Z. No cluster is properly intersected by X, Y or Z.

3. Update: Mi ←Mi−1 ∪ {Xi ∪ Yi}, from which we eliminate any

cluster strictly included in at least a cluster of Mi−1 and in Xi ∪ Yi.

Update µ by using an extension of Lance and Williams Formula.

Update f by using f(Xi ∪ Yi) = max{f(Xi), f(Xi), µ(Xi, Yi)}.

4. Stop test: repeat steps 2 et 3, until the cluster E is created.

5. Refinement: remove some clusters so that f is a weak index.

32 Chapter 2. Theoretical Study of the 2-3 AHC

We briefly present this algorithm here, additional details and the detailed version

of this algorithm from [Ber02d] can be found in Section 3.1.

As we can see, the algorithm consist as in the classical AHC case, in a initialization

phase, a recursive merging and update phase and an ending condition.

The main difference is that here are two types of merging, denoted the α and β

mergings and which involve also clusters that properly intersects themselves. Also, the

set of clusters to be eliminated from the candidates clusters Mi (the clusters eligibles

to be merged with other clusters) is reduced here compared to the classical case. This

actually lets non-maximal clusters to be merged with other clusters, creating thus the

2-3 hierarchical structure.

In step 3 the set of the created structure so far and Mi are updated and the

dissimilarities between the new clusters and the rest of the clusters inMi are computed

according to the dissimilarity measure [Ber86] chosen in the beginning. For the single

linkage, formula (2.9) is used to compute the dissimilarity between two clusters.

Another important aspect regarding the two clusters chosen for merging is their

cardinality in case of multiple matches:

(γ) when we have multiple pairs of clusters satisfying the minimum

dissimilarity condition, we will merge the clusters having the minimal

cardinality.

X’’ Y’’Y’

X Y

X’

Figure 2.16: The γ condition

For example in Figure 2.16, one of the pairs (X ′, Y) or (X,Y ′) will be the one

merged, and not the pair (X,Y). This simple condition actually allows clusters to prop-

erly intersect themselves, by favorizing mergings between maximal and non-maximal

clusters. If the maximal cardinality clusters (X and Y) would be merged in this case,

the algorithm will construct a classic hierarchy instead.

In the refinement step the created structure is analyzed in a top-down manner.

Starting from the last formed cluster (the E set), the indexing f value is compared

with the ones of its successors. In case of equality the successor is removed (it does

not present any interest from the clustering point of view) excepting the case were it’s

also included in another cluster. Then the connections (succ, pred) in the 2-3 hierarchy

are “redirected” in order to maintain a 2-3 hierarchical structure. Normally after this

update in the structure of the 2-3 hierarchy, the test is repeated for the new successors

2.3. Four New 2-3 AHC Properties 33

of the cluster in order to obtain a weakly indexed structure.

The interest in obtaining such a mapping, apart from the mathematical conse-

quences, is obvious: the “lecture” of the weakly indexed 2-3 hierarchy will be simpler

than the case where f is a mapping in a large sense and also because of its reduced

number of clusters.

It has been proved by P. Bertrand in [Ber02d] that the algorithm presented before

performs in O(n3) (Proposition 5.5).

Just like in the case of the hierarchies, an induced dissimilarity matrix can be

obtained from the indexed 2-3 hierarchies.

Definition 12 : A dissimilarity δ on E is called a 2-3 ultrametric if for each four-

element subset X of E, there exists a non trivial subset Y of X such that:

∀x ∈ X − Y and ∀y, y′ ∈ Y , δ(y, y′) ≤ δ(x, y) = δ(a, y′).

2

Indeed, this correspondence is bijective as shown by theorem 6.23 of [Ber02d].

2.3 Four New 2-3 AHC Properties

In this section we present our theoretical study of the 2-3 AHC method. As follows we

will make different assumptions but without any loss of generality for each of them.

2.3.1 The case of two clusters that properly intersect

A first property concerns the maximal size of a 2-3 hierarchy :

Property 1: The maximal size of a 2-3 hierarchy defined on a nonempty

set E is [5|E|−3
2].

Proof: This is a trivial consequence of Theorem 3.1 from [Ber02d] (the max size

of the 2-3 hierarchy without the singletons plus the number of singletons).

This property will be used later during the complexity analysis of our new 2-3 AHC

algorithm in Section 3.4.

A particular issue for the suite of our reasoning is the case of two clusters that

properly intersect each other as they represent the principal characteristic of a 2-3

hierarchy and the way we handle them can significantly change the outcome of the 2-3

hierarchy construction algorithm.

34 Chapter 2. Theoretical Study of the 2-3 AHC

As mentioned by Laurent Jullien in [Jul02b], a first problem arises when we have to

choose the two subsets Xi and Yi for merging in the case of a proper intersection. When

we have two clusters that properly intersect each other say X and Y , like the ones in

Figure 2.17, there are three candidate pairs for merging: (X,Y), (X ′, Y), (X,Y ′) with

the same cluster as result of the merging: X ′∪Y ′∪Z ′ and we can have different results

according to the dissimilarity measure chosen: single linkage, complete linkage or other.

In the following, we consider the single linkage case and we use the fact that the

dissimilarity between two disjoint clusters is less than or equal to the dissimilarity

between one of them and a successor of the other. For the complete-linkage all the

three pairs from Figure 2.17 would respect the minimum distance requirement and

thus (X ′, Y) and (X,Y ′) would be preferred according to γ. The f value will be the

same in all tree cases and it would not influence the refinement step but the created

structure would contain orphan clusters (see below).

Yα

X’ Y’Z’

X

β1
β2

Figure 2.17: α and β merging when X and Y properly intersect each other

We assume that Y was the last formed (after X) and in this case we have µ(X ′, Z ′) ≤

µ(Z ′, Y ′), otherwise Y would be formed before X and we assume that µ(Z ′, Y ′) ≤

µ(X ′, Y ′), otherwise Y would be {X ′ ∪ Y ′}. It’s worth mentioning that the clusters

X ′, Y ′ and Z ′ are disjoint, thus respecting the 2-3 hierarchy definition.

There are three pairs candidates for merging: (X,Y), (X ′, Y) and (X,Y ′) and we

will analyze the value of f for the formed cluster in each situation, using (2.9) for the

dissimilarity between their elements, even though the selected pair in this case would

be (X ′, Y) (it has the smallest dissimilarity: µ(X ′, Y) = µ(X ′, Z ′) according to the

single-linkage).

In the case of the (X,Y) pair we have:

fα = max{f(X), f(Y), µ(X,Y)} = max{f(X), f(Y), µ(X ′, Y ′)}

For the pair (X,Y ′) we have the following situation:

fβ1 = max{f(X), f(Y ′), µ(X,Y ′)} ≤ max{f(X), f(Y ′), µ(Z ′, Y ′)} ≤

≤ max{f(X), f(Y)}, by using (2.9) and the definition of f .

And for the (X ′, Y) pair we have:

fβ2 ≤ max{f(X), f(Y), using a similar proof.

We can deduce that the α merging will result in a richer 2-3 hierarchy for the single

link, since the value of f for the formed cluster will be also influenced by µ(X ′, Y ′). If

2.3. Four New 2-3 AHC Properties 35

we use the β merging, the indexing value of the resulting cluster will be either f(X)

or f(Y). Thus, in the refinement step one of the successors X,Y of the formed cluster

will be eliminated since they are not a proper intersection and the result will be simple

hierarchy.

Clearly fβ1 ≤ fα and fβ2 ≤ fα where X ′, Y ′, Z ′ are disjoint (otherwise would

contradict the 2-3 hierarchy definition) and so the β regrouping will tend to create

clusters with the same value as one of their successors causing the successors to be

eliminated from the 2-3 hierarchy.

A example on a small dataset (see Table 2.2) is presented in Figure 2.18 (the α

case) and in Figure 2.19 (the β case).

a b c d e
b 1

c 2 1

d 2 1 2

e 2 2 2 1

f 2 2 1 2 1

Table 2.2: Dissimilarity matrix example for α and β case

fedb c

11 1

0
a

Figure 2.18: f value for β case

a fedb c

1

2

0

2

Figure 2.19: f value for α case

Another argument for using the α merging over the β one, is to avoid the formation

of orphan clusters. This appears when clusters inside the 2-3 hierarchy have no prede-

cessors (except for the last created cluster). For example in Figure 2.17, when using

the β1 (respectively β2) merging, the cluster Y (resp. X) cannot be merged another

cluster since is already merged with X (resp. Y), and thus it will have no predecessor.

As follows we will not try to use the β merging in these conditions and we will

exclude this situation using only the α merging in this case. If the β merging were

used, the hierarchy created before the refinement step would have almost the same

structure, most probably with different values for the mapping f and would contain

orphan clusters.

2.3.2 Candidate Clusters Elimination

Another property of the 2-3 hierarchy concerns the clusters to be eliminated fromMi

at the end of each merging step in the 2-3 AHC algorithm (cf. Section 2.2.3). The

purpose is to specify the exact clusters to be eliminated from Mi, and to avoid to

36 Chapter 2. Theoretical Study of the 2-3 AHC

iterate over this set in order to find the clusters to eliminate. This will help reduce the

Update step’s complexity of the algorithm.

The basic idea is to analyze and possibly eliminate only the first level successors,

not the whole Mi set.

Property 2: The update ofMi in the initial 2-3 AHC algorithm can be reduced

to: Eliminate any successors of Xi and Yi and even one of

them self if it is a common successor for two maximal clusters (in

other words if Xi or Yi is the result of a proper intersection between

two maximal clusters).

Proof: This can be very easily proved by induction on the number i. For i = 1, no

cluster is eliminated andMi satisfies the property. Using the induction hypothesis we

argue that the others clusters that would be candidates for elimination (the successors

of suc(Xi, Yi) and so on) have already been eliminated in a previous step (when Xi and

Yi were created) and the only ones included in the union Xi∪Yi and in another cluster

of Mi are suc(Xi), suc(Yi) and possibly Xi or Yi in case one of them has a second

predecessor (a proper intersection case).

Thus, after this modified Update step, Mi will contain the following clusters (see

also the example in Figure 2.20):

• maximal two-by-two disjoint clusters and their successors ({abc}, {ab}, {bc}, {de},

{d}, {e} in Figure 2.20);

• maximal clusters that properly intersect each other and their successors excepting

the common one ({fg}, {f}, {h} in Figure 2.20).

a fb c d e hg

Figure 2.20: Successor candidates elimination

So far these are the candidate clusters for merging at each step of the algorithm,

but we will further reduce the set Mi (see next Section 2.3.3).

2.3.3 Intermediate Merging

As follows we will eliminate fromMi the pairs of clusters that properly intersect each

other and their successors. We will do this by operating another merging phase when-

ever there is a proper intersection and by proving that these clusters can’t be merged

with other clusters in future steps of the algorithm.

2.3. Four New 2-3 AHC Properties 37

Y’Z’X’

Xi Yi

Z

Figure 2.21: Successor case of a proper intersection

We first study the successors case of a proper intersection (see Figure 2.21) and

more specifically the possibility of merging one of these clusters with another cluster

disjoint from the properly intersecting ones.

Suppose that we have two clusters Xi and Yi with a common successor say Z ′ (cf.

Figure 2.21) and with the other successors: X ′ for Xi and Y ′ for Yi. Clearly the last

formed of them (say Yi) was formed at a step k as a result of a β merging between Z ′

and Y ′. Using single linkage we have that µ(Z ′, Y ′) ≤ µ(Xi, Y
′) and if there is equality,

according to the γ condition, (Z ′, Y ′) will be preferred for merging due to the smaller

cardinality of Z ′.

We can state the following property here, regarding the successors of Xi and Yi

where Xi and Yi properly intersect each other (Figure 2.21):

Property 3: If two clusters properly intersect each other then their successors

can’t be merged in a future step with a cluster disjoint from

their union.

Proof: Assume that Y ′ will be merged with another (non-comparable) cluster Z,

disjoint from Y ′: Z ∩Y ′ = ∅. If Z and Y ′ would properly intersect each other, then the

2-3 hierarchy would not be respected since Yi would properly intersect both Xi and Z.

In this case, Yi would also properly intersect both Y ′ ∪Z and Xi which contradicts the

2-3 hierarchy definition. It results that Y ′ and Z are disjoint.

Using the same reasoning, the clusters Y ′ and Z can not be merged since the Yi

would properly intersect both Xi and Y ′ ∪ Z. We also know that a successor can’t be

merged with the other cluster itself (β merging in Figure 2.17). Thus, the successors

X ′ and Y ′ can not be merged with other clusters in a future step of the algorithm.

Using this, we can eliminate from Mi at the end of each merging step all the suc-

cessors of the clusters that properly intersect each other, since they are “useless” (they

cannot be merged with other clusters and they will unavoidable be later eliminated

fromMi as soon as their predecessors will merge in a higher level cluster). For exam-

ple in Figure 2.20, if we suppose that the last formed cluster is {gh}, then {f}, {g}

and {h} are no longer candidate clusters and can be eliminated fromMi.

Next, we will prove that also the clusters that properly intersect each other can not

be merged with other cluster disjoint from themselves (see Figure 2.22 - the predecessor

38 Chapter 2. Theoretical Study of the 2-3 AHC

case of a proper intersection). This will lead us to conclude that two clusters that

properly intersect each other will unavoidably be merged together in a future step.

Z’ YiXi

XiUYiZ

Z’UZ

...

Figure 2.22: Predecessor case of a proper intersection

Property 4: If one of the clusters Xi or Yi chosen for merging at the i step is a

successor of a maximal cluster Z fromMi−1 then Xi∪Yi (resp. Z)

can’t be merged with a disjoint cluster from Z (resp. Xi ∪ Yi).

Proof : Let Xi be the successor of Z that will be merged with Yi, resulting in a

new cluster Xi ∪ Yi which will obviously properly intersect Z (Figure 2.22). Suppose

first that Z is merged with Z ′ 6= Xi ∪ Yi. Then Xi ∪ Yi would properly intersect Z

and Z ∪ Z ′, which is contradictory. Since the same argument applies when Xi ∪ Yi is

merged with Z ′ 6= Z, we conclude that the property holds.

We have supposed that in case of two clusters that properly intersect each other

we can’t use a β merging between one of them and the disjoint successor of the other

cluster.

Using Properties 3 and 4 we can introduce after each merging phase of the algorithm

the next test (Figure 2.23):

“If pred(Xi) = 2 (or pred(Yi) = 2) then merge the two predecessors of Xi (or

Yi) and remove fromMi any cluster included in the maximal cluster

formed after this union”.

We call this new merging intermediate merging as it might occur after the merging

of two clusters. This seems to be the optimal evolution of the 2-3 AHC algorithm in

the case of a proper intersection (see Figure 2.23).

This condition will guarantee that at the end of each step of the algorithm, the set

Mi will contain only maximal disjoint clusters and their disjoint successors (if they are

any), while the other clusters that can’t be candidates for merging are eliminated.

Also, in three out of four cases (see Section 2.3.4), it won’t be necessary to compute

the distances between the last formed cluster (Y in Figure 2.23) and the rest of the

candidates from Mi, since it would be eliminated from Mi right after its creation

2.3. Four New 2-3 AHC Properties 39

Y’Z’

X

X’

Y

Z

Figure 2.23: Evolution in the common successor case

(the distances between Z and the other candidate clusters can be computed using the

distances between X,Y ′ and the other candidate clusters).

Remark 5: In this context the (α) and (β) conditions on choosing Xi and Yi from

Mi can be reformulated into a single condition as it follows:

(a) At most one among Xi, Yi is successor of another cluster

from Mi.

This properties will be used later in Chapter 3 to reformulate the 2-3 AHC algorithm

and to propose a new 2-3 AHC algorithm with a principle similar to the classical AHC

algorithm.

2.3.4 Integrating the Refinement Step into the Merging Step

This analysis has as purpose the elimination of the refinement step at the end of the

algorithm, which can be very expensive due to its recursive nature [Ber02b]. Instead,

the refinement will be performed “on-the-fly” after each merging step during the algo-

rithm execution. The basic idea is to integrate the refinement step into the merging

step of the algorithm. We will prove that we obtain a weakly indexed 2-3 hierarchy.

Nevertheless we first must question the refinement itself in the case of the 2-3

hierarchies since it can eliminate important information in the case of clusters that

properly intersect. This information concern actually the order of the clusters in the

resulting 2-3 hierarchy (see Section 2.2), not their indexing levels and the induced

dissimilarity matrix.

Suppose we have three “equidistant” clusters which are merged together (see Fig-

ure 2.24). In the created hierarchy, the cluster {ab} presents no interest since is on the

same level with {abc} and there are four possible orders (23−1) on the initial elements.

But in the 2-3 hierarchy, we have only two possible orders plus the information that

{b} is the “intermediating” cluster. When performing the refinement, these informa-

tions will be lost, but they will not influence the induced dissimilarity, only the results

interpretation.

40 Chapter 2. Theoretical Study of the 2-3 AHC

a

b

c c

b

a

b

c

a

Figure 2.24: Refinement influence

In conclusion, for the 2-3 hierarchies when we are interested in the singletons order

is better to avoid the refinement step at the end of the algorithm to keep as much infor-

mation available. When this order is not relevant for our analysis, one can see that the

non-maximal clusters involved in a proper intersection like the one in Figure 2.24 ({a},

{b}, {c}) will no longer be candidate clusters. Meanwhile, {ab}, {bc} will be eliminated

in refinement step at the end of the algorithm. So beside the above mentioned reason

(avoiding recursive refinement), we can chose to perform an “on-the-fly” refinement

and thus allow {a}, {b} and {c} to possibly be merged with other candidates. Locally,

this would lead to a richer 2-3 hierarchy since theoretically there will be more candidate

clusters, but globally the outcome is unpredictable since we influence the way the 2-3

hierarchy is constructed.

In this context, the integrated refinement step from the algorithm(s) that we will

later propose (see Chapter 3) will be an optional step depending on the purpose of the

analysis.

To integrate the refinement step into the merging step we will perform an exhaustive

analysis of the cases concerning the merging value f of a new cluster and the merging

values of his two merged successors during the execution of the 2-3 AHC algorithm. The

purpose is to eliminate the successors found on the same level with their predecessor

without any information lose. There are two possible situations: when there is a proper

intersection between the successors, respectively when the successors are disjoint. The

later contains also two situations: in the first, one of them will have two predecessors

after the merging, and in the second both of them will have as unique successor the

new formed cluster.

In order to prove that the obtained 2-3 hierarchy will be weakly indexed, we proceed

by induction. We remind that a collection C is weakly indexed if X ⊂ Y implies f(X) ≤

f(Y) and if f(X) = f(Y) with X ⊂ Y , implies that X is equal to the intersection of its

predecessors or in other words when X represents a proper intersection. We suppose

that until a step i of the algorithm the structure is weakly indexed (true for step 1

whenMi contains only singletons).

We assume that we have the clusters X and Y to merge at the step i+1. Using the

formula (2.9) to determine the f value of a new cluster, there are four possible cases:

2.3. Four New 2-3 AHC Properties 41

Y’

X

Y
Z

X’
0
1

2
3

a.
Z’

Figure 2.25: f(X) < f(Y) < f(Z)

1. f(X) < f(Y) < f(Z): In this case (Figure 2.25), the value of f for X,Y

and Z will be all different. The 2-3 hierarchy will be maintained and it will remain

weakly indexed. The successors of X and Y , if any, will be eliminated in this case from

Mi (Property 3). If X,Y properly intersect each other then they will be eliminated too

from Mi (Property 4). If they don’t properly intersect then one of them could have a

second predecessor, but without any influence on their merging.

Z
X

X’ Y’

Y
0
1
2

b.
Z’

Figure 2.26: f(X) = f(Y) ≤ f(Z)

2. f(X) = f(Y) ≤ f(Z): Here (Figure 2.26) we could not eliminate X (or

Y) because in this case X ′ (or Y ′) and Z ′ will be regrouped at the distance 2 instead of

1. The structure will be maintained since the formed cluster will have a bigger merging

value as his successors (same reasoning like in 1 in case of a proper intersection and of

two predecessors). The structure will be weakly indexed since f(X) = f(Y) ≤ f(Z).

X

X’ Z’ Y’

Y
Z

X’

Z

Z’ Y’
a.

Figure 2.27: f(X) = f(Y) = f(Z)

3. f(X) = f(Y) = f(Z): (Figure 2.27). This means that X ′, Y ′ and Z ′ were

all regrouped at the same distance, but in different clusters. We will eliminate X and Y

fromMi and Si because they don’t present any interest here. Thus, X ′, Y ′ and Z ′ will

be all directly merged into Z. This is the case of the equidistant clusters. In case there

42 Chapter 2. Theoretical Study of the 2-3 AHC

is no proper intersection, Z ′ is not common, X (or Y) can have two predecessors and

in this case Z will replace X (or Y), and his successors will be eliminated fromMi. As

for the weak indexing, we have two cases: first f(Z ′) < f(X) = f(Y) and in this case

the weak indexing will be preserved. Secondly, if f(Z ′) = f(X) = f(Y), it means that

Z ′ was necessarily the proper intersection of X and Y . In this case we can eliminate

Z ′ from the structure since it does not properly intersect another cluster and since it

will be on the same level as it’s new predecessor, Z (f(Z ′) = f(X) = f(Y) = f(Z)).

Thus the structure will remain weakly indexed.

Y’ Y’X’

Y

X

XUY XUY’

X

Z’ X’ Z’

Figure 2.28: f(X) < f(Y) = f(Z)

4. f(X) < f(Y) = f(Z): (Figure 2.28). We have two cases here: Z ′ is the

common intersection of X and Y , or X and Y do not properly intersect themselves

and one of them could have another predecessor. In the first case, Y can be eliminated

fromMi and Si. Also succ(X) will be removed fromMi (Property 4).

If X and Y do not properly intersect each other then X (or Y) can have two

predecessors. Here we have two situation: Y has two predecessors and in this case the

reasoning is the same as in 3, or X can have two predecessors and in this case we can

perform an intermediate merging since the two clusters (pred(X)) will have f values

greater than the ones of theirs successors.

Knowing these, we can eliminate the recursive refinement step by adding test con-

ditions for these cases in order to deal with this situations. In order to have a weakly

indexed 2-3 hierarchy we introduce these conditions each time we create a cluster: elim-

inate the successors of the new cluster if their value is the same with the one of the

new cluster, and if they’re not the proper intersection of two clusters. In this way the

2-3 hierarchy obtained will be weakly indexed by the mapping f .

2.4 Aggregation Index

In this section we will analyze analyze the ways of defining the indexing formulas and

their influence on the created 2-3 hierarchy, in order to determine the most suitable

indexing formula.

One of the ways of measuring the “quality” of a ascending hierarchical clustering

method is given by its induced dissimilarity matrix. This is obtained using the indexing

2.4. Aggregation Index 43

level f of its created clusters. The indexing of a cluster has thus a great influence on

the method’s quality.

In this context, we analyze the influence on the 2-3 AHC algorithm of the:

• different ways of defining a dissimilarity,

• different dissimilarity measures (single-link, complete-link and sometimes average-

link),

• different indexing formulas by an isotone mapping f , for the created 2-3 hierarchy.

The main concern here are the clusters that properly intersect themselves, since

they are a characteristic of the 2-3 hierarchies that differentiate them from the classical

hierarchies.

2.4.1 Context

We first recall some used definitions. During the 2-3 AHC algorithm, two clusters can

be merged if they are closest - in the sense of a chosen link of aggregation hereafter

denoted µ and called simply link. In the 2-3 hierarchical case each cluster can be merged

at most two times, leading thus to clusters that properly intersects. The most usual

links are the single-link, the complete-link, the average-link, the Ward criterion, etc.

When two clusters X and Y are merged, the link µ(X,Y) between these two clusters

can be interpreted as a measurement, denoted f(X ∪Y), of the degree of heterogeneity

of the new cluster X ∪ Y . At the end of the mergings when the initial cluster E is

created, the created clusters structure denoted S, can be used to extract the induced

dissimilarity, δ′ where: δ′(x, y) = min{f(X) : X ∈ S and x, y ∈ X}.

The map f that associates each cluster to its degree of heterogeneity, is not neces-

sarily an index (hierarchies) or a weak index (2-3 hierarchies), in the sense defined in

Section 2.1.1, so that a refinement step (removing of certain clusters) is performed af-

ter the last merging of the algorithm in the initial 2-3 AHC algorithm. The refinement

starts from the last formed cluster, E, and proceeds “downwards” with the clusters

eliminations until it reaches the singletons.

More precisely, the purpose of the refinement step is to eliminate any cluster which

does not influence the induced dissimilarity matrix. In the hierarchical case, these

clusters are the ones found on the same f level with their predecessor and the result of

the refinement phase is an indexed hierarchy.

For the 2-3 hierarchies these clusters are the ones found on the same level with

their predecessor(s), excepting the case when such a cluster is a proper intersection

and can influence the induced dissimilarity. For example in Figure 2.29, Y is on the

same f level with one of his predecessor, X∪Y , but cannot be eliminated since it is the

proper intersection of X ∪Y and Y ∪Z and its elimination would influence the induced

44 Chapter 2. Theoretical Study of the 2-3 AHC

dissimilarity. The result of the refinement phase in this case is a weakly indexed 2-3

hierarchy.

YX∪Y

X Z

Y∪Z
X∪Y∪Z

Figure 2.29: Clusters on the same level in a 2-3 hierarchy

The quality of a hierarchical classification method consists in its representation of

the initial dissimilarity matrix by the created structure, i.e. the induced dissimilarity

matrix (see above definition). Thus, after the refinement, the induced dissimilarity

matrix is compared with the initial dissimilarity matrix using different formulas (e.g.

the Stress formula, the Pearson coefficient or a simple difference) in order to determine

the “quality” of the obtained structure.

In conclusion, contrary to the classical AHC, in the 2-3 AHC:

• a cluster can be merged with at most two other disjoint clusters,

• we will obtain in the refinement step a weak index of the structure, since here

we have clusters that properly intersects and their elimination can influence the

induced dissimilarity matrix (see Figure 2.29).

2.4.2 Link

The link defines the dissimilarity µ between two clusters based on their elements. Some

well known examples of dissimilarity measures are: the single-link, the complete-link,

the average-link etc. These dissimilarities are well defined for the hierarchies, but we

need to analyze them in the context of the 2-3 hierarchies, i.e. in the context of clusters

that properly intersect themselves such as X and Y from Figure 2.31: Xp∩Y ⇒ X∩Y /∈

{∅, X, Y }. For this we will first take a look at the ways of defining a dissimilarity

between clusters in Section 2.4.2.1.

Since the proper intersection of two clusters differentiates a hierarchy from a 2-3 hi-

erarchy, we will also analyze its influence on the 2-3 AHC algorithm (see Section 2.4.2.2).

2.4.2.1 Dissimilarity definitions

We have three options when computing the dissimilarity between two clusters that

properly intersect themselves:

2.4. Aggregation Index 45

(1) to exclude the common part of the clusters when we compute the dissimilarity.

In Figure 2.31 we have: µ(X,Y) = µ(X − Y, Y − X) = µ(X ′, Y ′). The general

formulation would be:

µ1(X,Y) = formula{d(x, y) : x ∈ X − Y, y ∈ Y −X},

where formula can be min, max, average etc;

(2) to take into account also the common part when we compute the dissimilarity.

The general formulation would be:

µ2(X,Y) = formula{d(x, y) : x ∈ X, y ∈ Y };

(3) to consider all the distances inside the formed cluster, X∪Y , when computing

the dissimilarity. This would resume to:

µ3(X,Y) = formula{d(x, y) : x ∈ X ∪ Y, y ∈ X ∪ Y }.

2.4.2.2 Dissimilarity definitions and 2-3 AHC Algorithm

We have seen that using the extended indexing formula∗ we will avoid any risk of level

inversions in the created 2-3 hierarchy, but this formula can influence the execution of

the 2-3 AHC algorithm. We analyze here the use of the three previous dissimilarity

definitions during a proper intersection in the (general) 2-3 AHC algorithm defined in

[Ber02d] and in particular when these are applied for the single-link, the complete-link

and the average-link.

We know [Ber02d] that the 2-3 AHC algorithm merges at each step the pair of

candidates clusters found at the minimum dissimilarity, just like the AHC algorithm.

Lets suppose that we merge two clusters Z and Y ′ and that one of them, say Z has

another predecessor, X (Figure 2.31). The new formed cluster Y , will have a maximal

degree of heterogeneity among the other candidate clusters, due to the merging of two

disjoint clusters, Z and Y ′, at the maximal dissimilarity so far. As in the AHC case, the

dissimilarity between the resulting cluster and all other disjoint candidate clusters will

be higher or equal to µ(Z, Y ′). But the dissimilarity value between the two clusters that

properly intersect themselves, X and Y , depends on the chosen dissimilarity definition

from above (1-3) and naturally on the chosen dissimilarity measure.

When performing a merge (Figure 2.31), the 2-3 AHC algorithm takes the candidate

clusters found at minimum dissimilarity, and thus it is obvious that:

µ(X ′, Z) ≤ µ(Z, Y ′) ≤ µ(X ′, Y ′) (2.13)

Using this and µ1, we will always have µ(X,Y) = µ(X ′, Y ′) ≥ µ(Z, Y ′) ≥ µ(X ′, Z)

for any dissimilarity measure.

Next, we analyze the use of µ2 and µ3 from above with the single-link, complete-link

and average-link.

∗f(X ∪ Y) = max{f(X), f(Y), µ(X, Y)})

46 Chapter 2. Theoretical Study of the 2-3 AHC

X
Y

X∪Y

Figure 2.30: No intersection

X
Y

X∪Y

X’ Y’Z

Figure 2.31: Proper intersection

X
Y

X∪Y

X' Y'Z T

Figure 2.32: Levels inversion

For the single-link we cannot use µ2 and µ3, since the dissimilarity between X and

Y will be 0 if we consider their common part, Z (Figure 2.31) and thus we will find

ourself in the hierarchical case after the refinement at the end of the 2-3 AHC algorithm

[Jul02a].

For the complete-link, when we compute µ(X,Y) with Xp∩Y (Figure 2.31), the

dissimilarity µ(X ′, Y ′) will always influence µ(X,Y), regardless of the chosen dissimi-

larity definition. Since it uses the maximum value, it results that µ(X,Y) ≥ µ(X ′, Y ′)

and using (2.13) it follows that µ(X,Y) ≥ µ(X ′, Y ′) ≥ µ(Z, Y ′) ≥ µ(X ′, Z). All three

definitions can be used with the complete-link but we will analyze in Section 2.8 their

use, to select the most suitable one.

If we use the average-link and we also consider the common part of X and Y

(definitions µ2 and µ3), we will have a small dissimilarity between X and Y , caused by

the common cluster, Z. This is due to the fact that the distances between the elements

of the common clusters are considered when computing the average. In this case, we

can have µ(X,Y) < µ(Z, Y ′) and we must use the extended indexing formula in order

to avoid levels inversions.

A small example is presented in Figure 2.33 bellow. The average dissimilarity is

computed using: µ(X,Y) =
∑

d(x,y)
n

, where x ∈ X, y ∈ Y and n is the number of

possibles pairs in the numerator sum (|X| × |Y |).

In conclusion, the first formula (µ1) for defining the dissimilarity µ between two

clusters that properly intersect themselves, seems to be the best formulation since it

can be applied for all dissimilarities. If we use the µ2 and µ3 dissimilarity definitions,

the 2-3 AHC algorithm can have unexpected/unwanted results if we use them with the

2.5. 2-3 Hierarchy Indexing 47

a∪b

b∪c

a cb

b c
a
b

1 2.6

a b
a b
a

− −

b

c
2.3
2.6

bc a
a b 1.4 −

a

b
2.3
−
−

b

c
−
−

−

2

1

0
bc 1.8

2
−

2
−

a∪b b∪c

Figure 2.33: Average-link and 2-3 AHC algorithm

extended indexing formula or other formulas (see next Section 2.5), especially in the

complete-link case.

2.5 2-3 Hierarchy Indexing

We study now the indexation of the (2-3) hierarchies and also the special case of the

clusters that properly intersects themselves. The indexation is very important since

it will influence the graphical representation (the dendrogram) of the (2-3) hierarchies

and the refinement phase performed at the end of the algorithm. The purpose of this

section is to establish which indexing formula to use for the single, complete and the

average link.

As we said before, the hierarchies and the 2-3 hierarchies are indexed using an

isotone mapping f , which represents the degree of heterogeneity of a cluster. This index

is used at the end of the algorithm in the (optional) refinement phase that eliminates

the useless clusters from the created structure. After that, this index is finally used to

represent graphically the created structure (hierarchy or 2-3 hierarchy) as a dendrogram

and to extract the induced distance matrix (the ultrametric or the 2-3 ultrametric). This

induced distance matrix is then compared with the initial one in order to determine

the structure’s quality (the Stress coefficient, Pearson coefficient, etc).

The definition of this index f is influenced by the chosen dissimilarity and in the

case of the 2-3 hierarchy it can be:

(a) f(X ∪ Y) = µ(X,Y);

(b) f(X ∪ Y) = max{µ(X,Y), f(X), f(Y)}.

As follows we will refer to the first indexing formula (a) as the normal indexing

formula and to the second one (b) as the extended indexing formula.

The normal indexing formula represents the dissimilarity at which the two clusters

have been merged and is used in the AHC algorithm. Since the AHC algorithm merges

at each step the minimal dissimilarity pair of clusters, it results that f(X ∪Y) ≥ f(X)

and f(X∪Y) ≥ f(Y), where (X,Y) ∈Mi is the candidates pair that are merged. This

give us an isotone index f of the created hierarchy. This reasoning does not applies for

the 2-3 AHC algorithm. This is due to the fact that inversions between the levels of

the created 2-3 hierarchy can appear using this formula (see Section 2.2.2.1). In order

48 Chapter 2. Theoretical Study of the 2-3 AHC

to avoid this, an extension of this formulation is used for the single-link (see below the

double indexing).

The extended indexing formula represents the heterogeneity degree inside the new

formed cluster and is used in the 2-3 AHC algorithm in order to avoid the situations

where f(X) > f(X ∪ Y) or f(Y) > f(X ∪ Y), situations also denoted here as levels

inversions. These situations are presented in Section 2.4.2.2 and concern the average-

link case (smaller dissimilarity, Figure 2.33) and the levels inversions for the single-link

and the complete-link (higher dissimilarity, cf. Figure 2.32) and Section 2.2.2.1), when

using the normal indexing formula.

It has been proved in [Jul02a] that the extended indexing formula can produce

inversions in the resulting 2-3 ultrametric for the single-link. On the other hand, this

formulation is suitable for the complete-link, since it maximizes the level of the new

cluster. But if we use this formula, all the clusters resulted from the merging of X ∪ Y

(plus any resulting cluster) and different clusters situated at a dissimilarity inferior

to µ(X,Y), will possibly be eliminated during the refinement phase of the algorithm

(Figure 2.34) when we use this extended formulation.

In both indexing cases, (a) and (b), f(X∪Y) is influenced by µ(X,Y) and moreover

f(X ∪ Y) ≥ µ(X,Y).

X Y

X∪Y

X’ Y’Z T T’ T’ ’

X Y

X∪Y∪T∪T’∪T’ ’

X’ Y’Z T T’ T’ ’

⇒

Figure 2.34: Using the extended indexing formula

X Y

X∪Y

X’ Y’Z T

X
Y

X∪Y∪ Τ

X’ Y’Z T

⇒

Figure 2.35: Using the double single-link

We present here an extension of the normal indexing formula, called the double

single-link formula, introduced in [Jul02a] in order to avoid inversions in the resulting

2-3 ultrametric for the single-link when using the extended indexing formula.

For this, the normal indexing formula is slightly altered in order to have a pre-

indexed 2-3 hierarchy, i.e. in order to avoid having f(X ∪ Y) > f(X ∪ Y ∪ T) =

µ(X ∪Y, T), cf. Figure 2.32. This new indexing formula is called the double single-link

and is defined as follows:

2.6. Proper Intersection Analysis 49

- f(X ∪ Y) = µ(X,Y) for disjoint clusters,

- f(X ∪ Y) = min{µ(X ′, Y ′), µ(X ∪ Y, T)} where T is the closest candidate

cluster to X ∪ Y , for clusters that properly intersects (Figure 2.35).

Note: Since the double single-link does not concerns the dissimilarity calculus (the

link) between clusters, but only the indexing of the structure, we will simply call it the

double indexing formula.

If we extend this double indexing formula to all dissimilarities, for example for the

complete-link, it can have the same effect as the extended indexing formula for single-

link (inversions in the resulting 2-3 ultrametric). For example in Figure 2.35: reducing

the level of X ∪ Y will cause smaller values in the resulting 2-3 ultrametric compared

with the ones in the initial dissimilarity.

An example of using the double indexing formula is presented in Figure 2.35, where

f(X ∪ Y) > µ(X ∪ Y, T). Here, when we create X ∪ Y ∪ T , we will reduce f(X ∪ Y)

to µ(X ∪ Y, T).

In conclusion, so far the best indexing formulas for the dissimilarity measures are:

• for the single-link: the double indexing formula. The normal indexing formula can

cause levels inversions, while the extended indexing formula can cause inversions

in the resulting 2-3 ultrametric.

• for the complete link: the extended indexing formula. As in the single-link case,

the normal indexing formula can cause levels inversions, while the double indexing

formula can cause inversions in the resulting 2-3 ultrametric.

• for the average-link: the extended indexing formula and the double indexing for-

mula but clusters will tend to be on the same level with their predecessor in a

proper intersection. Thus will most probably lead to a poor 2-3 hierarchy (very

similar to a hierarchy). The normal indexing formula can cause levels inversions.

2.6 Proper Intersection Analysis

We analyze in this section, the reasons for the level inversions (see Section 2.2.2.1),

the measures to avoid them (the extended indexing formula) and their influence on the

created 2-3 hierarchy.

2.6.1 Inversion problem

We begin by recalling some basic notions.

50 Chapter 2. Theoretical Study of the 2-3 AHC

The main difference between 2-3 hierarchies and hierarchies are the clusters that

properly intersect themselves: X properly intersects Y , if X ∩ Y /∈ {∅, X, Y } (Fig-

ure 2.36). In the hierarchy case, when a cluster is formed, his successors can’t be

merged with another cluster and they are eliminated from the candidate cluster set (in

Figure 2.30, X and Y are no longer candidate clusters).

X
Y

X∪Y

X’ Y’Z

Figure 2.36: Proper intersection in a 2-3 hierarchy

In a 2-3 hierarchy, these successors are kept as candidates and they can be merged

only with other maximal clusters (see Section 2.3). For example in Figure 2.36, after

the merging of X ′ and Z the resulting cluster, X, is a candidate cluster along with

his successors, X ′ and Z. Since these successors are smaller clusters than X, in case

of same dissimilarity value with another cluster, they will be preferred for the next

merging by the aggregation index (dissimilarity measure µ), which tries to minimize the

dissimilarity between candidate clusters and other given criterion (cardinality, creation

order, etc). Also generally speaking, is it more likely that a cluster Y ′ is “closer” to a

subset (e.g. a successor) of another cluster X (Z in this case), then to X itself. Thus,

for example Z can be merged with another cluster, Y ′, forming a new cluster, Y (see

Figure 2.36).

At this stage we have two clusters that properly intersect themselves, X and Y with

X ∩Y = Z. We have seen in Section 2.3 that these two clusters and their predecessors

cannot be merged with another cluster disjoint of them and that only X and Y will

necessarily be merged together in a later step of the algorithm.

Next we will analyze this situation and the outcoming of how the proper intersection

was performed.

2.6.2 Blind Merging

The main problem is that at the merging of Z and Y ′, we don’t consider the dissimilarity

between X ′ and Y ′ which will influence the heterogeneity degree of the future cluster

X ∪ Y and sometimes (see Section 2.7.2) the dissimilarity between X ∪ Y and the rest

of the candidate clusters. We denote as a blind merging the indirect merging of X ′

and Y ′ through the future merging of X and Y .

For example, if X ′ and Y ′ are opposed (in the sense of µ), the dissimilarity between

them will have a high value, resulting in a high degree of heterogeneity of the future

2.7. 2-3 AHC Algorithm Execution 51

cluster X∪Y for some dissimilarity measures (single and complete link). Moreover, the

dissimilarity between X and Y will have a high degree (value) causing the “block” of

X and Y ’s merging, until the minimum dissimilarity in the initial 2-3 AHC algorithm

execution reaches µ(X,Y) (see Section 2.7.2).

We call this merging blind merging of X ′ and Y ′ may cause unwanted effects, such

as levels inversions (f(X ∪Y) < f(X) or f(X ∪Y) < f(Y)), if one will use the normal

indexing formula (Figure 2.32). But as we saw before (cf. Section 2.5), we will use

the extended indexing formula (cf. Figure 2.34) or the double indexing formula (cf.

Figure 2.35). This behaviour can cause the elimination of some clusters during the

refinement step, clusters that will be on the same level with their predecessor due to

the use of these indexing formulas.

Another issue concerning the blind merging is the fact that the induced dissimilarity

matrix will not be comparable with the one induced by the classical AHC (the ultra-

metric). Indeed, if clusters X ′ and Y ′ are opposed (in the sense of µ), then it is very

likely that they will be merged together later in the classical AHC algorithm execution.

But in the 2-3 AHC algorithm, they will be merged together sooner, inducing thus

a dissimilarity matrix non-comparable with the classic ultrametric. A more detailed

example in given in Appendix A.

The blind merging is also the cause of the 2-3 hierarchy levels inversion presented

in Section 2.2.2.1 if using the normal indexing formula.

In conclusion, the influence of the dissimilarity between X ′ and Y ′ on the created

cluster can be on one hand, a positive source of information compared to the classical

hierarchy (a new cluster or level in the dendrogram) and on the other hand, a “forced”

merging of X ′ and Y ′ which will create a high heterogeneity degree cluster.

Before we analyze the blind merging influence (see Section 2.7.2) we will first take

a look at the 2-3 AHC algorithm execution in this situation (see next Section 2.7).

2.7 2-3 AHC Algorithm Execution

In this Section, we study the 2-3 AHC algorithm execution when two clusters properly

intersect themselves and the influence of the blind merging on this execution.

2.7.1 Proper Intersection During Algorithm Execution

When we have two clusters X and Y that properly intersect themselves (Figure 2.36),

we have two options for the execution of the 2-3 AHC algorithm:

(i) we can leave X and Y and merge the next two closest clusters in

the sense of µ; X and Y will be merged together later during the algorithm when

52 Chapter 2. Theoretical Study of the 2-3 AHC

µ(X,Y) ≤ µ(S, T) : S, T ∈ Mi − {X,Y } (they can also be the next merged clusters).

This is the “normal” execution of the algorithm [Ber02b].

(ii) we can “force” the merging of X and Y since we know that they will

be merged only together at a later step of the algorithm (see Chapter 3). This we call

it an intermediate merging between X and Y and is influencing the ulterior algorithm

execution.

In the first case (i), during the 2-3 AHC algorithm, the clusters merged at each

step will be the candidate clusters found at minimal dissimilarity. But we can still

have inversions in the levels of the formed clusters (Figure 2.32 and Section 2.2.2.1)

when using the normal indexing formula. Here we need to use the extended indexing

formula (for the complete link), the double indexing formula (for the single-link) or

another indexing formula that avoids these inversions. As we said before, the extended

indexing formula is not a good choice for the single-link. But the use of the double

indexing formula with the single-link can also create levels inversions in the resulting 2-

3 hierarchy in the normal algorithm execution. This can occur in a proper intersection:

a merged cluster can have a bigger f level compared with the resulting cluster (see a

detailed example in Appendix B).

This situation can be avoided if we use the normal indexing formula along with a

test (or if we use just the intermediate merging (ii)). We can use the normal indexing

formula (a) since the f value of a created cluster does not influence the future mergings

using the normal algorithm execution, followed by a level test just after the creation of

a cluster.

Thus for the single-link, we always use f(X ∪ Y) = µ(X,Y), but we make the

following test each time we create a cluster X ∪ Y :

“if f(X) > f(X ∪ Y) or/and f(Y) > f(X ∪ Y), then f(X) = µ(X, Y) or/and

f(Y) = µ(X, Y)”.

For the complete link, the normal execution will “block” the clusters that properly

intersects themselves until the minimal dissimilarity will be µ(X,Y), then it will merge

them together.

As follows, we will analyze the second case from above, the intermediate merging

case (ii).

We have seen in Section 2.3 that after the creation of Y (Figure 2.36), the clusters

X ′, Z and Y ′ are no longer candidate clusters and X and Y can be merged only

with each other. So if we merge X and Y we will have a candidate cluster (X ∪ Y)

that can have an elevated degree of heterogeneity and implicitly of the f value due to

the dissimilarity between X and Y (caused by X ′ and Y ′). But we can use different

indexing formula in order to avoid unwanted situations, such as levels inversions caused

by high level clusters.

2.7. 2-3 AHC Algorithm Execution 53

This intermediate merging will give the new cluster X ∪ Y , the possibility of be-

ing merged with another cluster, before the moment when the minimum dissimilarity

between the candidate pairs of clusters will be equal or greater than µ(X,Y) (the

condition from case i). Assuming that X ∪ Y will be merged with a cluster T (see

Figure 2.32), where µ(T,X ∪ Y) < µ(X,Y), it results that µ(T,X ∪ Y) < f(X ∪ Y).

Using the intermediate merging, the cluster X ∪ Y will not be “blocked” until the

minimum dissimilarity for choosing the merging clusters will be µ(X,Y), and it can be

merged with other candidate clusters immediately. But the problem is that a cluster

with high heterogeneity degree (or indexing level) can be created and we need to use

different indexing methods for each dissimilarity to avoid levels inversions in the 2-3

hierarchy (see Section 2.5). For the single-link, beside the normal indexing formula

with the test, we can use here also the double indexing formula without any risk of

levels inversions (Appendix B).

For the complete-link in the intermediate merging case, the extended indexing for-

mula is the more suitable one since it maximizes the f level of the new cluster, taking

into account the heterogeneity degree of its successors.

2.7.2 Blind Merging’s Influence

If we consider the case of clusters that properly intersect themselves, Figure 2.36, we

have seen that the blind merging can create a high heterogeneity degree cluster. For

example in Figure 2.36, Z and Y ′ are merged without taking into account the dissim-

ilarity between X ′ and Y ′, which will influence the heterogeneity degree of the future

cluster X ∪ Y . Different dissimilarity definitions (µ3 for complete-link) or indexing

formulas (see Sections 2.5 and 2.7) will help us avoid levels inversions in this case, but

the dissimilarity between X ∪ Y and the other candidates can also be affected by this

possibly high heterogeneity degree of X ∪ Y .

This situation does not appear when using the single-link, since it uses the closest

element criterion, but it can influence other links like the average and especially the

maximum-link which uses the farthest element criterion.

In the case where the dissimilarity between the new cluster and the rest of the

candidates is influenced by its high heterogeneity degree, this new cluster will become

an “isolated” cluster and it will be merged only later with other candidates, causing

thus information losses. A small example is presented in the Appendix A.

We must remind that this loss can be only local as in the given example, but on

larger datasets it can influence the way that the rest of the clusters will be merged.

This translates into a different 2-3 hierarchy, which can be richer or poorer (when

comparing the induced dissimilarity) compared with the one created by the initial 2-3

AHC algorithm. This is one of the reasons for the high standard deviation obtained

during experimentations in the next Chapter (see also Appendix C), along with the

54 Chapter 2. Theoretical Study of the 2-3 AHC

fact that the behaviour of a classification method strongly depends on the used dataset

[ST05].

The blind merging can be avoided by minimizing the level of the cluster that is to

be formed after the intermediate merging step. This can be done by storing a second

aggregation value for each pair of clusters that can be β merged. This extra value is

actually the link between the two properly intersecting clusters that could result from

this β merging (see also Section 3.4.1 for an example).

2.8 Complete Link Definitions

We have seen that for the complete-link we can use all three dissimilarity definitions

presented in Section 2.4.2.2 in the both algorithm executions (normal and with interme-

diate merging). The only indexing formula to use in this case is the extended indexing

formula:

- f(X ∪ Y) = max {µ(X,Y), f(X), f(Y)}.

Next we prove that the results of the three definitions are identical when using the

extended indexing formula. The purpose is to show that µ1 is the most suitable one,

since it has a smaller time computing complexity then µ2 and µ3.

We will thus show that using the first dissimilarity definition and this indexing

formula, will create clusters for which the level f represents its heterogeneity degree,

e.g. f(X) = max{d(x, y) : x ∈ X, y ∈ X}. This heterogeneity degree is actually

assured by the third dissimilarity definition, µ3.

Proposition 2.8.1 If we use the complete-link defined as µ(X,Y) = max {d(x, y) : x ∈

X−Y, y ∈ Y −X} and the extended indexing formula f(X∪Y) = max {µ(X,Y), f(X),

f(Y)}, then the f level of a cluster will represent its heterogeneity degree, e.g.

f(X) = max{d(x, y) : x ∈ X, y ∈ X}

Proof. This can be proved by induction on the 2-3 AHC algorithm execution step, i.

For i = 0, f({x}) with x ∈ E is set to 0 for all the singletons, verifying thus our

hypothesis. We assume now that f(X) represents the heterogeneity degree of X as

defined above for all the candidate clusters X at the step i = k.

We analyze the heterogeneity degree of the cluster formed at the next step i = k+1

of the 2-3 AHC algorithm. At this step we will merge two clusters X and Y , which can

be disjoint or can properly intersects themselves. All clusters created so far have their

level f equal to their heterogeneity degree, defined as above.

The heterogeneity degree of the new resulting cluster X ∪ Y is given by:

max{d(x, y) : x ∈ X ∪ Y, y ∈ X ∪ Y } =

= max{max{d(x, y) : x ∈ X, y ∈ X}, max{d(x, y) : x ∈ Y, y ∈ Y },

2.9. Discussion and Perspectives 55

max{d(x, y) : x ∈ X − Y, y ∈ Y −X}} =

= max{ f(X), f(Y), µ1(X,Y)} =

= f(X ∪ Y). 2

In this way, the use of any dissimilarity definitions µ1, µ2 or µ3 will create the same

f level clusters, but their computation is different in time complexity. We will thus use

for the complete-link the first dissimilarity definition µ1, which is less time consuming.

2.9 Discussion and Perspectives

In this Chapter we have studied the 2-3 hierarchy concept proposed by P. Bertrand

[Ber02d] in 2002. The 2-3 hierarchies generalize the classical hierarchies by allowing

two clusters to properly intersect themselves. The created structure is richer and the

initial proposed 2-3 AHC algorithm has a O(n3) time complexity.

We have revealed four new properties of the 2-3 hierarchies, which will be used in

the next Chapter to propose a new 2-3 AHC algorithm. These properties allowed us

to propose a new merging step for 2-3 AHC algorithm (see Section 3.2.1). Also, using

these properties we will specify exactly the clusters to be eliminated from the candidate

set in the Update step and the dissimilarities to compute.

We saw that the recursive refinement step from the end of the 2-3 AHC algorithm

can be avoided by performing an “on-the-fly” refinement. We called it the integrated

refinement and we proved that it produces a weakly indexed 2-3 hierarchy. But de-

pending on the desired analysis, one can chose not to perform the integrated or the

recursive refinement which becomes thus optional.

Since the proper intersection is the main characteristic of the 2-3 hierarchies, we

studied its influence on the aggregation index, algorithm execution, etc.

As concerning the aggregation indexes, for the single-link we must/can use the fol-

lowings definitions or algorithm executions:

• we must use the first dissimilarity definition (µ1) to construct 2-3 hierarchies,

• both algorithm executions can be used, but with different results:

– intermediate merging (i): in order to avoid levels inversions and inversions in

the resulting 2-3 ultrametric, we must use one of the two following indexing

formula, which are equivalent in this case:

∗ the double indexing formula,

∗ the normal indexing formula with the level test.

– normal execution (ii): we must use the normal indexing formula with the

level test, but we will have information loses (poorer structure after the

refinement).

56 Chapter 2. Theoretical Study of the 2-3 AHC

As for the complete-link :

• we can use the extended indexing formula and the first dissimilarity definition,

µ1,

• we could also use:

– the normal indexing formula with the third dissimilarity definition, µ3, or

– the extended indexing formula with one of the last two dissimilarity defini-

tions, µ2 or µ3,

but with a bigger time computing complexity and same results.

The study of the proper intersection and of the 2-3 AHC algorithm execution has

revealed a particular case on merging that we called the blind merging. Concerning

its influence (Section 2.7.2), a possible way to avoid it, is to take into account the

dissimilarity between the disjoint clusters in a proper intersection, before the β merging.

We saw that if we avoid the blind merging, one can build a different 2-3 hierarchy.

Same thing happens if one chose to perform or not the integrated refinement. Unfor-

tunately, we can not state that one choice is better than the other, since a choice like

this at any level (integrated refinement, blind merging) will influence the way that the

other remaining candidate clusters will be merged in the next steps of the algorithm

(see also Appendixes A and B).

It will thus become necessarily to refer to the initial dissimilarity matrix when we

need to compare the structures created by these different choices. In the next Chapter

we will then use different coefficients like Stress or Pearson with regard to the initial

dissimilarity when performing dissimilarities quality analysis.

Chapter 3

A New Agglomerative 2-3

Hierarchical Classification

Algorithm

In this Chapter we will use the new theoretical properties of the Agglomerative 2-3

Hierarchical Classification discovered in the previous Chapter 2, to propose a new 2-3

AHC algorithm with a reduced complexity from O(n3) to O(n2 log n).

We start by presenting the initial 2-3 AHC algorithm proposed in [Ber02d] (detailed

version also presented). Then a short analysis of this algorithm will be provided.

Next, based on two theoretical properties from the previous Chapter, we will include

an intermediate merging step into our 2-3 AHC algorithm. This will eliminate the

blocked clusters case and will reduce the execution complexity of the merging and

updating phase of our 2-3 AHC algorithm. As a second consequence, the created 2-3

hierarchy will be different from the one produced by the initial 2-3 AHC algorithm.

A different 2-3 hierarchy can be also obtained if an optional step, the integrated

refinement, is performed. The integration of this step into the merging step, will remove

the need of a recursive refinement step, present in the initial algorithm.

Finally, to avoid a special case of merging, denoted blind merging (see Section 2.6.2),

a second 2-3 AHC algorithm variant is proposed. This variant is based on a slightly

modified aggregation index. and always creates a “richer” 2-3 hierarchy than the clas-

sical hierarchy on the same dataset.

Since these 2-3 AHC algorithms (initial, with intermediate merging, with integrated

refinement, avoiding blind merging) construct different 2-3 hierarchies, we will later

perform some comparative tests. The execution times of each method, along with the

classical AHC, are compared for the complexity validation. For the algorithm “quality”,

we use the Stress measure [JW82] to compare the created structures on simulated and

real data.

57

58 Chapter 3. A New 2-3AHC Algorithm

We will then conclude in Section 3.7 with discussions and future perspectives.

3.1 Initial 2-3 AHC Algorithm

We recall here the initial 2-3 AHC algorithm proposed in [Ber02d] in order to generalize

the classical AHC algorithm.

Initial 2-3 AHC Algorithm:

1. Initialization: i = 0; The set of clusters and the set of candidate

clustersMi coincide with the set of singletons of E; f({x}) = 0, ∀x ∈ E.

2. Merge: i = i + 1; Merge a pair {Xi, Yi} such that

µ(Xi, Yi) ≤ µ(X,Y), among the pairs {X,Y } ⊆Mi−1, which are

noncomparable and satisfy α or β :

(α) X and Y are maximal, and X (resp. Y) is the only cluster

susceptible to properly intersect Y (resp. X).

(β) One of X or Y is maximal, and the other admits a single

predecessor Z. No cluster is properly intersected by X, Y or Z.

3. Update: Mi ←Mi−1 ∪ {Xi ∪ Yi}, from which we eliminate any

cluster strictly included in at least a cluster ofMi−1 and in Xi ∪ Yi.

Update µ by using an extension of Lance and Williams Formula.

Update f by using f(Xi ∪ Yi) = max{f(Xi), f(Xi), µ(Xi, Yi)}.

Update Si ← Si−1 ∪ {Xi ∪ Yi} .

4. Stop test: repeat steps 2 et 3, until the cluster E is created.

5. Refinement: remove from Si some clusters so that f is a weak index.

As we can see, the initial 2-3 AHC algorithm consists in three phases: an initial-

ization phase, a merging phase and a refinement phase. The merging phase has an

additional condition (compared to the classical AHC algorithm) for the case when two

clusters properly intersect each other. It operates on two sets : Si which represents the

clusters created so far and Mi, the candidates for merging at each step. At the end,

Si will contain the whole cluster structure.

It has been proved [Ber02d] that for any choice of µ, this algorithm converges in at

most O(n3), that after each step of the algorithm, the set of created clusters (completed

by E) is a 2-3 hierarchy (cf. Proposition 5.4 in [Ber02d]), and that the final structure

is weakly indexed.

Before making a short analysis of this initial 2-3 AHC algorithm, we give below its

more detailed version from [Ber02d]:

3.1. Initial 2-3 AHC Algorithm 59

Initial 2-3 AHC Detailed Algorithm (detailed)

STEP 1. INITIALIZATION

i← 1; (iteration number) ; S0 ← {{x} : x ∈ E} ;M0 ← S0

f({x})← 0 and µ({x}, {y}) ← δ(x, y), for all x, y distinct in E

STEP 2. MERGING

While (Mi has more than one maximal cluster) do

i← i + 1

Select (Xi and Yi) such that µ(Xi, Yi) ≤ µ(X,Y) for all noncomparable

clusters X,Y inMi−1 satisfying one of the following conditions:

(α) pred{X,Y } = ∅ and X (resp. Y) does not properly intersect

any cluster different from Y (resp. X).

(β) One and only one of the clusters X or Y admits a predecessor,

say Z, and X,Y,Z do not properly intersect any cluster;

Si ← Si−1 ∪ {Xi ∪ Yi}

Mi ←Mi−1 ∪ {Xi ∪ Yi}

Compute µ(Xi ∪ Yi, Z) for all Z ∈Mi which is not comparable to Xi ∪ Yi

f(Xi ∪ Yi)← max{f(Xi), f(Yi), µ(Xi, Yi)}

EndWhile

S ← Si; k ← i

STEP 3. REFINEMENT

While k > 1 do

Z ← Xk ∪ Yk

m← |suc(Z)|

j ← 1

While j ≤ m do

Denote the jth element of the list suc(Z) as Zj.

If pred(Zj) = {Z} and f(Zj) = f(Z) then

S ← S − Z

update(suc, pred; S) // Update the list suc and pred

// after the deletion of Zj .

j ← m + 1

k ← k + 1

Else

j ← j + 1

EndIf

EndWhile

k ← k − 1

60 Chapter 3. A New 2-3AHC Algorithm

EndWhile

The main characteristic of this 2-3 AHC algorithm is the fact that once two clusters

that properly intersects themselves are created, they will remain as candidates until

their dissimilarity will become the algorithm’s minimum dissimilarity. Also, choosing

the two merging clusters is performed by testing the minimum dissimilarity pairs until

the α and β conditions are satisfied.

3.2 Using the New Theoretical Properties

We present here a new 2-3 AHC algorithm derived from the previous one and based

on the properties presented in Chapter 2. The interest of this new algorithm (cf.

Section 3.2.4) is two-fold: first, its principle is more similar to the principle of the AHC

algorithm and second, we will see that the introduction of the intermediate merging

phase, allows to reduce the complexity of the algorithm (see Section 3.4).

3.2.1 Adding an Intermediate Merge at the End of each β Merging

The following property highlights the need of merging together, after a β merging, the

two clusters that properly intersect themselves.

Xi Yi

Xi iYU
Z

...

Figure 3.1: Intermediate merging

In Figure 3.1 the properly intersecting clusters are the new cluster Xi ∪ Yi and the

single predecessor Z of Xi (same reasoning applies if Yi had a second predecessor).

Corollary 3.2.1 If the merging of the ith step of the algorithm is of type β, then the

cluster Xi ∪ Yi formed at this stage, will necessarily be merged with the predecessor of

Xi or Yi, in a later step of the algorithm.

Proof: Let us suppose - without any loss of generality - that Z is the (only) predecessor

of Xi, before the β merging of Xi and Yi. Let us place at the end of the β merging.

Clearly Xi ∪ Yi is maximal and Xi ∪ Yi ∈Mi.

Suppose that Z is not maximal, then Xi ⊂ Z ⊂ Z ′, which implies that Xi has been

eliminated from Mi′ (i′ < i) no later than during the update following the creation

3.2. Using the New Theoretical Properties 61

of Z ′: this contradicts Xi ∈ Mi−1. Thus Z is maximal, and so Z ∈ Mi, because

a maximal cluster cannot be eliminated from any Mj (j ≤ i). It results that the

clusters Xi∪Yi and Z belonging toMi, are maximal and properly intersect themselves.

Thus they can be merged together in an α merging, and according to Property 4 in

Section 2.3.3, they will be merged together in a later step of the algorithm. ut

3.2.2 2-3 AHC Algorithm’s New Formulation

First, we present here a new formulation of the 2-3 AHC algorithm which basically

includes and integrates Property 3 and 4 (cf. Section 2.3.3). We use here the fact that

two clusters that properly intersect themselves and their successors can not bee merged

with other disjoint clusters. We know then that these two clusters will be merged in a

future step of the 2-3 algorithm in order to respect the 2-3 hierarchy properties and to

create one (cf. Corollary 3.2.1).

In this context we chose to merge any two clusters that properly intersect themselves

as soon as the second one is created. If we take the example in Figure 3.2, after clusters

{b} and {c} have been merged, we merge directly clusters {ab} and {bc} into {abc}.

b ca d e f

Figure 3.2: Intermediate merging

The advantage in this case is that the dissimilarities between the newly created

cluster {bc} and the rest of all candidates will not be computed. In the normal (initial)

2-3 AHC algorithm execution, these dissimilarities would have been computed or at

least a test would have been performed for each candidate to determine if the dissimi-

larity can be computed (O(n) complexity). In Figure 3.2 and in the normal execution,

the dissimilarities between {bc} on one hand and {d}, {de}, {e}, {f} on the other hand

would be evaluated and possibly computed. Also clusters {ab} and {bc} would not be

merged, but the next minimum dissimilarity pair of clusters will (for example {e} and

{f}).

The downside of adding this intermediate merging, is that we have to compute the

dissimilarities between the last cluster {abc} and the rest of the current candidates.

Since the current size of Mi is different (possibly larger) than the size of Mi when

merging {ab} and {bc} without intermediate merging, the complexity also might be

different. Remark: the complexity will remain in O(n) since there are maximum b 3
2 (n−

1)c candidates, but it can be slightly bigger

The advantage is that the cluster {abc} will be a candidate cluster in the next step

of the algorithm and could be merged with other clusters to form lower heterogeneity

62 Chapter 3. A New 2-3AHC Algorithm

clusters. In the example from Figure 3.2, one can assume that there is a relatively small

dissimilarity between {abc} and say {d} or {f}, and that these two will be merged into

a new cluster creating thus a different 2-3 hierarchy.

Another advantage, is the fact that the cluster {ab} and {bc} and no longer “blocked”

until their dissimilarity becomes the algorithm’s minimum dissimilarity and the fact

that we can directly eliminate {ab} and {bc} from the candidates set (see Section 3.2.3).

This new pseudo-algorithm formulation was also proposed in [Ber02b] ∗.

Preliminary Algorithm of 2-3 Hierarchical Ascending Classification

1. Initialize the set of clusters as the set of all singletons of E.

2. Merge a pair of two nearest clusters among the pairs formed by non-

comparable clusters that fulfill one of the following conditions :

(α) the two clusters Xi and Yi are maximal.

(β) one of the clusters Xi and Yi is maximal and the other

admits a unique predecessor which is maximal.

3. Let Xi and Yi be the two clusters being merged at step 2.

If one of these two clusters admitted a unique predecessor, say Z, at

the beginning of previous step 2, then merge Z and Xi ∪ Yi.

4. Repeat steps 2 and 3, until the whole cluster E is merged.

5. Refinement.

As mentioned before, at the end of step 3 the sets Si and Mi are updated and

the dissimilarities between the new sets and the rest of the sets in Mi are computed

according to the dissimilarity measure [Ber86] chosen in the beginning. In case we

use the single linkage dissimilarity measure we use (2.9) to compute the dissimilarity

between two sets.

So far the refinement step is identical to the initial one, but we will modify it in

Section 3.2.4 based on the study from Section 2.3.4. This refinement is still a recursive

one. This means that the created structure is analyzed from the last cluster formed

(the E set) and for each cluster the f value is compared with the ones of its successors

and in case of equality the successor is removed (it does not present any interest from

the clustering point of view) excepting the case were it’s a proper intersection and

can influence the induced dissimilarity. Then the connections (succ, pred) in the 2-3

hierarchy are “redirected” in order to maintain a 2-3 hierarchical structure. Normally

after this update in the structure of the hierarchy, we should repeat the test for the new

successors of the cluster if we want to make sure that we will obtain a weakly indexed

structure.

∗The initial 2-3 AHC algorithm didn’t had the test condition for merging Z and Xi ∪ Yi.

3.2. Using the New Theoretical Properties 63

3.2.3 Reformulating the Update of the Set Mi of Candidates

We begin with a reformulation of the update of Mi containing the candidate clusters

(Step 3) based on Property 2 from Section 2.3.2.

Proposition 3.2.2 In the 2-3 AHC algorithm, we can, without changing the results of

the merging, choose Mi (step 3) in the following way: Mi equals Mi−1 ∪ {Xi ∪ Yi},

from which we eliminate every successor of Xi or Yi, and also the two clusters Xi and

Yi, if Xi ∩ Yi 6= ∅ or the merging of Xi and Yi is of type β.

Proof : In the initial algorithm, like in the new formulation, Mi is equal to Mi−1 ∪

{Xi∪Yi}, deprived of certain clusters included in Xi∪Yi. It is thus enough to compare

the two ways of definingMi only for the clusters ofMi−1 which are included in Xi∪Yi.

We first examine the successors of Xi or of Yi. In the initial algorithm, they don’t belong

to Mi, because they are included in Xi or Yi, and in Xi ∪ Yi. It is also clearly the

case in the new formulation. In addition, in both ways of choosing Mi, if a cluster

W is included in one of the successors of Xi (resp. Yi), then W does not belong to

Mi−1, because W was already eliminated from Mi′ with i′ ≤ i − 1 (we use the same

arguments as for the elimination of the successors of Xi or Yi, but to a stage previous

to the formation of Xi ∪ Yi). Since Xi and Yi are the only successors of Xi ∪ Yi, these

are thus the only clusters left to examinate, in order to determine if the choice of Mi

varies according to whether we use the initial algorithm or the new formulation.

There are only three possible cases according to whether the merging of Xi and Yi,

is:

• (a) of the type α with Xi ∩ Yi = ∅,

• (b) of the type α with Xi ∩ Yi 6= ∅

• (c) of the type β.

Xi
Yi

Figure 3.3: α merging of Xi and Yi, with Xi ∩ Yi = ∅

Case (a): α merging of Xi and Yi, with Xi ∩ Yi = ∅ (see Figure 3.3). In this case,

Xi ∪Yi is the only cluster containing Xi (resp. Yi), because Xi (resp. Yi) was maximal

before the creation of Xi ∪ Yi. Thus neither Xi nor Yi are removed from Mi in the

initial algorithm, and also in the new formulation. It results that the two formulations

are equivalent here.

64 Chapter 3. A New 2-3AHC Algorithm

YiXi

Figure 3.4: α merging of Xi and Yi, with Xi ∩ Yi 6= ∅

Case (b): α merging of Xi and Yi, with Xi ∩ Yi 6= ∅. Using the same argument

as in case (a), we deduce that neither Xi nor Yi are removed from Mi in the initial

algorithm. On the other hand, Xi and Yi do not belong toMi, if the new formulation

is used. Using the intermediate merging (see Section 3.2.1) we will make sure the two

clusters will be merged.

However according to Properties 3 and 4 (cf. Section 2.3.3) and Corollary 3.2.1, in

the initial algorithm neither Xi nor Yi will be aggregate during a later merging of this

algorithm with another cluster. Indeed on the one hand, none of the clusters Xi and Yi

can be used for a β type merging, because Xi and Yi properly intersect each other. On

the other hand, none of the clusters Xi and Yi can be used for an α merging, because

Xi and Yi are not maximal any more. Thus, the pairs of clusters that can be merged

are the same in the two approaches.

Xi iYU

Xi Yi

Z

Figure 3.5: β merging of Xi and Yi

Case (c): β merging of Xi and Yi. Let us suppose - without any loss of generality

- that Z is the (only) predecessor of Xi. Thus Xi 6∈ Mi in the initial algorithm, but

Yi ∈ Mi because Yi is included in only one cluster (Xi ∪ Yi). On the other hand, Xi

and Yi do not belong to Mi, if the new formulation is used. However according to

the initial algorithm, Yi will not be aggregate during a later merging of the algorithm

(see Property 3, Section 2.3.3). Indeed, Yi has a single predecessor Xi ∪ Yi but Xi ∪ Yi

properly intersects Z (because Z strictly contains Xi but is disjoint of Yi). Thus Yi

could be used neither for a β type merging, nor for an α type one. Thus, again the

pairs of clusters that can be merged are the same in the two approaches, which finally

proves that the new way of choosing Mi does not change the possibilities of merging

at each iteration. ut

The advantage of this approach is that the size of Mi is reduced and the clusters

that cannot be merged with other clusters are no longer kept as candidates.

3.2. Using the New Theoretical Properties 65

Therefore, the cluster pair satisfying the minimum dissimilarity condition will be

the merging pair and no further tests are necessary to check if the pair satisfies the α

and β conditions.

3.2.4 Facts

In this section we will analyze the new 2-3 hierarchies properties implications.

Fact 3.2.3 If at the end of any β merging of Xi and Yi (i unspecified), we decide,

following the Corollary 3.2.1, to merge Xi ∪ Yi with the predecessor Z (of Xi or Yi),

then at the end of the so modified step 2, no cluster properly intersects a maximal

cluster. In other words, at the end of each modified step 2, the maximal clusters form a

partition of E, which underlines a strong analogy with the AHC algorithm characterized

by this property.

Fact 3.2.4 For each i, the set Mi represents all the maximal clusters plus their suc-

cessors when these successors are disjoint. This is a direct consequence of Proposition

3.2.2 and of the fact that each merging creates a maximal cluster. It results (tak-

ing into account the significant remark according to which the maximal clusters are

disjoint) that one reformulate the (α) and (β) conditions in the following way, where

X,Y ∈ Mi−1: (α) “X and Y are maximal”, (β) “only one of the clusters X and Y is

maximal”.

This can be then reduced to a single merging condition (see also Section 2.3.3) and

used in the 2-3 AHC algorithm when merging two candidate clusters:

At most one is successor of another cluster from Mi.

3.2.5 Integration of the Refinement Step into the Merging Step

Figure 3.6: Refinement example (Fact 3.2.5)

We saw in Section 2.3.4 that one can chose to perform or not the refinement step

depending on the desired analysis. The following statement considers the case when

we choose to perform the refinement.

Not performing the refinement step will constructs a mapping f isotone in a large

sense: we can have comparable clusters with the same value for f . As mentioned in

Section 2.1.1 and in [Ber02c], it is more suitable to obtain a weak index f for the

66 Chapter 3. A New 2-3AHC Algorithm

created 2-3 hierarchy, especially when we are interested in comparing the resulting

dissimilarities.

So we can integrate the refinement step into the merging step of the 2-3 AHC

algorithm (see Section 2.3.4).

Fact 3.2.5 The refinement step can be integrated into the merging step, in order to

obtain a weak indexing f . For this, each time we create a cluster X ∪ Y , we compare

f(X ∪ Y) with f(X) and f(Y). If f(X ∪ Y) = f(X) (resp. f(X ∪ Y) = f(Y)), we

remove X (resp. Y), provided that X ∪Y is the only predecessor of X (resp. Y). This

last case is illustrated in the example from Figure 3.6 where f(X) < f(Y) = f(X ∪Y):

Y must then be eliminated from the structure.

3.3 Proposition of a New 2-3 AHC Algorithm

Based on the previous 2-3 hierarchies properties and facts, we can reformulate the 2-3

AHC algorithm into a pseudo-algorithm as follows:

Agglomerative 2-3 Hierarchical Classification Pseudo-Algorithm

1. Initialize the set of clusters as the set of all singletons of E.

2. Merge the two nearest clusters (Xi, Yi) among the pairs formed

by non-comparable clusters with pred({Xi, Yi}) ≤ 1.

If pred({Xi, Yi}) = 2 then merge the two predecessors.

UpdateMi,Si and compute f , µ for the last cluster.

3. Repeat step 2 until the whole cluster E is merged.

Compared to the previous preliminary 2-3 AHC algorithm, in this version we have

just replaced the α and β conditions. Next we present a more detailed version of this

algorithm which integrates also the optional refinement step∗.

New 2-3 AHC algorithm:

1. Initialization: The candidate clusters set, M0, is the set of single-

tons of E; f({x}) = 0, ∀x ∈ E. Let i = 0.

2. a) Merge: Let i = i + 1; Merge two clusters Xi and Yi which are

closest (in the sense of µ) among the pairs fromMi−1, which are

noncomparable and such that at least one of them is maximal;

∗The blind merging avoidance can be integrated on the dissimilarity calculus in the Update of µ

step

3.3. Proposition of a New 2-3 AHC Algorithm 67

b) Intermediate Merge: If Z is a predecessor of the cluster Xi or

Yi such that Z 6= Xi ∪ Yi, then merge Z and Xi ∪ Yi, and eliminate

fromMi these two clusters and their successors.

3. Refinement: Eliminate any cluster W ∈ {Xi, Yi, Xi ∪ Yi, Z} such

that W has one predecessor, W ′, with f(W) = f(W ′).

4. Update: UpdateMi by adding the last formed cluster and elimina-

ting the successors of the merged clusters and also the merged

clusters if they properly intersect each other.

Update µ and f .

5. Ending test: Repeat steps 2-4 until E is a cluster.

Concerning this new algorithm, we may notice that facts 3.2.3 and 3.2.4 imply that

the clusters generated by the new merging step 2, form a 2-3 hierarchy. The integration

of the refinement step inside the loop defined by steps 2-5, ensures that the clustering

structure is weakly indexed by f , whereas it is clear that the deletion of some clusters

having only one predecessor, does not change the property for the generated clusters

to form a 2-3 hierarchy.

A more detailed version of this new 2-3 AHC algorithm is given bellow:

New 2-3 AHC Algorithm (detailed)

STEP 1. INITIALIZATION

1. i← 0; the iteration number

2. while x ∈ E

3. S0 ← S0 ∪ {x}

4. f({x})← 0

5. µ({x}, {y}) ← δ(x, y)

6. update ordered structure

7. end while

8. M0 ← S0

STEP 2. MERGING

9. while Mi contains merging pairs

10. i← i + 1

11. get (Xi, Yi) non-comparable to merge

12. create a Xi ∪ Yi with successors Xi, Yi

13. f(Xi ∪ Yi)← max{f(Xi), f(Yi), µ(Xi, Yi)}

14. Si ← Si−1 ∪ {Xi ∪ Yi}

15. Mi ←Mi−1 ∪ {Xi ∪ Yi}

68 Chapter 3. A New 2-3AHC Algorithm

16. if f(Xi ∪ Yi) = f(Xi) = f(Yi) then

17. if pred(Xi) = {Xi ∪ Yi, Z}
¶

18. succ(Z)← {succ(Z)− {Xi}} ∪ {Xi ∪ Yi}

19. pred(Xi)← pred(Xi)− {Z}

20. Mi ←Mi − succ(Xi ∪ Yi)

21. end if

22. Si ← Si − {Xi, Yi}

23. Mi ←Mi − {Xi, Yi}

24. succ(Xi ∪ Yi)← succ({Xi, Yi})

25. pred(succ({Xi, Yi}))← {Xi ∪ Yi}

26. else

27. if f(Xi ∪ Yi) = f(Xi)
¶ then

28. Si ← Si −Xi

29. Mi ←Mi − {Xi, succ(Yi)}

30. succ(Xi ∪ Yi)← {{Yi, succ(Xi)} − {Xi ∩ Yi}}

31. pred(succ(Xi)− {Xi ∩ Yi})← {Xi ∪ Yi}

32. if pred(Xi) = {Xi ∪ Yi, Z} then

33. do 22. 23. 24.

34. else

35. if pred(Yi) = {Xi ∪ Yi, Z}

36. (Xi, Yi)← (Xi ∪ Yi, Z)

37. restart from 12.

38. end if

39. end if

40. else

41. Mi ←Mi − succ({Xi, Yi})

42. if Xi ∩ Yi 6= ∅ then

43. Mi ←Mi − {Xi, Yi}

44. end if

45. if pred({Xi, Yi}) = {Xi ∪ Yi, Z}

46. (Xi, Yi)← (Xi ∪ Yi, Z)

47. restart from 12.

48. end if

49. end if

50. end if

51. compute µ(new cluster, rest of the candidates)

52. end while

¶We assume without any loss of generality that Xi satisfies the condition. For Yi we have the same
reasoning

3.4. Complexity Analysis of our 2-3 AHC Algorithm 69

The main difference between our 2-3 AHC algorithm and the initial one, is the

intermediate merging step which can sometimes generate a different 2-3 hierarchy than

the one produced by the initial 2-3 AHC algorithm. Also we saw in Section 2.3.4,

that one can have different 2-3 hierarchies whether we choose to execute the integrated

refinement or not. Moreover, we can create different 2-3 hierarchies if we choose to

avoid the blind merging case (see Section 2.6.2).

Thus we have four variants of our 2-3 AHC algorithm, based on the different options

that we choose:

1. 2-3 AHC algorithm with intermediate merging and no refinement;

2. 2-3 AHC algorithm with intermediate merging and integrated refinement;

3. 2-3 AHC algorithm with intermediate merging, no refinement and avoiding the

blind merging;

4. 2-3 AHC algorithm with intermediate merging, integrated refinement and avoid-

ing the blind merging.

Before comparing these 2-3 AHC algorithm variants with the classical AHC one and

the initial 2-3 AHC algorithm, we first analyze our 2-3 AHC algorithm complexity.

3.4 Complexity Analysis of our 2-3 AHC Algorithm

We used a three level ordered data structure for data matrix storage. This has a direct

impact especially on the INITIALIZATION step, and so we analyze next the impact

of this data structure on the 2-3 AHC algorithm execution.

3.4.1 Data Matrix Indexing

In order to store and manage the matrix containing the link values between clusters,

which is the most time expensive operation, we propose to use an ordered tree structure

that puts in correspondence these values and the pairs of candidate clusters. The

purpose is to search among all candidate cluster pairs for merging, the one that minimize

several criterions.

We use three criterions in order to choose the merging pair:

(1) Minimal link, since we search two closest clusters,

(2) Minimal cardinality, meaning the number of elements of the clusters to be

merged, when we have multiple pairs at a minimal link

(3) Minimal lexicographical order (or creation order) on the clusters identifiers, when

the two first criterons are satisfied by several pairs. This is actually equivalent to the

creation order of the clusters.

70 Chapter 3. A New 2-3AHC Algorithm

Therefore, we have on the first level of the structure the ordered link values, on the

second the ordered cardinalities of the pairs situated at the same link between clusters

and on the third the lexicographically ordered identifiers. A small example is presented

in Figure 3.7.

1 2 3 distance

cardinality

lexicographical order
(a,b) (a,c) (c,d) (b,c)

2 4 24

(b,d)

c
d

b

1
1 3
9 12

b

ca

Figure 3.7: Data structure example

We know that the maximal number of non-singletons clusters in a 2-3 hierarchy is

b32 (n−1)c, where n is the number of singletons. We thus have at most b 3
2 (n−1)c+n =

b5n−3
2 c candidate clusters during the 2-3 AHC algorithm execution. Since the matrix

size is limited by bn(n−1)
2 c, it follows that parsing this structure is performed in O(n2).

Next, we will analyze the complexity of the operations on this data structure.

To access/create a cluster pair (a leaf in the data structure), we need three informa-

tions: the value of the link µ(X,Y), the cardinality of |X∪Y |, and the lexicographically

ordered clusters identifiers. These can be each computed in O(1). Having these we can

access in O(log n) the needed value on each level.

In the same way, the deletion of a cluster pair can be done in O(log n). But during

the algorithm execution, we need to eliminate all the pairs containing at least a non-

candidate cluster (five at most at each step of the algorithm). The purpose is to have

a structure containing only candidate pairs of clusters, and just pick the first one in

the structure without performing any other tests. Thus during the 2-3 AHC algorithm

execution, after each step last’s merging (intermediate or normal), we must eliminate

at most 5b 5n−3
2 c − 1 pairs. Since the access to a pair is in O(log n), it follows that all

the pairs containing a non-candidate cluster are deleted in O(n log n).

Knowing that we have at most b 32 (n− 1)c mergings, and that at each merging one

must eliminate at most 5(b 5n−3
2 c − 1) and add at most b 5n−3

2 c pairs, we have a global

complexity of O(n2log n) in manipulating this structure. This will thus not impact

on the global algorithm execution and although it will increase the INITIALIZATION

phase complexity, it will help reduce the complexity of some of the steps in the MERG-

ING phase.

However, in the case of a β merging, one should analyze the behaviour of the above

mentioned criterions since we know that the maximal cluster and the predecessor of

the non-maximal cluster will be merged in the intermediate merging. In the case of

the dissimilarity, we called that the “blind merging” influence, but this can also be

extended to the cardinality and creation order.

3.4. Complexity Analysis of our 2-3 AHC Algorithm 71

For example, when we perform an β type merging (|pred({X,Y })| = 2), the creation

order criterion will not take into account the predecessor of the non-maximal cluster.

Since this predecessor will be then merged with the other maximal cluster, the creation

order criterion will allow later created clusters to be merged. An example on a small

2D points dataset (cf. Table 3.1 and Figure 3.8) using the complete-link is presented

in Figures 3.9, 3.11 and 3.10.

0 1 2 3 4
1 0.1294863923931817

2 0.25567883955228315 0.12664556131187024

3 0.37990591493620707 0.2518197754848242 0.12566370614359101

4 0.5036240973594744 0.3769911184307748 0.2518197754848242 0.12664556131187024

5 0.6283185307179586 0.5036240973594744 0.37990591493620707 0.25567883955228315 0.12948639239318166

Table 3.1: Example of lexicographical criteria influence

Figure 3.8: 2D Points

Figure 3.9: Classical AHC

Figure 3.10: 2-3 AHC V3 avoiding BM diss Figure 3.11: 2-3 AHC V3 avoiding BM all

The following algorithms are executed on this dataset: the classical AHC (Figure

3.9) and two 2-3 AHC algorithms avoiding the blind merging (Figures 3.10 and 3.11).

The difference between the two 2-3 AHC algorithms is that the first one avoided the

blind merging at the first level of the structure, the dissimilarity level, whilst the second

avoided the blind merging at all three levels of the structure.

To better understand this we remind that in order to avoid the blind merging, a

second value of dissimilarity is stored in the structure beside the normal one. This value

is stored only for the pairs of clusters that can be β merged and is used to minimize

the level of the cluster created after the α merging. We say ”α merging” since if the

pair chosen to be merged is a β pair, then the intermediate merging is executed (α

merging). Thus, at the end of each cycle of the algorithm execution, we make sure that

the last formed cluster has a minimum heterogeneity degree.

Basically, this second value is used to ensure that the last merged clusters at the

end of an algorithm cycle minimize the dissimilarity criteria.

72 Chapter 3. A New 2-3AHC Algorithm

Using same reasoning, we can use two more additional values for the cardinality

and creation order to ensure that these two criteria are minimized at the end of each

algorithm cycle.

For example, after three cycles of the algorithms, the clusters 6, 7 and 8 are created

(see Figures 3.9, 3.11 and 3.10). Here, for the 2-3 AHC methods, the candidate pairs

of clusters are: (1, 6), (4, 6) with the same cardinality. For the 2-3 AHC avoiding the

BM at dissimilarity level only (cf. Figure 3.10) we merge the pair (1, 6), which in turn

will involve the merging of 6 and 8 in the immediate intermediate merging step.

But, if we chose to merge the pair (4, 6), the intermediate merging will group the

clusters 6 and 7 which minimize all the criteria at the end of the algorithm’s cycle

(including the creation order). This is the case for the 2-3 AHC avoiding the blind

merging at all three levels, presented in Figure 3.11.

In the case of the first 2-3 AHC algorithm, the dissimilarity matrix induced by the

created 2-3 hierarchy will present a negative information gain (see Section 3.5) than

the one induced by the classical hierarchy (cf. Figure 3.9), since {2, 3} is merged with

{0, 1} instead of {4, 5}. We must specify that this is a particular case, and that one

might also have a gain in the induced matrix on other datasets.

Using the 2-3 AHC avoiding the blind merging on all three levels can thus ensure

that the merged pairs will minimize the three criterias and that the obtained structure

will have a positive information gain compared to the classical AHC.

3.4.2 Theoretical Complexity Calculus

In this section we analyze the theoretical complexity of our new 2-3 AHC algorithm.

The complexity of the Initialization (step 1) is larger than the one in the initial 2-3

AHC algorithm: O(n2 log n) instead of O(n2), but the basic operations on the ordered

tree structure in the following steps will be reduced to O(log n) instead of O(n2).

As follows we will analyze the complexity of the steps 2-4, which are repeated until

the cluster E is created, that’s at most b 3
2 (n− 1)c times. In the Merging step (Step

2.a), we first retrieve the pair that minimise our criterons, in O(1), and we create the

new cluster Xi ∪Yi also in O(1). If one of the merged clusters has another predecessor,

we perform an Intermediate merge (Step 2.b) with the same complexity as the one

before. Thus the whole complexity of the step 2 is O(n).

In the optional Refinement step (Step 3), we will eliminate from the structure the

clusters found on the same level with their predecessors when their elimination is not

influencing the induced dissimilarity matrix. We update the predecessor, successor

links between the remaining clusters, which is done in O(n), since a cluster can have

at most b 52(n− 1)c successors (cf. Property 1).

In the Update step (Step 4) we first update Mi in O(n) since adding the new

formed cluster is constant and since a cluster can have at most n successors to eliminate

3.4. Complexity Analysis of our 2-3 AHC Algorithm 73

fromMi. In the µ update we eliminate from the structure the pairs containing at least

a cluster to be eliminated. Since a pair is eliminated in O(log n) and we have at most

b32 (n − 1)c clusters, we have here an O(n log n) complexity. Then, the links between

the new formed cluster and the rest of the candidates are computed, each in at most

O(n), and inserted into the matrix, in O(log n) each. When we want to avoid the blind

merging, the only difference is that during the update, we will use two dissimilarities

and also an O(log n) update for the new cluster successors. Therefore, the complexity

of step 4 is O(n log n).

Thus, the total complexity is then reduced to O(n2 log n) + n × O(n log n) =

O(n2 log n).

3.4.3 Experimental Validation

We have designed an object-oriented model of the algorithm, which was implemented

in Java. Also a Hierarchical Clustering Toolbox was created to ease the results visual-

ization (see Section 4 for more details).

To validate our 2-3 algorithm complexity, we analyzed the execution times on different

datasets:

• random generated data: rectangular randomly generated data and sinusoidal

randomly generated data with noise (see Section 3.5.3 for more details),

• real data: Abalone dataset (see Section 3.5.4 for more details).

The following six methods were executed:

1. the classical AHC algorithm,

2. the initial 2-3 AHC algorithm (denoted 2-3 AHC ini or 2-3 AHC V1),

3. our 2-3 AHC algorithm with intermediate merging and no refinement (denoted

2-3 AHC V2),

4. our 2-3 AHC algorithm with intermediate merging and integrated refinement

(denoted 2-3 AHC ref V2),

5. our 2-3 AHC algorithm with intermediate merging, no refinement and avoiding

the blind merging (denoted 2-3 AHC V3)

6. our 2-3 AHC algorithm with intermediate merging, integrated refinement and

avoiding the blind merging (denoted 2-3 AHC ref V3).

74 Chapter 3. A New 2-3AHC Algorithm

We remind that since the blind merging doesn’t influence the single link (cf. Sec-

tion 2.7.2), there is only the AHC, our 2-3 AHC algorithm with or without integrated

refinement (no V2 nor V3) and the initial 2-3 AHC algorithm.

We present here the execution times on the rectangle simulated data (see Ap-

pendix C for the maximum execution times). For each n, we made 10 iterations on

different simulated/sampled data. The execution times on the other datasets are sim-

ilar. Figures 3.12 and 3.14 present the average execution times for the single and

complete linkage.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 500 1000 1500 2000 2500 3000

S
L

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
es

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure 3.12: SL average execution times

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 500 1000 1500 2000 2500 3000

S
L

A
ve

ra
ge

 C
om

pl
ex

ity

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure 3.13: SL average complexity

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 500 1000 1500 2000 2500 3000

C
L

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
es

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure 3.14: CL average execution times

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 500 1000 1500 2000 2500 3000

C
L

A
ve

ra
ge

 C
om

pl
ex

ity

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure 3.15: CL average complexity

To validate the algorithm complexity, we also computed the ratio Execution time(n)
O(n2log n)

,

where n is the number of objects. For the initial 2-3 AHC algorithm the execution

times stopped at 1900 elements, while for the classical AHC and our 2-3 AHC algorithm

reached 3000 elements.

As we can clearly see in Figures 3.13 and 3.15, our 2-3 AHC algorithms ratios

converge to a constant proving thus that the 2-3 AHC algorithm complexity is indeed

3.5. Experimental Qualitative Comparison between AHC and 2-3 AHC 75

in O(n2log n).

3.5 Experimental Qualitative Comparison between AHC

and 2-3 AHC

Having already clearly established the theoretical advantage of our 2-3 AHC algorithm

(reduced computing complexity, see Section 3.4.3), in this section we will apply our 2-3

AHC algorithm variants and the initial 2-3 AHC algorithm on different datasets, and

then compare the results obtained with those produced by the classical AHC algorithm.

We carried out two types of comparative analysis between the classical AHC and the

2-3 AHC algorithms: on real datasets (Ruspini, Abalone) and on artificial datasets

(rectangle, sinusoidal).

To compare different classification structures, there are many approaches which

come especially from the hierarchies analysis field [LL95], [Pod02], [Gor99], [ST05].

These as usually used to determine the more appropriate algorithm/method to be ap-

plied for a given dataset or to determine the differences in created structures. In [ST05]

the authors adopted an ordinal approach, by associating preordenations to the various

structures:

∀({x, y}, {z, t}) ∈ E2 ×E2 : {x, y} ≤ {z, t} ⇐⇒ h(x, y) ≤ h(z, t)

In [Ler97], a total preorder defined of the created partitions is used to compare the cre-

ated hierarchies. The cluster creation order can also be used to compare the hierarchies

[You04].

Other dendrogram descriptor, is the path difference [Phi71, WC71] which is given

by the number of clusters in the path between two elements x and y in the created

structure. But this is not a very suited criteria to compare the structures, as it not

takes into account the levels of the dendrograms.

The most suited in our case are the matrix comparison coefficients (measures of

discordance or agreement) for the dendrogram comparison [SS73b, LL95]. This kind of

“quality” measure is also used to compare the hierarchies and the pyramids on same

datasets [Bri02]. To analyze the results adequacy of the classical AHC algorithm and

the 2-3 AHC algorithms, we compared the resulting structures. The problem in this

case is the fact that the hierarchies and the 2-3 hierarchies can be incomparable and

thus not suited for a direct comparison. Also it seems more natural to compare the

structures using the initial dissimilarities.

Therefore we compared the initial dissimilarity matrix, d, with the induced dissim-

ilarity matrix δ of each executed method. Let us recall that δi,j is the minimal value of

f(X) where X is a cluster containing i and j. By doing this comparison, we determined

how well each structures summarize the information from the initial data.

To carry out this comparison, we used the Stress coefficient [JW82]:

76 Chapter 3. A New 2-3AHC Algorithm

∆ =
∑

i

∑

j [(di,j−δi,j)
2]

∑

i

∑

j d2
i,j

The Stress measures the degree of correspondence between the induced dissimilarity

matrix of the executed algorithm (AHC or 2-3 AHC) and the initial dissimilarities. Its

values range from 0 to 1, where 0 corresponds to identical matrices comparison value.

Other (similar) coefficients include:

• the Weighted sum of squares:

∆ =
∑

i

∑

j[(di,j − δi,j)
2]

• the Goodness of fit (Variance accounted for): ∆ = 1−
∑

i

∑

j [(di,j−δi,j)2]
∑

i

∑

j [(di,j−d)2]

• the Cophenetic correlation coefficient (Pearson coefficient) [SR62]:

∆ =
∑

i

∑

j [(di,j−d)(δi,j−δ)2]
√

∑

i

∑

j [(di,j−d)2]
∑

i

∑

j [(δi,j−δ)2]

We chosen the Stress coefficient, because is the most suitable one when comparing

the dissimilarity matrices in this case.

To resume, in order to perform a qualitative analysis between the methods we used

the following three criteria:

• the number of created clusters by the method,

• the Stress [JW82] measure, to determine how well the method represents the

initial data,

• the possible improvements noticed by an expert of the domain in the data rep-

resentation by studying the method’s output. This is most suitable for small

datasets.

For the third criteria we used a small and well-known dataset of two dimensional

points, the Ruspini dataset (see Section 3.5.1), on which the visual interpretation was

feasible. For this first two criteria we used artificially simulated datasets (see Sec-

tion 3.5.3) and also a known large dataset, the Abalone (see Section 3.5.4), which we

randomly sampled.

3.5.1 Ruspini Dataset

The well-known Ruspini dataset [Rus69] contains four clusters of two dimensional points

with some intermediate points (cf Figure 3.16).

3.5. Experimental Qualitative Comparison between AHC and 2-3 AHC 77

Nb clusters Gain nb cl Stress Gain Stress

AHC ref 66 0.334226

AHC 74 0.334226

2-3AHC ref (V2 or V3) 87 31.82% 0.254253 23.93%

2-3AHC (V2 or V3) 109 47.3% 0.256294 23.92%

2-3AHC ini 110 48.65% 0.263786 21.76%

Table 3.2: The single-link results on the Ruspini dataset

The single-link results are presented in Table 3.2 below while the complete-link

results are presented in Table 3.3. The structures obtained on this dataset with the

classical AHC and the 2-3 AHC algorithms, lead to the following observations.

For the single-link, we had same results with or without the blind merging avoidance

(V2 and V3) which are presented in Table 3.2. The 2-3 hierarchies without integrated

refinement (V2 and V3) contain more clusters than the traditional hierarchy: 110 the

initial 2-3 AHC, 109 the 2-3 AHC, compared to the 74 of the classical AHC. This repre-

sents 48.65% and 47.3% more clusters (which is very close to the theoretical percentage

between the maximum number of classes of the two types of structure, i.e. 50%). By

analyzing the Stress coefficient, one can see that the best results are obtained by our

2-3 AHC algorithm with integrated refinement, despite the fact that there are fewer

clusters.

Nb clusters Gain nb cl Stress Gain Stress

AHC [ref] 74 0.305812

2-3AHC ref V2 105 41.89% 0.286912 6.18%

2-3AHC V2 109 47.29% 0.225438 26.28%

2-3AHC ref V3 104 40.54% 0.198684 35.03%

2-3AHC V3 107 44.59% 0.198685 35.03%

2-3AHC ini 109 47.29% 0.225438 26.28%

Table 3.3: The complete-link results on the Ruspini dataset

78 Chapter 3. A New 2-3AHC Algorithm

Figure 3.16: Ruspini dataset

Figure 3.17: The 2-3 hierarchy on the selected points from Figure 3.16

Figure 3.18: The classical hierarchy on the selected points from Figure 3.16

3.5. Experimental Qualitative Comparison between AHC and 2-3 AHC 79

As concerning the complete-link results, one can see that the best results are ob-

tained when using the 2-3 AHC algorithm that avoids the blind merging (the V3). For

the AHC method, same results were obtained with or without refinement.

It results that the 2-3 AHC represents better the data structure than the classical

AHC including in the case of 2-3 AHC with integrated refinement. For example, for

the single-link, one can notice that for the 2-3 hierarchy in Figure 3.17), items 43, 44

of cluster 176 are closer to cluster 175 (items 20-42) then the cluster 153 (items 45, 46,

47). This is not shown by the traditional hierarchy (cf Figure 3.18).

3.5.2 Urban Itineraries

In this section we will apply our 2-3 AHC algorithm and the classical AHC algorithm

on a small generated dataset of town-center urban itineraries [Bus05]. This work was

realized as a part of the MobiVIP∗ research project of the national program Predit

3†. As a partner in the MobiVIP project, we proposed among others the use of a

recommender system (Be-TRIP [CGT04, TCG04]) in a mobility context, to facilitate

the information search and the trip’s preparation and execution of a user. A more

detailed description of the proposed Be-TRIP recommender system is given in Appendix

F.

The purpose of the urban itineraries classification was the study of the relevance of

the 2-3 AHC as a clustering method for case indexing in such a recommender system

based on a Case-Based Reasoning library, CBR*Tools [Jac98] described in Section 4.3.1.

The actual integration of the 2-3 AHC in the CBR*Tools is described in Section 4.3.

To analyze the relevance of the 2-3 AHC on clustering urban itineraries for the

Be-TRIP recommender system, we first used the Hierarchical Clustering Toolbox

described in Section 4.2 for results interpretation on a small generated itineraries set.

The itineraries clustering is based on the exploitation of both geographical and

semantical data (road type, buildings along the road, etc.). This new use of semantic

data opens new ways for itineraries recommendation, by tackling ideas as the itinerary’s

goal or the nature of the crossed places. Clustering itineraries has many advantages

besides the possibility of choosing the most suitable one: it is also an analysis and

comparison tool. This can have multiple applications: route or destination prediction,

traffic anticipation, etc.

Each itinerary was split in road sections (fragments) that were analyzed for their

characteristics: turning angle, length, type of present buildings, etc. Then using these

informations, multiple distances between itineraries where computed based on:

• the total length and the average of maximum turning angle;

∗http://www-sop.inria.fr/mobivip/
†http://www.predit.prd.fr/

80 Chapter 3. A New 2-3AHC Algorithm

• the spreading of the buildings types along the road;

• the number/proportion of common sections.

The used spreading function was proposed in [Tan05b] to compute differences be-

tween Sanskrit texts and was adapted in our case to compute the building types spread-

ing along the analyzed itinerary. Basically, it computes the variations in the distances

between the building types along the analyzed itineraries.

Then all these distances were aggregated to compute different types of distances

between the itineraries. For this, we specified and developed a software called TripSim-

ulator [Bus05] for manual itinerary generation and distances computation. Different

ways of defining the distance and of comparing the road sections were tested.

Having no real data, the software was then used by George Gallais, head of the

MobiVIP project, to manually generate 40 itineraries in the Antibes town center, rep-

resenting four types of professional itineraries:

• Real Estate Agent (trips from 0 to 9);

• Nurse (trips from 10 to 19);

• Hotel Service (trips from 20 to 29);

• Cultural Association (trips from 30 to 39);

After computing the distance matrix on these itineraries, we applied the classical

AHC along with the 2-3 AHC methods using the complete linkage (see Table 3.4 for

results). The classical AHC (cf. Figure 3.19) grouped the real estate agent (cluster 71)

and the hotel service (cluster 74) itineraries, while the other two groups are mixed and

separated by the first group (real estate agent). Similar results were obtained using

the 2-3 AHC avoiding the blind merging (2-3 AHC V3) with or without integrated

refinement (cf. Figure 3.21), although the second and fourth groups (nurse and cultural

association) were no longer separated, improving thus the Stress gain (cf. Table 3.4).

Using the initial 2-3 AHC, three groups were correctly constructed: real estate

with cluster 88, hotel service with cluster 89 and cultural association with cluster

75. The nurse group of itineraries was divided in two clusters, 86 and 87, but they

were not merged directly: 87 is merged with 90, which contains the cultural association

itineraries also. Moreover, the merging strategy (hotel service close to the real estate) of

the initial 2-3 AHC induced an actual loss of -22.24% in the Stress coefficient compared

to the classical hierarchy (see Table 3.4).

Figure 3.19: Classical AHC on the 40 urban itineraries

Figure 3.20: 2-3 AHC with intermediate merging (2-3 AHC V2) on the 40 itineraries

Figure 3.21: 2-3 AHC avoiding blind merging (2-3 AHC V3) on the 40 urban itineraries

Figure 3.22: Initial 2-3 AHC (2-3 AHC ini) on the 40 urban itineraries

3.5. Experimental Qualitative Comparison between AHC and 2-3 AHC 85

Nb clusters Gain nb cl Stress Gain Stress

AHC 39 0.241947

2-3AHC ref V2 55 41.03% 0.112713 53.41%

2-3AHC V2 57 46.15% 0.112713 53.41%

2-3AHC ref V3 56 43.59% 0.151242 37.49%

2-3AHC V3 56 43.59% 0.151242 37.49%

2-3AHC ini 57 46.15% 0.295758 -22.24%

Table 3.4: Complete link results on the professional itineraries classification

The best classification was obtained using our 2-3 AHC without blind merging

avoidance (cf. Figure 3.20) with the biggest Stress gain (53% in Table 3.4) and all four

groups identified: real estate in cluster 84, nurse in cluster 85, hotel service in cluster

90 and cultural association in cluster 74. As in the initial 2-3 AHC case, a part of the

nurse group was also close to the cultural association group, but this time the nurse

group was created. Only four itineraries (10%) were misclassified using the 2-3 AHC,

whilst the classification quality is clearly better compared to the classical constructed

hierarchy.

To conclude, the 2-3 hierarchies contain more information about the analyzed data

than the classical hierarchies (more created clusters, proper intersections, etc.) and can

also provide a better data classification for the analyst.

After the analysis performed on these small datasets (Ruspini, itineraries) to reveal

the advantages of the 2-3 hierarchies over the classical hierarchies, we analyze next the

creation time and the Stress gain of the created structures (hierarchies, 2-3 hierarchies)

on larger datasets: on random generated data (cf. Section 3.5.3) and also on a larger

real dataset, Abalone [Sam95] (cf. Section 3.5.4).

3.5.3 Artificially Generated Data

After applying the 2-3 AHC algorithms and the classic AHC one on the small Ruspini

dataset, we will now perform the same analysis on larger volume artificial generated

data to analyze the created structures according to the first two criteria defined in

Section 3.5.

For this, we uniformly simulated datasets with the purpose of making sure that a

data structure close to the 2-3 hierarchical structure is, if not found, at least better

represented better by a 2-3 hierarchical classification than by a classical hierarchical

86 Chapter 3. A New 2-3AHC Algorithm

classification. As we mentioned before (cf. Section 2.2.1), the 2-3 hierarchical structure

is a type of parsimonious pyramidal classification, which includes the classical hier-

archical classification as a particular case. It is thus probable that a 2-3 hierarchical

classification brings an information gain, compared to the classical hierarchical classifi-

cation, when the dataset has a structure conformed to the general model of pyramidal

classification. Such data example, are the data ordered according to a continuum, like

the chronological order or the letters order in a genomic sequence.

Therefore, we first generated uniformly n points (25 datasets for each n ∈ {10, 20, 30,

40, 50, 75, 100, 150, ..., 3000) according to a sinusoidal curve and using a uniform noise:

yi = sin(2iπ/n)+ui, with ui a uniform random variable between 0 and k ∈ {0.02, 0.04,

0.06, 0.08, 0.1}.

We also generated points uniformly distributed in a rectangle with [0.5, 50] dimen-

sions. These two types of structure have together the property to distribute the data

according to a continuum (sinusoidal curve and line respectively) to which one adds a

uniform noise, and consequently are well adapted to a classification whose clusters are

total order intervals on E (which is the case of the hierarchies and the 2-3 hierarchies).

Figure 3.23: CL avg. created clusters num-
ber

Figure 3.24: SL avg. created clusters num-
ber

Firstly, we take a look at the number of cluster created by the 2-3 AHC algorithms

compared to the classical AHC one. We present here the results on the rectangle

datasets, the results on the sinusoidal datasets were almost identical.

As we can see in Figure 3.23, for the complete link the gain in the number of

created clusters of the five 2-3 AHC methods ranged from 32% to 50%. Our 2-3 AHC

algorithm with intermediate merging (without integrated refinement and blind merging

avoidance) created generally the biggest average number of clusters: 47%. For the

single link (see Figure 3.24) the gain ranged from 23% to 50%, while the initial 2-3

AHC algorithm and the 2-3 AHC algorithm without refinement generated the biggest

average number of cluster: 46%.

Next, we analyzed the “quality” of each method using the Stress coefficient. For

each one of the six executed methods we computed its Stress coefficient, ∆, which

3.5. Experimental Qualitative Comparison between AHC and 2-3 AHC 87

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000A
vg

. S
tr

es
s

G
ai

n
&

 C
on

fid
en

ce
 In

te
rv

al
s

(%
)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

Figure 3.25: SL avg. Stress gain with con-
fidence intervals

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

M
ax

im
um

 S
tr

es
s

G
ai

n
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

Figure 3.26: SL max. Stress gain

determines how well the initial data are represented by the method. Then, for all 2-3

AHC algorithms, we computed their gain (in %) reported to the classical AHC one:

G = 100(∆AHC −∆23AHC)/∆AHC .

For the single-link, all 2-3 AHC methods had the same Stress gain compared to

classical AHC. The average gain varied from 5% to 20% (cf. Figure 3.25) and was

very variable with sometimes large confidence intervals (see also Section 2.7.2 for some

explications). The maximum gain attained 53% for n > 50 (for smaller n, the gain can

be bigger: 100% for n = 3), while the minimum gain was 0% in this case. All methods

had in this case the same gains, which can be explained by the nature of the datasets

(continuum) and the particularity of the single-link. More graphics are presented in

Appendix C.

Same results variability was obtained for the complete-link: Figures 3.27 and 3.28.

One can notice the fact that the gain with our 2-3 AHC algorithm avoiding the blind

merging was always positive (5%), while the other 2-3 AHC algorithms had also infor-

mation loses (negative gain). In this case, the average gain was around 23% but very

variable (from 14% to 37%), with an approximate 50% maximum (see Appendix C for

more graphics).

3.5.4 Abalone Dataset

After the result analysis on the artificial datasets, we tested our algorithms on a real

dataset. A large number of well-known machine learning datasets are available on-

line for machine-learning analysis. The department of Information and Computer

Science of the University of California, maintains a repository with such dataset at

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/.

For our analysis we chosen from this repository the Abalone dataset [Sam95] which

contains 4177 individuals characterized by eight variable (one nominal and seven contin-

uous) such as sex, length, diameter, shell weight, etc. The missing values were removed

88 Chapter 3. A New 2-3AHC Algorithm

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 S
tr

es
s

G
ai

n
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

Figure 3.27: CL avg. Stress gain

-120

-100

-80

-60

-40

-20

 0

 20

 0 500 1000 1500 2000 2500 3000

M
in

im
um

 S
tr

es
s

G
ai

n
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

Figure 3.28: CL min. Stress gain

-10

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 S
tr

es
s

G
ai

n
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

Figure 3.29: Single link’s average Stress gain on the Abalone dataset samples

from the original dataset, while the ranges of the continuous values have been scaled

for use with an ANN (by dividing by 200).

To perform our tests, for each n ∈ {10, 20, 30, 40, 50, 75, 100, 150, ..., 3000} we ran-

domly picked n individuals and then computed the dissimilarity matrix (15 iterations

for each n) which was used then as the input for the hierarchical algorithms executions.

We present here the Stress analysis results, the gain in the number of created clusters

being similar to the one on the artificial datasets.

Very small gains (below 1%) were obtained in the single-link case (see Figure 3.29)

with our 2-3 AHC algorithms, while for the initial 2-3 AHC algorithm there were

information loses (-3%).

In the complete link case, the 2-3 AHC algorithms avoiding the blind merging were

the only one to always provide a positive gain (cf. Figure 3.31), and also the biggest

average gain (cf. Figure 3.30. As on the artificial datasets, the gain here was very

variable with peaks of 84% for some of the 2-3 AHC algorithms (cf. Figure 3.32).

3.5. Experimental Qualitative Comparison between AHC and 2-3 AHC 89

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 S
tr

es
s

G
ai

n
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3

Figure 3.30: CL avg. Stress gain on the
Abalone dataset

-300

-250

-200

-150

-100

-50

 0

 50

 0 500 1000 1500 2000 2500 3000

M
in

im
um

 S
tr

es
s

G
ai

n
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3

Figure 3.31: CL min. Stress gain on the
Abalone dataset

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

M
ax

im
um

 S
tr

es
s

G
ai

n
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3

Figure 3.32: CL max. Stress gain on the Abalone dataset

It seems thus that the most suited algorithm is the 2-3 AHC avoiding the blind

merging, since it always has an positive gain compared with the other methods. But on

new datasets, one can always choose to execute all algorithms if possible, and then based

on the Stress coefficient to select the most appropriate one for the results interpretation

or the clusters partitioning.

We saw in this section the comparison of our 2-3 AHC algorithms with the classical

AHC on different datasets: Ruspini dataset, urban itineraries, generated data, etc.

In the next section, a small comparaison between our 2-3 AHC algorithms and an

Ascendent Pyramidal Classification (APC) algorithm [EUR] is performed using one of

the previously mentioned datasets (urban itineraries).

90 Chapter 3. A New 2-3AHC Algorithm

3.6 Comparison between 2-3 AHC and APC

In this section, we perform a small comparaison between our 2-3 AHC algorithms and

an Ascendent Pyramidal Classification (APC) algorithm (see Section 1.2.1 for more

details on the APC).

For this, we used the SODAS software [EUR, Did02] in which an APC algorithm

was implemented. The last version of the software is called SODAS2, and is a result

of the ASSO∗ Project started in 2001 and aimed at Symbolic Data Analysis. Since the

SODAS software is implemented in C++ and our algorithm were implemented in Java,

we restrict this comparaison to the resulting stuctures properties. This means that no

execution time analyses were performed.

Concerning the algorithms complexities, we note that in the SODAS software a

dissimilarity matrix from 800 individuals could not be analyzed using the implemented

pyramidal algorithm, whilst our algorithm could analyze matrices of up to 3000 individ-

uals† using the HCT toolbox. However, this is not an reliable complexity comparaison

since the implementations are different (different platforms, different codings, etc.).

Thus, to compare the two methods we use the created structures: the pyramid and the

2-3 hierarchies on the same dataset.

Since the pyramids can contain a maximal number of non-singleton clusters of
n(n−1)

2 compared to (n− 1) in a classical hierarchy and b 3
2(n− 1)c in an 2-3 hierarchy

(n = |E|), we chose to analyze a rather small dataset (n < 50).

For this analysis we chose the urban itineraries dataset described in Section 3.5.2.

We recall that this dataset consist of 40 town-center urban itineraries [Bus05] that

where manually generated. They correspond to four types of professional itineraries:

Real Estate Agent (trips from 0 to 9), Nurse (trips from 10 to 19), Hotel Service (trips

from 20 to 29) and Cultural Association (trips from 30 to 39).

The 2-3 hierarchies and the classical hierarchy obtained on this dataset are presented

in Section 3.5.2. To compare the 2-3 AHC with the APC, we chose the 2-3 AHC with

the best results on this dataset: the 2-3 AHC with intermediate merging (see Figure

3.34).

Using the same dataset as an input (XML file), we then used the SODAS software

to construct a pyramid using the APC method. We used the complete-link for both

methods executions on this dataset. Figure 3.33 presents the obtained pyramid on the

40 itineraries, whilst Figure 3.34 presents the 2-3 hierarchy.

∗Analysis System of Symbolic Official data (http://www.info.fundp.ac.be/asso/)
†The tests were done on the same computer: Intel P4 with 512 MB of RAM and Windows XP

3.6. Comparison between 2-3 AHC and APC 91

Figure 3.33: Pyramid on 40 urban itineraries

Figure 3.34: 2-3 AHC with intermediate merging (2-3 AHC V2) on 40 urban itineraries

3.7. Discussion and Perspectives 93

As we can see in the obtained pyramid, it is difficult to identify classes containing

different types of itineraries. This is due to the high number of created clusters and

their high overlapping degree. In [RD04], authors proposed a method to reduce the

number of created clusters in a pyramid to better interpret the obtain results, but this

is not yet implemented in the SODAS software. However, the linear order of the trips

given by the pyramid separates the analyzed urban itineraries into the four types of

itineraries, visible in Figure 3.33.

We also tried to compare the induced dissimilarites matrices of the pyramid and

our 2-3 hierarchy, but this was not possible due to wrong computation of the induced

matrices in the SODAS software. Using manual generation of induced dissimilarity

matrices on small datasets (up to 9 individuals), it appears that the pyramidal classi-

fication has better results than our 2-3 AHC: up to 20% Stress gain compared to 2-3

AHC.

To conclude, the 2-3 AHC can be applied on larger datasets and creates less clusters

than a pyramid, which can lead to a better visual interpretation of results. But, for a

more precise comparison, more tests are necessay between the two methods using sim-

ilar and updated implemetations: on induced dissimilarities, using same programming

language (implementations), etc.

3.7 Discussion and Perspectives

In this Chapter, we used three theoretical properties from the previous Chapter 2

to propose a new general 2-3 AHC algorithm reducing the complexity from O(n3)

to O(n2 log n). The main difference between this algorithm and the initial 2-3 AHC

algorithm [Ber02d] is the added intermediate merging step, which can create a different

structure. As a direct consequence of the intermediate merging, the principle of this

new 2-3 AHC algorithm is similar to the one of the classical AHC algorithm.

Since our general 2-3 AHC algorithm contains two optional steps, the integrated

refinement and the blind merging avoidance, we practically have four new algorithm

variants which can produce different 2-3 hierarchies depending on the currently analyzed

dataset.

After presenting a detailed version of our 2-3 AHC algorithm, we proved that it’s

theoretical complexity is indeed in O(n2 log n). The tests on different datasets (artificial

and real) have confirmed the result of our theoretical complexity study and the gain of

the 2-3 hierarchies over the classical hierarchies.

Next, we performed a comparative study between the classical AHC, our 2-3 AHC

algorithms and the initial 2-3 AHC algorithm:

94 Chapter 3. A New 2-3AHC Algorithm

• First, we analyzed the number of created clusters with each 2-3 AHC algorithm

compared with the classical AHC one. For any of the 2-3 AHC algorithms, we

observed for the complete link an average gain of 47% with an maximum of 50%,

whilst for the single link we observed an 23% average gain with a maximum of

45%.

• To compare the created structures, we used two types of qualitative analysis: a

statistical one, the Stress coefficient on the induced dissimilarity matrices and the

input matrix, and also a direct result interpretation of the structures on small

datasets (Ruspini):

– For the first analysis, we performed tests on large simulated datasets and

also on a real dataset samples. Using the Stress coefficient, the gain was

very variable ranging generally from 0% to 43% for the single link. For the

complete link, the only algorithm having always a positive Stress gain was

our 2-3 AHC algorithm avoiding the blind merging, the rest had sometimes

negative gains (loses). The maximum gain reached in this case 84% for the

2-3 AHC algorithms.

– Using the well-known Ruspini dataset and a small set of urban itineraries, we

compared the obtained hierarchies and 2-3 hierarchies and found that extra

created clusters of the 2-3 hierarchies provides us with richer informations

on the analyzed dataset.

In conclusion, the 2-3 AHC algorithm avoiding the blind merging is the most “sta-

ble” one, although its Stress gains were also variable, and should be the one to chose

if one wants to assure the construction of a richer 2-3 hierarchy (than the classical

hierarchy) on a give dataset.

Future research directions include the definition of other ”quality” measures to

compare the different hierarchies and 2-3 hierarchies on same datasets. One such mea-

sure could be based for example on the clustering accuracy of the 2-3 AHC algorithm

compared with the classical AHC or even other clustering methods (neural networks,

K-means, etc.).

We also compared our 2-3 AHC algorith with the Ascendent Pyramidal Classifi-

cation algorithm [EUR]. For this we used the SODAS software [Did02], but due to

different implementations a concrete comparison could not be perform. This is subject

of other future work.

Chapter 4

Toolbox for Hierarchical

Clustering Methods and

CBR*Tools Integration

In this Chapter we present the object-oriented model that we proposed for the classical

AHC, the initial 2-3 AHC [Ber02d] and our 2-3 AHC algorithm. Its integration in two

different software developed in our team is described.

This object-oriented model was used:

• first for the design and implementation of the Hierarchical Clustering Toolbox

that we developed. This graphical toolbox is designed to ease the results visual-

ization and interpretation for the previously mentioned algorithms. The toolbox

is described in Section 4.2.

• to integrate our 2-3 AHC algorithm in the existing CBR*Tools framework for

Case Base Reasoning (see Section 4.3.1). The main motivation here was the

use of these algorithms in the Be-TRIP mobility recomender system (based on

CBR*Tools) that we specified (cf. Appendix F).

After the description of our object-oriented model in Section 4.1, we detail in Section

4.2 the graphical toolbox that we developed. Section 4.3 presents the integration of the

model into the existing CBR*Tools framework.

The applications and future uses of our 2-3 AHC algorithm using the two aformen-

tioned software are then presented in Section 4.4 before concluding in Section 4.5.

4.1 Design of an Object-Oriented Model

We based our implementation of the algorithms on a reusable model which can be

easily integrated into different applications and libraries, like the Case-Based Reasoning

95

96
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

framework CBR*Tools [Jac98] developed in our team.

CBR*Tools is an object-oriented framework for Case-Based Reasoning (CBR). It

provides a basic reusable CBR framework that supports the development of CBR appli-

cations [Jac98]. It can be especially used for problems addressing behavioral situation

retrieval and indexation.

Different applications using the CBR*Tools framework have been developed in our

team:

• Plant nutrition control application (in collaboration with INRA Sophia-Antipolis);

• Broadway-Web [TJK99]: recommender systems supporting internet browsing;

• HERMES [KTP97]: for argumentation in collective decision making;

• Be-TRIP [CGT04, TCG04]: mobility recommender system that we recently de-

signed. This recommender system is not implemented yet, Appendix F contains

detailed description of the proposed architecture (in french).

To integrate our algorithm in CBR*Tools, we adopted the same design approach,

based on the concepts found in a framework (e.g. hot-spots [Sch97]). Therefore, we

first make a brief introduction of the frameworks and their concepts.

4.1.1 Notion of an Object-Oriented Framework

The concept of object-oriented frameworks has been introduced in the late 80’s and

has been defined as “a set of classes that embodies an abstract design for solutions to

a family of related problems, and supports reuses at a larger granularity than classes”

[JF88]. Thus a framework is much more than a software library. A library defines a

set of classes that may be reused independently or in very small groups. On the other

hand, the goal of a framework is to capture a set of concepts related to a domain and

the way they interact. In addition a framework is in control of a part of the program

activity and calls specific application code by dynamic method binding. A framework

can be viewed as an incomplete application where the user only has to specialize some

classes to build the complete application.

The design process is centered on the identification of hot-spots [Sch97]. Hot-spots

are well defined features of the framework that can be customized for a specific ap-

plication by specialization (white-box hot-spot) or composition (black-box hot-spot).

At the beginning a framework only defines white-box components and a more mature

framework will also provide black-box components. The hot-spots are usually created

by using design patterns which provide typical design solutions and improve the frame-

work documentation.

4.1. Design of an Object-Oriented Model 97

Therefore designing a framework is a complex task with several issues that have to

be overcome and the framework requires a good documentation to be actually reused.

However, the framework approach is very appealing. Frameworks allow the reuse of

both code and design for a class of problems, giving the ability to non-expert to write

complex applications quickly. Frameworks also allow the development of prototypes

which could be extended further on by specialization or composition. A framework

is more difficult to understand than an application or a class library, but once this

step is done, the framework can be applied in a wide spectrum of context, and can be

enhanced by the integration of new components.

4.1.2 Object-Oriented Model

The current design of the 2-3 AHC algorithm implies the two following hot-spots:

• DistanceMeasure: offers support for implementing the distance metric used

during the initialization phase (distance matrix creation). Default implementa-

tion for this hot-spot is provided by the PondEuclidDistance specialization, but

others like the Minkowski distance that generalize the first one, can be used.

• ClusterDisssimilarity: offers support for implementing the dissimilarity (link-

age) between clusters, used during the merging phase. Implementation for this

hot-spot include: SingleLinkDissimilarity and CompleteLinkDissimilarity special-

izations (others like the average linkage or the Ward criterion can be used).

The object-oriented model of our index is presented in Figure 4.1. Its design takes

into account the future integration into CBR*Tools: the HAC23Index, HAC23Index ini

and HACIndex classes specialize the SimpleIndex class (see Section 4.3.2).

We implemented three hierarchical agglomerative methods: the classical AHC al-

gorithm HACIndex, the initial 2-3 AHC algorithm HAC23Index ini and our 2-3

AHC algorithms HAC23Index. To execute different variants of our 2-3 AHC algor-

tihm, one must simply define the three parameters in the HAC23Index class such as

integratedRefinement or avoidBlindMerging.

98
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

Figure 4.1: Object oriented model of the agglomerative hierarchical algorithms

4.2. Toolbox for Hierarchical Clustering Methods 99

4.2 Toolbox for Hierarchical Clustering Methods

To better visualize, compare, interpret and extract information from the created hierar-

chies and 2-3 hierarchies, we designed and implemented the Hierarchical Clustering

Toolbox (HCT). It uses the object-oriented model of the algorithms from the previous

Section 4.1.

The toolbox was developed in Java and can be run as a stand-alone application or

as a applet in a Web browser via the internet∗. It contains:

• modules for:

– object-oriented models of algorithms;

– dissimilarity matrix generation from different data inputs;

– results analysis and comparaison.

• a Graphical User Interface (GUI) for:

– input selection and representation;

– method selection and execution;

– results representation.

To use the toolbox, there are three (successive) main tasks that can be performed:

data selection and representation (see Section 4.2.1), method selection and execution

(see Section 4.2.2) and results visualization and analysis (see Section 4.2.3).

These tasks can be performed using the three application’s menus or the toolbars

present in the different tabs. The tabs of the toolbox, Input Data Graphical Repre-

sentation (see Figure 4.4), Output Structure Graphical Representation (see Figure 4.6),

and Analysis (see Figure 4.8), correspond to the general main steps of a data analysis

for the hierarchical methods and are presented in details in the next three Sections.

4.2.1 Data Selection and Representation

When selecting the analyzed data, various dialogs of the toolbox can be used to

load/generate the input data. Thus, the analyzed data can be:

• artificially generated in a 2D rectangle (used mostly for tests);

• loaded from a file. XML, SDS [EUR] and plain text files are supported;

• extracted via SQL queries from a database (see Figures 4.2 and 4.3).

∗Running the application as an applet is not recommended on large datasets due to the JVM
memory limitations and the large size of the dissimilarity matrix, O(n2).

100
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

Figure 4.2: HCT: Data matrix generation from DB

Figure 4.3: HCT: DB server selection

4.2. Toolbox for Hierarchical Clustering Methods 101

The later functionality was created having a specific purpose in mind: to generate

and extract dissimilarity matrices on Web user sessions (see Chapter 5), but it can be

easily extended to general data extraction queries from databases. This can be done

using a more general DB Explorer feature (as in [Tan05a]), in which custom queries for

selecting data can be made after exploring the available data in the selected DB.

After this, a two dimensional representation of the input data is displayed (when

possible). This is done on the first tab of the toolbox, Input Data Graphical Repre-

sentation, as in Figure 4.4. In the case from Figure 4.4, the Ruspini dataset [Rus69] is

used as input and represented graphically.

Figure 4.4: Hierarchical Clustering Toolbox: Input Data Representation

4.2.2 Methods Selection and Execution

After selecting the input data, the method selection dialog is displayed, and we have a

choice between various algorithms (cf. Figure 4.5):

102
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

• the classical AHC algorithm;

• the initial 2-3 AHC algorithm;

• the four variants of our 2-3 AHC algorithm:

– with intermediate merging and integrated refinement (denoted HAC23 with

refinement V2),

– with intermediate merging and no refinement (denoted HAC23 without re-

finement V2),

– with intermediate merging, integrated refinement and avoiding the blind

merging (denoted HAC23 with refinement V3),

– with intermediate merging, no refinement and avoiding the blind merging

(denoted HAC23 without refinement V3).

Figure 4.5: HCT: Choosing the linkage and the algorithm to execute

All algorithms can be executed successively on the same dataset in order to compare

the structures later.

4.2.3 Results Visualization and Analysis

After the execution of an algorithm, the created structure (hierarchy or 2-3 hierarchy)

is displayed in the second tab (Output Structure Graphical Representation) of the

toolbox (see Figure 4.6). This tab is used for visual result interpretation.

4.2. Toolbox for Hierarchical Clustering Methods 103

Figure 4.6: HCT: Output Structure Graphical Representation

Here one can analyze the different structures created on the same input dataset using

the Method Cache dropbox in the upper right corner of the toolbox. Thus differences

between the classical hierarchies and the 2-3 hierarchies can be revealed and interpreted.

The different implemented features ease the results visualization and interpretation:

cluster rotation (for the non-properly intersecting ones), cluster information, different

types of zoom, rotation of the structure (horizontal and vertical display), etc.

The overlapping obtained by selecting an indexing level can be done by direct

selection on the structure or by manually entering the desired level (cf. Figure 4.7).

The informations of the resulting overlapping are displayed internally in the toolbol

and/or externally in a DVI viewer such as xdvi or a Web browser. This information

can then be saved as HTML, LATEX (tables) or plain text.

Navigation between the clusters successors and predecessors can be easily made

after partitioning or directly in the represented structure using the IDs links.

104
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

Figure 4.7: HCT: Selection of a clustering partition

To compare the input dissimilarity matrix and the induced dissimilarity matrices,

the third information tab of our toolbox, Analysis, can be used (cf. Figure 4.8).

Figure 4.8: HCT: Induced dissimilarites and initial data matrices analysis

Some statistical information on the compared dissimilarity matrices are presented,

4.3. Integration of the 2-3 AHC in the CBR*Tools Framework 105

such as the minimum, maximum, standard deviation, etc. along with additional infor-

mations on the structure: the creation time (if is an induced matrix), the number of

created clusters and properly intersecting clusters, etc.

Also some matrix correlation coeficients (see Section 3.5) are computed and dis-

played: Stress, Pearson, etc. These can be used as a “quality” indicator by comparing

the induced matrices to the initial dissimilarity.

Using our toolbox, the maximum attained number of analyzed elements was 3500,

but during the repetitive tests from Section 3.4.3 the maximum number was 3000.

4.3 Integration of the 2-3 AHC in the CBR*Tools Frame-

work

Here we will discuss the different aspects related to the conception and implementation

of our algorithm as an indexing method and his integration in the object-oriented

framework CBR*Tools∗ developed in our team.

The purpose of this integration is to use our method as an off-line clustering tech-

nique for prototypes (profiles) creation and as an on-line indexing method for case

retrieval and case retaining (see Figure 4.9). This can be then used in the Be-TRIP

recommender system (cf. Appendix F) to construct for example itineraries prototypes

(see Section 3.5.2) which helps the recommendation process.

4.3.1 CBR*Tools: a Framework for Case Based Reasoning

Generally speaking, Case Based Reasoning (CBR) [JF88] is a problem-solving method

based on the reuse of cases. A case basically represents a problem situation, the solution

that has been applied (or a way to compute it), and sometimes its evaluation. Cases

must be structured and indexed into a memory in order to be reused when similar

problems are encountered.

The first step of the reasoning (cf. Figure 4.9) is the retrieval through indexes

of relevant cases which are somehow similar, or match partially the current problem

situation. The goals of others steps are the reuse of the past solution by adaptation,

the evaluation of the proposed solutions and finally the learning of this new experience

in the memory for future reuse.

∗http://www-sop.inria.fr/axis/cbrtools/

106
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

Figure 4.9: Case Based Reasoning

The CBR*Tools framework developed in our team is implemented in Java and con-

tains five basis packages with a total of 246 classes. As we said before, the CBR*Tools

framework is based on the use of hot-spots, which are mainly structured according to

two criteria:

• Specificity: Two levels of specificity are identified: the first one called “core”

gathers the general hot-spots related to the CBR and the second one called “time”

gathers the additional or specialized hot-spots, necessary for the indexing by

behavioral situations.

• Axes of variability: An axis of variability defines a dimension in which the vari-

ous applications require flexibility and are likely to vary. Three axes of variability

were identified each one gathering a set of hot-spots: reasoning management,

cases representation and memory organization.

4.3.2 HAC23Index Integration for Memory Organization

The design of our HAC23Index concerns the third axis of variability represented by the

memory organization which contains the source cases and organizes them according to

the data structures used (see Figure 4.10). Thus we have here two principal sub-tasks:

the organization of the cases (physical storage of the cases) and the organization of the

indexing (defining indexes which will make it possible to find the cases at the time of

the research phase).

Various indexes are usually used (hot-spot Index): linear organization, discrimi-

nating tree built a priori or by induction, neural networks. Moreover, it is necessary

to be able to make evolve these indexes during the cycle of life of the system in or-

der to include new knowledge or to deal with the number growing of the cases added

4.3. Integration of the 2-3 AHC in the CBR*Tools Framework 107

in memory (incremental aspect). It is thus necessary simultaneously to define several

strategies of indexing to evaluate them and make them evolve (hot-spot IndexBase).

Lastly, the indexes can take into account only part of the indices of the cases (hot-spot

IndiceFilter) and turn over various types of information (hot-spot IndexResult): set of

cases, set of prototypes, detailed analysis of indices.

In this context the HAC23Index index∗ is integrated into the CBR*Tools framework

in order to create prototypes (clusters) of cases with a strong similarity. Next, these

clusters can be used in the retrieve (search) phase in order to return the similar cases to

the target one. The main drawback of this approach is the time required to construct

the dissimilarity matrix and the hierarchy if a new case is to be added to the case base.

In order to avoid this, the clusters are obtained in an off-line analysis and then used to

classify a new case, which can be added to the closest cluster found if it is “close”†

enough or a new cluster containing this case can be created if it is an “atypical”

case. This is known as incremental clustering [SBK01] which makes the new case

classification and the cluster updating real-time possible. Thus we can make the index

an incremental one without having to rebuild the distance matrix and the whole 2-3

hierarchy. Updating the structure when a new case arrives [ZRL96, BHT05] could also

be used to make our case indexing incremental.

The index could be used in two different ways: the whole hierarchy created can

be used to “search down” similar cases starting from the root or a partitioning of the

initial dataset can be selected by “cutting” the hierarchy according to a given condition

and the clusters obtained to be used to classify the new case. In our implementation

we have use the later and as a “cutting” condition a given threshold. The cutting is

performed when there is a variation in the clusters dissimilarity superior to the given

threshold, thus it is not necessary to have a strict indices. The problem in this case

is the specification of this threshold, which implies apriori knowledge on the analyzed

data. This could be avoided by an initial specification of the number of desired clusters,

but results can be unexpected.

These various indexes from CBR*Tools make use in particular of measurements of

similarity (hot-spot Similarity) making it possible to compare the cases sources with

the target case. These measurements turn over evaluations (hot-spot CmpValue) which

can be of various types: generally a factor between 0 and 1, or 0 and 100 or a couple

possibility/necessity. These results are then ordered according to an associated relation

of order (hot-spot CmpValueOrder). See also Appendix D.

Our HAC23Index index is a part of the memory organization axe of the CBR

∗Using same reasoning the classical AHC and the initial 2-3 AHC implementations can be integrated
into CBR*Tools

†Generally if a distance threshold condition is satisfied

108
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

representation

AttrTransform

organization

Similarity

Similarity/order/
/distance organisation

Index
organisation

Index

AbstractIndex

SimpleIndex

KnnIndex

DistanceMeasure

Memory

Case

HAC23Index

ClusterDissimilarity

Figure 4.10: HAC23Index hot-spots and their integration in CBR*Tools

framework, and extends and partially implements the specifications offered by the Sim-

pleIndex hot-spot. The major part of its functionality relies on the createHierarchy

and an added search method. The former constructs the 2-3 hierarchy after the batch

indexing process of the case base was done. That means that there are previously

stored patterns in the case base which have to be indexed during the initialization of

the application. The search method has a role, as the name states, in the pattern

retrieving step of the CBR process.

The HAC23Index is used as a kind of pre-indexing or filtering mechanism, its output

being furthermore adapted by an attached linear index like the KnnIndex (see Figure

4.10). So in case of an actual new index implementation, we can use as a start point

the LinearKnnIndex or the HAC23Index, depending on the new index’s functionality

one might want to offer.

In order to point out the basic steps for adding and implementing new indexes to

the CBR tools we remark the different knowledge levels of a certain hot-spot, required

to use, extend or implement it. In this direction, we can distinguish three levels :

- a specialization and extending of the hot-spot’s specification, which needs a com-

plete understanding of it.

- the hot-spot instantiation requires only the knowledge of its parameters and their

meaning.

- in case of automatic use of the hot-spot, it could remain transparent to the pro-

grammer.

With respect to the hot-spots in Figure 4.10, depending on the application and

the chosen case structure, we can provide further specialization for the AttrTransform

hot-spot, beside the default implementation in BasicAttrTransform.

4.4. Applications 109

An example of the use of HAC23Index as a part of the CBR*Tools is given in

Appendix D. The presented CBR application is used to determine the risk factor for

car insurances.

4.4 Applications

Based on the two softwares previously presented (HCT and CBR*Tools), our 2-3 AHC

algorithms were used in different applications from three fields: Web Usage Mining,

Document Clustering and Transport. Three out of the seven applications presented

below were made by others members of the AxIS team.

With the first applications from the WUM and Document Clustering fields detailed

in the next two Chapters (Chapter 5 and Chapter 6), we will summarize only the

tourism applications and the work performed in this context.

• Web Usage Mining (using HCT):

– clustering INRIA’s research teams using groups of Web pages and

users navigational behaviours [CT04, CT05], presented in Chapter

5;

– clustering of search engines keywords extracted from accessed URL referrers

[TMT06];

• Document Clustering (using HCT):

– XML documents classification using structure and content mining,

presented in Chapter 6;

– XML documents classification using structure mining via sequential patterns

extraction [GMT05];

– Sanskrit documents classification [Tan05b] in order to create a critical edi-

tion∗;

• Transport:

– validation of urban itineraries classification (cf. Section 3.5.2) us-

ing our 2-3 AHC†.

For this, our toolbox was interfaced with a C++ library developed by Beno-

mad‡. This library provides geographical information from a GIS§ map,

∗Co-supervision with B. Trousse of S. Tandabany’s internship
†Via the co-supervision with B. Trousse of R. Busseuil during his internship [Bus05]
‡http://www.benomad.com/
§Geographical Information System

110
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

which can be used to create itineraries or to extract an itinerary’s character-

istics. A Visual .NET application using the Benomad library and our visual-

ization toolbox was developed by R. Busseuil [Bus05] (cf. Figure 4.11). Us-

ing this application, the manually generated itineraries could be then easily

clustered using our Hierarchical Clustering Toolbox (see also Section 3.5.2).

– the mobility recommender system, Be-TRIP [CGT04, TCG04].

As mentioned in Section 3.5.2, the purpose of the urban itineraries cluster-

ing was to validate the use of our 2-3 AHC algorithm as a case indexing

method for our Be-TRIP mobility recommender system that we specified

(see Appendix F). To use our 2-3 AHC algorithms in Be-TRIP, we first in-

tegrated our object-oriented model in the Case-Based Reasoning framework

CBR*Tools [Jac98] (see Section 4.3), on which the Be-TRIP system is based.

The implementation of Be-TRIP and the validation of 2-3 AHC as an index-

ing method, are to be done in the future by the AxIS team.

4
.4

.
A

p
p
lic

a
tio

n
s

1
1
1

Figure 4.11: Urban Itinerary Creation and Visualization

112
Chapter 4. Toolbox for Hierarchical Clustering Methods and CBR*Tools

Integration

4.5 Discussion and Perspectives

In this Chapter we presented the object-oriented model of our 2-3 AHC algorithm,

and its implementation, which is the first implementation of an 2-3 AHC algorithm.

The implementation was performed in Java. Almost identical models were used for the

classical AHC and the initial 2-3 AHC algorithms implementations.

To better visualize and interpret the results, i.e. the classical hierarchies and the

2-3 hierarchies, we created the Hierarchical Clustering Toolbox, also implemented

in Java.

The toolbox can be used to generate the input dissimilarity matrix or to load it

from different sources. The structures can be then represented graphically for result

interpretation and different indices (Stress, Pearson, etc.) can be used to analyze the

“quality” of the created structure.

Currently, we are integrating the data selection from DB in a more general DB

Explorer feature in which custom SQL queries for selecting data can be executed after

exploring the available data in the selected DB. Also different comparison indices on

the created structures and the initial data can be implemented and integrated in the

Analysis tab.

We also integrated our object-oriented model of the 2-3 AHC algorithm into the

Case-Based Reasoning framework, CBR*Tools [Jac98]. Our algorithm was integrated

as an indexing method for the case base organization an used in the retrieving phase

of the CBR cycle. Unfortunately, due to its high complexity, only off-line analysis can

be performed so far.

Future work regarding the CBR*Tools integration includes the study of an auto-

matic partitioning criteria and also an incremental feature for the hierarchical algo-

rithms to allow on-line analysis.

Part II

Study of applying the 2-3 AHC

in the Web Mining and

Document Clustering Fields

113

Introduction

This second part of the thesis concerns two studies of applying the 2-3 AHC in the

fields of Web Mining and Document Clustering. These two fields are part of the main

research areas of our AxIS∗ team, and also correspond to very active research fields.

We also saw in Chapter 1 that the hierarchical ascending classification methods (AHC,

2-3 AHC, APC, etc.) are rarely or never applied in these research fields.

Therefore, we analyzed the applicability and potential of our 2-3 AHC method

in these two fields and also compared it with the classical AHC or other methods

([GCGR+04]) when applied on same data.

The Web Mining can be broken in three categories:

• Web Content Mining: discovering and organizing Web based information;

• Web Structure Mining: used to examine data related to the structure of a partic-

ular Web site;

• Web Usage Mining [CMS97] (WUM): Web resources clustering, discovering se-

quential patterns [TT01], associations rules [AS95], classification, etc..

The most used techniques applied to Web usage data, obtained from Web servers

access logs, are: statistical analysis, discovering association rules [Bar01, AS95], mining

sequential patterns [SA96, AS95, TT01, MJHS96, ZXH98, MPC99, PHMAZ00, Tan05a]

and clustering of Web usage data.

As concerning the clustering here there is a big interest in document clustering

(organizing and managing the groups of related URLs based on their page content)

[Wil88, KR90]. The formed clusters of documents can be used for document manage-

ment in electronic commerce (customer targeting) [SCH+01]. Also document clustering

is explored as an alternative method of organizing retrieval results in search engines

[ZE98].

Clustering Web users, i.e., grouping the users into clusters based on their common

properties is done on users sessions which usually are modeled as vectors. Each element

∗http://www-sop.inria.fr/axis

115

116

of the vector corresponds to a value of a feature such as the hit-count for a Web page.

Then different clustering algorithms can be applied to discover the user profiles [SBK01,

NK02]. In [YKM99] the clustering of the Web users is based on their access pattern

(browsing activities) which are organized into sessions, then generalized according to

the page hierarchy and afterwards clustered using an incremental hierarchical clustering

method, BIRCH [ZRL96]. The same method is used in [FSS00] to cluster generalized

Web user sessions obtained by means of induction based on the attributes.

The user clusters obtained by applying different clustering techniques to user ses-

sions [Ben00] are used for classification of new sessions (users) and possibly in an

update phase of the clusters (incremental learning) by adding these new sessions to the

corresponding cluster (incremental clustering [SBK01]).

The Web usage data used during the Web Usage Mining (WUM) process are gen-

erally the users’ navigational paths gathered in Web server logs, sometimes correlated

with informations from the other Web Mining processes, e.g. the site structure.

Analyzing the Web users behaviour can be used by webmasters in the Web site(s)

re-conception process, or can be used to facilitate the users information search by

personalization (through dynamic inserted links for example).

As we also saw in Chapter 1, so far among the agglomerative hierarchical clustering

methods, only the classical AHC was been used to analyze Web data. We remind the

most successful one, the incremental BIRCH technique [ZRL96], which handles very

well large data collections.

In this context, our applicative study of the 2-3 AHC is carried in the Web Mining

field following our research team∗ objectives.

The objectives of our research team, AxIS, are related to the design, analysis and

improvement of the information systems (IS), driven by usage. Although in the short

run the project is directed mainly towards Web sites and/or Web services, we place

ourselves in a global point of view of design and evaluation of adaptive information

systems based on the W3C† standards. The word ”adaptive” represents both the ability

to adjust to the user (personalization), and the ability to learn from usage analysis.

One of our team interests is the study of the INRIA’s Web site activity and structure.

Our two main applications presented in the next two chapters are following this

study and present the clustering of INRIA’s research teams through its Web usage and

activity reports. More precisely, these applications concern:

• first in Chapter 5, a clustering of the INRIA’s research teams based on their Web

sites via the usage mining (i.e. Web users behaviours). This analysis is related

to the WUM field;

∗AxIS research project, http://www-sop.inria.fr/axis/
†World Wide Web Consortium: http://w3c.org/

117

• secondly in Chapter 6, a clustering of INRIA’s research teams based on the 2003

XML activity reports via content and structure mining. This analysis is related

to the XML Document Clustering field.

Chapter 5

Web Mining Application

In this Chapter we investigate the use of our 2-3 AHC algorithm as classification/clustering

method in a Web Usage Mining (WUM) analysis. according to our knowledge, this is

a first study of applying an hierarchical classification method on Web Usage data.

The presented analyses consist in clustering the visited topics of INRIA’s∗ Web

sites, using our 2-3 AHC algorithm. This was done by analyzing visitors activities on

INRIA’s Web sites, i.e. their navigational behaviours.

The objective is to study the Web users perception of INRIA’s research activity, by

using their browsing behaviour. As a direct result of this analysis, one could propose

different improvements in INRIA’s Web site to meet the users needs.

For these analyses we have compared the obtained classifications with INRIA’s sci-

entific organization. This scientific organization of research teams into research themes

has changed in 2004, so we analyzed the Web users behaviour during two time periods:

before and after the change.

Before presenting the details of our application in Section 5.4, we begin by introduc-

ing the main terms used in the WUM field in Section 5.1, followed by a short description

of the WUM data (the log files) process and the WUM steps in Section 5.1.2.

Then Section 5.2 will introduce our analysis motivations. Before concluding in

Section 5.5, we present our INRIA’s research teams clustering and result interpretation

in Section 5.4.

∗The French National Institute for Research in Computer Science and Control

119

120 Chapter 5. Web Mining Application

5.1 Introduction

We present first the main terms used in the WUM process as defined in [TT04, Tan05a],

which are based on the ones used by the World Wide Web Consortium∗ (W3C) for the

Web characterization terminology [LN99].

Then in Section 5.1.2 we will make a short description of the main source of infor-

mation in a WUM analysis, that is the Web log files.

5.1.1 WUM Terms

Definition 13 : A resource, according to the W3C specification, can be “anything

that has identity”, and is also called an Uniform Resource Identifier (URI). Ex-

amples include an HTML file, an image, and a Web service. 2

Definition 14 : A Web resource is a resource accessible through any version of the

HTTP protocol (for example, HTTP 1.1 or HTTP-NG). 2

Definition 15 : A Web server is the server that provides access to the Web re-

sources. 2

Definition 16 : A Web page is the set of data constituting one or several Web re-

sources that can be identified by an URI. If the Web page consists of n resources, the

first n− 1 are embedded into the nth URI, which identifies the Web page. 2

Definition 17 : A page view (also called hit) occurs at a specific moment in time,

when a Web browser displays a Web page. 2

Definition 18 : A Web browser or Web client is a client software that can send

Web requests, handle the responses, and display requested URIs. 2

Definition 19 : A user is a person using a Web browser. 2

Definition 20 : A Web request is a request that a Web client makes for a Web re-

source. It can be explicit (user initiated) or implicit (Web client initiated). The explicit

Web requests are also called clicks. 2

∗http://www.w3c.org

5.1. Introduction 121

Definition 21 : A user session consists in a delimited number of an user’s explicit

Web requests across one or more Web servers. 2

Definition 22 : A navigation or visit represents a subset of consecutive page views

from an user session occurring close enough (measured by means of a time threshold,

usually 30 minutes). 2

Definition 23 : The Browsing Speed (BS) represents the user navigation speed and

is given by the average number of seconds spend per page by the user in a navigation:

BS(N) =
|Npages|

Nduration

where |Npages| is the number of visited pages in the navigation N and Nduration is the

duration of the navigation. 2

5.1.2 Log Files

The main source of information in a WUM analysis are the logs files generated by the

Web servers. These contain all the Web requests made by the Web site visitors over a

time period and ordered chronologically.

Definition 24 : A Web server log file contains requests made to the Web server,

recorded in a chronological order. 2

The most popular log file formats are the Common Log Format [W3C95] (CLF)

and its extended version, the Combined Log Format, denoted ECLF [Tea95].

A line in the ECLF log file contains information about an unique Web request. The

ECLF format is the following:

[IP] [name] [login] [Date] [Type] [URI] [Status] [Size] [Referrer] [User Agent]

where:

122 Chapter 5. Web Mining Application

IP The client’s host name or its IP address

name The client inetd id (generally empty and represented by a “-”)

login The user login (if applicable)

Date The date and time of the request

Type The request type (GET, POST, HEAD, etc.)

URI The requested resource name

Status The request status

Size The size of the requested resource

Referrer The referrer of the request which is the URL of the Web page

containing the link that the user followed to get to the current page

User Agent A string identifying the browser and the operating system (denoted

UA in the followings)

A small example of an ECLF line extracted from INRIA’s Web log is presented

in Figure 5.1 below. We can see that an user from the IP address 194.254.174.176,

requested on the April 5th, 2005 at 19:17:49 the page /axis/Publications/show.

php?keyword=KDD. The request was of type GET using the HTTP 1.1 protocol, and

also a successful one (status code 200) with the size of the transfered page of 52382

bytes. The user arrived on this page from Google via a search with the keywords “WEB

USAGE MINING” and used Microsoft Internet Explorer 4.01 from his/her PocketPC

device.

194.254.174.176 - - [05/Apr/2005:19:17:49+0200] ”GET /axis/Publications/show.php?keyword=KDD
HTTP/1.1” 200 52382 ”http://www.google.fr/pda?q=WEB+USAGE+MINING&hl=fr”
”Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; PPC; 240x320)”

Figure 5.1: A Web Request from INRIA’s Web Server Log (ECLF Format)

5.1.3 WUM steps

The Web servers collect large volume of data in their logs from the Web site usage. As

we said before this is the main source of information in a WUM analysis, but comple-

mentary available information helps to improve the analysis results. Thus, information

5.2. Data Description and Motivations 123

on the Web site structure, on the content of the Web pages, on user profiles, etc. can

be used to improve the data quality.

There are three main steps in a WUM analysis [Tan05a]: data preprocessing, pat-

tern discovery and pattern analysis (see Figure 5.2).

Web log files Transformed logs (BD) Patterns, Rules, Clusters Results

Data Mining Analysis

Web site structure

Pre− processing

Figure 5.2: Schema of a General WUM Process

For our WUM analysis (cf. Section 5.4), we begin with a brief description of the

analyzed data and the analysis motivations in Section 5.2. The data preprocessing step

consists in the cleaning and preprocessing of the raw data stored in the log files and

is presented in Section 5.3. Section 5.3.2.2 presents our extension of the relational DB

model used in [Tan05a]. The analyses (pattern discovery) and their results interpreta-

tions (pattern analysis) are then presented in Section 5.4, followed by the discussion

and perspectives in Section 5.5.

5.2 Data Description and Motivations

INRIA has six research units across France (Futurs, Lorraine, Rhône-Alpes, Rennes,

Rocquencourt, Sophia Antipolis) and seven Web servers: one for each research unit

plus a national one. Users searching for information on one of INRIA’s Web sites, are

transparently browsing through the interconnected pages of its Web servers. To trace

their behaviours, one must analyze the log access files from these Web servers.

While searching for informations on INRIA’s Web sites, users can visit the pages

of different research teams that have common scientific objectives. A INRIA research

team is a team of a limited size with relatively focused scientific objectives. Based on

their scientific objectives, INRIA has grouped research teams into research themes.

124 Chapter 5. Web Mining Application

On April 1st 2004, INRIA’s scientific organization into research teams has changed

from the four existing research themes, into five new research themes (see Appendix

E).

In this context, we decided to analyze the impact of INRIA’s Web sites structure

on users navigations before and after this change. This was done by performing two

different analyses of users visits: one on INRIA’s first level topics before the change

and another on INRIA’s research teams before and after the change. An additional

analysis to compare the classical AHC and our 2-3 AHC on a single research theme

was also performed.

We chose to analyze the log files from two of INRIA’s Web servers: the national

Web server (http: // www. inria.fr) and also the Sophia Antipolis research unit Web

server (http:// www-sop.inria. fr).

As a secondary source of information beside the log files, we used some additional

information on the both Web site structures to assign Web pages to research teams,

and thus to be able to cluster the research teams based on their group of Web pages

and on the Web users behaviours.

Since INRIA’s scientific organization into research teams has changed, we have

chosen to study the Web users behaviours on two different 15 days time periods before

and after this change:

- from 01 until 15 January 2003, period denoted in the followings as Per1,

- and from 27 May until 10 June 2004, period denoted as Per2.

Indeed, the main motivation of our study here was to analyze the impact of the

changes in the national Web site structure (see Appendix E), on users behaviours when

searching for information. For the first analysis this concerned the impact of the entire

Web sites on users behaviours, whilst for the second analysis we studied the impact of

the national research presentation pages∗ .

More particularly, our study concerned the clustering of INRIA Web sites’ visited

topics (corresponding to actual research teams), using the 2-3 AHC and was done in

two phases:

- first, the preprocessing of the Web access logs (based on the work from [TT04])

and presented in section 5.3,

- secondly, the data mining (using our 2-3 AHC algorithm) and the result

analysis phase (cf. Section 5.4.2).

∗The national Web site changes actually concerned only 20 Web pages used for presentation of the
research teams (see Table E.1)

5.3. Extended Relational DB Model for Data Preprocessing 125

5.3 Extended Relational DB Model for Data Preprocess-

ing

We begin this section by introducing in Section 5.3.1 the used data preprocessing

methodology which was proposed by Tanasa et al. (see. [TT04, Tan05a] for more

details). We used the AxIS LogMiner∗ tool developed within the AxIS research team

at INRIA Sophia Antipolis.

Then, we will extend in Section 5.3.2 the relational DB model proposed in [Tan05a].

This model is currently available in the new version of the AxIS LogMiner tool.

Figure 5.3: The data preprocessing steps

5.3.1 Data Preprocessing

The aim of the preprocessing phase was to identify and extract user navigations (cf.

Definition 21) from the raw Web logs, and was done in four steps [Tan05a]: data fusion,

data cleaning, data structuration and data summarization. Figure 5.3 presents these

steps, further details can be found in [TTM04, Tan05a].

During the data fusion step, the Web logs files were joined together for each analyzed

period (resulting in log L1 for Per1 and log L2 for Per2), to reconstruct the cross-server

users’ navigations.

Thus the two joined logs contained all the requests (chronologically sorted) made

by different users for different resources on the two Web servers, over the given pe-

riods of time. To distinguish the requests made on one server from the one made

on the other, we added at the beginning of the accessed resource, the server name:

http://www.inria.fr or http://www-sop.inria.fr. This helps also to reconstruct the full

∗Tool description available at: http://www-sop.inria.fr/axis/axislogminer

126 Chapter 5. Web Mining Application

URI of the accessed resource, which can be then used to reconstruct users navigations

[CDSL+05], by comparing it with the referrer field of the following pertinent requests

(when available).

After joining the log files, an anonymization of certain informations was performed.

This is necessary for privacy reasons in case that the log file or the analysis results are

made public.

The following fields were anonymized:

• IP address: the real IP address or host name is replaced with an identifier that

keeps the information about the domain extension, which is the country code

(i.e. .fr, .de, .ro) or the organization type (i.e. .com, .edu, .org). For example

gicu.olimpia.edu becomes 12578.example.com.edu, where 12578 is an ID used to

retrieve when needed the original real name;

• the login name when available;

• the email addresses present in the UA field, which is actually a very rare case.

Since some of these requests from the log files were made for non-relevant resources

from our analysis viewpoint, these were eliminated in the data cleaning step. For

example, we do not interest ourselves in requests for images, since they usually are

implicit requests (images contained in the accessed page [Tan05a]).

But sometimes the images can be explicitly accessed by the user via a click, and

constitute in this case a valid Web request which must not be eliminated from the

analysis. To identify this particular case of images, the LogMiner tool uses additional

information on the analyzed Web sites.

Other types of eliminated requests include the javascript files (.js), the style sheet

files (.css), the flash animations (.swf), etc.

A big part of an Web site traffic is caused by the web crawlers, commonly known

as Web robots. These are computer software from search engines, that periodically

harvest the Web site content to update the index. Usually the number of requests

made by a Web crawler is larger than the one of a normal Web user and can be also

identified by their User Agent (UA) field.

To identify a Web robot the following three heuristics were used:

• if they requested ’/robots.txt’;

• if their UA is known (i.e. GoogleBot, Yahoo Slurp, etc.)

• if their browsing speed (see Definition 23) is superior to a certain threshold. This

step must be performed after the navigations identification to be able to compute

5.3. Extended Relational DB Model for Data Preprocessing 127

the BS. Next, if BS(N) > 2 and |Npages| > 15, the navigation N comes most

probably from a Web robot and can be eliminated along with all its requests from

the analyzed log file.

Filtering out all these requests has reduced L1 to 11% and L2 to 15%, from their

original size. For example for L2, the number of requests was reduced from 4.473.228

to 686.084, equivalent to a log file size reduction from 901Mb to 135Mb.

Next, the data structuration step groups the unstructured log files requests by user,

user session, page view, and navigations.

Today, there is no perfect solution to identify a Web site users from the log file due

to the poor information within these files, due to the proxy servers, dynamic addresses

(DHCP), personal security software∗, and cases where multiple users use the same

computer or one user uses multiple browsers and/or computers. Several techniques can

provide additional information on the users re-visiting a Web site: user registration,

cookies or modified browsers.

In the case of the ECLF log files the current best solution is to use the triplet (IP, Lo-

gin, UA) [Tan05a]. In most cases (ours included), this is not the best solution since the

Login field corresponds for example to the username used via the .htaccess/.htpasswd

authentification method in Apache Web server. Since these are directory specific, the

same user can login in different parts of the same Web site using different usernames.

For example an user might use an username to access the intranet of its research team,

and another username to access a working group intranet found on the same Web site.

Therefore, we consider as a user, the couple (IP, [User Agent]) in our analysis, and

even though this can be sometimes inaccurate, it still has an 92.02% precision [Tan05a]

in identifying Web users.

The user session represents all the actions performed by the user over the analyzed

period. There are 115.825 identified sessions for Per1 and 96.984 for Per2.

Users navigations are obtained by splitting every user session using a 30 minutes

threshold. This is done when two successive requests of the same user are separated

by a time period superior to the given threshold. For our analysis we obtained 173.015

navigations for Per1 and 145.454 navigations for Per2.

Finally, the obtained log file is stored in a relational database in the data summa-

rization step presented in the next Section 5.3.2.

5.3.2 Extension of the Relational DB Model

The log file obtained so far is stored in a database using the relational model from

[TT04, Tan05a] and presented in Figure 5.4. We extended this model to be used by

∗Some personal security software are blocking the request informations: referrer, cookies, etc.,
which makes the identification task almost impossible

128 Chapter 5. Web Mining Application

our team, by attaching new tables or new attributes to the existing ones.

5.3.2.1 Extended Model

The main table of the model is the LOG table that contains information about all the

requests. Each row in the table corresponds to a Web request and contains mainly only

IDs (foreign keys) linking to the other tables in the model.

Figure 5.4: DB Relational Model for Log Files from [Tan05a]

After storing the existing information in the DB, a generalization of the URLs

is performed to extract the first and the second syntactic topics (see Figure 5.4 and

Figure 5.6). These syntactic topics were then mapped into semantic topics like: projects,

people, services, etc. These semantic topics were manually generated [TT04].

5.3. Extended Relational DB Model for Data Preprocessing 129

Only the first two syntactic topics are directly stored in the URL table, while the

others are discarded. But the greater level (3th and on) syntactic topics can also contain

important information on the analyzed URL.

Figure 5.5: Extended DB Relational Model for Log Files

130 Chapter 5. Web Mining Application

http : //www − sop.inria.fr
︸ ︷︷ ︸

/ axis
︸︷︷︸

/ personnel
︸ ︷︷ ︸

/Doru.Tanasa
︸ ︷︷ ︸

/doru− eng.html

site topic1 topic2 topic3

Figure 5.6: URL Generalization

Therefore, we extended the model to store all levels syntactic topics. For this, we

modified table SYN TOPIC and we added the table SYN 2 URL (cf. Figure 5.5). In

the second table the links between all syntactic topics of each URL and their URL are

stored, not only the first two levels. This will be later used to assign URL to research

teams (see Section 5.4.2).

Topic Hit Count

rapportsactivite 26019

personnel 10808

RA2001 9839

cgi-bin 5988

rrrt 4319

RA99 3145

RA2000 2819

epidaure 2693

RA95 2641

robotvis 2591

RA96 2561

semir 2514

RA98 2440

Table 5.1: Most Visited Topics on INRIA’s Web Sites on Per1

Using this extended model to generalize URLs, we found that among the most

visited topics by Web users, the topics from the activity reports of the research teams

(rapportsactivite, RAxx or RAxxxx) were clearly the most visited ones.

For example in Table 5.1 for the first analyzed period, Per1, the rapportsactivite

5.3. Extended Relational DB Model for Data Preprocessing 131

topics had 26019 hits, followed by personnel with 10808 hits. Moreover, seven out of

the first 13 most visited topics, belong also to the activity reports topics and all topics

related to activity reports accounted for 22.77% of the total hits (53618 out of 235473)

for this period.

Due to the great interest of the Web users in INRIA’s activity reports (RAs), we

studied in Chapter 6 their structure and content. For this we analyzed the collection

of XML documents representing the activity reports of INRIA’s research teams from

2003.

Using this extended model for the URL analysis, we obtained 6.383 syntactic topics

for Per1 and 6.542 for Per2 (see Table 5.3) compared to 348 for Per1 and 568 for Per2

using the previous model (cf. Figure 5.4).

For other analyses planned on same logs (by IUT∗ students and other AxIS mem-

bers), we also modified the REFERRER table and added another two tables, KEY-

WORDS and KEYW 2 REF (see Figure 5.5). More information on the origin of the

visit and its characteristics can be thus stored. Indeed, the referrer field contains, when

present, important information on the origin of the request (see Figure 5.1) which can

be very useful in a WUM analysis. This information can be interpreted based on the

URL type: internal page (page form the analyzed Web sites) or external page (external

link). In the first case, when an user is navigating through the analyzed Web sites, the

referrer represents the previous visited pages and can help us better reconstruct the

user’s cross-servers navigation.

But sometimes, the user arrives on the analyzed Web sites from a search engine or

an external link (usually in the beginning of the navigation). This is a very rich source

of information especially for e-commerce Web sites where one can identify the source of

the visitors that purchased from their Web site: search engines, payed directory listings,

e-mail campaigns, etc. Moreover, the keywords used by users in the external search

engines can be extracted and analyzed to eventually improve the site ranking or to see

which keywords produce the most benefit/sales, etc. Also additional information on

the country of origin, the user’s behaviour, etc. can be extracted and used in different

analyses.

In our analysis on INRIA’s Web site, one can use this type of data to determine for

example the research teams similarity based on the keywords used in external search

engines [TMT06] (see Section 5.3.2.2). The same data generalization can be applied

for internal search engines, i.e. search engines within the analyzed Web sites.

Extracting keywords from the referrer is not an easy task, since each search engine

use its own keywords representation in the URL. But fortunately, the most common

∗http://stid.unice.frhttp://stid.unice.frff

132 Chapter 5. Web Mining Application

way of representing the search keywords in the URL, is using the q parameter like the

example from Figure 5.1. In [TMT06], from a total of 649.328 detected parameters in

the referrer, 127.413 where search parameters (like q=keywords) from which 117.966

(92.59%) where represented by the q parameter. To detect the rest of the search

parameters, we manually defined some extraction rules. For example, if the search

engine is Yahoo and the parameter is p, the values of p represent search keywords,

while for other search engines p has another purpose.

The extended relational DB model that we proposed is now available in the new

version of the AxIS LogMiner∗ tool.

5.3.2.2 Other Applications of the Extended DB Model

The extended DB relational model that we proposed in Section 5.3.2, was used in

[TMT06, LMTT06] to generalize Web pages based on the keywords used by Web users

on search engines. This represents information about the users’ access to these pages,

using the referrer data. The method was called Generalized Web Usage Mining or

GWUM.

The keywords are then processed with the TreeTager tool developed by H. Schmidt

[Sch94] at Stuttgart University, which lemmatizes the words of a text and labels them

with grammatical annotations. The authors used the keywords frequently employed in

search engines to access INRIA’s Web pages. The keywords were then used to describe

these pages. But because of the large number of Web pages (62.721) and obtained

keywords (35.367), a direct construction of a dissimilarity matrix was impossible.

Therefore, the keywords are first clustered using a dissimilarity matrix based on the

Jaccard index [Sne57], as in our previous analyses (cf. Section 3.5). Then our HCT

toolbox (see Section 4.2) is used to apply our 2-3 AHC algorithm (V3 with integrated

refinement) on the keywords to extract keywords “categories”.

The obtained keywords clusters were next used to assign each page to the cluster

containing the keywords that describe it best. Finally, the URL (Web pages) were

replaced in the original log file with their categories (keyword clusters identifiers) and

sequential patterns were extracted from the log file composed of original and generalized

requests. Only pages accesed from an external search engine (having search keywords

in referrer) where generalized.

The results, showed that using the generalized Web pages, generalized patterns

with higher support and easier to interpret can be obtained compared with a classical

sequential pattern analysis.

∗http://www-sop.inria.fr/axis/axislogminer

5.4. Research Teams Clustering Based on Web Users Behaviours 133

5.4 Research Teams Clustering Based on Web Users Be-

haviours

After storing the data in the relational DB using the extended model, a two step

advanced data preprocessing was performed (see Section 5.4.1) for our analyses to select

a relevant dataset for matrix generations. The analyses and their results interpretations

are presented then in Section 5.4.2.

5.4.1 Advanced Data Preprocessing

First, we performed a general data selection step in which we select from the relational

DB the navigations (users visits) that where used in our analyses. The purpose of this

first data selection is to select the user navigations to analyze.

We used the following three criteria to obtain “pertinent” user navigations to ana-

lyze:

• navigation duration Nduration > 60 seconds,

• number of requests in the navigation Npages > 10,

• browsing speed (Npages/Nduration) BS(N) ≤ 1
4 .

This has reduced the number of analyzed navigations to 9625 for Per1 and to 9309

for Per2 (see Table 5.2 below).

XXXXXXXXXXX
Data

Periods
Per1 Per2

Raw log lines 6.040.290 4.473.228

Selected log lines 634.811 686.084

Sessions 115.825 96.984

Total Nav. 173.015 145.454

Selected Nav. 9.625 9.309

Table 5.2: Data preprocessing

Secondly, depending on the analysis, we performed secondary data selections. For

example, in the secondary data selection associated with our first analysis (section

5.4.2.1) we decided to keep only the visits on both INRIA’s servers and to cluster

the visited first level topics (from the visited URLs). Thus the number of analyzed

134 Chapter 5. Web Mining Application

navigations was reduced to 3905 for Per1 and to 3513 for Per2. Also, the Web pages

returned by the Web server with an error status code (≥ 400) were ignored in our

analysis.

Since INRIA research teams organization has changed (starting from 1st of April

2004), its Web site structure changed accordingly. The research teams were reorganized

from the four existing research themes, into five new research themes (see Appendix

E).

We decided to analyze the impact of the Web site structure on users navigations

before and after this change (during Per1 and Per2). This was done by performing

two different analyses of users visits: one on INRIA’s first level topics and another on

INRIA’s research teams. For the second analysis, since an user visit is actually a set of

visited URLs, we needed to determine which URLs belong to different research teams.

As we said before, a data generalization step in which the visited URLs were assigned

to different research teams for later clustering, was performed. From the total of number

of visited topics (see Table 5.3 below), after the data selection step we obtained 190

visited topics for Per1 (78 were research teams). For Per2 we found 210 topics from

which 86 were research teams (49 actual research teams and 37 old research teams from

Per1).

XXXXXXXXXXX
Data

Periods
Per1 Per2

Raw log lines 6.040.290 4.473.228

Selected log lines 634.811 686.084

Sessions 115.825 96.984

Total Nav. 173.015 145.454

Selected Nav. 9.625 9.309

Both Servers Nav. 3.905 3.513

Total Topics 6.383 6.542

Selected Topics 190 210

Teams 78 86

Table 5.3: Summary of data preprocessing

Each URL can have several topics associated with different semantic topics. In

our analyses we interest ourselves in the project semantical topic, which includes the

5.4. Research Teams Clustering Based on Web Users Behaviours 135

research teams only.

In a first step, a URL was assigned to a research team when one of its topics was

the research team itself. After this, complementary information on INRIA’s Web site

was used to assign URLs to research teams. For example, the URL:

http://www.inria.fr/recherche/equipes/axis.en.html does not contain any re-

search team topics, but is the AxIS research team presentation page from INRIA’s

main server.

The data preprocessing performed so far on the two time periods is summarized in

Table 5.3.

Dissimilarity Matrix Generation:

After the data generalization step and in order to cluster the obtained topics, we

needed to compute the dissimilarity matrix used as input for the AHC and our 2-3

AHC algorithm∗. For this, we used the Jaccard similarity index on the visited topics

as defined in [GCGR+04]. We represented each navigation by a binary vector of the

visited topics: the position i in the vector is 0 if topic Ti was not visited and 1 if topic

Ti was visited during the navigation Ni (see Table 5.4).

```````````````
Topics

Navigations
N1 N2 · · · N3905

T1 1 1 · · · 0

T2 0 1 · · · 1

...
...

...
...

...

T190 0 0 · · · 0

Table 5.4: Binary table for Per1 describing the navigations using the visited topics

Based on these vectors and aiming to define a similarity/dissimilarity between two

topics Ti and Tj, we define the four following quantities (see also Table 5.5):

- a as the number of counts when T k
i = T k

j = 1,

- b as the number of counts when T k
i = 0 and T k

j = 1,

- c as the number of counts when T k
i = 1 and T k

j = 0,

- d as the number of counts when T k
i = 0 and T k

j = 0.

∗The 2-3 AHC algorithm with refinement (V2) was used in this case, the blind merging avoidance
(V3) not beeing yet implemented



136 Chapter 5. Web Mining Application

H
H

H
H

H
H

Tj

Ti
0 1

0 a b

1 c d

Table 5.5: Quantities used for topics similarity computation

Then the similarity between two topics Ti and Tj is computed using the Jaccard

coefficient [Sne57]:

S(Ti, Tj) =
a

a + b + c
(5.1)

The obtained similarity represents the probability of visiting both topics when at

least one of them is visited. The dissimilarity matrix used as input for the classical

AHC and our 2-3 AHC, was computed using the dissimilarity: µ(Ti, Tj) = 1−S(Ti, Tj)

5.4.2 Analyses and Results

We present below the three analyses that we performed and their results. The first two

ones concern the chosen field, the third one concerns the comparison of 2-3 AHC and

classical AHC.

5.4.2.1 Impact of the Global Web Site Structure on Research Teams Clus-

tering (Per1)

For our first analysis, we have focused on the research teams distribution in the server-

crossed visited topics. The main motivation for this analysis was to study the impact

of the entire Web sites on user navigations before the research teams reorganization.

For this we compared the teams clustering obtained with our 2-3 AHC algorithm with

their existing organization into research themes. This analysis is similar to the one

done by other members of the AxIS team and presented in [GCGR+04], to which we

compare our results.

For this analysis and to compare ourselves to [GCGR+04], we have selected from

Per1 the server-crossed navigations, that are visiting both Web sites: main and Sophia’s

(3905 navigations). Then based on these navigations we constructed a dissimilarity

matrix on the first level visited topics, that we clustered using our 2-3 AHC algorithm.

Table 5.6 presents the repartition of the research team topics in the obtained clus-

tering (the other topics are not presented here). Also, we did not represent the one el-



5.4. Research Teams Clustering Based on Web Users Behaviours 137

ement clusters (the “outliers”) that were obtained: caiman 4B, saga 2B, meije SOP

1C, sysdys SOP 4B, chir 4A, cafe 2B, codes 2B, visa SOP 4A, tropics 1A,

omega 4B.

We added after the name of each research team, their theme and sub-theme, as well

as their site (empty for the main site and “SOP” for Sophia’s site).

As we can see the research teams distribution usually corresponds to their theme

membership: 16 out of the 19 non-trivial clusters (84%) contain research teams from

the same theme.

We also noticed that old research teams that have been replaced by new research

teams, are in the same clusters as the corresponding new ones. This is due to the fact

that their pages are strongly interconnected. For example: aid was replaced by axis

(cluster 7), rodeo by planete (cluster 13), etc.

The same analysis was performed in [GCGR+04]. The authors used the Per1 log

files form both INRIA’s Web servers, the preprocessing methodology from [TT03] and

the DB relational model from Figure 5.4.

The first level visited topics where analyzed and clustered. After constructing

the dissimilarity matrix on these topics with the same methodology described in Sec-

tion 5.4.1, the topics where clustered using an adapted version of the Batch SOM∗

method [Koh01].

Using this method, the authors obtained 12 clusters containing the visited topics.

Only 6 of these clusters (50%) contained research teams from the same research theme,

which can be explained by the exclusion from the analysis of the higher level topics

(second, third, etc.).

∗Self Organizing Maps



robotvis SOP 3B, robotvis 3B, comore SOP 4A, icare SOP 4A, orion SOP 3A, axis SOP 3A, prisme SOP 2B, prisme 2B

epidaure SOP 3B, odyssee SOP 3B, icare 4A, miaou SOP 4A, orion 3A

epidaure 3B, ariana SOP 3B, reves SOP 3B, miaou 4A,

ariana 3B chir SOP 4A, comore 4A,

caiman SOP 4B

koala SOP 2A, koala 2A, odyssee 3B, dream SOP 3A, orion SOP 3A, acacia SOP 3A, coprin SOP 2B, saga SOP 2B,

croap SOP 2A, croap 2A lemme 2A, opale SOP 4B, acacia 3A, axis SOP 3A, saga 2B

opale 4B, certilab 2A, orion 3A, aid SOP 3A,

pastis 3B aid 3A

sinus SOP 4B, sinus 4B, robotvis SOP 3B, robotvis 3B, mimosa SOP 1C, mimosa 1C, sloop SOP 1A, sloop 1A,

smash SOP 4B odyssee SOP 3B tick SOP 1C, tick 1C oasis SOP 2A, oasis 2A

rodeo SOP 1B, rodeo 1B, lemme SOP 2A, tropics SOP 1A, mistral SOP 1B, mistral 1B mefisto SOP 4B, mefisto 4B

planete SOP 1B, planete 1B mascotte SOP 1B, omega SOP 4B,

galaad SOP 2B, cafe SOP 2B,

certilab SOP 2A

mascotte SOP 1B, mascotte 1B safir SOP 2B, safir 2B meije SOP 1C, meije 1C

Table 5.6: INRIA’s Web site topics clustering using 2-3 AHC for Per1



5.4. Research Teams Clustering Based on Web Users Behaviours 139

5.4.2.2 Theme 3 Analysis on Both Time Periods

The purpose here was to analyze the influence of the INRIA’s main Web site structure

(and its implicit research themes organization) on the visited topics of the Web users

for research theme 3 during both time periods. Since theme Cog regrouped most of the

old theme 3 research teams, we also analyzed it for the second period.

For this analysis we have selected from the obtained navigations in section 5.4.1,

only those visiting at least one page on INRIA’s main server. From these navigations,

we choose to analyze the visited topics (research teams) only from the main server

pages and to cluster only the research teams topics for theme 3 (Per1 and Per2) and

for theme Cog (Per2).

Analysis 2a:

First we have selected only those navigations containing at least one visit of the

theme 3 pages on INRIA’s main server during Per1. From these navigations, we have

clustered the visited topics on the main server only, corresponding to research teams

from theme 3 (Figure 5.7).

Figure 5.7: 2-3 Hierarchy on theme 3 projects during Per1

In the resulting classification we can distinguish two main clusters (82 and 85) that

group almost all elements from the two sub-themes of theme 3 (see Appendix E). This

confirms that users are usually visiting teams from the same research subtheme for



140 Chapter 5. Web Mining Application

the theme 3 during the first time period. Same behaviours were obtain for the other

research themes.

Analysis 2b:

Next, we bassically performed the same analysis as the previous one (2a) but on

the second time period. Since one can find teams from the old theme 3 in each new

theme, we have selected for Per2 the navigations visiting at least one of the new themes

pages on the INRIA’s main server. From these navigations we have focused again on

the topics corresponding to research teams from the “old” theme 3, only on the main

server’s pages (cf. Figure 5.8). Table E.2 in Appendix E presents the teams from

Theme 3 and their new themes from the second period Per2.

Figure 5.8: 2-3 hierarchy on theme 3 projects during Per2

As we can see the old two subthemes 3A and 3B are no longer clearly separated, but

mixed together in the resulting structure for the second time period after the change.

However, we discover in this classification the new theme Bio, which groups together

in cluster 73 the four research teams that were separated in the previous organization

(Figure 5.7).

Some of the research teams have not been assigned to one of the new five themes



5.4. Research Teams Clustering Based on Web Users Behaviours 141

since they were either replaced or stopped, but their Web pages are still accessible on

the Internet (i.e. sharp, opera, verso).

Analysis 2c:

Finally, since theme Cog regrouped most of the old theme 3 research teams, we

also analyzed it for the second period. The purpose here was to compare the obtained

classification on Per2 with INRIA’s new organization of teams in themes and more

especially in subthemes just as in the first analysis. Thus, we have selected only the

navigations that had at least one visit of the new theme Cog pages during Per2. We

have then clustered only the topics on the main servers pages corresponding to research

teams from theme Cog (cf. Figure 5.9).

Figure 5.9: 2-3 hierarchy on theme Cog projects during Per2

We note that users have the tendency to visit all CogA research teams, while for

the others sub-themes there is a certain variability. A deeper analysis is needed to

study this variability (possible causes: events like conferences or seminaries presented

on INRIA’s Web site that affects users visits, the recent change of structure, etc.).



142 Chapter 5. Web Mining Application

To conclude, in our analyses we found that the same research teams are grouped

differently on the two time periods (for example our team, AxIS). In order to better

study the impact of the Web site structure on the Web users behaviour, we should

further use the extended DB model that we proposed, to take into account different

origins of the visit: search engines or national presentation pages.

5.4.2.3 Comparaison of the classical AHC and 2-3 AHC on Theme 3

In our final analysis we have compared the classical AHC method and our 2-3 AHC

algorithm, by clustering the research teams from theme 3 (during Per1). The data

selection was the same as in the previous analysis: navigations visiting at least one of

the theme 3 pages, topics only from the main server’s pages and representing research

teams from theme 3.

Figures 5.10 and 5.11 present a partial output (containing all 3B research teams) of

the classical AHC respectively of our 2-3 AHC algorithm. The 2-3 hierarchy obtained

contains more created clusters than the classical hierarchy (22 against 15), and thus

more information. For example, analyzing cluster 54 in Figure 5.11, we can say that

research teams ariana, epidaure and odyssee have a “stronger” probability of being

visited together, compared with the one given by the classical hierarchy (Figure 5.10).

Figure 5.10: Classical hierarchy on theme 3 projects in Per1



5.5. Discussion and Perspectives 143

Figure 5.11: 2-3 hierarchy on theme 3 projects in Per1

5.5 Discussion and Perspectives

This chapter presents the first application of a 2-3 AHC algorithm on Web usage data,

and shows the potentials of our algorithm compared with the classical AHC algorithm.

We interested ourselves here in clustering the visited topics of INRIA’s Web sites

(including the research teams). We used the log files from two of INRIA’s Web servers:

the national one and the one located in Sophia-Antipolis. After a data preprocessing

step in which all the non-relevant requests where eliminated (e.g. images, javascripts),

the users and their navigations were identified and stored in a relational DB [Tan05a].

For different AxIS purposes, we improved the existing relational DB model [Tan05a]

for a better generalization of the URLs and for the extraction and analysis of the search

keywords present in the referrer field. Our search engine keywords extraction methodol-

ogy and the proposed extended relational DB model were used in a Generalized WUM

process [TMT06, LMTT06] to improve the classical WUM process (the sequential pat-

tern mining in this case). Our extended relational DB model is currently available in

the AxIS LogMiner tool∗ developed in our team.

For our analyses, different data selection steps were executed to generate the dis-

similarity matrices between the visited topics based on users navigations and using the

Jaccard coefficient [Sne57].

Since INRIA’s research teams organization into research themes has changed re-

∗http://www-sop.inria.fr/axis/axislogminer



144 Chapter 5. Web Mining Application

cently (1st April 2004), its Web sites structures changed accordingly.

In this context, we have studied the impact of INRIA’s Web site structure on users

navigations, during two time periods (before and right after the site structure change).

For the first period, before the change, the visited teams were correctly separated

into themes and subthemes by our 2-3 AHC algorithm. For the second period, which

was right after the change, we noticed that there is a certain variability in the teams

visited by the Web users. A deeper analysis is needed to study this variability (possible

causes: events like conferences or seminaries presented on INRIA’s Web site that affects

users visits, the recent change of structure, etc.). Indeed, it is important to take into

account the origin of an user visit by analyzing the referrer and, when present, the

search engines keywords like in [TMT06].

When analyzing the 2-3 AHC results, we found that the 2-3 AHC produced in-

teresting results, richer than the classical AHC and better than the ones obtained in

[GCGR+04].

Future research directions concerning the 2-3 AHC application in the WUM field, may

include the following topics:

• More detailed analyses using the referer and the status code of the accessed Web

pages,

• Study of other dissimilarity measures. For example the generalized Jaccard index,

which takes into account the number of visited pages for a topic, not just its

presence (count vs. binary),

• Use of additional data inferred from the activities reports of INRIA’s research

teams (see Chapter 6), and comparison of the results with the ones obtained

here.



Chapter 6

XML Document Clustering

Application

In the previous chapter we analyzed INRIA’s∗, visited Web sites topics using the users

navigational behaviours. For this, we improved the URL generalization (see Section

5.3.2) by extending the relational DB model proposed in [Tan05a]. This allowed us to

extract all visited topics from two INRIA’s Web sites: national and Sophia Antipolis.

We thus found that the most visited topics by Web users are related to INRIA’s activity

reports which represent 22.77% of the total visited topics (see also Table 5.1).

In this chapter we cluster INRIA’s research teams by analyzing their 2003 activity

reports. These consist in a collection of semi-structured XML documents that are also

accessible on the Internet. A first objective of this chapter is to study the impact on

the clustering tasks of selecting different parts (sub-structures) of XML documents and

different distance measures and to compare them with INRIA’s research organization.

The second objective is to compare the 2-3 AHC algorithms gains compared with the

classical AHC (see also Section 3.5).

In Section 6.1 we will make a short introduction in the XML Document Mining

area, followed in Section 6.2.1 by a description of the format of INRIA’s XML activity

reports.

6.1 Introduction

Document mining deals with extraction of structured information from rough text

documents, as well as with the documents clustering and classification. The goal is to

∗The French National Institute for Research in Computer Science and Control.
http://www.inria.fr

145



146 Chapter 6. XML Document Clustering Application

improve relevant documents retrieval or to synthesise information contained in these

documents, information that otherwise would be hard to extract.

There are two fundamental stages in a document mining analysis: the transfor-

mation of documents from linear strings of words into suitable data structures (text

processing) and the algorithmic grouping of these representations.

Traditional approaches in document classification and clustering rely on various

statistical models. A common form of text processing in many information retrieval

systems is based on the analysis of word occurrences across the document collection.

For this, documents representation is mostly based on a vector space or bag of words

model. The number of used words/terms defines the dimension of a vector space in

which the analysis is carried out. The large size of this “vocabulary” (denoted also as

feature space) is usually an inconvenient for the document mining analysis. Reduction

of the dimension may lead to significant savings of computer resources and processing

time but if is a poor feature selection is performed, the quality of the information

retrieval process can be seriously reduced.

Automatic feature selection methods have been proposed to reduce the dimension

of the space. They usually try to identify representative words that can discriminate

documents between various classes [YP97].

Lately, the XML documents have become a standard in information storage and

transmision because of their rich and flexible format that can be easily interpreted and

used by a variety of applications.

To cluster XML documents, there are two major approaches that use only their

textual parts or their structure. In the first approach, the XML documents are merely

reduced to their textual content which is analyzed as a normal text document. This

does not take advantage of the structure of XML documents that also carries important

information. In the second approach, structural similarities between XML documents

are based on tree/graph-matching algorithms and are used to resemble or differentiate

the XML documents.

We decided to study the impact of selecting (different) parts of XML documents for

a specific clustering task. The idea is that different parts of XML documents correspond

to different dimensions of the documents collection that may play different roles in the

classification task. Our goal is to compare the obtained classifications with INRIA’s

research organization.

Two levels of feature selection are considered:

1. selection at the structure level

2. fine linguistic selection of words within the text of elements.



6.2. INRIA’s Activity Reports Analysis 147

In the next Section we will present the analyzed collection of XML documents and

our study motivations.

6.2 INRIA’s Activity Reports Analysis

Every year, each research team from INRIA publishes an activity report (RA) that is

made available both to the industry and to the scientific community.

Since 1994, the reports are published on the Web in HTML, PDF and PS formats.

An XML format is also available since 2003 and can be used to generate the activity

reports in the other formats. Next Section 6.2.1 presents the analyzed XML collection

of INRIA’s activity reports and the motivations of our analysis.

6.2.1 Data Description and Motivations

As we saw in the previous chapter, the most visited topics on INRIA’s web sites were

related to the activity reports. In this context, we chose to analyze the XML documents

collection of INRIA’s 2003 activity reports. The collection comprises 139 XML files,

with a total of 229000 lines and 14.8 MB of data.

The structure of the XML activity reports is given by a DTD. Its top level part is

given below:

<!ELEMENT raweb (header, moreinfo?, members, presentation,

foundation?, domain?, software?, results,

contracts?, international?, dissemination?,

biblio)>

<!ATTLIST raweb year CDATA #IMPLIED >

Among the required sections of the documents we can find the list of team members,

the objectives presentation, the new results, and the list of publications for the year

(bibliography). Optional sections include research foundation, application domains,

software, as well as international and national cooperations. Although the structure

of the activity reports is predefined, the overall style and content are very flexible

and unconstrained. Moreover, the teams can specify keywords for some sections to

summarize their content. In the rest of this text we will call them attached keywords

whilst the content of a section or the document will be called the full text.

These documents are called semi-structured since they present a structure, but this

one is not that rigid, regular or complete like the one present in the structures of the

traditional database storage systems.



148 Chapter 6. XML Document Clustering Application

As we mentioned in the previous chapter, INRIA’s research teams are organized

into research themes based on their scientific objectives. In 2003 the research teams

were organized into four research themes (see Appendix E).

In this context, our main motivation was to compare this grouping of research

teams into research themes with the ones obtained using the hierarchical classification

algorithms. To cluster the research teams, we used their self-description containd in

differents sections of the activitity report. The clustering is based on the fact that the

activity reports reflect the research domains the teams are interested in and that some

parts or the reports are more representative than others in identifying their research

topics. For example, conferences and journals where the teams participate (publica-

tions, organization, etc.) should be an indicative of their research interests.

6.2.2 Data Preprocessing

We reused here the XML documents data preprocessing done by Despeyroux et al.

[DLTV05] that we introduce briefly.

In the first data preprocessing step, all the different text elements (words) that

may be relevant for the classification task, were extracted by sections from the XML

documents. The extraction uses the tools described in [Des04]. After this step, each

type of section is represented by the previously extracted words.

Since different sections of the activity report would play different roles in classifying

the research teams, we ran five experiments using different sections of the activity

reports as in [DLTV05]. This process is called ”structured feature selection” by the

authors in [DLTV05]. The goal of these experiments is to evaluate which parts are

more relevant for the clustering task.

1. Experiment K-F: Keywords attached to the foundation part.

2. Experiment K-all: All the keywords attached to any of the sections.

3. Experiment T-P: Full text of the presentation part.

4. Experiment T-PF: Full text of the presentation and foundation parts.

5. Experiment T-C: Names of conferences, workshops, congress, etc. from the biblio

section.

For these experiments, the number of extracted words in this first preprocessing

step is displayed in the first column of Table 6.1.

The second processing step consists in the automatic selection of significant words

within the previously extracted ones. This is known as textual feature extraction or



6.2. INRIA’s Activity Reports Analysis 149

textual feature selection. Classical methods of textual feature extraction are based on

statistical approaches such as the word frequency (DF) or the information gain (IG).

These methods works well for large collections of texts and involve pre-processing of the

full collection. For our document collection, the frequency of words may vary depending

on the selected sections and the resulting collection can be very heterogeneous from

one experiment to the other. To avoid heterogeneous frequency, we chose a natural

language approach in which words are tagged and selected according to their syntactic

role in the sentences. We use TreeTagger, a tool for annotating text with part-of-speech

and lemma information, developed at the Institute for Computational Linguistics of the

University of Stuttgart [Sch94].

Depending on the experiment, we select different types of words. For K-F and K-

all experiments (keywords) we keep nouns, verbs, adjectives (excluding conjunctions,

unknown words, etc.), whilst for T-PF and T-P experiments (full text) we keep only

the nouns to limit the number of selected words. Column two in Table 6.1 displays the

selected words for each experiment.

The main problem here concerns the last experiment T-C, the conference names.

This is due to the heterogeneous notations used for the same conference: full name,

acronyms with different format. For example the following notations are equivalent:

Extraction et Gestion des Connaissances 2006, EGC 2006, EGC’06, EGC06, etc. Beside

the fact that these different notations are used by different teams, they are also present

among the publications of an individual team.

Therefore a normalized list of all the conference names was built manually (usually

the full name) by Despeyroux et al [DLTV05] and was used to replace the other nota-

tions. Moreover, since conference acronyms are significant but unknown to the tagger,

we decided not to use the tagger for this experiment, keeping all the words except the

stop words (e.g. proceedings, conference).

In the last step of the preprocessing, we eliminate all the words that are not used

at least by two teams. Column three of Table 6.1 contains the remaining words that

were grouped in vocabularies for each experiment, while the last column represents the

number of projects that contained at least one vocabulary word.



150 Chapter 6. XML Document Clustering Application

P
P

P
P

P
P

P
P

P
Experience

Extracted words Selected words Vocabulary Teams

First step Second step Third step

K-F 2234 1053 134 80

K-all 8671 6171 382 121

T-P 63711 16036 365 138

T-PF 320501 87416 805 139

T-C 10806 7915 659 131

Table 6.1: Size of the data for the five experiments

6.2.3 Dissimilarity Matrix Generation

For the clustering of the research teams, we use the previously obtained vocabularies

(for each experiment).

For each experiment, the vocabulary W has m words, W = {wj , j = 1,m}, whilst

the set of analyzed teams T has n documents, T = {ti, i = 1, n}. We represent

each document ti by the vector wi = (wi
1, ..., w

i
j , ..., w

i
m) where wi

j is the number of

occurences of word wj in the document ti (see Table 6.2 below).

XXXXXXXXXXXX
Teams

Words
w1 · · · wj · · · wm

t1 4 · · · 12 · · · 0
...

...
...

...
...

...

ti 2 · · · 3 · · · 0
...

...
...

...
...

...

tn 0 · · · 0 · · · 2

Table 6.2: Documents (teams) representation using words frequency

The distances between clusters are computed using the words frequency in the

given vocabulary (i.e. the above defined vectors). For this we used a classical distance

(formula 2.1) or the Jaccard dissimilarity (formula 5.1).

We used as classification algorithms the agglomerative hierarchical methods from

Section 3.4.3: classical AHC, the initial 2-3 AHC [Ber02d] and our 2-3 AHC algorithms

(see Chapter 3), all with the complete-link.



6.2. INRIA’s Activity Reports Analysis 151

6.2.4 Analyses and Results

In this Section we present results from the five experiments that we performed in

two analyses. In the first one, we used the classical Euclidean distance on the words

frequencies for all experiments and the Jaccard coefficient for the T-C experiment. For

the second analysis, we compared our 2-3 AHC algorithms with the classical AHC for

the five experiments.

Since the created structures are to big to be included here, we will present only

small parts of the created structures.

6.2.4.1 Experiments with the classical distance

We first compared classifications obtained in the five experiments. The motivation here

was to study the classifications obtained using different parts of the activity reports.

We obtained three main results when analyzing the five experiments.

Result 1 (preprocessing):

Using the same methods, the classifications were very different from one experiment

to another.

For example, our team, AxIS, was grouped in each classification in different clusters

with different teams. Figures 6.1 and 6.2 present these classifications for the K-all and

the T-PF experiments. As we can see, the classification using the presentation and

foundations sections (T-PF experiment) is more pertinent from the research themes

organization point of view. We need to mention that in the case of our team, this could

be also interpreted as a consequence of the pluri-disciplinary nature of our group.

Figure 6.1: AxIS team in K-all analysis
Figure 6.2: AxIS team in T-PF analysis

Result 2 (distance):

During the experiments we discovered some “atypical” teams.

For example, during the T-P analisys we found that the epidaure team (see Figure

6.3) used some specific words in its presentation section, words that were not used by



152 Chapter 6. XML Document Clustering Application

other teams. Moreover, from its remaining words, the word imaging was heavely used:

10 times in four phrases. Since the classical distance that we used takes into account

the word frequency, epidaure became an atypical team.

Figure 6.3: Atypical teams in T-P experiment

For all keywords experiment (K-all) we also found some atypical research teams

(see Figure 6.4). This was mainly due to the very small number of keywords use by

the teams to describe their sections. Indeed, Metalau team had only one keyword in

its entire activity report, while tanc had only two.

Figure 6.4: Atypical teams in K-all experiment

In the analysis of the bibliographic section, we found only one atypical team, estime,

which had a small number of very specific keywords: nuclear and supercomputing.

Figure 6.5: Atypical teams in T-C experiment

Result 3 (distance):

The influence of general words frequency can be avoided using Jaccard distance.



6.2. INRIA’s Activity Reports Analysis 153

When using the classical distance on the documents frequency table (Table 6.2), we

discovered that some “general” words influenced the computed distance due to their

frequent use by most of the teams. These general words include for example applica-

tions, computer, research, team, and should be eliminated in the data preprocessing

step.

Therefore, for our second analysis, we used the Jaccard coefficient [Sne57] on the

document/word matrix from Table 6.2 to compute the distance between teams. Since

the index uses only the presence of the words, not their frequency, we obtained dif-

ferent classifications (without atypical teams) compared to the first analysis and more

pertinent from the research themes organization point of view (see Appendix E).

Table 6.3 presents an obtained clustering for the T-C experiment using the Jaccard

coefficient, the 2-3 AHC avoiding blind merging and the complete link.



1
5
4

C
h
a
p
te

r
6
.
X

M
L

D
o
c
u
m

e
n
t

C
lu

ste
rin

g
A

p
p
lic

a
tio

n
IDOPT 4b, tropics 1a, apache 1a, Cristal 2a, REVES 3b, i3D 3a, cordial 3a, Atoll 3a, EXMO 3a, cordial 3a,
Ares 1b, PLANETE 1b, Triskell 1c, Contraintes 2a, in-situ 3a, siames 3b, Bang 4b, Macs 4b, orpailleur 3a, Orion 3a,
ALADIN 4b, POPS 1a, A3 1a, calligramme 2a, Fractales 4a, Sosso 4a, BIPOP 4a, SIGNES 3a Atoll 3a, DREAM 3a,
ScAlApplix 4b, mistral 1b, Arenaire 2b, SECSI 2a, artis 3b, EVASION 3b, WAM 3a, AXIS 3a,
aces 1b, reso 1b, LEMME 2a, coprin 2b, Epidaure 3b, Air2 3b, symbiose 3a, MAIA 3a,
Hipercom 1b, armor 1b, VASY 1c, R2D2 1a, movi 3b, IPARLA 3b, cortex 3a, SIGNES 3a,
mascotte 1b, calvi 4b, Moscova 1c, Arles 1a, ALCOVE 3b, LEAR 3b, ACACIA 3a

MADYNES 1b, Opale 4b AlGorille 1b, oasis 2a, ISA 3b, PRIMA 3a

MOSTRARE 3a, Espresso 1c,
Runtime 1a, mimosa 1c,
Sardes 1a, VerTeCs 1c,
ReMaP 1a, Regal 1a,
OBASCO 2a, COMPOSE 2a,
JACQUARD 1a, LogiCal 2a,
Grand-Large 1a, caps 1a,
PARIS 1a, Compsys 1a,
LeD 3a, cassis 2a,
PROTHEO 2a, ADEPT 1c,
DaRT 1c, Lande 2a,
MIRO 2a, modbio 2a

Smis 3a, MErLIn 3a, IDOPT 4b, tropics 1a, Algo 2b, adage 2b, Imara 4a, Micmac 4b, Ariana 3b, VISTA 3b,
gemo 3a, TEXMEX 3a, ALADIN 4b, ScAlApplix 4b, geometrica 2b, Spaces 2b, TRIO 1c, e-Motion 3b, Odyssee 3b, sigma2 4a,
ECOO 3a, parole 3a, Estime 4b, calvi 4b, galaad 2b, tanc 2b COMORE 4a, HELIX 3a, Mirages 3b, TEMICS 3b,
Gyroweb 1b Opale 4b sagep 4b, macsi 4a, ATLAS 3a, Imedia 3b,

icare 4a Metalau 4a, IS2 4a,
METISS 3a

CONGE 4a, Mathfi 4b, s4 1c, tick 1c, MErLIn 3a, Eiffel 3a

Mirages 3b, Miaou 4a, Trisell 1c, SECSI 2a,
Cafe 2b, Trec 1b, VASY 1c, Espresso 1c,
Metalau 4a, IS2 4a Ostre 1c, VerTeCs 1c,

cassis 2a, Lande 2a

Table 6.3: 2-3 AHC V3 clustering in T-C experiment using Jaccard and CL



6.2. INRIA’s Activity Reports Analysis 155

6.2.4.2 Comparaison of the classical AHC and 2-3 AHC

Result 4 (2-3 AHC):

The 2-3 AHC avoiding the blind merging (2-3 AHC V3) was the only 2-3 AHC

algorithm with a positive gain compared to the classical hierarchy.

For the five experiments, we compared the created 2-3 hierarchies with the classical

hierarchies (using complete link). The objective here is similar to the one in Section

3.5: to perform a qualitative comparaison between the classical AHC and 2-3 AHC.

The Stress gain (see Section 3.5) was used to compare the resulting structures. As

we can see in Table 6.4, the 2-3 AHC avoiding the blind merging (2-3 AHC V3) was the

only 2-3 AHC algorithm with a positive gain when compared to the classical hierarchy.

K-F K-all T-P T-PF T-C

2-3AHC ref V2 -55.14% -38.54% -69.02% -22.08% -64.04%

2-3AHC V2 -56.03% -37.96% -98.07% -19.69% -65.71%

2-3AHC (ref) V3 6.52% 11.15% 3.56% 6.64% 11.45%

2-3AHC ini -49.51% -37.1% -104.19% -29.1% -65.71%

Table 6.4: Complete-link Stress gains of 2-3 AHC using the simple distance

A small example of information gain between the 2-3 AHC V3 and the classical

AHC in the T-P experiment, is given in Figures 6.6 and 6.7. Here we can see that for

example the mascotte team is the intermediary element between the other two classes:

{mistral, reso,Ares, PLANETE} and {macsi, T rec, icare}.

Figure 6.6: AHC in T-P experiment Figure 6.7: 2-3 AHC in T-P experiment



156 Chapter 6. XML Document Clustering Application

6.3 Other Applications

In this section we briefly describe two other applications of the 2-3 AHC in Documents

Clustering. Our Hierarchical Clustering Toolbox presented in Section 4.2 was used in

these applications.

INEX Movie DB

In [Gar05], the authors analyzed a collection of XML documents from the Document

Mining Track∗ of the INEX† Initiative. They used only the structure information of

the XML documents, not their content, in order to find different ”structural families

of documents”. The purpose was to characterize each predefined cluster in terms of

frequent “structural” patterns and then to classify ordered labeled trees.

To extract the needed sequential patterns, they used the PSP algorithm [MCP98].

Then the sequential patterns, were grouped using an 2-3 AHC algorithm from the HCT

toolbox. The used dissimilarity was defined by the following formula:

D(S1, S2)) = 1−
2|LCS(S1, S2)|

|S1|+ |S2|

where S1, S2 are the mined sequences, LCS(S1, S2) is the Longest Common Subse-

quence and |S| is the length of the sequence S.

The authors then validated the obtained clustering against the predefined categories

given in the Document Mining Track

Sanskrit Documents

In [Tan05b], our motivation was to compare old Sanskrit documents having all a

common origin, in order to create a critical edition and/or a philogenetic tree. This

work was done in the context of an EuropAID project.

They used a LCS algorithm to detect inversions in the analyzed documents and a

distance measure based on a spreading function. Our HCT toolbox was then used to

cluster a small set of documents.

6.4 Discussion and Perspectives

In this chapter our 2-3 AHC algorithms were used in the field of the XML Document

Clustering. We clustered INRIA’s research teams by analyzing their 2003 activity

reports (semi-structured XML documents).

∗http://xmlmining.lip6.fr/Home
†INEX: INitiative for the Evaluation of XML Retrieval
http://inex.is.informatik.uni-duisburg.de/2005



6.4. Discussion and Perspectives 157

We first selected different parts (sub-structures) of XML documents for the cluster-

ing tasks. Then, a second level of selection was performed for a linguistic selection of

words within the text.

We found that different parts of the activity reports produce different classifica-

tions. Some classifications (i.e. keywords, presentation) are especially influenced by

the flexibility of the content: the use of keywords, repetition of words, etc. In this

context, a better data preprocessing should be performed to eliminate some “general”

words.

We used the Jaccard coefficient to compare our classification with the existing

research teams organization. This analysis was performed mainly to avoid the pre-

processing inconvenients and to compare the resulting classification with the existing

research organization. In this case better results were obtained compared with the first

analyses using the classical distance on the words frequencies.

In a second analysis, for the five performed experiments we compared the obtained

classical hierarchies with the 2-3 hierarchies obtained by our 2-3 AHC algorithms. As

expected, the 2-3 AHC avoiding the blind merging had the best results when using the

Stress gain presented in Section 3.5.

Our future work concerns:

• a detailed comparaison with other similar works, such as the one in [DLTV05];

• a better vocabulary (words) extraction, based on an ontology defined on INRIA’s

research topics;

• the use of other distance measures on the obtained keywords.





Conclusions and Perspectives

159





Chapter 7

Conclusions and Perspectives

We summarize in this Chapter our main contributions on the Agglomerative 2-3 Hi-

erarchical Classification study and implementation that we realized during this thesis.

Some future works and perspectives are presented in the end of this Chapter.

7.1 Main Contributions of this Thesis

During this work, we have proposed, analyzed and validated a new Agglomerative 2-3

Hierarchical Classification algorithm based on the one introduced in [Ber02d].

The three main contributions of this thesis can be summarized as follows:

1. We performed a theoretical study of the 2-3 hierarchies and of the initial 2-3 AHC

algorithm. This allowed us to discover new properties of the 2-3 hierarchies and

a special case of merging;

2. We proposed a new 2-3 AHC algorithm with a lower complexity than the ini-

tial one from [Ber02d]. We validated our 2-3 AHC algorithm’s complexity and

we compared its results with the classical AHC’s ones. We also developed the

Hierarchical Clustering Toolbox to ease the results interpretation and com-

parison;

3. We studied the applicability of the 2-3 AHC in two Data Mining fields: Web

Usage Mining and Document Clustering. The 2-3 AHC was also integrated in

the CBR*Toolbox∗ as an indexing method, to be used in the future in different

recommender systems like the Be-TRIP recomender system that we proposed for

the mobility contexts.

∗Case Based Reasoning Toolbox: http://www-sop.inria.fr/axis/cbrtools

161



162 Chapter 7. Conclusions and Perspectives

7.1.1 Theoretical Study of the 2-3 AHC

In the first part of our study described in Chapter 2, we focused on the theoretical

properties of the 2-3 hierarchies and of the initial 2-3 AHC algorithm introduced in

[Ber02d].

We have revealed four new properties of the 2-3 hierarchies that were later use

to formulate our new 2-3 AHC algorithm. These properties allowed us to propose

a new merging step for 2-3 AHC algorithm, denoted the intermediate merging step.

Also, using these properties we specified exactly the clusters to be eliminated from the

candidate set in the Update step and the dissimilarities to compute. This contributed

in the 2-3 AHC algorithm complexity reduction.

We introduced an “on-the-fly” refinement to replace the recursive refinement step

from the end of the 2-3 AHC algorithm. We called it the integrated refinement, and

since it influences the created structure we made this step optional to diversify the

outputs that can be obtained using our 2-3 AHC algorithm.

Since the proper intersection is the main characteristic of the 2-3 hierarchies, we

studied its influence on the aggregation index, algorithm execution, etc. We thus defined

the “best” choices for indexing formulas and aggregation indexed for the complete and

single link.

We revealed a particular case of merging that we called the blind merging. We

proposed a solution to avoid these kind of mergings, which creates different structures

too. Therefore, avoiding the blind mergins was also integrated as an option in our 2-3

AHC algorithm.

7.1.2 A New 2-3 AHC Algorithm

Based on the theoretical study of the 2-3 hierarchies and of the initial 2-3 AHC algo-

rithm, we proposed a new 2-3 AHC algorithm wih a reduced complexity of O(n2 log n)

compared to O(n3) in the initial one. The tests on different datasets, real and gener-

ated, confirmed our theoretical complexity analysis.

The principle of this new 2-3 AHC algorithm is similar to the one of the classical

AHC algorithm.

Having four 2-3 AHC algorithm variants given by the two optional steps of the algo-

rithm, we performed a “qualitative” analysis by comparing the results to the classical

AHC algorithm’s ones on real and large datasets.

First, we compared the number of created clusters for our 2-3 AHC algorithm and

the classical one. The results were satisfactory as we found that we can obtain with our



7.1. Main Contributions of this Thesis 163

algorithm up to 50% more clusters using the complete link and 45% using the single link.

We saw on smaller real datasets (Ruspini, urban itineraries) that this larger number

of created clusters, can provide us with a richer structure, i.e. more information for

results interpretation.

Next, we analyzed the “quality” of the created structures (hierarchies and 2-3 hierar-

chies) by comparing their induced dissimilarity matrices with the analyzed dissimilarity

matrix. The matrices were compared using the Stress [JW82] index that measures the

degree of correspondence between them. This gave us an estimation of how “different”

the induced matrices were compared to the initial data.

We found that the Stress gain was very variable, and for some of the created 2-

3 hierarchies there was even a loss of information compared to the classical hierarchy.

However, our 2-3 AHC algorithm avoiding the blind merging was the only one to always

produce Stress gains compared to the classical hierarchies (e.g “better structures”). The

maximum Stress gain reached in this case 84% for the 2-3 AHC algorithms∗.

This lead us to conclude that the 2-3 AHC algorithm avoiding the blind merging

is the most “stable” one, although its Stress gains were also variable, and should be

the one to chose if one wants to assure the construction of a richer 2-3 hierarchy (than

the classical hierarchy) on a give dataset. However, when possible, one could chose to

execute all possible 2-3 AHC algorithms (including the initial proposed in [Ber02d]),

compare their gains, and chose the one that represents the best the analyzed data.

We compared our 2-3 AHC with the Ascendent Pyramidal Classification (APC)

algorithm [EUR]. For this we used the SODAS software [Did02], but due to the different

implementations and a wrong results computation in SODAS, a direct comparison was

not possible.

We performed a first implementation (in Java) of an 2-3 AHC algorithm, based on

the object-oriented model that we also propose. This object-oriented model was then

used to design and implement Hierarchical Clustering Toolbox and to integrate

the 2-3 AHC into the CBR*Tools framework.

Hierarchical Clustering Toolbox

The object-oriented model of our algorithm was used in a visualization and analysis

toolbox called the Hierarchical Clustering Toolbox. The classical AHC and the

initial 2-3 AHC algorithms were integrated as well.

The toolbox was designed to ease the results interpretation and to compare the

different hierachical methods using different “quality” criteria or a direct visual analysis

of the structures.
∗The 84% gain is for more than 10 analyzed objects, (n ≥ 10) since for smaller n (i.e. n = 3) the

gain can be 100%



164 Chapter 7. Conclusions and Perspectives

The toolbox was also used by other members of the team in different analyses

[GMT05, Tan05b, TMT06].

CBR*Tools integration

We integrated our object-oriented model of the 2-3 AHC algorithm in the Case-

Based Reasoning object-oriented framework, CBR*Tools [Jac98], as an indexing method.

The purpose of this integration was to use our method for case indexing in a recom-

mender system like the Be-TRIP mobility recomender system that we proposed in

[CGT04, TCG04]. Due to its high complexity, only off-line analysis can be performed

so far.

7.1.3 2-3 AHC Applications

After testing the 2-3 AHC on different datasets, we used our 2-3 AHC algorithm in the

context of two Data Mining applications:

• a Web Usage Mining application on INRIA’s research teams using the visited

topics on its Web sites;

• a Document Mining application on INRIA’s research teams using the XML col-

lection of INRIA’s 2003 activity reports.

Web Usage Mining application

We analyzed the impact of INRIA’s Web site structure on users navigations. This

was done on two time periods: before and right after the reorganization of the research

teams into research themes.

The data from two of INRIA’s Web sites was used. The Web logs data was pre-

processed using the methodology proposed in [Tan05a] which we improved for URL

generalization and keywords extraction. We classify the research teams based on the

topics visited by the Web users in their search for information.

The 2-3 AHC produced interesting results, richer than the classical AHC and better

than the ones obtained in [GCGR+04]. Although the second analyzed period was

shortly after the change, we have found that usually users navigations are influenced

by the Web site structure, which corresponds to the research teams organization.

Document mining application

We clustered INRIA’s research teams based on their 2003 activity reports. This

XML collection of activity reports was preprocessed using the methodology proposed in



7.2. Future Works and Perspectives 165

[DLTV05]. Since the XML documents were semi-structured, we used beside a linguistic

selection of words, a selection at the structure level. Thus we found that different parts

of the activity reports produce different classifications and that some improvements can

be made in the preprocessing step.

As in the previous analyses form Section 3.5, the 2-3 AHC avoiding the blind merg-

ing obtained the best results, and moreover the only positive Stress gains compared to

the classical AHC.

7.2 Future Works and Perspectives

There are several perspectives opened by this research and they concern on one hand

the 2-3 AHC algorithm and results analysis and on the other hand the 2-3 AHC as a

part of the HCT and CBR*Tools.

The future works and perspectives concerning the 2-3 AHC algorithm and results

analysis can be summarized as follows:

• deeper study of other aggregation indexes such as the average linkage or the Ward

criterion for the particular case of properly intersecting clusters;

• a deeper structure refinement for large structures. This is especially useful for

visual results interpretation which is very difficult when the created clusters num-

ber increases (more than 100 for example). One can use for example a threshold

in the difference of clusters indexing level (f value) combined with a measure of

the clusters “homogeneity” as in [RD05];

• definition of other “quality” measures to compare the created structures (classical

hierarchies and 2-3 hierarchies) on same datasets. One could use in this case a

measure based on the clustering accuracy, when possible.

• an automatic partitioning level to cluster the initial elements using the level of

the created clusters.

• more tests are necessay between 2-3 AHC and APC using similar and updated

implemetations: on induced dissimilarities, using same programming language

(implementations), etc.

For the Hierarchical Clustering Toolbox (see Section 4.2), the future works and per-

spectives concern:



166 Chapter 7. Conclusions and Perspectives

• the integration of a general DB Explorer feature, used to explore the available

data in DB and in which custom queries for selecting data can be performed, as

in [Tan05a].

• the extension of the supported data formats (e.g. arff files used in the WEKA

software [WF05]).

Future work regarding the CBR*Tools [Jac98] integration of our 2-3 AHC algorithm

include the study of an automatic partitioning criteria and eventually an incremental

feature for the hierarchical algorithms to allow on-line analysis.



Bibliography

[ADLCR99] J.C. Aude, Y. Diaz-Lazcoz, J.J. Codani, and J.L. Risler. Applications

of the pyramidal clustering method to biological objects. Computer &

Chemistry, 23(3-4):303–15, 15 June 1999.

[AS95] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. 11th

Int. Conf. Data Engineering, ICDE, pages 3–14. IEEE Press, 6–10 1995.

[Aud99] J.-C. Aude. Analyse de génomes microbiens : apport de la classification

pyramidale. PhD thesis, Univ. Paris 9 - Dauphine, France, 1999.

[Ban92] H-J. Bandelt. Four-point characterization of the dissimilarity function

obtained from indexed closed weak hierarchies. Mathematisches Seminar,

Hamburg Universitat, 1992.

[Bar01] G. Bartolini. Web usage mining and discovery of association rules from

HTTP servers logs. Monash University, Melbourne, 2001.

[Bat88] A. Batbedat. Les isomorphismes hts et hte (après la bijection de benzécri-

johnson). Metron, 46:47–59, 1988.

[BBO04] J.-P. Barthélemy, F. Brucker, and C. Osswald. Combinatorial optimiza-

tion and hierarchical classifications. A Quarterly Journal of Operations

Research, 2(3):179 – 219, 2004.

[BD89] H-J. Bandelt and W.M. Dress. Weak hierarchies associated with a simi-

larity measure - an additive clustering technique. bulletin of Mathematical

Biology, 51(1):133–166, 1989.

[BD94] H-J. Bandelt and W.M. Dress. An order theoretic framework for overlap-

ping clustering. Discrete Math, 136:21–37, 1994.

[BD00] H.H. Bock and E. Diday. Analysis of Symbolic Data. Study in Classifica-

tion, Data Analysis and Knowledge Organisation. Springer Verlag, 2000.

[Ben73] J.-P. Benzécri. L’Analyse des Données. DUNOD, Paris, 1973.

167



168 Bibliography

[Ben00] A. Benedek. Artificial Neural Network based memory indexing models

for CBR case base. DEA Stage Report, 2000. Universite de Nice-Sophia

Antipolis.

[Ber] P. Bertrand. System of sets such that each set properly intersects at

most one other set - application to cluster analysis. Discrete Applied

Mathemathics. Accepted for publication, To appear.

[Ber86] P. Bertrand. Etude de la representation pyramidale. Universite Paris

IX-Dauphine, 1986. These de 3eme cycle.

[Ber02a] P. Berkhin. Survey of clustering data mining techniques. Technical report,

Accrue Software, San Jose, CA, 2002.

[Ber02b] P. Bertrand. A new presentation of the algorithm of 2-3 HAC, 11 may

2002. Internal AxIS document.

[Ber02c] P. Bertrand. Indicages, 11 may 2002. Internal AxIS document.

[Ber02d] P. Bertrand. Set systems for which each set properly intersects at most one

other set - Application to Cluster Analysis. Research Report Ceremade

0202, Universite Paris-9, France, 2002.

[BHT05] E. Barbu, P. Héroux, and E. Trupin. Classification non supervisée

hiérarchique incrémentale basée sur le calcul de dissimilarités. In Comptes

rendus des 12-èmes Rencontres de la Société Francophone de Classifica-

tion, 2005.

[BJ97] P. Bertrand and M.F. Janowitz. Pyramids and weak hierarchies in the

ordinal model for clustering. Technical Report 9709, Ceremade (URA

CNRS 749), 1997.

[BJ03] P. Bertrand and M.F. Janowitz. The k-weak hierarchical representations:

an extension of the indexed closed weak hierarchies. Discrete Applied

Mathemathics, 127(2):199–220, April 2003.

[BPZKC00] V. Batagelj, E. Pavletic, M. Zavers(nik, and S. Korenjak-Cerne. Clus-

tering large datasets and visualizations of large hierarchies and pyramids:

Symbolic data analysis approach. In Workshop on Symbolic Data Anal-

ysis: Theory, Software and Applications for Knowledge Mining, PKDD

2000, 2000.

[Bri91] P. Brito. Analyse de données symboliques: Pyramides d’héritage. PhD

thesis, Universite Paris 9 Dauphine, 1991.



Bibliography 169

[Bri02] P. Brito. Hierarchical and pyramidal clustering for symbolic data. Journal

of the Japanese Society of Computational Statistics, 2002.

[Bru01] F. Brucker. Modèles de classification en classes empiétantes. PhD thesis,

E.H.E.S.S., 2001.

[Bru05] F. Brucker. Inférieures-maximales faiblement hiérarchiques. In Comptes

rendus des 12-èmes Rencontres de la Société Francophone de Classifica-

tion, Montréal, Canada, 30 May - 1 June 2005.

[Bus05] R. Busseuil. Classification des itinéraires pour l’aide à la navigation as-

sistée par gps. Master’s thesis, ENS Cachan, 2005.

[CBT04] S. Chelcea, P. Bertrand, and B. Trousse. Un Nouvel Algorithme de Clas-

sification Ascendante 2-3 Hiérarchique. In Reconnaissance des Formes

et d’Intelligence Artificielle (RFIA 2004), Centre de Congrès Pierre

BAUDIS, Toulouse, 28-30 Janvier 2004.

[CDSL+05] S. Chelcea, A. Da Silva, Y. Lechevallier, D. Tanasa, and B. Trousse. Ben-

efits of intersite pre-processing and clustering methods in e-commerce

domain. In Petr Berka and Bruno Crémilleux, editors, Proceedings of

the ECML/PKDD2005 Discovery Challenge, A Collaborative Effort in

Knowledge Discovery from Databases, pages 15–21, Porto, Portugal, 3-7

October 2005.

[CGT04] S. Chelcea, G. Gallais, and B. Trousse. Recommandations personnalisées

pour la recherche d’information facilitant les déplacements. In Premières

Journées Francophones : Mobilité et Ubiquité 2004, pages 143 – 150, ESSI,

Nice, Sophia-Antipolis, France, 1-3 June 2004. Cepadues - ISBN : 2-85428-

653-7 / ACM Digital Library - ISBN : 1-58113-915-2.

[CMS97] R. Cooley, B. Mobasher, and J. Srivastava. Web mining: Information and

pattern discovery on the world wide web. In Proceedings of the 9th IEEE

International Conference on Tools with Artificial Intelligence (ICTAI’97),

November 1997.

[CT04] S. Chelcea and B. Trousse. Application of the 2-3 agglomerative hierarchi-

cal classification on web usage data. In Dana Petcu, Viorel Negru, Daniela

Zaharie, and Tudor Jebelean, editors, Proceedings of SYNASC 2004, 6th

International Workshop on Symbolic and Numeric Algorithms for Scien-

tific Computing, pages 107–118, Timisoara, Romania, 26-30 September

2004. Mirton Publisher, ISBN 973-661-441-7. ISBN 973-661-441-7.



170 Bibliography

[CT05] S. Chelcea and B. Trousse. Classification 2-3 hiérarchique de données du

web. In Suzanne Pinson and Nicole Vincent, editors, Actes des 5èmes

journées Extraction et Gestion des Connaissances (EGC’2005), volume 1

of Revue des Nouvelles Technologies de l’Information (RNTI-E-3), page

219. Cépaudès-Editions, ISBN 2.85428.677.4, January 2005. poster.

[DBM01] E. Diday, P. Bertrand, and E. Mfoumoune. Classification pyramidale :

Une nouvelle implémentation de la cap, 2001.

[Des04] T. Despeyroux. Practical semantic analysis of web sites and documents.

In The 13th World Wide Web Conference, WWW2004, New York City,

USA, 17-22 May 2004.

[DF94] J. Diatta and B. Fichet. From Asprejan hierarchies and Bandelt-Dress

weak-hierarchies to quasi-hierarchies. Springer, berlin Heidelberg New

York, 1994.

[Dia96] J. Diatta. Une extension de la classification hiérarchique : les quasi-

hiérarchies. PhD thesis, Université de Provence, France, 1996.

[Dia97] J. Diatta. Dissimilarités multivoies et généralisation d’hypergraphes sans

triangle. Mathématiques, Informatique et Science Humaines, 138:57–73,

1997.

[Did73] E. Diday. The dynamic cluster method in non-hierarchical clustering. J.

Comput. Inf. Sci., 2:61–88, 1973.

[Did84] E. Diday. Une représentation visuelle des classes empietantes: les pyra-

mides. Technical Report 291, INRIA, Rocquencourt 78150, France, 1984.

[Did86] E. Diday. Orders and overlapping clusters by pyramids. In J.D. De Loeuw

and Et al, editors, Proceed. Multidimensional Data Analysis, Leiden, The

Netherlands, 1986. DSWO Press.

[Did87] E. Diday. Introduction l’approche symbolique en analyse des données. In

Premiere Journees Symbolique-Numerique. Universite Paris IX Dauphine,

December 1987.

[Did02] E. Diday. An introduction to symbolic data analysis and the SODAS

software. Journal of Symbolic Data Analysis, International Electronic

Journal, 1(1), 2002.

[DLTV05] T. Despeyroux, Y. Lechevallier, B. Trousse, and A.-M. Vercoustre. Exper-

iments in clustering homogeneous xml documents to validate an existing



Bibliography 171

typology. In Proceedings of the 5th International Conference on Knowledge

Management (I-Know), number 1, Vienne, Autriche, July 2005. Journal

of Universal Computer Science.

[Dub87] R. Dubes. How many clusters are best? - an experiment. Pattern Recog-

nition, 20(6):645–663, 1 November 1987.

[EUR] Project EUROSTAT. Sodas software.

http://www.ceremade.dauphine.fr/ touati/sodas-pagegarde.htm.

[Fas99] D. Fasulo. An Analysis of Recent Work on Clustering Algorithms. Tech-

nical Report 01-03-02, Department of Computer Science & Engineering,

University of Washington, Seattle, WA, April 26 1999.

[Fic84] B. Fichet. Sur une extension de la notion de hiérarchie et son équivalence

avec quelques matrices de robinson. In Actes des Jourées de statistique

de la Grande Motte, pages 12–12, 1984.

[FPSSU96] U.M. Fayyad, G. Piatetsky-Shapiro, Padhraic Smyth, and R. Uthurusamy,

editors. Advances in Knowledge Discovery and Data Mining. AAAI/MIT

Press, 1996.

[FSS00] Yongjian Fu, K. Sandhu, and M. Shih. A generalization-based approach

to clustering of web usage sessions. In Proc. 1999 KDD Workshop Web

Mining, volume 1836 of LNCS, pages 21–38. Springer-Verlag, 2000.

[Gar05] Calin Garboni. Sequential pattern mining for structure-based xml docu-

ment classification. Master’s thesis, West University of Timisoara, Roma-

nia, 2005.

[GCA98] A Gil, C. Capdevila, and A. Arcas. On the efficiency and sensitivity

of a pyramidal classification algorithm. Economics working paper 270,

Barcelona, 1998.

[GCGR+04] A. El Golli, B. Conan-Guez, F. Rossi, D. Tanasa, B. Trousse, and

Y. Lechevallier. Les cartes topologiques auto-organisatrices pour l’analyse

des fichiers logs. In 11èmes Rencontre de la Société Francophone de Clas-

sification, Bordeaux, 8-10 septembre, 2004. to appear.

[GH85] R. L. Graham and P. Hell. On the history of the minimum spanning tree

problem. Annals of the History of Computing, 7:43–57, 1985.

[GHJ91] A. Guénoche, P. Hansen, and B. Jaumard. Efficient algorithms for divisive

hierarchical clustering with the diameter criterion. Journal of Classifica-

tion, 8:5–30, 1991.



172 Bibliography

[GMT05] C. Garboni, F. Masseglia, and B. Trousse. Sequential pattern mining for

structure-based xml document classification. In Collection of Fourth Inter-

national Workshop of the Initiative for the Evaluation of XML Retrieval

(INEX 2005), Schloss Dagstuhl, Germany, November 2005.

[Gor99] A.D. Gordon. Classification. Chapman and Hall, 2nd ed., 1999.

[GS94] Wolfgang Gaul and M. Schader. Pyramidal classification based on incom-

plete dissimilarity data. Journal of Classification, 11:171–193, 1994.

[Har83] G. Hart. The occurrence of multiple upgma dendrograms. Numerical

Taxonomy, pages 254–8, 1983.

[Jac98] M. Jaczynski. Modelé et plate-forme à objets pour l’indexation des cas par

situations comportementales : application à l’assistance a la navigation

sur le Web. PhD thesis, Universite de Nice - Sophia Antipolis, December

1998.

[JD98] A.K. Jain and R. Dubes. Algorithms for clustering data. Prentice-Hall,

Englewood Cliffs, 1998.

[JF88] R. E. Johnson and B. Foote. Designing Reusable Classes. Journal of

Object-Oriented Programming, 1:22–35, June 1988.

[JMF99] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM

Computing Surveys, 31(3):264–323, 1999.

[JS68] N Jardine and R Sibson. The construction of hierarchic and non-hierarchic

classifications. Computer Journal, 11:177–184, 1968.

[Jul02a] L. Jullien. 2-3 hierarchies, 2-3 ultrametriques, algorithme 2-3 cah. DEA

Stage Report, 19 septembre 2002. Universite Paris I.

[Jul02b] L. Jullien. Merging step dans l’algorithm 2-3 HAC, May 2002. Internal

AxIS document.

[JW82] A.R. Johnson and D.W. Wichern. Applied Multivariate Statistical Analy-

sis, chapter 12. Prentince Hall, 1982.

[Koh01] T. Kohonen. Self-Organizing Maps. Springer-Verlag, 2001.

[KR90] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Intro-

duction to Cluster Analysis. New York: John Wiley & Sons, Inc., March

1990.



Bibliography 173

[KTP97] N.I. Karacapilidis, B. Trousse, and D. Papadias. Using case-based reason-

ing for argumentation with multiple viewpoints. In D. Leake and E. Plaza,

editors, Case-Based Reasoning Research and Development, Proceedings of

the 2nd Int. Conference on Case-Based Reasoning (ICCBR-97), volume

1266 of Lecture Notes in AI, pages 541–552, Providence, Rhode Island,

July 1997. Springer-Verlag, Berlin.

[Ler97] I.-C. Lerman. Comparing classification tree structures : a special case of

comparing q-ary relations. Technical Report RR-3167, INRIA, 1997.

[LL95] F.-J. Lapointe and P. Legendre. Comparison tests for dendrograms : A

comparative evaluation. Journal of Classification, 12:265–282, 1995.

[LMTT06] Y. Lechevallier, F. Masseglia, D. Tanasa, and B. Trousse. Gwum : une

généralisation des pages web guidée par les usages. In INFORSID 2006,

Hammamet, Tunisie, 1-3 June 2006. to appear.

[LN99] B. Lavoie and H. F. Nielsen. Web characterization terminology & defini-

tions sheet. http://www.w3c.org/1999/05/WCA-terms/, May 1999.

[LW67] G.N. Lance and W.T. Williams. A general theory of classification sorting

strategies. Computer Journal, 9:373–380, 1967.

[LW03] C. Li and W. H. Wong. DNA-Chip Analyzer (dChip). Spinger, 2003.

[Mac67] J.B. MacQueen. Some methods for classification and analysis of multi-

variate observations. In Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, volume 1, pages 281–297, 1967.

[Mat] MathWorks. Bioinformatics toolbox.

http://www.mathworks.com/products/bioinfo/.

[MC85] G.W. Milligan and M.C. Cooper. An examination of procedures for deter-

mining the number of clusters in a data set. Psychometrika, 50:159–179,

1985.

[MCP98] F. Masseglia, F. Cathala, and P. Poncelet. The PSP Approach for Mining

Sequential Patterns. In Proceedings of the 2nd European Symposium on

Principles of Data Mining and Knowledge Discovery (PKDD’98), LNAI,

Vol. 1510, pages 176–184, Nantes, France, September 1998.

[Mfo98] E. Mfoumoune. Les aspects algorithmiques de la classification ascendante

pyramidale et incrementale. PhD thesis, Universite Paris 9 Dauphine,

1998.



174 Bibliography

[MJHS96] B. Mobasher, N. Jain, E.H. Han, and J. Srivastava. Web Mining: Pat-

tern Discovery from World Wide Web Transactions. Technical Report

TR-96050, University of Minnesota, Department of Computer Science,

Minneapolis, 1996.

[MPC99] F. Masseglia, P. Poncelet, and R. Cicchetti. An Efficient Algorithm for

Web Usage Mining. Networking and Information Systems Journal (NIS),

2(5-6):571–603, 1999.

[NK02] O. Nasraoui and R. Krishnapuram. An evolutionary approach to mining

robust multi-resolution web profiles and context sensitive url associations.

Int. Journal of Computational Intelligence and Applications, 2(3):339–348,

2002.

[Phi71] J.B. Phipps. Dendrogram topology. Systematic Zoology, 20:306–308, 1971.

[PHMAZ00] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining Access Patterns

efficiently from Web logs. In Proc. 2000 Pacific-Asia Conf. on Knowledge

Discovery and Data Mining (PAKDD’00), Kyoto, Japan, April 2000.

[Pod02] J. Podani. Simulation of random dendrograms and comparison tests: some

comments. Journal of Classification, 17:123–142, 2002.

[Rao71] M.R. Rao. Cluster analysis and mathematical programming. Journal of

the American Statistical Association, 66(335):622–626, 1971.

[RD04] M. Rahal and E. Diday. La classsification pyramidale symbolique : Selec-

tion de paliers et de variables. In Actes des 11emes Rencontres de la SFC,

pages 146–149, Bordeaux, 8-10 September 2004.

[RD05] M. Rahal and E. Diday. Elagage et aide à l’interprétation symbolique

et graphique d’une pyramide classifiante. In N. Vincent and S. Pinson,

editors, Actes des 5ème journées Extraction et Gestion des Connaissances

(EGC 2005), Revue des Nouvelles Technologies de l’Information (RNTI-

E-3), volume I, pages 135–146, Paris, France, January 2005. Cépaduès-

Editions.

[Rus69] E. H. Ruspini. A new approach to clustering. Information and Control,

15(1):22–32, 1969.

[SA79] R.N. Shepard and P. Arabie. Additive clustering: representation of sim-

ilarities as combination of discrete overlapping properties. Psyhological

Review, 86:87–123, 1979.



Bibliography 175

[SA96] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generaliza-

tions and Performance Improvements. In Proc. 5th Int. Conf. Extending

Database Technology, EDBT, volume 1057, pages 3–17. Springer-Verlag,

25–29 1996.

[Sam95] W. Sam. Extending and benchmarking Cascade-Correlation. PhD thesis,

Computer Science Department, University of Tasmania, 1995.

[SBK01] C. Shahabi and F. Banaei-Kashani. A Framework for Efficient and Anony-

mous Web Usage Mining Based on Client-Side Tracking. In Book Chapter,

2001. WebKDD’01.

[Sch94] H. Schmid. Probabilistic part-of-speech tagging using decision trees. In

Proc. of the International Conference on New Methods in Language Pro-

cessing, pages 44–49, Manchester, UK, 1994.

[Sch97] H.A. Schmid. Systematic framework design by generalization. Communi-

cations of the ACM, 40(10):48–51, 1997.

[SCH+01] M. Shyu, S. Chen, C. Haruechaiyasak, C. Shu, and S. Li. Disjoint

Web Document Clustering and Management in Electronic Commerce.

In Seventh International Conference on Distributed Multimedia Sys-

tems (DMS’2001), pages 494–497, Tamkang University, Taipei, Taiwan,

September 26-28 2001.

[Sib73] R Sibson. Slink: an optimally efficient algorithm for the single link cluster

method. Computer Journal, 16:30–34, 1973.

[Sne57] P. H. A. Sneath. Some thoughts on bacterial classification. Journal of

General Microbiology, 17:184–200, 1957.

[SR62] R. R. Sokal and F. J. Rohlf. The comparison of dendrograms by objective

methods. TAXON, XI(2):33–40, 1962.

[SS63] R.R. Sokal and P.H.A. Sneath. Principles of numerical taxonomy. Free-

man, San Francisco, 1963.

[SS73a] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy. W.H. Freeman,

San Francisco, 1973.

[SS73b] P.H.A. Sneath and R.R. Sokal. Numerical taxonomy. Freeman, San Fran-

cisco, 1973.

[SS02] J. Seo and B. Shneiderman. Interactively exploring hierarchical clustering

results. IEEE Computer, 35(7):80–86, July 2002.



176 Bibliography

[ST05] F. Sousa and J. Tendeiro. A validation methodology in hierarchical clus-

tering. In International Symposium on Applied Stochastic Models and

Data Analysis (ASMDA 2005), 17 May 2005.

[Tan05a] D. Tanasa. Web Usage Mining: Contributions to Intersites Logs Prepro-

cessing and Sequential Pattern Extraction with Low Support. PhD thesis,

University of Nice Sophia Antipolis, 3 June 2005.

[Tan05b] S. Tandabany. Elaborating a distance for clustering homogeneous sanskrit

documents. Master’s thesis, ENS Lyon, 2005.

[TCG04] B. Trousse, S. Chelcea, and G. Gallais. Faciliter les déplacements par

des recommandations personnalisées à la recherche d’information. Revue

Génie Logiciel, rubrique Systèmes d’informations et transports, 70:48 –

57, September 2004.

[Tea95] NCSA HTTPd Development Team. Ncsa httpd logoptions directive.

http://hoohoo.ncsa.uiuc.edu/docs/setup/httpd/LogOptions.html, 1995.

[TJK99] B. Trousse, M. Jaczynski, and R. Kanawati. Une approche fondée sur

le raisonnement à partir de cas pour l’aide à la navigation dans un hy-

permédia. In J-P. Balpe, S. Natkin, A. Lelu, and I. Saleh, editors,

Proceedings of Hypertexte & Hypermedia : Products, Tools and Methods

(H2PTM’99), pages 13–26. hermes, august 1999. Paris.

[TMT06] D. Tanasa, F. Masseglia, and B. Trousse. Gwum: Usage-driven web page

generalization. In 17th International Conference on Database and Expert

Systems Applications, DEXA 2006, Krakow, Poland, 4 September 2006.

Soumission.

[TT01] D. Tanasa and B. Trousse. Web Access pattern Discovery and Analysis

based on Page Classification and on Indexing Sessions with a Generalised

Index Tree. In SYNASC 2001, Timisora, Roumanie, pages 62–72, october

2001.

[TT03] D. Tanasa and B. Trousse. Le prétraitement des fichiers logs web dans

le “web usage mining” multi-sites. In Journées Francophones de la Toile

(JFT’2003), Tours, July 2003.

[TT04] D. Tanasa and B. Trousse. Advanced data preprocessing for intersites web

usage mining. IEEE Intelligent Systems, 19(2):59–65, March-April 2004.

[TTM04] D. Tanasa, B. Trousse, and F. Masseglia. Classer pour découvrir: une

nouvelle méthode d’analyse du comportement de tous les utilisateurs d’un



Bibliography 177

site web. In Georges Hébrail, Ludovic Lebart, and Jean-Marc Petit, edi-

tors, Revue des Nouvelles Technologies de l’Information (RNTI), numéro

spécial Extraction et Gestion des Connaissances (EGC’2004), volume 2,

pages 549–560. Cépaudès-Editions, January 2004.

[W3C95] W3C. Logging control in w3c httpd.

http://www.w3.org/Daemon/User/Config/Logging.html#common-

logfile-format, July 1995.

[War63] J. H. Ward. Hierarchical grouping to optimize an objective function. Jour-

nal of American Statistical Association, 58(301):236–244, 1963.

[WC71] W.T. Williams and H.T Clifford. On the comparaison of two classifications

of the same set of elements. Taxon, 20:519–522, 1971.

[WF05] I. H. Witten and E. Frank, editors. Data Mining: Practical Machine

Learning Tools and Techniques, Second Edition. Morgan Kaufmann Series

in Data Management Systems. Morgan Kaufmann, June 2005.

[Wil88] P. Willett. Recent trends in hierarchical document clustering: A critical

review. Information Processing & Management, 24:577–597, 1988.

[YKM99] Fu Y., Sandhu K., and Shih M. Fast Clustering of Web Users Based on

Browsing Patterns. In World Multiconference on Systemics, Cybernetics

and Informatics, volume 5, pages 560–567, Orlando, FL, August 1999.

[You04] G. Youness. Contributions à une méthodologie de comparaison de parti-

tions. PhD thesis, L’université Paris 6, 2004.

[YP97] Yiming Yang and Jan O. Pederson. A comparative study on feature

selection in text categorisation. In Proceedings of Fourteenth Interna-

tional Conference on Machine Learning, pages 412–420. Morgan Kauf-

mann, 1997.

[ZE98] O. Zamir and O. Etzioni. Web document clustering: A feasibility demon-

stration. In Research and Development in Information Retrieval, pages

46–54, 1998.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data

Clustering Method for Very Large Databases. In ACM SIGMOD Confer-

ence, pages 103–114, Montreal, Quebec, Canada, June 4-6 1996. Univer-

sity of Wisconsin-Madison.



178 Bibliography

[ZXH98] O.R. Zaiane, M. Xin, and J. Han. Discovering Web Access Patterns and

Trends by Applying OLAP and Data Mining Technology on Web Logs.

In Advances in Digital Libraries, pages 19–29, Santa Barbara, CA, 1998.



Appendix A

Example of the Blind Merging’s

Influence

We present here a small example of information loss on the resulting 2-3 hierarchy

compared with the classical hierarchy, when we perform a blind merging. The data set

is a set of five points with the distance matrix dini given in Figure A.1.

b c
a 1 1

c

d
1.1
1.32
1.3

b

e

d

1.4

3
1.2

1.3

Figure A.1: The data set

de c
a b 1.4 2

3de

c d
a b 2 1.3

d

e
1.4

1.3
1.2

c 3
d∪ea∪b

Figure A.2: AHC dissimilarities

a cb d
0

1

2

3

e

Figure A.3: The classical hierarchy

We will use here the complete-link with all its possible definitions (1), (2) and (3)

from Section 2.4.2.1, the extended indexing formula:

f(X ∪ Y ) = max{f(X), f(Y ), µ(X,Y )} (A.1)

from Section 2.5 and the algorithm executions, normal (i) and with integrated refine-

ment (ii) from Section 2.7. Although we have seen that the first dissimilarity definition

(1) is recommended (see Section 2.4.2.1 and 2.8), we will analyze all three cases.

For the classical hierarchical case presented in Figure A.3, we first merge {a} and

179



180 Chapter A. Example of the Blind Merging’s Influence

{b} as they are at minimum dissimilarity, µ = 1, cf. Figure A.2. Next, {d} and {e}

are merged at the dissimilarity µ = 1.2. The resulting cluster {de} will be merged with

{ab} at dissimilarity µ = 1.4 and the remaining singleton, {c}, will be finally merged

with the last formed cluster {abde} at µ = 3. The resulting hierarchy is presented in

Figure A.3 while the resulting ultrametric in Figure A.6.

a b
a b − −

d

c
2

1.3c

a∪ca∪b
b

−
2

a 1

d e
1.3

1.3
3

1.4

1.3
1.4

1.2

a c
a b 2

d
a c

d e
−

1.2
−

−
−

1.1

de d
a bc 3 1.3

d

e
3

−de
a b∪a c

−
−

d∪e

Figure A.4: 2-3 AHC dissimilarities

a cb d
0

1

2

3

e

Figure A.5: The created 2-3
hierarchy

For the 2-3 AHC algorithm, we first merge {a} and {b}, and then {a} and {c}

having thus two clusters that properly intersects themselves (Figure A.4 and Figure

A.5). At this moment we can use the intermediate refinement (i) and merge {ab}

and {ac}, which will be followed by the merging of {d} and {e}. If we don’t use the

intermediate refinement, we merge {d} and {e} and right after we will merge {ab} and

{ac}.

In both cases we will create the clusters: {abc} with f({abc}) = 2 and {de} with

f({de}) = 1.2. Next we will merge {abc} with {d} at µ({abc}, {d}) = 1.3. Here we

have two clusters that are at a dissimilarity inferior than the f level of one of them

(µ({abc}, {d}) = 1.3 < f({abc}) = 2), if we use definitions (1) or (2) for the complete-

link. That’s why we use the extended indexing formula (A.1) when we compute the level

of a new cluster with the complete-link defined as in (1) or (2). Using the complete-

link defined as in (3) we will have the same result here: the creation of {abcd} with

f({abcd}) = 2.

Thus, we will have two clusters that properly intersect themselves, {abcd} and {de},

which will create the final cluster, {abcde} with f({abcde}) = 3, cf. Figure A.5.

Starting from the resulting hierarchy (cf. Figure A.3) and 2-3 hierarchy (cf. Figure

A.5), we can compare the obtained ultrametric dAHC from Figure A.6 and the induced

dissimilarity matrix d23 AHC for the 2-3 AHC from Figure A.7, in order to evaluate the

quality of each method.

b c
a 1 3

c

d
1.4
1.43
3

b

e

d

1.4

3
1.2

1.4

Figure A.6: The resulting ultrametric

b c
a 1 1

c

d
2
22
2

b

e

d

3

3
1.2

3

Figure A.7: The resulting 2-3 ultrametric

As we can see, the two obtained distance matrices are different dAHC <> d23 AHC ,

but when compared with the initial distance matrix we have: dini < dAHC and dini <



181

d23 AHC as expected.

When we compare the obtained matrices with the initial data matrix, we will have

a smaller deviation for the classical AHC method, than the 2-3 AHC method, or in

other words a better quality for the AHC method compared with the 2-3 AHC method.

For example, using a simple difference between the resulting matrix and the initial

one, we obtain for the AHC method a deviation dAHC − dini = 5.2, compared with

d23 AHC − dini = 5.8 for the 2-3 AHC method.





Appendix B

Single Link and “Normal”

Execution of 2-3 AHC Algorithm

We present here a small data set (Figure B.1) and the created 2-3 hierarchy, using

the single-link, the double indexing formula and the normal execution of the initial 2-3

AHC algorithm (without integrated refinement (i)). The created 2-3 hierarchy presents

here a level inversion, which can be avoided using the integrated refinement (ii) or the

normal indexing formula with a level test.

The data set is a set of five points with the dissimilarity matrix presented in Figure

B.1. The 2-3 AHC algorithm will first merge the two singletons {a} and {b} found at

minimum dissimilarity 1, and then it will merge {b} and {c} found at minimum dissim-

ilarity 2. At this moment we will have two clusters that properly intersect themselves,

{ab} and {bc}, with µ({ab}, {bc}) = 5, Figure B.1.

b c
a 1 5

c

d
4
42
3

b

e

d

4

4
4

3

Figure B.1: The data set

a cb d
0

1

2

3

4

5

e

Figure B.2: Initial steps

a cb d
0

1

2

3

4

e

Figure B.3: Double indexing formula and the normal execution (i)

183



184Chapter B. Single Link and “Normal” Execution of 2-3 AHC Algorithm

None of the clusters {a}, {b}, {c}, {ab} and {bc} can be merged with {d} or {e},

and the only candidate pairs in this situation are ({ab}, {bc}) and ({d}, {e}), cf. Figure

B.2. This is the 2-3 AHC algorithm execution so far, both for case (i) and case (ii)

presented in Section 2.7.

If we use the normal algorithm execution, case (i), then the next merged clusters

will be the singletons {d} and {e}, since µ({d}, {e}) = 4 < µ({ab}, {bc}) = 5. After the

merging of {d} and {e}, the only pair of candidate clusters will be ({ab}, {bc}) which

will be merged at dissimilarity 5. The level of {abc} will be set to 3, using the double

link indexing formula, since µ({abc}, {d}) = µ({abc}, {e}) = µ({abc}, {de}) = 3, cf.

Figure B.3. Now, there are three pairs of candidate clusters: ({abc}, {d}), ({abc}, {e})

and ({abc}, {de}) with the same dissimilarity between candidates, µ = 3, Figure B.3.

In order to have a richer 2-3 hierarchy, the smallest cardinality pairs are preferred,

i.e. ({abc}, {d}) and ({abc}, {e}) and using also a lexicographical criterion the pair

to be merged will be ({abc}, {d}); if we merge ({abc}, {e}) we will have the same

result. After the merging of {d} and {abc} we will have the new cluster {abcd} with

f({abcd}) = 3 and the only candidate pair will be ({abcd}, {de}), which properly

intersects themselves. When we merge {abcd} and {de}, the resulting cluster, {abcde}

will have f({abcde}) = 3 using the double indexing formula, since µ({abcd}, {de}) = 3

and µ({abcde}, T ) = 0 (there is no other cluster T ). The successor {de} of {abcde} will

have f({de}) = 4, causing thus a level inversion in the created 2-3 hierarchy, cf. Figure

B.4.

a cb d
0

1

2

3

4

e

Figure B.4: Levels inversion for normal
execution (i) of the 2-3 AHC algorithm

a cbd
0

1

2

3

4

e

Figure B.5: 2-3 AHC algorithm with
integrated refinement (ii)

This situation can be avoided if we use the normal indexing formula along with the

level test in the normal execution or if we use directly the intermediate merging (ii).

In the case presented in Figure B.3, the normal indexing formula with the level test

will reduce the level of the cluster {de} to 3, when creating the final cluster {abcde}

during the normal algorithm execution (i).

Using the intermediate merging (ii), after the merging of {b} and {c} (Figure B.2)

we will merge the two clusters that properly intersect each other, {ab} and {bc}. The

resulting cluster, {abc}, will have f({abc}) = 3 (double indexing formula) and it will be

a candidate cluster along {d} and {e} (Figure B.5). Here {d} will not be merged any-



185

more with {e}, since µ({abc}, {d}) = 3 < µ({d}, {e}) = 4, instead {d} will be merged

with {abc} and afterwards {e} will also be merged with {abc}. We will have a proper

intersection between {abcd} and {abce}, with f({abcd}) = f({abce}) = f({abc}) = 3

and µ({abcd}, {abce}) = 4, cf. Figure B.5. The final cluster {abcde} will be thus cre-

ated with f({abcde}) = 4.

As we can see, the intermediate merging (ii) produce a richer 2-3 hierarchy and

also avoids levels inversions caused by the “blocking” of clusters that properly intersect

themselves.





Appendix C

Tests on Simulated Data

We present in this Appendix some results on the simulated datasets: the execution

times in Section C.1 and the Stress gains in Section C.2.

C.1 Execution Times and Complexity

We begin with the execution times of the AHC and 2-3 AHC methods on the rectangle

generated data (see Section 3.4.3 for more details). Since the execution times on the

sinusoidal generated data are identical, we present below only the rectangle execution

times.

The maximum execution times for the single link (SL) and the complete link (CL)

are presented in figures C.1 and C.3. The maximum execution time complexity of the

methods ( Execution time
Number of elements

) are presented in figure C.2 for the single link and in figure

C.4 for the complete link. The corresponding average execution times and complexities

are presented in figures D.5, D.6, D.7 and D.8.

As we can see the classical AHC algorithm and our 2-3 AHC algorithms perform in

O(n2 log n) whilst the execution time of the initial 2-3 AHC algorithm explodes and its

complexity curve does not remais constant. We confirm thus that the initial 2-3 AHC

algorithm performs in O(n3).

Note:

SL - Single Linkage

CL - Complete Linkage

187



1
8
8

C
h
a
p
te

r
C

.
T
e
sts

o
n

S
im

u
la

te
d

D
a
ta

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  500  1000  1500  2000  2500  3000

S
L 

M
ax

im
um

 E
xe

cu
tio

n 
T

im
es

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure C.1: SL maximum execution times

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  500  1000  1500  2000  2500  3000

S
L 

M
ax

im
um

 C
om

pl
ex

ity

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure C.2: SL maximum complexity

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  500  1000  1500  2000  2500  3000

C
L 

M
ax

im
um

 E
xe

cu
tio

n 
T

im
es

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure C.3: CL maximum execution times

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  500  1000  1500  2000  2500  3000

C
L 

M
ax

im
um

 C
om

pl
ex

ity

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure C.4: CL maximum complexity



C
.1

.
E
x
e
c
u
tio

n
T

im
e
s

a
n
d

C
o
m

p
le

x
ity

1
8
9

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  500  1000  1500  2000  2500  3000

S
L 

A
ve

ra
ge

 E
xe

cu
tio

n 
T

im
es

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure D.5: SL average execution times

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  500  1000  1500  2000  2500  3000

S
L 

A
ve

ra
ge

 C
om

pl
ex

ity

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure D.6: SL average complexity

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  500  1000  1500  2000  2500  3000

C
L 

A
ve

ra
ge

 E
xe

cu
tio

n 
T

im
es

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure D.7: CL average execution times

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  500  1000  1500  2000  2500  3000

C
L 

A
ve

ra
ge

 C
om

pl
ex

ity

Number of objects, n

AHC
2-3 AHC ref V2

2-3 AHC V2
2-3 AHC ref V3

2-3 AHC V3
2-3 AHC ini

Figure D.8: CL average complexity



1
9
0

C
h
a
p
te

r
C

.
T
e
sts

o
n

S
im

u
la

te
d

D
a
ta

C
.2

S
tre

ss
G

a
in

In
th

is
S
ection

w
e

p
resen

t
th

e
S
tress

[J
W

82
]
gain

ob
tain

ed
on

th
e

gen
erated

d
atasets.

W
e

b
egin

w
ith

th
e

rectan
gle

gen
erated

d
ata

an
d

con
tin

u
e

w
ith

an
ex

am
p
le

of
th

e
sin

u
-

soid
al

gen
erated

d
ata.

R
e
c
ta

n
g
le

S
im

u
la

te
d

D
a
ta

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500  3000

A
ve

ra
ge

 S
tr

es
s 

G
ai

n 
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

CL - medium gain

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500  3000A
vg

. S
tr

es
s 

G
ai

n 
&

 C
on

fid
en

ce
 In

te
rv

al
s 

(%
)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

CL - medium confidence intervals

 30

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000  2500  3000

M
ax

im
um

 S
tr

es
s 

G
ai

n 
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

CL - maximum gain

-120

-100

-80

-60

-40

-20

 0

 20

 0  500  1000  1500  2000  2500  3000

M
in

im
um

 S
tr

es
s 

G
ai

n 
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

CL - minimum gain



C
.2

.
S
tre

ss
G

a
in

1
9
1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  500  1000  1500  2000  2500  3000

A
ve

ra
ge

 S
tr

es
s 

G
ai

n 
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

SL - medium gain

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500  3000A
vg

. S
tr

es
s 

G
ai

n 
&

 C
on

fid
en

ce
 In

te
rv

al
s 

(%
)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

SL - medium confidence intervals

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000  2500  3000

M
ax

im
um

 S
tr

es
s 

G
ai

n 
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

SL - maximum gain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  500  1000  1500  2000  2500  3000

M
in

im
um

 S
tr

es
s 

G
ai

n 
(%

)

Number of objects, n

2-3 AHC ref V2
2-3 AHC V2

2-3 AHC ref V3
2-3 AHC V3
2-3 AHC ini

SL - minimum gain



1
9
2

C
h
a
p
te

r
C

.
T
e
sts

o
n

S
im

u
la

te
d

D
a
ta

S
in

u
so

id
a
l
D

a
ta

S
in

gle
lin

k;
N

o
ise

z
=

0

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - medium gain

-10

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500
G

ai
n 

(%
)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - medium confidence intervals

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - maximum gain

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - minimum gain



C
.2

.
S
tre

ss
G

a
in

1
9
3

S
in

gle
lin

k;
N

o
ise

z
=

0
.0

4

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - medium gain

-10

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - medium confidence intervals

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - maximum gain

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

SL - minimum gain



1
9
4

C
h
a
p
te

r
C

.
T
e
sts

o
n

S
im

u
la

te
d

D
a
ta

C
o
m

p
lete

lin
k;

N
o
ise

z
=

0

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - medium gain

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - medium confidence intervals

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  500  1000  1500  2000  2500
G

ai
n 

(%
)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - maximum gain

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - minimum gain



C
.2

.
S
tre

ss
G

a
in

1
9
5

C
o
m

p
lete

lin
k;

N
o
ise

z
=

0
.0

4-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - medium gain

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - medium confidence intervals

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - maximum gain

-10

 0

 10

 20

 30

 40

 50

 60

 0  500  1000  1500  2000  2500

G
ai

n 
(%

)

Number of objects, n

2-3 AHC with Ref v2
2-3 AHC no Ref v2

2-3 AHC with Ref v3
2-3 AHC no Ref v3

CL - minimum gain





A
p
p
e
n
d
ix

D

U
se

o
f
H

A
C

2
3
In

d
e
x

a
s

P
a
rt

o
f

th
e

C
B

R
*
T
o
o
ls

in
a
n

C
B

R

A
p
p
lica

tio
n

T
o

illu
strate

h
ow

ou
r

in
d
ex

can
b
e

in
itialized

,
resp

ectively
to

p
oin

t
ou

t
its

con
trib

u
tion

to
th

e
retrieval

p
h
ase’s

p
erform

an
ce,

w
e

p
resen

t
sh

ortly
in

th
e

con
tex

t
of

a
ap

p
lica-

tion
for

car
assu

ran
ce

risk
factor

d
eterm

in
ation

,
th

e
step

s
for

u
sin

g
d
iff

eren
t

in
d
ex

es

of
C

B
R

*T
o
ols.

Im
p
lem

en
tin

g
su

ch
an

ap
p
lication

b
ased

on
th

e
C

B
R

*T
o
ols

su
p
p
ose

th
e

in
stan

tiation
of

tw
elve

classes
from

th
e

fram
ew

ork
.

D
etails

on
th

e
in

stan
tiation

an
d

u
se

of
ou

r
H

A
C

23In
d
ex

are
given

in
th

is
section

.
T

h
e

classes
for

case
attrib

u
te

tran
sform

ation
an

d
sim

ilarity
calcu

lu
s

u
sed

b
y

th
e

n
eu

ral
in

d
ex

are
u
sed

also
b
y

ou
r

in
d
ex

.

T
h
is

ap
p
lication

’s
ob

jective
is

to
d
eterm

in
e

th
e

risk
factor

(taken
over

b
y

th
e

car

assu
ran

ce
com

p
an

y
)

of
a

given
car,

b
ased

on
p
rev

iou
sly

estab
lish

ed
p
airs

of
car

p
a-

ram
eters

list
an

d
assign

ed
risk

valu
es.

In
th

e
C

B
R

b
ased

ap
p
roach

,
cases

rep
resen

t

asso
ciation

b
etw

een
th

e
car

p
aram

eters
d
escrip

tion
an

d
th

e
d
eterm

in
ed

risk
factor.

F
or

th
is

ap
p
lication

w
e

u
se

ju
st

tw
o

step
s

from
th

e
C

B
R

cy
cle

(cf
F
igu

re
D

.1),
n
am

ely

retrieve,
reu

se
w

ith
ou

t
rev

ise
an

d
retain

p
h
ases.

T
h
e

retrieve
p
h
ase

retu
rn

s
th

e
set

of
cars

w
h
ich

are
th

e
m

ost
sim

ilar
w

ith
th

e
n
ew

ly
p
resen

ted
car

from
th

e
p
aram

eters

v
iew

p
oin

t.
F
ou

r
search

strategies
are

u
sed

d
u
rin

g
th

is
p
h
ase:

•
th

e
k

n
earest

n
eigh

b
or

algorith
m

;

•
a

tree
stru

ctu
re-b

ased
algorith

m
,

w
h
ich

u
se

a
p
re-fi

lterin
g

p
ro

cess,
realized

th
rou

gh
a

h
ierarch

y
of

p
rototy

p
es

(w
h
ereas

b
y

p
rototy

p
e

w
e

m
ean

a
grou

p
of

sim
ilar

cases/cars),
an

d
com

b
in

ed
w

ith
th

e
k
n
n

algorith
m

.
T

h
is

in
d
ex

is
sim

ilar
to

ou
r

in
d
ex

,

w
h
ereas

clu
sters

are
eq

u
ivalen

t
to

th
e

p
rototy

p
es

u
sed

h
ere;

•
a

n
eu

ral
in

d
ex

b
ased

algorith
m

,
w

h
ich

b
asically

in
th

is
con

tex
t

m
ean

s
a

p
re-

p
ro

cessin
g

p
h
ase

of
th

e
case

b
ase,

p
erform

in
g

a
”su

p
erv

ised
”

clu
sterin

g
of

th
e

cars

197



1
9
8

C
h
a
p
te

r
D

.
U

se
o
f
H

A
C

2
3
In

d
e
x

a
s

P
a
rt

o
f
th

e
C

B
R

*
T
o
o
ls

in
a
n

C
B

R
A

p
p
lic

a
tio

n

b
ased

on
th

eir
d
escrip

tors
an

d
th

e
assign

ed
risk

factor
to

th
em

;

•
th

e
clu

sters
stru

ctu
re-b

ased
algorith

m
com

b
in

ed
w

ith
th

e
k
n
n

algorith
m

.

F
igu

re
D

.1:
C

B
R

reason
in

g
cy

cle
in

th
e

C
A

R
sam

p
le

ap
p
lication

T
h
e

reu
se

p
h
ase

takes
in

to
accou

n
t

all
of

th
e

retu
rn

ed
cases

b
y

th
e

p
rev

iou
s

step
,

an
d

calcu
lates

a
m

ean
valu

e
of

th
eir

risk
factors

u
sin

g
p
rop

ortion
al

w
eigh

ts
w

ith
each

on
es

sim
ilarity

d
egree.

F
in

ally,
th

e
retain

step
ad

d
s

th
e

n
ew

case
to

th
e

b
ase,

if
th

e
tw

o

follow
in

g
con

d
ition

s
h
old

:
th

ere
is

n
o

alread
y

case
stored

in
th

e
m

em
ory

w
h
ich

is
very

close
to

th
e

n
ew

target
case,

an
d

case
b
ase

h
aven

’t
reach

ed
its

satu
ration

level.
W

e

are
in

terested
h
ere

on
ly

in
th

e
fi
rst

tw
o

p
h
ases

of
th

e
C

B
R

reason
in

g,
th

is
ap

p
lication

h
av

in
g

on
ly

a
p
ed

agogical/p
resen

tation
p
u
rp

ose
con

cern
in

g
th

ese
clu

sterin
g

in
d
ex

es

an
d

th
e

C
B

R
p
arad

igm
.

D
.1

R
e
a
so

n
in

g
S
y
ste

m
C

o
n
stru

c
tio

n

T
h
e

ap
p
lication

’s
d
esign

can
b
e

d
ecom

p
osed

in
th

ree
p
h
ases

b
ased

on
th

e
variab

ility

ax
es

of
th

e
h
ot-sp

ots
of

C
B

R
*T

o
ols,

case
rep

resen
tation

,
m

em
ory

organ
ization

an
d

reason
in

g
m

ain
ten

an
ce

ax
e.

W
e

w
ill

b
riefl

y
d
iscu

ss
th

e
case

rep
resen

tation
an

d
th

e

m
em

ory
organ

ization
asp

ects,
fu

rth
er

tech
n
ical

d
etails

in
[J

ac98
]
an

d
[B

en
00

].

D
.2

C
a
se

R
e
p
re

se
n
ta

tio
n

E
ach

item
(car)

from
th

e
d
atab

ase
is

ch
aracterized

b
y

tw
en

ty
-fi

ve
attrib

u
tes

of
th

ree

p
ossib

le
ty

p
es:

in
tegers,

alp
h
an

u
m

eric
an

d
fl
oats.

p
u
b
l
i
c
c
l
a
s
s
C
a
r
C
a
s
e
S
i
t
u
a
t
i
o
n
e
x
t
e
n
d
s
J
a
v
a
C
l
a
s
s
I
n
d
i
c
e
{

p
u
b
l
i
c
i
n
t
n
o
r
m
a
l
i
z
e
d
L
o
s
s
e
s
;

p
u
b
l
i
c
S
t
r
i
n
g
m
a
k
e
;

p
u
b
l
i
c
f
l
o
a
t
h
e
i
g
h
t
;

p
u
b
l
i
c
i
n
t
n
u
m
O
f
C
y
l
i
n
d
e
r
s
;

.
.
.



D
.3

.
M

e
m

o
ry

o
rg

a
n
iz

a
tio

n
1
9
9

}

F
rom

th
e

C
B

R
p
arad

igm
’s

stan
d
p
oin

t,
car

p
aram

eters
are

of
tw

o
ty

p
es:

p
oten

tial

item
in

d
ices

(all
th

e
attrib

u
tes

b
u
t

th
e

risk
),

an
d

th
e

solu
tion

assign
ed

to
th

e
item

(th
e

risk
factor).

A
ccord

in
g

to
th

e
fram

ew
ork

d
efi

n
ition

,
b
ased

on
th

e
case

rep
resen

tation

h
ot-sp

ots
(C

b
rC

ase
an

d
C

om
p
ou

n
d
In

d
ice),

th
ere

are
u
sed

tw
o

in
stan

tiation
s

C
arC

ase

an
d

C
arC

aseS
itu

ation
[B

en
00

].

In
th

e
in

itialization
p
h
ase

of
th

is
class

w
e

can
d
eclare

th
e

in
d
ices,

on
e

in
d
ices

for

each
attrib

u
te,

d
efi

n
in

g
th

eir
ty

p
e(in

teger,
fl
oat,

sy
m

b
ol)

an
d

d
om

ain
of

valu
es.

s
t
a
t
i
c
p
r
i
v
a
t
e

i
n
t
_
c
y
l
i
n
d
e
r
s
[
]

=
{
2
,
3
,
4
,
5
,
6
,
8
,
1
2
}
;

s
t
a
t
i
c
{

A
r
r
a
y
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
d
e
s
c
=
n
e
w
A
r
r
a
y
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(

"
a
i
d
.
c
b
r
.
s
a
m
p
l
e
s
.
c
a
r
s
.
C
a
r
C
a
s
e
S
i
t
u
a
t
i
o
n
"
)
;

d
e
s
c
.
a
d
d
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
n
e
w
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
"
n
o
r
m
a
l
i
z
e
d
L
o
s
s
e
s
"
,

n
e
w
R
a
n
g
e
I
n
t
T
y
p
e
(
6
5
,
2
5
6
)
)
)
;

d
e
s
c
.
a
d
d
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
n
e
w
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
"
m
a
k
e
"
,

S
t
r
i
n
g
T
y
p
e
.
S
T
R
I
N
G
)
)
;

d
e
s
c
.
a
d
d
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
n
e
w
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
"
h
e
i
g
h
t
"
,

n
e
w
R
a
n
g
e
F
l
o
a
t
T
y
p
e
(
6
0
,
7
5
)
)
)
;

d
e
s
c
.
a
d
d
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
n
e
w
I
n
d
i
c
e
D
e
s
c
r
i
p
t
o
r
(
"
n
u
m
O
f
C
y
l
i
n
d
e
r
s
"
,

n
e
w
L
i
s
t
I
n
t
T
y
p
e
(
_
c
y
l
i
n
d
e
r
s
)
)
)
;

.
.
.

}

D
.3

M
e
m

o
ry

o
rg

a
n
iz

a
tio

n

M
em

ory
organ

ization
relies

on
th

ree
m

a
jor

h
ot-sp

ots
:

•
case

b
ase

(C
aseB

ase)
-

sp
ecialized

b
y

th
e

C
arS

im
p
leF

ileC
aseB

ase
class

in
th

is

sam
p
le.•

sim
ilarity

m
easu

re
(S

im
ilarity

)
sp

ecialized
b
y

th
e

C
arS

im
ilarity

class,
ord

er

(C
m

p
V
alu

eO
rd

er,
C

m
p
V
alu

e)
relation

-d
efi

n
ition

over
th

e
cases

in
th

e
case

b
ase,

an
d

d
istan

ce
m

easu
re

(D
istan

ceM
easu

re)
b
etw

een
th

e
case

sp
ecialized

b
y

P
on

d
E

u
clid

D
is-

tan
ce

in
th

is
sam

p
le.

•
in

d
ex

b
ase

(In
d
ex

B
ase)

-
w

h
ich

acts
like

a
fram

e
a

fram
e

for
th

e
d
iff

eren
t
in

d
ex

es

d
efi

n
ed

over
th

e
cu

rren
t

case
b
ase.

W
h
ereb

y
in

d
ex

d
efi

n
ition

over
a

case-b
ase,

w
e

m
ean

th
e

w
ay

of
h
ow

a
certain

in
d
ex

algorith
m

m
akes

u
se

of
an

d
p
ro

cess
th

e
in

d
ices

ex
p
osed

b
y

cases
from

th
at

case-b
ase

th
rou

gh
th

e
C

om
p
ou

n
d
In

d
ice

h
ot-sp

ot.



2
0
0

C
h
a
p
te

r
D

.
U

se
o
f
H

A
C

2
3
In

d
e
x

a
s

P
a
rt

o
f
th

e
C

B
R

*
T
o
o
ls

in
a
n

C
B

R
A

p
p
lic

a
tio

n

D
.4

O
b
je

c
t

o
rie

n
te

d
im

p
le

m
e
n
ta

tio
n

In
th

e
follow

in
g

w
e

w
ill

fo
cu

s
on

th
e

sim
ilarity

-ord
er-d

istan
ce

an
d

th
e

in
d
ex

b
ase

ax
es

of
th

e
sam

p
le

ap
p
lication

.
R

ead
ers

w
h
o

are
in

terested
in

a
m

ore
ex

h
au

stive
an

aly
ze

of

th
e

case
b
ase

h
ot-sp

ot’s
sp

ecialization
sh

ou
ld

p
oin

t
to

[5].

T
h
e

C
arC

aseS
itu

ation
class

con
tain

s
all

th
e

tw
en

ty
-fi

ve
cars

attrib
u
tes

as
p
u
b
lic

m
em

b
ers,

an
d

d
u
rin

g
a

search
p
h
ase

an
in

stan
ce

of
th

is
class

w
ill

b
e

p
assed

to
th

e

In
d
ex

h
ot-sp

ot’s
search

m
eth

o
d
.

A
s

a
con

seq
u
en

ce,
in

d
ex

in
g

classes
h
ave

to
tran

sform

in
a

w
ay

or
in

aase
an

in
stan

ce
of

th
is

class
w

ill
b
e

p
assed

to
th

e
In

d
ex

h
ot-sp

ot’s
search

m
eth

o
d
.

A
s

a
con

seq
u
en

ce,
in

d
ex

in
g

classes
h
ave

to
tran

sform
in

a
w

ay
or

in
an

n
oth

er

th
e

list
of

attrib
u
tes

in
valid

in
d
ex

valu
es-relation

s,
u
p

to
th

eir
n
eed

.

O
u
r

in
d
ex

u
ses

th
ree

h
ot-sp

ots,
A

ttrT
ran

sform
,
C

lu
sterD

istan
ce

an
d

D
istan

ceM
ea-

su
re.

T
h
e

form
er

on
e

en
su

res
th

e
m

ap
p
in

g
of

car
attrib

u
tes

from
th

e
C

arC
aseS

itu
ation

in
valid

scalar
valu

es,
w

h
ereu

p
on

it
can

b
e

ap
p
lied

d
iff

eren
t

n
orm

s
or

d
istan

ce
m

etrics

su
b
seq

u
en

tly.
D

istan
ce

m
etrics

are
sp

ecialization
s

of
th

e
D

istan
ceM

easu
re

h
ot-sp

ot

an
d

th
e

clu
ster

d
istan

ces
(sin

gle-lin
ka

ge,
co

m
p
lete-lin

ka
ge

etc.)
are

sp
ecialization

s
of

th
e

C
lu

sterD
istan

ce
h
ot-sp

ot
an

d
m

ake
u
se

of
th

e
D

istan
ceM

easu
re

h
ot-sp

ot
for

th
eir

sin
gleton

s.

p
u
b
l
i
c
c
l
a
s
s
B
a
s
i
c
A
t
t
r
T
r
a
n
s
f
o
r
m
i
m
p
l
e
m
e
n
t
s
A
t
t
r
s
T
r
a
n
s
f
o
r
m
{

p
u
b
l
i
c
d
o
u
b
l
e
[
]
c
o
m
p
I
n
d
i
c
e
T
r
a
n
s
f
o
r
m
(
C
o
m
p
o
u
n
d
I
n
d
i
c
e
a
t
t
r
s
)
{

i
n
t
n
r
O
f
A
t
t
r
s
=
a
t
t
r
s
.
s
i
z
e
(
)
;

d
o
u
b
l
e
n
u
m
e
r
i
c
A
t
t
r
[
]
=
n
e
w
d
o
u
b
l
e
[
n
r
O
f
A
t
t
r
s
]
;

I
n
d
i
c
e
T
y
p
e
i
n
d
T
y
p
e
;

.
.
.

O
b
j
e
c
t
t
r
a
n
s
f
L
i
s
t
=
_
a
t
t
r
T
r
a
n
s
f
I
n
f
o
[
i
n
d
]
.
_
t
r
a
n
s
f
L
i
s
t
,

a
t
t
r
=
n
u
l
l
,

a
t
t
r
V
a
l
;

.
.
.

i
f
(
a
t
t
r
V
a
l
i
n
s
t
a
n
c
e
o
f
F
l
o
a
t
)
{

n
u
m
e
r
i
c
A
t
t
r
[
i
n
d
]
=
(
(
F
l
o
a
t
)
a
t
t
r
V
a
l
)
.
f
l
o
a
t
V
a
l
u
e
(
)
;

}e
l
s
e
i
f
(
a
t
t
r
V
a
l
i
n
s
t
a
n
c
e
o
f
I
n
t
e
g
e
r
)
{

n
u
m
e
r
i
c
A
t
t
r
[
i
n
d
]
=

(
(
I
n
t
e
g
e
r
)
a
t
t
r
V
a
l
)
.
i
n
t
V
a
l
u
e
(
)
;

}

e
l
s
e
{

n
u
m
e
r
i
c
A
t
t
r
[
i
n
d
]
-
=
_
a
t
t
r
T
r
a
n
s
f
I
n
f
o
[
i
n
d
]
.
_
m
i
n
V
a
l
;

n
u
m
e
r
i
c
A
t
t
r
[
i
n
d
]
/
=
_
a
t
t
r
T
r
a
n
s
f
I
n
f
o
[
i
n
d
]
.
_
m
a
x
V
a
l
-

_
a
t
t
r
T
r
a
n
s
f
I
n
f
o
[
i
n
d
]
.
_
m
i
n
V
a
l
;

}

r
e
t
u
r
n
n
u
m
e
r
i
c
A
t
t
r
;



D
.4

.
O

b
je

c
t

o
rie

n
te

d
im

p
le

m
e
n
ta

tio
n

2
0
1

}

p
u
b
l
i
c
c
l
a
s
s
S
i
n
g
l
e
L
i
n
k
a
g
e
D
i
s
t
a
n
c
e
i
m
p
l
e
m
e
n
t
s
C
l
u
s
t
e
r
D
i
s
t
a
n
c
e
{

p
r
i
v
a
t
e
D
i
s
t
a
n
c
e
M
e
a
s
u
r
e
_
s
i
n
g
l
e
t
o
n
s
D
i
s
t
a
n
c
e
;

.
.
.

p
u
b
l
i
c
F
l
o
a
t
g
e
t
D
i
s
t
a
n
c
e
(
C
l
u
s
t
e
r
P
r
o
t
o
t
y
p
e
n
e
w
C
l
u
s
t
e
r
,

C
l
u
s
t
e
r
P
r
o
t
o
t
y
p
e
o
t
h
e
r
C
l
u
s
t
e
r
,
S
o
r
t
e
d
M
a
p
c
l
u
s
t
e
r
T
r
e
e
)
{

.
.
.i
f
(
n
e
w
C
l
u
s
t
e
r
.
_
s
u
c
c
.
i
s
E
m
p
t
y
(
)
&
&
o
t
h
e
r
C
l
u
s
t
e
r
.
_
s
u
c
c
.
i
s
E
m
p
t
y
(
)
)

r
e
t
u
r
n
n
e
w
F
l
o
a
t
(
g
e
t
D
i
s
t
a
n
c
e
(
n
e
w
C
l
u
s
t
e
r
.
_
r
e
f
V
e
c
t
o
r
,

o
t
h
e
r
C
l
u
s
t
e
r
.
_
r
e
f
V
e
c
t
o
r
)
)
;

e
l
s
e
{

.
.
.

r
e
t
u
r
n
(
F
l
o
a
t
)
c
l
u
s
t
e
r
T
r
e
e
.
g
e
t
(
t
o
K
e
y
P
a
i
r
(
o
t
h
e
r
C
l
u
s
t
e
r
.
_
i
d
,

o
t
h
e
r
C
l
u
s
t
e
r
.
_
i
d
)
)
;

}

}T
h
e

C
arIn

d
ex

B
ase

(In
d
ex

B
ase

h
ot-sp

ot)
serves

as
a

fram
e

for
th

e
d
efi

n
ed

in
d
ex

es

an
d

in
d
ex

strategies,
w

h
ereb

y
strategy

w
e

m
ean

a
seq

u
en

tial
ap

p
ly

of
tw

o
or

m
ore

in
d
ex

es.
E

ach
in

d
ex

an
d

in
d
ex

in
g

strategy,
on

ce
d
efi

n
ed

,
h
ave

to
b
e

registered
to

it
in

ord
er

to
b
ecam

e
accessib

le
for

th
e

R
eason

er
h
ot-sp

ot.
H

av
in

g
d
efi

n
ed

an
d

registered

all
th

e
in

d
ex

es
an

d
strategies

on
e

m
igh

t
w

an
t

to
u
se

d
u
rin

g
th

e
retrieve

p
h
ase,

on
e

can

d
y
n
am

ically
activate

th
e

selected
strategy

th
rou

gh
th

e
In

d
ex

P
aram

s
h
ot-sp

ot
of

th
e

R
eason

er’s
R

etrieveS
tep

h
ot-sp

ot
[J

ac98
].

T
h
e

resu
lts

ob
tain

ed
w

ith
ou

r
H

A
C

23In
d
ex

w
ere

sim
ilar

to
th

e
on

es
ob

tain
b
y

th
e

n
eu

ral
in

d
ex

,
b
u
t

im
p
lied

th
e

ap
riori

p
artition

in
g

tresh
old

sp
ecifi

cation
.

C
u
rren

tly

au
tom

atic
criteria

for
ch

o
osin

g
th

e
in

d
ex

in
g

level
p
artition

in
g

are
u
n
d
er

stu
d
y

for
fu

tu
re

im
p
lem

en
tation

s
alon

g
w

ith
a

p
ossib

le
in

crem
en

tal
featu

re
for

an
on

-lin
e

an
aly

sis.





A
p
p
e
n
d
ix

E

IN
R

IA
R

e
se

a
rch

T
e
a
m

s

O
rg

a
n
iza

tio
n

B
efore

1
s
t

of
A

p
ril

2004,
IN

R
IA

’s
research

team
s

w
ere

organ
ized

in
fou

r
d
iff

eren
t

re-

search
th

em
es,

n
am

ely
:

-
T

h
em

e
1
:

N
etw

ork
s

an
d

sy
stem

s:

-
A

:
A

rch
itectu

res
an

d
S
y
stem

s,

-
B

:
N

etw
ork

s
an

d
T
elecom

m
u
n
ication

s,

-
C

:
D

istrib
u
ted

an
d

R
eal-T

im
e

P
rogram

m
in

g.

-
T

h
em

e
2
:

S
oftw

are
en

gin
eerin

g
an

d
sy

m
b
olic

com
p
u
tin

g:

-
A

:
S
em

an
tics

an
d

P
rogram

m
in

g,

-
B

:
A

lgorith
m

s
an

d
C

om
p
u
tation

al
A

lgeb
ra.

-
T

h
em

e
3
:

H
u
m

an
-com

p
u
ter

in
teraction

,
im

ages
p
ro

cessin
g,

d
ata

m
an

age-

m
en

t,
k
n
ow

led
ge

sy
stem

s:

-
A

:
D

atab
ases,

K
n
ow

led
ge

B
ases,

C
ogn

itive
S
y
stem

s,

-
B

:
V

ision
,
Im

age
A

n
aly

sis
an

d
S
y
n
th

esis.

-
T

h
em

e
4
:

S
im

u
lation

an
d

op
tim

ization
of

com
p
lex

sy
stem

s:

-
A

:
C

on
trol,

R
ob

otics,
S
ign

al,

-
B

:
M

o
d
ellin

g
an

d
S
cien

tifi
c

C
om

p
u
tin

g.

A
fter

th
is

d
ate,

th
e
research

team
s
w

ere
reorgan

ized
in

th
e

follow
in

g
fi
ve

research
th

em
es

(see
also

h
t
t
p
:
/
/
w
w
w
.
i
n
r
i
a
.
f
r
/
r
e
c
h
e
r
c
h
e
/
e
q
u
i
p
e
s
/
l
i
s
t
e
s
/
i
n
d
e
x
.
e
n
.
h
t
m
l
):

-
T

h
em

e
C

o
m

:
C

om
m

u
n
icatin

g
sy

stem
s:

-
A

:
D

istrib
u
ted

sy
stem

s
an

d
softw

are
arch

itectu
re,

-
B

:
N

etw
ork

s
an

d
telecom

s,

-
C

:
E

m
b
ed

d
ed

sy
stem

s
an

d
m

ob
ility,

-
D

:
A

rch
itectu

re
an

d
com

p
ilin

g.

-
T

h
em

e
C

o
g
:

C
ogn

itive
sy

stem
s:

203



2
0
4

C
h
a
p
te

r
E
.
IN

R
IA

R
e
se

a
rch

T
e
a
m

s
O

rg
a
n
iz

a
tio

n

-
A

:
S
tatistical

m
o
d
elin

g
an

d
m

ach
in

e
learn

in
g,

-
B

:
P
ercep

tion
,
in

d
ex

in
g

an
d

com
m

u
n
ication

for
im

ages
an

d
v
id

eo,

-
C

:
M

u
ltim

ed
ia

d
ata:

in
terp

retation
an

d
m

an
-m

ach
in

e
in

teraction
,

-
D

:
Im

age
sy

n
th

esis
an

d
v
irtu

al
reality.

-
T

h
em

e
S
y
m

:
S
y
m

b
olic

sy
stem

s:

-
A

:
R

eliab
ility

an
d

safety
of

softw
are,

-
B

:
A

lgeb
raic

an
d

geom
etric

stru
ctu

res,
algorith

m
s,

-
C

:
M

an
agem

en
t

an
d

p
ro

cessin
g

of
lan

gu
age

an
d

d
ata.

-
T

h
em

e
N

u
m

:
N

u
m

erical
sy

stem
s:

-
A

:
C

on
trol

an
d

com
p
lex

sy
stem

s,

-
B

:
G

rid
s

an
d

h
igh

-p
erform

an
ce

com
p
u
tin

g,

-
C

:
O

p
tim

ization
an

d
in

verse
p
rob

lem
s

for
sto

ch
astic

or
large-scale

sy
stem

s,

-
D

:
M

o
d
elin

g,
sim

u
lation

an
d

n
u
m

erical
an

aly
sis.

-
T

h
em

e
B

io
:

B
iological

sy
stem

s:

-
A

:
M

o
d
elin

g
an

d
sim

u
lation

in
b
iology

an
d

m
ed

icin
e.

T
h
e

W
eb

p
ages

on
th

e
n
ation

al
server

th
at

w
ere

in
fl
u
en

ced
b
y

th
e

reorgan
ization

of
th

e
research

th
em

es
are

p
resen

ted
in

T
ab

le
E

.1
b
elow

.

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

in
d
ex

.fr.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

in
d
ex

.en
.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
1
.en

.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
1
.fr.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
2
.en

.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
2
.fr.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
3
.en

.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
3
.fr.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
4
.en

.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
4
.fr.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
B

io
.en

.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
B

io
.fr.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
C

o
g
.en

.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
C

o
g
.fr.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
C

o
m

.en
.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
C

o
m

.fr.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
N

u
m

.en
.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
N

u
m

.fr.h
tm

l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
S
y
m

.en
.h

tm
l

h
ttp

:/
/
w

w
w

.in
ria

.fr/
rech

erch
e/

eq
u
ip

es/
listes/

th
em

e
S
y
m

.fr.h
tm

l

T
ab

le
E

.1:
N

ation
al

W
eb

p
ages

p
resen

tin
g

th
e

research
th

em
es

organ
ization



2
0
5

T
e
a
m

O
ld

T
h
e
m

e
N

e
w

T
h
e
m

e

A
X

IS
3A

C
ogA

O
R

P
A

IL
L
E

U
R

3A
C

ogA
M

A
IA

3A
C

ogA
D

R
E

A
M

3A
C

ogA
C

O
R
T

E
X

3A
C

ogA
C

O
R

D
IA

L
3A

C
ogC

P
A

R
O

L
E

3A
C

ogC
O

R
IO

N
3A

C
ogC

M
E

T
IS

S
3A

C
ogC

M
E

R
L
IN

3A
C

ogC
I3D

3A
C

ogC
E

C
O

O
3A

C
ogC

IN
-S

IT
U

3A
C

ogC
L
A

N
G

U
E

E
T

D
IA

L
O

G
U

E
3A

S
y
m

C
A

C
A

C
IA

3A
S
y
m

C
A
T

O
L
L

3A
S
y
m

C
E

X
M

O
3A

S
y
m

C
T

E
X

M
E

X
3A

S
y
m

C
S
Y

M
B

IO
S
E

3A
B

ioA
H

E
L
IX

3A
B

ioA
E

IF
F
E

L
3A

-
O

P
E

R
A

3A
-

V
E

R
S
O

3A
-

C
A

R
A
V

E
L

3A
-

A
ID

3A
-

IM
E

D
IA

3B
C

ogB
M

O
V

I
3B

C
ogB

T
E

M
IC

S
3B

C
ogB

V
IS

T
A

3B
C

ogB
A

R
IA

N
A

3B
C

ogB
IS

A
3B

C
ogD

A
L
C

O
V

E
3B

C
ogD

M
IR

A
G

E
S

3B
C

ogD
S
IA

M
E

S
3B

C
ogD

R
E

V
E

S
3B

C
ogD

O
D

Y
S
S
E

E
3B

B
ioA

E
P

ID
A

U
R

E
3B

B
ioA

IM
A

G
IS

3B
-

P
A

S
T

IS
3B

-
S
H

A
R

P
3B

-
A

IR
3B

-

T
ab

le
E

.2:
T
eam

s
from

th
em

e
3

in
th

e
old

an
d

n
ew

research
th

em
es





A
p
p
e
n
d
ix

F

B
e
-T

R
IP

R
e
co

m
m

e
n
d
e
r

S
y
ste

m

T
h
is

A
p
p
en

d
ix

con
tain

s
a

p
u
b
lication

(in
F
ren

ch
)

on
th

e
sp

ecifi
cation

s
of

th
e

B
e-T

R
IP

recom
m

en
d
er

sy
stem

.
T

h
is

w
ork

w
as

p
u
b
lish

ed
in

p
ro

ceed
in

gs
of

th
e

1st
F
ren

ch
-

sp
eak

in
g

con
feren

ce
on

M
ob

ility
an

d
U

b
iq

u
ity

com
p
u
tin

g
[C

G
T

04
].

207



Recommandations personnalis ées pour la recherche
d’information facilitant les d éplacements

Sergiu Chelcea
AxIS, INRIA Sophia Antipolis
2004 Rte des Lucioles, BP 93
06902 Sophia Antipolis Cedex,

France

schelcea@sophia.inria.fr

George Gallais
VISA, INRIA Sophia Antipolis
2004 Rte des Lucioles, BP 93
06902 Sophia Antipolis Cedex,

France

ggallais@sophia.inria.fr

Brigitte Trousse
AxIS, INRIA Sophia Antipolis
2004 Rte des Lucioles, BP 93
06902 Sophia Antipolis Cedex,

France

trousse@sophia.inria.fr

ABSTRACT
This article concerns an emerging research field related to
mobility from the transport point of view, which is the in-
formation search for traveling/mobility. To facilitate such
a search, we propose the use of recommender systems in a
mobility context: these facilitate on the one hand the infor-
mation search, and on the other hand these help to prepare
the user’s trip (”pre-trip”: choice of the transport mode,
schedule, route, time of the trip, ...) and to carry it out
(”on-trip”: interactive guidance, way visualization, destina-
tion planning). This double impact is rarely exploited today
and we propose, after a description of the used technologies,
to illustrate the potentials of this new approach on a tradi-
tional tourist visit example. The originality of this approach
lies in 1) its capacities to adapt the recommendations to the
user’s behavior during his information retrieval correlated
to his own movement and 2) the on-line learning capacities
of such a system for information search assistance.
Cet article aborde un domaine de recherche en plein essor re-
latif à la mobilité sous l’angle du transport en y associant la
recherche d’information pour se déplacer. Pour faciliter une
telle recherche, nous proposons l’utilisation de systèmes de
recommandations dans un contexte de mobilité qui ont un
double impact : faciliter d’une part la recherche d’informa-
tion, mais aussi, aider à préparer le déplacement (”pre-trip” :
choix du mode de transport, horaire, itinéraire, temps de
trajet, ...) et à le réaliser (”on-trip” : guidage interactif, aide
à un changement de destination, visualisation trajet). Ce
double impact est aujourd’hui rarement exploité et nous pro-
posons, après une description des technologies sous-jacentes,
d’illustrer par un exemple classique de visite touristique les
potentiels de cette nouvelle approche. L’originalité de cette
approche réside dans 1) ses capacités d’adaptation des re-
commandations au comportement de l’utilisateur lors de sa
recherche d’information corrélé à son déplacement effectif
et 2) les capacités d’apprentissage en-ligne d’un tel système
d’aide à la recherche d’information.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information filtering, clustering ;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—User-Centered Design

General Terms
Information Retrieval, Adaptive Interfaces, Mobility

Keywords
Systèmes de recommandations, filtrage collaboratif, raison-
nement à partir de cas, information voyageur, tourisme, re-
commender systems, collaborative filtering, case-based rea-
soning, traveller information, pre-trip, on-trip, tourism, trans-
port

1. INTRODUCTION
Le développement rapide des systèmes d’information no-
mades permet d’envisager de nombreuses applications dans
un contexte de mobilité. Cependant, cette mobilité prise
sous l’angle du transport, est aussi un domaine de recherche
en plein essor lorsque on y associe, dans une optique de sau-
vegarde de l’environnement, la recherche d’information pour
un déplacement ”optimum”. Les acteurs du domaine des ITS
- Intelligent Transport Systems - décrivent souvent l’apport
des technologies de l’information à travers des scénarios de
déplacement. Il n’est pas dans notre intention d’en ajouter
un mais d’illustrer notre approche à travers une châıne de
déplacement dite de porte à porte.

Le déplacement est toujours la conséquence d’une informa-
tion (un rendez vous, une manifestation culturelle, ...). Pre-
nons l’exemple d’un internaute découvrant une manifesta-
tion culturelle au musée Picasso d’Antibes à quelques ki-
lomètres de son domicile (pre-trip) ou de sa position actuelle
lors d’un déplacement (on-trip) et à laquelle il décide de
se rendre spontanément. Celui-ci va avoir besoin de recher-
cher les heures d’ouverture, l’adresse et comment s’y rendre.
D’une part les informations qui lui seront nécessaires sont
éparpillées, d’autre part le contexte de son déplacement (in-
dividuel, en groupe, ...) et les critères de choix du mode de
déplacement (confort, temps, coût) sont par essence de sa
propre initiative. Enfin il devra pouvoir les consulter tout au
long de sa châıne de déplacement, quelque soit son terminal
et en fonction du lieu. Il est clair que les PDA communiquant
vont permettre d’assurer une continuité d’accès à l’informa-

208



tion tout au long du déplacement mais au prix d’une masse
de données consultable d’autant plus importante.

Dans ce contexte, les systèmes de recommandations ont un
double impact : aider à la préparation du déplacement (”pre-
trip” : choix du mode de transport, horaire, itinéraire, temps
de trajet, etc.) et assister pendant le déplacement (”on-
trip” : guidage interactif dans le cas d’un transport indi-
viduel, visualisation du trajet dans le cas d’un transport
collectif).

Ce double impact est aujourd’hui rarement exploité et nous
proposons, après une description des technologies sous-jacen-
tes en section 2 issues de l’intelligence artificielle, d’illustrer
en section 3 par un premier exemple de visite culturelle les
potentialités de l’approche Broadway de calcul de recom-
mandations personnalisées. celle-ci est basée sur la simila-
rité de comportements utilisateurs d’une part dans leur re-
cherche d’informations coorélés à leur déplacement effectif.
Une spécification d’un système de recommandations appelé
Be-TRIP basée sur cette approche est donnée en section 3,
visant une aide à la fois au déplacement pre-trip et on-trip.
En section 4, nous nous comparons aux principaux travaux
similaires pour conclure sur nos travaux en cours et futurs.

2. RECOMMANDATIONS EN MOBILIT É
Après avoir introduit la notion de systèmes de recommanda-
tions, nous indiquons en quoi de tels systèmes trouvent leur
intérêt dans un contexte de mobilité, permettant de trier
cette masse considérable d’information accessible à l’inter-
naute.

2.1 Syst̀emes de recommandations
L’objectif d’un système de recommandations est d’aider les
utilisateurs à faire leurs choix dans un domaine où ils dis-
posent de peu d’informations pour trier et évaluer les al-
ternatives possibles. Un système de recommandations [10]
peut être décomposé en trois entités de base (cf. Figure
1) : le groupe d’agents producteurs de recommandations, le
module de calcul de recommandations et le groupe de con-
sommateurs des recommandations. Un défi majeur dans le
domaine de la conception de systèmes de recommandations
est le suivant :

Comment produire des recommandations personna-

lisées et de haute qualité tout en minimisant

l’effort requis de la part des producteurs

et des consommateurs?

Deux grandes approches [10] complémentaires sont proposées
dans la littérature ainsi que des approches hybrides :

1) l’approche (notée A.P.U dans le tableau 1) basée sur le
contenu et fondée sur l’apprentissage automatique de profils
utilisateurs. Les recommandations sont issues uniquement
des actions passées de l’utilisateur lui-même.
2) l’approche (notée F.C. dans le tableau 1) dite de filtrage
collaboratif où des données issues d’autres utilisateurs sont
utilisées dans le calcul de recommandation (par exemple des
recommandations, des sessions utilisateurs, etc.). Générale-
ment cette approche est fondée sur des techniques de fouille
de données.

Fig. 1 – Architecture générale d’un système de recom-
mandation

Le profil utilisateur est une structure de données qui décrit
en particulier les centres d’intérêts d’un utilisateur dans l’es-
pace des objets à recommander. Celui-ci est une structure
construite dans la première approche ou donnée dans la se-
conde par l’utilisateur. Ce profil est utilisé soit pour filtrer
les objets disponibles (on parle alors de filtrage basé sur
le contenu), soit pour recommander à l’utilisateur ceux qui
ont satisfait d’autres utilisateurs ayant un profil similaire
(on parle alors de filtrage collaboratif) [10]. Il est à noter
l’existence d’approches hybrides comme le permet notre ap-
proche (Cf. section 3.) basant le calcul de recommandations
sur des similarités de sessions ou/et de profils qui peuvent
être appris ou donnés. Notons enfin que le profil utilisateur
peut comprendre également des informations sur les dispo-
sitifs utilisés et préférences utilisateur en termes de services
pour rendre plus aisée l’adaptation des interfaces à l’utilisa-
teur.

2.2 Intérêt de tels syst̀emes d’aide en mobilit́e
On sait aussi que du côté de la demande, les consommateurs
cherchent des produits (de tourisme par exemple) personna-
lisés et demandent d’accéder à l’information appropriée et
à des services de haute qualité sur le Web, à tout moment
et n’importe où dans un environnement mobile. Or le Web
est un gigantesque hypermédia dans lequel trouver un do-
cument pertinent n’est pas une tâche facile malgré les outils
existants pour effectuer une recherche.
En contexte de mobilité, la localisation géographique de
l’utilisateur est le premier filtre qui va venir s’ajouter au
traditionnel filtre du profil de l’utilisateur. Les premiers ser-
vices offerts par la localisation ont été développés dans les
systèmes de navigation pour automobile maintenant large-
ment diffusés. Le conducteur peut ainsi recevoir des conseils
de guidage tout au long de son trajet, avec des messages
visuels ou audio lui indiquant la route à suivre. Ces conseils
utilisent la connaissance de l’itinéraire préalablement calculé
et de la position ”métrique” instantanée du véhicule. Plus
récemment, les ”Location-based Services ou LBS”, utilisant
la position du mobile obtenue par triangulation permettent
d’envisager le même type de services pour des piétons.

Dans notre scénario, la découverte de l’information qui déclen-
che le besoin de mobilité se fera à partir d’un type de ter-
minal et selon une session sur Internet qui permettront de

209



Fig. 2 – Calcul de recommandations avec l’approche Broadway

différencier les phases de préparation ou de déplacement.
Dans la phase de préparation du voyage, le terminal sera soit
de type PC sur réseau filaire soit la position de son terminal
sera fixé. Ensuite, une fois le choix du mode de déplacement
effectué, les caractéristiques du terminal et de réseau auront
de fortes chances d’évoluer, et en associant de nouveau la
position dynamique et l’itinéraire choisi puis stocké dans le
terminal portable, de nouveaux services vont pouvoir être of-
ferts, bien au-delà du guidage décrit précédemment car ceux-
ci peuvent être généralisés à tout mode de déplacements (in-
dividuel ou collectif). On pourra par exemple, dans le cas
du choix d’un transport en commun, en déduire que l’utili-
sateur est disponible, car il n’a pas à conduire, et lui délivrer
des informations plus complètes personnalisées sur le trajet
(temps de trajet restant, prochain arrêt, site touristique le
long du trajet, accès courrier électronique etc.. .), valori-
sant ainsi le transport en commun. On pourra également lui
suggérant des nouvelles intentions de déplacement en fonc-
tion de son déplacement réel et de sa recherche sur le web.

Par ailleurs, les recommandations personnalisées s’appliquent
pour restituer l’information en s’adaptant automatiquement
au terminal (taille et résolution d’écran), à son mode d’accès
(clavier de bureau, stylet des PDA, reconnaissance vocale),
à sa puissance de calcul, ses capacités de stockage et bien
sur les capacités du réseau de communication. L’intérêt pour
les personnes à mobilité réduite est évident : passage auto-
matique du terminal en mode vocale, sélection transparente
des systèmes d’information adaptés aux déficients visuels,
choix des modes de transport adaptés (transport en com-
mun, transport à la demande), délivrance d’un message per-
sonnalisé à l’arrivée.

Un deuxième niveau d’impact de l’utilisation de tels systèmes
de recommandations est pour le concepteur du système d’in-
formation. En effet l’analyse des traces du recommandeur
et en particulier de la qualité des recommandations peuvent
donner lieu à des restructurations du système d’information.

3. BE-TRIP, AIDE AU D ÉPLACEMENT

Cette section introduit notre approche de calcul de recom-
mandations personnalisées appelée l’approche Broadway 1

basée sur des techniques de Raisonnement à Partir de Cas
(RàPC). Puis elle présente la conception du système Be-
TRIP (Broadway-Extended pre and on-TRIP assistant) d’aide
au déplacement. Une illustration, après quelques éléments
d’implémentation est donnée pour un scénario touristique
en pre-trip.

3.1 L’approche Broadway
L’approche Broadway [11] est une approche hybride de cal-
cul de recommandations pour l’aide à la recherche d’infor-
mations : celle-ci est à la fois basée sur l’analyse du contenu
visité et centrée fouille de données où les comportements
passés d’un groupe d’utilisateurs sont utilisés pour calcu-
ler les recommandations (cf. filtrage collaboratif [10]). L’ori-
ginalité de l’approche Broadway, à la différence de la plu-
part des autres approches, réside dans la prise en compte
de l’ordre des actions des utilisateurs comme un élément
central dans la calcul de recommandations. En effet la plu-
part des approches fondées sur la fouille de données sont
principalement des approches statistiques où l’ordre d’oc-
currence d’événements. dans l’historique n’est pas pris en
compte lors du calcul de recommandations. Citons comme
exemple, dans le domaine d’aide à la navigation sur le Web,
le système FootPrints [12] et le système de Yan et al [13].

De manière générale, la réutilisation de comportements uti-
lisateur dans l’approche Broadway s’appuie sur le Raison-
nement à Partir de Cas (RàPC) [1] qui est une approche
de résolution de problèmes basée sur la réutilisation par
analogie d’expériences passées appelées “cas”. Le RàPC se
décompose habituellement en quatre phases principales [1]
(cf. Figure 2) : recherche de cas, réutilisation, révision de la
solution proposée, apprentissage. Enfin un cas est générale-
ment indexé pour permettre de le retrouver suivant certaines
caractéristiques pertinentes et discriminantes, appelées “in-
dices”; ces indices déterminent dans quelle situation (ou
contexte) un cas peut être de nouveau réutilisé.

1. Broadway – BROwsing ADvisor reusing pathWAYs,
http://www-sop.inria.fr/axis/broadway/

210



La mise en oeuvre de l’approche Broadway nécessite la mani-
pulation des cas dont les indices sont constitués de séquences
d’événements. Pour cela, nous nous appuyons sur le modèle
d’indexation par situations comportementales développé dans
le cadre de le thèse de Jaczynski [8]. Pour l’utilisation de ce
modèle, nous avons identifié quatre étapes importantes : 1)
identification des variables d’observation, b) détermination
de la sémantique d’un enregistrement (navigation) et de son
contexte, c) définition de la représentation des cas et des si-
tuations comportementales (éléments issus d’une navigation
pour caractériser un cas) et enfin d) conception des phases
de raisonnement.

Les cas sont issus de l’instanciation d’un patron de cas po-
tentiels. Ce patron repose sur des règles de construction
d’une situation comportementale et d’une liste d’actions à
recommander (par exemple une liste de pages évaluées) à un
instant donné à l’intérieur d’une navigation. Selon ces règles,
la situation comportementale est alors composée d’une com-
posante instantanée contenant le contexte de la navigation
(par exemple, noms des sites visités et mots clefs extraits
des pages visitées) et d’une composante comportementale
référençant un instant précis dans la navigation.

Le calcul des recommandations est alors effectué durant un
raisonnement en quatre phases (cf. Figure 2), étant donnée
la navigation courante d’un utilisateur :

1. Recherche. La base de cas est parcourue pour identifier
les cas dont la partie comportement peut être mis en cor-
respondance avec la navigation courante. Les meilleurs cas
sont alors retournés.
2. Réutilisation. Chaque cas retrouvé propose une liste de
pages recommandées, et la phase de réutilisation construit
une liste ordonnée de ces pages à l’aide de critères divers
afin de les suggérer à l’utilisateur courant.
3. Révision. La phase de révision est effectuée par l’uti-
lisateur lorsqu’il continue sa navigation et qu’il évalue les
pages visitées s’il le désire. La révision se poursuit jusqu’à la
fermeture de la navigation courante et met en attente tous
les raisonnements effectués pour une navigation (pages re-
commandées confirmées).
4. Apprentissage et maintenance de la mémoire. L’ap-
prentissage prend en compte la navigation courante et l’en-
semble des raisonnements associés pour en faire leur synthèse.
La mémoire est alors mise à jour par la création de nouveaux
cas, par la mise à jour des cas et par l’ajout de la navigation
courante. A côté de ce processus de raisonnement, les cas et
les navigations devenus obsolètes sont régulièrement effacés
de la mémoire.

L’originalité de notre approche en filtrage collaboratif réside
dans 1) ses capacités d’adaptation des recommandations
au comportement de l’utilisateur observé selon diverses va-
riables (cf. Figure 3) voire à son profil (centres d’intérêt,
dispositif utilisé) et 2) les capacités d’apprentissage en-ligne
d’un tel système d’aide à la recherche d’information.

Deux principaux assistants d’aide à la navigation basés sur
l’approche Broadway ont été réalisés : Broadway-Web (1997)
pour l’aide à la navigation sur le Web et Broadway-AT
(2000) utilisé dans le cadre de l’application Educaid (France
Telecom Inria) pour l’aide à la navigation dans un portail de

ressources éducatives. Une application basée sur une adap-
tation de Broadway-AT a permis des recommandations per-
sonnalisées basées sur la similarité entre comportements non
visuels et visuels des utilisateurs d’un site contenant les rap-
ports d’activités des équipes Inria.

Nous spécifions ci-après les principales caractéristiques de
l’assistant d’aide personnalisée au déplacement (pre-trip et
on-trip) Be-TRIP ainsi que son intégration dans un serveur
d’applications en cours de conception à l’Inria.

3.2 Sṕecifications de Be-TRIP
La spécification du recommandeur Be-TRIP consiste en une
adaptation d’un premier système appelé Broadway-Web pour
l’aide à la navigation sur le web au contexte de la mobilité
et appliqué à l’aide au déplacement.

Be-TRIP est basée sur l’hypothèse suivante (cf. Figure 3):
si deux utilisateurs (ayant éventuellement des profils simi-
laires) ont navigué suivant une séquence similaire de pages
Web (ou actions Web) et/ou selon un chemin similaire (as-
pect localisation), c’est qu’ils ont des intérêts similaires, on
peut alors proposer au second utilisateur les pages (ou ac-
tions) jugées pertinentes 2 par le premier (Figure 3).

Fig. 3 – Réutilisation d’expériences pour déterminer
des recommandations

Le raisonnement dans Broadway-Web s’appuie sur l’applica-
tion de notre modèle d’indexation par situation comporte-
mentale basé sur les quatre étapes suivantes déjà présentés :

Identification des variables d’observation. L’observa-
tion du comportement des utilisateurs est fondée sur l’utili-
sation

- de quatre variables relatives à leur recherche d’informa-
tions sur le Web pour le déplacement : l’adresse, l’analyse
du contenu de la page, la satisfaction a priori et le ratio
entre le temps d’affichage et la taille de chaque page Web
visitée ;

2. L’évaluation des pages ou des actions en termes de réussite
ou échec est soit donnée par l’utilisateur soit inféré selon le
point de vue du concepteur : par exemple une réservation
d’une place dans un musée sera interprétée comme satisfai-
sant a priori l’utilisateur.

211



- et de deux variables de type on-trip relative à leur che-
min parcouru: la localisation de l’utilisateur lors de sa re-
cherche d’informations sur le web et des informations multi-
vues (touristiques, géographiques) pertinentes extraites de
l’analyse du contenu de la page courante à l’aide d’une on-
tologie dans le domaine en vue, augmentée de la localisation,
de formuler automatiquement une requête au système d’in-
formation GIS utilisé.

Navigation et contexte. Ici le début et la fin d’une navi-
gation sont indiqués soit par l’utilisateur (connexion, décon-
nexion) soit par un temps d’inactivité de l’utilisateur sur son
navigateur Web. Le pas de temps est défini par un clic sou-
ris de l’utilisateur sur le navigateur. Le contexte comprend
des informations résumées de la situation comportementale
relative à sa navigation sur le Web et aussi relative à son
déplacement. Pour la navigation sur le web, diverses me-
sures sont utilisées comme la répétition exprimant le taux
de pages visitées au moins deux fois. Il comprend également
par abus de langage le profil utilisateur (dispositif utilisé,
centres d’intérêt, etc.) si disponible.

Représentation des cas. Cette dernière permet de sélec-
tionner les indices comportementaux d’un cas par rapport à
l’instant de référence et comprend :
- les 3 dernières pages sur les variables de l’adresse, du
contenu, de la position et des informations pour identifier
le contexte immédiat de réutilisation d’un cas dans une na-
vigation (notion de restriction),
- un ensemble de pages passées qui sont sélectionnées pour
leur pertinence: soit pour leur satisfaction soit pour le ratio
d’affichage dépassant un seuil donné,
- et un ensemble de contraintes temporelles permettant d’or-
donner les pages sélectionnées.
La partie solution d’un cas est définie par une liste d’ac-
tions à recommander par rapport à l’instant de référence,
par exemple actions de sélection de telles destinations, etc.

La Figure 4 donne l’exemple d’un cas créé à partir de l’ins-
tanciation d’un patron de cas potentiel dans la navigation
pour un instant correspondant à la page #9. La restriction
(i.e. l’ensemble d’indices utilise dans un premier filtrage des
navigations) permet de sélectionner les trois dernières pages
(p=3) ainsi que la page #3 pour la satisfaction utilisateur et
la page #5 pour le ratio d’affichage. A cette situation com-
portementale, la page #13 est associée et représente la seule
recommandation de ce cas (par exemple un page indiquant
une réservation dans un musée)..

Conception des phases de raisonnement. Il s’agit ici de
la spécification des quatre phases du RàPC. Nous renvoyons
le lecteur à la spécification du système Broadway-Web [8]
auquel nous avons prévu :
- la prise en compte des deux variables pour les aspects
localisation dans le raisonnement. Ces deux variables in-
terviennent, outre dans la phase de recherche de cas, dans
la phase de réutilisation, en particulier pour l’ordonnance-
ment des recommandations selon des critères de proximité
géographique et d’adéquation à la recherche courante en
termes de contenu (en plus de l’adéquation à son profil).
- l’utilisation d’une ontologie dans le domaine et/ou du sys-
tème d’information géographique pour l’étape d’adaptation.

Fig. 4 – Exemple d’un cas issu d’une navigation

Intégration. L’intégration d’un assistant basé sur l’approche
Broadway dans un serveur d’applications mobiles consiste à
définir la manière de récupérer les évènements pertinents
relatifs aux actions utilisateur soient durant son interaction
Homme-Machine (ici sa recherche d’information sur le web)
soit durant son déplacement (ici sa localisation via GPS par
exemple). Concernant l’observation de l’interaction homme-
machine avec son navigateur Web, nous pouvons récupérer
ces évènements soit directement via une technologie proxy
(version actuelle cf. Figure 6.) soit via un serveur d’applica-
tions basées sur la localisation comme le montre la Figure 5.

Fig. 5 – Intégration future de Be-TRIP dans un ser-
veur d’applications basées sur la localisation

Le recommandeur Be-TRIP nécessite, outre les serveurs déjà
utilisés dans Broadway-web (utilisateur, analyse du contenu
des pages web, annotations), un serveur d’information de
type GIS (ici le futur système MobiVIP 3). En effet afin
d’expérimenter, démontrer et évaluer l’impact des nouveaux
systèmes d’information sur la mobilité urbaine, l’INRIA et
ses partenaires ont lancé fin 2003 le projet MobiVIP3. Ce
projet s’inscrit dans le cadre de l’Intégration des Systèmes
d’Information et de Communication du Programme Natio-
nal de Recherche et d’Innovation dans les Transports Ter-
restres - Predit.

Implémentation. Actuellement seule la version en pre-trip
de Be-TRIP a été implémentée. Elle est implémenté comme
un serveur HTTP utilisé en tant que proxy (cf. Figure 6)
comme c’était le cas pour notre système Broadway-Web
et un accès uniquement aux ressources Web via le proto-
cole HTTP. Les requêtes effectuées dans d’autres protocoles
(FTP ou Gopher par exemple) sont exécutées directement

3. MobiVIP URL: http://www-sop.inria.fr/mobivip

212



ou avec d’autres mécanismes indépendants de Be-TRIP.

Fig. 6 – Architecture actuelle du système d’aide

Le serveur de recommandation de Be-TRIP s’appuie sur
notre plateforme objet en raisonnement à partir de cas ap-
pelé CBR*Tools 4 et sur notre boite à outils pour l’aide à la
recherche d’information sur le Web appelée Broadway*Tools.
La plate-forme objet CBR*Tools facilite le développement
des systèmes implantant l’approche Broadway. En particu-
lier CBR*Tools implémente notre modèle d’indexation par
situation comportementale: elle comprend plus de deux cents
classes Java, sa documentation basée sur la notation UML
est décrite en termes de patrons de conception [8]. Elle a été
conçue avec l’atelier Rose de Rational et implantée en Java.

3.3 Illustration en pre-trip
Nous avons étudié l’intérêt d’utiliser l’approche Broadway
via le système Be-TRIP dans une maquette de site Web
dédiée à la Communauté d’Agglomération de Sophia An-
tipolis (CASA) permettant ainsi de faire des liens trans-
verses utiles pour les citoyens ou touristes. En particulier,
les liens entre informations touristiques et informations pour
préparer le déplacement (cartes, parcours, etc.) sont illustrées
dans cette application [4].

Fig. 7 – Session 1: sélection de Valbonne

Pour cela, une maquette du site CASA (cf. Figure 7) a été
réalisée contenant des informations sur les 14 communes qui
forment la CASA. Sur les sites de chaque ville, les utilisa-
teurs peuvent trouver des informations diverses comme des
informations touristiques, des évènements particuliers, des
adresses de restaurants, etc., mais les informations sur les
moyens de transport ou sur les plans d’accès ne peuvent
être exhaustifs. Pourtant ce type d’information est très utile

4. URL http://www-sop.inria.fr/axis/cbrtools/manual/

pour le futur touriste, mais aussi pour tous les citoyens de
ces villes cherchant un moyen de déplacement ou un plan.
Dans ce but, nous avons intégré dans la maquette du site
CASA pour illustrer notre approche des liens vers des sites
contenant des informations sur les transports et/ou des in-
formations cartographiques pour trouver des plans d’accès
ou réaliser des itinéraires.

Nous présentons ici un scénario d’utilisation du système Be-
TRIP dans le cadre du site Web de la CASA pour les tou-
ristes. Prenons l’exemple d’un touriste, séjournant dans la
ville de Valbonne qui se connecte au site de la CASA (cf.
Figure 7). Celui-ci commence à rechercher, en navigant dans
le site, quelque chose à visiter dans l’après midi. Il trouve la
célèbre abbaye fondée en 1199. Étant donné qu’il ne trouve
pas l’adresse de cette abbaye, il continue à chercher et la
trouve enfin après plusieurs clics souris (cf. Figure 8).

Fig. 8 – Session 1: adresse de l’abbaye trouvée

Fig. 9 – Session 1 (fin): sélection de la carte suite à
une requête sur viamichelin

Après avoir noté l’adresse, il retourne sur la page d’accueil
du site pour se rendre ensuite sur le site de www.viamichelin.fr
afin d’avoir l’itinéraire. Après avoir effectué sa requête, il
obtient le plan d’accès (cf. Figure 9) et se déconnecte donc

213



satisfait.

Imaginons maintenant un autre touriste naviguant dans le
site de la CASA de façon similaire, en particulier sur les
pages de l’abbaye de Valbonne. Be-TRIP lui propose sans
qu’il fasse la requête sur www.viamichelin.com plusieurs re-
commandations dont le plan d’accès trouvé par le premier
touriste (cf. Figure 10).

Fig. 10 – Session 2: aide personnalisée par similarité
de comportements utilisateur

4. COMPARAISON AVEC DES TRAVAUX
SIMILAIRES

Cette section décrit brièvement quelques travaux proches
de nos recherches relatives à la personnalisation de services
d’aide à la mobilité puis en présente une synthèse dans le
tableau 1.

Le projet IMAGE [3] propose à ses utilisateurs (via des PC,
PDA et mobiles) des informations personnalisées basées sur
leur position (LBS) et sur des techniques de “user profi-
ling”. Les citoyens et les touristes sont les utilisateurs du
système qui offre aussi la possibilité de “e-ticketing” ou de
téléchargement des informations nécessaires.
Le but du projet WH@M [7] est d’aider les touristes dans
la phase de pre-trip (calcul d’itinéraires) et de leur fournir
des informations en temps réel (météo, trafic, etc.) pendant
leur voyage. L’information est adaptée en fonction de la lo-
cation et du profil de l’utilisateur qui peut aussi bénéficier
du “feed-back” des autres utilisateurs (forums, opinions sur
des “items”).
Dans le cadre du projet CRUMPET [9], la personnalisa-
tion est basse sur les trois facteurs suivantes : la localisation,
l’adaptation aux intérêts et préférences de l’utilisateur, et
l’adaptabilité du profil de l’utilisateur à partir de l’histo-
rique de ses interactions (“implicit feedback”). Les services
proposées visent les utilisateurs mobiles comme les touristes
utilisant des réseaux mobiles (PDA, mobiles, etc.) ou fixes
(“travel-kiosks”).
Le système de recommandations développé dans le cadre du
projet DIETORECS [6] est un système interactive (questions-
réponses) qui aide le future touriste (pre-trip) à sélectionner

sa destination, sous la forme d’un “TravelPlan”. Des tech-
niques de Raisonnement à Partir de Cas (RàPC) sont em-
ployée pour l’aide à la décision. Le système AVC (Augmen-
ted Virtual City) du projet PALIO [2] adapte l’information
fournie aux touristes et citoyens en tenant compte de la tech-
nologie utilisée, des caractéristiques du réseau, de la position
de l’utilisateur, de son profil, du contexte actuel et aussi de
l’historique de ses interactions avec le système.

Nous décrivons ces systèmes selon plusieurs caractéristiques:
a) le contexte de l’aide (pre ou/et on-trip), b) le mode de
recherche (par requête ou par “browsing”) visé par l’aide, c)
l’origine des données utilisées pour calculer l’aide personna-
lisée, d) l’approche de recommandation utilisée (A.P.U ou/et
F.C.), e) les modes pour fournir l’aide (push ou pull ou les
deux) et enfin f) l’utilisation ou non d’une corrélation entre
les deux types de comportements utilisateurs (séquence d’ac-
tions lors de sa recherche d’informations et déplacement).

On constate que la plupart des travaux actuels visant une
aide personnalisée au déplacement à la fois en pre-trip et/ou
on-trip s’appuient essentiellement sur l’apprentissage du pro-
fil utilisateur sans utiliser des données issues d’autres utili-
sateurs. A l’inverse, citons néanmoins trois travaux offrant
un filtrage collaboratif : Wh@m qui utilise des annotations
issues d’autres utilisateurs et les deux travaux basés sur des
techniques RàPC (Dietorecs et Be-TRIP) qui réutilisent des
cas i.e des expériences issues de sessions utilisateurs.

A notre connaissance, l’originalité principale de Be-TRIP
réside dans les quatre points suivants:
a) Be-TRIP propose des recommandations personnalisées
suite à un processus de recherche d’informations par brow-
sing alors que les autres travaux se placent tous dans une
recherche par formulation de requête.
b) Be-TRIP due à l’approche Broawday utilisée est le seul
à prendre en compte l’ordre des actions utilisateur dans sa
recherche d’information mais aussi son déplacement.
c) Be-TRIP propose un calcul de recommandation basé sur
des similarités de comportements utilisateur en recherche
d’information sur le Web corrélés à son déplacement. Cer-
tains travaux de personnalisation s’appuie sur un seul his-
torique : citons Palio (recherche d’informations), Crumpet
(déplacement).
d) Enfin Be-TRIP grâce au raisonnement à partir de cas
a des capacités d’apprentissage en-ligne de nouveaux cas
comme dans Dietorecs mais aussi sur la qualité des recom-
mandations proposées: en effet l’utilisateur étant dans la
boucle du raisonnement (dans la phase de révision), le système
apprend des hypothèses de recommandations qui s’avèreraient
fausses i.e non choisies par l’utilisateur.

5. CONCLUSIONS ET PERSPECTIVES
Pour conclure, nous pensons qu’associée à la politique géné-
rale des déplacements d’une communauté d’agglomération
par exemple, les systèmes de recommandation sont de nou-
veaux outils au service de stratégies socio-économiques, en-
vironnementales, touristiques et culturelles (itinéraires thé-
matiques) associant à la fois contenu et optimisation des
déplacements, en particulier les transports en commun.

Dans cet article, nous avons spécifié Be-TRIP un assistant
au déplacement pre-trip et on-trip basé sur une approche

214



Auteurs Aide Recherche Données Approche Modes Corrélation
par recherche/déplacement

Image [3] on-trip requête mono-utilisateur A.P.U pull non
Wh@m [7] pré/on-trip requête groupe A.P.U + F.C. pull non

Crumpet [9] on-trip requête mono utilisateur A.P.U push/pull non
Dietorecs [6] pre-trip requête groupe A.P.U et F.C. pull non

(RàPC)
Palio [2] pré/on-trip requête mono utilisateur A.P.U pull non
Be-TRIP pré/on-trip browsing groupe A.P.U. et F.C. push/pull oui

(RàPC)

Tab. 1 – Tableau récapitulatif

originale de calcul de recommandations personnalisées, l’ap-
proche Broawday. L’originalité de cet assistant réside essen-
tiellement dans l’utilisation de deux niveaux de personna-
lisation corrélés aussi bien en pre-trip qu’en on-trip: a) un
basé sur l’historique de déplacement de l’utilisateur et le
contexte géographique dans lequel il se trouve lors de la re-
cherche d’information et b) un relatif à l’historique de sa
recherche sur Internet en termes de contenu, etc.

Les travaux en cours et futurs à relier avec le projet Mobi-
VIP concernent plusieurs aspects:
- La poursuite de la spécification et la réalisation de la prise
en compte des aspects localisation et dispositif de l’utilisa-
teur en déplacement et l’utilisation de connaissances dans le
domaine visé dans l’étape d’adaptation de cas; son intégration
dans le serveur d’applications visé;
- L’évaluation de l’aide apportée par notre maquette auprès
d’utilisateurs via des expérimentations;
- L’étude de l’application de recherches menées dans l’équipe
(soutenues par la région Paca) en classification hiérarchique
ascendante [5] pour la classification de profils de compor-
tements utilisateur corrélant divers contextes d’utilisation
différents: par exemple selon la localisation, selon le type de
comportement (recherche ou déplacement réel) ou selon les
dispositifs utilisés;
- Et enfin l’analyse de la qualité des recommandations pour
l’aide à la reconception du système d’information.

6. REFERENCES
[1] A. Aamodt and E. Plaza. Case-Based Reasoning :

Foundational Issues, Methodological Va riations, and
System Approaches. The European Journal oo
Artificial Intelligence, 7(1):39–59, 1994.

[2] A. Andreadis, G. Benelli, A. Bianchi, P. Fedele, and
G. Giambene. Universal Access to Personalised
Information Services. Technical report, Dipartimento
di Ingegneria dell’Informazione, Universita di Siena,
Siena, Italy, July 2001. IST-PALIO project.

[3] P. Blythe, S. Edwards, and S. Scott. Delivering
dynamic, personalised travel and tourist information
through mobile phones and PDAs: the IMAGE
project. In 10th World Congress and Exhibition on
INTELLIGENT TRANSPORT SYSTEMS AND
SERVICES, 16 - 20 November 2003.

[4] S. Chelcea. Etude, implémentation et évaluation d’un
algorithme de classification pour des systémes de
recommandations dans le domaine du tourisme.
UNSA Internship report, juillet 2002. Sophia
Antipolis, France.

[5] S. Chelcea, P. Bertrand, and B. Trousse. Un Nouvel
Algorithme de Classification Ascendante 2-3
Hiérarchique. In Reconnaissance des Formes et
d’Intelligence Artificielle (RFIA 2004), Centre de
Congrès Pierre Baudis, Toulouse, France, 28-30
Janvier 2004.

[6] D. R. Fesenmaier, F. Ricci, E. Schaumlechner,
K. Wöber, and C. Zanellai. DIETORECS: Travel
Advisory for Multiple Decision Styles. In Enter
conference, Helsinki, Finland, January 29 - 31 2003.

[7] IST project for tourism. WH@M: The World in your
H@nds on the Move. Congress on IST - ITS, 20-23
June 2001. Bilbao, Spain.

[8] M. Jaczynski. Modèle et plate-forme à objets pour
l’indexation des cas par situation comportementale:
application à l’assistance à la navigation sur le Web.
PhD thesis, Université de Nice-Sophia Antipolis,
Sophia-Antipolis, France, décembre 1998.

[9] S. Posla, H. Laamanen, R. Malaka, A. Nick, P. B. e,
and A. Zipf. CRUMPET: Creation of User-friendly
Mobile Services Personalise d for Tourism . In IEE 3G
2001 conference, pages 26–28, London, UK, March
2001.

[10] P. Resnick and H. R. Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.

[11] B. Trousse, M. Jaczynski, and R. Kanawati. Une
approche fondée sur le raisonnement à partir de cas
pour l’aide à la navigation dans un hypermédia. In
J.-P. Balpe, S. Natkin, A. Lelu, and I. Saleh, editors,
Proceedings of Hypertexte & Hypermedia : Products,
Tools and Methods (H2PTM’99), pages 13–26. hermes,
august 1999. Paris.

[12] A. Wexelblat and P. Maes. Footprints: Visualizing
histories for web browsing. In Proceedings of RIAO’97,
Computer Assisted Informat ion Retrieval on the
Internet, Montreal, Canada, 1997.

[13] T. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal.
From user access patterns to dynamic hypertext linki
ng. Computer Network and ISDN systems,
28:1007–1014, mai 1996. (proceedings of the 5th
international WWW conference).

215




