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Abstract

Classification is one of the many fields in Data Mining which aims at extracting informa-
tion from large data volumes by using different computational techniques from machine
learning, statistics and pattern recognition. One of the two common approaches in the
unsupervised classification (or clustering) is the hierarchical clustering. Its purpose is
to produce a tree in which the nodes represent clusters of the initial analyzed data.
One of the main drawbacks of the most known and used hierarchical agglomerative
method, the Agglomerative Hierarchical Classification (AHC), is the fact that it can-
not highlight groups of objects with characteristics from two or more classes, property
found for example in overlapping clusters.

This thesis deals with a recent extension of the Agglomerative Hierarchical Classi-
fication, the Agglomerative 2-3 Hierarchical Classification (2-3 AHC), proposed by P.
Bertrand in 2002, with a focus on its application to the Data Mining fields. The three
major contributions of this thesis are: the theoretical study of the 2-3 hierarchies (also
called paired hierarchies), the new 2-3 AHC algorithm and its implementation, and the
first applicative study of this method in two Data Mining fields.

Our theoretical study includes the discovery of four new theoretical properties of
the 2-3 hierarchies and the definition of the aggregation links between clusters for this
type of structure. This allowed us to highlight a special case of clusters merging and
to introduce an intermediate step in the 2-3 hierarchies’ construction. The systematic
and exhaustive study of possible cases leads us to formulate the best choices in term of
linkage and structure indexing, in order to improve the quality of the 2-3 hierarchies.

Next, based on our theoretical study and contributions, we proposed a new general
Agglomerative 2-3 Hierarchical Classification algorithm. This represents the result of
our previous study: a powerful algorithm exploring the multiple possibilities of the
2-3 hierarchical model. A theoretical complexity analysis of our 2-3 AHC algorithm,
showed a reduced complexity from O(n?) in the initial algorithm, to O(n?logn) for our
algorithm. The tests on different datasets (real and generated) confirmed our theoreti-
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cal complexity study. Very satisfying results were obtained by analyzing the ”quality”
of the 2-3 hierarchies compared with the traditional hierarchies: up to 50% additional
created clusters and a maximal gain of 84% using the Stress index.

We also proposed an object-oriented model of our algorithm that was integrated
in the “Hierarchical Clustering Toolbox” (HCT), a toolbox that we developed for the
visualization of the agglomerative hierarchical classification methods. We also inte-
grated this model as a method of case indexing in the Case Based Reasoning platform,
CBR*Tools, developed at INRIA Sophia Antipolis, and used it to design recommender
Systems.

Our last contribution lies in the first study of the applicability of the 2-3 AHC on
real data from two Data Mining fields: Web Mining and XML Document Clustering.
This study leads to interesting results and was based on the comparison of the 2-3 hier-
archical clustering of INRIA’s research teams using either the users’ behavior on their
Web sites, or their XML annual reports, with the existing structure of the research
themes organization.

Finally, to conclude, we show that this subject is far from being exhausted and
we propose several research perspectives related to the Agglomerative 2-3 Hierarchical
Classification and to our HCT toolbox, developed during this thesis.

Keywords: 2-3 hierarchy, paired hierarchy, Agglomerative 2-8 Hierarchical Classifica-
tion, Clustering, linkage, index, HCT toolbox, Web Mining, XML Document Clustering



Résume

La classification est I'un des nombreux domaines de la Fouille de Données qui vise
a extraire I'information a partir de grands volumes de données en utilisant différentes
techniques computationnelles de I’apprentissage, des statistiques et de la reconnaissance
des formes. Une des deux approches fondamentales de la classification non supervisée
(ou clustering) est la classification hiérarchique. Son but est de produire un arbre dans
lequel les nceuds représentent des classes des objets analysés. L’un des inconvénients
principaux de la méthode ascendante hiérarchique la plus connue et la plus utilisée,
la Classification Ascendante Hiérarchique (CAH), est le fait qu’on ne peut pas mettre
en évidence de classes d’objets ayant des caractéristiques communes. Cette propriété
se trouve par exemple dans les classes qui se recouvrent et qui ont été introduites et
étudiées dans les extensions de la CAH.

Cette these porte sur une extension récente de la Classification Ascendante Hiérar-
chique, appelée Classification Ascendante 2-3 Hiérarchique et proposée par P. Bertrand
en 2002, avec en vue son application au domaine de la Fouille de Données. Les trois con-
tributions majeures de cette these résident dans 1’étude théorique des 2-3 hiérarchies
(appelées aussi paired hierarchies), dans le nouvel algorithme de 2-3 CAH avec son
implémentation, et dans la premiére étude applicative de cette méthode dans deux do-
maines de la Fouille de Données.

Notre étude théorique inclut la découverte de quatre nouvelles propriétés théoriques
des 2-3 hiérarchies et les définitions des liens d’agrégation entre les classes pour ce type
de structure. Ceci nous a aussi permis de mettre en évidence un cas spécial de fusion des
classes et d’introduire une étape intermédiaire dans la construction des 2-3 hiérarchies.
L’étude exhaustive et systématique des cas possibles nous a permis de formuler les
meilleurs choix concernant le lien d’agrégation et l'indexation de la structure, avec en
vue I'amélioration de la qualité des 2-3 hiérarchies.

Dans un deuxiéme temps, basé sur notre étude et contributions théoriques, nous
proposons un nouvel algorithme général de Classification Ascendante 2-3 Hiérarchique.
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Ceci représente la concrétisation de notre travail précédent, aboutissant & un algorithme
performant, qui explore plusieurs possibilités du modele 2-3 hiérarchique. Une anal-
yse théorique de la complexité de notre algorithme a montré que la complexité a été
réduite de O(n3) dans I’algorithme initial de 2-3 CAH & O(n?logn) pour notre algo-
rithme. Les comparaisons des 2-3 hiérarchies avec les hiérarchies classiques obtenues
sur différents ensembles de données (réels et simulés), ont validé 1’analyse de complexité
par les temps d’exécution. En plus, des résultats tres satisfaisants ont été obtenus en
analysant la ”qualité” des 2-3 hiérarchies comparées aux hiérarchies classiques : jusqu’a
50% de classes en plus, et un gain maximum de 84% en utilisant 'indice de Stress. Nous
avons ensuite proposé un modele orienté-objet de notre algorithme de 2-3 CAH, qui
a été intégré dans une boite a outils “Hierarchical Clustering Toolbox” (HCT) que
nous avons développée pour la visualisation des méthodes ascendantes hiérarchiques de
classification. Ce modele a été également intégré comme méthode d’indexation des cas
dans la plateforme de Raisonnement & Partir de Cas (RaPC), CBR*Tools, développé
a 'INRIA Sophia Antipolis, et utilisé pour la conception des systemes de recomman-
dations.

Notre derniére contribution concerne une toute premiere étude de l'utilisation de
notre algorithme de 2-3 CAH sur des données réelles relevant de deux domaines de la
Fouille des Données : le Web Mining et la Classification de Documents XML. Celle-ci a
donné lieu a des résultats intéressants et portait sur la comparaison de la classification
2-3 hiérarchique des équipes de recherche de PINRIA en utilisant soit le comportement
des utilisateurs sur leur sites Web, soit leur rapport annuel d’activité écrit en XML,
par rapport a la structure organisationnelle existante en thémes de recherche.

Pour conclure, nous montrons que ce sujet est loin d’étre épuisé et nous pro-
posons plusieurs pistes de recherche future relatives & la Classification Ascendante 2-3
Hiérarchique ainsi qu’a notre boite a outils HCT, développée pendant cette these.

Mots Clefs: 2-3 hiérarchie, paired hierarchy, Classification Ascendante 2-3 Hiérarchique,
Classification, lien, indice, boite a outils HCT, Web Mining, Classification de Docu-
ments XML
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Chapter 1

Introduction

“... le seul moyen de faire une méthode instructive et naturelle,
c’est de mettre ensemble les choses qui se ressemblent,
et de séparer celles qui different les unes des autres.”

Georges Louis Leclerc, Comte de Buffon, Histoire Naturelle, 1749

(“... the only way to have an instructive and natural method,
s to put together things that resemble,
and to separate from each other the things that are differents.”)

Sometimes it is difficult to imagine how revolutionary an idea was, especially when
that idea is today accepted as common knowledge. One of these, is the above well-
known phrase of the famous naturalist Georges Louis Leclerc (1707-1788), which is
known today as one of the first known definitions of the classification concept.

Today, classification is one of the many fields in Data Mining (DM), also known
as Knowledge Discovery in Databases (KDD) [FPSSU96|, which aims at extracting
information from large data volumes. In order to achieve this, data mining uses different
computational techniques from machine learning, statistics and pattern recognition.

Unsupervised classification or clustering [Gor99, JMF99, Ber(2a] is one of the most
important fields in Data Mining and, as said before, consists in grouping together
similar items into same groups while the dissimilar ones are asserted to different groups,
without any apriori knowledge on the obtained groups. Alternatively, when the prior
knowledge on the data is present, the technique is called supervised classification or
discriminant analysis. These groups of objects are usually called clusters or classes
and are used to synthesize the information contained in the initial data. In this case
one can say that simplification is preferred to the details in the data.

Clustering has found lately a wide spread of applications in a large variety of fields,
from archaeology and natural sciences, to bioinformatics, psychology and economics to

3
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name only a few. Therefore, clustering merges and combines different techniques from
different disciplines: statistics, computer science, mathematics, artificial intelligence,
databases, etc. For instance, the continuous growth of the World Wide Web (WWW),
has lead to the emergence of new applications domains, such as the Web Mining, that
is: the application of DM techniques on Web data. This new field and some of its
classification techniques are discussed later in Part II of this thesis.

The two common approaches in statistical clustering are partitioning clustering and
hierarchical clustering [YKM99].

In the partitioning clustering one starts with the whole initial analyzed dataset,
which is then split into & clusters. Usually the number k£ has to be specified before
the analysis and is influencing the result of the clustering. There are also techniques
to determine the most appropriate values of k, based usually on the selection of the
“optimal” result (partition) for a range of values of k [MC85, Dub87].

The partitioning methods usually produce clusters by optimizing a criterion func-
tion, and sometimes due to the combinatorial number of possibilities, the algorithm
is run repeatedly. Example of used criterion in this case include: the squared error
criterion, the diameter, the sum of distances, etc.

Among the most known partitioning methods, we remind the k-means [Mac67], the
dynamic clustering [Did73], the minimum spanning trees [GH85], etc. Interested reader
can refer to [Gor99] for more details.

The hierarchical clustering methods can also be divided into agglomerative, divisive
and incremental methods. The purpose of these types of classification is to produce a
tree in which the nodes represent clusters of the initial analyzed set. In particular, the
initial set is the root of the tree while the leaves represent the singletons (clusters with
one element). This type of structure gives thus an enhanced visual representation than
the partitioning methods. The investigator can then select the suitable partitioning
from its point of view, by making a trade off between the number of clusters and their
homogeneity degree.

In the incremental hierarchical methods, an already constructed classification of
objects is augmented by successively inserting new objects into the classification [Sib73,
BHTO05]. The interest of these kind of methods lie in their capacity to analyze very
large datasets. BIRCH [ZRL96], is a well-known incremental hierarchical classification
algorithm having an overall complexity of O(n).

In the hierarchical divisive methods, starting from a single cluster (of all objects),
successive splits of clusters are performed to obtain smaller clusters [Rao71, GHJ91].
The two main problems of this methodology are: which cluster to split?, and how to
split it?. Casual strategies in this case are the followings: split the highest cardinality
cluster, split each cluster at a given level or split the one with the largest intra-cluster
variance.
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In the agglomerative hierarchical methods, starting from the initial elements (the
singletons), the clusters are successively merged into higher level clusters, until the
entire set of analyzed objects becomes a cluster. These resulting hierarchical structures
contain a number of partitions which can be then easily visualized using a graphic.

By far, the most known and used hierarchical agglomerative method is the Ag-
glomerative Hierarchical Classification. Sometimes in different studies this method is
also called the Ascending Hierarchical Classification. In the rest of this document we
will denote it as the classical Agglomerative Hierarchical Classification or simply the
classical AHC method. This method has been extensively studied [SS63, Ben73, JD98]
during the last decades and has a wide number of applications in many different fields,
as bioinformatics, signal processing, web mining, etc.

In AHC, the iterative merging of clusters is made by minimizing a cost function
between clusters. This cost function is usually known as the aggregation index or the
linkage. But sometimes multiple pairs of clusters can minimize this cost function,
and choosing between them can have a big influence on the result [Har83]. The main
characteristic of this technique is that a succession of nested partitions is obtained.
This means that all clusters are either disjoint or included one in another, during the
final result interpretation.

But sometimes data can contain objects with characteristics from two or more
classes, property found for example in overlapping clusters. For instance, a work can
often belong to two different genres in document classification. Obtaining such clusters
using the classical AHC is not possible, and thus extensions of the classical AHC have
been lately proposed: the pyramids [Did73], the weak-hierarchies [BD89], the k-weak
hierarchies [Dia97] or more recently the 2-3 hierarchies [Ber02d] to name a few. Over-
lapping clusters present in these types of structures, can provide far more information
for the investigator’s analysis compared to the disjoint clusters in the classical hierar-
chies, but sometimes these structures can become very difficult to interpret especially
on larger datasets.

We resume next the classical AHC technique and its AHC algorithm in Section 1.1,
while the aforementioned extensions of the AHC are briefly presented and analyzed in
the following Section 1.2.

1.1 Classical Agglomerative Hierarchical Classification (AHC)

Generally speaking, the main goal of the classical Agglomerative Hierarchical Classifi-
cation, is to create a hierarchy of nested partitions over an initial set of elements. The
set of elements can be a set of individuals or a set of variables, which are two-by-two
comparable.
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Definition 1 : A collection C of non-empty parts of a finite set E is called a hierar-
chy if:

1. E€C;

2. Vx € E we have that {z} € C (terminal nodes or singletons);

3. V(X,Y) € C x C we have that X NY € {0, X, Y} (we say that X and Y are
hierarchical).
O

Sokal and Sneath proposed in 1963 [SS63] the first version of the classical AHC
algorithm, consisting in two phases: initialization and merging.

During the first phase, the singletons dissimilarity matrix is computed using a
chosen dissimilarity measure, while the singletons represent the initial set of clus-
ters. We remind that a dissimilarity is a non-negative mapping § defined on the
couples of analyzed elements satisfying the reflexivity (Vz : d(z,z) = 0) and sym-
metry (Vz,y: 0(x,y) = d(y,z)) conditions. A distance is a dissimilarity satisfying the
triangular condition: Vz,y,z : (z,y) < d(x,y) + d(y, 2).

In the second phase of the algorithm, successive mergings are performed between
the two closest clusters, until the initial objects are all merged into a final cluster.
The two clusters are closest in the sense of a chosen aggregation link, (i.e. single link,
complete link, average link, etc.).

At the end of the second phase, the resulting structure is a sequence of nested
partitions which can be visualized using a graphic called dendrogram.

A small example of a classical hierarchy is presented in Figure 1.1.

il

Figure 1.1: Example of a classical hierarchy

A hierarchy will induce a new dissimilarity matrix over the initial elements based on
the dissimilarity at which they were first regrouped in a cluster in the hierarchy. This
induced dissimilarity matrix is an wultrametric. Formally, an ultrametric is a distance
satisfying the ultrametric inequality: d(z,z) < maz{d(z,y),d(y,z)}. This inequality is
also referred as the strong triangle inequality.

The induced matrix can be then compared with the initial matrix or with the
induced matrices of other hierarchical methods, for quality analysis [SS73a].

The AHC algorithm has an O(n?logn) complexity and usually uses as input a
dissimilarity matrix on the initial elements. More details on the classical AHC and its
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algorithm are presented in Section 2.1.

1.2 Extensions of the Classical AHC

As we saw, the classical hierarchies consist in sequence of nested clusters, which are
strictly included or disjoint. But usually the clusters contained within the analyzed
data can also have common parts (properties) that are not emphasized within the
classical hierarchies. For this, different classification methods providing overlapping
clusters have been proposed: the additive clustering [SAT9] and the By method [JS68]
as non-hierarchical methods, while the pyramids [Did84], the weak hierarchies [BD89],
the k-weak hierarchies [Dia97] and the 2-3 hierarchies [Ber02d] are all extensions of the
classical AHC.

In the following we will make a short analysis of the methods that extend the
hierarchical framework.

1.2.1 Pyramidal Classification

The Ascendent Pyramidal Classification (denoted APC in the rest of the text) was
proposed in 1984 by Diday [Did84] in order to generalize the classical AHC. The result
in this case is a pyramid, a structure containing “overlapping” clusters (non-disjoint or
non-hierarchical clusters). In a pyramid a cluster can overlap at most two other clusters.
A pyramid is also denoted as a pseudo-hierarchy [Fic84]. This type of structure is richer
than a classical hierarchy, and represents better the initial analyzed data.

Definition 2 : Let be E a finite set and C a set of non-empty parts of E (called nodes
or clusters), C is a pyramid if it has the following properties:

1. E€C;

2. Vx € E we have that {x} € C (terminal nodes or singletons);

3. V(X,Y) € C x C we have that XNY €C or X NY =;

4. A total order 0 exists in E compatible with C. O

The pyramidal model was introduced in order to achieve the notion of compatibility
between a dissimilarity d and an order #. We say that d and 6 are compatible iif V
ordered triplet a; 6 x; 0z, we have: d(x;, ) > max{d(x;,x;),d(z;,zx)}. The clusters
in a pyramid are intervals of the order 6, and can have common elements (individuals).
In a pyramid the number of linear orders on the initial set F can be 2 or more, compared
to the 2"~ compatible orders for a classical hierarchy.

Knowing that clusters in a pyramid can not have more than two predecessors

n(n—1)

5— compared to n — 1

[Did84], the maximal number of non-singleton clusters is
in a classical hierarchy (n = |E|).
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As in the case of the hierarchies, an indexing value f can be associated to each

cluster in a pyramid, to obtain an indexed pyramid, for which:
e f(z) =0 where z € E;
VX Y el XCY = f(X)<f(Y).

A weakly indexed pyramid is a indexed pyramid in which if X C Y and f(X) = f(Y)
implies that X has two predecessors. Also, a pyramid is strictly indexed if X C Y
implies that f(X) < f(Y).

The hierarchies are a particular case of pyramids, that is: when no cluster “overlaps”
another cluster.

Different APC algorithms have been proposed lately, as a result of the different stud-
ies on the pyramidal classification [Ber86, Did86, Bri91, GS94, BJ97, Mfo98, GCA9S,
DBMO01, RDO05].

An example of a pyramid is presented in Figure 1.2. Compared with the classical
hierarchy on the same dataset from Figure 1.3 the pyramid contains more clusters and
gives a more accurate representation of the initial data. But for large datasets, the
pyramids can become difficult to interpret [Did86], due to the big number of created
clusters or to the investigators unfamiliarity with the pyramids.

As in the classical hierarchical case, by selecting an indexing level, a pyramid can
be sectioned in order to obtain a clusters partition. The obtained clusters can be
overlapped, highlighting thus common characteristics of different groups of individuals.
This is no longer a partitioning, and we say that we obtain a covering or overlapping
of the initial elements.

To ease the interpretation, different techniques of refining a pyramid based on the
clusters indexing values have been proposed [RD04, RD05].

I R ——

Figure 1.2: Pyramid Figure 1.3: Classical Hierarchy

The APC algorithm [Did84, Ber86, Bri91, Mfo98] is more complex that the classical
AHC one since at each step an “order” on the candidates clusters must be maintained,
which implies additional tests and conditions. Its complexity is in O(n3). The APC
algorithm has been integrated into the European software, SODAS [EURJ, which aims
at extending the Statistics, the Data Mining and the Analysis of classic or complex
data to concepts (symbolic data [Did87, BD0O]).
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The pyramidal classification has been applied in different fields, such as the bioin-
formatics [ADLCR99, Aud99] (genome analysis), or more generally in symbolic data
analysis [BPZKCO00].

1.2.2 Weak Hierarchies

The weak hierarchies were introduced in 1989 by Bandelt and Dress [BD89] and they
generalized the classical hierarchies and also the pyramids. The main characteristics of
a weak hierarchy is the fact that the intersection of any three clusters is the intersection
of two of them. The same notion was also introduced in 1988 by Babedat [Bat88], under
the name of maximum medinclus.

Definition 3 : A weak hierarchy is a set C of non-empty parts of a finite set E& such
that:
1. E€C;
2. Vo € E we have that {x} € C (terminal nodes or singletons);
3VX,)Y,ZeC=XNYNZe{XNY, XNZYnNZ}. a

A weak hierarchy C is said to be closed [Ban92, DF94] if it is closed under non-
empty intersections: VX, Y € Cand X NY # () = X NY € C. A closed weak hierarchy
is also called an quasi-hierarchy.

a b c d

Figure 1.4: Non-closed weak hierarchy

Figure 1.5: Quasi-hierarchy

An example of a non-closed weak hierarchy is given in Figure 1.4: the intersection of
{abc} with {bed} is {bc} which is not a cluster of the weak hierarchy. A quasi-hierarchy
is presented in Figure 1.5.

As in the case of the pyramids, the weak hierarchies contain more internal clusters
(non-singletons), maximum O(n?) [BD89, Bru01], than a classical hierarchy, giving
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thus a better data representation. But in this case the visual representation of a weak
hierarchy can be difficult to interpret due to the large number of clusters and due to
the edges intersection (see Figure 1.4).

The mathematical properties of the weak hierarchies have been widely studied in the
literature [BD94, Dia96, BJ97, Bru01, BBO04]| and concern mainly the mathematical
relations between the different types of weak hierarchies (closed, k-weak, etc) and the
induced dissimilarity matrices (i.e. the quasi-ultrametrics, the weak k-ultrametrics).
As in the case of pyramids, the induced dissimilarities are obtained from the different
types of indexed weak hierarchies.

A generalization of the weak hierarchies to k intersections, has been proposed in
[Dia97] and studied in [BJO03]. This kind of structure is called a k-weak hierarchy.

Definition 4 : A k-weak hierarchy is a set C of non-empty parts of a finite set E
such that:

1. E€C;

2. Vo € E we have that {x} € C (terminal nodes or singletons);

8. VX1, X, o, Xpg1 € C = Nigqr,pr 13 Xi € {Micgq1,. b 13—3 Xill < < k+1}.

The algorithm to construct such weak hierarchies has a complexity of O(n?) [Bru05].

1.2.3 Agglomerative 2-3 Hierarchical Classification (2-3 AHC)

The Agglomerative 2-3 Hierarchical Classification (2-3 AHC) was recently proposed
[Ber02d] by P. Bertrand*, and as in the pyramids and weak hierarchies case, it gener-
alizes the classical Agglomerative Hierarchical Classification. The resulting structure
is called a 2-8 hierarchy’ and it also allows overlapping clusters.

The main difference is that in a 2-3 hierarchy, a cluster can overlap only one other
cluster. This restricts the number of internal clusters in a 2-3 hierarchy compared with
the pyramids, but still gives a richer structure than a classical hierarchy.

Definition 5 : A 2-3 hierarchy is a set C of non-empty parts of a finite set E and
closed under non-empty intersections such that:

1. E€C;

2. Vo € E we have that {x} € C (singletons);

3. VX € C we have {Y €eC: XNY ¢ {X,Y,0}}| <1. 0

*Paris-IX Dauphine University & AxIS INRIA Rocquencourt
TA 2-3 hierarchy will be called in the future a paired hierarchy [Ber], but in the rest of this document
we will use the initial terminology of 2-3 hierarchy introduced in [Ber02d]
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An example of a 2-3 hierarchy is given in Figure 1.6.

Figure 1.6: Example of a 2-3 hierarchy
The maximal number of internal clusters in a 2-3 hierarchy is [3(n — 1), which
represents 50% more than a classical hierarchy. This kind of structure is clearly gen-
eralized by the pyramids and the weak hierarchies, but its smaller number of internal
clusters allows a smoother interpretation of the 2-3 AHC results.

The 2-3 AHC algorithm proposed in [Ber02d] has a O(n?®) complexity. Due to its
recent nature, no additional study of these structures was made and no implementation
of the 2-3 AHC algorithm was realized.

1.2.4 Summary

Figure 1.7 illustrates the extensions of the classical hierarchies presented so far and
their inclusion. As we can see, the hierarchies are a particular case of 2-3 hierarchies,
which in turn are a particular case of pyramids and so on.

4 N

4 N

Pyramids

Weak Hierarchies

.

k—Weak Hierarchies

- /

Figure 1.7: Classical Hierarchies Extensions
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1.3 Motivations and Thesis Objectives

As we saw, extensions of the classical AHC technique have been proposed in the last
decades to improve the data representation by allowing cluster overlapping. Such ex-
tensions include: the pyramids, the k-weak hierarchies, the 2-3 hierarchies etc. But
their main drawbacks are the high complexity and the difficulty to interpret the re-
sults on larger datasets. Indeed, the number of created clusters is sometimes in O(n?)
(pyramids, k-weak hierarchies).

In the case of the most recent extension, the Agglomerative 2-3 Hierarchical Classi-
fication [Ber02d], the number of created clusters is relatively smaller, | 3(n — 1), while
its complexity is @(n3) compared to the O(n?logn) of the classical AHC. This could
make the 2-3 hierarchies easier to interpret, although the structure refinement might
also be required when analyzing large datasets.

As we said in Section 1.2, the newly proposed 2-3 hierarchical structures are the
only one with no additional theoretical study realized. Therefore some questions might

arise:
e are there any other theoretical properties of the 2-3 hierarchies?
e can the complexity of the 2-3 AHC algorithm be reduced?

Moreover, the 2-3 AHC algorithm proposed in [Ber02d] was not implemented so
far, which means that there are no applications of the 2-3 AHC whatsoever.

In this context, the objectives of this thesis are as follows:

e a theoretical study of the Agglomerative 2-3 Hierarchical Classification:

— new properties of the 2-3 hierarchical structure;

a new 2-3 AHC algorithm based on the properties of the 2-3 hierarchies;

a complexity reduction of the 2-3 AHC algorithm;
— a first implementation of a 2-3 AHC algorithm.

e an empirical study of the 2-3 AHC including;:

— the complexity validation;

— comparison with the classical AHC.

e a first study of the applicability of the 2-3 AHC in Data Mining fields and in
a recommender system context. From the DM fields, we chosen the recent re-
search field of Web Mining, while the chosen recommender system is the Be-TRIP
mobility recommender system that we proposed.
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1.4

Thesis Document Structure

In this section we present the thesis document structure with a brief description of the

different chapters according to our theoretical and applicative study:

Part

I: Contributions to Hierarchical Clustering

In the first part of the thesis we will present our contribution related to the Agglomer-

ative
view:

2-3 Hierarchical Classification from the methodological and algorithmic point of

Chapter 2: Theoretical Study of the Agglomerative 2-3 Hierarchical
Classification

In Chapter 2 we begin by presenting some used notions followed by the Agglomer-
ative 2-3 Hierarchical Classification introduced in [Ber02d]. Next, the theoretical
study of the 2-3 AHC will reveal three properties used later to propose a new
2-3 AHC algorithm. Also a study of the clusters dissimilarity measure (the ag-
gregation link) is performed to define the single link and the complete link for
the properly intersecting clusters. A special case of merging denoted the blind
merging is described and studied.

Chapter 3: A New Agglomerative 2-3 Hierarchical Classification Algo-
rithm

In Chapter 3 we propose a new Agglomerative 2-3 Hierarchical Classification
general algorithm based on our previous theoretical study and contributions from
Chapter 2. The main characteristic of this algorithm is an added intermediate
merging step. Other optional steps include the integrated refinement and the blind
merging avoidance. These optional steps give us four 2-3 AHC algorithm variants,
which can create different 2-3 hierarchies on same the dataset.

A theoretical complexity analysis of our 2-3 AHC algorithm proved that the com-
plexity was reduced from O(n?3) in the initial 2-3 AHC algorithm to O(n?logn)
for our algorithm.

Next, we tested the obtained 2-3 hierarchies and the classical hierarchy on different
datasets (Ruspini [Rus69], urban itineraries [Bus05], simulated data, Abalone
[Sam95]) for complexity execution times and structure quality. The obtained
execution times verified our theoretical complexity of O(n?logn). To determine
the created structures quality, we have chosen the Stress coefficient [JW82] for
comparing the initial data and the induced dissimilarity matrices. Using the
complete link, we obtained an average gain of 23% (for the Stress) while the
maximum gain was around 84% on the Abalone dataset.
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e Chapter 4: Toolbox for Hierarchical Clustering Methods and CBR*Tools
Integration

In Chapter 4 of this thesis we present our object-oriented model of our 2-3 AHC
algorithm which was implemented in Java. To better visualize, compare and
analyze the hierarchies and the 2-3 hierarchies created on a same dataset, we
developed the Hierarchical Clustering Toolbox. A brief presentation of the
toolbox is then provided.

Next, we integrated our 2-3 AHC algorithm in the Case-Based Reasoning (CBR)
software library, CBR*Tools [Jac98|, developed in our team. The purpose of
this integration was the use of our method as a case indexing method in a CBR
application, or more precisely in a recommender system to support information
retrieval in a mobility context.

As a part of the MobiVIP* project, we proposed a specification of such a sys-
tem, the Be-TRIP mobility recommender system [CGT04, TCGO04], based on the
CBR*Tools library and using the Broadway approach [TJK99]. Details on the
Be-TRIP system are presented in Appendix F while the details on the CBR*Tools
integration of our 2-3 AHC algorithm are given in Section 4.3.

To validate the use of the 2-3 AHC algorithms in the mobility context, some tests
were performed on a small generated dataset of urban itineraries in Section 3.5.2.

Part II: Study of applying the 2-3 AHC in the Web Mining and Document
Clustering Fields

In the second part of the thesis we will present two first studies of evaluating the interest
of applying the Agglomerative 2-3 Hierarchical Classification algorithm in Web Mining
and Document Clustering fields.

e Chapter 5: Web Usage Mining Application
The first study consists of applying our 2-3 AHC algorithm to cluster INRIA’s
research teams visited topics based on the Web users behaviours.

The goal of the application was to analyze the impact of the site structure (the
research themes especially) on the Web users navigations.

The analysis was performed on two time periods, before and after the research
teams reorganization into research themes.

*http://www-sop.inria.fr/mobivip/
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Our results show the impact of the site structure on users navigations, whilst
this study is, according to our knowledge, the first one to apply a hierarchical
classification method on Web Usage data.

e Chapter 6: XML Documents Clustering Application

In this Chapter, we applied our 2-3 AHC algorithm on homogeneous XML doc-
uments issued from the 2003 activity reports of INRIA’s research teams. The
goal of the application was the validation of an existing organizational structure
using our classification. Our second objective was to compare different 2-3 AHC
algorithms using as “reference” the classical AHC one.

Comparing the semi-structured XML documents is based on their structure only
or their structure and content. The following hypothesis is tested here: different
parts of the analyzed XML documents correspond to different dimensions of the
document collection and might play different roles in the performed classification.

We found that the best results are obtained with the 2-3 AHC algorithm avoiding
the blind merging (V3), which was the only one to always have a positive Stress
gain compared to the classical AHC.

Conclusions and Perspectives

Finally in this last Chapter of the thesis document, we will present the contributions,
the interests and the limitations of our work. Then, we will point out the future work
perspectives related to our study of the 2-3 AHC in the end of this thesis.






Part 1

Contributions to Hierarchical
Clustering
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Chapter 2

Theoretical Study of the
Agglomerative 2-3 Hierarchical
Classification

Being the newest extension of the classical hierarchies, the 2-3 hierarchies [Ber02d]
have been less studied. In this context we begin with a theoretical study of this type
of structure, study closely related to the initial 2-3 AHC algorithm from [Ber02d].

In order to present the 2-3 Agglomerative Hierarchical Classification [Ber02d], we
first need to present the classical Agglomerative Hierarchical Classification method and
its algorithm [SS63] (see Section 2.1) introduced in 1963 by Sokal and Sneath. Based on
its concepts and definitions, we will then present in Section 2.2 the 2-3 hierarchy concept
and the initial 2-3 AHC pseudo-algorithm proposed in 2002 by P. Bertrand [Ber02d].
As we said before, the interest of the 2-3 hierarchies is that they generalize the classical
hierarchies and have a richer structure. As in the case of the other extensions of the
classical hierarchies (see. Section 1.7), the 2-3 hierarchies allow clusters to overlap.

The theoretical study that we carried out on the Agglomerative 2-3 Hierarchical
Classification in this Chapter has revealed four properties (cf. Section 2.3). These
properties are used to analyze the algorithm execution influence on the created 2-3
hierarchy (cf. Section 2.6) and then later to propose a new 2-3 AHC algorithm (cf.
Chapter 3).

Next we studied different ways of defining an aggregation index (cf. Section 2.4)
which is the cluster dissimilarity measure used as an input in the classical AHC and
2-3 AHC algorithms. We thus decided which definition of the aggregation index (called
also link) would be more appropriate in the context of the 2-3 hierarchies especially for
the complete and single link. Being closely related to the aggregation index, we studied
in Section 2.5 the 2-3 hierarchies indexing. A special type of merging called the blind
merging is revealed (cf. Section 2.6) and analyzed (cf. Section 2.7).

19
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Before concluding in Section 2.9, we first analyze (cf. Section 2.8) which one of the
complete link definitions is better from the complexity execution point of view.

Next, in Chapter 3 and based on the study presented in this Chapter, we will
first propose a new 2-3 AHC pseudo-algorithm followed by a proposition and first
implementation of a 2-3 AHC detailed algorithm version. The advantages of this new
algorithm are its reduced complexity (from O(n?) to O(n?logn)) and a principle similar
to the classical AHC algorithm. Another variants of the 2-3 AHC algorithm are also
proposed to integrate the refinement step into the merging step and to avoid a special
merging case, denoted blind merging.

In the rest of the thesis we will denote the Agglomerative 2-3 Hierarchical Classi-
fication as the 2-3 AHC, whilst the classical Agglomerative Hierarchical Classification
will be denoted as the classical AHC, or simply the AHC.

2.1 Classical AHC: Method and Algorithm

We begin by introducing some basic notations that will be used in the rest of the
document.

We denote as E the set of objects that are to be analyzed and we assume that there
is a total of n objects in this set: F = {x; : i = 1,n}. Each object x; from this set is
described by m variables: x; = (a;ll, a:?, ..., x™) where z; € FE and i = 1,n. We suppose
that the analyzed set E is described by a dissimilarity, say 0, where 6(z,y) indicates
the degree of dissimilarity between two arbitrary objects z and y of F.

Sokal and Sneath proposed in 1963 in [SS63], a very general algorithm which can
be considered as the first version of the well known AHC algorithm. It is a very
simple classification algorithm based on a distance/dissimilarity matrix between initial
elements, denoted 9.

For example, the initial distance measure between the initial elements may be the
Euclidean distance:

(2.1)

or any other distance such as the rectangular distance, the Minkowski metric, the chi-2
distance, etc. Choosing the distance in also influenced by the type of variables that
characterize the individuals (numerical, nominal, symbolic, etc.).

A set of elements is called a class or cluster and can contain at least one element
and at most all the elements.

Besides this distance/dissimilarity measure on the initial elements, the AHC algo-
rithm uses a similarity measure between clusters and a measure of the heterogeneity
degree of these clusters. The former is known as the aggregation index, merging indez,
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cluster dissimilarity measure or simply link, is based on the initial elements distance

and is a symmetric mapping;:
p:P(E) x P(E) = [0,00), with p({z},{y}) =0(z,y) Yo,y e B (2.2)
The later is called the indexing measure or the indexing function and assigns to each

cluster an real positive value corresponding to its heterogeneity degree.

The AHC algorithm consists of an initialization phase, a recursive regrouping (merg-
ing) phase, and an ending condition. In the initialization phase, the initial elements
to be analyzed are put into single-elements clusters, called the singletons. Their in-
dexing value f (representing the heterogeneity degree), is then set to 0 for all of them:

f{z})=0,Vz e E.

Next, the recursive regrouping/merging phase is performed. Basically, at each step
the two nearest elements in the sense of the chosen aggregation index, are selected
from the distance/dissimilarity matrix and regrouped into a single cluster. Then the
dissimilarities p between the new cluster and the rest of the clusters are computed
using one of the following aggregation indexes:

e single linkage - the closest neighbor:

pst(X,Y) =min{d(z,y) :x € X,y € Y} (2.3)

e complete linkage - farthest neighbor, (also known as the total linkage):

(X, Y) =max{o(z,y) :x € X,y € Y} (2.4)
e average linkage - average distance between elements:

Yo(xy)
X, Y)==——"= h X Y 2.
:ual( ) ) ‘X’ < |Y|7 wit T € Y € ( 5)

e and when possible to compute (spaces with numerical dimensions):

— the distance between gravity centers,

— the Ward’s criterion [War63]:

_ XY

x252(7,7) with € X,y €Y and X,Y

the (gravity) centers of X and Y (2.6)

— the weighted pair-group method using averages (WPGMA) [SS73al, etc.
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The choice of the distance (dissimilarity) measure between clusters has a big influ-
ence on the resulting structure. The average-link, complete-link, and Ward’s methods
tend to favor spherical clusters, while single-link clustering resembles to density based
methods and can produce “elongated” clusters [Fas99].

Generally speaking for all algorithms, the main issue is the computation of these
formulas during their execution. Indeed, for each created cluster X UY one must
compute the link between him and every other existing cluster Z that can be still
merged. The single link and the complete link use the minimum and the maximum
between (X, Z) and (Y, Z), but for others the computation could be a problem. But
the other links can also be easily computed using different combinations of the existing
link values p(X,Y) and pu(X, Z).

For this, Lance and Williams introduced in 1967 [LW67] a general formula:

WX UY, Z) = azp(X, Z) + ayu(Y, Z) + (X, Y) +7|u(X, Z2) — (Y, Z)|  (2.7)

Table 2.1 bellow presents the parameters values for the most common linkages,
where ng, n, and n, are the cardinals of the sets X, Y and Z.

Coefficients
Link o v 0 K
Single : : 0 -1
Complete % % 0 %
UPGMA (group average) nﬁfny nﬁf’ny 0 0
WPGME (weighted average) : : 0 0
UPGMC (unweighted centroid) nz’fny nﬁfny —(sz&yp 0
WPGMC (weighted centroid) 3 3 -1 0
Ward’s criterion n;ff:y o n;ﬁ:y T m g U

Table 2.1: Coefficients values for different links

When two clusters are merged, the dissimilarity between them is associated to
the new cluster and it represents the “degree” (dissimilarity) at which the elements
in the two clusters were regrouped (the heterogeneity degree, f). Usually we have:
f(XUY) =pu(X,Y). Also the relations between the new cluster and the merged ones,
are stored for each of them.
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The algorithm stops when we have merged the last two remaining clusters and the
resulting cluster thus contains all the elements of FE.

The result is sequence of nested partitions, that can be visualized using a graphic,
called dendrogram or classification tree (see Figure 2.1).

boan |

Figure 2.1: Dendrogram

This indexed hierarchy will induce a new distance matrix which is an wultrametric
over the initial elements, based on the distances at which they were first regrouped.
For example, the induced distance §’ between two elements x and y has the value of
the indexing function f of the cluster in which they are first regrouped together:

8 (z,y) = f(A) where z,y € A and $B C A such that z,y € B. (2.8)

The induced ultrametric can be then compared to the initial distance/dissimilarity
matrix for quality analysis, by using different indices like the Stress formula [JW82],
the Pearson correlation coefficient, etc.

Information from the indexed hierarchy and its nested partitions can also be used
to generate clusterings of the initial elements. These clusterings are actually the nested
partitions that form the hierarchy. To select a partitioning, one can chose an indexing
level and then select in the hierarchy all the maximal clusters below that level. The level
is selected by analyzing the indexing levels of the clusters in an hierarchy to detect if
there are any important gaps (distances) between them. As the indexing level represents
the cluster heterogeneity degree, it means that the partitioning corresponding to the
lower cluster level is more homogeneous. A trade off between the approximate number
of desired clusters in a partition and the heterogeneity degree (the clusters levels) must
be made however. This partitioning technique is sometimes referred as “cutting” the
hierarchy.

The dendrogram can be also analyzed from the singletons proximity (grouping)
point of view. This kind of analysis is especially used in bioinformatics by the genome
researchers who are trying to find meaningful clusters in DNA microarray data, also
known as gene arrays or gene chips. Finding clusters of genes with similar expression
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patterns could lead to better understanding of the functions those genes. One of the
most studied cases is the human genom, which contains approximately 40,000 genes.
The dendrogram can be horizontally displayed (see Figure 2.2 presenting a small hierar-
chy of INRIA’s research teams), while individuals are visually depicted (colors, labels)
to ease the interpretation: Hierarchical Clustering Explorer [SS02], dChip [LW03], CAP
[ADLCR99], Bioinfomatics toolbox [Mat].

Gk cne b1 B)

oasiziZa)
PARIS(L a)

Regalil a)

COMPOSEZa)
OBASCO2a)

Lande({2a)

Figure 2.2: Horizontal dendrogram of a hierarchy representation

One of the main characteristics of the hierarchies, produced by the AHC algorithm,
is the fact that once grouped, the elements rest together all the time. We will see that
this is the main difference between hierarchies and the 2-3 hierarchies introduced in
[Ber02d], which allows the clusters to intersect each other and use a slightly modified
aggregation indexes.

2.1.1 Definitions and Properties

We start with definitions from a general setting point of view that extends the frame-
work of hierarchies.

A set system on E is a nonempty collection of nonempty subsets of £ having F
as one of its elements. We consider a collection C of nonempty subsets of E, often
called clusters in the rest of the text. We will say that the collection C is hierarchical
if XNY e {0, X,Y}, VX,Y € C (see also Definition 1). Let us recall that a hierarchy
on FE is a hierarchical collection which contains £ and its singletons.

Definition 6 : A successor of X € C is any mazimum element of {Y € C:Y C X}
ordered by the set inclusion order. If Y is a successor of X, then X is said to be a
predecessor of Y. O

The set of all successors (resp. predecessors) of X € C is noted succ(X) (resp.
pred(X)). If F C C is also a collection of non-empty subsets of F, then succ(F) (resp.
pred(F)) represents the collection of clusters that are successors (resp. predecessors)
of at least a set from F.
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Definition 7 : A collection C is said to be pre-indexed if there is a isotone mapping
f:C — RT such that f is defined Vz € C and:
- for all X,Y € C with X CY we have f(X) < f(Y). O

When f is strict (meaning f strict isotone) the collection C is said to be strictly
indexed:

- for all X,Y € C with X C Y we have f(X) < f(Y).

Definition 8 : The collection C is weakly indexed by a map f:C —R™,if X CY
implies f(X) < f(Y) and if f(X) = f(Y) with X C Y, implies that X is equal to the
intersection of its predecessors. |

In the following, expressions as “mazximal cluster” and “noncomparable clusters’
will be used in the sense of the set inclusion order.

2.1.2 Examples

A small example of a dissimilarity matrix on seven individuals and used as input for
the classical AHC algorithm is presented in Table 2.3. Given n individuals (initial
elements) to cluster, the size of the input matrix is @ This can be difficult to

manipulate for larger n.

abcdef P .
2

cls 3

d|s 409 |

ele 581

fla7711 ‘ﬁ. T 1
g|897856 ab c def s

Figure 2.3: Dissimilarity matrix example Figure 2.4: Hierarchy partitioning

Using the complete-linkage, we obtain the indexed classical hierarchy from Fig-
ure 2.4. Here a and b are successors of {ab} while {ab} is their predecessor for example.
As we mentioned before, in order to chose a partition from the resulting hierarchy, the
differences between the f level of the created clusters are analyzed. Usually the parti-
tioning level is chosen whenever there’s a “big” difference between the created cluster’s
levels. For example in Figure 2.4, the first partition {{a,b,c},{d,e, f},{g}} generated
by the level P; = 3, is more appropriate than the second one {{a,b,c},{d,e, f,g}}
generated by P, = 8, since the clusters are more homogeneous.
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2.2 Agglomerative 2-3 Hierarchical Classification (2-3 AHC)

In this section we present the 2-3 hierarchy concept along with the 2-3 Agglomerative
Hierarchical Classification method introduced both in [Ber02d] in order to generalize
and to make more flexible the classical AHC.

As we saw before, the AHC generates disjoint clusters or clusters included one in
the other. The 2-8 Agglomerative Hierarchical Classification method gives each cluster
the possibility of intersecting at most another cluster, when the obtained intersection
is distinct from the two clusters (see Figure 2.5).

Figure 2.5: Example of a 2-3 hierarchy

This characteristic allows the obtained cluster structure to highlight groups of ob-
jects having the common characteristics of two other groups (not possible with the
AHC).

The resulting cluster structure is called an 2-3 hierarchy, term justified by the
following property equivalent with the aforementioned characteristic:

Property: Given any three clusters, at least two out of the three
possible clusters pairs are hierarchical (nested

or disjoint).

The term 2-8 hierarchy specifies how the set of 2-3 hierarchies is an extension of
the hierarchies set - indeed, from the definition above it clearly results that a hierarchy
is a particular case of 2-3 hierarchy. This happens when all three possible cluster pairs
are hierarchical, thus leading to a classical hierarchy.

2.2.1 Definitions and Properties

In the following, FE will designate a nonempty finite set of size n, and C will be a
collection of nonempty subsets of E.

Denoting X and Y as two sets, we will say that a subset Y of X is proper when it’s
both nonempty and distinct from X. Also Y is a trivial subset of X if Y is not proper
or reduced to some singleton of X.
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Definition 9 : If two subsets X and Y of E satisfy XNY ¢ {0,X,Y}, or in other words
if the pair {X,Y} is not hierarchical, then we will say that X properly intersect Y,
denoted XpNY'. O

For example in Figure 2.6, X properly intersects Y and XpNY = Z.

Y

X Z Y
Figure 2.6: Example of a proper intersection: XpNY = Z

We present now the 2-3 hierarchy definition as given in [Ber02d] (equivalent to
Definition 5):

Definition 10 : A 2-3 hierarchy on E is a collection C that:
e contains E and its singletons,
e is closed under nonempty intersections,

e and such that each element of C properly intersects no more than one other ele-
ment of C.

Also, the following concept of 2-8 hierarchical collection was introduced by P.
Bertrand in [Ber02d]:

Definition 11 : A collection C of subsets of E is called 2-8 hierarchical if each element
of C properly intersect mo more than one other element of C, or in other words if for
all X € C, we have | {Y € C: XNY ¢ {0,X,Y}} <1 O

Two main properties of this type of collection are: first, a 2-3 hierarchy on E
is a family of intervals of at least a linear order defined on E (cf. Theorem 4.6 in
[Ber02d]). This property allows to represent graphically a 2-3 hierarchy as a pyramidal
classification (cf. the Figure 2.5). Secondly, according to Theorem 3.3 in [Ber02d], any
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2-3 hierarchy on E has a maximum number of elements of [3(n — 1)], excluding the
singletons of F.

The main advantage of the 2-3 hierarchies compared to the classical hierarchies
is their richer structure. Indeed, since the 2-3 hierarchies allow clusters to properly
intersect themselves, their structures are richer compared with the classical hierarchies
obtained on same datasets [CBT04]. For example the maximal number of created
clusters by the classical AHC is (n — 1), compared with [3(n — 1)] for the 2-3 AHC
[Ber02d], where n is the initial number of elements.

This information gain can also be noticed in the case of the properly intersecting
clusters: we know which one of the successors made the merging possible. Or in other
words, we can see which part of a cluster is closer to the other cluster. For example in
Figure 2.6 we can say that Z is closer to Y/ than to X'.

As concerning the aggregation index, it is clearly that we need new definitions for
the special case of properly intersecting clusters. We can thus use the single linkage
distance, as defined in [Ber02d], to compute the dissimilarity between two sets that
might intersects each other or not.

s (X,Y) =min{o(z,y) :z€e X -Y,ye Y — X} (2.9)

For the complete linkage, the dissimilarity between two sets is the same as in the
case of the AHC (formule 2.4) even for the clusters that are not disjoint:

(X, Y) =max{o(z,y) 2z € X,y € Y} (2.10)

Also the indexing formula will be changed for the 2-3 hierarchical case, to take into
account the properly intersecting clusters and the cluster inversions (see below). Thus,
the chosen aggregation index is used to determine f, the degree of heterogeneity inside
a newly formed cluster, with the next formula:

FXUY) =maz{f(X), f(Y),u(X,Y)} (2.11)

In the rest of the text we will refer to this formula as the extended indexing formula,
while f(X UY) = u(X,Y) will be called the normal indezxing formula.

For the single link, an extension of the normal indexing formula was proposed in
[Jul02a]. It was called the double single-link formula, and was introduced in order to
avoid inversions in the resulting 2-3 hierarchy for the single-link when using the afore
mentioned indexing formula. An inversion (see Figure 2.7 and Section 2.4.2.2) appears
when a successor of a cluster has a bigger indexing value f, than the one of the cluster
itself:
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XuY

Xz v T

Figure 2.7: Example of levels inversion

fFXUY)> f(XUYUT)=pnXUY,T).
For this, the normal indexing formula was slightly altered in order to have a pre-indexed
2-3 hierarchy. This new indexing formula is called the double single-link and is defined
as follows (refer to the example from Figure 2.7 for notations):

f(XUY) = p(X,Y) for disjoint clusters,

F(XUY) = min{u(X"Y"), w(XUY,T)} where T is the closest candidate
cluster to X UY, for clusters that properly intersects
themselves. (2.12)

This is illustrated on the example from Figure 2.8 bellow.

Figure 2.8: Using the double single-link

The inversions are sometimes refered as crossovers or reversals [JD98].

2.2.2 Examples

A small 2-3 hierarchy example is presented in Figure 2.9 bellow. Here the cluster {ba}
properly intersects {ac}, while the clusters {ba}, {bac} and {de} are hierarchical when

compared one to each other.



30 Chapter 2. Theoretical Study of the 2-3 AHC
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Figure 2.9: Example of an 2-3 Hierarchy

As we mentioned before, the 2-3 hierarchies are richer than the classical hierarchies
obtained on same datasets. This can be observed for example on the number of created
clusters by the two methods. Figure 2.10 illustrates this by a small example of created

hierarchy and 2-3 hierarchy on a three points dataset.

rr TR

b 3 bac br

O kRN W

Figure 2.10: AHC and 2-3 AHC

As it can be clearly seen, the 2-3 hierarchy contains more clusters and it better
represents the initial dataset compared to the classical hierarchy.

2.2.2.1 Example of Levels Inversion

We present here an example of a small dataset (Figure 2.11) and the created 2-3 hi-
erarchy using the single-link (cf. Figure 2.12) and the complete-link (cf. Figure 2.14).
The normal indexing formula is used.

The dataset is a set of four points with the distance matrix presented in Figure
2.11.

[sX=20""
N o1 |0
wh Wi

Figure 2.11: Dataset

To avoid such levels inversions (cf. Figures 2.12 and 2.14), one can use for the
single-link the double indexing formula (cf. Figure 2.13) whilst for the complete-link,
the extended indexing formula (cf. Figure 2.15).
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Figure 2.13: The double single link

Figure 2.12: Single-link levels inversion
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Figure 2.14: Complete-link levels inversion Figure 2.15: Extended indexing formula

2.2.3 2-3 AHC Initial Algorithm

In this subsection we present the first 2-3 AHC algorithm proposed in [Ber02d] in order
to generalize the classical AHC algorithm. This algorithm has a O(n?) time complexity
(see Prop. 5.5 in [Ber02d]), and it was not implemented.

It is this first algorithm that we used as a base for our theoretical study and for the
proposal of a new 2-3 AHC algorithm in Chapter 3.

Initial Algorithm of the 2-3 AHC:

1.

Initialization: ¢ = 0; The set of clusters and the set of candidate
clusters M; coincide with the set of singletons of E; f({z}) =0, Vz € E.

. Merge: i =i+ 1; Merge a pair {X;,Y;} such that

w(X;,Y;) < p(X,Y), among the pairs {X,Y} C M;_1, which are

noncomparable and satisfy a or (3 :

(o) X and Y are maximal, and X (resp. Y') is the only cluster
susceptible to properly intersect Y (resp. X).

(6) One of X or Y is maximal, and the other admits a single
predecessor Z. No cluster is properly intersected by X, Y or Z.

. Update: M; — M,;_; U{X; UY;}, from which we eliminate any

cluster strictly included in at least a cluster of M;_1 and in X; UY;.
Update p by using an extension of Lance and Williams Formula.
Update f by using f(X; UY;) = max{f(X;), f(Xi), u(X;,Yi)}.

. Stop test: repeat steps 2 et 3, until the cluster E is created.
. Refinement: remove some clusters so that f is a weak index.
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We briefly present this algorithm here, additional details and the detailed version
of this algorithm from [Ber02d] can be found in Section 3.1.

As we can see, the algorithm consist as in the classical AHC case, in a initialization
phase, a recursive merging and update phase and an ending condition.

The main difference is that here are two types of merging, denoted the o and
mergings and which involve also clusters that properly intersects themselves. Also, the
set of clusters to be eliminated from the candidates clusters M; (the clusters eligibles
to be merged with other clusters) is reduced here compared to the classical case. This
actually lets non-maximal clusters to be merged with other clusters, creating thus the
2-3 hierarchical structure.

In step 3 the set of the created structure so far and M, are updated and the
dissimilarities between the new clusters and the rest of the clusters in M are computed
according to the dissimilarity measure [Ber86] chosen in the beginning. For the single
linkage, formula (2.9) is used to compute the dissimilarity between two clusters.

Another important aspect regarding the two clusters chosen for merging is their
cardinality in case of multiple matches:
(7) when we have multiple pairs of clusters satisfying the minimum
dissimilarity condition, we will merge the clusters having the minimal
cardinality.

Figure 2.16: The v condition

For example in Figure 2.16, one of the pairs (X'Y) or (X,Y’) will be the one
merged, and not the pair (X,Y"). This simple condition actually allows clusters to prop-
erly intersect themselves, by favorizing mergings between maximal and non-maximal
clusters. If the maximal cardinality clusters (X and Y') would be merged in this case,
the algorithm will construct a classic hierarchy instead.

In the refinement step the created structure is analyzed in a top-down manner.
Starting from the last formed cluster (the E set), the indexing f value is compared
with the ones of its successors. In case of equality the successor is removed (it does
not present any interest from the clustering point of view) excepting the case were it’s
also included in another cluster. Then the connections (suce, pred) in the 2-3 hierarchy
are “redirected” in order to maintain a 2-3 hierarchical structure. Normally after this
update in the structure of the 2-3 hierarchy, the test is repeated for the new successors
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of the cluster in order to obtain a weakly indexed structure.

The interest in obtaining such a mapping, apart from the mathematical conse-
quences, is obvious: the “lecture” of the weakly indexed 2-3 hierarchy will be simpler
than the case where f is a mapping in a large sense and also because of its reduced
number of clusters.

It has been proved by P. Bertrand in [Ber02d] that the algorithm presented before
performs in O(n3) (Proposition 5.5).

Just like in the case of the hierarchies, an induced dissimilarity matrix can be
obtained from the indexed 2-3 hierarchies.

Definition 12 : A dissimilarity 6 on E is called a 2-3 ultrametric if for each four-
element subset X of E, there exists a non trivial subset Y of X such that:

Vie X —Y and Vyy' €Y, 0(y,y) <d(z,y)=6(ay).

Indeed, this correspondence is bijective as shown by theorem 6.23 of [Ber02d].

2.3 Four New 2-3 AHC Properties

In this section we present our theoretical study of the 2-3 AHC method. As follows we
will make different assumptions but without any loss of generality for each of them.

2.3.1 The case of two clusters that properly intersect

A first property concerns the maximal size of a 2-3 hierarchy :

Property 1: The maximal size of a 2-3 hierarchy defined on a nonempty
. 5|E|-3
set E is [~—=—].

Proof: This is a trivial consequence of Theorem 3.1 from [Ber02d] (the max size
of the 2-3 hierarchy without the singletons plus the number of singletons).

This property will be used later during the complexity analysis of our new 2-3 AHC
algorithm in Section 3.4.

A particular issue for the suite of our reasoning is the case of two clusters that
properly intersect each other as they represent the principal characteristic of a 2-3
hierarchy and the way we handle them can significantly change the outcome of the 2-3
hierarchy construction algorithm.
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As mentioned by Laurent Jullien in [Jul02b], a first problem arises when we have to
choose the two subsets X; and Y; for merging in the case of a proper intersection. When
we have two clusters that properly intersect each other say X and Y, like the ones in
Figure 2.17, there are three candidate pairs for merging: (X,Y), (X',Y), (X,Y”) with
the same cluster as result of the merging: X’UY’U Z’ and we can have different results
according to the dissimilarity measure chosen: single linkage, complete linkage or other.

In the following, we consider the single linkage case and we use the fact that the
dissimilarity between two disjoint clusters is less than or equal to the dissimilarity
between one of them and a successor of the other. For the complete-linkage all the
three pairs from Figure 2.17 would respect the minimum distance requirement and
thus (X’,Y) and (X,Y”) would be preferred according to v. The f value will be the
same in all tree cases and it would not influence the refinement step but the created
structure would contain orphan clusters (see below).

Figure 2.17: a and 8 merging when X and Y properly intersect each other

We assume that Y was the last formed (after X) and in this case we have u(X’, Z’) <
w(Z',Y"), otherwise Y would be formed before X and we assume that u(Z',Y’) <
w(X'Y"), otherwise Y would be {X’ UY’}. It’s worth mentioning that the clusters
X", Y and Z’ are disjoint, thus respecting the 2-3 hierarchy definition.

There are three pairs candidates for merging: (X,Y), (X',Y) and (X,Y”) and we
will analyze the value of f for the formed cluster in each situation, using (2.9) for the
dissimilarity between their elements, even though the selected pair in this case would
be (X', Y) (it has the smallest dissimilarity: p(X')Y) = u(X’,Z’) according to the
single-linkage).

In the case of the (X,Y") pair we have:

fo =maz{f(X), f(Y), n(X,Y)} = maz{f(X), f(Y), n(X",Y")}
For the pair (X,Y”’) we have the following situation:
for = maz{f(X), f(Y"), (X, Y")} < maz{f(X), fF(Y'), (2", Y")} <
< maz{f(X), f(Y)}, by using (2.9) and the definition of f.
And for the (X',Y) pair we have:
fa2 < maz{f(X), f(Y), using a similar proof.

We can deduce that the o merging will result in a richer 2-3 hierarchy for the single
link, since the value of f for the formed cluster will be also influenced by p(X',Y”). If
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we use the § merging, the indexing value of the resulting cluster will be either f(X)
or f(Y). Thus, in the refinement step one of the successors X,Y of the formed cluster
will be eliminated since they are not a proper intersection and the result will be simple
hierarchy.

Clearly fz1 < fo and fge < fo where X' Y’ Z" are disjoint (otherwise would
contradict the 2-3 hierarchy definition) and so the [ regrouping will tend to create
clusters with the same value as one of their successors causing the successors to be
eliminated from the 2-3 hierarchy.

A example on a small dataset (see Table 2.2) is presented in Figure 2.18 (the «
case) and in Figure 2.19 (the g case).

HO QO
¥

Figure 2.18: f value for 3 case

Figure 2.19: f value for a case

Another argument for using the o merging over the 3 one, is to avoid the formation
of orphan clusters. This appears when clusters inside the 2-3 hierarchy have no prede-
cessors (except for the last created cluster). For example in Figure 2.17, when using
the (3 (respectively (3) merging, the cluster Y (resp. X) cannot be merged another
cluster since is already merged with X (resp. Y'), and thus it will have no predecessor.

As follows we will not try to use the 8 merging in these conditions and we will
exclude this situation using only the o merging in this case. If the § merging were
used, the hierarchy created before the refinement step would have almost the same
structure, most probably with different values for the mapping f and would contain
orphan clusters.

2.3.2 Candidate Clusters Elimination

Another property of the 2-3 hierarchy concerns the clusters to be eliminated from M;
at the end of each merging step in the 2-3 AHC algorithm (cf. Section 2.2.3). The
purpose is to specify the exact clusters to be eliminated from M;, and to avoid to
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iterate over this set in order to find the clusters to eliminate. This will help reduce the
Update step’s complexity of the algorithm.

The basic idea is to analyze and possibly eliminate only the first level successors,
not the whole M; set.

Property 2: The update of M; in the initial 2-3 AHC algorithm can be reduced
to: Eliminate any successors of X; and Y; and even one of
them self if it is a common successor for two maximal clusters (in
other words if X; or Y; is the result of a proper intersection between
two maximal clusters).

Proof: This can be very easily proved by induction on the number ¢. For ¢ = 1, no
cluster is eliminated and M; satisfies the property. Using the induction hypothesis we
argue that the others clusters that would be candidates for elimination (the successors
of suc(X;,Y;) and so on) have already been eliminated in a previous step (when X; and
Y; were created) and the only ones included in the union X; UY; and in another cluster
of M; are suc(X;), suc(Y;) and possibly X; or Y; in case one of them has a second
predecessor (a proper intersection case).

Thus, after this modified Update step, M; will contain the following clusters (see
also the example in Figure 2.20):

e maximal two-by-two disjoint clusters and their successors ({abc}, {ab}, {bc}, {de},
{d}, {e} in Figure 2.20);

e maximal clusters that properly intersect each other and their successors excepting
the common one ({fg}, {f}, {h} in Figure 2.20).

Figure 2.20: Successor candidates elimination

So far these are the candidate clusters for merging at each step of the algorithm,
but we will further reduce the set M; (see next Section 2.3.3).

2.3.3 Intermediate Merging

As follows we will eliminate from M; the pairs of clusters that properly intersect each
other and their successors. We will do this by operating another merging phase when-
ever there is a proper intersection and by proving that these clusters can’t be merged
with other clusters in future steps of the algorithm.
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Figure 2.21: Successor case of a proper intersection

We first study the successors case of a proper intersection (see Figure 2.21) and
more specifically the possibility of merging one of these clusters with another cluster
disjoint from the properly intersecting ones.

Suppose that we have two clusters X; and Y; with a common successor say Z’ (cf.
Figure 2.21) and with the other successors: X’ for X; and Y’ for Y;. Clearly the last
formed of them (say Y;) was formed at a step k as a result of a  merging between Z’
and Y'. Using single linkage we have that u(Z')Y") < pu(X;,Y’) and if there is equality,
according to the v condition, (Z’,Y”) will be preferred for merging due to the smaller
cardinality of Z’.

We can state the following property here, regarding the successors of X; and Y;
where X; and Y; properly intersect each other (Figure 2.21):

Property 3: If two clusters properly intersect each other then their successors
can’t be merged in a future step with a cluster disjoint from
their union.

Proof: Assume that Y’ will be merged with another (non-comparable) cluster Z,
disjoint from Y’: ZNY’' = (. If Z and Y’ would properly intersect each other, then the
2-3 hierarchy would not be respected since Y; would properly intersect both X; and Z.
In this case, Y; would also properly intersect both Y’ U Z and X; which contradicts the
2-3 hierarchy definition. It results that Y/ and Z are disjoint.

Using the same reasoning, the clusters Y’ and Z can not be merged since the Y;
would properly intersect both X; and Y’ U Z. We also know that a successor can’t be
merged with the other cluster itself (5 merging in Figure 2.17). Thus, the successors
X’ and Y’ can not be merged with other clusters in a future step of the algorithm.

Using this, we can eliminate from M, at the end of each merging step all the suc-
cessors of the clusters that properly intersect each other, since they are “useless” (they
cannot be merged with other clusters and they will unavoidable be later eliminated
from M; as soon as their predecessors will merge in a higher level cluster). For exam-
ple in Figure 2.20, if we suppose that the last formed cluster is {gh}, then {f}, {g}
and {h} are no longer candidate clusters and can be eliminated from M.

Next, we will prove that also the clusters that properly intersect each other can not
be merged with other cluster disjoint from themselves (see Figure 2.22 - the predecessor
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case of a proper intersection). This will lead us to conclude that two clusters that
properly intersect each other will unavoidably be merged together in a future step.

VA Xi Yi
Figure 2.22: Predecessor case of a proper intersection

Property 4: If one of the clusters X; or Y; chosen for merging at the i step is a
successor of a maximal cluster Z from M;_; then X;UY; (resp. Z)
can’t be merged with a disjoint cluster from Z (resp. X; UYj).

Proof : Let X; be the successor of Z that will be merged with Y;, resulting in a
new cluster X; UY; which will obviously properly intersect Z (Figure 2.22). Suppose
first that Z is merged with Z/ # X, UY;. Then X; UY; would properly intersect Z
and Z U Z’, which is contradictory. Since the same argument applies when X; UY; is
merged with Z’ # Z, we conclude that the property holds.

We have supposed that in case of two clusters that properly intersect each other
we can’t use a  merging between one of them and the disjoint successor of the other
cluster.

Using Properties 3 and 4 we can introduce after each merging phase of the algorithm
the next test (Figure 2.23):

“If pred(X;) = 2 (or pred(Y;) = 2) then merge the two predecessors of X; (or
Y;) and remove from M; any cluster included in the maximal cluster
formed after this union”.

We call this new merging intermediate merging as it might occur after the merging
of two clusters. This seems to be the optimal evolution of the 2-3 AHC algorithm in
the case of a proper intersection (see Figure 2.23).

This condition will guarantee that at the end of each step of the algorithm, the set
M, will contain only maximal disjoint clusters and their disjoint successors (if they are
any), while the other clusters that can’t be candidates for merging are eliminated.

Also, in three out of four cases (see Section 2.3.4), it won’t be necessary to compute
the distances between the last formed cluster (Y in Figure 2.23) and the rest of the
candidates from M;, since it would be eliminated from M, right after its creation
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Figure 2.23: Evolution in the common successor case

(the distances between Z and the other candidate clusters can be computed using the
distances between X,Y’ and the other candidate clusters).

Remark 5: In this context the () and () conditions on choosing X; and Y; from
M, can be reformulated into a single condition as it follows:
(a) At most one among X;, Y; is successor of another cluster

from M;.

This properties will be used later in Chapter 3 to reformulate the 2-3 AHC algorithm
and to propose a new 2-3 AHC algorithm with a principle similar to the classical AHC
algorithm.

2.3.4 Integrating the Refinement Step into the Merging Step

This analysis has as purpose the elimination of the refinement step at the end of the
algorithm, which can be very expensive due to its recursive nature [Ber02b]. Instead,
the refinement will be performed “on-the-fly” after each merging step during the algo-
rithm execution. The basic idea is to integrate the refinement step into the merging
step of the algorithm. We will prove that we obtain a weakly indexed 2-3 hierarchy.

Nevertheless we first must question the refinement itself in the case of the 2-3
hierarchies since it can eliminate important information in the case of clusters that
properly intersect. This information concern actually the order of the clusters in the
resulting 2-3 hierarchy (see Section 2.2), not their indexing levels and the induced
dissimilarity matrix.

Suppose we have three “equidistant” clusters which are merged together (see Fig-
ure 2.24). In the created hierarchy, the cluster {ab} presents no interest since is on the
same level with {abc} and there are four possible orders (237!) on the initial elements.
But in the 2-3 hierarchy, we have only two possible orders plus the information that
{b} is the “intermediating” cluster. When performing the refinement, these informa-
tions will be lost, but they will not influence the induced dissimilarity, only the results
interpretation.
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Figure 2.24: Refinement influence

In conclusion, for the 2-3 hierarchies when we are interested in the singletons order
is better to avoid the refinement step at the end of the algorithm to keep as much infor-
mation available. When this order is not relevant for our analysis, one can see that the
non-maximal clusters involved in a proper intersection like the one in Figure 2.24 ({a},
{b}, {c}) will no longer be candidate clusters. Meanwhile, {ab}, {bc} will be eliminated
in refinement step at the end of the algorithm. So beside the above mentioned reason
(avoiding recursive refinement), we can chose to perform an “on-the-fly” refinement
and thus allow {a}, {0} and {c} to possibly be merged with other candidates. Locally,
this would lead to a richer 2-3 hierarchy since theoretically there will be more candidate
clusters, but globally the outcome is unpredictable since we influence the way the 2-3
hierarchy is constructed.

In this context, the integrated refinement step from the algorithm(s) that we will
later propose (see Chapter 3) will be an optional step depending on the purpose of the
analysis.

To integrate the refinement step into the merging step we will perform an exhaustive
analysis of the cases concerning the merging value f of a new cluster and the merging
values of his two merged successors during the execution of the 2-3 AHC algorithm. The
purpose is to eliminate the successors found on the same level with their predecessor
without any information lose. There are two possible situations: when there is a proper
intersection between the successors, respectively when the successors are disjoint. The
later contains also two situations: in the first, one of them will have two predecessors
after the merging, and in the second both of them will have as unique successor the
new formed cluster.

In order to prove that the obtained 2-3 hierarchy will be weakly indexed, we proceed
by induction. We remind that a collection C is weakly indexed if X C Y implies f(X) <
fY)andif f(X) = f(Y) with X C Y, implies that X is equal to the intersection of its
predecessors or in other words when X represents a proper intersection. We suppose
that until a step i of the algorithm the structure is weakly indexed (true for step 1
when M; contains only singletons).

We assume that we have the clusters X and Y to merge at the step 74 1. Using the
formula (2.9) to determine the f value of a new cluster, there are four possible cases:
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Figure 2.25: f(X) < f(Y) < f(2)

1. f(X) < f(Y) < f(Z): In this case (Figure 2.25), the value of f for X,Y
and Z will be all different. The 2-3 hierarchy will be maintained and it will remain
weakly indexed. The successors of X and Y, if any, will be eliminated in this case from
M, (Property 3). If X, Y properly intersect each other then they will be eliminated too
from M; (Property 4). If they don’t properly intersect then one of them could have a
second predecessor, but without any influence on their merging.

Figure 2.26: f(X) = f(Y) < f(2)

2. f(X)=f(Y) < f(Z): Here (Figure 2.26) we could not eliminate X (or
Y') because in this case X’ (or Y’) and Z’ will be regrouped at the distance 2 instead of
1. The structure will be maintained since the formed cluster will have a bigger merging
value as his successors (same reasoning like in 1 in case of a proper intersection and of
two predecessors). The structure will be weakly indexed since f(X) = f(Y) < f(Z).

Figure 2.27: f(X) = f(Y) = f(2)

3. f(X)=f(Y)= f(Z): (Figure 2.27). This means that X', Y’ and Z’ were
all regrouped at the same distance, but in different clusters. We will eliminate X and Y
from M; and S; because they don’t present any interest here. Thus, X', Y’ and Z’ will
be all directly merged into Z. This is the case of the equidistant clusters. In case there
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is no proper intersection, Z' is not common, X (or Y') can have two predecessors and
in this case Z will replace X (or Y'), and his successors will be eliminated from M;. As
for the weak indexing, we have two cases: first f(Z') < f(X) = f(Y) and in this case
the weak indexing will be preserved. Secondly, if f(Z') = f(X) = f(Y), it means that
7' was necessarily the proper intersection of X and Y. In this case we can eliminate
Z' from the structure since it does not properly intersect another cluster and since it
will be on the same level as it’s new predecessor, Z (f(Z') = f(X) = f(Y) = f(2)).
Thus the structure will remain weakly indexed.

XUY vy Xuy’
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Figure 2.28: f(X) < f(Y) = f(2)

4. f(X) < f(Y) = f(Z): (Figure 2.28). We have two cases here: Z’ is the
common intersection of X and Y, or X and Y do not properly intersect themselves
and one of them could have another predecessor. In the first case, Y can be eliminated
from M; and S;. Also succ(X) will be removed from M; (Property 4).

If X and Y do not properly intersect each other then X (or Y) can have two
predecessors. Here we have two situation: Y has two predecessors and in this case the
reasoning is the same as in 3, or X can have two predecessors and in this case we can
perform an intermediate merging since the two clusters (pred(X)) will have f values
greater than the ones of theirs successors.

Knowing these, we can eliminate the recursive refinement step by adding test con-
ditions for these cases in order to deal with this situations. In order to have a weakly
indexed 2-3 hierarchy we introduce these conditions each time we create a cluster: elim-
inate the successors of the new cluster if their value is the same with the one of the
new cluster, and if they’'re not the proper intersection of two clusters. In this way the
2-3 hierarchy obtained will be weakly indexed by the mapping f.

2.4 Aggregation Index

In this section we will analyze analyze the ways of defining the indexing formulas and
their influence on the created 2-3 hierarchy, in order to determine the most suitable
indexing formula.

One of the ways of measuring the “quality” of a ascending hierarchical clustering
method is given by its induced dissimilarity matrix. This is obtained using the indexing
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level f of its created clusters. The indexing of a cluster has thus a great influence on
the method’s quality.
In this context, we analyze the influence on the 2-3 AHC algorithm of the:

e different ways of defining a dissimilarity,

e different dissimilarity measures (single-link, complete-link and sometimes average-
link),

e different indexing formulas by an isotone mapping f, for the created 2-3 hierarchy.

The main concern here are the clusters that properly intersect themselves, since
they are a characteristic of the 2-3 hierarchies that differentiate them from the classical
hierarchies.

2.4.1 Context

We first recall some used definitions. During the 2-3 AHC algorithm, two clusters can
be merged if they are closest - in the sense of a chosen link of aggregation hereafter
denoted p and called simply link. In the 2-3 hierarchical case each cluster can be merged
at most two times, leading thus to clusters that properly intersects. The most usual
links are the single-link, the complete-link, the average-link, the Ward criterion, etc.
When two clusters X and Y are merged, the link p(X,Y’) between these two clusters
can be interpreted as a measurement, denoted f(X UY'), of the degree of heterogeneity
of the new cluster X UY. At the end of the mergings when the initial cluster F is
created, the created clusters structure denoted S, can be used to extract the induced
dissimilarity, ' where: §'(x,y) = min{f(X) : X € S and x,y € X}.

The map f that associates each cluster to its degree of heterogeneity, is not neces-
sarily an index (hierarchies) or a weak index (2-3 hierarchies), in the sense defined in
Section 2.1.1, so that a refinement step (removing of certain clusters) is performed af-
ter the last merging of the algorithm in the initial 2-3 AHC algorithm. The refinement
starts from the last formed cluster, E, and proceeds “downwards” with the clusters
eliminations until it reaches the singletons.

More precisely, the purpose of the refinement step is to eliminate any cluster which
does not influence the induced dissimilarity matrix. In the hierarchical case, these
clusters are the ones found on the same f level with their predecessor and the result of
the refinement phase is an indexed hierarchy.

For the 2-3 hierarchies these clusters are the ones found on the same level with
their predecessor(s), excepting the case when such a cluster is a proper intersection
and can influence the induced dissimilarity. For example in Figure 2.29, Y is on the
same f level with one of his predecessor, X UY, but cannot be eliminated since it is the
proper intersection of X UY and Y U Z and its elimination would influence the induced
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dissimilarity. The result of the refinement phase in this case is a weakly indexed 2-3
hierarchy.

Xgydz

Figure 2.29: Clusters on the same level in a 2-3 hierarchy

The quality of a hierarchical classification method consists in its representation of
the initial dissimilarity matrix by the created structure, i.e. the induced dissimilarity
matrix (see above definition). Thus, after the refinement, the induced dissimilarity
matrix is compared with the initial dissimilarity matrix using different formulas (e.g.
the Stress formula, the Pearson coefficient or a simple difference) in order to determine
the “quality” of the obtained structure.

In conclusion, contrary to the classical AHC, in the 2-3 AHC:
e a cluster can be merged with at most two other disjoint clusters,

e we will obtain in the refinement step a weak index of the structure, since here
we have clusters that properly intersects and their elimination can influence the
induced dissimilarity matrix (see Figure 2.29).

2.4.2 Link

The link defines the dissimilarity p between two clusters based on their elements. Some
well known examples of dissimilarity measures are: the single-link, the complete-link,
the average-link etc. These dissimilarities are well defined for the hierarchies, but we
need to analyze them in the context of the 2-3 hierarchies, i.e. in the context of clusters
that properly intersect themselves such as X and Y from Figure 2.31: XpnY = XNY ¢
{0,X,Y}. For this we will first take a look at the ways of defining a dissimilarity
between clusters in Section 2.4.2.1.

Since the proper intersection of two clusters differentiates a hierarchy from a 2-3 hi-
erarchy, we will also analyze its influence on the 2-3 AHC algorithm (see Section 2.4.2.2).

2.4.2.1 Dissimilarity definitions

We have three options when computing the dissimilarity between two clusters that
properly intersect themselves:
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(1) to exclude the common part of the clusters when we compute the dissimilarity.
In Figure 2.31 we have: pu(X,Y) = (X —Y,Y — X) = u(X',Y’). The general
formulation would be:
w1 (X, Y) = formula{d(xz,y) ;2 € X =Y, yeY — X},
where formula can be min, maz, average etc;
(2) to take into account also the common part when we compute the dissimilarity.
The general formulation would be:
w2 (X,Y) = formula{d(xz,y) :x € X, y e Y},
(3) to consider all the distances inside the formed cluster, X UY, when computing
the dissimilarity. This would resume to:
us(X,Y) = formula{d(xz,y) ;2 € XUY, ye XUY}.

2.4.2.2 Dissimilarity definitions and 2-3 AHC Algorithm

We have seen that using the extended indexing formula® we will avoid any risk of level
inversions in the created 2-3 hierarchy, but this formula can influence the execution of
the 2-3 AHC algorithm. We analyze here the use of the three previous dissimilarity
definitions during a proper intersection in the (general) 2-3 AHC algorithm defined in
[Ber02d] and in particular when these are applied for the single-link, the complete-link
and the average-link.

We know [Ber02d] that the 2-3 AHC algorithm merges at each step the pair of
candidates clusters found at the minimum dissimilarity, just like the AHC algorithm.
Lets suppose that we merge two clusters Z and Y’ and that one of them, say Z has
another predecessor, X (Figure 2.31). The new formed cluster Y, will have a maximal
degree of heterogeneity among the other candidate clusters, due to the merging of two
disjoint clusters, Z and Y”, at the maximal dissimilarity so far. As in the AHC case, the
dissimilarity between the resulting cluster and all other disjoint candidate clusters will
be higher or equal to u(Z,Y”). But the dissimilarity value between the two clusters that
properly intersect themselves, X and Y, depends on the chosen dissimilarity definition
from above (1-3) and naturally on the chosen dissimilarity measure.

When performing a merge (Figure 2.31), the 2-3 AHC algorithm takes the candidate
clusters found at minimum dissimilarity, and thus it is obvious that:

WX’ Z) < u(Z2,Y") < (X", Y7) (2.13)

Using this and p1, we will always have u(X,Y) = p(X",Y') > w(Z,Y") > u(X', Z)
for any dissimilarity measure.

Next, we analyze the use of 15 and us from above with the single-link, complete-link
and average-link.

F(XUY) =maz{f(X), f(Y), (X, Y)})
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Figure 2.32: Levels inversion

For the single-link we cannot use po and us, since the dissimilarity between X and
Y will be 0 if we consider their common part, Z (Figure 2.31) and thus we will find
ourself in the hierarchical case after the refinement at the end of the 2-3 AHC algorithm
[Jul02a].

For the complete-link, when we compute pu(X,Y) with XpNY (Figure 2.31), the
dissimilarity p(X’,Y”) will always influence u(X,Y"), regardless of the chosen dissimi-
larity definition. Since it uses the maximum value, it results that pu(X,Y) > u(X',Y”)
and using (2.13) it follows that u(X,Y) > w(X",Y") > w(Z,Y') > p(X', Z). All three
definitions can be used with the complete-link but we will analyze in Section 2.8 their
use, to select the most suitable one.

If we use the average-link and we also consider the common part of X and Y
(definitions po and pg), we will have a small dissimilarity between X and Y, caused by
the common cluster, Z. This is due to the fact that the distances between the elements
of the common clusters are considered when computing the average. In this case, we
can have u(X,Y) < u(Z,Y") and we must use the extended indexing formula in order
to avoid levels inversions.

A small example is presengd( in)Figure 2.33 bellow. The average dissimilarity is

d(x,y

n

possibles pairs in the numerator sum (|.X| x |Y|).

computed using: u(X,Y) = , where x € X, y € Y and n is the number of

In conclusion, the first formula (u1) for defining the dissimilarity p between two
clusters that properly intersect themselves, seems to be the best formulation since it
can be applied for all dissimilarities. If we use the po and p3 dissimilarity definitions,
the 2-3 AHC algorithm can have unexpected/unwanted results if we use them with the
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Figure 2.33: Average-link and 2-3 AHC algorithm

extended indexing formula or other formulas (see next Section 2.5), especially in the
complete-link case.

2.5 2-3 Hierarchy Indexing

We study now the indexation of the (2-3) hierarchies and also the special case of the
clusters that properly intersects themselves. The indexation is very important since
it will influence the graphical representation (the dendrogram) of the (2-3) hierarchies
and the refinement phase performed at the end of the algorithm. The purpose of this
section is to establish which indexing formula to use for the single, complete and the
average link.

As we said before, the hierarchies and the 2-3 hierarchies are indexed using an
isotone mapping f, which represents the degree of heterogeneity of a cluster. This index
is used at the end of the algorithm in the (optional) refinement phase that eliminates
the useless clusters from the created structure. After that, this index is finally used to
represent graphically the created structure (hierarchy or 2-3 hierarchy) as a dendrogram
and to extract the induced distance matrix (the ultrametric or the 2-3 ultrametric). This
induced distance matrix is then compared with the initial one in order to determine
the structure’s quality (the Stress coefficient, Pearson coefficient, etc).

The definition of this index f is influenced by the chosen dissimilarity and in the
case of the 2-3 hierarchy it can be:

(a) F(XUY) = (X, Y);
(b) F(XUY) = maz{u(X,Y), F(X), F(¥)}.

As follows we will refer to the first indexing formula (a) as the normal indexing
formula and to the second one (b) as the extended indexing formula.

The normal indexing formula represents the dissimilarity at which the two clusters
have been merged and is used in the AHC algorithm. Since the AHC algorithm merges
at each step the minimal dissimilarity pair of clusters, it results that f(XUY) > f(X)
and f(XUY) > f(Y), where (X,Y) € M, is the candidates pair that are merged. This
give us an isotone index f of the created hierarchy. This reasoning does not applies for
the 2-3 AHC algorithm. This is due to the fact that inversions between the levels of
the created 2-3 hierarchy can appear using this formula (see Section 2.2.2.1). In order
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to avoid this, an extension of this formulation is used for the single-link (see below the
double indexing).

The extended indexing formula represents the heterogeneity degree inside the new
formed cluster and is used in the 2-3 AHC algorithm in order to avoid the situations
where f(X) > f(XUY) or f(Y) > f(X UY), situations also denoted here as levels
inversions. These situations are presented in Section 2.4.2.2 and concern the average-
link case (smaller dissimilarity, Figure 2.33) and the levels inversions for the single-link
and the complete-link (higher dissimilarity, cf. Figure 2.32) and Section 2.2.2.1), when
using the normal indexing formula.

It has been proved in [Jul02a] that the extended indexing formula can produce
inversions in the resulting 2-3 ultrametric for the single-link. On the other hand, this
formulation is suitable for the complete-link, since it maximizes the level of the new
cluster. But if we use this formula, all the clusters resulted from the merging of X UY
(plus any resulting cluster) and different clusters situated at a dissimilarity inferior
to u(X,Y), will possibly be eliminated during the refinement phase of the algorithm
(Figure 2.34) when we use this extended formulation.

In both indexing cases, (a) and (b), f(XUY) is influenced by p(X,Y’) and moreover
FXUY) = u(X,Y).
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Figure 2.34: Using the extended indexing formula
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Figure 2.35: Using the double single-link

We present here an extension of the normal indexing formula, called the double
single-link formula, introduced in [Jul02a] in order to avoid inversions in the resulting
2-3 ultrametric for the single-link when using the extended indexing formula.

For this, the normal indexing formula is slightly altered in order to have a pre-
indexed 2-3 hierarchy, i.e. in order to avoid having f(X UY) > f(XUY UT) =
w(XUY, T), cf. Figure 2.32. This new indexing formula is called the double single-link
and is defined as follows:
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- f(XUY) =p(X,Y) for disjoint clusters,
- f(XUY) = min{uwX",Y"), p(X UY, T)} where T is the closest candidate
cluster to X UY, for clusters that properly intersects (Figure 2.35).

Note: Since the double single-link does not concerns the dissimilarity calculus (the
link) between clusters, but only the indexing of the structure, we will simply call it the
double indexing formula.

If we extend this double indexing formula to all dissimilarities, for example for the
complete-link, it can have the same effect as the extended indexing formula for single-
link (inversions in the resulting 2-3 ultrametric). For example in Figure 2.35: reducing
the level of X UY will cause smaller values in the resulting 2-3 ultrametric compared
with the ones in the initial dissimilarity.

An example of using the double indexing formula is presented in Figure 2.35, where
f(XUY)>pu(XUY,T). Here, when we create X UY UT, we will reduce f(X UY)
tou(XUY, T).

In conclusion, so far the best indexing formulas for the dissimilarity measures are:

o for the single-link: the double indexing formula. The normal indexing formula can
cause levels inversions, while the extended indexing formula can cause inversions
in the resulting 2-3 ultrametric.

e for the complete link: the extended indexing formula. As in the single-link case,
the normal indexing formula can cause levels inversions, while the double indexing
formula can cause inversions in the resulting 2-3 ultrametric.

e for the average-link: the extended indexing formula and the double indexing for-
mula but clusters will tend to be on the same level with their predecessor in a
proper intersection. Thus will most probably lead to a poor 2-3 hierarchy (very
similar to a hierarchy). The normal indexing formula can cause levels inversions.

2.6 Proper Intersection Analysis

We analyze in this section, the reasons for the level inversions (see Section 2.2.2.1),
the measures to avoid them (the extended indexing formula) and their influence on the
created 2-3 hierarchy.

2.6.1 Inversion problem

We begin by recalling some basic notions.
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The main difference between 2-3 hierarchies and hierarchies are the clusters that
properly intersect themselves: X properly intersects Y, if X NY ¢ {0,X,Y} (Fig-
ure 2.36). In the hierarchy case, when a cluster is formed, his successors can’t be
merged with another cluster and they are eliminated from the candidate cluster set (in
Figure 2.30, X and Y are no longer candidate clusters).

Xy
oY
X
X' VA Y

Figure 2.36: Proper intersection in a 2-3 hierarchy

In a 2-3 hierarchy, these successors are kept as candidates and they can be merged
only with other maximal clusters (see Section 2.3). For example in Figure 2.36, after
the merging of X’ and Z the resulting cluster, X, is a candidate cluster along with
his successors, X’ and Z. Since these successors are smaller clusters than X, in case
of same dissimilarity value with another cluster, they will be preferred for the next
merging by the aggregation index (dissimilarity measure p), which tries to minimize the
dissimilarity between candidate clusters and other given criterion (cardinality, creation
order, etc). Also generally speaking, is it more likely that a cluster Y is “closer” to a
subset (e.g. a successor) of another cluster X (Z in this case), then to X itself. Thus,
for example Z can be merged with another cluster, Y/, forming a new cluster, Y (see
Figure 2.36).

At this stage we have two clusters that properly intersect themselves, X and Y with
X NY = Z. We have seen in Section 2.3 that these two clusters and their predecessors
cannot be merged with another cluster disjoint of them and that only X and Y will
necessarily be merged together in a later step of the algorithm.

Next we will analyze this situation and the outcoming of how the proper intersection
was performed.

2.6.2 Blind Merging

The main problem is that at the merging of Z and Y, we don’t consider the dissimilarity
between X’ and Y’ which will influence the heterogeneity degree of the future cluster
X UY and sometimes (see Section 2.7.2) the dissimilarity between X UY and the rest
of the candidate clusters. We denote as a blind merging the indirect merging of X’
and Y’ through the future merging of X and Y.

For example, if X’ and Y/ are opposed (in the sense of 1), the dissimilarity between
them will have a high value, resulting in a high degree of heterogeneity of the future
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cluster X UY for some dissimilarity measures (single and complete link). Moreover, the
dissimilarity between X and Y will have a high degree (value) causing the “block” of
X and Y’s merging, until the minimum dissimilarity in the initial 2-3 AHC algorithm
execution reaches u(X,Y) (see Section 2.7.2).

We call this merging blind merging of X’ and Y/ may cause unwanted effects, such
as levels inversions (f(XUY) < f(X) or f(XUY) < f(Y)), if one will use the normal
indexing formula (Figure 2.32). But as we saw before (cf. Section 2.5), we will use
the extended indexing formula (cf. Figure 2.34) or the double indexing formula (cf.
Figure 2.35). This behaviour can cause the elimination of some clusters during the
refinement step, clusters that will be on the same level with their predecessor due to
the use of these indexing formulas.

Another issue concerning the blind merging is the fact that the induced dissimilarity
matrix will not be comparable with the one induced by the classical AHC (the ultra-
metric). Indeed, if clusters X’ and Y’ are opposed (in the sense of u), then it is very
likely that they will be merged together later in the classical AHC algorithm execution.
But in the 2-3 AHC algorithm, they will be merged together sooner, inducing thus
a dissimilarity matrix non-comparable with the classic ultrametric. A more detailed
example in given in Appendix A.

The blind merging is also the cause of the 2-3 hierarchy levels inversion presented
in Section 2.2.2.1 if using the normal indexing formula.

In conclusion, the influence of the dissimilarity between X’ and Y’ on the created
cluster can be on one hand, a positive source of information compared to the classical
hierarchy (a new cluster or level in the dendrogram) and on the other hand, a “forced”
merging of X’ and Y’/ which will create a high heterogeneity degree cluster.

Before we analyze the blind merging influence (see Section 2.7.2) we will first take
a look at the 2-3 AHC algorithm execution in this situation (see next Section 2.7).

2.7 2-3 AHC Algorithm Execution

In this Section, we study the 2-3 AHC algorithm execution when two clusters properly
intersect themselves and the influence of the blind merging on this execution.

2.7.1 Proper Intersection During Algorithm Execution

When we have two clusters X and Y that properly intersect themselves (Figure 2.36),
we have two options for the execution of the 2-3 AHC algorithm:

(i) we can leave X and Y and merge the next two closest clusters in
the sense of u; X and Y will be merged together later during the algorithm when
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w(X,Y) < u(S,T) : S,T € M; —{X,Y} (they can also be the next merged clusters).
This is the “normal” execution of the algorithm [Ber02b].

(ii) we can “force” the merging of X and Y since we know that they will
be merged only together at a later step of the algorithm (see Chapter 3). This we call
it an intermediate merging between X and Y and is influencing the ulterior algorithm
execution.

In the first case (i), during the 2-3 AHC algorithm, the clusters merged at each
step will be the candidate clusters found at minimal dissimilarity. But we can still
have inversions in the levels of the formed clusters (Figure 2.32 and Section 2.2.2.1)
when using the normal indexing formula. Here we need to use the extended indexing
formula (for the complete link), the double indezxing formula (for the single-link) or
another indexing formula that avoids these inversions. As we said before, the extended
indexing formula is not a good choice for the single-link. But the use of the double
indexing formula with the single-link can also create levels inversions in the resulting 2-
3 hierarchy in the normal algorithm execution. This can occur in a proper intersection:
a merged cluster can have a bigger f level compared with the resulting cluster (see a
detailed example in Appendix B).

This situation can be avoided if we use the normal indexing formula along with a
test (or if we use just the intermediate merging (ii)). We can use the normal indexing
formula (a) since the f value of a created cluster does not influence the future mergings
using the normal algorithm execution, followed by a level test just after the creation of
a cluster.

Thus for the single-link, we always use f(X UY) = u(X,Y), but we make the
following test each time we create a cluster X UY":

“f f(X) > f(XUY)or/and f(Y) > f(XUY), then f(X) = u(X, Y) or/and
FY) = ul(X, V).

For the complete link, the normal execution will “block” the clusters that properly
intersects themselves until the minimal dissimilarity will be u(X,Y), then it will merge
them together.

As follows, we will analyze the second case from above, the intermediate merging
case (ii).

We have seen in Section 2.3 that after the creation of Y (Figure 2.36), the clusters
X', Z and Y’ are no longer candidate clusters and X and Y can be merged only
with each other. So if we merge X and Y we will have a candidate cluster (X UY)
that can have an elevated degree of heterogeneity and implicitly of the f value due to
the dissimilarity between X and Y (caused by X’ and Y”). But we can use different
indexing formula in order to avoid unwanted situations, such as levels inversions caused
by high level clusters.
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This intermediate merging will give the new cluster X U Y, the possibility of be-
ing merged with another cluster, before the moment when the minimum dissimilarity
between the candidate pairs of clusters will be equal or greater than u(X,Y) (the
condition from case i). Assuming that X UY will be merged with a cluster T' (see
Figure 2.32), where u(T, X UY) < u(X,Y), it results that pu(T, X UY) < f(XUY).

Using the intermediate merging, the cluster X UY will not be “blocked” until the
minimum dissimilarity for choosing the merging clusters will be u(X,Y), and it can be
merged with other candidate clusters immediately. But the problem is that a cluster
with high heterogeneity degree (or indexing level) can be created and we need to use
different indexing methods for each dissimilarity to avoid levels inversions in the 2-3
hierarchy (see Section 2.5). For the single-link, beside the normal indexing formula
with the test, we can use here also the double indexing formula without any risk of
levels inversions (Appendix B).

For the complete-link in the intermediate merging case, the extended indexing for-
mula is the more suitable one since it maximizes the f level of the new cluster, taking
into account the heterogeneity degree of its successors.

2.7.2 Blind Merging’s Influence

If we consider the case of clusters that properly intersect themselves, Figure 2.36, we
have seen that the blind merging can create a high heterogeneity degree cluster. For
example in Figure 2.36, Z and Y’ are merged without taking into account the dissim-
ilarity between X’ and Y’, which will influence the heterogeneity degree of the future
cluster X UY. Different dissimilarity definitions (u3 for complete-link) or indexing
formulas (see Sections 2.5 and 2.7) will help us avoid levels inversions in this case, but
the dissimilarity between X UY and the other candidates can also be affected by this
possibly high heterogeneity degree of X UY.

This situation does not appear when using the single-link, since it uses the closest
element criterion, but it can influence other links like the average and especially the
maximum-link which uses the farthest element criterion.

In the case where the dissimilarity between the new cluster and the rest of the
candidates is influenced by its high heterogeneity degree, this new cluster will become
an “isolated” cluster and it will be merged only later with other candidates, causing
thus information losses. A small example is presented in the Appendix A.

We must remind that this loss can be only local as in the given example, but on
larger datasets it can influence the way that the rest of the clusters will be merged.
This translates into a different 2-3 hierarchy, which can be richer or poorer (when
comparing the induced dissimilarity) compared with the one created by the initial 2-3
AHC algorithm. This is one of the reasons for the high standard deviation obtained
during experimentations in the next Chapter (see also Appendix C), along with the
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fact that the behaviour of a classification method strongly depends on the used dataset
[STO5].

The blind merging can be avoided by minimizing the level of the cluster that is to
be formed after the intermediate merging step. This can be done by storing a second
aggregation value for each pair of clusters that can be 8 merged. This extra value is
actually the link between the two properly intersecting clusters that could result from
this # merging (see also Section 3.4.1 for an example).

2.8 Complete Link Definitions

We have seen that for the complete-link we can use all three dissimilarity definitions
presented in Section 2.4.2.2 in the both algorithm executions (normal and with interme-
diate merging). The only indexing formula to use in this case is the extended indezxing
formula:

- f(XUY) = max {u(X,Y), f(X), fF(Y)}.

Next we prove that the results of the three definitions are identical when using the
extended indexing formula. The purpose is to show that p; is the most suitable one,
since it has a smaller time computing complexity then po and us.

We will thus show that using the first dissimilarity definition and this indexing
formula, will create clusters for which the level f represents its heterogeneity degree,
e.g. f(X) = max{d(z,y) : v € X, y € X}. This heterogeneity degree is actually
assured by the third dissimilarity definition, 3.

Proposition 2.8.1 If we use the complete-link defined as u(X,Y) = max {d(x,y) : x €
X-Y, y € Y—X} and the extended indexing formula f(XUY) = max {u(X,Y), f(X),
f(Y)}, then the f level of a cluster will represent its heterogeneity degree, e.g.

f(X) =max{d(z,y) :x € X, y € X}

Proof. This can be proved by induction on the 2-3 AHC algorithm execution step, .
For i = 0, f({z}) with z € E is set to 0 for all the singletons, verifying thus our
hypothesis. We assume now that f(X) represents the heterogeneity degree of X as
defined above for all the candidate clusters X at the step i = k.

We analyze the heterogeneity degree of the cluster formed at the next step i =k+1
of the 2-3 AHC algorithm. At this step we will merge two clusters X and Y, which can
be disjoint or can properly intersects themselves. All clusters created so far have their
level f equal to their heterogeneity degree, defined as above.

The heterogeneity degree of the new resulting cluster X UY is given by:

max{d(z,y) :x € XUY, ye XUY} =
=max{max{d(z,y) :z € X, y € X}, max{d(z,y) :x €Y, ye Y},
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max{d(z,y):z € X =Y, yeY - X}} =

= max{ f(X), f(YV), ;1(X,Y)} =
=f(XUY). O

In this way, the use of any dissimilarity definitions p1, po or ug will create the same
f level clusters, but their computation is different in time complexity. We will thus use
for the complete-link the first dissimilarity definition p1, which is less time consuming.

2.9 Discussion and Perspectives

In this Chapter we have studied the 2-3 hierarchy concept proposed by P. Bertrand
[Ber02d] in 2002. The 2-3 hierarchies generalize the classical hierarchies by allowing
two clusters to properly intersect themselves. The created structure is richer and the
initial proposed 2-3 AHC algorithm has a O(n?) time complexity.

We have revealed four new properties of the 2-3 hierarchies, which will be used in
the next Chapter to propose a new 2-3 AHC algorithm. These properties allowed us
to propose a new merging step for 2-3 AHC algorithm (see Section 3.2.1). Also, using
these properties we will specify exactly the clusters to be eliminated from the candidate
set in the Update step and the dissimilarities to compute.

We saw that the recursive refinement step from the end of the 2-3 AHC algorithm
can be avoided by performing an “on-the-fly” refinement. We called it the integrated
refinement and we proved that it produces a weakly indexed 2-3 hierarchy. But de-
pending on the desired analysis, one can chose not to perform the integrated or the
recursive refinement which becomes thus optional.

Since the proper intersection is the main characteristic of the 2-3 hierarchies, we
studied its influence on the aggregation index, algorithm execution, etc.

As concerning the aggregation indexes, for the single-link we must/can use the fol-
lowings definitions or algorithm executions:

e we must use the first dissimilarity definition (u1) to construct 2-3 hierarchies,
e both algorithm executions can be used, but with different results:

— intermediate merging (i): in order to avoid levels inversions and inversions in
the resulting 2-3 ultrametric, we must use one of the two following indexing
formula, which are equivalent in this case:

x the double indexing formula,
* the normal indexing formula with the level test.

— normal execution (ii): we must use the normal indexing formula with the
level test, but we will have information loses (poorer structure after the
refinement).
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As for the complete-link:

e we can use the extended indexing formula and the first dissimilarity definition,
K1,

e we could also use:

— the normal indezring formula with the third dissimilarity definition, ug3, or

— the extended indexing formula with one of the last two dissimilarity defini-
tions, o or us,

but with a bigger time computing complexity and same results.

The study of the proper intersection and of the 2-3 AHC algorithm execution has
revealed a particular case on merging that we called the blind merging. Concerning
its influence (Section 2.7.2), a possible way to avoid it, is to take into account the
dissimilarity between the disjoint clusters in a proper intersection, before the 3 merging.

We saw that if we avoid the blind merging, one can build a different 2-3 hierarchy.
Same thing happens if one chose to perform or not the integrated refinement. Unfor-
tunately, we can not state that one choice is better than the other, since a choice like
this at any level (integrated refinement, blind merging) will influence the way that the
other remaining candidate clusters will be merged in the next steps of the algorithm
(see also Appendixes A and B).

It will thus become necessarily to refer to the initial dissimilarity matrix when we
need to compare the structures created by these different choices. In the next Chapter
we will then use different coefficients like Stress or Pearson with regard to the initial
dissimilarity when performing dissimilarities quality analysis.



Chapter 3

A New Agglomerative 2-3
Hierarchical Classification
Algorithm

In this Chapter we will use the new theoretical properties of the Agglomerative 2-3
Hierarchical Classification discovered in the previous Chapter 2, to propose a new 2-3
AHC algorithm with a reduced complexity from O(n?) to O(n?logn).

We start by presenting the initial 2-3 AHC algorithm proposed in [Ber02d] (detailed
version also presented). Then a short analysis of this algorithm will be provided.

Next, based on two theoretical properties from the previous Chapter, we will include
an intermediate merging step into our 2-3 AHC algorithm. This will eliminate the
blocked clusters case and will reduce the execution complexity of the merging and
updating phase of our 2-3 AHC algorithm. As a second consequence, the created 2-3
hierarchy will be different from the one produced by the initial 2-3 AHC algorithm.

A different 2-3 hierarchy can be also obtained if an optional step, the integrated
refinement, is performed. The integration of this step into the merging step, will remove
the need of a recursive refinement step, present in the initial algorithm.

Finally, to avoid a special case of merging, denoted blind merging (see Section 2.6.2),
a second 2-3 AHC algorithm variant is proposed. This variant is based on a slightly
modified aggregation index. and always creates a “richer” 2-3 hierarchy than the clas-
sical hierarchy on the same dataset.

Since these 2-3 AHC algorithms (initial, with intermediate merging, with integrated
refinement, avoiding blind merging) construct different 2-3 hierarchies, we will later
perform some comparative tests. The execution times of each method, along with the
classical AHC, are compared for the complexity validation. For the algorithm “quality”,
we use the Stress measure [JW82] to compare the created structures on simulated and
real data.

o7
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We will then conclude in Section 3.7 with discussions and future perspectives.

3.1 Initial 2-3 AHC Algorithm

We recall here the initial 2-3 AHC algorithm proposed in [Ber02d] in order to generalize
the classical AHC algorithm.

Initial 2-3 AHC Algorithm:

1. Initialization: : = 0; The set of clusters and the set of candidate
clusters M; coincide with the set of singletons of E; f({z}) =0, Vz € E.

2. Merge: i =i+ 1; Merge a pair {X;,Y;} such that
w(X;,Y;) < p(X,Y), among the pairs {X,Y} C M,;_, which are
noncomparable and satisfy « or 3 :

() X and Y are maximal, and X (resp. Y) is the only cluster
susceptible to properly intersect Y (resp. X).

(6) One of X or Y is maximal, and the other admits a single
predecessor Z. No cluster is properly intersected by X, Y or Z.

3. Update: M; — M,;_; U{X; UY;}, from which we eliminate any
cluster strictly included in at least a cluster of M;_; and in X; UY;.
Update p by using an extension of Lance and Williams Formula.
Update f by using f(X; UY;) = max{ f(X,), F(X;), u(X;, Yi)}.

Update S; «— S;_1 U {XZ U Y;} .
4. Stop test: repeat steps 2 et 3, until the cluster F is created.
5. Refinement: remove from S; some clusters so that f is a weak index.

As we can see, the initial 2-3 AHC algorithm consists in three phases: an initial-
ization phase, a merging phase and a refinement phase. The merging phase has an
additional condition (compared to the classical AHC algorithm) for the case when two
clusters properly intersect each other. It operates on two sets : S; which represents the
clusters created so far and M;, the candidates for merging at each step. At the end,
S; will contain the whole cluster structure.

It has been proved [Ber02d] that for any choice of u, this algorithm converges in at
most O(n?), that after each step of the algorithm, the set of created clusters (completed
by E) is a 2-3 hierarchy (cf. Proposition 5.4 in [Ber02d]), and that the final structure
is weakly indexed.

Before making a short analysis of this initial 2-3 AHC algorithm, we give below its
more detailed version from [Ber02d]:
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Initial 2-3 AHC Detailed Algorithm (detailed)

STEP 1. INITTALIZATION
i—1; (iteration number) ; Sg «— {{z}:xz € E} ; Mo — Sy
f{x}) — 0and p({x},{y}) < d(x,y), for all z, y distinct in E

STEP 2. MERGING
While (M; has more than one maximal cluster) do
1—1+1
Select (X; and Y;) such that p(X;,Y;) < pu(X,Y) for all noncomparable
clusters X,Y in M;_; satisfying one of the following conditions:
() pred{X,Y} =0 and X (resp. Y) does not properly intersect
any cluster different from Y (resp. X).
(6) One and only one of the clusters X or Y admits a predecessor,
say Z, and X,Y, Z do not properly intersect any cluster;
S;— 8,1 U {XZ U }/z}
M; — M; 1 U {XZ U YZ}
Compute u(X; UY;, Z) for all Z € M; which is not comparable to X; UY;
F(X; U Vi) — max{ f(X,), £(Yi), (X, Yi))
EndWhile
S—S;; ki

STEP 3. REFINEMENT
While £ > 1 do
Z — X UY:
m — |suc(Z)]
J—1
While 7 <m do
Denote the j* element of the list suc(Z) as Z;.
If pred(Z;) = {Z} and f(Z;) = f(Z) then
S—§-7
update(suc, pred; §) // Update the list suc and pred
// after the deletion of Z;.
j—m+1
k—k+1
Else
je—Jj+1
EndIf
EndWhile
k—k—1
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EndWhile

The main characteristic of this 2-3 AHC algorithm is the fact that once two clusters
that properly intersects themselves are created, they will remain as candidates until
their dissimilarity will become the algorithm’s minimum dissimilarity. Also, choosing
the two merging clusters is performed by testing the minimum dissimilarity pairs until
the o and (8 conditions are satisfied.

3.2 Using the New Theoretical Properties

We present here a new 2-3 AHC algorithm derived from the previous one and based
on the properties presented in Chapter 2. The interest of this new algorithm (cf.
Section 3.2.4) is two-fold: first, its principle is more similar to the principle of the AHC
algorithm and second, we will see that the introduction of the intermediate merging
phase, allows to reduce the complexity of the algorithm (see Section 3.4).

3.2.1 Adding an Intermediate Merge at the End of each 7 Merging

The following property highlights the need of merging together, after a § merging, the
two clusters that properly intersect themselves.

Figure 3.1: Intermediate merging

In Figure 3.1 the properly intersecting clusters are the new cluster X; UY; and the
single predecessor Z of X; (same reasoning applies if Y; had a second predecessor).

Corollary 3.2.1 If the merging of the it" step of the algorithm is of type 3, then the
cluster X; UY; formed at this stage, will necessarily be merged with the predecessor of
X; orY;, in a later step of the algorithm.

Proof: Let us suppose - without any loss of generality - that Z is the (only) predecessor
of X;, before the # merging of X; and Y;. Let us place at the end of the 8 merging.
Clearly X; UYj; is maximal and X; UY; € M.

Suppose that Z is not maximal, then X; C Z C Z’, which implies that X; has been
eliminated from M; (i’ < i) no later than during the update following the creation
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of Z': this contradicts X; € M;_1. Thus Z is maximal, and so Z € M;, because
a maximal cluster cannot be eliminated from any M; (j < i). It results that the
clusters X;UY; and Z belonging to M;, are maximal and properly intersect themselves.
Thus they can be merged together in an a merging, and according to Property 4 in
Section 2.3.3, they will be merged together in a later step of the algorithm. O

3.2.2 2-3 AHC Algorithm’s New Formulation

First, we present here a new formulation of the 2-3 AHC algorithm which basically
includes and integrates Property 3 and 4 (cf. Section 2.3.3). We use here the fact that
two clusters that properly intersect themselves and their successors can not bee merged
with other disjoint clusters. We know then that these two clusters will be merged in a
future step of the 2-3 algorithm in order to respect the 2-3 hierarchy properties and to
create one (cf. Corollary 3.2.1).

In this context we chose to merge any two clusters that properly intersect themselves
as soon as the second one is created. If we take the example in Figure 3.2, after clusters
{b} and {c} have been merged, we merge directly clusters {ab} and {bc} into {abc}.

Figure 3.2: Intermediate merging

The advantage in this case is that the dissimilarities between the newly created
cluster {bc} and the rest of all candidates will not be computed. In the normal (initial)
2-3 AHC algorithm execution, these dissimilarities would have been computed or at
least a test would have been performed for each candidate to determine if the dissimi-
larity can be computed (O(n) complexity). In Figure 3.2 and in the normal execution,
the dissimilarities between {bc} on one hand and {d}, {de}, {e}, {f} on the other hand
would be evaluated and possibly computed. Also clusters {ab} and {bc} would not be
merged, but the next minimum dissimilarity pair of clusters will (for example {e} and
{r)-

The downside of adding this intermediate merging, is that we have to compute the
dissimilarities between the last cluster {abc} and the rest of the current candidates.
Since the current size of M, is different (possibly larger) than the size of M; when
merging {ab} and {bc} without intermediate merging, the complexity also might be
different. Remark: the complexity will remain in O(n) since there are maximum | 3(n—
1)] candidates, but it can be slightly bigger

The advantage is that the cluster {abc} will be a candidate cluster in the next step

of the algorithm and could be merged with other clusters to form lower heterogeneity
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clusters. In the example from Figure 3.2, one can assume that there is a relatively small
dissimilarity between {abc} and say {d} or {f}, and that these two will be merged into
a new cluster creating thus a different 2-3 hierarchy.

Another advantage, is the fact that the cluster {ab} and {bc} and no longer “blocked”
until their dissimilarity becomes the algorithm’s minimum dissimilarity and the fact
that we can directly eliminate {ab} and {bc} from the candidates set (see Section 3.2.3).

This new pseudo-algorithm formulation was also proposed in [Ber02b] *.

Preliminary Algorithm of 2-3 Hierarchical Ascending Classification

1. Initialize the set of clusters as the set of all singletons of E.
2. Merge a pair of two nearest clusters among the pairs formed by non-
comparable clusters that fulfill one of the following conditions :
() the two clusters X; and Y; are maximal.
(B) one of the clusters X; and Y; is maximal and the other
admits a unique predecessor which is maximal.
3. Let X; and Y; be the two clusters being merged at step 2.
If one of these two clusters admitted a unique predecessor, say Z, at
the beginning of previous step 2, then merge Z and X; UY;.
4. Repeat steps 2 and 3, until the whole cluster F is merged.
5. Refinement.

As mentioned before, at the end of step 3 the sets S; and M; are updated and
the dissimilarities between the new sets and the rest of the sets in M; are computed
according to the dissimilarity measure [Ber86] chosen in the beginning. In case we
use the single linkage dissimilarity measure we use (2.9) to compute the dissimilarity
between two sets.

So far the refinement step is identical to the initial one, but we will modify it in
Section 3.2.4 based on the study from Section 2.3.4. This refinement is still a recursive
one. This means that the created structure is analyzed from the last cluster formed
(the E set) and for each cluster the f value is compared with the ones of its successors
and in case of equality the successor is removed (it does not present any interest from
the clustering point of view) excepting the case were it’s a proper intersection and
can influence the induced dissimilarity. Then the connections (succ,pred) in the 2-3
hierarchy are “redirected” in order to maintain a 2-3 hierarchical structure. Normally
after this update in the structure of the hierarchy, we should repeat the test for the new
successors of the cluster if we want to make sure that we will obtain a weakly indexed
structure.

*The initial 2-3 AHC algorithm didn’t had the test condition for merging Z and X; UY;.
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3.2.3 Reformulating the Update of the Set M; of Candidates

We begin with a reformulation of the update of M; containing the candidate clusters
(Step 3) based on Property 2 from Section 2.3.2.

Proposition 3.2.2 In the 2-3 AHC algorithm, we can, without changing the results of
the merging, choose M; (step 3) in the following way: M; equals M;—1 U{X; UY;},
from which we eliminate every successor of X; or Y;, and also the two clusters X; and
Y;, if XiNY; # 0 or the merging of X; and Y; is of type (3.

Proof: In the initial algorithm, like in the new formulation, M; is equal to M;_1 U
{X;UY;}, deprived of certain clusters included in X; UY;. It is thus enough to compare
the two ways of defining M; only for the clusters of M;_1 which are included in X;UY;.
We first examine the successors of X; or of Y;. In the initial algorithm, they don’t belong
to M;, because they are included in X; or Y;, and in X; UY;. It is also clearly the
case in the new formulation. In addition, in both ways of choosing M;, if a cluster
W is included in one of the successors of X; (resp. Y;), then W does not belong to
M, _1, because W was already eliminated from M with ' < i — 1 (we use the same
arguments as for the elimination of the successors of X; or Y;, but to a stage previous
to the formation of X; UY;). Since X; and Y; are the only successors of X; UY;, these
are thus the only clusters left to examinate, in order to determine if the choice of M;
varies according to whether we use the initial algorithm or the new formulation.

There are only three possible cases according to whether the merging of X; and Y;,
is:

e (a) of the type o with X; NY; =0,
e (b) of the type o with X; NY; # 0

e (c) of the type 5.

Figure 3.3: o merging of X; and Y;, with X; NY; =0

Case (a): o merging of X; and Y;, with X; N'Y; = () (see Figure 3.3). In this case,
X;UY; is the only cluster containing X; (resp. Y;), because X; (resp. Y;) was maximal
before the creation of X; UY;. Thus neither X; nor Y; are removed from M, in the
initial algorithm, and also in the new formulation. It results that the two formulations
are equivalent here.
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Figure 3.4: a merging of X; and Y;, with X; NY; # 0

Case (b): « merging of X; and Y;, with X; N'Y; # 0. Using the same argument
as in case (a), we deduce that neither X; nor Y; are removed from M; in the initial
algorithm. On the other hand, X; and Y; do not belong to M, if the new formulation
is used. Using the intermediate merging (see Section 3.2.1) we will make sure the two
clusters will be merged.

However according to Properties 3 and 4 (cf. Section 2.3.3) and Corollary 3.2.1, in
the initial algorithm neither X; nor Y; will be aggregate during a later merging of this
algorithm with another cluster. Indeed on the one hand, none of the clusters X; and Y;
can be used for a 3 type merging, because X; and Y; properly intersect each other. On
the other hand, none of the clusters X; and Y; can be used for an o merging, because
X; and Y; are not maximal any more. Thus, the pairs of clusters that can be merged
are the same in the two approaches.

Xi Yi

Figure 3.5: 8 merging of X; and Y;

Case (c): 8 merging of X; and Y;. Let us suppose - without any loss of generality
- that Z is the (only) predecessor of X;. Thus X; ¢ M; in the initial algorithm, but
Y; € M, because Y; is included in only one cluster (X; UY;). On the other hand, X;
and Y; do not belong to M;, if the new formulation is used. However according to
the initial algorithm, Y; will not be aggregate during a later merging of the algorithm
(see Property 3, Section 2.3.3). Indeed, Y; has a single predecessor X; UY; but X; UY;
properly intersects Z (because Z strictly contains X; but is disjoint of Y;). Thus Y;
could be used neither for a 8 type merging, nor for an « type one. Thus, again the
pairs of clusters that can be merged are the same in the two approaches, which finally
proves that the new way of choosing M; does not change the possibilities of merging
at each iteration. O

The advantage of this approach is that the size of M, is reduced and the clusters
that cannot be merged with other clusters are no longer kept as candidates.
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Therefore, the cluster pair satisfying the minimum dissimilarity condition will be
the merging pair and no further tests are necessary to check if the pair satisfies the «
and 3 conditions.

3.2.4 Facts

In this section we will analyze the new 2-3 hierarchies properties implications.

Fact 3.2.3 If at the end of any [ merging of X; and Y; (i unspecified), we decide,
following the Corollary 3.2.1, to merge X; UY; with the predecessor Z (of X; or Y;),
then at the end of the so modified step 2, no cluster properly intersects a maximal
cluster. In other words, at the end of each modified step 2, the mazximal clusters form a
partition of E/, which underlines a strong analogy with the AHC algorithm characterized
by this property.

Fact 3.2.4 For each i, the set M; represents all the maximal clusters plus their suc-
cessors when these successors are disjoint. This is a direct consequence of Proposition
3.2.2 and of the fact that each merging creates a maximal cluster. It results (tak-
ing into account the significant remark according to which the maximal clusters are
disjoint) that one reformulate the (o) and (3) conditions in the following way, where
X, Y e M;_i: (a) “X and Y are maximal”, (8) “only one of the clusters X and Y is
maximal”.

This can be then reduced to a single merging condition (see also Section 2.3.3) and
used in the 2-3 AHC algorithm when merging two candidate clusters:
At most one is successor of another cluster from M;.

3.2.5 Integration of the Refinement Step into the Merging Step

Figure 3.6: Refinement example (Fact 3.2.5)

We saw in Section 2.3.4 that one can chose to perform or not the refinement step
depending on the desired analysis. The following statement considers the case when
we choose to perform the refinement.

Not performing the refinement step will constructs a mapping f isotone in a large
sense: we can have comparable clusters with the same value for f. As mentioned in
Section 2.1.1 and in [Ber02c|, it is more suitable to obtain a weak index f for the
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created 2-3 hierarchy, especially when we are interested in comparing the resulting
dissimilarities.

So we can integrate the refinement step into the merging step of the 2-3 AHC
algorithm (see Section 2.3.4).

Fact 3.2.5 The refinement step can be integrated into the merging step, in order to
obtain a weak indexing f. For this, each time we create a cluster X UY, we compare
f(XUY) with f(X) and f(Y). If f(XUY) = f(X) (resp. f(XUY) = f(Y)), we
remove X (resp. Y'), provided that X UY is the only predecessor of X (resp. Y'). This
last case is illustrated in the example from Figure 3.6 where f(X) < f(Y) = f(XUY):
Y must then be eliminated from the structure.

3.3 Proposition of a New 2-3 AHC Algorithm

Based on the previous 2-3 hierarchies properties and facts, we can reformulate the 2-3
AHC algorithm into a pseudo-algorithm as follows:

Agglomerative 2-3 Hierarchical Classification Pseudo-Algorithm

1. Initialize the set of clusters as the set of all singletons of E.

2. Merge the two nearest clusters (X;,Y;) among the pairs formed
by non-comparable clusters with pred({X;,Y;}) < 1.
If pred({X;,Y;}) = 2 then merge the two predecessors.
Update M;,S; and compute f, u for the last cluster.

3. Repeat step 2 until the whole cluster F is merged.

Compared to the previous preliminary 2-3 AHC algorithm, in this version we have
just replaced the a and 3 conditions. Next we present a more detailed version of this
algorithm which integrates also the optional refinement step*.

New 2-3 AHC algorithm:

1. Initialization: The candidate clusters set, My, is the set of single-
tons of E; f({x}) =0,Vex € E. Let i = 0.

2. a) Merge: Let i = ¢+ 1; Merge two clusters X; and Y; which are
closest (in the sense of 1) among the pairs from M;_;, which are
noncomparable and such that at least one of them is maximal;

*The blind merging avoidance can be integrated on the dissimilarity calculus in the Update of
step
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b) Intermediate Merge: If Z is a predecessor of the cluster X; or
Y; such that Z # X; UY;, then merge Z and X; UY;, and eliminate
from M; these two clusters and their successors.

3. Refinement: Eliminate any cluster W € {X;,Y;, X; UY;, Z} such
that W has one predecessor, W', with f(W) = f(W').

4. Update: Update M; by adding the last formed cluster and elimina-
ting the successors of the merged clusters and also the merged
clusters if they properly intersect each other.

Update p and f.
5. Ending test: Repeat steps 2-4 until F is a cluster.

Concerning this new algorithm, we may notice that facts 3.2.3 and 3.2.4 imply that
the clusters generated by the new merging step 2, form a 2-3 hierarchy. The integration
of the refinement step inside the loop defined by steps 2-5, ensures that the clustering
structure is weakly indexed by f, whereas it is clear that the deletion of some clusters
having only one predecessor, does not change the property for the generated clusters
to form a 2-3 hierarchy.

A more detailed version of this new 2-3 AHC algorithm is given bellow:

New 2-3 AHC Algorithm (detailed)

STEP 1. INITTALIZATION
1« 0; the iteration number
while x € B

Sp — Sp U {33‘}

f{z}) <0

p({z}, {y}) < é(z,y)

update ordered structure
end while

My — S

00 N O O > W N =

STEP 2. MERGING

9.  while M; contains merging pairs

10. 1—1+1

11. get (X;,Y;) non-comparable to merge

12. create a X; UY; with successors X;,Y;
13. (X3 UY;) — max{f(X), f(Y3), n(X;,Yi)}
14. S; — Si1 U{XZ'U}/Z'}

15. M; — M;_1 U {XZ U }/z}
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16. if f(X;UY;) = f(X;)=f(Yi) then

17. if pred(X;) ={X;uY;, 2}

18. succ(Z) — {succ(Z) — {X;}} U{X; UY;}
19. pred(X;) «— pred(X;) —{Z}

20. M; — M; — suce(X; UY;)

21. end if

22. S 8 — {X,, Vi)

23. MZHMZ—{XZ,YZ}

24. suce(X; UY;) «— succ({X;,Y:})

25. pred(succ({X;,Yi})) « {X; UY;}

26. else

27. if f(X;UY;) =f(X;) T then

28. S;—S;,—X;

29. M; — M; —{X;, succ(Y;)}

30. suce(X; UY;) «— {{Y;, suce(X;)} — {X;NYi}}
31. pred(suce(X;) —{X; NY;}) — {X; UY;}
32. if pred(X;)={X;UY;,Z} then
33. do 22. 23. 24.

34. else

35. if pred(Y;) ={X;UY;, Z}

36. (Xi,Ys) — (X UY;, 2)

37. restart from 12.

38. end if

39. end if

40. else

41. M; — M; — suce({X;,Yi})

42. if X;NY;#0 then

43. MZHMZ—{XZ,YZ}

44 . end if

45. if pred({X;,Y;}) ={X;UY;, 7}
46. (Xi,Yy) — (Xi UV, 2)

47. restart from 12.

48. end if

49. end if

50. end if

51. compute p(new cluster, rest of the candidates)

52. end while

TWe assume without any loss of generality that X; satisfies the condition. For Y; we have the same
reasoning
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The main difference between our 2-3 AHC algorithm and the initial one, is the
intermediate merging step which can sometimes generate a different 2-3 hierarchy than
the one produced by the initial 2-3 AHC algorithm. Also we saw in Section 2.3.4,
that one can have different 2-3 hierarchies whether we choose to execute the integrated
refinement or not. Moreover, we can create different 2-3 hierarchies if we choose to
avoid the blind merging case (see Section 2.6.2).

Thus we have four variants of our 2-3 AHC algorithm, based on the different options
that we choose:

1. 2-3 AHC algorithm with intermediate merging and no refinement;
2. 2-3 AHC algorithm with intermediate merging and integrated refinement;

3. 2-3 AHC algorithm with intermediate merging, no refinement and avoiding the
blind merging;

4. 2-3 AHC algorithm with intermediate merging, integrated refinement and avoid-
ing the blind merging.

Before comparing these 2-3 AHC algorithm variants with the classical AHC one and
the initial 2-3 AHC algorithm, we first analyze our 2-3 AHC algorithm complexity.

3.4 Complexity Analysis of our 2-3 AHC Algorithm

We used a three level ordered data structure for data matrix storage. This has a direct
impact especially on the INITTALIZATION step, and so we analyze next the impact
of this data structure on the 2-3 AHC algorithm execution.

3.4.1 Data Matrix Indexing

In order to store and manage the matrix containing the link values between clusters,
which is the most time expensive operation, we propose to use an ordered tree structure
that puts in correspondence these values and the pairs of candidate clusters. The
purpose is to search among all candidate cluster pairs for merging, the one that minimize
several criterions.

We use three criterions in order to choose the merging pair:

(1) Minimal link, since we search two closest clusters,

(2) Minimal cardinality, meaning the number of elements of the clusters to be
merged, when we have multiple pairs at a minimal link

(3) Minimal lexicographical order (or creation order) on the clusters identifiers, when
the two first criterons are satisfied by several pairs. This is actually equivalent to the
creation order of the clusters.
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Therefore, we have on the first level of the structure the ordered link values, on the
second the ordered cardinalities of the pairs situated at the same link between clusters
and on the third the lexicographically ordered identifiers. A small example is presented
in Figure 3.7.

a b c
b| 1
cl1 3

9 2 1

(ab) (aq) (cd (bd (b

Figure 3.7: Data structure example

We know that the maximal number of non-singletons clusters in a 2-3 hierarchy is
3(n—1)|, where n is the number of singletons. We thus have at most | 3(n—1)]| +n =
2 2

|52-3 | candidate clusters during the 2-3 AHC algorithm execution. Since the matrix

size is limited by Ln(n;l)j, it follows that parsing this structure is performed in O(n?).

Next, we will analyze the complexity of the operations on this data structure.

To access/create a cluster pair (a leaf in the data structure), we need three informa-
tions: the value of the link p(X,Y), the cardinality of | X UY'|, and the lexicographically
ordered clusters identifiers. These can be each computed in O(1). Having these we can
access in O(logn) the needed value on each level.

In the same way, the deletion of a cluster pair can be done in O(logn). But during
the algorithm execution, we need to eliminate all the pairs containing at least a non-
candidate cluster (five at most at each step of the algorithm). The purpose is to have
a structure containing only candidate pairs of clusters, and just pick the first one in
the structure without performing any other tests. Thus during the 2-3 AHC algorithm
execution, after each step last’s merging (intermediate or normal), we must eliminate
at most 5L%J — 1 pairs. Since the access to a pair is in O(logn), it follows that all
the pairs containing a non-candidate cluster are deleted in O(nlogn).

Knowing that we have at most L%(n — 1)] mergings, and that at each merging one

must eliminate at most 5(| 242 | — 1) and add at most |2%-2 | pairs, we have a global

complexity of O(n?logn) in manipulating this structure. This will thus not impact
on the global algorithm execution and although it will increase the INITTALIZATION
phase complexity, it will help reduce the complexity of some of the steps in the MERG-
ING phase.

However, in the case of a # merging, one should analyze the behaviour of the above
mentioned criterions since we know that the maximal cluster and the predecessor of
the non-maximal cluster will be merged in the intermediate merging. In the case of
the dissimilarity, we called that the “blind merging” influence, but this can also be
extended to the cardinality and creation order.
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For example, when we perform an (3 type merging (|pred({X,Y})| = 2), the creation
order criterion will not take into account the predecessor of the non-maximal cluster.
Since this predecessor will be then merged with the other maximal cluster, the creation
order criterion will allow later created clusters to be merged. An example on a small
2D points dataset (cf. Table 3.1 and Figure 3.8) using the complete-link is presented
in Figures 3.9, 3.11 and 3.10.

10 1 2 3 4
0.1294863923931817
0.25567883955228315 0.12664556131187024
0.37990591493620707 0.2518197754848242 0.12566370614359101
0.5036240973594744 0.3769911184307748 0.2518197754848242 0.12664556131187024
0.6283185307179586 0.5036240973594744 0.37990591493620707 0.25567883955228315 0.12948639239318166

GO WNH

Table 3.1: Example of lexicographical criteria influence
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Figure 3.10: 2-3 AHC V3 avoiding BM diss Figure 3.11: 2-3 AHC V3 avoiding BM all

The following algorithms are executed on this dataset: the classical AHC (Figure
3.9) and two 2-3 AHC algorithms avoiding the blind merging (Figures 3.10 and 3.11).
The difference between the two 2-3 AHC algorithms is that the first one avoided the
blind merging at the first level of the structure, the dissimilarity level, whilst the second
avoided the blind merging at all three levels of the structure.

To better understand this we remind that in order to avoid the blind merging, a
second value of dissimilarity is stored in the structure beside the normal one. This value
is stored only for the pairs of clusters that can be § merged and is used to minimize
the level of the cluster created after the a merging. We say ”« merging” since if the
pair chosen to be merged is a [ pair, then the intermediate merging is executed («
merging). Thus, at the end of each cycle of the algorithm execution, we make sure that
the last formed cluster has a minimum heterogeneity degree.

Basically, this second value is used to ensure that the last merged clusters at the
end of an algorithm cycle minimize the dissimilarity criteria.
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Using same reasoning, we can use two more additional values for the cardinality
and creation order to ensure that these two criteria are minimized at the end of each
algorithm cycle.

For example, after three cycles of the algorithms, the clusters 6, 7 and 8 are created
(see Figures 3.9, 3.11 and 3.10). Here, for the 2-3 AHC methods, the candidate pairs
of clusters are: (1,6), (4,6) with the same cardinality. For the 2-3 AHC avoiding the
BM at dissimilarity level only (cf. Figure 3.10) we merge the pair (1,6), which in turn
will involve the merging of 6 and 8 in the immediate intermediate merging step.

But, if we chose to merge the pair (4,6), the intermediate merging will group the
clusters 6 and 7 which minimize all the criteria at the end of the algorithm’s cycle
(including the creation order). This is the case for the 2-3 AHC avoiding the blind
merging at all three levels, presented in Figure 3.11.

In the case of the first 2-3 AHC algorithm, the dissimilarity matrix induced by the
created 2-3 hierarchy will present a negative information gain (see Section 3.5) than
the one induced by the classical hierarchy (cf. Figure 3.9), since {2,3} is merged with
{0,1} instead of {4,5}. We must specify that this is a particular case, and that one
might also have a gain in the induced matrix on other datasets.

Using the 2-3 AHC avoiding the blind merging on all three levels can thus ensure
that the merged pairs will minimize the three criterias and that the obtained structure
will have a positive information gain compared to the classical AHC.

3.4.2 Theoretical Complexity Calculus

In this section we analyze the theoretical complexity of our new 2-3 AHC algorithm.

The complexity of the Initialization (step 1) is larger than the one in the initial 2-3
AHC algorithm: O(n?logn) instead of O(n?), but the basic operations on the ordered
tree structure in the following steps will be reduced to O(logn) instead of O(n?).

As follows we will analyze the complexity of the steps 2-4, which are repeated until
the cluster FE is created, that’s at most L%(n —1)] times. In the Merging step (Step
2.a), we first retrieve the pair that minimise our criterons, in O(1), and we create the
new cluster X; UY; also in O(1). If one of the merged clusters has another predecessor,
we perform an Intermediate merge (Step 2.b) with the same complexity as the one
before. Thus the whole complexity of the step 2 is O(n).

In the optional Refinement step (Step 3), we will eliminate from the structure the
clusters found on the same level with their predecessors when their elimination is not
influencing the induced dissimilarity matrix. We update the predecessor, successor
links between the remaining clusters, which is done in O(n), since a cluster can have
at most [ 3(n — 1)] successors (cf. Property 1).

In the Update step (Step 4) we first update M; in O(n) since adding the new
formed cluster is constant and since a cluster can have at most n successors to eliminate
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from M;. In the p update we eliminate from the structure the pairs containing at least
a cluster to be eliminated. Since a pair is eliminated in O(logn) and we have at most
L%(n — 1)] clusters, we have here an O(nlogn) complexity. Then, the links between
the new formed cluster and the rest of the candidates are computed, each in at most
O(n), and inserted into the matrix, in O(logn) each. When we want to avoid the blind
merging, the only difference is that during the update, we will use two dissimilarities
and also an O(log n) update for the new cluster successors. Therefore, the complexity
of step 4 is O(nlogn).

Thus, the total complexity is then reduced to O(n%logn) + n x O(nlogn) =
O(n?logn).

3.4.3 Experimental Validation

We have designed an object-oriented model of the algorithm, which was implemented
in Java. Also a Hierarchical Clustering Toolbox was created to ease the results visual-
ization (see Section 4 for more details).

To validate our 2-3 algorithm complexity, we analyzed the execution times on different
datasets:

e random generated data: rectangular randomly generated data and sinusoidal
randomly generated data with noise (see Section 3.5.3 for more details),

e real data: Abalone dataset (see Section 3.5.4 for more details).

The following six methods were executed:
1. the classical AHC algorithm,
2. the initial 2-3 AHC algorithm (denoted 2-3 AHC ini or 2-3 AHC V1),

3. our 2-3 AHC algorithm with intermediate merging and no refinement (denoted
23 AHC V2),

4. our 2-3 AHC algorithm with intermediate merging and integrated refinement
(denoted 2-3 AHC ref V2),

5. our 2-3 AHC algorithm with intermediate merging, no refinement and avoiding
the blind merging (denoted 2-3 AHC V3)

6. our 2-3 AHC algorithm with intermediate merging, integrated refinement and
avoiding the blind merging (denoted 2-3 AHC ref V3).
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We remind that since the blind merging doesn’t influence the single link (cf. Sec-
tion 2.7.2), there is only the AHC, our 2-3 AHC algorithm with or without integrated
refinement (no V2 nor V3) and the initial 2-3 AHC algorithm.

We present here the execution times on the rectangle simulated data (see Ap-
pendix C for the maximum execution times). For each n, we made 10 iterations on
different simulated/sampled data. The execution times on the other datasets are sim-
ilar. Figures 3.12 and 3.14 present the average execution times for the single and
complete linkage.
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Execution time(n)
O(n?logn) ’
where n is the number of objects. For the initial 2-3 AHC algorithm the execution

times stopped at 1900 elements, while for the classical AHC and our 2-3 AHC algorithm
reached 3000 elements.
As we can clearly see in Figures 3.13 and 3.15, our 2-3 AHC algorithms ratios

To validate the algorithm complexity, we also computed the ratio

converge to a constant proving thus that the 2-3 AHC algorithm complexity is indeed
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in O(n2logn).

3.5 Experimental Qualitative Comparison between AHC
and 2-3 AHC

Having already clearly established the theoretical advantage of our 2-3 AHC algorithm
(reduced computing complexity, see Section 3.4.3), in this section we will apply our 2-3
AHC algorithm variants and the initial 2-3 AHC algorithm on different datasets, and
then compare the results obtained with those produced by the classical AHC algorithm.
We carried out two types of comparative analysis between the classical AHC and the
2-3 AHC algorithms: on real datasets (Ruspini, Abalone) and on artificial datasets
(rectangle, sinusoidal).

To compare different classification structures, there are many approaches which
come especially from the hierarchies analysis field [LL95], [Pod02], [Gor99], [ST05].
These as usually used to determine the more appropriate algorithm/method to be ap-
plied for a given dataset or to determine the differences in created structures. In [STO05]
the authors adopted an ordinal approach, by associating preordenations to the various
structures:

V({z,y},{z,t}) € B2 x E? : {x,y} < {z,t} <= h(z,y) < h(z,t)
In [Ler97], a total preorder defined of the created partitions is used to compare the cre-
ated hierarchies. The cluster creation order can also be used to compare the hierarchies
[You04].

Other dendrogram descriptor, is the path difference [Phi7l, WCT71] which is given
by the number of clusters in the path between two elements x and y in the created
structure. But this is not a very suited criteria to compare the structures, as it not
takes into account the levels of the dendrograms.

The most suited in our case are the matriz comparison coefficients (measures of
discordance or agreement) for the dendrogram comparison [SS73b, LL95]. This kind of
“quality” measure is also used to compare the hierarchies and the pyramids on same
datasets [Bri02]. To analyze the results adequacy of the classical AHC algorithm and
the 2-3 AHC algorithms, we compared the resulting structures. The problem in this
case is the fact that the hierarchies and the 2-3 hierarchies can be incomparable and
thus not suited for a direct comparison. Also it seems more natural to compare the
structures using the initial dissimilarities.

Therefore we compared the initial dissimilarity matrix, d, with the induced dissim-
ilarity matrix 0 of each executed method. Let us recall that d; ; is the minimal value of
f(X) where X is a cluster containing ¢ and j. By doing this comparison, we determined
how well each structures summarize the information from the initial data.

To carry out this comparison, we used the Stress coefficient [JW82]:
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3> (di i —6i,5)?]
A==,

The Stress measures the degree of correspondence between the induced dissimilarity
matrix of the executed algorithm (AHC or 2-3 AHC) and the initial dissimilarities. Its
values range from 0 to 1, where 0 corresponds to identical matrices comparison value.

Other (similar) coefficients include:

e the Weighted sum of squares:
A=335dig = )]

i 2, (di =6 5)?]

e the Goodness of fit (Variance accounted for): A =1 — SR SRICAET

e the Cophenetic correlation coefficient (Pearson coefficient) [SR62]:
= i 2,1 —d)(8i,;—-0)°]
\/EZ 35l(di g =d)?] 32530 51(0:,5—6)?]

We chosen the Stress coefficient, because is the most suitable one when comparing
the dissimilarity matrices in this case.

To resume, in order to perform a qualitative analysis between the methods we used
the following three criteria:

e the number of created clusters by the method,

o the Stress [JW82] measure, to determine how well the method represents the
initial data,

e the possible improvements noticed by an expert of the domain in the data rep-
resentation by studying the method’s output. This is most suitable for small
datasets.

For the third criteria we used a small and well-known dataset of two dimensional
points, the Ruspini dataset (see Section 3.5.1), on which the visual interpretation was
feasible. For this first two criteria we used artificially simulated datasets (see Sec-
tion 3.5.3) and also a known large dataset, the Abalone (see Section 3.5.4), which we
randomly sampled.

3.5.1 Ruspini Dataset

The well-known Ruspini dataset [Rus69] contains four clusters of two dimensional points
with some intermediate points (cf Figure 3.16).
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Nb clusters | Gain nb cl Stress | Gain Stress
AHC ref 66 0.334226
AHC 74 0.334226
2-3AHC ref (V2 or V3) 87 31.82% | 0.254253 23.93%
2-3AHC (V2 or V3) 109 47.3% | 0.256294 23.92%
2-3AHC ini 110 48.65% | 0.263786 21.76%

Table 3.2: The single-link results on the Ruspini dataset

The single-link results are presented in Table 3.2 below while the complete-link
results are presented in Table 3.3. The structures obtained on this dataset with the
classical AHC and the 2-3 AHC algorithms, lead to the following observations.

For the single-link, we had same results with or without the blind merging avoidance
(V2 and V3) which are presented in Table 3.2. The 2-3 hierarchies without integrated
refinement (V2 and V3) contain more clusters than the traditional hierarchy: 110 the
initial 2-3 AHC, 109 the 2-3 AHC, compared to the 74 of the classical AHC. This repre-
sents 48.65% and 47.3% more clusters (which is very close to the theoretical percentage
between the maximum number of classes of the two types of structure, i.e. 50%). By
analyzing the Stress coeflicient, one can see that the best results are obtained by our
2-3 AHC algorithm with integrated refinement, despite the fact that there are fewer

clusters.

Nb clusters | Gain nb cl Stress | Gain Stress
AHC [ref] 74 0.305812
2-3AHC ref V2 105 41.89% | 0.286912 6.18%
2-3AHC V2 109 47.29% | 0.225438 26.28%
2-3AHC ref V3 104 40.54% | 0.198684 35.03%
2-3AHC V3 107 44.59% | 0.198685 35.03%
2-3AHC ini 109 47.29% | 0.225438 26.28%

Table 3.3: The complete-link results on the Ruspini dataset
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As concerning the complete-link results, one can see that the best results are ob-
tained when using the 2-3 AHC algorithm that avoids the blind merging (the V3). For
the AHC method, same results were obtained with or without refinement.

It results that the 2-3 AHC represents better the data structure than the classical
AHC including in the case of 2-3 AHC with integrated refinement. For example, for
the single-link, one can notice that for the 2-3 hierarchy in Figure 3.17), items 43, 44
of cluster 176 are closer to cluster 175 (items 20-42) then the cluster 153 (items 45, 46,
47). This is not shown by the traditional hierarchy (cf Figure 3.18).

3.5.2 Urban Itineraries

In this section we will apply our 2-3 AHC algorithm and the classical AHC algorithm
on a small generated dataset of town-center urban itineraries [Bus05]. This work was
realized as a part of the MobiVIP* research project of the national program Predit
3f. As a partner in the MobiVIP project, we proposed among others the use of a
recommender system (Be-TRIP [CGT04, TCGO04]) in a mobility context, to facilitate
the information search and the trip’s preparation and execution of a user. A more
detailed description of the proposed Be-TRIP recommender system is given in Appendix
F.

The purpose of the urban itineraries classification was the study of the relevance of
the 2-3 AHC as a clustering method for case indexing in such a recommender system
based on a Case-Based Reasoning library, CBR*Tools [Jac98] described in Section 4.3.1.
The actual integration of the 2-3 AHC in the CBR*Tools is described in Section 4.3.

To analyze the relevance of the 2-3 AHC on clustering urban itineraries for the
Be-TRIP recommender system, we first used the Hierarchical Clustering Toolbox
described in Section 4.2 for results interpretation on a small generated itineraries set.

The itineraries clustering is based on the exploitation of both geographical and
semantical data (road type, buildings along the road, etc.). This new use of semantic
data opens new ways for itineraries recommendation, by tackling ideas as the itinerary’s
goal or the nature of the crossed places. Clustering itineraries has many advantages
besides the possibility of choosing the most suitable one: it is also an analysis and
comparison tool. This can have multiple applications: route or destination prediction,
traffic anticipation, etc.

Each itinerary was split in road sections (fragments) that were analyzed for their
characteristics: turning angle, length, type of present buildings, etc. Then using these
informations, multiple distances between itineraries where computed based on:

e the total length and the average of maximum turning angle;

*http://www-sop.inria.fr/mobivip/
thttp://www.predit.prd.fr/
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e the spreading of the buildings types along the road;

e the number/proportion of common sections.

The used spreading function was proposed in [Tan05b] to compute differences be-
tween Sanskrit texts and was adapted in our case to compute the building types spread-
ing along the analyzed itinerary. Basically, it computes the variations in the distances
between the building types along the analyzed itineraries.

Then all these distances were aggregated to compute different types of distances
between the itineraries. For this, we specified and developed a software called TripSim-
ulator [Bus05] for manual itinerary generation and distances computation. Different
ways of defining the distance and of comparing the road sections were tested.

Having no real data, the software was then used by George Gallais, head of the
MobiVIP project, to manually generate 40 itineraries in the Antibes town center, rep-
resenting four types of professional itineraries:

e Real Estate Agent (trips from 0 to 9);

e Nurse (trips from 10 to 19);

e Hotel Service (trips from 20 to 29);

e Cultural Association (trips from 30 to 39);

After computing the distance matrix on these itineraries, we applied the classical
AHC along with the 2-3 AHC methods using the complete linkage (see Table 3.4 for
results). The classical AHC (cf. Figure 3.19) grouped the real estate agent (cluster 71)
and the hotel service (cluster 74) itineraries, while the other two groups are mixed and
separated by the first group (real estate agent). Similar results were obtained using
the 2-3 AHC avoiding the blind merging (2-3 AHC V3) with or without integrated
refinement (cf. Figure 3.21), although the second and fourth groups (nurse and cultural
association) were no longer separated, improving thus the Stress gain (cf. Table 3.4).

Using the initial 2-3 AHC, three groups were correctly constructed: real estate
with cluster 88, hotel service with cluster 89 and cultural association with cluster
75. The nurse group of itineraries was divided in two clusters, 86 and 87, but they
were not merged directly: 87 is merged with 90, which contains the cultural association
itineraries also. Moreover, the merging strategy (hotel service close to the real estate) of
the initial 2-3 AHC induced an actual loss of -22.24% in the Stress coefficient compared
to the classical hierarchy (see Table 3.4).
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Nb clusters | Gain nb cl Stress | Gain Stress
AHC 39 0.241947
2-3AHC ref V2 55 41.03% | 0.112713 53.41%
2-3AHC V2 57 46.15% | 0.112713 53.41%
2-3AHC ref V3 56 43.59% | 0.151242 37.49%
2-3AHC V3 56 43.59% | 0.151242 37.49%
2-3AHC ini 57 46.15% | 0.295758 -22.24%

Table 3.4: Complete link results on the professional itineraries classification

The best classification was obtained using our 2-3 AHC without blind merging
avoidance (cf. Figure 3.20) with the biggest Stress gain (53% in Table 3.4) and all four
groups identified: real estate in cluster 84, nurse in cluster 85, hotel service in cluster
90 and cultural association in cluster 74. As in the initial 2-3 AHC case, a part of the
nurse group was also close to the cultural association group, but this time the nurse
group was created. Only four itineraries (10%) were misclassified using the 2-3 AHC,
whilst the classification quality is clearly better compared to the classical constructed
hierarchy.

To conclude, the 2-3 hierarchies contain more information about the analyzed data
than the classical hierarchies (more created clusters, proper intersections, etc.) and can
also provide a better data classification for the analyst.

After the analysis performed on these small datasets (Ruspini, itineraries) to reveal
the advantages of the 2-3 hierarchies over the classical hierarchies, we analyze next the
creation time and the Stress gain of the created structures (hierarchies, 2-3 hierarchies)
on larger datasets: on random generated data (cf. Section 3.5.3) and also on a larger
real dataset, Abalone [Sam95] (cf. Section 3.5.4).

3.5.3 Artificially Generated Data

After applying the 2-3 AHC algorithms and the classic AHC one on the small Ruspini
dataset, we will now perform the same analysis on larger volume artificial generated
data to analyze the created structures according to the first two criteria defined in
Section 3.5.

For this, we uniformly simulated datasets with the purpose of making sure that a
data structure close to the 2-3 hierarchical structure is, if not found, at least better
represented better by a 2-3 hierarchical classification than by a classical hierarchical
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classification. As we mentioned before (cf. Section 2.2.1), the 2-3 hierarchical structure
is a type of parsimonious pyramidal classification, which includes the classical hier-
archical classification as a particular case. It is thus probable that a 2-3 hierarchical
classification brings an information gain, compared to the classical hierarchical classifi-
cation, when the dataset has a structure conformed to the general model of pyramidal
classification. Such data example, are the data ordered according to a continuum, like
the chronological order or the letters order in a genomic sequence.

Therefore, we first generated uniformly n points (25 datasets for each n € {10, 20, 30,
40, 50, 75, 100, 150, ..., 3000) according to a sinusoidal curve and using a uniform noise:
y; = sin(2im/n)+w;, with u; a uniform random variable between 0 and k € {0.02,0.04,
0.06,0.08,0.1}.

We also generated points uniformly distributed in a rectangle with [0.5, 50] dimen-
sions. These two types of structure have together the property to distribute the data
according to a continuum (sinusoidal curve and line respectively) to which one adds a
uniform noise, and consequently are well adapted to a classification whose clusters are
total order intervals on E (which is the case of the hierarchies and the 2-3 hierarchies).
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Firstly, we take a look at the number of cluster created by the 2-3 AHC algorithms
compared to the classical AHC one. We present here the results on the rectangle
datasets, the results on the sinusoidal datasets were almost identical.

As we can see in Figure 3.23, for the complete link the gain in the number of
created clusters of the five 2-3 AHC methods ranged from 32% to 50%. Our 2-3 AHC
algorithm with intermediate merging (without integrated refinement and blind merging
avoidance) created generally the biggest average number of clusters: 47%. For the
single link (see Figure 3.24) the gain ranged from 23% to 50%, while the initial 2-3
AHC algorithm and the 2-3 AHC algorithm without refinement generated the biggest
average number of cluster: 46%.

Next, we analyzed the “quality” of each method using the Stress coefficient. For
each one of the six executed methods we computed its Stress coefficient, A, which
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determines how well the initial data are represented by the method. Then, for all 2-3
AHC algorithms, we computed their gain (in %) reported to the classical AHC one:
G =100(Aamgc — Aszanc)/Aanc-

For the single-link, all 2-3 AHC methods had the same Stress gain compared to
classical AHC. The average gain varied from 5% to 20% (cf. Figure 3.25) and was
very variable with sometimes large confidence intervals (see also Section 2.7.2 for some
explications). The maximum gain attained 53% for n > 50 (for smaller n, the gain can
be bigger: 100% for n = 3), while the minimum gain was 0% in this case. All methods
had in this case the same gains, which can be explained by the nature of the datasets
(continuum) and the particularity of the single-link. More graphics are presented in
Appendix C.

Same results variability was obtained for the complete-link: Figures 3.27 and 3.28.
One can notice the fact that the gain with our 2-3 AHC algorithm avoiding the blind
merging was always positive (5%), while the other 2-3 AHC algorithms had also infor-
mation loses (negative gain). In this case, the average gain was around 23% but very
variable (from 14% to 37%), with an approximate 50% maximum (see Appendix C for
more graphics).

3.5.4 Abalone Dataset

After the result analysis on the artificial datasets, we tested our algorithms on a real
dataset. A large number of well-known machine learning datasets are available on-
line for machine-learning analysis. The department of Information and Computer
Science of the University of California, maintains a repository with such dataset at
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/.

For our analysis we chosen from this repository the Abalone dataset [Sam95] which
contains 4177 individuals characterized by eight variable (one nominal and seven contin-

uous) such as sex, length, diameter, shell weight, etc. The missing values were removed
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Figure 3.29: Single link’s average Stress gain on the Abalone dataset samples

from the original dataset, while the ranges of the continuous values have been scaled
for use with an ANN (by dividing by 200).

To perform our tests, for each n € {10, 20, 30, 40, 50, 75, 100, 150, ..., 3000} we ran-
domly picked n individuals and then computed the dissimilarity matrix (15 iterations
for each n) which was used then as the input for the hierarchical algorithms executions.

We present here the Stress analysis results, the gain in the number of created clusters
being similar to the one on the artificial datasets.

Very small gains (below 1%) were obtained in the single-link case (see Figure 3.29)
with our 2-3 AHC algorithms, while for the initial 2-3 AHC algorithm there were
information loses (-3%).

In the complete link case, the 2-3 AHC algorithms avoiding the blind merging were
the only one to always provide a positive gain (cf. Figure 3.31), and also the biggest
average gain (cf. Figure 3.30. As on the artificial datasets, the gain here was very
variable with peaks of 84% for some of the 2-3 AHC algorithms (cf. Figure 3.32).



3.5. Experimental Qualitative Comparison between AHC and 2-3 AHC 89

Average Stress Gain (%)

70 50
2-3 AHC ref V2 —+—
60 2.3 AHC 16t V3 .- o ‘ ;—//*\.ﬂ:}\v---» “‘ii-l"*’-&l"'*:'l‘-"---—.
50 2-3 AHC V3 ----e--- s\i \ \\ “‘ y i
£ 50 VAV AT
3 [N VA
o D100 A B TR A
A AL N
8 VE L )
= { I | |/
? 150 R
£ VWY
g Wyl
£-200 i\ '
§ 2-3 AHC ref V2 —+— | 1
250 £ 23 AHCrefva - x-)
\/ ol 2-3 AHC V3 ---e--
10 1 1 1 I 1 1 _300 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Number of objects, n

Number of objects, n

Figure 3.30: CL avg. Stress gain on the Figure 3.31: CL min. Stress gain on the
Abalone dataset

Maximum Stress Gain (%)

Abalone dataset

100
2-3 AHC ref V2 ———

90

' 2-3 AHC ref V3 ------
80 2-3AHC V3 -
70 w \/ v‘/\/\: \r\ ﬁ
60 H \a
50 | \
40 | \\
30 | \
20 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000

Number of objects, n
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It seems thus that the most suited algorithm is the 2-3 AHC avoiding the blind

merging, since it always has an positive gain compared with the other methods. But on
new datasets, one can always choose to execute all algorithms if possible, and then based
on the Stress coefficient to select the most appropriate one for the results interpretation

or the clusters partitioning.

We saw in this section the comparison of our 2-3 AHC algorithms with the classical
AHC on different datasets:

Ruspini dataset, urban itineraries, generated data, etc.
In the next section, a small comparaison between our 2-3 AHC algorithms and an
Ascendent Pyramidal Classification (APC) algorithm [EUR] is performed using one of
the previously mentioned datasets (urban itineraries).
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3.6 Comparison between 2-3 AHC and APC

In this section, we perform a small comparaison between our 2-3 AHC algorithms and
an Ascendent Pyramidal Classification (APC) algorithm (see Section 1.2.1 for more
details on the APC).

For this, we used the SODAS software [EUR, Did02] in which an APC algorithm
was implemented. The last version of the software is called SODAS2, and is a result
of the ASSO* Project started in 2001 and aimed at Symbolic Data Analysis. Since the
SODAS software is implemented in C++ and our algorithm were implemented in Java,
we restrict this comparaison to the resulting stuctures properties. This means that no

execution time analyses were performed.

Concerning the algorithms complexities, we note that in the SODAS software a
dissimilarity matrix from 800 individuals could not be analyzed using the implemented
pyramidal algorithm, whilst our algorithm could analyze matrices of up to 3000 individ-
uals’ using the HCT toolbox. However, this is not an reliable complexity comparaison
since the implementations are different (different platforms, different codings, etc.).
Thus, to compare the two methods we use the created structures: the pyramid and the
2-3 hierarchies on the same dataset.

Since the pyramids can contain a maximal number of non-singleton clusters of
n(n2—1)
(n = |E|), we chose to analyze a rather small dataset (n < 50).

compared to (n — 1) in a classical hierarchy and |3(n —1)| in an 2-3 hierarchy

For this analysis we chose the urban itineraries dataset described in Section 3.5.2.
We recall that this dataset consist of 40 town-center urban itineraries [Bus05] that
where manually generated. They correspond to four types of professional itineraries:
Real Estate Agent (trips from 0 to 9), Nurse (trips from 10 to 19), Hotel Service (trips
from 20 to 29) and Cultural Association (trips from 30 to 39).

The 2-3 hierarchies and the classical hierarchy obtained on this dataset are presented
in Section 3.5.2. To compare the 2-3 AHC with the APC, we chose the 2-3 AHC with
the best results on this dataset: the 2-3 AHC with intermediate merging (see Figure
3.34).

Using the same dataset as an input (XML file), we then used the SODAS software
to construct a pyramid using the APC method. We used the complete-link for both
methods executions on this dataset. Figure 3.33 presents the obtained pyramid on the
40 itineraries, whilst Figure 3.34 presents the 2-3 hierarchy.

*Analysis System of Symbolic Official data (http://www.info.fundp.ac.be/asso/)
fThe tests were done on the same computer: Intel P4 with 512 MB of RAM and Windows XP
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Figure 3.33: Pyramid on 40 urban itineraries
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As we can see in the obtained pyramid, it is difficult to identify classes containing
different types of itineraries. This is due to the high number of created clusters and
their high overlapping degree. In [RDO04], authors proposed a method to reduce the
number of created clusters in a pyramid to better interpret the obtain results, but this
is not yet implemented in the SODAS software. However, the linear order of the trips
given by the pyramid separates the analyzed urban itineraries into the four types of
itineraries, visible in Figure 3.33.

We also tried to compare the induced dissimilarites matrices of the pyramid and
our 2-3 hierarchy, but this was not possible due to wrong computation of the induced
matrices in the SODAS software. Using manual generation of induced dissimilarity
matrices on small datasets (up to 9 individuals), it appears that the pyramidal classi-
fication has better results than our 2-3 AHC: up to 20% Stress gain compared to 2-3
AHC.

To conclude, the 2-3 AHC can be applied on larger datasets and creates less clusters
than a pyramid, which can lead to a better visual interpretation of results. But, for a
more precise comparison, more tests are necessay between the two methods using sim-
ilar and updated implemetations: on induced dissimilarities, using same programming
language (implementations), etc.

3.7 Discussion and Perspectives

In this Chapter, we used three theoretical properties from the previous Chapter 2
to propose a new general 2-3 AHC algorithm reducing the complexity from O(n?)
to O(n?logn). The main difference between this algorithm and the initial 2-3 AHC
algorithm [Ber02d] is the added intermediate merging step, which can create a different
structure. As a direct consequence of the intermediate merging, the principle of this
new 2-3 AHC algorithm is similar to the one of the classical AHC algorithm.

Since our general 2-3 AHC algorithm contains two optional steps, the integrated
refinement and the blind merging avoidance, we practically have four new algorithm
variants which can produce different 2-3 hierarchies depending on the currently analyzed
dataset.

After presenting a detailed version of our 2-3 AHC algorithm, we proved that it’s
theoretical complexity is indeed in @(n?logn). The tests on different datasets (artificial
and real) have confirmed the result of our theoretical complexity study and the gain of
the 2-3 hierarchies over the classical hierarchies.

Next, we performed a comparative study between the classical AHC, our 2-3 AHC
algorithms and the initial 2-3 AHC algorithm:
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e First, we analyzed the number of created clusters with each 2-3 AHC algorithm
compared with the classical AHC one. For any of the 2-3 AHC algorithms, we
observed for the complete link an average gain of 47% with an maximum of 50%,
whilst for the single link we observed an 23% average gain with a maximum of
45%.

e To compare the created structures, we used two types of qualitative analysis: a
statistical one, the Stress coefficient on the induced dissimilarity matrices and the
input matrix, and also a direct result interpretation of the structures on small
datasets (Ruspini):

— For the first analysis, we performed tests on large simulated datasets and
also on a real dataset samples. Using the Stress coefficient, the gain was
very variable ranging generally from 0% to 43% for the single link. For the
complete link, the only algorithm having always a positive Stress gain was
our 2-3 AHC algorithm avoiding the blind merging, the rest had sometimes
negative gains (loses). The maximum gain reached in this case 84% for the
2-3 AHC algorithms.

— Using the well-known Ruspini dataset and a small set of urban itineraries, we
compared the obtained hierarchies and 2-3 hierarchies and found that extra
created clusters of the 2-3 hierarchies provides us with richer informations
on the analyzed dataset.

In conclusion, the 2-3 AHC algorithm avoiding the blind merging is the most “sta-
ble” one, although its Stress gains were also variable, and should be the one to chose
if one wants to assure the construction of a richer 2-3 hierarchy (than the classical
hierarchy) on a give dataset.

Future research directions include the definition of other ”quality” measures to
compare the different hierarchies and 2-3 hierarchies on same datasets. One such mea-
sure could be based for example on the clustering accuracy of the 2-3 AHC algorithm
compared with the classical AHC or even other clustering methods (neural networks,
K-means, etc.).

We also compared our 2-3 AHC algorith with the Ascendent Pyramidal Classifi-
cation algorithm [EUR]. For this we used the SODAS software [Did02], but due to
different implementations a concrete comparison could not be perform. This is subject
of other future work.



Chapter 4

Toolbox for Hierarchical
Clustering Methods and
CBR*Tools Integration

In this Chapter we present the object-oriented model that we proposed for the classical
AHC, the initial 2-3 AHC [Ber02d] and our 2-3 AHC algorithm. Its integration in two
different software developed in our team is described.

This object-oriented model was used:

o first for the design and implementation of the Hierarchical Clustering Toolbox
that we developed. This graphical toolbox is designed to ease the results visual-
ization and interpretation for the previously mentioned algorithms. The toolbox
is described in Section 4.2.

e to integrate our 2-3 AHC algorithm in the existing CBR*Tools framework for
Case Base Reasoning (see Section 4.3.1). The main motivation here was the
use of these algorithms in the Be-TRIP mobility recomender system (based on
CBR*Tools) that we specified (cf. Appendix F).

After the description of our object-oriented model in Section 4.1, we detail in Section
4.2 the graphical toolbox that we developed. Section 4.3 presents the integration of the
model into the existing CBR*Tools framework.

The applications and future uses of our 2-3 AHC algorithm using the two aformen-
tioned software are then presented in Section 4.4 before concluding in Section 4.5.

4.1 Design of an Object-Oriented Model

We based our implementation of the algorithms on a reusable model which can be
easily integrated into different applications and libraries, like the Case-Based Reasoning
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framework CBR*Tools [Jac98] developed in our team.

CBR*Tools is an object-oriented framework for Case-Based Reasoning (CBR). It
provides a basic reusable CBR framework that supports the development of CBR appli-
cations [Jac98]. It can be especially used for problems addressing behavioral situation
retrieval and indexation.

Different applications using the CBR*Tools framework have been developed in our
team:

Plant nutrition control application (in collaboration with INRA Sophia-Antipolis);

Broadway-Web [TJK99]: recommender systems supporting internet browsing;

HERMES [KTP97]: for argumentation in collective decision making;

Be-TRIP [CGT04, TCG04]: mobility recommender system that we recently de-
signed. This recommender system is not implemented yet, Appendix F contains
detailed description of the proposed architecture (in french).

To integrate our algorithm in CBR*Tools, we adopted the same design approach,
based on the concepts found in a framework (e.g. hot-spots [Sch97]). Therefore, we
first make a brief introduction of the frameworks and their concepts.

4.1.1 Notion of an Object-Oriented Framework

The concept of object-oriented frameworks has been introduced in the late 80’s and
has been defined as “a set of classes that embodies an abstract design for solutions to
a family of related problems, and supports reuses at a larger granularity than classes”
[JF88]. Thus a framework is much more than a software library. A library defines a
set of classes that may be reused independently or in very small groups. On the other
hand, the goal of a framework is to capture a set of concepts related to a domain and
the way they interact. In addition a framework is in control of a part of the program
activity and calls specific application code by dynamic method binding. A framework
can be viewed as an incomplete application where the user only has to specialize some
classes to build the complete application.

The design process is centered on the identification of hot-spots [Sch97]. Hot-spots
are well defined features of the framework that can be customized for a specific ap-
plication by specialization (white-box hot-spot) or composition (black-box hot-spot).
At the beginning a framework only defines white-box components and a more mature
framework will also provide black-box components. The hot-spots are usually created
by using design patterns which provide typical design solutions and improve the frame-
work documentation.
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Therefore designing a framework is a complex task with several issues that have to
be overcome and the framework requires a good documentation to be actually reused.
However, the framework approach is very appealing. Frameworks allow the reuse of
both code and design for a class of problems, giving the ability to non-expert to write
complex applications quickly. Frameworks also allow the development of prototypes
which could be extended further on by specialization or composition. A framework
is more difficult to understand than an application or a class library, but once this
step is done, the framework can be applied in a wide spectrum of context, and can be
enhanced by the integration of new components.

4.1.2 Object-Oriented Model

The current design of the 2-3 AHC algorithm implies the two following hot-spots:

e DistanceMeasure: offers support for implementing the distance metric used
during the initialization phase (distance matrix creation). Default implementa-
tion for this hot-spot is provided by the PondEuclidDistance specialization, but
others like the Minkowski distance that generalize the first one, can be used.

e ClusterDisssimilarity: offers support for implementing the dissimilarity (link-
age) between clusters, used during the merging phase. Implementation for this
hot-spot include: SingleLinkDissimilarity and CompleteLinkDissimilarity special-
izations (others like the average linkage or the Ward criterion can be used).

The object-oriented model of our index is presented in Figure 4.1. Its design takes
into account the future integration into CBR*Tools: the HAC23Index, HAC23Index ini
and HACIndex classes specialize the SimpleIndex class (see Section 4.3.2).

We implemented three hierarchical agglomerative methods: the classical AHC al-
gorithm HACIndex, the initial 2-3 AHC algorithm HAC23Index ini and our 2-3
AHC algorithms HAC23Index. To execute different variants of our 2-3 AHC algor-
tihm, one must simply define the three parameters in the HAC23Index class such as
_integratedRefinement or _avoidBlindMerging.
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Figure 4.1: Object oriented model of the agglomerative hierarchical algorithms
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4.2 Toolbox for Hierarchical Clustering Methods

To better visualize, compare, interpret and extract information from the created hierar-
chies and 2-3 hierarchies, we designed and implemented the Hierarchical Clustering
Toolbox (HCT). It uses the object-oriented model of the algorithms from the previous
Section 4.1.

The toolbox was developed in Java and can be run as a stand-alone application or
as a applet in a Web browser via the internet*. It contains:

e modules for:

— object-oriented models of algorithms;
— dissimilarity matrix generation from different data inputs;

— results analysis and comparaison.
e a Graphical User Interface (GUI) for:

— input selection and representation;
— method selection and execution;
— results representation.

To use the toolbox, there are three (successive) main tasks that can be performed:
data selection and representation (see Section 4.2.1), method selection and execution
(see Section 4.2.2) and results visualization and analysis (see Section 4.2.3).

These tasks can be performed using the three application’s menus or the toolbars
present in the different tabs. The tabs of the toolbox, Input Data Graphical Repre-
sentation (see Figure 4.4), Output Structure Graphical Representation (see Figure 4.6),

and Analysis (see Figure 4.8), correspond to the general main steps of a data analysis
for the hierarchical methods and are presented in details in the next three Sections.

4.2.1 Data Selection and Representation

When selecting the analyzed data, various dialogs of the toolbox can be used to
load/generate the input data. Thus, the analyzed data can be:

e artificially generated in a 2D rectangle (used mostly for tests);
e loaded from a file. XML, SDS [EUR]| and plain text files are supported;

o extracted via SQL queries from a database (see Figures 4.2 and 4.3).

*Running the application as an applet is not recommended on large datasets due to the JVM
memory limitations and the large size of the dissimilarity matrix, O(n2),
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Figure 4.2: HCT: Data matrix generation from DB
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The later functionality was created having a specific purpose in mind: to generate
and extract dissimilarity matrices on Web user sessions (see Chapter 5), but it can be
easily extended to general data extraction queries from databases. This can be done
using a more general DB Explorer feature (as in [Tan05a]), in which custom queries for
selecting data can be made after exploring the available data in the selected DB.

After this, a two dimensional representation of the input data is displayed (when
possible). This is done on the first tab of the toolbox, Input Data Graphical Repre-
sentation, as in Figure 4.4. In the case from Figure 4.4, the Ruspini dataset [Rus69] is
used as input and represented graphically.
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Figure 4.4: Hierarchical Clustering Toolbox: Input Data Representation

4.2.2 Methods Selection and Execution

After selecting the input data, the method selection dialog is displayed, and we have a
choice between various algorithms (cf. Figure 4.5):
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e the classical AHC algorithm;
e the initial 2-3 AHC algorithm;
e the four variants of our 2-3 AHC algorithm:

— with intermediate merging and integrated refinement (denoted HAC23 with
refinement V2),

— with intermediate merging and no refinement (denoted HAC23 without re-
finement V2),

— with intermediate merging, integrated refinement and avoiding the blind
merging (denoted HAC23 with refinement V3),

— with intermediate merging, no refinement and avoiding the blind merging
(denoted HAC23 without refinement V3).
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Figure 4.5: HCT: Choosing the linkage and the algorithm to execute

All algorithms can be executed successively on the same dataset in order to compare
the structures later.

4.2.3 Results Visualization and Analysis

After the execution of an algorithm, the created structure (hierarchy or 2-3 hierarchy)
is displayed in the second tab (Output Structure Graphical Representation) of the
toolbox (see Figure 4.6). This tab is used for visual result interpretation.
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Figure 4.6: HCT: Output Structure Graphical Representation

Here one can analyze the different structures created on the same input dataset using
the Method Cache dropbox in the upper right corner of the toolbox. Thus differences
between the classical hierarchies and the 2-3 hierarchies can be revealed and interpreted.

The different implemented features ease the results visualization and interpretation:
cluster rotation (for the non-properly intersecting ones), cluster information, different
types of zoom, rotation of the structure (horizontal and vertical display), etc.

The overlapping obtained by selecting an indexing level can be done by direct
selection on the structure or by manually entering the desired level (cf. Figure 4.7).
The informations of the resulting overlapping are displayed internally in the toolbol
and/or externally in a DVI viewer such as zdvi or a Web browser. This information
can then be saved as HTML, IXTEX (tables) or plain text.

Navigation between the clusters successors and predecessors can be easily made
after partitioning or directly in the represented structure using the IDs links.
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Figure 4.7: HCT: Selection of a clustering partition

To compare the input dissimilarity matrix and the induced dissimilarity matrices,
the third information tab of our toolbox, Analysis, can be used (cf. Figure 4.8).
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Figure 4.8: HCT: Induced dissimilarites and initial data matrices analysis

Some statistical information on the compared dissimilarity matrices are presented,
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such as the minimum, maximum, standard deviation, etc. along with additional infor-
mations on the structure: the creation time (if is an induced matrix), the number of
created clusters and properly intersecting clusters, etc.

Also some matrix correlation coeficients (see Section 3.5) are computed and dis-
played: Stress, Pearson, etc. These can be used as a “quality” indicator by comparing
the induced matrices to the initial dissimilarity.

Using our toolbox, the maximum attained number of analyzed elements was 3500,
but during the repetitive tests from Section 3.4.3 the maximum number was 3000.

4.3 Integration of the 2-3 AHC in the CBR*Tools Frame-
work

Here we will discuss the different aspects related to the conception and implementation
of our algorithm as an indexing method and his integration in the object-oriented
framework CBR*Tools* developed in our team.

The purpose of this integration is to use our method as an off-line clustering tech-
nique for prototypes (profiles) creation and as an on-line indexing method for case
retrieval and case retaining (see Figure 4.9). This can be then used in the Be-TRIP
recommender system (cf. Appendix F) to construct for example itineraries prototypes
(see Section 3.5.2) which helps the recommendation process.

4.3.1 CBR*Tools: a Framework for Case Based Reasoning

Generally speaking, Case Based Reasoning (CBR) [JF88] is a problem-solving method
based on the reuse of cases. A case basically represents a problem situation, the solution
that has been applied (or a way to compute it), and sometimes its evaluation. Cases
must be structured and indexed into a memory in order to be reused when similar
problems are encountered.

The first step of the reasoning (cf. Figure 4.9) is the retrieval through indexes
of relevant cases which are somehow similar, or match partially the current problem
situation. The goals of others steps are the reuse of the past solution by adaptation,
the evaluation of the proposed solutions and finally the learning of this new experience
in the memory for future reuse.

*http://www-sop.inria.fr/axis/cbrtools/
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Figure 4.9: Case Based Reasoning

The CBR*Tools framework developed in our team is implemented in Java and con-
tains five basis packages with a total of 246 classes. As we said before, the CBR*Tools
framework is based on the use of hot-spots, which are mainly structured according to
two criteria:

e Specificity: Two levels of specificity are identified: the first one called “core”
gathers the general hot-spots related to the CBR and the second one called “time”
gathers the additional or specialized hot-spots, necessary for the indexing by
behavioral situations.

e Axes of variability: An axis of variability defines a dimension in which the vari-
ous applications require flexibility and are likely to vary. Three axes of variability
were identified each one gathering a set of hot-spots: reasoning management,
cases representation and memory organization.

4.3.2 HAC23Index Integration for Memory Organization

The design of our HAC23Index concerns the third axis of variability represented by the
memory organization which contains the source cases and organizes them according to
the data structures used (see Figure 4.10). Thus we have here two principal sub-tasks:
the organization of the cases (physical storage of the cases) and the organization of the
indexing (defining indexes which will make it possible to find the cases at the time of
the research phase).

Various indexes are usually used (hot-spot Index): linear organization, discrimi-
nating tree built a priori or by induction, neural networks. Moreover, it is necessary
to be able to make evolve these indexes during the cycle of life of the system in or-
der to include new knowledge or to deal with the number growing of the cases added
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in memory (incremental aspect). It is thus necessary simultaneously to define several
strategies of indexing to evaluate them and make them evolve (hot-spot IndexBase).
Lastly, the indexes can take into account only part of the indices of the cases (hot-spot
IndiceFilter) and turn over various types of information (hot-spot IndexResult): set of
cases, set of prototypes, detailed analysis of indices.

In this context the HAC23Index index* is integrated into the CBR*Tools framework
in order to create prototypes (clusters) of cases with a strong similarity. Next, these
clusters can be used in the retrieve (search) phase in order to return the similar cases to
the target one. The main drawback of this approach is the time required to construct
the dissimilarity matrix and the hierarchy if a new case is to be added to the case base.
In order to avoid this, the clusters are obtained in an off-line analysis and then used to
classify a new case, which can be added to the closest cluster found if it is “close” f
enough or a new cluster containing this case can be created if it is an “atypical”
case. This is known as incremental clustering [SBKO01] which makes the new case
classification and the cluster updating real-time possible. Thus we can make the index
an incremental one without having to rebuild the distance matrix and the whole 2-3
hierarchy. Updating the structure when a new case arrives [ZRL96, BHT05] could also
be used to make our case indexing incremental.

The index could be used in two different ways: the whole hierarchy created can
be used to “search down” similar cases starting from the root or a partitioning of the
initial dataset can be selected by “cutting” the hierarchy according to a given condition
and the clusters obtained to be used to classify the new case. In our implementation
we have use the later and as a “cutting” condition a given threshold. The cutting is
performed when there is a variation in the clusters dissimilarity superior to the given
threshold, thus it is not necessary to have a strict indices. The problem in this case
is the specification of this threshold, which implies apriori knowledge on the analyzed
data. This could be avoided by an initial specification of the number of desired clusters,
but results can be unexpected.

These various indexes from CBR*Tools make use in particular of measurements of
similarity (hot-spot Similarity) making it possible to compare the cases sources with
the target case. These measurements turn over evaluations (hot-spot CmpValue) which
can be of various types: generally a factor between 0 and 1, or 0 and 100 or a couple
possibility /necessity. These results are then ordered according to an associated relation
of order (hot-spot CmpValueOrder). See also Appendix D.

Our HAC23Index index is a part of the memory organization axe of the CBR

*Using same reasoning the classical AHC and the initial 2-3 AHC implementations can be integrated
into CBR*Tools
fGenerally if a distance threshold condition is satisfied
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Figure 4.10: HAC23Index hot-spots and their integration in CBR*Tools

framework, and extends and partially implements the specifications offered by the Sim-
pleIndex hot-spot. The major part of its functionality relies on the createHierarchy
and an added search method. The former constructs the 2-3 hierarchy after the batch
indexing process of the case base was done. That means that there are previously
stored patterns in the case base which have to be indexed during the initialization of
the application. The search method has a role, as the name states, in the pattern
retrieving step of the CBR process.

The HAC23Index is used as a kind of pre-indexing or filtering mechanism, its output
being furthermore adapted by an attached linear index like the KnnIndex (see Figure
4.10). So in case of an actual new index implementation, we can use as a start point
the LinearKnnlndex or the HAC23Index, depending on the new index’s functionality
one might want to offer.

In order to point out the basic steps for adding and implementing new indexes to
the CBR tools we remark the different knowledge levels of a certain hot-spot, required
to use, extend or implement it. In this direction, we can distinguish three levels :

- a specialization and extending of the hot-spot’s specification, which needs a com-
plete understanding of it.

- the hot-spot instantiation requires only the knowledge of its parameters and their
meaning.

- in case of automatic use of the hot-spot, it could remain transparent to the pro-
grammer.

With respect to the hot-spots in Figure 4.10, depending on the application and
the chosen case structure, we can provide further specialization for the AttrTransform
hot-spot, beside the default implementation in BasicAttrTransform.
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An example of the use of HAC23Index as a part of the CBR*Tools is given in
Appendix D. The presented CBR application is used to determine the risk factor for

car insurances.

4.4 Applications

Based on the two softwares previously presented (HCT and CBR*Tools), our 2-3 AHC
algorithms were used in different applications from three fields: Web Usage Mining,
Document Clustering and Transport. Three out of the seven applications presented
below were made by others members of the AxIS team.

With the first applications from the WUM and Document Clustering fields detailed
in the next two Chapters (Chapter 5 and Chapter 6), we will summarize only the
tourism applications and the work performed in this context.

e Web Usage Mining (using HCT):

— clustering INRIA’s research teams using groups of Web pages and
users navigational behaviours [CT04, CT05], presented in Chapter
5;

— clustering of search engines keywords extracted from accessed URL referrers
[TMTO6];

e Document Clustering (using HCT):
— XML documents classification using structure and content mining,

presented in Chapter 6;

— XML documents classification using structure mining via sequential patterns
extraction [GMTO05];

— Sanskrit documents classification [Tan05b] in order to create a critical edi-
tion™;
e Transport:
— validation of urban itineraries classification (cf. Section 3.5.2) us-
ing our 2-3 AHC.

For this, our toolbox was interfaced with a C++ library developed by Beno-
mad?!. This library provides geographical information from a GIS$ map,

*Co-supervision with B. Trousse of S. Tandabany’s internship

tVia the co-supervision with B. Trousse of R. Busseuil during his internship [Bus05]
*http://www.benomad . com/

$Geographical Information System
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which can be used to create itineraries or to extract an itinerary’s character-
istics. A Visual .NET application using the Benomad library and our visual-
ization toolbox was developed by R. Busseuil [Bus05] (cf. Figure 4.11). Us-
ing this application, the manually generated itineraries could be then easily
clustered using our Hierarchical Clustering Toolbox (see also Section 3.5.2).

— the mobility recommender system, Be-TRIP [CGT04, TCGO04].

As mentioned in Section 3.5.2, the purpose of the urban itineraries cluster-
ing was to validate the use of our 2-3 AHC algorithm as a case indexing
method for our Be-TRIP mobility recommender system that we specified
(see Appendix F). To use our 2-3 AHC algorithms in Be-TRIP, we first in-
tegrated our object-oriented model in the Case-Based Reasoning framework
CBR*Tools [Jac98] (see Section 4.3), on which the Be-TRIP system is based.

The implementation of Be-TRIP and the validation of 2-3 AHC as an index-
ing method, are to be done in the future by the AxIS team.
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4.5 Discussion and Perspectives

In this Chapter we presented the object-oriented model of our 2-3 AHC algorithm,
and its implementation, which is the first implementation of an 2-3 AHC algorithm.
The implementation was performed in Java. Almost identical models were used for the
classical AHC and the initial 2-3 AHC algorithms implementations.

To better visualize and interpret the results, i.e. the classical hierarchies and the
2-3 hierarchies, we created the Hierarchical Clustering Toolbox, also implemented
in Java.

The toolbox can be used to generate the input dissimilarity matrix or to load it
from different sources. The structures can be then represented graphically for result
interpretation and different indices (Stress, Pearson, etc.) can be used to analyze the
“quality” of the created structure.

Currently, we are integrating the data selection from DB in a more general DB
Explorer feature in which custom SQL queries for selecting data can be executed after
exploring the available data in the selected DB. Also different comparison indices on
the created structures and the initial data can be implemented and integrated in the
Analysis tab.

We also integrated our object-oriented model of the 2-3 AHC algorithm into the
Case-Based Reasoning framework, CBR*Tools [Jac98]. Our algorithm was integrated
as an indexing method for the case base organization an used in the retrieving phase
of the CBR cycle. Unfortunately, due to its high complexity, only off-line analysis can
be performed so far.

Future work regarding the CBR*Tools integration includes the study of an auto-
matic partitioning criteria and also an incremental feature for the hierarchical algo-
rithms to allow on-line analysis.
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Introduction

This second part of the thesis concerns two studies of applying the 2-3 AHC in the
fields of Web Mining and Document Clustering. These two fields are part of the main
research areas of our AxIS* team, and also correspond to very active research fields.
We also saw in Chapter 1 that the hierarchical ascending classification methods (AHC,
2-3 AHC, APC, etc.) are rarely or never applied in these research fields.

Therefore, we analyzed the applicability and potential of our 2-3 AHC method
in these two fields and also compared it with the classical AHC or other methods
([GCGR™04]) when applied on same data.

The Web Mining can be broken in three categories:
o Web Content Mining: discovering and organizing Web based information;

o Web Structure Mining: used to examine data related to the structure of a partic-
ular Web site;

o Web Usage Mining [CMS97] (WUM): Web resources clustering, discovering se-
quential patterns [TTO01], associations rules [AS95], classification, etc..

The most used techniques applied to Web usage data, obtained from Web servers
access logs, are: statistical analysis, discovering association rules [Bar01, AS95], mining
sequential patterns [SA96, AS95, TT01, MJHS96, ZXH98, MPC99, PHMAZ00, Tan05a]

and clustering of Web usage data.

As concerning the clustering here there is a big interest in document clustering
(organizing and managing the groups of related URLs based on their page content)
[Wil88, KR90]. The formed clusters of documents can be used for document manage-
ment in electronic commerce (customer targeting) [SCH101]. Also document clustering
is explored as an alternative method of organizing retrieval results in search engines
[ZE98].

Clustering Web users, i.e., grouping the users into clusters based on their common
properties is done on users sessions which usually are modeled as vectors. Each element

*http://www-sop.inria.fr/axis
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of the vector corresponds to a value of a feature such as the hit-count for a Web page.
Then different clustering algorithms can be applied to discover the user profiles [SBK01,
NKO02]. In [YKM99] the clustering of the Web users is based on their access pattern
(browsing activities) which are organized into sessions, then generalized according to
the page hierarchy and afterwards clustered using an incremental hierarchical clustering
method, BIRCH [ZRL96]. The same method is used in [FSS00] to cluster generalized
Web user sessions obtained by means of induction based on the attributes.

The user clusters obtained by applying different clustering techniques to user ses-
sions [Ben00] are used for classification of new sessions (users) and possibly in an
update phase of the clusters (incremental learning) by adding these new sessions to the
corresponding cluster (incremental clustering [SBKO01]).

The Web usage data used during the Web Usage Mining (WUM) process are gen-
erally the users’ navigational paths gathered in Web server logs, sometimes correlated
with informations from the other Web Mining processes, e.g. the site structure.

Analyzing the Web users behaviour can be used by webmasters in the Web site(s)
re-conception process, or can be used to facilitate the users information search by
personalization (through dynamic inserted links for example).

As we also saw in Chapter 1, so far among the agglomerative hierarchical clustering
methods, only the classical AHC was been used to analyze Web data. We remind the
most successful one, the incremental BIRCH technique [ZRL96], which handles very
well large data collections.

In this context, our applicative study of the 2-3 AHC is carried in the Web Mining
field following our research team™ objectives.

The objectives of our research team, AxIS, are related to the design, analysis and
improvement of the information systems (IS), driven by usage. Although in the short
run the project is directed mainly towards Web sites and/or Web services, we place
ourselves in a global point of view of design and evaluation of adaptive information
systems based on the W3CT standards. The word ”adaptive” represents both the ability
to adjust to the user (personalization), and the ability to learn from usage analysis.
One of our team interests is the study of the INRIA’s Web site activity and structure.

Our two main applications presented in the next two chapters are following this
study and present the clustering of INRIA’s research teams through its Web usage and
activity reports. More precisely, these applications concern:

e first in Chapter 5, a clustering of the INRIA’s research teams based on their Web
sites via the usage mining (i.e. Web users behaviours). This analysis is related
to the WUM field;

* AXIS research project, http://www-sop.inria.fr/axis/
fWorld Wide Web Consortium: http://w3c.org/



117

e secondly in Chapter 6, a clustering of INRIA’s research teams based on the 2003
XML activity reports via content and structure mining. This analysis is related
to the XML Document Clustering field.






Chapter 5

Web Mining Application

In this Chapter we investigate the use of our 2-3 AHC algorithm as classification/clustering
method in a Web Usage Mining (WUM) analysis. according to our knowledge, this is
a first study of applying an hierarchical classification method on Web Usage data.

The presented analyses consist in clustering the visited topics of INRIA’s* Web
sites, using our 2-3 AHC algorithm. This was done by analyzing visitors activities on
INRIA’s Web sites, i.e. their navigational behaviours.

The objective is to study the Web users perception of INRIA’s research activity, by
using their browsing behaviour. As a direct result of this analysis, one could propose
different improvements in INRIA’s Web site to meet the users needs.

For these analyses we have compared the obtained classifications with INRIA’s sci-
entific organization. This scientific organization of research teams into research themes
has changed in 2004, so we analyzed the Web users behaviour during two time periods:
before and after the change.

Before presenting the details of our application in Section 5.4, we begin by introduc-
ing the main terms used in the WUM field in Section 5.1, followed by a short description
of the WUM data (the log files) process and the WUM steps in Section 5.1.2.

Then Section 5.2 will introduce our analysis motivations. Before concluding in
Section 5.5, we present our INRIA’s research teams clustering and result interpretation
in Section 5.4.

*The French National Institute for Research in Computer Science and Control
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5.1 Introduction

We present first the main terms used in the WUM process as defined in [TT04, Tan05a/,
which are based on the ones used by the World Wide Web Consortium* (W3C) for the
Web characterization terminology [LN99].

Then in Section 5.1.2 we will make a short description of the main source of infor-
mation in a WUM analysis, that is the Web log files.

5.1.1 WUM Terms

Definition 13 : A resource, according to the W3C specification, can be “anything
that has identity”, and is also called an Uniform Resource Identifier (URI). Ex-
amples include an HTML file, an image, and a Web service. O

Definition 14 : A Web resource is a resource accessible through any version of the
HTTP protocol (for example, HTTP 1.1 or HTTP-NG). O

Definition 15 : A Web server is the server that provides access to the Web re-
sources. O

Definition 16 : A Web page is the set of data constituting one or several Web re-
sources that can be identified by an URI. If the Web page consists of n resources, the
first n — 1 are embedded into the n'* URI, which identifies the Web page. O

Definition 17 : A page view (also called hit) occurs at a specific moment in time,
when a Web browser displays a Web page. O

Definition 18 : A Web browser or Web client is a client software that can send
Web requests, handle the responses, and display requested URIs. O

Definition 19 : A user is a person using a Web browser. O

Definition 20 : A Web request is a request that a Web client makes for a Web re-
source. It can be explicit (user initiated) or implicit (Web client initiated). The explicit
Web requests are also called clicks. O

*http://www.w3c.org
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Definition 21 : A user session consists in a delimited number of an user’s explicit
Web requests across one or more Web servers. O

Definition 22 : A navigation or visit represents a subset of consecutive page views
from an user session occurring close enough (measured by means of a time threshold,
usually 30 minutes). O

Definition 23 : The Browsing Speed (BS) represents the user navigation speed and
18 given by the average number of seconds spend per page by the user in a navigation:

BS(N) = | Npages|

duration

where |Npqages| s the number of visited pages in the navigation N and N gyration 5 the
duration of the mavigation. O

5.1.2 Log Files

The main source of information in a WUM analysis are the logs files generated by the
Web servers. These contain all the Web requests made by the Web site visitors over a
time period and ordered chronologically.

Definition 24 : A Web server log file contains requests made to the Web server,
recorded in a chronological order. O

The most popular log file formats are the Common Log Format [W3C95] (CLF)
and its extended version, the Combined Log Format, denoted ECLF [Tea95].

A line in the ECLF log file contains information about an unique Web request. The
ECLF format is the following:

[IP] [name] [login] [Date] [Type] [URI] [Status] [Size|] [Referrer] [User Agent]

where:
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IP The client’s host name or its IP address

name The client inetd id (generally empty and represented by a “-”)
login The user login (if applicable)

Date The date and time of the request

Type The request type (GET, POST, HEAD, etc.)

URI The requested resource name

Status The request status

Size The size of the requested resource

Referrer The referrer of the request which is the URL of the Web page
containing the link that the user followed to get to the current page
User Agent A string identifying the browser and the operating system (denoted

UA in the followings)

A small example of an ECLF line extracted from INRIA’s Web log is presented
in Figure 5.1 below. We can see that an user from the IP address 194.254.174.176,
requested on the April 5%, 2005 at 19:17:49 the page /axis/Publications/show.
php?keyword=KDD. The request was of type GET using the HTTP 1.1 protocol, and
also a successful one (status code 200) with the size of the transfered page of 52382
bytes. The user arrived on this page from Google via a search with the keywords “WEB
USAGE MINING” and used Microsoft Internet Explorer 4.01 from his/her PocketPC
device.

194.254.174.176 - - [05/Apr/2005:19:17:49 +0200] "GET /axis/Publications/show.php?keyword=KDD
HTTP/1.17 200 52382 ”http://www.google.fr/pda?q=WEB+USAGE+MINING&hl=fr"
”Mozilla/4.0 (compatible; MSIE 4.01; Windows CE; PPC; 240x320)”

Figure 5.1: A Web Request from INRIA’s Web Server Log (ECLF Format)

5.1.3 WUM steps

The Web servers collect large volume of data in their logs from the Web site usage. As
we said before this is the main source of information in a WUM analysis, but comple-
mentary available information helps to improve the analysis results. Thus, information
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on the Web site structure, on the content of the Web pages, on user profiles, etc. can
be used to improve the data quality.

There are three main steps in a WUM analysis [Tan05a]: data preprocessing, pat-
tern discovery and pattern analysis (see Figure 5.2).

Web site structure

Analysis
_

Pre- processing

Data Mining
—_ »

al

Web log files Transformed logs (BD) Patterns, Rules, Clusters Results

Figure 5.2: Schema of a General WUM Process

For our WUM analysis (cf. Section 5.4), we begin with a brief description of the
analyzed data and the analysis motivations in Section 5.2. The data preprocessing step
consists in the cleaning and preprocessing of the raw data stored in the log files and
is presented in Section 5.3. Section 5.3.2.2 presents our extension of the relational DB
model used in [Tan05a]. The analyses (pattern discovery) and their results interpreta-
tions (pattern analysis) are then presented in Section 5.4, followed by the discussion
and perspectives in Section 5.5.

5.2 Data Description and Motivations

INRIA has six research units across France (Futurs, Lorraine, Rhone-Alpes, Rennes,
Rocquencourt, Sophia Antipolis) and seven Web servers: one for each research unit
plus a national one. Users searching for information on one of INRIA’s Web sites, are
transparently browsing through the interconnected pages of its Web servers. To trace
their behaviours, one must analyze the log access files from these Web servers.

While searching for informations on INRIA’s Web sites, users can visit the pages
of different research teams that have common scientific objectives. A INRIA research
team is a team of a limited size with relatively focused scientific objectives. Based on
their scientific objectives, INRIA has grouped research teams into research themes.
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On April 1%¢ 2004, INRIA’s scientific organization into research teams has changed
from the four existing research themes, into five new research themes (see Appendix

In this context, we decided to analyze the impact of INRIA’s Web sites structure
on users navigations before and after this change. This was done by performing two
different analyses of users visits: one on INRIA’s first level topics before the change
and another on INRIA’s research teams before and after the change. An additional
analysis to compare the classical AHC and our 2-3 AHC on a single research theme
was also performed.

We chose to analyze the log files from two of INRIA’s Web servers: the national
Web server (http: //www. inria. fr) and also the Sophia Antipolis research unit Web
server (http://www-sop. inria. fr).

As a secondary source of information beside the log files, we used some additional
information on the both Web site structures to assign Web pages to research teams,
and thus to be able to cluster the research teams based on their group of Web pages
and on the Web users behaviours.

Since INRIA’s scientific organization into research teams has changed, we have
chosen to study the Web users behaviours on two different 15 days time periods before
and after this change:

- from 01 until 15 January 2003, period denoted in the followings as Pery,
- and from 27 May until 10 June 2004, period denoted as Pers.

Indeed, the main motivation of our study here was to analyze the impact of the
changes in the national Web site structure (see Appendix E), on users behaviours when
searching for information. For the first analysis this concerned the impact of the entire
Web sites on users behaviours, whilst for the second analysis we studied the impact of
the national research presentation pages™ .

More particularly, our study concerned the clustering of INRIA Web sites’ visited
topics (corresponding to actual research teams), using the 2-3 AHC and was done in
two phases:

- first, the preprocessing of the Web access logs (based on the work from [TT04])
and presented in section 5.3,

- secondly, the data mining (using our 2-3 AHC algorithm) and the result
analysis phase (cf. Section 5.4.2).

*The national Web site changes actually concerned only 20 Web pages used for presentation of the
research teams (see Table E.1)
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5.3 Extended Relational DB Model for Data Preprocess-
ing

We begin this section by introducing in Section 5.3.1 the used data preprocessing
methodology which was proposed by Tanasa et al. (see. [TT04, Tan0O5a] for more
details). We used the AxIS LogMiner* tool developed within the AxIS research team
at INRIA Sophia Antipolis.

Then, we will extend in Section 5.3.2 the relational DB model proposed in [Tan05a].
This model is currently available in the new version of the AxIS LogMiner tool.

! f;)g;nfii?eags Data generalization
Anonymlzmg log Aggregated data
files computation

User identification N

User session identification

Removing requests for Page view identification " | File —s database | & ] Y ‘
nonanalyzed sources Visit identification 2 25
Removing Web robot requests  Episode idlentification

Data fusion Data cleaning Data structuration Data summarization

ay
S &

Classical preprocessing Advanced preprocessing

Figure 5.3: The data preprocessing steps

5.3.1 Data Preprocessing

The aim of the preprocessing phase was to identify and extract user navigations (cf.
Definition 21) from the raw Web logs, and was done in four steps [Tan05al: data fusion,
data cleaning, data structuration and data summarization. Figure 5.3 presents these
steps, further details can be found in [TTM04, Tan05a].

During the data fusion step, the Web logs files were joined together for each analyzed
period (resulting in log L for Per; and log Ly for Pers), to reconstruct the cross-server
users’ navigations.

Thus the two joined logs contained all the requests (chronologically sorted) made
by different users for different resources on the two Web servers, over the given pe-
riods of time. To distinguish the requests made on one server from the one made
on the other, we added at the beginning of the accessed resource, the server name:
http://www.inria.fr or http://www-sop.inria.fr. This helps also to reconstruct the full

*Tool description available at: http://www-sop.inria.fr/axis/axislogminer
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URI of the accessed resource, which can be then used to reconstruct users navigations
[CDSLT05], by comparing it with the referrer field of the following pertinent requests
(when available).

After joining the log files, an anonymization of certain informations was performed.
This is necessary for privacy reasons in case that the log file or the analysis results are
made public.

The following fields were anonymized:

e IP address: the real IP address or host name is replaced with an identifier that
keeps the information about the domain extension, which is the country code
(i.e. .fr, .de, .ro) or the organization type (i.e. .com, .edu, .org). For example
gicu.olimpia.edu becomes 12578.example.com.edu, where 12578 is an ID used to
retrieve when needed the original real name;

e the login name when available;

e the email addresses present in the UA field, which is actually a very rare case.

Since some of these requests from the log files were made for non-relevant resources
from our analysis viewpoint, these were eliminated in the data cleaning step. For
example, we do not interest ourselves in requests for images, since they usually are
implicit requests (images contained in the accessed page [Tan05al).

But sometimes the images can be explicitly accessed by the user via a click, and
constitute in this case a valid Web request which must not be eliminated from the
analysis. To identify this particular case of images, the LogMiner tool uses additional
information on the analyzed Web sites.

Other types of eliminated requests include the javascript files (.js), the style sheet
files (.css), the flash animations (.swf), etc.

A big part of an Web site traffic is caused by the web crawlers, commonly known
as Web robots. These are computer software from search engines, that periodically
harvest the Web site content to update the index. Usually the number of requests
made by a Web crawler is larger than the one of a normal Web user and can be also
identified by their User Agent (UA) field.

To identify a Web robot the following three heuristics were used:
e if they requested ’/robots.txt’;
e if their UA is known (i.e. GoogleBot, Yahoo Slurp, etc.)

e if their browsing speed (see Definition 23) is superior to a certain threshold. This
step must be performed after the navigations identification to be able to compute
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the BS. Next, if BS(N) > 2 and |Npgges| > 15, the navigation N comes most
probably from a Web robot and can be eliminated along with all its requests from
the analyzed log file.

Filtering out all these requests has reduced L to 11% and Lo to 15%, from their
original size. For example for Lo, the number of requests was reduced from 4.473.228
to 686.084, equivalent to a log file size reduction from 901Mb to 135Mb.

Next, the data structuration step groups the unstructured log files requests by user,
user session, page view, and navigations.

Today, there is no perfect solution to identify a Web site users from the log file due
to the poor information within these files, due to the proxy servers, dynamic addresses
(DHCP), personal security software®, and cases where multiple users use the same
computer or one user uses multiple browsers and/or computers. Several techniques can
provide additional information on the users re-visiting a Web site: user registration,
cookies or modified browsers.

In the case of the ECLF log files the current best solution is to use the triplet (1P, Lo-
gin, UA) [Tan0b5a]. In most cases (ours included), this is not the best solution since the
Login field corresponds for example to the username used via the .htaccess/.htpasswd
authentification method in Apache Web server. Since these are directory specific, the
same user can login in different parts of the same Web site using different usernames.
For example an user might use an username to access the intranet of its research team,
and another username to access a working group intranet found on the same Web site.

Therefore, we consider as a user, the couple (IP, [User Agent]) in our analysis, and
even though this can be sometimes inaccurate, it still has an 92.02% precision [Tan05a]
in identifying Web users.

The user session represents all the actions performed by the user over the analyzed
period. There are 115.825 identified sessions for Per; and 96.984 for Pers.

Users navigations are obtained by splitting every user session using a 30 minutes
threshold. This is done when two successive requests of the same user are separated
by a time period superior to the given threshold. For our analysis we obtained 173.015
navigations for Per; and 145.454 navigations for Pers.

Finally, the obtained log file is stored in a relational database in the data summa-
rization step presented in the next Section 5.3.2.

5.3.2 Extension of the Relational DB Model

The log file obtained so far is stored in a database using the relational model from
[TT04, Tan05a] and presented in Figure 5.4. We extended this model to be used by

*Some personal security software are blocking the request informations: referrer, cookies, etc.,
which makes the identification task almost impossible
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our team, by attaching new tables or new attributes to the existing ones.

5.3.2.1 Extended Model

The main table of the model is the LOG table that contains information about all the

requests. Each row in the table corresponds to a Web request and contains mainly only
IDs (foreign keys) linking to the other tables in the model.
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Figure 5.4: DB Relational Model for Log Files from [Tan05a]

After storing the existing information in the DB, a generalization of the URLSs
is performed to extract the first and the second syntactic topics (see Figure 5.4 and
Figure 5.6). These syntactic topics were then mapped into semantic topics like: projects,
people, services, etc. These semantic topics were manually generated [TT04].




5.3. Extended Relational DB Model for Data Preprocessing 129

Only the first two syntactic topics are directly stored in the URL table, while the

3th

others are discarded. But the greater level (3" and on) syntactic topics can also contain

important information on the analyzed URL.
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Figure 5.5: Extended DB Relational Model for Log Files
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http : /] www — sop.inria.fr [ axis [ personnel | Doru.Tanasa /doru — eng.html
~ —_——

site topicl  topic?2 topic3

Figure 5.6: URL Generalization

Therefore, we extended the model to store all levels syntactic topics. For this, we
modified table SYN_TOPIC and we added the table SYN_2_URL (cf. Figure 5.5). In
the second table the links between all syntactic topics of each URL and their URL are
stored, not only the first two levels. This will be later used to assign URL to research
teams (see Section 5.4.2).

Topic I Hit Count
rapportsactivite | 26019
__________ pmmm e —
personnel : 10808
I
RA2001 | 9839
cgi-bin I 5988
__________ 1 - - - _
rrrt : 4319
__________ o m e
RA99 : 3145
iy
RA2000 ! 2819
epidaure | 2693
__________ U
RA95 I 2641
__________ o ____ ]
robotvis : 2591
__________ A
RA96 | 2561
semir : 2514
__________ R
RA9S8 I 2440

Table 5.1: Most Visited Topics on INRIA’s Web Sites on Pery

Using this extended model to generalize URLs, we found that among the most
visited topics by Web users, the topics from the activity reports of the research teams
(rapportsactivite, RAxz or RAzxxz) were clearly the most visited ones.

For example in Table 5.1 for the first analyzed period, Pery, the rapportsactivite
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topics had 26019 hits, followed by personnel with 10808 hits. Moreover, seven out of
the first 13 most visited topics, belong also to the activity reports topics and all topics
related to activity reports accounted for 22.77% of the total hits (53618 out of 235473)
for this period.

Due to the great interest of the Web users in INRIA’s activity reports (RAs), we
studied in Chapter 6 their structure and content. For this we analyzed the collection
of XML documents representing the activity reports of INRIA’s research teams from
2003.

Using this extended model for the URL analysis, we obtained 6.383 syntactic topics
for Pery and 6.542 for Pery (see Table 5.3) compared to 348 for Per; and 568 for Pers
using the previous model (cf. Figure 5.4).

For other analyses planned on same logs (by IUT* students and other AxIS mem-
bers), we also modified the REFERRER table and added another two tables, KEY-
WORDS and KEYW_2_REF (see Figure 5.5). More information on the origin of the
visit and its characteristics can be thus stored. Indeed, the referrer field contains, when
present, important information on the origin of the request (see Figure 5.1) which can
be very useful in a WUM analysis. This information can be interpreted based on the
URL type: internal page (page form the analyzed Web sites) or external page (external
link). In the first case, when an user is navigating through the analyzed Web sites, the
referrer represents the previous visited pages and can help us better reconstruct the
user’s cross-servers navigation.

But sometimes, the user arrives on the analyzed Web sites from a search engine or
an external link (usually in the beginning of the navigation). This is a very rich source
of information especially for e-commerce Web sites where one can identify the source of
the visitors that purchased from their Web site: search engines, payed directory listings,
e-mail campaigns, etc. Moreover, the keywords used by users in the external search
engines can be extracted and analyzed to eventually improve the site ranking or to see
which keywords produce the most benefit/sales, etc. Also additional information on
the country of origin, the user’s behaviour, etc. can be extracted and used in different
analyses.

In our analysis on INRIA’s Web site, one can use this type of data to determine for
example the research teams similarity based on the keywords used in external search
engines [TMTO6] (see Section 5.3.2.2). The same data generalization can be applied
for internal search engines, i.e. search engines within the analyzed Web sites.

Extracting keywords from the referrer is not an easy task, since each search engine
use its own keywords representation in the URL. But fortunately, the most common

*http://stid.unice.frhttp://stid.unice.frff
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way of representing the search keywords in the URL, is using the ¢ parameter like the
example from Figure 5.1. In [TMTO06], from a total of 649.328 detected parameters in
the referrer, 127.413 where search parameters (like g=keywords) from which 117.966
(92.59%) where represented by the ¢ parameter. To detect the rest of the search
parameters, we manually defined some extraction rules. For example, if the search
engine is Yahoo and the parameter is p, the values of p represent search keywords,
while for other search engines p has another purpose.

The extended relational DB model that we proposed is now available in the new
version of the AxIS LogMiner* tool.

5.3.2.2 Other Applications of the Extended DB Model

The extended DB relational model that we proposed in Section 5.3.2, was used in
[TMTO06, LMTTO06] to generalize Web pages based on the keywords used by Web users
on search engines. This represents information about the users’ access to these pages,
using the referrer data. The method was called Generalized Web Usage Mining or
GWUM.

The keywords are then processed with the TreeTager tool developed by H. Schmidt
[Sch94] at Stuttgart University, which lemmatizes the words of a text and labels them
with grammatical annotations. The authors used the keywords frequently employed in
search engines to access INRIA’s Web pages. The keywords were then used to describe
these pages. But because of the large number of Web pages (62.721) and obtained
keywords (35.367), a direct construction of a dissimilarity matrix was impossible.

Therefore, the keywords are first clustered using a dissimilarity matrix based on the
Jaccard index [Sneb7], as in our previous analyses (cf. Section 3.5). Then our HCT
toolbox (see Section 4.2) is used to apply our 2-3 AHC algorithm (V3 with integrated
refinement) on the keywords to extract keywords “categories”.

The obtained keywords clusters were next used to assign each page to the cluster
containing the keywords that describe it best. Finally, the URL (Web pages) were
replaced in the original log file with their categories (keyword clusters identifiers) and
sequential patterns were extracted from the log file composed of original and generalized
requests. Only pages accesed from an external search engine (having search keywords
in referrer) where generalized.

The results, showed that using the generalized Web pages, generalized patterns
with higher support and easier to interpret can be obtained compared with a classical
sequential pattern analysis.

*http://www-sop.inria.fr/axis/axislogminer
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5.4 Research Teams Clustering Based on Web Users Be-
haviours

After storing the data in the relational DB using the extended model, a two step

advanced data preprocessing was performed (see Section 5.4.1) for our analyses to select

a relevant dataset for matrix generations. The analyses and their results interpretations
are presented then in Section 5.4.2.

5.4.1 Advanced Data Preprocessing

First, we performed a general data selection step in which we select from the relational
DB the navigations (users visits) that where used in our analyses. The purpose of this
first data selection is to select the user navigations to analyze.

”

We used the following three criteria to obtain “pertinent” user navigations to ana-

lyze:
e navigation duration Ngyration > 60 seconds,
e number of requests in the navigation Npeges > 10,

e browsing speed (Npages/Nduration) BS(IN) < %.

This has reduced the number of analyzed navigations to 9625 for Per; and to 9309
for Pery (see Table 5.2 below).

Periods
Data Per; Pery

Raw log lines 6.040.290 | 4.473.228

Selected log lines 634.811 686.084

Sessions 115.825 96.984
Total Nav. 173.015 145.454
Selected Nav. 9.625 9.309

Table 5.2: Data preprocessing

Secondly, depending on the analysis, we performed secondary data selections. For
example, in the secondary data selection associated with our first analysis (section
5.4.2.1) we decided to keep only the visits on both INRIA’s servers and to cluster
the visited first level topics (from the visited URLs). Thus the number of analyzed
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navigations was reduced to 3905 for Per; and to 3513 for Pery. Also, the Web pages
returned by the Web server with an error status code (> 400) were ignored in our
analysis.

Since INRIA research teams organization has changed (starting from 15t of April
2004), its Web site structure changed accordingly. The research teams were reorganized
from the four existing research themes, into five new research themes (see Appendix

We decided to analyze the impact of the Web site structure on users navigations
before and after this change (during Per; and Pery). This was done by performing
two different analyses of users visits: one on INRIA’s first level topics and another on
INRIA’s research teams. For the second analysis, since an user visit is actually a set of
visited URLs, we needed to determine which URLs belong to different research teams.

As we said before, a data generalization step in which the visited URLs were assigned
to different research teams for later clustering, was performed. From the total of number
of visited topics (see Table 5.3 below), after the data selection step we obtained 190
visited topics for Per; (78 were research teams). For Pery we found 210 topics from

which 86 were research teams (49 actual research teams and 37 old research teams from
Pery).

I~ Periods Per, Pery
Raw log lines 6.040.290 | 4.473.228
Selected log lines 634.811 686.084
Sessions 115.825 96.984
Total Nav. 173.015 145.454
Selected Nav. 9.625 9.309
Both Servers Nav. 3.905 3.513
Total Topics 6.383 6.542
Selected Topics 190 210
Teams 78 86

Table 5.3: Summary of data preprocessing

Each URL can have several topics associated with different semantic topics. In
our analyses we interest ourselves in the project semantical topic, which includes the
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research teams only.

In a first step, a URL was assigned to a research team when one of its topics was
the research team itself. After this, complementary information on INRIA’s Web site
was used to assign URLs to research teams. For example, the URL:
http://www.inria.fr/recherche/equipes/axis.en.html does not contain any re-
search team topics, but is the AxIS research team presentation page from INRIA’s
main server.

The data preprocessing performed so far on the two time periods is summarized in
Table 5.3.

Dissimilarity Matrix Generation:

After the data generalization step and in order to cluster the obtained topics, we
needed to compute the dissimilarity matriz used as input for the AHC and our 2-3
AHC algorithm*. For this, we used the Jaccard similarity index on the visited topics
as defined in [GCGR104]. We represented each navigation by a binary vector of the
visited topics: the position ¢ in the vector is 0 if topic T; was not visited and 1 if topic
T; was visited during the navigation N; (see Table 5.4).

Navigations
Tobi & Ny Ny e N3g05
opics
T, 1 1 cee 0
T, 0 1 - 1
T190 0 0 cee 0

Table 5.4: Binary table for Perq, describing the navigations using the visited topics

Based on these vectors and aiming to define a similarity/dissimilarity between two
topics T; and Tj, we define the four following quantities (see also Table 5.5):
- a as the number of counts when T} = Tf =1,
- b as the number of counts when Tl-k =0 and Tf =1,
- ¢ as the number of counts when T = 1 and Tf =0,

- d as the number of counts when Tl-k =0 and Tf =0.

*The 2-3 AHC algorithm with refinement (V2) was used in this case, the blind merging avoidance
(V3) not beeing yet implemented
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Tl o 1

T;
0 a b
1 c d

Table 5.5: Quantities used for topics similarity computation

Then the similarity between two topics T; and Tj is computed using the Jaccard
coefficient [Sne57]:

a
a+b+c
The obtained similarity represents the probability of visiting both topics when at

S(T;,T;) = (5.1)

least one of them is visited. The dissimilarity matrix used as input for the classical
AHC and our 2-3 AHC, was computed using the dissimilarity: p(T3,7;) = 1—S(T;,T})

5.4.2 Analyses and Results

We present below the three analyses that we performed and their results. The first two
ones concern the chosen field, the third one concerns the comparison of 2-3 AHC and
classical AHC.

5.4.2.1 Impact of the Global Web Site Structure on Research Teams Clus-
tering (Per;)

For our first analysis, we have focused on the research teams distribution in the server-
crossed visited topics. The main motivation for this analysis was to study the impact
of the entire Web sites on user navigations before the research teams reorganization.
For this we compared the teams clustering obtained with our 2-3 AHC algorithm with
their existing organization into research themes. This analysis is similar to the one
done by other members of the AxIS team and presented in [GCGR'04], to which we
compare our results.

For this analysis and to compare ourselves to [GCGR04], we have selected from
Pery the server-crossed navigations, that are visiting both Web sites: main and Sophia’s
(3905 navigations). Then based on these navigations we constructed a dissimilarity
matrix on the first level visited topics, that we clustered using our 2-3 AHC algorithm.

Table 5.6 presents the repartition of the research team topics in the obtained clus-
tering (the other topics are not presented here). Also, we did not represent the one el-
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ement clusters (the “outliers”) that were obtained: caiman 4B, saga 2B, meije SOP
1C, sysdys SOP 4B, chir 4A, cafe 2B, codes 2B, visa SOP 4A, tropics 1A,
omega 4B.

We added after the name of each research team, their theme and sub-theme, as well
as their site (empty for the main site and “SOP” for Sophia’s site).

As we can see the research teams distribution usually corresponds to their theme
membership: 16 out of the 19 non-trivial clusters (84%) contain research teams from
the same theme.

We also noticed that old research teams that have been replaced by new research
teams, are in the same clusters as the corresponding new ones. This is due to the fact
that their pages are strongly interconnected. For example: aid was replaced by axis
(cluster 7), rodeo by planete (cluster 13), etc.

The same analysis was performed in [GCGR104]. The authors used the Per; log
files form both INRIA’s Web servers, the preprocessing methodology from [TT03] and
the DB relational model from Figure 5.4.

The first level visited topics where analyzed and clustered. After constructing
the dissimilarity matrix on these topics with the same methodology described in Sec-
tion 5.4.1, the topics where clustered using an adapted version of the Batch SOM*
method [KohO01].

Using this method, the authors obtained 12 clusters containing the visited topics.
Only 6 of these clusters (50%) contained research teams from the same research theme,
which can be explained by the exclusion from the analysis of the higher level topics
(second, third, etc.).

*Self Organizing Maps



robotvis SOP 3B, robotvis 3B,
epidaure SOP 3B, odyssee SOP 3B,
epidaure 3B, ariana SOP 3B,

ariana 3B

comore SOP 4A, icare SOP 4A,
icare 4A, miaou SOP 4A,

reves SOP 3B, miaou 4A,

chir SOP 4A, comore 4A,
caiman SOP 4B

orion SOP 3A, axis SOP 3A,

orion 3A

prisme SOP 2B, prisme 2B

koala SOP 2A, koala 2A,
croap SOP 2A croap 2A

odyssee 3B, dream SOP 3A,
lemme 2A, opale SOP 4B,
opale 4B, certilab 2A,

pastis 3B

orion SOP 3A, acacia SOP 3A,
acacia 3A, axis SOP 3A,

orion 3A, aid SOP 3A,

aid 3A

coprin SOP 2B, saga SOP 2B,

saga 2B

sinus SOP 4B, sinus 4B,

smash SOP 4B

robotvis SOP 3B, robotvis 3B,

odyssee SOP 3B

mimosa SOP 1C, mimosa 1C,

tick SOP 1C, tick 1C

sloop SOP 1A, sloop 1A,

oasis SOP 2A, oasis 2A

rodeo SOP 1B, rodeo 1B,

planete SOP 1B, planete 1B

lemme SOP 2A, tropics SOP 1A,
mascotte SOP 1B, omega SOP 4B,
galaad SOP 2B, cafe SOP 2B,
certilab SOP 2A

mistral SOP 1B, mistral 1B

mefisto SOP 4B, mefisto 4B

mascotte SOP 1B, mascotte 1B

safir SOP 2B, safir 2B

meije SOP 1C, meije 1C

Table 5.6: INRIA’s Web site topics clustering using 2-3 AHC for Perq
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5.4.2.2 Theme 3 Analysis on Both Time Periods

The purpose here was to analyze the influence of the INRIA’s main Web site structure
(and its implicit research themes organization) on the visited topics of the Web users
for research theme 3 during both time periods. Since theme Cog regrouped most of the
old theme 3 research teams, we also analyzed it for the second period.

For this analysis we have selected from the obtained navigations in section 5.4.1,
only those visiting at least one page on INRIA’s main server. From these navigations,
we choose to analyze the visited topics (research teams) only from the main server
pages and to cluster only the research teams topics for theme 3 (Per; and Pery) and
for theme Cog (Persa).

Analysis 2a:

First we have selected only those navigations containing at least one visit of the
theme 3 pages on INRIA’s main server during Per;. From these navigations, we have
clustered the visited topics on the main server only, corresponding to research teams
from theme 3 (Figure 5.7).
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‘5 wersn 38
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=] air 3B
1 imagiz 3B
4 mowi 3B
imedia 3B
i3d 34
wizta 3B
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Figure 5.7: 2-3 Hierarchy on theme 3 projects during Per;

In the resulting classification we can distinguish two main clusters (82 and 85) that
group almost all elements from the two sub-themes of theme 3 (see Appendix E). This
confirms that users are usually visiting teams from the same research subtheme for
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the theme 3 during the first time period. Same behaviours were obtain for the other
research themes.

Analysis 2b:

Next, we bassically performed the same analysis as the previous one (2a) but on
the second time period. Since one can find teams from the old theme 3 in each new
theme, we have selected for Pers the navigations visiting at least one of the new themes
pages on the INRIA’s main server. From these navigations we have focused again on
the topics corresponding to research teams from the “old” theme 3, only on the main
server’s pages (cf. Figure 5.8). Table E.2 in Appendix E presents the teams from
Theme 3 and their new themes from the second period Pers.
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Figure 5.8: 2-3 hierarchy on theme 3 projects during Pers

As we can see the old two subthemes 3A and 3B are no longer clearly separated, but
mixed together in the resulting structure for the second time period after the change.
However, we discover in this classification the new theme Bio, which groups together
in cluster 73 the four research teams that were separated in the previous organization
(Figure 5.7).

Some of the research teams have not been assigned to one of the new five themes
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since they were either replaced or stopped, but their Web pages are still accessible on
the Internet (i.e. sharp, opera, verso).

Analysis 2c:

Finally, since theme Cog regrouped most of the old theme 3 research teams, we
also analyzed it for the second period. The purpose here was to compare the obtained
classification on Pery with INRIA’s new organization of teams in themes and more
especially in subthemes just as in the first analysis. Thus, we have selected only the
navigations that had at least one visit of the new theme Cog pages during Pery. We
have then clustered only the topics on the main servers pages corresponding to research
teams from theme Cog (cf. Figure 5.9).
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Figure 5.9: 2-3 hierarchy on theme Cog projects during Pers

We note that users have the tendency to visit all CogA research teams, while for
the others sub-themes there is a certain variability. A deeper analysis is needed to
study this variability (possible causes: events like conferences or seminaries presented
on INRIA’s Web site that affects users visits, the recent change of structure, etc.).



142 Chapter 5. Web Mining Application

To conclude, in our analyses we found that the same research teams are grouped
differently on the two time periods (for example our team, AzIS). In order to better
study the impact of the Web site structure on the Web users behaviour, we should
further use the extended DB model that we proposed, to take into account different
origins of the visit: search engines or national presentation pages.

5.4.2.3 Comparaison of the classical AHC and 2-3 AHC on Theme 3

In our final analysis we have compared the classical AHC method and our 2-3 AHC
algorithm, by clustering the research teams from theme 3 (during Per;). The data
selection was the same as in the previous analysis: navigations visiting at least one of
the theme 3 pages, topics only from the main server’s pages and representing research
teams from theme 3.

Figures 5.10 and 5.11 present a partial output (containing all 3B research teams) of
the classical AHC respectively of our 2-3 AHC algorithm. The 2-3 hierarchy obtained
contains more created clusters than the classical hierarchy (22 against 15), and thus
more information. For example, analyzing cluster 54 in Figure 5.11, we can say that
research teams ariana, epidaure and odyssee have a “stronger” probability of being
visited together, compared with the one given by the classical hierarchy (Figure 5.10).
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sharp 2B
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wista 3B
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siames 2B

temics ZE

Figure 5.10: Classical hierarchy on theme 3 projects in Per
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Figure 5.11: 2-3 hierarchy on theme 3 projects in Per;

5.5 Discussion and Perspectives

This chapter presents the first application of a 2-3 AHC algorithm on Web usage data,
and shows the potentials of our algorithm compared with the classical AHC algorithm.

We interested ourselves here in clustering the visited topics of INRIA’s Web sites
(including the research teams). We used the log files from two of INRIA’s Web servers:
the national one and the one located in Sophia-Antipolis. After a data preprocessing
step in which all the non-relevant requests where eliminated (e.g. images, javascripts),
the users and their navigations were identified and stored in a relational DB [Tan05a].

For different AxIS purposes, we improved the existing relational DB model [Tan05a]
for a better generalization of the URLs and for the extraction and analysis of the search
keywords present in the referrer field. Our search engine keywords extraction methodol-
ogy and the proposed extended relational DB model were used in a Generalized WUM
process [TMT06, LMTTO6] to improve the classical WUM process (the sequential pat-
tern mining in this case). Our extended relational DB model is currently available in
the AxIS LogMiner tool* developed in our team.

For our analyses, different data selection steps were executed to generate the dis-
similarity matrices between the visited topics based on users navigations and using the
Jaccard coefficient [Sne57].

Since INRIA’s research teams organization into research themes has changed re-

*http://www-sop.inria.fr/axis/axislogminer
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cently (1% April 2004), its Web sites structures changed accordingly.

In this context, we have studied the impact of INRIA’s Web site structure on users
navigations, during two time periods (before and right after the site structure change).

For the first period, before the change, the visited teams were correctly separated
into themes and subthemes by our 2-3 AHC algorithm. For the second period, which
was right after the change, we noticed that there is a certain variability in the teams
visited by the Web users. A deeper analysis is needed to study this variability (possible
causes: events like conferences or seminaries presented on INRIA’s Web site that affects
users visits, the recent change of structure, etc.). Indeed, it is important to take into
account the origin of an user visit by analyzing the referrer and, when present, the
search engines keywords like in [TMT06].

When analyzing the 2-3 AHC results, we found that the 2-3 AHC produced in-
teresting results, richer than the classical AHC and better than the ones obtained in

[GCGR*04].

Future research directions concerning the 2-3 AHC application in the WUM field, may
include the following topics:

e More detailed analyses using the referer and the status code of the accessed Web
pages,

e Study of other dissimilarity measures. For example the generalized Jaccard index,
which takes into account the number of visited pages for a topic, not just its
presence (count vs. binary),

e Use of additional data inferred from the activities reports of INRIA’s research
teams (see Chapter 6), and comparison of the results with the ones obtained
here.



Chapter 6

XML Document Clustering
Application

In the previous chapter we analyzed INRIA’s*, visited Web sites topics using the users
navigational behaviours. For this, we improved the URL generalization (see Section
5.3.2) by extending the relational DB model proposed in [Tan05a]. This allowed us to
extract all visited topics from two INRIA’s Web sites: national and Sophia Antipolis.
We thus found that the most visited topics by Web users are related to INRIA’s activity
reports which represent 22.77% of the total visited topics (see also Table 5.1).

In this chapter we cluster INRIA’s research teams by analyzing their 2003 activity
reports. These consist in a collection of semi-structured XML documents that are also
accessible on the Internet. A first objective of this chapter is to study the impact on
the clustering tasks of selecting different parts (sub-structures) of XML documents and
different distance measures and to compare them with INRIA’s research organization.
The second objective is to compare the 2-3 AHC algorithms gains compared with the
classical AHC (see also Section 3.5).

In Section 6.1 we will make a short introduction in the XML Document Mining
area, followed in Section 6.2.1 by a description of the format of INRIA’s XML activity
reports.

6.1 Introduction

Document mining deals with extraction of structured information from rough text
documents, as well as with the documents clustering and classification. The goal is to

*The French National Institute for Research in Computer Science and Control.
http://www.inria.fr
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improve relevant documents retrieval or to synthesise information contained in these
documents, information that otherwise would be hard to extract.

There are two fundamental stages in a document mining analysis: the transfor-
mation of documents from linear strings of words into suitable data structures (text
processing) and the algorithmic grouping of these representations.

Traditional approaches in document classification and clustering rely on various
statistical models. A common form of text processing in many information retrieval
systems is based on the analysis of word occurrences across the document collection.
For this, documents representation is mostly based on a vector space or bag of words
model. The number of used words/terms defines the dimension of a vector space in
which the analysis is carried out. The large size of this “vocabulary” (denoted also as
feature space) is usually an inconvenient for the document mining analysis. Reduction
of the dimension may lead to significant savings of computer resources and processing
time but if is a poor feature selection is performed, the quality of the information
retrieval process can be seriously reduced.

Automatic feature selection methods have been proposed to reduce the dimension
of the space. They usually try to identify representative words that can discriminate
documents between various classes [YP97].

Lately, the XML documents have become a standard in information storage and
transmision because of their rich and flexible format that can be easily interpreted and
used by a variety of applications.

To cluster XML documents, there are two major approaches that use only their
textual parts or their structure. In the first approach, the XML documents are merely
reduced to their textual content which is analyzed as a normal text document. This
does not take advantage of the structure of XML documents that also carries important
information. In the second approach, structural similarities between XML documents
are based on tree/graph-matching algorithms and are used to resemble or differentiate
the XML documents.

We decided to study the impact of selecting (different) parts of XML documents for
a specific clustering task. The idea is that different parts of XML documents correspond
to different dimensions of the documents collection that may play different roles in the
classification task. Our goal is to compare the obtained classifications with INRIA’s
research organization.

Two levels of feature selection are considered:
1. selection at the structure level

2. fine linguistic selection of words within the text of elements.
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In the next Section we will present the analyzed collection of XML documents and
our study motivations.

6.2 INRIA’s Activity Reports Analysis

Every year, each research team from INRIA publishes an activity report (RA) that is
made available both to the industry and to the scientific community.

Since 1994, the reports are published on the Web in HTML, PDF and PS formats.
An XML format is also available since 2003 and can be used to generate the activity
reports in the other formats. Next Section 6.2.1 presents the analyzed XML collection
of INRIA’s activity reports and the motivations of our analysis.

6.2.1 Data Description and Motivations

As we saw in the previous chapter, the most visited topics on INRIA’s web sites were
related to the activity reports. In this context, we chose to analyze the XML documents
collection of INRIA’s 2003 activity reports. The collection comprises 139 XML files,
with a total of 229000 lines and 14.8 MB of data.

The structure of the XML activity reports is given by a DTD. Its top level part is
given below:

<!ELEMENT raweb (header, moreinfo?, members, presentation,
foundation?, domain?, software?, results,
contracts?, international?, dissemination?,
biblio)>

<IATTLIST raweb year CDATA #IMPLIED >

Among the required sections of the documents we can find the list of team members,
the objectives presentation, the new results, and the list of publications for the year
(bibliography). Optional sections include research foundation, application domains,
software, as well as international and national cooperations. Although the structure
of the activity reports is predefined, the overall style and content are very flexible
and unconstrained. Moreover, the teams can specify keywords for some sections to
summarize their content. In the rest of this text we will call them attached keywords
whilst the content of a section or the document will be called the full text.

These documents are called semi-structured since they present a structure, but this
one is not that rigid, regular or complete like the one present in the structures of the
traditional database storage systems.
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As we mentioned in the previous chapter, INRIA’s research teams are organized
into research themes based on their scientific objectives. In 2003 the research teams
were organized into four research themes (see Appendix E).

In this context, our main motivation was to compare this grouping of research
teams into research themes with the ones obtained using the hierarchical classification
algorithms. To cluster the research teams, we used their self-description containd in
differents sections of the activitity report. The clustering is based on the fact that the
activity reports reflect the research domains the teams are interested in and that some
parts or the reports are more representative than others in identifying their research
topics. For example, conferences and journals where the teams participate (publica-
tions, organization, etc.) should be an indicative of their research interests.

6.2.2 Data Preprocessing

We reused here the XML documents data preprocessing done by Despeyroux et al.
[DLTVO05] that we introduce briefly.

In the first data preprocessing step, all the different text elements (words) that
may be relevant for the classification task, were extracted by sections from the XML
documents. The extraction uses the tools described in [Des04]. After this step, each
type of section is represented by the previously extracted words.

Since different sections of the activity report would play different roles in classifying
the research teams, we ran five experiments using different sections of the activity
reports as in [DLTVO05]. This process is called ”structured feature selection” by the
authors in [DLTVO05]. The goal of these experiments is to evaluate which parts are
more relevant for the clustering task.

1. Experiment K-F: Keywords attached to the foundation part.

2. Experiment K-all: All the keywords attached to any of the sections.
3. Experiment T-P: Full text of the presentation part.

4. Experiment T-PF: Full text of the presentation and foundation parts.

5. Experiment T-C: Names of conferences, workshops, congress, etc. from the biblio
section.

For these experiments, the number of extracted words in this first preprocessing
step is displayed in the first column of Table 6.1.

The second processing step consists in the automatic selection of significant words
within the previously extracted ones. This is known as textual feature extraction or
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textual feature selection. Classical methods of textual feature extraction are based on
statistical approaches such as the word frequency (DF) or the information gain (IG).
These methods works well for large collections of texts and involve pre-processing of the
full collection. For our document collection, the frequency of words may vary depending
on the selected sections and the resulting collection can be very heterogeneous from
one experiment to the other. To avoid heterogeneous frequency, we chose a natural
language approach in which words are tagged and selected according to their syntactic
role in the sentences. We use TreeTagger, a tool for annotating text with part-of-speech
and lemma information, developed at the Institute for Computational Linguistics of the
University of Stuttgart [Sch94].

Depending on the experiment, we select different types of words. For K-F and K-
all experiments (keywords) we keep nouns, verbs, adjectives (excluding conjunctions,
unknown words, etc.), whilst for T-PF and T-P experiments (full text) we keep only
the nouns to limit the number of selected words. Column two in Table 6.1 displays the
selected words for each experiment.

The main problem here concerns the last experiment T-C, the conference names.
This is due to the heterogeneous notations used for the same conference: full name,
acronyms with different format. For example the following notations are equivalent:
Extraction et Gestion des Connaissances 2006, EGC 2006, EGC’06, EGCO06, etc. Beside
the fact that these different notations are used by different teams, they are also present
among the publications of an individual team.

Therefore a normalized list of all the conference names was built manually (usually
the full name) by Despeyroux et al [DLTV05] and was used to replace the other nota-
tions. Moreover, since conference acronyms are significant but unknown to the tagger,
we decided not to use the tagger for this experiment, keeping all the words except the
stop words (e.g. proceedings, conference).

In the last step of the preprocessing, we eliminate all the words that are not used
at least by two teams. Column three of Table 6.1 contains the remaining words that
were grouped in vocabularies for each experiment, while the last column represents the
number of projects that contained at least one vocabulary word.
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Extracted words | Selected words | Vocabulary | Teams
m\ First step Second step Third step
K-F 2234 1053 134 80
‘K-al [ se71 | 1| 382 | 121 |
T~ [ 63711 | 16036 | 365 | 138 ]
‘T-PF | 320801 87416 | 805 | 139 |
‘T~c | 0806 | 7915 | 659 | 131

Table 6.1: Size of the data for the five experiments

6.2.3 Dissimilarity Matrix Generation

For the clustering of the research teams, we use the previously obtained vocabularies
(for each experiment).

For each experiment, the vocabulary W has m words, W = {w;, j = 1,m}, whilst

the set of analyzed teams T has n documents, T = {t!, i = 1,n}. We represent

(w’l, ceey w;'-,

occurences of word w; in the document t* (see Table 6.2 below).

, Wy,) Where w} is the number of

each document t* by the vector w"

Words w w w
Teams 1 J m
t; 4 12 0
t; 2 3 0
t, 0 0 2

Table 6.2: Documents (teams) representation using words frequency

The distances between clusters are computed using the words frequency in the
given vocabulary (i.e. the above defined vectors). For this we used a classical distance
(formula 2.1) or the Jaccard dissimilarity (formula 5.1).

We used as classification algorithms the agglomerative hierarchical methods from
Section 3.4.3: classical AHC, the initial 2-3 AHC [Ber02d] and our 2-3 AHC algorithms
(see Chapter 3), all with the complete-link.
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6.2.4 Analyses and Results

In this Section we present results from the five experiments that we performed in
two analyses. In the first one, we used the classical Euclidean distance on the words
frequencies for all experiments and the Jaccard coefficient for the T-C experiment. For
the second analysis, we compared our 2-3 AHC algorithms with the classical AHC for
the five experiments.

Since the created structures are to big to be included here, we will present only
small parts of the created structures.

6.2.4.1 Experiments with the classical distance

We first compared classifications obtained in the five experiments. The motivation here
was to study the classifications obtained using different parts of the activity reports.
We obtained three main results when analyzing the five experiments.

Result 1 (preprocessing):

Using the same methods, the classifications were very different from one experiment
to another.

For example, our team, AxIS, was grouped in each classification in different clusters
with different teams. Figures 6.1 and 6.2 present these classifications for the K-all and
the T-PF experiments. As we can see, the classification using the presentation and
foundations sections (T-PF experiment) is more pertinent from the research themes
organization point of view. We need to mention that in the case of our team, this could
be also interpreted as a consequence of the pluri-disciplinary nature of our group.
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Regalila) Imedial3b)
L_|| ADEFTH 0) TEME3a)
PRS0 al i3]

Figure 6.1: AxIS team in K-all analysis Figure 6.2: AxIS team in T-PF analysis

Result 2 (distance):

During the experiments we discovered some “atypical” teams.

For example, during the T-P analisys we found that the epidaure team (see Figure
6.3) used some specific words in its presentation section, words that were not used by
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other teams. Moreover, from its remaining words, the word imaging was heavely used:
10 times in four phrases. Since the classical distance that we used takes into account
the word frequency, epidaure became an atypical team.

Epidaure(3b)

274 Cyravye bl b
MOSTRARE(S 2)

Contraintes(2a)
FROTHEDIZa)

7z
= EIPOF )
|'+Z VISTAZE)

73

2

Figure 6.3: Atypical teams in T-P experiment

For all keywords experiment (K-all) we also found some atypical research teams
(see Figure 6.4). This was mainly due to the very small number of keywords use by
the teams to describe their sections. Indeed, Metalau team had only one keyword in
its entire activity report, while tanc had only two.

Metalauida)

'24 ? takci2 by

23

Sozsolda)
L Eiffel{2a)
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£36 EXMOi3a)
?I'?" artis(3b)

Figure 6.4: Atypical teams in K-all experiment

In the analysis of the bibliographic section, we found only one atypical team, estime,
which had a small number of very specific keywords: nuclear and supercomputing.

Eztim afd by

B Gyrowe bl by

Bangidb)
Macsidb)
EIFOFd )

59 i

Figure 6.5: Atypical teams in T-C experiment

Result 3 (distance):
The influence of general words frequency can be avoided using Jaccard distance.
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When using the classical distance on the documents frequency table (Table 6.2), we
discovered that some “general” words influenced the computed distance due to their
frequent use by most of the teams. These general words include for example applica-
tions, computer, research, team, and should be eliminated in the data preprocessing
step.

Therefore, for our second analysis, we used the Jaccard coefficient [Sne57] on the
document /word matrix from Table 6.2 to compute the distance between teams. Since
the index uses only the presence of the words, not their frequency, we obtained dif-
ferent classifications (without atypical teams) compared to the first analysis and more
pertinent from the research themes organization point of view (see Appendix E).

Table 6.3 presents an obtained clustering for the T-C experiment using the Jaccard
coefficient, the 2-3 AHC avoiding blind merging and the complete link.



IDOPT 4b, tropics 1a,
Ares 1b, PLANETE 1b,
ALADIN 4b, POPS 1a,
ScAlApplix 4b, mistral 1b,
aces 1b, reso 1b,
Hipercom 1b, armor 1b,
mascotte 1b, calvi 4b,
MADYNES 1b, Opale 4b

apache 1a, Cristal 2a,
Triskell 1c, Contraintes 2a,
A3 1la, calligramme 2a,
Arenaire 2b, SECSI 2a,
LEMME 2a, coprin 2b,
VASY 1c, R2D2 1a,
Moscova 1c, Arles 1a,
AlGorille 1b, oasis 2a,

MOSTRARE 3a, Espresso 1c,

Runtime 1la, mimosa 1c,
Sardes 1a, VerTeCs 1c,
ReMaP 1la, Regal 1a,

OBASCO 2a, COMPOSE 2a,

JACQUARD 1a, LogiCal 2a,
Grand-Large la, caps 1la,
PARIS 1a, Compsys 1a,
LeD 3a, cassis 2a,
PROTHEO 2a, ADEPT l1c,
DaRT 1c, Lande 2a,

MIRO 2a, modbio 2a

REVES 38b, i3D 3a,
in-situ 3a, siames 3b,
Fractales 4a, Sosso 4a,
artis 3b, EVASION 3b,
Epidaure 3b, Air2 3b,
movi 3b, IPARLA 3b,
ALCOVE 3b, LEAR 3b,
ISA 3b, PRIMA 3a

cordial 3a, Atoll 3a,
Bang 4b, Macs 4b,
BIPOP 4a, SIGNES 3a

EXMO 3a, cordial 3a,
orpailleur 3a, Orion 3a,
Atoll 3a, DREAM 3a,
WAM 3a, AXIS 3a,
symbiose 3a, MAIA 3a,
cortex 3a, SIGNES 3a,
ACACIA 3a

Smis 3a, MErLIn 3a,
gemo 3a, TEXMEX 3a,
ECOO 3a, parole 3a,
Gyroweb 1b

IDOPT 4b, tropics 1a,
ALADIN 4b, ScAlApplix 4b,
Estime 4b, calvi 4b,

Opale 4b

Algo 2b, adage 2b,
geometrica 2b, Spaces 2b,
galaad 2b, tanc 2b

Imara 4a, Micmac 4b,
TRIO 1c, e-Motion 3b,
COMORE 4a, HELIX 3a,
sagep 4b, macsi 4a,

icare 4a

Ariana 3b, VISTA 3b,
Odyssee 3b, sigma2 4a,
Mirages 3b, TEMICS 3b,
ATLAS 3a, Imedia 3b,
Metalau 4a, IS2 4a,
METISS 3a

CONGE 4a, Mathfi 4b,
Mirages 3b, Miaou 4a,
Cafe 2b, Trec 1b,
Metalau 4a, IS2 4a

s4 1lc, tick 1c,

Trisell 1c, SECSI 2a,
VASY 1c, Espresso 1c,
Ostre 1c, VerTeCs 1c,
cassis 2a, Lande 2a

MErLIn 3a, Eiffel 3a

Table 6.3: 2-3 AHC V3 clustering in T-C experiment using Jaccard and CL
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6.2.4.2 Comparaison of the classical AHC and 2-3 AHC

Result 4 (2-3 AHC):

The 2-3 AHC avoiding the blind merging (2-3 AHC V3) was the only 2-3 AHC
algorithm with a positive gain compared to the classical hierarchy.

For the five experiments, we compared the created 2-3 hierarchies with the classical
hierarchies (using complete link). The objective here is similar to the one in Section
3.5: to perform a qualitative comparaison between the classical AHC and 2-3 AHC.

The Stress gain (see Section 3.5) was used to compare the resulting structures. As
we can see in Table 6.4, the 2-3 AHC avoiding the blind merging (2-3 AHC V3) was the
only 2-3 AHC algorithm with a positive gain when compared to the classical hierarchy.

K-F K-all T-P T-PF T-C

2-3AHC ref V2 -55.14% | -38.54% | -69.02% | -22.08% | -64.04%

2-3AHC V2 -56.03% | -37.96% | -98.07% | -19.69% | -65.71%
2-3AHC (ref) V3 6.52% | 11.15% 3.56% 6.64% | 11.45%
2-3AHC ini -49.51% | -37.1% | -104.19% | -29.1% | -65.71%

Table 6.4: Complete-link Stress gains of 2-3 AHC using the simple distance

A small example of information gain between the 2-3 AHC V3 and the classical
AHC in the T-P experiment, is given in Figures 6.6 and 6.7. Here we can see that for
example the mascotte team is the intermediary element between the other two classes:
{mistral,reso, Ares, PLANETE} and {macsi, Trec,icare}.

mascottell b) m istﬁltl':: bl
mistralil bl reso
Arezilb)

FLAMETEL b J_ mazcottell bl
icaredal \I_I'l macsitda
macsilda) Trecilh
Trecilh) 1 icareida)

Figure 6.6: AHC in T-P experiment Figure 6.7: 2-3 AHC in T-P experiment
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6.3 Other Applications

In this section we briefly describe two other applications of the 2-3 AHC in Documents
Clustering. Our Hierarchical Clustering Toolbox presented in Section 4.2 was used in
these applications.

INEX Movie DB

In [Gar05], the authors analyzed a collection of XML documents from the Document
Mining Track* of the INEX' Initiative. They used only the structure information of
the XML documents, not their content, in order to find different ”structural families
of documents”. The purpose was to characterize each predefined cluster in terms of
frequent “structural” patterns and then to classify ordered labeled trees.

To extract the needed sequential patterns, they used the PSP algorithm [MCP98].
Then the sequential patterns, were grouped using an 2-3 AHC algorithm from the HCT
toolbox. The used dissimilarity was defined by the following formula:

2|LCS(51,5)

D(S1,85)) =1 —
(51, 9)) |S1] + |52

where S1,S2 are the mined sequences, LCS(S1,S2) is the Longest Common Subse-
quence and |S| is the length of the sequence S.

The authors then validated the obtained clustering against the predefined categories
given in the Document Mining Track

Sanskrit Documents

In [TanO5b], our motivation was to compare old Sanskrit documents having all a
common origin, in order to create a critical edition and/or a philogenetic tree. This
work was done in the context of an EuropAID project.

They used a LCS algorithm to detect inversions in the analyzed documents and a
distance measure based on a spreading function. Our HCT toolbox was then used to
cluster a small set of documents.

6.4 Discussion and Perspectives

In this chapter our 2-3 AHC algorithms were used in the field of the XML Document
Clustering. We clustered INRIA’s research teams by analyzing their 2003 activity
reports (semi-structured XML documents).

*http://xmlmining.1ip6.fr/Home
TINEX: INitiative for the Evaluation of XML Retrieval
http://inex.is.informatik.uni-duisburg.de/2005
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We first selected different parts (sub-structures) of XML documents for the cluster-
ing tasks. Then, a second level of selection was performed for a linguistic selection of
words within the text.

We found that different parts of the activity reports produce different classifica-
tions. Some classifications (i.e. keywords, presentation) are especially influenced by
the flexibility of the content: the use of keywords, repetition of words, etc. In this
context, a better data preprocessing should be performed to eliminate some “general”
words.

We used the Jaccard coefficient to compare our classification with the existing
research teams organization. This analysis was performed mainly to avoid the pre-
processing inconvenients and to compare the resulting classification with the existing
research organization. In this case better results were obtained compared with the first
analyses using the classical distance on the words frequencies.

In a second analysis, for the five performed experiments we compared the obtained
classical hierarchies with the 2-3 hierarchies obtained by our 2-3 AHC algorithms. As
expected, the 2-3 AHC avoiding the blind merging had the best results when using the
Stress gain presented in Section 3.5.

Our future work concerns:
e a detailed comparaison with other similar works, such as the one in [DLTVO05];

e a better vocabulary (words) extraction, based on an ontology defined on INRIA’s
research topics;

e the use of other distance measures on the obtained keywords.






Conclusions and Perspectives

159






Chapter 7

Conclusions and Perspectives

We summarize in this Chapter our main contributions on the Agglomerative 2-3 Hi-
erarchical Classification study and implementation that we realized during this thesis.
Some future works and perspectives are presented in the end of this Chapter.

7.1 Main Contributions of this Thesis

During this work, we have proposed, analyzed and validated a new Agglomerative 2-3
Hierarchical Classification algorithm based on the one introduced in [Ber02d].

The three main contributions of this thesis can be summarized as follows:

1. We performed a theoretical study of the 2-3 hierarchies and of the initial 2-3 AHC
algorithm. This allowed us to discover new properties of the 2-3 hierarchies and
a special case of merging;

2. We proposed a new 2-3 AHC algorithm with a lower complexity than the ini-
tial one from [Ber02d]. We validated our 2-3 AHC algorithm’s complexity and
we compared its results with the classical AHC’s ones. We also developed the
Hierarchical Clustering Toolbox to ease the results interpretation and com-

parison;

3. We studied the applicability of the 2-3 AHC in two Data Mining fields: Web
Usage Mining and Document Clustering. The 2-3 AHC was also integrated in
the CBR*Toolbox* as an indexing method, to be used in the future in different
recommender systems like the Be-TRIP recomender system that we proposed for
the mobility contexts.

*Case Based Reasoning Toolbox: http://www-sop.inria.fr/axis/cbrtools
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7.1.1 Theoretical Study of the 2-3 AHC

In the first part of our study described in Chapter 2, we focused on the theoretical
properties of the 2-3 hierarchies and of the initial 2-3 AHC algorithm introduced in
[Ber02d].

We have revealed four new properties of the 2-3 hierarchies that were later use
to formulate our new 2-3 AHC algorithm. These properties allowed us to propose
a new merging step for 2-3 AHC algorithm, denoted the intermediate merging step.
Also, using these properties we specified exactly the clusters to be eliminated from the
candidate set in the Update step and the dissimilarities to compute. This contributed
in the 2-3 AHC algorithm complexity reduction.

We introduced an “on-the-fly” refinement to replace the recursive refinement step
from the end of the 2-3 AHC algorithm. We called it the integrated refinement, and
since it influences the created structure we made this step optional to diversify the
outputs that can be obtained using our 2-3 AHC algorithm.

Since the proper intersection is the main characteristic of the 2-3 hierarchies, we
studied its influence on the aggregation index, algorithm execution, etc. We thus defined
the “best” choices for indexing formulas and aggregation indexed for the complete and
single link.

We revealed a particular case of merging that we called the blind merging. We
proposed a solution to avoid these kind of mergings, which creates different structures
too. Therefore, avoiding the blind mergins was also integrated as an option in our 2-3
AHC algorithm.

7.1.2 A New 2-3 AHC Algorithm

Based on the theoretical study of the 2-3 hierarchies and of the initial 2-3 AHC algo-
rithm, we proposed a new 2-3 AHC algorithm wih a reduced complexity of O(n?logn)
compared to O(n?) in the initial one. The tests on different datasets, real and gener-
ated, confirmed our theoretical complexity analysis.

The principle of this new 2-3 AHC algorithm is similar to the one of the classical
AHC algorithm.

Having four 2-3 AHC algorithm variants given by the two optional steps of the algo-
rithm, we performed a “qualitative” analysis by comparing the results to the classical
AHC algorithm’s ones on real and large datasets.

First, we compared the number of created clusters for our 2-3 AHC algorithm and
the classical one. The results were satisfactory as we found that we can obtain with our
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algorithm up to 50% more clusters using the complete link and 45% using the single link.
We saw on smaller real datasets (Ruspini, urban itineraries) that this larger number
of created clusters, can provide us with a richer structure, i.e. more information for

results interpretation.

Next, we analyzed the “quality” of the created structures (hierarchies and 2-3 hierar-
chies) by comparing their induced dissimilarity matrices with the analyzed dissimilarity
matrix. The matrices were compared using the Stress [JW82] index that measures the
degree of correspondence between them. This gave us an estimation of how “different”
the induced matrices were compared to the initial data.

We found that the Stress gain was very variable, and for some of the created 2-
3 hierarchies there was even a loss of information compared to the classical hierarchy.
However, our 2-3 AHC algorithm avoiding the blind merging was the only one to always
produce Stress gains compared to the classical hierarchies (e.g “better structures”). The
maximum Stress gain reached in this case 84% for the 2-3 AHC algorithms*.

This lead us to conclude that the 2-3 AHC algorithm avoiding the blind merging
is the most “stable” one, although its Stress gains were also variable, and should be
the one to chose if one wants to assure the construction of a richer 2-3 hierarchy (than
the classical hierarchy) on a give dataset. However, when possible, one could chose to
execute all possible 2-3 AHC algorithms (including the initial proposed in [Ber02d)),
compare their gains, and chose the one that represents the best the analyzed data.

We compared our 2-3 AHC with the Ascendent Pyramidal Classification (APC)
algorithm [EUR]. For this we used the SODAS software [Did02], but due to the different
implementations and a wrong results computation in SODAS, a direct comparison was
not possible.

We performed a first implementation (in Java) of an 2-3 AHC algorithm, based on
the object-oriented model that we also propose. This object-oriented model was then
used to design and implement Hierarchical Clustering Toolbox and to integrate
the 2-3 AHC into the CBR*Tools framework.

Hierarchical Clustering Toolbox

The object-oriented model of our algorithm was used in a visualization and analysis
toolbox called the Hierarchical Clustering Toolbox. The classical AHC and the
initial 2-3 AHC algorithms were integrated as well.

The toolbox was designed to ease the results interpretation and to compare the
different hierachical methods using different “quality” criteria or a direct visual analysis
of the structures.

*The 84% gain is for more than 10 analyzed objects, (n > 10) since for smaller n (i.e. n = 3) the
gain can be 100%
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The toolbox was also used by other members of the team in different analyses
[GMTO05, Tan05b, TMT06].

CBR*Tools integration

We integrated our object-oriented model of the 2-3 AHC algorithm in the Case-
Based Reasoning object-oriented framework, CBR*Tools [Jac98], as an indexing method.
The purpose of this integration was to use our method for case indexing in a recom-
mender system like the Be-TRIP mobility recomender system that we proposed in
[CGT04, TCGO4]. Due to its high complexity, only off-line analysis can be performed
so far.

7.1.3 2-3 AHC Applications

After testing the 2-3 AHC on different datasets, we used our 2-3 AHC algorithm in the
context of two Data Mining applications:

e a Web Usage Mining application on INRIA’s research teams using the visited
topics on its Web sites;

e a Document Mining application on INRIA’s research teams using the XML col-
lection of INRIA’s 2003 activity reports.

Web Usage Mining application

We analyzed the impact of INRIA’s Web site structure on users navigations. This
was done on two time periods: before and right after the reorganization of the research
teams into research themes.

The data from two of INRIA’s Web sites was used. The Web logs data was pre-
processed using the methodology proposed in [Tan05a] which we improved for URL
generalization and keywords extraction. We classify the research teams based on the
topics visited by the Web users in their search for information.

The 2-3 AHC produced interesting results, richer than the classical AHC and better
than the ones obtained in [GCGR™04]. Although the second analyzed period was
shortly after the change, we have found that usually users navigations are influenced
by the Web site structure, which corresponds to the research teams organization.

Document mining application

We clustered INRIA’s research teams based on their 2003 activity reports. This
XML collection of activity reports was preprocessed using the methodology proposed in
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[DLTVO05]. Since the XML documents were semi-structured, we used beside a linguistic
selection of words, a selection at the structure level. Thus we found that different parts
of the activity reports produce different classifications and that some improvements can
be made in the preprocessing step.

As in the previous analyses form Section 3.5, the 2-3 AHC avoiding the blind merg-
ing obtained the best results, and moreover the only positive Stress gains compared to
the classical AHC.

7.2 Future Works and Perspectives

There are several perspectives opened by this research and they concern on one hand
the 2-3 AHC algorithm and results analysis and on the other hand the 2-3 AHC as a
part of the HCT and CBR*Tools.

The future works and perspectives concerning the 2-3 AHC algorithm and results
analysis can be summarized as follows:

e deeper study of other aggregation indexes such as the average linkage or the Ward
criterion for the particular case of properly intersecting clusters;

e a deeper structure refinement for large structures. This is especially useful for
visual results interpretation which is very difficult when the created clusters num-
ber increases (more than 100 for example). One can use for example a threshold
in the difference of clusters indexing level (f value) combined with a measure of
the clusters “homogeneity” as in [RD05];

e definition of other “quality” measures to compare the created structures (classical
hierarchies and 2-3 hierarchies) on same datasets. One could use in this case a
measure based on the clustering accuracy, when possible.

e an automatic partitioning level to cluster the initial elements using the level of
the created clusters.

e more tests are necessay between 2-3 AHC and APC using similar and updated
implemetations: on induced dissimilarities, using same programming language
(implementations), etc.

For the Hierarchical Clustering Toolbox (see Section 4.2), the future works and per-
spectives concern:
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e the integration of a general DB Explorer feature, used to explore the available
data in DB and in which custom queries for selecting data can be performed, as
in [Tan0b5a).

e the extension of the supported data formats (e.g. arff files used in the WEKA
software [WF05]).

Future work regarding the CBR*Tools [Jac98| integration of our 2-3 AHC algorithm
include the study of an automatic partitioning criteria and eventually an incremental
feature for the hierarchical algorithms to allow on-line analysis.
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Appendix A

Example of the Blind Merging’s
Influence

We present here a small example of information loss on the resulting 2-3 hierarchy
compared with the classical hierarchy, when we perform a blind merging. The data set
is a set of five points with the distance matrix d;,; given in Figure A.1.

c d e de ¢

2 1314
ajp a2z 12 dje 142
d de| 3

Figure A.2: AHC dissimilarities

Figure A.3: The classical hierarchy

We will use here the complete-link with all its possible definitions (1), (2) and (3)
from Section 2.4.2.1, the extended indexing formula:

FXUY) =maz{f(X), f(Y),u(X,Y)} (A1)

from Section 2.5 and the algorithm executions, normal (i) and with integrated refine-
ment (ii) from Section 2.7. Although we have seen that the first dissimilarity definition
(1) is recommended (see Section 2.4.2.1 and 2.8), we will analyze all three cases.

For the classical hierarchical case presented in Figure A.3, we first merge {a} and
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{b} as they are at minimum dissimilarity, u = 1, cf. Figure A.2. Next, {d} and {e}
are merged at the dissimilarity g = 1.2. The resulting cluster {de} will be merged with
{ab} at dissimilarity p = 1.4 and the remaining singleton, {c}, will be finally merged
with the last formed cluster {abde} at p = 3. The resulting hierarchy is presented in
Figure A.3 while the resulting ultrametric in Figure A.6.

abc d e g w d / 5
ab| - -2 1314 ac d e ed e L
ab —[01114 adc ab 2l - -  apOac abc|3 3 AU P S 1
21313 - Tdoe de| - - NN \ o
1'3i’2 d - b & ¢ d €

Figure A.5: The created 2-3

Figure A.4: 2-3 AHC dissimilarities .
hierarchy

For the 2-3 AHC algorithm, we first merge {a} and {b}, and then {a} and {c}
having thus two clusters that properly intersects themselves (Figure A.4 and Figure
A.5). At this moment we can use the intermediate refinement (i) and merge {ab}
and {ac}, which will be followed by the merging of {d} and {e}. If we don’t use the
intermediate refinement, we merge {d} and {e} and right after we will merge {ab} and
{ac}.

In both cases we will create the clusters: {abc} with f({abc}) = 2 and {de} with
f({de}) = 1.2. Next we will merge {abc} with {d} at p({abc}, {d}) = 1.3. Here we
have two clusters that are at a dissimilarity inferior than the f level of one of them
(n({abc}, {d}) = 1.3 < f({abe}) = 2), if we use definitions (1) or (2) for the complete-
link. That’s why we use the extended indexing formula (A.1) when we compute the level
of a new cluster with the complete-link defined as in (1) or (2). Using the complete-
link defined as in (3) we will have the same result here: the creation of {abcd} with
f{abcd}) = 2.

Thus, we will have two clusters that properly intersect themselves, {abed} and {de},
which will create the final cluster, {abcde} with f({abcde}) = 3, cf. Figure A.5.

Starting from the resulting hierarchy (cf. Figure A.3) and 2-3 hierarchy (cf. Figure
A.5), we can compare the obtained ultrametric d 4g¢ from Figure A.6 and the induced
dissimilarity matrix dog ogc for the 2-3 AHC from Figure A.7, in order to evaluate the
quality of each method.

Figure A.6: The resulting ultrametric ~ Figure A.7: The resulting 2-3 ultrametric

As we can see, the two obtained distance matrices are different d sgc <> da3 aHC,
but when compared with the initial distance matrix we have: d;,; < dagc and d;p; <
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dos AHC as expected.
When we compare the obtained matrices with the initial data matrix, we will have
a smaller deviation for the classical AHC method, than the 2-3 AHC method, or in
other words a better quality for the AHC method compared with the 2-3 AHC method.
For example, using a simple difference between the resulting matrix and the initial
one, we obtain for the AHC method a deviation dagc — dijpn; = 5.2, compared with
dos aHC — dins = 5.8 for the 2-3 AHC method.






Appendix B

Single Link and “Normal”
Execution of 2-3 AHC Algorithm

We present here a small data set (Figure B.1) and the created 2-3 hierarchy, using
the single-link, the double indexing formula and the normal execution of the initial 2-3
AHC algorithm (without integrated refinement (i)). The created 2-3 hierarchy presents
here a level inversion, which can be avoided using the integrated refinement (ii) or the
normal indexing formula with a level test.

The data set is a set of five points with the dissimilarity matrix presented in Figure
B.1. The 2-3 AHC algorithm will first merge the two singletons {a} and {b} found at
minimum dissimilarity 1, and then it will merge {b} and {c} found at minimum dissim-
ilarity 2. At this moment we will have two clusters that properly intersect themselves,
{ab} and {bc}, with p({ab}, {bc}) =5, Figure B.1.

,,,,,,,,,,,,,,,,

Figure B.1: The data set
Figure B.2: Initial steps

O PN W b

Figure B.3: Double indexing formula and the normal execution (%)
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None of the clusters {a}, {b}, {c}, {ab} and {bc} can be merged with {d} or {e},
and the only candidate pairs in this situation are ({ab}, {bc}) and ({d}, {e}), cf. Figure
B.2. This is the 2-3 AHC algorithm execution so far, both for case (i) and case (ii)
presented in Section 2.7.

If we use the normal algorithm execution, case (i), then the next merged clusters
will be the singletons {d} and {e}, since u({d}, {e}) = 4 < u({ab}, {bc}) = 5. After the
merging of {d} and {e}, the only pair of candidate clusters will be ({ab}, {bc}) which
will be merged at dissimilarity 5. The level of {abc} will be set to 3, using the double
link indexing formula, since p({abc}, {d}) = u({abc}, {e}) = p({abc}, {de}) = 3, cf.
Figure B.3. Now, there are three pairs of candidate clusters: ({abc}, {d}), ({abc}, {e})
and ({abc}, {de}) with the same dissimilarity between candidates, u = 3, Figure B.3.

In order to have a richer 2-3 hierarchy, the smallest cardinality pairs are preferred,
ie. ({abc}, {d}) and ({abc}, {e}) and using also a lexicographical criterion the pair
to be merged will be ({abc}, {d}); if we merge ({abc}, {e}) we will have the same
result. After the merging of {d} and {abc} we will have the new cluster {abcd} with
f({abed}) = 3 and the only candidate pair will be ({abcd}, {de}), which properly
intersects themselves. When we merge {abcd} and {de}, the resulting cluster, {abcde}
will have f({abcde}) = 3 using the double indexing formula, since p({abed}, {de}) =3
and p({abede}, T) = 0 (there is no other cluster T'). The successor {de} of {abcde} will
have f({de}) = 4, causing thus a level inversion in the created 2-3 hierarchy, cf. Figure
B.4.
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.

d a b c e
Figure B.4: Levels inversion for normal Figure B.5: 2-3 AHC algorithm with
execution (%) of the 2-3 AHC algorithm integrated refinement (%)

This situation can be avoided if we use the normal indexing formula along with the
level test in the normal execution or if we use directly the intermediate merging (ii).

In the case presented in Figure B.3, the normal indezing formula with the level test
will reduce the level of the cluster {de} to 3, when creating the final cluster {abcde}
during the normal algorithm execution (i).

Using the intermediate merging (ii), after the merging of {b} and {c} (Figure B.2)
we will merge the two clusters that properly intersect each other, {ab} and {bc}. The
resulting cluster, {abc}, will have f({abc}) = 3 (double indexing formula) and it will be
a candidate cluster along {d} and {e} (Figure B.5). Here {d} will not be merged any-
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more with {e}, since p({abc}, {d}) =3 < u({d}, {e}) = 4, instead {d} will be merged
with {abc} and afterwards {e} will also be merged with {abc}. We will have a proper
intersection between {abed} and {abce}, with f({abcd}) = f({abce}) = f({abc}) = 3
and p({abcd}, {abce}) = 4, cf. Figure B.5. The final cluster {abcde} will be thus cre-
ated with f({abcde}) = 4.

As we can see, the intermediate merging (ii) produce a richer 2-3 hierarchy and
also avoids levels inversions caused by the “blocking” of clusters that properly intersect
themselves.






Appendix C

Tests on Simulated Data

We present in this Appendix some results on the simulated datasets: the execution
times in Section C.1 and the Stress gains in Section C.2.

C.1 Execution Times and Complexity

We begin with the execution times of the AHC and 2-3 AHC methods on the rectangle
generated data (see Section 3.4.3 for more details). Since the execution times on the
sinusoidal generated data are identical, we present below only the rectangle execution
times.

The maximum execution times for the single link (SL) and the complete link (CL)
are presented in figures C.1 and C.3. The maximum execution time complexity of the

methods ( Nu%”f;;‘g}oglzmit -) are presented in figure C.2 for the single link and in figure
C.4 for the complete link. The corresponding average execution times and complexities
are presented in figures D.5, D.6, D.7 and D.8.

As we can see the classical AHC algorithm and our 2-3 AHC algorithms perform in
O(n?logn) whilst the execution time of the initial 2-3 AHC algorithm explodes and its
complexity curve does not remais constant. We confirm thus that the initial 2-3 AHC

algorithm performs in O(n?3).

Note:
SL - Single Linkage
CL - Complete Linkage
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CL Maximum Execution Times
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CL Average Execution Times
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Appendix D

Use of HAC23Index as Part of
the CBR*Tools in an CBR
Application

To illustrate how our index can be initialized, respectively to point out its contribution
to the retrieval phase’s performance, we present shortly in the context of a applica-
tion for car assurance risk factor determination, the steps for using different indexes
of CBR*Tools. Implementing such an application based on the CBR*Tools suppose
the instantiation of twelve classes from the framework. Details on the instantiation
and use of our HAC23Index are given in this section. The classes for case attribute
transformation and similarity calculus used by the neural index are used also by our
index.

This application’s objective is to determine the risk factor (taken over by the car
assurance company) of a given car, based on previously established pairs of car pa-
rameters list and assigned risk values. In the CBR based approach, cases represent
association between the car parameters description and the determined risk factor. For
this application we use just two steps from the CBR cycle (cf Figure D.1), namely
retrieve, reuse without revise and retain phases. The retrieve phase returns the set
of cars which are the most similar with the newly presented car from the parameters
viewpoint. Four search strategies are used during this phase:

e the k nearest neighbor algorithm;

e a tree structure-based algorithm, which use a pre-filtering process, realized
through a hierarchy of prototypes (whereas by prototype we mean a group of similar
cases/cars), and combined with the knn algorithm. This index is similar to our index,
whereas clusters are equivalent to the prototypes used here;

e a neural index based algorithm, which basically in this context means a pre-
processing phase of the case base, performing a ”supervised” clustering of the cars
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based on their descriptors and the assigned risk factor to them;
o the clusters structure-based algorithm combined with the knn algorithm.

Car descrinta

case bese,
AR iedo e
damain

targel caza-{descr,
azsgned rekk

Figure D.1: CBR reasoning cycle in the CAR sample application

The reuse phase takes into account all of the returned cases by the previous step,
and calculates a mean value of their risk factors using proportional weights with each
ones similarity degree. Finally, the retain step adds the new case to the base, if the two
following conditions hold: there is no already case stored in the memory which is very
close to the new target case, and case base haven’t reached its saturation level. We
are interested here only in the first two phases of the CBR reasoning, this application
having only a pedagogical/presentation purpose concerning these clustering indexes
and the CBR paradigm.

D.1 Reasoning System Construction

The application’s design can be decomposed in three phases based on the variability
axes of the hot-spots of CBR*Tools, case representation, memory organization and
reasoning maintenance axe. We will briefly discuss the case representation and the
memory organization aspects, further technical details in [Jac98] and [Ben00].

D.2 Case Representation

Each item (car) from the database is characterized by twenty-five attributes of three
possible types: integers, alphanumeric and floats.

public class CarCaseSituation extends JavaClassIndice {
public int normalizedLosses;
public String make;
public float height;
public int numOfCylinders;
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From the CBR paradigm’s standpoint, car parameters are of two types: potential
item indices (all the attributes but the risk), and the solution assigned to the item (the
risk factor). According to the framework definition, based on the case representation
hot-spots (CbrCase and CompoundIndice), there are used two instantiations CarCase
and CarCaseSituation [Ben00].

In the initialization phase of this class we can declare the indices, one indices for
each attribute, defining their type(integer, float, symbol) and domain of values.

static private int _cylinders [] = {2,3,4,5,6,8,12};
static {
ArrayIndiceDescriptor desc = new ArrayIndiceDescriptor(
"aid.cbr.samples.cars.CarCaseSituation");

desc.addIndiceDescriptor(new IndiceDescriptor("normalizedLosses",
new RangeIntType(65,256)));

desc.addIndiceDescriptor (new IndiceDescriptor("make",
StringType.STRING)) ;

desc.addIndiceDescriptor(new IndiceDescriptor("height",
new RangeFloatType(60,75)));

desc.addIndiceDescriptor(new IndiceDescriptor ("numOfCylinders",

new ListIntType(_cylinders)) );

D.3 Memory organization

Memory organization relies on three major hot-spots :

e case base (CaseBase) - specialized by the CarSimpleFileCaseBase class in this
sample.

e similarity measure (Similarity) specialized by the CarSimilarity class, order
(CmpValueOrder, CmpValue) relation-definition over the cases in the case base, and
distance measure (DistanceMeasure) between the case specialized by PondEuclidDis-
tance in this sample.

e index base (IndexBase) - which acts like a frame a frame for the different indexes
defined over the current case base. Whereby index definition over a case-base, we mean
the way of how a certain index algorithm makes use of and process the indices exposed
by cases from that case-base through the CompoundIndice hot-spot.
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D.4 Object oriented implementation

In the following we will focus on the similarity-order-distance and the index base axes
of the sample application. Readers who are interested in a more exhaustive analyze of
the case base hot-spot’s specialization should point to [5].

The CarCaseSituation class contains all the twenty-five cars attributes as public
members, and during a search phase an instance of this class will be passed to the
Index hot-spot’s search method. As a consequence, indexing classes have to transform
in a way or in aase an instance of this class will be passed to the Index hot-spot’s search
method. As a consequence, indexing classes have to transform in a way or in annother
the list of attributes in valid index values-relations, up to their need.

Our index uses three hot-spots, AttrTransform, ClusterDistance and DistanceMea-
sure. The former one ensures the mapping of car attributes from the CarCaseSituation
in valid scalar values, whereupon it can be applied different norms or distance metrics
subsequently. Distance metrics are specializations of the DistanceMeasure hot-spot
and the cluster distances (single-linkage, complete-linkage etc.) are specializations of
the ClusterDistance hot-spot and make use of the DistanceMeasure hot-spot for their
singletons.

public class BasicAttrTransform implements AttrsTransform{
public double[] compIndiceTransform(CompoundIndice attrs){
int nrOfAttrs=attrs.size();
double numericAttr[]=new double[nrOfAttrs];
IndiceType indType;

Object transflist = _attrTransfInfol[ind]._transflist,
attr=null,
attrVal;

if (attrVal instanceof Float){
numericAttr[ind] = ((Float)attrVal).floatValue();
}
else if (attrVal instanceof Integer){
numericAttr[ind] = ((Integer)attrVal).intValue();

}
elseq{
numericAttr[ind]-= _attrTransfInfo[ind]._minVal;
numericAttr[ind]/= _attrTransfInfo[ind]._maxVal-
_attrTransfInfo[ind] . _minVal;
}

return numericAttr;
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public class SingleLinkageDistance implements ClusterDistance{

private DistanceMeasure _singletonsDistance;

public Float getDistance(ClusterPrototype newCluster,
ClusterPrototype otherCluster, SortedMap clusterTree)<

if (newCluster._succ.isEmpty() && otherCluster._succ.isEmpty())
return new Float(getDistance(newCluster._refVector,
otherCluster._refVector));
else{

return (Float)clusterTree.get(toKeyPair(otherCluster._id,
otherCluster._id));

}

The CarIndexBase (IndexBase hot-spot) serves as a frame for the defined indexes
and index strategies, whereby strategy we mean a sequential apply of two or more
indexes. Each index and indexing strategy, once defined, have to be registered to it in
order to became accessible for the Reasoner hot-spot. Having defined and registered
all the indexes and strategies one might want to use during the retrieve phase, one can
dynamically activate the selected strategy through the IndexParams hot-spot of the
Reasoner’s RetrieveStep hot-spot [Jac98].

The results obtained with our HAC23Index were similar to the ones obtain by
the neural index, but implied the apriori partitioning treshold specification. Currently
automatic criteria for choosing the indexing level partitioning are under study for future
implementations along with a possible incremental feature for an on-line analysis.






Appendix E

INRIA Research Teams
Organization

Before 1%¢ of April 2004, INRIA’s research teams were organized in four different re-
search themes, namely:

- Theme 1: Networks and systems:
- A : Architectures and Systems,
- B : Networks and Telecommunications,
- C : Distributed and Real-Time Programming.
- Theme 2: Software engineering and symbolic computing:
- A : Semantics and Programming,
- B : Algorithms and Computational Algebra.
- Theme 3: Human-computer interaction, images processing, data manage-
ment, knowledge systems:
- A : Databases, Knowledge Bases, Cognitive Systems,
- B : Vision, Image Analysis and Synthesis.
- Theme 4: Simulation and optimization of complex systems:
- A : Control, Robotics, Signal,
- B : Modelling and Scientific Computing.

After this date, the research teams were reorganized in the following five research themes
(see also http://www.inria.fr/recherche/equipes/listes/index.en.html):

- Theme Com: Communicating systems:
- A : Distributed systems and software architecture,
- B : Networks and telecoms,
- C : Embedded systems and mobility,
- D : Architecture and compiling.
- Theme Cog: Cognitive systems:
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- A
-B:
-C:
-D:

Statistical modeling and machine learning,
Perception, indexing and communication for images and video,
Multimedia data: interpretation and man-machine interaction,

Image synthesis and virtual reality.

- Theme Sym: Symbolic systems:

- A : Reliability and safety of software,

- B : Algebraic and geometric structures, algorithms,

- C : Management and processing of language and data.

- Theme Num: Numerical systems:

- A : Control and complex systems,

- B : Grids and high-performance computing,

- C : Optimization and inverse problems for stochastic or large-scale systems,

- D : Modeling, simulation and numerical analysis.

- Theme Bio: Biological systems:

- A : Modeling and simulation in biology and medicine.

The Web pages on the national server that were influenced by the reorganization

of the research themes are presented in Table E.1 below.

http://www.inria.fr /recherche /equipes/listes/index.fr.html
http://www.inria.fr /recherche/equipes/listes/index.en.html
http://www.inria.fr/recherche/equipes/listes/theme_1.en.html
http://www.inria.fr /recherche/equipes/listes/theme _1.fr.html
http://www.inria.fr/recherche/equipes/listes/theme 2.en.html
http://www.inria.fr /recherche/equipes/listes/theme 2.fr.html
http://www.inria.fr/recherche/equipes/listes/theme_3.en.html
http://www.inria.fr /recherche/equipes/listes/theme_3.fr.html
http://www.inria.fr/recherche/equipes/listes/theme 4.en.html
http://www.inria.fr /recherche/equipes/listes/theme 4.fr.html
http://www.inria.fr /recherche/equipes/listes /theme Bio.en.html
http://www.inria.fr /recherche/equipes/listes/theme Bio.fr.html
http://www.inria.fr /recherche/equipes/listes/theme_Cog.en.html
http://www.inria.fr /recherche/equipes/listes /theme_Cog.fr.html
http://www.inria.fr /recherche/equipes/listes/theme_Com.en.html
http://www.inria.fr /recherche/equipes/listes /theme_Com.fr.html
http://www.inria.fr /recherche/equipes/listes /theme Num.en.html
http://www.inria.fr /recherche/equipes/listes/theme Num.fr.html
http://www.inria.fr /recherche/equipes/listes/theme _Sym.en.html
http://www.inria.fr /recherche/equipes/listes/theme _Sym.fr.html

Table E.1: National Web pages presenting the research themes organization
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Team Old Theme | New Theme
AXIS 3A CogA
ORPAILLEUR 3A CogA
MAIA 3A CogA
DREAM 3A CogA
CORTEX 3A CogA
CORDIAL 3A CogC
PAROLE 3A CogC
ORION 3A CogC
METISS 3A CogC
MERLIN 3A CogC
13D 3A CogC
ECOO 3A CogC
IN-SITU 3A CogC
LANGUE ET DIALOGUE | 3A SymC
ACACIA 3A SymC
ATOLL 3A SymC
EXMO 3A SymC
TEXMEX 3A SymC
SYMBIOSE 3A BioA
HELIX 3A BioA
EIFFEL 3A -
OPERA 3A -
VERSO 3A -
CARAVEL 3A -

AID 3A -
IMEDIA 3B CogB
MOVI 3B CogB
TEMICS 3B CogB
VISTA 3B CogB
ARIANA 3B CogB
ISA 3B CogD
ALCOVE 3B CogD
MIRAGES 3B CogD
SIAMES 3B CogD
REVES 3B CogD
ODYSSEE 3B BioA
EPIDAURE 3B BioA
IMAGIS 3B -
PASTIS 3B -
SHARP 3B -

AIR 3B -

Table E.2: Teams from theme 3 in the old and new research themes






Appendix F

Be-TRIP Recommender System

This Appendix contains a publication (in French) on the specifications of the Be-TRIP
recommender system. This work was published in proceedings of the 1st French-
speaking conference on Mobility and Ubiquity computing [CGT04].
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Recommandations personnalis ées pour la recherche
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Sergiu Chelcea
AxIS, INRIA Sophia Antipolis
2004 Rte des Lucioles, BP 93
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France
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ABSTRACT

This article concerns an emerging research field related to
mobility from the transport point of view, which is the in-
formation search for traveling/mobility. To facilitate such
a search, we propose the use of recommender systems in a
mobility context: these facilitate on the one hand the infor-
mation search, and on the other hand these help to prepare
the user’s trip (”pre-trip”: choice of the transport mode,
schedule, route, time of the trip, ...) and to carry it out
(”on-trip”: interactive guidance, way visualization, destina-
tion planning). This double impact is rarely exploited today
and we propose, after a description of the used technologies,
to illustrate the potentials of this new approach on a tradi-
tional tourist visit example. The originality of this approach
lies in 1) its capacities to adapt the recommendations to the
user’s behavior during his information retrieval correlated
to his own movement and 2) the on-line learning capacities
of such a system for information search assistance.

Cet article aborde un domaine de recherche en plein essor re-
latif & la mobilité sous ’angle du transport en y associant la
recherche d’information pour se déplacer. Pour faciliter une
telle recherche, nous proposons 'utilisation de systéemes de
recommandations dans un contexte de mobilité qui ont un
double impact : faciliter d’une part la recherche d’informa-
tion, mais aussi, aider & préparer le déplacement (” pre-trip” :
choix du mode de transport, horaire, itinéraire, temps de
trajet, ...) et a le réaliser (”on-trip” : guidage interactif, aide
a un changement de destination, visualisation trajet). Ce
double impact est aujourd’hui rarement exploité et nous pro-
posons, apres une description des technologies sous-jacentes,
d’illustrer par un exemple classique de visite touristique les
potentiels de cette nouvelle approche. L’originalité de cette
approche réside dans 1) ses capacités d’adaptation des re-
commandations au comportement de 'utilisateur lors de sa
recherche d’information corrélé a son déplacement effectif
et 2) les capacités d’apprentissage en-ligne d’un tel systéme
d’aide & la recherche d’information.

George Gallais
VISA, INRIA Sophia Antipolis
2004 Rte des Lucioles, BP 93
06902 Sophia Antipolis Cedex,

France

ggallais@sophia.inria.fr
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Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information filtering, clustering;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces— User-Centered Design

General Terms

Information Retrieval, Adaptive Interfaces, Mobility

Keywords

Systemes de recommandations, filtrage collaboratif, raison-
nement & partir de cas, information voyageur, tourisme, re-
commender systems, collaborative filtering, case-based rea-
soning, traveller information, pre-trip, on-trip, tourism, trans-
port

1. INTRODUCTION

Le développement rapide des systéemes d’information no-
mades permet d’envisager de nombreuses applications dans
un contexte de mobilité. Cependant, cette mobilité prise
sous 'angle du transport, est aussi un domaine de recherche
en plein essor lorsque on y associe, dans une optique de sau-
vegarde de l’environnement, la recherche d’information pour
un déplacement ”optimum”. Les acteurs du domaine des I'TS
- Intelligent Transport Systems - décrivent souvent I’apport
des technologies de 'information & travers des scénarios de
déplacement. Il n’est pas dans notre intention d’en ajouter
un mais d’illustrer notre approche a travers une chaine de
déplacement dite de porte a porte.

Le déplacement est toujours la conséquence d’une informa-
tion (un rendez vous, une manifestation culturelle, ...). Pre-
nons ’exemple d’un internaute découvrant une manifesta-
tion culturelle au musée Picasso d’Antibes & quelques ki-
lometres de son domicile (pre-trip) ou de sa position actuelle
lors d’un déplacement (on-trip) et & laquelle il décide de
se rendre spontanément. Celui-ci va avoir besoin de recher-
cher les heures d’ouverture, ’adresse et comment s’y rendre.
D’une part les informations qui lui seront nécessaires sont
éparpillées, d’autre part le contexte de son déplacement (in-
dividuel, en groupe, ...) et les criteres de choix du mode de
déplacement (confort, temps, colit) sont par essence de sa
propre initiative. Enfin il devra pouvoir les consulter tout au
long de sa chaine de déplacement, quelque soit son terminal
et en fonction du lieu. Il est clair que les PDA communiquant
vont permettre d’assurer une continuité d’acces a I'informa-



tion tout au long du déplacement mais au prix d’une masse
de données consultable d’autant plus importante.

Dans ce contexte, les systémes de recommandations ont un
double impact : aider & la préparation du déplacement (” pre-
trip” : choix du mode de transport, horaire, itinéraire, temps
de trajet, etc.) et assister pendant le déplacement (”on-
trip” : guidage interactif dans le cas d’un transport indi-
viduel, visualisation du trajet dans le cas d’un transport
collectif).

Ce double impact est aujourd’hui rarement exploité et nous
proposons, apres une description des technologies sous-jacen-
tes en section 2 issues de 'intelligence artificielle, d’illustrer
en section 3 par un premier exemple de visite culturelle les
potentialités de ’approche Broadway de calcul de recom-
mandations personnalisées. celle-ci est basée sur la simila-
rité de comportements utilisateurs d’une part dans leur re-
cherche d’informations coorélés a leur déplacement effectif.
Une spécification d’un systéme de recommandations appelé
Be-TRIP basée sur cette approche est donnée en section 3,
visant une aide a la fois au déplacement pre-trip et on-trip.
En section 4, nous nous comparons aux principaux travaux
similaires pour conclure sur nos travaux en cours et futurs.

2. RECOMMANDATIONS EN MOBILIT E

Apres avoir introduit la notion de systémes de recommanda-
tions, nous indiquons en quoi de tels systemes trouvent leur
intérét dans un contexte de mobilité, permettant de trier
cette masse considérable d’information accessible a l'inter-
naute.

2.1 Sysemes de recommandations

L’objectif d’un systeme de recommandations est d’aider les
utilisateurs a faire leurs choix dans un domaine ou ils dis-
posent de peu d’informations pour trier et évaluer les al-
ternatives possibles. Un systéme de recommandations [10]
peut étre décomposé en trois entités de base (cf. Figure
1): le groupe d’agents producteurs de recommandations, le
module de calcul de recommandations et le groupe de con-
sommateurs des recommandations. Un défi majeur dans le
domaine de la conception de systéemes de recommandations
est le suivant :

Comment produire des recommandations personna-
lisées et de haute qualité tout en minimisant
l’effort requis de la part des producteurs

et des consommateurs?

Deux grandes approches [10] complémentaires sont proposées
dans la littérature ainsi que des approches hybrides:

1) 'approche (notée A.P.U dans le tableau 1) basée sur le
contenu et fondée sur ’apprentissage automatique de profils
utilisateurs. Les recommandations sont issues uniquement
des actions passées de 'utilisateur lui-méme.

2) Papproche (notée F.C. dans le tableau 1) dite de filtrage
collaboratif ou des données issues d’autres utilisateurs sont
utilisées dans le calcul de recommandation (par exemple des
recommandations, des sessions utilisateurs, etc.). Générale-
ment cette approche est fondée sur des techniques de fouille
de données.
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Recommandations agrégees

Fig. 1 — Architecture générale d’un systéme de recom-
mandation

Le profil utilisateur est une structure de données qui décrit
en particulier les centres d’intéréts d’un utilisateur dans I’es-
pace des objets a recommander. Celui-ci est une structure
construite dans la premiere approche ou donnée dans la se-
conde par l'utilisateur. Ce profil est utilisé soit pour filtrer
les objets disponibles (on parle alors de filtrage basé sur
le contenu), soit pour recommander & 'utilisateur ceux qui
ont satisfait d’autres utilisateurs ayant un profil similaire
(on parle alors de filtrage collaboratif) [10]. Il est & noter
I’existence d’approches hybrides comme le permet notre ap-
proche (Cf. section 3.) basant le calcul de recommandations
sur des similarités de sessions ou/et de profils qui peuvent
étre appris ou donnés. Notons enfin que le profil utilisateur
peut comprendre également des informations sur les dispo-
sitifs utilisés et préférences utilisateur en termes de services
pour rendre plus aisée ’adaptation des interfaces a 'utilisa-
teur.

2.2 Intérét de tels systmes d’aide en mobilié
On sait aussi que du c6té de la demande, les consommateurs
cherchent des produits (de tourisme par exemple) personna-
lisés et demandent d’accéder a 'information appropriée et
a des services de haute qualité sur le Web, a tout moment
et n’importe ol dans un environnement mobile. Or le Web
est un gigantesque hypermédia dans lequel trouver un do-
cument pertinent n’est pas une tache facile malgré les outils
existants pour effectuer une recherche.

En contexte de mobilité, la localisation géographique de
l'utilisateur est le premier filtre qui va venir s’ajouter au
traditionnel filtre du profil de I'utilisateur. Les premiers ser-
vices offerts par la localisation ont été développés dans les
systemes de navigation pour automobile maintenant large-
ment diffusés. Le conducteur peut ainsi recevoir des conseils
de guidage tout au long de son trajet, avec des messages
visuels ou audio lui indiquant la route & suivre. Ces conseils
utilisent la connaissance de l'itinéraire préalablement calculé
et de la position "métrique” instantanée du véhicule. Plus
récemment, les ” Location-based Services ou LBS”, utilisant
la position du mobile obtenue par triangulation permettent
d’envisager le méme type de services pour des piétons.

Dans notre scénario, la découverte de I'information qui déclen-
che le besoin de mobilité se fera a partir d’un type de ter-
minal et selon une session sur Internet qui permettront de
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Fig. 2 — Calcul de recommandations avec l’approche Broadway

différencier les phases de préparation ou de déplacement.
Dans la phase de préparation du voyage, le terminal sera soit
de type PC sur réseau filaire soit la position de son terminal
sera fixé. Ensuite, une fois le choix du mode de déplacement
effectué, les caractéristiques du terminal et de réseau auront
de fortes chances d’évoluer, et en associant de nouveau la
position dynamique et I’itinéraire choisi puis stocké dans le
terminal portable, de nouveaux services vont pouvoir étre of-
ferts, bien au-dela du guidage décrit précédemment car ceux-
ci peuvent étre généralisés a tout mode de déplacements (in-
dividuel ou collectif). On pourra par exemple, dans le cas
du choix d’un transport en commun, en déduire que 1’utili-
sateur est disponible, car il n’a pas a conduire, et lui délivrer
des informations plus completes personnalisées sur le trajet
(temps de trajet restant, prochain arrét, site touristique le
long du trajet, acces courrier électronique etc.. .), valori-
sant ainsi le transport en commun. On pourra également lui
suggérant des nouvelles intentions de déplacement en fonc-
tion de son déplacement réel et de sa recherche sur le web.

Par ailleurs, les recommandations personnalisées s’appliquent
pour restituer I'information en s’adaptant automatiquement
au terminal (taille et résolution d’écran), & son mode d’acces
(clavier de bureau, stylet des PDA, reconnaissance vocale),
a sa puissance de calcul, ses capacités de stockage et bien
sur les capacités du réseau de communication. L’intérét pour
les personnes & mobilité réduite est évident : passage auto-
matique du terminal en mode vocale, sélection transparente
des systemes d’information adaptés aux déficients visuels,
choix des modes de transport adaptés (transport en com-
mun, transport a la demande), délivrance d’un message per-
sonnalisé & ’arrivée.

Un deuxieme niveau d’impact de I'utilisation de tels systemes
de recommandations est pour le concepteur du systéeme d’in-
formation. En effet I'analyse des traces du recommandeur
et en particulier de la qualité des recommandations peuvent
donner lieu a des restructurations du systeme d’information.

3. BE-TRIP, AIDE AU D EPLACEMENT
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Cette section introduit notre approche de calcul de recom-
mandations personnalisées appelée Papproche BROADWAY *
basée sur des techniques de Raisonnement a Partir de Cas
(RAPC). Puis elle présente la conception du systéme Be-
TRIP (Broadway-Extended pre and on-TRIP assistant) d’aide
au déplacement. Une illustration, apres quelques éléments
d’implémentation est donnée pour un scénario touristique
en pre-trip.

3.1 Lapproche Broadway

L’approche Broadway [11] est une approche hybride de cal-
cul de recommandations pour l'aide a la recherche d’infor-
mations: celle-ci est & la fois basée sur ’analyse du contenu
visité et centrée fouille de données ou les comportements
passés d’un groupe d’utilisateurs sont utilisés pour calcu-
ler les recommandations (cf. filtrage collaboratif [10]). L’ ori-
ginalité de ’approche Broadway, a la différence de la plu-
part des autres approches, réside dans la prise en compte
de l'ordre des actions des utilisateurs comme un élément
central dans la calcul de recommandations. En effet la plu-
part des approches fondées sur la fouille de données sont
principalement des approches statistiques ou l’ordre d’oc-
currence d’événements. dans ’historique n’est pas pris en
compte lors du calcul de recommandations. Citons comme
exemple, dans le domaine d’aide & la navigation sur le Web,
le systeme FootPrints [12] et le systeme de Yan et al [13].

De maniére générale, la réutilisation de comportements uti-
lisateur dans ’approche Broadway s’appuie sur le Raison-
nement & Partir de Cas (RaPC) [1] qui est une approche
de résolution de problemes basée sur la réutilisation par
analogie d’expériences passées appelées “cas”. Le RaPC se
décompose habituellement en quatre phases principales [1]
(cf. Figure 2): recherche de cas, réutilisation, révision de la
solution proposée, apprentissage. Enfin un cas est générale-
ment indexé pour permettre de le retrouver suivant certaines
caractéristiques pertinentes et discriminantes, appelées “in-
dices”; ces indices déterminent dans quelle situation (ou
contexte) un cas peut étre de nouveau réutilisé.

1. Broadway — BROwsing ADvisor reusing pathWAYs,
http://www-sop.inria.fr/axis/broadway /



La mise en oeuvre de ’approche Broadway nécessite la mani-
pulation des cas dont les indices sont constitués de séquences
d’événements. Pour cela, nous nous appuyons sur le modéle
d’indexation par situations comportementales développé dans
le cadre de le these de Jaczynski [8]. Pour 'utilisation de ce
modele, nous avons identifié quatre étapes importantes: 1)
identification des variables d’observation, b) détermination
de la sémantique d’un enregistrement (navigation) et de son
contexte, c) définition de la représentation des cas et des si-
tuations comportementales (éléments issus d’une navigation
pour caractériser un cas) et enfin d) conception des phases
de raisonnement.

Les cas sont issus de I'instanciation d’un patron de cas po-
tentiels. Ce patron repose sur des regles de construction
d’une situation comportementale et d’une liste d’actions a
recommander (par exemple une liste de pages évaluées) & un
instant donné a 'intérieur d’une navigation. Selon ces regles,
la situation comportementale est alors composée d’une com-
posante instantanée contenant le contexte de la navigation
(par exemple, noms des sites visités et mots clefs extraits
des pages visitées) et d’'une composante comportementale
référengant un instant précis dans la navigation.

Le calcul des recommandations est alors effectué durant un
raisonnement en quatre phases (cf. Figure 2), étant donnée
la navigation courante d’un utilisateur :

1. Recherche. La base de cas est parcourue pour identifier
les cas dont la partie comportement peut étre mis en cor-
respondance avec la navigation courante. Les meilleurs cas
sont alors retournés.

2. Réutilisation. Chaque cas retrouvé propose une liste de
pages recommandées, et la phase de réutilisation construit
une liste ordonnée de ces pages a ’aide de criteres divers
afin de les suggérer a 'utilisateur courant.

3. Révision. La phase de révision est effectuée par 1'uti-
lisateur lorsqu’il continue sa navigation et qu’il évalue les
pages visitées s’il le désire. La révision se poursuit jusqu’a la
fermeture de la navigation courante et met en attente tous
les raisonnements effectués pour une navigation (pages re-
commandées confirmées).

4. Apprentissage et maintenance de la mémoire. L’ap-
prentissage prend en compte la navigation courante et I’en-

semble des raisonnements associés pour en faire leur synthese.

La mémoire est alors mise a jour par la création de nouveaux
cas, par la mise a jour des cas et par I’ajout de la navigation
courante. A c6té de ce processus de raisonnement, les cas et
les navigations devenus obsolétes sont régulierement effacés
de la mémoire.

L’originalité de notre approche en filtrage collaboratif réside
dans 1) ses capacités d’adaptation des recommandations
au comportement de 1'utilisateur observé selon diverses va-
riables (cf. Figure 3) voire & son profil (centres d’intérét,
dispositif utilisé) et 2) les capacités d’apprentissage en-ligne
d’un tel systéme d’aide & la recherche d’information.

Deux principaux assistants d’aide a la navigation basés sur
I’approche Broadway ont été réalisés : Broadway-Web (1997)
pour l'aide & la navigation sur le Web et Broadway-AT
(2000) utilisé dans le cadre de 'application Educaid (France
Telecom Inria) pour laide & la navigation dans un portail de

211

ressources éducatives. Une application basée sur une adap-
tation de Broadway-AT a permis des recommandations per-
sonnalisées basées sur la similarité entre comportements non
visuels et visuels des utilisateurs d’un site contenant les rap-
ports d’activités des équipes Inria.

Nous spécifions ci-apres les principales caractéristiques de
lassistant d’aide personnalisée au déplacement (pre-trip et
on-trip) Be-TRIP ainsi que son intégration dans un serveur
d’applications en cours de conception a I'Inria.

3.2 Syecifications de Be-TRIP

La spécification du recommandeur Be-TRIP consiste en une
adaptation d’un premier systeme appelé Broadway-Web pour
I’aide & la navigation sur le web au contexte de la mobilité
et appliqué a 'aide au déplacement.

Be-TRIP est basée sur I'hypothese suivante (cf. Figure 3):
st deuz utilisateurs (ayant éventuellement des profils simi-
laires) ont navigué suivant une séquence similaire de pages
Web (ou actions Web) et /ou selon un chemin similaire (as-
pect localisation), c’est qu’ils ont des intéréts similaires, on
peut alors proposer au second utilisateur les pages (ou ac-
tions) jugées pertinentes® par le premier (Figure 3).

Recommandations
par réutilisation d'expériences

Navigations passées d'un
groupe d'utilisateurs

Navigation courante

Fig. 3 — Réutilisation d’expériences pour déterminer
des recommandations

Le raisonnement dans Broadway-Web s’appuie sur I’applica-
tion de notre modele d’indexation par situation comporte-
mentale basé sur les quatre étapes suivantes déja présentés:

Identification des variables d’observation. L’observa-
tion du comportement des utilisateurs est fondée sur 1'utili-
sation

- de quatre variables relatives & leur recherche d’informa-
tions sur le Web pour le déplacement : 1’adresse, ’analyse
du contenu de la page, la satisfaction a priori et le ratio
entre le temps d’affichage et la taille de chaque page Web
visitée ;

2. L’évaluation des pages ou des actions en termes de réussite
ou échec est soit donnée par l'utilisateur soit inféré selon le
point de vue du concepteur: par exemple une réservation
d’une place dans un musée sera interprétée comme satisfai-
sant a priori 'utilisateur.



- et de deux variables de type on-trip relative a leur che-
min parcouru: la localisation de l'utilisateur lors de sa re-
cherche d’informations sur le web et des informations multi-
vues (touristiques, géographiques) pertinentes extraites de
I’analyse du contenu de la page courante a ’aide d’une on-
tologie dans le domaine en vue, augmentée de la localisation,
de formuler automatiquement une requéte au systéeme d’in-
formation GIS utilisé.

Navigation et contexte. Ici le début et la fin d’une navi-
gation sont indiqués soit par l'utilisateur (connexion, décon-
nexion) soit par un temps d’inactivité de 'utilisateur sur son
navigateur Web. Le pas de temps est défini par un clic sou-
ris de 'utilisateur sur le navigateur. Le contexte comprend
des informations résumées de la situation comportementale
relative a sa navigation sur le Web et aussi relative a son
déplacement. Pour la navigation sur le web, diverses me-
sures sont utilisées comme la répétition exprimant le taux
de pages visitées au moins deux fois. Il comprend également
par abus de langage le profil utilisateur (dispositif utilisé,
centres d’intérét, etc.) si disponible.

Représentation des cas. Cette derniére permet de sélec-
tionner les indices comportementaux d’un cas par rapport a
I'instant de référence et comprend :

- les 3 derniéres pages sur les variables de l’adresse, du
contenu, de la position et des informations pour identifier
le contexte immédiat de réutilisation d’un cas dans une na-
vigation (notion de restriction),

- un ensemble de pages passées qui sont sélectionnées pour
leur pertinence: soit pour leur satisfaction soit pour le ratio
d’affichage dépassant un seuil donné,

- et un ensemble de contraintes temporelles permettant d’or-
donner les pages sélectionnées.

La partie solution d’un cas est définie par une liste d’ac-
tions & recommander par rapport a l'instant de référence,
par exemple actions de sélection de telles destinations, etc.

La Figure 4 donne I’exemple d'un cas créé a partir de l'ins-
tanciation d’un patron de cas potentiel dans la navigation
pour un instant correspondant a la page #9. La restriction
(i.e. 'ensemble d’indices utilise dans un premier filtrage des
navigations) permet de sélectionner les trois derniéres pages
(p=3) ainsi que la page #3 pour la satisfaction utilisateur et
la page #5 pour le ratio d’affichage. A cette situation com-
portementale, la page #13 est associée et représente la seule
recommandation de ce cas (par exemple un page indiquant
une réservation dans un musée)..

Conception des phases de raisonnement. Il s’agit ici de
la spécification des quatre phases du RaPC. Nous renvoyons
le lecteur a la spécification du systéme Broadway-Web [8]
auquel nous avons prévu:

- la prise en compte des deux variables pour les aspects
localisation dans le raisonnement. Ces deux variables in-
terviennent, outre dans la phase de recherche de cas, dans
la phase de réutilisation, en particulier pour ’ordonnance-
ment des recommandations selon des criteres de proximité
géographique et d’adéquation a la recherche courante en
termes de contenu (en plus de 'adéquation & son profil).

- l'utilisation d’une ontologie dans le domaine et/ou du sys-
teme d’information géographique pour ’étape d’adaptation.
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Fig. 4 — Exemple d’un cas issu d’une navigation

Intégration. L’intégration d’un assistant basé sur I’approche
Broadway dans un serveur d’applications mobiles consiste &
définir la maniére de récupérer les événements pertinents
relatifs aux actions utilisateur soient durant son interaction
Homme-Machine (ici sa recherche d’information sur le web)
soit durant son déplacement (ici sa localisation via GPS par
exemple). Concernant Iobservation de I'interaction homme-
machine avec son navigateur Web, nous pouvons récupérer
ces évenements soit directement via une technologie proxy
(version actuelle cf. Figure 6.) soit via un serveur d’applica-
tions basées sur la localisation comme le montre la Figure 5.

PDA, Mobile
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Serveur dApplications
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Opérateur
téléphonie /< >

Contréle, réservations, recommandations
et autres communications

Navigation (HTTP)

//)
5 )
PC

Fig. 5 — Intégration future de Be-TRIP dans un ser-
veur d’applications basées sur la localisation
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Requéte
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Le recommandeur Be-TRIP nécessite, outre les serveurs déja
utilisés dans Broadway-web (utilisateur, analyse du contenu
des pages web, annotations), un serveur d’information de
type GIS (ici le futur systeme MobiVIP?). En effet afin
d’expérimenter, démontrer et évaluer I'impact des nouveaux
systemes d’information sur la mobilité urbaine, I'INRIA et
ses partenaires ont lancé fin 2003 le projet MobiVIP3. Ce
projet s’inscrit dans le cadre de I'Intégration des Systemes
d’Information et de Communication du Programme Natio-
nal de Recherche et d’Innovation dans les Transports Ter-
restres - Predit.

Implémentation. Actuellement seule la version en pre-trip
de Be-TRIP a été implémentée. Elle est implémenté comme
un serveur HTTP utilisé en tant que proxy (cf. Figure 6)
comme c’était le cas pour notre systeme Broadway-Web
et un accés uniquement aux ressources Web via le proto-
cole HTTP. Les requétes effectuées dans d’autres protocoles
(FTP ou Gopher par exemple) sont exécutées directement

3. MobiVIP URL: http://www-sop.inria.fr/mobivip



ou avec d’autres mécanismes indépendants de Be-TRIP.

% Navigateur
Transfert requéte
HTTP)

(RMI)
Navigation (HTT:&
o
(FTP, Gopher..)
Fig. 6 — Architecture actuelle du systéme d’aide
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Le serveur de recommandation de Be-TRIP s’appuie sur
notre plateforme objet en raisonnement a partir de cas ap-
pelé CBR*Tools* et sur notre boite & outils pour Paide & la
recherche d’information sur le Web appelée Broadway*Tools.
La plate-forme objet CBR*Tools facilite le développement
des systemes implantant 'approche Broadway. En particu-
lier CBR*Tools implémente notre modéle d’indexation par
situation comportementale: elle comprend plus de deux cents
classes Java, sa documentation basée sur la notation UML
est décrite en termes de patrons de conception [8]. Elle a été
congue avec 'atelier Rose de Rational et implantée en Java.

3.3 lllustration en pre-trip

Nous avons étudié I'intérét d’utiliser 'approche Broadway
via le systeme Be-TRIP dans une maquette de site Web
dédiée a la Communauté d’Agglomération de Sophia An-
tipolis (CASA) permettant ainsi de faire des liens trans-
verses utiles pour les citoyens ou touristes. En particulier,
les liens entre informations touristiques et informations pour
préparer le déplacement (cartes, parcours, etc.) sont illustrées
dans cette application [4].
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Fig. 7 — Session 1: sélection de Valbonne

Pour cela, une maquette du site CASA (cf. Figure 7) a été
réalisée contenant des informations sur les 14 communes qui
forment la CASA. Sur les sites de chaque ville, les utilisa-
teurs peuvent trouver des informations diverses comme des
informations touristiques, des événements particuliers, des
adresses de restaurants, etc., mais les informations sur les
moyens de transport ou sur les plans d’accés ne peuvent
étre exhaustifs. Pourtant ce type d’information est tres utile

4. URL http://www-sop.inria.fr/axis/cbrtools/manual /
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pour le futur touriste, mais aussi pour tous les citoyens de
ces villes cherchant un moyen de déplacement ou un plan.
Dans ce but, nous avons intégré dans la maquette du site
CASA pour illustrer notre approche des liens vers des sites
contenant des informations sur les transports et/ou des in-
formations cartographiques pour trouver des plans d’acces
ou réaliser des itinéraires.

Nous présentons ici un scénario d’utilisation du systeme Be-
TRIP dans le cadre du site Web de la CASA pour les tou-
ristes. Prenons ’exemple d’un touriste, séjournant dans la
ville de Valbonne qui se connecte au site de la CASA (cf.
Figure 7). Celui-ci commence a rechercher, en navigant dans
le site, quelque chose a visiter dans I’apres midi. Il trouve la
célebre abbaye fondée en 1199. Etant donné qu’il ne trouve
pas I'adresse de cette abbaye, il continue a chercher et la
trouve enfin apres plusieurs clics souris (cf. Figure 8).

=
7 Ele Ean view Go

Bookrarks Tools dncow Help

-3 gﬁp [ Fipmaslpes st camiveavsanain b

i§Hons | §Bookmarks _2The Mozila Oigenize_Laes!Buids.

=y | Q000 %A NS g= 2eme ||
S i S5ty
JﬁJ: Les Amis de I'Abbaye

muste |
" Lobublcatons
| stesamis_[

1 it
7 Ele Edi View Go Bookmsks Tooks Window

5 [Frmmmmencommmapn [ g s S -

" heload Sip

ihHons | §Booknarls 2 The Mozila Organize._Lalest Buls

B Xa M8 o= Bl r’
VViaMichelin

[T TrAFAC | WeATHER | ROTELS | RESTAURANTS | TOURISM | WAGATINE | _sioft )

Help

: . o®
Back " Fonvand

DRIVING DIRECTIONS

T ) e, 0 T

Valbomne-06560, Bue de a Paroisse

-
o

Viahichelin

||| cona
SRR K| I ol

Fig. 9 — Session 1 (fin): sélection de la carte suite a
une requéte sur viamichelin

Apres avoir noté I’adresse, il retourne sur la page d’accueil
du site pour se rendre ensuite sur le site de www.viamichelin.fr
afin d’avoir l'itinéraire. Apres avoir effectué sa requéte, il
obtient le plan d’acces (cf. Figure 9) et se déconnecte donc



satisfait.

Imaginons maintenant un autre touriste naviguant dans le
site de la CASA de facon similaire, en particulier sur les
pages de ’abbaye de Valbonne. Be-TRIP lui propose sans
qu’il fasse la requéte sur www.viamichelin.com plusieurs re-
commandations dont le plan d’acces trouvé par le premier
touriste (cf. Figure 10).
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Fig. 10 — Session 2: aide personnalisée par similarité
de comportements utilisateur

4. COMPARAISON AVEC DES TRAVAUX
SIMILAIRES

Cette section décrit brievement quelques travaux proches
de nos recherches relatives a la personnalisation de services
d’aide a la mobilité puis en présente une synthése dans le
tableau 1.

Le projet IMAGE [3] propose a ses utilisateurs (via des PC,
PDA et mobiles) des informations personnalisées basées sur
leur position (LBS) et sur des techniques de “user profi-
ling”. Les citoyens et les touristes sont les utilisateurs du
systeme qui offre aussi la possibilité de “e-ticketing” ou de
téléchargement des informations nécessaires.

Le but du projet WH@M [7] est d’aider les touristes dans
la phase de pre-trip (calcul d’itinéraires) et de leur fournir
des informations en temps réel (météo, trafic, etc.) pendant
leur voyage. L’information est adaptée en fonction de la lo-
cation et du profil de 'utilisateur qui peut aussi bénéficier
du “feed-back” des autres utilisateurs (forums, opinions sur
des “items”).

Dans le cadre du projet CRUMPET [9], la personnalisa-
tion est basse sur les trois facteurs suivantes : la localisation,
l'adaptation aux intéréts et préférences de I'utilisateur, et
l'adaptabilité du profil de I'utilisateur & partir de I’histo-
rique de ses interactions (“implicit feedback”). Les services
proposées visent les utilisateurs mobiles comme les touristes
utilisant des réseaux mobiles (PDA, mobiles, etc.) ou fixes
(“travel-kiosks”).

Le systeme de recommandations développé dans le cadre du
projet DIETORECS [6] est un systéme interactive (questions-
réponses) qui aide le future touriste (pre-trip) & sélectionner
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sa destination, sous la forme d’un “TravelPlan”. Des tech-
niques de Raisonnement & Partir de Cas (RaPC) sont em-
ployée pour l'aide & la décision. Le systéme AVC (Augmen-
ted Virtual City) du projet PALIO [2] adapte I'information
fournie aux touristes et citoyens en tenant compte de la tech-
nologie utilisée, des caractéristiques du réseau, de la position
de I'utilisateur, de son profil, du contexte actuel et aussi de
I’historique de ses interactions avec le systeme.

Nous décrivons ces systemes selon plusieurs caractéristiques:
a) le contexte de 'aide (pre ou/et on-trip), b) le mode de
recherche (par requéte ou par “browsing”) visé par 1’aide, c)
l'origine des données utilisées pour calculer I'aide personna-
lisée, d) 'approche de recommandation utilisée (A.P.U ou/et
F.C.), e) les modes pour fournir I’aide (push ou pull ou les
deux) et enfin f) l'utilisation ou non d’une corrélation entre
les deux types de comportements utilisateurs (séquence d’ac-
tions lors de sa recherche d’informations et déplacement).

On constate que la plupart des travaux actuels visant une
aide personnalisée au déplacement & la fois en pre-trip et/ou
on-trip s’appuient essentiellement sur 'apprentissage du pro-
fil utilisateur sans utiliser des données issues d’autres utili-
sateurs. A linverse, citons néanmoins trois travaux offrant
un filtrage collaboratif: Wh@m qui utilise des annotations
issues d’autres utilisateurs et les deux travaux basés sur des
techniques RaPC (Dietorecs et Be-TRIP) qui réutilisent des
cas i.e des expériences issues de sessions utilisateurs.

A notre connaissance, l'originalité principale de Be-TRIP
réside dans les quatre points suivants:

a) Be-TRIP propose des recommandations personnalisées
suite a un processus de recherche d’informations par brow-
sing alors que les autres travaux se placent tous dans une
recherche par formulation de requéte.

b) Be-TRIP due a I'approche Broawday utilisée est le seul
a prendre en compte l'ordre des actions utilisateur dans sa
recherche d’information mais aussi son déplacement.

¢) Be-TRIP propose un calcul de recommandation basé sur
des similarités de comportements utilisateur en recherche
d’information sur le Web corrélés a son déplacement. Cer-
tains travaux de personnalisation s’appuie sur un seul his-
torique: citons Palio (recherche d’informations), Crumpet
(déplacement).

d) Enfin Be-TRIP grace au raisonnement & partir de cas
a des capacités d’apprentissage en-ligne de nouveaux cas
comme dans Dietorecs mais aussi sur la qualité des recom-
mandations proposées: en effet l'utilisateur étant dans la
boucle du raisonnement (dans la phase de révision), le systéme
apprend des hypotheses de recommandations qui s’aveéreraient
fausses i.e non choisies par 'utilisateur.

5. CONCLUSIONS ET PERSPECTIVES

Pour conclure, nous pensons qu’associée a la politique géné-
rale des déplacements d’'une communauté d’agglomération
par exemple, les systemes de recommandation sont de nou-
veaux outils au service de stratégies socio-économiques, en-
vironnementales, touristiques et culturelles (itinéraires thé-
matiques) associant & la fois contenu et optimisation des
déplacements, en particulier les transports en commun.

Dans cet article, nous avons spécifié Be-TRIP un assistant
au déplacement pre-trip et on-trip basé sur une approche



Auteurs Aide Recherche Données Approche Modes Corrélation
par recherche/déplacement
Image [3] on-trip requéte | mono-utilisateur APU pull non
Wh@m [7] | pré/on-trip | requéte groupe APU + F.C. pull non
Crumpet [9] on-trip requéte mono utilisateur AP.U push/pull non
Dietorecs [6] pre-trip requéte groupe APUetF.C. pull non
(RaPC)
Palio [2] pré/on-trip requéte mono utilisateur A.PU pull non
Be-TRIP pré/on-trip | browsing groupe AP.U. et F.C. | push/pull oui
(RaPC)

Tab. 1 — Tableau récapitulatif

originale de calcul de recommandations personnalisées, ’ap-
proche Broawday. L’originalité de cet assistant réside essen-
tiellement dans l'utilisation de deux niveaux de personna-
lisation corrélés aussi bien en pre-trip qu’en on-trip: a) un
basé sur l’historique de déplacement de l'utilisateur et le
contexte géographique dans lequel il se trouve lors de la re-
cherche d’information et b) un relatif & I'historique de sa
recherche sur Internet en termes de contenu, etc.

Les travaux en cours et futurs a relier avec le projet Mobi-
VIP concernent plusieurs aspects:

- La poursuite de la spécification et la réalisation de la prise
en compte des aspects localisation et dispositif de 'utilisa-
teur en déplacement et 'utilisation de connaissances dans le
domaine visé dans I’étape d’adaptation de cas; son intégration
dans le serveur d’applications visé;

- L’évaluation de ’aide apportée par notre maquette aupres
d’utilisateurs via des expérimentations;

- L’étude de I’application de recherches menées dans 1’équipe
(soutenues par la région Paca) en classification hiérarchique
ascendante [5] pour la classification de profils de compor-
tements utilisateur corrélant divers contextes d’utilisation
différents: par exemple selon la localisation, selon le type de
comportement (recherche ou déplacement réel) ou selon les
dispositifs utilisés;

- Et enfin 'analyse de la qualité des recommandations pour
I’aide & la reconception du systéeme d’information.
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