Modelling DNA Hairpins

Jalal Frrami¹ Supervisors: M. Peyrard¹ N. Theodorakopoulos²

> ¹Laboratoire de Physique Ecole Normale Supérieure de Lyon

> > ²TPCI/NHRF, Athens Fachbereich Physik Universität Konstanz

May 11, 2007/ Lyon

- DNA molecule and Single-Stranded DNA
- Experimental properties of DNA Hairpins
- A two dimensional lattice model
- PBD-Polymer model for DNA Hairpins

DNA molecule and Single-Stranded DNA

- Experimental properties of DNA Hairpins
- A two dimensional lattice model
- 4 PBD-Polymer model for DNA Hairpins

00000

Structure and conformation

 DNA is a very long helicoidal molecule composed of two chains of desoxyribonucleotides:

00000

Structure and conformation

- A nucleotide is composed of three molecular parts
 - A cyclic sugar (desoxyribose)
 - A purine or a pyrimidine base: Adenine-Guanine-Cytosine-Thymine
 - A phosphate linked to the sugar

Lattice model

PBD-Polymer model

DNA and ssDNA The DNA molecule

00000

Properties

- The stability of DNA results from various interactions
 - Hydrogen bonding between complementary bases

00000

Properties

- The stability of DNA results from various interactions
 - Hydrogen bonding between complementary bases
 - Stacking interaction between base-pairs

00000

Properties

- The stability of DNA results from various interactions
 - Hydrogen bonding between complementary bases
 - Stacking interaction between base-pairs
- Melting of DNA
 - → The two strands of the DNA can be dissociated by heat
 - → The melting can be followed by the UV absorbance measurement

DNA Hairpins

- Single Strands of DNA with complementary bases at its two ends
 - → 5'-CCCAA-(N)_n-TTGGG-3'
- Schematic secondary structure

Interest

DNA and ssDNA

00000

- Biological interest
 - Loop formation is a first step in the folding of the RNA

DNA hairpins provide very sensitive probes for short DNA sequences

Interest

DNA and ssDNA

0000

- Physical interest
 - DNA hairpins are simple systems for the understanding of the self-assembly of DNA

- Modelling the fluctuations of hairpins is more challenging than the thermal denaturation of DNA
 - \rightarrow it is not simply the reverse process of its opening

- DNA molecule and Single-Stranded DNA
- Experimental properties of DNA Hairpins
- A two dimensional lattice model
- PBD-Polymer model for DNA Hairpins

Measurement Principle

- Molecular Beacons (G. Bonnet et al, Proc. Natl. Acad. Sci. USA 95, 8602-8606)
 - → Oligonucleotides with a fluorophore and a quencher attached at its two ends: 5'-CCCAA-(N)_n-TTGGG-3'

Fluorescence Resonance Energy Transfer

Measurement Principle

- Molecular Beacons (G. Bonnet et al, Proc. Natl. Acad. Sci. USA 95, 8602-8606)
 - → Oligonucleotides with a fluorophore and a quencher attached at its two ends: 5'-CCCAA-(N)_n-TTGGG-3'

- Fluorescence Resonance Energy Transfer
 - The conformational state is directly reported by the fluorescence
 - The fraction of open beacons can be measured

$$f(T) = \frac{I(T) - I_c}{I_0 - I_c}$$

Results

DNA and ssDNA

Melting curves for different loop sequences

- The melting temperature T_m decreases with the loop length
- The decay is most important for poly(A)
- T_m is higher for a poly(T) than a poly(A)-loop

Measurement principle

- Fluorescence Correlation Spectroscopy
 - → Measurement of the autocorrelation function that gives the sum of the kinetic rates k_{-} and k_{+}
- The equilibrium constant gives the ratio of the kinetic rates

$$K(T) = \frac{f(T)}{1 - f(T)}$$

$$K(T) = \frac{k_{-}(T)}{k_{+}(T)}$$

Results

Rates of opening and closing in Arrhenius plot

- Kinetics of opening do not depend on the loop sequence
- The rate of closing decreases with the loop length
- The activation energy is only affected by the nature of the loop

- DNA molecule and Single-Stranded DNA
- Experimental properties of DNA Hairpins
- A two dimensional lattice model
- 4 PBD-Polymer model for DNA Hairpins

Description of the model

(S. Cuesta-López, J. Errami, F. Falo, and M. Peyrard, J. Biol. Phys. **31**, 273-301)

Total energy of the chain

$$E = n_{A}E_{A} + \frac{1}{2}\sum_{j=1}^{n_{s}}\sum_{j'=1}^{n_{s}} e(j,j')$$

$$e(j,j') = \delta(t_{j}-t_{j'})\delta(d_{jj'}-1)a(j)a(j')E_{HB}(t_{j})$$

 Hydrogen bonds between complementary bases

$$E_{\rm HR} < 0$$

 Flexibility of the chain and stacking interaction

$$E_A > 0$$

Thermodynamics of the opening-closing transition

Transition in the abscence of mismatch.

Equilibrium properties

Thermodynamics of the opening-closing transition

Transition in the abscence of mismatch

- The melting temperature T_m decreases with the loop length
 → Good agreement with the experiments
- The melting temperature T_m decreases with the increase of the rigidity
 - → The effect is too small to model (T)-loop and (A)-loop
- Role of the mismatches

Equilibrium properties

Thermodynamics of the opening-closing transition

Role of the mismatches

- The melting curve is smoother
- The melting curve shows an aditional fairly sharp kink
 - → The mismatched closings are metastable states

Kinetics of opening and closing

 Chemical equilibrium between closed and open states

$$\frac{d[C]}{dt} = -k_o[C] + k_{cl}[O]$$

$$\frac{d[O]}{dt} = +k_o[C] - k_{cl}[O]$$

$$k_{\rm o} = \frac{1}{\tau} \frac{1}{1 + K_{\rm e}}$$
 $k_{\rm cl} = \frac{1}{\tau} \frac{K_{\rm e}}{1 + K_{\rm e}}$

→ Studying the opening of the hairpins we can also get the kinetics of closing

Discussion

DNA and ssDNA

 Thermodynamic and kinetic results are in qualitative agreement with respect to the experiments

Lattice model

Discussion

 Thermodynamic and kinetic results are in qualitative agreement with respect to the experiments

- No quantitative comparisons are possible
 - There is not enough degrees of freedom in the model
 - The difference between poly(T) and poly(A) is not well described
 - To get good statisites the calculation could become very long

- 1 DNA molecule and Single-Stranded DNA
- Experimental properties of DNA Hairpins
- A two dimensional lattice model
- PBD-Polymer model for DNA Hairpins

Presentation of the model

- The model of the hairpin contains two parts
 - The loop which is treated as a polymer in three dimensions
 - The stem which is an extension of the ends of the loop with additional interactions: PBD-model

(J. Errami, N. Theodorakopoulos and M. Peyrard, *Modelling DNA beacons at the mesoscopic scale*, submitted to European Physical Journal E)

The model

PBD-Model for melting

PBD model

PBD-Model for melting

PBD model

- Modelling the interactions at the scale of the base
 - Hydrogen bonding between complementary bases

$$V(y_n) = D\left(e^{-ay_n} - 1\right)^2$$

Coupling between consecutive base-pairs

$$W(y_n, y_{n-1}) = \frac{K}{2} \left[1 + \rho e^{-\alpha(y_n + y_{n-1})} \right] (y_n - y_{n-1})^2$$

Freely Rotating Chain

The root mean square distance scales as \sqrt{N} for large N

$$\left\langle \mathbf{R}^{2}\right\rangle =Nl^{2}rac{1+\cos heta}{1-\cos heta}$$

The chain has a "stiffness"

$$\lim_{N\to\infty} \langle \mathbf{R} \cdot \mathbf{u}_0 \rangle \equiv I_p = \frac{I}{1 - \cos\theta}$$

→ It also corresponds to the correlation length in the continuum limit approximation

nd-to-end distance probability distribution

R scales as \sqrt{N} for large N

ightarrow The probability distribution is Gaussian for large N

Freely Rotating Chain

The root mean square distance scales as \sqrt{N} for large N

$$\left\langle \mathbf{R}^{2}\right\rangle =Nl^{2}\frac{1+\cos\theta}{1-\cos\theta}$$

The chain has a "stiffness"

$$\lim_{N\to\infty} \langle \mathbf{R}\cdot\mathbf{u}_0\rangle \equiv \mathit{I}_p = \frac{\mathit{I}}{1-\cos\theta}$$

 \rightarrow It also corresponds to the correlation length in the continuum limit approximation

End-to-end distance probability distribution **R** scales as \sqrt{N} for large N

→ The probability distribution is Gaussian for large N

Freely Rotating Chain

The root mean square distance scales as \sqrt{N} for large N

$$\left\langle \mathbf{R}^2 \right\rangle = N l^2 \frac{1 + \cos \theta}{1 - \cos \theta}$$

The chain has a "stiffness"

$$\lim_{N\to\infty} \langle \mathbf{R}\cdot\mathbf{u}_0\rangle \equiv \mathit{I}_p = \frac{\mathit{I}}{1-\cos\theta}$$

 \rightarrow It also corresponds to the correlation length in the continuum limit approximation

End-to-end distance probability distribution

R scales as \sqrt{N} for large N

→ The probability distribution is Gaussian for large N

Kratky-Porod Chain (KP)

Hamiltonian of the chain

$$H = -\epsilon \sum_{j=1}^{N-1} \left(\mathbf{r}_j \cdot \mathbf{r}_{j+1} - l^2 \right)$$

The persistence length depends on the temperature

$$I_p = -\frac{I}{\ln\left[\coth b - \frac{1}{b}\right]} \approx Ib = I \times \frac{\epsilon I^2}{k_B T}$$

No analytical expression for the end-to-end probability distribution

→ Powerful numerical calculation in terms of a finite sum of Bessel functions

Kratky-Porod Chain (KP)

Hamiltonian of the chain

$$H = -\epsilon \sum_{j=1}^{N-1} (\mathbf{r}_j \cdot \mathbf{r}_{j+1} - l^2)$$

The persistence length depends on the temperature

$$I_p = -\frac{I}{\ln\left[\coth b - \frac{1}{b}\right]} \approx Ib = I \times \frac{\epsilon I^2}{k_B T}$$

No analytical expression for the end-to-end probability distribution

→ Powerful numerical calculation in terms of a finite sum of Bessel functions

Kratky-Porod Chain (KP)

$$H = -\epsilon \sum_{j=1}^{N-1} (\mathbf{r}_j \cdot \mathbf{r}_{j+1} - l^2)$$

The persistence length depends on the temperature

$$I_p = -\frac{I}{\ln\left[\coth b - \frac{1}{b}\right]} \approx Ib = I \times \frac{\epsilon I^2}{k_B T}$$

No analytical expression for the end-to-end probability distribution

→ Powerful numerical calculation in terms of a finite sum of Bessel functions

Growth of a polymer chain S(r|R)

Probability of the growth chain $P_{N+2}(r)$ \rightarrow derived from $P_N(R)$

$$\int_0^\infty dR P_N(R) S(r|R) = P_{N+2}(r) \quad \forall r, N$$

The conditional probability distribution S(r|R)

$$\int_{0}^{\infty} dr S(r|R) = 1 \quad \forall R$$

Distribution of the added bond vectors assumed to be Gaussian

Growth of a polymer chain S(r|R)

Probability of the growth chain $P_{N+2}(r)$ \rightarrow derived from $P_N(R)$

$$\int_0^\infty dR P_N(R) S(r|R) = P_{N+2}(r) \quad \forall r, N$$

The conditional probability distribution S(r|R)

$$\int_0^\infty dr S(r|R) = 1 \quad \forall R$$

Distribution of the added bond vectors assumed to be Gaussian

Polymer models

DNA and ssDNA

Conditional probability distribution S(r|R)

Effective Gaussian approach

 \rightarrow Approximate $P_N(R)$ by a Gaussian chain that gives the correct persistence length

The Gaussian approximation can be rough for small N but quite good for the extention of the chain

Partition function

- Construction of the reduced partition function of the hairpin
 - Partition function of a chain for a given end-to-end distance
 R

$$Z_N(R) = Z_N^{\text{tot}} P_N(R)$$

Suppose that we add one bond at each end

$$Z_{N+2}(r_{M-1}) = P_{N+2}(r_{M-1})Z_{N+2}^{tot}$$

Introducing the S function

$$Z_{N+2}(r_{M-1}) = Z_{N+2}^{tot} \int dr_M S(r_{M-1}|r_M) P_N(r_M)$$

Partition function

- Construction of the reduced partition function of the hairpin
 - Partition function of a chain for a given end-to-end distance
 R

$$Z_N(R) = Z_N^{\text{tot}} P_N(R)$$

Suppose that we add one bond at each end

$$Z_{N+2}(r_{M-1}) = P_{N+2}(r_{M-1})Z_{N+2}^{tot}$$

Introducing the S function

$$Z_{N+2}(r_{M-1}) = Z_{N+2}^{tot} \int dr_M S(r_{M-1}|r_M) P_N(r_M)$$

Partition function

- Construction of the reduced partition function of the hairpin
 - Partition function of a chain for a given end-to-end distance
 R

$$Z_N(R) = Z_N^{\text{tot}} P_N(R)$$

Suppose that we add one bond at each end

$$Z_{N+2}(r_{M-1}) = P_{N+2}(r_{M-1})Z_{N+2}^{tot}$$

Introducing the S function

$$Z_{N+2}(r_{M-1}) = Z_{N+2}^{tot} \int dr_M S(r_{M-1}|r_M) P_N(r_M)$$

Partition function

- Construction of the reduced partition function of the hairpin
 - Then we put the additional interactions according to the PBD model

$$Z_{N+2}(r_{M-1}) = Z_{N+2}^{tot}$$

$$e^{-\beta V(r_{M-1})} \int dr_M \ e^{-\beta (W(r_{M-1}, r_M) + V(r_M))} S(r_{M-1}|r_M) P_N(r_M)$$

Finally we extend the process to the hairpir

$$Z(r) = Z_{loop(N+2(M-1))} e^{-\beta V(r)} \times$$

$$\int_{0}^{+\infty} \prod_{i=2}^{M} dr_{i} \prod_{i=2}^{M} S(r_{i-1}|r_{i}) e^{-\beta [V(r_{i})+W(r_{i-1},r_{i})]} P_{N}(r_{M})$$

Partition function

- Construction of the reduced partition function of the hairpin
 - Then we put the additional interactions according to the PBD model

$$Z_{N+2}(r_{M-1}) = Z_{N+2}^{tot}$$

$$e^{-\beta V(r_{M-1})} \int dr_M \ e^{-\beta (W(r_{M-1},r_M)+V(r_M))} S(r_{M-1}|r_M) P_N(r_M)$$

Finally we extend the process to the hairpin

$$Z(r) = Z_{\text{loop}(N+2(M-1))} e^{-\beta V(r)} \times \int_{0}^{+\infty} \prod_{i=2}^{M} dr_{i} \prod_{i=2}^{M} S(r_{i-1}|r_{i}) e^{-\beta [V(r_{i})+W(r_{i-1},r_{i})]} P_{N}(r_{M})$$

Melting curves

Free energy landscape

$$F(r) = -k_b T \ln Z(r)$$

- \rightarrow The shape of F(r) justifies the image of the two-state system
- Melting curves

$$f = \frac{K_{\text{eq}}}{1 + K_{\text{eq}}} = \frac{\frac{P_{\text{O}}}{P_{\text{C}}}}{1 + \frac{P_{\text{O}}}{P_{\text{C}}}} = P_{\text{O}} = \frac{\int_{r_{\text{c}}}^{+\infty} dr Z(r)}{\int_{0}^{+\infty} dr Z(r)}$$

Thermodynamics

DNA and ssDNA

FRC Model

Melting curves equivalent to poly(T)

$$k$$
=0.025 eV.Å⁻², $α$ =6.9 Å⁻¹, $δ$ = 0.35, $ρ$ = 5. D =0.112 eV, $θ$ = 50°, $∘$: N =12: $□$: N =16; $⋄$: N =21; $△$: N =30

 \Box : *D*=0.112 eV, $\theta = 50^{\circ}$; ⋄: *D*=0.119 eV, θ = 45°; △: *D*=0.100 eV, $\theta = 64^{\circ}$

FRC model

 Melting curves equivalent to poly(A) D=0.112 eV, k=0.025 eV.Å⁻², $\alpha=6.9$ Å⁻¹, $\delta=0.35$, $\rho=5$, $\theta = 48^{\circ}$, o: N=12; \Box : N=16; \diamond : N=21; \triangle : N=30

Z	$\theta = 50^{\circ}, \frac{\Delta P}{\Delta T} T_m$	$\theta = 48^{\circ}, \frac{\Delta P}{\Delta T} T_m$	Poly(T) (Exp)	Poly(A) (Exp)
12	3.6	3.7	11	9
16	3.7	3.8	11	8.5
21	3.7	3.8	11	8.5
30	3.9	4.0	11	7.5

KP model

 Melting curves equivalent to poly(T) D=0.107 eV, k=0.025 eV.Å⁻², $\alpha=6.9$ Å⁻¹, $\delta=0.35$, $\rho=5$, $\epsilon = 0.0018 \text{ eV.} \text{Å}^{-2}. \bullet: \text{N=12}; \square: \text{N=16}; \diamond: \text{N=21}; \triangle: \text{N=30}$

Ν	ϵ =0.0018 eV.A ⁻² , $\frac{\Delta P}{\Delta T}T_m$	Poly(T) (Exp), $\frac{\Delta P}{\Delta T} T_m$
12	3.2	11
16	3.4	11
21	3.45	11
30	3.8	11

KP model

• Melting curves equivalent to poly(A) D=0.107 eV, k=0.025 eV.Å $^{-2}$, α =6.9 Å $^{-1}$, δ = 0.35, ρ = 5, ϵ = 0.00195 eV.Å $^{-2}$; •: N=12; \square : N=16; \diamond : N=21; \triangle : N=30

Ν	ϵ =0.00195 eV.Å $^{-2}$, $\frac{\Delta P}{\Delta T}T_m$	Poly(A) (Exp), $\frac{\Delta P}{\Delta T}T_m$
12	3.25	9
16	3.45	8.5
21	3.6	8.5
30	3.8	7.5

Theoretical predictions

Transition state theory

$$C \xrightarrow{k_1} T \xrightarrow{k_2} O \qquad k_{op}^{-1} = k_1^{-1} + \frac{\bar{C}_C}{\bar{C}_O} k_{-2}^{-1}$$

$$k_{cl}^{-1} = k_{-2}^{-1} + \frac{\bar{C}_C}{\bar{C}_C} k_1^{-1}$$

 The system is evolving on a one-dimensional free energy surface

$$k_{op}^{-1} = Z_C \int_{-\infty}^{+\infty} dr \frac{e^{-\beta F(r)} J^2(r)}{D(r)} = \frac{Z_C}{Z_O} k_{cl}^{-1}$$

$$J(r) = \begin{cases} \int_{-\infty}^{r} dx \frac{e^{-\beta (F(x) - F(r))}}{Z_C} & \forall \ r < r_T \\ \int_{r}^{+\infty} dx \frac{e^{-\beta (F(x) - F(r))}}{Z_O} & \forall \ r > r_T \end{cases}$$

FRC model

Rates of opening and closing

D=0.112 eV,
$$k$$
=0.025 eV.Å⁻², α =6.9 Å⁻¹, δ = 0.35, ρ = 5.

Left:
$$\theta$$
 = 50°; •: *N*=12; □: *N*=16; ⋄: *N*=21; △: *N*=30.

Right: N=21, black: $\theta = 50^{\circ}$, red: $\theta = 48^{\circ}$

	E_{op} , model	E_{cl} , model	E_{op} , exp	E_{cl} , exp
Poly(T)	11.5	-0.33	32	3.4
Poly(A)	11.5	-0.33	32	17.4

KP model

DNA and ssDNA

• Rates of opening and closing D=0.107 eV, k=0.025 eV.Å $^{-2}$, α =6.9 Å $^{-1}$, δ = 0.35, ρ = 5. Left: ϵ =0.0018 eV.Å $^{-2}$; \circ : N=12; \square : N=16; \diamond : N=21; \triangle : N=30. Right: N=21, black: ϵ =0.0018 eV.Å $^{-2}$, red: ϵ =0.00195 eV.Å $^{-2}$

	E_{op} , model	E_{cl} , model	E_{op} , exp	E_{cl} , exp
Poly(T)	10	+1	32	3.4
Poly(A)	10	+1	32	17.4

• Effect of D and ϵ on the kinetics

o: *D*=0.08 eV; □: *D*=0.09 eV;

⇒: D=0.10 eV; △: D=0.11 eV,

×: D=0.12 eV

o: ϵ =0.0040 eV.Å⁻²,

 \square : ϵ =0.0010 eV.Å $^{-2}$

Discussion

DNA and ssDNA

- Thermodynamics
 - We are able to describe the dependance of T_m with the loop length for poly(T) and poly(A)
 - We get too large transition widths

Discussion

DNA and ssDNA

- Thermodynamics
 - We are able to describe the dependance of T_m with the loop length for poly(T) and poly(A)
 - We get too large transition widths
- Kinetics
 - Our results are in qualitative agreements with the experiments
 - We can describe the kinetics of poly(T)

Thermodynamics

• We are able to describe the dependance of T_m with the loop length for poly(T) and poly(A)

Lattice model

- We get too large transition widths
- Kinetics
 - Our results are in qualitative agreements with the experiments
 - We can describe the kinetics of poly(T)
 - We are missing something to deal with the problem of poly(A)

- We have studied the self assembly of DNA Hairpins with two models
- Lattice model
- It helps us in the understanding of the physics of the systematical
- PBD-Polymer model
 - experiments
 - It snows some limitations
 - → The behavior of a single strand of DNA depends on its sequence
 - Poly(T) can be viewed as a polymer
 - Poly(A)?

- We have studied the self assembly of DNA Hairpins with two models
- Lattice model

- The results are qualitatively good
- It helps us in the understanding of the physics of the system
- PBD-Polymer model

- We have studied the self assembly of DNA Hairpins with two models
- Lattice model

- The results are qualitatively good
- It helps us in the understanding of the physics of the system
- PBD-Polymer model
 - The results are in semi-quantitative agreement with the experiments
 - It shows some limitations
 - → The behavior of a single strand of DNA depends on its sequence
 - Poly(T) can be viewed as a polymer
 - Poly(A)?

DNA and ssDNA	Experimental results 0000	Lattice model	PBD-Polymer model	Conclusion

- →Modelling of all the interactions between the atoms
 - Potential describing the stretching of covalent bonds

$$k_{\rm bond} (r-r_0)^2$$

Potential of angular rigidity

$$k_f (\theta - \theta_0)^2$$

Potential of torsion

$$k_g(1+\cos\phi)$$

Lennard-Jones potential for non-bonding interactions

$$4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Microscopic model

DNA and ssDNA

- →Modelling of all the interactions between the atoms
 - Potential describing the stretching of covalent bonds

$$k_{\rm bond} (r - r_0)^2$$

$$k_f (\theta - \theta_0)^2$$

$$k_g(1+\cos\phi)$$

$$4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Microscopic model

DNA and ssDNA

- →Modelling of all the interactions between the atoms
 - Potential describing the stretching of covalent bonds

$$k_{\rm bond} (r-r_0)^2$$

Potential of angular rigidity

$$k_f (\theta - \theta_0)^2$$

Potential of torsion

$$k_g(1+\cos\phi)$$

Lennard-Jones potential for non-bonding interactions

$$4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

- →Modelling of all the interactions between the atoms
 - Potential describing the stretching of covalent bonds

$$k_{\rm bond} (r-r_0)^2$$

Potential of angular rigidity

$$k_f (\theta - \theta_0)^2$$

Potential of torsion

$$k_g(1+\cos\phi)$$

$$4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Microscopic model

DNA and ssDNA

- →Modelling of all the interactions between the atoms
 - Potential describing the stretching of covalent bonds

$$k_{\rm bond} (r-r_0)^2$$

Potential of angular rigidity

$$k_f (\theta - \theta_0)^2$$

Potential of torsion

$$k_g(1+\cos\phi)$$

Lennard-Jones potential for non-bonding interactions

$$4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

 Model consists on an alternating sequence of ordered and unordered states

The ordered state is energetically favoured over an unordered state

The phase transition is governed by the value of a

- Poland-Scheraga model
 - Model consists on an alternating sequence of ordered and unordered states

$$\rightarrow w = \exp\left(-\frac{E}{k_b T}\right)$$

$$\rightarrow$$
 S $\propto \frac{s^l}{l^c}$

 Model consists on an alternating sequence of ordered and unordered states

 The ordered state is energetically favoured over an unordered state

$$\rightarrow w = \exp\left(-\frac{E}{k_b T}\right)$$

 The entropy of the unbound state depends solely on its length

$$\rightarrow$$
 $S \propto \frac{s^l}{l^c}$

The phase transition is governed by the value of a

 Model consists on an alternating sequence of ordered and unordered states

 The ordered state is energetically favoured over an unordered state

$$\rightarrow w = \exp\left(-\frac{E}{k_bT}\right)$$

 The entropy of the unbound state depends solely on its length

$$\rightarrow$$
 S $\propto \frac{s^I}{I^c}$

The phase transition is governed by the value of a

 Model consists on an alternating sequence of ordered and unordered states

 The ordered state is energetically favoured over an unordered state

$$\rightarrow w = \exp\left(-\frac{E}{k_bT}\right)$$

 The entropy of the unbound state depends solely on its length

$$\rightarrow$$
 S $\propto \frac{s^{J}}{Ic}$

- The phase transition is governed by the value of c
 - $c \le 1$ no phase transition
 - 1 < c < 2 continuous phase transitior
 - c > 2 first order phase transition

Poland-Scheraga model

DNA and ssDNA

 Model consists on an alternating sequence of ordered and unordered states

 The ordered state is energetically favoured over an unordered state

$$\rightarrow w = \exp\left(-\frac{E}{k_bT}\right)$$

 The entropy of the unbound state depends solely on its length

$$\rightarrow$$
 S $\propto \frac{s^{J}}{Ic}$

- The phase transition is governed by the value of c
 - c < 1 no phase transition
 - 1 < $c \le 2$ continuous phase transition
 - c > 2 first order phase transition

 Model consists on an alternating sequence of ordered and unordered states

 The ordered state is energetically favoured over an unordered state

$$\rightarrow w = \exp\left(-\frac{E}{k_b T}\right)$$

 The entropy of the unbound state depends solely on its length

$$\rightarrow$$
 S $\propto \frac{s^{J}}{Ic}$

- The phase transition is governed by the value of c
 - c < 1 no phase transition
 - 1 < c < 2 continuous phase transition
 - c > 2 first order phase transition

- Monte Carlo simulation in the canonical ensemble
 - Minimization of the Free Energy
 - → Find the **Thermodynamic** properties of the system
 - Try to deduce the Kinetics using MC-step
 - → Selection of local motions of the chain

 Effect of the width of the Morse potential D=0.112 eV, k=0.025 eV.Å $^{-2}$, $\delta = 0.35$, $\rho = 5$, $\theta = 50^{\circ}$ and

N=21. •: α =4.0 Å⁻¹; □: α =5.0 Å⁻¹; ⋄: α =6.0 Å⁻¹; △: α =7.5 Å⁻¹

PBD-Polymer model

a (Å ⁻¹)	$S \neq 1, \frac{\Delta P}{\Delta T} T_m$
4	3.4
5	3.5
6	3.8
7.5	4.1

Effect of the rigidity of the stem

D=0.112 eV,
$$\alpha$$
=6.9 Å⁻¹, δ = 0.35, ρ = 5, θ = 50° and N=21. •: k=0.010 eV.Å⁻²; □: k=0.020 eV.Å⁻²; ⋄: k=0.040 eV.Å⁻²; △: k=0.060 eV.Å⁻²

k(eV.Å ⁻²)	$S \neq 1, \frac{\Delta P}{\Delta T} T_m$
0.01	4.1
0.020	4
0.040	3.8
0.06	3.7