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The DNA molecule

Structure and conformation

DNA is a very long helicoidal molecule composed of two
chains of desoxyribonucleotides:

(W. Saenger, Principles of Nucleic Acid Structure,
Springer-Verlag)

A nucleotide is composed of three molecular parts
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The DNA molecule

Structure and conformation

A nucleotide is composed of three molecular parts
A cyclic sugar (desoxyribose)
A purine or a pyrimidine base:
Adenine-Guanine-Cytosine-Thymine
A phosphate linked to the sugar

(W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag)
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The DNA molecule

Properties

The stability of DNA results from various interactions
Hydrogen bonding between complementary bases
Stacking interaction between base-pairs

Melting of DNA
→ The two strands of the DNA can be dissociated by heat
→ The melting can be followed by the UV absorbance
measurement
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Single-Stranded DNA

DNA Hairpins

Single Strands of DNA with complementary bases at its
two ends
→ 5’-CCCAA-(N)n-TTGGG-3’
Schematic secondary structure

(S. Cuesta-López et al, Eur. Phys. J. E 16, 235-246)
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Single-Stranded DNA

Interest

Biological interest
Loop formation is a first step in the folding of the RNA

DNA hairpins provide very sensitive probes for short DNA
sequences



DNA and ssDNA Experimental results Lattice model PBD-Polymer model Conclusion

Single-Stranded DNA

Interest

Physical interest
DNA hairpins are simple systems for the understanding of
the self-assembly of DNA

Modelling the fluctuations of hairpins is more challenging
than the thermal denaturation of DNA
→ it is not simply the reverse process of its opening
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Thermodynamic properties

Measurement Principle

Molecular Beacons (G. Bonnet et al, Proc. Natl. Acad. Sci. USA 95, 8602-8606)

→ Oligonucleotides with a fluorophore and a quencher attached
at its two ends: 5’-CCCAA-(N)n-TTGGG-3’

Fluorescence Resonance Energy Transfer
The conformational state is directly reported by the
fluorescence
The fraction of open beacons can be measured

f (T ) =
I(T ) − Ic

I0 − Ic
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Thermodynamic properties

Results

Melting curves for different loop sequences

The melting temperature Tm decreases
with the loop length

The decay is most important for poly(A)

Tm is higher for a poly(T) than a
poly(A)-loop
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Kinetic properties

Measurement principle

Fluorescence Correlation Spectroscopy
→ Measurement of the autocorrelation function that gives the
sum of the kinetic rates k− and k+

The equilibrium constant gives the ratio of the kinetic rates

K (T ) =
f (T )

1 − f (T )

K (T ) =
k
−
(T )

k+(T )
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Kinetic properties

Results

Rates of opening and closing in Arrhenius plot

Kinetics of opening do not depend on
the loop sequence

The rate of closing decreases with the
loop length

The activation energy is only affected by
the nature of the loop
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Presentation of the model

Description of the model

(S. Cuesta-López, J. Errami, F. Falo,
and M. Peyrard, J. Biol. Phys. 31,
273-301)

Total energy of the chain

E = nAEA +
1
2

ns
∑

j=1

ns
∑

j′=1

e(j, j ′)

e(j, j ′) = δ(tj − tj′)δ(djj′ − 1)a(j)a(j ′)EHB(tj )

Hydrogen bonds between
complementary bases

EHB < 0

Flexibility of the chain and stacking
interaction

EA > 0
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Equilibrium properties

Thermodynamics of the opening-closing transition

Transition in the abscence of mismatch

The melting temperature Tm decreases with the loop length
→ Good agreement with the experiments
The melting temperature Tm decreases with the increase of
the rigidity
→ The effect is too small to model (T)-loop and (A)-loop

Role of the mismatches

The melting curve is smoother
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Equilibrium properties

Thermodynamics of the opening-closing transition

Role of the mismatches

The melting curve is smoother
The melting curve shows an aditional fairly sharp kink
→ The mismatched closings are metastable states
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Monte Carlo Kinetics

Kinetics of opening and closing

Chemical equilibrium
between closed and open
states

d [C]

dt
= −ko[C] + kcl [O]

d [O]

dt
= +ko[C] − kcl [O]

ko =
1
τ

1
1 + Ke

kcl =
1
τ

Ke

1 + Ke

→ Studying the opening of
the hairpins we can also get
the kinetics of closing
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Discussion

Thermodynamic and kinetic results are in qualitative
agreement with respect to the experiments

No quantitative comparisons are possible
There is not enough degrees of freedom in the model

The difference between poly(T) and poly(A) is not well
described

To get good statisitcs the calculation could become very
long
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The model

Presentation of the model

The model of the hairpin contains two parts
The loop which is treated as a polymer in three dimensions
The stem which is an extension of the ends of the loop with
additional interactions: PBD-model

(J. Errami, N. Theodorakopoulos and M. Peyrard, Modelling DNA beacons at the mesoscopic scale,
submitted to European Physical Journal E)

R=y+d

M=5

m=1        2       3        4        5

n=1  

n=2

n=5

n=4

n=3

n=6

n=7

n=8n=9

n=10

N=10

r=y1+d
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The model

PBD-Model for melting

PBD model
n n+1n-1

V(y  )
n W(y  ,  y      )

n n-1

y

Modelling the interactions at the scale of the base
Hydrogen bonding between complementary bases

V (yn) = D
`

e−ayn − 1
´2

Coupling between consecutive base-pairs

W (yn, yn−1) =
K
2

h

1 + ρe−α(yn+yn−1)
i

(yn − yn−1)
2
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Polymer models

Freely Rotating Chain

The root mean square distance scales as
√

N for large
N

〈

R2
〉

= Nl2
1 + cos θ

1 − cos θ

The chain has a “stiffness”

lim
N→∞

〈R · u0〉 ≡ lp =
l

1 − cos θ

→ It also corresponds to the correlation length in the
continuum limit approximation

End-to-end distance probability distribution
R scales as

√
N for large N

→ The probability distribution is Gaussian for large N
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Polymer models

Kratky-Porod Chain (KP)

rj

R

Hamiltonian of the chain

H = −ǫ

N−1
∑

j=1

(

rj · rj+1 − l2
)

The persistence length depends on the temperature

lp = − l

ln
[

coth b − 1
b

] ≈ lb = l × ǫl2

kBT

No analytical expression for the end-to-end probability
distribution
→ Powerful numerical calculation in terms of a finite
sum of Bessel functions
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Polymer models

Growth of a polymer chain S(r |R)

r R

Probability of the growth chain PN+2(r)
→ derived from PN(R)

∫

∞

0
dRPN(R)S(r |R) = PN+2(r) ∀r , N

The conditional probability distribution S(r |R)

∫

∞

0
drS(r |R) = 1 ∀R

Distribution of the added bond vectors assumed to be Gaussian
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Polymer models

Conditional probability distribution S(r |R)

Effective Gaussian approach
→ Approximate PN(R) by a Gaussian chain that gives the correct
persistence length
The Gaussian approximation can be rough for small N but quite good
for the extention of the chain
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Thermodynamics

Partition function

Construction of the reduced partition function of the hairpin

Partition function of a chain for a given end-to-end distance
R

ZN(R) = Z tot
N PN(R)

Suppose that we add one bond at each end

ZN+2(rM−1) = PN+2(rM−1)Z tot
N+2

Introducing the S function

ZN+2(rM−1) = Z tot
N+2

∫

drMS(rM−1|rM)PN(rM)
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Thermodynamics

Partition function

Construction of the reduced partition function of the hairpin

Then we put the additional interactions according to the
PBD model

ZN+2(rM−1) = Z tot
N+2

e−βV (rM−1)

∫

drM e−β(W (rM−1,rM )+V (rM ))S(rM−1|rM)PN (rM)

Finally we extend the process to the hairpin

Z (r) =Zloop(N+2(M−1))e
−βV (r)×

∫ +∞

0

M
∏

i=2

dri

M
∏

i=2

S(ri−1|ri)e
−β[V (ri )+W (ri−1,ri )]PN(rM)
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Thermodynamics

Melting curves

Free energy landscape

F (r) = −kbT ln Z (r)

10 100
r

-1,5

-1,4

-1,3

-1,2

-1,1

F
(r

)

→ The shape of F (r) justifies the image of the two-state system
Melting curves

f =
Keq

1 + Keq
=

PO
PC

1 + PO
PC

= PO =

∫ +∞

rc
drZ (r)

∫ +∞

0 drZ (r)
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Thermodynamics

FRC Model

Melting curves equivalent to poly(T)
k=0.025 eV.Å−2, α=6.9 Å−1,
δ = 0.35, ρ = 5. D=0.112 eV,
θ = 50◦,◦: N=12: �: N=16;
⋄: N=21; △: N=30

260 280 300 320 340 360 380 400 420 440
Temperature

0

0,2

0,4

0,6

0,8

1

P O

�: D=0.112 eV, θ = 50◦;
⋄: D=0.119 eV, θ = 45◦;
△: D=0.100 eV, θ = 64◦

10 15 20 25 30
N

290

300

310

320

330

340

T m
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Thermodynamics

FRC model

Melting curves equivalent to poly(A)
D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
θ = 48◦, ◦: N=12; �: N=16; ⋄: N=21; △: N=30

260 280 300 320 340 360 380 400 420 440
Temperature

0

0,2

0,4

0,6

0,8

1

P O

10 15 20 25 30 35 40
N

300

305

310

315

320

325

330

T m

N θ = 50◦, ∆P
∆T Tm θ = 48◦, ∆P

∆T Tm Poly(T) (Exp) Poly(A) (Exp)
12 3.6 3.7 11 9
16 3.7 3.8 11 8.5
21 3.7 3.8 11 8.5
30 3.9 4.0 11 7.5
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Thermodynamics

KP model

Melting curves equivalent to poly(T)
D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
ǫ = 0.0018 eV .Å−2. •: N=12; �: N=16; ⋄: N=21; △: N=30

260 280 300 320 340 360 380 400 420 440
Temperature

0

0,2

0,4

0,6

0,8

1

P O

10 15 20 25 30
N

300

310

320

330

340

T m

N ǫ=0.0018 eV.Å−2, ∆P
∆T Tm Poly(T) (Exp), ∆P

∆T Tm

12 3.2 11
16 3.4 11
21 3.45 11
30 3.8 11
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Thermodynamics

KP model

Melting curves equivalent to poly(A)
D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
ǫ = 0.00195 eV .Å−2; •: N=12; �: N=16; ⋄: N=21; △: N=30

260 280 300 320 340 360 380 400 420 440
Temperature

0
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1

P O

10 15 20 25 30 35
N
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300
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330

T m

N ǫ=0.00195 eV.Å−2, ∆P
∆T Tm Poly(A) (Exp), ∆P

∆T Tm

12 3.25 9
16 3.45 8.5
21 3.6 8.5
30 3.8 7.5
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Kinetics

Theoretical predictions

Transition state theory

k1

k−1

k2

k−2

C T O

k−1
op = k−1

1 +
C̄C

C̄O
k−1
−2

k−1
cl = k−1

−2 +
C̄O

C̄F
k−1

1

The system is evolving on a one-dimensional free energy
surface

k−1
op = ZC

∫ +∞

−∞

dr
e−βF (r)J2(r)

D(r)
=

ZC

ZO
k−1

cl

J(r) =











∫ r
−∞

dx e−β(F(x)−F(r ))

ZC
∀ r < rT

∫ +∞

r dx e−β(F(x)−F(r ))

ZO
∀ r > rT
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Kinetics

FRC model

Rates of opening and closing
D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5.
Left: θ = 50◦; •: N=12; �: N=16; ⋄: N=21; △: N=30.
Right: N=21, black: θ = 50◦, red:θ = 48◦

3 3,2 3,4 3,6 3,8 4
1000/T

1e-06

1e-05

0,0001

k op
, k

cl

2,5 3 3,5 4
1000/T

1e-06

1e-05

0,0001

0,001

0,01

k op
, k

cl

Eop, model Ecl , model Eop, exp Ecl , exp
Poly(T) 11.5 -0.33 32 3.4
Poly(A) 11.5 -0.33 32 17.4
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Kinetics

KP model

Rates of opening and closing
D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5.
Left: ǫ=0.0018 eV.Å−2; ◦: N=12; �: N=16; ⋄: N=21; △: N=30.
Right: N=21, black: ǫ=0.0018 eV.Å−2, red: ǫ=0.00195 eV.Å−2

3 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 4
1000/T

1e-06

1e-05

0,0001

0,001
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, k
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2,6 2,8 3 3,2 3,4 3,6 3,8 4
1000/T

1e-06

1e-05

0,0001

0,001

0,01

k op
, k

cl

Eop, model Ecl , model Eop, exp Ecl , exp
Poly(T) 10 +1 32 3.4
Poly(A) 10 +1 32 17.4
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Kinetics

Effect of D and ǫ on the kinetics

3 3,5 4 4,5 5
1000/T
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1e-06
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×: D=0.12 eV
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1000/T
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◦: ǫ=0.0040 eV.Å−2,
�: ǫ=0.0010 eV.Å−2
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Discussion

Thermodynamics
We are able to describe the dependance of Tm with the
loop length for poly(T) and poly(A)
We get too large transition widths

Kinetics
Our results are in qualitative agreements with the
experiments
We can describe the kinetics of poly(T)
We are missing something to deal with the problem of
poly(A)
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Poland-Scheraga model

Model consists on an alternating sequence of ordered and
unordered states

The ordered state is energetically favoured over an
unordered state

→ w = exp
“

−
E

kbT

”

The entropy of the unbound state depends solely on its
length

→ S ∝ sl

lc

The phase transition is governed by the value of c

c ≤ 1 no phase transition
1 < c ≤ 2 continuous phase transition
c ≥ 2 first order phase transition
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Monte Carlo simulation in the canonical ensemble

Minimization of the Free Energy
→ Find the Thermodynamic properties of the system
Try to deduce the Kinetics using MC-step
→ Selection of local motions of the chain

(a)                                        (b)                                                            (c)
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Effect of the width of the Morse potential
D=0.112 eV, k=0.025 eV.Å−2, δ = 0.35, ρ = 5, θ = 50◦ and
N=21. •: α=4.0 Å−1; �: α=5.0 Å−1; ⋄: α=6.0 Å−1; △: α=7.5 Å−1
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Effect of the rigidity of the stem
D=0.112 eV, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 50◦ and N=21. •:
k=0.010 eV.Å−2; �: k=0.020 eV.Å−2; ⋄: k=0.040 eV.Å−2; △:
k=0.060 eV.Å−2
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