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DNA and ssDNA
[ 1]

The DNA molecule

Structure and conformation

@ DNA is a very long helicoidal molecule composed of two
chains of desoxyribonucleotides:
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(W. Saenger, Principles of Nucleic Acid Structure,
Springer-Verlag)
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The DNA molecule

Structure and conformation

@ A nucleotide is composed of three molecular parts
@ A cyclic sugar (desoxyribose)
@ A purine or a pyrimidine base:
Adenine-Guanine-Cytosine-Thymine
@ A phosphate linked to the sugar
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(W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag)
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The DNA molecule

Properties

@ The stability of DNA results from various interactions
@ Hydrogen bonding between complementary bases
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The DNA molecule

Properties

@ The stability of DNA results from various interactions
@ Hydrogen bonding between complementary bases
@ Stacking interaction between base-pairs
@ Melting of DNA
— The two strands of the DNA can be dissociated by heat
— The melting can be followed by the UV absorbance
measurement
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Single-Stranded DNA

DNA Hairpins

@ Single Strands of DNA with complementary bases at its
two ends
— 5-CCCAA-(N),-TTGGG-3’

@ Schematic secondary structure

(S. Cuesta-Loépez et al, Eur. Phys. J. E 16, 235-246)
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Single-Stranded DNA

Interest

@ Biological interest
@ Loop formation is a first step in the folding of the RNA

@ DNA hairpins provide very sensitive probes for short DNA
sequences
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Single-Stranded DNA

Interest

@ Physical interest
@ DNA hairpins are simple systems for the understanding of
the self-assembly of DNA

—
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@ Modelling the fluctuations of hairpins is more challenging
than the thermal denaturation of DNA
— it is not simply the reverse process of its opening
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9 Experimental properties of DNA Hairpins
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Thermodynamic properties

Measurement Principle

@ Molecular Beacons (G. Bonnet et al, Proc. Natl. Acad. Sci. USA 95, 8602-8606)
- Oligonucleotides with a fluorophore and a quencher attached
at its two ends: 5-CCCAA-(N),-TTGGG-3'
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Thermodynamic properties

Measurement Principle

@ Molecular Beacons (G. Bonnet et al, Proc. Natl. Acad. Sci. USA 95, 8602-8606)
- Oligonucleotides with a fluorophore and a quencher attached
at its two ends: 5-CCCAA-(N),-TTGGG-3'
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@ Fluorescence Resonance Energy Transfer

@ The conformational state is directly reported by the
fluorescence
@ The fraction of open beacons can be measured

I(T)—l¢

f(T) = TR
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Thermodynamic properties

Results

@ Melting curves for different loop sequences

Poly (A)
% 08 L
:g 0.6 |
Zosf @ The melting temperature T, decreases
£l with the loop length
0 Lot @ The decay is most important for poly(A)
Poly (T)
g os @ Tp, is higher for a poly(T) than a
g g poly(A)-loop
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Kinetic properties

Measurement principle

@ Fluorescence Correlation Spectroscopy
— Measurement of the autocorrelation function that gives the

sum of the kinetic rates k_ and k.
@ The equilibrium constant gives the ratio of the kinetic rates

__tM)
"
k(1) = &=

ke (T

~—



Experimental results
oce

Kinetic properties

Results

K.k, (57

K.k, ()

@ Rates of opening and closing in Arrhenius plot
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@ Kinetics of opening do not depend on
the loop sequence
10 .
oo s @ The rate of closing decreases with the
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loop length

@ The activation energy is only affected by
the nature of the loop
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e A two dimensional lattice model



Lattice model
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Presentation of the model

Description of the model

@ Total energy of the chain

Ns N

E = nAEA+%ZZe(j7j’)

=1j=1
e(j,J') = ot —t)o(dy — 1)a(j)a’)Ens(t)

@ Hydrogen bonds between
complementary bases

Eng <O
(5. Cuesta-Lpez, 3. Errami, F. Falo @ Flexibility of the chain and stacking
and M. Peyrard, J. Biol. Phys. 31, interaction
273-301)

Ear>0
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Equilibrium properties

Thermodynamics of the opening-closing transition

@ Transition in the abscence of mismatch
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Equilibrium properties

Thermodynamics of the opening-closing transition

@ Transition in the abscence of mismatch
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@ The melting temperature T, decreases with the loop length
— Good agreement with the experiments

@ The melting temperature T, decreases with the increase of
the rigidity
— The effect is too small to model (T)-loop and (A)-loop
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Equilibrium properties

Thermodynamics of the opening-closing transition

ol |

@ The melting curve is smoother
@ The melting curve shows an aditional fairly sharp kink
— The mismatched closings are metastable states

@ Role of the mismatches

<d>
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Monte Carlo Kinetics

Kinetics of opening and closing

@ Chemical equilibrium
between closed and open

states :
d[C
gt ] - ko [C] + kCI [O] 03.1 3.2 33 34 35 36
d O 1000/T (K
% = +ko[C] — kg [O]
o=+ 1 _1 K ¥
°- T 1+ Ke cl 7 14+ Ke F

— Studying the opening of
the hairpins we can also get :
the kinetics of closing
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Discussion

@ Thermodynamic and kinetic results are in qualitative
agreement with respect to the experiments



Lattice model
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Discussion

@ Thermodynamic and kinetic results are in qualitative
agreement with respect to the experiments

@ No gquantitative comparisons are possible
@ There is not enough degrees of freedom in the model

@ The difference between poly(T) and poly(A) is not well
described

@ To get good statisitcs the calculation could become very
long
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Q PBD-Polymer model for DNA Hairpins
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The model

Presentation of the model

@ The model of the hairpin contains two parts
@ The loop which is treated as a polymer in three dimensions
@ The stem which is an extension of the ends of the loop with
additional interactions: PBD-model

(J. Errami, N. Theodorakopoulos and M. Peyrard, Modelling DNA beacons at the mesoscopic scale,
submitted to European Physical Journal E)
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The model

PBD-Model for melting

@ PBD model

n-1 n n+l

vey,) Wy Ly, )

n’ “nl
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The model

PBD-Model for melting

@ PBD model

vey,) Wy Ly, )

n’ “nl
@ Modelling the interactions at the scale of the base

@ Hydrogen bonding between complementary bases

V(yn) =D (7" — 1)°
@ Coupling between consecutive base-pairs

K .
W (¥n,¥n-1) = 5 [1 + pe v *y”*l)] (Yn — Yn_1)?
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Polymer models

Freely Rotating Chain
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Polymer models

Freely Rotating Chain

The root mean square distance scales as v N for large

() - welee!

The chain has a “stiffness”
lim (R-ug) =1, = I
N oo /=%~ 1 cos#

— It also corresponds to the correlation length in the
continuum limit approximation
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Polymer models

Freely Rotating Chain

The root mean square distance scales as /N for large
N

() - welee!

The chain has a “stiffness”

. B |
Nlinoo<R.uo> =l = 1—cosh

— It also corresponds to the correlation length in the
continuum limit approximation

End-to-end distance probability distribution

R scales as v/N for large N

— The probability distribution is Gaussian for large N
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Polymer models

Kratky-Porod Chain (KP)

Hamiltonian of the chain
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Polymer models

Kratky-Porod Chain (KP)

Hamiltonian of the chain

P4
|

1
H=—¢ (I’j Tyl — |2)

r ,—— ‘
J
/ \ The persistence length depends on the temperature
\ | l?
/ P In [cothb — £] ks T
R
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Polymer models

Kratky-Porod Chain (KP)

Hamiltonian of the chain

P4
|

1
H=—¢ (I’j Tyl — |2)

r ,—— i
/ \ The persistence length depends on the temperature

\ | €l?
lp = —Nlb_lka—T

n [cothb — £]

R
/ No analytical expression for the end-to-end probability
distribution
— Powerful numerical calculation in terms of a finite
sum of Bessel functions

|
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Polymer models

Growth of a polymer chain S(r|R)

Probability of the growth chain Py 2 (r)
— derived from Py (R)

r R
/ dRPN r|R) PN+2(I") vr,N
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Polymer models

Growth of a polymer chain S(r|R)

Probability of the growth chain Py 2 (r)
— derived from Py (R)

r R
/ dRPN r|R) PN+2(I") VI",N

The conditional probability distribution S(r|R)

/ drS(r|lR) =1 VR
0

Distribution of the added bond vectors assumed to be Gaussian
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Polymer models

Conditional probability distribution S(r|R)

Effective Gaussian approach

— Approximate Py (R) by a Gaussian chain that gives the correct
persistence length

The Gaussian approximation can be rough for small N but quite good
for the extention of the chain

°

Probability distribution, N=30
s o
8 8

Probability distribution, N=12
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Thermodynamics

Partition function

@ Construction of the reduced partition function of the hairpin

@ Partition function of a chain for a given end-to-end distance
R
Zn(R) = Z9'Py(R)
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Thermodynamics

Partition function

@ Construction of the reduced partition function of the hairpin

@ Partition function of a chain for a given end-to-end distance
R
Zn(R) = Z9'Py(R)

@ Suppose that we add one bond at each end

Zns2(tv-1) = Pra2(tv—1) 2yt 2
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Thermodynamics

Partition function

@ Construction of the reduced partition function of the hairpin

@ Partition function of a chain for a given end-to-end distance
R
Zn(R) = Z9'Py(R)

@ Suppose that we add one bond at each end

Zns2(tv-1) = Pra2(tv—1) 2yt 2

@ Introducing the S function

Znio(tm—1) = N+2/dr|v|3 'm—1/tm)Pn(m)
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Thermodynamics

Partition function

@ Construction of the reduced partition function of the hairpin

@ Then we put the additional interactions according to the
PBD model

Znya(ru-1) = 234,

e*ﬁv(erl)/drM efﬁ(w(erlJM)‘FV(rM))S(rMil“M)PN(rM)
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Thermodynamics

Partition function

@ Construction of the reduced partition function of the hairpin

@ Then we put the additional interactions according to the
PBD model

Znya(ru-1) = 234,

e*ﬁv(erl)/drM efﬁ(w(erlJM)‘FV(rM))S(rMil“M)PN(rM)

@ Finally we extend the process to the hairpin

Z(r) =Zioop(n+2m—1y€ Y I x
M

oo M
/ [T an [ S(ralr)e oM We-snlpy ()
0

i=2 i=2
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Thermodynamics

Melting curves

@ Free energy landscape
F(r)=—koT In Z(r)

I I
10 10
T

— The shape of F(r) justifies the image of the two-state system
@ Melting curves

P +00
Keq o J T arzZ(r)

f: et :P _ —
1+Keq 1452 © Sy drz(r)
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Thermodynamics

FRC Model

@ Melting curves equivalent to poly(T)
— -2 — -1
'g:o'ggg eV‘f5 ’S‘_‘g'fl’; N O: D=0.112 eV, § = 50°;
=029 p =0 DTN V) o: D=0.119 eV, § = 45°;

6 = 50°,0: N=12: [0: N=16; . P
o N=21: A: N=30 A: D=0.100 eV, 6 = 64
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Thermodynamics

FRC model

@ Melting curves equivalent to poly(A)
D=0.112 eV, k=0.025 eV.A=2, 0=6.9 A=1, § = 0.35, p = 5,
0 = 48°, o: N=12; [0: N=16; o: N=21; A: N=30

[ L
260 280 %00 30 30 360 a0 400 40 40 5 R 0 E3

N | 6 =50° 4 AT 6 = 48°, & AT Poly(T) (Exp) | Poly(A) (Exp)

12 3.6 3.7 11 9
16 3.7 3.8 11 8.5
21 3.7 3.8 11 8.5

30 3.9 4.0 11 7.5
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Thermodynamics

KP model

@ Melting curves equivalent to poly(T)
D=0.107 eV, k=0.025 eV.A=2, 0=6.9 A-1, § = 0.35, p = 5,
e =0.0018 eV.A2, o: N=12; [0: N=16; o: N=21; A: N=30

o8l

o8-

L L T |
w0 W0 o I W w0 @0 M 15 2 i3
Temperatur N

N | e=0.0018 eV.A=2, 2ET,, | Poly(T) (Exp), 22Tm

12 3.2 11
16 3.4 11
21 3.45 11

30 3.8 11
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Thermodynamics

KP model

@ Melting curves equivalent to poly(A)
D=0.107 eV, k=0.025 eV.A=2, 0=6.9 A-1, § = 0.35, p = 5,
e =0.00195 eV.A2; o: N=12; [J: N=16; o: N=21; A: N=30

8

o8l -

o8- 4

P
T
LI B S B

T T R R R N | | | \
%W oW @300 w0 @ @ 5 e = EJ
Temperatur N

N | e=0.00195 eV.A—2, 28T, | Poly(A) (Exp), 22T

12 3.25 9
16 3.45 8.5
21 3.6 8.5

30 3.8 7.5
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Kinetics

Theoretical predictions

@ Transition state theory
k k -1 -1 C_c -1
L 2 Kop =Ky =+ =k

—_— e
Ce=— T =—_0 c
k_1 k_» kc_ll — k_—éL + Ok -1
Ce !

@ The system is evolving on a one-dimensional free energy
surface

+o0o *5F(f)\]2(r) Z
-1 _ e _ &Cy, -1
Kop = ZC/,OO drT =7k

e~ BF(X)—F(r)
f_ XE—F—— Vr<ry

J(r) =

400 4. e—BEX—FN)
J: de Vro>rg
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Kinetics

FRC model

@ Rates of opening and closing
D=0.112 eV, k=0.025 eV.A=2, 0=6.9 A-1, § = 0.35, p = 5.
Left: 6 = 50°; e: N=12; [1: N=16; o: N=21; A: N=30.
Right: N=21, black: § = 50°, red:0 = 48°

& 00001

Kop K
K

1006 -
1006 g

Eop, model | Eg, model | Eqp, exp | Eg, exp
Poly(T) 11.5 -0.33 32 3.4
Poly(A) 11.5 -0.33 32 17.4




Kinetics

KP model

@ Rates of opening and closing
D=0.107 eV, k=0.025 eV.A=2, 0=6.9 A-1, § = 0.35, p = 5.
Left: ¢=0.0018 eV.A=2; o: N=12; 0: N=16; o: N=21; A: N=30.
Right: N=21, black: ¢=0.0018 eV.A~2, red: ¢=0.00195 eV.A—2

PBD-Polymer model

[e]e] o)

32 34
1000

Eop, model | Eg, model | Eqp, exp | Eg, exp
Poly(T) 10 +1 32 34
Poly(A) 10 +1 32 17.4
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Kinetics

@ Effect of D and € on the kinetics

0,000 4

1e05- 4

4 &
1000 y y - .

o: D=0.08 eV, [1I: D=0.09 eV,
o: D=0.10 eV; A: D=0.11 eV,
x: D=0.12 eV

o: €=0.0040 eV.A—2,
0: ¢=0.0010 eV.A—2
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@ We are able to describe the dependance of T, with the
loop length for poly(T) and poly(A)
@ We get too large transition widths
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Discussion

@ Thermodynamics
@ We are able to describe the dependance of T, with the
loop length for poly(T) and poly(A)
@ We get too large transition widths
@ Kinetics
@ Our results are in qualitative agreements with the
experiments
@ We can describe the kinetics of poly(T)
@ We are missing something to deal with the problem of

poly(A)
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Conclusion

@ We have studied the self assembly of DNA Hairpins with
two models

@ Lattice model

@ The results are qualitatively good
@ It helps us in the understanding of the physics of the system
@ PBD-Polymer model
@ The results are in semi-quantitative agreement with the
experiments
@ It shows some limitations
— The behavior of a single strand of DNA depends on its
sequence
@ Poly(T) can be viewed as a polymer
@ Poly(A)?
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Conclusion

@ Microscopic model
—Modelling of all the interactions between the atoms

@ Potential describing the stretching of covalent bonds

I(bond (I‘ - r0)2

@ Potential of angular rigidity
K (6 — 6o)°

@ Potential of torsion

Kg(1 + cos¢)

@ Lennard-Jones potential for non-bonding interactions

(7))
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Conclusion

@ Poland-Scheraga model
@ Model consists on an alternating sequence of ordered and

unordered states

@ The ordered state is energetically favoured over an
unordered state

— W = exp (—kbiT)

@ The entropy of the unbound state depends solely on its
length
— S« %l
@ The phase transition is governed by the value of ¢

@ ¢ < 1 no phase transition
@ 1 < ¢ < 2 continuous phase transition
@ c > 2 first order phase transition



Conclusion

@ Monte Carlo simulation in the canonical ensemble

@ Minimization of the Free Energy

— Find the Thermodynamic properties of the system
@ Try to deduce the Kinetics using MC-step

— Selection of local motions of the chain

(@ (b) ()




Conclusion

@ Effect of the width of the Morse potential
D=0.112 eV, k=0.025 eV.A=2, § = 0.35, p = 5, # = 50° and
N=21. e: 0=4.0 A-1; 0 a=5.0 A-1; 0: 0=6.0 A-1; A: a=7.5 A-?

Ea0l

30|

20|

S71&ET
3.4
35
3.8
4.1




Conclusion

@ Effect of the rigidity of the stem
D=0.112 eV, a=6.9 A~1, § = 0.35, p = 5, § = 50° and N=21. e:
k=0.010 eV.A—2; [0: k=0.020 eV.A2; o: k=0.040 eV.A-2; A:

k=0.060 eV.A—2
R T wan ool o
keVA-2) [ s #1, 2P,
0.01 41
0.020 4
0.040 38
0.06 37
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