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What is a Problem?

Problem: instance 7�! solution

Example

list of a fixed size N containing only 0’s[0;0; : : : ;0] 7�!“TRUE”;

list of size N containing 0’s everywhere expect for one 1[0; : : : ;0;1;0; : : : ;0] 7�!“FALSE”.

This is the search in an unordered list of size N.

A solver must attempt to find the solution to every instance it is
shown, at least with a good probability.
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Complexity

The complexity of a problem is the minimum amount of
resources that the solver has to use. These resources may
take such form as. . .

computing time;

memory;

energy/money/. . .
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Query Complexity

The solver has illimited computing ressources .

However, it has a limited knowledge of the instance . It must
spend resources to know it.

Probabilities may be involved. We then worry about
worst-case error. When we allow an error ", it means that for
every instance, the solver must find the correct result with
probability at least 1� ".
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What is a Problem?

Problems are formalized as partial functions from J I to R.

An instance is a function from I to J
Some functions from I to J may not be instances. In that
event, the problem is said to be a promise problem .
The solution to the instance x 2 J I is a result in R.
I is the set of possible queries, and J the set of possible
queries. Questions like “What is x(i)?” are the only way
the solver may know of x .

Example

A list [a1;a2; : : : ;an] is formalized as the fonction� f1; : : : ;ng ! A
i 7! ai

�
, with R being f\TRUE 00; \FALSE 00g.
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Dialogue between the Solver and the Black Box

10 Initialization
20 DO (large computation)
30 j <- QUERY(i)
40 IF (not finished)

THEN GOTO 20
50 DO (large computation)
60 OUTPUT (result)

What is the value ofx on i?

x(i)!

black-box functionx
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A problem has symmetries when some permutations may be
applied on I (the queries) and J (the answers), that do not
change the outcome.

i ?

��1(i)?

� �x ���1 (i)��!
x
���1 (i)�!

permuter

10 Initialization
20 DO (large computation)
30 j <- QUERY(i)
40 IF (not finished)

THEN GOTO 20
50 DO (large computation)
60 OUTPUT (result)(�; �)black-box

functionx

Example

All the permutations of the queries are symmetries of the
search in an unordered list of size N.
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Fundamental Duality

Randomized algorithms are difficult to analyze!

To help us, tools exists, that transpose the difficulty to studying
the behaviour of deterministic algorithms on a probabilistic
superposition of instances.

We are to simplify that even more, by resorting to nonadaptivity.
The goal is to have exact and “simple” (purely combinatorial)
expressions of the complexity.
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A “Simple” Formula

Proposition 4.12

min

8>>><>>>:T

,0BBB@ min
pr � 0P

r2R
pr = 1

max
A 2 ITF

r2R
Xr = JT

X
r2R

pr � Pr
A (Xr )

1CCCA � 1� "
9>>>=>>>;
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What is nonadaptivity?

Definition

The solver is said to be nonadaptive when the queries are
independent of the previous answers.

Equivalently, it decides in advance which questions it is going to
ask the black box.
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Symmetries and Nonadaptivity

Nonadaptivity � Adaptivity? difficult question!

Fortunately, on some symmetry conditions, this is true. For
instance:

Facts 4.21 and 4.23

problems where each permutation of the queries is a
symmetry;

collision problems where every permutation of the
answers are symmetries.

A collision problem is a decision problem where positive
instances are one-to-one, whereas none of the negative
instances is.
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Some Query Complexities

Symmetries thus allow us to compute exact query complexities
for some classes of problems. Here are some examples.
The maximal error probability " is fixed in

�
0; 1

2

�
.

Problem Complexity

Search in an unordered list of size N
l

1�2"
1�" N

m
Hidden translation for functions fromf0;1g � f1; : : : ;Ng to f1; : : : ;2Ng

l
2
q

1�2"
1�" N

m
One-to-one versus two-to-one for func-
tions from f1; : : : ;2Ng to itself

� 2
q

N ln
�1
" � 1

�
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Quantum Dialogue between the Solver and the Black
Box

10 Initialization
20 DO (large computation)
30 j <- QUERY(i)
40 IF (not finished)

THEN GOTO 20
50 DO (large computation)
60 OUTPUT (result)

What is the value ofx on i?

x(i)!

Now it’s all quantum!
black-box functionx
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Quantum Mechanics: The Shortest Introduction Ever

Let the Si ’s be physical “sure” states.

Classical :
P

i
pi � Si , with pi � 0. The probability of measuring

Si is pi . Stochastic matrices.

Quantum :
P

i
ai � Si , with ai 2 C. The probability of measuring

Si is jai j2. Unitary matrices.
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Order Finding

We want to compute the multiplicative order r of an element a
in Z=NZ. N is not known to the solver a priori. We may only
query this function:�

Z ! Z
i 7! ai mod N

�

a mod N

: : :

1

: : :

a2 mod N
: : : ; 2� 2r ; 2� r ; 2; 2+ r ; 2+ 2r ; : : :

: : : ; 1� r ; 1; 1+ r ; 1+ 2r ; : : :

: : : ;�r ; 0; r ; : : :
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Hidden Subgroup Problem

Definition

Group G, set X .
 : G ! X is a function s.t. there exists H � G s.t.


(g) = 
(g0) () 9h 2 H g = g0 � h
G


 //

!! !!C
CC

CC
CC

C X

G=H
.
� ~


=={
{

{
{

Given such a 
, H is uniquely determined: it is the subgroup
hidden by 
.

G and X are known to the solver, which must find H.
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Why the HSP?

General aim: study the power of quantum relatively to classical.

HSP lie at the boundary.

While most probably intractable by classical means, some of
them (notably Abelian ones) are theoretically solvable in short
time with quantum computing.

HSP include both factorizing (which is classically hard, but
quantumly easy) and Graph Isomorphism (which seems hard
for both, though not NP-hard).
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Theorem (KNP 05)

The query complexity of the Abelian HSP in G is in �(rank(G)).
Corollary

The query complexity of the HSP in G is
 �max H�G;H abelian rank(H)�.
This remains true if. . .

we deal with the associated decision problem;

if we only care about average error for subgroups of a fixed
size.
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Proof of the upper bound

The standard algorithm is due to Simon (94), Shor (97),
Ettinger, Høyer and Knill (04) and al.

It is known to require O (log jGj) queries for the decision
problem.

Actually, O (rank(G)) queries are sufficient when G is Abelian,
whether considering the decision problem or not.
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Proof of the Lower Bound

Sketch of the proof:

Consider only groups of the form (Z=pZ)n.

Use polynomial method.

Symmetrize to get a univariate polynomial.

Finish it with an appropriate approximation lemma.

– 28/34 –



Models and Definitions Classical Randomized Quantum Conclusion

Outline

1 Models and Definitions
Problems and Complexity
Queries and Black Box
Symmetries

2 Classical Randomized
Duality and Nonadaptivity
Explicit Calculations

3 Quantum
Model
Hidden Subgroup Problems
Polynomial Method

– 29/34 –



Models and Definitions Classical Randomized Quantum Conclusion

Definitions

Problem f : J I ! R. For x 2 J I , i 2 I and j 2 J, we define

�i;j(x) = � 1 if x(i) = j
0 otherwise

Theorem (BBCMW 98)

If a quantum algorithm makes T queries, then for every r 2 R,
the probability that it outputs r on instance x is a polynomial in
the �i;j ’s of degree at most 2T .

Problem: This polynomial is ultrasupermultivariate.
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Symmetrization

Following the symmetries of the HSP on (Z=pZ)n, coming from
the automorphisms of the group, we average this polynomial.
Namely, we consider P(k), the probability that the algorithm
outputs “H is trivial” when H is actually a subgroup of order k .

Thanks to the particular structure of (Z=pZ)n, P still is a
polynomial in k , of degree at most 2T . Moreover, it has
interesting constraints :

P(1) ' 1 and

P(pi) ' 0 for i 2 f1; : : : ;ng.
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Approximation Lemma

Lemma (KNP 05)

Let c > 0 and � > 1 be constants, and P a real polynomial s.t.

for every i 2 f0; : : : ;n � 1g, ��P(�i)�� � 1, and

there exists x0 2 [1; �] s.t. jP 0(x0)j � c.

Then deg(P) = 
 (n).
Conclusion : since P is of degree at most 2T but at least 
 (n),
then T must be at least 
 (n).
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Questions, Prospects and Perspective

Nonadaptive quantum query complexity

. . . or any kind of lower bound for
non-abelian HSP, for that matter

Method for proving quantum lower bounds
for symmetric problems
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