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Introduction

This thesis is devoted to the theory of immersions, using methods of spin geometry and of
para-complex and para-quaternionic geometry, and is subdivided into three different top-
ics. The first two are related to the study of conformal immersions of pseudo-Riemannian
surfaces. This is investigated in two ways: On the one hand, the immersions into three-
dimensional pseudo-Euclidean spaces and, on the other hand, into the four-dimensional
pseudo-sphere S?2. The last topic is more general and deals with para-complex vector
bundles and para-complex affine immersions.

1. Representations of pseudo-Riemannian surfaces in space

The relationship between immersions of Riemannian surfaces in Euclidean three- and
four-dimensional spaces and spinors has been studied by many authors ([Ab], [Bér], [KS],
[Frl], [Mo], [Tai], [Vo],...). In fact the spinor representations of surfaces are not only of
mathematical interest (see for example their applications in algebraic geometry [P]), but
it is also of great importance in many areas of theoretical physics, especially soliton the-
ory ([Tai]) and string theory ([GM], [IT]). This is the subject of the first part of this thesis.

Originally a representation of constant mean curvature surfaces by holomorphic func-
tions was already given by Weierstral in 1886 (see [We]). It is known that conformal
immersions of surfaces in R? can be expressed by a generalized Weierstra3 representa-
tion in terms of an integral over appropriate (1,0)-forms, which are no more necessarily
holomorphic. Due to Eisenhart [Eis], this result was rediscovered by Kenmotsu [Ke] and
Konopelchenko [Kon]. Using the fact that a spin bundle associated to a given spin struc-
ture on a Riemannian surface M can be viewed as a square root of the holomorphic
cotangent bundle T*M = (THOM)* (see [At], [Mi]), Kusner and Schmitt derived in [KS]
a spinor representation for such surfaces. The integrability condition reduces then to a
non-linear Dirac equation: This means, that the existence of a Dirac spinor, i.e. a solution
of the Dirac equation

Dy = H|p|¢, (0.0.1)

where H is a real-valued function, is locally equivalent to the existence of a conformal
immersion (M, g) — R? with mean curvature H (see [Bér|, [Fr1], [KS], [Tai]). Friedrich
gives in [Frl] such a description in a geometrically invariant fashion: The restriction ¢
of a parallel spinor field on R" to a Riemannian hypersurface M~ ! is a solution of a
generalized Killing equation

Vil = A(X) ¢, (0.0.2)

11



where V*M is the spin connection on M"! and A is the Weingarten tensor of the im-
mersion. Conversely, Friedrich proves that, in the two-dimensional case, if there exists a
generalized Killing spinor field satisfying equation (0.0.2), where A is an arbitrary field of
symmetric endomorphisms of 7'M, then A satisfies the Codazzi-Mainardi and Gaufl equa-
tions of hypersurface theory and is consequently the Weingarten tensor of an isometric
immersion of M? in R3. Moreover in this case, a solution ¢ of the generalized Killing
equation is equivalently a solution of the Dirac equation, where |¢| is constant. A similar
result holds true for Riemannian surfaces immersed in the sphere S* and the hyperbolic
space H? (see [Mo], [Vo]). With the additional condition on the tensor A to be parallel,
the equivalence between an isometric immersion of a three-dimensional manifold into R*
and the existence of a generalized Killing spinor on the manifold was also proven in [Mo].
We show that it is equivalent of finding a solution of a Dirac equation on M, and find
analogous results for immersions in S* and H*.

Recently the case of pseudo-Riemannian manifolds of general dimension was examined in
[BGM]: it was proven that if ¢ is solution of a generalized Killing equation with Codazzi
tensor A on a pseudo-Riemannian manifold M, then the manifold can be embedded as
a hypersurface into a Ricci flat manifold equipped with a parallel spinor which restricts
to . The motivation of chapter 2 was the question if, at least in low dimensions, the
result of Friedrich can be generalized to the pseudo-Riemannian case. In fact in the
two-dimensional case we prove a similar result for Lorentzian surfaces immersed into the
pseudo-Euclidean space R?!. Unfortunately the existence of vectors with negative norms
does not allow with this approach to omit the Codazzi condition on the tensor A. Hence
there was a need to change the method.

This motivates the second section of chapter 2. With the methods of para-complex geom-
etry and using real spinor representations we succeed in proving the equivalence between
the data of a conformal immersion of a Lorentzian surface in R*! and spinors satisfying
a Dirac-type equation on the surface. In fact, Lorentz surfaces can be viewed as real two-
dimensional para-complex manifolds, and admit therefore an atlas {U, ¢} such that the
coordinate changes are para-holomorphic (see [CMMS]). As in the case of (1, 0)-forms on
complex manifolds, a para-complex (1, 0)-form w on M can be written as w = ¢ dz, where,
having e as the para-complex unit, z = x + ey is a para-holomorphic coordinate and ¢
is a para-complex function. We give a Weierstrafl representation for arbitrary conformal
immersions of Lorentz surfaces in R*! using a triple of para-complex (1, 0)-forms verifying
certain conditions analogous to the complex model. This generalizes a result of Konderak
(see [KO]) for Lorentz minimal surfaces. Using the real splitting of the tangent bundle we
give in theorem 8 a real version of this result in terms of (0+,1—)- and (14, 0—)-forms.
In analogy to the Riemannian case we consider spin bundles on an oriented and time-
oriented Lorentz surface M as para-complex line bundles L such that there exists an
isomorphism
ki L? 2T M.

Consequently any section of L may be viewed as a square root of a para-complex (1,0)-
form on M. This allows us, with help of the two Weierstrass representations described
above, to give, on the one hand, a real, and, on the other hand, a para-complex spinor rep-
resentation for conformal immersions of M into the pseudo-Euclidean space R*!. In the

12



real case we derive a Dirac-type equation for the two spinors related to the representation.

Finally we give a geometrically invariant representation of Lorentzian surfaces in R?!
using two non-vanishing spinors ¢ and @9 satisfying a coupled Dirac equation

Dy = Hpy, Dy =—Hp,, (p1,p2) = 1.

We show that ¢ and ¢, are equivalently solutions of two generalized Killing equations

Vxpr = AX)p1, Vxps = —A(X)ps.

The Codazzi condition on A is then no more necessary to prove that this two properties
are again equivalent to an isometric immersion M «— R?*! with Weingarten tensor A.

2. (Para-)conformal geometry of pseudo-Riemannian surfaces in S??

The second part of this thesis investigates the immersions of surfaces with signature into
the pseudo-Riemannian sphere S*2.

In [BFLPP]|, Burstall, Ferus, Leschke, Pedit and Pinkall apply calculus on the quaternions
H to the study of Riemannian surfaces conformally immersed in the four sphere S* = HP!.
Identifying the Fuclidean four-space with the quaternions and the Euclidean three space
with the space of imaginary quaternions, they generalizes complex Riemannian surface
theory to the quaternionic setting. This method then applies to the study of Willmore
surfaces. This topic is again of mathematical and physical interest: It is worth pointing
out the relation between the Willmore functional and quantum physics, including string
theory, where it is well known as Polyakov extrinsic action of two-dimensional gravity.
Considering conformal immersions of Riemannian surfaces into the quaternionic projec-
tive space HP! = S*, they prove that there exists a one-to-one correspondence between
such immersions and line subbundles (quaternionic holomorphic curves) L of the trivial
bundle M x H?2. This allows one to define the mean curvature sphere congruence, which
can be seen as a complex structure on L, and the Hopf fields of the immersions. This
leads to the definition of the Willmore functional of such surfaces.

We generalize this work to surfaces of arbitrary signature and especially to Lorentzian sur-
faces. For this purpose we consider the space of para-quaternions H. The needed notions
of linear algebra and geometry over H are introduced in the second section of chapter 1, as
they are not extensively discussed in the literature. Roughly speaking, para-quaternionic
vector modules are endowed with one complex structure and two para-complex struc-
tures satisfying certain commutation relations. We can then generalize the method of
[BFLPP] to complex Riemannian surface theory and to para-complex Lorentzian surface
theory at the same time. It was proven by Blazi¢ (see [Bl]), that the para-quaternionic
projective space HP! is diffeomorphic to the pseudo-sphere S22 of unit vectors in H.
Hence we consider immersions f : M — HP!. Similarly to the quaternionic case, we
can identify these immersions with the pull-back of the para-quaternionic tautological
bundle f*75p, =: L C M x H?. Hence these yields a one-to-one correspondence between

such immersions and para-quaternionic line subbundles of the trivial bundle M x H2.

13



Considering then a particular (para-)complex structure on this bundle, the mean curva-
ture pseudo-sphere congruence S¢ and the para-quaternionic Hopf fields A and @ of the
immersion, we can define the energy functional of the surface:

B(S7) = /M (dS® A JdSF)

and the Willmore functional

1
W(L) := —/(A/\ JTA),
™
which is the classical Willmore energy of conformal surfaces. We can then expressed the
energy of a conformal surface of arbitrary signature as the sum of a topological invariant
and of the Willmore functional.

3. Para-complex vector bundles and para-complex affine immersions

In the third and last part of this thesis we study decompositions of para-complex vector
bundles endowed with a connection over a para-complex manifold. This will be the sub-
ject of our fourth and last chapter. As in complex geometry, there exists in para-complex
geometry the notion of (para-)holomorphic bundles. Abe and Kurosu devoted the first
part of their work [AK] to the study of subbundles of complex and holomorphic vector
bundles and characterized holomorphic subbundles and subbundles of type (1,1) in terms
of the associated induced connections and of the second fundamental forms. They gener-
alized in this way some of the results of [D, DV, NPP| and applied their results to complex
affine immersions to obtain existence and uniqueness theorems.

We are going to extend these results in the framework of para-complex geometry. This
means that we introduce and study para-holomorphic vector bundles and characterize
para-holomorphic subbundles and subbundles of type (1, 1) in terms of the associated in-
duced connections and second fundamental forms. The first part of our study is devoted
to connections and morphisms of para-holomorphic vector bundles. In this part we also
prove, in proposition 21, an analogue of the well-known theorem of complex geometry
([AHS, K]), which asserts that any connection with vanishing (0, 2)-curvature on a (para-
Jcomplex vector bundle F induces a unique (para-)holomorphic structure on E. This gen-
eralizes to arbitrary dimensions the result of Erdem [Er3] who has proved this for vector
bundles over para-complex curves. Further we recall the fundamental equations for gen-
eral decompositions of vector bundles with connection and analyze the cases where some
of the (sub)bundles are para-holomorphic. We introduce para-complex affine immersions
and apply the above results to the decomposition induced by the affine immersions. This
will be finally used to obtain existence and uniqueness theorems of para-complex affine
immersions. These results have been the subject of a common article with L. Schéfer [LS].

14



Introduction (Version Francaise)

Dans cette these nous présentons un travail relatif a la théorie des immersions, utilisant
des méthodes issues de la géométrie spinorielle, de la géométrie para-complexe et de la
géométrie para-quaternionique. Ce travail se divise en trois parties: Les deux premieres
sont consacrées a ’étude des immersions conformes de surfaces pseudo-Riemanniennes
dans l’espace pseudo-Euclidien de dimension trois d’une part, et dans la pseudo-sphere
S?2? de dimension quatre d’autre part. La derniere partie, plus générale, a trait aux fibrés
vectoriels para-complexes et aux immersions affines para-complexes.

1. Representations des surfaces pseudo-Riemanniennes dans ’espace

La relation entre les immersions de surfaces de Riemann dans les espaces Euclidiens de
dimension trois et quatre et les spineurs a été étudiée par un grand nombre d’auteurs
([Ab], [Bér], [KS], [Frl], [Mo], [Tai], [Vo],...). De fait, la représentation spinorielle des
surfaces est un sujet d’intérét non seulement en mathématiques (citons par exemple ses
applications en géométrie algébrique [P]), mais également dans de nombreux domaines de
la physique théorique, comme en théorie des solitons ([Tai]) et dans la théorie des cordes
([GM], [IT]). Elle est le sujet principal de la premiere partie de cette these.

Des 1886, une représentation des surfaces a courbure constante utilisant des fonctions
holomorphes idoines fut donnée par Weierstrafl (voir [We]). Il est bien connu que les
immersions conformes de surfaces dans R? peuvent étre exprimées par une représentation
de Weierstrafl généralisée en termes d’une intégrale de (1, 0)-formes satistaisant certaines
conditions et n’étant plus nécessairement holomorphes. Dt a Eisenhart [Eis]|, ce résultat
fut redécouvert par Kenmotsu [Ke| et Konopelchenko [Kon)].

En utilisant le fait qu’un fibré spinoriel associé a une structure spinorielle donnée sur une
surface de Riemann M peut étre considéré comme la racine carrée du fibré holomorphe
cotangent T*M = (TTOM)* (voir [At], [Mi]), Kusner et Schmitt établissent dans [KS] une
représentation spinorielle pour de telles surfaces. La condition d’intégrabilité se ramene a
une équation de Dirac non-linéaire: plus explicitement I'existence d’un spineur de Dirac,
c’est-a-dire d’une solution de I’équation de Dirac

Dy = H|p|¢, (0.0.3)

ol H est une fonction réelle, est localement équivalente a l'existence d’'une immersion
conforme (M, g) — R3 dont la courbure moyenne est H (voir [Bar], [Frl], [KS], [Tai]).
Friedrich donne dans [Fr1] une description semblable, mais d'une maniere géométriquement
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invariante: La restriction ¢ d’'un champ de spineurs paralleles sur R™ a une hypersurface
Riemannienne M"™~! est une solution de I’équation de Killing généralisée

VMo = A(X) ¢, (0.0.4)

ot V*M est la connexion spinorielle sur M™! et A est le tenseur de Weingarten de
I'immersion. Réciproquement, Friedrich montre que dans le cas de dimension deux,
s'il existe un spineur de Killing généralisé satisfaisant 1’équation (0.0.2), ou A est un
champ quelconque d’endomorphismes symétriques de T'M, alors A vérifie les équations
de Codazzi-Mainardi et de Gaufl de la théorie des hypersurfaces. Ce n’est rien d’autre que
le tenseur de Weingarten d’une immersion isométrique de M? dans R3. En outre, dans ce
méme cas, la solution ¢ d'une équation de Killing généralisée est également solution d’une
équation de Dirac, ou |p| est constante. Un résultat similaire s’applique aux surfaces de
Riemann immergées dans la sphere S? et dans I'espace hyperbolique H? (voir [Mo], [Vo]).
De plus il a été montré dans [Mo| que si le tenseur A est parallele, alors Iexistence d'un
spineur de Killing généralisé sur la variété est équivalente a l'existence d’une immersion
isométrique dans R*.

Nous montrons que ces deux propriétés sont aussi équivalentes a ’existence d’une solu-
tion d'une équation de Dirac sur M, et nous prouvons des résultats analogues pour les
immersions de variétés de dimension trois dans S* et H%.

Récemment le cas des variétés pseudo-Riemanniennes de dimension quelconque a été
étudié dans [BGM]: il y est démontré que si ¢ est une solution de I’équation de Killing
généralisée sur une variété pseudo-Riemannienne M, et si A est un tenseur de Codazzi,
alors la variété peut-étre immergée comme hypersurface dans une variété Ricci-plate mu-
nie d’un spineur parallele dont la restriction a I'hypersurface est le spineur . Dans le
chapitre 2 de cette these nous nous intéressons a la question de savoir si, au moins en pe-
tites dimensions, le résultat de Friedrich peut étre généralisé au cas pseudo-Riemannien.
Nous prouvons qu’effectivement, en dimension deux, il existe un résultat similaire pour
les surfaces de Lorentz immergées dans ’espace pseudo-Euclidien R?!. Malheureusement
I'existence de vecteurs dont la norme est négative ne permet pas, par cette approche,
d’omettre la condition de Codazzi sur le tenseur A. Il était donc nécessaire de changer de
méthode.

Cette réflexion motive la deuxieme section du chapitre 2. Avec des méthodes de géométrie
para-complexe et, en utilisant des représentations spinorielles réelles, nous parvenons a
prouver I’équivalence entre une immersion conforme d'une surface de Lorentz dans R?!
et 'existence de deux spineurs satisfaisant une équation de type Dirac sur la surface. En
effet nous pouvons considérer les surfaces de Lorentz comme des variétés para-complexes
de dimension réelle deux. Elles admettent donc un atlas {U, ¢}, tel que les changements
de cartes sont para-holomorphes (voir [CMMS]). Comme dans le cas des (1,0)-formes
sur les variétés complexes, une (1,0)-forme para-complexe w sur M peut-étre écrite sous
la forme w = ¢ dz, ou e est I'unité para-complexe, z = x + ey est une coordonnée para-
holomorphe et ¢ est une fonction para-complexe. Nous donnons une représentation de
Weierstrafl para-complexe pour les immersions conformes des surfaces de Lorentz dans
R*! nous servant pour ce faire d'un triplet de (1,0)-formes para-complexes vérifiant
certaines conditions, de maniere analogue au cas complexe. Ceci généralise un résultat
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de Konderak (voir [KO]) s’appliquant au surfaces de Lorentz minimales. Utilisant la
décomposition réelle du fibré tangent, nous donnons dans le théoreme 8 une version réelle
de ce résultat en termes de (04, 1—)- et de (14, 0—)-formes.
En analogie au cas Riemannien nous considérons un fibré spinoriel sur une surface de
Lorentz orientée et orientée dans le temps comme un fibré en droite para-complexe L, tel
qu’il existe un isomorphisme

ki L* 2T M.

En conséquence, toute section de L peut-étre interprétée comme une racine carrée d’une
(1,0)-forme para-complexe sur M. Ceci nous permet, a 1’aide des deux représentations de
Weierstrass décrites ci-dessus de donner, d'une part, une représentation spinorielle réelle,
et d’autre part une représentation spinorielle para-complexe des immersions conformes de
M dans l'espace pseudo-Euclidien R*!. Dans le cas réel nous établissons une équation de
type Dirac pour les deux spineurs associés a la représentation.

Pour finir, nous donnons une représentation géométriquement invariante des surfaces de
Lorentz dans R*! & 'aide de deux spineurs ¢; et o, vérifiant des équations de Dirac
couplées

Doy =Hp1, Dpy=—Hpy, (p1,02) = 1.

Nous montrons que ¢y et @9 sont de maniere équivalente les solutions de deux équations
de Killing généralisées

Vxpr =AX)p1, Vxps =—A(X)ps.

La condition de Codazzi sur le tenseur A n’est alors plus nécessaire pour démontrer que
ces deux propriétés sont équivalente & la donnée d’une immersion isométrique M — R*!
dont le tenseur de Weingarten est précisément A.

2. Géométrie (para-)conforme des surfaces pseudo-Riemannienns dans S*2

La seconde partie de cette theése est consacrée aux immersions de surfaces a signature
quelconque dans la sphere pseudo-Riemannienne S?2.

Dans [BFLPP], Burstall, Ferus, Leschke, Pedit et Pinkall appliquent les méthodes de
calcul sur les quaternions H a I’étude des surfaces Riemanniennes immergées de maniere
conforme dans la sphere de dimension quatre S* = HP!. En identifiant I’espace Euclidien
de dimension quatre avec les quaternions et I’espace Euclidien de dimension trois avec les
quaternions imaginaires, les auteurs généralisent la théorie complexe des surfaces de Rie-
mann au cadre quaternionique. Cette méthode est ensuite appliquée a I’étude des surfaces
de Willmore. Remarquons qu’ici encore, ce sujet est d’intérét autant en mathématique
qu’en physique: citons surtout I'importance de la fonctionnelle de Willmore en physique
quantique, et plus particulierement en théorie des cordes, ou elle est connue comme ac-
tion extrinseque de Polyakov pour la gravité de dimension deux (voir [Y]). Considérant
les immersions conformes de surfaces de Riemann dans I’espace projectif quaternionique
HP! =~ S*, les mémes auteurs montrent qu’il existe une correspondance bijective entre de
telles immersions et des sous-fibrés en droite L (ou courbes quaternioniques holomorphes)
du fibré trivial M x H2. Cette relation permet alors de définir la congruence sphérique
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associée a l'immersion, qui peut étre interprétée comme une structure complexe sur L,
et les champs de Hopf de cette immersion. On peut alors introduire la fonctionnelle de
Willmore pour de telles surfaces.

Nous généralisons ce travail a des surfaces de signature quelconque et plus spécialement au
cas des surfaces de Lorentz. A cet effet nous considérons I'espace des para-quaternions H.
Les notions d’algebre linéaire et de géométrie sur H n’étant que succinctement présentes
dans la littérature, elles seront introduites dans la seconde section du premier chapitre
de cette these. En bref, les modules para-quaternioniques sont munis d’une structure
complexe et de deux structures para-complexes satisfaisant certaines relations de com-
mutativité. Nous pouvons alors généraliser la méthode de [BFLPP] a la fois a la théorie
complexe des surfaces de Riemann et a la théorie para-complexe des surfaces de Lorentz.
Il a été¢ démontré par Blazi¢ (voir [Bl]), que 'espace projectif para-quaternionique HP!
est diffcomorphe a la pseudo-sphere S22 de vecteurs unitaires dans H. Nous considérons
donc des immersions f : M — HP!. En analogie au cas quaternionique, nous pou-
vons identifier ces immersions avec le pull-back du fibré tautologique para-quaternionique
[*Tip =0 L € M x H? Cette identification induit une correspondance bijective en-
tre de telles immersions et des sous-fibrés en droite para-quaternionique du fibré trivial
M x H?. En considérant alors, d'une part, une structure (para-)complexe particuliere
de ce sous-fibré, la congruence pseudo-sphérique de I'immersion 5S¢, et, d’autre part, les
champs de Hopf para-quaternioniques A et Q de cette immersion, nous pouvons alors
définir la fonctionnelle d’énergie de la surface:

_E(Sﬂ:_-/;(dSEALF*dSﬂ

et finalement la fonctionnelle de Willmore

1
W@%z—/MAﬁ%%
T
qui est ’énergie de Willmore classique pour une surface conforme. Nous avons ainsi ex-
primé 'énergie d’une surface conforme de signature quelconque comme la somme d’un
invariant topologique et de la fonctionnelle de Willmore.

3. Fibrés vectoriels para-complexes et immersions affines para-complexes

Dans la troisieme et derniere partie de cette these, enfin, nous étudions les décompositions
de fibrés vectoriels para-complexes d’une variété para-complexe, munis d’une connexion.
Ce sujet constitue notre quatrieme et dernier chapitre. De maniere analogue au cas
de la géométrie complexe, il existe en géométrie para-complexe la notion de fibré para-
holomorphe. Abe et Kurosu étudient dans la premiere partie de leur travail [AK] les
sous-fibrés de fibrés vectoriels complexes et holomorphes et caractérisent les sous-fibrés
holomorphes et les sous-fibrés de type (1, 1) en termes des connexions associées induites et
des secondes formes fondamentales. Ils généralisent ainsi des résultats de [D, DV, NPP] et
appliquent ces résultats aux immersions affines complexes, obtenant ainsi des théoremes
d’existence et d’unicité.
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Nous élargissons ces résultats au contexte de la géométrie para-complexe. A cet effet nous
introduisons et étudions la notion de fibré vectoriel para-holomorphe et nous caractérisons
les sous-fibrés para-holomorphes et les sous-fibrés de type (1,1) en termes des connexions
associées induites et des secondes formes fondamentales. La premiere section de cette
derniere partie de notre travail est consacrée aux connexions et aux morphismes de fibrés
vectoriels para-holomorphes. Dans cette partie nous démontrons également dans la propo-
sition 21, un analogue d’un théoréme bien connu de la géométrie complexe ([AHS, K]), qui
affirme que toute connexion dont la (0,2)-courbure s’annule sur un fibré vectoriel (para-
Jcomplexe E induit une unique structure para-holomorphique sur E. Nous généralisons
ainsi & une dimension quelconque un résultat d’Erdem [Er3] démontré dans le cas de fibrés
vectoriels sur des courbes para-complexes. Nous rappelons ensuite les équations fonda-
mentales pour des décompositions générales de fibrés vectoriels munis d’une connexion et
nous analysons les cas ou certains de ces (sous-)fibrés sont para-holomorphes. Nous in-
troduisons alors la notion d’immersion affine para-complexe et appliquons ces résultats a
la décomposition induite par une telle immersion. Ceci nous permet finalement d’obtenir
des théoremes d’existence et d’unicité pour des immersions affines para-complexes. Ces
résultats sont 'objet d’une publication commune avec L. Schéfer [LS].
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Chapter 1

Para-complex and para-quaternionic
differential geometry

In the first section of this chapter, we recall definitions and basic results about para-
complex geometry. We refer to [CFG] for a survey on this topic and to [CMMS]. The
second section is devoted to the linear algebra of para-quaternions, which is quiet new and
not extensively discussed in the literature, and to para-quaternionic differential geometry.
Especially we introduce the para-quaternionic projective space, which we need in the third
chapter of this thesis. In this interpretation, this was at first studied by Gordejuela (see
[Gol). For additional information, we also refer to [Bl] and [Vu].

1.1 Para-complex differential geometry

The algebra C of para-complex numbers is the real algebra generated by 1 and by the
para-complex unit e with e = 1. Forall 2 = o +ey € C, z, y € R we define the
para-complex conjugation - : C' — C,z + ey — x — ey and the real and imaginary parts of z

24z e(z — 2)

R(z) = 5 = J(z2) = 5

We notice that (' is a real Clifford algebra. More precisely, we have

C=R&RCly,.

Definition 1 A para-complex structure on a real finite dimensional vector space V' is
an endomorphism J € End(V) such that J* = Id, J # +Id and the two eigenspaces
VE = ker(IdF J) to the eigenvalues £1 of J have the same dimension. We call the pair
(V,J) a para-complex vector-space.

The free C-module C™ is a para-complex vector space where its para-complex structure is
just the multiplication with e and the para-complex conjugation of C' extends to~: C" —
C™, v — v. A real scalar product of signature (n,n) may be defined on C" by

(2,2) = R(22) = R(n2) + ...+ 2,2).
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In the following we will denote by
C" ={z € C"(z,2) # 0}

the set of non-isotropic elements in C™ and by K" the set of zero divisors. In particular
note that in the one-dimensional case

C D C* ={+xrexp(ed)|r e R, 0 € R} U {£reexp(ed)|r € RT, § € R}.

Analogous to the complex case, this can be seen as a para-complex polar decomposition,
where C* ~ R* x H! and where H' are the four hyperbolas {z = z+ey € C|z?—y? = +1}.

In addition we want to define square roots of a para-complex number w as solutions
z of the equation 2? = w, with z,w € C. We remark that these are only defined for
para-complex numbers w if R(w) > 0. In this case there exist at most four square roots
of w: More precisely w has exactly four square roots if it is non-isotropic and two square
roots if it is isotropic.

Definition 2 An almost para-complex structure on a smooth manifold M is an endomor-
phism field J € T'(End(TM)) such that, for allp € M, J, is a para-complex structure on
T,M. It is called integrable if the distributions T*M = ker(Id¥J) are integrable. An in-
tegrable almost para-complex structure on M is called a para-complex structure on M and a
manifold M endowed with a para-complex structure is called a para-complex manifold. The

para-complex dimension of a para-complex manifold M is the integer n = dimgM = —din;M.

As in the complex case we can define the Nijenhuis tensor N; of an almost para-complex
structure J by

Ny(X,Y) = [X, Y]+ [JX,JY] - J[X,JY] = JJX,Y],

for all vector fields X and Y on M. As shown in [CMMS] we have the
Proposition 1  An almost para-complex structure J is integrable if and only if Ny = 0.

The splitting of the tangent bundle of a para-complex, or of an almost para-complex,
manifold M into the eigenspaces T M extends to a bi-grading on the exterior algebra:

MNTM = @ AT M (1.1.1)
k=p+q

and induces an obvious bi-grading on exterior forms with values in a vector bundle E.
In particular the corresponding decomposition of differential forms on M is given by

OMM) = P (M), (1.1.2)

k=p+q

We consider the de Rham differential d : QF(M) — QFF1(M). In the case where the
almost para-complex structure is integrable we have the splitting d = 04 + 0_ with

Oy QP (M) — QPHIH (A, o QP (M) — QrE @D (Ar).
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Applying the Frobenius theorem to the distribution T5M we obtain, on an open
neighborhood U(p) of M, real functions 2%, i = 1,...,n, which are constant on the leaves
of TF M and for which the differential dz’, are linearly independent. (z}r, o 2N, FANUU-L
is a system of local coordinates on M, called adapted coordinates (see [CMMS]).
Moreover

7 7
Ayt
==+,

Li
defines a system of local real coordinates on U(p).

Similarly to the complex model, we now define local para-holomorphic coordinates, for
which the real coordinates z; (resp. y;) can be seen as the real (resp. imaginary) part:

Definition 3 Let (M, Jy), (N, Jx) be para-complex manifolds. A smooth map ¢ :
(M, Jpr) — (N, Jy) is called para-holomorphic if dpo Jyy = Jy odp. A para-holomorphic
map f: (M, J) — C is called para-holomorphic function.

A system of local para-holomorphic coordinates is a system of para-holomorphic functions

2,4 = 1,...,n defined on an open subset U C M of a para-complex manifold where
(z! = R(=YH,...,2" = R("), vt = S, .. ¢" = S(2")) is a system of real local
coordinates.

The existence of a system of local para-holomorphic coordinates in an open neighborhood
U of any point p € M was ensured by [CMMS].

Hence, differently to the complex case there exist, due to the real splitting of the tan-
gent bundle, three different sorts of appropriate local coordinates on M. The adapted
coordinates are very important for the results of the third chapter.

Definition 4 Let (M, J) be a para-complex manifold. A para-complex vector bundle of
rank v 1s a smooth real vector bundle w : E — M of rank 2r where the total space E 1is
endowed with a fiberwise para-complex structure J¥ € T'(End (E)). We will denote it by
(E,JE).

Given two para-complex vector bundles (E, J¥), (F,JI) we define

Hom((E, J¥),(F,J¥)) = {® € Hom(E, F)|®J¥ = J"®},
Iso((E,J7),(F,J¥)) = Iso(E,F)NHom((E,J¥),(F,J")).

Given a para-complex vector bundle (E, J¥) over the para-complex manifold (M, J) the
space of one-forms Q!(M, E) with values in E has the following decomposition

QY M, E) = Q"(M, E)® Q" (M, E) (1.1.3)
where
QM E) = {weQY(M,E)|J'w=J"w},
Q"M E) = {weQ' (M E)|J'w=—Jw}.
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One obtains also a bi-graduation on the para-complex 2-forms with values in F:

O’(M.E)= @ (M, E),

p+q=2

where the components are defined by

QY (M,E) = {K|K;xy =JKxy for XY € T(TM)},
QMY (M, E) = {K|K;x v =—Kxy for X,Y € T(TM)},
O (M,E) = {K|K;xy=—-J"Kxy for X,Y € (TM)}.

The corresponding projections with K € Q*(M, E) and with X, Y € T'(T M) are given by

1

K)Z(Z,OY = Z(KX,Y+JEKJX,Y+JEKX,JY+KJX’JY), (114)
1

K)lély = Q(KX,Y_KJX,JY), (1.1.5)
1

Kg{’?y = ZL(KX’Y — JEKJX,Y — JEKXJY + Kyx.gv). (1.1.6)

The case E = M x C was treated in [CMMS] and led to a graduation of C'—valued
differential forms

QM) = QMM M x C) = Q"(M,C) = @ (M

p+q=k

Now we consider a para-complex vector space (V, J) endowed with a para-hermitian scalar
product g on it, i.e. g is a pseudo-Euclidean scalar product and J is an anti-isometry for

g:
Jg=g(J J)=—

A para-hermitian vector space is a para-complex vector space endowed with a para-
hermitian scalar product. We call (J, g) a para-hermitian structure.
The para-unitary group of a para-complex vector space (V, J (see [CMMS]) is then defined
by

U'(V)={A e GL(V)|[A,J] =0 and A*g=g}.

Note that if V has para-complex dimension 1, i.e V o~ C' ~ R? then U™(V) = {+ exp(ed)|0 €
R}, where e is the para-complex unit.

Definition 5 A para-hermitian vector bundle (E, J¥, g) on a para-complex vector-bundle
(E, J®) is a para-complex vector bundle (E, J¥) together with a smooth fiber-wise para-
hermitian scalar product g. We call the pair (J¥,g) a para-hermitian structure on a
para-complex vector-bundle (E, J¥).

Note that if L is a para-hermitian line bundle, i.e. a para-hermitian vector bundle of
dimension one, then L has obviously structure group GI(1,C)NO(1,1) = U™(C).
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Definition 6 A para-holomorphic vector bundle is a para-complex vector bundle 7 :
E — M whose total space E is a para-complex manifold, such that the projection m is a
para-holomorphic map.

A (local) para-holomorphic section of a para-holomorphic vector bundle 7 : E — M
is a (local) section of E which is a para-holomorphic map. The vector space of para-
holomorphic sections of E will be denoted by O(F).

We consider a fiber V = E, for a fixed x € M of a para-holomorphic vector bundle E of
real rank 2r, which is a para-complex vector space. Hence we can choose a real basis

1 T E_ 1 E_r
(€gy.vven, Jien, .., J er)

at  which extends to a real point-wise basis
(e, .. e, JEet ... JFen)

of local para-holomorphic sections of £ on an open set U C M containing x.

Such a frame will be called para-holomorphic frame.

Let U, and Ug be two open sets, such that Ey, and Ejy, are trivial. We identify R?
endowed with the para-complex structure induced by (F,7%) with C™ and consider the
frame change ¢,s as a map

¢a5 : UaﬂUg — GL(CT>

Definition 7 A para-holomorphic structure £ on a para-complex vector bundle (E, J¥)
15 a maximal compatible set of such para-holomorphic frames, i.e. a maximal set where
the frame change is para-holomorphic.

Remark 1 A para-holomorphic vector bundle is the same as a para-complex vector bundle
(E, J®) endowed with a para-holomorphic structure . In the following we will denote it

by (E,E).

1.2 Para-quaternionic differential geometry

1.2.1 The para-quaternions

The para-quaternions H are the R-algebra generated by 1, i, j, k subject to the relations:
it=—1, P =k*=1, ij = —ji = k.

Obviously this implies kj = —jk =i and ki = —ik = j.

We notice that, like the quaternions, the para-quaternions are a real Clifford algebra.

More precisely (following the convention of [LM]) we have

]ﬁl - Cll’l = Clog = R(Z)
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For a given para-quaternion a = ag + a7 + asj + ask, ag, ai, as, az € R, we define the
para-quaternionic conjugation by

a = ag — ayt — ag) — ask,
the real and imaginary part by

R(a) :=ap € R, S(a):=ayi+ asj+ ask € H
and the pseudo-Euclidian scalar product on H by

(a,b)ge2 = R(ab) = agby + a1b; — azby — asbs,

with b = by + b1i + baj + b3k and by, b1, b2, b3 € R. Using this scalar product we can
identify H with the pseudo-Euclidean vector space R?2.

Moreover for all a, b € (H) we have:
ab = —ayby + agbs + agbs — i(azbs — agby) + j(asby — a1bs) + k(aibe — asby),
which is equivalent to
ab = —{(a,b)rz2 + axb, (1.2.1)
with the pseudo-vector-product (axb); := —¢;ex(a;by — agbj), 1 = 1, e9 = 3 = —1, and
(1,4, k) the cyclic permutation of (1,2, 3).
Remark 2 As simple computations show, we get for a, b € H:

1. aa = ad + a? — a3 — a3 = R(aa),

2. ab = ba, which leads to
3. |a* := (a, a)p = aa and |ab|* = |a|?|b|?,

4. for all a, b € S(H), axb= —bxa, (axb, a)gz2 = {axb, b)gz2 = 0.

5. Let [a,b] = ab — ba. For a, b€ S(H) we have [a, b = 2axb.

A para-quaternion a € H is called invertible if la|? # 0. In this case the inverse of a para-

quaternion is given by a~! = # We denote the group of invertible para-quaternions

by
H, := {a € HJ|a|* # 0}.

Moreover, the commutator [a, b] = ab — ba defines a Lie algebra structure on H, such

that (H, [-,-]) = gl(2,R) = R1 & s[(2,R).
Lemma 1 1. R1 is the center of the Lie algebra ]ﬁl,
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2. %(]IT]I) > 5l(2,R) is the semi-simple part of the Lie-algebra H,

3.(1) a®* = =1 if and only if a = S(a) and |al* =1,

(ii) a®* =1 and a # £1 if and only if |a]* = —1 and a = S(a).
Proof:

1. is obvious, since the real para-quaternions are the only ones which commute with
all other elements.

2. Since [i, j] = 2k, [j, k] = =21, [k, i] = 2j we have
[H, H) = [S(H), S(H)] = S(H).
This yields 2. and we get the following decomposition of the Lie-algebra H:

H = R1 @ S(H).

3. Now let a, b € H. We have
ab = (a0 + S3(a))(bo + (b)) = aobo + aoI(b) + boI(a) + I(a)I(b).
By equation (1.2.1) we have ($(a))? € R and consequently
0=S(a?) = 2aS(a) ER S ap=0 or J(a)=0.

(i) If a®* = —1, then a = §(a) and |a|* = 1, by equation (1.2.1).

(ii) If a> = 1 and a # +1, then a = $(a) and |a|*> = —1, again by equation (1.2.1).

a

1.2.2 Unit para-quaternions

Let us now introduce the Lie group
S* .= {a € H| |a]* = 1} ¢ H = R>?,

of unit para-quaternions.
Obviously S*!' € R?? is a pseudo-sphere of signature (2,1).
Let

a = (ag + a1i) + (az + asi) j,

(& J/ N
—~ N

=:z1(a) =:22(a)

with a € H. With the help of the map

a — Z(CL) — (zl(a)) c (CQ,

z2(a)
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we can identify H with C2.

Moreover we have j(ag + ia1) = (ag — iay)j, for ag, by € R. Now let 2 = z; + 255 € S,
z1, z2 € C. For the C-linear map A, : C* — C?, z +— xz induced on C* by multiplication
from the right on H we get in the basis {1, 7} (here - denotes the complex conjugation):

Azl = 21 + Zgj

Az] = j(21+22j>222+51j:>14z:(21 Zz).

This yields the following
Lemma 2 1. S*!' is isomorphic to the group SU(1,1) = Sp(1,R) = SI(2,R), and the

map
p:S* —SU(1,1), pla):= AL
s an isomorphism of Lie groups.

2. S(H) is the Lie-algebra of the Lie-group S*.
Proof:
1. det A, = 2121 — 227 = (2, 2)¢,, = aj + af — a3 — a3 = |a]* = 1, which yields:
S =~ SU(1,1).

2. Let t — ¢(t) be a curve in §*' with ¢(0) = a and ¢(0) = b, for a,b € H (then

c(t)e(t) = 1). Hence 0 = 4 |,—o (c(t)c(t)) = ¢(0)c(0) 4 ¢(0)c'(0) = ba + ab. If a =1,
then b = —b. Therefore S(H) is the Lie-algebra of unit para-quaternions. O

Remark 3 We can also define the pseudo-hyperbolic space
HY o= {u e H] [? = -1},

H'? is the pseudo-sphere of signature (1,2). The right-multiplication R; : H— H by j
induces an anti-isometry between S*' and H'? which is explicitly given by the map

A - 82’1 N H1’2
ag + ali + CLQj + 0,3]{; — ag + agi + aoj + alk.

1.2.3 Para-quaternionic modules

Let V = H" 2 R*" be the n-dimensional standard right-module over the para-quaternions.
Let h = (hy,..., hy) € V, h; € H. Then the multiplication from the right with para-
quaternions is defined by

VxH — V
(hya) +— ha=(Ma,.., hya).
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The right-multiplication by i, j and -k defines a para-hypercomplex structure on V, i.e
endomorphisms I, J, K € End(R*") such that

I’=—-Id, J’=K?=1d, IJ=—-JI =K.
On V' we define an indefinite scalar product of signature (2n,2n) by
(h, 1) == R(hI') = hih), + ... + h,hl, (1.2.2)

with h = (hq,...,h,) and ' = (h},...,h]) € V.

I is an isometry, J and K are anti-isometries with respect to this scalar product.
Similarly the left-multiplication by 4, j, k induces endomorphisms I’, J', K'€ End(R*")
with the same properties.

We denote the set of non-isotropic elements in H" by
H" := {h € H"|(h, h) # 0}.

If we consider further an endomorphism E € End(V) := Endg(V) (resp. F' € Endg(V)),
such that E? = —1 (resp. F?> =1, F # 41 and dim V' = dim V'~ where V* are the real
eigenspaces to the eigenvalues £1), then one gets a resp. para-complex) structure, which
commutes with the para-quaternionic structure. For example, the left multiplication on

V = H" with an N € H such that, N> = —1 (resp. N2 =1, N # +Id) induces such a
structure.

Definition 8  We call a real vector subspace U C H" non-degenerate, if the scalar
product (-, ) is not degenerate on U.

Lemma 3 1. Let U C H be a real two-dimensional non-degenerate subspace. Then
there exist N, R € H, such that :
(i) Either N>=—-1=R* or N>=1=R? N #+ Id# R,
(ii)) NU =U = UR,
(iii) U = {x € H| NzR = z},
(iv) U+ = {z € H| NzR = —z}.
The pair +(N, R) is unique.

2 Letbe N, Re H, N2=—1= R? (resp. N> =1=R? N # + Id # R), then the

subspaces
U={zeH| NztR=2z}, U'={z c H| NzR = —z}

are two-dimensional real non-degenerate orthogonal subspaces of IF]I, which satisfy

(ii).
Proof:
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1. Let

U C H be a real two-dimensional non-degenerate subspace.

Suppose that 1 € U, then there exists a unit vector v € U C H orthogonal to 1.
Hence v € S(H) and {1, v} are linear independent over R.

Case 1:

Case 2:

lv|> = 1. With Lemma 2 we have v* = —1 and left-multiplication with v

defines a complex structure on U. Hence {h,vh} is a positive-oriented basis
of U for all h € U, h # 0 and, consequently, vU = U. Similarly, —v induces
by right-multiplication a complex structure on U such that U(—v) = U holds.
Now we put (N, R) := (v, —v). Obviously, this yields U = {z € H|NzR = z}.
The uniqueness, up to sign, follows from the fact that {1, N} defines a basis
for U. In fact, suppose that N’ # N, N? = —1 and N'U = u, then we obtain
N’ =1xz¢g+ Nxy, N' € S(H), 2o, 1 € R, which leads to N' = Nz; and finally
to 7 = £1. _

If U is an oriented subspace of H, we can choose the sign of v, such that the
complex structure induced by N on U coincides with the complex structure
given by the orientation. This means that there exists a unique pair (N, R)
satisfying the conditions of the lemma.

|v|> = —1. With Lemma 2 we get v = 1, v # +1. Let wy := 1+v, ie. vwy =
+wy. Denote by E* := span{w.} the eigenspaces of the left-multiplication
by v to the eigenvalues +1. Obviously dim £+ = dim E~ = 1. Therefore v
defines by left-multiplication a para-complex structure on U. Because {1, v}
is a basis of U, we derive for all x € U that © = 1xg + vr; and consequently
lx € U, ve € U. Hence vU = U holds. Moreover in the basis {1,v} the

endomorphism defined in this way can be identified with the matrix (0 1).
1 0

Similarly to the first case the pair (N, R) := (v, v) satisfies the conditions of
the lemma and is unique up to sign.

Suppose now that 1 is not contained in U. Then choose z € U,, where U, C U are
the invertible elements of U, and consider the subspace U’ C H, U’ = 27U = U.
The above proof applies to U’, since 1 = zx~! € U’. The pair (N, R) satisfies the
conditions for U if and only if the pair (z7'Nz, R) satisfies them for U’.

2. Let oz := Nz R and let V* be the eigenspaces of o to the eigenvalues +1.

Case 1:

Case 2:

N? = R? = —1. Let N = R. Because N is a complex structure, x and Nz are
linear independent for all z € H. Obviously 1 and N are eigenvectors of o to the
eigenvalue —1. There exists a non-isotropic vector v such that v L span(1, N).
This implies that v € S(H). With equation (1.2.1) and remark 2.4 we derive
that N and v anti-commute. Consequently v is an eigenvector of o to the
eigenvalue 1 and therefore (v, Nv) span V.

Now if N # £R, as N, R € S*!, there exists with lemma 2.1 a y € S*!, which
is unique up to sign and such that R = y~!Ny. Hence {y, Ny} spans V'~ and

{vy, Nvy} spans V.

N?=R*=1,N#+ Id# R. Let N = R. Because N € S(H), 1 and N are
linear independent and eigenvectors to the eigenvalue 1. If we choose again a
non-isotropic vector v L span(1, N), then v € S(H). With the help of remark
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2.4 we derive that Nv = Nxv and v are linear independent eigenvectors to
the eigenvalue —1, i.e. {v, Nv} spans V™.

Now let N # £R. Then N + R (resp. N — R) is an eigenvector of o to the
eigenvalue 1 (resp. —1). As the isotropy of N + R (resp. N — R) is equivalent
to the fact that (N, R) = 1 (resp. (N,R) = —1), N+ R and N — R cannot
be both isotropic. Suppose that N + R is non-isotropic. With lemma 3 we see
that N(N + R) is non-isotropic, too and an eigenvector of o to the eigenvalue
1. N(N + R) and N + R are linear independent since for A € R

NN+ R)+AMN+R)=0 = N=-\

Therefore {N + R, N(N + R)} span V.

Moreover N € %(]ﬁl) ~ RY2 consequently there exists a non-isotropic vector
v L N such that v € S(H) and v(N + R), vN(N + R) are non-isotropic linear
independent eigenvectors of o to the eigenvalue —1. Then {v(N + R),vN(N +

R)} span V.

Finally we derive, that for all cases dimV* = dimV~ = 2 and V*, V= are orthogo-
nal, which completes the proof of the lemma.

a

Corollary 1 Let U C S(H) be a subspace, then it follows that N = —R in the first case
of Lemma 3 or N = R in the second case.

N is a pseudo-euclidian unit normal vector of U. In the case N*> = —1 N is spacelike, in
the case N? =1 it is timelike.

Proof:
Let (u,v) be an orthonormal basis of U. Because u, v € I(H) we have with equation
(1.2.1):

U>~<’U = |ul|v| = .
luxv]* = [ullv| = £1

With the properties of the pseudo-vector-product N = —R = wXuv satisfies in the case
N? = —1 and N = R = uxv in the case N2 = 1 the above conditions. O

1.2.4 Conformal and para-conformal maps
Let V and W be n-dimensional modules endowed with a scalar product (-, -)y resp. (-, )w.

Definition 9  An endomorphism F : V. — W s called conformal, if there exists a
A € R*, such that:

(Fx, Fy)w = XMz, y)v

forallz, yeV.
We will call F' para-conformal if V' and W are para-complex modules.

A map f: M — M between two (pseudo-)Riemannian manifolds is called (para-) confor-
mal, if the endomorphism F := df : T,M — df (T,M) is (para-)conformal for all p € M.
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Let V. =W = (R% J) = C with J : R? — R? the complex structure induced by
the multiplication with ¢ and I : C — C. Then J is orthogonal and {v, Jv} is a
conformal basis for all v € C, |v] # 0, i.e. (v, Jv) = 0 and (Jv, Jv) = Av, v),
A € R*. Then {Fv, JFv} is also a conformal basis. Moreover if F' is conformal, then
(Fx, FJz) = XNz, Jzx). Hence F is conformal if and only if F'.J = £JF.

Now let V.= W = (R* E) = C be the vectorspace of para-complex numbers with
E : C — C the para-complex structure induced by the multiplication with e. In the basis
(1, e) one can identify the endomorphism F with the matrix (0 1). The center of E is

1 0
given by:

Zapwey(E) = {A € GL(R?)|AE = EA} = {A € GL(R?)|A = (Z b) , a, beR}.

a

And the maps which anti-commute with £ are given by

Agrmey(E) = {A € GL(RY)|AE = —EA} = {A € GL(R?)|A = ( b ) , a, be R}

—-b —a

Moreover the conformal endomorphisms with respect to the pseudo-Euclidean real scalar
product of signature (1, 1) define the para-conformal group:

Po = {F € GLR»|\(Fe;, Fe;) = (e;, ¢;)}
= {F e GL(RY|F = (b b) , a, beR}

a

U{F € GL(R?|F = ( b), a, b€ R}.

—b —a

F' is consequently para-conformal if and only if it holds FE = EF or FE = —FEF.

We now consider immersions f : M — R?»? = H of (para-)Riemannian surfaces.

Definition 10 A Riemannian (resp. Lorentzian) surface is a real two-dimensional con-
nected manifold M endowed with a complex (resp. para-complez) structure J € T'(End(TM)),
J? = —1Id (resp. E € T(End(TM)), E* =Id and trE = 0). In the following text, we will
use the notation (M, J) (resp. (M, E)).

The above considerations yield the
Proposition 2 Let f: M — H be an immersion.

1. If (M, J) is a Riemannian surface, then f is conformal if and only if Ndf = df J =
—df R.

2. If (M, E) be a Lorentzian surface, then f para-conformal if and only if Ndf = df E =
df R.
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Proof:
For a Riemannian (resp. Lorentzian) surface df(7,M) C H is a two-dimensional non-

degenerate subspace for all p € M. Then with Lemma 3 there exist N, R € H with
N? = —1 = R? (resp. N? =1 = R?), such that N(df(T,M)) = df (T,M) = (df (T,M))R.
In the Riemannian case a complex structure J’ is induced by N and R on T,,M =~ df (T,M).
With the above considerations f : M — R?*? is a conformal map if and only if dfJ’ =
Ndf = —df R. Because N is an isometry, we derive then:

(J'w, Jy) = MNdfJ'z, df J'y) = M(Ndfz, Ndfy) = \dfz, dfy) = (z,y)
= (J'z, J'Jx) = (z, Jx).

Then J' € Conf(J). Hence this yields JJ' = J'J and J' = +J follows. In the following
we will choose N such that the complex structure induced by N on T,M coincides with
the orientation of 7,M. And finally we derive:

Ndf = df J = —dfR.

In the Lorentzian case a para-complex structure E’ will be induced from N on T,M by
the immersion f, such that df B’ = Ndf if and only if f : M — R?? is conformal map.
We derive then:

(EE'z, ) = —(E'z, Ex)=—\dfFE'z, dfEx)
Mdfxz, NdfEx) = (z, E'Ex).

Hence EE’=E’E, which yields £ = +F’. Again we can construct N from Lemma 3 in
such a way that the sign of E’ coincides with the one of E. O

1.2.5 The para-quaternionic projective space
As usual we want to consider the para-quaternionic projective space as the subset of all
para-quaternionic lines in H"*?.

The existence of isotropic elements in H™! leads from a geometrical point of view
to difficulties coming from the equivalence classes of this elements. This leads to the
following definition: we define for v, v € H? the equivalence relation

UN~VE V= U, /\efFH*.
The para-quaternionic projective space is then the corresponding quotient manifold
Definition 11
Fipm = B+,
This definition was at first given by E.Gordejuela [Go| (see Blazié¢ [Bl]).

We want now to introduce affine coordinates for HP". Consider the projection
T ]ﬁlf“ — HP"

t — 7(x):=[z] = zH,.
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and let § € (H)* := Homﬁ(]ﬁlnﬂ,]ﬁl), 3 invertible. Then

0g: Us = {r(x) e HP"|B(z) £ 0} — {z e H""'|f(z) =1} 2 H"

m(z) = x(B,z)

defines an affine chart of HP"™. If we choose a basis of H"™! such that § = (€ns1)*, then
it holds

—1
L1y 41

T _ T1Th N
©s : =1, - = : € HY.
Tnt1 " f”H xnx;nlﬂ
Proposition 3
Hom(l, H** /1) =~ T;HP",

for all 1 € HP".

Proof: B _

Let h:= pgom: H!' — H™ 2+ x(3,z)"!. Then we have for all x €

duh(v) = (8,2 — 2(8,2) 18, v) (B,2)" (1.2.3)

and it follows that ker d,h = ker d,m = x]i:]l* = [, such that d,m induces the isomorphism
dom : "' /1 = T HP"

which depends on . N N
Further with equation (1.2.3) it follows that dy,m(vA) = d,7(v), for all A € H,,v € H.
Consider now F € Hom(l, H*™/I) = H**'/l. One has dy,m(F(z))) = dym(F(z)), such
that d,7(F(z)) does not depend on x. With

dym : Hom(l, H'"' /1) = T;HP"
F i d,n(F(z)) = d,m(v)

we have constructed the desired isomorphism, where d,7(v) is identified with the homo-
morphism F which maps z € [ to v mod [. O

Corollary 2 Let f: M — H", f:=xf: M — HP".
Forallp e M, l:=f(p), v e T,M,

df : T,M — Ty HP" = Hom(f (p), H: ™"/ f(p))
18 given by

df,(v)(f(p)A) = dfy(v)A mod f(p).
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Proof: We derive with [ = f(p) = n(f(p)) = f(p)H,:

dpf (0)(F(P)A) = (djym)(df, (0)) (F(R)N).
With proposition 3 d,f(v) € Hom(f (p),H"*'/f(p)) is the homomorphism, which maps
f(p)A to d,f(v)A mod f(p). O

In the following the differential d, f (v) will be denoted by 4, f(v) in this interpretation.

We can now obtain a metric (-, -)gp. On HP" of signature (2n, 2n). Let X, Y € T;HP™,
then with v,w € H*™ /I, x € H*™ Then as dy,7(\v) = d,7(v) it makes sense to define

L%(v,w).

<X7 Y>1f-flP” = <d$ﬂ(v)7dw7r(w>>]ﬁlP" = <I,$>

where (-, -) is a non-degenerate para-quaternionic hermitian inner product on Hn+L,
Proposition 4 (Blazi¢ [Bl]) Let S*? be the pseudo-sphere of dimension four and signa-

ture (2,2) endowed with the induced metric. Then we have the following isometry between
pseudo-Riemannian manifolds:

S?2 = HP
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Chapter 2

Representation of
pseudo-Riemannian surfaces in space

In this chapter we study in the pseudo-Riemannian context and for low dimensions
whether given manifolds can be immersed as hypersurfaces of codimension one into man-
ifolds of constant curvature. We relate these to manifolds carrying a spinor satisfying a
Dirac equation. In the first section we recall shortly some definitions and basic results
about pseudo-Riemannian spin geometry in the context of the theory of hypersurfaces.
We refer to [LM] for spin geometry in general and to [Bau] for pseudo-Riemannian spin
geometry. Moreover we prove some new results: In particular, we show the equivalence
between a solution of the Dirac equation and a solution of the generalized Killing equation
ViMp = A(X)e in the three-dimensional Riemannian case and in the two-dimensional
pseudo-Riemannian case. Further we generalize a result of Morel (see [Mo]) to immersions
in S* and H*. Finally, generalizing a result of Friedrich ([Fr1]), we prove the equivalence
of a solution of the generalized Killing equation on a two-dimensional pseudo-Riemannian
surface and a pseudo-Riemannian immersion of this surface in R%!, but only under the
condition that A is a Codazzi tensor. This motivates the second section: In fact with
the methods of para-complex geometry and using real spinor representations we suc-
ceed in proving the equivalence between the data of a spacelike conformal immersion of a
Lorentzian surface in R%! and two spinors satisfying a Dirac-type equation on the surface.
Finally we give in this section a geometrically invariant representation of such surfaces
using two Dirac spinors.

2.1 Pseudo-Riemannian spin geometry

2.1.1 Representations of Clifford algebras

At first we give some algebraic preliminaries. In the first section we use essentially complex
representations, which we discuss here briefly, since they are well-known and can easily
be found in the literature (compare [Bau, LM, Fr2]).

In parallel we discuss the real case, which we will use in the second section.

37



Let Cl,, = CI(RP*? ¢) be the Clifford algebra of (R, q), where ¢ is the bilinear form

_ 2 2 2 2 p,q
) =i+ .+, —x, — .. — 1, T E€RPL

.....

_2517 1 < )
ei-ejteje = ’ ._p
2(51‘]', 1> p.

Then Cl,, is generated by {e;}iz1,. piq-
The Clifford algebra splits in the direct sum of odd and even elements:

Clyy = CI, & CL,.

We give the following isomorphism, which is of particular importance for the identification
of the spin bundles in the context of immersions of hypersurfaces:

Clpy — Clyy, (2.1.1

€; = €Ep+1 * €4, (212)
where RP? = span{e;|i # p + 1}.

A pseudo-orthogonal map A € O(p, ¢) can be written with respect to a pseudo-orthonormal

basis as a matrix jé’,’ fq , where A, and A, are p X p (resp ¢ X ¢) block matrices. We
consider in the following the subgroups
SO(p,q) = {A€0O(p,q)|det(A) > 0}, (2.1.3)
and
SO+(p.q) = {A€50(p,q)|det(4,) > 0}, (2.1.4)

which is the connected component of the identity of SO(p, q).
The spin group is defined by

Spin(p, q) = {@1 - ... -7 € CL) | x; € RP*, q(a;) = £1}

Let z € RP™.. Then the map

A : Spin(p,q) — SO(p,q), u—u-z-u "

defines a two-fold covering of the group SO(p, ¢). We denote by Spin_ (p,¢q) C Spin(p, q)
the pre-image of SO, (p, ¢) under A.

In the basis {e;}i=1.p+q the associated real volume element is given by

Wpg = €1 e Epigq.
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We have

) (—=1)9, n =3 or 4 mod 4,
(—=1)4*, n=1or 2 mod 4.

The complex volume element is defined by

¢ Jim e epyg if n=p+q=2m,
P imHtle, ey, if n=p+q=2m+1.

. Cc 2 __
Obviously w, ;" = 1.

The real spinor module ¥, , is the restriction of an irreducible real module of the
real algebra Cl,, to Spin(p,q) C C’lg’q C Cl,,, whereas the complex spinor module 3¢
is given by restricting an irreducible complex module of the complex Clifford algebra
Cl, :==Cl(C"*,¢q® C) = Cl,,®r C, p+ ¢ = n to Spin(n,0) .

Generalizing a well-known result (compare with proposition 5.12 of [LM]), we deduce
for real spin representations of arbitrary signature the following

Proposition 5 Let A,, : Spin(p,q) — GL(X,,) be the real spin representation of
Spin(p, q). There are four different cases:

1. If n is odd, g=p+1 mod 4, then there exists a unique spin representation and A, ,
is independent of which irreducible representation of Cl, 4 is used.

2. If n is odd, qg=p-1 mod 8 or n even, q=p-2 mod 8, then A, , is the direct sum of two
equivalent irreducible representation.

3. If n is odd, g=p+3 mod 8 or n is even, qg=p+2 mod 8, then A, , is irreducible.

4. If n is even, p=q mod 4, then A, , is the direct sum of two inequivalent irreducible
representations.

For complex spin representations AC : Spin(p, ¢) — GL¢(2,4), n = p+ ¢ we have
Proposition 6

1. If n is odd, then there exists a unique spin representation AS which is independent
of which wrreducible representation of Cl,, is used.

2. Ifn is even, AC is the direct sum of two inequivalent irreducible spin representations:
AL = AT @ AT,

Remark 4  We remark that if p4+q = n = 2m + 1 s odd, wfq acts on qu as the

tdentity. If n = 2m is even, wgq acts on ZS;; as Id and as —Id on Zg;.
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We now want to consider bilinear forms on complex spinor modules. The following propo-
sition holds (see [Bau]):

Proposition 7 The complex spinor module qu 1s endowed for all p, q, with a hermitian
symmetric bilinear Sping-invariant form (-,-), such that

(X o, ¢) = —=(=1)%e, X - ), (2.1.5)
for all ¢, ¢ € X | X € Rpa,

b,q’

Remark 5

(i) It is not the only admissible bilinear form on qu. A complete classification of
admissible bilinear forms on spinor modules was given in [AC].

(i1) If the spinor modul X, is reducible (i.e ¥,, = X @ X} ), then the module ¥},
and 3., are either orthogonal or isotropic with respect to the bilinear form (), i.e

for all ’@Z)Jr eXt and v € X, either B(¢¥T,47) =0 or B(¢F,vF) = 0.

p.q p,q’

2.1.2 Pseudo-Riemannian spin geometry

We now give a brief survey of the relevant spin geometric features we use in the following.
We refer to [Bau] for more details.

Let (MP™1 g) be a pseudo-Riemannian manifold. We recall that the tangent bundle
splits into the orthogonal direct sum T'M = n? & £? of a p-dimensional spacelike bundle n
and a ¢-dimensional timelike bundle £ (see [On]). The manifold (M?4, g) is called oriented
(resp. space-oriented, resp. time-oriented) if the bundle T'M (resp. 7, resp. &) is oriented.
If (MP1 g) is oriented we can consider the SO(p, q)- principal bundle Psg of positively
oriented orthonormal frames over M. In the same way if MP? is a strongly oriented (i.e
oriented and time-oriented) manifold, we can consider the SO (p, ¢)-principal bundle Psq
of positively strongly oriented orthonormal frames over M. In order to deal simultaneously
with the pairs SO(p, ¢)/Spin(p, ¢) and SO4(p, ¢)/Spin, (p, ¢) we write G(p, ¢) for SO(p, q)

(resp. SO4(p,q)) and G(p, q) for Spin(p, q) (resp. Spin_ (p,q)).

Definition 12 A spin structure on a (strongly) oriented pseudo-Riemannian manifold
is a G(p, q)-principal bundle Pg together with a two-fold covering

A: Py — Fg,
such that the following diagram commutes:

P@ XAG Pé
Ax)\ A M,
PGxG PG
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Let {U,} be an open covering of M and {@.s} resp. {@as} the transition functions of
Pg resp. of a principal G(p, g)-bundle Ps. Then obviously Py is a spin structure on M if
and only if A(Pug) = ©@as-

A criterion for the existence of such structures is given by the following proposition (see
[Bau]):

Proposition 8 Let (MP4,g) be a pseudo-Riemannian connected manifold and TM =
nP @ &1 a splitting into an orthogonal direct sum of a spacelike bundle n and a timelike
bundle £. Then (MP9,g) admits a spin structure if and only if

wa (M) = wi(n)?, (2.1.6)

where w; € H'(M,Z,) denotes the i-th Stiefel-Whitney-class.

Remark 6

o If (M, q) is strongly oriented, the existence of a spin structure is equivalent to the
condition wy(M) = 0.

o If (M,q) is oriented, it is equivalent to the fact that wi(§) = wi(n), hence to
wy (M) = 0. Therefore (M, g) is a spin manifold if and only if we(M) = wy(&)w1(n).

In particular, every time-oriented oriented two-dimensional pseudo-Riemannian manifold
admits a spin structure.

The fiber G (p, q) of the principal bundle P5 operates on the spinor space X, ; via the spin
representation
p:G(p,q) — GL(Z,,)

(or p: Gl(p, q) — GL¢(3,,) in the complex case). This yields the following

Definition 13 The spinor bundle associated to a spin structure on a pseudo-Riemannian
manifold M is the associated vector bundle

SM = Pz x, 5,

Sections 1 € T'(XM) will be referred to as spinors.

Due to the algebraic preliminaries of the previous paragraph (and in particular due
to propositions 5 and 6), we recall that, in even dimension, complex spinor bundles (and,
in the second and fourth case of proposition 5, real spinor bundles) split into the positive
and negative half-spinor bundles

SM=YX"M&X M.
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For strongly oriented manifolds, the bilinear form (2.1.5) on Zg{q induces a pseudo-
hermitian symmetric bilinear form (-, -) on XM such that

(X0, 9) = =(=1)%p, X - 4), (2.1.7)
for all p, p € I'(EM), X € I'(T'M).
Let V: T'(XM) — I'(T*M ® M) be covariant derivative on the spin bundle M.

The Dirac operator D : I'(XM) — I'(X¥M) on a pseudo-Riemannian manifold (M, g)
is given by
p+q

Dy = Zsiei Ve, 0, with g; = g(e;, e;) € {£1},

=1

where {e1, ..., €p, €p41, ..., €ptq} 1S an orthonormal basis.

Remark 7  The Dirac operator D is formally self-adjoint with respect to the bilinear
form (-, ) defined above if q is even. In the other cases iD is formally self-adjoint.

In this chapter we are more particularly interested in solutions of the Dirac equation

Dy = H[|20, (2.1.8)

where H is a real valued function. We want to know how this equation transforms under
conformal change of the metric. Let § = og be a conformally equivalent metric, with o
a _positive function. There exists an isomorphism between the principal bundles Fg and
Pg of orthonormal frames with respect to the metric g resp. g given by

Pe — P
_1 _1
($1,...,8,) +— (07 281,...,0 28,),

where (sq,...s,) are local basis sections of Pg. This induces an isomorphism between the

spin structures Pz and J?é (see [Bau]). Denote by D the Dirac operator corresponding to
the metric g. Then (see [Bau, BFGK]) we have

n+1 n—1

DYy =0T D(o"T 1)).

Now let 1; = a‘nT_lqﬂ. We compute
~ o~ n+1 n—1 ~ n+1l
Dy = o s Dlcty)=0 "t D=0 1 H||
= o' H[Y[%) = HlY[>), with H=0"7 H.
Hence ¢ is a solution of (2.1.8) on (M, g) if and only if Y = 07%11? is a solution of the
equation Dip = H|[|2¢) on (M, g).
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2.1.3 Immersions of hypersurfaces of low dimensions via spinors

We now give some results about isometric immersions with codimension 1 of pseudo-
Riemannian manifolds. At first we recall the fundamental theorem of hypersurface theory:

Theorem 4 (cf [On]) Let (M, g) be a pseudo-Riemannian manifold with signature (p,q),
p+q=mn, VM the Levi-Civita connection on M and A be a symmetric tensor such that

(VHA)(Y) = (VVA)(X) (Codazzi — Mainardi equation),
RYM(X, Y)Z = [(A(Y), 2)A(X) — (A(X), Z)A(Y)]
+r((Y, 2)X — (X, 2)Y)  (GauB equation).

with k €R, forall X, Y, Z, W € T,M and x € M.

Then there exists locally a spacelike isometric immersion of M in MPYL4 where A is the
Weingarten tensor of the immersion and MPY19 is the model space of constant sectional
curvature K and signature (p+ 1,q).

Remark 8 Consequently, in the case of a two-dimensional manifold immersed in MPT14
(p+q=2), we have

(VXAY) = (VWA)(X), (2.1.9)
R1212 = 6detA+8l€, (2110)
where Rya1o = g(R(e1, ez)ea, e1) and € =1 in the case of definite signature, and € = —1

in the case of signature (1,1).

Let now M be an oriented pseudo-Riemannian manifold of signature (p,q), p + ¢ = n,
immersed in a pseudo-Riemannian spin manifold N of signature (p + 1,¢) and let v

be the spacelike unit normal vector, i.e (v,v) = 1. Let (e1,...,€p, €ps1s---,€p1q) be
an orthonormal frame of TM. A local orthonormal frame of T'N|y, is then given by
Li(€1,. ., €p,€pt1,...,€p1q). This yields a map

Li(er, .. €pypit, .y prg) = (Vi€1yey€p€pity- ey Epig)

from frames of T'M to frames of T'N|y;. Due to the isomorphism (2.1.1) the spin structure
A : P5(N) — Pg(N) on N induces a spin structure Pg(M) := A~ («(Pg(M))) on M.
We recall that, using the algebraic preliminaries of last paragraph, we get vector bundle
isomorphisms:

StN|y = SM if nis odd,
YNy S XM ifnis even.

Note however that these isomorphisms do not preserve the Clifford multiplication and the
connection.

Further, using the notation
N), we have

% M

(resp. 7-n") for the Clifford multiplication on M (resp.
X-p=XNV-'Ny,
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for all X e I'(TM), p € T'(XM).

Considering the spin connection induced on the hypersurface M, we give a formula, which
motivates the study of generalized Killing equations: Let ey := v, e = g(ex, ex) and
w = w;; be the connection form of the Levi-Civita connection V¥ on N, then we have for
0=y, X € TM:

1
Vite = X +35 Y awh(Xexnvern g
0<k<i<n
1
= X r Y el Xew v
0<k<n
1 l
+ = swi(X) e - .
Z l k( )€k N € N
0<k<I<n

=eg-v-e;v-p

1 1
- X(¢)+§ Z 5ZWIZC(X)€1€'€1'<,0+§ Z W (X)ep - @

0<k<i<n 0<k<n
:Véﬂo
1
= V)E(MSO ) Z erg(A(X), ex)ex - o,
0<k<n
and consequently
1
Vil = Vilp - SAX) - ¢, (2.1.11)

for all X € I'(TM), where A, with A(X) := Vxv, is the Weingarten tensor of the immer-
siom.

These considerations lead to the following

Proposition 9 Let M be an oriented pseudo-Riemannian manifold of signature (p,q),
with p+q = n, immersed into a pseudo-Riemannian spin manifold N of signature (p+1, q).
If ® € T'(XN) is a Killing spinor on N, i.e if

V® =)AX -y O,

forall X € T(TM), X € C, then its restriction p = ®|y to M is a solution of the equation

1
ViMp = SAX) o+ uX i, -,

where 1t = —i\ if p+q =mn is even and p = X\ if p+ q is odd.

Proof: 1f n.=2m (resp n = 2m+ 1), we recall that the complex volume element WSH, =
imtatly, , acts as the identity on N (resp XTN). Then one has for all ¢ € ['(SM):

mq+1

VN Q =1y m+q+1

= — gmta+l p+q
Wptl,g NP =1 V' NWpg NV NP =1 (=1)" wy, g - .
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Then v -y ¢ = iw;gq ~p,ifnevenand v-y ¢ = —w;gq -, if n is odd. Consequently

M yo==AX yvyv-yo=pX-wy, ¢

with p = —iAif p+g=mniseven and up = \ if p+ ¢ is odd. The above calculation for
the induced spin connection terminates the proof. O

Lemma 5 Under the same assumptions as in proposition 9, let ® € T'(XN),
Ve = \X -y @,

o = ®|y and q be an even number. Then

1. If X € R, we have |¢| = Const.

2. If A € iR, we have X|p|* = =2iMX - @, ), with ¢ =@ —¢~, ifn is even, and
|| = Const, if n is odd.

Proof:

1. If A € R, we have, as ¢ is even
X|®)? =2(VV®,®) = 20X -y ©,P) = —2(—1)NP, X -xy ) =0
and consequently |¢| = Const.

2. If X € iR, we have
Xl = 2u(X - wy g0, 90) + (A(X) - 0, 0) = 2(X - wip 0, 0).
If n is odd, as wgq acts on XM as the identity, we have
Xlol* =2XMX - 0,9) =0,

and |p| = Const.
If n is even wgq acts on XFM as £1d and consequently

Xpl? = =2iMX - @, ),

with g = pt — ™. O

Definition 14 A generalized Killing spinor on a pseudo-Riemannian spin manifold M
with spin connection V=M is a solution ¢ of the generalized Killing equation

1
VXM = SAX) o+ pX wp, (2.1.12)

for all X € TM, where A is a field of g-symmetric endomorphisms and pu € C.
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Proposition 10 Let M be a pseudo-Riemannian spin manifold and ¢ € T'(XM) be a
solution of (2.1.12) on M. Then ¢ is a solution of the Dirac equation

Dgszgp—nuwgq-go, (2.1.13)

where H = —1 tr (A).
In the following we call such spinors generalized Dirac spinors.

Proof:
ptq p+q

DQO Z Ei€; VZMQD Z Ei€; - A]ej + ue; D,q ) 2

where A7 := ;9(A(e;),¢;)) and £, A7 is symmetric. Then, as e; - ¢; is antisymmetric, we

have
p+q

Do =—n uw&-gp%—ZaﬁAﬁei-eigp: —n uw£q~go— %tr (A) - .
i=1
O
The spin curvature is defined by
REM(X, ) = VIV - TRITRY - VRN 0.
and can be computed in terms of the curvature tensor R in the following way:
R*M (e, e1) Zezgj (ek, €1)ei, e5)e; - €j - . (2.1.14)

Z<j

Let ¢ be a solution of the generalized Killing equation. A simple calculation shows
that the corresponding equation of integrability is given by (compare [Frl], [Mo] for the
Riemannian case):

RPM(X)Y) p = %dVA(X, Ve + i(A(Y) CAX) = A(X) - A(Y)) - (2.1.15)

+2(Y - X — X -Y)e.

Remark 9  The equations R*(X,Y) = 1(A(Y)-A(X)—AX)-A(Y))+p2(Y- X —X-Y)
and d¥A(X,Y) = 0 are equivalent to the Gaufs and Codazzi equation of hypersurface
theory.

The three-dimensional case

In this paragraph, we show that, on a three-dimensional Riemannian manifold, a solution
of the Dirac equation (2.1.13) is equivalent to a solution of the generalized Killing equation
(2.1.12) for p € R and p € iR. Moreover, assuming that the tensor A is a Codazzi tensor,
a solution of the generalized Killing equation for such p is equivalent to an isometric
immersion of M into the simply connected model space M}, with constant curvature x =
442, This last result was proven in [Mo] for = 0 and A parallel. Moreover this generalizes
in dimension three a result of Bér, Gauduchon and Moroianu ([BGM]), which proved in
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fact that, under the same conditions and for p = 0, a pseudo-Riemannian manifold of
general dimension can be embedded as a hypersurface into a Ricci flat manifold.

We recall that the model space M admits the maximal number of linearly independent
Killing spinors, if the Killing constant is A = &5 for k > 0 and A = :I:%“ for kK < 0.

Theorem 6 Let (M?3,g) be a three-dimensional Riemannian spin manifold,
H: M — R a real valued function and A a field of symmetric endomorphisms on T M .
Then the following statements are equivalent:

1. ¢ is a non-vanishing solution of the Dirac equation:
Dy = Hey, |p| = Const.
2. ¢ is a non-vanishing solution of the generalized Killing-equation
oM 1
with 2 tr (A) = —H and A = — = where
2 (X
T,(X,Y) = (X - Vi'p +Y - ViV, ¢)

1s the energy-momentum tensor.

Moreover if A is a Codazzi tensor, i.e. if the following condition holds:
(VRYAY) = (Vi A)(X) = 0, (2.1.16)

for all vector fields X, Y on M, and M is simply connected, then the first two statements
are equivalent to

3. There exists a global isometric immersion M3 — R* with mean curvature H and
Weingarten tensor A.

Proof: The proof of 73 = 2”7 (without condition on the tensor A) is a direct application
of proposition 9 and 72 = 1”7 follows directly from proposition 10.

"1 = 27: The three-dimensional complex spinor module is X3 = C?. The complex
spin representation is then real four-dimensional. We now define the map

fZR3€BR—>23
(v, T) >V @+ TP

where ¢ is a given non-vanishing spinor.
Obviously f is an isomorphism. Then for all ¢y € 33 there is a unique pair (v, r) €
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(R®*@®R) = T,M? @& R, such that vy = v - ¢ + re.
Consequently V3 ¢, € I'(T;M ® ¥3) can be expressed as follows:
VX'e = B(X) o+ w(X)p,

for all p € M and for all vector fields X, with w a 1-form and B a (1,1)-tensor field.
Moreover we have

Xl 0) = (V0. o)+ o, V2o = 20X, ¢) = w(x) = WD) 5y

2|2

which yields w(X) = 0, as the norm of ¢ is constant.

We now prove that B is symmetric. Let B = S + T with S the symmetric and 7' the
antisymmetric part of B. Let {e;} be an orthonormal basis of TM and ¢ be a solution
of the Dirac equation Dy = Hy. We have

3

Dy = Z VEMQD Zel Be]

i=1

3 3
= ;Tfei-ej-@+;Sfei-ei-go+2iw “p

i#j sym. antisym.

= —QZT’ez € - 90+ZSZGZ €; -

1<J

= —2(Tyey-exs+Tier-es+They-e3) - —tr (B)p=Hp
Note that R((T) ez — Tyes + Tier)p, p) = 0. Using the fact that in the three-dimensional
case e; - e = e3 we deduce:
(Tyes —Tyes+Tier)p = 0& Ty =Ty =T5 =0,
—tr (B) = H.

It follows that B is symmetric, with —tr (B) = H.
Further

3 3
Tgo(eiaej) - <ei'V§jM@+Gj'V2M¢7 80>:<ZBJ1€626/§¢+ZBZ€6]6/€90790>

= —(Blp+ Bly, o) = —2B!|p],

and finally B = — . We put A = 2B, which completes the proof.

(so

72 = 3": As e;-ey = e3 in the three dimensional case and with R;;, = (R(e;, e;)er, ex),
we have:

REM(elaGQ)'SO - _Z 61a62 617€j>6’b ej (10
1<
1
= —§[R1212'61'62'§0—R1213'€3'€1'90+R1223'€2'€3‘90]

1
— —§[R1212'€3 cp— Ry913 - €9 0 + Rygo3 -61] TP
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The same calculation for R¥M (eq, e3) and R*M (e3,¢;) yields

1
R*M(ei ;) - o = §[Rz'jik ~€j — Rijij - ek — Rijji - €] - o, (2.1.17)

where (i, 7, k) is any cyclic permutation of (1,2, 3).
Further with a simple calculation we find

Alej) - Alei) — Ales) - Aley) = 2(AuAj; — AijAjp)e
—2(AzkAﬂ — A,-,-Ajk)ej + 2(./4,]14], — A”A]k)ek

With the integrability condition (2.1.15) this yields

(Ve,A)(es) = (Ve A)es) = (Rijjr — (AiAj; — AijAji) e

which proves that, if A is a Codazzi tensor, it satisfies the Gaufl equations, too. This
implication was shown by Morel ([Mo]) in the Riemannian case for a parallel tensor A.
We also refer to [C] for results in general dimension. a

Corollary 3 Let (M3, g) be a three-dimensional Riemannian spin manifold, H : M —
R a real valued function and A a symmetric endomorphism on T M.

1. The following statements are equivalent:
a. @ is a non-vanishing solution of the Dirac equation:
Do=Hp—X-ws-p, |p| =Const,\ € R.
b. ¢ is a non-vanishing solution of the generalized Killing equation
1
ViMy = §A(X)-g0—|—)\X-cu3-g0, A eR,
with $tr (A) = —H and A = — 2= where
2 (psp)
T,(X,Y) = (X - Vi'o +Y - V"0, )
1s the energy-momentum tensor.

Moreover if A is a Codazzi tensor, M is simply connected and \ = % both statements
are equivalent to

c. There exists a global isometric immersion M3 — S* into the four-dimensional
sphere, with mean curvature H and Weingarten tensor A.

2. The following statements are equivalent:
a. ¢ is a non-vanishing solution of the Dirac equation:

Dy =Hp —ilws -, |p| = Const, XeR.
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b. ¢ is a non-vanishing solution of the generalized Killing equation
1
ViMy = §A(X)-g0+i)\X-w3-<p, A eR,

where

with §tr (A) = —H and A = —WT%»,

To(X.Y) = (X - ViMoo + Y - VMo, )
18 the energy momentum tensor.

Moreover if A is a Codazzi tensor, M is simply connected and A = % both statements
are equivalent to

c. There exists a global isometric immersion M3 — H* into the four-dimensional
hyperbolic space, with mean curvature H and Weingarten tensor A.

Proof:

1. a) = b) As |p| = Const, using the same argument as in the proof of theorem 6, we have
Vi'e=B(X) ¢ =S8(X) ¢+ T(X) ¢,

where B is a (1,1)-tensor field and S (resp. T') is the symmetric (resp. antisymmet-
ric) part of B.

Let ¢ be a solution of the Dirac equation Dy = Hp — X - w3 - . Then we obtain
similarly to the case of theorem 6

3
Dgoz—QZT;ei'ej~g0—tr(B)g0:Hg0—/\'w3'g0,

i<j

which yields

(D, @)y ==2) Tjlei-e;-p, o) —=(tr (B) -0, ) = (Hp, @) = A{ws - 0, ¢).
— —

<y =0 =0

Consequently —tr (B) = H and —2 Z?<j Tiei-ej- o= w3 - .
Further we calculate

3

(T(ej) o, eiv9) = YT (e eig) =Tilel
—_———
k =—(e;-epp, p)=0, i#k

3
and  (Awz-ej-p, ei-p) = —(Aws -, ej‘ei'90>:—QZle<€k‘€l'% eirej ).
k<l

In the three-dimensional case at most three of the four indices differ. Moreover,
for m # n, (em - en - @, @) = 0 holds and as the trace of an antisymmetric tensor
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vanishes, we have: (ex-€,- ¢, e;-€,-9) #0&= k=i l=jork=jl=1 i#j,
which yields

—Mws-ej-p, ) = 2T = (T(ej) - ¢, € - ¢)
and finally
T(X)- ¢ = dws-X-o.

Using this equation for the symmetric part of B we obtain, analogously to the proof
of theorem 6:

T¢(ei, €j) = <€Z' . VEJMQO + €j - VEZ,MQO, Q0>

3 3
= (ZS]’?‘ei-ek-ga+ZSfej-ek-go,go) + (idws - (€; - € +ej-ei)/-g0, ©)
K k

.

-~

=0

= el =5 = -5t = AKX,

b) = ¢) Using an analogous calculation to the one of theorem 6 we find with equation (2.1.15)

(Ve A)(e) — (VEMA)(es) = (Rigje — (AinAyy — Ay Aji — 4N%))e;

= (Rijir — (AnAji — AuAji) — 4)\2)63' + (Rijij — (AijAji — AiAjr) — 4)\2)6k,
which yields the result by theorem 4 if A = 3.
The rest of the proof is similar to the proof of theorem 6.

2. The proof is identical to the one of the first case.

The two-dimensional case
In this paragraph we generalize the result of Friedrich ([Frl]) to the pseudo-Riemannian
case. The difficulty comes from the existence of isotropic spinors. In fact the half spinor

bundles ¥* M are maximal isotropic with respect to the hermitian scalar product on M.

Theorem 7 Let (M, g) be a pseudo-Riemannian surface of signature (1,1), H : M — R
be a real valued function. Then the following two statements are equivalent:

1. ¢ is a non-vanishing non-isotropic solution of the Dirac equation Dy = Hy with
ol =1,

2. ¢ 1s a non-vanishing non-isotropic solution of the generalized Killing equation
1
where A is a g-symmetric endomorphism and —%trA =H.
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Moreover if A is a Codazzi tensor and M simply connected both statements are equivalent
to

3. There exists a global isometric spacelike immersion M — R*! with mean curvature
H and second fundamental form A.

Proof: Again 73 = 27 follows from proposition 9 and 72 = 1”7 from proposition 10.

71 = 2". We define 3,(e;, e;) = (ViMop, e; - ¢), where (-, ) is the pseudo-hermitian
symmetric Spin,(p, ¢)-invariant bilinear form defined in the last section.
O S

= —(ey- VEIM@, er-e-p)=—(Dp+ey- VGZQMgo, er- e Q)

= —H{p, e1-e3-¢) — (ea- VEQMQO, e1 - exp).
Moreover (@, e1-e3-¢) = (ea-€1-@p, p)=—(e1-ea-p, @) =—(p, €1-e3-p)=0.
Consequently

Beler, e2) = —(ea- VMg, er-er-0) = (ea- VoM - p e €1+ )
= <V§2M ' 6% ce1 - p) = Bylea, 1),

and (3, is symmetric.
Let us define the endomorphism

(By)i = 9(By(e:), €5) == By(ei, ;).
It is obviously g-symmetric and tr (B) = ¢”B;; = H.
Moreover let
by (X.Y) = (VXMeh Y- %)
and _
(BY) = 9(B; (@), ¢)) := B (i ¢5).
With the same calculation as above and with Do* = HpT, we obtain tr (B*) = H(pT, o*).

Claim:
(B3 (X) - ¢F. e T) = =3(B;(X) - 9T, e %) (2.1.18)
Proof: Obviously we can suppose that ¢*(p) # 0 in an open neighborhood of p as
(7, 907) #0. .
We remark that &%“‘;—_) is a normalized dual frame of T M. Consequently as (VEM o™ ¢;-
©T) = 0, because of the isotropy of ¢*, we have:
2

SM SM 4  Gityp SM - _, it
Ve = > e (VR et eiph) =+ (V¥M¢ e ) ———

0 (ot 97) (ot 97)
= W Za’:‘i (b¢,+ (X, ei)ei . QO_ + bwf (X, 62')62‘ . (p+)
= B+ B (X))
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Comparing degrees, this yields

1
V= Gy P T

Moreover

(BI(X) - e 9T) = =29(BJ(X),e) (0", 07) = (BS(X) - T, e - 0T),

but
G(BE(X), ) = BE(X, ) = (VEM ¥ ) = <¢+?@_><B§(X)'sﬁ & - o)
(BE(X) - 0% e 0F) = —3(BE(X) - 6., - o) o

Moreover we have:
1

(VMo ei0™) = (VM oT+VM 0™, ei0F) = (ViMp*, i@i>:W

(BE(X)-¢F, eip%)
and

(Bo(X) - @,ei-07) = (BIX)- (" + ¢ ) ei-9") + (B (X)- (¢t +¢7), e ¢F)
= (BI(X)-¢T,ei-07) +(BS(X) T e %),

Then with (2.1.18) we have

(Bo(X) -, ei- %) = (b0 WUV o5, ™) + (BI(X) - o5, - 97)
+

= (o, o W VMo ep™) —3(BI(X) - oT e ")
and finally
1
ViMp, e - o) = —————(BE(X) - pF, e - o). 2.1.19
(Vx ) 2<¢+’¢_>< - (X) ) ( )
Setting A := —1B, and as |l¢|| = 1 and consequently (¢",¢~) = 1, this finishes the
proof, as e; - ¢ is a dual frame of X* M. O

72 = 3” : For the spin curvature in dimension 2 we have with equation (2.1.14):

REM(el, ea)p = 551523122161 T€2 = 53121261 T€2 0 Q.
Consequently, using the fact that

Aleg)A(er) — A(er)A(ez) = —2det(A)ey - e,
the integrability conditions (2.1.15) can be expressed by

R1212€1 €yt = — det(A)el €2 + ((ViMA) (61) — (V?lMA) (62)) '
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Let now define the vector field
B=(V;MA)(er) — (VZMA)(eo)
and the function
f = Rio12 + det(A)

We recall that the spinor bundle decomposes under the action of the real volume form

w1, into the direct sum
SM=XtTM&X M,

where X1 M, respectively X7 M, are the eigenspace to the eigenvalues 1, respectively —1.
Then, for any spinor ¢ € T'(X) we have p = ¢ + ¢~. Consequently we obtain the
following system of equations:

B¢ = Ffp¥,

which leads to
IB|[*¢™ = f2p*

Moreover B is non isotropic. In fact if || B|| = 0, then B-¢ = 0: writting B = Bje; + Baea,
we have
Biey - p = —Bses - p & Bip = Bowy 1 - ¢ & Bt = £Bsp™,

which yields, as ¢* and ¢~ are linearly independant, that B; = By = 0.
A is a Codazzi tensor, then B = 0. With the above considerations, this is equivalent to
f =0, which finishes the proof. O

Obviously this method does not allow to cancel the condition on A to be Codazzi and
we cannot show the equivalence between a solution of the Dirac equation on the surface
M and an immersion of M into R%>!. This motivates a change of the method and the
contents of the following section.

2.2 A spinor representation for Lorentzian surfaces
in R*!

2.2.1 Lorentzian surfaces

In the following we call Lorentzian surfaces smooth and orientable two-dimensional man-
ifolds provided with an indefinite metric. Let M be a strongly oriented smooth two-
dimensional manifold with a pseudo-Riemannian metric of signature (1,1), i.e. a time-
oriented oriented Lorentzian surface. We recall that in this case the existence of spin
structures is ensured (see remark 6). Denote by Pspin . aspin structure on M.
We have

Spin, (1,1) c ClY; = Clpy * RO R = C.
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Therefore, the spin representation A;; splits under the action of the volume form w ;
into the direct sum of two inequivalent representations and it holds for the spinor module
Y11= Zfl ® Eil =R@&R = C. We remark that wy ; defines a para-complex structure on
Y11 and we identify it in the following with the para-complex unit. Therefore the spinor
bundle ¥M = Pspin XA, , 21,1 = Pspin Xa,, C of M can be identified with a para-complex
line bundle.

Moreover, we have

SO, (1,1) = {exp(ed)|0 € R} C H',
Spin, (1,1) = U™(C) = {Zfexp(ed)|d € R} C H'.

The unique two-to-one Spin-covering of SO, (1, 1) is given by

A:C* S Spin, (1,1) — SO, (1,1) C C*,

Z’—>Z2.

Let L be a para-hermitian line bundle over M. As seen in section 1.1, the transi-
tion functions of L for a certain open covering {U,} of M are of the form @,p(x) =
+ exp(w1,10ap(2)), where 8,3 : Uy, N Uz — R, € M. This means that L is a Spin, (1, 1)-
bundle.

Consider now the product bundle L? := L ®¢ L. This bundle has transition functions
given by @2 5(x) € SO4(1,1) for the same open covering {Us}. Similarly to the approach
of [KS] for Riemannian surfaces the above considerations show, that the classical definition
13 of a spinor bundle reduces to the following

Definition 15 A spinor bundle on a strongly oriented Lorentzian surface M is a para-
hermitian line bundle L endowed with an isomorphism k : L&cL = T*M . In the following
we will denote it by XM .

A real formulation of definition 15 is given by

Proposition 11 A spinor bundle on a strongly oriented Lorentzian surface M is equiv-
alent to the data of two real line bundles Ly (called half spinor bundles and denoted in the
following by X*M ), with a pairing Ly ®r L_ — R, and isomorphisms T*M = L. ®g L.

Proof: We put L, & L_ =: L. Let kffﬁ be the transition functions of the bundles L
with respect to an open covering {U,}. Then by definition the transition functions of

Ly ®L_=Laregivenby K, =1 & .

0 kK,
af
Obviously the transition functions of the bundles L, ®r L, & L_ ®r L_ and L ®¢ L are
S A Cv") L VA W
the same, i.e. K3 = ( 0 hy)?) = K- ]

To illustrate this point of view, it is illuminating to consider the Minkowski space
M=R"M=C=R(1+e)®R(1—e).
We have TXM =R(1+e) 2 Ry/(1+£e)@rRy/(1+e€),pe M.
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The pairing

Rvli4+erprRyvl—e — R
avVl+e®@bV/l—e +— 2ab,

with a, b € R, induces a Clifford multiplication on Z;M =Ry\/(1+e) by:

prTEM@ETM =Y*M @Y * M oYM — StM
a(lte)@byVlFe — 2abylte

and hence a Clifford multiplication

p:TM XM — XM (2.2.1)
on XM =XTM @YX M=M xR
Obviously (1 + e), resp (1 — e) corresponds to the multiplication by —2 (8 (1)), resp

0 0
210.

Let V: T(X%) — I(T*M ® ¥F) be the covariant derivative on the spinor bundle.
As {1,e} is an orthonormal basis we have

DY = pV 1 = p(e)Veth = 5p(1+ V1 + 3p(1 =€)V it

where D : T'(XM) — T'(XM) is the Dirac operator on R"! and ¢ € T'(XM). Hence as
Viie = 2% and V;_, = 22 , the Dirac operator in the Minkowski space has the form

0z
0 )
D=2( , 82+ . (2.2.2)

Oz_

Remark that for a given w € SO, (1,1) C C* there exist exactly two square roots
z € Spin, (1,1). We will denote the one with ¥(z) > 0 by z = y/w. Locally we can con-
sider the (1,0)-form dz, where z is a para-holomorphic coordinate, as a section of 7*M.
There exist four sections s of L (see section 1.1) such that k(s ® s) = dz, as z has to be
compatible with the orientation and the time orientation. Without lost of generality we
can choose one of these spinors and denote it by ¢ = v/dz. Later we choose a trivialization
of T*M, which induces a trivialization of the spinor bundle. Therefore, we can express
any spinor s in the form s = f¢, for which it holds s* = f?dz.

We will use this point of view to derive a spinor representation of Lorentzian surfaces
in the Minkowski space R?1.

2.2.2 The Weierstrafl representation

Using the real splitting (1.1.1) of exterior forms on a para-complex manifold we give a real
Weierstral representation for Lorentzian surfaces. This generalizes a result of Konderak
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(see [KO]) for minimal surfaces. We recall that a (1+,0—)- (resp. a (0+, 1—)-form w. on
M can be written as wy = ¢4dz4, where z4 are the adapted coordinates introduced in
section 1.1 and ¢4 are real functions.

Let (M,g) be a Lorentzian surface with pseudo-Riemannian metric g. In this chapter,
we say that M is conformally immersed in R*! if and only if there exists a smooth map
F : M — R?!, such that

(AF(X),dF (Y ))es = ng(X,Y),

for all X, Y € TM, and where p is a positive function. Let {U, ¢} be a local chart on M
and (z,y) real local coordinates for this chart. Then in this coordinates g is conformally
equivalent to dz? — dy?, i.e.

glv = Mdz®—dy*), A>0

and the above definition is equivalent to

oF OF oF OF oF OF
or ogry _ Il QY el S W ) 2.2.3
G 59 G0 = G 3 (223)
In local coordinates (z;,x;) we can write g = g;;da’da?, with 4,7,k = 1,2 . The
Laplace operator on M is defined for an arbitrary real valued function f by taking

0 . Of
81‘281']‘]0 B ij%%

Agf = gij(

where we follow the Einstein summation convention and ¢¥ is the inverse of the matrix
gij- Let now F : M — R?*! be a conformal immersion, then for the local coordinates

(z4,2_) we can write ¢ = Adzydz_, A > 0 or in matrix form g = A (1] (1)) A simple
calculation shows that the Laplacian of a real valued function f on M is given by
20% f
Nf=——-"— 2.24
/ N0z 0z ( )

where ) is the conformal factor of the metric.
Moreover it holds true for the mean curvature H = %tr B of the surface, where B is the
second fundamental form for F', that

%HV _ AF, (2.2.5)

where v is the (spacelike) unit normal vector field of the immersion. Let now w, and w_ be
the triples of forms of the immersion as defined in theorem 8. w, +w_ = 2£dz and conse-

0z
— OF — OF OF OFN _ 1 (/9F OF\ _ OF OF\) _
quently wy = F=dzy andw_ = F=dz_. Moreover <aZ+’ ) = g (<8z’ o) <8y’ ay>> =
%)\. Then we have
2v-0Tw_
H=2"""*
<w+7w—>
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Theorem 8 Let M be a Lorentzian surface. Then the two following conditions are equiv-
alent:

1. The map F : M — R*! is a conformal immersion.

2. There ezist a triple wy = (wi4,way,wsy) of (14,0—)-forms and a triple w_ =
(wi_,ws_,w3_) of (0+,1—=)-forms on M such that

(i)

{wli_Fin_w?)a_:Ov 296
2 2 2 _ ( e )
W12 + wo? — w3 = O,
(i)
W1pWi— T Wo W — W3 W3 > 0, (227)

(iii) The forms w;, resp. w;_ are O, -ezxact resp. 0_-ezxact.

which satisfy the equation

q
F(q) = / (Wiy Fwio,woy +wy_,wsy +ws_) + Constant.
p

Proof: of the theorem 1. = 2.: Consider a conformal immersion F' = (Fy, Iy, F3) : M —
R'? and let ¢y = (¢uy, Pio, Gug), Go; = 22, i € {1,2,3}. Then wy, := ¢y dzy are

Oz4
(1+,0—)-forms resp. (0+,1—)-forms on M, which obviously verify condition 2.(:7).
Moreover we have:

OF: OF: OF:
+2 +2 42 Y12 Y2y (Y342
¢1 +¢2 ¢3 (82i> +(8Z:|:) (aZi)
_ 8F1 + 8F1 aFQ 8F2 8F3 + 8F3

2 2 (OF3  Ol'3.9
<8:v ay) <8:Eiay) (890 8y)
oF OF oF OF oF OF

which proves 2.(i). Further

OF OF OF OF OF OF
+ o4y — _ Il
(07, ¢7) = <8z+’8z_> <8x+8y’8x 8y>

= (=—,=—)—{(— —y):2)\>0,

which is equivalent to condition 2.(i7).
2. = 1. Condition (4i7) yields that F' is well-defined. Moreover with conditions (i) and
(77) we have

oF OF OF OF OF OF



This implies (25, 95 + (%—5, %—5) =0 and (%, %—5> = 0. Hence

OF OF OF OF

<8_x’%> <8_y’8_y>:)\>0

and F is a conformal immersion of M into R?1!. O

Proposition 12 A conformal immersion F = (Fy, Fy, F3) : M — R>! is minimal if

and only ifg% = g:;f =0, with ¢+ = 88211.

Proof: With equations (2.2.5) and (2.2.4) F' is minimal if and only if

1 20%F 20%F
0 oY Nz 0z Nz 0z,

which yields the result. O

Remark 10  Condition 2.(iii) of theorem 8 is equivalent to the local condition that the
forms w1 are closed and 0_w;, = —0w;_, moreover it implies that the 1-form w;, +w;_
18 exact.

From this real Weierstrafl representation we can derive a para-complex Weierstrass
representation in the following way:

Theorem 9 Let M be a Lorentzian surface. Then the following two conditions are equiv-
alent:

1. The map F : M — R*! is a conformal immersion.

2. There exists a triple w = (w1, ws, ws) of (1,0)-forms on M satisfying the equation

q
F(g) =% (/ (wl,wg,wg)) + Constant,
P

such that
Wi 4w —wi =0, (2.2.8)
WiW1 + Wowo — w3ws > 0, (229)
the 1-forms R(w;) are exact. (2.2.10)

Proof:  Considering para-complex (1,0)—forms w;, we have w; = ©; + eJo;, with &; €
['(TM*). Using now the real splitting (1.1.1), @; = w;, + w;_ holds , where w;, and w;_
are (1+,0-)- resp. (0+,1-)-forms. Consequently

Wi = (wiy +wis) Fe(wip —wi))? = 2wt +wil) + 2e(wl —w?),

29



and
widi = (wH + wi,)2 — (wi+ — wi,)Q = 4wi+wi,.

Simple calculations show that the conditions (2.2.6) resp. (2.2.7) of theorem 8 are equiv-
alent to the conditions (2.2.8) resp. (2.2.9).

Moreover R(w;) = @; = w;, +w;_. Remark 10 yields then clearly the equivalence between
(2.2.10) and part (iii) of theorem 8. O

This is a generalization of a result of Konderak (see [KO]) for minimal surfaces im-
mersed in R%!. We remark that the minimality of the immersion is just given by the
condition on the (1,0)—forms w; to be para-holomorphic (i.e locally w; = ¢;dz, ¢; para-
holomorphic).

2.2.3 A Veronese map

Let RP" = P(R™!) be the real projective space of the pseudo-Euclidean vector space
R™!, We introduce the tautological line bundle of RP™:

mrpe = {(\,v) € RP™ x R™'|v € A},
Obviously this is a subbundle of the trivial (n+1)—dimensional bundle 7" = RP" xR™!.
We now consider the quadric
Q = {(z1, 29, 23) € R* 23 — 23 + 22 =0}
and the maps

Wy RV - RZL

(x1,22) +— (xf — x%, j:(x% + x%), 2x127)

Then Wy can be seen as maps into the affine quadric ). Obviously Wa (x) = Wy (2') is
equivalent to 2’ = +ux.
We now define Veronese embeddings by

V,: RP' —RP?
2

(21, 29] = Wa(z1,20)] = [23 — 23, (27 + 23), 27125].

Proposition 13  The Veronese embeddings W induce isomorphisms
V. RP'S[Q]
between the projective space RP' and the projective quadric

Q] = {[z1, 22, 73] € RP?| 2 — a3+ a2 = 0}.
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Proof: Let [y1,92,y3] be a point of the projective quadric. Taking affine charts of RP!
and assuming that y3 # 0, we seek for [z, xs], with x1, 29 # 0, such that [£ £ 1] =

Y3’ y3”’
22—22 +(22+22) . . -
E , —+—22 1]. Summing up the first and second component gives - and consequently
xr1T2 2x172 X2

the surjectivity. O

Lemma 10 The following canonical isomorphism holds:

TRPL ®R TRP1 & ViTRPQ- (2211)

Proof: 'We have
Trpr @z Trpr = {([z],v @ w) € RP' x (R*) v, w € [2]}
Moreover
Vimep: = {([z],v) € RP' x Qv € Vi ([2]) = Wa(2)]}-
Using the isomorphism s ® s — W4 (s) we obtain the result. O

Remark that if k,s are the transition functions of mgp: for the covering {U,}, then
Trpt @r Trpt and ViTrp2 have the same transition functions kiﬂ for this covering.

We now define the map
V:RP' x RP' — RP? x RP?, ([x1, x3], [}, 25)) — (Vi (1, 22]), V_ ([}, 24])).
Let mopn H 7rpn be the vector bundle defined over RP™ x RP™ such that the fibers are

(Tan H TRP”)(er,p*) = (TRP")p+ ) (Tan)pf,
with (p™,p7) € RP" x RP™.

As it is the Cartesian product of two smooth manifolds, RP™ x RP" is a para-complex
manifold. In fact, using the identification T(,+ ,-)(RP" x RP") = T,+RP" ® T,-RP",
we can define a para-complex structure by J|p .gpn = £Id. We refer to [CMMS] for
more details. Then mgpr» H 7Trpr has the structure of a para-complex vector bundle over

RP™ x RP™ by defining a para-complex structure which has eigenvalue 1 on the first and
—1 on the second summand.

Corollary 4  The following canonical isomorphism of para-complex vector spaces holds:

(Tept B Tepr) @c (Trpr B Trpr) 2 V*(Trpe B p2). (2.2.12)

Proof: Let k,p be the transition functions of the bundle Tgp1 with respect to an open
covering {U,}. Then by definition the transition functions of (rgp1 B 7rp1) are given by

+ ) — kaﬁ<p+) 0 - 1 1
K.s(pt,p7) = 0 kos(p) ) for (p*,p7) € RP' x RP'. Moreover from lemma
af

10 we obtain:

V*(TRPQ EE TRP2> = V-T-TRPQ Bﬂ ViTRp2 = TR p1 ®R TRP1 EH TRP1 ®R TRP1.

Obviously the transition functions K,z of the bundles Tgp1 @g Trp1 B TRp1 ®r TRpr and
- /{32 +
(Trpr B Trp1) @c (Trpr B Trp1) are the same, ie. Kyp = < aﬁ(()p ) 2 ?p‘)) = Kiﬂ,
aB
which proves the lemma. O
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2.2.4 The spinor representation

Using theorem 8 and the Veronese map introduced in the last paragraph, we now gener-
alize the results of [KS] to Lorentzian surfaces.

Let wy € T(T*M%). Locally one can write wy = ¢idzy where ¢ € C°°(M) and the
pair (zy,z_) is some adapted local coordinate system on the para-complex surface M.
This yields immediately a local identification of C®(M) = QU+H97)(M) = D(T*M*) =
QOHI9) (M) = T(T*M™). Let M be a Lorentzian surface which is conformally immersed
in R*!. The condition (2.2.7) of theorem 8 on the isotropic one-forms w;, implies that

My ={x € M|, (x) =0, Vi e {1,2,3}} = 0.
Therefore we can consider the map

h:M — RP?xRP?
v = (h (@), h(2)) = ([014(2), P24 (2), 5, ()], [D1- (%), P2 (2), b3 (2)]).

Moreover h can be then considered by condition (2.2.6) as a map into the product of pro-
jective quadrics [Q]x [Q] = RP'xRP!. This allows us to define maps f : M — RP'xRP?,
v

such that h = V o fand fi: M — RP!, such that hy = 17i o fi.

Let now define the maps

EE T ME — hy*(Tpp2)
3
Zaiwii(m) =a — [F

where [ is the linear functional given by I(¢, (z)) = a- ¢4 (z) = 30 a;¢i, () € R, with
a = (a1, az,a3) and ¢(x) = (¢1,(x), P2 (), 3, (x)). We remark that I, do not depend
on the choice of dzs. We show that k is an isomorphism: Let a@ = 37 biw,, (), for an
other triple b = (b1, by, b3) # a, then we have

3 3

0="> (a; = bi)wip(r) = (a; — b;) iy (v)dzs

7 %

and consequently (IF — [;¥)(¢*(x)) = 0, which leads I, = I,
Hence we have the isomorphism

T*M* = b (rip) = FiV (Taps) (2.2.13)
and finally with lemma 10 we find the isomorphisms:
KE T M 2 i (rip) @r fi(Tap1) (2.2.14)
By proposition 11 the above construction gives explicitly two half spinor bundles

EM = fi(Tip)
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on M and, as fi(7ap1) @ f*(Tap1) = [*(Tap B Thpi), we have

Hence
ZM = f*(T]iéPl Hﬂ Tﬁpl)

is a spin bundle on M in the interpretation of definition 15.
The following commutative diagram illustrates the above objets:

TM* m—— W (T B T p2) Trpz B Trp2
S (Tgp B ) M " ~1Q] x [Q] € RP? x RP?
%
Tapr B Tgp RP! x RP}

We have then the

Theorem 11 Let M be a strongly oriented Lorentzian surface. Then the following con-
ditions are equivalent

1 There exists a conformal immersion M — R*' with mean curvature H.

2 There exists a solution ¥ = (11, 19) of the Dirac-type equation

D 0 (] U
=H .
(0 p) () = () e
for some real-valued function H, necessarily the mean curvature of the surface.

Proof: For pairs of sections (s1,,s5) and (s;_,sy_) of f*(7gp1) we can write

_ (e 2 2 . 2 2
Wy = (Wip Wig,wig) = (8147 — 8247, 8147 + 8247, 2514524),

wo = (wop,w_g,w_g) = (512 —59_2%, —51_% —59_%,251_55_).
With sii2 = fitdzs, we have
0wy =2(=f110.- fiitfo 0o for, —f120:- fii—fo 0o foy s —f2,0.- f1—fa, 0. f1)dzy Ndz,
Orw_ =2(f1_0+ fii—fo_ 0wt oo, =120+ fr_—fo_ Ot fo_, — fo_ O+ fr_—fo_ 0.+ f1_)dzs Ndz—.

Then a simple calculation shows that the integrality conditions of theorem 8 for the pair

(wy,w_) are equivalent to the following conditions on si°:
51+8_31+ = —82_a+82_, 32+8_32+ == —81_8+81_, (2216)
81+8752+ = 51,a+82,, 82+8781+ = SQ,aJrSl,. (2217)
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We now calculate the mean curvature with respect to Sjt. The unit normal vector is given

by
W X W_
V= ———,
oy x w |

where - x - is the natural pseudo-vector product in R*! (see [Wei]). We have

Wy XWw_ = —2(81+81_ + $2+82_)(31+82_ + S1-S24, S1-S24 — S2_S14, S14S1— — 82+32_)
2
lwy Xw_|| = 2(s1451- + s2452-)" = — (w4, w-)
Then v = — Slef2=Fsi_sey, S1_sap—sa_s1y, Siem-—922492-) 54 consequently
81481 +82452_
H — 2<V, 84,(,(),)
<w+7w*>
51_8+51_ — 52_8+82_
2(81+82, + S1-824, S1-S24 — S2_S14,S514+51—- — 82+82,)
= - 2(3 S T 5o )3 -2 —31_8+51_ - 82_a+82_
1421 2492~ 81_6+82_ + 82_6+81_
1
= 5 (52,8+31, — 81,(9+52,)
(s51451- + S24.52_)
Consider now the spinors ¢ = (s14,52_) and 99 := (s2,, s1_). Using the equalities

(2.2.16) and (2.2.17) we compute

2
H - - —
. (s1481- + 82+32_)( Oy82-,0-514)
2
HwQ = (—6752+’8+51_)’

(S1481_ + S24.82_)

which is equivalent to the Dirac-type equation

(0 o) () =) e

where D is the Dirac operator in the sense of equation (2.2.2). O

2.2.5 A geometrically invariant spinor representation

The aim of this section is now to give a geometrically invariant representation of Lorentzian
surfaces in R%! by solutions of a coupled Dirac equation similarly to the result of Friedrich
[Fri].

Theorem 12 Let (M, g) be a strongly oriented pseudo-Riemannian surface of signature
(1,1), H: M — R be a real valued function. Then the following three statements are
equivalent:

1. @1 and @ are non-vanishing non-isotropic solutions of the coupled Dirac equations
Dyy = Hepi, Dyps=—Hp, (2.2.18)

with (p1, p2) =1,
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2. 1 and @y are non-vanishing non-isotropic solutions of the generalized Killing equa-

tions
1 1
VMo = §A(X) o1, VM = —§A(X) " P2,

where A is a g-symmetric endomorphism field and %trA =H.

(2.2.19)

3. If M s simply connected, there exists a global isometric spacelike immersion M —

R2Y with mean curvature H and second fundamental form A.

Proof: 73 = 2" Let ®; be a parallel spinor on R*! and ¢; = ®,],, its restriction to M.
From equation (2.1.11) we have that ¢, is a solution of the generalized Killing equation

ViMe, = 2A(X) - o1, where A is the Weingarten tensor of the immersion.

Claim: The spinor y := v ~ ¢ is solution of the generalized Killing equation

1
V§<M902 = —§A(X) " P2,

where ~ denote the Clifford multiplication on R?!.
Proof: We have by equation (2.1.11)

- , 1 SN
V§<M<P2 = V§<M(V : 801) = (V)E(R“ + §A(X) V)TV

,1 ~ ~ ,1 ]_ o
= (VR0 o +v Vo = SAX) T

- : 1 I -
= v (Vo SAK) e =0T VR

Hence, as ®, is parallel, we have
.Y 1 . - 1 -
Vit = ol AX) vig = —§A(X) VT =—=A(X) pe. O
Moreover we remark that

X(@lv 4P2> = <V§M@17 ()02> + <9017 v?(Mgp2> = <9017 v V§M¢1> = 07

hence (p1, p2) = Const.
72 = 17 follows from proposition 10.

71 = 2". Let ¢1, p2 be two solutions of the system of equations (2.2.18).
Similarly to the proof of theorem 7 we define

ﬁ¢1(€i7 ej) = <v2M901’ €5 901)? ﬁlpz(eiv ej) = <v§¢M902’ €5 - 902>7

65

1-



where (-, -) is the pseudo-hermitian symmetric Spin™(p, ¢)-invariant bilinear form defined
in the last section. Then the same calculation shows that 3, and 3., are symmetric.
Moreover define the g-symmetric endomorphisms

(B%)g = 9(3501 (62-),6]') = 6501 (eivej) and (Bsoz)g = g(Bw2(ei)’ ej) = ﬁsoz(ehej)'

Clearly = Bey) _ g9 (By,)ij = _ i Bed) _ g

1 ]? 2
Then using the method of theorem 7 (see equation (2.1.19)) we show for all X € TM
1 1
VYo, = ————= B, (X) - VMo, = ———B,,(X) - ¢
x %1 2|901|2 @1( ) P1, x ¥2 2|902|2 @2( ) P2

As (1, p2) = Const, we have

By, (X)  Bgy(X)
XM XM
0= X{(p1,2) = (VX" 01,92) + (1, VX" 02) = (— 27;71|2 - QT;JQP C 1, P2)

Let
B‘P1<X) 4 B<P2<X)

|12 |22
It is well-defined as the spinors , @o are non-trivial at any point. B : T(M!) — T(M'1)

B(X) :=

is obviously g-symmetric, and tr (B(X)) = H—H = 0, i.e. in matrix form B = (_ab 2),
with a, b € R.
This yields
0= (B(e1) - ¢1,p2) = aler - p1, p2) — blea - 1, pa)
and
0= (B(e2) - 1, 92) = bler - 1, 2) + alez - o1, p2).

If a # 0 and b # 0 we get with a simple calculation that (eq - 1, p2) = (€2 - @1, ¢2) = 0.
We remark that e; - ¢ is a basis of XM, then we have

€1 Y1 €2 - 1
P2 = <902a €1 - 901>— + <‘;027€2 : 901>— = 0.
|p1]? |ip2]?
Consequently B = 0 and Br;ll(é) = —B“f;z(é) =: —A(X), which finishes the proof.

"2 = 37 Let @1, @2 be solutions of the equations
1 1
Vi or=SAX) 1 ViMer = —SAX) -,

Recall that the integrability conditions for these generalized Killing equations (2.2.19) are
given by:

REM(X,Y) g = dVACX,Y )+ (A(Y) - A(X) — A(X) - A(Y)) - 1
RM(X,Y) s = —dA(X,Y)gs + (AY) - A(X) = AX) - A(Y)) - g

Similarly to the proof of theorem 7, defining the vector field
B .= (ViMA)(el) — (ViMA)(eQ)
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and the function
[ = Rig1p +det(A),
this is equivalent to the system of equations
B-pr=fei-e-p1, B-py=—fer €2
and finally to the equations
B-gv =Ffef, B-yy ==fef.
This yields
IBII*gi = fof, i=1,2

and consequently || B]|? > 0. Moreover we have

(B-p1,B-pa) = —f*e1-ea- 1,61 €2 pa) = [*{ip1,p2)

and

(B-¢1,B-ps) = {p1, B B-¢3) = —|B|*{¢1, p2),

(2.2.20)

(2.2.21)

(2.2.22)

Then ||B||* < 0 holds and finally B = 0, as B is non-isotropic (see again the proof of

theorem 7.
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Chapter 3

(Para-)Conformal geometry of
pseudo-Riemannian surfaces in §2:2

It was proven in [BFLPP]| that a conformal Riemannian surface M immersed in the four-
sphere HP! = S* can be identified with quaternionic line subbundles of M x H?. In this
chapter, we generalize this result to pseudo-Riemannian surfaces M which are conformally
immersed in the para-quaternionic projective space HP' = §?2. We establish in fact a one-
to-one correspondence between such immersions and para-quaternionic line subbundles L
of M xH. As in the Riemannian case, this allows us to define the mean curvature pseudo-
sphere congruence, which can be seen as a (para-)complex structure on L, and the Hopf
fields of the immersion. We then generalize the definition of the Willmore functional for
such surfaces. This allows us to express the energy of a surface of arbitrary signature as
the sum of this functional and of a topological invariant.

3.1 Para-quaternionic vector bundles

In the following we always use for the sake of simplicity the notation J¢, where J° is a
complex structure for e = —1 and a para-complex structure for € = 1.

Definition 16 Let M be a smooth manifold. A para-quaternionic vector bundle of rank
n 1s a smooth real vector bundle m : V' — M of rank 4n with a smooth fiber-preserving
right-action of H on V' such that the fibers are para-quaternionic right-modules over H.

We are more especially interested in para-quaternionic line bundles. Let ¥ be the tauto-
logical bundle over HP", i.e

S = {(l,v) € HP" x H" v € 1},
ms X — HP", (I,v) — L.

Obviously it is 3; = [. Recall, that by proposition 3, Hom(%, ]ﬁf“/i}) >~ THP".
Let f: M — HP™ be a smooth map and consider the pullback

L:=f'Y:={(z,0)|l0c € Ep)} C M x X.
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The fibers X4,y = f(x) over x are points of the projective space HP" i.e. one-dimensional

subspaces of H"*!. It follows that L is a line subbundle of M x ]HIV"Jrl =:H.
Conversely every line subbundle L of H defines a map f: M — HP™ with f(x) := [L,].

Finally we obtain a one-to-one correspondence between smooth maps f: M — HP" and
line subbundles of H.
With corollary 2 this leads to the following

Definition 17  Let L be a line subbundle of H, p € M, X € T,M and ¢ € T'(L).
Moreover let mp, : H — H/L, (m, € T'(Hom(H, H/L))), be the canonical projection. Then
we call

5 = 6% € O (Hom(L, H/L)), 8,(X)(p) = m(dyh(X)) = dytb(X) mod L,

the derivative of L.

With the above identification ¢ corresponds in fact to the derivative of a map f : M —
HP™ in the interpretation of corollary 2.

From lemma 3 we get the following

Proposition 14 Let M be a Riemannian (resp. Lorentzian) surface, f : M — HP!
a conformal immersion and L C H = M x H? be the corresponding line bundle with

derivative 6 € Q'(Hom(L, H/L)). Then there exist unique (para-)complex structures J¢
on L and Jy,, on H/L such that for all x € M:

i) Jip 0(T.M) = 8(T, M) = 6(T, M) Jj,

ii.) Jg,,0 =675

Proof: Let V, W be two one-dimensional para-quaternionic modules. Hom(V, W) can be
identified with H and is then endowed with the induced para-quaternionic hermitian inner
product. Let now U C Hom(V, W) be a real two-dimensional non-degenerate subspace.
There exists by lemma 3 a pair of (para-)complex structures (J¢, J¢), with J¢ € End (V),
J¢ € End (W), unique up to sign, such that

JU=U=UJ,
U= {H c Hom(V,W)|J*HJ* = cH}.

This yields the result as (7, M) is non-degenerate. a

At this point, we want to make some remarks about differential forms which will be
needed in the next section.

We consider one-forms w; € Q'(End (V)) with values in the endomorphisms of a vector
bundle V' over M. Let (M, J?) be a (para-)Riemannian surface and J°* be the (para-
Jecomplex structure induced on T*M ie. (Jw)(X) = w(J°X). There exists a bijective
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correspondence between 2-forms o on M and the quadratic form «o(X, J°X) =: a(X).
With the standard definition of the wedge product we have

w1 N WQ(X, JaX) = wl(X)wg(JEX) — wl(JaX)WQ(X).
and consequently
w1 N Wy = leE*u)g - (Ja*wl)wg. (311)

Now let V' = H. We want to find a formula for the differential of 1-forms w € Q'(End(H))
which leave L invariant, i.e. satisfy wL C L. Let ¢ € I'(L), then

7 (dw(Xy, Xo)v) = mp(dw) (X, Xa) +w A dip(Xy, Xs))
71 [ X1 (w(X2)Y) — Xo(w(X1)Y) — w([ Xy, Xo])v
+ w(X1)dy(Xa) — w(X2)dy(X1)].

Since w stabilizes L, we have w([X7, X5])Y € L and mrw(X;)dy(X;) = mrw(Xi)o(X;),

hence

mr(dw(Xy, Xo)Y) = 6(Xp)w(X2)Y — 6(Xo)w(X1)Y + mrw(Xy)d(Xa)Y
— mrw(X2)d(X7)Y

and finally
WL(dW(Xl,XQ)w) = ((S/\W+7TLCU/\5)(X1,X2)¢ (312)

Definition 18 A complex (resp. para-complex) para-quaternionic vector bundle is a

para-quaternionic vector bundle V' together with an endomorphism field J¢ € T'(End(V)),
— J, such that J° is a (para-)complex structure on V,, for all p € M, acting from the

left and commuting with the para-quaternionic structure. We use the notation (V, J*).

Let (V, J;) be a (para-)complex para-quaternionic vector bundle over a (para-)Riemannian
surface (M, J%). We have the following decomposition:

Homg(TM,V)=T"M @V = KV @ K™V, (3.1.3)
where K10V and K%'V are the two eigenspaces of the (para-)complex structure J¢, i.e

K = {weT"MeV|J¥w = Jiw},
K"V = {weT*MaV|J"w=—Jiw}.

Remark 11  Consider a map A : M — ]ﬁl, then we have d\ : TM — M x H = \»*TH
and we can use the explicit form of the above decomposition for d\:

1

N = (At e TTdN),
1

AN = J(dh - TN,

where 7 : M — End(]I:]I) 1s the left multiplication with i for e = —1 and the left multipli-
cation with e for e = 1.
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This leads to the following definition:

Definition 19  Let (V, J5) be a (para-)complex para-quaternionic vector bundle over a
Riemannian (resp. Lorentzian) surface (M, J¢). A para-quaternionic linear map

D:T(V)— D(K"V)
on (V, J&) such that for all ¢ € D(V)) and all para-quaternionic functions A : M — H

DWMZJMM+¢MMMZIMA+5¢M—GWEfWM

is called a holomorphic structure on (V, J5) in the case € = —1 and a para-holomorphic
structure (V, J5,) on (V. J5,) ife =1

A (para-)complex para-quaternionic bundle is called (para-)holomorphic if it admits a
(para-)holomorphic structure. Moreover a section ¢ € I'(V) is called (para-)holomorphic

if Db = 0.

Remark 12  The definition 19 of a para-holomorphic structure is given in the sense of
[BFLPP] and differs of the strongest definition we use in chapter 4.

Now consider the product bundle H = M x H2 endowed with a (para-)complex structure
Ji : M — End(H?) € I'(End(H)). According to the decomposition (3.1.3), with V = H,
we have for all ¢ : M — H?ie. v € T'(H)

dip = dO 4 d™', (3.1.4)
where
Ja*d1’0¢ — J;Idl’olb, Ja*dO,lw — _J}s{do,lw‘
In other words we have
1 1
dl’ow = 5((11/} +eJ; JJdy)  and d0’11/1 = §(d¢ —eJ5 Jdy).

One observes that
d"':T(H) — (K" H)

is, by definition 19, a (para-)holomorphic structure on (H, J5 ), while
d"0T(H) - T(K“H)

is a (para-)anti-holomorphic structure, i.e. a (para-)holomorphic structure on (H, —J§).

Further the following decompositions hold:

Proposition 15  There exists 0 : I'(H) — I'(K'°H), 0 : T'(H) — I'(K“'H) and A €
(K™ End (H)), Q € T(K*' End _(H)), where End _(H) are the C— (resp. C'— )anti-

linear endomorphisms on H, such that
d0=0+4, d'=90+0, (3.1.5)
where
I = o(Ji)y = 0, (3.1.6)
for ally € T'(H), and where A, Q anti-commute with the (para-)complex structure J§,.
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Proof: Define
0 1= S(d00 + eJGd O T5)), B = S(d + T (J50)).
Obviously we have J500 = d(J54), J500 = 0(J5). Let now
A=d"0 -9, Q=d"-0.
We compute then explicitly
Ay = S(@ — e ), QU= (@ — e ). ()
A simple calculation proves that AJ;, = —Jj A and QJy = —J5Q.

Further, using equation (3.1.7) and by definition of d* and d®!, we have

1 1
AY = —ZeJyd (T, QY = —5eyd (Ti)y.

This means that A € T(K""End_(H)) and @ € T'(K%'End_(H)) are tensorial. Therefore
by definition 19, 0 is a (para-)holomorphic structure, while 9 is an (para-)anti-holomorphic
structure on H. O

Moreover using the decompositions (3.1.4) and (3.1.5) we have

AR = AU — T )
O Jg) + AJyv + 0(Jp) + Q¢ — T — Jy A — Jpov — J5Qu
= —2Jp(A+Q)y, forall Y € I'(H)

and consequently dJ§, = —2J5 (A + @). This yields
JydJy = —2e(A+ Q). (3.1.8)
Further A is by definition of type (1,0) and @ is of type (0,1). Hence it follows
dJg = 2(J7Q — JA)p.
Then we have
JdJG =2e(Q — A) (3.1.9)
and finally, with equations (3.1.8) and (3.1.9), we derive

A= —Z(J;djg FUATE), Q= Z(Jf*djif —T5dTS). (3.1.10)
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3.2 Mean curvature pseudo-spheres and Hopf fields

3.2.1 Two-pseudo-spheres in 5?2

We consider the sets:

g _ J{5e End(H?2)|5%2 = —1d}, for e = —1, (32.1)
| {9 € End(H?)|5°2 =1d, ¢ #1d}, fore=1, -
where H? is the two-dimensional standard right-module over H.
Moreover for S € Z¢ define
Sg = {peHP'5p=p}. (3.2.2)

Definition 20 A two-pseudo-sphere in $** = fPVHP{/iS a two-dimensional surface ¥ C
HP! together with an affine chart ¢ : HP' \ {oo}>H.,, such that ¢(X) C H, is a two-
dimensional (non-degenerate) linear subspace.

Proposition 16 (i) Xg- are two-pseudo-spheres for all S € Z¢, such that Yge # ().

(i) For each two-pseudo-sphere ¥ C HP' there exists an S, unique up to sign, such
that > = ESE.

Proof: Consider H? as a (para-)complex para-quaternionic right-module, i.e endowed with
an additional (para-)complex structure J¢ € End(H?2) acting from the left (see paragraph
1.2.3). Then S° commutes with the (para-)complex structure J¢.

Due to the assumption Yg- # () there exists v € ]IT]E which satisfies

S®v = wvN, for some N € ]ﬁl*

The condition S°* = eId implies N? = ¢. N
Now we can choose a basis (v, w) for H?, such that S*w = —vh — wR, with h, R € H. Tt
holds S#%w = ew = —vNh + vhR + wR? and therefore:

N?=¢=R? Nh=hR.

Remark, that in the case where ¢ = 1, we have N # £1 # R, as J® and S° commute and
J¢ is an anti-isometry with respect to the pseudo-scalar-product on HZ.
We take now the affine chart

<p:]ﬁl — HP'
r — [vx 4wl

Then we have with some v € ]ﬁh:

[vr +w| € Xg: & S(vz+w) = (vx +w)y
& oNzx —ovh —wR = (vx 4+ w)y,
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which yields —R = v and Nx — h = zy and consequently
Nz + xR = h.

The corresponding homogeneous equation is given by Nx+xz R = 0 and with use of lemma
3,as N2 = R?> = £1, N # £1 # R, the space of solutions corresponds to a real two-
dimensional non-degenerate subspace of H. Recall that S° determines the pair (N, R) up
to sign. a

Hence we can see Z¢ as the set of two-pseudo-spheres in HP!.

Proposition 17  Z° is an eight-dimensional submanifold of End (IﬁIQ) Further the
tangent space of Z¢ in S® is given by

TseZ° = {X € End (H?)|X S = —5°X},
while the normal space of Z¢ in S¢ is given by

Ng-Z° = {X € End (H?)| XS = 5°X}.

Proof: Consider the following action of GL(H2) on Z°:

GL(H?) x Z° — Z°
(9.5%) — gS°g .

This action is transitive. Let J§ = <1 g) € Z° be the canonical base point.

The stabilizator of Jj is given by
Stab(J5) = {g € GL(H?)|g.J5 = J5g}.

and by the orbit-stabilizator theorem Z¢ = GL(H?2)/ Stab(J§) is a manifold.
Moreover we have

gl(H*) =ade,

where a & Tz Z¢ are the matrices which anti-commute, and ¢ the matrices which commute
with J§. A simple calculation shows that

a

a={A € End (H?)|A = (_E

b _
b —a>’ a, b € H},

and consequently dimg Z° = 8.

One sees easily that the two spaces a and ¢ are complementary. Simple calculations show
that they are in fact orthogonal with respect to the bi-invariant metric given by the trace
form. O
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3.2.2 The mean curvature pseudo-spheres

Definition 21  Let (M, J°) be a (para-)Riemannian surface. A (para-)holomorphic curve
in HP" is a line subbundle L C H = M x Hn+! together with a (para-)complex structure
Ji on L such that

JS = 8.5,

where J* is the (para-)complex structure induced by on T*M by J°.

Now consider a (para-)holomorphic curve L immersed into HP! with derivative § €
QYL,H/L). Our aim is to show that the (para-)complex structure J¢ on L extends
to a (para-)complex structure on H. In fact we have the

Theorem 13 Let L be a (para-)holomorphic curve immersed into HP'. Then there exists
a unique (para-)complex structure Ji; on H such that

(i) JyL =1L, d(Jg)LCL,
(i) J6 = 8J5 = J50,
(11i) Q| = 0.
Proof: By the definition of a (para-)holomorphic curve and by proposition 14 we derive
J=6 55 = T.6, (3.2.3)

where Jj, Ji,; are unique (para-)complex structures on L and H/L (see proposition 14).
At first we want to prove the existence of J§,. Let H = L & L' with some complementary
line bundle L’. Considering the projection 7, : H — H/L, we have ker(m;) = L which
induces the isomorphism 7|, : L'=>H/L. Using this isomorphism, we can define a
(para-)complex structure on H by

Je Jgl, ==J; on L
e Jilp = Jp, on L.

Equation (3.2.3) then leads to (ii).
Obviously we have

JoL=JL =1L (3.2.4)

Moreover 7w J5 = JIE{/LWL, therefore by definition of the derivative we derive for all

Y e (L)

T d(Jg) = w(d(Jgv) — Jpdy)
= md(Jylo) = Jgypmode = 6(Jv) — Jgy 00 =0,
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hence
d(Jg)L C L. (3.2.5)

In addition equations (3.2.4) and (3.2.5) prove (i).
Since L' is not unique, the extension J5; is a priori not unique. Let

Ji = J5; + R, R el (End(H)).
Then J € D(End(H)) is another such (para-)complex structure if and only if
JgL =1L, mJ5=Jq,m & m R =0
and
Tile =Ji & (Jy+ B = J; & R, =0,
i.e if and only if
R°H C L C ker R*. (3.2.6)
Hence clearly R° € Hom(H/L, L) and
Rem = R (3.2.7)
Further (3.2.6) implies R*2 = 0 and with J& = ¢ we have
R J; + JgR° =0.
With equation (3.1.10) we now calculate @ for the (para-)complex structure Jg:
Q = (A + B) = (Jy + R)d(Jg + )
= (A = JydJR) + (AR = Jyd R — RedJ; — REARY)
= Q+ (AR — JydRE — R — REARY).

Let ¢p € I'(L). Then property (3.2.5) leads to d(J5;)¢ € I'(L), hence Red(J5)y = 0.
Moreover, with equation (3.2.6), R = 0 holds and consequently:

(AR + Redp = d(Re) = 0 = REdR* ) = —R2dep = 0.

This yields with relation (3.2.7) and by definition of the derivative

Qv = QU+ S(J7AR = JydR ) = Qu + ~(J5 R — J7R)dy
— Qu+ Z(J;IRE(S — TR,

Moreover by the definition of J* and § and with equation (3.2.3) we have

JR0Y = REJToy) = R Ty 00 = REJpop = —J ROy
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Consequently
~ £
QY =Q¢+ §J§R€5w. (3.2.8)

We now want to show the existence of a unique extension with Q|, = 0. Let J§ be any
extension of (J*J3, ;) and

Ty = Jq + I,
with
R = —2J5Q(X)(8(X)) .

We remark that R° is well defined, because it does not depend on X. In fact it is
homogeneous of degree 0 and for any X = cos(0)X + sin(f)J°X we derive

QIX)6(X)™ = Qcos(9)X + sin(6)J°X)(6(cos() X + sin(6)JX)) ™!
= Q(X)(cos(#) + sin(8)J5)(5(X)(cos(h) + sin(0)J5)) ™ = Q(X)§(X) ™.

Indeed, for all ¢ € I'(L) we have

€ € €
QY = QY+ §J§R65@ZJ = QY + §J§1R€7rLd¢ = QY+ EJIE{Rad@b
= QU —eJ5 Q0 ' mpdy = 0.
Moreover it follows immediately from the definition of R® that

L C kerR®

and we derive with equation (3.2.5) that

3

QL=

(J*dJy — J5dJy)L C L.
Hence with equation (3.2.4) it follows
R°H C L,
which finishes the proof of the theorem. O
For each x € M, we have L, € HP! and Ji L = L. By proposition 16 Jg_ de-

fines a 2-pseudo-sphere for all x € M. Then J§ is a family of two-pseudo-spheres or in
other words a sphere congruence in HP!. This justifies the following

Definition 22  Under the conditions of theorem 13 the (para-)complex structure J§; is
called the mean curvature pseudo-sphere (congruence) of L. In the following it will be
denoted by S¢. A and Q) are called the Hopf fields of L.
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3.2.3 Hopf fields

In this paragraph we prove some results about the mean curvature pseudo-spheres and
their corresponding Hopf fields.

Lemma 14 Let M be a (para-)Riemannian surface immersed into HP'. For the Hopf
fields A and Q) of the associated line bundle L we have

dA+Q)=2QNQ+ANA).
Proof: With equation (3.1.8) we have
dA+Q) = —%d(SEdSE) - —g(dss A dS?)
= —2e(S(A+Q)AS(A+Q)).
Using the fact that A and @) anti-commute with S¢ yields
dA+Q) = 20ANA+ANQ+QNA+QNQ).
Moreover by definition A is of type (1,0) and @ of type (0,1), then with equation (3.1.1)
ANQ =AJ7Q — JAQ = —AS°Q — STAQ = STAQ — S°AQ = 0.

A similar calculation leads to Q@ A A = 0, which finishes the proof. O

We now seek for a condition on A which is equivalent to the condition (7i¢) of theorem
13 on @, giving the uniqueness of the sphere congruence. This is given by

Lemma 15 Let L C H be the line bundle corresponding to an immersed (para- ) Riemannian
surface and S¢ be a (para-)complex structure on H such that S°L = L and dS°L C L.
Then Q|r, = 0 is equivalent to AH C L holds.

Proof: Since dS°L C L we have by the definition of A and @ (cf. equation (3.1.10)) that
AL C L and QL C L. Then by lemma 14 we obtain d(A + @) C L. Hence with formula
(3.1.2) it follows:

0=md(A+Q) = 7(dA+dQ)

Using again that A is of type (1,0) and @ of type (0, 1) yields with equation (3.1.1)
INA=0J"A—J"§A=05°A—-065"A=0
Similar calculations give

TQAS =0, SAQ=—205°Q, wLANS =25, AS.
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Hence S¢0Q) = —S°m Ad which leads to
5Q = —’iTLA(S.

Then Q| = 0 if and only if 7, ASL = 0. Since §(X) : L — H/L is an isomorphism for
X # 0 we get 1, A0L =0 < 7 A|p), = 0 and finally with AL C L

Q. =0« AH C L.

3.3 A generalization of the Willmore functional

3.3.1 The Gauss Map

Definition 23 Let V' be a para-quaternionic vector space of rank n and A € End (V)
a para-quaternionic endomorphism.

(A) = -trs R(A)

is called the real trace of A. Moreover (A, B) := (AB) defines an indefinite scalar product.

Obviously (Id) = 1 holds and End 4 (V') are perpendicular with respect to the trace inner
product. We note that by a property of the trace the scalar product is symmetric.

We now consider the mean curvature pseudo-sphere S¢ of a line bundle L. C H corre-
sponding to an immersed (para-)Riemannian surface. We have the

Proposition 18 (i) (dS¢,dS®) = —(J**dS®, J=*dS®),
(i1) (dS¢, J**dS®) = 0.
Proof:

(i) From equation (3.1.8) we get
(457, dS7) = (—287(A + Q), —25°(A + Q) = —4=((A + Q), (A + Q).

Moreover with lemma 15 we can derive for the Hopf fields that Q| = 0 and AH C L.
Consequently QA = 0, hence (Q, A) = (A, Q) = 0 and with equation (3.1.9)

(dS®,dS%) = —4e((Q — A),(Q — A)) = —e(J**dS®, J*dS*).
(ii) Equations (3.1.8) and (3.1.9) yield again

(dSE, J*dSE) = (—28°(A+Q),2:(Q — A)
= —4e((S°A4,Q) — (574, 4) + (5°Q, Q) — (5°Q, 4)).
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From QA = 0 and the symmetry of the inner product we have

<S€A7 Q) = _<AS€7Q> = <S€Q7A> =0
(SFA,A) = (AST,A)=—(S°A,A) =0
(5°Q,Q) = (Q@5,Q)=—(5°Q,Q) =0,
which finishes the proof. O

From this proposition it follows that the mean curvature pseudo-sphere S¢ is (para)-
conformal. Therefore we will also call it the (para-)conformal GauB map.

Finally we prove another lemma which we will need in the following section:

Lemma 16

(dST A JAST) = —4e((Q A JQ) + (A A J&A)) 3.
(dSE A SEdSE) = 45((Q A JQ) — (AN JT*A)) (3.3.2)

Proof: With equation (3.1.9) we have

(dS° A JASE) = (2(JQ — JA) A 2e(Q — A))
= Ae((JFQAQ) — (JTQAA) — (JFAAQ) + (JTAA AY)

As A is of type (1,0) and Q of type (0, 1) this yields with equation (3.1.1)
JTANQ = (JZA)(JTQ) — T (JTA)Q = —JASQ — cAQ = JT*STAQ — e AQ = 0.

Similarly J**@Q A A = 0 holds, which yields equation (3.3.1).
With equations (3.1.8) and (3.1.9) we have

(dS°AS57dS7) = —4e({(J7Q = JTA) A (Q + A)))

and a similar calculation yields the result. O

3.3.2 The Willmore functional

Let us consider again the manifolds Z° of section 3.2.1.

Definition 24  Let M be a (para-)Riemannian surface and S : M — Z¢ a map. We
define by

E(S%) = / (dS® N JT*dS*)
M
the energy functional of the (para-)Riemannian surface. If |E(S®)| < oo, we call (para-
Yharmonic maps the critical points of this functional with respect to variations S :=

S +tX, where X has compact support.

81



We now want to find the Euler-Lagrange equations for E(S).

Proposition 19 5S¢ is (para-)harmonic if and only if the Z°-tangential component
(dJ**dS®)T vanishes.

Proof: Let X : M — Z¢ be compactly supported and S := S° +tX be a variation of S¢
Obviously X := %Sfph:o is in Ts: 2%, with p € M. If S° is a critical point of E' we have

d
EE(SE)“:O =0, for all variations X.
Moreover
d 13 d 13 E% €
M

d
= —/ ((dS® A JF*dS®) 4+ t(dS® A JdX)

dt |,

+Ht{dX A JFdSE) + t2{dX A JFdX)) =0

- / (dSE A J*dX) + (dX A JZdSE).

M

But with equation (3.1.1) we derive
dSE N JdX = edS°dX — JdS I dX = —JdS® NdX = dX N JdSE.

This leads by Stokes formula for a critical point

d
0= E(S5))li=0 = 2 / (dX A J*dS®) = 2 / ((d(X A J=dS)) — (X A dJdS®))
M M
= —2/ <X /\dJE*dS€> — _2/ <X, dJe*dS€>
M M
Hence dJ**dS® € NgZ°. -
By lemma 16

E(S%) = —48/ (QNJTTQ) + (AN JTA))
= —85/ ((ANJ*A) — 45/ (Q N JQ — AN J*A)) (3.3.3)

We are now going to show that the second term [, ((Q A J™*Q — AA J**A)) is a topogical
invariant:

Proposition 20 Let wg:(X,Y) := (X, S5°Y) € Q*(Z¢), X,Y € Ts-Z°.
Then fM S wge s a topological invariant i.e. invariant under compactly supported homo-
topy transformations of S¢.
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Proof: By the property of the trace and the fact that X, Y € T¢Z® we have

wyaﬂﬁz%w&yYﬁﬂﬁﬁXD:%@&ﬁY%%KfX» (3.3.4)

We have to show at first that wg- is closed. To avoid projections on Ts-Z we consider the
extension Qg: of this two-form on End(H?) and we calculate

dQs-(X.Y,Z) = > XQs (Y, Z) = > Qu([X,Y], 2)

cycl cycl
1
= 3 (Z X((v,8°2) = (2,57)) = 3 _(([X,Y],5°2) — (2, 5°[X, Y]>>>
cycl cycl
1
= 52( (Y, X(5°)2) + (Y, 5°X(2)) —=(X(Z),5Y)
cyel ——(X(2),5¢Y)
— (Z, X(57)Y) +(Y(X),5°Z) = (£, 5°Y (X)) )
~—_— —
=—(Y(X),5¢2)
1
= Y, X(5%)Z) + (X, Z(5°)Y) + (2, Y(57)X)
—(Z, X(5)Y) = (X, Y(5)2) — (Y, Z(5°) X))
The six terms are of the form (A, BC'), with A, B,C' € Ts:Z¢. Further we compute
(A, BC) = ¢(S°A, BC) = £(S°A, BCS®) = —(AS°, S°BC) = —(A, BC),
which yields (A, BC') = 0 and consequently df2g- = 0.
Finally if ¢ : Z — End (H?) is the canonical inclusion we have
d(,USa = dL*QSe = L*dQSe =0.

Now we show the homotopy invariance of [ S wse. Let

Sz (0,1 x M — Z° (3.3.5)

be a homotopy transformation from M, = S§(M) to M; = S7(M), where we note
Se(t,x) = Si(z), and let S¢ be compactly supported (i.e. for any ¢, S¢(¢,-) is compactly
supported). Stokes formula yields

0:/ gg*des = / dS"E*wSa :/ Sa*st—/ Sa*st
Mx10,1] Mx[0,1] Mx{1} Mx{0}

M M

Moreover we have

STwee (X, Y) = wse(dS(X),dS*(Y))
%((dSE(X)SEdSS(Y)) —(dS*(Y)S°dS*(X))) = %(dSE A SEdSTY(X,Y)
=7 22((QNANJTQ — ANJTA)(X,Y)
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This leads with equation (3.3.3) to the following

Definition 25  Let L be an immersed (para-)holomorphic curve in HP' with mean
curvature sphere S¢. The energy functional

1
W(L) =+ / (AN T A)
70
1s the generalized Willmore functional of the immersion. We call Willmore surfaces critical
points of W (L) with respect to compact supported variations S := S+ tX of the mean
curvature sphere.

Summarizing, we have expressed the energy of a surface of arbitrary signature as the sum
of a topological invariant and of the generalized Willmore functional.
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Chapter 4

Para-complex affine immersions

In this chapter we study decompositions of para-complex and para-holomorphic vector-
bundles, which are endowed with a connection V over a para-complex manifold. First
we prove that any connection with vanishing (0, 2)-curvature, with respect to the grad-
ing defined by the para-complex structure, induces a unique para-holomorphic structure,
generalizing in this way a well-known result of complex geometry. Moreover, we obtain
results on the connections induced on the subbundles, their second fundamental forms and
their curvature tensors. In particular we analyze para-holomorphic decompositions. Then
we introduce the notion of para-complex affine immersions: Applying the above results,
we obtain existence and uniqueness theorems for para-complex affine immersions. This is
a generalization of the results obtained by Abe and Kurosu (see [AK]) to para-complex
geometry.

4.1 Connections on para-holomorphic vector bundles

Definition 26 Let (E, &), (F,F) be two para-holomorphic vector bundles. An element
¢ € T(Hom((E, J¥), (F, J¥))) is called para-holomorphic with respect to E and F' if it is
a para-holomorphic map ¢ : (E,J¥) — (F,J¥) of the para-complex manifolds E and F.

Like in the complex case we have:
Lemma 17 Let (E,E), (F,F) be two para-holomorphic vector bundles.

Then ¢ € T'(Hom((E, J®),(F,JF))) is para-holomorphic with respect to E and F if and
only if p§ € O(Fy) for any open set U C M and para-holomorphic section § € O(Eyy).

Definition 27

1. A connection V on a para-complex vector bundle (E, J¥) is called para-complex if
it commutes with the para-complex structure on E, i.e. J¥ is V-parallel. The set of
all such connections will be denoted by P(E, JF).
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2. Let (M,J) be a para-complex manifold and U C M be an open set. Let V €
P(E, JE) with (E, JF) a para-holomorphic vector bundle (E,E). Then V is adapted
if the following equation

Vixé = J"Vx¢

is satisfied for all X € T'(TM|y), £ € O(E\y). The set of these connections is
denoted by P*(E,E).

Lemma 18 Let (E, &) be a para-holomorphic vector bundle. Then P*(E,&E) # (.

Proof: Let (U,),e; be a open covering of M, A, a partition of unity with respect to
(Ua)per and s, € O(Epy,) a para-holomorphic frame. Then one defines connections on
Ely, by

Ve, =0
and a connection
V=) AV
By the definition of a para-holomorphic frame J¥ is V-parallel and it holds by definition
V. xSq =75V x5,.
This shows by a short calculation
Vox§ = TEVXf

for all £ € O(Ey) and for all open subsets U C M, i.e. V defines a connection in P*(E, £).
O

Lemma 19 Given an open set U C M and V € P*(E,E), then a section § € O(Eyy) is
para-holomorphic if and only if

Vix€ = JEVKE, (4.1.1)

for any X e I'(TM|y).

Remark 13 Locally a connection V € P*(E, &) defines consequently a unique set of para-
holomorphic sections. More precisely, we can recover the local para-holomorphic sections
defining the para-holomorphic structure from ¥V by equation (4.1.1).

Definition 28 Let K be a 1-form with values in Hom((E, JE), (F,J¥)). K is called
para-complex (resp. para-anti-complex) if for any X € TM

KJX = JFKX (T’@Sp. KJX = —JFK)(>
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Remark 14  With the above notation K is para-complex (resp. para-anti-complex) if
and only if it is in QY (Hom((E, JE), (F, JF))) (resp. in Q¥ (Hom((E, JF), (F,JF)))),
where the para-complex structure on Hom((E, JF), (F, JF)) is given by

Hom((E, J®), (F,J")) — Hom((E,J"),(F,J")),
v — voJF=JFou.

Using this notion, the difference V — V'’ of two connections V, V' € P*(E, ) takes values
in QY (Hom((E, J¥),(E,J¥))). Hence by fixing a connection V° € P(E, ) the set
P*(E, ) has the structure of an affine space

PUE,E) = {V’ + K|K € Q" (Hom((E, J*), (E, JF)))}.

Lemma 20 Let (E, &), (F,F) be para-holomorphic vector bundles, ® € Hom((E, J¥), (F, JF)).
Then

(i) Given two connections V € P*(E,E), V' € P*(F,F) such that ® is parallel with
respect to the product-connection, i.e.

® = dVy, (4.1.2)
then ® is para-holomorphic with respect to £ and F.

(ii) Given V € P*(E,E) and V' € P(F,J¥), if ® is surjective and para-holomorphic
with respect to € and F and equation (4.1.2) is satisfied, then V' € P*(F,F).

(iii) Conversely, given V € P(E,JF) and V' € PYF,F), if ® is injective and para-
holomorphic with respect to € and F and equation (4.1.2) is satisfied, then V €
PE,E).

Proof: (i) Using equation (4.1.2) and lemma 19 we compute:
' ®E =BV x& = DIV E = JHOVxE = TV, D¢

on any open set U C M, £ € O(Ejy) and X a vector field on U. In other words ®¢ is a
para-holomorphic section of (Fjy, F) and lemma 17 yields the para-holomorphicity of &
with respect to £ and F.

(ii) Let # € M, there exists a local para-holomorphic basis BE = (ey, ..., e,, JPei, ..., J"e,)
of £ on an open set U, with z € U. The surjectivity of ® and ®J¥ = J¥® imply the
existence of a para-complex basis B = (®ey,, ..., Pey, @I ey, ,, ..., PJ ey,) of F,, with

rankF' = 2[, for 1 < k; < ... < ko < 2r. The para-holomorphicity of ® allows to extend
B on an open set V C U to a basis B € F. Using equation (4.1.2) we obtain

V) Per, = OV xer, = JEVxer, = JF OV xey, = JI Vi ey,

for X any vector field over U and s € {1,...,[}, which proves (ii).
(iii) Let U C M be an open set and & € I'(E|y). With lemma 17 £ is para-holomorphic
if and only if ®¢ is para-holomorphic. Now by lemma 19 it holds (V' — JEV/)®¢ = 0,
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which yields with equation (4.1.2) ®(V ;x — JEV)E = 0 and from the injectivity of ® we
obtain V € P*(E,E). O

We now consider the curvature tensor R € Q*(M,End(E, J¥)) of a connection V €
P(E, JF) given by
RX,Y = VxVy = VyVyx — V[X,Y}

where X, Y € I'(T'M).
As discussed above the space Q*(M, End(E, J¥)) decomposes into the direct sum

O*(M,End(E, J¥)) = Q*°(M,End(E, J¥))eQ" (M, End(E, J*))®0%* (M, End(E, J¥)),
which can be characterized by

Q*(M,End(E, J¥)) = {K|K;xy =J"Kxy for X,Y € [(TM)},
QY (M,End(E, J¥)) = {K|K;xjv = —Kxy for X,)Y € I(TM)},
Q"*(M,End(E, J¥)) = {K|K;xy =—JPKxy for X,)Y € T(TM)}.

The corresponding components of K € Q*(M,End(F, J¥)) are with X, Y € T'(TM)

1

KJZ(’?Y = ZL(KX,Y + I K xy + JPKx v + Kjxy), (4.1.3)
1

K)lé,ly = é(KX,Y — Kyx.v), (4.1.4)
1

Kgé?y = ZL(KX’Y — JEKJX,Y — JEKXJY + Kyx.v). (4.1.5)

Therefore one introduces three classes of connections.

Definition 29 A connection V € P(E, JE) is said to be para-holomorphic (or of type
(2,0)) if Ryxy = J¥Rxy, para-anti-holomorphic (or of type (0,2)) if Ryjxy = —JFRxy
and of type (1,1) if Ryx. v = —Rxy.

Remark 15 This definition s motivated by the fact that a para-holomorphic connection

V can be restricted to para-holomorphic sections, this means it defines a connection also
called V
V:0(TM) x O(E) — O(E).

With this notion we prove
Lemma 21 IfV € P*(E,E) then the (0,2)-part of its curvature vanishes.

Proof: Let U C M be an open set and £ € O(FE|y). Due to lemma 19 it holds
(Vix —JFVx)E=0
and with this equation we obtain

0 = (Vyx —JOVx)(Vyy — JEVy)E
= (VxVy +V,xVyy — JEVJXVY — JEVXVJY)g-
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Anti-symmetrizing in X, Y and using N,(X,Y) = 0 (where N is the Nijenhuis-tensor)
yields the claimed vanishing of the (0, 2)-curvature. O

For vector bundles over real surfaces the following proposition was proven by Erdem
[Er3]. We give a more general proof by adapting the methods of complex geometry to our
setting, compare for example the work of Atiyah, Hitchin and Singer [AHS] theorem 5.2
or proposition 3.7 in the book of Kobayashi [K].

Proposition 21 Let V be a connection in P(E,J¥) with vanishing (0,2)-curvature
then there exists a unique para-holomorphic vector bundle structure € on (E,J¥) such

that V € P*(E, £).

Proof: First we introduce an almost para-complex structure on the manifold F, by giving
a decomposition of T*E = T*E" & T*E~ in its eigenspaces.
This will be done in a local trivilization of Ejy = U X R?" over an open subset U. Us-

ing the Frobenius theorem one can choose a set of adapted coordinates (2. .., 2?") =

(zh,...,2%,28,...,2") of U, i.e. coordinates z) which are constants on the leaves of
TFM (compare [CMMS] proposition 2). The pull-back of the functions z* will be denoted
by z' = 7*(2"). On the R*-factor we take linear coordinates, i.e. linear functionals of
R (w',...,w*) = (wh,...,w},wl,...,w") corresponding to the eigenspaces of the
para-complex structure on F.

The local expression with respect to the frame (w®) of the connection form w = (wg)
a,3 =1,...,2r of V decomposes relative to the decomposition of Q'(M, End(FE, J¥)

into its (1,0) and (0, 1)-part (compare with remark 14):

I
)
1¢

a __ 1,0« 0,
wg = w [3—|—w 3

We now decompose T™E|; into

2r
T*E* .= span{d?',dw® + Zwo’liuﬂ}, (4.1.6)
y=1
2r
T*E~ := span{dz"™" dw"™ + Zwo’lrjaw”’}, i=1...,n, a=1,...,7(4.1.7)

=1

We are going to show the integrability of this almost para-complex structure. As the
reader may observe, one gets another integrable almost para-complex structure by omit-
ting the sum-term in the second factors, which is the standard para-complex structure on
the product bundle. Unfortunately, V is not adapted for this structure.

We check the integrability of the distribution defined in (4.1.6) and (4.1.7), which follows
directly from Frobenius theorem, see [Wa] Proposition 2.30.

In our situation this is, we have to show that if n € Q'(M, End(E, J¥)) is of type (1+,0)
(resp. type (0+,1—)), then dn has type (14,1—) + (2+,0—) (resp. (14,1—)+ (0+,2—-))
where the type is taken with respect to the decomposition defined by equations (4.1.6)
and (4.1.7).

This will be check on a basis. Recall that Z* and w® are considered as functions on E.
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d(dz) = 0, i=1,...2n,

2r 2r
d(dw® + Zwo’liuﬂ) = Z(dwo’liuﬂ - wo’lj ANdw?), a=1,...,2r
y=1 y=1
2r
= Z((dwO’I: + WG A wo’lg)uﬂ
y=1
2r 2r
= 3 (@) + 37 (dw®1)0? + WG A W = 0,
y=1 y=1
—R02—

where = is meant modulo (14, 1—). We may recall that forms of type (1+,1—) and (1, 1)
coincide.

This shows that the decomposition defines the structure of a para-complex manifold on
E. In the above coordinates (Z*,w®) the projection

T E— M
is given by . A
(2 w*) = (2").
This shows that 7 is para-holomorphic, since 7*dz, = dz%. For the restriction T*Ej of
T*E* to the zero section sg : M — E of the bundle E, we find
T*Ef =span{dz’,dw$}, i=1,....n, a=1,... 1
This shows that
sedz' =dz', i=1,...,2n,
spdw® =0, a=1,...,2r
which means that the zero section is para-holomorphic. Therefore the normal bundle
is para-holomorphic, too. But N is canonical isomorphic to F which implies the para-
holomorphicity of E.

Next we show V € P4(E, £). Given s € O(FE), then for any n* € TE* the pull back with
s, i.e. s*nF is in T*M*. We test this on a basis of sections with the local expression of s

given by (z%) — (2, ¢%(2Y))

s*(d2") = di, i=1,...2n,a=1,...2r (4.1.8)
2r 2r
s*(dw® + Z wo’lgwﬁ) = d¢* + Z wo’lg(ﬂ. (4.1.9)
B=1 B=1
Splitting into degrees yields
2r
0+ WGP =0, a=1,...r (4.1.10)
p=1
2r
O+ WP =0, a=r+1,...,2" (4.1.11)
B=1
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This yields V,xs = 7¥Vxs, i.e. V € PYE,E).
The uniqueness follows from remark 13. O

This proposition motivates the following

Definition 30  The subset of P(E,J¥) consisting of all connections with vanishing
(0,2)-curvature will be called the set of adapted connections and denoted by P*(E, JE).
The para-holomorphic structure induced on (E,JEF) by the element V € P*(E, J¥) will
be referred to as EV .

Corollary 5

(i) A connection V € P(E,JF) which is para-holomorphic or of type (1,1) induces
on (E,JE) a unique structure of a para-holomorphic vector bundle EV with V €

PYUE,EY).

(ii) A connection V € P(E, J¥) which is para-anti-holomorphic or of type (1,1) induces
on (E,—JF) a unique structure of a para-holomorphic vector bundle denoted by gy
with V € PY(E,E").

Proof: This follows immediately from proposition 21, as the (0, 2)-curvature with respect
to JF respectively —J¥ vanishes. O

Proposition 22 [Er3] Let (E,E) be a para-holomorphic vector bundle endowed with
a para-hermitian metric h, then there exists a unique adapted (1,1)-connection V" such
that h is V"-parallel.

Remark 16 In complex geometry this connection is called canonical, hermitian or Chern-
connection. We will use this notation with the prefix para.

Corollary 6  On a para-holomorphic vector bundle (E,E) admitting a para-hermitian
metric h there exists a (1,1)-connection V which is adapted to E.

Proof: From proposition 22 we obtain a unique adapted (1, 1)-connection V" satisfying
V'h = 0. O
For the constraints on para-complex vector-bundles admitting para-hermitian metrics we
refer to [Bl].

On the tangent bundle T'M of a para-complex manifold (M, J) it is natural to consider
torsion-free para-complex connections. The set of all such connections will be denoted by
Po(TM,J) C P(TM,J).

Like in the complex case one has the

Proposition 23 An almost para-complex manifold (M, J) is para-complex if and only
if it admits a connection V° € Po(TM, J).
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In fact in [S] was proven that every almost para-complex manifold admits an almost para-
complex affine connection with torsion N; = —47T, where N is the Nijenhuis-tensor.
We denote by 7M the para-holomorphic structure of the tangent bundle (7'M, J).

Proposition 24  Py(TM,J) C P*(TM,J).

Proof: In fact simple calculations show that a vector field Z is para-holomorphic if and
only if [JX, Z] = J[X, Z] for all X € T'(TM). Moreover fixing V° € Po(T M, J), the last
equation is equivalent to VY%7 = JV%Z for all X € I'(T'M). This implies the claim. O

4.2 Decompositions of para-complex vector bundles

Throughout this section we denote by E a real vector bundle which is a direct sum of two
subbundles F; and E,. As usual ¢; : F; — E denote the inclusions of F;, with ¢ = 1,2,
and m; : B — E; the projections. For these homomorphisms it holds:

Mol =1idg, motj=0, tom +1iy0m =1idg.

We now consider the set of general connections on E denoted by C(F). In the following
i and j are elements of {1,2}. If both appear in the same expression it is meant i # j.

Definition 31 Let V € C(E) and define

s = (moVxou)s=mVxis=mVx(Ls),
Bis = (mjoVxou)s=m;Vxts=m;Vx(us) for X e (TM),s € T(E).

V' € C(E;) are called the induced connections on E; and B* € Q'(Hom(E;, E;)) the second
fundamental form of V on E;.

With these notions one has

Vxs = uVimi s+ 1oBym s+ 15Vimy s+ 11 B%my s, (4.2.1)
Vxius = ;Vis+1jBys, for X € I(TM), (4.2.2)
mVxs = Viyms+ Bym;s, for X € T(TM). (4.2.3)

The second equation is a generalization of the GauB and Weingarten equations of sub-
manifolds theory. Further we have also a generalization of the corresponding integrability
conditions:

Lemma 22 Let again V € C(E), V' € C(E;) and R and R' be the corresponding curva-
ture tensors.

1. Then it holds:
miRxylu = Ryy+ B’ Bi — BLB% (Gaup and Ricci), (4.2.4)
miRxyt = BV +V4Bi — BV — Vi By — Bl (Codazzi), (4.2.5)
for X, Y e I'(TM).
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2. Fizing now a torsion-free affine connection V™ on TM then equation (4.2.5) is
equivalent to
miRxyti = (Vi B')y — (V3. B')x,
where A . .
(@&Bi)wﬁ = VJX<B§’77i) - Bg/vjxm - Bivz)vgym
for X, Y e I'(TM) and n; € T'(E;).

Conversely we have the

Lemma 23 Let E;, i = 1,2 be a vector bundle endowed with connection V' € C(E;) and
B € Q'(Hom(E;, E;)),i # j. Then

V = uVim 4 B + Vi + 1 B (4.2.6)

defines a connection on E := E; & Ey such that V' is the connection induced by V on
E; and B is the corresponding second fundamental form. In particular, the curvature
tensors R and R of V resp. V¢ satisfy the Gaufy and Ricci and the Codazzi equations of
Lemma 22.

Further if V' and B* satisfy

Ricy + By By — By By = 0,
BV} + Vi By — By Vi — Vi By — Bixy) = 0. (4.28)

X,Y e (TM) then V is flat.

We consider now a second vector bundle F' = F} @& F5 over the same manifold M. Let
¢ € I'(Aut(E, F)). We say that ® preserves the decompositions if ®(E;) = F;, i = 1,2.
Moreover for such ® we define ®; := 7/ o ® 0 ,F.

Lemma 24 Let £ = E; & Ey and F' = Fy & Iy be vector bundles over the same base
manifold with a direct sum decomposition, a connection V € C(E) (resp. V € C(F)),

induced connections V' € C(E;) (resp. V' € C(F,)) and second fundamental forms B' €
QY (Hom(E;, E;)),i # j (resp. B* € Q' (Hom(F}, F})),i # j). Let ® € T(Aut(E, F)) a
decomposition preserving map. Then the following two conditions are equivalent:

1. DVy = Vx®,

2. &;Vi =Vi®;, and &;Bi = Bi®;,
for all X € T M.

Definition 32 Let (E, J¥) be a para-complex vector bundle. A J¥-invariant subbundle
E; is called a para-complex subbundle if J; = m; 0 J¥ 0 1; defines a para-complex structure
on F;.
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Remark 17  Let (E,JE) be a para-complex vector bundle. A J*-invariant subbundle
E; is a para-complex subbundle iff tr (J;) = 0.

With lemma 24 we get the following

Corollary 7 Let (E,JF) be a para-complex vector bundle over (M, J) which decom-
poses into two para-complex subbundles Ey and Ey. Moreover let V € C(E) and V°,
Bt the induced data on E;. Then V € P(E,JF) is equivalent to V' € P(E;, J;),
B e (HOHl((EZ-, Jz)a (Eja J]))) N/ 7é J-

In the following we will always assume that subbundles are para-complex subbundles.

Definition 33 Let (E,&) be a para-holomorphic vector bundle and (B, JF = J"|5) be
a para-complex subbundle. We call E para-holomorphic subbundle of (E,E) if there exists
a para-holomorphic structure € on E such that the inclusion L 18 para-holomorphic with
respect to € and E.

The decomposition E = FEy @& Fy is called para-holomorphic decomposition if both E;,
1 = 1,2 are para-holomorphic.

The structure of the para-holomorphic subbundle € is uniquely determined by the para-
holomorphic structure £. Therefore we will denote by (E JE ) a para-holomorphic sub-
bundle of (E,€). To a para-complex bundle (E, J¥) with a connection V € P*(E, JF)
we associated in section 4.1 the para-holomorphic vector bundle £V. In this situation we
call a subbundle (S, J%) of E para-holomorphic if it is para-holomorphic with respect to
EV.

We are now going to study decompositions E = E; @ E,, where some of the (sub)bundles
are para-holomorph and extract informations about the data given by the immersion.

Proposition 25

1. Let (E,JF) be a para-complex vector bundle. Let V € P*(E,J¥) and B be para-
complez, i.e. Biy = J¥B%. Then V' € P*(E;, J;) and E; is a para-holomorphic
subbundle of E.

2. Let (E, &) be a para-holomorphic vector bundle, V € P*(E, &) and (E1,&1) a para-
holomorphic subbundle of (E,E). Then V' € P*(E;, J;) for i = 1,2, B! is para-

complex and & = EY" .

3. In particular, given V € P*(E, J¥) and a para-holomorphic decomposition of E =
E1 @ E,, then the Gaufs maps B® are para-complex and V' € P*(E;, J;) fori=1,2.

Proof:
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1. AsV € PY(E,JF) C P(E, JF) we get with corollary 7 that V' € P(E;, J;). Since
V € PY(E,JF) the (0,2)—curvature of V vanishes. With equation (4.2.4) we get
then

(Rgc,ﬂo’z = RE{,Y - 7'Rix,y - TR:L'X,TY + RiX,TY
= mRxyt — BYBY + B{Byx — 1(mR.xy1i — BBy, + B} Bly)
—7(miR ryti — BxByy + Bly By) + 1Ry yti — BlxBry + Bly Bry

= m (Rxy — TRyxy — TRx v + Rexry) 1 — BBy, + B} Bk

=0
+7Bl By — 7B} Biy + 7By Bly — TBly B\ — Bl Bly + Bl, Bl

T

Thus it is clear that if B* or B’ is para-complex (R')*? vanishes for i = 1,2. This

implies V¢ € P*(E;, J;) for i = 1,2 because B! is para-complex.

We take now an open subset U C M, n, € O(E,|y) and X € I'(T'M|y) and compute
VJXL1771 = V}]Xﬁl + B}]an = le_lxﬁl + JQB}<7]1 = JEVXLﬂh.

But using lemma 17 and lemma 19 yield that ¢; is para-holomorphic with respect
to Y and EV.

2. Let U C M be open. Again due to lemma 17 from 7, € O(F1|y) we get vy €
O(FE|y). Using this we calculate

Vixm+Bixm = Vixum =J"Vxum
= JEV§(771 —+ JEB;(nl = le&ﬁl + J2B§(7]1
for any X € I'(TM|y). This yields, that B! is para-complex, V! € P%(E, &) C
PYEy, Ji) and & = EY'. As B' is para-complex and V € P%(E,E), we obtain
V2 € P Eay, Jo).

3. follows easily from 2. O

Proposition 26 Let V € P(E, JF) be para-holomorphic and B be para-complex:

(1) V' is para-holomorphic if and only if
(B2 — 1B%)By =0 (4.2.9)
for XY e I'(TM).
(1) V2 is para-holomorphic if and only if
By (B3 — 1B%) =0 (4.2.10)

for XY e I'(TM).
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Proof: V € P*(E, JF) is para-holomorphic, then Ryxy = J¥Rxy. Let (i,7) € {(1,2); (2,1)}.
Further with equation (4.2.4) it holds

JPmiRxyi; = JiRyy + JiB%By — J;Bj B and
WiRJX,yLZ' = fIX,Y + B(]]XB§/ - B{;B?]X
Then subtracting these equations we get
JiRxy — Rixy = (BjxBy — ByBjx) — (JiBxBy — J;By Bx)

| (B%x — J:B%)By, if B' is para-complex,
_B{;<B§X — J;BY), if B’ is para-complex.

Setting ¢ = 1 yields (i) and setting j = 1 yields (ii). a

Corollary 8 LetV € PY(E, J¥) be para-holomorphic and B, B? be para-complex, then
V¢, i = 1,2 are para-holomorphic and the decomposition E = E,® Ey is para-holomorphic.

Proof: Proposition 25.1 shows that E; are para-holomorphic and V* € P%(E;, J;). Since
B! and B? are para-complex the brackets in equations (4.2.9) and (4.2.10) vanish. This
shows that V¢ are para-holomorphic. O

Corollary 9  Let V € P FE,J¥) be para-holomorphic and the decomposition E =
E, ® Ey be also para-holomorphic, then V' and V? are para-holomorphic.

Proof: From propositions 25.3 follows, that B® for i = 1,2 are para-complex. This and
proposition 26 (the last corollary, respectively) show that V¢ are para-holomorphic. O

Proposition 27  Further let V € P*(E,J¥) be a (1,1)-connection and B' be para-
complex. Then it holds

1. V' is of type (1,1) if and only if
(i Bix + BY)By — (i Bjy + By) By =0,
forall X, Y e I(T'M).
2. V% is of type (1,1) if and only if
Bx(J1B% + By) — By.(1B3x + BY) =0,

forall X, Y € I(T'M).

Proof: V € PYE,J¥) and of type (1,1),i.e. Ryxjy = —Rxy. Let (i,7) € {(1,2); (2,1)}.
Further with equation (4.2.4) it holds

mRxyl = Riy+ ByBj — BBk and

_ pi J i J i
miRyx vt = Rjyx v+ ByxBjy — By Bjx.
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—(Ryxy + Ryxgy) = ByBy — BLBx + B)xByy — Bjy Bjy
B (J; B’y + B%)Bi, — (J;B’y + Bl) B, if B! is para-complex,
| BL(J;Biy + Bi) — BL.(J; B}y + By), if BJ is para-complex,

which yields the proposition. O

This leads with proposition 25.3 to the following

Corollary 10  Let V € PUE,J¥) be a (1,1)-connection. If the decomposition E =
Ey @ E; is para-holomorphic, V' is of type (1,1) if and only if

B%Bi, — B} B =0,

forall X, Y e T(TM).

Lemma 25 Let V € P“(E, J¥) be a (1,1)-connection. Then

(i) If B' is para-complex and B* para-anti-complex, then V' and V* are (1,1)— connections
and (Ey,£Y") is a para-holomorphic subbundle of (E,EV).

(i) Conversely if (E,J1) is a para-holomorphic subbundle of (E,EV) and (Ey, —Js) is
a para-holomorphic subbundle of (E,EY), then V' and V? are (1,1)—connections,
B! is para-complex and B? is para-anti-complex.

Proof:

(i) The first part follows easily from proposition 27. The second part follows from
proposition 25.1 applied to the para-complex bundle (E, —JF).

(ii) Proposition 25.2 yields that B! is para-complex, B? is para-anti-complex and 27
finishes the proof. O

In the end of this section we consider para-complex and para-holomorphic vector bundles
with para-hermitian metrics.

Lemma 26 Let (E,J¥) be a para-complex vector bundle with a para-hermitian metric h
and ¥V € P(E, J¥) a metric connection with respect to h, i.e. Vxh = 0.

(i) If the decomposition E = E\ ® Ey is JP-invariant and h-orthogonal, then it holds
h(Bxn1,m2) + h(ny, Bxm2) = 0 (4.2.11)
for X e I'(TM) and n; € T'(E;).
(ii) If V € PY(E,J¥), then Vh = 0 yields that V is of type (1,1), i.e. Ryx v = —Rx.y.
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(iii) If V € PY(E,JE) and E; is a para-holomorphic subbundle of E, then

B? € Q" (Hom((Ey, Jy), (E1, J1))). (4.2.12)
Proof:

(i) It holds for m; € I'(E4), ne € I'(EY)
0 = W(Vxum,tan) + h(tim, Vxian)
422
4z h(e1V 51, tamp) + M B, tome) + h(im, 12V 51) 4+ h(timy, 11 B*p),
which yields the claim with the h—orthogonality of the decomposition E; & Es.

(ii) Follows from deriving
ZW (h(e, [)) = W(VzVwe, f) + M(Vwe,Vzf) + h(Vze, Vii f) + he, VzVi f)

for a (1,0) coordinate vector fields Z, W and e, f € I'(E). Antisymmetrization in
Z, W yields
0= h<RZ,W €, f) + h(@, RZ,V_V f)

and Rzw e = 0 follows from Rz f = 0.

(iii) Follows from equation (4.2.11) and proposition 25.1 by the calculation V e € T'(E})
and f € F(EQ)

~h(e,Bixf) = MhBjxe, f)=h(J"Bxe, f) = ~h(Bxe, J"f)
= h(e,B%JEf) = h(e, JEB%f).

a

Corollary 11 Let (E,J® h) be a para-hermitian vector bundle, V € P*(E,J¥) a
metric connection with respect to h, Ey a para-holomorphic subbundle of E and (Es, Js)
the orthogonal complement of Ey with respect to h.

Then the decomposition E = FEy & FEsy is para-holomorphic if and only if

B'=0 and B*=0. (4.2.13)

Proof: ' =' Due to the of proposition 25.3 we know that B! and B? are para-complex.
Equation (4.2.12) yields B* = 0 and equation (4.2.11) B! = 0.
"<’ B! = 0 and hence is para-complex. Now, proposition 26 finishes the proof. O

4.3 Para-complex affine immersions

In this section, we recall notions of affine immersions and introduce the notion of a para-
complex affine immersion with transversal bundle.
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Let f : M — M’ be a smooth map between two manifolds M and M’. Denote the
canonical bundle map by F': f*T'M' — T M’ and define

i TM — fTM,
il = FTLf

In the rest of the section we consider the case, where f is an immersion.

Definition 34 We call f immersion with transversal bundle N if
f*TM =i/TM o N (4.3.1)

for some subbundle N of f*T'M’'. Given an immersion with transversal bundle N, we
denote the canonical maps according to the direct sum (4.3.1) by vp,tn and g, TN, i.e.

T o f'TM =i TM@ N — i/ TM, (4.3.2)

~ : f'TM =i/TM&®N — N (4.3.3)
and

i TM — f*TM' =i/TM @ N, 3.

iv @ N— f*TM' =4i'TM @ N. (4.3.5)
Definition 35 Let M, M’ be two manifolds endowed with torsion-free affine connections
V.V, f: M — M a smooth map and f*V' the pull-back connection of V'. Then f is
called affine immersion witAh transverAsaI bundle N, if the induced connection w¢ o f*V' oy
on i!TM coincides with ¥ o V o (iX)7', where +/ = m; 0o if € I'(Iso(TM,i/TM)). For

an affine immersion with transversal bundle N one defines the affine fundamental form
B € QY(Hom(T'M, N)) by

Bi=7n(fV)iil =Bl
and the shape tensor A € Q'(Hom(N,TM)) by
A=) (f V) ey = () BY.

Moreover we denote by VY := wn(f*V')un the transversal connection.

The following commutative diagram illustrates the above objects:

A TM N
A
‘ dTM & N
| i T™N
|
[ - ™'
— / l l
. / ! !
N |
TM - TM'
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We remark that B is symmetric by the torsion-freeness of V’/. One can now write the
Gaufl and Weingarten equation for such immersions

(f'V)xi'Y = i/VxY +yBxY
(fV)x(wn€) = —if AxE+ VR,
for X,Y € I'(TM) and £ € I'(N).
Due to lemma 22 we get with decomposition (4.3.1) the following

Corollary 12 Let f be an affine immersion with transversal bundle N, then the Gaufs,
Codazzi and Ricci equations are given by

(Ef)_IWfR/X,YZ’fZ = RxyZ —AxByZ + AyBxZ, (4.3.8)
WNRI)(,YifZ = (@XB)YZ — (@YB)XZ, (4.3.9)
(%f)_IWfR,X,Yf = —(ﬁxA)yf + (@YA>X€7 (4.3.10)
TnRyyE = R)Ag,yf — BxAy& + By Ax¢, (4.3.11)

for X, Y, Z € T(TM) and £ € T(N), where R', R, RN are the curvatures of (f*V'), V,
V¥ respectively and
(VxB)yZ :=VY(ByZ) — By,.vZ — ByVxZ,
(VxA)y€ = Vx(Ay€) — Av,vE — Ay VRE.

Let (M, J) and (M’,J’) be para-complex manifolds. An immersion f : M — M’ is
said to be para-holomorphic if f,J = J'f,. In the remaining part of this section we denote
by (M, J,V) (resp. (M’ J' V') para-complex manifolds (M, J) (resp. (M’,J’)) with
a connection V € Po(TM,J) C PY(TM,J) (resp. V' € Po(TM',J") C PY(TM',J)).
According to section 4.1 V and V' are adapted to the canonical para-holomorphic vector

bundle structures Py = TMY and P}, = TM'V.

Definition 36  Let (M, J) be a para-complex manifold. A torsion-free para-complex
connection of type (1,1) is called affine para-Kahler connection.

We are now going to apply the results of the last two sections to this situation.

Definition 37 Let f : (M,J,V) — (M',J', V') be an affine para-holomorphic immer-
sion with transversal bundle N, such that N is an f*J-invariant subbundle of f*T'M’,
then f is called para-complex affine immersion with transversal bundle N and the induced
para-complex structure is denoted by JV = mn(f*J )n.

The para-holomorphicity of f yields the following relation
(f* )il =i J. (4.3.12)

The pull-back bundle f*T'M’ carries a para-holomorphic structure induced by the para-
holomorphic map f and it holds

f*v/ c Pa(f*TM/,f*PM/)-
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In particular one obtains easily from (4.3.12) the identity
f*PM’ — Tf*v/ — f*TM/f*V/
with T = f*TM'.

Lemma 27 Let f : (M,J,V) — (M',J',V') be a para-complez affine immersion with
transversal bundle N. Then it holds

vV e PN, JN), Be Ql’O(Hom((TM, J), (N, JN))), i.e. B para-complez,
Ac  QYHom((N,JN),(TM,J))).

Proof: We obtain with corollary 7 that V¥ € P(N, JV), B € Q' (Hom((T'M, J), (N, JV)))
and A € Q'(Hom((N,JN),(TM,J))). As V' € Po(TM',J") C PY(TM',J'), the second
part of proposition 25 finishes the proof. O

The fact that B is para-complex and proposition 26 yield

Proposition 28  Given a para-complez affine immersion f : (M, J, V) — (M', J V')
with transversal bundle N and para-holomorphic connection V'. Then

(i) V is para-holomorphic if and only if
(Ayjx — JAx)By =0
for XY e T'(TM).
(ii) VN is para-holomorphic if and only if
By (Ajx — JAx) =0

for XY e I'(TM).
Moreover, proposition 27 yields

Proposition 29  Given a para-complez affine immersion f : (M, J,V) — (M', J',V')
with transversal bundle N. If V' is in addition affine para-Kdhler, then

(i) V is affine para-Kdihler if and only if
(JA;x + Ax)By — (JAyy + Ay)Bx =0,
for XY e I'(TM).
(ii) VY is of type (1,1) if and only if
Bx(JA)y +Ay) — By(JA;x + Ax) =0,

for X, Y e I'(TM).
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Definition 38  Let f : (M,J,V) — (M',J V') be a para-complex affine immersion
with transversal bundle N. f is said to be a para-holomorphic affine immersion, if N is a
para-holomorphic subbundle of (f*T'M, f*’]'/\/l’f*v/).

We observe that this property of f is equivalent to the para-holomorphicity of the decom-
position (4.3.1).
Therefore we apply proposition 25 to find

Proposition 30 A para-complex affine immersion f with transversal bundle N is a
para-holomorphic affine immersion with transversal bundle N if and only if

A€ QY (Hom((N, JN), (T M, J))). (4.3.13)
In addition, from corollary 9 we get

Proposition 31  Let f: (M, J,V) — (M', J', V') be a para-holomorphic affine immer-
sion with transversal bundle N. If V' is para-holomorphic, then the connections V and
V¥ are para-holomorphic too.

Applying corollary 8 and lemma 27 implies

Proposition 32 Let f: (M, J,V) — (M',J', V') be a para-complex affine immersion
with transversal bundle N. Assume, that V' is para-holomorphic and A para-complex, then
V and V¥ are para-holomorphic and f is a para-holomorphic immersion.

Definition 39 Let f: (M, J, V) — (M', J', V') be an affine immersion with transversal
bundle N. Then one defines the first normal space at x € M to be

Ni(z) == span{BxY | X, Y € T,M}.
With this notion we formulate

Proposition 33 Let f: (M, J,V) — (M',J', V') be a para-complex affine immersion
with transversal bundle N and V' be para-holomorphic.

(i) If V is para-holomorphic, then one has
(R]}[X,Y - JNR)]\([,Y)BZ =0

with X,Y,Z € T(TM).
Suppose that Ni(x) = N, for all x € M, then A is para-compler, VY is para-
holomorphic and f is a para-holomorphic affine immersion.

(ii) If VY is para-holomorphic, then one has
Bz(Ryxy — J"Rxy) =0

with X, Y, Z € T(T'M).
Moreover, if for any x € M one find a Z, € T,M such that KerBz, = {0}, then A
is para-complex and f is a para-holomorphic affine immersion.
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Proof:

(i) Proposition 28 (i) implies using the condition on the first normal space that A is
para-complex. By proposition 30 f is para-holomorphic. Proposition 28 (ii) implies
that V¥ is para-holomorphic.

Equation (4.3.11) yields

7R yinBz = RY yBz — (BxAy — By Ax)By
and therefore using the fact that R’y ) and B are para-complex

0 = (Rixy —JYRYy)Bz — (BsxAy — By Ayx)By
+ JN(BxAy — By Ax)By

= (R]jX,Y - JNR%Y)BZ — By(JAx — Asx)Bz
(

RYyy — JVRYy)By.

The last equality follows from proposition 28.
Under the condition on the first normal space the last equations yields

R]}/X,Y - ‘]NR)]\([,Y =0.

(ii) The claimed equation follows from an analogous calculation and the rest follows
likely. O

Now we want to consider the special case where the real codimension of the immersion is
two.

Corollary 13  Let f : (M, J, V) — (M', J', V') be a para-complex affine immersion with
transversal bundle N of real codimension two and V' and ¥V para-holomorphic connections.
Then V¥ is para-holomorphic.

Proof: We have to consider two cases. At first let x € M be a geodesic point, i.e. the
affine second fundamental form By vanishes at this point for all Z € T,M, then the
Ricci-equation (4.3.11) implies

R]JVX,Y = JNR)A([,Y
at v € M for all X,Y € T,M. If x € M is not a geodesic point, we can apply proposi-
tion 33, the condition on the normal space holds, as the codimension is two and x is not
geodesic. This shows that V¥ is para-holomorphic. O

Since the codimension is two we are able to chose a local frame &, J¥¢ € T'(N|y) of
N over an open set U. This gives the local formula

BxY = (X, Y)E+hA(X,Y)JN¢

with X,Y € T'(TM|y), where h' and h? are symmetric bilinear forms. Since B is para-
complex (lemma 27) and symmetric, we see

RYX,JY) =h'(JX,Y) =h*X,Y)
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for any X,Y € T'(T'M|y) and consequently rank h' = rank h?.

This motivates the definition:

The type number of an immersion f at a point € M is the rank of ! at z and is denoted
by tn(f(x)). We observe that tn(f(z)) does not depend on the choice of the local frame
field on N. Using the proposition 33 we conclude

Corollary 14  We make the same assumptions as in corollary 13. If tn(f(x)) > 0 for
each x € M, then A is para-complex, VY is para-holomorphic and f is a para-holomorphic
affine immersion.

Application of corollary 10 shows

Proposition 34  Let f : (M,J,V) — (M',J',V') be a para-holomorphic affine im-
mersion with transversal bundle N and suppose that V' is affine para-Kdihler. Then A is
para-complex and

(i) V is affine para-Kdhler if and only if
AxBy — AyBx =0
for X, Y e I'(TM).
(ii) VN is of type (1,1) if and only if
BxAy — ByAx =0
for XY e I'(TM).

It f:(M,J,V)— (M, J, V) is a para-complex affine immersion with transversal bundle
N such that V' is affine para-Kéhler, then f induces a para-holomorphic structure P/’
on (f*TM', f*J') and A"V on (f*TM',—f*J').

With this notion and lemma 25 we obtain

Proposition 35 Let f: (M, J,V) — (M',J',V') be a para-complex affine immersion
with transversal bundle N and V' be affine para-Kdhler. Then

(i) If A is para-anti-complex, then V is affine para-Kdhler and VN is of type (1,1).
Moreover (N, /\/'VN) is a para-holomorphic subbundle of (f*TM', AT™V").

(ii) Conversely if (i TM,m;(f*J)iy) is a para-holomorphic subbundle of (f*TM', PI™")
and (N, —JN) is a para-holomorphic subbundle of (f*TM', AF"™V"), then V is affine
para-Kdihler and VY of type (1,1). Moreover A is para-anti-complex.

When (N, —J%) is a para-holomorphic subbundle of (f*T'M’, A’V), then the above
proposition yields that V is affine para-Kahler and V¥ is of type (1,1).
We now consider the case (M’, J', D') = (R*™+1_J' D! ). Then we are in the situation

of the para-complex analogue of so called affine Kéhler immersions (compare [NPP]):

Definition 40 Let f : (M, J,V) — (R*®)_J/ D' Y be a para-compler affine im-
mersion with transversal bundle N and V' be affine para-Kdhler and let (N,—JV) be
para-holomorphic subbundle of (f*TM', AT™Y"). Then we call f an affine para-Kahler

immersion.
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4.4 The fundamental theorems of para-complex affine
immersions

In this section we generalize the equivalence and existence theorems of complex affine
immersions to para-complex geometry by adapting the methods of [AK], [H] and [O].

We consider the n—dimensional real affine space R" with its standard basis (e;)!
and (E;)!, the corresponding frame of parallel vector fields for the standard affine flat
connection D. A map f: M — R” from a smooth manifold M into R™ can be expressed

as .
f= Z flei
i=1

where the f?, i = 1,...,n are smooth functions. This yields at + € M with X € T, M

foX = (df ) (X)(E) pa)- (4.4.1)

We recall the definition of i/ : TM — f*TR" by i/ := F1(f,),. Further f*FE; is given by
([*Ei)z := FY(E;) (x) for each x € M. Then it holds

il = F, A B ) = df (F By, (4.4.2)

for each x € M.
In the following we consider immersions with target space (R2™*?) J' D), where J' is
the standard para-complex structure on R2(m+7),

Theorem 28 Let (M, J, V) be a simply connected 2m-dimensional para-complex manifold
with para-complex structure J and ¥V € Po(TM, J).

Let f, g: (M,J, V) — (R*™+P)_J' D) be para-complex affine immersions with transversal
bundle Nt , resp. N9, where J/ resp. J9 are the induced para-complex structure on N7
(resp. N9). We will denote by BY, AT and V¢ (resp. B9, A9 and Vo) the affine second
fundamental form, the shape tensor and the transversal connection of the immersion f
(resp. g). Moreover suppose that there exists a map W € T'(Iso((N7, J7), (N9, J9))) such
that

By =wBL, ALv =4l VYiv=uv] (4.4.3)
for all X € T'(T'M), then there exists a para-complez affine transformation
® : (RX™FP) J' D) — (R*™+P)_J' D)

satisfying g = ®f such that the bundle isomorphism which is induced by f. on NY equals
v,

Proof: Let
g = 19(e)) 7 € T(Iso(i! TM, 9T M)).
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One sees easily from this definition

Opil TGN = 9T @y, (4.4.4)
O VEHT = 9V (9) T g (4.4.5)

And similarly with equation (4.4.3)

Ol Al = 19450, (4.4.6)
UBLG) ™ = BL(19) ' or (4.4.7)

for all X € I'(T'M).
We extend now the map ®7 to a map ® € I'(Iso( f*TR2™+P) ¢g*TR2m+P))) defined by

D = 1, Pr7y + inyo VT s
With these definitions it holds

O(f*J) = (¢"J)®. (4.4.8)

The assumption (4.4.3) and the equations (4.4.5), (4.4.6) and (4.4.7) yield using lemma
24 the relation

O(f*D)x = (9"D)x® (4.4.9)

for all X € I'(T'M).
Fixing now a point xy € M we express

(I)mo((f*Ei)xo) = ag(g*Ej)ro
with 4,7 = 1,...,2(m + p). By parallelity, i.e. equation (4.4.9), we obtain
O, ((f*E)).) = al(g"E))s (4.4.10)

for all z € M.
We use this to define an affine transformation ¢ : R2"+7) — R2(m+») by

O(f (o) + €5) == g(wo) + ale;
and ¢ : M — R2m+p) 1y
o(x) = ¢(f(x)) = g(x) = (aj(f7(x) = [*(x0)) + g'(z0) — ¢ (x))es
for x € M. Now equations (4.4.2) and (4.4.10) yield
df'al(g E})e = Co(df'(f*Ey)a) = ®uif =i = dg' (9" E)., (4.4.11)
for all z € M. From equation (4.4.11) we get
d(ajf? + g'(wo) — aj,f*(x0) — ¢') = ajdf’ —dg* =0
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which means that ¢ is constant on M. But Qg(xo) = 0 implies the vanishing of ¢ and
consequently

g=¢of. (4.4.12)
From this equation and equation (4.4.10) we get
P, =G o(¢y)s0F, (4.4.13)
for all x € M. Further this equation and equation (4.4.8) yield
o J = J ., (4.4.14)
i.e. ¢ is a para-complex tranformation. Finally equation (4.4.13) shows us, that the bun-

dle isomorphism induced by ¢, on N/ coincides with W. O

Now we give the existence theorem of para-complex affine immersions

Theorem 29 Let (M, J) be a para-complex, simply connected 2m-dimensional manifold
endowed with a connection V € Po(TM,J) and given a para-complex vector bundle
(F,JT) over M of rank 2p with para-complex structure J endowed with a connection

v e PyF, Jb).

Further suppose that there exist a 1-form
B' € Q" (Hom((TM, J), (F,J")))

which is symmetric, i.e. BYY = B, X for X, Y € T(TM) and a 1-form
A e Q' (Hom((F, J5),(TM, J)),

such that for all X, Y € I'(T'M) it holds

Rxy — AxBy + Ay Bx = 0, (4.4.15)
BxVy + VB — ByVx — Vi By — Blxy] = 0, (4.4.16)
ANVy +VxAy — Ay VY — Vy Ay — Ay = 0, (4.4.17)
RYy — BxAy + ByAy = 0 (4.4.18)

with R (resp. RY) the curvature of V (resp. V¥').

Then there exists a para-complex affine immersion f : (M, J,V) — (R2™) J' D) with
transversal bundle N, affine fundamental form B, shape tensor A and transversal con-
nection VN, such that

Bx =VUBY, AxVU =AYy VYV =UVE, (4.4.19)
for all X € T(TM), where ¥ € T'(Iso((F, J©), (N, JV))).

Proof: In order to prove this theorem we consider the vector bundle E' :=TM & F over
M and endow it with the connection

V' = Vr + B — JA T, + LV, (4.4.20)
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where ¢} : TM — E" and i}, : F' — E’ are the canonical inclusions and 7} : £/ — T'M and
7« E' — F are the projections. Applying lemma 23 we obtain the flatness of V'.
We define a para-complex structure on £’ by

JE = g+ T ),
From equation (4.4.20) and corollary 7 we get
V' e P(E,JY), (4.4.21)

ie. JF is V'-parallel.
As the manifold M is simply-connected, V' is flat and J¥ is V'-parallel, we can choose

a global para-complex frame ()27 = (4f. .. sy JEh.. . JZ, ). The corre
sponding coframe will be called (n!,...,72"*P). We define one-forms w' := 1’ o 1| =
n|7ar with @ = 1,...,2(m + p). The one-forms w’ are closed, as V and V' torsion-free

and B’ is symmetric:

do'(X)Y) = (Vxw")Y — (Vyw)X
= Xu'(Y) - (VxY) = Yu'(X)+ wi(VgX)

= Xn'(\)Y) =" (\,VxY) = Yn' (!, X) + ' (1 Vy X)
= Xn'(hY) —=n'(hVxY) = Y0' (i1 X) + ' (1} Vy X)
= Xn'(0)Y) =" (V1Y) =Y (1 X) + 1 (Vy i X)

n'(4BxY) — n'(1iBy X)
= (Vin')Y — (Vyn' )i X = 0.

+

By simply-connectedness of M we find functions f* satisfying df* = w’ fori =1,...,2(m+
p) and define a map f : M — R2™P) via

= Z fles
Using identity (4.4.1) we derive for z € M and X € T, M

Fo(X) = (df)(X)(E) pa) = &' (X)(E) (o). (4.4.22)

Further we introduce ® € I'(Iso(E’, f*R2™+P)) by
O, (n)e = (["Ei)z, i=1,...,2(m+ p) for each x € M.
This definition and equation (4.4.22) yield
fi =FO/ =il = F7'f, =d/. (4.4.23)

Consequently f defines an immersion, since F' and ® are isomorphisms and ¢} is the
inclusion.
We obtain

(@ o J*) () = ©(J") = [*(Bmprn) = () Ex) = (f* ) (®(1;)
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for k=1,...m + p. From this we conclude
oJE =[], (4.4.24)

which implies with equation (4.4.23) that f is para-holomorphic.
By definition ® sends the VZ -parallel frame (1},... N/ JE W, TJF Mip) to the
(f*D)-parallel frame field (f*E1, ..., f*Eyumip)). In other words

OVEY = (f*D)x®, (4.4.25)

for all X € I'(T'M).
Define now N := ®(F). Then it holds

fXTR2M+P) — (E') = &(TM) ® ®(F) =/ TM @& N,

as the isomorphism ® maps by equation (4.4.23) TM to i/ TM.

JN = wn(f*J")en defines the induced para-complex structure on N and ¥ := my®/), the
induced bundle map. As ® is para-complex (see equation (4.4.24)) and since ® preserves
the decomposition it follows

i€ T(Iso((TM,J), (' TM,7s(f*J)is))) (4.4.26)
U ¢ I(Iso((F,J5), (N, JY)). (4.4.27)

Let
mi(f*D)y € P TM,7p(f*J)is) and VY € P(N, JV)

be the induced connections of f*D and
B@)™t € QY (Hom((i/ TM, 7y (f* I )ig), (N, J™)))

and
—if A € QY(Hom((N, J™), (¢! TM, 7 (f*J)es))

be the corresponding second fundamental forms. With the identity (4.4.25) and lemma

24 we obtain, recalling ¢; = 1/, ¢, = U,B = Bif and A = —(i/)"'BY and given
X e T(TM)
IVx =ni(f*D)xepif,  UVE =V, (4.4.28)
(Bx (")™Yl =UBYy, —ifAxU = —if AL (4.4.29)

From these equations one sees that f is a para-complex affine immersion with transversal
bundle N satisfying (4.4.19). a

We observe that in the proof of the existence theorem 29, if V¥ is para-holomorphic
or of type (1,1) then V¥ is para-holomorphic or of type (1,1), too. Moreover the last
identity in equation (4.4.19) shows that ¥ € T'(Iso((F, J¥'), (N, JV))) is para-holomorphic
with respect to F¥" and NV". Since D is flat it follows that f*D is para-holomorphic
and of type (1,1). From these considerations we conclude
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Corollary 15 If in the situation of theorem 29 the connections ¥V and VY € P(F, JF)
are para-holomorphic and

A" e QY (Hom((F, J),(TM, J))),
then, there exists a para-holomorphic affine immersion f : (M,J, V) — (R2™+P) J' D)

with transversal bundle N with transversal para-holomorphic connection VY and U €
L(Iso(F, J), (N, JN)) such that (4.4.19) is satisfied.

Corollary 16 If in the situation of theorem 29 the connection V is affine para-Kdhler,
VE e PY(F,JF) is of type (1,1) and

A" € QM (Hom((F, J5), (T M, J))),
then, there exists a para-complex affine immersion f : (M,J, V) — (R2™+2) J' D) with

transversal bundle N with a transversal connection V™ which is of type (1,1) and ¥ €
[(Iso(F, JE), (N, JN)) such that (4.4.19) is satisfied.
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Summary

This thesis is devoted to the theory of immersions, using methods of spin geometry, para-complex and
para-quaternionic geometry. It is subdivided into three different topics. The first two are related to the
study of conformal immersions of pseudo-Riemannian surfaces. On the one hand we study the immer-
sion into three-dimensional pseudo-Euclidean spaces: with the methods of para-complex geometry and
using real spinor representations, we prove the equivalence between the data of a conformal immersion
of a Lorentzian surface in R>! and spinors satisfying a Dirac-type equation. On the other hand, we
consider immersions of such surfaces into the four-dimensional pseudo-sphere S?2: a one-to-one corre-
spondence between such immersions and para-quaternionic line subbundles of the trivial bundle M x H?
is given. Considering a particular (para-)complex structure on this bundle, namely the mean curva-
ture pseudo-sphere congruence, and the para-quaternionic Hopf fields of the immersion, we define the
Willmore functional of the surface and can express its energy as the sum of this functional and of a
topological invariant. The last topic is more general and deals with para-complex vector bundles and
para-complex affine immersions. We introduce para-holomorphic vector bundles and characterize para-
holomorphic subbundles and subbundles of type (1,1) in terms of the associated induced connections
and second fundamental forms. The fundamental equations for general decompositions of vector bundles
with connection are studied in the case where some of the (sub)bundle are para-holomorphic in order to
prove existence and uniqueness theorems of para-complex affine immersions.

Mots-clés

Géométrie pseudo-Riemannienne, géométrie spinorielle, géométrie (para-)complexe et (para-)quaternionique,
hypersurfaces, surfaces de Lorentz, opérateurs de Dirac, intégrale de Willmore, immersions affines.

Résumé

Ce travail est relatif a la théorie des immersions et utilise des méthodes issues de la géométrie spinorielle,
para-complexe et para-quaternionique. Les deux premieres parties sont consacrées aux immersions
conformes de surfaces pseudo-Riemanniennes. D’une part, nous étudions ce type d’immersions dans
I’espace pseudo-Euclidien de dimension trois. Avec des méthodes de géométrie para-complexe et des
représentations spinorielles réelles, I’équivalence entre les données d’une immersion conforme d’une sur-
face de Lorentz dans R?! et de spineurs satisfaisant une équation de type Dirac est prouvée. D’autre
part nous considérons des surfaces de Lorentz dans la pseudo-sphere S?2: une bijection entre ces im-
mersions et des sous-fibrés en droite para-quaternioniques du fibré M x H? est établie. Considérant
une structure (para-)complexe particuliere de ce fibré, la congruence pseudo-sphérique, et les champs de
Hopf para-quaternioniques, nous définissons la fonctionnelle de Willmore de la surface et exprimons son
énergie comme la somme de cette fonctionnelle et d’un invariant topologique. La derniere partie, plus
générale, traite des fibrés vectoriels et immersions affines para-complexes. Nous introduisons la notion
de fibré vectoriel para-holomorphe, et les sous-fibrés para-holomorphes et de type (1,1) en termes de
connections associées induites et de secondes formes fondamentales. Les équations fondamentales pour
des décompositions générales de fibrés vectoriels munis d’une connexion sont étudiées dans le cas ou
certains des fibrés sont para-holomorphes afin d’obtenir des théoréemes d’existence et d’unicité pour des
immersions affines para-complexes.

Keywords

pseudo-Riemannian geometry, spin geometry, (para-)complex and (para-)quaternionic geometry, hyper-
surfaces, Lorentz surfaces, Dirac operator, Willmore integral, affine immersions.



