Modélisation du mercure, du plomb et du cadmium à l'échelle européenne.

Yelva Roustan

Doctorat de l'École Nationale des Ponts et Chaussées

Centre d'Enseignement et de Recherche en Environnement Atmosphérique

ENPC / EDF R&D

۲

12 décembre 2005

Des substances utiles...

Mercure: production de chlore, amalgames dentaires, fongicides et bactéricides, orpaillage

Plomb: batteries électriques, pigments de peinture, essence

Cadmium: revêtements anticorrosion, accumulateurs électriques, pigments de peinture, alliages à bas point de fusion

Présents dans le pétrole et le charbon

Mais toxiques et bioaccumulables!

Mercure: reins et système nerveux (hydrargyrisme)
Plomb: anémie, reins et système nerveux (saturnisme)
Cadmium: accumulation dans les reins, désordres osseux et pulmonaires

Convention sur la Pollution Atmosphérique Transfrontalière à Longue Distance (1979) Protocole d'Aarhus (1998)

Plan

۲

Métaux lourds et modélisation

Simulations

Analyse de sensibilité et modélisation inverse

Métaux lourds et modélisation

•

Métaux lourds et modélisation

•

	forme/état	concentration		temps de vie
Hg ⁰	élémentaire	1.5-2	$\mathrm{ng.m}^{-3}$	mois
Hg ^{II}	oxydé	10-100	$\mathrm{pg.m}^{-3}$	heure, jour
Hg _p	particulaire	10-100	$\mathrm{pg.m}^{-3}$	jour, semaine
Pb	particulaire	1-10	${ m ng.m^{-3}}$ ${ m ng.m^{-3}}$	jour, semaine
Cd	particulaire	0.1-1		jour, semaine

Métaux lourds et modélisation

• Transport à longue distance

 Domaine continental (système ouvert)

Calcul de long terme pour l'étude d'impact

Équation de transport: $\Omega = \mathcal{D} \times [0, \tau]$

•

$\frac{\partial c}{\partial t} = -\operatorname{div}\left(\boldsymbol{u}\,c\right) + \operatorname{div}\left(\boldsymbol{K}\nabla c\right) + \chi(c) - \lambda\,c + \sigma$

Équation de transport: $\Omega = \mathcal{D} \times [0, \tau]$ ∂c

$\frac{\partial c}{\partial t} = -\underbrace{\operatorname{div}\left(\boldsymbol{u}\,c\right)}_{(1)} + \operatorname{div}\left(\boldsymbol{K}\nabla c\right) + \chi(c) - \lambda\,c + \sigma$

(1) advection par le vent

$$\begin{split} \mathbf{\acute{E}quation \ de \ transport:} \ \Omega &= \mathcal{D} \times [0, \tau] \\ \frac{\partial c}{\partial t} &= -\underbrace{\operatorname{div} \left(\mathbf{u} \, c \right)}_{(1)} + \underbrace{\operatorname{div} \left(\mathbf{K} \nabla c \right)}_{(2)} + \chi(c) - \lambda \, c + \sigma \end{split}$$

(1) advection par le vent, (2) diffusion turbulente

(1) advection par le vent, (2) diffusion turbulente, (3) chimie

۲

(1) advection par le vent, (2) diffusion turbulente, (3) chimie, (4) perte par lessivage

۲

(1) advection par le vent, (2) diffusion turbulente, (3) chimie, (4) perte par lessivage, (5) émission dans le volume.

۲

(1) advection par le vent, (2) diffusion turbulente, (3) chimie, (4) perte par lessivage, (5) émission dans le volume.

 $Flux = \boldsymbol{n} \cdot \boldsymbol{u} c_{lim}$ si $\boldsymbol{n} \cdot \boldsymbol{u} > 0$

۲

(1) advection par le vent, (2) diffusion turbulente, (3) chimie, (4) perte par lessivage, (5) émission dans le volume.

$$Flux = \boldsymbol{n} \cdot \boldsymbol{u} c_{lim}$$
 si $\boldsymbol{n} \cdot \boldsymbol{u} > 0$

$$(\boldsymbol{K}\cdot\nabla c)\cdot\boldsymbol{n}=E-v_d\,c$$

(1) advection par le vent, (2) diffusion turbulente, (3) chimie, (4) perte par lessivage, (5) émission dans le volume.

$$Flux = \boldsymbol{n} \cdot \boldsymbol{u} c_{lim}$$
 si $\boldsymbol{n} \cdot \boldsymbol{u} > 0$

$$(\boldsymbol{K}\cdot\nabla c)\cdot\boldsymbol{n}=\underbrace{E}_{(6)}-v_{\mathrm{d}}\,c$$

(6) émission de surface

(1) advection par le vent, (2) diffusion turbulente, (3) chimie, (4) perte par lessivage, (5) émission dans le volume.

$$Flux = \boldsymbol{n} \cdot \boldsymbol{u} c_{lim}$$
 si $\boldsymbol{n} \cdot \boldsymbol{u} > 0$

$$(\boldsymbol{K}\cdot\nabla c)\cdot\boldsymbol{n}=\underbrace{E}_{(6)}-\underbrace{v_{\mathrm{d}}\,c}_{(7)}$$

(6) émission de surface, (7) perte par dépôt sec.

(1) advection par le vent, (2) diffusion turbulente, (3) chimie, (4) perte par lessivage, (5) émission dans le volume.

$$Flux = \boldsymbol{n} \cdot \boldsymbol{u} c_{lim} \quad si \quad \boldsymbol{n} \cdot \boldsymbol{u} > 0$$

$$(\boldsymbol{K}\cdot\nabla c)\cdot\boldsymbol{n}=\underbrace{E}_{(6)}-\underbrace{v_{\mathrm{d}}\,c}_{(7)}$$

(6) émission de surface, (7) perte par dépôt sec.

$$c_0 = c(t=0)$$

- transfert de masse dans la phase aqueuse nuageuse
- retrait de l'atmosphère lors des précipitations
- (1) d'une partie de la masse présente dans l'eau nuageuse
- (2) d'une partie de la masse
 présente dans le volume
 balayée par l'eau précipitante

•

Transfert de masse de l'atmosphère vers la surface:

$$\left(\frac{\partial c}{\partial t}\right)_{\text{humide}} = -\lambda \, c$$

Transfert de masse de l'atmosphère vers la surface:

$$\left(\frac{\partial c}{\partial t}\right)_{\text{humide}} = -\lambda \, c$$

Lessivage des gaz

• par les nuages

$$\lambda_n = \frac{e^{-\tau_n/\tau_v} - 1}{\tau_n}$$

• par les précipitations

$$\lambda_{p,g} = \frac{\alpha P_0}{\tau_t} e^{-\beta}$$

Transfert de masse de l'atmosphère vers la surface:

$$\left(\frac{\partial c}{\partial t}\right)_{\text{humide}} = -\lambda \, c$$

Lessivage des particules

• par les nuages

$$\lambda_n = \frac{e^{-\tau_n/\tau_v} - 1}{\tau_n}$$

• par les précipitations

$$\lambda_{p,p} = \frac{3}{2} \, \frac{E_{\rm ff} \, P_0}{D_r}$$

Dépôt sec

•

Transfert de masse de l'atmosphère vers la surface:

 $\operatorname{Flux}_{\operatorname{sec}} = v_{\operatorname{d}} c$

Dépôt sec

۲

Transfert de masse de l'atmosphère vers la surface:

$$\operatorname{Flux}_{\operatorname{sec}} = v_{\operatorname{d}} c$$

Dépôt des gaz

- diffusion turbulente
- diffusion moléculaire
- captation par la surface

$$v_{\rm d} = \frac{1}{R_{\rm a} + R_{\rm b} + R_{\rm c}}$$

1/Rc = 1/Rsol + 1/Rcut + 1/(Rmes+Rsto)

Dépôt sec

Transfert de masse de l'atmosphère vers la surface:

$$\operatorname{Flux}_{\operatorname{sec}} = v_{\operatorname{d}} c$$

Dépôt sec des particules

- vitesse de sédimentation
- diffusion turbulente
- captation par la surface

$$v_{\rm d} = v_{\rm g} + \frac{1}{R_{\rm a} + R_{\rm s}}$$

Population de particules "métalliques"

۲

- population de taille fixe DMM (Hg_p $0.61 \,\mu m$, Pb $0.55 \,\mu m$ et Cd $0.84 \,\mu m$)
- approche multi-diamètres 10 diamètres représentatifs ($0.015 \mapsto 7.5 \mu m$)
- modèle d'aérosol résolu en taille (SIREAM) 10 classes de taille ($0.01 \mapsto 10 \mu m$)

Simulations

۲

Domaine & Données

année 2001	900 s
12.375°W à 37.125°E	1.125°
36°N à 72°N	1.125°
0 - 5233 m	14 niveaux
(hauteur relative)	verticaux
météorologie	ECMWF
conditions aux limites,	MSC-E
initiales et émissions	
occupation des sols	RIVM
mesures	CCC

Modèle de chimie-transport POLAIR3D Plateforme de simulation Polyphemus

Concentration totale de mercure gazeux (ng.m⁻³)

moyenne annuelle

moyenne annuelle	IE31	FI96	NO99	SE02
observation	1.64	1.32	1.65	1.66
modèle de Petersen (modèle 1)	1.85	1.62	1.89	2.04
modèle complété (modèle 2)	1.81	1.58	1.79	1.88

moyenne mensuelle

Concentration totale de mercure gazeux (ng.m $^{-3}$)

•

Modélisation du mercure, du plomb et du cadmium l'échelle européenne. - p. 18/41

Flux de dépôt de mercure (g.km⁻².an⁻¹)

dépôt humide moyenne mensuelle

Observation

dépôt humide - 2001	DE01	DE09	NL91	NO99	SE02	SE05	SE11
observation	4.4	6.2	9.1	8.9	5.4	3.6	4.7
modèle complété	5.0	6.0	7.9	5.2	4.2	2.1	4.2
RACM	6.4	7.9	9.6	6.5	5.4	2.4	5.7

dépôt total - 2001

70°N

60°N

50°N

40°N

Modélisation du mercure, du plomb et du cadmium l'échelle européenne. - p. 19/41

_

Flux de dépôt humide de mercure (g.km⁻².an⁻¹)

Plomb et cadmium

Concentration dans l'air

70°N 70°N $65^{\circ}N$ $65^{\circ}N$ $60^{\circ}N$ 60°N $55^{\circ}N$ $55^{\circ}N$ 50°N $50^{\circ}N$ $45^{\circ}N$ $45^{\circ}N$ $40^{\circ}\mathrm{N}$ 40°N $10^{\circ}W 5^{\circ}W$ 5°E 10°E 15°E 20°E 25°E 30°E 35°E 40°E 0° $10^{\circ}W 5^{\circ}W$ 0° 5°E 10°E 15°E 20°E 25°E 30°E 35°E 40°E ···· -+ 75% ─· -+ 50% ● DMM 10 diamètres • **Concentration de plomb** flux de plomb concentration de cadmium flux de cadmium 100 10 10 Modèle Modèle 10 0.1 0.1- 0.1 10 10 0.1 10 100 1 Observation Observation Observation Observation

Flux de dépôt humide

Cadmium

Concentration dans l'air $(ng.m^{-3})$

Analyse de sensibilité et modélisation inverse

•

$$\boldsymbol{y} = f(\boldsymbol{x}) \longrightarrow \frac{\delta y_i}{\delta x_j}$$

Approche directe

- méthode "indirecte" (différences finies)
- méthodes directes (équation de la perturbation)

Approche adjointe

• méthode adjointe

•

équation de transport: $\Omega = \mathcal{D} \times [0, \tau]$

$$\frac{\partial c}{\partial t} + \operatorname{div}\left(\boldsymbol{u}c\right) - \operatorname{div}\left(\boldsymbol{K}\nabla c\right) + \Lambda c = \sigma$$

۲

équation de transport: $\Omega = \mathcal{D} \times [0, \tau]$

$$\frac{\partial c}{\partial t} + \operatorname{div}\left(\boldsymbol{u}c\right) - \operatorname{div}\left(\boldsymbol{K}\nabla c\right) + \Lambda c = \sigma$$

équation de la mesure:

$$\pi_i: \Omega \to \mathbb{R}$$
 $\mu_i = \int_{\Omega} dt d\boldsymbol{x} \, \pi_i(\boldsymbol{x}, t) \, c(\boldsymbol{x}, t)$

۲

équation de transport: $\Omega = \mathcal{D} \times [0, \tau]$

$$\frac{\partial c}{\partial t} + \operatorname{div}\left(\boldsymbol{u}c\right) - \operatorname{div}\left(\boldsymbol{K}\nabla c\right) + \Lambda c = \sigma$$

équation de la mesure:

$$\pi_i: \Omega \to \mathbb{R}$$
 $\mu_i = \int_{\Omega} dt d\boldsymbol{x} \, \pi_i(\boldsymbol{x}, t) \, c(\boldsymbol{x}, t)$

équation adjointe:

$$-\frac{\partial c_i^*}{\partial t} - \operatorname{div}\left(\boldsymbol{u}c_i^*\right) - \operatorname{div}\left(\boldsymbol{K}\nabla c_i^*\right) + \Lambda c_i^* = \pi_i$$

۲

a priori: $f^{*, k} \neq f^{k, *}$

۲

	Pallas		Topolniki		
	"direct"	adjoint	"direct"	adjoint	
Nord	0.580	0.579	0.180	0.177	
Ouest	0.445	0.453	1.16	1.13	
Sud	0.005	0.005	0.107	0.106	
Est	0.503	0.502	0.135	0.137	
Source	0.086	0.086	1.06	1.06	
Bilan	1.63	1.63	2.71	2.67	

Contributions aux concentrations modélisées (ng.m $^{-3}$)

Applications

sensibilité aux conditions limites et initiales

1 an - Topolniky

sensibilité aux émissions

2000

1 32 2 3 2 2 2 2 2 0 0

* 3.5 /3 1 h 5 / 0.5 0

mesure annuelle

mesure mensuelle

* 5° 13 1 1 1 5 1 0° 0

 $\log_{10}(\bar{s} / \bar{s}_{max}) = \bar{s}$: moyenne de la sensibilité \bar{s}_{\max} : maximum sur le domaine de \bar{s}

Applications

Pollution transfrontière

exemple: Allemagne - 2001

Février

 \bar{s} : moyenne mensuelle de la sensibilité aux émissions \bar{s}_{\max} : maximum sur le domaine de \bar{s}

Avec le modèle complété:

•

$$\frac{\partial \boldsymbol{c}}{\partial t} + \operatorname{div}\left(\boldsymbol{u}\boldsymbol{c}\right) - \operatorname{div}\left(\boldsymbol{K}\nabla\boldsymbol{c}\right) + \boldsymbol{\Lambda}\,\boldsymbol{c} + \boldsymbol{M}\,\boldsymbol{c} = \sigma$$

Modélisation du mercure, du plomb et du cadmium l'échelle européenne. - p. 30/41

Avec le modèle complété:

۲

$$\frac{\partial \boldsymbol{c}}{\partial t} + \operatorname{div}\left(\boldsymbol{u}\boldsymbol{c}\right) - \operatorname{div}\left(\boldsymbol{K}\nabla\boldsymbol{c}\right) + \boldsymbol{\Lambda}\,\boldsymbol{c} + \boldsymbol{M}\,\boldsymbol{c} = \sigma$$

équation de la mesure:

$$\mu_i = \int_{\Omega} \mathrm{d}t \mathrm{d}\boldsymbol{x} \left\langle \boldsymbol{\pi}_i(\boldsymbol{x},t), \boldsymbol{c}(\boldsymbol{x},t) \right\rangle$$

Avec le modèle complété:

۲

$$\frac{\partial \boldsymbol{c}}{\partial t} + \operatorname{div}\left(\boldsymbol{u}\boldsymbol{c}\right) - \operatorname{div}\left(\boldsymbol{K}\nabla\boldsymbol{c}\right) + \boldsymbol{\Lambda}\,\boldsymbol{c} + \boldsymbol{M}\,\boldsymbol{c} = \sigma$$

équation de la mesure:

$$\mu_i = \int_{\Omega} \mathrm{d}t \mathrm{d}\boldsymbol{x} \left\langle \boldsymbol{\pi}_i(\boldsymbol{x},t), \boldsymbol{c}(\boldsymbol{x},t) \right\rangle$$

équation adjointe:

$$-\frac{\partial \boldsymbol{c}_{i}^{*}}{\partial t} - \operatorname{div}\left(\boldsymbol{u}\boldsymbol{c}_{i}^{*}\right) - \operatorname{div}\left(\boldsymbol{K}\nabla\boldsymbol{c}_{i}^{*}\right) + \boldsymbol{\Lambda}\boldsymbol{c}_{i}^{*} + \boldsymbol{M}^{T}\boldsymbol{c}_{i}^{*} = \boldsymbol{\pi}_{i}$$

Sensibilité de la concentration

 Hg^{0}

 $Hg(OH)_2$

HgO

 $HgCl_2$

20°E

10°E

10°W

0°

30°E

Sensibilité du dépôt sec

 Hg^{0}

 $Hg(OH)_2$

HgO

 $HgCl_2$

Sensibilité du dépôt humide

 Hg^{0}

 $Hg(OH)_2$

HgO

 $HgCl_2$

۲

 $\mu_{i} = \sum c_{i,k}^{*} \sigma_{k} + \sum c_{i,k}^{*} c_{k} + \sum c_{i,k}^{*} E_{k} + \sum c_{i,k}^{*} E_{k} + \sum c_{i,k}^{*} c_{k}^{f} u_{k}$ $k \in \overline{\Omega}$ $k \in \overline{\partial \Omega}_0 \qquad \qquad k \in \overline{\partial \Omega}_b \qquad \qquad k \in \overline{\partial \Omega}_+ \cap \overline{\partial \Omega}_f$

.

۲

 $\mu_{i} = \sum c_{i,k}^{*} \sigma_{k} + \sum c_{i,k}^{*} c_{k} + \sum c_{i,k}^{*} E_{k} + \sum c_{i,k}^{*} e_{k}^{f} u_{k}$ $k \in \overline{\partial \Omega}_0$ $k \in \overline{\Omega}$ $k \in \overline{\partial \Omega}_b \qquad \qquad k \in \overline{\partial \Omega}_+ \cap \overline{\partial \Omega}_f$ conditions aux bords

$$\mu_{i} = \sum_{k \in \overline{\Omega}} c_{i,k}^{*} \sigma_{k} + \sum_{k \in \overline{\partial \Omega}_{0}} c_{i,k}^{*} c_{k} + \sum_{k \in \overline{\partial \Omega}_{b}} c_{i,k}^{*} E_{k} + \underbrace{\sum_{k \in \overline{\partial \Omega}_{+} \cap \overline{\partial \Omega}_{f}} c_{i,k}^{*} c_{k}^{f} u_{k}}_{\text{conditions aux bords}}$$

paramètres à inverser: coefficients pour les faces Ouest, Nord et Est du domaine (λ , n=3)

$$\frac{\delta\mu_i}{\delta\lambda_{\rm f}} = \sum_{k\in\overline{\partial\Omega}_+\cap\overline{\partial\Omega}_{\rm f}} c^*_{i,k} c^{\rm f}_k u_k$$

<u>mesures assimilées:</u> concentrations mensuelles à Mace Head et Pallas (μ , p=24)

<u>mesures assimilées:</u> concentrations mensuelles à Mace Head et Pallas (μ , p=24)

matrice
$$24 \times 3 \longrightarrow [\mathbf{H}]_{i,f} = \frac{\delta \mu_i}{\delta \lambda_f}$$

-1

<u>mesures assimilées:</u> concentrations mensuelles à Mace Head et Pallas (μ , p=24)

matrice
$$24 \times 3 \longrightarrow [\mathbf{H}]_{i,f} = \frac{\delta \mu_i}{\delta \lambda_f}$$

$$J = \frac{1}{2} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right]^T \boldsymbol{R}^{-1} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right] + \frac{\gamma}{2} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]^T \boldsymbol{B}^{-1} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]$$

<u>mesures assimilées:</u> concentrations mensuelles à Mace Head et Pallas (μ , p=24)

$$\begin{array}{l} \text{matrice } 24 \times 3 \quad \rightarrow \quad [\boldsymbol{H}]_{i,\mathrm{f}} = \frac{\delta \mu_i}{\delta \lambda_\mathrm{f}} \\ I = \frac{1}{2} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right]^T \boldsymbol{R}^{-1} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right] + \frac{\gamma}{2} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]^T \boldsymbol{B}^{-1} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right] \end{array}$$

erreur d'observation
Modélisation inverse

1

<u>mesures assimilées:</u> concentrations mensuelles à Mace Head et Pallas (μ , p=24)

matrice
$$24 \times 3 \quad \rightarrow \quad [\mathbf{H}]_{i,\mathrm{f}} = \frac{\delta \mu_i}{\delta \lambda_{\mathrm{f}}}$$

$$J = \frac{1}{2} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right]^T \boldsymbol{R}^{-1} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right] + \underbrace{\frac{\gamma}{2} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]^T \boldsymbol{B}^{-1} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]}_{\boldsymbol{\lambda}}$$

terme d'ébauche

Modélisation inverse

<u>mesures assimilées:</u> concentrations mensuelles à Mace Head et Pallas (μ , p=24)

matrice
$$24 \times 3 \longrightarrow [\mathbf{H}]_{i,f} = \frac{\delta \mu_i}{\delta \lambda_f}$$

$$J = \frac{1}{2} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right]^T \boldsymbol{R}^{-1} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right] + \frac{\gamma}{2} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]^T \boldsymbol{B}^{-1} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]$$

minimisation de *J*: $\boldsymbol{\lambda}^* = \boldsymbol{\lambda}_b + \left[\gamma \boldsymbol{B}^{-1} + \boldsymbol{H}^T \boldsymbol{R}^{-1} \boldsymbol{H} \right]^{-1} \times \boldsymbol{H}^T \boldsymbol{R}^{-1} \left(\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda}_b \right)$

et
$$\mu^* = H\lambda^* + h$$

Modélisation inverse

1

<u>mesures assimilées:</u> concentrations mensuelles à Mace Head et Pallas (μ , p=24)

matrice
$$24 \times 3 \longrightarrow [\mathbf{H}]_{i,f} = \frac{\delta \mu_i}{\delta \lambda_f}$$

$$J = \frac{1}{2} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right]^T \boldsymbol{R}^{-1} \left[\boldsymbol{\mu} - \boldsymbol{h} - \boldsymbol{H} \boldsymbol{\lambda} \right] + \frac{\gamma}{2} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]^T \boldsymbol{B}^{-1} \left[\boldsymbol{\lambda} - \boldsymbol{\lambda}_b \right]$$

Concentration dans l'air (ng.m⁻³)

	Mace Head		Pallas		Lista		Rörvik		
	(IE31)		(FI9	(FI96)		(NO99)		(SE02)	
	FB	FE	FB I	FE	FB	FE	FB	FE	
climatique 2002	-3	6	-19	20	-8	8	-17	17	
3 variables - 2002	4	5	-3	8	2	6	-8	10	
14 variables - 2002	3	5	-0.4	2	2	6	-9	10	

FB= biais fractionnel et FE=erreur fractionnelle absolue (en %)

Assimilation des conditions aux bords avec le modèle de Petersen

Concentration dans l'air (ng.m⁻³)

•

Modélisation du mercure, du plomb et du cadmium l'échelle européenne. - p. 37/41

Conclusion & perspectives

•

Conclusion & perspectives

Modélisation

- Mercure
 - Chimie détaillée nécessaire
 - Extension du domaine de simulation
- Plomb et cadmium
 - Influence de la distribution en taille
 - ▷ Processus de dépôt humide
 - Extension aux autres métaux lourds

Étude d'impact multi-milieux

Conclusion & perspectives

Analyse de sensibilité et modélisation inverse

- Quantification des sensibilités
 - Paramètres "linéaires"
 - ▷ Paramètres "non-linéaires" (ex: constante cinétique)
- assimilation de données
 - Inversion des conditions aux limites
 - Inversion des émissions
 - Mesure de dépôt

Étude multi-polluants

FIN

۲

•