

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

M. Deverge

Directeurs de thèse : L. Benyahia, S. Sahraoui

Laboratoire d'Acoustique de l'Université du Maine, UMR CNRS 6613 Laboratoire Polymères Colloïdes et Interfaces, UMR CNRS 6120

1er décembre 2006

Introduction

Milieu diphasique

Photo MEB

Bulpren S : Taille des pores décroissantes de Bulpren S20 à Bulpren S90 Fireflex T31 : Même taille que Bulpren S60, semi-ouverte.

$$\begin{bmatrix} -C - N - R' - N - C - O - R - O - H \\ H & H \end{bmatrix}$$

Formulation polyurethane

Introduction

Introduction mousses

Réponse en hystérésis avec 3 zones de comportement.

Plan de l'exposé

Caractérisation de la zone linéaire sur une large plage fréquentielle

- 2 Modélisation du comportement en hystérésis et à grandes déformations
- 3 Relaxation des contraintes de mousses
- 4 Conclusions/Perspectives

Plan de l'exposé

1

Caractérisation de la zone linéaire sur une large plage fréquentielle

- Superposition Temps-Température
- Application Bulpren S20
- Caractérisation famille Bulpren S
- Conclusion

2 Modélisation du comportement en hystérésis et à grandes déformations

3 Relaxation des contraintes de mousses

4 Conclusions/Perspectives

Caractérisation de la zone linéaire sur une large plage fréquentielle Schéma du dispositif expérimental

Module de cisaillement complexe :

$$G^{'}(\omega)=rac{\sigma_{0}}{\gamma_{0}}cos(\delta)$$

$$G''(\omega) = \frac{\sigma_0}{\gamma_0} sin(\delta)$$

Facteur d'atténuation :

$$tan(\delta) = rac{G^{''}(\omega)}{G^{'}(\omega)}$$

Principe de Superposition Temps-Température (TTS)

Principe de Superposition Temps-Température (TTS)

Principe de Superposition Temps-Température (TTS)

Equations de la Superposition Temps-Température

Equations analytiques de la Superposition Temps Température (TTS) pour le module de cisaillement

$$G'(f, T_0) = b_T G'(a_T f, T_i)$$

 $G''(f, T_0) = b_T G''(a_T f, T_i)$

Détermination des coefficients de superposition [WLF]

$$b_{T} = \frac{\rho_{i} T_{i}}{\rho_{0} T_{0}}$$
$$\log a_{T} = -\frac{C_{1}^{0} (T - T_{0})}{C_{2}^{0} + T - T_{0}}$$

 C_1^0 et C_2^0 coefficients visco-élastiques du matériau à la température de référence T_0 .

Mesures expérimentales du cisaillement sur Bulpren S20

Bulpren S20 : Superposition des mesures

Coefficients TTS avec modélisation WLF

Famille Bulpren S : Superposition des mesures

Coefficients TTS

Interprétation en hautes fréquences

G' identiques à 10^6 Pa en hautes fréquences. G' polyurethane de l'ordre de 10^9 Pa.

Seulement 3.3% de la mousse transmet la contrainte de cisaillement.

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

- La méthode TTS est utilisable pour la caractérisation mécanique des mousses de polymère réticulés.
- La méthode TTS permet une caractérisation large bande (plus de 10 décades) dans la zone linéaire :
 - Faible fraction de la mousse transmet la contrainte de cisaillement.
 - ► Le module G' à fréquence nulle décroît avec le diamètre des pores.

Plan de l'exposé

Caractérisation de la zone linéaire sur une large plage fréquentielle

2 Modélisation du comportement en hystérésis et à grandes déformations

- Modèle PKM
- Hypothèses de la théorie PKM
- Mesure expérimentale Bulpren S90
- Modélisation de l'hystérésis à partir de l'espace PM
- Conclusions

3 Relaxation des contraintes de mousses

4 Conclusions/Perspectives

Grandes déformations et hystérésis de comportement

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

Hysteron microscopique

Hysteron microscopique : caractérisé par 2 contraintes d'équilibre en fonction du déplacement.

Hystérésis macroscopique décomposable en somme d'hystérons microscopiques :

$$ar{\sigma}(t) = \int_{lpha \geq eta} \sigma(t, lpha, eta) \mu(lpha, eta) dlpha deta.$$

De l'hystérésis à l'espace PM $\mu(\alpha, \beta)$

Détermination des paramètres α et β sur la courbe contrainte $\bar{\sigma}$ -déformation $\bar{\epsilon}$ en hystérésis du matériau.

Modélisation du comportement en hystérésis et à grandes déformations Espace PM contient une densité d'hysterons

Choix d'un espace PM selon le déplacement (α , β)

Modélisation du comportement en hystérésis et à grandes déformations <u>Protocole de test et description de l'espace PM</u>

Modélisation du comportement en hystérésis et à grandes déformations Protocole de test et description de l'espace PM

Modélisation du comportement en hystérésis et à grandes déformations Protocole de test et description de l'espace PM

Modélisation du comportement en hystérésis et à grandes déformations Protocole de test et description de l'espace PM

Modélisation du comportement en hystérésis et à grandes déformations Hystérésis et vitesse de compression

La vitesse expérimentale est fixée à $0,1 \text{ mm.s}^{-1}$

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

Modélisation du comportement en hystérésis et à grandes déformations Cycles d'hystérésis et invariabilité du point final

Stabilité des quatre cycles de chargement-déchargement pour l'échantillon. Ces quatre cycles sont identiques entre-eux mais différents du premier cycle de l'expérience (°)

L'hypothèse de l'invariabilité du point final est vérifiée

Hypothèse de congruence géométrique

Boucles d'hystérésis internes, de 3 à 5 millimètres en haut à gauche, et de 8 à 10 millimètres en haut à droite, entre le chargement (°) et le déchargement translatée verticalement (+).

L'hypothèse de congruence géométrique est vérifiée

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

Modélisation du comportement en hystérésis et à grandes déformations Protocole expérimental de test en déplacement

Mesure de chargement-déchargement sur Bulpren S90

Modélisation du comportement en hystérésis et à grandes déformations Détermination expérimentale de l'espace PM

Espace PM $\mu(\alpha, \beta)$ par différence finie.

Modélisation de l'hystérésis principale

Bonne superposition entre l'hystérésis modélisée à partir de l'espace PM $\mu(\alpha, \beta)$ calculé et l'hystérésis mesurée expérimentalement.

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

Modélisation d'hystérésis intermédiaires

Modélisation d'hystérésis intermédiaires pour la mousse Bulpren S90.

Différents espaces PM et modélisation d'hystérésis

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

Conclusion

La théorie PKM est applicable aux mousses de polymères réticulés :

- A partir des mesures en contrainte-déformation, il est possible de déterminer la densité des hysterons dans un espace PM.
- A partir de l'espace PM, il est possible de modéliser le comportement en contrainte-déformation.

Plan de l'exposé

Caractérisation de la zone linéaire sur une large plage fréquentielle

2 Modélisation du comportement en hystérésis et à grandes déformations

Relaxation des contraintes de mousses

- 2 types de relaxation de compression
- Relaxation de contraintes en zone de flambement
- Conclusion

3

Etude de la relaxation pendant 600 secondes pour les différentes zones de comportement en hystérésis :

- zone linéaire (1 et 6)
- zone de flambement (2 et 5)
- zone de densification (3 et 4)

Etude de la relaxation pendant 600 secondes pour les différentes zones de comportement en hystérésis :

- zone linéaire (1 et 6)
- zone de flambement (2 et 5)
- zone de densification (3 et 4)

Etude de la relaxation pendant 600 secondes pour les différentes zones de comportement en hystérésis :

- zone linéaire (1 et 6)
- zone de flambement (2 et 5)
- zone de densification (3 et 4)

Etude de la relaxation pendant 600 secondes pour les différentes zones de comportement en hystérésis :

- zone linéaire (1 et 6)
- zone de flambement (2 et 5)
- zone de densification (3 et 4)

Etude de la relaxation pendant 600 secondes pour les différentes zones de comportement en hystérésis :

- zone linéaire (1 et 6)
- zone de flambement (2 et 5)
- zone de densification (3 et 4)

Etude de la relaxation pendant 600 secondes pour les différentes zones de comportement en hystérésis :

- zone linéaire (1 et 6)
- zone de flambement (2 et 5)
- zone de densification (3 et 4)

1er mécanisme

Ler processus de relaxation : Zone linéaire de début de chargement, contraintes normalisées pour les 5 échantillons de différentes mousses.

5 mousses différentes mais même mécanisme de relaxation pour zone linéaire de chargement initial.

Relaxation des contraintes de mousses 2nd mécanisme de relaxation : 5 zones de comportement

2nd mécanisme de relaxation pour 5 zones de comportement : exemple de la mousse Bulpren S20 avec contraintes normalisées.

5 zones différentes de comportement mais même 2nd mécanisme de relaxation.

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

2nd mécanisme de la relaxation : 5 mousses différentes

2nd processus de relaxation : Zone linéaire de déchargement retour, contraintes normalisées pour les 5 échantillons de différentes mousses

5 mousses différentes mais même 2nd mécanisme de relaxation.

2 mécanismes différents de relaxation

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

Relaxation de compression

Etude de la relaxation en dehors de la zone linéaire initiale : zone de flambement de chargement

Prise en compte de l'histoire par un pallier intermédiaire :

1 Compression à 4 mm de déplacement

Relaxation de compression

Etude de la relaxation en dehors de la zone linéaire initiale : zone de flambement de chargement

Prise en compte de l'histoire par un pallier intermédiaire :

- 1 Compression à 4 mm de déplacement
- 2 Attente $t_w = 0, 1, 2, 5, 10$ min

Relaxation de compression

Etude de la relaxation en dehors de la zone linéaire initiale : zone de flambement de chargement

Prise en compte de l'histoire par un pallier intermédiaire :

- 1 Compression à 4 mm de déplacement
- 2 Attente $t_w = 0, 1, 2, 5, 10$ min
- 3 Compression de 4 à 5 mm de déplacement

Relaxation de compression

Etude de la relaxation en dehors de la zone linéaire initiale : zone de flambement de chargement

Prise en compte de l'histoire par un pallier intermédiaire :

- 1 Compression à 4 mm de déplacement
- 2 Attente $t_w = 0, 1, 2, 5, 10$ min
- 3 Compression de 4 à 5 mm de déplacement
- 4 Relaxation de compression à 5 mm de déplacement

Relaxation t - t_w

Relaxation
$$rac{t-t_w}{t_w^\mu}$$
 ($\mu=0.28$)

Définition d'une variable de graduation μ du réarrangement topologique sous contrainte

Propriétés mécaniques et rhéologiques des mousses de polymère réticulé

Conclusions

- 2 mécanismes de relaxation après les différents niveaux de compression :
 - relaxation dans la zone linéaire initiale sur un échantillon dépourvu de toute contrainte,
 - relaxation hors zone initiale après flambement initial.
- Relaxation est liée au réarrangement topologique sous contrainte. Définition d'une variable de graduation μ du réarrangement topologique sous contrainte, analogue au vieillissement des systèmes mous

De nouvelles approches pour la caractérisation :

- Caractérisation de la zone linéaire sur une large plage fréquentielle (plus de 10 décades) par TTS
 - > Faible portion de la mousse transmet la contrainte de cisaillement.
 - Le module G' à fréquence nulle décroît avec le diamètre des pores.

De nouvelles approches pour la caractérisation :

- Caractérisation de la zone linéaire sur une large plage fréquentielle (plus de 10 décades) par TTS
- Caractérisation du comportement en hystérésis jusqu'aux grandes déformations par PKM
 - A partir des mesures en contrainte-déformation, il est possible de déterminer la densité des hysterons dans un espace PM.
 - A partir de l'espace PM, il est possible de modéliser le comportement macroscopique en hystérésis.

De nouvelles approches pour la caractérisation :

- Caractérisation de la zone linéaire sur une large plage fréquentielle (plus de 10 décades) par TTS
- Caractérisation du comportement en hystérésis jusqu'aux grandes déformations par PKM
- Caractérisation de la relaxation des contraintes passées
 - 2 mécanismes de relaxation après les différents niveaux de compression : zone linéaire initiale ou réarrangement après flambement.
 - Relaxation lié au réarrangement topologique sous contrainte.

De nouvelles approches pour la caractérisation :

- Caractérisation de la zone linéaire sur une large plage fréquentielle (plus de 10 décades) par TTS
- Caractérisation du comportement en hystérésis jusqu'aux grandes déformations par PKM
- Caractérisation de la relaxation des contraintes passées

Merci de votre attention.