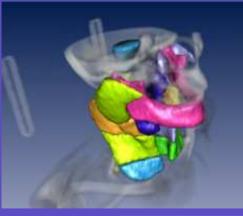


Design and Use of Anatomical Atlases for Radiotherapy

Olivier COMMOWICK

February 14, 2007

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE 

Jury:

- Patrick Clarysse (reviewer) CNRS
- Grégoire Malandain (advisor) INRIA
- Nicholas Ayache INRIA
- Pierre-Yves Bondiau Centre Antoine Lacassagne
- Guido Gerig University of North Carolina
- Vincent Grégoire Université Catholique de Louvain
- Hanna Kafrouni (invited) DOSIsoft S.A

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

Medical Context

- Different cancer treatments
 - Chemotherapy
 - Drugs killing cells in division
 - Surgery
 - Remove physically the tumor
 - Radiotherapy
 - High irradiation killing cells in division
- Treatment of tumors on two regions
 - Brain
 - Head and Neck

DOSI-Soft

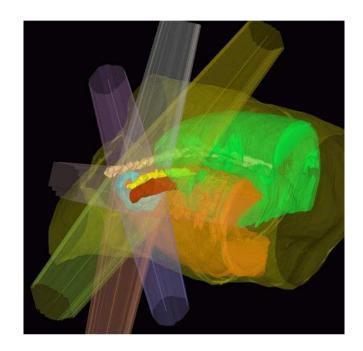
Radiotherapy

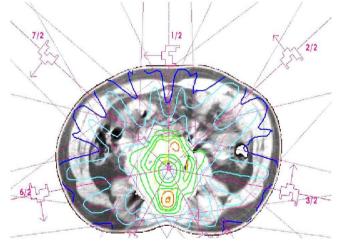
- Radiotherapy principle:
 - Use of high energy irradiation beams
 - Optimize dose on the tumor
 - Control irradiation of critical structures (OAR)

➔ Need for high precision planning

DOSI-%soft

- Irradiation doses computed on each organ
- Compare doses with expected levels
- Requires delineation of structures





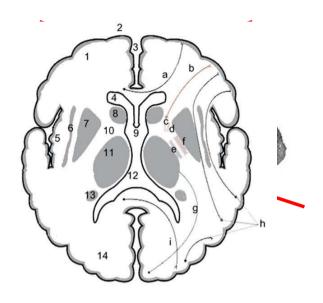
Brain Anatomy

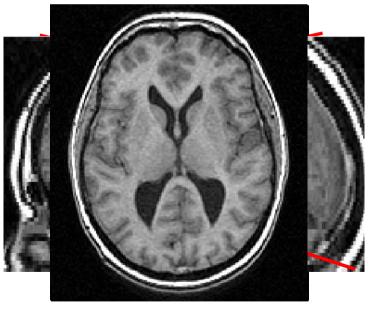
- Many organs at risk
 - Eyes, optic nerves, chiasma
 - Brainstem, cerebellum
 - Grey nuclei
- Different categories [Pontvert, 2004]
 - Very high risk (eyes)

DOSI-Seoft

- High risk (optic nerves, brainstem)
- Medium risk (grey nuclei)

[Pontvert, 2004]: Radiothérapie des tumeurs cérébrales. 2004.



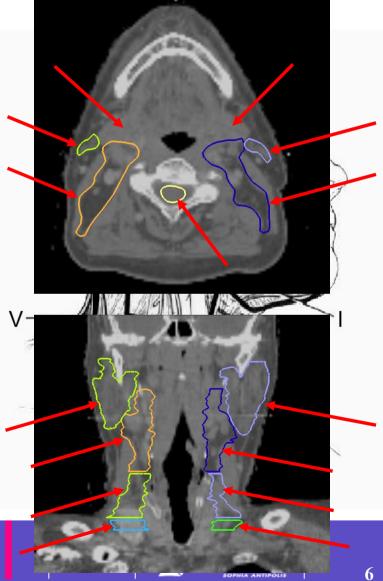


Head and Neck Anatomy

- Structures of interest
 - Lymph nodes areas
 - Separated using visible landmarks
 - Tumor dissemination regions
 - Parotids
 - Spinal cord
 - Sub-mandibular glands

[Grégoire et al., 2003] CT-based delineation of lymph node levels and related CTVs in the node-negative neck : DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiotherapy Oncology, 2003.

DOSI-%-soft



Radiotherapy planning

- Requires an accurate delineation
 - Head and Neck radiotherapy
 - Only CT image acquired, necessary for dosimetry
 - Brain radiotherapy
 - MRI exam often added
 - Better differentiation of soft tissues
- Segmentation done manually
 - Time consuming (2 to 4 hours)
 - Not reproducible
- Objective: provide fast and automatic segmentation tools

Automatic Segmentation for Radiotherapy

- Goal: automatic segmentation of organs at risk
- Available segmentation methods
 - Intensity based (adaptive thresholding, EM)
 - No prior on shape or position
 - Deformable models, level-sets, active contours
 - Possible priors on structures
 - Atlas based segmentation

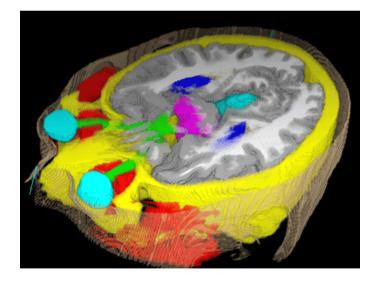
DOSI Sof

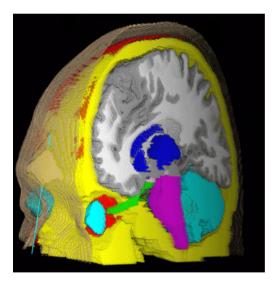
- Atlas: image and its segmentation
- A priori on respective positions and shapes

Increasing prior knowledge

Atlas Construction

- First approach:
 - One image delineated by an expert
 - Brain atlas (from Dr. Pierre-Yves Bondiau [Bondiau, PhD, 2004])
 - must be representative (possible bias)

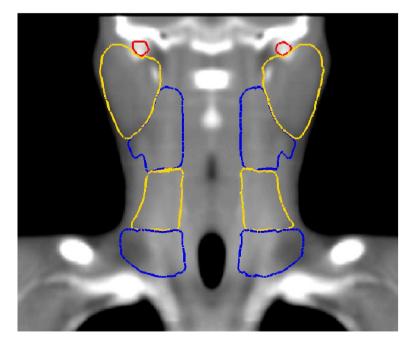


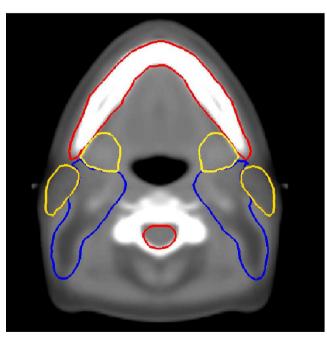


[Bondiau, PhD, 2004]: Mise en oeuvre et évaluation d'outils de fusion d'image en radiothérapie. November 2004.

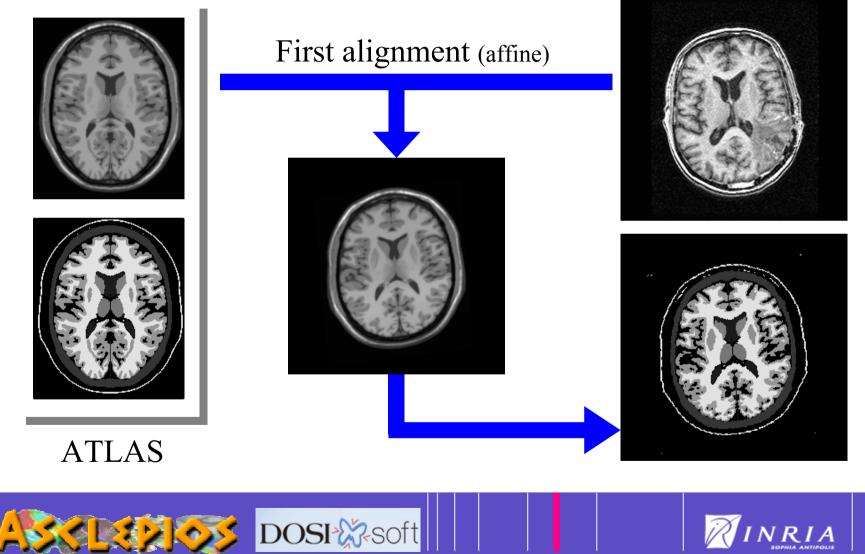
Atlas Construction

- Second approach:
 - Average image from a dataset of images
 - Head and neck atlas
 - Images from Pr. Vincent Grégoire (UCL)

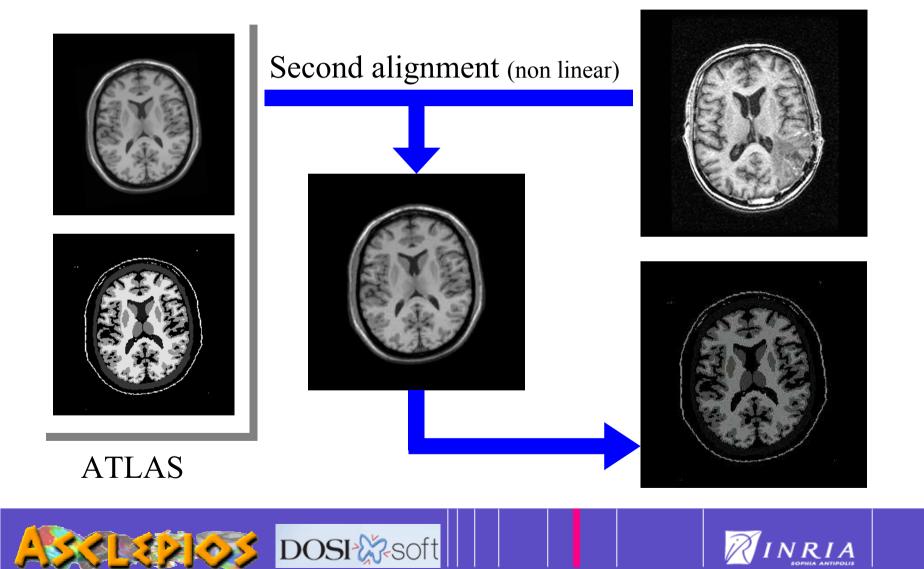




Atlas-based Segmentation Principle



Atlas-based Segmentation Principle



Non linear transformations

- Tradeoff in non linear registration
 - Able to handle atlas/subject variability
 - Robust and smooth

DOSI & sof

- Transformations:
 - Parametric
 - Interpolated between control points
 - Arbitrary number of degrees of freedom
 - RBF [Rohde et al., 2003], FFD [Rueckert et al., 1999]
 - Dense
 - One displacement vector per voxel
 - Maximal number of degrees of freedom
 - Pasha [Cachier et al, 2003], ...

Increasing degrees of freedom

[Rohde et al., 2003] The adaptive bases algorithm for intensity based nonrigid image registration.. IEEE TMI, 2003.

[Rueckert et al., 1999] Non Rigid Registration Using Free-Form Deformations: Application to Breast MR Images. TMI, 1999.

[Cachier et al., 2003] Iconic Feature Based Nonrigid Registration : The PASHA Algorithm. CVIU, 2003.

Challenges in Atlas-Based Segmentation

- Goal: Automatic segmentation of critical structures for radiotherapy
- Requirements:
 - Minimal interaction from user
 - Robust to different acquisition protocols
 - Realistic contours in a minimal time
- Key point of the approach: non linear registration
 - Smooth transformation
 - Able to handle atlas/subject variability
 - Robust registration method
 - Method as fast as possible

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

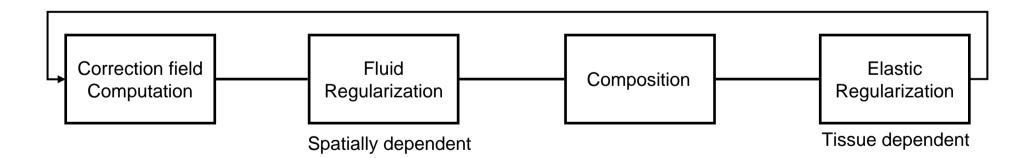
Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
 - Existing Registration Method
 - Incorporating Deformability Statistics in Registration
 - Non Linear Registration with Outlier Rejection
 - Locally affine Registration Framework
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

Existing Dense Non Linear Registration

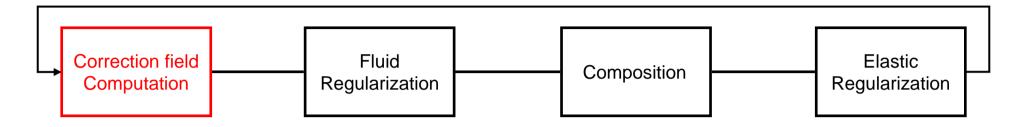
- Method of [Stefanescu et al., 2004]: Runa
 - Spatially inhomogeneous regularization
 - Fluid regularization on highly variable regions
 - More elastic regularization elsewhere

• Iterative process



[Stefanescu et al., 2004]: Grid Powered Nonlinear Image Registration with Locally Adaptive Regularization, MedIA, 2004.

Runa: Correction Field Computation



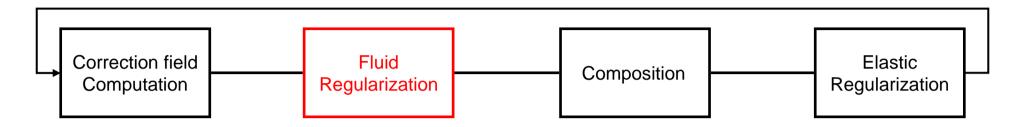
• Computation of correction δT

• Gradient descent on a similarity measure:

$$\delta T = \nabla SSD(R, F \circ T^{l-1}) = (R - F \circ T^{l-1}) \cdot \nabla (F \circ T^{l-1})$$

- SSD: Sum of Squared Differences
- R : reference image
- F : floating image
- T^{l-1} : transformation obtained at iteration l-1

Runa: Fluid Regularization

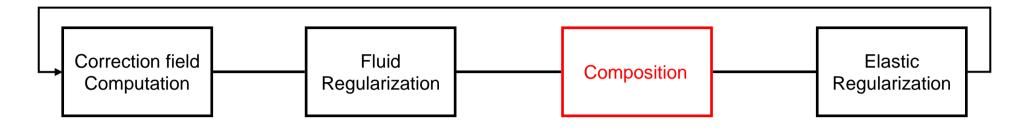


• Regularization of correction field

$$\frac{\partial \delta T}{\partial t}(x) = (1 - k(x))\Delta \delta T(x)$$

- Weighted by a factor $k(x) = f_1(||\nabla R||)$
 - Spatially dependent
 - Less confidence (more regularization) in homogeneous regions

Runa: Composition of Correction

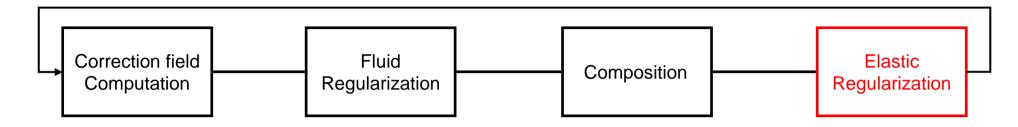


• Regularized correction field: $\delta \widetilde{T}$

• Composition with transformation at iteration l-1

 $T^{l} \leftarrow T^{l-1} \circ \delta \widetilde{T}$

Runa: Elastic Regularization

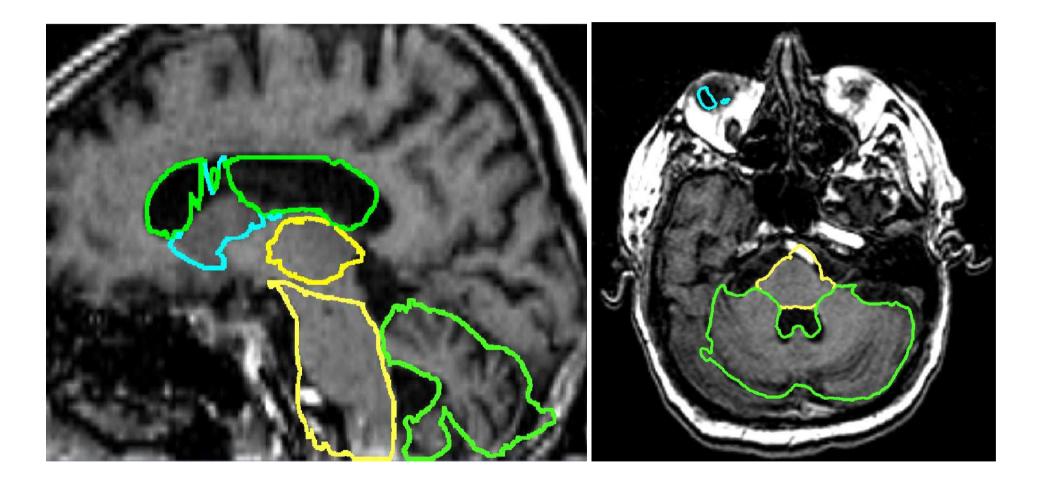


• Regularization of the transformation

$$\frac{\partial T^l}{\partial t} = \nabla . (D(x) \nabla T^l)$$

- Weighted by $D(x) = f_2(i(x))$
 - Scalar, tissue dependent i(x), heuristic model
 - White and grey matter: high regularization
 - CSF: low regularization

Segmentation Result (Runa)



Summary

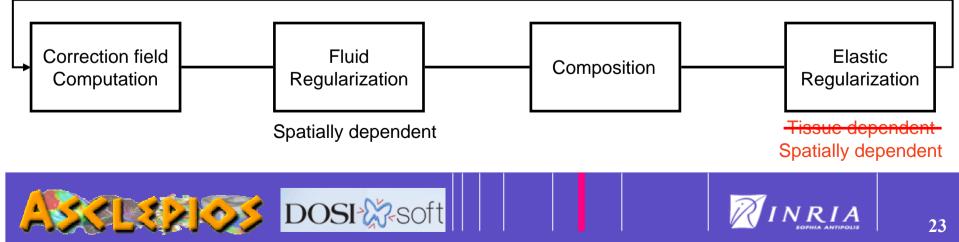
Advantages

- Precise deformations
- Inhomogeneous regularization

• Drawbacks

- Noisy contours (not realistic)
- Registration parameters
 - Need to be set for each patient
 - Need to be set for each acquisition protocol

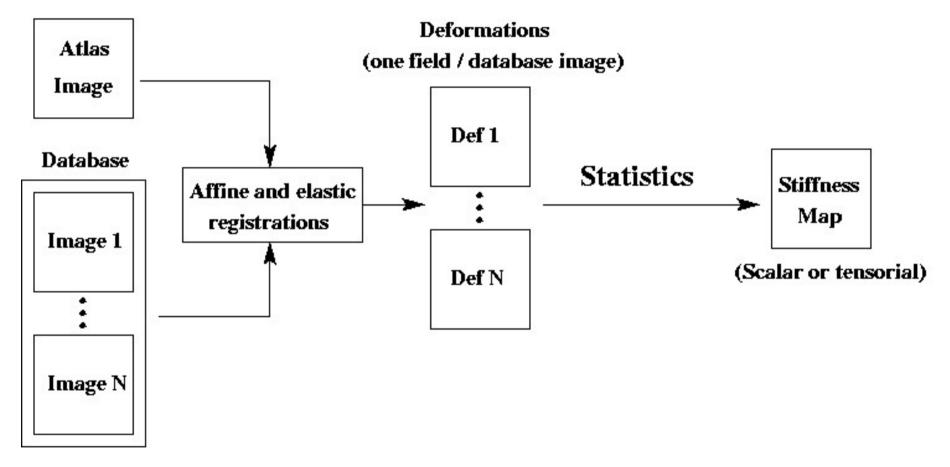
Solution



Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
 - Existing Registration Method
 - Incorporating Deformability Statistics in Registration
 - Non Linear Registration with Outlier Rejection
 - Locally affine Registration Framework
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

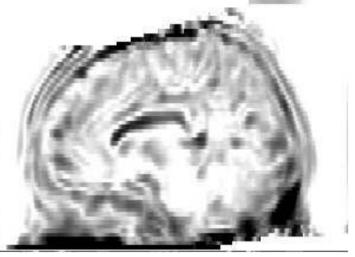
Statistics Computation Pipeline



[Rueckert et al., 2003]: Automatic Construction of 3D Statistical Deformation Models of the Brain using Non Rigid Registration. IEEE TMI, 2003.

Scalar Mean Deformability

- Isotropic measure of deformability
- Determinant of the Jacobian matrix $\left|J_{i}(x)\right|$
 - $|J_i(x)| > 1$: local dilation
 - $|J_i(x)| < 1$: local contraction



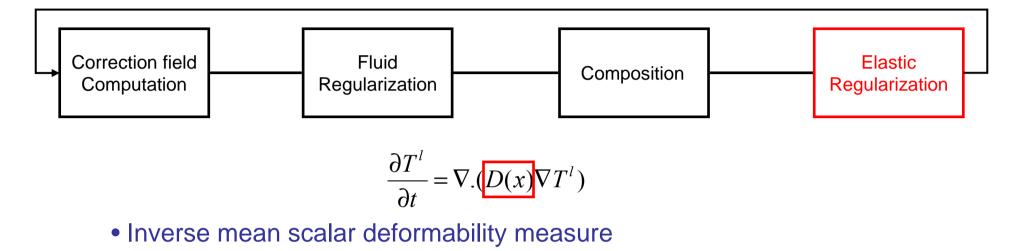
HMetantiS Sadala S Stififees S/Mapp

• Mean deformability:

DOSI-Soft

$$\overline{Def}(x) = \frac{1}{N} \sum_{i} \operatorname{abs}(\log(|J_i(x)|))$$

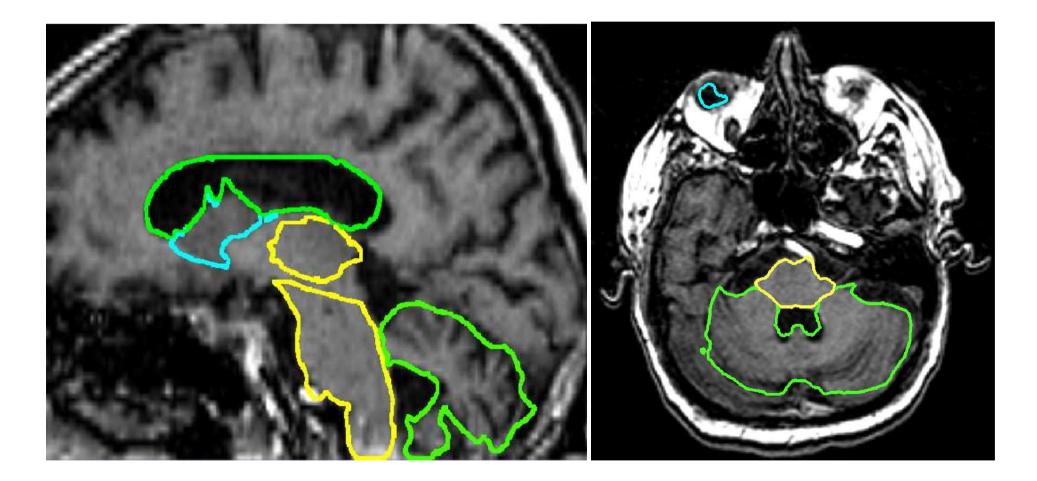
Incorporating Statistics in Regularization



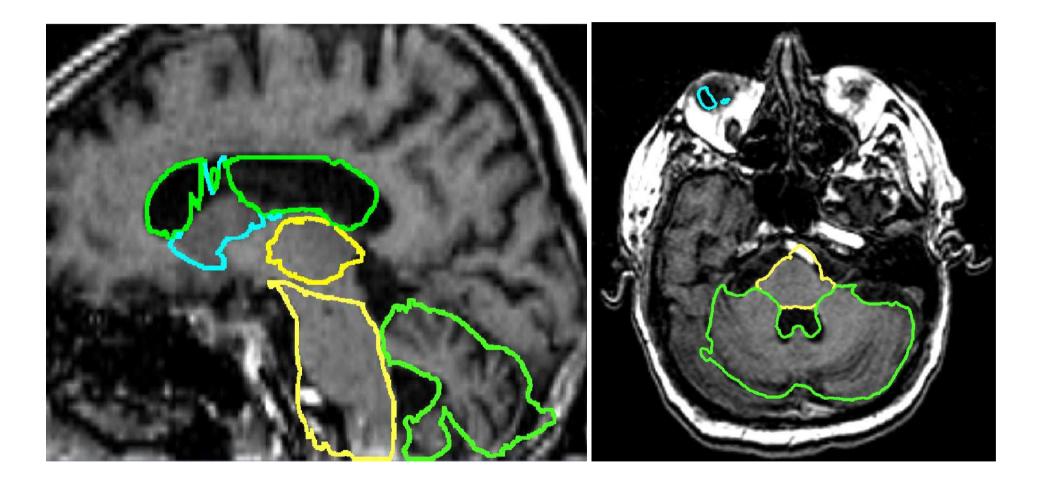
$$D(x) = \left(1 + \lambda \overline{Def}(x)\right)^{-1}$$

- Values of D(x)
 - Between 0 and 1
 - Close to 1: High regularization
 - Close to 0: Low regularization

Segmentation Result (Runa, Scalar Statistics)



Segmentation Result (Runa)



Tensor-based Mean Deformability

• Based on tensor derived from the Jacobian matrix

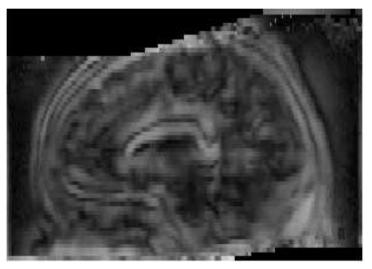
 $W_i(x) = J_i^T(x) J_i(x)$

• Mean deformability

DOSI-Second

$$\overline{\Sigma}(x) = \frac{1}{N} \sum_{i} \operatorname{abs}(\log(W_i(x)))$$

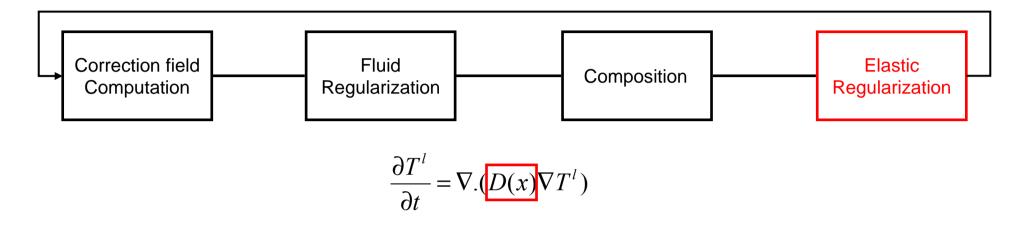
• Quantification of anisotropy in deformability



Mean Tensor-based Map

[Lepore et al., 2006]: Multivariate Statistics of the Jacobian Matrices in Tensor Based Morphometry and their Application to HIV / AIDS. MICCAI, 2006.

Incorporating Statistics in Regularization

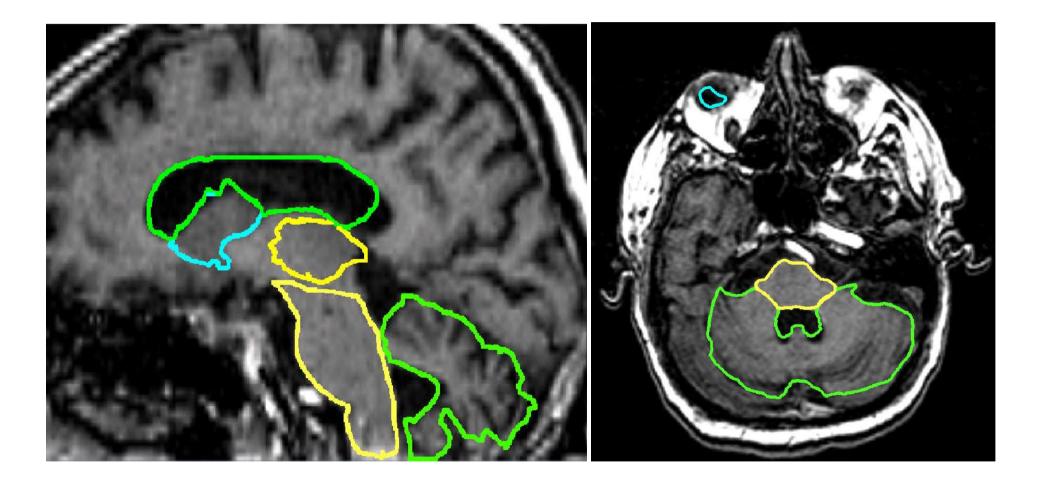


- Inverse mean tensor-based deformability measure
 - Formula analogous to the scalar case

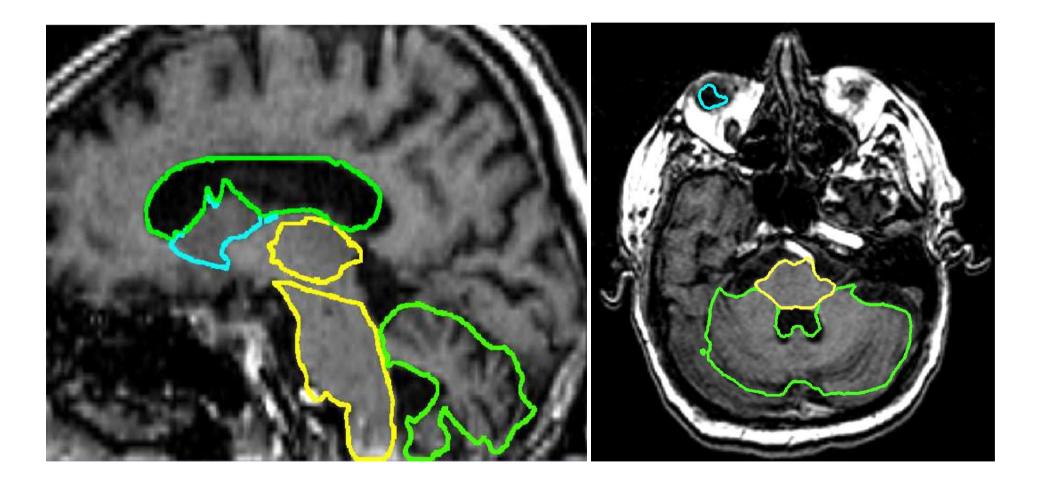
ASSENT DOSI & soft

$$D(x) = (Id + \lambda \overline{\Sigma}(x))^{-1}$$

Segmentation Result (Runa, Tensor Based Statistics)



Segmentation Result (Runa, Scalar Statistics)



Summary

- Introduction of deformability statistics [Commowick et al., 2005]
 - Reduced dependency to registration parameters
 - Smoother and more precise contours
- Problems:
 - Time consuming: around 40 minutes
 - Still regularity problems (eyes)
 - Parameters to set for each acquisition protocol

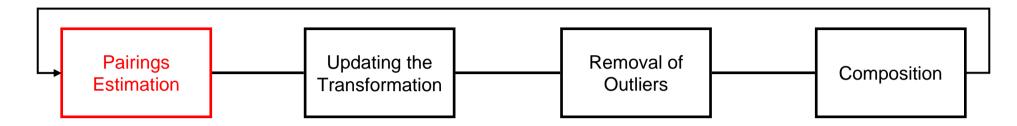
→ Objective: Introduce more robustness and regularity

[Commowick et al., 2005]: Incorporating Statistical Measures of Anatomical Variability in Atlas-to-Subject Registration for Conformal Brain Radiotherapy. MICCAI, October 2005.

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
 - Existing Registration Method
 - Incorporating Deformability Statistics in Registration
 - Non Linear Registration with Outlier Rejection
 - Locally affine Registration Framework
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

Non Linear Registration with Outlier Rejection



• Block-Matching method [Ourselin et al., 2000]

- Move blocks in a neighborhood
- Pairing: chosen according to a similarity value
- Pairings Estimation (Block-Matching [Ourselin et al., 2000])
 - Sparse pairings field *C*

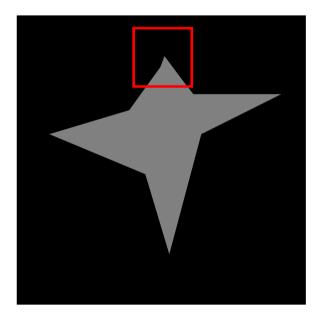
DOSI-Second

Associated to confidence field k: similarity value of each pairing

[Ourselin et al., 2000]: A General Framework to Improve Robustness of Rigid Registration of Medical Images. MICCAI, 2000.

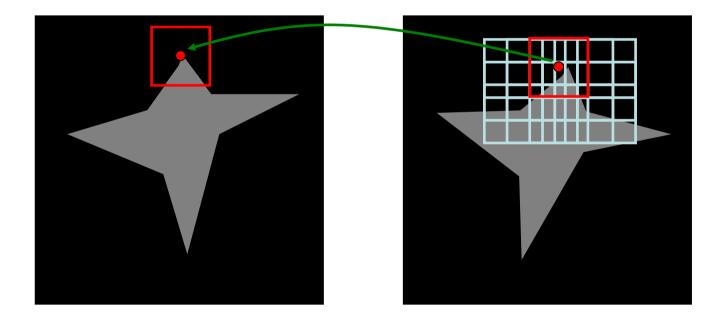
"Block Matching" Technique

1. Consider regularly sampled sub-images (or "blocks")



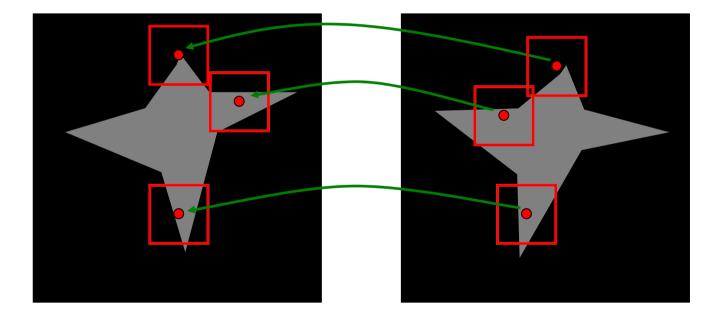
"Block Matching" Technique

2. Search the "most similar" block: gives point to point correspondence

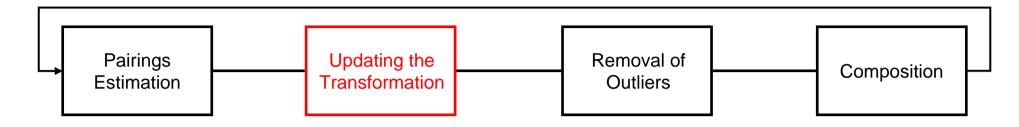


"Block Matching" Technique

3. Obtain pairings sparse field from $(x_v, y_v), C(x_v) = y_v - x_v$



Baloo: Updating the Transformation

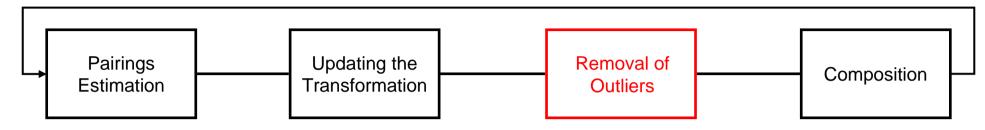


- Transformation correction δT estimation
- Interpolated from pairings weighted by confidence field

$$\delta T = \frac{G_{\sigma} * kC}{G_{\sigma} * k}$$

• G_{σ} : Gaussian kernel of variance σ

Baloo: Removal of Outliers



• Comparison between pairings and interpolated corrections

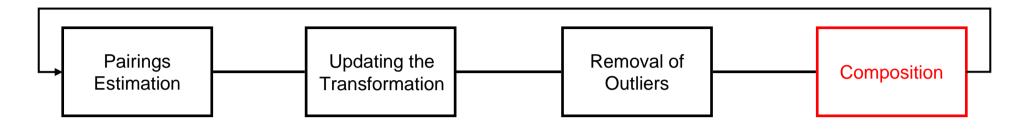
• Outlier criterion $||C(x_v) - \delta T(x_v)|| > s$

DOSI-Soft

• *s* depends on mean *e* and variance of errors σ_e

$$e = \frac{1}{N} \sum_{v} \|C(x_{v}) - \delta T^{l}(x_{v})\| \qquad \sigma_{e}^{2} = \frac{1}{N} \sum_{v} \left(e - \|C(x_{v}) - \delta T^{l}(x_{v})\|\right)^{2}$$

Baloo: Composition of Corrections



• $\delta \widetilde{T}$: correction interpolated from pairings minus outliers

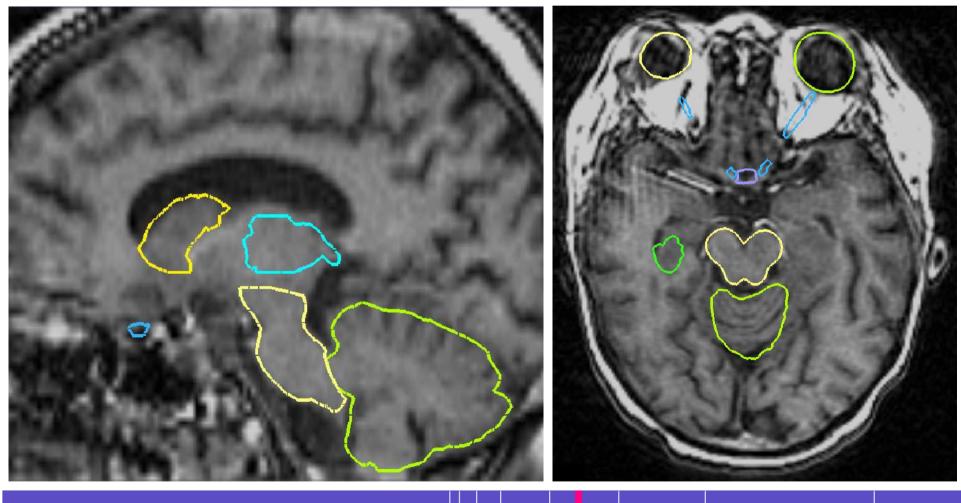
• Composition of current transformation T^{l-1}

DOSI Soft

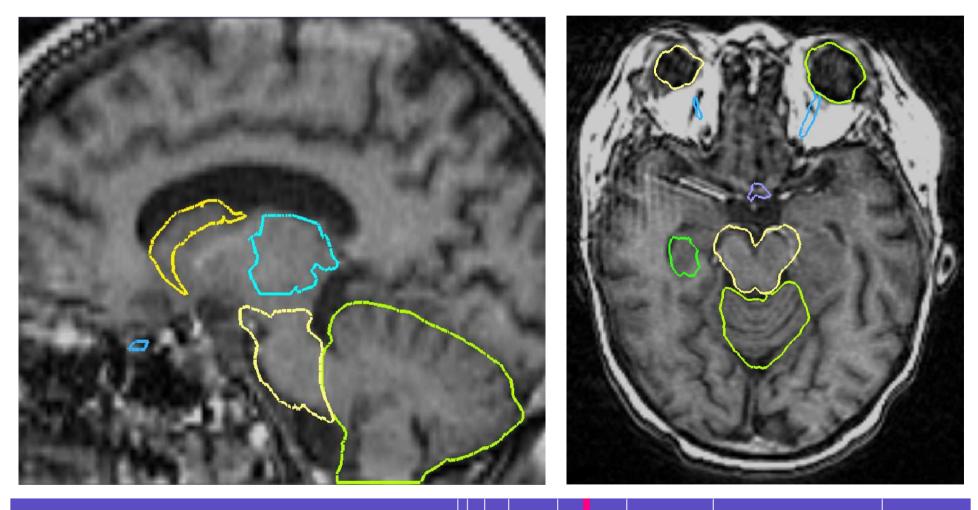
$$T^{l-1}: T^l \leftarrow T^{l-1} \circ \delta \widetilde{T}$$

NRIA

Segmentation Result (Baloo)



Segmentation Result (Runa)



Summary

- Dense Registration with Outlier Rejection (Baloo)
 - Faster than classical dense registration (20 minutes)
 - Smooth transformation
 - Precise contours
- Problems left:
 - Still depends on images quality (eyes)
 - Larger slice thickness
- Objectives
 - More robustness by constraining the transformation
 - Registration only on regions of interest

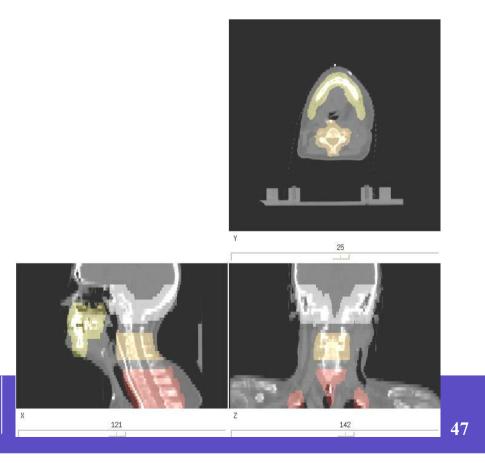
Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
 - Existing Registration Method
 - Incorporating Deformability Statistics in Registration
 - Non Linear Registration with Outlier Rejection
 - Locally Affine Registration Framework
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

Locally Affine Framework

- Principle:
 - Register only anatomic areas of interest
 - Interpolate a global transformation from all local transformations





Locally Affine Transformation

- Local transformation
 - Affine transformation A_i associated to each region R_i
 - Weight function $w_i(x)$
 - Relative influence of each region at point x

$$w_i(x) = \frac{1}{1 + \lambda d(x, R_i)}$$

- Global transformation:
 - Solution 1: Weighted interpolation of affine components

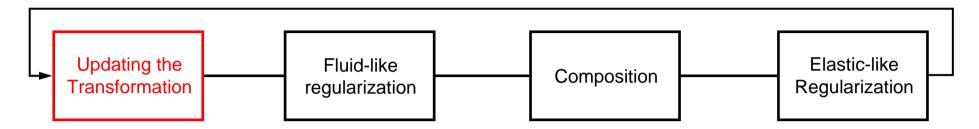
$$T(x) = \sum_{i=1}^{N} w_i(x) A_i(x)$$

• Solution 2: Using an ordinary differential equation [Arsigny, PhD, 2006]

[Little et al., 1997]: Deformations Incorporating Rigid Structures. CVIU, 1997.

[Arsigny, PhD, 2006]: Processing Data in Lie Groups: An Algebraic Approach. Application to Non-Linear Registration and Diffusion Tensor MRI. November 2006.

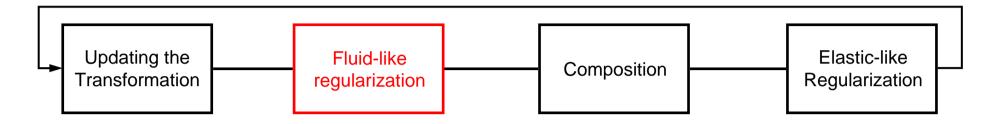
LAF: Updating the Transformation



• Local affine correction δA_i estimation

- Block-Matching algorithm
- Outlier rejection in the estimation process
- Least Trimmed Squares Weighted Estimation
 - Weighted by similarity measure values
 - Weighted by $w_i(x_v)$

LAF: Fluid-like Regularization

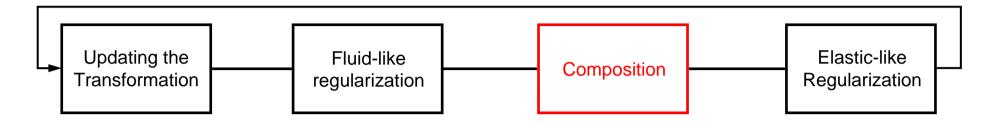


• Fluid-like regularization of local transformation corrections

• Gradient descent on
$$\operatorname{Reg}(\delta A_i, w_i) = \sum_{i=1}^{N} \sum_{j \neq i} p_{i,j} \left\| \log(\delta A_i) - \log(\delta A_j) \right\|^2$$

- Log-Euclidean polyaffine framework
 - $log(A_i)$ belongs to a vector space
 - Generalization of usual regularization energies

LAF: Composition of Corrections

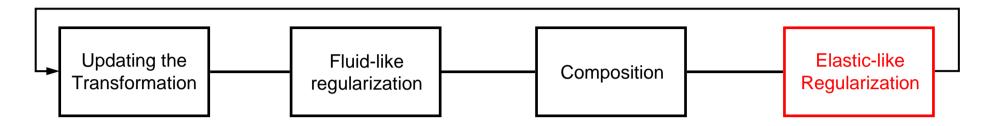


• Regularized corrections: $\delta \widetilde{A}_i$

• Composition of corrections with the current transformation

$$A_i^l = A_i^{l-1} \circ \delta \widetilde{A}_i$$

LAF: Elastic-like Regularization



Gradient descent on

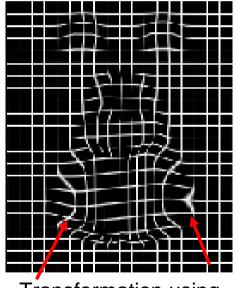
$$\operatorname{Reg}(A_{i}^{l}, w_{i}) = \sum_{i=1}^{N} \sum_{j \neq i} p_{i,j} \left\| \log(A_{i}^{l}) - \log(A_{j}^{l}) \right\|^{2}$$

- Similar to fluid-like regularization
 - Regularization on transformations A_i^l

Locally Affine Registration

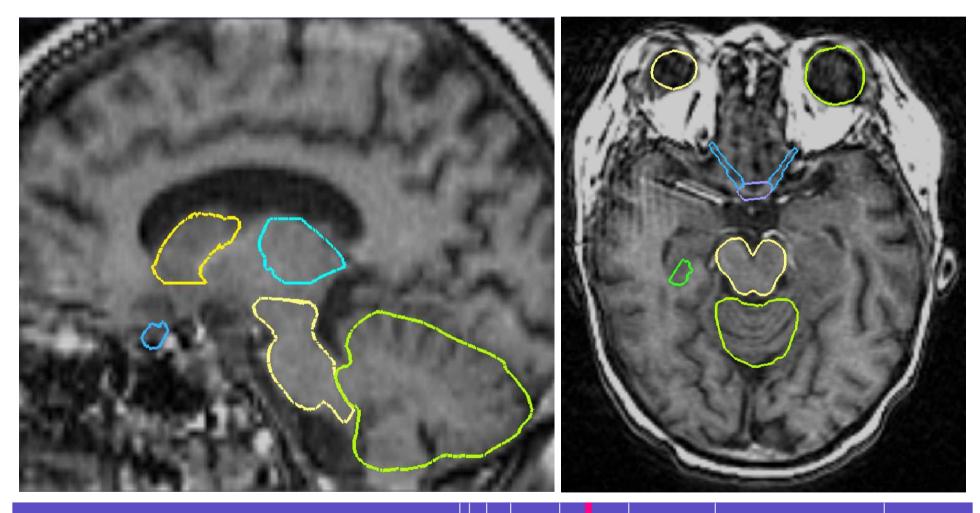
- Final global transformation computation
 - Solution 1 (weighted interpolation): Fast but not always invertible
 - Solution 2 (polyaffine): Slower but always invertible



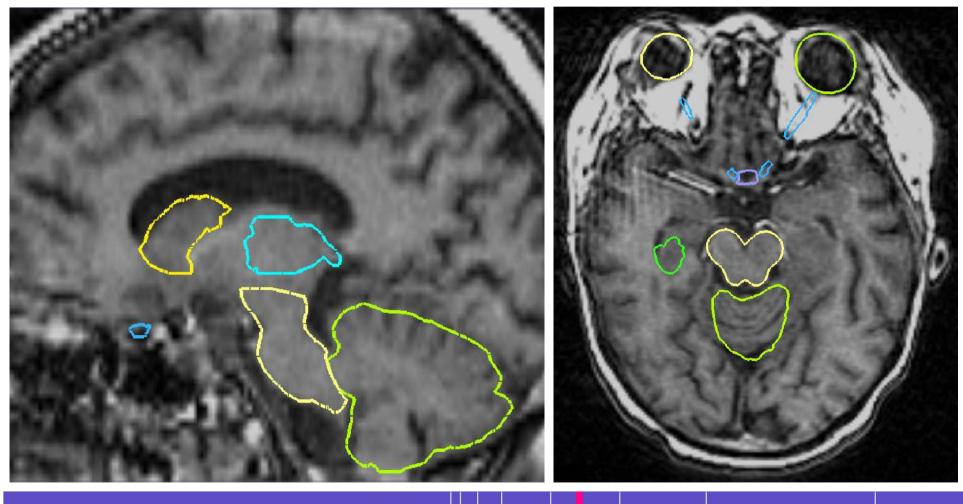


Transformation using solution 2

Segmentation Result (Locally Affine)



Segmentation Result (Baloo)



Conclusion

• Locally Affine Registration [Commowick et al., 2006a], [Commowick et al., 2006b]

- Smooth transformation
- Robust registration
 - One parameter set for all tested acquisition protocols
- Fast computation time (10 minutes)
- Registration method able to recover large displacements
 - Ideal for articulated structures (head and neck)

[Commowick et al., 2006a]: An Efficient Locally Affine Framework for the Registration of Anatomical Structures. ISBI, 2006.

[Commowick et al., 2006b]: An Efficient Locally Affine Framework for the Smooth Registration of Anatomical Structures. Medical Image Analysis, 2006. *Submitted.*

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

Evaluation Methodology

- Three evaluation methods
 - Visual inspection
 - Semi-quantitative validation
 - Visual inspection by a clinician
 - Graduation between 0 and 5
 - Quantitative validation
 - Experts manual segmentations
 - Two steps:

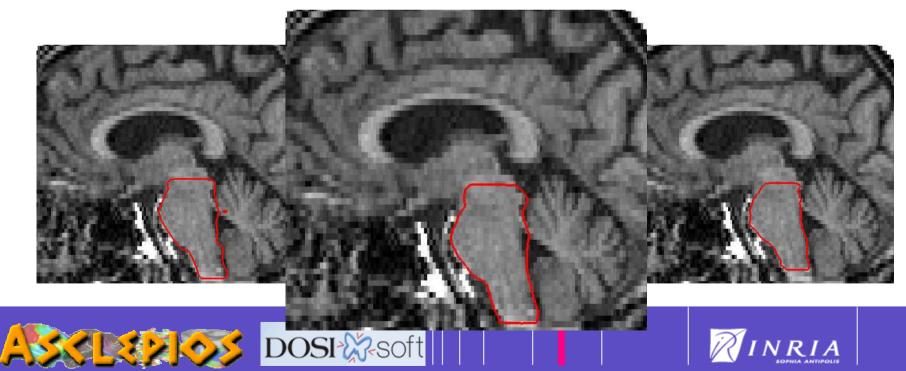
DOSI Sof

- Ground truth computation using STAPLE [Warfield et al., 2004]
- A posteriori computation of sensitivity/specificity

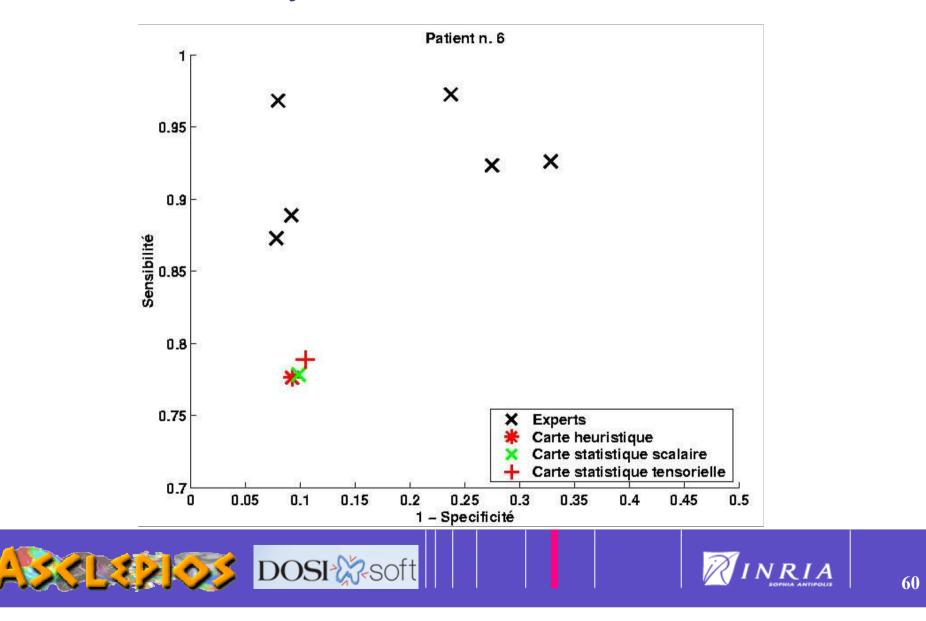
[Warfield et al., 2004]: Simultaneous Truth and Performance Level Estimation (STAPLE): an Algorithm for the Validation of Image Segmentation, IEEE TMI, 2004.

Brain Evaluation

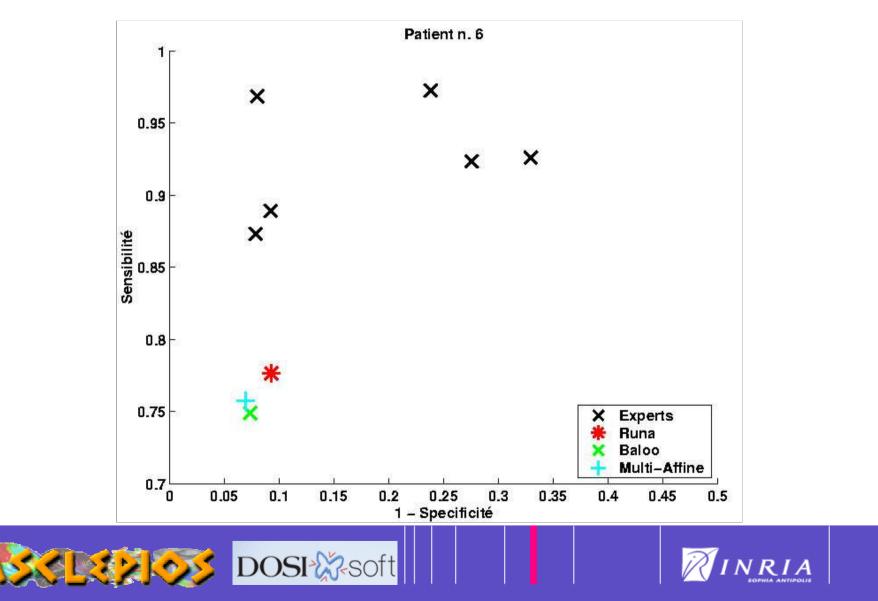
- Database of MRI from CAL Nice (Dr. P.-Y. Bondiau)
 - 2mm slice thickness
- Use of manual expert segmentations
 - Brainstem: 7 experts, 6 patients



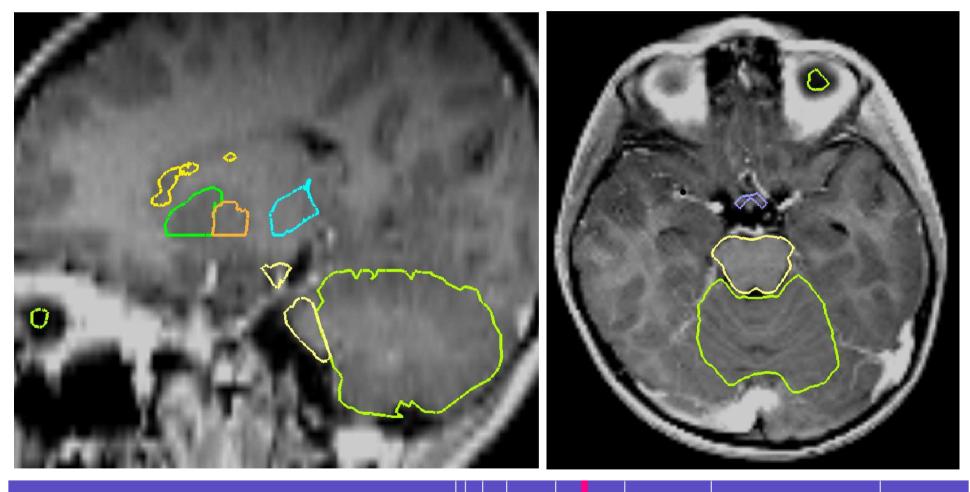
Quantitative Evaluation (I): Introduction of Deformability Statistics



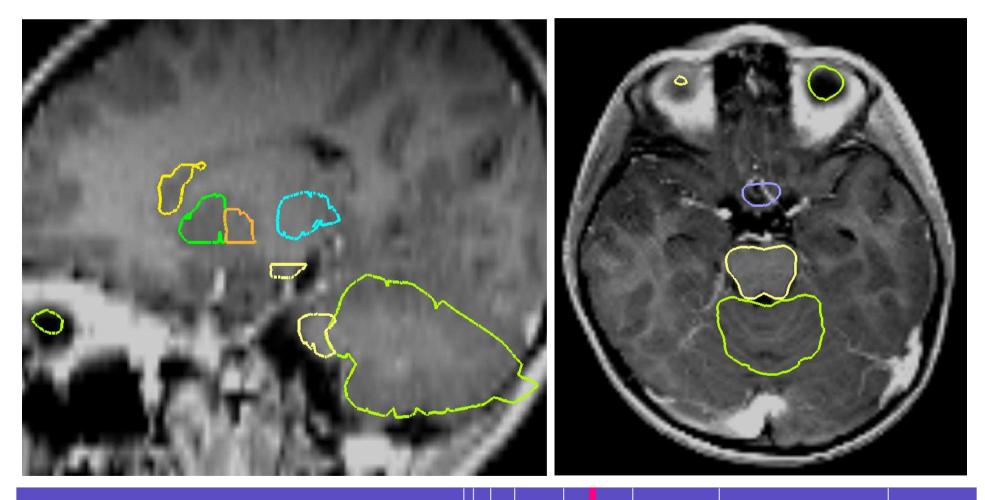
Quantitative Evaluation (II): Runa, Baloo, LAF



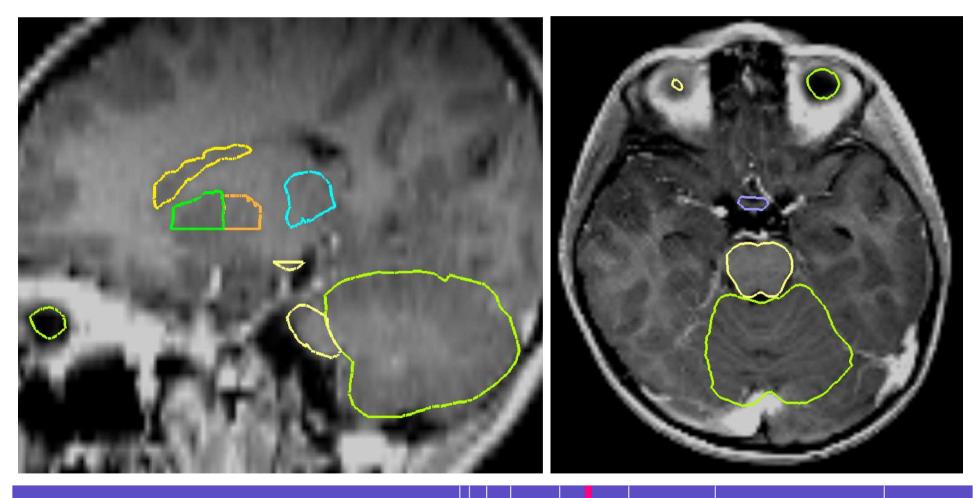
Evaluation in Clinical Conditions (Runa)



Evaluation in Clinical Conditions (Baloo)



Evaluation in Clinical Conditions (LAF)

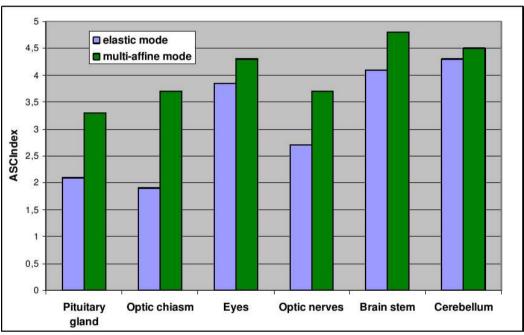


Semi-Quantitative Evaluation in Clinical Conditions

- Evaluation in clinical conditions [Isambert et al., 2005]
 - Done at Institut Gustave Roussy

50 22 055

In the frame of MAESTRO European project



[Isambert et al., 2005]: Requirements for the use of an atlas-based automatic segmentation for delineation of Organs at Risk (OAR) in conformal radiotherapy (CRT): quality assurance (QA) and preliminary results for 22 adult patients with primary brain tumors. ESTRO, 2005.

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
 - Atlas Construction Method
 - Atlas Evaluation
 - Results

Conclusion and Perspectives

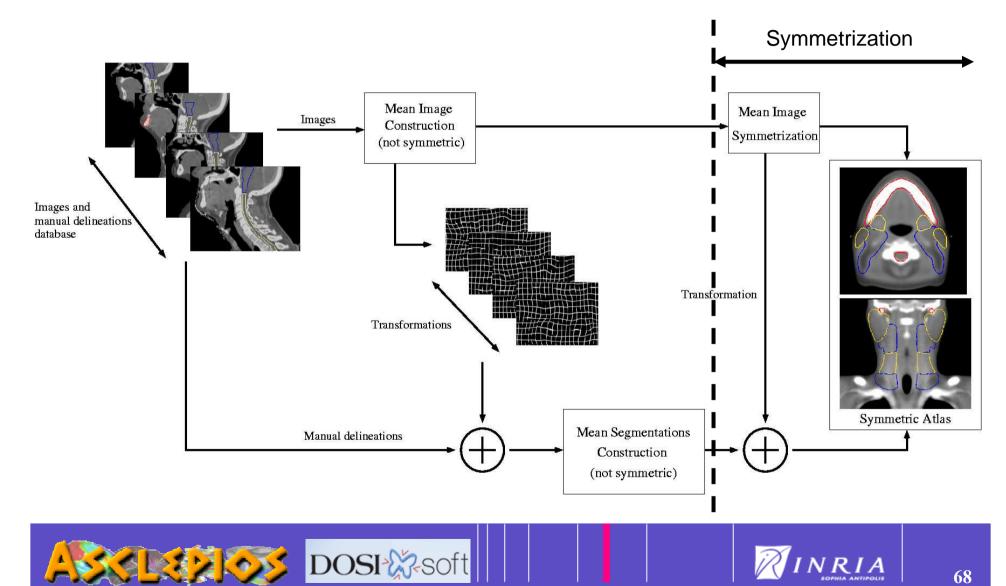
Head and Neck Atlas Construction

Atlas construction

- From a dataset of delineated images
- Needs to be representative of all patients
 - Symmetric atlas construction method
- Other possible method: [Grabner et al., 2006]
- Three steps construction method
 - Mean image construction
 - Mean segmentations
 - Atlas symmetrization

[Grabner et al., 2006]: Symmetric Atlasing and Model Based Segmentation: an Application to the Hippocampus in Older Adults. MICCAI, 2006.

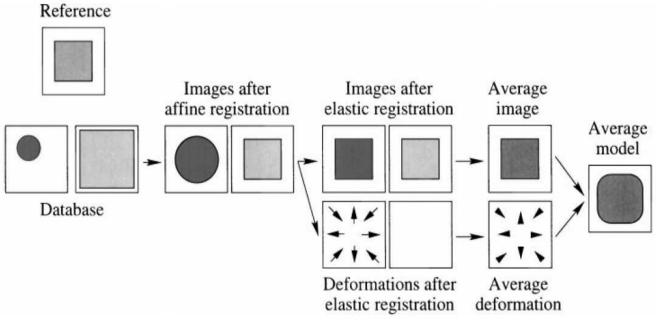
Atlas Construction Method



68

Mean Image Construction

- Unbiased atlas construction [Guimond et al., 2000]:
 - Iterate the following process



• Take the average model as new reference image

[Guimond et al., 2000]: Average Brain Models: A Convergence Study, CVIU, 2000.

Mean Segmentations

- One transformation for each patient
 - All segmentations in the mean image referential
- Mean segmentation using STAPLE [Warfield et al., 2004]:
 - Estimation of mean segmentations
 - Computation of performance parameters

- Probability maps for each class (including background)
 - A posteriori classification into structures

DOSI Sof

[Warfield et al., 2004]: Simultaneous Truth and Performance Level Estimation (STAPLE): an Algorithm for the Validation of Image Segmentation, IEEE TMI, 2004

Atlas Symmetrization

- Method of [Prima et al., 2002]
 - Obtain transformation R bringing I on its mid-sagittal plane
 - Principle: registration between I and the mirrored image $I \circ S$
 - *R* satisfies the relation $I \circ R = I \circ R \circ S$
- Mean symmetric image obtained from \widetilde{M}

$$\widetilde{M}_{S} = \frac{\widetilde{M} \circ R + \widetilde{M} \circ R \circ S}{2}$$

- Mean symmetric segmentations obtained in two steps
 - Symmetrization of the probability maps from STAPLE
 - A posteriori classification into structures

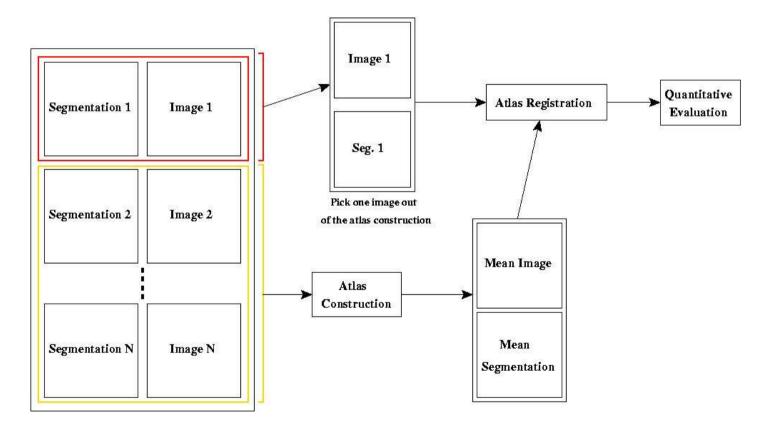
[Prima et al., 2002]: Computation of the Mid-Sagittal Plane in 3D Brain Images. IEEE TMI, 2002.

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
 - Atlas Construction Method
 - Atlas Evaluation Strategy
 - Results
- Conclusion and Perspectives

Atlas Evaluation Strategy

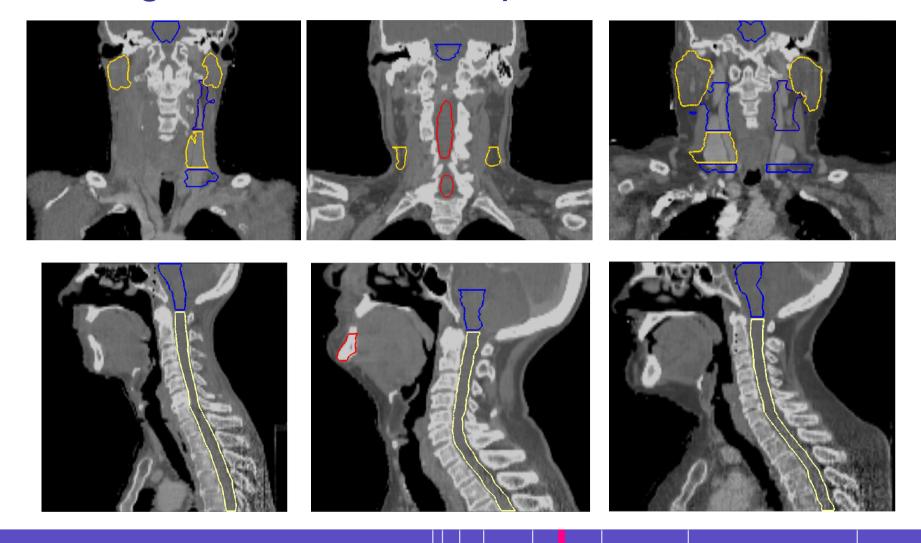
• Leave-One-Out method



Evaluation protocol

- Image database:
 - 45 patient CT-scan images (Pr. V. Grégoire, MAESTRO)
 - Different tumors shapes at different localizations
 - Small tumors not deforming the surrounding anatomy (N0 grade)
 - Various patient position and anatomy
- Three registration methods compared:
 - M₁: Block-Matching based dense registration method
 - M₂: Locally-affine registration method
 - M₃: M₂ followed by M₁

Image Database Examples



Road Map

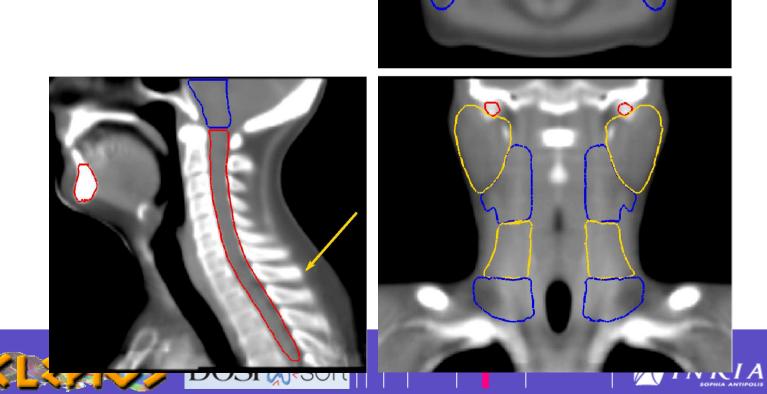
- Introduction
- Towards a Better Control of Registration Transformations
- Atlas-Based Brain Segmentation

• Head and Neck Atlas-Based Segmentation

- Atlas Construction Method
- Atlas Evaluation Strategy
- Results

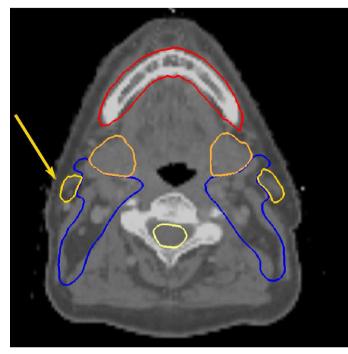
Conclusion and Perspectives

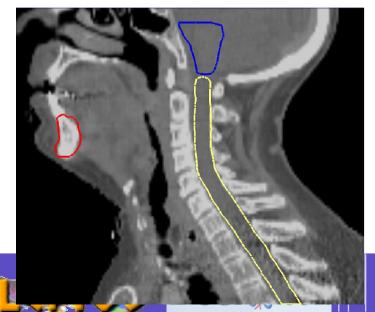
$M_3 N M t_A H = 0$

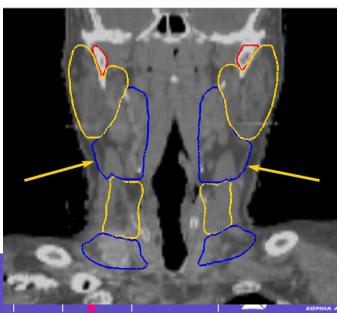


Qualitative Results

MgaAtlas Segmentation



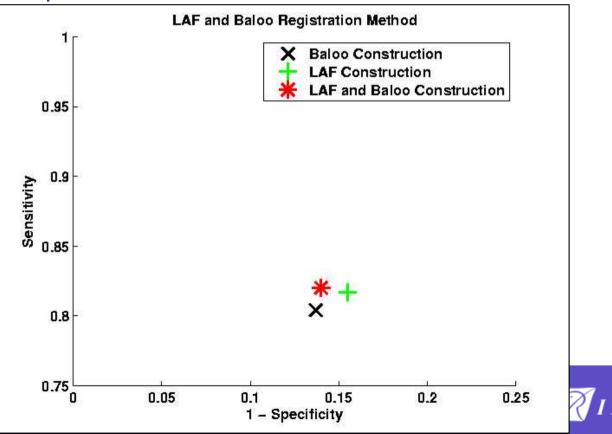




Α

Quantitative Atlas Evaluation

- Use of Leave-One-Out method:
 - Mean over 12 patients completely delineated (13 structures)
- M₃ Atlas performs better for atlas construction



Conclusion

- Symmetric atlas construction method
 - From existing techniques
- Atlas Evaluation method [Commowick et al., 2006c]
 - Registration method to build the atlas
 - Registration method to register the atlas
- Application to Head and Neck
 - Hierarchical registration (M₃): well adapted in this context
 - Promising results
 - Many perspectives on atlas construction

[Commowick et al., 2006c]: Evaluation of Atlas Construction Strategies in the Context of Radiotherapy Planning. SA2PM Workshop, held in conjunction with MICCAI. 2006.

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
- Conclusion and Perspectives

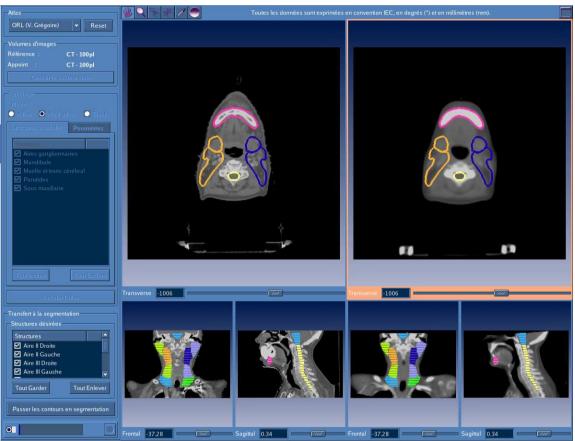
Contributions

- Registration
 - Introduction of deformability statistics in registration
 - Dense registration with outlier rejection
 - Locally affine framework
 - Good results without changing parameters
- Head and neck atlas
 - Atlas construction method from a dataset of CT images
 - Evaluation via leave one out method
- Other contributions (not presented here)
 - Taking pathology into account in registration process
 - Ad-Hoc method for optic nerves segmentation

Software Integration

- Integration in DOSIsoft radiotherapy planning system
 - Atlas-based segmentation module
 - Both brain and head and neck atlases
- Validation in clinical conditions at IGR
 - MAESTRO European project

ASSESSION DOSI & soft



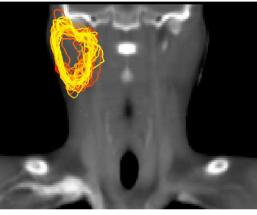
Discussion on Head and Neck Atlas

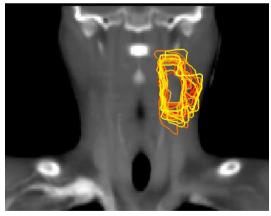
- Problem: Over-segmentation of the lymph nodes areas
- First reason: inside the atlas
 - Contours dispersion
 - Large inter-patient variation
 - STAPLE for generating mean segmentations
 - Influence of the background class
- Possible solutions

DOSI & sof

- Cluster dataset in several groups
- Use of new methods [Warfield et al., 2006]
 - No background class

[Warfield et al., 2006]: Validation of Image Segmentation by Estimating Rater Bias and Variance. MICCAI 2006.





Discussion on Head and Neck Atlas

- Second reason: when registering the atlas
 - Large atlas/patient differences
 - Corpulence
 - Neck flexion

➔ Results in local discrepancies

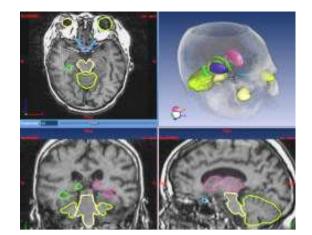
- Possible solutions
 - Build several atlases from one database
 - Clustering of the dataset
 - Choose the closest image among the dataset images
 - Definition of distance

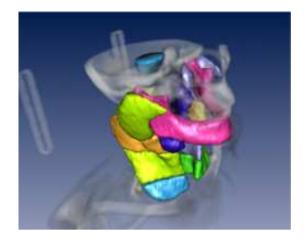
Perspectives

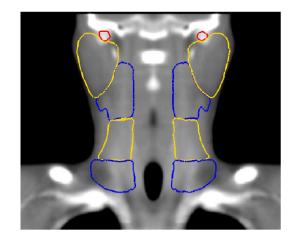
- Registration methods
 - Computation of statistics of deformability
 - Several registration methods to build unbiased statistics
 - Locally affine framework
 - Refining local affine regions
- Study of robustness of registration methods
 - With respect to registration parameters
 - Other type of validation
- Measure of quality of registration
 - Based only on images
 - Is a region well registered or not ?

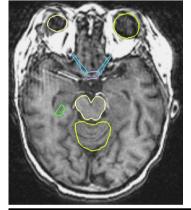
Perspectives

- Further validation
 - on more structures and more patients
 - Other quantitative measures
 - Fully quantitative validation in clinical conditions
- Taking into account pathology
 - Model the deformation caused by the tumor









Questions

