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Medical Context

• Different cancer treatments
• Chemotherapy

– Drugs killing cells in division
• Surgery

– Remove physically the tumor

• Radiotherapy
– High irradiation killing cells in division

• Treatment of tumors on two regions
• Brain
• Head and Neck
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Radiotherapy

• Radiotherapy principle:
• Use of high energy irradiation beams 
• Optimize dose on the tumor
• Control irradiation of critical structures 

(OAR) 

� Need for high precision planning
• Irradiation doses computed on each organ
• Compare doses with expected levels

• Requires delineation of structures
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Brain Anatomy

• Many organs at risk
• Eyes, optic nerves, chiasma

• Brainstem, cerebellum
• Grey nuclei

• Different categories [Pontvert, 2004]
• Very high risk (eyes)
• High risk (optic nerves, brainstem)

• Medium risk (grey nuclei)

[Pontvert, 2004]: Radiothérapie des tumeurs cérébrale s. 2004.



6

6

Head and Neck Anatomy

• Structures of interest
• Lymph nodes areas

– Separated using visible 
landmarks

– Tumor dissemination regions
• Parotids

• Spinal cord
• Sub-mandibular glands

[Grégoire et al., 2003] CT-based delineation of lymp h node levels 
and related CTVs in the node-negative neck : DAHANCA , EORTC, 
GORTEC, NCIC, RTOG consensus guidelines. Radiothera py 
Oncology, 2003.
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Radiotherapy planning

• Requires an accurate delineation
• Head and Neck radiotherapy

– Only CT image acquired, necessary for dosimetry
• Brain radiotherapy

– MRI exam often added

– Better differentiation of soft tissues

• Segmentation done manually
• Time consuming (2 to 4 hours)
• Not reproducible

• Objective: provide fast and automatic segmentation tools
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Automatic Segmentation for Radiotherapy

• Goal: automatic segmentation of organs at risk

• Available segmentation methods
• Intensity based (adaptive thresholding, EM)

– No prior on shape or position

• Deformable models, level-sets, active contours
– Possible priors on structures

• Atlas based segmentation
– Atlas: image and its segmentation
– A priori on respective positions and shapes

Increasing prior 
knowledge
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Atlas Construction

• First approach:
• One image delineated by an expert

– Brain atlas (from Dr. Pierre-Yves Bondiau [Bondiau, PhD, 2004])
– must be representative (possible bias)

[Bondiau, PhD, 2004]: Mise en oeuvre et évaluation d' outils de fusion d'image en radiothérapie. November 2 004.
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Atlas Construction

• Second approach:
• Average image from a dataset of images

• Head and neck atlas
– Images from Pr. Vincent Grégoire (UCL)
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Patient

Atlas-based Segmentation Principle

ATLAS

First alignment (affine)
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Patient

Atlas-based Segmentation Principle

ATLAS

Second alignment (non linear)
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Non linear transformations

• Tradeoff in non linear registration
• Able to handle atlas/subject variability
• Robust and smooth

• Transformations:
• Parametric

– Interpolated between control points
– Arbitrary number of degrees of freedom
– RBF [Rohde et al., 2003], FFD [Rueckert et al., 1999]

• Dense
– One displacement vector per voxel
– Maximal number of degrees of freedom
– Pasha [Cachier et al, 2003], …

Increasing 
degrees of 
freedom

[Rohde et al., 2003] The adaptive bases algorithm f or intensity based nonrigid image registration.. IEE E TMI, 2003.

[Rueckert et al., 1999] Non Rigid Registration Using  Free-Form Deformations: Application to Breast MR I mages. TMI, 1999.

[Cachier et al., 2003] Iconic Feature Based Nonrigid Registration : The PASHA Algorithm. CVIU, 2003.



14

14

Challenges in Atlas-Based Segmentation

• Goal: Automatic segmentation of critical structures for radiotherapy

• Requirements:
• Minimal interaction from user
• Robust to different acquisition protocols 

• Realistic contours in a minimal time

• Key point of the approach: non linear registration
• Smooth transformation 
• Able to handle atlas/subject variability

• Robust registration method
• Method as fast as possible
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Existing Dense Non Linear Registration

• Method of [Stefanescu et al., 2004]: Runa
• Spatially inhomogeneous regularization

• Fluid regularization on highly variable regions
• More elastic regularization elsewhere

• Iterative process

Correction field   
Computation

Fluid 
Regularization

Composition
Elastic 

Regularization

[Stefanescu et al., 2004]: Grid Powered Nonlinear Im age Registration with Locally Adaptive Regularizati on, MedIA, 2004.

Spatially dependent Tissue dependent
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Runa: Correction Field Computation

• Computation of correction
• Gradient descent on a similarity measure: 

• SSD: Sum of Squared Differences

• R : reference image
• F : floating image

• : transformation obtained at iteration 

Tδ

Correction field   
Computation

Fluid 
Regularization

Composition
Elastic 

Regularization
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Runa: Fluid Regularization

• Regularization of correction field

• Weighted by a factor
• Spatially dependent
• Less confidence (more regularization) in homogeneous regions

Correction field   
Computation

Fluid 
Regularization

Composition
Elastic 

Regularization
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Runa: Composition of Correction

• Regularized correction field: 

• Composition with transformation at iteration

TTT ll ~1 δo−←

Correction field   
Computation

Fluid 
Regularization

Composition
Elastic 

Regularization

1−l

T
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Runa: Elastic Regularization

• Regularization of the transformation

• Weighted by                            
• Scalar, tissue dependent         , heuristic model

• White and grey matter: high regularization
• CSF: low regularization

Correction field   
Computation

Fluid 
Regularization

Composition
Elastic 

Regularization
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Segmentation Result (Runa)
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Summary

• Advantages
• Precise deformations
• Inhomogeneous regularization

• Drawbacks
• Noisy contours (not realistic)
• Registration parameters 

– Need to be set for each patient
– Need to be set for each acquisition protocol

• Solution

Correction field   
Computation

Fluid 
Regularization

Composition
Elastic 

Regularization

Spatially dependent Tissue dependent
Spatially dependent
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Statistics Computation Pipeline

[Rueckert et al., 2003]: Automatic Construction of 3 D Statistical Deformation Models of the Brain using  Non Rigid 
Registration. IEEE TMI, 2003.
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Scalar Mean Deformability

• Isotropic measure of deformability

• Determinant of the Jacobian matrix
• : local dilation

• : local contraction

• Mean deformability:
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Incorporating Statistics in Regularization

• Inverse mean scalar deformability measure

• Values of 
• Between 0 and 1
• Close to 1: High regularization

• Close to 0: Low regularization
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Segmentation Result (Runa, Scalar 
Statistics)
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Segmentation Result (Runa)
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Tensor-based Mean Deformability

• Based on tensor derived from the Jacobian matrix

• Mean deformability

• Quantification of anisotropy in deformability
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[Lepore et al., 2006]: Multivariate Statistics of th e Jacobian Matrices in Tensor Based Morphometry and t heir Application to 
HIV / AIDS. MICCAI, 2006.
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Incorporating Statistics in Regularization

• Inverse mean tensor-based deformability measure
• Formula analogous to the scalar case
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Segmentation Result (Runa, Tensor Based 
Statistics)



33

33

Segmentation Result (Runa, Scalar 
Statistics)
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Summary

• Introduction of deformability statistics [Commowick et al., 2005]
• Reduced dependency to registration parameters

• Smoother and more precise contours

• Problems:
• Time consuming: around 40 minutes
• Still regularity problems (eyes)
• Parameters to set for each acquisition protocol

� Objective: Introduce more robustness and regularity

[Commowick et al., 2005]: Incorporating Statistical Measures of Anatomical Variability in Atlas-to-Subje ct Registration 
for Conformal Brain Radiotherapy. MICCAI, October 2 005.
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Non Linear Registration with Outlier 
Rejection

• Block-Matching method [Ourselin et al., 2000]
• Move blocks in a neighborhood
• Pairing: chosen according to a similarity value 

• Pairings Estimation (Block-Matching [Ourselin et al., 2000])
• Sparse pairings field
• Associated to confidence field    : similarity value of each pairingk

C

Pairings 
Estimation

Updating the 
Transformation

Removal of 
Outliers

Composition

[Ourselin et al., 2000]: A General Framework to Impr ove Robustness of Rigid Registration of Medical Ima ges. MICCAI, 2000.
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“Block Matching” Technique

1. Consider regularly sampled sub-images (or “blocks”)
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“Block Matching” Technique

2. Search the “most similar” block: gives point to point 
correspondence
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“Block Matching” Technique

3.     Obtain pairings sparse field from vvvvv xyxCyx −=)(),,(
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Baloo: Updating the Transformation

• Transformation correction      estimation

• Interpolated from pairings weighted by confidence field

• : Gaussian kernel of variance
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Pairings 
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Updating the 
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Removal of 
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Composition
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Baloo: Removal of Outliers

• Comparison between pairings and interpolated corrections

• Outlier criterion

• depends on mean    and variance of errorse

Pairings 
Estimation

Updating the 
Transformation

Removal of 
Outliers

Composition
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Baloo: Composition of Corrections

• : correction interpolated from pairings minus outliers

• Composition of current transformation 

Pairings 
Estimation

Updating the 
Transformation

Removal of 
Outliers

Composition

T
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Segmentation Result (Baloo)
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Segmentation Result (Runa)
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Summary

• Dense Registration with Outlier Rejection (Baloo)
• Faster than classical dense registration (20 minutes)

• Smooth transformation
• Precise contours

• Problems left:
• Still depends on images quality (eyes)
• Larger slice thickness

• Objectives
• More robustness by constraining the transformation
• Registration only on regions of interest
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Locally Affine Framework

• Principle:
• Register only anatomic areas of interest
• Interpolate a global transformation from all local transformations



48

48

Locally Affine Transformation

• Local transformation
• Affine transformation      associated to each region
• Weight function

– Relative influence of each region at point x

• Global transformation:
• Solution 1: Weighted interpolation of affine components

• Solution 2: Using an ordinary differential equation [Arsigny, PhD, 2006]
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[Little et al., 1997]: Deformations Incorporating R igid Structures. CVIU, 1997.

[Arsigny, PhD, 2006]: Processing Data in Lie Groups : An Algebraic Approach. Application to Non-Linear Registration 
and Diffusion Tensor MRI. November 2006.
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LAF: Updating the Transformation

• Local affine correction       estimation

• Block-Matching algorithm

• Outlier rejection in the estimation process 

• Least Trimmed Squares Weighted Estimation
• Weighted by similarity measure values
• Weighted by 

Updating the 
Transformation

Fluid-like 
regularization

Composition

iAδ

)( vi xw

Elastic-like 
Regularization
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LAF: Fluid-like Regularization

• Fluid-like regularization of local transformation corrections

• Gradient descent on

• Log-Euclidean polyaffine framework
• belongs to a vector space
• Generalization of usual regularization energies
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LAF: Composition of Corrections

• Regularized corrections: 

• Composition of corrections with the current transformation
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LAF: Elastic-like Regularization

• Gradient descent on

• Similar to fluid-like regularization
• Regularization on transformations 
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Locally Affine Registration

• Final global transformation computation
• Solution 1 (weighted interpolation): Fast but not always invertible
• Solution 2 (polyaffine): Slower but always invertible

Transformation using 
solution 1

Transformation using 
solution 2
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Segmentation Result (Locally Affine)
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Segmentation Result (Baloo)



56

56

Conclusion

• Locally Affine Registration [Commowick et al., 2006a], 
[Commowick et al., 2006b]

• Smooth transformation
• Robust registration

– One parameter set for all tested acquisition protocols
• Fast computation time (10 minutes)

• Registration method able to recover large displacements
• Ideal for articulated structures (head and neck)

[Commowick et al., 2006a]: An Efficient Locally Affi ne Framework for the Registration of Anatomical Str uctures. ISBI, 
2006.

[Commowick et al., 2006b]: An Efficient Locally Affi ne Framework for the Smooth Registration of Anatomi cal Structures. 
Medical Image Analysis, 2006. Submitted.
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Evaluation Methodology

• Three evaluation methods
• Visual inspection

• Semi-quantitative validation
– Visual inspection by a clinician
– Graduation between 0 and 5

• Quantitative validation
– Experts manual segmentations

– Two steps:
– Ground truth computation using STAPLE [Warfield et al., 2004]
– A posteriori computation of sensitivity/specificity

[Warfield et al., 2004]: Simultaneous Truth and Per formance Level Estimation (STAPLE): an Algorithm fo r the Validation of 
Image Segmentation, IEEE TMI, 2004.
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Brain Evaluation

• Database of MRI from CAL Nice (Dr. P.-Y. Bondiau)
• 2mm slice thickness

• Use of manual expert segmentations
• Brainstem: 7 experts, 6 patients
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Quantitative Evaluation (I): Introduction of 
Deformability Statistics
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Quantitative Evaluation (II): Runa, Baloo, 
LAF
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Evaluation in Clinical Conditions (Runa)



63

63

Evaluation in Clinical Conditions (Baloo)
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Evaluation in Clinical Conditions (LAF)
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Semi-Quantitative Evaluation in Clinical 
Conditions

• Evaluation in clinical conditions [Isambert et al., 2005]
• Done at Institut Gustave Roussy
• In the frame of MAESTRO European project

[Isambert et al., 2005]: Requirements for the use of  an atlas-based automatic segmentation for delineat ion of Organs at 
Risk (OAR) in conformal radiotherapy (CRT): quality  assurance (QA) and preliminary results for 22 adul t patients with 
primary brain tumors. ESTRO, 2005.
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Head and Neck Atlas Construction

• Atlas construction
• From a dataset of delineated images
• Needs to be representative of all patients

– Symmetric atlas construction method

• Other possible method: [Grabner et al., 2006]

• Three steps construction method
• Mean image construction
• Mean segmentations
• Atlas symmetrization

[Grabner et al., 2006]: Symmetric Atlasing and Model Based Segmentation: an Application to the Hippocamp us in Older 
Adults. MICCAI, 2006.
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Atlas Construction Method
Symmetrization
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Mean Image Construction

• Unbiased atlas construction [Guimond et al., 2000]:
• Iterate the following process

• Take the average model as new reference image

[Guimond et al., 2000]: Average Brain Models: A Conv ergence Study, CVIU, 2000.
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Mean Segmentations

• One transformation for each patient 
• All segmentations in the mean image referential

• Mean segmentation using STAPLE [Warfield et al., 2004]:
• Estimation of mean segmentations

• Computation of performance parameters

• Probability maps for each class (including background)
• A posteriori classification into structures

[Warfield et al., 2004]: Simultaneous Truth and Per formance Level Estimation (STAPLE): an Algorithm fo r the Validation 
of Image Segmentation, IEEE TMI, 2004
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Atlas Symmetrization

• Method of [Prima et al., 2002]
• Obtain transformation     bringing     on its mid-sagittal plane
• Principle: registration between    and the mirrored image

• satisfies the relation

• Mean symmetric image obtained from

• Mean symmetric segmentations obtained in two steps
• Symmetrization of the probability maps from STAPLE

• A posteriori classification into structures

I
R

M
~

2

~~
~ SRMRM
M S

ooo +=

[Prima et al., 2002]: Computation of the Mid-Sagitt al Plane in 3D Brain Images. IEEE TMI, 2002.
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Atlas Evaluation Strategy

• Leave-One-Out method



74

74

Evaluation protocol

• Image database:
• 45 patient CT-scan images (Pr. V. Grégoire, MAESTRO)

• Different tumors shapes at different localizations
• Small tumors not deforming the surrounding anatomy (N0 grade)
• Various patient position and anatomy

• Three registration methods compared:
• M1: Block-Matching based dense registration method

• M2: Locally-affine registration method
• M3: M2 followed by M1
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Image Database Examples
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M1 Atlas (Baloo)M2 Atlas (LAF)M3 Atlas(LAF, Baloo)

Obtained Atlases
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Qualitative Results

Manual SegmentationM1 Atlas SegmentationM2 Atlas SegmentationM3 Atlas Segmentation
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Quantitative Atlas Evaluation

• Use of Leave-One-Out method:
• Mean over 12 patients completely delineated (13 structures)

• M3 Atlas performs better for atlas construction
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Conclusion

• Symmetric atlas construction method
• From existing techniques

• Atlas Evaluation method [Commowick et al., 2006c]
• Registration method to build the atlas

• Registration method to register the atlas

• Application to Head and Neck
• Hierarchical registration (M3): well adapted in this context
• Promising results
• Many perspectives on atlas construction

[Commowick et al., 2006c]: Evaluation of Atlas Const ruction Strategies in the Context of Radiotherapy P lanning. SA2PM 
Workshop, held in conjunction with MICCAI. 2006.
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Contributions

• Registration
• Introduction of deformability statistics in registration
• Dense registration with outlier rejection
• Locally affine framework

– Good results without changing parameters

• Head and neck atlas
• Atlas construction method from a dataset of CT images
• Evaluation via leave one out method

• Other contributions (not presented here)
• Taking pathology into account in registration process
• Ad-Hoc method for optic nerves segmentation
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Software Integration

• Integration in DOSIsoft
radiotherapy planning system

• Atlas-based segmentation 
module

• Both brain and head and 
neck atlases

• Validation in clinical 
conditions at IGR

• MAESTRO European 
project
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Discussion on Head and Neck Atlas

• Problem: Over-segmentation of the lymph nodes areas

• First reason: inside the atlas
• Contours dispersion

– Large inter-patient variation
• STAPLE for generating mean segmentations

– Influence of the background class

• Possible solutions
• Cluster dataset in several groups
• Use of new methods [Warfield et al., 2006]

– No background class
[Warfield et al., 2006]: Validation of Image Segmen tation by Estimating Rater Bias and Variance. MICCA I 2006.
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Discussion on Head and Neck Atlas

• Second reason: when registering the atlas
• Large atlas/patient differences

– Corpulence
– Neck flexion

� Results in local discrepancies

• Possible solutions
• Build several atlases from one database

• Clustering of the dataset

• Choose the closest image among the dataset images 
• Definition of distance
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Perspectives

• Registration methods
• Computation of statistics of deformability

– Several registration methods to build unbiased statistics
• Locally affine framework

– Refining local affine regions

• Study of robustness of registration methods
• With respect to registration parameters
• Other type of validation

• Measure of quality of registration
• Based only on images
• Is a region well registered or not ?
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Perspectives

• Further validation
• on more structures and more patients
• Other quantitative measures
• Fully quantitative validation in clinical conditions

• Taking into account pathology
• Model the deformation caused by the tumor
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QuestionsQuestions


